9204400012289934 m001 1/exp(Conway)^2/Cahen^2/TreeGrowth2nd^2 9204400013124356 m001 1/GAMMA(3/4)^2/exp(TreeGrowth2nd)^2*gamma^2 9204400037785507 m001 (-Kac+ThueMorse)/(2^(1/3)+Shi(1)) 9204400063512839 a007 Real Root Of -431*x^4+318*x^3+45*x^2-387*x+163 9204400070485710 r009 Re(z^3+c),c=-47/60+13/34*I,n=2 9204400082096249 a007 Real Root Of 47*x^4+336*x^3-975*x^2-775*x+135 9204400102327961 q001 3598/3909 9204400136849694 a007 Real Root Of 826*x^4+653*x^3-43*x^2-204*x-235 9204400148331724 a001 47/55*144^(11/23) 9204400178581180 a007 Real Root Of -679*x^4+892*x^3+525*x^2-463*x+312 9204400207518528 m001 Salem^2*ln(FeigenbaumB)*GAMMA(1/4) 9204400214014685 a007 Real Root Of -899*x^4-30*x^3-914*x^2-877*x+589 9204400217441260 r001 60i'th iterates of 2*x^2-1 of 9204400225470410 a003 sin(Pi*1/25)/cos(Pi*21/46) 9204400294488712 m005 (1/2*5^(1/2)-3/8)/(-107/198+5/18*5^(1/2)) 9204400350133803 m001 (BesselI(1,1)+MinimumGamma)/(Shi(1)+ln(Pi)) 9204400372658760 r005 Re(z^2+c),c=-7/8+16/67*I,n=5 9204400406494864 a007 Real Root Of -138*x^4-65*x^3-917*x^2-399*x+458 9204400414023684 a007 Real Root Of -951*x^4+87*x^3-865*x^2-713*x+827 9204400439749324 m001 (Pi+Zeta(5))/(Kolakoski-PolyaRandomWalk3D) 9204400447213538 a008 Real Root of (-4+3*x-2*x^2+x^3+3*x^4) 9204400453524163 p002 log(12^(5/7)-3^(10/9)) 9204400466735018 l006 ln(4377/4799) 9204400497977740 a001 20633239/3*6765^(5/17) 9204400501504991 a007 Real Root Of -664*x^4+280*x^3+13*x^2-290*x+417 9204400509481427 a001 167761/3*86267571272^(5/17) 9204400509811136 a001 620166*24157817^(5/17) 9204400536667935 m001 1/Robbin*LaplaceLimit*ln(GAMMA(2/3))^2 9204400544296430 m001 (CareFree-ErdosBorwein)/(Khinchin-Niven) 9204400553318688 a007 Real Root Of -969*x^4+450*x^3-165*x^2-764*x+483 9204400554960976 m002 -18/Pi+Pi^4*Coth[Pi] 9204400561500412 a007 Real Root Of -278*x^4+331*x^3-190*x^2-55*x+568 9204400563734240 b008 Zeta[(1/2+Sqrt[3])/2] 9204400566062573 a007 Real Root Of 215*x^4+156*x^3-610*x^2-934*x+91 9204400597795994 k002 Champernowne real with 1/2*n^2+387/2*n-185 9204400601697209 m001 (GAMMA(19/24)-exp(1))/(Cahen+MertensB2) 9204400642200584 a003 sin(Pi*21/71)/sin(Pi*40/119) 9204400653447673 m005 (1/2*Zeta(3)+2/7)/(5/6*5^(1/2)-9/10) 9204400665678491 a007 Real Root Of -554*x^4+442*x^3-220*x^2-959*x+46 9204400725597551 m001 Mills^Chi(1)/((3^(1/3))^Chi(1)) 9204400747834352 r002 7th iterates of z^2 + 9204400776991994 a007 Real Root Of 940*x^4-799*x^3-470*x^2+307*x-617 9204400783415013 r002 54th iterates of z^2 + 9204400786241353 a007 Real Root Of -829*x^4+915*x^3+459*x^2-909*x+83 9204400810093293 a007 Real Root Of 789*x^4-499*x^3-859*x^2-813*x-68 9204400813013360 a001 1292/51841*521^(15/26) 9204400814437589 m001 (Lehmer+Thue)/(1+gamma) 9204400822288656 a001 610/64079*521^(19/26) 9204400856332763 p004 log(34897/13901) 9204400864629795 r005 Im(z^2+c),c=-133/122+5/46*I,n=43 9204400899086184 a007 Real Root Of -518*x^4-334*x^3-718*x^2-281*x+461 9204400899394581 r002 14th iterates of z^2 + 9204400924773318 a007 Real Root Of 891*x^4+596*x^3+684*x^2+399*x-387 9204400925084652 r002 9th iterates of z^2 + 9204400929841270 r005 Re(z^2+c),c=-13/50+28/45*I,n=14 9204400955196130 r002 24th iterates of z^2 + 9204401049222594 a001 2255/90481*521^(15/26) 9204401056186080 a007 Real Root Of -94*x^4+718*x^3-580*x^2-619*x+549 9204401083685057 a001 17711/710647*521^(15/26) 9204401083813546 p001 sum(1/(58*n+51)/n/(100^n),n=0..infinity) 9204401088713062 a001 2576/103361*521^(15/26) 9204401089446638 a001 121393/4870847*521^(15/26) 9204401089900013 a001 75025/3010349*521^(15/26) 9204401091820540 a001 28657/1149851*521^(15/26) 9204401104984030 a001 5473/219602*521^(15/26) 9204401145198808 b008 32/15+5*Sqrt[2] 9204401146152112 a007 Real Root Of -876*x^4+161*x^3-287*x^2-409*x+621 9204401154209665 l006 ln(962/2415) 9204401163238982 m001 (GAMMA(2/3)+Backhouse*ZetaP(3))/ZetaP(3) 9204401170074819 a007 Real Root Of 529*x^4-429*x^3+254*x^2+422*x-541 9204401184934405 q001 2175/2363 9204401192285847 a007 Real Root Of 296*x^4-274*x^3+163*x^2-317*x-856 9204401195207929 a001 4181/167761*521^(15/26) 9204401206461284 r005 Re(z^2+c),c=-26/29+9/62*I,n=13 9204401216024430 r008 a(0)=9,K{-n^6,-16+5*n^3-6*n^2+15*n} 9204401248375982 l006 ln(9733/9823) 9204401278537178 r002 19th iterates of z^2 + 9204401301658981 r002 6th iterates of z^2 + 9204401312885620 m001 (-FeigenbaumD+Sarnak)/(Si(Pi)-exp(Pi)) 9204401355124833 a007 Real Root Of -678*x^4-439*x^3-136*x^2+522*x+740 9204401358248061 m002 -Cosh[Pi]-Pi^6*Csch[Pi]+3/ProductLog[Pi] 9204401363696765 r005 Re(z^2+c),c=-59/64+1/17*I,n=19 9204401374919376 m001 GlaisherKinkelin-Sarnak^Pi 9204401389280773 m001 (GAMMA(17/24)+RenyiParking)/(Shi(1)-exp(Pi)) 9204401398504065 r005 Re(z^2+c),c=3/58+19/41*I,n=19 9204401406838612 r004 Re(z^2+c),c=-27/38+4/15*I,z(0)=-1,n=7 9204401418878023 r009 Im(z^3+c),c=-2/11+41/46*I,n=33 9204401484260416 a007 Real Root Of -893*x^4-294*x^3-178*x^2+308*x+846 9204401508463063 m005 (1/2*exp(1)-3/11)/(1/6*exp(1)+8/11) 9204401511041563 r005 Re(z^2+c),c=57/122+2/35*I,n=3 9204401526868154 m005 (1/3*exp(1)+3/4)/(6*Pi-6/7) 9204401572243251 r005 Im(z^2+c),c=-35/34+9/91*I,n=12 9204401600801100 k002 Champernowne real with n^2+192*n-184 9204401602283023 a007 Real Root Of -180*x^4+828*x^3+261*x^2+374*x+898 9204401604932062 p004 log(23063/9187) 9204401630577337 a001 89/29*18^(19/50) 9204401649022613 a007 Real Root Of -951*x^4+602*x^3+253*x^2-758*x+240 9204401678025904 m001 ln(Zeta(9))^2/Sierpinski^2/cos(Pi/5)^2 9204401701493218 m005 (1/2*gamma+1/8)/(1/2*3^(1/2)-5/12) 9204401722752586 r005 Re(z^2+c),c=-97/106+1/11*I,n=21 9204401756164100 r009 Re(z^3+c),c=-17/106+19/31*I,n=39 9204401795496192 a007 Real Root Of -733*x^4-861*x^3-996*x^2-295*x+427 9204401813611732 a001 1597/64079*521^(15/26) 9204401823644920 a001 987/24476*521^(1/2) 9204401837791894 a001 11/2971215073*55^(5/22) 9204401858628610 a007 Real Root Of -769*x^4+250*x^3+163*x^2-40*x+572 9204401861892507 a007 Real Root Of -429*x^4+796*x^3-371*x^2-277*x+988 9204401963175771 r005 Im(z^2+c),c=-65/66+7/25*I,n=15 9204401975484500 a007 Real Root Of -566*x^4+596*x^3+657*x^2-460*x-109 9204401995095867 a007 Real Root Of 831*x^4-360*x^3-139*x^2+70*x-695 9204401996223554 r005 Re(z^2+c),c=9/64+25/49*I,n=25 9204402016183094 m001 1/ln(GAMMA(1/24))^2/TwinPrimes/sqrt(1+sqrt(3)) 9204402035637248 l004 cosh(339/65) 9204402044695828 m001 ln(Pi)/Chi(1)/ZetaR(2) 9204402055581095 r009 Re(z^3+c),c=-1/7+19/39*I,n=6 9204402068944049 a007 Real Root Of 129*x^4-841*x^3+140*x^2+314*x-578 9204402083190387 a001 610/843*199^(1/22) 9204402101994335 r002 15th iterates of z^2 + 9204402111429497 a001 281/726103*8^(5/12) 9204402112612432 a007 Real Root Of 957*x^4-567*x^3-276*x^2+412*x-516 9204402116732016 a001 144/15127*322^(19/24) 9204402216010835 r002 29th iterates of z^2 + 9204402216373936 a007 Real Root Of 499*x^4-214*x^3-178*x^2-91*x-458 9204402216973796 a003 cos(Pi*7/100)*cos(Pi*11/102) 9204402236522980 a001 6/726103*377^(1/55) 9204402242809660 r002 11th iterates of z^2 + 9204402254112758 r005 Im(z^2+c),c=-21/17+1/19*I,n=46 9204402278280959 g005 GAMMA(11/12)*GAMMA(5/7)/GAMMA(8/11)/GAMMA(4/5) 9204402282927033 s002 sum(A164649[n]/(n*2^n+1),n=1..infinity) 9204402296246686 r005 Re(z^2+c),c=7/27+13/38*I,n=52 9204402311684397 a007 Real Root Of -720*x^4+229*x^3+496*x^2-614*x-290 9204402314356120 m001 (3^(1/2)-gamma(3))/(Porter+ThueMorse) 9204402324297714 m001 1/LandauRamanujan^2*Bloch/ln(Catalan) 9204402336058818 r005 Re(z^2+c),c=-28/31+4/31*I,n=43 9204402340867646 a007 Real Root Of 996*x^4-884*x^3-736*x^2+582*x-245 9204402342566831 r005 Re(z^2+c),c=-9/10+59/217*I,n=3 9204402344423064 a007 Real Root Of -314*x^4+953*x^3+889*x^2+809*x+960 9204402346449432 a007 Real Root Of 376*x^4+219*x^3+127*x^2-323*x-504 9204402351789564 m002 -Pi^4+5*Coth[Pi]+4*Csch[Pi] 9204402366738655 l006 ln(3415/8573) 9204402369852614 a007 Real Root Of -791*x^4+194*x^3-612*x^2-471*x+804 9204402380366620 m001 Chi(1)+HeathBrownMoroz+StolarskyHarborth 9204402428975832 a007 Real Root Of -527*x^4+765*x^3+669*x^2-251*x+177 9204402447771909 a007 Real Root Of -109*x^4-973*x^3+343*x^2+699*x+987 9204402452045381 a001 1/1201881744*21^(15/19) 9204402456911069 r005 Im(z^2+c),c=-14/19+8/33*I,n=36 9204402470226316 a007 Real Root Of -407*x^4+656*x^3+236*x^2+223*x+809 9204402514790646 r005 Im(z^2+c),c=-17/26+17/100*I,n=58 9204402515723270 q001 2927/3180 9204402542941861 g006 Psi(1,3/4)-Psi(1,4/9)-Psi(1,5/8)-Psi(1,4/5) 9204402562408723 a007 Real Root Of -917*x^4+144*x^3+400*x^2+548*x+936 9204402572857081 a007 Real Root Of 139*x^4-813*x^3-267*x^2+697*x+134 9204402577081438 a007 Real Root Of 891*x^4-461*x^3+224*x^2-518*x-50 9204402586659777 a003 cos(Pi*8/73)*sin(Pi*29/67) 9204402592033965 r002 48th iterates of z^2 + 9204402603807101 k002 Champernowne real with 3/2*n^2+381/2*n-183 9204402607871400 r008 a(0)=0,K{-n^6,-64-60*n^2+15*n^3} 9204402628956853 a007 Real Root Of 663*x^4-191*x^3+777*x^2+690*x-648 9204402704205422 r009 Re(z^3+c),c=-49/94+2/37*I,n=5 9204402734867044 m001 (-Niven+ZetaP(3))/(GAMMA(11/12)-exp(1)) 9204402735805038 r002 39th iterates of z^2 + 9204402755680168 p002 log(1/23*(12^(3/4)-2^(1/4))*23^(1/2)) 9204402836136286 m001 (GAMMA(17/24)+Kolakoski)/(Shi(1)+Zeta(3)) 9204402842259563 l006 ln(2453/6158) 9204402847101658 r005 Re(z^2+c),c=-37/40+1/48*I,n=3 9204402847476902 s002 sum(A023166[n]/((pi^n+1)/n),n=1..infinity) 9204402910351886 r009 Re(z^3+c),c=-3/44+49/58*I,n=5 9204402918104770 a001 377/439204*1364^(29/30) 9204402923266464 r005 Im(z^2+c),c=-21/34+5/29*I,n=59 9204402929051267 m001 Robbin*(Cahen+RenyiParking) 9204402947817556 r002 10th iterates of z^2 + 9204402974880691 l006 ln(8308/9109) 9204402980324657 a007 Real Root Of 104*x^4+993*x^3+392*x^2+620*x+368 9204402982751981 m008 (2/5*Pi^3-5/6)/(2/5*Pi^3+1/6) 9204402984566103 r002 41th iterates of z^2 + 9204403052589699 a007 Real Root Of -490*x^4-274*x^3-877*x^2-276*x+627 9204403075770955 m001 (ErdosBorwein+LaplaceLimit)/(ln(2)+Pi^(1/2)) 9204403081047702 r009 Re(z^3+c),c=-17/118+26/51*I,n=26 9204403109336369 r005 Re(z^2+c),c=2/7+17/46*I,n=61 9204403129361488 a007 Real Root Of 784*x^4+139*x^3-63*x^2+365*x-65 9204403141074360 a001 1/55*121393^(25/47) 9204403143867397 a007 Real Root Of -366*x^4+889*x^3-420*x^2+914*x-916 9204403179146160 a007 Real Root Of 933*x^4+650*x^3+180*x^2-230*x-527 9204403199247284 a007 Real Root Of -158*x^4+896*x^3-344*x^2+501*x-755 9204403247750835 a001 377/271443*1364^(9/10) 9204403253999886 l006 ln(3944/9901) 9204403268471366 r002 10th iterates of z^2 + 9204403286914187 a007 Real Root Of 733*x^4+288*x^3-335*x^2-449*x-431 9204403302476857 q001 3679/3997 9204403315484805 a007 Real Root Of -786*x^4-586*x^3-749*x^2-267*x+496 9204403329670149 p001 sum(1/(251*n+110)/(25^n),n=0..infinity) 9204403360989022 r002 47th iterates of z^2 + 9204403375893925 m005 (9/8+1/4*5^(1/2))/(7/8*Zeta(3)+7/9) 9204403395891474 m001 (Catalan-gamma(3))/(-Otter+ReciprocalLucas) 9204403422579521 a001 610/39603*521^(17/26) 9204403424512379 a001 2584/64079*521^(1/2) 9204403431897005 m005 (1/2*Zeta(3)+4)/(2/11*Catalan+1/3) 9204403443170751 m001 GAMMA(5/6)^ZetaP(3)/(GAMMA(5/6)^Thue) 9204403452083859 r009 Re(z^3+c),c=-39/74+4/63*I,n=4 9204403512352405 m001 GaussKuzminWirsing+GolombDickman^GAMMA(23/24) 9204403530982790 m009 (2/3*Psi(1,1/3)+1/4)/(1/5*Psi(1,3/4)+1/4) 9204403535819615 m001 1/exp(sqrt(2))^2/BesselK(1,1)^2/sqrt(Pi) 9204403546144495 m001 Psi(2,1/3)*(HardyLittlewoodC3+MertensB2) 9204403570413971 a007 Real Root Of 359*x^4-662*x^3+603*x^2-766*x+7 9204403578021521 a001 377/167761*1364^(5/6) 9204403606813102 k002 Champernowne real with 2*n^2+189*n-182 9204403609732934 a001 6765/322*18^(23/45) 9204403644072383 a007 Real Root Of 86*x^4-968*x^3+979*x^2+817*x-894 9204403658075793 a001 615/15251*521^(1/2) 9204403667551656 m001 1/ln(Sierpinski)^2/DuboisRaymond^2*Pi 9204403676859338 a007 Real Root Of 996*x^4-253*x^3-606*x^2-236*x-616 9204403678191248 r002 56i'th iterates of 2*x/(1-x^2) of 9204403686682795 a007 Real Root Of -159*x^4+902*x^3-210*x^2-510*x+526 9204403692152236 a001 17711/439204*521^(1/2) 9204403697123922 a001 46368/1149851*521^(1/2) 9204403697849281 a001 121393/3010349*521^(1/2) 9204403697955110 a001 317811/7881196*521^(1/2) 9204403697970550 a001 75640/1875749*521^(1/2) 9204403697972802 a001 2178309/54018521*521^(1/2) 9204403697973131 a001 5702887/141422324*521^(1/2) 9204403697973179 a001 14930352/370248451*521^(1/2) 9204403697973186 a001 39088169/969323029*521^(1/2) 9204403697973187 a001 9303105/230701876*521^(1/2) 9204403697973187 a001 267914296/6643838879*521^(1/2) 9204403697973187 a001 701408733/17393796001*521^(1/2) 9204403697973187 a001 1836311903/45537549124*521^(1/2) 9204403697973187 a001 4807526976/119218851371*521^(1/2) 9204403697973187 a001 1144206275/28374454999*521^(1/2) 9204403697973187 a001 32951280099/817138163596*521^(1/2) 9204403697973187 a001 86267571272/2139295485799*521^(1/2) 9204403697973187 a001 225851433717/5600748293801*521^(1/2) 9204403697973187 a001 591286729879/14662949395604*521^(1/2) 9204403697973187 a001 365435296162/9062201101803*521^(1/2) 9204403697973187 a001 139583862445/3461452808002*521^(1/2) 9204403697973187 a001 53316291173/1322157322203*521^(1/2) 9204403697973187 a001 20365011074/505019158607*521^(1/2) 9204403697973187 a001 7778742049/192900153618*521^(1/2) 9204403697973187 a001 2971215073/73681302247*521^(1/2) 9204403697973187 a001 1134903170/28143753123*521^(1/2) 9204403697973187 a001 433494437/10749957122*521^(1/2) 9204403697973187 a001 165580141/4106118243*521^(1/2) 9204403697973188 a001 63245986/1568397607*521^(1/2) 9204403697973190 a001 24157817/599074578*521^(1/2) 9204403697973209 a001 9227465/228826127*521^(1/2) 9204403697973334 a001 3524578/87403803*521^(1/2) 9204403697974195 a001 1346269/33385282*521^(1/2) 9204403697980092 a001 514229/12752043*521^(1/2) 9204403698020515 a001 196418/4870847*521^(1/2) 9204403698297578 a001 75025/1860498*521^(1/2) 9204403700196593 a001 28657/710647*521^(1/2) 9204403706964702 r001 35i'th iterates of 2*x^2-1 of 9204403709910655 r005 Im(z^2+c),c=-5/52+15/19*I,n=45 9204403713212636 a001 10946/271443*521^(1/2) 9204403751897201 a003 sin(Pi*37/102)/sin(Pi*48/107) 9204403757135249 a007 Real Root Of 10*x^4-440*x^3+255*x^2-866*x+917 9204403762713524 r009 Re(z^3+c),c=-1/90+8/25*I,n=3 9204403772079117 a007 Real Root Of 376*x^4-774*x^3+251*x^2+954*x-208 9204403802425921 a001 4181/103682*521^(1/2) 9204403816487356 r005 Im(z^2+c),c=-37/30+27/97*I,n=9 9204403817231167 m001 1/exp(1)^2*CopelandErdos/ln(sqrt(2)) 9204403828622588 a001 1322157322203/55*2504730781961^(5/24) 9204403828622589 a001 14662949395604/55*24157817^(5/24) 9204403830396712 a007 Real Root Of 501*x^4-557*x^3-542*x^2+556*x+177 9204403831396769 a007 Real Root Of 896*x^4-689*x^3-140*x^2+807*x-319 9204403892740414 r009 Im(z^3+c),c=-16/29+19/32*I,n=11 9204403898251233 a001 11/46368*987^(26/49) 9204403904226056 a007 Real Root Of -150*x^4+794*x^3-128*x^2+139*x-531 9204403906656971 a001 377/103682*1364^(23/30) 9204403931396905 l006 ln(1491/3743) 9204403939412385 r002 2th iterates of z^2 + 9204403952333592 m005 (1/2*2^(1/2)-2/5)/(5/11*Catalan-3/4) 9204403997492566 a007 Real Root Of -832*x^4+265*x^3-344*x^2-977*x+196 9204404018970678 a001 9349/21*1346269^(17/45) 9204404103930554 a007 Real Root Of 316*x^4+47*x^3-316*x^2-898*x-749 9204404152924106 m001 (BesselI(1,1)+Lehmer)/(2^(1/3)-gamma(3)) 9204404161094289 r005 Im(z^2+c),c=-13/22+19/112*I,n=59 9204404224118088 m005 (1/2*gamma+7/9)/(7/10*Zeta(3)-2) 9204404239573568 a001 377/64079*1364^(7/10) 9204404258921776 a007 Real Root Of -466*x^4+419*x^3-952*x^2-732*x+794 9204404294662263 a003 cos(Pi*9/79)-cos(Pi*48/97) 9204404327646424 r005 Re(z^2+c),c=-28/31+3/32*I,n=40 9204404332258205 r009 Re(z^3+c),c=-3/29+3/14*I,n=4 9204404351279166 m001 (Shi(1)+cos(1))/(GAMMA(23/24)+Rabbit) 9204404352046453 a001 1346269/29*47^(8/45) 9204404361515952 a007 Real Root Of -875*x^4-456*x^3+281*x^2+847*x+814 9204404373434558 m005 (1/3*3^(1/2)-1/7)/(1/8*5^(1/2)-5) 9204404376457549 a001 141/2161*521^(11/26) 9204404376859814 r005 Re(z^2+c),c=-7/8+25/138*I,n=25 9204404413902877 a001 1597/39603*521^(1/2) 9204404429958645 m001 Zeta(1,2)/(KhinchinLevy^OneNinth) 9204404449110978 a007 Real Root Of 969*x^4-750*x^3+8*x^2+790*x-560 9204404460578542 a007 Real Root Of -315*x^4+598*x^3+108*x^2-16*x-317 9204404464107543 a007 Real Root Of 164*x^4-747*x^3-185*x^2-145*x+755 9204404501215185 r002 59th iterates of z^2 + 9204404531353211 r009 Im(z^3+c),c=-33/118+3/44*I,n=9 9204404560819863 p003 LerchPhi(1/125,6,343/157) 9204404561282019 a001 377/39603*1364^(19/30) 9204404562505345 m001 1/GAMMA(23/24)/ln(ArtinRank2)^2*GAMMA(3/4) 9204404585130776 s002 sum(A008156[n]/(n^2*2^n+1),n=1..infinity) 9204404593449316 m005 (1/2*gamma+5/11)/(1/11*Zeta(3)-11/12) 9204404599147668 m005 (1/2*Pi+5/6)/(4/11*exp(1)-8/11) 9204404609819103 k002 Champernowne real with 5/2*n^2+375/2*n-181 9204404613329532 p004 log(22039/20101) 9204404652697737 m005 (1/2*2^(1/2)+1/10)/(5/12*gamma+7/11) 9204404656370605 a001 377/2207*1364^(7/30) 9204404660228008 m001 (gamma(2)+KhinchinLevy)/(Mills-Sierpinski) 9204404660767754 a008 Real Root of x^4-2*x^3-105*x^2+106*x+2302 9204404692335000 l006 ln(3511/8814) 9204404695044153 a007 Real Root Of 991*x^4+710*x^3+465*x^2+445*x-142 9204404728168124 v002 sum(1/(5^n*(12*n^2-24*n+37)),n=1..infinity) 9204404733908473 m001 (Pi+BesselI(1,1))/(BesselI(0,2)+MadelungNaCl) 9204404756499016 m003 -79/10+Sqrt[5]/2-Sinh[1/2+Sqrt[5]/2] 9204404782062595 m001 (Zeta(3)-Backhouse)/(Sierpinski+ZetaP(3)) 9204404782716475 p004 log(31513/12553) 9204404859833864 m001 Riemann1stZero^2/Rabbit^2*exp(BesselK(0,1))^2 9204404861644793 a007 Real Root Of -91*x^4+610*x^3+551*x^2-224*x-671 9204404867834559 m005 (1/2*Catalan+7/12)/(7/10*gamma+8/11) 9204404894368832 a007 Real Root Of 297*x^4-839*x^3-971*x^2+983*x+860 9204404901182136 m001 Lehmer^2*CareFree^2/exp(Riemann1stZero)^2 9204404903490466 r005 Re(z^2+c),c=-9/10+15/109*I,n=33 9204404906406056 r002 49th iterates of z^2 + 9204404912333821 a001 13/844*1364^(17/30) 9204404940359551 m008 (1/3*Pi^4+3)/(2/5*Pi^6+4/5) 9204404970649542 a007 Real Root Of -240*x^4+856*x^3+696*x^2+454*x+668 9204404975500540 r005 Im(z^2+c),c=-41/34+5/47*I,n=26 9204404981041820 m001 FeigenbaumC^CareFree/(FeigenbaumC^sin(1)) 9204405019061716 m005 (1/2*2^(1/2)+1/9)/(3/8*Catalan+6/11) 9204405047618434 a007 Real Root Of -279*x^4+468*x^3+658*x^2+223*x+213 9204405101330368 a007 Real Root Of -313*x^4-236*x^3-160*x^2+681*x+803 9204405148491211 m005 (1/3*Zeta(3)-3/5)/(-7/22+1/22*5^(1/2)) 9204405150024601 m001 LaplaceLimit/HardHexagonsEntropy*exp(Robbin) 9204405155516298 a003 cos(Pi*8/91)*cos(Pi*11/117) 9204405162736785 r005 Re(z^2+c),c=1/22+19/42*I,n=44 9204405186563772 a001 377/15127*1364^(1/2) 9204405205445309 r009 Im(z^3+c),c=-13/60+22/25*I,n=3 9204405224677195 m005 (1/2*Zeta(3)+5/6)/(7/12*Zeta(3)+6/7) 9204405233232434 a007 Real Root Of 748*x^3-364*x^2-909*x+55 9204405253844380 a007 Real Root Of -934*x^4-168*x^3-343*x^2+138*x+957 9204405253997686 l006 ln(2020/5071) 9204405254540421 a007 Real Root Of 776*x^4-488*x^3-905*x^2+15*x-157 9204405283578890 m005 (1/2*Pi-5/7)/(11/12*Catalan+1/11) 9204405330593719 m001 (MasserGramain-Paris)/(Pi+FransenRobinson) 9204405355676248 m001 (FeigenbaumB+OneNinth)/(ln(Pi)-Champernowne) 9204405361109214 m001 MertensB3^Lehmer/(MertensB3^ln(2^(1/2)+1)) 9204405365627480 r009 Im(z^3+c),c=-10/19+35/39*I,n=2 9204405429601487 r005 Re(z^2+c),c=11/40+19/53*I,n=48 9204405429890528 m001 ZetaP(3)^(exp(Pi)*gamma(3)) 9204405440209640 a001 5/47*15127^(26/37) 9204405452084646 m001 (-AlladiGrinstead+MertensB2)/(Chi(1)+ln(5)) 9204405459890607 r002 17th iterates of z^2 + 9204405524763783 m001 (PrimesInBinary+Salem)/(Champernowne-Si(Pi)) 9204405553457288 g004 Im(GAMMA(-17/20+I*79/60)) 9204405564169095 m002 -Pi^4+5*ProductLog[Pi]-Tanh[Pi]/Pi^5 9204405583433534 m001 (HeathBrownMoroz-Trott)/MertensB2 9204405604881915 a007 Real Root Of -310*x^4+988*x^3+767*x^2-619*x-628 9204405606950034 m001 (TwinPrimes+1/2)/(-Artin+1/2) 9204405610723308 a001 377/5778*1364^(11/30) 9204405612825104 k002 Champernowne real with 3*n^2+186*n-180 9204405612826104 k004 Champernowne real with floor(Pi*(n^2+59*n-57)) 9204405634319945 a001 969323029/3*377^(3/17) 9204405634934576 a003 sin(Pi*9/34)/sin(Pi*27/91) 9204405645507910 s002 sum(A010789[n]/(n*2^n+1),n=1..infinity) 9204405661915992 a001 377/9349*1364^(13/30) 9204405662130752 a001 377/2207*3571^(7/34) 9204405691282712 r002 14th iterates of z^2 + 9204405705882736 a007 Real Root Of -910*x^4+543*x^3-109*x^2-428*x+775 9204405709496733 g002 Psi(6/11)+Psi(2/11)-Psi(1/9)-Psi(1/7) 9204405719627142 a007 Real Root Of -25*x^4+680*x^3-887*x^2+869*x-73 9204405767593314 l006 ln(3931/4310) 9204405775740796 r005 Im(z^2+c),c=-85/62+2/59*I,n=4 9204405788453925 a007 Real Root Of -204*x^4+450*x^3-474*x^2-353*x+574 9204405791337311 a001 377/2207*9349^(7/38) 9204405807381747 a007 Real Root Of -357*x^4+707*x^3+506*x^2-204*x-536 9204405808175606 a001 377/2207*24476^(1/6) 9204405808465520 r005 Im(z^2+c),c=-29/54+21/37*I,n=55 9204405810395217 a001 377/2207*64079^(7/46) 9204405810736332 a001 377/2207*20633239^(1/10) 9204405810736335 a001 377/2207*17393796001^(1/14) 9204405810736335 a001 377/2207*14662949395604^(1/18) 9204405810736335 a001 377/2207*505019158607^(1/16) 9204405810736335 a001 377/2207*599074578^(1/12) 9204405810738613 a001 377/2207*710647^(1/8) 9204405811669986 a001 377/2207*39603^(7/44) 9204405813768006 m005 (-1/28+1/4*5^(1/2))/(1/2*gamma-6/7) 9204405817775614 a001 377/2207*15127^(7/40) 9204405819509315 m001 (GAMMA(7/12)-Grothendieck)/(ln(5)+ln(Pi)) 9204405821267826 r001 43i'th iterates of 2*x^2-1 of 9204405843090125 a001 2/6765*377^(30/31) 9204405845154553 a001 377/843*322^(1/8) 9204405847234807 r002 4th iterates of z^2 + 9204405864345154 a001 377/2207*5778^(7/36) 9204405886444639 r005 Im(z^2+c),c=-5/8+39/232*I,n=41 9204405889126808 m001 sin(Pi/12)^2/CopelandErdos*exp(sinh(1)) 9204405910264728 s001 sum(exp(-2*Pi/5)^n*A226660[n],n=1..infinity) 9204405910264728 s002 sum(A226660[n]/(exp(2/5*pi*n)),n=1..infinity) 9204405913185340 a007 Real Root Of 662*x^4-776*x^3+891*x^2+991*x-923 9204405937624535 m001 1/LaplaceLimit/Cahen^2*ln(sqrt(1+sqrt(3)))^2 9204405945531162 m001 Zeta(1,2)*(DuboisRaymond-Salem) 9204405955539340 a007 Real Root Of 980*x^4-570*x^3+699*x^2-723*x+61 9204405974640189 a007 Real Root Of -947*x^4-129*x^3-141*x^2-332*x+393 9204405984623927 a007 Real Root Of 522*x^4+686*x^3-95*x^2-996*x-676 9204405988889668 a007 Real Root Of 510*x^4-233*x^3-517*x^2-663*x-720 9204406015034720 a007 Real Root Of 385*x^4-813*x^3+161*x^2-267*x+467 9204406024803979 a001 2584/39603*521^(11/26) 9204406027633448 l006 ln(2549/6399) 9204406028474354 r002 53th iterates of z^2 + 9204406036142347 m001 (Ei(1,1)+LandauRamanujan)/(OneNinth-Salem) 9204406052214465 a001 305/12238*521^(15/26) 9204406098004644 a007 Real Root Of -628*x^4+491*x^3-881*x^2-716*x+921 9204406122134708 r005 Im(z^2+c),c=-11/122+5/46*I,n=10 9204406126705705 a001 377/1364*521^(5/26) 9204406178954859 m008 (1/6*Pi-1/2)/(5/6*Pi^3-1/5) 9204406185219206 m001 (-KomornikLoreti+Salem)/(cos(1)+Champernowne) 9204406224106660 a001 377/2207*2207^(7/32) 9204406229962521 m001 (Robbin+Trott)/(sin(1/12*Pi)+Bloch) 9204406264423293 r005 Im(z^2+c),c=-19/102+11/14*I,n=30 9204406265294483 a001 6765/103682*521^(11/26) 9204406282075824 m001 2*Pi/GAMMA(5/6)*GAMMA(19/24)/Rabbit 9204406300381575 a001 17711/271443*521^(11/26) 9204406302568055 a007 Real Root Of -758*x^4+653*x^3-241*x^2-497*x+800 9204406305500713 a001 6624/101521*521^(11/26) 9204406306247585 a001 121393/1860498*521^(11/26) 9204406306356552 a001 317811/4870847*521^(11/26) 9204406306423897 a001 196418/3010349*521^(11/26) 9204406306709177 a001 75025/1149851*521^(11/26) 9204406308664514 a001 28657/439204*521^(11/26) 9204406309844608 m002 2+3*Pi^5+Log[Pi]/3 9204406322066590 a001 10946/167761*521^(11/26) 9204406336217066 a007 Real Root Of 736*x^4+466*x^3+947*x^2+714*x-310 9204406336489310 a007 Real Root Of 537*x^4-900*x^3+430*x^2+835*x-683 9204406350004646 a007 Real Root Of -585*x^4+739*x^3-521*x^2-835*x+669 9204406359684247 m001 (1-Zeta(5))/(-GaussAGM+Kolakoski) 9204406364749082 q001 376/4085 9204406364749082 q001 752/817 9204406364749082 r002 2th iterates of z^2 + 9204406364749082 r005 Im(z^2+c),c=37/114+24/43*I,n=2 9204406384062943 m001 (Catalan+Artin)/(PisotVijayaraghavan+ZetaP(4)) 9204406385955250 m005 (1/3*3^(1/2)+1/7)/(1/7*gamma+7/10) 9204406413925789 a001 4181/64079*521^(11/26) 9204406419269311 a001 1/98209*4181^(40/49) 9204406435721618 a007 Real Root Of 294*x^4-678*x^3+470*x^2-597*x+469 9204406444526064 a007 Real Root Of -913*x^4+170*x^3-32*x^2-88*x+734 9204406457831934 r005 Im(z^2+c),c=-9/28+7/50*I,n=12 9204406470491806 m001 (3^(1/2))^Khinchin/Weierstrass 9204406478257048 a007 Real Root Of -709*x^4-263*x^3+113*x^2-527*x-277 9204406481816917 a007 Real Root Of 258*x^4-720*x^3+134*x^2+752*x-168 9204406504650252 a007 Real Root Of 799*x^4-977*x^3-718*x^2+703*x-80 9204406509002539 m001 (Kolakoski+Robbin)/(BesselI(0,2)-ArtinRank2) 9204406523898226 m001 (GAMMA(19/24)-PlouffeB)/(RenyiParking+Trott) 9204406535347593 l006 ln(3078/7727) 9204406535459063 a003 sin(Pi*5/116)*sin(Pi*16/67) 9204406541500995 a007 Real Root Of -987*x^4+988*x^3+549*x^2+572*x-58 9204406574470961 r005 Re(z^2+c),c=-15/86+41/55*I,n=33 9204406585265047 m005 (1/3*gamma-1/3)/(1/3*exp(1)+5/8) 9204406614402968 a001 34/521*24476^(52/55) 9204406615831105 k002 Champernowne real with 7/2*n^2+369/2*n-179 9204406627346999 a007 Real Root Of -546*x^4+876*x^3+780*x^2+392*x+775 9204406639109737 m001 (Bloch+Champernowne)/(DuboisRaymond+ZetaP(2)) 9204406658758487 a007 Real Root Of -164*x^4+298*x^3+808*x^2-35*x-767 9204406666590016 a007 Real Root Of -532*x^4+305*x^3+118*x^2-368*x+181 9204406676165275 r009 Im(z^3+c),c=-9/17+31/34*I,n=2 9204406680698917 a007 Real Root Of -778*x^4-269*x^3-896*x^2-443*x+700 9204406728898021 a007 Real Root Of 136*x^4-109*x^3+737*x^2+113*x-703 9204406769746063 a007 Real Root Of 623*x^4-620*x^3-825*x^2-499*x-691 9204406776078639 m001 (MertensB3-Sarnak)/(Backhouse-Kolakoski) 9204406782366474 m002 -Pi^(-5)-Pi^4+5*ProductLog[Pi] 9204406788757238 a007 Real Root Of 256*x^4-677*x^3-180*x^2+136*x-434 9204406788966452 m001 (Lehmer+Stephens)/(BesselI(1,1)+CareFree) 9204406829277926 r002 64th iterates of z^2 + 9204406852422607 a007 Real Root Of 667*x^4+517*x^3+619*x^2-151*x-739 9204406858953497 m004 4/3+4*Csc[Sqrt[5]*Pi]+Log[Sqrt[5]*Pi] 9204406865394033 a003 sin(Pi*3/8)*sin(Pi*43/91) 9204406884067337 m005 (1/2*gamma-5/9)/(3/10*2^(1/2)-5/7) 9204406893780675 a007 Real Root Of -830*x^4+390*x^3+232*x^2+4*x+707 9204406894139747 l006 ln(3607/9055) 9204406909610042 r005 Re(z^2+c),c=13/86+7/33*I,n=20 9204406938043227 a001 377/3571*1364^(3/10) 9204406943785791 a007 Real Root Of -422*x^4+548*x^3+365*x^2+421 9204406955559517 m001 (Lehmer+RenyiParking)/Backhouse 9204406955559517 m001 (RenyiParking+Lehmer)/Backhouse 9204406982387930 r009 Im(z^3+c),c=-14/25+35/61*I,n=8 9204406991937788 m001 GAMMA(1/4)/ln(RenyiParking)/GAMMA(2/3) 9204406992449228 m001 (GAMMA(19/24)+Totient)/(Zeta(3)+GAMMA(7/12)) 9204406999867064 a001 377/1149851*3571^(33/34) 9204407024236934 r005 Re(z^2+c),c=-5/56+49/60*I,n=7 9204407033045163 a007 Real Root Of 698*x^4-451*x^3-777*x^2+661*x+414 9204407042300621 a001 377/710647*3571^(31/34) 9204407043538104 a001 1597/24476*521^(11/26) 9204407044516938 a007 Real Root Of 560*x^4-742*x^3+561*x^2+844*x-679 9204407074143925 a007 Real Root Of 326*x^4-147*x^3+73*x^2+522*x+70 9204407074782548 a007 Real Root Of 698*x^4-214*x^3+724*x^2+864*x-486 9204407084825307 a001 377/439204*3571^(29/34) 9204407127111413 a001 377/271443*3571^(27/34) 9204407130393179 a001 987/9349*521^(9/26) 9204407136273061 a007 Real Root Of -530*x^4+598*x^3+587*x^2+571*x+875 9204407148786170 a003 sin(Pi*39/103)*sin(Pi*39/85) 9204407162746992 r005 Re(z^2+c),c=-15/14+45/241*I,n=30 9204407170022129 a001 377/167761*3571^(25/34) 9204407191203752 a001 377/5778*3571^(11/34) 9204407195432728 a007 Real Root Of 89*x^4-718*x^3+742*x^2+485*x-806 9204407211297597 a001 377/103682*3571^(23/34) 9204407214938660 a003 sin(Pi*3/91)*sin(Pi*36/103) 9204407248476943 m002 -Pi^10+(6*Pi^5)/Log[Pi] 9204407256854201 a001 377/64079*3571^(21/34) 9204407291202645 a001 377/39603*3571^(19/34) 9204407291755712 s002 sum(A074044[n]/(exp(n)),n=1..infinity) 9204407339202052 a007 Real Root Of 303*x^4-898*x^3-493*x^2+497*x+443 9204407339493493 a007 Real Root Of -853*x^4+623*x^3+11*x^2+321*x+30 9204407341764345 a001 377/15127*3571^(15/34) 9204407346313762 a001 7/90481*7^(5/56) 9204407353995802 a007 Real Root Of -73*x^4+788*x^3-342*x^2-344*x+640 9204407354894436 a001 13/844*3571^(1/2) 9204407384121906 r005 Im(z^2+c),c=-49/118+5/33*I,n=10 9204407388106941 a003 sin(Pi*15/79)/sin(Pi*14/67) 9204407394242666 a001 377/5778*9349^(11/38) 9204407410995478 b008 9+(1/3+Pi)/17 9204407420702848 a001 377/5778*24476^(11/42) 9204407424190809 a001 377/5778*64079^(11/46) 9204407424726826 a001 377/5778*7881196^(1/6) 9204407424726851 a001 377/5778*312119004989^(1/10) 9204407424726851 a001 377/5778*1568397607^(1/8) 9204407426194019 a001 377/5778*39603^(1/4) 9204407435788578 a001 377/5778*15127^(11/40) 9204407470651950 m003 (513*Sqrt[5])/1024-Sin[1/2+Sqrt[5]/2]/5 9204407481435940 s002 sum(A080006[n]/(10^n+1),n=1..infinity) 9204407508969297 a001 377/5778*5778^(11/36) 9204407515030551 m001 (GAMMA(2/3)+ZetaP(3))/(Shi(1)-exp(1)) 9204407521189145 a007 Real Root Of 304*x^4-844*x^3-560*x^2+818*x+351 9204407522906626 a007 Real Root Of 402*x^4-942*x^3-52*x^2+150*x-841 9204407529756556 a001 377/9349*3571^(13/34) 9204407530690154 m001 (ln(2+3^(1/2))-Niven)/(PlouffeB-ZetaQ(2)) 9204407532930816 m001 (GAMMA(11/12)-Sierpinski)/(3^(1/3)+Ei(1,1)) 9204407542141566 m005 (1/2*gamma+1/10)/(1/3*Pi-5/8) 9204407567051071 a003 cos(Pi*3/28)-cos(Pi*33/67) 9204407573217785 m001 1/sin(Pi/5)^2*CopelandErdos^2*ln(sqrt(Pi)) 9204407575926263 r005 Re(z^2+c),c=-7/8+11/58*I,n=25 9204407581191271 m001 (Zeta(5)+gamma(3))/GAMMA(5/6) 9204407595336394 m001 (LaplaceLimit-Otter)/(Paris-Riemann3rdZero) 9204407597892701 a001 377/3010349*9349^(37/38) 9204407603431605 a001 377/1860498*9349^(35/38) 9204407608983805 a001 377/1149851*9349^(33/38) 9204407610686185 r005 Re(z^2+c),c=-11/13+7/19*I,n=5 9204407614501197 a001 377/710647*9349^(31/38) 9204407618635597 a001 377/15127*9349^(15/38) 9204407618837106 k002 Champernowne real with 4*n^2+183*n-178 9204407620109718 a001 377/439204*9349^(29/38) 9204407625479660 a001 377/271443*9349^(27/38) 9204407625712209 m005 (1/2*Pi+2/11)/(7/8*2^(1/2)+2/3) 9204407631474211 a001 377/167761*9349^(25/38) 9204407635833513 a001 377/103682*9349^(23/38) 9204407641906229 a001 377/39603*9349^(1/2) 9204407644473952 a001 377/64079*9349^(21/38) 9204407647714131 a007 Real Root Of -59*x^4-585*x^3-411*x^2-246*x-149 9204407653835616 a007 Real Root Of 288*x^4-661*x^3-202*x^2+165*x+328 9204407654717664 a001 377/15127*24476^(5/14) 9204407659473974 a001 377/15127*64079^(15/46) 9204407660106826 a001 377/15127*167761^(3/10) 9204407660191687 a001 377/15127*439204^(5/18) 9204407660204908 a001 377/15127*7881196^(5/22) 9204407660204937 a001 377/15127*20633239^(3/14) 9204407660204941 a001 377/15127*2537720636^(1/6) 9204407660204941 a001 377/15127*312119004989^(3/22) 9204407660204941 a001 377/15127*28143753123^(3/20) 9204407660204941 a001 377/15127*228826127^(3/16) 9204407660204943 a001 377/15127*33385282^(5/24) 9204407660205606 a001 377/15127*1860498^(1/4) 9204407660472512 a001 377/15127*103682^(5/16) 9204407662205624 a001 377/15127*39603^(15/44) 9204407662729218 b008 67*CosIntegral[1/7] 9204407667410859 r005 Re(z^2+c),c=4/25+8/21*I,n=27 9204407668681855 a001 13/844*9349^(17/38) 9204407675289114 a001 377/15127*15127^(3/8) 9204407686162093 a001 377/4870847*24476^(13/14) 9204407686895134 a001 377/3010349*24476^(37/42) 9204407687610181 a001 377/39603*24476^(19/42) 9204407687623096 a001 377/1860498*24476^(5/6) 9204407688364354 a001 377/1149851*24476^(11/14) 9204407689070803 a001 377/710647*24476^(31/42) 9204407689868382 a001 377/439204*24476^(29/42) 9204407690427381 a001 377/271443*24476^(9/14) 9204407690627668 m001 Chi(1)*GAMMA(5/6)^StronglyCareFree 9204407691159350 a001 377/103682*24476^(23/42) 9204407691610990 a001 377/167761*24476^(25/42) 9204407693634841 a001 377/39603*64079^(19/46) 9204407694560733 a001 377/39603*817138163596^(1/6) 9204407694560733 a001 377/39603*87403803^(1/4) 9204407694988846 a001 377/64079*24476^(1/2) 9204407697094931 a001 377/39603*39603^(19/44) 9204407698452359 a001 377/103682*64079^(1/2) 9204407698528500 a001 377/4870847*64079^(39/46) 9204407698627366 a001 377/3010349*64079^(37/46) 9204407698721154 a001 377/1860498*64079^(35/46) 9204407698828237 a001 377/1149851*64079^(33/46) 9204407698900511 a001 377/710647*64079^(31/46) 9204407698988740 a001 377/271443*64079^(27/46) 9204407699063915 a001 377/439204*64079^(29/46) 9204407699538174 a001 377/167761*64079^(25/46) 9204407699573175 a001 377/103682*4106118243^(1/4) 9204407700135079 a001 13/711491*167761^(9/10) 9204407700197809 a001 377/1860498*167761^(7/10) 9204407700280623 a001 377/271443*439204^(1/2) 9204407700304420 a001 377/271443*7881196^(9/22) 9204407700304481 a001 377/271443*2537720636^(3/10) 9204407700304481 a001 377/271443*14662949395604^(3/14) 9204407700304481 a001 377/271443*192900153618^(1/4) 9204407700304484 a001 377/271443*33385282^(3/8) 9204407700305677 a001 377/271443*1860498^(9/20) 9204407700384336 a001 377/87403803*439204^(17/18) 9204407700389661 a001 13/711491*439204^(5/6) 9204407700394553 a001 377/4870847*439204^(13/18) 9204407700407204 a001 377/1149851*439204^(11/18) 9204407700410669 a001 377/710647*3010349^(1/2) 9204407700411177 a001 377/710647*9062201101803^(1/4) 9204407700426733 a001 377/1860498*20633239^(1/2) 9204407700426743 a001 377/1860498*2537720636^(7/18) 9204407700426743 a001 377/1860498*17393796001^(5/14) 9204407700426743 a001 377/1860498*312119004989^(7/22) 9204407700426743 a001 377/1860498*14662949395604^(5/18) 9204407700426743 a001 377/1860498*505019158607^(5/16) 9204407700426743 a001 377/1860498*28143753123^(7/20) 9204407700426743 a001 377/1860498*599074578^(5/12) 9204407700426743 a001 377/1860498*228826127^(7/16) 9204407700428295 a001 377/1860498*1860498^(7/12) 9204407700428927 a001 377/4870847*7881196^(13/22) 9204407700429014 a001 377/4870847*141422324^(1/2) 9204407700429015 a001 377/4870847*73681302247^(3/8) 9204407700429019 a001 377/4870847*33385282^(13/24) 9204407700429261 a001 377/1568397607*7881196^(21/22) 9204407700429275 a001 377/370248451*7881196^(19/22) 9204407700429279 a001 377/228826127*7881196^(5/6) 9204407700429287 a001 377/87403803*7881196^(17/22) 9204407700429323 a001 13/711491*7881196^(15/22) 9204407700429346 a001 377/12752043*969323029^(1/2) 9204407700429382 a001 377/2537720636*20633239^(13/14) 9204407700429383 a001 377/1568397607*20633239^(9/10) 9204407700429385 a001 377/228826127*20633239^(11/14) 9204407700429391 a001 377/54018521*20633239^(7/10) 9204407700429394 a001 377/33385282*6643838879^(1/2) 9204407700429401 a001 377/87403803*45537549124^(1/2) 9204407700429402 a001 377/2537720636*141422324^(5/6) 9204407700429402 a001 377/228826127*2537720636^(11/18) 9204407700429402 a001 377/228826127*312119004989^(1/2) 9204407700429402 a001 377/228826127*3461452808002^(11/24) 9204407700429402 a001 377/228826127*28143753123^(11/20) 9204407700429402 a001 377/228826127*1568397607^(5/8) 9204407700429402 a001 377/228826127*228826127^(11/16) 9204407700429402 a001 377/599074578*2139295485799^(1/2) 9204407700429403 a001 377/1568397607*2537720636^(7/10) 9204407700429403 a001 377/1568397607*17393796001^(9/14) 9204407700429403 a001 377/1568397607*14662949395604^(1/2) 9204407700429403 a001 377/1568397607*505019158607^(9/16) 9204407700429403 a001 377/1568397607*192900153618^(7/12) 9204407700429403 a001 377/312119004989*2537720636^(17/18) 9204407700429403 a001 377/119218851371*2537720636^(9/10) 9204407700429403 a001 377/28143753123*2537720636^(5/6) 9204407700429403 a001 377/1322157322203*17393796001^(13/14) 9204407700429403 a001 377/45537549124*17393796001^(11/14) 9204407700429403 a001 377/28143753123*312119004989^(15/22) 9204407700429403 a001 377/28143753123*3461452808002^(5/8) 9204407700429403 a001 377/312119004989*45537549124^(5/6) 9204407700429403 a001 377/28143753123*28143753123^(3/4) 9204407700429403 a001 377/3461452808002*312119004989^(19/22) 9204407700429403 a001 377/505019158607*1322157322203^(3/4) 9204407700429403 a001 377/3461452808002*817138163596^(5/6) 9204407700429403 a001 377/1322157322203*14662949395604^(13/18) 9204407700429403 a001 377/3461452808002*3461452808002^(19/24) 9204407700429403 a001 377/2139295485799*9062201101803^(3/4) 9204407700429403 a001 377/312119004989*312119004989^(17/22) 9204407700429403 a001 377/1322157322203*505019158607^(13/16) 9204407700429403 a001 377/312119004989*3461452808002^(17/24) 9204407700429403 a001 377/9062201101803*192900153618^(11/12) 9204407700429403 a001 377/119218851371*14662949395604^(9/14) 9204407700429403 a001 377/119218851371*192900153618^(3/4) 9204407700429403 a001 377/1322157322203*73681302247^(7/8) 9204407700429403 a001 377/45537549124*14662949395604^(11/18) 9204407700429403 a001 377/45537549124*505019158607^(11/16) 9204407700429403 a001 377/312119004989*28143753123^(17/20) 9204407700429403 a001 377/3461452808002*28143753123^(19/20) 9204407700429403 a001 377/2537720636*2537720636^(13/18) 9204407700429403 a001 377/6643838879*4106118243^(3/4) 9204407700429403 a001 377/2537720636*312119004989^(13/22) 9204407700429403 a001 377/2537720636*3461452808002^(13/24) 9204407700429403 a001 377/2537720636*73681302247^(5/8) 9204407700429403 a001 377/2537720636*28143753123^(13/20) 9204407700429403 a001 377/45537549124*1568397607^(7/8) 9204407700429403 a001 377/969323029*5600748293801^(1/2) 9204407700429403 a001 377/1568397607*599074578^(3/4) 9204407700429403 a001 377/45537549124*599074578^(11/12) 9204407700429403 a001 377/370248451*817138163596^(1/2) 9204407700429403 a001 377/2537720636*228826127^(13/16) 9204407700429403 a001 377/28143753123*228826127^(15/16) 9204407700429403 a001 377/141422324*119218851371^(1/2) 9204407700429403 a001 377/370248451*87403803^(3/4) 9204407700429406 a001 377/54018521*17393796001^(1/2) 9204407700429406 a001 377/54018521*14662949395604^(7/18) 9204407700429406 a001 377/54018521*505019158607^(7/16) 9204407700429406 a001 377/54018521*599074578^(7/12) 9204407700429407 a001 377/87403803*33385282^(17/24) 9204407700429409 a001 377/370248451*33385282^(19/24) 9204407700429410 a001 377/1568397607*33385282^(7/8) 9204407700429410 a001 13/711491*20633239^(9/14) 9204407700429410 a001 377/6643838879*33385282^(23/24) 9204407700429424 a001 13/711491*2537720636^(1/2) 9204407700429424 a001 13/711491*312119004989^(9/22) 9204407700429424 a001 13/711491*14662949395604^(5/14) 9204407700429424 a001 13/711491*192900153618^(5/12) 9204407700429424 a001 13/711491*28143753123^(9/20) 9204407700429424 a001 13/711491*228826127^(9/16) 9204407700429429 a001 13/711491*33385282^(5/8) 9204407700429444 a001 377/87403803*12752043^(3/4) 9204407700429551 a001 377/7881196*370248451^(1/2) 9204407700430417 a001 377/3010349*54018521^(1/2) 9204407700430743 a001 377/4870847*1860498^(13/20) 9204407700431418 a001 13/711491*1860498^(3/4) 9204407700431662 a001 377/87403803*1860498^(17/20) 9204407700431840 a001 377/228826127*1860498^(11/12) 9204407700431929 a001 377/370248451*1860498^(19/20) 9204407700436290 a001 377/1149851*7881196^(1/2) 9204407700436364 a001 377/1149851*312119004989^(3/10) 9204407700436364 a001 377/1149851*1568397607^(3/8) 9204407700436368 a001 377/1149851*33385282^(11/24) 9204407700437827 a001 377/1149851*1860498^(11/20) 9204407700438135 a001 377/1860498*710647^(5/8) 9204407700445353 a001 377/54018521*710647^(7/8) 9204407700473638 a001 377/439204*1149851^(1/2) 9204407700477118 a001 377/439204*1322157322203^(1/4) 9204407700522706 a001 377/4870847*271443^(3/4) 9204407700592927 a001 377/167761*167761^(1/2) 9204407700756445 a001 377/167761*20633239^(5/14) 9204407700756452 a001 377/167761*2537720636^(5/18) 9204407700756452 a001 377/167761*312119004989^(5/22) 9204407700756452 a001 377/167761*3461452808002^(5/24) 9204407700756452 a001 377/167761*28143753123^(1/4) 9204407700756452 a001 377/167761*228826127^(5/16) 9204407700757560 a001 377/167761*1860498^(5/12) 9204407700786109 a001 377/271443*103682^(9/16) 9204407701025020 a001 377/1149851*103682^(11/16) 9204407701124699 a001 377/4870847*103682^(13/16) 9204407701232137 a001 13/711491*103682^(15/16) 9204407701647681 a001 377/64079*64079^(21/46) 9204407702640889 a001 377/103682*39603^(23/44) 9204407702652479 a001 377/64079*439204^(7/18) 9204407702670988 a001 377/64079*7881196^(7/22) 9204407702671028 a001 377/64079*20633239^(3/10) 9204407702671035 a001 377/64079*17393796001^(3/14) 9204407702671035 a001 377/64079*14662949395604^(1/6) 9204407702671035 a001 377/64079*599074578^(1/4) 9204407702671037 a001 377/64079*33385282^(7/24) 9204407702671966 a001 377/64079*1860498^(7/20) 9204407702677870 a001 377/64079*710647^(3/8) 9204407703045634 a001 377/64079*103682^(7/16) 9204407703905710 a001 377/271443*39603^(27/44) 9204407704090924 a001 377/167761*39603^(25/44) 9204407704345105 a001 377/439204*39603^(29/44) 9204407704545921 a001 377/710647*39603^(31/44) 9204407704837867 a001 377/1149851*39603^(3/4) 9204407705095003 a001 377/1860498*39603^(35/44) 9204407705365436 a001 377/3010349*39603^(37/44) 9204407705471991 a001 377/64079*39603^(21/44) 9204407705630790 a001 377/4870847*39603^(39/44) 9204407709574865 a001 13/844*24476^(17/42) 9204407713667352 a001 377/39603*15127^(19/40) 9204407714965350 a001 13/844*64079^(17/46) 9204407715793780 a001 13/844*45537549124^(1/6) 9204407715793794 a001 13/844*12752043^(1/4) 9204407718061220 a001 13/844*39603^(17/44) 9204407719804235 a007 Real Root Of -374*x^4+363*x^3+22*x^2+99*x+624 9204407722702240 a001 377/103682*15127^(23/40) 9204407723788877 a001 377/64079*15127^(21/40) 9204407725896741 a001 377/167761*15127^(5/8) 9204407727455992 a001 377/271443*15127^(27/40) 9204407729639853 a001 377/439204*15127^(29/40) 9204407731585134 a001 377/710647*15127^(31/40) 9204407732889176 a001 13/844*15127^(17/40) 9204407733621545 a001 377/1149851*15127^(33/40) 9204407735161684 a007 Real Root Of -666*x^4+820*x^3-151*x^2-372*x+903 9204407735623147 a001 377/1860498*15127^(7/8) 9204407737638045 a001 377/3010349*15127^(37/40) 9204407739647864 a001 377/4870847*15127^(39/40) 9204407769711645 a001 377/9349*9349^(13/38) 9204407775081006 a001 377/15127*5778^(5/12) 9204407795134316 s002 sum(A086406[n]/(n^3*10^n-1),n=1..infinity) 9204407796510638 m001 BesselJ(0,1)/(Grothendieck-Psi(1,1/3)) 9204407800982770 a001 377/9349*24476^(13/42) 9204407805104906 a001 377/9349*64079^(13/46) 9204407805738411 a001 377/9349*141422324^(1/6) 9204407805738411 a001 377/9349*73681302247^(1/8) 9204407805769641 a001 377/9349*271443^(1/4) 9204407807472336 a001 377/9349*39603^(13/44) 9204407818811361 a001 377/9349*15127^(13/40) 9204407838244051 r005 Re(z^2+c),c=-47/86+31/56*I,n=9 9204407840070416 a001 377/39603*5778^(19/36) 9204407841354390 a001 18/5*1597^(7/55) 9204407845865974 a008 Real Root of x^4-2*x^3-46*x^2-200*x+120 9204407845986654 a001 13/844*5778^(17/36) 9204407863497527 a001 377/64079*5778^(7/12) 9204407866902442 a007 Real Root Of 43*x^4+372*x^3-147*x^2+740*x+714 9204407875716476 a001 377/103682*5778^(23/36) 9204407892216562 a001 377/167761*5778^(25/36) 9204407902577654 a007 Real Root Of -749*x^4+506*x^3+171*x^2-84*x+710 9204407905297669 a001 377/9349*5778^(13/36) 9204407907081400 a001 377/271443*5778^(3/4) 9204407911085187 m001 (TreeGrowth2nd+Trott2nd)/(Shi(1)+ln(gamma)) 9204407914602817 a007 Real Root Of -141*x^4+761*x^3-770*x^2-616*x+780 9204407919995138 a001 54018521/3*4807526976^(3/17) 9204407919995321 a001 228826127/3*1346269^(3/17) 9204407922570846 a001 377/439204*5778^(29/36) 9204407937821714 a001 377/710647*5778^(31/36) 9204407953163710 a001 377/1149851*5778^(11/12) 9204407968470898 a001 377/1860498*5778^(35/36) 9204407989437549 m001 (Grothendieck-Trott2nd)/(Zeta(3)+CareFree) 9204407990694943 b008 -3+3^(1/3)*E 9204407998878646 r002 35th iterates of z^2 + 9204408008165950 a007 Real Root Of 275*x^4-525*x^3+68*x^2+171*x-507 9204408035506050 m001 GaussAGM(1,1/sqrt(2))^cos(Pi/12)-sqrt(Pi) 9204408043847773 b008 ArcTan[ArcSech[EulerGamma]^2] 9204408060391203 m001 (-MertensB1+ZetaQ(2))/(exp(Pi)-gamma) 9204408074308913 a001 377/5778*2207^(11/32) 9204408092542025 m005 (1/2*2^(1/2)+5/6)/(1/2*5^(1/2)+5/9) 9204408109477929 m001 (Pi+exp(Pi))*(5^(1/2)+BesselI(0,1)) 9204408114487259 r005 Re(z^2+c),c=2/13+38/59*I,n=8 9204408115637581 a008 Real Root of x^3-x^2-120*x-240 9204408136013216 m001 1/arctan(1/2)^2*exp(Riemann3rdZero)*exp(1) 9204408141611756 a007 Real Root Of 64*x^4+563*x^3-299*x^2-448*x+869 9204408156682707 m001 Rabbit/(HardHexagonsEntropy-GolombDickman) 9204408161784856 a007 Real Root Of -116*x^4+117*x^3-511*x^2+219*x+809 9204408213197724 r005 Im(z^2+c),c=-57/50+5/43*I,n=34 9204408228658069 m001 KhinchinHarmonic^Sarnak-Stephens 9204408231163756 a001 377/3571*3571^(9/34) 9204408257350531 a007 Real Root Of 998*x^4-694*x^3-648*x^2+647*x-113 9204408266286378 a007 Real Root Of -68*x^4+697*x^3+705*x^2-477*x-444 9204408308910375 r005 Im(z^2+c),c=-133/122+5/46*I,n=50 9204408319182658 b008 E+11*E^((2*Pi)/3) 9204408322404609 a007 Real Root Of 209*x^4-354*x^3-544*x^2-87*x+667 9204408324540760 a007 Real Root Of 469*x^4+661*x^3+478*x^2-756*x-922 9204408338643420 m001 ln(Lehmer)^2/DuboisRaymond/GAMMA(7/12) 9204408347942192 m001 GAMMA(11/12)/(ln(Pi)+gamma(3)) 9204408369610276 m005 (1/2*Catalan+7/12)/(4/11*exp(1)+1/7) 9204408397286522 a001 377/3571*9349^(9/38) 9204408406937821 a003 cos(Pi*4/73)*sin(Pi*43/112) 9204408408249876 m001 (OneNinth-Trott)/(Zeta(1,2)+FeigenbaumB) 9204408418935764 a001 377/3571*24476^(3/14) 9204408421789551 a001 377/3571*64079^(9/46) 9204408422220178 a001 377/3571*439204^(1/6) 9204408422228111 a001 377/3571*7881196^(3/22) 9204408422228131 a001 377/3571*2537720636^(1/10) 9204408422228131 a001 377/3571*14662949395604^(1/14) 9204408422228131 a001 377/3571*192900153618^(1/12) 9204408422228132 a001 377/3571*33385282^(1/8) 9204408422228530 a001 377/3571*1860498^(3/20) 9204408422388674 a001 377/3571*103682^(3/16) 9204408423428541 a001 377/3571*39603^(9/44) 9204408431278635 a001 377/3571*15127^(9/40) 9204408433301739 m001 (-CareFree+FeigenbaumD)/(cos(1)+ln(5)) 9204408441660866 r002 56th iterates of z^2 + 9204408444096543 r002 60th iterates of z^2 + 9204408446397386 a001 121393/123*521^(29/40) 9204408448597345 m001 (GAMMA(3/4)+GAMMA(19/24))/(Chi(1)-gamma) 9204408449218019 a007 Real Root Of -429*x^4+428*x^3+632*x^2+267*x+352 9204408459423522 r002 35th iterates of z^2 + 9204408479701281 a007 Real Root Of -388*x^4+735*x^3-262*x^2-231*x+861 9204408491153775 a001 377/3571*5778^(1/4) 9204408491681948 r002 4th iterates of z^2 + 9204408496220307 a007 Real Root Of -609*x^4-45*x^3+627*x^2+664*x+482 9204408508972334 r002 2th iterates of z^2 + 9204408543953742 a007 Real Root Of 52*x^4+393*x^3-696*x^2+829*x-178 9204408545998697 a001 377/15127*2207^(15/32) 9204408573426339 a001 377/9349*2207^(13/32) 9204408589290199 m001 (Zeta(1/2)-sin(1))/(-ReciprocalFibonacci+Thue) 9204408599491899 r005 Im(z^2+c),c=-9/14+101/248*I,n=4 9204408605028266 a001 610/15127*521^(1/2) 9204408606058526 a007 Real Root Of 953*x^4+77*x^3+208*x^2-166*x-953 9204408609081758 r002 18th iterates of z^2 + 9204408621843107 k002 Champernowne real with 9/2*n^2+363/2*n-177 9204408654439666 a001 646/6119*521^(9/26) 9204408670734205 m005 (1/2*5^(1/2)+4)/(1/3*gamma+4/11) 9204408682119049 m001 (Niven+Porter)/(Champernowne-FeigenbaumMu) 9204408696957531 r005 Re(z^2+c),c=5/21+17/53*I,n=43 9204408703850510 a007 Real Root Of -367*x^4+741*x^3+851*x^2+632*x+702 9204408710152022 m005 (1/2*3^(1/2)+5/12)/(2/3*Catalan-3/4) 9204408719693381 a001 13/844*2207^(17/32) 9204408755018825 r004 Re(z^2+c),c=3/46+3/22*I,z(0)=I,n=2 9204408788466871 m001 1/ln(OneNinth)^2*Champernowne^2*sqrt(3)^2 9204408811710213 m001 (Psi(1,1/3)-Psi(2,1/3))/(-Ei(1)+KhinchinLevy) 9204408816566175 a001 377/39603*2207^(19/32) 9204408843576813 r005 Re(z^2+c),c=-85/98+5/28*I,n=22 9204408847828259 r005 Re(z^2+c),c=-8/29+38/59*I,n=22 9204408848966639 r002 31th iterates of z^2 + 9204408856331989 m005 (1/2*3^(1/2)-4/9)/(8/11*gamma-5) 9204408871542177 r009 Im(z^3+c),c=-15/86+53/55*I,n=6 9204408876795049 a001 6765/64079*521^(9/26) 9204408896214645 l006 ln(7416/8131) 9204408909236262 a001 17711/167761*521^(9/26) 9204408913969372 a001 11592/109801*521^(9/26) 9204408914659923 a001 121393/1149851*521^(9/26) 9204408914760673 a001 317811/3010349*521^(9/26) 9204408914784457 a001 514229/4870847*521^(9/26) 9204408914822940 a001 98209/930249*521^(9/26) 9204408915086707 a001 75025/710647*521^(9/26) 9204408916894594 a001 28657/271443*521^(9/26) 9204408920156288 a001 1597/2207*199^(1/22) 9204408929286035 a001 5473/51841*521^(9/26) 9204408930987192 r005 Re(z^2+c),c=-121/102+19/47*I,n=4 9204408931277308 m005 (1/3*3^(1/2)+1/7)/(1/11*3^(1/2)+5/8) 9204408932066155 m005 (-19/30+1/6*5^(1/2))/(1/5*Pi-3/5) 9204408934201298 a007 Real Root Of 256*x^4-548*x^3-157*x^2+269*x+129 9204408939992019 m001 1/ln(GAMMA(1/6))/Cahen^2/GAMMA(7/12) 9204408942782322 a001 377/64079*2207^(21/32) 9204408947720704 r005 Re(z^2+c),c=-9/10+34/247*I,n=27 9204408953704418 a001 377/3571*2207^(9/32) 9204408960010695 r002 47th iterates of z^2 + 9204408975353319 a007 Real Root Of -219*x^4+847*x^3-294*x^2+757*x-951 9204408976628990 r005 Im(z^2+c),c=-59/86+5/18*I,n=13 9204408980445359 a007 Real Root Of -611*x^4-302*x^3-297*x^2+373*x+798 9204408981780797 l006 ln(529/1328) 9204409014218233 a001 4181/39603*521^(9/26) 9204409025315796 m001 (Artin+Kac)/(cos(1/5*Pi)-Ei(1)) 9204409030339327 a007 Real Root Of 409*x^4-444*x^3+694*x^2+468*x-797 9204409035226391 r002 54th iterates of z^2 + 9204409040873088 m001 (3^(1/3)-Pi*csc(5/12*Pi)/GAMMA(7/12))^Ei(1,1) 9204409048771869 a001 377/2207*843^(1/4) 9204409057790307 a001 377/103682*2207^(23/32) 9204409081163399 a007 Real Root Of 955*x^4-52*x^3+539*x^2+419*x-797 9204409089659218 a007 Real Root Of -766*x^4-201*x^3-619*x^2-572*x+391 9204409174284634 m005 (1/2*exp(1)-7/12)/(1/9*2^(1/2)-1) 9204409177079432 a001 377/167761*2207^(25/32) 9204409188336716 m005 (1/2+1/2*5^(1/2))/(7/10*3^(1/2)+6/11) 9204409208924442 a007 Real Root Of -577*x^4-321*x^3+168*x^2+132*x+143 9204409224638412 m001 exp(GAMMA(5/6))^2/GAMMA(23/24)^2/Pi^2 9204409254614802 m001 (FeigenbaumMu-Kac)/(Ei(1)+Conway) 9204409255362779 b008 9+SinIntegral[(3*Pi)/46] 9204409276236355 p001 sum((-1)^n/(561*n+106)/(6^n),n=0..infinity) 9204409283704043 a003 sin(Pi*23/62)/sin(Pi*40/83) 9204409294733308 a001 377/271443*2207^(27/32) 9204409333382506 h001 (-8*exp(1/2)+9)/(-9*exp(-3)+5) 9204409342020213 m001 (sin(1)+exp(-1/2*Pi))/(-BesselI(1,1)+Niven) 9204409350371919 r005 Re(z^2+c),c=-23/26+8/55*I,n=54 9204409355148981 r005 Re(z^2+c),c=-1/10+37/57*I,n=19 9204409357784490 a001 329/1926*521^(7/26) 9204409363506431 a007 Real Root Of 511*x^4-465*x^3+754*x^2+425*x-977 9204409365948063 s002 sum(A259574[n]/(exp(n)),n=1..infinity) 9204409379851698 a007 Real Root Of 177*x^4-276*x^3+64*x^2+484*x+49 9204409398342665 r005 Re(z^2+c),c=-37/62+5/8*I,n=36 9204409403682471 r005 Re(z^2+c),c=-13/14+63/251*I,n=61 9204409413011796 a001 377/439204*2207^(29/32) 9204409413179534 a007 Real Root Of 306*x^4-982*x^3-702*x^2+331*x-86 9204409415765500 a007 Real Root Of -606*x^4-376*x^3-121*x^2-72*x+178 9204409458469268 m001 (1+Chi(1))/(ln(2)+Conway) 9204409463752547 a007 Real Root Of 470*x^4-254*x^3-831*x^2-206*x-21 9204409464510434 m002 5*E^Pi+3*E^Pi*Cosh[Pi] 9204409475074746 a007 Real Root Of 290*x^4-27*x^3-833*x^2-510*x+54 9204409496277509 a007 Real Root Of 596*x^4-927*x^3-859*x^2+265*x-179 9204409512206244 r005 Im(z^2+c),c=-5/46+38/43*I,n=30 9204409531051706 a001 377/710647*2207^(31/32) 9204409531181158 r002 19th iterates of z^2 + 9204409538174184 m001 (MinimumGamma+Trott)/(ln(5)+gamma(2)) 9204409553880117 a007 Real Root Of 940*x^4+889*x^3-84*x^2-984*x-816 9204409557307017 a007 Real Root Of 101*x^4-270*x^3-216*x^2-805*x-841 9204409570231005 a001 36/6119*322^(7/8) 9204409585379684 m001 ln(Pi)^Robbin*Riemann3rdZero^Robbin 9204409588686211 m001 FeigenbaumB^ZetaP(3)*RenyiParking^ZetaP(3) 9204409596352181 a001 1597/15127*521^(9/26) 9204409604596868 m001 MertensB2*Catalan^MertensB3 9204409608365898 a007 Real Root Of -802*x^4+729*x^3-123*x^2-310*x+963 9204409611681479 r009 Im(z^3+c),c=-19/98+31/35*I,n=51 9204409624849108 k002 Champernowne real with 5*n^2+180*n-176 9204409626491984 a007 Real Root Of -474*x^4+868*x^3+966*x^2+524*x+681 9204409631026279 a007 Real Root Of 625*x^4-649*x^3-210*x^2-123*x-890 9204409637930671 a007 Real Root Of 276*x^4+135*x^3-391*x^2-591*x-51 9204409689947299 m001 (FeigenbaumB+MertensB1)/(BesselK(0,1)-ln(5)) 9204409705333185 a007 Real Root Of -210*x^4+804*x^3-342*x^2-824*x+309 9204409726716728 m005 (1/2*Pi-5/11)/(59/198+9/22*5^(1/2)) 9204409731584235 a007 Real Root Of 819*x^4-391*x^3+181*x^2+866*x-249 9204409753630299 a007 Real Root Of -160*x^4+589*x^3+202*x^2-93*x-430 9204409803203690 p003 LerchPhi(1/12,6,344/231) 9204409820972966 r002 18th iterates of z^2 + 9204409830602767 a007 Real Root Of -914*x^4-750*x^3-198*x^2+791*x+967 9204409837018985 m001 (Pi+ln(3))/(Artin-GaussAGM) 9204409841743671 m005 (1/3*3^(1/2)-2/7)/(6/11*2^(1/2)-5/11) 9204409842967826 r005 Re(z^2+c),c=-28/31+4/31*I,n=45 9204409846642699 r005 Im(z^2+c),c=-81/70+7/59*I,n=61 9204409872692203 m001 1/RenyiParking^2*Cahen^2/ln(sqrt(5)) 9204409902004302 r005 Re(z^2+c),c=-3/29+37/54*I,n=55 9204409903445985 a007 Real Root Of -94*x^4-794*x^3+549*x^2-899*x+747 9204409917657543 a001 4181/5778*199^(1/22) 9204409947810015 m001 (GolombDickman-gamma(3))^ZetaP(3) 9204409981985543 a007 Real Root Of -574*x^4+622*x^3+289*x^2+175*x-19 9204410009673353 m001 (Sierpinski-Thue)/(GlaisherKinkelin+Lehmer) 9204410011918951 q001 3089/3356 9204410020738465 k003 Champernowne real with 19/6*n^3-25/2*n^2+79/3*n-8 9204410030107474 a007 Real Root Of 933*x^4-840*x^3-505*x^2+894*x-74 9204410037325446 a007 Real Root Of 700*x^4-412*x^3+286*x^2+138*x-939 9204410063191044 a001 10946/15127*199^(1/22) 9204410064413438 a007 Real Root Of 908*x^4-957*x^3-388*x^2+298*x-795 9204410072550272 r002 59th iterates of z^2 + 9204410084424096 a001 28657/39603*199^(1/22) 9204410087521957 a001 75025/103682*199^(1/22) 9204410087973929 a001 196418/271443*199^(1/22) 9204410088039871 a001 514229/710647*199^(1/22) 9204410088049491 a001 1346269/1860498*199^(1/22) 9204410088050895 a001 3524578/4870847*199^(1/22) 9204410088051100 a001 9227465/12752043*199^(1/22) 9204410088051130 a001 24157817/33385282*199^(1/22) 9204410088051134 a001 63245986/87403803*199^(1/22) 9204410088051135 a001 165580141/228826127*199^(1/22) 9204410088051135 a001 433494437/599074578*199^(1/22) 9204410088051135 a001 1134903170/1568397607*199^(1/22) 9204410088051135 a001 2971215073/4106118243*199^(1/22) 9204410088051135 a001 7778742049/10749957122*199^(1/22) 9204410088051135 a001 20365011074/28143753123*199^(1/22) 9204410088051135 a001 53316291173/73681302247*199^(1/22) 9204410088051135 a001 139583862445/192900153618*199^(1/22) 9204410088051135 a001 365435296162/505019158607*199^(1/22) 9204410088051135 a001 10610209857723/14662949395604*199^(1/22) 9204410088051135 a001 591286729879/817138163596*199^(1/22) 9204410088051135 a001 225851433717/312119004989*199^(1/22) 9204410088051135 a001 86267571272/119218851371*199^(1/22) 9204410088051135 a001 32951280099/45537549124*199^(1/22) 9204410088051135 a001 12586269025/17393796001*199^(1/22) 9204410088051135 a001 4807526976/6643838879*199^(1/22) 9204410088051135 a001 1836311903/2537720636*199^(1/22) 9204410088051135 a001 701408733/969323029*199^(1/22) 9204410088051135 a001 267914296/370248451*199^(1/22) 9204410088051135 a001 102334155/141422324*199^(1/22) 9204410088051137 a001 39088169/54018521*199^(1/22) 9204410088051148 a001 14930352/20633239*199^(1/22) 9204410088051226 a001 5702887/7881196*199^(1/22) 9204410088051763 a001 2178309/3010349*199^(1/22) 9204410088055437 a001 832040/1149851*199^(1/22) 9204410088080625 a001 317811/439204*199^(1/22) 9204410088253263 a001 121393/167761*199^(1/22) 9204410089436540 a001 46368/64079*199^(1/22) 9204410097546845 a001 17711/24476*199^(1/22) 9204410107481788 r005 Re(z^2+c),c=-23/26+19/109*I,n=43 9204410139187169 a007 Real Root Of -896*x^4+364*x^3-370*x^2-359*x+910 9204410144980538 a007 Real Root Of -296*x^4+240*x^3+949*x^2+523*x+77 9204410153135698 a001 6765/9349*199^(1/22) 9204410167650049 a007 Real Root Of 669*x^4-827*x^3-365*x^2+580*x-282 9204410172629431 a007 Real Root Of -19*x^4+715*x^3-304*x^2+696*x-927 9204410190417478 r005 Im(z^2+c),c=-133/122+5/46*I,n=49 9204410208439862 a003 cos(Pi*16/107)-sin(Pi*50/113) 9204410209137851 a007 Real Root Of -9*x^4+604*x^3+13*x^2+95*x-563 9204410221267974 a007 Real Root Of 345*x^4-654*x^3+174*x^2+452*x-489 9204410221540469 k003 Champernowne real with 7/2*n^3-29/2*n^2+30*n-10 9204410243205191 m001 polylog(4,1/2)^Niven/(Landau^Niven) 9204410255713252 h001 (4/9*exp(2)+8/9)/(5/9*exp(2)+3/7) 9204410260512423 h005 exp(cos(Pi*2/27)/cos(Pi*16/45)) 9204410261424505 a007 Real Root Of 115*x^4-488*x^3-240*x^2-331*x+806 9204410267633011 b008 1/3+E^E-2*Pi 9204410292763286 a007 Real Root Of -556*x^4+964*x^3+982*x^2-844*x-458 9204410304394283 r005 Re(z^2+c),c=-85/98+5/19*I,n=5 9204410312337829 r005 Im(z^2+c),c=-101/86+4/33*I,n=39 9204410323510738 m001 cos(1/5*Pi)-ln(2)/ln(10)+ThueMorse 9204410328140554 m001 Catalan^Zeta(1/2)*Catalan^BesselJZeros(0,1) 9204410341946649 m001 (-GAMMA(3/4)+KhinchinLevy)/(2^(1/3)-Chi(1)) 9204410402496300 a007 Real Root Of 295*x^4-793*x^3-638*x^2+382*x+62 9204410420669516 a007 Real Root Of 930*x^4+118*x^3+466*x^2-29*x-997 9204410451706544 a007 Real Root Of 856*x^4-361*x^3-691*x^2-597*x-860 9204410465549072 b008 11+Zeta[1/2,Glaisher] 9204410482055476 r005 Im(z^2+c),c=4/11+25/52*I,n=3 9204410522743475 k003 Champernowne real with 4*n^3-35/2*n^2+71/2*n-13 9204410529221447 m001 1/RenyiParking/FeigenbaumAlpha^2/exp(sin(1)) 9204410534147398 a001 2584/3571*199^(1/22) 9204410535104310 r002 55th iterates of z^2 + 9204410552527288 a007 Real Root Of -514*x^4+745*x^3-37*x^2+549*x-686 9204410583401793 a007 Real Root Of 750*x^4-831*x^3+943*x^2-112*x-19 9204410599616712 r002 35th iterates of z^2 + 9204410624365410 a007 Real Root Of 267*x^4-74*x^3+606*x^2+91*x-679 9204410627855109 k002 Champernowne real with 11/2*n^2+357/2*n-175 9204410653530931 p004 log(33923/13513) 9204410666874864 m001 1/exp(Riemann1stZero)^2/PrimesInBinary/Salem^2 9204410690588883 a007 Real Root Of 798*x^4-278*x^3+810*x^2+832*x-710 9204410710554628 r002 5th iterates of z^2 + 9204410725314364 r009 Re(z^3+c),c=-15/98+17/30*I,n=16 9204410758827825 m001 1/Niven^2*KhintchineHarmonic*exp(Zeta(1,2))^2 9204410771584986 r005 Im(z^2+c),c=-133/122+5/46*I,n=54 9204410781982911 r002 64th iterates of z^2 + 9204410796385514 m001 Bloch^Cahen+GaussKuzminWirsing 9204410808321435 a007 Real Root Of 288*x^4-424*x^3+675*x^2-499*x-52 9204410813662311 p003 LerchPhi(1/6,2,159/149) 9204410815805190 r009 Im(z^3+c),c=-1/8+46/51*I,n=21 9204410823946481 k003 Champernowne real with 9/2*n^3-41/2*n^2+41*n-16 9204410835914290 a007 Real Root Of 215*x^4-905*x^3+779*x^2+691*x-884 9204410919640160 a008 Real Root of (2+7*x+2*x^2-13*x^3) 9204410930436083 m001 (ln(5)-Zeta(1/2))/(BesselI(0,2)+GAMMA(11/12)) 9204410932798953 m001 (Pi*2^(1/2)/GAMMA(3/4))^Ei(1)-BesselI(0,2) 9204410932798953 m001 GAMMA(1/4)^Ei(1)-BesselI(0,2) 9204410963912868 l006 ln(3799/9537) 9204410975935152 m001 (Zeta(1,-1)+ZetaQ(4))/(gamma+Zeta(3)) 9204410997008615 m001 FeigenbaumC/TreeGrowth2nd/ZetaP(2) 9204410999100242 p001 sum(1/(251*n+156)/n/(3^n),n=1..infinity) 9204410999287245 r005 Im(z^2+c),c=-133/122+5/46*I,n=47 9204411011185813 r005 Im(z^2+c),c=-133/122+5/46*I,n=48 9204411028608815 a007 Real Root Of -626*x^4+470*x^3+541*x^2-660*x-250 9204411035786646 a003 sin(Pi*1/97)*sin(Pi*10/109) 9204411050704651 a007 Real Root Of -756*x^4+541*x^3+907*x^2+617*x+764 9204411097904341 a007 Real Root Of -713*x^4+146*x^3+150*x^2-496*x+42 9204411125149487 k003 Champernowne real with 5*n^3-47/2*n^2+93/2*n-19 9204411147371281 r005 Im(z^2+c),c=-133/122+5/46*I,n=53 9204411155153578 m001 (PisotVijayaraghavan+Rabbit)/(Zeta(5)-exp(Pi)) 9204411172453975 m005 (1/2*Zeta(3)+5/11)/(32/63+2/7*5^(1/2)) 9204411185506104 q001 2337/2539 9204411186544721 a007 Real Root Of 695*x^4-976*x^3+359*x^2+841*x-790 9204411187183539 a007 Real Root Of 515*x^4-967*x^3-957*x^2-37*x-347 9204411195409762 a007 Real Root Of -740*x^4+255*x^3+672*x^2+197*x+342 9204411200423617 m001 Zeta(5)-cos(1/5*Pi)*HardHexagonsEntropy 9204411202624083 m005 (7/20+1/4*5^(1/2))/(1/4*5^(1/2)+3/7) 9204411207254189 a001 2584/15127*521^(7/26) 9204411231110862 r001 38i'th iterates of 2*x^2-1 of 9204411240587684 r005 Im(z^2+c),c=-11/122+5/46*I,n=11 9204411245170385 a001 47/8*2584^(2/35) 9204411260377633 r002 47th iterates of z^2 + 9204411260377633 r002 47th iterates of z^2 + 9204411282241429 r005 Re(z^2+c),c=-89/98+7/61*I,n=21 9204411284569670 l006 ln(3270/8209) 9204411304861745 r005 Im(z^2+c),c=-133/122+5/46*I,n=56 9204411319165539 r005 Im(z^2+c),c=-133/122+5/46*I,n=60 9204411328389533 m001 GAMMA(3/4)-exp(-1/2*Pi)*Porter 9204411335208861 a007 Real Root Of 926*x^4+364*x^3+123*x^2+113*x-381 9204411341456050 m002 -3+Pi^6-Pi^5*Sech[Pi]-Sinh[Pi] 9204411343527344 a001 610/843*521^(1/26) 9204411345368673 r009 Re(z^3+c),c=-11/70+16/27*I,n=35 9204411349405008 a007 Real Root Of -101*x^4+628*x^3-488*x^2-394*x+613 9204411358965161 a001 610/9349*521^(11/26) 9204411368802920 a007 Real Root Of 845*x^4-5*x^3-713*x^2-746*x-693 9204411375400330 r005 Im(z^2+c),c=-6/31+51/64*I,n=12 9204411380262799 a007 Real Root Of -571*x^4+255*x^3-324*x^2+15*x+897 9204411395521257 r005 Im(z^2+c),c=-11/122+5/46*I,n=13 9204411397920470 m001 (Paris-Totient)/(Backhouse-OneNinth) 9204411426352493 k003 Champernowne real with 11/2*n^3-53/2*n^2+52*n-22 9204411427310366 b008 (5*E^4+Pi)/3 9204411438014468 r005 Im(z^2+c),c=-133/122+5/46*I,n=59 9204411460214563 m001 Rabbit^2/DuboisRaymond^2*ln(Zeta(7))^2 9204411465670100 r005 Im(z^2+c),c=-133/122+5/46*I,n=55 9204411468467873 r009 Re(z^3+c),c=-7/64+11/40*I,n=3 9204411474169059 a003 cos(Pi*8/87)*cos(Pi*23/49) 9204411476627217 a007 Real Root Of x^4+921*x^3+515*x^2+561*x+150 9204411476646819 m001 MinimumGamma^GAMMA(17/24)*BesselI(1,1) 9204411477088190 a001 2255/13201*521^(7/26) 9204411477591457 m005 (4/15+1/6*5^(1/2))/(5*2^(1/2)-1/8) 9204411487282720 a007 Real Root Of -722*x^4-523*x^3-654*x^2-57*x+612 9204411504126102 m001 MertensB1^Rabbit-Mills 9204411504559844 m005 (1/3*Catalan+2/9)/(5/6*Zeta(3)-3/7) 9204411507406550 m002 E^Pi/Pi+Pi^2/(5*ProductLog[Pi]) 9204411516456440 a001 17711/103682*521^(7/26) 9204411522200190 a001 15456/90481*521^(7/26) 9204411523038192 a001 121393/710647*521^(7/26) 9204411523160455 a001 105937/620166*521^(7/26) 9204411523178293 a001 832040/4870847*521^(7/26) 9204411523189317 a001 514229/3010349*521^(7/26) 9204411523236018 a001 196418/1149851*521^(7/26) 9204411523556106 a001 75025/439204*521^(7/26) 9204411525750023 a001 28657/167761*521^(7/26) 9204411532448758 r005 Re(z^2+c),c=7/32+3/10*I,n=34 9204411540787357 a001 10946/64079*521^(7/26) 9204411543526059 a007 Real Root Of 565*x^4-606*x^3-162*x^2+668*x-126 9204411543730675 r005 Im(z^2+c),c=-11/122+5/46*I,n=16 9204411545780618 r005 Im(z^2+c),c=-11/122+5/46*I,n=18 9204411545868486 r005 Im(z^2+c),c=-11/122+5/46*I,n=19 9204411545874664 r005 Im(z^2+c),c=-11/122+5/46*I,n=21 9204411545877542 r005 Im(z^2+c),c=-11/122+5/46*I,n=24 9204411545877585 r005 Im(z^2+c),c=-11/122+5/46*I,n=26 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=27 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=29 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=32 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=34 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=35 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=37 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=40 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=42 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=43 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=45 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=48 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=50 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=51 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=53 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=56 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=58 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=59 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=61 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=64 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=63 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=62 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=60 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=57 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=55 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=54 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=52 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=49 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=47 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=46 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=44 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=41 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=39 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=38 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=36 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=33 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=31 9204411545877586 r005 Im(z^2+c),c=-11/122+5/46*I,n=30 9204411545877587 r005 Im(z^2+c),c=-11/122+5/46*I,n=28 9204411545877599 r005 Im(z^2+c),c=-11/122+5/46*I,n=25 9204411545877634 r005 Im(z^2+c),c=-11/122+5/46*I,n=23 9204411545877994 r005 Im(z^2+c),c=-11/122+5/46*I,n=22 9204411545887339 r005 Im(z^2+c),c=-11/122+5/46*I,n=20 9204411546540871 r005 Im(z^2+c),c=-11/122+5/46*I,n=17 9204411547581415 r005 Im(z^2+c),c=-11/122+5/46*I,n=15 9204411562839662 r005 Im(z^2+c),c=-13/18+17/82*I,n=47 9204411564638617 r005 Im(z^2+c),c=-133/122+5/46*I,n=61 9204411566765076 r005 Im(z^2+c),c=-133/122+5/46*I,n=63 9204411568851522 r005 Im(z^2+c),c=-11/122+5/46*I,n=14 9204411575084987 r005 Im(z^2+c),c=-133/122+5/46*I,n=62 9204411597155690 r005 Im(z^2+c),c=-133/122+5/46*I,n=64 9204411601689884 r005 Re(z^2+c),c=11/60+8/31*I,n=16 9204411630861110 k002 Champernowne real with 6*n^2+177*n-174 9204411631863110 k004 Champernowne real with floor(Pi*(2*n^2+56*n-55)) 9204411643854774 a001 4181/24476*521^(7/26) 9204411653420780 m001 PlouffeB*(GAMMA(3/4)+Rabbit) 9204411656233274 a007 Real Root Of 120*x^4-995*x^3-285*x^2+332*x-315 9204411727555499 k003 Champernowne real with 6*n^3-59/2*n^2+115/2*n-25 9204411728996940 l006 ln(2741/6881) 9204411730898915 r005 Im(z^2+c),c=-133/122+5/46*I,n=57 9204411746469338 r002 25th iterates of z^2 + 9204411747647193 a007 Real Root Of -984*x^4+267*x^3+719*x^2+482*x+749 9204411764106413 r005 Im(z^2+c),c=-51/44+9/41*I,n=18 9204411765199573 r005 Re(z^2+c),c=-19/78+34/39*I,n=13 9204411784733726 a007 Real Root Of 149*x^4-551*x^3+262*x^2+797*x-25 9204411784789826 a003 cos(Pi*1/6)/sin(Pi*39/100) 9204411798125974 a007 Real Root Of -182*x^4-391*x^3-381*x^2+371*x+490 9204411805179662 a007 Real Root Of -511*x^4+623*x^3-615*x^2-897*x+548 9204411814110210 r002 61th iterates of z^2 + 9204411822549577 r002 63th iterates of z^2 + 9204411823166180 a001 377/1364*1364^(1/6) 9204411826754897 m001 Pi^ZetaP(3)-ln(2)/ln(10) 9204411860177243 h001 (-4*exp(-3)-1)/(-7*exp(1)+6) 9204411860571115 a007 Real Root Of -48*x^4+941*x^3-96*x^2-420*x+463 9204411881954051 a001 1/47*1364^(37/44) 9204411924641641 m001 1/ln(Lehmer)/Cahen*GAMMA(1/6)^2 9204411937114567 m005 (19/42+1/6*5^(1/2))/(3/5*3^(1/2)-1/7) 9204411946490627 m001 Weierstrass^(GAMMA(5/6)*Paris) 9204411960001010 m002 -3-Pi^6/E^Pi+Pi^6*Coth[Pi] 9204411966808426 r005 Im(z^2+c),c=-133/122+5/46*I,n=58 9204411972121617 a001 1597/3*199^(3/29) 9204411972764744 r002 62th iterates of z^2 + 9204411998476677 b008 QPochhammer[2/27,2/27] 9204412010673741 h001 (-2*exp(-3)-1)/(-3*exp(1/2)-7) 9204412017646111 r005 Im(z^2+c),c=-11/122+5/46*I,n=12 9204412026748977 r002 19th iterates of z^2 + 9204412028758410 k003 Champernowne real with 13/2*n^3-65/2*n^2+63*n-28 9204412041958255 m001 exp(BesselJ(1,1))*CareFree*sin(1) 9204412073825486 a001 199/39088169*2584^(21/22) 9204412083714767 a007 Real Root Of -551*x^4-26*x^3-6*x^2+230*x+592 9204412085169145 a007 Real Root Of -740*x^4+848*x^3+581*x^2-626*x+124 9204412087947345 m001 (CareFree+Kolakoski)/(Niven-ZetaP(4)) 9204412093059389 a001 51841/305*317811^(2/15) 9204412098074264 a001 39603/610*433494437^(2/15) 9204412103786170 m005 (1/2*Catalan+6/11)/(-9/20+1/4*5^(1/2)) 9204412132430072 a001 15127/610*591286729879^(2/15) 9204412139124147 m005 (1/2*exp(1)-3/10)/(1/12*Pi+8/9) 9204412139209175 m001 BesselJ(1,1)^Weierstrass/(BesselJ(1,1)^Artin) 9204412145936838 a003 sin(Pi*11/76)/sin(Pi*19/120) 9204412188026444 r005 Re(z^2+c),c=-26/19+2/15*I,n=8 9204412215409031 s002 sum(A016472[n]/((exp(n)+1)*n),n=1..infinity) 9204412227763659 r002 64th iterates of z^2 + 9204412231942155 a007 Real Root Of -147*x^4+602*x^3-891*x^2-505*x+865 9204412232538410 r005 Re(z^2+c),c=-17/16+41/103*I,n=2 9204412253527844 r005 Im(z^2+c),c=-25/22+13/115*I,n=7 9204412275067695 a007 Real Root Of 939*x^4+508*x^3-150*x^2-726*x-819 9204412319833007 s001 sum(exp(-4*Pi)^(n-1)*A112946[n],n=1..infinity) 9204412327462306 m001 (GAMMA(2/3)+ln(2+3^(1/2)))/(Otter-ZetaQ(2)) 9204412329961411 k003 Champernowne real with 7*n^3-71/2*n^2+137/2*n-31 9204412336996242 a001 199/956722026041*102334155^(21/22) 9204412346058709 a007 Real Root Of -844*x^4+255*x^3+582*x^2+158*x+457 9204412350289372 a001 1597/9349*521^(7/26) 9204412373888111 m005 (1/2*2^(1/2)-10/11)/(13/10+2/5*5^(1/2)) 9204412385993817 l006 ln(2212/5553) 9204412425227569 l006 ln(3485/3821) 9204412447536003 m006 (4/5*Pi^2+4/5)/(ln(Pi)-1/5) 9204412482819803 a001 610/843*1364^(1/30) 9204412513069809 a001 377/5778*843^(11/28) 9204412518774369 r005 Im(z^2+c),c=-29/31+3/37*I,n=18 9204412541566833 a001 377/1364*3571^(5/34) 9204412548405592 a007 Real Root Of 346*x^4-591*x^3-190*x^2-69*x+437 9204412551478588 m005 (1/2*2^(1/2)-3/10)/(7/11*5^(1/2)+3) 9204412554451424 m001 PisotVijayaraghavan^(Zeta(1,-1)*Grothendieck) 9204412556996416 p004 log(26437/10531) 9204412563988407 r002 36th iterates of z^2 + 9204412576601528 a007 Real Root Of 536*x^4-552*x^3+241*x^2+536*x-526 9204412581944001 m005 (1/3*gamma-1/8)/(1/8*2^(1/2)-10/11) 9204412585418066 a001 377/3571*843^(9/28) 9204412622584666 r009 Re(z^3+c),c=-7/58+6/17*I,n=10 9204412626499939 a001 610/843*3571^(1/34) 9204412631164411 k003 Champernowne real with 15/2*n^3-77/2*n^2+74*n-34 9204412633857302 a001 377/1364*9349^(5/38) 9204412633867111 k002 Champernowne real with 13/2*n^2+351/2*n-173 9204412637235549 a007 Real Root Of 43*x^4-22*x^3+229*x^2-654*x-844 9204412639695198 a007 Real Root Of 764*x^4+193*x^3-811*x^2-764*x-414 9204412644958033 a001 610/843*9349^(1/38) 9204412645884664 a001 377/1364*24476^(5/42) 9204412647363505 a001 610/843*24476^(1/42) 9204412647470102 a001 377/1364*64079^(5/46) 9204412647680593 a001 610/843*64079^(1/46) 9204412647681052 a001 377/1364*167761^(1/10) 9204412647713756 a001 377/1364*20633239^(1/14) 9204412647713757 a001 377/1364*2537720636^(1/18) 9204412647713757 a001 377/1364*312119004989^(1/22) 9204412647713757 a001 377/1364*28143753123^(1/20) 9204412647713757 a001 377/1364*228826127^(1/16) 9204412647713979 a001 377/1364*1860498^(1/12) 9204412647862703 a001 610/843*39603^(1/44) 9204412648380652 a001 377/1364*39603^(5/44) 9204412648734936 a001 610/843*15127^(1/40) 9204412652741818 a001 377/1364*15127^(1/8) 9204412652944668 a007 Real Root Of 837*x^4-472*x^3-796*x^2-496*x-751 9204412655387733 a001 610/843*5778^(1/36) 9204412663747386 a001 6/7*13^(1/36) 9204412686005800 a001 377/1364*5778^(5/36) 9204412698008229 r005 Im(z^2+c),c=-133/122+5/46*I,n=51 9204412702065635 r009 Re(z^3+c),c=-7/46+32/57*I,n=26 9204412706782271 a001 610/843*2207^(1/32) 9204412713690275 m001 FeigenbaumMu^GAMMA(13/24)+ln(Pi) 9204412719739486 a007 Real Root Of -614*x^4+381*x^3+231*x^2+944*x-921 9204412724524413 r005 Im(z^2+c),c=-73/122+1/59*I,n=63 9204412726266558 m001 (GAMMA(23/24)-Conway)/(ln(3)-GAMMA(5/6)) 9204412752234798 m001 (-GAMMA(11/12)+Sarnak)/(Zeta(3)-sin(1)) 9204412776174033 r005 Re(z^2+c),c=-67/54+3/19*I,n=52 9204412797102398 a007 Real Root Of -700*x^4-861*x^3-421*x^2+411*x+566 9204412797602733 m001 BesselK(1,1)-Zeta(5)+FeigenbaumKappa 9204412797945278 a007 Real Root Of 700*x^4-313*x^3+261*x^2+545*x-466 9204412848337422 l006 ln(3895/9778) 9204412862770927 m001 ZetaQ(4)^(Trott/Chi(1)) 9204412900680875 a007 Real Root Of 914*x^4-305*x^3+468*x^2+674*x-670 9204412919495290 m005 (1/2*Catalan-10/11)/(2/9*3^(1/2)-7/8) 9204412932367412 k003 Champernowne real with 8*n^3-83/2*n^2+159/2*n-37 9204412934902539 r002 34th iterates of z^2 + 9204412942978493 a001 377/1364*2207^(5/32) 9204412954449694 a007 Real Root Of 362*x^4-674*x^3-673*x^2+22*x-195 9204412960600624 a001 987/2207*521^(3/26) 9204412963689844 a001 987/3571*521^(5/26) 9204412965984985 a007 Real Root Of 820*x^4-781*x^3+408*x^2+688*x-910 9204412986588175 h001 (2/9*exp(1)+6/11)/(1/8*exp(1)+10/11) 9204413019057133 a008 Real Root of (-5+x-2*x^2-x^3+4*x^4-6*x^5) 9204413049984996 a007 Real Root Of 223*x^4-887*x^3-9*x^2-242*x+762 9204413054483876 r009 Im(z^3+c),c=-7/44+37/41*I,n=9 9204413062932668 a007 Real Root Of -237*x^4+806*x^3+454*x^2-565*x-323 9204413067749477 a001 1/141*3^(14/59) 9204413088734882 a007 Real Root Of 336*x^4-991*x^3-279*x^2+156*x-634 9204413103194328 a007 Real Root Of 968*x^4-804*x^3-568*x^2+521*x-361 9204413110306103 a001 610/843*843^(1/28) 9204413125749567 r005 Re(z^2+c),c=13/110+7/46*I,n=7 9204413128793080 a007 Real Root Of -105*x^4+182*x^3+811*x^2+71*x-819 9204413145641811 a001 987/1364*199^(1/22) 9204413167587081 m001 (BesselK(1,1)+Gompertz)/(Kac-Tetranacci) 9204413172381069 m005 (1/3*2^(1/2)+3/4)/(5^(1/2)-10/11) 9204413180559474 a007 Real Root Of 422*x^4+802*x^3+519*x^2-103*x-212 9204413191043696 a007 Real Root Of 873*x^4+883*x^3+335*x^2-325*x-521 9204413227717449 a007 Real Root Of 762*x^4+551*x^3+945*x^2+454*x-500 9204413233570412 k003 Champernowne real with 17/2*n^3-89/2*n^2+85*n-40 9204413236424693 m001 (ln(2)-ln(Pi))/(2*Pi/GAMMA(5/6)-TwinPrimes) 9204413253315417 r005 Im(z^2+c),c=-17/29+5/59*I,n=3 9204413276188862 m005 (1/3*Catalan-1/4)/(7/12*3^(1/2)+5) 9204413276400167 r005 Re(z^2+c),c=29/126+11/15*I,n=4 9204413285709268 a007 Real Root Of -514*x^4+794*x^3-257*x^2-442*x+799 9204413286791525 r009 Re(z^3+c),c=-19/52+23/34*I,n=12 9204413335763319 a007 Real Root Of -958*x^4+322*x^3+922*x^2+20*x+176 9204413342004559 a007 Real Root Of -877*x^4+608*x^3-461*x^2-752*x+802 9204413344487284 m001 (BesselI(0,2)-ArtinRank2)/(Mills+ThueMorse) 9204413401867346 h001 (1/11*exp(2)+5/6)/(5/9*exp(1)+1/8) 9204413419273432 m009 (1/6*Psi(1,2/3)+5)/(1/10*Pi^2+5) 9204413441687154 b008 ArcCsch[Erf[1+E^(-1)]] 9204413444805999 a007 Real Root Of -325*x^4+140*x^3-36*x^2-516*x-102 9204413451749168 m009 (3/5*Psi(1,3/4)+1/2)/(4/5*Psi(1,3/4)+1/6) 9204413456004682 l006 ln(1683/4225) 9204413472706155 q001 1585/1722 9204413474546801 r005 Im(z^2+c),c=-1/17+44/45*I,n=17 9204413512721772 a007 Real Root Of 890*x^4-275*x^3-821*x^2+318*x+135 9204413530233425 r005 Im(z^2+c),c=-69/122+25/33*I,n=3 9204413534773413 k003 Champernowne real with 9*n^3-95/2*n^2+181/2*n-43 9204413586357496 a001 305/2889*521^(9/26) 9204413636873112 k002 Champernowne real with 7*n^2+174*n-172 9204413645342690 a007 Real Root Of 679*x^4-703*x^3-966*x^2-354*x-543 9204413667866362 r005 Re(z^2+c),c=-85/98+4/19*I,n=49 9204413668657033 m001 (-FellerTornier+Lehmer)/(BesselJ(0,1)-Bloch) 9204413681788076 r002 6th iterates of z^2 + 9204413683440192 a007 Real Root Of 226*x^4-836*x^3-216*x^2+142*x+542 9204413687831253 m001 (-arctan(1/3)+Paris)/(exp(Pi)+ln(3)) 9204413726307655 a007 Real Root Of -622*x^4-251*x^3-377*x^2-451*x+155 9204413735862714 r005 Im(z^2+c),c=-99/98+5/52*I,n=5 9204413753452573 r005 Im(z^2+c),c=-53/78+8/53*I,n=51 9204413770235121 r009 Im(z^3+c),c=-5/114+35/38*I,n=5 9204413773002173 m005 (1/2*5^(1/2)+5/9)/(9/10*2^(1/2)+6/11) 9204413789283601 r005 Re(z^2+c),c=-59/66+2/13*I,n=19 9204413819235185 a001 377/9349*843^(13/28) 9204413835976414 k003 Champernowne real with 19/2*n^3-101/2*n^2+96*n-46 9204413873761657 m001 ln(2)/ln(10)*(TwinPrimes-cos(1/12*Pi)) 9204413909703502 m001 (LandauRamanujan+Trott)/(gamma(2)-FeigenbaumB) 9204413913183860 r002 29th iterates of z^2 + 9204413961191862 a001 2584/9349*521^(5/26) 9204413980532010 a001 987/1149851*1364^(29/30) 9204413981209326 a007 Real Root Of -949*x^4+668*x^3+752*x^2+427*x+958 9204413998541586 m001 (ln(3)-Pi^(1/2))/(Lehmer-PisotVijayaraghavan) 9204414001586882 m001 (Si(Pi)+Bloch)/(CopelandErdos+Riemann3rdZero) 9204414014121833 k008 concat of cont frac of 9204414020259530 s001 sum(exp(-Pi)^n*A014197[n],n=1..infinity) 9204414020259530 s002 sum(A014197[n]/(exp(pi*n)),n=1..infinity) 9204414035611366 r002 57th iterates of z^2 + 9204414049001136 m001 Robbin^ThueMorse/(cos(1/5*Pi)^ThueMorse) 9204414051364058 r005 Im(z^2+c),c=-133/122+5/46*I,n=52 9204414064831994 r005 Im(z^2+c),c=-9/8+45/241*I,n=6 9204414072163139 a007 Real Root Of 277*x^4-311*x^3+768*x^2+729*x-421 9204414090340773 a007 Real Root Of 839*x^4-896*x^3-445*x^2+969*x-32 9204414097227003 a007 Real Root Of -523*x^4+511*x^3-358*x^2-312*x+790 9204414106725434 a001 6765/24476*521^(5/26) 9204414127958496 a001 17711/64079*521^(5/26) 9204414128893399 m001 Chi(1)^Cahen/(Chi(1)^ZetaP(3)) 9204414131056358 a001 46368/167761*521^(5/26) 9204414131508330 a001 121393/439204*521^(5/26) 9204414131574272 a001 317811/1149851*521^(5/26) 9204414131583893 a001 832040/3010349*521^(5/26) 9204414131586164 a001 1346269/4870847*521^(5/26) 9204414131589839 a001 514229/1860498*521^(5/26) 9204414131615026 a001 196418/710647*521^(5/26) 9204414131787664 a001 75025/271443*521^(5/26) 9204414132970942 a001 28657/103682*521^(5/26) 9204414141081250 a001 10946/39603*521^(5/26) 9204414152771480 r005 Re(z^2+c),c=-71/64+5/19*I,n=22 9204414196670127 a001 4181/15127*521^(5/26) 9204414237303055 m001 (Sarnak-ZetaQ(3))/(ln(3)-Salem) 9204414274661138 r009 Im(z^3+c),c=-1/6+22/25*I,n=47 9204414289256224 r005 Re(z^2+c),c=-89/82+7/48*I,n=42 9204414289536608 a007 Real Root Of 299*x^4-964*x^3+830*x^2+760*x-970 9204414290288716 l006 ln(2837/7122) 9204414302317097 a007 Real Root Of 111*x^4-362*x^3+737*x^2+360*x-655 9204414310325922 a001 141/101521*1364^(9/10) 9204414327207418 a007 Real Root Of -927*x^4+71*x^3-162*x^2-151*x+719 9204414339643172 m001 1/sin(1)/exp(GAMMA(2/3))*sqrt(3)^2 9204414343659530 a007 Real Root Of 497*x^4+306*x^3+444*x^2+72*x-428 9204414344121191 r001 32i'th iterates of 2*x^2-1 of 9204414370220619 r009 Re(z^3+c),c=-5/114+42/59*I,n=24 9204414382269932 a007 Real Root Of 774*x^4-987*x^3-425*x^2+815*x-215 9204414410044825 m001 CareFree^Bloch-gamma(1) 9204414425701280 h001 (3/7*exp(1)+9/10)/(2/11*exp(2)+9/10) 9204414464689683 r005 Im(z^2+c),c=-1/8+63/64*I,n=19 9204414468241500 a001 41/329*121393^(35/46) 9204414475469830 a003 sin(Pi*3/35)/sin(Pi*7/75) 9204414508560723 m001 1/GAMMA(17/24)/Rabbit^2/exp(sin(Pi/12))^2 9204414525341126 m001 (Shi(1)+DuboisRaymond)/(MertensB3+Trott2nd) 9204414541686247 r002 4th iterates of z^2 + 9204414577681947 a001 1597/5778*521^(5/26) 9204414578199935 m005 (1/2*2^(1/2)+3)/(4/7*5^(1/2)-7/8) 9204414598855304 a001 377/15127*843^(15/28) 9204414621087386 a007 Real Root Of -215*x^4-743*x^3-914*x^2+104*x+445 9204414639879113 k002 Champernowne real with 15/2*n^2+345/2*n-171 9204414640210975 a001 987/439204*1364^(5/6) 9204414642105290 l006 ln(3991/10019) 9204414657178705 a001 199/433494437*20365011074^(17/24) 9204414657337426 a001 199/121393*196418^(17/24) 9204414663840489 a007 Real Root Of 296*x^4-654*x^3-675*x^2+372*x+527 9204414673006666 a007 Real Root Of -439*x^4+784*x^3+350*x^2-78*x-521 9204414680007068 a007 Real Root Of -104*x^4-493*x^3-626*x^2+7*x+227 9204414686200374 r005 Re(z^2+c),c=-35/38+4/63*I,n=15 9204414717608280 a007 Real Root Of 227*x^4-535*x^3-904*x^2+237*x+802 9204414746090753 r005 Re(z^2+c),c=-11/10+6/223*I,n=30 9204414781885922 p004 log(35851/14281) 9204414782376097 r005 Re(z^2+c),c=-7/8+7/44*I,n=28 9204414786092404 a003 cos(Pi*14/93)+cos(Pi*51/104) 9204414788229785 a007 Real Root Of 116*x^4+22*x^3+445*x^2-102*x-537 9204414790193445 a007 Real Root Of -89*x^4+625*x^3-437*x^2+481*x-496 9204414808747448 a007 Real Root Of 720*x^4-882*x^3-234*x^2+222*x-802 9204414813158686 m001 (-Landau+ZetaP(2))/(Catalan-gamma(1)) 9204414816378128 a007 Real Root Of 585*x^4-47*x^3-177*x^2-749*x-996 9204414827668255 r009 Re(z^3+c),c=-5/32+27/46*I,n=40 9204414847776061 m001 (arctan(1/2)+AlladiGrinstead)/(Mills+ZetaP(4)) 9204414873236914 r008 a(0)=9,K{-n^6,81-75*n^3-26*n^2+15*n} 9204414881543985 r005 Im(z^2+c),c=-133/122+5/46*I,n=33 9204414894989357 r002 27th iterates of z^2 + 9204414914901579 r005 Re(z^2+c),c=11/56+14/51*I,n=10 9204414919158555 r009 Im(z^3+c),c=-1/66+12/13*I,n=5 9204414957761955 m001 BesselJ(0,1)^ZetaR(2)*RenyiParking^ZetaR(2) 9204414960597884 a001 377/1364*843^(5/28) 9204414964439038 a003 sin(Pi*41/115)/sin(Pi*42/97) 9204414969857460 a001 329/90481*1364^(23/30) 9204414973577625 r009 Im(z^3+c),c=-3/14+25/27*I,n=7 9204414999255474 m005 (1/2*Catalan-7/12)/(8/11*2^(1/2)+1/3) 9204415019163054 a007 Real Root Of -586*x^4-525*x^3-294*x^2+695*x+900 9204415046549431 m001 Robbin*(ln(gamma)-sin(1)) 9204415052770308 r005 Im(z^2+c),c=-37/29+14/41*I,n=3 9204415068475097 a001 5778/233*10946^(38/43) 9204415151472558 m005 (1/3*exp(1)-2/7)/(6/7*Catalan-1/9) 9204415175115826 a007 Real Root Of -819*x^4+809*x^3+774*x^2-443*x-291 9204415213968854 a007 Real Root Of 238*x^4-771*x^3-590*x^2+135*x+806 9204415214608902 m001 GAMMA(2/3)*FransenRobinson^2/exp(GAMMA(3/4))^2 9204415272125151 r002 46th iterates of z^2 + 9204415296978175 m005 (1/2*2^(1/2)+6/7)/(10/11*5^(1/2)-1/3) 9204415297213952 a007 Real Root Of -232*x^4+951*x^3+491*x^2-589*x-50 9204415300128566 a001 987/167761*1364^(7/10) 9204415305530770 a007 Real Root Of -17*x^4+589*x^3-351*x^2-366*x+432 9204415313969961 a001 17393796001/3*2584^(1/17) 9204415330187773 a001 6643838879/3*32951280099^(1/17) 9204415330187774 a001 10749957122/3*9227465^(1/17) 9204415336282285 m002 (-2*Log[Pi])/Pi^5+Tanh[Pi]/ProductLog[Pi] 9204415347694581 a007 Real Root Of 203*x^4-778*x^3+760*x^2-944*x+686 9204415364402870 a007 Real Root Of 104*x^4+938*x^3-276*x^2-942*x-306 9204415442874795 m003 -35/12+Sqrt[5]/16+4*Tanh[1/2+Sqrt[5]/2] 9204415455749997 m001 (MinimumGamma+Rabbit)/(GAMMA(11/12)+Conway) 9204415488232093 a007 Real Root Of 193*x^4-881*x^3-391*x^2+185*x-324 9204415489643122 m001 (PlouffeB+Salem)/(Zeta(3)+Lehmer) 9204415507013055 l006 ln(1154/2897) 9204415513367023 a001 15127/610*55^(18/55) 9204415579597967 a001 13/844*843^(17/28) 9204415594518393 a001 2584/3010349*1364^(29/30) 9204415598622809 m001 FeigenbaumD/exp(Conway)^2/arctan(1/2)^2 9204415605939909 a007 Real Root Of -83*x^4-792*x^3-235*x^2+295*x+764 9204415628764435 a001 21/2206*1364^(19/30) 9204415642885114 k002 Champernowne real with 8*n^2+171*n-170 9204415671787628 m001 (-Ei(1)+Weierstrass)/(5^(1/2)-ln(2)) 9204415683288922 q001 2418/2627 9204415700841432 a007 Real Root Of 771*x^4-720*x^3-866*x^2-505*x-846 9204415757912464 r005 Re(z^2+c),c=-113/122+1/51*I,n=13 9204415774623749 a007 Real Root Of -984*x^4+541*x^3+841*x^2-218*x+215 9204415821741933 a007 Real Root Of -494*x^4+463*x^3-669*x^2-397*x+917 9204415864943124 m001 (Zeta(1/2)+Gompertz)^LambertW(1) 9204415865497848 a007 Real Root Of 735*x^4-105*x^3+323*x^2+929*x-28 9204415875140894 a007 Real Root Of -358*x^4+955*x^3+415*x^2-159*x-693 9204415895752716 m001 GaussAGM^(gamma*Kolakoski) 9204415924333875 a001 1292/930249*1364^(9/10) 9204415961681456 a001 987/64079*1364^(17/30) 9204415975528894 a001 4181/4870847*1364^(29/30) 9204415981872712 a007 Real Root Of 699*x^4-343*x^3-734*x^2-42*x-186 9204415993849547 a007 Real Root Of -928*x^4+319*x^3+878*x^2-264*x-72 9204416061580423 r009 Im(z^3+c),c=-39/64+21/43*I,n=17 9204416064787277 r002 32th iterates of z^2 + 9204416067955112 a007 Real Root Of 908*x^4+676*x^3+226*x^2-604*x-872 9204416159814462 a001 6765/4870847*1364^(9/10) 9204416185525447 m001 (BesselI(1,1)-Mills)/(Thue-ZetaQ(2)) 9204416188584827 a001 1292/2889*521^(3/26) 9204416194170617 a001 17711/12752043*1364^(9/10) 9204416199183112 a001 144/103681*1364^(9/10) 9204416199914425 a001 121393/87403803*1364^(9/10) 9204416200021122 a001 317811/228826127*1364^(9/10) 9204416200036689 a001 416020/299537289*1364^(9/10) 9204416200038961 a001 311187/224056801*1364^(9/10) 9204416200039292 a001 5702887/4106118243*1364^(9/10) 9204416200039340 a001 7465176/5374978561*1364^(9/10) 9204416200039347 a001 39088169/28143753123*1364^(9/10) 9204416200039348 a001 14619165/10525900321*1364^(9/10) 9204416200039348 a001 133957148/96450076809*1364^(9/10) 9204416200039348 a001 701408733/505019158607*1364^(9/10) 9204416200039348 a001 1836311903/1322157322203*1364^(9/10) 9204416200039348 a001 14930208/10749853441*1364^(9/10) 9204416200039348 a001 12586269025/9062201101803*1364^(9/10) 9204416200039348 a001 32951280099/23725150497407*1364^(9/10) 9204416200039348 a001 10182505537/7331474697802*1364^(9/10) 9204416200039348 a001 7778742049/5600748293801*1364^(9/10) 9204416200039348 a001 2971215073/2139295485799*1364^(9/10) 9204416200039348 a001 567451585/408569081798*1364^(9/10) 9204416200039349 a001 433494437/312119004989*1364^(9/10) 9204416200039349 a001 165580141/119218851371*1364^(9/10) 9204416200039349 a001 31622993/22768774562*1364^(9/10) 9204416200039352 a001 24157817/17393796001*1364^(9/10) 9204416200039370 a001 9227465/6643838879*1364^(9/10) 9204416200039497 a001 1762289/1268860318*1364^(9/10) 9204416200040364 a001 1346269/969323029*1364^(9/10) 9204416200046310 a001 514229/370248451*1364^(9/10) 9204416200087065 a001 98209/70711162*1364^(9/10) 9204416200186977 r002 63i'th iterates of 2*x/(1-x^2) of 9204416200366402 a001 75025/54018521*1364^(9/10) 9204416202281005 a001 28657/20633239*1364^(9/10) 9204416208803433 r002 21i'th iterates of 2*x/(1-x^2) of 9204416215403888 a001 5473/3940598*1364^(9/10) 9204416218306994 b008 9^Cosh[1/7] 9204416229998861 a007 Real Root Of -446*x^4+323*x^3+796*x^2+913*x-91 9204416248399462 a007 Real Root Of 191*x^4-846*x^3-940*x^2-416*x-31 9204416254162665 a001 2584/1149851*1364^(5/6) 9204416257898140 m001 Magata/exp(FibonacciFactorial)^2*Pi 9204416264764779 a003 cos(Pi*33/113)*cos(Pi*14/31) 9204416268795157 h001 (2/5*exp(1)+5/9)/(2/9*exp(2)+1/7) 9204416283390316 a001 329/13201*1364^(1/2) 9204416305349468 a001 4181/3010349*1364^(9/10) 9204416317812792 a001 271443/1597*317811^(2/15) 9204416318546529 a001 103682/1597*433494437^(2/15) 9204416323558976 a001 39603/1597*591286729879^(2/15) 9204416346687883 a001 610/843*322^(1/24) 9204416378479024 a001 987/2207*1364^(1/10) 9204416411986879 m001 (BesselK(1,1)-Champernowne)/(Pi+Psi(2,1/3)) 9204416419261811 r002 3th iterates of z^2 + 9204416424870035 m001 3^(1/2)/(Porter+PrimesInBinary) 9204416436747933 l006 ln(6524/7153) 9204416483518775 a001 377/39603*843^(19/28) 9204416489635043 a001 6765/3010349*1364^(5/6) 9204416523990000 a001 89/39604*1364^(5/6) 9204416527342771 r005 Im(z^2+c),c=-7/6+29/241*I,n=53 9204416529002321 a001 46368/20633239*1364^(5/6) 9204416529733608 a001 121393/54018521*1364^(5/6) 9204416529840302 a001 317811/141422324*1364^(5/6) 9204416529855868 a001 832040/370248451*1364^(5/6) 9204416529858139 a001 2178309/969323029*1364^(5/6) 9204416529858471 a001 5702887/2537720636*1364^(5/6) 9204416529858519 a001 14930352/6643838879*1364^(5/6) 9204416529858526 a001 39088169/17393796001*1364^(5/6) 9204416529858527 a001 102334155/45537549124*1364^(5/6) 9204416529858527 a001 267914296/119218851371*1364^(5/6) 9204416529858527 a001 3524667/1568437211*1364^(5/6) 9204416529858527 a001 1836311903/817138163596*1364^(5/6) 9204416529858527 a001 4807526976/2139295485799*1364^(5/6) 9204416529858527 a001 12586269025/5600748293801*1364^(5/6) 9204416529858527 a001 32951280099/14662949395604*1364^(5/6) 9204416529858527 a001 53316291173/23725150497407*1364^(5/6) 9204416529858527 a001 20365011074/9062201101803*1364^(5/6) 9204416529858527 a001 7778742049/3461452808002*1364^(5/6) 9204416529858527 a001 2971215073/1322157322203*1364^(5/6) 9204416529858527 a001 1134903170/505019158607*1364^(5/6) 9204416529858527 a001 433494437/192900153618*1364^(5/6) 9204416529858527 a001 165580141/73681302247*1364^(5/6) 9204416529858528 a001 63245986/28143753123*1364^(5/6) 9204416529858530 a001 24157817/10749957122*1364^(5/6) 9204416529858549 a001 9227465/4106118243*1364^(5/6) 9204416529858676 a001 3524578/1568397607*1364^(5/6) 9204416529859543 a001 1346269/599074578*1364^(5/6) 9204416529865489 a001 514229/228826127*1364^(5/6) 9204416529906242 a001 196418/87403803*1364^(5/6) 9204416530185569 a001 75025/33385282*1364^(5/6) 9204416530405216 s002 sum(A176515[n]/((10^n+1)/n),n=1..infinity) 9204416532100105 a001 28657/12752043*1364^(5/6) 9204416534974693 a007 Real Root Of 989*x^4-536*x^3+255*x^2+479*x-903 9204416545222531 a001 10946/4870847*1364^(5/6) 9204416545719407 m005 (1/2*exp(1)+1/12)/(37/55+2/5*5^(1/2)) 9204416557846338 a007 Real Root Of 330*x^4-236*x^3+726*x^2+126*x-920 9204416565258985 m001 polylog(4,1/2)/(ln(3)-Psi(2,1/3)) 9204416583956658 a001 2584/710647*1364^(23/30) 9204416592016835 a001 1597/1860498*1364^(29/30) 9204416601377645 a007 Real Root Of -907*x^4+800*x^3-44*x^2-413*x+932 9204416602799907 a007 Real Root Of 381*x^4-440*x^3-680*x^2-358*x-370 9204416608835281 m001 (Kac+MertensB3)/(OrthogonalArrays+Sarnak) 9204416613548546 a001 271443/610*233^(2/15) 9204416622096555 a007 Real Root Of 359*x^4-240*x^3+535*x^2+753*x-205 9204416634442566 a001 987/24476*1364^(13/30) 9204416635164976 a001 4181/1860498*1364^(5/6) 9204416645891115 k002 Champernowne real with 17/2*n^2+339/2*n-169 9204416659541470 a001 6765/15127*521^(3/26) 9204416664748331 a007 Real Root Of -351*x^4+734*x^3+641*x^2+330*x+585 9204416675055277 r009 Re(z^3+c),c=-1/27+23/32*I,n=30 9204416683912658 l006 ln(2933/7363) 9204416687743505 s001 sum(exp(-Pi/3)^n*A201122[n],n=1..infinity) 9204416722467103 r005 Im(z^2+c),c=-9/14+36/199*I,n=15 9204416728253120 a001 17711/39603*521^(3/26) 9204416738278015 a001 23184/51841*521^(3/26) 9204416739740627 a001 121393/271443*521^(3/26) 9204416739954019 a001 317811/710647*521^(3/26) 9204416739985153 a001 416020/930249*521^(3/26) 9204416739989695 a001 2178309/4870847*521^(3/26) 9204416739992503 a001 1346269/3010349*521^(3/26) 9204416740004394 a001 514229/1149851*521^(3/26) 9204416740085903 a001 98209/219602*521^(3/26) 9204416740644571 a001 75025/167761*521^(3/26) 9204416744473740 a001 28657/64079*521^(3/26) 9204416761041902 q001 3251/3532 9204416770719255 a001 5473/12238*521^(3/26) 9204416775878611 a007 Real Root Of -288*x^4+390*x^3+201*x^2+648*x+937 9204416809519622 a001 987/2207*3571^(3/34) 9204416819450557 a001 55/15126*1364^(23/30) 9204416821208967 a007 Real Root Of -395*x^4-495*x^3-880*x^2+955*x+95 9204416829131931 m002 -Pi^3-Pi^5/5+Tanh[Pi]/6 9204416839251716 a007 Real Root Of -500*x^4-860*x^3-872*x^2+503*x+890 9204416853808654 a001 17711/4870847*1364^(23/30) 9204416864893929 a001 987/2207*9349^(3/38) 9204416872110349 a001 987/2207*24476^(1/14) 9204416873061612 a001 987/2207*64079^(3/46) 9204416873205155 a001 987/2207*439204^(1/18) 9204416873207799 a001 987/2207*7881196^(1/22) 9204416873207806 a001 987/2207*33385282^(1/24) 9204416873207939 a001 987/2207*1860498^(1/20) 9204416873261320 a001 987/2207*103682^(1/16) 9204416873607943 a001 987/2207*39603^(3/44) 9204416875043126 a001 10946/3010349*1364^(23/30) 9204416876224643 a001 987/2207*15127^(3/40) 9204416896183042 a001 987/2207*5778^(1/12) 9204416904250297 a007 Real Root Of 11*x^4-73*x^3+652*x^2+10*x-608 9204416908672866 a001 141/2161*1364^(11/30) 9204416913841793 a001 34/5779*1364^(7/10) 9204416918312467 r005 Im(z^2+c),c=-3/29+35/44*I,n=57 9204416921845649 a001 1597/1149851*1364^(9/10) 9204416924761639 r008 a(0)=0,K{-n^6,-22-55*n-51*n^2+19*n^3} 9204416934196331 a001 710647/4181*317811^(2/15) 9204416934305457 a001 271443/4181*433494437^(2/15) 9204416935036764 a001 103682/4181*591286729879^(2/15) 9204416941580790 a007 Real Root Of -322*x^4+578*x^3+700*x^2-130*x-693 9204416943910408 m001 (exp(-1/2*Pi)+2)/(3^(1/2)+2/3) 9204416946914067 a001 48/13201*322^(23/24) 9204416946965015 a007 Real Root Of 461*x^4-495*x^3+803*x^2+475*x-960 9204416950608694 a001 4181/9349*521^(3/26) 9204416961072546 a007 Real Root Of -473*x^4+469*x^3+644*x^2+111*x-674 9204416964993791 a001 4181/1149851*1364^(23/30) 9204416984455832 a007 Real Root Of 625*x^4-367*x^3-508*x^2-244*x-529 9204417002118509 r004 Im(z^2+c),c=9/38+13/15*I,z(0)=I,n=4 9204417024125484 a001 930249/5473*317811^(2/15) 9204417024143481 a001 710647/10946*433494437^(2/15) 9204417024250177 a001 271443/10946*591286729879^(2/15) 9204417027837096 m001 (Pi-Psi(1,1/3))/(BesselJ(0,1)+gamma(2)) 9204417029036560 r005 Im(z^2+c),c=-133/122+5/46*I,n=45 9204417037245971 a001 4870847/28657*317811^(2/15) 9204417037250672 a001 1860498/28657*433494437^(2/15) 9204417037266239 a001 710647/28657*591286729879^(2/15) 9204417039160224 a001 12752043/75025*317811^(2/15) 9204417039162986 a001 4870847/75025*433494437^(2/15) 9204417039165257 a001 1860498/75025*591286729879^(2/15) 9204417039439510 a001 16692641/98209*317811^(2/15) 9204417039441989 a001 12752043/196418*433494437^(2/15) 9204417039442320 a001 4870847/196418*591286729879^(2/15) 9204417039480257 a001 87403803/514229*317811^(2/15) 9204417039482695 a001 33385282/514229*433494437^(2/15) 9204417039482743 a001 12752043/514229*591286729879^(2/15) 9204417039486202 a001 228826127/1346269*317811^(2/15) 9204417039487070 a001 299537289/1762289*317811^(2/15) 9204417039487196 a001 1568397607/9227465*317811^(2/15) 9204417039487215 a001 4106118243/24157817*317811^(2/15) 9204417039487217 a001 5374978561/31622993*317811^(2/15) 9204417039487218 a001 28143753123/165580141*317811^(2/15) 9204417039487218 a001 73681302247/433494437*317811^(2/15) 9204417039487218 a001 96450076809/567451585*317811^(2/15) 9204417039487218 a001 505019158607/2971215073*317811^(2/15) 9204417039487218 a001 1322157322203/7778742049*317811^(2/15) 9204417039487218 a001 1730726404001/10182505537*317811^(2/15) 9204417039487218 a001 9062201101803/53316291173*317811^(2/15) 9204417039487218 a001 23725150497407/139583862445*317811^(2/15) 9204417039487218 a001 192933544679/1135099622*317811^(2/15) 9204417039487218 a001 5600748293801/32951280099*317811^(2/15) 9204417039487218 a001 2139295485799/12586269025*317811^(2/15) 9204417039487218 a001 204284540899/1201881744*317811^(2/15) 9204417039487218 a001 312119004989/1836311903*317811^(2/15) 9204417039487218 a001 119218851371/701408733*317811^(2/15) 9204417039487218 a001 11384387281/66978574*317811^(2/15) 9204417039487218 a001 17393796001/102334155*317811^(2/15) 9204417039487219 a001 6643838879/39088169*317811^(2/15) 9204417039487226 a001 33391061/196452*317811^(2/15) 9204417039487274 a001 969323029/5702887*317811^(2/15) 9204417039487606 a001 370248451/2178309*317811^(2/15) 9204417039488633 a001 87403803/1346269*433494437^(2/15) 9204417039488641 a001 33385282/1346269*591286729879^(2/15) 9204417039489500 a001 228826127/3524578*433494437^(2/15) 9204417039489501 a001 87403803/3524578*591286729879^(2/15) 9204417039489626 a001 599074578/9227465*433494437^(2/15) 9204417039489626 a001 228826127/9227465*591286729879^(2/15) 9204417039489645 a001 1568397607/24157817*433494437^(2/15) 9204417039489645 a001 599074578/24157817*591286729879^(2/15) 9204417039489647 a001 4106118243/63245986*433494437^(2/15) 9204417039489647 a001 1568397607/63245986*591286729879^(2/15) 9204417039489648 a001 4106118243/165580141*591286729879^(2/15) 9204417039489648 a001 10749957122/165580141*433494437^(2/15) 9204417039489648 a001 10749957122/433494437*591286729879^(2/15) 9204417039489648 a001 28143753123/433494437*433494437^(2/15) 9204417039489648 a001 28143753123/1134903170*591286729879^(2/15) 9204417039489648 a001 73681302247/2971215073*591286729879^(2/15) 9204417039489648 a001 73681302247/1134903170*433494437^(2/15) 9204417039489648 a001 192900153618/7778742049*591286729879^(2/15) 9204417039489648 a001 505019158607/20365011074*591286729879^(2/15) 9204417039489648 a001 1322157322203/53316291173*591286729879^(2/15) 9204417039489648 a001 3461452808002/139583862445*591286729879^(2/15) 9204417039489648 a001 5600748293801/225851433717*591286729879^(2/15) 9204417039489648 a001 2139295485799/86267571272*591286729879^(2/15) 9204417039489648 a001 817138163596/32951280099*591286729879^(2/15) 9204417039489648 a001 28374454999/1144206275*591286729879^(2/15) 9204417039489648 a001 119218851371/4807526976*591286729879^(2/15) 9204417039489648 a001 45537549124/1836311903*591286729879^(2/15) 9204417039489648 a001 192900153618/2971215073*433494437^(2/15) 9204417039489648 a001 505019158607/7778742049*433494437^(2/15) 9204417039489648 a001 1322157322203/20365011074*433494437^(2/15) 9204417039489648 a001 3461452808002/53316291173*433494437^(2/15) 9204417039489648 a001 9062201101803/139583862445*433494437^(2/15) 9204417039489648 a001 23725150497407/365435296162*433494437^(2/15) 9204417039489648 a001 505618944676/7787980473*433494437^(2/15) 9204417039489648 a001 5600748293801/86267571272*433494437^(2/15) 9204417039489648 a001 2139295485799/32951280099*433494437^(2/15) 9204417039489648 a001 817138163596/12586269025*433494437^(2/15) 9204417039489648 a001 312119004989/4807526976*433494437^(2/15) 9204417039489648 a001 119218851371/1836311903*433494437^(2/15) 9204417039489648 a001 17393796001/701408733*591286729879^(2/15) 9204417039489648 a001 45537549124/701408733*433494437^(2/15) 9204417039489648 a001 6643838879/267914296*591286729879^(2/15) 9204417039489648 a001 599786069/9238424*433494437^(2/15) 9204417039489648 a001 230701876/9303105*591286729879^(2/15) 9204417039489648 a001 6643838879/102334155*433494437^(2/15) 9204417039489649 a001 969323029/39088169*591286729879^(2/15) 9204417039489649 a001 2537720636/39088169*433494437^(2/15) 9204417039489656 a001 370248451/14930352*591286729879^(2/15) 9204417039489656 a001 969323029/14930352*433494437^(2/15) 9204417039489704 a001 141422324/5702887*591286729879^(2/15) 9204417039489704 a001 370248451/5702887*433494437^(2/15) 9204417039489876 a001 35355581/208010*317811^(2/15) 9204417039490033 a001 54018521/2178309*591286729879^(2/15) 9204417039490035 a001 141422324/2178309*433494437^(2/15) 9204417039492285 a001 1875749/75640*591286729879^(2/15) 9204417039492304 a001 54018521/832040*433494437^(2/15) 9204417039505441 a001 54018521/317811*317811^(2/15) 9204417039507726 a001 7881196/317811*591286729879^(2/15) 9204417039507852 a001 711491/10959*433494437^(2/15) 9204417039612118 a001 20633239/121393*317811^(2/15) 9204417039613554 a001 3010349/121393*591286729879^(2/15) 9204417039614422 a001 7881196/121393*433494437^(2/15) 9204417040338915 a001 1149851/46368*591286729879^(2/15) 9204417040343298 a001 1970299/11592*317811^(2/15) 9204417040344861 a001 3010349/46368*433494437^(2/15) 9204417045310608 a001 439204/17711*591286729879^(2/15) 9204417045351362 a001 1149851/17711*433494437^(2/15) 9204417045354878 a001 3010349/17711*317811^(2/15) 9204417050366727 a001 987/2207*2207^(3/32) 9204417055980053 m001 (-cos(1/5*Pi)+ln(3))/(2^(1/2)+3^(1/2)) 9204417079387100 a001 15251/615*591286729879^(2/15) 9204417079666434 a001 439204/6765*433494437^(2/15) 9204417079704758 a001 1149851/6765*317811^(2/15) 9204417102763402 r005 Re(z^2+c),c=-101/90+15/53*I,n=11 9204417115067805 m001 (MadelungNaCl-RenyiParking)/(Zeta(1/2)+Artin) 9204417120056184 m001 (PisotVijayaraghavan+Sarnak)/(1+GAMMA(3/4)) 9204417146425179 a007 Real Root Of 652*x^4+211*x^3+814*x^2+175*x-832 9204417149279379 a001 6765/1149851*1364^(7/10) 9204417152728294 a005 (1/cos(4/177*Pi))^880 9204417170664524 m001 gamma^Paris*RenyiParking^Paris 9204417180499026 a007 Real Root Of 58*x^4+433*x^3-954*x^2-188*x+445 9204417181858409 a007 Real Root Of -312*x^4+894*x^3+340*x^2-223*x-556 9204417183629260 a001 17711/3010349*1364^(7/10) 9204417188162913 a007 Real Root Of 786*x^4+487*x^3-413*x^2-44*x+125 9204417188640840 a001 11592/1970299*1364^(7/10) 9204417189175285 a001 610/2207*521^(5/26) 9204417189372020 a001 121393/20633239*1364^(7/10) 9204417189478698 a001 317811/54018521*1364^(7/10) 9204417189494262 a001 208010/35355581*1364^(7/10) 9204417189496533 a001 2178309/370248451*1364^(7/10) 9204417189496864 a001 5702887/969323029*1364^(7/10) 9204417189496912 a001 196452/33391061*1364^(7/10) 9204417189496919 a001 39088169/6643838879*1364^(7/10) 9204417189496920 a001 102334155/17393796001*1364^(7/10) 9204417189496920 a001 66978574/11384387281*1364^(7/10) 9204417189496920 a001 701408733/119218851371*1364^(7/10) 9204417189496920 a001 1836311903/312119004989*1364^(7/10) 9204417189496920 a001 1201881744/204284540899*1364^(7/10) 9204417189496920 a001 12586269025/2139295485799*1364^(7/10) 9204417189496920 a001 32951280099/5600748293801*1364^(7/10) 9204417189496920 a001 1135099622/192933544679*1364^(7/10) 9204417189496920 a001 139583862445/23725150497407*1364^(7/10) 9204417189496920 a001 53316291173/9062201101803*1364^(7/10) 9204417189496920 a001 10182505537/1730726404001*1364^(7/10) 9204417189496920 a001 7778742049/1322157322203*1364^(7/10) 9204417189496920 a001 2971215073/505019158607*1364^(7/10) 9204417189496920 a001 567451585/96450076809*1364^(7/10) 9204417189496920 a001 433494437/73681302247*1364^(7/10) 9204417189496921 a001 165580141/28143753123*1364^(7/10) 9204417189496921 a001 31622993/5374978561*1364^(7/10) 9204417189496924 a001 24157817/4106118243*1364^(7/10) 9204417189496942 a001 9227465/1568397607*1364^(7/10) 9204417189497069 a001 1762289/299537289*1364^(7/10) 9204417189497936 a001 1346269/228826127*1364^(7/10) 9204417189503881 a001 514229/87403803*1364^(7/10) 9204417189544628 a001 98209/16692641*1364^(7/10) 9204417189823914 a001 75025/12752043*1364^(7/10) 9204417191738167 a001 28657/4870847*1364^(7/10) 9204417192264507 a001 610/3571*521^(7/26) 9204417204858654 a001 5473/930249*1364^(7/10) 9204417219380432 r002 58th iterates of z^2 + 9204417220117502 a007 Real Root Of 620*x^4-480*x^3-907*x^2-489*x-501 9204417224917627 m008 (3/4*Pi^4+2/3)/(5/6*Pi^6-1/5) 9204417243488359 a001 2584/271443*1364^(19/30) 9204417251639666 a001 1597/710647*1364^(5/6) 9204417252952843 m001 (Pi-Si(Pi))/(Champernowne-Riemann1stZero) 9204417260034016 h001 (2/3*exp(1)+1/3)/(3/5*exp(1)+7/10) 9204417269034896 m005 (1/2*Zeta(3)-11/12)/(1/2*Pi-5) 9204417276475526 m006 (1/5*exp(Pi)+1/3)/(5*ln(Pi)-1/3) 9204417282766716 a007 Real Root Of 310*x^4-445*x^3-723*x^2-930*x-813 9204417294787810 a001 4181/710647*1364^(7/10) 9204417312950861 a001 64079/2584*591286729879^(2/15) 9204417314865445 a001 167761/2584*433494437^(2/15) 9204417315142349 a001 5779/34*317811^(2/15) 9204417320355429 m001 (sin(1/5*Pi)+Totient)/(Shi(1)+Zeta(5)) 9204417332832942 a001 329/1926*1364^(7/30) 9204417361503566 r005 Im(z^2+c),c=-23/38+7/41*I,n=54 9204417370818553 a003 cos(Pi*33/116)-cos(Pi*25/78) 9204417371479885 m001 Bloch/(GAMMA(2/3)-sin(1)) 9204417384025691 a001 987/9349*1364^(3/10) 9204417404311662 a001 1/21*(1/2*5^(1/2)+1/2)^32*7^(17/24) 9204417416783052 a001 377/64079*843^(3/4) 9204417446726421 r002 22th iterates of z^2 + 9204417447342680 l006 ln(1779/4466) 9204417465071946 m001 1/ln(Riemann3rdZero)*Conway/TreeGrowth2nd 9204417478716510 m005 (1/2*5^(1/2)-2/7)/(5/7*Catalan+1/4) 9204417479073405 a001 6765/710647*1364^(19/30) 9204417488743285 m001 (RenyiParking-Stephens)/(FeigenbaumMu-Niven) 9204417510605092 a007 Real Root Of 982*x^4+373*x^3+322*x^2+53*x-638 9204417513444800 a001 17711/1860498*1364^(19/30) 9204417518459518 a001 46368/4870847*1364^(19/30) 9204417521558785 a001 28657/3010349*1364^(19/30) 9204417534687490 a001 10946/1149851*1364^(19/30) 9204417554196215 p003 LerchPhi(1/10,1,193/168) 9204417559667318 r002 13th iterates of z^2 + 9204417573759547 a001 2584/167761*1364^(17/30) 9204417575737509 m005 (1/3*3^(1/2)+3/5)/(11/12*gamma+3/4) 9204417581524824 a001 1597/439204*1364^(23/30) 9204417588449925 a003 sin(Pi*16/43)/sin(Pi*54/109) 9204417623269049 m001 (GlaisherKinkelin-KhinchinHarmonic)^OneNinth 9204417624672970 a001 4181/439204*1364^(19/30) 9204417648897116 k002 Champernowne real with 9*n^2+168*n-168 9204417650901117 k004 Champernowne real with floor(Pi*(3*n^2+53*n-53)) 9204417692922339 m009 (48*Catalan+6*Pi^2-4/5)/(5/12*Pi^2-3) 9204417719443670 a007 Real Root Of 914*x^4-919*x^3-686*x^2+949*x+82 9204417736599900 p004 log(19433/7741) 9204417764656262 r002 35th iterates of z^2 + 9204417777396739 m001 (LaplaceLimit+Magata)/(ln(Pi)-2*Pi/GAMMA(5/6)) 9204417805824128 m001 (MasserGramain+Riemann2ndZero)/(1+GAMMA(2/3)) 9204417808958571 a001 6765/439204*1364^(17/30) 9204417810455763 a001 64079/144*1597^(23/56) 9204417813715763 a007 Real Root Of 76*x^4-994*x^3+795*x^2-907*x-91 9204417831706661 a003 sin(Pi*33/109)/sin(Pi*19/55) 9204417832696003 m001 cos(1/5*Pi)^ZetaR(2)/((2^(1/2))^ZetaR(2)) 9204417837723637 r001 28i'th iterates of 2*x^2-1 of 9204417843273646 a001 17711/1149851*1364^(17/30) 9204417848280148 a001 46368/3010349*1364^(17/30) 9204417849462023 a001 75025/4870847*1364^(17/30) 9204417851374337 a001 28657/1860498*1364^(17/30) 9204417864481529 a001 10946/710647*1364^(17/30) 9204417878355909 b008 (-1/2)!! 9204417878355909 m001 GAMMA(3/4)/sqrt(Pi)^(1/2) 9204417878355909 s001 sum(exp(-Pi)^(n-1)*A004402[n],n=1..infinity) 9204417878355909 s003 concatenated sequence A327995 9204417878365584 s001 sum(exp(-Pi)^(n-1)*A261988[n],n=1..infinity) 9204417878444592 r005 Re(z^2+c),c=-23/25+11/45*I,n=41 9204417878467849 s001 sum(exp(-Pi)^(n-1)*A208605[n],n=1..infinity) 9204417878542597 m001 (Salem-ZetaQ(4))/(exp(1/Pi)-Paris) 9204417887891194 r005 Im(z^2+c),c=-83/90+5/64*I,n=11 9204417889846138 a007 Real Root Of 874*x^4-811*x^3-241*x^2+948*x-183 9204417902395497 a001 1292/51841*1364^(1/2) 9204417911171414 a001 1597/271443*1364^(7/10) 9204417933567344 m005 (1/3*5^(1/2)+1/7)/(5/12*Catalan+7/12) 9204417942285820 p001 sum((-1)^n/(227*n+202)/n/(25^n),n=1..infinity) 9204417954319562 a001 4181/271443*1364^(17/30) 9204417957578664 a003 cos(Pi*1/67)-cos(Pi*19/40) 9204417994787641 r005 Re(z^2+c),c=-139/102+3/46*I,n=20 9204418041445403 a007 Real Root Of -7*x^4+874*x^3+516*x^2+596*x+798 9204418053964620 r009 Im(z^3+c),c=-45/118+1/34*I,n=24 9204418062334019 a001 987/3010349*3571^(33/34) 9204418101746012 a003 cos(Pi*2/91)-cos(Pi*29/61) 9204418104789139 a001 329/620166*3571^(31/34) 9204418126853693 r002 4th iterates of z^2 + 9204418138605170 a001 2255/90481*1364^(1/2) 9204418147257555 a001 987/1149851*3571^(29/34) 9204418151035539 r005 Re(z^2+c),c=7/78+25/52*I,n=17 9204418173067696 a001 17711/710647*1364^(1/2) 9204418178095711 a001 2576/103361*1364^(1/2) 9204418178829289 a001 121393/4870847*1364^(1/2) 9204418178936316 a001 105937/4250681*1364^(1/2) 9204418178951931 a001 416020/16692641*1364^(1/2) 9204418178954210 a001 726103/29134601*1364^(1/2) 9204418178954542 a001 5702887/228826127*1364^(1/2) 9204418178954590 a001 829464/33281921*1364^(1/2) 9204418178954598 a001 39088169/1568397607*1364^(1/2) 9204418178954599 a001 34111385/1368706081*1364^(1/2) 9204418178954599 a001 133957148/5374978561*1364^(1/2) 9204418178954599 a001 233802911/9381251041*1364^(1/2) 9204418178954599 a001 1836311903/73681302247*1364^(1/2) 9204418178954599 a001 267084832/10716675201*1364^(1/2) 9204418178954599 a001 12586269025/505019158607*1364^(1/2) 9204418178954599 a001 10983760033/440719107401*1364^(1/2) 9204418178954599 a001 43133785636/1730726404001*1364^(1/2) 9204418178954599 a001 75283811239/3020733700601*1364^(1/2) 9204418178954599 a001 182717648081/7331474697802*1364^(1/2) 9204418178954599 a001 139583862445/5600748293801*1364^(1/2) 9204418178954599 a001 53316291173/2139295485799*1364^(1/2) 9204418178954599 a001 10182505537/408569081798*1364^(1/2) 9204418178954599 a001 7778742049/312119004989*1364^(1/2) 9204418178954599 a001 2971215073/119218851371*1364^(1/2) 9204418178954599 a001 567451585/22768774562*1364^(1/2) 9204418178954599 a001 433494437/17393796001*1364^(1/2) 9204418178954599 a001 165580141/6643838879*1364^(1/2) 9204418178954599 a001 31622993/1268860318*1364^(1/2) 9204418178954602 a001 24157817/969323029*1364^(1/2) 9204418178954620 a001 9227465/370248451*1364^(1/2) 9204418178954747 a001 1762289/70711162*1364^(1/2) 9204418178955618 a001 1346269/54018521*1364^(1/2) 9204418178961582 a001 514229/20633239*1364^(1/2) 9204418179002463 a001 98209/3940598*1364^(1/2) 9204418179282665 a001 75025/3010349*1364^(1/2) 9204418180500123 a001 1597/2207*521^(1/26) 9204418181203195 a001 28657/1149851*1364^(1/2) 9204418183290329 r005 Im(z^2+c),c=-16/27+9/53*I,n=59 9204418183589346 a001 1597/3571*521^(3/26) 9204418189691163 a001 141/101521*3571^(27/34) 9204418194366709 a001 5473/219602*1364^(1/2) 9204418199998391 a001 514229/47*18^(14/19) 9204418209601764 m004 -7-E^(Sqrt[5]*Pi)+30*Sqrt[5]*Pi 9204418217757482 a003 cos(Pi*9/76)*sin(Pi*32/71) 9204418227297513 m001 (arctan(1/2)-cos(1))/(-GAMMA(17/24)+ZetaP(2)) 9204418228797166 r002 20th iterates of z^2 + 9204418232215900 a001 987/439204*3571^(25/34) 9204418235312600 a001 2584/64079*1364^(13/30) 9204418236790750 a001 12752043/233*2^(3/4) 9204418241442627 a001 1597/167761*1364^(19/30) 9204418260938849 a001 987/2207*843^(3/28) 9204418274502058 a001 329/90481*3571^(23/34) 9204418278837779 a007 Real Root Of -982*x^4+666*x^3+23*x^2-720*x+542 9204418281839065 m001 Rabbit^2/ln(FibonacciFactorial)*GAMMA(11/24)^2 9204418284590776 a001 4181/167761*1364^(1/2) 9204418293960097 r005 Re(z^2+c),c=-79/66+5/27*I,n=18 9204418317412826 a001 987/167761*3571^(21/34) 9204418320230126 m001 FellerTornier/FeigenbaumD/Mills 9204418335023586 r009 Im(z^3+c),c=-19/102+45/46*I,n=8 9204418338594474 a001 329/1926*3571^(7/34) 9204418338839249 a001 377/103682*843^(23/28) 9204418358688343 a001 21/2206*3571^(19/34) 9204418363626356 b008 37*(1+Sqrt[2])+E 9204418374605798 m001 (Backhouse+ThueMorse)/(sin(1/5*Pi)+3^(1/3)) 9204418378765336 l006 ln(2404/6035) 9204418404245003 a001 987/64079*3571^(1/2) 9204418422806680 r009 Im(z^3+c),c=-11/98+29/32*I,n=25 9204418438593488 a001 329/13201*3571^(15/34) 9204418462457189 a007 Real Root Of -x^4+831*x^3+493*x^2+579*x+764 9204418467801212 a001 329/1926*9349^(7/38) 9204418468876390 a001 615/15251*1364^(13/30) 9204418484639530 a001 329/1926*24476^(1/6) 9204418486859144 a001 329/1926*64079^(7/46) 9204418487200260 a001 329/1926*20633239^(1/10) 9204418487200262 a001 329/1926*17393796001^(1/14) 9204418487200262 a001 329/1926*14662949395604^(1/18) 9204418487200262 a001 329/1926*505019158607^(1/16) 9204418487200262 a001 329/1926*599074578^(1/12) 9204418487202540 a001 329/1926*710647^(1/8) 9204418488133915 a001 329/1926*39603^(7/44) 9204418489155250 a001 141/2161*3571^(11/34) 9204418494239551 a001 329/1926*15127^(7/40) 9204418497048943 r009 Im(z^3+c),c=-15/22+1/26*I,n=2 9204418502285356 a001 987/24476*3571^(13/34) 9204418502952888 a001 17711/439204*1364^(13/30) 9204418506972334 r005 Im(z^2+c),c=-133/122+5/46*I,n=41 9204418507924582 a001 46368/1149851*1364^(13/30) 9204418508649942 a001 121393/3010349*1364^(13/30) 9204418508821176 a001 196418/4870847*1364^(13/30) 9204418509098240 a001 75025/1860498*1364^(13/30) 9204418510997258 a001 28657/710647*1364^(13/30) 9204418512371170 r005 Re(z^2+c),c=-8/9+19/115*I,n=31 9204418524013322 a001 10946/271443*1364^(13/30) 9204418540435956 a007 Real Root Of -495*x^4+550*x^3-58*x^2+67*x+895 9204418540809155 a001 329/1926*5778^(7/36) 9204418541825906 a007 Real Root Of -778*x^4+824*x^3+319*x^2-833*x+164 9204418544406151 a007 Real Root Of -384*x^4+893*x^3-618*x^2-571*x+970 9204418557021540 a001 2584/39603*1364^(11/30) 9204418558387349 h001 (7/9*exp(2)+9/10)/(9/10*exp(2)+4/7) 9204418561540160 m005 (1/3*3^(1/2)-1/9)/(1/10*3^(1/2)+1/3) 9204418570078600 a001 1597/103682*1364^(17/30) 9204418570394923 m001 1/exp(Zeta(9))^2/Zeta(5)*sin(1)^2 9204418573442058 r009 Im(z^3+c),c=-25/48+46/53*I,n=2 9204418574662891 m002 -3*Pi^3+Pi^2*Log[Pi]*Sech[Pi] 9204418577609928 m001 GAMMA(5/6)-ln(2^(1/2)+1)*Salem 9204418578623281 a007 Real Root Of 71*x^4+595*x^3-588*x^2-526*x-655 9204418579017347 p001 sum(1/(337*n+111)/(12^n),n=0..infinity) 9204418598447711 m001 MadelungNaCl/Lehmer^2/ln(GAMMA(11/12)) 9204418600598220 r009 Re(z^3+c),c=-19/126+21/38*I,n=28 9204418613226751 a001 4181/103682*1364^(13/30) 9204418630457106 m001 (cos(Pi/12)+1/2)/(Lehmer+1) 9204418635149066 r009 Re(z^3+c),c=-6/29+42/59*I,n=50 9204418651903117 k002 Champernowne real with 19/2*n^2+333/2*n-167 9204418658687573 r005 Re(z^2+c),c=-8/9+17/39*I,n=3 9204418660154551 a001 987/3571*1364^(1/6) 9204418665907502 a001 987/4870847*9349^(35/38) 9204418671451492 a001 987/3010349*9349^(33/38) 9204418675743274 m001 (exp(1/Pi)+ZetaP(2))/(cos(1)+exp(1/exp(1))) 9204418676990403 a001 329/620166*9349^(31/38) 9204418677147688 a001 987/9349*3571^(9/34) 9204418680937359 r009 Im(z^3+c),c=-21/38+33/56*I,n=14 9204418682542610 a001 987/1149851*9349^(29/38) 9204418688060008 a001 141/101521*9349^(27/38) 9204418692194412 a001 141/2161*9349^(11/38) 9204418693668536 a001 987/439204*9349^(25/38) 9204418699038484 a001 329/90481*9349^(23/38) 9204418705033042 a001 987/167761*9349^(21/38) 9204418709392350 a001 21/2206*9349^(1/2) 9204418715465073 a001 329/13201*9349^(15/38) 9204418718032799 a001 987/64079*9349^(17/38) 9204418718654627 a001 141/2161*24476^(11/42) 9204418722142592 a001 141/2161*64079^(11/46) 9204418722678611 a001 141/2161*7881196^(1/6) 9204418722678635 a001 141/2161*312119004989^(1/10) 9204418722678635 a001 141/2161*1568397607^(1/8) 9204418724145805 a001 141/2161*39603^(1/4) 9204418732744919 m005 (2/3*Catalan-1/6)/(4*2^(1/2)-5/6) 9204418733740375 a001 141/2161*15127^(11/40) 9204418738224571 a001 21/3571*76^(3/29) 9204418742240731 a001 987/24476*9349^(13/38) 9204418748636150 a001 329/4250681*24476^(13/14) 9204418750099094 a001 987/4870847*24476^(5/6) 9204418750832136 a001 987/3010349*24476^(11/14) 9204418751547184 a001 329/13201*24476^(5/14) 9204418751560099 a001 329/620166*24476^(31/42) 9204418752301357 a001 987/1149851*24476^(29/42) 9204418753007808 a001 141/101521*24476^(9/14) 9204418753805387 a001 987/439204*24476^(25/42) 9204418754364387 a001 329/90481*24476^(23/42) 9204418755096357 a001 21/2206*24476^(19/42) 9204418755547997 a001 987/167761*24476^(1/2) 9204418756303500 a001 329/13201*64079^(15/46) 9204418756936353 a001 329/13201*167761^(3/10) 9204418757021214 a001 329/13201*439204^(5/18) 9204418757034434 a001 329/13201*7881196^(5/22) 9204418757034463 a001 329/13201*20633239^(3/14) 9204418757034468 a001 329/13201*2537720636^(1/6) 9204418757034468 a001 329/13201*312119004989^(3/22) 9204418757034468 a001 329/13201*28143753123^(3/20) 9204418757034468 a001 329/13201*228826127^(3/16) 9204418757034470 a001 329/13201*33385282^(5/24) 9204418757035133 a001 329/13201*1860498^(1/4) 9204418757302039 a001 329/13201*103682^(5/16) 9204418758925858 a001 987/64079*24476^(17/42) 9204418759035153 a001 329/13201*39603^(15/44) 9204418761121024 a001 21/2206*64079^(19/46) 9204418761197165 a001 987/4870847*64079^(35/46) 9204418761296031 a001 987/3010349*64079^(33/46) 9204418761389819 a001 329/620166*64079^(31/46) 9204418761496902 a001 987/1149851*64079^(29/46) 9204418761569177 a001 141/101521*64079^(27/46) 9204418761657405 a001 329/90481*64079^(1/2) 9204418761732581 a001 987/439204*64079^(25/46) 9204418762046916 a001 21/2206*817138163596^(1/6) 9204418762046917 a001 21/2206*87403803^(1/4) 9204418762206840 a001 987/167761*64079^(21/46) 9204418762608803 a001 987/54018521*167761^(9/10) 9204418762673822 a001 987/4870847*167761^(7/10) 9204418762778223 a001 329/90481*4106118243^(1/4) 9204418762787336 a001 987/439204*167761^(1/2) 9204418762858080 a001 21/4868641*439204^(17/18) 9204418762861061 a001 141/101521*439204^(1/2) 9204418762863385 a001 987/54018521*439204^(5/6) 9204418762868627 a001 329/4250681*439204^(13/18) 9204418762875001 a001 987/3010349*439204^(11/18) 9204418762884858 a001 141/101521*7881196^(9/22) 9204418762884919 a001 141/101521*2537720636^(3/10) 9204418762884919 a001 141/101521*14662949395604^(3/14) 9204418762884919 a001 141/101521*192900153618^(1/4) 9204418762884922 a001 141/101521*33385282^(3/8) 9204418762886116 a001 141/101521*1860498^(9/20) 9204418762899978 a001 329/620166*3010349^(1/2) 9204418762900486 a001 329/620166*9062201101803^(1/4) 9204418762902746 a001 987/4870847*20633239^(1/2) 9204418762902757 a001 987/4870847*2537720636^(7/18) 9204418762902757 a001 987/4870847*17393796001^(5/14) 9204418762902757 a001 987/4870847*312119004989^(7/22) 9204418762902757 a001 987/4870847*14662949395604^(5/18) 9204418762902757 a001 987/4870847*505019158607^(5/16) 9204418762902757 a001 987/4870847*28143753123^(7/20) 9204418762902757 a001 987/4870847*599074578^(5/12) 9204418762902757 a001 987/4870847*228826127^(7/16) 9204418762903001 a001 329/4250681*7881196^(13/22) 9204418762903003 a001 329/1368706081*7881196^(21/22) 9204418762903017 a001 987/969323029*7881196^(19/22) 9204418762903021 a001 329/199691526*7881196^(5/6) 9204418762903030 a001 21/4868641*7881196^(17/22) 9204418762903047 a001 987/54018521*7881196^(15/22) 9204418762903088 a001 329/4250681*141422324^(1/2) 9204418762903088 a001 329/4250681*73681302247^(3/8) 9204418762903093 a001 329/4250681*33385282^(13/24) 9204418762903125 a001 987/6643838879*20633239^(13/14) 9204418762903125 a001 329/1368706081*20633239^(9/10) 9204418762903128 a001 329/199691526*20633239^(11/14) 9204418762903130 a001 987/141422324*20633239^(7/10) 9204418762903134 a001 987/54018521*20633239^(9/14) 9204418762903137 a001 141/4769326*969323029^(1/2) 9204418762903144 a001 329/29134601*6643838879^(1/2) 9204418762903144 a001 987/6643838879*141422324^(5/6) 9204418762903145 a001 21/4868641*45537549124^(1/2) 9204418762903145 a001 329/199691526*2537720636^(11/18) 9204418762903145 a001 329/199691526*312119004989^(1/2) 9204418762903145 a001 329/199691526*3461452808002^(11/24) 9204418762903145 a001 329/199691526*28143753123^(11/20) 9204418762903145 a001 329/199691526*1568397607^(5/8) 9204418762903145 a001 141/224056801*2139295485799^(1/2) 9204418762903145 a001 329/1368706081*2537720636^(7/10) 9204418762903145 a001 987/817138163596*2537720636^(17/18) 9204418762903145 a001 987/312119004989*2537720636^(9/10) 9204418762903145 a001 141/10525900321*2537720636^(5/6) 9204418762903145 a001 987/6643838879*2537720636^(13/18) 9204418762903145 a001 329/1368706081*17393796001^(9/14) 9204418762903145 a001 329/1368706081*14662949395604^(1/2) 9204418762903145 a001 329/1368706081*505019158607^(9/16) 9204418762903145 a001 329/1368706081*192900153618^(7/12) 9204418762903145 a001 141/494493258286*17393796001^(13/14) 9204418762903145 a001 987/119218851371*17393796001^(11/14) 9204418762903145 a001 987/817138163596*45537549124^(5/6) 9204418762903145 a001 141/10525900321*312119004989^(15/22) 9204418762903145 a001 141/10525900321*3461452808002^(5/8) 9204418762903145 a001 987/23725150497407*312119004989^(9/10) 9204418762903145 a001 329/3020733700601*312119004989^(19/22) 9204418762903145 a001 987/817138163596*312119004989^(17/22) 9204418762903145 a001 329/3020733700601*817138163596^(5/6) 9204418762903145 a001 329/440719107401*1322157322203^(3/4) 9204418762903145 a001 141/494493258286*14662949395604^(13/18) 9204418762903145 a001 329/3020733700601*3461452808002^(19/24) 9204418762903145 a001 987/817138163596*3461452808002^(17/24) 9204418762903145 a001 141/494493258286*505019158607^(13/16) 9204418762903145 a001 987/312119004989*14662949395604^(9/14) 9204418762903145 a001 987/23725150497407*192900153618^(11/12) 9204418762903145 a001 987/312119004989*192900153618^(3/4) 9204418762903145 a001 987/119218851371*14662949395604^(11/18) 9204418762903145 a001 987/119218851371*505019158607^(11/16) 9204418762903145 a001 141/494493258286*73681302247^(7/8) 9204418762903145 a001 141/10525900321*28143753123^(3/4) 9204418762903145 a001 987/817138163596*28143753123^(17/20) 9204418762903145 a001 329/3020733700601*28143753123^(19/20) 9204418762903145 a001 987/6643838879*312119004989^(13/22) 9204418762903145 a001 987/6643838879*3461452808002^(13/24) 9204418762903145 a001 987/6643838879*73681302247^(5/8) 9204418762903145 a001 987/6643838879*28143753123^(13/20) 9204418762903145 a001 987/17393796001*4106118243^(3/4) 9204418762903145 a001 987/2537720636*5600748293801^(1/2) 9204418762903145 a001 987/119218851371*1568397607^(7/8) 9204418762903145 a001 987/969323029*817138163596^(1/2) 9204418762903145 a001 329/1368706081*599074578^(3/4) 9204418762903145 a001 987/119218851371*599074578^(11/12) 9204418762903145 a001 987/370248451*119218851371^(1/2) 9204418762903145 a001 329/199691526*228826127^(11/16) 9204418762903145 a001 987/6643838879*228826127^(13/16) 9204418762903145 a001 141/10525900321*228826127^(15/16) 9204418762903145 a001 987/141422324*17393796001^(1/2) 9204418762903145 a001 987/141422324*14662949395604^(7/18) 9204418762903145 a001 987/141422324*505019158607^(7/16) 9204418762903145 a001 987/141422324*599074578^(7/12) 9204418762903146 a001 987/969323029*87403803^(3/4) 9204418762903148 a001 987/54018521*2537720636^(1/2) 9204418762903148 a001 987/54018521*312119004989^(9/22) 9204418762903148 a001 987/54018521*14662949395604^(5/14) 9204418762903148 a001 987/54018521*192900153618^(5/12) 9204418762903148 a001 987/54018521*28143753123^(9/20) 9204418762903148 a001 987/54018521*228826127^(9/16) 9204418762903151 a001 21/4868641*33385282^(17/24) 9204418762903151 a001 987/969323029*33385282^(19/24) 9204418762903152 a001 329/1368706081*33385282^(7/8) 9204418762903153 a001 987/17393796001*33385282^(23/24) 9204418762903153 a001 987/54018521*33385282^(5/8) 9204418762903166 a001 987/20633239*370248451^(1/2) 9204418762903187 a001 21/4868641*12752043^(3/4) 9204418762903291 a001 987/7881196*54018521^(1/2) 9204418762904086 a001 987/3010349*7881196^(1/2) 9204418762904161 a001 987/3010349*312119004989^(3/10) 9204418762904161 a001 987/3010349*1568397607^(3/8) 9204418762904164 a001 987/3010349*33385282^(11/24) 9204418762904308 a001 987/4870847*1860498^(7/12) 9204418762904817 a001 329/4250681*1860498^(13/20) 9204418762905142 a001 987/54018521*1860498^(3/4) 9204418762905405 a001 21/4868641*1860498^(17/20) 9204418762905582 a001 329/199691526*1860498^(11/12) 9204418762905623 a001 987/3010349*1860498^(11/20) 9204418762905671 a001 987/969323029*1860498^(19/20) 9204418762906626 a001 987/1149851*1149851^(1/2) 9204418762910107 a001 987/1149851*1322157322203^(1/4) 9204418762914148 a001 987/4870847*710647^(5/8) 9204418762919093 a001 987/141422324*710647^(7/8) 9204418762950853 a001 987/439204*20633239^(5/14) 9204418762950861 a001 987/439204*2537720636^(5/18) 9204418762950861 a001 987/439204*312119004989^(5/22) 9204418762950861 a001 987/439204*3461452808002^(5/24) 9204418762950861 a001 987/439204*28143753123^(1/4) 9204418762950861 a001 987/439204*228826127^(5/16) 9204418762951969 a001 987/439204*1860498^(5/12) 9204418762996780 a001 329/4250681*271443^(3/4) 9204418763211639 a001 987/167761*439204^(7/18) 9204418763230148 a001 987/167761*7881196^(7/22) 9204418763230189 a001 987/167761*20633239^(3/10) 9204418763230195 a001 987/167761*17393796001^(3/14) 9204418763230195 a001 987/167761*14662949395604^(1/6) 9204418763230195 a001 987/167761*599074578^(1/4) 9204418763230197 a001 987/167761*33385282^(7/24) 9204418763231126 a001 987/167761*1860498^(7/20) 9204418763237030 a001 987/167761*710647^(3/8) 9204418763366547 a001 141/101521*103682^(9/16) 9204418763492818 a001 987/3010349*103682^(11/16) 9204418763598774 a001 329/4250681*103682^(13/16) 9204418763604795 a001 987/167761*103682^(7/16) 9204418763705862 a001 987/54018521*103682^(15/16) 9204418764316350 a001 987/64079*64079^(17/46) 9204418764581118 a001 21/2206*39603^(19/44) 9204418765144780 a001 987/64079*45537549124^(1/6) 9204418765144794 a001 987/64079*12752043^(1/4) 9204418765845940 a001 329/90481*39603^(23/44) 9204418766031154 a001 987/167761*39603^(21/44) 9204418766285336 a001 987/439204*39603^(25/44) 9204418766486153 a001 141/101521*39603^(27/44) 9204418766778098 a001 987/1149851*39603^(29/44) 9204418767035235 a001 329/620166*39603^(31/44) 9204418767305668 a001 987/3010349*39603^(3/4) 9204418767412223 a001 987/64079*39603^(17/44) 9204418767571023 a001 987/4870847*39603^(35/44) 9204418770125528 r009 Im(z^3+c),c=-71/118+15/56*I,n=11 9204418772118659 a001 329/13201*15127^(3/8) 9204418773511894 a001 987/24476*24476^(13/42) 9204418777634035 a001 987/24476*64079^(13/46) 9204418778267540 a001 987/24476*141422324^(1/6) 9204418778267540 a001 987/24476*73681302247^(1/8) 9204418778298771 a001 987/24476*271443^(1/4) 9204418780001468 a001 987/24476*39603^(13/44) 9204418781153559 a001 21/2206*15127^(19/40) 9204418782240197 a001 987/64079*15127^(17/40) 9204418784348063 a001 987/167761*15127^(21/40) 9204418785907316 a001 329/90481*15127^(23/40) 9204418788091179 a001 987/439204*15127^(5/8) 9204418790036463 a001 141/101521*15127^(27/40) 9204418791340506 a001 987/24476*15127^(13/40) 9204418792072876 a001 987/1149851*15127^(29/40) 9204418794074481 a001 329/620166*15127^(31/40) 9204418794421169 a007 Real Root Of -946*x^4-393*x^3+587*x^2+292*x+144 9204418796089381 a001 987/3010349*15127^(33/40) 9204418797512372 a001 6765/103682*1364^(11/30) 9204418798099203 a001 987/4870847*15127^(7/8) 9204418806921184 a001 141/2161*5778^(11/36) 9204418810475773 a003 cos(Pi*1/99)*sin(Pi*19/51) 9204418812323776 r005 Re(z^2+c),c=-9/10+39/214*I,n=6 9204418832599511 a001 17711/271443*1364^(11/30) 9204418837718656 a001 6624/101521*1364^(11/30) 9204418838465529 a001 121393/1860498*1364^(11/30) 9204418838574496 a001 317811/4870847*1364^(11/30) 9204418838641842 a001 196418/3010349*1364^(11/30) 9204418838927122 a001 75025/1149851*1364^(11/30) 9204418838957064 r005 Re(z^2+c),c=5/74+17/35*I,n=40 9204418840882461 a001 28657/439204*1364^(11/30) 9204418843270642 a001 987/9349*9349^(9/38) 9204418847694094 m006 (1/5*exp(2*Pi)+2/3)/(5*Pi-4) 9204418854284556 a001 10946/167761*1364^(11/30) 9204418864919909 a001 987/9349*24476^(3/14) 9204418867773699 a001 987/9349*64079^(9/46) 9204418868204327 a001 987/9349*439204^(1/6) 9204418868212259 a001 987/9349*7881196^(3/22) 9204418868212280 a001 987/9349*2537720636^(1/10) 9204418868212280 a001 987/9349*14662949395604^(1/14) 9204418868212280 a001 987/9349*192900153618^(1/12) 9204418868212281 a001 987/9349*33385282^(1/8) 9204418868212678 a001 987/9349*1860498^(3/20) 9204418868372822 a001 987/9349*103682^(3/16) 9204418869412691 a001 987/9349*39603^(9/44) 9204418871910671 a001 329/13201*5778^(5/12) 9204418877262794 a001 987/9349*15127^(9/40) 9204418877826917 a001 987/24476*5778^(13/36) 9204418888725671 m005 (1/2*2^(1/2)-8/9)/(7/9*2^(1/2)+7/8) 9204418895337811 a001 987/64079*5778^(17/36) 9204418900571157 a001 329/1926*2207^(7/32) 9204418902995727 a001 1597/64079*1364^(1/2) 9204418907556775 a001 21/2206*5778^(19/36) 9204418908073876 a001 646/6119*1364^(3/10) 9204418913821013 a001 24476/987*591286729879^(2/15) 9204418915940591 r005 Re(z^2+c),c=-67/78+11/58*I,n=39 9204418924056880 a001 987/167761*5778^(7/12) 9204418925596198 m001 (1+exp(-1/2*Pi))/(-KomornikLoreti+Weierstrass) 9204418925810824 l006 ln(3029/7604) 9204418926943774 a001 64079/987*433494437^(2/15) 9204418928855929 a001 167761/987*317811^(2/15) 9204418934977552 a007 Real Root Of -364*x^4-226*x^3+183*x^2+201*x+115 9204418937138002 a001 987/9349*5778^(1/4) 9204418938921736 a001 329/90481*5778^(23/36) 9204418946143880 a001 4181/64079*1364^(11/30) 9204418954411201 a001 987/439204*5778^(25/36) 9204418962128043 r005 Re(z^2+c),c=-37/42+11/60*I,n=43 9204418969662086 a001 141/101521*5778^(3/4) 9204418978356805 a007 Real Root Of -179*x^4+99*x^3-93*x^2+559*x+799 9204418985004101 a001 987/1149851*5778^(29/36) 9204419000311308 a001 329/620166*5778^(31/36) 9204419004062964 m001 Zeta(1/2)/exp(DuboisRaymond)^2/Zeta(5)^2 9204419011115171 a007 Real Root Of 727*x^4-991*x^3-587*x^2+763*x-95 9204419015631810 a001 987/3010349*5778^(11/12) 9204419021629362 m001 HeathBrownMoroz^(ArtinRank2/Robbin) 9204419030947234 a001 987/4870847*5778^(35/36) 9204419039003516 a007 Real Root Of -960*x^4+233*x^3+972*x^2+217*x+247 9204419043984995 a008 Real Root of (-5+3*x-5*x^2+3*x^3+3*x^4+3*x^5) 9204419076771785 r005 Re(z^2+c),c=-107/86+4/45*I,n=50 9204419085453433 a007 Real Root Of -296*x^4-347*x^3-226*x^2+507*x+600 9204419102045758 a007 Real Root Of -402*x^4+488*x^3+649*x^2+350*x-964 9204419103650414 a007 Real Root Of 484*x^4-810*x^3-526*x^2-332*x-839 9204419112848696 a007 Real Root Of 617*x^4-970*x^3-66*x^2+825*x-384 9204419129084075 r009 Re(z^3+c),c=-5/126+51/62*I,n=26 9204419130429507 a001 6765/64079*1364^(3/10) 9204419132935913 a007 Real Root Of 799*x^4-968*x^3-498*x^2+912*x-67 9204419136621766 p003 LerchPhi(1/64,5,245/152) 9204419140849294 r005 Re(z^2+c),c=-11/10+6/223*I,n=36 9204419144067551 a007 Real Root Of -577*x^4+344*x^3+303*x^2-142*x+295 9204419162870756 a001 17711/167761*1364^(3/10) 9204419167603871 a001 11592/109801*1364^(3/10) 9204419168294423 a001 121393/1149851*1364^(3/10) 9204419168395173 a001 317811/3010349*1364^(3/10) 9204419168409872 a001 208010/1970299*1364^(3/10) 9204419168412017 a001 2178309/20633239*1364^(3/10) 9204419168412330 a001 5702887/54018521*1364^(3/10) 9204419168412376 a001 3732588/35355581*1364^(3/10) 9204419168412382 a001 39088169/370248451*1364^(3/10) 9204419168412383 a001 102334155/969323029*1364^(3/10) 9204419168412383 a001 66978574/634430159*1364^(3/10) 9204419168412383 a001 701408733/6643838879*1364^(3/10) 9204419168412383 a001 1836311903/17393796001*1364^(3/10) 9204419168412383 a001 1201881744/11384387281*1364^(3/10) 9204419168412383 a001 12586269025/119218851371*1364^(3/10) 9204419168412383 a001 32951280099/312119004989*1364^(3/10) 9204419168412383 a001 21566892818/204284540899*1364^(3/10) 9204419168412383 a001 225851433717/2139295485799*1364^(3/10) 9204419168412383 a001 182717648081/1730726404001*1364^(3/10) 9204419168412383 a001 139583862445/1322157322203*1364^(3/10) 9204419168412383 a001 53316291173/505019158607*1364^(3/10) 9204419168412383 a001 10182505537/96450076809*1364^(3/10) 9204419168412383 a001 7778742049/73681302247*1364^(3/10) 9204419168412383 a001 2971215073/28143753123*1364^(3/10) 9204419168412383 a001 567451585/5374978561*1364^(3/10) 9204419168412383 a001 433494437/4106118243*1364^(3/10) 9204419168412383 a001 165580141/1568397607*1364^(3/10) 9204419168412384 a001 31622993/299537289*1364^(3/10) 9204419168412386 a001 24157817/228826127*1364^(3/10) 9204419168412404 a001 9227465/87403803*1364^(3/10) 9204419168412523 a001 1762289/16692641*1364^(3/10) 9204419168413343 a001 1346269/12752043*1364^(3/10) 9204419168418957 a001 514229/4870847*1364^(3/10) 9204419168457440 a001 98209/930249*1364^(3/10) 9204419168721208 a001 75025/710647*1364^(3/10) 9204419170529097 a001 28657/271443*1364^(3/10) 9204419175697839 m005 (1/2*2^(1/2)-1)/(3/4*Zeta(3)-7/12) 9204419178002382 a001 4181/5778*521^(1/26) 9204419182304244 a001 2584/15127*1364^(7/30) 9204419182920551 a001 5473/51841*1364^(3/10) 9204419202842159 r005 Im(z^2+c),c=-5/8+11/73*I,n=20 9204419207310950 h001 (2/5*exp(1)+4/9)/(5/11*exp(1)+3/7) 9204419210498446 a007 Real Root Of -768*x^4+353*x^3+543*x^2+534*x+858 9204419224704691 a001 1597/39603*1364^(13/30) 9204419228690590 m001 1/GAMMA(1/24)^2/Trott*ln(sqrt(3)) 9204419234550455 r005 Re(z^2+c),c=-11/10+6/223*I,n=40 9204419237437330 r005 Re(z^2+c),c=3/19+31/60*I,n=22 9204419247449861 a007 Real Root Of -988*x^4-473*x^3+314*x^2-185*x-96 9204419248819846 a007 Real Root Of 862*x^4-253*x^3+891*x^2+718*x-910 9204419265176680 a001 377/167761*843^(25/28) 9204419267852844 a001 4181/39603*1364^(3/10) 9204419285717035 l006 ln(3654/9173) 9204419295972632 r005 Re(z^2+c),c=-11/10+6/223*I,n=44 9204419308749065 a007 Real Root Of -537*x^4+490*x^3+755*x^2+489*x+578 9204419310464460 r002 62th iterates of z^2 + 9204419311446227 r005 Re(z^2+c),c=-11/10+6/223*I,n=48 9204419314231013 r005 Re(z^2+c),c=-11/10+6/223*I,n=52 9204419314602081 r005 Re(z^2+c),c=-11/10+6/223*I,n=56 9204419314622029 r005 Re(z^2+c),c=-11/10+6/223*I,n=62 9204419314624861 r005 Re(z^2+c),c=-11/10+6/223*I,n=58 9204419314627676 r005 Re(z^2+c),c=-11/10+6/223*I,n=64 9204419314630241 r005 Re(z^2+c),c=-11/10+6/223*I,n=60 9204419314739647 r005 Re(z^2+c),c=-11/10+6/223*I,n=54 9204419315800759 r005 Re(z^2+c),c=-11/10+6/223*I,n=50 9204419319793428 a001 1597/2207*1364^(1/30) 9204419322600495 r005 Re(z^2+c),c=-11/10+6/223*I,n=46 9204419323536030 a001 10946/15127*521^(1/26) 9204419324276086 r005 Re(z^2+c),c=-11/10+6/223*I,n=34 9204419328623944 p001 sum((-1)^n/(373*n+105)/(6^n),n=0..infinity) 9204419344769103 a001 28657/39603*521^(1/26) 9204419347866967 a001 75025/103682*521^(1/26) 9204419348318939 a001 196418/271443*521^(1/26) 9204419348384881 a001 514229/710647*521^(1/26) 9204419348394502 a001 1346269/1860498*521^(1/26) 9204419348396773 a001 2178309/3010349*521^(1/26) 9204419348400448 a001 832040/1149851*521^(1/26) 9204419348425636 a001 317811/439204*521^(1/26) 9204419348598274 a001 121393/167761*521^(1/26) 9204419349781552 a001 46368/64079*521^(1/26) 9204419355116223 r005 Re(z^2+c),c=-11/10+6/223*I,n=42 9204419357891865 a001 17711/24476*521^(1/26) 9204419366570560 r002 54th iterates of z^2 + 9204419372261495 a001 141/2161*2207^(11/32) 9204419372936911 m001 (GaussAGM+OrthogonalArrays)/(Shi(1)+exp(1/Pi)) 9204419378555738 a001 987/3571*3571^(5/34) 9204419399689170 a001 987/9349*2207^(9/32) 9204419400029330 m005 (1/2*Pi-5/12)/(8/9*3^(1/2)-2/7) 9204419413480774 a001 6765/9349*521^(1/26) 9204419416860139 h001 (-6*exp(1)+4)/(-6*exp(1/3)-5) 9204419434626575 m001 (Porter+TwinPrimes)/(Champernowne+OneNinth) 9204419451990832 r005 Re(z^2+c),c=-11/10+6/223*I,n=38 9204419452138478 a001 2255/13201*1364^(7/30) 9204419452547885 m001 (-Conway+FeigenbaumMu)/(LambertW(1)+Ei(1)) 9204419463473671 a001 1597/2207*3571^(1/34) 9204419470846275 a001 987/3571*9349^(5/38) 9204419481931779 a001 1597/2207*9349^(1/38) 9204419482873646 a001 987/3571*24476^(5/42) 9204419484337253 a001 1597/2207*24476^(1/42) 9204419484459085 a001 987/3571*64079^(5/46) 9204419484654341 a001 1597/2207*64079^(1/46) 9204419484670036 a001 987/3571*167761^(1/10) 9204419484702739 a001 987/3571*20633239^(1/14) 9204419484702741 a001 987/3571*2537720636^(1/18) 9204419484702741 a001 987/3571*312119004989^(1/22) 9204419484702741 a001 987/3571*28143753123^(1/20) 9204419484702741 a001 987/3571*228826127^(1/16) 9204419484702962 a001 987/3571*1860498^(1/12) 9204419484836451 a001 1597/2207*39603^(1/44) 9204419485369636 a001 987/3571*39603^(5/44) 9204419485708685 a001 1597/2207*15127^(1/40) 9204419489730805 a001 987/3571*15127^(1/8) 9204419491506763 a001 17711/103682*1364^(7/30) 9204419492361486 a001 1597/2207*5778^(1/36) 9204419497250518 a001 15456/90481*1364^(7/30) 9204419498088521 a001 121393/710647*1364^(7/30) 9204419498210784 a001 105937/620166*1364^(7/30) 9204419498228622 a001 832040/4870847*1364^(7/30) 9204419498239646 a001 514229/3010349*1364^(7/30) 9204419498286346 a001 196418/1149851*1364^(7/30) 9204419498353269 a007 Real Root Of -983*x^4+386*x^3-650*x^2-688*x+924 9204419498606435 a001 75025/439204*1364^(7/30) 9204419500800354 a001 28657/167761*1364^(7/30) 9204419505431078 h001 (2/11*exp(1)+1/12)/(4/5*exp(2)+4/11) 9204419515837701 a001 10946/64079*1364^(7/30) 9204419522994811 a001 987/3571*5778^(5/36) 9204419543756062 a001 1597/2207*2207^(1/32) 9204419545491467 h001 (2/3*exp(2)+5/12)/(1/11*exp(1)+1/3) 9204419545956384 a001 987/24476*2207^(13/32) 9204419547019052 r005 Re(z^2+c),c=-28/31+3/32*I,n=36 9204419557586175 a007 Real Root Of -52*x^4-409*x^3+712*x^2+614*x-372 9204419574070729 m001 1/LambertW(1)*FeigenbaumB/ln(log(1+sqrt(2)))^2 9204419575757052 a001 1597/24476*1364^(11/30) 9204419583067830 r005 Re(z^2+c),c=-9/14+106/245*I,n=6 9204419589808761 m001 1/RenyiParking*exp(Kolakoski)/LambertW(1)^2 9204419606464425 a001 1292/2889*1364^(1/10) 9204419613570993 m005 (1/2*Zeta(3)-2/11)/(1/10*exp(1)-8/11) 9204419618905208 a001 4181/24476*1364^(7/30) 9204419642829291 a001 329/13201*2207^(15/32) 9204419654808007 m001 (GAMMA(3/4)+CareFree)/(Otter-Thue) 9204419654909118 k002 Champernowne real with 10*n^2+165*n-166 9204419657657187 a001 2584/9349*1364^(1/6) 9204419679610671 a007 Real Root Of 172*x^4-885*x^3-257*x^2+668*x+19 9204419686217538 a007 Real Root Of 459*x^4+148*x^3+410*x^2+548*x-57 9204419692554589 r005 Im(z^2+c),c=-2/3+122/189*I,n=3 9204419704497466 a001 39603/1597*55^(18/55) 9204419718784462 a001 2584/4870847*3571^(31/34) 9204419720441709 r008 a(0)=1,K{-n^6,-47-8*n^3+63*n^2+5*n} 9204419753855373 r005 Re(z^2+c),c=-11/12+7/83*I,n=15 9204419755307375 m001 (Pi*2^(1/2)/GAMMA(3/4))^ZetaP(2)/DuboisRaymond 9204419757035595 m001 1/Magata^2/Conway*exp(log(2+sqrt(3)))^2 9204419761244668 a001 2584/3010349*3571^(29/34) 9204419766821008 r005 Im(z^2+c),c=5/16+31/55*I,n=50 9204419769045587 a001 987/64079*2207^(17/32) 9204419778259933 a008 Real Root of x^3-x^2+62*x-57 9204419779967696 a001 987/3571*2207^(5/32) 9204419783972901 r005 Re(z^2+c),c=17/66+13/23*I,n=34 9204419794492857 a001 2584/3571*521^(1/26) 9204419799436011 a007 Real Root Of 817*x^4+84*x^3+131*x^2+768*x+75 9204419802560160 r005 Im(z^2+c),c=-33/34+29/114*I,n=62 9204419803190849 a001 6765/24476*1364^(1/6) 9204419803699796 a001 1292/930249*3571^(27/34) 9204419809699906 r009 Re(z^3+c),c=-3/20+23/42*I,n=26 9204419824423923 a001 17711/64079*1364^(1/6) 9204419827521787 a001 46368/167761*1364^(1/6) 9204419827973760 a001 121393/439204*1364^(1/6) 9204419828039701 a001 317811/1149851*1364^(1/6) 9204419828049322 a001 832040/3010349*1364^(1/6) 9204419828050726 a001 2178309/7881196*1364^(1/6) 9204419828050931 a001 5702887/20633239*1364^(1/6) 9204419828050961 a001 14930352/54018521*1364^(1/6) 9204419828050965 a001 39088169/141422324*1364^(1/6) 9204419828050966 a001 102334155/370248451*1364^(1/6) 9204419828050966 a001 267914296/969323029*1364^(1/6) 9204419828050966 a001 701408733/2537720636*1364^(1/6) 9204419828050966 a001 1836311903/6643838879*1364^(1/6) 9204419828050966 a001 4807526976/17393796001*1364^(1/6) 9204419828050966 a001 12586269025/45537549124*1364^(1/6) 9204419828050966 a001 32951280099/119218851371*1364^(1/6) 9204419828050966 a001 86267571272/312119004989*1364^(1/6) 9204419828050966 a001 225851433717/817138163596*1364^(1/6) 9204419828050966 a001 1548008755920/5600748293801*1364^(1/6) 9204419828050966 a001 139583862445/505019158607*1364^(1/6) 9204419828050966 a001 53316291173/192900153618*1364^(1/6) 9204419828050966 a001 20365011074/73681302247*1364^(1/6) 9204419828050966 a001 7778742049/28143753123*1364^(1/6) 9204419828050966 a001 2971215073/10749957122*1364^(1/6) 9204419828050966 a001 1134903170/4106118243*1364^(1/6) 9204419828050966 a001 433494437/1568397607*1364^(1/6) 9204419828050966 a001 165580141/599074578*1364^(1/6) 9204419828050966 a001 63245986/228826127*1364^(1/6) 9204419828050968 a001 24157817/87403803*1364^(1/6) 9204419828050979 a001 9227465/33385282*1364^(1/6) 9204419828051057 a001 3524578/12752043*1364^(1/6) 9204419828051593 a001 1346269/4870847*1364^(1/6) 9204419828055268 a001 514229/1860498*1364^(1/6) 9204419828080456 a001 196418/710647*1364^(1/6) 9204419828253094 a001 75025/271443*1364^(1/6) 9204419828575591 m005 (1/2*Zeta(3)+8/9)/(4/9*gamma-3/11) 9204419829436372 a001 28657/103682*1364^(1/6) 9204419835936113 a007 Real Root Of 900*x^4+435*x^3+41*x^2-19*x-359 9204419837546685 a001 10946/39603*1364^(1/6) 9204419838005201 a007 Real Root Of 861*x^4+489*x^3+622*x^2+633*x-181 9204419846168220 a001 2584/1149851*3571^(25/34) 9204419847605626 a008 Real Root of (1+4*x-x^4-6*x^5) 9204419849987440 a001 1597/15127*1364^(3/10) 9204419884053707 a001 21/2206*2207^(19/32) 9204419884495478 m001 (Niven+ZetaQ(3))/(5^(1/2)-Artin) 9204419885612486 m005 (1/3*exp(1)-2/7)/(1/12*2^(1/2)-1/9) 9204419887345588 m001 (FeigenbaumC+ZetaP(3))/(2^(1/2)+BesselJ(0,1)) 9204419888601836 a001 2584/710647*3571^(23/34) 9204419889502762 q001 833/905 9204419893135597 a001 4181/15127*1364^(1/6) 9204419930274518 m001 (GaussAGM+RenyiParking)/(ln(2)+GAMMA(23/24)) 9204419931126581 a001 34/5779*3571^(21/34) 9204419941462375 g007 Psi(2,7/8)+Psi(2,5/8)+Psi(2,3/4)-Psi(2,7/11) 9204419944514772 m001 1/HardHexagonsEntropy^2*exp(DuboisRaymond)^3 9204419947280195 a001 1597/2207*843^(1/28) 9204419973412746 a001 2584/271443*3571^(19/34) 9204419978224879 r009 Re(z^3+c),c=-13/114+17/56*I,n=8 9204419982336445 m005 (1/2*exp(1)-6/11)/(13/4+5/2*5^(1/2)) 9204419985003002 r005 Im(z^2+c),c=11/48+19/36*I,n=26 9204419989036921 m001 (gamma+ln(5))/(-FeigenbaumD+HardyLittlewoodC4) 9204419998496219 r005 Re(z^2+c),c=-37/122+16/19*I,n=2 9204420003342972 a001 987/167761*2207^(21/32) 9204420016323522 a001 2584/167761*3571^(1/2) 9204420022326197 a003 cos(Pi*9/113)-cos(Pi*19/119) 9204420029179023 m005 (-1/3+1/4*5^(1/2))/(3/8*3^(1/2)-5/8) 9204420037505175 a001 1292/2889*3571^(3/34) 9204420039180482 a001 6765/4870847*3571^(27/34) 9204420039469673 r009 Im(z^3+c),c=-5/86+34/37*I,n=13 9204420057599048 a001 1292/51841*3571^(15/34) 9204420058836752 r002 44th iterates of z^2 + 9204420063934022 r005 Re(z^2+c),c=-7/6+65/241*I,n=8 9204420064985545 a007 Real Root Of 172*x^4+552*x^3+578*x^2-299*x-32 9204420069207787 b008 ProductLog[1+EllipticE[EulerGamma]] 9204420077421243 a001 6765/15127*1364^(1/10) 9204420081640690 a001 6765/3010349*3571^(25/34) 9204420092879501 a001 1292/2889*9349^(3/38) 9204420100095924 a001 1292/2889*24476^(1/14) 9204420101190730 a001 1292/2889*439204^(1/18) 9204420101193375 a001 1292/2889*7881196^(1/22) 9204420101193382 a001 1292/2889*33385282^(1/24) 9204420101193514 a001 1292/2889*1860498^(1/20) 9204420101246896 a001 1292/2889*103682^(1/16) 9204420101593518 a001 1292/2889*39603^(3/44) 9204420103155716 a001 2584/64079*3571^(13/34) 9204420104210220 a001 1292/2889*15127^(3/40) 9204420106668778 r009 Re(z^3+c),c=-1/56+34/53*I,n=20 9204420108199380 a007 Real Root Of -352*x^4+682*x^3+993*x^2-98*x-147 9204420109267925 a007 Real Root Of -151*x^4+90*x^3+271*x^2+646*x-786 9204420111523558 a003 sin(Pi*1/101)+sin(Pi*15/43) 9204420120996987 a001 329/90481*2207^(23/32) 9204420124095820 a001 55/15126*3571^(23/34) 9204420124168625 a001 1292/2889*5778^(1/12) 9204420137228200 a001 10946/4870847*3571^(25/34) 9204420137504207 a001 2584/39603*3571^(11/34) 9204420142255342 a001 4181/4870847*3571^(29/34) 9204420146132919 a001 17711/39603*1364^(1/10) 9204420155047241 a001 141422324/233*2504730781961^(2/21) 9204420155047241 a001 370248451/233*102334155^(2/21) 9204420155136722 r009 Re(z^3+c),c=-15/94+31/51*I,n=39 9204420156157817 a001 23184/51841*1364^(1/10) 9204420157620430 a001 121393/271443*1364^(1/10) 9204420157833823 a001 317811/710647*1364^(1/10) 9204420157864956 a001 416020/930249*1364^(1/10) 9204420157869499 a001 2178309/4870847*1364^(1/10) 9204420157870161 a001 5702887/12752043*1364^(1/10) 9204420157870258 a001 7465176/16692641*1364^(1/10) 9204420157870272 a001 39088169/87403803*1364^(1/10) 9204420157870274 a001 102334155/228826127*1364^(1/10) 9204420157870274 a001 133957148/299537289*1364^(1/10) 9204420157870274 a001 701408733/1568397607*1364^(1/10) 9204420157870274 a001 1836311903/4106118243*1364^(1/10) 9204420157870274 a001 2403763488/5374978561*1364^(1/10) 9204420157870274 a001 12586269025/28143753123*1364^(1/10) 9204420157870274 a001 32951280099/73681302247*1364^(1/10) 9204420157870274 a001 43133785636/96450076809*1364^(1/10) 9204420157870274 a001 225851433717/505019158607*1364^(1/10) 9204420157870274 a001 591286729879/1322157322203*1364^(1/10) 9204420157870274 a001 10610209857723/23725150497407*1364^(1/10) 9204420157870274 a001 182717648081/408569081798*1364^(1/10) 9204420157870274 a001 139583862445/312119004989*1364^(1/10) 9204420157870274 a001 53316291173/119218851371*1364^(1/10) 9204420157870274 a001 10182505537/22768774562*1364^(1/10) 9204420157870274 a001 7778742049/17393796001*1364^(1/10) 9204420157870274 a001 2971215073/6643838879*1364^(1/10) 9204420157870274 a001 567451585/1268860318*1364^(1/10) 9204420157870274 a001 433494437/969323029*1364^(1/10) 9204420157870275 a001 165580141/370248451*1364^(1/10) 9204420157870275 a001 31622993/70711162*1364^(1/10) 9204420157870281 a001 24157817/54018521*1364^(1/10) 9204420157870318 a001 9227465/20633239*1364^(1/10) 9204420157870571 a001 1762289/3940598*1364^(1/10) 9204420157872306 a001 1346269/3010349*1364^(1/10) 9204420157884198 a001 514229/1149851*1364^(1/10) 9204420157965706 a001 98209/219602*1364^(1/10) 9204420158453929 a001 17711/4870847*3571^(23/34) 9204420158524375 a001 75025/167761*1364^(1/10) 9204420159479302 m005 (2/3*gamma+1/2)/(3/4*exp(1)-3) 9204420162353545 a001 28657/64079*1364^(1/10) 9204420165076684 a001 969323029/233*4181^(2/21) 9204420166564245 a001 6765/1149851*3571^(21/34) 9204420169812200 m001 Mills/(Cahen+StronglyCareFree) 9204420179688408 a001 10946/3010349*3571^(23/34) 9204420184715550 a001 4181/3010349*3571^(27/34) 9204420188065978 a001 2584/15127*3571^(7/34) 9204420188599070 a001 5473/12238*1364^(1/10) 9204420188950611 r002 34th iterates of z^2 + 9204420189878954 a001 377/271443*843^(27/28) 9204420192403258 m005 (1/3*gamma-1/11)/(3/8*exp(1)+1/12) 9204420200914137 a001 17711/3010349*3571^(21/34) 9204420201196087 a001 646/6119*3571^(9/34) 9204420208997862 a001 6765/710647*3571^(19/34) 9204420209023047 a001 28657/4870847*3571^(21/34) 9204420222143538 a001 5473/930249*3571^(21/34) 9204420227170680 a001 4181/1860498*3571^(25/34) 9204420235048149 m001 (ln(Pi)+Zeta(1,-1))/(GAMMA(13/24)-Stephens) 9204420239275614 a001 987/439204*2207^(25/32) 9204420242589193 r005 Im(z^2+c),c=-41/90+7/45*I,n=37 9204420243369267 a001 17711/1860498*3571^(19/34) 9204420248383987 a001 46368/4870847*3571^(19/34) 9204420251483255 a001 28657/3010349*3571^(19/34) 9204420251522609 a001 6765/439204*3571^(1/2) 9204420264611964 a001 10946/1149851*3571^(19/34) 9204420266370066 r004 Re(z^2+c),c=-41/46-1/6*I,z(0)=-1,n=12 9204420269639106 a001 4181/1149851*3571^(23/34) 9204420271712832 s001 sum(exp(-Pi/2)^(n-1)*A168598[n],n=1..infinity) 9204420274147652 a001 1597/5778*1364^(1/6) 9204420278352365 a001 1292/2889*2207^(3/32) 9204420282415497 r005 Re(z^2+c),c=-11/10+6/223*I,n=32 9204420285837693 a001 17711/1149851*3571^(1/2) 9204420290844196 a001 46368/3010349*3571^(1/2) 9204420290985827 a001 2584/4870847*9349^(31/38) 9204420291574635 a001 121393/7881196*3571^(1/2) 9204420291681205 a001 10959/711491*3571^(1/2) 9204420291696753 a001 832040/54018521*3571^(1/2) 9204420291699022 a001 2178309/141422324*3571^(1/2) 9204420291699352 a001 5702887/370248451*3571^(1/2) 9204420291699401 a001 14930352/969323029*3571^(1/2) 9204420291699408 a001 39088169/2537720636*3571^(1/2) 9204420291699409 a001 102334155/6643838879*3571^(1/2) 9204420291699409 a001 9238424/599786069*3571^(1/2) 9204420291699409 a001 701408733/45537549124*3571^(1/2) 9204420291699409 a001 1836311903/119218851371*3571^(1/2) 9204420291699409 a001 4807526976/312119004989*3571^(1/2) 9204420291699409 a001 12586269025/817138163596*3571^(1/2) 9204420291699409 a001 32951280099/2139295485799*3571^(1/2) 9204420291699409 a001 86267571272/5600748293801*3571^(1/2) 9204420291699409 a001 7787980473/505618944676*3571^(1/2) 9204420291699409 a001 365435296162/23725150497407*3571^(1/2) 9204420291699409 a001 139583862445/9062201101803*3571^(1/2) 9204420291699409 a001 53316291173/3461452808002*3571^(1/2) 9204420291699409 a001 20365011074/1322157322203*3571^(1/2) 9204420291699409 a001 7778742049/505019158607*3571^(1/2) 9204420291699409 a001 2971215073/192900153618*3571^(1/2) 9204420291699409 a001 1134903170/73681302247*3571^(1/2) 9204420291699409 a001 433494437/28143753123*3571^(1/2) 9204420291699409 a001 165580141/10749957122*3571^(1/2) 9204420291699409 a001 63245986/4106118243*3571^(1/2) 9204420291699412 a001 24157817/1568397607*3571^(1/2) 9204420291699431 a001 9227465/599074578*3571^(1/2) 9204420291699557 a001 3524578/228826127*3571^(1/2) 9204420291700424 a001 1346269/87403803*3571^(1/2) 9204420291706362 a001 514229/33385282*3571^(1/2) 9204420291747068 a001 196418/12752043*3571^(1/2) 9204420292026071 a001 75025/4870847*3571^(1/2) 9204420293808776 a001 2255/90481*3571^(15/34) 9204420293938385 a001 28657/1860498*3571^(1/2) 9204420296529817 a001 2584/3010349*9349^(29/38) 9204420297072761 a007 Real Root Of -941*x^4-628*x^3+359*x^2+472*x+316 9204420302068729 a001 1292/930249*9349^(27/38) 9204420306341232 r005 Re(z^2+c),c=-23/25+2/29*I,n=11 9204420307045581 a001 10946/710647*3571^(1/2) 9204420307620937 a001 2584/1149851*9349^(25/38) 9204420312072723 a001 4181/710647*3571^(21/34) 9204420313138336 a001 2584/710647*9349^(23/38) 9204420317272741 a001 2584/15127*9349^(7/38) 9204420317295811 a001 4181/5778*1364^(1/30) 9204420318746865 a001 34/5779*9349^(21/38) 9204420324116814 a001 2584/271443*9349^(1/2) 9204420325340417 a001 1597/9349*1364^(7/30) 9204420328271311 a001 17711/710647*3571^(15/34) 9204420330111373 a001 2584/167761*9349^(17/38) 9204420333299327 a001 2576/103361*3571^(15/34) 9204420334032904 a001 121393/4870847*3571^(15/34) 9204420334111063 a001 2584/15127*24476^(1/6) 9204420334470681 a001 1292/51841*9349^(15/38) 9204420334486280 a001 75025/3010349*3571^(15/34) 9204420336406811 a001 28657/1149851*3571^(15/34) 9204420336671794 a001 2584/15127*20633239^(1/10) 9204420336671796 a001 2584/15127*17393796001^(1/14) 9204420336671796 a001 2584/15127*14662949395604^(1/18) 9204420336671796 a001 2584/15127*505019158607^(1/16) 9204420336671796 a001 2584/15127*599074578^(1/12) 9204420336674074 a001 2584/15127*710647^(1/8) 9204420336719553 a001 615/15251*3571^(13/34) 9204420337605449 a001 2584/15127*39603^(7/44) 9204420340543406 a001 2584/39603*9349^(11/38) 9204420343111132 a001 2584/64079*9349^(13/38) 9204420343711086 a001 2584/15127*15127^(7/40) 9204420349570328 a001 5473/219602*3571^(15/34) 9204420351195180 m002 -12/E^Pi+4*E^Pi 9204420354597471 a001 4181/439204*3571^(19/34) 9204420357315663 a001 141/101521*2207^(27/32) 9204420362629363 a001 1292/16692641*24476^(13/14) 9204420364092591 a001 2584/12752043*24476^(5/6) 9204420364824433 a001 646/1970299*24476^(11/14) 9204420365555535 a001 2584/4870847*24476^(31/42) 9204420366288577 a001 2584/3010349*24476^(29/42) 9204420367003625 a001 2584/39603*24476^(11/42) 9204420367016540 a001 1292/930249*24476^(9/14) 9204420367319069 a001 646/6119*9349^(9/38) 9204420367757799 a001 2584/1149851*24476^(25/42) 9204420368464249 a001 2584/710647*24476^(23/42) 9204420368488576 a001 4181/9349*1364^(1/10) 9204420369261829 a001 34/5779*24476^(1/2) 9204420369820829 a001 2584/271443*24476^(19/42) 9204420370552799 a001 1292/51841*24476^(5/14) 9204420370796058 a001 17711/439204*3571^(13/34) 9204420371004439 a001 2584/167761*24476^(17/42) 9204420371027610 a001 2584/39603*7881196^(1/6) 9204420371027634 a001 2584/39603*312119004989^(1/10) 9204420371027634 a001 2584/39603*1568397607^(1/8) 9204420372494804 a001 2584/39603*39603^(1/4) 9204420374382301 a001 2584/64079*24476^(13/42) 9204420375757269 a001 2584/710647*64079^(1/2) 9204420375767753 a001 46368/1149851*3571^(13/34) 9204420375941969 a001 1292/51841*167761^(3/10) 9204420376026829 a001 1292/51841*439204^(5/18) 9204420376040050 a001 1292/51841*7881196^(5/22) 9204420376040079 a001 1292/51841*20633239^(3/14) 9204420376040084 a001 1292/51841*2537720636^(1/6) 9204420376040084 a001 1292/51841*312119004989^(3/22) 9204420376040084 a001 1292/51841*28143753123^(3/20) 9204420376040084 a001 1292/51841*228826127^(3/16) 9204420376040085 a001 1292/51841*33385282^(5/24) 9204420376040749 a001 1292/51841*1860498^(1/4) 9204420376058451 a001 2584/9349*3571^(5/34) 9204420376307655 a001 1292/51841*103682^(5/16) 9204420376493113 a001 121393/3010349*3571^(13/34) 9204420376601968 a001 646/35355581*167761^(9/10) 9204420376664348 a001 196418/4870847*3571^(13/34) 9204420376667321 a001 2584/12752043*167761^(7/10) 9204420376739749 a001 2584/1149851*167761^(1/2) 9204420376771390 a001 2584/271443*817138163596^(1/6) 9204420376771391 a001 2584/271443*87403803^(1/4) 9204420376851247 a001 1292/299537289*439204^(17/18) 9204420376856549 a001 646/35355581*439204^(5/6) 9204420376861842 a001 1292/16692641*439204^(13/18) 9204420376867301 a001 646/1970299*439204^(11/18) 9204420376869795 a001 1292/930249*439204^(1/2) 9204420376878086 a001 2584/710647*4106118243^(1/4) 9204420376893593 a001 1292/930249*7881196^(9/22) 9204420376893653 a001 1292/930249*2537720636^(3/10) 9204420376893653 a001 1292/930249*14662949395604^(3/14) 9204420376893653 a001 1292/930249*192900153618^(1/4) 9204420376893656 a001 1292/930249*33385282^(3/8) 9204420376893847 a001 2584/3010349*1149851^(1/2) 9204420376894850 a001 1292/930249*1860498^(9/20) 9204420376895416 a001 2584/4870847*3010349^(1/2) 9204420376895924 a001 2584/4870847*9062201101803^(1/4) 9204420376896171 a001 1292/5374978561*7881196^(21/22) 9204420376896184 a001 34/33391061*7881196^(19/22) 9204420376896189 a001 2584/1568397607*7881196^(5/6) 9204420376896198 a001 1292/299537289*7881196^(17/22) 9204420376896212 a001 646/35355581*7881196^(15/22) 9204420376896216 a001 1292/16692641*7881196^(13/22) 9204420376896245 a001 2584/12752043*20633239^(1/2) 9204420376896256 a001 2584/12752043*2537720636^(7/18) 9204420376896256 a001 2584/12752043*17393796001^(5/14) 9204420376896256 a001 2584/12752043*312119004989^(7/22) 9204420376896256 a001 2584/12752043*14662949395604^(5/18) 9204420376896256 a001 2584/12752043*505019158607^(5/16) 9204420376896256 a001 2584/12752043*28143753123^(7/20) 9204420376896256 a001 2584/12752043*599074578^(5/12) 9204420376896256 a001 2584/12752043*228826127^(7/16) 9204420376896292 a001 2584/17393796001*20633239^(13/14) 9204420376896293 a001 1292/5374978561*20633239^(9/10) 9204420376896295 a001 2584/1568397607*20633239^(11/14) 9204420376896297 a001 2584/370248451*20633239^(7/10) 9204420376896299 a001 646/35355581*20633239^(9/14) 9204420376896304 a001 1292/16692641*141422324^(1/2) 9204420376896304 a001 1292/16692641*73681302247^(3/8) 9204420376896309 a001 1292/16692641*33385282^(13/24) 9204420376896311 a001 2584/87403803*969323029^(1/2) 9204420376896312 a001 2584/17393796001*141422324^(5/6) 9204420376896312 a001 2584/228826127*6643838879^(1/2) 9204420376896312 a001 1292/299537289*45537549124^(1/2) 9204420376896312 a001 2584/1568397607*2537720636^(11/18) 9204420376896312 a001 2584/1568397607*312119004989^(1/2) 9204420376896312 a001 2584/1568397607*3461452808002^(11/24) 9204420376896312 a001 2584/1568397607*28143753123^(11/20) 9204420376896312 a001 2584/1568397607*1568397607^(5/8) 9204420376896312 a001 2584/2139295485799*2537720636^(17/18) 9204420376896312 a001 646/204284540899*2537720636^(9/10) 9204420376896312 a001 1292/96450076809*2537720636^(5/6) 9204420376896312 a001 1292/5374978561*2537720636^(7/10) 9204420376896312 a001 2584/17393796001*2537720636^(13/18) 9204420376896312 a001 2584/4106118243*2139295485799^(1/2) 9204420376896312 a001 1292/5374978561*17393796001^(9/14) 9204420376896312 a001 1292/5374978561*14662949395604^(1/2) 9204420376896312 a001 1292/5374978561*505019158607^(9/16) 9204420376896312 a001 1292/5374978561*192900153618^(7/12) 9204420376896312 a001 2584/9062201101803*17393796001^(13/14) 9204420376896312 a001 2584/312119004989*17393796001^(11/14) 9204420376896312 a001 2584/2139295485799*45537549124^(5/6) 9204420376896312 a001 1292/96450076809*312119004989^(15/22) 9204420376896312 a001 1292/96450076809*3461452808002^(5/8) 9204420376896312 a001 2584/23725150497407*312119004989^(19/22) 9204420376896312 a001 2584/2139295485799*312119004989^(17/22) 9204420376896312 a001 2584/23725150497407*817138163596^(5/6) 9204420376896312 a001 2584/23725150497407*3461452808002^(19/24) 9204420376896312 a001 1292/1730726404001*1322157322203^(3/4) 9204420376896312 a001 2584/9062201101803*505019158607^(13/16) 9204420376896312 a001 2584/312119004989*14662949395604^(11/18) 9204420376896312 a001 2584/312119004989*505019158607^(11/16) 9204420376896312 a001 646/204284540899*192900153618^(3/4) 9204420376896312 a001 2584/9062201101803*73681302247^(7/8) 9204420376896312 a001 1292/96450076809*28143753123^(3/4) 9204420376896312 a001 2584/2139295485799*28143753123^(17/20) 9204420376896312 a001 2584/23725150497407*28143753123^(19/20) 9204420376896312 a001 2584/17393796001*312119004989^(13/22) 9204420376896312 a001 2584/17393796001*3461452808002^(13/24) 9204420376896312 a001 2584/17393796001*73681302247^(5/8) 9204420376896312 a001 2584/17393796001*28143753123^(13/20) 9204420376896312 a001 2584/6643838879*5600748293801^(1/2) 9204420376896312 a001 646/11384387281*4106118243^(3/4) 9204420376896312 a001 34/33391061*817138163596^(1/2) 9204420376896312 a001 2584/312119004989*1568397607^(7/8) 9204420376896312 a001 2584/969323029*119218851371^(1/2) 9204420376896312 a001 1292/5374978561*599074578^(3/4) 9204420376896312 a001 2584/312119004989*599074578^(11/12) 9204420376896312 a001 2584/370248451*17393796001^(1/2) 9204420376896312 a001 2584/370248451*14662949395604^(7/18) 9204420376896312 a001 2584/370248451*505019158607^(7/16) 9204420376896312 a001 2584/370248451*599074578^(7/12) 9204420376896312 a001 2584/1568397607*228826127^(11/16) 9204420376896312 a001 2584/17393796001*228826127^(13/16) 9204420376896312 a001 1292/96450076809*228826127^(15/16) 9204420376896313 a001 646/35355581*2537720636^(1/2) 9204420376896313 a001 646/35355581*312119004989^(9/22) 9204420376896313 a001 646/35355581*14662949395604^(5/14) 9204420376896313 a001 646/35355581*192900153618^(5/12) 9204420376896313 a001 646/35355581*28143753123^(9/20) 9204420376896313 a001 646/35355581*228826127^(9/16) 9204420376896313 a001 34/33391061*87403803^(3/4) 9204420376896315 a001 2584/54018521*370248451^(1/2) 9204420376896318 a001 646/35355581*33385282^(5/8) 9204420376896318 a001 1292/299537289*33385282^(17/24) 9204420376896319 a001 34/33391061*33385282^(19/24) 9204420376896320 a001 1292/5374978561*33385282^(7/8) 9204420376896320 a001 646/11384387281*33385282^(23/24) 9204420376896321 a006 5^(1/2)*Fibonacci(39/2)/Lucas(18)/sqrt(5) 9204420376896332 a001 2584/20633239*54018521^(1/2) 9204420376896355 a001 1292/299537289*12752043^(3/4) 9204420376896386 a001 646/1970299*7881196^(1/2) 9204420376896460 a001 646/1970299*312119004989^(3/10) 9204420376896460 a001 646/1970299*1568397607^(3/8) 9204420376896464 a001 646/1970299*33385282^(11/24) 9204420376897328 a001 2584/3010349*1322157322203^(1/4) 9204420376897807 a001 2584/12752043*1860498^(7/12) 9204420376897923 a001 646/1970299*1860498^(11/20) 9204420376898032 a001 1292/16692641*1860498^(13/20) 9204420376898307 a001 646/35355581*1860498^(3/4) 9204420376898573 a001 1292/299537289*1860498^(17/20) 9204420376898750 a001 2584/1568397607*1860498^(11/12) 9204420376898838 a001 34/33391061*1860498^(19/20) 9204420376903266 a001 2584/1149851*20633239^(5/14) 9204420376903274 a001 2584/1149851*2537720636^(5/18) 9204420376903274 a001 2584/1149851*312119004989^(5/22) 9204420376903274 a001 2584/1149851*3461452808002^(5/24) 9204420376903274 a001 2584/1149851*28143753123^(1/4) 9204420376903274 a001 2584/1149851*228826127^(5/16) 9204420376904382 a001 2584/1149851*1860498^(5/12) 9204420376907647 a001 2584/12752043*710647^(5/8) 9204420376912260 a001 2584/370248451*710647^(7/8) 9204420376925472 a001 34/5779*439204^(7/18) 9204420376941411 a001 75025/1860498*3571^(13/34) 9204420376943981 a001 34/5779*7881196^(7/22) 9204420376944022 a001 34/5779*20633239^(3/10) 9204420376944028 a001 34/5779*17393796001^(3/14) 9204420376944028 a001 34/5779*14662949395604^(1/6) 9204420376944028 a001 34/5779*599074578^(1/4) 9204420376944031 a001 34/5779*33385282^(7/24) 9204420376944959 a001 34/5779*1860498^(7/20) 9204420376950863 a001 34/5779*710647^(3/8) 9204420376989996 a001 1292/16692641*271443^(3/4) 9204420377223363 a001 2584/167761*45537549124^(1/6) 9204420377223377 a001 2584/167761*12752043^(1/4) 9204420377318628 a001 34/5779*103682^(7/16) 9204420377375282 a001 1292/930249*103682^(9/16) 9204420377485118 a001 646/1970299*103682^(11/16) 9204420377591990 a001 1292/16692641*103682^(13/16) 9204420377699027 a001 646/35355581*103682^(15/16) 9204420377995080 a001 6765/103682*3571^(11/34) 9204420378040769 a001 1292/51841*39603^(15/44) 9204420378840429 a001 28657/710647*3571^(13/34) 9204420379137948 a001 2584/64079*141422324^(1/6) 9204420379137948 a001 2584/64079*73681302247^(1/8) 9204420379169178 a001 2584/64079*271443^(1/4) 9204420379305592 a001 2584/271443*39603^(19/44) 9204420379490806 a001 2584/167761*39603^(17/44) 9204420379744988 a001 34/5779*39603^(21/44) 9204420379945804 a001 2584/710647*39603^(23/44) 9204420380237750 a001 2584/1149851*39603^(25/44) 9204420380494887 a001 1292/930249*39603^(27/44) 9204420380765320 a001 2584/3010349*39603^(29/44) 9204420380871875 a001 2584/64079*39603^(13/44) 9204420381030675 a001 2584/4870847*39603^(31/44) 9204420381297969 a001 646/1970299*39603^(3/4) 9204420382089376 a001 2584/39603*15127^(11/40) 9204420388484698 a007 Real Root Of -429*x^4-115*x^3+511*x^2+997*x+703 9204420388968339 a001 646/6119*24476^(3/14) 9204420390280700 a001 2584/15127*5778^(7/36) 9204420391080722 m001 (Zeta(1,-1)+MertensB3)/(GAMMA(3/4)-ln(3)) 9204420391124277 a001 1292/51841*15127^(3/8) 9204420391856496 a001 10946/271443*3571^(13/34) 9204420392210916 a001 2584/64079*15127^(13/40) 9204420392252758 a001 646/6119*439204^(1/6) 9204420392260690 a001 646/6119*7881196^(3/22) 9204420392260711 a001 646/6119*2537720636^(1/10) 9204420392260711 a001 646/6119*14662949395604^(1/14) 9204420392260711 a001 646/6119*192900153618^(1/12) 9204420392260712 a001 646/6119*33385282^(1/8) 9204420392261109 a001 646/6119*1860498^(3/20) 9204420392421253 a001 646/6119*103682^(3/16) 9204420393461122 a001 646/6119*39603^(9/44) 9204420394318782 a001 2584/167761*15127^(17/40) 9204420395878036 a001 2584/271443*15127^(19/40) 9204420396883638 a001 4181/271443*3571^(1/2) 9204420398061900 a001 34/5779*15127^(21/40) 9204420400007184 a001 2584/710647*15127^(23/40) 9204420401311227 a001 646/6119*15127^(9/40) 9204420402043597 a001 2584/1149851*15127^(5/8) 9204420404045202 a001 1292/930249*15127^(27/40) 9204420406060103 a001 2584/3010349*15127^(29/40) 9204420408069925 a001 2584/4870847*15127^(31/40) 9204420412092708 a001 2584/12752043*15127^(7/8) 9204420413082225 a001 17711/271443*3571^(11/34) 9204420418201371 a001 6624/101521*3571^(11/34) 9204420418948244 a001 121393/1860498*3571^(11/34) 9204420419057212 a001 317811/4870847*3571^(11/34) 9204420419124557 a001 196418/3010349*3571^(11/34) 9204420419409837 a001 75025/1149851*3571^(11/34) 9204420421365177 a001 28657/439204*3571^(11/34) 9204420423551750 a001 6765/64079*3571^(9/34) 9204420431700949 a008 Real Root of x^4-2*x^3-47*x^2-177*x-7 9204420434767274 a001 10946/167761*3571^(11/34) 9204420439794416 a001 4181/167761*3571^(15/34) 9204420441980956 a006 5^(1/2)*fibonacci(39/2)/Lucas(18)/sqrt(5) 9204420447261573 b008 -1/39+SinIntegral[1] 9204420453878882 a007 Real Root Of 645*x^4-831*x^3-815*x^2-484*x-866 9204420455270198 a001 2584/39603*5778^(11/36) 9204420455821401 a007 Real Root Of -888*x^4-344*x^3-992*x^2-546*x+707 9204420455993003 a001 17711/167761*3571^(9/34) 9204420457900242 a001 2255/13201*3571^(7/34) 9204420460726119 a001 11592/109801*3571^(9/34) 9204420460976070 a001 4181/5778*3571^(1/34) 9204420461186445 a001 646/6119*5778^(1/4) 9204420461416671 a001 121393/1149851*3571^(9/34) 9204420461517421 a001 317811/3010349*3571^(9/34) 9204420461541205 a001 514229/4870847*3571^(9/34) 9204420461579688 a001 98209/930249*3571^(9/34) 9204420461843456 a001 75025/710647*3571^(9/34) 9204420462829476 a001 10946/15127*1364^(1/30) 9204420463651345 a001 28657/271443*3571^(9/34) 9204420468348998 a001 2584/9349*9349^(5/38) 9204420470351144 r009 Re(z^3+c),c=-13/90+32/49*I,n=12 9204420475446843 a001 987/1149851*2207^(29/32) 9204420476042801 a001 5473/51841*3571^(9/34) 9204420478697342 a001 2584/64079*5778^(13/36) 9204420479434179 a001 4181/5778*9349^(1/38) 9204420480376370 a001 2584/9349*24476^(5/42) 9204420481069943 a001 4181/103682*3571^(13/34) 9204420481839654 a001 4181/5778*24476^(1/42) 9204420482172760 a001 2584/9349*167761^(1/10) 9204420482205464 a001 2584/9349*20633239^(1/14) 9204420482205466 a001 2584/9349*2537720636^(1/18) 9204420482205466 a001 2584/9349*312119004989^(1/22) 9204420482205466 a001 2584/9349*28143753123^(1/20) 9204420482205466 a001 2584/9349*228826127^(1/16) 9204420482205687 a001 2584/9349*1860498^(1/12) 9204420482338852 a001 4181/5778*39603^(1/44) 9204420482872361 a001 2584/9349*39603^(5/44) 9204420483211085 a001 4181/5778*15127^(1/40) 9204420484062553 a001 28657/39603*1364^(1/30) 9204420485465218 m001 (Khinchin-cos(1))/(-Niven+Riemann3rdZero) 9204420487160417 a001 75025/103682*1364^(1/30) 9204420487233530 a001 2584/9349*15127^(1/8) 9204420487612389 a001 196418/271443*1364^(1/30) 9204420487678331 a001 514229/710647*1364^(1/30) 9204420487687952 a001 1346269/1860498*1364^(1/30) 9204420487690223 a001 2178309/3010349*1364^(1/30) 9204420487693898 a001 832040/1149851*1364^(1/30) 9204420487719085 a001 317811/439204*1364^(1/30) 9204420487891723 a001 121393/167761*1364^(1/30) 9204420489075002 a001 46368/64079*1364^(1/30) 9204420489863888 a001 4181/5778*5778^(1/36) 9204420490916307 a001 1292/51841*5778^(5/12) 9204420491462122 a003 sin(Pi*35/97)/sin(Pi*47/106) 9204420497185316 a001 17711/24476*1364^(1/30) 9204420497268531 a001 17711/103682*3571^(7/34) 9204420503012287 a001 15456/90481*3571^(7/34) 9204420503850289 a001 121393/710647*3571^(7/34) 9204420503972552 a001 105937/620166*3571^(7/34) 9204420503990390 a001 832040/4870847*3571^(7/34) 9204420504001415 a001 514229/3010349*3571^(7/34) 9204420504048115 a001 196418/1149851*3571^(7/34) 9204420504368203 a001 75025/439204*3571^(7/34) 9204420506562123 a001 28657/167761*3571^(7/34) 9204420507416416 a001 2584/167761*5778^(17/36) 9204420508462015 a001 6765/15127*3571^(3/34) 9204420520497540 a001 2584/9349*5778^(5/36) 9204420521592124 a001 6765/24476*3571^(5/34) 9204420521599471 a001 10946/64079*3571^(7/34) 9204420522281274 a001 2584/271443*5778^(19/36) 9204420526584580 a007 Real Root Of -541*x^4+633*x^3-867*x^2-698*x+974 9204420526626613 a001 4181/64079*3571^(11/34) 9204420537549428 a001 6765/4870847*9349^(27/38) 9204420537770742 a001 34/5779*5778^(7/12) 9204420541258469 a001 4181/5778*2207^(1/32) 9204420542825201 a001 17711/64079*3571^(5/34) 9204420543093419 a001 6765/3010349*9349^(25/38) 9204420545923065 a001 46368/167761*3571^(5/34) 9204420546375037 a001 121393/439204*3571^(5/34) 9204420546440979 a001 317811/1149851*3571^(5/34) 9204420546450600 a001 832040/3010349*3571^(5/34) 9204420546452871 a001 1346269/4870847*3571^(5/34) 9204420546456546 a001 514229/1860498*3571^(5/34) 9204420546481734 a001 196418/710647*3571^(5/34) 9204420546654372 a001 75025/271443*3571^(5/34) 9204420547837650 a001 28657/103682*3571^(5/34) 9204420548632331 a001 55/15126*9349^(23/38) 9204420552774232 a001 6765/9349*1364^(1/30) 9204420553021630 a001 2584/710647*5778^(23/36) 9204420554184539 a001 6765/1149851*9349^(21/38) 9204420555947964 a001 10946/39603*3571^(5/34) 9204420559701939 a001 6765/710647*9349^(1/2) 9204420560975106 a001 4181/39603*3571^(9/34) 9204420561614889 r002 52th iterates of z^2 + 9204420563836344 a001 6765/15127*9349^(3/38) 9204420565310467 a001 6765/439204*9349^(17/38) 9204420568363648 a001 2584/1149851*5778^(25/36) 9204420570680417 a001 2255/90481*9349^(15/38) 9204420571052767 a001 6765/15127*24476^(1/14) 9204420572147573 a001 6765/15127*439204^(1/18) 9204420572150218 a001 6765/15127*7881196^(1/22) 9204420572150225 a001 6765/15127*33385282^(1/24) 9204420572150357 a001 6765/15127*1860498^(1/20) 9204420572203739 a001 6765/15127*103682^(1/16) 9204420572550361 a001 6765/15127*39603^(3/44) 9204420574411731 a001 7/377*196418^(37/53) 9204420575167063 a001 6765/15127*15127^(3/40) 9204420576674976 a001 615/15251*9349^(13/38) 9204420577173694 a001 17711/39603*3571^(3/34) 9204420581034284 a001 6765/103682*9349^(11/38) 9204420582990442 a001 17711/4870847*9349^(23/38) 9204420583670857 a001 1292/930249*5778^(3/4) 9204420587107009 a001 2255/13201*9349^(7/38) 9204420587198593 a001 23184/51841*3571^(3/34) 9204420588534433 a001 17711/3010349*9349^(21/38) 9204420588661206 a001 121393/271443*3571^(3/34) 9204420588874598 a001 317811/710647*3571^(3/34) 9204420588905732 a001 416020/930249*3571^(3/34) 9204420588910274 a001 2178309/4870847*3571^(3/34) 9204420588913081 a001 1346269/3010349*3571^(3/34) 9204420588924973 a001 514229/1149851*3571^(3/34) 9204420589006482 a001 98209/219602*3571^(3/34) 9204420589483488 a003 cos(Pi*4/55)*sin(Pi*13/33) 9204420589565150 a001 75025/167761*3571^(3/34) 9204420589674735 a001 6765/64079*9349^(9/38) 9204420592348511 r005 Im(z^2+c),c=-9/14+19/117*I,n=39 9204420593394321 a001 28657/64079*3571^(3/34) 9204420593543215 a001 329/620166*2207^(31/32) 9204420594073345 a001 17711/1860498*9349^(1/2) 9204420595125469 a001 6765/15127*5778^(1/12) 9204420596643343 a001 28657/4870847*9349^(21/38) 9204420598107799 a001 2255/29134601*24476^(13/14) 9204420598680931 a001 10946/4870847*9349^(25/38) 9204420598991362 a001 2584/3010349*5778^(29/36) 9204420599088066 a001 46368/4870847*9349^(1/2) 9204420599571068 a001 6765/33385282*24476^(5/6) 9204420599625553 a001 17711/1149851*9349^(17/38) 9204420599819703 a001 121393/12752043*9349^(1/2) 9204420599926448 a001 317811/33385282*9349^(1/2) 9204420599942022 a001 832040/87403803*9349^(1/2) 9204420599944294 a001 46347/4868641*9349^(1/2) 9204420599944625 a001 5702887/599074578*9349^(1/2) 9204420599944674 a001 14930352/1568397607*9349^(1/2) 9204420599944681 a001 39088169/4106118243*9349^(1/2) 9204420599944682 a001 102334155/10749957122*9349^(1/2) 9204420599944682 a001 267914296/28143753123*9349^(1/2) 9204420599944682 a001 701408733/73681302247*9349^(1/2) 9204420599944682 a001 1836311903/192900153618*9349^(1/2) 9204420599944682 a001 102287808/10745088481*9349^(1/2) 9204420599944682 a001 12586269025/1322157322203*9349^(1/2) 9204420599944682 a001 32951280099/3461452808002*9349^(1/2) 9204420599944682 a001 86267571272/9062201101803*9349^(1/2) 9204420599944682 a001 225851433717/23725150497407*9349^(1/2) 9204420599944682 a001 139583862445/14662949395604*9349^(1/2) 9204420599944682 a001 53316291173/5600748293801*9349^(1/2) 9204420599944682 a001 20365011074/2139295485799*9349^(1/2) 9204420599944682 a001 7778742049/817138163596*9349^(1/2) 9204420599944682 a001 2971215073/312119004989*9349^(1/2) 9204420599944682 a001 1134903170/119218851371*9349^(1/2) 9204420599944682 a001 433494437/45537549124*9349^(1/2) 9204420599944682 a001 165580141/17393796001*9349^(1/2) 9204420599944683 a001 63245986/6643838879*9349^(1/2) 9204420599944685 a001 24157817/2537720636*9349^(1/2) 9204420599944704 a001 9227465/969323029*9349^(1/2) 9204420599944830 a001 3524578/370248451*9349^(1/2) 9204420599945698 a001 1346269/141422324*9349^(1/2) 9204420599951647 a001 514229/54018521*9349^(1/2) 9204420599992420 a001 196418/20633239*9349^(1/2) 9204420600271881 a001 75025/7881196*9349^(1/2) 9204420600302736 a001 615/1875749*24476^(11/14) 9204420602187333 a001 28657/3010349*9349^(1/2) 9204420602497241 a001 6765/4870847*24476^(9/14) 9204420603230282 a001 6765/3010349*24476^(25/42) 9204420603945331 a001 2255/13201*24476^(1/6) 9204420603958245 a001 55/15126*24476^(23/42) 9204420604224922 a001 10946/3010349*9349^(23/38) 9204420604632056 a001 46368/3010349*9349^(17/38) 9204420604699504 a001 6765/1149851*24476^(1/2) 9204420605142952 a001 17711/710647*9349^(15/38) 9204420605405955 a001 6765/710647*24476^(19/42) 9204420605813931 a001 75025/4870847*9349^(17/38) 9204420606203535 a001 6765/439204*24476^(17/42) 9204420606506062 a001 2255/13201*20633239^(1/10) 9204420606506064 a001 2255/13201*17393796001^(1/14) 9204420606506064 a001 2255/13201*14662949395604^(1/18) 9204420606506064 a001 2255/13201*505019158607^(1/16) 9204420606506064 a001 2255/13201*599074578^(1/12) 9204420606508342 a001 2255/13201*710647^(1/8) 9204420606509737 a001 10946/15127*3571^(1/34) 9204420606762535 a001 2255/90481*24476^(5/14) 9204420607439717 a001 2255/13201*39603^(7/44) 9204420607494504 a001 6765/103682*24476^(11/42) 9204420607726246 a001 28657/1860498*9349^(17/38) 9204420607946145 a001 615/15251*24476^(13/42) 9204420609763834 a001 5473/930249*9349^(21/38) 9204420610170969 a001 2576/103361*9349^(15/38) 9204420610751481 a001 17711/439204*9349^(13/38) 9204420610904546 a001 121393/4870847*9349^(15/38) 9204420611251265 a001 55/15126*64079^(1/2) 9204420611324006 a001 6765/64079*24476^(3/14) 9204420611357922 a001 75025/3010349*9349^(15/38) 9204420611518489 a001 6765/103682*7881196^(1/6) 9204420611518513 a001 6765/103682*312119004989^(1/10) 9204420611518513 a001 6765/103682*1568397607^(1/8) 9204420611536880 a001 4181/15127*3571^(5/34) 9204420612080397 a001 6765/370248451*167761^(9/10) 9204420612145798 a001 6765/33385282*167761^(7/10) 9204420612151705 a001 2255/90481*167761^(3/10) 9204420612212232 a001 6765/3010349*167761^(1/2) 9204420612236565 a001 2255/90481*439204^(5/18) 9204420612249786 a001 2255/90481*7881196^(5/22) 9204420612249815 a001 2255/90481*20633239^(3/14) 9204420612249820 a001 2255/90481*2537720636^(1/6) 9204420612249820 a001 2255/90481*312119004989^(3/22) 9204420612249820 a001 2255/90481*28143753123^(3/20) 9204420612249820 a001 2255/90481*228826127^(3/16) 9204420612249822 a001 2255/90481*33385282^(5/24) 9204420612250485 a001 2255/90481*1860498^(1/4) 9204420612329677 a001 6765/1568397607*439204^(17/18) 9204420612334979 a001 6765/370248451*439204^(5/6) 9204420612340279 a001 2255/29134601*439204^(13/18) 9204420612345604 a001 615/1875749*439204^(11/18) 9204420612350496 a001 6765/4870847*439204^(1/2) 9204420612356516 a001 6765/710647*817138163596^(1/6) 9204420612356516 a001 6765/710647*87403803^(1/4) 9204420612363147 a001 6765/1149851*439204^(7/18) 9204420612371409 a001 6765/7881196*1149851^(1/2) 9204420612372083 a001 55/15126*4106118243^(1/4) 9204420612374177 a001 2255/4250681*3010349^(1/2) 9204420612374293 a001 6765/4870847*7881196^(9/22) 9204420612374354 a001 6765/4870847*2537720636^(3/10) 9204420612374354 a001 6765/4870847*14662949395604^(3/14) 9204420612374354 a001 6765/4870847*192900153618^(1/4) 9204420612374357 a001 6765/4870847*33385282^(3/8) 9204420612374600 a001 55/228811001*7881196^(21/22) 9204420612374614 a001 6765/6643838879*7881196^(19/22) 9204420612374618 a001 2255/1368706081*7881196^(5/6) 9204420612374627 a001 6765/1568397607*7881196^(17/22) 9204420612374641 a001 6765/370248451*7881196^(15/22) 9204420612374653 a001 2255/29134601*7881196^(13/22) 9204420612374685 a001 2255/4250681*9062201101803^(1/4) 9204420612374689 a001 615/1875749*7881196^(1/2) 9204420612374722 a001 6765/45537549124*20633239^(13/14) 9204420612374722 a001 55/228811001*20633239^(9/10) 9204420612374723 a001 6765/33385282*20633239^(1/2) 9204420612374725 a001 2255/1368706081*20633239^(11/14) 9204420612374727 a001 6765/969323029*20633239^(7/10) 9204420612374728 a001 6765/370248451*20633239^(9/14) 9204420612374734 a001 6765/33385282*2537720636^(7/18) 9204420612374734 a001 6765/33385282*17393796001^(5/14) 9204420612374734 a001 6765/33385282*312119004989^(7/22) 9204420612374734 a001 6765/33385282*14662949395604^(5/18) 9204420612374734 a001 6765/33385282*505019158607^(5/16) 9204420612374734 a001 6765/33385282*28143753123^(7/20) 9204420612374734 a001 6765/33385282*599074578^(5/12) 9204420612374734 a001 6765/33385282*228826127^(7/16) 9204420612374740 a001 2255/29134601*141422324^(1/2) 9204420612374741 a001 2255/29134601*73681302247^(3/8) 9204420612374742 a001 6765/45537549124*141422324^(5/6) 9204420612374742 a001 6765/228826127*969323029^(1/2) 9204420612374742 a001 2255/199691526*6643838879^(1/2) 9204420612374742 a001 6765/1568397607*45537549124^(1/2) 9204420612374742 a001 2255/1368706081*2537720636^(11/18) 9204420612374742 a001 6765/5600748293801*2537720636^(17/18) 9204420612374742 a001 6765/2139295485799*2537720636^(9/10) 9204420612374742 a001 6765/505019158607*2537720636^(5/6) 9204420612374742 a001 6765/45537549124*2537720636^(13/18) 9204420612374742 a001 55/228811001*2537720636^(7/10) 9204420612374742 a001 2255/1368706081*312119004989^(1/2) 9204420612374742 a001 2255/1368706081*3461452808002^(11/24) 9204420612374742 a001 2255/1368706081*28143753123^(11/20) 9204420612374742 a001 6765/10749957122*2139295485799^(1/2) 9204420612374742 a001 55/228811001*17393796001^(9/14) 9204420612374742 a001 6765/23725150497407*17393796001^(13/14) 9204420612374742 a001 6765/817138163596*17393796001^(11/14) 9204420612374742 a001 55/228811001*14662949395604^(1/2) 9204420612374742 a001 55/228811001*505019158607^(9/16) 9204420612374742 a001 55/228811001*192900153618^(7/12) 9204420612374742 a001 6765/5600748293801*45537549124^(5/6) 9204420612374742 a001 6765/505019158607*312119004989^(15/22) 9204420612374742 a001 6765/5600748293801*312119004989^(17/22) 9204420612374742 a001 6765/505019158607*3461452808002^(5/8) 9204420612374742 a001 6765/23725150497407*14662949395604^(13/18) 9204420612374742 a001 6765/5600748293801*3461452808002^(17/24) 9204420612374742 a001 6765/2139295485799*14662949395604^(9/14) 9204420612374742 a001 2255/3020733700601*1322157322203^(3/4) 9204420612374742 a001 6765/817138163596*14662949395604^(11/18) 9204420612374742 a001 6765/817138163596*505019158607^(11/16) 9204420612374742 a001 6765/2139295485799*192900153618^(3/4) 9204420612374742 a001 6765/23725150497407*73681302247^(7/8) 9204420612374742 a001 6765/45537549124*312119004989^(13/22) 9204420612374742 a001 6765/45537549124*3461452808002^(13/24) 9204420612374742 a001 6765/45537549124*73681302247^(5/8) 9204420612374742 a001 6765/505019158607*28143753123^(3/4) 9204420612374742 a001 6765/5600748293801*28143753123^(17/20) 9204420612374742 a001 6765/45537549124*28143753123^(13/20) 9204420612374742 a001 6765/17393796001*5600748293801^(1/2) 9204420612374742 a001 6765/6643838879*817138163596^(1/2) 9204420612374742 a001 6765/119218851371*4106118243^(3/4) 9204420612374742 a001 615/230701876*119218851371^(1/2) 9204420612374742 a001 2255/1368706081*1568397607^(5/8) 9204420612374742 a001 6765/817138163596*1568397607^(7/8) 9204420612374742 a001 6765/969323029*17393796001^(1/2) 9204420612374742 a001 6765/969323029*14662949395604^(7/18) 9204420612374742 a001 6765/969323029*505019158607^(7/16) 9204420612374742 a001 55/228811001*599074578^(3/4) 9204420612374742 a001 6765/817138163596*599074578^(11/12) 9204420612374742 a001 6765/969323029*599074578^(7/12) 9204420612374742 a001 6765/370248451*2537720636^(1/2) 9204420612374742 a001 6765/370248451*312119004989^(9/22) 9204420612374742 a001 6765/370248451*14662949395604^(5/14) 9204420612374742 a001 6765/370248451*192900153618^(5/12) 9204420612374742 a001 6765/370248451*28143753123^(9/20) 9204420612374742 a001 2255/1368706081*228826127^(11/16) 9204420612374742 a001 6765/45537549124*228826127^(13/16) 9204420612374742 a001 6765/505019158607*228826127^(15/16) 9204420612374742 a001 6765/370248451*228826127^(9/16) 9204420612374742 a001 6765/141422324*370248451^(1/2) 9204420612374743 a001 6765/6643838879*87403803^(3/4) 9204420612374743 a001 6765/54018521*54018521^(1/2) 9204420612374745 a001 2255/29134601*33385282^(13/24) 9204420612374747 a001 6765/370248451*33385282^(5/8) 9204420612374748 a001 6765/1568397607*33385282^(17/24) 9204420612374748 a001 6765/6643838879*33385282^(19/24) 9204420612374749 a001 55/228811001*33385282^(7/8) 9204420612374750 a001 6765/119218851371*33385282^(23/24) 9204420612374764 a001 615/1875749*312119004989^(3/10) 9204420612374764 a001 615/1875749*1568397607^(3/8) 9204420612374767 a001 615/1875749*33385282^(11/24) 9204420612374784 a001 6765/1568397607*12752043^(3/4) 9204420612374890 a001 6765/7881196*1322157322203^(1/4) 9204420612375551 a001 6765/4870847*1860498^(9/20) 9204420612375750 a001 6765/3010349*20633239^(5/14) 9204420612375758 a001 6765/3010349*2537720636^(5/18) 9204420612375758 a001 6765/3010349*312119004989^(5/22) 9204420612375758 a001 6765/3010349*3461452808002^(5/24) 9204420612375758 a001 6765/3010349*28143753123^(1/4) 9204420612375758 a001 6765/3010349*228826127^(5/16) 9204420612376226 a001 615/1875749*1860498^(11/20) 9204420612376285 a001 6765/33385282*1860498^(7/12) 9204420612376469 a001 2255/29134601*1860498^(13/20) 9204420612376736 a001 6765/370248451*1860498^(3/4) 9204420612376866 a001 6765/3010349*1860498^(5/12) 9204420612377002 a001 6765/1568397607*1860498^(17/20) 9204420612377179 a001 2255/1368706081*1860498^(11/12) 9204420612377268 a001 6765/6643838879*1860498^(19/20) 9204420612381656 a001 6765/1149851*7881196^(7/22) 9204420612381697 a001 6765/1149851*20633239^(3/10) 9204420612381704 a001 6765/1149851*17393796001^(3/14) 9204420612381704 a001 6765/1149851*14662949395604^(1/6) 9204420612381704 a001 6765/1149851*599074578^(1/4) 9204420612381706 a001 6765/1149851*33385282^(7/24) 9204420612382634 a001 6765/1149851*1860498^(7/20) 9204420612386125 a001 6765/33385282*710647^(5/8) 9204420612388538 a001 6765/1149851*710647^(3/8) 9204420612390690 a001 6765/969323029*710647^(7/8) 9204420612422458 a001 6765/439204*45537549124^(1/6) 9204420612422472 a001 6765/439204*12752043^(1/4) 9204420612468432 a001 2255/29134601*271443^(3/4) 9204420612517391 a001 2255/90481*103682^(5/16) 9204420612701792 a001 615/15251*141422324^(1/6) 9204420612701792 a001 615/15251*73681302247^(1/8) 9204420612733023 a001 615/15251*271443^(1/4) 9204420612756304 a001 6765/1149851*103682^(7/16) 9204420612855983 a001 6765/4870847*103682^(9/16) 9204420612963421 a001 615/1875749*103682^(11/16) 9204420612985683 a001 6765/103682*39603^(1/4) 9204420613070426 a001 2255/29134601*103682^(13/16) 9204420613177456 a001 6765/370248451*103682^(15/16) 9204420613278454 a001 28657/1149851*9349^(15/38) 9204420613545354 a001 2255/13201*15127^(7/40) 9204420613882673 a001 6765/24476*9349^(5/38) 9204420614250506 a001 2255/90481*39603^(15/44) 9204420614306788 a001 2584/4870847*5778^(31/36) 9204420614435720 a001 615/15251*39603^(13/44) 9204420614608425 a001 6765/64079*439204^(1/6) 9204420614616357 a001 6765/64079*7881196^(3/22) 9204420614616377 a001 6765/64079*2537720636^(1/10) 9204420614616377 a001 6765/64079*14662949395604^(1/14) 9204420614616377 a001 6765/64079*192900153618^(1/12) 9204420614616378 a001 6765/64079*33385282^(1/8) 9204420614616776 a001 6765/64079*1860498^(3/20) 9204420614689902 a001 6765/439204*39603^(17/44) 9204420614776920 a001 6765/64079*103682^(3/16) 9204420614890718 a001 6765/710647*39603^(19/44) 9204420615182664 a001 6765/1149851*39603^(21/44) 9204420615316042 a001 10946/1149851*9349^(1/2) 9204420615439801 a001 55/15126*39603^(23/44) 9204420615710234 a001 6765/3010349*39603^(25/44) 9204420615723177 a001 46368/1149851*9349^(13/38) 9204420615816789 a001 6765/64079*39603^(9/44) 9204420615975588 a001 6765/4870847*39603^(27/44) 9204420616121430 a001 17711/271443*9349^(11/38) 9204420616448537 a001 121393/3010349*9349^(13/38) 9204420616619772 a001 196418/4870847*9349^(13/38) 9204420616776272 a001 615/1875749*39603^(3/4) 9204420616896835 a001 75025/1860498*9349^(13/38) 9204420618795853 a001 28657/710647*9349^(13/38) 9204420619639847 a001 5473/12238*3571^(3/34) 9204420620833442 a001 10946/710647*9349^(17/38) 9204420621240576 a001 6624/101521*9349^(11/38) 9204420621987449 a001 121393/1860498*9349^(11/38) 9204420622096417 a001 317811/4870847*9349^(11/38) 9204420622115990 a001 17711/167761*9349^(9/38) 9204420622163762 a001 196418/3010349*9349^(11/38) 9204420622449042 a001 75025/1149851*9349^(11/38) 9204420622580256 a001 6765/103682*15127^(11/40) 9204420623666894 a001 6765/64079*15127^(9/40) 9204420624404382 a001 28657/439204*9349^(11/38) 9204420624666989 a001 4181/24476*3571^(7/34) 9204420624967847 a001 10946/15127*9349^(1/38) 9204420625774760 a001 615/15251*15127^(13/40) 9204420625910045 a001 6765/24476*24476^(5/42) 9204420626441971 a001 5473/219602*9349^(15/38) 9204420626475298 a001 17711/103682*9349^(7/38) 9204420626849105 a001 11592/109801*9349^(9/38) 9204420627334014 a001 2255/90481*15127^(3/8) 9204420627373322 a001 10946/15127*24476^(1/42) 9204420627539657 a001 121393/1149851*9349^(9/38) 9204420627640408 a001 317811/3010349*9349^(9/38) 9204420627664191 a001 514229/4870847*9349^(9/38) 9204420627702675 a001 98209/930249*9349^(9/38) 9204420627706436 a001 6765/24476*167761^(1/10) 9204420627739139 a001 6765/24476*20633239^(1/14) 9204420627739141 a001 6765/24476*2537720636^(1/18) 9204420627739141 a001 6765/24476*312119004989^(1/22) 9204420627739141 a001 6765/24476*28143753123^(1/20) 9204420627739141 a001 6765/24476*228826127^(1/16) 9204420627739362 a001 6765/24476*1860498^(1/12) 9204420627742814 a001 28657/39603*3571^(1/34) 9204420627872520 a001 10946/15127*39603^(1/44) 9204420627966442 a001 75025/710647*9349^(9/38) 9204420628406036 a001 6765/24476*39603^(5/44) 9204420628744754 a001 10946/15127*15127^(1/40) 9204420629517878 a001 6765/439204*15127^(17/40) 9204420629624155 a001 646/1970299*5778^(11/12) 9204420629774331 a001 28657/271443*9349^(9/38) 9204420630840678 a001 75025/103682*3571^(1/34) 9204420631292650 a001 196418/271443*3571^(1/34) 9204420631358592 a001 514229/710647*3571^(1/34) 9204420631368213 a001 1346269/1860498*3571^(1/34) 9204420631370484 a001 2178309/3010349*3571^(1/34) 9204420631374159 a001 832040/1149851*3571^(1/34) 9204420631399347 a001 317811/439204*3571^(1/34) 9204420631463162 a001 6765/710647*15127^(19/40) 9204420631571985 a001 121393/167761*3571^(1/34) 9204420631811920 a001 10946/271443*9349^(13/38) 9204420632219054 a001 15456/90481*9349^(7/38) 9204420632463640 a001 17711/228826127*24476^(13/14) 9204420632548023 a001 17711/39603*9349^(3/38) 9204420632755263 a001 46368/64079*3571^(1/34) 9204420632767205 a001 6765/24476*15127^(1/8) 9204420633057057 a001 121393/710647*9349^(7/38) 9204420633179320 a001 105937/620166*9349^(7/38) 9204420633197158 a001 832040/4870847*9349^(7/38) 9204420633208182 a001 514229/3010349*9349^(7/38) 9204420633254883 a001 196418/1149851*9349^(7/38) 9204420633499575 a001 6765/1149851*15127^(21/40) 9204420633574971 a001 75025/439204*9349^(7/38) 9204420633926915 a001 17711/87403803*24476^(5/6) 9204420634658557 a001 17711/54018521*24476^(11/14) 9204420635115749 a001 17711/64079*9349^(5/38) 9204420635397556 a001 10946/15127*5778^(1/36) 9204420635501180 a001 55/15126*15127^(23/40) 9204420635768891 a001 28657/167761*9349^(7/38) 9204420636853412 a001 17711/12752043*24476^(9/14) 9204420637476090 a001 2576/33281921*24476^(13/14) 9204420637516081 a001 6765/3010349*15127^(5/8) 9204420637806479 a001 10946/167761*9349^(11/38) 9204420638207396 a001 121393/1568397607*24476^(13/14) 9204420638213614 a001 46368/167761*9349^(5/38) 9204420638314092 a001 105937/1368706081*24476^(13/14) 9204420638316356 a001 17711/4870847*24476^(23/42) 9204420638329659 a001 416020/5374978561*24476^(13/14) 9204420638331930 a001 726103/9381251041*24476^(13/14) 9204420638332262 a001 5702887/73681302247*24476^(13/14) 9204420638332310 a001 2584/33385281*24476^(13/14) 9204420638332317 a001 39088169/505019158607*24476^(13/14) 9204420638332318 a001 34111385/440719107401*24476^(13/14) 9204420638332318 a001 133957148/1730726404001*24476^(13/14) 9204420638332318 a001 233802911/3020733700601*24476^(13/14) 9204420638332318 a001 1836311903/23725150497407*24476^(13/14) 9204420638332318 a001 567451585/7331474697802*24476^(13/14) 9204420638332318 a001 433494437/5600748293801*24476^(13/14) 9204420638332318 a001 165580141/2139295485799*24476^(13/14) 9204420638332319 a001 31622993/408569081798*24476^(13/14) 9204420638332321 a001 24157817/312119004989*24476^(13/14) 9204420638332340 a001 9227465/119218851371*24476^(13/14) 9204420638332466 a001 1762289/22768774562*24476^(13/14) 9204420638333334 a001 1346269/17393796001*24476^(13/14) 9204420638339280 a001 514229/6643838879*24476^(13/14) 9204420638380034 a001 98209/1268860318*24476^(13/14) 9204420638659368 a001 75025/969323029*24476^(13/14) 9204420638665586 a001 121393/439204*9349^(5/38) 9204420638731528 a001 317811/1149851*9349^(5/38) 9204420638741149 a001 832040/3010349*9349^(5/38) 9204420638743420 a001 1346269/4870847*9349^(5/38) 9204420638747095 a001 514229/1860498*9349^(5/38) 9204420638772282 a001 196418/710647*9349^(5/38) 9204420638939366 a001 46368/228826127*24476^(5/6) 9204420638944920 a001 75025/271443*9349^(5/38) 9204420639049398 a001 17711/3010349*24476^(1/2) 9204420639525903 a001 6765/4870847*15127^(27/40) 9204420639670672 a001 121393/599074578*24476^(5/6) 9204420639671004 a001 11592/35355581*24476^(11/14) 9204420639764447 a001 17711/39603*24476^(1/14) 9204420639777361 a001 17711/1860498*24476^(19/42) 9204420639777368 a001 317811/1568397607*24476^(5/6) 9204420639792935 a001 832040/4106118243*24476^(5/6) 9204420639795206 a001 987/4870846*24476^(5/6) 9204420639795538 a001 5702887/28143753123*24476^(5/6) 9204420639795586 a001 14930352/73681302247*24476^(5/6) 9204420639795593 a001 39088169/192900153618*24476^(5/6) 9204420639795594 a001 102334155/505019158607*24476^(5/6) 9204420639795594 a001 267914296/1322157322203*24476^(5/6) 9204420639795594 a001 701408733/3461452808002*24476^(5/6) 9204420639795594 a001 1836311903/9062201101803*24476^(5/6) 9204420639795594 a001 4807526976/23725150497407*24476^(5/6) 9204420639795594 a001 2971215073/14662949395604*24476^(5/6) 9204420639795594 a001 1134903170/5600748293801*24476^(5/6) 9204420639795594 a001 433494437/2139295485799*24476^(5/6) 9204420639795594 a001 165580141/817138163596*24476^(5/6) 9204420639795595 a001 63245986/312119004989*24476^(5/6) 9204420639795597 a001 24157817/119218851371*24476^(5/6) 9204420639795616 a001 9227465/45537549124*24476^(5/6) 9204420639795742 a001 3524578/17393796001*24476^(5/6) 9204420639796610 a001 1346269/6643838879*24476^(5/6) 9204420639802556 a001 514229/2537720636*24476^(5/6) 9204420639843310 a001 196418/969323029*24476^(5/6) 9204420640122645 a001 75025/370248451*24476^(5/6) 9204420640128199 a001 28657/103682*9349^(5/38) 9204420640402310 a001 121393/370248451*24476^(11/14) 9204420640509006 a001 317811/969323029*24476^(11/14) 9204420640518620 a001 17711/1149851*24476^(17/42) 9204420640524573 a001 610/1860499*24476^(11/14) 9204420640526844 a001 2178309/6643838879*24476^(11/14) 9204420640527176 a001 5702887/17393796001*24476^(11/14) 9204420640527224 a001 3732588/11384387281*24476^(11/14) 9204420640527231 a001 39088169/119218851371*24476^(11/14) 9204420640527232 a001 9303105/28374454999*24476^(11/14) 9204420640527232 a001 66978574/204284540899*24476^(11/14) 9204420640527232 a001 701408733/2139295485799*24476^(11/14) 9204420640527232 a001 1836311903/5600748293801*24476^(11/14) 9204420640527232 a001 1201881744/3665737348901*24476^(11/14) 9204420640527232 a001 7778742049/23725150497407*24476^(11/14) 9204420640527232 a001 2971215073/9062201101803*24476^(11/14) 9204420640527232 a001 567451585/1730726404001*24476^(11/14) 9204420640527232 a001 433494437/1322157322203*24476^(11/14) 9204420640527232 a001 165580141/505019158607*24476^(11/14) 9204420640527233 a001 31622993/96450076809*24476^(11/14) 9204420640527235 a001 24157817/73681302247*24476^(11/14) 9204420640527254 a001 9227465/28143753123*24476^(11/14) 9204420640527381 a001 1762289/5374978561*24476^(11/14) 9204420640528248 a001 1346269/4106118243*24476^(11/14) 9204420640534194 a001 514229/1568397607*24476^(11/14) 9204420640573954 a001 28657/370248451*24476^(13/14) 9204420640574948 a001 98209/299537289*24476^(11/14) 9204420640854282 a001 75025/228826127*24476^(11/14) 9204420640859253 a001 17711/39603*439204^(1/18) 9204420640861897 a001 17711/39603*7881196^(1/22) 9204420640861904 a001 17711/39603*33385282^(1/24) 9204420640862037 a001 17711/39603*1860498^(1/20) 9204420640865577 a001 17711/24476*3571^(1/34) 9204420640915418 a001 17711/39603*103682^(1/16) 9204420641225071 a001 17711/710647*24476^(5/14) 9204420641262041 a001 17711/39603*39603^(3/44) 9204420641865910 a001 144/103681*24476^(9/14) 9204420642022651 a001 17711/439204*24476^(13/42) 9204420642037230 a001 28657/141422324*24476^(5/6) 9204420642165788 a001 5473/51841*9349^(9/38) 9204420642572922 a001 23184/51841*9349^(3/38) 9204420642581651 a001 17711/271443*24476^(11/42) 9204420642597223 a001 121393/87403803*24476^(9/14) 9204420642703920 a001 317811/228826127*24476^(9/14) 9204420642719487 a001 416020/299537289*24476^(9/14) 9204420642721758 a001 311187/224056801*24476^(9/14) 9204420642722090 a001 5702887/4106118243*24476^(9/14) 9204420642722138 a001 7465176/5374978561*24476^(9/14) 9204420642722145 a001 39088169/28143753123*24476^(9/14) 9204420642722146 a001 14619165/10525900321*24476^(9/14) 9204420642722146 a001 133957148/96450076809*24476^(9/14) 9204420642722146 a001 701408733/505019158607*24476^(9/14) 9204420642722146 a001 1836311903/1322157322203*24476^(9/14) 9204420642722146 a001 14930208/10749853441*24476^(9/14) 9204420642722146 a001 12586269025/9062201101803*24476^(9/14) 9204420642722146 a001 32951280099/23725150497407*24476^(9/14) 9204420642722146 a001 10182505537/7331474697802*24476^(9/14) 9204420642722146 a001 7778742049/5600748293801*24476^(9/14) 9204420642722146 a001 2971215073/2139295485799*24476^(9/14) 9204420642722146 a001 567451585/408569081798*24476^(9/14) 9204420642722146 a001 433494437/312119004989*24476^(9/14) 9204420642722146 a001 165580141/119218851371*24476^(9/14) 9204420642722147 a001 31622993/22768774562*24476^(9/14) 9204420642722150 a001 24157817/17393796001*24476^(9/14) 9204420642722168 a001 9227465/6643838879*24476^(9/14) 9204420642722295 a001 1762289/1268860318*24476^(9/14) 9204420642723162 a001 1346269/969323029*24476^(9/14) 9204420642729108 a001 514229/370248451*24476^(9/14) 9204420642768867 a001 28657/87403803*24476^(11/14) 9204420642769863 a001 98209/70711162*24476^(9/14) 9204420643049200 a001 75025/54018521*24476^(9/14) 9204420643313620 a001 17711/103682*24476^(1/6) 9204420643765261 a001 17711/167761*24476^(3/14) 9204420643878743 a001 17711/39603*15127^(3/40) 9204420644035535 a001 121393/271443*9349^(3/38) 9204420644060980 a001 11592/1970299*24476^(1/2) 9204420644248927 a001 317811/710647*9349^(3/38) 9204420644280061 a001 416020/930249*9349^(3/38) 9204420644284603 a001 2178309/4870847*9349^(3/38) 9204420644287411 a001 1346269/3010349*9349^(3/38) 9204420644299302 a001 514229/1149851*9349^(3/38) 9204420644380811 a001 98209/219602*9349^(3/38) 9204420644792082 a001 46368/4870847*24476^(19/42) 9204420644792160 a001 121393/20633239*24476^(1/2) 9204420644898838 a001 317811/54018521*24476^(1/2) 9204420644914402 a001 208010/35355581*24476^(1/2) 9204420644916673 a001 2178309/370248451*24476^(1/2) 9204420644917004 a001 5702887/969323029*24476^(1/2) 9204420644917052 a001 196452/33391061*24476^(1/2) 9204420644917059 a001 39088169/6643838879*24476^(1/2) 9204420644917060 a001 102334155/17393796001*24476^(1/2) 9204420644917060 a001 66978574/11384387281*24476^(1/2) 9204420644917061 a001 701408733/119218851371*24476^(1/2) 9204420644917061 a001 1836311903/312119004989*24476^(1/2) 9204420644917061 a001 1201881744/204284540899*24476^(1/2) 9204420644917061 a001 12586269025/2139295485799*24476^(1/2) 9204420644917061 a001 32951280099/5600748293801*24476^(1/2) 9204420644917061 a001 1135099622/192933544679*24476^(1/2) 9204420644917061 a001 139583862445/23725150497407*24476^(1/2) 9204420644917061 a001 53316291173/9062201101803*24476^(1/2) 9204420644917061 a001 10182505537/1730726404001*24476^(1/2) 9204420644917061 a001 7778742049/1322157322203*24476^(1/2) 9204420644917061 a001 2971215073/505019158607*24476^(1/2) 9204420644917061 a001 567451585/96450076809*24476^(1/2) 9204420644917061 a001 433494437/73681302247*24476^(1/2) 9204420644917061 a001 165580141/28143753123*24476^(1/2) 9204420644917061 a001 31622993/5374978561*24476^(1/2) 9204420644917064 a001 24157817/4106118243*24476^(1/2) 9204420644917082 a001 9227465/1568397607*24476^(1/2) 9204420644917209 a001 1762289/299537289*24476^(1/2) 9204420644918076 a001 1346269/228826127*24476^(1/2) 9204420644924021 a001 514229/87403803*24476^(1/2) 9204420644939480 a001 75025/167761*9349^(3/38) 9204420644963804 a001 28657/20633239*24476^(9/14) 9204420644964768 a001 98209/16692641*24476^(1/2) 9204420645244054 a001 75025/12752043*24476^(1/2) 9204420645525124 a001 46368/3010349*24476^(17/42) 9204420645609376 a001 17711/4870847*64079^(1/2) 9204420645874351 a001 17711/103682*20633239^(1/10) 9204420645874353 a001 17711/103682*17393796001^(1/14) 9204420645874353 a001 17711/103682*14662949395604^(1/18) 9204420645874353 a001 17711/103682*505019158607^(1/16) 9204420645874353 a001 17711/103682*599074578^(1/12) 9204420645876631 a001 17711/103682*710647^(1/8) 9204420646200924 a001 28657/39603*9349^(1/38) 9204420646253087 a001 2576/103361*24476^(5/14) 9204420646436237 a001 17711/969323029*167761^(9/10) 9204420646501645 a001 17711/87403803*167761^(7/10) 9204420646567205 a001 89/39604*167761^(1/2) 9204420646605635 a001 17711/271443*7881196^(1/6) 9204420646605660 a001 17711/271443*312119004989^(1/10) 9204420646605660 a001 17711/271443*1568397607^(1/8) 9204420646614241 a001 17711/710647*167761^(3/10) 9204420646685517 a001 17711/4106118243*439204^(17/18) 9204420646690818 a001 17711/969323029*439204^(5/6) 9204420646696120 a001 17711/228826127*439204^(13/18) 9204420646699101 a001 17711/710647*439204^(5/18) 9204420646701425 a001 17711/54018521*439204^(11/18) 9204420646706667 a001 17711/12752043*439204^(1/2) 9204420646706999 a001 75025/4870847*24476^(17/42) 9204420646712322 a001 17711/710647*7881196^(5/22) 9204420646712351 a001 17711/710647*20633239^(3/14) 9204420646712356 a001 17711/710647*2537720636^(1/6) 9204420646712356 a001 17711/710647*312119004989^(3/22) 9204420646712356 a001 17711/710647*28143753123^(3/20) 9204420646712356 a001 17711/710647*228826127^(3/16) 9204420646712358 a001 17711/710647*33385282^(5/24) 9204420646713021 a001 17711/710647*1860498^(1/4) 9204420646713041 a001 17711/3010349*439204^(7/18) 9204420646727123 a001 17711/20633239*1149851^(1/2) 9204420646727923 a001 17711/1860498*817138163596^(1/6) 9204420646727923 a001 17711/1860498*87403803^(1/4) 9204420646730066 a001 17711/33385282*3010349^(1/2) 9204420646730194 a001 17711/4870847*4106118243^(1/4) 9204420646730440 a001 17711/73681302247*7881196^(21/22) 9204420646730454 a001 17711/17393796001*7881196^(19/22) 9204420646730458 a001 17711/10749957122*7881196^(5/6) 9204420646730465 a001 17711/12752043*7881196^(9/22) 9204420646730467 a001 17711/4106118243*7881196^(17/22) 9204420646730481 a001 17711/969323029*7881196^(15/22) 9204420646730494 a001 17711/228826127*7881196^(13/22) 9204420646730511 a001 17711/54018521*7881196^(1/2) 9204420646730525 a001 17711/12752043*2537720636^(3/10) 9204420646730525 a001 17711/12752043*14662949395604^(3/14) 9204420646730525 a001 17711/12752043*192900153618^(1/4) 9204420646730528 a001 17711/12752043*33385282^(3/8) 9204420646730562 a001 17711/119218851371*20633239^(13/14) 9204420646730562 a001 17711/73681302247*20633239^(9/10) 9204420646730565 a001 17711/10749957122*20633239^(11/14) 9204420646730567 a001 17711/2537720636*20633239^(7/10) 9204420646730568 a001 17711/969323029*20633239^(9/14) 9204420646730570 a001 17711/87403803*20633239^(1/2) 9204420646730574 a001 17711/33385282*9062201101803^(1/4) 9204420646730581 a001 17711/87403803*2537720636^(7/18) 9204420646730581 a001 17711/87403803*17393796001^(5/14) 9204420646730581 a001 17711/87403803*312119004989^(7/22) 9204420646730581 a001 17711/87403803*14662949395604^(5/18) 9204420646730581 a001 17711/87403803*505019158607^(5/16) 9204420646730581 a001 17711/87403803*28143753123^(7/20) 9204420646730581 a001 17711/87403803*599074578^(5/12) 9204420646730581 a001 17711/87403803*228826127^(7/16) 9204420646730581 a001 17711/141422324*54018521^(1/2) 9204420646730581 a001 17711/228826127*141422324^(1/2) 9204420646730581 a001 17711/119218851371*141422324^(5/6) 9204420646730582 a001 17711/228826127*73681302247^(3/8) 9204420646730582 a001 17711/599074578*969323029^(1/2) 9204420646730582 a001 17711/1568397607*6643838879^(1/2) 9204420646730582 a001 17711/14662949395604*2537720636^(17/18) 9204420646730582 a001 17711/5600748293801*2537720636^(9/10) 9204420646730582 a001 17711/1322157322203*2537720636^(5/6) 9204420646730582 a001 17711/119218851371*2537720636^(13/18) 9204420646730582 a001 17711/73681302247*2537720636^(7/10) 9204420646730582 a001 17711/10749957122*2537720636^(11/18) 9204420646730582 a001 17711/4106118243*45537549124^(1/2) 9204420646730582 a001 17711/10749957122*312119004989^(1/2) 9204420646730582 a001 17711/10749957122*3461452808002^(11/24) 9204420646730582 a001 17711/10749957122*28143753123^(11/20) 9204420646730582 a001 17711/2139295485799*17393796001^(11/14) 9204420646730582 a001 17711/73681302247*17393796001^(9/14) 9204420646730582 a001 17711/28143753123*2139295485799^(1/2) 9204420646730582 a001 17711/14662949395604*45537549124^(5/6) 9204420646730582 a001 17711/73681302247*14662949395604^(1/2) 9204420646730582 a001 17711/73681302247*505019158607^(9/16) 9204420646730582 a001 17711/73681302247*192900153618^(7/12) 9204420646730582 a001 17711/14662949395604*312119004989^(17/22) 9204420646730582 a001 17711/1322157322203*312119004989^(15/22) 9204420646730582 a001 17711/1322157322203*3461452808002^(5/8) 9204420646730582 a001 17711/14662949395604*3461452808002^(17/24) 9204420646730582 a001 17711/23725150497407*1322157322203^(3/4) 9204420646730582 a001 17711/2139295485799*505019158607^(11/16) 9204420646730582 a001 17711/5600748293801*192900153618^(3/4) 9204420646730582 a001 17711/119218851371*312119004989^(13/22) 9204420646730582 a001 17711/119218851371*3461452808002^(13/24) 9204420646730582 a001 17711/119218851371*73681302247^(5/8) 9204420646730582 a001 17711/45537549124*5600748293801^(1/2) 9204420646730582 a001 17711/119218851371*28143753123^(13/20) 9204420646730582 a001 17711/1322157322203*28143753123^(3/4) 9204420646730582 a001 17711/14662949395604*28143753123^(17/20) 9204420646730582 a001 17711/17393796001*817138163596^(1/2) 9204420646730582 a001 17711/6643838879*119218851371^(1/2) 9204420646730582 a001 89/1568437211*4106118243^(3/4) 9204420646730582 a001 17711/2537720636*17393796001^(1/2) 9204420646730582 a001 17711/2537720636*14662949395604^(7/18) 9204420646730582 a001 17711/2537720636*505019158607^(7/16) 9204420646730582 a001 17711/10749957122*1568397607^(5/8) 9204420646730582 a001 17711/2139295485799*1568397607^(7/8) 9204420646730582 a006 5^(1/2)*Fibonacci(47/2)/Lucas(22)/sqrt(5) 9204420646730582 a001 17711/969323029*2537720636^(1/2) 9204420646730582 a001 17711/969323029*312119004989^(9/22) 9204420646730582 a001 17711/969323029*14662949395604^(5/14) 9204420646730582 a001 17711/969323029*192900153618^(5/12) 9204420646730582 a001 17711/969323029*28143753123^(9/20) 9204420646730582 a001 17711/2537720636*599074578^(7/12) 9204420646730582 a001 17711/73681302247*599074578^(3/4) 9204420646730582 a001 17711/2139295485799*599074578^(11/12) 9204420646730582 a001 17711/370248451*370248451^(1/2) 9204420646730582 a001 17711/969323029*228826127^(9/16) 9204420646730582 a001 17711/10749957122*228826127^(11/16) 9204420646730582 a001 17711/119218851371*228826127^(13/16) 9204420646730582 a001 17711/1322157322203*228826127^(15/16) 9204420646730583 a001 17711/17393796001*87403803^(3/4) 9204420646730585 a001 17711/54018521*312119004989^(3/10) 9204420646730585 a001 17711/54018521*1568397607^(3/8) 9204420646730586 a001 17711/228826127*33385282^(13/24) 9204420646730587 a001 17711/969323029*33385282^(5/8) 9204420646730588 a001 17711/4106118243*33385282^(17/24) 9204420646730588 a001 17711/17393796001*33385282^(19/24) 9204420646730589 a001 17711/54018521*33385282^(11/24) 9204420646730589 a001 17711/73681302247*33385282^(7/8) 9204420646730590 a001 89/1568437211*33385282^(23/24) 9204420646730603 a001 17711/20633239*1322157322203^(1/4) 9204420646730624 a001 17711/4106118243*12752043^(3/4) 9204420646730722 a001 89/39604*20633239^(5/14) 9204420646730730 a001 89/39604*2537720636^(5/18) 9204420646730730 a001 89/39604*312119004989^(5/22) 9204420646730730 a001 89/39604*3461452808002^(5/24) 9204420646730730 a001 89/39604*28143753123^(1/4) 9204420646730730 a001 89/39604*228826127^(5/16) 9204420646731550 a001 17711/3010349*7881196^(7/22) 9204420646731591 a001 17711/3010349*20633239^(3/10) 9204420646731597 a001 17711/3010349*17393796001^(3/14) 9204420646731597 a001 17711/3010349*14662949395604^(1/6) 9204420646731597 a001 17711/3010349*599074578^(1/4) 9204420646731600 a001 17711/3010349*33385282^(7/24) 9204420646731722 a001 17711/12752043*1860498^(9/20) 9204420646731838 a001 89/39604*1860498^(5/12) 9204420646732047 a001 17711/54018521*1860498^(11/20) 9204420646732132 a001 17711/87403803*1860498^(7/12) 9204420646732310 a001 17711/228826127*1860498^(13/20) 9204420646732528 a001 17711/3010349*1860498^(7/20) 9204420646732576 a001 17711/969323029*1860498^(3/4) 9204420646732842 a001 17711/4106118243*1860498^(17/20) 9204420646733019 a001 17711/10749957122*1860498^(11/12) 9204420646733108 a001 17711/17393796001*1860498^(19/20) 9204420646737543 a001 17711/1149851*45537549124^(1/6) 9204420646737558 a001 17711/1149851*12752043^(1/4) 9204420646738432 a001 17711/3010349*710647^(3/8) 9204420646741972 a001 17711/87403803*710647^(5/8) 9204420646746529 a001 17711/2537720636*710647^(7/8) 9204420646778298 a001 17711/439204*141422324^(1/6) 9204420646778298 a001 17711/439204*73681302247^(1/8) 9204420646808007 a001 17711/103682*39603^(7/44) 9204420646809528 a001 17711/439204*271443^(1/4) 9204420646824273 a001 17711/228826127*271443^(3/4) 9204420646979927 a001 17711/710647*103682^(5/16) 9204420646986665 a001 121393/4870847*24476^(5/14) 9204420646994346 a001 46368/1149851*24476^(13/42) 9204420647049679 a001 17711/167761*439204^(1/6) 9204420647057612 a001 17711/167761*7881196^(3/22) 9204420647057632 a001 17711/167761*2537720636^(1/10) 9204420647057632 a001 17711/167761*14662949395604^(1/14) 9204420647057632 a001 17711/167761*192900153618^(1/12) 9204420647057633 a001 17711/167761*33385282^(1/8) 9204420647058031 a001 17711/167761*1860498^(3/20) 9204420647093692 a001 105937/4250681*24476^(5/14) 9204420647106197 a001 17711/3010349*103682^(7/16) 9204420647109307 a001 416020/16692641*24476^(5/14) 9204420647111585 a001 726103/29134601*24476^(5/14) 9204420647111918 a001 5702887/228826127*24476^(5/14) 9204420647111966 a001 829464/33281921*24476^(5/14) 9204420647111973 a001 39088169/1568397607*24476^(5/14) 9204420647111974 a001 34111385/1368706081*24476^(5/14) 9204420647111975 a001 133957148/5374978561*24476^(5/14) 9204420647111975 a001 233802911/9381251041*24476^(5/14) 9204420647111975 a001 1836311903/73681302247*24476^(5/14) 9204420647111975 a001 267084832/10716675201*24476^(5/14) 9204420647111975 a001 12586269025/505019158607*24476^(5/14) 9204420647111975 a001 10983760033/440719107401*24476^(5/14) 9204420647111975 a001 43133785636/1730726404001*24476^(5/14) 9204420647111975 a001 75283811239/3020733700601*24476^(5/14) 9204420647111975 a001 182717648081/7331474697802*24476^(5/14) 9204420647111975 a001 139583862445/5600748293801*24476^(5/14) 9204420647111975 a001 53316291173/2139295485799*24476^(5/14) 9204420647111975 a001 10182505537/408569081798*24476^(5/14) 9204420647111975 a001 7778742049/312119004989*24476^(5/14) 9204420647111975 a001 2971215073/119218851371*24476^(5/14) 9204420647111975 a001 567451585/22768774562*24476^(5/14) 9204420647111975 a001 433494437/17393796001*24476^(5/14) 9204420647111975 a001 165580141/6643838879*24476^(5/14) 9204420647111975 a001 31622993/1268860318*24476^(5/14) 9204420647111978 a001 24157817/969323029*24476^(5/14) 9204420647111996 a001 9227465/370248451*24476^(5/14) 9204420647112123 a001 1762289/70711162*24476^(5/14) 9204420647112993 a001 1346269/54018521*24476^(5/14) 9204420647118958 a001 514229/20633239*24476^(5/14) 9204420647143122 a001 17711/64079*24476^(5/42) 9204420647158308 a001 28657/4870847*24476^(1/2) 9204420647159839 a001 98209/3940598*24476^(5/14) 9204420647212154 a001 17711/12752043*103682^(9/16) 9204420647218175 a001 17711/167761*103682^(3/16) 9204420647319242 a001 17711/54018521*103682^(11/16) 9204420647426267 a001 17711/228826127*103682^(13/16) 9204420647440041 a001 75025/3010349*24476^(5/14) 9204420647533296 a001 17711/969323029*103682^(15/16) 9204420647571187 a001 6765/33385282*15127^(7/8) 9204420647700796 a001 6624/101521*24476^(11/42) 9204420647719706 a001 121393/3010349*24476^(13/42) 9204420647890941 a001 196418/4870847*24476^(13/42) 9204420647891350 a001 28657/3010349*24476^(19/42) 9204420648072829 a001 17711/271443*39603^(1/4) 9204420648115989 a006 5^(1/2)*fibonacci(47/2)/Lucas(22)/sqrt(5) 9204420648168004 a001 75025/1860498*24476^(13/42) 9204420648238513 a001 10946/39603*9349^(5/38) 9204420648258043 a001 17711/167761*39603^(9/44) 9204420648447669 a001 121393/1860498*24476^(11/42) 9204420648498376 a001 11592/109801*24476^(3/14) 9204420648512225 a001 17711/439204*39603^(13/44) 9204420648556637 a001 317811/4870847*24476^(11/42) 9204420648606398 a001 28657/39603*24476^(1/42) 9204420648619313 a001 28657/1860498*24476^(17/42) 9204420648623982 a001 196418/3010349*24476^(11/42) 9204420648713042 a001 17711/710647*39603^(15/44) 9204420648768650 a001 28657/64079*9349^(3/38) 9204420648909263 a001 75025/1149851*24476^(11/42) 9204420648939512 a001 17711/64079*167761^(1/10) 9204420648972216 a001 17711/64079*20633239^(1/14) 9204420648972217 a001 17711/64079*2537720636^(1/18) 9204420648972217 a001 17711/64079*312119004989^(1/22) 9204420648972217 a001 17711/64079*28143753123^(1/20) 9204420648972217 a001 17711/64079*228826127^(1/16) 9204420648972439 a001 17711/64079*1860498^(1/12) 9204420649004987 a001 17711/1149851*39603^(17/44) 9204420649057376 a001 15456/90481*24476^(1/6) 9204420649105596 a001 28657/39603*39603^(1/44) 9204420649188928 a001 121393/1149851*24476^(3/14) 9204420649262125 a001 17711/1860498*39603^(19/44) 9204420649289679 a001 317811/3010349*24476^(3/14) 9204420649298788 a001 75025/103682*9349^(1/38) 9204420649304378 a001 208010/1970299*24476^(3/14) 9204420649306522 a001 2178309/20633239*24476^(3/14) 9204420649306835 a001 5702887/54018521*24476^(3/14) 9204420649306881 a001 3732588/35355581*24476^(3/14) 9204420649306888 a001 39088169/370248451*24476^(3/14) 9204420649306889 a001 102334155/969323029*24476^(3/14) 9204420649306889 a001 66978574/634430159*24476^(3/14) 9204420649306889 a001 701408733/6643838879*24476^(3/14) 9204420649306889 a001 1836311903/17393796001*24476^(3/14) 9204420649306889 a001 1201881744/11384387281*24476^(3/14) 9204420649306889 a001 12586269025/119218851371*24476^(3/14) 9204420649306889 a001 32951280099/312119004989*24476^(3/14) 9204420649306889 a001 21566892818/204284540899*24476^(3/14) 9204420649306889 a001 225851433717/2139295485799*24476^(3/14) 9204420649306889 a001 182717648081/1730726404001*24476^(3/14) 9204420649306889 a001 139583862445/1322157322203*24476^(3/14) 9204420649306889 a001 53316291173/505019158607*24476^(3/14) 9204420649306889 a001 10182505537/96450076809*24476^(3/14) 9204420649306889 a001 7778742049/73681302247*24476^(3/14) 9204420649306889 a001 2971215073/28143753123*24476^(3/14) 9204420649306889 a001 567451585/5374978561*24476^(3/14) 9204420649306889 a001 433494437/4106118243*24476^(3/14) 9204420649306889 a001 165580141/1568397607*24476^(3/14) 9204420649306889 a001 31622993/299537289*24476^(3/14) 9204420649306892 a001 24157817/228826127*24476^(3/14) 9204420649306909 a001 9227465/87403803*24476^(3/14) 9204420649307029 a001 1762289/16692641*24476^(3/14) 9204420649307848 a001 1346269/12752043*24476^(3/14) 9204420649313462 a001 514229/4870847*24476^(3/14) 9204420649351946 a001 98209/930249*24476^(3/14) 9204420649360572 a001 28657/1149851*24476^(5/14) 9204420649532557 a001 17711/3010349*39603^(21/44) 9204420649615713 a001 75025/710647*24476^(3/14) 9204420649639113 a001 17711/64079*39603^(5/44) 9204420649750760 a001 196418/271443*9349^(1/38) 9204420649789346 a001 23184/51841*24476^(1/14) 9204420649797912 a001 17711/4870847*39603^(23/44) 9204420649816702 a001 514229/710647*9349^(1/38) 9204420649826323 a001 1346269/1860498*9349^(1/38) 9204420649828594 a001 2178309/3010349*9349^(1/38) 9204420649832269 a001 832040/1149851*9349^(1/38) 9204420649857456 a001 317811/439204*9349^(1/38) 9204420649895379 a001 121393/710647*24476^(1/6) 9204420649977830 a001 28657/39603*15127^(1/40) 9204420650017642 a001 105937/620166*24476^(1/6) 9204420650030094 a001 121393/167761*9349^(1/38) 9204420650035480 a001 832040/4870847*24476^(1/6) 9204420650038082 a001 726103/4250681*24476^(1/6) 9204420650038462 a001 5702887/33385282*24476^(1/6) 9204420650038517 a001 4976784/29134601*24476^(1/6) 9204420650038525 a001 39088169/228826127*24476^(1/6) 9204420650038527 a001 34111385/199691526*24476^(1/6) 9204420650038527 a001 267914296/1568397607*24476^(1/6) 9204420650038527 a001 233802911/1368706081*24476^(1/6) 9204420650038527 a001 1836311903/10749957122*24476^(1/6) 9204420650038527 a001 1602508992/9381251041*24476^(1/6) 9204420650038527 a001 12586269025/73681302247*24476^(1/6) 9204420650038527 a001 10983760033/64300051206*24476^(1/6) 9204420650038527 a001 86267571272/505019158607*24476^(1/6) 9204420650038527 a001 75283811239/440719107401*24476^(1/6) 9204420650038527 a001 2504730781961/14662949395604*24476^(1/6) 9204420650038527 a001 139583862445/817138163596*24476^(1/6) 9204420650038527 a001 53316291173/312119004989*24476^(1/6) 9204420650038527 a001 20365011074/119218851371*24476^(1/6) 9204420650038527 a001 7778742049/45537549124*24476^(1/6) 9204420650038527 a001 2971215073/17393796001*24476^(1/6) 9204420650038527 a001 1134903170/6643838879*24476^(1/6) 9204420650038527 a001 433494437/2537720636*24476^(1/6) 9204420650038527 a001 165580141/969323029*24476^(1/6) 9204420650038527 a001 63245986/370248451*24476^(1/6) 9204420650038530 a001 24157817/141422324*24476^(1/6) 9204420650038552 a001 9227465/54018521*24476^(1/6) 9204420650038697 a001 3524578/20633239*24476^(1/6) 9204420650039691 a001 1346269/7881196*24476^(1/6) 9204420650046504 a001 514229/3010349*24476^(1/6) 9204420650067022 a001 28657/710647*24476^(13/42) 9204420650093204 a001 196418/1149851*24476^(1/6) 9204420650240986 a001 46368/167761*24476^(5/42) 9204420650413293 a001 75025/439204*24476^(1/6) 9204420650622157 a001 15456/4250681*64079^(1/2) 9204420650692959 a001 121393/439204*24476^(5/42) 9204420650758901 a001 317811/1149851*24476^(5/42) 9204420650768521 a001 832040/3010349*24476^(5/42) 9204420650770793 a001 1346269/4870847*24476^(5/42) 9204420650774467 a001 514229/1860498*24476^(5/42) 9204420650799655 a001 196418/710647*24476^(5/42) 9204420650806239 a001 10946/64079*9349^(7/38) 9204420650864602 a001 28657/439204*24476^(11/42) 9204420650884152 a001 23184/51841*439204^(1/18) 9204420650886796 a001 23184/51841*7881196^(1/22) 9204420650886803 a001 23184/51841*33385282^(1/24) 9204420650886936 a001 23184/51841*1860498^(1/20) 9204420650940317 a001 23184/51841*103682^(1/16) 9204420650972293 a001 75025/271443*24476^(5/42) 9204420651132093 a001 17711/54018521*39603^(3/4) 9204420651213373 a001 46368/64079*9349^(1/38) 9204420651251959 a001 121393/271443*24476^(1/14) 9204420651286940 a001 23184/51841*39603^(3/44) 9204420651353512 a001 121393/33385282*64079^(1/2) 9204420651423602 a001 28657/271443*24476^(3/14) 9204420651448686 a001 11592/634430159*167761^(9/10) 9204420651460215 a001 105937/29134601*64079^(1/2) 9204420651465351 a001 317811/710647*24476^(1/14) 9204420651475783 a001 832040/228826127*64079^(1/2) 9204420651478054 a001 726103/199691526*64079^(1/2) 9204420651478385 a001 5702887/1568397607*64079^(1/2) 9204420651478434 a001 4976784/1368706081*64079^(1/2) 9204420651478441 a001 39088169/10749957122*64079^(1/2) 9204420651478442 a001 831985/228811001*64079^(1/2) 9204420651478442 a001 267914296/73681302247*64079^(1/2) 9204420651478442 a001 233802911/64300051206*64079^(1/2) 9204420651478442 a001 1836311903/505019158607*64079^(1/2) 9204420651478442 a001 1602508992/440719107401*64079^(1/2) 9204420651478442 a001 12586269025/3461452808002*64079^(1/2) 9204420651478442 a001 10983760033/3020733700601*64079^(1/2) 9204420651478442 a001 86267571272/23725150497407*64079^(1/2) 9204420651478442 a001 53316291173/14662949395604*64079^(1/2) 9204420651478442 a001 20365011074/5600748293801*64079^(1/2) 9204420651478442 a001 7778742049/2139295485799*64079^(1/2) 9204420651478442 a001 2971215073/817138163596*64079^(1/2) 9204420651478442 a001 1134903170/312119004989*64079^(1/2) 9204420651478442 a001 433494437/119218851371*64079^(1/2) 9204420651478442 a001 165580141/45537549124*64079^(1/2) 9204420651478443 a001 63245986/17393796001*64079^(1/2) 9204420651478445 a001 24157817/6643838879*64079^(1/2) 9204420651478464 a001 9227465/2537720636*64079^(1/2) 9204420651478590 a001 3524578/969323029*64079^(1/2) 9204420651479458 a001 1346269/370248451*64079^(1/2) 9204420651485404 a001 514229/141422324*64079^(1/2) 9204420651496485 a001 416020/930249*24476^(1/14) 9204420651501027 a001 2178309/4870847*24476^(1/14) 9204420651501690 a001 5702887/12752043*24476^(1/14) 9204420651501786 a001 7465176/16692641*24476^(1/14) 9204420651501800 a001 39088169/87403803*24476^(1/14) 9204420651501802 a001 102334155/228826127*24476^(1/14) 9204420651501803 a001 133957148/299537289*24476^(1/14) 9204420651501803 a001 701408733/1568397607*24476^(1/14) 9204420651501803 a001 1836311903/4106118243*24476^(1/14) 9204420651501803 a001 2403763488/5374978561*24476^(1/14) 9204420651501803 a001 12586269025/28143753123*24476^(1/14) 9204420651501803 a001 32951280099/73681302247*24476^(1/14) 9204420651501803 a001 43133785636/96450076809*24476^(1/14) 9204420651501803 a001 225851433717/505019158607*24476^(1/14) 9204420651501803 a001 591286729879/1322157322203*24476^(1/14) 9204420651501803 a001 10610209857723/23725150497407*24476^(1/14) 9204420651501803 a001 182717648081/408569081798*24476^(1/14) 9204420651501803 a001 139583862445/312119004989*24476^(1/14) 9204420651501803 a001 53316291173/119218851371*24476^(1/14) 9204420651501803 a001 10182505537/22768774562*24476^(1/14) 9204420651501803 a001 7778742049/17393796001*24476^(1/14) 9204420651501803 a001 2971215073/6643838879*24476^(1/14) 9204420651501803 a001 567451585/1268860318*24476^(1/14) 9204420651501803 a001 433494437/969323029*24476^(1/14) 9204420651501803 a001 165580141/370248451*24476^(1/14) 9204420651501804 a001 31622993/70711162*24476^(1/14) 9204420651501809 a001 24157817/54018521*24476^(1/14) 9204420651501846 a001 9227465/20633239*24476^(1/14) 9204420651502099 a001 1762289/3940598*24476^(1/14) 9204420651503834 a001 1346269/3010349*24476^(1/14) 9204420651514096 a001 46368/228826127*167761^(7/10) 9204420651515726 a001 514229/1149851*24476^(1/14) 9204420651526161 a001 196418/54018521*64079^(1/2) 9204420651579528 a001 46368/20633239*167761^(1/2) 9204420651597235 a001 98209/219602*24476^(1/14) 9204420651618107 a001 15456/90481*20633239^(1/10) 9204420651618109 a001 15456/90481*17393796001^(1/14) 9204420651618109 a001 15456/90481*14662949395604^(1/18) 9204420651618109 a001 15456/90481*505019158607^(1/16) 9204420651618109 a001 15456/90481*599074578^(1/12) 9204420651620387 a001 15456/90481*710647^(1/8) 9204420651642257 a001 2576/103361*167761^(3/10) 9204420651697966 a001 23184/5374978561*439204^(17/18) 9204420651703268 a001 11592/634430159*439204^(5/6) 9204420651704262 a001 75025/103682*24476^(1/42) 9204420651708570 a001 2576/33281921*439204^(13/18) 9204420651713872 a001 11592/35355581*439204^(11/18) 9204420651719165 a001 144/103681*439204^(1/2) 9204420651724623 a001 11592/1970299*439204^(7/18) 9204420651724781 a001 6624/101521*7881196^(1/6) 9204420651724805 a001 6624/101521*312119004989^(1/10) 9204420651724805 a001 6624/101521*1568397607^(1/8) 9204420651727118 a001 2576/103361*439204^(5/18) 9204420651739554 a001 46368/54018521*1149851^(1/2) 9204420651740338 a001 2576/103361*7881196^(5/22) 9204420651740368 a001 2576/103361*20633239^(3/14) 9204420651740372 a001 2576/103361*2537720636^(1/6) 9204420651740372 a001 2576/103361*312119004989^(3/22) 9204420651740372 a001 2576/103361*28143753123^(3/20) 9204420651740372 a001 2576/103361*228826127^(3/16) 9204420651740374 a001 2576/103361*33385282^(5/24) 9204420651741037 a001 2576/103361*1860498^(1/4) 9204420651742522 a001 15456/29134601*3010349^(1/2) 9204420651742643 a001 46368/4870847*817138163596^(1/6) 9204420651742644 a001 46368/4870847*87403803^(1/4) 9204420651742890 a001 2576/10716675201*7881196^(21/22) 9204420651742903 a001 11592/11384387281*7881196^(19/22) 9204420651742908 a001 15456/9381251041*7881196^(5/6) 9204420651742917 a001 23184/5374978561*7881196^(17/22) 9204420651742930 a001 11592/634430159*7881196^(15/22) 9204420651742944 a001 2576/33281921*7881196^(13/22) 9204420651742958 a001 11592/35355581*7881196^(1/2) 9204420651742962 a001 144/103681*7881196^(9/22) 9204420651742975 a001 15456/4250681*4106118243^(1/4) 9204420651743011 a001 46368/312119004989*20633239^(13/14) 9204420651743012 a001 2576/10716675201*20633239^(9/10) 9204420651743014 a001 15456/9381251041*20633239^(11/14) 9204420651743016 a001 46368/6643838879*20633239^(7/10) 9204420651743017 a001 11592/634430159*20633239^(9/14) 9204420651743020 a001 46368/228826127*20633239^(1/2) 9204420651743023 a001 144/103681*2537720636^(3/10) 9204420651743023 a001 144/103681*14662949395604^(3/14) 9204420651743023 a001 144/103681*192900153618^(1/4) 9204420651743026 a001 144/103681*33385282^(3/8) 9204420651743030 a001 46368/370248451*54018521^(1/2) 9204420651743030 a001 15456/29134601*9062201101803^(1/4) 9204420651743031 a001 46368/312119004989*141422324^(5/6) 9204420651743031 a001 2576/33281921*141422324^(1/2) 9204420651743031 a001 46368/228826127*2537720636^(7/18) 9204420651743031 a001 46368/228826127*17393796001^(5/14) 9204420651743031 a001 46368/228826127*312119004989^(7/22) 9204420651743031 a001 46368/228826127*14662949395604^(5/18) 9204420651743031 a001 46368/228826127*505019158607^(5/16) 9204420651743031 a001 46368/228826127*28143753123^(7/20) 9204420651743031 a001 46368/228826127*599074578^(5/12) 9204420651743031 a001 46368/228826127*228826127^(7/16) 9204420651743031 a001 2576/33281921*73681302247^(3/8) 9204420651743031 a001 46368/969323029*370248451^(1/2) 9204420651743031 a001 6624/224056801*969323029^(1/2) 9204420651743031 a001 11592/3665737348901*2537720636^(9/10) 9204420651743031 a001 144/10749853441*2537720636^(5/6) 9204420651743031 a001 46368/312119004989*2537720636^(13/18) 9204420651743031 a001 2576/10716675201*2537720636^(7/10) 9204420651743031 a001 15456/9381251041*2537720636^(11/18) 9204420651743031 a001 15456/1368706081*6643838879^(1/2) 9204420651743031 a001 23184/5374978561*45537549124^(1/2) 9204420651743031 a001 46368/5600748293801*17393796001^(11/14) 9204420651743031 a001 2576/10716675201*17393796001^(9/14) 9204420651743031 a001 15456/9381251041*312119004989^(1/2) 9204420651743031 a001 15456/9381251041*3461452808002^(11/24) 9204420651743031 a001 15456/9381251041*28143753123^(11/20) 9204420651743031 a001 6624/10525900321*2139295485799^(1/2) 9204420651743031 a001 2576/10716675201*14662949395604^(1/2) 9204420651743031 a001 2576/10716675201*505019158607^(9/16) 9204420651743031 a001 2576/10716675201*192900153618^(7/12) 9204420651743031 a001 144/10749853441*312119004989^(15/22) 9204420651743031 a001 11592/3665737348901*14662949395604^(9/14) 9204420651743031 a001 46368/5600748293801*14662949395604^(11/18) 9204420651743031 a001 46368/5600748293801*505019158607^(11/16) 9204420651743031 a001 46368/312119004989*312119004989^(13/22) 9204420651743031 a001 46368/312119004989*3461452808002^(13/24) 9204420651743031 a001 11592/3665737348901*192900153618^(3/4) 9204420651743031 a001 46368/119218851371*5600748293801^(1/2) 9204420651743031 a001 46368/312119004989*73681302247^(5/8) 9204420651743031 a001 11592/11384387281*817138163596^(1/2) 9204420651743031 a001 46368/312119004989*28143753123^(13/20) 9204420651743031 a001 144/10749853441*28143753123^(3/4) 9204420651743031 a001 46368/17393796001*119218851371^(1/2) 9204420651743031 a001 46368/6643838879*17393796001^(1/2) 9204420651743031 a001 46368/6643838879*14662949395604^(7/18) 9204420651743031 a001 46368/6643838879*505019158607^(7/16) 9204420651743031 a001 11592/204284540899*4106118243^(3/4) 9204420651743031 a001 11592/634430159*2537720636^(1/2) 9204420651743031 a001 11592/634430159*312119004989^(9/22) 9204420651743031 a001 11592/634430159*14662949395604^(5/14) 9204420651743031 a001 11592/634430159*192900153618^(5/12) 9204420651743031 a001 11592/634430159*28143753123^(9/20) 9204420651743031 a001 15456/9381251041*1568397607^(5/8) 9204420651743031 a001 46368/5600748293801*1568397607^(7/8) 9204420651743031 a001 46368/6643838879*599074578^(7/12) 9204420651743031 a001 2576/10716675201*599074578^(3/4) 9204420651743031 a001 46368/5600748293801*599074578^(11/12) 9204420651743031 a001 11592/634430159*228826127^(9/16) 9204420651743031 a001 15456/9381251041*228826127^(11/16) 9204420651743031 a001 46368/312119004989*228826127^(13/16) 9204420651743031 a001 144/10749853441*228826127^(15/16) 9204420651743032 a001 11592/35355581*312119004989^(3/10) 9204420651743032 a001 11592/35355581*1568397607^(3/8) 9204420651743032 a001 11592/11384387281*87403803^(3/4) 9204420651743034 a001 46368/54018521*1322157322203^(1/4) 9204420651743036 a001 11592/35355581*33385282^(11/24) 9204420651743036 a001 2576/33281921*33385282^(13/24) 9204420651743036 a001 11592/634430159*33385282^(5/8) 9204420651743037 a001 23184/5374978561*33385282^(17/24) 9204420651743038 a001 11592/11384387281*33385282^(19/24) 9204420651743038 a001 2576/10716675201*33385282^(7/8) 9204420651743039 a001 11592/204284540899*33385282^(23/24) 9204420651743045 a001 46368/20633239*20633239^(5/14) 9204420651743053 a001 46368/20633239*2537720636^(5/18) 9204420651743053 a001 46368/20633239*312119004989^(5/22) 9204420651743053 a001 46368/20633239*3461452808002^(5/24) 9204420651743053 a001 46368/20633239*28143753123^(1/4) 9204420651743053 a001 46368/20633239*228826127^(5/16) 9204420651743074 a001 23184/5374978561*12752043^(3/4) 9204420651743132 a001 11592/1970299*7881196^(7/22) 9204420651743173 a001 11592/1970299*20633239^(3/10) 9204420651743179 a001 11592/1970299*17393796001^(3/14) 9204420651743179 a001 11592/1970299*14662949395604^(1/6) 9204420651743179 a001 11592/1970299*599074578^(1/4) 9204420651743182 a001 11592/1970299*33385282^(7/24) 9204420651744047 a001 46368/3010349*45537549124^(1/6) 9204420651744061 a001 46368/3010349*12752043^(1/4) 9204420651744110 a001 11592/1970299*1860498^(7/20) 9204420651744161 a001 46368/20633239*1860498^(5/12) 9204420651744220 a001 144/103681*1860498^(9/20) 9204420651744494 a001 11592/35355581*1860498^(11/20) 9204420651744582 a001 46368/228826127*1860498^(7/12) 9204420651744760 a001 2576/33281921*1860498^(13/20) 9204420651745026 a001 11592/634430159*1860498^(3/4) 9204420651745292 a001 23184/5374978561*1860498^(17/20) 9204420651745469 a001 15456/9381251041*1860498^(11/12) 9204420651745557 a001 11592/11384387281*1860498^(19/20) 9204420651749993 a001 46368/1149851*141422324^(1/6) 9204420651749993 a001 46368/1149851*73681302247^(1/8) 9204420651750014 a001 11592/1970299*710647^(3/8) 9204420651754422 a001 46368/228826127*710647^(5/8) 9204420651758979 a001 46368/6643838879*710647^(7/8) 9204420651781223 a001 46368/1149851*271443^(1/4) 9204420651782795 a001 11592/109801*439204^(1/6) 9204420651790727 a001 11592/109801*7881196^(3/22) 9204420651790747 a001 11592/109801*2537720636^(1/10) 9204420651790747 a001 11592/109801*14662949395604^(1/14) 9204420651790747 a001 11592/109801*192900153618^(1/12) 9204420651790748 a001 11592/109801*33385282^(1/8) 9204420651791146 a001 11592/109801*1860498^(3/20) 9204420651805514 a001 75025/20633239*64079^(1/2) 9204420651836723 a001 2576/33281921*271443^(3/4) 9204420651951290 a001 11592/109801*103682^(3/16) 9204420652007944 a001 2576/103361*103682^(5/16) 9204420652037376 a001 46368/167761*167761^(1/10) 9204420652070080 a001 46368/167761*20633239^(1/14) 9204420652070081 a001 46368/167761*2537720636^(1/18) 9204420652070081 a001 46368/167761*312119004989^(1/22) 9204420652070081 a001 46368/167761*28143753123^(1/20) 9204420652070081 a001 46368/167761*228826127^(1/16) 9204420652070303 a001 46368/167761*1860498^(1/12) 9204420652117779 a001 11592/1970299*103682^(7/16) 9204420652155572 a001 28657/103682*24476^(5/42) 9204420652155903 a001 75025/167761*24476^(1/14) 9204420652156235 a001 196418/271443*24476^(1/42) 9204420652179993 a001 121393/6643838879*167761^(9/10) 9204420652203461 a001 75025/103682*39603^(1/44) 9204420652222177 a001 514229/710647*24476^(1/42) 9204420652224652 a001 144/103681*103682^(9/16) 9204420652231797 a001 1346269/1860498*24476^(1/42) 9204420652234069 a001 2178309/3010349*24476^(1/42) 9204420652237743 a001 832040/1149851*24476^(1/42) 9204420652245403 a001 121393/599074578*167761^(7/10) 9204420652262931 a001 317811/439204*24476^(1/42) 9204420652286689 a001 10959/599786069*167761^(9/10) 9204420652302256 a001 208010/11384387281*167761^(9/10) 9204420652304527 a001 2178309/119218851371*167761^(9/10) 9204420652304858 a001 5702887/312119004989*167761^(9/10) 9204420652304906 a001 3732588/204284540899*167761^(9/10) 9204420652304913 a001 39088169/2139295485799*167761^(9/10) 9204420652304914 a001 102334155/5600748293801*167761^(9/10) 9204420652304915 a001 10946/599074579*167761^(9/10) 9204420652304915 a001 433494437/23725150497407*167761^(9/10) 9204420652304915 a001 165580141/9062201101803*167761^(9/10) 9204420652304915 a001 31622993/1730726404001*167761^(9/10) 9204420652304918 a001 24157817/1322157322203*167761^(9/10) 9204420652304936 a001 9227465/505019158607*167761^(9/10) 9204420652305063 a001 1762289/96450076809*167761^(9/10) 9204420652305930 a001 1346269/73681302247*167761^(9/10) 9204420652310816 a001 121393/54018521*167761^(1/2) 9204420652311876 a001 514229/28143753123*167761^(9/10) 9204420652331689 a001 11592/35355581*103682^(11/16) 9204420652346765 a001 121393/271443*439204^(1/18) 9204420652349409 a001 121393/271443*7881196^(1/22) 9204420652349416 a001 121393/271443*33385282^(1/24) 9204420652349549 a001 121393/271443*1860498^(1/20) 9204420652352099 a001 317811/1568397607*167761^(7/10) 9204420652352631 a001 98209/5374978561*167761^(9/10) 9204420652367666 a001 832040/4106118243*167761^(7/10) 9204420652369937 a001 987/4870846*167761^(7/10) 9204420652370268 a001 5702887/28143753123*167761^(7/10) 9204420652370316 a001 14930352/73681302247*167761^(7/10) 9204420652370323 a001 39088169/192900153618*167761^(7/10) 9204420652370325 a001 102334155/505019158607*167761^(7/10) 9204420652370325 a001 267914296/1322157322203*167761^(7/10) 9204420652370325 a001 701408733/3461452808002*167761^(7/10) 9204420652370325 a001 1836311903/9062201101803*167761^(7/10) 9204420652370325 a001 4807526976/23725150497407*167761^(7/10) 9204420652370325 a001 2971215073/14662949395604*167761^(7/10) 9204420652370325 a001 1134903170/5600748293801*167761^(7/10) 9204420652370325 a001 433494437/2139295485799*167761^(7/10) 9204420652370325 a001 165580141/817138163596*167761^(7/10) 9204420652370325 a001 63245986/312119004989*167761^(7/10) 9204420652370328 a001 24157817/119218851371*167761^(7/10) 9204420652370346 a001 9227465/45537549124*167761^(7/10) 9204420652370473 a001 3524578/17393796001*167761^(7/10) 9204420652371340 a001 1346269/6643838879*167761^(7/10) 9204420652375835 a001 121393/4870847*167761^(3/10) 9204420652377286 a001 514229/2537720636*167761^(7/10) 9204420652402930 a001 121393/271443*103682^(1/16) 9204420652417509 a001 317811/141422324*167761^(1/2) 9204420652418041 a001 196418/969323029*167761^(7/10) 9204420652429273 a001 121393/28143753123*439204^(17/18) 9204420652433076 a001 832040/370248451*167761^(1/2) 9204420652434574 a001 121393/6643838879*439204^(5/6) 9204420652435347 a001 2178309/969323029*167761^(1/2) 9204420652435569 a001 121393/167761*24476^(1/42) 9204420652435678 a001 5702887/2537720636*167761^(1/2) 9204420652435726 a001 14930352/6643838879*167761^(1/2) 9204420652435734 a001 39088169/17393796001*167761^(1/2) 9204420652435735 a001 102334155/45537549124*167761^(1/2) 9204420652435735 a001 267914296/119218851371*167761^(1/2) 9204420652435735 a001 3524667/1568437211*167761^(1/2) 9204420652435735 a001 1836311903/817138163596*167761^(1/2) 9204420652435735 a001 4807526976/2139295485799*167761^(1/2) 9204420652435735 a001 12586269025/5600748293801*167761^(1/2) 9204420652435735 a001 32951280099/14662949395604*167761^(1/2) 9204420652435735 a001 53316291173/23725150497407*167761^(1/2) 9204420652435735 a001 20365011074/9062201101803*167761^(1/2) 9204420652435735 a001 7778742049/3461452808002*167761^(1/2) 9204420652435735 a001 2971215073/1322157322203*167761^(1/2) 9204420652435735 a001 1134903170/505019158607*167761^(1/2) 9204420652435735 a001 433494437/192900153618*167761^(1/2) 9204420652435735 a001 165580141/73681302247*167761^(1/2) 9204420652435735 a001 63245986/28143753123*167761^(1/2) 9204420652435738 a001 24157817/10749957122*167761^(1/2) 9204420652435756 a001 9227465/4106118243*167761^(1/2) 9204420652435883 a001 3524578/1568397607*167761^(1/2) 9204420652436750 a001 1346269/599074578*167761^(1/2) 9204420652438717 a001 2576/33281921*103682^(13/16) 9204420652439876 a001 121393/1568397607*439204^(13/18) 9204420652442696 a001 514229/228826127*167761^(1/2) 9204420652445178 a001 121393/370248451*439204^(11/18) 9204420652450479 a001 121393/87403803*439204^(1/2) 9204420652455803 a001 121393/20633239*439204^(7/18) 9204420652456110 a001 121393/710647*20633239^(1/10) 9204420652456112 a001 121393/710647*17393796001^(1/14) 9204420652456112 a001 121393/710647*14662949395604^(1/18) 9204420652456112 a001 121393/710647*505019158607^(1/16) 9204420652456112 a001 121393/710647*599074578^(1/12) 9204420652458390 a001 121393/710647*710647^(1/8) 9204420652460695 a001 121393/4870847*439204^(5/18) 9204420652470857 a001 233/271444*1149851^(1/2) 9204420652471654 a001 121393/1860498*7881196^(1/6) 9204420652471679 a001 121393/1860498*312119004989^(1/10) 9204420652471679 a001 121393/1860498*1568397607^(1/8) 9204420652473347 a001 121393/1149851*439204^(1/6) 9204420652473830 a001 121393/228826127*3010349^(1/2) 9204420652473916 a001 121393/4870847*7881196^(5/22) 9204420652473945 a001 121393/4870847*20633239^(3/14) 9204420652473950 a001 121393/4870847*2537720636^(1/6) 9204420652473950 a001 121393/4870847*312119004989^(3/22) 9204420652473950 a001 121393/4870847*28143753123^(3/20) 9204420652473950 a001 121393/4870847*228826127^(3/16) 9204420652473952 a001 121393/4870847*33385282^(5/24) 9204420652474196 a001 121393/505019158607*7881196^(21/22) 9204420652474210 a001 121393/119218851371*7881196^(19/22) 9204420652474214 a001 121393/73681302247*7881196^(5/6) 9204420652474223 a001 121393/28143753123*7881196^(17/22) 9204420652474237 a001 121393/6643838879*7881196^(15/22) 9204420652474250 a001 121393/1568397607*7881196^(13/22) 9204420652474264 a001 121393/370248451*7881196^(1/2) 9204420652474276 a001 121393/87403803*7881196^(9/22) 9204420652474281 a001 121393/12752043*817138163596^(1/6) 9204420652474281 a001 121393/12752043*87403803^(1/4) 9204420652474312 a001 121393/20633239*7881196^(7/22) 9204420652474318 a001 121393/817138163596*20633239^(13/14) 9204420652474318 a001 121393/505019158607*20633239^(9/10) 9204420652474321 a001 121393/73681302247*20633239^(11/14) 9204420652474323 a001 121393/17393796001*20633239^(7/10) 9204420652474324 a001 121393/6643838879*20633239^(9/14) 9204420652474327 a001 121393/599074578*20633239^(1/2) 9204420652474330 a001 121393/33385282*4106118243^(1/4) 9204420652474333 a001 121393/54018521*20633239^(5/14) 9204420652474336 a001 121393/969323029*54018521^(1/2) 9204420652474337 a001 121393/87403803*2537720636^(3/10) 9204420652474337 a001 121393/87403803*14662949395604^(3/14) 9204420652474337 a001 121393/87403803*192900153618^(1/4) 9204420652474337 a001 121393/817138163596*141422324^(5/6) 9204420652474338 a001 121393/1568397607*141422324^(1/2) 9204420652474338 a001 121393/228826127*9062201101803^(1/4) 9204420652474338 a001 121393/2537720636*370248451^(1/2) 9204420652474338 a001 121393/599074578*2537720636^(7/18) 9204420652474338 a001 121393/599074578*17393796001^(5/14) 9204420652474338 a001 121393/599074578*312119004989^(7/22) 9204420652474338 a001 121393/599074578*14662949395604^(5/18) 9204420652474338 a001 121393/599074578*505019158607^(5/16) 9204420652474338 a001 121393/599074578*28143753123^(7/20) 9204420652474338 a001 121393/599074578*599074578^(5/12) 9204420652474338 a001 121393/4106118243*969323029^(1/2) 9204420652474338 a001 121393/1568397607*73681302247^(3/8) 9204420652474338 a001 121393/9062201101803*2537720636^(5/6) 9204420652474338 a001 121393/817138163596*2537720636^(13/18) 9204420652474338 a001 121393/505019158607*2537720636^(7/10) 9204420652474338 a001 121393/73681302247*2537720636^(11/18) 9204420652474338 a001 121393/6643838879*2537720636^(1/2) 9204420652474338 a001 121393/10749957122*6643838879^(1/2) 9204420652474338 a001 121393/14662949395604*17393796001^(11/14) 9204420652474338 a001 121393/505019158607*17393796001^(9/14) 9204420652474338 a001 121393/28143753123*45537549124^(1/2) 9204420652474338 a001 121393/73681302247*312119004989^(1/2) 9204420652474338 a001 121393/73681302247*3461452808002^(11/24) 9204420652474338 a001 121393/192900153618*2139295485799^(1/2) 9204420652474338 a001 121393/9062201101803*312119004989^(15/22) 9204420652474338 a001 121393/817138163596*312119004989^(13/22) 9204420652474338 a001 121393/505019158607*14662949395604^(1/2) 9204420652474338 a001 121393/505019158607*505019158607^(9/16) 9204420652474338 a001 121393/14662949395604*14662949395604^(11/18) 9204420652474338 a001 121393/9062201101803*3461452808002^(5/8) 9204420652474338 a001 121393/817138163596*3461452808002^(13/24) 9204420652474338 a001 121393/14662949395604*505019158607^(11/16) 9204420652474338 a001 121393/312119004989*5600748293801^(1/2) 9204420652474338 a001 121393/505019158607*192900153618^(7/12) 9204420652474338 a001 121393/119218851371*817138163596^(1/2) 9204420652474338 a001 121393/817138163596*73681302247^(5/8) 9204420652474338 a006 5^(1/2)*Fibonacci(55/2)/Lucas(26)/sqrt(5) 9204420652474338 a001 121393/45537549124*119218851371^(1/2) 9204420652474338 a001 121393/73681302247*28143753123^(11/20) 9204420652474338 a001 121393/817138163596*28143753123^(13/20) 9204420652474338 a001 121393/9062201101803*28143753123^(3/4) 9204420652474338 a001 121393/17393796001*17393796001^(1/2) 9204420652474338 a001 121393/17393796001*14662949395604^(7/18) 9204420652474338 a001 121393/17393796001*505019158607^(7/16) 9204420652474338 a001 121393/6643838879*312119004989^(9/22) 9204420652474338 a001 121393/6643838879*14662949395604^(5/14) 9204420652474338 a001 121393/6643838879*192900153618^(5/12) 9204420652474338 a001 121393/6643838879*28143753123^(9/20) 9204420652474338 a001 121393/2139295485799*4106118243^(3/4) 9204420652474338 a001 121393/73681302247*1568397607^(5/8) 9204420652474338 a001 121393/14662949395604*1568397607^(7/8) 9204420652474338 a001 121393/17393796001*599074578^(7/12) 9204420652474338 a001 121393/505019158607*599074578^(3/4) 9204420652474338 a001 121393/14662949395604*599074578^(11/12) 9204420652474338 a001 121393/599074578*228826127^(7/16) 9204420652474338 a001 121393/370248451*312119004989^(3/10) 9204420652474338 a001 121393/370248451*1568397607^(3/8) 9204420652474338 a001 121393/6643838879*228826127^(9/16) 9204420652474338 a001 121393/73681302247*228826127^(11/16) 9204420652474338 a001 121393/817138163596*228826127^(13/16) 9204420652474338 a001 121393/9062201101803*228826127^(15/16) 9204420652474338 a001 233/271444*1322157322203^(1/4) 9204420652474339 a001 121393/119218851371*87403803^(3/4) 9204420652474340 a001 121393/87403803*33385282^(3/8) 9204420652474341 a001 121393/54018521*2537720636^(5/18) 9204420652474341 a001 121393/54018521*312119004989^(5/22) 9204420652474341 a001 121393/54018521*3461452808002^(5/24) 9204420652474341 a001 121393/54018521*28143753123^(1/4) 9204420652474341 a001 121393/54018521*228826127^(5/16) 9204420652474342 a001 121393/370248451*33385282^(11/24) 9204420652474342 a001 121393/1568397607*33385282^(13/24) 9204420652474343 a001 121393/6643838879*33385282^(5/8) 9204420652474344 a001 121393/28143753123*33385282^(17/24) 9204420652474344 a001 121393/119218851371*33385282^(19/24) 9204420652474345 a001 121393/505019158607*33385282^(7/8) 9204420652474346 a001 121393/2139295485799*33385282^(23/24) 9204420652474353 a001 121393/20633239*20633239^(3/10) 9204420652474359 a001 121393/20633239*17393796001^(3/14) 9204420652474359 a001 121393/20633239*14662949395604^(1/6) 9204420652474359 a001 121393/20633239*599074578^(1/4) 9204420652474362 a001 121393/20633239*33385282^(7/24) 9204420652474380 a001 121393/28143753123*12752043^(3/4) 9204420652474486 a001 121393/7881196*45537549124^(1/6) 9204420652474500 a001 121393/7881196*12752043^(1/4) 9204420652474615 a001 121393/4870847*1860498^(1/4) 9204420652475290 a001 121393/20633239*1860498^(7/20) 9204420652475353 a001 121393/3010349*141422324^(1/6) 9204420652475353 a001 121393/3010349*73681302247^(1/8) 9204420652475449 a001 121393/54018521*1860498^(5/12) 9204420652475533 a001 121393/87403803*1860498^(9/20) 9204420652475800 a001 121393/370248451*1860498^(11/20) 9204420652475889 a001 121393/599074578*1860498^(7/12) 9204420652476066 a001 121393/1568397607*1860498^(13/20) 9204420652476332 a001 121393/6643838879*1860498^(3/4) 9204420652476598 a001 121393/28143753123*1860498^(17/20) 9204420652476775 a001 121393/73681302247*1860498^(11/12) 9204420652476864 a001 121393/119218851371*1860498^(19/20) 9204420652481194 a001 121393/20633239*710647^(3/8) 9204420652481279 a001 121393/1149851*7881196^(3/22) 9204420652481299 a001 121393/1149851*2537720636^(1/10) 9204420652481299 a001 121393/1149851*14662949395604^(1/14) 9204420652481299 a001 121393/1149851*192900153618^(1/12) 9204420652481300 a001 121393/1149851*33385282^(1/8) 9204420652481698 a001 121393/1149851*1860498^(3/20) 9204420652482862 a001 105937/4250681*167761^(3/10) 9204420652483450 a001 196418/87403803*167761^(1/2) 9204420652485729 a001 121393/599074578*710647^(5/8) 9204420652489349 a001 121393/439204*167761^(1/10) 9204420652490285 a001 121393/17393796001*710647^(7/8) 9204420652498477 a001 416020/16692641*167761^(3/10) 9204420652500756 a001 726103/29134601*167761^(3/10) 9204420652501088 a001 5702887/228826127*167761^(3/10) 9204420652501137 a001 829464/33281921*167761^(3/10) 9204420652501144 a001 39088169/1568397607*167761^(3/10) 9204420652501145 a001 34111385/1368706081*167761^(3/10) 9204420652501145 a001 133957148/5374978561*167761^(3/10) 9204420652501145 a001 233802911/9381251041*167761^(3/10) 9204420652501145 a001 1836311903/73681302247*167761^(3/10) 9204420652501145 a001 267084832/10716675201*167761^(3/10) 9204420652501145 a001 12586269025/505019158607*167761^(3/10) 9204420652501145 a001 10983760033/440719107401*167761^(3/10) 9204420652501145 a001 43133785636/1730726404001*167761^(3/10) 9204420652501145 a001 75283811239/3020733700601*167761^(3/10) 9204420652501145 a001 182717648081/7331474697802*167761^(3/10) 9204420652501145 a001 139583862445/5600748293801*167761^(3/10) 9204420652501145 a001 53316291173/2139295485799*167761^(3/10) 9204420652501145 a001 10182505537/408569081798*167761^(3/10) 9204420652501145 a001 7778742049/312119004989*167761^(3/10) 9204420652501145 a001 2971215073/119218851371*167761^(3/10) 9204420652501145 a001 567451585/22768774562*167761^(3/10) 9204420652501145 a001 433494437/17393796001*167761^(3/10) 9204420652501145 a001 165580141/6643838879*167761^(3/10) 9204420652501145 a001 31622993/1268860318*167761^(3/10) 9204420652501148 a001 24157817/969323029*167761^(3/10) 9204420652501166 a001 9227465/370248451*167761^(3/10) 9204420652501293 a001 1762289/70711162*167761^(3/10) 9204420652502164 a001 1346269/54018521*167761^(3/10) 9204420652503828 a006 5^(1/2)*fibonacci(55/2)/Lucas(26)/sqrt(5) 9204420652506584 a001 121393/3010349*271443^(1/4) 9204420652508128 a001 514229/20633239*167761^(3/10) 9204420652522052 a001 121393/439204*20633239^(1/14) 9204420652522054 a001 121393/439204*2537720636^(1/18) 9204420652522054 a001 121393/439204*312119004989^(1/22) 9204420652522054 a001 121393/439204*28143753123^(1/20) 9204420652522054 a001 121393/439204*228826127^(1/16) 9204420652522275 a001 121393/439204*1860498^(1/12) 9204420652535969 a001 317811/73681302247*439204^(17/18) 9204420652541271 a001 10959/599786069*439204^(5/6) 9204420652545746 a001 11592/634430159*103682^(15/16) 9204420652546572 a001 105937/1368706081*439204^(13/18) 9204420652549009 a001 98209/3940598*167761^(3/10) 9204420652551536 a001 416020/96450076809*439204^(17/18) 9204420652551763 a001 15456/90481*39603^(7/44) 9204420652551874 a001 317811/969323029*439204^(11/18) 9204420652553807 a001 46347/10745088481*439204^(17/18) 9204420652554138 a001 5702887/1322157322203*439204^(17/18) 9204420652554187 a001 7465176/1730726404001*439204^(17/18) 9204420652554194 a001 39088169/9062201101803*439204^(17/18) 9204420652554195 a001 102334155/23725150497407*439204^(17/18) 9204420652554195 a001 31622993/7331474697802*439204^(17/18) 9204420652554198 a001 24157817/5600748293801*439204^(17/18) 9204420652554216 a001 9227465/2139295485799*439204^(17/18) 9204420652554343 a001 1762289/408569081798*439204^(17/18) 9204420652555210 a001 1346269/312119004989*439204^(17/18) 9204420652555291 a001 317811/1149851*167761^(1/10) 9204420652556837 a001 208010/11384387281*439204^(5/6) 9204420652557176 a001 317811/228826127*439204^(1/2) 9204420652559109 a001 2178309/119218851371*439204^(5/6) 9204420652559440 a001 5702887/312119004989*439204^(5/6) 9204420652559488 a001 3732588/204284540899*439204^(5/6) 9204420652559495 a001 39088169/2139295485799*439204^(5/6) 9204420652559496 a001 102334155/5600748293801*439204^(5/6) 9204420652559497 a001 10946/599074579*439204^(5/6) 9204420652559497 a001 433494437/23725150497407*439204^(5/6) 9204420652559497 a001 165580141/9062201101803*439204^(5/6) 9204420652559497 a001 31622993/1730726404001*439204^(5/6) 9204420652559500 a001 24157817/1322157322203*439204^(5/6) 9204420652559518 a001 9227465/505019158607*439204^(5/6) 9204420652559645 a001 1762289/96450076809*439204^(5/6) 9204420652560157 a001 317811/710647*439204^(1/18) 9204420652560512 a001 1346269/73681302247*439204^(5/6) 9204420652561156 a001 514229/119218851371*439204^(17/18) 9204420652562139 a001 416020/5374978561*439204^(13/18) 9204420652562481 a001 317811/54018521*439204^(7/18) 9204420652562801 a001 317811/710647*7881196^(1/22) 9204420652562808 a001 317811/710647*33385282^(1/24) 9204420652562941 a001 317811/710647*1860498^(1/20) 9204420652564410 a001 726103/9381251041*439204^(13/18) 9204420652564742 a001 5702887/73681302247*439204^(13/18) 9204420652564790 a001 2584/33385281*439204^(13/18) 9204420652564797 a001 39088169/505019158607*439204^(13/18) 9204420652564798 a001 34111385/440719107401*439204^(13/18) 9204420652564798 a001 133957148/1730726404001*439204^(13/18) 9204420652564798 a001 233802911/3020733700601*439204^(13/18) 9204420652564798 a001 1836311903/23725150497407*439204^(13/18) 9204420652564798 a001 567451585/7331474697802*439204^(13/18) 9204420652564798 a001 433494437/5600748293801*439204^(13/18) 9204420652564798 a001 165580141/2139295485799*439204^(13/18) 9204420652564799 a001 31622993/408569081798*439204^(13/18) 9204420652564801 a001 24157817/312119004989*439204^(13/18) 9204420652564820 a001 9227465/119218851371*439204^(13/18) 9204420652564911 a001 832040/3010349*167761^(1/10) 9204420652564947 a001 1762289/22768774562*439204^(13/18) 9204420652565814 a001 1346269/17393796001*439204^(13/18) 9204420652566315 a001 2178309/7881196*167761^(1/10) 9204420652566458 a001 514229/28143753123*439204^(5/6) 9204420652566520 a001 5702887/20633239*167761^(1/10) 9204420652566550 a001 14930352/54018521*167761^(1/10) 9204420652566554 a001 39088169/141422324*167761^(1/10) 9204420652566555 a001 102334155/370248451*167761^(1/10) 9204420652566555 a001 267914296/969323029*167761^(1/10) 9204420652566555 a001 701408733/2537720636*167761^(1/10) 9204420652566555 a001 1836311903/6643838879*167761^(1/10) 9204420652566555 a001 4807526976/17393796001*167761^(1/10) 9204420652566555 a001 12586269025/45537549124*167761^(1/10) 9204420652566555 a001 32951280099/119218851371*167761^(1/10) 9204420652566555 a001 86267571272/312119004989*167761^(1/10) 9204420652566555 a001 225851433717/817138163596*167761^(1/10) 9204420652566555 a001 1548008755920/5600748293801*167761^(1/10) 9204420652566555 a001 139583862445/505019158607*167761^(1/10) 9204420652566555 a001 53316291173/192900153618*167761^(1/10) 9204420652566555 a001 20365011074/73681302247*167761^(1/10) 9204420652566555 a001 7778742049/28143753123*167761^(1/10) 9204420652566555 a001 2971215073/10749957122*167761^(1/10) 9204420652566555 a001 1134903170/4106118243*167761^(1/10) 9204420652566555 a001 433494437/1568397607*167761^(1/10) 9204420652566555 a001 165580141/599074578*167761^(1/10) 9204420652566555 a001 63245986/228826127*167761^(1/10) 9204420652566557 a001 24157817/87403803*167761^(1/10) 9204420652566568 a001 9227465/33385282*167761^(1/10) 9204420652566646 a001 3524578/12752043*167761^(1/10) 9204420652567183 a001 1346269/4870847*167761^(1/10) 9204420652567441 a001 610/1860499*439204^(11/18) 9204420652567723 a001 105937/4250681*439204^(5/18) 9204420652568029 a001 121393/1568397607*271443^(3/4) 9204420652569712 a001 2178309/6643838879*439204^(11/18) 9204420652570043 a001 5702887/17393796001*439204^(11/18) 9204420652570092 a001 3732588/11384387281*439204^(11/18) 9204420652570099 a001 39088169/119218851371*439204^(11/18) 9204420652570100 a001 9303105/28374454999*439204^(11/18) 9204420652570100 a001 66978574/204284540899*439204^(11/18) 9204420652570100 a001 701408733/2139295485799*439204^(11/18) 9204420652570100 a001 1836311903/5600748293801*439204^(11/18) 9204420652570100 a001 1201881744/3665737348901*439204^(11/18) 9204420652570100 a001 7778742049/23725150497407*439204^(11/18) 9204420652570100 a001 2971215073/9062201101803*439204^(11/18) 9204420652570100 a001 567451585/1730726404001*439204^(11/18) 9204420652570100 a001 433494437/1322157322203*439204^(11/18) 9204420652570100 a001 165580141/505019158607*439204^(11/18) 9204420652570101 a001 31622993/96450076809*439204^(11/18) 9204420652570103 a001 24157817/73681302247*439204^(11/18) 9204420652570122 a001 9227465/28143753123*439204^(11/18) 9204420652570248 a001 1762289/5374978561*439204^(11/18) 9204420652570857 a001 514229/1860498*167761^(1/10) 9204420652571116 a001 1346269/4106118243*439204^(11/18) 9204420652571760 a001 514229/6643838879*439204^(13/18) 9204420652572743 a001 416020/299537289*439204^(1/2) 9204420652574097 a001 317811/3010349*439204^(1/6) 9204420652575014 a001 311187/224056801*439204^(1/2) 9204420652575345 a001 5702887/4106118243*439204^(1/2) 9204420652575394 a001 7465176/5374978561*439204^(1/2) 9204420652575401 a001 39088169/28143753123*439204^(1/2) 9204420652575402 a001 14619165/10525900321*439204^(1/2) 9204420652575402 a001 133957148/96450076809*439204^(1/2) 9204420652575402 a001 701408733/505019158607*439204^(1/2) 9204420652575402 a001 1836311903/1322157322203*439204^(1/2) 9204420652575402 a001 14930208/10749853441*439204^(1/2) 9204420652575402 a001 12586269025/9062201101803*439204^(1/2) 9204420652575402 a001 32951280099/23725150497407*439204^(1/2) 9204420652575402 a001 10182505537/7331474697802*439204^(1/2) 9204420652575402 a001 7778742049/5600748293801*439204^(1/2) 9204420652575402 a001 2971215073/2139295485799*439204^(1/2) 9204420652575402 a001 567451585/408569081798*439204^(1/2) 9204420652575402 a001 433494437/312119004989*439204^(1/2) 9204420652575402 a001 165580141/119218851371*439204^(1/2) 9204420652575402 a001 31622993/22768774562*439204^(1/2) 9204420652575405 a001 24157817/17393796001*439204^(1/2) 9204420652575423 a001 9227465/6643838879*439204^(1/2) 9204420652575550 a001 1762289/1268860318*439204^(1/2) 9204420652576418 a001 1346269/969323029*439204^(1/2) 9204420652577062 a001 514229/1568397607*439204^(11/18) 9204420652577553 a001 317811/370248451*1149851^(1/2) 9204420652578045 a001 208010/35355581*439204^(7/18) 9204420652578373 a001 105937/620166*20633239^(1/10) 9204420652578375 a001 105937/620166*17393796001^(1/14) 9204420652578375 a001 105937/620166*14662949395604^(1/18) 9204420652578375 a001 105937/620166*505019158607^(1/16) 9204420652578375 a001 105937/620166*599074578^(1/12) 9204420652580316 a001 2178309/370248451*439204^(7/18) 9204420652580526 a001 377/710646*3010349^(1/2) 9204420652580621 a001 317811/4870847*7881196^(1/6) 9204420652580646 a001 317811/4870847*312119004989^(1/10) 9204420652580646 a001 317811/4870847*1568397607^(1/8) 9204420652580647 a001 5702887/969323029*439204^(7/18) 9204420652580653 a001 105937/620166*710647^(1/8) 9204420652580695 a001 196452/33391061*439204^(7/18) 9204420652580702 a001 39088169/6643838879*439204^(7/18) 9204420652580703 a001 102334155/17393796001*439204^(7/18) 9204420652580704 a001 66978574/11384387281*439204^(7/18) 9204420652580704 a001 701408733/119218851371*439204^(7/18) 9204420652580704 a001 1836311903/312119004989*439204^(7/18) 9204420652580704 a001 1201881744/204284540899*439204^(7/18) 9204420652580704 a001 12586269025/2139295485799*439204^(7/18) 9204420652580704 a001 32951280099/5600748293801*439204^(7/18) 9204420652580704 a001 1135099622/192933544679*439204^(7/18) 9204420652580704 a001 139583862445/23725150497407*439204^(7/18) 9204420652580704 a001 53316291173/9062201101803*439204^(7/18) 9204420652580704 a001 10182505537/1730726404001*439204^(7/18) 9204420652580704 a001 7778742049/1322157322203*439204^(7/18) 9204420652580704 a001 2971215073/505019158607*439204^(7/18) 9204420652580704 a001 567451585/96450076809*439204^(7/18) 9204420652580704 a001 433494437/73681302247*439204^(7/18) 9204420652580704 a001 165580141/28143753123*439204^(7/18) 9204420652580704 a001 31622993/5374978561*439204^(7/18) 9204420652580707 a001 24157817/4106118243*439204^(7/18) 9204420652580725 a001 9227465/1568397607*439204^(7/18) 9204420652580852 a001 1762289/299537289*439204^(7/18) 9204420652580893 a001 105937/440719107401*7881196^(21/22) 9204420652580906 a001 317811/312119004989*7881196^(19/22) 9204420652580910 a001 105937/64300051206*7881196^(5/6) 9204420652580919 a001 317811/73681302247*7881196^(17/22) 9204420652580933 a001 10959/599786069*7881196^(15/22) 9204420652580944 a001 105937/4250681*7881196^(5/22) 9204420652580946 a001 105937/1368706081*7881196^(13/22) 9204420652580960 a001 317811/969323029*7881196^(1/2) 9204420652580973 a001 105937/4250681*20633239^(3/14) 9204420652580973 a001 317811/228826127*7881196^(9/22) 9204420652580977 a001 105937/4250681*2537720636^(1/6) 9204420652580977 a001 105937/4250681*312119004989^(3/22) 9204420652580977 a001 105937/4250681*28143753123^(3/20) 9204420652580977 a001 105937/4250681*228826127^(3/16) 9204420652580979 a001 105937/4250681*33385282^(5/24) 9204420652580990 a001 317811/54018521*7881196^(7/22) 9204420652581014 a001 317811/2139295485799*20633239^(13/14) 9204420652581015 a001 105937/440719107401*20633239^(9/10) 9204420652581017 a001 105937/64300051206*20633239^(11/14) 9204420652581019 a001 317811/45537549124*20633239^(7/10) 9204420652581020 a001 10959/599786069*20633239^(9/14) 9204420652581023 a001 317811/1568397607*20633239^(1/2) 9204420652581026 a001 317811/33385282*817138163596^(1/6) 9204420652581026 a001 317811/33385282*87403803^(1/4) 9204420652581027 a001 317811/141422324*20633239^(5/14) 9204420652581031 a001 317811/54018521*20633239^(3/10) 9204420652581032 a001 317811/2537720636*54018521^(1/2) 9204420652581033 a001 105937/29134601*4106118243^(1/4) 9204420652581034 a001 317811/2139295485799*141422324^(5/6) 9204420652581034 a001 105937/1368706081*141422324^(1/2) 9204420652581034 a001 317811/228826127*2537720636^(3/10) 9204420652581034 a001 317811/228826127*14662949395604^(3/14) 9204420652581034 a001 317811/228826127*192900153618^(1/4) 9204420652581034 a001 317811/6643838879*370248451^(1/2) 9204420652581034 a001 377/710646*9062201101803^(1/4) 9204420652581034 a001 317811/10749957122*969323029^(1/2) 9204420652581034 a001 317811/1568397607*2537720636^(7/18) 9204420652581034 a001 317811/1568397607*17393796001^(5/14) 9204420652581034 a001 317811/1568397607*312119004989^(7/22) 9204420652581034 a001 317811/1568397607*14662949395604^(5/18) 9204420652581034 a001 317811/1568397607*505019158607^(5/16) 9204420652581034 a001 317811/1568397607*28143753123^(7/20) 9204420652581034 a001 317811/23725150497407*2537720636^(5/6) 9204420652581034 a001 317811/2139295485799*2537720636^(13/18) 9204420652581034 a001 105937/440719107401*2537720636^(7/10) 9204420652581034 a001 105937/64300051206*2537720636^(11/18) 9204420652581034 a001 10959/599786069*2537720636^(1/2) 9204420652581034 a001 105937/1368706081*73681302247^(3/8) 9204420652581034 a001 105937/9381251041*6643838879^(1/2) 9204420652581034 a001 105937/440719107401*17393796001^(9/14) 9204420652581034 a001 317811/45537549124*17393796001^(1/2) 9204420652581034 a001 317811/73681302247*45537549124^(1/2) 9204420652581034 a001 105937/64300051206*312119004989^(1/2) 9204420652581034 a001 105937/64300051206*3461452808002^(11/24) 9204420652581034 a001 317811/2139295485799*312119004989^(13/22) 9204420652581034 a001 317811/505019158607*2139295485799^(1/2) 9204420652581034 a001 105937/440719107401*14662949395604^(1/2) 9204420652581034 a001 317811/2139295485799*3461452808002^(13/24) 9204420652581034 a001 317811/817138163596*5600748293801^(1/2) 9204420652581034 a001 105937/440719107401*505019158607^(9/16) 9204420652581034 a001 317811/312119004989*817138163596^(1/2) 9204420652581034 a001 105937/440719107401*192900153618^(7/12) 9204420652581034 a001 317811/119218851371*119218851371^(1/2) 9204420652581034 a001 317811/2139295485799*73681302247^(5/8) 9204420652581034 a001 317811/45537549124*14662949395604^(7/18) 9204420652581034 a001 317811/45537549124*505019158607^(7/16) 9204420652581034 a001 105937/64300051206*28143753123^(11/20) 9204420652581034 a001 317811/2139295485799*28143753123^(13/20) 9204420652581034 a001 317811/23725150497407*28143753123^(3/4) 9204420652581034 a001 10959/599786069*312119004989^(9/22) 9204420652581034 a001 10959/599786069*14662949395604^(5/14) 9204420652581034 a001 10959/599786069*192900153618^(5/12) 9204420652581034 a001 10959/599786069*28143753123^(9/20) 9204420652581034 a001 317811/5600748293801*4106118243^(3/4) 9204420652581034 a001 105937/64300051206*1568397607^(5/8) 9204420652581034 a001 317811/1568397607*599074578^(5/12) 9204420652581034 a001 317811/969323029*312119004989^(3/10) 9204420652581034 a001 317811/969323029*1568397607^(3/8) 9204420652581034 a001 317811/45537549124*599074578^(7/12) 9204420652581034 a001 105937/440719107401*599074578^(3/4) 9204420652581034 a001 317811/370248451*1322157322203^(1/4) 9204420652581034 a001 317811/1568397607*228826127^(7/16) 9204420652581034 a001 10959/599786069*228826127^(9/16) 9204420652581034 a001 105937/64300051206*228826127^(11/16) 9204420652581034 a001 317811/2139295485799*228826127^(13/16) 9204420652581034 a001 317811/23725150497407*228826127^(15/16) 9204420652581034 a001 317811/141422324*2537720636^(5/18) 9204420652581034 a001 317811/141422324*312119004989^(5/22) 9204420652581034 a001 317811/141422324*3461452808002^(5/24) 9204420652581034 a001 317811/141422324*28143753123^(1/4) 9204420652581034 a001 317811/141422324*228826127^(5/16) 9204420652581035 a001 317811/312119004989*87403803^(3/4) 9204420652581037 a001 317811/228826127*33385282^(3/8) 9204420652581037 a001 317811/54018521*17393796001^(3/14) 9204420652581037 a001 317811/54018521*14662949395604^(1/6) 9204420652581037 a001 317811/54018521*599074578^(1/4) 9204420652581038 a001 317811/969323029*33385282^(11/24) 9204420652581038 a001 105937/1368706081*33385282^(13/24) 9204420652581039 a001 10959/599786069*33385282^(5/8) 9204420652581040 a001 317811/54018521*33385282^(7/24) 9204420652581040 a001 317811/73681302247*33385282^(17/24) 9204420652581041 a001 317811/312119004989*33385282^(19/24) 9204420652581041 a001 105937/440719107401*33385282^(7/8) 9204420652581042 a001 317811/5600748293801*33385282^(23/24) 9204420652581056 a001 10959/711491*45537549124^(1/6) 9204420652581070 a001 10959/711491*12752043^(1/4) 9204420652581076 a001 317811/73681302247*12752043^(3/4) 9204420652581182 a001 317811/7881196*141422324^(1/6) 9204420652581182 a001 317811/7881196*73681302247^(1/8) 9204420652581642 a001 105937/4250681*1860498^(1/4) 9204420652581719 a001 1346269/228826127*439204^(7/18) 9204420652581968 a001 317811/54018521*1860498^(7/20) 9204420652582029 a001 317811/3010349*7881196^(3/22) 9204420652582050 a001 317811/3010349*2537720636^(1/10) 9204420652582050 a001 317811/3010349*14662949395604^(1/14) 9204420652582050 a001 317811/3010349*192900153618^(1/12) 9204420652582051 a001 317811/3010349*33385282^(1/8) 9204420652582142 a001 317811/141422324*1860498^(5/12) 9204420652582230 a001 317811/228826127*1860498^(9/20) 9204420652582364 a001 514229/370248451*439204^(1/2) 9204420652582449 a001 317811/3010349*1860498^(3/20) 9204420652582496 a001 317811/969323029*1860498^(11/20) 9204420652582585 a001 317811/1568397607*1860498^(7/12) 9204420652582762 a001 105937/1368706081*1860498^(13/20) 9204420652583028 a001 10959/599786069*1860498^(3/4) 9204420652583294 a001 317811/73681302247*1860498^(17/20) 9204420652583338 a001 416020/16692641*439204^(5/18) 9204420652583472 a001 105937/64300051206*1860498^(11/12) 9204420652583560 a001 317811/312119004989*1860498^(19/20) 9204420652585616 a001 726103/29134601*439204^(5/18) 9204420652585949 a001 5702887/228826127*439204^(5/18) 9204420652585997 a001 829464/33281921*439204^(5/18) 9204420652586004 a001 39088169/1568397607*439204^(5/18) 9204420652586005 a001 34111385/1368706081*439204^(5/18) 9204420652586005 a001 133957148/5374978561*439204^(5/18) 9204420652586005 a001 233802911/9381251041*439204^(5/18) 9204420652586005 a001 1836311903/73681302247*439204^(5/18) 9204420652586005 a001 267084832/10716675201*439204^(5/18) 9204420652586005 a001 12586269025/505019158607*439204^(5/18) 9204420652586005 a001 10983760033/440719107401*439204^(5/18) 9204420652586005 a001 43133785636/1730726404001*439204^(5/18) 9204420652586005 a001 75283811239/3020733700601*439204^(5/18) 9204420652586005 a001 182717648081/7331474697802*439204^(5/18) 9204420652586005 a001 139583862445/5600748293801*439204^(5/18) 9204420652586005 a001 53316291173/2139295485799*439204^(5/18) 9204420652586005 a001 10182505537/408569081798*439204^(5/18) 9204420652586005 a001 7778742049/312119004989*439204^(5/18) 9204420652586005 a001 2971215073/119218851371*439204^(5/18) 9204420652586005 a001 567451585/22768774562*439204^(5/18) 9204420652586005 a001 433494437/17393796001*439204^(5/18) 9204420652586005 a001 165580141/6643838879*439204^(5/18) 9204420652586006 a001 31622993/1268860318*439204^(5/18) 9204420652586009 a001 24157817/969323029*439204^(5/18) 9204420652586027 a001 9227465/370248451*439204^(5/18) 9204420652586154 a001 1762289/70711162*439204^(5/18) 9204420652587024 a001 1346269/54018521*439204^(5/18) 9204420652587664 a001 514229/87403803*439204^(7/18) 9204420652587872 a001 317811/54018521*710647^(3/8) 9204420652587994 a001 317811/1149851*20633239^(1/14) 9204420652587996 a001 317811/1149851*2537720636^(1/18) 9204420652587996 a001 317811/1149851*312119004989^(1/22) 9204420652587996 a001 317811/1149851*28143753123^(1/20) 9204420652587996 a001 317811/1149851*228826127^(1/16) 9204420652588217 a001 317811/1149851*1860498^(1/12) 9204420652588796 a001 208010/1970299*439204^(1/6) 9204420652590941 a001 2178309/20633239*439204^(1/6) 9204420652591254 a001 5702887/54018521*439204^(1/6) 9204420652591291 a001 416020/930249*439204^(1/18) 9204420652591299 a001 3732588/35355581*439204^(1/6) 9204420652591306 a001 39088169/370248451*439204^(1/6) 9204420652591307 a001 102334155/969323029*439204^(1/6) 9204420652591307 a001 66978574/634430159*439204^(1/6) 9204420652591307 a001 701408733/6643838879*439204^(1/6) 9204420652591307 a001 1836311903/17393796001*439204^(1/6) 9204420652591307 a001 1201881744/11384387281*439204^(1/6) 9204420652591307 a001 12586269025/119218851371*439204^(1/6) 9204420652591307 a001 32951280099/312119004989*439204^(1/6) 9204420652591307 a001 21566892818/204284540899*439204^(1/6) 9204420652591307 a001 225851433717/2139295485799*439204^(1/6) 9204420652591307 a001 182717648081/1730726404001*439204^(1/6) 9204420652591307 a001 139583862445/1322157322203*439204^(1/6) 9204420652591307 a001 53316291173/505019158607*439204^(1/6) 9204420652591307 a001 10182505537/96450076809*439204^(1/6) 9204420652591307 a001 7778742049/73681302247*439204^(1/6) 9204420652591307 a001 2971215073/28143753123*439204^(1/6) 9204420652591307 a001 567451585/5374978561*439204^(1/6) 9204420652591307 a001 433494437/4106118243*439204^(1/6) 9204420652591307 a001 165580141/1568397607*439204^(1/6) 9204420652591308 a001 31622993/299537289*439204^(1/6) 9204420652591310 a001 24157817/228826127*439204^(1/6) 9204420652591328 a001 9227465/87403803*439204^(1/6) 9204420652591447 a001 1762289/16692641*439204^(1/6) 9204420652592266 a001 1346269/12752043*439204^(1/6) 9204420652592425 a001 317811/1568397607*710647^(5/8) 9204420652592989 a001 514229/20633239*439204^(5/18) 9204420652593120 a001 832040/969323029*1149851^(1/2) 9204420652593935 a001 416020/930249*7881196^(1/22) 9204420652593942 a001 416020/930249*33385282^(1/24) 9204420652594075 a001 416020/930249*1860498^(1/20) 9204420652595391 a001 2178309/2537720636*1149851^(1/2) 9204420652595722 a001 5702887/6643838879*1149851^(1/2) 9204420652595771 a001 14930352/17393796001*1149851^(1/2) 9204420652595778 a001 39088169/45537549124*1149851^(1/2) 9204420652595779 a001 102334155/119218851371*1149851^(1/2) 9204420652595779 a001 267914296/312119004989*1149851^(1/2) 9204420652595779 a001 701408733/817138163596*1149851^(1/2) 9204420652595779 a001 1836311903/2139295485799*1149851^(1/2) 9204420652595779 a001 4807526976/5600748293801*1149851^(1/2) 9204420652595779 a001 12586269025/14662949395604*1149851^(1/2) 9204420652595779 a001 20365011074/23725150497407*1149851^(1/2) 9204420652595779 a001 7778742049/9062201101803*1149851^(1/2) 9204420652595779 a001 2971215073/3461452808002*1149851^(1/2) 9204420652595779 a001 1134903170/1322157322203*1149851^(1/2) 9204420652595779 a001 433494437/505019158607*1149851^(1/2) 9204420652595779 a001 165580141/192900153618*1149851^(1/2) 9204420652595779 a001 63245986/73681302247*1149851^(1/2) 9204420652595782 a001 24157817/28143753123*1149851^(1/2) 9204420652595801 a001 9227465/10749957122*1149851^(1/2) 9204420652595833 a001 2178309/4870847*439204^(1/18) 9204420652595927 a001 3524578/4106118243*1149851^(1/2) 9204420652596045 a001 196418/710647*167761^(1/10) 9204420652596093 a001 832040/1568397607*3010349^(1/2) 9204420652596211 a001 832040/4870847*20633239^(1/10) 9204420652596213 a001 832040/4870847*17393796001^(1/14) 9204420652596213 a001 832040/4870847*14662949395604^(1/18) 9204420652596213 a001 832040/4870847*505019158607^(1/16) 9204420652596213 a001 832040/4870847*599074578^(1/12) 9204420652596459 a001 416020/1730726404001*7881196^(21/22) 9204420652596473 a001 208010/204284540899*7881196^(19/22) 9204420652596477 a001 832040/505019158607*7881196^(5/6) 9204420652596486 a001 416020/96450076809*7881196^(17/22) 9204420652596496 a001 5702887/12752043*439204^(1/18) 9204420652596500 a001 208010/11384387281*7881196^(15/22) 9204420652596513 a001 416020/5374978561*7881196^(13/22) 9204420652596519 a001 832040/12752043*7881196^(1/6) 9204420652596527 a001 610/1860499*7881196^(1/2) 9204420652596540 a001 416020/299537289*7881196^(9/22) 9204420652596544 a001 832040/12752043*312119004989^(1/10) 9204420652596544 a001 832040/12752043*1568397607^(1/8) 9204420652596554 a001 208010/35355581*7881196^(7/22) 9204420652596559 a001 416020/16692641*7881196^(5/22) 9204420652596581 a001 832040/5600748293801*20633239^(13/14) 9204420652596581 a001 416020/1730726404001*20633239^(9/10) 9204420652596584 a001 832040/505019158607*20633239^(11/14) 9204420652596586 a001 832040/119218851371*20633239^(7/10) 9204420652596587 a001 208010/11384387281*20633239^(9/14) 9204420652596588 a001 416020/16692641*20633239^(3/14) 9204420652596590 a001 832040/4106118243*20633239^(1/2) 9204420652596592 a001 7465176/16692641*439204^(1/18) 9204420652596592 a001 416020/16692641*2537720636^(1/6) 9204420652596592 a001 416020/16692641*312119004989^(3/22) 9204420652596592 a001 416020/16692641*28143753123^(3/20) 9204420652596593 a001 416020/16692641*228826127^(3/16) 9204420652596593 a001 832040/370248451*20633239^(5/14) 9204420652596594 a001 416020/16692641*33385282^(5/24) 9204420652596595 a001 208010/35355581*20633239^(3/10) 9204420652596599 a001 832040/6643838879*54018521^(1/2) 9204420652596600 a001 832040/87403803*817138163596^(1/6) 9204420652596600 a001 832040/87403803*87403803^(1/4) 9204420652596600 a001 832040/5600748293801*141422324^(5/6) 9204420652596601 a001 416020/5374978561*141422324^(1/2) 9204420652596601 a001 832040/228826127*4106118243^(1/4) 9204420652596601 a001 832040/17393796001*370248451^(1/2) 9204420652596601 a001 416020/299537289*2537720636^(3/10) 9204420652596601 a001 416020/299537289*14662949395604^(3/14) 9204420652596601 a001 416020/299537289*192900153618^(1/4) 9204420652596601 a001 832040/28143753123*969323029^(1/2) 9204420652596601 a001 832040/1568397607*9062201101803^(1/4) 9204420652596601 a001 832040/4106118243*2537720636^(7/18) 9204420652596601 a001 832040/5600748293801*2537720636^(13/18) 9204420652596601 a001 416020/1730726404001*2537720636^(7/10) 9204420652596601 a001 832040/505019158607*2537720636^(11/18) 9204420652596601 a001 208010/11384387281*2537720636^(1/2) 9204420652596601 a001 832040/4106118243*17393796001^(5/14) 9204420652596601 a001 832040/4106118243*312119004989^(7/22) 9204420652596601 a001 832040/4106118243*14662949395604^(5/18) 9204420652596601 a001 832040/4106118243*505019158607^(5/16) 9204420652596601 a001 832040/4106118243*28143753123^(7/20) 9204420652596601 a001 832040/73681302247*6643838879^(1/2) 9204420652596601 a001 416020/5374978561*73681302247^(3/8) 9204420652596601 a001 416020/1730726404001*17393796001^(9/14) 9204420652596601 a001 832040/119218851371*17393796001^(1/2) 9204420652596601 a001 416020/96450076809*45537549124^(1/2) 9204420652596601 a001 75640/28374454999*119218851371^(1/2) 9204420652596601 a001 832040/505019158607*312119004989^(1/2) 9204420652596601 a001 832040/5600748293801*312119004989^(13/22) 9204420652596601 a001 832040/505019158607*3461452808002^(11/24) 9204420652596601 a001 416020/1730726404001*14662949395604^(1/2) 9204420652596601 a001 832040/5600748293801*3461452808002^(13/24) 9204420652596601 a001 208010/204284540899*817138163596^(1/2) 9204420652596601 a001 416020/1730726404001*505019158607^(9/16) 9204420652596601 a001 416020/1730726404001*192900153618^(7/12) 9204420652596601 a001 832040/119218851371*14662949395604^(7/18) 9204420652596601 a001 832040/119218851371*505019158607^(7/16) 9204420652596601 a001 832040/5600748293801*73681302247^(5/8) 9204420652596601 a001 208010/11384387281*312119004989^(9/22) 9204420652596601 a001 208010/11384387281*14662949395604^(5/14) 9204420652596601 a001 208010/11384387281*192900153618^(5/12) 9204420652596601 a001 832040/505019158607*28143753123^(11/20) 9204420652596601 a001 832040/5600748293801*28143753123^(13/20) 9204420652596601 a001 208010/11384387281*28143753123^(9/20) 9204420652596601 a001 208010/3665737348901*4106118243^(3/4) 9204420652596601 a001 610/1860499*312119004989^(3/10) 9204420652596601 a001 832040/505019158607*1568397607^(5/8) 9204420652596601 a001 610/1860499*1568397607^(3/8) 9204420652596601 a001 832040/969323029*1322157322203^(1/4) 9204420652596601 a001 832040/4106118243*599074578^(5/12) 9204420652596601 a001 832040/119218851371*599074578^(7/12) 9204420652596601 a001 416020/1730726404001*599074578^(3/4) 9204420652596601 a001 832040/370248451*2537720636^(5/18) 9204420652596601 a001 832040/370248451*312119004989^(5/22) 9204420652596601 a001 832040/370248451*3461452808002^(5/24) 9204420652596601 a001 832040/370248451*28143753123^(1/4) 9204420652596601 a001 832040/4106118243*228826127^(7/16) 9204420652596601 a001 208010/11384387281*228826127^(9/16) 9204420652596601 a001 832040/505019158607*228826127^(11/16) 9204420652596601 a001 832040/370248451*228826127^(5/16) 9204420652596601 a001 832040/5600748293801*228826127^(13/16) 9204420652596601 a001 208010/35355581*17393796001^(3/14) 9204420652596601 a001 208010/35355581*14662949395604^(1/6) 9204420652596601 a001 208010/35355581*599074578^(1/4) 9204420652596602 a001 208010/204284540899*87403803^(3/4) 9204420652596604 a001 208010/35355581*33385282^(7/24) 9204420652596604 a001 416020/299537289*33385282^(3/8) 9204420652596604 a001 832040/54018521*45537549124^(1/6) 9204420652596605 a001 610/1860499*33385282^(11/24) 9204420652596605 a001 416020/5374978561*33385282^(13/24) 9204420652596606 a001 208010/11384387281*33385282^(5/8) 9204420652596607 a001 39088169/87403803*439204^(1/18) 9204420652596607 a001 416020/96450076809*33385282^(17/24) 9204420652596607 a001 208010/204284540899*33385282^(19/24) 9204420652596608 a001 416020/1730726404001*33385282^(7/8) 9204420652596609 a001 102334155/228826127*439204^(1/18) 9204420652596609 a001 208010/3665737348901*33385282^(23/24) 9204420652596609 a001 133957148/299537289*439204^(1/18) 9204420652596609 a001 701408733/1568397607*439204^(1/18) 9204420652596609 a001 1836311903/4106118243*439204^(1/18) 9204420652596609 a001 2403763488/5374978561*439204^(1/18) 9204420652596609 a001 12586269025/28143753123*439204^(1/18) 9204420652596609 a001 32951280099/73681302247*439204^(1/18) 9204420652596609 a001 43133785636/96450076809*439204^(1/18) 9204420652596609 a001 225851433717/505019158607*439204^(1/18) 9204420652596609 a001 591286729879/1322157322203*439204^(1/18) 9204420652596609 a001 10610209857723/23725150497407*439204^(1/18) 9204420652596609 a001 182717648081/408569081798*439204^(1/18) 9204420652596609 a001 139583862445/312119004989*439204^(1/18) 9204420652596609 a001 53316291173/119218851371*439204^(1/18) 9204420652596609 a001 10182505537/22768774562*439204^(1/18) 9204420652596609 a001 7778742049/17393796001*439204^(1/18) 9204420652596609 a001 2971215073/6643838879*439204^(1/18) 9204420652596609 a001 567451585/1268860318*439204^(1/18) 9204420652596609 a001 433494437/969323029*439204^(1/18) 9204420652596609 a001 165580141/370248451*439204^(1/18) 9204420652596610 a001 31622993/70711162*439204^(1/18) 9204420652596615 a001 24157817/54018521*439204^(1/18) 9204420652596618 a001 832040/54018521*12752043^(1/4) 9204420652596622 a001 75640/1875749*141422324^(1/6) 9204420652596622 a001 75640/1875749*73681302247^(1/8) 9204420652596643 a001 416020/96450076809*12752043^(3/4) 9204420652596652 a001 9227465/20633239*439204^(1/18) 9204420652596729 a001 208010/1970299*7881196^(3/22) 9204420652596749 a001 208010/1970299*2537720636^(1/10) 9204420652596749 a001 208010/1970299*14662949395604^(1/14) 9204420652596749 a001 208010/1970299*192900153618^(1/12) 9204420652596750 a001 208010/1970299*33385282^(1/8) 9204420652596795 a001 1346269/1568397607*1149851^(1/2) 9204420652596905 a001 1762289/3940598*439204^(1/18) 9204420652596982 a001 317811/45537549124*710647^(7/8) 9204420652597148 a001 208010/1970299*1860498^(3/20) 9204420652597257 a001 416020/16692641*1860498^(1/4) 9204420652597532 a001 208010/35355581*1860498^(7/20) 9204420652597615 a001 832040/3010349*20633239^(1/14) 9204420652597616 a001 832040/3010349*2537720636^(1/18) 9204420652597616 a001 832040/3010349*312119004989^(1/22) 9204420652597616 a001 832040/3010349*28143753123^(1/20) 9204420652597616 a001 832040/3010349*228826127^(1/16) 9204420652597709 a001 832040/370248451*1860498^(5/12) 9204420652597797 a001 416020/299537289*1860498^(9/20) 9204420652597838 a001 832040/3010349*1860498^(1/12) 9204420652597881 a001 514229/4870847*439204^(1/6) 9204420652598063 a001 610/1860499*1860498^(11/20) 9204420652598152 a001 832040/4106118243*1860498^(7/12) 9204420652598329 a001 416020/5374978561*1860498^(13/20) 9204420652598364 a001 726103/1368706081*3010349^(1/2) 9204420652598477 a001 2178309/4870847*7881196^(1/22) 9204420652598484 a001 2178309/4870847*33385282^(1/24) 9204420652598491 a001 832040/4870847*710647^(1/8) 9204420652598595 a001 208010/11384387281*1860498^(3/4) 9204420652598617 a001 2178309/4870847*1860498^(1/20) 9204420652598640 a001 1346269/3010349*439204^(1/18) 9204420652598695 a001 5702887/10749957122*3010349^(1/2) 9204420652598730 a001 726103/3020733700601*7881196^(21/22) 9204420652598744 a001 4976784/9381251041*3010349^(1/2) 9204420652598744 a001 2178309/2139295485799*7881196^(19/22) 9204420652598748 a001 726103/440719107401*7881196^(5/6) 9204420652598751 a001 39088169/73681302247*3010349^(1/2) 9204420652598752 a001 34111385/64300051206*3010349^(1/2) 9204420652598752 a001 267914296/505019158607*3010349^(1/2) 9204420652598752 a001 233802911/440719107401*3010349^(1/2) 9204420652598752 a001 1836311903/3461452808002*3010349^(1/2) 9204420652598752 a001 1602508992/3020733700601*3010349^(1/2) 9204420652598752 a001 12586269025/23725150497407*3010349^(1/2) 9204420652598752 a001 7778742049/14662949395604*3010349^(1/2) 9204420652598752 a001 2971215073/5600748293801*3010349^(1/2) 9204420652598752 a001 1134903170/2139295485799*3010349^(1/2) 9204420652598752 a001 433494437/817138163596*3010349^(1/2) 9204420652598752 a001 165580141/312119004989*3010349^(1/2) 9204420652598752 a001 63245986/119218851371*3010349^(1/2) 9204420652598755 a001 24157817/45537549124*3010349^(1/2) 9204420652598757 a001 46347/10745088481*7881196^(17/22) 9204420652598771 a001 2178309/119218851371*7881196^(15/22) 9204420652598774 a001 9227465/17393796001*3010349^(1/2) 9204420652598784 a001 726103/9381251041*7881196^(13/22) 9204420652598798 a001 2178309/6643838879*7881196^(1/2) 9204420652598811 a001 311187/224056801*7881196^(9/22) 9204420652598813 a001 726103/4250681*20633239^(1/10) 9204420652598815 a001 726103/4250681*17393796001^(1/14) 9204420652598815 a001 726103/4250681*14662949395604^(1/18) 9204420652598815 a001 726103/4250681*505019158607^(1/16) 9204420652598815 a001 726103/4250681*599074578^(1/12) 9204420652598825 a001 2178309/370248451*7881196^(7/22) 9204420652598837 a001 726103/29134601*7881196^(5/22) 9204420652598839 a001 311187/4769326*7881196^(1/6) 9204420652598852 a001 2178309/14662949395604*20633239^(13/14) 9204420652598852 a001 726103/3020733700601*20633239^(9/10) 9204420652598855 a001 726103/440719107401*20633239^(11/14) 9204420652598857 a001 2178309/312119004989*20633239^(7/10) 9204420652598858 a001 2178309/119218851371*20633239^(9/14) 9204420652598861 a001 416020/96450076809*1860498^(17/20) 9204420652598861 a001 987/4870846*20633239^(1/2) 9204420652598864 a001 311187/4769326*312119004989^(1/10) 9204420652598864 a001 311187/4769326*1568397607^(1/8) 9204420652598864 a001 2178309/969323029*20633239^(5/14) 9204420652598865 a001 2178309/370248451*20633239^(3/10) 9204420652598866 a001 726103/29134601*20633239^(3/14) 9204420652598870 a001 2178309/17393796001*54018521^(1/2) 9204420652598871 a001 726103/29134601*2537720636^(1/6) 9204420652598871 a001 726103/29134601*312119004989^(3/22) 9204420652598871 a001 726103/29134601*28143753123^(3/20) 9204420652598871 a001 726103/29134601*228826127^(3/16) 9204420652598872 a001 2178309/14662949395604*141422324^(5/6) 9204420652598872 a001 726103/9381251041*141422324^(1/2) 9204420652598872 a001 46347/4868641*817138163596^(1/6) 9204420652598872 a001 2178309/45537549124*370248451^(1/2) 9204420652598872 a001 726103/199691526*4106118243^(1/4) 9204420652598872 a001 311187/10525900321*969323029^(1/2) 9204420652598872 a001 311187/224056801*2537720636^(3/10) 9204420652598872 a001 311187/224056801*14662949395604^(3/14) 9204420652598872 a001 311187/224056801*192900153618^(1/4) 9204420652598872 a001 2178309/14662949395604*2537720636^(13/18) 9204420652598872 a001 726103/3020733700601*2537720636^(7/10) 9204420652598872 a001 726103/440719107401*2537720636^(11/18) 9204420652598872 a001 2178309/119218851371*2537720636^(1/2) 9204420652598872 a001 987/4870846*2537720636^(7/18) 9204420652598872 a001 726103/1368706081*9062201101803^(1/4) 9204420652598872 a001 726103/64300051206*6643838879^(1/2) 9204420652598872 a001 987/4870846*17393796001^(5/14) 9204420652598872 a001 987/4870846*312119004989^(7/22) 9204420652598872 a001 987/4870846*14662949395604^(5/18) 9204420652598872 a001 987/4870846*505019158607^(5/16) 9204420652598872 a001 987/4870846*28143753123^(7/20) 9204420652598872 a001 726103/3020733700601*17393796001^(9/14) 9204420652598872 a001 2178309/312119004989*17393796001^(1/2) 9204420652598872 a001 726103/9381251041*73681302247^(3/8) 9204420652598872 a001 46347/10745088481*45537549124^(1/2) 9204420652598872 a001 2178309/817138163596*119218851371^(1/2) 9204420652598872 a001 2178309/14662949395604*312119004989^(13/22) 9204420652598872 a001 726103/440719107401*312119004989^(1/2) 9204420652598872 a001 2178309/2139295485799*817138163596^(1/2) 9204420652598872 a001 726103/3020733700601*14662949395604^(1/2) 9204420652598872 a006 5^(1/2)*Fibonacci(67/2)/Lucas(32)/sqrt(5) 9204420652598872 a001 2178309/5600748293801*5600748293801^(1/2) 9204420652598872 a001 2178309/14662949395604*3461452808002^(13/24) 9204420652598872 a001 726103/3020733700601*505019158607^(9/16) 9204420652598872 a001 2178309/312119004989*14662949395604^(7/18) 9204420652598872 a001 2178309/312119004989*505019158607^(7/16) 9204420652598872 a001 726103/3020733700601*192900153618^(7/12) 9204420652598872 a001 2178309/119218851371*312119004989^(9/22) 9204420652598872 a001 2178309/119218851371*14662949395604^(5/14) 9204420652598872 a001 2178309/119218851371*192900153618^(5/12) 9204420652598872 a001 2178309/14662949395604*73681302247^(5/8) 9204420652598872 a001 2178309/119218851371*28143753123^(9/20) 9204420652598872 a001 726103/440719107401*28143753123^(11/20) 9204420652598872 a001 2178309/14662949395604*28143753123^(13/20) 9204420652598872 a001 2178309/6643838879*312119004989^(3/10) 9204420652598872 a001 2178309/2537720636*1322157322203^(1/4) 9204420652598872 a001 2178309/6643838879*1568397607^(3/8) 9204420652598872 a001 726103/440719107401*1568397607^(5/8) 9204420652598872 a001 2178309/969323029*2537720636^(5/18) 9204420652598872 a001 2178309/969323029*312119004989^(5/22) 9204420652598872 a001 2178309/969323029*3461452808002^(5/24) 9204420652598872 a001 2178309/969323029*28143753123^(1/4) 9204420652598872 a001 987/4870846*599074578^(5/12) 9204420652598872 a001 2178309/312119004989*599074578^(7/12) 9204420652598872 a001 726103/3020733700601*599074578^(3/4) 9204420652598872 a001 2178309/969323029*228826127^(5/16) 9204420652598872 a001 2178309/370248451*17393796001^(3/14) 9204420652598872 a001 2178309/370248451*14662949395604^(1/6) 9204420652598872 a001 2178309/370248451*599074578^(1/4) 9204420652598872 a001 987/4870846*228826127^(7/16) 9204420652598872 a001 2178309/119218851371*228826127^(9/16) 9204420652598872 a001 726103/440719107401*228826127^(11/16) 9204420652598872 a001 46347/4868641*87403803^(1/4) 9204420652598872 a001 2178309/14662949395604*228826127^(13/16) 9204420652598872 a001 2178309/141422324*45537549124^(1/6) 9204420652598872 a001 726103/29134601*33385282^(5/24) 9204420652598873 a001 2178309/2139295485799*87403803^(3/4) 9204420652598873 a001 2178309/20633239*7881196^(3/22) 9204420652598874 a001 2178309/370248451*33385282^(7/24) 9204420652598875 a001 2178309/54018521*141422324^(1/6) 9204420652598875 a001 311187/224056801*33385282^(3/8) 9204420652598875 a001 2178309/54018521*73681302247^(1/8) 9204420652598876 a001 2178309/6643838879*33385282^(11/24) 9204420652598876 a001 726103/9381251041*33385282^(13/24) 9204420652598877 a001 2178309/119218851371*33385282^(5/8) 9204420652598878 a001 46347/10745088481*33385282^(17/24) 9204420652598878 a001 2178309/2139295485799*33385282^(19/24) 9204420652598879 a001 726103/3020733700601*33385282^(7/8) 9204420652598887 a001 2178309/141422324*12752043^(1/4) 9204420652598894 a001 2178309/20633239*2537720636^(1/10) 9204420652598894 a001 2178309/20633239*14662949395604^(1/14) 9204420652598894 a001 2178309/20633239*192900153618^(1/12) 9204420652598895 a001 2178309/20633239*33385282^(1/8) 9204420652598900 a001 3524578/6643838879*3010349^(1/2) 9204420652598914 a001 46347/10745088481*12752043^(3/4) 9204420652598963 a006 5^(1/2)*fibonacci(67/2)/Lucas(32)/sqrt(5) 9204420652599019 a001 2178309/7881196*20633239^(1/14) 9204420652599020 a001 2178309/7881196*2537720636^(1/18) 9204420652599020 a001 2178309/7881196*312119004989^(1/22) 9204420652599020 a001 2178309/7881196*28143753123^(1/20) 9204420652599020 a001 2178309/7881196*228826127^(1/16) 9204420652599038 a001 832040/505019158607*1860498^(11/12) 9204420652599062 a001 5702887/23725150497407*7881196^(21/22) 9204420652599075 a001 5702887/5600748293801*7881196^(19/22) 9204420652599080 a001 5702887/3461452808002*7881196^(5/6) 9204420652599089 a001 5702887/1322157322203*7881196^(17/22) 9204420652599102 a001 5702887/312119004989*7881196^(15/22) 9204420652599116 a001 5702887/73681302247*7881196^(13/22) 9204420652599124 a001 196452/192933544679*7881196^(19/22) 9204420652599127 a001 208010/204284540899*1860498^(19/20) 9204420652599128 a001 4976784/3020733700601*7881196^(5/6) 9204420652599129 a001 5702887/17393796001*7881196^(1/2) 9204420652599135 a001 24157817/23725150497407*7881196^(19/22) 9204420652599135 a001 39088169/23725150497407*7881196^(5/6) 9204420652599137 a001 7465176/1730726404001*7881196^(17/22) 9204420652599140 a001 24157817/14662949395604*7881196^(5/6) 9204420652599140 a001 5702887/12752043*7881196^(1/22) 9204420652599143 a001 5702887/4106118243*7881196^(9/22) 9204420652599144 a001 39088169/9062201101803*7881196^(17/22) 9204420652599145 a001 102334155/23725150497407*7881196^(17/22) 9204420652599146 a001 31622993/7331474697802*7881196^(17/22) 9204420652599147 a001 5702887/12752043*33385282^(1/24) 9204420652599149 a001 24157817/5600748293801*7881196^(17/22) 9204420652599151 a001 3732588/204284540899*7881196^(15/22) 9204420652599153 a001 9227465/9062201101803*7881196^(19/22) 9204420652599156 a001 5702887/969323029*7881196^(7/22) 9204420652599158 a001 39088169/2139295485799*7881196^(15/22) 9204420652599158 a001 9227465/5600748293801*7881196^(5/6) 9204420652599159 a001 102334155/5600748293801*7881196^(15/22) 9204420652599159 a001 10946/599074579*7881196^(15/22) 9204420652599159 a001 433494437/23725150497407*7881196^(15/22) 9204420652599159 a001 165580141/9062201101803*7881196^(15/22) 9204420652599159 a001 31622993/1730726404001*7881196^(15/22) 9204420652599162 a001 24157817/1322157322203*7881196^(15/22) 9204420652599164 a001 2584/33385281*7881196^(13/22) 9204420652599167 a001 9227465/2139295485799*7881196^(17/22) 9204420652599169 a001 5702887/228826127*7881196^(5/22) 9204420652599171 a001 39088169/505019158607*7881196^(13/22) 9204420652599172 a001 34111385/440719107401*7881196^(13/22) 9204420652599172 a001 133957148/1730726404001*7881196^(13/22) 9204420652599172 a001 233802911/3020733700601*7881196^(13/22) 9204420652599172 a001 1836311903/23725150497407*7881196^(13/22) 9204420652599172 a001 567451585/7331474697802*7881196^(13/22) 9204420652599172 a001 433494437/5600748293801*7881196^(13/22) 9204420652599172 a001 165580141/2139295485799*7881196^(13/22) 9204420652599173 a001 31622993/408569081798*7881196^(13/22) 9204420652599175 a001 24157817/312119004989*7881196^(13/22) 9204420652599177 a001 5702887/87403803*7881196^(1/6) 9204420652599178 a001 3732588/11384387281*7881196^(1/2) 9204420652599180 a001 9227465/505019158607*7881196^(15/22) 9204420652599184 a001 5702887/23725150497407*20633239^(9/10) 9204420652599185 a001 39088169/119218851371*7881196^(1/2) 9204420652599186 a001 9303105/28374454999*7881196^(1/2) 9204420652599186 a001 66978574/204284540899*7881196^(1/2) 9204420652599186 a001 701408733/2139295485799*7881196^(1/2) 9204420652599186 a001 1836311903/5600748293801*7881196^(1/2) 9204420652599186 a001 1201881744/3665737348901*7881196^(1/2) 9204420652599186 a001 7778742049/23725150497407*7881196^(1/2) 9204420652599186 a001 2971215073/9062201101803*7881196^(1/2) 9204420652599186 a001 567451585/1730726404001*7881196^(1/2) 9204420652599186 a001 433494437/1322157322203*7881196^(1/2) 9204420652599186 a001 165580141/505019158607*7881196^(1/2) 9204420652599186 a001 5702887/54018521*7881196^(3/22) 9204420652599186 a001 31622993/96450076809*7881196^(1/2) 9204420652599186 a001 5702887/3461452808002*20633239^(11/14) 9204420652599188 a001 5702887/817138163596*20633239^(7/10) 9204420652599189 a001 24157817/73681302247*7881196^(1/2) 9204420652599189 a001 5702887/312119004989*20633239^(9/14) 9204420652599191 a001 7465176/5374978561*7881196^(9/22) 9204420652599192 a001 5702887/28143753123*20633239^(1/2) 9204420652599193 a001 5702887/33385282*20633239^(1/10) 9204420652599194 a001 9227465/119218851371*7881196^(13/22) 9204420652599195 a001 5702887/33385282*17393796001^(1/14) 9204420652599195 a001 5702887/33385282*14662949395604^(1/18) 9204420652599195 a001 5702887/33385282*505019158607^(1/16) 9204420652599195 a001 5702887/33385282*599074578^(1/12) 9204420652599196 a001 5702887/2537720636*20633239^(5/14) 9204420652599197 a001 5702887/969323029*20633239^(3/10) 9204420652599198 a001 39088169/28143753123*7881196^(9/22) 9204420652599198 a001 5702887/228826127*20633239^(3/14) 9204420652599199 a001 14619165/10525900321*7881196^(9/22) 9204420652599199 a001 133957148/96450076809*7881196^(9/22) 9204420652599199 a001 701408733/505019158607*7881196^(9/22) 9204420652599199 a001 1836311903/1322157322203*7881196^(9/22) 9204420652599199 a001 14930208/10749853441*7881196^(9/22) 9204420652599199 a001 12586269025/9062201101803*7881196^(9/22) 9204420652599199 a001 32951280099/23725150497407*7881196^(9/22) 9204420652599199 a001 10182505537/7331474697802*7881196^(9/22) 9204420652599199 a001 7778742049/5600748293801*7881196^(9/22) 9204420652599199 a001 2971215073/2139295485799*7881196^(9/22) 9204420652599199 a001 567451585/408569081798*7881196^(9/22) 9204420652599199 a001 433494437/312119004989*7881196^(9/22) 9204420652599199 a001 165580141/119218851371*7881196^(9/22) 9204420652599200 a001 31622993/22768774562*7881196^(9/22) 9204420652599202 a001 1597/12752044*54018521^(1/2) 9204420652599202 a001 5702887/87403803*312119004989^(1/10) 9204420652599202 a001 5702887/87403803*1568397607^(1/8) 9204420652599202 a001 24157817/17393796001*7881196^(9/22) 9204420652599203 a001 5702887/73681302247*141422324^(1/2) 9204420652599203 a001 5702887/228826127*2537720636^(1/6) 9204420652599203 a001 5702887/228826127*312119004989^(3/22) 9204420652599203 a001 5702887/228826127*28143753123^(3/20) 9204420652599203 a001 5702887/228826127*228826127^(3/16) 9204420652599203 a001 5702887/119218851371*370248451^(1/2) 9204420652599203 a001 5702887/599074578*817138163596^(1/6) 9204420652599203 a001 5702887/192900153618*969323029^(1/2) 9204420652599203 a001 5702887/1568397607*4106118243^(1/4) 9204420652599203 a001 5702887/23725150497407*2537720636^(7/10) 9204420652599203 a001 5702887/4106118243*2537720636^(3/10) 9204420652599203 a001 5702887/3461452808002*2537720636^(11/18) 9204420652599203 a001 5702887/312119004989*2537720636^(1/2) 9204420652599203 a001 5702887/28143753123*2537720636^(7/18) 9204420652599203 a001 5702887/4106118243*14662949395604^(3/14) 9204420652599203 a001 5702887/4106118243*192900153618^(1/4) 9204420652599203 a001 5702887/505019158607*6643838879^(1/2) 9204420652599203 a001 5702887/10749957122*9062201101803^(1/4) 9204420652599203 a001 5702887/28143753123*17393796001^(5/14) 9204420652599203 a001 5702887/23725150497407*17393796001^(9/14) 9204420652599203 a001 5702887/817138163596*17393796001^(1/2) 9204420652599203 a001 5702887/28143753123*312119004989^(7/22) 9204420652599203 a001 5702887/28143753123*14662949395604^(5/18) 9204420652599203 a001 5702887/28143753123*505019158607^(5/16) 9204420652599203 a001 5702887/28143753123*28143753123^(7/20) 9204420652599203 a001 5702887/1322157322203*45537549124^(1/2) 9204420652599203 a001 5702887/73681302247*73681302247^(3/8) 9204420652599203 a001 5702887/2139295485799*119218851371^(1/2) 9204420652599203 a001 5702887/3461452808002*312119004989^(1/2) 9204420652599203 a001 5702887/5600748293801*817138163596^(1/2) 9204420652599203 a001 5702887/3461452808002*3461452808002^(11/24) 9204420652599203 a001 5702887/14662949395604*5600748293801^(1/2) 9204420652599203 a001 5702887/23725150497407*505019158607^(9/16) 9204420652599203 a001 5702887/817138163596*505019158607^(7/16) 9204420652599203 a001 5702887/312119004989*312119004989^(9/22) 9204420652599203 a001 5702887/312119004989*14662949395604^(5/14) 9204420652599203 a001 5702887/23725150497407*192900153618^(7/12) 9204420652599203 a001 5702887/312119004989*192900153618^(5/12) 9204420652599203 a001 5702887/312119004989*28143753123^(9/20) 9204420652599203 a001 5702887/3461452808002*28143753123^(11/20) 9204420652599203 a001 5702887/17393796001*312119004989^(3/10) 9204420652599203 a001 5702887/6643838879*1322157322203^(1/4) 9204420652599203 a001 5702887/2537720636*2537720636^(5/18) 9204420652599203 a001 5702887/2537720636*312119004989^(5/22) 9204420652599203 a001 5702887/2537720636*3461452808002^(5/24) 9204420652599203 a001 5702887/2537720636*28143753123^(1/4) 9204420652599203 a001 5702887/17393796001*1568397607^(3/8) 9204420652599203 a001 5702887/3461452808002*1568397607^(5/8) 9204420652599203 a001 5702887/969323029*17393796001^(3/14) 9204420652599203 a001 5702887/969323029*14662949395604^(1/6) 9204420652599203 a001 5702887/28143753123*599074578^(5/12) 9204420652599203 a001 5702887/817138163596*599074578^(7/12) 9204420652599203 a001 5702887/969323029*599074578^(1/4) 9204420652599203 a001 5702887/23725150497407*599074578^(3/4) 9204420652599203 a001 5702887/2537720636*228826127^(5/16) 9204420652599203 a001 5702887/370248451*45537549124^(1/6) 9204420652599203 a001 5702887/28143753123*228826127^(7/16) 9204420652599203 a001 5702887/312119004989*228826127^(9/16) 9204420652599203 a001 5702887/3461452808002*228826127^(11/16) 9204420652599204 a001 5702887/599074578*87403803^(1/4) 9204420652599204 a001 5702887/141422324*141422324^(1/6) 9204420652599204 a001 5702887/141422324*73681302247^(1/8) 9204420652599204 a001 5702887/5600748293801*87403803^(3/4) 9204420652599204 a001 196452/33391061*7881196^(7/22) 9204420652599205 a001 5702887/228826127*33385282^(5/24) 9204420652599206 a001 5702887/969323029*33385282^(7/24) 9204420652599206 a001 5702887/4106118243*33385282^(3/8) 9204420652599206 a001 5702887/54018521*2537720636^(1/10) 9204420652599206 a001 5702887/54018521*14662949395604^(1/14) 9204420652599206 a001 5702887/54018521*192900153618^(1/12) 9204420652599207 a001 5702887/17393796001*33385282^(11/24) 9204420652599207 a001 9227465/28143753123*7881196^(1/2) 9204420652599207 a001 5702887/54018521*33385282^(1/8) 9204420652599208 a001 5702887/73681302247*33385282^(13/24) 9204420652599208 a001 5702887/312119004989*33385282^(5/8) 9204420652599209 a001 5702887/1322157322203*33385282^(17/24) 9204420652599210 a001 5702887/5600748293801*33385282^(19/24) 9204420652599210 a001 5702887/23725150497407*33385282^(7/8) 9204420652599212 a001 39088169/6643838879*7881196^(7/22) 9204420652599213 a001 102334155/17393796001*7881196^(7/22) 9204420652599213 a001 66978574/11384387281*7881196^(7/22) 9204420652599213 a001 701408733/119218851371*7881196^(7/22) 9204420652599213 a001 1836311903/312119004989*7881196^(7/22) 9204420652599213 a001 1201881744/204284540899*7881196^(7/22) 9204420652599213 a001 12586269025/2139295485799*7881196^(7/22) 9204420652599213 a001 32951280099/5600748293801*7881196^(7/22) 9204420652599213 a001 1135099622/192933544679*7881196^(7/22) 9204420652599213 a001 139583862445/23725150497407*7881196^(7/22) 9204420652599213 a001 53316291173/9062201101803*7881196^(7/22) 9204420652599213 a001 10182505537/1730726404001*7881196^(7/22) 9204420652599213 a001 7778742049/1322157322203*7881196^(7/22) 9204420652599213 a001 2971215073/505019158607*7881196^(7/22) 9204420652599213 a001 567451585/96450076809*7881196^(7/22) 9204420652599213 a001 433494437/73681302247*7881196^(7/22) 9204420652599213 a001 165580141/28143753123*7881196^(7/22) 9204420652599213 a001 31622993/5374978561*7881196^(7/22) 9204420652599216 a001 24157817/4106118243*7881196^(7/22) 9204420652599217 a001 5702887/370248451*12752043^(1/4) 9204420652599218 a001 829464/33281921*7881196^(5/22) 9204420652599221 a001 9227465/6643838879*7881196^(9/22) 9204420652599223 a001 5702887/20633239*20633239^(1/14) 9204420652599225 a001 5702887/20633239*2537720636^(1/18) 9204420652599225 a001 5702887/20633239*312119004989^(1/22) 9204420652599225 a001 5702887/20633239*28143753123^(1/20) 9204420652599225 a001 5702887/20633239*228826127^(1/16) 9204420652599225 a001 39088169/1568397607*7881196^(5/22) 9204420652599226 a001 34111385/1368706081*7881196^(5/22) 9204420652599226 a001 133957148/5374978561*7881196^(5/22) 9204420652599226 a001 233802911/9381251041*7881196^(5/22) 9204420652599226 a001 1836311903/73681302247*7881196^(5/22) 9204420652599226 a001 267084832/10716675201*7881196^(5/22) 9204420652599226 a001 12586269025/505019158607*7881196^(5/22) 9204420652599226 a001 10983760033/440719107401*7881196^(5/22) 9204420652599226 a001 43133785636/1730726404001*7881196^(5/22) 9204420652599226 a001 75283811239/3020733700601*7881196^(5/22) 9204420652599226 a001 182717648081/7331474697802*7881196^(5/22) 9204420652599226 a001 139583862445/5600748293801*7881196^(5/22) 9204420652599226 a001 53316291173/2139295485799*7881196^(5/22) 9204420652599226 a001 10182505537/408569081798*7881196^(5/22) 9204420652599226 a001 7778742049/312119004989*7881196^(5/22) 9204420652599226 a001 2971215073/119218851371*7881196^(5/22) 9204420652599226 a001 567451585/22768774562*7881196^(5/22) 9204420652599226 a001 433494437/17393796001*7881196^(5/22) 9204420652599226 a001 165580141/6643838879*7881196^(5/22) 9204420652599227 a001 31622993/1268860318*7881196^(5/22) 9204420652599227 a001 14930352/228826127*7881196^(1/6) 9204420652599229 a001 24157817/969323029*7881196^(5/22) 9204420652599232 a001 3732588/35355581*7881196^(3/22) 9204420652599234 a001 39088169/599074578*7881196^(1/6) 9204420652599234 a001 9227465/1568397607*7881196^(7/22) 9204420652599235 a001 4976784/3020733700601*20633239^(11/14) 9204420652599235 a001 14619165/224056801*7881196^(1/6) 9204420652599235 a001 267914296/4106118243*7881196^(1/6) 9204420652599235 a001 701408733/10749957122*7881196^(1/6) 9204420652599235 a001 1836311903/28143753123*7881196^(1/6) 9204420652599235 a001 686789568/10525900321*7881196^(1/6) 9204420652599235 a001 12586269025/192900153618*7881196^(1/6) 9204420652599235 a001 32951280099/505019158607*7881196^(1/6) 9204420652599235 a001 86267571272/1322157322203*7881196^(1/6) 9204420652599235 a001 32264490531/494493258286*7881196^(1/6) 9204420652599235 a001 591286729879/9062201101803*7881196^(1/6) 9204420652599235 a001 1548008755920/23725150497407*7881196^(1/6) 9204420652599235 a001 365435296162/5600748293801*7881196^(1/6) 9204420652599235 a001 139583862445/2139295485799*7881196^(1/6) 9204420652599235 a001 53316291173/817138163596*7881196^(1/6) 9204420652599235 a001 20365011074/312119004989*7881196^(1/6) 9204420652599235 a001 7778742049/119218851371*7881196^(1/6) 9204420652599235 a001 2971215073/45537549124*7881196^(1/6) 9204420652599235 a001 1134903170/17393796001*7881196^(1/6) 9204420652599235 a001 433494437/6643838879*7881196^(1/6) 9204420652599235 a001 165580141/2537720636*7881196^(1/6) 9204420652599236 a001 63245986/969323029*7881196^(1/6) 9204420652599236 a001 14930352/2139295485799*20633239^(7/10) 9204420652599237 a001 7465176/16692641*7881196^(1/22) 9204420652599238 a001 3732588/204284540899*20633239^(9/14) 9204420652599238 a001 24157817/370248451*7881196^(1/6) 9204420652599239 a001 39088169/370248451*7881196^(3/22) 9204420652599239 a001 102334155/969323029*7881196^(3/22) 9204420652599240 a001 66978574/634430159*7881196^(3/22) 9204420652599240 a001 701408733/6643838879*7881196^(3/22) 9204420652599240 a001 1836311903/17393796001*7881196^(3/22) 9204420652599240 a001 1201881744/11384387281*7881196^(3/22) 9204420652599240 a001 12586269025/119218851371*7881196^(3/22) 9204420652599240 a001 32951280099/312119004989*7881196^(3/22) 9204420652599240 a001 21566892818/204284540899*7881196^(3/22) 9204420652599240 a001 225851433717/2139295485799*7881196^(3/22) 9204420652599240 a001 182717648081/1730726404001*7881196^(3/22) 9204420652599240 a001 139583862445/1322157322203*7881196^(3/22) 9204420652599240 a001 53316291173/505019158607*7881196^(3/22) 9204420652599240 a001 10182505537/96450076809*7881196^(3/22) 9204420652599240 a001 7778742049/73681302247*7881196^(3/22) 9204420652599240 a001 2971215073/28143753123*7881196^(3/22) 9204420652599240 a001 567451585/5374978561*7881196^(3/22) 9204420652599240 a001 433494437/4106118243*7881196^(3/22) 9204420652599240 a001 165580141/1568397607*7881196^(3/22) 9204420652599240 a001 31622993/299537289*7881196^(3/22) 9204420652599241 a001 14930352/73681302247*20633239^(1/2) 9204420652599242 a001 39088169/23725150497407*20633239^(11/14) 9204420652599242 a001 2178309/7881196*1860498^(1/12) 9204420652599243 a001 24157817/228826127*7881196^(3/22) 9204420652599244 a001 39088169/5600748293801*20633239^(7/10) 9204420652599244 a001 7465176/16692641*33385282^(1/24) 9204420652599244 a001 14930352/6643838879*20633239^(5/14) 9204420652599245 a001 102334155/14662949395604*20633239^(7/10) 9204420652599245 a001 39088169/2139295485799*20633239^(9/14) 9204420652599245 a001 165580141/23725150497407*20633239^(7/10) 9204420652599245 a001 196452/33391061*20633239^(3/10) 9204420652599245 a001 63245986/9062201101803*20633239^(7/10) 9204420652599246 a001 5702887/1322157322203*12752043^(3/4) 9204420652599246 a001 102334155/5600748293801*20633239^(9/14) 9204420652599246 a001 10946/599074579*20633239^(9/14) 9204420652599246 a001 433494437/23725150497407*20633239^(9/14) 9204420652599246 a001 24157817/14662949395604*20633239^(11/14) 9204420652599246 a001 165580141/9062201101803*20633239^(9/14) 9204420652599246 a001 31622993/1730726404001*20633239^(9/14) 9204420652599247 a001 829464/33281921*20633239^(3/14) 9204420652599248 a001 39088169/192900153618*20633239^(1/2) 9204420652599248 a001 9227465/370248451*7881196^(5/22) 9204420652599248 a001 24157817/3461452808002*20633239^(7/10) 9204420652599248 a001 4976784/29134601*20633239^(1/10) 9204420652599249 a001 102334155/505019158607*20633239^(1/2) 9204420652599249 a001 267914296/1322157322203*20633239^(1/2) 9204420652599249 a001 701408733/3461452808002*20633239^(1/2) 9204420652599249 a001 1836311903/9062201101803*20633239^(1/2) 9204420652599249 a001 4807526976/23725150497407*20633239^(1/2) 9204420652599249 a001 2971215073/14662949395604*20633239^(1/2) 9204420652599249 a001 1134903170/5600748293801*20633239^(1/2) 9204420652599249 a001 433494437/2139295485799*20633239^(1/2) 9204420652599249 a001 24157817/1322157322203*20633239^(9/14) 9204420652599249 a001 165580141/817138163596*20633239^(1/2) 9204420652599250 a001 63245986/312119004989*20633239^(1/2) 9204420652599250 a001 14930352/119218851371*54018521^(1/2) 9204420652599250 a001 4976784/29134601*17393796001^(1/14) 9204420652599250 a001 4976784/29134601*14662949395604^(1/18) 9204420652599250 a001 4976784/29134601*505019158607^(1/16) 9204420652599250 a001 4976784/29134601*599074578^(1/12) 9204420652599251 a001 39088169/87403803*7881196^(1/22) 9204420652599251 a001 39088169/17393796001*20633239^(5/14) 9204420652599251 a001 2584/33385281*141422324^(1/2) 9204420652599251 a001 14930352/228826127*312119004989^(1/10) 9204420652599251 a001 14930352/228826127*1568397607^(1/8) 9204420652599252 a001 14930352/312119004989*370248451^(1/2) 9204420652599252 a001 829464/33281921*2537720636^(1/6) 9204420652599252 a001 829464/33281921*312119004989^(3/22) 9204420652599252 a001 829464/33281921*28143753123^(3/20) 9204420652599252 a001 14930352/370248451*141422324^(1/6) 9204420652599252 a001 14930352/505019158607*969323029^(1/2) 9204420652599252 a001 14930352/1568397607*817138163596^(1/6) 9204420652599252 a001 4976784/3020733700601*2537720636^(11/18) 9204420652599252 a001 3732588/204284540899*2537720636^(1/2) 9204420652599252 a001 14930352/73681302247*2537720636^(7/18) 9204420652599252 a001 7465176/5374978561*2537720636^(3/10) 9204420652599252 a001 4976784/1368706081*4106118243^(1/4) 9204420652599252 a001 14930352/6643838879*2537720636^(5/18) 9204420652599252 a001 4976784/440719107401*6643838879^(1/2) 9204420652599252 a001 7465176/5374978561*14662949395604^(3/14) 9204420652599252 a001 7465176/5374978561*192900153618^(1/4) 9204420652599252 a001 14930352/2139295485799*17393796001^(1/2) 9204420652599252 a001 14930352/73681302247*17393796001^(5/14) 9204420652599252 a001 4976784/9381251041*9062201101803^(1/4) 9204420652599252 a001 7465176/1730726404001*45537549124^(1/2) 9204420652599252 a001 14930352/73681302247*312119004989^(7/22) 9204420652599252 a001 14930352/73681302247*14662949395604^(5/18) 9204420652599252 a001 14930352/73681302247*505019158607^(5/16) 9204420652599252 a001 14930352/5600748293801*119218851371^(1/2) 9204420652599252 a001 4976784/3020733700601*312119004989^(1/2) 9204420652599252 a001 14930352/23725150497407*2139295485799^(1/2) 9204420652599252 a006 5^(1/2)*Fibonacci(75/2)/Lucas(36)/sqrt(5) 9204420652599252 a001 4976784/3020733700601*3461452808002^(11/24) 9204420652599252 a001 14930352/2139295485799*14662949395604^(7/18) 9204420652599252 a001 3732588/204284540899*14662949395604^(5/14) 9204420652599252 a001 14930352/2139295485799*505019158607^(7/16) 9204420652599252 a001 3732588/204284540899*192900153618^(5/12) 9204420652599252 a001 2584/33385281*73681302247^(3/8) 9204420652599252 a001 14930352/73681302247*28143753123^(7/20) 9204420652599252 a001 3732588/11384387281*312119004989^(3/10) 9204420652599252 a001 3732588/204284540899*28143753123^(9/20) 9204420652599252 a001 4976784/3020733700601*28143753123^(11/20) 9204420652599252 a001 14930352/17393796001*1322157322203^(1/4) 9204420652599252 a001 14930352/6643838879*312119004989^(5/22) 9204420652599252 a001 14930352/6643838879*3461452808002^(5/24) 9204420652599252 a001 14930352/6643838879*28143753123^(1/4) 9204420652599252 a001 3732588/11384387281*1568397607^(3/8) 9204420652599252 a001 196452/33391061*17393796001^(3/14) 9204420652599252 a001 196452/33391061*14662949395604^(1/6) 9204420652599252 a001 4976784/3020733700601*1568397607^(5/8) 9204420652599252 a001 829464/33281921*228826127^(3/16) 9204420652599252 a001 196452/33391061*599074578^(1/4) 9204420652599252 a001 14930352/969323029*45537549124^(1/6) 9204420652599252 a001 14930352/73681302247*599074578^(5/12) 9204420652599252 a001 14930352/2139295485799*599074578^(7/12) 9204420652599252 a001 14930352/6643838879*228826127^(5/16) 9204420652599252 a001 14930352/370248451*73681302247^(1/8) 9204420652599252 a001 14930352/73681302247*228826127^(7/16) 9204420652599252 a001 3732588/204284540899*228826127^(9/16) 9204420652599252 a001 4976784/3020733700601*228826127^(11/16) 9204420652599252 a001 14930352/1568397607*87403803^(1/4) 9204420652599252 a001 102334155/45537549124*20633239^(5/14) 9204420652599252 a001 3732588/35355581*2537720636^(1/10) 9204420652599252 a001 3732588/35355581*14662949395604^(1/14) 9204420652599252 a001 3732588/35355581*192900153618^(1/12) 9204420652599252 a001 267914296/119218851371*20633239^(5/14) 9204420652599252 a001 3524667/1568437211*20633239^(5/14) 9204420652599252 a001 1836311903/817138163596*20633239^(5/14) 9204420652599252 a001 4807526976/2139295485799*20633239^(5/14) 9204420652599252 a001 12586269025/5600748293801*20633239^(5/14) 9204420652599252 a001 32951280099/14662949395604*20633239^(5/14) 9204420652599252 a001 53316291173/23725150497407*20633239^(5/14) 9204420652599252 a001 20365011074/9062201101803*20633239^(5/14) 9204420652599252 a001 7778742049/3461452808002*20633239^(5/14) 9204420652599252 a001 2971215073/1322157322203*20633239^(5/14) 9204420652599252 a001 1134903170/505019158607*20633239^(5/14) 9204420652599252 a001 433494437/192900153618*20633239^(5/14) 9204420652599252 a001 39088169/6643838879*20633239^(3/10) 9204420652599252 a001 24157817/119218851371*20633239^(1/2) 9204420652599252 a001 165580141/73681302247*20633239^(5/14) 9204420652599253 a001 196452/192933544679*87403803^(3/4) 9204420652599253 a001 63245986/28143753123*20633239^(5/14) 9204420652599253 a001 102334155/228826127*7881196^(1/22) 9204420652599253 a001 133957148/299537289*7881196^(1/22) 9204420652599253 a001 3732588/35355581*33385282^(1/8) 9204420652599253 a001 701408733/1568397607*7881196^(1/22) 9204420652599253 a001 1836311903/4106118243*7881196^(1/22) 9204420652599253 a001 2403763488/5374978561*7881196^(1/22) 9204420652599253 a001 12586269025/28143753123*7881196^(1/22) 9204420652599253 a001 32951280099/73681302247*7881196^(1/22) 9204420652599253 a001 43133785636/96450076809*7881196^(1/22) 9204420652599253 a001 225851433717/505019158607*7881196^(1/22) 9204420652599253 a001 591286729879/1322157322203*7881196^(1/22) 9204420652599253 a001 10610209857723/23725150497407*7881196^(1/22) 9204420652599253 a001 182717648081/408569081798*7881196^(1/22) 9204420652599253 a001 139583862445/312119004989*7881196^(1/22) 9204420652599253 a001 53316291173/119218851371*7881196^(1/22) 9204420652599253 a001 10182505537/22768774562*7881196^(1/22) 9204420652599253 a001 7778742049/17393796001*7881196^(1/22) 9204420652599253 a001 2971215073/6643838879*7881196^(1/22) 9204420652599253 a001 567451585/1268860318*7881196^(1/22) 9204420652599253 a001 433494437/969323029*7881196^(1/22) 9204420652599253 a001 102334155/17393796001*20633239^(3/10) 9204420652599253 a001 14930352/54018521*20633239^(1/14) 9204420652599253 a001 165580141/370248451*7881196^(1/22) 9204420652599253 a001 829464/33281921*33385282^(5/24) 9204420652599253 a001 66978574/11384387281*20633239^(3/10) 9204420652599253 a001 701408733/119218851371*20633239^(3/10) 9204420652599253 a001 1836311903/312119004989*20633239^(3/10) 9204420652599253 a001 1201881744/204284540899*20633239^(3/10) 9204420652599253 a001 12586269025/2139295485799*20633239^(3/10) 9204420652599253 a001 32951280099/5600748293801*20633239^(3/10) 9204420652599253 a001 1135099622/192933544679*20633239^(3/10) 9204420652599253 a001 139583862445/23725150497407*20633239^(3/10) 9204420652599253 a001 53316291173/9062201101803*20633239^(3/10) 9204420652599253 a001 10182505537/1730726404001*20633239^(3/10) 9204420652599253 a001 7778742049/1322157322203*20633239^(3/10) 9204420652599253 a001 2971215073/505019158607*20633239^(3/10) 9204420652599253 a001 567451585/96450076809*20633239^(3/10) 9204420652599253 a001 433494437/73681302247*20633239^(3/10) 9204420652599253 a001 165580141/28143753123*20633239^(3/10) 9204420652599254 a006 5^(1/2)*fibonacci(75/2)/Lucas(36)/sqrt(5) 9204420652599254 a001 31622993/5374978561*20633239^(3/10) 9204420652599254 a001 196452/33391061*33385282^(7/24) 9204420652599254 a001 39088169/1568397607*20633239^(3/14) 9204420652599254 a001 31622993/70711162*7881196^(1/22) 9204420652599255 a001 7465176/5374978561*33385282^(3/8) 9204420652599255 a001 14930352/54018521*2537720636^(1/18) 9204420652599255 a001 14930352/54018521*312119004989^(1/22) 9204420652599255 a001 14930352/54018521*28143753123^(1/20) 9204420652599255 a001 14930352/54018521*228826127^(1/16) 9204420652599255 a001 34111385/1368706081*20633239^(3/14) 9204420652599255 a001 133957148/5374978561*20633239^(3/14) 9204420652599255 a001 233802911/9381251041*20633239^(3/14) 9204420652599255 a001 1836311903/73681302247*20633239^(3/14) 9204420652599255 a001 267084832/10716675201*20633239^(3/14) 9204420652599255 a001 12586269025/505019158607*20633239^(3/14) 9204420652599255 a001 10983760033/440719107401*20633239^(3/14) 9204420652599255 a001 43133785636/1730726404001*20633239^(3/14) 9204420652599255 a001 75283811239/3020733700601*20633239^(3/14) 9204420652599255 a001 182717648081/7331474697802*20633239^(3/14) 9204420652599255 a001 139583862445/5600748293801*20633239^(3/14) 9204420652599255 a001 53316291173/2139295485799*20633239^(3/14) 9204420652599255 a001 10182505537/408569081798*20633239^(3/14) 9204420652599255 a001 7778742049/312119004989*20633239^(3/14) 9204420652599255 a001 2971215073/119218851371*20633239^(3/14) 9204420652599255 a001 567451585/22768774562*20633239^(3/14) 9204420652599255 a001 433494437/17393796001*20633239^(3/14) 9204420652599255 a001 24157817/10749957122*20633239^(5/14) 9204420652599255 a001 165580141/6643838879*20633239^(3/14) 9204420652599255 a001 3732588/11384387281*33385282^(11/24) 9204420652599256 a001 31622993/1268860318*20633239^(3/14) 9204420652599256 a001 2584/33385281*33385282^(13/24) 9204420652599256 a001 39088169/228826127*20633239^(1/10) 9204420652599257 a001 24157817/4106118243*20633239^(3/10) 9204420652599257 a001 3732588/204284540899*33385282^(5/8) 9204420652599257 a001 39088169/312119004989*54018521^(1/2) 9204420652599257 a001 9227465/141422324*7881196^(1/6) 9204420652599257 a001 7465176/1730726404001*33385282^(17/24) 9204420652599257 a001 34111385/199691526*20633239^(1/10) 9204420652599258 a001 39088169/141422324*20633239^(1/14) 9204420652599258 a001 267914296/1568397607*20633239^(1/10) 9204420652599258 a001 233802911/1368706081*20633239^(1/10) 9204420652599258 a001 1836311903/10749957122*20633239^(1/10) 9204420652599258 a001 1602508992/9381251041*20633239^(1/10) 9204420652599258 a001 12586269025/73681302247*20633239^(1/10) 9204420652599258 a001 10983760033/64300051206*20633239^(1/10) 9204420652599258 a001 86267571272/505019158607*20633239^(1/10) 9204420652599258 a001 75283811239/440719107401*20633239^(1/10) 9204420652599258 a001 2504730781961/14662949395604*20633239^(1/10) 9204420652599258 a001 139583862445/817138163596*20633239^(1/10) 9204420652599258 a001 53316291173/312119004989*20633239^(1/10) 9204420652599258 a001 20365011074/119218851371*20633239^(1/10) 9204420652599258 a001 7778742049/45537549124*20633239^(1/10) 9204420652599258 a001 2971215073/17393796001*20633239^(1/10) 9204420652599258 a001 1134903170/6643838879*20633239^(1/10) 9204420652599258 a001 433494437/2537720636*20633239^(1/10) 9204420652599258 a001 165580141/969323029*20633239^(1/10) 9204420652599258 a001 39088169/87403803*33385282^(1/24) 9204420652599258 a001 102334155/817138163596*54018521^(1/2) 9204420652599258 a001 196452/192933544679*33385282^(19/24) 9204420652599258 a001 102334155/370248451*20633239^(1/14) 9204420652599258 a001 63245986/370248451*20633239^(1/10) 9204420652599258 a001 267914296/2139295485799*54018521^(1/2) 9204420652599258 a001 701408733/5600748293801*54018521^(1/2) 9204420652599258 a001 1836311903/14662949395604*54018521^(1/2) 9204420652599258 a001 2971215073/23725150497407*54018521^(1/2) 9204420652599258 a001 1134903170/9062201101803*54018521^(1/2) 9204420652599258 a001 433494437/3461452808002*54018521^(1/2) 9204420652599258 a001 267914296/969323029*20633239^(1/14) 9204420652599258 a001 701408733/2537720636*20633239^(1/14) 9204420652599258 a001 1836311903/6643838879*20633239^(1/14) 9204420652599258 a001 4807526976/17393796001*20633239^(1/14) 9204420652599258 a001 12586269025/45537549124*20633239^(1/14) 9204420652599258 a001 32951280099/119218851371*20633239^(1/14) 9204420652599258 a001 86267571272/312119004989*20633239^(1/14) 9204420652599258 a001 225851433717/817138163596*20633239^(1/14) 9204420652599258 a001 1548008755920/5600748293801*20633239^(1/14) 9204420652599258 a001 139583862445/505019158607*20633239^(1/14) 9204420652599258 a001 53316291173/192900153618*20633239^(1/14) 9204420652599258 a001 20365011074/73681302247*20633239^(1/14) 9204420652599258 a001 7778742049/28143753123*20633239^(1/14) 9204420652599258 a001 2971215073/10749957122*20633239^(1/14) 9204420652599258 a001 1134903170/4106118243*20633239^(1/14) 9204420652599258 a001 433494437/1568397607*20633239^(1/14) 9204420652599258 a001 165580141/1322157322203*54018521^(1/2) 9204420652599258 a001 165580141/599074578*20633239^(1/14) 9204420652599258 a001 24157817/969323029*20633239^(3/14) 9204420652599258 a001 39088169/505019158607*141422324^(1/2) 9204420652599258 a001 39088169/228826127*17393796001^(1/14) 9204420652599258 a001 39088169/228826127*14662949395604^(1/18) 9204420652599258 a001 39088169/228826127*505019158607^(1/16) 9204420652599258 a001 39088169/228826127*599074578^(1/12) 9204420652599259 a001 39088169/969323029*141422324^(1/6) 9204420652599259 a001 63245986/228826127*20633239^(1/14) 9204420652599259 a001 4181/87403804*370248451^(1/2) 9204420652599259 a001 39088169/599074578*312119004989^(1/10) 9204420652599259 a001 39088169/599074578*1568397607^(1/8) 9204420652599259 a001 39088169/1322157322203*969323029^(1/2) 9204420652599259 a001 39088169/1568397607*2537720636^(1/6) 9204420652599259 a001 39088169/1568397607*312119004989^(3/22) 9204420652599259 a001 39088169/1568397607*28143753123^(3/20) 9204420652599259 a001 39088169/23725150497407*2537720636^(11/18) 9204420652599259 a001 39088169/2139295485799*2537720636^(1/2) 9204420652599259 a001 39088169/192900153618*2537720636^(7/18) 9204420652599259 a001 39088169/4106118243*817138163596^(1/6) 9204420652599259 a001 39088169/28143753123*2537720636^(3/10) 9204420652599259 a001 39088169/17393796001*2537720636^(5/18) 9204420652599259 a001 39088169/3461452808002*6643838879^(1/2) 9204420652599259 a001 39088169/5600748293801*17393796001^(1/2) 9204420652599259 a001 39088169/28143753123*14662949395604^(3/14) 9204420652599259 a001 39088169/28143753123*192900153618^(1/4) 9204420652599259 a001 39088169/192900153618*17393796001^(5/14) 9204420652599259 a001 39088169/9062201101803*45537549124^(1/2) 9204420652599259 a001 39088169/73681302247*9062201101803^(1/4) 9204420652599259 a001 39088169/14662949395604*119218851371^(1/2) 9204420652599259 a001 39088169/192900153618*312119004989^(7/22) 9204420652599259 a001 39088169/192900153618*14662949395604^(5/18) 9204420652599259 a001 39088169/192900153618*505019158607^(5/16) 9204420652599259 a001 39088169/23725150497407*312119004989^(1/2) 9204420652599259 a001 39088169/2139295485799*312119004989^(9/22) 9204420652599259 a006 5^(1/2)*Fibonacci(79/2)/Lucas(38)/sqrt(5) 9204420652599259 a001 39088169/5600748293801*14662949395604^(7/18) 9204420652599259 a001 39088169/23725150497407*3461452808002^(11/24) 9204420652599259 a001 39088169/2139295485799*14662949395604^(5/14) 9204420652599259 a001 39088169/5600748293801*505019158607^(7/16) 9204420652599259 a001 39088169/2139295485799*192900153618^(5/12) 9204420652599259 a001 39088169/505019158607*73681302247^(3/8) 9204420652599259 a001 39088169/119218851371*312119004989^(3/10) 9204420652599259 a001 39088169/192900153618*28143753123^(7/20) 9204420652599259 a001 39088169/45537549124*1322157322203^(1/4) 9204420652599259 a001 39088169/2139295485799*28143753123^(9/20) 9204420652599259 a001 39088169/23725150497407*28143753123^(11/20) 9204420652599259 a001 39088169/17393796001*312119004989^(5/22) 9204420652599259 a001 39088169/17393796001*3461452808002^(5/24) 9204420652599259 a001 39088169/17393796001*28143753123^(1/4) 9204420652599259 a001 39088169/10749957122*4106118243^(1/4) 9204420652599259 a001 39088169/6643838879*17393796001^(3/14) 9204420652599259 a001 39088169/6643838879*14662949395604^(1/6) 9204420652599259 a001 39088169/119218851371*1568397607^(3/8) 9204420652599259 a001 39088169/2537720636*45537549124^(1/6) 9204420652599259 a001 39088169/23725150497407*1568397607^(5/8) 9204420652599259 a001 39088169/6643838879*599074578^(1/4) 9204420652599259 a001 39088169/969323029*73681302247^(1/8) 9204420652599259 a001 39088169/192900153618*599074578^(5/12) 9204420652599259 a001 39088169/5600748293801*599074578^(7/12) 9204420652599259 a001 39088169/1568397607*228826127^(3/16) 9204420652599259 a001 39088169/17393796001*228826127^(5/16) 9204420652599259 a001 39088169/370248451*2537720636^(1/10) 9204420652599259 a001 39088169/370248451*14662949395604^(1/14) 9204420652599259 a001 39088169/370248451*192900153618^(1/12) 9204420652599259 a001 39088169/192900153618*228826127^(7/16) 9204420652599259 a001 63245986/505019158607*54018521^(1/2) 9204420652599259 a001 39088169/2139295485799*228826127^(9/16) 9204420652599259 a001 39088169/23725150497407*228826127^(11/16) 9204420652599259 a006 5^(1/2)*fibonacci(79/2)/Lucas(38)/sqrt(5) 9204420652599259 a001 39088169/4106118243*87403803^(1/4) 9204420652599259 a001 39088169/141422324*2537720636^(1/18) 9204420652599259 a001 39088169/141422324*312119004989^(1/22) 9204420652599259 a001 39088169/141422324*28143753123^(1/20) 9204420652599259 a001 39088169/141422324*228826127^(1/16) 9204420652599259 a001 24157817/54018521*7881196^(1/22) 9204420652599259 a001 34111385/440719107401*141422324^(1/2) 9204420652599260 a001 133957148/1730726404001*141422324^(1/2) 9204420652599260 a001 9303105/230701876*141422324^(1/6) 9204420652599260 a001 233802911/3020733700601*141422324^(1/2) 9204420652599260 a001 1836311903/23725150497407*141422324^(1/2) 9204420652599260 a001 567451585/7331474697802*141422324^(1/2) 9204420652599260 a001 433494437/5600748293801*141422324^(1/2) 9204420652599260 a001 102334155/2139295485799*370248451^(1/2) 9204420652599260 a001 34111385/199691526*17393796001^(1/14) 9204420652599260 a001 34111385/199691526*14662949395604^(1/18) 9204420652599260 a001 34111385/199691526*505019158607^(1/16) 9204420652599260 a001 34111385/199691526*599074578^(1/12) 9204420652599260 a001 6765/228826126*969323029^(1/2) 9204420652599260 a001 14619165/224056801*312119004989^(1/10) 9204420652599260 a001 14619165/224056801*1568397607^(1/8) 9204420652599260 a001 34111385/1368706081*2537720636^(1/6) 9204420652599260 a001 102334155/5600748293801*2537720636^(1/2) 9204420652599260 a001 102334155/505019158607*2537720636^(7/18) 9204420652599260 a001 34111385/1368706081*312119004989^(3/22) 9204420652599260 a001 34111385/1368706081*28143753123^(3/20) 9204420652599260 a001 14619165/10525900321*2537720636^(3/10) 9204420652599260 a001 102334155/45537549124*2537720636^(5/18) 9204420652599260 a001 34111385/3020733700601*6643838879^(1/2) 9204420652599260 a001 102334155/10749957122*817138163596^(1/6) 9204420652599260 a001 102334155/14662949395604*17393796001^(1/2) 9204420652599260 a001 102334155/505019158607*17393796001^(5/14) 9204420652599260 a001 102334155/23725150497407*45537549124^(1/2) 9204420652599260 a001 14619165/10525900321*14662949395604^(3/14) 9204420652599260 a001 14619165/10525900321*192900153618^(1/4) 9204420652599260 a001 34111385/64300051206*9062201101803^(1/4) 9204420652599260 a001 102334155/505019158607*312119004989^(7/22) 9204420652599260 a001 102334155/505019158607*14662949395604^(5/18) 9204420652599260 a001 102334155/505019158607*505019158607^(5/16) 9204420652599260 a006 5^(1/2)*Fibonacci(83/2)/Lucas(40)/sqrt(5) 9204420652599260 a001 102334155/14662949395604*14662949395604^(7/18) 9204420652599260 a001 102334155/14662949395604*505019158607^(7/16) 9204420652599260 a001 102334155/5600748293801*192900153618^(5/12) 9204420652599260 a001 34111385/440719107401*73681302247^(3/8) 9204420652599260 a001 102334155/119218851371*1322157322203^(1/4) 9204420652599260 a001 102334155/505019158607*28143753123^(7/20) 9204420652599260 a001 102334155/45537549124*312119004989^(5/22) 9204420652599260 a001 102334155/45537549124*3461452808002^(5/24) 9204420652599260 a001 102334155/5600748293801*28143753123^(9/20) 9204420652599260 a001 102334155/45537549124*28143753123^(1/4) 9204420652599260 a001 102334155/17393796001*17393796001^(3/14) 9204420652599260 a001 102334155/17393796001*14662949395604^(1/6) 9204420652599260 a001 831985/228811001*4106118243^(1/4) 9204420652599260 a001 102334155/6643838879*45537549124^(1/6) 9204420652599260 a001 9303105/28374454999*1568397607^(3/8) 9204420652599260 a001 9303105/230701876*73681302247^(1/8) 9204420652599260 a001 102334155/17393796001*599074578^(1/4) 9204420652599260 a001 102334155/969323029*2537720636^(1/10) 9204420652599260 a001 102334155/969323029*14662949395604^(1/14) 9204420652599260 a001 102334155/969323029*192900153618^(1/12) 9204420652599260 a001 102334155/505019158607*599074578^(5/12) 9204420652599260 a001 165580141/2139295485799*141422324^(1/2) 9204420652599260 a001 102334155/14662949395604*599074578^(7/12) 9204420652599260 a001 34111385/1368706081*228826127^(3/16) 9204420652599260 a006 5^(1/2)*fibonacci(83/2)/Lucas(40)/sqrt(5) 9204420652599260 a001 102334155/45537549124*228826127^(5/16) 9204420652599260 a001 102334155/370248451*2537720636^(1/18) 9204420652599260 a001 102334155/370248451*312119004989^(1/22) 9204420652599260 a001 102334155/370248451*28143753123^(1/20) 9204420652599260 a001 39088169/370248451*33385282^(1/8) 9204420652599260 a001 267914296/6643838879*141422324^(1/6) 9204420652599260 a001 102334155/505019158607*228826127^(7/16) 9204420652599260 a001 102334155/370248451*228826127^(1/16) 9204420652599260 a001 701408733/17393796001*141422324^(1/6) 9204420652599260 a001 1836311903/45537549124*141422324^(1/6) 9204420652599260 a001 102334155/5600748293801*228826127^(9/16) 9204420652599260 a001 4807526976/119218851371*141422324^(1/6) 9204420652599260 a001 1144206275/28374454999*141422324^(1/6) 9204420652599260 a001 32951280099/817138163596*141422324^(1/6) 9204420652599260 a001 86267571272/2139295485799*141422324^(1/6) 9204420652599260 a001 225851433717/5600748293801*141422324^(1/6) 9204420652599260 a001 591286729879/14662949395604*141422324^(1/6) 9204420652599260 a001 365435296162/9062201101803*141422324^(1/6) 9204420652599260 a001 139583862445/3461452808002*141422324^(1/6) 9204420652599260 a001 53316291173/1322157322203*141422324^(1/6) 9204420652599260 a001 20365011074/505019158607*141422324^(1/6) 9204420652599260 a001 7778742049/192900153618*141422324^(1/6) 9204420652599260 a001 2971215073/73681302247*141422324^(1/6) 9204420652599260 a001 1134903170/28143753123*141422324^(1/6) 9204420652599260 a001 433494437/10749957122*141422324^(1/6) 9204420652599260 a001 267914296/5600748293801*370248451^(1/2) 9204420652599260 a001 701408733/14662949395604*370248451^(1/2) 9204420652599260 a001 1134903170/23725150497407*370248451^(1/2) 9204420652599260 a001 267914296/9062201101803*969323029^(1/2) 9204420652599260 a001 267914296/1568397607*17393796001^(1/14) 9204420652599260 a001 267914296/1568397607*14662949395604^(1/18) 9204420652599260 a001 267914296/1568397607*505019158607^(1/16) 9204420652599260 a001 267914296/1568397607*599074578^(1/12) 9204420652599260 a001 10946/599074579*2537720636^(1/2) 9204420652599260 a001 267914296/1322157322203*2537720636^(7/18) 9204420652599260 a001 267914296/4106118243*312119004989^(1/10) 9204420652599260 a001 133957148/96450076809*2537720636^(3/10) 9204420652599260 a001 267914296/119218851371*2537720636^(5/18) 9204420652599260 a001 133957148/5374978561*2537720636^(1/6) 9204420652599260 a001 267914296/23725150497407*6643838879^(1/2) 9204420652599260 a001 133957148/5374978561*312119004989^(3/22) 9204420652599260 a001 267914296/4106118243*1568397607^(1/8) 9204420652599260 a001 133957148/5374978561*28143753123^(3/20) 9204420652599260 a001 267914296/28143753123*817138163596^(1/6) 9204420652599260 a001 267914296/1322157322203*17393796001^(5/14) 9204420652599260 a001 66978574/11384387281*17393796001^(3/14) 9204420652599260 a001 133957148/96450076809*14662949395604^(3/14) 9204420652599260 a001 133957148/96450076809*192900153618^(1/4) 9204420652599260 a001 10946/599074579*312119004989^(9/22) 9204420652599260 a001 267914296/1322157322203*312119004989^(7/22) 9204420652599260 a006 5^(1/2)*Fibonacci(87/2)/Lucas(42)/sqrt(5) 9204420652599260 a001 10946/599074579*14662949395604^(5/14) 9204420652599260 a001 267914296/1322157322203*505019158607^(5/16) 9204420652599260 a001 267914296/312119004989*1322157322203^(1/4) 9204420652599260 a001 10946/599074579*192900153618^(5/12) 9204420652599260 a001 267914296/119218851371*312119004989^(5/22) 9204420652599260 a001 133957148/1730726404001*73681302247^(3/8) 9204420652599260 a001 267914296/119218851371*3461452808002^(5/24) 9204420652599260 a001 267914296/119218851371*28143753123^(1/4) 9204420652599260 a001 267914296/1322157322203*28143753123^(7/20) 9204420652599260 a001 66978574/11384387281*14662949395604^(1/6) 9204420652599260 a001 10946/599074579*28143753123^(9/20) 9204420652599260 a001 9238424/599786069*45537549124^(1/6) 9204420652599260 a001 267914296/73681302247*4106118243^(1/4) 9204420652599260 a001 267914296/6643838879*73681302247^(1/8) 9204420652599260 a001 66978574/634430159*2537720636^(1/10) 9204420652599260 a001 66978574/204284540899*1568397607^(3/8) 9204420652599260 a001 66978574/634430159*14662949395604^(1/14) 9204420652599260 a001 66978574/634430159*192900153618^(1/12) 9204420652599260 a001 433494437/9062201101803*370248451^(1/2) 9204420652599260 a006 5^(1/2)*fibonacci(87/2)/Lucas(42)/sqrt(5) 9204420652599260 a001 66978574/11384387281*599074578^(1/4) 9204420652599260 a001 267914296/969323029*2537720636^(1/18) 9204420652599260 a001 267914296/969323029*312119004989^(1/22) 9204420652599260 a001 267914296/969323029*28143753123^(1/20) 9204420652599260 a001 267914296/1322157322203*599074578^(5/12) 9204420652599260 a001 165580141/4106118243*141422324^(1/6) 9204420652599260 a001 701408733/23725150497407*969323029^(1/2) 9204420652599260 a001 102334155/228826127*33385282^(1/24) 9204420652599260 a001 267914296/969323029*228826127^(1/16) 9204420652599260 a001 701408733/3461452808002*2537720636^(7/18) 9204420652599260 a001 233802911/1368706081*17393796001^(1/14) 9204420652599260 a001 233802911/1368706081*14662949395604^(1/18) 9204420652599260 a001 233802911/1368706081*505019158607^(1/16) 9204420652599260 a001 701408733/505019158607*2537720636^(3/10) 9204420652599260 a001 3524667/1568437211*2537720636^(5/18) 9204420652599260 a001 233802911/9381251041*2537720636^(1/6) 9204420652599260 a001 701408733/10749957122*312119004989^(1/10) 9204420652599260 a001 233802911/9381251041*312119004989^(3/22) 9204420652599260 a001 701408733/3461452808002*17393796001^(5/14) 9204420652599260 a001 233802911/9381251041*28143753123^(3/20) 9204420652599260 a001 701408733/119218851371*17393796001^(3/14) 9204420652599260 a001 701408733/73681302247*817138163596^(1/6) 9204420652599260 a001 701408733/505019158607*14662949395604^(3/14) 9204420652599260 a001 701408733/3461452808002*312119004989^(7/22) 9204420652599260 a001 701408733/2139295485799*312119004989^(3/10) 9204420652599260 a001 233802911/440719107401*9062201101803^(1/4) 9204420652599260 a001 701408733/3461452808002*505019158607^(5/16) 9204420652599260 a001 701408733/505019158607*192900153618^(1/4) 9204420652599260 a001 3524667/1568437211*312119004989^(5/22) 9204420652599260 a001 3524667/1568437211*3461452808002^(5/24) 9204420652599260 a001 233802911/3020733700601*73681302247^(3/8) 9204420652599260 a001 701408733/119218851371*14662949395604^(1/6) 9204420652599260 a001 3524667/1568437211*28143753123^(1/4) 9204420652599260 a001 701408733/45537549124*45537549124^(1/6) 9204420652599260 a001 701408733/3461452808002*28143753123^(7/20) 9204420652599260 a001 701408733/17393796001*73681302247^(1/8) 9204420652599260 a001 701408733/6643838879*2537720636^(1/10) 9204420652599260 a001 233802911/64300051206*4106118243^(1/4) 9204420652599260 a001 701408733/6643838879*14662949395604^(1/14) 9204420652599260 a001 701408733/6643838879*192900153618^(1/12) 9204420652599260 a001 701408733/10749957122*1568397607^(1/8) 9204420652599260 a001 701408733/2537720636*2537720636^(1/18) 9204420652599260 a001 701408733/2139295485799*1568397607^(3/8) 9204420652599260 a001 701408733/2537720636*312119004989^(1/22) 9204420652599260 a001 701408733/2537720636*28143753123^(1/20) 9204420652599260 a001 233802911/1368706081*599074578^(1/12) 9204420652599260 a001 1836311903/9062201101803*2537720636^(7/18) 9204420652599260 a001 1836311903/1322157322203*2537720636^(3/10) 9204420652599260 a001 1836311903/817138163596*2537720636^(5/18) 9204420652599260 a001 1836311903/73681302247*2537720636^(1/6) 9204420652599260 a001 1836311903/17393796001*2537720636^(1/10) 9204420652599260 a001 4807526976/23725150497407*2537720636^(7/18) 9204420652599260 a001 1836311903/10749957122*17393796001^(1/14) 9204420652599260 a001 1836311903/10749957122*14662949395604^(1/18) 9204420652599260 a001 1836311903/10749957122*505019158607^(1/16) 9204420652599260 a001 1836311903/28143753123*312119004989^(1/10) 9204420652599260 a001 1836311903/9062201101803*17393796001^(5/14) 9204420652599260 a001 1836311903/312119004989*17393796001^(3/14) 9204420652599260 a001 1836311903/73681302247*312119004989^(3/22) 9204420652599260 a001 1836311903/192900153618*817138163596^(1/6) 9204420652599260 a001 1836311903/119218851371*45537549124^(1/6) 9204420652599260 a001 1836311903/9062201101803*312119004989^(7/22) 9204420652599260 a001 1836311903/5600748293801*312119004989^(3/10) 9204420652599260 a001 1836311903/817138163596*312119004989^(5/22) 9204420652599260 a001 1836311903/1322157322203*14662949395604^(3/14) 9204420652599260 a001 1836311903/3461452808002*9062201101803^(1/4) 9204420652599260 a001 1836311903/2139295485799*1322157322203^(1/4) 9204420652599260 a001 1836311903/73681302247*28143753123^(3/20) 9204420652599260 a001 1836311903/1322157322203*192900153618^(1/4) 9204420652599260 a001 1836311903/23725150497407*73681302247^(3/8) 9204420652599260 a001 1836311903/817138163596*28143753123^(1/4) 9204420652599260 a001 1836311903/9062201101803*28143753123^(7/20) 9204420652599260 a001 1836311903/45537549124*73681302247^(1/8) 9204420652599260 a001 1836311903/17393796001*14662949395604^(1/14) 9204420652599260 a001 1836311903/17393796001*192900153618^(1/12) 9204420652599260 a001 14930208/10749853441*2537720636^(3/10) 9204420652599260 a001 4807526976/2139295485799*2537720636^(5/18) 9204420652599260 a001 12586269025/9062201101803*2537720636^(3/10) 9204420652599260 a001 32951280099/23725150497407*2537720636^(3/10) 9204420652599260 a001 10182505537/7331474697802*2537720636^(3/10) 9204420652599260 a001 1836311903/6643838879*2537720636^(1/18) 9204420652599260 a001 1836311903/505019158607*4106118243^(1/4) 9204420652599260 a001 12586269025/5600748293801*2537720636^(5/18) 9204420652599260 a001 32951280099/14662949395604*2537720636^(5/18) 9204420652599260 a001 7778742049/5600748293801*2537720636^(3/10) 9204420652599260 a001 53316291173/23725150497407*2537720636^(5/18) 9204420652599260 a001 20365011074/9062201101803*2537720636^(5/18) 9204420652599260 a001 7778742049/3461452808002*2537720636^(5/18) 9204420652599260 a001 2971215073/14662949395604*2537720636^(7/18) 9204420652599260 a001 1836311903/6643838879*312119004989^(1/22) 9204420652599260 a001 1836311903/6643838879*28143753123^(1/20) 9204420652599260 a001 267084832/10716675201*2537720636^(1/6) 9204420652599260 a001 12586269025/505019158607*2537720636^(1/6) 9204420652599260 a001 10983760033/440719107401*2537720636^(1/6) 9204420652599260 a001 43133785636/1730726404001*2537720636^(1/6) 9204420652599260 a001 75283811239/3020733700601*2537720636^(1/6) 9204420652599260 a001 182717648081/7331474697802*2537720636^(1/6) 9204420652599260 a001 139583862445/5600748293801*2537720636^(1/6) 9204420652599260 a001 53316291173/2139295485799*2537720636^(1/6) 9204420652599260 a001 10182505537/408569081798*2537720636^(1/6) 9204420652599260 a001 2971215073/2139295485799*2537720636^(3/10) 9204420652599260 a001 1201881744/11384387281*2537720636^(1/10) 9204420652599260 a001 7778742049/312119004989*2537720636^(1/6) 9204420652599260 a001 2971215073/1322157322203*2537720636^(5/18) 9204420652599260 a001 12586269025/119218851371*2537720636^(1/10) 9204420652599260 a001 32951280099/312119004989*2537720636^(1/10) 9204420652599260 a001 21566892818/204284540899*2537720636^(1/10) 9204420652599260 a001 225851433717/2139295485799*2537720636^(1/10) 9204420652599260 a001 182717648081/1730726404001*2537720636^(1/10) 9204420652599260 a001 139583862445/1322157322203*2537720636^(1/10) 9204420652599260 a001 53316291173/505019158607*2537720636^(1/10) 9204420652599260 a001 10182505537/96450076809*2537720636^(1/10) 9204420652599260 a001 4807526976/17393796001*2537720636^(1/18) 9204420652599260 a001 7778742049/73681302247*2537720636^(1/10) 9204420652599260 a001 1602508992/9381251041*17393796001^(1/14) 9204420652599260 a001 1602508992/9381251041*14662949395604^(1/18) 9204420652599260 a001 1602508992/9381251041*505019158607^(1/16) 9204420652599260 a001 4807526976/23725150497407*17393796001^(5/14) 9204420652599260 a001 1836311903/28143753123*1568397607^(1/8) 9204420652599260 a001 12586269025/45537549124*2537720636^(1/18) 9204420652599260 a001 1201881744/204284540899*17393796001^(3/14) 9204420652599260 a001 686789568/10525900321*312119004989^(1/10) 9204420652599260 a001 32951280099/119218851371*2537720636^(1/18) 9204420652599260 a001 4807526976/312119004989*45537549124^(1/6) 9204420652599260 a001 267084832/10716675201*312119004989^(3/22) 9204420652599260 a001 102287808/10745088481*817138163596^(1/6) 9204420652599260 a001 14930208/10749853441*14662949395604^(3/14) 9204420652599260 a001 1602508992/3020733700601*9062201101803^(1/4) 9204420652599260 a001 4807526976/2139295485799*3461452808002^(5/24) 9204420652599260 a001 1201881744/204284540899*14662949395604^(1/6) 9204420652599260 a001 14930208/10749853441*192900153618^(1/4) 9204420652599260 a001 86267571272/312119004989*2537720636^(1/18) 9204420652599260 a001 225851433717/817138163596*2537720636^(1/18) 9204420652599260 a001 1548008755920/5600748293801*2537720636^(1/18) 9204420652599260 a001 139583862445/505019158607*2537720636^(1/18) 9204420652599260 a001 53316291173/192900153618*2537720636^(1/18) 9204420652599260 a001 4807526976/119218851371*73681302247^(1/8) 9204420652599260 a001 267084832/10716675201*28143753123^(3/20) 9204420652599260 a001 4807526976/2139295485799*28143753123^(1/4) 9204420652599260 a001 20365011074/73681302247*2537720636^(1/18) 9204420652599260 a001 4807526976/23725150497407*28143753123^(7/20) 9204420652599260 a001 1201881744/11384387281*14662949395604^(1/14) 9204420652599260 a001 1201881744/11384387281*192900153618^(1/12) 9204420652599260 a001 7778742049/28143753123*2537720636^(1/18) 9204420652599260 a001 4807526976/17393796001*312119004989^(1/22) 9204420652599260 a001 4807526976/17393796001*28143753123^(1/20) 9204420652599260 a001 2971215073/119218851371*2537720636^(1/6) 9204420652599260 a001 12586269025/2139295485799*17393796001^(3/14) 9204420652599260 a001 12586269025/73681302247*17393796001^(1/14) 9204420652599260 a001 12586269025/73681302247*14662949395604^(1/18) 9204420652599260 a001 12586269025/73681302247*505019158607^(1/16) 9204420652599260 a001 12586269025/817138163596*45537549124^(1/6) 9204420652599260 a001 12586269025/192900153618*312119004989^(1/10) 9204420652599260 a001 12586269025/505019158607*312119004989^(3/22) 9204420652599260 a001 12586269025/5600748293801*312119004989^(5/22) 9204420652599260 a001 12586269025/1322157322203*817138163596^(1/6) 9204420652599260 a006 5^(1/2)*Fibonacci(103/2)/Lucas(50)/sqrt(5) 9204420652599260 a001 12586269025/5600748293801*3461452808002^(5/24) 9204420652599260 a001 12586269025/2139295485799*14662949395604^(1/6) 9204420652599260 a001 12586269025/9062201101803*192900153618^(1/4) 9204420652599260 a001 1144206275/28374454999*73681302247^(1/8) 9204420652599260 a001 12586269025/119218851371*14662949395604^(1/14) 9204420652599260 a001 12586269025/119218851371*192900153618^(1/12) 9204420652599260 a001 12586269025/505019158607*28143753123^(3/20) 9204420652599260 a006 5^(1/2)*fibonacci(103/2)/Lucas(50)/sqrt(5) 9204420652599260 a001 12586269025/5600748293801*28143753123^(1/4) 9204420652599260 a001 32951280099/5600748293801*17393796001^(3/14) 9204420652599260 a001 12586269025/45537549124*312119004989^(1/22) 9204420652599260 a001 1135099622/192933544679*17393796001^(3/14) 9204420652599260 a001 12586269025/45537549124*28143753123^(1/20) 9204420652599260 a001 139583862445/23725150497407*17393796001^(3/14) 9204420652599260 a001 53316291173/9062201101803*17393796001^(3/14) 9204420652599260 a001 10983760033/64300051206*17393796001^(1/14) 9204420652599260 a001 32951280099/2139295485799*45537549124^(1/6) 9204420652599260 a001 75283811239/440719107401*17393796001^(1/14) 9204420652599260 a001 10182505537/1730726404001*17393796001^(3/14) 9204420652599260 a001 139583862445/817138163596*17393796001^(1/14) 9204420652599260 a001 10983760033/64300051206*14662949395604^(1/18) 9204420652599260 a001 10983760033/64300051206*505019158607^(1/16) 9204420652599260 a001 10983760033/440719107401*312119004989^(3/22) 9204420652599260 a001 32951280099/3461452808002*817138163596^(1/6) 9204420652599260 a006 5^(1/2)*Fibonacci(107/2)/Lucas(52)/sqrt(5) 9204420652599260 a001 32951280099/5600748293801*14662949395604^(1/6) 9204420652599260 a001 32951280099/23725150497407*192900153618^(1/4) 9204420652599260 a001 32951280099/312119004989*192900153618^(1/12) 9204420652599260 a001 32951280099/817138163596*73681302247^(1/8) 9204420652599260 a001 53316291173/312119004989*17393796001^(1/14) 9204420652599260 a006 5^(1/2)*fibonacci(107/2)/Lucas(52)/sqrt(5) 9204420652599260 a001 32951280099/119218851371*312119004989^(1/22) 9204420652599260 a001 86267571272/5600748293801*45537549124^(1/6) 9204420652599260 a001 7787980473/505618944676*45537549124^(1/6) 9204420652599260 a001 365435296162/23725150497407*45537549124^(1/6) 9204420652599260 a001 139583862445/9062201101803*45537549124^(1/6) 9204420652599260 a001 32951280099/119218851371*28143753123^(1/20) 9204420652599260 a001 86267571272/505019158607*14662949395604^(1/18) 9204420652599260 a001 86267571272/1322157322203*312119004989^(1/10) 9204420652599260 a001 43133785636/1730726404001*312119004989^(3/22) 9204420652599260 a001 86267571272/9062201101803*817138163596^(1/6) 9204420652599260 a006 5^(1/2)*Fibonacci(111/2)/Lucas(54)/sqrt(5) 9204420652599260 a001 1135099622/192933544679*14662949395604^(1/6) 9204420652599260 a001 21566892818/204284540899*14662949395604^(1/14) 9204420652599260 a001 21566892818/204284540899*192900153618^(1/12) 9204420652599260 a006 5^(1/2)*fibonacci(111/2)/Lucas(54)/sqrt(5) 9204420652599260 a001 86267571272/312119004989*312119004989^(1/22) 9204420652599260 a001 53316291173/3461452808002*45537549124^(1/6) 9204420652599260 a001 75283811239/440719107401*14662949395604^(1/18) 9204420652599260 a001 75283811239/440719107401*505019158607^(1/16) 9204420652599260 a001 225851433717/23725150497407*817138163596^(1/6) 9204420652599260 a006 5^(1/2)*Fibonacci(115/2)/Lucas(56)/sqrt(5) 9204420652599260 a006 5^(1/2)*fibonacci(115/2)/Lucas(56)/sqrt(5) 9204420652599260 a001 225851433717/2139295485799*192900153618^(1/12) 9204420652599260 a006 5^(1/2)*Fibonacci(127/2)/Lucas(62)/sqrt(5) 9204420652599260 a006 5^(1/2)*fibonacci(127/2)/Lucas(62)/sqrt(5) 9204420652599260 a006 5^(1/2)*Fibonacci(131/2)/Lucas(64)/sqrt(5) 9204420652599260 a006 5^(1/2)*fibonacci(131/2)/Lucas(64)/sqrt(5) 9204420652599260 s001 sum(exp(-Pi)^(n-1)*A261968[n],n=1..infinity) 9204420652599260 a006 5^(1/2)*fibonacci(125/2)/Lucas(61)/sqrt(5) 9204420652599260 a006 5^(1/2)*Fibonacci(125/2)/Lucas(61)/sqrt(5) 9204420652599260 a001 182717648081/7331474697802*312119004989^(3/22) 9204420652599260 a006 5^(1/2)*fibonacci(117/2)/Lucas(57)/sqrt(5) 9204420652599260 a006 5^(1/2)*Fibonacci(117/2)/Lucas(57)/sqrt(5) 9204420652599260 a001 182717648081/1730726404001*192900153618^(1/12) 9204420652599260 a001 10983760033/440719107401*28143753123^(3/20) 9204420652599260 a006 5^(1/2)*fibonacci(113/2)/Lucas(55)/sqrt(5) 9204420652599260 a001 139583862445/5600748293801*312119004989^(3/22) 9204420652599260 a001 139583862445/2139295485799*312119004989^(1/10) 9204420652599260 a001 139583862445/14662949395604*817138163596^(1/6) 9204420652599260 a006 5^(1/2)*Fibonacci(113/2)/Lucas(55)/sqrt(5) 9204420652599260 a001 139583862445/1322157322203*192900153618^(1/12) 9204420652599260 a001 139583862445/817138163596*505019158607^(1/16) 9204420652599260 a001 225851433717/5600748293801*73681302247^(1/8) 9204420652599260 a001 591286729879/14662949395604*73681302247^(1/8) 9204420652599260 a001 365435296162/9062201101803*73681302247^(1/8) 9204420652599260 a001 139583862445/3461452808002*73681302247^(1/8) 9204420652599260 a001 53316291173/192900153618*312119004989^(1/22) 9204420652599260 a001 86267571272/312119004989*28143753123^(1/20) 9204420652599260 a001 225851433717/817138163596*28143753123^(1/20) 9204420652599260 a001 1548008755920/5600748293801*28143753123^(1/20) 9204420652599260 a001 53316291173/23725150497407*312119004989^(5/22) 9204420652599260 a001 53316291173/505019158607*192900153618^(1/12) 9204420652599260 a001 53316291173/2139295485799*312119004989^(3/22) 9204420652599260 a001 139583862445/505019158607*28143753123^(1/20) 9204420652599260 a001 53316291173/5600748293801*817138163596^(1/6) 9204420652599260 a001 53316291173/817138163596*312119004989^(1/10) 9204420652599260 a001 53316291173/312119004989*14662949395604^(1/18) 9204420652599260 a001 53316291173/312119004989*505019158607^(1/16) 9204420652599260 a001 53316291173/1322157322203*73681302247^(1/8) 9204420652599260 a001 53316291173/192900153618*28143753123^(1/20) 9204420652599260 a001 32951280099/14662949395604*28143753123^(1/4) 9204420652599260 a001 43133785636/1730726404001*28143753123^(3/20) 9204420652599260 a001 75283811239/3020733700601*28143753123^(3/20) 9204420652599260 a001 182717648081/7331474697802*28143753123^(3/20) 9204420652599260 a001 139583862445/5600748293801*28143753123^(3/20) 9204420652599260 a001 53316291173/2139295485799*28143753123^(3/20) 9204420652599260 a001 20365011074/73681302247*312119004989^(1/22) 9204420652599260 a001 20365011074/119218851371*17393796001^(1/14) 9204420652599260 a001 20365011074/73681302247*28143753123^(1/20) 9204420652599260 a006 5^(1/2)*fibonacci(105/2)/Lucas(51)/sqrt(5) 9204420652599260 a001 53316291173/23725150497407*28143753123^(1/4) 9204420652599260 a001 20365011074/1322157322203*45537549124^(1/6) 9204420652599260 a001 10182505537/96450076809*14662949395604^(1/14) 9204420652599260 a001 10182505537/96450076809*192900153618^(1/12) 9204420652599260 a001 10182505537/1730726404001*14662949395604^(1/6) 9204420652599260 a001 20365011074/2139295485799*817138163596^(1/6) 9204420652599260 a006 5^(1/2)*Fibonacci(105/2)/Lucas(51)/sqrt(5) 9204420652599260 a001 10182505537/408569081798*312119004989^(3/22) 9204420652599260 a001 20365011074/23725150497407*1322157322203^(1/4) 9204420652599260 a001 10182505537/7331474697802*192900153618^(1/4) 9204420652599260 a001 20365011074/312119004989*312119004989^(1/10) 9204420652599260 a001 20365011074/505019158607*73681302247^(1/8) 9204420652599260 a001 20365011074/119218851371*14662949395604^(1/18) 9204420652599260 a001 20365011074/119218851371*505019158607^(1/16) 9204420652599260 a001 10182505537/408569081798*28143753123^(3/20) 9204420652599260 a001 20365011074/9062201101803*28143753123^(1/4) 9204420652599260 a001 7778742049/28143753123*312119004989^(1/22) 9204420652599260 a001 7778742049/28143753123*28143753123^(1/20) 9204420652599260 a001 7778742049/1322157322203*17393796001^(3/14) 9204420652599260 a001 7778742049/73681302247*14662949395604^(1/14) 9204420652599260 a001 7778742049/73681302247*192900153618^(1/12) 9204420652599260 a001 7778742049/505019158607*45537549124^(1/6) 9204420652599260 a001 7778742049/23725150497407*312119004989^(3/10) 9204420652599260 a001 7778742049/3461452808002*312119004989^(5/22) 9204420652599260 a001 7778742049/1322157322203*14662949395604^(1/6) 9204420652599260 a001 7778742049/3461452808002*3461452808002^(5/24) 9204420652599260 a001 7778742049/14662949395604*9062201101803^(1/4) 9204420652599260 a001 7778742049/5600748293801*192900153618^(1/4) 9204420652599260 a001 7778742049/312119004989*312119004989^(3/22) 9204420652599260 a001 7778742049/119218851371*312119004989^(1/10) 9204420652599260 a001 7778742049/312119004989*28143753123^(3/20) 9204420652599260 a001 7778742049/45537549124*17393796001^(1/14) 9204420652599260 a001 7778742049/3461452808002*28143753123^(1/4) 9204420652599260 a001 7778742049/45537549124*14662949395604^(1/18) 9204420652599260 a001 7778742049/45537549124*505019158607^(1/16) 9204420652599260 a001 2971215073/10749957122*2537720636^(1/18) 9204420652599260 a001 2971215073/28143753123*2537720636^(1/10) 9204420652599260 a001 1602508992/440719107401*4106118243^(1/4) 9204420652599260 a001 12586269025/3461452808002*4106118243^(1/4) 9204420652599260 a001 2971215073/10749957122*312119004989^(1/22) 9204420652599260 a001 2971215073/10749957122*28143753123^(1/20) 9204420652599260 a001 10983760033/3020733700601*4106118243^(1/4) 9204420652599260 a001 86267571272/23725150497407*4106118243^(1/4) 9204420652599260 a001 53316291173/14662949395604*4106118243^(1/4) 9204420652599260 a001 20365011074/5600748293801*4106118243^(1/4) 9204420652599260 a001 7778742049/2139295485799*4106118243^(1/4) 9204420652599260 a001 2971215073/28143753123*14662949395604^(1/14) 9204420652599260 a001 2971215073/28143753123*192900153618^(1/12) 9204420652599260 a001 2971215073/14662949395604*17393796001^(5/14) 9204420652599260 a001 2971215073/505019158607*17393796001^(3/14) 9204420652599260 a001 2971215073/73681302247*73681302247^(1/8) 9204420652599260 a001 2971215073/192900153618*45537549124^(1/6) 9204420652599260 a001 2971215073/505019158607*14662949395604^(1/6) 9204420652599260 a001 2971215073/14662949395604*312119004989^(7/22) 9204420652599260 a001 2971215073/1322157322203*312119004989^(5/22) 9204420652599260 a001 2971215073/1322157322203*3461452808002^(5/24) 9204420652599260 a001 2971215073/14662949395604*505019158607^(5/16) 9204420652599260 a001 2971215073/2139295485799*192900153618^(1/4) 9204420652599260 a001 2971215073/312119004989*817138163596^(1/6) 9204420652599260 a001 2971215073/119218851371*312119004989^(3/22) 9204420652599260 a001 2971215073/119218851371*28143753123^(3/20) 9204420652599260 a001 2971215073/1322157322203*28143753123^(1/4) 9204420652599260 a001 2971215073/14662949395604*28143753123^(7/20) 9204420652599260 a001 2971215073/45537549124*312119004989^(1/10) 9204420652599260 a001 2971215073/17393796001*17393796001^(1/14) 9204420652599260 a001 2971215073/17393796001*14662949395604^(1/18) 9204420652599260 a001 2971215073/17393796001*505019158607^(1/16) 9204420652599260 a001 2971215073/817138163596*4106118243^(1/4) 9204420652599260 a001 686789568/10525900321*1568397607^(1/8) 9204420652599260 a001 12586269025/192900153618*1568397607^(1/8) 9204420652599260 a001 32951280099/505019158607*1568397607^(1/8) 9204420652599260 a001 86267571272/1322157322203*1568397607^(1/8) 9204420652599260 a001 32264490531/494493258286*1568397607^(1/8) 9204420652599260 a001 591286729879/9062201101803*1568397607^(1/8) 9204420652599260 a001 1548008755920/23725150497407*1568397607^(1/8) 9204420652599260 a001 365435296162/5600748293801*1568397607^(1/8) 9204420652599260 a001 139583862445/2139295485799*1568397607^(1/8) 9204420652599260 a001 53316291173/817138163596*1568397607^(1/8) 9204420652599260 a001 20365011074/312119004989*1568397607^(1/8) 9204420652599260 a001 7778742049/119218851371*1568397607^(1/8) 9204420652599260 a001 2971215073/45537549124*1568397607^(1/8) 9204420652599260 a001 1134903170/4106118243*2537720636^(1/18) 9204420652599260 a001 1836311903/5600748293801*1568397607^(3/8) 9204420652599260 a001 1134903170/5600748293801*2537720636^(7/18) 9204420652599260 a001 1134903170/4106118243*312119004989^(1/22) 9204420652599260 a001 1134903170/4106118243*28143753123^(1/20) 9204420652599260 a001 567451585/408569081798*2537720636^(3/10) 9204420652599260 a001 1134903170/505019158607*2537720636^(5/18) 9204420652599260 a006 5^(1/2)*fibonacci(93/2)/Lucas(45)/sqrt(5) 9204420652599260 a001 567451585/22768774562*2537720636^(1/6) 9204420652599260 a001 567451585/5374978561*2537720636^(1/10) 9204420652599260 a001 1201881744/3665737348901*1568397607^(3/8) 9204420652599260 a001 567451585/5374978561*14662949395604^(1/14) 9204420652599260 a001 567451585/5374978561*192900153618^(1/12) 9204420652599260 a001 1134903170/28143753123*73681302247^(1/8) 9204420652599260 a001 1134903170/5600748293801*17393796001^(5/14) 9204420652599260 a001 567451585/96450076809*17393796001^(3/14) 9204420652599260 a001 1134903170/73681302247*45537549124^(1/6) 9204420652599260 a001 567451585/96450076809*14662949395604^(1/6) 9204420652599260 a001 1134903170/505019158607*312119004989^(5/22) 9204420652599260 a001 1134903170/505019158607*3461452808002^(5/24) 9204420652599260 a001 1134903170/5600748293801*312119004989^(7/22) 9204420652599260 a001 1134903170/1322157322203*1322157322203^(1/4) 9204420652599260 a006 5^(1/2)*Fibonacci(93/2)/Lucas(45)/sqrt(5) 9204420652599260 a001 1134903170/2139295485799*9062201101803^(1/4) 9204420652599260 a001 1134903170/5600748293801*505019158607^(5/16) 9204420652599260 a001 567451585/408569081798*192900153618^(1/4) 9204420652599260 a001 1134903170/119218851371*817138163596^(1/6) 9204420652599260 a001 1134903170/505019158607*28143753123^(1/4) 9204420652599260 a001 1134903170/5600748293801*28143753123^(7/20) 9204420652599260 a001 7778742049/23725150497407*1568397607^(3/8) 9204420652599260 a001 567451585/22768774562*312119004989^(3/22) 9204420652599260 a001 567451585/22768774562*28143753123^(3/20) 9204420652599260 a001 1134903170/17393796001*312119004989^(1/10) 9204420652599260 a001 1836311903/10749957122*599074578^(1/12) 9204420652599260 a001 1134903170/312119004989*4106118243^(1/4) 9204420652599260 a001 2971215073/9062201101803*1568397607^(3/8) 9204420652599260 a001 1134903170/6643838879*17393796001^(1/14) 9204420652599260 a001 1134903170/6643838879*14662949395604^(1/18) 9204420652599260 a001 1134903170/6643838879*505019158607^(1/16) 9204420652599260 a001 1134903170/17393796001*1568397607^(1/8) 9204420652599260 a001 1602508992/9381251041*599074578^(1/12) 9204420652599260 a001 12586269025/73681302247*599074578^(1/12) 9204420652599260 a001 10983760033/64300051206*599074578^(1/12) 9204420652599260 a001 86267571272/505019158607*599074578^(1/12) 9204420652599260 a001 75283811239/440719107401*599074578^(1/12) 9204420652599260 a001 2504730781961/14662949395604*599074578^(1/12) 9204420652599260 a001 139583862445/817138163596*599074578^(1/12) 9204420652599260 a001 53316291173/312119004989*599074578^(1/12) 9204420652599260 a001 20365011074/119218851371*599074578^(1/12) 9204420652599260 a001 7778742049/45537549124*599074578^(1/12) 9204420652599260 a001 2971215073/17393796001*599074578^(1/12) 9204420652599260 a001 701408733/119218851371*599074578^(1/4) 9204420652599260 a001 567451585/1730726404001*1568397607^(3/8) 9204420652599260 a001 1134903170/6643838879*599074578^(1/12) 9204420652599260 a001 433494437/14662949395604*969323029^(1/2) 9204420652599260 a001 1836311903/312119004989*599074578^(1/4) 9204420652599260 a001 433494437/1568397607*2537720636^(1/18) 9204420652599260 a001 433494437/1568397607*312119004989^(1/22) 9204420652599260 a001 433494437/1568397607*28143753123^(1/20) 9204420652599260 a001 1201881744/204284540899*599074578^(1/4) 9204420652599260 a001 12586269025/2139295485799*599074578^(1/4) 9204420652599260 a001 32951280099/5600748293801*599074578^(1/4) 9204420652599260 a001 1135099622/192933544679*599074578^(1/4) 9204420652599260 a001 139583862445/23725150497407*599074578^(1/4) 9204420652599260 a001 53316291173/9062201101803*599074578^(1/4) 9204420652599260 a001 10182505537/1730726404001*599074578^(1/4) 9204420652599260 a001 7778742049/1322157322203*599074578^(1/4) 9204420652599260 a001 2971215073/505019158607*599074578^(1/4) 9204420652599260 a001 701408733/3461452808002*599074578^(5/12) 9204420652599260 a001 133957148/5374978561*228826127^(3/16) 9204420652599260 a001 567451585/96450076809*599074578^(1/4) 9204420652599260 a001 701408733/2537720636*228826127^(1/16) 9204420652599260 a001 433494437/23725150497407*2537720636^(1/2) 9204420652599260 a001 433494437/4106118243*2537720636^(1/10) 9204420652599260 a001 433494437/2139295485799*2537720636^(7/18) 9204420652599260 a001 433494437/4106118243*14662949395604^(1/14) 9204420652599260 a001 433494437/4106118243*192900153618^(1/12) 9204420652599260 a001 433494437/312119004989*2537720636^(3/10) 9204420652599260 a001 433494437/192900153618*2537720636^(5/18) 9204420652599260 a001 433494437/17393796001*2537720636^(1/6) 9204420652599260 a001 433494437/10749957122*73681302247^(1/8) 9204420652599260 a001 433494437/28143753123*45537549124^(1/6) 9204420652599260 a001 433494437/2139295485799*17393796001^(5/14) 9204420652599260 a001 433494437/73681302247*17393796001^(3/14) 9204420652599260 a001 433494437/73681302247*14662949395604^(1/6) 9204420652599260 a001 433494437/192900153618*312119004989^(5/22) 9204420652599260 a001 433494437/192900153618*3461452808002^(5/24) 9204420652599260 a001 433494437/1322157322203*312119004989^(3/10) 9204420652599260 a001 433494437/2139295485799*312119004989^(7/22) 9204420652599260 a001 433494437/23725150497407*14662949395604^(5/14) 9204420652599260 a001 433494437/2139295485799*14662949395604^(5/18) 9204420652599260 a001 433494437/2139295485799*505019158607^(5/16) 9204420652599260 a001 433494437/312119004989*14662949395604^(3/14) 9204420652599260 a001 433494437/23725150497407*192900153618^(5/12) 9204420652599260 a001 433494437/5600748293801*73681302247^(3/8) 9204420652599260 a001 433494437/192900153618*28143753123^(1/4) 9204420652599260 a001 433494437/2139295485799*28143753123^(7/20) 9204420652599260 a001 433494437/45537549124*817138163596^(1/6) 9204420652599260 a001 433494437/23725150497407*28143753123^(9/20) 9204420652599260 a001 433494437/17393796001*312119004989^(3/22) 9204420652599260 a001 433494437/17393796001*28143753123^(3/20) 9204420652599260 a001 433494437/119218851371*4106118243^(1/4) 9204420652599260 a001 433494437/6643838879*312119004989^(1/10) 9204420652599260 a001 1836311903/9062201101803*599074578^(5/12) 9204420652599260 a001 433494437/6643838879*1568397607^(1/8) 9204420652599260 a001 4807526976/23725150497407*599074578^(5/12) 9204420652599260 a001 1836311903/6643838879*228826127^(1/16) 9204420652599260 a001 2971215073/14662949395604*599074578^(5/12) 9204420652599260 a001 4807526976/17393796001*228826127^(1/16) 9204420652599260 a001 12586269025/45537549124*228826127^(1/16) 9204420652599260 a001 32951280099/119218851371*228826127^(1/16) 9204420652599260 a001 86267571272/312119004989*228826127^(1/16) 9204420652599260 a001 225851433717/817138163596*228826127^(1/16) 9204420652599260 a001 1548008755920/5600748293801*228826127^(1/16) 9204420652599260 a001 139583862445/505019158607*228826127^(1/16) 9204420652599260 a001 53316291173/192900153618*228826127^(1/16) 9204420652599260 a001 20365011074/73681302247*228826127^(1/16) 9204420652599260 a001 7778742049/28143753123*228826127^(1/16) 9204420652599260 a001 2971215073/10749957122*228826127^(1/16) 9204420652599260 a001 433494437/1322157322203*1568397607^(3/8) 9204420652599260 a001 433494437/2537720636*17393796001^(1/14) 9204420652599260 a001 433494437/2537720636*14662949395604^(1/18) 9204420652599260 a001 433494437/2537720636*505019158607^(1/16) 9204420652599260 a001 1134903170/4106118243*228826127^(1/16) 9204420652599260 a001 1134903170/5600748293801*599074578^(5/12) 9204420652599260 a001 433494437/2537720636*599074578^(1/12) 9204420652599260 a001 433494437/73681302247*599074578^(1/4) 9204420652599260 a001 433494437/1568397607*228826127^(1/16) 9204420652599260 a001 433494437/2139295485799*599074578^(5/12) 9204420652599260 a001 233802911/9381251041*228826127^(3/16) 9204420652599260 a001 267914296/119218851371*228826127^(5/16) 9204420652599260 a001 1836311903/73681302247*228826127^(3/16) 9204420652599260 a001 267084832/10716675201*228826127^(3/16) 9204420652599260 a001 12586269025/505019158607*228826127^(3/16) 9204420652599260 a001 10983760033/440719107401*228826127^(3/16) 9204420652599260 a001 43133785636/1730726404001*228826127^(3/16) 9204420652599260 a001 75283811239/3020733700601*228826127^(3/16) 9204420652599260 a001 182717648081/7331474697802*228826127^(3/16) 9204420652599260 a001 139583862445/5600748293801*228826127^(3/16) 9204420652599260 a001 53316291173/2139295485799*228826127^(3/16) 9204420652599260 a001 10182505537/408569081798*228826127^(3/16) 9204420652599260 a001 7778742049/312119004989*228826127^(3/16) 9204420652599260 a001 2971215073/119218851371*228826127^(3/16) 9204420652599260 a001 165580141/3461452808002*370248451^(1/2) 9204420652599260 a001 567451585/22768774562*228826127^(3/16) 9204420652599260 a001 165580141/599074578*2537720636^(1/18) 9204420652599260 a001 165580141/599074578*312119004989^(1/22) 9204420652599260 a001 165580141/599074578*28143753123^(1/20) 9204420652599260 a001 433494437/17393796001*228826127^(3/16) 9204420652599260 a001 3524667/1568437211*228826127^(5/16) 9204420652599260 a001 267914296/1322157322203*228826127^(7/16) 9204420652599260 a001 165580141/599074578*228826127^(1/16) 9204420652599260 a001 1836311903/817138163596*228826127^(5/16) 9204420652599260 a001 4807526976/2139295485799*228826127^(5/16) 9204420652599260 a001 12586269025/5600748293801*228826127^(5/16) 9204420652599260 a001 32951280099/14662949395604*228826127^(5/16) 9204420652599260 a001 53316291173/23725150497407*228826127^(5/16) 9204420652599260 a001 20365011074/9062201101803*228826127^(5/16) 9204420652599260 a001 7778742049/3461452808002*228826127^(5/16) 9204420652599260 a001 2971215073/1322157322203*228826127^(5/16) 9204420652599260 a001 1134903170/505019158607*228826127^(5/16) 9204420652599260 a001 165580141/5600748293801*969323029^(1/2) 9204420652599260 a001 165580141/1568397607*2537720636^(1/10) 9204420652599260 a001 165580141/1568397607*14662949395604^(1/14) 9204420652599260 a001 165580141/1568397607*192900153618^(1/12) 9204420652599260 a001 433494437/192900153618*228826127^(5/16) 9204420652599260 a001 165580141/9062201101803*2537720636^(1/2) 9204420652599260 a001 165580141/817138163596*2537720636^(7/18) 9204420652599260 a001 165580141/4106118243*73681302247^(1/8) 9204420652599260 a001 165580141/119218851371*2537720636^(3/10) 9204420652599260 a001 165580141/73681302247*2537720636^(5/18) 9204420652599260 a001 165580141/14662949395604*6643838879^(1/2) 9204420652599260 a001 165580141/10749957122*45537549124^(1/6) 9204420652599260 a001 165580141/6643838879*2537720636^(1/6) 9204420652599260 a001 165580141/28143753123*17393796001^(3/14) 9204420652599260 a001 165580141/23725150497407*17393796001^(1/2) 9204420652599260 a001 165580141/28143753123*14662949395604^(1/6) 9204420652599260 a001 165580141/817138163596*17393796001^(5/14) 9204420652599260 a001 165580141/73681302247*312119004989^(5/22) 9204420652599260 a001 165580141/73681302247*3461452808002^(5/24) 9204420652599260 a001 165580141/192900153618*1322157322203^(1/4) 9204420652599260 a001 165580141/505019158607*312119004989^(3/10) 9204420652599260 a001 165580141/9062201101803*312119004989^(9/22) 9204420652599260 a001 165580141/817138163596*312119004989^(7/22) 9204420652599260 a001 165580141/9062201101803*14662949395604^(5/14) 9204420652599260 a001 165580141/23725150497407*14662949395604^(7/18) 9204420652599260 a001 165580141/817138163596*14662949395604^(5/18) 9204420652599260 a001 165580141/23725150497407*505019158607^(7/16) 9204420652599260 a001 165580141/817138163596*505019158607^(5/16) 9204420652599260 a001 165580141/312119004989*9062201101803^(1/4) 9204420652599260 a001 165580141/9062201101803*192900153618^(5/12) 9204420652599260 a001 165580141/2139295485799*73681302247^(3/8) 9204420652599260 a001 165580141/119218851371*14662949395604^(3/14) 9204420652599260 a001 165580141/119218851371*192900153618^(1/4) 9204420652599260 a001 165580141/73681302247*28143753123^(1/4) 9204420652599260 a001 165580141/817138163596*28143753123^(7/20) 9204420652599260 a001 165580141/9062201101803*28143753123^(9/20) 9204420652599260 a001 165580141/17393796001*817138163596^(1/6) 9204420652599260 a001 165580141/45537549124*4106118243^(1/4) 9204420652599260 a001 165580141/6643838879*312119004989^(3/22) 9204420652599260 a001 165580141/6643838879*28143753123^(3/20) 9204420652599260 a001 165580141/505019158607*1568397607^(3/8) 9204420652599260 a001 165580141/2537720636*312119004989^(1/10) 9204420652599260 a001 165580141/2537720636*1568397607^(1/8) 9204420652599260 a001 701408733/3461452808002*228826127^(7/16) 9204420652599260 a001 10946/599074579*228826127^(9/16) 9204420652599260 a001 165580141/28143753123*599074578^(1/4) 9204420652599260 a001 1836311903/9062201101803*228826127^(7/16) 9204420652599260 a001 4807526976/23725150497407*228826127^(7/16) 9204420652599260 a001 165580141/969323029*17393796001^(1/14) 9204420652599260 a001 165580141/969323029*14662949395604^(1/18) 9204420652599260 a001 165580141/969323029*505019158607^(1/16) 9204420652599260 a001 2971215073/14662949395604*228826127^(7/16) 9204420652599260 a001 165580141/817138163596*599074578^(5/12) 9204420652599260 a001 1134903170/5600748293801*228826127^(7/16) 9204420652599260 a001 165580141/969323029*599074578^(1/12) 9204420652599260 a001 165580141/23725150497407*599074578^(7/12) 9204420652599260 a001 433494437/2139295485799*228826127^(7/16) 9204420652599260 a001 165580141/6643838879*228826127^(3/16) 9204420652599260 a001 433494437/23725150497407*228826127^(9/16) 9204420652599260 a001 165580141/73681302247*228826127^(5/16) 9204420652599260 a001 102334155/10749957122*87403803^(1/4) 9204420652599260 a001 165580141/817138163596*228826127^(7/16) 9204420652599260 a001 165580141/9062201101803*228826127^(9/16) 9204420652599260 a001 9227465/87403803*7881196^(3/22) 9204420652599260 a001 31622993/408569081798*141422324^(1/2) 9204420652599260 a001 267914296/28143753123*87403803^(1/4) 9204420652599260 a001 63245986/228826127*2537720636^(1/18) 9204420652599260 a001 63245986/228826127*312119004989^(1/22) 9204420652599260 a001 63245986/228826127*28143753123^(1/20) 9204420652599260 a001 133957148/299537289*33385282^(1/24) 9204420652599260 a001 63245986/228826127*228826127^(1/16) 9204420652599260 a001 701408733/73681302247*87403803^(1/4) 9204420652599260 a001 1836311903/192900153618*87403803^(1/4) 9204420652599260 a001 102287808/10745088481*87403803^(1/4) 9204420652599260 a001 12586269025/1322157322203*87403803^(1/4) 9204420652599260 a001 32951280099/3461452808002*87403803^(1/4) 9204420652599260 a001 86267571272/9062201101803*87403803^(1/4) 9204420652599260 a001 225851433717/23725150497407*87403803^(1/4) 9204420652599260 a001 139583862445/14662949395604*87403803^(1/4) 9204420652599260 a001 53316291173/5600748293801*87403803^(1/4) 9204420652599260 a001 20365011074/2139295485799*87403803^(1/4) 9204420652599260 a001 7778742049/817138163596*87403803^(1/4) 9204420652599260 a001 2971215073/312119004989*87403803^(1/4) 9204420652599260 a001 1134903170/119218851371*87403803^(1/4) 9204420652599260 a001 433494437/45537549124*87403803^(1/4) 9204420652599260 a001 701408733/1568397607*33385282^(1/24) 9204420652599260 a001 1836311903/4106118243*33385282^(1/24) 9204420652599260 a001 2403763488/5374978561*33385282^(1/24) 9204420652599260 a001 12586269025/28143753123*33385282^(1/24) 9204420652599260 a001 32951280099/73681302247*33385282^(1/24) 9204420652599260 a001 43133785636/96450076809*33385282^(1/24) 9204420652599260 a001 225851433717/505019158607*33385282^(1/24) 9204420652599260 a001 591286729879/1322157322203*33385282^(1/24) 9204420652599260 a001 10610209857723/23725150497407*33385282^(1/24) 9204420652599260 a001 182717648081/408569081798*33385282^(1/24) 9204420652599260 a001 139583862445/312119004989*33385282^(1/24) 9204420652599260 a001 53316291173/119218851371*33385282^(1/24) 9204420652599260 a001 10182505537/22768774562*33385282^(1/24) 9204420652599260 a001 7778742049/17393796001*33385282^(1/24) 9204420652599260 a001 2971215073/6643838879*33385282^(1/24) 9204420652599260 a001 567451585/1268860318*33385282^(1/24) 9204420652599260 a006 5^(1/2)*fibonacci(81/2)/Lucas(39)/sqrt(5) 9204420652599260 a001 433494437/969323029*33385282^(1/24) 9204420652599260 a001 165580141/17393796001*87403803^(1/4) 9204420652599260 a001 63245986/1568397607*141422324^(1/6) 9204420652599260 a001 24157817/87403803*20633239^(1/14) 9204420652599260 a001 63245986/1322157322203*370248451^(1/2) 9204420652599260 a001 31622993/299537289*2537720636^(1/10) 9204420652599260 a001 31622993/299537289*14662949395604^(1/14) 9204420652599260 a001 31622993/299537289*192900153618^(1/12) 9204420652599260 a001 63245986/2139295485799*969323029^(1/2) 9204420652599260 a001 63245986/1568397607*73681302247^(1/8) 9204420652599260 a001 31622993/1730726404001*2537720636^(1/2) 9204420652599260 a001 63245986/312119004989*2537720636^(7/18) 9204420652599260 a001 63245986/4106118243*45537549124^(1/6) 9204420652599260 a001 31622993/22768774562*2537720636^(3/10) 9204420652599260 a001 63245986/28143753123*2537720636^(5/18) 9204420652599260 a001 63245986/5600748293801*6643838879^(1/2) 9204420652599260 a001 31622993/5374978561*17393796001^(3/14) 9204420652599260 a001 31622993/5374978561*14662949395604^(1/6) 9204420652599260 a001 63245986/9062201101803*17393796001^(1/2) 9204420652599260 a001 63245986/28143753123*312119004989^(5/22) 9204420652599260 a001 63245986/28143753123*3461452808002^(5/24) 9204420652599260 a001 63245986/312119004989*17393796001^(5/14) 9204420652599260 a001 63245986/28143753123*28143753123^(1/4) 9204420652599260 a001 31622993/7331474697802*45537549124^(1/2) 9204420652599260 a001 63245986/73681302247*1322157322203^(1/4) 9204420652599260 a001 63245986/23725150497407*119218851371^(1/2) 9204420652599260 a001 31622993/96450076809*312119004989^(3/10) 9204420652599260 a001 31622993/1730726404001*312119004989^(9/22) 9204420652599260 a001 31622993/1730726404001*14662949395604^(5/14) 9204420652599260 a001 63245986/9062201101803*14662949395604^(7/18) 9204420652599260 a006 5^(1/2)*Fibonacci(81/2)/Lucas(39)/sqrt(5) 9204420652599260 a001 63245986/9062201101803*505019158607^(7/16) 9204420652599260 a001 63245986/312119004989*312119004989^(7/22) 9204420652599260 a001 63245986/312119004989*14662949395604^(5/18) 9204420652599260 a001 31622993/1730726404001*192900153618^(5/12) 9204420652599260 a001 63245986/119218851371*9062201101803^(1/4) 9204420652599260 a001 31622993/408569081798*73681302247^(3/8) 9204420652599260 a001 63245986/312119004989*28143753123^(7/20) 9204420652599260 a001 31622993/22768774562*14662949395604^(3/14) 9204420652599260 a001 31622993/22768774562*192900153618^(1/4) 9204420652599260 a001 31622993/1730726404001*28143753123^(9/20) 9204420652599260 a001 63245986/17393796001*4106118243^(1/4) 9204420652599260 a001 63245986/6643838879*817138163596^(1/6) 9204420652599260 a001 31622993/1268860318*2537720636^(1/6) 9204420652599260 a001 31622993/96450076809*1568397607^(3/8) 9204420652599260 a001 31622993/1268860318*312119004989^(3/22) 9204420652599260 a001 31622993/1268860318*28143753123^(3/20) 9204420652599260 a001 31622993/5374978561*599074578^(1/4) 9204420652599260 a001 63245986/969323029*312119004989^(1/10) 9204420652599260 a001 63245986/969323029*1568397607^(1/8) 9204420652599260 a001 63245986/312119004989*599074578^(5/12) 9204420652599260 a001 63245986/9062201101803*599074578^(7/12) 9204420652599260 a001 165580141/370248451*33385282^(1/24) 9204420652599260 a001 31622993/1268860318*228826127^(3/16) 9204420652599260 a001 39088169/1568397607*33385282^(5/24) 9204420652599260 a001 63245986/28143753123*228826127^(5/16) 9204420652599260 a001 63245986/370248451*17393796001^(1/14) 9204420652599260 a001 63245986/370248451*14662949395604^(1/18) 9204420652599260 a001 63245986/370248451*505019158607^(1/16) 9204420652599260 a001 63245986/370248451*599074578^(1/12) 9204420652599260 a001 63245986/312119004989*228826127^(7/16) 9204420652599260 a001 31622993/1730726404001*228826127^(9/16) 9204420652599261 a001 63245986/6643838879*87403803^(1/4) 9204420652599261 a001 102334155/969323029*33385282^(1/8) 9204420652599261 a001 66978574/634430159*33385282^(1/8) 9204420652599261 a001 701408733/6643838879*33385282^(1/8) 9204420652599261 a001 1836311903/17393796001*33385282^(1/8) 9204420652599261 a001 1201881744/11384387281*33385282^(1/8) 9204420652599261 a001 12586269025/119218851371*33385282^(1/8) 9204420652599261 a001 32951280099/312119004989*33385282^(1/8) 9204420652599261 a001 21566892818/204284540899*33385282^(1/8) 9204420652599261 a001 225851433717/2139295485799*33385282^(1/8) 9204420652599261 a001 182717648081/1730726404001*33385282^(1/8) 9204420652599261 a001 139583862445/1322157322203*33385282^(1/8) 9204420652599261 a001 53316291173/505019158607*33385282^(1/8) 9204420652599261 a001 10182505537/96450076809*33385282^(1/8) 9204420652599261 a001 7778742049/73681302247*33385282^(1/8) 9204420652599261 a001 2971215073/28143753123*33385282^(1/8) 9204420652599261 a001 567451585/5374978561*33385282^(1/8) 9204420652599261 a001 433494437/4106118243*33385282^(1/8) 9204420652599261 a001 165580141/1568397607*33385282^(1/8) 9204420652599261 a001 39088169/6643838879*33385282^(7/24) 9204420652599261 a001 31622993/70711162*33385282^(1/24) 9204420652599261 a001 24157817/141422324*20633239^(1/10) 9204420652599261 a001 31622993/299537289*33385282^(1/8) 9204420652599261 a001 34111385/1368706081*33385282^(5/24) 9204420652599261 a001 24157817/192900153618*54018521^(1/2) 9204420652599262 a001 133957148/5374978561*33385282^(5/24) 9204420652599262 a001 233802911/9381251041*33385282^(5/24) 9204420652599262 a001 1836311903/73681302247*33385282^(5/24) 9204420652599262 a001 267084832/10716675201*33385282^(5/24) 9204420652599262 a001 12586269025/505019158607*33385282^(5/24) 9204420652599262 a001 10983760033/440719107401*33385282^(5/24) 9204420652599262 a001 43133785636/1730726404001*33385282^(5/24) 9204420652599262 a001 75283811239/3020733700601*33385282^(5/24) 9204420652599262 a001 182717648081/7331474697802*33385282^(5/24) 9204420652599262 a001 139583862445/5600748293801*33385282^(5/24) 9204420652599262 a001 53316291173/2139295485799*33385282^(5/24) 9204420652599262 a001 10182505537/408569081798*33385282^(5/24) 9204420652599262 a001 7778742049/312119004989*33385282^(5/24) 9204420652599262 a001 2971215073/119218851371*33385282^(5/24) 9204420652599262 a001 567451585/22768774562*33385282^(5/24) 9204420652599262 a001 433494437/17393796001*33385282^(5/24) 9204420652599262 a001 165580141/6643838879*33385282^(5/24) 9204420652599262 a001 39088169/28143753123*33385282^(3/8) 9204420652599262 a001 24157817/87403803*2537720636^(1/18) 9204420652599262 a001 24157817/87403803*312119004989^(1/22) 9204420652599262 a001 24157817/87403803*28143753123^(1/20) 9204420652599262 a001 24157817/87403803*228826127^(1/16) 9204420652599262 a001 31622993/1268860318*33385282^(5/24) 9204420652599262 a001 102334155/17393796001*33385282^(7/24) 9204420652599262 a001 66978574/11384387281*33385282^(7/24) 9204420652599262 a001 701408733/119218851371*33385282^(7/24) 9204420652599262 a001 1836311903/312119004989*33385282^(7/24) 9204420652599262 a001 1201881744/204284540899*33385282^(7/24) 9204420652599262 a001 12586269025/2139295485799*33385282^(7/24) 9204420652599262 a001 32951280099/5600748293801*33385282^(7/24) 9204420652599262 a001 1135099622/192933544679*33385282^(7/24) 9204420652599262 a001 139583862445/23725150497407*33385282^(7/24) 9204420652599262 a001 53316291173/9062201101803*33385282^(7/24) 9204420652599262 a001 10182505537/1730726404001*33385282^(7/24) 9204420652599262 a001 7778742049/1322157322203*33385282^(7/24) 9204420652599262 a001 2971215073/505019158607*33385282^(7/24) 9204420652599262 a001 567451585/96450076809*33385282^(7/24) 9204420652599262 a001 433494437/73681302247*33385282^(7/24) 9204420652599262 a001 165580141/28143753123*33385282^(7/24) 9204420652599262 a001 39088169/119218851371*33385282^(11/24) 9204420652599263 a001 31622993/5374978561*33385282^(7/24) 9204420652599263 a001 14619165/10525900321*33385282^(3/8) 9204420652599263 a001 24157817/312119004989*141422324^(1/2) 9204420652599263 a001 24157817/228826127*2537720636^(1/10) 9204420652599263 a001 24157817/228826127*14662949395604^(1/14) 9204420652599263 a001 24157817/228826127*192900153618^(1/12) 9204420652599263 a001 24157817/599074578*141422324^(1/6) 9204420652599263 a001 133957148/96450076809*33385282^(3/8) 9204420652599263 a001 701408733/505019158607*33385282^(3/8) 9204420652599263 a001 1836311903/1322157322203*33385282^(3/8) 9204420652599263 a001 14930208/10749853441*33385282^(3/8) 9204420652599263 a001 12586269025/9062201101803*33385282^(3/8) 9204420652599263 a001 32951280099/23725150497407*33385282^(3/8) 9204420652599263 a001 10182505537/7331474697802*33385282^(3/8) 9204420652599263 a001 7778742049/5600748293801*33385282^(3/8) 9204420652599263 a001 2971215073/2139295485799*33385282^(3/8) 9204420652599263 a001 567451585/408569081798*33385282^(3/8) 9204420652599263 a001 433494437/312119004989*33385282^(3/8) 9204420652599263 a001 24157817/505019158607*370248451^(1/2) 9204420652599263 a001 24157817/599074578*73681302247^(1/8) 9204420652599263 a001 24157817/817138163596*969323029^(1/2) 9204420652599263 a001 24157817/1568397607*45537549124^(1/6) 9204420652599263 a001 24157817/14662949395604*2537720636^(11/18) 9204420652599263 a001 24157817/1322157322203*2537720636^(1/2) 9204420652599263 a001 24157817/119218851371*2537720636^(7/18) 9204420652599263 a001 24157817/4106118243*17393796001^(3/14) 9204420652599263 a001 24157817/4106118243*14662949395604^(1/6) 9204420652599263 a001 24157817/10749957122*2537720636^(5/18) 9204420652599263 a001 24157817/17393796001*2537720636^(3/10) 9204420652599263 a001 24157817/2139295485799*6643838879^(1/2) 9204420652599263 a001 24157817/10749957122*312119004989^(5/22) 9204420652599263 a001 24157817/10749957122*3461452808002^(5/24) 9204420652599263 a001 24157817/10749957122*28143753123^(1/4) 9204420652599263 a001 24157817/3461452808002*17393796001^(1/2) 9204420652599263 a001 24157817/28143753123*1322157322203^(1/4) 9204420652599263 a001 24157817/119218851371*17393796001^(5/14) 9204420652599263 a001 24157817/5600748293801*45537549124^(1/2) 9204420652599263 a001 24157817/73681302247*312119004989^(3/10) 9204420652599263 a001 24157817/9062201101803*119218851371^(1/2) 9204420652599263 a001 24157817/14662949395604*312119004989^(1/2) 9204420652599263 a001 24157817/1322157322203*312119004989^(9/22) 9204420652599263 a001 24157817/1322157322203*14662949395604^(5/14) 9204420652599263 a001 24157817/3461452808002*14662949395604^(7/18) 9204420652599263 a001 24157817/14662949395604*3461452808002^(11/24) 9204420652599263 a001 24157817/3461452808002*505019158607^(7/16) 9204420652599263 a001 24157817/1322157322203*192900153618^(5/12) 9204420652599263 a001 24157817/119218851371*312119004989^(7/22) 9204420652599263 a001 24157817/119218851371*14662949395604^(5/18) 9204420652599263 a001 24157817/119218851371*505019158607^(5/16) 9204420652599263 a001 24157817/312119004989*73681302247^(3/8) 9204420652599263 a001 24157817/45537549124*9062201101803^(1/4) 9204420652599263 a001 24157817/119218851371*28143753123^(7/20) 9204420652599263 a001 24157817/1322157322203*28143753123^(9/20) 9204420652599263 a001 24157817/14662949395604*28143753123^(11/20) 9204420652599263 a001 24157817/17393796001*14662949395604^(3/14) 9204420652599263 a001 24157817/17393796001*192900153618^(1/4) 9204420652599263 a001 24157817/6643838879*4106118243^(1/4) 9204420652599263 a001 24157817/73681302247*1568397607^(3/8) 9204420652599263 a001 24157817/2537720636*817138163596^(1/6) 9204420652599263 a001 24157817/14662949395604*1568397607^(5/8) 9204420652599263 a001 24157817/4106118243*599074578^(1/4) 9204420652599263 a001 24157817/969323029*2537720636^(1/6) 9204420652599263 a001 165580141/119218851371*33385282^(3/8) 9204420652599263 a001 24157817/969323029*312119004989^(3/22) 9204420652599263 a001 24157817/969323029*28143753123^(3/20) 9204420652599263 a001 24157817/119218851371*599074578^(5/12) 9204420652599263 a001 24157817/3461452808002*599074578^(7/12) 9204420652599263 a001 24157817/969323029*228826127^(3/16) 9204420652599263 a001 24157817/10749957122*228826127^(5/16) 9204420652599263 a001 24157817/370248451*312119004989^(1/10) 9204420652599263 a001 24157817/370248451*1568397607^(1/8) 9204420652599263 a001 24157817/119218851371*228826127^(7/16) 9204420652599263 a001 24157817/1322157322203*228826127^(9/16) 9204420652599263 a001 39088169/505019158607*33385282^(13/24) 9204420652599263 a001 24157817/14662949395604*228826127^(11/16) 9204420652599263 a001 24157817/2537720636*87403803^(1/4) 9204420652599263 a001 31622993/22768774562*33385282^(3/8) 9204420652599263 a001 9303105/28374454999*33385282^(11/24) 9204420652599263 a001 24157817/141422324*17393796001^(1/14) 9204420652599263 a001 24157817/141422324*14662949395604^(1/18) 9204420652599263 a001 24157817/141422324*505019158607^(1/16) 9204420652599263 a001 24157817/141422324*599074578^(1/12) 9204420652599264 a001 66978574/204284540899*33385282^(11/24) 9204420652599264 a001 701408733/2139295485799*33385282^(11/24) 9204420652599264 a001 1836311903/5600748293801*33385282^(11/24) 9204420652599264 a001 1201881744/3665737348901*33385282^(11/24) 9204420652599264 a001 7778742049/23725150497407*33385282^(11/24) 9204420652599264 a001 2971215073/9062201101803*33385282^(11/24) 9204420652599264 a001 567451585/1730726404001*33385282^(11/24) 9204420652599264 a001 433494437/1322157322203*33385282^(11/24) 9204420652599264 a001 165580141/505019158607*33385282^(11/24) 9204420652599264 a001 39088169/2139295485799*33385282^(5/8) 9204420652599264 a001 24157817/228826127*33385282^(1/8) 9204420652599264 a001 24157817/23725150497407*87403803^(3/4) 9204420652599264 a001 31622993/96450076809*33385282^(11/24) 9204420652599264 a001 34111385/440719107401*33385282^(13/24) 9204420652599264 a001 133957148/1730726404001*33385282^(13/24) 9204420652599264 a001 233802911/3020733700601*33385282^(13/24) 9204420652599264 a001 1836311903/23725150497407*33385282^(13/24) 9204420652599264 a001 567451585/7331474697802*33385282^(13/24) 9204420652599264 a001 433494437/5600748293801*33385282^(13/24) 9204420652599264 a001 165580141/2139295485799*33385282^(13/24) 9204420652599264 a001 9227465/5600748293801*20633239^(11/14) 9204420652599265 a001 39088169/9062201101803*33385282^(17/24) 9204420652599265 a001 24157817/969323029*33385282^(5/24) 9204420652599265 a001 31622993/408569081798*33385282^(13/24) 9204420652599265 a001 102334155/5600748293801*33385282^(5/8) 9204420652599265 a001 10946/599074579*33385282^(5/8) 9204420652599265 a001 433494437/23725150497407*33385282^(5/8) 9204420652599265 a001 165580141/9062201101803*33385282^(5/8) 9204420652599265 a001 24157817/4106118243*33385282^(7/24) 9204420652599265 a001 31622993/1730726404001*33385282^(5/8) 9204420652599266 a001 102334155/23725150497407*33385282^(17/24) 9204420652599266 a001 14930352/969323029*12752043^(1/4) 9204420652599266 a001 24157817/17393796001*33385282^(3/8) 9204420652599266 a001 31622993/7331474697802*33385282^(17/24) 9204420652599266 a001 9227465/1322157322203*20633239^(7/10) 9204420652599267 a001 24157817/54018521*33385282^(1/24) 9204420652599267 a001 1762289/7331474697802*7881196^(21/22) 9204420652599267 a001 24157817/73681302247*33385282^(11/24) 9204420652599267 a001 24157817/312119004989*33385282^(13/24) 9204420652599268 a001 9227465/505019158607*20633239^(9/14) 9204420652599268 a001 24157817/1322157322203*33385282^(5/8) 9204420652599269 a001 24157817/5600748293801*33385282^(17/24) 9204420652599270 a001 24157817/23725150497407*33385282^(19/24) 9204420652599271 a001 9227465/45537549124*20633239^(1/2) 9204420652599272 a001 9227465/33385282*20633239^(1/14) 9204420652599273 a001 39088169/2537720636*12752043^(1/4) 9204420652599273 a001 9227465/33385282*2537720636^(1/18) 9204420652599273 a001 9227465/33385282*312119004989^(1/22) 9204420652599273 a001 9227465/33385282*28143753123^(1/20) 9204420652599273 a001 9227465/33385282*228826127^(1/16) 9204420652599274 a001 9227465/4106118243*20633239^(5/14) 9204420652599274 a001 102334155/6643838879*12752043^(1/4) 9204420652599274 a001 9238424/599786069*12752043^(1/4) 9204420652599274 a001 701408733/45537549124*12752043^(1/4) 9204420652599274 a001 1836311903/119218851371*12752043^(1/4) 9204420652599274 a001 4807526976/312119004989*12752043^(1/4) 9204420652599274 a001 12586269025/817138163596*12752043^(1/4) 9204420652599274 a001 32951280099/2139295485799*12752043^(1/4) 9204420652599274 a001 86267571272/5600748293801*12752043^(1/4) 9204420652599274 a001 7787980473/505618944676*12752043^(1/4) 9204420652599274 a001 365435296162/23725150497407*12752043^(1/4) 9204420652599274 a001 139583862445/9062201101803*12752043^(1/4) 9204420652599274 a001 53316291173/3461452808002*12752043^(1/4) 9204420652599274 a001 20365011074/1322157322203*12752043^(1/4) 9204420652599274 a001 7778742049/505019158607*12752043^(1/4) 9204420652599274 a001 2971215073/192900153618*12752043^(1/4) 9204420652599274 a001 1134903170/73681302247*12752043^(1/4) 9204420652599274 a001 433494437/28143753123*12752043^(1/4) 9204420652599274 a001 165580141/10749957122*12752043^(1/4) 9204420652599274 a001 63245986/4106118243*12752043^(1/4) 9204420652599275 a001 9227465/1568397607*20633239^(3/10) 9204420652599276 a006 5^(1/2)*fibonacci(73/2)/Lucas(35)/sqrt(5) 9204420652599277 a001 9227465/370248451*20633239^(3/14) 9204420652599277 a001 24157817/1568397607*12752043^(1/4) 9204420652599280 a001 5702887/12752043*1860498^(1/20) 9204420652599280 a001 9227465/73681302247*54018521^(1/2) 9204420652599280 a001 1762289/1730726404001*7881196^(19/22) 9204420652599280 a001 9227465/87403803*2537720636^(1/10) 9204420652599280 a001 9227465/87403803*14662949395604^(1/14) 9204420652599280 a001 9227465/87403803*192900153618^(1/12) 9204420652599281 a001 9227465/228826127*141422324^(1/6) 9204420652599281 a001 9227465/119218851371*141422324^(1/2) 9204420652599281 a001 9227465/228826127*73681302247^(1/8) 9204420652599281 a001 9227465/87403803*33385282^(1/8) 9204420652599281 a001 9227465/192900153618*370248451^(1/2) 9204420652599281 a001 9227465/599074578*45537549124^(1/6) 9204420652599281 a001 9227465/312119004989*969323029^(1/2) 9204420652599281 a001 9227465/1568397607*17393796001^(3/14) 9204420652599281 a001 9227465/1568397607*14662949395604^(1/6) 9204420652599281 a001 9227465/4106118243*2537720636^(5/18) 9204420652599281 a001 9227465/5600748293801*2537720636^(11/18) 9204420652599281 a001 9227465/505019158607*2537720636^(1/2) 9204420652599281 a001 9227465/45537549124*2537720636^(7/18) 9204420652599281 a001 9227465/4106118243*312119004989^(5/22) 9204420652599281 a001 9227465/4106118243*3461452808002^(5/24) 9204420652599281 a001 9227465/4106118243*28143753123^(1/4) 9204420652599281 a001 9227465/6643838879*2537720636^(3/10) 9204420652599281 a001 9227465/817138163596*6643838879^(1/2) 9204420652599281 a001 9227465/10749957122*1322157322203^(1/4) 9204420652599281 a001 9227465/1322157322203*17393796001^(1/2) 9204420652599281 a001 9227465/28143753123*312119004989^(3/10) 9204420652599281 a001 9227465/45537549124*17393796001^(5/14) 9204420652599281 a001 9227465/2139295485799*45537549124^(1/2) 9204420652599281 a001 9227465/3461452808002*119218851371^(1/2) 9204420652599281 a001 9227465/505019158607*312119004989^(9/22) 9204420652599281 a001 9227465/5600748293801*312119004989^(1/2) 9204420652599281 a001 9227465/505019158607*14662949395604^(5/14) 9204420652599281 a001 9227465/9062201101803*817138163596^(1/2) 9204420652599281 a001 9227465/1322157322203*14662949395604^(7/18) 9204420652599281 a001 9227465/14662949395604*2139295485799^(1/2) 9204420652599281 a006 5^(1/2)*Fibonacci(73/2)/Lucas(35)/sqrt(5) 9204420652599281 a001 9227465/5600748293801*3461452808002^(11/24) 9204420652599281 a001 9227465/1322157322203*505019158607^(7/16) 9204420652599281 a001 9227465/505019158607*192900153618^(5/12) 9204420652599281 a001 9227465/119218851371*73681302247^(3/8) 9204420652599281 a001 9227465/45537549124*312119004989^(7/22) 9204420652599281 a001 9227465/45537549124*14662949395604^(5/18) 9204420652599281 a001 9227465/45537549124*505019158607^(5/16) 9204420652599281 a001 9227465/505019158607*28143753123^(9/20) 9204420652599281 a001 9227465/5600748293801*28143753123^(11/20) 9204420652599281 a001 9227465/45537549124*28143753123^(7/20) 9204420652599281 a001 9227465/17393796001*9062201101803^(1/4) 9204420652599281 a001 9227465/6643838879*14662949395604^(3/14) 9204420652599281 a001 9227465/6643838879*192900153618^(1/4) 9204420652599281 a001 9227465/28143753123*1568397607^(3/8) 9204420652599281 a001 9227465/2537720636*4106118243^(1/4) 9204420652599281 a001 9227465/5600748293801*1568397607^(5/8) 9204420652599281 a001 9227465/1568397607*599074578^(1/4) 9204420652599281 a001 9227465/969323029*817138163596^(1/6) 9204420652599281 a001 9227465/45537549124*599074578^(5/12) 9204420652599281 a001 9227465/1322157322203*599074578^(7/12) 9204420652599282 a001 9227465/4106118243*228826127^(5/16) 9204420652599282 a001 9227465/370248451*2537720636^(1/6) 9204420652599282 a001 9227465/370248451*312119004989^(3/22) 9204420652599282 a001 9227465/370248451*28143753123^(3/20) 9204420652599282 a001 9227465/45537549124*228826127^(7/16) 9204420652599282 a001 9227465/505019158607*228826127^(9/16) 9204420652599282 a001 9227465/370248451*228826127^(3/16) 9204420652599282 a001 9227465/5600748293801*228826127^(11/16) 9204420652599282 a001 9227465/969323029*87403803^(1/4) 9204420652599282 a001 9227465/141422324*312119004989^(1/10) 9204420652599282 a001 9227465/141422324*1568397607^(1/8) 9204420652599282 a001 9227465/9062201101803*87403803^(3/4) 9204420652599282 a001 9227465/54018521*20633239^(1/10) 9204420652599283 a001 9227465/370248451*33385282^(5/24) 9204420652599284 a001 9227465/1568397607*33385282^(7/24) 9204420652599285 a001 3524578/2139295485799*7881196^(5/6) 9204420652599285 a001 9227465/6643838879*33385282^(3/8) 9204420652599285 a001 9227465/54018521*17393796001^(1/14) 9204420652599285 a001 9227465/54018521*14662949395604^(1/18) 9204420652599285 a001 9227465/54018521*505019158607^(1/16) 9204420652599285 a001 9227465/54018521*599074578^(1/12) 9204420652599285 a001 9227465/28143753123*33385282^(11/24) 9204420652599286 a001 9227465/119218851371*33385282^(13/24) 9204420652599287 a001 9227465/505019158607*33385282^(5/8) 9204420652599287 a001 9227465/2139295485799*33385282^(17/24) 9204420652599288 a001 9227465/9062201101803*33385282^(19/24) 9204420652599292 a001 2178309/20633239*1860498^(3/20) 9204420652599294 a001 1762289/408569081798*7881196^(17/22) 9204420652599294 a001 7465176/1730726404001*12752043^(3/4) 9204420652599296 a001 9227465/599074578*12752043^(1/4) 9204420652599296 a001 9227465/20633239*7881196^(1/22) 9204420652599301 a001 39088169/9062201101803*12752043^(3/4) 9204420652599302 a001 102334155/23725150497407*12752043^(3/4) 9204420652599303 a001 31622993/7331474697802*12752043^(3/4) 9204420652599303 a001 9227465/20633239*33385282^(1/24) 9204420652599305 a001 24157817/5600748293801*12752043^(3/4) 9204420652599307 a001 1762289/96450076809*7881196^(15/22) 9204420652599320 a001 1762289/22768774562*7881196^(13/22) 9204420652599324 a001 9227465/2139295485799*12752043^(3/4) 9204420652599334 a001 1762289/5374978561*7881196^(1/2) 9204420652599347 a001 1762289/1268860318*7881196^(9/22) 9204420652599350 a001 3524578/12752043*20633239^(1/14) 9204420652599351 a001 3524578/12752043*2537720636^(1/18) 9204420652599351 a001 3524578/12752043*312119004989^(1/22) 9204420652599351 a001 3524578/12752043*28143753123^(1/20) 9204420652599351 a001 3524578/12752043*228826127^(1/16) 9204420652599361 a001 1762289/299537289*7881196^(7/22) 9204420652599373 a006 5^(1/2)*fibonacci(69/2)/Lucas(33)/sqrt(5) 9204420652599375 a001 1762289/70711162*7881196^(5/22) 9204420652599376 a001 7465176/16692641*1860498^(1/20) 9204420652599380 a001 1762289/16692641*7881196^(3/22) 9204420652599387 a001 3524578/54018521*7881196^(1/6) 9204420652599388 a001 3524578/23725150497407*20633239^(13/14) 9204420652599389 a001 1762289/7331474697802*20633239^(9/10) 9204420652599390 a001 39088169/87403803*1860498^(1/20) 9204420652599391 a001 3524578/2139295485799*20633239^(11/14) 9204420652599392 a001 102334155/228826127*1860498^(1/20) 9204420652599393 a001 133957148/299537289*1860498^(1/20) 9204420652599393 a001 701408733/1568397607*1860498^(1/20) 9204420652599393 a001 1836311903/4106118243*1860498^(1/20) 9204420652599393 a001 2403763488/5374978561*1860498^(1/20) 9204420652599393 a001 12586269025/28143753123*1860498^(1/20) 9204420652599393 a001 32951280099/73681302247*1860498^(1/20) 9204420652599393 a001 43133785636/96450076809*1860498^(1/20) 9204420652599393 a001 225851433717/505019158607*1860498^(1/20) 9204420652599393 a001 591286729879/1322157322203*1860498^(1/20) 9204420652599393 a001 10610209857723/23725150497407*1860498^(1/20) 9204420652599393 a001 182717648081/408569081798*1860498^(1/20) 9204420652599393 a001 139583862445/312119004989*1860498^(1/20) 9204420652599393 a001 53316291173/119218851371*1860498^(1/20) 9204420652599393 a001 10182505537/22768774562*1860498^(1/20) 9204420652599393 a001 7778742049/17393796001*1860498^(1/20) 9204420652599393 a001 2971215073/6643838879*1860498^(1/20) 9204420652599393 a001 567451585/1268860318*1860498^(1/20) 9204420652599393 a001 433494437/969323029*1860498^(1/20) 9204420652599393 a001 3524578/505019158607*20633239^(7/10) 9204420652599393 a001 165580141/370248451*1860498^(1/20) 9204420652599394 a001 31622993/70711162*1860498^(1/20) 9204420652599394 a001 1762289/96450076809*20633239^(9/14) 9204420652599397 a001 3524578/17393796001*20633239^(1/2) 9204420652599399 a001 24157817/54018521*1860498^(1/20) 9204420652599400 a001 1762289/16692641*2537720636^(1/10) 9204420652599400 a001 1762289/16692641*14662949395604^(1/14) 9204420652599400 a001 1762289/16692641*192900153618^(1/12) 9204420652599400 a001 3524578/1568397607*20633239^(5/14) 9204420652599401 a001 1762289/16692641*33385282^(1/8) 9204420652599402 a001 1762289/299537289*20633239^(3/10) 9204420652599404 a001 1762289/70711162*20633239^(3/14) 9204420652599406 a001 3524578/28143753123*54018521^(1/2) 9204420652599407 a001 3524578/87403803*141422324^(1/6) 9204420652599407 a001 3524578/87403803*73681302247^(1/8) 9204420652599408 a001 3524578/23725150497407*141422324^(5/6) 9204420652599408 a001 1762289/22768774562*141422324^(1/2) 9204420652599408 a001 3524578/228826127*45537549124^(1/6) 9204420652599408 a001 3524578/73681302247*370248451^(1/2) 9204420652599408 a001 1762289/299537289*17393796001^(3/14) 9204420652599408 a001 1762289/299537289*14662949395604^(1/6) 9204420652599408 a001 1762289/299537289*599074578^(1/4) 9204420652599408 a001 3524578/119218851371*969323029^(1/2) 9204420652599408 a001 3524578/1568397607*2537720636^(5/18) 9204420652599408 a001 3524578/1568397607*312119004989^(5/22) 9204420652599408 a001 3524578/1568397607*3461452808002^(5/24) 9204420652599408 a001 3524578/1568397607*28143753123^(1/4) 9204420652599408 a001 3524578/23725150497407*2537720636^(13/18) 9204420652599408 a001 1762289/7331474697802*2537720636^(7/10) 9204420652599408 a001 3524578/2139295485799*2537720636^(11/18) 9204420652599408 a001 1762289/96450076809*2537720636^(1/2) 9204420652599408 a001 3524578/4106118243*1322157322203^(1/4) 9204420652599408 a001 3524578/17393796001*2537720636^(7/18) 9204420652599408 a001 3524578/312119004989*6643838879^(1/2) 9204420652599408 a001 1762289/5374978561*312119004989^(3/10) 9204420652599408 a001 1762289/7331474697802*17393796001^(9/14) 9204420652599408 a001 3524578/505019158607*17393796001^(1/2) 9204420652599408 a001 1762289/408569081798*45537549124^(1/2) 9204420652599408 a001 3524578/1322157322203*119218851371^(1/2) 9204420652599408 a001 1762289/96450076809*312119004989^(9/22) 9204420652599408 a001 1762289/96450076809*14662949395604^(5/14) 9204420652599408 a001 1762289/96450076809*192900153618^(5/12) 9204420652599408 a001 3524578/23725150497407*312119004989^(13/22) 9204420652599408 a001 3524578/2139295485799*312119004989^(1/2) 9204420652599408 a001 1762289/1730726404001*817138163596^(1/2) 9204420652599408 a001 3524578/5600748293801*2139295485799^(1/2) 9204420652599408 a006 5^(1/2)*Fibonacci(69/2)/Lucas(33)/sqrt(5) 9204420652599408 a001 1762289/7331474697802*14662949395604^(1/2) 9204420652599408 a001 3524578/23725150497407*3461452808002^(13/24) 9204420652599408 a001 1762289/7331474697802*505019158607^(9/16) 9204420652599408 a001 1762289/7331474697802*192900153618^(7/12) 9204420652599408 a001 3524578/23725150497407*73681302247^(5/8) 9204420652599408 a001 1762289/96450076809*28143753123^(9/20) 9204420652599408 a001 1762289/22768774562*73681302247^(3/8) 9204420652599408 a001 3524578/2139295485799*28143753123^(11/20) 9204420652599408 a001 3524578/23725150497407*28143753123^(13/20) 9204420652599408 a001 3524578/17393796001*17393796001^(5/14) 9204420652599408 a001 3524578/17393796001*312119004989^(7/22) 9204420652599408 a001 3524578/17393796001*14662949395604^(5/18) 9204420652599408 a001 3524578/17393796001*505019158607^(5/16) 9204420652599408 a001 3524578/17393796001*28143753123^(7/20) 9204420652599408 a001 3524578/6643838879*9062201101803^(1/4) 9204420652599408 a001 1762289/1268860318*2537720636^(3/10) 9204420652599408 a001 1762289/5374978561*1568397607^(3/8) 9204420652599408 a001 1762289/1268860318*14662949395604^(3/14) 9204420652599408 a001 1762289/1268860318*192900153618^(1/4) 9204420652599408 a001 3524578/2139295485799*1568397607^(5/8) 9204420652599408 a001 3524578/969323029*4106118243^(1/4) 9204420652599408 a001 3524578/17393796001*599074578^(5/12) 9204420652599408 a001 3524578/505019158607*599074578^(7/12) 9204420652599408 a001 1762289/7331474697802*599074578^(3/4) 9204420652599408 a001 3524578/1568397607*228826127^(5/16) 9204420652599408 a001 3524578/370248451*817138163596^(1/6) 9204420652599408 a001 3524578/17393796001*228826127^(7/16) 9204420652599408 a001 1762289/96450076809*228826127^(9/16) 9204420652599408 a001 3524578/2139295485799*228826127^(11/16) 9204420652599408 a001 3524578/23725150497407*228826127^(13/16) 9204420652599408 a001 3524578/370248451*87403803^(1/4) 9204420652599409 a001 1762289/70711162*2537720636^(1/6) 9204420652599409 a001 1762289/70711162*312119004989^(3/22) 9204420652599409 a001 1762289/70711162*28143753123^(3/20) 9204420652599409 a001 1762289/70711162*228826127^(3/16) 9204420652599409 a001 1762289/1730726404001*87403803^(3/4) 9204420652599410 a001 1762289/70711162*33385282^(5/24) 9204420652599410 a001 1762289/299537289*33385282^(7/24) 9204420652599411 a001 1762289/1268860318*33385282^(3/8) 9204420652599411 a001 3524578/54018521*312119004989^(1/10) 9204420652599411 a001 3524578/54018521*1568397607^(1/8) 9204420652599412 a001 1762289/5374978561*33385282^(11/24) 9204420652599413 a001 1762289/22768774562*33385282^(13/24) 9204420652599413 a001 1762289/96450076809*33385282^(5/8) 9204420652599414 a001 1762289/408569081798*33385282^(17/24) 9204420652599415 a001 1762289/1730726404001*33385282^(19/24) 9204420652599415 a001 1762289/7331474697802*33385282^(7/8) 9204420652599422 a001 3524578/228826127*12752043^(1/4) 9204420652599428 a001 3524578/20633239*20633239^(1/10) 9204420652599430 a001 3524578/20633239*17393796001^(1/14) 9204420652599430 a001 3524578/20633239*14662949395604^(1/18) 9204420652599430 a001 3524578/20633239*505019158607^(1/16) 9204420652599430 a001 3524578/20633239*599074578^(1/12) 9204420652599436 a001 9227465/20633239*1860498^(1/20) 9204420652599446 a001 5702887/20633239*1860498^(1/12) 9204420652599450 a001 1762289/408569081798*12752043^(3/4) 9204420652599476 a001 14930352/54018521*1860498^(1/12) 9204420652599481 a001 39088169/141422324*1860498^(1/12) 9204420652599481 a001 102334155/370248451*1860498^(1/12) 9204420652599481 a001 267914296/969323029*1860498^(1/12) 9204420652599481 a001 701408733/2537720636*1860498^(1/12) 9204420652599481 a001 1836311903/6643838879*1860498^(1/12) 9204420652599481 a001 4807526976/17393796001*1860498^(1/12) 9204420652599481 a001 12586269025/45537549124*1860498^(1/12) 9204420652599481 a001 32951280099/119218851371*1860498^(1/12) 9204420652599481 a001 86267571272/312119004989*1860498^(1/12) 9204420652599481 a001 225851433717/817138163596*1860498^(1/12) 9204420652599481 a001 1548008755920/5600748293801*1860498^(1/12) 9204420652599481 a001 139583862445/505019158607*1860498^(1/12) 9204420652599481 a001 53316291173/192900153618*1860498^(1/12) 9204420652599481 a001 20365011074/73681302247*1860498^(1/12) 9204420652599481 a001 7778742049/28143753123*1860498^(1/12) 9204420652599481 a001 2971215073/10749957122*1860498^(1/12) 9204420652599481 a001 1134903170/4106118243*1860498^(1/12) 9204420652599481 a001 433494437/1568397607*1860498^(1/12) 9204420652599481 a001 165580141/599074578*1860498^(1/12) 9204420652599482 a001 63245986/228826127*1860498^(1/12) 9204420652599483 a001 24157817/87403803*1860498^(1/12) 9204420652599495 a001 9227465/33385282*1860498^(1/12) 9204420652599535 a001 726103/29134601*1860498^(1/4) 9204420652599549 a001 1762289/3940598*7881196^(1/22) 9204420652599557 a001 1762289/3940598*33385282^(1/24) 9204420652599573 a001 3524578/12752043*1860498^(1/12) 9204420652599605 a001 5702887/54018521*1860498^(3/20) 9204420652599651 a001 3732588/35355581*1860498^(3/20) 9204420652599658 a001 39088169/370248451*1860498^(3/20) 9204420652599659 a001 102334155/969323029*1860498^(3/20) 9204420652599659 a001 66978574/634430159*1860498^(3/20) 9204420652599659 a001 701408733/6643838879*1860498^(3/20) 9204420652599659 a001 1836311903/17393796001*1860498^(3/20) 9204420652599659 a001 1201881744/11384387281*1860498^(3/20) 9204420652599659 a001 12586269025/119218851371*1860498^(3/20) 9204420652599659 a001 32951280099/312119004989*1860498^(3/20) 9204420652599659 a001 21566892818/204284540899*1860498^(3/20) 9204420652599659 a001 225851433717/2139295485799*1860498^(3/20) 9204420652599659 a001 182717648081/1730726404001*1860498^(3/20) 9204420652599659 a001 139583862445/1322157322203*1860498^(3/20) 9204420652599659 a001 53316291173/505019158607*1860498^(3/20) 9204420652599659 a001 10182505537/96450076809*1860498^(3/20) 9204420652599659 a001 7778742049/73681302247*1860498^(3/20) 9204420652599659 a001 2971215073/28143753123*1860498^(3/20) 9204420652599659 a001 567451585/5374978561*1860498^(3/20) 9204420652599659 a001 433494437/4106118243*1860498^(3/20) 9204420652599659 a001 165580141/1568397607*1860498^(3/20) 9204420652599659 a001 31622993/299537289*1860498^(3/20) 9204420652599662 a001 24157817/228826127*1860498^(3/20) 9204420652599679 a001 9227465/87403803*1860498^(3/20) 9204420652599689 a001 1762289/3940598*1860498^(1/20) 9204420652599768 a001 1346269/2537720636*3010349^(1/2) 9204420652599799 a001 1762289/16692641*1860498^(3/20) 9204420652599803 a001 2178309/370248451*1860498^(7/20) 9204420652599868 a001 5702887/228826127*1860498^(1/4) 9204420652599886 a001 1346269/4870847*20633239^(1/14) 9204420652599888 a001 1346269/4870847*2537720636^(1/18) 9204420652599888 a001 1346269/4870847*312119004989^(1/22) 9204420652599888 a001 1346269/4870847*28143753123^(1/20) 9204420652599888 a001 1346269/4870847*228826127^(1/16) 9204420652599916 a001 829464/33281921*1860498^(1/4) 9204420652599923 a001 39088169/1568397607*1860498^(1/4) 9204420652599924 a001 34111385/1368706081*1860498^(1/4) 9204420652599925 a001 133957148/5374978561*1860498^(1/4) 9204420652599925 a001 233802911/9381251041*1860498^(1/4) 9204420652599925 a001 1836311903/73681302247*1860498^(1/4) 9204420652599925 a001 267084832/10716675201*1860498^(1/4) 9204420652599925 a001 12586269025/505019158607*1860498^(1/4) 9204420652599925 a001 10983760033/440719107401*1860498^(1/4) 9204420652599925 a001 43133785636/1730726404001*1860498^(1/4) 9204420652599925 a001 75283811239/3020733700601*1860498^(1/4) 9204420652599925 a001 182717648081/7331474697802*1860498^(1/4) 9204420652599925 a001 139583862445/5600748293801*1860498^(1/4) 9204420652599925 a001 53316291173/2139295485799*1860498^(1/4) 9204420652599925 a001 10182505537/408569081798*1860498^(1/4) 9204420652599925 a001 7778742049/312119004989*1860498^(1/4) 9204420652599925 a001 2971215073/119218851371*1860498^(1/4) 9204420652599925 a001 567451585/22768774562*1860498^(1/4) 9204420652599925 a001 433494437/17393796001*1860498^(1/4) 9204420652599925 a001 165580141/6643838879*1860498^(1/4) 9204420652599925 a001 31622993/1268860318*1860498^(1/4) 9204420652599928 a001 24157817/969323029*1860498^(1/4) 9204420652599946 a001 9227465/370248451*1860498^(1/4) 9204420652599980 a001 2178309/969323029*1860498^(5/12) 9204420652600068 a001 311187/224056801*1860498^(9/20) 9204420652600073 a001 1762289/70711162*1860498^(1/4) 9204420652600109 a001 1346269/4870847*1860498^(1/12) 9204420652600134 a001 5702887/969323029*1860498^(7/20) 9204420652600134 a001 1346269/5600748293801*7881196^(21/22) 9204420652600148 a001 1346269/1322157322203*7881196^(19/22) 9204420652600152 a001 1346269/817138163596*7881196^(5/6) 9204420652600161 a001 1346269/312119004989*7881196^(17/22) 9204420652600175 a001 1346269/73681302247*7881196^(15/22) 9204420652600182 a001 196452/33391061*1860498^(7/20) 9204420652600188 a001 1346269/17393796001*7881196^(13/22) 9204420652600189 a001 39088169/6643838879*1860498^(7/20) 9204420652600190 a001 102334155/17393796001*1860498^(7/20) 9204420652600191 a001 66978574/11384387281*1860498^(7/20) 9204420652600191 a001 701408733/119218851371*1860498^(7/20) 9204420652600191 a001 1836311903/312119004989*1860498^(7/20) 9204420652600191 a001 1201881744/204284540899*1860498^(7/20) 9204420652600191 a001 12586269025/2139295485799*1860498^(7/20) 9204420652600191 a001 32951280099/5600748293801*1860498^(7/20) 9204420652600191 a001 1135099622/192933544679*1860498^(7/20) 9204420652600191 a001 139583862445/23725150497407*1860498^(7/20) 9204420652600191 a001 53316291173/9062201101803*1860498^(7/20) 9204420652600191 a001 10182505537/1730726404001*1860498^(7/20) 9204420652600191 a001 7778742049/1322157322203*1860498^(7/20) 9204420652600191 a001 2971215073/505019158607*1860498^(7/20) 9204420652600191 a001 567451585/96450076809*1860498^(7/20) 9204420652600191 a001 433494437/73681302247*1860498^(7/20) 9204420652600191 a001 165580141/28143753123*1860498^(7/20) 9204420652600191 a001 31622993/5374978561*1860498^(7/20) 9204420652600194 a001 24157817/4106118243*1860498^(7/20) 9204420652600199 a001 1346269/12752043*7881196^(3/22) 9204420652600201 a001 1346269/4106118243*7881196^(1/2) 9204420652600212 a001 9227465/1568397607*1860498^(7/20) 9204420652600215 a001 1346269/969323029*7881196^(9/22) 9204420652600219 a001 1346269/12752043*2537720636^(1/10) 9204420652600219 a001 1346269/12752043*14662949395604^(1/14) 9204420652600219 a001 1346269/12752043*192900153618^(1/12) 9204420652600220 a001 1346269/12752043*33385282^(1/8) 9204420652600228 a001 1346269/228826127*7881196^(7/22) 9204420652600245 a001 1346269/54018521*7881196^(5/22) 9204420652600255 a001 1346269/9062201101803*20633239^(13/14) 9204420652600256 a001 1346269/5600748293801*20633239^(9/10) 9204420652600259 a001 1346269/817138163596*20633239^(11/14) 9204420652600260 a001 1346269/192900153618*20633239^(7/10) 9204420652600262 a001 1346269/73681302247*20633239^(9/14) 9204420652600265 a001 1346269/6643838879*20633239^(1/2) 9204420652600267 a001 1346269/33385282*141422324^(1/6) 9204420652600267 a001 1346269/33385282*73681302247^(1/8) 9204420652600268 a001 1346269/599074578*20633239^(5/14) 9204420652600269 a001 1346269/228826127*20633239^(3/10) 9204420652600272 a001 1346269/20633239*7881196^(1/6) 9204420652600274 a001 1346269/10749957122*54018521^(1/2) 9204420652600274 a001 1346269/54018521*20633239^(3/14) 9204420652600274 a001 1346269/87403803*45537549124^(1/6) 9204420652600275 a001 1346269/9062201101803*141422324^(5/6) 9204420652600275 a001 1346269/17393796001*141422324^(1/2) 9204420652600275 a001 1346269/228826127*17393796001^(3/14) 9204420652600275 a001 1346269/228826127*14662949395604^(1/6) 9204420652600275 a001 1346269/228826127*599074578^(1/4) 9204420652600276 a001 1346269/28143753123*370248451^(1/2) 9204420652600276 a001 1346269/599074578*2537720636^(5/18) 9204420652600276 a001 1346269/599074578*312119004989^(5/22) 9204420652600276 a001 1346269/599074578*3461452808002^(5/24) 9204420652600276 a001 1346269/599074578*28143753123^(1/4) 9204420652600276 a001 1346269/45537549124*969323029^(1/2) 9204420652600276 a001 1346269/1568397607*1322157322203^(1/4) 9204420652600276 a001 1346269/9062201101803*2537720636^(13/18) 9204420652600276 a001 1346269/5600748293801*2537720636^(7/10) 9204420652600276 a001 1346269/817138163596*2537720636^(11/18) 9204420652600276 a001 1346269/73681302247*2537720636^(1/2) 9204420652600276 a001 1346269/4106118243*312119004989^(3/10) 9204420652600276 a001 1346269/6643838879*2537720636^(7/18) 9204420652600276 a001 1346269/119218851371*6643838879^(1/2) 9204420652600276 a001 1346269/5600748293801*17393796001^(9/14) 9204420652600276 a001 1346269/192900153618*17393796001^(1/2) 9204420652600276 a001 1346269/312119004989*45537549124^(1/2) 9204420652600276 a001 1346269/73681302247*312119004989^(9/22) 9204420652600276 a001 1346269/73681302247*14662949395604^(5/14) 9204420652600276 a001 1346269/73681302247*192900153618^(5/12) 9204420652600276 a001 1346269/505019158607*119218851371^(1/2) 9204420652600276 a001 1346269/192900153618*14662949395604^(7/18) 9204420652600276 a001 1346269/192900153618*505019158607^(7/16) 9204420652600276 a001 1346269/1322157322203*817138163596^(1/2) 9204420652600276 a001 1346269/5600748293801*14662949395604^(1/2) 9204420652600276 a001 1346269/9062201101803*3461452808002^(13/24) 9204420652600276 a001 1346269/2139295485799*2139295485799^(1/2) 9204420652600276 a001 1346269/5600748293801*505019158607^(9/16) 9204420652600276 a001 1346269/5600748293801*192900153618^(7/12) 9204420652600276 a001 1346269/9062201101803*73681302247^(5/8) 9204420652600276 a001 1346269/73681302247*28143753123^(9/20) 9204420652600276 a001 1346269/817138163596*28143753123^(11/20) 9204420652600276 a001 1346269/9062201101803*28143753123^(13/20) 9204420652600276 a001 1346269/17393796001*73681302247^(3/8) 9204420652600276 a001 1346269/6643838879*17393796001^(5/14) 9204420652600276 a001 1346269/6643838879*312119004989^(7/22) 9204420652600276 a001 1346269/6643838879*14662949395604^(5/18) 9204420652600276 a001 1346269/6643838879*505019158607^(5/16) 9204420652600276 a001 1346269/6643838879*28143753123^(7/20) 9204420652600276 a001 1346269/23725150497407*4106118243^(3/4) 9204420652600276 a001 1346269/4106118243*1568397607^(3/8) 9204420652600276 a001 1346269/2537720636*9062201101803^(1/4) 9204420652600276 a001 1346269/817138163596*1568397607^(5/8) 9204420652600276 a001 1346269/969323029*2537720636^(3/10) 9204420652600276 a001 1346269/969323029*14662949395604^(3/14) 9204420652600276 a001 1346269/969323029*192900153618^(1/4) 9204420652600276 a001 1346269/6643838879*599074578^(5/12) 9204420652600276 a001 1346269/192900153618*599074578^(7/12) 9204420652600276 a001 1346269/5600748293801*599074578^(3/4) 9204420652600276 a001 1346269/599074578*228826127^(5/16) 9204420652600276 a001 1346269/370248451*4106118243^(1/4) 9204420652600276 a001 1346269/6643838879*228826127^(7/16) 9204420652600276 a001 1346269/73681302247*228826127^(9/16) 9204420652600276 a001 1346269/817138163596*228826127^(11/16) 9204420652600276 a001 1346269/9062201101803*228826127^(13/16) 9204420652600276 a001 1346269/141422324*817138163596^(1/6) 9204420652600276 a001 1346269/141422324*87403803^(1/4) 9204420652600276 a001 1346269/1322157322203*87403803^(3/4) 9204420652600278 a001 1346269/228826127*33385282^(7/24) 9204420652600279 a001 1346269/969323029*33385282^(3/8) 9204420652600279 a001 1346269/54018521*2537720636^(1/6) 9204420652600279 a001 1346269/54018521*312119004989^(3/22) 9204420652600279 a001 1346269/54018521*28143753123^(3/20) 9204420652600279 a001 1346269/54018521*228826127^(3/16) 9204420652600279 a001 1346269/4106118243*33385282^(11/24) 9204420652600280 a001 1346269/17393796001*33385282^(13/24) 9204420652600280 a001 1346269/54018521*33385282^(5/24) 9204420652600281 a001 1346269/73681302247*33385282^(5/8) 9204420652600281 a001 1346269/312119004989*33385282^(17/24) 9204420652600282 a001 1346269/1322157322203*33385282^(19/24) 9204420652600283 a001 1346269/5600748293801*33385282^(7/8) 9204420652600283 a001 1346269/23725150497407*33385282^(23/24) 9204420652600288 a001 1346269/87403803*12752043^(1/4) 9204420652600297 a001 1346269/20633239*312119004989^(1/10) 9204420652600297 a001 1346269/20633239*1568397607^(1/8) 9204420652600311 a001 5702887/2537720636*1860498^(5/12) 9204420652600318 a001 1346269/312119004989*12752043^(3/4) 9204420652600334 a001 2178309/6643838879*1860498^(11/20) 9204420652600339 a001 1762289/299537289*1860498^(7/20) 9204420652600360 a001 14930352/6643838879*1860498^(5/12) 9204420652600367 a001 39088169/17393796001*1860498^(5/12) 9204420652600368 a001 102334155/45537549124*1860498^(5/12) 9204420652600368 a001 267914296/119218851371*1860498^(5/12) 9204420652600368 a001 3524667/1568437211*1860498^(5/12) 9204420652600368 a001 1836311903/817138163596*1860498^(5/12) 9204420652600368 a001 4807526976/2139295485799*1860498^(5/12) 9204420652600368 a001 12586269025/5600748293801*1860498^(5/12) 9204420652600368 a001 32951280099/14662949395604*1860498^(5/12) 9204420652600368 a001 53316291173/23725150497407*1860498^(5/12) 9204420652600368 a001 20365011074/9062201101803*1860498^(5/12) 9204420652600368 a001 7778742049/3461452808002*1860498^(5/12) 9204420652600368 a001 2971215073/1322157322203*1860498^(5/12) 9204420652600368 a001 1134903170/505019158607*1860498^(5/12) 9204420652600368 a001 433494437/192900153618*1860498^(5/12) 9204420652600368 a001 165580141/73681302247*1860498^(5/12) 9204420652600368 a001 63245986/28143753123*1860498^(5/12) 9204420652600371 a001 24157817/10749957122*1860498^(5/12) 9204420652600389 a001 9227465/4106118243*1860498^(5/12) 9204420652600400 a001 5702887/4106118243*1860498^(9/20) 9204420652600422 a001 1346269/7881196*20633239^(1/10) 9204420652600423 a001 987/4870846*1860498^(7/12) 9204420652600424 a001 1346269/7881196*17393796001^(1/14) 9204420652600424 a001 1346269/7881196*14662949395604^(1/18) 9204420652600424 a001 1346269/7881196*505019158607^(1/16) 9204420652600424 a001 1346269/7881196*599074578^(1/12) 9204420652600448 a001 7465176/5374978561*1860498^(9/20) 9204420652600455 a001 39088169/28143753123*1860498^(9/20) 9204420652600456 a001 14619165/10525900321*1860498^(9/20) 9204420652600456 a001 133957148/96450076809*1860498^(9/20) 9204420652600456 a001 701408733/505019158607*1860498^(9/20) 9204420652600456 a001 1836311903/1322157322203*1860498^(9/20) 9204420652600456 a001 14930208/10749853441*1860498^(9/20) 9204420652600456 a001 12586269025/9062201101803*1860498^(9/20) 9204420652600456 a001 32951280099/23725150497407*1860498^(9/20) 9204420652600456 a001 10182505537/7331474697802*1860498^(9/20) 9204420652600456 a001 7778742049/5600748293801*1860498^(9/20) 9204420652600456 a001 2971215073/2139295485799*1860498^(9/20) 9204420652600456 a001 567451585/408569081798*1860498^(9/20) 9204420652600456 a001 433494437/312119004989*1860498^(9/20) 9204420652600457 a001 165580141/119218851371*1860498^(9/20) 9204420652600457 a001 31622993/22768774562*1860498^(9/20) 9204420652600460 a001 24157817/17393796001*1860498^(9/20) 9204420652600478 a001 9227465/6643838879*1860498^(9/20) 9204420652600516 a001 3524578/1568397607*1860498^(5/12) 9204420652600600 a001 726103/9381251041*1860498^(13/20) 9204420652600605 a001 1762289/1268860318*1860498^(9/20) 9204420652600618 a001 1346269/12752043*1860498^(3/20) 9204420652600666 a001 5702887/17393796001*1860498^(11/20) 9204420652600714 a001 3732588/11384387281*1860498^(11/20) 9204420652600721 a001 39088169/119218851371*1860498^(11/20) 9204420652600722 a001 9303105/28374454999*1860498^(11/20) 9204420652600722 a001 66978574/204284540899*1860498^(11/20) 9204420652600722 a001 701408733/2139295485799*1860498^(11/20) 9204420652600722 a001 1836311903/5600748293801*1860498^(11/20) 9204420652600722 a001 1201881744/3665737348901*1860498^(11/20) 9204420652600722 a001 7778742049/23725150497407*1860498^(11/20) 9204420652600722 a001 2971215073/9062201101803*1860498^(11/20) 9204420652600722 a001 567451585/1730726404001*1860498^(11/20) 9204420652600722 a001 433494437/1322157322203*1860498^(11/20) 9204420652600722 a001 165580141/505019158607*1860498^(11/20) 9204420652600723 a001 31622993/96450076809*1860498^(11/20) 9204420652600726 a001 24157817/73681302247*1860498^(11/20) 9204420652600744 a001 9227465/28143753123*1860498^(11/20) 9204420652600754 a001 5702887/28143753123*1860498^(7/12) 9204420652600803 a001 14930352/73681302247*1860498^(7/12) 9204420652600810 a001 39088169/192900153618*1860498^(7/12) 9204420652600811 a001 102334155/505019158607*1860498^(7/12) 9204420652600811 a001 267914296/1322157322203*1860498^(7/12) 9204420652600811 a001 701408733/3461452808002*1860498^(7/12) 9204420652600811 a001 1836311903/9062201101803*1860498^(7/12) 9204420652600811 a001 4807526976/23725150497407*1860498^(7/12) 9204420652600811 a001 2971215073/14662949395604*1860498^(7/12) 9204420652600811 a001 1134903170/5600748293801*1860498^(7/12) 9204420652600811 a001 433494437/2139295485799*1860498^(7/12) 9204420652600811 a001 165580141/817138163596*1860498^(7/12) 9204420652600811 a001 63245986/312119004989*1860498^(7/12) 9204420652600814 a001 24157817/119218851371*1860498^(7/12) 9204420652600833 a001 9227465/45537549124*1860498^(7/12) 9204420652600866 a001 2178309/119218851371*1860498^(3/4) 9204420652600871 a001 1762289/5374978561*1860498^(11/20) 9204420652600932 a001 5702887/73681302247*1860498^(13/20) 9204420652600943 a001 1346269/54018521*1860498^(1/4) 9204420652600959 a001 3524578/17393796001*1860498^(7/12) 9204420652600980 a001 2584/33385281*1860498^(13/20) 9204420652600987 a001 39088169/505019158607*1860498^(13/20) 9204420652600988 a001 34111385/440719107401*1860498^(13/20) 9204420652600988 a001 133957148/1730726404001*1860498^(13/20) 9204420652600988 a001 233802911/3020733700601*1860498^(13/20) 9204420652600988 a001 1836311903/23725150497407*1860498^(13/20) 9204420652600988 a001 567451585/7331474697802*1860498^(13/20) 9204420652600988 a001 433494437/5600748293801*1860498^(13/20) 9204420652600988 a001 165580141/2139295485799*1860498^(13/20) 9204420652600989 a001 31622993/408569081798*1860498^(13/20) 9204420652600991 a001 24157817/312119004989*1860498^(13/20) 9204420652601010 a001 9227465/119218851371*1860498^(13/20) 9204420652601094 a001 726103/4250681*710647^(1/8) 9204420652601132 a001 46347/10745088481*1860498^(17/20) 9204420652601136 a001 1762289/22768774562*1860498^(13/20) 9204420652601198 a001 5702887/312119004989*1860498^(3/4) 9204420652601206 a001 1346269/228826127*1860498^(7/20) 9204420652601246 a001 3732588/204284540899*1860498^(3/4) 9204420652601253 a001 39088169/2139295485799*1860498^(3/4) 9204420652601254 a001 102334155/5600748293801*1860498^(3/4) 9204420652601254 a001 10946/599074579*1860498^(3/4) 9204420652601254 a001 433494437/23725150497407*1860498^(3/4) 9204420652601254 a001 165580141/9062201101803*1860498^(3/4) 9204420652601255 a001 31622993/1730726404001*1860498^(3/4) 9204420652601257 a001 24157817/1322157322203*1860498^(3/4) 9204420652601276 a001 9227465/505019158607*1860498^(3/4) 9204420652601285 a001 1346269/3010349*7881196^(1/22) 9204420652601292 a001 1346269/3010349*33385282^(1/24) 9204420652601309 a001 726103/440719107401*1860498^(11/12) 9204420652601383 a001 1346269/599074578*1860498^(5/12) 9204420652601398 a001 2178309/2139295485799*1860498^(19/20) 9204420652601402 a001 1762289/96450076809*1860498^(3/4) 9204420652601424 a001 1346269/3010349*1860498^(1/20) 9204420652601464 a001 5702887/1322157322203*1860498^(17/20) 9204420652601472 a001 1346269/969323029*1860498^(9/20) 9204420652601473 a001 5702887/33385282*710647^(1/8) 9204420652601512 a001 7465176/1730726404001*1860498^(17/20) 9204420652601519 a001 39088169/9062201101803*1860498^(17/20) 9204420652601520 a001 102334155/23725150497407*1860498^(17/20) 9204420652601521 a001 31622993/7331474697802*1860498^(17/20) 9204420652601523 a001 24157817/5600748293801*1860498^(17/20) 9204420652601529 a001 4976784/29134601*710647^(1/8) 9204420652601537 a001 39088169/228826127*710647^(1/8) 9204420652601538 a001 34111385/199691526*710647^(1/8) 9204420652601538 a001 267914296/1568397607*710647^(1/8) 9204420652601538 a001 233802911/1368706081*710647^(1/8) 9204420652601538 a001 1836311903/10749957122*710647^(1/8) 9204420652601538 a001 1602508992/9381251041*710647^(1/8) 9204420652601538 a001 12586269025/73681302247*710647^(1/8) 9204420652601538 a001 10983760033/64300051206*710647^(1/8) 9204420652601538 a001 86267571272/505019158607*710647^(1/8) 9204420652601538 a001 75283811239/440719107401*710647^(1/8) 9204420652601538 a001 2504730781961/14662949395604*710647^(1/8) 9204420652601538 a001 139583862445/817138163596*710647^(1/8) 9204420652601538 a001 53316291173/312119004989*710647^(1/8) 9204420652601538 a001 20365011074/119218851371*710647^(1/8) 9204420652601538 a001 7778742049/45537549124*710647^(1/8) 9204420652601538 a001 2971215073/17393796001*710647^(1/8) 9204420652601538 a001 1134903170/6643838879*710647^(1/8) 9204420652601538 a001 433494437/2537720636*710647^(1/8) 9204420652601538 a001 165580141/969323029*710647^(1/8) 9204420652601539 a001 63245986/370248451*710647^(1/8) 9204420652601542 a001 24157817/141422324*710647^(1/8) 9204420652601542 a001 9227465/2139295485799*1860498^(17/20) 9204420652601563 a001 9227465/54018521*710647^(1/8) 9204420652601641 a001 5702887/3461452808002*1860498^(11/12) 9204420652601668 a001 1762289/408569081798*1860498^(17/20) 9204420652601689 a001 4976784/3020733700601*1860498^(11/12) 9204420652601696 a001 39088169/23725150497407*1860498^(11/12) 9204420652601701 a001 24157817/14662949395604*1860498^(11/12) 9204420652601708 a001 3524578/20633239*710647^(1/8) 9204420652601719 a001 9227465/5600748293801*1860498^(11/12) 9204420652601729 a001 5702887/5600748293801*1860498^(19/20) 9204420652601738 a001 1346269/4106118243*1860498^(11/20) 9204420652601778 a001 196452/192933544679*1860498^(19/20) 9204420652601789 a001 24157817/23725150497407*1860498^(19/20) 9204420652601808 a001 9227465/9062201101803*1860498^(19/20) 9204420652601827 a001 1346269/6643838879*1860498^(7/12) 9204420652601846 a001 3524578/2139295485799*1860498^(11/12) 9204420652601911 a001 98209/22768774562*439204^(17/18) 9204420652601934 a001 1762289/1730726404001*1860498^(19/20) 9204420652602004 a001 1346269/17393796001*1860498^(13/20) 9204420652602270 a001 1346269/73681302247*1860498^(3/4) 9204420652602536 a001 1346269/312119004989*1860498^(17/20) 9204420652602702 a001 1346269/7881196*710647^(1/8) 9204420652602713 a001 1346269/817138163596*1860498^(11/12) 9204420652602741 a001 514229/599074578*1149851^(1/2) 9204420652602802 a001 1346269/1322157322203*1860498^(19/20) 9204420652603436 a001 208010/35355581*710647^(3/8) 9204420652603561 a001 514229/1860498*20633239^(1/14) 9204420652603562 a001 514229/1860498*2537720636^(1/18) 9204420652603562 a001 514229/1860498*312119004989^(1/22) 9204420652603562 a001 514229/1860498*28143753123^(1/20) 9204420652603562 a001 514229/1860498*228826127^(1/16) 9204420652603784 a001 514229/1860498*1860498^(1/12) 9204420652605707 a001 2178309/370248451*710647^(3/8) 9204420652605714 a001 514229/969323029*3010349^(1/2) 9204420652605813 a001 514229/4870847*7881196^(3/22) 9204420652605834 a001 514229/4870847*2537720636^(1/10) 9204420652605834 a001 514229/4870847*14662949395604^(1/14) 9204420652605834 a001 514229/4870847*192900153618^(1/12) 9204420652605835 a001 514229/4870847*33385282^(1/8) 9204420652606038 a001 5702887/969323029*710647^(3/8) 9204420652606080 a001 514229/2139295485799*7881196^(21/22) 9204420652606086 a001 196452/33391061*710647^(3/8) 9204420652606093 a001 39088169/6643838879*710647^(3/8) 9204420652606094 a001 514229/505019158607*7881196^(19/22) 9204420652606094 a001 102334155/17393796001*710647^(3/8) 9204420652606095 a001 66978574/11384387281*710647^(3/8) 9204420652606095 a001 701408733/119218851371*710647^(3/8) 9204420652606095 a001 1836311903/312119004989*710647^(3/8) 9204420652606095 a001 1201881744/204284540899*710647^(3/8) 9204420652606095 a001 12586269025/2139295485799*710647^(3/8) 9204420652606095 a001 32951280099/5600748293801*710647^(3/8) 9204420652606095 a001 1135099622/192933544679*710647^(3/8) 9204420652606095 a001 139583862445/23725150497407*710647^(3/8) 9204420652606095 a001 53316291173/9062201101803*710647^(3/8) 9204420652606095 a001 10182505537/1730726404001*710647^(3/8) 9204420652606095 a001 7778742049/1322157322203*710647^(3/8) 9204420652606095 a001 2971215073/505019158607*710647^(3/8) 9204420652606095 a001 567451585/96450076809*710647^(3/8) 9204420652606095 a001 433494437/73681302247*710647^(3/8) 9204420652606095 a001 165580141/28143753123*710647^(3/8) 9204420652606095 a001 31622993/5374978561*710647^(3/8) 9204420652606098 a001 24157817/4106118243*710647^(3/8) 9204420652606098 a001 514229/312119004989*7881196^(5/6) 9204420652606107 a001 514229/119218851371*7881196^(17/22) 9204420652606116 a001 9227465/1568397607*710647^(3/8) 9204420652606120 a001 514229/28143753123*7881196^(15/22) 9204420652606134 a001 514229/6643838879*7881196^(13/22) 9204420652606147 a001 514229/1568397607*7881196^(1/2) 9204420652606161 a001 514229/370248451*7881196^(9/22) 9204420652606165 a001 514229/12752043*141422324^(1/6) 9204420652606165 a001 514229/12752043*73681302247^(1/8) 9204420652606173 a001 514229/87403803*7881196^(7/22) 9204420652606201 a001 514229/3461452808002*20633239^(13/14) 9204420652606202 a001 514229/2139295485799*20633239^(9/10) 9204420652606205 a001 514229/312119004989*20633239^(11/14) 9204420652606206 a001 514229/73681302247*20633239^(7/10) 9204420652606208 a001 514229/28143753123*20633239^(9/14) 9204420652606209 a001 514229/20633239*7881196^(5/22) 9204420652606211 a001 514229/2537720636*20633239^(1/2) 9204420652606213 a001 514229/33385282*45537549124^(1/6) 9204420652606214 a001 514229/228826127*20633239^(5/14) 9204420652606214 a001 514229/87403803*20633239^(3/10) 9204420652606220 a001 514229/4106118243*54018521^(1/2) 9204420652606220 a001 514229/87403803*17393796001^(3/14) 9204420652606220 a001 514229/87403803*14662949395604^(1/6) 9204420652606220 a001 514229/87403803*599074578^(1/4) 9204420652606221 a001 514229/3461452808002*141422324^(5/6) 9204420652606221 a001 514229/6643838879*141422324^(1/2) 9204420652606221 a001 514229/228826127*2537720636^(5/18) 9204420652606221 a001 514229/228826127*312119004989^(5/22) 9204420652606221 a001 514229/228826127*3461452808002^(5/24) 9204420652606221 a001 514229/228826127*28143753123^(1/4) 9204420652606221 a001 514229/228826127*228826127^(5/16) 9204420652606221 a001 514229/10749957122*370248451^(1/2) 9204420652606222 a001 514229/599074578*1322157322203^(1/4) 9204420652606222 a001 514229/17393796001*969323029^(1/2) 9204420652606222 a001 514229/1568397607*312119004989^(3/10) 9204420652606222 a001 514229/1568397607*1568397607^(3/8) 9204420652606222 a001 514229/3461452808002*2537720636^(13/18) 9204420652606222 a001 514229/2139295485799*2537720636^(7/10) 9204420652606222 a001 514229/312119004989*2537720636^(11/18) 9204420652606222 a001 514229/28143753123*2537720636^(1/2) 9204420652606222 a001 514229/45537549124*6643838879^(1/2) 9204420652606222 a001 514229/2139295485799*17393796001^(9/14) 9204420652606222 a001 514229/73681302247*17393796001^(1/2) 9204420652606222 a001 514229/28143753123*312119004989^(9/22) 9204420652606222 a001 514229/28143753123*14662949395604^(5/14) 9204420652606222 a001 514229/28143753123*192900153618^(5/12) 9204420652606222 a001 514229/28143753123*28143753123^(9/20) 9204420652606222 a001 514229/73681302247*14662949395604^(7/18) 9204420652606222 a001 514229/73681302247*505019158607^(7/16) 9204420652606222 a001 514229/119218851371*45537549124^(1/2) 9204420652606222 a001 514229/192900153618*119218851371^(1/2) 9204420652606222 a001 514229/3461452808002*312119004989^(13/22) 9204420652606222 a001 514229/1322157322203*5600748293801^(1/2) 9204420652606222 a001 514229/3461452808002*3461452808002^(13/24) 9204420652606222 a001 514229/817138163596*2139295485799^(1/2) 9204420652606222 a001 514229/2139295485799*505019158607^(9/16) 9204420652606222 a001 514229/312119004989*312119004989^(1/2) 9204420652606222 a001 514229/312119004989*3461452808002^(11/24) 9204420652606222 a001 514229/2139295485799*192900153618^(7/12) 9204420652606222 a001 514229/3461452808002*73681302247^(5/8) 9204420652606222 a001 514229/312119004989*28143753123^(11/20) 9204420652606222 a001 514229/3461452808002*28143753123^(13/20) 9204420652606222 a001 514229/6643838879*73681302247^(3/8) 9204420652606222 a001 514229/9062201101803*4106118243^(3/4) 9204420652606222 a001 514229/2537720636*2537720636^(7/18) 9204420652606222 a001 514229/2537720636*17393796001^(5/14) 9204420652606222 a001 514229/2537720636*312119004989^(7/22) 9204420652606222 a001 514229/2537720636*14662949395604^(5/18) 9204420652606222 a001 514229/2537720636*505019158607^(5/16) 9204420652606222 a001 514229/2537720636*28143753123^(7/20) 9204420652606222 a001 514229/312119004989*1568397607^(5/8) 9204420652606222 a001 514229/969323029*9062201101803^(1/4) 9204420652606222 a001 514229/2537720636*599074578^(5/12) 9204420652606222 a001 514229/73681302247*599074578^(7/12) 9204420652606222 a001 514229/2139295485799*599074578^(3/4) 9204420652606222 a001 514229/370248451*2537720636^(3/10) 9204420652606222 a001 514229/370248451*14662949395604^(3/14) 9204420652606222 a001 514229/370248451*192900153618^(1/4) 9204420652606222 a001 514229/2537720636*228826127^(7/16) 9204420652606222 a001 514229/28143753123*228826127^(9/16) 9204420652606222 a001 514229/312119004989*228826127^(11/16) 9204420652606222 a001 514229/3461452808002*228826127^(13/16) 9204420652606222 a001 514229/141422324*4106118243^(1/4) 9204420652606222 a001 514229/505019158607*87403803^(3/4) 9204420652606223 a001 514229/87403803*33385282^(7/24) 9204420652606225 a001 514229/54018521*817138163596^(1/6) 9204420652606225 a001 514229/370248451*33385282^(3/8) 9204420652606225 a001 514229/54018521*87403803^(1/4) 9204420652606225 a001 514229/1568397607*33385282^(11/24) 9204420652606226 a001 514229/6643838879*33385282^(13/24) 9204420652606227 a001 514229/28143753123*33385282^(5/8) 9204420652606227 a001 514229/119218851371*33385282^(17/24) 9204420652606227 a001 514229/33385282*12752043^(1/4) 9204420652606228 a001 514229/505019158607*33385282^(19/24) 9204420652606229 a001 514229/2139295485799*33385282^(7/8) 9204420652606229 a001 514229/9062201101803*33385282^(23/24) 9204420652606232 a001 514229/4870847*1860498^(3/20) 9204420652606239 a001 514229/20633239*20633239^(3/14) 9204420652606243 a001 1762289/299537289*710647^(3/8) 9204420652606243 a001 514229/20633239*2537720636^(1/6) 9204420652606243 a001 514229/20633239*312119004989^(3/22) 9204420652606243 a001 514229/20633239*28143753123^(3/20) 9204420652606243 a001 514229/20633239*228826127^(3/16) 9204420652606245 a001 514229/20633239*33385282^(5/24) 9204420652606264 a001 514229/119218851371*12752043^(3/4) 9204420652606345 a001 514229/7881196*7881196^(1/6) 9204420652606370 a001 514229/7881196*312119004989^(1/10) 9204420652606370 a001 514229/7881196*1568397607^(1/8) 9204420652606908 a001 514229/20633239*1860498^(1/4) 9204420652607110 a001 1346269/228826127*710647^(3/8) 9204420652607151 a001 514229/87403803*1860498^(7/20) 9204420652607213 a001 28657/167761*24476^(1/6) 9204420652607213 a001 98209/5374978561*439204^(5/6) 9204420652607235 a001 514229/3010349*20633239^(1/10) 9204420652607237 a001 514229/3010349*17393796001^(1/14) 9204420652607237 a001 514229/3010349*14662949395604^(1/18) 9204420652607237 a001 514229/3010349*505019158607^(1/16) 9204420652607237 a001 514229/3010349*599074578^(1/12) 9204420652607329 a001 514229/228826127*1860498^(5/12) 9204420652607418 a001 514229/370248451*1860498^(9/20) 9204420652607684 a001 514229/1568397607*1860498^(11/20) 9204420652607773 a001 514229/2537720636*1860498^(7/12) 9204420652607950 a001 514229/6643838879*1860498^(13/20) 9204420652607992 a001 832040/4106118243*710647^(5/8) 9204420652608216 a001 514229/28143753123*1860498^(3/4) 9204420652608482 a001 514229/119218851371*1860498^(17/20) 9204420652608659 a001 514229/312119004989*1860498^(11/12) 9204420652608748 a001 514229/505019158607*1860498^(19/20) 9204420652609515 a001 514229/3010349*710647^(1/8) 9204420652610263 a001 987/4870846*710647^(5/8) 9204420652610532 a001 514229/1149851*439204^(1/18) 9204420652610594 a001 5702887/28143753123*710647^(5/8) 9204420652610643 a001 14930352/73681302247*710647^(5/8) 9204420652610650 a001 39088169/192900153618*710647^(5/8) 9204420652610651 a001 102334155/505019158607*710647^(5/8) 9204420652610651 a001 267914296/1322157322203*710647^(5/8) 9204420652610651 a001 701408733/3461452808002*710647^(5/8) 9204420652610651 a001 1836311903/9062201101803*710647^(5/8) 9204420652610651 a001 4807526976/23725150497407*710647^(5/8) 9204420652610651 a001 2971215073/14662949395604*710647^(5/8) 9204420652610651 a001 1134903170/5600748293801*710647^(5/8) 9204420652610651 a001 433494437/2139295485799*710647^(5/8) 9204420652610651 a001 165580141/817138163596*710647^(5/8) 9204420652610651 a001 63245986/312119004989*710647^(5/8) 9204420652610654 a001 24157817/119218851371*710647^(5/8) 9204420652610673 a001 9227465/45537549124*710647^(5/8) 9204420652610799 a001 3524578/17393796001*710647^(5/8) 9204420652611667 a001 1346269/6643838879*710647^(5/8) 9204420652612413 a001 317811/7881196*271443^(1/4) 9204420652612514 a001 98209/1268860318*439204^(13/18) 9204420652612548 a001 832040/119218851371*710647^(7/8) 9204420652613055 a001 514229/87403803*710647^(3/8) 9204420652613176 a001 514229/1149851*7881196^(1/22) 9204420652613184 a001 514229/1149851*33385282^(1/24) 9204420652613316 a001 514229/1149851*1860498^(1/20) 9204420652614820 a001 2178309/312119004989*710647^(7/8) 9204420652615151 a001 5702887/817138163596*710647^(7/8) 9204420652615199 a001 14930352/2139295485799*710647^(7/8) 9204420652615206 a001 39088169/5600748293801*710647^(7/8) 9204420652615207 a001 102334155/14662949395604*710647^(7/8) 9204420652615208 a001 165580141/23725150497407*710647^(7/8) 9204420652615208 a001 63245986/9062201101803*710647^(7/8) 9204420652615211 a001 24157817/3461452808002*710647^(7/8) 9204420652615229 a001 9227465/1322157322203*710647^(7/8) 9204420652615356 a001 3524578/505019158607*710647^(7/8) 9204420652616223 a001 1346269/192900153618*710647^(7/8) 9204420652616322 a001 317811/710647*103682^(1/16) 9204420652617613 a001 514229/2537720636*710647^(5/8) 9204420652617816 a001 98209/299537289*439204^(11/18) 9204420652622169 a001 514229/73681302247*710647^(7/8) 9204420652623118 a001 98209/70711162*439204^(1/2) 9204420652627853 a001 75640/1875749*271443^(1/4) 9204420652628411 a001 98209/16692641*439204^(7/18) 9204420652628748 a001 196418/710647*20633239^(1/14) 9204420652628750 a001 196418/710647*2537720636^(1/18) 9204420652628750 a001 196418/710647*312119004989^(1/22) 9204420652628750 a001 196418/710647*28143753123^(1/20) 9204420652628750 a001 196418/710647*228826127^(1/16) 9204420652628972 a001 196418/710647*1860498^(1/12) 9204420652630106 a001 2178309/54018521*271443^(1/4) 9204420652630434 a001 5702887/141422324*271443^(1/4) 9204420652630482 a001 14930352/370248451*271443^(1/4) 9204420652630489 a001 39088169/969323029*271443^(1/4) 9204420652630490 a001 9303105/230701876*271443^(1/4) 9204420652630490 a001 267914296/6643838879*271443^(1/4) 9204420652630490 a001 701408733/17393796001*271443^(1/4) 9204420652630490 a001 1836311903/45537549124*271443^(1/4) 9204420652630490 a001 4807526976/119218851371*271443^(1/4) 9204420652630490 a001 1144206275/28374454999*271443^(1/4) 9204420652630490 a001 32951280099/817138163596*271443^(1/4) 9204420652630490 a001 86267571272/2139295485799*271443^(1/4) 9204420652630490 a001 225851433717/5600748293801*271443^(1/4) 9204420652630490 a001 591286729879/14662949395604*271443^(1/4) 9204420652630490 a001 365435296162/9062201101803*271443^(1/4) 9204420652630490 a001 139583862445/3461452808002*271443^(1/4) 9204420652630490 a001 53316291173/1322157322203*271443^(1/4) 9204420652630490 a001 20365011074/505019158607*271443^(1/4) 9204420652630490 a001 7778742049/192900153618*271443^(1/4) 9204420652630490 a001 2971215073/73681302247*271443^(1/4) 9204420652630490 a001 1134903170/28143753123*271443^(1/4) 9204420652630490 a001 433494437/10749957122*271443^(1/4) 9204420652630490 a001 165580141/4106118243*271443^(1/4) 9204420652630491 a001 63245986/1568397607*271443^(1/4) 9204420652630494 a001 24157817/599074578*271443^(1/4) 9204420652630512 a001 9227465/228826127*271443^(1/4) 9204420652630637 a001 3524578/87403803*271443^(1/4) 9204420652631498 a001 1346269/33385282*271443^(1/4) 9204420652631965 a001 75025/4106118243*167761^(9/10) 9204420652633870 a001 98209/3940598*439204^(5/18) 9204420652635712 a006 5^(1/2)*fibonacci(57/2)/Lucas(27)/sqrt(5) 9204420652636364 a001 98209/930249*439204^(1/6) 9204420652637395 a001 514229/12752043*271443^(1/4) 9204420652641842 a001 121393/1149851*103682^(3/16) 9204420652643495 a001 196418/228826127*1149851^(1/2) 9204420652644297 a001 98209/930249*7881196^(3/22) 9204420652644317 a001 98209/930249*2537720636^(1/10) 9204420652644317 a001 98209/930249*14662949395604^(1/14) 9204420652644317 a001 98209/930249*192900153618^(1/12) 9204420652644318 a001 98209/930249*33385282^(1/8) 9204420652644716 a001 98209/930249*1860498^(3/20) 9204420652646468 a001 196418/370248451*3010349^(1/2) 9204420652646588 a001 196418/4870847*141422324^(1/6) 9204420652646588 a001 196418/4870847*73681302247^(1/8) 9204420652646834 a001 98209/408569081798*7881196^(21/22) 9204420652646848 a001 98209/96450076809*7881196^(19/22) 9204420652646852 a001 196418/119218851371*7881196^(5/6) 9204420652646861 a001 98209/22768774562*7881196^(17/22) 9204420652646875 a001 98209/5374978561*7881196^(15/22) 9204420652646888 a001 98209/1268860318*7881196^(13/22) 9204420652646902 a001 98209/299537289*7881196^(1/2) 9204420652646916 a001 98209/70711162*7881196^(9/22) 9204420652646919 a001 196418/12752043*45537549124^(1/6) 9204420652646920 a001 98209/16692641*7881196^(7/22) 9204420652646933 a001 196418/12752043*12752043^(1/4) 9204420652646956 a001 196418/1322157322203*20633239^(13/14) 9204420652646956 a001 98209/408569081798*20633239^(9/10) 9204420652646959 a001 196418/119218851371*20633239^(11/14) 9204420652646961 a001 196418/28143753123*20633239^(7/10) 9204420652646961 a001 98209/16692641*20633239^(3/10) 9204420652646962 a001 98209/5374978561*20633239^(9/14) 9204420652646965 a001 196418/969323029*20633239^(1/2) 9204420652646967 a001 196418/87403803*20633239^(5/14) 9204420652646968 a001 98209/16692641*17393796001^(3/14) 9204420652646968 a001 98209/16692641*14662949395604^(1/6) 9204420652646968 a001 98209/16692641*599074578^(1/4) 9204420652646970 a001 98209/16692641*33385282^(7/24) 9204420652646974 a001 196418/1568397607*54018521^(1/2) 9204420652646975 a001 196418/87403803*2537720636^(5/18) 9204420652646975 a001 196418/87403803*312119004989^(5/22) 9204420652646975 a001 196418/87403803*3461452808002^(5/24) 9204420652646975 a001 196418/87403803*28143753123^(1/4) 9204420652646975 a001 196418/87403803*228826127^(5/16) 9204420652646975 a001 196418/1322157322203*141422324^(5/6) 9204420652646976 a001 98209/1268860318*141422324^(1/2) 9204420652646976 a001 196418/228826127*1322157322203^(1/4) 9204420652646976 a001 196418/4106118243*370248451^(1/2) 9204420652646976 a001 98209/299537289*312119004989^(3/10) 9204420652646976 a001 98209/299537289*1568397607^(3/8) 9204420652646976 a001 196418/6643838879*969323029^(1/2) 9204420652646976 a001 98209/7331474697802*2537720636^(5/6) 9204420652646976 a001 196418/1322157322203*2537720636^(13/18) 9204420652646976 a001 98209/408569081798*2537720636^(7/10) 9204420652646976 a001 196418/119218851371*2537720636^(11/18) 9204420652646976 a001 98209/5374978561*2537720636^(1/2) 9204420652646976 a001 98209/5374978561*312119004989^(9/22) 9204420652646976 a001 98209/5374978561*14662949395604^(5/14) 9204420652646976 a001 98209/5374978561*192900153618^(5/12) 9204420652646976 a001 98209/5374978561*28143753123^(9/20) 9204420652646976 a001 196418/17393796001*6643838879^(1/2) 9204420652646976 a001 196418/28143753123*17393796001^(1/2) 9204420652646976 a001 196418/23725150497407*17393796001^(11/14) 9204420652646976 a001 98209/408569081798*17393796001^(9/14) 9204420652646976 a001 196418/28143753123*14662949395604^(7/18) 9204420652646976 a001 196418/28143753123*505019158607^(7/16) 9204420652646976 a001 196418/73681302247*119218851371^(1/2) 9204420652646976 a001 98209/96450076809*817138163596^(1/2) 9204420652646976 a001 98209/7331474697802*312119004989^(15/22) 9204420652646976 a001 196418/1322157322203*312119004989^(13/22) 9204420652646976 a001 196418/1322157322203*3461452808002^(13/24) 9204420652646976 a001 196418/23725150497407*14662949395604^(11/18) 9204420652646976 a001 98209/7331474697802*3461452808002^(5/8) 9204420652646976 a001 98209/408569081798*14662949395604^(1/2) 9204420652646976 a001 196418/23725150497407*505019158607^(11/16) 9204420652646976 a001 98209/408569081798*505019158607^(9/16) 9204420652646976 a001 196418/312119004989*2139295485799^(1/2) 9204420652646976 a001 98209/408569081798*192900153618^(7/12) 9204420652646976 a006 5^(1/2)*Fibonacci(57/2)/Lucas(27)/sqrt(5) 9204420652646976 a001 196418/119218851371*312119004989^(1/2) 9204420652646976 a001 196418/119218851371*3461452808002^(11/24) 9204420652646976 a001 196418/1322157322203*73681302247^(5/8) 9204420652646976 a001 98209/22768774562*45537549124^(1/2) 9204420652646976 a001 196418/119218851371*28143753123^(11/20) 9204420652646976 a001 196418/1322157322203*28143753123^(13/20) 9204420652646976 a001 98209/7331474697802*28143753123^(3/4) 9204420652646976 a001 98209/1730726404001*4106118243^(3/4) 9204420652646976 a001 98209/1268860318*73681302247^(3/8) 9204420652646976 a001 196418/119218851371*1568397607^(5/8) 9204420652646976 a001 196418/23725150497407*1568397607^(7/8) 9204420652646976 a001 196418/969323029*2537720636^(7/18) 9204420652646976 a001 196418/969323029*17393796001^(5/14) 9204420652646976 a001 196418/969323029*312119004989^(7/22) 9204420652646976 a001 196418/969323029*14662949395604^(5/18) 9204420652646976 a001 196418/969323029*505019158607^(5/16) 9204420652646976 a001 196418/969323029*28143753123^(7/20) 9204420652646976 a001 196418/28143753123*599074578^(7/12) 9204420652646976 a001 98209/408569081798*599074578^(3/4) 9204420652646976 a001 196418/969323029*599074578^(5/12) 9204420652646976 a001 196418/23725150497407*599074578^(11/12) 9204420652646976 a001 196418/370248451*9062201101803^(1/4) 9204420652646976 a001 196418/969323029*228826127^(7/16) 9204420652646976 a001 98209/5374978561*228826127^(9/16) 9204420652646976 a001 196418/119218851371*228826127^(11/16) 9204420652646976 a001 196418/1322157322203*228826127^(13/16) 9204420652646976 a001 98209/7331474697802*228826127^(15/16) 9204420652646976 a001 98209/70711162*2537720636^(3/10) 9204420652646976 a001 98209/70711162*14662949395604^(3/14) 9204420652646976 a001 98209/70711162*192900153618^(1/4) 9204420652646977 a001 98209/96450076809*87403803^(3/4) 9204420652646979 a001 196418/54018521*4106118243^(1/4) 9204420652646979 a001 98209/70711162*33385282^(3/8) 9204420652646980 a001 98209/299537289*33385282^(11/24) 9204420652646980 a001 98209/1268860318*33385282^(13/24) 9204420652646981 a001 98209/5374978561*33385282^(5/8) 9204420652646982 a001 98209/22768774562*33385282^(17/24) 9204420652646982 a001 98209/96450076809*33385282^(19/24) 9204420652646983 a001 98209/408569081798*33385282^(7/8) 9204420652646984 a001 98209/1730726404001*33385282^(23/24) 9204420652646997 a001 196418/20633239*817138163596^(1/6) 9204420652646998 a001 196418/20633239*87403803^(1/4) 9204420652647018 a001 98209/22768774562*12752043^(3/4) 9204420652647090 a001 98209/3940598*7881196^(5/22) 9204420652647119 a001 98209/3940598*20633239^(3/14) 9204420652647124 a001 98209/3940598*2537720636^(1/6) 9204420652647124 a001 98209/3940598*312119004989^(3/22) 9204420652647124 a001 98209/3940598*28143753123^(3/20) 9204420652647124 a001 98209/3940598*228826127^(3/16) 9204420652647126 a001 98209/3940598*33385282^(5/24) 9204420652647456 a001 416020/930249*103682^(1/16) 9204420652647789 a001 98209/3940598*1860498^(1/4) 9204420652647898 a001 98209/16692641*1860498^(7/20) 9204420652647967 a001 196418/3010349*7881196^(1/6) 9204420652647992 a001 196418/3010349*312119004989^(1/10) 9204420652647992 a001 196418/3010349*1568397607^(1/8) 9204420652648083 a001 196418/87403803*1860498^(5/12) 9204420652648173 a001 98209/70711162*1860498^(9/20) 9204420652648438 a001 98209/299537289*1860498^(11/20) 9204420652648527 a001 196418/969323029*1860498^(7/12) 9204420652648704 a001 98209/1268860318*1860498^(13/20) 9204420652648970 a001 98209/5374978561*1860498^(3/4) 9204420652649236 a001 98209/22768774562*1860498^(17/20) 9204420652649413 a001 196418/119218851371*1860498^(11/12) 9204420652649502 a001 98209/96450076809*1860498^(19/20) 9204420652651998 a001 2178309/4870847*103682^(1/16) 9204420652652661 a001 5702887/12752043*103682^(1/16) 9204420652652758 a001 7465176/16692641*103682^(1/16) 9204420652652772 a001 39088169/87403803*103682^(1/16) 9204420652652774 a001 102334155/228826127*103682^(1/16) 9204420652652774 a001 133957148/299537289*103682^(1/16) 9204420652652774 a001 701408733/1568397607*103682^(1/16) 9204420652652774 a001 1836311903/4106118243*103682^(1/16) 9204420652652774 a001 2403763488/5374978561*103682^(1/16) 9204420652652774 a001 12586269025/28143753123*103682^(1/16) 9204420652652774 a001 32951280099/73681302247*103682^(1/16) 9204420652652774 a001 43133785636/96450076809*103682^(1/16) 9204420652652774 a001 225851433717/505019158607*103682^(1/16) 9204420652652774 a001 591286729879/1322157322203*103682^(1/16) 9204420652652774 a001 10610209857723/23725150497407*103682^(1/16) 9204420652652774 a001 182717648081/408569081798*103682^(1/16) 9204420652652774 a001 139583862445/312119004989*103682^(1/16) 9204420652652774 a001 53316291173/119218851371*103682^(1/16) 9204420652652774 a001 10182505537/22768774562*103682^(1/16) 9204420652652774 a001 7778742049/17393796001*103682^(1/16) 9204420652652774 a001 2971215073/6643838879*103682^(1/16) 9204420652652774 a001 567451585/1268860318*103682^(1/16) 9204420652652774 a001 433494437/969323029*103682^(1/16) 9204420652652774 a001 165580141/370248451*103682^(1/16) 9204420652652775 a001 31622993/70711162*103682^(1/16) 9204420652652780 a001 24157817/54018521*103682^(1/16) 9204420652652817 a001 9227465/20633239*103682^(1/16) 9204420652653071 a001 1762289/3940598*103682^(1/16) 9204420652653802 a001 98209/16692641*710647^(3/8) 9204420652653935 a001 196418/1149851*20633239^(1/10) 9204420652653938 a001 196418/1149851*17393796001^(1/14) 9204420652653938 a001 196418/1149851*14662949395604^(1/18) 9204420652653938 a001 196418/1149851*505019158607^(1/16) 9204420652653938 a001 196418/1149851*599074578^(1/12) 9204420652654806 a001 1346269/3010349*103682^(1/16) 9204420652655433 a001 196418/271443*39603^(1/44) 9204420652656216 a001 196418/1149851*710647^(1/8) 9204420652658367 a001 196418/969323029*710647^(5/8) 9204420652662923 a001 196418/28143753123*710647^(7/8) 9204420652666697 a001 514229/1149851*103682^(1/16) 9204420652674726 a001 105937/1368706081*271443^(3/4) 9204420652677818 a001 196418/4870847*271443^(1/4) 9204420652690292 a001 416020/5374978561*271443^(3/4) 9204420652692041 a001 98209/219602*439204^(1/18) 9204420652692563 a001 726103/9381251041*271443^(3/4) 9204420652692895 a001 5702887/73681302247*271443^(3/4) 9204420652692943 a001 2584/33385281*271443^(3/4) 9204420652692950 a001 39088169/505019158607*271443^(3/4) 9204420652692951 a001 34111385/440719107401*271443^(3/4) 9204420652692951 a001 133957148/1730726404001*271443^(3/4) 9204420652692951 a001 233802911/3020733700601*271443^(3/4) 9204420652692951 a001 1836311903/23725150497407*271443^(3/4) 9204420652692951 a001 567451585/7331474697802*271443^(3/4) 9204420652692951 a001 433494437/5600748293801*271443^(3/4) 9204420652692951 a001 165580141/2139295485799*271443^(3/4) 9204420652692952 a001 31622993/408569081798*271443^(3/4) 9204420652692955 a001 24157817/312119004989*271443^(3/4) 9204420652692973 a001 9227465/119218851371*271443^(3/4) 9204420652693100 a001 1762289/22768774562*271443^(3/4) 9204420652693967 a001 1346269/17393796001*271443^(3/4) 9204420652694685 a001 98209/219602*7881196^(1/22) 9204420652694692 a001 98209/219602*33385282^(1/24) 9204420652694825 a001 98209/219602*1860498^(1/20) 9204420652697375 a001 75025/370248451*167761^(7/10) 9204420652699913 a001 514229/6643838879*271443^(3/4) 9204420652721375 a001 514229/710647*39603^(1/44) 9204420652730995 a001 1346269/1860498*39603^(1/44) 9204420652733267 a001 2178309/3010349*39603^(1/44) 9204420652736941 a001 832040/1149851*39603^(1/44) 9204420652736977 a001 46368/167761*39603^(5/44) 9204420652740667 a001 98209/1268860318*271443^(3/4) 9204420652741521 a001 121393/4870847*103682^(5/16) 9204420652742593 a001 317811/3010349*103682^(3/16) 9204420652748206 a001 98209/219602*103682^(1/16) 9204420652749553 a001 121393/271443*39603^(3/44) 9204420652757292 a001 208010/1970299*103682^(3/16) 9204420652759436 a001 2178309/20633239*103682^(3/16) 9204420652759749 a001 5702887/54018521*103682^(3/16) 9204420652759795 a001 3732588/35355581*103682^(3/16) 9204420652759802 a001 39088169/370248451*103682^(3/16) 9204420652759803 a001 102334155/969323029*103682^(3/16) 9204420652759803 a001 66978574/634430159*103682^(3/16) 9204420652759803 a001 701408733/6643838879*103682^(3/16) 9204420652759803 a001 1836311903/17393796001*103682^(3/16) 9204420652759803 a001 1201881744/11384387281*103682^(3/16) 9204420652759803 a001 12586269025/119218851371*103682^(3/16) 9204420652759803 a001 32951280099/312119004989*103682^(3/16) 9204420652759803 a001 21566892818/204284540899*103682^(3/16) 9204420652759803 a001 225851433717/2139295485799*103682^(3/16) 9204420652759803 a001 182717648081/1730726404001*103682^(3/16) 9204420652759803 a001 139583862445/1322157322203*103682^(3/16) 9204420652759803 a001 53316291173/505019158607*103682^(3/16) 9204420652759803 a001 10182505537/96450076809*103682^(3/16) 9204420652759803 a001 7778742049/73681302247*103682^(3/16) 9204420652759803 a001 2971215073/28143753123*103682^(3/16) 9204420652759803 a001 567451585/5374978561*103682^(3/16) 9204420652759803 a001 433494437/4106118243*103682^(3/16) 9204420652759803 a001 165580141/1568397607*103682^(3/16) 9204420652759803 a001 31622993/299537289*103682^(3/16) 9204420652759806 a001 24157817/228826127*103682^(3/16) 9204420652759823 a001 9227465/87403803*103682^(3/16) 9204420652759943 a001 1762289/16692641*103682^(3/16) 9204420652760762 a001 1346269/12752043*103682^(3/16) 9204420652762129 a001 317811/439204*39603^(1/44) 9204420652762777 a001 75025/33385282*167761^(1/2) 9204420652766376 a001 514229/4870847*103682^(3/16) 9204420652768683 a001 75025/271443*167761^(1/10) 9204420652801386 a001 75025/271443*20633239^(1/14) 9204420652801388 a001 75025/271443*2537720636^(1/18) 9204420652801388 a001 75025/271443*312119004989^(1/22) 9204420652801388 a001 75025/271443*28143753123^(1/20) 9204420652801388 a001 75025/271443*228826127^(1/16) 9204420652801610 a001 75025/271443*1860498^(1/12) 9204420652804860 a001 98209/930249*103682^(3/16) 9204420652829211 a001 75025/3010349*167761^(3/10) 9204420652848549 a001 105937/4250681*103682^(5/16) 9204420652848959 a001 121393/20633239*103682^(7/16) 9204420652849104 a006 5^(1/2)*fibonacci(53/2)/Lucas(25)/sqrt(5) 9204420652864164 a001 416020/16692641*103682^(5/16) 9204420652866442 a001 726103/29134601*103682^(5/16) 9204420652866775 a001 5702887/228826127*103682^(5/16) 9204420652866823 a001 829464/33281921*103682^(5/16) 9204420652866830 a001 39088169/1568397607*103682^(5/16) 9204420652866831 a001 34111385/1368706081*103682^(5/16) 9204420652866831 a001 133957148/5374978561*103682^(5/16) 9204420652866831 a001 233802911/9381251041*103682^(5/16) 9204420652866831 a001 1836311903/73681302247*103682^(5/16) 9204420652866831 a001 267084832/10716675201*103682^(5/16) 9204420652866831 a001 12586269025/505019158607*103682^(5/16) 9204420652866831 a001 10983760033/440719107401*103682^(5/16) 9204420652866831 a001 43133785636/1730726404001*103682^(5/16) 9204420652866831 a001 75283811239/3020733700601*103682^(5/16) 9204420652866831 a001 182717648081/7331474697802*103682^(5/16) 9204420652866831 a001 139583862445/5600748293801*103682^(5/16) 9204420652866831 a001 53316291173/2139295485799*103682^(5/16) 9204420652866831 a001 10182505537/408569081798*103682^(5/16) 9204420652866831 a001 7778742049/312119004989*103682^(5/16) 9204420652866831 a001 2971215073/119218851371*103682^(5/16) 9204420652866831 a001 567451585/22768774562*103682^(5/16) 9204420652866831 a001 433494437/17393796001*103682^(5/16) 9204420652866831 a001 165580141/6643838879*103682^(5/16) 9204420652866832 a001 31622993/1268860318*103682^(5/16) 9204420652866834 a001 24157817/969323029*103682^(5/16) 9204420652866853 a001 9227465/370248451*103682^(5/16) 9204420652866980 a001 1762289/70711162*103682^(5/16) 9204420652867850 a001 1346269/54018521*103682^(5/16) 9204420652873815 a001 514229/20633239*103682^(5/16) 9204420652881245 a001 75025/17393796001*439204^(17/18) 9204420652886547 a001 75025/4106118243*439204^(5/6) 9204420652891849 a001 75025/969323029*439204^(13/18) 9204420652897150 a001 75025/228826127*439204^(11/18) 9204420652900132 a001 75025/710647*439204^(1/6) 9204420652902455 a001 75025/54018521*439204^(1/2) 9204420652907697 a001 75025/12752043*439204^(7/18) 9204420652908064 a001 75025/710647*7881196^(3/22) 9204420652908084 a001 75025/710647*2537720636^(1/10) 9204420652908084 a001 75025/710647*14662949395604^(1/14) 9204420652908084 a001 75025/710647*192900153618^(1/12) 9204420652908085 a001 75025/710647*33385282^(1/8) 9204420652908483 a001 75025/710647*1860498^(3/20) 9204420652913644 a001 17711/103682*15127^(7/40) 9204420652914071 a001 75025/3010349*439204^(5/18) 9204420652914695 a001 98209/3940598*103682^(5/16) 9204420652922828 a001 75025/87403803*1149851^(1/2) 9204420652923651 a001 75025/1860498*141422324^(1/6) 9204420652923651 a001 75025/1860498*73681302247^(1/8) 9204420652925803 a001 75025/141422324*3010349^(1/2) 9204420652925922 a001 75025/4870847*45537549124^(1/6) 9204420652925936 a001 75025/4870847*12752043^(1/4) 9204420652926169 a001 75025/312119004989*7881196^(21/22) 9204420652926182 a001 75025/73681302247*7881196^(19/22) 9204420652926187 a001 75025/45537549124*7881196^(5/6) 9204420652926196 a001 75025/17393796001*7881196^(17/22) 9204420652926206 a001 75025/12752043*7881196^(7/22) 9204420652926209 a001 75025/4106118243*7881196^(15/22) 9204420652926223 a001 75025/969323029*7881196^(13/22) 9204420652926236 a001 75025/228826127*7881196^(1/2) 9204420652926247 a001 75025/12752043*20633239^(3/10) 9204420652926253 a001 75025/54018521*7881196^(9/22) 9204420652926253 a001 75025/12752043*17393796001^(3/14) 9204420652926253 a001 75025/12752043*14662949395604^(1/6) 9204420652926253 a001 75025/12752043*599074578^(1/4) 9204420652926256 a001 75025/12752043*33385282^(7/24) 9204420652926290 a001 75025/505019158607*20633239^(13/14) 9204420652926291 a001 75025/312119004989*20633239^(9/10) 9204420652926293 a001 75025/45537549124*20633239^(11/14) 9204420652926294 a001 75025/33385282*20633239^(5/14) 9204420652926295 a001 75025/10749957122*20633239^(7/10) 9204420652926296 a001 75025/4106118243*20633239^(9/14) 9204420652926299 a001 75025/370248451*20633239^(1/2) 9204420652926302 a001 75025/33385282*2537720636^(5/18) 9204420652926302 a001 75025/33385282*312119004989^(5/22) 9204420652926302 a001 75025/33385282*3461452808002^(5/24) 9204420652926302 a001 75025/33385282*28143753123^(1/4) 9204420652926302 a001 75025/33385282*228826127^(5/16) 9204420652926308 a001 75025/599074578*54018521^(1/2) 9204420652926309 a001 75025/87403803*1322157322203^(1/4) 9204420652926310 a001 75025/505019158607*141422324^(5/6) 9204420652926310 a001 75025/969323029*141422324^(1/2) 9204420652926310 a001 75025/228826127*312119004989^(3/10) 9204420652926310 a001 75025/228826127*1568397607^(3/8) 9204420652926310 a001 75025/1568397607*370248451^(1/2) 9204420652926310 a001 75025/2537720636*969323029^(1/2) 9204420652926310 a001 75025/23725150497407*2537720636^(9/10) 9204420652926310 a001 75025/4106118243*2537720636^(1/2) 9204420652926310 a001 75025/5600748293801*2537720636^(5/6) 9204420652926310 a001 75025/505019158607*2537720636^(13/18) 9204420652926310 a001 75025/312119004989*2537720636^(7/10) 9204420652926310 a001 75025/45537549124*2537720636^(11/18) 9204420652926310 a001 75025/4106118243*312119004989^(9/22) 9204420652926310 a001 75025/4106118243*14662949395604^(5/14) 9204420652926310 a001 75025/4106118243*192900153618^(5/12) 9204420652926310 a001 75025/4106118243*28143753123^(9/20) 9204420652926310 a001 75025/10749957122*17393796001^(1/2) 9204420652926310 a001 75025/10749957122*14662949395604^(7/18) 9204420652926310 a001 75025/10749957122*505019158607^(7/16) 9204420652926310 a001 75025/9062201101803*17393796001^(11/14) 9204420652926310 a001 75025/312119004989*17393796001^(9/14) 9204420652926310 a001 75025/28143753123*119218851371^(1/2) 9204420652926310 a001 75025/73681302247*817138163596^(1/2) 9204420652926310 a001 75025/192900153618*5600748293801^(1/2) 9204420652926310 a001 75025/505019158607*312119004989^(13/22) 9204420652926310 a001 75025/5600748293801*312119004989^(15/22) 9204420652926310 a001 75025/505019158607*3461452808002^(13/24) 9204420652926310 a001 75025/23725150497407*14662949395604^(9/14) 9204420652926310 a001 75025/9062201101803*505019158607^(11/16) 9204420652926310 a001 75025/312119004989*14662949395604^(1/2) 9204420652926310 a001 75025/312119004989*505019158607^(9/16) 9204420652926310 a001 75025/23725150497407*192900153618^(3/4) 9204420652926310 a001 75025/312119004989*192900153618^(7/12) 9204420652926310 a001 75025/119218851371*2139295485799^(1/2) 9204420652926310 a001 75025/505019158607*73681302247^(5/8) 9204420652926310 a001 75025/45537549124*312119004989^(1/2) 9204420652926310 a001 75025/45537549124*3461452808002^(11/24) 9204420652926310 a001 75025/505019158607*28143753123^(13/20) 9204420652926310 a001 75025/5600748293801*28143753123^(3/4) 9204420652926310 a001 75025/45537549124*28143753123^(11/20) 9204420652926310 a006 5^(1/2)*Fibonacci(53/2)/Lucas(25)/sqrt(5) 9204420652926310 a001 75025/17393796001*45537549124^(1/2) 9204420652926310 a001 75025/6643838879*6643838879^(1/2) 9204420652926310 a001 75025/1322157322203*4106118243^(3/4) 9204420652926310 a001 75025/45537549124*1568397607^(5/8) 9204420652926310 a001 75025/9062201101803*1568397607^(7/8) 9204420652926310 a001 75025/969323029*73681302247^(3/8) 9204420652926310 a001 75025/10749957122*599074578^(7/12) 9204420652926310 a001 75025/312119004989*599074578^(3/4) 9204420652926310 a001 75025/9062201101803*599074578^(11/12) 9204420652926310 a001 75025/370248451*2537720636^(7/18) 9204420652926310 a001 75025/370248451*17393796001^(5/14) 9204420652926310 a001 75025/370248451*312119004989^(7/22) 9204420652926310 a001 75025/370248451*14662949395604^(5/18) 9204420652926310 a001 75025/370248451*505019158607^(5/16) 9204420652926310 a001 75025/370248451*28143753123^(7/20) 9204420652926310 a001 75025/370248451*599074578^(5/12) 9204420652926310 a001 75025/4106118243*228826127^(9/16) 9204420652926310 a001 75025/45537549124*228826127^(11/16) 9204420652926310 a001 75025/505019158607*228826127^(13/16) 9204420652926310 a001 75025/370248451*228826127^(7/16) 9204420652926310 a001 75025/5600748293801*228826127^(15/16) 9204420652926311 a001 75025/141422324*9062201101803^(1/4) 9204420652926311 a001 75025/73681302247*87403803^(3/4) 9204420652926313 a001 75025/54018521*2537720636^(3/10) 9204420652926313 a001 75025/54018521*14662949395604^(3/14) 9204420652926313 a001 75025/54018521*192900153618^(1/4) 9204420652926314 a001 75025/228826127*33385282^(11/24) 9204420652926315 a001 75025/969323029*33385282^(13/24) 9204420652926315 a001 75025/4106118243*33385282^(5/8) 9204420652926316 a001 75025/17393796001*33385282^(17/24) 9204420652926316 a001 75025/54018521*33385282^(3/8) 9204420652926317 a001 75025/73681302247*33385282^(19/24) 9204420652926317 a001 75025/312119004989*33385282^(7/8) 9204420652926318 a001 75025/1322157322203*33385282^(23/24) 9204420652926332 a001 75025/20633239*4106118243^(1/4) 9204420652926353 a001 75025/17393796001*12752043^(3/4) 9204420652926458 a001 75025/7881196*817138163596^(1/6) 9204420652926459 a001 75025/7881196*87403803^(1/4) 9204420652927184 a001 75025/12752043*1860498^(7/20) 9204420652927292 a001 75025/3010349*7881196^(5/22) 9204420652927321 a001 75025/3010349*20633239^(3/14) 9204420652927326 a001 75025/3010349*2537720636^(1/6) 9204420652927326 a001 75025/3010349*312119004989^(3/22) 9204420652927326 a001 75025/3010349*28143753123^(3/20) 9204420652927326 a001 75025/3010349*228826127^(3/16) 9204420652927327 a001 75025/3010349*33385282^(5/24) 9204420652927410 a001 75025/33385282*1860498^(5/12) 9204420652927510 a001 75025/54018521*1860498^(9/20) 9204420652927772 a001 75025/228826127*1860498^(11/20) 9204420652927861 a001 75025/370248451*1860498^(7/12) 9204420652927991 a001 75025/3010349*1860498^(1/4) 9204420652928039 a001 75025/969323029*1860498^(13/20) 9204420652928304 a001 75025/4106118243*1860498^(3/4) 9204420652928570 a001 75025/17393796001*1860498^(17/20) 9204420652928748 a001 75025/45537549124*1860498^(11/12) 9204420652928836 a001 75025/73681302247*1860498^(19/20) 9204420652933088 a001 75025/12752043*710647^(3/8) 9204420652933247 a001 75025/1149851*7881196^(1/6) 9204420652933272 a001 75025/1149851*312119004989^(1/10) 9204420652933272 a001 75025/1149851*1568397607^(1/8) 9204420652934767 a001 121393/167761*39603^(1/44) 9204420652937701 a001 75025/370248451*710647^(5/8) 9204420652942258 a001 75025/10749957122*710647^(7/8) 9204420652954881 a001 75025/1860498*271443^(1/4) 9204420652955637 a001 317811/54018521*103682^(7/16) 9204420652955965 a001 121393/87403803*103682^(9/16) 9204420652962945 a001 317811/710647*39603^(3/44) 9204420652971201 a001 208010/35355581*103682^(7/16) 9204420652973472 a001 2178309/370248451*103682^(7/16) 9204420652973803 a001 5702887/969323029*103682^(7/16) 9204420652973852 a001 196452/33391061*103682^(7/16) 9204420652973859 a001 39088169/6643838879*103682^(7/16) 9204420652973860 a001 102334155/17393796001*103682^(7/16) 9204420652973860 a001 66978574/11384387281*103682^(7/16) 9204420652973860 a001 701408733/119218851371*103682^(7/16) 9204420652973860 a001 1836311903/312119004989*103682^(7/16) 9204420652973860 a001 1201881744/204284540899*103682^(7/16) 9204420652973860 a001 12586269025/2139295485799*103682^(7/16) 9204420652973860 a001 32951280099/5600748293801*103682^(7/16) 9204420652973860 a001 1135099622/192933544679*103682^(7/16) 9204420652973860 a001 139583862445/23725150497407*103682^(7/16) 9204420652973860 a001 53316291173/9062201101803*103682^(7/16) 9204420652973860 a001 10182505537/1730726404001*103682^(7/16) 9204420652973860 a001 7778742049/1322157322203*103682^(7/16) 9204420652973860 a001 2971215073/505019158607*103682^(7/16) 9204420652973860 a001 567451585/96450076809*103682^(7/16) 9204420652973860 a001 433494437/73681302247*103682^(7/16) 9204420652973860 a001 165580141/28143753123*103682^(7/16) 9204420652973860 a001 31622993/5374978561*103682^(7/16) 9204420652973863 a001 24157817/4106118243*103682^(7/16) 9204420652973881 a001 9227465/1568397607*103682^(7/16) 9204420652974008 a001 1762289/299537289*103682^(7/16) 9204420652974024 a001 75025/439204*20633239^(1/10) 9204420652974026 a001 75025/439204*17393796001^(1/14) 9204420652974026 a001 75025/439204*14662949395604^(1/18) 9204420652974026 a001 75025/439204*505019158607^(1/16) 9204420652974026 a001 75025/439204*599074578^(1/12) 9204420652974875 a001 1346269/228826127*103682^(7/16) 9204420652976304 a001 75025/439204*710647^(1/8) 9204420652980820 a001 514229/87403803*103682^(7/16) 9204420652991159 a001 11592/109801*39603^(9/44) 9204420652994079 a001 416020/930249*39603^(3/44) 9204420652998621 a001 2178309/4870847*39603^(3/44) 9204420653001428 a001 1346269/3010349*39603^(3/44) 9204420653013320 a001 514229/1149851*39603^(3/44) 9204420653020002 a001 75025/969323029*271443^(3/4) 9204420653021568 a001 98209/16692641*103682^(7/16) 9204420653062662 a001 317811/228826127*103682^(9/16) 9204420653062995 a001 121393/370248451*103682^(11/16) 9204420653068627 a001 75025/710647*103682^(3/16) 9204420653075694 a001 75025/103682*15127^(1/40) 9204420653078229 a001 416020/299537289*103682^(9/16) 9204420653080500 a001 311187/224056801*103682^(9/16) 9204420653080832 a001 5702887/4106118243*103682^(9/16) 9204420653080880 a001 7465176/5374978561*103682^(9/16) 9204420653080887 a001 39088169/28143753123*103682^(9/16) 9204420653080888 a001 14619165/10525900321*103682^(9/16) 9204420653080888 a001 133957148/96450076809*103682^(9/16) 9204420653080888 a001 701408733/505019158607*103682^(9/16) 9204420653080888 a001 1836311903/1322157322203*103682^(9/16) 9204420653080888 a001 14930208/10749853441*103682^(9/16) 9204420653080888 a001 12586269025/9062201101803*103682^(9/16) 9204420653080888 a001 32951280099/23725150497407*103682^(9/16) 9204420653080888 a001 10182505537/7331474697802*103682^(9/16) 9204420653080888 a001 7778742049/5600748293801*103682^(9/16) 9204420653080888 a001 2971215073/2139295485799*103682^(9/16) 9204420653080888 a001 567451585/408569081798*103682^(9/16) 9204420653080888 a001 433494437/312119004989*103682^(9/16) 9204420653080889 a001 165580141/119218851371*103682^(9/16) 9204420653080889 a001 31622993/22768774562*103682^(9/16) 9204420653080892 a001 24157817/17393796001*103682^(9/16) 9204420653080910 a001 9227465/6643838879*103682^(9/16) 9204420653081037 a001 1762289/1268860318*103682^(9/16) 9204420653081904 a001 1346269/969323029*103682^(9/16) 9204420653087850 a001 514229/370248451*103682^(9/16) 9204420653094829 a001 98209/219602*39603^(3/44) 9204420653128605 a001 98209/70711162*103682^(9/16) 9204420653169691 a001 317811/969323029*103682^(11/16) 9204420653170024 a001 121393/1568397607*103682^(13/16) 9204420653185258 a001 610/1860499*103682^(11/16) 9204420653187529 a001 2178309/6643838879*103682^(11/16) 9204420653187860 a001 5702887/17393796001*103682^(11/16) 9204420653187909 a001 3732588/11384387281*103682^(11/16) 9204420653187916 a001 39088169/119218851371*103682^(11/16) 9204420653187917 a001 9303105/28374454999*103682^(11/16) 9204420653187917 a001 66978574/204284540899*103682^(11/16) 9204420653187917 a001 701408733/2139295485799*103682^(11/16) 9204420653187917 a001 1836311903/5600748293801*103682^(11/16) 9204420653187917 a001 1201881744/3665737348901*103682^(11/16) 9204420653187917 a001 7778742049/23725150497407*103682^(11/16) 9204420653187917 a001 2971215073/9062201101803*103682^(11/16) 9204420653187917 a001 567451585/1730726404001*103682^(11/16) 9204420653187917 a001 433494437/1322157322203*103682^(11/16) 9204420653187917 a001 165580141/505019158607*103682^(11/16) 9204420653187917 a001 31622993/96450076809*103682^(11/16) 9204420653187920 a001 24157817/73681302247*103682^(11/16) 9204420653187939 a001 9227465/28143753123*103682^(11/16) 9204420653188065 a001 1762289/5374978561*103682^(11/16) 9204420653188933 a001 1346269/4106118243*103682^(11/16) 9204420653188949 a001 121393/439204*39603^(5/44) 9204420653191975 a001 6624/101521*39603^(1/4) 9204420653194879 a001 514229/1568397607*103682^(11/16) 9204420653194897 a001 75025/3010349*103682^(5/16) 9204420653235633 a001 98209/299537289*103682^(11/16) 9204420653250709 a001 75025/167761*439204^(1/18) 9204420653253354 a001 75025/167761*7881196^(1/22) 9204420653253361 a001 75025/167761*33385282^(1/24) 9204420653253493 a001 75025/167761*1860498^(1/20) 9204420653254891 a001 317811/1149851*39603^(5/44) 9204420653264512 a001 832040/3010349*39603^(5/44) 9204420653266783 a001 1346269/4870847*39603^(5/44) 9204420653270458 a001 514229/1860498*39603^(5/44) 9204420653276720 a001 105937/1368706081*103682^(13/16) 9204420653277052 a001 121393/6643838879*103682^(15/16) 9204420653292286 a001 416020/5374978561*103682^(13/16) 9204420653294558 a001 726103/9381251041*103682^(13/16) 9204420653294889 a001 5702887/73681302247*103682^(13/16) 9204420653294937 a001 2584/33385281*103682^(13/16) 9204420653294944 a001 39088169/505019158607*103682^(13/16) 9204420653294945 a001 34111385/440719107401*103682^(13/16) 9204420653294946 a001 133957148/1730726404001*103682^(13/16) 9204420653294946 a001 233802911/3020733700601*103682^(13/16) 9204420653294946 a001 1836311903/23725150497407*103682^(13/16) 9204420653294946 a001 567451585/7331474697802*103682^(13/16) 9204420653294946 a001 433494437/5600748293801*103682^(13/16) 9204420653294946 a001 165580141/2139295485799*103682^(13/16) 9204420653294946 a001 31622993/408569081798*103682^(13/16) 9204420653294949 a001 24157817/312119004989*103682^(13/16) 9204420653294967 a001 9227465/119218851371*103682^(13/16) 9204420653295094 a001 1762289/22768774562*103682^(13/16) 9204420653295645 a001 196418/710647*39603^(5/44) 9204420653295961 a001 1346269/17393796001*103682^(13/16) 9204420653300853 a001 75025/12752043*103682^(7/16) 9204420653301907 a001 514229/6643838879*103682^(13/16) 9204420653306875 a001 75025/167761*103682^(1/16) 9204420653342662 a001 98209/1268860318*103682^(13/16) 9204420653383748 a001 10959/599786069*103682^(15/16) 9204420653389765 a001 121393/710647*39603^(7/44) 9204420653399315 a001 208010/11384387281*103682^(15/16) 9204420653401586 a001 2178309/119218851371*103682^(15/16) 9204420653401918 a001 5702887/312119004989*103682^(15/16) 9204420653401966 a001 3732588/204284540899*103682^(15/16) 9204420653401973 a001 39088169/2139295485799*103682^(15/16) 9204420653401974 a001 102334155/5600748293801*103682^(15/16) 9204420653401974 a001 10946/599074579*103682^(15/16) 9204420653401974 a001 433494437/23725150497407*103682^(15/16) 9204420653401974 a001 165580141/9062201101803*103682^(15/16) 9204420653401975 a001 31622993/1730726404001*103682^(15/16) 9204420653401977 a001 24157817/1322157322203*103682^(15/16) 9204420653401996 a001 9227465/505019158607*103682^(15/16) 9204420653402122 a001 1762289/96450076809*103682^(15/16) 9204420653402990 a001 1346269/73681302247*103682^(15/16) 9204420653407942 a001 75025/54018521*103682^(9/16) 9204420653408936 a001 514229/28143753123*103682^(15/16) 9204420653449690 a001 98209/5374978561*103682^(15/16) 9204420653468283 a001 75025/271443*39603^(5/44) 9204420653483921 a001 46368/1149851*39603^(13/44) 9204420653512028 a001 105937/620166*39603^(7/44) 9204420653514967 a001 75025/228826127*103682^(11/16) 9204420653527667 a001 196418/271443*15127^(1/40) 9204420653529866 a001 832040/4870847*39603^(7/44) 9204420653540891 a001 514229/3010349*39603^(7/44) 9204420653587591 a001 196418/1149851*39603^(7/44) 9204420653593609 a001 514229/710647*15127^(1/40) 9204420653603229 a001 1346269/1860498*15127^(1/40) 9204420653605501 a001 2178309/3010349*15127^(1/40) 9204420653609175 a001 832040/1149851*15127^(1/40) 9204420653618848 a001 46368/64079*24476^(1/42) 9204420653621996 a001 75025/969323029*103682^(13/16) 9204420653634363 a001 317811/439204*15127^(1/40) 9204420653653497 a001 75025/167761*39603^(3/44) 9204420653681711 a001 121393/1149851*39603^(9/44) 9204420653696717 a001 5473/70711162*24476^(13/14) 9204420653720226 a001 28657/7881196*64079^(1/2) 9204420653729024 a001 75025/4106118243*103682^(15/16) 9204420653741058 a001 2576/103361*39603^(15/44) 9204420653782461 a001 317811/3010349*39603^(9/44) 9204420653806245 a001 514229/4870847*39603^(9/44) 9204420653807001 a001 121393/167761*15127^(1/40) 9204420653844728 a001 98209/930249*39603^(9/44) 9204420653903642 a001 23184/51841*15127^(3/40) 9204420653907679 a001 75025/439204*39603^(7/44) 9204420653938848 a001 121393/1860498*39603^(1/4) 9204420653951962 a001 28657/103682*167761^(1/10) 9204420653984665 a001 28657/103682*20633239^(1/14) 9204420653984667 a001 28657/103682*2537720636^(1/18) 9204420653984667 a001 28657/103682*312119004989^(1/22) 9204420653984667 a001 28657/103682*28143753123^(1/20) 9204420653984667 a001 28657/103682*228826127^(1/16) 9204420653984888 a001 28657/103682*1860498^(1/12) 9204420654000282 a001 17711/64079*15127^(1/8) 9204420654011491 a001 46368/3010349*39603^(17/44) 9204420654047816 a001 317811/4870847*39603^(1/4) 9204420654063714 a001 832040/12752043*39603^(1/4) 9204420654066033 a001 311187/4769326*39603^(1/4) 9204420654066372 a001 5702887/87403803*39603^(1/4) 9204420654066421 a001 14930352/228826127*39603^(1/4) 9204420654066428 a001 39088169/599074578*39603^(1/4) 9204420654066429 a001 14619165/224056801*39603^(1/4) 9204420654066429 a001 267914296/4106118243*39603^(1/4) 9204420654066429 a001 701408733/10749957122*39603^(1/4) 9204420654066429 a001 1836311903/28143753123*39603^(1/4) 9204420654066429 a001 686789568/10525900321*39603^(1/4) 9204420654066429 a001 12586269025/192900153618*39603^(1/4) 9204420654066429 a001 32951280099/505019158607*39603^(1/4) 9204420654066429 a001 86267571272/1322157322203*39603^(1/4) 9204420654066429 a001 32264490531/494493258286*39603^(1/4) 9204420654066429 a001 591286729879/9062201101803*39603^(1/4) 9204420654066429 a001 1548008755920/23725150497407*39603^(1/4) 9204420654066429 a001 365435296162/5600748293801*39603^(1/4) 9204420654066429 a001 139583862445/2139295485799*39603^(1/4) 9204420654066429 a001 53316291173/817138163596*39603^(1/4) 9204420654066429 a001 20365011074/312119004989*39603^(1/4) 9204420654066429 a001 7778742049/119218851371*39603^(1/4) 9204420654066429 a001 2971215073/45537549124*39603^(1/4) 9204420654066429 a001 1134903170/17393796001*39603^(1/4) 9204420654066429 a001 433494437/6643838879*39603^(1/4) 9204420654066429 a001 165580141/2537720636*39603^(1/4) 9204420654066430 a001 63245986/969323029*39603^(1/4) 9204420654066433 a001 24157817/370248451*39603^(1/4) 9204420654066451 a001 9227465/141422324*39603^(1/4) 9204420654066581 a001 3524578/54018521*39603^(1/4) 9204420654067467 a001 1346269/20633239*39603^(1/4) 9204420654073539 a001 514229/7881196*39603^(1/4) 9204420654108496 a001 75025/710647*39603^(9/44) 9204420654115161 a001 196418/3010349*39603^(1/4) 9204420654118046 a001 46368/64079*39603^(1/44) 9204420654209281 a001 121393/3010349*39603^(13/44) 9204420654276845 a001 46368/4870847*39603^(19/44) 9204420654311717 a006 5^(1/2)*fibonacci(49/2)/Lucas(23)/sqrt(5) 9204420654380515 a001 196418/4870847*39603^(13/44) 9204420654400441 a001 75025/1149851*39603^(1/4) 9204420654474636 a001 121393/4870847*39603^(15/44) 9204420654546550 a001 28657/1568397607*167761^(9/10) 9204420654611961 a001 28657/141422324*167761^(7/10) 9204420654651562 a001 28657/103682*39603^(5/44) 9204420654657579 a001 75025/1860498*39603^(13/44) 9204420654677314 a001 28657/12752043*167761^(1/2) 9204420654708021 a001 28657/271443*439204^(1/6) 9204420654715953 a001 28657/271443*7881196^(3/22) 9204420654715973 a001 28657/271443*2537720636^(1/10) 9204420654715973 a001 28657/271443*14662949395604^(1/14) 9204420654715973 a001 28657/271443*192900153618^(1/12) 9204420654715974 a001 28657/271443*33385282^(1/8) 9204420654716372 a001 28657/271443*1860498^(3/20) 9204420654749742 a001 28657/1149851*167761^(3/10) 9204420654795830 a001 28657/6643838879*439204^(17/18) 9204420654801132 a001 28657/1568397607*439204^(5/6) 9204420654806434 a001 28657/370248451*439204^(13/18) 9204420654811734 a001 28657/87403803*439204^(11/18) 9204420654817059 a001 28657/20633239*439204^(1/2) 9204420654821951 a001 28657/4870847*439204^(7/18) 9204420654822669 a001 28657/710647*141422324^(1/6) 9204420654822670 a001 28657/710647*73681302247^(1/8) 9204420654834603 a001 28657/1149851*439204^(5/18) 9204420654837406 a001 28657/33385282*1149851^(1/2) 9204420654838236 a001 28657/1860498*45537549124^(1/6) 9204420654838250 a001 28657/1860498*12752043^(1/4) 9204420654840391 a001 28657/54018521*3010349^(1/2) 9204420654840460 a001 28657/4870847*7881196^(7/22) 9204420654840501 a001 28657/4870847*20633239^(3/10) 9204420654840507 a001 28657/4870847*17393796001^(3/14) 9204420654840507 a001 28657/4870847*14662949395604^(1/6) 9204420654840507 a001 28657/4870847*599074578^(1/4) 9204420654840510 a001 28657/4870847*33385282^(7/24) 9204420654840754 a001 28657/119218851371*7881196^(21/22) 9204420654840767 a001 28657/28143753123*7881196^(19/22) 9204420654840772 a001 28657/17393796001*7881196^(5/6) 9204420654840781 a001 28657/6643838879*7881196^(17/22) 9204420654840794 a001 28657/1568397607*7881196^(15/22) 9204420654840808 a001 28657/370248451*7881196^(13/22) 9204420654840820 a001 28657/87403803*7881196^(1/2) 9204420654840831 a001 28657/12752043*20633239^(5/14) 9204420654840839 a001 28657/12752043*2537720636^(5/18) 9204420654840839 a001 28657/12752043*312119004989^(5/22) 9204420654840839 a001 28657/12752043*3461452808002^(5/24) 9204420654840839 a001 28657/12752043*28143753123^(1/4) 9204420654840839 a001 28657/12752043*228826127^(5/16) 9204420654840856 a001 28657/20633239*7881196^(9/22) 9204420654840875 a001 28657/192900153618*20633239^(13/14) 9204420654840876 a001 28657/119218851371*20633239^(9/10) 9204420654840878 a001 28657/17393796001*20633239^(11/14) 9204420654840880 a001 28657/4106118243*20633239^(7/10) 9204420654840882 a001 28657/1568397607*20633239^(9/14) 9204420654840885 a001 28657/141422324*20633239^(1/2) 9204420654840887 a001 28657/33385282*1322157322203^(1/4) 9204420654840894 a001 28657/228826127*54018521^(1/2) 9204420654840894 a001 28657/87403803*312119004989^(3/10) 9204420654840894 a001 28657/87403803*1568397607^(3/8) 9204420654840895 a001 28657/192900153618*141422324^(5/6) 9204420654840895 a001 28657/370248451*141422324^(1/2) 9204420654840895 a001 28657/599074578*370248451^(1/2) 9204420654840895 a001 28657/1568397607*2537720636^(1/2) 9204420654840895 a001 28657/1568397607*312119004989^(9/22) 9204420654840895 a001 28657/1568397607*14662949395604^(5/14) 9204420654840895 a001 28657/1568397607*192900153618^(5/12) 9204420654840895 a001 28657/1568397607*28143753123^(9/20) 9204420654840895 a001 28657/23725150497407*2537720636^(17/18) 9204420654840895 a001 28657/9062201101803*2537720636^(9/10) 9204420654840895 a001 28657/2139295485799*2537720636^(5/6) 9204420654840895 a001 28657/192900153618*2537720636^(13/18) 9204420654840895 a001 28657/119218851371*2537720636^(7/10) 9204420654840895 a001 28657/17393796001*2537720636^(11/18) 9204420654840895 a001 28657/4106118243*17393796001^(1/2) 9204420654840895 a001 28657/4106118243*14662949395604^(7/18) 9204420654840895 a001 28657/4106118243*505019158607^(7/16) 9204420654840895 a001 28657/10749957122*119218851371^(1/2) 9204420654840895 a001 28657/3461452808002*17393796001^(11/14) 9204420654840895 a001 28657/119218851371*17393796001^(9/14) 9204420654840895 a001 28657/28143753123*817138163596^(1/2) 9204420654840895 a001 28657/23725150497407*45537549124^(5/6) 9204420654840895 a001 28657/73681302247*5600748293801^(1/2) 9204420654840895 a001 28657/192900153618*312119004989^(13/22) 9204420654840895 a001 28657/192900153618*3461452808002^(13/24) 9204420654840895 a001 28657/23725150497407*312119004989^(17/22) 9204420654840895 a001 28657/2139295485799*312119004989^(15/22) 9204420654840895 a001 28657/3461452808002*14662949395604^(11/18) 9204420654840895 a001 28657/9062201101803*14662949395604^(9/14) 9204420654840895 a001 28657/23725150497407*3461452808002^(17/24) 9204420654840895 a001 28657/2139295485799*3461452808002^(5/8) 9204420654840895 a001 28657/3461452808002*505019158607^(11/16) 9204420654840895 a001 28657/9062201101803*192900153618^(3/4) 9204420654840895 a001 28657/119218851371*14662949395604^(1/2) 9204420654840895 a001 28657/119218851371*505019158607^(9/16) 9204420654840895 a001 28657/119218851371*192900153618^(7/12) 9204420654840895 a001 28657/192900153618*73681302247^(5/8) 9204420654840895 a001 28657/45537549124*2139295485799^(1/2) 9204420654840895 a001 28657/192900153618*28143753123^(13/20) 9204420654840895 a001 28657/2139295485799*28143753123^(3/4) 9204420654840895 a001 28657/23725150497407*28143753123^(17/20) 9204420654840895 a001 28657/17393796001*312119004989^(1/2) 9204420654840895 a001 28657/17393796001*3461452808002^(11/24) 9204420654840895 a001 28657/17393796001*28143753123^(11/20) 9204420654840895 a001 28657/6643838879*45537549124^(1/2) 9204420654840895 a001 28657/505019158607*4106118243^(3/4) 9204420654840895 a006 5^(1/2)*Fibonacci(49/2)/Lucas(23)/sqrt(5) 9204420654840895 a001 28657/2537720636*6643838879^(1/2) 9204420654840895 a001 28657/17393796001*1568397607^(5/8) 9204420654840895 a001 28657/3461452808002*1568397607^(7/8) 9204420654840895 a001 28657/969323029*969323029^(1/2) 9204420654840895 a001 28657/4106118243*599074578^(7/12) 9204420654840895 a001 28657/119218851371*599074578^(3/4) 9204420654840895 a001 28657/3461452808002*599074578^(11/12) 9204420654840895 a001 28657/370248451*73681302247^(3/8) 9204420654840896 a001 28657/1568397607*228826127^(9/16) 9204420654840896 a001 28657/17393796001*228826127^(11/16) 9204420654840896 a001 28657/192900153618*228826127^(13/16) 9204420654840896 a001 28657/2139295485799*228826127^(15/16) 9204420654840896 a001 28657/141422324*2537720636^(7/18) 9204420654840896 a001 28657/141422324*17393796001^(5/14) 9204420654840896 a001 28657/141422324*312119004989^(7/22) 9204420654840896 a001 28657/141422324*14662949395604^(5/18) 9204420654840896 a001 28657/141422324*505019158607^(5/16) 9204420654840896 a001 28657/141422324*28143753123^(7/20) 9204420654840896 a001 28657/141422324*599074578^(5/12) 9204420654840896 a001 28657/141422324*228826127^(7/16) 9204420654840896 a001 28657/28143753123*87403803^(3/4) 9204420654840898 a001 28657/87403803*33385282^(11/24) 9204420654840899 a001 28657/54018521*9062201101803^(1/4) 9204420654840900 a001 28657/370248451*33385282^(13/24) 9204420654840901 a001 28657/1568397607*33385282^(5/8) 9204420654840901 a001 28657/6643838879*33385282^(17/24) 9204420654840902 a001 28657/28143753123*33385282^(19/24) 9204420654840903 a001 28657/119218851371*33385282^(7/8) 9204420654840903 a001 28657/505019158607*33385282^(23/24) 9204420654840917 a001 28657/20633239*2537720636^(3/10) 9204420654840917 a001 28657/20633239*14662949395604^(3/14) 9204420654840917 a001 28657/20633239*192900153618^(1/4) 9204420654840920 a001 28657/20633239*33385282^(3/8) 9204420654840938 a001 28657/6643838879*12752043^(3/4) 9204420654841044 a001 28657/7881196*4106118243^(1/4) 9204420654841438 a001 28657/4870847*1860498^(7/20) 9204420654841911 a001 28657/3010349*817138163596^(1/6) 9204420654841911 a001 28657/3010349*87403803^(1/4) 9204420654841947 a001 28657/12752043*1860498^(5/12) 9204420654842114 a001 28657/20633239*1860498^(9/20) 9204420654842357 a001 28657/87403803*1860498^(11/20) 9204420654842447 a001 28657/141422324*1860498^(7/12) 9204420654842624 a001 28657/370248451*1860498^(13/20) 9204420654842890 a001 28657/1568397607*1860498^(3/4) 9204420654843156 a001 28657/6643838879*1860498^(17/20) 9204420654843333 a001 28657/17393796001*1860498^(11/12) 9204420654843422 a001 28657/28143753123*1860498^(19/20) 9204420654847342 a001 28657/4870847*710647^(3/8) 9204420654847823 a001 28657/1149851*7881196^(5/22) 9204420654847852 a001 28657/1149851*20633239^(3/14) 9204420654847857 a001 28657/1149851*2537720636^(1/6) 9204420654847857 a001 28657/1149851*312119004989^(3/22) 9204420654847857 a001 28657/1149851*28143753123^(3/20) 9204420654847857 a001 28657/1149851*228826127^(3/16) 9204420654847859 a001 28657/1149851*33385282^(5/24) 9204420654848522 a001 28657/1149851*1860498^(1/4) 9204420654852287 a001 28657/141422324*710647^(5/8) 9204420654853900 a001 28657/710647*271443^(1/4) 9204420654856843 a001 28657/4106118243*710647^(7/8) 9204420654876516 a001 28657/271443*103682^(3/16) 9204420654888587 a001 28657/439204*7881196^(1/6) 9204420654888611 a001 28657/439204*312119004989^(1/10) 9204420654888611 a001 28657/439204*1568397607^(1/8) 9204420654928011 a001 75025/3010349*39603^(15/44) 9204420654934587 a001 28657/370248451*271443^(3/4) 9204420654990280 a001 46368/64079*15127^(1/40) 9204420655115429 a001 28657/1149851*103682^(5/16) 9204420655159996 a001 10946/54018521*24476^(5/6) 9204420655167943 a001 28657/167761*20633239^(1/10) 9204420655167946 a001 28657/167761*17393796001^(1/14) 9204420655167946 a001 28657/167761*14662949395604^(1/18) 9204420655167946 a001 28657/167761*505019158607^(1/16) 9204420655167946 a001 28657/167761*599074578^(1/12) 9204420655170224 a001 28657/167761*710647^(1/8) 9204420655193366 a001 75025/4870847*39603^(17/44) 9204420655215107 a001 28657/4870847*103682^(7/16) 9204420655322546 a001 28657/20633239*103682^(9/16) 9204420655366255 a001 121393/271443*15127^(3/40) 9204420655429551 a001 28657/87403803*103682^(11/16) 9204420655536581 a001 28657/370248451*103682^(13/16) 9204420655579647 a001 317811/710647*15127^(3/40) 9204420655610780 a001 416020/930249*15127^(3/40) 9204420655615323 a001 2178309/4870847*15127^(3/40) 9204420655618130 a001 1346269/3010349*15127^(3/40) 9204420655630022 a001 514229/1149851*15127^(3/40) 9204420655643610 a001 28657/1568397607*103682^(15/16) 9204420655711531 a001 98209/219602*15127^(3/40) 9204420655891623 a001 5473/16692641*24476^(11/14) 9204420655916385 a001 28657/271443*39603^(9/44) 9204420655985074 a001 28657/64079*24476^(1/14) 9204420656101599 a001 28657/167761*39603^(7/44) 9204420656108149 a001 17711/167761*15127^(9/40) 9204420656144540 a001 11592/35355581*39603^(3/4) 9204420656270199 a001 75025/167761*15127^(3/40) 9204420656355781 a001 28657/439204*39603^(1/4) 9204420656556597 a001 28657/710647*39603^(13/44) 9204420656630632 a001 28657/39603*5778^(1/36) 9204420656848543 a001 28657/1149851*39603^(15/44) 9204420656875846 a001 121393/370248451*39603^(3/4) 9204420656982543 a001 317811/969323029*39603^(3/4) 9204420656998109 a001 610/1860499*39603^(3/4) 9204420657000380 a001 2178309/6643838879*39603^(3/4) 9204420657000712 a001 5702887/17393796001*39603^(3/4) 9204420657000760 a001 3732588/11384387281*39603^(3/4) 9204420657000767 a001 39088169/119218851371*39603^(3/4) 9204420657000768 a001 9303105/28374454999*39603^(3/4) 9204420657000768 a001 66978574/204284540899*39603^(3/4) 9204420657000768 a001 701408733/2139295485799*39603^(3/4) 9204420657000768 a001 1836311903/5600748293801*39603^(3/4) 9204420657000768 a001 1201881744/3665737348901*39603^(3/4) 9204420657000768 a001 7778742049/23725150497407*39603^(3/4) 9204420657000768 a001 2971215073/9062201101803*39603^(3/4) 9204420657000768 a001 567451585/1730726404001*39603^(3/4) 9204420657000768 a001 433494437/1322157322203*39603^(3/4) 9204420657000768 a001 165580141/505019158607*39603^(3/4) 9204420657000769 a001 31622993/96450076809*39603^(3/4) 9204420657000772 a001 24157817/73681302247*39603^(3/4) 9204420657000790 a001 9227465/28143753123*39603^(3/4) 9204420657000917 a001 1762289/5374978561*39603^(3/4) 9204420657001784 a001 1346269/4106118243*39603^(3/4) 9204420657007730 a001 514229/1568397607*39603^(3/4) 9204420657048484 a001 98209/299537289*39603^(3/4) 9204420657079880 a001 28657/64079*439204^(1/18) 9204420657082524 a001 28657/64079*7881196^(1/22) 9204420657082531 a001 28657/64079*33385282^(1/24) 9204420657082664 a001 28657/64079*1860498^(1/20) 9204420657098146 a001 46368/167761*15127^(1/8) 9204420657105680 a001 28657/1860498*39603^(17/44) 9204420657136045 a001 28657/64079*103682^(1/16) 9204420657327818 a001 75025/228826127*39603^(3/4) 9204420657376113 a001 28657/3010349*39603^(19/44) 9204420657482668 a001 28657/64079*39603^(3/44) 9204420657550119 a001 121393/439204*15127^(1/8) 9204420657616060 a001 317811/1149851*15127^(1/8) 9204420657625681 a001 832040/3010349*15127^(1/8) 9204420657627085 a001 2178309/7881196*15127^(1/8) 9204420657627290 a001 5702887/20633239*15127^(1/8) 9204420657627319 a001 14930352/54018521*15127^(1/8) 9204420657627324 a001 39088169/141422324*15127^(1/8) 9204420657627324 a001 102334155/370248451*15127^(1/8) 9204420657627325 a001 267914296/969323029*15127^(1/8) 9204420657627325 a001 701408733/2537720636*15127^(1/8) 9204420657627325 a001 1836311903/6643838879*15127^(1/8) 9204420657627325 a001 4807526976/17393796001*15127^(1/8) 9204420657627325 a001 12586269025/45537549124*15127^(1/8) 9204420657627325 a001 32951280099/119218851371*15127^(1/8) 9204420657627325 a001 86267571272/312119004989*15127^(1/8) 9204420657627325 a001 225851433717/817138163596*15127^(1/8) 9204420657627325 a001 1548008755920/5600748293801*15127^(1/8) 9204420657627325 a001 139583862445/505019158607*15127^(1/8) 9204420657627325 a001 53316291173/192900153618*15127^(1/8) 9204420657627325 a001 20365011074/73681302247*15127^(1/8) 9204420657627325 a001 7778742049/28143753123*15127^(1/8) 9204420657627325 a001 2971215073/10749957122*15127^(1/8) 9204420657627325 a001 1134903170/4106118243*15127^(1/8) 9204420657627325 a001 433494437/1568397607*15127^(1/8) 9204420657627325 a001 165580141/599074578*15127^(1/8) 9204420657627325 a001 63245986/228826127*15127^(1/8) 9204420657627327 a001 24157817/87403803*15127^(1/8) 9204420657627338 a001 9227465/33385282*15127^(1/8) 9204420657627416 a001 3524578/12752043*15127^(1/8) 9204420657627952 a001 1346269/4870847*15127^(1/8) 9204420657631627 a001 514229/1860498*15127^(1/8) 9204420657641467 a001 28657/4870847*39603^(21/44) 9204420657656815 a001 196418/710647*15127^(1/8) 9204420657667402 a001 17711/271443*15127^(11/40) 9204420657829453 a001 75025/271443*15127^(1/8) 9204420657915119 k002 Champernowne real with 21/2*n^2+327/2*n-165 9204420658086693 a001 5473/3940598*24476^(9/14) 9204420658657400 a001 15456/90481*15127^(7/40) 9204420658817795 a001 10946/4870847*24476^(25/42) 9204420659012732 a001 28657/103682*15127^(1/8) 9204420659242403 a001 28657/87403803*39603^(3/4) 9204420659323687 a001 17711/24476*9349^(1/38) 9204420659495403 a001 121393/710647*15127^(7/40) 9204420659550837 a001 10946/3010349*24476^(23/42) 9204420659617665 a001 105937/620166*15127^(7/40) 9204420659635503 a001 832040/4870847*15127^(7/40) 9204420659646528 a001 514229/3010349*15127^(7/40) 9204420659693228 a001 196418/1149851*15127^(7/40) 9204420659728497 a001 75025/103682*5778^(1/36) 9204420659851266 a001 17711/439204*15127^(13/40) 9204420660013317 a001 75025/439204*15127^(7/40) 9204420660099370 a001 28657/64079*15127^(3/40) 9204420660114969 a001 2255/13201*5778^(7/36) 9204420660180469 a001 196418/271443*5778^(1/36) 9204420660246411 a001 514229/710647*5778^(1/36) 9204420660256032 a001 1346269/1860498*5778^(1/36) 9204420660258303 a001 2178309/3010349*5778^(1/36) 9204420660261978 a001 832040/1149851*5778^(1/36) 9204420660265885 a001 10946/39603*24476^(5/42) 9204420660278800 a001 5473/930249*24476^(1/2) 9204420660287165 a001 317811/439204*5778^(1/36) 9204420660459803 a001 121393/167761*5778^(1/36) 9204420660841264 a001 11592/109801*15127^(9/40) 9204420661020059 a001 10946/1149851*24476^(19/42) 9204420661531816 a001 121393/1149851*15127^(9/40) 9204420661632566 a001 317811/3010349*15127^(9/40) 9204420661643082 a001 46368/64079*5778^(1/36) 9204420661656350 a001 514229/4870847*15127^(9/40) 9204420661694833 a001 98209/930249*15127^(9/40) 9204420661726509 a001 10946/710647*24476^(17/42) 9204420661729161 a001 17711/24476*24476^(1/42) 9204420661796550 a001 17711/710647*15127^(3/8) 9204420661958601 a001 75025/710647*15127^(9/40) 9204420662062275 a001 10946/39603*167761^(1/10) 9204420662094979 a001 10946/39603*20633239^(1/14) 9204420662094980 a001 10946/39603*2537720636^(1/18) 9204420662094980 a001 10946/39603*312119004989^(1/22) 9204420662094980 a001 10946/39603*28143753123^(1/20) 9204420662094980 a001 10946/39603*228826127^(1/16) 9204420662095202 a001 10946/39603*1860498^(1/12) 9204420662207236 a001 28657/167761*15127^(7/40) 9204420662228360 a001 17711/24476*39603^(1/44) 9204420662524089 a001 5473/219602*24476^(5/14) 9204420662761876 a001 10946/39603*39603^(5/44) 9204420662786548 a001 6624/101521*15127^(11/40) 9204420663083089 a001 10946/271443*24476^(13/42) 9204420663100593 a001 17711/24476*15127^(1/40) 9204420663533421 a001 121393/1860498*15127^(11/40) 9204420663642388 a001 317811/4870847*15127^(11/40) 9204420663709734 a001 196418/3010349*15127^(11/40) 9204420663766490 a001 28657/271443*15127^(9/40) 9204420663815059 a001 5473/51841*24476^(3/14) 9204420663832964 a001 17711/1149851*15127^(17/40) 9204420663837149 a001 17711/39603*5778^(1/12) 9204420663995014 a001 75025/1149851*15127^(11/40) 9204420664266700 a001 10946/167761*24476^(11/42) 9204420664336616 a006 5^(1/2)*fibonacci(45/2)/Lucas(21)/sqrt(5) 9204420664822961 a001 46368/1149851*15127^(13/40) 9204420665548322 a001 121393/3010349*15127^(13/40) 9204420665719556 a001 196418/4870847*15127^(13/40) 9204420665834569 a001 17711/1860498*15127^(19/40) 9204420665950354 a001 28657/439204*15127^(11/40) 9204420665996619 a001 75025/1860498*15127^(13/40) 9204420666031216 a001 6765/24476*5778^(5/36) 9204420666824566 a001 2576/103361*15127^(3/8) 9204420666843856 a001 10946/3010349*64079^(1/2) 9204420667099477 a001 5473/51841*439204^(1/6) 9204420667107410 a001 5473/51841*7881196^(3/22) 9204420667107430 a001 5473/51841*2537720636^(1/10) 9204420667107430 a001 5473/51841*14662949395604^(1/14) 9204420667107430 a001 5473/51841*192900153618^(1/12) 9204420667107431 a001 5473/51841*33385282^(1/8) 9204420667107829 a001 5473/51841*1860498^(3/20) 9204420667123045 a001 10946/39603*15127^(1/8) 9204420667267973 a001 5473/51841*103682^(3/16) 9204420667558144 a001 121393/4870847*15127^(3/8) 9204420667644561 a001 10946/64079*24476^(1/6) 9204420667665172 a001 105937/4250681*15127^(3/8) 9204420667669313 a001 5473/299537289*167761^(9/10) 9204420667680787 a001 416020/16692641*15127^(3/8) 9204420667683065 a001 726103/29134601*15127^(3/8) 9204420667683397 a001 5702887/228826127*15127^(3/8) 9204420667683446 a001 829464/33281921*15127^(3/8) 9204420667683453 a001 39088169/1568397607*15127^(3/8) 9204420667683454 a001 34111385/1368706081*15127^(3/8) 9204420667683454 a001 133957148/5374978561*15127^(3/8) 9204420667683454 a001 233802911/9381251041*15127^(3/8) 9204420667683454 a001 1836311903/73681302247*15127^(3/8) 9204420667683454 a001 267084832/10716675201*15127^(3/8) 9204420667683454 a001 12586269025/505019158607*15127^(3/8) 9204420667683454 a001 10983760033/440719107401*15127^(3/8) 9204420667683454 a001 43133785636/1730726404001*15127^(3/8) 9204420667683454 a001 75283811239/3020733700601*15127^(3/8) 9204420667683454 a001 182717648081/7331474697802*15127^(3/8) 9204420667683454 a001 139583862445/5600748293801*15127^(3/8) 9204420667683454 a001 53316291173/2139295485799*15127^(3/8) 9204420667683454 a001 10182505537/408569081798*15127^(3/8) 9204420667683454 a001 7778742049/312119004989*15127^(3/8) 9204420667683454 a001 2971215073/119218851371*15127^(3/8) 9204420667683454 a001 567451585/22768774562*15127^(3/8) 9204420667683454 a001 433494437/17393796001*15127^(3/8) 9204420667683454 a001 165580141/6643838879*15127^(3/8) 9204420667683455 a001 31622993/1268860318*15127^(3/8) 9204420667683457 a001 24157817/969323029*15127^(3/8) 9204420667683476 a001 9227465/370248451*15127^(3/8) 9204420667683603 a001 1762289/70711162*15127^(3/8) 9204420667684473 a001 1346269/54018521*15127^(3/8) 9204420667690437 a001 514229/20633239*15127^(3/8) 9204420667731318 a001 98209/3940598*15127^(3/8) 9204420667734727 a001 10946/54018521*167761^(7/10) 9204420667799745 a001 10946/4870847*167761^(1/2) 9204420667838736 a001 10946/271443*141422324^(1/6) 9204420667838736 a001 10946/271443*73681302247^(1/8) 9204420667849469 a001 17711/3010349*15127^(21/40) 9204420667869967 a001 10946/271443*271443^(1/4) 9204420667895638 a001 28657/710647*15127^(13/40) 9204420667913259 a001 5473/219602*167761^(3/10) 9204420667918593 a001 5473/1268860318*439204^(17/18) 9204420667923895 a001 5473/299537289*439204^(5/6) 9204420667929197 a001 5473/70711162*439204^(13/18) 9204420667934491 a001 5473/16692641*439204^(11/18) 9204420667939949 a001 5473/3940598*439204^(1/2) 9204420667942443 a001 5473/930249*439204^(7/18) 9204420667945433 a001 10946/710647*45537549124^(1/6) 9204420667945447 a001 10946/710647*12752043^(1/4) 9204420667960121 a001 10946/12752043*1149851^(1/2) 9204420667960952 a001 5473/930249*7881196^(7/22) 9204420667960993 a001 5473/930249*20633239^(3/10) 9204420667960999 a001 5473/930249*17393796001^(3/14) 9204420667960999 a001 5473/930249*14662949395604^(1/6) 9204420667960999 a001 5473/930249*599074578^(1/4) 9204420667961002 a001 5473/930249*33385282^(7/24) 9204420667961930 a001 5473/930249*1860498^(7/20) 9204420667963172 a001 10946/20633239*3010349^(1/2) 9204420667963263 a001 10946/4870847*20633239^(5/14) 9204420667963271 a001 10946/4870847*2537720636^(5/18) 9204420667963271 a001 10946/4870847*312119004989^(5/22) 9204420667963271 a001 10946/4870847*3461452808002^(5/24) 9204420667963271 a001 10946/4870847*28143753123^(1/4) 9204420667963271 a001 10946/4870847*228826127^(5/16) 9204420667963517 a001 5473/22768774562*7881196^(21/22) 9204420667963531 a001 5473/5374978561*7881196^(19/22) 9204420667963535 a001 10946/6643838879*7881196^(5/6) 9204420667963544 a001 5473/1268860318*7881196^(17/22) 9204420667963557 a001 5473/299537289*7881196^(15/22) 9204420667963571 a001 5473/70711162*7881196^(13/22) 9204420667963576 a001 5473/16692641*7881196^(1/2) 9204420667963602 a001 10946/12752043*1322157322203^(1/4) 9204420667963638 a001 10946/73681302247*20633239^(13/14) 9204420667963639 a001 5473/22768774562*20633239^(9/10) 9204420667963642 a001 10946/6643838879*20633239^(11/14) 9204420667963643 a001 10946/1568397607*20633239^(7/10) 9204420667963645 a001 5473/299537289*20633239^(9/14) 9204420667963650 a001 5473/16692641*312119004989^(3/10) 9204420667963650 a001 5473/16692641*1568397607^(3/8) 9204420667963651 a001 10946/54018521*20633239^(1/2) 9204420667963654 a001 5473/16692641*33385282^(11/24) 9204420667963656 a001 10946/87403803*54018521^(1/2) 9204420667963658 a001 10946/73681302247*141422324^(5/6) 9204420667963658 a001 10946/228826127*370248451^(1/2) 9204420667963659 a001 5473/299537289*2537720636^(1/2) 9204420667963659 a001 5473/299537289*312119004989^(9/22) 9204420667963659 a001 5473/299537289*14662949395604^(5/14) 9204420667963659 a001 5473/299537289*192900153618^(5/12) 9204420667963659 a001 5473/299537289*28143753123^(9/20) 9204420667963659 a001 10946/1568397607*17393796001^(1/2) 9204420667963659 a001 10946/1568397607*14662949395604^(7/18) 9204420667963659 a001 10946/1568397607*505019158607^(7/16) 9204420667963659 a001 10946/9062201101803*2537720636^(17/18) 9204420667963659 a001 5473/1730726404001*2537720636^(9/10) 9204420667963659 a001 5473/408569081798*2537720636^(5/6) 9204420667963659 a001 10946/73681302247*2537720636^(13/18) 9204420667963659 a001 5473/22768774562*2537720636^(7/10) 9204420667963659 a001 10946/6643838879*2537720636^(11/18) 9204420667963659 a001 10946/4106118243*119218851371^(1/2) 9204420667963659 a001 5473/5374978561*817138163596^(1/2) 9204420667963659 a001 10946/1322157322203*17393796001^(11/14) 9204420667963659 a001 5473/22768774562*17393796001^(9/14) 9204420667963659 a001 10946/28143753123*5600748293801^(1/2) 9204420667963659 a001 10946/9062201101803*45537549124^(5/6) 9204420667963659 a001 10946/73681302247*312119004989^(13/22) 9204420667963659 a001 10946/73681302247*3461452808002^(13/24) 9204420667963659 a001 10946/73681302247*73681302247^(5/8) 9204420667963659 a001 10946/9062201101803*312119004989^(17/22) 9204420667963659 a001 5473/408569081798*312119004989^(15/22) 9204420667963659 a001 10946/1322157322203*14662949395604^(11/18) 9204420667963659 a001 5473/1730726404001*14662949395604^(9/14) 9204420667963659 a001 10946/9062201101803*3461452808002^(17/24) 9204420667963659 a001 5473/7331474697802*1322157322203^(3/4) 9204420667963659 a001 5473/408569081798*3461452808002^(5/8) 9204420667963659 a001 10946/1322157322203*505019158607^(11/16) 9204420667963659 a001 5473/1730726404001*192900153618^(3/4) 9204420667963659 a001 5473/22768774562*14662949395604^(1/2) 9204420667963659 a001 5473/22768774562*505019158607^(9/16) 9204420667963659 a001 5473/22768774562*192900153618^(7/12) 9204420667963659 a001 10946/73681302247*28143753123^(13/20) 9204420667963659 a001 5473/408569081798*28143753123^(3/4) 9204420667963659 a001 10946/9062201101803*28143753123^(17/20) 9204420667963659 a001 10946/17393796001*2139295485799^(1/2) 9204420667963659 a001 10946/6643838879*312119004989^(1/2) 9204420667963659 a001 10946/6643838879*3461452808002^(11/24) 9204420667963659 a001 10946/6643838879*28143753123^(11/20) 9204420667963659 a001 5473/96450076809*4106118243^(3/4) 9204420667963659 a001 5473/1268860318*45537549124^(1/2) 9204420667963659 a001 10946/6643838879*1568397607^(5/8) 9204420667963659 a001 10946/1322157322203*1568397607^(7/8) 9204420667963659 a001 10946/969323029*6643838879^(1/2) 9204420667963659 a001 10946/1568397607*599074578^(7/12) 9204420667963659 a001 5473/22768774562*599074578^(3/4) 9204420667963659 a001 10946/1322157322203*599074578^(11/12) 9204420667963659 a006 5^(1/2)*Fibonacci(45/2)/Lucas(21)/sqrt(5) 9204420667963659 a001 10946/370248451*969323029^(1/2) 9204420667963659 a001 5473/299537289*228826127^(9/16) 9204420667963659 a001 10946/6643838879*228826127^(11/16) 9204420667963659 a001 10946/73681302247*228826127^(13/16) 9204420667963659 a001 5473/408569081798*228826127^(15/16) 9204420667963659 a001 5473/70711162*141422324^(1/2) 9204420667963659 a001 5473/70711162*73681302247^(3/8) 9204420667963659 a001 5473/5374978561*87403803^(3/4) 9204420667963662 a001 10946/54018521*2537720636^(7/18) 9204420667963662 a001 10946/54018521*17393796001^(5/14) 9204420667963662 a001 10946/54018521*312119004989^(7/22) 9204420667963662 a001 10946/54018521*14662949395604^(5/18) 9204420667963662 a001 10946/54018521*505019158607^(5/16) 9204420667963662 a001 10946/54018521*28143753123^(7/20) 9204420667963662 a001 10946/54018521*599074578^(5/12) 9204420667963662 a001 10946/54018521*228826127^(7/16) 9204420667963663 a001 5473/70711162*33385282^(13/24) 9204420667963664 a001 5473/299537289*33385282^(5/8) 9204420667963664 a001 5473/1268860318*33385282^(17/24) 9204420667963665 a001 5473/5374978561*33385282^(19/24) 9204420667963666 a001 5473/22768774562*33385282^(7/8) 9204420667963666 a001 5473/96450076809*33385282^(23/24) 9204420667963680 a001 10946/20633239*9062201101803^(1/4) 9204420667963701 a001 5473/1268860318*12752043^(3/4) 9204420667963746 a001 5473/3940598*7881196^(9/22) 9204420667963807 a001 5473/3940598*2537720636^(3/10) 9204420667963807 a001 5473/3940598*14662949395604^(3/14) 9204420667963807 a001 5473/3940598*192900153618^(1/4) 9204420667963810 a001 5473/3940598*33385282^(3/8) 9204420667964379 a001 10946/4870847*1860498^(5/12) 9204420667964674 a001 10946/3010349*4106118243^(1/4) 9204420667965003 a001 5473/3940598*1860498^(9/20) 9204420667965113 a001 5473/16692641*1860498^(11/20) 9204420667965213 a001 10946/54018521*1860498^(7/12) 9204420667965387 a001 5473/70711162*1860498^(13/20) 9204420667965653 a001 5473/299537289*1860498^(3/4) 9204420667965919 a001 5473/1268860318*1860498^(17/20) 9204420667966096 a001 10946/6643838879*1860498^(11/12) 9204420667966185 a001 5473/5374978561*1860498^(19/20) 9204420667967834 a001 5473/930249*710647^(3/8) 9204420667970620 a001 10946/1149851*817138163596^(1/6) 9204420667970621 a001 10946/1149851*87403803^(1/4) 9204420667975053 a001 10946/54018521*710647^(5/8) 9204420667979606 a001 10946/1568397607*710647^(7/8) 9204420667998120 a001 5473/219602*439204^(5/18) 9204420668011341 a001 5473/219602*7881196^(5/22) 9204420668011370 a001 5473/219602*20633239^(3/14) 9204420668011375 a001 5473/219602*2537720636^(1/6) 9204420668011375 a001 5473/219602*312119004989^(3/22) 9204420668011375 a001 5473/219602*28143753123^(3/20) 9204420668011375 a001 5473/219602*228826127^(3/16) 9204420668011376 a001 5473/219602*33385282^(5/24) 9204420668011520 a001 75025/3010349*15127^(3/8) 9204420668012039 a001 5473/219602*1860498^(1/4) 9204420668057351 a001 5473/70711162*271443^(3/4) 9204420668278946 a001 5473/219602*103682^(5/16) 9204420668290684 a001 10946/167761*7881196^(1/6) 9204420668290709 a001 10946/167761*312119004989^(1/10) 9204420668290709 a001 10946/167761*1568397607^(1/8) 9204420668307841 a001 5473/51841*39603^(9/44) 9204420668335599 a001 5473/930249*103682^(7/16) 9204420668445435 a001 5473/3940598*103682^(9/16) 9204420668552307 a001 5473/16692641*103682^(11/16) 9204420668659345 a001 5473/70711162*103682^(13/16) 9204420668766373 a001 5473/299537289*103682^(15/16) 9204420668839467 a001 46368/3010349*15127^(17/40) 9204420669572664 a001 10946/271443*39603^(13/44) 9204420669753396 a001 17711/24476*5778^(1/36) 9204420669757878 a001 10946/167761*39603^(1/4) 9204420669859292 a001 17711/4870847*15127^(23/40) 9204420669932051 a001 28657/1149851*15127^(3/8) 9204420670012060 a001 5473/219602*39603^(15/44) 9204420670021342 a001 75025/4870847*15127^(17/40) 9204420670205292 a001 10946/64079*20633239^(1/10) 9204420670205294 a001 10946/64079*17393796001^(1/14) 9204420670205294 a001 10946/64079*14662949395604^(1/18) 9204420670205294 a001 10946/64079*505019158607^(1/16) 9204420670205294 a001 10946/64079*599074578^(1/12) 9204420670207572 a001 10946/64079*710647^(1/8) 9204420670212876 a001 10946/710647*39603^(17/44) 9204420670504822 a001 10946/1149851*39603^(19/44) 9204420670761959 a001 5473/930249*39603^(21/44) 9204420670849289 a001 46368/4870847*15127^(19/40) 9204420671032392 a001 10946/3010349*39603^(23/44) 9204420671138947 a001 10946/64079*39603^(7/44) 9204420671297747 a001 10946/4870847*39603^(25/44) 9204420671871054 a001 89/39604*15127^(5/8) 9204420671933656 a001 28657/1860498*15127^(17/40) 9204420672365159 a001 5473/16692641*39603^(3/4) 9204420673828219 a001 1597/4870847*3571^(33/34) 9204420673862048 a001 23184/51841*5778^(1/12) 9204420673948557 a001 28657/3010349*15127^(19/40) 9204420675014177 a001 5473/12238*9349^(3/38) 9204420675324661 a001 121393/271443*5778^(1/12) 9204420675538053 a001 317811/710647*5778^(1/12) 9204420675569187 a001 416020/930249*5778^(1/12) 9204420675573729 a001 2178309/4870847*5778^(1/12) 9204420675574392 a001 5702887/12752043*5778^(1/12) 9204420675574489 a001 7465176/16692641*5778^(1/12) 9204420675574503 a001 39088169/87403803*5778^(1/12) 9204420675574505 a001 102334155/228826127*5778^(1/12) 9204420675574505 a001 133957148/299537289*5778^(1/12) 9204420675574505 a001 701408733/1568397607*5778^(1/12) 9204420675574505 a001 1836311903/4106118243*5778^(1/12) 9204420675574505 a001 2403763488/5374978561*5778^(1/12) 9204420675574505 a001 12586269025/28143753123*5778^(1/12) 9204420675574505 a001 32951280099/73681302247*5778^(1/12) 9204420675574505 a001 43133785636/96450076809*5778^(1/12) 9204420675574505 a001 225851433717/505019158607*5778^(1/12) 9204420675574505 a001 591286729879/1322157322203*5778^(1/12) 9204420675574505 a001 10610209857723/23725150497407*5778^(1/12) 9204420675574505 a001 182717648081/408569081798*5778^(1/12) 9204420675574505 a001 139583862445/312119004989*5778^(1/12) 9204420675574505 a001 53316291173/119218851371*5778^(1/12) 9204420675574505 a001 10182505537/22768774562*5778^(1/12) 9204420675574505 a001 7778742049/17393796001*5778^(1/12) 9204420675574505 a001 2971215073/6643838879*5778^(1/12) 9204420675574505 a001 567451585/1268860318*5778^(1/12) 9204420675574505 a001 433494437/969323029*5778^(1/12) 9204420675574505 a001 165580141/370248451*5778^(1/12) 9204420675574506 a001 31622993/70711162*5778^(1/12) 9204420675574511 a001 24157817/54018521*5778^(1/12) 9204420675574548 a001 9227465/20633239*5778^(1/12) 9204420675574802 a001 1762289/3940598*5778^(1/12) 9204420675576537 a001 1346269/3010349*5778^(1/12) 9204420675588429 a001 514229/1149851*5778^(1/12) 9204420675669937 a001 98209/219602*5778^(1/12) 9204420675958379 a001 28657/4870847*15127^(21/40) 9204420676157946 a001 5473/51841*15127^(9/40) 9204420676228606 a001 75025/167761*5778^(1/12) 9204420676883377 a001 46368/20633239*15127^(5/8) 9204420677244585 a001 10946/64079*15127^(7/40) 9204420677540513 a001 4181/4870847*9349^(29/38) 9204420677614665 a001 121393/54018521*15127^(5/8) 9204420677721358 a001 317811/141422324*15127^(5/8) 9204420677736925 a001 832040/370248451*15127^(5/8) 9204420677739196 a001 2178309/969323029*15127^(5/8) 9204420677739527 a001 5702887/2537720636*15127^(5/8) 9204420677739575 a001 14930352/6643838879*15127^(5/8) 9204420677739582 a001 39088169/17393796001*15127^(5/8) 9204420677739583 a001 102334155/45537549124*15127^(5/8) 9204420677739584 a001 267914296/119218851371*15127^(5/8) 9204420677739584 a001 3524667/1568437211*15127^(5/8) 9204420677739584 a001 1836311903/817138163596*15127^(5/8) 9204420677739584 a001 4807526976/2139295485799*15127^(5/8) 9204420677739584 a001 12586269025/5600748293801*15127^(5/8) 9204420677739584 a001 32951280099/14662949395604*15127^(5/8) 9204420677739584 a001 53316291173/23725150497407*15127^(5/8) 9204420677739584 a001 20365011074/9062201101803*15127^(5/8) 9204420677739584 a001 7778742049/3461452808002*15127^(5/8) 9204420677739584 a001 2971215073/1322157322203*15127^(5/8) 9204420677739584 a001 1134903170/505019158607*15127^(5/8) 9204420677739584 a001 433494437/192900153618*15127^(5/8) 9204420677739584 a001 165580141/73681302247*15127^(5/8) 9204420677739584 a001 63245986/28143753123*15127^(5/8) 9204420677739587 a001 24157817/10749957122*15127^(5/8) 9204420677739605 a001 9227465/4106118243*15127^(5/8) 9204420677739732 a001 3524578/1568397607*15127^(5/8) 9204420677740599 a001 1346269/599074578*15127^(5/8) 9204420677746545 a001 514229/228826127*15127^(5/8) 9204420677787298 a001 196418/87403803*15127^(5/8) 9204420678066626 a001 75025/33385282*15127^(5/8) 9204420679352451 a001 10946/167761*15127^(11/40) 9204420679981163 a001 28657/12752043*15127^(5/8) 9204420680057776 a001 28657/64079*5778^(1/12) 9204420680911705 a001 10946/271443*15127^(13/40) 9204420681927034 a001 17711/87403803*15127^(7/8) 9204420682230600 a001 5473/12238*24476^(1/14) 9204420683084504 a001 4181/3010349*9349^(27/38) 9204420683095569 a001 5473/219602*15127^(3/8) 9204420683325406 a001 5473/12238*439204^(1/18) 9204420683328051 a001 5473/12238*7881196^(1/22) 9204420683328058 a001 5473/12238*33385282^(1/24) 9204420683328190 a001 5473/12238*1860498^(1/20) 9204420683381572 a001 5473/12238*103682^(1/16) 9204420683542113 a001 6765/64079*5778^(1/4) 9204420683728194 a001 5473/12238*39603^(3/44) 9204420685040853 a001 10946/710647*15127^(17/40) 9204420686344896 a001 5473/12238*15127^(3/40) 9204420686792138 a001 10946/15127*2207^(1/32) 9204420686939484 a001 46368/228826127*15127^(7/8) 9204420687077266 a001 10946/1149851*15127^(19/40) 9204420687264293 a001 17711/64079*5778^(5/36) 9204420687670791 a001 121393/599074578*15127^(7/8) 9204420687777487 a001 317811/1568397607*15127^(7/8) 9204420687793054 a001 832040/4106118243*15127^(7/8) 9204420687795325 a001 987/4870846*15127^(7/8) 9204420687795656 a001 5702887/28143753123*15127^(7/8) 9204420687795705 a001 14930352/73681302247*15127^(7/8) 9204420687795712 a001 39088169/192900153618*15127^(7/8) 9204420687795713 a001 102334155/505019158607*15127^(7/8) 9204420687795713 a001 267914296/1322157322203*15127^(7/8) 9204420687795713 a001 701408733/3461452808002*15127^(7/8) 9204420687795713 a001 1836311903/9062201101803*15127^(7/8) 9204420687795713 a001 4807526976/23725150497407*15127^(7/8) 9204420687795713 a001 2971215073/14662949395604*15127^(7/8) 9204420687795713 a001 1134903170/5600748293801*15127^(7/8) 9204420687795713 a001 433494437/2139295485799*15127^(7/8) 9204420687795713 a001 165580141/817138163596*15127^(7/8) 9204420687795714 a001 63245986/312119004989*15127^(7/8) 9204420687795716 a001 24157817/119218851371*15127^(7/8) 9204420687795735 a001 9227465/45537549124*15127^(7/8) 9204420687795861 a001 3524578/17393796001*15127^(7/8) 9204420687796729 a001 1346269/6643838879*15127^(7/8) 9204420687802675 a001 514229/2537720636*15127^(7/8) 9204420687843429 a001 196418/969323029*15127^(7/8) 9204420688122763 a001 75025/370248451*15127^(7/8) 9204420688623416 a001 4181/1860498*9349^(25/38) 9204420689078871 a001 5473/930249*15127^(21/40) 9204420690037349 a001 28657/141422324*15127^(7/8) 9204420690362157 a001 46368/167761*5778^(5/36) 9204420690814129 a001 121393/439204*5778^(5/36) 9204420690880071 a001 317811/1149851*5778^(5/36) 9204420690889692 a001 832040/3010349*5778^(5/36) 9204420690891963 a001 1346269/4870847*5778^(5/36) 9204420690895638 a001 514229/1860498*5778^(5/36) 9204420690920826 a001 196418/710647*5778^(5/36) 9204420691093464 a001 75025/271443*5778^(5/36) 9204420691093772 a001 10946/3010349*15127^(23/40) 9204420692276742 a001 28657/103682*5778^(5/36) 9204420693103594 a001 10946/4870847*15127^(5/8) 9204420693889715 a001 64079/2584*55^(18/55) 9204420694175624 a001 4181/1149851*9349^(23/38) 9204420695761079 a001 6765/103682*5778^(11/36) 9204420696290722 r005 Im(z^2+c),c=-67/118+1/60*I,n=46 9204420696454494 a001 6765/9349*3571^(1/34) 9204420698773715 r002 6th iterates of z^2 + 9204420699483259 a001 17711/103682*5778^(7/36) 9204420699693024 a001 4181/710647*9349^(21/38) 9204420700387056 a001 10946/39603*5778^(5/36) 9204420700846853 a007 Real Root Of -863*x^4+875*x^3-433*x^2-847*x+889 9204420702826860 r009 Im(z^3+c),c=-63/118+31/49*I,n=2 9204420703160115 a001 10946/54018521*15127^(7/8) 9204420703827429 a001 4181/15127*9349^(5/38) 9204420704617549 r002 36th iterates of z^2 + 9204420705227015 a001 15456/90481*5778^(7/36) 9204420705301553 a001 4181/439204*9349^(1/2) 9204420706065018 a001 121393/710647*5778^(7/36) 9204420706187281 a001 105937/620166*5778^(7/36) 9204420706205119 a001 832040/4870847*5778^(7/36) 9204420706216143 a001 514229/3010349*5778^(7/36) 9204420706262843 a001 196418/1149851*5778^(7/36) 9204420706303303 a001 5473/12238*5778^(1/12) 9204420706582932 a001 75025/439204*5778^(7/36) 9204420707498613 m001 (Riemann3rdZero-Si(Pi))/(Salem+Totient) 9204420708025215 a001 28657/39603*2207^(1/32) 9204420708776851 a001 28657/167761*5778^(7/36) 9204420710671502 a001 4181/271443*9349^(17/38) 9204420711123079 a001 75025/103682*2207^(1/32) 9204420711575051 a001 196418/271443*2207^(1/32) 9204420711640993 a001 514229/710647*2207^(1/32) 9204420711650614 a001 1346269/1860498*2207^(1/32) 9204420711652885 a001 2178309/3010349*2207^(1/32) 9204420711656560 a001 832040/1149851*2207^(1/32) 9204420711681748 a001 317811/439204*2207^(1/32) 9204420711854386 a001 121393/167761*2207^(1/32) 9204420712261188 a001 615/15251*5778^(13/36) 9204420713037665 a001 46368/64079*2207^(1/32) 9204420714912604 a001 6765/9349*9349^(1/38) 9204420715854802 a001 4181/15127*24476^(5/42) 9204420715983368 a001 17711/167761*5778^(1/4) 9204420716288429 a001 1597/3010349*3571^(31/34) 9204420716666061 a001 4181/167761*9349^(15/38) 9204420717318079 a001 6765/9349*24476^(1/42) 9204420717651192 a001 4181/15127*167761^(1/10) 9204420717675009 m001 (Zeta(3)-exp(1))/(HardyLittlewoodC4+Totient) 9204420717683895 a001 4181/15127*20633239^(1/14) 9204420717683897 a001 4181/15127*2537720636^(1/18) 9204420717683897 a001 4181/15127*312119004989^(1/22) 9204420717683897 a001 4181/15127*28143753123^(1/20) 9204420717683897 a001 4181/15127*228826127^(1/16) 9204420717684118 a001 4181/15127*1860498^(1/12) 9204420717817277 a001 6765/9349*39603^(1/44) 9204420718350792 a001 4181/15127*39603^(5/44) 9204420718689511 a001 6765/9349*15127^(1/40) 9204420720716483 a001 11592/109801*5778^(1/4) 9204420721025370 a001 4181/103682*9349^(13/38) 9204420721147978 a001 17711/24476*2207^(1/32) 9204420721407036 a001 121393/1149851*5778^(1/4) 9204420721507786 a001 317811/3010349*5778^(1/4) 9204420721522485 a001 208010/1970299*5778^(1/4) 9204420721524630 a001 2178309/20633239*5778^(1/4) 9204420721524943 a001 5702887/54018521*5778^(1/4) 9204420721524988 a001 3732588/35355581*5778^(1/4) 9204420721524995 a001 39088169/370248451*5778^(1/4) 9204420721524996 a001 102334155/969323029*5778^(1/4) 9204420721524996 a001 66978574/634430159*5778^(1/4) 9204420721524996 a001 701408733/6643838879*5778^(1/4) 9204420721524996 a001 1836311903/17393796001*5778^(1/4) 9204420721524996 a001 1201881744/11384387281*5778^(1/4) 9204420721524996 a001 12586269025/119218851371*5778^(1/4) 9204420721524996 a001 32951280099/312119004989*5778^(1/4) 9204420721524996 a001 21566892818/204284540899*5778^(1/4) 9204420721524996 a001 225851433717/2139295485799*5778^(1/4) 9204420721524996 a001 182717648081/1730726404001*5778^(1/4) 9204420721524996 a001 139583862445/1322157322203*5778^(1/4) 9204420721524996 a001 53316291173/505019158607*5778^(1/4) 9204420721524996 a001 10182505537/96450076809*5778^(1/4) 9204420721524996 a001 7778742049/73681302247*5778^(1/4) 9204420721524996 a001 2971215073/28143753123*5778^(1/4) 9204420721524996 a001 567451585/5374978561*5778^(1/4) 9204420721524996 a001 433494437/4106118243*5778^(1/4) 9204420721524996 a001 165580141/1568397607*5778^(1/4) 9204420721524996 a001 31622993/299537289*5778^(1/4) 9204420721524999 a001 24157817/228826127*5778^(1/4) 9204420721525016 a001 9227465/87403803*5778^(1/4) 9204420721525136 a001 1762289/16692641*5778^(1/4) 9204420721525955 a001 1346269/12752043*5778^(1/4) 9204420721531570 a001 514229/4870847*5778^(1/4) 9204420721570053 a001 98209/930249*5778^(1/4) 9204420721833820 a001 75025/710647*5778^(1/4) 9204420722711962 a001 4181/15127*15127^(1/8) 9204420723641709 a001 28657/271443*5778^(1/4) 9204420723814200 a001 10946/64079*5778^(7/36) 9204420725342313 a001 6765/9349*5778^(1/36) 9204420727098094 a001 4181/39603*9349^(9/38) 9204420727126046 a001 2255/90481*5778^(5/12) 9204420729665821 a001 4181/64079*9349^(11/38) 9204420730848226 a001 17711/271443*5778^(11/36) 9204420733048297 a006 5^(1/2)*fibonacci(41/2)/Lucas(19)/sqrt(5) 9204420735967372 a001 6624/101521*5778^(11/36) 9204420736033166 a001 5473/51841*5778^(1/4) 9204420736714245 a001 121393/1860498*5778^(11/36) 9204420736823212 a001 317811/4870847*5778^(11/36) 9204420736890558 a001 196418/3010349*5778^(11/36) 9204420737175838 a001 75025/1149851*5778^(11/36) 9204420739131178 a001 28657/439204*5778^(11/36) 9204420742615515 a001 6765/439204*5778^(17/36) 9204420743641476 a001 4181/54018521*24476^(13/14) 9204420745104771 a001 4181/20633239*24476^(5/6) 9204420745836331 a001 4181/12752043*24476^(11/14) 9204420746337694 a001 17711/439204*5778^(13/36) 9204420747299275 a001 4181/4870847*24476^(29/42) 9204420748032317 a001 4181/3010349*24476^(9/14) 9204420748747366 a001 4181/39603*24476^(3/14) 9204420748760280 a001 4181/1860498*24476^(25/42) 9204420749309217 a001 6765/15127*2207^(3/32) 9204420749501539 a001 4181/1149851*24476^(23/42) 9204420750042774 a001 2584/15127*2207^(7/32) 9204420750207990 a001 4181/710647*24476^(1/2) 9204420751005570 a001 4181/439204*24476^(19/42) 9204420751309390 a001 46368/1149851*5778^(13/36) 9204420751564570 a001 4181/271443*24476^(17/42) 9204420752031784 a001 4181/39603*439204^(1/6) 9204420752034750 a001 121393/3010349*5778^(13/36) 9204420752039717 a001 4181/39603*7881196^(3/22) 9204420752039737 a001 4181/39603*2537720636^(1/10) 9204420752039737 a001 4181/39603*14662949395604^(1/14) 9204420752039737 a001 4181/39603*192900153618^(1/12) 9204420752039738 a001 4181/39603*33385282^(1/8) 9204420752040136 a001 4181/39603*1860498^(3/20) 9204420752200280 a001 4181/39603*103682^(3/16) 9204420752205985 a001 196418/4870847*5778^(13/36) 9204420752296539 a001 4181/103682*24476^(13/42) 9204420752483048 a001 75025/1860498*5778^(13/36) 9204420752533275 a001 10946/167761*5778^(11/36) 9204420752748180 a001 4181/167761*24476^(5/14) 9204420753240148 a001 4181/39603*39603^(9/44) 9204420753873759 a001 4181/24476*9349^(7/38) 9204420754382066 a001 28657/710647*5778^(13/36) 9204420755975973 a001 4181/15127*5778^(5/36) 9204420756126041 a001 4181/64079*24476^(11/42) 9204420756794559 a001 4181/1149851*64079^(1/2) 9204420757052186 a001 4181/103682*141422324^(1/6) 9204420757052186 a001 4181/103682*73681302247^(1/8) 9204420757083417 a001 4181/103682*271443^(1/4) 9204420757614070 a001 4181/228826127*167761^(9/10) 9204420757679501 a001 4181/20633239*167761^(7/10) 9204420757742231 a001 4181/1860498*167761^(1/2) 9204420757783493 a001 4181/271443*45537549124^(1/6) 9204420757783507 a001 4181/271443*12752043^(1/4) 9204420757863350 a001 4181/969323029*439204^(17/18) 9204420757866403 a001 6765/710647*5778^(19/36) 9204420757868652 a001 4181/228826127*439204^(5/6) 9204420757871633 a001 4181/710647*439204^(7/18) 9204420757873957 a001 4181/54018521*439204^(13/18) 9204420757879199 a001 4181/12752043*439204^(11/18) 9204420757885573 a001 4181/3010349*439204^(1/2) 9204420757890142 a001 4181/710647*7881196^(7/22) 9204420757890183 a001 4181/710647*20633239^(3/10) 9204420757890189 a001 4181/710647*17393796001^(3/14) 9204420757890189 a001 4181/710647*14662949395604^(1/6) 9204420757890189 a001 4181/710647*599074578^(1/4) 9204420757890192 a001 4181/710647*33385282^(7/24) 9204420757891120 a001 4181/710647*1860498^(7/20) 9204420757897024 a001 4181/710647*710647^(3/8) 9204420757904546 a001 4181/4870847*1149851^(1/2) 9204420757905748 a001 4181/1860498*20633239^(5/14) 9204420757905756 a001 4181/1860498*2537720636^(5/18) 9204420757905756 a001 4181/1860498*312119004989^(5/22) 9204420757905756 a001 4181/1860498*3461452808002^(5/24) 9204420757905756 a001 4181/1860498*28143753123^(1/4) 9204420757905756 a001 4181/1860498*228826127^(5/16) 9204420757906864 a001 4181/1860498*1860498^(5/12) 9204420757908027 a001 4181/4870847*1322157322203^(1/4) 9204420757908055 a001 4181/7881196*3010349^(1/2) 9204420757908274 a001 4181/17393796001*7881196^(21/22) 9204420757908284 a001 4181/12752043*7881196^(1/2) 9204420757908287 a001 4181/4106118243*7881196^(19/22) 9204420757908292 a001 4181/2537720636*7881196^(5/6) 9204420757908301 a001 4181/969323029*7881196^(17/22) 9204420757908314 a001 4181/228826127*7881196^(15/22) 9204420757908331 a001 4181/54018521*7881196^(13/22) 9204420757908358 a001 4181/12752043*312119004989^(3/10) 9204420757908358 a001 4181/12752043*1568397607^(3/8) 9204420757908362 a001 4181/12752043*33385282^(11/24) 9204420757908395 a001 4181/28143753123*20633239^(13/14) 9204420757908396 a001 4181/17393796001*20633239^(9/10) 9204420757908398 a001 4181/2537720636*20633239^(11/14) 9204420757908400 a001 4181/599074578*20633239^(7/10) 9204420757908401 a001 4181/228826127*20633239^(9/14) 9204420757908405 a001 4181/33385282*54018521^(1/2) 9204420757908414 a001 4181/87403803*370248451^(1/2) 9204420757908415 a001 4181/28143753123*141422324^(5/6) 9204420757908415 a001 4181/228826127*2537720636^(1/2) 9204420757908415 a001 4181/228826127*312119004989^(9/22) 9204420757908415 a001 4181/228826127*14662949395604^(5/14) 9204420757908415 a001 4181/228826127*192900153618^(5/12) 9204420757908415 a001 4181/228826127*28143753123^(9/20) 9204420757908415 a001 4181/228826127*228826127^(9/16) 9204420757908415 a001 4181/599074578*17393796001^(1/2) 9204420757908415 a001 4181/599074578*14662949395604^(7/18) 9204420757908415 a001 4181/599074578*505019158607^(7/16) 9204420757908415 a001 4181/599074578*599074578^(7/12) 9204420757908415 a001 4181/1568397607*119218851371^(1/2) 9204420757908415 a001 4181/3461452808002*2537720636^(17/18) 9204420757908415 a001 4181/1322157322203*2537720636^(9/10) 9204420757908415 a001 4181/312119004989*2537720636^(5/6) 9204420757908415 a001 4181/28143753123*2537720636^(13/18) 9204420757908415 a001 4181/17393796001*2537720636^(7/10) 9204420757908415 a001 4181/4106118243*817138163596^(1/2) 9204420757908415 a001 4181/10749957122*5600748293801^(1/2) 9204420757908415 a001 4181/14662949395604*17393796001^(13/14) 9204420757908415 a001 4181/505019158607*17393796001^(11/14) 9204420757908415 a001 4181/28143753123*312119004989^(13/22) 9204420757908415 a001 4181/28143753123*3461452808002^(13/24) 9204420757908415 a001 4181/28143753123*73681302247^(5/8) 9204420757908415 a001 4181/28143753123*28143753123^(13/20) 9204420757908415 a001 4181/3461452808002*45537549124^(5/6) 9204420757908415 a001 4181/3461452808002*312119004989^(17/22) 9204420757908415 a001 4181/505019158607*14662949395604^(11/18) 9204420757908415 a001 4181/505019158607*505019158607^(11/16) 9204420757908415 a001 4181/1322157322203*14662949395604^(9/14) 9204420757908415 a001 4181/3461452808002*3461452808002^(17/24) 9204420757908415 a001 4181/14662949395604*14662949395604^(13/18) 9204420757908415 a001 4181/5600748293801*1322157322203^(3/4) 9204420757908415 a001 4181/14662949395604*505019158607^(13/16) 9204420757908415 a001 4181/312119004989*312119004989^(15/22) 9204420757908415 a001 4181/312119004989*3461452808002^(5/8) 9204420757908415 a001 4181/1322157322203*192900153618^(3/4) 9204420757908415 a001 4181/14662949395604*73681302247^(7/8) 9204420757908415 a001 4181/312119004989*28143753123^(3/4) 9204420757908415 a001 4181/3461452808002*28143753123^(17/20) 9204420757908415 a001 4181/17393796001*17393796001^(9/14) 9204420757908415 a001 4181/17393796001*14662949395604^(1/2) 9204420757908415 a001 4181/17393796001*505019158607^(9/16) 9204420757908415 a001 4181/17393796001*192900153618^(7/12) 9204420757908415 a001 4181/6643838879*2139295485799^(1/2) 9204420757908415 a001 4181/73681302247*4106118243^(3/4) 9204420757908415 a001 4181/2537720636*2537720636^(11/18) 9204420757908415 a001 4181/2537720636*312119004989^(1/2) 9204420757908415 a001 4181/2537720636*3461452808002^(11/24) 9204420757908415 a001 4181/2537720636*28143753123^(11/20) 9204420757908415 a001 4181/505019158607*1568397607^(7/8) 9204420757908415 a001 4181/2537720636*1568397607^(5/8) 9204420757908415 a001 4181/969323029*45537549124^(1/2) 9204420757908415 a001 4181/17393796001*599074578^(3/4) 9204420757908415 a001 4181/505019158607*599074578^(11/12) 9204420757908415 a001 4181/370248451*6643838879^(1/2) 9204420757908415 a001 4181/2537720636*228826127^(11/16) 9204420757908415 a001 4181/28143753123*228826127^(13/16) 9204420757908415 a001 4181/312119004989*228826127^(15/16) 9204420757908415 a001 4181/141422324*969323029^(1/2) 9204420757908416 a001 4181/4106118243*87403803^(3/4) 9204420757908416 a006 5^(1/2)*Fibonacci(41/2)/Lucas(19)/sqrt(5) 9204420757908418 a001 4181/54018521*141422324^(1/2) 9204420757908418 a001 4181/54018521*73681302247^(3/8) 9204420757908420 a001 4181/228826127*33385282^(5/8) 9204420757908421 a001 4181/969323029*33385282^(17/24) 9204420757908422 a001 4181/4106118243*33385282^(19/24) 9204420757908422 a001 4181/17393796001*33385282^(7/8) 9204420757908423 a001 4181/54018521*33385282^(13/24) 9204420757908423 a001 4181/73681302247*33385282^(23/24) 9204420757908426 a001 4181/20633239*20633239^(1/2) 9204420757908437 a001 4181/20633239*2537720636^(7/18) 9204420757908437 a001 4181/20633239*17393796001^(5/14) 9204420757908437 a001 4181/20633239*312119004989^(7/22) 9204420757908437 a001 4181/20633239*14662949395604^(5/18) 9204420757908437 a001 4181/20633239*505019158607^(5/16) 9204420757908437 a001 4181/20633239*28143753123^(7/20) 9204420757908437 a001 4181/20633239*599074578^(5/12) 9204420757908437 a001 4181/20633239*228826127^(7/16) 9204420757908457 a001 4181/969323029*12752043^(3/4) 9204420757908563 a001 4181/7881196*9062201101803^(1/4) 9204420757909370 a001 4181/3010349*7881196^(9/22) 9204420757909431 a001 4181/3010349*2537720636^(3/10) 9204420757909431 a001 4181/3010349*14662949395604^(3/14) 9204420757909431 a001 4181/3010349*192900153618^(1/4) 9204420757909434 a001 4181/3010349*33385282^(3/8) 9204420757909821 a001 4181/12752043*1860498^(11/20) 9204420757909988 a001 4181/20633239*1860498^(7/12) 9204420757910147 a001 4181/54018521*1860498^(13/20) 9204420757910409 a001 4181/228826127*1860498^(3/4) 9204420757910627 a001 4181/3010349*1860498^(9/20) 9204420757910675 a001 4181/969323029*1860498^(17/20) 9204420757910853 a001 4181/2537720636*1860498^(11/12) 9204420757910941 a001 4181/4106118243*1860498^(19/20) 9204420757915377 a001 4181/1149851*4106118243^(1/4) 9204420757919828 a001 4181/20633239*710647^(5/8) 9204420757924363 a001 4181/599074578*710647^(7/8) 9204420757956131 a001 4181/439204*817138163596^(1/6) 9204420757956131 a001 4181/439204*87403803^(1/4) 9204420758002110 a001 4181/54018521*271443^(3/4) 9204420758137350 a001 4181/167761*167761^(3/10) 9204420758222211 a001 4181/167761*439204^(5/18) 9204420758235432 a001 4181/167761*7881196^(5/22) 9204420758235461 a001 4181/167761*20633239^(3/14) 9204420758235465 a001 4181/167761*2537720636^(1/6) 9204420758235465 a001 4181/167761*312119004989^(3/22) 9204420758235465 a001 4181/167761*28143753123^(3/20) 9204420758235465 a001 4181/167761*228826127^(3/16) 9204420758235467 a001 4181/167761*33385282^(5/24) 9204420758236130 a001 4181/167761*1860498^(1/4) 9204420758264789 a001 4181/710647*103682^(7/16) 9204420758391059 a001 4181/3010349*103682^(9/16) 9204420758497016 a001 4181/12752043*103682^(11/16) 9204420758503037 a001 4181/167761*103682^(5/16) 9204420758604104 a001 4181/54018521*103682^(13/16) 9204420758711129 a001 4181/228826127*103682^(15/16) 9204420758743562 a001 1597/1860498*3571^(29/34) 9204420758786114 a001 4181/103682*39603^(13/44) 9204420760050937 a001 4181/271443*39603^(17/44) 9204420760150026 a001 4181/64079*7881196^(1/6) 9204420760150051 a001 4181/64079*312119004989^(1/10) 9204420760150051 a001 4181/64079*1568397607^(1/8) 9204420760236151 a001 4181/167761*39603^(15/44) 9204420760490333 a001 4181/439204*39603^(19/44) 9204420760691149 a001 4181/710647*39603^(21/44) 9204420760983095 a001 4181/1149851*39603^(23/44) 9204420761090254 a001 4181/39603*15127^(9/40) 9204420761240232 a001 4181/1860498*39603^(25/44) 9204420761510665 a001 4181/3010349*39603^(27/44) 9204420761588583 a001 17711/710647*5778^(5/12) 9204420761617220 a001 4181/64079*39603^(1/4) 9204420761776019 a001 4181/4870847*39603^(29/44) 9204420762309867 a001 4181/12752043*39603^(3/4) 9204420766616599 a001 2576/103361*5778^(5/12) 9204420767350177 a001 121393/4870847*5778^(5/12) 9204420767398133 a001 10946/271443*5778^(13/36) 9204420767457205 a001 105937/4250681*5778^(5/12) 9204420767472820 a001 416020/16692641*5778^(5/12) 9204420767475098 a001 726103/29134601*5778^(5/12) 9204420767475430 a001 5702887/228826127*5778^(5/12) 9204420767475479 a001 829464/33281921*5778^(5/12) 9204420767475486 a001 39088169/1568397607*5778^(5/12) 9204420767475487 a001 34111385/1368706081*5778^(5/12) 9204420767475487 a001 133957148/5374978561*5778^(5/12) 9204420767475487 a001 233802911/9381251041*5778^(5/12) 9204420767475487 a001 1836311903/73681302247*5778^(5/12) 9204420767475487 a001 267084832/10716675201*5778^(5/12) 9204420767475487 a001 12586269025/505019158607*5778^(5/12) 9204420767475487 a001 10983760033/440719107401*5778^(5/12) 9204420767475487 a001 43133785636/1730726404001*5778^(5/12) 9204420767475487 a001 75283811239/3020733700601*5778^(5/12) 9204420767475487 a001 182717648081/7331474697802*5778^(5/12) 9204420767475487 a001 139583862445/5600748293801*5778^(5/12) 9204420767475487 a001 53316291173/2139295485799*5778^(5/12) 9204420767475487 a001 10182505537/408569081798*5778^(5/12) 9204420767475487 a001 7778742049/312119004989*5778^(5/12) 9204420767475487 a001 2971215073/119218851371*5778^(5/12) 9204420767475487 a001 567451585/22768774562*5778^(5/12) 9204420767475487 a001 433494437/17393796001*5778^(5/12) 9204420767475487 a001 165580141/6643838879*5778^(5/12) 9204420767475487 a001 31622993/1268860318*5778^(5/12) 9204420767475490 a001 24157817/969323029*5778^(5/12) 9204420767475509 a001 9227465/370248451*5778^(5/12) 9204420767475636 a001 1762289/70711162*5778^(5/12) 9204420767476506 a001 1346269/54018521*5778^(5/12) 9204420767482470 a001 514229/20633239*5778^(5/12) 9204420767523351 a001 98209/3940598*5778^(5/12) 9204420767803553 a001 75025/3010349*5778^(5/12) 9204420769724084 a001 28657/1149851*5778^(5/12) 9204420770125155 a001 4181/103682*15127^(13/40) 9204420770712081 a001 4181/24476*24476^(1/6) 9204420771211793 a001 4181/64079*15127^(11/40) 9204420773208421 a001 6765/1149851*5778^(7/12) 9204420773272812 a001 4181/24476*20633239^(1/10) 9204420773272814 a001 4181/24476*17393796001^(1/14) 9204420773272814 a001 4181/24476*14662949395604^(1/18) 9204420773272814 a001 4181/24476*505019158607^(1/16) 9204420773272814 a001 4181/24476*599074578^(1/12) 9204420773275092 a001 4181/24476*710647^(1/8) 9204420773319660 a001 4181/167761*15127^(3/8) 9204420774206467 a001 4181/24476*39603^(7/44) 9204420774878913 a001 4181/271443*15127^(17/40) 9204420776736896 a001 6765/9349*2207^(1/32) 9204420776930601 a001 17711/1149851*5778^(17/36) 9204420777062777 a001 4181/439204*15127^(19/40) 9204420777470452 a001 2584/9349*2207^(5/32) 9204420779008061 a001 4181/710647*15127^(21/40) 9204420780312105 a001 4181/24476*15127^(7/40) 9204420781044475 a001 4181/1149851*15127^(23/40) 9204420781937104 a001 46368/3010349*5778^(17/36) 9204420782887602 a001 5473/219602*5778^(5/12) 9204420783046080 a001 4181/1860498*15127^(5/8) 9204420783118980 a001 75025/4870847*5778^(17/36) 9204420785031294 a001 28657/1860498*5778^(17/36) 9204420785060981 a001 4181/3010349*15127^(27/40) 9204420787070803 a001 4181/4870847*15127^(29/40) 9204420787795461 a003 sin(Pi*2/79)-sin(Pi*53/107) 9204420788515631 a001 55/15126*5778^(23/36) 9204420792237811 a001 17711/1860498*5778^(19/36) 9204420793104890 a001 4181/20633239*15127^(7/8) 9204420793526221 r002 5th iterates of z^2 + 9204420797252531 a001 46368/4870847*5778^(19/36) 9204420798138490 a001 10946/710647*5778^(17/36) 9204420799529361 a001 4181/9349*3571^(3/34) 9204420800351799 a001 28657/3010349*5778^(19/36) 9204420801211990 a001 1597/1149851*3571^(27/34) 9204420803836136 a001 6765/3010349*5778^(25/36) 9204420807558316 a001 17711/3010349*5778^(7/12) 9204420812303189 m001 (ln(3)+Ei(1,1))/(Pi^(1/2)-PolyaRandomWalk3D) 9204420812569898 a001 11592/1970299*5778^(7/12) 9204420813301078 a001 121393/20633239*5778^(7/12) 9204420813407756 a001 317811/54018521*5778^(7/12) 9204420813423320 a001 208010/35355581*5778^(7/12) 9204420813425590 a001 2178309/370248451*5778^(7/12) 9204420813425922 a001 5702887/969323029*5778^(7/12) 9204420813425970 a001 196452/33391061*5778^(7/12) 9204420813425977 a001 39088169/6643838879*5778^(7/12) 9204420813425978 a001 102334155/17393796001*5778^(7/12) 9204420813425978 a001 66978574/11384387281*5778^(7/12) 9204420813425978 a001 701408733/119218851371*5778^(7/12) 9204420813425978 a001 1836311903/312119004989*5778^(7/12) 9204420813425978 a001 1201881744/204284540899*5778^(7/12) 9204420813425978 a001 12586269025/2139295485799*5778^(7/12) 9204420813425978 a001 32951280099/5600748293801*5778^(7/12) 9204420813425978 a001 1135099622/192933544679*5778^(7/12) 9204420813425978 a001 139583862445/23725150497407*5778^(7/12) 9204420813425978 a001 53316291173/9062201101803*5778^(7/12) 9204420813425978 a001 10182505537/1730726404001*5778^(7/12) 9204420813425978 a001 7778742049/1322157322203*5778^(7/12) 9204420813425978 a001 2971215073/505019158607*5778^(7/12) 9204420813425978 a001 567451585/96450076809*5778^(7/12) 9204420813425978 a001 433494437/73681302247*5778^(7/12) 9204420813425978 a001 165580141/28143753123*5778^(7/12) 9204420813425979 a001 31622993/5374978561*5778^(7/12) 9204420813425981 a001 24157817/4106118243*5778^(7/12) 9204420813426000 a001 9227465/1568397607*5778^(7/12) 9204420813426126 a001 1762289/299537289*5778^(7/12) 9204420813426994 a001 1346269/228826127*5778^(7/12) 9204420813432939 a001 514229/87403803*5778^(7/12) 9204420813473686 a001 98209/16692641*5778^(7/12) 9204420813480508 a001 10946/1149851*5778^(19/36) 9204420813752972 a001 75025/12752043*5778^(7/12) 9204420815667226 a001 28657/4870847*5778^(7/12) 9204420817488043 a001 610/710647*1364^(29/30) 9204420818020898 a001 17711/39603*2207^(3/32) 9204420819151563 a001 6765/4870847*5778^(3/4) 9204420820965474 a001 4181/39603*5778^(1/4) 9204420822873743 a001 17711/4870847*5778^(23/36) 9204420826881720 a001 4181/24476*5778^(7/36) 9204420828045797 a001 23184/51841*2207^(3/32) 9204420828787718 a001 5473/930249*5778^(7/12) 9204420829508410 a001 121393/271443*2207^(3/32) 9204420829721802 a001 317811/710647*2207^(3/32) 9204420829752936 a001 416020/930249*2207^(3/32) 9204420829757478 a001 2178309/4870847*2207^(3/32) 9204420829760286 a001 1346269/3010349*2207^(3/32) 9204420829772177 a001 514229/1149851*2207^(3/32) 9204420829853686 a001 98209/219602*2207^(3/32) 9204420830412355 a001 75025/167761*2207^(3/32) 9204420834241525 a001 28657/64079*2207^(3/32) 9204420836399826 r002 22th iterates of z^2 + 9204420838928635 a001 710647/1597*233^(2/15) 9204420843645610 a001 1597/710647*3571^(25/34) 9204420844108223 a001 10946/3010349*5778^(23/36) 9204420844392618 a001 4181/64079*5778^(11/36) 9204420853507735 a001 17711/12752043*5778^(3/4) 9204420854511202 m001 ln(KhintchineLevy)/Khintchine*Zeta(3)^2 9204420854903692 a001 4181/9349*9349^(3/38) 9204420856611584 a001 4181/103682*5778^(13/36) 9204420858520233 a001 144/103681*5778^(3/4) 9204420859251546 a001 121393/87403803*5778^(3/4) 9204420859358244 a001 317811/228826127*5778^(3/4) 9204420859373811 a001 416020/299537289*5778^(3/4) 9204420859376082 a001 311187/224056801*5778^(3/4) 9204420859376413 a001 5702887/4106118243*5778^(3/4) 9204420859376461 a001 7465176/5374978561*5778^(3/4) 9204420859376469 a001 39088169/28143753123*5778^(3/4) 9204420859376470 a001 14619165/10525900321*5778^(3/4) 9204420859376470 a001 133957148/96450076809*5778^(3/4) 9204420859376470 a001 701408733/505019158607*5778^(3/4) 9204420859376470 a001 1836311903/1322157322203*5778^(3/4) 9204420859376470 a001 14930208/10749853441*5778^(3/4) 9204420859376470 a001 12586269025/9062201101803*5778^(3/4) 9204420859376470 a001 32951280099/23725150497407*5778^(3/4) 9204420859376470 a001 10182505537/7331474697802*5778^(3/4) 9204420859376470 a001 7778742049/5600748293801*5778^(3/4) 9204420859376470 a001 2971215073/2139295485799*5778^(3/4) 9204420859376470 a001 567451585/408569081798*5778^(3/4) 9204420859376470 a001 433494437/312119004989*5778^(3/4) 9204420859376470 a001 165580141/119218851371*5778^(3/4) 9204420859376470 a001 31622993/22768774562*5778^(3/4) 9204420859376473 a001 24157817/17393796001*5778^(3/4) 9204420859376491 a001 9227465/6643838879*5778^(3/4) 9204420859376618 a001 1762289/1268860318*5778^(3/4) 9204420859377485 a001 1346269/969323029*5778^(3/4) 9204420859383431 a001 514229/370248451*5778^(3/4) 9204420859423650 a001 10946/4870847*5778^(25/36) 9204420859424186 a001 98209/70711162*5778^(3/4) 9204420859703523 a001 75025/54018521*5778^(3/4) 9204420860487052 a001 5473/12238*2207^(3/32) 9204420861618127 a001 28657/20633239*5778^(3/4) 9204420862120116 a001 4181/9349*24476^(1/14) 9204420863214922 a001 4181/9349*439204^(1/18) 9204420863217566 a001 4181/9349*7881196^(1/22) 9204420863217573 a001 4181/9349*33385282^(1/24) 9204420863217706 a001 4181/9349*1860498^(1/20) 9204420863271087 a001 4181/9349*103682^(1/16) 9204420863617710 a001 4181/9349*39603^(3/44) 9204420865102464 a001 615/1875749*5778^(11/12) 9204420866234412 a001 4181/9349*15127^(3/40) 9204420873111694 a001 4181/167761*5778^(5/12) 9204420874741017 a001 5473/3940598*5778^(3/4) 9204420886170360 a001 1597/439204*3571^(23/34) 9204420886192818 a001 4181/9349*5778^(1/12) 9204420887976552 a001 4181/271443*5778^(17/36) 9204420899458286 a001 17711/54018521*5778^(11/12) 9204420903466021 a001 4181/439204*5778^(19/36) 9204420904470733 a001 11592/35355581*5778^(11/12) 9204420905202039 a001 121393/370248451*5778^(11/12) 9204420905308736 a001 317811/969323029*5778^(11/12) 9204420905324302 a001 610/1860499*5778^(11/12) 9204420905326574 a001 2178309/6643838879*5778^(11/12) 9204420905326905 a001 5702887/17393796001*5778^(11/12) 9204420905326953 a001 3732588/11384387281*5778^(11/12) 9204420905326960 a001 39088169/119218851371*5778^(11/12) 9204420905326961 a001 9303105/28374454999*5778^(11/12) 9204420905326961 a001 66978574/204284540899*5778^(11/12) 9204420905326961 a001 701408733/2139295485799*5778^(11/12) 9204420905326961 a001 1836311903/5600748293801*5778^(11/12) 9204420905326961 a001 1201881744/3665737348901*5778^(11/12) 9204420905326961 a001 7778742049/23725150497407*5778^(11/12) 9204420905326961 a001 2971215073/9062201101803*5778^(11/12) 9204420905326961 a001 567451585/1730726404001*5778^(11/12) 9204420905326961 a001 433494437/1322157322203*5778^(11/12) 9204420905326962 a001 165580141/505019158607*5778^(11/12) 9204420905326962 a001 31622993/96450076809*5778^(11/12) 9204420905326965 a001 24157817/73681302247*5778^(11/12) 9204420905326983 a001 9227465/28143753123*5778^(11/12) 9204420905327110 a001 1762289/5374978561*5778^(11/12) 9204420905327977 a001 1346269/4106118243*5778^(11/12) 9204420905333923 a001 514229/1568397607*5778^(11/12) 9204420905374677 a001 98209/299537289*5778^(11/12) 9204420905654012 a001 75025/228826127*5778^(11/12) 9204420907568596 a001 28657/87403803*5778^(11/12) 9204420910051908 a007 Real Root Of 239*x^4+292*x^3+377*x^2-267*x-509 9204420918716909 a001 4181/710647*5778^(7/12) 9204420920691352 a001 5473/16692641*5778^(11/12) 9204420923004132 a001 6765/24476*2207^(5/32) 9204420923737689 a001 646/6119*2207^(9/32) 9204420928456530 a001 1597/271443*3571^(21/34) 9204420933786362 a001 2584/3571*1364^(1/30) 9204420934058928 a001 4181/1149851*5778^(23/36) 9204420944237210 a001 17711/64079*2207^(5/32) 9204420944782645 a001 4181/5778*843^(1/28) 9204420947335074 a001 46368/167761*2207^(5/32) 9204420947787046 a001 121393/439204*2207^(5/32) 9204420947852988 a001 317811/1149851*2207^(5/32) 9204420947862609 a001 832040/3010349*2207^(5/32) 9204420947864880 a001 1346269/4870847*2207^(5/32) 9204420947868555 a001 514229/1860498*2207^(5/32) 9204420947893742 a001 196418/710647*2207^(5/32) 9204420948066380 a001 75025/271443*2207^(5/32) 9204420949249659 a001 28657/103682*2207^(5/32) 9204420949366137 a001 4181/1860498*5778^(25/36) 9204420957359973 a001 10946/39603*2207^(5/32) 9204420964686643 a001 4181/3010349*5778^(3/4) 9204420971367310 a001 1597/167761*3571^(19/34) 9204420976837400 a001 377/3*1364^(8/29) 9204420977393297 a007 Real Root Of 109*x^4-432*x^3-223*x^2-128*x+14 9204420980002070 a001 4181/4870847*5778^(29/36) 9204420989322394 a007 Real Root Of -70*x^4+821*x^3-822*x^2-630*x+807 9204420992548965 a001 1597/5778*3571^(5/34) 9204421002038357 a003 sin(Pi*8/113)+sin(Pi*19/77) 9204421007236656 m005 (1/2*3^(1/2)-3/10)/(7/10*2^(1/2)-3/8) 9204421010636063 a001 4181/12752043*5778^(11/12) 9204421012642840 a001 1597/103682*3571^(1/2) 9204421012948891 a001 4181/15127*2207^(5/32) 9204421019877054 a001 2255/13201*2207^(7/32) 9204421020610610 a001 2584/39603*2207^(11/32) 9204421029966310 l006 ln(625/1569) 9204421036994023 l006 ln(3039/3332) 9204421040376571 a001 4181/9349*2207^(3/32) 9204421053594038 m001 (-Trott2nd+ZetaQ(2))/(2^(1/2)+Backhouse) 9204421054122665 r005 Re(z^2+c),c=-11/18+9/13*I,n=8 9204421058199512 a001 1597/64079*3571^(15/34) 9204421059245345 a001 17711/103682*2207^(7/32) 9204421064989101 a001 15456/90481*2207^(7/32) 9204421065827104 a001 121393/710647*2207^(7/32) 9204421065949367 a001 105937/620166*2207^(7/32) 9204421065967205 a001 832040/4870847*2207^(7/32) 9204421065978229 a001 514229/3010349*2207^(7/32) 9204421066024930 a001 196418/1149851*2207^(7/32) 9204421066345018 a001 75025/439204*2207^(7/32) 9204421068538938 a001 28657/167761*2207^(7/32) 9204421074050753 a007 Real Root Of -515*x^4+929*x^3-594*x^2-863*x+803 9204421077466630 a001 2584/3571*3571^(1/34) 9204421083576287 a001 10946/64079*2207^(7/32) 9204421084839518 a001 1597/5778*9349^(5/38) 9204421090316321 a001 10946/15127*843^(1/28) 9204421092548007 a001 1597/39603*3571^(13/34) 9204421095924741 a001 2584/3571*9349^(1/38) 9204421096866891 a001 1597/5778*24476^(5/42) 9204421098330216 a001 2584/3571*24476^(1/42) 9204421098452330 a001 1597/5778*64079^(5/46) 9204421098663281 a001 1597/5778*167761^(1/10) 9204421098695985 a001 1597/5778*20633239^(1/14) 9204421098695986 a001 1597/5778*2537720636^(1/18) 9204421098695986 a001 1597/5778*312119004989^(1/22) 9204421098695986 a001 1597/5778*28143753123^(1/20) 9204421098695986 a001 1597/5778*228826127^(1/16) 9204421098696208 a001 1597/5778*1860498^(1/12) 9204421098829414 a001 2584/3571*39603^(1/44) 9204421099362882 a001 1597/5778*39603^(5/44) 9204421099701648 a001 2584/3571*15127^(1/40) 9204421102364071 a007 Real Root Of 816*x^4+591*x^3+897*x^2+53*x-836 9204421103724051 a001 1597/5778*15127^(1/8) 9204421106354450 a001 2584/3571*5778^(1/36) 9204421108231854 r005 Re(z^2+c),c=-61/56+11/46*I,n=40 9204421111549398 a001 28657/39603*843^(1/28) 9204421114647263 a001 75025/103682*843^(1/28) 9204421115099235 a001 196418/271443*843^(1/28) 9204421115165177 a001 514229/710647*843^(1/28) 9204421115174797 a001 1346269/1860498*843^(1/28) 9204421115177069 a001 2178309/3010349*843^(1/28) 9204421115180743 a001 832040/1149851*843^(1/28) 9204421115205931 a001 317811/439204*843^(1/28) 9204421115378569 a001 121393/167761*843^(1/28) 9204421116561848 a001 46368/64079*843^(1/28) 9204421120909761 m001 FeigenbaumB/(AlladiGrinstead^PlouffeB) 9204421124672162 a001 17711/24476*843^(1/28) 9204421136988064 a001 1597/5778*5778^(5/36) 9204421143109784 a001 1597/15127*3571^(9/34) 9204421146093368 a001 6765/64079*2207^(9/32) 9204421146826925 a001 2584/64079*2207^(13/32) 9204421147373329 a001 305/219602*1364^(9/10) 9204421153847071 m001 GAMMA(13/24)^(Tribonacci/HardyLittlewoodC5) 9204421156239894 a001 1597/24476*3571^(11/34) 9204421157749035 a001 2584/3571*2207^(1/32) 9204421162605386 a007 Real Root Of -29*x^4-174*x^3+847*x^2-149*x-664 9204421175505418 m001 1/exp(GAMMA(19/24))^2*Conway/GAMMA(2/3) 9204421178534625 a001 17711/167761*2207^(9/32) 9204421180261082 a001 6765/9349*843^(1/28) 9204421183267740 a001 11592/109801*2207^(9/32) 9204421183958293 a001 121393/1149851*2207^(9/32) 9204421184059043 a001 317811/3010349*2207^(9/32) 9204421184082827 a001 514229/4870847*2207^(9/32) 9204421184121310 a001 98209/930249*2207^(9/32) 9204421184385077 a001 75025/710647*2207^(9/32) 9204421186192967 a001 28657/271443*2207^(9/32) 9204421186643811 a001 4181/24476*2207^(7/32) 9204421198584424 a001 5473/51841*2207^(9/32) 9204421199842119 a007 Real Root Of -220*x^4+894*x^3-519*x^2-644*x+702 9204421204005198 a006 5^(1/2)*fibonacci(37/2)/Lucas(17)/sqrt(5) 9204421223940668 a007 Real Root Of -87*x^4-852*x^3-573*x^2-959*x-220 9204421261101506 a001 6765/103682*2207^(11/32) 9204421261835063 a001 1292/51841*2207^(15/32) 9204421274294357 r009 Im(z^3+c),c=-5/86+34/37*I,n=15 9204421280832079 a007 Real Root Of 681*x^4-549*x^3-349*x^2-179*x-786 9204421282861965 a007 Real Root Of 318*x^4-584*x^3-532*x^2-99*x+769 9204421282945865 a001 1597/4870847*9349^(33/38) 9204421283516736 a001 4181/39603*2207^(9/32) 9204421288489856 a001 1597/3010349*9349^(31/38) 9204421294028769 a001 1597/1860498*9349^(29/38) 9204421296188655 a001 17711/271443*2207^(11/32) 9204421299580977 a001 1597/1149851*9349^(27/38) 9204421301307801 a001 6624/101521*2207^(11/32) 9204421302054674 a001 121393/1860498*2207^(11/32) 9204421302163642 a001 317811/4870847*2207^(11/32) 9204421302230987 a001 196418/3010349*2207^(11/32) 9204421302516268 a001 75025/1149851*2207^(11/32) 9204421304471607 a001 28657/439204*2207^(11/32) 9204421305098377 a001 1597/710647*9349^(25/38) 9204421308516371 r009 Im(z^3+c),c=-2/13+49/55*I,n=35 9204421309232782 a001 1597/15127*9349^(9/38) 9204421310706906 a001 1597/439204*9349^(23/38) 9204421316076856 a001 1597/271443*9349^(21/38) 9204421317873706 a001 10946/167761*2207^(11/32) 9204421322071416 a001 1597/167761*9349^(1/2) 9204421326430724 a001 1597/103682*9349^(17/38) 9204421330882055 a001 1597/15127*24476^(3/14) 9204421331102276 a001 1597/9349*3571^(7/34) 9204421331217714 r005 Im(z^2+c),c=-41/90+7/45*I,n=39 9204421332503450 a001 1597/39603*9349^(13/38) 9204421333735846 a001 1597/15127*64079^(9/46) 9204421334166474 a001 1597/15127*439204^(1/6) 9204421334174406 a001 1597/15127*7881196^(3/22) 9204421334174426 a001 1597/15127*2537720636^(1/10) 9204421334174426 a001 1597/15127*14662949395604^(1/14) 9204421334174426 a001 1597/15127*192900153618^(1/12) 9204421334174427 a001 1597/15127*33385282^(1/8) 9204421334174825 a001 1597/15127*1860498^(3/20) 9204421334334969 a001 1597/15127*103682^(3/16) 9204421335071176 a001 1597/64079*9349^(15/38) 9204421335374838 a001 1597/15127*39603^(9/44) 9204421343224944 a001 1597/15127*15127^(9/40) 9204421359279116 a001 1597/24476*9349^(11/38) 9204421360132026 a001 1597/20633239*24476^(13/14) 9204421360359534 a007 Real Root Of 780*x^4-801*x^3-64*x^2+336*x-821 9204421361595429 a001 1597/7881196*24476^(5/6) 9204421362326531 a001 1597/4870847*24476^(11/14) 9204421363059573 a001 1597/3010349*24476^(31/42) 9204421363774621 a001 1597/39603*24476^(13/42) 9204421363787536 a001 1597/1860498*24476^(29/42) 9204421364528795 a001 1597/1149851*24476^(9/14) 9204421365235245 a001 1597/710647*24476^(25/42) 9204421366032825 a001 1597/439204*24476^(23/42) 9204421366591825 a001 1597/271443*24476^(1/2) 9204421367323795 a001 1597/103682*24476^(17/42) 9204421367775436 a001 1597/167761*24476^(19/42) 9204421367896763 a001 1597/39603*64079^(13/46) 9204421368530269 a001 1597/39603*141422324^(1/6) 9204421368530269 a001 1597/39603*73681302247^(1/8) 9204421368561499 a001 1597/39603*271443^(1/4) 9204421370264197 a001 1597/39603*39603^(13/44) 9204421371153297 a001 1597/64079*24476^(5/14) 9204421372714288 a001 1597/103682*64079^(17/46) 9204421373090166 a001 1597/1149851*64079^(27/46) 9204421373162441 a001 1597/710647*64079^(25/46) 9204421373250670 a001 1597/271443*64079^(21/46) 9204421373325845 a001 1597/439204*64079^(1/2) 9204421373542719 a001 1597/103682*45537549124^(1/6) 9204421373542733 a001 1597/103682*12752043^(1/4) 9204421373800105 a001 1597/167761*64079^(19/46) 9204421374104601 a001 1597/87403803*167761^(9/10) 9204421374170160 a001 1597/7881196*167761^(7/10) 9204421374217196 a001 1597/710647*167761^(1/2) 9204421374255469 a001 1597/271443*439204^(7/18) 9204421374273978 a001 1597/271443*7881196^(7/22) 9204421374274019 a001 1597/271443*20633239^(3/10) 9204421374274025 a001 1597/271443*17393796001^(3/14) 9204421374274025 a001 1597/271443*14662949395604^(1/6) 9204421374274025 a001 1597/271443*599074578^(1/4) 9204421374274028 a001 1597/271443*33385282^(7/24) 9204421374274956 a001 1597/271443*1860498^(7/20) 9204421374280860 a001 1597/271443*710647^(3/8) 9204421374353882 a001 1597/370248451*439204^(17/18) 9204421374359183 a001 1597/87403803*439204^(5/6) 9204421374364507 a001 1597/20633239*439204^(13/18) 9204421374369400 a001 1597/4870847*439204^(11/18) 9204421374380714 a001 1597/710647*20633239^(5/14) 9204421374380721 a001 1597/710647*2537720636^(5/18) 9204421374380721 a001 1597/710647*312119004989^(5/22) 9204421374380721 a001 1597/710647*3461452808002^(5/24) 9204421374380721 a001 1597/710647*28143753123^(1/4) 9204421374380722 a001 1597/710647*228826127^(5/16) 9204421374381829 a001 1597/710647*1860498^(5/12) 9204421374382051 a001 1597/1149851*439204^(1/2) 9204421374392807 a001 1597/1860498*1149851^(1/2) 9204421374396288 a001 1597/1860498*1322157322203^(1/4) 9204421374398485 a001 1597/4870847*7881196^(1/2) 9204421374398559 a001 1597/4870847*312119004989^(3/10) 9204421374398559 a001 1597/4870847*1568397607^(3/8) 9204421374398563 a001 1597/4870847*33385282^(11/24) 9204421374398806 a001 1597/6643838879*7881196^(21/22) 9204421374398819 a001 1597/1568397607*7881196^(19/22) 9204421374398824 a001 1597/969323029*7881196^(5/6) 9204421374398833 a001 1597/370248451*7881196^(17/22) 9204421374398845 a001 1597/87403803*7881196^(15/22) 9204421374398881 a001 1597/20633239*7881196^(13/22) 9204421374398889 a001 1597/12752043*54018521^(1/2) 9204421374398927 a001 1597/10749957122*20633239^(13/14) 9204421374398928 a001 1597/6643838879*20633239^(9/10) 9204421374398930 a001 1597/969323029*20633239^(11/14) 9204421374398932 a001 1597/228826127*20633239^(7/10) 9204421374398932 a001 1597/87403803*20633239^(9/14) 9204421374398939 a001 1597/33385282*370248451^(1/2) 9204421374398946 a001 1597/87403803*2537720636^(1/2) 9204421374398946 a001 1597/87403803*312119004989^(9/22) 9204421374398946 a001 1597/87403803*14662949395604^(5/14) 9204421374398946 a001 1597/87403803*192900153618^(5/12) 9204421374398946 a001 1597/87403803*28143753123^(9/20) 9204421374398946 a001 1597/87403803*228826127^(9/16) 9204421374398947 a001 1597/10749957122*141422324^(5/6) 9204421374398947 a001 1597/228826127*17393796001^(1/2) 9204421374398947 a001 1597/228826127*14662949395604^(7/18) 9204421374398947 a001 1597/228826127*505019158607^(7/16) 9204421374398947 a001 1597/228826127*599074578^(7/12) 9204421374398947 a001 1597/599074578*119218851371^(1/2) 9204421374398947 a001 1597/1568397607*817138163596^(1/2) 9204421374398947 a001 1597/1322157322203*2537720636^(17/18) 9204421374398947 a001 1597/505019158607*2537720636^(9/10) 9204421374398947 a001 1597/119218851371*2537720636^(5/6) 9204421374398947 a001 1597/10749957122*2537720636^(13/18) 9204421374398947 a001 1597/6643838879*2537720636^(7/10) 9204421374398947 a001 1597/4106118243*5600748293801^(1/2) 9204421374398947 a001 1597/10749957122*312119004989^(13/22) 9204421374398947 a001 1597/10749957122*3461452808002^(13/24) 9204421374398947 a001 1597/10749957122*73681302247^(5/8) 9204421374398947 a001 1597/10749957122*28143753123^(13/20) 9204421374398947 a001 1597/5600748293801*17393796001^(13/14) 9204421374398947 a001 1597/192900153618*17393796001^(11/14) 9204421374398947 a001 1597/1322157322203*45537549124^(5/6) 9204421374398947 a001 1597/192900153618*14662949395604^(11/18) 9204421374398947 a001 1597/192900153618*505019158607^(11/16) 9204421374398947 a001 1597/14662949395604*312119004989^(19/22) 9204421374398947 a001 1597/1322157322203*312119004989^(17/22) 9204421374398947 a001 1597/1322157322203*3461452808002^(17/24) 9204421374398947 a001 1597/5600748293801*14662949395604^(13/18) 9204421374398947 a001 1597/14662949395604*3461452808002^(19/24) 9204421374398947 a001 1597/5600748293801*505019158607^(13/16) 9204421374398947 a001 1597/505019158607*192900153618^(3/4) 9204421374398947 a001 1597/119218851371*312119004989^(15/22) 9204421374398947 a001 1597/119218851371*3461452808002^(5/8) 9204421374398947 a001 1597/5600748293801*73681302247^(7/8) 9204421374398947 a001 1597/119218851371*28143753123^(3/4) 9204421374398947 a001 1597/1322157322203*28143753123^(17/20) 9204421374398947 a001 1597/14662949395604*28143753123^(19/20) 9204421374398947 a001 1597/6643838879*17393796001^(9/14) 9204421374398947 a001 1597/6643838879*14662949395604^(1/2) 9204421374398947 a001 1597/6643838879*505019158607^(9/16) 9204421374398947 a001 1597/6643838879*192900153618^(7/12) 9204421374398947 a001 1597/28143753123*4106118243^(3/4) 9204421374398947 a001 1597/2537720636*2139295485799^(1/2) 9204421374398947 a001 1597/192900153618*1568397607^(7/8) 9204421374398947 a001 1597/969323029*2537720636^(11/18) 9204421374398947 a001 1597/969323029*312119004989^(1/2) 9204421374398947 a001 1597/969323029*3461452808002^(11/24) 9204421374398947 a001 1597/969323029*28143753123^(11/20) 9204421374398947 a001 1597/969323029*1568397607^(5/8) 9204421374398947 a001 1597/6643838879*599074578^(3/4) 9204421374398947 a001 1597/192900153618*599074578^(11/12) 9204421374398947 a001 1597/370248451*45537549124^(1/2) 9204421374398948 a001 1597/969323029*228826127^(11/16) 9204421374398948 a001 1597/10749957122*228826127^(13/16) 9204421374398948 a001 1597/119218851371*228826127^(15/16) 9204421374398948 a001 1597/141422324*6643838879^(1/2) 9204421374398948 a001 1597/1568397607*87403803^(3/4) 9204421374398951 a001 1597/54018521*969323029^(1/2) 9204421374398951 a001 1597/87403803*33385282^(5/8) 9204421374398953 a001 1597/370248451*33385282^(17/24) 9204421374398954 a001 1597/1568397607*33385282^(19/24) 9204421374398955 a001 1597/6643838879*33385282^(7/8) 9204421374398955 a001 1597/28143753123*33385282^(23/24) 9204421374398969 a001 1597/20633239*141422324^(1/2) 9204421374398969 a001 1597/20633239*73681302247^(3/8) 9204421374398973 a001 1597/20633239*33385282^(13/24) 9204421374398990 a001 1597/370248451*12752043^(3/4) 9204421374399006 a006 5^(1/2)*Fibonacci(37/2)/Lucas(17)/sqrt(5) 9204421374399085 a001 1597/7881196*20633239^(1/2) 9204421374399096 a001 1597/7881196*2537720636^(7/18) 9204421374399096 a001 1597/7881196*17393796001^(5/14) 9204421374399096 a001 1597/7881196*312119004989^(7/22) 9204421374399096 a001 1597/7881196*14662949395604^(5/18) 9204421374399096 a001 1597/7881196*505019158607^(5/16) 9204421374399096 a001 1597/7881196*28143753123^(7/20) 9204421374399096 a001 1597/7881196*599074578^(5/12) 9204421374399096 a001 1597/7881196*228826127^(7/16) 9204421374399455 a001 1597/3010349*3010349^(1/2) 9204421374399963 a001 1597/3010349*9062201101803^(1/4) 9204421374400022 a001 1597/4870847*1860498^(11/20) 9204421374400647 a001 1597/7881196*1860498^(7/12) 9204421374400697 a001 1597/20633239*1860498^(13/20) 9204421374400941 a001 1597/87403803*1860498^(3/4) 9204421374401208 a001 1597/370248451*1860498^(17/20) 9204421374401385 a001 1597/969323029*1860498^(11/12) 9204421374401474 a001 1597/1568397607*1860498^(19/20) 9204421374405848 a001 1597/1149851*7881196^(9/22) 9204421374405909 a001 1597/1149851*2537720636^(3/10) 9204421374405909 a001 1597/1149851*14662949395604^(3/14) 9204421374405909 a001 1597/1149851*192900153618^(1/4) 9204421374405912 a001 1597/1149851*33385282^(3/8) 9204421374407106 a001 1597/1149851*1860498^(9/20) 9204421374410487 a001 1597/7881196*710647^(5/8) 9204421374414895 a001 1597/228826127*710647^(7/8) 9204421374446663 a001 1597/439204*4106118243^(1/4) 9204421374492661 a001 1597/20633239*271443^(3/4) 9204421374648625 a001 1597/271443*103682^(7/16) 9204421374725998 a001 1597/167761*817138163596^(1/6) 9204421374725998 a001 1597/167761*87403803^(1/4) 9204421374887538 a001 1597/1149851*103682^(9/16) 9204421374987217 a001 1597/4870847*103682^(11/16) 9204421375094655 a001 1597/20633239*103682^(13/16) 9204421375201661 a001 1597/87403803*103682^(15/16) 9204421375810163 a001 1597/103682*39603^(17/44) 9204421375909615 a001 1597/64079*64079^(15/46) 9204421376542468 a001 1597/64079*167761^(3/10) 9204421376627329 a001 1597/64079*439204^(5/18) 9204421376640549 a001 1597/64079*7881196^(5/22) 9204421376640578 a001 1597/64079*20633239^(3/14) 9204421376640583 a001 1597/64079*2537720636^(1/6) 9204421376640583 a001 1597/64079*312119004989^(3/22) 9204421376640583 a001 1597/64079*28143753123^(3/20) 9204421376640583 a001 1597/64079*228826127^(3/16) 9204421376640585 a001 1597/64079*33385282^(5/24) 9204421376641248 a001 1597/64079*1860498^(1/4) 9204421376908155 a001 1597/64079*103682^(5/16) 9204421377074986 a001 1597/271443*39603^(21/44) 9204421377260200 a001 1597/167761*39603^(19/44) 9204421377514382 a001 1597/439204*39603^(23/44) 9204421377580238 m001 gamma^2*Zeta(1/2)^2*exp(sin(Pi/12)) 9204421377715198 a001 1597/710647*39603^(25/44) 9204421378007144 a001 1597/1149851*39603^(27/44) 9204421378264281 a001 1597/1860498*39603^(29/44) 9204421378534714 a001 1597/3010349*39603^(31/44) 9204421378641269 a001 1597/64079*39603^(15/44) 9204421378800068 a001 1597/4870847*39603^(3/4) 9204421380390789 a001 615/15251*2207^(13/32) 9204421381124345 a001 2584/167761*2207^(17/32) 9204421381603238 a001 1597/39603*15127^(13/40) 9204421385739338 a001 1597/24476*24476^(11/42) 9204421389227304 a001 1597/24476*64079^(11/46) 9204421389763323 a001 1597/24476*7881196^(1/6) 9204421389763347 a001 1597/24476*312119004989^(1/10) 9204421389763347 a001 1597/24476*1568397607^(1/8) 9204421390638140 a001 1597/103682*15127^(17/40) 9204421391230517 a001 1597/24476*39603^(1/4) 9204421391724779 a001 1597/64079*15127^(3/8) 9204421393832645 a001 1597/167761*15127^(19/40) 9204421393960993 a001 1597/5778*2207^(5/32) 9204421395391899 a001 1597/271443*15127^(21/40) 9204421397575763 a001 1597/439204*15127^(23/40) 9204421399521047 a001 1597/710647*15127^(5/8) 9204421400825091 a001 1597/24476*15127^(11/40) 9204421401557461 a001 1597/1149851*15127^(27/40) 9204421403100168 a001 1597/15127*5778^(1/4) 9204421403559066 a001 1597/1860498*15127^(29/40) 9204421405573967 a001 1597/3010349*15127^(31/40) 9204421407583789 a001 1597/4870847*15127^(33/40) 9204421409595552 a001 1597/7881196*15127^(7/8) 9204421409733054 a001 4181/64079*2207^(11/32) 9204421414467297 a001 17711/439204*2207^(13/32) 9204421415125824 m001 (Bloch-OneNinth)/(ln(5)-2*Pi/GAMMA(5/6)) 9204421419438993 a001 46368/1149851*2207^(13/32) 9204421420164353 a001 121393/3010349*2207^(13/32) 9204421420335588 a001 196418/4870847*2207^(13/32) 9204421420612651 a001 75025/1860498*2207^(13/32) 9204421420906413 a007 Real Root Of -636*x^4-420*x^3-981*x^2-313*x+672 9204421422511670 a001 28657/710647*2207^(13/32) 9204421435527738 a001 10946/271443*2207^(13/32) 9204421448052214 a007 Real Root Of 721*x^4-688*x^3-354*x^2+338*x-443 9204421455403606 a001 1860498/4181*233^(2/15) 9204421460309055 a001 1597/9349*9349^(7/38) 9204421468089673 a001 1597/39603*5778^(13/36) 9204421472776882 a003 cos(Pi*14/111)*sin(Pi*56/117) 9204421474005920 a001 1597/24476*5778^(11/36) 9204421477020047 a001 610/271443*1364^(5/6) 9204421477147379 a001 1597/9349*24476^(1/6) 9204421479366994 a001 1597/9349*64079^(7/46) 9204421479708110 a001 1597/9349*20633239^(1/10) 9204421479708112 a001 1597/9349*17393796001^(1/14) 9204421479708112 a001 1597/9349*14662949395604^(1/18) 9204421479708112 a001 1597/9349*505019158607^(1/16) 9204421479708112 a001 1597/9349*599074578^(1/12) 9204421479710390 a001 1597/9349*710647^(1/8) 9204421480641765 a001 1597/9349*39603^(7/44) 9204421483227055 a007 Real Root Of -816*x^4-65*x^3+437*x^2+676*x+787 9204421486747403 a001 1597/9349*15127^(7/40) 9204421488924911 a001 1292/2889*843^(3/28) 9204421491516819 a001 1597/64079*5778^(5/12) 9204421492026752 m001 TreeGrowth2nd^LandauRamanujan2nd*ZetaR(2) 9204421493517804 a007 Real Root Of -965*x^4-179*x^3-622*x^2-339*x+768 9204421498044822 a001 2255/90481*2207^(15/32) 9204421498778378 a001 2584/271443*2207^(19/32) 9204421502241846 r009 Im(z^3+c),c=-73/122+29/57*I,n=8 9204421503735786 a001 1597/103682*5778^(17/36) 9204421520235897 a001 1597/167761*5778^(19/36) 9204421521574944 r005 Im(z^2+c),c=-63/110+35/54*I,n=18 9204421522635432 m005 (41/36+1/4*5^(1/2))/(5/11*Pi+5/12) 9204421524741195 a001 4181/103682*2207^(13/32) 9204421530233611 a007 Real Root Of -444*x^4+163*x^3+182*x^2-558*x-222 9204421532507361 a001 17711/710647*2207^(15/32) 9204421533317023 a001 1597/9349*5778^(7/36) 9204421535100756 a001 1597/271443*5778^(7/12) 9204421537125658 m001 exp(GAMMA(5/12))*GAMMA(1/3)^2/cos(Pi/5)^2 9204421537535378 a001 2576/103361*2207^(15/32) 9204421538268955 a001 121393/4870847*2207^(15/32) 9204421538722331 a001 75025/3010349*2207^(15/32) 9204421540642863 a001 28657/1149851*2207^(15/32) 9204421544457430 m001 (-BesselK(1,1)+KhinchinLevy)/(2^(1/3)-Ei(1)) 9204421545346099 a001 4870847/10946*233^(2/15) 9204421550590226 a001 1597/439204*5778^(23/36) 9204421553806382 a001 5473/219602*2207^(15/32) 9204421558468532 a001 12752043/28657*233^(2/15) 9204421560383069 a001 33385282/75025*233^(2/15) 9204421560662396 a001 87403803/196418*233^(2/15) 9204421560703149 a001 228826127/514229*233^(2/15) 9204421560709095 a001 599074578/1346269*233^(2/15) 9204421560709963 a001 1568397607/3524578*233^(2/15) 9204421560710089 a001 4106118243/9227465*233^(2/15) 9204421560710108 a001 10749957122/24157817*233^(2/15) 9204421560710110 a001 28143753123/63245986*233^(2/15) 9204421560710111 a001 73681302247/165580141*233^(2/15) 9204421560710111 a001 192900153618/433494437*233^(2/15) 9204421560710111 a001 505019158607/1134903170*233^(2/15) 9204421560710111 a001 1322157322203/2971215073*233^(2/15) 9204421560710111 a001 3461452808002/7778742049*233^(2/15) 9204421560710111 a001 9062201101803/20365011074*233^(2/15) 9204421560710111 a001 23725150497407/53316291173*233^(2/15) 9204421560710111 a001 14662949395604/32951280099*233^(2/15) 9204421560710111 a001 5600748293801/12586269025*233^(2/15) 9204421560710111 a001 2139295485799/4807526976*233^(2/15) 9204421560710111 a001 817138163596/1836311903*233^(2/15) 9204421560710111 a001 1568437211/3524667*233^(2/15) 9204421560710111 a001 119218851371/267914296*233^(2/15) 9204421560710111 a001 45537549124/102334155*233^(2/15) 9204421560710112 a001 17393796001/39088169*233^(2/15) 9204421560710119 a001 6643838879/14930352*233^(2/15) 9204421560710167 a001 2537720636/5702887*233^(2/15) 9204421560710499 a001 969323029/2178309*233^(2/15) 9204421560712770 a001 370248451/832040*233^(2/15) 9204421560728336 a001 141422324/317811*233^(2/15) 9204421560835030 a001 54018521/121393*233^(2/15) 9204421561273238 a001 2584/3571*843^(1/28) 9204421561566318 a001 20633239/46368*233^(2/15) 9204421565841116 a001 1597/710647*5778^(25/36) 9204421566578641 a001 39604/89*233^(2/15) 9204421581183135 a001 1597/1149851*5778^(3/4) 9204421583526012 a007 Real Root Of 858*x^4-898*x^3+165*x^2+969*x-564 9204421587551242 a007 Real Root Of 819*x^4+94*x^3-85*x^2-409*x-819 9204421596490346 a001 1597/1860498*5778^(29/36) 9204421600933617 a001 3010349/6765*233^(2/15) 9204421601469685 a001 1597/3571*1364^(1/10) 9204421611810853 a001 1597/3010349*5778^(31/36) 9204421616323466 a001 6765/439204*2207^(17/32) 9204421617057023 a001 34/5779*2207^(21/32) 9204421624327601 r009 Re(z^3+c),c=-35/102+29/48*I,n=7 9204421627126281 a001 1597/4870847*5778^(11/12) 9204421644030481 a001 4181/167761*2207^(15/32) 9204421650638556 a001 17711/1149851*2207^(17/32) 9204421655645060 a001 46368/3010349*2207^(17/32) 9204421656826935 a001 75025/4870847*2207^(17/32) 9204421658739249 a001 28657/1860498*2207^(17/32) 9204421660921120 k002 Champernowne real with 11*n^2+162*n-164 9204421670494012 g005 2*GAMMA(3/7)*Pi/GAMMA(7/11) 9204421671846447 a001 10946/710647*2207^(17/32) 9204421725240256 a001 329/1926*843^(1/4) 9204421734363533 a001 6765/710647*2207^(19/32) 9204421735097089 a001 2584/710647*2207^(23/32) 9204421761684517 a001 4181/271443*2207^(17/32) 9204421768734943 a001 17711/1860498*2207^(19/32) 9204421773749665 a001 46368/4870847*2207^(19/32) 9204421775087142 b008 Sqrt[Sech[2*(1+Sqrt[3])]] 9204421776848933 a001 28657/3010349*2207^(19/32) 9204421780120451 m001 (Artin-Lehmer)/(Zeta(3)+GAMMA(19/24)) 9204421789977644 a001 10946/1149851*2207^(19/32) 9204421797588585 a001 987/3571*843^(5/28) 9204421807291387 a001 610/167761*1364^(23/30) 9204421823296340 a007 Real Root Of 607*x^4-817*x^3+267*x^2+993*x-385 9204421833684288 a007 Real Root Of 278*x^4-178*x^3+657*x^2-883*x-87 9204421836406132 a001 1149851/2584*233^(2/15) 9204421852494730 a001 6765/1149851*2207^(21/32) 9204421853228286 a001 2584/1149851*2207^(25/32) 9204421865651459 a001 1597/15127*2207^(9/32) 9204421871025292 m001 arctan(1/2)^(MertensB1*ThueMorse) 9204421879534221 r005 Re(z^2+c),c=-19/30+17/37*I,n=6 9204421879963165 a001 4181/439204*2207^(19/32) 9204421886844628 a001 17711/3010349*2207^(21/32) 9204421893079141 a001 1597/9349*2207^(7/32) 9204421894953539 a001 28657/4870847*2207^(21/32) 9204421908074033 a001 5473/930249*2207^(21/32) 9204421920670900 r005 Re(z^2+c),c=-10/11+3/41*I,n=10 9204421948195485 m001 1/GAMMA(17/24)^2*exp(PrimesInBinary)*Zeta(9)^2 9204421955821408 a001 233/103682*521^(25/26) 9204421959881825 a001 6765/15127*843^(3/28) 9204421964617299 r005 Re(z^2+c),c=-79/90+7/38*I,n=45 9204421970591120 a001 55/15126*2207^(23/32) 9204421971324677 a001 1292/930249*2207^(27/32) 9204421998003235 a001 4181/710647*2207^(21/32) 9204422004949236 a001 17711/4870847*2207^(23/32) 9204422016846144 a007 Real Root Of 731*x^4+81*x^3+365*x^2+179*x-606 9204422026183720 a001 10946/3010349*2207^(23/32) 9204422028593515 a001 17711/39603*843^(3/28) 9204422032510528 a001 1597/3571*3571^(3/34) 9204422038618415 a001 23184/51841*843^(3/28) 9204422039346395 a001 1597/24476*2207^(11/32) 9204422040081029 a001 121393/271443*843^(3/28) 9204422040294421 a001 317811/710647*843^(3/28) 9204422040325555 a001 416020/930249*843^(3/28) 9204422040330097 a001 2178309/4870847*843^(3/28) 9204422040332904 a001 1346269/3010349*843^(3/28) 9204422040344796 a001 514229/1149851*843^(3/28) 9204422040426305 a001 98209/219602*843^(3/28) 9204422040984973 a001 75025/167761*843^(3/28) 9204422044814145 a001 28657/64079*843^(3/28) 9204422044824970 a007 Real Root Of -658*x^4+248*x^3+643*x^2-290*x-146 9204422055057647 s002 sum(A007682[n]/(n*10^n+1),n=1..infinity) 9204422056106477 r009 Im(z^3+c),c=-29/52+29/50*I,n=20 9204422071059675 a001 5473/12238*843^(3/28) 9204422071560243 a007 Real Root Of 538*x^4-491*x^3+65*x^2+627*x-247 9204422075186123 m001 (3^(1/3)-polylog(4,1/2))/(Khinchin-Sierpinski) 9204422076877675 r002 38th iterates of z^2 + 9204422081223273 g005 Pi^(1/2)*GAMMA(2/3)/GAMMA(6/11)/GAMMA(5/9) 9204422087884866 a001 1597/3571*9349^(3/38) 9204422088700808 a001 6765/3010349*2207^(25/32) 9204422089434364 a001 2584/3010349*2207^(29/32) 9204422095101291 a001 1597/3571*24476^(1/14) 9204422096052554 a001 1597/3571*64079^(3/46) 9204422096196097 a001 1597/3571*439204^(1/18) 9204422096198741 a001 1597/3571*7881196^(1/22) 9204422096198748 a001 1597/3571*33385282^(1/24) 9204422096198881 a001 1597/3571*1860498^(1/20) 9204422096252262 a001 1597/3571*103682^(1/16) 9204422096598885 a001 1597/3571*39603^(3/44) 9204422099215587 a001 1597/3571*15127^(3/40) 9204422104850718 r005 Im(z^2+c),c=-11/32+1/7*I,n=23 9204422111604342 m001 (Cahen-KomornikLoreti)/(ln(gamma)-ln(2)) 9204422116134436 a001 4181/1149851*2207^(23/32) 9204422119173997 a001 1597/3571*5778^(1/12) 9204422135927488 a001 305/51841*1364^(7/10) 9204422136219328 a001 1597/39603*2207^(13/32) 9204422137778038 m001 (Bloch+Otter)/(Zeta(1,2)+BesselI(1,1)) 9204422143442372 a007 Real Root Of 976*x^4-191*x^3+719*x^2+985*x-552 9204422144288330 a001 10946/4870847*2207^(25/32) 9204422144389902 r002 13th iterates of z^2 + 9204422170392088 a007 Real Root Of -281*x^4+479*x^3+875*x^2+27*x-938 9204422197015544 r008 a(0)=9,K{-n^6,2+2*n^3-9*n^2-2*n} 9204422205005220 a007 Real Root Of 389*x^4-559*x^3+193*x^2+633*x-296 9204422206805418 a001 6765/4870847*2207^(27/32) 9204422207538975 a001 2584/4870847*2207^(31/32) 9204422210896952 r001 45i'th iterates of 2*x^2-1 of 9204422225961899 r008 a(0)=0,K{-n^6,-49+10*n^3-37*n^2-33*n} 9204422234230829 a001 4181/1860498*2207^(25/32) 9204422235824489 a007 Real Root Of -93*x^4-838*x^3+221*x^2+460*x-444 9204422246550422 r005 Re(z^2+c),c=-5/4+79/229*I,n=4 9204422250949217 a001 4181/9349*843^(3/28) 9204422253249625 a007 Real Root Of -660*x^4+528*x^3-187*x^2-856*x+256 9204422258159672 r005 Im(z^2+c),c=-25/24+16/53*I,n=12 9204422259700803 m001 (Ei(1)-gamma(3)*BesselI(0,2))/gamma(3) 9204422262435658 a001 1597/64079*2207^(15/32) 9204422268363185 m006 (5/6/Pi-5/6)/(3/5*Pi^2+1/4) 9204422273357770 a001 1597/3571*2207^(3/32) 9204422294760455 a001 24476/987*55^(18/55) 9204422299189856 a007 Real Root Of -994*x^4+34*x^3-495*x^2-247*x+932 9204422349929516 a001 377/3*15127^(6/29) 9204422350300864 m001 GAMMA(2/3)/(HeathBrownMoroz-ZetaR(2)) 9204422352340520 a001 4181/3010349*2207^(27/32) 9204422355257050 a007 Real Root Of -670*x^4-31*x^3+232*x^2-224*x+54 9204422360524451 a007 Real Root Of -833*x^4-351*x^3+204*x^2-448*x-261 9204422377443810 a001 1597/103682*2207^(17/32) 9204422405989898 a001 987/1364*521^(1/26) 9204422408028620 m002 -Pi^2-Pi^3+Pi^6-Log[Pi]+ProductLog[Pi] 9204422428568488 r008 a(0)=9,K{-n^6,72-84*n^3-3*n^2+10*n} 9204422431946424 a007 Real Root Of -985*x^4+123*x^3-214*x^2-148*x+848 9204422468844744 a001 610/64079*1364^(19/30) 9204422470445134 a001 4181/4870847*2207^(29/32) 9204422482505433 r009 Re(z^3+c),c=-2/21+7/59*I,n=4 9204422486270033 r008 a(0)=0,K{-n^6,62+40*n+4*n^2+3*n^3} 9204422493256835 s002 sum(A208400[n]/(n!^3),n=1..infinity) 9204422496733107 a001 1597/167761*2207^(19/32) 9204422538601979 r009 Im(z^3+c),c=-71/118+21/41*I,n=47 9204422539042294 a001 121393/47*7^(32/49) 9204422542025298 a007 Real Root Of -358*x^4+339*x^3-954*x^2-634*x+746 9204422546116332 m001 (arctan(1/3)+Robbin)/(Tetranacci-Thue) 9204422547833038 a003 cos(Pi*4/95)*sin(Pi*36/95) 9204422559181148 a007 Real Root Of 78*x^4-160*x^3+892*x^2+522*x-456 9204422562606880 p004 log(20879/8317) 9204422571818585 a001 3461452808002/3*39088169^(10/11) 9204422571818586 a001 9381251041*7778742049^(10/11) 9204422571818586 a001 228826127/3*1548008755920^(10/11) 9204422577254008 a007 Real Root Of 932*x^4-468*x^3-192*x^2+22*x-851 9204422592448490 r009 Re(z^3+c),c=-17/62+43/61*I,n=61 9204422614387154 a001 1597/271443*2207^(21/32) 9204422642217339 a007 Real Root Of 14*x^4-776*x^3+884*x^2-932*x+704 9204422663927121 k002 Champernowne real with 23/2*n^2+321/2*n-163 9204422687138897 l006 ln(3846/9655) 9204422688093689 m001 (MertensB3+ZetaQ(2))/(cos(1)+cos(1/12*Pi)) 9204422698000387 b008 3+78*(-2+Pi) 9204422711096598 r002 16th iterates of z^2 + 9204422714699615 a007 Real Root Of -382*x^4+620*x^3+644*x^2+755*x+907 9204422720006740 r009 Im(z^3+c),c=-13/118+49/54*I,n=11 9204422732665813 a001 1597/439204*2207^(23/32) 9204422742795251 m001 (Ei(1)+Kac)/(ReciprocalLucas+StronglyCareFree) 9204422766990452 a007 Real Root Of -743*x^4+953*x^3+113*x^2-745*x+495 9204422790553832 a001 610/39603*1364^(17/30) 9204422795091561 a001 2584/9349*843^(5/28) 9204422804767393 a007 Real Root Of -518*x^4+152*x^3+519*x^2+649*x+648 9204422806161699 m001 (AlladiGrinstead-Kac)/(LaplaceLimit+MertensB3) 9204422821437660 m001 (Backhouse-MadelungNaCl)/(MinimumGamma+Niven) 9204422830321766 a001 377/3*2207^(15/58) 9204422850705894 a001 1597/710647*2207^(25/32) 9204422869471413 q001 3413/3708 9204422885642606 a001 610/2207*1364^(1/6) 9204422898212145 l003 log(9941) 9204422898279302 r005 Im(z^2+c),c=-133/122+5/46*I,n=46 9204422898908070 a003 cos(Pi*29/112)+cos(Pi*17/40) 9204422919960220 m001 ln(OneNinth)^2/Porter*exp(1) 9204422921519100 m005 (1/3*2^(1/2)+1/9)/(7/9*3^(1/2)-5/7) 9204422940625272 a001 6765/24476*843^(5/28) 9204422961858354 a001 17711/64079*843^(5/28) 9204422964956219 a001 46368/167761*843^(5/28) 9204422965408192 a001 121393/439204*843^(5/28) 9204422965474133 a001 317811/1149851*843^(5/28) 9204422965483754 a001 832040/3010349*843^(5/28) 9204422965486025 a001 1346269/4870847*843^(5/28) 9204422965489700 a001 514229/1860498*843^(5/28) 9204422965514888 a001 196418/710647*843^(5/28) 9204422965687526 a001 75025/271443*843^(5/28) 9204422966870805 a001 28657/103682*843^(5/28) 9204422968837106 a001 1597/1149851*2207^(27/32) 9204422974981121 a001 10946/39603*843^(5/28) 9204423008695173 l006 ln(3221/8086) 9204423009908884 a007 Real Root Of 781*x^4-660*x^3-685*x^2-376*x-841 9204423030570051 a001 4181/15127*843^(5/28) 9204423031406939 a001 987/9349*843^(9/28) 9204423068409477 a001 233/3010349*2^(1/4) 9204423086933510 a001 1597/1860498*2207^(29/32) 9204423099992188 a007 Real Root Of -511*x^4+829*x^3-413*x^2+852*x-714 9204423127529358 b008 (11*Sqrt[ProductLog[1]])/9 9204423141606329 a001 305/12238*1364^(1/2) 9204423148574351 a007 Real Root Of -711*x^4-68*x^3-454*x^2+37*x+876 9204423183664378 a001 1597/2207*322^(1/24) 9204423191421359 m001 1/GAMMA(7/24)/ln(GAMMA(3/4))/log(2+sqrt(3))^2 9204423205043212 a001 1597/3010349*2207^(31/32) 9204423216605182 m005 (1/3*2^(1/2)+2/9)/(4/9*exp(1)-5/11) 9204423220488597 a007 Real Root Of 576*x^4-148*x^3-310*x^2+299*x+9 9204423263081990 m001 (Rabbit+Totient)/(1+FibonacciFactorial) 9204423264315800 m001 1/BesselJ(1,1)*ArtinRank2^2/ln(sqrt(2))^2 9204423290522374 m009 (20/3*Catalan+5/6*Pi^2-3/5)/(6*Psi(1,3/4)-1/3) 9204423292265305 m001 (Otter-ZetaP(4))/(Pi^(1/2)+FeigenbaumKappa) 9204423293278232 r005 Re(z^2+c),c=-28/31+4/31*I,n=41 9204423307848201 m001 Ei(1)^Gompertz/BesselI(1,2) 9204423388724812 r005 Re(z^2+c),c=-13/12+20/113*I,n=26 9204423411582236 a001 1597/5778*843^(5/28) 9204423415836824 a001 610/15127*1364^(13/30) 9204423422473584 m001 (Ei(1)-FeigenbaumC)/(RenyiParking-ZetaQ(2)) 9204423427998007 m001 1/ln(Porter)*Paris^2*GAMMA(1/4) 9204423450359084 a001 439204/987*233^(2/15) 9204423458258045 r005 Re(z^2+c),c=-30/31+9/43*I,n=54 9204423462953182 a007 Real Root Of -651*x^4+776*x^3-33*x^2-184*x+931 9204423463475777 r005 Im(z^2+c),c=5/38+4/61*I,n=9 9204423478491674 r005 Re(z^2+c),c=6/25+14/51*I,n=5 9204423483930579 a001 1597/3571*843^(3/28) 9204423485083997 l006 ln(2596/6517) 9204423487848149 m001 exp(-Pi)^ThueMorse/(exp(-Pi)^Si(Pi)) 9204423487848149 m001 exp(Pi)^Si(Pi)/(exp(Pi)^ThueMorse) 9204423496550929 m001 (3^(1/2)-Si(Pi))/(-Ei(1)+Lehmer) 9204423517225111 m001 cos(1/12*Pi)^(cos(1/5*Pi)*Otter) 9204423521337833 m001 (Bloch-FeigenbaumB)^StolarskyHarborth 9204423545283726 a001 987/1364*1364^(1/30) 9204423555222744 r005 Re(z^2+c),c=-23/86+33/61*I,n=3 9204423574712440 a001 2584/15127*843^(1/4) 9204423594050223 a007 Real Root Of 864*x^4+472*x^3+551*x^2+856*x+69 9204423596613109 m001 (sin(1)+MinimumGamma)/(Riemann3rdZero+Trott) 9204423604044123 a001 610/2207*3571^(5/34) 9204423647808023 a007 Real Root Of 413*x^4+811*x^3+223*x^2-766*x-558 9204423666933122 k002 Champernowne real with 12*n^2+159*n-162 9204423688964035 a001 987/1364*3571^(1/34) 9204423689731560 m005 (1/3*Catalan-1/12)/(7/10*Catalan-2/5) 9204423692359622 a007 Real Root Of 490*x^4+738*x^3+465*x^2-289*x-30 9204423696334702 a001 610/2207*9349^(5/38) 9204423700677316 s002 sum(A228927[n]/(n^3*10^n+1),n=1..infinity) 9204423704499879 h001 (3/5*exp(1)+8/11)/(10/11*exp(1)+1/11) 9204423707422151 a001 987/1364*9349^(1/38) 9204423708362079 a001 610/2207*24476^(5/42) 9204423709827627 a001 987/1364*24476^(1/42) 9204423709947518 a001 610/2207*64079^(5/46) 9204423710144715 a001 987/1364*64079^(1/46) 9204423710158470 a001 610/2207*167761^(1/10) 9204423710191173 a001 610/2207*20633239^(1/14) 9204423710191175 a001 610/2207*2537720636^(1/18) 9204423710191175 a001 610/2207*312119004989^(1/22) 9204423710191175 a001 610/2207*28143753123^(1/20) 9204423710191175 a001 610/2207*228826127^(1/16) 9204423710191396 a001 610/2207*1860498^(1/12) 9204423710326825 a001 987/1364*39603^(1/44) 9204423710858070 a001 610/2207*39603^(5/44) 9204423711199059 a001 987/1364*15127^(1/40) 9204423715219241 a001 610/2207*15127^(1/8) 9204423716529295 a007 Real Root Of 510*x^4-602*x^3-288*x^2-107*x-690 9204423717851863 a001 987/1364*5778^(1/36) 9204423726914079 m001 exp(CareFree)*FransenRobinson^2*gamma 9204423748483263 a001 610/2207*5778^(5/36) 9204423769246463 a001 987/1364*2207^(1/32) 9204423778798323 m001 (GAMMA(3/4)+3)/(BesselI(1,2)+3) 9204423797166125 a007 Real Root Of 184*x^4-63*x^3+168*x^2-610*x-885 9204423811027839 a001 141/2161*843^(11/28) 9204423826819493 a007 Real Root Of 818*x^4+172*x^3-973*x^2-926*x-481 9204423831608990 q001 258/2803 9204423835963197 r005 Im(z^2+c),c=-17/30+65/86*I,n=3 9204423839997200 a001 305/2889*1364^(3/10) 9204423844546803 a001 2255/13201*843^(1/4) 9204423851873450 r002 3th iterates of z^2 + 9204423854152983 r001 46i'th iterates of 2*x^2-1 of 9204423857498982 a003 cos(Pi*8/33)+cos(Pi*52/119) 9204423880519334 a007 Real Root Of 35*x^4+320*x^3-39*x^2-219*x-392 9204423883915106 a001 17711/103682*843^(1/4) 9204423889658865 a001 15456/90481*843^(1/4) 9204423890496868 a001 121393/710647*843^(1/4) 9204423890619131 a001 105937/620166*843^(1/4) 9204423890636968 a001 832040/4870847*843^(1/4) 9204423890639571 a001 726103/4250681*843^(1/4) 9204423890639951 a001 5702887/33385282*843^(1/4) 9204423890640006 a001 4976784/29134601*843^(1/4) 9204423890640014 a001 39088169/228826127*843^(1/4) 9204423890640015 a001 34111385/199691526*843^(1/4) 9204423890640015 a001 267914296/1568397607*843^(1/4) 9204423890640016 a001 233802911/1368706081*843^(1/4) 9204423890640016 a001 1836311903/10749957122*843^(1/4) 9204423890640016 a001 1602508992/9381251041*843^(1/4) 9204423890640016 a001 12586269025/73681302247*843^(1/4) 9204423890640016 a001 10983760033/64300051206*843^(1/4) 9204423890640016 a001 86267571272/505019158607*843^(1/4) 9204423890640016 a001 75283811239/440719107401*843^(1/4) 9204423890640016 a001 2504730781961/14662949395604*843^(1/4) 9204423890640016 a001 139583862445/817138163596*843^(1/4) 9204423890640016 a001 53316291173/312119004989*843^(1/4) 9204423890640016 a001 20365011074/119218851371*843^(1/4) 9204423890640016 a001 7778742049/45537549124*843^(1/4) 9204423890640016 a001 2971215073/17393796001*843^(1/4) 9204423890640016 a001 1134903170/6643838879*843^(1/4) 9204423890640016 a001 433494437/2537720636*843^(1/4) 9204423890640016 a001 165580141/969323029*843^(1/4) 9204423890640016 a001 63245986/370248451*843^(1/4) 9204423890640019 a001 24157817/141422324*843^(1/4) 9204423890640040 a001 9227465/54018521*843^(1/4) 9204423890640185 a001 3524578/20633239*843^(1/4) 9204423890641179 a001 1346269/7881196*843^(1/4) 9204423890647993 a001 514229/3010349*843^(1/4) 9204423890694693 a001 196418/1149851*843^(1/4) 9204423891014782 a001 75025/439204*843^(1/4) 9204423891189985 a001 610/9349*1364^(11/30) 9204423893208702 a001 28657/167761*843^(1/4) 9204423908246056 a001 10946/64079*843^(1/4) 9204423922417287 a003 cos(Pi*4/47)-cos(Pi*52/107) 9204424002807574 m005 (1/3*Pi+2/9)/(5*exp(1)+1/5) 9204424005456265 a001 610/2207*2207^(5/32) 9204424011313612 a001 4181/24476*843^(1/4) 9204424015495445 a003 cos(Pi*1/59)*cos(Pi*9/71) 9204424035471492 a007 Real Root Of 40*x^4-418*x^3-368*x^2-214*x+806 9204424037213519 g005 Pi^(3/2)*csc(3/8*Pi)/GAMMA(1/7) 9204424063932517 r005 Re(z^2+c),c=-7/6+66/223*I,n=28 9204424075204303 a007 Real Root Of -490*x^4+641*x^3-341*x^2-786*x+417 9204424076730649 m001 exp(1)^2*Si(Pi)^2/ln(log(2+sqrt(3))) 9204424146176166 a007 Real Root Of -827*x^4+523*x^3-745*x^2-935*x+772 9204424154186063 m001 (sqrt(5)+GAMMA(1/12))^GaussAGM(1,1/sqrt(2)) 9204424160029587 r009 Re(z^3+c),c=-1/60+29/44*I,n=46 9204424172770780 a001 987/1364*843^(1/28) 9204424177331165 a007 Real Root Of 350*x^4+154*x^3+601*x^2-163*x-20 9204424181167180 a001 4181/5778*322^(1/24) 9204424197448024 m006 (3/4*Pi^2+5)/(5/6/Pi-2/5) 9204424226680631 a007 Real Root Of -70*x^4-658*x^3-53*x^2+639*x-304 9204424255585250 a007 Real Root Of 576*x^4+219*x^3+255*x^2+582*x+77 9204424263596583 l006 ln(1971/4948) 9204424265944961 a007 Real Root Of 743*x^4-57*x^3+867*x^2+562*x-795 9204424314736802 a007 Real Root Of -286*x^4+407*x^3+447*x^2-365*x-192 9204424326700906 a001 10946/15127*322^(1/24) 9204424329918474 m001 KhintchineLevy^2/exp(Artin)^2*sinh(1)^2 9204424342028905 r005 Re(z^2+c),c=-91/102+14/59*I,n=29 9204424347933991 a001 28657/39603*322^(1/24) 9204424351031857 a001 75025/103682*322^(1/24) 9204424351483829 a001 196418/271443*322^(1/24) 9204424351549771 a001 514229/710647*322^(1/24) 9204424351559392 a001 1346269/1860498*322^(1/24) 9204424351560796 a001 3524578/4870847*322^(1/24) 9204424351561000 a001 9227465/12752043*322^(1/24) 9204424351561030 a001 24157817/33385282*322^(1/24) 9204424351561035 a001 63245986/87403803*322^(1/24) 9204424351561035 a001 165580141/228826127*322^(1/24) 9204424351561035 a001 433494437/599074578*322^(1/24) 9204424351561035 a001 1134903170/1568397607*322^(1/24) 9204424351561035 a001 2971215073/4106118243*322^(1/24) 9204424351561035 a001 7778742049/10749957122*322^(1/24) 9204424351561035 a001 20365011074/28143753123*322^(1/24) 9204424351561035 a001 53316291173/73681302247*322^(1/24) 9204424351561035 a001 139583862445/192900153618*322^(1/24) 9204424351561035 a001 365435296162/505019158607*322^(1/24) 9204424351561035 a001 10610209857723/14662949395604*322^(1/24) 9204424351561035 a001 591286729879/817138163596*322^(1/24) 9204424351561035 a001 225851433717/312119004989*322^(1/24) 9204424351561035 a001 86267571272/119218851371*322^(1/24) 9204424351561035 a001 32951280099/45537549124*322^(1/24) 9204424351561035 a001 12586269025/17393796001*322^(1/24) 9204424351561035 a001 4807526976/6643838879*322^(1/24) 9204424351561035 a001 1836311903/2537720636*322^(1/24) 9204424351561035 a001 701408733/969323029*322^(1/24) 9204424351561035 a001 267914296/370248451*322^(1/24) 9204424351561036 a001 102334155/141422324*322^(1/24) 9204424351561037 a001 39088169/54018521*322^(1/24) 9204424351561049 a001 14930352/20633239*322^(1/24) 9204424351561127 a001 5702887/7881196*322^(1/24) 9204424351561663 a001 2178309/3010349*322^(1/24) 9204424351565338 a001 832040/1149851*322^(1/24) 9204424351590526 a001 317811/439204*322^(1/24) 9204424351763164 a001 121393/167761*322^(1/24) 9204424352946443 a001 46368/64079*322^(1/24) 9204424361056760 a001 17711/24476*322^(1/24) 9204424366498733 a007 Real Root Of 545*x^4-249*x^3+364*x^2+418*x-509 9204424377782586 r005 Re(z^2+c),c=-28/31+4/31*I,n=47 9204424380566291 r009 Im(z^3+c),c=-9/74+28/31*I,n=17 9204424389767950 a007 Real Root Of -39*x^4+492*x^3+396*x^2+65*x-751 9204424416645700 a001 6765/9349*322^(1/24) 9204424430399465 a007 Real Root Of 718*x^4-593*x^3-882*x^2-32*x-260 9204424432872656 r009 Im(z^3+c),c=-6/17+19/28*I,n=5 9204424435304373 a007 Real Root Of -730*x^4+737*x^3-128*x^2-765*x+503 9204424458975953 a007 Real Root Of 275*x^4-730*x^3-859*x^2+391*x+321 9204424459677258 a007 Real Root Of 951*x^4-340*x^3-207*x^2+913*x+68 9204424480509204 m001 (1+Zeta(3))/(Zeta(5)+FeigenbaumKappa) 9204424480613936 r005 Re(z^2+c),c=-79/86+4/53*I,n=11 9204424483310920 m001 ln((2^(1/3)))^2/Lehmer^2/GAMMA(17/24)^2 9204424495149109 a007 Real Root Of 777*x^4-838*x^3-230*x^2-649*x+888 9204424498186998 l006 ln(8671/9507) 9204424500916460 a007 Real Root Of -378*x^4+751*x^3+463*x^2-670*x-152 9204424538624412 m001 (3^(1/3)+Conway)/(Otter+Trott2nd) 9204424551978268 a008 Real Root of (-3+9*x-5*x^2+5*x^4-9*x^8) 9204424555456059 a001 646/6119*843^(9/28) 9204424561822451 a007 Real Root Of 59*x^4-713*x^3+283*x^2-778*x+990 9204424567326426 a001 233/64079*521^(23/26) 9204424568085022 a007 Real Root Of 886*x^4-903*x^3-147*x^2+307*x-933 9204424580231719 a001 3571/8*4807526976^(15/23) 9204424600294621 a007 Real Root Of -104*x^4+907*x^3+478*x^2-654*x-225 9204424639977482 m001 (gamma(3)-Rabbit)/(ln(gamma)-Ei(1,1)) 9204424647555927 a007 Real Root Of -639*x^4-224*x^3+469*x^2+825*x+646 9204424669939123 k002 Champernowne real with 25/2*n^2+315/2*n-161 9204424669939123 k004 Champernowne real with floor(Pi*(4*n^2+50*n-51)) 9204424680695906 b008 Sqrt[ProductLog[1/11]]/Pi 9204424690175816 r002 42th iterates of z^2 + 9204424717749159 a001 1597/9349*843^(1/4) 9204424717850679 h001 (6/11*exp(2)+2/11)/(3/5*exp(2)+1/7) 9204424723940891 m009 (16*Catalan+2*Pi^2-2)/(16*Catalan+2*Pi^2+4/5) 9204424777811827 a001 6765/64079*843^(9/28) 9204424788509402 s002 sum(A128336[n]/(pi^n),n=1..infinity) 9204424791771483 a001 987/24476*843^(13/28) 9204424797290011 a007 Real Root Of 952*x^4-893*x^3-861*x^2-91*x-734 9204424797657990 a001 2584/3571*322^(1/24) 9204424807507612 m001 (Zeta(3)+FeigenbaumC)/(exp(1)+gamma) 9204424810253096 a001 17711/167761*843^(9/28) 9204424814986213 a001 11592/109801*843^(9/28) 9204424815676766 a001 121393/1149851*843^(9/28) 9204424815777516 a001 317811/3010349*843^(9/28) 9204424815801300 a001 514229/4870847*843^(9/28) 9204424815839783 a001 98209/930249*843^(9/28) 9204424816103551 a001 75025/710647*843^(9/28) 9204424817911441 a001 28657/271443*843^(9/28) 9204424830302903 a001 5473/51841*843^(9/28) 9204424854407496 m005 (1/2*Zeta(3)-7/10)/(8/9*2^(1/2)-2/11) 9204424855278805 m005 (1/3*Pi+2/9)/(6*5^(1/2)+3/8) 9204424866367340 r002 15th iterates of z^2 + 9204424866367340 r002 15th iterates of z^2 + 9204424872887669 l006 ln(3317/8327) 9204424899314596 a001 305/930249*3571^(33/34) 9204424913960862 r009 Re(z^3+c),c=-4/23+28/41*I,n=44 9204424915235248 a001 4181/39603*843^(9/28) 9204424941783043 a001 610/1149851*3571^(31/34) 9204424956014406 r009 Im(z^3+c),c=-5/86+34/37*I,n=17 9204424977578885 m001 (Niven+Sarnak)/(Sierpinski+ZetaQ(2)) 9204424984216682 a001 610/710647*3571^(29/34) 9204425026741451 a001 305/219602*3571^(27/34) 9204425037746703 r005 Im(z^2+c),c=-157/110+4/41*I,n=8 9204425053948798 a007 Real Root Of 6*x^4-132*x^3+4*x^2-473*x-546 9204425069027640 a001 610/271443*3571^(25/34) 9204425111938440 a001 610/167761*3571^(23/34) 9204425133120104 a001 305/2889*3571^(9/34) 9204425139065314 m001 OneNinth^2/ln(Champernowne)/BesselK(1,1) 9204425153213988 a001 305/51841*3571^(21/34) 9204425167319747 a001 610/3571*1364^(7/30) 9204425174510171 a007 Real Root Of -718*x^4+698*x^3+585*x^2-653*x-37 9204425184299799 a003 sin(Pi*35/99)/sin(Pi*29/68) 9204425198770681 a001 610/64079*3571^(19/34) 9204425209132173 a007 Real Root Of 986*x^4-47*x^3-541*x^2-742*x-969 9204425232117811 a007 Real Root Of -903*x^4+594*x^3+256*x^2-610*x+333 9204425233119191 a001 610/39603*3571^(1/2) 9204425283680991 a001 610/15127*3571^(13/34) 9204425296811107 a001 305/12238*3571^(15/34) 9204425298414840 s002 sum(A042732[n]/(n*pi^n-1),n=1..infinity) 9204425299243175 a001 305/2889*9349^(9/38) 9204425302245453 a001 4870847/8*75025^(15/23) 9204425305228246 a007 Real Root Of 45*x^4-500*x^3+291*x^2-843*x+887 9204425319953972 m001 exp(TreeGrowth2nd)*GolombDickman*GAMMA(7/24)^2 9204425320892457 a001 305/2889*24476^(3/14) 9204425323746249 a001 305/2889*64079^(9/46) 9204425324176877 a001 305/2889*439204^(1/6) 9204425324184810 a001 305/2889*7881196^(3/22) 9204425324184830 a001 305/2889*2537720636^(1/10) 9204425324184830 a001 305/2889*14662949395604^(1/14) 9204425324184830 a001 305/2889*192900153618^(1/12) 9204425324184831 a001 305/2889*33385282^(1/8) 9204425324185229 a001 305/2889*1860498^(3/20) 9204425324345373 a001 305/2889*103682^(3/16) 9204425325385242 a001 305/2889*39603^(9/44) 9204425333235351 a001 305/2889*15127^(9/40) 9204425355532998 a007 Real Root Of -34*x^4+733*x^3+273*x^2+97*x+454 9204425364666741 a007 Real Root Of -424*x^4+847*x^3+352*x^2-671*x+49 9204425371800872 a007 Real Root Of -599*x^4+168*x^3-621*x^2-439*x+683 9204425393110601 a001 305/2889*5778^(1/4) 9204425416816638 m001 (ln(5)-3^(1/3))/(OrthogonalArrays+ThueMorse) 9204425436149090 m001 (GolombDickman-MertensB1*Porter)/MertensB1 9204425444547921 a007 Real Root Of 434*x^4-415*x^3-792*x^2-39*x+719 9204425459377749 a001 2584/39603*843^(11/28) 9204425471673568 a001 610/9349*3571^(11/34) 9204425482706222 a007 Real Root Of -939*x^4+487*x^3+952*x^2+342*x+562 9204425497349613 a001 610/4870847*9349^(37/38) 9204425497370201 a001 1597/15127*843^(9/28) 9204425499873002 a007 Real Root Of -841*x^4+765*x^3+780*x^2+55*x+590 9204425502893606 a001 610/3010349*9349^(35/38) 9204425508432522 a001 305/930249*9349^(33/38) 9204425513984732 a001 610/1149851*9349^(31/38) 9204425519502135 a001 610/710647*9349^(29/38) 9204425523636542 a001 610/15127*9349^(13/38) 9204425525110667 a001 305/219602*9349^(27/38) 9204425530480619 a001 610/271443*9349^(25/38) 9204425530621583 m005 (1/2*2^(1/2)+4/7)/(3/11*3^(1/2)+11/12) 9204425536475181 a001 610/167761*9349^(23/38) 9204425540834492 a001 305/51841*9349^(21/38) 9204425546907220 a001 610/39603*9349^(17/38) 9204425549474948 a001 610/64079*9349^(1/2) 9204425554907728 a001 610/15127*24476^(13/42) 9204425559029872 a001 610/15127*64079^(13/46) 9204425559663378 a001 610/15127*141422324^(1/6) 9204425559663378 a001 610/15127*73681302247^(1/8) 9204425559694608 a001 610/15127*271443^(1/4) 9204425561397306 a001 610/15127*39603^(13/44) 9204425571361409 m001 (3^(1/3)+Zeta(1/2))/(Pi^(1/2)+DuboisRaymond) 9204425572736353 a001 610/15127*15127^(13/40) 9204425573682898 a001 305/12238*9349^(15/38) 9204425576694748 r005 Re(z^2+c),c=-51/58+3/16*I,n=43 9204425582960769 a007 Real Root Of -209*x^4+953*x^3+546*x^2+460*x+854 9204425585621116 a001 305/3940598*24476^(13/14) 9204425586352218 a001 610/4870847*24476^(37/42) 9204425587085261 a001 610/3010349*24476^(5/6) 9204425587800309 a001 610/39603*24476^(17/42) 9204425587813224 a001 305/930249*24476^(11/14) 9204425588554483 a001 610/1149851*24476^(31/42) 9204425589260934 a001 610/710647*24476^(29/42) 9204425590058515 a001 305/219602*24476^(9/14) 9204425590617515 a001 610/271443*24476^(25/42) 9204425591349485 a001 305/51841*24476^(1/2) 9204425591801126 a001 610/167761*24476^(23/42) 9204425593190805 a001 610/39603*64079^(17/46) 9204425594019236 a001 610/39603*45537549124^(1/6) 9204425594019250 a001 610/39603*12752043^(1/4) 9204425595178989 a001 610/64079*24476^(19/42) 9204425596286681 a001 610/39603*39603^(17/44) 9204425598008332 a001 305/51841*64079^(21/46) 9204425598084474 a001 610/4870847*64079^(37/46) 9204425598183340 a001 610/3010349*64079^(35/46) 9204425598277127 a001 305/930249*64079^(33/46) 9204425598384211 a001 610/1149851*64079^(31/46) 9204425598456486 a001 610/710647*64079^(29/46) 9204425598544714 a001 610/271443*64079^(25/46) 9204425598619890 a001 305/219602*64079^(27/46) 9204425599013132 a001 305/51841*439204^(7/18) 9204425599031641 a001 305/51841*7881196^(7/22) 9204425599031682 a001 305/51841*20633239^(3/10) 9204425599031688 a001 305/51841*17393796001^(3/14) 9204425599031688 a001 305/51841*14662949395604^(1/6) 9204425599031688 a001 305/51841*599074578^(1/4) 9204425599031691 a001 305/51841*33385282^(7/24) 9204425599032619 a001 305/51841*1860498^(7/20) 9204425599038523 a001 305/51841*710647^(3/8) 9204425599094149 a001 610/167761*64079^(1/2) 9204425599406288 a001 305/51841*103682^(7/16) 9204425599593564 a001 305/16692641*167761^(9/10) 9204425599599470 a001 610/271443*167761^(1/2) 9204425599659998 a001 610/3010349*167761^(7/10) 9204425599762987 a001 610/271443*20633239^(5/14) 9204425599762995 a001 610/271443*2537720636^(5/18) 9204425599762995 a001 610/271443*312119004989^(5/22) 9204425599762995 a001 610/271443*3461452808002^(5/24) 9204425599762995 a001 610/271443*28143753123^(1/4) 9204425599762995 a001 610/271443*228826127^(5/16) 9204425599764103 a001 610/271443*1860498^(5/12) 9204425599842853 a001 305/70711162*439204^(17/18) 9204425599848146 a001 305/16692641*439204^(5/6) 9204425599853604 a001 305/3940598*439204^(13/18) 9204425599856098 a001 305/930249*439204^(11/18) 9204425599866211 a001 610/710647*1149851^(1/2) 9204425599869691 a001 610/710647*1322157322203^(1/4) 9204425599885184 a001 305/930249*7881196^(1/2) 9204425599885258 a001 305/930249*312119004989^(3/10) 9204425599885258 a001 305/930249*1568397607^(3/8) 9204425599885262 a001 305/930249*33385282^(11/24) 9204425599886721 a001 305/930249*1860498^(11/20) 9204425599887528 a001 610/4870847*54018521^(1/2) 9204425599887776 a001 305/1268860318*7881196^(21/22) 9204425599887789 a001 305/299537289*7881196^(19/22) 9204425599887794 a001 610/370248451*7881196^(5/6) 9204425599887803 a001 305/70711162*7881196^(17/22) 9204425599887808 a001 305/16692641*7881196^(15/22) 9204425599887861 a001 610/12752043*370248451^(1/2) 9204425599887895 a001 305/16692641*20633239^(9/14) 9204425599887897 a001 610/4106118243*20633239^(13/14) 9204425599887898 a001 305/1268860318*20633239^(9/10) 9204425599887900 a001 610/370248451*20633239^(11/14) 9204425599887901 a001 610/87403803*20633239^(7/10) 9204425599887909 a001 305/16692641*2537720636^(1/2) 9204425599887909 a001 305/16692641*312119004989^(9/22) 9204425599887909 a001 305/16692641*14662949395604^(5/14) 9204425599887909 a001 305/16692641*192900153618^(5/12) 9204425599887909 a001 305/16692641*28143753123^(9/20) 9204425599887909 a001 305/16692641*228826127^(9/16) 9204425599887914 a001 305/16692641*33385282^(5/8) 9204425599887916 a001 610/87403803*17393796001^(1/2) 9204425599887916 a001 610/87403803*14662949395604^(7/18) 9204425599887916 a001 610/87403803*505019158607^(7/16) 9204425599887916 a001 610/87403803*599074578^(7/12) 9204425599887917 a001 610/4106118243*141422324^(5/6) 9204425599887917 a001 610/228826127*119218851371^(1/2) 9204425599887917 a001 305/299537289*817138163596^(1/2) 9204425599887917 a001 610/1568397607*5600748293801^(1/2) 9204425599887917 a001 610/4106118243*2537720636^(13/18) 9204425599887917 a001 610/505019158607*2537720636^(17/18) 9204425599887917 a001 305/96450076809*2537720636^(9/10) 9204425599887917 a001 305/22768774562*2537720636^(5/6) 9204425599887917 a001 610/4106118243*312119004989^(13/22) 9204425599887917 a001 610/4106118243*3461452808002^(13/24) 9204425599887917 a001 610/4106118243*73681302247^(5/8) 9204425599887917 a001 610/4106118243*28143753123^(13/20) 9204425599887917 a001 610/2139295485799*17393796001^(13/14) 9204425599887917 a001 610/73681302247*17393796001^(11/14) 9204425599887917 a001 610/505019158607*45537549124^(5/6) 9204425599887917 a001 610/73681302247*14662949395604^(11/18) 9204425599887917 a001 610/73681302247*505019158607^(11/16) 9204425599887917 a001 305/96450076809*14662949395604^(9/14) 9204425599887917 a001 610/505019158607*312119004989^(17/22) 9204425599887917 a001 305/7331474697802*312119004989^(9/10) 9204425599887917 a001 610/5600748293801*312119004989^(19/22) 9204425599887917 a001 305/96450076809*192900153618^(3/4) 9204425599887917 a001 610/5600748293801*817138163596^(5/6) 9204425599887917 a001 305/1730726404001*9062201101803^(3/4) 9204425599887917 a001 610/2139295485799*14662949395604^(13/18) 9204425599887917 a001 305/408569081798*1322157322203^(3/4) 9204425599887917 a001 610/2139295485799*505019158607^(13/16) 9204425599887917 a001 305/7331474697802*192900153618^(11/12) 9204425599887917 a001 610/2139295485799*73681302247^(7/8) 9204425599887917 a001 305/22768774562*312119004989^(15/22) 9204425599887917 a001 305/22768774562*3461452808002^(5/8) 9204425599887917 a001 610/505019158607*28143753123^(17/20) 9204425599887917 a001 610/5600748293801*28143753123^(19/20) 9204425599887917 a001 305/22768774562*28143753123^(3/4) 9204425599887917 a001 305/5374978561*4106118243^(3/4) 9204425599887917 a001 305/1268860318*2537720636^(7/10) 9204425599887917 a001 305/1268860318*17393796001^(9/14) 9204425599887917 a001 305/1268860318*14662949395604^(1/2) 9204425599887917 a001 305/1268860318*505019158607^(9/16) 9204425599887917 a001 305/1268860318*192900153618^(7/12) 9204425599887917 a001 610/73681302247*1568397607^(7/8) 9204425599887917 a001 610/969323029*2139295485799^(1/2) 9204425599887917 a001 305/1268860318*599074578^(3/4) 9204425599887917 a001 610/73681302247*599074578^(11/12) 9204425599887917 a001 610/370248451*2537720636^(11/18) 9204425599887917 a001 610/370248451*312119004989^(1/2) 9204425599887917 a001 610/370248451*3461452808002^(11/24) 9204425599887917 a001 610/370248451*28143753123^(11/20) 9204425599887917 a001 610/370248451*1568397607^(5/8) 9204425599887917 a001 610/4106118243*228826127^(13/16) 9204425599887917 a001 305/22768774562*228826127^(15/16) 9204425599887917 a001 610/370248451*228826127^(11/16) 9204425599887918 a001 305/70711162*45537549124^(1/2) 9204425599887918 a001 305/299537289*87403803^(3/4) 9204425599887920 a001 610/54018521*6643838879^(1/2) 9204425599887924 a001 305/70711162*33385282^(17/24) 9204425599887924 a001 305/299537289*33385282^(19/24) 9204425599887925 a001 305/1268860318*33385282^(7/8) 9204425599887925 a001 305/5374978561*33385282^(23/24) 9204425599887939 a001 610/20633239*969323029^(1/2) 9204425599887960 a001 305/70711162*12752043^(3/4) 9204425599887978 a001 305/3940598*7881196^(13/22) 9204425599888065 a001 305/3940598*141422324^(1/2) 9204425599888065 a001 305/3940598*73681302247^(3/8) 9204425599888070 a001 305/3940598*33385282^(13/24) 9204425599888922 a001 610/3010349*20633239^(1/2) 9204425599888933 a001 610/3010349*2537720636^(7/18) 9204425599888933 a001 610/3010349*17393796001^(5/14) 9204425599888933 a001 610/3010349*312119004989^(7/22) 9204425599888933 a001 610/3010349*14662949395604^(5/18) 9204425599888933 a001 610/3010349*505019158607^(5/16) 9204425599888933 a001 610/3010349*28143753123^(7/20) 9204425599888933 a001 610/3010349*599074578^(5/12) 9204425599888933 a001 610/3010349*228826127^(7/16) 9204425599889794 a001 305/3940598*1860498^(13/20) 9204425599889903 a001 305/16692641*1860498^(3/4) 9204425599890178 a001 305/70711162*1860498^(17/20) 9204425599890355 a001 610/370248451*1860498^(11/12) 9204425599890443 a001 305/299537289*1860498^(19/20) 9204425599890484 a001 610/3010349*1860498^(7/12) 9204425599894371 a001 610/1149851*3010349^(1/2) 9204425599894879 a001 610/1149851*9062201101803^(1/4) 9204425599900324 a001 610/3010349*710647^(5/8) 9204425599903864 a001 610/87403803*710647^(7/8) 9204425599911775 a001 305/219602*439204^(1/2) 9204425599935573 a001 305/219602*7881196^(9/22) 9204425599935633 a001 305/219602*2537720636^(3/10) 9204425599935633 a001 305/219602*14662949395604^(3/14) 9204425599935633 a001 305/219602*192900153618^(1/4) 9204425599935636 a001 305/219602*33385282^(3/8) 9204425599936830 a001 305/219602*1860498^(9/20) 9204425599981757 a001 305/3940598*271443^(3/4) 9204425600214968 a001 610/167761*4106118243^(1/4) 9204425600417262 a001 305/219602*103682^(9/16) 9204425600473916 a001 305/930249*103682^(11/16) 9204425600583752 a001 305/3940598*103682^(13/16) 9204425600690624 a001 305/16692641*103682^(15/16) 9204425601203661 a001 610/64079*64079^(19/46) 9204425601832650 a001 305/51841*39603^(21/44) 9204425602129554 a001 610/64079*817138163596^(1/6) 9204425602129554 a001 610/64079*87403803^(1/4) 9204425603097473 a001 610/271443*39603^(25/44) 9204425603282687 a001 610/167761*39603^(23/44) 9204425603536870 a001 305/219602*39603^(27/44) 9204425603737686 a001 610/710647*39603^(29/44) 9204425604029632 a001 610/1149851*39603^(31/44) 9204425604286769 a001 305/930249*39603^(3/4) 9204425604557202 a001 610/3010349*39603^(35/44) 9204425604663757 a001 610/64079*39603^(19/44) 9204425604822557 a001 610/4870847*39603^(37/44) 9204425609765036 a001 305/12238*24476^(5/14) 9204425611114665 a001 610/39603*15127^(17/40) 9204425614521356 a001 305/12238*64079^(15/46) 9204425615154209 a001 305/12238*167761^(3/10) 9204425615239070 a001 305/12238*439204^(5/18) 9204425615252291 a001 305/12238*7881196^(5/22) 9204425615252320 a001 305/12238*20633239^(3/14) 9204425615252324 a001 305/12238*2537720636^(1/6) 9204425615252324 a001 305/12238*312119004989^(3/22) 9204425615252324 a001 305/12238*28143753123^(3/20) 9204425615252324 a001 305/12238*228826127^(3/16) 9204425615252326 a001 305/12238*33385282^(5/24) 9204425615252989 a001 305/12238*1860498^(1/4) 9204425615519896 a001 305/12238*103682^(5/16) 9204425617253011 a001 305/12238*39603^(15/44) 9204425620149572 a001 305/51841*15127^(21/40) 9204425621236210 a001 610/64079*15127^(19/40) 9204425623344078 a001 610/167761*15127^(23/40) 9204425624903332 a001 610/271443*15127^(5/8) 9204425627087198 a001 305/219602*15127^(27/40) 9204425629032483 a001 610/710647*15127^(29/40) 9204425630336527 a001 305/12238*15127^(3/8) 9204425631068897 a001 610/1149851*15127^(31/40) 9204425633070503 a001 305/930249*15127^(33/40) 9204425635085405 a001 610/3010349*15127^(7/8) 9204425637095228 a001 610/4870847*15127^(37/40) 9204425654073872 r009 Im(z^3+c),c=-5/86+34/37*I,n=25 9204425655177889 r009 Im(z^3+c),c=-5/86+34/37*I,n=27 9204425656304970 r009 Im(z^3+c),c=-5/86+34/37*I,n=29 9204425656460079 r009 Im(z^3+c),c=-5/86+34/37*I,n=37 9204425656460604 r009 Im(z^3+c),c=-5/86+34/37*I,n=39 9204425656460939 r009 Im(z^3+c),c=-5/86+34/37*I,n=41 9204425656460969 r009 Im(z^3+c),c=-5/86+34/37*I,n=49 9204425656460970 r009 Im(z^3+c),c=-5/86+34/37*I,n=51 9204425656460970 r009 Im(z^3+c),c=-5/86+34/37*I,n=53 9204425656460970 r009 Im(z^3+c),c=-5/86+34/37*I,n=61 9204425656460970 r009 Im(z^3+c),c=-5/86+34/37*I,n=63 9204425656460970 r009 Im(z^3+c),c=-5/86+34/37*I,n=59 9204425656460970 r009 Im(z^3+c),c=-5/86+34/37*I,n=57 9204425656460970 r009 Im(z^3+c),c=-5/86+34/37*I,n=55 9204425656460970 r009 Im(z^3+c),c=-5/86+34/37*I,n=47 9204425656460976 r009 Im(z^3+c),c=-5/86+34/37*I,n=45 9204425656460986 r009 Im(z^3+c),c=-5/86+34/37*I,n=43 9204425656463198 r009 Im(z^3+c),c=-5/86+34/37*I,n=35 9204425656482694 r009 Im(z^3+c),c=-5/86+34/37*I,n=33 9204425656507633 r009 Im(z^3+c),c=-5/86+34/37*I,n=31 9204425659222828 a001 610/15127*5778^(13/36) 9204425667039759 r009 Im(z^3+c),c=-5/86+34/37*I,n=23 9204425672945124 k002 Champernowne real with 13*n^2+156*n-160 9204425674712884 a001 610/9349*9349^(11/38) 9204425675862692 s002 sum(A136010[n]/(n*exp(pi*n)-1),n=1..infinity) 9204425690966223 m001 (2^(1/3)+3^(1/2))/(Ei(1)+FeigenbaumKappa) 9204425693590922 m001 (Riemann1stZero-ThueMorse)/(ln(5)+Zeta(1/2)) 9204425695693196 a001 329/13201*843^(15/28) 9204425699868761 a001 6765/103682*843^(11/28) 9204425701173119 a001 610/9349*24476^(11/42) 9204425704661087 a001 610/9349*64079^(11/46) 9204425705197106 a001 610/9349*7881196^(1/6) 9204425705197130 a001 610/9349*312119004989^(1/10) 9204425705197130 a001 610/9349*1568397607^(1/8) 9204425706664301 a001 610/9349*39603^(1/4) 9204425711275026 q001 1747/1898 9204425716258879 a001 610/9349*15127^(11/40) 9204425724212364 a001 610/39603*5778^(17/36) 9204425730128613 a001 305/12238*5778^(5/12) 9204425731711591 r009 Im(z^3+c),c=-5/86+34/37*I,n=21 9204425734955927 a001 17711/271443*843^(11/28) 9204425740075075 a001 6624/101521*843^(11/28) 9204425740821949 a001 121393/1860498*843^(11/28) 9204425740930916 a001 317811/4870847*843^(11/28) 9204425740998262 a001 196418/3010349*843^(11/28) 9204425741283542 a001 75025/1149851*843^(11/28) 9204425743238883 a001 28657/439204*843^(11/28) 9204425747639520 a001 610/64079*5778^(19/36) 9204425756640988 a001 10946/167761*843^(11/28) 9204425759127272 r002 40th iterates of z^2 + 9204425759858493 a001 305/51841*5778^(7/12) 9204425763771681 r005 Im(z^2+c),c=-2/3+38/225*I,n=62 9204425765096168 l006 ln(1346/3379) 9204425774832224 r009 Im(z^3+c),c=-5/86+34/37*I,n=19 9204425776358611 a001 610/167761*5778^(23/36) 9204425789439743 a001 610/9349*5778^(11/36) 9204425791223477 a001 610/271443*5778^(25/36) 9204425806712954 a001 305/219602*5778^(3/4) 9204425808651870 m001 (arctan(1/2)+GAMMA(5/6))/(Zeta(5)+ln(2)) 9204425819672489 a007 Real Root Of -114*x^4-977*x^3+675*x^2+137*x+458 9204425821963851 a001 610/710647*5778^(29/36) 9204425827446965 r002 32th iterates of z^2 + 9204425837305878 a001 610/1149851*5778^(31/36) 9204425844005526 s002 sum(A019944[n]/(n*10^n+1),n=1..infinity) 9204425847325541 r005 Re(z^2+c),c=-5/56+41/54*I,n=19 9204425848500380 a001 4181/64079*843^(11/28) 9204425852613096 a001 305/930249*5778^(11/12) 9204425855122907 m005 (1/2*3^(1/2)+8/11)/(1/12*gamma+1/8) 9204425855662093 a001 305/2889*2207^(9/32) 9204425861722917 m001 (ErdosBorwein+Trott*ZetaP(3))/ZetaP(3) 9204425867933609 a001 610/3010349*5778^(35/36) 9204425945437766 p001 sum(1/(158*n+109)/(125^n),n=0..infinity) 9204425983056371 m005 (1/2*2^(1/2)-7/8)/(9/11*exp(1)-2/5) 9204426023078081 a001 610/2207*843^(5/28) 9204426043118647 g007 Psi(2,2/3)-2*Psi(2,5/7)-Psi(2,4/5) 9204426070500164 m002 2*Csch[Pi]+Log[Pi]+Pi^4/ProductLog[Pi] 9204426121645414 a001 5/29*23725150497407^(8/11) 9204426164851134 a007 Real Root Of 430*x^4-831*x^3+96*x^2+88*x-957 9204426173082135 a001 610/3571*3571^(7/34) 9204426178602249 r005 Re(z^2+c),c=-15/28+19/32*I,n=4 9204426194446201 a007 Real Root Of 801*x^4-267*x^3-870*x^2+879*x+763 9204426209790434 a007 Real Root Of 72*x^4-744*x^3-407*x^2+84*x+796 9204426232166187 a007 Real Root Of 656*x^4-420*x^3-653*x^2-602*x+964 9204426275563638 m001 (AlladiGrinstead+Conway)/(Otter-TwinPrimes) 9204426302288982 a001 610/3571*9349^(7/38) 9204426304308709 r005 Re(z^2+c),c=-83/118+26/51*I,n=5 9204426315825672 r005 Re(z^2+c),c=-28/31+4/31*I,n=57 9204426319127315 a001 610/3571*24476^(1/6) 9204426321044422 r002 51th iterates of z^2 + 9204426321346931 a001 610/3571*64079^(7/46) 9204426321688047 a001 610/3571*20633239^(1/10) 9204426321688049 a001 610/3571*17393796001^(1/14) 9204426321688049 a001 610/3571*14662949395604^(1/18) 9204426321688049 a001 610/3571*505019158607^(1/16) 9204426321688049 a001 610/3571*599074578^(1/12) 9204426321690328 a001 610/3571*710647^(1/8) 9204426322621703 a001 610/3571*39603^(7/44) 9204426327352787 a001 610/15127*2207^(13/32) 9204426327813876 a001 55/271443*199^(31/43) 9204426328727344 a001 610/3571*15127^(7/40) 9204426329497535 r002 3th iterates of z^2 + 9204426348541667 a007 Real Root Of -28*x^4+453*x^3-501*x^2-920*x-49 9204426354780483 a001 610/9349*2207^(11/32) 9204426365829961 l006 ln(5632/6175) 9204426375296988 a001 610/3571*5778^(7/36) 9204426392642936 a001 2584/64079*843^(13/28) 9204426397513292 r002 8th iterates of z^2 + 9204426423183151 m001 (2^(1/2)-Salem)/Sierpinski 9204426439894435 r009 Re(z^3+c),c=-14/29+5/7*I,n=4 9204426461752080 r002 4th iterates of z^2 + 9204426469564833 s001 sum(exp(-Pi/3)^(n-1)*A145098[n],n=1..infinity) 9204426469909159 r002 34th iterates of z^2 + 9204426478114025 a001 1597/24476*843^(11/28) 9204426487313589 r002 42th iterates of z^2 + 9204426487313589 r002 42th iterates of z^2 + 9204426501047807 a001 305/12238*2207^(15/32) 9204426506946544 m001 (ln(Pi)+Bloch)/(MadelungNaCl+ZetaQ(3)) 9204426542476897 a007 Real Root Of -806*x^4+104*x^3+214*x^2+268*x+725 9204426545412698 m005 (1/3*2^(1/2)+2/5)/(5/6*5^(1/2)-11/12) 9204426558108619 r004 Re(z^2+c),c=-33/38+3/16*I,z(0)=-1,n=34 9204426591118478 a007 Real Root Of -87*x^4-845*x^3-475*x^2-672*x-422 9204426597920788 a001 610/39603*2207^(17/32) 9204426609296063 r002 2th iterates of z^2 + 9204426614994361 a007 Real Root Of -751*x^4+742*x^3-54*x^2-221*x+960 9204426617257226 a007 Real Root Of -809*x^4+194*x^3+334*x^2+289*x+715 9204426626206933 a001 615/15251*843^(13/28) 9204426628958407 a001 987/64079*843^(17/28) 9204426632208776 l006 ln(3413/8568) 9204426634568898 a001 305/682*521^(3/26) 9204426656010902 m001 (polylog(4,1/2)+ArtinRank2)/(Gompertz+Sarnak) 9204426656986012 r005 Re(z^2+c),c=-77/94+1/6*I,n=47 9204426660283461 a001 17711/439204*843^(13/28) 9204426661951151 a007 Real Root Of 85*x^4-434*x^3+235*x^2+56*x-547 9204426663088131 a001 15127/34*75025^(19/40) 9204426665255160 a001 46368/1149851*843^(13/28) 9204426665980521 a001 121393/3010349*843^(13/28) 9204426666151755 a001 196418/4870847*843^(13/28) 9204426666428818 a001 75025/1860498*843^(13/28) 9204426667118886 a007 Real Root Of -972*x^4-690*x^3+542*x^2+420*x+87 9204426668327838 a001 28657/710647*843^(13/28) 9204426672400142 a007 Real Root Of -70*x^4-556*x^3+821*x^2+177*x+938 9204426674905630 a007 Real Root Of -503*x^4+218*x^3+196*x^2-327*x+64 9204426675951125 k002 Champernowne real with 27/2*n^2+309/2*n-159 9204426681343914 a001 10946/271443*843^(13/28) 9204426724137179 a001 610/64079*2207^(19/32) 9204426725575196 a007 Real Root Of 176*x^4-942*x^3+527*x^2+347*x-988 9204426731908815 b008 Tanh[Sec[9/4]] 9204426734707823 m001 (GAMMA(11/12)-ln(Pi)*ZetaQ(4))/ln(Pi) 9204426735059296 a001 610/3571*2207^(7/32) 9204426760166204 a007 Real Root Of -871*x^4+165*x^3-107*x^2-861*x+52 9204426770557422 a001 4181/103682*843^(13/28) 9204426806237300 a007 Real Root Of 251*x^4-619*x^3+394*x^2+243*x-773 9204426807309670 a007 Real Root Of 290*x^4-269*x^3+512*x^2+582*x-316 9204426839145386 a001 305/51841*2207^(21/32) 9204426853348718 m001 (Psi(1,1/3)+Chi(1))/(-Cahen+FeigenbaumC) 9204426873893119 r005 Re(z^2+c),c=-28/31+4/31*I,n=59 9204426881083914 m001 GAMMA(3/4)/(GAMMA(2/3)-Khinchin) 9204426893064591 m001 (Cahen-GaussKuzminWirsing)/(Pi-ln(gamma)) 9204426893890854 m001 exp(Ei(1))/BesselJ(1,1)^2*GAMMA(1/3) 9204426902960761 r002 9th iterates of z^2 + 9204426958434741 a001 610/167761*2207^(23/32) 9204426979316781 r005 Re(z^2+c),c=-28/31+4/31*I,n=55 9204426980235792 m001 FeigenbaumMu/Champernowne/Pi 9204427009845191 r005 Re(z^2+c),c=-41/30+19/110*I,n=6 9204427025943142 r005 Im(z^2+c),c=-23/18+31/80*I,n=7 9204427060159916 a007 Real Root Of -262*x^4+617*x^3+231*x^2-78*x-417 9204427060475686 r005 Re(z^2+c),c=-61/66+2/47*I,n=11 9204427068125590 a007 Real Root Of -833*x^4+205*x^3+630*x^2-138*x+97 9204427073261633 a007 Real Root Of -174*x^4+975*x^3-55*x^2-15*x+918 9204427076088845 a001 610/271443*2207^(25/32) 9204427093109085 m001 exp(Riemann1stZero)/KhintchineLevy/(2^(1/3)) 9204427125621633 m005 (1/3*exp(1)-1/8)/(1/10*5^(1/2)+5/8) 9204427134508444 m005 (1/3*exp(1)+3/5)/(15/16+5/16*5^(1/2)) 9204427135437539 m001 (2^(1/3)+Chi(1))/(-Zeta(5)+cos(1/5*Pi)) 9204427149469814 a007 Real Root Of -339*x^4-144*x^3+280*x^2+425*x+285 9204427167623999 a001 233/39603*521^(21/26) 9204427184882201 r002 51th iterates of z^2 + 9204427194367562 a001 305/219602*2207^(27/32) 9204427196859713 l006 ln(2067/5189) 9204427206841806 m002 -5+5/Pi-Cosh[Pi]/2 9204427233515391 a007 Real Root Of 741*x^4-655*x^3-759*x^2-37*x+656 9204427293667098 r005 Re(z^2+c),c=25/102+20/61*I,n=42 9204427301434947 m001 TravellingSalesman^(FeigenbaumAlpha*Paris) 9204427312407700 a001 610/710647*2207^(29/32) 9204427314700032 a001 1292/51841*843^(15/28) 9204427341801818 m001 (GAMMA(23/24)+Trott2nd)/(3^(1/2)-sin(1/5*Pi)) 9204427350252530 m006 (1/4*exp(2*Pi)-2/3)/(1/3*Pi+2/5) 9204427363809027 a007 Real Root Of -260*x^4-103*x^3-815*x^2-317*x+505 9204427378242741 b008 91+2^(1/16) 9204427382035904 a001 1597/39603*843^(13/28) 9204427398083163 m005 (1/2*exp(1)-6/7)/(8/11*3^(1/2)-5/7) 9204427401482860 m005 (1/2*2^(1/2)-2/9)/(1/10*3^(1/2)-7/10) 9204427404204369 a007 Real Root Of 804*x^4-685*x^3+838*x^2+965*x-933 9204427406926966 m001 (-ZetaP(3)+ZetaP(4))/(2^(1/3)-DuboisRaymond) 9204427409156450 a001 987/1364*322^(1/24) 9204427430538968 a001 610/1149851*2207^(31/32) 9204427465669579 r009 Re(z^3+c),c=-17/118+26/51*I,n=24 9204427491536438 a007 Real Root Of 576*x^4-525*x^3-92*x^2+215*x-547 9204427524518182 a007 Real Root Of 738*x^4-586*x^3+421*x^2+913*x-503 9204427526204207 a001 634430159/2*2178309^(3/13) 9204427526204296 a001 35355581/2*591286729879^(3/13) 9204427526204296 a001 299537289/4*1134903170^(3/13) 9204427533725354 q001 2661/2891 9204427549415002 s002 sum(A013636[n]/((2*n)!),n=1..infinity) 9204427550506427 a001 5374978561/4*4181^(3/13) 9204427550909946 a001 2255/90481*843^(15/28) 9204427551015527 a001 21/2206*843^(19/28) 9204427551728851 r009 Re(z^3+c),c=-17/114+13/24*I,n=20 9204427555670668 h001 (-3*exp(-1)+7)/(-3*exp(-2)-6) 9204427582112930 r005 Re(z^2+c),c=-28/31+4/31*I,n=61 9204427582819763 a007 Real Root Of -182*x^4+314*x^3+455*x^2+151*x+129 9204427585372508 a001 17711/710647*843^(15/28) 9204427586807426 a007 Real Root Of 588*x^4-181*x^3-686*x^2-616*x-549 9204427590400528 a001 2576/103361*843^(15/28) 9204427591134107 a001 121393/4870847*843^(15/28) 9204427591587483 a001 75025/3010349*843^(15/28) 9204427593508016 a001 28657/1149851*843^(15/28) 9204427601918111 m002 1/(3*Pi*ProductLog[Pi]^2) 9204427606671543 a001 5473/219602*843^(15/28) 9204427618376184 m005 (1/2*Catalan+4/9)/(29/33+1/22*5^(1/2)) 9204427659650672 a007 Real Root Of -58*x^4+998*x^3-675*x^2-619*x+822 9204427678957126 k002 Champernowne real with 14*n^2+153*n-158 9204427696895702 a001 4181/167761*843^(15/28) 9204427709304025 a007 Real Root Of -383*x^4+224*x^3+540*x^2+481*x-800 9204427754795056 m001 (Pi-ln(gamma))/(Khinchin+PisotVijayaraghavan) 9204427771705843 a007 Real Root Of 735*x^4+981*x^3+497*x^2-649*x-781 9204427786093800 m001 (BesselJ(1,1)+KomornikLoreti)/(exp(Pi)+Shi(1)) 9204427797794751 a007 Real Root Of -312*x^4+764*x^3-178*x^2-647*x+375 9204427818120551 m001 (GaussAGM(1,1/sqrt(2))+2/3)/(ln(Pi)+1/2) 9204427872620302 a007 Real Root Of 655*x^4-530*x^3-950*x^2+244*x+146 9204427888091251 l006 ln(2788/6999) 9204427898126663 r005 Re(z^2+c),c=-28/31+4/31*I,n=63 9204427942783430 r005 Re(z^2+c),c=-63/122+38/39*I,n=3 9204427962998214 m001 ln(TreeGrowth2nd)/FeigenbaumB*cos(Pi/12)^2 9204427970093035 a001 987/2207*322^(1/8) 9204427975018377 a007 Real Root Of 657*x^4+624*x^3+707*x^2-12*x-595 9204427979347879 a007 Real Root Of -341*x^4-298*x^3-616*x^2-47*x+491 9204427983604296 a007 Real Root Of 336*x^4-861*x^3+15*x^2-409*x+794 9204428006914675 r005 Im(z^2+c),c=-177/122+1/16*I,n=3 9204428009926144 m001 (-Landau+Totient)/(2^(1/2)-BesselI(0,2)) 9204428022193830 r009 Re(z^3+c),c=-79/114+15/29*I,n=23 9204428027189548 r005 Re(z^2+c),c=21/118+21/50*I,n=58 9204428074901373 m005 (1/2*Zeta(3)-2/3)/(4/11*5^(1/2)-1/10) 9204428078426064 m001 (cos(1/5*Pi)-Zeta(1/2))/(CopelandErdos+Trott) 9204428083026581 m001 (Champernowne+KhinchinLevy)/(Ei(1)-Bloch) 9204428104423437 r005 Re(z^2+c),c=-28/31+3/32*I,n=38 9204428109912916 m005 (1/2*5^(1/2)-5/8)/(10/11*2^(1/2)-3/4) 9204428135357069 a007 Real Root Of 890*x^4-232*x^3+472*x^2+407*x-845 9204428166501115 a007 Real Root Of -641*x^4-419*x^3-617*x^2+265*x+900 9204428203945330 a007 Real Root Of 578*x^4-856*x^3-280*x^2-300*x+766 9204428207653069 a001 6/2255*89^(15/19) 9204428214916199 a003 cos(Pi*11/32)-cos(Pi*41/109) 9204428241038367 a001 2584/167761*843^(17/28) 9204428257304951 m001 (HardyLittlewoodC5+MertensB3)/(Ei(1)-gamma(3)) 9204428263444373 b008 -91+ExpIntegralEi[-1/4] 9204428295265805 l006 ln(3509/8809) 9204428300542207 b008 7*(1+(2*Sqrt[3])/11) 9204428315301286 a001 1597/64079*843^(15/28) 9204428323034147 a005 (1/cos(43/214*Pi))^247 9204428334745684 l006 ln(8225/9018) 9204428343324928 a007 Real Root Of 897*x^4-209*x^3-323*x^2-929*x-83 9204428364862445 a007 Real Root Of 573*x^4-391*x^3-550*x^2-581*x-785 9204428369319275 a003 cos(Pi*15/107)+cos(Pi*49/99) 9204428374076106 r009 Im(z^3+c),c=-2/25+43/47*I,n=5 9204428410012661 a007 Real Root Of 734*x^4-818*x^3+342*x^2+723*x-789 9204428424304840 q001 3575/3884 9204428431667791 a007 Real Root Of 833*x^4-951*x^3-126*x^2+267*x-987 9204428458800791 a007 Real Root Of 681*x^4-767*x^3-258*x^2-690*x+963 9204428476237663 a001 6765/439204*843^(17/28) 9204428477353885 a001 987/167761*843^(3/4) 9204428484956276 p004 log(30047/11969) 9204428489476458 r005 Re(z^2+c),c=9/22+2/41*I,n=4 9204428510552778 a001 17711/1149851*843^(17/28) 9204428515559286 a001 46368/3010349*843^(17/28) 9204428516741162 a001 75025/4870847*843^(17/28) 9204428518653478 a001 28657/1860498*843^(17/28) 9204428531760686 a001 10946/710647*843^(17/28) 9204428553144468 r005 Im(z^2+c),c=-111/110+2/21*I,n=16 9204428554884120 a007 Real Root Of -375*x^4-156*x^3+163*x^2+772*x+720 9204428587128996 a007 Real Root Of -441*x^4+607*x^3-599*x^2-737*x+619 9204428609139926 r009 Im(z^3+c),c=-37/62+35/61*I,n=17 9204428619565508 a007 Real Root Of -873*x^4+165*x^3+511*x^2-448*x-90 9204428621598823 a001 4181/271443*843^(17/28) 9204428628028669 r005 Re(z^2+c),c=-57/64+8/49*I,n=29 9204428681963127 k002 Champernowne real with 29/2*n^2+303/2*n-157 9204428686261756 a001 11/196418*121393^(11/46) 9204428693774961 m001 (GAMMA(11/12)+Niven)/(ln(Pi)-exp(1/exp(1))) 9204428810559652 m001 Trott-sin(1)^ThueMorse 9204428830178554 a001 64079/13*21^(8/39) 9204428864241231 a001 13201/7*1597^(47/56) 9204428870883744 h001 (6/7*exp(1)+7/9)/(1/12*exp(1)+1/9) 9204428883317920 a007 Real Root Of 423*x^4-570*x^3+186*x^2+934*x-46 9204428883730937 r005 Re(z^2+c),c=-9/10+16/153*I,n=44 9204428913238090 a007 Real Root Of 68*x^4-326*x^3-409*x^2-87*x+632 9204428976900382 a007 Real Root Of -807*x^4+334*x^3+920*x^2+129*x+179 9204428995583053 r002 41th iterates of z^2 + 9204428999087921 r002 19th iterates of z^2 + 9204429031449728 r001 33i'th iterates of 2*x^2-1 of 9204429034889310 m001 Ei(1)*exp(GolombDickman)^2/GAMMA(1/3)^2 9204429068416044 m001 (sin(1/5*Pi)-CareFree)/(Tetranacci-TwinPrimes) 9204429087386498 m001 (GAMMA(2/3)+Sarnak)/(LambertW(1)-exp(Pi)) 9204429137210252 m001 (2^(1/2)-Ei(1,1))/(-exp(1/Pi)+ZetaP(4)) 9204429142796088 m005 (1/2*Pi-1/12)/(7/8*gamma-2/3) 9204429146642419 m001 (Otter-Thue)/(ln(gamma)+arctan(1/3)) 9204429165741542 a001 2584/271443*843^(19/28) 9204429174022187 m001 Paris^2*ln(GaussKuzminWirsing)/(2^(1/3)) 9204429180085310 h001 (-4*exp(-2)+9)/(-8*exp(1/2)+4) 9204429191049148 r002 6th iterates of z^2 + 9204429223059859 a001 3/4*7881196^(3/19) 9204429224449834 a001 3/4*39603^(9/38) 9204429232176706 m001 Ei(1,1)-HardyLittlewoodC4^MadelungNaCl 9204429237358574 a001 1597/103682*843^(17/28) 9204429283261427 r005 Im(z^2+c),c=-133/122+5/46*I,n=39 9204429302868704 a001 3/4*5778^(11/38) 9204429347751583 m002 -3*Pi^3-Csch[Pi]*Log[Pi]+ProductLog[Pi] 9204429369830683 m001 1/Porter/CareFree/exp(Salem)^2 9204429376291364 a007 Real Root Of -336*x^4+943*x^3-31*x^2-631*x+422 9204429386333683 a003 sin(Pi*22/95)/cos(Pi*26/107) 9204429401326893 a001 6765/710647*843^(19/28) 9204429402057085 a001 329/90481*843^(23/28) 9204429404290523 r002 28th iterates of z^2 + 9204429415439380 p004 log(30529/12161) 9204429424972772 a007 Real Root Of -832*x^4+472*x^3-468*x^2-443*x+954 9204429426226500 m005 (1/2*5^(1/2)+7/9)/(8/11*3^(1/2)+4/5) 9204429426636167 m001 1/cos(Pi/5)^2/ln(cos(Pi/12))^2/sinh(1)^2 9204429435698333 a001 17711/1860498*843^(19/28) 9204429436974628 m001 FeigenbaumB^2*ArtinRank2^2/ln((3^(1/3))) 9204429440713058 a001 46368/4870847*843^(19/28) 9204429443812329 a001 28657/3010349*843^(19/28) 9204429456941050 a001 10946/1149851*843^(19/28) 9204429466250062 r009 Im(z^3+c),c=-27/44+18/37*I,n=62 9204429473936252 m003 -3/2+(11*Sqrt[5])/32+4*Cot[1/2+Sqrt[5]/2] 9204429487382409 a001 305/2889*843^(9/28) 9204429503083030 a007 Real Root Of 881*x^4+112*x^3+115*x^2-110*x+9 9204429507743841 a007 Real Root Of 79*x^4+635*x^3-891*x^2-392*x+19 9204429546926647 a001 4181/439204*843^(19/28) 9204429554178542 r005 Re(z^2+c),c=-28/31+4/31*I,n=53 9204429559730799 a001 610/3571*843^(1/4) 9204429588017246 m001 (MertensB1-Paris)/(ln(2^(1/2)+1)-CareFree) 9204429594081032 a007 Real Root Of -85*x^4-826*x^3-355*x^2+504*x+697 9204429606889282 a007 Real Root Of 790*x^4-216*x^3-304*x^2+378*x-130 9204429608648273 m009 (1/5*Pi^2+2)/(1/6*Psi(1,1/3)-6) 9204429612796577 m002 -E^Pi+6*Pi+Pi^4-ProductLog[Pi] 9204429637451085 a007 Real Root Of -229*x^4+316*x^3+290*x^2+399*x-695 9204429637940862 m001 (Chi(1)-Pi^(1/2))^GAMMA(3/4) 9204429676926587 r009 Re(z^3+c),c=-2/13+27/47*I,n=19 9204429684969128 k002 Champernowne real with 15*n^2+150*n-156 9204429707423526 a007 Real Root Of 321*x^4-526*x^3+263*x^2+372*x-521 9204429731692218 a007 Real Root Of 324*x^4-420*x^3+194*x^2+271*x-475 9204429771735089 a007 Real Root Of 358*x^4-739*x^3+304*x^2+719*x-429 9204429781970129 r009 Re(z^3+c),c=-5/52+62/63*I,n=19 9204429797265726 a001 233/24476*521^(19/26) 9204429819929738 m001 (-Trott+ZetaP(3))/(Shi(1)+Sarnak) 9204429854520298 a007 Real Root Of -85*x^4-736*x^3+381*x^2-348*x+683 9204429869749223 l006 ln(721/1810) 9204429886363385 a001 9349/377*591286729879^(2/15) 9204429899871590 r009 Im(z^3+c),c=-27/44+18/37*I,n=56 9204429910578845 a007 Real Root Of -643*x^4-292*x^3-989*x^2-720*x+409 9204429976308233 a001 844/13*433494437^(2/15) 9204429981371807 a007 Real Root Of 734*x^4-449*x^3-872*x^2+475*x+299 9204429989428579 a001 64079/377*317811^(2/15) 9204429999030741 m001 (ln(3)-Landau)/(Stephens+Trott2nd) 9204430007974168 r005 Im(z^2+c),c=-5/7+23/48*I,n=5 9204430017257860 a001 76/21*5^(29/50) 9204430032537142 b008 -10+ProductLog[ArcCosh[3]] 9204430051592681 h001 (-6*exp(1/3)-5)/(-9*exp(2/3)+3) 9204430052452376 a001 305/682*1364^(1/10) 9204430071661105 a007 Real Root Of -67*x^4-678*x^3-622*x^2-620*x-815 9204430091069422 a001 34/5779*843^(3/4) 9204430092920458 r005 Re(z^2+c),c=-113/122+1/51*I,n=15 9204430093625596 a007 Real Root Of 933*x^4-463*x^3-595*x^2+369*x-187 9204430102584139 m005 (1/2*5^(1/2)+6/7)/(-11/20+3/20*5^(1/2)) 9204430157664168 r009 Re(z^3+c),c=-5/32+27/46*I,n=33 9204430163697103 a001 1597/167761*843^(19/28) 9204430186285161 m008 (2/5*Pi^4+4)/(1/6*Pi^3-1/2) 9204430186875909 r005 Im(z^2+c),c=-133/122+5/46*I,n=42 9204430203518496 r008 a(0)=9,K{-n^6,49-64*n^3-74*n^2+84*n} 9204430219070974 m001 ZetaP(3)^ZetaP(2)-exp(1/Pi) 9204430227122434 r005 Re(z^2+c),c=3/40+19/33*I,n=45 9204430235397288 a003 sin(Pi*23/74)/sin(Pi*41/115) 9204430267585351 r009 Im(z^3+c),c=-47/78+9/28*I,n=10 9204430288675686 m001 (arctan(1/2)+Riemann3rdZero)/(gamma+ln(gamma)) 9204430293321158 r008 a(0)=9,K{-n^6,87-59*n^3-70*n^2+37*n} 9204430326507345 a001 6765/1149851*843^(3/4) 9204430327384988 a001 987/439204*843^(25/28) 9204430345869879 m001 Lehmer*(Pi*csc(5/24*Pi)/GAMMA(19/24))^Magata 9204430355845181 m001 (-Bloch+Trott)/(BesselI(0,1)-BesselJ(0,1)) 9204430360857276 a001 17711/3010349*843^(3/4) 9204430365868863 a001 11592/1970299*843^(3/4) 9204430366600044 a001 121393/20633239*843^(3/4) 9204430366706721 a001 317811/54018521*843^(3/4) 9204430366722286 a001 208010/35355581*843^(3/4) 9204430366724556 a001 2178309/370248451*843^(3/4) 9204430366724888 a001 5702887/969323029*843^(3/4) 9204430366724936 a001 196452/33391061*843^(3/4) 9204430366724943 a001 39088169/6643838879*843^(3/4) 9204430366724944 a001 102334155/17393796001*843^(3/4) 9204430366724944 a001 66978574/11384387281*843^(3/4) 9204430366724944 a001 701408733/119218851371*843^(3/4) 9204430366724944 a001 1836311903/312119004989*843^(3/4) 9204430366724944 a001 1201881744/204284540899*843^(3/4) 9204430366724944 a001 12586269025/2139295485799*843^(3/4) 9204430366724944 a001 32951280099/5600748293801*843^(3/4) 9204430366724944 a001 1135099622/192933544679*843^(3/4) 9204430366724944 a001 139583862445/23725150497407*843^(3/4) 9204430366724944 a001 53316291173/9062201101803*843^(3/4) 9204430366724944 a001 10182505537/1730726404001*843^(3/4) 9204430366724944 a001 7778742049/1322157322203*843^(3/4) 9204430366724944 a001 2971215073/505019158607*843^(3/4) 9204430366724944 a001 567451585/96450076809*843^(3/4) 9204430366724944 a001 433494437/73681302247*843^(3/4) 9204430366724944 a001 165580141/28143753123*843^(3/4) 9204430366724945 a001 31622993/5374978561*843^(3/4) 9204430366724947 a001 24157817/4106118243*843^(3/4) 9204430366724966 a001 9227465/1568397607*843^(3/4) 9204430366725092 a001 1762289/299537289*843^(3/4) 9204430366725960 a001 1346269/228826127*843^(3/4) 9204430366731905 a001 514229/87403803*843^(3/4) 9204430366772652 a001 98209/16692641*843^(3/4) 9204430367051938 a001 75025/12752043*843^(3/4) 9204430368966194 a001 28657/4870847*843^(3/4) 9204430377742880 r008 a(0)=9,K{-n^6,93-50*n^3-94*n^2+46*n} 9204430382086700 a001 5473/930249*843^(3/4) 9204430399165464 q001 3/32593 9204430406985440 a007 Real Root Of 693*x^4-351*x^3-800*x^2-633*x-676 9204430448859342 r005 Re(z^2+c),c=2/23+6/19*I,n=14 9204430459597563 a007 Real Root Of 451*x^4-625*x^3+285*x^2+81*x-978 9204430464579171 r001 16i'th iterates of 2*x^2-1 of 9204430472015985 a001 4181/710647*843^(3/4) 9204430476527353 r005 Im(z^2+c),c=-17/22+2/65*I,n=62 9204430481418061 r009 Im(z^3+c),c=-5/19+35/48*I,n=41 9204430483493615 a001 305/682*3571^(3/34) 9204430494307641 r009 Im(z^3+c),c=-17/122+26/29*I,n=39 9204430528821806 m001 (Catalan+FeigenbaumMu)/(Pi+3^(1/2)) 9204430533531078 b008 2-7*CoshIntegral[3/2] 9204430538868003 a001 305/682*9349^(3/38) 9204430546084435 a001 305/682*24476^(1/14) 9204430547035699 a001 305/682*64079^(3/46) 9204430547179242 a001 305/682*439204^(1/18) 9204430547181886 a001 305/682*7881196^(1/22) 9204430547181893 a001 305/682*33385282^(1/24) 9204430547182026 a001 305/682*1860498^(1/20) 9204430547235407 a001 305/682*103682^(1/16) 9204430547582031 a001 305/682*39603^(3/44) 9204430550198735 a001 305/682*15127^(3/40) 9204430570157163 a001 305/682*5778^(1/12) 9204430586960429 m001 Psi(2,1/3)*GAMMA(13/24)-exp(1/2) 9204430640338112 m001 Ei(1,1)^(Pi^(1/2))*KhinchinLevy^(Pi^(1/2)) 9204430647483548 m001 Cahen*GAMMA(5/6)^Otter 9204430662318173 a007 Real Root Of 87*x^4+32*x^3+906*x^2-114*x-910 9204430687975129 k002 Champernowne real with 31/2*n^2+297/2*n-155 9204430688977129 k004 Champernowne real with floor(Pi*(5*n^2+47*n-49)) 9204430694552779 a007 Real Root Of 810*x^4-732*x^3-435*x^2+4*x-780 9204430713134337 m005 (1/2*5^(1/2)-7/11)/(-1/28+1/4*5^(1/2)) 9204430724341078 a001 305/682*2207^(3/32) 9204430745979030 m005 (1/2*Pi-1/4)/(103/198+9/22*5^(1/2)) 9204430759425109 m001 (LambertW(1)+StolarskyHarborth)/CareFree 9204430793550194 a001 610/9349*843^(11/28) 9204430846174901 a007 Real Root Of 876*x^4-751*x^3-429*x^2+981*x+52 9204430852123571 m002 -Pi^4+5*ProductLog[Pi]-ProductLog[Pi]/Pi^5 9204430903239354 r009 Re(z^3+c),c=-7/106+47/55*I,n=9 9204430944153434 r002 22th iterates of z^2 + 9204430964413782 r005 Im(z^2+c),c=-85/94+1/13*I,n=6 9204430970341012 a007 Real Root Of 734*x^4-476*x^3-352*x^2-616*x+60 9204430985726192 a007 Real Root Of -189*x^4+802*x^3+675*x^2+543*x+689 9204431009518374 r002 49th iterates of z^2 + 9204431016158814 a001 2584/710647*843^(23/28) 9204431017119838 q001 914/993 9204431045155345 a001 377/521*199^(1/22) 9204431075783214 m001 (Lehmer+ReciprocalLucas)/(5^(1/2)+cos(1)) 9204431076021259 m005 (25/4+1/4*5^(1/2))/(5/8*5^(1/2)+6) 9204431088400471 a001 1597/271443*843^(3/4) 9204431091662311 r009 Im(z^3+c),c=-11/98+29/32*I,n=17 9204431098460350 a007 Real Root Of 274*x^4-666*x^3-817*x^2-878*x-832 9204431126842244 a001 329/41*24476^(37/40) 9204431128857176 a007 Real Root Of -75*x^4+810*x^3-85*x^2-396*x+393 9204431142521415 a001 377/1364*322^(5/24) 9204431171066262 a001 89/15127*199^(21/22) 9204431190621972 m002 3*Pi^5+Log[Pi]^2+ProductLog[Pi] 9204431194409947 r005 Re(z^2+c),c=-23/25+11/45*I,n=51 9204431198082503 a001 1292/2889*322^(1/8) 9204431207136791 m001 (Otter+Tribonacci)/(cos(1)+FeigenbaumDelta) 9204431218422801 r005 Re(z^2+c),c=13/38+2/57*I,n=7 9204431251653082 a001 55/15126*843^(23/28) 9204431251725868 a007 Real Root Of 757*x^4-684*x^3+374*x^2+646*x-799 9204431252474403 a001 141/101521*843^(27/28) 9204431253548621 m001 (BesselJ(1,1)-GAMMA(13/24))/(Cahen+TwinPrimes) 9204431260675023 r005 Re(z^2+c),c=29/126+24/47*I,n=16 9204431277903827 m001 (ErdosBorwein-MinimumGamma)/(Zeta(3)+Artin) 9204431286011233 a001 17711/4870847*843^(23/28) 9204431303729390 a007 Real Root Of 191*x^4+97*x^3+292*x^2+90*x-226 9204431307245738 a001 10946/3010349*843^(23/28) 9204431308160196 r005 Im(z^2+c),c=-63/106+19/39*I,n=13 9204431318923293 a007 Real Root Of -777*x^4+516*x^3-85*x^2-514*x+559 9204431321016382 a001 1364/13*4181^(22/41) 9204431349410867 a003 sin(Pi*19/118)/cos(Pi*11/34) 9204431362551565 l006 ln(3701/9291) 9204431363720484 r009 Re(z^3+c),c=-5/28+36/55*I,n=18 9204431394458013 r002 3th iterates of z^2 + 9204431397196545 a001 4181/1149851*843^(23/28) 9204431398386444 m001 1/Magata^2*ln(FeigenbaumDelta)/(3^(1/3)) 9204431417057384 a003 sin(Pi*5/82)+sin(Pi*31/119) 9204431422467779 r002 40th iterates of z^2 + 9204431459760681 a003 cos(Pi*9/73)*sin(Pi*47/101) 9204431498804628 m001 (arctan(1/3)-GAMMA(19/24))^polylog(4,1/2) 9204431501583968 m001 Paris^2/ln(FibonacciFactorial)*GAMMA(5/24)^2 9204431503913653 a007 Real Root Of 451*x^4-562*x^3-13*x^2+717*x-91 9204431519836237 a007 Real Root Of -749*x^4+397*x^3+809*x^2+538*x+657 9204431538966334 a001 233/11*123^(29/37) 9204431539226640 r005 Re(z^2+c),c=-13/54+46/63*I,n=51 9204431573171751 a001 610/15127*843^(13/28) 9204431575423371 m001 GAMMA(7/12)^cos(1)/(Grothendieck^cos(1)) 9204431582492835 a007 Real Root Of -549*x^4+286*x^3-992*x^2-999*x+538 9204431608565126 h001 (-2*exp(4)-12)/(-3*exp(2)+9) 9204431627448609 r002 41th iterates of z^2 + 9204431669039913 a001 6765/15127*322^(1/8) 9204431674757386 r009 Im(z^3+c),c=-11/28+47/55*I,n=3 9204431679410168 a007 Real Root Of -396*x^4+585*x^3-15*x^2+140*x+882 9204431690981130 k002 Champernowne real with 16*n^2+147*n-154 9204431692747498 m001 (GAMMA(7/12)-Kac)/(arctan(1/2)-exp(1/exp(1))) 9204431703458228 a001 377/2207*322^(7/24) 9204431723729547 l006 ln(2980/7481) 9204431737751676 a001 17711/39603*322^(1/8) 9204431747776587 a001 23184/51841*322^(1/8) 9204431749239202 a001 121393/271443*322^(1/8) 9204431749452594 a001 317811/710647*322^(1/8) 9204431749483728 a001 416020/930249*322^(1/8) 9204431749488270 a001 2178309/4870847*322^(1/8) 9204431749488933 a001 5702887/12752043*322^(1/8) 9204431749489029 a001 7465176/16692641*322^(1/8) 9204431749489044 a001 39088169/87403803*322^(1/8) 9204431749489046 a001 102334155/228826127*322^(1/8) 9204431749489046 a001 133957148/299537289*322^(1/8) 9204431749489046 a001 701408733/1568397607*322^(1/8) 9204431749489046 a001 1836311903/4106118243*322^(1/8) 9204431749489046 a001 2403763488/5374978561*322^(1/8) 9204431749489046 a001 12586269025/28143753123*322^(1/8) 9204431749489046 a001 32951280099/73681302247*322^(1/8) 9204431749489046 a001 43133785636/96450076809*322^(1/8) 9204431749489046 a001 225851433717/505019158607*322^(1/8) 9204431749489046 a001 591286729879/1322157322203*322^(1/8) 9204431749489046 a001 10610209857723/23725150497407*322^(1/8) 9204431749489046 a001 182717648081/408569081798*322^(1/8) 9204431749489046 a001 139583862445/312119004989*322^(1/8) 9204431749489046 a001 53316291173/119218851371*322^(1/8) 9204431749489046 a001 10182505537/22768774562*322^(1/8) 9204431749489046 a001 7778742049/17393796001*322^(1/8) 9204431749489046 a001 2971215073/6643838879*322^(1/8) 9204431749489046 a001 567451585/1268860318*322^(1/8) 9204431749489046 a001 433494437/969323029*322^(1/8) 9204431749489046 a001 165580141/370248451*322^(1/8) 9204431749489047 a001 31622993/70711162*322^(1/8) 9204431749489052 a001 24157817/54018521*322^(1/8) 9204431749489089 a001 9227465/20633239*322^(1/8) 9204431749489342 a001 1762289/3940598*322^(1/8) 9204431749491077 a001 1346269/3010349*322^(1/8) 9204431749502969 a001 514229/1149851*322^(1/8) 9204431749584478 a001 98209/219602*322^(1/8) 9204431750143147 a001 75025/167761*322^(1/8) 9204431753972322 a001 28657/64079*322^(1/8) 9204431760030132 a007 Real Root Of -807*x^4-339*x^3-404*x^2+266*x+902 9204431764103972 r005 Im(z^2+c),c=-81/74+7/64*I,n=29 9204431774923239 m001 (Totient+Trott)/(ln(Pi)+FellerTornier) 9204431780217880 a001 5473/12238*322^(1/8) 9204431789383304 m001 Catalan*KhinchinHarmonic^ZetaQ(3) 9204431824459743 a001 1597/76*322^(36/55) 9204431830918418 m005 (-1/4+1/4*5^(1/2))/(1/6*2^(1/2)-4/7) 9204431837940129 r005 Re(z^2+c),c=-23/58+42/61*I,n=3 9204431867204028 a007 Real Root Of -180*x^4+634*x^3-950*x^2-849*x+647 9204431883694790 r009 Im(z^3+c),c=-45/74+13/51*I,n=15 9204431905877268 a007 Real Root Of -649*x^4+871*x^3+393*x^2-401*x+443 9204431925975899 m001 ZetaQ(4)^(GolombDickman*MadelungNaCl) 9204431934914998 a001 305/682*843^(3/28) 9204431941339428 a001 2584/1149851*843^(25/28) 9204431960107613 a001 4181/9349*322^(1/8) 9204431962929414 r005 Re(z^2+c),c=-9/10+33/241*I,n=21 9204431966915544 m001 Zeta(1,2)*GaussAGM*Salem 9204431970274598 m006 (1/3*ln(Pi)-4)/(4*Pi^2-1/6) 9204431973321219 r005 Im(z^2+c),c=-59/114+1/62*I,n=50 9204431980089594 h001 (3/5*exp(1)+1/7)/(6/11*exp(1)+4/9) 9204431991045913 m005 (1/2*Zeta(3)-5/11)/(7/10*Zeta(3)+3/4) 9204432013728544 a001 1597/439204*843^(23/28) 9204432037592155 a007 Real Root Of 836*x^4-221*x^3-787*x^2+721*x+558 9204432048268113 m001 1/cos(Pi/12)^2/MertensB1*exp(cos(Pi/5)) 9204432050723521 m002 -5+Pi^3+Pi^6/ProductLog[Pi]-Tanh[Pi] 9204432056080972 a001 610/3*521^(7/29) 9204432080580913 m006 (2/5*ln(Pi)-5/6)/(4*ln(Pi)-1/2) 9204432112856824 r005 Im(z^2+c),c=-9/14+23/129*I,n=44 9204432144862751 a001 18/28657*3^(8/23) 9204432149036841 a007 Real Root Of -314*x^4+641*x^3-350*x^2-468*x+591 9204432156239195 a007 Real Root Of 758*x^4+532*x^3-472*x^2-708*x-381 9204432176812208 a001 6765/3010349*843^(25/28) 9204432183755150 r008 a(0)=1,K{-n^6,8+25*n^3-9*n^2-11*n} 9204432202942276 m005 (1/3*5^(1/2)+2/11)/(4*exp(1)-4/5) 9204432220914553 m001 GAMMA(3/4)^2*BesselK(1,1)^2*exp(sqrt(2))^2 9204432222745284 p001 sum(1/(225*n+109)/(100^n),n=0..infinity) 9204432232399791 a001 10946/4870847*843^(25/28) 9204432275265331 a007 Real Root Of -573*x^4+376*x^3-304*x^2-741*x+280 9204432315460247 l006 ln(2259/5671) 9204432322342389 a001 4181/1860498*843^(25/28) 9204432350086114 a001 233/15127*521^(17/26) 9204432355251023 a007 Real Root Of 372*x^4-925*x^3-201*x^2-347*x+944 9204432358590226 r005 Re(z^2+c),c=-109/118+2/37*I,n=3 9204432383752260 a007 Real Root Of 826*x^4+650*x^3+566*x^2+647*x+30 9204432384447224 m003 -4*E^(1+Sqrt[5])+4*Sinh[1/2+Sqrt[5]/2] 9204432384776151 a007 Real Root Of 519*x^4-285*x^3-261*x^2+922*x+475 9204432394685630 b008 9+(7/4+Pi)^(-1) 9204432449699871 r009 Im(z^3+c),c=-22/31+16/41*I,n=2 9204432476286105 m005 (1/3*exp(1)+1/8)/(2/9*Catalan+11/12) 9204432480567322 a007 Real Root Of 196*x^4-894*x^3-195*x^2+520*x-194 9204432481875695 m003 1/2+(3*Sqrt[5])/16-Cos[1/2+Sqrt[5]/2]/40 9204432489017632 r002 45th iterates of z^2 + 9204432491522948 a007 Real Root Of -751*x^4+205*x^3-953*x^2+969*x+9 9204432506286365 r005 Re(z^2+c),c=-28/31+4/31*I,n=49 9204432514090281 a007 Real Root Of -34*x^4-359*x^3-321*x^2+916*x-283 9204432532395113 a007 Real Root Of 866*x^4-883*x^3-264*x^2+685*x-456 9204432535536536 m005 (1/2*exp(1)-8/9)/(1/6*3^(1/2)+2/9) 9204432553916222 a001 305/12238*843^(15/28) 9204432560013186 a007 Real Root Of -707*x^4+362*x^3+547*x^2+243*x+550 9204432574017946 b008 ArcCot[Pi^2+Tanh[2]] 9204432583370129 h001 (1/4*exp(2)+7/9)/(8/11*exp(1)+7/8) 9204432590866737 r002 18th iterates of z^2 + 9204432595837878 r005 Im(z^2+c),c=-31/44+11/46*I,n=28 9204432603219176 m001 Artin^FeigenbaumMu/(Artin^ln(Pi)) 9204432610826956 a007 Real Root Of -564*x^4+952*x^3-915*x^2+752*x+7 9204432611233539 l006 ln(2593/2843) 9204432611233539 p004 log(2843/2593) 9204432634368695 r005 Re(z^2+c),c=-59/48+6/55*I,n=38 9204432636928416 a007 Real Root Of -352*x^4+788*x^3+838*x^2-279*x-815 9204432648059844 r009 Im(z^3+c),c=-61/118+37/44*I,n=2 9204432661737795 a001 3/17711*28657^(27/44) 9204432677651978 a007 Real Root Of 625*x^4-66*x^3-299*x^2+179*x-82 9204432679261545 a007 Real Root Of -610*x^4+316*x^3+434*x^2-659*x-290 9204432682021695 m008 (1/4*Pi^6+3)/(3/4*Pi-5) 9204432693987131 k002 Champernowne real with 33/2*n^2+291/2*n-153 9204432704939355 a007 Real Root Of 483*x^4-285*x^3-588*x^2-701*x-716 9204432749377751 r005 Re(z^2+c),c=-28/31+4/31*I,n=51 9204432759185332 a003 sin(Pi*41/109)*sin(Pi*36/77) 9204432774098953 p001 sum((-1)^n/(477*n+190)/n/(16^n),n=1..infinity) 9204432774139514 m001 (2^(1/2)-BesselI(1,2))/(-Tetranacci+Trott) 9204432779868304 l006 ln(3797/9532) 9204432786941856 m001 (-Mills+StronglyCareFree)/(2^(1/2)-Chi(1)) 9204432839416405 a007 Real Root Of 501*x^4-405*x^3-542*x^2+990*x+695 9204432866485328 a001 1292/930249*843^(27/28) 9204432918614932 a001 4/10610209857723*3^(13/16) 9204432920128774 r005 Im(z^2+c),c=-1+41/139*I,n=23 9204432929647524 a005 (1/cos(87/211*Pi))^30 9204432938818129 a001 1597/710647*843^(25/28) 9204432974251424 m005 (1/2*Catalan-7/9)/(1/7*3^(1/2)+1/10) 9204433032511473 a007 Real Root Of 873*x^4+431*x^3+253*x^2+52*x-457 9204433081951141 m001 (Bloch+Riemann2ndZero)/(Ei(1)+BesselJ(1,1)) 9204433082948194 r009 Re(z^3+c),c=-13/74+23/33*I,n=47 9204433096819055 a007 Real Root Of -693*x^4-155*x^3-305*x^2+389*x+993 9204433101702958 m005 (1/3*Zeta(3)+1/2)/(2/5*3^(1/2)+2/7) 9204433101966348 a001 6765/4870847*843^(27/28) 9204433118210471 a007 Real Root Of -646*x^4-307*x^3-359*x^2-158*x+383 9204433136329225 m001 ZetaP(4)^(Champernowne*MertensB1) 9204433147581086 a005 (1/sin(89/237*Pi))^527 9204433160149625 r005 Re(z^2+c),c=-101/110+5/64*I,n=9 9204433193090275 a001 1597/3571*322^(1/8) 9204433206071208 m009 (Psi(1,2/3)+4/5)/(2/5*Pi^2+1/4) 9204433223217630 q001 1/1086433 9204433234254672 a007 Real Root Of -655*x^4+672*x^3-644*x^2-958*x+658 9204433247501622 a001 4181/3010349*843^(27/28) 9204433255444562 r002 3th iterates of z^2 + 9204433267306857 a001 9349/377*55^(18/55) 9204433275072436 m005 (1/3*exp(1)-1/5)/(2/9*Zeta(3)+1/2) 9204433282868087 a001 7/3*20365011074^(14/19) 9204433284138320 p004 log(36559/14563) 9204433300593217 m001 (ZetaQ(4)-gamma(1))/cos(1/5*Pi) 9204433350417838 a007 Real Root Of -626*x^4+835*x^3+349*x^2-166*x+652 9204433396367177 m001 exp(1/Pi)^(Zeta(1,-1)/HardyLittlewoodC3) 9204433401903535 m001 (DuboisRaymond-exp(Pi))/(KhinchinLevy+Mills) 9204433405233303 m005 (29/36+1/4*5^(1/2))/(2/11*3^(1/2)-1/6) 9204433407752883 r005 Im(z^2+c),c=23/90+33/58*I,n=38 9204433409319199 a001 1/29*(1/2*5^(1/2)+1/2)^22*123^(7/8) 9204433421403154 m005 (1/2*gamma-6/7)/(59/11+4/11*5^(1/2)) 9204433457838698 a001 610/39603*843^(17/28) 9204433458936164 r005 Re(z^2+c),c=-23/34+98/117*I,n=2 9204433461986470 l006 ln(1538/3861) 9204433487866788 a007 Real Root Of 841*x^4-679*x^3-538*x^2+46*x-635 9204433497536945 q001 3737/4060 9204433497536945 r002 2th iterates of z^2 + 9204433498962554 a007 Real Root Of -200*x^4+520*x^3-515*x^2-33*x+955 9204433515230190 r005 Im(z^2+c),c=-41/90+7/45*I,n=41 9204433520312639 a007 Real Root Of -881*x^4-491*x^3+321*x^2+283*x+238 9204433533532865 r005 Im(z^2+c),c=-7/6+31/159*I,n=31 9204433573840006 a005 (1/cos(11/159*Pi))^1544 9204433581691241 a007 Real Root Of 475*x^4-227*x^3+308*x^2+504*x-315 9204433588006381 a007 Real Root Of -965*x^4-529*x^3+63*x^2-443*x-181 9204433613084408 m001 Artin*(GAMMA(5/6)+MertensB3) 9204433620345376 m002 -Pi^2+Pi^5/3-ProductLog[Pi]*Sech[Pi] 9204433638836679 r009 Re(z^3+c),c=-5/44+3/10*I,n=5 9204433659380157 p004 log(32939/13121) 9204433686565502 a007 Real Root Of -775*x^4-173*x^3+347*x^2-234*x-88 9204433695252098 m005 (1/2*2^(1/2)+2/5)/(7/10*exp(1)-7/10) 9204433696993132 k002 Champernowne real with 17*n^2+144*n-152 9204433697498255 r009 Im(z^3+c),c=-17/86+57/62*I,n=47 9204433726791778 m005 (1/3*3^(1/2)-1/5)/(6*gamma+7/11) 9204433735613417 m001 exp(GAMMA(5/24))^2/Bloch^2/LambertW(1)^2 9204433761443601 m001 (Khinchin-Rabbit)/(Pi^(1/2)+Artin) 9204433767647628 a007 Real Root Of 388*x^4-990*x^3+935*x^2+947*x-971 9204433782362057 a007 Real Root Of 311*x^4-141*x^3-55*x^2-485*x-733 9204433793227188 a007 Real Root Of 779*x^4-259*x^3+530*x^2+413*x-830 9204433825182237 a007 Real Root Of 863*x^4-167*x^3-190*x^2-411*x-967 9204433827699146 r005 Re(z^2+c),c=25/114+3/10*I,n=23 9204433833310233 m001 (-GAMMA(3/4)+FeigenbaumKappa)/(Catalan-Shi(1)) 9204433840493925 m005 (1/2*Catalan-5)/(4/9*gamma-3/4) 9204433840874584 r002 5th iterates of z^2 + 9204433852549006 a007 Real Root Of -976*x^4+61*x^3-991*x^2-695*x+948 9204433863998937 a001 1597/1149851*843^(27/28) 9204433899537863 r005 Im(z^2+c),c=-25/98+4/31*I,n=5 9204433945302582 a007 Real Root Of 804*x^4-425*x^3-163*x^2+397*x-405 9204433950132754 m001 (-Landau+Rabbit)/(1+AlladiGrinstead) 9204433959173964 r009 Im(z^3+c),c=-27/44+18/37*I,n=44 9204433960836681 r008 a(0)=9,K{-n^6,-2+8*n^3-9*n^2+n} 9204433984458483 m001 (3^(1/2)+gamma)/(MertensB3+Salem) 9204434000671836 m001 (Riemann2ndZero-Tetranacci)/(Magata-MertensB3) 9204434018650956 r005 Im(z^2+c),c=-2/3+48/181*I,n=6 9204434031688605 m001 ln(GAMMA(3/4))/FeigenbaumKappa^2/Zeta(3) 9204434060572588 a003 cos(Pi*49/103)+cos(Pi*49/99) 9204434085493501 r002 15th iterates of z^2 + 9204434127283800 l006 ln(3893/9773) 9204434157321414 r005 Re(z^2+c),c=-11/78+22/25*I,n=8 9204434159969256 r005 Re(z^2+c),c=-7/19+23/35*I,n=36 9204434168819776 g007 Psi(2,11/12)+Psi(2,4/9)-Psi(2,5/7)-Psi(2,4/7) 9204434190036039 a007 Real Root Of -440*x^4+164*x^3-776*x^2-790*x+374 9204434207907479 a003 cos(Pi*43/107)-cos(Pi*51/118) 9204434229323433 a005 (1/cos(23/237*Pi))^1315 9204434259572071 a007 Real Root Of 344*x^4-752*x^3+537*x^2+474*x-852 9204434262019716 m001 1/ln(gamma)*MadelungNaCl/sin(Pi/5)^2 9204434264662046 h001 (6/7*exp(1)+3/4)/(10/11*exp(1)+7/8) 9204434300619497 q001 2823/3067 9204434303016087 a007 Real Root Of -457*x^4-55*x^3-944*x^2-328*x+783 9204434312111846 r005 Re(z^2+c),c=15/106+5/14*I,n=31 9204434347745257 m001 (GAMMA(3/4)-ErdosBorwein)/(KhinchinLevy+Otter) 9204434352106678 m006 (3*ln(Pi)-1/6)/(2/3*exp(2*Pi)-2) 9204434391104696 a001 610/64079*843^(19/28) 9204434413368705 m005 (1/2*5^(1/2)-9/11)/(3/7*3^(1/2)-4) 9204434424713011 r009 Im(z^3+c),c=-27/44+18/37*I,n=50 9204434429237098 a007 Real Root Of 104*x^4-993*x^3+132*x^2+354*x-635 9204434433758550 a007 Real Root Of -733*x^4-955*x^3-524*x^2-423*x-164 9204434434550818 a007 Real Root Of -337*x^4+674*x^3+83*x^2-375*x+352 9204434447271111 r005 Re(z^2+c),c=-23/25+11/45*I,n=61 9204434456714658 m001 ln(GAMMA(5/12))/CareFree^2/sqrt(1+sqrt(3)) 9204434480874935 a007 Real Root Of -921*x^4+792*x^3+522*x^2-535*x+344 9204434481394339 a007 Real Root Of -731*x^4+598*x^3-20*x^2-918*x+163 9204434512572421 a001 167761/377*233^(2/15) 9204434512732701 m001 ln((3^(1/3)))*Salem^2/GAMMA(1/24)^2 9204434545453682 a007 Real Root Of -12*x^4-60*x^3+509*x^2+485*x+685 9204434561775195 l006 ln(2355/5912) 9204434582427338 m005 (5/6*exp(1)+5/6)/(2/5*Catalan+3) 9204434590448989 r009 Re(z^3+c),c=-5/52+62/63*I,n=25 9204434599998507 a007 Real Root Of 46*x^4+354*x^3-588*x^2+391*x-707 9204434606931476 a007 Real Root Of -537*x^4+265*x^3+53*x^2-978*x-353 9204434614624183 m006 (5*ln(Pi)+3/4)/(2*Pi+3/4) 9204434636978091 a007 Real Root Of -23*x^4+285*x^3+426*x^2+423*x-956 9204434645646924 h001 (8/9*exp(2)+1/6)/(9/10*exp(2)+2/3) 9204434649082642 a007 Real Root Of 564*x^4-846*x^3+83*x^2+693*x-497 9204434689337299 a007 Real Root Of -239*x^4+927*x^3-164*x^2-586*x+494 9204434699999133 k002 Champernowne real with 35/2*n^2+285/2*n-151 9204434705479183 m005 (1/3*gamma-3/5)/(5/11*2^(1/2)-1/5) 9204434711632280 m004 4+125*Sqrt[5]*Pi+5*Sqrt[5]*Pi*Cot[Sqrt[5]*Pi] 9204434728986038 r009 Re(z^3+c),c=-5/52+62/63*I,n=29 9204434734087768 r009 Re(z^3+c),c=-5/52+62/63*I,n=31 9204434734473406 r009 Re(z^3+c),c=-5/52+62/63*I,n=35 9204434734739210 r009 Re(z^3+c),c=-5/52+62/63*I,n=39 9204434734740003 r009 Re(z^3+c),c=-5/52+62/63*I,n=41 9204434734742525 r009 Re(z^3+c),c=-5/52+62/63*I,n=45 9204434734742970 r009 Re(z^3+c),c=-5/52+62/63*I,n=51 9204434734742978 r009 Re(z^3+c),c=-5/52+62/63*I,n=55 9204434734742978 r009 Re(z^3+c),c=-5/52+62/63*I,n=61 9204434734742978 r009 Re(z^3+c),c=-5/52+62/63*I,n=63 9204434734742978 r009 Re(z^3+c),c=-5/52+62/63*I,n=59 9204434734742978 r009 Re(z^3+c),c=-5/52+62/63*I,n=57 9204434734742981 r009 Re(z^3+c),c=-5/52+62/63*I,n=53 9204434734742984 r009 Re(z^3+c),c=-5/52+62/63*I,n=49 9204434734743049 r009 Re(z^3+c),c=-5/52+62/63*I,n=47 9204434734744568 r009 Re(z^3+c),c=-5/52+62/63*I,n=43 9204434734801024 r009 Re(z^3+c),c=-5/52+62/63*I,n=37 9204434734948619 a007 Real Root Of -671*x^4+93*x^3-442*x^2-495*x+473 9204434735484413 r009 Re(z^3+c),c=-5/52+62/63*I,n=33 9204434761793620 a007 Real Root Of -357*x^4+738*x^3+597*x^2-453*x-91 9204434774434751 r009 Re(z^3+c),c=-5/52+62/63*I,n=27 9204434775046258 m001 Bloch^ArtinRank2/Cahen 9204434787755436 r005 Im(z^2+c),c=-61/86+1/57*I,n=42 9204434811407549 a003 sin(Pi*16/89)/sin(Pi*16/81) 9204434835211915 a007 Real Root Of 744*x^4+608*x^3+462*x^2+612*x+112 9204434840967964 a007 Real Root Of -731*x^4-181*x^3-632*x^2-63*x+861 9204434845911234 s002 sum(A041140[n]/(n^2*10^n-1),n=1..infinity) 9204434849984214 a007 Real Root Of -609*x^4-364*x^3-218*x^2-13*x+326 9204434876866939 r005 Re(z^2+c),c=7/44+27/49*I,n=57 9204434897401875 m001 sqrt(1+sqrt(3))/Paris*ln(sqrt(3)) 9204434913927926 r005 Im(z^2+c),c=-63/110+47/62*I,n=4 9204434974926133 r005 Re(z^2+c),c=-11/10+6/223*I,n=28 9204434975662045 m001 Catalan^(ln(2)/ln(10))*Catalan^Cahen 9204434976910590 r009 Re(z^3+c),c=-5/52+62/63*I,n=21 9204435023055763 r009 Re(z^3+c),c=-5/52+62/63*I,n=23 9204435027248171 h001 (8/11*exp(1)+7/9)/(4/5*exp(1)+9/11) 9204435031167806 a007 Real Root Of -338*x^4+472*x^3-375*x^2+30*x+956 9204435044028057 m001 ((3^(1/3))-GolombDickman)^ThueMorse 9204435044028057 m001 (3^(1/3)-GolombDickman)^ThueMorse 9204435072208564 m001 Cahen^FeigenbaumD-FibonacciFactorial 9204435078235582 m002 5+E^Pi/2-E^Pi/Pi 9204435088592256 a001 233/843*521^(5/26) 9204435095027062 l006 ln(3172/7963) 9204435104030113 a001 233/9349*521^(15/26) 9204435118943790 a007 Real Root Of 6*x^4-624*x^3-714*x^2-905*x-719 9204435133098563 a007 Real Root Of 344*x^4+2*x^3+320*x^2+145*x-383 9204435152913243 a007 Real Root Of -799*x^4+544*x^3+955*x^2+473*x+624 9204435156020306 m001 Shi(1)/arctan(1/3)/FeigenbaumMu 9204435173211925 r005 Im(z^2+c),c=-7/5+11/69*I,n=7 9204435179756084 m001 (2^(1/3)+sin(1/5*Pi))/(3^(1/3)+BesselI(1,1)) 9204435211334564 r009 Re(z^3+c),c=-11/82+27/46*I,n=7 9204435238864553 a007 Real Root Of -347*x^4+8*x^3-57*x^2+636*x+889 9204435244216912 r002 41th iterates of z^2 + 9204435279612359 p001 sum((-1)^n/(320*n+107)/(16^n),n=0..infinity) 9204435300483573 r005 Im(z^2+c),c=-10/23+13/24*I,n=20 9204435313162593 a001 305/51841*843^(3/4) 9204435315534762 a007 Real Root Of -948*x^4+340*x^3-112*x^2-82*x+965 9204435341045509 a007 Real Root Of -304*x^4+715*x^3-604*x^2+800*x-564 9204435365532451 a007 Real Root Of 67*x^4+540*x^3-646*x^2+589*x+342 9204435368329417 m005 (1/2*Zeta(3)-7/12)/(6*Pi+3/8) 9204435409844834 l006 ln(3989/10014) 9204435420111957 m006 (3/5/Pi-5)/(5/6*Pi^2-3) 9204435436798287 a007 Real Root Of -272*x^4+386*x^3-719*x^2-523*x+624 9204435444699694 a007 Real Root Of 586*x^4-77*x^3-342*x^2-464*x-618 9204435458697382 a007 Real Root Of -926*x^4-471*x^3-767*x^2+40*x+984 9204435470189713 a007 Real Root Of -888*x^4+406*x^3+814*x^2+281*x+523 9204435497292617 m001 (3^(1/3)-gamma)/(-BesselI(0,2)+Totient) 9204435506347357 a007 Real Root Of -227*x^4+754*x^3+458*x^2+202*x-999 9204435511863789 m005 (1/2*gamma+4/5)/(6/11*exp(1)-3/10) 9204435545791008 a007 Real Root Of -288*x^4+447*x^3-49*x^2+306*x-382 9204435565763369 m001 (GAMMA(13/24)+CareFree)/(ln(5)-Zeta(1,2)) 9204435582914396 a007 Real Root Of 517*x^4-929*x^3-479*x^2+544*x-189 9204435595161510 m001 ArtinRank2^(Stephens/FeigenbaumAlpha) 9204435601850862 a007 Real Root Of -824*x^4+262*x^3-101*x^2-197*x+700 9204435615567005 p001 sum(1/(443*n+126)/(2^n),n=0..infinity) 9204435621654286 a007 Real Root Of -53*x^4+602*x^3+474*x^2-151*x-694 9204435634516738 m005 (4/5*exp(1)+1/6)/(1/5*exp(1)+2) 9204435642992549 h001 (-exp(2)-5)/(-7*exp(3)+6) 9204435647919664 r005 Re(z^2+c),c=-17/19+10/53*I,n=15 9204435663049180 a007 Real Root Of -352*x^4+593*x^3+125*x^2+304*x+889 9204435665919233 a007 Real Root Of 494*x^4+966*x^3+689*x^2-63*x-243 9204435702100513 k002 Champernowne real with 18*n^2+141*n-150 9204435754425938 r005 Re(z^2+c),c=3/25+16/49*I,n=16 9204435768446562 r002 27th iterates of z^2 + 9204435872709739 q001 1909/2074 9204435886263674 p001 sum(1/(107*n+11)/(8^n),n=0..infinity) 9204435917911168 a007 Real Root Of 793*x^4-849*x^3-434*x^2+106*x-766 9204435923348882 m001 1/2*2^(1/2)*Ei(1)^ThueMorse 9204435923348882 m001 Ei(1)^ThueMorse/sqrt(2) 9204435950795343 a007 Real Root Of 515*x^4-68*x^3+984*x^2+863*x-462 9204436008547656 m001 GAMMA(5/6)/(exp(sqrt(2))^sqrt(Pi)) 9204436015239741 a003 sin(Pi*43/118)/sin(Pi*39/86) 9204436015902049 a001 1597/3*39603^(3/58) 9204436054149123 a001 1/13201*47^(24/37) 9204436065027960 a007 Real Root Of -955*x^4+587*x^3-157*x^2-902*x+446 9204436075374195 r002 14th iterates of z^2 + 9204436134724740 m005 (1/2*Zeta(3)+6)/(1/5*2^(1/2)-1) 9204436141528105 r005 Re(z^2+c),c=-5/8+49/109*I,n=13 9204436157042262 m005 (1/2*Catalan+1/11)/(41/110+1/10*5^(1/2)) 9204436222232667 a007 Real Root Of 100*x^4-675*x^3+247*x^2+485*x-361 9204436237541345 a007 Real Root Of 569*x^4-843*x^3-283*x^2-424*x+879 9204436239501733 a001 610/167761*843^(23/28) 9204436251120469 b008 -9+Cot[Sqrt[Pi]] 9204436259128263 a007 Real Root Of 272*x^4-405*x^3+618*x^2+721*x-371 9204436261294017 m001 (-Riemann2ndZero+Thue)/(BesselJ(0,1)-Otter) 9204436314010459 a007 Real Root Of -549*x^4-25*x^3+626*x^2+714*x-774 9204436320153212 r005 Re(z^2+c),c=10/27+7/29*I,n=23 9204436405770259 m001 (Zeta(5)-Zeta(1,2))/(Niven+TreeGrowth2nd) 9204436437695586 m001 Landau^Sarnak/(Landau^sin(1/5*Pi)) 9204436443432267 a007 Real Root Of -794*x^4+995*x^3+199*x^2-437*x+775 9204436485071290 a007 Real Root Of 821*x^4+106*x^3+433*x^2-94*x-960 9204436499909765 m005 (1/2*3^(1/2)-6/11)/(7/11*Zeta(3)-5/12) 9204436510085578 m001 Paris/GolombDickman/exp(cos(1)) 9204436510736259 a007 Real Root Of 700*x^4-703*x^3-618*x^2-466*x-956 9204436520084752 r009 Re(z^3+c),c=-5/32+27/46*I,n=43 9204436574361838 m009 (4/3*Catalan+1/6*Pi^2+1/3)/(1/4*Psi(1,1/3)-6) 9204436629882772 r002 22th iterates of z^2 + 9204436632123777 l006 ln(817/2051) 9204436641464205 m001 1/exp(1)/Artin*exp(sqrt(5)) 9204436677515966 a007 Real Root Of -364*x^4-6*x^3+272*x^2+758*x-7 9204436680872271 a007 Real Root Of -755*x^4+299*x^3+735*x^2+583*x+689 9204436688794866 r009 Im(z^3+c),c=-2/13+44/47*I,n=6 9204436701253855 m005 (7/10+3/2*5^(1/2))/(33/8+1/8*5^(1/2)) 9204436705101113 k002 Champernowne real with 37/2*n^2+279/2*n-149 9204436706101413 k004 Champernowne real with floor(Pi*(6*n^2+44*n-47)) 9204436814064425 h001 (5/8*exp(2)+1/12)/(2/3*exp(2)+2/11) 9204436818693993 a003 cos(Pi*30/113)/cos(Pi*41/86) 9204436882248313 r002 27th iterates of z^2 + 9204436883312964 a003 cos(Pi*2/81)-cos(Pi*39/82) 9204436889939481 s002 sum(A009697[n]/(n^3*2^n+1),n=1..infinity) 9204436891341221 s002 sum(A009697[n]/(n^3*2^n-1),n=1..infinity) 9204436896755107 r005 Re(z^2+c),c=-113/122+1/51*I,n=17 9204436967562557 a007 Real Root Of -687*x^4-353*x^3-529*x^2+327*x+967 9204436983405569 m001 (Psi(1,1/3)+ln(2))/(ln(Pi)+Trott2nd) 9204436991582954 m001 (Gompertz-Sierpinski)/(Backhouse+CareFree) 9204437064935723 a007 Real Root Of 593*x^4+92*x^3-581*x^2-574*x-390 9204437087541812 a001 7/32951280099*2584^(17/22) 9204437090233085 a007 Real Root Of -932*x^4+938*x^3+730*x^2-13*x+770 9204437103279055 a007 Real Root Of -158*x^4+245*x^3-599*x^2-780*x+94 9204437125115451 m001 (ln(Pi)+GAMMA(23/24))/(Grothendieck+Stephens) 9204437151082404 a001 19/36*987^(17/41) 9204437157082855 r008 a(0)=1,K{-n^6,-46+36*n^3-69*n^2+92*n} 9204437164205712 a001 610/271443*843^(25/28) 9204437186124800 m001 1/ln(Tribonacci)^2*LaplaceLimit^2/GAMMA(17/24) 9204437190543173 a007 Real Root Of -558*x^4-665*x^3-593*x^2+42*x+423 9204437191950777 r009 Re(z^3+c),c=-5/32+27/46*I,n=45 9204437235804276 a007 Real Root Of -588*x^4+197*x^3+715*x^2+640*x+559 9204437267231799 b008 1/15+Sech[EulerGamma] 9204437286330807 r005 Re(z^2+c),c=-17/60+49/59*I,n=6 9204437313657206 a007 Real Root Of -635*x^4+783*x^3+640*x^2-551*x+17 9204437322743669 a007 Real Root Of 823*x^4+112*x^3-964*x^2-285*x+51 9204437323299759 r002 31th iterates of z^2 + 9204437327115395 r002 17th iterates of z^2 + 9204437331428194 a001 233/5778*521^(1/2) 9204437332682430 a007 Real Root Of 591*x^4+999*x^3+509*x^2-533*x-567 9204437333566734 r005 Re(z^2+c),c=-5/6+23/126*I,n=26 9204437375421056 a007 Real Root Of -734*x^4-628*x^3-64*x^2+555*x-50 9204437390955690 r005 Im(z^2+c),c=-67/126+9/55*I,n=48 9204437397976756 m001 Psi(1,1/3)*cos(1/5*Pi)+Zeta(5) 9204437400950871 q001 2904/3155 9204437407921254 l006 ln(7333/8040) 9204437424897558 g002 -ln(2)+1/2*Pi+Psi(1/12)-Psi(3/7) 9204437465423965 m001 exp(FeigenbaumKappa)*LaplaceLimit^2*cos(1) 9204437482975615 a007 Real Root Of 268*x^4-379*x^3+309*x^2+54*x-700 9204437542624241 r002 14th iterates of z^2 + 9204437606014194 m001 ln(5)^ZetaR(2)/(ln(5)^FellerTornier) 9204437701064240 a008 Real Root of (1+5*x-4*x^2+6*x^3-5*x^4-5*x^5) 9204437707156686 m005 (1/3*5^(1/2)-1/7)/(4*2^(1/2)+8/9) 9204437708012262 m001 GAMMA(5/24)^2/ln(Champernowne)/Zeta(9)^2 9204437708101713 k002 Champernowne real with 19*n^2+138*n-148 9204437746117679 a007 Real Root Of -76*x^4-733*x^3-393*x^2-826*x-402 9204437749035276 a003 cos(Pi*21/115)/sin(Pi*15/41) 9204437764103213 r002 5th iterates of z^2 + 9204437772293274 m001 1/RenyiParking*Si(Pi)^2*ln(Zeta(9)) 9204437798413345 a007 Real Root Of -367*x^4-193*x^3+27*x^2+981*x+993 9204437813341736 m001 Trott2nd*(GAMMA(7/12)+FeigenbaumC) 9204437818962172 r005 Im(z^2+c),c=-16/25+11/63*I,n=62 9204437828587508 m001 1/Paris^2*exp(Magata)^2/Zeta(7)^2 9204437886055699 r008 a(0)=9,K{-n^6,48-64*n^3-74*n^2+85*n} 9204437891091894 m001 Zeta(1/2)-ln(gamma)+FeigenbaumC 9204437895320801 m008 (1/3*Pi^2+1/3)/(2/5*Pi^4+2/5) 9204437913469223 a007 Real Root Of -539*x^4+218*x^3+445*x^2+564*x+699 9204437916744947 m001 1/ln(GAMMA(5/24))*FeigenbaumDelta*cos(1)^2 9204437920404848 a007 Real Root Of -741*x^4+47*x^3+745*x^2+570*x+462 9204437940153698 a003 cos(Pi*1/106)-sin(Pi*3/119) 9204437955074220 m005 (1/2*3^(1/2)+3/8)/(5/7*3^(1/2)+1/9) 9204437957986936 m001 (ln(5)+arctan(1/3))/(sin(1/12*Pi)+Tribonacci) 9204437963745113 a001 843*3^(2/25) 9204437966909877 a007 Real Root Of -657*x^4+933*x^3+670*x^2+19*x+649 9204437976345655 r008 a(0)=9,K{-n^6,86-59*n^3-70*n^2+38*n} 9204437979524137 a001 987/3571*322^(5/24) 9204437979892937 m001 (Lehmer+ThueMorse)/(ln(5)-polylog(4,1/2)) 9204437995444673 m002 -3/5-Pi^6+Pi^6/E^Pi 9204437997609112 r009 Im(z^3+c),c=-9/13+17/42*I,n=2 9204438026161965 h001 (-exp(3/2)-8)/(-9*exp(1/3)-1) 9204438036107387 g006 2*Psi(1,2/9)-Psi(1,9/11)-Psi(1,2/11) 9204438056573120 r005 Re(z^2+c),c=-7/8+42/209*I,n=37 9204438061230810 r008 a(0)=9,K{-n^6,92-50*n^3-94*n^2+47*n} 9204438081490617 l006 ln(3364/8445) 9204438081850195 m001 gamma(1)/(Chi(1)^PisotVijayaraghavan) 9204438089228140 a007 Real Root Of -661*x^4+37*x^3-611*x^2-164*x+870 9204438089534395 a001 305/219602*843^(27/28) 9204438091158051 a007 Real Root Of -487*x^4+636*x^3+21*x^2+367*x-502 9204438093976076 r009 Im(z^3+c),c=-31/50+23/48*I,n=59 9204438098438771 h001 (1/11*exp(1)+8/11)/(2/9*exp(1)+5/11) 9204438114278334 r005 Re(z^2+c),c=-9/10+15/109*I,n=43 9204438129254825 m008 (2/3*Pi+1/6)/(4/5*Pi^5+5/6) 9204438155743425 a007 Real Root Of 829*x^4-169*x^3-478*x^2-325*x-621 9204438156747257 m001 (GAMMA(2/3)+Zeta(1/2))/(GAMMA(11/12)+Paris) 9204438161790914 a001 11/28657*121393^(22/47) 9204438187256664 b008 9+BesselK[2,-1+Pi] 9204438249353010 m001 (Ei(1,1)+GAMMA(17/24))/(Shi(1)+gamma) 9204438252744739 m001 gamma(2)^Gompertz*MinimumGamma 9204438266880603 a007 Real Root Of 257*x^4-493*x^3+416*x^2+360*x-590 9204438269380771 a007 Real Root Of 853*x^4+923*x^3+684*x^2-113*x-576 9204438283078092 a007 Real Root Of 957*x^4-190*x^3-333*x^2+76*x-483 9204438305259514 a001 1/3010349*47^(9/34) 9204438360937818 a007 Real Root Of -183*x^4+931*x^3-832*x^2+877*x-697 9204438364498678 r005 Im(z^2+c),c=-17/66+52/57*I,n=4 9204438376601402 a007 Real Root Of -866*x^4+58*x^3+174*x^2-108*x+420 9204438377041291 r005 Re(z^2+c),c=-3/86+41/42*I,n=10 9204438399031621 r009 Im(z^3+c),c=-5/118+47/51*I,n=3 9204438405246478 h003 exp(Pi*(2^(12/5)+6^(7/5))) 9204438405246478 h008 exp(Pi*(2^(12/5)+6^(7/5))) 9204438423451972 a007 Real Root Of 472*x^4-340*x^3-607*x^2-750*x-780 9204438442073776 r009 Re(z^3+c),c=-41/110+27/40*I,n=52 9204438444372881 p003 LerchPhi(1/32,2,202/193) 9204438457624965 m001 1/ln(Porter)/Khintchine/GAMMA(11/12) 9204438481876032 a007 Real Root Of 753*x^4-800*x^3-432*x^2+46*x-756 9204438482834070 m001 (Artin+Conway)/(MasserGramain+Salem) 9204438492401026 a007 Real Root Of 583*x^4-728*x^3-547*x^2+770*x+186 9204438493003813 s001 sum(exp(-3*Pi)^(n-1)*A107343[n],n=1..infinity) 9204438497824472 r005 Im(z^2+c),c=-7/26+51/58*I,n=3 9204438510966428 h001 (-5*exp(7)+2)/(-2*exp(8)+7) 9204438531760441 r009 Re(z^3+c),c=-1/60+37/56*I,n=51 9204438546403297 l006 ln(2547/6394) 9204438582497236 r005 Re(z^2+c),c=-9/10+16/153*I,n=42 9204438584679311 r009 Im(z^3+c),c=-4/19+11/12*I,n=15 9204438620100819 a007 Real Root Of 774*x^4+144*x^3-259*x^2-639*x-812 9204438648132463 m001 (Backhouse+DuboisRaymond)^Zeta(1,-1) 9204438650870475 a007 Real Root Of -977*x^4-388*x^3+33*x^2+223*x+576 9204438665268934 r004 Im(z^2+c),c=3/22-11/12*I,z(0)=I,n=8 9204438692471401 m001 (-Zeta(1,-1)+Tribonacci)/(cos(1)-exp(1)) 9204438698318861 a007 Real Root Of 820*x^4-859*x^3-973*x^2-504*x-898 9204438711102313 k002 Champernowne real with 39/2*n^2+273/2*n-147 9204438720071911 a007 Real Root Of -948*x^4+163*x^3-528*x^2-479*x+814 9204438720119615 m001 (ln(2)+GAMMA(17/24))/(AlladiGrinstead+Totient) 9204438723358873 h001 (-exp(-2)-8)/(-9*exp(1/2)+6) 9204438742470024 a007 Real Root Of 447*x^4-73*x^3-195*x^2-799*x-948 9204438747274581 m008 (4/5*Pi^2-2)/(2/3*Pi^6-2/5) 9204438748649692 s002 sum(A269441[n]/(n^3*10^n-1),n=1..infinity) 9204438832099283 r005 Re(z^2+c),c=-47/74+32/63*I,n=6 9204438856936854 a008 Real Root of x^3-x^2-76*x+165 9204438866812094 r005 Im(z^2+c),c=17/122+2/3*I,n=13 9204438899780624 a007 Real Root Of 342*x^4-837*x^3+9*x^2+744*x-221 9204438924991743 m001 Pi^(1/2)/(GAMMA(13/24)^PisotVijayaraghavan) 9204438937983976 a001 610/7*2^(3/38) 9204438952328907 r005 Re(z^2+c),c=-113/122+1/51*I,n=9 9204438952927322 a007 Real Root Of 684*x^4-63*x^3-122*x^2+16*x-422 9204438977028866 a001 2584/9349*322^(5/24) 9204438997135673 a007 Real Root Of -92*x^4+688*x^3+820*x^2+111*x+10 9204439022118959 a007 Real Root Of 85*x^4+20*x^3-495*x^2-349*x+664 9204439023774588 m005 (1/2*Catalan-1/6)/(1/12*Zeta(3)-5/12) 9204439053075150 r009 Im(z^3+c),c=-11/74+41/46*I,n=23 9204439122106250 m005 (1/2*5^(1/2)-1/2)/(2/9*Catalan-7/8) 9204439122562833 a001 6765/24476*322^(5/24) 9204439123627277 r004 Re(z^2+c),c=3/38+7/17*I,z(0)=I,n=8 9204439126502729 m001 1/GAMMA(7/12)^2*exp((3^(1/3)))^2*Zeta(3) 9204439143795953 a001 17711/64079*322^(5/24) 9204439146893823 a001 46368/167761*322^(5/24) 9204439147345796 a001 121393/439204*322^(5/24) 9204439147411738 a001 317811/1149851*322^(5/24) 9204439147421359 a001 832040/3010349*322^(5/24) 9204439147422763 a001 2178309/7881196*322^(5/24) 9204439147422968 a001 5702887/20633239*322^(5/24) 9204439147422997 a001 14930352/54018521*322^(5/24) 9204439147423002 a001 39088169/141422324*322^(5/24) 9204439147423002 a001 102334155/370248451*322^(5/24) 9204439147423002 a001 267914296/969323029*322^(5/24) 9204439147423002 a001 701408733/2537720636*322^(5/24) 9204439147423002 a001 1836311903/6643838879*322^(5/24) 9204439147423002 a001 4807526976/17393796001*322^(5/24) 9204439147423002 a001 12586269025/45537549124*322^(5/24) 9204439147423002 a001 32951280099/119218851371*322^(5/24) 9204439147423002 a001 86267571272/312119004989*322^(5/24) 9204439147423002 a001 225851433717/817138163596*322^(5/24) 9204439147423002 a001 1548008755920/5600748293801*322^(5/24) 9204439147423002 a001 139583862445/505019158607*322^(5/24) 9204439147423002 a001 53316291173/192900153618*322^(5/24) 9204439147423002 a001 20365011074/73681302247*322^(5/24) 9204439147423002 a001 7778742049/28143753123*322^(5/24) 9204439147423002 a001 2971215073/10749957122*322^(5/24) 9204439147423002 a001 1134903170/4106118243*322^(5/24) 9204439147423002 a001 433494437/1568397607*322^(5/24) 9204439147423003 a001 165580141/599074578*322^(5/24) 9204439147423003 a001 63245986/228826127*322^(5/24) 9204439147423004 a001 24157817/87403803*322^(5/24) 9204439147423016 a001 9227465/33385282*322^(5/24) 9204439147423094 a001 3524578/12752043*322^(5/24) 9204439147423630 a001 1346269/4870847*322^(5/24) 9204439147427305 a001 514229/1860498*322^(5/24) 9204439147452493 a001 196418/710647*322^(5/24) 9204439147625131 a001 75025/271443*322^(5/24) 9204439148808412 a001 28657/103682*322^(5/24) 9204439156918742 a001 10946/39603*322^(5/24) 9204439160028639 a007 Real Root Of -109*x^4+504*x^3+451*x^2-190*x-522 9204439174606514 m005 (1/3*Pi-1/12)/(1/4*Catalan+9/11) 9204439199470782 m001 1/exp(TwinPrimes)*Salem^2/log(1+sqrt(2))^2 9204439204827907 a007 Real Root Of 544*x^4-730*x^3+175*x^2-874*x+835 9204439212507770 a001 4181/15127*322^(5/24) 9204439244024800 a008 Real Root of (1+3*x^2+2*x^3+3*x^5) 9204439244789545 p004 log(28109/11197) 9204439255701492 a007 Real Root Of 98*x^4+953*x^3+385*x^2-770*x+38 9204439277039938 m001 (LambertW(1)-polylog(4,1/2))^Kolakoski 9204439280161741 a007 Real Root Of 49*x^4+511*x^3+599*x^2+455*x+215 9204439352395663 a007 Real Root Of -353*x^4+200*x^3-314*x^2+80*x+749 9204439359302206 a002 10^(7/6)-17^(3/5) 9204439374467948 m001 (Backhouse+GolombDickman)/(Pi-ln(2^(1/2)+1)) 9204439377703973 h001 (7/11*exp(1)+7/8)/(6/7*exp(1)+1/2) 9204439450429972 l006 ln(1730/4343) 9204439456781113 a001 24476/13*8^(29/38) 9204439498229018 a007 Real Root Of -949*x^4-488*x^3-482*x^2-943*x-159 9204439511224848 a001 144/167761*29^(31/44) 9204439515594057 a007 Real Root Of -869*x^4-829*x^3-451*x^2+55*x+410 9204439522427816 a003 sin(Pi*21/64)/sin(Pi*21/55) 9204439553387603 g006 Psi(1,9/11)+Psi(1,4/11)+Psi(1,4/5)-Psi(1,4/7) 9204439575927276 r005 Re(z^2+c),c=-113/122+1/51*I,n=19 9204439593520625 a001 1597/5778*322^(5/24) 9204439611436312 a007 Real Root Of 557*x^4-937*x^3-70*x^2-324*x-30 9204439665700055 a007 Real Root Of -939*x^4+78*x^3-558*x^2-282*x+948 9204439694154482 a007 Real Root Of 729*x^4-137*x^3+55*x^2+205*x-488 9204439714102913 k002 Champernowne real with 20*n^2+135*n-146 9204439726596130 r002 64th iterates of z^2 + 9204439749344061 r005 Im(z^2+c),c=-31/58+10/61*I,n=49 9204439750486277 r002 4th iterates of z^2 + 9204439805923005 a001 144/2207*18^(5/42) 9204439817284497 m005 (1/2*2^(1/2)-5/9)/(Zeta(3)+4/9) 9204439822947665 m001 1/Riemann1stZero^2/Bloch^2/ln(GAMMA(1/12)) 9204439850027570 m001 (exp(1)*PrimesInBinary+exp(1/Pi))/exp(1) 9204439852444801 a007 Real Root Of -759*x^4-27*x^3-78*x^2+224*x+796 9204439882724968 r005 Im(z^2+c),c=-13/46+5/37*I,n=7 9204439888616156 m001 Gompertz*(GAMMA(5/6)+PrimesInBinary) 9204439964204312 a007 Real Root Of -790*x^4+600*x^3-107*x^2-508*x+658 9204439977381809 m001 (Backhouse+GlaisherKinkelin)/(ln(Pi)-3^(1/3)) 9204439998530257 r005 Im(z^2+c),c=47/114+13/58*I,n=4 9204440000620596 a007 Real Root Of 560*x^4+6*x^3+288*x^2+889*x+177 9204440021951567 r005 Re(z^2+c),c=-9/10+23/162*I,n=17 9204440031931967 l006 ln(4740/5197) 9204440064881667 m005 (1/2*Pi+4/9)/(5/6*Pi-3/7) 9204440066198389 m005 1/6*5^(1/2)/(2/11*Catalan-4/7) 9204440071862734 a007 Real Root Of 79*x^4-416*x^3-295*x^2-297*x+791 9204440094610062 a007 Real Root Of -845*x^4+987*x^3+998*x^2-444*x+122 9204440111826966 m001 (Chi(1)-Shi(1))/(-Riemann3rdZero+Salem) 9204440111826966 m001 Ei(1,1)/(Riemann3rdZero-Salem) 9204440125244057 m001 (Artin+Gompertz)/(GAMMA(3/4)-BesselI(0,2)) 9204440130579951 a007 Real Root Of 581*x^4-222*x^3-591*x^2-986*x-997 9204440173728455 a007 Real Root Of 512*x^4-974*x^3+152*x^2+945*x-386 9204440191171346 a007 Real Root Of -882*x^4+568*x^3+708*x^2-777*x-239 9204440249656078 r005 Im(z^2+c),c=-5/56+31/46*I,n=15 9204440259043606 a003 cos(Pi*48/101)-sin(Pi*37/77) 9204440269225405 r005 Im(z^2+c),c=-97/94+21/59*I,n=17 9204440281133691 a007 Real Root Of -443*x^4+272*x^3+834*x^2+572*x+350 9204440305136764 a007 Real Root Of -968*x^4-706*x^3-284*x^2+388*x+742 9204440305521440 a001 377/521*521^(1/26) 9204440318098694 r002 24th iterates of z^2 + 9204440321620186 l006 ln(2643/6635) 9204440333024976 q001 199/2162 9204440334652057 m001 (Niven+PrimesInBinary)/(Bloch+FeigenbaumC) 9204440390861357 m001 Sierpinski^(Zeta(1,-1)/Ei(1)) 9204440401901099 r005 Re(z^2+c),c=-15/14+50/251*I,n=56 9204440413566734 r005 Im(z^2+c),c=-15/74+1/8*I,n=10 9204440430190416 m005 (1/3*Pi-1/6)/(2/5*Pi-3/10) 9204440430190416 m006 (1/3*Pi-1/6)/(4*Pi-3) 9204440430190416 m008 (1/3*Pi-1/6)/(4*Pi-3) 9204440510912626 a007 Real Root Of 97*x^4-795*x^3+923*x^2+810*x-726 9204440512415740 a007 Real Root Of -940*x^4-547*x^3-887*x^2-344*x+683 9204440522802250 r005 Re(z^2+c),c=-113/122+1/51*I,n=21 9204440539211670 a007 Real Root Of 714*x^4+166*x^3+720*x^2+540*x-496 9204440546211657 m001 (ArtinRank2-Chi(1))/(-Backhouse+Conway) 9204440564179184 a003 cos(Pi*27/92)+cos(Pi*33/83) 9204440584140509 m001 ln(arctan(1/2))^2*Zeta(1,2)^2*sqrt(Pi) 9204440649010242 a007 Real Root Of 25*x^4-469*x^3-290*x^2-754*x-832 9204440656059580 r005 Re(z^2+c),c=19/98+3/11*I,n=12 9204440671989338 r009 Re(z^3+c),c=-95/126+16/47*I,n=2 9204440672879543 m001 ((1+3^(1/2))^(1/2)-Sarnak)/Psi(1,1/3) 9204440679520621 a007 Real Root Of 435*x^4-855*x^3-159*x^2+424*x-454 9204440679774564 m001 (ln(Pi)-Kolakoski)/(Niven-PisotVijayaraghavan) 9204440680171911 a001 1/311187*5^(17/26) 9204440700441254 m001 (-Zeta(1/2)+OrthogonalArrays)/(2^(1/3)+Si(Pi)) 9204440717103513 k002 Champernowne real with 41/2*n^2+267/2*n-145 9204440745455668 l006 ln(3556/8927) 9204440747238124 m005 (2*exp(1)-1/3)/(2*gamma-3/5) 9204440774137279 m001 1/RenyiParking^2*Bloch^2*ln((2^(1/3))) 9204440784473394 m001 (CopelandErdos+Rabbit)/(Zeta(5)+gamma(2)) 9204440785070655 a001 233/843*1364^(1/6) 9204440800454250 a001 29/233*1346269^(22/47) 9204440820899030 m001 (Zeta(1/2)-Stephens)/(sin(1/5*Pi)-cos(1/5*Pi)) 9204440828817352 g005 GAMMA(1/9)*GAMMA(4/7)*GAMMA(5/6)/GAMMA(6/11) 9204440831848508 r005 Re(z^2+c),c=-113/122+1/51*I,n=23 9204440872047386 m005 (3/5*Catalan+4)/(2/3*2^(1/2)+4) 9204440925964131 r005 Re(z^2+c),c=-113/122+1/51*I,n=25 9204440934255277 a001 233/2207*521^(9/26) 9204440937344507 a001 233/3571*521^(11/26) 9204440952696976 r005 Re(z^2+c),c=-113/122+1/51*I,n=27 9204440958628514 r005 Re(z^2+c),c=-83/78+11/57*I,n=24 9204440959699821 r005 Re(z^2+c),c=-113/122+1/51*I,n=29 9204440960324054 r002 43th iterates of z^2 + 9204440960802569 r002 45th iterates of z^2 + 9204440961280251 r002 47th iterates of z^2 + 9204440961340482 r005 Re(z^2+c),c=-113/122+1/51*I,n=31 9204440961517552 r002 49th iterates of z^2 + 9204440961613067 r002 51th iterates of z^2 + 9204440961647314 r002 53th iterates of z^2 + 9204440961655901 r005 Re(z^2+c),c=-113/122+1/51*I,n=33 9204440961658621 r002 55th iterates of z^2 + 9204440961662101 r002 57th iterates of z^2 + 9204440961663101 r002 59th iterates of z^2 + 9204440961663366 r002 61th iterates of z^2 + 9204440961663430 r002 63th iterates of z^2 + 9204440961663443 r005 Re(z^2+c),c=-113/122+1/51*I,n=59 9204440961663443 r005 Re(z^2+c),c=-113/122+1/51*I,n=61 9204440961663443 r005 Re(z^2+c),c=-113/122+1/51*I,n=63 9204440961663443 r005 Re(z^2+c),c=-113/122+1/51*I,n=57 9204440961663444 r005 Re(z^2+c),c=-113/122+1/51*I,n=55 9204440961663445 r005 Re(z^2+c),c=-113/122+1/51*I,n=53 9204440961663449 r005 Re(z^2+c),c=-113/122+1/51*I,n=51 9204440961663467 r005 Re(z^2+c),c=-113/122+1/51*I,n=49 9204440961663529 r005 Re(z^2+c),c=-113/122+1/51*I,n=47 9204440961663731 r005 Re(z^2+c),c=-113/122+1/51*I,n=45 9204440961664347 r005 Re(z^2+c),c=-113/122+1/51*I,n=43 9204440961666073 r005 Re(z^2+c),c=-113/122+1/51*I,n=41 9204440961670403 r005 Re(z^2+c),c=-113/122+1/51*I,n=39 9204440961679288 r005 Re(z^2+c),c=-113/122+1/51*I,n=37 9204440961689100 r005 Re(z^2+c),c=-113/122+1/51*I,n=35 9204440962418761 r002 41th iterates of z^2 + 9204440973397380 a001 76*610^(7/18) 9204440980812319 r002 39th iterates of z^2 + 9204440990813997 r005 Im(z^2+c),c=-37/50+3/61*I,n=15 9204440994416963 m001 (Magata-Tetranacci)/(ln(5)-gamma(3)) 9204441026515551 h003 exp(Pi*(19^(12/11)-3^(7/6))) 9204441026515551 h008 exp(Pi*(19^(12/11)-3^(7/6))) 9204441033900051 a007 Real Root Of 124*x^4-493*x^3-70*x^2-22*x+375 9204441044621589 a001 11/3*1346269^(3/46) 9204441071264072 m001 GAMMA(2/3)^MertensB2/(Porter^MertensB2) 9204441074784130 r002 37th iterates of z^2 + 9204441080112961 m001 (Zeta(1,2)-Kolakoski)/(Porter+PrimesInBinary) 9204441088136031 a007 Real Root Of 874*x^4+115*x^3-286*x^2-193*x-473 9204441097390288 a007 Real Root Of 505*x^4-500*x^3-969*x^2-18*x+52 9204441119329968 r005 Im(z^2+c),c=-12/25+15/26*I,n=52 9204441121682147 a008 Real Root of (-1-x^4+x^6+x^7+x^8+x^10-x^11) 9204441123684987 m001 (Gompertz+TwinPrimes)/(exp(1/Pi)+gamma(2)) 9204441142522100 m001 (Zeta(5)-Lehmer)/(Porter+ReciprocalFibonacci) 9204441169742849 r009 Re(z^3+c),c=-17/94+37/54*I,n=38 9204441180950910 r005 Im(z^2+c),c=21/74+36/61*I,n=14 9204441192125407 r009 Im(z^3+c),c=-17/126+53/59*I,n=39 9204441193488975 h001 (4/11*exp(2)+9/10)/(5/12*exp(2)+9/11) 9204441205790359 m001 (ln(3)+BesselI(1,2))/(KhinchinHarmonic+Salem) 9204441259858961 r005 Re(z^2+c),c=-59/66+9/59*I,n=43 9204441270206180 m002 -4*Pi+3*Pi^3+Cosh[Pi] 9204441278314049 r009 Re(z^3+c),c=-17/114+19/35*I,n=17 9204441315391140 a007 Real Root Of 308*x^4-568*x^3-102*x^2+709*x+75 9204441327348706 a007 Real Root Of 677*x^4+256*x^3-957*x^2-371*x+183 9204441362219588 r002 22th iterates of z^2 + 9204441403566997 r005 Im(z^2+c),c=-55/46+7/60*I,n=35 9204441410487858 a007 Real Root Of 615*x^4-974*x^3-924*x^2+237*x-200 9204441415415445 m001 1/BesselJ(0,1)^2/exp(Lehmer)/GAMMA(23/24) 9204441444817483 a001 377/521*1364^(1/30) 9204441462921780 m005 (1/2*Catalan+3/5)/(9/11*Catalan+2/5) 9204441463656744 a001 1/7*24476^(46/53) 9204441465918678 a007 Real Root Of -557*x^4+692*x^3+790*x^2+781*x+989 9204441472373824 r002 35th iterates of z^2 + 9204441475215518 a001 1/7*64079^(42/53) 9204441502333560 g004 Im(GAMMA(-73/60+I*209/60)) 9204441503473569 a001 233/843*3571^(5/34) 9204441509190646 a007 Real Root Of -664*x^4+593*x^3+436*x^2+71*x+635 9204441534492510 m001 (MadelungNaCl-PlouffeB)/(Conway-Khinchin) 9204441588498072 a001 377/521*3571^(1/34) 9204441595764328 a001 233/843*9349^(5/38) 9204441605892592 m001 (-CopelandErdos+PlouffeB)/(Chi(1)-gamma) 9204441606956224 a001 377/521*9349^(1/38) 9204441607791728 a001 233/843*24476^(5/42) 9204441609361704 a001 377/521*24476^(1/42) 9204441609377170 a001 233/843*64079^(5/46) 9204441609588122 a001 233/843*167761^(1/10) 9204441609620826 a001 233/843*20633239^(1/14) 9204441609620827 a001 233/843*2537720636^(1/18) 9204441609620827 a001 233/843*312119004989^(1/22) 9204441609620827 a001 233/843*28143753123^(1/20) 9204441609620827 a001 233/843*228826127^(1/16) 9204441609621049 a001 233/843*1860498^(1/12) 9204441609678792 a001 377/521*64079^(1/46) 9204441609860903 a001 377/521*39603^(1/44) 9204441610287724 a001 233/843*39603^(5/44) 9204441610733139 a001 377/521*15127^(1/40) 9204441614648903 a001 233/843*15127^(1/8) 9204441617385956 a001 377/521*5778^(1/36) 9204441641917571 r005 Re(z^2+c),c=-105/118+11/51*I,n=49 9204441644083608 a001 305/682*322^(1/8) 9204441647912990 a001 233/843*5778^(5/36) 9204441651947059 r005 Re(z^2+c),c=41/98+15/34*I,n=5 9204441652012752 m001 (3^(1/3))/ln(KhintchineLevy)/Catalan 9204441668780656 a001 377/521*2207^(1/32) 9204441671403876 m002 -Pi^6+(Pi^2*Cosh[Pi]*ProductLog[Pi])/3 9204441677219724 h001 (3/7*exp(2)+1/2)/(5/11*exp(2)+5/8) 9204441677847655 r005 Im(z^2+c),c=-11/32+1/7*I,n=19 9204441710260572 m006 (1/3*Pi-1/5)/(1/4/Pi-1) 9204441712893390 a001 377/3571*322^(3/8) 9204441720104114 k002 Champernowne real with 21*n^2+132*n-144 9204441727924323 r002 28th iterates of z^2 + 9204441783048030 a007 Real Root Of 398*x^4-304*x^3-680*x^2-649*x-544 9204441789255264 a007 Real Root Of 644*x^4-320*x^3+176*x^2+856*x-73 9204441822002844 m001 (ln(5)-gamma(1))/((1+3^(1/2))^(1/2)+ZetaP(3)) 9204441829773292 a007 Real Root Of 865*x^4-420*x^3-527*x^2+353*x-177 9204441853665547 a007 Real Root Of 171*x^4-905*x^3+767*x^2+562*x-961 9204441876209166 m001 (Artin+Riemann3rdZero)/(3^(1/2)+GAMMA(23/24)) 9204441904886492 a001 233/843*2207^(5/32) 9204441907097494 a003 sin(Pi*49/120)*sin(Pi*34/83) 9204441972396617 l006 ln(913/2292) 9204441977377925 m001 (ln(Pi)-arctan(1/2))/(Lehmer-MertensB3) 9204441979528710 r005 Im(z^2+c),c=-26/23+7/61*I,n=37 9204441988701818 r005 Im(z^2+c),c=-51/98+4/27*I,n=11 9204441993346842 r005 Re(z^2+c),c=-67/62+13/62*I,n=46 9204441998393244 h001 (9/10*exp(1)+4/5)/(2/5*exp(2)+4/7) 9204442010716604 m001 MertensB3^(Zeta(1,-1)*KhinchinHarmonic) 9204442032406742 a007 Real Root Of -933*x^4-53*x^3+203*x^2-385*x+102 9204442051055537 m001 Sierpinski^BesselI(1,1)*ZetaQ(2) 9204442070133900 m001 sin(1)^(TreeGrowth2nd/Catalan) 9204442072305758 a001 377/521*843^(1/28) 9204442075087759 m001 FeigenbaumB^2*exp(LaplaceLimit)/Zeta(1/2) 9204442083135023 m001 (Grothendieck+Totient)^gamma(1) 9204442098672789 m001 ZetaQ(4)/Conway/exp(1/Pi) 9204442126853103 r005 Im(z^2+c),c=-21/34+31/70*I,n=28 9204442132844793 r009 Im(z^3+c),c=-69/118+25/54*I,n=32 9204442205021061 a001 610/2207*322^(5/24) 9204442220244413 a007 Real Root Of 381*x^4-275*x^3+440*x^2+582*x-325 9204442235972946 a007 Real Root Of -386*x^4+584*x^3+989*x^2-110*x-915 9204442249380954 a007 Real Root Of 88*x^4+774*x^3-247*x^2+729*x-430 9204442304423170 m001 (MinimumGamma+Salem)/(FeigenbaumC+MertensB2) 9204442330289548 r005 Re(z^2+c),c=-59/64+1/17*I,n=17 9204442348659146 r002 24th iterates of z^2 + 9204442349022513 a007 Real Root Of -976*x^4+842*x^3-739*x^2+594*x-49 9204442350860708 a007 Real Root Of 898*x^4-177*x^3+214*x^2+127*x-847 9204442370738224 r008 a(0)=1,K{-n^6,6+50*n-33*n^2-11*n^3} 9204442378945112 a007 Real Root Of -808*x^4+173*x^3-197*x^2-933*x+23 9204442402715351 p004 log(25453/10139) 9204442419004708 m001 exp(gamma)^ln(5)*exp(gamma)^sqrt(5) 9204442420090534 a007 Real Root Of -925*x^4-90*x^3-130*x^2+137*x+830 9204442434269782 m001 (RenyiParking+ZetaQ(4))/(BesselJ(1,1)+Artin) 9204442444158413 m001 (Zeta(1,-1)+GlaisherKinkelin)/(Kac-Tribonacci) 9204442488611119 a007 Real Root Of 366*x^4-27*x^3+376*x^2+260*x-363 9204442518061102 m001 (cos(1/12*Pi)+gamma(1))/(Artin+Gompertz) 9204442560901161 m001 exp(1/Pi)*(2*Pi/GAMMA(5/6)+GAMMA(5/6)) 9204442560901161 m001 exp(1/Pi)*(GAMMA(1/6)+GAMMA(5/6)) 9204442564048847 r005 Re(z^2+c),c=-99/122+9/40*I,n=9 9204442564163326 h001 (5/7*exp(2)+7/10)/(4/5*exp(2)+7/12) 9204442569340816 r009 Im(z^3+c),c=-17/30+34/61*I,n=5 9204442576473947 a003 sin(Pi*8/57)/cos(Pi*35/101) 9204442597723621 m001 (5^(1/2)-exp(Pi))/(ln(5)+Robbin) 9204442600808448 r005 Re(z^2+c),c=-23/25+3/29*I,n=3 9204442632385428 s002 sum(A034766[n]/(exp(n)+1),n=1..infinity) 9204442642930677 h001 (1/8*exp(2)+4/9)/(2/11*exp(2)+1/7) 9204442673953609 a007 Real Root Of -771*x^4+743*x^3+945*x^2-337*x+22 9204442677388292 r008 a(0)=0,K{-n^6,-62-36*n-10*n^2-n^3} 9204442689579197 m001 Chi(1)^(1/2*2^(1/2)*LaplaceLimit) 9204442705946231 a007 Real Root Of -562*x^4+7*x^3-327*x^2+389*x-33 9204442723104714 k002 Champernowne real with 43/2*n^2+261/2*n-143 9204442725105214 k004 Champernowne real with floor(Pi*(7*n^2+41*n-45)) 9204442752674926 m001 (Conway+FeigenbaumKappa)/(Si(Pi)+Zeta(5)) 9204442767704989 m001 Si(Pi)^2*ln(CopelandErdos)^2*GAMMA(17/24) 9204442773216623 a007 Real Root Of -468*x^4+198*x^3-411*x^2-383*x+486 9204442825041595 a007 Real Root Of -636*x^4+275*x^3-885*x^2-594*x+874 9204442825872731 l006 ln(6887/7551) 9204442831856774 s002 sum(A166911[n]/(exp(n)),n=1..infinity) 9204442875270282 a007 Real Root Of -333*x^4+718*x^3+541*x^2+397*x+706 9204442910516350 m005 (1/2*Pi-4/5)/(7/9*Catalan+1/8) 9204442917569575 a007 Real Root Of -604*x^4+189*x^3+779*x^2+854*x+707 9204442976451869 a007 Real Root Of 689*x^4-647*x^3+232*x^2+281*x-937 9204442981324037 r002 33th iterates of z^2 + 9204443014605321 a007 Real Root Of 514*x^4+73*x^3-429*x^2-912*x-788 9204443047102434 m005 (21/10+5/2*5^(1/2))/(3*exp(1)+1/5) 9204443070561592 a001 610/843*123^(1/20) 9204443089480917 a007 Real Root Of 113*x^4+989*x^3-531*x^2-543*x+139 9204443110177123 q001 3066/3331 9204443112632764 p001 sum((-1)^n/(459*n+103)/(3^n),n=0..infinity) 9204443136484528 l006 ln(3748/9409) 9204443137759031 a007 Real Root Of 704*x^4+114*x^3+420*x^2+198*x-590 9204443144171335 a001 610/3*843^(13/58) 9204443190077190 m001 (Landau+MasserGramain)/(Porter-ZetaP(3)) 9204443191121208 m001 (Kac+KhinchinLevy)/(MertensB3-Riemann2ndZero) 9204443275120567 s002 sum(A186902[n]/(n^2*pi^n+1),n=1..infinity) 9204443282742787 a007 Real Root Of 762*x^4-256*x^3-311*x^2-416*x-866 9204443326833129 m001 TravellingSalesman^Zeta(5)/ZetaP(4) 9204443361374460 m002 -5*Pi^2+Pi^6+Pi^4*Sech[Pi] 9204443384783299 a007 Real Root Of -608*x^4-748*x^3-798*x^2+392*x+890 9204443389144930 m005 (1/2*2^(1/2)-10/11)/(4/7*5^(1/2)+11/12) 9204443394360002 m005 (1/2*2^(1/2)-7/8)/(2/3*5^(1/2)+1/3) 9204443399300176 a007 Real Root Of 176*x^4-745*x^3+241*x^2-56*x+302 9204443401950893 m001 Zeta(1/2)*(BesselJ(0,1)-HardHexagonsEntropy) 9204443412858003 m005 (1/2*Catalan+1/7)/(1/7*5^(1/2)+1/3) 9204443434931190 r005 Im(z^2+c),c=-77/122+1/32*I,n=4 9204443444645516 m001 (Kac-StolarskyHarborth)/(Ei(1)-Conway) 9204443449892558 m001 LaplaceLimit+ReciprocalFibonacci*ZetaP(4) 9204443450489580 a007 Real Root Of 874*x^4-699*x^3+631*x^2+955*x-828 9204443461401636 m001 (2^(1/2)+gamma)/(-ln(2)+TravellingSalesman) 9204443511374186 l006 ln(2835/7117) 9204443559591318 m001 (MadelungNaCl+ZetaQ(2))/(FeigenbaumMu-exp(Pi)) 9204443563016544 s001 sum(exp(-Pi/3)^(n-1)*A067096[n],n=1..infinity) 9204443583173642 a007 Real Root Of -82*x^4+361*x^3-690*x^2-252*x+693 9204443596624676 m001 (-exp(1/Pi)+ZetaP(4))/(3^(1/2)-arctan(1/3)) 9204443602781297 a007 Real Root Of 475*x^4-593*x^3-162*x^2-165*x-818 9204443627885518 r008 a(0)=9,K{-n^6,-5+5*n^3-4*n^2+3*n} 9204443689027762 a007 Real Root Of -471*x^4+563*x^3+251*x^2+408*x+940 9204443691154927 a007 Real Root Of -63*x^4-529*x^3+462*x^2-86*x-256 9204443695362447 a003 sin(Pi*32/115)/sin(Pi*37/118) 9204443697971285 a007 Real Root Of -336*x^4+892*x^3+511*x^2-71*x-822 9204443699540801 r005 Im(z^2+c),c=-75/106+28/61*I,n=10 9204443709924469 a003 cos(Pi*4/115)-sin(Pi*34/95) 9204443717642843 a007 Real Root Of 956*x^4-173*x^3-35*x^2+296*x-519 9204443719182864 m003 -5/8+(9*Sqrt[5])/32-Tanh[1/2+Sqrt[5]/2] 9204443726105314 k002 Champernowne real with 22*n^2+129*n-142 9204443743202394 r009 Im(z^3+c),c=-25/86+31/38*I,n=5 9204443760822322 a001 21/64079*3^(47/50) 9204443784137521 m001 (Pi^(1/2)-GaussAGM)/(Landau+PlouffeB) 9204443794895197 a001 15127/610*10946^(38/43) 9204443846729838 r005 Im(z^2+c),c=-51/82+15/38*I,n=53 9204443866743524 m005 (1/2*Pi-4)/(7/9*5^(1/2)+9/10) 9204443881065446 m001 1/2*exp(1)-BesselI(0,2) 9204443922512231 a001 233/843*843^(5/28) 9204443946295984 a007 Real Root Of -8*x^4-727*x^3+851*x^2-935*x-296 9204443949550749 m001 1/exp(Zeta(7))/GAMMA(23/24)*sin(Pi/12) 9204443962985915 m001 HardyLittlewoodC3/gamma(3)/ReciprocalFibonacci 9204443972282409 r009 Im(z^3+c),c=-1/11+52/57*I,n=21 9204443977524237 a007 Real Root Of -839*x^4-210*x^3+26*x^2-510*x-53 9204443978771916 a007 Real Root Of -832*x^4-289*x^3+107*x^2+153*x+422 9204443989676879 r005 Im(z^2+c),c=-99/86+2/17*I,n=37 9204443995673953 a007 Real Root Of 254*x^4-949*x^3-487*x^2+373*x+627 9204444008004517 r005 Im(z^2+c),c=-41/90+7/45*I,n=43 9204444010827090 m001 1/exp(Porter)^2*KhintchineHarmonic/Zeta(7) 9204444034858314 m001 gamma(1)^Zeta(1/2)/(gamma(1)^ln(Pi)) 9204444092686019 m001 (sin(1/5*Pi)+Khinchin)/(exp(1)+Chi(1)) 9204444103781729 a007 Real Root Of -826*x^4+42*x^3-543*x^2-532*x+596 9204444115156829 m001 gamma^Champernowne*gamma^Trott2nd 9204444156788958 m001 (Kolakoski+MinimumGamma)/(2^(1/2)+Zeta(5)) 9204444175582592 a007 Real Root Of 989*x^4-114*x^3+628*x^2+618*x-762 9204444177494882 a007 Real Root Of 38*x^4+445*x^3+964*x^2+846*x+378 9204444177952367 h001 (8/11*exp(1)+3/11)/(7/11*exp(1)+5/7) 9204444190029493 r009 Re(z^3+c),c=-43/82+2/33*I,n=4 9204444200568779 m001 Trott^2/GlaisherKinkelin/ln(GAMMA(1/24))^2 9204444221053963 a007 Real Root Of 597*x^4-832*x^3+686*x^2+974*x-762 9204444242428484 l006 ln(1922/4825) 9204444249765680 a007 Real Root Of 734*x^4+146*x^3-62*x^2+874*x+444 9204444271324358 b008 ExpIntegralE[4,30]/3 9204444291810183 l006 ln(9034/9905) 9204444291958604 r002 64th iterates of z^2 + 9204444307595767 a007 Real Root Of 754*x^4+600*x^3-232*x^2-990*x-788 9204444336514103 r002 8th iterates of z^2 + 9204444341408039 h001 (1/3*exp(1)+1/8)/(1/9*exp(1)+9/11) 9204444341408039 m005 (1/3*exp(1)+1/8)/(1/9*exp(1)+9/11) 9204444369683985 a003 sin(Pi*2/37)*sin(Pi*11/60) 9204444379957816 a001 329/1926*322^(7/24) 9204444403480490 m001 1/Paris^2*FransenRobinson^2/ln(PrimesInBinary) 9204444415062628 r005 Re(z^2+c),c=-53/60+11/62*I,n=43 9204444443590340 r005 Re(z^2+c),c=1/64+23/57*I,n=27 9204444444444444 r005 Re(z^2+c),c=-7/6+8/25*I,n=2 9204444446070906 m001 (Champernowne+Khinchin)/(ln(5)+3^(1/3)) 9204444447927563 m001 (-gamma(3)+Kac)/(BesselK(0,1)-ln(3)) 9204444454924460 r002 5th iterates of z^2 + 9204444462297236 a007 Real Root Of 282*x^4-525*x^3-941*x^2-573*x-342 9204444497720003 m001 1/GAMMA(13/24)^2/exp(FeigenbaumC)^2/Zeta(5) 9204444514831326 a007 Real Root Of -664*x^4-31*x^3-846*x^2-488*x+720 9204444524736781 r009 Re(z^3+c),c=-5/32+27/46*I,n=47 9204444534596831 m005 (1/2*exp(1)+1/8)/(7/9*Catalan+9/10) 9204444537590903 m002 -E^Pi/6-Log[Pi]+Pi^4*Tanh[Pi] 9204444573598571 r005 Im(z^2+c),c=-133/122+5/46*I,n=40 9204444600163975 m005 (1/2*5^(1/2)-3)/(157/126+5/14*5^(1/2)) 9204444603290508 m001 (Kolakoski-Paris)/(BesselI(1,2)-GaussAGM) 9204444608145447 r002 3th iterates of z^2 + 9204444653616380 a007 Real Root Of 725*x^4-918*x^3-691*x^2+706*x-1 9204444687150683 a007 Real Root Of -573*x^4-727*x^3-674*x^2-146*x+281 9204444687269981 a007 Real Root Of 664*x^4-261*x^3+418*x^2+977*x-135 9204444695054273 a007 Real Root Of 752*x^4+439*x^3+384*x^2+3*x-520 9204444695414883 r009 Im(z^3+c),c=-17/29+31/44*I,n=6 9204444715747151 r002 26th iterates of z^2 + 9204444717190659 m001 (GAMMA(1/3)*sin(Pi/12)+sqrt(Pi))/GAMMA(1/3) 9204444729105914 k002 Champernowne real with 45/2*n^2+255/2*n-141 9204444752133144 m001 (Shi(1)-ln(2^(1/2)+1))/(GAMMA(17/24)+Kac) 9204444752705357 a007 Real Root Of 305*x^4+876*x^3+807*x^2-748*x-908 9204444762845989 r005 Re(z^2+c),c=-7/8+40/217*I,n=49 9204444765170473 m005 (1/2*5^(1/2)-2/3)/(1/6*gamma-5) 9204444808791194 m002 Pi^4-Cosh[Pi]/2+5*Sech[Pi] 9204444895794935 m001 1/GAMMA(1/6)^2/exp(Lehmer)^2*cos(Pi/12)^2 9204444917424688 a001 2/5702887*4807526976^(20/23) 9204444931281238 a007 Real Root Of 81*x^4+702*x^3-498*x^2-898*x-43 9204444941860260 r009 Im(z^3+c),c=-29/82+1/22*I,n=19 9204444942422001 m001 (exp(Pi)+Si(Pi))/(GAMMA(7/12)+KhinchinLevy) 9204444949538272 l006 ln(2931/7358) 9204444985371425 r005 Im(z^2+c),c=-25/18+19/182*I,n=3 9204444988489098 r009 Im(z^3+c),c=-49/78+31/57*I,n=10 9204445028825696 a007 Real Root Of -24*x^4-124*x^3+920*x^2+262*x+37 9204445051346039 r002 3th iterates of z^2 + 9204445053165249 a001 2161/3*121393^(21/26) 9204445082948083 a007 Real Root Of 562*x^4-226*x^3-884*x^2-387*x+878 9204445091031620 a007 Real Root Of -794*x^4+484*x^3-373*x^2-360*x+932 9204445092699190 m001 Backhouse^FellerTornier/(Backhouse^Landau) 9204445107971824 m001 1/exp(Zeta(7))^2/Conway^2*sinh(1) 9204445118023219 m001 (MertensB2+Sarnak)/(FeigenbaumAlpha-Lehmer) 9204445120508131 m001 exp((2^(1/3)))*GolombDickman^2*sin(Pi/12)^2 9204445138844509 r005 Re(z^2+c),c=-109/86+1/49*I,n=20 9204445142448851 a007 Real Root Of 939*x^4-650*x^3-599*x^2+611*x-111 9204445145483908 a007 Real Root Of 83*x^4-667*x^3-388*x^2+97*x+700 9204445154547275 m005 (1/2*exp(1)+8/9)/(2/11*exp(1)-1/4) 9204445256556542 a007 Real Root Of -728*x^4-499*x^3+301*x^2+357*x+207 9204445294478612 l006 ln(3940/9891) 9204445308697721 a001 377/521*322^(1/24) 9204445343747920 a007 Real Root Of -570*x^4+388*x^3-405*x^2-329*x+752 9204445373565720 m005 (1/3*2^(1/2)-2/7)/(4/11*Pi+7/8) 9204445412181085 m002 Cosh[Pi]/Pi^2+8*Coth[Pi] 9204445449456438 r005 Im(z^2+c),c=-155/126+4/43*I,n=13 9204445514186886 a007 Real Root Of 464*x^4+677*x^3+244*x^2-463*x-438 9204445524852899 r008 a(0)=9,K{-n^6,57-75*n^3-36*n^2+49*n} 9204445531974260 m001 (FibonacciFactorial-Kac)/(Robbin-ZetaQ(3)) 9204445553762044 a007 Real Root Of 92*x^4-434*x^3+387*x^2+247*x-505 9204445586941516 r005 Im(z^2+c),c=-11/122+5/46*I,n=9 9204445597257132 h001 (9/11*exp(2)+7/12)/(11/12*exp(2)+3/7) 9204445601078883 r002 52th iterates of z^2 + 9204445604134818 a007 Real Root Of -790*x^4+890*x^3+32*x^2-566*x+713 9204445614463719 b008 Gamma[23+Sqrt[2]]^2 9204445628714749 a007 Real Root Of 741*x^4-777*x^3-764*x^2+534*x+1 9204445643374283 a007 Real Root Of -948*x^4+326*x^3+943*x^2+927*x+989 9204445650164047 a007 Real Root Of 970*x^4+456*x^3-259*x^2-317*x-413 9204445674999502 r005 Re(z^2+c),c=-31/34+10/97*I,n=21 9204445732106514 k002 Champernowne real with 23*n^2+126*n-140 9204445744369698 q001 3147/3419 9204445780308987 a007 Real Root Of -461*x^4+213*x^3-438*x^2-87*x+788 9204445794823557 a003 cos(Pi*19/113)+cos(Pi*40/83) 9204445804484887 a007 Real Root Of 209*x^4-483*x^3-154*x^2-279*x-653 9204445832716210 a003 cos(Pi*25/109)+cos(Pi*33/74) 9204445845793841 m001 (GAMMA(1/6)+1/2)/(BesselI(1,2)+5) 9204445855719482 a007 Real Root Of 455*x^4-834*x^3-803*x^2-448*x-709 9204445971433519 a007 Real Root Of -355*x^4-294*x^3-55*x^2+580*x+606 9204445973905160 m001 1/BesselK(1,1)*exp(CareFree)^2*GAMMA(2/3) 9204446002661359 a003 cos(Pi*2/105)-sin(Pi*55/113) 9204446030609989 a007 Real Root Of 640*x^4+88*x^3+944*x^2+559*x-676 9204446082038877 m001 (-GAMMA(5/6)+Trott)/(3^(1/2)-polylog(4,1/2)) 9204446089223609 g006 2*Psi(1,6/7)+Psi(1,1/5)-Psi(1,1/11) 9204446120402687 a007 Real Root Of -459*x^4+623*x^3-697*x^2-895*x+582 9204446132336195 a007 Real Root Of 771*x^4+45*x^3-168*x^2-578*x-908 9204446132361428 r009 Im(z^3+c),c=-1/11+52/57*I,n=19 9204446183419394 m001 (Otter-PlouffeB)/(Zeta(5)-Mills) 9204446189551327 a007 Real Root Of -511*x^4+526*x^3-510*x^2-653*x+608 9204446209112105 r005 Re(z^2+c),c=11/126+27/53*I,n=35 9204446229434552 a001 2584/15127*322^(7/24) 9204446233047506 m001 (-Ei(1)+MadelungNaCl)/(Chi(1)+BesselJ(0,1)) 9204446239747250 r002 7th iterates of z^2 + 9204446248873001 r002 33th iterates of z^2 + 9204446258254707 a007 Real Root Of -193*x^4+535*x^3-739*x^2+862*x-446 9204446281040248 s001 sum(exp(-Pi/4)^(n-1)*A174087[n],n=1..infinity) 9204446295424593 a007 Real Root Of 71*x^4+557*x^3-981*x^2-785*x+622 9204446296480662 l006 ln(1009/2533) 9204446336389730 a007 Real Root Of -746*x^4+87*x^3+221*x^2+378*x+764 9204446376279904 a007 Real Root Of -619*x^4+396*x^3-876*x^2-801*x+758 9204446381865736 r002 2th iterates of z^2 + 9204446410741284 r002 32th iterates of z^2 + 9204446499269579 a001 2255/13201*322^(7/24) 9204446535099501 m001 1/ln(cosh(1))/Cahen^2*sqrt(1+sqrt(3)) 9204446538637979 a001 17711/103682*322^(7/24) 9204446544381752 a001 15456/90481*322^(7/24) 9204446545219757 a001 121393/710647*322^(7/24) 9204446545342020 a001 105937/620166*322^(7/24) 9204446545359858 a001 832040/4870847*322^(7/24) 9204446545362460 a001 726103/4250681*322^(7/24) 9204446545362840 a001 5702887/33385282*322^(7/24) 9204446545362896 a001 4976784/29134601*322^(7/24) 9204446545362904 a001 39088169/228826127*322^(7/24) 9204446545362905 a001 34111385/199691526*322^(7/24) 9204446545362905 a001 267914296/1568397607*322^(7/24) 9204446545362905 a001 233802911/1368706081*322^(7/24) 9204446545362905 a001 1836311903/10749957122*322^(7/24) 9204446545362905 a001 1602508992/9381251041*322^(7/24) 9204446545362905 a001 12586269025/73681302247*322^(7/24) 9204446545362905 a001 10983760033/64300051206*322^(7/24) 9204446545362905 a001 86267571272/505019158607*322^(7/24) 9204446545362905 a001 75283811239/440719107401*322^(7/24) 9204446545362905 a001 2504730781961/14662949395604*322^(7/24) 9204446545362905 a001 139583862445/817138163596*322^(7/24) 9204446545362905 a001 53316291173/312119004989*322^(7/24) 9204446545362905 a001 20365011074/119218851371*322^(7/24) 9204446545362905 a001 7778742049/45537549124*322^(7/24) 9204446545362905 a001 2971215073/17393796001*322^(7/24) 9204446545362905 a001 1134903170/6643838879*322^(7/24) 9204446545362905 a001 433494437/2537720636*322^(7/24) 9204446545362905 a001 165580141/969323029*322^(7/24) 9204446545362906 a001 63245986/370248451*322^(7/24) 9204446545362909 a001 24157817/141422324*322^(7/24) 9204446545362930 a001 9227465/54018521*322^(7/24) 9204446545363075 a001 3524578/20633239*322^(7/24) 9204446545364069 a001 1346269/7881196*322^(7/24) 9204446545370882 a001 514229/3010349*322^(7/24) 9204446545410503 m001 (Bloch+Trott2nd)/(Psi(2,1/3)+ln(2^(1/2)+1)) 9204446545417583 a001 196418/1149851*322^(7/24) 9204446545737672 a001 75025/439204*322^(7/24) 9204446546771361 m001 (-cos(1)+MertensB2)/(Psi(2,1/3)+2^(1/2)) 9204446547931598 a001 28657/167761*322^(7/24) 9204446557034407 a006 5^(1/2)*fibonacci(29/2)/Lucas(13)/sqrt(5) 9204446562968989 a001 10946/64079*322^(7/24) 9204446642731183 a003 cos(Pi*9/58)/sin(Pi*43/105) 9204446649223869 a007 Real Root Of 568*x^4-267*x^3-556*x^2-413*x-525 9204446666036799 a001 4181/24476*322^(7/24) 9204446677231740 a007 Real Root Of -673*x^4+450*x^3-609*x^2-403*x+979 9204446678444171 a007 Real Root Of -600*x^4+759*x^3+203*x^2-458*x+429 9204446703438850 m005 (1/2*Catalan-3/4)/(9/10*Pi-6) 9204446723191909 m001 1/Catalan/exp(Artin)*GAMMA(3/4) 9204446735107114 k002 Champernowne real with 47/2*n^2+249/2*n-139 9204446739765812 a007 Real Root Of 59*x^4+568*x^3+220*x^2-137*x-453 9204446746490682 a007 Real Root Of -861*x^4+852*x^3+841*x^2-152*x-619 9204446756939529 m001 (FeigenbaumC+PrimesInBinary)/(exp(Pi)+2^(1/3)) 9204446766893616 m001 (Ei(1)+BesselK(1,1))/(Khinchin+Trott2nd) 9204446776239983 r002 30th iterates of z^2 + 9204446784733916 a007 Real Root Of 611*x^4+323*x^3+936*x^2+356*x-652 9204446788447490 a007 Real Root Of -215*x^4+991*x^3+837*x^2+218 9204446790522930 p003 LerchPhi(1/1024,2,221/212) 9204446798169377 r002 48th iterates of z^2 + 9204446799403675 m001 Artin^GaussKuzminWirsing/(Artin^Ei(1,1)) 9204446879386427 m001 (GaussAGM+ZetaQ(4))^arctan(1/2) 9204446883263621 a007 Real Root Of -602*x^4-765*x^3-896*x^2+247*x+822 9204446889025258 m001 polylog(4,1/2)*(Backhouse+FellerTornier) 9204446896664299 a007 Real Root Of -869*x^4-274*x^3-114*x^2-771*x-203 9204446897709938 m004 5/3+Sqrt[5]*Pi+Log[Sqrt[5]*Pi]^(-1) 9204446918351101 r002 25th iterates of z^2 + 9204446975469975 a007 Real Root Of 80*x^4+665*x^3-680*x^2-173*x+374 9204447027197419 a007 Real Root Of -441*x^4-368*x^3-34*x^2+960*x+942 9204447032443580 a007 Real Root Of -325*x^4+718*x^3+936*x^2+920*x+847 9204447033535197 a007 Real Root Of 795*x^4+277*x^3+975*x^2+771*x-471 9204447056619472 m005 (1/2*Zeta(3)-1/8)/(1/7*Zeta(3)+5) 9204447057222908 r005 Im(z^2+c),c=23/64+16/25*I,n=45 9204447086892867 p003 LerchPhi(1/16,1,136/121) 9204447111732843 a007 Real Root Of -744*x^4-3*x^3+142*x^2-322*x+115 9204447114452686 a007 Real Root Of -398*x^4+26*x^3+442*x^2+358*x+261 9204447164428754 a007 Real Root Of 163*x^4-779*x^3-514*x^2+428*x+532 9204447168768967 m005 (1/2*5^(1/2)+1/7)/(2/7*3^(1/2)+7/8) 9204447172868050 r005 Im(z^2+c),c=-11/74+40/49*I,n=6 9204447179155912 m009 (3/5*Psi(1,3/4)+3)/(1/5*Psi(1,3/4)-1) 9204447180789530 m001 (sin(1)+cos(1))/(-ln(2+3^(1/2))+Porter) 9204447198699790 a001 16692641/305*2^(3/4) 9204447215143912 r005 Re(z^2+c),c=7/114+10/21*I,n=38 9204447220633507 r005 Re(z^2+c),c=-29/60+37/53*I,n=4 9204447224585323 a007 Real Root Of 176*x^4-139*x^3+898*x^2+823*x-238 9204447226780308 r005 Im(z^2+c),c=-51/44+7/59*I,n=38 9204447239971897 h001 (-5*exp(6)-9)/(-2*exp(7)-8) 9204447243059001 m005 (1/2*2^(1/2)+1/2)/(3/4*exp(1)-8/11) 9204447284005688 a007 Real Root Of 409*x^4-40*x^3+553*x^2+801*x-56 9204447311091634 m001 (Psi(2,1/3)+Zeta(1,2))/(-LaplaceLimit+Sarnak) 9204447350448097 a007 Real Root Of -719*x^4+224*x^3+342*x^2+239*x+621 9204447360422273 m001 sin(1/5*Pi)/(Ei(1)-FeigenbaumC) 9204447372474084 a001 1597/9349*322^(7/24) 9204447381105839 m001 Magata/Lehmer/exp(Catalan)^2 9204447421153419 r005 Im(z^2+c),c=17/62+26/53*I,n=44 9204447431757443 a001 521/610*89^(1/60) 9204447447494089 a007 Real Root Of -537*x^4-717*x^3+42*x^2+776*x+505 9204447457738954 m008 (2/3*Pi^2+4/5)/(5/6*Pi^6+3/5) 9204447560613749 l006 ln(3123/7840) 9204447577452621 m001 (-Mills+Trott2nd)/(BesselJ(0,1)+GolombDickman) 9204447579451834 m001 1/GolombDickman*ln(FransenRobinson)*GAMMA(1/6) 9204447583012574 a007 Real Root Of 109*x^4+973*x^3-373*x^2-952*x-778 9204447593605023 m001 (Zeta(5)+Bloch)/(FibonacciFactorial+ThueMorse) 9204447603280006 m001 (gamma(3)-GAMMA(19/24))/(Porter-Totient) 9204447612831474 m001 (Cahen+Grothendieck)/(ln(5)+GAMMA(23/24)) 9204447614782991 a007 Real Root Of 793*x^4+471*x^3+987*x^2+426*x-646 9204447628232126 a007 Real Root Of -293*x^4+912*x^3+35*x^2+321*x-826 9204447646332828 a007 Real Root Of 717*x^4-590*x^3+719*x^2+743*x-900 9204447697437075 b008 1/5+9*Zeta[11] 9204447738107714 k002 Champernowne real with 24*n^2+123*n-138 9204447739403264 m001 CareFree^Zeta(1,2)*LaplaceLimit 9204447771109505 a007 Real Root Of -730*x^4+623*x^3+275*x^2+224*x+983 9204447784640712 r009 Im(z^3+c),c=-17/46+24/35*I,n=49 9204447800068763 a007 Real Root Of 275*x^4-930*x^3-390*x^2+487*x+410 9204447804171165 p004 log(13147/5237) 9204447805076593 r002 59i'th iterates of 2*x/(1-x^2) of 9204447811096023 r002 32th iterates of z^2 + 9204447832953663 g007 Psi(2,1/8)-Psi(2,4/11)-Psi(2,4/9)-Psi(2,3/8) 9204447854507439 m001 (Champernowne-Zeta(5))^Catalan 9204447864762159 m001 GAMMA(1/3)/exp(Khintchine)^2*exp(1)^2 9204447867064977 m001 (Pi-Ei(1))/(Lehmer-Riemann1stZero) 9204447872531173 m001 sin(1/5*Pi)^GAMMA(5/6)/Gompertz 9204447874429891 a007 Real Root Of -714*x^4+210*x^3-247*x^2-358*x+556 9204447889632961 m001 (1+GAMMA(2/3))/(-Sierpinski+Trott2nd) 9204447916143065 a007 Real Root Of 571*x^4+571*x^3-71*x^2-307*x-187 9204447920876543 m001 (sin(1/5*Pi)-ln(5))/(ArtinRank2+ThueMorse) 9204447986038517 a001 39603/1597*10946^(38/43) 9204448055896979 m001 1/sin(Pi/12)/exp(1)*ln(sqrt(5))^2 9204448082625335 a007 Real Root Of -703*x^4-656*x^3-718*x^2+42*x+640 9204448113329665 a001 377/5778*322^(11/24) 9204448131173111 r002 38th iterates of z^2 + 9204448153416539 r005 Re(z^2+c),c=-9/10+16/153*I,n=46 9204448163977120 l006 ln(2114/5307) 9204448187225878 a007 Real Root Of 721*x^4-936*x^3-658*x^2+316*x+479 9204448216478134 m005 (1/3*5^(1/2)+2/9)/(91/144+3/16*5^(1/2)) 9204448237000798 m001 log(2+sqrt(3))^2*Tribonacci/ln(sqrt(2)) 9204448238134153 m001 (FeigenbaumC*Kolakoski-Sarnak)/Kolakoski 9204448246364414 q001 1076/1169 9204448258631097 m005 (1/20+1/4*5^(1/2))/(1/7*3^(1/2)-10/11) 9204448267582312 r005 Re(z^2+c),c=-47/52+5/39*I,n=19 9204448268995842 r002 31th iterates of z^2 + 9204448271158495 a003 sin(Pi*29/106)/sin(Pi*4/13) 9204448285949648 a003 sin(Pi*23/106)/cos(Pi*13/50) 9204448289014090 s002 sum(A086667[n]/(n^3*exp(n)+1),n=1..infinity) 9204448308159697 m001 (FeigenbaumB+Grothendieck)/(Pi-ln(2)/ln(10)) 9204448320917406 a007 Real Root Of 128*x^4-152*x^3+218*x^2+49*x-350 9204448324496373 r005 Im(z^2+c),c=-55/48+3/26*I,n=7 9204448338217471 a007 Real Root Of -687*x^4-226*x^3+132*x^2-276*x-49 9204448367974374 r009 Re(z^3+c),c=-1/8+23/60*I,n=11 9204448397937677 a007 Real Root Of -749*x^4+514*x^3+683*x^2-254*x+126 9204448429785566 h003 exp(Pi*(10^(10/3)-14^(12/5))) 9204448429785566 h008 exp(Pi*(10^(10/3)-14^(12/5))) 9204448528874161 a007 Real Root Of 735*x^4+217*x^3-329*x^2+118*x+29 9204448565418872 m001 Zeta(3)^exp(1/exp(1))/(Zeta(3)^Ei(1)) 9204448576362003 r009 Re(z^3+c),c=-1/20+40/53*I,n=45 9204448579258362 m001 GaussAGM^(FeigenbaumKappa/Otter) 9204448581037953 a007 Real Root Of 504*x^4+20*x^3+597*x^2-577*x+48 9204448623882435 r002 2th iterates of z^2 + 9204448632993013 a007 Real Root Of -466*x^4-48*x^3+13*x^2+629*x+865 9204448670051334 m009 (1/3*Psi(1,2/3)+4/5)/(1/3*Psi(1,2/3)-3) 9204448714552219 a007 Real Root Of 974*x^4-437*x^3+327*x^2+491*x-865 9204448722996146 r001 47i'th iterates of 2*x^2-1 of 9204448731320494 m001 GAMMA(1/4)/(polylog(4,1/2)^sqrt(2)) 9204448741108314 k002 Champernowne real with 49/2*n^2+243/2*n-137 9204448749346394 l006 ln(3219/8081) 9204448752657358 m001 1/Zeta(9)^2/exp(Catalan)^2*gamma 9204448764955253 m006 (3/Pi-4)/(Pi+1/6) 9204448801751328 m001 ln(Pi)^(Zeta(1,2)/GAMMA(7/12)) 9204448826531237 r005 Im(z^2+c),c=31/110+35/57*I,n=18 9204448830632210 a007 Real Root Of -61*x^4+924*x^3-44*x^2+58*x+855 9204448870695426 m006 (2/5*exp(Pi)+3/5)/(2*exp(2*Pi)-1/6) 9204448891386944 r005 Re(z^2+c),c=-9/10+4/29*I,n=29 9204448904523444 r002 10th iterates of z^2 + 9204448919028367 r002 7th iterates of z^2 + 9204448939251874 m001 Riemann3rdZero^OrthogonalArrays+CopelandErdos 9204448994144099 l006 ln(2147/2354) 9204449013367908 m001 BesselI(0,2)^FeigenbaumAlpha+Totient 9204449013751623 m001 1/Ei(1)^2*exp(Artin)/GAMMA(5/24) 9204449059599043 s002 sum(A058810[n]/(16^n),n=1..infinity) 9204449059599043 s002 sum(A058810[n]/(16^n-1),n=1..infinity) 9204449065185680 a007 Real Root Of 266*x^4-612*x^3+56*x^2-11*x+249 9204449092925911 a007 Real Root Of -927*x^4+189*x^3+783*x^2+910*x+987 9204449116962366 a001 370248451/610*2504730781961^(2/21) 9204449116962366 a001 969323029/610*102334155^(2/21) 9204449126991841 a001 1268860318/305*4181^(2/21) 9204449129107166 a007 Real Root Of 675*x^4-404*x^3+84*x^2+167*x-717 9204449135892856 m001 (Otter-Salem)/(Cahen-LaplaceLimit) 9204449138290973 m006 (1/2*ln(Pi)-3)/(1/2*exp(2*Pi)-4) 9204449178588844 g007 Psi(2,5/7)+Psi(2,2/7)-Psi(13/10)-Psi(2,1/8) 9204449194981108 a007 Real Root Of 166*x^4+138*x^3+373*x^2-384*x-681 9204449217560294 a001 7/2584*46368^(28/37) 9204449240593745 a007 Real Root Of 764*x^4+255*x^3+209*x^2+357*x-198 9204449240771607 a007 Real Root Of 317*x^4+84*x^3+299*x^2+247*x-188 9204449253986795 r005 Re(z^2+c),c=-103/94+4/49*I,n=24 9204449255217849 m001 StolarskyHarborth^(LandauRamanujan/exp(Pi)) 9204449273965337 r005 Re(z^2+c),c=-9/10+26/189*I,n=39 9204449295485807 m001 (-Riemann2ndZero+ZetaQ(4))/(sin(1)+3^(1/3)) 9204449322249626 r002 61th iterates of z^2 + 9204449337605361 m001 TravellingSalesman^Magata+BesselK(1,1) 9204449347937940 a001 24476/3*21^(39/49) 9204449348476108 h001 (3/8*exp(1)+2/11)/(1/7*exp(1)+11/12) 9204449351362069 a007 Real Root Of 302*x^4-753*x^3-326*x^2+493*x-74 9204449367530005 r005 Im(z^2+c),c=3/56+1/12*I,n=6 9204449375443889 m001 (ArtinRank2+GolombDickman)/(ln(gamma)+ln(2)) 9204449380192091 m001 Trott2nd^Stephens+Kolakoski 9204449391627538 a001 440719107401/7*6765^(13/23) 9204449414363206 a001 2537720636/21*433494437^(13/23) 9204449424288506 m006 (1/6*exp(Pi)-1/5)/(4*Pi^2+1/4) 9204449444835209 m001 (GaussAGM+ZetaP(2))/(GAMMA(17/24)-FeigenbaumD) 9204449453689427 r002 17th iterates of z^2 + 9204449457014012 a007 Real Root Of -895*x^4+141*x^3-117*x^2-836*x+82 9204449468052713 r005 Im(z^2+c),c=-59/114+6/37*I,n=46 9204449482313083 a007 Real Root Of -600*x^4+14*x^3-591*x^2-386*x+587 9204449497733524 a007 Real Root Of -774*x^4+671*x^3+43*x^2-875*x+237 9204449540081165 m001 cos(1)^2/ln(BesselJ(1,1))*sin(Pi/12) 9204449544134317 a003 sin(Pi*36/107)/sin(Pi*32/81) 9204449568802300 r009 Re(z^3+c),c=-35/62+32/45*I,n=3 9204449581844790 r005 Re(z^2+c),c=-19/14+8/237*I,n=8 9204449583559177 r005 Im(z^2+c),c=-12/19+16/39*I,n=7 9204449603624259 m001 (2^(1/3))/Lehmer^2*ln(GAMMA(19/24))^2 9204449623848547 a007 Real Root Of 938*x^4-439*x^3-83*x^2+851*x-162 9204449626637955 m001 (Paris+Riemann2ndZero)/(DuboisRaymond-exp(Pi)) 9204449630637600 m001 1/OneNinth^2*Lehmer*exp(sin(Pi/5)) 9204449642617079 m001 ZetaQ(3)/(OneNinth^GAMMA(11/12)) 9204449675412823 m002 -5-Pi^4/4+Pi^6-Cosh[Pi] 9204449692645356 g001 abs(GAMMA(-34/15+I*44/15)) 9204449710851836 a007 Real Root Of -888*x^3-61*x^2-2*x+746 9204449719688530 m005 (1/2*2^(1/2)-9/11)/(5/9*gamma-1/5) 9204449733016516 a007 Real Root Of 37*x^4-229*x^3-100*x^2-399*x+604 9204449744108914 k002 Champernowne real with 25*n^2+120*n-136 9204449744109014 k004 Champernowne real with floor(Pi*(8*n^2+38*n-43)) 9204449748781515 r002 37th iterates of z^2 + 9204449779298555 a001 233/271443*1364^(29/30) 9204449785826719 r005 Re(z^2+c),c=-53/122+23/28*I,n=2 9204449823295593 a007 Real Root Of 669*x^4-558*x^3-561*x^2+188*x-267 9204449828267763 a007 Real Root Of -776*x^4+613*x^3-458*x^2-477*x+984 9204449856625819 s002 sum(A062475[n]/(n*exp(n)-1),n=1..infinity) 9204449861073109 h001 (-5*exp(5)+4)/(-2*exp(6)+5) 9204449869229237 l006 ln(1105/2774) 9204449906542208 a007 Real Root Of 502*x^4-674*x^3+541*x^2+424*x-954 9204449907557938 a001 1597/2207*123^(1/20) 9204449977312241 s001 sum(exp(-Pi)^(n-1)*A210063[n],n=1..infinity) 9204449985837355 r005 Re(z^2+c),c=3/22+15/28*I,n=36 9204449995005718 m001 (DuboisRaymond-Porter)/(3^(1/3)-Backhouse) 9204450014694088 h001 (2/11*exp(2)+1/2)/(7/10*exp(1)+1/10) 9204450028793133 a007 Real Root Of 759*x^4-65*x^3-682*x^2-989*x-928 9204450069510542 m001 1/5*(5^(1/2)*Sarnak+BesselJ(1,1))*5^(1/2) 9204450073167783 r009 Re(z^3+c),c=-5/32+27/46*I,n=49 9204450103875781 m001 (GAMMA(3/4)+ln(2))/(ln(5)+Weierstrass) 9204450109570911 a001 233/167761*1364^(9/10) 9204450119166558 r005 Im(z^2+c),c=-41/90+7/45*I,n=45 9204450127431225 a007 Real Root Of -997*x^4+595*x^3+850*x^2-635*x-125 9204450127450165 r005 Im(z^2+c),c=-33/26+22/67*I,n=3 9204450143422701 m005 (1/2*Pi-4/5)/(6*2^(1/2)-1/9) 9204450154008293 s002 sum(A196553[n]/(n*pi^n-1),n=1..infinity) 9204450188667872 a007 Real Root Of 409*x^4+252*x^3+500*x^2+331*x-216 9204450193734613 r009 Re(z^3+c),c=-5/32+27/46*I,n=52 9204450194000525 m001 (3^(1/2)-Zeta(5))/(-cos(1/5*Pi)+ZetaQ(2)) 9204450216952347 r002 42th iterates of z^2 + 9204450234460393 m001 (Ei(1)-cos(1/12*Pi))^GAMMA(5/6) 9204450234460393 m001 (Ei(1)-cos(Pi/12))^GAMMA(5/6) 9204450247009328 m001 (3^(1/2)-Champernowne)/ZetaP(3) 9204450294051800 a007 Real Root Of 744*x^4-81*x^3+34*x^2+88*x-545 9204450314087315 a007 Real Root Of 412*x^4-581*x^3+659*x^2+803*x-568 9204450323581243 m001 (Kac+Sierpinski)/(Catalan-LambertW(1)) 9204450324900709 m005 (1/2*5^(1/2)+5)/(2*Pi+4/11) 9204450331019109 m001 2*Pi/GAMMA(5/6)*(Shi(1)+Gompertz) 9204450353819308 m006 (3/5*Pi+1/6)/(1/5*ln(Pi)+2) 9204450355091561 a007 Real Root Of 419*x^4+918*x^3+908*x^2-379*x-703 9204450357304417 a005 (1/cos(49/235*Pi))^89 9204450379673257 a001 233/1364*521^(7/26) 9204450383768701 a007 Real Root Of -756*x^4-690*x^3-692*x^2+174*x+751 9204450415821490 r005 Re(z^2+c),c=-9/10+39/238*I,n=5 9204450420314898 m005 (23/66+1/6*5^(1/2))/(1/8*3^(1/2)-1) 9204450420452152 m001 exp(Zeta(1,2))*Trott^2*sqrt(2)^2 9204450437201704 r009 Im(z^3+c),c=-7/29+51/55*I,n=7 9204450437600224 a007 Real Root Of 942*x^4-97*x^3-599*x^2-29*x-271 9204450438208022 a001 233/103682*1364^(5/6) 9204450448587697 m001 GAMMA(11/12)^2/FeigenbaumB^2*ln(sqrt(Pi)) 9204450501731687 r009 Re(z^3+c),c=-5/32+27/46*I,n=54 9204450527470672 m001 1/exp(Riemann2ndZero)^2/Si(Pi)*GAMMA(1/6)^2 9204450546022388 a007 Real Root Of 430*x^4+115*x^3+279*x^2+46*x-413 9204450576309465 a001 24476/987*10946^(38/43) 9204450625869262 q001 3309/3595 9204450628128679 r002 60th iterates of z^2 + 9204450635192407 a007 Real Root Of 960*x^4-444*x^3+530*x^2+662*x-875 9204450650710181 m001 (Backhouse+Champernowne)/(Niven+Trott) 9204450656711673 r002 8th iterates of z^2 + 9204450677812144 m001 BesselJ(0,1)^(Pi^(1/2)*ZetaP(3)) 9204450747109514 k002 Champernowne real with 51/2*n^2+237/2*n-135 9204450771126302 a001 233/64079*1364^(23/30) 9204450773322033 a007 Real Root Of 217*x^4-964*x^3+320*x^2-187*x+497 9204450774860769 a007 Real Root Of 595*x^4-739*x^3-764*x^2+112*x-253 9204450784667926 h001 (8/11*exp(2)+1/9)/(1/6*exp(1)+1/7) 9204450794489285 a007 Real Root Of -309*x^4-46*x^3-x^2+877*x+994 9204450814578996 a007 Real Root Of 499*x^4-569*x^3+225*x^2+974*x-96 9204450816126871 a001 47/1346269*987^(28/59) 9204450838171976 a007 Real Root Of 975*x^4-4*x^3-662*x^2+665*x+470 9204450847932005 m001 (2^(1/2)-sin(1))/(-Zeta(5)+PrimesInBinary) 9204450871877187 a007 Real Root Of 485*x^4-202*x^3+163*x^2+682*x-16 9204450878083391 a001 5778/89*21^(27/31) 9204450889417346 a007 Real Root Of 600*x^4+22*x^3+527*x^2+352*x-536 9204450905063636 a001 4181/5778*123^(1/20) 9204450924552514 m001 (Gompertz+StronglyCareFree)/(ln(5)+Zeta(1/2)) 9204450926075463 l006 ln(3411/8563) 9204450966570965 m001 Zeta(1,2)+GolombDickman*Trott2nd 9204450974396701 h003 exp(Pi*(12^(2/3)*(23-6^(1/2)))) 9204451018128453 a007 Real Root Of -443*x^4-363*x^3-67*x^2+750*x+782 9204451031038679 r009 Re(z^3+c),c=-5/32+27/46*I,n=56 9204451050597785 a001 10946/15127*123^(1/20) 9204451057065931 p001 sum(1/(414*n+109)/(64^n),n=0..infinity) 9204451071830931 a001 28657/39603*123^(1/20) 9204451074928806 a001 75025/103682*123^(1/20) 9204451075380780 a001 196418/271443*123^(1/20) 9204451075446722 a001 514229/710647*123^(1/20) 9204451075456343 a001 1346269/1860498*123^(1/20) 9204451075457746 a001 3524578/4870847*123^(1/20) 9204451075457951 a001 9227465/12752043*123^(1/20) 9204451075457981 a001 24157817/33385282*123^(1/20) 9204451075457985 a001 63245986/87403803*123^(1/20) 9204451075457986 a001 165580141/228826127*123^(1/20) 9204451075457986 a001 433494437/599074578*123^(1/20) 9204451075457986 a001 1134903170/1568397607*123^(1/20) 9204451075457986 a001 2971215073/4106118243*123^(1/20) 9204451075457986 a001 7778742049/10749957122*123^(1/20) 9204451075457986 a001 20365011074/28143753123*123^(1/20) 9204451075457986 a001 53316291173/73681302247*123^(1/20) 9204451075457986 a001 139583862445/192900153618*123^(1/20) 9204451075457986 a001 365435296162/505019158607*123^(1/20) 9204451075457986 a001 10610209857723/14662949395604*123^(1/20) 9204451075457986 a001 591286729879/817138163596*123^(1/20) 9204451075457986 a001 225851433717/312119004989*123^(1/20) 9204451075457986 a001 86267571272/119218851371*123^(1/20) 9204451075457986 a001 32951280099/45537549124*123^(1/20) 9204451075457986 a001 12586269025/17393796001*123^(1/20) 9204451075457986 a001 4807526976/6643838879*123^(1/20) 9204451075457986 a001 1836311903/2537720636*123^(1/20) 9204451075457986 a001 701408733/969323029*123^(1/20) 9204451075457986 a001 267914296/370248451*123^(1/20) 9204451075457986 a001 102334155/141422324*123^(1/20) 9204451075457988 a001 39088169/54018521*123^(1/20) 9204451075457999 a001 14930352/20633239*123^(1/20) 9204451075458078 a001 5702887/7881196*123^(1/20) 9204451075458614 a001 2178309/3010349*123^(1/20) 9204451075462289 a001 832040/1149851*123^(1/20) 9204451075487476 a001 317811/439204*123^(1/20) 9204451075660115 a001 121393/167761*123^(1/20) 9204451076843398 a001 46368/64079*123^(1/20) 9204451078132228 m001 Chi(1)^GAMMA(5/6)/(Chi(1)^TwinPrimes) 9204451084953738 a001 17711/24476*123^(1/20) 9204451092836379 a001 233/39603*1364^(7/10) 9204451114076045 r001 29i'th iterates of 2*x^2-1 of 9204451132945482 a007 Real Root Of 523*x^4-274*x^3-228*x^2+592*x+149 9204451140542839 a001 6765/9349*123^(1/20) 9204451162652193 a003 cos(Pi*9/22)-cos(Pi*47/107) 9204451183628826 m005 (1/2*3^(1/2)+2/7)/(5/8*Zeta(3)+1/2) 9204451187925446 a001 233/2207*1364^(3/10) 9204451191655733 a001 18/377*144^(7/53) 9204451200565980 r009 Re(z^3+c),c=-5/32+27/46*I,n=50 9204451246480556 a007 Real Root Of -26*x^4-130*x^3-869*x^2-358*x+324 9204451252803181 r005 Im(z^2+c),c=-83/70+1/59*I,n=11 9204451273233726 r005 Im(z^2+c),c=1/32+18/25*I,n=7 9204451273972135 r002 49th iterates of z^2 + 9204451293434353 r009 Re(z^3+c),c=-5/32+27/46*I,n=61 9204451308717399 a007 Real Root Of -476*x^4-5*x^3-239*x^2-22*x+520 9204451311072035 a003 sin(Pi*29/100)/sin(Pi*23/70) 9204451318913568 a001 18/514229*6765^(25/28) 9204451325430712 r009 Re(z^3+c),c=-5/32+27/46*I,n=59 9204451326931956 r009 Re(z^3+c),c=-5/32+27/46*I,n=63 9204451357269318 r009 Re(z^3+c),c=-5/32+27/46*I,n=58 9204451379907977 a007 Real Root Of 996*x^4-155*x^3-953*x^2-671*x-646 9204451386582871 r002 26th iterates of z^2 + 9204451409977262 r009 Re(z^3+c),c=-5/32+27/46*I,n=64 9204451424200608 a001 87403803/1597*2^(3/4) 9204451431914053 a007 Real Root Of -876*x^4+862*x^3+456*x^2-17*x+899 9204451432500002 l006 ln(2306/5789) 9204451443889956 a001 233/24476*1364^(19/30) 9204451449136746 r009 Re(z^3+c),c=-5/32+27/46*I,n=62 9204451461169846 r009 Re(z^3+c),c=-5/32+27/46*I,n=60 9204451480487501 m001 (Magata+Tetranacci)/(ln(Pi)-BesselI(1,1)) 9204451483010676 r005 Re(z^2+c),c=-143/126+16/63*I,n=32 9204451491801655 m002 -1+3*E^Pi-6*Pi^2 9204451495268046 a007 Real Root Of 422*x^4-372*x^3-625*x^2-710*x-717 9204451519352131 a007 Real Root Of 922*x^4-982*x^3+201*x^2+869*x-798 9204451521556235 a001 2584/3571*123^(1/20) 9204451529979917 r009 Re(z^3+c),c=-5/32+27/46*I,n=57 9204451530106196 b008 -1/32+2^(-1/14) 9204451536523997 r005 Re(z^2+c),c=23/94+17/40*I,n=18 9204451570943052 a007 Real Root Of 264*x^4+30*x^3+626*x^2+761*x+4 9204451583482025 m001 (OneNinth+Trott2nd)/(sin(1)+Kac) 9204451588061599 r005 Re(z^2+c),c=-4/3+25/78*I,n=4 9204451622521212 m001 (ln(Pi)-Backhouse)/(Landau-QuadraticClass) 9204451635208082 s002 sum(A012668[n]/((2^n+1)/n),n=1..infinity) 9204451637162143 a007 Real Root Of 763*x^4-973*x^3+336*x^2+665*x-979 9204451671598570 r005 Im(z^2+c),c=-63/94+2/11*I,n=64 9204451674930850 m001 (Chi(1)-exp(1))/(-Lehmer+Riemann2ndZero) 9204451709103266 m001 (1+Zeta(3))/(-CopelandErdos+Weierstrass) 9204451718121294 a001 233/15127*1364^(17/30) 9204451723115832 m001 (3^(1/2)+gamma(2))/(GAMMA(19/24)+ArtinRank2) 9204451729663951 p004 log(14593/5813) 9204451750110115 k002 Champernowne real with 26*n^2+117*n-134 9204451755083713 m001 1/Salem*RenyiParking/exp(GAMMA(11/24)) 9204451772464962 q001 2233/2426 9204451784163300 h003 exp(Pi*(11^(7/10)+14^(7/10))) 9204451784163300 h008 exp(Pi*(11^(7/10)+14^(7/10))) 9204451789615282 m005 (1/3*5^(1/2)+1/5)/(3/11*exp(1)+2/7) 9204451821997007 a007 Real Root Of 495*x^4-500*x^3-44*x^2-150*x-846 9204451837803698 a007 Real Root Of 889*x^4-884*x^3-19*x^2+561*x-795 9204451858185017 h001 (8/11*exp(2)+1/12)/(7/9*exp(2)+2/11) 9204451872704252 m001 (MertensB3-Paris)/(Zeta(5)+GaussKuzminWirsing) 9204451925061741 l006 ln(3507/8804) 9204451977677892 r009 Re(z^3+c),c=-5/32+27/46*I,n=55 9204451984570997 r009 Im(z^3+c),c=-65/118+9/23*I,n=23 9204451996069101 m001 GAMMA(1/12)*BesselJ(0,1)/exp(GAMMA(5/6))^2 9204452009775529 m001 Conway*(CareFree+ZetaQ(4)) 9204452040693194 a001 228826127/4181*2^(3/4) 9204452130638256 a001 299537289/5473*2^(3/4) 9204452142282974 a001 233/5778*1364^(13/30) 9204452143761064 a001 1568397607/28657*2^(3/4) 9204452145675656 a001 4106118243/75025*2^(3/4) 9204452145954991 a001 5374978561/98209*2^(3/4) 9204452145995746 a001 28143753123/514229*2^(3/4) 9204452146001692 a001 73681302247/1346269*2^(3/4) 9204452146002559 a001 96450076809/1762289*2^(3/4) 9204452146002686 a001 505019158607/9227465*2^(3/4) 9204452146002704 a001 1322157322203/24157817*2^(3/4) 9204452146002707 a001 1730726404001/31622993*2^(3/4) 9204452146002708 a001 9062201101803/165580141*2^(3/4) 9204452146002708 a001 23725150497407/433494437*2^(3/4) 9204452146002708 a001 599074579/10946*2^(3/4) 9204452146002708 a001 5600748293801/102334155*2^(3/4) 9204452146002709 a001 2139295485799/39088169*2^(3/4) 9204452146002716 a001 204284540899/3732588*2^(3/4) 9204452146002764 a001 312119004989/5702887*2^(3/4) 9204452146003096 a001 119218851371/2178309*2^(3/4) 9204452146005367 a001 11384387281/208010*2^(3/4) 9204452146020934 a001 599786069/10959*2^(3/4) 9204452146127630 a001 6643838879/121393*2^(3/4) 9204452146858939 a001 634430159/11592*2^(3/4) 9204452151871406 a001 969323029/17711*2^(3/4) 9204452158915319 a001 987/9349*322^(3/8) 9204452161367159 a001 5473*2^(3/4) 9204452186227363 a001 370248451/6765*2^(3/4) 9204452191849585 a007 Real Root Of 279*x^4-480*x^3-724*x^2-568*x-484 9204452193475916 a001 233/9349*1364^(1/2) 9204452202821147 h001 (7/10*exp(2)+5/11)/(3/4*exp(2)+4/7) 9204452214198886 m001 1/ln(FeigenbaumKappa)*FeigenbaumC*GAMMA(7/12) 9204452214467642 a001 610/3571*322^(7/24) 9204452243772342 b008 89+Log[21] 9204452251279010 r005 Im(z^2+c),c=-43/36+7/60*I,n=35 9204452270126144 a003 sin(Pi*20/91)/cos(Pi*19/74) 9204452292052519 a007 Real Root Of -239*x^4+953*x^3+595*x^2-255*x-841 9204452302179749 m001 Kolakoski^(gamma*GolombDickman) 9204452318131174 r009 Re(z^3+c),c=-5/32+27/46*I,n=51 9204452342273970 a007 Real Root Of -571*x^4+573*x^3-119*x^2-333*x+651 9204452350917237 a001 1/208010*317811^(24/25) 9204452384969486 a007 Real Root Of 49*x^4-220*x^3-171*x^2-501*x-523 9204452403273815 r005 Im(z^2+c),c=-41/90+7/45*I,n=50 9204452411993839 a007 Real Root Of 896*x^4+515*x^3+971*x^2+752*x-372 9204452417137614 m002 -6+Pi^4+(E^Pi*Sech[Pi])/Pi 9204452421706606 a001 35355581/646*2^(3/4) 9204452432856896 a007 Real Root Of 634*x^4-833*x^3-18*x^2-525*x+693 9204452445757210 a001 89/9349*199^(19/22) 9204452449922649 m001 (GolombDickman+Tetranacci)/(1+Pi^(1/2)) 9204452450272076 m002 -2*Csch[Pi]+4*E^Pi*Tanh[Pi] 9204452481052192 a001 233/2207*3571^(9/34) 9204452487582018 r009 Re(z^3+c),c=-5/32+27/46*I,n=53 9204452492623793 m001 (-gamma(1)+Khinchin)/(Si(Pi)+ln(Pi)) 9204452497943082 r005 Im(z^2+c),c=-69/62+4/35*I,n=16 9204452520155854 a007 Real Root Of 635*x^4-494*x^3-398*x^2+153*x-363 9204452558496634 r005 Im(z^2+c),c=-41/90+7/45*I,n=52 9204452567202922 a007 Real Root Of -43*x^4+640*x^3+997*x^2+912*x+76 9204452575204565 r005 Re(z^2+c),c=-13/12+25/122*I,n=34 9204452586602013 m001 Trott^2/GlaisherKinkelin^2*ln(GAMMA(1/4)) 9204452639989899 a007 Real Root Of -599*x^4-156*x^3-866*x^2-968*x+151 9204452647175757 a001 233/2207*9349^(9/38) 9204452654927963 m005 (1/2*gamma-5/11)/(7/10*exp(1)-1/10) 9204452659433429 b008 1/4+ArcCsc[Log[5]] 9204452668825103 a001 233/2207*24476^(3/14) 9204452671678903 a001 233/2207*64079^(9/46) 9204452672109533 a001 233/2207*439204^(1/6) 9204452672117466 a001 233/2207*7881196^(3/22) 9204452672117486 a001 233/2207*2537720636^(1/10) 9204452672117486 a001 233/2207*14662949395604^(1/14) 9204452672117486 a001 233/2207*192900153618^(1/12) 9204452672117487 a001 233/2207*33385282^(1/8) 9204452672117885 a001 233/2207*1860498^(3/20) 9204452672278029 a001 233/2207*103682^(3/16) 9204452673317901 a001 233/2207*39603^(9/44) 9204452681168034 a001 233/2207*15127^(9/40) 9204452684172644 r005 Im(z^2+c),c=-41/90+7/45*I,n=48 9204452707703387 m001 (Gompertz+Salem)/(Cahen+GlaisherKinkelin) 9204452715385452 m005 (-13/20+1/4*5^(1/2))/(3/4*gamma+5/9) 9204452716188986 h001 (2/9*exp(2)+1/11)/(6/11*exp(1)+2/5) 9204452726414507 a007 Real Root Of -267*x^4+104*x^3-157*x^2+85*x+484 9204452741043462 a001 233/2207*5778^(1/4) 9204452748506028 h001 (3/10*exp(1)+7/9)/(3/5*exp(1)+1/10) 9204452753110715 k002 Champernowne real with 53/2*n^2+231/2*n-133 9204452768840428 r005 Im(z^2+c),c=-41/90+7/45*I,n=54 9204452794972164 r005 Im(z^2+c),c=-41/90+7/45*I,n=47 9204452798380094 m002 -1-Pi^4+5*ProductLog[Pi]+Tanh[Pi] 9204452811928906 a007 Real Root Of -152*x^4+305*x^3+203*x^2+804*x+915 9204452813034799 a007 Real Root Of 286*x^4-171*x^3+877*x^2+193*x-904 9204452826454129 a003 sin(Pi*3/70)*sin(Pi*19/79) 9204452828022661 r005 Im(z^2+c),c=-67/106+29/64*I,n=11 9204452832975841 a007 Real Root Of -303*x^4+730*x^3-618*x^2+366*x-29 9204452839413005 a007 Real Root Of 793*x^4-351*x^3-548*x^2-448*x-791 9204452870813022 l006 ln(1201/3015) 9204452876720311 r005 Re(z^2+c),c=-7/8+32/173*I,n=44 9204452891664404 q001 339/3683 9204452900403646 m001 (GAMMA(2/3)-Kolakoski)/(Porter-Thue) 9204452914502697 r005 Im(z^2+c),c=-41/90+7/45*I,n=56 9204452938725039 a007 Real Root Of 758*x^4-138*x^3+380*x^2-8*x-981 9204452953755025 a001 377/3*322^(10/29) 9204452960865594 m001 (GAMMA(13/24)+Niven)/(exp(1)+Catalan) 9204452961992060 a007 Real Root Of 368*x^4-810*x^3-227*x^2-94*x-790 9204452974431162 a007 Real Root Of 600*x^4+32*x^3+378*x^2+277*x-471 9204452978070769 m005 (1/3+1/4*5^(1/2))/(3/5*Zeta(3)-9/11) 9204452988622007 r005 Im(z^2+c),c=-41/90+7/45*I,n=58 9204453001324071 r005 Im(z^2+c),c=-41/90+7/45*I,n=63 9204453001355973 r005 Im(z^2+c),c=-41/90+7/45*I,n=61 9204453014952024 r002 57th iterates of z^2 + 9204453015343289 r005 Im(z^2+c),c=-41/90+7/45*I,n=59 9204453016289698 r005 Im(z^2+c),c=-41/90+7/45*I,n=60 9204453018877961 r005 Im(z^2+c),c=-41/90+7/45*I,n=64 9204453021481948 r005 Im(z^2+c),c=-41/90+7/45*I,n=62 9204453036308677 m005 (1/2*Pi-1/12)/(1/2*3^(1/2)+3/4) 9204453062783674 r005 Im(z^2+c),c=-41/90+7/45*I,n=57 9204453085925699 m001 exp(Lehmer)^2*Backhouse*GAMMA(11/24) 9204453094574505 a007 Real Root Of -298*x^4+775*x^3-718*x^2-634*x+843 9204453099053163 m001 (gamma(1)+ZetaQ(2))^BesselK(1,1) 9204453113034192 m001 gamma/GAMMA(5/6)*exp(sin(Pi/5)) 9204453170323810 r005 Im(z^2+c),c=-41/90+7/45*I,n=55 9204453180812436 r005 Im(z^2+c),c=-3/4+2/25*I,n=10 9204453186560721 r002 49th iterates of z^2 + 9204453203596328 a001 233/2207*2207^(9/32) 9204453207587425 r005 Im(z^2+c),c=-12/29+8/53*I,n=22 9204453209230429 m001 1/GAMMA(1/24)*ln(HardHexagonsEntropy)/cosh(1) 9204453211437478 r009 Im(z^3+c),c=-7/46+49/55*I,n=39 9204453235906910 r005 Re(z^2+c),c=23/126+2/9*I,n=4 9204453237511840 h001 (11/12*exp(1)+9/11)/(4/11*exp(2)+10/11) 9204453260542684 r008 a(0)=9,K{-n^6,56-75*n^3-36*n^2+50*n} 9204453266303779 m001 BesselK(1,1)^2*exp(Khintchine)/gamma 9204453267170477 a007 Real Root Of -719*x^4+678*x^3-184*x^2-293*x+931 9204453305774938 r009 Im(z^3+c),c=-7/46+31/35*I,n=13 9204453308178279 r008 a(0)=9,K{-n^6,76-72*n^3-35*n^2+26*n} 9204453333957320 r008 a(0)=9,K{-n^6,48-64*n^3-73*n^2+84*n} 9204453342464072 a001 2537720636/1597*102334155^(2/21) 9204453342464072 a001 969323029/1597*2504730781961^(2/21) 9204453352493551 a001 6643838879/1597*4181^(2/21) 9204453353610037 r005 Im(z^2+c),c=-41/90+7/45*I,n=53 9204453370410862 m001 (Artin+CareFree)/(MadelungNaCl-Stephens) 9204453409266846 m009 (1/8*Pi^2+1/4)/(5*Psi(1,2/3)+4/5) 9204453425410551 r008 a(0)=9,K{-n^6,86-59*n^3-69*n^2+37*n} 9204453450152757 h001 (6/7*exp(1)+2/3)/(2/5*exp(2)+3/10) 9204453469609603 a001 233/3571*1364^(11/30) 9204453511405652 r008 a(0)=9,K{-n^6,92-50*n^3-93*n^2+46*n} 9204453524611632 m001 Conway/Mills/Trott 9204453527875907 a007 Real Root Of 9*x^4+819*x^3-856*x^2+866*x+971 9204453529241519 a007 Real Root Of -285*x^4+571*x^3+635*x^2+59*x-833 9204453562547274 m001 Paris/ln(DuboisRaymond)^2*Riemann3rdZero 9204453563396279 r005 Im(z^2+c),c=-41/90+7/45*I,n=51 9204453572067470 r005 Im(z^2+c),c=-41/90+7/45*I,n=49 9204453579066762 a007 Real Root Of -379*x^4+701*x^3+214*x^2+118*x+746 9204453611333641 m001 cos(Pi/5)*GAMMA(5/24)^2*exp(sqrt(Pi)) 9204453617725031 r009 Im(z^3+c),c=-19/126+33/37*I,n=43 9204453642239806 p004 log(21587/8599) 9204453645911897 m005 (1/2*exp(1)+4/11)/(9/11*3^(1/2)+5/11) 9204453654680211 a003 sin(Pi*16/43)/sin(Pi*53/107) 9204453682969263 a001 646/6119*322^(3/8) 9204453689587903 a007 Real Root Of 441*x^4-832*x^3-276*x^2+446*x-321 9204453697996641 a007 Real Root Of -178*x^4+60*x^3-302*x^2+596*x+979 9204453715959767 m001 1/GAMMA(5/12)/TreeGrowth2nd^2*ln(cos(1))^2 9204453743314973 r005 Re(z^2+c),c=1/15+31/64*I,n=40 9204453747891120 a001 76/17711*317811^(25/59) 9204453756111315 k002 Champernowne real with 27*n^2+114*n-132 9204453767474130 l006 ln(3699/9286) 9204453787145353 a007 Real Root Of -602*x^4-550*x^3-868*x^2-68*x+676 9204453798716149 a007 Real Root Of -705*x^4-524*x^3-576*x^2-20*x+567 9204453820458363 r009 Im(z^3+c),c=-1/11+52/57*I,n=23 9204453861229082 a001 233/710647*3571^(33/34) 9204453899450848 a007 Real Root Of 453*x^4-141*x^3+35*x^2-85*x-543 9204453903753984 a001 233/439204*3571^(31/34) 9204453905325734 a001 6765/64079*322^(3/8) 9204453932419975 a007 Real Root Of 298*x^4-448*x^3+610*x^2+678*x-456 9204453937767106 a001 17711/167761*322^(3/8) 9204453942500238 a001 11592/109801*322^(3/8) 9204453943190793 a001 121393/1149851*322^(3/8) 9204453943291543 a001 317811/3010349*322^(3/8) 9204453943306243 a001 208010/1970299*322^(3/8) 9204453943308387 a001 2178309/20633239*322^(3/8) 9204453943308700 a001 5702887/54018521*322^(3/8) 9204453943308746 a001 3732588/35355581*322^(3/8) 9204453943308752 a001 39088169/370248451*322^(3/8) 9204453943308753 a001 102334155/969323029*322^(3/8) 9204453943308753 a001 66978574/634430159*322^(3/8) 9204453943308754 a001 701408733/6643838879*322^(3/8) 9204453943308754 a001 1836311903/17393796001*322^(3/8) 9204453943308754 a001 1201881744/11384387281*322^(3/8) 9204453943308754 a001 12586269025/119218851371*322^(3/8) 9204453943308754 a001 32951280099/312119004989*322^(3/8) 9204453943308754 a001 21566892818/204284540899*322^(3/8) 9204453943308754 a001 225851433717/2139295485799*322^(3/8) 9204453943308754 a001 182717648081/1730726404001*322^(3/8) 9204453943308754 a001 139583862445/1322157322203*322^(3/8) 9204453943308754 a001 53316291173/505019158607*322^(3/8) 9204453943308754 a001 10182505537/96450076809*322^(3/8) 9204453943308754 a001 7778742049/73681302247*322^(3/8) 9204453943308754 a001 2971215073/28143753123*322^(3/8) 9204453943308754 a001 567451585/5374978561*322^(3/8) 9204453943308754 a001 433494437/4106118243*322^(3/8) 9204453943308754 a001 165580141/1568397607*322^(3/8) 9204453943308754 a001 31622993/299537289*322^(3/8) 9204453943308757 a001 24157817/228826127*322^(3/8) 9204453943308774 a001 9227465/87403803*322^(3/8) 9204453943308893 a001 1762289/16692641*322^(3/8) 9204453943309713 a001 1346269/12752043*322^(3/8) 9204453943315327 a001 514229/4870847*322^(3/8) 9204453943353811 a001 98209/930249*322^(3/8) 9204453943617579 a001 75025/710647*322^(3/8) 9204453944971650 m001 cos(1)^Pi+StronglyCareFree 9204453945425475 a001 28657/271443*322^(3/8) 9204453946040306 a001 233/271443*3571^(29/34) 9204453957816976 a001 5473/51841*322^(3/8) 9204453958956787 a001 6643838879/4181*102334155^(2/21) 9204453958956787 a001 2537720636/4181*2504730781961^(2/21) 9204453968986266 a001 17393796001/4181*4181^(2/21) 9204453988951240 a001 233/167761*3571^(27/34) 9204454010132971 a001 233/5778*3571^(13/34) 9204454012905282 m001 2*Pi/GAMMA(5/6)/(BesselI(1,1)^ln(2^(1/2)+1)) 9204454012905282 m001 GAMMA(1/6)/(BesselI(1,1)^ln(1+sqrt(2))) 9204454019540542 a007 Real Root Of -118*x^4+824*x^3+614*x^2-238*x-859 9204454030226918 a001 233/103682*3571^(25/34) 9204454035705673 a001 54018521/987*2^(3/4) 9204454036706047 r002 38th iterates of z^2 + 9204454042749590 a001 4181/39603*322^(3/8) 9204454048901869 a001 17393796001/10946*102334155^(2/21) 9204454048901869 a001 6643838879/10946*2504730781961^(2/21) 9204454058931348 a001 22768774562/5473*4181^(2/21) 9204454062024679 a001 45537549124/28657*102334155^(2/21) 9204454062024679 a001 17393796001/28657*2504730781961^(2/21) 9204454063939272 a001 119218851371/75025*102334155^(2/21) 9204454063939272 a001 45537549124/75025*2504730781961^(2/21) 9204454064218607 a001 312119004989/196418*102334155^(2/21) 9204454064218607 a001 119218851371/196418*2504730781961^(2/21) 9204454064259361 a001 817138163596/514229*102334155^(2/21) 9204454064259361 a001 312119004989/514229*2504730781961^(2/21) 9204454064265307 a001 2139295485799/1346269*102334155^(2/21) 9204454064265307 a001 817138163596/1346269*2504730781961^(2/21) 9204454064266175 a001 5600748293801/3524578*102334155^(2/21) 9204454064266175 a001 2139295485799/3524578*2504730781961^(2/21) 9204454064266301 a001 14662949395604/9227465*102334155^(2/21) 9204454064266301 a001 5600748293801/9227465*2504730781961^(2/21) 9204454064266320 a001 14662949395604/24157817*2504730781961^(2/21) 9204454064266324 a001 23725150497407/39088169*2504730781961^(2/21) 9204454064266331 a001 23725150497407/14930352*102334155^(2/21) 9204454064266331 a001 3020733700601/4976784*2504730781961^(2/21) 9204454064266380 a001 9062201101803/5702887*102334155^(2/21) 9204454064266380 a001 3461452808002/5702887*2504730781961^(2/21) 9204454064266711 a001 494493258286/311187*102334155^(2/21) 9204454064266711 a001 440719107401/726103*2504730781961^(2/21) 9204454064268982 a001 1322157322203/832040*102334155^(2/21) 9204454064268982 a001 505019158607/832040*2504730781961^(2/21) 9204454064284549 a001 505019158607/317811*102334155^(2/21) 9204454064284549 a001 64300051206/105937*2504730781961^(2/21) 9204454064391246 a001 192900153618/121393*102334155^(2/21) 9204454064391246 a001 73681302247/121393*2504730781961^(2/21) 9204454065122555 a001 10525900321/6624*102334155^(2/21) 9204454065122555 a001 9381251041/15456*2504730781961^(2/21) 9204454070135022 a001 28143753123/17711*102334155^(2/21) 9204454070135022 a001 10749957122/17711*2504730781961^(2/21) 9204454072054159 a001 119218851371/28657*4181^(2/21) 9204454073968751 a001 312119004989/75025*4181^(2/21) 9204454074248087 a001 408569081798/98209*4181^(2/21) 9204454074288841 a001 2139295485799/514229*4181^(2/21) 9204454074294787 a001 5600748293801/1346269*4181^(2/21) 9204454074295655 a001 7331474697802/1762289*4181^(2/21) 9204454074295859 a001 23725150497407/5702887*4181^(2/21) 9204454074296191 a001 3020733700601/726103*4181^(2/21) 9204454074298462 a001 1730726404001/416020*4181^(2/21) 9204454074314029 a001 440719107401/105937*4181^(2/21) 9204454074420725 a001 505019158607/121393*4181^(2/21) 9204454075152034 a001 10716675201/2576*4181^(2/21) 9204454075783754 a001 233/64079*3571^(23/34) 9204454076672378 m002 -Pi^4-Log[Pi]/Pi^5+5*ProductLog[Pi] 9204454080164502 a001 73681302247/17711*4181^(2/21) 9204454089317882 r009 Im(z^3+c),c=-1/11+52/57*I,n=29 9204454104490987 a001 10749957122/6765*102334155^(2/21) 9204454104490987 a001 1368706081/2255*2504730781961^(2/21) 9204454110132372 a001 233/39603*3571^(21/34) 9204454112015237 h001 (-8*exp(3)+9)/(-3*exp(4)-1) 9204454114520467 a001 228811001/55*4181^(2/21) 9204454133062278 a001 987/1364*123^(1/20) 9204454150831560 m001 (-Zeta(1,-1)+Niven)/(Shi(1)-Zeta(5)) 9204454160694330 a001 233/15127*3571^(1/2) 9204454173824487 a001 233/24476*3571^(19/34) 9204454188515180 m006 (5*Pi+4)/(4*exp(2*Pi)-5/6) 9204454190956623 r009 Im(z^3+c),c=-1/11+52/57*I,n=31 9204454198574978 l006 ln(2498/6271) 9204454211643792 l006 ln(8142/8927) 9204454236149690 r005 Im(z^2+c),c=-41/90+7/45*I,n=46 9204454240571784 a007 Real Root Of 884*x^4+48*x^3-92*x^2+501*x-58 9204454242659897 v002 sum(1/(5^n+(53/2*n^2-35/2*n-1)),n=1..infinity) 9204454250089271 a001 233/5778*9349^(13/38) 9204454268617561 r009 Im(z^3+c),c=-1/11+52/57*I,n=39 9204454270481849 r009 Im(z^3+c),c=-1/11+52/57*I,n=41 9204454270858195 r009 Im(z^3+c),c=-1/11+52/57*I,n=47 9204454270862775 r009 Im(z^3+c),c=-1/11+52/57*I,n=49 9204454270883534 r009 Im(z^3+c),c=-1/11+52/57*I,n=57 9204454270883825 r009 Im(z^3+c),c=-1/11+52/57*I,n=59 9204454270884003 r009 Im(z^3+c),c=-1/11+52/57*I,n=63 9204454270884017 r009 Im(z^3+c),c=-1/11+52/57*I,n=61 9204454270884443 r009 Im(z^3+c),c=-1/11+52/57*I,n=51 9204454270884458 r009 Im(z^3+c),c=-1/11+52/57*I,n=55 9204454270887331 r009 Im(z^3+c),c=-1/11+52/57*I,n=53 9204454270993321 r009 Im(z^3+c),c=-1/11+52/57*I,n=45 9204454271051444 r009 Im(z^3+c),c=-1/11+52/57*I,n=37 9204454271167893 r009 Im(z^3+c),c=-1/11+52/57*I,n=43 9204454281360555 a001 233/5778*24476^(13/42) 9204454285482711 a001 233/5778*64079^(13/46) 9204454285709263 r009 Im(z^3+c),c=-1/11+52/57*I,n=33 9204454285711648 r009 Im(z^3+c),c=-1/11+52/57*I,n=35 9204454286116219 a001 233/5778*141422324^(1/6) 9204454286116219 a001 233/5778*73681302247^(1/8) 9204454286147450 a001 233/5778*271443^(1/4) 9204454287850153 a001 233/5778*39603^(13/44) 9204454299189236 a001 233/5778*15127^(13/40) 9204454311789316 m001 Zeta(1/2)^2/Trott*exp(cosh(1)) 9204454317496269 h001 (10/11*exp(1)+1/6)/(8/11*exp(1)+8/9) 9204454339970280 a001 4106118243/2584*102334155^(2/21) 9204454339970280 a001 1568397607/2584*2504730781961^(2/21) 9204454348687496 a001 233/9349*3571^(15/34) 9204454349999760 a001 5374978561/1292*4181^(2/21) 9204454357710931 a001 34/123*7^(34/55) 9204454385675980 a001 233/5778*5778^(13/36) 9204454451580592 a007 Real Root Of -799*x^4-317*x^3-85*x^2+4*x+402 9204454459279276 a001 233/1860498*9349^(37/38) 9204454464831504 a001 233/1149851*9349^(35/38) 9204454470348924 a001 233/710647*9349^(33/38) 9204454474483345 a001 233/15127*9349^(17/38) 9204454475957474 a001 233/439204*9349^(31/38) 9204454481327443 a001 233/271443*9349^(29/38) 9204454487322024 a001 233/167761*9349^(27/38) 9204454491681348 a001 233/103682*9349^(25/38) 9204454497754096 a001 233/39603*9349^(21/38) 9204454500321831 a001 233/64079*9349^(23/38) 9204454515376562 a001 233/15127*24476^(17/42) 9204454515517347 m005 (1/3*Pi+1/5)/(gamma+7/9) 9204454519949130 r002 6th iterates of z^2 + 9204454520767075 a001 233/15127*64079^(17/46) 9204454521595509 a001 233/15127*45537549124^(1/6) 9204454521595523 a001 233/15127*12752043^(1/4) 9204454523862961 a001 233/15127*39603^(17/44) 9204454524529858 a001 233/24476*9349^(1/2) 9204454538690992 a001 233/15127*15127^(17/40) 9204454546821152 a001 233/4870847*24476^(41/42) 9204454547554196 a001 233/3010349*24476^(13/14) 9204454548269247 a001 233/39603*24476^(1/2) 9204454548282162 a001 233/1860498*24476^(37/42) 9204454549023423 a001 233/1149851*24476^(5/6) 9204454549729877 a001 233/710647*24476^(11/14) 9204454550527459 a001 233/439204*24476^(31/42) 9204454551086461 a001 233/271443*24476^(29/42) 9204454551818434 a001 233/103682*24476^(25/42) 9204454552270076 a001 233/167761*24476^(9/14) 9204454554928116 a001 233/39603*64079^(21/46) 9204454555647950 a001 233/64079*24476^(23/42) 9204454555932918 a001 233/39603*439204^(7/18) 9204454555951428 a001 233/39603*7881196^(7/22) 9204454555951468 a001 233/39603*20633239^(3/10) 9204454555951475 a001 233/39603*17393796001^(3/14) 9204454555951475 a001 233/39603*14662949395604^(1/6) 9204454555951475 a001 233/39603*599074578^(1/4) 9204454555951477 a001 233/39603*33385282^(7/24) 9204454555952405 a001 233/39603*1860498^(7/20) 9204454555958310 a001 233/39603*710647^(3/8) 9204454556326076 a001 233/39603*103682^(7/16) 9204454557171652 m001 (FeigenbaumD+Kolakoski)/(arctan(1/2)-sin(1)) 9204454558752445 a001 233/39603*39603^(21/44) 9204454559745658 a001 233/103682*64079^(25/46) 9204454559821800 a001 233/4870847*64079^(41/46) 9204454559920666 a001 233/3010349*64079^(39/46) 9204454560014454 a001 233/1860498*64079^(37/46) 9204454560121538 a001 233/1149851*64079^(35/46) 9204454560193813 a001 233/710647*64079^(33/46) 9204454560282042 a001 233/271443*64079^(29/46) 9204454560357218 a001 233/439204*64079^(31/46) 9204454560800417 a001 233/103682*167761^(1/2) 9204454560831478 a001 233/167761*64079^(27/46) 9204454560963935 a001 233/103682*20633239^(5/14) 9204454560963943 a001 233/103682*2537720636^(5/18) 9204454560963943 a001 233/103682*312119004989^(5/22) 9204454560963943 a001 233/103682*3461452808002^(5/24) 9204454560963943 a001 233/103682*28143753123^(1/4) 9204454560963943 a001 233/103682*228826127^(5/16) 9204454560965051 a001 233/103682*1860498^(5/12) 9204454561525772 a001 233/12752043*167761^(9/10) 9204454561598200 a001 233/1149851*167761^(7/10) 9204454561691771 a001 233/271443*1149851^(1/2) 9204454561695252 a001 233/271443*1322157322203^(1/4) 9204454561772789 a001 233/710647*439204^(11/18) 9204454561775112 a001 233/54018521*439204^(17/18) 9204454561780354 a001 233/12752043*439204^(5/6) 9204454561786728 a001 233/3010349*439204^(13/18) 9204454561801874 a001 233/710647*7881196^(1/2) 9204454561801949 a001 233/710647*312119004989^(3/10) 9204454561801949 a001 233/710647*1568397607^(3/8) 9204454561801952 a001 233/710647*33385282^(11/24) 9204454561803411 a001 233/710647*1860498^(11/20) 9204454561817514 a001 233/1860498*54018521^(1/2) 9204454561819786 a001 233/4870847*370248451^(1/2) 9204454561820017 a001 233/12752043*7881196^(15/22) 9204454561820033 a001 233/969323029*7881196^(21/22) 9204454561820046 a001 233/228826127*7881196^(19/22) 9204454561820051 a001 233/141422324*7881196^(5/6) 9204454561820063 a001 233/54018521*7881196^(17/22) 9204454561820104 a001 233/12752043*20633239^(9/14) 9204454561820118 a001 233/12752043*2537720636^(1/2) 9204454561820118 a001 233/12752043*312119004989^(9/22) 9204454561820118 a001 233/12752043*14662949395604^(5/14) 9204454561820118 a001 233/12752043*192900153618^(5/12) 9204454561820118 a001 233/12752043*28143753123^(9/20) 9204454561820118 a001 233/12752043*228826127^(9/16) 9204454561820123 a001 233/12752043*33385282^(5/8) 9204454561820151 a001 233/33385282*20633239^(7/10) 9204454561820154 a001 233/1568397607*20633239^(13/14) 9204454561820155 a001 233/969323029*20633239^(9/10) 9204454561820158 a001 233/141422324*20633239^(11/14) 9204454561820166 a001 233/33385282*17393796001^(1/2) 9204454561820166 a001 233/33385282*14662949395604^(7/18) 9204454561820166 a001 233/33385282*505019158607^(7/16) 9204454561820166 a001 233/33385282*599074578^(7/12) 9204454561820173 a001 233/87403803*119218851371^(1/2) 9204454561820174 a001 233/1568397607*141422324^(5/6) 9204454561820174 a001 233/228826127*817138163596^(1/2) 9204454561820174 a001 233/599074578*5600748293801^(1/2) 9204454561820174 a001 233/1568397607*2537720636^(13/18) 9204454561820174 a001 233/1568397607*312119004989^(13/22) 9204454561820174 a001 233/1568397607*3461452808002^(13/24) 9204454561820174 a001 233/1568397607*73681302247^(5/8) 9204454561820174 a001 233/1568397607*28143753123^(13/20) 9204454561820174 a001 233/192900153618*2537720636^(17/18) 9204454561820174 a001 233/73681302247*2537720636^(9/10) 9204454561820174 a001 233/17393796001*2537720636^(5/6) 9204454561820174 a001 233/4106118243*4106118243^(3/4) 9204454561820174 a001 233/28143753123*17393796001^(11/14) 9204454561820174 a001 233/817138163596*17393796001^(13/14) 9204454561820174 a001 233/28143753123*14662949395604^(11/18) 9204454561820174 a001 233/28143753123*505019158607^(11/16) 9204454561820174 a001 233/192900153618*45537549124^(5/6) 9204454561820174 a001 233/73681302247*14662949395604^(9/14) 9204454561820174 a001 233/73681302247*192900153618^(3/4) 9204454561820174 a001 233/192900153618*312119004989^(17/22) 9204454561820174 a001 233/192900153618*3461452808002^(17/24) 9204454561820174 a001 233/23725150497407*312119004989^(21/22) 9204454561820174 a001 233/2139295485799*312119004989^(19/22) 9204454561820174 a001 233/2139295485799*817138163596^(5/6) 9204454561820174 a001 233/1322157322203*9062201101803^(3/4) 9204454561820174 a001 233/23725150497407*14662949395604^(5/6) 9204454561820174 a001 233/2139295485799*3461452808002^(19/24) 9204454561820174 a001 233/23725150497407*505019158607^(15/16) 9204454561820174 a001 233/312119004989*1322157322203^(3/4) 9204454561820174 a001 233/5600748293801*192900153618^(11/12) 9204454561820174 a001 233/817138163596*73681302247^(7/8) 9204454561820174 a001 233/192900153618*28143753123^(17/20) 9204454561820174 a001 233/2139295485799*28143753123^(19/20) 9204454561820174 a001 233/17393796001*312119004989^(15/22) 9204454561820174 a001 233/17393796001*3461452808002^(5/8) 9204454561820174 a001 233/17393796001*28143753123^(3/4) 9204454561820174 a001 233/28143753123*1568397607^(7/8) 9204454561820174 a001 233/969323029*2537720636^(7/10) 9204454561820174 a001 233/969323029*17393796001^(9/14) 9204454561820174 a001 233/969323029*14662949395604^(1/2) 9204454561820174 a001 233/969323029*505019158607^(9/16) 9204454561820174 a001 233/969323029*192900153618^(7/12) 9204454561820174 a001 233/28143753123*599074578^(11/12) 9204454561820174 a001 233/969323029*599074578^(3/4) 9204454561820175 a001 233/370248451*2139295485799^(1/2) 9204454561820175 a001 233/1568397607*228826127^(13/16) 9204454561820175 a001 233/17393796001*228826127^(15/16) 9204454561820175 a001 233/141422324*2537720636^(11/18) 9204454561820175 a001 233/141422324*312119004989^(1/2) 9204454561820175 a001 233/141422324*3461452808002^(11/24) 9204454561820175 a001 233/141422324*28143753123^(11/20) 9204454561820175 a001 233/141422324*1568397607^(5/8) 9204454561820175 a001 233/141422324*228826127^(11/16) 9204454561820175 a001 233/228826127*87403803^(3/4) 9204454561820178 a001 233/54018521*45537549124^(1/2) 9204454561820181 a001 233/228826127*33385282^(19/24) 9204454561820182 a001 233/969323029*33385282^(7/8) 9204454561820182 a001 233/4106118243*33385282^(23/24) 9204454561820183 a001 233/54018521*33385282^(17/24) 9204454561820196 a001 233/20633239*6643838879^(1/2) 9204454561820220 a001 233/54018521*12752043^(3/4) 9204454561820323 a001 233/7881196*969323029^(1/2) 9204454561821103 a001 233/3010349*7881196^(13/22) 9204454561821190 a001 233/3010349*141422324^(1/2) 9204454561821190 a001 233/3010349*73681302247^(3/8) 9204454561821195 a001 233/3010349*33385282^(13/24) 9204454561822112 a001 233/12752043*1860498^(3/4) 9204454561822438 a001 233/54018521*1860498^(17/20) 9204454561822612 a001 233/141422324*1860498^(11/12) 9204454561822700 a001 233/228826127*1860498^(19/20) 9204454561822919 a001 233/3010349*1860498^(13/20) 9204454561827125 a001 233/1149851*20633239^(1/2) 9204454561827136 a001 233/1149851*2537720636^(7/18) 9204454561827136 a001 233/1149851*17393796001^(5/14) 9204454561827136 a001 233/1149851*312119004989^(7/22) 9204454561827136 a001 233/1149851*14662949395604^(5/18) 9204454561827136 a001 233/1149851*505019158607^(5/16) 9204454561827136 a001 233/1149851*28143753123^(7/20) 9204454561827136 a001 233/1149851*599074578^(5/12) 9204454561827136 a001 233/1149851*228826127^(7/16) 9204454561828687 a001 233/1149851*1860498^(7/12) 9204454561836114 a001 233/33385282*710647^(7/8) 9204454561838527 a001 233/1149851*710647^(5/8) 9204454561867383 a001 233/439204*3010349^(1/2) 9204454561867891 a001 233/439204*9062201101803^(1/4) 9204454561914882 a001 233/3010349*271443^(3/4) 9204454561948578 a006 5^(1/2)*Fibonacci(29/2)/Lucas(13)/sqrt(5) 9204454562123368 a001 233/167761*439204^(1/2) 9204454562147165 a001 233/167761*7881196^(9/22) 9204454562147226 a001 233/167761*2537720636^(3/10) 9204454562147226 a001 233/167761*14662949395604^(3/14) 9204454562147226 a001 233/167761*192900153618^(1/4) 9204454562147229 a001 233/167761*33385282^(3/8) 9204454562148423 a001 233/167761*1860498^(9/20) 9204454562390608 a001 233/710647*103682^(11/16) 9204454562516878 a001 233/3010349*103682^(13/16) 9204454562622835 a001 233/12752043*103682^(15/16) 9204454562628856 a001 233/167761*103682^(9/16) 9204454562940996 a001 233/64079*64079^(1/2) 9204454564061818 a001 233/64079*4106118243^(1/4) 9204454564298431 a001 233/103682*39603^(25/44) 9204454565563259 a001 233/271443*39603^(29/44) 9204454565748473 a001 233/167761*39603^(27/44) 9204454566002656 a001 233/439204*39603^(31/44) 9204454566203473 a001 233/710647*39603^(3/4) 9204454566495420 a001 233/1149851*39603^(35/44) 9204454566752558 a001 233/1860498*39603^(37/44) 9204454567022992 a001 233/3010349*39603^(39/44) 9204454567129548 a001 233/64079*39603^(23/44) 9204454567288348 a001 233/4870847*39603^(41/44) 9204454570234043 a001 233/24476*24476^(19/42) 9204454573688849 a007 Real Root Of 535*x^4-479*x^3-556*x^2-421*x-674 9204454576258733 a001 233/24476*64079^(19/46) 9204454577069424 a001 233/39603*15127^(21/40) 9204454577184630 a001 233/24476*817138163596^(1/6) 9204454577184630 a001 233/24476*87403803^(1/4) 9204454579718841 a001 233/24476*39603^(19/44) 9204454584030258 a007 Real Root Of 933*x^4-805*x^3-733*x^2-106*x-774 9204454586104359 a001 233/103682*15127^(5/8) 9204454587191001 a001 233/64079*15127^(23/40) 9204454589298876 a001 233/167761*15127^(27/40) 9204454590858135 a001 233/271443*15127^(29/40) 9204454592670428 r009 Im(z^3+c),c=-1/11+52/57*I,n=27 9204454593042007 a001 233/439204*15127^(31/40) 9204454594987298 a001 233/710647*15127^(33/40) 9204454596291346 a001 233/24476*15127^(19/40) 9204454597023719 a001 233/1149851*15127^(7/8) 9204454599025332 a001 233/1860498*15127^(37/40) 9204454601040240 a001 233/3010349*15127^(39/40) 9204454616864237 a007 Real Root Of -390*x^4+55*x^3-871*x^2-883*x+248 9204454618770490 l006 ln(3795/9527) 9204454624124487 m001 (LaplaceLimit+Tribonacci)/exp(1) 9204454624886385 a001 1597/15127*322^(3/8) 9204454625560162 a001 233/9349*9349^(15/38) 9204454631664758 r005 Re(z^2+c),c=-95/106+5/34*I,n=43 9204454648673181 m001 (Si(Pi)-cos(1))/(FeigenbaumB+Lehmer) 9204454651789045 a001 233/15127*5778^(17/36) 9204454661642413 a001 233/9349*24476^(5/14) 9204454662274013 m001 (exp(1)+exp(-1/2*Pi))/(Totient+Tribonacci) 9204454666398748 a001 233/9349*64079^(15/46) 9204454667031603 a001 233/9349*167761^(3/10) 9204454667116464 a001 233/9349*439204^(5/18) 9204454667129685 a001 233/9349*7881196^(5/22) 9204454667129714 a001 233/9349*20633239^(3/14) 9204454667129719 a001 233/9349*2537720636^(1/6) 9204454667129719 a001 233/9349*312119004989^(3/22) 9204454667129719 a001 233/9349*28143753123^(3/20) 9204454667129719 a001 233/9349*228826127^(3/16) 9204454667129721 a001 233/9349*33385282^(5/24) 9204454667130384 a001 233/9349*1860498^(1/4) 9204454667397291 a001 233/9349*103682^(5/16) 9204454669130412 a001 233/9349*39603^(15/44) 9204454682213969 a001 233/9349*15127^(3/8) 9204454687233543 r009 Im(z^3+c),c=-21/118+41/46*I,n=15 9204454695071692 m001 (3^(1/3)+FeigenbaumB)/(MadelungNaCl+Sarnak) 9204454698743268 r005 Im(z^2+c),c=-5/8+78/127*I,n=6 9204454699815001 r009 Re(z^3+c),c=-13/66+39/53*I,n=33 9204454711397420 m001 (2^(1/3))-polylog(4,1/2)^GAMMA(13/24) 9204454711397420 m001 2^(1/3)-polylog(4,1/2)^GAMMA(13/24) 9204454712213690 a007 Real Root Of 862*x^4-306*x^3-178*x^2-208*x-898 9204454716216768 m005 (1/2*exp(1)-3/5)/(1/9*gamma-8/9) 9204454716778786 a001 233/39603*5778^(7/12) 9204454722695054 a001 233/24476*5778^(19/36) 9204454727788210 a007 Real Root Of 289*x^4-90*x^3+440*x^2-181*x-817 9204454740206016 a001 233/64079*5778^(23/36) 9204454751184991 r005 Im(z^2+c),c=-19/42+1/42*I,n=6 9204454752425027 a001 233/103682*5778^(25/36) 9204454759111915 k002 Champernowne real with 55/2*n^2+225/2*n-131 9204454760960768 m004 -12+5*Pi+6*Tan[Sqrt[5]*Pi] 9204454763300560 m005 (1/3*Pi+2/9)/(57/77+2/7*5^(1/2)) 9204454768925198 a001 233/167761*5778^(3/4) 9204454782006370 a001 233/9349*5778^(5/12) 9204454783494314 a007 Real Root Of 40*x^4+383*x^3+57*x^2-715*x+148 9204454783790111 a001 233/271443*5778^(29/36) 9204454788852413 r002 41th iterates of z^2 + 9204454799279636 a001 233/439204*5778^(31/36) 9204454814530581 a001 233/710647*5778^(11/12) 9204454829872656 a001 233/1149851*5778^(35/36) 9204454912642241 m001 (ErdosBorwein-MadelungNaCl)/(Niven-ZetaP(3)) 9204454941240427 b008 9+ArcCsch[34/7] 9204454952745242 a007 Real Root Of 951*x^4-79*x^3-167*x^2-336*x-912 9204455017066959 r004 Im(z^2+c),c=-31/46+2/13*I,z(0)=-1,n=15 9204455018690973 h001 (2/7*exp(2)+1/4)/(5/6*exp(1)+3/10) 9204455030529123 r009 Re(z^3+c),c=-5/32+27/46*I,n=48 9204455050098265 a001 233/3571*3571^(11/34) 9204455051710421 q001 1157/1257 9204455053808025 a001 233/5778*2207^(13/32) 9204455065212893 a003 cos(Pi*20/93)*cos(Pi*43/93) 9204455068712663 a005 (1/sin(62/135*Pi))^1672 9204455092461846 r005 Im(z^2+c),c=-23/98+41/48*I,n=30 9204455093069873 a007 Real Root Of 825*x^4-943*x^3+194*x^2+944*x-623 9204455094243288 r005 Re(z^2+c),c=-1/14+38/47*I,n=58 9204455120714387 m001 (exp(Pi)+Shi(1))/(ln(2^(1/2)+1)+MadelungNaCl) 9204455121483876 m001 (cos(1/12*Pi)-sin(1/5*Pi)*Paris)/Paris 9204455122369674 m001 (1/2)^(exp(1)*BesselI(0,1)) 9204455152279275 a007 Real Root Of 857*x^4-173*x^3+111*x^2+200*x-660 9204455152591618 m001 (exp(1)-exp(Pi))/(-ArtinRank2+PlouffeB) 9204455186599563 a007 Real Root Of -92*x^4+96*x^3-911*x^2+9*x+921 9204455224588324 h001 (7/12*exp(2)+1/2)/(2/3*exp(2)+3/10) 9204455228349524 m001 (1+3^(1/2))^(1/2)-3^(1/3)+Rabbit 9204455253138234 a001 233/3571*9349^(11/38) 9204455254091045 r002 42th iterates of z^2 + 9204455279598553 a001 233/3571*24476^(11/42) 9204455283086532 a001 233/3571*64079^(11/46) 9204455283622553 a001 233/3571*7881196^(1/6) 9204455283622578 a001 233/3571*312119004989^(1/10) 9204455283622578 a001 233/3571*1568397607^(1/8) 9204455285089753 a001 233/3571*39603^(1/4) 9204455294684362 a001 233/3571*15127^(11/40) 9204455306951442 m008 (2/3*Pi+3/5)/(3*Pi^4+1/2) 9204455309847249 m005 (13/36+1/4*5^(1/2))/(3/11*Pi+1/7) 9204455317963194 r005 Im(z^2+c),c=-59/114+6/37*I,n=40 9204455367865461 a001 233/3571*5778^(11/36) 9204455420270688 m001 Champernowne-GAMMA(23/24)+MasserGramainDelta 9204455424287413 a007 Real Root Of -987*x^4+897*x^3+723*x^2-332*x-298 9204455428059870 l006 ln(1297/3256) 9204455438526540 a007 Real Root Of -579*x^4+37*x^3+398*x^2-663*x-503 9204455452649829 r005 Re(z^2+c),c=-99/86+5/26*I,n=24 9204455480191618 r002 17th iterates of z^2 + 9204455484417173 a007 Real Root Of 213*x^4-640*x^3-268*x^2-242*x+796 9204455525500215 a001 233/15127*2207^(17/32) 9204455526120900 r005 Re(z^2+c),c=1/15+31/64*I,n=28 9204455533624882 m001 (Zeta(5)+Kac)/(cos(1)+BesselI(0,1)) 9204455545017279 a007 Real Root Of 685*x^4-48*x^3-548*x^2-639*x-653 9204455552927998 a001 233/9349*2207^(15/32) 9204455569849793 r002 21th iterates of z^2 + 9204455615596338 m001 Otter^(GAMMA(7/12)*Totient) 9204455616124998 m001 (sin(1)+4)/(2^(1/3)+4) 9204455630840607 m005 (2/3*Catalan+1/2)/(4*Pi-1/2) 9204455644641253 r005 Im(z^2+c),c=17/42+19/59*I,n=18 9204455645961924 r009 Re(z^3+c),c=-35/74+22/41*I,n=14 9204455656585297 a007 Real Root Of 655*x^4+737*x^3+623*x^2+85*x-345 9204455671488194 r009 Im(z^3+c),c=-29/48+22/43*I,n=26 9204455679107710 a007 Real Root Of -551*x^4+221*x^3-457*x^2-578*x+423 9204455688811887 a007 Real Root Of 307*x^4+579*x^3+924*x^2-461*x-976 9204455699195787 a001 233/24476*2207^(19/32) 9204455732953174 h001 (-exp(8)+2)/(-8*exp(6)-9) 9204455762112515 k002 Champernowne real with 28*n^2+111*n-130 9204455763085279 a007 Real Root Of 88*x^4+739*x^3-684*x^2-312*x-283 9204455763112715 k004 Champernowne real with floor(Pi*(9*n^2+35*n-41)) 9204455789585005 r009 Im(z^3+c),c=-1/11+52/57*I,n=25 9204455796069074 a001 233/39603*2207^(21/32) 9204455830370779 m001 (Paris+Riemann3rdZero)/(exp(1)-gamma(2)) 9204455892290324 a001 377/9349*322^(13/24) 9204455903480338 a007 Real Root Of -542*x^4+804*x^3+645*x^2-81*x+395 9204455922285866 a001 233/64079*2207^(23/32) 9204455927984707 r005 Re(z^2+c),c=1/90+19/48*I,n=21 9204455933208017 a001 233/3571*2207^(11/32) 9204455953969685 a001 224056801/141*102334155^(2/21) 9204455953969686 a001 199691526/329*2504730781961^(2/21) 9204455963999167 a001 1368706081/329*4181^(2/21) 9204455975309991 r008 a(0)=9,K{-n^6,-9+6*n^3} 9204455988603592 m005 (1/3*exp(1)+3/4)/(157/132+3/11*5^(1/2)) 9204455996451261 a007 Real Root Of -509*x^4-904*x^3-809*x^2-78*x+274 9204455997688447 a007 Real Root Of 471*x^4-847*x^3-888*x^2-154*x-388 9204456008651540 a007 Real Root Of -881*x^4-524*x^3-33*x^2+587*x+792 9204456025745062 a007 Real Root Of 384*x^4-482*x^3-126*x^2-198*x-727 9204456037294438 a001 233/103682*2207^(25/32) 9204456060100237 a003 sin(Pi*43/111)*sin(Pi*39/89) 9204456071616915 r009 Re(z^3+c),c=-15/98+33/58*I,n=19 9204456080196159 l006 ln(5995/6573) 9204456082161341 a001 521/13*196418^(9/35) 9204456091024289 m001 Zeta(5)^HardyLittlewoodC4/ln(3) 9204456127030205 a003 cos(Pi*35/114)+cos(Pi*22/57) 9204456156584171 a001 233/167761*2207^(27/32) 9204456157276933 a007 Real Root Of -308*x^4-549*x^3-738*x^2+779*x-65 9204456167098961 r005 Im(z^2+c),c=-143/106+3/56*I,n=50 9204456177375253 m001 Lehmer^PisotVijayaraghavan/Landau 9204456181692305 r005 Im(z^2+c),c=-71/66+5/47*I,n=19 9204456187372078 m002 Pi^6*Coth[Pi]-(E^Pi*Sinh[Pi])/6 9204456193390562 a007 Real Root Of 144*x^4-917*x^3-322*x^2-335*x-854 9204456198376638 l006 ln(3987/10009) 9204456207098182 a007 Real Root Of -449*x^4+798*x^3+574*x^2-889*x-360 9204456230409504 m001 ReciprocalFibonacci/(2^(1/2)+5^(1/2)) 9204456251362111 s002 sum(A121482[n]/(10^n+1),n=1..infinity) 9204456255189220 m001 (Gompertz-ZetaP(3))/(Pi^(1/2)+FransenRobinson) 9204456274238649 a001 233/271443*2207^(29/32) 9204456287339513 a007 Real Root Of -880*x^4+249*x^3-583*x^2-971*x+426 9204456300346305 r005 Re(z^2+c),c=-7/8+47/252*I,n=61 9204456306369034 a007 Real Root Of -712*x^4+776*x^3+117*x^2-351*x+694 9204456306824784 a007 Real Root Of 882*x^4+8*x^3+616*x^2+657*x-544 9204456338790395 m001 (ln(5)-arctan(1/2))/(FeigenbaumB+ThueMorse) 9204456340301871 r005 Im(z^2+c),c=-9/14+20/173*I,n=17 9204456359095894 m001 (-Lehmer+ZetaQ(2))/(Bloch-Shi(1)) 9204456392517740 a001 233/439204*2207^(31/32) 9204456411257941 a007 Real Root Of 251*x^4-753*x^3-21*x^2-375*x+770 9204456432523457 s002 sum(A060456[n]/(exp(pi*n)+1),n=1..infinity) 9204456433881265 a007 Real Root Of 951*x^4+921*x^3+550*x^2-432*x-828 9204456469374344 p004 log(37021/14747) 9204456476452366 a005 (1/sin(89/217*Pi))^340 9204456501853045 a007 Real Root Of -390*x^4-165*x^3-219*x^2-103*x+242 9204456522938761 a005 (1/cos(7/153*Pi))^1547 9204456535221518 m002 -Pi^2-Pi^6+(Pi^5*Tanh[Pi])/6 9204456545717643 a007 Real Root Of 119*x^4-919*x^3-48*x^2+548*x-257 9204456546654788 h001 (2/11*exp(1)+4/5)/(1/3*exp(1)+1/2) 9204456569789571 l006 ln(2690/6753) 9204456618498892 r002 2th iterates of z^2 + 9204456675475983 b008 1-81*2^(1/5) 9204456717557196 m001 Tribonacci^TreeGrowth2nd/(Tribonacci^Stephens) 9204456737025460 m001 1/GAMMA(2/3)*ln(TwinPrimes)/gamma^2 9204456765113115 k002 Champernowne real with 57/2*n^2+219/2*n-129 9204456777449416 a001 233/521*199^(3/22) 9204456816239245 a007 Real Root Of 850*x^4+782*x^3+688*x^2-128*x-701 9204456835327435 a001 233/2207*843^(9/28) 9204456870515664 r005 Im(z^2+c),c=-15/16+24/55*I,n=5 9204456900041498 m001 (PlouffeB+ZetaQ(4))/(Zeta(1,2)+Backhouse) 9204456966382032 a005 (1/cos(16/151*Pi))^1222 9204456992799848 a003 sin(Pi*21/76)/sin(Pi*14/45) 9204457017633322 a007 Real Root Of 30*x^4+200*x^3-633*x^2+531*x-854 9204457033920227 m001 (exp(1)-exp(1/exp(1)))/(GAMMA(17/24)+Paris) 9204457052884354 a001 8/3*199^(11/47) 9204457056482258 a007 Real Root Of 126*x^4+403*x^3+625*x^2-436*x-707 9204457080786870 a003 cos(Pi*6/49)*sin(Pi*43/93) 9204457093865670 a008 Real Root of (2+x+2*x^2+2*x^3-4*x^4-5*x^5) 9204457107142706 a001 233/199*123^(39/43) 9204457113241772 q001 3552/3859 9204457121686030 m005 (1/3*exp(1)+1/4)/(7/8*Catalan+5/11) 9204457197604366 a003 cos(Pi*29/95)+cos(Pi*31/80) 9204457224644516 a005 (1/cos(7/135*Pi))^1376 9204457229332991 p003 LerchPhi(1/5,1,201/164) 9204457250950872 m002 -Pi^10+6*E^Pi*Sinh[Pi] 9204457311385471 r005 Re(z^2+c),c=-7/8+44/235*I,n=59 9204457344033378 a007 Real Root Of 906*x^4-477*x^3-905*x^2+697*x+386 9204457344995387 r009 Im(z^3+c),c=-29/48+23/45*I,n=26 9204457346954245 r002 26th iterates of z^2 + 9204457353478672 a007 Real Root Of -756*x^4+42*x^3+37*x^2-917*x-300 9204457366942596 r009 Re(z^3+c),c=-1/16+53/63*I,n=31 9204457380362312 a007 Real Root Of 408*x^4-973*x^3-591*x^2-464*x-978 9204457385723707 r005 Im(z^2+c),c=-41/114+32/43*I,n=4 9204457394067972 b008 EulerGamma+4/ArcCot[2] 9204457407661021 a007 Real Root Of -757*x^4-422*x^3-9*x^2+415*x+38 9204457409726529 a007 Real Root Of 394*x^4+69*x^3-108*x^2+132*x-16 9204457439250092 a007 Real Root Of -668*x^4+178*x^3-751*x^2-873*x+451 9204457454465635 s001 sum(exp(-3*Pi/5)^n*A289135[n],n=1..infinity) 9204457462819714 r005 Re(z^2+c),c=5/14+18/53*I,n=33 9204457523570334 m001 (exp(Pi)+FeigenbaumB)/(KhinchinHarmonic+Thue) 9204457534456983 a007 Real Root Of 949*x^4-640*x^3-556*x^2-166*x-862 9204457540621592 m001 (Pi^(1/2)*GAMMA(17/24)-MasserGramain)/Pi^(1/2) 9204457542131744 a007 Real Root Of 108*x^4-459*x^3+445*x^2+698*x-170 9204457588258011 m001 exp(TwinPrimes)^2/FeigenbaumKappa*gamma^2 9204457589240768 a007 Real Root Of 513*x^4-204*x^3+416*x^2+66*x-819 9204457632835701 l006 ln(1393/3497) 9204457639488231 r009 Im(z^3+c),c=-1/8+47/52*I,n=9 9204457640442539 a007 Real Root Of 626*x^4+239*x^3+297*x^2+43*x-475 9204457654131601 m001 Cahen^2/Artin*ln(Zeta(7)) 9204457674341296 a007 Real Root Of -924*x^4+895*x^3+661*x^2-174*x+641 9204457703692622 s002 sum(A224747[n]/(10^n+1),n=1..infinity) 9204457706013016 m001 ln(Paris)/ErdosBorwein^2*GAMMA(23/24) 9204457714918635 g006 Psi(1,2/9)-Psi(1,7/10)-Psi(1,4/9)-Psi(1,5/8) 9204457756521796 s002 sum(A173961[n]/((exp(n)+1)*n),n=1..infinity) 9204457768113715 k002 Champernowne real with 29*n^2+108*n-128 9204457796508629 m001 (5^(1/2)+sin(1))/(CopelandErdos+Paris) 9204457802234563 r002 43th iterates of z^2 + 9204457844437811 r008 a(0)=0,K{-n^6,-22-96*n^3+52*n^2+55*n} 9204457858067326 r009 Re(z^3+c),c=-15/74+42/61*I,n=25 9204457858894791 a007 Real Root Of -628*x^4+734*x^3+124*x^2-225*x+711 9204457859355275 a007 Real Root Of -803*x^4+782*x^3+998*x^2+285*x+603 9204457869931252 a001 2/377*75025^(20/23) 9204457886939473 a007 Real Root Of 777*x^4-209*x^3+573*x^2+262*x-965 9204457887507160 m001 Psi(1,1/3)^(2^(1/2))/(ThueMorse^(2^(1/2))) 9204457892282426 a007 Real Root Of -362*x^4-477*x^3-593*x^2+766*x-7 9204457945379406 m001 (Pi-CareFree)/(Porter+Riemann3rdZero) 9204457995992646 m005 (1/2*3^(1/2)+1/10)/(3/8*3^(1/2)+2/5) 9204458011304820 r009 Im(z^3+c),c=-41/74+18/55*I,n=57 9204458058321141 a007 Real Root Of 405*x^4-102*x^3-947*x^2-615*x-134 9204458059837822 a007 Real Root Of -365*x^4+506*x^3-285*x^2-892*x+77 9204458067412081 m001 cos(1/5*Pi)/(sin(1)^RenyiParking) 9204458067412081 m001 cos(Pi/5)/(sin(1)^RenyiParking) 9204458077019023 a007 Real Root Of -906*x^4+477*x^3+369*x^2+222*x+914 9204458091341022 a007 Real Root Of -804*x^4+906*x^3+924*x^2-141*x+371 9204458105752409 s002 sum(A024529[n]/(n*pi^n+1),n=1..infinity) 9204458107124972 s002 sum(A024529[n]/(n*pi^n-1),n=1..infinity) 9204458109146810 q001 2395/2602 9204458143897178 r005 Re(z^2+c),c=-12/13+2/37*I,n=7 9204458176918930 m002 -Pi^2-Pi^4/5+Pi^6-Cosh[Pi] 9204458199991112 a007 Real Root Of 328*x^4-39*x^3+685*x^2-686*x-69 9204458208451337 h001 (1/3*exp(2)+3/10)/(9/11*exp(1)+7/9) 9204458255259447 a007 Real Root Of 334*x^4+29*x^3+673*x^2+323*x-490 9204458257178362 m001 Zeta(3)^2*Sierpinski^2/exp(sinh(1))^2 9204458289960835 a007 Real Root Of -158*x^4+154*x^3+37*x^2+819*x+956 9204458290579291 p003 LerchPhi(1/12,4,82/45) 9204458307577208 r009 Im(z^3+c),c=-9/46+47/53*I,n=3 9204458336175319 r005 Im(z^2+c),c=-9/14+61/235*I,n=11 9204458354757253 a001 233/1364*1364^(7/30) 9204458355081745 m001 (-HardHexagonsEntropy+Rabbit)/(Catalan-sin(1)) 9204458358784879 r002 44th iterates of z^2 + 9204458362070557 m001 (GlaisherKinkelin+Kac)/(ln(5)+arctan(1/2)) 9204458430865353 a007 Real Root Of 522*x^4-298*x^3-444*x^2+680*x+395 9204458433563073 r005 Im(z^2+c),c=-41/90+7/45*I,n=44 9204458505848973 m001 log(1+sqrt(2))*exp(ArtinRank2)^2*sin(Pi/12) 9204458555618633 a007 Real Root Of 129*x^4-489*x^3-846*x^2+195*x+826 9204458594814043 a005 (1/sin(107/231*Pi))^1363 9204458605714483 a007 Real Root Of -965*x^4+805*x^3+693*x^2-386*x+378 9204458614911220 a001 305/2889*322^(3/8) 9204458625061168 l006 ln(2882/7235) 9204458639765102 q001 1/108643 9204458674323521 m005 (1/2*2^(1/2)-4/7)/(9/11*exp(1)-3/4) 9204458676804905 r009 Re(z^3+c),c=-6/23+15/22*I,n=26 9204458677872994 r002 17th iterates of z^2 + 9204458703637322 a007 Real Root Of 550*x^4-189*x^3-168*x^2-463*x-826 9204458733305063 r005 Im(z^2+c),c=-21/34+8/47*I,n=31 9204458734079778 a007 Real Root Of 44*x^4+441*x^3+421*x^2+912*x+803 9204458735038136 a007 Real Root Of 849*x^4-765*x^3-504*x^2+541*x-281 9204458735491053 r009 Re(z^3+c),c=-5/52+62/63*I,n=17 9204458739471455 m001 (-FeigenbaumKappa+Kolakoski)/(1-ln(5)) 9204458742587350 m005 (5/6*gamma+1)/(21/20+1/4*5^(1/2)) 9204458761020595 a007 Real Root Of 574*x^4-691*x^3-497*x^2+78*x-458 9204458771114315 k002 Champernowne real with 59/2*n^2+213/2*n-127 9204458786447662 r009 Re(z^3+c),c=-5/32+27/46*I,n=42 9204458840874081 m001 (Zeta(1,-1)+PrimesInBinary)/(ln(3)+ln(5)) 9204458848167395 a007 Real Root Of -664*x^4+64*x^3+992*x^2+575*x-943 9204458865020263 r005 Re(z^2+c),c=-24/23+57/58*I,n=2 9204458889201698 h001 (7/10*exp(1)+7/8)/(9/10*exp(1)+4/7) 9204458890703965 a007 Real Root Of -861*x^4+692*x^3-476*x^2-906*x+727 9204458916570115 m001 (Magata-MertensB2)/(Zeta(1,2)-GAMMA(13/24)) 9204458919631385 b008 4*2^(3/5)+Pi 9204459009619665 r009 Im(z^3+c),c=-15/86+55/59*I,n=12 9204459023553920 a007 Real Root Of -451*x^4+322*x^3+606*x^2-284*x-200 9204459059325362 r005 Re(z^2+c),c=-2/21+44/57*I,n=21 9204459068280326 r005 Im(z^2+c),c=-91/74+1/16*I,n=36 9204459082847732 q001 3633/3947 9204459087389989 m001 exp(MinimumGamma)/GaussKuzminWirsing/cosh(1) 9204459090821874 a007 Real Root Of -591*x^4+451*x^3-962*x^2-931*x+734 9204459093511788 m001 exp(MertensB1)^2*Champernowne*Riemann2ndZero^2 9204459122644149 a007 Real Root Of 657*x^4-466*x^3-764*x^2-426*x+46 9204459139423550 a007 Real Root Of 478*x^4+122*x^3+967*x^2+324*x-769 9204459201941831 s002 sum(A090345[n]/(10^n+1),n=1..infinity) 9204459227800632 r004 Re(z^2+c),c=3/22+9/17*I,z(0)=I,n=29 9204459234538175 m001 (BesselJ(1,1)-FeigenbaumMu)/(Pi+sin(1/12*Pi)) 9204459256262576 m001 (exp(Pi)+Zeta(1,-1))/(Pi^(1/2)+Sarnak) 9204459258595691 r002 2th iterates of z^2 + 9204459298833218 m001 (Niven+Riemann2ndZero)/(BesselK(1,1)-gamma) 9204459309794189 m002 -30-Pi^2+Pi^6-ProductLog[Pi] 9204459311901451 m001 1/GAMMA(1/3)*FeigenbaumD*ln(GAMMA(2/3))^2 9204459314668251 a007 Real Root Of -70*x^4+357*x^3+25*x^2+672*x+926 9204459360523267 a001 233/1364*3571^(7/34) 9204459361712779 a007 Real Root Of -213*x^4-603*x^3-875*x^2-390*x+65 9204459389915086 r005 Im(z^2+c),c=-21/118+20/23*I,n=7 9204459411331392 a001 141/2161*322^(11/24) 9204459454819577 m005 (1/3*exp(1)+1/2)/(3/11*3^(1/2)-2) 9204459489730580 a001 233/1364*9349^(7/38) 9204459506568973 a001 233/1364*24476^(1/6) 9204459508788597 a001 233/1364*64079^(7/46) 9204459509129715 a001 233/1364*20633239^(1/10) 9204459509129717 a001 233/1364*17393796001^(1/14) 9204459509129717 a001 233/1364*14662949395604^(1/18) 9204459509129717 a001 233/1364*505019158607^(1/16) 9204459509129717 a001 233/1364*599074578^(1/12) 9204459509131995 a001 233/1364*710647^(1/8) 9204459510063374 a001 233/1364*39603^(7/44) 9204459516169037 a001 233/1364*15127^(7/40) 9204459517871330 a003 sin(Pi*19/77)-sin(Pi*16/55) 9204459536666422 r005 Re(z^2+c),c=-8/9+55/118*I,n=3 9204459541468568 a007 Real Root Of 471*x^4+62*x^3+612*x^2+148*x-672 9204459553314991 l006 ln(1489/3738) 9204459560522129 m001 Zeta(3)^FellerTornier*Cahen^FellerTornier 9204459561602418 r002 2th iterates of z^2 + 9204459562738849 a001 233/1364*5778^(7/36) 9204459574934714 m001 Zeta(3)/GAMMA(1/3)^2*ln(gamma) 9204459577860938 a007 Real Root Of 159*x^4-332*x^3+895*x^2+562*x-614 9204459588497202 a007 Real Root Of 11*x^4-145*x^3+566*x^2+396*x-236 9204459592914275 m001 (-ln(2)+Gompertz)/(Psi(1,1/3)+BesselK(0,1)) 9204459639023903 a005 (1/cos(29/231*Pi))^489 9204459659110611 m001 (Lehmer-TreeGrowth2nd)/(ln(2)+cos(1/12*Pi)) 9204459667277750 a007 Real Root Of 844*x^4+585*x^3-143*x^2-760*x-728 9204459672752005 a007 Real Root Of -948*x^4-112*x^3+850*x^2+402*x+243 9204459716252745 r005 Im(z^2+c),c=-47/78+10/23*I,n=51 9204459738414288 a007 Real Root Of -22*x^4-217*x^3-77*x^2+510*x-91 9204459740595864 m001 (GAMMA(19/24)-GAMMA(23/24))/ErdosBorwein 9204459756899314 r009 Im(z^3+c),c=-19/110+5/6*I,n=42 9204459759354650 r002 12th iterates of z^2 + 9204459774114915 k002 Champernowne real with 30*n^2+105*n-126 9204459776128205 m001 1/(2^(1/3))^2/Salem^2/ln(GAMMA(13/24)) 9204459792525710 r002 4th iterates of z^2 + 9204459801452321 a007 Real Root Of -905*x^4-675*x^3-706*x^2+17*x+737 9204459802866313 a007 Real Root Of -730*x^4+164*x^3-349*x^2-521*x+468 9204459815446374 h001 (5/7*exp(2)+1/4)/(7/10*exp(2)+5/6) 9204459820337718 a007 Real Root Of -826*x^4+711*x^3+874*x^2-517*x-69 9204459823149699 r005 Im(z^2+c),c=-7/13+14/29*I,n=17 9204459845159657 m004 4+3*Csc[Sqrt[5]*Pi]+ProductLog[Sqrt[5]*Pi]/2 9204459845231741 m002 -6+Pi^4*Coth[Pi]+Pi*Sech[Pi] 9204459856708687 m002 -5+2*Pi^4-Pi^4*Coth[Pi] 9204459895788242 m005 (1/2*Pi+1/5)/(111/110+9/22*5^(1/2)) 9204459904459398 a007 Real Root Of -181*x^4+638*x^3-123*x^2-746*x+45 9204459907070241 m001 (BesselK(0,1)-Riemann3rdZero)^ln(2) 9204459917144281 r009 Im(z^3+c),c=-37/66+24/41*I,n=5 9204459922502454 a001 233/1364*2207^(7/32) 9204459929799688 m001 1/arctan(1/2)*exp(Magata)*sqrt(2) 9204459946912495 m001 (Si(Pi)+GAMMA(11/12))/(FeigenbaumD+PlouffeB) 9204459966623799 a003 cos(Pi*5/46)*sin(Pi*22/51) 9204459967182587 a003 sin(Pi*2/79)-sin(Pi*54/109) 9204460009791704 a007 Real Root Of 629*x^4+310*x^3+309*x^2+207*x-281 9204460029759772 m005 (11/28+1/4*5^(1/2))/(3*Pi+11/12) 9204460033874156 l006 ln(3848/4219) 9204460061451253 r002 2th iterates of z^2 + 9204460073824958 m001 FeigenbaumC^2/ln(Khintchine)^2/GAMMA(11/24)^2 9204460094175294 m001 FeigenbaumMu^Si(Pi)/(FeigenbaumMu^OneNinth) 9204460104486679 a001 233/843*322^(5/24) 9204460110922636 a007 Real Root Of 10*x^4+917*x^3-327*x^2-901*x+208 9204460131165767 r002 42th iterates of z^2 + 9204460138096453 h001 (-9*exp(-2)+7)/(-exp(1)+9) 9204460148492874 h001 (8/11*exp(1)+5/11)/(5/7*exp(1)+7/10) 9204460155703923 s001 sum(exp(-4*Pi/5)^n*A095157[n],n=1..infinity) 9204460206359088 m002 (E^Pi*ProductLog[Pi])/Pi^3+Pi^4*Sech[Pi] 9204460218201110 h001 (3/10*exp(2)+8/11)/(10/11*exp(1)+8/11) 9204460238336397 a007 Real Root Of 432*x^4+411*x^3+126*x^2-884*x-910 9204460277295438 m005 (9/4+1/4*5^(1/2))/(7/8*Zeta(3)+2) 9204460299643360 a001 233/5778*843^(13/28) 9204460301370599 r009 Re(z^3+c),c=-5/32+27/46*I,n=41 9204460302460204 b008 1/2-21*Tanh[1/2] 9204460313583745 r005 Re(z^2+c),c=-109/122+20/59*I,n=3 9204460371991993 a001 233/3571*843^(11/28) 9204460381841851 m001 (BesselI(0,2)+Kolakoski)/(Ei(1)+exp(1/exp(1))) 9204460399556647 r009 Im(z^3+c),c=-7/38+43/48*I,n=45 9204460408035847 a007 Real Root Of -892*x^4+700*x^3-884*x^2+553*x+59 9204460423590618 l006 ln(3074/7717) 9204460448626319 r009 Im(z^3+c),c=-3/17+46/53*I,n=33 9204460460456386 m001 Grothendieck/MinimumGamma/PisotVijayaraghavan 9204460470279714 m001 (BesselI(0,1)+Backhouse)/(Otter+ZetaQ(4)) 9204460481898736 m001 Gompertz^Paris*Sarnak^Paris 9204460495548828 a007 Real Root Of -157*x^4+320*x^3+261*x^2-214*x-161 9204460517673013 b008 5*(2+3*SinhIntegral[Pi]) 9204460526424429 s002 sum(A280000[n]/(10^n+1),n=1..infinity) 9204460542796441 m005 (1/3*5^(1/2)+2/3)/(7/11*5^(1/2)+1/9) 9204460543654143 m001 GaussKuzminWirsing^Paris/cos(1/12*Pi) 9204460564890505 r005 Re(z^2+c),c=-65/74+10/53*I,n=51 9204460576542936 m005 (1/2*Pi+8/9)/(4/5*Catalan-1) 9204460584326944 g007 Psi(2,6/7)+Psi(2,3/7)-Psi(2,5/11)-Psi(2,3/11) 9204460617415455 r005 Re(z^2+c),c=9/70+9/52*I,n=15 9204460674675780 m001 (Ei(1)+FeigenbaumD)/(FellerTornier+ZetaP(3)) 9204460708034383 m001 Landau-Robbin^ln(3) 9204460725912452 r005 Re(z^2+c),c=-4/15+33/61*I,n=3 9204460728935817 a007 Real Root Of 96*x^4+878*x^3-35*x^2+121*x-310 9204460763982791 a007 Real Root Of 441*x^4-258*x^3+132*x^2-158*x-775 9204460767856210 m001 (Shi(1)-Zeta(1,2))/(GaussAGM+MertensB3) 9204460769857774 r005 Im(z^2+c),c=-23/50+9/58*I,n=18 9204460777115515 k002 Champernowne real with 61/2*n^2+207/2*n-125 9204460791053846 r002 40th iterates of z^2 + 9204460805459125 m001 (ln(2^(1/2)+1)-Ei(1))/(Kac+PlouffeB) 9204460814490029 a007 Real Root Of 488*x^4+343*x^3+860*x^2-68*x-874 9204460829229654 a007 Real Root Of 841*x^4+243*x^3+552*x^2+505*x-417 9204460839756357 g002 Psi(10/11)-Psi(3/10)-Psi(3/8)-Psi(2/7) 9204460840652642 a007 Real Root Of -376*x^4+523*x^3-695*x^2-609*x+706 9204460841693800 m001 (KhinchinHarmonic+MertensB3)/(exp(1)+Kac) 9204460872921509 m001 DuboisRaymond^(TwinPrimes*ZetaP(4)) 9204460914872810 r009 Im(z^3+c),c=-5/26+53/58*I,n=21 9204460945936046 a007 Real Root Of 691*x^4-925*x^3-832*x^2+525*x+447 9204460966542750 q001 1238/1345 9204460970413955 r002 7th iterates of z^2 + 9204461003224676 m001 1/BesselJ(1,1)^2/ln(Magata)^2/GAMMA(11/24)^2 9204461043789955 a007 Real Root Of 655*x^4-581*x^3+957*x^2+930*x-878 9204461057129565 m005 (1/3*gamma-1/3)/(4*gamma-7/9) 9204461059687678 a001 2584/39603*322^(11/24) 9204461093321014 r002 50th iterates of z^2 + 9204461099616612 a007 Real Root Of -577*x^4+483*x^3+111*x^2+60*x+752 9204461158223130 a007 Real Root Of 231*x^4-272*x^3+684*x^2+221*x-754 9204461167467106 m001 (-Landau+Trott2nd)/(Gompertz-cos(1)) 9204461185677659 m001 (cos(1/5*Pi)+Riemann2ndZero)/(exp(Pi)+gamma) 9204461198310332 m001 Zeta(5)^LandauRamanujan-OneNinth 9204461212007542 m001 1/LandauRamanujan^2*CareFree/ln(Pi)^2 9204461226726323 m001 OneNinth/ln(FeigenbaumC)/GAMMA(5/24)^2 9204461239170385 a007 Real Root Of -134*x^4+904*x^3-99*x^2-754*x+191 9204461241155476 l006 ln(1585/3979) 9204461250709205 m001 1/Riemann1stZero^2/exp(Cahen)^2/GAMMA(3/4)^2 9204461267823736 m001 (BesselI(1,2)-MertensB1)/(ln(5)+Zeta(1,-1)) 9204461276325857 m001 GAMMA(19/24)^2/ln(Magata)^2*Zeta(9)^2 9204461300179620 a001 6765/103682*322^(11/24) 9204461324126855 m001 PisotVijayaraghavan^KhinchinLevy-PlouffeB 9204461335266921 a001 17711/271443*322^(11/24) 9204461340386090 a001 6624/101521*322^(11/24) 9204461341132966 a001 121393/1860498*322^(11/24) 9204461341241934 a001 317811/4870847*322^(11/24) 9204461341257832 a001 832040/12752043*322^(11/24) 9204461341260152 a001 311187/4769326*322^(11/24) 9204461341260490 a001 5702887/87403803*322^(11/24) 9204461341260540 a001 14930352/228826127*322^(11/24) 9204461341260547 a001 39088169/599074578*322^(11/24) 9204461341260548 a001 14619165/224056801*322^(11/24) 9204461341260548 a001 267914296/4106118243*322^(11/24) 9204461341260548 a001 701408733/10749957122*322^(11/24) 9204461341260548 a001 1836311903/28143753123*322^(11/24) 9204461341260548 a001 686789568/10525900321*322^(11/24) 9204461341260548 a001 12586269025/192900153618*322^(11/24) 9204461341260548 a001 32951280099/505019158607*322^(11/24) 9204461341260548 a001 86267571272/1322157322203*322^(11/24) 9204461341260548 a001 32264490531/494493258286*322^(11/24) 9204461341260548 a001 591286729879/9062201101803*322^(11/24) 9204461341260548 a001 1548008755920/23725150497407*322^(11/24) 9204461341260548 a001 365435296162/5600748293801*322^(11/24) 9204461341260548 a001 139583862445/2139295485799*322^(11/24) 9204461341260548 a001 53316291173/817138163596*322^(11/24) 9204461341260548 a001 20365011074/312119004989*322^(11/24) 9204461341260548 a001 7778742049/119218851371*322^(11/24) 9204461341260548 a001 2971215073/45537549124*322^(11/24) 9204461341260548 a001 1134903170/17393796001*322^(11/24) 9204461341260548 a001 433494437/6643838879*322^(11/24) 9204461341260548 a001 165580141/2537720636*322^(11/24) 9204461341260549 a001 63245986/969323029*322^(11/24) 9204461341260551 a001 24157817/370248451*322^(11/24) 9204461341260570 a001 9227465/141422324*322^(11/24) 9204461341260699 a001 3524578/54018521*322^(11/24) 9204461341261585 a001 1346269/20633239*322^(11/24) 9204461341267658 a001 514229/7881196*322^(11/24) 9204461341309280 a001 196418/3010349*322^(11/24) 9204461341594561 a001 75025/1149851*322^(11/24) 9204461343549910 a001 28657/439204*322^(11/24) 9204461356952066 a001 10946/167761*322^(11/24) 9204461408899316 m001 Magata^(2*Pi/GAMMA(5/6))+BesselI(0,1) 9204461414900113 a007 Real Root Of -655*x^4+588*x^3+441*x^2+227*x+764 9204461448811814 a001 4181/64079*322^(11/24) 9204461475258100 m001 (-GAMMA(19/24)+Rabbit)/(3^(1/2)-5^(1/2)) 9204461475593432 r008 a(0)=9,K{-n^6,47-52*n-52*n^2+33*n^3} 9204461480304026 a007 Real Root Of -589*x^4+85*x^3-336*x^2-192*x+597 9204461494067930 r005 Im(z^2+c),c=-59/82+3/23*I,n=18 9204461517937580 a007 Real Root Of 463*x^4-55*x^3+83*x^2-931*x+85 9204461545034717 a003 cos(Pi*1/47)-sin(Pi*23/48) 9204461547426612 a007 Real Root Of 731*x^4-771*x^3-453*x^2+966*x+147 9204461548889582 a001 9349/377*10946^(38/43) 9204461561226489 r005 Im(z^2+c),c=17/70+37/45*I,n=3 9204461587972185 p003 LerchPhi(1/5,2,72/217) 9204461605815517 a001 233/9349*843^(15/28) 9204461632183451 m001 (Ei(1)+Ei(1,1))/(BesselK(0,1)-exp(1)) 9204461650005757 m001 1/ln(Sierpinski)*Champernowne*sin(1)^2 9204461673431329 r005 Im(z^2+c),c=-2/3+55/221*I,n=6 9204461717391403 a007 Real Root Of 260*x^4-896*x^3+413*x^2+462*x-810 9204461721757353 r005 Im(z^2+c),c=-11/10+25/231*I,n=12 9204461727305368 a007 Real Root Of -892*x^4-825*x^3+571*x^2+846*x-82 9204461763392161 a003 sin(Pi*1/115)+sin(Pi*2/97) 9204461780116116 k002 Champernowne real with 31*n^2+102*n-124 9204461782116516 k004 Champernowne real with floor(Pi*(10*n^2+32*n-39)) 9204461853157260 m005 (1/3*Catalan-2/11)/(1/6*Pi+9/11) 9204461859678049 a001 29/76*(1/2*5^(1/2)+1/2)^6*76^(3/5) 9204461867077540 m005 (1/2*Catalan+1/3)/(17/90+3/10*5^(1/2)) 9204461881979349 m001 (sin(1/5*Pi)+arctan(1/2))/(MertensB2+OneNinth) 9204461892568615 a007 Real Root Of -977*x^4-346*x^3-687*x^2-308*x+730 9204461900076897 m005 (1/3*2^(1/2)+3/7)/(2/5*5^(1/2)+1/12) 9204461919851016 a007 Real Root Of 991*x^4-906*x^3-149*x^2+910*x-454 9204461924198406 m001 (Sierpinski+ZetaQ(4))/(GAMMA(2/3)+Backhouse) 9204461925495782 m001 (sin(1)+GAMMA(3/4))/(-Khinchin+TreeGrowth2nd) 9204461944977673 p002 log(1/9*(24-5^(1/4))^(1/2)*9^(1/3)) 9204461954512005 a005 (1/cos(5/113*Pi))^229 9204461963625601 m001 (GAMMA(11/12)+Salem)/(Pi-2*Pi/GAMMA(5/6)) 9204461977453332 r005 Re(z^2+c),c=-25/26+31/126*I,n=38 9204461988666807 r009 Re(z^3+c),c=-5/32+27/46*I,n=46 9204462000164753 a007 Real Root Of -847*x^4-878*x^3-800*x^2-37*x+567 9204462007510093 p001 sum(1/(230*n+117)/(5^n),n=0..infinity) 9204462010657672 l006 ln(3266/8199) 9204462014008974 a007 Real Root Of -277*x^4+663*x^3+381*x^2-37*x+359 9204462069121996 m001 Pi*(ln(3)+FeigenbaumC) 9204462078427894 a001 1597/24476*322^(11/24) 9204462101420894 r005 Re(z^2+c),c=-7/90+47/59*I,n=61 9204462106996344 a007 Real Root Of -400*x^4+141*x^3-78*x^2+467*x+893 9204462108862200 m001 (MertensB1+TwinPrimes)/(1+HeathBrownMoroz) 9204462170549193 a001 199/28657*89^(19/33) 9204462176999836 m001 KhinchinHarmonic^Shi(1)-QuadraticClass 9204462228342891 m009 (1/4*Psi(1,2/3)-1)/(2/3*Psi(1,2/3)+1/2) 9204462236844914 a007 Real Root Of 401*x^4-877*x^3+536*x^2+819*x-672 9204462238692990 a007 Real Root Of -800*x^4-553*x^3+66*x^2+114*x+192 9204462278868432 m001 exp(GAMMA(13/24))/RenyiParking^2/Zeta(9) 9204462287675656 a003 sin(Pi*1/100)+sin(Pi*38/109) 9204462304261452 s002 sum(A040235[n]/(exp(n)-1),n=1..infinity) 9204462305075162 r005 Im(z^2+c),c=-13/20+7/50*I,n=24 9204462385439684 a001 233/15127*843^(17/28) 9204462388237469 a007 Real Root Of 753*x^4+63*x^3+3*x^2+592*x+51 9204462401639785 a007 Real Root Of 658*x^4-775*x^3-943*x^2+569*x+246 9204462405232263 m001 1/GAMMA(1/4)^2/exp(Bloch)^2/LambertW(1)^2 9204462408540401 m001 (Robbin+Sierpinski)/(exp(1)+cos(1/5*Pi)) 9204462420528537 a007 Real Root Of 837*x^4-333*x^3-945*x^2-86*x-139 9204462438409188 m001 (ln(Pi)-FellerTornier)/(Kolakoski+Paris) 9204462447684398 r005 Re(z^2+c),c=1/14+27/46*I,n=62 9204462448334616 r005 Im(z^2+c),c=-35/64+8/49*I,n=13 9204462453039120 m001 (FellerTornier+Magata)/(Porter+Sierpinski) 9204462464895725 a008 Real Root of (10+10*x+8*x^2-x^3) 9204462474117126 a007 Real Root Of -282*x^4+889*x^3+58*x^2-936*x-15 9204462538972643 r005 Im(z^2+c),c=-11/122+5/46*I,n=7 9204462556200305 p004 log(10303/9397) 9204462563162326 m005 (1/3*gamma+1/10)/(1/8*2^(1/2)+3) 9204462565653387 a001 4/13*10946^(19/52) 9204462572080926 m001 Cahen-GAMMA(11/12)+MertensB3 9204462573095069 a007 Real Root Of 902*x^4+152*x^3-167*x^2-219*x-589 9204462618120858 m004 5*Cos[Sqrt[5]*Pi]+3*Sec[Sqrt[5]*Pi]^2 9204462629011478 m001 (exp(1)+Champernowne)/(MadelungNaCl+Totient) 9204462629916741 m001 DuboisRaymond*(2*Pi/GAMMA(5/6)-GaussAGM) 9204462630060517 m005 (1/2*3^(1/2)-5/12)/(1/2*5^(1/2)-6) 9204462649211683 a007 Real Root Of 895*x^4-341*x^3+77*x^2+923*x-124 9204462705089748 a007 Real Root Of -779*x^4+779*x^3-219*x^2-664*x+741 9204462732075745 h001 (2/7*exp(2)+5/8)/(4/11*exp(2)+2/7) 9204462736214418 l006 ln(1681/4220) 9204462744200770 r005 Im(z^2+c),c=-67/62+3/28*I,n=18 9204462747184142 a001 233/1364*843^(1/4) 9204462749927126 r005 Re(z^2+c),c=-103/118+3/19*I,n=11 9204462757619111 r005 Re(z^2+c),c=-91/102+31/57*I,n=3 9204462769131652 m001 sqrt(2)^cos(1)/(exp(1/2)^cos(1)) 9204462779961775 a007 Real Root Of 739*x^4-540*x^3+719*x^2+758*x-863 9204462783116716 k002 Champernowne real with 63/2*n^2+201/2*n-123 9204462804351737 m005 (1/2*5^(1/2)-2/11)/(9/11*3^(1/2)-2/5) 9204462806318493 a007 Real Root Of -417*x^4-30*x^3+539*x^2+921*x+667 9204462822646022 r005 Re(z^2+c),c=-12/11+6/49*I,n=18 9204462855253943 a007 Real Root Of -755*x^4+3*x^3+613*x^2-89*x-57 9204462860985403 m001 (Zeta(1/2)-arctan(1/3))/(Gompertz+Totient) 9204462943867746 a007 Real Root Of -637*x^4+x^3-191*x^2-241*x+398 9204462992279927 a007 Real Root Of -556*x^4+612*x^3+653*x^2+127*x+440 9204463014966120 p004 log(21341/8501) 9204463039968026 m009 (4/5*Psi(1,2/3)-1/2)/(8*Catalan+Pi^2+4) 9204463060995501 m001 (PlouffeB-Sierpinski)/(GAMMA(2/3)-Zeta(1,2)) 9204463101087091 r005 Re(z^2+c),c=21/50+9/44*I,n=22 9204463106088721 a003 cos(Pi*15/106)+cos(Pi*44/89) 9204463106767856 r002 3th iterates of z^2 + 9204463133214645 m001 (5^(1/2)+Kac)/(Niven+OrthogonalArrays) 9204463144709338 a001 377/15127*322^(5/8) 9204463208351183 s002 sum(A174845[n]/(64^n-1),n=1..infinity) 9204463209803404 r005 Im(z^2+c),c=-17/26+6/43*I,n=30 9204463215582205 a007 Real Root Of -864*x^4+295*x^3-448*x^2-556*x+718 9204463222466239 m001 (GAMMA(19/24)-MertensB3)/(Sierpinski-Thue) 9204463234311869 g002 Psi(7/11)+Psi(2/11)+Psi(3/8)-Psi(8/9) 9204463240155583 m001 Bloch*CopelandErdos^2/ln(Niven)^2 9204463279531215 h001 (3/11*exp(2)+2/11)/(1/5*exp(2)+10/11) 9204463285661203 a003 sin(Pi*10/77)+sin(Pi*10/57) 9204463287082886 a001 1/23184*7778742049^(16/19) 9204463310117237 r009 Im(z^3+c),c=-12/25+6/11*I,n=18 9204463323287189 r005 Re(z^2+c),c=-3/4+25/157*I,n=19 9204463332293747 m005 (1/3*Pi+3/5)/(47/60+9/20*5^(1/2)) 9204463364341598 m001 (ln(Pi)+Khinchin)^((1+3^(1/2))^(1/2)) 9204463364341598 m001 (ln(Pi)+Khinchin)^sqrt(1+sqrt(3)) 9204463366187439 a001 233/24476*843^(19/28) 9204463370329706 a007 Real Root Of 128*x^4-502*x^3+611*x^2+88*x-920 9204463385686832 r005 Im(z^2+c),c=-41/90+7/45*I,n=35 9204463421485721 l006 ln(3458/8681) 9204463426836066 r002 27th iterates of z^2 + 9204463471697836 m001 1/ln(Paris)^2/Lehmer^2*log(2+sqrt(3))^2 9204463510435208 a007 Real Root Of 647*x^4+726*x^3+433*x^2-39*x-301 9204463514463230 r008 a(0)=0,K{-n^6,-56-9*n^2+77*n} 9204463534389928 a007 Real Root Of 471*x^4-479*x^3-770*x^2-66*x-120 9204463536864908 a007 Real Root Of 997*x^4+435*x^3+247*x^2-197*x-767 9204463568154729 a007 Real Root Of 101*x^4+960*x^3+379*x^2+972*x+504 9204463581143971 a007 Real Root Of -762*x^4-59*x^3+525*x^2+379*x+405 9204463589271321 a007 Real Root Of -893*x^4+575*x^3+526*x^2+223*x+849 9204463618230777 v002 sum(1/(2^n+(13*n^2-19*n+27)),n=1..infinity) 9204463634205989 r005 Im(z^2+c),c=-5/16+31/49*I,n=8 9204463642908567 q001 2557/2778 9204463644670837 m001 (ln(2+3^(1/2))-exp(-1/2*Pi))/(Conway-Paris) 9204463647301000 m001 (Zeta(1/2)-Gompertz)/(Grothendieck+ZetaP(2)) 9204463720805013 r005 Im(z^2+c),c=-19/26+10/109*I,n=10 9204463725097184 r005 Im(z^2+c),c=-97/86+15/59*I,n=11 9204463747079582 r005 Re(z^2+c),c=-7/110+12/19*I,n=38 9204463761399205 m001 ln(Pi)^Porter/PisotVijayaraghavan 9204463772535300 m001 Khinchin*(MertensB1+StolarskyHarborth) 9204463777919400 r009 Re(z^3+c),c=-7/40+34/47*I,n=49 9204463786117316 k002 Champernowne real with 32*n^2+99*n-122 9204463789980412 a003 sin(Pi*11/116)+sin(Pi*11/51) 9204463794068855 a007 Real Root Of 510*x^4-302*x^3+205*x^2+575*x-246 9204463806368614 r009 Im(z^3+c),c=-43/114+33/49*I,n=34 9204463859725984 a007 Real Root Of 642*x^4-164*x^3+260*x^2+327*x-508 9204463866987678 r005 Im(z^2+c),c=-11/14+11/239*I,n=22 9204463887164768 a007 Real Root Of -341*x^4+705*x^3+747*x^2+662*x+771 9204463946751850 r008 a(0)=0,K{-n^6,56-88*n^3+67*n^2-46*n} 9204463980974821 a007 Real Root Of -456*x^4-476*x^3-745*x^2-122*x+475 9204464004059444 a007 Real Root Of -77*x^4+225*x^3+44*x^2+295*x-429 9204464008886842 a007 Real Root Of 552*x^4+236*x^3+354*x^2+841*x+262 9204464015422093 a007 Real Root Of -32*x^4-278*x^3+239*x^2+788*x-95 9204464026303445 a007 Real Root Of 597*x^4-417*x^3-566*x^2-412*x+43 9204464064856467 a007 Real Root Of 301*x^4-708*x^3+34*x^2+566*x-276 9204464069736134 l006 ln(1777/4461) 9204464070212197 a001 76*(1/2*5^(1/2)+1/2)^12*18^(11/24) 9204464094455827 m001 (cos(1)+exp(1/exp(1)))/(Landau+Riemann2ndZero) 9204464126242849 m001 GAMMA(5/24)*GAMMA(1/12)/ln(sqrt(3)) 9204464126582883 m002 5+(4*Pi*Coth[Pi])/3 9204464134983583 r005 Re(z^2+c),c=9/106+24/47*I,n=46 9204464148660670 m005 (1/2*5^(1/2)-3/8)/(1/12*Pi+6/11) 9204464153497749 r009 Re(z^3+c),c=-1/52+45/58*I,n=62 9204464154099638 m001 (Gompertz+HeathBrownMoroz)/(Trott-TwinPrimes) 9204464155651849 m001 (2^(1/3)*MasserGramain-Ei(1,1))/MasserGramain 9204464176919321 r005 Re(z^2+c),c=-47/40+11/35*I,n=5 9204464205929172 r009 Re(z^3+c),c=-5/31+29/47*I,n=27 9204464218275159 a008 Real Root of (13+16*x-18*x^2-16*x^3) 9204464227390027 m005 (1/3*2^(1/2)+2/7)/(3*gamma-10/11) 9204464233729197 a007 Real Root Of -267*x^4-656*x^3-642*x^2+176*x+386 9204464237656248 r005 Im(z^2+c),c=19/64+13/27*I,n=53 9204464252379966 m003 -2+6*Cosh[1/2+Sqrt[5]/2]+5*Tan[1/2+Sqrt[5]/2] 9204464270112940 a001 233/39603*843^(3/4) 9204464275974594 m001 AlladiGrinstead+cos(1)^FeigenbaumMu 9204464284846222 a007 Real Root Of 407*x^4-977*x^3+258*x^2+734*x-597 9204464290632581 a007 Real Root Of 520*x^4+591*x^3+809*x^2-324*x-896 9204464301170772 s002 sum(A262734[n]/(exp(n)),n=1..infinity) 9204464301362262 s002 sum(A179987[n]/(exp(n)),n=1..infinity) 9204464303265267 a007 Real Root Of 342*x^4-367*x^3-598*x^2-541*x-523 9204464305328223 l006 ln(5549/6084) 9204464349486264 r005 Im(z^2+c),c=-23/56+18/31*I,n=28 9204464372728056 a007 Real Root Of -115*x^4+691*x^3+477*x^2-801*x-520 9204464375014460 r002 14th iterates of z^2 + 9204464414004437 m001 (2^(1/3)+Psi(2,1/3))/(-Zeta(3)+KomornikLoreti) 9204464422602708 r005 Im(z^2+c),c=21/52+4/17*I,n=28 9204464505816025 a007 Real Root Of 165*x^4+41*x^3+456*x^2+78*x-401 9204464517234765 r004 Re(z^2+c),c=7/38+11/18*I,z(0)=I,n=27 9204464517234765 r004 Re(z^2+c),c=7/38-11/18*I,z(0)=I,n=27 9204464540356076 m009 (2/3*Psi(1,3/4)-3/4)/(Psi(1,1/3)+1/6) 9204464545259120 m001 (Kolakoski-Stephens)/(BesselK(1,1)+Pi^(1/2)) 9204464600588626 a003 sin(Pi*27/77)/sin(Pi*45/107) 9204464677039984 m001 1/ln(Paris)/Conway^2*BesselK(1,1)^2 9204464683886760 l006 ln(3650/9163) 9204464768995208 p004 log(32191/12823) 9204464789117916 k002 Champernowne real with 65/2*n^2+195/2*n-121 9204464796846049 r002 26th iterates of z^2 + 9204464819680020 a007 Real Root Of 196*x^4-583*x^3-405*x^2+890*x+567 9204464844129067 m001 GAMMA(1/4)^2/FeigenbaumB*exp(log(1+sqrt(2)))^2 9204464872594403 a007 Real Root Of -610*x^4+582*x^3+837*x^2+133*x+305 9204464898011567 r005 Re(z^2+c),c=-37/40+2/53*I,n=5 9204464935039334 a001 299537289*2178309^(1/13) 9204464935039364 a001 370248451/2*1134903170^(1/13) 9204464935039364 a001 228826127/2*591286729879^(1/13) 9204464943140107 a001 969323029/2*4181^(1/13) 9204464949094542 r005 Re(z^2+c),c=-11/62+25/44*I,n=3 9204464978832845 b008 5+24*Sinh[2] 9204464990261514 m001 (BesselK(1,1)+Landau)/(ln(2+3^(1/2))+gamma(1)) 9204465014029105 m005 (1/3*5^(1/2)-3/7)/(4*Catalan-2/9) 9204465033639209 a007 Real Root Of -531*x^4+993*x^3+696*x^2-2*x+564 9204465098235086 a001 711491/13*2^(3/4) 9204465102294792 r009 Im(z^3+c),c=-55/94+1/22*I,n=2 9204465104471969 m005 (1/3*Catalan+1/7)/(1/7*Catalan-5) 9204465112712276 a007 Real Root Of 970*x^4-705*x^3+301*x^2+716*x-842 9204465116589626 m003 55/6+(Sqrt[5]*Coth[1/2+Sqrt[5]/2])/64 9204465122723557 h001 (1/3*exp(2)+7/9)/(3/8*exp(2)+3/4) 9204465135812434 m001 Zeta(1,2)+Backhouse^exp(1/2) 9204465138712566 m001 LaplaceLimit^Grothendieck+BesselJ(1,1) 9204465171192687 r009 Im(z^3+c),c=-17/118+41/46*I,n=15 9204465203382062 a001 233/64079*843^(23/28) 9204465204245778 r005 Im(z^2+c),c=-9/20+2/57*I,n=4 9204465214437239 m005 (1/3*exp(1)-1/11)/(4/5*3^(1/2)-1/2) 9204465235193012 a007 Real Root Of -973*x^4-659*x^3-184*x^2+686*x-61 9204465263570815 a007 Real Root Of 959*x^4-30*x^3+723*x^2+474*x-888 9204465263613885 m001 1/Magata^2*Kolakoski^2/ln(arctan(1/2))^2 9204465264677653 m001 gamma(2)/((2^(1/2))^ZetaR(2)) 9204465266559263 l006 ln(1873/4702) 9204465270820005 a001 416020/9*29^(9/44) 9204465306875830 m001 1/ln((2^(1/3)))/FeigenbaumDelta^2*arctan(1/2) 9204465311482588 r008 a(0)=0,K{-n^6,-16+77*n^3-14*n^2-36*n} 9204465334144562 r005 Im(z^2+c),c=-55/106+34/63*I,n=40 9204465351852749 a007 Real Root Of 353*x^4-899*x^3-713*x^2-696*x-991 9204465362596585 a007 Real Root Of -702*x^4+763*x^3+836*x^2-206*x+201 9204465371482931 m001 (ln(2)/ln(10))^Rabbit*Otter^Rabbit 9204465412848958 a007 Real Root Of -731*x^4+11*x^3-65*x^2-511*x+118 9204465451289456 a007 Real Root Of -804*x^4+684*x^3+421*x^2-128*x+636 9204465462581943 a007 Real Root Of 55*x^4+502*x^3-135*x^2-869*x+128 9204465465671881 m001 BesselK(0,1)-sin(1)-1/2 9204465529411644 r005 Im(z^2+c),c=-57/94+1/56*I,n=36 9204465537637086 r002 26th iterates of z^2 + 9204465549700382 r005 Re(z^2+c),c=-1/15+23/45*I,n=4 9204465555519571 a007 Real Root Of 950*x^4-774*x^3-700*x^2-307*x-975 9204465557060912 r002 29th iterates of z^2 + 9204465586728494 r005 Im(z^2+c),c=-39/50+5/44*I,n=4 9204465589534394 p004 log(14033/12799) 9204465613070249 r005 Re(z^2+c),c=-111/122+7/54*I,n=5 9204465618529046 a007 Real Root Of -571*x^4+117*x^3-155*x^2+872*x-79 9204465642980586 m005 (1/3*Pi+1/4)/(7/12*Catalan+7/8) 9204465652813452 a007 Real Root Of 172*x^4-637*x^3-117*x^2-177*x-684 9204465696707013 a007 Real Root Of -391*x^4+863*x^3+350*x^2-74*x+589 9204465699634666 a007 Real Root Of 663*x^4-511*x^3+195*x^2+244*x-815 9204465742733870 p004 log(33637/13399) 9204465792118516 k002 Champernowne real with 33*n^2+96*n-120 9204465814063944 m001 GAMMA(1/4)^2/Sierpinski^2*exp(cosh(1)) 9204465820113274 l006 ln(3842/9645) 9204465824725546 r005 Re(z^2+c),c=-21/44+25/41*I,n=3 9204465841115087 a007 Real Root Of 276*x^4+492*x^3+801*x^2-491*x-945 9204465904321917 r008 a(0)=1,K{-n^6,36+36*n^3-28*n^2-31*n} 9204465908181247 r002 39th iterates of z^2 + 9204465937717683 s001 sum(exp(-Pi)^(n-1)*A156217[n],n=1..infinity) 9204465958374630 r005 Im(z^2+c),c=-3/29+35/44*I,n=48 9204465998400347 a003 sin(Pi*7/120)*sin(Pi*15/89) 9204466012657358 m001 1/Riemann2ndZero/Bloch^2/exp(BesselK(0,1))^2 9204466023340844 a007 Real Root Of -640*x^4+721*x^3-24*x^2+605*x-56 9204466032222794 m005 (1/2*5^(1/2)-11/12)/(11/12*3^(1/2)+3/5) 9204466061864078 m001 1/Kolakoski/Conway/exp(sinh(1))^2 9204466073165639 a007 Real Root Of -812*x^4-874*x^3-416*x^2-808*x-490 9204466094797538 a007 Real Root Of 226*x^4+461*x^3+876*x^2-162*x-694 9204466097508890 m001 (Shi(1)+Kac)/(-Tribonacci+Trott) 9204466102343974 r009 Re(z^3+c),c=-1/21+25/31*I,n=37 9204466115738298 m001 Zeta(1,-1)*(2*Pi/GAMMA(5/6)-gamma(3)) 9204466125443046 a001 233/103682*843^(25/28) 9204466132470416 a007 Real Root Of -817*x^4+619*x^3-254*x^2-750*x+594 9204466140166784 m005 (1/2*exp(1)-4/9)/(1/12*5^(1/2)-2/7) 9204466143007690 r002 52i'th iterates of 2*x/(1-x^2) of 9204466154919748 q001 1319/1433 9204466157030924 r005 Im(z^2+c),c=45/122+11/19*I,n=3 9204466163027594 m002 1+Pi^(-1)+Pi^4/ProductLog[Pi] 9204466180769704 a007 Real Root Of -659*x^4+750*x^3+374*x^2+386*x-784 9204466206823236 r005 Re(z^2+c),c=-8/9+10/61*I,n=39 9204466207452869 h001 (5/7*exp(2)+1/10)/(2/3*exp(2)+11/12) 9204466297109568 a007 Real Root Of 805*x^4-401*x^3+136*x^2+242*x-783 9204466312731629 a007 Real Root Of 62*x^4-828*x^3-414*x^2-345*x-657 9204466338322812 r005 Re(z^2+c),c=-11/10+5/186*I,n=24 9204466346678337 l006 ln(1969/4943) 9204466348346079 m005 (1/2*Pi+5/9)/(5/6*gamma-1/4) 9204466370611445 h001 (5/6*exp(2)+6/11)/(8/9*exp(2)+5/7) 9204466393880754 a001 610/9349*322^(11/24) 9204466444351427 a005 (1/sin(55/203*Pi))^129 9204466495987211 r008 a(0)=0,K{-n^6,-80+84*n^3-67*n^2+74*n} 9204466509700138 m001 (Ei(1)+TreeGrowth2nd)/(sin(1)-sin(1/5*Pi)) 9204466523640980 m005 (1/2*5^(1/2)+8/9)/(2/3*Zeta(3)-7/12) 9204466531175475 m005 (1/2*3^(1/2)+7/12)/(4/5*exp(1)-3/5) 9204466543596013 m001 (Pi-FeigenbaumKappa)/(LandauRamanujan+Salem) 9204466554417284 r005 Re(z^2+c),c=-17/18+52/199*I,n=11 9204466572439217 l006 ln(7250/7949) 9204466592795115 a007 Real Root Of 508*x^4-204*x^3-620*x^2+271*x+251 9204466634356631 a007 Real Root Of 233*x^4-41*x^3+730*x^2+557*x-305 9204466646583428 a007 Real Root Of 858*x^4+332*x^3+532*x^2-889*x+77 9204466727060526 a001 123/832040*377^(39/56) 9204466728965408 a007 Real Root Of 887*x^4-166*x^3+49*x^2+985*x+99 9204466739614510 r005 Im(z^2+c),c=-41/90+7/45*I,n=42 9204466750593174 a007 Real Root Of 155*x^4+203*x^3-252*x^2-942*x+811 9204466768191229 a007 Real Root Of 722*x^4+328*x^3-187*x^2-742*x-787 9204466785780245 m001 (Gompertz-Mills)/(cos(1/12*Pi)-DuboisRaymond) 9204466795119116 k002 Champernowne real with 67/2*n^2+189/2*n-119 9204466813896145 a007 Real Root Of -815*x^4-463*x^3-220*x^2-461*x-14 9204466817935676 r005 Re(z^2+c),c=-9/10+16/153*I,n=48 9204466834012066 m005 (1/2*Pi-7/11)/(3/5*2^(1/2)+1/6) 9204466843394559 a007 Real Root Of -769*x^4-657*x^3-208*x^2+413*x+596 9204466853457028 m001 (cos(1)+ln(3))/(-Grothendieck+ZetaQ(4)) 9204466864876777 a001 987/24476*322^(13/24) 9204466937833896 a001 233/123*64079^(39/40) 9204466946458609 m003 -26/5-4*Csc[1/2+Sqrt[5]/2] 9204466977545081 m001 1/GAMMA(1/3)^2*OneNinth^2*ln(GAMMA(5/12))^2 9204467016501422 a001 599074578/377*102334155^(2/21) 9204467016501422 a001 228826127/377*2504730781961^(2/21) 9204467026530916 a001 1568397607/377*4181^(2/21) 9204467031052583 s002 sum(A032013[n]/(10^n+1),n=1..infinity) 9204467046530216 r002 5th iterates of z^2 + 9204467051785287 a001 233/167761*843^(27/28) 9204467052420118 r005 Re(z^2+c),c=-17/56+19/31*I,n=33 9204467062914299 r009 Im(z^3+c),c=-45/74+33/52*I,n=8 9204467074510496 m001 cos(1)^2*ln(Riemann2ndZero)/cos(Pi/12) 9204467082590659 r005 Re(z^2+c),c=-111/122+7/64*I,n=23 9204467133261454 m005 (1/2*Pi+4/11)/(235/198+9/22*5^(1/2)) 9204467150757470 m001 GaussKuzminWirsing*Porter+Weierstrass 9204467157991644 a003 sin(Pi*3/28)/cos(Pi*41/107) 9204467167730469 a007 Real Root Of -73*x^4+604*x^3+395*x^2-355*x-138 9204467175641091 a007 Real Root Of -986*x^4+7*x^3+241*x^2+415*x+891 9204467181387059 r002 60i'th iterates of 2*x/(1-x^2) of 9204467194550214 m001 (-Khinchin+Trott)/(3^(1/2)+GAMMA(19/24)) 9204467194650135 b008 Sech[1/4+(3+Pi)^(-1)] 9204467228365379 r002 14th iterates of z^2 + 9204467240511943 m008 (3/5*Pi-2/3)/(2/5*Pi^3+5/6) 9204467243757002 m001 (-BesselK(1,1)+Cahen)/(2^(1/3)-cos(1/5*Pi)) 9204467286561928 a007 Real Root Of -977*x^4+53*x^3+386*x^2-43*x+376 9204467321769486 m001 (ln(2)/ln(10))^GAMMA(11/12)-Zeta(3) 9204467326369774 l006 ln(2065/5184) 9204467327072028 m005 (1/2*exp(1)-1/12)/(5/7*exp(1)-5/9) 9204467418077001 m001 (-BesselK(1,1)+Bloch)/(Catalan-Shi(1)) 9204467430212716 r002 3th iterates of z^2 + 9204467430212716 r002 3th iterates of z^2 + 9204467435700899 a007 Real Root Of -69*x^4-571*x^3+510*x^2-840*x-947 9204467441682248 m001 exp(GAMMA(11/12))^2*PisotVijayaraghavan*sin(1) 9204467455885676 r002 22th iterates of z^2 + 9204467458938830 p004 log(36529/14551) 9204467476468912 m004 -4/E^(Sqrt[5]*Pi)+Sqrt[5]*Pi+2*Cot[Sqrt[5]*Pi] 9204467477144673 m001 (FeigenbaumB+Rabbit)/(Ei(1,1)+Backhouse) 9204467482355919 m008 (1/6*Pi^3-3)/(1/6*Pi^2-4) 9204467486428042 r005 Im(z^2+c),c=-27/50+44/59*I,n=4 9204467494723013 m006 (3/4*Pi-2/3)/(3/4*exp(Pi)+1) 9204467496459540 m005 (1/2*gamma-4/5)/(2*Pi-8/11) 9204467496716990 m001 ln(FeigenbaumC)/Artin^2*GAMMA(5/12) 9204467500164095 m005 (1/2*3^(1/2)+7/8)/(1/5*5^(1/2)-7/11) 9204467514322717 b008 (25*Sqrt[122])/3 9204467526508989 a007 Real Root Of -930*x^4+325*x^3-353*x^2-565*x+700 9204467536845580 m001 ArtinRank2*Porter^Sarnak 9204467540066896 a005 (1/sin(47/117*Pi))^1519 9204467555800198 a007 Real Root Of 118*x^4-292*x^3-564*x^2-262*x+862 9204467557348231 a007 Real Root Of 990*x^4-35*x^3-603*x^2-478*x-667 9204467563010661 a007 Real Root Of -189*x^4+474*x^3+740*x^2+105*x-25 9204467576161010 r002 62th iterates of z^2 + 9204467598989061 a007 Real Root Of 810*x^4-101*x^3+804*x^2+750*x-651 9204467599032256 m001 (BesselK(0,1)-GAMMA(7/12))/(Landau+TwinPrimes) 9204467602922123 m001 FeigenbaumB^(GolombDickman*Sarnak) 9204467610306270 m001 (-GaussAGM+Niven)/(Pi^(1/2)-exp(1)) 9204467628269544 a005 (1/cos(15/191*Pi))^821 9204467633143489 r005 Re(z^2+c),c=17/56+23/42*I,n=34 9204467639695328 r009 Re(z^3+c),c=-5/32+27/46*I,n=44 9204467650476636 a007 Real Root Of -660*x^4+347*x^3+718*x^2-339*x-176 9204467652254630 m001 Salem/(GAMMA(2/3)^cos(1/5*Pi)) 9204467653298298 a007 Real Root Of -111*x^4+644*x^3-826*x^2+353*x+40 9204467654417057 m002 -E^Pi+4*Pi^6-Pi^12 9204467725482938 m001 sin(1/5*Pi)^(exp(-1/2*Pi)/MertensB3) 9204467727914784 m001 cosh(1)^2*ln(OneNinth)*log(2+sqrt(3))^2 9204467755543569 a007 Real Root Of 526*x^4-398*x^3-653*x^2-876*x-941 9204467758714421 m001 (1+Shi(1))/(HardyLittlewoodC4+Tetranacci) 9204467793214563 m001 Khinchin^KomornikLoreti+ReciprocalFibonacci 9204467798119716 k002 Champernowne real with 34*n^2+93*n-118 9204467798792534 r009 Im(z^3+c),c=-7/114+45/49*I,n=9 9204467805517818 m001 (Tribonacci+ZetaQ(3))/(Sierpinski-gamma) 9204467818735336 r002 3th iterates of z^2 + 9204467818881363 a007 Real Root Of 635*x^4+124*x^3+213*x^2+345*x-222 9204467823626821 m001 (sin(1/5*Pi)-polylog(4,1/2))/(Salem-ThueMorse) 9204467872197955 b008 SinIntegral[32/33] 9204467872197955 l003 Si(32/33) 9204467872197955 l004 Si(32/33) 9204467892487193 a007 Real Root Of -758*x^4+26*x^3+366*x^2+104*x+350 9204467895702999 a007 Real Root Of -147*x^4+30*x^3-969*x^2-957*x+69 9204467897466330 a007 Real Root Of -268*x^4+920*x^3-21*x^2-885*x+113 9204467925334122 m001 1/GAMMA(1/6)^2*exp((2^(1/3)))*cos(Pi/5) 9204467955415974 m001 1/Zeta(1,2)*ln(GaussKuzminWirsing)/sinh(1)^2 9204467977890975 l006 ln(8951/9814) 9204468046998311 a003 sin(Pi*28/75)*sin(Pi*41/85) 9204468051482976 a007 Real Root Of 703*x^4+84*x^3-629*x^2-279*x-163 9204468055348431 b008 CosIntegral[1/2+EulerGamma^3] 9204468103410603 a007 Real Root Of -312*x^4-188*x^3+12*x^2+681*x+694 9204468110811451 a007 Real Root Of -878*x^4+557*x^3+346*x^2-623*x+198 9204468137512145 r009 Im(z^3+c),c=-17/46+24/35*I,n=59 9204468151826699 m001 1/ln(GAMMA(1/12))^2/Si(Pi)*Zeta(7)^2 9204468199309038 m001 (-Zeta(1/2)+ZetaQ(2))/(Shi(1)+sin(1/5*Pi)) 9204468202119682 m001 1/(2^(1/3))*ln(Khintchine)^2/sin(1) 9204468219017743 l006 ln(2161/5425) 9204468252020021 m001 (ArtinRank2-Landau)/(Ei(1)-Ei(1,1)) 9204468267255992 a007 Real Root Of -997*x^4+53*x^3-58*x^2-49*x+761 9204468288315506 a007 Real Root Of 480*x^4-382*x^3+223*x^2+448*x-419 9204468301121540 m001 cos(1/5*Pi)^(sin(1/12*Pi)/Robbin) 9204468310327922 p001 sum(1/(498*n+433)/n/(12^n),n=1..infinity) 9204468320416171 m004 -125*Pi+(5*Sqrt[5]*Pi)/2-5*Pi*Sinh[Sqrt[5]*Pi] 9204468327827084 v002 sum(1/(3^n*(23*n^2-66*n+93)),n=1..infinity) 9204468383134878 a007 Real Root Of -381*x^4-431*x^3-674*x^2+357*x+837 9204468393743423 m001 (2^(1/2)+Cahen)/(MertensB3+Riemann2ndZero) 9204468426514910 r005 Re(z^2+c),c=-4/7+60/73*I,n=2 9204468452973692 a007 Real Root Of 676*x^4-201*x^3+208*x^2+425*x-427 9204468462672441 s002 sum(A186615[n]/(n*pi^n+1),n=1..infinity) 9204468465755548 a001 2584/64079*322^(13/24) 9204468472817627 r002 52th iterates of z^2 + 9204468497685146 p004 log(21493/19603) 9204468517264725 q001 2719/2954 9204468535908076 a003 cos(Pi*11/111)*sin(Pi*28/67) 9204468548404437 a007 Real Root Of 861*x^4-253*x^3+34*x^2-102*x-938 9204468559910515 a007 Real Root Of -61*x^4+875*x^3+755*x^2+6*x+92 9204468569390804 a007 Real Root Of 638*x^4+202*x^3+68*x^2-13*x-370 9204468610156982 a007 Real Root Of 44*x^4-936*x^3-710*x^2-427*x-553 9204468635109937 m005 (1/3*Pi-1/10)/(1/8*Pi+7/11) 9204468699320612 a001 615/15251*322^(13/24) 9204468730578426 a001 6/75283811239*2178309^(22/23) 9204468733397296 a001 17711/439204*322^(13/24) 9204468738369017 a001 46368/1149851*322^(13/24) 9204468739094382 a001 121393/3010349*322^(13/24) 9204468739200211 a001 317811/7881196*322^(13/24) 9204468739215651 a001 75640/1875749*322^(13/24) 9204468739217904 a001 2178309/54018521*322^(13/24) 9204468739218232 a001 5702887/141422324*322^(13/24) 9204468739218280 a001 14930352/370248451*322^(13/24) 9204468739218287 a001 39088169/969323029*322^(13/24) 9204468739218288 a001 9303105/230701876*322^(13/24) 9204468739218289 a001 267914296/6643838879*322^(13/24) 9204468739218289 a001 701408733/17393796001*322^(13/24) 9204468739218289 a001 1836311903/45537549124*322^(13/24) 9204468739218289 a001 4807526976/119218851371*322^(13/24) 9204468739218289 a001 1144206275/28374454999*322^(13/24) 9204468739218289 a001 32951280099/817138163596*322^(13/24) 9204468739218289 a001 86267571272/2139295485799*322^(13/24) 9204468739218289 a001 225851433717/5600748293801*322^(13/24) 9204468739218289 a001 591286729879/14662949395604*322^(13/24) 9204468739218289 a001 365435296162/9062201101803*322^(13/24) 9204468739218289 a001 139583862445/3461452808002*322^(13/24) 9204468739218289 a001 53316291173/1322157322203*322^(13/24) 9204468739218289 a001 20365011074/505019158607*322^(13/24) 9204468739218289 a001 7778742049/192900153618*322^(13/24) 9204468739218289 a001 2971215073/73681302247*322^(13/24) 9204468739218289 a001 1134903170/28143753123*322^(13/24) 9204468739218289 a001 433494437/10749957122*322^(13/24) 9204468739218289 a001 165580141/4106118243*322^(13/24) 9204468739218289 a001 63245986/1568397607*322^(13/24) 9204468739218292 a001 24157817/599074578*322^(13/24) 9204468739218310 a001 9227465/228826127*322^(13/24) 9204468739218436 a001 3524578/87403803*322^(13/24) 9204468739219296 a001 1346269/33385282*322^(13/24) 9204468739225194 a001 514229/12752043*322^(13/24) 9204468739265617 a001 196418/4870847*322^(13/24) 9204468739542681 a001 75025/1860498*322^(13/24) 9204468740965554 r009 Im(z^3+c),c=-21/106+29/30*I,n=42 9204468741441710 a001 28657/710647*322^(13/24) 9204468754457845 a001 10946/271443*322^(13/24) 9204468765276899 m002 Pi^4/5+2*Pi*Sinh[Pi] 9204468779530941 h001 (3/5*exp(1)+2/9)/(5/11*exp(1)+7/9) 9204468801120316 k002 Champernowne real with 69/2*n^2+183/2*n-117 9204468801120316 k004 Champernowne real with floor(Pi*(11*n^2+29*n-37)) 9204468815475049 r008 a(0)=9,K{-n^6,56-75*n^3-35*n^2+49*n} 9204468836290219 m001 exp(TreeGrowth2nd)^2/DuboisRaymond^2*Zeta(3)^2 9204468843671761 a001 4181/103682*322^(13/24) 9204468851963418 a007 Real Root Of -514*x^4+904*x^3+413*x^2-88*x+643 9204468878411138 r005 Re(z^2+c),c=-8/9+13/96*I,n=50 9204468884849136 a007 Real Root Of -837*x^4-763*x^3-72*x^2-317*x-225 9204468887603067 m001 1/Catalan/ln(BesselJ(1,1))/Zeta(3)^2 9204468933105445 r002 16th iterates of z^2 + 9204468945866072 a001 123/377*34^(5/17) 9204468964053571 a007 Real Root Of -590*x^4-728*x^3-568*x^2+616*x+904 9204468996131186 r005 Re(z^2+c),c=8/21+13/51*I,n=22 9204468999775757 a007 Real Root Of 680*x^4-97*x^3+95*x^2+500*x-184 9204469010140290 m005 (1/3*exp(1)+1/6)/(11/12*gamma+7/11) 9204469015031520 m001 (-gamma(1)+Backhouse)/(Shi(1)-exp(1)) 9204469016371144 a008 Real Root of (-5+6*x-4*x^2-x^3+6*x^4-x^5) 9204469026424477 a007 Real Root Of -858*x^4+480*x^3-51*x^2-322*x+737 9204469030406056 r002 29th iterates of z^2 + 9204469035729261 l006 ln(2257/5666) 9204469094783084 a007 Real Root Of -774*x^4-446*x^3+221*x^2+328*x+3 9204469104208195 r005 Im(z^2+c),c=-57/82+5/37*I,n=57 9204469108944312 r009 Im(z^3+c),c=-65/118+35/59*I,n=14 9204469118122293 m002 Pi^2/ProductLog[Pi]+(Sinh[Pi]*Tanh[Pi])/Pi^6 9204469118785730 r009 Re(z^3+c),c=-23/31+20/53*I,n=3 9204469223264481 r004 Im(z^2+c),c=-15/34+2/13*I,z(0)=-1,n=24 9204469239445327 a007 Real Root Of 859*x^4-973*x^3+128*x^2+606*x-926 9204469274576938 m005 (1/3*gamma+2/3)/(21/8+3*5^(1/2)) 9204469284580507 r005 Im(z^2+c),c=5/98+23/36*I,n=10 9204469299996212 m005 (-11/42+1/6*5^(1/2))/(3/5*gamma+6/7) 9204469318258871 r002 8th iterates of z^2 + 9204469342630279 m001 Pi^2*ln(GAMMA(1/4))/sinh(1)^2 9204469342645717 m005 (1/2*2^(1/2)+1/8)/(1/11+4/11*5^(1/2)) 9204469357873661 r005 Im(z^2+c),c=4/9+13/57*I,n=16 9204469371550101 r005 Re(z^2+c),c=-12/31+39/61*I,n=7 9204469378004717 r005 Re(z^2+c),c=-1/60+58/61*I,n=2 9204469405032702 m008 (Pi^5-1/4)/(1/3*Pi^4+3/4) 9204469408911325 a007 Real Root Of -119*x^4+928*x^3-873*x^2+920*x-78 9204469419152044 r005 Re(z^2+c),c=-25/26+14/53*I,n=14 9204469429446429 m001 (Shi(1)+ln(2))/(BesselJ(1,1)+MinimumGamma) 9204469438071678 r005 Re(z^2+c),c=1/18+28/57*I,n=14 9204469455153038 a001 1597/39603*322^(13/24) 9204469457266096 m005 (1/2*5^(1/2)+9/10)/(1/9*3^(1/2)+2) 9204469526230919 a007 Real Root Of -848*x^4+119*x^3+60*x^2+71*x+716 9204469544704830 m001 Catalan^(FeigenbaumB/ln(2^(1/2)+1)) 9204469577662931 r005 Re(z^2+c),c=1/56+5/11*I,n=8 9204469597503630 r005 Im(z^2+c),c=-43/74+5/36*I,n=13 9204469652339631 r009 Im(z^3+c),c=-53/98+29/48*I,n=38 9204469690287805 r005 Im(z^2+c),c=-3/82+1/10*I,n=6 9204469709390748 m001 1/ErdosBorwein^2/Artin/ln(GAMMA(7/24)) 9204469748546535 r005 Re(z^2+c),c=-95/106+5/34*I,n=41 9204469763562189 m005 (1/3*Catalan-1/3)/(5/9*gamma-5/8) 9204469771200156 h005 exp(cos(Pi*1/36)/cos(Pi*19/54)) 9204469776962319 m001 cos(1)^2*ln(GAMMA(23/24))/cos(Pi/5) 9204469778153350 b008 5+ArcCosh[67/2] 9204469785798727 l006 ln(2353/5907) 9204469787598517 a007 Real Root Of -896*x^4-630*x^3-364*x^2-261*x+220 9204469792885510 a007 Real Root Of 176*x^4-806*x^3-258*x^2-79*x-609 9204469794409751 m001 (ln(5)+HardyLittlewoodC5)/(Chi(1)-Shi(1)) 9204469794409751 m001 (ln(5)+HardyLittlewoodC5)/Ei(1,1) 9204469804120916 k002 Champernowne real with 35*n^2+90*n-116 9204469807275971 m001 (exp(1/Pi)*Gompertz+FeigenbaumDelta)/Gompertz 9204469875419398 a007 Real Root Of 247*x^4-879*x^3+329*x^2+748*x-453 9204469966518737 m001 (-GaussAGM+Magata)/(BesselI(0,1)+GAMMA(7/12)) 9204469969954707 r002 55th iterates of z^2 + 9204469971867531 a007 Real Root Of -102*x^4-993*x^3-483*x^2+215*x+677 9204469974913804 m001 (-Backhouse+Paris)/(ln(2)/ln(10)+GAMMA(19/24)) 9204469997591483 r008 a(0)=0,K{-n^6,-64+71*n^3-20*n^2+24*n} 9204470055727958 b008 1+90*ArcCoth[11] 9204470071787259 a001 5/123*24476^(22/41) 9204470081955396 m001 BesselK(0,1)*exp(Backhouse)^2/sin(1) 9204470083037539 a001 5/123*39603^(21/41) 9204470104753980 a003 cos(Pi*13/77)/sin(Pi*46/119) 9204470116948251 a001 121393/322*3^(13/16) 9204470162419995 h001 (7/8*exp(2)+3/10)/(9/10*exp(2)+7/10) 9204470200546265 r002 10th iterates of z^2 + 9204470236745046 m005 (1/2*3^(1/2)+1/2)/(4/7*Catalan-3/8) 9204470242642311 m001 Magata/FibonacciFactorial/ln(sqrt(3))^2 9204470276393628 a007 Real Root Of -299*x^4+181*x^3-156*x^2+150*x+626 9204470289321587 m002 -Pi^6-ProductLog[Pi]+5*Pi^4*Sech[Pi] 9204470293096361 m005 (-1/12+1/6*5^(1/2))/(8/9*exp(1)+8/11) 9204470309792729 a003 cos(Pi*8/43)-sin(Pi*26/69) 9204470331958552 a007 Real Root Of 741*x^4-x^3+730*x^2+564*x-632 9204470373782868 a001 19/36*165580141^(3/11) 9204470376516999 a007 Real Root Of 932*x^4-41*x^3-608*x^2+354*x+140 9204470387042008 a007 Real Root Of 469*x^4+269*x^3+893*x^2+535*x-391 9204470394955082 m001 1/3-Backhouse^BesselK(1,1) 9204470400313473 m006 (1/6*Pi+3)/(1/5*exp(Pi)-4/5) 9204470406225973 a007 Real Root Of 555*x^4-879*x^3-816*x^2+598*x+428 9204470407514013 a003 sin(Pi*21/97)/sin(Pi*17/71) 9204470418822606 r005 Re(z^2+c),c=-9/10+16/153*I,n=58 9204470422639122 r005 Re(z^2+c),c=-9/10+16/153*I,n=60 9204470449595261 a007 Real Root Of 18*x^4+237*x^3+570*x^2-797*x-11 9204470454619581 r005 Im(z^2+c),c=-1/60+30/43*I,n=11 9204470477063187 l006 ln(2449/6148) 9204470482819387 m001 (1+GAMMA(11/12))/(-Khinchin+ZetaP(2)) 9204470484979460 r005 Re(z^2+c),c=-87/94+1/34*I,n=5 9204470486613537 r002 8th iterates of z^2 + 9204470532130040 a007 Real Root Of 411*x^4+654*x^3+450*x^2-770*x-875 9204470598257746 a001 13/844*322^(17/24) 9204470629059859 m004 (3*Cot[Sqrt[5]*Pi])/2-Sinh[Sqrt[5]*Pi]/6 9204470643643009 a007 Real Root Of -147*x^4+433*x^3+590*x^2-113*x-628 9204470657644622 a007 Real Root Of 185*x^4-958*x^3+218*x^2+81*x-990 9204470664308071 m001 (Pi+3^(1/2))/(BesselJ(0,1)-CopelandErdos) 9204470675657937 a007 Real Root Of 69*x^4+711*x^3+726*x^2+305*x+481 9204470677351915 a001 161/17*4181^(3/11) 9204470689653180 r002 3th iterates of z^2 + 9204470703983693 m005 (17/20+1/4*5^(1/2))/(5*Pi-2/5) 9204470720067647 r005 Re(z^2+c),c=-9/10+16/153*I,n=62 9204470730729841 m001 1/GAMMA(2/3)^2/ln(Trott)^2*sin(Pi/5)^2 9204470742932281 q001 14/1521 9204470742932281 q001 7/7605 9204470742932281 r002 2th iterates of z^2 + 9204470742932281 r005 Re(z^2+c),c=2/13+16/39*I,n=2 9204470751941687 r002 39th iterates of z^2 + 9204470774814133 m005 (-25/44+1/4*5^(1/2))/(3/10*2^(1/2)+4/7) 9204470807121516 k002 Champernowne real with 71/2*n^2+177/2*n-115 9204470823653902 a007 Real Root Of 680*x^4-339*x^3-355*x^2+293*x-182 9204470823993811 m001 (sin(1)+LambertW(1))/(GAMMA(7/12)+ZetaQ(4)) 9204470839858904 a003 sin(Pi*24/67)/sin(Pi*45/103) 9204470841732545 m001 (gamma(3)-BesselI(1,2))/(Sierpinski-Thue) 9204470876722122 m005 (1/2*Pi+6/7)/(7/8*Pi-1/9) 9204470913078573 m006 (3/4*exp(2*Pi)-3/5)/(1/6*exp(Pi)+1/2) 9204470956732013 r005 Re(z^2+c),c=-9/10+16/153*I,n=64 9204470958651860 r005 Re(z^2+c),c=-9/10+31/114*I,n=3 9204470981944467 r008 a(0)=1,K{-n^6,7+6*n^2+2*n} 9204471006138831 m001 (1-GAMMA(11/12))/(Lehmer+Trott) 9204471015647904 m001 (2^(1/2)-5^(1/2))/(BesselK(0,1)+Bloch) 9204471015763426 m001 sin(1)^ln(gamma)/(Sarnak^ln(gamma)) 9204471022823126 h001 (1/10*exp(2)+5/6)/(4/9*exp(1)+1/2) 9204471064652605 a007 Real Root Of 727*x^4+845*x^3-43*x^2-695*x-63 9204471077571841 a007 Real Root Of -429*x^4+989*x^3+515*x^2-168*x-745 9204471096768029 m008 (1/4*Pi^3+5/6)/(3*Pi^3+1/4) 9204471098618709 a007 Real Root Of 169*x^4+536*x^3+883*x^2+309*x-167 9204471108531039 a007 Real Root Of -27*x^4-179*x^3+589*x^2-467*x+14 9204471116177201 l006 ln(2545/6389) 9204471141478786 a007 Real Root Of 233*x^4-786*x^3+207*x^2-532*x+760 9204471147627328 a007 Real Root Of -524*x^4-24*x^3-551*x^2+638*x-54 9204471171739521 a007 Real Root Of -270*x^4+59*x^3-27*x^2+700*x+907 9204471173275909 r009 Im(z^3+c),c=-5/86+34/37*I,n=11 9204471173737000 m002 -Pi/3+3*Pi^5*Coth[Pi] 9204471181123332 r008 a(0)=0,K{-n^6,-54+66*n^3-n} 9204471195314263 a007 Real Root Of 449*x^4+412*x^3+158*x^2+492*x+318 9204471219432653 m002 -5+Pi^4-Log[Pi]/Pi 9204471258902832 a007 Real Root Of -830*x^4-462*x^3+437*x^2-286*x-398 9204471280204702 r005 Re(z^2+c),c=29/110+15/34*I,n=27 9204471284079550 a007 Real Root Of -308*x^4+575*x^3+485*x^2+774*x+971 9204471297619263 r005 Re(z^2+c),c=-9/10+16/153*I,n=56 9204471304061216 a005 (1/cos(15/212*Pi))^921 9204471340087797 r005 Im(z^2+c),c=-9/34+47/50*I,n=4 9204471361228852 a007 Real Root Of 795*x^4-912*x^3-879*x^2+740*x+144 9204471395288604 a007 Real Root Of 933*x^4+409*x^3-192*x^2-89*x-270 9204471413927117 m001 FeigenbaumKappa^2/Bloch/exp((3^(1/3))) 9204471415202661 a007 Real Root Of -448*x^4-97*x^3+121*x^2+332*x+449 9204471429238530 a005 (1/cos(70/229*Pi))^124 9204471461289608 r002 16th iterates of z^2 + 9204471482542318 a007 Real Root Of 102*x^4+884*x^3-490*x^2+172*x+319 9204471489656199 b008 ArcTan[3*Sqrt[3]]/15 9204471496441987 r005 Re(z^2+c),c=-13/122+35/53*I,n=34 9204471509033678 p001 sum((-1)^n/(268*n+205)/n/(2^n),n=1..infinity) 9204471514703811 a003 sin(Pi*2/93)-sin(Pi*41/91) 9204471517670714 r002 30th iterates of z^2 + 9204471535590443 m001 (BesselI(0,1)+ln(gamma))/(-exp(1/Pi)+Gompertz) 9204471550313673 m005 (1/2*2^(1/2)-4/9)/(1/7*2^(1/2)+1/12) 9204471583704738 r002 31th iterates of z^2 + 9204471588381993 m005 (1/2*exp(1)+2/9)/(2/3*Zeta(3)+11/12) 9204471593769735 p004 log(32909/13109) 9204471602768571 a001 832040/7*123^(47/52) 9204471619219623 a007 Real Root Of -616*x^4+765*x^3+187*x^2-562*x+363 9204471631818416 r005 Re(z^2+c),c=-67/98+11/32*I,n=63 9204471659215730 a007 Real Root Of 809*x^4+766*x^3+427*x^2+690*x+290 9204471684082257 a007 Real Root Of -294*x^4+733*x^3+182*x^2+345*x+946 9204471708827759 l006 ln(2641/6630) 9204471718533969 a007 Real Root Of 213*x^4-975*x^3-171*x^2-130*x-888 9204471737077786 m001 ln(RenyiParking)^2*FeigenbaumB/BesselJ(0,1) 9204471744158156 a007 Real Root Of 722*x^4-876*x^3-659*x^2-340*x-956 9204471762990809 a007 Real Root Of 116*x^4-924*x^3-417*x^2+735*x+226 9204471775032558 m001 (Ei(1)+FibonacciFactorial)^gamma(1) 9204471781925306 a007 Real Root Of 783*x^4-947*x^3-317*x^2+516*x-557 9204471810122117 k002 Champernowne real with 36*n^2+87*n-114 9204471835458915 m001 Riemann1stZero*exp(Porter)*GAMMA(3/4)^2 9204471843187769 h001 (-4*exp(5)-7)/(-3*exp(3)-5) 9204471902174251 r009 Im(z^3+c),c=-61/114+39/62*I,n=2 9204471918280803 a003 cos(Pi*16/81)+cos(Pi*41/88) 9204471950725170 a007 Real Root Of -959*x^4-277*x^3+94*x^2+386*x+748 9204471982467622 r009 Re(z^3+c),c=-9/98+2/45*I,n=5 9204471994668865 m005 (1/2*Catalan+1/2)/(1/16+7/16*5^(1/2)) 9204471995490934 m003 -5/12+Sqrt[5]/16+Tanh[1/2+Sqrt[5]/2]/5 9204471997193494 a007 Real Root Of -468*x^4+997*x^3+124*x^2+322*x-843 9204472002597475 m001 (Kac+Totient)/(ln(2)+3^(1/3)) 9204472014087396 r009 Re(z^3+c),c=-9/98+2/45*I,n=6 9204472017227639 r009 Re(z^3+c),c=-9/98+2/45*I,n=7 9204472017316617 r009 Re(z^3+c),c=-9/98+2/45*I,n=8 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=12 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=13 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=14 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=19 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=20 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=21 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=26 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=27 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=28 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=33 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=25 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=24 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=23 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=22 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=18 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=17 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=16 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=15 9204472017316811 r009 Re(z^3+c),c=-9/98+2/45*I,n=11 9204472017316814 r009 Re(z^3+c),c=-9/98+2/45*I,n=10 9204472017316893 r009 Re(z^3+c),c=-9/98+2/45*I,n=9 9204472032140108 a007 Real Root Of -243*x^4+819*x^3+160*x^2-408*x+302 9204472032655518 a001 377/521*123^(1/20) 9204472143826327 b008 1/2+E+9*Pi^2 9204472146372683 a007 Real Root Of 929*x^4-352*x^3+13*x^2+662*x-343 9204472147116801 m001 ln(CareFree)/MertensB1^2/GAMMA(1/6) 9204472168551106 h001 (-4*exp(3/2)-2)/(-8*exp(1/3)+9) 9204472204461539 a003 sin(Pi*28/83)/sin(Pi*23/58) 9204472218641125 a007 Real Root Of 328*x^4-123*x^3+824*x^2-792*x-80 9204472226410176 a003 sin(Pi*28/87)/sin(Pi*35/94) 9204472259903968 l006 ln(2737/6871) 9204472262716590 a007 Real Root Of -222*x^4+680*x^3+182*x^2+370*x+876 9204472269429348 a007 Real Root Of -397*x^4+869*x^3-3*x^2-23*x+944 9204472318356983 m001 (Sarnak+StronglyCareFree)/(GaussAGM+Kolakoski) 9204472322163884 m001 cos(1)^(DuboisRaymond/exp(1/exp(1))) 9204472324337896 m001 1/GAMMA(1/24)/exp(OneNinth)^2/GAMMA(11/24)^2 9204472368908532 m001 (Pi*2^(1/2)/GAMMA(3/4)+exp(1/Pi))/Landau 9204472410654353 s002 sum(A048777[n]/((2^n-1)/n),n=1..infinity) 9204472411986450 r005 Re(z^2+c),c=-9/8+39/236*I,n=12 9204472431000101 r002 3th iterates of z^2 + 9204472438251446 a007 Real Root Of 870*x^4-492*x^3-762*x^2+546*x+140 9204472443864914 r005 Im(z^2+c),c=-17/18+20/241*I,n=11 9204472449161964 a007 Real Root Of -49*x^4-200*x^3-128*x^2+535*x-48 9204472453430942 a007 Real Root Of 778*x^4-321*x^3-889*x^2-133*x-178 9204472464126360 a007 Real Root Of -697*x^4-743*x^3-621*x^2+327*x+748 9204472500814939 r005 Im(z^2+c),c=-6/7+26/77*I,n=7 9204472523853403 r005 Im(z^2+c),c=-1/66+38/45*I,n=8 9204472567924704 r001 54i'th iterates of 2*x^2-1 of 9204472573956957 r005 Re(z^2+c),c=-49/46+13/61*I,n=30 9204472584600087 m001 (KhinchinLevy+Thue)/(Catalan-exp(Pi)) 9204472595784961 m001 (Sierpinski-ZetaP(3))/(3^(1/3)+Salem) 9204472596301688 a007 Real Root Of 230*x^4-639*x^3-194*x^2+219*x+296 9204472600665954 r002 19th iterates of z^2 + 9204472622801520 m005 (39/44+1/4*5^(1/2))/(7/10*Zeta(3)-6/7) 9204472669453368 a007 Real Root Of 60*x^4-629*x^3+345*x^2+869*x-26 9204472687707687 m001 ln(Trott)*KhintchineLevy^2*Zeta(3)^2 9204472706975018 m005 (1/2*5^(1/2)-1/5)/(3/7*gamma+3/4) 9204472710703814 a007 Real Root Of -931*x^4+703*x^3+200*x^2-339*x+735 9204472717232673 a007 Real Root Of 71*x^4+711*x^3+472*x^2-417*x+999 9204472724147788 g005 GAMMA(7/11)*GAMMA(7/9)/GAMMA(3/5)/GAMMA(3/4) 9204472727613027 m005 (4/5*Catalan-3/5)/(3*Pi+5) 9204472731769954 a007 Real Root Of 854*x^4+341*x^3+478*x^2+364*x-417 9204472740967928 m008 (1/4*Pi-3/4)/(4*Pi^6+1/5) 9204472748965897 r005 Im(z^2+c),c=-9/94+34/43*I,n=15 9204472759846393 a007 Real Root Of -978*x^4+120*x^3+455*x^2-376*x+64 9204472773632239 l006 ln(2833/7112) 9204472813122717 k002 Champernowne real with 73/2*n^2+171/2*n-113 9204472813737483 m001 (Pi^(1/2)+Niven)/(arctan(1/2)-sin(1)) 9204472815842820 m001 (Pi-GAMMA(5/6))/(Artin-Lehmer) 9204472837287679 m005 (1/2*Zeta(3)-3/4)/(6*exp(1)-1/8) 9204472843450479 q001 2881/3130 9204472848816524 m001 1/TwinPrimes^2/MertensB1*exp(sinh(1))^2 9204472902219896 a007 Real Root Of -487*x^4-104*x^3+665*x^2+51*x-248 9204472921978969 r005 Im(z^2+c),c=-41/90+7/45*I,n=36 9204472948576304 r005 Re(z^2+c),c=-33/40+13/63*I,n=9 9204472959039356 p001 sum((-1)^n/(373*n+57)/n/(25^n),n=1..infinity) 9204473025187357 a007 Real Root Of 977*x^4+573*x^3+467*x^2-152*x-790 9204473061263933 a007 Real Root Of -945*x^4-144*x^3-609*x^2-566*x+561 9204473064014145 r009 Re(z^3+c),c=-3/26+11/35*I,n=6 9204473091736154 a007 Real Root Of 32*x^4-189*x^3+796*x^2+594*x-298 9204473120048861 a007 Real Root Of 296*x^4-726*x^3+391*x^2+630*x-530 9204473153283537 a007 Real Root Of 91*x^4-502*x^3-787*x^2+353*x+668 9204473160576395 r005 Im(z^2+c),c=-8/21+35/59*I,n=47 9204473190000215 a007 Real Root Of 795*x^4+427*x^3-95*x^2+111*x-55 9204473193948537 a001 89/5778*199^(17/22) 9204473200170744 r009 Re(z^3+c),c=-3/20+16/29*I,n=14 9204473210955138 a007 Real Root Of -144*x^4+546*x^3-514*x^2-935*x+104 9204473226055538 s001 sum(exp(-Pi)^n*A140502[n],n=1..infinity) 9204473226055538 s002 sum(A140502[n]/(exp(pi*n)),n=1..infinity) 9204473242539687 b008 ExpIntegralE[2,4/3] 9204473245614448 a007 Real Root Of 676*x^4+457*x^3-245*x^2-280*x-179 9204473245760150 r005 Re(z^2+c),c=-131/122+7/41*I,n=16 9204473246602791 a007 Real Root Of -823*x^4-933*x^3-954*x^2-925*x-180 9204473253684887 l006 ln(2929/7353) 9204473261593445 m001 exp(1)/cos(1/5*Pi)*Trott2nd 9204473267912836 m005 (1/2*exp(1)+5/6)/(-7/2+1/2*5^(1/2)) 9204473286160626 a007 Real Root Of 79*x^4-314*x^3-166*x^2+114*x-56 9204473286576548 r002 33th iterates of z^2 + 9204473327127771 a007 Real Root Of -879*x^4-851*x^3-329*x^2-628*x-332 9204473353507640 m001 1/FeigenbaumKappa/exp(Porter)^2*GAMMA(1/24) 9204473366315520 a007 Real Root Of 616*x^4+783*x^3+746*x^2-485*x-910 9204473373747092 a007 Real Root Of -976*x^4+661*x^3+770*x^2+569*x-991 9204473374744742 a007 Real Root Of 718*x^4+353*x^3+230*x^2-12*x-446 9204473387789866 a007 Real Root Of -783*x^4+481*x^3+565*x^2-183*x+290 9204473395100005 m008 (1/5*Pi^4-2/3)/(2/3*Pi^5+2/5) 9204473407785065 r005 Re(z^2+c),c=-9/10+16/153*I,n=54 9204473413347502 r005 Re(z^2+c),c=-101/82+7/26*I,n=5 9204473447890181 a007 Real Root Of -903*x^4-408*x^3-764*x^2-72*x+911 9204473453950980 r005 Re(z^2+c),c=-37/42+4/21*I,n=25 9204473490751660 m001 (-PlouffeB+Thue)/(Catalan-MertensB3) 9204473493768911 a005 (1/sin(106/223*Pi))^1505 9204473494709836 m001 ReciprocalLucas/GAMMA(23/24)/exp(-1/2*Pi) 9204473504069656 a007 Real Root Of 846*x^4+40*x^3-201*x^2-261*x-646 9204473510985065 a007 Real Root Of 76*x^4-535*x^3-172*x^2-231*x+721 9204473525180916 m005 (1/2*exp(1)-9/11)/(11/12*3^(1/2)-1) 9204473572869315 r008 a(0)=1,K{-n^6,32-15*n-45*n^2+41*n^3} 9204473605052928 a007 Real Root Of -633*x^4+20*x^3-822*x^2-209*x+974 9204473606192619 m005 (1/2*Pi-3/5)/(2/3*3^(1/2)-1/10) 9204473630485472 r005 Im(z^2+c),c=-71/62+7/62*I,n=22 9204473646308043 a001 610/15127*322^(13/24) 9204473649263877 a007 Real Root Of -389*x^4+251*x^3+356*x^2+394*x+536 9204473653774996 m009 (3*Psi(1,2/3)-3/5)/(4*Psi(1,3/4)-5/6) 9204473673130762 p001 sum((-1)^n/(457*n+107)/(12^n),n=0..infinity) 9204473703268057 l006 ln(3025/7594) 9204473719063698 m001 PrimesInBinary/FeigenbaumAlpha/exp(sin(Pi/5)) 9204473728393241 r009 Im(z^3+c),c=-19/52+11/15*I,n=35 9204473767488825 r009 Im(z^3+c),c=-17/46+24/35*I,n=64 9204473789954120 r009 Im(z^3+c),c=-13/74+8/9*I,n=41 9204473816123317 k002 Champernowne real with 37*n^2+84*n-112 9204473816687051 a007 Real Root Of 808*x^4-190*x^3-419*x^2-643*x-965 9204473828406004 b008 5*LogGamma[4/27] 9204473835335216 m005 (1/2*5^(1/2)+8/11)/(11/12*Pi-7/8) 9204473850031505 r005 Re(z^2+c),c=-5/6+61/69*I,n=2 9204473890032905 m001 Conway-Psi(1,1/3)-ThueMorse 9204473892358280 a007 Real Root Of 394*x^4-461*x^3-381*x^2-547*x-823 9204473907458309 r009 Re(z^3+c),c=-9/98+2/45*I,n=4 9204473932734853 m001 FeigenbaumMu/BesselJ(1,1)/ln(2^(1/2)+1) 9204473961858555 m001 (KhinchinLevy+Robbin)/(CareFree+Conway) 9204473968205415 l006 ln(1701/1865) 9204473977539232 a007 Real Root Of -922*x^4+869*x^3+589*x^2-208*x+649 9204474060463927 b008 5/4+Zeta[Sin[2]] 9204474065623919 r005 Re(z^2+c),c=-19/50+31/42*I,n=5 9204474067441381 m001 (CareFree-ReciprocalLucas)/(Totient+Trott2nd) 9204474092146616 m001 MertensB1^Kolakoski+Stephens 9204474114833568 s002 sum(A116223[n]/(n^2*exp(n)+1),n=1..infinity) 9204474119228182 a007 Real Root Of -629*x^4+182*x^3+921*x^2-187*x-359 9204474125193417 l006 ln(3121/7835) 9204474165788361 r005 Re(z^2+c),c=-13/98+35/39*I,n=2 9204474167876732 m004 -25*Pi+4*Log[Sqrt[5]*Pi]-5*Pi*Sec[Sqrt[5]*Pi] 9204474229975068 r005 Re(z^2+c),c=-111/122+15/58*I,n=36 9204474233826119 a007 Real Root Of -745*x^4+426*x^3+662*x^2+592*x+851 9204474239919645 m002 -1+Cosh[Pi]/5+Pi^4/ProductLog[Pi] 9204474241605757 a001 329/13201*322^(5/8) 9204474271279542 a007 Real Root Of -987*x^4+635*x^3+410*x^2-97*x+767 9204474300889294 m001 sin(1)^(Zeta(3)/FeigenbaumAlpha) 9204474335227661 m005 (1/2*Pi-10/11)/(5/8*3^(1/2)-4/11) 9204474347644757 g005 GAMMA(3/11)/GAMMA(8/11)/GAMMA(4/9)/GAMMA(5/8) 9204474353201631 r005 Re(z^2+c),c=-47/50+11/45*I,n=59 9204474359918564 a007 Real Root Of 209*x^4-804*x^3-376*x^2+359*x-128 9204474364053309 m001 (FeigenbaumB+Porter)/(Pi-Cahen) 9204474367337574 r002 20th iterates of z^2 + 9204474370509480 m001 (Zeta(5)-Ei(1))/(GAMMA(7/12)-Gompertz) 9204474410889014 r005 Re(z^2+c),c=-29/32+5/41*I,n=17 9204474424226338 m001 Catalan^(sin(1/5*Pi)*ErdosBorwein) 9204474431928877 r005 Re(z^2+c),c=-13/9+66/89*I,n=2 9204474439398801 g006 Psi(1,5/11)+Psi(1,3/4)-Psi(1,7/10)-Psi(1,3/7) 9204474452507340 m005 (1/3*Pi-1/5)/(9/11*5^(1/2)-10/11) 9204474459160700 g006 -Psi(1,6/7)-Psi(1,1/7)-Psi(1,1/6)-Psi(1,4/5) 9204474477900993 a007 Real Root Of 555*x^4-426*x^3-554*x^2+35*x-229 9204474521937017 l006 ln(3217/8076) 9204474556460924 a007 Real Root Of -293*x^4+769*x^3+740*x^2+868*x+982 9204474561355977 a007 Real Root Of -540*x^4+415*x^3-398*x^2-598*x+498 9204474621205343 r005 Re(z^2+c),c=3/44+28/61*I,n=9 9204474625110521 h001 (2/11*exp(2)+5/9)/(7/11*exp(1)+1/3) 9204474646558945 a007 Real Root Of 857*x^4+656*x^3+467*x^2+877*x+308 9204474654876946 a007 Real Root Of 369*x^4+13*x^3-620*x^2-632*x+832 9204474667235006 m001 Catalan^BesselI(1,2)/(Catalan^MasserGramain) 9204474738980956 r005 Re(z^2+c),c=-9/10+15/109*I,n=41 9204474785225272 m001 (BesselI(1,2)+Rabbit)/(exp(Pi)+Si(Pi)) 9204474799057338 a007 Real Root Of -707*x^4+51*x^3-211*x^2-25*x+703 9204474811354948 m001 Niven-exp(1)*cos(1/12*Pi) 9204474816358873 a001 3/7778742049*55^(19/24) 9204474819123917 k002 Champernowne real with 75/2*n^2+165/2*n-111 9204474819124017 k004 Champernowne real with floor(Pi*(12*n^2+26*n-35)) 9204474829086389 q001 1481/1609 9204474872272383 m005 (19/10+3/2*5^(1/2))/(-1/10+3/10*5^(1/2)) 9204474875714930 m005 (5/6*Pi-3/5)/(1/3*gamma+2) 9204474885283904 r005 Im(z^2+c),c=-29/78+37/60*I,n=48 9204474895687916 l006 ln(3313/8317) 9204474895687916 p004 log(8317/3313) 9204474901760407 g001 GAMMA(2/7,29/117) 9204474916985883 r001 18i'th iterates of 2*x^2-1 of 9204474920851510 a007 Real Root Of -335*x^4+589*x^3-913*x^2-650*x+875 9204474929738365 m001 (GAMMA(3/4)-ln(3))/(Ei(1)-polylog(4,1/2)) 9204474940412557 a008 Real Root of (1+x-x^2+4*x^3-4*x^4-2*x^5) 9204474985213216 a003 cos(Pi*5/64)-cos(Pi*46/95) 9204474988416317 m005 (1/2*Zeta(3)-2/5)/(5/9*Catalan-8/11) 9204475087811017 a001 5/439204*29^(18/29) 9204475115055936 a007 Real Root Of -300*x^4+579*x^3-582*x^2-579*x+627 9204475125236213 a003 cos(Pi*5/51)-sin(Pi*34/103) 9204475125831007 m001 Ei(1,1)/arctan(1/2)*DuboisRaymond 9204475147712977 a007 Real Root Of -381*x^4+557*x^3-777*x^2-564*x+847 9204475157952302 m001 1/exp(1)/(2^(1/3))/exp(gamma)^2 9204475160706901 a007 Real Root Of -137*x^4+263*x^3-365*x^2-419*x+227 9204475163179562 a007 Real Root Of -528*x^4-98*x^3+70*x^2+305*x+524 9204475218690497 r005 Im(z^2+c),c=3/74+41/58*I,n=5 9204475238490440 a007 Real Root Of 738*x^4-647*x^3-192*x^2+910*x-34 9204475248388590 l006 ln(3409/8558) 9204475264532028 r008 a(0)=1,K{-n^6,14+45*n^3-66*n^2+20*n} 9204475266006747 a007 Real Root Of 967*x^4-794*x^3-938*x^2+684*x+111 9204475279045818 a007 Real Root Of -625*x^4+542*x^3+370*x^2+425*x+949 9204475281727052 r009 Re(z^3+c),c=-13/126+37/54*I,n=11 9204475293707541 h001 (11/12*exp(2)+4/7)/(1/12*exp(1)+4/7) 9204475294658753 r005 Re(z^2+c),c=-9/10+16/153*I,n=50 9204475329844538 a007 Real Root Of -476*x^4+763*x^3+957*x^2-564*x-545 9204475333574289 r005 Re(z^2+c),c=-15/94+47/58*I,n=15 9204475360252236 m001 (ln(2^(1/2)+1)-Conway)/(MertensB2-Stephens) 9204475399466381 m006 (3/4*Pi^2+3/4)/(1/6*exp(Pi)+5) 9204475437072265 a007 Real Root Of 515*x^4-786*x^3-601*x^2+409*x+376 9204475438894810 a007 Real Root Of 979*x^4+588*x^3-24*x^2-438*x-627 9204475440200880 r005 Re(z^2+c),c=-21/16+90/127*I,n=2 9204475444429526 a007 Real Root Of -853*x^4+956*x^3-436*x^2-928*x+873 9204475449951427 r002 62th iterates of z^2 + 9204475495132953 r005 Re(z^2+c),c=-57/70+2/13*I,n=15 9204475507617435 m001 (Robbin+ZetaP(2))/(5^(1/2)-GAMMA(23/24)) 9204475508204499 a001 (1+2^(1/2))^(611/59) 9204475516446778 a007 Real Root Of -292*x^4+509*x^3+797*x^2+519*x+409 9204475520282092 r009 Re(z^3+c),c=-39/70+9/34*I,n=60 9204475552678721 m001 (Otter+ZetaP(3))/(FellerTornier-LaplaceLimit) 9204475567210454 r005 Im(z^2+c),c=-1/6+3/25*I,n=8 9204475581768702 l006 ln(3505/8799) 9204475628549774 r005 Re(z^2+c),c=-13/14+38/161*I,n=52 9204475633275626 a007 Real Root Of 963*x^4-681*x^3-534*x^2+253*x-537 9204475635205999 r009 Im(z^3+c),c=-5/42+47/52*I,n=13 9204475663482364 s002 sum(A271274[n]/(16^n),n=1..infinity) 9204475704814478 r009 Im(z^3+c),c=-59/78+2/59*I,n=2 9204475713925732 r005 Re(z^2+c),c=25/126+20/37*I,n=13 9204475732268333 m001 (CareFree-exp(1))/(Mills+QuadraticClass) 9204475744663833 m001 arctan(1/2)^(Champernowne/ln(Pi)) 9204475748095372 r005 Re(z^2+c),c=-23/26+17/98*I,n=53 9204475777236660 m001 (Zeta(1/2)-GAMMA(13/24))/(Otter+ThueMorse) 9204475782037366 a007 Real Root Of -542*x^4+348*x^3+72*x^2-45*x+558 9204475784288561 r002 10th iterates of z^2 + 9204475788732711 a001 144/199*76^(1/18) 9204475790552020 m005 (1/2*Catalan-1/5)/(7/10*exp(1)+9/10) 9204475797083305 m001 (Tetranacci+Trott)/(FeigenbaumD-gamma) 9204475809139967 m001 Niven*ln(FeigenbaumDelta)^2/TreeGrowth2nd 9204475822124517 k002 Champernowne real with 38*n^2+81*n-110 9204475823891123 r005 Re(z^2+c),c=-9/10+16/153*I,n=52 9204475827777466 a005 (1/cos(3/119*Pi))^707 9204475831138825 m001 Bloch^TwinPrimes/Robbin 9204475860621132 a001 1292/51841*322^(5/8) 9204475866732367 a001 3/514229*13^(8/45) 9204475897373469 l006 ln(3601/9040) 9204475920979994 a007 Real Root Of 40*x^4+342*x^3-343*x^2-962*x-210 9204475926921059 h001 (5/12*exp(1)+3/8)/(1/8*exp(2)+5/7) 9204475927071762 a003 sin(Pi*38/107)/sin(Pi*46/107) 9204475945089342 m001 GAMMA(5/6)^FeigenbaumD-arctan(1/2) 9204475967226019 a007 Real Root Of -448*x^4+231*x^3-742*x^2-511*x+660 9204475967281553 r005 Re(z^2+c),c=-9/98+49/57*I,n=3 9204475977918129 m001 (Rabbit-TreeGrowth2nd)/(Zeta(5)+Ei(1)) 9204475985109608 a007 Real Root Of 66*x^4+535*x^3-607*x^2+505*x-459 9204475988652182 m001 Zeta(3)^DuboisRaymond*Landau^DuboisRaymond 9204476049001783 a001 1/18*(1/2*5^(1/2)+1/2)^3*123^(16/21) 9204476096832292 a001 2255/90481*322^(5/8) 9204476110499865 r002 18th iterates of z^2 + 9204476131295036 a001 17711/710647*322^(5/8) 9204476136323082 a001 2576/103361*322^(5/8) 9204476137056664 a001 121393/4870847*322^(5/8) 9204476137163692 a001 105937/4250681*322^(5/8) 9204476137179308 a001 416020/16692641*322^(5/8) 9204476137181586 a001 726103/29134601*322^(5/8) 9204476137181918 a001 5702887/228826127*322^(5/8) 9204476137181967 a001 829464/33281921*322^(5/8) 9204476137181974 a001 39088169/1568397607*322^(5/8) 9204476137181975 a001 34111385/1368706081*322^(5/8) 9204476137181975 a001 133957148/5374978561*322^(5/8) 9204476137181975 a001 233802911/9381251041*322^(5/8) 9204476137181975 a001 1836311903/73681302247*322^(5/8) 9204476137181975 a001 267084832/10716675201*322^(5/8) 9204476137181975 a001 12586269025/505019158607*322^(5/8) 9204476137181975 a001 10983760033/440719107401*322^(5/8) 9204476137181975 a001 43133785636/1730726404001*322^(5/8) 9204476137181975 a001 75283811239/3020733700601*322^(5/8) 9204476137181975 a001 182717648081/7331474697802*322^(5/8) 9204476137181975 a001 139583862445/5600748293801*322^(5/8) 9204476137181975 a001 53316291173/2139295485799*322^(5/8) 9204476137181975 a001 10182505537/408569081798*322^(5/8) 9204476137181975 a001 7778742049/312119004989*322^(5/8) 9204476137181975 a001 2971215073/119218851371*322^(5/8) 9204476137181975 a001 567451585/22768774562*322^(5/8) 9204476137181975 a001 433494437/17393796001*322^(5/8) 9204476137181975 a001 165580141/6643838879*322^(5/8) 9204476137181976 a001 31622993/1268860318*322^(5/8) 9204476137181978 a001 24157817/969323029*322^(5/8) 9204476137181997 a001 9227465/370248451*322^(5/8) 9204476137182124 a001 1762289/70711162*322^(5/8) 9204476137182994 a001 1346269/54018521*322^(5/8) 9204476137188958 a001 514229/20633239*322^(5/8) 9204476137229840 a001 98209/3940598*322^(5/8) 9204476137510043 a001 75025/3010349*322^(5/8) 9204476137669167 a007 Real Root Of 716*x^4-308*x^3-114*x^2+936*x+204 9204476139430586 a001 28657/1149851*322^(5/8) 9204476152594183 a001 5473/219602*322^(5/8) 9204476162384874 a007 Real Root Of 264*x^4-702*x^3-441*x^2-117*x-471 9204476176232826 m001 (MertensB3+Weierstrass)/(2^(1/2)-ln(gamma)) 9204476196587608 l006 ln(3697/9281) 9204476196587608 p004 log(9281/3697) 9204476215357814 a007 Real Root Of 534*x^4-897*x^3-620*x^2-82*x-633 9204476242818817 a001 4181/167761*322^(5/8) 9204476289718425 a001 4/5*3^(6/47) 9204476300162399 m001 GAMMA(1/24)*exp(Kolakoski)*sqrt(Pi) 9204476301247979 m001 (Pi+Shi(1))/(polylog(4,1/2)-Bloch) 9204476388115500 m001 (arctan(1/3)+GAMMA(11/12))/(GaussAGM+Robbin) 9204476399595426 a007 Real Root Of 63*x^4-181*x^3-540*x^2-652*x-329 9204476433061771 a007 Real Root Of -332*x^4+976*x^3-198*x^2-727*x+498 9204476435153212 r008 a(0)=9,K{-n^6,29-99*n^3+24*n^2+41*n} 9204476438366791 r009 Im(z^3+c),c=-27/94+39/56*I,n=24 9204476448204739 r005 Re(z^2+c),c=-47/86+35/59*I,n=56 9204476449324408 s002 sum(A255493[n]/(n*pi^n-1),n=1..infinity) 9204476457555746 r005 Im(z^2+c),c=-5/6+13/233*I,n=46 9204476480655651 l006 ln(3793/9522) 9204476493601474 m005 (1/3*2^(1/2)+1/2)/(5/7*3^(1/2)-2/11) 9204476494733903 a003 sin(Pi*21/107)/cos(Pi*21/74) 9204476504006070 r002 2th iterates of z^2 + 9204476513736422 m001 Shi(1)*DuboisRaymond+TravellingSalesman 9204476537313290 a007 Real Root Of -663*x^4+801*x^3+150*x^2-648*x+377 9204476552298052 a007 Real Root Of 424*x^4-994*x^3-153*x^2+52*x-902 9204476569758661 a007 Real Root Of -528*x^4+623*x^3+462*x^2-460*x+50 9204476599864911 a001 6119/2*2178309^(4/53) 9204476636334309 h001 (4/5*exp(2)+7/11)/(8/9*exp(2)+6/11) 9204476642991927 m001 1/BesselK(0,1)^2/ln(ArtinRank2)*sin(Pi/5) 9204476646186034 r005 Re(z^2+c),c=13/66+14/51*I,n=19 9204476650827173 a007 Real Root Of -313*x^4+934*x^3-26*x^2+310*x-767 9204476655411740 r009 Im(z^3+c),c=-17/106+47/53*I,n=47 9204476666329705 m002 -5-Log[Pi]/Pi^6+Pi^4*Tanh[Pi] 9204476686824740 m005 (1/2*2^(1/2)+3/8)/(9/10*Catalan-2) 9204476709013914 q001 3043/3306 9204476750699241 l006 ln(3889/9763) 9204476759997574 r005 Re(z^2+c),c=-79/86+8/31*I,n=31 9204476764015988 m001 (sin(1)+GAMMA(3/4))/((1+3^(1/2))^(1/2)+Lehmer) 9204476777084986 m005 (1/2*3^(1/2)-3/7)/(3/7*gamma-5) 9204476825125117 k002 Champernowne real with 77/2*n^2+159/2*n-109 9204476837791356 r005 Re(z^2+c),c=-37/40+1/27*I,n=7 9204476861227663 a001 1597/64079*322^(5/8) 9204476862722102 r008 a(0)=9,K{-n^6,6-n^3-7*n^2-5*n} 9204476870380966 a007 Real Root Of -611*x^4-510*x^3-900*x^2-624*x+229 9204476969185672 s001 sum(exp(-Pi/3)^(n-1)*A077959[n],n=1..infinity) 9204476969185672 s001 sum(exp(-Pi)^(n-1)*A122803[n],n=1..infinity) 9204476969185672 s001 sum(exp(-Pi/2)^(n-1)*A077966[n],n=1..infinity) 9204476975014734 r005 Im(z^2+c),c=33/106+28/41*I,n=6 9204477007731942 l006 ln(3985/10004) 9204477020819263 m001 BesselI(0,1)-LandauRamanujan*ZetaP(2) 9204477047990630 a007 Real Root Of -861*x^4-966*x^3+98*x^2+901*x+611 9204477087891157 g006 -Psi(1,7/11)-Psi(1,6/11)-Psi(1,1/9)-Psi(1,6/7) 9204477118977400 m001 (BesselI(0,1)+ln(2))/(-MasserGramain+Thue) 9204477132508385 s002 sum(A268947[n]/(n^3*2^n-1),n=1..infinity) 9204477139376236 a007 Real Root Of 452*x^4-760*x^3-556*x^2+829*x+317 9204477143092096 m001 (ln(2)+BesselI(1,1))/(Cahen+Sarnak) 9204477151236473 a003 cos(Pi*1/82)*cos(Pi*7/55) 9204477267928465 r008 a(0)=0,K{-n^6,-42-55*n+60*n^2+48*n^3} 9204477284440253 m001 1/LambertW(1)/TreeGrowth2nd*exp(exp(1))^2 9204477290591961 r002 19th iterates of z^2 + 9204477332720738 m002 -Pi/4+Pi^4-4*Log[Pi] 9204477354615108 a003 cos(Pi*12/89)/sin(Pi*31/68) 9204477385127959 m003 25/12+Sqrt[5]/32-Tan[1/2+Sqrt[5]/2]/3 9204477412493114 v002 sum(1/(5^n+(9/2*n^2+45/2*n-18)),n=1..infinity) 9204477441762637 m001 (Robbin+Trott)/(BesselK(1,1)-MertensB3) 9204477618249881 r005 Im(z^2+c),c=-37/64+1/60*I,n=41 9204477628583742 a007 Real Root Of -444*x^4-817*x^3-880*x^2+228*x+637 9204477683461440 r002 34th iterates of z^2 + 9204477706640478 a001 3/29*29^(37/57) 9204477707450908 m001 (GAMMA(3/4)-sin(1))/(LandauRamanujan+Magata) 9204477722114707 a007 Real Root Of -914*x^4-388*x^3+458*x^2+496*x+422 9204477723142612 m001 (Totient+ZetaQ(4))/(ln(2)+LandauRamanujan) 9204477730934270 a007 Real Root Of -174*x^4+967*x^3+759*x^2+37*x+270 9204477740832613 a007 Real Root Of -34*x^4+306*x^3+366*x^2-147*x-389 9204477762876655 a007 Real Root Of 610*x^4-949*x^3-695*x^2+904*x+243 9204477763495836 s001 sum(1/10^(n-1)*A237308[n]/n^n,n=1..infinity) 9204477783785807 r005 Re(z^2+c),c=-17/16+13/45*I,n=12 9204477783984546 a007 Real Root Of -204*x^4+975*x^3+147*x^2+141*x+912 9204477817118867 m006 (1/2/Pi+1/6)/(1/4*Pi-3/4) 9204477828125717 k002 Champernowne real with 39*n^2+78*n-108 9204477853651401 a003 sin(Pi*29/71)*sin(Pi*43/105) 9204477855852764 a007 Real Root Of -667*x^4-447*x^3-14*x^2-188*x-31 9204477866927972 a007 Real Root Of -712*x^4+818*x^3-104*x^2-791*x+509 9204477888496718 g006 Psi(1,1/10)+Psi(1,5/6)+Psi(1,2/3)-Psi(1,3/11) 9204477909008955 r009 Im(z^3+c),c=-21/34+23/48*I,n=62 9204477933650153 a007 Real Root Of -199*x^4+877*x^3-300*x^2+313*x-575 9204477934495365 a001 161/416020*8^(5/12) 9204477960200067 r005 Im(z^2+c),c=-7/10+23/217*I,n=24 9204477974989718 a001 377/39603*322^(19/24) 9204477978517973 h001 (-11*exp(4)-8)/(-12*exp(4)-6) 9204477982623645 m001 Pi/(Psi(2,1/3)-sin(1/5*Pi)/gamma(3)) 9204477985072489 a007 Real Root Of -113*x^4-989*x^3+536*x^2+589*x-136 9204477993767633 m001 (ln(2+3^(1/2))-gamma(1))/(Backhouse+ZetaQ(2)) 9204478027767707 m001 StronglyCareFree^(Artin/ln(Pi)) 9204478042672443 a007 Real Root Of 974*x^4-222*x^3-537*x^2-607*x-976 9204478050869427 a007 Real Root Of 577*x^4+491*x^3-68*x^2-987*x+91 9204478056101224 s002 sum(A079631[n]/(exp(n)),n=1..infinity) 9204478079241396 a007 Real Root Of -9*x^4-833*x^3-433*x^2-902*x+619 9204478098983966 b008 Cos[1/46+E] 9204478103814554 r005 Im(z^2+c),c=21/58+26/53*I,n=8 9204478114697819 a007 Real Root Of -269*x^4+949*x^3-691*x^2+497*x-419 9204478118564307 r005 Re(z^2+c),c=-125/118+18/61*I,n=7 9204478136889446 m001 1/exp(GAMMA(11/24))^2/MinimumGamma^2*Zeta(1,2) 9204478146665675 r005 Re(z^2+c),c=-111/98+12/47*I,n=48 9204478234722246 m001 Psi(2,1/3)^exp(1/exp(1))*FransenRobinson 9204478250071859 h001 (3/11*exp(2)+3/11)/(7/12*exp(1)+9/10) 9204478259364599 a007 Real Root Of 959*x^4+4*x^3+37*x^2+508*x-249 9204478281320449 b008 8+E^(8/43) 9204478350443227 m001 ln(GAMMA(23/24))*BesselK(1,1)^2/Zeta(9)^2 9204478371651629 r005 Re(z^2+c),c=-11/10+5/192*I,n=16 9204478433475475 r009 Im(z^3+c),c=-5/64+54/59*I,n=13 9204478491455509 q001 1562/1697 9204478492013231 r005 Re(z^2+c),c=-97/106+14/55*I,n=11 9204478507673110 a007 Real Root Of 149*x^4-662*x^3-365*x^2+471*x+285 9204478518384749 r009 Re(z^3+c),c=-33/82+32/47*I,n=2 9204478536843287 b008 -1/4+ArcSin[Erfc[1]] 9204478548690621 r005 Im(z^2+c),c=-15/14+12/103*I,n=6 9204478570545220 m005 (1/2*Catalan+1/12)/(2*exp(1)+4/9) 9204478585844956 m001 TreeGrowth2nd*(2^(1/3)+FeigenbaumB) 9204478594056587 a003 sin(Pi*4/77)+sin(Pi*23/84) 9204478595592002 m001 (FeigenbaumAlpha+Kolakoski)/(2^(1/2)-Pi^(1/2)) 9204478623125088 a007 Real Root Of -169*x^4-197*x^3-799*x^2-118*x+536 9204478639006560 m001 DuboisRaymond^GaussKuzminWirsing-GAMMA(7/12) 9204478649071531 a007 Real Root Of -254*x^4-49*x^3-812*x^2-565*x+312 9204478652173662 a001 21/24476*199^(13/29) 9204478653272007 r009 Im(z^3+c),c=-31/64+43/61*I,n=4 9204478677624787 a005 (1/sin(74/181*Pi))^441 9204478677884941 a007 Real Root Of 417*x^4-212*x^3+422*x^2+111*x-720 9204478684498392 m001 exp(Tribonacci)^2*FeigenbaumAlpha/OneNinth 9204478705940991 b008 91+ArcCoth[Glaisher] 9204478742338952 a007 Real Root Of -518*x^4+728*x^3-76*x^2-529*x+517 9204478751776030 a007 Real Root Of 548*x^4-858*x^3+437*x^2+884*x-619 9204478771478853 r005 Im(z^2+c),c=-103/114+33/59*I,n=3 9204478790515080 r005 Re(z^2+c),c=-93/110+6/31*I,n=27 9204478793479766 m001 (Porter-Riemann3rdZero)/(Ei(1)+LaplaceLimit) 9204478797557338 m001 (HardyLittlewoodC5+ZetaP(3))/HardyLittlewoodC3 9204478802726194 p003 LerchPhi(1/16,3,167/162) 9204478831126317 k002 Champernowne real with 79/2*n^2+153/2*n-107 9204478845734225 r005 Im(z^2+c),c=-41/90+7/45*I,n=40 9204478888171840 r005 Re(z^2+c),c=-37/42+8/39*I,n=63 9204478888349269 r002 12th iterates of z^2 + 9204478944903304 a007 Real Root Of 854*x^4-723*x^3+183*x^2+643*x-740 9204478960724150 r009 Im(z^3+c),c=-5/32+33/37*I,n=19 9204478964802505 m009 (16/5*Catalan+2/5*Pi^2-4)/(2*Psi(1,2/3)-3) 9204478971236491 m001 (polylog(4,1/2)+GAMMA(17/24))/(Kac+MertensB3) 9204479013065136 a007 Real Root Of 814*x^4-495*x^3+322*x^2-993*x+89 9204479014886064 m001 Porter-Psi(1,1/3)-Stephens 9204479053530881 m005 (5/6*exp(1)+4)/(1/6*Catalan-5/6) 9204479059668242 a007 Real Root Of 770*x^4+141*x^3-348*x^2+152*x-8 9204479061930559 m005 (1/2*Zeta(3)-4)/(3/10*3^(1/2)-8/9) 9204479085052180 a001 322/55*317811^(1/28) 9204479087787611 a007 Real Root Of -467*x^4+189*x^3-265*x^2-690*x+72 9204479186359057 m001 Cahen^BesselJ(0,1)/(Cahen^gamma) 9204479198230403 a007 Real Root Of 459*x^4-988*x^3-155*x^2+30*x-941 9204479204147452 a003 cos(Pi*7/117)*cos(Pi*5/44) 9204479205996656 m006 (3/4*ln(Pi)+2/3)/(1/2*exp(Pi)+5) 9204479209252069 a007 Real Root Of -705*x^4-74*x^3-258*x^2-353*x+342 9204479230855964 m001 1/GAMMA(3/4)/GlaisherKinkelin/ln(Zeta(7))^2 9204479302643235 m001 (MasserGramain+Niven)/(ln(3)+Backhouse) 9204479305294615 a001 521*102334155^(19/21) 9204479315890096 a007 Real Root Of 763*x^4+179*x^3+292*x^2+522*x-175 9204479329841012 m001 (cos(1/5*Pi)-ln(3))/(GAMMA(19/24)-Thue) 9204479389243606 r005 Re(z^2+c),c=-7/8+29/148*I,n=63 9204479392684742 m005 (1/4+1/6*5^(1/2))/(7/11*Zeta(3)+6) 9204479424693120 a007 Real Root Of 617*x^4-279*x^3+650*x^2+677*x-588 9204479463425513 b008 -1/6+Sqrt[13/11] 9204479467164932 a001 17711/843*18^(23/45) 9204479516457786 a007 Real Root Of 763*x^4-133*x^3-31*x^2-165*x-777 9204479572679813 m001 1/Zeta(5)^2/exp(FransenRobinson)^2*exp(1) 9204479640665464 a007 Real Root Of 719*x^4-x^3+634*x^2+113*x-950 9204479671942981 m001 (FeigenbaumAlpha+Robbin)/(5^(1/2)+Zeta(3)) 9204479678728539 r005 Re(z^2+c),c=27/98+5/14*I,n=64 9204479693394377 a007 Real Root Of 337*x^4-972*x^3-160*x^2-67*x-926 9204479699029898 m005 (1/2*2^(1/2)+5/6)/(11/12*exp(1)-9/11) 9204479699284471 m006 (3/4*Pi^2+1/4)/(1/3*exp(Pi)+3/5) 9204479703376377 m001 Pi/ln(2)*ln(10)-cos(1)*BesselI(0,2) 9204479711004176 a007 Real Root Of -717*x^4+622*x^3-339*x^2-705*x+638 9204479718280636 a007 Real Root Of -734*x^4+368*x^3-458*x^2-228*x+992 9204479719031691 r005 Re(z^2+c),c=-5/122+13/45*I,n=15 9204479729423989 a003 sin(Pi*35/94)*sin(Pi*37/75) 9204479747499194 m001 (Magata+Rabbit)/(Khinchin+KomornikLoreti) 9204479752215717 a007 Real Root Of 861*x^4+168*x^3-819*x^2-605*x-350 9204479765542057 a007 Real Root Of 726*x^4+253*x^3-192*x^2-643*x-753 9204479772179151 a007 Real Root Of -471*x^4-388*x^3+468*x^2+792*x+368 9204479803263538 s002 sum(A145042[n]/(2^n-1),n=1..infinity) 9204479818333649 m001 FeigenbaumKappa-FeigenbaumMu^MasserGramain 9204479821431328 m001 ln(2^(1/2)+1)*Zeta(3)^CopelandErdos 9204479834126917 k002 Champernowne real with 40*n^2+75*n-106 9204479858108482 a007 Real Root Of 678*x^4-578*x^3+668*x^2+863*x-709 9204479869207196 a007 Real Root Of 25*x^4-563*x^3+667*x^2+816*x-271 9204479879136352 m005 (1/3*Pi+2/7)/(5/12*2^(1/2)-4/9) 9204479887723354 r005 Re(z^2+c),c=-79/90+8/43*I,n=57 9204479941978285 r005 Re(z^2+c),c=-3/32+4/41*I,n=5 9204479950016434 r005 Re(z^2+c),c=-5/6+46/255*I,n=41 9204479963587218 h001 (5/12*exp(2)+5/8)/(3/7*exp(2)+6/7) 9204480001185126 a007 Real Root Of 263*x^4-894*x^3+221*x^2+312*x-786 9204480061359370 a007 Real Root Of 942*x^4-753*x^3-192*x^2+758*x-403 9204480111858008 m002 3*E^Pi*Log[Pi]^2+ProductLog[Pi] 9204480120226266 m001 1/GAMMA(5/12)^2/Riemann3rdZero^2*ln(sinh(1))^2 9204480128135487 a001 1/76*(1/2*5^(1/2)+1/2)*29^(10/23) 9204480141408679 m001 GAMMA(7/12)^2/TwinPrimes^2*exp(cos(1)) 9204480183802412 q001 3205/3482 9204480209358938 m006 (5*exp(2*Pi)-3)/(2/3*Pi-5) 9204480257057706 r005 Re(z^2+c),c=-8/9+48/103*I,n=3 9204480257593685 m002 -Pi^4+4*ProductLog[Pi]+ProductLog[Pi]*Tanh[Pi] 9204480258695241 h001 (-7*exp(1/2)+7)/(-9*exp(3/2)-9) 9204480271318837 a007 Real Root Of -350*x^4+435*x^3+19*x^2+680*x-730 9204480280291147 m005 (1/2*5^(1/2)+4/7)/(7/10*Pi-4/11) 9204480287060414 a007 Real Root Of 828*x^4-902*x^3-541*x^2-280*x+31 9204480305477487 a007 Real Root Of -155*x^4-348*x^3-119*x^2+675*x+562 9204480312589727 r005 Re(z^2+c),c=-101/118+19/62*I,n=5 9204480313918386 r005 Re(z^2+c),c=-28/31+4/31*I,n=39 9204480349456985 a007 Real Root Of 659*x^4-814*x^3-718*x^2+836*x+270 9204480364121704 r009 Im(z^3+c),c=-13/27+25/43*I,n=23 9204480385112101 m001 (Si(Pi)+arctan(1/2))/(-BesselJ(1,1)+Otter) 9204480415306494 a007 Real Root Of 148*x^4+396*x^3+744*x^2+707*x+223 9204480426733551 a008 Real Root of (-3+2*x-2*x^2+9*x^4-7*x^8) 9204480467309399 a007 Real Root Of -709*x^4+558*x^3+509*x^2+48*x+557 9204480479412117 m001 (Porter+ReciprocalLucas)/(Ei(1)+FeigenbaumC) 9204480481850606 a007 Real Root Of 907*x^4-958*x^3-534*x^2+381*x-595 9204480484013232 m005 (1/2+1/6*5^(1/2))/(1/12*gamma+9/10) 9204480485987080 m005 (1/2*Pi-11/12)/(7/12*exp(1)-7/8) 9204480489291646 a007 Real Root Of -758*x^4+825*x^3+164*x^2-572*x+522 9204480505003367 a001 5/123*843^(33/41) 9204480507897137 r005 Re(z^2+c),c=-83/94+13/60*I,n=30 9204480619394886 a001 1364/1597*89^(1/60) 9204480621549647 l006 ln(8059/8836) 9204480621897970 r005 Re(z^2+c),c=-111/122+35/51*I,n=3 9204480653643876 r009 Im(z^3+c),c=-21/40+49/55*I,n=2 9204480671360377 r008 a(0)=1,K{-n^6,28-62*n^2+46*n^3+n} 9204480715835310 a007 Real Root Of 107*x^4-995*x^3+543*x^2-177*x+402 9204480752989029 m001 (-Mills+Trott2nd)/(BesselI(0,1)+Champernowne) 9204480770639050 a007 Real Root Of -759*x^4+654*x^3+691*x^2+231*x+682 9204480779681378 r005 Im(z^2+c),c=15/38+8/15*I,n=5 9204480789413791 m005 (1/2*2^(1/2)+7/12)/(8/9*gamma+8/9) 9204480798646959 m001 (arctan(1/3)-exp(-1/2*Pi))/(Stephens-ZetaP(2)) 9204480811316492 m001 OneNinth^2*MinimumGamma/ln(Zeta(3)) 9204480837127517 k002 Champernowne real with 81/2*n^2+147/2*n-105 9204480838127818 k004 Champernowne real with floor(Pi*(13*n^2+23*n-33)) 9204480863495488 m006 (5*Pi^2+5/6)/(1/4*exp(Pi)-1/3) 9204480905692187 a007 Real Root Of 329*x^4-417*x^3+876*x^2+333*x-997 9204480910352000 r005 Im(z^2+c),c=12/29+18/53*I,n=63 9204480939339426 a007 Real Root Of 21*x^4-245*x^3+571*x^2+215*x-492 9204480968670652 m001 (cos(1/12*Pi)+CareFree)/(Totient+Weierstrass) 9204480999990313 m006 (4*Pi^2-2/5)/(4*ln(Pi)-1/3) 9204481034099044 r005 Re(z^2+c),c=-7/8+38/215*I,n=21 9204481041114701 a007 Real Root Of -255*x^4+613*x^3+348*x^2+287*x-854 9204481085350458 a007 Real Root Of -813*x^4-889*x^3-706*x^2-799*x-247 9204481099864955 a001 305/12238*322^(5/8) 9204481102931909 m001 1/exp(MinimumGamma)*Lehmer*sin(Pi/12)^2 9204481110970417 a007 Real Root Of -917*x^4+236*x^3+335*x^2+18*x+575 9204481112955689 s001 sum(exp(-4*Pi/5)^n*A248466[n],n=1..infinity) 9204481116645911 r009 Re(z^3+c),c=-1/25+23/29*I,n=57 9204481128088312 m006 (ln(Pi)+1/3)/(3*exp(2*Pi)-2/3) 9204481131194270 k002 Champernowne real with 13/2*n^2-17/2*n+11 9204481147180616 m005 (1/5*2^(1/2)+3/5)/(3*Pi+1/6) 9204481171487093 a007 Real Root Of -371*x^4+440*x^3-607*x^2-645*x+530 9204481201529258 a007 Real Root Of 573*x^4+330*x^3+445*x^2+13*x-519 9204481204661199 m001 (5^(1/2)-Lehmer)/(-Tribonacci+ZetaQ(2)) 9204481208158822 a001 9/4*233^(32/47) 9204481209382325 r002 4th iterates of z^2 + 9204481215635573 a007 Real Root Of 395*x^4-392*x^3+568*x^2+95*x-983 9204481243257472 r005 Re(z^2+c),c=-12/25+32/53*I,n=55 9204481257523585 r002 2th iterates of z^2 + 9204481291828601 m008 (1/6*Pi-1/2)/(4/5*Pi^3+5/6) 9204481346927702 r005 Re(z^2+c),c=-101/114+9/53*I,n=51 9204481354495335 a007 Real Root Of 863*x^4+700*x^3+244*x^2-230*x-492 9204481379332032 a007 Real Root Of 676*x^4+373*x^3-111*x^2-293*x-370 9204481436586208 a007 Real Root Of -313*x^4+235*x^3-93*x^2+537*x+981 9204481443425951 a003 sin(Pi*7/115)*sin(Pi*14/87) 9204481449339915 b008 -9+ProductLog[-1/6] 9204481458215347 m006 (3/4*Pi^2-1/5)/(5/6*Pi^2-2/5) 9204481458215347 m008 (3/4*Pi^2-1/5)/(5/6*Pi^2-2/5) 9204481467077928 h001 (-7*exp(-2)-7)/(-4*exp(3)-6) 9204481478127668 s002 sum(A177783[n]/(n^3*exp(n)+1),n=1..infinity) 9204481512116331 r002 20th iterates of z^2 + 9204481550082248 m001 Gompertz/(HardHexagonsEntropy-RenyiParking) 9204481562733141 m001 (1-2^(1/3))/(5^(1/2)+sin(1/5*Pi)) 9204481578162475 a003 sin(Pi*1/55)*sin(Pi*5/97) 9204481602481534 a007 Real Root Of -248*x^4+688*x^3-457*x^2-255*x+867 9204481647684233 a001 987/64079*322^(17/24) 9204481701065129 p001 sum((-1)^n/(126*n+43)/n/(64^n),n=0..infinity) 9204481755284388 m002 -Pi^4+6*ProductLog[Pi]-Coth[Pi]*ProductLog[Pi] 9204481772159029 m001 (1+gamma(3))/(-BesselJ(1,1)+GAMMA(7/12)) 9204481782161397 h001 (7/10*exp(1)+2/9)/(2/9*exp(2)+2/3) 9204481785700282 a007 Real Root Of 931*x^4-960*x^3-866*x^2+62*x+757 9204481792717086 q001 1643/1785 9204481794637675 m005 (1/3*5^(1/2)-3/7)/(5*gamma+5/9) 9204481803494638 r005 Im(z^2+c),c=23/86+27/46*I,n=61 9204481840128118 k002 Champernowne real with 41*n^2+72*n-104 9204481860707766 a007 Real Root Of -660*x^4+733*x^3+730*x^2-982*x-477 9204481874170818 m001 (CopelandErdos+RenyiParking)/(3^(1/3)-Artin) 9204481874854918 a001 322/3*956722026041^(7/17) 9204481929542453 a007 Real Root Of -35*x^4-280*x^3+296*x^2-935*x-809 9204481939575247 r002 41th iterates of z^2 + 9204481940944495 a007 Real Root Of -608*x^4+2*x^3-219*x^2-710*x-30 9204481941367627 m002 -3-Pi^6*ProductLog[Pi]*Sech[Pi] 9204481946765963 m005 (1/2*gamma-5/8)/(1/7*Pi-1/12) 9204482028387476 b008 92+LogBarnesG[Pi] 9204482052332131 m005 (1/2*Zeta(3)-4/5)/(9/10*2^(1/2)+8/9) 9204482055910684 a007 Real Root Of -129*x^4+598*x^3-295*x^2+513*x-596 9204482076268572 b008 5*(1+2^(-1/4)) 9204482076268572 s001 sum(exp(-Pi)^(n-1)*A112128[n],n=1..infinity) 9204482120098614 m001 (exp(1/exp(1))+Pi^(1/2))/(2^(1/3)-ln(5)) 9204482135178302 a007 Real Root Of 224*x^4-962*x^3-581*x^2+281*x+823 9204482135204290 k003 Champernowne real with 1/6*n^3+11/2*n^2-20/3*n+10 9204482142879160 s001 sum(exp(-4*Pi/5)^n*A220130[n],n=1..infinity) 9204482150666484 a007 Real Root Of 2*x^4+193*x^3+828*x^2+722*x-32 9204482155053966 r009 Im(z^3+c),c=-17/46+24/35*I,n=54 9204482209117192 a007 Real Root Of 290*x^4-534*x^3-44*x^2-293*x-857 9204482210005301 r002 44th iterates of z^2 + 9204482249971592 m001 1/LandauRamanujan^2/exp(Si(Pi))/cos(1)^2 9204482293156976 m004 -125*Pi+(5*Sqrt[5]*Pi)/2-5*Pi*Cosh[Sqrt[5]*Pi] 9204482302270214 g007 Psi(2,2/11)-Psi(2,2/9)-Psi(2,3/7)-Psi(2,2/5) 9204482303568657 m005 (1/2*Pi-5/6)/(7/12*Zeta(3)+1/10) 9204482304947491 m001 Zeta(1/2)^Pi/FeigenbaumMu 9204482308603310 a007 Real Root Of 245*x^4-606*x^3+267*x^2+809*x-130 9204482320237402 m005 (23/28+1/4*5^(1/2))/(5/6*5^(1/2)-4/11) 9204482335061376 r005 Re(z^2+c),c=-111/122+7/64*I,n=25 9204482380508079 a007 Real Root Of -384*x^4+255*x^3+242*x^2+672*x+888 9204482401565070 l006 ln(6358/6971) 9204482422123668 m008 (3*Pi^3-1/3)/(Pi^2+1/5) 9204482438935361 m001 (KhinchinLevy+Trott2nd)/(ln(2)+Kac) 9204482457368100 r002 4th iterates of z^2 + 9204482468536672 a007 Real Root Of -559*x^4+951*x^3+711*x^2-899*x-287 9204482506355702 m001 (Weierstrass-ZetaP(4))/(Pi^(1/2)-Totient) 9204482506986082 r002 28th iterates of z^2 + 9204482514236151 a007 Real Root Of -62*x^4-658*x^3-782*x^2+157*x-398 9204482519479113 a007 Real Root Of 422*x^4-450*x^3+588*x^2+352*x-828 9204482545489648 a007 Real Root Of -207*x^4+643*x^3+505*x^2+235*x-997 9204482591684759 r005 Re(z^2+c),c=-1/98+16/45*I,n=16 9204482611528516 a007 Real Root Of -524*x^4-892*x^3-853*x^2-802*x-335 9204482624278065 a007 Real Root Of 628*x^4-68*x^3-451*x^2+406*x+252 9204482665948314 a007 Real Root Of -899*x^4-165*x^3-876*x^2-694*x+620 9204482686568906 m002 -Pi+Pi^4-Coth[Pi]*Log[Pi]-ProductLog[Pi] 9204482690661737 a007 Real Root Of -830*x^4+544*x^3-492*x^2-505*x+972 9204482705174607 a007 Real Root Of 706*x^4-869*x^3-79*x^2+220*x-915 9204482725848411 r005 Im(z^2+c),c=-43/82+7/43*I,n=35 9204482830890052 a007 Real Root Of -764*x^4-803*x^3-483*x^2+445*x+741 9204482843128718 k002 Champernowne real with 83/2*n^2+141/2*n-103 9204482881119725 m001 (3^(1/2)-5^(1/2))/(OneNinth+TreeGrowth2nd) 9204482882474483 r005 Re(z^2+c),c=3/23+41/63*I,n=46 9204482891408179 s002 sum(A000908[n]/(n*exp(n)+1),n=1..infinity) 9204482899737829 a005 (1/cos(39/154*Pi))^103 9204482923406593 a007 Real Root Of -991*x^4-90*x^3+705*x^2-27*x+19 9204482947680460 m001 GAMMA(7/24)^2/exp(GAMMA(1/3))/sin(1)^2 9204482973545581 b008 -1+E^((3*Pi)/8)*Pi 9204482979549667 m001 1/exp(GAMMA(11/24))^2*Bloch/Zeta(5)^2 9204482982226132 a007 Real Root Of -390*x^4-666*x^3-570*x^2+509*x+712 9204483003003482 r005 Im(z^2+c),c=7/22+14/29*I,n=10 9204483005417343 a007 Real Root Of -869*x^4+805*x^3-142*x^2-505*x+907 9204483019046367 r005 Re(z^2+c),c=-11/10+49/254*I,n=20 9204483099115325 a007 Real Root Of 33*x^4-877*x^3-619*x^2-618*x-752 9204483105456922 a007 Real Root Of -458*x^4+419*x^3+394*x^2-103*x-237 9204483109381971 m001 1/ln(GAMMA(23/24))^2/GAMMA(11/24)^2*sqrt(5) 9204483119908480 p004 log(24223/9649) 9204483139214310 k003 Champernowne real with 1/3*n^3+9/2*n^2-29/6*n+9 9204483140726552 a007 Real Root Of -781*x^4+434*x^3-520*x^2-973*x+444 9204483144542928 r005 Re(z^2+c),c=-5/6+44/223*I,n=9 9204483150786941 a007 Real Root Of 470*x^4-17*x^3+478*x^2-196*x-936 9204483167275552 a005 (1/sin(27/59*Pi))^768 9204483182735255 m002 -Pi-5*Pi^2+Pi^6+Sinh[Pi] 9204483201964353 a007 Real Root Of 430*x^4-635*x^3-86*x^2-621*x+831 9204483243455896 r005 Re(z^2+c),c=13/86+7/33*I,n=24 9204483258248277 r005 Re(z^2+c),c=-8/9+41/94*I,n=3 9204483259773829 a001 2584/167761*322^(17/24) 9204483265903565 m001 (BesselK(0,1)*Mills+Zeta(1,2))/BesselK(0,1) 9204483287184697 a007 Real Root Of -559*x^4+466*x^3+30*x^2+28*x+765 9204483316929319 a007 Real Root Of 103*x^4-802*x^3+201*x^2-543*x+881 9204483317857019 m005 (1/2*Zeta(3)+4/7)/(2/9*3^(1/2)+8/9) 9204483322318327 a007 Real Root Of 9*x^4+839*x^3+966*x^2-856*x+452 9204483323884648 h001 (-8*exp(3)-4)/(-6*exp(8)-6) 9204483324220885 q001 3367/3658 9204483324220885 r002 2th iterates of z^2 + 9204483385004486 m001 Kolakoski*FeigenbaumDelta^2*ln(sin(Pi/5)) 9204483404763113 r009 Re(z^3+c),c=-9/56+35/57*I,n=31 9204483440740275 r005 Re(z^2+c),c=-5/7+37/106*I,n=35 9204483492331631 r004 Im(z^2+c),c=1/5+1/22*I,z(0)=exp(5/8*I*Pi),n=8 9204483494974531 a001 6765/439204*322^(17/24) 9204483503885968 m001 ln(ArtinRank2)/CopelandErdos^2/CareFree 9204483529289851 a001 17711/1149851*322^(17/24) 9204483534296389 a001 46368/3010349*322^(17/24) 9204483535026833 a001 121393/7881196*322^(17/24) 9204483535133403 a001 10959/711491*322^(17/24) 9204483535148952 a001 832040/54018521*322^(17/24) 9204483535151220 a001 2178309/141422324*322^(17/24) 9204483535151551 a001 5702887/370248451*322^(17/24) 9204483535151599 a001 14930352/969323029*322^(17/24) 9204483535151606 a001 39088169/2537720636*322^(17/24) 9204483535151607 a001 102334155/6643838879*322^(17/24) 9204483535151608 a001 9238424/599786069*322^(17/24) 9204483535151608 a001 701408733/45537549124*322^(17/24) 9204483535151608 a001 1836311903/119218851371*322^(17/24) 9204483535151608 a001 4807526976/312119004989*322^(17/24) 9204483535151608 a001 12586269025/817138163596*322^(17/24) 9204483535151608 a001 32951280099/2139295485799*322^(17/24) 9204483535151608 a001 86267571272/5600748293801*322^(17/24) 9204483535151608 a001 7787980473/505618944676*322^(17/24) 9204483535151608 a001 365435296162/23725150497407*322^(17/24) 9204483535151608 a001 139583862445/9062201101803*322^(17/24) 9204483535151608 a001 53316291173/3461452808002*322^(17/24) 9204483535151608 a001 20365011074/1322157322203*322^(17/24) 9204483535151608 a001 7778742049/505019158607*322^(17/24) 9204483535151608 a001 2971215073/192900153618*322^(17/24) 9204483535151608 a001 1134903170/73681302247*322^(17/24) 9204483535151608 a001 433494437/28143753123*322^(17/24) 9204483535151608 a001 165580141/10749957122*322^(17/24) 9204483535151608 a001 63245986/4106118243*322^(17/24) 9204483535151611 a001 24157817/1568397607*322^(17/24) 9204483535151629 a001 9227465/599074578*322^(17/24) 9204483535151756 a001 3524578/228826127*322^(17/24) 9204483535152622 a001 1346269/87403803*322^(17/24) 9204483535158561 a001 514229/33385282*322^(17/24) 9204483535199267 a001 196418/12752043*322^(17/24) 9204483535478272 a001 75025/4870847*322^(17/24) 9204483537390599 a001 28657/1860498*322^(17/24) 9204483539501228 r005 Im(z^2+c),c=1/27+22/35*I,n=41 9204483540820467 a007 Real Root Of 451*x^4-968*x^3-403*x^2+991*x+175 9204483550497885 a001 10946/710647*322^(17/24) 9204483580124761 r005 Im(z^2+c),c=-13/19+9/32*I,n=35 9204483588432209 a007 Real Root Of 327*x^4-188*x^3+189*x^2+648*x+55 9204483621488247 r002 6th iterates of z^2 + 9204483634207672 a007 Real Root Of -999*x^4-380*x^3+543*x^2+323*x+258 9204483640336559 a001 4181/271443*322^(17/24) 9204483649565371 m001 (GAMMA(13/24)-Shi(1))/(-Landau+Salem) 9204483673964186 a007 Real Root Of -501*x^4+379*x^3-957*x^2-629*x+887 9204483707493550 a001 6119/2*6765^(22/57) 9204483746358322 m001 (StronglyCareFree-Thue)/(ln(3)-DuboisRaymond) 9204483748072817 m005 (1/2*2^(1/2)+3/8)/(1/8*exp(1)-2/9) 9204483772658121 a007 Real Root Of -176*x^4+601*x^3+816*x^2-180*x-868 9204483781928176 r005 Im(z^2+c),c=-59/114+1/62*I,n=52 9204483823882175 m001 (ln(gamma)+FeigenbaumD)/(cos(1/5*Pi)-gamma) 9204483834059846 a007 Real Root Of -477*x^4-179*x^3-536*x^2+112*x+760 9204483835289358 a008 Real Root of (-9+8*x-x^2-3*x^4+9*x^8) 9204483842736300 a007 Real Root Of 958*x^4-936*x^3+47*x^2+850*x-675 9204483842973289 m005 (1/3*Pi-1/10)/(2/7*2^(1/2)+5/8) 9204483846129318 k002 Champernowne real with 42*n^2+69*n-102 9204483861958201 m005 (1/2*2^(1/2)+1/9)/(9/11*gamma+5/12) 9204483879437021 m001 GAMMA(7/24)^GolombDickman-ln(3) 9204483892516652 a007 Real Root Of 119*x^4-532*x^3-687*x^2-443*x-326 9204483969425613 m006 (1/2/Pi-3/5)/(1/5*ln(Pi)+1/4) 9204483970035366 m004 (25*Pi)/(16*E^(Sqrt[5]*Pi))+Tan[Sqrt[5]*Pi] 9204483978909382 p003 LerchPhi(1/2,3,115/109) 9204483987278729 r005 Re(z^2+c),c=33/122+6/17*I,n=61 9204484021085738 a007 Real Root Of -562*x^4-564*x^3-690*x^2+354*x+874 9204484026196758 a007 Real Root Of 914*x^4+77*x^3+273*x^2+59*x-773 9204484033228899 h001 (-exp(1/3)-2)/(-9*exp(-1)+7) 9204484050458236 a007 Real Root Of -112*x^4+44*x^3-343*x^2-587*x-135 9204484050706378 m001 Trott2nd^Thue-cos(1/12*Pi) 9204484056044064 a007 Real Root Of -338*x^4+851*x^3-239*x^2-921*x+261 9204484058933193 m002 -5-ProductLog[Pi]/Pi^6+Pi^4*Tanh[Pi] 9204484091029969 a007 Real Root Of -462*x^4+355*x^3-753*x^2-309*x+962 9204484111959627 m005 (1/3*3^(1/2)-3/4)/(1/8*gamma-1/11) 9204484143224330 k003 Champernowne real with 1/2*n^3+7/2*n^2-3*n+8 9204484150768963 m001 BesselJ(1,1)^2*ln(OneNinth)*Zeta(1/2)^2 9204484155335204 r002 61th iterates of z^2 + 9204484155335204 r002 61th iterates of z^2 + 9204484169116444 a007 Real Root Of -649*x^4+487*x^3+360*x^2-671*x-77 9204484172304307 a003 cos(Pi*25/94)-sin(Pi*29/105) 9204484199212667 a007 Real Root Of 640*x^4-516*x^3-945*x^2-203*x-248 9204484219035630 a008 Real Root of x^4-38*x^2-82*x-44 9204484243781608 m001 (Stephens-ZetaP(2))/(ln(gamma)-Kolakoski) 9204484256099992 a001 1597/103682*322^(17/24) 9204484278551630 r008 a(0)=9,K{-n^6,28-99*n^3+24*n^2+42*n} 9204484317955534 r002 29th iterates of z^2 + 9204484366734050 m001 Zeta(7)^2/ln(FeigenbaumDelta)^2*arctan(1/2)^2 9204484390109068 r005 Re(z^2+c),c=-69/64+5/28*I,n=46 9204484392460096 a001 7/75025*1346269^(22/27) 9204484456280283 m005 (1/3*3^(1/2)-1/12)/(1/4*exp(1)-1/7) 9204484461426557 m005 (1/2*5^(1/2)-7/11)/(8/11*Catalan-1/7) 9204484468593113 a007 Real Root Of 784*x^4-581*x^3-387*x^2+516*x-213 9204484474537942 a007 Real Root Of -219*x^4+537*x^3-201*x^2-927*x-107 9204484494579820 m001 (ArtinRank2+FellerTornier)/(ln(3)-gamma(2)) 9204484495035247 b008 ExpIntegralEi[-1/36]^2 9204484515577086 a007 Real Root Of 604*x^4-667*x^3-843*x^2-358*x-569 9204484529777111 a007 Real Root Of -659*x^4+565*x^3+119*x^2-15*x+799 9204484542994103 m001 (ln(2)-gamma(1))/(StronglyCareFree-Thue) 9204484558653317 a001 233/521*521^(3/26) 9204484562828073 r008 a(0)=9,K{-n^6,48-63*n^3-74*n^2+84*n} 9204484578375424 a007 Real Root Of -973*x^4-360*x^3-217*x^2-358*x+272 9204484588904954 m001 Pi*(2^(1/3)-Pi*2^(1/2)/GAMMA(3/4))-Pi^(1/2) 9204484591652140 a007 Real Root Of 324*x^4-471*x^3+226*x^2+838*x-20 9204484623159177 a007 Real Root Of 783*x^4+578*x^3+281*x^2+536*x+144 9204484635664476 m001 (Pi^(1/2)-Sierpinski)/(Tetranacci-Tribonacci) 9204484647370507 a007 Real Root Of 945*x^4+512*x^3-522*x^2-827*x-598 9204484657221160 r008 a(0)=9,K{-n^6,86-58*n^3-70*n^2+37*n} 9204484671655692 r008 a(0)=9,K{-n^6,66-53*n^3-95*n^2+77*n} 9204484699800288 a001 567451585/9*76^(13/21) 9204484709138921 a007 Real Root Of 38*x^4+253*x^3-892*x^2-109*x-895 9204484718627286 m001 Paris*Riemann1stZero*TwinPrimes 9204484730191675 m002 -(E^Pi*Coth[Pi])+5*E^Pi*Tanh[Pi] 9204484746011968 m001 (Niven-Trott2nd)/MasserGramainDelta 9204484746031886 r008 a(0)=9,K{-n^6,92-49*n^3-94*n^2+46*n} 9204484751017096 m001 (GAMMA(19/24)+Thue)/(GAMMA(11/12)-exp(Pi)) 9204484752424497 a007 Real Root Of 956*x^4+292*x^3-656*x^2-449*x-316 9204484754868214 a007 Real Root Of -319*x^4+956*x^3+652*x^2-202*x-883 9204484757520296 r005 Im(z^2+c),c=-9/8+22/193*I,n=43 9204484763536292 a007 Real Root Of -929*x^4-242*x^3+224*x^2+243*x+512 9204484768244217 r005 Im(z^2+c),c=-9/14+23/139*I,n=43 9204484783769353 q001 1724/1873 9204484790472576 m002 -4*Sech[Pi]+8*Sinh[Pi] 9204484809798840 s002 sum(A163558[n]/((pi^n-1)/n),n=1..infinity) 9204484813199439 a007 Real Root Of 499*x^4+87*x^3+314*x^2+360*x-225 9204484828487266 r005 Re(z^2+c),c=-9/118+35/48*I,n=39 9204484843048084 a007 Real Root Of 762*x^4+240*x^3+721*x^2+17*x-955 9204484848301229 m001 CareFree+BesselI(1,1)^Khinchin 9204484849129918 k002 Champernowne real with 85/2*n^2+135/2*n-101 9204484856209009 m001 Pi*2^(1/3)/(BesselI(0,1)-2*Pi/GAMMA(5/6)) 9204484864254088 b008 Sqrt[3*Pi]*ArcSinh[10] 9204484869794345 a007 Real Root Of -430*x^4+992*x^3+175*x^2-478*x+494 9204484900530975 m001 exp(FeigenbaumKappa)^2/CopelandErdos*(3^(1/3)) 9204484921876023 a007 Real Root Of -581*x^4+436*x^3+550*x^2-150*x+153 9204484922641672 r001 44i'th iterates of 2*x^2-1 of 9204484930222146 r005 Im(z^2+c),c=-18/25+8/55*I,n=31 9204484942251573 a007 Real Root Of -132*x^4+431*x^3-685*x^2-186*x+840 9204484947123859 a003 cos(Pi*9/107)*sin(Pi*31/77) 9204484961342198 h001 (-6*exp(2)-5)/(-exp(4)+1) 9204484969726919 r005 Re(z^2+c),c=13/86+7/33*I,n=25 9204484974552577 a008 Real Root of (-6+4*x+3*x^2+x^3-6*x^4+5*x^5) 9204484992947123 a003 cos(Pi*1/45)-cos(Pi*3/115) 9204485004370753 m005 (1/2*gamma-1/11)/(1/8*exp(1)-1/8) 9204485012417503 a007 Real Root Of -476*x^4+964*x^3+589*x^2-460*x+171 9204485033511920 m001 (Psi(1,1/3)-Zeta(1/2))/(Artin+QuadraticClass) 9204485081280061 r005 Re(z^2+c),c=13/126+13/24*I,n=44 9204485090000923 r005 Re(z^2+c),c=29/82+9/61*I,n=7 9204485147234350 k003 Champernowne real with 2/3*n^3+5/2*n^2-7/6*n+7 9204485162152075 r005 Re(z^2+c),c=-65/74+7/37*I,n=25 9204485212717980 a007 Real Root Of 423*x^4-273*x^3-584*x^2-252*x+636 9204485232776210 h001 (10/11*exp(1)+2/3)/(4/9*exp(2)+1/8) 9204485277127991 a007 Real Root Of 921*x^4+998*x^3+570*x^2+393*x-4 9204485296835272 a007 Real Root Of -101*x^4-947*x^3-95*x^2+538*x-527 9204485310593785 a003 sin(Pi*3/82)+sin(Pi*17/57) 9204485312217753 a007 Real Root Of -470*x^4+865*x^3+122*x^2-961*x+24 9204485330757434 r005 Re(z^2+c),c=1/60+37/56*I,n=12 9204485358520580 r002 12i'th iterates of 2*x/(1-x^2) of 9204485360756363 a008 Real Root of (2+3*x-4*x^2-3*x^3-3*x^4-6*x^5) 9204485361413298 a007 Real Root Of x^4+921*x^3+507*x^2-546*x+773 9204485381071198 a001 377/64079*322^(7/8) 9204485402002669 a001 233/1364*322^(7/24) 9204485403221260 r002 44i'th iterates of 2*x/(1-x^2) of 9204485454454135 r002 16th iterates of z^2 + 9204485454598310 m004 -Cosh[Sqrt[5]*Pi]/6+(3*Cot[Sqrt[5]*Pi])/2 9204485461408481 a001 3571/4181*89^(1/60) 9204485462408324 s002 sum(A141509[n]/(n^2*10^n+1),n=1..infinity) 9204485462428552 s002 sum(A141509[n]/(n^2*10^n-1),n=1..infinity) 9204485470443076 r002 5th iterates of z^2 + 9204485481905192 l006 ln(4657/5106) 9204485559535288 a001 89/3*969323029^(11/18) 9204485560021886 r005 Re(z^2+c),c=-113/122+1/53*I,n=7 9204485568329416 m001 cosh(1)/CopelandErdos^2/ln(sqrt(3))^2 9204485602972051 r005 Im(z^2+c),c=-49/46+15/26*I,n=3 9204485611465895 v002 sum(1/(5^n*(17*n^2+13*n-7)),n=1..infinity) 9204485621551340 a007 Real Root Of 650*x^4+342*x^3-287*x^2-826*x-717 9204485627509685 m001 Pi*Psi(2,1/3)/(BesselK(0,1)-Zeta(1/2)) 9204485643871476 a003 sin(Pi*13/67)/sin(Pi*25/117) 9204485648419375 a007 Real Root Of -72*x^4+995*x^3-759*x^2-922*x+622 9204485673091124 a007 Real Root Of -48*x^4+280*x^3+392*x^2-201*x-331 9204485673463612 m001 (Shi(1)*ArtinRank2+CopelandErdos)/Shi(1) 9204485678177009 m005 (1/2*Catalan+7/10)/(2/5*5^(1/2)+4/11) 9204485693291686 a007 Real Root Of -40*x^4+50*x^3-695*x^2+346*x+975 9204485718623826 a007 Real Root Of 869*x^4-365*x^3+223*x^2+109*x-997 9204485744930519 a007 Real Root Of -385*x^4+948*x^3-134*x^2-790*x+402 9204485747405413 a007 Real Root Of -97*x^4-818*x^3+644*x^2-348*x+594 9204485752916541 p003 LerchPhi(1/16,4,71/39) 9204485769297936 m001 1/exp(Zeta(5))^2/GAMMA(5/6)^2*cos(Pi/12)^2 9204485792210385 r009 Re(z^3+c),c=-19/118+37/60*I,n=40 9204485800833364 a007 Real Root Of 891*x^4+223*x^3+800*x^2+158*x-998 9204485847334700 m001 TreeGrowth2nd^2*exp(PrimesInBinary)*Pi 9204485852130518 k002 Champernowne real with 43*n^2+66*n-100 9204485869434380 a007 Real Root Of 322*x^4-288*x^3+661*x^2+569*x-492 9204485879167080 b008 ArcCot[45*(1+Sqrt[2])] 9204485879464264 m001 1/Ei(1)^2/ln(FeigenbaumC)*sqrt(2)^2 9204485908860422 a001 39603/55*2584^(1/32) 9204485918868560 m001 (Zeta(1/2)+Pi^(1/2))/(FellerTornier-Robbin) 9204485939004054 a007 Real Root Of -700*x^4-996*x^3+332*x^2+875*x+77 9204485948474843 s002 sum(A192478[n]/(10^n+1),n=1..infinity) 9204485962942788 a001 233/2207*322^(3/8) 9204486016916980 a001 377/843*123^(3/20) 9204486088548055 m001 Zeta(5)/GAMMA(11/24)^2/ln(sqrt(3))^2 9204486091867018 a007 Real Root Of -402*x^4+166*x^3-979*x^2-975*x+350 9204486109464575 a007 Real Root Of 785*x^4-160*x^3-725*x^2-74 9204486151244370 k003 Champernowne real with 5/6*n^3+3/2*n^2+2/3*n+6 9204486167848798 a001 9349/10946*89^(1/60) 9204486176317162 q001 3529/3834 9204486198894110 m001 (Lehmer-sin(1))/(StronglyCareFree+Tetranacci) 9204486204635145 a007 Real Root Of -292*x^4+14*x^3-302*x^2-33*x+446 9204486216823742 r009 Im(z^3+c),c=-39/64+20/41*I,n=53 9204486249624814 a007 Real Root Of 197*x^4-401*x^3+456*x^2+648*x-244 9204486270917052 a001 24476/28657*89^(1/60) 9204486281225209 r009 Im(z^3+c),c=-5/9+33/50*I,n=19 9204486285954508 a001 64079/75025*89^(1/60) 9204486295248166 a001 13201/15456*89^(1/60) 9204486309851709 a001 1/34*34^(11/34) 9204486329890533 a007 Real Root Of -678*x^4+197*x^3+549*x^2+442*x+582 9204486330088611 s002 sum(A010789[n]/(n*2^n-1),n=1..infinity) 9204486334616737 a001 15127/17711*89^(1/60) 9204486337031082 a007 Real Root Of -808*x^4-118*x^3+533*x^2-322*x-260 9204486411164896 s001 sum(exp(-3*Pi/5)^n*A093867[n],n=1..infinity) 9204486422796717 a007 Real Root Of -566*x^4+935*x^3+439*x^2-82*x+688 9204486438014232 a007 Real Root Of 54*x^4-451*x^3+671*x^2+516*x-484 9204486452822032 m001 BesselJ(1,1)^2/Kolakoski^2/exp(BesselK(1,1))^2 9204486460812673 a007 Real Root Of 581*x^4+207*x^3+493*x^2+122*x-561 9204486506872167 m001 (GAMMA(2/3)-ln(5))/(Zeta(1,2)+TwinPrimes) 9204486540587787 h001 (10/11*exp(2)+9/10)/(2/11*exp(1)+1/3) 9204486558739079 a007 Real Root Of -523*x^4-39*x^3-794*x^2-733*x+343 9204486571571395 m001 (-FransenRobinson+ZetaQ(2))/(2^(1/3)+3^(1/2)) 9204486604452932 a001 1926/2255*89^(1/60) 9204486615199944 m001 ln((3^(1/3)))^2*LandauRamanujan^2*sinh(1) 9204486616591891 m001 1/Rabbit^2*exp(MinimumGamma)*Zeta(5)^2 9204486622362946 a007 Real Root Of 884*x^4-29*x^3+513*x^2+556*x-580 9204486643443246 r002 45th iterates of z^2 + 9204486696492108 r001 46i'th iterates of 2*x^2-1 of 9204486747298747 r005 Re(z^2+c),c=-11/118+32/35*I,n=2 9204486798516072 a007 Real Root Of 673*x^4-327*x^3-75*x^2-233*x-889 9204486802586508 a007 Real Root Of 452*x^4-498*x^3-98*x-803 9204486807105553 a007 Real Root Of 10*x^4+924*x^3+323*x^2-366*x-810 9204486817721770 a007 Real Root Of 670*x^4+846*x^3+394*x^2-729*x-826 9204486818282035 a007 Real Root Of 218*x^4+25*x^3-304*x^2-485*x+528 9204486846998903 a007 Real Root Of 72*x^4+634*x^3-290*x^2-203*x+302 9204486851017184 m001 (3^(1/2)+BesselI(0,1)*Zeta(1,-1))/Zeta(1,-1) 9204486855131118 k002 Champernowne real with 87/2*n^2+129/2*n-99 9204486857131618 k004 Champernowne real with floor(Pi*(14*n^2+20*n-31)) 9204486871863754 a007 Real Root Of 987*x^4+893*x^3+449*x^2-182*x-560 9204486876391239 a007 Real Root Of -837*x^4+885*x^3+351*x^2-898*x+167 9204486984717639 a005 (1/cos(7/53*Pi))^51 9204486988902772 a007 Real Root Of -751*x^4+753*x^3-185*x^2-465*x+855 9204487012584161 m001 1/Riemann3rdZero/exp(ArtinRank2)^2/OneNinth 9204487024989501 a007 Real Root Of 714*x^4-638*x^3-11*x^2+343*x-685 9204487042582748 m001 (Pi+cos(1))/(ln(2+3^(1/2))+FeigenbaumD) 9204487096522589 m001 (PlouffeB+RenyiParking)/(Totient-Trott) 9204487105022736 r005 Re(z^2+c),c=5/42+34/61*I,n=64 9204487108811438 m005 (1/2*exp(1)-2/7)/(2/3*Catalan+5/9) 9204487117359190 a007 Real Root Of 253*x^4+15*x^3+333*x^2+691*x+184 9204487132633931 m001 GAMMA(3/4)^Totient/(GAMMA(3/4)^MadelungNaCl) 9204487155254390 k003 Champernowne real with n^3+1/2*n^2+5/2*n+5 9204487162700711 s002 sum(A126174[n]/(exp(n)),n=1..infinity) 9204487203480869 r005 Im(z^2+c),c=-7/8+17/254*I,n=18 9204487205432062 a007 Real Root Of 289*x^4-450*x^3-359*x^2+256*x+212 9204487218856341 a007 Real Root Of -416*x^4+645*x^3-735*x^2-939*x+560 9204487233428003 p003 LerchPhi(1/16,6,72/71) 9204487236908376 m001 (Sarnak+Thue)/(Landau+Salem) 9204487243044987 m003 1/4+Sqrt[5]/4+Log[1/2+Sqrt[5]/2]^3 9204487258295227 r005 Re(z^2+c),c=-9/10+15/109*I,n=45 9204487283995884 r005 Im(z^2+c),c=-5/8+36/191*I,n=32 9204487314259254 r005 Im(z^2+c),c=-5/8+23/133*I,n=60 9204487327203432 m008 (1/3*Pi^4+4/5)/(2/5*Pi^2-1/3) 9204487331226065 a003 cos(Pi*6/113)*sin(Pi*41/107) 9204487332756629 a007 Real Root Of -863*x^4+826*x^3+825*x^2-960*x-319 9204487336958241 h001 (-2*exp(3)-8)/(-6*exp(2)-8) 9204487340937539 a007 Real Root Of -131*x^4-399*x^3-987*x^2+64*x+678 9204487350175109 b008 EulerGamma+Sech[3*EulerGamma] 9204487355414866 a007 Real Root Of -167*x^4+372*x^3-508*x^2-976*x-58 9204487361313594 a005 (1/cos(10/157*Pi))^1938 9204487380279213 r005 Im(z^2+c),c=-13/98+31/45*I,n=3 9204487392021249 m001 Catalan+Champernowne^Sierpinski 9204487415376153 r005 Im(z^2+c),c=-19/14+1/198*I,n=10 9204487420228187 l006 ln(96/241) 9204487434550729 m005 (1/2*Zeta(3)+4/11)/(4/5*2^(1/2)-1/12) 9204487455516946 m001 (1+Khinchin)/(-Salem+StronglyCareFree) 9204487478455210 m001 (sin(1/5*Pi)-Ei(1,1))/(ln(2+3^(1/2))+Khinchin) 9204487485859354 a007 Real Root Of 729*x^4+497*x^3+185*x^2-106*x-390 9204487495312019 m001 1/ln(GAMMA(23/24))^2*FeigenbaumD^2/Zeta(3) 9204487506374298 q001 1805/1961 9204487506374298 r002 2th iterates of z^2 + 9204487506374298 r002 2th iterates of z^2 + 9204487517298128 a003 cos(Pi*13/115)*sin(Pi*18/41) 9204487550678021 a007 Real Root Of 103*x^4+871*x^3-657*x^2+565*x+768 9204487558266787 a007 Real Root Of -834*x^4-562*x^3-870*x^2-761*x+197 9204487578865768 a003 cos(Pi*10/109)-cos(Pi*20/41) 9204487654384889 m009 (Psi(1,2/3)+5/6)/(1/4*Psi(1,2/3)-5) 9204487677419803 p001 sum(1/(569*n+122)/n/(16^n),n=1..infinity) 9204487686897547 r002 34th iterates of z^2 + 9204487716912344 r005 Re(z^2+c),c=-1/38+10/31*I,n=17 9204487732651790 r009 Im(z^3+c),c=-9/50+33/37*I,n=47 9204487748450768 m008 (1/3*Pi^2+1/4)/(4*Pi^6+1/4) 9204487817233932 r005 Im(z^2+c),c=-17/18+1/123*I,n=10 9204487818304989 m005 (1/2*5^(1/2)+1/10)/(2^(1/2)-1/11) 9204487833297068 a003 sin(Pi*1/74)/cos(Pi*41/118) 9204487844862452 m001 (ln(Pi)+PlouffeB)/(LambertW(1)+ln(gamma)) 9204487845776998 m001 (sin(1)+3^(1/3))/(Niven+StronglyCareFree) 9204487858131718 k002 Champernowne real with 44*n^2+63*n-98 9204487881882013 a007 Real Root Of -383*x^4-240*x^3-596*x^2-406*x+219 9204487924798047 a007 Real Root Of 789*x^4-714*x^3-658*x^2-222*x-770 9204487929499427 m002 -4*E^Pi+5/Pi-ProductLog[Pi] 9204487935920322 a007 Real Root Of -237*x^4+856*x^3+882*x^2-259*x-148 9204487942183597 r002 47th iterates of z^2 + 9204487942183597 r002 47th iterates of z^2 + 9204487976558304 a001 233/521*1364^(1/10) 9204487981905778 v002 sum(1/(3^n+(13*n^2+n-1)),n=1..infinity) 9204488054452406 l006 ln(7613/8347) 9204488076971943 r005 Im(z^2+c),c=-41/90+7/45*I,n=38 9204488088004121 r002 22th iterates of z^2 + 9204488090501202 a007 Real Root Of 260*x^4-522*x^3-332*x^2+573*x+215 9204488103262544 m001 FransenRobinson^ZetaQ(4)-StolarskyHarborth 9204488104657927 m001 1/GAMMA(23/24)^2/ln(FransenRobinson) 9204488134908432 r005 Re(z^2+c),c=-23/26+21/127*I,n=7 9204488157018478 a007 Real Root Of 900*x^4+199*x^3-311*x^2+222*x-23 9204488159264410 k003 Champernowne real with 7/6*n^3-1/2*n^2+13/3*n+4 9204488182804292 a007 Real Root Of 325*x^4+478*x^3-129*x^2-427*x+40 9204488189068590 a007 Real Root Of 5*x^4-759*x^3-535*x^2+282*x+782 9204488197218190 s002 sum(A282474[n]/((3*n)!),n=1..infinity) 9204488214607394 a007 Real Root Of -982*x^4+42*x^3-313*x^2-103*x+908 9204488221135927 a007 Real Root Of -855*x^4+64*x^3+29*x^2-917*x-205 9204488224164875 m001 (BesselI(0,2)-Magata)/(MertensB3-OneNinth) 9204488230095826 r005 Im(z^2+c),c=-2/3+29/101*I,n=31 9204488232767205 a007 Real Root Of -90*x^4-725*x^3+901*x^2-500*x-300 9204488298614550 m006 (1/5/Pi-3)/(1/6*exp(Pi)-2/3) 9204488313529111 m001 (Backhouse-BesselK(0,1))/(-FeigenbaumC+Otter) 9204488321212358 a007 Real Root Of -66*x^4+825*x^3-357*x^2-161*x+845 9204488347122456 m001 (Zeta(1,2)-Grothendieck)/(Magata-ZetaP(2)) 9204488360859229 r009 Im(z^3+c),c=-11/98+29/32*I,n=23 9204488371653473 m005 (1/3*Catalan-3/5)/(8/11*Pi+11/12) 9204488384539191 m005 (1/2*gamma-5/6)/(-5/18+7/18*5^(1/2)) 9204488393370881 m001 Trott2nd^StronglyCareFree+Thue 9204488397413034 m001 Tribonacci^2*exp(Salem)^2*sin(Pi/12) 9204488407602255 a001 233/521*3571^(3/34) 9204488414290805 a001 1/89*987^(36/37) 9204488417650117 m008 (3*Pi-5)/(5*Pi^6+1/4) 9204488422236808 g006 Psi(1,4/11)+Psi(1,1/10)-Psi(1,3/11)-Psi(1,5/8) 9204488429327774 s002 sum(A109089[n]/(n^3*2^n+1),n=1..infinity) 9204488453937781 a001 2207/2584*89^(1/60) 9204488462976992 a001 233/521*9349^(3/38) 9204488470193469 a001 233/521*24476^(1/14) 9204488471144739 a001 233/521*64079^(3/46) 9204488471288283 a001 233/521*439204^(1/18) 9204488471290927 a001 233/521*7881196^(1/22) 9204488471290934 a001 233/521*33385282^(1/24) 9204488471291067 a001 233/521*1860498^(1/20) 9204488471344449 a001 233/521*103682^(1/16) 9204488471691074 a001 233/521*39603^(3/44) 9204488472111386 r002 31th iterates of z^2 + 9204488474307795 a001 233/521*15127^(3/40) 9204488476605342 a001 610/39603*322^(17/24) 9204488481313128 a007 Real Root Of -906*x^4-250*x^3+387*x^2-459*x-295 9204488493504676 a001 521/89*1597^(24/35) 9204488494266349 a001 233/521*5778^(1/12) 9204488519485259 m001 (ln(Pi)+Kac)/(KomornikLoreti-Riemann2ndZero) 9204488533091867 r002 14th iterates of z^2 + 9204488562526688 m005 (1/3*exp(1)-2/11)/(1/10*Zeta(3)+2/3) 9204488571429239 m001 (Bloch-GAMMA(2/3))^Robbin 9204488572798667 m001 (ln(gamma)-GAMMA(19/24)*ZetaP(2))/GAMMA(19/24) 9204488595711727 a007 Real Root Of -805*x^4-176*x^3-828*x^2-615*x+576 9204488623632868 a007 Real Root Of 816*x^4-164*x^3-618*x^2-302*x-468 9204488633624837 s002 sum(A203355[n]/(n^3*10^n-1),n=1..infinity) 9204488648451234 a001 233/521*2207^(3/32) 9204488657814252 a007 Real Root Of -59*x^4-558*x^3-202*x^2-646*x-479 9204488676968229 m001 GAMMA(11/24)^2*OneNinth^2*exp(GAMMA(7/12))^2 9204488685936610 a007 Real Root Of 486*x^4+552*x^3+30*x^2-538*x-439 9204488689305584 r005 Re(z^2+c),c=-9/10+7/68*I,n=16 9204488709277262 m001 (ln(2^(1/2)+1)-FeigenbaumB)/(Landau-Trott) 9204488726409070 a007 Real Root Of 450*x^4+47*x^3+9*x^2-402*x-664 9204488729841669 a007 Real Root Of -958*x^4-624*x^3+19*x^2+502*x+647 9204488735399435 a003 cos(Pi*1/114)-cos(Pi*4/29) 9204488739477249 m001 (FeigenbaumB-Zeta(3)*Otter)/Otter 9204488749310139 s001 sum(exp(-Pi)^n*A011150[n],n=1..infinity) 9204488749310139 s002 sum(A011150[n]/(exp(pi*n)),n=1..infinity) 9204488755566355 a007 Real Root Of 256*x^4-593*x^3+133*x^2+165*x-607 9204488763042911 m001 1/BesselK(1,1)^2*ln(Cahen)/GAMMA(1/12)^2 9204488778054862 q001 3691/4010 9204488799849714 r009 Re(z^3+c),c=-13/122+8/33*I,n=6 9204488807235889 a007 Real Root Of 337*x^4-889*x^3-179*x^2-390*x+962 9204488815450328 a007 Real Root Of -699*x^4+103*x^3-237*x^2-115*x+677 9204488840799801 a007 Real Root Of -103*x^4-857*x^3+823*x^2-65*x+688 9204488841435694 m005 (1/2*Catalan+5/8)/(1/7*5^(1/2)+6/7) 9204488861132318 k002 Champernowne real with 89/2*n^2+123/2*n-97 9204488885878108 r005 Re(z^2+c),c=-47/70+19/37*I,n=4 9204488931655309 a007 Real Root Of -747*x^4+739*x^3+219*x^2-315*x+637 9204488962443526 a007 Real Root Of 974*x^4-312*x^3-731*x^2-14*x-336 9204488965953138 r009 Re(z^3+c),c=-3/34+50/53*I,n=3 9204488967779969 a007 Real Root Of -293*x^4+225*x^3+919*x^2-154*x-602 9204488989781215 m005 (1/2*2^(1/2)+3)/(4*Catalan+4/11) 9204489007901933 a007 Real Root Of 851*x^4-266*x^3-822*x^2-589*x-664 9204489039232994 r001 26i'th iterates of 2*x^2-1 of 9204489042560407 a001 21/2206*322^(19/24) 9204489049333193 r005 Im(z^2+c),c=-21/29+11/54*I,n=47 9204489068711504 m005 (1/2*3^(1/2)+1/2)/(4/9*3^(1/2)+5/7) 9204489069669529 r005 Re(z^2+c),c=-5/28+5/7*I,n=9 9204489079190819 m001 (gamma(3)+MasserGramainDelta)/(Chi(1)+ln(Pi)) 9204489084799008 r005 Im(z^2+c),c=-47/70+12/29*I,n=12 9204489152224479 r005 Re(z^2+c),c=31/122+17/49*I,n=19 9204489163274430 k003 Champernowne real with 4/3*n^3-3/2*n^2+37/6*n+3 9204489219205695 r005 Re(z^2+c),c=13/86+7/33*I,n=29 9204489220036794 a007 Real Root Of -485*x^4-494*x^3-321*x^2+237*x+453 9204489235766903 a007 Real Root Of -917*x^4+275*x^3+77*x^2+18*x+824 9204489249817528 r005 Re(z^2+c),c=13/86+7/33*I,n=30 9204489279829010 m002 -Cosh[Pi]-Log[Pi]+(Pi^2*ProductLog[Pi])/3 9204489290380848 m001 ZetaP(2)^ReciprocalLucas+Rabbit 9204489341227993 a007 Real Root Of 710*x^4-270*x^3-248*x^2+967*x+380 9204489349555025 a007 Real Root Of 432*x^4-898*x^3+595*x^2+962*x-629 9204489384350958 r005 Im(z^2+c),c=-81/122+5/29*I,n=50 9204489414095388 m009 (8/3*Catalan+1/3*Pi^2+4)/(3/5*Psi(1,1/3)-5) 9204489417475611 r005 Re(z^2+c),c=-23/26+20/121*I,n=21 9204489479667469 r005 Re(z^2+c),c=13/86+7/33*I,n=35 9204489481068529 r005 Re(z^2+c),c=13/86+7/33*I,n=34 9204489486244772 r005 Re(z^2+c),c=13/86+7/33*I,n=31 9204489488405423 m001 1/ln(GAMMA(13/24))*Trott/cosh(1)^2 9204489491199140 r005 Re(z^2+c),c=13/86+7/33*I,n=36 9204489491781206 r005 Re(z^2+c),c=13/86+7/33*I,n=40 9204489492002869 r005 Re(z^2+c),c=13/86+7/33*I,n=39 9204489492332402 r005 Re(z^2+c),c=13/86+7/33*I,n=41 9204489492408483 r005 Re(z^2+c),c=13/86+7/33*I,n=45 9204489492427273 r005 Re(z^2+c),c=13/86+7/33*I,n=44 9204489492434227 r005 Re(z^2+c),c=13/86+7/33*I,n=46 9204489492440413 r005 Re(z^2+c),c=13/86+7/33*I,n=50 9204489492441583 r005 Re(z^2+c),c=13/86+7/33*I,n=51 9204489492441738 r005 Re(z^2+c),c=13/86+7/33*I,n=49 9204489492442011 r005 Re(z^2+c),c=13/86+7/33*I,n=55 9204489492442062 r005 Re(z^2+c),c=13/86+7/33*I,n=56 9204489492442089 r005 Re(z^2+c),c=13/86+7/33*I,n=60 9204489492442091 r005 Re(z^2+c),c=13/86+7/33*I,n=61 9204489492442093 r005 Re(z^2+c),c=13/86+7/33*I,n=64 9204489492442094 r005 Re(z^2+c),c=13/86+7/33*I,n=62 9204489492442094 r005 Re(z^2+c),c=13/86+7/33*I,n=63 9204489492442094 r005 Re(z^2+c),c=13/86+7/33*I,n=59 9204489492442096 r005 Re(z^2+c),c=13/86+7/33*I,n=54 9204489492442107 r005 Re(z^2+c),c=13/86+7/33*I,n=57 9204489492442108 r005 Re(z^2+c),c=13/86+7/33*I,n=58 9204489492442367 r005 Re(z^2+c),c=13/86+7/33*I,n=53 9204489492442416 r005 Re(z^2+c),c=13/86+7/33*I,n=52 9204489492447185 r005 Re(z^2+c),c=13/86+7/33*I,n=48 9204489492449423 r005 Re(z^2+c),c=13/86+7/33*I,n=47 9204489492534629 r005 Re(z^2+c),c=13/86+7/33*I,n=43 9204489492602782 r005 Re(z^2+c),c=13/86+7/33*I,n=42 9204489494082766 r005 Re(z^2+c),c=13/86+7/33*I,n=38 9204489495871139 r005 Re(z^2+c),c=13/86+7/33*I,n=37 9204489508127513 r002 58th iterates of z^2 + 9204489520665986 r005 Re(z^2+c),c=13/86+7/33*I,n=33 9204489527614345 r005 Re(z^2+c),c=-55/58+12/47*I,n=9 9204489534572731 m005 (1/2*3^(1/2)+7/10)/(2/3*Zeta(3)+9/10) 9204489538120313 r002 2th iterates of z^2 + 9204489550282552 r009 Re(z^3+c),c=-15/94+31/51*I,n=35 9204489554746473 m001 (Pi-ln(gamma))/(FellerTornier-Sarnak) 9204489563978813 r005 Re(z^2+c),c=13/86+7/33*I,n=32 9204489579160506 a007 Real Root Of -670*x^4+697*x^3-42*x^2-100*x+968 9204489580611344 a007 Real Root Of -104*x^4+429*x^3+389*x^2+207*x-780 9204489597349198 a007 Real Root Of 847*x^4-960*x^3+416*x^2+917*x-865 9204489608017975 m001 1/cos(1)^2/GAMMA(1/6)^2/ln(sqrt(2))^2 9204489647844191 a007 Real Root Of 866*x^4-447*x^3-522*x^2+667*x+86 9204489654649417 a007 Real Root Of -70*x^4+568*x^3-193*x^2-318*x+364 9204489679618149 h001 (6/7*exp(1)+8/11)/(9/10*exp(1)+7/8) 9204489684669112 a007 Real Root Of 823*x^4+29*x^3+555*x^2-530*x+44 9204489692779755 r005 Re(z^2+c),c=-11/10+5/159*I,n=10 9204489705726623 a007 Real Root Of -711*x^4+942*x^3-403*x^2-938*x+723 9204489715255539 a005 (1/sin(89/195*Pi))^1460 9204489718216757 s002 sum(A149976[n]/(pi^n-1),n=1..infinity) 9204489728523390 r005 Re(z^2+c),c=13/86+7/33*I,n=26 9204489731807848 m001 1/exp(ArtinRank2)/CopelandErdos*TwinPrimes^2 9204489733077116 r005 Re(z^2+c),c=-11/10+6/191*I,n=10 9204489736108110 r005 Re(z^2+c),c=-11/10+4/127*I,n=10 9204489782845620 a007 Real Root Of -984*x^4-622*x^3-488*x^2-670*x+18 9204489795404089 r005 Re(z^2+c),c=-11/10+7/223*I,n=10 9204489813586872 r005 Re(z^2+c),c=-9/106+49/59*I,n=19 9204489818738329 h001 (1/8*exp(1)+2/7)/(9/11*exp(2)+3/4) 9204489819264109 r009 Im(z^3+c),c=-14/29+23/39*I,n=44 9204489825823803 a008 Real Root of (-9+x+2*x^2+5*x^4+9*x^8) 9204489844163367 r005 Re(z^2+c),c=-11/10+7/222*I,n=10 9204489850528493 m005 (-1/2+1/6*5^(1/2))/(1/7*exp(1)-1/4) 9204489859032772 a001 233/521*843^(3/28) 9204489860363233 r005 Re(z^2+c),c=-11/10+8/255*I,n=10 9204489864132918 k002 Champernowne real with 45*n^2+60*n-96 9204489893278230 m005 (1/2*2^(1/2)-1/5)/(1/9*Pi-9/10) 9204489919474869 p001 sum((-1)^n/(320*n+157)/n/(2^n),n=1..infinity) 9204489926190628 a007 Real Root Of 934*x^4+495*x^3-941*x^2-706*x-137 9204489928856172 a007 Real Root Of -835*x^4-152*x^3+448*x^2+672*x+58 9204489930266738 a007 Real Root Of 244*x^4-327*x^3+626*x^2+421*x-573 9204489958526870 a007 Real Root Of 943*x^4-534*x^3-793*x^2-320*x-716 9204489959244548 r005 Re(z^2+c),c=13/86+7/33*I,n=28 9204489961288776 a007 Real Root Of -421*x^4+952*x^3-597*x^2-850*x+768 9204489971513113 r005 Im(z^2+c),c=-25/18+1/241*I,n=52 9204489989962370 a007 Real Root Of -456*x^4+375*x^3-29*x^2+92*x+729 9204489995119570 q001 1886/2049 9204490011704543 r005 Im(z^2+c),c=-7/118+41/42*I,n=6 9204490018749676 a007 Real Root Of -718*x^4+253*x^3+414*x^2-89*x+280 9204490024111271 a007 Real Root Of -690*x^4-812*x^3+10*x^2+749*x+543 9204490051674414 r005 Im(z^2+c),c=-59/78+3/44*I,n=5 9204490051692529 r005 Re(z^2+c),c=7/22+13/23*I,n=38 9204490089458092 r005 Re(z^2+c),c=-11/10+3/95*I,n=10 9204490133736736 a007 Real Root Of 736*x^4-628*x^3-880*x^2-471*x-706 9204490152031509 m006 (1/2*Pi^2-3/4)/(4/5/Pi+1/5) 9204490161167987 r002 19th iterates of z^2 + 9204490167284450 k003 Champernowne real with 3/2*n^3-5/2*n^2+8*n+2 9204490176832110 m001 (LambertW(1)+FellerTornier)^Rabbit 9204490183040134 m001 (cos(1)+GolombDickman)/(-Niven+TreeGrowth2nd) 9204490192323587 a007 Real Root Of 101*x^4+958*x^3+190*x^2-558*x+872 9204490220257542 a007 Real Root Of -222*x^4+68*x^3-548*x^2-130*x+557 9204490247836785 m002 8+(6*Coth[Pi])/5 9204490299359385 r005 Im(z^2+c),c=1/70+29/41*I,n=6 9204490301493625 a007 Real Root Of 681*x^4-25*x^3-778*x^2+23*x+172 9204490315113264 m001 (GAMMA(23/24)+CareFree)/(BesselJ(0,1)-gamma) 9204490326637109 m005 (1/2*2^(1/2)-9/10)/(5/9*gamma-1/9) 9204490334681585 h001 (2/9*exp(1)+3/5)/(4/9*exp(1)+1/10) 9204490339029715 m005 (1/2*2^(1/2)-5/11)/(10/11*exp(1)+3/11) 9204490352191143 m001 TravellingSalesman^(Artin*TwinPrimes) 9204490357382656 a007 Real Root Of 472*x^4-576*x^3-215*x^2+681*x+21 9204490385728806 a007 Real Root Of 112*x^4+960*x^3-679*x^2-164*x+725 9204490394408027 p003 LerchPhi(1/256,6,317/213) 9204490395192462 m005 (exp(1)-3)/(3/4*2^(1/2)+2) 9204490400113316 r005 Re(z^2+c),c=-11/10+8/253*I,n=10 9204490407515848 m001 (GAMMA(17/24)-LaplaceLimit)^ZetaP(3) 9204490437218932 m001 (exp(1)+sin(1))/(GlaisherKinkelin+Sierpinski) 9204490472723023 r009 Im(z^3+c),c=-41/110+13/19*I,n=39 9204490483115612 r005 Im(z^2+c),c=-17/30+1/65*I,n=23 9204490485229924 r002 10th iterates of z^2 + 9204490486893033 a007 Real Root Of 815*x^4-900*x^3-309*x^2-272*x+629 9204490534719578 a001 46368/2207*18^(23/45) 9204490570913054 a007 Real Root Of 269*x^4-827*x^3-248*x^2-213*x+858 9204490610338844 p004 log(32653/13007) 9204490629990913 r005 Re(z^2+c),c=-11/10+5/158*I,n=10 9204490634735123 a007 Real Root Of 197*x^4-84*x^3-754*x^2-24*x+585 9204490657297210 a001 2584/271443*322^(19/24) 9204490668467474 m005 (1/2*gamma+3/7)/(1/10*5^(1/2)+5/9) 9204490721015907 p003 LerchPhi(1/5,4,273/149) 9204490729252010 m001 (GaussAGM(1,1/sqrt(2))+1/2)/(arctan(1/2)+1) 9204490745368661 r005 Re(z^2+c),c=-11/10+1/32*I,n=10 9204490749716217 m001 (-GAMMA(23/24)+Salem)/(Shi(1)+gamma) 9204490750030121 a003 cos(Pi*10/33)*cos(Pi*31/69) 9204490759186798 m001 Porter^2/Conway^2/exp(Riemann1stZero) 9204490787286292 h001 (2/9*exp(1)+1/12)/(8/9*exp(2)+9/10) 9204490795760646 a007 Real Root Of 25*x^4+86*x^3+431*x^2-13*x-328 9204490796608370 a007 Real Root Of 998*x^4-595*x^3+364*x^2+770*x-780 9204490804091226 r005 Im(z^2+c),c=-11/32+1/7*I,n=21 9204490861263547 a003 cos(Pi*27/88)+cos(Pi*39/101) 9204490867133518 k002 Champernowne real with 91/2*n^2+117/2*n-95 9204490883220305 a007 Real Root Of 242*x^4+495*x^3+215*x^2-614*x-535 9204490890150553 p004 log(27793/25349) 9204490892884135 a001 6765/710647*322^(19/24) 9204490896934046 r005 Im(z^2+c),c=6/19+1/27*I,n=15 9204490913552669 a007 Real Root Of -646*x^4+997*x^3+62*x^2-658*x+583 9204490916068158 m002 -1+Pi^2/5-3*Pi^3 9204490927255804 a001 17711/1860498*322^(19/24) 9204490932270563 a001 46368/4870847*322^(19/24) 9204490933002207 a001 121393/12752043*322^(19/24) 9204490933003235 r005 Re(z^2+c),c=-11/10+7/221*I,n=10 9204490933108952 a001 317811/33385282*322^(19/24) 9204490933124526 a001 832040/87403803*322^(19/24) 9204490933126798 a001 46347/4868641*322^(19/24) 9204490933127130 a001 5702887/599074578*322^(19/24) 9204490933127178 a001 14930352/1568397607*322^(19/24) 9204490933127185 a001 39088169/4106118243*322^(19/24) 9204490933127186 a001 102334155/10749957122*322^(19/24) 9204490933127186 a001 267914296/28143753123*322^(19/24) 9204490933127186 a001 701408733/73681302247*322^(19/24) 9204490933127186 a001 1836311903/192900153618*322^(19/24) 9204490933127186 a001 102287808/10745088481*322^(19/24) 9204490933127186 a001 12586269025/1322157322203*322^(19/24) 9204490933127186 a001 32951280099/3461452808002*322^(19/24) 9204490933127186 a001 86267571272/9062201101803*322^(19/24) 9204490933127186 a001 225851433717/23725150497407*322^(19/24) 9204490933127186 a001 139583862445/14662949395604*322^(19/24) 9204490933127186 a001 53316291173/5600748293801*322^(19/24) 9204490933127186 a001 20365011074/2139295485799*322^(19/24) 9204490933127186 a001 7778742049/817138163596*322^(19/24) 9204490933127186 a001 2971215073/312119004989*322^(19/24) 9204490933127186 a001 1134903170/119218851371*322^(19/24) 9204490933127186 a001 433494437/45537549124*322^(19/24) 9204490933127186 a001 165580141/17393796001*322^(19/24) 9204490933127187 a001 63245986/6643838879*322^(19/24) 9204490933127189 a001 24157817/2537720636*322^(19/24) 9204490933127208 a001 9227465/969323029*322^(19/24) 9204490933127334 a001 3524578/370248451*322^(19/24) 9204490933128202 a001 1346269/141422324*322^(19/24) 9204490933134151 a001 514229/54018521*322^(19/24) 9204490933174924 a001 196418/20633239*322^(19/24) 9204490933454387 a001 75025/7881196*322^(19/24) 9204490935369855 a001 28657/3010349*322^(19/24) 9204490948498664 a001 10946/1149851*322^(19/24) 9204490955396870 r005 Re(z^2+c),c=13/86+7/33*I,n=27 9204490959355383 r005 Re(z^2+c),c=-13/110+33/40*I,n=9 9204490960325160 s002 sum(A231750[n]/(exp(2/5*pi*n)),n=1..infinity) 9204490976056690 r005 Im(z^2+c),c=-147/122+3/35*I,n=20 9204491004986265 a001 4/21*8^(25/33) 9204491007626820 r005 Im(z^2+c),c=-7/12+12/71*I,n=42 9204491008800987 r009 Im(z^3+c),c=-37/60+33/62*I,n=62 9204491026197989 r009 Im(z^3+c),c=-31/78+1/50*I,n=8 9204491038484862 a001 4181/439204*322^(19/24) 9204491054319414 a007 Real Root Of -718*x^4+728*x^3-235*x^2-777*x+567 9204491078501894 a007 Real Root Of -859*x^4-127*x^3+607*x^2-889*x-815 9204491156605049 a003 cos(Pi*5/63)*cos(Pi*8/79) 9204491171294470 k003 Champernowne real with 5/3*n^3-7/2*n^2+59/6*n+1 9204491174539914 a007 Real Root Of 175*x^4-406*x^3+257*x^2+805*x+81 9204491175286756 g005 GAMMA(7/12)^2/GAMMA(6/11)/GAMMA(4/7) 9204491202138588 m001 Ei(1)^2*TreeGrowth2nd/exp(cos(1)) 9204491209321468 a007 Real Root Of -694*x^4-475*x^3-757*x^2+89*x+851 9204491253305200 r005 Im(z^2+c),c=3/16+18/31*I,n=53 9204491265624928 s002 sum(A095829[n]/(pi^n),n=1..infinity) 9204491289423048 m001 1/ln(GAMMA(7/12))^2/BesselK(1,1)/Zeta(9) 9204491297122012 r005 Im(z^2+c),c=-7/9+11/96*I,n=4 9204491319269212 b008 Sin[Pi^(-1)+Csch[1]] 9204491321524621 g005 GAMMA(9/10)*GAMMA(8/9)*GAMMA(7/9)/GAMMA(3/5) 9204491322974610 b008 8+E^ArcCoth[2*E] 9204491333200900 m001 (Conway+Sarnak)/(ln(gamma)-(1+3^(1/2))^(1/2)) 9204491346686282 r005 Re(z^2+c),c=-8/9+9/55*I,n=63 9204491437205459 b008 Sech[Pi*Sech[E]] 9204491478268631 m001 (FeigenbaumC+FeigenbaumMu)/(Stephens+Trott) 9204491505515362 a007 Real Root Of 313*x^4-861*x^3-285*x^2+985*x+252 9204491507217152 r002 2th iterates of z^2 + 9204491544505382 m001 (ln(2)/ln(10))^MertensB3/Ei(1,1) 9204491587170137 a003 cos(Pi*3/8)*cos(Pi*41/97) 9204491595429595 a007 Real Root Of 4*x^4-378*x^3-542*x^2+225*x+544 9204491628434815 a007 Real Root Of 494*x^4-247*x^3+620*x^2+107*x-974 9204491632251658 m001 CopelandErdos^3*ln(Conway)^2 9204491636689871 m001 Zeta(1,2)/(MertensB2^cos(1)) 9204491640267350 m001 (Chi(1)-Si(Pi))/(-3^(1/3)+PolyaRandomWalk3D) 9204491646156676 m001 (Kac+ZetaP(4))/(BesselJ(0,1)-gamma(3)) 9204491655259438 a001 1597/167761*322^(19/24) 9204491679225212 r002 3th iterates of z^2 + 9204491715223921 b008 -9/2+Pi*ArcSinh[E] 9204491720574835 m002 -5-Pi^(-6)+Pi^4*Tanh[Pi] 9204491739980007 m005 (1/3*5^(1/2)+1/7)/(3/7*exp(1)-1/5) 9204491752612179 a007 Real Root Of 33*x^4-802*x^3+410*x^2+786*x-273 9204491764670331 p004 log(23977/9551) 9204491801661553 a003 sin(Pi*16/43)/sin(Pi*52/105) 9204491802602888 m001 (Pi+Backhouse)/(Totient-Tribonacci) 9204491824250582 a007 Real Root Of -413*x^4-351*x^3-944*x^2-157*x+678 9204491850861294 a007 Real Root Of -492*x^4+506*x^3+420*x^2+640*x+981 9204491853850137 a007 Real Root Of 830*x^4-593*x^3+51*x^2+925*x-250 9204491865651206 m002 4+6/Log[Pi]-Log[Pi]/Pi^3 9204491870134119 k002 Champernowne real with 46*n^2+57*n-94 9204491880809296 r005 Re(z^2+c),c=-11/10+2/63*I,n=10 9204491907846838 m009 (40*Catalan+5*Pi^2-5/6)/(6*Psi(1,3/4)-6) 9204491923631142 a008 Real Root of x^5-2*x^4-10*x^3+17*x^2+23*x-27 9204491939146893 r005 Im(z^2+c),c=-47/74+3/17*I,n=55 9204491944798671 a007 Real Root Of 931*x^4+334*x^3-187*x^2+737*x+429 9204491985679008 a007 Real Root Of 451*x^4-746*x^3-679*x^2+122*x+721 9204492009792448 m001 (MadelungNaCl-Sarnak)/(TwinPrimes+ZetaP(2)) 9204492024542516 m001 Bloch^(3^(1/3))+LandauRamanujan2nd 9204492024839808 a007 Real Root Of -807*x^4+848*x^3+906*x^2+163*x+623 9204492083512886 r005 Re(z^2+c),c=-93/110+17/64*I,n=11 9204492096287340 m002 3+6/Pi+4*ProductLog[Pi] 9204492099695473 m001 (-Rabbit+Weierstrass)/(FeigenbaumB-gamma) 9204492107345498 l006 ln(2956/3241) 9204492108339104 m002 -5-Tanh[Pi]/Pi^6+Pi^4*Tanh[Pi] 9204492149456263 a001 121393/5778*18^(23/45) 9204492155623086 a007 Real Root Of 960*x^4+238*x^3-562*x^2+46*x+15 9204492175304490 k003 Champernowne real with 11/6*n^3-9/2*n^2+35/3*n 9204492211717532 a007 Real Root Of 182*x^4-469*x^3-587*x^2+125*x+116 9204492214640060 r002 21th iterates of z^2 + 9204492222238117 r009 Re(z^3+c),c=-7/24+32/43*I,n=7 9204492227838676 a007 Real Root Of 505*x^4+648*x^3+281*x^2+60*x-40 9204492230508744 r005 Re(z^2+c),c=-17/106+43/55*I,n=54 9204492261203087 r005 Im(z^2+c),c=-85/82+1/10*I,n=19 9204492264080388 m001 1/GAMMA(23/24)*BesselK(1,1)^2*ln(sinh(1))^2 9204492278895648 q001 1967/2137 9204492295283150 a007 Real Root Of -97*x^4-829*x^3+553*x^2-344*x-237 9204492329638467 a001 317811/47*3^(16/57) 9204492385043218 a001 317811/15127*18^(23/45) 9204492407639883 m001 FellerTornier^Paris/(RenyiParking^Paris) 9204492419414893 a001 832040/39603*18^(23/45) 9204492424429652 a001 46347/2206*18^(23/45) 9204492427528944 a001 1346269/64079*18^(23/45) 9204492436849988 m008 (2/3*Pi^2+1/5)/(3/4*Pi^4+3/5) 9204492437201084 m001 FeigenbaumD*ln(Champernowne)*GAMMA(13/24) 9204492437308733 a005 (1/sin(82/203*Pi))^48 9204492440657756 a001 514229/24476*18^(23/45) 9204492453683132 m001 Rabbit/ln(Niven)/Zeta(3)^2 9204492462829140 a007 Real Root Of 230*x^4-285*x^3+900*x^2+819*x-396 9204492530643970 a001 196418/9349*18^(23/45) 9204492538789801 a007 Real Root Of 619*x^4+641*x^3+919*x^2+100*x-631 9204492547107698 m001 (ArtinRank2+Tetranacci)/(1+Si(Pi)) 9204492588534764 r005 Re(z^2+c),c=-7/31+33/41*I,n=23 9204492604289337 a007 Real Root Of 137*x^4-312*x^3-134*x^2-454*x-646 9204492642055496 m001 Zeta(5)^Bloch*cos(1/5*Pi)^Bloch 9204492654224583 r005 Re(z^2+c),c=-11/10+7/225*I,n=10 9204492659409295 a007 Real Root Of -837*x^4+405*x^3+665*x^2+405*x+726 9204492704107947 m001 1/KhintchineHarmonic^2/ln(Artin)/GAMMA(1/4) 9204492706236064 m001 Zeta(1,2)^2*exp(Robbin)*cos(1) 9204492711702304 m001 1/exp(GAMMA(11/12))*Paris^2*exp(1) 9204492733012827 m005 (1/2*exp(1)+2/9)/(1/2*5^(1/2)+3/5) 9204492737432787 m002 -Pi/5+Pi^2*Tanh[Pi] 9204492739869076 b008 Sech[ArcCot[2*(-2+Pi)]] 9204492743845271 a003 sin(Pi*33/91)/sin(Pi*13/29) 9204492772697165 m001 Zeta(3)^GaussAGM/(Zeta(3)^GAMMA(17/24)) 9204492772706530 p003 LerchPhi(1/32,5,202/79) 9204492775950372 a001 377/103682*322^(23/24) 9204492776418420 m002 -Pi^2+Sinh[Pi]/E^Pi+Tanh[Pi]/6 9204492806286837 a007 Real Root Of -910*x^4+485*x^3+757*x^2+315*x+680 9204492810879675 a007 Real Root Of -977*x^4+359*x^3-317*x^2-832*x+484 9204492814717862 a007 Real Root Of -794*x^4+748*x^3+148*x^2-291*x+760 9204492825598773 r005 Im(z^2+c),c=-105/94+5/39*I,n=3 9204492837975839 r005 Im(z^2+c),c=-57/118+13/18*I,n=5 9204492855448893 m005 (1/3*Pi-1/10)/(-9/44+1/22*5^(1/2)) 9204492855612791 r005 Im(z^2+c),c=-109/110+11/42*I,n=24 9204492861031198 a007 Real Root Of -485*x^4+900*x^3+577*x^2+253*x+794 9204492866522852 a007 Real Root Of 196*x^4-77*x^3+89*x^2-228*x-486 9204492871603939 a007 Real Root Of 661*x^4-165*x^3+92*x^2+263*x-439 9204492873134719 k002 Champernowne real with 93/2*n^2+111/2*n-93 9204492876459806 m005 (1/3*Pi-5)/(17/5+2/5*5^(1/2)) 9204492877760890 a007 Real Root Of 146*x^4-547*x^3+193*x^2-770*x+867 9204492988895074 m005 (1/10+1/2*5^(1/2))/(4*Pi+2/3) 9204493030555443 m005 (-7/30+1/6*5^(1/2))/(2/7*5^(1/2)+7/8) 9204493048240619 a007 Real Root Of -333*x^4+374*x^3+451*x^2+485*x+595 9204493062877877 r005 Re(z^2+c),c=-11/10+6/193*I,n=10 9204493073696305 g007 2*Psi(2,1/3)-Psi(2,8/11)-Psi(2,5/9) 9204493104866417 r005 Re(z^2+c),c=-11/10+7/220*I,n=10 9204493118359836 m001 ZetaP(4)*(MertensB2-Zeta(1,-1)) 9204493147418701 a001 75025/3571*18^(23/45) 9204493158051963 m001 (Pi+ln(2)/ln(10)+Psi(2,1/3))*exp(gamma) 9204493163623770 m001 1/exp((3^(1/3)))^2*Niven*cos(Pi/12) 9204493179314510 k003 Champernowne real with 2*n^3-11/2*n^2+27/2*n-1 9204493184279406 p003 LerchPhi(1/2,6,263/176) 9204493198391871 r005 Re(z^2+c),c=-67/56+12/49*I,n=8 9204493218746484 r005 Re(z^2+c),c=-4/21+35/43*I,n=9 9204493230723883 r002 26th iterates of z^2 + 9204493241710288 r002 4th iterates of z^2 + 9204493246798327 a007 Real Root Of -35*x^4-60*x^3-365*x^2+510*x+757 9204493247793498 b008 3*(1+Sqrt[881]) 9204493289870443 m001 cos(1/12*Pi)^GAMMA(2/3)*cos(1/12*Pi)^Zeta(5) 9204493289870443 m001 cos(Pi/12)^GAMMA(2/3)*cos(Pi/12)^Zeta(5) 9204493290885455 p001 sum((-1)^n/(607*n+108)/(25^n),n=0..infinity) 9204493325435493 m005 (1/2*Zeta(3)+1/4)/(3/5*Catalan+3/8) 9204493352499111 a003 cos(Pi*13/63)/sin(Pi*1/3) 9204493365867439 r005 Re(z^2+c),c=-57/64+5/31*I,n=19 9204493398247051 m001 ln(Catalan)*BesselK(1,1)^2/sin(Pi/5)^2 9204493403884799 m001 ZetaR(2)*(LandauRamanujan2nd-Zeta(3)) 9204493413163496 a007 Real Root Of 381*x^4+42*x^3+182*x^2-263*x-637 9204493425950800 a007 Real Root Of -326*x^4+218*x^3-812*x^2-516*x+617 9204493498488236 m001 (BesselI(0,2)-Stephens)/(Tetranacci-ZetaP(4)) 9204493501462170 a007 Real Root Of 957*x^4-573*x^3-300*x^2-83*x-956 9204493525479113 m001 ln(GAMMA(5/6))^2*Magata^2*cos(1) 9204493538639872 m001 1/ln(Khintchine)^2/Cahen^2/GAMMA(13/24)^2 9204493544968800 a007 Real Root Of 49*x^4-387*x^3+870*x^2+653*x-473 9204493550691566 m001 1/ln(LambertW(1))^2*Paris/gamma^2 9204493568582939 a007 Real Root Of -83*x^4+416*x^3+516*x^2+264*x-945 9204493570334069 m001 (Bloch+FeigenbaumC)/(Riemann3rdZero+Trott) 9204493572056951 a005 (1/cos(18/217*Pi))^668 9204493578022190 a007 Real Root Of 909*x^4-323*x^3-830*x^2-354*x-527 9204493640878669 m001 1/exp(sin(1))^2/ArtinRank2*sin(Pi/5)^2 9204493673096254 r005 Re(z^2+c),c=-11/10+5/157*I,n=10 9204493677614312 r005 Re(z^2+c),c=-11/10+5/161*I,n=10 9204493685149492 m001 BesselJ(0,1)*Riemann2ndZero/ZetaP(3) 9204493696867255 a007 Real Root Of -74*x^4-775*x^3-919*x^2-609*x-946 9204493715043852 a003 sin(Pi*17/115)/cos(Pi*23/68) 9204493717793359 m004 -6+25/Pi+(25*Sqrt[5]*Pi)/Log[Sqrt[5]*Pi] 9204493753330485 a007 Real Root Of -572*x^4+532*x^3-357*x^2-328*x+826 9204493757265209 a001 29/21*832040^(22/27) 9204493773028451 a003 cos(Pi*26/113)+cos(Pi*49/110) 9204493783768883 a003 sin(Pi*30/77)*sin(Pi*33/76) 9204493791668439 r005 Im(z^2+c),c=-11/10+19/159*I,n=3 9204493842902030 r005 Re(z^2+c),c=11/70+12/29*I,n=27 9204493846174728 m005 (1/4*Pi-3/5)/(2^(1/2)+3/5) 9204493862829505 r001 46i'th iterates of 2*x^2-1 of 9204493876135319 k002 Champernowne real with 47*n^2+54*n-92 9204493876135419 k004 Champernowne real with floor(Pi*(15*n^2+17*n-29)) 9204493879225519 a007 Real Root Of -409*x^4+426*x^3+196*x^2+248*x+688 9204493910651886 m001 1/2*Totient/MertensB1/Pi*GAMMA(5/6) 9204493915295328 a007 Real Root Of 499*x^4-758*x^3-115*x^2+932*x+6 9204493921480749 r005 Im(z^2+c),c=41/106+5/17*I,n=9 9204493921767930 a007 Real Root Of -869*x^4-77*x^3-550*x^2-469*x+598 9204493943551071 m001 (BesselK(1,1)+BesselI(0,2))/(Otter+ZetaP(3)) 9204493960409936 a007 Real Root Of 189*x^4-135*x^3+964*x^2+683*x-429 9204494034205709 m001 5^(1/2)-AlladiGrinstead*Riemann1stZero 9204494036895982 m001 (Porter+TreeGrowth2nd)/(ln(Pi)+Zeta(1,2)) 9204494053735282 a007 Real Root Of -663*x^4+330*x^3+863*x^2+881*x+813 9204494058590705 m006 (3/4*exp(Pi)+1/3)/(3/5*Pi^2-4) 9204494080434370 m001 1/ln(FeigenbaumC)*Bloch^2*Riemann3rdZero 9204494089785591 m005 (1/2*Pi-5/6)/(3*exp(1)-1/7) 9204494094241837 r002 35th iterates of z^2 + 9204494125387097 a007 Real Root Of -937*x^4-534*x^3-961*x^2-109*x+970 9204494182117305 r002 46th iterates of z^2 + 9204494183050134 r005 Re(z^2+c),c=-3/20+49/61*I,n=36 9204494183324530 k003 Champernowne real with 13/6*n^3-13/2*n^2+46/3*n-2 9204494193910262 a007 Real Root Of -164*x^4+489*x^3-533*x^2+849*x-74 9204494199216546 a007 Real Root Of -244*x^4+455*x^3-642*x^2-454*x+656 9204494207579529 r005 Re(z^2+c),c=-11/10+8/251*I,n=10 9204494210437710 a001 521/8*21^(5/44) 9204494218950013 m001 (Bloch-FeigenbaumC)/(Sarnak-Stephens) 9204494254794123 a007 Real Root Of -995*x^4-123*x^3-859*x^2-565*x+826 9204494283673490 a007 Real Root Of 874*x^4-252*x^3+33*x^2+417*x-468 9204494324105627 a007 Real Root Of -589*x^4+960*x^3+748*x^2-381*x+187 9204494324311128 a007 Real Root Of 581*x^4-679*x^3-502*x^2+789*x+205 9204494340902114 m001 Conway^2/exp(Champernowne)^2/(3^(1/3)) 9204494382022471 q001 2048/2225 9204494392862289 m005 (1/3*3^(1/2)-1/6)/(4/5*gamma+4) 9204494393832010 m001 (Totient-Trott2nd)/(arctan(1/3)-MadelungNaCl) 9204494408476586 a007 Real Root Of -41*x^4+790*x^3+44*x^2+229*x+819 9204494481626060 m001 (1+ln(2)/ln(10))/Riemann1stZero 9204494495981886 r002 51th iterates of z^2 + 9204494502412475 g004 Im(GAMMA(-23/10+I*29/6)) 9204494506615968 a007 Real Root Of 974*x^4-285*x^3+315*x^2+399*x-821 9204494525206874 r005 Re(z^2+c),c=-77/122+14/31*I,n=13 9204494565032685 m008 (2/5*Pi+1/6)/(5*Pi^3-2/5) 9204494591749765 a007 Real Root Of 673*x^4-60*x^3+374*x^2-160*x-994 9204494605746688 m005 (1/2*gamma-9/11)/(1/6*Zeta(3)+3/8) 9204494675911648 a007 Real Root Of -820*x^4-493*x^3-854*x^2-683*x+299 9204494690839180 m001 cos(1)/BesselJ(0,1)*Conway 9204494692005106 r005 Re(z^2+c),c=-11/10+4/129*I,n=10 9204494724157292 a007 Real Root Of 914*x^4+767*x^3+425*x^2-633*x+54 9204494734379269 m001 (-Otter+ThueMorse)/(BesselI(1,1)-sin(1)) 9204494829636612 m001 (Catalan-Salem)^(Pi^(1/2)) 9204494832585743 a007 Real Root Of 476*x^4-747*x^3-103*x^2+931*x+20 9204494851123616 a003 sin(Pi*29/108)/cos(Pi*55/116) 9204494858615405 m006 (3/4*Pi^2+5/6)/(ln(Pi)-1/4) 9204494862547952 a007 Real Root Of -326*x^4+930*x^3+656*x^2-138*x-920 9204494879135919 k002 Champernowne real with 95/2*n^2+105/2*n-91 9204494884350234 a007 Real Root Of -950*x^4-755*x^3-356*x^2-858*x-395 9204494893752987 a007 Real Root Of -31*x^4-321*x^3-441*x^2-951*x+800 9204494923540291 r008 a(0)=1,K{-n^6,50-18*n-8*n^2-12*n^3} 9204494936592710 a008 Real Root of (-6+5*x+6*x^2-x^3+2*x^4-5*x^5) 9204494937892307 a007 Real Root Of 402*x^4-879*x^3-330*x^2+887*x+122 9204494964595776 m001 (sin(1)+ln(Pi))/(KhinchinHarmonic+ThueMorse) 9204494971352740 a007 Real Root Of 852*x^4-236*x^3+275*x^2+596*x-480 9204494993084922 m001 KhinchinLevy^TwinPrimes/(KhinchinLevy^ln(Pi)) 9204495011556728 a007 Real Root Of 522*x^4-899*x^3-88*x^2+978*x-101 9204495038226040 a007 Real Root Of 805*x^4+362*x^3+89*x^2+554*x+139 9204495040010895 r005 Re(z^2+c),c=-5/4+80/237*I,n=15 9204495057765115 a007 Real Root Of 404*x^4-651*x^3-685*x^2-117*x-325 9204495084685421 m005 (1/2*Zeta(3)-7/8)/(1/3*3^(1/2)-7/8) 9204495086746607 a007 Real Root Of 352*x^4-141*x^3+540*x^2+539*x-324 9204495110229101 r005 Re(z^2+c),c=3/106+17/40*I,n=35 9204495119855164 h001 (4/7*exp(1)+1/3)/(1/6*exp(2)+9/11) 9204495132388381 a007 Real Root Of -694*x^4+858*x^3+199*x^2-545*x+497 9204495176406213 r005 Re(z^2+c),c=-11/10+3/94*I,n=10 9204495183300777 a008 Real Root of x^4-x^3+22*x^2-52*x-68 9204495187334550 k003 Champernowne real with 7/3*n^3-15/2*n^2+103/6*n-3 9204495193184125 a007 Real Root Of 343*x^4+323*x^3-41*x^2-485*x-406 9204495232806398 m001 (ln(5)+cos(1/12*Pi))/(Backhouse-Salem) 9204495242206844 a007 Real Root Of -737*x^4+965*x^3-60*x^2-498*x+874 9204495258002514 m005 (1/4*2^(1/2)+2)/(1/4*gamma-2/5) 9204495309904219 a007 Real Root Of -954*x^4-495*x^3-166*x^2+357*x+768 9204495317178041 h001 (1/2*exp(1)+8/11)/(2/3*exp(1)+5/11) 9204495317178041 m005 (1/2*exp(1)+8/11)/(2/3*exp(1)+5/11) 9204495320502364 m001 (GAMMA(13/24)+ZetaP(3))/(Catalan+GAMMA(11/12)) 9204495320712472 a001 89/3571*199^(15/22) 9204495337042917 m001 Zeta(7)^2/exp(Zeta(3))^2*Zeta(9) 9204495343827921 a007 Real Root Of 682*x^4+722*x^3+806*x^2+8*x-602 9204495365924240 h001 (-4*exp(-1)+5)/(-6*exp(2)+6) 9204495370790987 m005 (4/5*Catalan-3/5)/(5*exp(1)+5/6) 9204495384830103 m005 (1/2*exp(1)+3/10)/(8/9*2^(1/2)+6/11) 9204495409796078 m001 ZetaR(2)^((1+3^(1/2))^(1/2))/(ZetaR(2)^ln(5)) 9204495466327875 a007 Real Root Of -518*x^4+585*x^3-250*x^2-945*x+170 9204495483604446 r005 Re(z^2+c),c=-11/10+7/226*I,n=10 9204495511936674 r005 Re(z^2+c),c=-87/106+11/52*I,n=9 9204495521317290 m001 (arctan(1/3)-gamma)/(-FeigenbaumMu+Kolakoski) 9204495542875448 a003 sin(Pi*1/22)*sin(Pi*15/67) 9204495556348318 a007 Real Root Of 806*x^4+749*x^3+693*x^2+307*x-299 9204495565233834 r002 12th iterates of z^2 + 9204495565894026 a007 Real Root Of 398*x^4+796*x^3+719*x^2-592*x-819 9204495571031671 m001 LaplaceLimit*FransenRobinson*ln(GAMMA(13/24)) 9204495582968033 p001 sum((-1)^n/(550*n+333)/n/(12^n),n=1..infinity) 9204495645396566 a007 Real Root Of 923*x^4-445*x^3-67*x^2-35*x-985 9204495678810688 a007 Real Root Of -963*x^4-750*x^3-428*x^2-126*x+353 9204495696417543 a007 Real Root Of -873*x^4+258*x^3+198*x^2+x+661 9204495698848774 a007 Real Root Of -74*x^4-609*x^3+654*x^2-81*x+97 9204495699011178 a007 Real Root Of 428*x^4-93*x^3-791*x^2-749*x-399 9204495768459602 m001 (Trott-Trott2nd)/(Zeta(3)+Gompertz) 9204495781150847 h001 (1/5*exp(2)+2/3)/(7/11*exp(1)+3/5) 9204495792805443 m001 Chi(1)^(HardyLittlewoodC3/FeigenbaumKappa) 9204495809685292 r009 Im(z^3+c),c=-59/102+29/54*I,n=5 9204495814676603 p004 log(12409/4943) 9204495817084178 m001 (Otter-TwinPrimes)/(FeigenbaumC+LaplaceLimit) 9204495823821995 a001 123/196418*987^(23/59) 9204495842197018 a007 Real Root Of -23*x^4+834*x^3-521*x^2-474*x+672 9204495842471435 a007 Real Root Of 927*x^4+105*x^3+744*x^2+379*x-865 9204495862365748 a007 Real Root Of 679*x^4-658*x^3-968*x^2-963*x-81 9204495870020677 m001 (GAMMA(2/3)-Zeta(1/2))/(BesselI(1,2)+Porter) 9204495882136519 k002 Champernowne real with 48*n^2+51*n-90 9204495882695273 a001 610/64079*322^(19/24) 9204495889595658 a007 Real Root Of -32*x^4+419*x^3-833*x^2+981*x-501 9204495891158536 m005 (-19/36+1/4*5^(1/2))/(3/7*2^(1/2)-4) 9204495896912631 r005 Im(z^2+c),c=-133/122+5/46*I,n=35 9204495903551932 m001 MinimumGamma/Lehmer*exp(log(2+sqrt(3))) 9204495934619003 m001 (KomornikLoreti+Mills)/(Pi+Ei(1,1)) 9204495951913472 a007 Real Root Of 414*x^4-860*x^3-795*x^2-456*x-714 9204495961492050 a007 Real Root Of 153*x^4-354*x^3-722*x^2-480*x-216 9204495966124503 a007 Real Root Of -422*x^4+68*x^3-234*x^2-865*x-242 9204495972436954 a001 233/3571*322^(11/24) 9204495984139356 r002 22th iterates of z^2 + 9204495989040179 a005 (1/cos(38/229*Pi))^371 9204496070591487 m002 -4/Pi^6-Pi^4+5*ProductLog[Pi] 9204496087610694 a007 Real Root Of 289*x^4-78*x^3+565*x^2+340*x-434 9204496090750177 a001 7/144*2^(35/38) 9204496134600503 r009 Im(z^3+c),c=-67/110+23/45*I,n=59 9204496138738702 m001 Paris^(Mills*Trott2nd) 9204496153917476 p004 log(11927/4751) 9204496191344570 k003 Champernowne real with 5/2*n^3-17/2*n^2+19*n-4 9204496236748694 r008 a(0)=0,K{-n^6,-85-13*n^3+15*n^2-26*n} 9204496288076308 m001 exp(1)*ZetaQ(4)+Catalan 9204496296559414 a007 Real Root Of 534*x^4+183*x^3+343*x^2-957*x+85 9204496311651286 a007 Real Root Of -322*x^4+549*x^3+59*x^2-512*x+138 9204496325118893 q001 2129/2313 9204496333100791 a007 Real Root Of -487*x^4+835*x^3-455*x^2-651*x+787 9204496357438109 r005 Re(z^2+c),c=11/32+10/29*I,n=24 9204496372539867 m005 (1/3*gamma-1/8)/(-8/99+4/11*5^(1/2)) 9204496404346087 r005 Re(z^2+c),c=-11/10+7/219*I,n=10 9204496412130224 a007 Real Root Of 363*x^4-49*x^3+892*x^2+396*x-690 9204496412448584 l006 ln(7167/7858) 9204496433821804 m001 arctan(1/3)^QuadraticClass*Riemann3rdZero 9204496436675207 p001 sum((-1)^n/(281*n+166)/n/(24^n),n=1..infinity) 9204496441723701 a001 987/167761*322^(7/8) 9204496499102613 r005 Re(z^2+c),c=-113/126+19/63*I,n=3 9204496527285030 m001 (gamma+LandauRamanujan2nd*Niven)/Niven 9204496540964903 r002 23th iterates of z^2 + 9204496553314349 a007 Real Root Of -493*x^4+742*x^3+766*x^2-735*x-393 9204496571261077 a007 Real Root Of 776*x^4-217*x^3-273*x^2+931*x+362 9204496582893646 a007 Real Root Of 433*x^4-577*x^3+92*x^2+783*x-118 9204496583091099 r005 Re(z^2+c),c=17/70+25/54*I,n=21 9204496617225061 r005 Im(z^2+c),c=33/82+5/16*I,n=8 9204496624864454 r005 Re(z^2+c),c=-11/10+3/97*I,n=10 9204496660429170 a007 Real Root Of -76*x^4-607*x^3+802*x^2-358*x+924 9204496676621023 m001 1/RenyiParking^2*Niven^2/exp(sqrt(3)) 9204496685613089 a007 Real Root Of -944*x^4+331*x^3+756*x^2+405*x+668 9204496688080345 a007 Real Root Of 30*x^4-349*x^3+956*x^2+721*x-440 9204496713719501 r005 Im(z^2+c),c=-7/12+16/103*I,n=20 9204496737321412 r005 Im(z^2+c),c=-37/70+30/59*I,n=48 9204496756594401 m001 (-GAMMA(17/24)+2/3)/(exp(1)+4) 9204496757419005 a007 Real Root Of -878*x^4+941*x^3+770*x^2-620*x+141 9204496758186771 p001 sum(1/(400*n+119)/(3^n),n=0..infinity) 9204496768165061 m001 PlouffeB^gamma*Riemann1stZero 9204496782711286 h001 (-8*exp(1)+1)/(-4*exp(4)-7) 9204496795539944 r005 Re(z^2+c),c=13/86+7/33*I,n=23 9204496882931962 r002 45th iterates of z^2 + 9204496885137119 k002 Champernowne real with 97/2*n^2+99/2*n-89 9204496907557366 m001 Champernowne^HardHexagonsEntropy*Niven 9204496914111390 m005 (1/3*exp(1)+1/8)/(11/12*Pi-4) 9204496920892225 h001 (-2*exp(-2)+7)/(-9*exp(-1)-4) 9204496979416374 b008 Pi^2-Erfc[-2]/3 9204496999461475 m001 BesselK(0,1)*Khintchine^2*ln(GAMMA(2/3)) 9204497005139784 r002 53th iterates of z^2 + 9204497015672026 m001 1/FeigenbaumD/ln(Kolakoski)^2/BesselJ(0,1) 9204497016560881 b008 -3+E+ProductLog[4] 9204497032755148 a007 Real Root Of -221*x^4+192*x^3-328*x^2+154*x+728 9204497047950344 a003 sin(Pi*2/79)-sin(Pi*55/111) 9204497086008545 r009 Im(z^3+c),c=-29/82+1/22*I,n=20 9204497157534355 p001 sum(1/(438*n+1)/n/(25^n),n=1..infinity) 9204497180650360 a007 Real Root Of 941*x^4-152*x^3+62*x^2+861*x-54 9204497185656651 m001 (sin(1/5*Pi)+ln(2))/(MasserGramain-TwinPrimes) 9204497190450878 m001 Kolakoski/(GaussKuzminWirsing^Champernowne) 9204497195354590 k003 Champernowne real with 8/3*n^3-19/2*n^2+125/6*n-5 9204497207644694 a007 Real Root Of 843*x^4-237*x^3-986*x^2+521*x+525 9204497235523259 r005 Re(z^2+c),c=-2/21+19/29*I,n=7 9204497237154826 r005 Im(z^2+c),c=3/28+25/26*I,n=3 9204497239970883 a007 Real Root Of 361*x^4-550*x^3-684*x^2-874*x-913 9204497242937135 r002 57th iterates of z^2 + 9204497248976606 m001 (exp(1)+FeigenbaumDelta)/(-OneNinth+Trott2nd) 9204497291421317 r005 Re(z^2+c),c=-9/14+142/229*I,n=5 9204497307158450 m001 (exp(1/exp(1))-exp(Pi))/CopelandErdos 9204497309188350 a007 Real Root Of 826*x^4+340*x^3+524*x^2+230*x-560 9204497320138192 r005 Re(z^2+c),c=-1/24+34/45*I,n=39 9204497320337756 m001 (HardyLittlewoodC5+Magata)/PrimesInBinary 9204497358039777 p001 sum((-1)^n/(487*n+395)/n/(12^n),n=1..infinity) 9204497374857824 a001 28657/1364*18^(23/45) 9204497386973209 a007 Real Root Of 879*x^4+11*x^3+460*x^2+552*x-504 9204497410794410 r005 Re(z^2+c),c=-11/10+4/125*I,n=10 9204497411888930 m001 (Salem+Thue)/(Bloch-FeigenbaumD) 9204497422302372 m005 (1/2*Zeta(3)-6/11)/(1/3*Catalan-10/11) 9204497472350798 a007 Real Root Of -464*x^4-177*x^3-447*x^2-217*x+374 9204497523426952 m004 -625/Pi+15*Sqrt[5]*Pi+ProductLog[Sqrt[5]*Pi] 9204497525200031 m001 Conway^2*Artin^2*exp(GAMMA(2/3)) 9204497536801283 a007 Real Root Of -880*x^4+34*x^3-551*x^2-792*x+396 9204497557498443 a001 1/5473*377^(37/56) 9204497562245878 m001 (-FeigenbaumD+Robbin)/(ln(2)/ln(10)+Ei(1)) 9204497562523814 s003 concatenated sequence A140596 9204497574476262 a007 Real Root Of -48*x^4-334*x^3+921*x^2-633*x+222 9204497582064921 a007 Real Root Of -778*x^4-694*x^3-913*x^2-91*x+707 9204497593294980 r002 17th iterates of z^2 + 9204497632363052 m002 -Pi^4+5/Log[Pi]+Tanh[Pi] 9204497643035577 a007 Real Root Of -812*x^4+581*x^3+910*x^2-164*x+114 9204497660177040 a007 Real Root Of 432*x^4+22*x^3-112*x^2+804*x+542 9204497662169087 a007 Real Root Of 225*x^4+175*x^3+24*x^2-696*x-686 9204497672961959 p001 sum(1/(601*n+11)/(2^n),n=0..infinity) 9204497684279521 a007 Real Root Of 440*x^4+937*x^3+862*x^2-644*x-6 9204497713676197 r002 57th iterates of z^2 + 9204497790413132 a007 Real Root Of 25*x^4+196*x^3-347*x^2-239*x+597 9204497799928169 m006 (1/3*Pi^2+1/3)/(1/5/Pi-4) 9204497810601541 r005 Im(z^2+c),c=-17/26+16/115*I,n=24 9204497821624773 m001 Riemann3rdZero*MadelungNaCl/exp(GAMMA(7/24))^2 9204497837942051 l006 ln(3983/9999) 9204497861323437 r005 Im(z^2+c),c=-133/118+4/35*I,n=31 9204497875374692 h001 (2/7*exp(1)+7/12)/(1/3*exp(1)+4/7) 9204497888137719 k002 Champernowne real with 49*n^2+48*n-88 9204497910791617 r002 2th iterates of z^2 + 9204497934446064 m001 GAMMA(2/3)*(exp(-1/2*Pi)+Bloch) 9204497937733462 r002 60i'th iterates of 2*x/(1-x^2) of 9204497953496391 r005 Im(z^2+c),c=-25/18+1/194*I,n=23 9204497963310690 a007 Real Root Of 480*x^4-672*x^3-775*x^2+503*x+251 9204498011752929 r005 Re(z^2+c),c=-23/25+2/29*I,n=13 9204498019562207 m001 1/ln(RenyiParking)^2*LaplaceLimit*sinh(1) 9204498024182422 a007 Real Root Of 905*x^4+352*x^3+789*x^2+282*x-784 9204498055451153 a001 34/5779*322^(7/8) 9204498083659577 m001 (Si(Pi)-cos(1/5*Pi))/(-Kolakoski+Tetranacci) 9204498095235593 l006 ln(3887/9758) 9204498102036092 m001 1/GAMMA(1/12)^2*exp(FeigenbaumD)/Zeta(3) 9204498125780924 q001 221/2401 9204498125780924 r002 2th iterates of z^2 + 9204498170887236 r005 Re(z^2+c),c=-109/122+7/55*I,n=20 9204498179245960 s002 sum(A175282[n]/(exp(n)+1),n=1..infinity) 9204498199364610 k003 Champernowne real with 17/6*n^3-21/2*n^2+68/3*n-6 9204498200802297 m001 StronglyCareFree/Zeta(1/2)/gamma 9204498233638746 a007 Real Root Of 740*x^4+669*x^3+488*x^2+64*x-364 9204498290890815 a001 6765/1149851*322^(7/8) 9204498325240999 a001 17711/3010349*322^(7/8) 9204498330252623 a001 11592/1970299*322^(7/8) 9204498330983809 a001 121393/20633239*322^(7/8) 9204498331090488 a001 317811/54018521*322^(7/8) 9204498331106052 a001 208010/35355581*322^(7/8) 9204498331108323 a001 2178309/370248451*322^(7/8) 9204498331108654 a001 5702887/969323029*322^(7/8) 9204498331108702 a001 196452/33391061*322^(7/8) 9204498331108709 a001 39088169/6643838879*322^(7/8) 9204498331108711 a001 102334155/17393796001*322^(7/8) 9204498331108711 a001 66978574/11384387281*322^(7/8) 9204498331108711 a001 701408733/119218851371*322^(7/8) 9204498331108711 a001 1836311903/312119004989*322^(7/8) 9204498331108711 a001 1201881744/204284540899*322^(7/8) 9204498331108711 a001 12586269025/2139295485799*322^(7/8) 9204498331108711 a001 32951280099/5600748293801*322^(7/8) 9204498331108711 a001 1135099622/192933544679*322^(7/8) 9204498331108711 a001 139583862445/23725150497407*322^(7/8) 9204498331108711 a001 53316291173/9062201101803*322^(7/8) 9204498331108711 a001 10182505537/1730726404001*322^(7/8) 9204498331108711 a001 7778742049/1322157322203*322^(7/8) 9204498331108711 a001 2971215073/505019158607*322^(7/8) 9204498331108711 a001 567451585/96450076809*322^(7/8) 9204498331108711 a001 433494437/73681302247*322^(7/8) 9204498331108711 a001 165580141/28143753123*322^(7/8) 9204498331108711 a001 31622993/5374978561*322^(7/8) 9204498331108714 a001 24157817/4106118243*322^(7/8) 9204498331108732 a001 9227465/1568397607*322^(7/8) 9204498331108859 a001 1762289/299537289*322^(7/8) 9204498331109726 a001 1346269/228826127*322^(7/8) 9204498331115671 a001 514229/87403803*322^(7/8) 9204498331156419 a001 98209/16692641*322^(7/8) 9204498331435707 a001 75025/12752043*322^(7/8) 9204498333349977 a001 28657/4870847*322^(7/8) 9204498346470580 a001 5473/930249*322^(7/8) 9204498358210461 m005 (1/3*gamma+1/3)/(2*Pi-4/7) 9204498358437298 m005 (1/2*3^(1/2)-2/5)/(11/12*Catalan-1/3) 9204498358554200 m001 (BesselK(0,1)-Chi(1))/(-Ei(1)+3^(1/3)) 9204498365560085 l006 ln(3791/9517) 9204498373133452 a007 Real Root Of 109*x^4+976*x^3-296*x^2-514*x-935 9204498381727804 a007 Real Root Of -600*x^4-886*x^3-337*x^2+305*x+306 9204498384470389 a007 Real Root Of 627*x^4-984*x^3+526*x^2+829*x-900 9204498385003215 r005 Re(z^2+c),c=-11/10+5/162*I,n=10 9204498406152993 a003 sin(Pi*1/63)-sin(Pi*19/45) 9204498415710036 a007 Real Root Of -86*x^4-730*x^3+631*x^2+522*x-628 9204498427220025 r002 28th iterates of z^2 + 9204498436400529 a001 4181/710647*322^(7/8) 9204498450657289 a007 Real Root Of -569*x^4+902*x^3+894*x^2+420*x+741 9204498462164366 a007 Real Root Of 944*x^4-873*x^3-765*x^2-41*x-748 9204498462821701 a007 Real Root Of -962*x^4-408*x^3-554*x^2-783*x+121 9204498502478455 m001 (exp(1)+Shi(1))/(-BesselK(0,1)+Trott) 9204498540153108 r005 Im(z^2+c),c=-89/82+6/53*I,n=3 9204498573945976 m001 (3^(1/2)+arctan(1/3))/(LandauRamanujan+Porter) 9204498576216299 a007 Real Root Of -483*x^4-162*x^3-879*x^2-791*x+237 9204498608723013 m001 Lehmer/exp(CareFree)*Pi 9204498644331444 r009 Re(z^3+c),c=-11/58+31/44*I,n=45 9204498646619356 s002 sum(A054469[n]/(n^3*2^n+1),n=1..infinity) 9204498649931201 l006 ln(3695/9276) 9204498680909357 a007 Real Root Of -750*x^4+441*x^3+554*x^2+250*x+643 9204498694237700 m001 cos(1/5*Pi)^(MertensB3/Magata) 9204498732093052 a007 Real Root Of 487*x^4-10*x^3-95*x^2-627*x-854 9204498737921256 r002 2th iterates of z^2 + 9204498748089559 s002 sum(A125184[n]/((2^n+1)/n),n=1..infinity) 9204498781743127 r005 Re(z^2+c),c=-11/10+1/37*I,n=22 9204498789270462 s002 sum(A259434[n]/(exp(n)),n=1..infinity) 9204498795137697 r002 3th iterates of z^2 + 9204498891138319 k002 Champernowne real with 99/2*n^2+93/2*n-87 9204498892192665 r009 Im(z^3+c),c=-15/28+3/5*I,n=11 9204498892536869 h001 (7/8*exp(2)+3/8)/(10/11*exp(2)+5/7) 9204498923554291 a007 Real Root Of -430*x^4+864*x^3+969*x^2-849*x-620 9204498944481615 r005 Re(z^2+c),c=-11/10+5/156*I,n=10 9204498947949078 b008 EllipticPi[-1/10,-5] 9204498949472981 l006 ln(3599/9035) 9204498959367975 r002 15i'th iterates of 2*x/(1-x^2) of 9204498962839446 b008 (2*EulerGamma)^(-EulerGamma) 9204499008583439 a007 Real Root Of 523*x^4+394*x^3+562*x^2-54*x-594 9204499045222509 a007 Real Root Of 54*x^4+401*x^3-944*x^2-636*x-773 9204499047056392 m001 2*Pi/GAMMA(5/6)*(Kolakoski+Thue) 9204499052789567 a001 1597/271443*322^(7/8) 9204499070385816 r002 35th iterates of z^2 + 9204499081354555 m005 (1/2*Pi-1/12)/(1/5*2^(1/2)-4/9) 9204499082228188 m003 1/4+(257*Sqrt[5])/512+Tan[1/2+Sqrt[5]/2]/2 9204499110444602 a007 Real Root Of -274*x^4+531*x^3-137*x^2-970*x-166 9204499115013489 r005 Re(z^2+c),c=-15/56+33/61*I,n=3 9204499175225825 r005 Im(z^2+c),c=-87/70+4/53*I,n=27 9204499181078852 a007 Real Root Of -765*x^4-43*x^3-451*x^2-268*x+651 9204499196549270 r005 Re(z^2+c),c=-11/10+7/227*I,n=10 9204499203374630 k003 Champernowne real with 3*n^3-23/2*n^2+49/2*n-7 9204499265432686 l006 ln(3503/8794) 9204499268816782 a007 Real Root Of -523*x^4-796*x^3+203*x^2+813*x+331 9204499285788431 r002 16th iterates of z^2 + 9204499330210814 a007 Real Root Of -767*x^4-736*x^3-349*x^2+720*x+935 9204499345346796 r005 Im(z^2+c),c=-8/11+18/55*I,n=10 9204499346153738 a007 Real Root Of 96*x^4+915*x^3+253*x^2-293*x+330 9204499358586487 a007 Real Root Of 988*x^4+95*x^3+196*x^2+966*x+88 9204499364518629 m001 Thue^(Pi*csc(11/24*Pi)/GAMMA(13/24))+ZetaP(3) 9204499364521208 g005 Pi^(1/2)*GAMMA(8/9)*GAMMA(2/9)/GAMMA(1/9) 9204499393905903 g001 Psi(3/10,65/111) 9204499429049593 m006 (5/6*exp(Pi)+4/5)/(2/5*exp(2*Pi)+4) 9204499434350974 m001 (3^(1/2)-BesselI(1,1))/(Cahen+GolombDickman) 9204499434506114 l006 ln(4211/4617) 9204499461310442 m001 (GaussAGM+Mills)/(ln(2^(1/2)+1)+exp(1/exp(1))) 9204499492490698 m005 (1/2*2^(1/2)-6/11)/(3/4+9/20*5^(1/2)) 9204499494707376 h001 (6/7*exp(1)+2/11)/(2/3*exp(1)+11/12) 9204499511433582 m001 2^(1/2)/cos(1/12*Pi)/BesselI(1,2) 9204499511433582 m001 sqrt(2)/cos(Pi/12)/BesselI(1,2) 9204499512947202 s002 sum(A286483[n]/(n*exp(pi*n)-1),n=1..infinity) 9204499526208064 m001 1/Robbin^2/Riemann2ndZero^2*exp(gamma) 9204499565027968 r002 33th iterates of z^2 + 9204499568262483 a001 233/521*322^(1/8) 9204499599198151 l006 ln(3407/8553) 9204499612077365 a007 Real Root Of 986*x^4+651*x^3+313*x^2+575*x+64 9204499666903209 a003 cos(Pi*9/38)+cos(Pi*41/93) 9204499682470558 a007 Real Root Of -795*x^4+733*x^3+858*x^2+218*x+616 9204499687119870 a007 Real Root Of -208*x^4+898*x^3-95*x^2+44*x-511 9204499703999230 a007 Real Root Of 509*x^4-98*x^3-783*x^2-433*x+773 9204499707115779 r005 Im(z^2+c),c=-25/18+36/229*I,n=7 9204499715040476 m002 -3-Pi-Pi^4+Sinh[Pi]*Tanh[Pi] 9204499726848575 m005 (1/2*gamma-1/2)/(1/2*3^(1/2)-7/11) 9204499736103641 b008 33/4+Erf[Sqrt[2]] 9204499736990841 a007 Real Root Of 146*x^4-111*x^3+508*x^2-286*x-885 9204499738045322 m001 ln(GAMMA(17/24))^2*Cahen/GAMMA(5/24) 9204499742199060 a001 1/4*1597^(22/45) 9204499765598948 a007 Real Root Of 863*x^4-95*x^3-113*x^2+455*x-179 9204499766508929 m001 (-Ei(1,1)+Riemann3rdZero)/(Si(Pi)+sin(1)) 9204499766726279 a007 Real Root Of 612*x^4-805*x^3+290*x^2-940*x+808 9204499799116110 q001 2291/2489 9204499881186327 m001 1/FeigenbaumB^2/Kolakoski^2*ln(Zeta(9))^2 9204499885443136 a003 cos(Pi*8/115)*sin(Pi*29/74) 9204499894138919 k002 Champernowne real with 50*n^2+45*n-86 9204499895139119 k004 Champernowne real with floor(Pi*(16*n^2+14*n-27)) 9204499896488391 a007 Real Root Of -831*x^4+941*x^3+176*x^2+433*x-685 9204499920027935 a007 Real Root Of -126*x^4+968*x^3+474*x^2-490*x-615 9204499925237604 m001 (-BesselJ(1,1)+Champernowne)/(2^(1/3)-Catalan) 9204499952318170 l006 ln(3311/8312)