9323700031027989 a003 sin(Pi*33/85)*sin(Pi*55/119) 9323700068918164 m001 ln((2^(1/3)))/LaplaceLimit^2*sqrt(Pi) 9323700070959023 r005 Im(z^2+c),c=-127/94+7/37*I,n=3 9323700106611761 m001 Zeta(1,2)^(exp(1/Pi)/BesselI(0,1)) 9323700114016432 k002 Champernowne real with 63/2*n^2+439/2*n-242 9323700117781130 a007 Real Root Of -776*x^4+766*x^3-41*x^2-903*x+401 9323700134309767 m005 (1/2*exp(1)+1/2)/(5/7*Pi-1/4) 9323700188595468 m001 Kolakoski/Magata/Riemann3rdZero 9323700189745754 m001 (3^(1/2)+Pi^(1/2))/(GAMMA(19/24)+Sierpinski) 9323700238784808 r002 5th iterates of z^2 + 9323700284241776 r005 Re(z^2+c),c=-53/58+5/38*I,n=39 9323700285815217 m005 (1/2*gamma+3/10)/(1/7*2^(1/2)-5/6) 9323700287258700 r005 Im(z^2+c),c=-17/26+13/29*I,n=54 9323700325800692 m001 CareFree*(RenyiParking+Stephens) 9323700339856506 m001 (3^(1/2)+Ei(1,1))/(-Zeta(1,-1)+Tetranacci) 9323700340245639 m001 (ln(3)+sin(1/12*Pi))/(gamma(1)+GAMMA(7/12)) 9323700353797106 r005 Im(z^2+c),c=-23/58+8/53*I,n=27 9323700357854353 r005 Im(z^2+c),c=-11/15+2/53*I,n=41 9323700361987393 a007 Real Root Of 749*x^4-194*x^3-592*x^2-379*x-562 9323700414877380 a007 Real Root Of 909*x^4-10*x^3-143*x^2+418*x-181 9323700430316696 a003 cos(Pi*7/107)*cos(Pi*7/71) 9323700445329767 m001 (CareFree+FeigenbaumB)/(5^(1/2)-sin(1/5*Pi)) 9323700513102664 a007 Real Root Of 949*x^4+540*x^3+306*x^2+318*x-249 9323700522265400 r005 Im(z^2+c),c=41/118+17/31*I,n=31 9323700559537708 a007 Real Root Of -8*x^4-746*x^3-8*x^2+160*x+205 9323700569568171 a007 Real Root Of 922*x^4-455*x^3-332*x^2-73*x-845 9323700581563899 a007 Real Root Of -626*x^4+557*x^3+592*x^2-312*x+119 9323700581624084 r005 Im(z^2+c),c=-1/94+3/31*I,n=6 9323700591995200 a001 843/233*144^(4/21) 9323700610544339 a008 Real Root of (-8+4*x-x^2+9*x^8) 9323700631156650 a007 Real Root Of 260*x^4-621*x^3+60*x^2+370*x-407 9323700634121641 m001 (Chi(1)*Mills+Champernowne)/Mills 9323700646231468 m001 1/TreeGrowth2nd^2/GlaisherKinkelin*exp(Pi) 9323700672015859 a007 Real Root Of -683*x^4-504*x^3-874*x^2+95*x+956 9323700680139870 r005 Im(z^2+c),c=-18/29+31/45*I,n=9 9323700767964310 r005 Im(z^2+c),c=15/98+2/33*I,n=16 9323700806442963 l006 ln(1567/3981) 9323700814344432 m001 HeathBrownMoroz^Trott/(sin(1)^Trott) 9323700823258648 m001 (MinimumGamma-Tribonacci)/(Cahen+Magata) 9323700829016031 a007 Real Root Of 71*x^4+568*x^3-809*x^2+731*x+968 9323700840960135 a007 Real Root Of -201*x^4-630*x^3-958*x^2+892*x+91 9323700847929748 r005 Im(z^2+c),c=-67/122+1/60*I,n=47 9323700889462302 a007 Real Root Of 382*x^4-24*x^3+544*x^2+236*x-561 9323700903148358 a007 Real Root Of -476*x^4+984*x^3+405*x^2-71*x+739 9323700919239679 a007 Real Root Of -347*x^4+293*x^3-242*x^2-117*x+601 9323700934475343 m001 (Pi^(1/2)+GAMMA(23/24))/(5^(1/2)+BesselJ(0,1)) 9323700945516216 m001 1/Porter^2/GaussKuzminWirsing*ln(Tribonacci) 9323700947736757 m005 (1/3*5^(1/2)+2/11)/(1/10+2/5*5^(1/2)) 9323700990433229 m008 (3/4*Pi^4-1/6)/(4/5*Pi^4+1/4) 9323701010490905 m001 (-FeigenbaumD+ZetaP(2))/(cos(1)-ln(2)/ln(10)) 9323701018753865 a003 cos(Pi*7/85)*cos(Pi*4/47) 9323701044377564 a001 225851433717/47*521^(16/19) 9323701046463476 a007 Real Root Of 454*x^4-828*x^3+896*x^2+856*x-995 9323701047586601 a007 Real Root Of -827*x^4-607*x^3-502*x^2-438*x+161 9323701053483262 a007 Real Root Of -708*x^4+500*x^3+519*x^2+479*x-768 9323701085294620 m001 (Cahen-Landau)/(Robbin+ThueMorse) 9323701089767493 m001 (2^(1/3)-exp(Pi))/(gamma(1)+HardyLittlewoodC4) 9323701112321124 s001 sum(exp(-Pi)^n*A140285[n],n=1..infinity) 9323701112321124 s002 sum(A140285[n]/(exp(pi*n)),n=1..infinity) 9323701114316492 k002 Champernowne real with 32*n^2+218*n-241 9323701116128621 m001 (cos(1/5*Pi)+GAMMA(17/24))/(Otter-Rabbit) 9323701137143260 a007 Real Root Of -430*x^4+685*x^3+304*x^2+407*x-874 9323701146345795 a007 Real Root Of 60*x^4-346*x^3+977*x^2+516*x-694 9323701152256462 a007 Real Root Of -364*x^4-164*x^3-809*x^2-526*x+355 9323701160810126 p004 log(36017/14177) 9323701174566608 r009 Im(z^3+c),c=-13/30+33/56*I,n=26 9323701198893329 q001 3033/3253 9323701204138758 r002 33th iterates of z^2 + 9323701208964412 a007 Real Root Of 964*x^4-94*x^3-812*x^2+269*x+152 9323701210847091 r005 Re(z^2+c),c=7/44+7/33*I,n=5 9323701212759336 m005 (1/3*exp(1)+1/11)/(1/6*Pi-5/12) 9323701214167139 m001 1/GolombDickman/exp(DuboisRaymond)/sqrt(2) 9323701214829276 m001 (arctan(1/2)+Niven)/(Porter+Thue) 9323701216048800 r005 Re(z^2+c),c=1/30+24/55*I,n=59 9323701216968565 m001 Pi/Psi(1,1/3)*2^(1/3)+cos(1) 9323701226241585 m001 (sin(1)+arctan(1/2))/(BesselI(1,1)+GaussAGM) 9323701249944255 a007 Real Root Of 762*x^4+949*x^3+678*x^2-60*x-452 9323701259687203 r005 Im(z^2+c),c=-13/114+38/55*I,n=9 9323701290012801 r009 Re(z^3+c),c=-2/31+37/47*I,n=5 9323701292387795 m005 (1/3*3^(1/2)-1/8)/(8/9*Zeta(3)-7/12) 9323701304949149 r005 Im(z^2+c),c=-29/42+9/59*I,n=64 9323701314172028 a007 Real Root Of 102*x^4-301*x^3+359*x^2+900*x+206 9323701314884234 m005 (1/2*exp(1)+1/10)/(3*gamma-1/6) 9323701329152644 r005 Re(z^2+c),c=-77/86+12/61*I,n=27 9323701348489007 m001 1/GAMMA(5/24)^2/ln(Bloch)^2*Zeta(7)^2 9323701367222119 a007 Real Root Of 736*x^4+53*x^3-47*x^2-538*x-974 9323701384543841 r009 Re(z^3+c),c=-15/106+13/27*I,n=23 9323701384925775 a007 Real Root Of -4*x^4+311*x^3-174*x^2+508*x+880 9323701388313887 m001 (Bloch-Robbin)/(ln(3)-Zeta(1,2)) 9323701416290354 r005 Re(z^2+c),c=2/27+16/33*I,n=16 9323701419016758 r002 17th iterates of z^2 + 9323701463783775 p001 sum((-1)^n/(245*n+107)/(128^n),n=0..infinity) 9323701465783188 m001 1/FeigenbaumC/ln(MinimumGamma)/cosh(1) 9323701467581073 a001 76/4181*4181^(10/51) 9323701494327601 m001 (GaussKuzminWirsing+Kac)/(Chi(1)+Zeta(1,2)) 9323701495901719 g001 GAMMA(7/10,5/32) 9323701497540636 m001 Zeta(1,2)^2/exp(Magata)^2*cos(Pi/12) 9323701512435664 r005 Re(z^2+c),c=1/30+24/55*I,n=60 9323701517244848 m001 (3^(1/2)-Zeta(5))/(-gamma(3)+RenyiParking) 9323701538668063 a007 Real Root Of 712*x^4+294*x^3+998*x^2+749*x-469 9323701558636596 m001 (cos(1/12*Pi)+ZetaQ(2))/(Psi(1,1/3)+sin(1)) 9323701563990762 r005 Re(z^2+c),c=-103/110+1/48*I,n=17 9323701566233470 r009 Re(z^3+c),c=-9/70+23/58*I,n=16 9323701582445804 r005 Re(z^2+c),c=3/44+23/47*I,n=49 9323701598600508 l006 ln(3171/8056) 9323701602902734 m001 (Chi(1)*BesselI(0,2)-GAMMA(5/6))/Chi(1) 9323701658681234 a003 sin(Pi*13/82)/cos(Pi*24/73) 9323701684002067 m001 (MertensB1-Rabbit)/(Zeta(1,-1)+MasserGramain) 9323701734083670 a003 sin(Pi*42/107)*sin(Pi*23/51) 9323701741364726 m005 (1/2*exp(1)-4/9)/(2/3*gamma-3/8) 9323701747644154 r005 Re(z^2+c),c=1/30+24/55*I,n=63 9323701752761527 r008 a(0)=0,K{-n^6,-99+49*n^3+37*n^2-94*n} 9323701765764338 h001 (7/9*exp(2)+2/3)/(6/7*exp(2)+6/11) 9323701768483664 m001 (exp(1/Pi)+ErdosBorwein*ZetaP(4))/ErdosBorwein 9323701769075516 r005 Im(z^2+c),c=-31/66+7/44*I,n=27 9323701775648909 a007 Real Root Of 903*x^4-220*x^3+504*x^2+845*x-511 9323701830135300 a007 Real Root Of -934*x^4-626*x^3+224*x^2-640*x-593 9323701830732770 a007 Real Root Of -843*x^4+325*x^3-771*x^2-773*x+850 9323701876240804 a007 Real Root Of 517*x^4-91*x^3-996*x^2-645*x-200 9323701876396022 r005 Re(z^2+c),c=1/86+13/17*I,n=7 9323701876774738 m005 (1/24+1/6*5^(1/2))/(9/11*gamma-11/12) 9323701882813465 r005 Im(z^2+c),c=-9/14+89/256*I,n=63 9323701883078804 m001 1/(3^(1/3))^2/FeigenbaumD^2/ln(BesselJ(0,1))^2 9323701894725894 a001 416020/161*521^(8/39) 9323701918369656 r009 Im(z^3+c),c=-19/126+29/32*I,n=33 9323701919407252 m005 (1/2*5^(1/2)-3/10)/(1/7*Pi+3/7) 9323701958206108 a007 Real Root Of 741*x^4+841*x^3+312*x^2-23*x-171 9323701987493188 m001 (LaplaceLimit+MasserGramain)/OrthogonalArrays 9323702023280278 m001 cos(1/5*Pi)^Niven/(cos(1/5*Pi)^exp(1/Pi)) 9323702030893479 a007 Real Root Of -371*x^4+958*x^3+506*x^2+251*x+851 9323702086066485 r005 Im(z^2+c),c=-19/54+7/48*I,n=9 9323702109281233 a007 Real Root Of 478*x^4-574*x^3+929*x^2+975*x-725 9323702114616552 k002 Champernowne real with 65/2*n^2+433/2*n-240 9323702115592383 r005 Re(z^2+c),c=47/126+11/38*I,n=25 9323702120676942 r009 Re(z^3+c),c=-3/44+41/48*I,n=25 9323702160591115 a007 Real Root Of -962*x^4-526*x^3+662*x^2-101*x-369 9323702184202911 a007 Real Root Of 670*x^4-114*x^3-238*x^2+180*x-224 9323702192872557 m001 (Kac+Tetranacci)/(Backhouse+GlaisherKinkelin) 9323702258975578 a007 Real Root Of -113*x^4+797*x^3+849*x^2-582*x-756 9323702267034677 a007 Real Root Of 239*x^4-346*x^3-534*x^2+165*x+157 9323702298447175 m001 (Ei(1,1)+Niven)/(LambertW(1)-sin(1/5*Pi)) 9323702315283944 a001 9349/8*832040^(29/44) 9323702372485032 l006 ln(1604/4075) 9323702415317571 a003 cos(Pi*26/79)+cos(Pi*17/47) 9323702431267018 r005 Im(z^2+c),c=-7/8+17/251*I,n=13 9323702432890380 m001 FeigenbaumB^2*ln(ArtinRank2)^2*Zeta(5) 9323702469333898 r005 Re(z^2+c),c=1/30+24/55*I,n=62 9323702496700381 m008 (1/4*Pi^4+4)/(3*Pi^2+4/5) 9323702501241706 r005 Re(z^2+c),c=1/30+24/55*I,n=64 9323702506769369 r005 Re(z^2+c),c=-103/110+1/48*I,n=19 9323702509198170 m001 arctan(1/3)^(2^(1/3))*arctan(1/3)^FeigenbaumB 9323702511031268 a007 Real Root Of 974*x^4-154*x^3+800*x^2+764*x-844 9323702519645293 m005 (1/3*Zeta(3)+1/7)/(1/4*gamma-8/11) 9323702528774998 r005 Re(z^2+c),c=1/30+24/55*I,n=50 9323702558250164 m001 ErdosBorwein/(GAMMA(7/12)+DuboisRaymond) 9323702576592486 m001 (2^(1/2))^(Pi^(1/2))-Catalan 9323702576592486 m001 Catalan-sqrt(2)^sqrt(Pi) 9323702581624039 m001 (ln(5)-GAMMA(19/24))/(TreeGrowth2nd+Trott2nd) 9323702607438317 a007 Real Root Of -458*x^4+910*x^3+305*x^2-953*x-70 9323702623603359 r002 53th iterates of z^2 + 9323702654886662 a001 3571/6765*121393^(13/53) 9323702672431349 r005 Re(z^2+c),c=-1/98+22/35*I,n=10 9323702696613636 a007 Real Root Of 815*x^4-836*x^3+304*x^2+654*x-948 9323702705324652 m005 (1/3*Pi+1/7)/(2*Catalan-5/9) 9323702716105129 a008 Real Root of (-6+3*x^2+6*x^4-2*x^8) 9323702752425146 r005 Re(z^2+c),c=-103/110+1/48*I,n=21 9323702763881686 r009 Im(z^3+c),c=-15/38+3/61*I,n=3 9323702790075306 r002 23th iterates of z^2 + 9323702800711023 a007 Real Root Of 492*x^4+359*x^3+770*x^2-553*x-58 9323702809853279 r005 Re(z^2+c),c=-103/110+1/48*I,n=23 9323702815465208 r002 37th iterates of z^2 + 9323702815465208 r002 37th iterates of z^2 + 9323702819130347 r002 39th iterates of z^2 + 9323702819130347 r002 39th iterates of z^2 + 9323702821466598 r005 Re(z^2+c),c=-103/110+1/48*I,n=25 9323702821667111 r002 41th iterates of z^2 + 9323702821667111 r002 41th iterates of z^2 + 9323702822695625 r002 43th iterates of z^2 + 9323702822695625 r002 43th iterates of z^2 + 9323702823037250 r002 45th iterates of z^2 + 9323702823037250 r002 45th iterates of z^2 + 9323702823137385 r002 47th iterates of z^2 + 9323702823137385 r002 47th iterates of z^2 + 9323702823163856 r002 49th iterates of z^2 + 9323702823163856 r002 49th iterates of z^2 + 9323702823170148 r002 51th iterates of z^2 + 9323702823170148 r002 51th iterates of z^2 + 9323702823171452 r002 53th iterates of z^2 + 9323702823171452 r002 53th iterates of z^2 + 9323702823171664 r005 Re(z^2+c),c=-103/110+1/48*I,n=49 9323702823171664 r005 Re(z^2+c),c=-103/110+1/48*I,n=47 9323702823171664 r005 Re(z^2+c),c=-103/110+1/48*I,n=51 9323702823171664 r005 Re(z^2+c),c=-103/110+1/48*I,n=53 9323702823171664 r005 Re(z^2+c),c=-103/110+1/48*I,n=55 9323702823171664 r005 Re(z^2+c),c=-103/110+1/48*I,n=57 9323702823171664 r005 Re(z^2+c),c=-103/110+1/48*I,n=59 9323702823171664 r005 Re(z^2+c),c=-103/110+1/48*I,n=61 9323702823171664 r005 Re(z^2+c),c=-103/110+1/48*I,n=63 9323702823171665 r002 63th iterates of z^2 + 9323702823171665 r002 63th iterates of z^2 + 9323702823171665 r002 55th iterates of z^2 + 9323702823171665 r002 55th iterates of z^2 + 9323702823171667 r002 61th iterates of z^2 + 9323702823171667 r002 61th iterates of z^2 + 9323702823171667 r005 Re(z^2+c),c=-103/110+1/48*I,n=45 9323702823171672 r002 59th iterates of z^2 + 9323702823171672 r002 59th iterates of z^2 + 9323702823171680 r002 57th iterates of z^2 + 9323702823171680 r002 57th iterates of z^2 + 9323702823171689 r005 Re(z^2+c),c=-103/110+1/48*I,n=43 9323702823171796 r005 Re(z^2+c),c=-103/110+1/48*I,n=41 9323702823172260 r005 Re(z^2+c),c=-103/110+1/48*I,n=39 9323702823174054 r005 Re(z^2+c),c=-103/110+1/48*I,n=37 9323702823180314 r005 Re(z^2+c),c=-103/110+1/48*I,n=35 9323702823199739 r005 Re(z^2+c),c=-103/110+1/48*I,n=33 9323702823250317 r005 Re(z^2+c),c=-103/110+1/48*I,n=31 9323702823259062 r005 Re(z^2+c),c=-103/110+1/48*I,n=27 9323702823338476 r005 Re(z^2+c),c=-103/110+1/48*I,n=29 9323702824816958 r002 35th iterates of z^2 + 9323702824816958 r002 35th iterates of z^2 + 9323702826876956 a007 Real Root Of -194*x^4+857*x^3-503*x^2-806*x+527 9323702859751318 m008 (1/2*Pi^4+5)/(3/5*Pi^6-5/6) 9323702875931900 a001 521/75025*21^(3/31) 9323702893184013 r009 Re(z^3+c),c=-1/8+16/43*I,n=14 9323702898646223 r005 Re(z^2+c),c=1/30+24/55*I,n=57 9323702942272802 r002 33th iterates of z^2 + 9323702942272802 r002 33th iterates of z^2 + 9323702974407041 l006 ln(8033/8818) 9323702981584217 a001 76/4052739537881*102334155^(2/23) 9323702981584217 a001 76/10610209857723*6557470319842^(2/23) 9323702987678281 r002 3th iterates of z^2 + 9323702996971620 m001 cos(Pi/5)+Artin^GAMMA(5/12) 9323702999406473 r002 59th iterates of z^2 + 9323703006463439 r005 Im(z^2+c),c=15/98+2/33*I,n=17 9323703010381117 m001 (sin(1/5*Pi)+gamma(2))/(Lehmer+Trott2nd) 9323703018856956 a007 Real Root Of -161*x^4+770*x^3+144*x^2-287*x+353 9323703045162795 a001 19/387002188980*1597^(2/23) 9323703056293948 m001 GAMMA(5/6)*Porter-Sarnak 9323703110148469 m005 (1/2*gamma-6/11)/(2/5*Catalan-1/11) 9323703114916612 k002 Champernowne real with 33*n^2+215*n-239 9323703125742443 m005 (1/2*Zeta(3)-1/8)/(2/5*5^(1/2)-6) 9323703128721592 l006 ln(3245/8244) 9323703139136856 m005 (1/2*Catalan+9/11)/(1/4*Pi+7/12) 9323703150715929 r005 Im(z^2+c),c=-2/25+45/58*I,n=24 9323703158803903 r005 Im(z^2+c),c=-45/82+1/60*I,n=59 9323703211130007 a007 Real Root Of 617*x^4-483*x^3-364*x^2+10*x-532 9323703217334208 q001 142/1523 9323703244565405 a001 9349/17711*121393^(13/53) 9323703274832771 m001 1/GAMMA(13/24)^2*Bloch*ln(sin(Pi/5)) 9323703308632438 a007 Real Root Of 201*x^4-553*x^3+68*x^2+869*x+151 9323703310637104 r005 Re(z^2+c),c=1/30+24/55*I,n=61 9323703330598374 a001 6119/11592*121393^(13/53) 9323703350908003 a001 39603/75025*121393^(13/53) 9323703383769673 a001 15127/28657*121393^(13/53) 9323703385170419 r002 44th iterates of z^2 + 9323703385784349 m001 Otter^Landau*polylog(4,1/2) 9323703402655468 m005 (19/28+1/4*5^(1/2))/(3/5*Catalan+7/9) 9323703425313770 a007 Real Root Of 93*x^4-983*x^3+480*x^2-269*x+560 9323703431258960 m001 (Salem+ZetaP(4))/(GAMMA(2/3)-FeigenbaumKappa) 9323703431728789 a007 Real Root Of 806*x^4-218*x^3+346*x^2+716*x-419 9323703460739495 b008 9+Tanh[1]^(1+Pi) 9323703469232198 r005 Im(z^2+c),c=-47/66+3/47*I,n=33 9323703492972976 m001 (Champernowne-FeigenbaumD)/(Magata-Robbin) 9323703520659262 a007 Real Root Of -918*x^4-144*x^3+616*x^2-7*x+35 9323703524531900 a007 Real Root Of 509*x^4-30*x^3-157*x^2+185*x-100 9323703548584564 m005 (1/3*Zeta(3)+1/12)/(3/11*exp(1)-2/9) 9323703572203815 a007 Real Root Of -97*x^4+655*x^3-264*x^2+578*x-767 9323703609006909 a001 2889/5473*121393^(13/53) 9323703632353158 a007 Real Root Of -222*x^4+366*x^3-395*x^2-210*x+612 9323703645444407 r002 31th iterates of z^2 + 9323703645444407 r002 31th iterates of z^2 + 9323703657454988 m001 MinimumGamma^2*Kolakoski*ln(sqrt(3)) 9323703704038882 a007 Real Root Of 102*x^4+968*x^3+101*x^2-477*x+537 9323703713066588 a007 Real Root Of 617*x^4-995*x^3-728*x^2+561*x+450 9323703719615483 a003 cos(Pi*28/89)*cos(Pi*37/83) 9323703723126653 a007 Real Root Of 87*x^4-36*x^3+775*x^2+508*x-295 9323703727923986 m001 ln(2^(1/2)+1)/BesselI(0,2)/PrimesInBinary 9323703737860025 m005 (1/2*Pi+1/5)/(6*Pi+1/7) 9323703753048051 r005 Im(z^2+c),c=15/98+2/33*I,n=18 9323703761305794 a001 1292/161*1364^(44/45) 9323703778499503 r005 Re(z^2+c),c=-11/14+10/67*I,n=30 9323703785937518 a007 Real Root Of 36*x^4-237*x^3+52*x^2-572*x+653 9323703806396802 r005 Im(z^2+c),c=-37/106+8/55*I,n=15 9323703833429914 r005 Im(z^2+c),c=27/106+1/21*I,n=3 9323703836990089 m001 (3^(1/3)+ErdosBorwein)/(Landau-Stephens) 9323703867907059 l006 ln(1641/4169) 9323703869106690 r005 Im(z^2+c),c=15/98+2/33*I,n=26 9323703869164584 r005 Im(z^2+c),c=15/98+2/33*I,n=27 9323703869223674 r005 Im(z^2+c),c=15/98+2/33*I,n=28 9323703869224757 r005 Im(z^2+c),c=15/98+2/33*I,n=25 9323703869255930 r005 Im(z^2+c),c=15/98+2/33*I,n=29 9323703869269216 r005 Im(z^2+c),c=15/98+2/33*I,n=30 9323703869273443 r005 Im(z^2+c),c=15/98+2/33*I,n=31 9323703869273889 r005 Im(z^2+c),c=15/98+2/33*I,n=39 9323703869273889 r005 Im(z^2+c),c=15/98+2/33*I,n=40 9323703869273889 r005 Im(z^2+c),c=15/98+2/33*I,n=38 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=41 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=42 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=43 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=44 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=52 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=51 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=53 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=54 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=55 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=56 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=64 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=63 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=62 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=57 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=61 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=60 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=59 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=58 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=50 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=49 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=48 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=47 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=46 9323703869273890 r005 Im(z^2+c),c=15/98+2/33*I,n=45 9323703869273894 r005 Im(z^2+c),c=15/98+2/33*I,n=37 9323703869273913 r005 Im(z^2+c),c=15/98+2/33*I,n=36 9323703869273965 r005 Im(z^2+c),c=15/98+2/33*I,n=35 9323703869274080 r005 Im(z^2+c),c=15/98+2/33*I,n=34 9323703869274256 r005 Im(z^2+c),c=15/98+2/33*I,n=33 9323703869274312 r005 Im(z^2+c),c=15/98+2/33*I,n=32 9323703870118421 r005 Im(z^2+c),c=15/98+2/33*I,n=24 9323703873345355 r005 Im(z^2+c),c=15/98+2/33*I,n=23 9323703882025704 r005 Im(z^2+c),c=15/98+2/33*I,n=22 9323703894055519 m001 1/OneNinth^2/ErdosBorwein^2*exp(GAMMA(23/24)) 9323703900142092 r005 Im(z^2+c),c=15/98+2/33*I,n=21 9323703901560121 a007 Real Root Of -768*x^4+650*x^3-574*x^2-751*x+906 9323703915403213 m005 (1/2*Pi+1/9)/(6/7*Pi-8/9) 9323703923604324 r005 Im(z^2+c),c=15/98+2/33*I,n=19 9323703925580286 r005 Im(z^2+c),c=15/98+2/33*I,n=20 9323703938941038 m001 (MertensB1-Otter)/(GaussKuzminWirsing-Lehmer) 9323703997227251 a001 1346269/1364*199^(14/33) 9323704029847151 m001 (-FeigenbaumMu+MadelungNaCl)/(Zeta(5)-sin(1)) 9323704048894591 r005 Re(z^2+c),c=-9/8+41/225*I,n=18 9323704049494314 m001 1/ln(Niven)^2/KhintchineHarmonic^2*cos(Pi/5) 9323704054512103 r005 Im(z^2+c),c=-18/31+25/53*I,n=26 9323704057565828 a007 Real Root Of 870*x^4+892*x^3+641*x^2-114*x-598 9323704077417825 r005 Re(z^2+c),c=1/30+24/55*I,n=55 9323704089410329 m001 FeigenbaumD/(Si(Pi)+GAMMA(23/24)) 9323704103538352 r005 Im(z^2+c),c=-47/42+5/47*I,n=6 9323704112155207 a007 Real Root Of 450*x^4+590*x^3+372*x^2-462*x-616 9323704115216672 k002 Champernowne real with 67/2*n^2+427/2*n-238 9323704137323787 m006 (5/6*Pi^2+2/3)/(Pi^2-1/3) 9323704137323787 m008 (5/6*Pi^2+2/3)/(Pi^2-1/3) 9323704137323787 m009 (5/12*Pi^2+1/3)/(1/2*Pi^2-1/6) 9323704147047072 a007 Real Root Of -931*x^4-257*x^3+19*x^2+425*x+875 9323704147430071 r005 Im(z^2+c),c=-17/66+7/52*I,n=6 9323704159006576 m004 3+15625*Pi+25*Pi*Sinh[Sqrt[5]*Pi] 9323704248584601 m001 (Robbin+ZetaP(2))/(ln(5)-PrimesInBinary) 9323704284629616 r005 Re(z^2+c),c=-53/60+11/56*I,n=55 9323704314152464 r009 Im(z^3+c),c=-17/36+20/31*I,n=6 9323704349718110 p001 sum(1/(325*n+109)/(16^n),n=0..infinity) 9323704359576892 r005 Re(z^2+c),c=-29/32+5/33*I,n=51 9323704371616582 r005 Im(z^2+c),c=-95/94+3/31*I,n=19 9323704385580238 h001 (-8*exp(2)-3)/(-12*exp(4)-11) 9323704401862658 m005 (1/2*3^(1/2)-2/5)/(1/12*Zeta(3)-3/5) 9323704451221074 a001 47/3*196418^(6/41) 9323704481349159 a001 4181/322*1364^(41/45) 9323704494251700 r005 Re(z^2+c),c=-5/62+11/59*I,n=3 9323704496289658 a003 sin(Pi*1/76)-sin(Pi*35/82) 9323704522423869 r005 Im(z^2+c),c=-65/82+1/23*I,n=28 9323704525819265 a003 sin(Pi*1/104)+sin(Pi*29/81) 9323704530828826 r005 Re(z^2+c),c=1/30+24/55*I,n=58 9323704536939070 a001 1346269/322*521^(5/39) 9323704556269108 b008 41*AiryAi[-2] 9323704579328442 a007 Real Root Of 915*x^4-27*x^3+20*x^2-218*x-934 9323704590611689 l006 ln(3319/8432) 9323704592001180 a007 Real Root Of -873*x^4-489*x^3+64*x^2+780*x+935 9323704614949884 p001 sum((-1)^n/(525*n+134)/n/(16^n),n=1..infinity) 9323704641439498 a001 521/6765*86267571272^(4/21) 9323704660673609 a007 Real Root Of 983*x^4-108*x^3-934*x^2-406*x-397 9323704668023053 a001 6765/322*1364^(38/45) 9323704673018155 a007 Real Root Of -798*x^4+55*x^3-154*x^2-303*x+499 9323704685536814 r005 Re(z^2+c),c=-5/6+45/223*I,n=47 9323704700916001 b008 8+Pi^ArcCot[4] 9323704709422660 m004 2+(125*Pi)/4-(5*Sqrt[5]*Log[Sqrt[5]*Pi])/Pi 9323704710692831 m001 (Shi(1)+cos(1))/(-Zeta(1,2)+StronglyCareFree) 9323704729952487 m001 Riemann2ndZero^ln(5)*ln(2) 9323704752768338 a007 Real Root Of 79*x^4+737*x^3-40*x^2-490*x-745 9323704754299028 r005 Im(z^2+c),c=-83/98+2/33*I,n=63 9323704756094379 l006 ln(6365/6987) 9323704776830931 m001 Ei(1)-QuadraticClass^(ln(2)/ln(10)) 9323704807928851 a007 Real Root Of 57*x^4-327*x^3-219*x^2-765*x-831 9323704810379406 a007 Real Root Of -564*x^4+47*x^3-740*x^2-893*x+275 9323704818206712 m001 LandauRamanujan2nd^HardyLittlewoodC5/Thue 9323704840308725 a007 Real Root Of -740*x^4+929*x^3+35*x^2-373*x+934 9323704842093178 m002 -24+Pi^6-5*Coth[Pi] 9323704884042567 m001 (-HeathBrownMoroz+Salem)/(3^(1/2)-Bloch) 9323704889271245 a007 Real Root Of 852*x^4+409*x^3-468*x^2-540*x-409 9323704892210977 a007 Real Root Of 31*x^4-580*x^3+206*x^2+198*x-488 9323704905530912 a007 Real Root Of 285*x^4-891*x^3-552*x^2+182*x-288 9323704910104688 r004 Im(z^2+c),c=1/16-2/13*I,z(0)=I,n=3 9323704911113765 h001 (7/9*exp(1)+3/8)/(7/9*exp(1)+5/9) 9323704936345282 m001 (Bloch-HardHexagonsEntropy)^ln(2^(1/2)+1) 9323704940091677 r005 Im(z^2+c),c=-83/98+2/33*I,n=47 9323704966641235 r005 Im(z^2+c),c=-37/62+5/29*I,n=61 9323704984756857 r005 Re(z^2+c),c=-9/10+21/127*I,n=35 9323704998290651 m001 (BesselK(1,1)-Magata)/(PlouffeB-ZetaP(3)) 9323705004806922 a007 Real Root Of 320*x^4-67*x^3+251*x^2+350*x-188 9323705011200704 a007 Real Root Of 224*x^4-918*x^3-378*x^2+364*x+564 9323705016551434 p004 log(21221/8353) 9323705045817348 a007 Real Root Of -332*x^4+492*x^3-957*x^2-893*x+649 9323705058425981 a001 5473/161*1364^(7/9) 9323705060664340 a007 Real Root Of -104*x^4-887*x^3+815*x^2+488*x+703 9323705077082539 m005 (1/2*gamma+11/12)/(1/8*Pi+9/10) 9323705115516732 k002 Champernowne real with 34*n^2+212*n-237 9323705138276809 m005 (1/3*Catalan+2/9)/(7/11*5^(1/2)-6/7) 9323705152805875 a001 2207/4181*121393^(13/53) 9323705191570373 a007 Real Root Of -100*x^4+341*x^3-43*x^2+731*x-845 9323705230720191 r002 13th iterates of z^2 + 9323705238272859 m001 (Chi(1)+Pi^(1/2))/(MertensB3+Porter) 9323705297380588 l006 ln(1678/4263) 9323705319772366 m005 (1/2*exp(1)+1/4)/(2*gamma+4/7) 9323705336554746 a007 Real Root Of -294*x^4+757*x^3-441*x^2-368*x+876 9323705351480899 a007 Real Root Of 83*x^4-99*x^3+815*x^2+910*x-3 9323705356913673 m001 ln(2)^(HardyLittlewoodC4/ln(5)) 9323705371011356 a001 17711/322*1364^(32/45) 9323705374110047 a007 Real Root Of 957*x^4-618*x^3+415*x^2+815*x-825 9323705391772930 m001 (gamma+ArtinRank2)/(Totient+Trott2nd) 9323705392429116 a007 Real Root Of -932*x^4+220*x^3+619*x^2-835*x-434 9323705410388026 m002 -E^(-Pi)+Pi-Pi^4+ProductLog[Pi] 9323705439172938 a007 Real Root Of 469*x^4-71*x^3-832*x^2-405*x+804 9323705449687869 a003 cos(Pi*21/64)+cos(Pi*33/91) 9323705453008070 a007 Real Root Of 883*x^4-664*x^3+144*x^2+700*x-678 9323705458749715 a007 Real Root Of 43*x^4+208*x^3+178*x^2-808*x-772 9323705460398300 m001 MadelungNaCl/ln(Lehmer)^2*Zeta(1/2) 9323705474120209 r009 Re(z^3+c),c=-3/19+15/28*I,n=6 9323705487458095 a007 Real Root Of 65*x^4+2*x^3-146*x^2-254*x+313 9323705522488722 a003 sin(Pi*1/99)/cos(Pi*37/95) 9323705530116238 q001 2647/2839 9323705555323710 m001 1/GAMMA(1/4)^2/ln(MinimumGamma)/arctan(1/2)^2 9323705568025724 m002 -2-Cosh[Pi]/(2*Pi^6)+ProductLog[Pi] 9323705608354511 a003 sin(Pi*25/68)/sin(Pi*46/105) 9323705648246602 r002 16th iterates of z^2 + 9323705678780928 a007 Real Root Of -125*x^4+565*x^3-877*x^2-417*x+926 9323705689209132 r009 Im(z^3+c),c=-5/36+51/56*I,n=23 9323705713320408 a001 28657/322*1364^(29/45) 9323705729435540 r005 Re(z^2+c),c=-21/94+31/50*I,n=12 9323705738551926 r002 4th iterates of z^2 + 9323705757336280 r001 33i'th iterates of 2*x^2-1 of 9323705766673435 a007 Real Root Of -748*x^4+682*x^3+639*x^2+230*x+777 9323705773093217 r005 Re(z^2+c),c=7/74+27/49*I,n=50 9323705809603803 r005 Re(z^2+c),c=-9/10+15/92*I,n=19 9323705858340996 r005 Re(z^2+c),c=-2/27+46/63*I,n=57 9323705901729675 a007 Real Root Of -645*x^4+751*x^3+759*x^2+223*x-989 9323705907394960 r002 34th iterates of z^2 + 9323705917006744 a001 76/1346269*377^(26/55) 9323705933451098 m005 (2/5*exp(1)+1/4)/(2/5*2^(1/2)-2) 9323705958434785 m005 (1/3*gamma+1/6)/(5/9*5^(1/2)-6/7) 9323705971855476 r002 28th iterates of z^2 + 9323705988735086 l006 ln(3393/8620) 9323706009130202 a007 Real Root Of 49*x^4-935*x^3-589*x^2-737*x-970 9323706029724001 h001 (1/3*exp(1)+7/11)/(1/9*exp(2)+5/6) 9323706036567706 m001 (-MertensB2+Otter)/(2^(1/2)+MasserGramain) 9323706044276043 a001 144*1364^(26/45) 9323706046895376 r009 Im(z^3+c),c=-53/90+31/58*I,n=26 9323706105254269 a003 sin(Pi*27/79)/sin(Pi*38/97) 9323706115816792 k002 Champernowne real with 69/2*n^2+421/2*n-236 9323706141302163 m001 Artin+BesselJ(1,1)^Rabbit 9323706160368501 a007 Real Root Of -337*x^4+860*x^3-247*x^2+335*x-540 9323706187719559 a007 Real Root Of 981*x^4-314*x^3-418*x^2+747*x+64 9323706206030038 r002 24th iterates of z^2 + 9323706207209385 m001 Grothendieck*exp(-1/2*Pi)^ThueMorse 9323706226973446 a007 Real Root Of 722*x^4+330*x^3+15*x^2+12*x-280 9323706237682978 a007 Real Root Of 533*x^4-272*x^3-791*x^2-305*x-220 9323706238814599 a007 Real Root Of -712*x^4-23*x^3+313*x^2+478*x+693 9323706238941818 a007 Real Root Of 241*x^4-215*x^3-697*x^2-702*x-405 9323706296192669 a001 123/17711*6765^(5/9) 9323706299352661 m001 (GaussAGM+Mills)/((1+3^(1/2))^(1/2)+Cahen) 9323706309618127 a001 141/46*3571^(50/51) 9323706310902269 r008 a(0)=1,K{-n^6,37-52*n+62*n^2-33*n^3} 9323706312840081 a001 123/196418*514229^(5/9) 9323706312884494 a001 123/24157817*2971215073^(5/9) 9323706312884497 a001 123/267914296*225851433717^(5/9) 9323706312884890 a001 41/726103*39088169^(5/9) 9323706329604421 m005 (1/2*3^(1/2)+6/11)/(7/11*5^(1/2)+1/11) 9323706367120567 r002 8th iterates of z^2 + 9323706379568313 a001 75025/322*1364^(23/45) 9323706392554525 a003 cos(Pi*1/81)*cos(Pi*13/111) 9323706434349848 r002 52th iterates of z^2 + 9323706445132457 a007 Real Root Of 271*x^4-727*x^3-896*x^2-393*x+45 9323706475474538 a007 Real Root Of -272*x^4+704*x^3-198*x^2+206*x-385 9323706497010420 a007 Real Root Of 268*x^4-730*x^3+402*x^2-853*x+835 9323706506361432 m001 (1+Shi(1))/(3^(1/3)+LandauRamanujan) 9323706514879594 a001 521/987*3524578^(4/21) 9323706558774437 r005 Im(z^2+c),c=15/98+2/33*I,n=12 9323706563392396 m001 FeigenbaumB^2/ln(LandauRamanujan)^2*Paris^2 9323706575213735 a007 Real Root Of -472*x^4+916*x^3+270*x^2-422*x-227 9323706594126248 p003 LerchPhi(1/10,4,349/192) 9323706599325071 m009 (1/4*Pi^2-2)/(1/10*Pi^2-6) 9323706635754348 l004 sinh(455/99*Pi) 9323706635759711 l004 cosh(455/99*Pi) 9323706637323535 m001 (Cahen-Tetranacci)/(arctan(1/3)+GAMMA(11/12)) 9323706643512118 a005 (1/sin(72/187*Pi))^931 9323706665174018 l006 ln(1715/4357) 9323706671614525 b008 343*E 9323706685632033 a007 Real Root Of -222*x^4+997*x^3-101*x^2+623*x-58 9323706694655854 r005 Im(z^2+c),c=-83/98+2/33*I,n=64 9323706696969200 a007 Real Root Of 892*x^4-173*x^3-847*x^2+828*x+694 9323706705775335 m006 (4/Pi-1/6)/(3/5*ln(Pi)+1/2) 9323706713204153 a001 121393/322*1364^(4/9) 9323706730448539 m001 1/BesselJ(1,1)*exp(Conway)*GAMMA(11/12)^2 9323706733117534 a007 Real Root Of 257*x^4-502*x^3+272*x^2+879*x-18 9323706812652647 m001 exp(Robbin)^2*FeigenbaumC*FeigenbaumKappa 9323706852141583 a007 Real Root Of -995*x^4+889*x^3+944*x^2-638*x+57 9323706857566619 m001 1/exp(BesselK(1,1))/FeigenbaumD^2*GAMMA(3/4) 9323706896269179 a007 Real Root Of -909*x^4+849*x^3+138*x^2-649*x+650 9323706917281439 a007 Real Root Of -544*x^4+382*x^3+57*x^2-234*x+453 9323706932862136 a001 141/46*9349^(50/57) 9323706953590243 m001 (Salem-ThueMorse)/(Zeta(1/2)+BesselI(0,2)) 9323706966310161 r005 Re(z^2+c),c=-11/29+57/59*I,n=3 9323706995037497 a001 29/5*34^(7/52) 9323706998264781 r002 29th iterates of z^2 + 9323706998264781 r002 29th iterates of z^2 + 9323707018525494 a007 Real Root Of -576*x^4+943*x^3-214*x^2-922*x+526 9323707020284318 a007 Real Root Of 969*x^4+604*x^3-237*x^2-794*x-777 9323707025568824 a001 144/2207*54018521^(2/3) 9323707026214899 a001 141/46*167761^(2/3) 9323707026435747 a001 141/46*20633239^(10/21) 9323707026435758 a001 141/46*3461452808002^(5/18) 9323707026435758 a001 141/46*28143753123^(1/3) 9323707026435758 a001 141/46*228826127^(5/12) 9323707026437254 a001 141/46*1860498^(5/9) 9323707030939344 a001 141/46*39603^(25/33) 9323707032132084 p004 log(27611/25153) 9323707036478360 a001 89/29*11^(19/41) 9323707047472710 a001 98209/161*1364^(17/45) 9323707051403597 a007 Real Root Of -588*x^4+912*x^3-161*x^2-643*x+724 9323707060390604 a001 141/46*15127^(5/6) 9323707073155736 m001 1/GAMMA(5/12)^2*exp(TreeGrowth2nd)*exp(1) 9323707092662021 r005 Re(z^2+c),c=-27/34+15/103*I,n=19 9323707094629349 r002 29th iterates of z^2 + 9323707097925147 a007 Real Root Of 369*x^4-870*x^3+353*x^2+401*x-917 9323707104560336 r005 Im(z^2+c),c=-37/64+2/11*I,n=12 9323707116116852 k002 Champernowne real with 35*n^2+209*n-235 9323707120015401 r005 Re(z^2+c),c=-23/26+17/118*I,n=34 9323707168797040 m001 ln(TwinPrimes)^2/GlaisherKinkelin/(3^(1/3)) 9323707179147851 a001 311187/46*521^(2/39) 9323707190598289 a003 sin(Pi*4/13)/sin(Pi*21/61) 9323707221430953 g006 -Psi(1,5/8)-Psi(1,1/7)-Psi(1,5/6)-Psi(1,1/6) 9323707255472335 r005 Im(z^2+c),c=-3/38+9/10*I,n=13 9323707268739746 a001 1346269/843*199^(1/3) 9323707285024619 a001 141/46*5778^(25/27) 9323707292638414 h001 (5/7*exp(2)+1/4)/(7/9*exp(2)+2/11) 9323707298808297 v002 sum(1/(2^n+(31/2*n^2+15/2*n-9)),n=1..infinity) 9323707327174924 l006 ln(3467/8808) 9323707369719319 m005 (1/2*Catalan-7/10)/(3/8*3^(1/2)-10/11) 9323707381499606 a001 317811/322*1364^(14/45) 9323707417399911 m001 (MadelungNaCl+Tetranacci)/(ln(3)-CareFree) 9323707426052911 a007 Real Root Of 145*x^4-545*x^3+670*x^2-883*x+573 9323707439272694 a007 Real Root Of 771*x^4+371*x^3-48*x^2-644*x-6 9323707443582702 m001 1/ln(Riemann2ndZero)*PrimesInBinary/Zeta(1/2) 9323707450375705 r005 Im(z^2+c),c=-9/7+9/128*I,n=13 9323707464460237 a001 8/11*521^(45/58) 9323707527454579 a007 Real Root Of -154*x^4+778*x^3-396*x^2-884*x+267 9323707538291955 r005 Im(z^2+c),c=-11/48+23/35*I,n=11 9323707641285393 a007 Real Root Of 47*x^4-146*x^3+163*x^2-644*x-896 9323707642071314 h001 (5/12*exp(2)+4/9)/(5/12*exp(2)+7/10) 9323707646251719 m001 FeigenbaumKappa-FransenRobinson+MinimumGamma 9323707683505024 r002 2th iterates of z^2 + 9323707698582219 r005 Im(z^2+c),c=-17/122+2/17*I,n=12 9323707712741242 r005 Re(z^2+c),c=-8/9+18/77*I,n=25 9323707715618826 a001 514229/322*1364^(11/45) 9323707727628070 b008 1-33*Sqrt[3*E] 9323707749317934 m005 (1/2*gamma-7/10)/(4/7*gamma-2/7) 9323707777757444 r002 22th iterates of z^2 + 9323707778886077 m001 (-Cahen+FransenRobinson)/(exp(Pi)-gamma(1)) 9323707785816938 a001 47/121393*28657^(58/59) 9323707791447227 p004 log(31063/12227) 9323707797124756 a007 Real Root Of -587*x^4-817*x^3-988*x^2-395*x+272 9323707803208290 l006 ln(4697/5156) 9323707807903817 m005 (1/2*5^(1/2)+5/9)/(1/3*exp(1)+8/9) 9323707881942118 a007 Real Root Of -792*x^4+778*x^3+263*x^2-333*x+690 9323707914417435 m003 3/5+Sqrt[5]/64+(3*E^(-1/2-Sqrt[5]/2))/2 9323707943461572 r005 Re(z^2+c),c=27/110+16/49*I,n=39 9323707951425259 m001 (Backhouse+PlouffeB)/(ln(Pi)+Zeta(1,2)) 9323707960749669 m001 (-Pi*2^(1/2)/GAMMA(3/4)+exp(1/Pi))/(exp(Pi)+1) 9323707974295982 m001 CopelandErdos/Backhouse*Stephens 9323707975195175 l006 ln(1752/4451) 9323707978569443 m001 (Shi(1)*ZetaP(3)+exp(1/exp(1)))/ZetaP(3) 9323707998799613 m005 (7/18+1/6*5^(1/2))/(1/5*Catalan-1) 9323707999993698 r005 Re(z^2+c),c=-43/46+1/24*I,n=7 9323708001605986 r001 37i'th iterates of 2*x^2-1 of 9323708015030600 a007 Real Root Of 328*x^4-434*x^3+982*x^2+927*x-589 9323708015316692 a007 Real Root Of 171*x^4-858*x^3+149*x^2-217*x+639 9323708025499169 a007 Real Root Of -92*x^4-893*x^3-401*x^2-713*x-334 9323708030546472 a001 1292/161*3571^(44/51) 9323708033663528 m009 (4/5*Psi(1,3/4)-1/5)/(4/5*Psi(1,3/4)-4) 9323708034692783 a007 Real Root Of -10*x^4+324*x^3-280*x^2-95*x+425 9323708049702797 a001 416020/161*1364^(8/45) 9323708098569887 m001 (Riemann2ndZero-Sarnak)/(Bloch+Niven) 9323708102813232 m001 (Pi+ln(2)/ln(10))*(BesselI(0,1)+3^(1/3)) 9323708103774973 a001 39603/5*2^(4/17) 9323708116416912 k002 Champernowne real with 71/2*n^2+415/2*n-234 9323708127114005 a001 199/4052739537881*89^(1/7) 9323708165618409 m001 (Zeta(3)-sin(1))/(GlaisherKinkelin+Sierpinski) 9323708181840167 r009 Im(z^3+c),c=-45/94+3/61*I,n=63 9323708183688214 s002 sum(A085826[n]/(n*2^n+1),n=1..infinity) 9323708203551495 m005 (1/2*gamma-2/11)/(1/3*5^(1/2)+2/5) 9323708206686930 q001 1227/1316 9323708206884093 r009 Re(z^3+c),c=-21/110+43/59*I,n=6 9323708206898691 a007 Real Root Of 785*x^4-587*x^3-391*x^2+235*x-510 9323708307344506 m001 (BesselJ(1,1)+MertensB2)/(2^(1/3)+arctan(1/3)) 9323708355094791 a001 6765/322*3571^(38/51) 9323708383800249 a001 1346269/322*1364^(1/9) 9323708391283426 m001 1/BesselJ(1,1)/FeigenbaumC*exp(Zeta(7))^2 9323708406893776 m001 Riemann3rdZero^2*MertensB1*ln(GAMMA(5/12))^2 9323708413238678 m001 (Psi(1,1/3)-gamma(3))/(-polylog(4,1/2)+Kac) 9323708431454527 r005 Re(z^2+c),c=1/30+24/55*I,n=54 9323708445864376 m001 Backhouse^Weierstrass*Lehmer^Weierstrass 9323708454413197 a001 5473/161*3571^(35/51) 9323708458433345 a007 Real Root Of 731*x^4-797*x^3-175*x^2+262*x-802 9323708459505490 a001 4181/322*3571^(41/51) 9323708475914009 a001 17711/322*3571^(32/51) 9323708500835984 m005 (1/2*5^(1/2)+3)/(1/11*Pi-8/11) 9323708521842778 r002 4th iterates of z^2 + 9323708527138497 a001 28657/322*3571^(29/51) 9323708537512180 r001 3i'th iterates of 2*x^2-1 of 9323708550801891 s001 sum(exp(-Pi)^(n-1)*A122532[n],n=1..infinity) 9323708555437933 r009 Re(z^3+c),c=-7/48+28/55*I,n=19 9323708567009552 a001 144*3571^(26/51) 9323708571053468 a007 Real Root Of -601*x^4-43*x^3-807*x^2-416*x+733 9323708572342243 b008 9*DedekindEta[(5*I)*Sqrt[3]] 9323708578969936 a001 (2+3^(1/2))^(391/45) 9323708579001299 a001 1292/161*9349^(44/57) 9323708581375797 r009 Im(z^3+c),c=-61/114+26/43*I,n=11 9323708593918071 m002 -2+Pi^3-Pi^6+Cosh[Pi]/Pi^6 9323708609673025 l006 ln(3541/8996) 9323708611217233 a001 75025/322*3571^(23/51) 9323708618402707 b008 -2+Pi*ArcCsc[3] 9323708619533812 r005 Im(z^2+c),c=-53/66+1/22*I,n=34 9323708653768470 a001 121393/322*3571^(20/51) 9323708655402043 a007 Real Root Of 977*x^4-535*x^3-178*x^2+810*x-262 9323708660478767 a001 8/321*20633239^(16/21) 9323708660478784 a001 8/321*23725150497407^(5/12) 9323708660478784 a001 8/321*505019158607^(10/21) 9323708660478784 a001 8/321*28143753123^(8/15) 9323708660478784 a001 8/321*10749957122^(5/9) 9323708660478784 a001 8/321*228826127^(2/3) 9323708660479111 a001 8/321*4870847^(5/6) 9323708660481178 a001 8/321*1860498^(8/9) 9323708660496367 a001 8/321*710647^(20/21) 9323708661346034 a001 1292/161*7881196^(4/9) 9323708661346101 a001 1292/161*312119004989^(4/15) 9323708661346101 a001 1292/161*1568397607^(1/3) 9323708661346281 a001 1292/161*4870847^(11/24) 9323708661355771 a001 1292/161*710647^(11/21) 9323708661876133 a001 1292/161*103682^(11/18) 9323708665309258 a001 1292/161*39603^(2/3) 9323708687285501 m009 (4/5*Psi(1,2/3)+6)/(3/4*Psi(1,3/4)-1) 9323708691226370 a001 1292/161*15127^(11/15) 9323708696952412 a001 98209/161*3571^(1/3) 9323708717892568 a001 311187/46*1364^(2/45) 9323708734142621 m005 (1/3*Zeta(3)-2/9)/(10/11*gamma-1/3) 9323708739894683 a001 317811/322*3571^(14/51) 9323708765834855 a008 Real Root of (16+8*x-13*x^2-15*x^3) 9323708779440530 a007 Real Root Of 98*x^4-766*x^3+23*x^2-965*x-9 9323708782929264 a001 514229/322*3571^(11/51) 9323708796958659 a007 Real Root Of -485*x^4+901*x^3+672*x^2+438*x+921 9323708815946149 r005 Im(z^2+c),c=-23/18+45/118*I,n=7 9323708825928587 a001 416020/161*3571^(8/51) 9323708828760338 a001 6765/322*9349^(2/3) 9323708832486374 a007 Real Root Of 256*x^4-218*x^3+35*x^2-488*x-46 9323708834667663 m005 (27/28+1/4*5^(1/2))/(2/7*exp(1)+6/7) 9323708855546872 m001 (FeigenbaumB-exp(1))/(-Khinchin+LaplaceLimit) 9323708865426326 m005 (1/2*Pi-7/10)/(6/11*5^(1/2)-2/7) 9323708868941377 a001 1346269/322*3571^(5/51) 9323708874790263 a001 17711/322*9349^(32/57) 9323708888620104 a001 28657/322*9349^(29/57) 9323708888904338 a001 1292/161*5778^(22/27) 9323708890684099 a001 5473/161*9349^(35/57) 9323708891096510 a001 144*9349^(26/57) 9323708897909542 a001 75025/322*9349^(23/57) 9323708899008980 a001 144/15127*969323029^(2/3) 9323708899876305 a001 6765/322*817138163596^(2/9) 9323708899876305 a001 6765/322*87403803^(1/3) 9323708903066131 a001 121393/322*9349^(20/57) 9323708903299032 a001 6765/322*39603^(19/33) 9323708908855425 a001 98209/161*9349^(17/57) 9323708911949023 a001 311187/46*3571^(2/51) 9323708914403047 a001 317811/322*9349^(14/57) 9323708916337148 s002 sum(A226790[n]/(exp(n)),n=1..infinity) 9323708920042979 a001 514229/322*9349^(11/57) 9323708925647652 a001 416020/161*9349^(8/57) 9323708925681993 a001 6765/322*15127^(19/30) 9323708931265793 a001 1346269/322*9349^(5/57) 9323708933719290 r005 Re(z^2+c),c=-43/94+23/37*I,n=9 9323708933810068 a001 48/13201*4106118243^(2/3) 9323708933810444 a001 48/13201*4870847^(23/24) 9323708934677393 a001 17711/322*23725150497407^(1/6) 9323708934677393 a001 17711/322*10749957122^(2/9) 9323708934677393 a001 17711/322*228826127^(4/15) 9323708934677524 a001 17711/322*4870847^(1/3) 9323708934684426 a001 17711/322*710647^(8/21) 9323708935062871 a001 17711/322*103682^(4/9) 9323708936878790 a001 311187/46*9349^(2/57) 9323708937145106 a001 317811/322*24476^(2/9) 9323708937559689 a001 17711/322*39603^(16/33) 9323708938887458 a001 72/51841*20633239^(14/15) 9323708938887478 a001 72/51841*17393796001^(2/3) 9323708938887478 a001 72/51841*505019158607^(7/12) 9323708938887478 a001 72/51841*599074578^(7/9) 9323708939628262 a001 48/90481*141422324^(8/9) 9323708939628262 a001 48/90481*23725150497407^(13/24) 9323708939628262 a001 48/90481*505019158607^(13/21) 9323708939628262 a001 48/90481*73681302247^(2/3) 9323708939628262 a001 48/90481*10749957122^(13/18) 9323708939628262 a001 48/90481*228826127^(13/15) 9323708939736341 a001 144/710647*312119004989^(2/3) 9323708939736341 a001 144/710647*3461452808002^(11/18) 9323708939736341 a001 144/710647*28143753123^(11/15) 9323708939736341 a001 144/710647*1568397607^(5/6) 9323708939736341 a001 144/710647*228826127^(11/12) 9323708939752110 a001 8/103361*1322157322203^(2/3) 9323708939754410 a001 144/4870847*5600748293801^(2/3) 9323708939754746 a001 48/4250681*23725150497407^(2/3) 9323708939754746 a001 48/4250681*505019158607^(16/21) 9323708939754746 a001 48/4250681*10749957122^(8/9) 9323708939754802 a001 48/29134601*17393796001^(20/21) 9323708939754802 a001 48/29134601*3461452808002^(7/9) 9323708939754802 a001 48/29134601*505019158607^(5/6) 9323708939754802 a001 48/29134601*28143753123^(14/15) 9323708939754803 a001 144*141422324^(2/9) 9323708939754803 a001 8/33281921*23725150497407^(19/24) 9323708939754803 a001 8/33281921*505019158607^(19/21) 9323708939754803 a001 72/5374978561*3461452808002^(17/18) 9323708939754803 a001 48/9381251041*23725150497407^(11/12) 9323708939754803 a001 144*73681302247^(1/6) 9323708939754803 a001 36/634430159*505019158607^(23/24) 9323708939754803 a001 144/969323029*9062201101803^(5/6) 9323708939754804 a001 36/35355581*312119004989^(13/15) 9323708939754804 a001 36/35355581*73681302247^(11/12) 9323708939754953 a001 36/1970299*28143753123^(5/6) 9323708939755832 a001 144/3010349*17393796001^(17/21) 9323708939755832 a001 144/3010349*45537549124^(7/9) 9323708939755832 a001 144/3010349*505019158607^(17/24) 9323708939755832 a001 144/3010349*599074578^(17/18) 9323708939796984 a001 144*271443^(1/3) 9323708940196522 a001 75025/322*64079^(1/3) 9323708940407244 a001 121393/322*167761^(4/15) 9323708940495583 a001 121393/322*20633239^(4/21) 9323708940495587 a001 121393/322*3461452808002^(1/9) 9323708940495587 a001 121393/322*28143753123^(2/15) 9323708940495587 a001 121393/322*228826127^(1/6) 9323708940495669 a001 121393/322*4870847^(5/24) 9323708940496186 a001 121393/322*1860498^(2/9) 9323708940499983 a001 121393/322*710647^(5/21) 9323708940601071 a001 1346269/322*167761^(1/15) 9323708940603663 a001 317811/322*20633239^(2/15) 9323708940603666 a001 317811/322*17393796001^(2/21) 9323708940603666 a001 317811/322*505019158607^(1/12) 9323708940603666 a001 317811/322*599074578^(1/9) 9323708940606743 a001 317811/322*710647^(1/6) 9323708940619435 a001 416020/161*23725150497407^(1/24) 9323708940619435 a001 416020/161*10749957122^(1/18) 9323708940619435 a001 416020/161*228826127^(1/15) 9323708940619468 a001 416020/161*4870847^(1/12) 9323708940621193 a001 416020/161*710647^(2/21) 9323708940623156 a001 1346269/322*20633239^(1/21) 9323708940623157 a001 1346269/322*228826127^(1/24) 9323708940623307 a001 1346269/322*1860498^(1/18) 9323708940629164 a001 514229/322*7881196^(1/9) 9323708940629180 a001 514229/322*312119004989^(1/15) 9323708940629180 a001 514229/322*1568397607^(1/12) 9323708940670463 a001 98209/161*45537549124^(1/9) 9323708940670472 a001 98209/161*12752043^(1/6) 9323708940715804 a001 416020/161*103682^(1/9) 9323708940736511 a001 121393/322*103682^(5/18) 9323708940801879 a001 311187/46*39603^(1/33) 9323708940953417 a001 75025/322*4106118243^(1/6) 9323708941340009 a001 416020/161*39603^(4/33) 9323708941619970 a001 514229/322*39603^(1/6) 9323708941864671 a001 317811/322*39603^(7/33) 9323708941979930 a001 311187/46*15127^(1/30) 9323708942025470 a001 144/64079*20633239^(19/21) 9323708942025490 a001 144/64079*817138163596^(5/9) 9323708942025490 a001 144/64079*228826127^(19/24) 9323708942025491 a001 144/64079*87403803^(5/6) 9323708942096669 a001 144*39603^(13/33) 9323708942297022 a001 121393/322*39603^(10/33) 9323708942890465 a001 28657/322*1149851^(1/3) 9323708942892815 a001 28657/322*1322157322203^(1/6) 9323708944018643 a001 1346269/322*15127^(1/12) 9323708946052211 a001 416020/161*15127^(2/15) 9323708947539248 a001 5473/161*24476^(5/9) 9323708948099248 a001 514229/322*15127^(11/60) 9323708950111025 a001 317811/322*15127^(7/30) 9323708950965292 a001 311187/46*5778^(1/27) 9323708952215113 a001 98209/161*15127^(17/60) 9323708954077528 a001 121393/322*15127^(1/3) 9323708955665164 a007 Real Root Of 6*x^4-769*x^3+152*x^2-24*x+509 9323708956031047 a001 5473/161*167761^(7/15) 9323708956185641 a001 5473/161*20633239^(1/3) 9323708956185648 a001 5473/161*17393796001^(5/21) 9323708956185648 a001 5473/161*505019158607^(5/24) 9323708956185648 a001 5473/161*599074578^(5/18) 9323708956185648 a001 5473/161*228826127^(7/24) 9323708956186696 a001 5473/161*1860498^(7/18) 9323708956193341 a001 5473/161*710647^(5/12) 9323708956408499 a001 17711/322*15127^(8/15) 9323708956572649 a001 75025/322*15127^(23/60) 9323708957411327 a001 144*15127^(13/30) 9323708962308740 m001 1/MadelungNaCl*CareFree^2/ln(Riemann2ndZero) 9323708962586630 a001 28657/322*15127^(29/60) 9323708966482048 a001 1346269/322*5778^(5/54) 9323708970565692 a001 4181/322*9349^(41/57) 9323708979954045 a001 5473/161*15127^(7/12) 9323708980288359 a005 (1/sin(104/237*Pi))^244 9323708981993661 a001 416020/161*5778^(4/27) 9323708997518741 a001 514229/322*5778^(11/54) 9323708997967496 a001 1597/322*3571^(47/51) 9323709007159599 h001 (-7*exp(2)-4)/(-4*exp(5)-4) 9323709013008562 a001 317811/322*5778^(7/27) 9323709015711205 r009 Im(z^3+c),c=-17/94+44/51*I,n=13 9323709020379493 a001 311187/46*2207^(1/24) 9323709023197523 a007 Real Root Of -827*x^4+116*x^3-565*x^2-323*x+909 9323709028590693 a001 98209/161*5778^(17/54) 9323709033631770 r002 39i'th iterates of 2*x/(1-x^2) of 9323709043412600 m002 -2+Pi^3-Pi^6+Sinh[Pi]/Pi^6 9323709043931152 a001 121393/322*5778^(10/27) 9323709047296079 a001 4181/322*370248451^(1/3) 9323709059904317 a001 75025/322*5778^(23/54) 9323709064773398 m005 (1/2*Zeta(3)+5/8)/(9/11*exp(1)-10/11) 9323709074221038 a001 144*5778^(13/27) 9323709075139058 a001 4181/322*15127^(41/60) 9323709092874385 a001 28657/322*5778^(29/54) 9323709096403878 a001 6765/322*5778^(19/27) 9323709100174297 a001 17711/322*5778^(16/27) 9323709112175260 m001 1/GAMMA(11/12)/CopelandErdos*exp(sin(1)) 9323709116716972 k002 Champernowne real with 36*n^2+206*n-233 9323709129437555 m005 (1/2*3^(1/2)+1/6)/(5/8*gamma-1/4) 9323709137197888 a001 5473/161*5778^(35/54) 9323709137408629 a003 sin(Pi*12/29)*sin(Pi*49/117) 9323709140017553 a001 1346269/322*2207^(5/48) 9323709143543853 m001 MertensB1^Artin/(MertensB1^arctan(1/3)) 9323709158114233 a003 sin(Pi*41/108)/sin(Pi*37/78) 9323709178670357 m001 (GAMMA(13/24)+Thue)/(2^(1/2)+BesselI(0,1)) 9323709187359862 m005 (1/3*2^(1/2)-2/9)/(5/7*Pi+3/7) 9323709211603331 r005 Im(z^2+c),c=-83/98+2/33*I,n=61 9323709231028600 l006 ln(1789/4545) 9323709232539256 a001 141*29^(23/41) 9323709238417584 m001 (GaussAGM-gamma)/(-Magata+MasserGramain) 9323709239770277 r002 9th iterates of z^2 + 9323709248855990 a007 Real Root Of 195*x^4-551*x^3+600*x^2+258*x-875 9323709259338990 a001 4181/322*5778^(41/54) 9323709259650469 a001 416020/161*2207^(1/6) 9323709285581985 m001 (1-2^(1/3))/(-Chi(1)+Pi*2^(1/2)/GAMMA(3/4)) 9323709314032778 m001 (Khinchin-Shi(1))/(Mills+TreeGrowth2nd) 9323709349884472 r005 Re(z^2+c),c=-39/122+11/18*I,n=33 9323709362107172 a007 Real Root Of 526*x^4-673*x^3-736*x^2-974*x-85 9323709379296856 a001 514229/322*2207^(11/48) 9323709399116676 a007 Real Root Of -980*x^4+592*x^3+178*x^2-463*x+634 9323709402104203 m005 (5/36+1/4*5^(1/2))/(3/5*2^(1/2)-1/10) 9323709416219545 a007 Real Root Of 503*x^4-780*x^3-681*x^2-164*x+997 9323709437095440 m001 1/3*(ln(2)/ln(10)+3^(1/3)*Sarnak)*3^(2/3) 9323709454864567 a007 Real Root Of 851*x^4-595*x^3-420*x^2+632*x-171 9323709465381377 p001 sum(1/(476*n+109)/(12^n),n=0..infinity) 9323709489436583 m001 (Ei(1)-Champernowne)/(Tetranacci-Trott2nd) 9323709494735822 a007 Real Root Of 491*x^4-825*x^3-33*x^2-537*x+827 9323709498907984 a001 317811/322*2207^(7/24) 9323709501517764 a007 Real Root Of 515*x^4-840*x^3-352*x^2+798*x-20 9323709514155315 m001 MadelungNaCl^ln(2)-BesselJZeros(0,1) 9323709528585570 r005 Re(z^2+c),c=5/48+18/37*I,n=13 9323709554777457 a003 cos(Pi*7/93)*sin(Pi*38/93) 9323709563245653 m004 -36-25*Pi+5*Pi*Sec[Sqrt[5]*Pi] 9323709565384582 a001 311187/46*843^(1/21) 9323709570878148 m001 1/Ei(1)^2*Sierpinski*exp(sin(Pi/12)) 9323709574008288 a007 Real Root Of 395*x^4+56*x^3+130*x^2+353*x-37 9323709583817032 a001 1597/322*9349^(47/57) 9323709587311188 a007 Real Root Of -879*x^4+819*x^3+947*x^2-298*x+227 9323709618611424 a001 98209/161*2207^(17/48) 9323709647660262 m001 ZetaP(2)^(Champernowne*TravellingSalesman) 9323709670908876 a001 144/3571*7881196^(7/9) 9323709670908977 a001 144/3571*20633239^(11/15) 9323709670908993 a001 144/3571*17393796001^(11/21) 9323709670908993 a001 144/3571*312119004989^(7/15) 9323709670908993 a001 144/3571*505019158607^(11/24) 9323709670908993 a001 144/3571*1568397607^(7/12) 9323709670908993 a001 144/3571*599074578^(11/18) 9323709670925917 a001 144/3571*710647^(11/12) 9323709671776261 a001 1597/322*6643838879^(1/3) 9323709673868825 a007 Real Root Of 891*x^4+944*x^3+994*x^2+587*x-225 9323709683889810 m001 (BesselJ(1,1)+Tribonacci)/(1+exp(1/exp(1))) 9323709703602919 m001 (Shi(1)-ln(gamma))/(GAMMA(23/24)+ArtinRank2) 9323709703693825 a001 1597/322*15127^(47/60) 9323709704873307 r005 Re(z^2+c),c=-19/18+34/95*I,n=6 9323709715501398 a007 Real Root Of -676*x^4+585*x^3+358*x^2+71*x+740 9323709721729542 m001 Niven^2*ln(GolombDickman)^2*Zeta(3)^2 9323709738073194 a001 121393/322*2207^(5/12) 9323709740660447 h001 (-5*exp(-2)+7)/(-9*exp(-2)+8) 9323709759021957 a007 Real Root Of -81*x^4+457*x^3-137*x^2+105*x-288 9323709785091431 r009 Re(z^3+c),c=-9/70+23/58*I,n=19 9323709807800120 r005 Re(z^2+c),c=3/62+23/50*I,n=51 9323709822241436 r005 Re(z^2+c),c=-9/10+43/199*I,n=15 9323709826749051 m005 (1/2*2^(1/2)+4/11)/(4/7*Catalan+5/8) 9323709839664825 l006 ln(3615/9184) 9323709858167671 a001 75025/322*2207^(23/48) 9323709861838561 m001 Psi(1,1/3)-ZetaP(3)^ZetaR(2) 9323709870570437 m001 (Landau+Niven)/(GolombDickman+KomornikLoreti) 9323709882687267 a007 Real Root Of 841*x^4-555*x^3-687*x^2-180*x-656 9323709896682993 r005 Re(z^2+c),c=-13/14+11/139*I,n=21 9323709914849859 a001 1597/322*5778^(47/54) 9323709916383342 a007 Real Root Of 983*x^4-77*x^3+295*x^2+359*x-727 9323709917578436 r002 24th iterates of z^2 + 9323709925597283 p004 log(32191/12671) 9323709932240629 a007 Real Root Of 906*x^4-45*x^3-42*x^2+656*x-73 9323709964508450 a001 34/521*123^(21/38) 9323709976605705 a001 144*2207^(13/24) 9323709980989864 m001 FeigenbaumAlpha*Champernowne*ln(sqrt(3))^2 9323710001399324 r005 Im(z^2+c),c=-6/7+9/97*I,n=4 9323710002842243 r009 Re(z^3+c),c=-9/70+23/58*I,n=21 9323710024735059 b008 ArcCsch[BesselY[0,1/4]] 9323710049639293 a007 Real Root Of 920*x^4-91*x^3-374*x^2-575*x-980 9323710057181611 m001 GAMMA(1/3)*MertensB1/exp(Zeta(7))^2 9323710066612858 r005 Im(z^2+c),c=1/8+3/44*I,n=9 9323710076636983 a007 Real Root Of -965*x^4-731*x^3+344*x^2+750*x+537 9323710089117793 a003 sin(Pi*1/72)-sin(Pi*40/93) 9323710092063871 h001 (1/10*exp(2)+3/5)/(3/8*exp(1)+5/12) 9323710099380368 a001 28657/322*2207^(29/48) 9323710108059407 r009 Re(z^3+c),c=-9/70+23/58*I,n=18 9323710112116714 r009 Re(z^3+c),c=-9/70+23/58*I,n=23 9323710117017032 k002 Champernowne real with 73/2*n^2+409/2*n-232 9323710122917328 r009 Re(z^3+c),c=-9/70+23/58*I,n=26 9323710123842904 r009 Re(z^3+c),c=-9/70+23/58*I,n=28 9323710124070689 r009 Re(z^3+c),c=-9/70+23/58*I,n=30 9323710124073966 r009 Re(z^3+c),c=-9/70+23/58*I,n=31 9323710124076378 r009 Re(z^3+c),c=-9/70+23/58*I,n=33 9323710124078962 r009 Re(z^3+c),c=-9/70+23/58*I,n=35 9323710124079315 r009 Re(z^3+c),c=-9/70+23/58*I,n=38 9323710124079333 r009 Re(z^3+c),c=-9/70+23/58*I,n=40 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=42 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=45 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=43 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=47 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=50 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=52 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=54 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=57 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=59 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=61 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=62 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=64 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=63 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=60 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=58 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=55 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=56 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=49 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=53 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=51 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=48 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=46 9323710124079339 r009 Re(z^3+c),c=-9/70+23/58*I,n=44 9323710124079341 r009 Re(z^3+c),c=-9/70+23/58*I,n=41 9323710124079353 r009 Re(z^3+c),c=-9/70+23/58*I,n=39 9323710124079358 r009 Re(z^3+c),c=-9/70+23/58*I,n=37 9323710124079403 r009 Re(z^3+c),c=-9/70+23/58*I,n=36 9323710124080562 r009 Re(z^3+c),c=-9/70+23/58*I,n=34 9323710124084705 r009 Re(z^3+c),c=-9/70+23/58*I,n=32 9323710124147268 r009 Re(z^3+c),c=-9/70+23/58*I,n=29 9323710124681345 r009 Re(z^3+c),c=-9/70+23/58*I,n=27 9323710124985896 r009 Re(z^3+c),c=-9/70+23/58*I,n=24 9323710125471567 r009 Re(z^3+c),c=-9/70+23/58*I,n=25 9323710160916562 m001 GAMMA(19/24)-PisotVijayaraghavan^sin(1) 9323710169319735 r009 Re(z^3+c),c=-9/70+23/58*I,n=22 9323710210801595 a001 17711/322*2207^(2/3) 9323710237904303 q001 3488/3741 9323710252837333 m001 Landau/(GAMMA(13/24)-Shi(1)) 9323710282070925 m006 (1/4*exp(2*Pi)+5)/(2*ln(Pi)-4/5) 9323710289871025 a001 75025/29*47^(27/29) 9323710299978864 m005 (11/20+1/4*5^(1/2))/(9/10*2^(1/2)-1/12) 9323710300424336 a007 Real Root Of 773*x^4+337*x^3+871*x^2+633*x-478 9323710313547341 l006 ln(7726/8481) 9323710319216876 r009 Re(z^3+c),c=-15/106+13/27*I,n=25 9323710331430966 r005 Re(z^2+c),c=-111/98+14/59*I,n=20 9323710351946507 a001 5473/161*2207^(35/48) 9323710359832884 m001 cos(1/12*Pi)^KhinchinHarmonic/Psi(1,1/3) 9323710371968622 r009 Re(z^3+c),c=-9/70+23/58*I,n=20 9323710394584262 a007 Real Root Of -998*x^4-596*x^3+209*x^2-999*x-842 9323710408303667 a003 cos(Pi*11/74)/sin(Pi*46/113) 9323710415273809 a001 6765/322*2207^(19/24) 9323710416016873 a001 1292/161*2207^(11/12) 9323710418030853 m001 ln(3)^(GAMMA(23/24)/exp(-Pi)) 9323710418030853 m001 ln(3)^(exp(Pi)*GAMMA(23/24)) 9323710435968298 l006 ln(1826/4639) 9323710455392292 a007 Real Root Of -501*x^4-742*x^3-123*x^2+812*x-74 9323710477527203 r005 Re(z^2+c),c=-53/58+5/38*I,n=43 9323710502530352 a001 1346269/322*843^(5/42) 9323710521156271 m004 -1+30*Pi-6*Csch[Sqrt[5]*Pi] 9323710522845531 m004 -1+30*Pi-6*Sech[Sqrt[5]*Pi] 9323710524862580 m001 KhinchinLevy-Psi(1,1/3)-PrimesInBinary 9323710533138732 r005 Im(z^2+c),c=13/122+4/55*I,n=7 9323710534981417 m005 (1/2*Catalan-3/10)/(4/7*5^(1/2)+5/12) 9323710594190168 r009 Re(z^3+c),c=-1/60+11/17*I,n=47 9323710595764339 h001 (7/9*exp(2)+2/3)/(9/11*exp(2)+5/6) 9323710602938411 a007 Real Root Of -793*x^4+473*x^3+281*x^2-438*x+330 9323710615578252 r005 Re(z^2+c),c=-85/78+5/38*I,n=30 9323710615813461 a007 Real Root Of 363*x^4-840*x^3-263*x^2+554*x-210 9323710629690971 m001 1/(3^(1/3))/GaussAGM(1,1/sqrt(2))/ln(Catalan) 9323710649917295 m001 FeigenbaumD^Sarnak/(Otter^Sarnak) 9323710663766446 a007 Real Root Of -735*x^4+651*x^3+639*x^2-479*x+81 9323710679409691 m004 -30*Pi+6*Csch[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 9323710681098951 m004 -30*Pi+6*Sech[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 9323710682330265 a001 4181/322*2207^(41/48) 9323710700798739 m001 (3^(1/3))/ln(ArtinRank2)^2*Catalan^2 9323710741328994 h001 (-exp(1/2)-1)/(-5*exp(3/2)-6) 9323710823665427 a007 Real Root Of -974*x^4+789*x^3+781*x^2-523*x+209 9323710832923527 a007 Real Root Of -721*x^4+251*x^3+831*x^2+250*x+259 9323710848344941 a007 Real Root Of 282*x^4-445*x^3-550*x^2-350*x-422 9323710925997324 m005 (1/2*exp(1)+7/12)/(6/7*5^(1/2)-4) 9323710939206174 m002 -Pi^6+Cosh[Pi]/6+Pi^3/Log[Pi] 9323710949591336 a007 Real Root Of -28*x^4+763*x^3-268*x^2+167*x-520 9323710951557316 p004 log(20287/18481) 9323711004795489 m001 (Zeta(1/2)*MertensB2+exp(1/Pi))/Zeta(1/2) 9323711006546799 a008 Real Root of x^5-x^4-13*x^3+16*x^2+15*x-9 9323711020310106 l006 ln(3689/9372) 9323711104939908 m005 (1/2*5^(1/2)-1/6)/(7/9*gamma+4/7) 9323711108357337 r005 Re(z^2+c),c=-19/21+9/58*I,n=37 9323711112516117 k008 concat of cont frac of 9323711117317092 k002 Champernowne real with 37*n^2+203*n-231 9323711127703391 r005 Im(z^2+c),c=-29/60+9/56*I,n=26 9323711145376978 m004 3+15625*Pi+25*Pi*Cosh[Sqrt[5]*Pi] 9323711147830966 a007 Real Root Of -276*x^4+705*x^3+252*x^2+775*x-75 9323711173546601 a007 Real Root Of 978*x^4+150*x^3-543*x^2-347*x-469 9323711181147631 r002 34th iterates of z^2 + 9323711196029571 a001 123/55*4181^(17/38) 9323711207449997 a007 Real Root Of 844*x^4-877*x^3-712*x^2+315*x-436 9323711232704952 b008 Sinh[41/14] 9323711232704952 l003 sinh(2+13/14) 9323711232704952 l004 sinh(41/14) 9323711234113124 k006 concat of cont frac of 9323711249659650 m005 (1/3*exp(1)-1/3)/(3/11*2^(1/2)-1) 9323711265750518 a007 Real Root Of 995*x^4-786*x^3-949*x^2-163*x-716 9323711273314806 m007 (-2/5*gamma-2)/(-1/5*gamma-2/5*ln(2)-2) 9323711281846985 h001 (1/10*exp(2)+7/8)/(3/5*exp(1)+1/10) 9323711283513750 r008 a(0)=1,K{-n^6,-53-16*n^3+16*n^2+70*n} 9323711284461241 r009 Re(z^3+c),c=-3/28+4/17*I,n=5 9323711326845140 r005 Re(z^2+c),c=-5/24+41/57*I,n=18 9323711333471062 r009 Im(z^3+c),c=-25/64+1/47*I,n=33 9323711339067101 m001 GAMMA(1/12)*ln(Catalan)^2*GAMMA(23/24)^2 9323711340206185 q001 2261/2425 9323711347998003 a007 Real Root Of -369*x^4+658*x^3+370*x^2+141*x+622 9323711349237272 m005 (1/2*Zeta(3)+4)/(7/11*gamma-5/12) 9323711354323571 a007 Real Root Of 107*x^4+983*x^3-95*x^2+390*x+31 9323711356411047 m001 ln((2^(1/3)))*GolombDickman^2/cos(Pi/12) 9323711381111612 k009 concat of cont frac of 9323711398678369 m001 LambertW(1)/BesselI(1,2)*MertensB1 9323711403544741 a007 Real Root Of 307*x^4-752*x^3-789*x^2-98*x-247 9323711407056323 a001 15127/34*233^(24/43) 9323711439671072 a001 416020/161*843^(4/21) 9323711458266939 r005 Re(z^2+c),c=-61/66+2/21*I,n=9 9323711535311823 a007 Real Root Of 252*x^4-217*x^3+569*x^2+592*x-309 9323711546083892 a001 1597/322*2207^(47/48) 9323711548748833 a007 Real Root Of -995*x^4+869*x^3+551*x^2+19*x+995 9323711586028675 a007 Real Root Of -884*x^4-333*x^3-90*x^2+50*x+523 9323711593046595 l006 ln(1863/4733) 9323711602942496 a007 Real Root Of 89*x^4+855*x^3+271*x^2+249*x-820 9323711625325735 r005 Re(z^2+c),c=-2/27+46/63*I,n=54 9323711626497448 a007 Real Root Of 510*x^4-407*x^3+233*x^2+298*x-640 9323711640994850 h003 exp(Pi*(17^(1/2)*(22+7^(3/4)))) 9323711651183100 m002 -2+Pi^3-Pi^6+Log[Pi]/Pi^4 9323711670408650 h001 (-4*exp(1)+6)/(-exp(2/3)+2) 9323711676363775 m001 (Backhouse-Paris)/(gamma(1)+GAMMA(7/12)) 9323711681523474 m001 Tribonacci^exp(1)/(cos(1/5*Pi)^exp(1)) 9323711736680124 m001 1/exp(Lehmer)/ArtinRank2*Salem 9323711736955460 r002 23th iterates of z^2 + 9323711739208931 m001 Tribonacci/GAMMA(5/6)/ZetaP(3) 9323711748538216 r005 Im(z^2+c),c=-15/26+9/104*I,n=3 9323711753083643 m001 Lehmer^Rabbit/(Lehmer^Stephens) 9323711780372659 a007 Real Root Of 554*x^4+823*x^3+480*x^2-353*x-498 9323711780404940 r005 Im(z^2+c),c=-41/106+7/47*I,n=9 9323711784105868 a001 41/48*610^(30/41) 9323711801295034 a007 Real Root Of 559*x^4-2*x^3+251*x^2+144*x-508 9323711814914131 h001 (4/5*exp(2)+5/9)/(9/10*exp(2)+2/7) 9323711819732450 a007 Real Root Of -2*x^4-187*x^3-45*x^2+373*x-175 9323711831512210 g005 GAMMA(2/7)/GAMMA(7/12)/GAMMA(9/10)/GAMMA(3/7) 9323711854193079 a007 Real Root Of 445*x^4-654*x^3-870*x^2-696*x-759 9323711931605278 a001 317811/521*199^(17/33) 9323711945733472 a007 Real Root Of 515*x^4-452*x^3-716*x^2+501*x+334 9323711962345608 s002 sum(A159900[n]/(n*exp(pi*n)-1),n=1..infinity) 9323711989586696 a003 cos(Pi*13/105)/sin(Pi*47/102) 9323712026953670 r009 Re(z^3+c),c=-77/114+21/43*I,n=10 9323712030518261 h001 (6/11*exp(1)+1/7)/(2/11*exp(2)+2/5) 9323712059621307 a007 Real Root Of 792*x^4-457*x^3-161*x^2+444*x-415 9323712080241640 a001 123/377*28657^(27/49) 9323712083572925 a007 Real Root Of 880*x^4-976*x^3-570*x^2+775*x-238 9323712116349174 a007 Real Root Of 486*x^4-945*x^3+83*x^2+719*x-535 9323712117617152 k002 Champernowne real with 75/2*n^2+403/2*n-230 9323712121102214 k007 concat of cont frac of 9323712141572301 m001 (-Kolakoski+Thue)/(2^(1/3)-LambertW(1)) 9323712141596401 a007 Real Root Of 811*x^4+214*x^3-719*x^2-198*x+1 9323712154520097 l006 ln(3763/9560) 9323712161119605 m001 BesselI(0,1)/(Mills^ln(Pi)) 9323712171995631 r009 Re(z^3+c),c=-9/70+23/58*I,n=17 9323712184896373 m005 (1/2*Zeta(3)+7/10)/(gamma+9/11) 9323712185631272 m005 (1/2*3^(1/2)+7/12)/(5/6*3^(1/2)+1/9) 9323712186544313 a007 Real Root Of 812*x^4-857*x^3-978*x^2-415*x-845 9323712191056633 a007 Real Root Of -349*x^4+864*x^3+571*x^2-79*x+394 9323712205395229 m001 (arctan(1/3)+CareFree*PlouffeB)/CareFree 9323712205823188 m001 (Stephens+Tetranacci)/(Zeta(1,2)-MadelungNaCl) 9323712214015325 a007 Real Root Of 146*x^4-784*x^3+82*x^2-382*x+810 9323712217145635 a007 Real Root Of 819*x^4+176*x^3-17*x^2-377*x-813 9323712229742571 m001 (GAMMA(19/24)-Kolakoski)/(Magata+TwinPrimes) 9323712265001702 r005 Im(z^2+c),c=-73/70+6/59*I,n=10 9323712273500449 r005 Re(z^2+c),c=-14/17+3/19*I,n=34 9323712276428985 a007 Real Root Of -159*x^4+462*x^3-328*x^2-669*x+156 9323712281532950 a001 7/832040*10946^(15/58) 9323712287401258 r009 Im(z^3+c),c=-23/122+41/45*I,n=35 9323712297894140 m001 1/exp(Magata)^2*FibonacciFactorial^2/sqrt(Pi) 9323712345783566 r005 Re(z^2+c),c=-29/32+5/33*I,n=53 9323712351275848 a001 199/10946*89^(50/57) 9323712376825354 a001 514229/322*843^(11/42) 9323712439072071 b008 9+Sinh[Pi^(-1)] 9323712447729298 r009 Im(z^3+c),c=-21/38+23/38*I,n=14 9323712458825497 m005 (1/2*5^(1/2)-3/8)/(6/11*Pi-11/12) 9323712485405381 m005 (1/2*gamma+1/4)/(5/12*gamma-9/11) 9323712489403394 m001 (Landau-TreeGrowth2nd)/(ln(3)-gamma(2)) 9323712507074136 q001 3295/3534 9323712509169553 a007 Real Root Of -726*x^4+661*x^3+715*x^2-372*x+116 9323712511164674 r005 Re(z^2+c),c=-7/26+13/17*I,n=5 9323712518952577 a007 Real Root Of 98*x^4-664*x^3-247*x^2+17*x+663 9323712529334189 a007 Real Root Of 808*x^4+262*x^3+426*x^2+154*x-625 9323712551514330 h001 (3/10*exp(1)+5/6)/(6/11*exp(1)+2/7) 9323712592454551 a007 Real Root Of -523*x^4+535*x^3-566*x^2-519*x+837 9323712616716669 m001 (Psi(1,1/3)+1)/(Zeta(1,-1)+FeigenbaumKappa) 9323712649803836 m001 (3^(1/3))^Cahen/((3^(1/3))^GaussAGM) 9323712651641082 v002 sum(1/(3^n+(n^2+22*n-7)),n=1..infinity) 9323712657803080 m001 1/BesselK(1,1)^2*exp((2^(1/3)))^2*exp(1) 9323712664322715 a007 Real Root Of -252*x^4+266*x^3-84*x^2+341*x+797 9323712687270858 m001 ln(FeigenbaumKappa)*Lehmer/GAMMA(5/24)^2 9323712697328461 m006 (3/4*exp(2*Pi)+3/5)/(4/5*exp(2*Pi)+3) 9323712705059610 l006 ln(1900/4827) 9323712712393465 m005 (1/5*Pi+5)/(2*exp(1)+3/5) 9323712717578984 a007 Real Root Of 14*x^4+102*x^3-257*x^2-14*x-915 9323712732434588 a007 Real Root Of 415*x^4+17*x^3-774*x^2-539*x+848 9323712737316772 a007 Real Root Of -501*x^4+628*x^3+790*x^2+165*x-971 9323712763185256 a007 Real Root Of -890*x^4+431*x^3+505*x^2-297*x+306 9323712786388584 a007 Real Root Of 757*x^4-151*x^3-623*x^2-220*x-358 9323712806623538 m001 ZetaR(2)*(CareFree-MertensB3) 9323712817955281 r009 Re(z^3+c),c=-5/29+31/46*I,n=63 9323712823148635 m001 GAMMA(1/24)/FeigenbaumB^2*ln(log(2+sqrt(3))) 9323712834007493 m001 1/exp(Zeta(9))/GAMMA(5/12)*cos(1) 9323712877770640 m001 ln(Salem)^2*Riemann3rdZero*sqrt(2) 9323712887467951 a001 36*29^(13/46) 9323712914429890 r009 Im(z^3+c),c=-3/16+37/41*I,n=17 9323712969603914 m001 (Chi(1)+Zeta(5))/(-exp(1/Pi)+GAMMA(19/24)) 9323712975182788 m001 (3^(1/2)-3^(1/3))/(-Pi^(1/2)+MinimumGamma) 9323713000060613 m009 (6*Psi(1,3/4)+1/6)/(1/10*Pi^2+2/3) 9323713014162836 a007 Real Root Of -846*x^4+788*x^3+879*x^2+516*x+995 9323713060154521 m005 (1/2*Zeta(3)+6)/(1/2*Catalan+1/4) 9323713075077248 m001 (3^(1/3))^2/ln(MinimumGamma)/sin(Pi/5) 9323713095826025 m001 ln(Riemann1stZero)^2*Champernowne*OneNinth 9323713098650639 b008 Sech[Sqrt[ArcCsc[7]]] 9323713117917212 k002 Champernowne real with 38*n^2+200*n-229 9323713157960901 a001 13/3010349*29^(8/35) 9323713172472671 p001 sum((-1)^n/(263*n+106)/(24^n),n=0..infinity) 9323713194213960 r005 Im(z^2+c),c=-3/4+63/221*I,n=9 9323713238508275 m001 (Porter-Rabbit)/(FeigenbaumKappa-Landau) 9323713244981444 l006 ln(3837/9748) 9323713275483934 m005 (1/2*Zeta(3)+2/3)/(8/9*Catalan+6/11) 9323713313944470 a001 317811/322*843^(1/3) 9323713344072422 r002 35th iterates of z^2 + 9323713372064350 m001 (Si(Pi)-sin(1))/(Artin+Rabbit) 9323713372822399 m001 (RenyiParking+Salem)/(Gompertz+Porter) 9323713420838430 m001 Salem^ZetaQ(3)/(Salem^BesselJ(1,1)) 9323713468194845 m001 Psi(2,1/3)^BesselI(0,2)+Otter 9323713475147265 m001 (Conway-Shi(1))/(-Trott2nd+ZetaQ(2)) 9323713498952019 a001 281/48*89^(37/60) 9323713530524757 m001 1/GAMMA(2/3)^2/exp(PrimesInBinary)*sin(Pi/12) 9323713540077107 a007 Real Root Of -448*x^4+671*x^3-999*x^2-830*x+977 9323713542490497 v002 sum(1/(3^n*(12*n^2-29*n+66)),n=1..infinity) 9323713558059637 a007 Real Root Of -32*x^4+570*x^3+369*x^2+866*x+78 9323713638743158 a001 2/514229*55^(12/55) 9323713660870703 r005 Im(z^2+c),c=-17/29+47/64*I,n=3 9323713668932364 a007 Real Root Of -913*x^4-412*x^3-438*x^2-151*x+596 9323713692888846 m005 (1/2*Catalan+11/12)/(1/7*3^(1/2)-1/10) 9323713738780545 a007 Real Root Of 746*x^4-319*x^3-317*x^2+196*x-364 9323713739631406 r005 Im(z^2+c),c=-21/34+16/67*I,n=19 9323713760723314 a007 Real Root Of 76*x^4+770*x^3+594*x^2+284*x+775 9323713773778725 m001 Totient^ZetaP(3)/GAMMA(5/6) 9323713774589823 l006 ln(1937/4921) 9323713783884470 r002 23i'th iterates of 2*x/(1-x^2) of 9323713803700726 a007 Real Root Of -502*x^4-509*x^3-285*x^2+171*x+374 9323713808470674 r004 Im(z^2+c),c=-25/42+5/9*I,z(0)=-1,n=3 9323713818396855 m001 ln(3)^Gompertz*AlladiGrinstead^Gompertz 9323713822756131 r005 Re(z^2+c),c=1/15+19/39*I,n=61 9323713828119348 m001 ReciprocalLucas^cos(1/5*Pi)*cos(1) 9323713832006244 m001 1/OneNinth/PrimesInBinary^2*ln(sin(1)) 9323713852838995 a001 305/161*9349^(53/57) 9323713854194316 b008 -2+Sqrt[3]+2*Sqrt[23] 9323713905431857 m001 (Trott2nd-ZetaQ(3))/(exp(1/Pi)+GolombDickman) 9323713912416759 a007 Real Root Of 838*x^4+28*x^3-660*x^2-737*x-724 9323713931400107 r009 Im(z^3+c),c=-9/52+33/37*I,n=27 9323713936488626 a001 311187/46*322^(1/18) 9323713942796158 m005 (1/2*2^(1/2)+5/11)/(1/6*2^(1/2)-1/9) 9323713952027107 a001 305/161*119218851371^(1/3) 9323713988019271 a001 305/161*15127^(53/60) 9323714007914554 m001 FellerTornier-Porter^Lehmer 9323714036039132 a007 Real Root Of -756*x^4-21*x^3-57*x^2-505*x+133 9323714095183545 m001 (1+GAMMA(13/24))/(-Stephens+Thue) 9323714099809193 m001 (Psi(2,1/3)+CareFree)/(-Lehmer+Salem) 9323714118217272 k002 Champernowne real with 77/2*n^2+397/2*n-228 9323714126588450 a003 cos(Pi*4/65)*cos(Pi*10/99) 9323714143479617 b008 Sech[ArcSin[EulerGamma]^2] 9323714144215898 v002 sum(1/(5^n*(21*n^2-16*n+18)),n=1..infinity) 9323714184317768 a003 sin(Pi*1/92)-sin(Pi*48/115) 9323714206271721 l006 ln(3029/3325) 9323714222856553 p003 LerchPhi(1/32,1,193/177) 9323714226131504 a001 305/161*5778^(53/54) 9323714251155992 a001 98209/161*843^(17/42) 9323714266386274 a001 1/15134*(1/2*5^(1/2)+1/2)*47^(9/16) 9323714294177458 l006 ln(3911/9936) 9323714296251767 a001 1/841*(1/2*5^(1/2)+1/2)^19*29^(12/19) 9323714326820536 a007 Real Root Of -946*x^4-654*x^3+98*x^2+512*x+577 9323714331087442 m003 2/3+Sqrt[5]/64+(Sqrt[5]*Csch[1/2+Sqrt[5]/2])/4 9323714354295994 r005 Re(z^2+c),c=-9/10+21/61*I,n=3 9323714379467539 r005 Re(z^2+c),c=-3/118+16/47*I,n=7 9323714406766141 a007 Real Root Of -803*x^4-938*x^3-567*x^2-348*x+15 9323714425964691 a007 Real Root Of 607*x^4-793*x^3+64*x^2-479*x+575 9323714440630758 r002 60th iterates of z^2 + 9323714448736077 r002 3th iterates of z^2 + 9323714449842658 r005 Re(z^2+c),c=-13/14+14/177*I,n=15 9323714473315259 r005 Im(z^2+c),c=-13/20+19/43*I,n=46 9323714474890752 r005 Re(z^2+c),c=-97/118+7/40*I,n=63 9323714503464559 a007 Real Root Of -505*x^4+345*x^3+493*x^2+720*x+904 9323714505490595 r002 47th iterates of z^2 + 9323714513030651 a007 Real Root Of -628*x^4-50*x^3+498*x^2+978*x+913 9323714519392008 r005 Im(z^2+c),c=-83/98+2/33*I,n=62 9323714519473071 m001 1/exp(Bloch)/Artin*RenyiParking^2 9323714525691968 m001 (5^(1/2)+GAMMA(2/3))/(-Trott2nd+ThueMorse) 9323714531942472 r005 Im(z^2+c),c=15/56+36/61*I,n=43 9323714535891675 r009 Im(z^3+c),c=-11/28+6/7*I,n=3 9323714551653249 a007 Real Root Of -651*x^4+918*x^3+544*x^2-427*x+365 9323714615726887 m001 Thue^(MertensB1/LambertW(1)) 9323714625391488 m005 (1/2*Zeta(3)+1)/(1/5*2^(1/2)-2) 9323714633465959 r009 Re(z^3+c),c=-9/20+34/63*I,n=8 9323714645843349 a001 2207/89*514229^(41/42) 9323714648161713 a007 Real Root Of -686*x^4+967*x^3+916*x^2-567*x-533 9323714677008472 r005 Im(z^2+c),c=-16/25+15/58*I,n=11 9323714687801862 a007 Real Root Of -4*x^4+847*x^3+430*x^2+484*x+767 9323714732176956 r005 Re(z^2+c),c=-121/122+11/47*I,n=22 9323714746552193 a007 Real Root Of 903*x^4+486*x^3+759*x^2+794*x-208 9323714747399199 m001 Trott/LaplaceLimit*ln(GAMMA(5/12))^2 9323714750485416 a001 11/17711*196418^(1/30) 9323714757317278 m001 (exp(1/exp(1))-sin(1))/(-Sarnak+ZetaP(4)) 9323714764674913 r009 Re(z^3+c),c=-37/102+19/28*I,n=17 9323714768725395 a007 Real Root Of -477*x^4+954*x^3-650*x^2-861*x+896 9323714793698982 m001 1/Zeta(5)/GAMMA(7/24)*ln(sin(1))^2 9323714793858472 a007 Real Root Of 87*x^4-849*x^3-206*x^2+67*x+739 9323714804026090 l006 ln(1974/5015) 9323714807929168 r009 Im(z^3+c),c=-47/78+23/44*I,n=12 9323714829116864 r005 Im(z^2+c),c=27/98+32/49*I,n=4 9323714844107471 m001 arctan(1/3)^FeigenbaumB+Landau 9323714876254369 r002 3th iterates of z^2 + 9323714890769814 m001 Chi(1)^(Conway*GaussKuzminWirsing) 9323714944936045 a007 Real Root Of 309*x^4+232*x^3+911*x^2-21*x-857 9323714989150006 m005 (1/2*gamma-8/9)/(-6/11+3/11*5^(1/2)) 9323715001670409 m005 (1/2*3^(1/2)-9/11)/(1/5*Zeta(3)+3/11) 9323715005299727 p004 log(25169/9907) 9323715011185982 a001 610/4870847*11^(36/43) 9323715058611361 q001 1034/1109 9323715085437540 a007 Real Root Of 454*x^4-181*x^3-377*x^2-415*x-549 9323715118517332 k002 Champernowne real with 39*n^2+197*n-227 9323715119210171 a003 cos(Pi*17/79)+cos(Pi*51/113) 9323715119596807 a007 Real Root Of 614*x^4-559*x^3-191*x^2+709*x-90 9323715126411874 r005 Im(z^2+c),c=7/60+4/57*I,n=5 9323715131866078 m001 gamma^2/GolombDickman/ln(sqrt(Pi)) 9323715135800263 m001 (-polylog(4,1/2)+Totient)/(5^(1/2)-GAMMA(2/3)) 9323715151213221 k008 concat of cont frac of 9323715155929680 r009 Re(z^3+c),c=-15/106+13/27*I,n=27 9323715168911552 m001 (2^(1/3)-exp(Pi))/(Zeta(3)+ln(Pi)) 9323715171657242 a007 Real Root Of -51*x^4+125*x^3-839*x^2-263*x+624 9323715173782678 r002 52th iterates of z^2 + 9323715188125935 a001 121393/322*843^(10/21) 9323715193668921 m001 Zeta(7)^2/exp(Lehmer)^2*sqrt(3)^2 9323715220383550 m007 (-4*gamma-12*ln(2)-2*Pi-2/5)/(-5/6*gamma+2/3) 9323715220727231 a007 Real Root Of 793*x^4-468*x^3+175*x^2+344*x-810 9323715229583969 r005 Re(z^2+c),c=-3/52+56/57*I,n=6 9323715288264002 r005 Im(z^2+c),c=-11/14+7/137*I,n=18 9323715300143877 a003 cos(Pi*21/113)+cos(Pi*15/32) 9323715310245974 m009 (8/5*Catalan+1/5*Pi^2-2/3)/(1/5*Pi^2+1) 9323715340134034 r009 Re(z^3+c),c=-18/31+4/41*I,n=3 9323715352012067 m005 (1/2*2^(1/2)+9/10)/(2/5*exp(1)+7/11) 9323715361642486 a007 Real Root Of 727*x^4+32*x^3+358*x^2-84*x-913 9323715378503080 v002 sum(1/(5^n*(11*n^2+15*n-3)),n=1..infinity) 9323715381218978 a007 Real Root Of 843*x^4+116*x^3-298*x^2+429*x+116 9323715423422733 a007 Real Root Of 474*x^4+602*x^3+706*x^2-355*x-815 9323715426613851 m001 (Shi(1)-Zeta(5))/(Backhouse+Sarnak) 9323715445812160 m001 (Riemann2ndZero-Tribonacci)/(FeigenbaumD-Kac) 9323715474492155 a007 Real Root Of 584*x^4-628*x^3+559*x^2+942*x-558 9323715476025110 a007 Real Root Of -449*x^4-80*x^3-902*x^2-420*x+667 9323715504890441 a007 Real Root Of -255*x^4+607*x^3+148*x^2+385*x+915 9323715534954049 s002 sum(A092628[n]/(n^3*10^n+1),n=1..infinity) 9323715536297879 m008 (Pi^2+5)/(1/6*Pi^6-3/4) 9323715553500938 a007 Real Root Of 92*x^4-842*x^3-225*x^2+554*x+292 9323715554186410 a005 (1/cos(10/131*Pi))^632 9323715560639469 m001 1/TwinPrimes^2*Tribonacci^2*ln(sqrt(2))^2 9323715573524370 r004 Re(z^2+c),c=1/7-5/13*I,z(0)=I,n=20 9323715579415659 a007 Real Root Of -899*x^4-17*x^3-294*x^2-293*x+648 9323715581361788 a007 Real Root Of -44*x^4+420*x^3-809*x^2-607*x+511 9323715607129448 m001 ln(2)/(BesselI(1,2)-GaussAGM(1,1/sqrt(2))) 9323715622680941 h001 (1/2*exp(1)+1/10)/(3/7*exp(1)+2/5) 9323715622680941 m005 (1/2*exp(1)+1/10)/(3/7*exp(1)+2/5) 9323715650191715 a007 Real Root Of -751*x^4+416*x^3+867*x^2+784*x+882 9323715662196309 s002 sum(A107021[n]/((3*n)!),n=1..infinity) 9323715663620310 a007 Real Root Of 652*x^4-16*x^3+182*x^2-43*x-704 9323715667192733 v002 sum(1/(3^n+(25*n^2-51*n+40)),n=1..infinity) 9323715669456495 m001 1/Bloch^2*FeigenbaumAlpha^2/exp(Magata) 9323715686200779 a007 Real Root Of 667*x^4+667*x^3+575*x^2+247*x-233 9323715717720244 m001 (3^(1/2)-gamma)/(Catalan+FellerTornier) 9323715734160587 a001 843/1597*121393^(13/53) 9323715782191032 r002 56th iterates of z^2 + 9323715782636946 a007 Real Root Of -703*x^4-455*x^3+803*x^2+541*x-57 9323715795581459 l006 ln(2011/5109) 9323715805469795 r009 Re(z^3+c),c=-15/106+13/27*I,n=30 9323715809079165 a007 Real Root Of 829*x^4+56*x^3+528*x^2+664*x-421 9323715811771623 r009 Re(z^3+c),c=-15/106+13/27*I,n=21 9323715812177075 a005 (1/cos(8/149*Pi))^1606 9323715820489011 m005 (1/3*5^(1/2)+1/7)/(31/11+3*5^(1/2)) 9323715822267342 a007 Real Root Of 273*x^4-172*x^3+605*x^2-128*x-991 9323715823555832 r005 Im(z^2+c),c=-19/25+2/29*I,n=5 9323715850055947 m001 Conway/(FibonacciFactorial^GAMMA(13/24)) 9323715893813695 a007 Real Root Of 756*x^4+138*x^3+953*x^2+356*x-956 9323715911797026 a007 Real Root Of 705*x^4+292*x^3-654*x^2-38*x+237 9323715918125972 r009 Re(z^3+c),c=-1/8+16/43*I,n=16 9323715926379806 m001 (ln(3)-Ei(1,1))/(ln(2+3^(1/2))-Artin) 9323715929873886 r009 Re(z^3+c),c=-15/106+13/27*I,n=32 9323715930827407 m001 (LambertW(1)-Pi^(1/2))/(-Conway+Trott) 9323715939374293 r009 Re(z^3+c),c=-27/74+29/42*I,n=15 9323715956793577 a007 Real Root Of -195*x^4-174*x^3-104*x^2+632*x+686 9323715997018763 a007 Real Root Of 649*x^4-456*x^3+262*x^2+328*x-782 9323716005107515 r009 Re(z^3+c),c=-15/106+13/27*I,n=34 9323716017364750 r009 Re(z^3+c),c=-15/106+13/27*I,n=37 9323716018699730 a007 Real Root Of -245*x^4+840*x^3-253*x^2+647*x-879 9323716019057042 r009 Re(z^3+c),c=-15/106+13/27*I,n=39 9323716020220414 r009 Re(z^3+c),c=-15/106+13/27*I,n=41 9323716020444159 r009 Re(z^3+c),c=-15/106+13/27*I,n=44 9323716020466472 r009 Re(z^3+c),c=-15/106+13/27*I,n=46 9323716020484353 r009 Re(z^3+c),c=-15/106+13/27*I,n=48 9323716020488338 r009 Re(z^3+c),c=-15/106+13/27*I,n=51 9323716020488619 r009 Re(z^3+c),c=-15/106+13/27*I,n=53 9323716020488893 r009 Re(z^3+c),c=-15/106+13/27*I,n=55 9323716020488962 r009 Re(z^3+c),c=-15/106+13/27*I,n=58 9323716020488965 r009 Re(z^3+c),c=-15/106+13/27*I,n=60 9323716020488970 r009 Re(z^3+c),c=-15/106+13/27*I,n=62 9323716020488971 r009 Re(z^3+c),c=-15/106+13/27*I,n=64 9323716020488971 r009 Re(z^3+c),c=-15/106+13/27*I,n=63 9323716020488973 r009 Re(z^3+c),c=-15/106+13/27*I,n=57 9323716020488974 r009 Re(z^3+c),c=-15/106+13/27*I,n=61 9323716020488979 r009 Re(z^3+c),c=-15/106+13/27*I,n=59 9323716020488993 r009 Re(z^3+c),c=-15/106+13/27*I,n=56 9323716020489157 r009 Re(z^3+c),c=-15/106+13/27*I,n=54 9323716020489262 r009 Re(z^3+c),c=-15/106+13/27*I,n=50 9323716020489515 r009 Re(z^3+c),c=-15/106+13/27*I,n=52 9323716020490088 r009 Re(z^3+c),c=-15/106+13/27*I,n=49 9323716020500449 r009 Re(z^3+c),c=-15/106+13/27*I,n=47 9323716020517438 r009 Re(z^3+c),c=-15/106+13/27*I,n=43 9323716020525124 r009 Re(z^3+c),c=-15/106+13/27*I,n=45 9323716020542447 r009 Re(z^3+c),c=-15/106+13/27*I,n=42 9323716021194154 r009 Re(z^3+c),c=-15/106+13/27*I,n=40 9323716022750756 r009 Re(z^3+c),c=-15/106+13/27*I,n=35 9323716022872950 r009 Re(z^3+c),c=-15/106+13/27*I,n=38 9323716022921043 r009 Re(z^3+c),c=-15/106+13/27*I,n=36 9323716032067150 h001 (2/3*exp(1)+7/9)/(2/7*exp(2)+2/3) 9323716063502042 r009 Re(z^3+c),c=-15/106+13/27*I,n=33 9323716091001850 r009 Re(z^3+c),c=-15/106+13/27*I,n=28 9323716096658081 m001 Ei(1,1)^(GAMMA(19/24)*MertensB3) 9323716118817392 k002 Champernowne real with 79/2*n^2+391/2*n-226 9323716120369067 a003 cos(Pi*14/103)-cos(Pi*9/46) 9323716125728679 a001 75025/322*843^(23/42) 9323716138264364 m001 GAMMA(3/4)^2*FeigenbaumD*exp(Pi) 9323716176632836 r009 Re(z^3+c),c=-15/106+13/27*I,n=31 9323716182063121 r009 Re(z^3+c),c=-9/44+45/62*I,n=42 9323716198123623 r009 Re(z^3+c),c=-1/23+47/59*I,n=43 9323716200049739 a007 Real Root Of -432*x^4-321*x^3-774*x^2+76*x+810 9323716208305136 m001 GAMMA(23/24)/GAMMA(1/12)^2*ln(cos(Pi/12))^2 9323716213847557 r009 Re(z^3+c),c=-15/106+13/27*I,n=29 9323716252200059 r005 Re(z^2+c),c=-29/32+5/33*I,n=37 9323716257031850 m001 BesselK(1,1)^Catalan*ZetaR(2) 9323716291338336 a005 (1/sin(14/151*Pi))^59 9323716328032046 r008 a(0)=1,K{-n^6,-5-25*n^3+17*n^2+27*n} 9323716329076440 a008 Real Root of (-7+5*x-x^2+5*x^4-x^8) 9323716337364851 m001 (ln(Pi)+KomornikLoreti)/(MertensB1-Stephens) 9323716374040447 p002 log(22/(17+23^(1/2))) 9323716418257168 r008 a(0)=9,K{-n^6,-2-8*n^2+5*n} 9323716427995723 a001 123/7778742049*17711^(15/23) 9323716431430085 s002 sum(A094452[n]/(n*2^n-1),n=1..infinity) 9323716431872728 a001 41/3536736619241*1134903170^(15/23) 9323716434106759 a007 Real Root Of -161*x^4+551*x^3-995*x^2-721*x+761 9323716442888462 a001 167761/610*1346269^(17/23) 9323716449161037 a001 1364/17711*86267571272^(17/23) 9323716507968067 r002 2th iterates of z^2 + 9323716529979979 m001 (-Landau+Thue)/(Catalan-gamma) 9323716531042150 m008 (3/5*Pi^6-1/5)/(2*Pi^3-1/6) 9323716540363689 m001 Zeta(1,2)^2*ln(Bloch)/sin(1)^2 9323716555789631 a007 Real Root Of 957*x^4-524*x^3-657*x^2+772*x+143 9323716565218101 a005 (1/cos(13/206*Pi))^1044 9323716567619833 m001 exp(Catalan)^2/Riemann3rdZero*GAMMA(11/24)^2 9323716595820048 m001 (Chi(1)-Zeta(3))/(-Bloch+StolarskyHarborth) 9323716618055091 r005 Re(z^2+c),c=-4/11+40/61*I,n=36 9323716622985963 a007 Real Root Of -70*x^4-638*x^3+84*x^2-535*x-408 9323716623578650 m001 GlaisherKinkelin/FeigenbaumAlpha/ln(gamma) 9323716623915081 m001 (Khinchin+Trott)/(ln(5)+GlaisherKinkelin) 9323716641026234 r005 Re(z^2+c),c=-1/94+19/53*I,n=15 9323716681367930 a001 17711/123*123^(13/15) 9323716690936796 r005 Re(z^2+c),c=1/8+9/55*I,n=12 9323716693787367 m005 (1/5*2^(1/2)+5/6)/(1/6*exp(1)-1/3) 9323716710627678 b008 4+E^Tan[1]+EulerGamma 9323716713289981 a007 Real Root Of -844*x^4-159*x^3-63*x^2+188*x+739 9323716751309051 l006 ln(2048/5203) 9323716766083540 m001 Zeta(3)^PisotVijayaraghavan/(Zeta(3)^Niven) 9323716782553067 a007 Real Root Of 2*x^4+193*x^3+618*x^2+889*x-267 9323716801169234 r009 Re(z^3+c),c=-5/34+31/60*I,n=20 9323716802463853 a007 Real Root Of -4*x^4+880*x^3+861*x^2-566*x-931 9323716827617832 m001 BesselK(1,1)*(ln(gamma)+CareFree) 9323716827726793 m001 Zeta(1,2)^MadelungNaCl/(Zeta(1,2)^Robbin) 9323716828939998 a007 Real Root Of -337*x^4+371*x^3-225*x^2-163*x+599 9323716836981767 a007 Real Root Of -912*x^4+40*x^3-911*x^2-716*x+846 9323716909752267 a007 Real Root Of 786*x^4+721*x^3+148*x^2+632*x+451 9323716912754126 m002 -5+Pi^3-Pi^6+3*Coth[Pi] 9323716914543379 r005 Im(z^2+c),c=-83/98+2/33*I,n=59 9323716947743665 a007 Real Root Of 961*x^4-968*x^3-805*x^2+190*x+581 9323716948305736 a007 Real Root Of 16*x^4-537*x^3+599*x^2+487*x-514 9323716951391764 r009 Re(z^3+c),c=-1/8+16/43*I,n=19 9323716959041108 a007 Real Root Of 464*x^4+799*x^3+730*x^2-320*x-636 9323716971718792 r005 Im(z^2+c),c=-17/27+3/13*I,n=28 9323717002019945 a007 Real Root Of -560*x^4+467*x^3-822*x^2-735*x+831 9323717005822617 a007 Real Root Of 760*x^4-102*x^3-225*x^2+674*x+167 9323717027754182 r009 Re(z^3+c),c=-1/8+16/43*I,n=21 9323717029046493 a007 Real Root Of 74*x^4-525*x^3-291*x^2-81*x-304 9323717040454891 r009 Re(z^3+c),c=-1/8+16/43*I,n=24 9323717040743534 r009 Re(z^3+c),c=-1/8+16/43*I,n=26 9323717040847703 r009 Re(z^3+c),c=-1/8+16/43*I,n=28 9323717040848975 r009 Re(z^3+c),c=-1/8+16/43*I,n=23 9323717040854169 r009 Re(z^3+c),c=-1/8+16/43*I,n=31 9323717040854588 r009 Re(z^3+c),c=-1/8+16/43*I,n=29 9323717040854823 r009 Re(z^3+c),c=-1/8+16/43*I,n=33 9323717040854915 r009 Re(z^3+c),c=-1/8+16/43*I,n=36 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=38 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=40 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=41 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=43 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=45 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=48 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=50 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=52 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=53 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=55 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=57 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=60 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=62 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=64 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=63 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=61 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=59 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=58 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=56 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=54 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=51 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=49 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=47 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=46 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=44 9323717040854918 r009 Re(z^3+c),c=-1/8+16/43*I,n=42 9323717040854919 r009 Re(z^3+c),c=-1/8+16/43*I,n=39 9323717040854920 r009 Re(z^3+c),c=-1/8+16/43*I,n=35 9323717040854921 r009 Re(z^3+c),c=-1/8+16/43*I,n=37 9323717040854936 r009 Re(z^3+c),c=-1/8+16/43*I,n=34 9323717040855229 r009 Re(z^3+c),c=-1/8+16/43*I,n=32 9323717040856149 r009 Re(z^3+c),c=-1/8+16/43*I,n=30 9323717040890360 r009 Re(z^3+c),c=-1/8+16/43*I,n=27 9323717041114399 r009 Re(z^3+c),c=-1/8+16/43*I,n=25 9323717043720165 r009 Re(z^3+c),c=-1/8+16/43*I,n=22 9323717051467952 m001 exp(Pi)^2/Riemann2ndZero/sqrt(1+sqrt(3))^2 9323717058187347 a001 17711/521*3571^(30/31) 9323717060115294 p003 LerchPhi(1/512,1,175/163) 9323717061675071 a001 144*843^(13/21) 9323717076930642 r005 Re(z^2+c),c=-8/9+17/82*I,n=23 9323717079600122 r002 7th iterates of z^2 + 9323717080620692 r009 Re(z^3+c),c=-1/8+16/43*I,n=20 9323717087258912 r009 Re(z^3+c),c=-1/8+16/43*I,n=17 9323717109078331 r005 Re(z^2+c),c=-9/10+43/195*I,n=47 9323717111753897 m005 (1/2*Pi-3/8)/(5/8*3^(1/2)+1/5) 9323717119117452 k002 Champernowne real with 40*n^2+194*n-225 9323717125622369 m001 GAMMA(7/12)/(ln(2+3^(1/2))+FellerTornier) 9323717145788654 a003 sin(Pi*11/116)/cos(Pi*41/103) 9323717165978370 a007 Real Root Of -660*x^4+610*x^3+69*x^2-130*x+812 9323717166413565 m001 Porter/ArtinRank2^2*exp(GAMMA(5/6)) 9323717169106132 r009 Re(z^3+c),c=-1/8+16/43*I,n=18 9323717195044945 a007 Real Root Of -107*x^4+721*x^3-597*x^2+984*x-902 9323717263605946 a001 505019158607/2*956722026041^(3/14) 9323717263605946 a001 2139295485799/2*1134903170^(3/14) 9323717263606167 a001 9062201101803/2*1346269^(3/14) 9323717286850875 m001 Catalan^Sierpinski/(Catalan^KomornikLoreti) 9323717290350235 r005 Im(z^2+c),c=13/66+3/5*I,n=7 9323717304208019 p003 LerchPhi(1/8,3,387/173) 9323717304540358 r005 Im(z^2+c),c=-17/14+13/151*I,n=9 9323717312466294 r005 Re(z^2+c),c=-25/27+7/50*I,n=3 9323717322621182 a007 Real Root Of -46*x^4+837*x^3-243*x^2-467*x+489 9323717331236668 m002 -1-Pi^3+Pi^6+3*Tanh[Pi] 9323717358146176 r001 54i'th iterates of 2*x^2-1 of 9323717371229156 m001 (LambertW(1)-ln(5))/(-Otter+Riemann1stZero) 9323717376792063 a007 Real Root Of -248*x^4+857*x^3+139*x^2+3*x+764 9323717384426271 a008 Real Root of x^4-29*x^2-82*x-52 9323717408720043 m001 (Si(Pi)+PisotVijayaraghavan)/Magata 9323717417499555 s002 sum(A014360[n]/((3*n)!),n=1..infinity) 9323717458462665 m001 1/exp(Trott)^2*Paris*cos(Pi/12) 9323717470210825 m002 -Pi^3+Pi^6+E^Pi*Sech[Pi]*Tanh[Pi] 9323717485899467 a007 Real Root Of 591*x^4+455*x^3+493*x^2+822*x+260 9323717498006823 r005 Re(z^2+c),c=9/29+21/44*I,n=15 9323717515598059 a003 cos(Pi*2/17)*sin(Pi*53/107) 9323717558871395 a001 24476/3*4181^(38/45) 9323717563603305 a007 Real Root Of -307*x^4+623*x^3+943*x^2-152*x-951 9323717588021157 m001 1/GAMMA(7/12)/PrimesInBinary/exp(sqrt(2))^2 9323717595983001 a007 Real Root Of 220*x^4-924*x^3-279*x^2+301*x-392 9323717626300580 r005 Im(z^2+c),c=-17/122+2/17*I,n=15 9323717666577075 r005 Im(z^2+c),c=-17/122+2/17*I,n=14 9323717667432987 r002 25th iterates of z^2 + 9323717673116248 l006 ln(2085/5297) 9323717676023131 m001 ln(Magata)*Cahen^2*FeigenbaumKappa^2 9323717676293414 m002 -Pi+Pi^3-Pi^6+ProductLog[Pi]^2 9323717688343365 a007 Real Root Of -954*x^4+200*x^3+646*x^2+495*x+783 9323717727585806 r005 Re(z^2+c),c=29/106+28/39*I,n=3 9323717735941325 a001 6765/521*39603^(26/31) 9323717736172813 s002 sum(A283758[n]/(exp(n)+1),n=1..infinity) 9323717738774795 m001 MinimumGamma/ln(FeigenbaumDelta)^2/TwinPrimes 9323717755171043 g006 Psi(1,2/3)-Psi(1,4/11)-Psi(1,1/7)-Psi(1,1/6) 9323717756389200 r005 Im(z^2+c),c=-17/122+2/17*I,n=17 9323717766179759 a001 1346269/521*24476^(11/31) 9323717769966692 m001 (Artin+TwinPrimes)/(Zeta(5)-GAMMA(23/24)) 9323717784844708 a001 2178309/521*15127^(10/31) 9323717790735799 r005 Im(z^2+c),c=-17/122+2/17*I,n=19 9323717790817320 r005 Im(z^2+c),c=-17/122+2/17*I,n=20 9323717791213650 r005 Im(z^2+c),c=-17/122+2/17*I,n=22 9323717791331735 r005 Im(z^2+c),c=-17/122+2/17*I,n=24 9323717791332768 r005 Im(z^2+c),c=-17/122+2/17*I,n=25 9323717791333953 r005 Im(z^2+c),c=-17/122+2/17*I,n=27 9323717791334358 r005 Im(z^2+c),c=-17/122+2/17*I,n=29 9323717791334364 r005 Im(z^2+c),c=-17/122+2/17*I,n=30 9323717791334368 r005 Im(z^2+c),c=-17/122+2/17*I,n=32 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=34 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=35 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=37 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=39 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=40 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=42 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=44 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=45 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=47 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=49 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=50 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=52 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=54 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=55 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=57 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=59 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=62 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=60 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=64 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=63 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=61 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=58 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=56 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=53 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=51 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=48 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=46 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=43 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=41 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=38 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=36 9323717791334369 r005 Im(z^2+c),c=-17/122+2/17*I,n=33 9323717791334373 r005 Im(z^2+c),c=-17/122+2/17*I,n=31 9323717791334472 r005 Im(z^2+c),c=-17/122+2/17*I,n=28 9323717791335480 r005 Im(z^2+c),c=-17/122+2/17*I,n=26 9323717791363219 r005 Im(z^2+c),c=-17/122+2/17*I,n=23 9323717791666941 r005 Im(z^2+c),c=-17/122+2/17*I,n=21 9323717799372627 r005 Im(z^2+c),c=-17/122+2/17*I,n=18 9323717804052072 m008 (3/4*Pi^3+3/5)/(5/6*Pi^5+5/6) 9323717816026526 g003 Im(GAMMA(-39/10+I*(-49/60))) 9323717822097831 m005 (1/2*Pi-4/11)/(7/9*5^(1/2)-4/9) 9323717842817825 m001 (Gompertz+PlouffeB)/(Rabbit+TreeGrowth2nd) 9323717887196197 m005 (19/28+1/4*5^(1/2))/(6*5^(1/2)-1/7) 9323717890636623 r005 Im(z^2+c),c=-17/122+2/17*I,n=16 9323717909478103 m001 FibonacciFactorial^Zeta(5)-GaussKuzminWirsing 9323717914218131 r005 Re(z^2+c),c=-9/14+68/167*I,n=20 9323717933843239 a001 317811/521*5778^(18/31) 9323717935046349 a007 Real Root Of 37*x^4-815*x^3+308*x^2+114*x-850 9323717946705561 m001 ln(FeigenbaumB)/GaussKuzminWirsing*cosh(1) 9323717948717948 q001 2909/3120 9323717999884362 r005 Re(z^2+c),c=-9/14+61/139*I,n=48 9323718001958188 a001 28657/322*843^(29/42) 9323718012143489 m005 (1/3*exp(1)+1/4)/(7/10*2^(1/2)+1/4) 9323718041683575 r009 Re(z^3+c),c=-11/86+13/42*I,n=2 9323718051679237 m005 (1/2*gamma-8/11)/(5*Catalan+1/8) 9323718055686176 r008 a(0)=9,K{-n^6,43-18*n^3+43*n^2-72*n} 9323718061681977 m001 1/ln(GAMMA(1/24))/Riemann1stZero^2*sin(Pi/5) 9323718094224895 m001 Niven/(2^(1/2)+PrimesInBinary) 9323718098190464 p003 LerchPhi(1/8,1,221/192) 9323718119417512 k002 Champernowne real with 81/2*n^2+385/2*n-224 9323718125054079 a003 sin(Pi*11/40)/sin(Pi*17/56) 9323718134834587 a007 Real Root Of 428*x^4-879*x^3-51*x^2+524*x-503 9323718138297799 a001 521/75025*317811^(1/43) 9323718191635312 a007 Real Root Of 307*x^4-716*x^3+179*x^2+400*x-595 9323718192114815 r009 Im(z^3+c),c=-19/78+36/41*I,n=3 9323718212563322 k007 concat of cont frac of 9323718225248731 r002 27th iterates of z^2 + 9323718227963891 a007 Real Root Of 675*x^4+766*x^3+634*x^2-405*x-818 9323718228311818 a005 (1/cos(67/215*Pi))^63 9323718248471136 a003 cos(Pi*11/40)+cos(Pi*47/115) 9323718260077808 l006 ln(7419/8144) 9323718288418645 b008 1+100*ArcCsch[12] 9323718288418645 b008 1/100+ArcCsch[12] 9323718303585495 m001 (Otter-ThueMorse)/(ln(2)-cos(1/12*Pi)) 9323718330347228 m005 (1/3*gamma-2/5)/(1/12*exp(1)+2) 9323718337433712 r005 Re(z^2+c),c=1/30+24/55*I,n=51 9323718348756235 m005 (1/2*gamma-9/10)/(-1/7+5/14*5^(1/2)) 9323718354853258 r009 Im(z^3+c),c=-11/82+52/57*I,n=27 9323718395125975 a003 cos(Pi*10/97)*sin(Pi*42/95) 9323718395621082 a007 Real Root Of -541*x^4+896*x^3+168*x^2-665*x+369 9323718400138817 m001 (BesselJ(1,1)-exp(Pi))/(Bloch+ReciprocalLucas) 9323718405029857 h001 (4/11*exp(1)+7/9)/(3/8*exp(1)+7/8) 9323718439386426 a007 Real Root Of 495*x^4-150*x^3-419*x^2-568*x-661 9323718461580363 a007 Real Root Of -100*x^4+728*x^3-483*x^2-643*x+486 9323718474576753 a001 3524578/2207*199^(1/3) 9323718519576125 r005 Re(z^2+c),c=-47/52+11/61*I,n=15 9323718522067402 m004 (-25*E^(Sqrt[5]*Pi))/Pi-120*Pi-Cos[Sqrt[5]*Pi] 9323718526642707 m001 exp(Robbin)*LaplaceLimit/GAMMA(19/24)^2 9323718562777402 l006 ln(2122/5391) 9323718588597417 m009 (4*Psi(1,3/4)+1/6)/(2*Psi(1,3/4)+6) 9323718623632015 r009 Re(z^3+c),c=-15/106+13/27*I,n=26 9323718632465134 r001 26i'th iterates of 2*x^2-1 of 9323718651275205 r002 24th iterates of z^2 + 9323718661496899 r002 3th iterates of z^2 + 9323718685513087 a007 Real Root Of -548*x^4+153*x^3-217*x^2+931*x-85 9323718690636723 m001 1/exp(Riemann2ndZero)^2/Conway/GAMMA(5/12)^2 9323718704176644 a007 Real Root Of -7*x^4-13*x^3+453*x^2-386*x-616 9323718704515216 m001 1/exp(exp(1))^2*Champernowne*log(2+sqrt(3))^2 9323718720879338 p004 log(29251/26647) 9323718722103251 r005 Im(z^2+c),c=45/118+13/21*I,n=3 9323718723377251 a001 2207/610*144^(4/21) 9323718726811383 b008 -1/2+Pi/E^(Pi/4) 9323718733007392 a007 Real Root Of -346*x^4+945*x^3+547*x^2+43*x+592 9323718734466897 s002 sum(A078931[n]/(exp(n)),n=1..infinity) 9323718743306688 m001 (BesselI(0,2)+FeigenbaumD)/(Psi(2,1/3)+Ei(1)) 9323718749923903 m005 (1/2*gamma+1/9)/(1/9*Pi-7/9) 9323718752974852 r005 Im(z^2+c),c=-11/16+37/102*I,n=6 9323718753108861 a007 Real Root Of 978*x^4-992*x^3-91*x^2+532*x-968 9323718789055681 m004 3+E^(Sqrt[5]*Pi)/3+(25*E^(Sqrt[5]*Pi))/Pi 9323718789647761 r005 Re(z^2+c),c=-13/12+19/93*I,n=40 9323718790578249 m001 Trott*(CopelandErdos+GolombDickman) 9323718798332930 r009 Im(z^3+c),c=-59/98+11/21*I,n=23 9323718822883661 a007 Real Root Of -956*x^4+296*x^3-174*x^2-168*x+957 9323718833787794 r002 18th iterates of z^2 + 9323718839376811 m002 -Coth[Pi]/(5*Pi)+Tanh[Pi] 9323718861709572 m001 LandauRamanujan/((2*Pi/GAMMA(5/6))^GAMMA(3/4)) 9323718861709572 m001 LandauRamanujan/(GAMMA(1/6)^GAMMA(3/4)) 9323718902053955 p003 LerchPhi(1/256,3,353/160) 9323718930887953 a001 17711/322*843^(16/21) 9323718947390292 m002 -2+Pi^3-Pi^6+ProductLog[Pi]/Pi^4 9323718983206186 a007 Real Root Of 967*x^4+816*x^3+161*x^2-774*x-931 9323718993186415 r005 Re(z^2+c),c=-53/58+5/38*I,n=53 9323718999804159 r009 Re(z^3+c),c=-3/23+9/22*I,n=14 9323719090934206 a007 Real Root Of -252*x^4+498*x^3-430*x^2-948*x+84 9323719093823461 a007 Real Root Of 496*x^4-919*x^3+539*x^2+898*x-751 9323719114279073 m001 (ln(2)-gamma(2))/(HeathBrownMoroz-ZetaP(4)) 9323719119717572 k002 Champernowne real with 41*n^2+191*n-223 9323719122346256 a007 Real Root Of -796*x^4+478*x^3+990*x^2+508*x+602 9323719123497897 m004 -1+(2*Sqrt[5])/Pi-5*Log[Sqrt[5]*Pi] 9323719128409727 a007 Real Root Of 304*x^4-616*x^3-988*x^2-904*x-713 9323719135587548 a007 Real Root Of 928*x^4+522*x^3-161*x^2-48*x-183 9323719148225259 m001 Magata+OrthogonalArrays-Riemann1stZero 9323719152069874 r005 Im(z^2+c),c=-23/19+2/61*I,n=7 9323719189523978 m003 21/2+Sqrt[5]/64-Sinh[1/2+Sqrt[5]/2]/2 9323719194178506 a007 Real Root Of -411*x^4+447*x^3+359*x^2-77*x-292 9323719250303804 m005 (-11/42+1/6*5^(1/2))/(4/9*5^(1/2)-7/8) 9323719267105283 m001 (-Lehmer+1/3)/(exp(gamma)+1) 9323719271908425 r005 Re(z^2+c),c=-9/10+67/73*I,n=2 9323719283322093 s002 sum(A040243[n]/((pi^n+1)/n),n=1..infinity) 9323719291683860 a007 Real Root Of -119*x^4+719*x^3-586*x^2+228*x-196 9323719311014139 r005 Re(z^2+c),c=7/40+13/24*I,n=27 9323719313665649 a007 Real Root Of -813*x^4-166*x^3-713*x^2-759*x+392 9323719332350846 a007 Real Root Of -787*x^4-527*x^3+65*x^2+859*x+912 9323719363278900 m005 (4/5*exp(1)+1/3)/(5/6*gamma-3/4) 9323719385613798 m001 RenyiParking^(5^(1/2)*OneNinth) 9323719385613798 m001 RenyiParking^(sqrt(5)*OneNinth) 9323719404342718 m001 Zeta(9)*ln(Paris)^2*log(2+sqrt(3))^2 9323719421945232 l006 ln(2159/5485) 9323719450328896 a007 Real Root Of 99*x^4+918*x^3-91*x^2-340*x+649 9323719450852093 m001 BesselJ(1,1)+HardyLittlewoodC5^Kolakoski 9323719467995601 m001 (Niven+Paris)/(GAMMA(23/24)-FeigenbaumB) 9323719474609740 a007 Real Root Of -916*x^4-479*x^3+490*x^2+858*x+678 9323719499778097 a001 46368/521*2207^(28/31) 9323719512745141 a007 Real Root Of -192*x^4+281*x^3-783*x^2-835*x+275 9323719525845465 a007 Real Root Of 217*x^4-697*x^3-884*x^2-746*x-656 9323719542516161 q001 1875/2011 9323719542516161 q001 3/32176 9323719558170810 a007 Real Root Of -266*x^4-536*x^3-421*x^2+752*x-66 9323719564417373 r005 Re(z^2+c),c=-103/94+4/61*I,n=8 9323719567207327 m001 UniversalParabolic^gamma(1)/Psi(1,1/3) 9323719582061114 a003 sin(Pi*19/115)/cos(Pi*9/28) 9323719626652542 r005 Re(z^2+c),c=-53/58+5/38*I,n=55 9323719629966128 a007 Real Root Of -593*x^4-499*x^3-315*x^2-569*x-213 9323719704207656 a007 Real Root Of -665*x^4+443*x^3-643*x^2-849*x+629 9323719713458702 r005 Im(z^2+c),c=-45/82+36/59*I,n=36 9323719714769490 p003 LerchPhi(1/5,5,171/106) 9323719735306270 m001 BesselJ(1,1)^2/ln((3^(1/3)))/LambertW(1) 9323719738040264 m001 (Robbin+ZetaP(2))/(Psi(1,1/3)+Si(Pi)) 9323719743682259 a007 Real Root Of -902*x^4+51*x^3-457*x^2-484*x+669 9323719745661138 a007 Real Root Of -56*x^4+617*x^3-179*x^2+313*x-594 9323719747544886 a007 Real Root Of -230*x^4+379*x^3+426*x^2+40*x-541 9323719781732275 m001 ln(Gompertz/Landau) 9323719842847702 a007 Real Root Of 484*x^4-339*x^3-367*x^2+318*x-25 9323719879495359 r005 Im(z^2+c),c=-5/114+4/39*I,n=5 9323719879977366 a001 21/103682*47^(23/58) 9323719888586995 a007 Real Root Of 762*x^4-313*x^3-133*x^2-535*x+5 9323719889541523 a001 5473/161*843^(5/6) 9323719939376903 p003 LerchPhi(1/1024,9,29/48) 9323719943630921 a007 Real Root Of 652*x^4+313*x^3-896*x^2-889*x-289 9323719945794652 a007 Real Root Of 900*x^4-320*x^3-559*x^2+317*x-158 9323719964414479 a007 Real Root Of 778*x^4-483*x^3-463*x^2+622*x+3 9323719994076130 m001 (-BesselI(0,1)+4)/(GAMMA(11/24)+1) 9323719994263096 a007 Real Root Of -88*x^4-881*x^3-649*x^2-774*x+155 9323720021018152 r005 Im(z^2+c),c=-17/122+2/17*I,n=13 9323720027182567 r002 31th iterates of z^2 + 9323720043201340 m005 (1/3*3^(1/2)+1/11)/(1/11*Catalan-4/5) 9323720048618834 r005 Re(z^2+c),c=-53/58+5/38*I,n=51 9323720049827556 a007 Real Root Of -834*x^4+104*x^3-708*x^2-517*x+848 9323720052704884 a007 Real Root Of -504*x^4-273*x^3-985*x^2-815*x+256 9323720066938592 m005 (1/2*3^(1/2)+4/11)/(2/3+7/24*5^(1/2)) 9323720074898471 m002 -4+Pi^4-2*Sech[Pi]*Tanh[Pi] 9323720093100475 m001 ln(sin(1))^2/Champernowne/sin(Pi/12) 9323720093899268 r005 Re(z^2+c),c=1/30+24/55*I,n=48 9323720097025572 r002 4th iterates of z^2 + 9323720100957272 m001 Pi-(1+Chi(1))*Zeta(3) 9323720109488591 a001 9227465/5778*199^(1/3) 9323720120017632 k002 Champernowne real with 83/2*n^2+379/2*n-222 9323720130816616 r005 Im(z^2+c),c=-51/110+25/47*I,n=12 9323720180253319 a007 Real Root Of -764*x^4+489*x^3+395*x^2-764*x-82 9323720200790939 m005 (-13/44+1/4*5^(1/2))/(1/10*3^(1/2)-3) 9323720241931446 r005 Re(z^2+c),c=8/17+3/52*I,n=3 9323720251471227 a007 Real Root Of -662*x^4+810*x^3-206*x^2-948*x+452 9323720252161070 l006 ln(2196/5579) 9323720260862709 a003 sin(Pi*22/67)/sin(Pi*16/43) 9323720314508930 m001 3^(1/2)-Landau*ReciprocalFibonacci 9323720348019061 a001 24157817/15127*199^(1/3) 9323720356492620 a007 Real Root Of -801*x^4+979*x^3+578*x^2+35*x+929 9323720356818478 a007 Real Root Of 404*x^4-990*x^3-818*x^2+677*x+577 9323720375411075 p003 LerchPhi(1/10,1,195/172) 9323720375498265 a003 sin(Pi*31/114)/cos(Pi*46/97) 9323720382820189 a001 63245986/39603*199^(1/3) 9323720387897605 a001 165580141/103682*199^(1/3) 9323720388638390 a001 433494437/271443*199^(1/3) 9323720388746469 a001 1134903170/710647*199^(1/3) 9323720388762237 a001 2971215073/1860498*199^(1/3) 9323720388764538 a001 7778742049/4870847*199^(1/3) 9323720388764874 a001 20365011074/12752043*199^(1/3) 9323720388764923 a001 53316291173/33385282*199^(1/3) 9323720388764930 a001 139583862445/87403803*199^(1/3) 9323720388764931 a001 365435296162/228826127*199^(1/3) 9323720388764931 a001 956722026041/599074578*199^(1/3) 9323720388764931 a001 2504730781961/1568397607*199^(1/3) 9323720388764931 a001 6557470319842/4106118243*199^(1/3) 9323720388764931 a001 10610209857723/6643838879*199^(1/3) 9323720388764931 a001 4052739537881/2537720636*199^(1/3) 9323720388764931 a001 1548008755920/969323029*199^(1/3) 9323720388764931 a001 591286729879/370248451*199^(1/3) 9323720388764932 a001 225851433717/141422324*199^(1/3) 9323720388764934 a001 86267571272/54018521*199^(1/3) 9323720388764953 a001 32951280099/20633239*199^(1/3) 9323720388765081 a001 12586269025/7881196*199^(1/3) 9323720388765960 a001 4807526976/3010349*199^(1/3) 9323720388771983 a001 1836311903/1149851*199^(1/3) 9323720388813265 a001 701408733/439204*199^(1/3) 9323720389096220 a001 267914296/167761*199^(1/3) 9323720391035621 a001 102334155/64079*199^(1/3) 9323720404328469 a001 39088169/24476*199^(1/3) 9323720419920075 m009 (5*Psi(1,3/4)+1/2)/(4*Psi(1,3/4)+4) 9323720421379821 a001 3/199*(1/2*5^(1/2)+1/2)^7*199^(1/7) 9323720431202238 a007 Real Root Of 789*x^4-836*x^3-792*x^2+320*x-287 9323720459756606 r001 27i'th iterates of 2*x^2-1 of 9323720481386983 r005 Re(z^2+c),c=-53/58+5/38*I,n=57 9323720485333071 r005 Im(z^2+c),c=-29/66+20/33*I,n=11 9323720494594245 a007 Real Root Of 857*x^4+385*x^3-768*x^2-857*x-467 9323720495439005 a001 14930352/9349*199^(1/3) 9323720508843353 r005 Re(z^2+c),c=-53/58+5/38*I,n=63 9323720514678168 m005 (1/3*exp(1)+2/9)/(5/9*exp(1)-3/10) 9323720540090355 a007 Real Root Of 10*x^4+937*x^3+427*x^2-426*x-628 9323720551079118 a007 Real Root Of -110*x^4-943*x^3+829*x^2+483*x-606 9323720581199987 l006 ln(6512/6573) 9323720581276151 r005 Im(z^2+c),c=-71/110+5/36*I,n=17 9323720614889729 a007 Real Root Of 950*x^4-677*x^3-422*x^2+136*x-773 9323720638216952 r002 2th iterates of z^2 + 9323720648899860 m001 (Kac+Weierstrass)/(5^(1/2)-GAMMA(11/12)) 9323720650999110 h001 (6/11*exp(1)+2/3)/(5/7*exp(1)+4/11) 9323720715228379 r005 Re(z^2+c),c=-53/58+5/38*I,n=61 9323720723425371 a001 439204/1597*1346269^(17/23) 9323720724340214 a001 3571/46368*86267571272^(17/23) 9323720764267567 a007 Real Root Of 655*x^4+336*x^3+996*x^2+525*x-599 9323720770377494 a001 6765/322*843^(19/21) 9323720803968477 r002 55th iterates of z^2 + 9323720820061662 r005 Re(z^2+c),c=-53/58+5/38*I,n=59 9323720830293485 r005 Re(z^2+c),c=-43/46+1/22*I,n=3 9323720833865859 r005 Im(z^2+c),c=-5/8+115/249*I,n=30 9323720864301989 a007 Real Root Of -424*x^4+563*x^3+971*x^2+113*x+38 9323720871265438 m001 1/GAMMA(11/24)^2/FeigenbaumKappa/ln(cos(Pi/5)) 9323720882261697 h001 (1/4*exp(1)+6/7)/(1/6*exp(2)+5/12) 9323720907031701 a007 Real Root Of -547*x^4+639*x^3+439*x^2-64*x+490 9323720931863341 a007 Real Root Of 61*x^4-979*x^3+640*x^2-740*x+881 9323720980241332 a007 Real Root Of -117*x^4+794*x^3-549*x^2+782*x-807 9323720990116041 r002 27th iterates of z^2 + 9323720990116041 r002 27th iterates of z^2 + 9323721054864093 l006 ln(2233/5673) 9323721056580172 a005 (1/sin(56/153*Pi))^453 9323721057111570 l006 ln(4390/4819) 9323721061931942 m001 (Shi(1)+BesselK(1,1))/(-Lehmer+PrimesInBinary) 9323721067088115 a003 sin(Pi*41/119)/sin(Pi*40/101) 9323721112711115 k007 concat of cont frac of 9323721115497104 m001 (-ln(2)+FeigenbaumB)/(gamma+Catalan) 9323721116792885 s002 sum(A105252[n]/(n*pi^n+1),n=1..infinity) 9323721119919962 a001 1597*199^(1/3) 9323721120317692 k002 Champernowne real with 42*n^2+188*n-221 9323721122141167 a003 sin(Pi*2/87)+sin(Pi*30/91) 9323721130101952 m001 1/GlaisherKinkelin^2*ln(Bloch)^2*exp(1) 9323721192429516 a007 Real Root Of 580*x^4-650*x^3+321*x^2-983*x+726 9323721196055393 a005 (1/cos(27/238*Pi))^673 9323721196993725 r005 Re(z^2+c),c=1/27+9/55*I,n=9 9323721207000447 a003 sin(Pi*17/84)/sin(Pi*20/91) 9323721226494636 a001 3/196418*6765^(8/11) 9323721249570889 q001 2716/2913 9323721253752506 m001 CopelandErdos*PrimesInBinary+GaussAGM 9323721254304800 r002 4th iterates of z^2 + 9323721256176335 a001 3/433494437*267914296^(8/11) 9323721256176335 a001 3/20365011074*53316291173^(8/11) 9323721256176335 a001 3/956722026041*10610209857723^(8/11) 9323721256177062 a001 3/9227465*1346269^(8/11) 9323721265111984 s002 sum(A238839[n]/(n^2*exp(n)-1),n=1..infinity) 9323721306579502 m001 (-BesselI(1,1)+ZetaQ(4))/(3^(1/3)-Chi(1)) 9323721318467646 m001 HardHexagonsEntropy^Otter-KhinchinHarmonic 9323721320883937 r005 Im(z^2+c),c=-53/44+1/8*I,n=55 9323721328005783 b008 Tanh[1/2+Zeta[Pi]] 9323721347947618 a001 1149851/4181*1346269^(17/23) 9323721348080449 a001 9349/121393*86267571272^(17/23) 9323721359666498 b008 Gamma[1/32+Sqrt[Pi]] 9323721368719779 a001 5778/1597*144^(4/21) 9323721396887204 b008 11-(3*E^(1/9))/2 9323721399742671 m006 (4*ln(Pi)-3/5)/(3*ln(Pi)+5/6) 9323721402287814 a007 Real Root Of -81*x^4-681*x^3+680*x^2-182*x-652 9323721404407054 a007 Real Root Of 272*x^4-212*x^3-72*x^2-411*x-698 9323721424234635 a007 Real Root Of 85*x^4-586*x^3-595*x^2+370*x+583 9323721426748891 m001 GAMMA(19/24)*GlaisherKinkelin/ln(sinh(1)) 9323721430295402 a001 1346269/322*322^(5/36) 9323721434266420 m005 (1/3*Zeta(3)+1/6)/(3*3^(1/2)+8/9) 9323721439064193 a001 3010349/10946*1346269^(17/23) 9323721439082923 a001 844/10959*86267571272^(17/23) 9323721446762421 a007 Real Root Of -145*x^4+915*x^3+894*x^2+459*x+502 9323721452357922 a001 7881196/28657*1346269^(17/23) 9323721452360005 a001 64079/832040*86267571272^(17/23) 9323721454297105 a001 167761/2178309*86267571272^(17/23) 9323721454297451 a001 20633239/75025*1346269^(17/23) 9323721454579725 a001 439204/5702887*86267571272^(17/23) 9323721454580424 a001 54018521/196418*1346269^(17/23) 9323721454620958 a001 1149851/14930352*86267571272^(17/23) 9323721454621710 a001 141422324/514229*1346269^(17/23) 9323721454626974 a001 3010349/39088169*86267571272^(17/23) 9323721454627733 a001 370248451/1346269*1346269^(17/23) 9323721454627852 a001 7881196/102334155*86267571272^(17/23) 9323721454627980 a001 711491/9238424*86267571272^(17/23) 9323721454627998 a001 54018521/701408733*86267571272^(17/23) 9323721454628001 a001 141422324/1836311903*86267571272^(17/23) 9323721454628002 a001 370248451/4807526976*86267571272^(17/23) 9323721454628002 a001 969323029/12586269025*86267571272^(17/23) 9323721454628002 a001 2537720636/32951280099*86267571272^(17/23) 9323721454628002 a001 6643838879/86267571272*86267571272^(17/23) 9323721454628002 a001 599786069/7787980473*86267571272^(17/23) 9323721454628002 a001 45537549124/591286729879*86267571272^(17/23) 9323721454628002 a001 119218851371/1548008755920*86267571272^(17/23) 9323721454628002 a001 312119004989/4052739537881*86267571272^(17/23) 9323721454628002 a001 505019158607/6557470319842*86267571272^(17/23) 9323721454628002 a001 192900153618/2504730781961*86267571272^(17/23) 9323721454628002 a001 73681302247/956722026041*86267571272^(17/23) 9323721454628002 a001 28143753123/365435296162*86267571272^(17/23) 9323721454628002 a001 10749957122/139583862445*86267571272^(17/23) 9323721454628002 a001 4106118243/53316291173*86267571272^(17/23) 9323721454628002 a001 1568397607/20365011074*86267571272^(17/23) 9323721454628002 a001 599074578/7778742049*86267571272^(17/23) 9323721454628002 a001 228826127/2971215073*86267571272^(17/23) 9323721454628003 a001 87403803/1134903170*86267571272^(17/23) 9323721454628010 a001 33385282/433494437*86267571272^(17/23) 9323721454628059 a001 12752043/165580141*86267571272^(17/23) 9323721454628394 a001 4870847/63245986*86267571272^(17/23) 9323721454628612 a001 969323029/3524578*1346269^(17/23) 9323721454628740 a001 2537720636/9227465*1346269^(17/23) 9323721454628759 a001 6643838879/24157817*1346269^(17/23) 9323721454628762 a001 17393796001/63245986*1346269^(17/23) 9323721454628762 a001 45537549124/165580141*1346269^(17/23) 9323721454628762 a001 119218851371/433494437*1346269^(17/23) 9323721454628762 a001 312119004989/1134903170*1346269^(17/23) 9323721454628762 a001 817138163596/2971215073*1346269^(17/23) 9323721454628762 a001 2139295485799/7778742049*1346269^(17/23) 9323721454628762 a001 5600748293801/20365011074*1346269^(17/23) 9323721454628762 a001 14662949395604/53316291173*1346269^(17/23) 9323721454628762 a001 23725150497407/86267571272*1346269^(17/23) 9323721454628762 a001 3020733700601/10983760033*1346269^(17/23) 9323721454628762 a001 3461452808002/12586269025*1346269^(17/23) 9323721454628762 a001 440719107401/1602508992*1346269^(17/23) 9323721454628762 a001 505019158607/1836311903*1346269^(17/23) 9323721454628762 a001 64300051206/233802911*1346269^(17/23) 9323721454628762 a001 73681302247/267914296*1346269^(17/23) 9323721454628762 a001 228811001/831985*1346269^(17/23) 9323721454628763 a001 10749957122/39088169*1346269^(17/23) 9323721454628770 a001 1368706081/4976784*1346269^(17/23) 9323721454628819 a001 1568397607/5702887*1346269^(17/23) 9323721454629155 a001 199691526/726103*1346269^(17/23) 9323721454630692 a001 1860498/24157817*86267571272^(17/23) 9323721454631456 a001 228826127/832040*1346269^(17/23) 9323721454646442 a001 710647/9227465*86267571272^(17/23) 9323721454647225 a001 29134601/105937*1346269^(17/23) 9323721454754393 a001 271443/3524578*86267571272^(17/23) 9323721454755312 a001 33385282/121393*1346269^(17/23) 9323721455225503 m001 (BesselJ(1,1)+BesselI(1,2))/(cos(1)-exp(1)) 9323721455494299 a001 103682/1346269*86267571272^(17/23) 9323721455496146 a001 4250681/15456*1346269^(17/23) 9323721460565693 a001 39603/514229*86267571272^(17/23) 9323721460573899 a001 4870847/17711*1346269^(17/23) 9323721475255659 r005 Re(z^2+c),c=7/82+35/61*I,n=53 9323721485618014 r005 Im(z^2+c),c=-11/74+49/64*I,n=45 9323721494998056 a007 Real Root Of -211*x^4+896*x^3+848*x^2-459*x-876 9323721495325545 a001 15127/196418*86267571272^(17/23) 9323721495377334 a001 15126/55*1346269^(17/23) 9323721555858999 m001 cos(1/12*Pi)^(MinimumGamma/Sarnak) 9323721596525059 m009 (6*Psi(1,3/4)+5/6)/(6*Psi(1,3/4)+2) 9323721637076255 m001 1/sin(Pi/12)*exp(BesselK(1,1))^2/sinh(1)^2 9323721647323375 r009 Im(z^3+c),c=-7/60+56/61*I,n=11 9323721668339263 a007 Real Root Of -933*x^4+983*x^3+444*x^2-431*x+714 9323721672940105 m004 -1/6+2*Sqrt[5]*Pi*Sin[Sqrt[5]*Pi] 9323721688592777 a007 Real Root Of 171*x^4-699*x^3-654*x^2+209*x+811 9323721719626063 a007 Real Root Of -361*x^4+862*x^3+47*x^2-316*x+636 9323721733573115 a001 5778/75025*86267571272^(17/23) 9323721733923635 a001 710647/2584*1346269^(17/23) 9323721743974064 l005 10/51/(exp(5/51)+1) 9323721754670256 a001 15127/4181*144^(4/21) 9323721754951071 m007 (-1/2*gamma-ln(2)-1/4)/(-2*gamma-1/6) 9323721756428731 r005 Re(z^2+c),c=-29/26+15/92*I,n=12 9323721763132879 m001 (BesselJ(1,1)-Totient)^LaplaceLimit 9323721772525773 h001 (-5*exp(8)+6)/(-3*exp(4)+4) 9323721773624154 m005 (1/2*exp(1)-2/7)/(5/8*Zeta(3)+2/5) 9323721783169326 a007 Real Root Of 900*x^4-285*x^3-311*x^2+432*x-238 9323721803811440 a007 Real Root Of 841*x^4+566*x^3+493*x^2+586*x-59 9323721810979676 a001 39603/10946*144^(4/21) 9323721811122231 k006 concat of cont frac of 9323721812154500 m002 -2+3*Pi^3+Log[Pi]+ProductLog[Pi] 9323721819195110 a001 103682/28657*144^(4/21) 9323721820393725 a001 271443/75025*144^(4/21) 9323721820568601 a001 710647/196418*144^(4/21) 9323721820594115 a001 1860498/514229*144^(4/21) 9323721820597837 a001 4870847/1346269*144^(4/21) 9323721820598380 a001 12752043/3524578*144^(4/21) 9323721820598460 a001 33385282/9227465*144^(4/21) 9323721820598471 a001 87403803/24157817*144^(4/21) 9323721820598473 a001 228826127/63245986*144^(4/21) 9323721820598473 a001 599074578/165580141*144^(4/21) 9323721820598473 a001 1568397607/433494437*144^(4/21) 9323721820598473 a001 4106118243/1134903170*144^(4/21) 9323721820598473 a001 10749957122/2971215073*144^(4/21) 9323721820598473 a001 28143753123/7778742049*144^(4/21) 9323721820598473 a001 73681302247/20365011074*144^(4/21) 9323721820598473 a001 192900153618/53316291173*144^(4/21) 9323721820598473 a001 505019158607/139583862445*144^(4/21) 9323721820598473 a001 1322157322203/365435296162*144^(4/21) 9323721820598473 a001 14662949395604/4052739537881*144^(4/21) 9323721820598473 a001 817138163596/225851433717*144^(4/21) 9323721820598473 a001 312119004989/86267571272*144^(4/21) 9323721820598473 a001 119218851371/32951280099*144^(4/21) 9323721820598473 a001 45537549124/12586269025*144^(4/21) 9323721820598473 a001 17393796001/4807526976*144^(4/21) 9323721820598473 a001 6643838879/1836311903*144^(4/21) 9323721820598473 a001 2537720636/701408733*144^(4/21) 9323721820598473 a001 969323029/267914296*144^(4/21) 9323721820598473 a001 370248451/102334155*144^(4/21) 9323721820598474 a001 141422324/39088169*144^(4/21) 9323721820598478 a001 54018521/14930352*144^(4/21) 9323721820598509 a001 20633239/5702887*144^(4/21) 9323721820598716 a001 7881196/2178309*144^(4/21) 9323721820600138 a001 3010349/832040*144^(4/21) 9323721820609883 a001 1149851/317811*144^(4/21) 9323721820676680 a001 439204/121393*144^(4/21) 9323721821134510 a001 167761/46368*144^(4/21) 9323721824272527 a001 64079/17711*144^(4/21) 9323721831399642 l006 ln(2270/5767) 9323721838081385 a007 Real Root Of 206*x^4-918*x^3+9*x^2+36*x-874 9323721845780812 a001 24476/6765*144^(4/21) 9323721846846230 a007 Real Root Of 161*x^4-860*x^3+841*x^2+742*x-858 9323721854942945 a001 4181/322*843^(41/42) 9323721861609100 r009 Re(z^3+c),c=-1/8+16/43*I,n=15 9323721898660268 a007 Real Root Of -902*x^4+917*x^3+489*x^2-890*x+170 9323721900749326 r009 Re(z^3+c),c=-9/52+29/46*I,n=15 9323721917458141 m001 (GAMMA(2/3)-Pi^(1/2))/(TreeGrowth2nd+ZetaQ(3)) 9323721921152404 p001 sum(1/(327*n+107)/n/(25^n),n=1..infinity) 9323721947300456 p004 log(25589/23311) 9323721970705106 m001 (Psi(1,1/3)+Backhouse)/(-Grothendieck+Landau) 9323721974164341 m001 1/ln(Salem)*DuboisRaymond/GAMMA(17/24) 9323721993200794 a001 9349/2584*144^(4/21) 9323722019461147 a007 Real Root Of -258*x^4+977*x^3+925*x^2+632*x+772 9323722024354064 a007 Real Root Of 342*x^4-773*x^3+262*x^2-197*x+324 9323722058081608 a007 Real Root Of -573*x^4+947*x^3+999*x^2-57*x+279 9323722075048276 r005 Re(z^2+c),c=23/110+34/63*I,n=6 9323722090529546 a007 Real Root Of 256*x^4-114*x^3+574*x^2+224*x-576 9323722110006831 a001 76/5*514229^(4/29) 9323722120617752 k002 Champernowne real with 85/2*n^2+373/2*n-220 9323722126562509 r005 Im(z^2+c),c=7/29+1/41*I,n=21 9323722149410222 q001 3557/3815 9323722154438497 r002 40th iterates of z^2 + 9323722158733883 m001 MertensB2^QuadraticClass-ReciprocalLucas 9323722163023929 a007 Real Root Of -322*x^4-137*x^3+386*x^2+632*x+386 9323722175420881 m001 1/2+GaussAGM(1,1/sqrt(2))-BesselI(0,2) 9323722199286478 a001 2207/21*21^(38/53) 9323722216841619 r009 Re(z^3+c),c=-11/64+19/28*I,n=50 9323722217260701 m002 3*Pi^3+1/(4*Log[Pi]) 9323722218859440 a007 Real Root Of 19*x^4-916*x^3+339*x^2+658*x-438 9323722230295428 m001 BesselJ(0,1)^arctan(1/2)*GAMMA(11/12) 9323722237471558 m001 (-Kac+Trott2nd)/(BesselJ(0,1)-Champernowne) 9323722297495137 s002 sum(A209113[n]/((pi^n-1)/n),n=1..infinity) 9323722302585484 m002 -(Cosh[Pi]/Log[Pi])+ProductLog[Pi]-Pi*Sech[Pi] 9323722308771590 a001 39603/8*3^(34/59) 9323722326758291 m001 ln(Pi)^(3^(1/2))/FeigenbaumKappa 9323722339594804 m001 (ln(2^(1/2)+1)-Pi^(1/2))/(Landau+ThueMorse) 9323722347882313 r002 4th iterates of z^2 + 9323722353326554 r002 24th iterates of z^2 + 9323722393018778 m001 (BesselJ(0,1)-FransenRobinson)/(Porter+Sarnak) 9323722425127830 r005 Re(z^2+c),c=-16/25+31/37*I,n=2 9323722503039518 r005 Im(z^2+c),c=39/110+24/59*I,n=8 9323722523070747 a007 Real Root Of 391*x^4-22*x^3+673*x^2+867*x-90 9323722540904855 a007 Real Root Of -128*x^4+458*x^3-27*x^2+89*x-334 9323722552417213 a007 Real Root Of 275*x^4-999*x^3-837*x^2+643*x+730 9323722560986026 a001 8/10716675201*18^(1/13) 9323722568101241 a005 (1/sin(61/166*Pi))^25 9323722571274978 r005 Im(z^2+c),c=-29/26+13/108*I,n=9 9323722583026755 l006 ln(2307/5861) 9323722654626012 s002 sum(A107219[n]/(n^3*10^n+1),n=1..infinity) 9323722665437602 m005 (4/5*gamma+4)/(1/4*Pi+4) 9323722733091612 a007 Real Root Of -305*x^4+611*x^3-149*x^2-499*x+390 9323722771293474 a007 Real Root Of -981*x^4-334*x^3+450*x^2+672*x+706 9323722800077895 p001 sum((-1)^n/(595*n+107)/(64^n),n=0..infinity) 9323722827500935 m001 Shi(1)^MertensB1*Sarnak^MertensB1 9323722847030073 m001 (FeigenbaumD-HardyLittlewoodC4)/(Magata-Thue) 9323722906037046 r005 Im(z^2+c),c=-25/48+1/64*I,n=19 9323722945231436 a007 Real Root Of 129*x^4-679*x^3+785*x^2+780*x-603 9323722961151292 h001 (3/10*exp(2)+3/4)/(5/6*exp(1)+11/12) 9323722989270786 r005 Re(z^2+c),c=-115/114+15/49*I,n=14 9323722993286540 p003 LerchPhi(1/32,5,65/161) 9323723003632588 a001 3571/987*144^(4/21) 9323723003877582 a007 Real Root Of 647*x^4-127*x^3-762*x^2-968*x-832 9323723020131349 m009 (4*Psi(1,3/4)+3/4)/(5*Psi(1,3/4)-1) 9323723022062409 a007 Real Root Of 432*x^4-120*x^3+71*x^2-421*x-40 9323723059701336 r008 a(0)=1,K{-n^6,-51+10*n+29*n^2+27*n^3} 9323723063136874 m001 Robbin-MertensB3-MertensB1 9323723073122756 a007 Real Root Of -813*x^4+439*x^3-727*x^2-751*x+902 9323723074810154 a007 Real Root Of 193*x^4-890*x^3+591*x^2+843*x-595 9323723112615892 m002 3*Pi^3+Log[Pi]^2/6 9323723120917812 k002 Champernowne real with 43*n^2+185*n-219 9323723145768889 a007 Real Root Of 523*x^4-923*x^3-529*x^2-85*x+892 9323723151883975 a007 Real Root Of -694*x^4+319*x^3-922*x^2-761*x+875 9323723171532267 r002 32th iterates of z^2 + 9323723196174368 a007 Real Root Of -947*x^4+980*x^3+568*x^2-618*x+440 9323723199678979 m005 (1/2*3^(1/2)+11/12)/(5/9*Pi+1/6) 9323723210734220 r008 a(0)=1,K{-n^6,-33-21*n+44*n^2+25*n^3} 9323723230179491 m001 FeigenbaumD+Riemann1stZero^TravellingSalesman 9323723273984973 a008 Real Root of x^3-x^2-42*x-332 9323723309492082 a001 2/225851433717*144^(9/19) 9323723310924972 l006 ln(2344/5955) 9323723313359177 a007 Real Root Of -71*x^4-631*x^3+339*x^2+535*x+632 9323723326386454 a007 Real Root Of 573*x^4+855*x^3+142*x^2-554*x-380 9323723366546251 a001 2207/28657*86267571272^(17/23) 9323723368944636 a001 90481/329*1346269^(17/23) 9323723381725324 a007 Real Root Of -399*x^4-42*x^3-968*x^2-429*x+709 9323723407620915 b008 75*Sqrt[17/11] 9323723414441307 h001 (2/7*exp(2)+7/9)/(2/5*exp(2)+1/7) 9323723423834904 r005 Im(z^2+c),c=-5/4+7/202*I,n=48 9323723465070773 r005 Re(z^2+c),c=-11/10+5/96*I,n=18 9323723471855873 m001 arctan(1/2)^2/exp(LaplaceLimit)*sin(1) 9323723475940277 m001 (Cahen+Thue)/(ln(5)+gamma(3)) 9323723477852017 a007 Real Root Of 781*x^4-571*x^3-160*x^2+208*x-720 9323723487134254 r005 Re(z^2+c),c=-53/58+5/38*I,n=49 9323723487269650 r009 Im(z^3+c),c=-73/122+33/64*I,n=2 9323723525242207 a007 Real Root Of 645*x^4-787*x^3-815*x^2+180*x-249 9323723548477823 p004 log(17959/7069) 9323723599396530 a001 34/2139295485799*123^(11/13) 9323723605815609 m005 (1/2*5^(1/2)+8/9)/(4/5*5^(1/2)+4/11) 9323723636209051 r001 18i'th iterates of 2*x^2-1 of 9323723640609881 m001 (Kolakoski+Porter)/(Cahen+Grothendieck) 9323723674082474 m005 (1/2*Catalan-6/7)/(7/11*2^(1/2)-6/7) 9323723699234909 r005 Re(z^2+c),c=-57/52+4/47*I,n=14 9323723724278653 m001 ln(Pi)^BesselI(1,2)-HardyLittlewoodC4 9323723732962207 m001 (Zeta(1/2)-GAMMA(11/12))/(Tribonacci+Thue) 9323723773776231 r005 Re(z^2+c),c=23/118+10/37*I,n=32 9323723778231831 r005 Re(z^2+c),c=-7/40+53/62*I,n=12 9323723800894204 a007 Real Root Of -795*x^4+51*x^3+312*x^2+176*x+535 9323723809492782 m001 BesselI(1,1)^Conway/(Gompertz^Conway) 9323723867440871 r005 Im(z^2+c),c=-89/82+7/64*I,n=26 9323723903162488 a007 Real Root Of 242*x^4-250*x^3-212*x^2+396*x+168 9323723915747231 r005 Re(z^2+c),c=-53/58+5/38*I,n=45 9323723934021767 a001 322/4181*832040^(19/54) 9323723955795757 m001 (ln(Pi)+Zeta(1,-1))/(PolyaRandomWalk3D+Rabbit) 9323723959496446 m001 (GAMMA(3/4)-sin(1/12*Pi))/(gamma(3)+MertensB2) 9323723997635164 m001 (OneNinth+ZetaP(4))/(5^(1/2)-sin(1/12*Pi)) 9323724001779090 r005 Im(z^2+c),c=-1/18+7/8*I,n=7 9323724010325195 a007 Real Root Of -840*x^4+445*x^3-754*x^2-814*x+892 9323724016200514 l006 ln(2381/6049) 9323724028223367 m001 Grothendieck-exp(1/Pi)-Totient 9323724028871633 b008 2/3+ProductLog[ArcCoth[3]] 9323724057799292 m001 (Ei(1)+2/3)/(RenyiParking+2) 9323724065845466 g006 Psi(1,8/11)+Psi(1,9/10)+Psi(1,2/5)-Psi(1,3/4) 9323724066570879 a007 Real Root Of 635*x^4-36*x^3+663*x^2+955*x-195 9323724078791825 m001 1/GAMMA(1/4)/exp(TwinPrimes)/GAMMA(7/12) 9323724079067026 r005 Re(z^2+c),c=-9/10+142/243*I,n=3 9323724081222493 p003 LerchPhi(1/25,1,149/136) 9323724088932604 a007 Real Root Of -561*x^4+648*x^3-162*x^2-547*x+580 9323724092714895 a007 Real Root Of 541*x^4-879*x^3-447*x^2+93*x-646 9323724096823690 a007 Real Root Of -765*x^4+458*x^3+55*x^2-835*x+123 9323724104261718 p003 LerchPhi(1/256,9,29/48) 9323724119351485 a007 Real Root Of 150*x^4-901*x^3+327*x^2+5*x+328 9323724121217872 k002 Champernowne real with 87/2*n^2+367/2*n-218 9323724127345154 r008 a(0)=1,K{-n^6,-19-34*n+39*n^2+29*n^3} 9323724140074172 m001 Zeta(1,2)+GAMMA(23/24)*MasserGramainDelta 9323724158326914 r005 Re(z^2+c),c=9/46+16/59*I,n=22 9323724166060070 h001 (1/3*exp(1)+5/6)/(5/8*exp(1)+1/6) 9323724166060070 m005 (2/5*exp(1)+1)/(3/4*exp(1)+1/5) 9323724175423340 a007 Real Root Of -535*x^4+317*x^3+693*x^2-62*x+1 9323724176815770 r009 Re(z^3+c),c=-1/7+36/47*I,n=33 9323724187730024 a007 Real Root Of 753*x^4+154*x^3+968*x^2+418*x-896 9323724203419415 v002 sum(1/(3^n+(43/2*n^2-3/2*n-9)),n=1..infinity) 9323724205451069 m005 (1/3*Zeta(3)+1/12)/(1/45+2/9*5^(1/2)) 9323724213132121 k006 concat of cont frac of 9323724220358649 m001 ln(Tribonacci)^2*MinimumGamma^2*Trott^2 9323724284746984 a007 Real Root Of -633*x^4-433*x^3+75*x^2-337*x-252 9323724289760734 a007 Real Root Of -213*x^4+75*x^3-139*x^2+408*x+723 9323724299360385 a007 Real Root Of -410*x^4+962*x^3+658*x^2-805*x-233 9323724320591212 m001 (Pi^(1/2)+TreeGrowth2nd)/(exp(Pi)+sin(1/5*Pi)) 9323724356957945 b008 32+25*Sqrt[6] 9323724357005119 s002 sum(A076540[n]/(n^2*pi^n+1),n=1..infinity) 9323724378219915 a007 Real Root Of -344*x^4+381*x^3-312*x^2+74*x+909 9323724439131970 m005 (1/2*gamma+3/7)/(1/9*gamma-5/6) 9323724479287064 h001 (-exp(6)-5)/(-4*exp(7)+6) 9323724503287358 m001 Salem/Niven*ln(sin(Pi/12)) 9323724534899967 a007 Real Root Of -440*x^4+990*x^3-752*x^2-4*x+7 9323724545346964 s003 concatenated sequence A237604 9323724587623187 a007 Real Root Of 601*x^4+37*x^3-573*x^2-356*x-258 9323724601104643 a001 843/8*13^(17/20) 9323724606557620 a003 cos(Pi*14/107)/sin(Pi*34/77) 9323724634694886 r009 Im(z^3+c),c=-13/90+10/11*I,n=15 9323724644710988 m001 QuadraticClass^ln(5)/ZetaQ(3) 9323724659357180 m005 (1/2*gamma+8/9)/(1/4*exp(1)+7/12) 9323724661410723 a007 Real Root Of 998*x^4+546*x^3+149*x^2-121*x-554 9323724665387143 l006 ln(5751/6313) 9323724675860035 a007 Real Root Of 13*x^4-609*x^3+276*x^2+172*x-583 9323724683740780 r002 41th iterates of z^2 + 9323724699891894 l006 ln(2418/6143) 9323724700061200 a007 Real Root Of 604*x^4-818*x^3-225*x^2-372*x+749 9323724706835057 a007 Real Root Of -918*x^4+827*x^3+15*x^2-680*x+717 9323724707312888 m005 (5/8+1/4*5^(1/2))/(1/5*exp(1)-5/12) 9323724712882924 a007 Real Root Of 854*x^4+291*x^3+385*x^2+204*x-554 9323724723886744 m001 (gamma-ln(5))/(GAMMA(23/24)+StolarskyHarborth) 9323724735385960 m008 (1/6*Pi^4+4/5)/(3/5*Pi^3-1/3) 9323724750322092 a007 Real Root Of 162*x^4-633*x^3+812*x^2+926*x-478 9323724787154047 m001 (GAMMA(2/3)-cos(1))/(-FeigenbaumB+Niven) 9323724791336506 r009 Im(z^3+c),c=-9/50+52/57*I,n=9 9323724822279142 m005 (1/2*Pi-5/12)/(23/24+1/8*5^(1/2)) 9323724865791079 m009 (4/5*Psi(1,3/4)-1/2)/(8*Catalan+Pi^2-3/4) 9323724876268379 m005 (1/2*gamma+5/12)/(1/6*Catalan-10/11) 9323724929919290 a007 Real Root Of -900*x^4+436*x^3+290*x^2-245*x+553 9323724948399517 m002 3/Pi^6+3/(Pi^3*ProductLog[Pi]) 9323724965587706 a007 Real Root Of 662*x^4-356*x^3-661*x^2-151*x-355 9323724966889202 a007 Real Root Of -816*x^4-448*x^3+22*x^2-186*x+61 9323724971322784 m001 (ErdosBorwein+Sierpinski)/(Pi+GAMMA(2/3)) 9323725017917257 p001 sum(1/(424*n+221)/n/(2^n),n=1..infinity) 9323725018210652 h001 (1/5*exp(1)+1/9)/(8/9*exp(2)+5/11) 9323725019841929 r008 a(0)=1,K{-n^6,3+32*n^3+41*n^2-61*n} 9323725021945438 r005 Re(z^2+c),c=-3/4+18/97*I,n=14 9323725031498785 m001 cos(1)*(BesselJ(0,1)-Lehmer) 9323725032034264 m001 (cos(1/12*Pi)+gamma(3))/(Kac+ThueMorse) 9323725032942131 m001 exp(1/exp(1))^Pi/(Rabbit^Pi) 9323725055432372 q001 841/902 9323725055432372 r002 2th iterates of z^2 + 9323725055432372 r005 Im(z^2+c),c=-99/82+29/44*I,n=2 9323725100335450 a007 Real Root Of -764*x^4+400*x^3-911*x^2-909*x+846 9323725101293430 r005 Im(z^2+c),c=-25/36+2/27*I,n=25 9323725121517932 k002 Champernowne real with 44*n^2+182*n-217 9323725128611226 a007 Real Root Of -333*x^4+459*x^3-172*x^2-130*x+652 9323725170493327 a003 sin(Pi*25/67)/sin(Pi*14/31) 9323725187536707 a007 Real Root Of 114*x^4-377*x^3-966*x^2-867*x-8 9323725218809075 r005 Re(z^2+c),c=-13/14+19/240*I,n=17 9323725232264218 a007 Real Root Of -750*x^4+963*x^3+984*x^2+398*x+863 9323725245362005 a007 Real Root Of -171*x^4+262*x^3-564*x^2-401*x+458 9323725263850103 r005 Re(z^2+c),c=-29/34+7/37*I,n=39 9323725274885459 r008 a(0)=1,K{-n^6,-27+39*n^3+5*n^2-2*n} 9323725282596091 b008 -95+ArcCosh[3] 9323725286947256 m001 Psi(2,1/3)*(FeigenbaumB+Thue) 9323725288254686 m001 (Trott+Thue)/(BesselJ(0,1)-Psi(1,1/3)) 9323725295308436 m002 -3/E^Pi+3*Pi^3*Coth[Pi] 9323725319490793 a007 Real Root Of 772*x^4+242*x^3+535*x^2+261*x-609 9323725329121409 m001 BesselI(0,1)*(Chi(1)-LandauRamanujan) 9323725353537287 r009 Im(z^3+c),c=-13/86+48/53*I,n=11 9323725362975016 l006 ln(2455/6237) 9323725375767146 r009 Im(z^3+c),c=-5/46+23/25*I,n=13 9323725399164348 m001 (BesselI(0,1)+FeigenbaumDelta)/(Kac+Trott) 9323725400178364 a001 2178309/1364*199^(1/3) 9323725404235273 a007 Real Root Of -519*x^4-232*x^3-245*x^2-323*x+116 9323725413301817 r005 Im(z^2+c),c=-5/6+7/121*I,n=13 9323725421878943 m005 (7/44+1/4*5^(1/2))/(2/11*5^(1/2)+4/11) 9323725442780641 a007 Real Root Of -105*x^4-961*x^3+109*x^2-577*x-273 9323725449711776 m001 ln(Tribonacci)*Conway*GAMMA(19/24) 9323725461023597 m001 Psi(1,1/3)^BesselI(1,2)*CopelandErdos 9323725522799404 r009 Im(z^3+c),c=-5/118+55/59*I,n=7 9323725535695290 a007 Real Root Of 789*x^4-501*x^3-887*x^2-536*x-731 9323725546251079 r002 11th iterates of z^2 + 9323725548734244 a007 Real Root Of 974*x^4+851*x^3+477*x^2+30*x-433 9323725592273671 m005 (4/5*exp(1)+2/3)/(1/3*2^(1/2)-1/6) 9323725630813649 r002 46th iterates of z^2 + 9323725648918894 m001 (Pi+ln(5))/(ln(Pi)-HardyLittlewoodC3) 9323725657466912 a008 Real Root of x^4-x^3-14*x^2-65*x-50 9323725665995529 a007 Real Root Of 45*x^4-153*x^3+923*x^2+556*x-442 9323725698132649 m004 (80*Sech[Sqrt[5]*Pi])/ProductLog[Sqrt[5]*Pi] 9323725721562629 a007 Real Root Of 314*x^4-766*x^3-829*x^2-584*x-682 9323725779727797 m001 Gompertz*HeathBrownMoroz*KhinchinLevy 9323725812454817 r002 5th iterates of z^2 + 9323725829290545 a007 Real Root Of -458*x^4+910*x^3+169*x^2-225*x+727 9323725837178037 m004 -5+(125*Pi)/4+5*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi] 9323725843286088 a007 Real Root Of -498*x^4+644*x^3-227*x^2-907*x+250 9323725847066984 m004 -5+(125*Pi)/4+5*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi] 9323725869991763 m001 (Pi-Chi(1))/(Landau+Tetranacci) 9323725896055487 m005 (1/2*2^(1/2)-7/11)/(3/7*3^(1/2)-9/11) 9323725982016300 a007 Real Root Of -799*x^4+66*x^3-242*x^2-49*x+822 9323725990869163 m001 1/Riemann3rdZero^2*ln(FeigenbaumB)^2/gamma 9323725993163316 a007 Real Root Of 588*x^4-675*x^3-905*x^2+832*x+571 9323726006367827 l006 ln(2492/6331) 9323726007920698 a007 Real Root Of -108*x^4-947*x^3+495*x^2-556*x+386 9323726021702189 r005 Re(z^2+c),c=-9/14+61/139*I,n=62 9323726056976287 a007 Real Root Of 163*x^4-605*x^3-889*x^2-410*x-223 9323726105018157 h001 (8/9*exp(1)+1/6)/(4/11*exp(2)+1/12) 9323726121817992 k002 Champernowne real with 89/2*n^2+361/2*n-216 9323726122186328 r008 a(0)=1,K{-n^6,-33+47*n^3-22*n^2+23*n} 9323726146862194 a001 4976784*3^(4/7) 9323726157395863 m001 (Psi(1,1/3)*Zeta(5)-GAMMA(11/12))/Psi(1,1/3) 9323726165862112 a007 Real Root Of 660*x^4-809*x^3-333*x^2+340*x-548 9323726182503743 r009 Re(z^3+c),c=-15/106+13/27*I,n=24 9323726214162011 r005 Re(z^2+c),c=-5/6+29/158*I,n=56 9323726290301423 r005 Im(z^2+c),c=-45/94+8/49*I,n=13 9323726312789490 a007 Real Root Of 262*x^4-757*x^3-112*x^2-73*x+581 9323726326759307 m009 (3/8*Pi^2-5)/(20/3*Catalan+5/6*Pi^2-2/5) 9323726327007240 m002 6/(E^Pi*Pi^6)+Csch[Pi]*ProductLog[Pi] 9323726331604683 a007 Real Root Of 206*x^4-391*x^3+503*x^2+283*x-646 9323726351898381 r005 Im(z^2+c),c=-11/74+49/64*I,n=54 9323726380643225 m001 exp(gamma)-ln(2+sqrt(3))^GAMMA(1/4) 9323726412229535 a007 Real Root Of -234*x^4+115*x^3+371*x^2+969*x+851 9323726431689914 m006 (2/3/Pi-1)/(1/6*Pi^2-4/5) 9323726438636364 m001 Robbin^2*Backhouse^2/ln(GAMMA(1/24))^2 9323726449139551 m001 1/cos(1)^2/Artin^2/exp(cos(Pi/12)) 9323726478339365 r009 Im(z^3+c),c=-6/17+2/43*I,n=17 9323726484682400 a007 Real Root Of 66*x^4+535*x^3-788*x^2-307*x+501 9323726486654645 a007 Real Root Of 779*x^4+426*x^3+241*x^2+844*x+334 9323726509127499 m002 -2+Pi^(-4)+Pi^3-Pi^6 9323726527761325 g007 -Psi(13/10)-Psi(2,5/9)-Psi(2,5/7)-Psi(2,2/7) 9323726562596675 r005 Im(z^2+c),c=-11/74+49/64*I,n=63 9323726576523888 r005 Im(z^2+c),c=-11/74+49/64*I,n=60 9323726586753007 r005 Re(z^2+c),c=23/86+8/23*I,n=60 9323726593881902 a007 Real Root Of 774*x^4-787*x^3-314*x^2-620*x+904 9323726625594655 r005 Im(z^2+c),c=-11/74+49/64*I,n=57 9323726630934553 l006 ln(2529/6425) 9323726666125429 a007 Real Root Of 442*x^4+538*x^3+436*x^2-192*x-456 9323726676674480 r009 Re(z^3+c),c=-59/114+23/38*I,n=29 9323726693866470 m001 (5^(1/2)+Zeta(1,2))/(GAMMA(17/24)+OneNinth) 9323726714167356 r005 Im(z^2+c),c=-19/31+4/23*I,n=63 9323726718061948 m001 Cahen^Paris*LandauRamanujan^Paris 9323726722576849 a003 cos(Pi*3/86)*cos(Pi*8/71) 9323726749344413 r009 Re(z^3+c),c=-5/29+39/58*I,n=53 9323726768110236 r005 Re(z^2+c),c=-20/23+5/28*I,n=60 9323726776135321 r002 42th iterates of z^2 + 9323726799791744 a007 Real Root Of 594*x^4-921*x^3-634*x^2+329*x+542 9323726810947895 r005 Re(z^2+c),c=-53/58+5/38*I,n=47 9323726841193008 a001 24476/55*196418^(32/51) 9323726843403776 r009 Re(z^3+c),c=-1/28+33/41*I,n=48 9323726851774193 r005 Im(z^2+c),c=-11/74+49/64*I,n=51 9323726870705536 r008 a(0)=1,K{-n^6,-17+7*n-26*n^2+51*n^3} 9323726870903800 m001 (-Bloch+KhinchinLevy)/(arctan(1/2)-cos(1)) 9323726888487320 a001 64079/89*3^(4/17) 9323726891835492 m002 -2+Pi^3-Pi^6+Tanh[Pi]/Pi^4 9323726892655043 l006 ln(7112/7807) 9323726954244181 m001 ln((3^(1/3)))/Sierpinski^2/sin(Pi/5) 9323726963421838 a007 Real Root Of -416*x^4+754*x^3-49*x^2-368*x+625 9323726968616670 m005 (1/2*Catalan+1/6)/(9/10*3^(1/2)-8/9) 9323726988639979 r002 8th iterates of z^2 + 9323727002126271 m009 (2*Psi(1,3/4)+2/3)/(4*Psi(1,3/4)-4) 9323727011815180 r002 7th iterates of z^2 + 9323727013888810 a007 Real Root Of -98*x^4-800*x^3+983*x^2-737*x-148 9323727026890879 r005 Im(z^2+c),c=-9/14+57/182*I,n=51 9323727030053579 m005 (1/2*3^(1/2)+6/11)/(5/7*5^(1/2)-1/12) 9323727067725205 a007 Real Root Of 7*x^4-963*x^3+651*x^2+462*x-921 9323727071172865 a007 Real Root Of -375*x^4-612*x^3-955*x^2-539*x+115 9323727081693563 a007 Real Root Of -327*x^4-673*x^3-546*x^2+684*x+68 9323727118543795 m005 (3*2^(1/2)-3)/(4/5*Catalan+3/5) 9323727120088407 r009 Re(z^3+c),c=-9/94+22/39*I,n=3 9323727122118052 k002 Champernowne real with 45*n^2+179*n-215 9323727137355602 m005 (1/2*Pi-2/9)/(5/11*Zeta(3)+9/10) 9323727170440129 r005 Re(z^2+c),c=-3/110+13/40*I,n=10 9323727184370831 a007 Real Root Of 900*x^4-912*x^3-624*x^2+460*x-448 9323727222532170 m005 (1/3*Catalan-2/7)/(8/11*Pi-2/11) 9323727237489575 l006 ln(2566/6519) 9323727263113934 p001 sum((-1)^n/(209*n+123)/n/(32^n),n=1..infinity) 9323727286602819 a007 Real Root Of -785*x^4-125*x^3+304*x^2-20*x+209 9323727310850675 m001 (GAMMA(13/24)-Riemann2ndZero)/exp(-1/2*Pi) 9323727316048083 m001 Kolakoski^2*ln(Artin)*GAMMA(3/4)^2 9323727332285189 s002 sum(A258318[n]/(exp(n)-1),n=1..infinity) 9323727335232886 m001 1/exp(Ei(1))/Si(Pi)^2*GAMMA(5/12) 9323727346552480 m001 (-Stephens+StronglyCareFree)/(Chi(1)+Mills) 9323727353160118 r005 Im(z^2+c),c=-61/98+7/39*I,n=40 9323727355233242 a007 Real Root Of 417*x^4-926*x^3+595*x^2+977*x-672 9323727356024377 m008 (4*Pi^2+5)/(1/2*Pi^4-1) 9323727358798186 r005 Re(z^2+c),c=-43/48+7/40*I,n=57 9323727362148889 a007 Real Root Of -78*x^4-793*x^3-506*x^2+989*x-83 9323727383480583 a007 Real Root Of 169*x^4-178*x^3+859*x^2+137*x-891 9323727389817675 r005 Re(z^2+c),c=1/98+13/33*I,n=10 9323727394237641 m001 BesselJ(0,1)+GAMMA(2/3)*Champernowne 9323727414002907 m001 (-gamma(2)+Trott)/(1+Zeta(3)) 9323727415424115 a007 Real Root Of -294*x^4+110*x^3-283*x^2+301*x+838 9323727428462548 r005 Im(z^2+c),c=-83/98+2/33*I,n=60 9323727428467843 p003 LerchPhi(1/2,4,425/229) 9323727429813256 r005 Im(z^2+c),c=-11/74+49/64*I,n=48 9323727432111644 a001 843/2*13^(13/42) 9323727434774326 a007 Real Root Of -271*x^4+753*x^3+414*x^2+447*x+872 9323727440797950 h001 (-5*exp(3)+11)/(-5*exp(1)+4) 9323727442667604 a007 Real Root Of 687*x^4-303*x^3+561*x^2+984*x-335 9323727453252775 m001 (-GAMMA(17/24)+Riemann1stZero)/(Chi(1)+cos(1)) 9323727453354944 m001 CareFree^BesselK(0,1)*Zeta(3)^BesselK(0,1) 9323727468842876 a007 Real Root Of -676*x^4+79*x^3-727*x^2-253*x+971 9323727493934637 m001 (Si(Pi)-cos(1))/(-ln(2+3^(1/2))+Salem) 9323727497871719 a007 Real Root Of -600*x^4+832*x^3+949*x^2+145*x+438 9323727547561502 r009 Im(z^3+c),c=-7/48+49/54*I,n=21 9323727550171277 r009 Re(z^3+c),c=-29/56+19/36*I,n=3 9323727568440384 r008 a(0)=1,K{-n^6,-7+56*n^3-36*n^2+2*n} 9323727610634796 m005 (1/2*Catalan-1/8)/(1/9*2^(1/2)+1/5) 9323727623906433 a007 Real Root Of 194*x^4-684*x^3+280*x^2-21*x-964 9323727654710574 m001 (Zeta(1,2)-sin(1))/(-Cahen+GolombDickman) 9323727667964843 a003 cos(Pi*14/101)-sin(Pi*58/117) 9323727687904912 m001 (MertensB3*Stephens+Weierstrass)/MertensB3 9323727708387084 m001 (Ei(1,1)+GAMMA(23/24))/(Kac+Rabbit) 9323727709442766 m001 (Mills+ZetaP(4))/(Zeta(3)-Khinchin) 9323727729383591 a007 Real Root Of -761*x^4+267*x^3+84*x^2-880*x-102 9323727738886213 a007 Real Root Of -529*x^4+536*x^3+422*x^2+449*x+886 9323727738924336 m001 BesselI(0,1)*(arctan(1/3)+PrimesInBinary) 9323727740472967 m001 (Sarnak-ThueMorse)/(exp(1/Pi)+ReciprocalLucas) 9323727746597758 r005 Im(z^2+c),c=-41/78+8/49*I,n=22 9323727762759818 a001 2207/3*3^(11/51) 9323727779655365 r005 Im(z^2+c),c=-31/26+13/124*I,n=30 9323727800271923 a007 Real Root Of -747*x^4+859*x^3+598*x^2-578*x+202 9323727815172881 a005 (1/cos(3/170*Pi))^1452 9323727815837305 m005 (-7/12+1/6*5^(1/2))/(6/11*2^(1/2)-6/11) 9323727824236975 m001 (FeigenbaumB+MertensB3)/(Zeta(5)+GAMMA(17/24)) 9323727826800969 l006 ln(2603/6613) 9323727859640540 a007 Real Root Of -896*x^4+293*x^3+276*x^2-478*x+229 9323727864209589 a007 Real Root Of 111*x^4-437*x^3-752*x^2-789*x-520 9323727883754391 m002 -1+(Pi*Tanh[Pi])/(2*E^Pi) 9323727891326941 a007 Real Root Of -201*x^4+536*x^3-247*x^2-280*x+540 9323727897435581 a001 11/121393*17711^(39/55) 9323727920859100 m001 (BesselI(0,2)+FeigenbaumD)/(GAMMA(3/4)-ln(2)) 9323727994401352 a007 Real Root Of -508*x^4+557*x^3+18*x^2-152*x+678 9323728024569928 m001 cos(1)*RenyiParking^2/exp(sinh(1)) 9323728027882098 m001 (-Riemann2ndZero+Robbin)/(Conway-exp(Pi)) 9323728078076326 m001 BesselK(1,1)*ZetaP(2)+TwinPrimes 9323728122418112 k002 Champernowne real with 91/2*n^2+355/2*n-214 9323728142657233 h001 (3/10*exp(1)+1/2)/(2/11*exp(1)+11/12) 9323728173691178 a007 Real Root Of -15*x^4+258*x^3-39*x^2+301*x+535 9323728184660815 r002 9th iterates of z^2 + 9323728189136090 s002 sum(A101295[n]/((exp(n)+1)/n),n=1..infinity) 9323728200983702 a001 48/90481*2^(48/59) 9323728213889076 m001 (Zeta(1,2)+Rabbit)/(arctan(1/2)-Ei(1,1)) 9323728214176761 a003 sin(Pi*2/111)-sin(Pi*43/95) 9323728216004979 r005 Re(z^2+c),c=-25/106+43/55*I,n=14 9323728233043051 a007 Real Root Of 160*x^4-501*x^3-899*x^2+404*x+690 9323728268467898 a003 sin(Pi*1/77)-sin(Pi*49/115) 9323728294251553 h001 (-2*exp(2/3)-3)/(-exp(1/3)-6) 9323728299387792 a003 sin(Pi*3/64)*sin(Pi*16/73) 9323728303689224 m001 Salem^ArtinRank2/(Salem^GAMMA(5/6)) 9323728315201411 q001 3171/3401 9323728323218358 r005 Re(z^2+c),c=-13/14+11/139*I,n=23 9323728339072254 r005 Re(z^2+c),c=-11/14+118/135*I,n=2 9323728373740185 a007 Real Root Of -844*x^4+590*x^3-941*x^2-115*x-2 9323728378227618 m001 FeigenbaumKappa^ln(3)/(exp(1/exp(1))^ln(3)) 9323728380241083 r005 Im(z^2+c),c=-29/46+1/5*I,n=30 9323728387576834 r005 Im(z^2+c),c=-83/98+2/33*I,n=57 9323728399593753 l006 ln(2640/6707) 9323728404400287 l006 ln(8473/9301) 9323728411790767 a007 Real Root Of -148*x^4+694*x^3-74*x^2-330*x+431 9323728427140628 a001 47/832040*75025^(33/50) 9323728428982763 a007 Real Root Of -468*x^4+604*x^3+378*x^2-730*x-166 9323728450091479 m001 BesselJ(1,1)-Trott2nd^ZetaP(3) 9323728459757645 m005 (1/2*5^(1/2)+5/9)/(4/5*Zeta(3)+5/6) 9323728467475244 m001 exp(1/exp(1))^ln(3)/ErdosBorwein 9323728506316361 m001 (1+ln(gamma))/(-ln(2)+Salem) 9323728513893289 r005 Re(z^2+c),c=-31/34+6/43*I,n=13 9323728519852610 m001 (Rabbit-Thue)/(KhinchinLevy+PrimesInBinary) 9323728527733910 a007 Real Root Of -45*x^4-348*x^3+722*x^2+482*x-263 9323728551040691 a007 Real Root Of -403*x^4+408*x^3-192*x^2-737*x+115 9323728627881719 m001 1/MinimumGamma*exp(Magata)^2/Sierpinski^2 9323728630359528 a007 Real Root Of 834*x^4-984*x^3-482*x^2+816*x-248 9323728650862013 a001 6557470319842/47*1364^(5/19) 9323728671698368 a001 726103/281*199^(8/33) 9323728675686649 a001 5/15251*521^(28/31) 9323728686209511 m009 (3/4*Psi(1,2/3)-4)/(2/5*Psi(1,2/3)+3/5) 9323728740114573 r005 Re(z^2+c),c=-16/29+33/58*I,n=19 9323728749384140 r009 Im(z^3+c),c=-23/118+23/25*I,n=33 9323728753590317 r005 Re(z^2+c),c=-13/14+11/139*I,n=33 9323728781221315 a007 Real Root Of 121*x^4-562*x^3-138*x^2-340*x-744 9323728786354062 m001 (-gamma(2)+GAMMA(11/12))/(ln(2)/ln(10)+sin(1)) 9323728805621958 m002 -6+Sech[Pi]+5*Tanh[Pi] 9323728815605890 r005 Re(z^2+c),c=-13/14+11/139*I,n=35 9323728824247601 r005 Re(z^2+c),c=-13/14+11/139*I,n=31 9323728858825467 a007 Real Root Of 625*x^4-285*x^3-68*x^2+337*x-330 9323728861229409 a003 cos(Pi*16/67)/cos(Pi*19/40) 9323728862817533 r009 Re(z^3+c),c=-53/74+13/49*I,n=2 9323728863891303 r005 Re(z^2+c),c=-13/14+11/139*I,n=37 9323728866762814 a007 Real Root Of 916*x^4+953*x^3+407*x^2-778*x-999 9323728867826053 a007 Real Root Of 868*x^4-109*x^3+582*x^2+292*x-978 9323728869463200 m001 (Sarnak-Thue)/(GAMMA(2/3)+Paris) 9323728876035524 r005 Re(z^2+c),c=-13/14+11/139*I,n=47 9323728876077612 r005 Re(z^2+c),c=-13/14+11/139*I,n=49 9323728876181812 r005 Re(z^2+c),c=-13/14+11/139*I,n=51 9323728876233702 r005 Re(z^2+c),c=-13/14+11/139*I,n=53 9323728876235441 r005 Re(z^2+c),c=-13/14+11/139*I,n=63 9323728876235653 r005 Re(z^2+c),c=-13/14+11/139*I,n=61 9323728876237245 r005 Re(z^2+c),c=-13/14+11/139*I,n=59 9323728876241088 r005 Re(z^2+c),c=-13/14+11/139*I,n=57 9323728876244407 r005 Re(z^2+c),c=-13/14+11/139*I,n=55 9323728876476309 r005 Re(z^2+c),c=-13/14+11/139*I,n=45 9323728878092972 r005 Re(z^2+c),c=-13/14+11/139*I,n=43 9323728880206401 r005 Re(z^2+c),c=-13/14+11/139*I,n=39 9323728880749359 r005 Re(z^2+c),c=-13/14+11/139*I,n=41 9323728924103058 a001 416020/161*322^(2/9) 9323728932372893 k006 concat of cont frac of 9323728938035663 a007 Real Root Of 940*x^4+437*x^3+463*x^2-69*x-823 9323728953789085 a007 Real Root Of -49*x^4+804*x^3+658*x^2+365*x+457 9323728956552861 l006 ln(2677/6801) 9323728969158152 a007 Real Root Of -785*x^4-583*x^3-558*x^2-92*x+520 9323728974994126 m005 (1/2*Zeta(3)+10/11)/(7/8*Catalan+9/11) 9323729027843314 m005 (1/2*3^(1/2)+5)/(1/10*gamma+4/7) 9323729035520582 a007 Real Root Of -149*x^4+81*x^3+476*x^2+894*x+598 9323729054378368 m005 (1/2*3^(1/2)-1/11)/(3/8*3^(1/2)+2/11) 9323729056815906 m005 (1/2*gamma+6/7)/(2/3*exp(1)-7/12) 9323729081239103 m001 1/Niven^2/exp(FeigenbaumDelta)^2*GAMMA(7/24) 9323729083606385 a007 Real Root Of -297*x^4+844*x^3+376*x^2+143*x+715 9323729085434192 m001 (3^(1/3))^cos(1/5*Pi)-ThueMorse 9323729085434192 m001 (3^(1/3))^cos(Pi/5)-ThueMorse 9323729089248462 a001 322/4181*144^(1/26) 9323729110207538 b008 Tan[CosIntegral[Log[2]]] 9323729119967999 m005 (4/5*gamma-1/5)/(1/3*gamma-3) 9323729119967999 m007 (-4/5*gamma+1/5)/(-1/3*gamma+3) 9323729122718172 k002 Champernowne real with 46*n^2+176*n-213 9323729130019874 m001 PrimesInBinary^FeigenbaumDelta+Catalan 9323729132049701 m001 (Catalan-ln(3))^HardHexagonsEntropy 9323729133286423 m001 (3^(1/2)+BesselJ(0,1))/(exp(1/Pi)+Conway) 9323729178348260 a007 Real Root Of -117*x^4+21*x^3-510*x^2-77*x+477 9323729178375429 m001 Riemann2ndZero^2*exp(Paris)^2*sqrt(3) 9323729189067568 a003 sin(Pi*11/111)/cos(Pi*24/61) 9323729252591002 a007 Real Root Of 336*x^4+979*x^3+955*x^2-290*x-561 9323729263451986 g003 Re(GAMMA(-43/12+I*(-79/20))) 9323729267813161 a007 Real Root Of -563*x^4+874*x^3+837*x^2-780*x-321 9323729281088102 a001 610/3*7^(18/23) 9323729281728736 m001 (BesselI(0,2)-sin(1))/(-ArtinRank2+Landau) 9323729303633063 m001 1/GAMMA(5/6)/GAMMA(1/24)^2/ln(sin(1)) 9323729308086645 m001 (cos(1)+Zeta(3))/(BesselI(1,1)+Conway) 9323729336333463 a007 Real Root Of -138*x^4+915*x^3+739*x^2+170*x+362 9323729349788721 s002 sum(A038270[n]/(n^2*exp(n)-1),n=1..infinity) 9323729355348784 r005 Im(z^2+c),c=29/114+2/51*I,n=4 9323729356021819 m005 (1/2*3^(1/2)+2/11)/(23/110+9/22*5^(1/2)) 9323729387349150 r005 Re(z^2+c),c=-13/14+11/139*I,n=29 9323729387457974 a008 Real Root of (-5+3*x+6*x^2-2*x^3+5*x^4+4*x^5) 9323729391512614 m001 (Tetranacci-ZetaQ(3))/(BesselK(1,1)+Backhouse) 9323729404808480 a007 Real Root Of 354*x^4-653*x^3-780*x^2+47*x+896 9323729436604604 a007 Real Root Of 144*x^4-503*x^3+218*x^2+384*x-348 9323729469117817 a007 Real Root Of -59*x^4-445*x^3+963*x^2-146*x+110 9323729491796718 q001 233/2499 9323729498325877 l006 ln(2714/6895) 9323729548653760 r009 Im(z^3+c),c=-3/19+48/53*I,n=7 9323729554894609 r001 25i'th iterates of 2*x^2-1 of 9323729565410387 m001 (MasserGramainDelta-Thue)^Ei(1) 9323729573758425 m001 GolombDickman-Zeta(3)^BesselJZeros(0,1) 9323729579133249 a007 Real Root Of -532*x^4+426*x^3-822*x^2-652*x+854 9323729584837193 a001 591286729879/47*3571^(10/19) 9323729619850381 h001 (4/5*exp(1)+2/11)/(8/9*exp(1)+1/9) 9323729621437822 a007 Real Root Of -556*x^4-503*x^3-798*x^2-71*x+640 9323729626471579 r009 Re(z^3+c),c=-9/122+27/31*I,n=29 9323729646039287 m001 Zeta(1/2)^MadelungNaCl/exp(-1/2*Pi) 9323729667987981 m001 (3^(1/3)+GAMMA(19/24))^gamma(1) 9323729669787441 a007 Real Root Of 809*x^4+545*x^3+202*x^2-595*x-900 9323729682409668 p003 LerchPhi(1/8,6,509/233) 9323729690379375 a001 2584/47*9062201101803^(15/19) 9323729695960016 r002 2th iterates of z^2 + 9323729705576113 m001 (ErdosBorwein+MertensB2)^FeigenbaumDelta 9323729716203515 m001 (Chi(1)-cos(1))/(CopelandErdos+Otter) 9323729732838394 a007 Real Root Of -114*x^4-999*x^3+666*x^2+666*x+110 9323729739224538 r009 Re(z^3+c),c=-1/56+11/19*I,n=2 9323729784769685 m001 (Catalan-FeigenbaumMu)/(MertensB1+Sierpinski) 9323729801721412 a007 Real Root Of 287*x^4-837*x^3-207*x^2+394*x-348 9323729816356642 p004 log(34757/13681) 9323729832162015 a007 Real Root Of -853*x^4+781*x^3+596*x^2+141*x+891 9323729840385000 a001 199*(1/2*5^(1/2)+1/2)^6*4^(9/13) 9323729868441168 a007 Real Root Of -703*x^4+585*x^3-31*x^2-926*x+169 9323729897679371 a007 Real Root Of 549*x^4+324*x^3+839*x^2+449*x-463 9323729898846602 a007 Real Root Of 77*x^4-143*x^3+504*x^2+174*x-450 9323729914273470 r005 Re(z^2+c),c=-77/82+20/63*I,n=8 9323729929244672 a001 1364/377*144^(4/21) 9323729932731261 r005 Re(z^2+c),c=-53/60+11/59*I,n=33 9323729962283823 a001 365435296162/47*24476^(9/19) 9323729963711284 a001 17711/47*5600748293801^(14/19) 9323729967982891 a001 12586269025/47*64079^(14/19) 9323729968788706 a001 46368/47*45537549124^(16/19) 9323729968788706 a001 46368/47*10749957122^(17/19) 9323729969603724 a001 6557470319842/47*167761^(3/19) 9323729969638226 a001 365435296162/47*439204^(7/19) 9323729969649723 a001 165580141/47*1149851^(17/19) 9323729969653339 a001 832040/47*141422324^(18/19) 9323729969653339 a001 832040/47*192900153618^(13/19) 9323729969655437 a001 7778742049/47*3010349^(11/19) 9323729969656001 a001 1548008755920/47*7881196^(4/19) 9323729969656018 a001 433494437/47*20633239^(13/19) 9323729969656025 a001 14930352/47*17393796001^(12/19) 9323729969656025 a001 14930352/47*599074578^(14/19) 9323729969656032 a001 39088169/47*312119004989^(10/19) 9323729969656032 a001 39088169/47*28143753123^(11/19) 9323729969656033 a001 102334155/47*23725150497407^(8/19) 9323729969656033 a001 86267571272/47*370248451^(6/19) 9323729969656033 a001 102287808*2537720636^(8/19) 9323729969656033 a001 102287808*3461452808002^(6/19) 9323729969656033 a001 4052739537881/47*6643838879^(2/19) 9323729969656033 a001 225749145909*505019158607^(1/19) 9323729969656033 a001 365435296162/47*14662949395604^(3/19) 9323729969656033 a001 225851433717/47*73681302247^(4/19) 9323729969656033 a001 53316291173/47*119218851371^(5/19) 9323729969656033 a001 12586269025/47*4106118243^(7/19) 9323729969656033 a001 1548008755920/47*1568397607^(3/19) 9323729969656033 a001 102287808*228826127^(9/19) 9323729969656033 a001 63245986/47*2139295485799^(9/19) 9323729969656037 a001 102287808*33385282^(10/19) 9323729969656048 a001 591286729879/47*12752043^(5/19) 9323729969656183 a001 3524578/47*969323029^(15/19) 9323729969656364 a001 102334155/47*4870847^(16/19) 9323729969657734 a001 102287808*1860498^(12/19) 9323729969657976 a001 225749145909*710647^(2/19) 9323729969709314 a001 225851433717/47*271443^(8/19) 9323729970340765 a001 102287808*103682^(15/19) 9323729971533322 a001 1548008755920/47*39603^(6/19) 9323729973054440 m001 AlladiGrinstead/cos(1)/ErdosBorwein 9323729977774288 r005 Re(z^2+c),c=-115/126+7/52*I,n=35 9323729981293544 r002 22th iterates of z^2 + 9323729983360440 a007 Real Root Of -959*x^4+438*x^3+47*x^2-327*x+734 9323730008257426 a001 102287808*15127^(18/19) 9323730025525544 l006 ln(2751/6989) 9323730036032095 m001 BesselK(0,1)^(Pi^(1/2)/MasserGramain) 9323730055345551 a007 Real Root Of -606*x^4+524*x^3-327*x^2-400*x+794 9323730063580242 m005 (11/4+5/2*5^(1/2))/(gamma-2/3) 9323730074353394 a007 Real Root Of 172*x^4+484*x^3+806*x^2+113*x-333 9323730116374903 a007 Real Root Of 35*x^4-679*x^3+244*x^2-832*x+76 9323730123018232 k002 Champernowne real with 93/2*n^2+349/2*n-212 9323730191355787 a007 Real Root Of 708*x^4-200*x^3+390*x^2+707*x-377 9323730194946428 a003 cos(Pi*10/69)/sin(Pi*43/104) 9323730196417345 a003 sin(Pi*2/95)-sin(Pi*41/85) 9323730222539662 r002 37th iterates of z^2 + 9323730230717788 a007 Real Root Of 900*x^4+449*x^3+339*x^2+504*x-141 9323730245922047 a007 Real Root Of -427*x^4+893*x^3-331*x^2+730*x-794 9323730246824469 a007 Real Root Of -198*x^4+397*x^3-249*x^2-549*x+176 9323730262415373 r002 24th iterates of z^2 + 9323730315225305 a007 Real Root Of -30*x^4+838*x^3-704*x^2+644*x-645 9323730336537644 a003 cos(Pi*7/106)-cos(Pi*33/68) 9323730342055880 a007 Real Root Of -380*x^4+548*x^3-810*x^2-599*x+877 9323730348060522 a007 Real Root Of 206*x^4-578*x^3+488*x^2+911*x-199 9323730361765042 r009 Im(z^3+c),c=-19/110+44/49*I,n=45 9323730431316027 r002 3th iterates of z^2 + 9323730442459054 r002 34th iterates of z^2 + 9323730458027343 a007 Real Root Of -14*x^4+809*x^3+931*x^2-178*x-309 9323730468750000 r002 2th iterates of z^2 + 9323730468750000 r002 2th iterates of z^2 + 9323730468750000 r005 Re(z^2+c),c=-43/64+27/32*I,n=2 9323730532130046 r002 11i'th iterates of 2*x/(1-x^2) of 9323730533684553 m001 Zeta(9)^2*Zeta(1/2)^2/exp(exp(1))^2 9323730538732081 l006 ln(2788/7083) 9323730556118298 a007 Real Root Of 981*x^4-92*x^3-392*x^2+604*x+88 9323730594362672 a007 Real Root Of -659*x^4+801*x^3+284*x^2-453*x+478 9323730631965963 m001 BesselK(0,1)/exp(Tribonacci)/GAMMA(1/3)^2 9323730635833066 m001 (Pi*csc(5/24*Pi)/GAMMA(19/24))^gamma(2)/Shi(1) 9323730638375171 m001 (Shi(1)+FeigenbaumDelta)/(-FeigenbaumMu+Otter) 9323730660670261 m005 (19/20+1/4*5^(1/2))/(6*exp(1)-1/8) 9323730682671072 a007 Real Root Of -218*x^4+741*x^3+578*x^2+294*x+537 9323730698913911 a001 341/2*2178309^(23/39) 9323730708937404 r005 Im(z^2+c),c=5/16+13/29*I,n=11 9323730709855608 r009 Re(z^3+c),c=-15/106+13/27*I,n=22 9323730726039381 m001 Niven^2*exp(Backhouse)*RenyiParking 9323730726062861 m001 (Cahen+MertensB3)/(BesselJ(0,1)+GAMMA(2/3)) 9323730744634458 a001 8/11*1364^(39/58) 9323730768358699 r005 Re(z^2+c),c=-13/14+11/139*I,n=27 9323730785527883 m001 Salem^2*FibonacciFactorial*ln(sqrt(3)) 9323730846164831 a001 7/10946*317811^(23/40) 9323730855149866 a007 Real Root Of -778*x^4-702*x^3-954*x^2-188*x+673 9323730884512936 m001 (Porter+Salem)/(GAMMA(7/12)+Mills) 9323730891186497 a007 Real Root Of -581*x^4+136*x^3-542*x^2-200*x+834 9323730935912193 a001 7/89*12586269025^(7/23) 9323730938544469 r005 Re(z^2+c),c=-15/14+43/227*I,n=30 9323730967922322 r005 Re(z^2+c),c=-109/106+17/48*I,n=6 9323730971187201 m001 StolarskyHarborth*FeigenbaumKappa^ZetaP(2) 9323730998329316 b008 Sech[Sqrt[Sinh[1/7]]] 9323731003386657 r005 Re(z^2+c),c=-95/102+2/31*I,n=15 9323731038495305 l006 ln(2825/7177) 9323731042798057 a007 Real Root Of 844*x^4-343*x^3-386*x^2-152*x-722 9323731051923776 m001 (Niven-gamma(2))/Tribonacci 9323731058169298 a007 Real Root Of -759*x^4+398*x^3+390*x^2-57*x+504 9323731097172588 a003 sin(Pi*27/71)/sin(Pi*43/90) 9323731123318292 k002 Champernowne real with 47*n^2+173*n-211 9323731138545953 r005 Im(z^2+c),c=-7/9+7/90*I,n=3 9323731146358167 m001 (Mills+Riemann2ndZero)/(3^(1/2)+LaplaceLimit) 9323731176745159 r002 34th iterates of z^2 + 9323731225582054 r008 a(0)=1,K{-n^6,91+84*n^3-71*n^2-89*n} 9323731246405673 r002 18i'th iterates of 2*x/(1-x^2) of 9323731274927034 m005 (1/3*exp(1)-3/7)/(-19/24+1/8*5^(1/2)) 9323731277205669 m001 GaussAGM/exp(1)*GaussKuzminWirsing 9323731279365409 a001 225851433717/47*2207^(13/19) 9323731325123222 r009 Im(z^3+c),c=-4/25+37/41*I,n=41 9323731372141962 a007 Real Root Of 441*x^4-203*x^3-427*x^2+893*x+706 9323731408818180 a007 Real Root Of -889*x^4+613*x^3+193*x^2-859*x+200 9323731438082838 m001 (Grothendieck+ZetaP(2))/(arctan(1/3)-exp(1)) 9323731442998454 m005 (1/4*5^(1/2)+3/4)/(2/7*3^(1/2)+10/11) 9323731445473906 r002 59th iterates of z^2 + 9323731448678363 m001 (-GAMMA(19/24)+Bloch)/(BesselI(1,2)-Chi(1)) 9323731477970449 r005 Im(z^2+c),c=-9/8+25/122*I,n=12 9323731490936294 r005 Im(z^2+c),c=-21/34+55/79*I,n=3 9323731496527523 m005 (1/2*3^(1/2)+1/12)/(6/11*gamma-5/12) 9323731525336606 l006 ln(2862/7271) 9323731560917903 a001 55/5778*18^(15/19) 9323731574678179 a007 Real Root Of -10*x^4+9*x^3+872*x^2-753*x+41 9323731659718254 a007 Real Root Of 189*x^4-90*x^3+93*x^2-512*x-774 9323731669025681 h001 (-7*exp(-1)+9)/(-9*exp(-1)+4) 9323731684776319 r002 61th iterates of z^2 + 9323731687724055 m001 (-Zeta(1/2)+RenyiParking)/(exp(Pi)+cos(1)) 9323731699346815 m009 (4*Psi(1,1/3)-2/5)/(2/5*Psi(1,1/3)+1/4) 9323731716731153 a007 Real Root Of 545*x^4-480*x^3-944*x^2-433*x-384 9323731760119963 m005 (1/2*Zeta(3)-3)/(4/7*Pi+7/9) 9323731762498847 r005 Re(z^2+c),c=-31/34+18/85*I,n=13 9323731812001054 m001 Bloch^(ZetaQ(2)/gamma) 9323731824460577 r009 Re(z^3+c),c=-1/17+30/37*I,n=6 9323731832217751 a007 Real Root Of -680*x^4+136*x^3+293*x^2+287*x+637 9323731847762032 r005 Re(z^2+c),c=6/25+17/53*I,n=60 9323731851471420 r005 Im(z^2+c),c=-63/110+8/47*I,n=40 9323731859847625 a007 Real Root Of -751*x^4-23*x^3+389*x^2+558*x+731 9323731880493417 m001 cos(1)*Rabbit/exp(sqrt(2)) 9323731881766804 a007 Real Root Of 779*x^4-617*x^3+182*x^2+399*x-875 9323731882306689 a007 Real Root Of 422*x^4+253*x^3-312*x^2-438*x-251 9323731891699687 p004 log(13577/13451) 9323731983802519 m005 (1/3*5^(1/2)-2/7)/(1/11*gamma-6/11) 9323731997495303 q001 1489/1597 9323731999750751 l006 ln(2899/7365) 9323732011482037 r005 Re(z^2+c),c=-13/14+11/139*I,n=25 9323732015468161 r005 Im(z^2+c),c=-41/30+8/81*I,n=28 9323732018133059 a007 Real Root Of 482*x^4-469*x^3+284*x^2+957*x-99 9323732023772919 r005 Im(z^2+c),c=-77/122+10/57*I,n=63 9323732033670258 a007 Real Root Of -775*x^4-695*x^3-708*x^2+42*x+677 9323732052727303 a007 Real Root Of 562*x^4-988*x^3-585*x^2+592*x-165 9323732058960151 s002 sum(A179478[n]/(exp(n)),n=1..infinity) 9323732092079167 a007 Real Root Of -861*x^4+394*x^3+586*x^2-139*x+331 9323732109431613 a007 Real Root Of -719*x^4+517*x^3+765*x^2-512*x-180 9323732123618352 k002 Champernowne real with 95/2*n^2+343/2*n-210 9323732123892213 a003 cos(Pi*3/65)*cos(Pi*5/46) 9323732139173032 a007 Real Root Of -735*x^4+95*x^3-328*x^2-775*x+195 9323732151299852 a007 Real Root Of 93*x^4+866*x^3-63*x^2-446*x+421 9323732152829283 m001 1/exp(Pi)/Backhouse*sqrt(Pi)^2 9323732152829283 m001 Pi*exp(-Pi)/Backhouse 9323732155356957 m001 1/exp(Porter)/GaussAGM(1,1/sqrt(2))/cos(1)^2 9323732164197663 a007 Real Root Of 283*x^4-553*x^3+791*x^2+566*x-822 9323732185302489 m001 GolombDickman^Weierstrass*Trott^Weierstrass 9323732213579593 a001 682/98209*21^(3/31) 9323732214599263 r005 Re(z^2+c),c=-25/86+41/61*I,n=9 9323732310763152 a007 Real Root Of 184*x^4-376*x^3-424*x^2+396*x+294 9323732323366159 m001 1/OneNinth*ln(LandauRamanujan)/GAMMA(1/3) 9323732395248419 a001 89/123*3^(3/13) 9323732415312354 m001 (-FeigenbaumC+Kac)/(Shi(1)+CopelandErdos) 9323732427086641 a007 Real Root Of -462*x^4+647*x^3+272*x^2+312*x+928 9323732435106484 r005 Re(z^2+c),c=-49/48+5/16*I,n=14 9323732462207570 l006 ln(2936/7459) 9323732485645069 r005 Re(z^2+c),c=23/118+10/37*I,n=27 9323732516277236 b008 9+ArcCosh[11]^(-1) 9323732538067139 m001 1/KhintchineLevy^2/Bloch/ln(sinh(1)) 9323732542234099 a007 Real Root Of -240*x^4+226*x^3+48*x^2+234*x+541 9323732568312585 s002 sum(A263528[n]/(n*2^n+1),n=1..infinity) 9323732596465341 m004 36+25*Pi*Cos[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 9323732615793490 m004 6+30*Pi+Csc[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi] 9323732631537937 r002 19th iterates of z^2 + 9323732646424951 a007 Real Root Of 509*x^4-127*x^3-632*x^2-195*x-120 9323732651891581 a008 Real Root of (1+3*x-5*x^3+5*x^4-5*x^5) 9323732671656085 m001 exp(1)^(GAMMA(2/3)*exp(1/2)) 9323732688417645 a007 Real Root Of 774*x^4+611*x^3+664*x^2+223*x-459 9323732710394535 p002 log(1/14*(238-11^(1/4))^(1/2)) 9323732719987614 s002 sum(A281513[n]/(exp(n)),n=1..infinity) 9323732731772006 a001 225749145909*843^(4/19) 9323732748352715 a001 11/6557470319842*514229^(3/23) 9323732768221180 p003 LerchPhi(1/100,9,29/48) 9323732776450700 m001 1/Zeta(3)/exp(GAMMA(1/24))*log(2+sqrt(3))^2 9323732787384864 a007 Real Root Of 685*x^4-970*x^3-901*x^2+878*x+298 9323732860169564 m001 GAMMA(1/3)-cos(Pi/5)+Zeta(1,2) 9323732882550982 r002 61th iterates of z^2 + 9323732887235773 a007 Real Root Of 525*x^4-343*x^3-503*x^2-481*x+767 9323732890054642 a007 Real Root Of -288*x^4+210*x^3+593*x^2+227*x+84 9323732903529245 a007 Real Root Of 565*x^4-160*x^3-524*x^2-564*x-627 9323732913153502 l006 ln(2973/7553) 9323732964834154 a007 Real Root Of 768*x^4+496*x^3+375*x^2+39*x-468 9323733027575110 a007 Real Root Of 964*x^4+414*x^3+672*x^2+693*x-331 9323733075695874 m004 16/(E^(Sqrt[5]*Pi)*ProductLog[Sqrt[5]*Pi]) 9323733084853747 m001 (KhinchinLevy-Thue)/(CareFree+FransenRobinson) 9323733123918412 k002 Champernowne real with 48*n^2+170*n-209 9323733126156532 a007 Real Root Of 843*x^4-217*x^3-795*x^2+786*x+611 9323733151272176 m001 exp(GAMMA(3/4))^2*GAMMA(1/24)^2*Zeta(1/2) 9323733153219505 s001 sum(exp(-Pi/4)^n*A143151[n],n=1..infinity) 9323733176572477 m001 (Pi+ln(gamma))/(KhinchinHarmonic+MertensB2) 9323733192846839 m001 (GAMMA(2/3)-exp(-1/2*Pi))/(Backhouse-Khinchin) 9323733204228632 r005 Im(z^2+c),c=-7/8+11/163*I,n=14 9323733210869502 m001 (Sarnak+StolarskyHarborth)^FellerTornier 9323733230773631 b008 92+5*ArcCsch[4] 9323733234987269 r002 9th iterates of z^2 + 9323733259251406 a005 (1/sin(79/187*Pi))^1688 9323733288049291 a007 Real Root Of 765*x^4+77*x^3-913*x^2-858*x-522 9323733316082574 a007 Real Root Of -771*x^4+540*x^3+702*x^2+16*x+425 9323733322118956 m001 (ArtinRank2-Zeta(1,-1))^Weierstrass 9323733334601541 a001 514229/521*199^(14/33) 9323733353013037 l006 ln(3010/7647) 9323733355672808 m001 (MertensB3-Sarnak)/(gamma(2)-Cahen) 9323733368149277 a007 Real Root Of -547*x^4+982*x^3+535*x^2-869*x-66 9323733390327665 a007 Real Root Of 571*x^4-822*x^3-573*x^2-261*x-843 9323733416084701 m001 BesselJ(0,1)^(exp(-1/2*Pi)/Kolakoski) 9323733426729920 a007 Real Root Of 841*x^4-869*x^3-334*x^2+184*x-878 9323733439066900 m001 ln(GAMMA(1/6))^2*BesselJ(0,1)^2*cos(1) 9323733462208414 a007 Real Root Of 60*x^4-806*x^3-557*x^2+674*x+414 9323733513563321 m001 (ln(2+3^(1/2))-Lehmer)/(ln(3)-arctan(1/3)) 9323733521434368 a001 3/17711*7778742049^(18/23) 9323733546246466 h001 (4/11*exp(2)+3/11)/(5/6*exp(1)+10/11) 9323733555190202 m002 -Pi^4+6/Log[Pi]-ProductLog[Pi]*Tanh[Pi] 9323733558929913 r002 5th iterates of z^2 + 9323733607611211 q001 3626/3889 9323733653615512 a007 Real Root Of 955*x^4+16*x^3-998*x^2-653*x-450 9323733666154701 a007 Real Root Of 9*x^4+839*x^3-17*x^2-400*x+233 9323733696030190 m001 (GAMMA(13/24)+Cahen)/(KomornikLoreti+Robbin) 9323733699316248 a007 Real Root Of 549*x^4+242*x^3+679*x^2-148*x-947 9323733713116721 k006 concat of cont frac of 9323733724330733 p001 sum(1/(481*n+202)/n/(16^n),n=1..infinity) 9323733727660305 r005 Re(z^2+c),c=23/118+10/37*I,n=34 9323733745198759 r005 Re(z^2+c),c=-9/8+32/147*I,n=2 9323733772328235 m001 1/exp(Pi)^2*BesselJ(1,1)/log(1+sqrt(2)) 9323733782190043 l006 ln(3047/7741) 9323733791913290 m001 exp(GAMMA(2/3))^2*Sierpinski^2/Zeta(5)^2 9323733885882250 a007 Real Root Of -76*x^4+186*x^3+685*x-732 9323733900966719 m001 (CareFree+Kolakoski)/(3^(1/3)-Zeta(1,-1)) 9323733944008609 a001 1364/17711*86267571272^(4/21) 9323734007752834 r005 Re(z^2+c),c=11/78+9/46*I,n=7 9323734055973360 m001 ln(LaplaceLimit)^2/DuboisRaymond/cos(Pi/12)^2 9323734058590383 a007 Real Root Of -989*x^4+833*x^3+856*x^2+110*x+781 9323734060001238 r009 Re(z^3+c),c=-19/110+19/27*I,n=56 9323734094404104 a007 Real Root Of 900*x^4-904*x^3-626*x^2+759*x-161 9323734109567990 r005 Im(z^2+c),c=-33/38+1/11*I,n=4 9323734112589723 a007 Real Root Of -195*x^4+808*x^3-722*x^2-844*x+643 9323734124218472 k002 Champernowne real with 97/2*n^2+337/2*n-208 9323734165547828 m001 (Shi(1)-ln(2)/ln(10))/(cos(1/5*Pi)+gamma(3)) 9323734179903588 a007 Real Root Of -250*x^4+243*x^3+845*x^2+951*x+538 9323734201069010 l006 ln(3084/7835) 9323734217340671 a001 341/646*3524578^(4/21) 9323734229335708 r002 4th iterates of z^2 + 9323734229335708 r002 4th iterates of z^2 + 9323734251554179 m005 (1/2*3^(1/2)+8/11)/(4*gamma-3/5) 9323734311350573 r005 Re(z^2+c),c=-99/86+11/40*I,n=18 9323734313583876 r009 Re(z^3+c),c=-9/70+23/58*I,n=15 9323734320789337 a007 Real Root Of -136*x^4-6*x^3-932*x^2-13*x+896 9323734322173937 m001 ln(MertensB1)/Si(Pi)/log(1+sqrt(2))^2 9323734331703994 m001 (-GAMMA(17/24)+FellerTornier)/(gamma-ln(5)) 9323734334436041 a007 Real Root Of -228*x^4-74*x^3+748*x^2+384*x-776 9323734335234874 a007 Real Root Of 409*x^4-16*x^3+897*x^2+239*x-879 9323734336981419 m005 (1/2*5^(1/2)+9/11)/(239/198+7/18*5^(1/2)) 9323734346043661 m005 (1/3*3^(1/2)+2/3)/(4/9*Zeta(3)+4/5) 9323734347706382 a007 Real Root Of -343*x^4-570*x^3-955*x^2+409*x+46 9323734359915632 r009 Im(z^3+c),c=-4/25+55/61*I,n=11 9323734464821133 a001 1/11592*34^(27/40) 9323734480348984 m001 (BesselI(1,1)-CareFree)/(GAMMA(3/4)-exp(1/Pi)) 9323734484854254 a007 Real Root Of 437*x^4+332*x^3+699*x^2+62*x-611 9323734499797321 a007 Real Root Of 236*x^4-742*x^3-649*x^2-807*x-968 9323734500144455 r005 Im(z^2+c),c=5/12+16/47*I,n=43 9323734519873610 a007 Real Root Of 846*x^4-472*x^3-900*x^2-333*x-550 9323734559110615 a001 843/10946*86267571272^(17/23) 9323734575560728 a001 103682/377*1346269^(17/23) 9323734578454481 b008 93*Cosh[1/14] 9323734610016194 l006 ln(3121/7929) 9323734614585871 a003 sin(Pi*31/95)/sin(Pi*24/65) 9323734657276350 m005 (1/2*3^(1/2)-3)/(-79/140+3/20*5^(1/2)) 9323734680722654 m001 (TwinPrimes-sin(1/12*Pi))^ZetaP(4) 9323734685776196 a007 Real Root Of 577*x^4-967*x^3+198*x^2-704*x+832 9323734708006318 m001 (2^(1/3)+gamma(2))/(ArtinRank2+Cahen) 9323734729493891 q001 2137/2292 9323734757381492 m001 Champernowne^Psi(2,1/3)/GlaisherKinkelin 9323734762140701 m001 (gamma(1)-gamma(2))/(LaplaceLimit-Totient) 9323734769457281 r004 Re(z^2+c),c=1/9-3/23*I,z(0)=exp(3/8*I*Pi),n=10 9323734778887168 m001 (BesselJ(0,1)-(1+3^(1/2))^(1/2))^sin(1/5*Pi) 9323734778887168 m001 (BesselJ(0,1)-sqrt(1+sqrt(3)))^sin(Pi/5) 9323734787520678 h001 (7/12*exp(2)+5/7)/(5/7*exp(2)+1/9) 9323734792918055 r002 10th iterates of z^2 + 9323734820934300 r009 Re(z^3+c),c=-1/31+43/54*I,n=46 9323734821476794 r005 Re(z^2+c),c=-41/48+1/3*I,n=5 9323734834008037 a007 Real Root Of 894*x^4-685*x^3-602*x^2+318*x-411 9323734876254079 r002 62th iterates of z^2 + 9323734902744363 a007 Real Root Of -167*x^4+206*x^3-646*x^2-255*x+617 9323734904756423 a007 Real Root Of 461*x^4-607*x^3+601*x^2+653*x-754 9323734927405344 a007 Real Root Of -991*x^4+794*x^3-137*x^2-790*x+775 9323734934939447 a007 Real Root Of -373*x^4-315*x^3-755*x^2+176*x+847 9323734948079159 a007 Real Root Of 143*x^4-423*x^3-865*x^2-931*x-567 9323735009380685 l006 ln(3158/8023) 9323735018532568 a007 Real Root Of 962*x^4+805*x^3-615*x^2-442*x+48 9323735052684038 a007 Real Root Of -349*x^4+901*x^3+436*x^2+842*x-83 9323735061587880 a007 Real Root Of -954*x^4-434*x^3-163*x^2+87*x+592 9323735105487148 m002 -1-Pi*Coth[Pi]+3*ProductLog[Pi] 9323735124518532 k002 Champernowne real with 49*n^2+167*n-207 9323735132405593 a007 Real Root Of 869*x^4-243*x^3+583*x^2+599*x-802 9323735152579953 r002 50th iterates of z^2 + 9323735186500909 a007 Real Root Of -347*x^4-77*x^3+742*x^2+751*x+255 9323735241146710 r005 Re(z^2+c),c=-9/10+46/245*I,n=5 9323735242955216 a003 cos(Pi*5/83)*sin(Pi*45/113) 9323735271918468 a007 Real Root Of 4*x^4-19*x^3-581*x^2-552*x-268 9323735294976611 a007 Real Root Of -244*x^4+333*x^3-675*x^2-250*x+808 9323735314948254 l002 polylog(9,11/118) 9323735322374254 m001 (3^(1/3))^GaussAGM/((3^(1/3))^GAMMA(23/24)) 9323735323019679 m001 (5^(1/2)+Otter)^FeigenbaumKappa 9323735326026633 r009 Im(z^3+c),c=-11/28+28/41*I,n=14 9323735331654629 r002 13th iterates of z^2 + 9323735345292821 m001 (FeigenbaumAlpha+Thue)/(Zeta(3)-sin(1)) 9323735399495405 l006 ln(3195/8117) 9323735412038671 r005 Re(z^2+c),c=3/86+9/55*I,n=2 9323735434102000 m001 Paris/(LandauRamanujan2nd-GAMMA(13/24)) 9323735447366964 a001 832040/199*76^(5/27) 9323735458222890 s002 sum(A076978[n]/((exp(n)+1)*n),n=1..infinity) 9323735458337186 m001 1/GAMMA(2/3)*Tribonacci^2*exp(log(2+sqrt(3))) 9323735458679648 a007 Real Root Of 64*x^4-562*x^3-538*x^2-476*x-480 9323735461131219 m002 -2*Pi+Cosh[Pi]+4*Coth[Pi] 9323735461461870 r005 Re(z^2+c),c=-1/98+23/64*I,n=21 9323735524430724 r005 Im(z^2+c),c=-53/64+3/55*I,n=30 9323735528144718 r005 Re(z^2+c),c=-7/48+53/63*I,n=22 9323735547502560 m001 (2^(1/3))^Mills/((2^(1/3))^ln(5)) 9323735561986628 r005 Im(z^2+c),c=-10/31+36/53*I,n=10 9323735571375353 a007 Real Root Of 613*x^4-633*x^3-143*x^2-148*x-990 9323735579227444 m001 (1+sin(1/12*Pi))/(-OrthogonalArrays+ZetaQ(2)) 9323735581075869 h001 (1/4*exp(2)+5/6)/(9/10*exp(1)+3/7) 9323735637921828 m005 (1/2*gamma+1/10)/(2/11*Catalan-7/12) 9323735661397901 m001 (Ei(1)-GAMMA(13/24))/(FellerTornier-Gompertz) 9323735674602549 a007 Real Root Of -60*x^4+282*x^3-403*x^2+329*x+931 9323735681244475 a007 Real Root Of 6*x^4-20*x^3-643*x^2+548*x-547 9323735691939361 r005 Im(z^2+c),c=-145/118+4/45*I,n=34 9323735780678027 l006 ln(3232/8211) 9323735808380066 m005 (1/2*5^(1/2)-1/11)/(37/198+9/22*5^(1/2)) 9323735830954439 a007 Real Root Of 364*x^4-717*x^3-770*x^2+845*x+601 9323735861843680 r005 Im(z^2+c),c=-11/15+21/46*I,n=5 9323735892067520 m005 (1/2*gamma-1/9)/(5/6*Pi-5/7) 9323735894669473 r005 Im(z^2+c),c=-11/74+49/64*I,n=39 9323735903062514 a007 Real Root Of -921*x^4+859*x^3+988*x^2+390*x+897 9323735912847483 r002 3th iterates of z^2 + 9323735938116923 m001 FeigenbaumDelta/sin(Pi/5)*GAMMA(19/24) 9323735938116923 m001 GAMMA(19/24)/sin(1/5*Pi)*FeigenbaumDelta 9323735945038169 a007 Real Root Of -867*x^4+889*x^3+571*x^2+351*x-889 9323735959435920 r008 a(0)=0,K{-n^6,50-18*n^3-27*n^2-16*n} 9323735967656999 r005 Im(z^2+c),c=-6/17+7/48*I,n=21 9323735980500726 a008 Real Root of (-5+6*x+5*x^2+6*x^4+3*x^8) 9323735983583065 a007 Real Root Of 171*x^4-829*x^3-48*x^2+38*x+549 9323735993204979 r005 Re(z^2+c),c=-63/74+11/64*I,n=11 9323736002004002 a007 Real Root Of -772*x^4+793*x^3-2*x^2-933*x+358 9323736020187513 a007 Real Root Of -97*x^4-982*x^3-696*x^2+181*x-703 9323736049718833 m001 Pi^exp(1/Pi)/polylog(4,1/2) 9323736057983554 m001 1/exp(sin(Pi/12))/Cahen^2*sqrt(5)^2 9323736062824765 a007 Real Root Of -916*x^4-172*x^3+222*x^2-239*x+137 9323736068643022 r002 13th iterates of z^2 + 9323736082108446 a001 161/305*6765^(14/43) 9323736106410905 a007 Real Root Of -881*x^4-37*x^3-35*x^2-322*x+366 9323736124818592 k002 Champernowne real with 99/2*n^2+331/2*n-206 9323736136311805 m005 (1/2*5^(1/2)+1/3)/(2/5*Pi+3/10) 9323736146363287 r009 Re(z^3+c),c=-7/82+26/41*I,n=3 9323736146551601 m001 ArtinRank2^(Champernowne/HardyLittlewoodC3) 9323736153231846 l006 ln(3269/8305) 9323736167079456 a001 4*3571^(3/29) 9323736175071737 g007 Psi(2,3/8)+Psi(2,1/3)-Psi(2,6/11)-Psi(13/10) 9323736179877152 m001 LambertW(1)^GAMMA(17/24)/polylog(4,1/2) 9323736190157348 q001 2785/2987 9323736200286085 a007 Real Root Of 913*x^4-358*x^3-52*x^2+622*x-355 9323736210839283 a007 Real Root Of -426*x^4+576*x^3-660*x^2-465*x+929 9323736248762150 r009 Re(z^3+c),c=-19/126+37/62*I,n=12 9323736251342332 a007 Real Root Of 33*x^4-160*x^3+790*x^2+83*x-764 9323736281588852 a007 Real Root Of 686*x^4-636*x^3-573*x^2-278*x-795 9323736283193114 a007 Real Root Of -345*x^4+396*x^3-153*x^2+173*x+876 9323736286193975 m005 (1/2*2^(1/2)+5/11)/(-18/35+2/7*5^(1/2)) 9323736289576287 a008 Real Root of x^4-x^3+70*x^2-343*x-17651 9323736292343809 r005 Im(z^2+c),c=-11/74+49/64*I,n=42 9323736304129654 l006 ln(1361/1494) 9323736326412875 r009 Im(z^3+c),c=-13/126+47/51*I,n=17 9323736358704422 r005 Re(z^2+c),c=-45/52+13/62*I,n=57 9323736417930204 a001 514229/322*322^(11/36) 9323736435206268 a007 Real Root Of -97*x^4-967*x^3-523*x^2+642*x+714 9323736472308388 r009 Re(z^3+c),c=-13/98+27/38*I,n=14 9323736475288304 a007 Real Root Of 542*x^4+447*x^3+284*x^2-742*x-986 9323736480963617 r005 Im(z^2+c),c=1/54+38/47*I,n=10 9323736493884706 a001 3571/514229*21^(3/31) 9323736503213435 a007 Real Root Of 743*x^4-422*x^3+959*x^2-998*x+85 9323736517446576 l006 ln(3306/8399) 9323736551187945 m001 (ln(2)/ln(10))^Mills*cos(1)^Mills 9323736564887526 a007 Real Root Of -473*x^4+273*x^3-611*x^2-120*x+998 9323736574146685 a003 cos(Pi*1/95)*sin(Pi*31/81) 9323736577258195 s001 sum(exp(-Pi/2)^n*A269741[n],n=1..infinity) 9323736584863351 a007 Real Root Of 902*x^4+554*x^3+207*x^2-319*x-710 9323736591415165 m001 MertensB3/(GAMMA(7/12)^sin(1)) 9323736628382592 a003 sin(Pi*5/41)/sin(Pi*13/99) 9323736628564116 m005 (1/3*Pi-1/2)/(1/10*Pi+3/11) 9323736641545633 r002 11th iterates of z^2 + 9323736641545633 r002 11th iterates of z^2 + 9323736696455674 p001 sum((-1)^n/(227*n+100)/n/(3^n),n=1..infinity) 9323736704677996 m001 GAMMA(11/12)*exp(Catalan)^2*sqrt(2) 9323736737517091 a007 Real Root Of -859*x^4-437*x^3+584*x^2+566*x+315 9323736768234969 r002 28th iterates of z^2 + 9323736818693953 m002 -Pi^6+30/ProductLog[Pi]+ProductLog[Pi] 9323736821971865 a001 39603/13*196418^(16/57) 9323736829145170 m009 (Psi(1,2/3)-3/5)/(2/3*Psi(1,2/3)+3/5) 9323736856065163 a007 Real Root Of 700*x^4-652*x^3-644*x^2+597*x+59 9323736873599106 l006 ln(3343/8493) 9323736889748323 a008 Real Root of x^3-153*x-616 9323736902143903 r005 Re(z^2+c),c=9/110+32/63*I,n=52 9323736919473641 m008 (2/3*Pi^2+3/5)/(1/4*Pi^5+1/2) 9323736920442014 m001 (Lehmer+MertensB2)/(Zeta(3)+Landau) 9323736950553690 a007 Real Root Of -159*x^4+574*x^3+563*x^2-163*x-56 9323736953302958 r002 44th iterates of z^2 + 9323736965375299 r005 Im(z^2+c),c=-63/52+5/51*I,n=30 9323736966742605 m001 (-Khinchin+OneNinth)/(ArtinRank2-BesselK(0,1)) 9323736971060225 m001 1/3*AlladiGrinstead/BesselK(1,1)*3^(2/3) 9323736987056468 m002 4*E^Pi+(Pi*ProductLog[Pi])/5 9323737034928183 a007 Real Root Of -707*x^4+848*x^3+700*x^2-317*x-466 9323737099402498 q001 3433/3682 9323737101629891 a007 Real Root Of -47*x^4-509*x^3-670*x^2-85*x+79 9323737106686354 p004 log(25667/10103) 9323737118372806 a001 9349/1346269*21^(3/31) 9323737125118652 k002 Champernowne real with 50*n^2+164*n-205 9323737135467290 a007 Real Root Of -967*x^4+24*x^3-810*x^2-852*x+660 9323737151007137 m003 23/12+Sqrt[5]/16+3*Sinh[1/2+Sqrt[5]/2] 9323737166633388 r009 Im(z^3+c),c=-3/56+27/29*I,n=5 9323737172483326 m001 (exp(Pi)+exp(1))/(Mills+Porter) 9323737207184837 p001 sum((-1)^n/(254*n+107)/(125^n),n=0..infinity) 9323737221954202 l006 ln(3380/8587) 9323737265794449 a001 2161/311187*21^(3/31) 9323737273938003 a007 Real Root Of -345*x^4+995*x^3+161*x^2-721*x+255 9323737299388425 m001 Trott/(KhinchinLevy^ln(2^(1/2)+1)) 9323737300175247 a001 1/682*18^(16/25) 9323737309205811 m001 (Si(Pi)-gamma)/(Totient+Trott2nd) 9323737321093278 m001 (Artin-LandauRamanujan2nd)/(Magata-Salem) 9323737322670224 a007 Real Root Of 49*x^4-630*x^3-574*x^2-912*x-899 9323737362900938 r005 Re(z^2+c),c=-41/46+6/37*I,n=11 9323737401522784 a007 Real Root Of 420*x^4-418*x^3-847*x^2-649*x-525 9323737409474295 a007 Real Root Of -671*x^4+321*x^3+276*x^2+419*x+918 9323737414013811 m001 (ln(Pi)-Ei(1))/(QuadraticClass-ZetaP(4)) 9323737445171024 r005 Re(z^2+c),c=17/86+19/23*I,n=3 9323737448074112 r005 Im(z^2+c),c=-5/8+9/52*I,n=43 9323737465812607 r002 10th iterates of z^2 + 9323737504327678 a001 2889/416020*21^(3/31) 9323737526756334 a007 Real Root Of 778*x^4-647*x^3-295*x^2+90*x-772 9323737537925182 m001 (Robbin+ZetaQ(2))/(ln(gamma)+ln(2+3^(1/2))) 9323737551969661 a007 Real Root Of 698*x^4-592*x^3-421*x^2-79*x-715 9323737558751998 m001 Zeta(1,2)^(MadelungNaCl/ln(5)) 9323737562765161 l006 ln(3417/8681) 9323737570511442 r009 Im(z^3+c),c=-11/74+49/54*I,n=23 9323737570959160 m001 ln(3)/(Gompertz+LandauRamanujan2nd) 9323737586329387 a007 Real Root Of -379*x^4+542*x^3-37*x^2-253*x+522 9323737586362291 m001 1/exp(Robbin)/LaplaceLimit^2/(2^(1/3)) 9323737629682731 m001 (sin(1)+Gompertz)/(Kolakoski+RenyiParking) 9323737646426771 m007 (-2*gamma+2/5)/(-1/3*gamma-ln(2)-1/6*Pi+3/5) 9323737669810770 a007 Real Root Of -683*x^4-929*x^3-718*x^2+567*x+916 9323737709844816 a003 cos(Pi*9/76)/sin(Pi*56/115) 9323737715181200 a007 Real Root Of -48*x^4+249*x^3-139*x^2+395*x-413 9323737728508916 r005 Re(z^2+c),c=-25/74+36/37*I,n=3 9323737754228511 m005 (1/2*Zeta(3)+7/8)/(1/3*Pi-8/9) 9323737795843007 r002 52th iterates of z^2 + 9323737796007688 a007 Real Root Of -253*x^4-100*x^3-933*x^2-396*x+552 9323737810888077 a003 cos(Pi*11/80)/sin(Pi*47/110) 9323737814787784 r005 Im(z^2+c),c=-79/82+5/57*I,n=7 9323737818293369 m008 (1/3*Pi^2-3/5)/(3*Pi^6+4/5) 9323737875368203 r009 Im(z^3+c),c=-11/64+16/19*I,n=19 9323737876330359 m008 (2*Pi-3/5)/(1/5*Pi^5-1/4) 9323737896274426 l006 ln(3454/8775) 9323737920959266 m001 1/exp(GAMMA(1/12))^2/Trott^2/Zeta(1,2) 9323737926029090 r005 Re(z^2+c),c=-11/10+11/211*I,n=34 9323737977021080 a003 sin(Pi*5/94)+sin(Pi*5/18) 9323738020828220 m001 Si(Pi)^2/Cahen^2*ln(GAMMA(7/24)) 9323738044839514 a007 Real Root Of 56*x^4-443*x^3-297*x^2+208*x+381 9323738050271758 a007 Real Root Of -851*x^4-883*x^3+116*x^2+600*x+386 9323738053331782 r009 Re(z^3+c),c=-57/86+5/48*I,n=2 9323738088990310 m001 LaplaceLimit^(Ei(1,1)*StronglyCareFree) 9323738105305936 m001 cos(1/12*Pi)^(Pi*2^(1/2)/GAMMA(3/4))*Shi(1) 9323738120505009 a007 Real Root Of 882*x^4-875*x^3-208*x^2+548*x-684 9323738125418712 k002 Champernowne real with 101/2*n^2+325/2*n-204 9323738143677510 a007 Real Root Of -579*x^4-473*x^3-456*x^2-80*x+376 9323738153687953 p001 sum(1/(563*n+547)/n/(10^n),n=1..infinity) 9323738173139789 m005 (1/2*Catalan-6/7)/(4/11*Pi-5/7) 9323738200712355 a007 Real Root Of 308*x^4+914*x^3+620*x^2-336*x-36 9323738219195808 a001 3571/46368*86267571272^(4/21) 9323738222714163 l006 ln(3491/8869) 9323738224640300 a007 Real Root Of 446*x^4-947*x^3-483*x^2-218*x-888 9323738231531209 a007 Real Root Of -658*x^4+993*x^3+581*x^2-369*x+453 9323738232590490 m001 exp(Pi)/(Backhouse+GAMMA(23/24)) 9323738232590490 m001 exp(Pi)/(GAMMA(23/24)+Backhouse) 9323738237136186 r002 39th iterates of z^2 + 9323738252867582 k002 Champernowne real with 1/2*n^2+285/2*n-50 9323738258718760 a007 Real Root Of 554*x^4-389*x^3+343*x^2+338*x-717 9323738259074460 a001 3571/6765*3524578^(4/21) 9323738286246070 a007 Real Root Of 929*x^4+371*x^3+802*x^2+746*x-403 9323738348734578 a003 sin(Pi*3/98)+sin(Pi*35/111) 9323738353168183 k002 Champernowne real with n^2+141*n-49 9323738354741437 a008 Real Root of x^4-x^3-15*x^2-138*x-4156 9323738364230786 m001 (Pi^(1/2)+MertensB3)/(2*Pi/GAMMA(5/6)-5^(1/2)) 9323738378342338 m001 (-Rabbit+Weierstrass)/(Shi(1)+MinimumGamma) 9323738393569216 m001 GaussKuzminWirsing^(ZetaQ(2)/Catalan) 9323738402547847 m001 (Chi(1)+ln(3))/(GlaisherKinkelin+Kolakoski) 9323738411684478 m001 (Si(Pi)+gamma(1))/(GlaisherKinkelin+Kac) 9323738415602963 a007 Real Root Of -904*x^4+237*x^3+354*x^2-702*x-87 9323738453468784 k002 Champernowne real with 3/2*n^2+279/2*n-48 9323738465214574 b008 Tanh[ArcCos[-2/19]] 9323738472815990 a007 Real Root Of -657*x^4+216*x^3+537*x^2+434*x+4 9323738494268209 a007 Real Root Of 662*x^4-584*x^3+69*x^2+952*x-146 9323738508320212 r002 20th iterates of z^2 + 9323738517124909 a007 Real Root Of 430*x^4+38*x^3+188*x^2+287*x-190 9323738517399425 m001 CopelandErdos/(OneNinth^FeigenbaumD) 9323738520189777 a007 Real Root Of 676*x^4+145*x^3-228*x^2+486*x+258 9323738529886887 a007 Real Root Of 360*x^4-279*x^3-801*x^2-6*x+656 9323738535967040 r005 Im(z^2+c),c=-7/10+48/145*I,n=8 9323738542306797 l006 ln(3528/8963) 9323738553769385 k002 Champernowne real with 2*n^2+138*n-47 9323738568023710 a007 Real Root Of 891*x^4+843*x^3-525*x^2-424*x+71 9323738575740986 m001 Pi*csc(1/12*Pi)/GAMMA(11/12)/(Bloch-Niven) 9323738619419960 a007 Real Root Of 113*x^4-527*x^3-605*x^2+389*x+505 9323738627383088 r002 52th iterates of z^2 + 9323738630375802 r009 Im(z^3+c),c=-19/118+46/51*I,n=59 9323738644042427 a007 Real Root Of 96*x^4+899*x^3+134*x^2+827*x-760 9323738654069986 k002 Champernowne real with 5/2*n^2+273/2*n-46 9323738696026102 r005 Im(z^2+c),c=-51/86+30/43*I,n=6 9323738741553157 a007 Real Root Of -634*x^4+550*x^3-749*x^2-931*x+708 9323738754370587 k002 Champernowne real with 3*n^2+135*n-45 9323738758004554 a007 Real Root Of -579*x^4-326*x^3-618*x^2-450*x+291 9323738774899890 r009 Im(z^3+c),c=-19/46+2/57*I,n=4 9323738835218447 r005 Re(z^2+c),c=-12/13+15/58*I,n=43 9323738842937214 a001 9349/121393*86267571272^(4/21) 9323738844281798 a007 Real Root Of -110*x^4-975*x^3+571*x^2+921*x-29 9323738848755456 a001 9349/17711*3524578^(4/21) 9323738854671188 k002 Champernowne real with 7/2*n^2+267/2*n-44 9323738855265521 l006 ln(3565/9057) 9323738857767621 m005 (1/2*gamma+9/10)/(4*Pi+2/11) 9323738862163165 a005 (1/sin(74/187*Pi))^715 9323738867929689 a007 Real Root Of 88*x^4+763*x^3-588*x^2-517*x-301 9323738870299162 g005 GAMMA(7/10)^2*GAMMA(2/3)/GAMMA(4/11) 9323738873749046 m005 (1/2*gamma-1/3)/(1/7*2^(1/2)-1/4) 9323738933939859 a001 844/10959*86267571272^(4/21) 9323738934788753 a001 6119/11592*3524578^(4/21) 9323738947216966 a001 64079/832040*86267571272^(4/21) 9323738947340842 a001 64079/121393*3524578^(4/21) 9323738949154070 a001 167761/2178309*86267571272^(4/21) 9323738949172167 a001 167761/317811*3524578^(4/21) 9323738949436689 a001 439204/5702887*86267571272^(4/21) 9323738949439354 a001 109801/208010*3524578^(4/21) 9323738949477923 a001 1149851/14930352*86267571272^(4/21) 9323738949478336 a001 1149851/2178309*3524578^(4/21) 9323738949483939 a001 3010349/39088169*86267571272^(4/21) 9323738949484023 a001 3010349/5702887*3524578^(4/21) 9323738949484816 a001 7881196/102334155*86267571272^(4/21) 9323738949484853 a001 1970299/3732588*3524578^(4/21) 9323738949484945 a001 711491/9238424*86267571272^(4/21) 9323738949484963 a001 54018521/701408733*86267571272^(4/21) 9323738949484966 a001 141422324/1836311903*86267571272^(4/21) 9323738949484966 a001 370248451/4807526976*86267571272^(4/21) 9323738949484966 a001 969323029/12586269025*86267571272^(4/21) 9323738949484966 a001 2537720636/32951280099*86267571272^(4/21) 9323738949484966 a001 6643838879/86267571272*86267571272^(4/21) 9323738949484966 a001 599786069/7787980473*86267571272^(4/21) 9323738949484966 a001 45537549124/591286729879*86267571272^(4/21) 9323738949484966 a001 119218851371/1548008755920*86267571272^(4/21) 9323738949484966 a001 312119004989/4052739537881*86267571272^(4/21) 9323738949484966 a001 817138163596/10610209857723*86267571272^(4/21) 9323738949484966 a001 505019158607/6557470319842*86267571272^(4/21) 9323738949484966 a001 192900153618/2504730781961*86267571272^(4/21) 9323738949484966 a001 73681302247/956722026041*86267571272^(4/21) 9323738949484966 a001 28143753123/365435296162*86267571272^(4/21) 9323738949484966 a001 10749957122/139583862445*86267571272^(4/21) 9323738949484966 a001 4106118243/53316291173*86267571272^(4/21) 9323738949484966 a001 1568397607/20365011074*86267571272^(4/21) 9323738949484966 a001 599074578/7778742049*86267571272^(4/21) 9323738949484967 a001 228826127/2971215073*86267571272^(4/21) 9323738949484968 a001 87403803/1134903170*86267571272^(4/21) 9323738949484974 a001 20633239/39088169*3524578^(4/21) 9323738949484975 a001 33385282/433494437*86267571272^(4/21) 9323738949484992 a001 54018521/102334155*3524578^(4/21) 9323738949484995 a001 35355581/66978574*3524578^(4/21) 9323738949484995 a001 370248451/701408733*3524578^(4/21) 9323738949484995 a001 969323029/1836311903*3524578^(4/21) 9323738949484995 a001 634430159/1201881744*3524578^(4/21) 9323738949484995 a001 6643838879/12586269025*3524578^(4/21) 9323738949484995 a001 17393796001/32951280099*3524578^(4/21) 9323738949484995 a001 11384387281/21566892818*3524578^(4/21) 9323738949484995 a001 119218851371/225851433717*3524578^(4/21) 9323738949484995 a001 312119004989/591286729879*3524578^(4/21) 9323738949484995 a001 204284540899/387002188980*3524578^(4/21) 9323738949484995 a001 1322157322203/2504730781961*3524578^(4/21) 9323738949484995 a001 505019158607/956722026041*3524578^(4/21) 9323738949484995 a001 96450076809/182717648081*3524578^(4/21) 9323738949484995 a001 73681302247/139583862445*3524578^(4/21) 9323738949484995 a001 28143753123/53316291173*3524578^(4/21) 9323738949484995 a001 5374978561/10182505537*3524578^(4/21) 9323738949484995 a001 4106118243/7778742049*3524578^(4/21) 9323738949484995 a001 1568397607/2971215073*3524578^(4/21) 9323738949484995 a001 299537289/567451585*3524578^(4/21) 9323738949484995 a001 228826127/433494437*3524578^(4/21) 9323738949484996 a001 87403803/165580141*3524578^(4/21) 9323738949485003 a001 16692641/31622993*3524578^(4/21) 9323738949485024 a001 12752043/165580141*86267571272^(4/21) 9323738949485049 a001 12752043/24157817*3524578^(4/21) 9323738949485359 a001 4870847/63245986*86267571272^(4/21) 9323738949485366 a001 4870847/9227465*3524578^(4/21) 9323738949487539 a001 930249/1762289*3524578^(4/21) 9323738949487657 a001 1860498/24157817*86267571272^(4/21) 9323738949502428 a001 710647/1346269*3524578^(4/21) 9323738949503407 a001 710647/9227465*86267571272^(4/21) 9323738949604485 a001 271443/514229*3524578^(4/21) 9323738949611358 a001 271443/3524578*86267571272^(4/21) 9323738950303989 a001 51841/98209*3524578^(4/21) 9323738950351266 a001 103682/1346269*86267571272^(4/21) 9323738954971789 k002 Champernowne real with 4*n^2+132*n-43 9323738955098460 a001 39603/75025*3524578^(4/21) 9323738955422669 a001 39603/514229*86267571272^(4/21) 9323738979782448 s002 sum(A175218[n]/(n*10^n-1),n=1..infinity) 9323738987960255 a001 15127/28657*3524578^(4/21) 9323738990182586 a001 15127/196418*86267571272^(4/21) 9323739018097617 m001 (gamma(2)+BesselK(1,1))/(GolombDickman+Trott) 9323739035659074 a007 Real Root Of 103*x^4-974*x^3-768*x^2+286*x+67 9323739055272390 k002 Champernowne real with 9/2*n^2+261/2*n-42 9323739125718772 k002 Champernowne real with 51*n^2+161*n-203 9323739139258749 a001 2207/317811*21^(3/31) 9323739155572991 k002 Champernowne real with 5*n^2+129*n-41 9323739161794767 l006 ln(3602/9151) 9323739169547890 a007 Real Root Of 831*x^4-455*x^3-592*x^2+323*x-181 9323739177568915 r005 Re(z^2+c),c=-25/18+5/254*I,n=8 9323739188135533 a003 cos(Pi*9/101)*sin(Pi*46/109) 9323739190484891 a007 Real Root Of 49*x^4-524*x^3+7*x^2+520*x+17 9323739197328925 r004 Re(z^2+c),c=3/20-5/24*I,z(0)=exp(1/8*I*Pi),n=7 9323739203689759 m005 (1/6*exp(1)+2)/(3/5*exp(1)+1) 9323739213198351 a001 2889/5473*3524578^(4/21) 9323739228430603 a001 5778/75025*86267571272^(4/21) 9323739255873592 k002 Champernowne real with 11/2*n^2+255/2*n-40 9323739281256931 r005 Re(z^2+c),c=1/30+24/55*I,n=47 9323739311067410 m001 Zeta(5)^PlouffeB*FeigenbaumB^PlouffeB 9323739315536471 m001 BesselI(0,1)*(Conway-LambertW(1)) 9323739342076539 r005 Re(z^2+c),c=23/118+10/37*I,n=38 9323739356174193 k002 Champernowne real with 6*n^2+126*n-39 9323739357024971 m005 (1/6*exp(1)-5/6)/(10/3+1/3*5^(1/2)) 9323739375895530 a007 Real Root Of 6*x^4-995*x^3+102*x^2+537*x-399 9323739411090904 m001 Robbin/Mills/Landau 9323739443527926 a007 Real Root Of 536*x^4-90*x^3+374*x^2-76*x-874 9323739456474794 k002 Champernowne real with 13/2*n^2+249/2*n-38 9323739462090653 l006 ln(3639/9245) 9323739481409239 m006 (2*ln(Pi)+1/4)/(5*ln(Pi)-3) 9323739512541772 m001 Thue^(GolombDickman/GAMMA(2/3)) 9323739556775395 k002 Champernowne real with 7*n^2+123*n-37 9323739563706697 r009 Im(z^3+c),c=-11/82+52/57*I,n=29 9323739604194191 p003 LerchPhi(1/12,3,75/73) 9323739617288877 r009 Re(z^3+c),c=-17/110+19/33*I,n=14 9323739657075996 k002 Champernowne real with 15/2*n^2+243/2*n-36 9323739672862725 a003 sin(Pi*2/93)-sin(Pi*51/103) 9323739707879058 a003 sin(Pi*23/56)*sin(Pi*19/45) 9323739714946032 m001 1/Zeta(1/2)^2/ErdosBorwein*exp(sqrt(3))^2 9323739728362019 a007 Real Root Of -144*x^4+913*x^3+172*x^2-365*x+359 9323739756341401 l006 ln(3676/9339) 9323739756353884 r002 9th iterates of z^2 + 9323739757376597 k002 Champernowne real with 8*n^2+120*n-35 9323739760045626 a007 Real Root Of 619*x^4-360*x^3+642*x^2+744*x-624 9323739784064173 r002 4th iterates of z^2 + 9323739785224893 r009 Im(z^3+c),c=-9/74+54/59*I,n=7 9323739798600606 m001 (MertensB1+Niven)/(PlouffeB-Sierpinski) 9323739799738978 a007 Real Root Of -469*x^4-406*x^3-715*x^2+265*x+894 9323739826993811 m005 (1/3*2^(1/2)-1/3)/(3/4*3^(1/2)+2/11) 9323739835234655 m001 BesselK(1,1)^ZetaQ(2)*ZetaP(2)^ZetaQ(2) 9323739857677198 k002 Champernowne real with 17/2*n^2+237/2*n-34 9323739879714638 m005 (1/3*Catalan-1/12)/(3/8*gamma-5/11) 9323739880802403 a007 Real Root Of -394*x^4+214*x^3+977*x^2+237*x-946 9323739884600733 m001 Chi(1)/(Robbin^sin(1/12*Pi)) 9323739895279909 a007 Real Root Of 825*x^4+560*x^3-59*x^2-857*x-79 9323739943243959 a007 Real Root Of -498*x^4-644*x^3-511*x^2+127*x+417 9323739957977799 k002 Champernowne real with 9*n^2+117*n-33 9323739982121121 m001 GolombDickman/(CareFree^ln(Pi)) 9323740011663729 m005 (1/2*2^(1/2)+4/7)/(2/3*Zeta(3)-4/5) 9323740044727731 l006 ln(3713/9433) 9323740044733959 m001 (-cos(1/5*Pi)+BesselI(0,2))/(cos(1)+Zeta(5)) 9323740058278310 k002 Champernowne real with 19/2*n^2+231/2*n-32 9323740062987965 r009 Im(z^3+c),c=-31/98+31/36*I,n=3 9323740087352316 a007 Real Root Of -254*x^4+514*x^3+492*x^2-76*x+110 9323740093576563 a007 Real Root Of 567*x^4-812*x^3+305*x^2+846*x-563 9323740108650545 m002 -Pi^4+Pi^4/E^Pi-Sinh[Pi]/Pi^5 9323740117134979 a007 Real Root Of 461*x^4+805*x^3+460*x^2-899*x-934 9323740121442010 m005 (1/2*gamma+5/7)/(19/132+5/12*5^(1/2)) 9323740122069218 p001 sum(1/(369*n+25)/n/(3^n),n=1..infinity) 9323740126018832 k002 Champernowne real with 103/2*n^2+319/2*n-202 9323740143004823 a007 Real Root Of 415*x^4-735*x^3-965*x^2+473*x+680 9323740154208583 r002 50th iterates of z^2 + 9323740158578910 k002 Champernowne real with 10*n^2+114*n-31 9323740178895245 m005 (1/2*Zeta(3)+7/11)/(1/3+4/9*5^(1/2)) 9323740184323993 r005 Im(z^2+c),c=-7/12+16/93*I,n=38 9323740258879510 k002 Champernowne real with 21/2*n^2+225/2*n-30 9323740276545614 a007 Real Root Of -687*x^4+731*x^3+402*x^2+151*x+903 9323740284542054 a007 Real Root Of 237*x^4-644*x^3-861*x^2-142*x-85 9323740309430372 r005 Im(z^2+c),c=6/19+9/17*I,n=36 9323740327423228 l006 ln(3750/9527) 9323740337358377 a007 Real Root Of -287*x^4+995*x^3+971*x^2+758*x+886 9323740342957264 r009 Im(z^3+c),c=-11/78+51/56*I,n=17 9323740348647090 r005 Im(z^2+c),c=-9/14+71/178*I,n=4 9323740355226659 r005 Im(z^2+c),c=-41/64+11/61*I,n=55 9323740359180110 k002 Champernowne real with 11*n^2+111*n-29 9323740362163981 m005 (1/2*Pi-5/11)/(1/5*5^(1/2)+3/4) 9323740417126688 m001 (Psi(2,1/3)+sin(1))/(Zeta(1,-1)+RenyiParking) 9323740418006221 m008 (5*Pi^3+1)/(1/6*Pi^4+1/2) 9323740432603454 r002 17th iterates of z^2 + 9323740435492168 r002 12th iterates of z^2 + 9323740453270774 m004 (80*Csch[Sqrt[5]*Pi])/ProductLog[Sqrt[5]*Pi] 9323740459480710 k002 Champernowne real with 23/2*n^2+219/2*n-28 9323740459512919 r005 Re(z^2+c),c=15/86+10/23*I,n=7 9323740473696945 r008 a(0)=0,K{-n^6,-5-5*n^3-3*n^2+n} 9323740478729611 a007 Real Root Of -802*x^4+43*x^3-598*x^2-284*x+896 9323740483273211 a003 cos(Pi*3/98)*sin(Pi*39/101) 9323740500865705 m001 (exp(-1/2*Pi)+ArtinRank2)^CareFree 9323740514395470 a007 Real Root Of -839*x^4+356*x^3-634*x^2-610*x+905 9323740515193977 r005 Re(z^2+c),c=-115/126+1/22*I,n=10 9323740526069378 r005 Im(z^2+c),c=49/118+10/17*I,n=4 9323740538702850 r004 Im(z^2+c),c=1/10+13/19*I,z(0)=I,n=8 9323740539450518 a007 Real Root Of 447*x^4+503*x^3+423*x^2-589*x-847 9323740546472799 m001 ln(BesselJ(0,1))^2*FransenRobinson*arctan(1/2) 9323740559781310 k002 Champernowne real with 12*n^2+108*n-27 9323740577115630 m001 (LambertW(1)-gamma(3))/(-ArtinRank2+Conway) 9323740600561750 m001 (ErdosBorwein+Kolakoski)/(ln(5)+cos(1/12*Pi)) 9323740604594697 l006 ln(3787/9621) 9323740611028284 a007 Real Root Of 34*x^4+320*x^3-79*x^2-999*x-21 9323740658937797 r002 4th iterates of z^2 + 9323740660081910 k002 Champernowne real with 25/2*n^2+213/2*n-26 9323740702283805 m001 (Landau+Lehmer)^ln(gamma) 9323740727428276 r009 Im(z^3+c),c=-11/31+1/22*I,n=8 9323740748655096 m005 (1/3*exp(1)-2/9)/(1/5*Catalan-11/12) 9323740757003212 a001 2207/4181*3524578^(4/21) 9323740760382510 k002 Champernowne real with 13*n^2+105*n-25 9323740766920821 p003 LerchPhi(1/64,9,29/48) 9323740791138957 m005 (1/3*Pi-1/2)/(-13/35+3/7*5^(1/2)) 9323740860683110 k002 Champernowne real with 27/2*n^2+207/2*n-24 9323740861406803 a001 2207/28657*86267571272^(4/21) 9323740869670912 r005 Re(z^2+c),c=-7/8+40/203*I,n=59 9323740871990342 h001 (7/11*exp(2)+1/5)/(7/11*exp(2)+5/9) 9323740872698246 a007 Real Root Of -21*x^4+185*x^3-953*x^2-262*x+750 9323740876402485 l006 ln(3824/9715) 9323740919802072 r005 Im(z^2+c),c=7/48+40/61*I,n=28 9323740960983710 k002 Champernowne real with 14*n^2+102*n-23 9323740996375140 m001 (Trott2nd+ThueMorse)/(GaussAGM-Mills) 9323741007194244 q001 324/3475 9323741007194244 q001 648/695 9323741007194244 r005 Im(z^2+c),c=-11/10+108/139*I,n=2 9323741018753892 a007 Real Root Of -538*x^4+990*x^3-570*x^2-850*x+912 9323741043156668 a007 Real Root Of -331*x^4+164*x^3+258*x^2+489*x-563 9323741051699914 m001 (cos(1/5*Pi)+ZetaQ(2))/(Psi(1,1/3)-sin(1)) 9323741058579872 r005 Re(z^2+c),c=-151/106+1/54*I,n=15 9323741061284311 k002 Champernowne real with 29/2*n^2+201/2*n-22 9323741073157675 r002 16th iterates of z^2 + 9323741082945798 r005 Im(z^2+c),c=-33/70+6/37*I,n=15 9323741123995079 m001 (-Totient+Weierstrass)/(1-Tetranacci) 9323741126318892 k002 Champernowne real with 52*n^2+158*n-201 9323741133872976 m001 1/exp(GAMMA(11/12))^2*Salem*cos(Pi/5)^2 9323741141173784 a007 Real Root Of -807*x^4+66*x^3-443*x^2-274*x+793 9323741143000792 l006 ln(3861/9809) 9323741161584911 k002 Champernowne real with 15*n^2+99*n-21 9323741173966862 a003 sin(Pi*1/57)-sin(Pi*49/109) 9323741186822601 m001 GAMMA(1/3)/exp(Porter)^2*cos(Pi/5)^2 9323741196552114 a007 Real Root Of 718*x^4-511*x^3-53*x^2+714*x-245 9323741211141523 k007 concat of cont frac of 9323741211376648 r009 Im(z^3+c),c=-5/46+58/63*I,n=9 9323741225126214 r005 Re(z^2+c),c=-7/74+6/59*I,n=6 9323741227991775 a007 Real Root Of -204*x^4+130*x^3-657*x^2+892*x+89 9323741258471149 m001 1/cos(Pi/5)^2*Ei(1)^2/exp(sqrt(Pi)) 9323741259015521 a001 18/13*1346269^(5/37) 9323741261885511 k002 Champernowne real with 31/2*n^2+195/2*n-20 9323741267011907 m009 (2/3*Psi(1,1/3)+5/6)/(5/12*Pi^2+4) 9323741274336435 m001 (Chi(1)+cos(1))/((1+3^(1/2))^(1/2)-ZetaP(3)) 9323741289069025 r002 46th iterates of z^2 + 9323741316112549 r005 Im(z^2+c),c=-71/122+15/43*I,n=18 9323741332649938 a007 Real Root Of -218*x^4+594*x^3+862*x^2-280*x-805 9323741357632690 a007 Real Root Of 602*x^4-906*x^3-655*x^2+889*x+209 9323741362186111 k002 Champernowne real with 16*n^2+96*n-19 9323741365088051 r005 Im(z^2+c),c=-28/25+7/61*I,n=51 9323741404537965 l006 ln(3898/9903) 9323741433890481 a001 199/4052739537881*13^(1/4) 9323741442440889 a007 Real Root Of -938*x^4-305*x^3-792*x^2-811*x+394 9323741462486711 k002 Champernowne real with 33/2*n^2+189/2*n-18 9323741490617158 p004 log(29803/11731) 9323741494759768 m001 (Tetranacci-ZetaQ(3))/(Gompertz+MinimumGamma) 9323741495390308 r004 Re(z^2+c),c=-9/10+1/6*I,z(0)=-1,n=38 9323741522838458 r002 12th iterates of z^2 + 9323741541026943 a007 Real Root Of -382*x^4-343*x^3-649*x^2-978*x-337 9323741562787311 k002 Champernowne real with 17*n^2+93*n-17 9323741581964214 r002 39th iterates of z^2 + 9323741595137449 r005 Re(z^2+c),c=-11/10+11/211*I,n=38 9323741604851371 a007 Real Root Of -437*x^4+731*x^3+189*x^2+258*x+999 9323741629849353 r005 Im(z^2+c),c=-89/90+4/43*I,n=10 9323741645395852 m001 (Kac+ZetaQ(4))/(BesselI(0,2)-ErdosBorwein) 9323741661156771 l006 ln(3935/9997) 9323741663087911 k002 Champernowne real with 35/2*n^2+183/2*n-16 9323741673959149 a007 Real Root Of 54*x^4-397*x^3+956*x^2+700*x-541 9323741673982457 r005 Im(z^2+c),c=-39/70+6/31*I,n=10 9323741686355776 b008 -1/3+InverseErf[Sech[2]] 9323741711459873 r009 Re(z^3+c),c=-59/94+21/50*I,n=4 9323741719391783 a001 76/3*75025^(10/19) 9323741721477557 m001 (Lehmer+OrthogonalArrays)/(Catalan+GAMMA(3/4)) 9323741735000592 a007 Real Root Of 925*x^4-31*x^3+244*x^2+262*x-692 9323741749313459 a007 Real Root Of -835*x^4+628*x^3-188*x^2-688*x+662 9323741763388511 k002 Champernowne real with 18*n^2+90*n-15 9323741773351777 a007 Real Root Of -593*x^4-876*x^3-420*x^2+935*x+975 9323741780199951 a007 Real Root Of 748*x^4+317*x^3-62*x^2-391*x-619 9323741791183753 m001 (Catalan-Zeta(1,2))/(-ArtinRank2+Khinchin) 9323741809604794 r001 29i'th iterates of 2*x^2-1 of 9323741818668077 m001 (PlouffeB-Porter)/(HeathBrownMoroz-OneNinth) 9323741821787146 m001 (exp(Pi)+ln(Pi))/(sin(1/12*Pi)+ZetaQ(4)) 9323741830756968 m001 (ln(2^(1/2)+1)+FeigenbaumAlpha)^FeigenbaumC 9323741843528808 m001 ln(gamma)^(Champernowne/GAMMA(11/12)) 9323741863689111 k002 Champernowne real with 37/2*n^2+177/2*n-14 9323741882185479 m007 (-3*gamma-6*ln(2)-1/2)/(-4*gamma-8*ln(2)+1) 9323741892514876 m005 (1/2*Pi-11/12)/(2/11*2^(1/2)+4/9) 9323741912994655 l006 ln(3972/10091) 9323741934820672 a007 Real Root Of -642*x^4-123*x^3-172*x^2-695*x-113 9323741963989711 k002 Champernowne real with 19*n^2+87*n-13 9323741992853337 m001 (Niven+TreeGrowth2nd)/(ln(Pi)-exp(1/Pi)) 9323741995879610 r005 Re(z^2+c),c=1/17+29/61*I,n=37 9323741995901211 p004 log(30367/11953) 9323742006453513 m001 (Psi(2,1/3)-Zeta(5))/(-gamma(2)+Lehmer) 9323742016534135 m004 -25*Pi-Sinh[Sqrt[5]*Pi]/36+Tan[Sqrt[5]*Pi] 9323742029695344 m001 (2^(1/3)+gamma)/(-exp(-1/2*Pi)+Trott) 9323742034038912 a007 Real Root Of -478*x^4+780*x^3-35*x^2+718*x-910 9323742041981492 r005 Re(z^2+c),c=-41/70+17/26*I,n=14 9323742045226995 a007 Real Root Of 673*x^4+94*x^3-732*x^2-903*x-638 9323742064290312 k002 Champernowne real with 39/2*n^2+171/2*n-12 9323742068539586 a008 Real Root of (-6+x+x^2+5*x^4+4*x^8) 9323742090210854 r009 Im(z^3+c),c=-21/118+9/10*I,n=45 9323742102358029 m001 BesselI(1,1)^CopelandErdos/Zeta(1,2) 9323742126618952 k002 Champernowne real with 105/2*n^2+313/2*n-200 9323742149157154 a007 Real Root Of 450*x^4-490*x^3-400*x^2-86*x+485 9323742164590912 k002 Champernowne real with 20*n^2+84*n-11 9323742173360817 m001 1/Zeta(7)^2/Pi^2*exp(sqrt(5)) 9323742187853096 a003 cos(Pi*9/82)*sin(Pi*21/46) 9323742187865646 r005 Re(z^2+c),c=-9/10+42/253*I,n=47 9323742236026319 r002 54th iterates of z^2 + 9323742260825151 m002 -25+Pi^6-4*Coth[Pi] 9323742264891512 k002 Champernowne real with 41/2*n^2+165/2*n-10 9323742278853130 m005 (1/3*3^(1/2)-1/5)/(1/3*Pi+3) 9323742282702885 m001 BesselJ(1,1)^2*Cahen*ln(BesselK(0,1))^2 9323742294071086 m001 (ThueMorse-TwinPrimes)/(ln(2+3^(1/2))+Totient) 9323742311374090 m001 (2^(1/3))^2/exp(Magata)*sqrt(Pi) 9323742319915299 p003 LerchPhi(1/25,4,339/187) 9323742321731916 m005 (1/2*3^(1/2)-1)/(5*exp(1)+7/9) 9323742326460539 a007 Real Root Of -165*x^4+878*x^3-119*x^2+318*x-780 9323742357978507 r005 Re(z^2+c),c=-13/14+19/240*I,n=19 9323742365192112 k002 Champernowne real with 21*n^2+81*n-9 9323742385894774 r002 17th iterates of z^2 + 9323742439891030 r002 20th iterates of z^2 + 9323742441961076 m001 (ln(2+3^(1/2))+Bloch)/(GAMMA(3/4)+ln(2)) 9323742451539164 h001 (3/4*exp(1)+2/5)/(5/8*exp(1)+11/12) 9323742465492712 k002 Champernowne real with 43/2*n^2+159/2*n-8 9323742473325433 r005 Re(z^2+c),c=-7/8+26/135*I,n=33 9323742478480371 s002 sum(A145808[n]/(n^3*10^n+1),n=1..infinity) 9323742497922961 a007 Real Root Of 841*x^4-160*x^3+885*x^2+908*x-688 9323742498041654 m001 AlladiGrinstead+ZetaR(2)^ln(3) 9323742506193597 l006 ln(6939/7004) 9323742528802180 a007 Real Root Of -655*x^4-89*x^3-402*x^2-424*x+377 9323742539020942 r002 24th iterates of z^2 + 9323742565793312 k002 Champernowne real with 22*n^2+78*n-7 9323742582732743 r005 Im(z^2+c),c=-3/32+41/52*I,n=30 9323742628888277 a007 Real Root Of -763*x^4-40*x^3-26*x^2+204*x+757 9323742662445777 a007 Real Root Of 80*x^4-291*x^3+967*x^2+740*x-447 9323742666093912 k002 Champernowne real with 45/2*n^2+153/2*n-6 9323742696622034 a001 29*28657^(9/16) 9323742738042086 p003 LerchPhi(1/64,5,548/215) 9323742758207470 m001 GAMMA(1/6)^GAMMA(7/24)/GAMMA(5/12) 9323742766394512 k002 Champernowne real with 23*n^2+75*n-5 9323742773083139 a007 Real Root Of -960*x^4-618*x^3+445*x^2+70*x-97 9323742797584626 p004 log(31307/12323) 9323742803438773 a007 Real Root Of -349*x^4+944*x^3+902*x^2-495*x-824 9323742807917868 r009 Re(z^3+c),c=-4/7+14/23*I,n=30 9323742815423932 r004 Re(z^2+c),c=7/22+3/4*I,z(0)=I,n=5 9323742827799495 a007 Real Root Of 375*x^4-384*x^3+203*x^2+161*x-621 9323742851310024 a007 Real Root Of 215*x^4-786*x^3+109*x^2+158*x-747 9323742859433307 m001 FeigenbaumDelta^OneNinth/BesselI(0,1) 9323742859605046 a001 55/2*7^(32/51) 9323742866695112 k002 Champernowne real with 47/2*n^2+147/2*n-4 9323742942939675 r005 Re(z^2+c),c=-11/10+11/211*I,n=42 9323742954633655 m001 (Pi+Psi(2,1/3))/(2*Pi/GAMMA(5/6)+ZetaQ(3)) 9323742960668064 r005 Im(z^2+c),c=7/18+23/63*I,n=38 9323742966995712 k002 Champernowne real with 24*n^2+72*n-3 9323742970847494 a007 Real Root Of 218*x^4-846*x^3-30*x^2+926*x+39 9323742986892843 a007 Real Root Of 685*x^4-608*x^3-31*x^2+288*x-715 9323743021942448 r005 Im(z^2+c),c=-83/98+2/33*I,n=55 9323743050991155 r005 Re(z^2+c),c=-11/10+11/211*I,n=48 9323743051901286 r002 18th iterates of z^2 + 9323743067296313 k002 Champernowne real with 49/2*n^2+141/2*n-2 9323743068953207 m001 (ln(2)-gamma(3))/(BesselI(1,1)-Mills) 9323743069216702 r005 Re(z^2+c),c=-11/10+11/211*I,n=52 9323743069710408 r005 Re(z^2+c),c=-11/10+11/211*I,n=44 9323743074238890 r005 Re(z^2+c),c=-11/10+11/211*I,n=56 9323743074362820 r005 Re(z^2+c),c=-11/10+11/211*I,n=58 9323743074395950 r005 Re(z^2+c),c=-11/10+11/211*I,n=62 9323743074543473 r005 Re(z^2+c),c=-11/10+11/211*I,n=64 9323743074654559 r005 Re(z^2+c),c=-11/10+11/211*I,n=60 9323743076159832 r005 Re(z^2+c),c=-11/10+11/211*I,n=54 9323743087073351 r005 Re(z^2+c),c=-11/10+11/211*I,n=50 9323743105093923 r005 Re(z^2+c),c=-11/10+11/211*I,n=46 9323743126919012 k002 Champernowne real with 53*n^2+155*n-199 9323743130126927 a007 Real Root Of 481*x^4-505*x^3-563*x^2-479*x-730 9323743167596913 k002 Champernowne real with 25*n^2+69*n-1 9323743211737786 r005 Re(z^2+c),c=-67/74+13/58*I,n=55 9323743214830319 m006 (1/2*exp(Pi)-5)/(1/3*exp(Pi)-2/3) 9323743215011463 m001 1/BesselJ(0,1)/Si(Pi)^2/ln(Ei(1))^2 9323743242801907 m001 (Pi-KhinchinLevy)/(Riemann2ndZero-ZetaQ(2)) 9323743267897513 k002 Champernowne real with 51/2*n^2+135/2*n 9323743269883716 m001 (Pi-ln(2+3^(1/2)))/(Grothendieck+ZetaP(3)) 9323743288274944 a001 144/521*167761^(13/15) 9323743288562048 a001 144/521*20633239^(13/21) 9323743288562061 a001 144/521*141422324^(5/9) 9323743288562062 a001 144/521*73681302247^(5/12) 9323743288562062 a001 144/521*228826127^(13/24) 9323743288564007 a001 144/521*1860498^(13/18) 9323743288667513 a001 144/521*271443^(5/6) 9323743289302849 a001 233/322*2139295485799^(1/3) 9323743297918096 a007 Real Root Of 968*x^4-413*x^3-643*x^2+646*x+95 9323743301666220 a007 Real Root Of -820*x^4+888*x^3+570*x^2-489*x+388 9323743304207435 r005 Im(z^2+c),c=-11/30+7/55*I,n=5 9323743329369723 a001 233/322*15127^(59/60) 9323743335830838 a007 Real Root Of -967*x^4-685*x^3-450*x^2-388*x+205 9323743368198113 k002 Champernowne real with 26*n^2+66*n+1 9323743383496216 m002 -(Pi/E^Pi)+Pi^6-Pi^3/ProductLog[Pi] 9323743391922061 r002 30th iterates of z^2 + 9323743405082602 p004 log(32059/12619) 9323743420108871 a007 Real Root Of -570*x^4+964*x^3+380*x^2+41*x+920 9323743435551222 m001 exp(arctan(1/2))*PrimesInBinary*sqrt(2) 9323743466104368 r005 Im(z^2+c),c=-47/52+15/44*I,n=6 9323743468498713 k002 Champernowne real with 53/2*n^2+129/2*n+2 9323743473621906 r005 Re(z^2+c),c=1/110+41/55*I,n=48 9323743498984691 m005 (1/2*3^(1/2)-9/11)/(4/5*2^(1/2)+4) 9323743504680743 m001 Zeta(3)*exp(1/Pi)/Pi^(1/2) 9323743504680743 m001 Zeta(3)*exp(1/Pi)/sqrt(Pi) 9323743522904864 m001 (FeigenbaumMu-GaussAGM)/(Pi-exp(-1/2*Pi)) 9323743533990236 r009 Re(z^3+c),c=-4/31+11/27*I,n=5 9323743549303918 m005 (1/2*gamma+3/11)/(4*2^(1/2)+4/11) 9323743568799313 k002 Champernowne real with 27*n^2+63*n+3 9323743583851236 a007 Real Root Of 313*x^4-817*x^3-401*x^2+471*x-111 9323743602159385 a007 Real Root Of 108*x^4+901*x^3-894*x^2+844*x-301 9323743608565958 a007 Real Root Of -832*x^4+652*x^3+923*x^2-372*x+8 9323743615225270 r005 Re(z^2+c),c=-11/10+11/211*I,n=40 9323743620608938 m005 (1/2*Catalan-7/10)/(4/9*Catalan-2/3) 9323743649488607 a007 Real Root Of -684*x^4+678*x^3-90*x^2-389*x+782 9323743669099913 k002 Champernowne real with 55/2*n^2+123/2*n+4 9323743737768487 a007 Real Root Of 137*x^4-958*x^3-71*x^2+404*x+358 9323743760465054 r009 Im(z^3+c),c=-7/58+11/12*I,n=25 9323743763896041 m001 (GAMMA(23/24)+ZetaP(2))/(1-sin(1)) 9323743769310051 k002 Champernowne real with 28*n^2+60*n+5 9323743787302863 m001 Kolakoski^MertensB2*Salem^MertensB2 9323743810498905 a008 Real Root of (-6+x+6*x^3+4*x^4-4*x^5) 9323743826286834 m001 (sin(1/12*Pi)+gamma(3))/(Backhouse-Salem) 9323743846657633 a007 Real Root Of 153*x^4-797*x^3+469*x^2+557*x-650 9323743852427301 m001 (5^(1/2)+Catalan)/(ArtinRank2+FeigenbaumD) 9323743869610111 k002 Champernowne real with 57/2*n^2+117/2*n+6 9323743873562831 a007 Real Root Of 156*x^4+398*x^3+713*x^2+146*x-279 9323743906491149 r005 Re(z^2+c),c=1/62+7/43*I,n=11 9323743911728114 a001 317811/322*322^(7/18) 9323743921148966 a007 Real Root Of -957*x^4-376*x^3+927*x^2+837*x+393 9323743924331407 m001 (Trott2nd-Thue)/(ArtinRank2+DuboisRaymond) 9323743969910171 k002 Champernowne real with 29*n^2+57*n+7 9323743988370214 m001 (QuadraticClass+ZetaP(2))/(Chi(1)+Lehmer) 9323744024499836 a001 2/228826127*3^(1/17) 9323744026122459 m002 -4+Cosh[Pi]+20*Csch[Pi] 9323744053844808 m001 Kolakoski/Champernowne/exp(cos(Pi/12))^2 9323744070210231 k002 Champernowne real with 59/2*n^2+111/2*n+8 9323744073670288 r005 Re(z^2+c),c=-9/10+53/197*I,n=40 9323744103706300 m001 (Pi-Ei(1,1))/(arctan(1/3)-HardyLittlewoodC3) 9323744123220157 a007 Real Root Of 967*x^4+83*x^3+460*x^2+630*x-476 9323744127219072 k002 Champernowne real with 107/2*n^2+307/2*n-198 9323744170510291 k002 Champernowne real with 30*n^2+54*n+9 9323744175169057 m001 (GaussAGM-Tribonacci)/(Zeta(3)-BesselI(0,2)) 9323744183928020 a007 Real Root Of -690*x^4+851*x^3+838*x^2-640*x-114 9323744211477628 a007 Real Root Of -66*x^4-595*x^3+225*x^2+329*x+16 9323744220282604 a007 Real Root Of -603*x^4+524*x^3+775*x^2+794*x+947 9323744223349559 a001 2/5*610^(17/20) 9323744231018810 m002 -5+Pi^4*Log[Pi]-Cosh[Pi]*Log[Pi] 9323744248623507 a007 Real Root Of 244*x^4-46*x^3-303*x^2-862*x+920 9323744270810351 k002 Champernowne real with 61/2*n^2+105/2*n+10 9323744288468771 m001 1/2*(1/3)^GAMMA(7/12) 9323744300083264 r005 Re(z^2+c),c=-147/118+16/47*I,n=11 9323744307630166 r002 23th iterates of z^2 + 9323744321412073 a007 Real Root Of -358*x^4+496*x^3-33*x^2+63*x+760 9323744345851124 r002 29th iterates of z^2 + 9323744347179269 m001 (Bloch-LaplaceLimit)/(GAMMA(2/3)+ln(2)) 9323744348462756 a001 233/1860498*11^(36/43) 9323744353707301 h001 (7/12*exp(2)+5/12)/(3/5*exp(2)+7/11) 9323744368684999 s002 sum(A205235[n]/(10^n-1),n=1..infinity) 9323744371110411 k002 Champernowne real with 31*n^2+51*n+11 9323744372246143 m002 -Pi^5+Pi^10-Pi^4*ProductLog[Pi] 9323744372528286 m001 Artin^LandauRamanujan-OrthogonalArrays 9323744380588482 m001 exp(OneNinth)/FibonacciFactorial^2*(2^(1/3)) 9323744421981814 m001 FeigenbaumD/DuboisRaymond^2*ln(Zeta(5))^2 9323744471410471 k002 Champernowne real with 63/2*n^2+99/2*n+12 9323744477607791 m001 1/exp(Catalan)^2/Khintchine^2/cosh(1)^2 9323744485330093 a007 Real Root Of 795*x^4-508*x^3-31*x^2+834*x-208 9323744487457210 m004 -25*Pi-Cosh[Sqrt[5]*Pi]/36+Tan[Sqrt[5]*Pi] 9323744498372798 r009 Im(z^3+c),c=-35/58+12/23*I,n=56 9323744526791861 s002 sum(A065239[n]/(n*10^n+1),n=1..infinity) 9323744532559001 r005 Re(z^2+c),c=-115/126+7/52*I,n=33 9323744557066614 a007 Real Root Of 343*x^4-443*x^3-345*x^2+39*x-282 9323744563941249 a007 Real Root Of -802*x^4-76*x^3-667*x^2-912*x+274 9323744571710531 k002 Champernowne real with 32*n^2+48*n+13 9323744584755480 m001 (Paris-StolarskyHarborth)/(FeigenbaumMu-Niven) 9323744605202939 m001 ln(GAMMA(1/3))*Sierpinski/sqrt(1+sqrt(3))^2 9323744632992220 a003 sin(Pi*39/109)-sin(Pi*52/111) 9323744637900580 q001 3695/3963 9323744644301624 a008 Real Root of (2+17*x+15*x^2-x^3) 9323744657050460 m001 (Bloch+Tetranacci)/(exp(1/exp(1))+GAMMA(5/6)) 9323744672010591 k002 Champernowne real with 65/2*n^2+93/2*n+14 9323744687018705 m001 (Rabbit-Riemann3rdZero)/(ln(Pi)+MinimumGamma) 9323744699868048 a007 Real Root Of -15*x^4-11*x^3-750*x^2-127*x+536 9323744712179252 r005 Re(z^2+c),c=9/52+17/43*I,n=24 9323744731048953 m001 (Niven-PlouffeB)/(Pi-MasserGramainDelta) 9323744756751316 r005 Re(z^2+c),c=23/118+10/37*I,n=37 9323744764058916 a007 Real Root Of 584*x^4-865*x^3-327*x^2+781*x-130 9323744772310651 k002 Champernowne real with 33*n^2+45*n+15 9323744773152006 r002 14th iterates of z^2 + 9323744796845260 a007 Real Root Of 681*x^4-241*x^3-18*x^2+483*x-244 9323744806264200 m001 ln(OneNinth)*Tribonacci/GAMMA(5/24) 9323744821040385 l006 ln(7859/8627) 9323744830629129 m001 GAMMA(1/12)*Rabbit/exp(sqrt(5))^2 9323744841969455 r005 Re(z^2+c),c=17/62+10/23*I,n=39 9323744851387132 m001 (3^(1/3))^Trott2nd*ZetaQ(2)^Trott2nd 9323744872610711 k002 Champernowne real with 67/2*n^2+87/2*n+16 9323744874399810 s001 sum(exp(-Pi/4)^(n-1)*A201410[n],n=1..infinity) 9323744875578136 r005 Re(z^2+c),c=-85/86+19/63*I,n=18 9323744880881670 a007 Real Root Of 365*x^4-968*x^3-362*x^2-125*x+940 9323744931239501 r005 Im(z^2+c),c=-95/126+7/39*I,n=15 9323744962786119 a007 Real Root Of 988*x^4-410*x^3+6*x^2+500*x-618 9323744972910771 k002 Champernowne real with 34*n^2+42*n+17 9323745031232906 r009 Im(z^3+c),c=-33/58+26/45*I,n=5 9323745036929421 r009 Im(z^3+c),c=-3/98+14/15*I,n=3 9323745046162889 r005 Im(z^2+c),c=-35/34+35/106*I,n=9 9323745073210831 k002 Champernowne real with 69/2*n^2+81/2*n+18 9323745110854555 a007 Real Root Of 402*x^4-782*x^3-145*x^2+154*x-668 9323745127519132 k002 Champernowne real with 54*n^2+152*n-197 9323745147976714 h001 (9/10*exp(2)+7/10)/(1/7*exp(1)+2/5) 9323745148374356 a007 Real Root Of -65*x^4+781*x^3+903*x^2+505*x+368 9323745173510891 k002 Champernowne real with 35*n^2+39*n+19 9323745182623319 r005 Re(z^2+c),c=-85/78+13/61*I,n=34 9323745194047716 b008 1/3+Pi^Csch[1/4] 9323745202272900 a007 Real Root Of 42*x^4-979*x^3-3*x^2+996*x+106 9323745209826091 a007 Real Root Of 682*x^4-837*x^3-262*x^2+428*x-567 9323745224506786 m001 (Psi(1,1/3)*Zeta(1,2)+Sarnak)/Zeta(1,2) 9323745269188135 m008 (3/4*Pi^6-4)/(1/4*Pi^5+2/5) 9323745272275493 a007 Real Root Of 271*x^4-692*x^3-443*x^2+716*x+287 9323745273810951 k002 Champernowne real with 71/2*n^2+75/2*n+20 9323745279964746 a007 Real Root Of -898*x^4-66*x^3+979*x^2+844*x+561 9323745286020618 r002 54th iterates of z^2 + 9323745314462908 a007 Real Root Of 600*x^4-730*x^3-913*x^2+193*x+752 9323745357100237 a007 Real Root Of -717*x^4+458*x^3-229*x^2-885*x+287 9323745374111011 k002 Champernowne real with 36*n^2+36*n+21 9323745383531243 a007 Real Root Of -913*x^4-480*x^3+231*x^2-309*x-188 9323745410036719 q001 3047/3268 9323745422088097 r002 61th iterates of z^2 + 9323745423458404 a007 Real Root Of -110*x^4-928*x^3+856*x^2-537*x-303 9323745441049784 h001 (4/7*exp(2)+5/6)/(7/10*exp(2)+1/4) 9323745471978262 m001 (3^(1/2)+DuboisRaymond)/(-FeigenbaumB+Kac) 9323745474411071 k002 Champernowne real with 73/2*n^2+69/2*n+22 9323745492198123 m001 (sin(1/5*Pi)+polylog(4,1/2))/(PlouffeB+Rabbit) 9323745540814920 m001 (Si(Pi)-exp(1/Pi)*PrimesInBinary)/exp(1/Pi) 9323745564399900 a001 2178309/4*199^(22/41) 9323745574711131 k002 Champernowne real with 37*n^2+33*n+23 9323745599718775 m001 (-Chi(1)+CareFree)/(3^(1/2)-ln(2)/ln(10)) 9323745611871434 a001 2584/47*29^(8/51) 9323745617513489 m005 (1/3*gamma-1/9)/(2/9*5^(1/2)+3/8) 9323745622464797 m008 (3/5*Pi^5-2)/(2/5*Pi^2-2) 9323745655809161 m001 1/exp(Zeta(3))*LambertW(1)^2/Zeta(5) 9323745661567000 r002 44th iterates of z^2 + 9323745675011191 k002 Champernowne real with 75/2*n^2+63/2*n+24 9323745684715310 a007 Real Root Of 272*x^4-690*x^3+184*x^2+299*x-646 9323745688269725 a007 Real Root Of 779*x^4+259*x^3-119*x^2-552*x-790 9323745701052923 a007 Real Root Of -550*x^4-399*x^3-535*x^2-350*x+231 9323745743232436 m001 HeathBrownMoroz/Conway/Trott 9323745757776199 a007 Real Root Of 899*x^4+850*x^3+192*x^2-434*x-562 9323745767956053 a007 Real Root Of 351*x^4-528*x^3+632*x^2+523*x-755 9323745769813719 a007 Real Root Of 469*x^4+263*x^3+74*x^2-201*x-393 9323745775311251 k002 Champernowne real with 38*n^2+30*n+25 9323745784484656 m004 6+30*Pi+Cosh[Sqrt[5]*Pi]*Csc[Sqrt[5]*Pi] 9323745793839137 m005 (37/36+1/4*5^(1/2))/(11/12*Zeta(3)+3/5) 9323745794834679 m001 (PlouffeB+Trott)/(GAMMA(2/3)-FeigenbaumB) 9323745837205208 r005 Im(z^2+c),c=-83/98+2/33*I,n=58 9323745856766420 a007 Real Root Of -850*x^4-593*x^3-357*x^2+415*x+859 9323745857397186 m001 (ZetaP(4)+ZetaQ(2))/(GAMMA(23/24)+Artin) 9323745874478201 a007 Real Root Of -973*x^4-710*x^3+243*x^2+896*x+784 9323745875611311 k002 Champernowne real with 77/2*n^2+57/2*n+26 9323745946364723 a007 Real Root Of -824*x^4-891*x^3+322*x^2+911*x+470 9323745959971718 a007 Real Root Of 544*x^4-882*x^3-616*x^2+451*x-170 9323745975911371 k002 Champernowne real with 39*n^2+27*n+27 9323746008591487 r002 5th iterates of z^2 + 9323746036930697 a003 cos(Pi*11/93)/sin(Pi*21/43) 9323746050711616 p003 LerchPhi(1/16,3,233/227) 9323746058556552 m001 (arctan(1/2)+Thue)/(gamma+sin(1)) 9323746071380354 a007 Real Root Of 429*x^4+402*x^3+177*x^2-876*x-969 9323746076211431 k002 Champernowne real with 79/2*n^2+51/2*n+28 9323746096214393 r002 16th iterates of z^2 + 9323746127819192 k002 Champernowne real with 109/2*n^2+301/2*n-196 9323746129961436 a007 Real Root Of 521*x^4-696*x^3+680*x^2+902*x-708 9323746176511491 k002 Champernowne real with 40*n^2+24*n+29 9323746178017193 a007 Real Root Of -825*x^4-237*x^3+607*x^2+99*x-4 9323746178139153 p004 log(36007/14173) 9323746190750577 p004 log(37159/33851) 9323746217775805 a007 Real Root Of -655*x^4+738*x^3+947*x^2+546*x+779 9323746225431700 m001 ln(gamma)^Gompertz+Thue 9323746233239231 r005 Re(z^2+c),c=-11/10+11/211*I,n=36 9323746242887132 s002 sum(A212039[n]/(pi^n+1),n=1..infinity) 9323746254939915 m001 Zeta(1,2)^MertensB1/(GAMMA(3/4)^MertensB1) 9323746276811551 k002 Champernowne real with 81/2*n^2+45/2*n+30 9323746297238958 a007 Real Root Of 972*x^4-799*x^3+109*x^2+903*x-635 9323746306399263 a001 233/47*123^(25/41) 9323746326874579 r005 Im(z^2+c),c=-9/8+26/225*I,n=35 9323746358410354 p001 sum((-1)^n/(344*n+107)/(100^n),n=0..infinity) 9323746358838495 m001 Magata-ln(2^(1/2)+1)*FransenRobinson 9323746372656522 m001 GAMMA(13/24)^sin(1)/(Grothendieck^sin(1)) 9323746377111611 k002 Champernowne real with 41*n^2+21*n+31 9323746384515427 r005 Re(z^2+c),c=-67/74+12/41*I,n=3 9323746394407925 a007 Real Root Of 717*x^4-67*x^3+677*x^2+463*x-753 9323746410852320 p004 log(36383/14321) 9323746414988825 m001 Niven*ln(LandauRamanujan)^2/GAMMA(1/12)^2 9323746439166523 r005 Re(z^2+c),c=-11/94+15/22*I,n=9 9323746466585378 m001 (CareFree-Salem)/(ZetaP(2)+ZetaQ(2)) 9323746471435408 r009 Re(z^3+c),c=-11/42+29/42*I,n=37 9323746477411671 k002 Champernowne real with 83/2*n^2+39/2*n+32 9323746519488536 r009 Re(z^3+c),c=-6/31+13/18*I,n=53 9323746524161573 a007 Real Root Of 815*x^4+99*x^3+941*x^2+936*x-481 9323746577711731 k002 Champernowne real with 42*n^2+18*n+33 9323746579989857 a001 55/843*64079^(1/31) 9323746590049456 m001 (FeigenbaumC+MinimumGamma)/(Otter+Stephens) 9323746590985671 a001 38*75025^(25/51) 9323746599300427 q001 2399/2573 9323746604899250 l006 ln(6498/7133) 9323746638095428 a007 Real Root Of -668*x^4-563*x^3+119*x^2+970*x+89 9323746678011791 k002 Champernowne real with 85/2*n^2+33/2*n+34 9323746693877505 a007 Real Root Of 663*x^4-692*x^3+99*x^2+769*x-431 9323746701071662 m005 (1/2*Pi+5/9)/(4/7*exp(1)+8/11) 9323746751041101 p004 log(36947/14543) 9323746778311851 k002 Champernowne real with 43*n^2+15*n+35 9323746798701358 r009 Im(z^3+c),c=-15/118+11/12*I,n=9 9323746798708385 r005 Im(z^2+c),c=-17/14+41/243*I,n=60 9323746808002760 a007 Real Root Of 347*x^4-719*x^3-31*x^2-22*x+368 9323746819430330 a007 Real Root Of 664*x^4-311*x^3-492*x^2+589*x+223 9323746843742023 a007 Real Root Of -230*x^4+767*x^3+299*x^2+130*x-829 9323746851448978 m001 GAMMA(1/3)^2*exp(Khintchine)/GAMMA(5/6) 9323746870552830 a007 Real Root Of 700*x^4+183*x^3-386*x^2-889*x-874 9323746878611911 k002 Champernowne real with 87/2*n^2+27/2*n+36 9323746888053578 r002 3th iterates of z^2 + 9323746897915716 a007 Real Root Of -561*x^4+341*x^3+871*x^2+875*x+759 9323746907974042 m005 (1/2*5^(1/2)-3/5)/(5/7*2^(1/2)-5/11) 9323746922027170 a007 Real Root Of 832*x^4-578*x^3-809*x^2+799*x+351 9323746942469258 a007 Real Root Of 765*x^4+443*x^3-174*x^2-485*x-520 9323746961102439 a007 Real Root Of 588*x^4-694*x^3-219*x^2+111*x-713 9323746968118933 a003 sin(Pi*17/114)/sin(Pi*14/87) 9323746969936007 r005 Re(z^2+c),c=11/122+25/48*I,n=61 9323746978911971 k002 Champernowne real with 44*n^2+12*n+37 9323747051390713 a007 Real Root Of 203*x^4+219*x^3+975*x^2+806*x-72 9323747051461348 a003 cos(Pi*5/77)*cos(Pi*9/91) 9323747060916248 r005 Re(z^2+c),c=-35/38+5/46*I,n=13 9323747075150845 m008 (1/6*Pi-2)/(1/6*Pi^4-2/5) 9323747079212031 k002 Champernowne real with 89/2*n^2+21/2*n+38 9323747128119252 k002 Champernowne real with 55*n^2+149*n-195 9323747133453292 s002 sum(A172922[n]/(n^2*2^n-1),n=1..infinity) 9323747161162829 a007 Real Root Of -815*x^4+936*x^3+940*x^2+229*x+14 9323747162139458 m001 (ln(2)+GAMMA(11/12))/(Pi-BesselI(0,1)) 9323747175446917 a007 Real Root Of 80*x^4-984*x^3+291*x^2-2*x+486 9323747179512091 k002 Champernowne real with 45*n^2+9*n+39 9323747212938466 a003 cos(Pi*5/91)*sin(Pi*17/43) 9323747233739765 a007 Real Root Of 945*x^4+99*x^3+881*x^2+639*x-804 9323747267214044 a007 Real Root Of 974*x^4-131*x^3+159*x^2+895*x-146 9323747272055947 m001 1/exp(GAMMA(13/24))/Riemann3rdZero*Zeta(3) 9323747279812151 k002 Champernowne real with 91/2*n^2+15/2*n+40 9323747323446154 m001 Magata*(sin(1)+Ei(1)) 9323747356189411 m001 (Ei(1)+GlaisherKinkelin)/(Otter+ZetaP(2)) 9323747360989067 r005 Im(z^2+c),c=-17/122+2/17*I,n=11 9323747378258364 m005 (1/2*Zeta(3)+1/10)/(27/14+5/2*5^(1/2)) 9323747380112211 k002 Champernowne real with 46*n^2+6*n+41 9323747391970012 m008 (3/4*Pi^6+1/5)/(3/4*Pi^2+1/3) 9323747399149590 a007 Real Root Of 20*x^4-44*x^3+733*x^2+148*x-550 9323747401639160 a007 Real Root Of -882*x^4+341*x^3-841*x^2-724*x+999 9323747431186728 a007 Real Root Of 315*x^4-331*x^3+298*x^2-949*x+656 9323747439065398 a003 sin(Pi*1/100)/cos(Pi*25/64) 9323747461043558 b008 InverseEllipticNomeQ[13/80] 9323747474451275 m001 (-Niven+StolarskyHarborth)/(3^(1/2)-gamma(2)) 9323747475993516 a001 682/98209*317811^(1/43) 9323747480412271 k002 Champernowne real with 93/2*n^2+9/2*n+42 9323747489190581 a007 Real Root Of -813*x^4-427*x^3-899*x^2-461*x+620 9323747536235430 r005 Im(z^2+c),c=-87/86+5/51*I,n=8 9323747545762541 a003 cos(Pi*17/104)-sin(Pi*17/41) 9323747572210574 p004 log(28447/28183) 9323747580712331 k002 Champernowne real with 47*n^2+3*n+43 9323747588620933 a007 Real Root Of -641*x^4-633*x^3-112*x^2+188*x+244 9323747601590916 a007 Real Root Of -368*x^4+71*x^3-897*x^2-171*x+956 9323747623159001 r005 Im(z^2+c),c=-28/25+7/61*I,n=48 9323747654628417 r002 5th iterates of z^2 + 9323747681012391 k002 Champernowne real with 95/2*n^2+3/2*n+44 9323747693509446 h001 (-4*exp(1/2)+3)/(-4*exp(2)-9) 9323747708668697 a007 Real Root Of -986*x^4+123*x^3+437*x^2+428*x+864 9323747735606123 r009 Re(z^3+c),c=-1/8+16/43*I,n=13 9323747781312451 k002 Champernowne real with 48*n^2+45 9323747786795156 r005 Re(z^2+c),c=-101/114+7/50*I,n=36 9323747792311814 a007 Real Root Of -888*x^4+70*x^3+271*x^2-662*x-125 9323747792446283 r005 Re(z^2+c),c=-11/10+11/211*I,n=32 9323747793135192 a003 cos(Pi*1/109)*sin(Pi*44/115) 9323747841799658 m001 LambertW(1)+BesselI(1,1)*MasserGramain 9323747857381367 m005 (1/2*Catalan+4)/(1/8*Catalan+4/11) 9323747862673634 a007 Real Root Of -642*x^4+418*x^3+151*x^2+114*x+799 9323747876663121 a007 Real Root Of 367*x^4-999*x^3-874*x^2-507*x-800 9323747881136812 a007 Real Root Of 973*x^4+537*x^3-397*x^2-354*x-285 9323747881612511 k002 Champernowne real with 97/2*n^2-3/2*n+46 9323747883141859 m005 (1/2*Zeta(3)-4/9)/(3/11*5^(1/2)-7/9) 9323747884755826 a007 Real Root Of 393*x^4+414*x^3+62*x^2+276*x+242 9323747887065762 m001 (HardyLittlewoodC4+PlouffeB)/(Chi(1)+gamma(3)) 9323747939222328 r009 Im(z^3+c),c=-59/98+23/44*I,n=32 9323747945879951 a007 Real Root Of 597*x^4+249*x^3+187*x^2-250*x-645 9323747963209095 a007 Real Root Of 126*x^4+40*x^3-23*x^2-840*x-826 9323747963408541 m001 1/ln(cos(1))/BesselK(1,1)*sin(Pi/5)^2 9323747977413673 m001 (Artin+Trott2nd)^ZetaP(4) 9323747979136046 a008 Real Root of (1+4*x-4*x^2+x^3+x^4-4*x^5) 9323747981912571 k002 Champernowne real with 49*n^2-3*n+47 9323748040213131 r005 Re(z^2+c),c=-3/44+36/49*I,n=51 9323748074025865 r005 Im(z^2+c),c=-95/78+5/43*I,n=46 9323748082212631 k002 Champernowne real with 99/2*n^2-9/2*n+48 9323748085852990 a007 Real Root Of 795*x^4-411*x^3-866*x^2+457*x+245 9323748088203767 r009 Re(z^3+c),c=-17/64+33/47*I,n=14 9323748088616232 r002 32th iterates of z^2 + 9323748120118965 m001 Zeta(1,2)^(3^(1/2))/(Zeta(1,2)^MasserGramain) 9323748123665016 m005 (1/2*gamma-7/9)/(5*Catalan+2/3) 9323748128419312 k002 Champernowne real with 111/2*n^2+295/2*n-194 9323748182512691 k002 Champernowne real with 50*n^2-6*n+49 9323748204565971 p003 LerchPhi(1/5,1,214/177) 9323748217978679 a007 Real Root Of -4*x^4+46*x^3+704*x^2-714*x-344 9323748218209622 m005 (1/2*exp(1)-7/10)/(6*Zeta(3)-1/7) 9323748240804962 m001 (2^(1/2)+ln(2))/(gamma(2)+CopelandErdos) 9323748263423397 s001 sum(exp(-Pi/4)^(n-1)*A020587[n],n=1..infinity) 9323748274408981 m001 (3^(1/3)+PlouffeB)/(Riemann2ndZero-ZetaP(2)) 9323748275121321 m001 1/GlaisherKinkelin^2*exp(Zeta(1,2))^2 9323748282812751 k002 Champernowne real with 101/2*n^2-15/2*n+50 9323748288524325 m001 (-ln(Pi)+Cahen)/(Psi(2,1/3)+GAMMA(2/3)) 9323748317482342 a007 Real Root Of -25*x^4-251*x^3-209*x^2-399*x-65 9323748319458602 a003 cos(Pi*15/101)+cos(Pi*39/80) 9323748320409250 a007 Real Root Of 767*x^4-70*x^3-518*x^2-696*x-835 9323748364133124 a001 55/103682*18^(8/41) 9323748366658276 a007 Real Root Of 561*x^4-632*x^3-941*x^2-402*x-493 9323748374263915 r002 30th iterates of z^2 + 9323748380491449 a008 Real Root of (-5+7*x+3*x^2+5*x^4+9*x^8) 9323748383112811 k002 Champernowne real with 51*n^2-9*n+51 9323748410796864 m005 (1/2*2^(1/2)-3/8)/(3/4*Pi-2) 9323748424680264 m001 (Totient+ZetaP(3))/(3^(1/2)-OneNinth) 9323748426775425 a001 281/7*196418^(8/31) 9323748428357264 a008 Real Root of (-7+4*x-3*x^2+4*x^4+5*x^8) 9323748475406461 m001 GaussKuzminWirsing+TreeGrowth2nd^BesselI(1,1) 9323748483412871 k002 Champernowne real with 103/2*n^2-21/2*n+52 9323748489199049 a007 Real Root Of 344*x^4+140*x^3+521*x^2-435*x-45 9323748498525637 a007 Real Root Of 990*x^4-535*x^3+181*x^2+471*x-900 9323748513713079 m009 (1/2*Psi(1,3/4)+3/4)/(2/5*Psi(1,3/4)-4/5) 9323748520666754 r005 Im(z^2+c),c=-135/106+3/53*I,n=49 9323748538523952 m001 (cos(1/5*Pi)+ln(gamma))/(ErdosBorwein+Salem) 9323748547047053 a007 Real Root Of 78*x^4+694*x^3-249*x^2+618*x+456 9323748550205639 m001 BesselK(0,1)*Zeta(1,-1)^Chi(1) 9323748563572232 h001 (7/10*exp(2)+6/7)/(4/5*exp(2)+5/9) 9323748583712931 k002 Champernowne real with 52*n^2-12*n+53 9323748592883656 m002 -18-Pi^2+Pi^6-Log[Pi] 9323748600904382 m001 OneNinth/(ln(3)^GAMMA(7/12)) 9323748625304571 a001 514229/843*322^(27/31) 9323748628850714 a007 Real Root Of -79*x^4-339*x^3-255*x^2+704*x+663 9323748635295323 a007 Real Root Of -699*x^4+12*x^3-334*x^2-838*x+47 9323748638908831 m001 (Zeta(5)+ln(gamma))/(ArtinRank2-ZetaP(3)) 9323748641135471 m001 ln(Pi)^sqrt(2)/(ln(Pi)^GAMMA(11/24)) 9323748668796592 q001 1751/1878 9323748684012991 k002 Champernowne real with 105/2*n^2-27/2*n+54 9323748708856768 m001 1/Zeta(3)^2*exp(Riemann3rdZero)/cos(1) 9323748717459727 m005 (1/3*Zeta(3)-3/5)/(7/12*5^(1/2)+5/6) 9323748724149721 r009 Re(z^3+c),c=-15/94+32/53*I,n=19 9323748750907296 a005 (1/cos(7/152*Pi))^1528 9323748774080673 a007 Real Root Of 282*x^4+15*x^3-20*x^2-733*x-867 9323748784313051 k002 Champernowne real with 53*n^2-15*n+55 9323748787514172 m005 (1/2*gamma+1/6)/(2/7*Catalan-3/4) 9323748791827389 m001 (Rabbit+ReciprocalFibonacci)^BesselI(1,2) 9323748806863491 m008 (1/3*Pi^3-3/4)/(1/3*Pi^5+4/5) 9323748818620920 m001 (-Khinchin+Riemann2ndZero)/(Chi(1)+GAMMA(5/6)) 9323748843514762 a007 Real Root Of -746*x^4+35*x^3-69*x^2-13*x+640 9323748862820756 m001 (Trott2nd+ZetaP(3))/(cos(1/5*Pi)-GAMMA(23/24)) 9323748884613111 k002 Champernowne real with 107/2*n^2-33/2*n+56 9323748924439093 m001 (ln(5)-sin(1))/(-Cahen+Porter) 9323748945939586 h001 (7/11*exp(1)+11/12)/(2/7*exp(2)+8/11) 9323748957968692 r002 14th iterates of z^2 + 9323748984913171 k002 Champernowne real with 54*n^2-18*n+57 9323748985450610 m001 exp(Pi)^ln(3)*Otter 9323749001876556 a007 Real Root Of 654*x^4+483*x^3+60*x^2-643*x-6 9323749010752613 a007 Real Root Of 450*x^4-524*x^3+422*x^2+922*x-272 9323749052506787 r009 Im(z^3+c),c=-53/90+31/58*I,n=23 9323749085213231 k002 Champernowne real with 109/2*n^2-39/2*n+58 9323749096190555 a007 Real Root Of 418*x^4-431*x^3-842*x^2-228*x+978 9323749106394410 a007 Real Root Of -449*x^4-575*x^3-981*x^2+x+727 9323749113414272 a007 Real Root Of -974*x^4+81*x^3+291*x^2-48*x+504 9323749116260262 m005 (1/2*exp(1)-6/7)/(3/8*3^(1/2)-1/9) 9323749128719372 k002 Champernowne real with 56*n^2+146*n-193 9323749185513291 k002 Champernowne real with 55*n^2-21*n+59 9323749274236447 r009 Im(z^3+c),c=-31/70+1/54*I,n=28 9323749285813351 k002 Champernowne real with 111/2*n^2-45/2*n+60 9323749292354040 m001 (-gamma(2)+FeigenbaumAlpha)/(2^(1/2)-ln(Pi)) 9323749299351265 a007 Real Root Of 708*x^4-352*x^3+291*x^2+557*x-554 9323749324156949 m002 -5-E^Pi+Pi^6-Log[Pi]^(-1) 9323749333272490 a003 sin(Pi*37/97)/sin(Pi*17/35) 9323749333991426 l006 ln(5137/5639) 9323749337621804 m001 (Psi(1,1/3)+gamma(1))/(-GAMMA(5/6)+ZetaQ(2)) 9323749352912533 r002 26th iterates of z^2 + 9323749370713785 a001 47*(1/2*5^(1/2)+1/2)^18*521^(14/15) 9323749386113411 k002 Champernowne real with 56*n^2-24*n+61 9323749405009597 m001 (arctan(1/3)+MasserGramainDelta)/(Pi-sin(1)) 9323749423845583 m005 (1/3*Zeta(3)+1/5)/(5/9*Catalan-4/9) 9323749437418958 m001 (-GAMMA(3/4)+1/3)/(-exp(-Pi)+1) 9323749461137394 m001 (Tetranacci+ZetaP(3))/(Lehmer-exp(Pi)) 9323749470288731 a001 7/1346269*75025^(9/35) 9323749486413471 k002 Champernowne real with 113/2*n^2-51/2*n+62 9323749501668893 m005 (3*Pi+4/5)/(5/6*Catalan+1/3) 9323749526924896 a007 Real Root Of -349*x^4+552*x^3-754*x^2-523*x+879 9323749531172311 a007 Real Root Of -239*x^4+270*x^3-836*x^2-470*x+688 9323749559015283 r005 Re(z^2+c),c=-25/28+11/58*I,n=37 9323749583737931 r002 8th iterates of z^2 + 9323749585772354 b008 (3/14)^(1/22) 9323749586713531 k002 Champernowne real with 57*n^2-27*n+63 9323749644499633 r009 Im(z^3+c),c=-17/82+59/63*I,n=49 9323749668865897 a007 Real Root Of 847*x^4+753*x^3-70*x^2-812*x-726 9323749687013591 k002 Champernowne real with 115/2*n^2-57/2*n+64 9323749731450350 r005 Im(z^2+c),c=-53/78+7/41*I,n=52 9323749774655472 a007 Real Root Of 16*x^4-337*x^3+205*x^2-125*x-580 9323749787313651 k002 Champernowne real with 58*n^2-30*n+65 9323749801052391 r009 Re(z^3+c),c=-1/94+33/52*I,n=9 9323749827421611 r005 Re(z^2+c),c=-11/10+11/211*I,n=30 9323749830536014 a005 (1/cos(17/90*Pi))^147 9323749846308054 m001 Conway*BesselK(1,1)^TwinPrimes 9323749876171777 r005 Re(z^2+c),c=9/56+24/55*I,n=7 9323749887613711 k002 Champernowne real with 117/2*n^2-63/2*n+66 9323749897804353 m001 1/Champernowne^3/ln(GAMMA(5/12))^2 9323749920984514 r005 Re(z^2+c),c=-6/7+8/41*I,n=63 9323749923265106 r002 15th iterates of z^2 + 9323749939219432 m002 -5/E^Pi+ProductLog[Pi]^2*Tanh[Pi] 9323749956979374 a007 Real Root Of 437*x^4-856*x^3+572*x^2+986*x-602 9323749976216056 a007 Real Root Of 178*x^4+303*x^3+518*x^2-107*x-439 9323749981276225 a007 Real Root Of -832*x^4+97*x^3-33*x^2-413*x+351 9323749987913771 k002 Champernowne real with 59*n^2-33*n+67 9323749991769794 a007 Real Root Of -521*x^4+912*x^3+468*x^2+31*x+755 9323749998090748 m001 (ln(gamma)-sin(1/12*Pi))/(BesselI(1,2)-Sarnak) 9323749998424960 a007 Real Root Of 544*x^4-77*x^3+588*x^2+49*x-939 9323750011764054 m001 (1/2*Pi*2^(2/3)+ln(5))/BesselJ(1,1) 9323750030158581 a001 311187/46*123^(1/15) 9323750031932579 r002 38th iterates of z^2 + 9323750037604145 m001 (2^(1/3)-ln(5))/(-ArtinRank2+FellerTornier) 9323750054589345 a007 Real Root Of 599*x^4+123*x^3+672*x^2+382*x-581 9323750058589919 r002 21th iterates of z^2 + 9323750088213832 k002 Champernowne real with 119/2*n^2-69/2*n+68 9323750096972432 a007 Real Root Of -x^4-933*x^3-582*x^2+676*x-269 9323750103394060 m001 (Zeta(5)-2*Pi/GAMMA(5/6))/(Trott+Weierstrass) 9323750112596750 m005 (1/2*Pi-8/9)/(8/11*Zeta(3)-1/7) 9323750113520199 p002 log(1/11*(17^(1/2)-2^(3/4))*11^(2/3)) 9323750125356374 r005 Im(z^2+c),c=-9/11+3/58*I,n=51 9323750129019432 k002 Champernowne real with 113/2*n^2+289/2*n-192 9323750145136525 m001 FeigenbaumB^2*Conway^2/ln(log(1+sqrt(2))) 9323750188513892 k002 Champernowne real with 60*n^2-36*n+69 9323750192797246 a003 sin(Pi*23/116)/sin(Pi*17/79) 9323750225786084 a007 Real Root Of -995*x^4+779*x^3+97*x^2-946*x+417 9323750268286310 m001 (Bloch-PisotVijayaraghavan)^TreeGrowth2nd 9323750288813952 k002 Champernowne real with 121/2*n^2-75/2*n+70 9323750318459633 a007 Real Root Of 729*x^4+156*x^3-300*x^2-572*x-697 9323750345243018 a001 843/121393*21^(3/31) 9323750387127332 a007 Real Root Of 11*x^4-909*x^3+553*x^2-203*x+437 9323750387820142 r005 Re(z^2+c),c=-5/52+9/14*I,n=13 9323750388981281 m006 (1/6*ln(Pi)+4/5)/(1/5*exp(2*Pi)-5/6) 9323750389114012 k002 Champernowne real with 61*n^2-39*n+71 9323750399571172 a007 Real Root Of 897*x^4-146*x^3+97*x^2+613*x-309 9323750408363279 q001 2854/3061 9323750414111854 m002 -Pi^3+Cosh[Pi]+Log[Pi]+Pi^4*Log[Pi] 9323750419504566 r005 Re(z^2+c),c=-107/98+5/42*I,n=32 9323750427663957 m001 1/ln(FibonacciFactorial)/CopelandErdos/Bloch^2 9323750427802416 a007 Real Root Of 239*x^4-862*x^3+466*x^2+970*x-380 9323750436196604 m008 (Pi^4-3)/(1/3*Pi^5-3/4) 9323750470431552 r005 Re(z^2+c),c=-53/60+8/63*I,n=12 9323750471747378 a007 Real Root Of 525*x^4-243*x^3-406*x^2-455*x-665 9323750489414072 k002 Champernowne real with 123/2*n^2-81/2*n+72 9323750491850107 h001 (3/4*exp(1)+2/3)/(5/6*exp(1)+7/11) 9323750535217069 a001 1/18*(1/2*5^(1/2)+1/2)^18*47^(7/8) 9323750541005584 m001 1/MertensB1^2/DuboisRaymond*exp(OneNinth)^2 9323750555349829 m002 -E^Pi-2*Log[Pi]+Pi^6*Tanh[Pi] 9323750558824744 a007 Real Root Of 514*x^4-482*x^3+665*x^2+884*x-533 9323750568893704 r009 Im(z^3+c),c=-23/38+23/44*I,n=29 9323750589714132 k002 Champernowne real with 62*n^2-42*n+73 9323750590311496 m001 1/exp((3^(1/3)))*ErdosBorwein^2/cos(Pi/5)^2 9323750590535863 a007 Real Root Of -791*x^4-201*x^3-30*x^2-829*x-312 9323750613554208 m001 (BesselJ(1,1)+Tribonacci)/(ln(gamma)-Ei(1)) 9323750658359171 a007 Real Root Of -567*x^4-211*x^3-444*x^2+332*x+953 9323750683565454 a003 sin(Pi*2/109)+sin(Pi*20/59) 9323750690014192 k002 Champernowne real with 125/2*n^2-87/2*n+74 9323750711771521 r005 Re(z^2+c),c=-7/6+57/146*I,n=5 9323750735200322 m005 (3*Catalan+3/5)/(1/3*gamma+1/6) 9323750749623831 a007 Real Root Of 61*x^4+662*x^3+770*x^2-956*x-268 9323750766504732 a007 Real Root Of 550*x^4+618*x^3+917*x^2-250*x-945 9323750790314252 k002 Champernowne real with 63*n^2-45*n+75 9323750798370654 a001 123/832040*2584^(32/39) 9323750822127959 m001 Champernowne^Trott2nd/(BesselI(1,2)^Trott2nd) 9323750835114327 m002 -(Pi^3*Log[Pi])-5*Sinh[Pi] 9323750835500607 h001 (10/11*exp(1)+7/11)/(8/9*exp(1)+11/12) 9323750861000806 a007 Real Root Of -928*x^4-962*x^3-541*x^2-682*x-244 9323750878542608 r005 Im(z^2+c),c=19/46+10/47*I,n=46 9323750890614312 k002 Champernowne real with 127/2*n^2-93/2*n+76 9323750926138483 a007 Real Root Of 687*x^4+49*x^3-763*x^2-875*x-632 9323750941025191 m001 GAMMA(11/24)^2/ln(Riemann3rdZero)^2*sin(Pi/12) 9323750965276125 m001 FellerTornier^Lehmer*MasserGramainDelta 9323750990914372 k002 Champernowne real with 64*n^2-48*n+77 9323751024419624 r008 a(0)=8,K{-n^6,1-n^3+7*n^2-9*n} 9323751042023163 m001 (gamma(1)-Zeta(1,2))/(BesselK(1,1)-Lehmer) 9323751047861232 a007 Real Root Of -542*x^4+526*x^3+628*x^2+148*x+428 9323751051080791 a007 Real Root Of -832*x^4+551*x^3+595*x^2+194*x+739 9323751059147598 a007 Real Root Of 762*x^4+555*x^3+143*x^2+424*x+145 9323751068706012 s002 sum(A076808[n]/(64^n-1),n=1..infinity) 9323751075670433 a007 Real Root Of 516*x^4-866*x^3+585*x^2+733*x-917 9323751091214432 k002 Champernowne real with 129/2*n^2-99/2*n+78 9323751128365745 a007 Real Root Of 174*x^4-957*x^3-120*x^2+377*x+397 9323751129319492 k002 Champernowne real with 57*n^2+143*n-191 9323751159608420 r005 Re(z^2+c),c=27/94+23/62*I,n=56 9323751190998077 a001 3/199*1364^(4/7) 9323751191514492 k002 Champernowne real with 65*n^2-51*n+79 9323751212714503 a003 sin(Pi*33/94)/sin(Pi*37/91) 9323751226136013 r005 Re(z^2+c),c=-53/58+5/38*I,n=37 9323751230489085 r005 Re(z^2+c),c=23/118+10/37*I,n=43 9323751253909494 r005 Re(z^2+c),c=19/70+13/37*I,n=54 9323751256856498 a007 Real Root Of 855*x^4+370*x^3+217*x^2+534*x-37 9323751265712138 m005 (1/2*exp(1)+1/3)/(8/11*3^(1/2)+5/9) 9323751291814552 k002 Champernowne real with 131/2*n^2-105/2*n+80 9323751301288224 m008 (5/6*Pi^6-4/5)/(Pi-4) 9323751308930292 a007 Real Root Of -211*x^4+958*x^3-533*x^2-661*x+783 9323751323629095 l006 ln(8913/9784) 9323751338398331 a001 843/1597*3524578^(4/21) 9323751339719617 m005 (1/2*gamma-4/5)/(3/7*Zeta(3)-6) 9323751359658423 r005 Im(z^2+c),c=-1/70+29/38*I,n=16 9323751363396537 b008 45+ExpIntegralEi[14] 9323751368147786 r002 2th iterates of z^2 + 9323751372187199 a007 Real Root Of -92*x^4-797*x^3+654*x^2+844*x+284 9323751375538891 a007 Real Root Of 289*x^4-426*x^3+452*x^2+390*x-593 9323751392114612 k002 Champernowne real with 66*n^2-54*n+81 9323751404544101 r005 Re(z^2+c),c=23/118+10/37*I,n=42 9323751405624358 a001 98209/161*322^(17/36) 9323751420179615 r005 Re(z^2+c),c=-47/34+3/40*I,n=15 9323751450452686 m001 exp(Porter)^2*LaplaceLimit^2*GAMMA(5/6) 9323751492414672 k002 Champernowne real with 133/2*n^2-111/2*n+82 9323751512859780 m001 Psi(1,1/3)-Thue^Niven 9323751519113875 m004 -4+(150*Sqrt[5])/Pi-Sqrt[5]*Pi*Sec[Sqrt[5]*Pi] 9323751529480106 r005 Re(z^2+c),c=-95/86+9/37*I,n=32 9323751539599592 m005 (1/3*exp(1)+2/9)/(5/7*2^(1/2)+1/5) 9323751540779098 r005 Re(z^2+c),c=-1/110+25/41*I,n=33 9323751551368860 v002 sum(1/(3^n+(21+4*n^2-4*n)),n=1..infinity) 9323751570387419 m006 (1/2*exp(Pi)+3)/(2/3*exp(Pi)+1/5) 9323751572165777 a007 Real Root Of -962*x^4+357*x^3+691*x^2+276*x+673 9323751592714732 k002 Champernowne real with 67*n^2-57*n+83 9323751601673824 a007 Real Root Of 273*x^4-181*x^3-616*x^2-102*x+571 9323751618075148 a007 Real Root Of -683*x^4-473*x^3+504*x^2+734*x+379 9323751624606884 r008 a(0)=1,K{-n^6,-88+11*n^3+59*n^2+33*n} 9323751625122649 m005 (19/42+1/6*5^(1/2))/(2/9*3^(1/2)+1/2) 9323751636993822 m005 (1/3*2^(1/2)-1/2)/(5/12*5^(1/2)-5/8) 9323751655994613 a003 cos(Pi*1/77)-cos(Pi*45/94) 9323751656691520 m001 (Kolakoski+Trott2nd)/QuadraticClass 9323751667971403 r005 Im(z^2+c),c=-107/122+25/48*I,n=4 9323751684720379 a007 Real Root Of -5*x^4+136*x^3+463*x^2+88*x-591 9323751686176565 m002 -3+E^Pi+Pi^2-Pi^6-Tanh[Pi] 9323751693014792 k002 Champernowne real with 135/2*n^2-117/2*n+84 9323751726950925 m001 (-FeigenbaumD+GaussAGM)/(Chi(1)+ln(Pi)) 9323751756305636 a001 3571/514229*317811^(1/43) 9323751770195136 r002 64th iterates of z^2 + 9323751779317648 b008 9*(-2+Tanh[2]) 9323751793314852 k002 Champernowne real with 68*n^2-60*n+85 9323751812664129 r001 25i'th iterates of 2*x^2-1 of 9323751813905193 r005 Re(z^2+c),c=-2/27+46/63*I,n=60 9323751843843774 a007 Real Root Of -583*x^4+538*x^3+221*x^2+837*x-968 9323751893614912 k002 Champernowne real with 137/2*n^2-123/2*n+86 9323751929215711 m001 (-Kolakoski+Otter)/(cos(1/5*Pi)-gamma) 9323751963428206 r009 Im(z^3+c),c=-4/7+23/41*I,n=11 9323751965795767 m001 1/LambertW(1)*exp(Riemann3rdZero)^2/Zeta(9) 9323751993914972 k002 Champernowne real with 69*n^2-63*n+87 9323751995651377 m001 (-Paris+StronglyCareFree)/(Conway-gamma) 9323751999050114 a007 Real Root Of -703*x^4+495*x^3+115*x^2+52*x+881 9323752009631249 r005 Re(z^2+c),c=-9/14+43/98*I,n=20 9323752014045764 a007 Real Root Of 949*x^4+136*x^3+458*x^2+871*x-193 9323752044169876 m001 1/exp(Zeta(9))*Ei(1)^2/sqrt(2) 9323752053992169 a001 843/10946*86267571272^(4/21) 9323752073465312 a007 Real Root Of -796*x^4+834*x^3+886*x^2-986*x-412 9323752094215032 k002 Champernowne real with 139/2*n^2-129/2*n+88 9323752129619552 k002 Champernowne real with 115/2*n^2+283/2*n-190 9323752134473296 a007 Real Root Of 494*x^4-781*x^3-278*x^2+330*x-457 9323752156699564 a007 Real Root Of 568*x^4-696*x^3+483*x^2+765*x-700 9323752164530575 r005 Re(z^2+c),c=23/118+10/37*I,n=39 9323752166181254 m005 (1/2*Pi-1/5)/(43/84+3/7*5^(1/2)) 9323752169195287 m005 (1/3*Pi-2/9)/(2/3*gamma+1/2) 9323752194515092 k002 Champernowne real with 70*n^2-66*n+89 9323752200571557 m001 (PlouffeB-Rabbit)/(GAMMA(11/12)+Backhouse) 9323752213491826 r005 Im(z^2+c),c=-5/4+8/63*I,n=4 9323752220216154 r005 Re(z^2+c),c=-9/10+51/236*I,n=15 9323752232381897 m001 (-MasserGramain+Paris)/(3^(1/2)-ln(Pi)) 9323752272331718 a001 17711/843*521^(38/39) 9323752294815152 k002 Champernowne real with 141/2*n^2-135/2*n+90 9323752317772852 a001 521/8*591286729879^(7/9) 9323752347604981 a007 Real Root Of -217*x^4+249*x^3+187*x^2-85*x+124 9323752352411734 m001 (ZetaP(3)+ZetaQ(2))/(exp(Pi)+exp(1/Pi)) 9323752380794758 a001 9349/1346269*317811^(1/43) 9323752390852932 r005 Re(z^2+c),c=11/62+21/40*I,n=48 9323752394997557 r002 3th iterates of z^2 + 9323752395115212 k002 Champernowne real with 71*n^2-69*n+91 9323752398658549 m006 (2/5*exp(Pi)+4)/(3/5*exp(Pi)+1/3) 9323752421275561 m005 (1/2*5^(1/2)+1/5)/(10/11*gamma+8/9) 9323752430497600 a007 Real Root Of -611*x^4+492*x^3+46*x^2-687*x+180 9323752432122872 r005 Im(z^2+c),c=-55/52+3/29*I,n=7 9323752433988039 r005 Re(z^2+c),c=3/29+17/32*I,n=52 9323752456177858 a007 Real Root Of -103*x^4-917*x^3+456*x^2+390*x-871 9323752457380259 m001 1/ln(GAMMA(5/6))^2/MinimumGamma*sqrt(2)^2 9323752471003549 a007 Real Root Of -76*x^4-699*x^3+182*x^2+869*x+66 9323752476477914 r008 a(0)=1,K{-n^6,-80+14*n^3+54*n^2+27*n} 9323752484077540 r009 Im(z^3+c),c=-5/31+45/47*I,n=46 9323752495415272 k002 Champernowne real with 143/2*n^2-141/2*n+92 9323752516976265 a007 Real Root Of 966*x^4-99*x^3-890*x^2-112*x-141 9323752518082466 m001 1/(2^(1/3))^2/Rabbit^2/ln((3^(1/3)))^2 9323752528216642 a001 2161/311187*317811^(1/43) 9323752547617827 a007 Real Root Of 542*x^4-508*x^3+297*x^2+894*x-246 9323752555273613 r005 Re(z^2+c),c=-7/6+67/207*I,n=9 9323752563851589 a007 Real Root Of 183*x^4-115*x^3+490*x^2-81*x-733 9323752565982479 a007 Real Root Of -144*x^4-325*x^3-224*x^2+830*x+814 9323752574873486 m001 (exp(1)-gamma(2))/(BesselI(0,2)+MasserGramain) 9323752585763845 s002 sum(A077906[n]/((10^n+1)/n),n=1..infinity) 9323752595715332 k002 Champernowne real with 72*n^2-72*n+93 9323752618087811 m001 (gamma+Zeta(3))/(Backhouse+ZetaP(2)) 9323752669129411 r009 Im(z^3+c),c=-22/31+3/29*I,n=3 9323752680977241 a007 Real Root Of 857*x^4+205*x^3+132*x^2-48*x-641 9323752683904458 a007 Real Root Of -629*x^4+104*x^3-278*x^2+123*x+916 9323752696015392 k002 Champernowne real with 145/2*n^2-147/2*n+94 9323752696380234 a007 Real Root Of 402*x^4-142*x^3-10*x^2-491*x-868 9323752711951140 a001 15127/144*987^(19/60) 9323752736851723 a007 Real Root Of 806*x^4-202*x^3-350*x^2-186*x-642 9323752748502642 r005 Im(z^2+c),c=-3/118+51/52*I,n=8 9323752761666529 a007 Real Root Of 8*x^4-202*x^3-65*x^2-906*x-958 9323752766750261 a001 2889/416020*317811^(1/43) 9323752791127737 a007 Real Root Of -574*x^4+493*x^3+122*x^2+197*x+911 9323752796315452 k002 Champernowne real with 73*n^2-75*n+95 9323752801988478 r002 58th iterates of z^2 + 9323752819673712 a005 (1/sin(69/178*Pi))^1012 9323752834139047 m001 Zeta(3)^2*BesselK(1,1)^2*exp(gamma) 9323752847255506 m001 (Si(Pi)+BesselJ(0,1))/(-gamma(1)+exp(-1/2*Pi)) 9323752896615512 k002 Champernowne real with 147/2*n^2-153/2*n+96 9323752928966163 r005 Re(z^2+c),c=23/118+10/37*I,n=47 9323752994928125 g002 Psi(10/11)+Psi(3/8)-Psi(6/11)-Psi(7/8) 9323752996915572 k002 Champernowne real with 74*n^2-78*n+97 9323753000283327 r002 18th iterates of z^2 + 9323753008263459 r005 Re(z^2+c),c=23/118+10/37*I,n=48 9323753097215632 k002 Champernowne real with 149/2*n^2-159/2*n+98 9323753103999481 a007 Real Root Of -387*x^4+972*x^3-817*x^2-894*x+957 9323753129919612 k002 Champernowne real with 58*n^2+140*n-189 9323753154425168 b008 -16/(3*Sqrt[E])+Pi 9323753155458970 g006 2*Psi(1,10/11)-Psi(1,3/11)-Psi(1,1/9) 9323753162359802 p004 log(30509/27793) 9323753169907016 q001 1103/1183 9323753192305929 r002 6th iterates of z^2 + 9323753197515692 k002 Champernowne real with 75*n^2-81*n+99 9323753211832542 a001 123/75025*196418^(53/59) 9323753232493241 r005 Re(z^2+c),c=5/94+13/51*I,n=12 9323753233546624 r005 Re(z^2+c),c=23/118+10/37*I,n=52 9323753248859267 a007 Real Root Of -482*x^4+866*x^3+94*x^2-348*x+660 9323753252127115 m001 Totient/(KomornikLoreti^GolombDickman) 9323753262127999 r005 Re(z^2+c),c=23/118+10/37*I,n=53 9323753274770791 a007 Real Root Of -589*x^4+97*x^3+974*x^2+858*x+477 9323753285482636 a008 Real Root of x^2-x-8600 9323753289594934 r005 Re(z^2+c),c=23/118+10/37*I,n=57 9323753296416495 r005 Re(z^2+c),c=23/118+10/37*I,n=58 9323753297815752 k002 Champernowne real with 151/2*n^2-165/2*n+100 9323753299319331 r005 Re(z^2+c),c=23/118+10/37*I,n=62 9323753300710865 r005 Re(z^2+c),c=23/118+10/37*I,n=63 9323753300820092 r005 Re(z^2+c),c=23/118+10/37*I,n=61 9323753301944586 r005 Re(z^2+c),c=23/118+10/37*I,n=64 9323753302221972 r005 Re(z^2+c),c=23/118+10/37*I,n=56 9323753304917133 r005 Re(z^2+c),c=23/118+10/37*I,n=60 9323753304974310 r005 Re(z^2+c),c=23/118+10/37*I,n=59 9323753312483950 r005 Re(z^2+c),c=-29/32+5/33*I,n=43 9323753318483049 m001 (Kac-gamma)/(-LaplaceLimit+TravellingSalesman) 9323753318879799 r005 Re(z^2+c),c=23/118+10/37*I,n=54 9323753326433316 r005 Re(z^2+c),c=23/118+10/37*I,n=55 9323753330327129 r005 Re(z^2+c),c=23/118+10/37*I,n=51 9323753362794325 a007 Real Root Of 664*x^4-99*x^3-48*x^2-330*x-848 9323753369259498 r005 Re(z^2+c),c=23/118+10/37*I,n=49 9323753375399417 a007 Real Root Of 986*x^4-548*x^3+89*x^2+744*x-573 9323753398115812 k002 Champernowne real with 76*n^2-84*n+101 9323753432254767 r005 Re(z^2+c),c=23/118+10/37*I,n=44 9323753462488288 m001 GAMMA(3/4)-TwinPrimes^Otter 9323753466127140 r005 Re(z^2+c),c=23/118+10/37*I,n=50 9323753487975551 a007 Real Root Of -176*x^4-133*x^3-954*x^2+8*x+862 9323753498415872 k002 Champernowne real with 153/2*n^2-171/2*n+102 9323753498773013 a007 Real Root Of -100*x^4+946*x^3-41*x^2+725*x-68 9323753498934678 a007 Real Root Of 976*x^4+876*x^3+298*x^2-364*x-626 9323753503649648 a001 322/165580141*13^(11/18) 9323753519098099 m005 (1/2*exp(1)-2/7)/(6/7*3^(1/2)-1/3) 9323753523157622 a007 Real Root Of 436*x^4-324*x^3+809*x^2+704*x-639 9323753524606565 a003 sin(Pi*5/74)+sin(Pi*29/113) 9323753555103788 m001 (BesselI(1,2)+2/3)/(BesselK(0,1)+2) 9323753584898323 a007 Real Root Of 814*x^4+385*x^3-87*x^2-214*x-427 9323753586788460 r005 Im(z^2+c),c=-119/122+11/25*I,n=4 9323753598715932 k002 Champernowne real with 77*n^2-87*n+103 9323753624855668 r005 Re(z^2+c),c=23/118+10/37*I,n=46 9323753638311641 a001 9349/21*121393^(21/46) 9323753661998376 b008 Sinh[CosIntegral[15/4]] 9323753665642563 a007 Real Root Of 676*x^4+376*x^3+962*x^2+142*x-910 9323753694782302 h001 (4/11*exp(2)+3/5)/(5/11*exp(2)+1/6) 9323753699015992 k002 Champernowne real with 155/2*n^2-177/2*n+104 9323753701863548 a007 Real Root Of -592*x^4+719*x^3+5*x^2-121*x+913 9323753718305907 r005 Im(z^2+c),c=-81/122+11/42*I,n=26 9323753725966596 a007 Real Root Of 962*x^4-898*x^3-65*x^2+527*x-907 9323753790930392 r002 3th iterates of z^2 + 9323753799316052 k002 Champernowne real with 78*n^2-90*n+105 9323753802354107 a007 Real Root Of -524*x^4+32*x^3-610*x^2-810*x+197 9323753844877604 a003 cos(Pi*2/57)*sin(Pi*43/111) 9323753860719232 m001 (Grothendieck-QuadraticClass)/(ln(5)-Cahen) 9323753866018773 a001 161/182717648081*39088169^(4/15) 9323753866018773 a001 322/2504730781961*53316291173^(4/15) 9323753866234024 r005 Re(z^2+c),c=9/29+26/47*I,n=38 9323753866624292 a001 322/53316291173*28657^(4/15) 9323753874393481 m005 (1/4*Pi-1/3)/(3/5*2^(1/2)+4) 9323753897040213 a001 5/5778*521^(19/50) 9323753899616112 k002 Champernowne real with 157/2*n^2-183/2*n+106 9323753948000940 m001 2*Pi/GAMMA(5/6)/(TreeGrowth2nd-Zeta(5)) 9323753964413813 a007 Real Root Of 81*x^4-583*x^3-63*x^2-31*x+495 9323753999916172 k002 Champernowne real with 79*n^2-93*n+107 9323754006881781 m001 BesselJ(0,1)^(Champernowne/Bloch) 9323754010021623 k002 Champernowne real with 159/2*n^2-189/2*n+108 9323754030400404 l006 ln(3776/4145) 9323754032128575 a003 sin(Pi*26/77)/sin(Pi*32/83) 9323754034045622 m002 (12*Csch[Pi]*Sech[Pi])/Pi^6 9323754034849542 a007 Real Root Of -360*x^4+644*x^3+179*x^2+317*x+934 9323754048319764 a001 3/199*24476^(20/49) 9323754049288519 a003 cos(Pi*2/17)*sin(Pi*54/109) 9323754054672251 a001 3/199*2537720636^(4/21) 9323754054672251 a001 3/199*3461452808002^(1/7) 9323754054672251 a001 3/199*228826127^(3/14) 9323754054672253 a001 3/199*33385282^(5/21) 9323754054673021 a001 3/199*1860498^(2/7) 9323754054982012 a001 3/199*103682^(5/14) 9323754065396930 m001 (FeigenbaumD-Tribonacci)^ThueMorse 9323754069621838 r009 Re(z^3+c),c=-10/11+31/60*I,n=2 9323754072134832 a001 3/199*15127^(3/7) 9323754101977830 a007 Real Root Of -710*x^4+111*x^3-492*x^2-514*x+575 9323754104035266 h001 (3/8*exp(1)+7/11)/(1/2*exp(1)+5/12) 9323754110051629 k002 Champernowne real with 80*n^2-96*n+109 9323754130219672 k002 Champernowne real with 117/2*n^2+277/2*n-188 9323754174632636 p001 sum((-1)^n/(596*n+107)/(64^n),n=0..infinity) 9323754178656453 m001 exp(FeigenbaumC)^2*Backhouse^2*GAMMA(5/6) 9323754187661478 a001 3/199*5778^(10/21) 9323754206214644 a007 Real Root Of -423*x^4+648*x^3-587*x^2-426*x+958 9323754210081635 k002 Champernowne real with 161/2*n^2-195/2*n+110 9323754229937642 m002 -Pi^4+Pi^4/E^Pi-Cosh[Pi]/Pi^5 9323754274279075 r005 Re(z^2+c),c=-7/34+43/57*I,n=12 9323754291541063 m005 (1/2*exp(1)-6)/(-51/80+1/16*5^(1/2)) 9323754310111641 k002 Champernowne real with 81*n^2-99*n+111 9323754321077489 r002 30th iterates of z^2 + 9323754323806176 a007 Real Root Of 617*x^4-535*x^3-414*x^2-89*x-623 9323754331486099 m002 -4+Pi^3-Pi^6+2*Coth[Pi] 9323754333231287 a007 Real Root Of -231*x^4+188*x^3+116*x^2+534*x+724 9323754336298293 r005 Re(z^2+c),c=23/118+10/37*I,n=45 9323754355501223 a007 Real Root Of 126*x^4-887*x^3-135*x^2+757*x+9 9323754380101019 m001 (Kac+Porter)/(ln(5)+HardyLittlewoodC3) 9323754401684009 a001 2207/317811*317811^(1/43) 9323754410141647 k002 Champernowne real with 163/2*n^2-201/2*n+112 9323754417747205 r005 Im(z^2+c),c=-31/56+37/57*I,n=19 9323754447273666 a007 Real Root Of -404*x^4-243*x^3-610*x^2+320*x+937 9323754461300152 m002 3/Pi^5+10/ProductLog[Pi] 9323754464523135 m001 (GAMMA(11/12)+Pi^(1/2))/(Artin-Magata) 9323754467016261 r005 Im(z^2+c),c=-25/19+9/43*I,n=6 9323754510171653 k002 Champernowne real with 82*n^2-102*n+113 9323754511630855 a001 1/39603*47^(19/56) 9323754600761743 m001 1/GAMMA(1/4)^2*ln(Si(Pi))^2/GAMMA(1/6)^2 9323754610201659 k002 Champernowne real with 165/2*n^2-207/2*n+114 9323754610474461 m002 -Pi^3+Pi^6+2*Tanh[Pi] 9323754617076040 m001 (FeigenbaumB+Trott)/(cos(1)-exp(1/exp(1))) 9323754629301204 g007 Psi(2,2/11)+Psi(2,1/6)+Psi(2,1/5)-Psi(2,2/7) 9323754686232243 m001 (Niven+ZetaP(2))/(HeathBrownMoroz-exp(Pi)) 9323754702363789 m001 (Psi(1,1/3)+cos(1/5*Pi))/(-FeigenbaumC+Robbin) 9323754710231665 k002 Champernowne real with 83*n^2-105*n+115 9323754737611675 a001 832040/521*199^(1/3) 9323754748576298 a007 Real Root Of 829*x^4+913*x^3+288*x^2-530*x-631 9323754749448618 m002 -1+Pi^3-Pi^6-Tanh[Pi]^2 9323754791316991 m001 (Conway+StronglyCareFree)/(Chi(1)-exp(Pi)) 9323754796304066 m001 Landau^FellerTornier/(Landau^exp(-1/2*Pi)) 9323754810261671 k002 Champernowne real with 167/2*n^2-213/2*n+116 9323754848291294 m001 FeigenbaumDelta*(Pi-ln(Pi)) 9323754861478860 a007 Real Root Of -931*x^4+579*x^3+894*x^2-448*x-22 9323754910291677 k002 Champernowne real with 84*n^2-108*n+117 9323754922770911 a001 28657/843*521^(35/39) 9323754925559447 r005 Re(z^2+c),c=-11/12+10/83*I,n=7 9323754930596693 m001 (ln(3)+BesselK(1,1))/(polylog(4,1/2)+Mills) 9323754962286669 m002 -Pi+Pi^3-Pi^6+Coth[Pi]*Log[Pi] 9323754979764948 a007 Real Root Of 12*x^4+72*x^3-275*x^2+917*x+128 9323754980814070 a007 Real Root Of -173*x^4+122*x^3+488*x^2+183*x-563 9323754991020226 a007 Real Root Of -314*x^4+190*x^3+127*x^2-179*x+114 9323754993067089 a007 Real Root Of 58*x^4+590*x^3+494*x^2+291*x-335 9323754994885274 a003 sin(Pi*1/95)+sin(Pi*21/59) 9323755005810588 r005 Re(z^2+c),c=-29/32+5/33*I,n=55 9323755010321683 k002 Champernowne real with 169/2*n^2-219/2*n+118 9323755068037958 r009 Re(z^3+c),c=-53/114+1/41*I,n=6 9323755078559902 a008 Real Root of (-8+9*x-7*x^2+3*x^4+6*x^8) 9323755080134149 a001 3/199*2207^(15/28) 9323755088381055 r005 Im(z^2+c),c=-83/98+2/33*I,n=49 9323755108254719 a003 sin(Pi*1/97)/sin(Pi*7/62) 9323755110351689 k002 Champernowne real with 85*n^2-111*n+119 9323755126624945 m006 (exp(Pi)-2)/(1/4*Pi^2-1/5) 9323755130519732 k002 Champernowne real with 59*n^2+137*n-187 9323755163464452 r002 14th iterates of z^2 + 9323755172007549 a001 199/3*5^(11/52) 9323755195469115 r005 Im(z^2+c),c=-17/30+21/124*I,n=50 9323755202713370 m001 (Porter-QuadraticClass)/(ln(gamma)+Landau) 9323755210381695 k002 Champernowne real with 171/2*n^2-225/2*n+120 9323755223125059 m005 (1/2*5^(1/2)-3/11)/(7/10*2^(1/2)-1/12) 9323755228421173 a007 Real Root Of -621*x^4+314*x^3+417*x^2-99*x+269 9323755232876264 m005 (-39/10+1/10*5^(1/2))/(1/4*gamma+1/4) 9323755256076416 m003 -3/2+Sqrt[5]/2-(4*Csch[1/2+Sqrt[5]/2])/3 9323755263809759 q001 3764/4037 9323755294416344 m001 1/cos(Pi/12)/ln(Magata)^2/exp(1)^2 9323755307325431 m005 (1/2*3^(1/2)-5/7)/(5/7*gamma-3/7) 9323755310411701 k002 Champernowne real with 86*n^2-114*n+121 9323755319323121 r009 Re(z^3+c),c=-5/44+4/13*I,n=3 9323755321539963 s002 sum(A085188[n]/((pi^n-1)/n),n=1..infinity) 9323755326958439 a007 Real Root Of 105*x^4+923*x^3-582*x^2-498*x+566 9323755344663480 m001 1/exp(GAMMA(1/4))^2/CopelandErdos*GAMMA(1/6)^2 9323755361678774 m001 (GAMMA(2/3)-ln(2))/(Champernowne-FeigenbaumB) 9323755381749488 r001 48i'th iterates of 2*x^2-1 of 9323755382153111 a007 Real Root Of -667*x^4+812*x^3+236*x^2-73*x+889 9323755407502532 p004 log(19231/17519) 9323755410441707 k002 Champernowne real with 173/2*n^2-231/2*n+122 9323755425312395 a007 Real Root Of 73*x^4-361*x^3-2*x^2-104*x-443 9323755493690003 a007 Real Root Of -901*x^4-106*x^3+488*x^2+307*x+457 9323755510471713 k002 Champernowne real with 87*n^2-117*n+123 9323755521342588 s001 sum(exp(-2*Pi/5)^n*A196631[n],n=1..infinity) 9323755521342588 s002 sum(A196631[n]/(exp(2/5*pi*n)),n=1..infinity) 9323755550262502 m001 (5^(1/2)+Si(Pi))/(-ln(3)+TwinPrimes) 9323755583353824 m001 cos(Pi/12)/Riemann3rdZero*exp(log(1+sqrt(2))) 9323755597970307 r005 Re(z^2+c),c=-19/20+7/30*I,n=16 9323755610501719 k002 Champernowne real with 175/2*n^2-237/2*n+124 9323755614009878 m001 ZetaP(4)^(1/3*MertensB3*3^(2/3)) 9323755618764777 a007 Real Root Of -171*x^4-112*x^3-451*x^2-229*x+217 9323755631645494 r005 Im(z^2+c),c=-1/28+6/59*I,n=3 9323755640289895 a007 Real Root Of -862*x^4+626*x^3+495*x^2-924*x-133 9323755648415119 m001 (-gamma(2)+Sarnak)/(LambertW(1)+Ei(1,1)) 9323755690684436 a007 Real Root Of 888*x^4+441*x^3+813*x^2+142*x-888 9323755708822856 a007 Real Root Of 317*x^4-512*x^3-53*x^2+259*x-367 9323755710531725 k002 Champernowne real with 88*n^2-120*n+125 9323755732200345 h001 (8/9*exp(1)+3/4)/(3/8*exp(2)+5/8) 9323755743788943 m005 (1/2*Zeta(3)-2/11)/(3*3^(1/2)-7/10) 9323755744081690 r005 Im(z^2+c),c=-8/23+6/55*I,n=3 9323755767822283 a003 sin(Pi*3/31)+sin(Pi*12/55) 9323755771189432 m001 Sierpinski/Champernowne/exp(cos(Pi/5)) 9323755787037037 r005 Im(z^2+c),c=-23/36+27/40*I,n=3 9323755787736961 a007 Real Root Of 213*x^4-574*x^3+109*x^2-251*x-955 9323755810561731 k002 Champernowne real with 177/2*n^2-243/2*n+126 9323755833574385 a007 Real Root Of -310*x^4+903*x^3+4*x^2-788*x+228 9323755850432626 a007 Real Root Of 700*x^4-535*x^3+855*x^2+992*x-781 9323755855358726 r005 Im(z^2+c),c=-16/15+5/47*I,n=22 9323755865466829 m006 (1/5/Pi-2/3)/(1/4*Pi^2+4) 9323755868436355 m001 ln(Riemann2ndZero)*DuboisRaymond^2*cos(Pi/5) 9323755910591737 k002 Champernowne real with 89*n^2-123*n+127 9323755947556499 m002 Pi^12+E^Pi*Pi^5*Log[Pi] 9323755952106001 a003 cos(Pi*8/21)-cos(Pi*47/114) 9323755969148263 a007 Real Root Of -830*x^4+300*x^3-656*x^2-951*x+554 9323755987687157 l003 BesselJ(0,32/61) 9323756010621743 k002 Champernowne real with 179/2*n^2-249/2*n+128 9323756085673356 r005 Re(z^2+c),c=25/66+8/63*I,n=16 9323756096738411 r005 Re(z^2+c),c=-61/56+2/15*I,n=38 9323756110651749 k002 Champernowne real with 90*n^2-126*n+129 9323756129499236 a003 cos(Pi*1/95)-cos(Pi*56/117) 9323756130819792 k002 Champernowne real with 119/2*n^2+271/2*n-186 9323756131744919 q001 2661/2854 9323756134602011 m001 KhintchineHarmonic*Si(Pi)/ln(cos(Pi/12)) 9323756163907800 r005 Re(z^2+c),c=23/118+10/37*I,n=41 9323756166191823 r002 5i'th iterates of 2*x/(1-x^2) of 9323756177818513 m004 -3-E^(Sqrt[5]*Pi)+25*Pi+25*Pi*Csc[Sqrt[5]*Pi] 9323756178483049 m009 (1/8*Pi^2-5)/(8/5*Catalan+1/5*Pi^2+3/5) 9323756184112216 m001 (gamma(1)+FeigenbaumD)/(MertensB3+Porter) 9323756191158688 a007 Real Root Of 921*x^4+25*x^3+129*x^2-176*x-952 9323756210681755 k002 Champernowne real with 181/2*n^2-255/2*n+130 9323756251691206 m001 exp(GAMMA(19/24))*BesselK(0,1)/Zeta(1/2) 9323756292777195 a007 Real Root Of 949*x^4-488*x^3-648*x^2+763*x+162 9323756310711761 k002 Champernowne real with 91*n^2-129*n+131 9323756321819671 p004 log(21841/8597) 9323756352620659 m001 Pi/(ln(2)/ln(10)+gamma(1)-BesselI(1,1)) 9323756355333341 a003 sin(Pi*21/61)/sin(Pi*36/91) 9323756361122888 m005 (1/2*Catalan-7/11)/(6/7*3^(1/2)+3/7) 9323756380466905 a007 Real Root Of 765*x^4-716*x^3-393*x^2+387*x-456 9323756410741767 k002 Champernowne real with 183/2*n^2-261/2*n+132 9323756427720757 a007 Real Root Of 572*x^4-56*x^3+796*x^2+508*x-696 9323756435847523 m001 Weierstrass^(OneNinth/ln(Pi)) 9323756436643559 m001 Porter^2/exp(Paris)^2/Ei(1) 9323756456375123 m005 (1/2*2^(1/2)+2/7)/(41/154+5/14*5^(1/2)) 9323756489500980 r002 14th iterates of z^2 + 9323756510771773 k002 Champernowne real with 92*n^2-132*n+133 9323756533443114 r005 Re(z^2+c),c=-119/122+5/19*I,n=2 9323756553641916 r009 Im(z^3+c),c=-31/58+39/64*I,n=53 9323756574060768 h001 (9/10*exp(1)+1/8)/(4/5*exp(1)+7/12) 9323756579910150 m004 -3+130*Pi-5*Sqrt[5]*Pi+Sinh[Sqrt[5]*Pi] 9323756583749109 r005 Re(z^2+c),c=-9/10+29/144*I,n=25 9323756592167593 m001 BesselK(1,1)^Trott2nd-ZetaQ(2) 9323756610801779 k002 Champernowne real with 185/2*n^2-267/2*n+134 9323756636526870 a007 Real Root Of 707*x^4-242*x^3-464*x^2-711*x-990 9323756670732010 a007 Real Root Of -361*x^4+13*x^3+800*x^2+516*x+69 9323756671089881 m005 (1/2*5^(1/2)-1/4)/(43/63+1/9*5^(1/2)) 9323756700876236 b008 9+(2*E^(1/8))/7 9323756710831785 k002 Champernowne real with 93*n^2-135*n+135 9323756726421779 a005 (1/cos(22/157*Pi))^344 9323756736506943 a007 Real Root Of -366*x^4-231*x^3-885*x^2+981*x+99 9323756761011056 r005 Im(z^2+c),c=-5/8+86/235*I,n=6 9323756766981120 m001 Weierstrass^(MadelungNaCl*ZetaQ(2)) 9323756774167702 r002 31th iterates of z^2 + 9323756776927976 a007 Real Root Of 631*x^4-308*x^3+133*x^2+841*x-58 9323756787173331 h001 (1/9*exp(2)+10/11)/(1/7*exp(2)+4/5) 9323756799196468 b008 69*ArcCot[74] 9323756804249513 r005 Im(z^2+c),c=-43/74+7/41*I,n=50 9323756809926476 m001 (Niven+TreeGrowth2nd)/(BesselI(0,1)+MertensB2) 9323756810097076 a007 Real Root Of -763*x^4+758*x^3+452*x^2-901*x-42 9323756810861791 k002 Champernowne real with 187/2*n^2-273/2*n+136 9323756812022265 r005 Im(z^2+c),c=-5/8+27/154*I,n=60 9323756823834780 r005 Re(z^2+c),c=-29/32+5/33*I,n=63 9323756910891797 k002 Champernowne real with 94*n^2-138*n+137 9323756917204145 a007 Real Root Of 373*x^4-368*x^3+999*x^2+538*x-947 9323756944798431 a007 Real Root Of 68*x^4+736*x^3+955*x^2+78*x+369 9323756960762436 a007 Real Root Of 959*x^4-246*x^3-147*x^2+409*x-415 9323756963357021 m001 (1-BesselJ(0,1))/(-HardyLittlewoodC5+Robbin) 9323756966131227 r002 4th iterates of z^2 + 9323756974665603 a007 Real Root Of -314*x^4+872*x^3+946*x^2+40*x+159 9323757004593892 m001 exp(1/Pi)^gamma*StronglyCareFree 9323757010921803 k002 Champernowne real with 189/2*n^2-279/2*n+138 9323757029184759 a007 Real Root Of -84*x^4-863*x^3-672*x^2+645*x-252 9323757035973589 h001 (4/9*exp(1)+2/11)/(1/12*exp(2)+7/8) 9323757049363779 r005 Im(z^2+c),c=29/86+29/50*I,n=10 9323757053986936 m001 (3^(1/3))^Artin/((3^(1/3))^BesselI(1,1)) 9323757056573151 m001 1/ln(LandauRamanujan)/Artin*Zeta(1,2) 9323757110951809 k002 Champernowne real with 95*n^2-141*n+139 9323757126030331 a007 Real Root Of -769*x^4+655*x^3+30*x^2+796*x-718 9323757129162217 a001 55/24476*1364^(16/31) 9323757131119852 k002 Champernowne real with 60*n^2+134*n-185 9323757136899189 r009 Im(z^3+c),c=-17/78+14/15*I,n=37 9323757136968261 m005 (1/2*Catalan+9/11)/(Zeta(3)+1/6) 9323757142223186 a003 cos(Pi*7/113)-cos(Pi*7/46) 9323757147052431 m001 (-GaussAGM+MadelungNaCl)/(Catalan-Ei(1)) 9323757160961711 r009 Im(z^3+c),c=-31/122+3/40*I,n=3 9323757179765306 r009 Im(z^3+c),c=-5/118+55/59*I,n=15 9323757179911082 a007 Real Root Of -180*x^4+207*x^3-469*x^2+200*x+898 9323757210981815 k002 Champernowne real with 191/2*n^2-285/2*n+140 9323757212858505 m001 1/BesselK(1,1)^2*Lehmer*ln(GAMMA(5/12))^2 9323757239675530 r009 Im(z^3+c),c=-5/118+55/59*I,n=17 9323757259091689 a003 cos(Pi*1/53)*sin(Pi*33/86) 9323757263527523 r009 Im(z^3+c),c=-5/118+55/59*I,n=19 9323757265984094 r009 Im(z^3+c),c=-5/118+55/59*I,n=27 9323757265984353 r009 Im(z^3+c),c=-5/118+55/59*I,n=29 9323757265984924 r009 Im(z^3+c),c=-5/118+55/59*I,n=31 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=41 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=43 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=45 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=53 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=55 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=57 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=63 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=61 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=59 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=51 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=49 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=47 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=39 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=37 9323757265985026 r009 Im(z^3+c),c=-5/118+55/59*I,n=33 9323757265985029 r009 Im(z^3+c),c=-5/118+55/59*I,n=35 9323757266001410 r009 Im(z^3+c),c=-5/118+55/59*I,n=25 9323757266120502 r009 Im(z^3+c),c=-5/118+55/59*I,n=23 9323757266305133 r009 Im(z^3+c),c=-5/118+55/59*I,n=21 9323757268861001 p004 log(24533/22349) 9323757286730068 r009 Im(z^3+c),c=-7/58+11/12*I,n=19 9323757311011821 k002 Champernowne real with 96*n^2-144*n+141 9323757320396159 r009 Im(z^3+c),c=-57/118+3/56*I,n=30 9323757326466146 a007 Real Root Of 223*x^4-603*x^3+298*x^2+690*x-273 9323757376571833 r002 28th iterates of z^2 + 9323757377290648 r005 Im(z^2+c),c=39/122+21/37*I,n=58 9323757411041827 k002 Champernowne real with 193/2*n^2-291/2*n+142 9323757425795072 a007 Real Root Of 564*x^4+697*x^3+336*x^2-464*x-586 9323757427031386 a007 Real Root Of -566*x^4-612*x^3-532*x^2+180*x+562 9323757440206548 m005 (3/4*Pi+1/5)/(Pi-2/5) 9323757440206548 m006 (1/5/Pi+3/4)/(2/5/Pi-1) 9323757440206548 m008 (3/4*Pi+1/5)/(Pi-2/5) 9323757506809701 a003 -1+2*cos(1/7*Pi)+cos(1/12*Pi)-cos(5/27*Pi) 9323757511071833 k002 Champernowne real with 97*n^2-147*n+143 9323757553235512 r002 30th iterates of z^2 + 9323757561857364 a001 15456/281*521^(32/39) 9323757588645970 m001 (FransenRobinson-OneNinth)/(cos(1/5*Pi)-ln(3)) 9323757589772147 r009 Im(z^3+c),c=-5/118+55/59*I,n=13 9323757602128715 m001 FeigenbaumAlpha/(BesselI(1,2)^GAMMA(5/12)) 9323757604714336 r005 Re(z^2+c),c=-13/14+125/163*I,n=3 9323757611101839 k002 Champernowne real with 195/2*n^2-297/2*n+144 9323757631135416 a007 Real Root Of -615*x^4+899*x^3-256*x^2-636*x+823 9323757632066346 r005 Re(z^2+c),c=-11/10+7/136*I,n=16 9323757651483131 a007 Real Root Of -880*x^4-225*x^3+683*x^2+472*x+329 9323757656777076 a003 cos(Pi*8/101)-sin(Pi*43/105) 9323757666115661 a007 Real Root Of 576*x^4+746*x^3+810*x^2+846*x+254 9323757668019530 a001 55/2207*3571^(5/31) 9323757669183218 m001 (Pi+exp(1/Pi))/(FeigenbaumDelta+ZetaP(3)) 9323757682340324 m009 (6*Psi(1,1/3)+1/3)/(8/3*Catalan+1/3*Pi^2+4/5) 9323757711131845 k002 Champernowne real with 98*n^2-150*n+145 9323757718934329 a001 311187*11^(27/59) 9323757788121852 a007 Real Root Of -617*x^4+303*x^3+545*x^2+777*x+68 9323757803459543 h001 (1/12*exp(1)+3/11)/(2/3*exp(2)+3/7) 9323757809910393 s002 sum(A089432[n]/((exp(n)-1)/n),n=1..infinity) 9323757811161851 k002 Champernowne real with 197/2*n^2-303/2*n+146 9323757813674321 a003 cos(Pi*4/55)*sin(Pi*37/91) 9323757823694924 m005 (1/2*Pi+6)/(4/9*5^(1/2)-2/11) 9323757825765558 r005 Re(z^2+c),c=-143/122+19/63*I,n=14 9323757889059061 r005 Im(z^2+c),c=-83/98+2/33*I,n=53 9323757894181433 a007 Real Root Of 75*x^4-727*x^3+702*x^2+899*x-418 9323757911191857 k002 Champernowne real with 99*n^2-153*n+147 9323757927259050 l006 ln(6191/6796) 9323757933590078 r005 Im(z^2+c),c=-29/60+24/35*I,n=6 9323757973752542 r005 Re(z^2+c),c=11/114+4/45*I,n=7 9323757974994676 a007 Real Root Of 512*x^4-977*x^3-556*x^2-155*x-840 9323757979610449 a007 Real Root Of -962*x^4+208*x^3-348*x^2-427*x+800 9323758011221863 k002 Champernowne real with 199/2*n^2-309/2*n+148 9323758011625394 m005 (1/2*Pi-9/10)/(4/9*2^(1/2)+1/11) 9323758014170345 r002 47th iterates of z^2 + 9323758017884565 a007 Real Root Of -241*x^4+732*x^3-492*x^2-678*x+571 9323758018083654 a007 Real Root Of -547*x^4+438*x^3+523*x^2+425*x+710 9323758076329750 a007 Real Root Of 991*x^4-705*x^3-588*x^2+707*x-150 9323758077562801 r005 Im(z^2+c),c=-19/18+1/97*I,n=20 9323758083666233 a007 Real Root Of 532*x^4-818*x^3-440*x^2+805*x+68 9323758084778138 a007 Real Root Of 992*x^4+142*x^3+91*x^2+670*x-89 9323758088820979 m002 -2+4*E^Pi+Pi^3*Sech[Pi] 9323758089156985 a007 Real Root Of 646*x^4-564*x^3-179*x^2+906*x+55 9323758111251869 k002 Champernowne real with 100*n^2-156*n+149 9323758125642265 a007 Real Root Of -171*x^4+552*x^3-144*x^2+562*x-717 9323758131419912 k002 Champernowne real with 121/2*n^2+265/2*n-184 9323758135608500 a007 Real Root Of -876*x^4-299*x^3-934*x^2-612*x+661 9323758170319028 a007 Real Root Of 975*x^4-55*x^3-407*x^2-275*x-684 9323758211281875 k002 Champernowne real with 201/2*n^2-315/2*n+150 9323758211970309 r002 32th iterates of z^2 + 9323758214810283 m005 (1/3*exp(1)-1/2)/(7/11*3^(1/2)-2/3) 9323758228605625 q001 1558/1671 9323758259410058 a007 Real Root Of -913*x^4-703*x^3-955*x^2-305*x+666 9323758261617417 b008 -21/2+Zeta[Pi] 9323758276333276 r009 Im(z^3+c),c=-11/64+42/47*I,n=19 9323758311311881 k002 Champernowne real with 101*n^2-159*n+151 9323758316909412 a003 sin(Pi*3/107)/cos(Pi*10/93) 9323758324905191 a003 cos(Pi*9/97)*sin(Pi*29/68) 9323758334767092 r009 Re(z^3+c),c=-11/90+6/17*I,n=5 9323758359108674 h001 (3/4*exp(2)+7/9)/(6/7*exp(2)+4/9) 9323758364105004 a003 cos(Pi*9/31)+cos(Pi*21/53) 9323758384695183 a007 Real Root Of -616*x^4+717*x^3+377*x^2+14*x+732 9323758411341887 k002 Champernowne real with 203/2*n^2-321/2*n+152 9323758412623713 a007 Real Root Of -980*x^4-838*x^3-360*x^2-483*x-76 9323758429366920 m005 (1/2*2^(1/2)+3)/(2/7*Pi-1/2) 9323758440785840 m001 (Ei(1)-Cahen)/(Rabbit-Riemann1stZero) 9323758492247247 a007 Real Root Of -919*x^4+231*x^3+147*x^2+162*x+905 9323758507173853 a007 Real Root Of 63*x^4-770*x^3+439*x^2-560*x+717 9323758511371893 k002 Champernowne real with 102*n^2-162*n+153 9323758511447226 a007 Real Root Of 466*x^4-602*x^3-125*x^2-242*x-22 9323758524693521 a007 Real Root Of -302*x^4-214*x^3-713*x^2+142*x+807 9323758534816225 h001 (7/9*exp(2)+5/11)/(8/9*exp(2)+1/12) 9323758566328688 r001 6i'th iterates of 2*x^2-1 of 9323758595731824 r005 Im(z^2+c),c=-5/38+40/49*I,n=63 9323758601081274 m001 (OneNinth+Tribonacci)/(BesselI(0,1)-Shi(1)) 9323758605911631 m001 ln(GAMMA(23/24))*DuboisRaymond^2*cos(Pi/12) 9323758611401899 k002 Champernowne real with 205/2*n^2-327/2*n+154 9323758615254630 a007 Real Root Of 95*x^4+794*x^3-832*x^2+308*x+827 9323758662833746 m001 (gamma(3)-Kac)/(TwinPrimes+ZetaQ(3)) 9323758683487433 a007 Real Root Of -837*x^4+653*x^3+922*x^2+389*x+723 9323758692635964 a007 Real Root Of 957*x^4-739*x^3-774*x^2-364*x+888 9323758711431905 k002 Champernowne real with 103*n^2-165*n+155 9323758731590072 r005 Re(z^2+c),c=-22/25+10/51*I,n=57 9323758754016154 m001 (gamma+ln(Pi))/(Conway+Landau) 9323758756871232 a007 Real Root Of -133*x^4+678*x^3-587*x^2-749*x+462 9323758788528490 h001 (7/10*exp(1)+2/7)/(7/10*exp(1)+4/9) 9323758793853818 a008 Real Root of (-1+6*x-2*x^2-5*x^8) 9323758799367537 m005 (2*2^(1/2)+4/5)/(Pi+3/4) 9323758811461911 k002 Champernowne real with 207/2*n^2-333/2*n+156 9323758839659087 r008 a(0)=1,K{-n^6,8-47*n+11*n^2+43*n^3} 9323758844497794 a008 Real Root of x^4-x^3-66*x^2-121*x+119 9323758870005610 m001 Psi(2,1/3)^Niven-Zeta(1,2) 9323758893184938 m001 exp(1)/(MasserGramainDelta^Grothendieck) 9323758899219822 m005 (3/5*gamma+1)/(2/3*Catalan+5/6) 9323758899284951 a001 121393/322*322^(5/9) 9323758900145323 r005 Re(z^2+c),c=-119/122+7/27*I,n=17 9323758903050339 a007 Real Root Of 960*x^4+941*x^3+859*x^2-67*x-772 9323758911491917 k002 Champernowne real with 104*n^2-168*n+157 9323758958487993 r002 7th iterates of z^2 + 9323758985743279 a007 Real Root Of 805*x^4-876*x^3-805*x^2+435*x-213 9323759005323593 b008 10-73*Sqrt[2] 9323759011521923 k002 Champernowne real with 209/2*n^2-339/2*n+158 9323759026230051 h001 (7/11*exp(1)+3/4)/(7/9*exp(1)+6/11) 9323759032725376 a007 Real Root Of 602*x^4-707*x^3-788*x^2+311*x-53 9323759041896410 r002 3th iterates of z^2 + 9323759044209936 a007 Real Root Of -348*x^4+209*x^3-5*x^2-270*x+185 9323759055938042 a003 cos(Pi*5/61)*cos(Pi*10/117) 9323759086041499 a007 Real Root Of -381*x^4-94*x^3+128*x^2+140*x+231 9323759111551929 k002 Champernowne real with 105*n^2-171*n+159 9323759120827576 r009 Im(z^3+c),c=-61/126+16/27*I,n=59 9323759129285320 r005 Re(z^2+c),c=-23/30+7/73*I,n=31 9323759131719972 k002 Champernowne real with 61*n^2+131*n-183 9323759149140001 a007 Real Root Of 501*x^4-367*x^3-130*x^2+132*x-440 9323759172163772 a007 Real Root Of 895*x^4+4*x^3+352*x^2+486*x-526 9323759181816925 m001 Paris^2*ArtinRank2/exp(Riemann3rdZero) 9323759211581935 k002 Champernowne real with 211/2*n^2-345/2*n+160 9323759225309932 a007 Real Root Of -936*x^4+639*x^3-701*x^2-951*x+948 9323759250191701 r002 2th iterates of z^2 + 9323759311611941 k002 Champernowne real with 106*n^2-174*n+161 9323759326689816 a003 sin(Pi*3/77)*sin(Pi*13/47) 9323759338246907 m001 CareFree^2*exp(FeigenbaumAlpha)^2/Kolakoski 9323759369010230 a001 514229/199*199^(21/31) 9323759411641947 k002 Champernowne real with 213/2*n^2-351/2*n+162 9323759417352735 a001 55/5778*24476^(7/31) 9323759418895333 s002 sum(A178795[n]/(n^2*2^n-1),n=1..infinity) 9323759425578828 a007 Real Root Of 778*x^4-744*x^3+67*x^2+307*x-963 9323759431864517 p004 log(29173/11483) 9323759462335118 a005 (1/cos(64/209*Pi))^107 9323759488095125 m002 -E^Pi+Pi^6-(5*Cosh[Pi])/Pi^2 9323759511671953 k002 Champernowne real with 107*n^2-177*n+163 9323759512297983 m001 GAMMA(7/12)/exp(GAMMA(23/24))/sin(Pi/5) 9323759525435893 r005 Re(z^2+c),c=23/118+10/37*I,n=40 9323759549417213 a007 Real Root Of -39*x^4+220*x^3-879*x^2-75*x+902 9323759553264209 m001 (ln(Pi)-KomornikLoreti)/(Robbin+Trott2nd) 9323759577710425 r002 17th iterates of z^2 + 9323759599662004 m001 BesselK(0,1)/ln(KhintchineLevy)^2/cosh(1) 9323759603179878 m001 Gompertz^Thue/(Gompertz^Sarnak) 9323759606019995 m001 1/2*GaussKuzminWirsing*2^(2/3)/Sierpinski 9323759611701959 k002 Champernowne real with 215/2*n^2-357/2*n+164 9323759621546339 a001 55/15127*9349^(11/31) 9323759637058939 l006 ln(8606/9447) 9323759644187827 m001 Trott^2*ln(RenyiParking)^2*Zeta(1,2) 9323759664647628 m001 ln(cosh(1))/Khintchine*gamma 9323759672472264 b008 1+25*ArcSinh[20] 9323759704939833 a001 55/3010349*39603^(25/31) 9323759711731965 k002 Champernowne real with 108*n^2-180*n+165 9323759715292061 h001 (3/8*exp(1)+6/11)/(4/7*exp(1)+1/8) 9323759720232429 s002 sum(A145540[n]/(exp(2*pi*n)+1),n=1..infinity) 9323759731480904 a001 55/24476*15127^(12/31) 9323759735419070 a001 1926*10946^(52/57) 9323759735612466 a007 Real Root Of 45*x^4-842*x^3+35*x^2+933*x+123 9323759748019508 a007 Real Root Of 750*x^4-199*x^3+608*x^2+375*x-907 9323759773581510 a007 Real Root Of 185*x^4-693*x^3+741*x^2+611*x-776 9323759777553307 a007 Real Root Of -646*x^4+797*x^3+846*x^2+573*x+933 9323759791122715 q001 3571/3830 9323759811761971 k002 Champernowne real with 217/2*n^2-363/2*n+166 9323759831186139 a001 1346269/2207*322^(27/31) 9323759852653241 a007 Real Root Of -90*x^4-919*x^3-729*x^2+133*x-117 9323759900884619 a007 Real Root Of -862*x^4-162*x^3-737*x^2-535*x+662 9323759911791977 k002 Champernowne real with 109*n^2-183*n+167 9323759931571783 r008 a(0)=1,K{-n^6,-8+56*n^3-36*n^2+3*n} 9323759931861275 h001 (1/3*exp(2)+2/11)/(5/6*exp(1)+4/7) 9323759934926990 m001 (2/3+GAMMA(2/3)*BesselJ(1,1))/GAMMA(2/3) 9323759939437754 a007 Real Root Of 770*x^4-83*x^3+122*x^2+514*x-276 9323759945098431 m005 (1/2*5^(1/2)-7/10)/(4/9*5^(1/2)-6/11) 9323759975232739 r005 Re(z^2+c),c=-83/102+9/40*I,n=9 9323759984127716 a007 Real Root Of 143*x^4+104*x^3+808*x^2+988*x+195 9323760011821983 k002 Champernowne real with 219/2*n^2-369/2*n+168 9323760024197360 m001 Pi^2/Si(Pi)^2*exp(sin(Pi/5))^2 9323760030216607 m001 (PlouffeB-Sierpinski)/(Zeta(5)+GAMMA(3/4)) 9323760030681204 a007 Real Root Of -896*x^4+304*x^3+410*x^2+46*x+610 9323760041776411 r002 3th iterates of z^2 + 9323760051044487 a007 Real Root Of 472*x^4+239*x^3+217*x^2-586*x-898 9323760066210403 m001 Magata^ZetaQ(3)/Trott 9323760093378780 m001 Psi(1,1/3)^(ReciprocalFibonacci/BesselI(1,1)) 9323760111851989 k002 Champernowne real with 110*n^2-186*n+169 9323760123151403 a007 Real Root Of -757*x^4+361*x^3-119*x^2-900*x+129 9323760132020032 k002 Champernowne real with 123/2*n^2+259/2*n-182 9323760200038337 r002 2th iterates of z^2 + 9323760201402005 m001 (-MertensB3+PlouffeB)/(5^(1/2)-ln(2+3^(1/2))) 9323760205281213 a001 75025/843*521^(29/39) 9323760211881995 k002 Champernowne real with 221/2*n^2-375/2*n+170 9323760232912873 m001 (Thue+ZetaQ(2))/(Kac-Sarnak) 9323760276971177 r001 53i'th iterates of 2*x^2-1 of 9323760296492013 a007 Real Root Of 959*x^4+154*x^3+55*x^2+211*x-451 9323760301690946 m001 ArtinRank2*Otter*ZetaP(2) 9323760306237784 m005 (1/2*Catalan-5)/(5/8*Zeta(3)-4/5) 9323760311912001 k002 Champernowne real with 111*n^2-189*n+171 9323760343558158 r005 Im(z^2+c),c=-25/18+9/85*I,n=3 9323760372237150 a007 Real Root Of 750*x^4+3*x^3+58*x^2-541*x-51 9323760397415272 a007 Real Root Of 963*x^4-593*x^3-156*x^2+698*x-422 9323760408714096 m001 1/ln(log(2+sqrt(3)))/LaplaceLimit/sin(Pi/5) 9323760411802669 m001 (Catalan+Zeta(5))/(-Riemann2ndZero+ZetaP(4)) 9323760411942007 k002 Champernowne real with 223/2*n^2-381/2*n+172 9323760432977666 a007 Real Root Of 564*x^4+301*x^3+686*x^2+124*x-663 9323760511330340 a007 Real Root Of -414*x^4-204*x^3+200*x^2+128*x+93 9323760511972013 k002 Champernowne real with 112*n^2-192*n+173 9323760522092395 m001 (ln(5)+cos(1/12*Pi))/(Khinchin+ZetaP(4)) 9323760533070824 r008 a(0)=1,K{-n^6,-42-27*n^3+67*n^2+18*n} 9323760533890192 a007 Real Root Of 44*x^4-663*x^3+210*x^2-136*x-880 9323760543334057 a007 Real Root Of 729*x^4-291*x^3-192*x^2+682*x+16 9323760548470064 a007 Real Root Of -766*x^4-891*x^3-729*x^2+524*x+979 9323760552065012 b008 EulerGamma+27*ArcCsc[Pi] 9323760582123555 m001 MadelungNaCl/Champernowne*ln(GAMMA(11/24)) 9323760597276423 a001 1/36*32951280099^(1/20) 9323760612002019 k002 Champernowne real with 225/2*n^2-387/2*n+174 9323760641932448 a001 55/24476*2207^(15/31) 9323760660247476 m001 (3^(1/2)+FeigenbaumC)/(Magata+PrimesInBinary) 9323760661182750 p001 sum(1/(209*n+116)/(5^n),n=0..infinity) 9323760672324343 a007 Real Root Of -781*x^4+770*x^3+447*x^2+85*x+905 9323760679612635 a001 29/10610209857723*139583862445^(5/22) 9323760679612669 a001 29/956722026041*3524578^(5/22) 9323760684539239 m005 (1/2*exp(1)+11/12)/(6/11*Pi+8/11) 9323760712032025 k002 Champernowne real with 113*n^2-195*n+175 9323760738753655 r005 Im(z^2+c),c=-131/118+6/53*I,n=27 9323760762785846 a008 Real Root of (8+8*x-x^2-18*x^3) 9323760792766480 a001 4181/47*2^(4/59) 9323760798081494 r005 Im(z^2+c),c=-123/106+7/55*I,n=30 9323760798110866 a007 Real Root Of -368*x^4+553*x^3+942*x^2-44*x-948 9323760812062031 k002 Champernowne real with 227/2*n^2-393/2*n+176 9323760852133327 r002 12th iterates of z^2 + 9323760861728949 a007 Real Root Of -85*x^4-762*x^3+192*x^2-838*x+233 9323760877062533 m001 (GAMMA(2/3)-ln(5))/(cos(1/12*Pi)+Pi^(1/2)) 9323760882732150 a007 Real Root Of 689*x^4+750*x^3+147*x^2-748*x-738 9323760885427312 m005 (1/2*gamma-1/8)/(2/7*Pi+6/7) 9323760888631901 a003 cos(Pi*1/51)*sin(Pi*38/99) 9323760912092037 k002 Champernowne real with 114*n^2-198*n+177 9323760917326294 a001 29/89*6765^(37/41) 9323760922793252 a007 Real Root Of -54*x^4+614*x^3-255*x^2-323*x+459 9323760938769529 q001 7/75077 9323760940187948 m001 exp(1)/BesselK(1,1)^2/ln(sqrt(5)) 9323760960326461 r002 3th iterates of z^2 + 9323760966643783 a003 cos(Pi*5/42)/sin(Pi*40/83) 9323760968729467 m001 Catalan^FeigenbaumAlpha/(Catalan^Niven) 9323760972502359 r002 36i'th iterates of 2*x/(1-x^2) of 9323760974164089 r008 a(0)=1,K{-n^6,22+62*n^3-39*n^2-30*n} 9323760976253194 a003 cos(Pi*11/76)/sin(Pi*12/29) 9323760977465248 m001 (GlaisherKinkelin+Thue)/(2^(1/3)+Zeta(5)) 9323761000463177 q001 2013/2159 9323761006599414 a007 Real Root Of 57*x^4-981*x^3-178*x^2-71*x+973 9323761009117466 m005 (1/2*2^(1/2)-3)/(8/9*Pi-1/3) 9323761012122043 k002 Champernowne real with 229/2*n^2-399/2*n+178 9323761023153500 a007 Real Root Of 799*x^4-709*x^3-976*x^2-182*x+989 9323761028146866 r005 Re(z^2+c),c=-13/14+15/127*I,n=3 9323761041689588 a007 Real Root Of -219*x^4+x^3+14*x^2+638*x+749 9323761050407751 r005 Re(z^2+c),c=13/50+25/56*I,n=20 9323761054559919 m001 ZetaQ(3)^KomornikLoreti/(ZetaQ(3)^(Pi^(1/2))) 9323761111705642 r005 Re(z^2+c),c=5/24+45/56*I,n=3 9323761112152049 k002 Champernowne real with 115*n^2-201*n+179 9323761132320092 k002 Champernowne real with 62*n^2+128*n-181 9323761212182055 k002 Champernowne real with 231/2*n^2-405/2*n+180 9323761224708192 a001 47/10946*987^(25/56) 9323761233516934 a007 Real Root Of -849*x^4+998*x^3+998*x^2-548*x+72 9323761257373499 a007 Real Root Of -707*x^4-288*x^3+28*x^2-81*x+201 9323761275966821 a007 Real Root Of 702*x^4+656*x^3+703*x^2+60*x-554 9323761293054132 r005 Im(z^2+c),c=33/122+23/39*I,n=38 9323761312212061 k002 Champernowne real with 116*n^2-204*n+181 9323761320465865 r005 Im(z^2+c),c=-1/31+29/32*I,n=4 9323761331488405 r005 Re(z^2+c),c=-25/27+1/11*I,n=17 9323761354075602 a003 cos(Pi*23/101)+cos(Pi*39/88) 9323761358773265 m001 Pi-cos(1/12*Pi)-Pi*csc(1/12*Pi)/GAMMA(11/12) 9323761358773265 m001 Pi-cos(Pi/12)-GAMMA(1/12) 9323761363324431 m001 (Sierpinski+Trott)/(Khinchin+Paris) 9323761402570359 m001 (ln(3)-exp(1/Pi))/(MertensB2+Tetranacci) 9323761405611513 a007 Real Root Of -160*x^4+980*x^3-788*x^2-691*x+956 9323761412242067 k002 Champernowne real with 233/2*n^2-411/2*n+182 9323761414241056 a003 cos(Pi*4/119)*cos(Pi*13/115) 9323761418078784 m005 (1/2*exp(1)+6/7)/(9/10*3^(1/2)+9/11) 9323761420701540 a007 Real Root Of -478*x^4+510*x^3-478*x^2-471*x+751 9323761422471190 r002 24th iterates of z^2 + 9323761435452071 a007 Real Root Of 877*x^4-500*x^3+306*x^2+709*x-673 9323761440723893 m005 (1/3*5^(1/2)+2/9)/(6/7*Catalan-8/9) 9323761442748273 m005 (1/2*Pi-1/6)/(3/5*exp(1)-1/8) 9323761450721560 m005 (1/3*Zeta(3)-1/9)/(7/8*exp(1)+8/11) 9323761477789471 r005 Re(z^2+c),c=-13/14+11/140*I,n=9 9323761480656306 m001 ZetaQ(2)^GAMMA(23/24)*Tribonacci^GAMMA(23/24) 9323761486776579 a007 Real Root Of 30*x^4+192*x^3-865*x^2-380*x+559 9323761495554317 m005 (2/15+3/10*5^(1/2))/(3*Pi-4/5) 9323761504471643 m005 (1/3*Pi+1/9)/(7/11*gamma+7/8) 9323761511532487 r002 11th iterates of z^2 + 9323761512272073 k002 Champernowne real with 117*n^2-207*n+183 9323761538929065 r002 11th iterates of z^2 + 9323761549478759 a007 Real Root Of 818*x^4-492*x^3-205*x^2+950*x+47 9323761611753368 a007 Real Root Of 174*x^4-300*x^3+389*x^2+461*x-283 9323761612302079 k002 Champernowne real with 235/2*n^2-417/2*n+184 9323761689552076 a007 Real Root Of 48*x^4-708*x^3-52*x^2-130*x+704 9323761712332085 k002 Champernowne real with 118*n^2-210*n+185 9323761762281423 m001 1/TreeGrowth2nd/ln(GolombDickman)*GAMMA(11/24) 9323761796649939 a007 Real Root Of 705*x^4-407*x^3-528*x^2-424*x-799 9323761812362091 k002 Champernowne real with 237/2*n^2-423/2*n+186 9323761844710870 a007 Real Root Of 541*x^4-303*x^3+233*x^2-133*x-981 9323761848791354 m001 (Pi+gamma)/(GAMMA(7/12)-Tetranacci) 9323761848975111 h001 (-exp(2)+4)/(-9*exp(6)-4) 9323761852687913 a001 317811/4*76^(29/51) 9323761882686591 m001 (MinimumGamma-RenyiParking)^exp(-1/2*Pi) 9323761886472685 a007 Real Root Of -940*x^4+777*x^3+903*x^2+387*x+916 9323761889244838 l006 ln(7366/7435) 9323761896337770 m001 (gamma(3)+LandauRamanujan)/(2^(1/2)-5^(1/2)) 9323761912392097 k002 Champernowne real with 119*n^2-213*n+187 9323761930573544 r002 26th iterates of z^2 + 9323761961006142 h001 (5/7*exp(2)+1/2)/(4/5*exp(2)+2/7) 9323761976471717 m001 exp(GAMMA(23/24))*GAMMA(11/12)^2*sqrt(3)^2 9323761988363488 r009 Im(z^3+c),c=-11/20+40/41*I,n=2 9323761998812075 h001 (2/11*exp(1)+1/12)/(5/7*exp(2)+11/12) 9323762001408743 r009 Re(z^3+c),c=-5/29+25/37*I,n=46 9323762012422103 k002 Champernowne real with 239/2*n^2-429/2*n+188 9323762039856667 a007 Real Root Of 820*x^4-474*x^3-311*x^2-67*x-796 9323762065127342 a007 Real Root Of 968*x^4-699*x^3-857*x^2+664*x+66 9323762087379478 a001 3/199*843^(30/49) 9323762105613005 r005 Re(z^2+c),c=-107/118+3/20*I,n=35 9323762112452109 k002 Champernowne real with 120*n^2-216*n+189 9323762113428372 m001 (Pi-polylog(4,1/2))/(Lehmer-Magata) 9323762116893222 r002 6th iterates of z^2 + 9323762118510912 a001 15127/233*317811^(34/45) 9323762132620152 k002 Champernowne real with 125/2*n^2+253/2*n-180 9323762147451315 a007 Real Root Of 632*x^4-248*x^3-182*x^2+541*x-16 9323762178406630 m001 (Otter-ZetaP(2))/(sin(1/12*Pi)-gamma(2)) 9323762179694056 a001 123/34*17711^(21/37) 9323762186336417 m001 (1-Backhouse)/(ThueMorse+ZetaP(4)) 9323762192742058 m001 HardyLittlewoodC3^(FeigenbaumMu/exp(Pi)) 9323762194415582 a007 Real Root Of 22*x^4-647*x^3+897*x^2+875*x-505 9323762194426793 m005 (1/3*exp(1)+1/4)/(1/4*Pi+5/11) 9323762195280464 r009 Im(z^3+c),c=-5/118+55/59*I,n=11 9323762212375083 r002 24th iterates of z^2 + 9323762233562892 m001 (-Totient+ZetaP(4))/(5^(1/2)-ln(2^(1/2)+1)) 9323762304410445 a007 Real Root Of 877*x^4+765*x^3+483*x^2-482*x-912 9323762321178853 b008 ProductLog[1+3^(2/7)] 9323762330362387 m002 Pi+ProductLog[Pi]+6*Pi^2*Sech[Pi] 9323762379791140 r009 Im(z^3+c),c=-17/98+44/49*I,n=45 9323762395179309 p001 sum((-1)^n/(545*n+494)/n/(10^n),n=1..infinity) 9323762404866933 p003 LerchPhi(1/64,5,209/130) 9323762406856394 a007 Real Root Of 337*x^4-990*x^3-746*x^2+213*x-210 9323762409631618 r005 Re(z^2+c),c=-95/102+4/55*I,n=5 9323762415616042 m001 GAMMA(1/4)*exp(BesselJ(0,1))^2*GAMMA(1/6) 9323762449959243 r005 Im(z^2+c),c=-3/4+14/173*I,n=10 9323762452644028 m001 (FeigenbaumMu+Porter)/(Psi(2,1/3)+ln(3)) 9323762476539866 a001 2178309/3571*322^(27/31) 9323762521294204 m001 (Kac+OrthogonalArrays)/(Porter+Rabbit) 9323762565463036 a007 Real Root Of 247*x^4-427*x^3+359*x^2+224*x-636 9323762568680165 m001 (BesselK(0,1)-ln(2^(1/2)+1))/(-Landau+Lehmer) 9323762572870252 m001 (Ei(1)-Artin)/(FransenRobinson-Salem) 9323762596258896 a007 Real Root Of -140*x^4+248*x^3-206*x^2+414*x-37 9323762612847462 r005 Im(z^2+c),c=-43/64+12/47*I,n=35 9323762660000158 s001 sum(exp(-Pi/4)^n*A273766[n],n=1..infinity) 9323762666322622 m001 Riemann2ndZero/MertensB1*exp(GAMMA(3/4))^2 9323762676713799 a007 Real Root Of -638*x^4+890*x^3-12*x^2-385*x+855 9323762686632822 r005 Im(z^2+c),c=-19/18+1/97*I,n=19 9323762689251034 m001 GAMMA(11/12)/(Salem^LandauRamanujan) 9323762720747672 m001 Riemann1stZero/Paris*ln(GAMMA(23/24))^2 9323762721820311 a007 Real Root Of -719*x^4+268*x^3-948*x^2-788*x+850 9323762722214619 a007 Real Root Of 622*x^4-809*x^3-417*x^2-180*x+716 9323762723851055 a007 Real Root Of -304*x^4+205*x^3-135*x^2+63*x+572 9323762725456402 m001 (-Zeta(1/2)+Cahen)/(exp(Pi)-gamma) 9323762733891020 r005 Re(z^2+c),c=-87/94+5/48*I,n=5 9323762750283339 q001 2468/2647 9323762761846928 r009 Im(z^3+c),c=-11/48+27/29*I,n=49 9323762777717186 a007 Real Root Of -294*x^4+51*x^3+382*x^2+595*x-706 9323762789412146 r001 47i'th iterates of 2*x^2-1 of 9323762790191527 r005 Im(z^2+c),c=-71/118+1/60*I,n=37 9323762807761230 r005 Re(z^2+c),c=-13/14+19/235*I,n=7 9323762811539433 m001 Catalan^2/Backhouse^2/ln(GAMMA(7/12)) 9323762842988679 m005 (-8/3+1/3*5^(1/2))/(3/4*2^(1/2)+1) 9323762847049359 a001 121393/843*521^(2/3) 9323762869701353 h001 (2/3*exp(1)+3/11)/(7/10*exp(1)+1/3) 9323762900820278 m009 (1/6*Psi(1,3/4)-2/3)/(1/6*Psi(1,2/3)-1/4) 9323762945079547 a008 Real Root of x^3-x^2-76*x-15 9323762967892764 r005 Re(z^2+c),c=-29/118+11/14*I,n=5 9323763026398575 m001 Catalan^2/MadelungNaCl^2/exp(cos(1))^2 9323763028170911 m005 (1/2*5^(1/2)+5)/(1/7*3^(1/2)-2/11) 9323763070343354 r001 38i'th iterates of 2*x^2-1 of 9323763076323367 a003 sin(Pi*31/89)/sin(Pi*39/97) 9323763098391584 m008 (2/5*Pi^5+1)/(2/5*Pi^3+5/6) 9323763102925078 a007 Real Root Of 201*x^4-225*x^3+183*x^2-375*x-843 9323763132920212 k002 Champernowne real with 63*n^2+125*n-179 9323763138943757 h001 (2/9*exp(2)+10/11)/(7/10*exp(1)+5/6) 9323763156641383 r005 Im(z^2+c),c=-101/86+9/53*I,n=19 9323763169590268 r002 28th iterates of z^2 + 9323763188832772 m001 Gompertz^Pi*GAMMA(13/24)^Pi 9323763292107496 m001 HardyLittlewoodC4^(BesselK(1,1)*Paris) 9323763306660674 a007 Real Root Of 909*x^4-647*x^3+602*x^2+862*x-931 9323763315918454 m001 MertensB2*Rabbit^GaussKuzminWirsing 9323763323966295 a007 Real Root Of 982*x^4-834*x^3-786*x^2+742*x-43 9323763333004210 r005 Im(z^2+c),c=-3/26+41/55*I,n=6 9323763341565972 r009 Im(z^3+c),c=-4/25+37/41*I,n=63 9323763398262470 a007 Real Root Of 9*x^4-577*x^3+61*x^2+17*x+392 9323763470911442 a007 Real Root Of 729*x^4+141*x^3+165*x^2+58*x-526 9323763483301132 a001 46368/2207*521^(38/39) 9323763486055169 m005 (1/3*2^(1/2)-1/3)/(4/9*exp(1)+3/11) 9323763540809689 r005 Re(z^2+c),c=-1/31+16/51*I,n=11 9323763559830806 m001 QuadraticClass/(ZetaQ(4)^ZetaQ(3)) 9323763563639407 r005 Re(z^2+c),c=-87/98+10/53*I,n=57 9323763583816969 m001 (Landau+ReciprocalLucas)/(2^(1/3)-GAMMA(7/12)) 9323763595575798 a003 sin(Pi*34/111)/sin(Pi*25/73) 9323763664846910 r009 Re(z^3+c),c=-11/70+21/32*I,n=9 9323763670857998 a007 Real Root Of 772*x^4-440*x^3-158*x^2-40*x-840 9323763686773276 a007 Real Root Of -600*x^4+801*x^3+619*x^2-524*x+76 9323763692421837 a001 39603/5*21^(3/56) 9323763712533981 m001 (ln(gamma)+Ei(1))/(TravellingSalesman-Thue) 9323763736150843 a007 Real Root Of 22*x^4-865*x^3+276*x^2+478*x-512 9323763736779836 a007 Real Root Of 737*x^4+366*x^3+156*x^2-413*x-781 9323763749042310 m001 cos(1)^2*GaussKuzminWirsing^2*exp(sqrt(Pi))^2 9323763749227400 p001 sum((-1)^n/(498*n+373)/n/(12^n),n=1..infinity) 9323763801205274 m001 AlladiGrinstead^FeigenbaumC/gamma(1) 9323763827204772 m001 (Ei(1)+Landau)/(Otter-PolyaRandomWalk3D) 9323763833097192 r002 22th iterates of z^2 + 9323763833921864 r009 Im(z^3+c),c=-3/20+39/43*I,n=23 9323763841611428 m001 Kolakoski^(MertensB1/Thue) 9323763877501256 r002 14th iterates of z^2 + 9323763894296494 m005 (1/3*3^(1/2)+2/11)/(7/9*2^(1/2)-2/7) 9323763937036495 m002 -E^Pi+Pi^6-6*Log[Pi]+Tanh[Pi] 9323763955133284 h001 (-3*exp(1/2)+7)/(-7*exp(1)-3) 9323763955342902 q001 2923/3135 9323763991011001 a007 Real Root Of 278*x^4-436*x^3-309*x^2-339*x+728 9323763998652208 p001 sum((-1)^n/(246*n+107)/(128^n),n=0..infinity) 9323764011993425 h001 (-2*exp(-2)+5)/(-7*exp(2)+1) 9323764020235247 l006 ln(2415/2651) 9323764031528860 r009 Im(z^3+c),c=-29/54+11/57*I,n=19 9323764051697375 m001 (Totient+ZetaP(3))/(Shi(1)+LambertW(1)) 9323764056756859 a007 Real Root Of 400*x^4-476*x^3+258*x^2-342*x+30 9323764064696802 m001 sin(1)+ln(gamma)*Zeta(1,-1) 9323764089928975 a007 Real Root Of -523*x^4-111*x^3-604*x^2-54*x+780 9323764116137404 h001 (-8*exp(-2)+2)/(-9*exp(1/2)+5) 9323764126561530 a007 Real Root Of 81*x^4+795*x^3+426*x^2+417*x-906 9323764133220272 k002 Champernowne real with 127/2*n^2+247/2*n-178 9323764138559583 s001 sum(exp(-2*Pi/3)^n*A261708[n],n=1..infinity) 9323764155234348 r005 Im(z^2+c),c=-5/62+5/46*I,n=5 9323764182734737 r002 5th iterates of z^2 + 9323764216798595 m001 (Magata+ZetaP(2))/(Backhouse+FeigenbaumD) 9323764242239632 a007 Real Root Of 778*x^4-787*x^3-442*x^2+160*x+285 9323764242440336 a007 Real Root Of -813*x^4+719*x^3+134*x^2-877*x+263 9323764278697840 b008 Sin[1]/E^(11/5) 9323764278955815 a001 196418/47*76^(38/53) 9323764337314329 m005 (1/2*5^(1/2)+9/10)/(7/10*Zeta(3)-5/8) 9323764371095288 m005 (1/2*exp(1)+7/11)/(5/6*exp(1)-1/8) 9323764391802367 m005 (1/2*gamma-7/10)/(5/7*gamma+4) 9323764414888758 a008 Real Root of (2+2*x^2+3*x^3+2*x^4+4*x^5) 9323764466627431 a007 Real Root Of -840*x^4+32*x^3+835*x^2+900*x+774 9323764467137134 m002 -1+3/Pi^6+2/Pi^3 9323764469557322 m001 Rabbit*(Backhouse-PisotVijayaraghavan) 9323764519619103 a007 Real Root Of 825*x^4-418*x^3-125*x^2+124*x-738 9323764555819934 m001 (Lehmer-Riemann1stZero)/(cos(1/5*Pi)+Cahen) 9323764555848036 m001 GAMMA(23/24)*exp(GAMMA(13/24))/LambertW(1) 9323764559062195 m001 (GAMMA(2/3)-Psi(1,1/3))/Zeta(1,2) 9323764572465318 m001 (Psi(2,1/3)-arctan(1/2))/(-Pi^(1/2)+Salem) 9323764614350766 a001 4/7778742049*3^(13/24) 9323764617331129 r005 Im(z^2+c),c=-83/98+2/33*I,n=50 9323764624248022 a008 Real Root of (17+5*x-10*x^2-16*x^3) 9323764636321150 s002 sum(A021358[n]/((10^n+1)/n),n=1..infinity) 9323764674488327 a007 Real Root Of 872*x^4+130*x^3-116*x^2+506*x+19 9323764689022058 a007 Real Root Of 610*x^4-307*x^3+364*x^2+839*x-244 9323764690526038 a001 3524578/7*2^(8/9) 9323764738606466 a001 5/124*5778^(3/31) 9323764762580276 r005 Re(z^2+c),c=-31/34+7/51*I,n=31 9323764770400309 a007 Real Root Of 352*x^4-824*x^3-119*x^2+644*x-230 9323764790741748 r002 41th iterates of z^2 + 9323764834121754 a007 Real Root Of 14*x^4-421*x^3+75*x^2-296*x-693 9323764835771460 q001 3378/3623 9323764856808476 r005 Re(z^2+c),c=-1/94+19/53*I,n=28 9323764904079819 a007 Real Root Of 195*x^4-446*x^3+838*x^2+527*x-746 9323764924390008 a007 Real Root Of 444*x^4-17*x^3+998*x^2+652*x-609 9323764925500311 r005 Im(z^2+c),c=-31/114+41/46*I,n=5 9323764961600498 a007 Real Root Of -8*x^4-753*x^3-660*x^2+177*x+197 9323764968413693 m001 CareFree^(Landau/exp(1)) 9323764969485903 a007 Real Root Of -606*x^4-465*x^3-103*x^2+290*x+441 9323764984840949 r005 Re(z^2+c),c=-117/106+19/63*I,n=10 9323764999922234 r005 Re(z^2+c),c=3/34+11/21*I,n=39 9323765033017321 m002 -Pi^3/6+Pi^4+Tanh[Pi] 9323765066772338 a007 Real Root Of -277*x^4+870*x^3-654*x^2-650*x+877 9323765076549040 a007 Real Root Of 121*x^4-700*x^3-662*x^2+319*x+754 9323765093040992 m001 (MasserGramain-TreeGrowth2nd)/(ln(2)-Bloch) 9323765097149694 m005 (1/2*Pi+5/6)/(7/8*exp(1)+1/5) 9323765106578688 a007 Real Root Of 64*x^4+599*x^3+27*x^2-28*x-761 9323765118961778 a001 121393/5778*521^(38/39) 9323765131755447 a005 (1/sin(87/200*Pi))^216 9323765133520332 k002 Champernowne real with 64*n^2+122*n-177 9323765134124616 r002 27th iterates of z^2 + 9323765134847332 r002 55th iterates of z^2 + 9323765142748853 a007 Real Root Of -101*x^4-869*x^3+574*x^2-964*x+39 9323765150026416 h001 (2/11*exp(2)+4/5)/(5/8*exp(1)+3/5) 9323765151038853 m001 1/ln(Rabbit)^2*LaplaceLimit*sqrt(1+sqrt(3)) 9323765192365694 a005 (1/cos(5/146*Pi))^385 9323765193787098 m001 BesselI(1,2)/(gamma+GAMMA(5/6)) 9323765263458199 m005 (1/3*Zeta(3)-3/4)/(1/2*Catalan-1/12) 9323765267187901 a007 Real Root Of -194*x^4+525*x^3-323*x^2+73*x+921 9323765279680020 m001 (GAMMA(23/24)+Otter)/(Pi+GAMMA(5/6)) 9323765281627513 r009 Re(z^3+c),c=-5/29+41/61*I,n=58 9323765295558686 a007 Real Root Of -838*x^4+816*x^3+634*x^2-125*x+627 9323765296606438 r005 Im(z^2+c),c=-37/30+61/126*I,n=4 9323765302190443 r005 Im(z^2+c),c=-35/38+3/35*I,n=4 9323765312535917 a001 5/2207*24476^(7/50) 9323765322686877 r005 Re(z^2+c),c=-31/34+11/80*I,n=27 9323765341475265 r002 41i'th iterates of 2*x/(1-x^2) of 9323765357601499 a001 317811/15127*521^(38/39) 9323765364105363 a007 Real Root Of 969*x^4+880*x^3+954*x^2+39*x-812 9323765371697572 m001 (BesselI(0,1)-ln(3))/(KomornikLoreti+ZetaQ(3)) 9323765392418566 a001 832040/39603*521^(38/39) 9323765397498307 a001 46347/2206*521^(38/39) 9323765399184815 r004 Im(z^2+c),c=-3/26-1/19*I,z(0)=I,n=3 9323765400637760 a001 1346269/64079*521^(38/39) 9323765413936696 a001 514229/24476*521^(38/39) 9323765459414990 m003 6/5+Sqrt[5]/4+(3*E^(1/2+Sqrt[5]/2))/2 9323765475233221 m004 -3+130*Pi-5*Sqrt[5]*Pi+Cosh[Sqrt[5]*Pi] 9323765489450963 a001 196418/843*521^(23/39) 9323765505088963 a001 196418/9349*521^(38/39) 9323765516660100 m005 (4*Catalan-3/5)/(5*gamma+2/5) 9323765552559643 m001 GAMMA(19/24)*GaussKuzminWirsing+Stephens 9323765603867044 m001 (BesselK(0,1)-GAMMA(2/3))/(-CareFree+Niven) 9323765607686621 a001 843/121393*317811^(1/43) 9323765637504361 a007 Real Root Of 880*x^4-694*x^3-856*x^2+615*x+90 9323765684486082 a007 Real Root Of -8*x^4+441*x^3+302*x^2-134*x-489 9323765713788943 a007 Real Root Of 826*x^4-656*x^3-486*x^2+851*x+60 9323765729455903 r005 Re(z^2+c),c=31/94+1/56*I,n=7 9323765739405204 m001 MinimumGamma-Niven*OrthogonalArrays 9323765820953158 r005 Re(z^2+c),c=-19/21+9/58*I,n=51 9323765847575616 a007 Real Root Of 468*x^4-93*x^3+598*x^2+504*x-479 9323765853314909 a003 cos(Pi*11/112)-cos(Pi*38/77) 9323765868455886 r005 Im(z^2+c),c=-12/19+1/58*I,n=55 9323765894578600 b008 9/4+ExpIntegralEi[5/2] 9323765896612397 r002 54th iterates of z^2 + 9323765915834882 r005 Re(z^2+c),c=-79/94+8/39*I,n=27 9323765953196574 a007 Real Root Of 711*x^4+446*x^3+475*x^2+329*x-282 9323765953582994 a007 Real Root Of 843*x^4+785*x^3-43*x^2-95*x-52 9323765960330454 r005 Re(z^2+c),c=-2/27+46/63*I,n=63 9323765960716896 a007 Real Root Of -519*x^4+519*x^3+406*x^2-962*x-437 9323765969098177 m005 (1/3*2^(1/2)-1/4)/(4/5*exp(1)+1/5) 9323765970262900 r005 Im(z^2+c),c=-41/78+9/50*I,n=10 9323765970614640 m003 4+(257*Sqrt[5])/2048+E^(1/2+Sqrt[5]/2) 9323766038342633 r001 27i'th iterates of 2*x^2-1 of 9323766045775282 m005 (1/2*2^(1/2)-5/12)/(1/10*exp(1)-7/12) 9323766064458623 m001 Mills/(Champernowne-Riemann1stZero) 9323766085003976 a005 (1/cos(6/107*Pi))^586 9323766107046331 a007 Real Root Of 98*x^4-491*x^3+151*x^2-396*x+36 9323766122877698 r005 Im(z^2+c),c=-83/98+2/33*I,n=51 9323766126726660 a001 75025/2207*521^(35/39) 9323766129855939 a001 75025/3571*521^(38/39) 9323766133820392 k002 Champernowne real with 129/2*n^2+241/2*n-176 9323766159309833 a007 Real Root Of 642*x^4-287*x^3+482*x^2+609*x-569 9323766192246738 r005 Re(z^2+c),c=-109/122+7/58*I,n=44 9323766194959419 r002 2th iterates of z^2 + 9323766226073342 r002 42th iterates of z^2 + 9323766261362648 a001 2584/11*76^(17/20) 9323766271378586 m001 (HardyLittlewoodC4-KhinchinLevy)^Landau 9323766337338055 m008 (1/2*Pi^3-3/4)/(1/6*Pi^6-2) 9323766338777165 r009 Re(z^3+c),c=-11/70+29/50*I,n=26 9323766384803754 m001 Zeta(1,2)^(Ei(1)/KhinchinHarmonic) 9323766393584277 a001 75025/322*322^(23/36) 9323766539665664 a007 Real Root Of 581*x^4-310*x^3+136*x^2+376*x-458 9323766545012482 r005 Im(z^2+c),c=-19/18+1/97*I,n=24 9323766546315226 a007 Real Root Of 73*x^4-626*x^3-618*x^2+481*x+541 9323766599884004 m001 (BesselI(1,1)+MertensB3)/(Salem+Thue) 9323766615225163 a007 Real Root Of 277*x^4-958*x^3-324*x^2+796*x+38 9323766617304800 m001 (Zeta(5)+ln(3))/(BesselI(0,2)+Trott) 9323766629410961 a001 5/439204*3571^(41/50) 9323766659379423 r002 32th iterates of z^2 + 9323766683419135 r005 Re(z^2+c),c=-61/66+4/41*I,n=19 9323766700307324 a001 13/521*7^(21/31) 9323766703559006 a007 Real Root Of 657*x^4-516*x^3+277*x^2+465*x-722 9323766713133949 a007 Real Root Of 19*x^4-367*x^3+234*x^2-927*x+944 9323766720510441 r005 Re(z^2+c),c=-77/86+3/17*I,n=61 9323766723669664 r005 Im(z^2+c),c=-19/18+1/97*I,n=23 9323766731538999 m001 1/exp(GAMMA(3/4))^2*GolombDickman*sqrt(3) 9323766756815290 a001 610*322^(27/31) 9323766779776058 r002 31th iterates of z^2 + 9323766804439136 a007 Real Root Of -860*x^4+680*x^3+642*x^2-15*x+629 9323766832085498 a007 Real Root Of -416*x^4+994*x^3+458*x^2+43*x+762 9323766848015756 a007 Real Root Of 765*x^4-154*x^3-921*x^2-877*x-720 9323766867405873 a001 11/610*6557470319842^(11/21) 9323766868101695 a007 Real Root Of -941*x^4+869*x^3-252*x^2-938*x+760 9323766870120571 r005 Im(z^2+c),c=-15/14+3/28*I,n=23 9323766873942482 r002 19th iterates of z^2 + 9323766875892660 r005 Re(z^2+c),c=-1/22+36/43*I,n=27 9323766876010984 r002 36th iterates of z^2 + 9323766878392067 r005 Im(z^2+c),c=-19/18+1/97*I,n=28 9323766882366099 r002 35th iterates of z^2 + 9323766883402262 r005 Im(z^2+c),c=-19/18+1/97*I,n=27 9323766887563343 r002 40th iterates of z^2 + 9323766887855221 r002 39th iterates of z^2 + 9323766888074920 r005 Im(z^2+c),c=-19/18+1/97*I,n=34 9323766888088854 r005 Im(z^2+c),c=-19/18+1/97*I,n=32 9323766888099729 r002 44th iterates of z^2 + 9323766888100443 r005 Im(z^2+c),c=-19/18+1/97*I,n=31 9323766888100518 r005 Im(z^2+c),c=-19/18+1/97*I,n=33 9323766888110980 r002 43th iterates of z^2 + 9323766888113804 r005 Im(z^2+c),c=-19/18+1/97*I,n=38 9323766888117816 r005 Im(z^2+c),c=-19/18+1/97*I,n=37 9323766888120735 r002 48th iterates of z^2 + 9323766888120742 r005 Im(z^2+c),c=-19/18+1/97*I,n=42 9323766888121046 r002 47th iterates of z^2 + 9323766888121058 r005 Im(z^2+c),c=-19/18+1/97*I,n=41 9323766888121302 r005 Im(z^2+c),c=-19/18+1/97*I,n=46 9323766888121322 r005 Im(z^2+c),c=-19/18+1/97*I,n=45 9323766888121337 r002 54th iterates of z^2 + 9323766888121338 r005 Im(z^2+c),c=-19/18+1/97*I,n=50 9323766888121338 r002 53th iterates of z^2 + 9323766888121338 r002 52th iterates of z^2 + 9323766888121339 r002 51th iterates of z^2 + 9323766888121339 r005 Im(z^2+c),c=-19/18+1/97*I,n=49 9323766888121339 r002 58th iterates of z^2 + 9323766888121340 r002 57th iterates of z^2 + 9323766888121340 r005 Im(z^2+c),c=-19/18+1/97*I,n=54 9323766888121340 r005 Im(z^2+c),c=-19/18+1/97*I,n=53 9323766888121340 r002 62th iterates of z^2 + 9323766888121340 r002 61th iterates of z^2 + 9323766888121340 r005 Im(z^2+c),c=-19/18+1/97*I,n=58 9323766888121340 r005 Im(z^2+c),c=-19/18+1/97*I,n=57 9323766888121340 r005 Im(z^2+c),c=-19/18+1/97*I,n=62 9323766888121340 r005 Im(z^2+c),c=-19/18+1/97*I,n=61 9323766888121340 r005 Im(z^2+c),c=-19/18+1/97*I,n=63 9323766888121340 r005 Im(z^2+c),c=-19/18+1/97*I,n=64 9323766888121340 r005 Im(z^2+c),c=-19/18+1/97*I,n=59 9323766888121340 r005 Im(z^2+c),c=-19/18+1/97*I,n=60 9323766888121340 r002 63th iterates of z^2 + 9323766888121340 r005 Im(z^2+c),c=-19/18+1/97*I,n=55 9323766888121340 r002 64th iterates of z^2 + 9323766888121340 r005 Im(z^2+c),c=-19/18+1/97*I,n=56 9323766888121340 r002 59th iterates of z^2 + 9323766888121340 r002 60th iterates of z^2 + 9323766888121340 r005 Im(z^2+c),c=-19/18+1/97*I,n=51 9323766888121340 r005 Im(z^2+c),c=-19/18+1/97*I,n=52 9323766888121340 r002 55th iterates of z^2 + 9323766888121341 r002 56th iterates of z^2 + 9323766888121344 r005 Im(z^2+c),c=-19/18+1/97*I,n=47 9323766888121349 r005 Im(z^2+c),c=-19/18+1/97*I,n=48 9323766888121376 r002 49th iterates of z^2 + 9323766888121412 r005 Im(z^2+c),c=-19/18+1/97*I,n=43 9323766888121412 r002 50th iterates of z^2 + 9323766888121492 r005 Im(z^2+c),c=-19/18+1/97*I,n=44 9323766888122379 r005 Im(z^2+c),c=-19/18+1/97*I,n=39 9323766888123191 r002 45th iterates of z^2 + 9323766888123550 r005 Im(z^2+c),c=-19/18+1/97*I,n=40 9323766888125185 r002 46th iterates of z^2 + 9323766888131661 r005 Im(z^2+c),c=-19/18+1/97*I,n=35 9323766888143630 r005 Im(z^2+c),c=-19/18+1/97*I,n=36 9323766888175237 r002 41th iterates of z^2 + 9323766888234099 r002 42th iterates of z^2 + 9323766888710754 r005 Im(z^2+c),c=-19/18+1/97*I,n=29 9323766889312688 r005 Im(z^2+c),c=-19/18+1/97*I,n=30 9323766889381599 r002 37th iterates of z^2 + 9323766890768762 r002 38th iterates of z^2 + 9323766904256538 m002 -(Pi^2*Log[Pi])-Pi^6*Sech[Pi]+Tanh[Pi] 9323766913523539 r002 33th iterates of z^2 + 9323766917640885 r005 Im(z^2+c),c=-19/18+1/97*I,n=25 9323766921899602 a001 5/5778*9349^(13/50) 9323766923569402 a007 Real Root Of -742*x^4+995*x^3+436*x^2-337*x+674 9323766941660604 r002 34th iterates of z^2 + 9323766949448188 r005 Im(z^2+c),c=-19/18+1/97*I,n=26 9323766952437905 p001 sum((-1)^n/(361*n+113)/n/(2^n),n=1..infinity) 9323766953005876 a007 Real Root Of -522*x^4-462*x^3-289*x^2-11*x+261 9323766955266827 m001 (FellerTornier*GaussAGM-MertensB1)/GaussAGM 9323766959755667 a007 Real Root Of 616*x^4-159*x^3-602*x^2-770*x-789 9323766967154531 a007 Real Root Of 474*x^4-192*x^3+967*x^2+407*x-975 9323766986456927 p001 sum(1/(387*n+65)/n/(24^n),n=1..infinity) 9323766990859757 m001 (GAMMA(7/12)+PrimesInBinary)/(Pi-Shi(1)) 9323766997176373 a007 Real Root Of -696*x^4+687*x^3+892*x^2-321*x-507 9323766997488240 r005 Re(z^2+c),c=-9/10+39/226*I,n=17 9323767000214648 m004 4/9-Sinh[Sqrt[5]*Pi]/6 9323767074817665 r002 39th iterates of z^2 + 9323767094178580 b008 30*Pi+Sec[3] 9323767112824912 k007 concat of cont frac of 9323767116784445 a001 8/47*3571^(23/47) 9323767131040970 a007 Real Root Of -70*x^4-53*x^3-640*x^2-720*x-105 9323767132185285 m001 (Kolakoski-Rabbit)/(Artin-GlaisherKinkelin) 9323767134120452 k002 Champernowne real with 65*n^2+119*n-175 9323767184992866 a007 Real Root Of -819*x^4+637*x^3+720*x^2+286*x+776 9323767199847980 a007 Real Root Of -713*x^4-102*x^3-49*x^2+233*x+716 9323767223401002 a007 Real Root Of 574*x^4+534*x^3+513*x^2-339*x-763 9323767227142649 a001 5/3010349*64079^(39/50) 9323767263143573 m005 (1/2*Zeta(3)+5/12)/(1/8*3^(1/2)+7/8) 9323767273534511 m001 (cos(1)-exp(Pi))/(-Khinchin+MertensB1) 9323767333497744 r002 29th iterates of z^2 + 9323767355630701 a007 Real Root Of 481*x^4-460*x^3-154*x^2+407*x-223 9323767357029862 r005 Re(z^2+c),c=-1/94+19/53*I,n=27 9323767377127961 r009 Re(z^3+c),c=-9/122+27/31*I,n=31 9323767382468003 m002 -E^Pi/4+Pi^6-E^Pi*Coth[Pi] 9323767386829879 m001 (Pi*2^(1/2)/GAMMA(3/4)+cos(1/5*Pi))/PlouffeB 9323767393760223 a007 Real Root Of 599*x^4-535*x^3+898*x^2+932*x-798 9323767402996074 a007 Real Root Of -322*x^4+517*x^3+182*x^2-234*x+286 9323767406099789 a003 sin(Pi*13/80)-sin(Pi*17/86) 9323767409780014 r005 Im(z^2+c),c=-11/118+26/33*I,n=33 9323767421409216 p001 sum(1/(553*n+108)/(24^n),n=0..infinity) 9323767443280005 m002 -3+Pi^6-Pi^3/Log[Pi]+ProductLog[Pi] 9323767450525382 a007 Real Root Of 329*x^4-98*x^3+242*x^2+511*x-62 9323767473764211 a001 8/47*64079^(17/47) 9323767507213348 r005 Re(z^2+c),c=-29/32+5/33*I,n=61 9323767571228612 r009 Re(z^3+c),c=-19/90+27/41*I,n=13 9323767584853013 m009 (5/6*Psi(1,3/4)-1/5)/(3/5*Psi(1,1/3)-4) 9323767598498148 m001 (-GAMMA(19/24)+Riemann2ndZero)/(1+GAMMA(5/6)) 9323767616978782 a007 Real Root Of -321*x^4+737*x^3+963*x^2+692*x+648 9323767618576316 r002 4th iterates of z^2 + 9323767640288877 a008 Real Root of x^4-x^3-249*x^2+54*x+14396 9323767666366346 m001 LandauRamanujan2nd^(OneNinth/FeigenbaumB) 9323767709144224 m001 (ln(Pi)+sin(1/12*Pi))/(MasserGramain+Thue) 9323767709935229 r005 Im(z^2+c),c=-13/118+6/53*I,n=6 9323767741045126 r005 Im(z^2+c),c=-19/18+1/97*I,n=21 9323767761364026 a001 98209/2889*521^(35/39) 9323767765987609 a007 Real Root Of -943*x^4-127*x^3-267*x^2-742*x+150 9323767769207184 a007 Real Root Of -384*x^4+874*x^3-469*x^2-705*x+749 9323767770518673 r002 26th iterates of z^2 + 9323767770894612 a007 Real Root Of -968*x^4-177*x^3+384*x^2+270*x+506 9323767774479447 a007 Real Root Of -819*x^4+833*x^3-55*x^2-696*x+693 9323767790553050 m001 (-Grothendieck+Salem)/(Si(Pi)-Zeta(3)) 9323767817390439 r005 Re(z^2+c),c=41/118+7/33*I,n=11 9323767830188305 r002 30th iterates of z^2 + 9323767839415406 m005 (1/3*Zeta(3)+1/6)/(9/11*Zeta(3)-3/8) 9323767859082871 a007 Real Root Of -40*x^4+868*x^3-957*x^2-847*x+776 9323767875616071 a007 Real Root Of -737*x^4+874*x^3-16*x^2-321*x+980 9323767933848854 r001 26i'th iterates of 2*x^2-1 of 9323767955447530 m005 (1/2*Pi-7/9)/(4/5*Zeta(3)-1/9) 9323767979528863 a007 Real Root Of -371*x^4+420*x^3+654*x^2+832*x+828 9323767994925007 m001 (Cahen-FeigenbaumMu)/(FellerTornier-ZetaQ(3)) 9323767999854451 a001 514229/15127*521^(35/39) 9323768023061726 m005 (1/2*Catalan+2/7)/(3/5*exp(1)-5/6) 9323768034649736 a001 1346269/39603*521^(35/39) 9323768037715048 r005 Im(z^2+c),c=-11/14+8/191*I,n=25 9323768042863789 a001 2178309/64079*521^(35/39) 9323768051049706 r005 Im(z^2+c),c=-83/98+2/33*I,n=56 9323768056154405 a001 208010/6119*521^(35/39) 9323768066430097 r009 Im(z^3+c),c=-25/126+34/35*I,n=14 9323768069657230 a003 cos(Pi*6/67)*sin(Pi*30/71) 9323768071205163 a007 Real Root Of 578*x^4-333*x^3+744*x^2+732*x-671 9323768095763801 a007 Real Root Of 884*x^4-145*x^3-156*x^2+163*x-498 9323768131611642 a001 377*521^(20/39) 9323768134420512 k002 Champernowne real with 131/2*n^2+235/2*n-174 9323768138130892 a007 Real Root Of -153*x^4-64*x^3-74*x^2+504*x+598 9323768145803695 b008 8+Coth[SinIntegral[Pi/3]] 9323768147249646 a001 317811/9349*521^(35/39) 9323768177988568 a007 Real Root Of -500*x^4+442*x^3+108*x^2+107*x+742 9323768208577717 r002 6th iterates of z^2 + 9323768210195191 r002 39th iterates of z^2 + 9323768210695076 r005 Re(z^2+c),c=23/122+17/47*I,n=2 9323768222976259 r009 Re(z^3+c),c=-11/74+29/55*I,n=17 9323768234472733 m001 (ErdosBorwein-FeigenbaumKappa)/(Artin-Cahen) 9323768253008368 r005 Im(z^2+c),c=-79/82+31/55*I,n=3 9323768261560393 a007 Real Root Of 558*x^4-82*x^3-594*x^2-677*x-603 9323768306169174 a007 Real Root Of -88*x^4+878*x^3-558*x^2+696*x-809 9323768332962512 a007 Real Root Of 881*x^4+486*x^3+321*x^2-413*x-936 9323768377089407 m005 (1/2*3^(1/2)+8/11)/(11/12*gamma-7/10) 9323768381578290 a007 Real Root Of 281*x^4-918*x^3+365*x^2+551*x-760 9323768413691435 a003 sin(Pi*9/40)/cos(Pi*27/106) 9323768492738664 a007 Real Root Of 34*x^4-978*x^3-608*x^2+712*x+374 9323768499908963 r005 Re(z^2+c),c=-61/114+3/5*I,n=44 9323768514768512 r005 Im(z^2+c),c=33/94+17/38*I,n=13 9323768520606088 m001 Thue/(QuadraticClass-Psi(1,1/3)) 9323768525603979 a007 Real Root Of 62*x^4+600*x^3+232*x^2+189*x-634 9323768550681877 r008 a(0)=0,K{-n^6,-30-28*n+58*n^2+11*n^3} 9323768560428867 a007 Real Root Of -35*x^4+67*x^3-494*x^2+807*x-71 9323768563398410 a007 Real Root Of 509*x^4+472*x^3-32*x^2-285*x-240 9323768565555602 l006 ln(8299/9110) 9323768566266621 m005 (1/3*Catalan-2/3)/(11/12*gamma-11/12) 9323768572848009 r001 39i'th iterates of 2*x^2-1 of 9323768575672883 m001 1/Zeta(3)^2/exp(Catalan)^2*sin(1) 9323768595387288 a007 Real Root Of -827*x^4-22*x^3+290*x^2-783*x-375 9323768672777595 r005 Im(z^2+c),c=-19/18+1/97*I,n=22 9323768679950467 p001 sum(1/(355*n+112)/(6^n),n=0..infinity) 9323768696257794 b008 Log[94/37] 9323768696257794 l003 polylog(1,57/94) 9323768696257794 l006 ln(37/94) 9323768731791276 a007 Real Root Of 502*x^4-81*x^3+292*x^2-146*x-835 9323768732187463 b008 Cos[27/73] 9323768747732485 r009 Im(z^3+c),c=-17/78+14/15*I,n=55 9323768755477902 m001 BesselK(1,1)/(Weierstrass^sin(1/5*Pi)) 9323768764799198 a007 Real Root Of -455*x^4+851*x^3+858*x^2+499*x+753 9323768767042579 h001 (3/7*exp(1)+3/4)/(3/7*exp(1)+8/9) 9323768768034243 a007 Real Root Of -425*x^4+583*x^3-220*x^2-577*x+447 9323768768496484 a001 121393/2207*521^(32/39) 9323768771625763 a001 121393/3571*521^(35/39) 9323768782015514 a007 Real Root Of 469*x^4-89*x^3+123*x^2-37*x-568 9323768801125526 a008 Real Root of (10+9*x+14*x^2+17*x^3) 9323768807277652 m004 18*Sqrt[5]*Pi*Cos[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 9323768810023968 r002 14th iterates of z^2 + 9323768813819664 r005 Re(z^2+c),c=-31/34+14/55*I,n=43 9323768829845456 m001 1/Riemann2ndZero^2*Artin^2*exp(cos(1))^2 9323768863587754 r005 Im(z^2+c),c=-7/6+5/41*I,n=53 9323768875908495 r005 Re(z^2+c),c=-89/106+5/24*I,n=23 9323768906904207 r005 Im(z^2+c),c=-23/34+10/87*I,n=21 9323768925008617 r005 Re(z^2+c),c=-51/52+14/55*I,n=28 9323768938484925 r005 Re(z^2+c),c=-55/62+7/51*I,n=36 9323768959161182 m005 (1/2*2^(1/2)+1/4)/(1/12*exp(1)+4/5) 9323768985778972 r009 Im(z^3+c),c=-19/118+46/51*I,n=57 9323769000507345 a007 Real Root Of 424*x^4-130*x^3+73*x^2+913*x+362 9323769021694028 r001 36i'th iterates of 2*x^2-1 of 9323769027081191 m001 ln((3^(1/3)))^2*CareFree*Pi^2 9323769036953447 m001 (exp(Pi)+Chi(1))/(HardHexagonsEntropy+Salem) 9323769046952177 r005 Re(z^2+c),c=17/114+6/29*I,n=12 9323769129871138 a007 Real Root Of -684*x^4-759*x^3-425*x^2+609*x+839 9323769134720572 k002 Champernowne real with 66*n^2+116*n-173 9323769140738859 a007 Real Root Of -816*x^4+545*x^3+426*x^2-398*x+317 9323769141310765 m001 1/Magata^2/exp(FeigenbaumAlpha)*GAMMA(1/12)^2 9323769145459905 m005 (1/3*2^(1/2)+1/2)/(4*exp(1)-5/11) 9323769153208659 r005 Re(z^2+c),c=7/102+24/49*I,n=48 9323769174744562 a001 322/1597*832040^(9/32) 9323769224869066 a001 2584/29*11^(47/48) 9323769269353792 r005 Re(z^2+c),c=11/90+26/49*I,n=25 9323769274752737 m001 (Landau-ZetaQ(3))/(Zeta(3)-ln(Pi)) 9323769299632031 a003 cos(Pi*10/61)/sin(Pi*41/107) 9323769305707156 m005 (1/2*Pi+1/8)/(4/5*Zeta(3)+6/7) 9323769328255499 m005 (1/3*gamma+2/9)/(4/11*Catalan-7/9) 9323769337753391 r002 3th iterates of z^2 + 9323769340491603 a007 Real Root Of -105*x^4-888*x^3+858*x^2-17*x-991 9323769350323299 m001 (Lehmer+TreeGrowth2nd)/(cos(1)+LambertW(1)) 9323769350600668 m001 (Pi*csc(5/12*Pi)/GAMMA(7/12))^Otter-gamma(2) 9323769357382213 a007 Real Root Of 691*x^4-20*x^3-284*x^2-67*x-354 9323769364198829 m001 ln(Sierpinski)/ArtinRank2/Zeta(1/2) 9323769411963914 m003 13/4+(3*Sqrt[5])/64-Sinh[1/2+Sqrt[5]/2] 9323769517870199 a007 Real Root Of -24*x^4-169*x^3+475*x^2-246*x+807 9323769529660722 r009 Re(z^3+c),c=-17/110+31/55*I,n=30 9323769539726789 r009 Im(z^3+c),c=-71/126+32/55*I,n=8 9323769542971745 a001 41/726103*2584^(3/47) 9323769563170872 a007 Real Root Of -927*x^4-815*x^3-952*x^2-450*x+448 9323769575301431 m001 (CopelandErdos+Porter)/(GAMMA(5/6)+ArtinRank2) 9323769584582553 a007 Real Root Of -684*x^4-841*x^3-639*x^2+440*x+801 9323769627549940 a007 Real Root Of 180*x^4-901*x^3-238*x^2+319*x-362 9323769630887604 a007 Real Root Of 869*x^4+566*x^3+221*x^2+191*x-212 9323769648534091 r005 Re(z^2+c),c=1/4+22/35*I,n=9 9323769652153979 a003 cos(Pi*5/67)-cos(Pi*19/39) 9323769679884052 a007 Real Root Of -177*x^4+784*x^3+521*x^2-538*x-453 9323769691992335 a007 Real Root Of -116*x^4+854*x^3+357*x^2-924*x-392 9323769712068542 a007 Real Root Of -605*x^4+515*x^3+421*x^2-79*x+435 9323769720592420 a007 Real Root Of 590*x^4-871*x^3-212*x^2+317*x-672 9323769749480259 m005 (1/3*2^(1/2)+4)/(1/4*exp(1)-1/5) 9323769793395943 r005 Re(z^2+c),c=-15/14+35/124*I,n=18 9323769804696518 m002 -2/3-Pi+Pi^4*Tanh[Pi] 9323769817556002 m001 (Kac+Riemann2ndZero)/(AlladiGrinstead-gamma) 9323769837842208 a007 Real Root Of -875*x^4-771*x^3-293*x^2-88*x+209 9323769867580278 m005 (1/2*2^(1/2)-3/5)/(6/7*Catalan+4/11) 9323769875009752 a007 Real Root Of 838*x^4-765*x^3+195*x^2+889*x-594 9323769901527293 a003 cos(Pi*9/113)*sin(Pi*40/97) 9323769953640516 a007 Real Root Of -146*x^4+163*x^3-869*x^2-105*x+900 9323769953911056 b008 1/2+(3+E)*Cosh[1] 9323769964437981 a007 Real Root Of 292*x^4-284*x^3+165*x^2+99*x-502 9323769973867845 m008 (5/6*Pi-4/5)/(2*Pi^4+1/6) 9323769994279938 a007 Real Root Of 309*x^4-738*x^3-355*x^2+605*x+41 9323770034877895 m001 (3^(1/2)+3^(1/3))/(Zeta(1,-1)+FeigenbaumMu) 9323770062035160 m001 Psi(1,1/3)/(FeigenbaumKappa^MertensB1) 9323770068818362 m001 FeigenbaumB/ln(HardHexagonsEntropy)/GAMMA(1/3) 9323770083969246 r005 Im(z^2+c),c=-65/82+9/34*I,n=9 9323770091189384 r008 a(0)=9,K{-n^6,-17-2*n^3+11*n} 9323770094713211 a007 Real Root Of -62*x^4+783*x^3-695*x^2-951*x+399 9323770097596663 r005 Im(z^2+c),c=-29/60+9/56*I,n=28 9323770116398733 m001 (Psi(1,1/3)+Ei(1))/(GolombDickman+Robbin) 9323770126323762 a007 Real Root Of -358*x^4+869*x^3+559*x^2-388*x-558 9323770135020632 k002 Champernowne real with 133/2*n^2+229/2*n-172 9323770164970744 r005 Re(z^2+c),c=-19/28+17/48*I,n=25 9323770165292172 r002 24th iterates of z^2 + 9323770189679452 a007 Real Root Of 80*x^4+737*x^3-163*x^2-846*x-933 9323770205961171 a007 Real Root Of 189*x^4-447*x^3+283*x^2+456*x-326 9323770229320436 a007 Real Root Of -360*x^4+80*x^3+121*x^2+262*x+476 9323770336470007 h001 (-12*exp(4)-10)/(-4*exp(3)+9) 9323770342045587 m005 (1/3*exp(1)-2/5)/(5/11*Pi+4) 9323770379166853 m001 1/exp(Zeta(5))*GAMMA(5/12)/cos(Pi/5) 9323770403525348 a001 105937/1926*521^(32/39) 9323770406577923 r005 Im(z^2+c),c=-6/5+21/107*I,n=20 9323770412074751 a001 28657/1364*521^(38/39) 9323770431114458 l006 ln(5884/6459) 9323770469571980 h001 (7/8*exp(1)+4/5)/(4/9*exp(2)+1/8) 9323770485463685 r001 26i'th iterates of 2*x^2-1 of 9323770491803278 q001 455/488 9323770491803278 r002 2th iterates of z^2 + 9323770548350067 a007 Real Root Of -920*x^4+629*x^3+960*x^2+363*x+709 9323770554685778 a001 121393/18*29^(39/50) 9323770563551315 r005 Re(z^2+c),c=11/50+27/61*I,n=44 9323770569157984 h001 (-3*exp(3)-9)/(-11*exp(2)+7) 9323770585510848 r002 2th iterates of z^2 + 9323770587443635 a007 Real Root Of 740*x^4+131*x^3-189*x^2-233*x-506 9323770590014226 m001 (arctan(1/2)-GAMMA(7/12))/(MertensB2+OneNinth) 9323770627152691 a003 sin(Pi*11/27)*sin(Pi*26/61) 9323770634605654 m005 (1/2*gamma+4/5)/(59/198+7/18*5^(1/2)) 9323770642072893 a001 832040/15127*521^(32/39) 9323770661948297 m001 (Catalan-exp(Pi))/(ln(3)+GAMMA(17/24)) 9323770676876512 a001 726103/13201*521^(32/39) 9323770678368394 r002 59th iterates of z^2 + 9323770689314841 a007 Real Root Of -734*x^4+976*x^3-229*x^2-904*x+702 9323770698386331 a001 1346269/24476*521^(32/39) 9323770704429512 a001 5/15251*843^(26/31) 9323770766059839 r009 Im(z^3+c),c=-17/78+14/15*I,n=61 9323770768561949 a007 Real Root Of -328*x^4+480*x^3+687*x^2-581*x-502 9323770771771573 r002 25th iterates of z^2 + 9323770773865380 a001 514229/843*521^(17/39) 9323770782109841 a007 Real Root Of -342*x^4+476*x^3+75*x^2+304*x-476 9323770789503389 a001 514229/9349*521^(32/39) 9323770794927424 m001 (gamma+Catalan)/(BesselI(1,2)+Trott) 9323770818970866 a007 Real Root Of 932*x^4+14*x^3+841*x^2+457*x-998 9323770852292024 r009 Re(z^3+c),c=-1/64+31/54*I,n=18 9323770856998772 a001 29/86267571272*3^(13/14) 9323770871220069 r002 14th iterates of z^2 + 9323770884390768 m001 Catalan^(Gompertz/RenyiParking) 9323770894876588 r005 Im(z^2+c),c=-91/74+4/39*I,n=64 9323770898482545 m001 Porter^2*LandauRamanujan^2/exp(Riemann2ndZero) 9323770912783813 a007 Real Root Of 792*x^4+28*x^3+690*x^2+197*x-992 9323771020617064 a007 Real Root Of -124*x^4+809*x^3+720*x^2-489*x-732 9323771043581113 a007 Real Root Of -750*x^4+709*x^3+715*x^2+176*x+684 9323771045795514 r005 Re(z^2+c),c=-1/94+19/53*I,n=25 9323771087332125 m001 GAMMA(7/24)^2*GAMMA(2/3)^2*exp(Pi)^2 9323771135320692 k002 Champernowne real with 67*n^2+113*n-171 9323771158364406 a007 Real Root Of -673*x^4+144*x^3+527*x^2+476*x+611 9323771161953735 a007 Real Root Of -369*x^4+997*x^3-218*x^2+277*x-598 9323771203908667 m005 (1/2*2^(1/2)-4)/(1/10*exp(1)-5/8) 9323771205782724 r009 Im(z^3+c),c=-3/19+55/62*I,n=7 9323771212096483 m001 1/GAMMA(11/12)*Conway*ln(GAMMA(5/12)) 9323771218901380 a007 Real Root Of 951*x^4+350*x^3+269*x^2-131*x-791 9323771251584725 a007 Real Root Of -686*x^4+152*x^3-761*x^2-707*x+644 9323771272810553 a003 sin(Pi*1/56)+sin(Pi*17/50) 9323771286814849 r005 Re(z^2+c),c=-10/11+5/19*I,n=3 9323771307630429 h001 (3/10*exp(2)+1/2)/(3/8*exp(2)+1/7) 9323771324302735 r005 Im(z^2+c),c=-15/22+23/117*I,n=4 9323771336182175 r009 Im(z^3+c),c=-17/78+14/15*I,n=49 9323771355913924 a007 Real Root Of 873*x^4-623*x^3-487*x^2-94*x-829 9323771366135970 a007 Real Root Of -165*x^4+786*x^3-31*x^2-492*x+330 9323771375879521 r005 Im(z^2+c),c=-31/27+5/42*I,n=46 9323771395059237 m001 MertensB2^ln(2^(1/2)+1)-ReciprocalLucas 9323771410899766 a001 196418/2207*521^(29/39) 9323771414029046 a001 196418/3571*521^(32/39) 9323771422962858 a001 2/271443*3^(3/14) 9323771424636422 m004 -4-Sqrt[5]*Pi+500/(Pi*ProductLog[Sqrt[5]*Pi]) 9323771451958812 a007 Real Root Of 387*x^4+13*x^3+600*x^2+7*x-797 9323771492868850 m001 (arctan(1/2)+GAMMA(17/24))/(Pi-BesselI(0,1)) 9323771502285908 a007 Real Root Of -767*x^4+759*x^3+986*x^2-256*x+99 9323771537691147 a007 Real Root Of 728*x^4-301*x^3-571*x^2-26*x-322 9323771551013401 b008 1/4+Coth[ArcCot[9]] 9323771553061974 m005 (1/2*Pi+4/11)/(8/9*Pi-3) 9323771557621820 a007 Real Root Of -998*x^4+616*x^3+939*x^2-544*x-70 9323771612000391 m005 (1/3*gamma-1/2)/(3/4*3^(1/2)+2) 9323771616744239 a007 Real Root Of 559*x^4+490*x^3+628*x^2-166*x-726 9323771665840857 m001 1/Bloch^2*Artin/ln(GAMMA(7/12))^2 9323771673120089 a007 Real Root Of -465*x^4+889*x^3+793*x^2-479*x-64 9323771708138570 a007 Real Root Of -541*x^4-131*x^3-322*x^2-775*x-140 9323771710083239 r005 Re(z^2+c),c=-95/106+25/63*I,n=3 9323771721433791 a007 Real Root Of -567*x^4+849*x^3+74*x^2-853*x+257 9323771769781458 a007 Real Root Of 197*x^4+166*x^3+291*x^2-596*x-823 9323771785457097 r005 Im(z^2+c),c=-31/60+23/58*I,n=7 9323771804759518 a007 Real Root Of -690*x^4-120*x^3+635*x^2+801*x+619 9323771843774392 a007 Real Root Of -549*x^4+626*x^3+529*x^2-467*x+27 9323771856538922 m005 (37/60+5/12*5^(1/2))/(3/4*2^(1/2)+3/5) 9323771858675281 r005 Re(z^2+c),c=13/42+5/13*I,n=62 9323771861947020 s002 sum(A252572[n]/((3*n)!),n=1..infinity) 9323771924147559 m001 (ln(gamma)+Landau)/(LaplaceLimit+Trott) 9323771939761208 a007 Real Root Of 149*x^4-2*x^3-435*x^2-977*x-647 9323771972816886 a001 1/126*(1/2*5^(1/2)+1/2)^28*18^(4/23) 9323771992779078 m005 (1/2*Catalan-4/11)/(7/9*5^(1/2)-8/11) 9323772016135314 m001 (Ei(1)+3^(1/3))/(ArtinRank2-Robbin) 9323772044116100 r005 Re(z^2+c),c=9/98+23/45*I,n=28 9323772075916152 b008 Root[4-#1+7*#1^5&,1,0] 9323772081034041 m001 1/exp(Zeta(5))^2/Niven^2/arctan(1/2) 9323772082942193 m001 BesselI(0,1)*sin(1)^(Pi^(1/2)) 9323772082942193 m001 BesselI(0,1)*sin(1)^sqrt(Pi) 9323772101485761 r005 Re(z^2+c),c=-37/34+16/115*I,n=36 9323772131717922 a007 Real Root Of -931*x^4-98*x^3+43*x^2+248*x+818 9323772135620752 k002 Champernowne real with 135/2*n^2+223/2*n-170 9323772189383625 a007 Real Root Of -770*x^4-684*x^3-43*x^2+575*x+601 9323772204050991 m001 1/GAMMA(7/24)^2/PrimesInBinary/exp(Zeta(9)) 9323772219333981 r002 6th iterates of z^2 + 9323772292646918 r002 2th iterates of z^2 + 9323772309711226 a007 Real Root Of 417*x^4+933*x^3+632*x^2-892*x-940 9323772320211897 m001 LandauRamanujan*exp(CareFree)^2/FeigenbaumC^2 9323772343985073 m001 (Zeta(5)+BesselI(1,1))/(1-exp(1)) 9323772378164492 a007 Real Root Of -105*x^4-991*x^3-24*x^2+739*x-753 9323772387122485 r002 52th iterates of z^2 + 9323772392585966 m001 (Si(Pi)+FeigenbaumC)/(Landau+Magata) 9323772422257752 a007 Real Root Of 238*x^4-822*x^3+92*x^2+28*x-900 9323772476389977 a001 2207/34*5^(9/40) 9323772481487712 a007 Real Root Of 65*x^4+560*x^3-359*x^2+626*x-276 9323772515457548 m001 1/ln(Zeta(3))*Kolakoski^2*exp(1) 9323772523479424 s002 sum(A072992[n]/(n^3*10^n+1),n=1..infinity) 9323772525784700 r005 Re(z^2+c),c=19/54+4/29*I,n=14 9323772551265142 m001 (CareFree-ZetaQ(3))/(Ei(1)+2*Pi/GAMMA(5/6)) 9323772557270274 a003 sin(Pi*1/54)-sin(Pi*26/57) 9323772601279675 a007 Real Root Of -954*x^4+72*x^3-221*x^2-230*x+757 9323772603693285 a007 Real Root Of -398*x^4+826*x^3+661*x^2-981*x-519 9323772609522963 r005 Im(z^2+c),c=-139/122+2/17*I,n=51 9323772618205503 a007 Real Root Of -225*x^4+330*x^3-75*x^2-714*x-163 9323772626361746 a001 377/843*3010349^(2/3) 9323772626362432 a001 377/843*9062201101803^(1/3) 9323772631946919 a001 377/843*39603^(31/33) 9323772655089284 a007 Real Root Of -91*x^4+641*x^3+70*x^2+288*x+796 9323772750311340 a003 sin(Pi*26/93)/sin(Pi*17/55) 9323772766398887 a007 Real Root Of -368*x^4-164*x^3-418*x^2+788*x+77 9323772781990802 a007 Real Root Of 742*x^4+925*x^3+446*x^2-336*x-512 9323772786416712 b008 1/3+ArcCot[2]^(2/3) 9323772786416712 m001 arctan(1/2)^(2/3)+1/3 9323772859501732 a007 Real Root Of 106*x^4-567*x^3+242*x^2-134*x-875 9323772891055661 a007 Real Root Of 208*x^4-984*x^3-207*x^2+195*x-593 9323772904382280 r002 3th iterates of z^2 + 9323772924670206 m001 1/GAMMA(11/24)*exp(Rabbit)/GAMMA(5/6) 9323772978043914 a005 (1/cos(19/225*Pi))^386 9323773002841356 m001 (Backhouse+LandauRamanujan)/(Niven-Porter) 9323773026516309 a007 Real Root Of -85*x^4-750*x^3+322*x^2-721*x-250 9323773045779731 a001 514229/5778*521^(29/39) 9323773051165588 a001 11592/341*521^(35/39) 9323773065894694 m001 (Robbin-Sierpinski)/(Zeta(5)+GAMMA(23/24)) 9323773075605953 m002 -Pi^5/5+Pi^10*Tanh[Pi] 9323773092566254 a003 cos(Pi*16/103)/sin(Pi*21/53) 9323773135881561 r005 Re(z^2+c),c=-5/86+20/43*I,n=4 9323773135920812 k002 Champernowne real with 68*n^2+110*n-169 9323773147559703 a007 Real Root Of -558*x^4-64*x^3+788*x^2+899*x+523 9323773163635516 a007 Real Root Of -68*x^4+239*x^3-370*x^2+307*x+853 9323773166389187 a007 Real Root Of 219*x^4-984*x^3-682*x^2+681*x+590 9323773209776547 m002 -Pi+3*Csch[Pi]-6*ProductLog[Pi] 9323773211211996 a007 Real Root Of -845*x^4-727*x^3-879*x^2-836*x+34 9323773246846387 g001 GAMMA(8/9,11/104) 9323773257505755 r002 45th iterates of z^2 + 9323773261997948 r005 Im(z^2+c),c=-25/42+7/53*I,n=6 9323773263834924 m001 LambertW(1)^Champernowne 9323773284305551 a001 1346269/15127*521^(29/39) 9323773299591353 a007 Real Root Of 289*x^4-339*x^3+416*x^2+328*x-549 9323773312506291 r009 Re(z^3+c),c=-4/27+20/37*I,n=7 9323773317875080 a007 Real Root Of -314*x^4+276*x^3-422*x^2-490*x+371 9323773340613861 a001 2178309/24476*521^(29/39) 9323773343352244 r005 Re(z^2+c),c=-23/26+9/62*I,n=22 9323773347207391 a007 Real Root Of -874*x^4+250*x^3-440*x^2-508*x+772 9323773393954661 a007 Real Root Of -178*x^4+515*x^3-738*x^2-510*x+718 9323773416084608 a001 832040/843*521^(14/39) 9323773429948731 r002 25th iterates of z^2 + 9323773431722621 a001 832040/9349*521^(29/39) 9323773474675717 a007 Real Root Of -414*x^4-258*x^3+209*x^2+903*x+764 9323773485724824 a007 Real Root Of 885*x^4+826*x^3+499*x^2+235*x-214 9323773510858875 a007 Real Root Of 172*x^4-866*x^3+4*x^2+985*x+83 9323773513217505 a007 Real Root Of 861*x^4-867*x^3-62*x^2+776*x-576 9323773513661905 m001 Ei(1,1)^(2^(1/3))/((3^(1/3))^(2^(1/3))) 9323773524062595 a007 Real Root Of -882*x^4+325*x^3-81*x^2-423*x+606 9323773534051934 a007 Real Root Of 400*x^4-243*x^3-409*x^2-173*x-305 9323773549229427 r002 35th iterates of z^2 + 9323773550623515 r002 25th iterates of z^2 + 9323773550623515 r002 25th iterates of z^2 + 9323773552712705 m001 (polylog(4,1/2)+Kac)/(3^(1/2)-ln(5)) 9323773598103317 a003 sin(Pi*47/114)*sin(Pi*37/88) 9323773610739674 r002 33th iterates of z^2 + 9323773637315129 r005 Re(z^2+c),c=-19/30+85/117*I,n=3 9323773710172989 m001 ln(2+3^(1/2))-Stephens^(3^(1/2)) 9323773719427015 r005 Im(z^2+c),c=-157/114+2/25*I,n=16 9323773737424040 r005 Re(z^2+c),c=-19/30+49/78*I,n=5 9323773737452949 m001 LaplaceLimit*exp(Artin)^2/GAMMA(3/4)^2 9323773750166296 a007 Real Root Of -82*x^4+62*x^3-168*x^2+4*x+262 9323773780591758 m001 (Bloch+Mills)/(ln(2^(1/2)+1)+GAMMA(23/24)) 9323773787001740 m001 1/Zeta(1/2)^2*OneNinth^2/exp(log(1+sqrt(2)))^2 9323773797956681 m008 (3/4*Pi^5-2)/(4/5*Pi^5-4/5) 9323773832790972 b008 ArcTan[1/15-Sqrt[2]] 9323773838905941 r009 Im(z^3+c),c=-3/38+20/21*I,n=6 9323773839015204 a007 Real Root Of 522*x^4-739*x^3-366*x^2+306*x-390 9323773871494207 m001 (QuadraticClass-Tribonacci)/(Zeta(5)+gamma(2)) 9323773876293133 a007 Real Root Of 786*x^4+995*x^3+183*x^2-142*x-79 9323773886233171 a001 144*322^(13/18) 9323773892860297 a007 Real Root Of 94*x^4+795*x^3-676*x^2+765*x-107 9323773920254384 a007 Real Root Of 250*x^4-507*x^3-738*x^2-537*x-459 9323773921656375 r009 Im(z^3+c),c=-2/13+19/21*I,n=35 9323773961355644 l005 561/61/(exp(561/61)-1) 9323773965138749 m005 (1/2*3^(1/2)+5/11)/(5/11*Catalan+1) 9323773990847619 r002 3th iterates of z^2 + 9323774011232773 a007 Real Root Of 690*x^4-71*x^3+672*x^2+219*x-959 9323774023799566 a007 Real Root Of -941*x^4+409*x^3+121*x^2-141*x+806 9323774053062123 a001 317811/2207*521^(2/3) 9323774056191404 a001 317811/3571*521^(29/39) 9323774070186880 p001 sum(1/(599*n+109)/(10^n),n=0..infinity) 9323774074890267 m005 (1/2*Pi+1/3)/(9/11*exp(1)-2/11) 9323774075159293 m001 exp(1)^2/ln(cos(1))*log(1+sqrt(2))^2 9323774136220872 k002 Champernowne real with 137/2*n^2+217/2*n-168 9323774142172809 a007 Real Root Of 77*x^4+672*x^3-357*x^2+558*x-991 9323774160994418 m001 (Chi(1)+GAMMA(23/24))/(Cahen+FeigenbaumKappa) 9323774188469805 a007 Real Root Of 641*x^4+243*x^3+840*x^2+596*x-462 9323774196361289 a007 Real Root Of -173*x^4-345*x^3-647*x^2-391*x+49 9323774213827573 a007 Real Root Of -578*x^4+612*x^3+769*x^2-749*x-434 9323774227172914 r009 Re(z^3+c),c=-15/118+17/44*I,n=9 9323774238747498 a007 Real Root Of 969*x^4+889*x^3+259*x^2+327*x+68 9323774245530160 r009 Im(z^3+c),c=-17/31+14/23*I,n=59 9323774256288156 a007 Real Root Of 13*x^4+119*x^3+88*x^2+981*x-294 9323774273787940 r002 19th iterates of z^2 + 9323774410722537 m001 (Psi(2,1/3)-ZetaP(2))^GAMMA(5/6) 9323774437738228 a007 Real Root Of 743*x^4-446*x^3+429*x^2+400*x-923 9323774437792824 a007 Real Root Of 532*x^4-584*x^3-788*x^2-671*x-816 9323774477901950 m001 GAMMA(19/24)*ln(GAMMA(11/12))^2*exp(1) 9323774500081819 a007 Real Root Of 416*x^4+505*x^3+981*x^2+135*x-632 9323774506729339 a007 Real Root Of 668*x^4-387*x^3-848*x^2+365*x+259 9323774541566567 m005 (1/2*Zeta(3)-5)/(6*Catalan-7/9) 9323774542962250 m001 (exp(Pi)-gamma)/(Niven+TravellingSalesman) 9323774577976794 a007 Real Root Of 303*x^4-475*x^3+596*x^2+649*x-527 9323774622364958 a008 Real Root of (-1+x-x^2-x^3+x^7+x^8+x^9+x^11-x^12) 9323774624379042 a007 Real Root Of -510*x^4+532*x^3+973*x^2+113*x-997 9323774641627336 r005 Im(z^2+c),c=-91/82+6/53*I,n=21 9323774657404453 m001 (gamma(3)+Artin)/(Kac+Magata) 9323774677274325 g006 Psi(1,7/11)-Psi(1,5/12)-Psi(1,9/11)-Psi(1,3/5) 9323774678195965 r005 Re(z^2+c),c=-3/29+38/59*I,n=37 9323774690550398 a007 Real Root Of -77*x^4-735*x^3-266*x^2-938*x+543 9323774703214729 m001 (BesselI(1,1)-LaplaceLimit)/(Zeta(5)-gamma(2)) 9323774707554169 g006 Psi(1,6/7)+Psi(1,2/7)-Psi(1,1/10)-Psi(1,2/5) 9323774768246892 m001 ln(2)^(Champernowne/MasserGramain) 9323774800324802 a007 Real Root Of 553*x^4-708*x^3-906*x^2-23*x+965 9323774803368900 h001 (-2*exp(1/3)-3)/(-8*exp(2)-3) 9323774805136741 m001 GAMMA(1/4)^2*GolombDickman^2/ln(gamma) 9323774819546887 a007 Real Root Of 455*x^4-368*x^3+178*x^2+268*x-547 9323774825131027 a007 Real Root Of -581*x^4+950*x^3+789*x^2+343*x+843 9323774832134667 r002 6th iterates of z^2 + 9323774834987708 h001 (9/11*exp(2)+5/7)/(9/10*exp(2)+3/5) 9323774835233146 r005 Re(z^2+c),c=7/16+21/46*I,n=4 9323774842162079 r002 55th iterates of z^2 + 9323774865888708 a007 Real Root Of -993*x^4-382*x^3+802*x^2-405*x-634 9323774871306954 a007 Real Root Of 636*x^4-682*x^3-366*x^2-63*x-774 9323774878327577 m001 1/GAMMA(1/6)/GAMMA(1/4)*ln(cosh(1))^2 9323774891480952 m001 Salem*exp(GlaisherKinkelin)^2/GAMMA(13/24) 9323774894150622 l006 ln(3469/3808) 9323774927123778 m001 (cos(1)-ln(3))/(Zeta(1,-1)+LandauRamanujan) 9323774949201975 s001 sum(exp(-3*Pi/4)^n*A137382[n],n=1..infinity) 9323774960441776 m005 (2/5*gamma+1/6)/(4*Catalan+3/5) 9323775003673199 a007 Real Root Of -991*x^4+244*x^3-478*x^2-795*x+621 9323775014314279 a007 Real Root Of 731*x^4-532*x^3-668*x^2-73*x-471 9323775020523768 a003 cos(Pi*4/79)*sin(Pi*35/89) 9323775026300025 s002 sum(A074168[n]/((exp(n)+1)*n),n=1..infinity) 9323775070802579 m002 -6-E^Pi+4/Pi^3+Pi^6 9323775078060046 r005 Re(z^2+c),c=-11/114+41/56*I,n=4 9323775124142711 m001 ln(3)*Ei(1,1)/Sierpinski 9323775130120002 a003 sin(Pi*4/33)+sin(Pi*18/95) 9323775136520932 k002 Champernowne real with 69*n^2+107*n-167 9323775154737228 a007 Real Root Of -218*x^4+52*x^3-328*x^2-310*x+203 9323775195549676 m005 (1/2*Pi-1/9)/(2/7*Zeta(3)-1/2) 9323775205730757 r005 Im(z^2+c),c=-22/15+13/64*I,n=4 9323775259109341 m001 (2^(1/2)+Bloch)/(-FeigenbaumB+MertensB2) 9323775273885395 r005 Re(z^2+c),c=13/90+30/59*I,n=2 9323775280798991 a007 Real Root Of -651*x^4+424*x^3-942*x^2+648*x+69 9323775299795703 a007 Real Root Of -116*x^4+777*x^3-93*x^2+108*x+899 9323775338710610 m001 QuadraticClass^(MasserGramain*Thue) 9323775343091569 r005 Re(z^2+c),c=1/38+17/40*I,n=28 9323775380488917 m001 1/ln(Magata)^2*HardHexagonsEntropy*Zeta(9)^2 9323775388756029 m001 (Khinchin-GAMMA(1/12))^GAMMA(23/24) 9323775441274986 p003 LerchPhi(1/25,9,29/48) 9323775441967377 a008 Real Root of (18+6*x-18*x^2-4*x^3) 9323775459271764 a007 Real Root Of -142*x^4+12*x^3-265*x^2-615*x-226 9323775475891703 m001 (Ei(1)-exp(-1/2*Pi))/(Grothendieck+Trott2nd) 9323775481825891 a007 Real Root Of -808*x^4+857*x^3+859*x^2-22*x+538 9323775520404105 a007 Real Root Of 437*x^4-779*x^3+573*x^2+846*x-671 9323775542540781 m006 (3/4*exp(2*Pi)+2)/(4*ln(Pi)-1/4) 9323775548243573 a007 Real Root Of 617*x^4-179*x^3-496*x^2-195*x-362 9323775572109458 r002 33th iterates of z^2 + 9323775572856447 r009 Im(z^3+c),c=-15/26+23/42*I,n=11 9323775590047043 r005 Im(z^2+c),c=-4/13+8/57*I,n=15 9323775593151450 r005 Im(z^2+c),c=-67/54+11/40*I,n=3 9323775600512825 a007 Real Root Of -652*x^4+240*x^3+116*x^2-881*x-235 9323775607357728 a007 Real Root Of 9*x^4+835*x^3-384*x^2+188*x+263 9323775618098295 a007 Real Root Of 747*x^4+916*x^3+700*x^2-423*x-825 9323775640670603 a007 Real Root Of -378*x^4+888*x^3-58*x^2-298*x+778 9323775651840023 a007 Real Root Of -48*x^4+553*x^3-63*x^2+285*x+805 9323775663444965 r005 Re(z^2+c),c=-9/10+35/211*I,n=45 9323775678387304 m005 (1/2*gamma-1/5)/(1/6*Zeta(3)+3/4) 9323775684672803 a007 Real Root Of -697*x^4+892*x^3-402*x^2-958*x+706 9323775687999603 a001 416020/2889*521^(2/3) 9323775694593829 a001 75025/1364*521^(32/39) 9323775716675435 a007 Real Root Of -510*x^4+514*x^3-444*x^2-813*x+430 9323775730994926 m005 (1/3*Catalan-1/7)/(3/10*Pi+4/5) 9323775751084891 a007 Real Root Of -583*x^4+421*x^3+348*x^2+108*x+580 9323775801448467 m001 exp(cos(1))/Conway*sin(1)^2 9323775810342286 m001 (gamma(2)+PrimesInBinary)/(Pi+Zeta(3)) 9323775838612245 r009 Im(z^3+c),c=-11/74+41/43*I,n=10 9323775859163574 m005 (1/2*Catalan-2/9)/(1/3*2^(1/2)-3) 9323775891005169 a007 Real Root Of -809*x^4-575*x^3+84*x^2-173*x-89 9323775920285084 r005 Re(z^2+c),c=23/118+10/37*I,n=36 9323775926533814 a001 311187/2161*521^(2/3) 9323775926798150 p004 log(37379/14713) 9323775949223571 b008 ArcTanh[CosIntegral[Log[2]]] 9323775960005874 m001 (Conway+GaussAGM)/(exp(-1/2*Pi)-exp(Pi)) 9323775961335488 a001 5702887/39603*521^(2/3) 9323775966412983 a001 7465176/51841*521^(2/3) 9323775967153780 a001 39088169/271443*521^(2/3) 9323775967261861 a001 14619165/101521*521^(2/3) 9323775967277630 a001 133957148/930249*521^(2/3) 9323775967279930 a001 701408733/4870847*521^(2/3) 9323775967280266 a001 1836311903/12752043*521^(2/3) 9323775967280315 a001 14930208/103681*521^(2/3) 9323775967280322 a001 12586269025/87403803*521^(2/3) 9323775967280323 a001 32951280099/228826127*521^(2/3) 9323775967280323 a001 43133785636/299537289*521^(2/3) 9323775967280323 a001 32264490531/224056801*521^(2/3) 9323775967280323 a001 591286729879/4106118243*521^(2/3) 9323775967280323 a001 774004377960/5374978561*521^(2/3) 9323775967280323 a001 4052739537881/28143753123*521^(2/3) 9323775967280323 a001 1515744265389/10525900321*521^(2/3) 9323775967280323 a001 3278735159921/22768774562*521^(2/3) 9323775967280323 a001 2504730781961/17393796001*521^(2/3) 9323775967280323 a001 956722026041/6643838879*521^(2/3) 9323775967280323 a001 182717648081/1268860318*521^(2/3) 9323775967280323 a001 139583862445/969323029*521^(2/3) 9323775967280323 a001 53316291173/370248451*521^(2/3) 9323775967280324 a001 10182505537/70711162*521^(2/3) 9323775967280326 a001 7778742049/54018521*521^(2/3) 9323775967280345 a001 2971215073/20633239*521^(2/3) 9323775967280473 a001 567451585/3940598*521^(2/3) 9323775967281352 a001 433494437/3010349*521^(2/3) 9323775967287375 a001 165580141/1149851*521^(2/3) 9323775967328658 a001 31622993/219602*521^(2/3) 9323775967611617 a001 24157817/167761*521^(2/3) 9323775969551048 a001 9227465/64079*521^(2/3) 9323775982844105 a001 1762289/12238*521^(2/3) 9323775983624957 a007 Real Root Of -728*x^4-918*x^3+49*x^2+451*x+184 9323775986194052 a007 Real Root Of 393*x^4-894*x^3-970*x^2-745*x-873 9323775998918292 r009 Re(z^3+c),c=-1/11+39/41*I,n=3 9323776006768993 p001 sum(1/(553*n+365)/n/(12^n),n=1..infinity) 9323776027008183 a007 Real Root Of -886*x^4+316*x^3+271*x^2-501*x+223 9323776034622667 q001 3447/3697 9323776058318053 a001 1346269/843*521^(11/39) 9323776061292002 a007 Real Root Of -197*x^4+411*x^3-165*x^2-156*x+480 9323776073956070 a001 1346269/9349*521^(2/3) 9323776106847270 a007 Real Root Of -817*x^4+834*x^3+573*x^2-454*x+372 9323776107077063 m005 (1/2*2^(1/2)-2/9)/(2/11*gamma-5/8) 9323776136820992 k002 Champernowne real with 139/2*n^2+211/2*n-166 9323776140684408 a001 1346269/521*199^(8/33) 9323776145887039 m001 exp(sqrt(3))^2/GAMMA(5/24)^2/sqrt(Pi) 9323776172245709 m001 Catalan^ErdosBorwein/(Catalan^cos(1/5*Pi)) 9323776185576789 m001 gamma*BesselI(0,2)^LandauRamanujan2nd 9323776206720557 s002 sum(A172677[n]/(n^3*exp(n)+1),n=1..infinity) 9323776352414560 a007 Real Root Of 284*x^4-130*x^3+331*x^2-292*x-880 9323776366819631 a007 Real Root Of 920*x^4-187*x^3-491*x^2-74*x-489 9323776405320696 r005 Re(z^2+c),c=-73/70+12/53*I,n=40 9323776425336329 m005 (1/2*Catalan-5)/(1/11*2^(1/2)-5) 9323776438357674 m005 (1/2*Zeta(3)-3/10)/(6/11*2^(1/2)-4) 9323776457340443 a007 Real Root Of -497*x^4+919*x^3+170*x^2-34*x+941 9323776464330241 a007 Real Root Of 306*x^4-727*x^3-111*x^2-163*x-876 9323776491773149 a007 Real Root Of -657*x^4+276*x^3+137*x^2-146*x+465 9323776493915113 m001 TwinPrimes^Champernowne*Thue^Champernowne 9323776502917974 m001 (ln(gamma)+Khinchin)/(Landau+MadelungNaCl) 9323776546490889 s002 sum(A219959[n]/(pi^n-1),n=1..infinity) 9323776550552255 a007 Real Root Of 671*x^4+572*x^3+59*x^2-233*x-312 9323776561537136 r005 Re(z^2+c),c=-29/32+5/33*I,n=49 9323776563535340 m006 (1/3*Pi^2-3/5)/(3/5*Pi+1) 9323776563535340 m008 (1/3*Pi^2-3/5)/(3/5*Pi+1) 9323776591338948 r005 Im(z^2+c),c=-3/4+5/177*I,n=51 9323776603202907 a007 Real Root Of 587*x^4-816*x^3-526*x^2+122*x-534 9323776645523356 a007 Real Root Of -851*x^4+225*x^3+394*x^2-784*x-248 9323776646808876 a001 1/13*34^(3/55) 9323776647978174 a007 Real Root Of -888*x^4-391*x^3+103*x^2+586*x+811 9323776661368133 m005 (1/2*2^(1/2)-1/5)/(5*Zeta(3)-4/7) 9323776679020194 a007 Real Root Of -305*x^4+857*x^3+102*x^2-215*x+636 9323776684126643 a007 Real Root Of 257*x^4-848*x^3-136*x^2+69*x-699 9323776695317539 a001 514229/2207*521^(23/39) 9323776698446821 a001 514229/3571*521^(2/3) 9323776703207883 a007 Real Root Of -834*x^4-754*x^3-862*x^2-392*x+403 9323776716915917 b008 LogGamma[9+Cosh[4]] 9323776722127766 m001 1/Catalan^2*exp(TreeGrowth2nd)^2/GAMMA(7/24) 9323776749431940 a007 Real Root Of 560*x^4-190*x^3+381*x^2+600*x-349 9323776756607222 m001 (-GAMMA(17/24)+Lehmer)/(Zeta(1,-1)-gamma) 9323776772759615 m001 1/cos(1)*CopelandErdos/exp(cosh(1)) 9323776785553138 m002 (3*Csch[Pi])/Pi^6+Csch[Pi]*ProductLog[Pi] 9323776807088254 a007 Real Root Of -153*x^4+857*x^3+174*x^2-769*x-58 9323776828910851 m001 (ln(Pi)+2/3)/(ln(5)+1/3) 9323776856757451 a007 Real Root Of 49*x^4+390*x^3-564*x^2+574*x+185 9323776877531941 q001 2992/3209 9323776940166829 r005 Im(z^2+c),c=-5/29+6/49*I,n=9 9323776946580655 a007 Real Root Of 36*x^4-531*x^3+283*x^2-668*x+780 9323776958366020 a007 Real Root Of -944*x^4-474*x^3-163*x^2-90*x+387 9323776971619141 a007 Real Root Of 793*x^4-376*x^3-55*x^2-48*x-901 9323776975255278 m001 (5^(1/2)-ln(gamma))/(GlaisherKinkelin+Niven) 9323776997648891 a001 7/317811*5^(26/29) 9323777040511664 m005 (23/66+1/6*5^(1/2))/(1/4*5^(1/2)-7/11) 9323777078274901 r005 Re(z^2+c),c=-25/27+5/56*I,n=9 9323777088726461 h001 (-6*exp(2/3)-3)/(-7*exp(-1)+1) 9323777108931779 a007 Real Root Of -886*x^4-306*x^3-537*x^2-438*x+480 9323777113331118 a007 Real Root Of -584*x^4+537*x^3+711*x^2+540*x+762 9323777114477843 m005 (1/2*Zeta(3)-1/10)/(1/5*Zeta(3)-7/9) 9323777119874451 a007 Real Root Of -867*x^4-318*x^3-945*x^2-577*x+681 9323777124623723 a007 Real Root Of -880*x^4-287*x^3+357*x^2-487*x-332 9323777137121052 k002 Champernowne real with 70*n^2+104*n-165 9323777158972478 a007 Real Root Of 466*x^4+538*x^3+197*x^2+394*x+280 9323777180407193 a007 Real Root Of 424*x^4-770*x^3+284*x^2+659*x-577 9323777191131191 m005 (1/2*gamma+5/7)/(2/11*Catalan+10/11) 9323777203357717 r005 Im(z^2+c),c=-21/26+5/104*I,n=53 9323777208412438 m001 ln(Conway)/Cahen/Riemann2ndZero^2 9323777254861619 m005 (1/2*3^(1/2)+2/3)/(119/120+7/24*5^(1/2)) 9323777264023481 a001 29/3*2584^(15/52) 9323777267111324 r009 Re(z^3+c),c=-7/60+29/52*I,n=5 9323777295931979 a007 Real Root Of -318*x^4+960*x^3+527*x^2+182*x+730 9323777296230833 r002 24th iterates of z^2 + 9323777317882002 r002 5th iterates of z^2 + 9323777324372191 a003 cos(Pi*5/118)*sin(Pi*23/59) 9323777368805235 m001 (Stephens+Tetranacci)/(sin(1/12*Pi)-gamma(2)) 9323777369047913 a007 Real Root Of 594*x^4-750*x^3+975*x^2-353*x+25 9323777386511070 m001 (Magata+OneNinth)/(Ei(1,1)-Gompertz) 9323777398544165 a001 521/144*144^(4/21) 9323777422217795 h001 (4/5*exp(2)+3/5)/(9/10*exp(2)+1/3) 9323777447736563 r009 Re(z^3+c),c=-41/98+41/46*I,n=3 9323777448002574 a007 Real Root Of 392*x^4-262*x^3-912*x^2+60*x+653 9323777479276343 m001 (BesselI(1,2)+Grothendieck)/(Otter+Robbin) 9323777485787648 a005 (1/cos(13/220*Pi))^1856 9323777515676898 a007 Real Root Of 517*x^4-462*x^3-842*x^2+211*x+519 9323777520927128 m005 (1/2*gamma-4/9)/(6/11*2^(1/2)+9/10) 9323777528597710 m001 PrimesInBinary*ln(FeigenbaumB)*GAMMA(3/4) 9323777535009200 a007 Real Root Of -326*x^4-746*x^3-897*x^2+584*x+966 9323777550658328 m001 (cos(1/5*Pi)+FeigenbaumB*ZetaQ(3))/ZetaQ(3) 9323777567461677 m001 (Chi(1)+ln(2+3^(1/2)))/(Champernowne+OneNinth) 9323777617769875 m001 1/3*(Pi^(1/2))^polylog(4,1/2)*3^(2/3) 9323777617769875 m001 sqrt(Pi)^polylog(4,1/2)/(3^(1/3)) 9323777630697015 m006 (1/3*exp(Pi)-1/3)/(5/Pi-4/5) 9323777651778371 a007 Real Root Of 489*x^4+96*x^3-365*x^2-805*x-725 9323777691178812 p004 log(30047/11827) 9323777725962460 a007 Real Root Of -816*x^4+501*x^3+160*x^2-419*x+493 9323777729226506 r002 42th iterates of z^2 + 9323777747001728 r005 Re(z^2+c),c=3/29+19/36*I,n=45 9323777768276701 m002 -3-3*Pi^2+Pi^6*Coth[Pi] 9323777769033098 a007 Real Root Of -801*x^4-236*x^3+573*x^2+413*x+301 9323777777192896 a007 Real Root Of -260*x^4+969*x^3+723*x^2-438*x-55 9323777808439062 r005 Re(z^2+c),c=-49/106+43/52*I,n=2 9323777810801398 a007 Real Root Of -503*x^4-23*x^3-597*x^2-126*x+763 9323777824175940 m001 OneNinth*MertensB1^2*ln(GAMMA(7/24))^2 9323777844748548 m001 1/GAMMA(1/12)^2/exp(Cahen)*GAMMA(1/24) 9323777887967055 r005 Re(z^2+c),c=13/46+7/22*I,n=5 9323777946921370 a007 Real Root Of -355*x^4+497*x^3+828*x^2-113*x-749 9323777957346639 r009 Im(z^3+c),c=-5/118+55/59*I,n=9 9323777963171765 m005 (17/20+1/10*5^(1/2))/(3/5*2^(1/2)-2) 9323778022785740 q001 2537/2721 9323778032315808 r005 Im(z^2+c),c=-25/82+7/50*I,n=15 9323778060573727 b008 Sqrt[2]-17*Sqrt[31] 9323778061699633 a007 Real Root Of -825*x^4+85*x^3+400*x^2-94*x+257 9323778069798701 r005 Re(z^2+c),c=-113/126+9/52*I,n=59 9323778089538634 m001 (BesselK(1,1)*ZetaR(2)+Bloch)/BesselK(1,1) 9323778089636093 r005 Re(z^2+c),c=-9/10+1/6*I,n=41 9323778137421112 k002 Champernowne real with 141/2*n^2+205/2*n-164 9323778141916033 a007 Real Root Of 57*x^4-809*x^3-749*x^2+580*x+723 9323778163763788 a007 Real Root Of -840*x^4+238*x^3-55*x^2-66*x+814 9323778179999442 l006 ln(7992/8773) 9323778205009295 m002 -6+Pi^6-2*Sinh[Pi]*Tanh[Pi] 9323778225539930 a007 Real Root Of 714*x^4+576*x^3+415*x^2-584*x-978 9323778255848114 a007 Real Root Of 574*x^4-722*x^3-585*x^2+23*x-489 9323778260371493 r005 Re(z^2+c),c=-87/110+7/45*I,n=15 9323778322645906 a007 Real Root Of 333*x^4-855*x^3-77*x^2+906*x-33 9323778330233691 a001 1346269/5778*521^(23/39) 9323778336366364 a001 121393/1364*521^(29/39) 9323778337300689 a001 10946/123*123^(29/30) 9323778348878057 m005 (1/2*Catalan-3/10)/(6/7*5^(1/2)-2/9) 9323778351561262 a007 Real Root Of 475*x^4-32*x^3-224*x^2+160*x-41 9323778355609476 m005 (1/3*Zeta(3)+3/4)/(1/2*exp(1)-1/8) 9323778420973185 m001 (Khinchin-Lehmer)/(ln(5)+HardyLittlewoodC3) 9323778421363105 p004 log(27791/10939) 9323778535260276 a007 Real Root Of 988*x^4-423*x^3+492*x^2+943*x-638 9323778543849082 a007 Real Root Of 906*x^4-280*x^3-12*x^2+56*x-849 9323778546772390 m001 (1-Zeta(1/2))/(Sierpinski+ZetaQ(2)) 9323778589362676 r009 Im(z^3+c),c=-19/110+27/31*I,n=57 9323778592071034 a001 843/233*17711^(3/31) 9323778630962331 m001 (BesselK(0,1)-exp(Pi))/(-Cahen+Riemann3rdZero) 9323778646355592 a007 Real Root Of 963*x^4-578*x^3-269*x^2+334*x-651 9323778700547102 a001 726103/281*521^(8/39) 9323778705592065 r005 Re(z^2+c),c=-11/12+13/94*I,n=5 9323778716185124 a001 2178309/9349*521^(23/39) 9323778717278449 a007 Real Root Of 665*x^4+145*x^3-95*x^2+230*x-88 9323778719837830 a008 Real Root of x^4-x^3-174*x^2+153*x+6953 9323778723233503 a007 Real Root Of 237*x^4-812*x^3-5*x^2+430*x-432 9323778724863056 r009 Re(z^3+c),c=-7/118+44/53*I,n=9 9323778733428705 r005 Re(z^2+c),c=-67/126+52/53*I,n=3 9323778735839367 p004 log(22511/20507) 9323778761641724 a007 Real Root Of 953*x^4+269*x^3+543*x^2+884*x-150 9323778814118067 r005 Re(z^2+c),c=-9/14+140/167*I,n=2 9323778839470122 a007 Real Root Of -710*x^4+222*x^3-487*x^2-342*x+821 9323778853325999 m008 (1/6*Pi^5+3/5)/(1/5*Pi^3-2/3) 9323778854303780 m001 (FransenRobinson-cos(1))/(Lehmer+Tribonacci) 9323778881219918 r005 Im(z^2+c),c=-13/10+26/93*I,n=6 9323778896368623 a007 Real Root Of 764*x^4+336*x^3+35*x^2+422*x+58 9323778921777946 m001 ln(2^(1/2)+1)^Zeta(1,-1)/(gamma^Zeta(1,-1)) 9323778958819600 h001 (1/2*exp(1)+7/8)/(5/7*exp(1)+5/11) 9323778958819600 m005 (1/2*exp(1)+7/8)/(5/7*exp(1)+5/11) 9323778990945860 m005 (1/2*Zeta(3)-1/11)/(1/11*exp(1)+3/10) 9323779011669652 a007 Real Root Of -71*x^4+170*x^3-57*x^2+541*x-539 9323779051708649 a007 Real Root Of 687*x^4-218*x^3-333*x^2+349*x-81 9323779051842690 p004 log(26099/10273) 9323779051979074 a007 Real Root Of 463*x^4+295*x^3+675*x^2+568*x-168 9323779070261292 m001 GolombDickman^Magata-OneNinth 9323779086694009 r005 Im(z^2+c),c=-93/82+7/60*I,n=32 9323779137721172 k002 Champernowne real with 71*n^2+101*n-163 9323779139593786 a001 21/76*7^(5/8) 9323779143450521 h001 (4/7*exp(1)+5/11)/(5/8*exp(1)+5/11) 9323779148193907 l006 ln(7793/7866) 9323779155826096 m001 (Backhouse+Stephens)/(2^(1/2)+BesselJ(0,1)) 9323779181894283 a007 Real Root Of 489*x^4-212*x^3-478*x^2+786*x+607 9323779201476389 m001 (GAMMA(2/3)-ln(gamma))/(Landau-Sierpinski) 9323779212471179 g002 -gamma-3*ln(2)+1/2*Pi+Psi(5/11)-2*Psi(5/7) 9323779216784028 a007 Real Root Of 977*x^4-331*x^3-39*x^2+625*x-390 9323779225736679 r002 61i'th iterates of 2*x/(1-x^2) of 9323779299425390 m001 (-Artin+MadelungNaCl)/(3^(1/2)-sin(1/12*Pi)) 9323779308316865 a007 Real Root Of 40*x^4-677*x^3-77*x^2-258*x+826 9323779322617522 h001 (1/11*exp(2)+3/4)/(1/12*exp(2)+10/11) 9323779337097039 m005 (1/2*Zeta(3)-5)/(7/12*2^(1/2)-7/9) 9323779337538445 a001 832040/2207*521^(20/39) 9323779340184906 a007 Real Root Of -564*x^4+209*x^3+186*x^2-829*x-339 9323779340667728 a001 832040/3571*521^(23/39) 9323779369401809 r002 2i'th iterates of 2*x/(1-x^2) of 9323779378281283 b008 Sech[(-1/13+E)^(-1)] 9323779408961545 a007 Real Root Of 230*x^4-971*x^3-329*x^2+91*x-590 9323779420512117 r005 Re(z^2+c),c=31/126+17/52*I,n=57 9323779431280498 m001 GAMMA(7/12)^2/ln(FeigenbaumC)^2*Zeta(1/2) 9323779465088894 a007 Real Root Of -966*x^4+214*x^3-118*x^2-620*x+428 9323779519629567 p004 log(24971/9829) 9323779532663309 a007 Real Root Of 803*x^4+350*x^3+730*x^2+447*x-541 9323779559734228 a007 Real Root Of 203*x^4-681*x^3-830*x^2+235*x+901 9323779563464454 m001 1/Rabbit^2*ErdosBorwein^2/ln(gamma) 9323779578174778 r009 Im(z^3+c),c=-27/122+47/51*I,n=13 9323779582725345 a007 Real Root Of 675*x^4-278*x^3+473*x^2-575*x-58 9323779588784858 a007 Real Root Of -903*x^4+941*x^3+932*x^2-489*x+179 9323779597387669 a007 Real Root Of -861*x^4+375*x^3+214*x^2-346*x+446 9323779636459596 a007 Real Root Of 92*x^4-746*x^3-283*x^2-165*x+935 9323779645120082 a007 Real Root Of 812*x^4+2*x^3-967*x^2-760*x-480 9323779645567255 m001 (BesselI(1,1)+LaplaceLimit)/ln(2+3^(1/2)) 9323779668607254 q001 2082/2233 9323779680386293 a001 47/843*(1/2*5^(1/2)+1/2)^32*843^(13/15) 9323779687223838 a007 Real Root Of 794*x^4-668*x^3+126*x^2+946*x-369 9323779697473858 h003 exp(Pi*(10^(3/2)-15^(6/5))) 9323779697473858 h008 exp(Pi*(10^(3/2)-15^(6/5))) 9323779714955336 m005 (1/2*gamma+3/10)/(-2/11+4/11*5^(1/2)) 9323779721126589 r005 Im(z^2+c),c=-63/62+1/10*I,n=6 9323779736235695 a008 Real Root of (-4+2*x+4*x^2+6*x^3+4*x^4-6*x^5) 9323779751591877 m001 (Zeta(1/2)+GAMMA(5/6))/(exp(1)+Chi(1)) 9323779755928742 s002 sum(A059135[n]/(n*pi^n+1),n=1..infinity) 9323779812845428 r005 Re(z^2+c),c=6/25+17/53*I,n=61 9323779830331172 a007 Real Root Of -379*x^4+894*x^3-137*x^2-545*x+622 9323779858216853 a007 Real Root Of -975*x^4+898*x^3+450*x^2-584*x+529 9323779877732950 a007 Real Root Of -420*x^4+916*x^3+21*x^2-479*x+595 9323779928609724 a001 18*28657^(5/13) 9323779931433389 r005 Re(z^2+c),c=25/94+13/23*I,n=28 9323779935426061 a007 Real Root Of 919*x^4-112*x^3-149*x^2+521*x-170 9323779985833779 r005 Im(z^2+c),c=41/106+23/63*I,n=8 9323780034066494 a007 Real Root Of -431*x^4-722*x^3-10*x^2+979*x+662 9323780075403073 r004 Re(z^2+c),c=-33/38+5/22*I,z(0)=-1,n=16 9323780085265847 p003 LerchPhi(1/32,3,13/127) 9323780101642838 r002 25th iterates of z^2 + 9323780112643536 m001 BesselJ(0,1)*(MinimumGamma-Totient) 9323780118583760 r005 Re(z^2+c),c=-13/14+19/240*I,n=21 9323780120440013 a003 cos(Pi*23/83)*cos(Pi*54/119) 9323780138021233 k002 Champernowne real with 143/2*n^2+199/2*n-162 9323780142397385 r005 Re(z^2+c),c=-9/118+8/53*I,n=2 9323780200764991 a001 47/3524578*987^(19/20) 9323780241485030 m001 (sin(1)+Artin)/Conway 9323780293367346 r005 Re(z^2+c),c=-33/32+55/56*I,n=2 9323780311871416 r009 Re(z^3+c),c=-3/58+47/51*I,n=16 9323780319840284 r009 Re(z^3+c),c=-39/86+41/53*I,n=3 9323780321577807 r002 10th iterates of z^2 + 9323780327081022 m005 (17/4+1/4*5^(1/2))/(-37/80+7/16*5^(1/2)) 9323780336424124 m002 -3-E^Pi/Pi^5+ProductLog[Pi]*Sinh[Pi] 9323780337598921 a003 cos(Pi*17/101)/sin(Pi*26/69) 9323780381703867 m005 (1/2*Pi-5/9)/(191/198+1/18*5^(1/2)) 9323780416567085 m001 (Porter+Thue)/(5^(1/2)+sin(1/12*Pi)) 9323780427076706 h001 (3/8*exp(2)+7/9)/(5/12*exp(2)+8/11) 9323780430596216 r005 Re(z^2+c),c=-31/26+45/122*I,n=2 9323780430891636 b008 -97+Cosh[2] 9323780457238428 m001 (-Zeta(1,2)+Robbin)/(ln(2)/ln(10)+2^(1/2)) 9323780468610708 m005 (1/3+1/4*5^(1/2))/(4/5*3^(1/2)-3/7) 9323780481156658 m001 (Psi(1,1/3)+Si(Pi))/(-Conway+Sierpinski) 9323780493120935 a001 11/233*10946^(3/41) 9323780514180829 a007 Real Root Of 204*x^4-212*x^3+330*x^2-87*x-694 9323780517744403 r005 Re(z^2+c),c=-103/110+1/53*I,n=5 9323780530639396 a007 Real Root Of 625*x^4-495*x^3-803*x^2+45*x+585 9323780558222186 m005 (1/2*3^(1/2)+2)/(1/11*Zeta(3)-5/12) 9323780565064907 a007 Real Root Of -841*x^4+383*x^3+970*x^2+923*x+78 9323780566778594 m001 (Ei(1)+arctan(1/3))/(gamma(3)+CopelandErdos) 9323780577153644 m008 (5*Pi^3+3/4)/(5*Pi+1) 9323780626167976 a007 Real Root Of 78*x^4-857*x^3-866*x^2-11*x-11 9323780631451845 a007 Real Root Of -634*x^4+272*x^3-811*x^2-878*x+586 9323780660977454 a007 Real Root Of 761*x^4+645*x^3-100*x^2+231*x+250 9323780695850676 s002 sum(A168215[n]/(n^3*pi^n+1),n=1..infinity) 9323780700142981 l006 ln(4523/4965) 9323780710580751 r005 Re(z^2+c),c=-111/122+14/57*I,n=23 9323780747905594 a007 Real Root Of -736*x^4+127*x^3-155*x^2-519*x+310 9323780765150378 a007 Real Root Of 588*x^4-581*x^3-952*x^2+116*x+746 9323780780446583 s002 sum(A020896[n]/((10^n+1)/n),n=1..infinity) 9323780786427087 r009 Im(z^3+c),c=-59/102+25/42*I,n=20 9323780794369029 q001 3709/3978 9323780799016832 r002 26th iterates of z^2 + 9323780805672122 a001 2255/281*1364^(44/45) 9323780807225881 m001 ln(GAMMA(3/4))*LaplaceLimit/Zeta(3)^2 9323780816457722 m001 GAMMA(19/24)^2/ErdosBorwein^2/ln(sqrt(Pi)) 9323780824347800 a007 Real Root Of 364*x^4-952*x^3-18*x^2-417*x+901 9323780826924759 m001 (ln(5)+gamma(3))/(GAMMA(13/24)-Porter) 9323780850241832 m005 (1/2*exp(1)+5/11)/(4*gamma-4/11) 9323780859177830 m001 (3^(1/2)+3^(1/3))/(-cos(1/12*Pi)+Mills) 9323780944016774 a001 3536736619241*3^(15/17) 9323780972463384 a001 726103/1926*521^(20/39) 9323780978772357 a001 98209/682*521^(2/3) 9323781023466043 a005 (1/cos(15/226*Pi))^838 9323781026191861 a007 Real Root Of 954*x^4+666*x^3+101*x^2+681*x+366 9323781032297886 m008 (3/4*Pi^3-1/2)/(4/5*Pi^3-2/5) 9323781094950897 s001 sum(exp(-4*Pi/5)^n*A229393[n],n=1..infinity) 9323781113661024 a007 Real Root Of 619*x^4-916*x^3-857*x^2-479*x-38 9323781138321293 k002 Champernowne real with 72*n^2+98*n-161 9323781147017988 r005 Re(z^2+c),c=3/110+20/47*I,n=12 9323781152006543 a001 76/2178309*3^(17/19) 9323781155077160 a007 Real Root Of -553*x^4+406*x^3-261*x^2-179*x+807 9323781157912611 m005 (5/6*gamma-3/4)/(3/5*Pi+1) 9323781172635985 a007 Real Root Of -30*x^4-244*x^3+378*x^2+452*x+301 9323781175481841 h001 (8/9*exp(2)+1/10)/(6/7*exp(2)+9/11) 9323781196078237 a001 10946/843*1364^(41/45) 9323781209075150 m001 Zeta(1,2)/(BesselI(1,1)^gamma(2)) 9323781226449200 m002 Pi^12+Pi^10*Csch[Pi] 9323781251930387 m001 GAMMA(11/12)/(Psi(1,1/3)+GAMMA(3/4)) 9323781299856563 a007 Real Root Of 899*x^4+276*x^3+282*x^2+372*x-354 9323781310122845 a007 Real Root Of 71*x^4+690*x^3+349*x^2+800*x-176 9323781310142364 a003 sin(Pi*11/89)+sin(Pi*17/91) 9323781313066591 a007 Real Root Of -997*x^4-649*x^3-871*x^2+9*x+993 9323781336833627 m001 Robbin*MadelungNaCl/exp(OneNinth)^2 9323781348168021 m005 (1/2*3^(1/2)+7/8)/(5/7*2^(1/2)+6/7) 9323781350911619 m005 (1/2*Pi-2/11)/(1/2*Zeta(3)-3/4) 9323781355742859 m001 GAMMA(7/12)^Psi(1,1/3)/(GAMMA(3/4)^Psi(1,1/3)) 9323781360462536 s002 sum(A013958[n]/(n^2*2^n+1),n=1..infinity) 9323781369567109 m001 (PlouffeB-Sierpinski)/(ln(Pi)-Magata) 9323781372842425 a001 47*(1/2*5^(1/2)+1/2)^20*9349^(8/15) 9323781380991652 a001 47*(1/2*5^(1/2)+1/2)^29*3571^(1/15) 9323781383224746 a001 28657/322*322^(29/36) 9323781418649330 a007 Real Root Of -66*x^4+494*x^3-599*x^2-473*x+530 9323781423841581 m001 (ErdosBorwein*Porter-Thue)/ErdosBorwein 9323781426973164 m002 -6+3/E^Pi-E^Pi+Pi^6 9323781429096492 m001 BesselI(0,1)-Kolakoski-OrthogonalArrays 9323781429130120 a001 47*(1/2*5^(1/2)+1/2)^24*64079^(4/15) 9323781434095148 a001 47*(1/2*5^(1/2)+1/2)^14*39603^(11/15) 9323781450040527 a007 Real Root Of 691*x^4+441*x^3-371*x^2-950*x-728 9323781470768695 r005 Re(z^2+c),c=-61/114+3/5*I,n=54 9323781508666165 a001 17711/843*1364^(38/45) 9323781518084545 m001 (Kac-Si(Pi))/(Mills+ZetaQ(3)) 9323781558526805 m005 (-23/36+1/4*5^(1/2))/(3*gamma-7/8) 9323781592630118 m001 (ln(2)+MertensB3)/(2^(1/2)-exp(Pi)) 9323781593656813 a007 Real Root Of 975*x^4+303*x^3+77*x^2+855*x+239 9323781611296136 m001 (Kac+Niven)/(Riemann3rdZero-Trott) 9323781646149320 r008 a(0)=1,K{-n^6,19-5*n+23*n^2-23*n^3} 9323781676499827 a007 Real Root Of -41*x^4+560*x^3+146*x^2-104*x+261 9323781684962452 a001 47*(1/2*5^(1/2)+1/2)^28*2207^(2/15) 9323781687051940 r002 48th iterates of z^2 + 9323781694382088 a007 Real Root Of -943*x^4+545*x^3-637*x^2-944*x+828 9323781696392306 r005 Im(z^2+c),c=-13/10+7/127*I,n=52 9323781733343005 a007 Real Root Of -40*x^4+778*x^3+912*x^2+74*x-63 9323781736656300 s002 sum(A236945[n]/(n!^3),n=1..infinity) 9323781741740536 a007 Real Root Of -945*x^4+284*x^3-184*x^2-853*x+309 9323781801647185 m001 (GAMMA(1/4)-GAMMA(1/24))/GAMMA(5/12) 9323781802196665 m005 (1/3*3^(1/2)-3/4)/(11/12*gamma-5/7) 9323781812245196 m001 1/exp(FransenRobinson)^2*Artin^2*FeigenbaumC 9323781821934803 r001 57i'th iterates of 2*x^2-1 of 9323781824043209 a001 7*233^(19/40) 9323781825753099 m004 4/9-Cosh[Sqrt[5]*Pi]/6 9323781832134956 m005 (1/3*2^(1/2)+3/7)/(8/11*gamma+6/11) 9323781850978013 a001 28657/843*1364^(7/9) 9323781860749039 m001 (CopelandErdos+PlouffeB)/(ln(2)-Backhouse) 9323781890125789 m002 -5-E^Pi+Pi^6-Tanh[Pi]/Log[Pi] 9323781897796350 b008 Sin[3^(1/6)] 9323781898597231 a005 (1/cos(37/215*Pi))^224 9323781918740170 a007 Real Root Of 420*x^4-981*x^3+289*x^2-732*x+909 9323781934043780 m001 ln(Kolakoski)*Cahen/(2^(1/3))^2 9323781979773568 a001 1346269/2207*521^(17/39) 9323781982902852 a001 1346269/3571*521^(20/39) 9323782010767427 a007 Real Root Of 192*x^4-375*x^3+591*x^2+180*x-795 9323782019256448 a001 47/32951280099*14930352^(19/20) 9323782023142169 r005 Re(z^2+c),c=-7/106+7/31*I,n=7 9323782032096667 a001 1548008755920/47*322^(11/19) 9323782069236207 m001 (Artin-Cahen)/(Champernowne-ThueMorse) 9323782073427746 m002 6+Pi+Log[Pi]/(2*Pi) 9323782084032899 m001 1/Khintchine^2*Bloch^2*ln(gamma)^2 9323782091107923 r005 Im(z^2+c),c=-3/5+11/62*I,n=34 9323782095511825 r005 Re(z^2+c),c=-11/12+1/8*I,n=15 9323782113194296 m001 (exp(1/Pi)+gamma(1))/(BesselK(1,1)+Kolakoski) 9323782138621353 k002 Champernowne real with 145/2*n^2+193/2*n-160 9323782181936350 a001 15456/281*1364^(32/45) 9323782212040256 a008 Real Root of (-1+4*x-6*x^2-2*x^4+7*x^8) 9323782234950974 r005 Re(z^2+c),c=-29/32+5/33*I,n=59 9323782234957020 q001 1627/1745 9323782276889818 r005 Re(z^2+c),c=-55/52+3/13*I,n=24 9323782296794113 a007 Real Root Of -924*x^4+26*x^3+657*x^2+861*x+951 9323782315827267 m008 (3*Pi+5/6)/(1/3*Pi^3+2/3) 9323782328179215 m005 (1/20+1/4*5^(1/2))/(1/6*2^(1/2)-8/9) 9323782330902194 m001 1/exp(LaplaceLimit)^2*Khintchine/BesselJ(0,1) 9323782373628409 r005 Im(z^2+c),c=-125/102+8/49*I,n=58 9323782383535974 r005 Im(z^2+c),c=23/74+29/43*I,n=6 9323782407884617 h001 (3/7*exp(2)+5/8)/(3/7*exp(2)+9/10) 9323782446649198 a007 Real Root Of -441*x^4+349*x^3+250*x^2+27*x+424 9323782451099850 r009 Re(z^3+c),c=-25/46+24/43*I,n=15 9323782476015522 a007 Real Root Of -968*x^4+433*x^3+51*x^2-929*x+172 9323782496901371 r005 Re(z^2+c),c=-13/14+38/159*I,n=11 9323782503061674 m001 (ln(2+3^(1/2))-Mills)/(GAMMA(2/3)-Ei(1,1)) 9323782504202941 a007 Real Root Of -554*x^4+974*x^3-694*x^2-984*x+894 9323782517231358 a001 75025/843*1364^(29/45) 9323782526939285 m005 (3/4*exp(1)-2)/(2/3*gamma-4/5) 9323782556242222 m005 (1/2*Zeta(3)-8/9)/(-19/36+2/9*5^(1/2)) 9323782579522901 a007 Real Root Of -403*x^4-330*x^3-463*x^2-509*x-35 9323782590518888 a007 Real Root Of 821*x^4+248*x^3-163*x^2-218*x-481 9323782591888765 a007 Real Root Of -934*x^4+205*x^3+655*x^2+704*x+959 9323782619087945 a008 Real Root of x^4-12*x^2-10*x+19 9323782629993867 m001 polylog(4,1/2)^CareFree+GaussKuzminWirsing 9323782638018344 r005 Re(z^2+c),c=1/30+17/39*I,n=19 9323782646085883 a007 Real Root Of 791*x^4-560*x^3+348*x^2+751*x-654 9323782654425347 m002 -2/Pi^3+2*Log[Pi]-Sinh[Pi] 9323782658831071 a007 Real Root Of -849*x^4+687*x^3+119*x^2-547*x+585 9323782659736796 r009 Im(z^3+c),c=-13/70+53/59*I,n=3 9323782665959630 m002 -Pi^2+Pi^6-E^Pi/Log[Pi]+ProductLog[Pi] 9323782670828202 a007 Real Root Of -691*x^4+185*x^3+39*x^2-218*x+435 9323782684095702 a007 Real Root Of -399*x^4+424*x^3+283*x^2+476*x+843 9323782716047631 a007 Real Root Of 989*x^4-346*x^3+403*x^2+899*x-540 9323782772857871 a007 Real Root Of -731*x^4+604*x^3-120*x^2-912*x+296 9323782792638225 r005 Re(z^2+c),c=-31/36+13/43*I,n=5 9323782806377374 a007 Real Root Of 725*x^4-837*x^3-690*x^2+599*x-68 9323782828238112 m001 1/Lehmer/LaplaceLimit*ln((3^(1/3))) 9323782836593413 m001 1/Niven*ln(ErdosBorwein)^2/sqrt(2) 9323782845893927 a007 Real Root Of 295*x^4-104*x^3+106*x^2-405*x-777 9323782850869923 a001 121393/843*1364^(26/45) 9323782935492889 r002 9th iterates of z^2 + 9323782939536501 a007 Real Root Of 396*x^4-186*x^3+3*x^2+168*x-296 9323782940598496 a007 Real Root Of -951*x^4-530*x^3+516*x^2+496*x+303 9323782947657092 r005 Re(z^2+c),c=-29/32+5/33*I,n=57 9323782962403280 m002 -Pi^6+Pi^3/Log[Pi]+Sinh[Pi]/6 9323782962548523 a007 Real Root Of -252*x^4+962*x^3-382*x^2-972*x+396 9323782969109995 a007 Real Root Of 905*x^4-937*x^3+281*x^2+803*x-939 9323783002773992 h001 (-2*exp(-2)-9)/(-8*exp(-1)-7) 9323783029753076 a007 Real Root Of -976*x^4-675*x^3-319*x^2+204*x+658 9323783043607724 a007 Real Root Of 858*x^4-786*x^3-584*x^2+609*x-210 9323783049215308 a007 Real Root Of 924*x^4+629*x^3+223*x^2+217*x-180 9323783074142489 a007 Real Root Of -394*x^4+615*x^3+63*x^2-200*x+555 9323783084814562 a003 sin(Pi*23/105)/sin(Pi*26/109) 9323783129856376 a007 Real Root Of 749*x^4-511*x^3-39*x^2+424*x-551 9323783132067284 a007 Real Root Of 964*x^4+129*x^3-528*x^2-29*x-192 9323783138921413 k002 Champernowne real with 73*n^2+95*n-159 9323783185141209 a001 196418/843*1364^(23/45) 9323783205292804 m005 (1/3*5^(1/2)+3/5)/(1/10*2^(1/2)-2/7) 9323783208035210 b008 -11+SinIntegral[(7*Pi)/5] 9323783215610513 a007 Real Root Of -662*x^4-80*x^3-286*x^2-265*x+437 9323783268083672 m001 (Ei(1,1)+MertensB3)/(Tribonacci-ZetaP(3)) 9323783277956601 m001 (-BesselI(1,2)+ZetaQ(2))/(5^(1/2)-sin(1/5*Pi)) 9323783279257040 a007 Real Root Of 695*x^4+612*x^3+861*x^2+271*x-525 9323783296760280 r009 Im(z^3+c),c=-17/32+35/57*I,n=40 9323783321820378 m005 (1/2*5^(1/2)+7/11)/(2/5*Pi+5/8) 9323783330369775 a001 10946/3*7^(27/56) 9323783341461185 a007 Real Root Of 869*x^4+134*x^3+915*x^2+465*x-910 9323783353106194 h001 (3/5*exp(1)+1/10)/(1/6*exp(2)+5/8) 9323783367423602 a007 Real Root Of -901*x^4-534*x^3-456*x^2+244*x+872 9323783372764643 r009 Im(z^3+c),c=-17/78+14/15*I,n=43 9323783397651101 a007 Real Root Of 43*x^4-778*x^3+242*x^2-484*x+839 9323783477587823 b008 1/8+17*Sqrt[30] 9323783493971458 m005 (1/3*2^(1/2)+3/7)/(7/10*5^(1/2)-3/5) 9323783519170833 a001 377*1364^(4/9) 9323783543240869 a007 Real Root Of 556*x^4+44*x^3+597*x^2+998*x+27 9323783543838344 a007 Real Root Of 134*x^4-281*x^3+163*x^2+211*x-274 9323783549519081 a003 sin(Pi*2/93)-sin(Pi*52/105) 9323783562483998 m004 (9*Pi*Cos[Sqrt[5]*Pi])/Sqrt[5] 9323783620937425 a001 317811/1364*521^(23/39) 9323783668188584 m001 (-GAMMA(3/4)+Zeta(1,2))/(3^(1/2)+sin(1/5*Pi)) 9323783683771865 a007 Real Root Of 209*x^4-886*x^3+358*x^2+237*x+28 9323783686858362 a007 Real Root Of 462*x^4-998*x^3-763*x^2+413*x+738 9323783691470833 m001 GAMMA(5/6)*exp(GAMMA(11/24))^2/gamma 9323783697677704 p001 sum(1/(385*n+108)/(32^n),n=0..infinity) 9323783719669992 a001 47/521*(1/2*5^(1/2)+1/2)^31*521^(14/15) 9323783727493619 a001 329/281*9349^(56/57) 9323783748443598 m001 (exp(Pi)+3^(1/2))/(GAMMA(3/4)+3^(1/3)) 9323783779059318 r005 Re(z^2+c),c=-17/22+107/123*I,n=2 9323783818462588 a001 329/281*24476^(8/9) 9323783832278869 a001 377/2207*45537549124^(4/9) 9323783832278907 a001 377/2207*12752043^(2/3) 9323783832279148 a001 377/2207*4870847^(17/24) 9323783832293815 a001 377/2207*710647^(17/21) 9323783832296927 a001 329/281*20633239^(8/15) 9323783832296938 a001 329/281*17393796001^(8/21) 9323783832296938 a001 329/281*23725150497407^(7/24) 9323783832296938 a001 329/281*505019158607^(1/3) 9323783832296938 a001 329/281*10749957122^(7/18) 9323783832296938 a001 329/281*599074578^(4/9) 9323783832296939 a001 329/281*228826127^(7/15) 9323783832297168 a001 329/281*4870847^(7/12) 9323783832309247 a001 329/281*710647^(2/3) 9323783832971530 a001 329/281*103682^(7/9) 9323783833098016 a001 377/2207*103682^(17/18) 9323783837340997 a001 329/281*39603^(28/33) 9323783846147970 a003 cos(Pi*11/92)/sin(Pi*56/117) 9323783853292781 a001 514229/843*1364^(17/45) 9323783869577675 r005 Im(z^2+c),c=-33/50+3/11*I,n=44 9323783870326679 a001 329/281*15127^(14/15) 9323783887768540 r005 Re(z^2+c),c=-15/17+8/41*I,n=59 9323783894556980 m001 (KhinchinHarmonic-exp(1/exp(1))*Magata)/Magata 9323783924357684 a007 Real Root Of x^4+88*x^3-481*x^2+679*x-716 9323783988753283 h001 (1/10*exp(2)+2/5)/(2/11*exp(1)+8/11) 9323784001309890 a007 Real Root Of 315*x^4-657*x^3-290*x^2+407*x-139 9323784011305911 m001 ln(KhintchineLevy)^2*LaplaceLimit/(3^(1/3))^2 9323784023774009 r005 Im(z^2+c),c=-9/16+12/71*I,n=51 9323784041843454 r009 Re(z^3+c),c=-11/18+58/59*I,n=2 9323784047289852 a007 Real Root Of -500*x^4+486*x^3-676*x^2-777*x+635 9323784050739197 h001 (9/11*exp(2)+5/7)/(6/7*exp(2)+11/12) 9323784056066915 b008 Erfc[3/50] 9323784082331123 a007 Real Root Of -857*x^4+75*x^3-267*x^2-36*x+907 9323784084752538 m001 (2^(1/2)+LambertW(1))/(GAMMA(7/12)+Gompertz) 9323784086687607 m002 -Pi^2+3*Pi^3+Sinh[Pi]/Log[Pi] 9323784105805426 r005 Im(z^2+c),c=15/38+15/49*I,n=36 9323784116372724 r001 61i'th iterates of 2*x^2-1 of 9323784127310048 r005 Im(z^2+c),c=-5/7+75/121*I,n=3 9323784139221473 k002 Champernowne real with 147/2*n^2+187/2*n-158 9323784143904063 q001 2799/3002 9323784187379481 a001 832040/843*1364^(14/45) 9323784193076397 r005 Re(z^2+c),c=-83/94+11/57*I,n=31 9323784242008159 m001 (OneNinth+ZetaQ(2))/(2^(1/3)+Bloch) 9323784296469032 m001 Zeta(1/2)*FibonacciFactorial+Thue 9323784311580410 l006 ln(5577/6122) 9323784337915362 s002 sum(A196156[n]/(n^2*pi^n+1),n=1..infinity) 9323784376206931 a007 Real Root Of 989*x^4+302*x^3-452*x^2-942*x-988 9323784379466577 r005 Re(z^2+c),c=-2/23+55/64*I,n=25 9323784389757839 a001 1/11*(1/2*5^(1/2)+1/2)^16*7^(15/19) 9323784399693996 m005 (1/2*2^(1/2)-9/10)/(4/5*Pi-4/9) 9323784401457485 a007 Real Root Of 507*x^4-332*x^3-56*x^2-393*x-970 9323784419226001 m001 (MertensB3+Weierstrass)/(Shi(1)+ln(2^(1/2)+1)) 9323784428062684 m005 (1/3*5^(1/2)-1/11)/(4*3^(1/2)+1/11) 9323784440362365 a007 Real Root Of -213*x^4+944*x^3+757*x^2-351*x-935 9323784521479660 a001 1346269/843*1364^(11/45) 9323784556220281 r009 Re(z^3+c),c=-7/52+11/25*I,n=8 9323784622004295 a001 987*521^(14/39) 9323784625133579 a001 2178309/3571*521^(17/39) 9323784653411946 a007 Real Root Of -688*x^4+2*x^3+762*x^2+283*x+123 9323784666679984 r005 Re(z^2+c),c=-17/19+27/62*I,n=3 9323784673563136 a007 Real Root Of -749*x^4+522*x^3-571*x^2-835*x+707 9323784716741281 m001 (exp(Pi)-ln(Pi))/(GAMMA(11/12)+Conway) 9323784728993615 m001 BesselK(0,1)/ln(DuboisRaymond)*GAMMA(1/4) 9323784750397088 a001 2584/843*3571^(50/51) 9323784766728361 a007 Real Root Of 99*x^4+527*x^3+778*x^2-488*x-779 9323784769868799 a003 sin(Pi*13/100)+sin(Pi*16/89) 9323784801654977 a007 Real Root Of -409*x^4+685*x^3+860*x^2+99*x+209 9323784806661385 r005 Im(z^2+c),c=-13/31+9/59*I,n=14 9323784855574708 a001 726103/281*1364^(8/45) 9323784860391602 m001 1/exp(Trott)^2*MertensB1^2/GAMMA(1/3)^2 9323784886193828 a008 Real Root of x^3+57*x-1342 9323784950605040 m001 ln(FeigenbaumDelta)^2*Backhouse^2*Si(Pi) 9323784958479013 m001 (Artin-CareFree)/(Khinchin+Thue) 9323784987104850 r002 5th iterates of z^2 + 9323785027706516 s002 sum(A105626[n]/(n*exp(n)-1),n=1..infinity) 9323785030432475 m001 (GAMMA(17/24)+Conway)/(5^(1/2)+cos(1)) 9323785037906187 a007 Real Root Of -824*x^4+564*x^3-412*x^2-591*x+887 9323785044055565 r002 22th iterates of z^2 + 9323785062236817 m005 (1/3*gamma-1/7)/(1/10*Pi+5) 9323785074948078 a001 2255/281*3571^(44/51) 9323785112901620 a007 Real Root Of 465*x^4-741*x^3-184*x^2+901*x+48 9323785122323444 a007 Real Root Of -351*x^4+598*x^3+204*x^2+544*x-904 9323785139521533 k002 Champernowne real with 74*n^2+92*n-157 9323785147795754 r005 Re(z^2+c),c=-27/34+13/93*I,n=39 9323785165042282 a007 Real Root Of -974*x^4-581*x^3+291*x^2+402*x+387 9323785169235800 a007 Real Root Of -613*x^4+498*x^3+841*x^2-269*x-115 9323785174267300 a001 10946/843*3571^(41/51) 9323785179359636 a001 4181/843*3571^(47/51) 9323785189671732 a001 3524578/843*1364^(1/9) 9323785195487865 h001 (-8*exp(2)+6)/(-8*exp(-1)+3) 9323785195768290 a001 17711/843*3571^(38/51) 9323785197263790 m001 BesselK(1,1)^(Ei(1,1)/BesselI(1,2)) 9323785232099964 m001 1/MadelungNaCl/Si(Pi)^2/exp((3^(1/3)))^2 9323785237580906 r002 5th iterates of z^2 + 9323785246993199 a001 28657/843*3571^(35/51) 9323785272649259 a007 Real Root Of -550*x^4+438*x^3+431*x^2-917*x-459 9323785286864582 a001 15456/281*3571^(32/51) 9323785290058185 m001 (2^(1/3)-exp(1/Pi))/(-OneNinth+Totient) 9323785302125210 a007 Real Root Of 256*x^4-648*x^3+67*x^2+755*x-73 9323785319419614 a007 Real Root Of 802*x^4+961*x^3+571*x^2-230*x-538 9323785325222062 m005 (1/2*5^(1/2)+6/7)/(-75/154+5/22*5^(1/2)) 9323785330850355 a003 sin(Pi*3/91)*sin(Pi*39/109) 9323785331072626 a001 75025/843*3571^(29/51) 9323785351561116 m001 (FeigenbaumB+Paris)/(ln(2)/ln(10)+ArtinRank2) 9323785358294838 a007 Real Root Of -778*x^4+498*x^3+195*x^2-531*x+327 9323785373624214 a001 121393/843*3571^(26/51) 9323785373646340 a001 2584/843*9349^(50/57) 9323785416808511 a001 196418/843*3571^(23/51) 9323785444664821 m001 (Stephens+Totient)/(3^(1/2)+FellerTornier) 9323785444982134 a007 Real Root Of -444*x^4+683*x^3-483*x^2-872*x+496 9323785459751136 a001 377*3571^(20/51) 9323785460121827 p001 sum((-1)^n/(597*n+107)/(64^n),n=0..infinity) 9323785466999888 a001 2584/843*167761^(2/3) 9323785467202293 a001 377/5778*54018521^(2/3) 9323785467220739 a001 2584/843*20633239^(10/21) 9323785467220749 a001 2584/843*3461452808002^(5/18) 9323785467220749 a001 2584/843*28143753123^(1/3) 9323785467220749 a001 2584/843*228826127^(5/12) 9323785467222246 a001 2584/843*1860498^(5/9) 9323785467836836 a007 Real Root Of 918*x^4-757*x^3+286*x^2+725*x-880 9323785471724374 a001 2584/843*39603^(25/33) 9323785483050728 a008 Real Root of (-5+5*x+5*x^2+4*x^3-4*x^4-6*x^5) 9323785501175881 a001 2584/843*15127^(5/6) 9323785502786071 a001 514229/843*3571^(1/3) 9323785515450870 a007 Real Root Of -950*x^4-885*x^3+266*x^2+671*x+395 9323785518609619 m001 (Shi(1)-Zeta(1,-1))/(Thue+ZetaP(2)) 9323785522996177 r005 Re(z^2+c),c=-9/10+13/81*I,n=21 9323785527912163 m001 (FellerTornier-exp(Pi))/(-GaussAGM+Thue) 9323785545785747 a001 832040/843*3571^(14/51) 9323785588798891 a001 1346269/843*3571^(11/51) 9323785623407437 a001 2255/281*9349^(44/57) 9323785631806892 a001 726103/281*3571^(8/51) 9323785649178277 a007 Real Root Of -393*x^4+246*x^3-795*x^2-229*x+974 9323785652959167 m005 (1/3*Pi-1/2)/(5/12*gamma-2/11) 9323785668048922 m003 19/8+Sqrt[5]/16+(Sqrt[5]*Sec[1/2+Sqrt[5]/2])/4 9323785669437740 a001 17711/843*9349^(2/3) 9323785683267695 a001 28657/843*9349^(35/57) 9323785685331708 a001 10946/843*9349^(41/57) 9323785685744122 a001 15456/281*9349^(32/57) 9323785687483458 m001 (Champernowne-Shi(1))/(-Salem+ZetaP(3)) 9323785692557210 a001 75025/843*9349^(29/57) 9323785697713841 a001 121393/843*9349^(26/57) 9323785703503183 a001 196418/843*9349^(23/57) 9323785705734440 a001 377/15127*20633239^(16/21) 9323785705734457 a001 377/15127*23725150497407^(5/12) 9323785705734457 a001 377/15127*505019158607^(10/21) 9323785705734457 a001 377/15127*28143753123^(8/15) 9323785705734457 a001 377/15127*10749957122^(5/9) 9323785705734457 a001 377/15127*228826127^(2/3) 9323785705734784 a001 377/15127*4870847^(5/6) 9323785705736851 a001 377/15127*1860498^(8/9) 9323785705752040 a001 377/15127*710647^(20/21) 9323785705752852 a001 2255/281*7881196^(4/9) 9323785705752919 a001 2255/281*312119004989^(4/15) 9323785705752919 a001 2255/281*1568397607^(1/3) 9323785705753099 a001 2255/281*4870847^(11/24) 9323785705762589 a001 2255/281*710647^(11/21) 9323785706282955 a001 2255/281*103682^(11/18) 9323785709050851 a001 377*9349^(20/57) 9323785709601473 r009 Im(z^3+c),c=-29/34+19/63*I,n=2 9323785709716108 a001 2255/281*39603^(2/3) 9323785714690829 a001 514229/843*9349^(17/57) 9323785720295549 a001 832040/843*9349^(14/57) 9323785725811786 a001 2584/843*5778^(25/27) 9323785725913736 a001 1346269/843*9349^(11/57) 9323785729268910 p001 sum(1/(481*n+359)/n/(128^n),n=1..infinity) 9323785731526779 a001 726103/281*9349^(8/57) 9323785735633435 a001 2255/281*15127^(11/15) 9323785740123312 a001 28657/843*24476^(5/9) 9323785740535831 a001 377/39603*969323029^(2/3) 9323785740554293 a001 17711/843*817138163596^(2/9) 9323785740554293 a001 17711/843*87403803^(1/3) 9323785743037796 a001 832040/843*24476^(2/9) 9323785743977048 a001 17711/843*39603^(19/33) 9323785745613283 a001 377/103682*4106118243^(2/3) 9323785745613660 a001 377/103682*4870847^(23/24) 9323785745631745 a001 15456/281*23725150497407^(1/6) 9323785745631745 a001 15456/281*10749957122^(2/9) 9323785745631745 a001 15456/281*228826127^(4/15) 9323785745631876 a001 15456/281*4870847^(1/3) 9323785745638778 a001 15456/281*710647^(8/21) 9323785745790510 a001 196418/843*64079^(1/3) 9323785746017226 a001 15456/281*103682^(4/9) 9323785746354053 a001 377/271443*20633239^(14/15) 9323785746354073 a001 377/271443*17393796001^(2/3) 9323785746354073 a001 377/271443*505019158607^(7/12) 9323785746354073 a001 377/271443*599074578^(7/9) 9323785746372535 a001 121393/843*141422324^(2/9) 9323785746372535 a001 121393/843*73681302247^(1/6) 9323785746392271 a001 377*167761^(4/15) 9323785746414716 a001 121393/843*271443^(1/3) 9323785746462153 a001 377/710647*141422324^(8/9) 9323785746462153 a001 377/710647*23725150497407^(13/24) 9323785746462153 a001 377/710647*505019158607^(13/21) 9323785746462153 a001 377/710647*73681302247^(2/3) 9323785746462153 a001 377/710647*10749957122^(13/18) 9323785746462153 a001 377/710647*228826127^(13/15) 9323785746477142 a001 3524578/843*167761^(1/15) 9323785746477922 a001 377/1860498*312119004989^(2/3) 9323785746477922 a001 377/1860498*3461452808002^(11/18) 9323785746477922 a001 377/1860498*28143753123^(11/15) 9323785746477922 a001 377/1860498*1568397607^(5/6) 9323785746477922 a001 377/1860498*228826127^(11/12) 9323785746480222 a001 377/4870847*1322157322203^(2/3) 9323785746480558 a001 377/12752043*5600748293801^(2/3) 9323785746480607 a001 377/33385282*23725150497407^(2/3) 9323785746480607 a001 377/33385282*505019158607^(16/21) 9323785746480607 a001 377/33385282*10749957122^(8/9) 9323785746480611 a001 377*20633239^(4/21) 9323785746480615 a001 377/228826127*17393796001^(20/21) 9323785746480615 a001 377/228826127*3461452808002^(7/9) 9323785746480615 a001 377/228826127*505019158607^(5/6) 9323785746480615 a001 377/228826127*28143753123^(14/15) 9323785746480615 a001 377/1568397607*23725150497407^(19/24) 9323785746480615 a001 377/1568397607*505019158607^(19/21) 9323785746480615 a001 377/28143753123*3461452808002^(17/18) 9323785746480615 a001 377/73681302247*23725150497407^(11/12) 9323785746480615 a001 377*3461452808002^(1/9) 9323785746480615 a001 377*28143753123^(2/15) 9323785746480615 a001 377/6643838879*505019158607^(23/24) 9323785746480615 a001 377/2537720636*9062201101803^(5/6) 9323785746480615 a001 377*228826127^(1/6) 9323785746480615 a001 377/370248451*312119004989^(13/15) 9323785746480615 a001 377/370248451*73681302247^(11/12) 9323785746480637 a001 13/711491*28143753123^(5/6) 9323785746480697 a001 377*4870847^(5/24) 9323785746480765 a001 377/7881196*17393796001^(17/21) 9323785746480765 a001 377/7881196*45537549124^(7/9) 9323785746480765 a001 377/7881196*505019158607^(17/24) 9323785746480765 a001 377/7881196*599074578^(17/18) 9323785746481214 a001 377*1860498^(2/9) 9323785746485011 a001 377*710647^(5/21) 9323785746496381 a001 832040/843*20633239^(2/15) 9323785746496384 a001 832040/843*17393796001^(2/21) 9323785746496384 a001 832040/843*505019158607^(1/12) 9323785746496384 a001 832040/843*599074578^(1/9) 9323785746498685 a001 726103/281*23725150497407^(1/24) 9323785746498685 a001 726103/281*10749957122^(1/18) 9323785746498685 a001 726103/281*228826127^(1/15) 9323785746498717 a001 726103/281*4870847^(1/12) 9323785746499227 a001 3524578/843*20633239^(1/21) 9323785746499228 a001 3524578/843*228826127^(1/24) 9323785746499377 a001 3524578/843*1860498^(1/18) 9323785746499461 a001 832040/843*710647^(1/6) 9323785746500090 a001 1346269/843*7881196^(1/9) 9323785746500106 a001 1346269/843*312119004989^(1/15) 9323785746500106 a001 1346269/843*1568397607^(1/12) 9323785746500443 a001 726103/281*710647^(2/21) 9323785746506129 a001 514229/843*45537549124^(1/9) 9323785746506139 a001 514229/843*12752043^(1/6) 9323785746547412 a001 196418/843*4106118243^(1/6) 9323785746595055 a001 726103/281*103682^(1/9) 9323785746721541 a001 377*103682^(5/18) 9323785746811887 a001 377/167761*20633239^(19/21) 9323785746811907 a001 377/167761*817138163596^(5/9) 9323785746811907 a001 377/167761*228826127^(19/24) 9323785746811908 a001 377/167761*87403803^(5/6) 9323785746828018 a001 75025/843*1149851^(1/3) 9323785746830369 a001 75025/843*1322157322203^(1/6) 9323785747219264 a001 726103/281*39603^(4/33) 9323785747490904 a001 1346269/843*39603^(1/6) 9323785747757399 a001 832040/843*39603^(7/33) 9323785748282065 a001 377*39603^(10/33) 9323785748514065 a001 15456/281*39603^(16/33) 9323785748615180 a001 28657/843*167761^(7/15) 9323785748714420 a001 121393/843*39603^(13/33) 9323785748769776 a001 28657/843*20633239^(1/3) 9323785748769783 a001 28657/843*17393796001^(5/21) 9323785748769783 a001 28657/843*505019158607^(5/24) 9323785748769783 a001 28657/843*599074578^(5/18) 9323785748769783 a001 28657/843*228826127^(7/24) 9323785748770831 a001 28657/843*1860498^(7/18) 9323785748777476 a001 28657/843*710647^(5/12) 9323785749894741 a001 3524578/843*15127^(1/12) 9323785751636190 r005 Re(z^2+c),c=-30/23+2/41*I,n=48 9323785751931506 a001 726103/281*15127^(2/15) 9323785753970236 a001 1346269/843*15127^(11/60) 9323785756003821 a001 832040/843*15127^(7/30) 9323785758050875 a001 514229/843*15127^(17/60) 9323785760062668 a001 377*15127^(1/3) 9323785762062725 a001 10946/843*370248451^(1/3) 9323785762166773 a001 196418/843*15127^(23/60) 9323785764029204 a001 121393/843*15127^(13/30) 9323785765213959 a001 4181/843*9349^(47/57) 9323785766360194 a001 17711/843*15127^(19/30) 9323785766524346 a001 75025/843*15127^(29/60) 9323785767363030 a001 15456/281*15127^(8/15) 9323785772538376 a001 28657/843*15127^(7/12) 9323785787873251 a001 726103/281*5778^(4/27) 9323785789905934 a001 10946/843*15127^(41/60) 9323785797510077 m001 Zeta(9)^2*MadelungNaCl*ln(sin(Pi/5)) 9323785798609780 m001 FeigenbaumD^Niven/gamma 9323785803390136 a001 1346269/843*5778^(11/54) 9323785818901876 a001 832040/843*5778^(7/27) 9323785826257435 a001 5702887/843*2207^(1/24) 9323785826978864 m005 (1/2*gamma-7/10)/(11/12*3^(1/2)-6) 9323785834427084 a001 514229/843*5778^(17/54) 9323785835303999 a007 Real Root Of 75*x^4-941*x^3-793*x^2-444*x-544 9323785846608666 r005 Re(z^2+c),c=-9/50+43/60*I,n=15 9323785849917032 a001 377*5778^(10/27) 9323785853155329 a001 377/9349*7881196^(7/9) 9323785853155430 a001 377/9349*20633239^(11/15) 9323785853155446 a001 377/9349*17393796001^(11/21) 9323785853155446 a001 377/9349*312119004989^(7/15) 9323785853155446 a001 377/9349*505019158607^(11/24) 9323785853155446 a001 377/9349*1568397607^(7/12) 9323785853155446 a001 377/9349*599074578^(11/18) 9323785853172369 a001 377/9349*710647^(11/12) 9323785853173907 a001 4181/843*6643838879^(1/3) 9323785865499292 a001 196418/843*5778^(23/54) 9323785869751901 r005 Im(z^2+c),c=-11/102+59/64*I,n=19 9323785871711824 m001 (HardyLittlewoodC4+MertensB3)/(Niven+ZetaQ(2)) 9323785878273354 a007 Real Root Of -86*x^4-781*x^3+118*x^2-714*x-19 9323785880839878 a001 121393/843*5778^(13/27) 9323785885091731 a001 4181/843*15127^(47/60) 9323785896813174 a001 75025/843*5778^(29/54) 9323785911130013 a001 15456/281*5778^(16/27) 9323785923693153 m001 (cos(1)+Porter)/(ln(2)/ln(10)+Si(Pi)) 9323785928454276 r002 4th iterates of z^2 + 9323785929783514 a001 28657/843*5778^(35/54) 9323785933313036 a001 2255/281*5778^(22/27) 9323785934995194 a007 Real Root Of -718*x^4+776*x^3+527*x^2+66*x+775 9323785937083486 a001 17711/843*5778^(19/27) 9323785939053835 a007 Real Root Of -25*x^4-160*x^3+664*x^2-213*x-463 9323785974107382 a001 10946/843*5778^(41/54) 9323785989956013 r005 Re(z^2+c),c=-31/34+7/51*I,n=41 9323785997477775 a007 Real Root Of -688*x^4-659*x^3-868*x^2+183*x+911 9323786009283003 r005 Re(z^2+c),c=-29/27+12/61*I,n=62 9323786015616362 a007 Real Root Of 925*x^4-186*x^3+758*x^2+802*x-761 9323786021424696 a001 141/46*199^(20/31) 9323786024654206 a003 cos(Pi*13/114)*sin(Pi*55/117) 9323786026855075 r005 Re(z^2+c),c=-69/98+7/29*I,n=37 9323786032467737 a007 Real Root Of -985*x^4-775*x^3-763*x^2-288*x+511 9323786034908685 r005 Im(z^2+c),c=-28/25+7/61*I,n=58 9323786065532347 a001 726103/281*2207^(1/6) 9323786079444782 m001 (Pi-gamma(2))/(PrimesInBinary-ZetaP(4)) 9323786095015061 r002 22th iterates of z^2 + 9323786096249491 a001 4181/843*5778^(47/54) 9323786096770002 m001 (1/2+ThueMorse)^LandauRamanujan 9323786099627063 a007 Real Root Of -267*x^4+471*x^3+181*x^2-71*x+360 9323786139821593 k002 Champernowne real with 149/2*n^2+181/2*n-156 9323786141084884 a007 Real Root Of -60*x^4-482*x^3+635*x^2-762*x+451 9323786150204426 a007 Real Root Of -357*x^4+305*x^3+659*x^2+61*x+1 9323786159150421 r008 a(0)=9,K{-n^6,-7-7*n^3+9*n^2-n} 9323786181865034 a007 Real Root Of 529*x^4-136*x^3+278*x^2+463*x-320 9323786185171395 a001 1346269/843*2207^(11/48) 9323786192998344 m001 (cos(1/12*Pi)+KhinchinHarmonic)/(Porter-Salem) 9323786220789260 r002 37th iterates of z^2 + 9323786248162954 r002 31th iterates of z^2 + 9323786248346815 m001 GAMMA(7/12)*FeigenbaumD/TreeGrowth2nd 9323786263195553 a001 514229/1364*521^(20/39) 9323786283348699 a001 4/13*610^(49/55) 9323786297121161 m005 (1/3*gamma-2/9)/(1/2*Catalan-7/9) 9323786297894329 a003 sin(Pi*26/97)/sin(Pi*31/105) 9323786304805301 a001 832040/843*2207^(7/24) 9323786309689810 a001 47/5*1346269^(22/45) 9323786317038689 m002 -4/Pi+Pi^4-Cosh[Pi]/4 9323786322929221 m001 1/2*2^(1/2)*sin(1/12*Pi)/ReciprocalLucas 9323786323711298 m001 (gamma+Zeta(3))/(arctan(1/2)+exp(1/exp(1))) 9323786327785076 m005 (1/6*2^(1/2)+3/4)/(2/3*2^(1/2)-2) 9323786340391293 a007 Real Root Of 692*x^4-933*x^3-655*x^2+404*x+426 9323786367816657 a007 Real Root Of -460*x^4-179*x^3-265*x^2-430*x+32 9323786371267013 a001 5702887/843*843^(1/21) 9323786378470349 a001 1597/843*9349^(53/57) 9323786387469522 a007 Real Root Of 931*x^4-917*x^3-599*x^2+353*x-597 9323786424452675 a001 514229/843*2207^(17/48) 9323786477659233 a001 1597/843*119218851371^(1/3) 9323786478376811 m001 Shi(1)^Trott2nd/(Shi(1)^GAMMA(17/24)) 9323786490016478 m001 1/GAMMA(19/24)^2/FeigenbaumC^2/exp(Zeta(1/2)) 9323786493048172 a003 cos(Pi*12/97)/cos(Pi*37/79) 9323786498775529 a007 Real Root Of 492*x^4-325*x^3+790*x^2+399*x-950 9323786513651677 a001 1597/843*15127^(53/60) 9323786524583793 r005 Im(z^2+c),c=-31/27+4/35*I,n=8 9323786539653461 r002 4th iterates of z^2 + 9323786544064792 a001 377*2207^(5/12) 9323786549223861 m001 1/GaussKuzminWirsing^2/Champernowne^2*ln(Pi)^2 9323786549467322 m005 (1/2*5^(1/2)-1/5)/(6/7*3^(1/2)-1/2) 9323786549918367 b008 3*(-3/2+2^(1/4)) 9323786550715487 a007 Real Root Of -968*x^4+649*x^3+46*x^2-553*x+702 9323786553899108 m001 GaussKuzminWirsing/ln(Bloch)^2*sqrt(3) 9323786573246042 a007 Real Root Of 563*x^4+779*x^3+895*x^2-120*x-684 9323786609439894 r005 Re(z^2+c),c=-31/34+7/51*I,n=39 9323786662116194 a001 370248451/8*17711^(7/9) 9323786663769222 a001 196418/843*2207^(23/48) 9323786666691581 a001 109801/2*102334155^(7/9) 9323786666740774 a001 12752043/8*1346269^(7/9) 9323786692712743 m001 (Zeta(1,-1)-BesselK(1,1))/(ln(Pi)-arctan(1/3)) 9323786693447016 a007 Real Root Of 104*x^4-858*x^3+246*x^2+874*x-173 9323786696758215 m001 (-Niven+PolyaRandomWalk3D)/(1+arctan(1/2)) 9323786697181269 m001 (Zeta(1,-1)-Backhouse)/(CareFree+MertensB2) 9323786707486079 a001 15127/8*7778742049^(7/9) 9323786712438290 r002 29th iterates of z^2 + 9323786746007225 r005 Im(z^2+c),c=-19/18+1/97*I,n=17 9323786749182097 r005 Im(z^2+c),c=-2/17+41/59*I,n=27 9323786751765762 a001 1597/843*5778^(53/54) 9323786756479401 m001 ln(5)/(GAMMA(3/4)^Khinchin) 9323786774939029 l006 ln(6631/7279) 9323786782807387 m001 arctan(1/2)+CareFree-CopelandErdos 9323786783231979 a001 121393/843*2207^(13/24) 9323786793953858 q001 1172/1257 9323786820118980 m001 (-PlouffeB+Salem)/(2^(1/2)-LaplaceLimit) 9323786829825590 m001 Zeta(1,2)/Robbin^2/exp(exp(1))^2 9323786836700077 a007 Real Root Of 309*x^4-978*x^3-138*x^2+323*x+378 9323786855122686 a003 cos(Pi*9/74)/sin(Pi*15/32) 9323786856907323 a007 Real Root Of -66*x^4-174*x^3-704*x^2+264*x+767 9323786871251845 m005 (1/2*5^(1/2)-7/8)/(3/4*2^(1/2)-4/5) 9323786878660154 r005 Re(z^2+c),c=-9/10+24/145*I,n=31 9323786884816064 m001 (Thue+ZetaP(3))/(exp(1)-ln(5)) 9323786885287420 h001 (2/11*exp(2)+11/12)/(9/11*exp(1)+1/5) 9323786903327448 a001 75025/843*2207^(29/48) 9323786933009443 a007 Real Root Of 827*x^4-987*x^3-403*x^2+286*x-808 9323786936159476 a007 Real Root Of 30*x^4+222*x^3-501*x^2+346*x 9323786959700359 m001 (MasserGramainDelta+Trott)/(Chi(1)+GAMMA(5/6)) 9323787021766461 a001 15456/281*2207^(2/3) 9323787042232362 m001 (-QuadraticClass+Sarnak)/(1+ln(2)) 9323787059992550 r002 28th iterates of z^2 + 9323787071858887 a007 Real Root Of -713*x^4-922*x^3-612*x^2+363*x+662 9323787086783019 m001 (GAMMA(3/4)+ln(gamma))/(ArtinRank2+Trott2nd) 9323787093833003 m001 (LambertW(1)+ln(Pi))/(Grothendieck+ZetaQ(2)) 9323787140121653 k002 Champernowne real with 75*n^2+89*n-155 9323787144542138 a001 28657/843*2207^(35/48) 9323787156907999 b008 Pi/(2+ArcSec[5]) 9323787162981186 a003 sin(Pi*27/83)/sin(Pi*32/87) 9323787184507867 a003 sin(Pi*3/26)+sin(Pi*10/51) 9323787186789616 a007 Real Root Of 798*x^4-502*x^3-297*x^2+92*x-666 9323787192812504 a003 cos(Pi*16/75)/sin(Pi*34/107) 9323787209819491 a007 Real Root Of -252*x^4+286*x^3-746*x^2-299*x+792 9323787219016080 m001 OneNinth^2/Lehmer*exp(GAMMA(11/24))^2 9323787239226362 a007 Real Root Of -573*x^4-282*x^3-112*x^2+308*x+589 9323787255964286 a001 17711/843*2207^(19/24) 9323787288178779 m005 (1/2*2^(1/2)-5/12)/(3/5*Pi-5) 9323787293981425 a001 5778/89*317811^(1/35) 9323787328037261 m001 1/Porter*exp(FibonacciFactorial)^2*Salem 9323787329210480 m005 (-19/4+1/4*5^(1/2))/(7/8*gamma-5) 9323787363977515 r005 Im(z^2+c),c=-2/3+28/79*I,n=38 9323787369709504 a007 Real Root Of 369*x^4-508*x^3-567*x^2-188*x-373 9323787395555599 r005 Re(z^2+c),c=-1/94+19/53*I,n=31 9323787397110364 a001 10946/843*2207^(41/48) 9323787397667258 a007 Real Root Of 140*x^4-727*x^3-648*x^2+151*x+906 9323787408865641 a007 Real Root Of -928*x^4+580*x^3-252*x^2-584*x+846 9323787449828575 s002 sum(A215542[n]/((10^n-1)/n),n=1..infinity) 9323787455581800 a007 Real Root Of 831*x^4-534*x^3-237*x^2-86*x-935 9323787460438190 a001 2255/281*2207^(11/12) 9323787464196298 a007 Real Root Of -508*x^4-141*x^3+970*x^2+681*x-980 9323787464432751 a007 Real Root Of -579*x^4-675*x^3-742*x^2+170*x+694 9323787499427072 r002 23th iterates of z^2 + 9323787528935591 r009 Im(z^3+c),c=-71/114+6/29*I,n=3 9323787531070540 m001 OneNinth-sin(1/5*Pi)-ZetaP(2) 9323787555628584 a007 Real Root Of 923*x^4+31*x^3-645*x^2-173*x-273 9323787565995792 a003 cos(Pi*5/96)*sin(Pi*13/33) 9323787582801991 a003 sin(Pi*43/115)/sin(Pi*54/119) 9323787601684022 a005 (1/cos(8/181*Pi))^707 9323787603409536 r005 Im(z^2+c),c=-47/90+12/59*I,n=8 9323787630698922 a007 Real Root Of -525*x^4+347*x^3-738*x^2-923*x+459 9323787631052506 m001 (ln(2)/ln(10)+exp(1))/(Backhouse+Grothendieck) 9323787647258226 a007 Real Root Of -170*x^4+241*x^3+682*x^2+768*x+447 9323787650318744 a007 Real Root Of 200*x^4-202*x^3-97*x^2-718*x-900 9323787662891314 m005 (1/2*gamma-1/5)/(6*3^(1/2)-8/9) 9323787666943496 m005 (1/2*gamma+4/7)/(4/9*exp(1)-2/7) 9323787680545841 a003 cos(Pi*5/47)*sin(Pi*48/107) 9323787695071649 a001 199/377*3^(29/56) 9323787701701727 m001 MertensB3^BesselI(1,1)/(MertensB3^cos(1/5*Pi)) 9323787711748722 r008 a(0)=1,K{-n^6,-51+9*n+30*n^2+27*n^3} 9323787715445953 r005 Re(z^2+c),c=-25/28+8/43*I,n=29 9323787727496852 a001 4181/843*2207^(47/48) 9323787761850191 m001 Pi*2^(1/2)/GAMMA(3/4)/(Conway+Sierpinski) 9323787773716260 m001 FeigenbaumMu^(3^(1/2))+MertensB1 9323787781038984 a007 Real Root Of -536*x^4+802*x^3+41*x^2-466*x+585 9323787805489483 r004 Im(z^2+c),c=7/46+7/22*I,z(0)=I,n=8 9323787807667064 m001 (-GAMMA(2/3)+Conway)/(Psi(2,1/3)+Catalan) 9323787850452711 a007 Real Root Of -60*x^4-659*x^3-872*x^2+567*x+384 9323787874375067 m005 (7/20+1/4*5^(1/2))/(7/9*2^(1/2)-1/8) 9323787877035017 a007 Real Root Of -92*x^4+705*x^3-25*x^2+461*x-910 9323787924546671 a007 Real Root Of -749*x^4+110*x^3-378*x^2-476*x+540 9323787930748509 r005 Im(z^2+c),c=-17/26+11/48*I,n=43 9323787939383398 a007 Real Root Of 813*x^4-972*x^3-751*x^2-65*x-810 9323787951336904 a008 Real Root of (-5+2*x-2*x^2-2*x^3+3*x^4+6*x^5) 9323787953228369 m005 (1/2*Catalan+7/8)/(79/110+7/22*5^(1/2)) 9323787968926390 m005 (1/2*Pi-8/11)/(2/3*3^(1/2)-1/4) 9323787975246553 m005 (1/2*Zeta(3)-7/9)/(-10/77+1/7*5^(1/2)) 9323788004050049 r009 Re(z^3+c),c=-8/13+55/56*I,n=2 9323788083359288 m001 Khintchine^2*ln(FeigenbaumDelta)*Catalan^2 9323788117470461 m001 (3^(1/3)+Ei(1,1))/(gamma(2)-Pi^(1/2)) 9323788140421713 k002 Champernowne real with 151/2*n^2+175/2*n-154 9323788164853330 a001 123/75025*2584^(18/35) 9323788206845510 r005 Re(z^2+c),c=-47/52+7/45*I,n=19 9323788212624653 a003 cos(Pi*13/68)+cos(Pi*34/73) 9323788216170165 a007 Real Root Of 648*x^4-712*x^3-935*x^2-769*x-971 9323788245570908 a001 726103/281*843^(4/21) 9323788251662569 m001 (ZetaP(4)+ZetaQ(2))/(BesselI(1,1)+GaussAGM) 9323788259806576 a001 161/305*121393^(13/53) 9323788267186744 m001 Figure8HypebolicComplement^2/Riemann2ndZero^2 9323788281749963 m002 -5+Pi^2-Pi^4-Pi^6/Log[Pi] 9323788299168402 h001 (9/11*exp(2)+1/2)/(1/9*exp(1)+2/5) 9323788316921563 m001 1/exp(FeigenbaumD)^2/Kolakoski^2*(2^(1/3)) 9323788326850474 r005 Im(z^2+c),c=-83/98+2/33*I,n=54 9323788342792539 a007 Real Root Of -824*x^4-525*x^3+709*x^2+944*x+461 9323788375500076 m002 -3*Pi^3+Pi^2*Csch[Pi]-ProductLog[Pi] 9323788396779206 m005 (1/2*gamma+5)/(3/11*Zeta(3)-6) 9323788399273550 h001 (11/12*exp(1)+11/12)/(2/5*exp(2)+7/10) 9323788439635478 a007 Real Root Of -69*x^4+444*x^3+461*x^2-70*x-54 9323788462911108 a003 sin(Pi*45/116)*sin(Pi*44/95) 9323788483002367 r009 Re(z^3+c),c=-1/9+39/53*I,n=8 9323788505946730 r005 Im(z^2+c),c=19/54+24/59*I,n=20 9323788533254127 a001 75025/47*7^(39/43) 9323788553737801 r001 7i'th iterates of 2*x^2-1 of 9323788562596897 l006 ln(7685/8436) 9323788570732286 r008 a(0)=1,K{-n^6,-69+36*n^3-6*n^2+54*n} 9323788590724110 a007 Real Root Of -919*x^4+472*x^3+853*x^2+97*x+426 9323788626074697 a003 cos(Pi*2/17)*sin(Pi*55/111) 9323788632829949 r009 Re(z^3+c),c=-2/13+21/37*I,n=14 9323788639097950 r009 Im(z^3+c),c=-19/106+44/49*I,n=47 9323788639725286 a007 Real Root Of -915*x^4+157*x^3-746*x^2-691*x+823 9323788646844776 a007 Real Root Of 866*x^4+627*x^3-395*x^2-841*x-587 9323788667618477 r005 Re(z^2+c),c=-9/10+97/166*I,n=3 9323788689767581 r002 2th iterates of z^2 + 9323788721209091 m001 (ln(2^(1/2)+1)+Pi^(1/2))/(FeigenbaumMu-Sarnak) 9323788721323783 m001 (ErdosBorwein-Rabbit)^Cahen 9323788747054215 a007 Real Root Of 130*x^4-756*x^3-262*x^2+114*x+636 9323788763376857 m001 (MertensB2*Niven+Riemann1stZero)/Niven 9323788779366228 a007 Real Root Of 52*x^4-604*x^3+657*x^2+680*x-466 9323788808644862 a007 Real Root Of 763*x^4-131*x^3-596*x^2+49*x-119 9323788825370536 m005 (1/2*Catalan+6)/(3/8*gamma-10/11) 9323788835334219 a007 Real Root Of 338*x^4-173*x^3+839*x^2+177*x-960 9323788857014288 m002 -4/Pi^3+3*Pi^3*Coth[Pi] 9323788859918154 m001 (-Ei(1)+FellerTornier)/(5^(1/2)+ln(gamma)) 9323788868868817 a001 17711/322*322^(8/9) 9323788895916602 m005 (13/60+5/12*5^(1/2))/(3*gamma-1/2) 9323788905419170 a001 610*521^(17/39) 9323788936766830 r002 54th iterates of z^2 + 9323788954828090 r005 Re(z^2+c),c=23/118+10/37*I,n=35 9323788960888887 r009 Im(z^3+c),c=-5/29+35/37*I,n=12 9323788961987598 r005 Im(z^2+c),c=-15/14+3/28*I,n=34 9323788965414358 m002 -4+E^Pi+Pi^2-Pi^6 9323788979217406 a003 cos(Pi*33/113)*cos(Pi*23/51) 9323789001514124 m006 (2*Pi^2+1/6)/(3/5*Pi+1/4) 9323789001514124 m008 (2*Pi^2+1/6)/(3/5*Pi+1/4) 9323789004085708 r005 Im(z^2+c),c=-39/62+8/45*I,n=30 9323789005349545 a001 55/4*199^(47/59) 9323789019719747 m001 (CareFree-MadelungNaCl)/(BesselI(1,2)-Bloch) 9323789037025732 r009 Re(z^3+c),c=-13/98+23/50*I,n=5 9323789055855568 a007 Real Root Of 36*x^4+391*x^3+465*x^2-493*x-162 9323789061269290 m009 (1/5*Psi(1,3/4)+6)/(2/3*Psi(1,1/3)+1/4) 9323789102487912 m006 (5/6*exp(2*Pi)-2/3)/(4*ln(Pi)+1/5) 9323789107431593 a007 Real Root Of 451*x^4-806*x^3-190*x^2+178*x-663 9323789110262515 m001 (-exp(1/Pi)+Lehmer)/(2^(1/3)-BesselK(0,1)) 9323789116892964 a007 Real Root Of -564*x^4+754*x^3+199*x^2+398*x-729 9323789134323219 m005 (1/2*Zeta(3)-5/12)/(3/4*2^(1/2)+11/12) 9323789140721773 k002 Champernowne real with 76*n^2+86*n-153 9323789158524864 r005 Im(z^2+c),c=-15/26+15/88*I,n=57 9323789165626046 a007 Real Root Of 155*x^4-839*x^3-125*x^2-126*x-806 9323789182724586 a001 1346269/843*843^(11/42) 9323789212429318 m001 (GlaisherKinkelin-Trott)/(GAMMA(2/3)-gamma(2)) 9323789217097765 r009 Re(z^3+c),c=-7/44+29/49*I,n=37 9323789217179409 q001 3061/3283 9323789227709810 m005 (1/2*Zeta(3)+5/11)/(2/11*2^(1/2)+7/8) 9323789228912391 r002 33th iterates of z^2 + 9323789234544743 m001 (BesselJ(0,1)+MertensB1)/(Psi(1,1/3)+Catalan) 9323789239800201 r008 a(0)=1,K{-n^6,-33+35*n^3+15*n^2-2*n} 9323789250261724 m005 (3/5*exp(1)-5/6)/(3*exp(1)+2/5) 9323789285162228 p004 log(13127/5167) 9323789304463562 h001 (9/11*exp(1)+2/11)/(3/10*exp(2)+4/11) 9323789324097365 r009 Re(z^3+c),c=-9/70+23/58*I,n=13 9323789360167575 a007 Real Root Of -956*x^4-856*x^3+39*x^2+928*x+860 9323789399178131 a007 Real Root Of 825*x^4+13*x^3+383*x^2+386*x-586 9323789406507681 m001 (ln(3)-LandauRamanujan)/(ThueMorse-ZetaQ(2)) 9323789406542263 r009 Im(z^3+c),c=-59/90+10/21*I,n=7 9323789427209001 m001 1/2*GAMMA(2/3)-ln(5) 9323789461768871 a001 832040/29*123^(34/47) 9323789513304412 m001 ErdosBorwein^(FransenRobinson/Gompertz) 9323789529103772 a007 Real Root Of -697*x^4+321*x^3+467*x^2+705*x-70 9323789532357277 m001 (Lehmer-Sarnak)/(gamma(2)-HardHexagonsEntropy) 9323789533379314 b008 8-5*ArcCosh[16] 9323789541944247 a007 Real Root Of -558*x^4-162*x^3-241*x^2-593*x-53 9323789546843528 a007 Real Root Of -90*x^4-903*x^3-675*x^2-674*x+635 9323789549459119 m001 (-LambertW(1)+Riemann2ndZero)/(Chi(1)-Shi(1)) 9323789549459119 m001 (LambertW(1)-Riemann2ndZero)/Ei(1,1) 9323789552909886 a007 Real Root Of 987*x^4-459*x^3+359*x^2-498*x-50 9323789572584829 a007 Real Root Of -394*x^4+581*x^3+130*x^2+217*x+858 9323789578617554 a007 Real Root Of -11*x^4+265*x^3-796*x^2-250*x+682 9323789582037067 a007 Real Root Of 893*x^4+115*x^3+260*x^2+330*x-500 9323789622662415 m001 (ln(5)+Artin)/(Porter+TwinPrimes) 9323789634314285 s001 sum(exp(-3*Pi)^n*A211133[n],n=1..infinity) 9323789703815282 r002 49th iterates of z^2 + 9323789713123158 a007 Real Root Of -688*x^4-581*x^3-498*x^2+502*x+950 9323789764400400 a007 Real Root Of 876*x^4+384*x^3+819*x^2+255*x-825 9323789787025786 m001 (arctan(1/3)+Porter)/(GAMMA(3/4)+ln(2)) 9323789795596763 a008 Real Root of x^4-2*x^3-3*x^2-7*x+10 9323789809969827 a007 Real Root Of 915*x^4-771*x^3-522*x^2+449*x-444 9323789811757210 a007 Real Root Of -84*x^4+544*x^3+508*x^2+278*x+322 9323789842267254 a007 Real Root Of -723*x^4-164*x^3+132*x^2+750*x+998 9323789867772768 r005 Im(z^2+c),c=-27/70+7/47*I,n=12 9323789884758781 m004 -12+(150*Sqrt[5])/Pi-ProductLog[Sqrt[5]*Pi] 9323789902821942 m001 gamma(3)^(FellerTornier/sin(1)) 9323789906453827 a007 Real Root Of -239*x^4-580*x^3-975*x^2+386*x+918 9323789919040328 l006 ln(8739/9593) 9323789965851301 m001 (-Backhouse+FeigenbaumD)/(Shi(1)+sin(1/12*Pi)) 9323789967204604 m001 (5^(1/2))^Kolakoski/((5^(1/2))^QuadraticClass) 9323789982854510 a007 Real Root Of -56*x^4-121*x^3-979*x^2-84*x+717 9323790007724450 b008 7+3*Sqrt[3/5] 9323790028529339 m001 (-Bloch+Salem)/(BesselJ(0,1)+gamma(2)) 9323790080896155 h001 (5/9*exp(1)+3/11)/(2/3*exp(1)+1/10) 9323790106046938 r005 Re(z^2+c),c=-17/14+37/125*I,n=7 9323790119873214 a001 832040/843*843^(1/3) 9323790141021833 k002 Champernowne real with 153/2*n^2+169/2*n-152 9323790142004525 a007 Real Root Of -514*x^4+605*x^3+671*x^2+392*x+661 9323790173000314 a007 Real Root Of 713*x^4-779*x^3+417*x^2+595*x-978 9323790215278463 m001 GAMMA(11/12)^2/Paris/ln(GAMMA(5/6)) 9323790215594953 a007 Real Root Of -791*x^4+396*x^3+500*x^2+312*x+775 9323790236415575 a005 (1/cos(19/211*Pi))^1304 9323790243007480 r005 Re(z^2+c),c=-111/122+1/7*I,n=27 9323790275482416 m001 (Psi(2,1/3)+gamma)/(-Robbin+ZetaP(4)) 9323790276375381 m005 (1/2*gamma-6/11)/(5/12*exp(1)-6/7) 9323790276614566 m001 (Pi+exp(Pi))/(gamma-Thue) 9323790308466058 a001 3/4181*196418^(57/59) 9323790309379600 m001 1/ln(FibonacciFactorial)^2/Conway^2*Robbin 9323790345246773 r005 Re(z^2+c),c=-19/21+9/58*I,n=53 9323790358387474 m005 (1/3*Catalan+1/10)/(19/90+1/10*5^(1/2)) 9323790359615482 a003 cos(Pi*1/67)*sin(Pi*41/107) 9323790362405076 a007 Real Root Of -477*x^4+731*x^3-964*x^2+588*x-47 9323790399278601 r009 Im(z^3+c),c=-13/126+47/51*I,n=19 9323790455476549 a001 7/34*1346269^(34/57) 9323790459313354 r009 Re(z^3+c),c=-4/27+27/50*I,n=7 9323790485473295 r009 Re(z^3+c),c=-23/78+9/13*I,n=21 9323790496319976 a007 Real Root Of 825*x^4+355*x^3-314*x^2+33*x-32 9323790505364239 m001 (-Stephens+ZetaQ(3))/(2^(1/2)+FeigenbaumDelta) 9323790510280054 a007 Real Root Of 653*x^4-357*x^3-167*x^2+892*x+194 9323790538501590 a007 Real Root Of 567*x^4+86*x^3+889*x^2+597*x-575 9323790579949307 a003 cos(Pi*7/69)-cos(Pi*45/91) 9323790583016245 a007 Real Root Of -618*x^4-11*x^3-755*x^2+991*x+99 9323790589752053 m001 MertensB3-Psi(1,1/3)*GAMMA(11/12) 9323790604593397 r005 Im(z^2+c),c=-1+62/191*I,n=12 9323790605993033 m001 (ln(5)+2)/(-GAMMA(5/6)+5) 9323790635233236 m001 (Otter+ZetaQ(4))/(Zeta(5)-GAMMA(2/3)) 9323790653611834 m002 -Pi^3+Pi^6+Log[Pi]+Pi^2*Sech[Pi] 9323790654086396 a007 Real Root Of 58*x^4+483*x^3-579*x^2-451*x-704 9323790654199833 r005 Re(z^2+c),c=-15/16+13/49*I,n=24 9323790667641191 a007 Real Root Of -586*x^4+150*x^3+230*x^2+451*x+785 9323790680472737 m006 (1/5*exp(2*Pi)+1/6)/(3/5*Pi-2) 9323790685004076 g006 Psi(1,1/10)+Psi(1,1/3)-Psi(1,3/10)-Psi(1,4/9) 9323790698216980 r008 a(0)=1,K{-n^6,-33+47*n^3-21*n^2+22*n} 9323790705962789 r005 Im(z^2+c),c=-26/23+5/43*I,n=33 9323790720631786 q001 1889/2026 9323790723563864 r005 Im(z^2+c),c=-15/28+11/60*I,n=4 9323790734016728 r005 Re(z^2+c),c=-8/9+10/61*I,n=11 9323790738860902 r005 Im(z^2+c),c=-157/114+1/60*I,n=43 9323790742407065 a001 5702887/843*322^(1/18) 9323790757642451 a001 377/1364*167761^(13/15) 9323790757929557 a001 377/1364*20633239^(13/21) 9323790757929570 a001 377/1364*141422324^(5/9) 9323790757929570 a001 377/1364*73681302247^(5/12) 9323790757929570 a001 377/1364*228826127^(13/24) 9323790757931516 a001 377/1364*1860498^(13/18) 9323790757945339 a001 610/843*2139295485799^(1/3) 9323790757998835 h001 (7/9*exp(1)+3/10)/(9/10*exp(1)+1/7) 9323790758035022 a001 377/1364*271443^(5/6) 9323790781949632 r005 Re(z^2+c),c=-103/114+5/32*I,n=19 9323790798012417 a001 610/843*15127^(59/60) 9323790861272279 a007 Real Root Of -360*x^4+537*x^3-346*x^2-856*x+210 9323790880269603 r005 Re(z^2+c),c=47/118+22/49*I,n=6 9323790917894621 a008 Real Root of x^5-14*x^3-x^2+22*x-9 9323790954171178 a003 cos(Pi*3/88)*cos(Pi*7/62) 9323790992522526 r009 Im(z^3+c),c=-59/94+7/18*I,n=5 9323791028802588 a007 Real Root Of 386*x^4-620*x^3+432*x^2-566*x+363 9323791051113252 a001 123/11*(1/2*5^(1/2)+1/2)^28*11^(1/15) 9323791057035405 a001 514229/843*843^(17/42) 9323791072307095 a001 1/39621*(1/2*5^(1/2)+1/2)^3*47^(9/16) 9323791097612327 m001 PlouffeB^(TreeGrowth2nd/FeigenbaumDelta) 9323791124210486 r005 Re(z^2+c),c=9/106+31/58*I,n=36 9323791138592895 a007 Real Root Of 436*x^4-884*x^3-691*x^2+158*x-298 9323791141321893 k002 Champernowne real with 77*n^2+83*n-151 9323791158787061 a007 Real Root Of 77*x^4-752*x^3-519*x^2+273*x+38 9323791167201998 r005 Im(z^2+c),c=35/106+23/47*I,n=23 9323791207746864 r005 Re(z^2+c),c=17/94+2/5*I,n=5 9323791223768528 a007 Real Root Of 306*x^4-788*x^3+466*x^2+901*x-435 9323791251402051 a007 Real Root Of 119*x^4-860*x^3+972*x^2+917*x-777 9323791265279908 r002 48th iterates of z^2 + 9323791286921878 a007 Real Root Of 917*x^4-872*x^3-954*x^2-347*x-894 9323791298646855 r002 43th iterates of z^2 + 9323791319114821 k006 concat of cont frac of 9323791319533419 r009 Re(z^3+c),c=-3/23+9/22*I,n=16 9323791338030979 r005 Im(z^2+c),c=-47/106+5/32*I,n=37 9323791342930328 m001 RenyiParking^(1/2*Totient/Pi*GAMMA(5/6)) 9323791374560707 r005 Im(z^2+c),c=-3/25+7/61*I,n=10 9323791406061028 r005 Re(z^2+c),c=-109/126+8/47*I,n=11 9323791421136815 a001 39603/610*317811^(34/45) 9323791504544538 a007 Real Root Of 95*x^4+931*x^3+409*x^2-177*x-537 9323791530375666 a003 cos(Pi*29/107)*cos(Pi*55/111) 9323791547657004 a001 1346269/1364*521^(14/39) 9323791575826046 m001 (ArtinRank2-sin(1))/(Mills+Riemann1stZero) 9323791593965336 a007 Real Root Of 320*x^4-907*x^3-676*x^2-419*x-780 9323791608819993 r005 Re(z^2+c),c=6/25+17/53*I,n=64 9323791612757231 r005 Re(z^2+c),c=-51/56+7/50*I,n=35 9323791614658116 m001 log(2+sqrt(3))/Rabbit*ln(sqrt(1+sqrt(3))) 9323791625363649 m001 Tribonacci^2/exp(TreeGrowth2nd)/GAMMA(7/12)^2 9323791626094004 m005 (1/2*2^(1/2)+8/11)/(3/8*3^(1/2)+8/9) 9323791630342078 m001 (Niven+PrimesInBinary)/(Kolakoski-LambertW(1)) 9323791658667057 a007 Real Root Of -138*x^4+137*x^3-365*x^2-375*x+183 9323791687028280 m001 sin(Pi/5)^2/Champernowne^2*exp(sqrt(2)) 9323791691113742 a007 Real Root Of 889*x^4-407*x^3-812*x^2+372*x+51 9323791692334658 a003 sin(Pi*13/56)/cos(Pi*18/73) 9323791734292101 a003 sin(Pi*43/119)/sin(Pi*17/40) 9323791744816008 r002 44th iterates of z^2 + 9323791750218072 m002 -3+Pi^3-Pi^6+Coth[Pi] 9323791761883025 m002 -2+Pi^3-Pi^6+Log[Pi]/Pi^5 9323791771571044 r002 3th iterates of z^2 + 9323791774491336 a003 cos(Pi*6/119)*sin(Pi*46/117) 9323791786713256 m001 GAMMA(7/24)/exp((2^(1/3)))/Zeta(1,2) 9323791794302768 a007 Real Root Of 997*x^4-326*x^3-694*x^2+9*x-406 9323791805617439 a003 sin(Pi*28/109)/sin(Pi*11/39) 9323791808986379 m001 GAMMA(1/12)^2/exp(Paris)/GAMMA(17/24) 9323791820095412 m002 -Pi^3+Pi^6+(4*Sinh[Pi])/E^Pi 9323791828686921 a007 Real Root Of -323*x^4+374*x^3+885*x^2+139*x-958 9323791850135207 r008 a(0)=9,K{-n^6,-56-25*n^3+15*n^2+62*n} 9323791858182696 r005 Im(z^2+c),c=-13/14+70/247*I,n=19 9323791867527603 a007 Real Root Of 489*x^4-700*x^3-173*x^2+968*x+116 9323791889712253 m002 -1+Pi^3-Pi^6-Tanh[Pi] 9323791916227266 a007 Real Root Of 633*x^4-692*x^3-634*x^2-739*x-64 9323791967306956 a007 Real Root Of -219*x^4+121*x^3-371*x^2+179*x+753 9323791983956561 a007 Real Root Of 598*x^4-116*x^3-689*x^2-473*x-388 9323791986200787 q001 4/42901 9323791994162430 a001 377*843^(10/21) 9323792011220438 r008 a(0)=1,K{-n^6,-43+61*n^3-68*n^2+65*n} 9323792022383409 g004 Im(Psi(83/24+I*4)) 9323792046399787 a001 17711/2207*1364^(44/45) 9323792084917920 a007 Real Root Of 604*x^4-321*x^3-428*x^2-674*x-973 9323792086706148 a007 Real Root Of 256*x^4-847*x^3-318*x^2+258*x-363 9323792141621953 k002 Champernowne real with 155/2*n^2+163/2*n-150 9323792166289013 r005 Im(z^2+c),c=-47/86+7/60*I,n=9 9323792171156690 r002 11th iterates of z^2 + 9323792183537785 a007 Real Root Of -857*x^4-234*x^3+868*x^2+509*x+178 9323792222919029 r005 Re(z^2+c),c=1/90+21/34*I,n=13 9323792225620424 r005 Re(z^2+c),c=-1/6+38/55*I,n=3 9323792255729616 m001 (BesselJ(1,1)+Landau)/(Porter-ThueMorse) 9323792305438576 a007 Real Root Of -675*x^4+751*x^3+395*x^2+199*x+961 9323792320531736 m001 (-BesselI(1,1)+Backhouse)/(Psi(1,1/3)-cos(1)) 9323792325521180 a007 Real Root Of 523*x^4-51*x^3+544*x^2+939*x-34 9323792369931068 m009 (Pi^2-5/6)/(3*Psi(1,2/3)+1/2) 9323792380477642 a003 cos(Pi*12/107)*sin(Pi*19/41) 9323792388712022 a001 28657/2207*1364^(41/45) 9323792397950554 a007 Real Root Of 970*x^4-270*x^3+672*x^2+871*x-724 9323792411791704 h001 (6/11*exp(1)+4/5)/(7/10*exp(1)+6/11) 9323792414275252 a007 Real Root Of -894*x^4+11*x^3-53*x^2-50*x+684 9323792416293495 m001 (-FibonacciFactorial+ZetaP(4))/(cos(1)+ln(2)) 9323792427021277 m006 (5/6*Pi-2)/(1/5*exp(Pi)+2) 9323792438145949 a007 Real Root Of -707*x^4-65*x^3+39*x^2-507*x-25 9323792450910707 r005 Im(z^2+c),c=-95/94+3/31*I,n=20 9323792458417310 a007 Real Root Of -412*x^4+219*x^3-579*x^2-263*x+747 9323792486583184 q001 2606/2795 9323792503421012 a007 Real Root Of 144*x^4-8*x^3+53*x^2-124*x-277 9323792505149569 r005 Re(z^2+c),c=-49/34+11/109*I,n=7 9323792507692107 r005 Re(z^2+c),c=-1/42+13/21*I,n=39 9323792510960114 s002 sum(A056781[n]/(n^2*2^n+1),n=1..infinity) 9323792526794101 p001 sum((-1)^n/(389*n+101)/(3^n),n=0..infinity) 9323792546345333 m001 (KomornikLoreti+OneNinth)/(Shi(1)-Zeta(5)) 9323792558755039 a007 Real Root Of -586*x^4+922*x^3+816*x^2-757*x-225 9323792576456045 a007 Real Root Of 966*x^4+97*x^3-15*x^2-257*x-878 9323792598314424 r009 Re(z^3+c),c=-1/90+13/49*I,n=4 9323792605868067 a003 cos(Pi*1/99)/sin(Pi*4/117) 9323792628347779 h001 (1/2*exp(1)+4/7)/(2/9*exp(2)+3/7) 9323792642748171 a007 Real Root Of -640*x^4-280*x^3-583*x^2+215*x+964 9323792664293156 m005 (1/3*Catalan-1/8)/(5/12*Pi+5/8) 9323792694770043 m001 (Salem+ZetaP(2))/(ln(Pi)+BesselK(1,1)) 9323792704225148 a007 Real Root Of 758*x^4+957*x^3+618*x^2-701*x-988 9323792719670733 a001 46368/2207*1364^(38/45) 9323792733152916 a007 Real Root Of 24*x^4-161*x^3+736*x^2-670*x-69 9323792763481341 r002 50th iterates of z^2 + 9323792769861642 m002 -Pi^4/4-ProductLog[Pi]+Pi^6*Tanh[Pi] 9323792774053419 m001 HardyLittlewoodC4^Landau/BesselI(1,1) 9323792777892937 a001 199/10946*2971215073^(17/24) 9323792783195526 m001 (-ArtinRank2+Conway)/(gamma(1)-gamma) 9323792786803754 r002 5th iterates of z^2 + 9323792800514403 a001 47*(1/2*5^(1/2)+1/2)^18*843^(13/15) 9323792891176415 a007 Real Root Of 777*x^4+179*x^3+830*x^2+212*x-966 9323792931381860 a001 196418/843*843^(23/42) 9323792935060252 m001 Cahen*(GaussAGM(1,1/sqrt(2))+BesselK(1,1)) 9323792960096553 r008 a(0)=1,K{-n^6,23+60*n^3-32*n^2-36*n} 9323792990290251 r008 a(0)=1,K{-n^6,1+5*n-55*n^2+64*n^3} 9323793020174418 r005 Re(z^2+c),c=-11/12+21/101*I,n=3 9323793020314049 r008 a(0)=1,K{-n^6,-9+66*n^3-66*n^2+24*n} 9323793025015959 a007 Real Root Of 656*x^4-300*x^3+977*x^2+632*x-999 9323793054966121 a001 75025/2207*1364^(7/9) 9323793078210772 m001 1/ln(FeigenbaumB)^2/Si(Pi)^2*OneNinth 9323793080288343 a001 5778/89*28657^(17/24) 9323793091790673 m001 (Ei(1)+Riemann1stZero)/(Chi(1)+ln(2^(1/2)+1)) 9323793096863130 r002 7th iterates of z^2 + 9323793101536220 m001 Tribonacci-Thue^Cahen 9323793133931002 s001 sum(exp(-Pi/3)^n*A098044[n],n=1..infinity) 9323793141922013 k002 Champernowne real with 78*n^2+80*n-149 9323793162146509 a007 Real Root Of -254*x^4+208*x^3-813*x^2-646*x+465 9323793169744516 a007 Real Root Of 958*x^4-861*x^3+91*x^2+784*x-770 9323793175737088 m001 GAMMA(23/24)/(GAMMA(19/24)^Gompertz) 9323793221252850 m001 (cos(1)+ln(2))/(LaplaceLimit+TwinPrimes) 9323793263831808 a007 Real Root Of 340*x^4-701*x^3-633*x^2+150*x-135 9323793266261032 a007 Real Root Of -914*x^4+393*x^3+951*x^2+511*x+659 9323793271506779 r005 Im(z^2+c),c=-13/21+13/45*I,n=24 9323793311872661 r005 Re(z^2+c),c=-51/74+25/54*I,n=22 9323793314304410 a008 Real Root of (-1+x-x^2-x^5+x^7+x^9+x^10) 9323793328991280 r009 Im(z^3+c),c=-45/94+22/35*I,n=5 9323793352159082 r005 Im(z^2+c),c=-45/82+1/60*I,n=57 9323793352601685 r009 Im(z^3+c),c=-49/114+36/59*I,n=46 9323793354603605 m005 (1/2*2^(1/2)-7/12)/(2/5*gamma-4/11) 9323793368464635 h001 (1/9*exp(1)+7/11)/(1/8*exp(1)+2/3) 9323793388605062 a001 121393/2207*1364^(32/45) 9323793415376508 p004 log(32801/12911) 9323793419639664 r005 Im(z^2+c),c=-10/9+11/97*I,n=41 9323793424810880 a007 Real Root Of 333*x^4-862*x^3-747*x^2+467*x+661 9323793441645717 m001 (1+Champernowne)/(-Conway+Paris) 9323793471545845 a007 Real Root Of -64*x^4-104*x^3+83*x^2+960*x+787 9323793471828558 r001 62i'th iterates of 2*x^2-1 of 9323793490460157 q001 3323/3564 9323793490460157 r005 Re(z^2+c),c=-23/22+98/99*I,n=2 9323793518145977 m005 (1/4*Catalan-3)/(1/3*Pi-3/4) 9323793561361287 m001 (Zeta(3)+GlaisherKinkelin)/(Lehmer-Thue) 9323793607571246 m001 (Chi(1)+ln(2))/((1+3^(1/2))^(1/2)-Trott) 9323793611662326 m001 (Pi-2^(1/2))/(GAMMA(17/24)-Conway) 9323793634058241 m001 GAMMA(19/24)^MinimumGamma/FeigenbaumKappa 9323793655080152 m005 (1/2*gamma-1/9)/(3/5*exp(1)+3/11) 9323793656423278 a007 Real Root Of -11*x^4-5*x^3+835*x^2-612*x+783 9323793664847867 a007 Real Root Of -934*x^4-331*x^3-300*x^2+35*x+731 9323793667276154 m001 GolombDickman/(GAMMA(7/12)-Thue) 9323793676881120 a007 Real Root Of -997*x^4+695*x^3-504*x^2-829*x+982 9323793679172369 m002 Pi^5-Log[Pi]+6*Pi^4*ProductLog[Pi] 9323793679765899 r002 50th iterates of z^2 + 9323793684972820 m005 (1/6*exp(1)+5)/(3/5*2^(1/2)+5) 9323793686402110 a001 2576/321*1364^(44/45) 9323793688886903 a007 Real Root Of 703*x^4-224*x^3-985*x^2-511*x-333 9323793722876726 a001 196418/2207*1364^(29/45) 9323793813734290 r005 Im(z^2+c),c=-12/19+11/57*I,n=30 9323793824686920 m005 (1/3*gamma+1/4)/(7/10*Zeta(3)-8/9) 9323793847848527 p004 log(32237/12689) 9323793855977424 m001 OneNinth/Khintchine^2*exp(Catalan)^2 9323793868359710 a001 121393/843*843^(13/21) 9323793877007591 m001 Bloch^((1+3^(1/2))^(1/2))+Cahen 9323793877754551 a007 Real Root Of -365*x^4+697*x^3+585*x^2+69*x-862 9323793888655135 r002 7th iterates of z^2 + 9323793913809171 a008 Real Root of (-4+7*x+x^2+9*x^4+5*x^8) 9323793924660638 m001 (Zeta(1/2)+Ei(1,1))/(Conway+Trott2nd) 9323793925675272 a001 121393/15127*1364^(44/45) 9323793946245838 a007 Real Root Of 801*x^4+168*x^3-210*x^2-364*x-626 9323793949177476 a008 Real Root of (-6+4*x-x^2-5*x^3+4*x^4-5*x^5) 9323793960584757 a001 105937/13201*1364^(44/45) 9323793965677983 a001 416020/51841*1364^(44/45) 9323793966421074 a001 726103/90481*1364^(44/45) 9323793966880330 a001 1346269/167761*1364^(44/45) 9323793968825769 a001 514229/64079*1364^(44/45) 9323793980914341 a007 Real Root Of 256*x^4-216*x^3-5*x^2+559*x+157 9323793982160006 a001 98209/12238*1364^(44/45) 9323793983775184 r002 15th iterates of z^2 + 9323793988429327 a007 Real Root Of 610*x^4+457*x^3-176*x^2-186*x-111 9323794011424386 a007 Real Root Of 556*x^4-55*x^3+116*x^2+686*x+74 9323794017595914 m001 Bloch-HardHexagonsEntropy-ZetaQ(3) 9323794021697533 a001 75025/5778*1364^(41/45) 9323794053736394 m001 Pi^(1/2)/(BesselK(1,1)-FeigenbaumAlpha) 9323794053736394 m001 sqrt(Pi)/(BesselK(1,1)-FeigenbaumAlpha) 9323794056906728 a001 317811/2207*1364^(26/45) 9323794073554225 a001 75025/9349*1364^(44/45) 9323794083338374 m001 (Chi(1)+LandauRamanujan)/(1-exp(1)) 9323794084337905 m002 -2+Pi^3-Pi^6+ProductLog[Pi]/Pi^5 9323794106098213 m001 (ln(5)+polylog(4,1/2))/(Niven+Stephens) 9323794142222073 k002 Champernowne real with 157/2*n^2+157/2*n-148 9323794154556390 m001 GaussAGM^(HardyLittlewoodC3/GAMMA(13/24)) 9323794189890443 a001 2178309/1364*521^(11/39) 9323794200026386 m005 (1/2*3^(1/2)-7/11)/(7/8*Pi-2/7) 9323794203829643 a007 Real Root Of 400*x^4-372*x^3-421*x^2-101*x-332 9323794256941156 r008 a(0)=1,K{-n^6,3+3*n^3-2*n^2+n} 9323794259946956 a001 196418/15127*1364^(41/45) 9323794279782331 r001 62i'th iterates of 2*x^2-1 of 9323794291532562 a007 Real Root Of 99*x^4+859*x^3-587*x^2+140*x+415 9323794294707079 a001 514229/39603*1364^(41/45) 9323794299778513 a001 1346269/103682*1364^(41/45) 9323794300975716 a001 2178309/167761*1364^(41/45) 9323794302912831 a001 832040/64079*1364^(41/45) 9323794303796122 a003 sin(Pi*22/101)-sin(Pi*31/120) 9323794316190017 a001 10959/844*1364^(41/45) 9323794318253078 a007 Real Root Of -927*x^4-120*x^3+901*x^2-103*x-276 9323794323308304 m001 GAMMA(7/12)+FeigenbaumDelta^MertensB3 9323794326572473 a007 Real Root Of -195*x^4+803*x^3+485*x^2-427*x-527 9323794354637023 r005 Im(z^2+c),c=-83/98+2/33*I,n=52 9323794355336508 a001 121393/5778*1364^(38/45) 9323794391029053 a001 514229/2207*1364^(23/45) 9323794406581914 r005 Im(z^2+c),c=-15/26+21/122*I,n=30 9323794407193203 a001 121393/9349*1364^(41/45) 9323794480315372 m001 Porter*ZetaR(2)^exp(1/exp(1)) 9323794521792093 r001 30i'th iterates of 2*x^2-1 of 9323794524090018 a007 Real Root Of -326*x^4+162*x^3+847*x^2+582*x+184 9323794525302968 m001 cos(1/12*Pi)^Zeta(5)/MertensB2 9323794534683014 m001 Artin^OneNinth*HardHexagonsEntropy^OneNinth 9323794542143007 a007 Real Root Of -103*x^4+734*x^3-636*x^2+565*x-491 9323794566718043 r005 Im(z^2+c),c=-17/18+2/243*I,n=9 9323794593976977 a001 317811/15127*1364^(38/45) 9323794594975917 s001 sum(exp(-Pi/3)^n*A096449[n],n=1..infinity) 9323794614059693 l006 ln(8220/8297) 9323794617608394 r002 44th iterates of z^2 + 9323794624342270 a001 9349/5*28657^(23/38) 9323794628794153 a001 832040/39603*1364^(38/45) 9323794633873911 a001 46347/2206*1364^(38/45) 9323794637013373 a001 1346269/64079*1364^(38/45) 9323794650312351 a001 514229/24476*1364^(38/45) 9323794666731238 m001 Pi*exp(Pi)/Si(Pi)/BesselK(0,1) 9323794668406344 a007 Real Root Of 909*x^4-491*x^3+297*x^2+767*x-628 9323794689608207 a001 98209/2889*1364^(7/9) 9323794699979575 a001 28657/3571*1364^(44/45) 9323794716389641 s002 sum(A250082[n]/(exp(2*pi*n)-1),n=1..infinity) 9323794725116130 a001 832040/2207*1364^(4/9) 9323794733327108 a003 cos(Pi*4/97)-cos(Pi*51/106) 9323794741464904 a001 196418/9349*1364^(38/45) 9323794748561176 r002 46i'th iterates of 2*x/(1-x^2) of 9323794788324018 a007 Real Root Of 474*x^4-773*x^3-527*x^2+523*x-39 9323794794991441 a007 Real Root Of 369*x^4-431*x^3+898*x^2+623*x-828 9323794800099962 r002 43th iterates of z^2 + 9323794805970366 a001 75025/843*843^(29/42) 9323794812068774 v002 sum(1/(3^n*(9*n^2-15*n+54)),n=1..infinity) 9323794819016589 a007 Real Root Of -536*x^4-495*x^3-314*x^2+515*x+757 9323794881381146 r005 Im(z^2+c),c=-67/110+1/59*I,n=43 9323794915712965 a007 Real Root Of -273*x^4+762*x^3+116*x^2+46*x+766 9323794928099321 a001 514229/15127*1364^(7/9) 9323794944533977 s002 sum(A215403[n]/(n^2*2^n-1),n=1..infinity) 9323794962894707 a001 1346269/39603*1364^(7/9) 9323794967971285 a001 1762289/51841*1364^(7/9) 9323794968711948 a001 9227465/271443*1364^(7/9) 9323794968820009 a001 24157817/710647*1364^(7/9) 9323794968835775 a001 31622993/930249*1364^(7/9) 9323794968838076 a001 165580141/4870847*1364^(7/9) 9323794968838411 a001 433494437/12752043*1364^(7/9) 9323794968838460 a001 567451585/16692641*1364^(7/9) 9323794968838467 a001 2971215073/87403803*1364^(7/9) 9323794968838468 a001 7778742049/228826127*1364^(7/9) 9323794968838468 a001 10182505537/299537289*1364^(7/9) 9323794968838468 a001 53316291173/1568397607*1364^(7/9) 9323794968838468 a001 139583862445/4106118243*1364^(7/9) 9323794968838468 a001 182717648081/5374978561*1364^(7/9) 9323794968838468 a001 956722026041/28143753123*1364^(7/9) 9323794968838468 a001 2504730781961/73681302247*1364^(7/9) 9323794968838468 a001 3278735159921/96450076809*1364^(7/9) 9323794968838468 a001 10610209857723/312119004989*1364^(7/9) 9323794968838468 a001 4052739537881/119218851371*1364^(7/9) 9323794968838468 a001 387002188980/11384387281*1364^(7/9) 9323794968838468 a001 591286729879/17393796001*1364^(7/9) 9323794968838468 a001 225851433717/6643838879*1364^(7/9) 9323794968838468 a001 1135099622/33391061*1364^(7/9) 9323794968838468 a001 32951280099/969323029*1364^(7/9) 9323794968838469 a001 12586269025/370248451*1364^(7/9) 9323794968838469 a001 1201881744/35355581*1364^(7/9) 9323794968838472 a001 1836311903/54018521*1364^(7/9) 9323794968838490 a001 701408733/20633239*1364^(7/9) 9323794968838619 a001 66978574/1970299*1364^(7/9) 9323794968839497 a001 102334155/3010349*1364^(7/9) 9323794968845519 a001 39088169/1149851*1364^(7/9) 9323794968886795 a001 196452/5779*1364^(7/9) 9323794969169703 a001 5702887/167761*1364^(7/9) 9323794971108783 a001 2178309/64079*1364^(7/9) 9323794982484810 m001 (Kolakoski+KomornikLoreti)/(3^(1/2)+Zeta(5)) 9323794984399438 a001 208010/6119*1364^(7/9) 9323794985403855 r009 Re(z^3+c),c=-23/94+53/60*I,n=7 9323794993501149 m005 (1/3*Pi+1/11)/(7/9*Zeta(3)+2/7) 9323795001855995 m001 (-Kac+Trott2nd)/(BesselI(0,1)-GolombDickman) 9323795003160369 a003 cos(Pi*29/120)+cos(Pi*49/113) 9323795023638244 a001 105937/1926*1364^(32/45) 9323795024989187 a007 Real Root Of -103*x^4-883*x^3+619*x^2-954*x-10 9323795030938368 a001 46368/3571*1364^(41/45) 9323795038226157 a001 987/2207*3010349^(2/3) 9323795038226843 a001 987/2207*9062201101803^(1/3) 9323795043811343 a001 987/2207*39603^(31/33) 9323795058841442 a007 Real Root Of 525*x^4-494*x^3-567*x^2+425*x+92 9323795059216688 a001 1346269/2207*1364^(17/45) 9323795070726430 m001 1/Ei(1)*ln(Robbin)/GAMMA(7/12)^2 9323795075494942 a001 317811/9349*1364^(7/9) 9323795100246561 p001 sum((-1)^n/(345*n+107)/(100^n),n=0..infinity) 9323795130928176 a007 Real Root Of 484*x^4+222*x^3+569*x^2-592*x-60 9323795142522133 k002 Champernowne real with 79*n^2+77*n-147 9323795192378376 b008 -10+Sinh[3/4]^2 9323795253630797 m006 (3*exp(Pi)+1/6)/(1/3*exp(Pi)-1/4) 9323795262186418 a001 832040/15127*1364^(32/45) 9323795269487958 a001 24476/3*144^(41/43) 9323795296990129 a001 726103/13201*1364^(32/45) 9323795297893253 m001 sin(1)^BesselI(0,2)/Sarnak 9323795318500005 a001 1346269/24476*1364^(32/45) 9323795350082831 r002 21th iterates of z^2 + 9323795356369052 r005 Im(z^2+c),c=43/114+8/43*I,n=30 9323795357760604 a001 514229/5778*1364^(29/45) 9323795365985117 m001 exp(1)/(FransenRobinson+OneNinth) 9323795366233839 a001 75025/3571*1364^(38/45) 9323795371583646 a007 Real Root Of -5*x^4-57*x^3-833*x^2-492*x+223 9323795372304918 a007 Real Root Of -952*x^4-730*x^3-377*x^2+525*x+945 9323795390618379 m001 (-Zeta(3)+ln(2))/(Psi(2,1/3)+cos(1)) 9323795393312113 a001 987*1364^(14/45) 9323795409617304 a001 514229/9349*1364^(32/45) 9323795411048724 r008 a(0)=9,K{-n^6,-8-3*n^2+9*n} 9323795462073614 r009 Re(z^3+c),c=-3/17+11/16*I,n=9 9323795464459986 m005 (1/3*gamma-1/7)/(2/11*gamma-7/11) 9323795485386534 r008 a(0)=1,K{-n^6,61+86*n^3-91*n^2-41*n} 9323795491775266 m001 GAMMA(2/3)^Gompertz/GAMMA(17/24) 9323795497377702 a007 Real Root Of -874*x^4+188*x^3-924*x^2-811*x+860 9323795547321328 r005 Re(z^2+c),c=-4/3+17/176*I,n=13 9323795583952965 r009 Im(z^3+c),c=-43/126+42/59*I,n=49 9323795593345793 r005 Re(z^2+c),c=-9/14+98/187*I,n=6 9323795596286995 a001 1346269/15127*1364^(29/45) 9323795642979894 a007 Real Root Of 985*x^4+398*x^3+490*x^2+654*x-238 9323795652595439 a001 2178309/24476*1364^(29/45) 9323795655922092 l006 ln(3946/10025) 9323795657479901 m001 (Otter+Paris)/(exp(1/exp(1))+FeigenbaumC) 9323795669987963 m005 (1/2*gamma-1/2)/(7/9*gamma-2/9) 9323795674838667 m001 (Psi(1,1/3)-cos(1)*OneNinth)/OneNinth 9323795685399601 r008 a(0)=1,K{-n^6,91+84*n^3-70*n^2-90*n} 9323795691847716 a001 416020/2889*1364^(26/45) 9323795699872863 a001 121393/3571*1364^(7/9) 9323795715454738 a007 Real Root Of 54*x^4-606*x^3+32*x^2-171*x+582 9323795741924656 a001 15456/281*843^(16/21) 9323795743704418 a001 832040/9349*1364^(29/45) 9323795752123227 a007 Real Root Of 615*x^4-160*x^3+340*x^2+798*x-146 9323795858413473 m001 (-TwinPrimes+ZetaP(2))/(2^(1/3)-Zeta(5)) 9323795859875070 a007 Real Root Of 342*x^4-200*x^3+299*x^2+732*x+2 9323795869026291 a007 Real Root Of 514*x^4-9*x^3-659*x^2-826*x-593 9323795910704383 r009 Im(z^3+c),c=-17/31+23/38*I,n=11 9323795911104037 l006 ln(3909/9931) 9323795916981293 m001 (Zeta(1/2)+Landau)^cos(1/5*Pi) 9323795918108575 a007 Real Root Of 531*x^4-542*x^3-445*x^2+950*x+432 9323795927799295 m002 (6*Cosh[Pi]^2)/Pi^2+Sinh[Pi] 9323795930382439 a001 311187/2161*1364^(26/45) 9323795935205694 m001 1/FibonacciFactorial/Cahen^2/exp(RenyiParking) 9323795975928955 m001 Zeta(5)^LaplaceLimit/ln(3) 9323795984533846 r005 Re(z^2+c),c=-7/8+40/181*I,n=11 9323796025948308 a001 1346269/5778*1364^(23/45) 9323796034144609 a001 196418/3571*1364^(32/45) 9323796037835099 a007 Real Root Of 840*x^4-185*x^3-976*x^2-877*x-754 9323796077805012 a001 1346269/9349*1364^(26/45) 9323796094365262 a001 317811/521*322^(27/31) 9323796109703524 a007 Real Root Of 962*x^4+86*x^3+7*x^2+142*x-531 9323796112562319 m003 -1+6*E^(1/2+Sqrt[5]/2)*Cot[1/2+Sqrt[5]/2]^2 9323796118325403 m001 ln(2)^Cahen/GaussAGM(1,1/sqrt(2)) 9323796142806430 m005 (1/2*gamma-2/3)/(2/5*gamma-7/11) 9323796142822193 k002 Champernowne real with 159/2*n^2+151/2*n-146 9323796165609712 a008 Real Root of (-3-3*x-4*x^2-x^3+x^4-3*x^5) 9323796171162903 l006 ln(3872/9837) 9323796194860534 a001 6765/2207*3571^(50/51) 9323796204230202 r009 Re(z^3+c),c=-13/86+25/46*I,n=17 9323796208779012 a007 Real Root Of 784*x^4+427*x^3+185*x^2-92*x-493 9323796212774658 m005 (1/3*exp(1)-1/9)/(3/10*5^(1/2)+2/11) 9323796246112017 m005 (1/3*3^(1/2)+1/3)/(6*3^(1/2)-5/8) 9323796269805474 a003 sin(Pi*1/100)+sin(Pi*5/14) 9323796294179875 a001 10946/2207*3571^(47/51) 9323796307236046 r005 Im(z^2+c),c=29/86+2/27*I,n=19 9323796315680890 a001 17711/2207*3571^(44/51) 9323796318971288 r004 Re(z^2+c),c=3/26+1/7*I,z(0)=exp(5/8*I*Pi),n=16 9323796324192270 a007 Real Root Of 814*x^4-359*x^3-697*x^2+455*x+124 9323796334885324 a007 Real Root Of 979*x^4-928*x^3-243*x^2+831*x-506 9323796360043767 a001 726103/1926*1364^(4/9) 9323796361319999 a003 cos(Pi*7/100)-sin(Pi*21/61) 9323796363178628 a007 Real Root Of -643*x^4-335*x^3-941*x^2-999*x+101 9323796366905861 a001 28657/2207*3571^(41/51) 9323796368174694 a001 317811/3571*1364^(29/45) 9323796375407790 m001 (gamma(2)+GAMMA(23/24))/(cos(1)-ln(gamma)) 9323796384242855 a001 5473/161*322^(35/36) 9323796395603140 a001 9227465/2207*1364^(1/9) 9323796406777291 a001 46368/2207*3571^(38/51) 9323796411900473 a001 2178309/9349*1364^(23/45) 9323796436239846 l006 ln(3835/9743) 9323796450985388 a001 75025/2207*3571^(35/51) 9323796491313615 m002 -2+Pi^(-5)+Pi^3-Pi^6 9323796493537026 a001 121393/2207*3571^(32/51) 9323796496790359 a007 Real Root Of -513*x^4+653*x^3+144*x^2-772*x+72 9323796536721376 a001 196418/2207*3571^(29/51) 9323796568349155 a001 2584/2207*9349^(56/57) 9323796579664051 a001 317811/2207*3571^(26/51) 9323796586779264 r009 Im(z^3+c),c=-9/56+22/23*I,n=12 9323796598576543 a001 5702887/15127*1364^(4/9) 9323796613133353 m002 -2+Pi^3-Pi^6+Tanh[Pi]/Pi^5 9323796622699038 a001 514229/2207*3571^(23/51) 9323796629357192 r009 Im(z^3+c),c=-23/110+29/31*I,n=55 9323796633050227 a007 Real Root Of -42*x^4+862*x^3+396*x^2+747*x-7 9323796633378007 a001 4976784/13201*1364^(4/9) 9323796638455472 a001 39088169/103682*1364^(4/9) 9323796639196264 a001 34111385/90481*1364^(4/9) 9323796639304344 a001 267914296/710647*1364^(4/9) 9323796639320113 a001 233802911/620166*1364^(4/9) 9323796639322413 a001 1836311903/4870847*1364^(4/9) 9323796639322749 a001 1602508992/4250681*1364^(4/9) 9323796639322798 a001 12586269025/33385282*1364^(4/9) 9323796639322805 a001 10983760033/29134601*1364^(4/9) 9323796639322806 a001 86267571272/228826127*1364^(4/9) 9323796639322806 a001 267913919/710646*1364^(4/9) 9323796639322806 a001 591286729879/1568397607*1364^(4/9) 9323796639322806 a001 516002918640/1368706081*1364^(4/9) 9323796639322806 a001 4052739537881/10749957122*1364^(4/9) 9323796639322806 a001 3536736619241/9381251041*1364^(4/9) 9323796639322806 a001 6557470319842/17393796001*1364^(4/9) 9323796639322806 a001 2504730781961/6643838879*1364^(4/9) 9323796639322806 a001 956722026041/2537720636*1364^(4/9) 9323796639322806 a001 365435296162/969323029*1364^(4/9) 9323796639322807 a001 139583862445/370248451*1364^(4/9) 9323796639322807 a001 53316291173/141422324*1364^(4/9) 9323796639322810 a001 20365011074/54018521*1364^(4/9) 9323796639322828 a001 7778742049/20633239*1364^(4/9) 9323796639322957 a001 2971215073/7881196*1364^(4/9) 9323796639323835 a001 1134903170/3010349*1364^(4/9) 9323796639329858 a001 433494437/1149851*1364^(4/9) 9323796639371141 a001 165580141/439204*1364^(4/9) 9323796639615101 r009 Re(z^3+c),c=-21/106+36/53*I,n=29 9323796639654099 a001 63245986/167761*1364^(4/9) 9323796641225246 a007 Real Root Of 692*x^4+842*x^3+828*x^2-241*x-785 9323796641593518 a001 24157817/64079*1364^(4/9) 9323796646449692 a007 Real Root Of -418*x^4+370*x^3+519*x^2+438*x+573 9323796649418893 a001 6/329*12586269025^(13/23) 9323796654231541 a007 Real Root Of 601*x^4+75*x^3+230*x^2-301*x-874 9323796654886494 a001 9227465/24476*1364^(4/9) 9323796659318249 a001 2584/2207*24476^(8/9) 9323796663440576 a007 Real Root Of 752*x^4+21*x^3+981*x^2+516*x-923 9323796665698765 a001 832040/2207*3571^(20/51) 9323796671741616 m005 (1/2*exp(1)-3/4)/(2*Pi+1/4) 9323796673152234 a001 329/1926*45537549124^(4/9) 9323796673152273 a001 329/1926*12752043^(2/3) 9323796673152513 a001 329/1926*4870847^(17/24) 9323796673152607 a001 2584/2207*20633239^(8/15) 9323796673152619 a001 2584/2207*17393796001^(8/21) 9323796673152619 a001 2584/2207*23725150497407^(7/24) 9323796673152619 a001 2584/2207*505019158607^(1/3) 9323796673152619 a001 2584/2207*10749957122^(7/18) 9323796673152619 a001 2584/2207*599074578^(4/9) 9323796673152619 a001 2584/2207*228826127^(7/15) 9323796673152848 a001 2584/2207*4870847^(7/12) 9323796673164927 a001 2584/2207*710647^(2/3) 9323796673167180 a001 329/1926*710647^(17/21) 9323796673827212 a001 2584/2207*103682^(7/9) 9323796673971383 a001 329/1926*103682^(17/18) 9323796676465394 r002 2th iterates of z^2 + 9323796678196685 a001 2584/2207*39603^(28/33) 9323796682215708 a001 28657/843*843^(5/6) 9323796696442071 h001 (2/7*exp(2)+4/5)/(2/5*exp(2)+1/6) 9323796702297102 a001 514229/3571*1364^(26/45) 9323796706481526 l006 ln(3798/9649) 9323796707963130 r005 Re(z^2+c),c=-1/94+19/53*I,n=34 9323796708711961 a001 1346269/2207*3571^(1/3) 9323796710867601 a001 4870847/89*32951280099^(18/23) 9323796710872727 a001 28143753123/89*514229^(18/23) 9323796711182412 a001 2584/2207*15127^(14/15) 9323796712088005 a007 Real Root Of -64*x^4-664*x^3-669*x^2-479*x-839 9323796723604769 a001 2207/610*17711^(3/31) 9323796725740585 a007 Real Root Of 622*x^4-619*x^3-838*x^2+42*x+721 9323796745997912 a001 3524578/9349*1364^(4/9) 9323796751720012 a001 987*3571^(14/51) 9323796767260085 m005 (1/2*2^(1/2)+5/12)/(1/2*gamma+11/12) 9323796785413192 r005 Im(z^2+c),c=-21/22+9/20*I,n=4 9323796803885014 m001 (BesselI(1,1)-sin(1))/(KomornikLoreti+Salem) 9323796805213982 a007 Real Root Of -371*x^4-161*x^3-449*x^2-618*x-36 9323796818110552 a001 6765/2207*9349^(50/57) 9323796855125740 m001 ln(1+sqrt(2))^(BesselK(0,1)*ln(2+sqrt(3))) 9323796855125740 m001 ln(2^(1/2)+1)^(BesselK(0,1)*ln(2+3^(1/2))) 9323796860735660 m001 GAMMA(23/24)*ln(FeigenbaumD)^2*cos(Pi/12)^2 9323796864140910 a001 17711/2207*9349^(44/57) 9323796877970882 a001 28657/2207*9349^(41/57) 9323796878041654 m005 (-7/20+1/4*5^(1/2))/(11/12*exp(1)-1/4) 9323796880034897 a001 10946/2207*9349^(47/57) 9323796880447311 a001 46368/2207*9349^(2/3) 9323796887260408 a001 75025/2207*9349^(35/57) 9323796892417045 a001 121393/2207*9349^(32/57) 9323796898206394 a001 196418/2207*9349^(29/57) 9323796903754068 a001 317811/2207*9349^(26/57) 9323796909394054 a001 514229/2207*9349^(23/57) 9323796911464214 a001 6765/2207*167761^(2/3) 9323796911684680 a001 141/2161*54018521^(2/3) 9323796911685065 a001 6765/2207*20633239^(10/21) 9323796911685075 a001 6765/2207*3461452808002^(5/18) 9323796911685075 a001 6765/2207*28143753123^(1/3) 9323796911685075 a001 6765/2207*228826127^(5/12) 9323796911686572 a001 6765/2207*1860498^(5/9) 9323796914998780 a001 832040/2207*9349^(20/57) 9323796916188705 a001 6765/2207*39603^(25/33) 9323796919229559 a007 Real Root Of 256*x^4-155*x^3+444*x^2+398*x-334 9323796920616974 a001 1346269/2207*9349^(17/57) 9323796926230023 a001 987*9349^(14/57) 9323796927064472 a007 Real Root Of -943*x^4-650*x^3+529*x^2+694*x+373 9323796943770318 a007 Real Root Of -341*x^4+987*x^3-319*x^2-384*x+977 9323796943880182 m005 (1/2*3^(1/2)-1/10)/(5*3^(1/2)-4/9) 9323796944116094 a001 75025/2207*24476^(5/9) 9323796945640248 a001 6765/2207*15127^(5/6) 9323796946246979 a007 Real Root Of -884*x^4+792*x^3+519*x^2-934*x-12 9323796946486082 a001 329/13201*20633239^(16/21) 9323796946486098 a001 329/13201*23725150497407^(5/12) 9323796946486098 a001 329/13201*505019158607^(10/21) 9323796946486098 a001 329/13201*28143753123^(8/15) 9323796946486098 a001 329/13201*10749957122^(5/9) 9323796946486099 a001 329/13201*228826127^(2/3) 9323796946486425 a001 17711/2207*7881196^(4/9) 9323796946486426 a001 329/13201*4870847^(5/6) 9323796946486491 a001 17711/2207*312119004989^(4/15) 9323796946486491 a001 17711/2207*1568397607^(1/3) 9323796946486672 a001 17711/2207*4870847^(11/24) 9323796946488493 a001 329/13201*1860498^(8/9) 9323796946496162 a001 17711/2207*710647^(11/21) 9323796946503682 a001 329/13201*710647^(20/21) 9323796947016529 a001 17711/2207*103682^(11/18) 9323796948972298 a001 987*24476^(2/9) 9323796949105269 m001 (GAMMA(5/6)+GAMMA(5/24))/Lehmer 9323796950449686 a001 17711/2207*39603^(2/3) 9323796951563557 a001 21/2206*969323029^(2/3) 9323796951563950 a001 46368/2207*817138163596^(2/9) 9323796951563950 a001 46368/2207*87403803^(1/3) 9323796951681432 a001 514229/2207*64079^(1/3) 9323796952304348 a001 329/90481*4106118243^(2/3) 9323796952304724 a001 329/90481*4870847^(23/24) 9323796952304741 a001 121393/2207*23725150497407^(1/6) 9323796952304741 a001 121393/2207*10749957122^(2/9) 9323796952304741 a001 121393/2207*228826127^(4/15) 9323796952304872 a001 121393/2207*4870847^(1/3) 9323796952311774 a001 121393/2207*710647^(8/21) 9323796952340245 a001 832040/2207*167761^(4/15) 9323796952409219 a001 9227465/2207*167761^(1/15) 9323796952412407 a001 141/101521*20633239^(14/15) 9323796952412428 a001 141/101521*17393796001^(2/3) 9323796952412428 a001 141/101521*505019158607^(7/12) 9323796952412428 a001 141/101521*599074578^(7/9) 9323796952412821 a001 317811/2207*141422324^(2/9) 9323796952412821 a001 317811/2207*73681302247^(1/6) 9323796952428196 a001 329/620166*141422324^(8/9) 9323796952428196 a001 329/620166*23725150497407^(13/24) 9323796952428196 a001 329/620166*505019158607^(13/21) 9323796952428196 a001 329/620166*73681302247^(2/3) 9323796952428196 a001 329/620166*10749957122^(13/18) 9323796952428197 a001 329/620166*228826127^(13/15) 9323796952428585 a001 832040/2207*20633239^(4/21) 9323796952428589 a001 832040/2207*3461452808002^(1/9) 9323796952428589 a001 832040/2207*28143753123^(2/15) 9323796952428589 a001 832040/2207*228826127^(1/6) 9323796952428671 a001 832040/2207*4870847^(5/24) 9323796952429188 a001 832040/2207*1860498^(2/9) 9323796952430497 a001 987/4870847*312119004989^(2/3) 9323796952430497 a001 987/4870847*3461452808002^(11/18) 9323796952430497 a001 987/4870847*28143753123^(11/15) 9323796952430497 a001 987/4870847*1568397607^(5/6) 9323796952430497 a001 987/4870847*228826127^(11/12) 9323796952430833 a001 329/4250681*1322157322203^(2/3) 9323796952430882 a001 141/4769326*5600748293801^(2/3) 9323796952430887 a001 987*20633239^(2/15) 9323796952430889 a001 329/29134601*23725150497407^(2/3) 9323796952430889 a001 329/29134601*505019158607^(16/21) 9323796952430889 a001 329/29134601*10749957122^(8/9) 9323796952430890 a001 329/199691526*17393796001^(20/21) 9323796952430890 a001 329/199691526*3461452808002^(7/9) 9323796952430890 a001 329/199691526*505019158607^(5/6) 9323796952430890 a001 329/199691526*28143753123^(14/15) 9323796952430890 a001 329/1368706081*23725150497407^(19/24) 9323796952430890 a001 329/1368706081*505019158607^(19/21) 9323796952430890 a001 987*17393796001^(2/21) 9323796952430890 a001 141/10525900321*3461452808002^(17/18) 9323796952430890 a001 329/64300051206*23725150497407^(11/12) 9323796952430890 a001 987*505019158607^(1/12) 9323796952430890 a001 987/17393796001*505019158607^(23/24) 9323796952430890 a001 987/6643838879*9062201101803^(5/6) 9323796952430890 a001 987*599074578^(1/9) 9323796952430890 a001 987/969323029*312119004989^(13/15) 9323796952430890 a001 987/969323029*73681302247^(11/12) 9323796952430893 a001 987/54018521*28143753123^(5/6) 9323796952430912 a001 987/20633239*17393796001^(17/21) 9323796952430912 a001 987/20633239*45537549124^(7/9) 9323796952430912 a001 987/20633239*505019158607^(17/24) 9323796952430912 a001 987/20633239*599074578^(17/18) 9323796952431226 a001 5702887/2207*23725150497407^(1/24) 9323796952431226 a001 5702887/2207*10749957122^(1/18) 9323796952431226 a001 5702887/2207*228826127^(1/15) 9323796952431258 a001 5702887/2207*4870847^(1/12) 9323796952431304 a001 9227465/2207*20633239^(1/21) 9323796952431305 a001 9227465/2207*228826127^(1/24) 9323796952431416 a001 3524578/2207*7881196^(1/9) 9323796952431433 a001 3524578/2207*312119004989^(1/15) 9323796952431433 a001 3524578/2207*1568397607^(1/12) 9323796952431455 a001 9227465/2207*1860498^(1/18) 9323796952432312 a001 1346269/2207*45537549124^(1/9) 9323796952432321 a001 1346269/2207*12752043^(1/6) 9323796952432984 a001 5702887/2207*710647^(2/21) 9323796952432985 a001 832040/2207*710647^(5/21) 9323796952433967 a001 987*710647^(1/6) 9323796952438335 a001 514229/2207*4106118243^(1/6) 9323796952455002 a001 317811/2207*271443^(1/3) 9323796952477267 a001 196418/2207*1149851^(1/3) 9323796952479205 a001 987/439204*20633239^(19/21) 9323796952479225 a001 987/439204*817138163596^(5/9) 9323796952479225 a001 987/439204*228826127^(19/24) 9323796952479226 a001 987/439204*87403803^(5/6) 9323796952479618 a001 196418/2207*1322157322203^(1/6) 9323796952527596 a001 5702887/2207*103682^(1/9) 9323796952607972 a001 75025/2207*167761^(7/15) 9323796952644858 a007 Real Root Of 794*x^4-728*x^3-871*x^2-151*x+888 9323796952669515 a001 832040/2207*103682^(5/18) 9323796952690222 a001 121393/2207*103682^(4/9) 9323796952762568 a001 75025/2207*20633239^(1/3) 9323796952762575 a001 75025/2207*17393796001^(5/21) 9323796952762575 a001 75025/2207*505019158607^(5/24) 9323796952762575 a001 75025/2207*599074578^(5/18) 9323796952762575 a001 75025/2207*228826127^(7/24) 9323796952763622 a001 75025/2207*1860498^(7/18) 9323796952770268 a001 75025/2207*710647^(5/12) 9323796953422232 a001 3524578/2207*39603^(1/6) 9323796953691906 a001 987*39603^(7/33) 9323796954230041 a001 832040/2207*39603^(10/33) 9323796954701991 a001 28657/2207*370248451^(1/3) 9323796954754708 a001 317811/2207*39603^(13/33) 9323796954986708 a001 46368/2207*39603^(19/33) 9323796955187064 a001 121393/2207*39603^(16/33) 9323796955826822 a001 9227465/2207*15127^(1/12) 9323796957864053 a001 5702887/2207*15127^(2/15) 9323796957879701 r005 Im(z^2+c),c=-109/94+17/47*I,n=6 9323796959917244 a001 4181/2207*9349^(53/57) 9323796961938339 a001 987*15127^(7/30) 9323796963977071 a001 1346269/2207*15127^(17/60) 9323796966010659 a001 832040/2207*15127^(1/3) 9323796967994440 a001 987/24476*7881196^(7/9) 9323796967994541 a001 987/24476*20633239^(11/15) 9323796967994557 a001 987/24476*17393796001^(11/21) 9323796967994557 a001 987/24476*312119004989^(7/15) 9323796967994557 a001 987/24476*505019158607^(11/24) 9323796967994557 a001 987/24476*1568397607^(7/12) 9323796967994557 a001 987/24476*599074578^(11/18) 9323796967994950 a001 10946/2207*6643838879^(1/3) 9323796968011480 a001 987/24476*710647^(11/12) 9323796968057715 a001 514229/2207*15127^(23/60) 9323796970069511 a001 317811/2207*15127^(13/30) 9323796972173618 a001 196418/2207*15127^(29/60) 9323796974036052 a001 121393/2207*15127^(8/15) 9323796976367044 a001 17711/2207*15127^(11/15) 9323796976531196 a001 75025/2207*15127^(7/12) 9323796977369881 a001 46368/2207*15127^(19/30) 9323796982040370 l006 ln(3761/9555) 9323796982545233 a001 28657/2207*15127^(41/60) 9323796989495960 s002 sum(A045046[n]/((3*n)!),n=1..infinity) 9323796999912813 a001 10946/2207*15127^(47/60) 9323797024836469 a001 987*5778^(7/27) 9323797032189785 a001 14930352/2207*2207^(1/24) 9323797034354534 a007 Real Root Of 788*x^4-596*x^3+776*x^2+899*x-915 9323797036384262 a001 832040/3571*1364^(23/45) 9323797040353372 a001 1346269/2207*5778^(17/54) 9323797053806299 a007 Real Root Of -322*x^4-121*x^3-665*x^2-24*x+701 9323797055865131 a001 832040/2207*5778^(10/27) 9323797057512569 r005 Re(z^2+c),c=-61/66+11/46*I,n=51 9323797059106240 a001 4181/2207*119218851371^(1/3) 9323797071390358 a001 514229/2207*5778^(23/54) 9323797083793144 a003 sin(Pi*11/31)/sin(Pi*19/46) 9323797084012046 m005 (1/3*gamma+1/6)/(6/7*Catalan-2/5) 9323797086880325 a001 317811/2207*5778^(13/27) 9323797091368755 m001 1/log(1+sqrt(2))/MinimumGamma*ln(sqrt(2))^2 9323797095098724 a001 4181/2207*15127^(53/60) 9323797102462603 a001 196418/2207*5778^(29/54) 9323797117803207 a001 121393/2207*5778^(16/27) 9323797125061505 p003 LerchPhi(1/1024,4,371/205) 9323797125751371 m005 (1/2*Zeta(3)-7/11)/(1/9*3^(1/2)-4/7) 9323797133776523 a001 75025/2207*5778^(35/54) 9323797139141742 q001 717/769 9323797143122253 k002 Champernowne real with 80*n^2+74*n-145 9323797148093379 a001 46368/2207*5778^(19/27) 9323797153767634 a007 Real Root Of -57*x^4+207*x^3-791*x^2+37*x+933 9323797156608509 m008 (3/5*Pi^4+1/5)/(1/3*Pi^2+3) 9323797164673431 r001 32i'th iterates of 2*x^2-1 of 9323797166227159 m001 Zeta(1,2)^Ei(1)/(Zeta(1,2)^AlladiGrinstead) 9323797166746902 a001 28657/2207*5778^(41/54) 9323797170276429 a001 6765/2207*5778^(25/27) 9323797174046884 a001 17711/2207*5778^(22/27) 9323797184632774 m002 2/Pi^2+Pi^4*ProductLog[Pi]-Sinh[Pi] 9323797211070824 a001 10946/2207*5778^(47/54) 9323797221313748 a007 Real Root Of 949*x^4-147*x^3+186*x^2+236*x-778 9323797248734827 m001 exp(Catalan)/Sierpinski/Zeta(5) 9323797250165664 a001 233/76*47^(13/45) 9323797255215705 r002 16th iterates of z^2 + 9323797256198638 m005 (1/2*5^(1/2)+4/7)/(4/9*5^(1/2)+9/11) 9323797263074865 l006 ln(3724/9461) 9323797266678879 a007 Real Root Of 387*x^4-479*x^3-331*x^2+237*x-172 9323797271465272 a001 5702887/2207*2207^(1/6) 9323797286598349 r005 Im(z^2+c),c=-17/90+40/47*I,n=29 9323797307639290 a001 7/196418*34^(3/11) 9323797308837878 m001 (arctan(1/3)-FeigenbaumMu)/(Magata+ZetaP(4)) 9323797333078353 a007 Real Root Of -165*x^4-369*x^3-887*x^2+247*x+827 9323797333213080 a001 4181/2207*5778^(53/54) 9323797370484903 a001 1346269/3571*1364^(4/9) 9323797404849616 a007 Real Root Of -958*x^4-759*x^3-665*x^2-667*x+65 9323797434354328 r005 Re(z^2+c),c=-9/10+29/190*I,n=11 9323797445799515 r009 Re(z^3+c),c=-11/86+20/51*I,n=10 9323797461569207 r005 Re(z^2+c),c=-57/122+29/45*I,n=10 9323797488532254 a007 Real Root Of 998*x^4-261*x^3+340*x^2+749*x-563 9323797510740478 a001 987*2207^(7/24) 9323797524098358 a007 Real Root Of 988*x^4+589*x^3-642*x^2-712*x-375 9323797543801129 a001 2178309/521*199^(5/33) 9323797549749860 l006 ln(3687/9367) 9323797577200019 a001 14930352/2207*843^(1/21) 9323797579502566 a007 Real Root Of -369*x^4+205*x^3-903*x^2-591*x+679 9323797589336880 m005 (1/2*Zeta(3)+8/11)/(7/8*3^(1/2)-1/11) 9323797593316056 r005 Re(z^2+c),c=31/126+17/52*I,n=58 9323797606248349 a007 Real Root Of -45*x^4+484*x^3-591*x^2-886*x+114 9323797611153312 a001 17711/843*843^(19/21) 9323797619595038 r008 a(0)=1,K{-n^6,14+17*n^3-32*n^2+17*n} 9323797629155100 a007 Real Root Of -524*x^4+357*x^3+723*x^2+397*x+427 9323797630379673 a001 1346269/2207*2207^(17/48) 9323797631490046 s002 sum(A172947[n]/((exp(n)+1)*n),n=1..infinity) 9323797663628878 a003 cos(Pi*10/79)/sin(Pi*19/42) 9323797663983986 m001 MinimumGamma^ThueMorse/((3^(1/2))^ThueMorse) 9323797666761314 a007 Real Root Of -240*x^4+802*x^3+431*x^2-48*x+412 9323797683304862 a001 987/3571*167761^(13/15) 9323797683591968 a001 987/3571*20633239^(13/21) 9323797683591982 a001 987/3571*141422324^(5/9) 9323797683591982 a001 987/3571*73681302247^(5/12) 9323797683591982 a001 987/3571*228826127^(13/24) 9323797683592318 a001 1597/2207*2139295485799^(1/3) 9323797683593927 a001 987/3571*1860498^(13/18) 9323797683697434 a001 987/3571*271443^(5/6) 9323797704580411 a001 2178309/3571*1364^(17/45) 9323797710175584 a007 Real Root Of -697*x^4+66*x^3-283*x^2-839*x+44 9323797712439392 m001 MertensB2/gamma(3)/cos(1) 9323797723659425 a001 1597/2207*15127^(59/60) 9323797750013725 a001 832040/2207*2207^(5/12) 9323797757559189 a007 Real Root Of -994*x^4+432*x^3+864*x^2+270*x+602 9323797788740225 m001 (Catalan+GAMMA(2/3))/(Bloch+ReciprocalLucas) 9323797795532189 a007 Real Root Of 95*x^4+864*x^3-138*x^2+520*x-793 9323797796627450 m002 -Pi+Pi^3-Pi^6+Log[Pi] 9323797806314622 a007 Real Root Of -207*x^4+91*x^3-951*x^2-770*x+339 9323797808925895 m001 (1-5^(1/2))/(ln(2+3^(1/2))+ZetaQ(3)) 9323797814270053 a007 Real Root Of -544*x^4+443*x^3+204*x^2-17*x+577 9323797842236888 l006 ln(3650/9273) 9323797860572754 a007 Real Root Of -323*x^4+133*x^3+438*x^2+140*x-375 9323797864587548 a001 17711/5778*3571^(50/51) 9323797869661247 a001 514229/2207*2207^(23/48) 9323797892128445 a003 cos(Pi*3/47)-cos(Pi*16/33) 9323797910590340 a007 Real Root Of -892*x^4+289*x^3-488*x^2-908*x+486 9323797915812527 a001 28657/5778*3571^(47/51) 9323797918791898 a007 Real Root Of 847*x^4+170*x^3+709*x^2+552*x-604 9323797919622715 m001 2^(1/2)*gamma/ZetaQ(3) 9323797926328133 a007 Real Root Of -313*x^4+811*x^3-811*x^2-844*x+812 9323797928064707 a007 Real Root Of 814*x^4-784*x^3-328*x^2+525*x-476 9323797955683964 a001 2576/321*3571^(44/51) 9323797967021283 m001 (ln(gamma)+Pi^(1/2))/(KomornikLoreti-PlouffeB) 9323797970280391 m001 (2^(1/2))^BesselJ(0,1)-5^(1/2) 9323797970280391 m001 sqrt(2)^BesselJ(0,1)-sqrt(5) 9323797971827131 m001 GAMMA(2/3)^2*Catalan/ln(GAMMA(7/12))^2 9323797989273510 a001 317811/2207*2207^(13/24) 9323797999892068 a001 75025/5778*3571^(41/51) 9323798030528751 a001 24157817/5778*1364^(1/9) 9323798042443713 a001 121393/5778*3571^(38/51) 9323798073743259 r009 Im(z^3+c),c=-11/64+8/9*I,n=7 9323798082973559 s001 sum(exp(-4*Pi/5)^n*A198012[n],n=1..infinity) 9323798085628070 a001 98209/2889*3571^(35/51) 9323798089179213 p001 sum((-1)^n/(255*n+107)/(125^n),n=0..infinity) 9323798103332405 a007 Real Root Of -471*x^4+329*x^3+767*x^2+397*x+326 9323798108197485 a001 6624/2161*3571^(50/51) 9323798108978087 a001 196418/2207*2207^(29/48) 9323798111969674 r002 3th iterates of z^2 + 9323798128570752 a001 105937/1926*3571^(32/51) 9323798140714507 l006 ln(3613/9179) 9323798143422313 k002 Champernowne real with 161/2*n^2+145/2*n-144 9323798143739697 a001 121393/39603*3571^(50/51) 9323798148545622 a007 Real Root Of -375*x^4+643*x^3+188*x^2-752*x-60 9323798148925236 a001 317811/103682*3571^(50/51) 9323798149681796 a001 832040/271443*3571^(50/51) 9323798149792176 a001 311187/101521*3571^(50/51) 9323798149860395 a001 1346269/439204*3571^(50/51) 9323798150149375 a001 514229/167761*3571^(50/51) 9323798152130075 a001 196418/64079*3571^(50/51) 9323798152405590 a001 75025/15127*3571^(47/51) 9323798153386808 m001 Pi^Bloch*Landau 9323798153395187 m001 1/ln(Sierpinski)^2/RenyiParking^2/GAMMA(5/12) 9323798165705992 a001 75025/24476*3571^(50/51) 9323798170103801 a007 Real Root Of -780*x^4+416*x^3-739*x^2-664*x+950 9323798171605747 a001 514229/5778*3571^(29/51) 9323798186924054 a001 196418/39603*3571^(47/51) 9323798189415318 r005 Im(z^2+c),c=-5/8+49/86*I,n=6 9323798191960230 a001 514229/103682*3571^(47/51) 9323798192694998 a001 1346269/271443*3571^(47/51) 9323798192868453 a001 2178309/439204*3571^(47/51) 9323798193149110 a001 75640/15251*3571^(47/51) 9323798194957236 a001 121393/15127*3571^(44/51) 9323798195072758 a001 317811/64079*3571^(47/51) 9323798208257638 a001 121393/24476*3571^(47/51) 9323798214605481 a001 416020/2889*3571^(26/51) 9323798217803590 m005 (23/66+1/6*5^(1/2))/(3/11*Pi-1/12) 9323798228440990 a001 121393/2207*2207^(2/3) 9323798229866737 a001 105937/13201*3571^(44/51) 9323798234959964 a001 416020/51841*3571^(44/51) 9323798235703056 a001 726103/90481*3571^(44/51) 9323798236162312 a001 1346269/167761*3571^(44/51) 9323798238107752 a001 514229/64079*3571^(44/51) 9323798238141593 a001 196418/15127*3571^(41/51) 9323798242918478 a007 Real Root Of -733*x^4+529*x^3-585*x^2-809*x+737 9323798243069073 a007 Real Root Of -585*x^4-359*x^3-824*x^2-437*x+460 9323798251441995 a001 98209/12238*3571^(44/51) 9323798257618684 a001 1346269/5778*3571^(23/51) 9323798258756712 a001 28657/9349*3571^(50/51) 9323798269061231 a001 63245986/15127*1364^(1/9) 9323798272901731 a001 514229/39603*3571^(41/51) 9323798276067535 a007 Real Root Of 880*x^4-92*x^3-240*x^2-399*x-903 9323798277973167 a001 1346269/103682*3571^(41/51) 9323798279170371 a001 2178309/167761*3571^(41/51) 9323798281084276 a001 317811/15127*3571^(38/51) 9323798281107487 a001 832040/64079*3571^(41/51) 9323798294384678 a001 10959/844*3571^(41/51) 9323798296208787 r005 Re(z^2+c),c=-25/23+7/45*I,n=20 9323798298628150 a001 46368/9349*3571^(47/51) 9323798300626742 a001 726103/1926*3571^(20/51) 9323798303862651 a001 165580141/39603*1364^(1/9) 9323798308077611 a001 1292/2889*3010349^(2/3) 9323798308078297 a001 1292/2889*9062201101803^(1/3) 9323798308940110 a001 433494437/103682*1364^(1/9) 9323798309680902 a001 1134903170/271443*1364^(1/9) 9323798309788982 a001 2971215073/710647*1364^(1/9) 9323798309804750 a001 7778742049/1860498*1364^(1/9) 9323798309807051 a001 20365011074/4870847*1364^(1/9) 9323798309807386 a001 53316291173/12752043*1364^(1/9) 9323798309807435 a001 139583862445/33385282*1364^(1/9) 9323798309807443 a001 365435296162/87403803*1364^(1/9) 9323798309807444 a001 956722026041/228826127*1364^(1/9) 9323798309807444 a001 2504730781961/599074578*1364^(1/9) 9323798309807444 a001 6557470319842/1568397607*1364^(1/9) 9323798309807444 a001 10610209857723/2537720636*1364^(1/9) 9323798309807444 a001 4052739537881/969323029*1364^(1/9) 9323798309807444 a001 1548008755920/370248451*1364^(1/9) 9323798309807444 a001 591286729879/141422324*1364^(1/9) 9323798309807447 a001 225851433717/54018521*1364^(1/9) 9323798309807466 a001 86267571272/20633239*1364^(1/9) 9323798309807594 a001 32951280099/7881196*1364^(1/9) 9323798309808473 a001 12586269025/3010349*1364^(1/9) 9323798309814496 a001 4807526976/1149851*1364^(1/9) 9323798309855779 a001 1836311903/439204*1364^(1/9) 9323798310138736 a001 701408733/167761*1364^(1/9) 9323798312078152 a001 267914296/64079*1364^(1/9) 9323798313662799 a001 1292/2889*39603^(31/33) 9323798315901466 a001 832040/39603*3571^(38/51) 9323798317713695 m004 18*Sqrt[5]*Pi*Cos[Sqrt[5]*Pi]*Coth[Sqrt[5]*Pi] 9323798320981226 a001 46347/2206*3571^(38/51) 9323798324119271 a001 514229/15127*3571^(35/51) 9323798324120690 a001 1346269/64079*3571^(38/51) 9323798325371112 a001 102334155/24476*1364^(1/9) 9323798337419673 a001 514229/24476*3571^(38/51) 9323798341008302 m001 Tribonacci^ZetaP(2)/(Tribonacci^LambertW(1)) 9323798342836257 a001 75025/9349*3571^(44/51) 9323798343636766 a001 1762289/2889*3571^(1/3) 9323798348536607 a001 75025/2207*2207^(35/48) 9323798358914669 a001 1346269/39603*3571^(35/51) 9323798367119006 a001 832040/15127*3571^(32/51) 9323798367128749 a001 2178309/64079*3571^(35/51) 9323798380419408 a001 208010/6119*3571^(35/51) 9323798385387903 a001 121393/9349*3571^(41/51) 9323798398384853 r005 Im(z^2+c),c=-5/21+43/48*I,n=5 9323798401922728 a001 726103/13201*3571^(32/51) 9323798410132210 a001 1346269/15127*3571^(29/51) 9323798416482417 a001 4181*1364^(1/9) 9323798423432612 a001 1346269/24476*3571^(32/51) 9323798428572261 a001 196418/9349*3571^(38/51) 9323798441807310 a001 2255/1926*9349^(56/57) 9323798445368667 l006 ln(3576/9085) 9323798453140269 a001 311187/2161*3571^(26/51) 9323798466440671 a001 2178309/24476*3571^(29/51) 9323798466975765 a001 46368/2207*2207^(19/24) 9323798471514945 a001 317811/9349*3571^(35/51) 9323798487837677 a001 17711/5778*9349^(50/57) 9323798501667651 a001 28657/5778*9349^(47/57) 9323798503731666 a001 5473/2889*9349^(53/57) 9323798504144081 a001 2576/321*9349^(44/57) 9323798510957179 a001 75025/5778*9349^(41/57) 9323798514549941 a001 514229/9349*3571^(32/51) 9323798516113817 a001 121393/5778*9349^(2/3) 9323798521903166 a001 98209/2889*9349^(35/57) 9323798527450842 a001 105937/1926*9349^(32/57) 9323798528025947 a007 Real Root Of 235*x^4-897*x^3+706*x^2+970*x-614 9323798530177350 r005 Re(z^2+c),c=-1/50+18/53*I,n=21 9323798532776422 a001 2255/1926*24476^(8/9) 9323798533090828 a001 514229/5778*9349^(29/57) 9323798538695555 a001 416020/2889*9349^(26/57) 9323798544313750 a001 1346269/5778*9349^(23/57) 9323798546610783 a001 2255/1926*20633239^(8/15) 9323798546610787 a001 2584/15127*45537549124^(4/9) 9323798546610795 a001 2255/1926*17393796001^(8/21) 9323798546610795 a001 2255/1926*23725150497407^(7/24) 9323798546610795 a001 2255/1926*505019158607^(1/3) 9323798546610795 a001 2255/1926*10749957122^(7/18) 9323798546610795 a001 2255/1926*599074578^(4/9) 9323798546610795 a001 2255/1926*228826127^(7/15) 9323798546610825 a001 2584/15127*12752043^(2/3) 9323798546611024 a001 2255/1926*4870847^(7/12) 9323798546611065 a001 2584/15127*4870847^(17/24) 9323798546623103 a001 2255/1926*710647^(2/3) 9323798546625732 a001 2584/15127*710647^(17/21) 9323798547285388 a001 2255/1926*103682^(7/9) 9323798547429935 a001 2584/15127*103682^(17/18) 9323798549926801 a001 726103/1926*9349^(20/57) 9323798551654861 a001 2255/1926*39603^(28/33) 9323798557549677 a001 832040/9349*3571^(29/51) 9323798569814972 a001 10946/843*843^(41/42) 9323798578758862 a001 98209/2889*24476^(5/9) 9323798581191356 a001 17711/5778*167761^(2/3) 9323798581412207 a001 2584/39603*54018521^(2/3) 9323798581412207 a001 17711/5778*20633239^(10/21) 9323798581412217 a001 17711/5778*3461452808002^(5/18) 9323798581412217 a001 17711/5778*28143753123^(1/3) 9323798581412217 a001 17711/5778*228826127^(5/12) 9323798581413714 a001 17711/5778*1860498^(5/9) 9323798581862120 r005 Re(z^2+c),c=-13/14+19/240*I,n=23 9323798582169128 a001 9227465/15127*3571^(1/3) 9323798583898359 a001 5702887/5778*24476^(2/9) 9323798584640595 a001 2255/1926*15127^(14/15) 9323798585915848 a001 17711/5778*39603^(25/33) 9323798586489610 a001 2576/321*7881196^(4/9) 9323798586489651 a001 1292/51841*20633239^(16/21) 9323798586489668 a001 1292/51841*23725150497407^(5/12) 9323798586489668 a001 1292/51841*505019158607^(10/21) 9323798586489668 a001 1292/51841*28143753123^(8/15) 9323798586489668 a001 1292/51841*10749957122^(5/9) 9323798586489668 a001 1292/51841*228826127^(2/3) 9323798586489676 a001 2576/321*312119004989^(4/15) 9323798586489676 a001 2576/321*1568397607^(1/3) 9323798586489856 a001 2576/321*4870847^(11/24) 9323798586489995 a001 1292/51841*4870847^(5/6) 9323798586492062 a001 1292/51841*1860498^(8/9) 9323798586499347 a001 2576/321*710647^(11/21) 9323798586507251 a001 1292/51841*710647^(20/21) 9323798586601136 a001 1346269/5778*64079^(1/3) 9323798587019713 a001 2576/321*103682^(11/18) 9323798587230459 a001 2584/271443*969323029^(2/3) 9323798587230468 a001 121393/5778*817138163596^(2/9) 9323798587230468 a001 121393/5778*87403803^(1/3) 9323798587250742 a001 98209/2889*167761^(7/15) 9323798587268272 a001 726103/1926*167761^(4/15) 9323798587334927 a001 24157817/5778*167761^(1/15) 9323798587338539 a001 2584/710647*4106118243^(2/3) 9323798587338548 a001 105937/1926*23725150497407^(1/6) 9323798587338548 a001 105937/1926*10749957122^(2/9) 9323798587338548 a001 105937/1926*228826127^(4/15) 9323798587338679 a001 105937/1926*4870847^(1/3) 9323798587338916 a001 2584/710647*4870847^(23/24) 9323798587345581 a001 105937/1926*710647^(8/21) 9323798587354287 a001 1292/930249*20633239^(14/15) 9323798587354308 a001 1292/930249*17393796001^(2/3) 9323798587354308 a001 1292/930249*505019158607^(7/12) 9323798587354308 a001 1292/930249*599074578^(7/9) 9323798587354316 a001 416020/2889*141422324^(2/9) 9323798587354316 a001 416020/2889*73681302247^(1/6) 9323798587356608 a001 2584/4870847*141422324^(8/9) 9323798587356608 a001 2584/4870847*23725150497407^(13/24) 9323798587356608 a001 2584/4870847*505019158607^(13/21) 9323798587356608 a001 2584/4870847*73681302247^(2/3) 9323798587356608 a001 2584/4870847*10749957122^(13/18) 9323798587356609 a001 2584/4870847*228826127^(13/15) 9323798587356613 a001 726103/1926*20633239^(4/21) 9323798587356617 a001 726103/1926*3461452808002^(1/9) 9323798587356617 a001 726103/1926*28143753123^(2/15) 9323798587356617 a001 726103/1926*228826127^(1/6) 9323798587356699 a001 726103/1926*4870847^(5/24) 9323798587356944 a001 2584/12752043*312119004989^(2/3) 9323798587356944 a001 2584/12752043*3461452808002^(11/18) 9323798587356944 a001 2584/12752043*28143753123^(11/15) 9323798587356944 a001 2584/12752043*1568397607^(5/6) 9323798587356944 a001 2584/12752043*228826127^(11/12) 9323798587356950 a001 5702887/5778*20633239^(2/15) 9323798587356953 a001 5702887/5778*17393796001^(2/21) 9323798587356953 a001 5702887/5778*505019158607^(1/12) 9323798587356953 a001 5702887/5778*599074578^(1/9) 9323798587356993 a001 1292/16692641*1322157322203^(2/3) 9323798587357000 a001 2584/87403803*5600748293801^(2/3) 9323798587357001 a001 2584/228826127*23725150497407^(2/3) 9323798587357001 a001 2584/228826127*505019158607^(16/21) 9323798587357001 a001 2584/228826127*10749957122^(8/9) 9323798587357001 a001 2584/1568397607*17393796001^(20/21) 9323798587357001 a001 2584/1568397607*3461452808002^(7/9) 9323798587357001 a001 2584/1568397607*505019158607^(5/6) 9323798587357001 a001 2584/1568397607*28143753123^(14/15) 9323798587357001 a001 1292/5374978561*23725150497407^(19/24) 9323798587357001 a001 1292/5374978561*505019158607^(19/21) 9323798587357001 a001 1292/96450076809*3461452808002^(17/18) 9323798587357001 a001 2584/505019158607*23725150497407^(11/12) 9323798587357001 a001 2584*23725150497407^(1/24) 9323798587357001 a001 2584*10749957122^(1/18) 9323798587357001 a001 646/11384387281*505019158607^(23/24) 9323798587357001 a001 2584/17393796001*9062201101803^(5/6) 9323798587357001 a001 34/33391061*312119004989^(13/15) 9323798587357001 a001 34/33391061*73681302247^(11/12) 9323798587357001 a001 2584*228826127^(1/15) 9323798587357002 a001 646/35355581*28143753123^(5/6) 9323798587357005 a001 2584/54018521*17393796001^(17/21) 9323798587357005 a001 2584/54018521*45537549124^(7/9) 9323798587357005 a001 2584/54018521*505019158607^(17/24) 9323798587357005 a001 2584/54018521*599074578^(17/18) 9323798587357012 a001 24157817/5778*20633239^(1/21) 9323798587357013 a001 24157817/5778*228826127^(1/24) 9323798587357015 a001 9227465/5778*7881196^(1/9) 9323798587357032 a001 9227465/5778*312119004989^(1/15) 9323798587357032 a001 9227465/5778*1568397607^(1/12) 9323798587357034 a001 2584*4870847^(1/12) 9323798587357160 a001 1762289/2889*45537549124^(1/9) 9323798587357163 a001 24157817/5778*1860498^(1/18) 9323798587357170 a001 1762289/2889*12752043^(1/6) 9323798587357215 a001 726103/1926*1860498^(2/9) 9323798587358039 a001 1346269/5778*4106118243^(1/6) 9323798587358760 a001 2584*710647^(2/21) 9323798587360030 a001 5702887/5778*710647^(1/6) 9323798587361013 a001 726103/1926*710647^(5/21) 9323798587361711 a001 514229/5778*1149851^(1/3) 9323798587364034 a001 2584/1149851*20633239^(19/21) 9323798587364053 a001 2584/1149851*817138163596^(5/9) 9323798587364054 a001 2584/1149851*228826127^(19/24) 9323798587364054 a001 2584/1149851*87403803^(5/6) 9323798587364062 a001 514229/5778*1322157322203^(1/6) 9323798587396497 a001 416020/2889*271443^(1/3) 9323798587405337 a001 98209/2889*20633239^(1/3) 9323798587405345 a001 98209/2889*17393796001^(5/21) 9323798587405345 a001 98209/2889*505019158607^(5/24) 9323798587405345 a001 98209/2889*599074578^(5/18) 9323798587405345 a001 98209/2889*228826127^(7/24) 9323798587406392 a001 98209/2889*1860498^(7/18) 9323798587413037 a001 98209/2889*710647^(5/12) 9323798587453372 a001 2584*103682^(1/9) 9323798587597543 a001 726103/1926*103682^(5/18) 9323798587688302 a001 75025/5778*370248451^(1/3) 9323798587724029 a001 105937/1926*103682^(4/9) 9323798588347831 a001 9227465/5778*39603^(1/6) 9323798589158069 a001 726103/1926*39603^(10/33) 9323798589627593 a001 2584/64079*7881196^(7/9) 9323798589627694 a001 2584/64079*20633239^(11/15) 9323798589627710 a001 2584/64079*17393796001^(11/21) 9323798589627710 a001 2584/64079*312119004989^(7/15) 9323798589627710 a001 2584/64079*505019158607^(11/24) 9323798589627710 a001 2584/64079*1568397607^(7/12) 9323798589627710 a001 2584/64079*599074578^(11/18) 9323798589627719 a001 28657/5778*6643838879^(1/3) 9323798589644634 a001 2584/64079*710647^(11/12) 9323798589696204 a001 416020/2889*39603^(13/33) 9323798589751593 a001 28657/2207*2207^(41/48) 9323798590220871 a001 105937/1926*39603^(16/33) 9323798590452871 a001 2576/321*39603^(2/3) 9323798590653227 a001 121393/5778*39603^(19/33) 9323798590752531 a001 24157817/5778*15127^(1/12) 9323798592789830 a001 2584*15127^(2/15) 9323798600562881 a001 1346269/9349*3571^(26/51) 9323798600938689 a001 726103/1926*15127^(1/3) 9323798602920679 a001 5473/2889*119218851371^(1/3) 9323798602977421 a001 1346269/5778*15127^(23/60) 9323798605011009 a001 416020/2889*15127^(13/30) 9323798607058066 a001 514229/5778*15127^(29/60) 9323798609069862 a001 105937/1926*15127^(8/15) 9323798610576777 r005 Re(z^2+c),c=-1/94+19/53*I,n=35 9323798611173970 a001 98209/2889*15127^(7/12) 9323798613036404 a001 121393/5778*15127^(19/30) 9323798615367396 a001 17711/5778*15127^(5/6) 9323798615531549 a001 75025/5778*15127^(41/60) 9323798616370234 a001 2576/321*15127^(11/15) 9323798616970532 a001 24157817/39603*3571^(1/3) 9323798621545587 a001 28657/5778*15127^(47/60) 9323798622047988 a001 31622993/51841*3571^(1/3) 9323798622788779 a001 165580141/271443*3571^(1/3) 9323798622896859 a001 433494437/710647*3571^(1/3) 9323798622912628 a001 567451585/930249*3571^(1/3) 9323798622914929 a001 2971215073/4870847*3571^(1/3) 9323798622915264 a001 7778742049/12752043*3571^(1/3) 9323798622915313 a001 10182505537/16692641*3571^(1/3) 9323798622915320 a001 53316291173/87403803*3571^(1/3) 9323798622915321 a001 139583862445/228826127*3571^(1/3) 9323798622915321 a001 182717648081/299537289*3571^(1/3) 9323798622915321 a001 956722026041/1568397607*3571^(1/3) 9323798622915321 a001 2504730781961/4106118243*3571^(1/3) 9323798622915321 a001 3278735159921/5374978561*3571^(1/3) 9323798622915321 a001 10610209857723/17393796001*3571^(1/3) 9323798622915321 a001 4052739537881/6643838879*3571^(1/3) 9323798622915322 a001 1134903780/1860499*3571^(1/3) 9323798622915322 a001 591286729879/969323029*3571^(1/3) 9323798622915322 a001 225851433717/370248451*3571^(1/3) 9323798622915322 a001 21566892818/35355581*3571^(1/3) 9323798622915325 a001 32951280099/54018521*3571^(1/3) 9323798622915343 a001 1144206275/1875749*3571^(1/3) 9323798622915472 a001 1201881744/1970299*3571^(1/3) 9323798622916350 a001 1836311903/3010349*3571^(1/3) 9323798622922373 a001 701408733/1149851*3571^(1/3) 9323798622963656 a001 66978574/109801*3571^(1/3) 9323798623246613 a001 9303105/15251*3571^(1/3) 9323798625186029 a001 39088169/64079*3571^(1/3) 9323798633760882 r002 3th iterates of z^2 + 9323798638478982 a001 3732588/6119*3571^(1/3) 9323798638913169 a001 5473/2889*15127^(53/60) 9323798643570942 a001 2178309/9349*3571^(23/51) 9323798659097621 a007 Real Root Of -997*x^4-30*x^3+922*x^2+941*x+805 9323798667115533 a001 39088169/5778*2207^(1/24) 9323798679877229 m001 Ei(1,1)^exp(1/Pi)/MertensB3 9323798680703989 m001 gamma(1)^GAMMA(13/24)/((2^(1/3))^GAMMA(13/24)) 9323798683086601 m005 (1/2*2^(1/2)-1)/(1/9*gamma+1/4) 9323798690793176 a001 726103/1926*5778^(10/27) 9323798693744859 a001 2584/9349*167761^(13/15) 9323798694031965 a001 2584/9349*20633239^(13/21) 9323798694031978 a001 2584/9349*141422324^(5/9) 9323798694031979 a001 2584/9349*73681302247^(5/12) 9323798694031979 a001 2584/9349*228826127^(13/24) 9323798694031986 a001 4181/5778*2139295485799^(1/3) 9323798694033924 a001 2584/9349*1860498^(13/18) 9323798694137431 a001 2584/9349*271443^(5/6) 9323798701173878 a001 17711/2207*2207^(11/12) 9323798706310082 a001 1346269/5778*5778^(23/54) 9323798715141226 a001 17711/15127*9349^(56/57) 9323798721012307 a007 Real Root Of -299*x^4-79*x^3+318*x^2+998*x+816 9323798721821844 a001 416020/2889*5778^(13/27) 9323798728971200 a001 28657/15127*9349^(53/57) 9323798729590242 a001 5702887/9349*3571^(1/3) 9323798731447630 a001 6624/2161*9349^(50/57) 9323798734099098 a001 4181/5778*15127^(59/60) 9323798737347073 a001 514229/5778*5778^(29/54) 9323798738260728 a001 75025/15127*9349^(47/57) 9323798743417367 a001 121393/15127*9349^(44/57) 9323798749206716 a001 196418/15127*9349^(41/57) 9323798752837043 a001 105937/1926*5778^(16/27) 9323798754754392 a001 317811/15127*9349^(2/3) 9323798755020108 a001 15456/13201*9349^(56/57) 9323798756393095 l006 ln(3539/8991) 9323798760394379 a001 514229/15127*9349^(35/57) 9323798760838359 a001 121393/103682*9349^(56/57) 9323798761687230 a001 105937/90481*9349^(56/57) 9323798761811079 a001 832040/710647*9349^(56/57) 9323798761829148 a001 726103/620166*9349^(56/57) 9323798761833206 a001 75025/39603*9349^(53/57) 9323798761840315 a001 1346269/1149851*9349^(56/57) 9323798761887621 a001 514229/439204*9349^(56/57) 9323798762211861 a001 196418/167761*9349^(56/57) 9323798764434235 a001 75025/64079*9349^(56/57) 9323798765999106 a001 832040/15127*9349^(32/57) 9323798766627708 a001 98209/51841*9349^(53/57) 9323798766989844 a001 121393/39603*9349^(50/57) 9323798767327217 a001 514229/271443*9349^(53/57) 9323798767429274 a001 1346269/710647*9349^(53/57) 9323798767453366 a001 2178309/1149851*9349^(53/57) 9323798767492348 a001 208010/109801*9349^(53/57) 9323798767759537 a001 317811/167761*9349^(53/57) 9323798768419324 a001 98209/2889*5778^(35/54) 9323798769590873 a001 121393/64079*9349^(53/57) 9323798771617301 a001 1346269/15127*9349^(29/57) 9323798772175384 a001 317811/103682*9349^(50/57) 9323798772779194 a001 196418/39603*9349^(47/57) 9323798772931944 a001 832040/271443*9349^(50/57) 9323798773042324 a001 311187/101521*9349^(50/57) 9323798773110543 a001 1346269/439204*9349^(50/57) 9323798773399523 a001 514229/167761*9349^(50/57) 9323798775380223 a001 196418/64079*9349^(50/57) 9323798776111921 r005 Re(z^2+c),c=-1/94+19/53*I,n=38 9323798777230351 a001 311187/2161*9349^(26/57) 9323798777815370 a001 514229/103682*9349^(47/57) 9323798778326870 a001 105937/13201*9349^(44/57) 9323798778550139 a001 1346269/271443*9349^(47/57) 9323798778723594 a001 2178309/439204*9349^(47/57) 9323798779004250 a001 75640/15251*9349^(47/57) 9323798779666613 a001 28657/24476*9349^(56/57) 9323798780927899 a001 317811/64079*9349^(47/57) 9323798782143043 a001 11592/6119*9349^(53/57) 9323798783420097 a001 416020/51841*9349^(44/57) 9323798783759931 a001 121393/5778*5778^(19/27) 9323798783966856 a001 514229/39603*9349^(41/57) 9323798784035601 r002 32th iterates of z^2 + 9323798784163189 a001 726103/90481*9349^(44/57) 9323798784622445 a001 1346269/167761*9349^(44/57) 9323798785142605 a001 6765/15127*3010349^(2/3) 9323798785143291 a001 6765/15127*9062201101803^(1/3) 9323798786567885 a001 514229/64079*9349^(44/57) 9323798788956141 a001 75025/24476*9349^(50/57) 9323798789038293 a001 1346269/103682*9349^(41/57) 9323798789571583 a001 832040/39603*9349^(2/3) 9323798790235496 a001 2178309/167761*9349^(41/57) 9323798790727793 a001 6765/15127*39603^(31/33) 9323798792172612 a001 832040/64079*9349^(41/57) 9323798794112779 a001 121393/24476*9349^(47/57) 9323798794651343 a001 46347/2206*9349^(2/3) 9323798795189778 a001 1346269/39603*9349^(35/57) 9323798795392470 a001 5702887/271443*9349^(2/3) 9323798795500599 a001 14930352/710647*9349^(2/3) 9323798795516375 a001 39088169/1860498*9349^(2/3) 9323798795518677 a001 102334155/4870847*9349^(2/3) 9323798795519012 a001 267914296/12752043*9349^(2/3) 9323798795519061 a001 701408733/33385282*9349^(2/3) 9323798795519069 a001 1836311903/87403803*9349^(2/3) 9323798795519070 a001 102287808/4868641*9349^(2/3) 9323798795519070 a001 12586269025/599074578*9349^(2/3) 9323798795519070 a001 32951280099/1568397607*9349^(2/3) 9323798795519070 a001 86267571272/4106118243*9349^(2/3) 9323798795519070 a001 225851433717/10749957122*9349^(2/3) 9323798795519070 a001 591286729879/28143753123*9349^(2/3) 9323798795519070 a001 1548008755920/73681302247*9349^(2/3) 9323798795519070 a001 4052739537881/192900153618*9349^(2/3) 9323798795519070 a001 225749145909/10745088481*9349^(2/3) 9323798795519070 a001 6557470319842/312119004989*9349^(2/3) 9323798795519070 a001 2504730781961/119218851371*9349^(2/3) 9323798795519070 a001 956722026041/45537549124*9349^(2/3) 9323798795519070 a001 365435296162/17393796001*9349^(2/3) 9323798795519070 a001 139583862445/6643838879*9349^(2/3) 9323798795519070 a001 53316291173/2537720636*9349^(2/3) 9323798795519070 a001 20365011074/969323029*9349^(2/3) 9323798795519070 a001 7778742049/370248451*9349^(2/3) 9323798795519070 a001 2971215073/141422324*9349^(2/3) 9323798795519073 a001 1134903170/54018521*9349^(2/3) 9323798795519092 a001 433494437/20633239*9349^(2/3) 9323798795519220 a001 165580141/7881196*9349^(2/3) 9323798795520099 a001 63245986/3010349*9349^(2/3) 9323798795526125 a001 24157817/1149851*9349^(2/3) 9323798795567427 a001 9227465/439204*9349^(2/3) 9323798795850512 a001 3524578/167761*9349^(2/3) 9323798797204149 a007 Real Root Of -814*x^4-740*x^3-679*x^2+394*x+973 9323798797790807 a001 1346269/64079*9349^(2/3) 9323798799733250 a001 75025/5778*5778^(41/54) 9323798799902129 a001 98209/12238*9349^(44/57) 9323798800802829 a001 726103/13201*9349^(32/57) 9323798803403858 a001 2178309/64079*9349^(35/57) 9323798805449805 a001 10959/844*9349^(41/57) 9323798806110341 a001 17711/15127*24476^(8/9) 9323798811049093 m005 (1/2*gamma+2/7)/(-131/180+1/20*5^(1/2)) 9323798811089791 a001 514229/24476*9349^(2/3) 9323798814050108 a001 2576/321*5778^(22/27) 9323798816694518 a001 208010/6119*9349^(35/57) 9323798817250075 a001 514229/15127*24476^(5/9) 9323798819944702 a001 17711/15127*20633239^(8/15) 9323798819944714 a001 2255/13201*45537549124^(4/9) 9323798819944714 a001 17711/15127*17393796001^(8/21) 9323798819944714 a001 17711/15127*23725150497407^(7/24) 9323798819944714 a001 17711/15127*505019158607^(1/3) 9323798819944714 a001 17711/15127*10749957122^(7/18) 9323798819944714 a001 17711/15127*599074578^(4/9) 9323798819944714 a001 17711/15127*228826127^(7/15) 9323798819944752 a001 2255/13201*12752043^(2/3) 9323798819944943 a001 17711/15127*4870847^(7/12) 9323798819944992 a001 2255/13201*4870847^(17/24) 9323798819957022 a001 17711/15127*710647^(2/3) 9323798819959659 a001 2255/13201*710647^(17/21) 9323798820619307 a001 17711/15127*103682^(7/9) 9323798820763862 a001 2255/13201*103682^(17/18) 9323798822312713 a001 1346269/24476*9349^(32/57) 9323798822430905 a001 14930352/15127*24476^(2/9) 9323798824801312 a001 6624/2161*167761^(2/3) 9323798824988780 a001 17711/15127*39603^(28/33) 9323798825022163 a001 6624/2161*20633239^(10/21) 9323798825022171 a001 6765/103682*54018521^(2/3) 9323798825022173 a001 6624/2161*3461452808002^(5/18) 9323798825022173 a001 6624/2161*28143753123^(1/3) 9323798825022173 a001 6624/2161*228826127^(5/12) 9323798825023669 a001 6624/2161*1860498^(5/9) 9323798825132754 a001 3524578/15127*64079^(1/3) 9323798825741956 a001 514229/15127*167761^(7/15) 9323798825762898 a001 121393/15127*7881196^(4/9) 9323798825762948 a001 2255/90481*20633239^(16/21) 9323798825762964 a001 2255/90481*23725150497407^(5/12) 9323798825762964 a001 2255/90481*505019158607^(10/21) 9323798825762964 a001 2255/90481*28143753123^(8/15) 9323798825762964 a001 2255/90481*10749957122^(5/9) 9323798825762964 a001 2255/90481*228826127^(2/3) 9323798825762964 a001 121393/15127*312119004989^(4/15) 9323798825762964 a001 121393/15127*1568397607^(1/3) 9323798825763144 a001 121393/15127*4870847^(11/24) 9323798825763292 a001 2255/90481*4870847^(5/6) 9323798825765359 a001 2255/90481*1860498^(8/9) 9323798825772635 a001 121393/15127*710647^(11/21) 9323798825780547 a001 2255/90481*710647^(20/21) 9323798825801105 a001 5702887/15127*167761^(4/15) 9323798825867421 a001 63245986/15127*167761^(1/15) 9323798825871044 a001 6765/710647*969323029^(2/3) 9323798825871044 a001 317811/15127*817138163596^(2/9) 9323798825871045 a001 317811/15127*87403803^(1/3) 9323798825886813 a001 55/15126*4106118243^(2/3) 9323798825886813 a001 832040/15127*23725150497407^(1/6) 9323798825886813 a001 832040/15127*10749957122^(2/9) 9323798825886813 a001 832040/15127*228826127^(4/15) 9323798825886944 a001 832040/15127*4870847^(1/3) 9323798825887189 a001 55/15126*4870847^(23/24) 9323798825888185 a001 1346269/15127*1149851^(1/3) 9323798825889093 a001 6765/4870847*20633239^(14/15) 9323798825889113 a001 6765/4870847*17393796001^(2/3) 9323798825889113 a001 6765/4870847*505019158607^(7/12) 9323798825889113 a001 6765/4870847*599074578^(7/9) 9323798825889114 a001 311187/2161*141422324^(2/9) 9323798825889114 a001 311187/2161*73681302247^(1/6) 9323798825889445 a001 5702887/15127*20633239^(4/21) 9323798825889449 a001 2255/4250681*141422324^(8/9) 9323798825889449 a001 2255/4250681*23725150497407^(13/24) 9323798825889449 a001 2255/4250681*505019158607^(13/21) 9323798825889449 a001 2255/4250681*73681302247^(2/3) 9323798825889449 a001 2255/4250681*10749957122^(13/18) 9323798825889449 a001 2255/4250681*228826127^(13/15) 9323798825889449 a001 5702887/15127*3461452808002^(1/9) 9323798825889449 a001 5702887/15127*28143753123^(2/15) 9323798825889449 a001 5702887/15127*228826127^(1/6) 9323798825889493 a001 24157817/15127*7881196^(1/9) 9323798825889495 a001 14930352/15127*20633239^(2/15) 9323798825889498 a001 6765/33385282*312119004989^(2/3) 9323798825889498 a001 6765/33385282*3461452808002^(11/18) 9323798825889498 a001 6765/33385282*28143753123^(11/15) 9323798825889498 a001 6765/33385282*1568397607^(5/6) 9323798825889498 a001 6765/33385282*228826127^(11/12) 9323798825889498 a001 14930352/15127*17393796001^(2/21) 9323798825889498 a001 14930352/15127*505019158607^(1/12) 9323798825889498 a001 14930352/15127*599074578^(1/9) 9323798825889505 a001 2255/29134601*1322157322203^(2/3) 9323798825889505 a001 39088169/15127*23725150497407^(1/24) 9323798825889505 a001 39088169/15127*10749957122^(1/18) 9323798825889505 a001 39088169/15127*228826127^(1/15) 9323798825889506 a001 63245986/15127*20633239^(1/21) 9323798825889506 a001 6765/228826127*5600748293801^(2/3) 9323798825889506 a001 2255/199691526*23725150497407^(2/3) 9323798825889506 a001 2255/199691526*505019158607^(16/21) 9323798825889506 a001 2255/199691526*10749957122^(8/9) 9323798825889506 a001 2255/1368706081*17393796001^(20/21) 9323798825889506 a001 2255/1368706081*3461452808002^(7/9) 9323798825889506 a001 2255/1368706081*505019158607^(5/6) 9323798825889506 a001 2255/1368706081*28143753123^(14/15) 9323798825889506 a001 55/228811001*23725150497407^(19/24) 9323798825889506 a001 55/228811001*505019158607^(19/21) 9323798825889506 a001 6765/505019158607*3461452808002^(17/18) 9323798825889506 a001 2255/440719107401*23725150497407^(11/12) 9323798825889506 a001 6765/119218851371*505019158607^(23/24) 9323798825889506 a001 6765/45537549124*9062201101803^(5/6) 9323798825889506 a001 6765/6643838879*312119004989^(13/15) 9323798825889506 a001 6765/6643838879*73681302247^(11/12) 9323798825889507 a001 6765/370248451*28143753123^(5/6) 9323798825889507 a001 6765/141422324*17393796001^(17/21) 9323798825889507 a001 6765/141422324*45537549124^(7/9) 9323798825889507 a001 6765/141422324*505019158607^(17/24) 9323798825889507 a001 6765/141422324*599074578^(17/18) 9323798825889507 a001 63245986/15127*228826127^(1/24) 9323798825889510 a001 24157817/15127*312119004989^(1/15) 9323798825889510 a001 24157817/15127*1568397607^(1/12) 9323798825889529 a001 9227465/15127*45537549124^(1/9) 9323798825889531 a001 5702887/15127*4870847^(5/24) 9323798825889538 a001 9227465/15127*12752043^(1/6) 9323798825889538 a001 39088169/15127*4870847^(1/12) 9323798825889657 a001 3524578/15127*4106118243^(1/6) 9323798825889657 a001 63245986/15127*1860498^(1/18) 9323798825890048 a001 5702887/15127*1860498^(2/9) 9323798825890516 a001 6765/3010349*20633239^(19/21) 9323798825890535 a001 6765/3010349*817138163596^(5/9) 9323798825890535 a001 6765/3010349*228826127^(19/24) 9323798825890535 a001 1346269/15127*1322157322203^(1/6) 9323798825890536 a001 6765/3010349*87403803^(5/6) 9323798825891264 a001 39088169/15127*710647^(2/21) 9323798825892575 a001 14930352/15127*710647^(1/6) 9323798825893845 a001 5702887/15127*710647^(5/21) 9323798825893846 a001 832040/15127*710647^(8/21) 9323798825896551 a001 514229/15127*20633239^(1/3) 9323798825896559 a001 514229/15127*17393796001^(5/21) 9323798825896559 a001 514229/15127*505019158607^(5/24) 9323798825896559 a001 514229/15127*599074578^(5/18) 9323798825896559 a001 514229/15127*228826127^(7/24) 9323798825897606 a001 514229/15127*1860498^(7/18) 9323798825904251 a001 514229/15127*710647^(5/12) 9323798825931294 a001 311187/2161*271443^(1/3) 9323798825937841 a001 196418/15127*370248451^(1/3) 9323798825985876 a001 39088169/15127*103682^(1/9) 9323798826130375 a001 5702887/15127*103682^(5/18) 9323798826220682 a001 615/15251*7881196^(7/9) 9323798826220782 a001 615/15251*20633239^(11/15) 9323798826220798 a001 615/15251*17393796001^(11/21) 9323798826220798 a001 615/15251*312119004989^(7/15) 9323798826220798 a001 615/15251*505019158607^(11/24) 9323798826220798 a001 615/15251*1568397607^(7/12) 9323798826220798 a001 615/15251*599074578^(11/18) 9323798826220799 a001 75025/15127*6643838879^(1/3) 9323798826237722 a001 615/15251*710647^(11/12) 9323798826272295 a001 832040/15127*103682^(4/9) 9323798826293002 a001 121393/15127*103682^(11/18) 9323798826880309 a001 24157817/15127*39603^(1/6) 9323798827925764 a001 2178309/24476*9349^(29/57) 9323798828160215 a001 28657/15127*119218851371^(1/3) 9323798828231002 a001 311187/2161*39603^(13/33) 9323798828769137 a001 832040/15127*39603^(16/33) 9323798829285025 a001 63245986/15127*15127^(1/12) 9323798829293804 a001 317811/15127*39603^(19/33) 9323798829525804 a001 6624/2161*39603^(25/33) 9323798829726160 a001 121393/15127*39603^(2/3) 9323798831322334 a001 39088169/15127*15127^(2/15) 9323798832703635 a001 28657/5778*5778^(47/54) 9323798839471521 a001 5702887/15127*15127^(1/3) 9323798840003618 a001 17711/5778*5778^(25/27) 9323798841166056 a001 6765/24476*167761^(13/15) 9323798841453163 a001 6765/24476*20633239^(13/21) 9323798841453176 a001 6765/24476*141422324^(5/9) 9323798841453176 a001 6765/24476*73681302247^(5/12) 9323798841453176 a001 6765/24476*228826127^(13/24) 9323798841453176 a001 10946/15127*2139295485799^(1/3) 9323798841455122 a001 6765/24476*1860498^(13/18) 9323798841558628 a001 6765/24476*271443^(5/6) 9323798842320129 a001 10946/2207*2207^(47/48) 9323798843545807 a001 311187/2161*15127^(13/30) 9323798844170244 a007 Real Root Of 136*x^4-485*x^3-676*x^2-74*x+947 9323798845584540 a001 1346269/15127*15127^(29/60) 9323798845989223 a001 15456/13201*24476^(8/9) 9323798847618128 a001 832040/15127*15127^(8/15) 9323798847948646 p001 sum(1/(337*n+320)/n/(2^n),n=1..infinity) 9323798849665185 a001 514229/15127*15127^(7/12) 9323798850523562 a007 Real Root Of 480*x^4-342*x^3+413*x^2+74*x-930 9323798851676981 a001 317811/15127*15127^(19/30) 9323798851807474 a001 121393/103682*24476^(8/9) 9323798852045476 a001 1346269/39603*24476^(5/9) 9323798852656345 a001 105937/90481*24476^(8/9) 9323798852780194 a001 832040/710647*24476^(8/9) 9323798852798263 a001 726103/620166*24476^(8/9) 9323798852800899 a001 5702887/4870847*24476^(8/9) 9323798852801284 a001 4976784/4250681*24476^(8/9) 9323798852801340 a001 39088169/33385282*24476^(8/9) 9323798852801348 a001 34111385/29134601*24476^(8/9) 9323798852801349 a001 267914296/228826127*24476^(8/9) 9323798852801350 a001 233802911/199691526*24476^(8/9) 9323798852801350 a001 1836311903/1568397607*24476^(8/9) 9323798852801350 a001 1602508992/1368706081*24476^(8/9) 9323798852801350 a001 12586269025/10749957122*24476^(8/9) 9323798852801350 a001 10983760033/9381251041*24476^(8/9) 9323798852801350 a001 86267571272/73681302247*24476^(8/9) 9323798852801350 a001 75283811239/64300051206*24476^(8/9) 9323798852801350 a001 2504730781961/2139295485799*24476^(8/9) 9323798852801350 a001 365435296162/312119004989*24476^(8/9) 9323798852801350 a001 139583862445/119218851371*24476^(8/9) 9323798852801350 a001 53316291173/45537549124*24476^(8/9) 9323798852801350 a001 20365011074/17393796001*24476^(8/9) 9323798852801350 a001 7778742049/6643838879*24476^(8/9) 9323798852801350 a001 2971215073/2537720636*24476^(8/9) 9323798852801350 a001 1134903170/969323029*24476^(8/9) 9323798852801350 a001 433494437/370248451*24476^(8/9) 9323798852801350 a001 165580141/141422324*24476^(8/9) 9323798852801353 a001 63245986/54018521*24476^(8/9) 9323798852801375 a001 24157817/20633239*24476^(8/9) 9323798852801522 a001 9227465/7881196*24476^(8/9) 9323798852802529 a001 3524578/3010349*24476^(8/9) 9323798852809430 a001 1346269/1149851*24476^(8/9) 9323798852856736 a001 514229/439204*24476^(8/9) 9323798853180976 a001 196418/167761*24476^(8/9) 9323798853781089 a001 196418/15127*15127^(41/60) 9323798854745451 a001 17711/39603*3010349^(2/3) 9323798854746137 a001 17711/39603*9062201101803^(1/3) 9323798855403350 a001 75025/64079*24476^(8/9) 9323798855643523 a001 121393/15127*15127^(11/15) 9323798857122056 a001 1762289/51841*24476^(5/9) 9323798857232335 a001 39088169/39603*24476^(2/9) 9323798857862719 a001 9227465/271443*24476^(5/9) 9323798857970781 a001 24157817/710647*24476^(5/9) 9323798857974516 a001 17711/15127*15127^(14/15) 9323798857986546 a001 31622993/930249*24476^(5/9) 9323798857988847 a001 165580141/4870847*24476^(5/9) 9323798857989182 a001 433494437/12752043*24476^(5/9) 9323798857989231 a001 567451585/16692641*24476^(5/9) 9323798857989238 a001 2971215073/87403803*24476^(5/9) 9323798857989239 a001 7778742049/228826127*24476^(5/9) 9323798857989240 a001 10182505537/299537289*24476^(5/9) 9323798857989240 a001 53316291173/1568397607*24476^(5/9) 9323798857989240 a001 139583862445/4106118243*24476^(5/9) 9323798857989240 a001 182717648081/5374978561*24476^(5/9) 9323798857989240 a001 956722026041/28143753123*24476^(5/9) 9323798857989240 a001 2504730781961/73681302247*24476^(5/9) 9323798857989240 a001 3278735159921/96450076809*24476^(5/9) 9323798857989240 a001 10610209857723/312119004989*24476^(5/9) 9323798857989240 a001 4052739537881/119218851371*24476^(5/9) 9323798857989240 a001 387002188980/11384387281*24476^(5/9) 9323798857989240 a001 591286729879/17393796001*24476^(5/9) 9323798857989240 a001 225851433717/6643838879*24476^(5/9) 9323798857989240 a001 1135099622/33391061*24476^(5/9) 9323798857989240 a001 32951280099/969323029*24476^(5/9) 9323798857989240 a001 12586269025/370248451*24476^(5/9) 9323798857989240 a001 1201881744/35355581*24476^(5/9) 9323798857989243 a001 1836311903/54018521*24476^(5/9) 9323798857989261 a001 701408733/20633239*24476^(5/9) 9323798857989390 a001 66978574/1970299*24476^(5/9) 9323798857990268 a001 102334155/3010349*24476^(5/9) 9323798857996290 a001 39088169/1149851*24476^(5/9) 9323798858037566 a001 196452/5779*24476^(5/9) 9323798858138668 a001 75025/15127*15127^(47/60) 9323798858320474 a001 5702887/167761*24476^(5/9) 9323798858977353 a001 6624/2161*15127^(5/6) 9323798859823585 a001 15456/13201*20633239^(8/15) 9323798859823596 a001 17711/103682*45537549124^(4/9) 9323798859823596 a001 15456/13201*17393796001^(8/21) 9323798859823596 a001 15456/13201*23725150497407^(7/24) 9323798859823596 a001 15456/13201*505019158607^(1/3) 9323798859823596 a001 15456/13201*10749957122^(7/18) 9323798859823596 a001 15456/13201*599074578^(4/9) 9323798859823596 a001 15456/13201*228826127^(7/15) 9323798859823635 a001 17711/103682*12752043^(2/3) 9323798859823826 a001 15456/13201*4870847^(7/12) 9323798859823875 a001 17711/103682*4870847^(17/24) 9323798859835905 a001 15456/13201*710647^(2/3) 9323798859838542 a001 17711/103682*710647^(17/21) 9323798859934049 a001 9227465/39603*64079^(1/3) 9323798860259555 a001 2178309/64079*24476^(5/9) 9323798860330639 a001 17711/39603*39603^(31/33) 9323798860343526 a001 121393/39603*167761^(2/3) 9323798860498189 a001 15456/13201*103682^(7/9) 9323798860537356 a001 1346269/39603*167761^(7/15) 9323798860564377 a001 121393/39603*20633239^(10/21) 9323798860564386 a001 17711/271443*54018521^(2/3) 9323798860564388 a001 121393/39603*3461452808002^(5/18) 9323798860564388 a001 121393/39603*28143753123^(1/3) 9323798860564388 a001 121393/39603*228826127^(5/12) 9323798860565884 a001 121393/39603*1860498^(5/9) 9323798860602577 a001 4976784/13201*167761^(4/15) 9323798860642745 a001 17711/103682*103682^(17/18) 9323798860668844 a001 165580141/39603*167761^(1/15) 9323798860672401 a001 105937/13201*7881196^(4/9) 9323798860672451 a001 17711/710647*20633239^(16/21) 9323798860672468 a001 17711/710647*23725150497407^(5/12) 9323798860672468 a001 17711/710647*505019158607^(10/21) 9323798860672468 a001 17711/710647*28143753123^(8/15) 9323798860672468 a001 17711/710647*10749957122^(5/9) 9323798860672468 a001 105937/13201*312119004989^(4/15) 9323798860672468 a001 105937/13201*1568397607^(1/3) 9323798860672468 a001 17711/710647*228826127^(2/3) 9323798860672648 a001 105937/13201*4870847^(11/24) 9323798860672795 a001 17711/710647*4870847^(5/6) 9323798860674862 a001 17711/710647*1860498^(8/9) 9323798860682138 a001 105937/13201*710647^(11/21) 9323798860688236 a001 17711/1860498*969323029^(2/3) 9323798860688236 a001 832040/39603*817138163596^(2/9) 9323798860688237 a001 832040/39603*87403803^(1/3) 9323798860688729 a001 3524578/39603*1149851^(1/3) 9323798860690051 a001 17711/710647*710647^(20/21) 9323798860690537 a001 17711/4870847*4106118243^(2/3) 9323798860690537 a001 726103/13201*23725150497407^(1/6) 9323798860690537 a001 726103/13201*10749957122^(2/9) 9323798860690537 a001 726103/13201*228826127^(4/15) 9323798860690668 a001 726103/13201*4870847^(1/3) 9323798860690852 a001 17711/12752043*20633239^(14/15) 9323798860690872 a001 5702887/39603*141422324^(2/9) 9323798860690873 a001 17711/12752043*17393796001^(2/3) 9323798860690873 a001 17711/12752043*505019158607^(7/12) 9323798860690873 a001 5702887/39603*73681302247^(1/6) 9323798860690873 a001 17711/12752043*599074578^(7/9) 9323798860690914 a001 17711/4870847*4870847^(23/24) 9323798860690914 a001 63245986/39603*7881196^(1/9) 9323798860690917 a001 4976784/13201*20633239^(4/21) 9323798860690921 a001 17711/33385282*141422324^(8/9) 9323798860690922 a001 17711/33385282*23725150497407^(13/24) 9323798860690922 a001 17711/33385282*505019158607^(13/21) 9323798860690922 a001 17711/33385282*73681302247^(2/3) 9323798860690922 a001 17711/33385282*10749957122^(13/18) 9323798860690922 a001 4976784/13201*3461452808002^(1/9) 9323798860690922 a001 4976784/13201*28143753123^(2/15) 9323798860690922 a001 4976784/13201*228826127^(1/6) 9323798860690922 a001 17711/33385282*228826127^(13/15) 9323798860690926 a001 39088169/39603*20633239^(2/15) 9323798860690929 a001 17711/87403803*312119004989^(2/3) 9323798860690929 a001 17711/87403803*3461452808002^(11/18) 9323798860690929 a001 17711/87403803*28143753123^(11/15) 9323798860690929 a001 17711/87403803*1568397607^(5/6) 9323798860690929 a001 39088169/39603*17393796001^(2/21) 9323798860690929 a001 39088169/39603*505019158607^(1/12) 9323798860690929 a001 39088169/39603*599074578^(1/9) 9323798860690929 a001 17711/87403803*228826127^(11/12) 9323798860690929 a001 165580141/39603*20633239^(1/21) 9323798860690930 a001 17711/228826127*1322157322203^(2/3) 9323798860690930 a001 34111385/13201*23725150497407^(1/24) 9323798860690930 a001 34111385/13201*10749957122^(1/18) 9323798860690930 a001 34111385/13201*228826127^(1/15) 9323798860690930 a001 17711/599074578*5600748293801^(2/3) 9323798860690930 a001 17711/1568397607*23725150497407^(2/3) 9323798860690930 a001 17711/1568397607*505019158607^(16/21) 9323798860690930 a001 17711/1568397607*10749957122^(8/9) 9323798860690930 a001 17711/10749957122*17393796001^(20/21) 9323798860690930 a001 17711/10749957122*3461452808002^(7/9) 9323798860690930 a001 17711/10749957122*505019158607^(5/6) 9323798860690930 a001 17711/10749957122*28143753123^(14/15) 9323798860690930 a001 17711/73681302247*23725150497407^(19/24) 9323798860690930 a001 17711/73681302247*505019158607^(19/21) 9323798860690930 a001 17711/1322157322203*3461452808002^(17/18) 9323798860690930 a001 17711/3461452808002*23725150497407^(11/12) 9323798860690930 a001 89/1568437211*505019158607^(23/24) 9323798860690930 a001 17711/119218851371*9062201101803^(5/6) 9323798860690930 a001 17711/17393796001*312119004989^(13/15) 9323798860690930 a001 17711/17393796001*73681302247^(11/12) 9323798860690930 a001 17711/969323029*28143753123^(5/6) 9323798860690930 a001 17711/370248451*17393796001^(17/21) 9323798860690930 a001 17711/370248451*45537549124^(7/9) 9323798860690930 a001 17711/370248451*505019158607^(17/24) 9323798860690930 a001 165580141/39603*228826127^(1/24) 9323798860690930 a001 17711/370248451*599074578^(17/18) 9323798860690930 a001 63245986/39603*312119004989^(1/15) 9323798860690930 a001 63245986/39603*1568397607^(1/12) 9323798860690933 a001 24157817/39603*45537549124^(1/9) 9323798860690943 a001 24157817/39603*12752043^(1/6) 9323798860690952 a001 9227465/39603*4106118243^(1/6) 9323798860690962 a001 34111385/13201*4870847^(1/12) 9323798860691003 a001 4976784/13201*4870847^(5/24) 9323798860691060 a001 89/39604*20633239^(19/21) 9323798860691080 a001 165580141/39603*1860498^(1/18) 9323798860691080 a001 89/39604*817138163596^(5/9) 9323798860691080 a001 3524578/39603*1322157322203^(1/6) 9323798860691080 a001 89/39604*228826127^(19/24) 9323798860691081 a001 89/39604*87403803^(5/6) 9323798860691520 a001 4976784/13201*1860498^(2/9) 9323798860691951 a001 1346269/39603*20633239^(1/3) 9323798860691959 a001 1346269/39603*17393796001^(5/21) 9323798860691959 a001 1346269/39603*505019158607^(5/24) 9323798860691959 a001 1346269/39603*599074578^(5/18) 9323798860691959 a001 1346269/39603*228826127^(7/24) 9323798860692688 a001 34111385/13201*710647^(2/21) 9323798860693006 a001 1346269/39603*1860498^(7/18) 9323798860694006 a001 39088169/39603*710647^(1/6) 9323798860695317 a001 4976784/13201*710647^(5/21) 9323798860697570 a001 726103/13201*710647^(8/21) 9323798860697982 a001 514229/39603*370248451^(1/3) 9323798860699651 a001 1346269/39603*710647^(5/12) 9323798860733053 a001 5702887/39603*271443^(1/3) 9323798860739148 a001 17711/439204*7881196^(7/9) 9323798860739249 a001 17711/439204*20633239^(11/15) 9323798860739265 a001 17711/439204*17393796001^(11/21) 9323798860739265 a001 17711/439204*312119004989^(7/15) 9323798860739265 a001 17711/439204*505019158607^(11/24) 9323798860739265 a001 17711/439204*1568397607^(7/12) 9323798860739265 a001 196418/39603*6643838879^(1/3) 9323798860739265 a001 17711/439204*599074578^(11/18) 9323798860756189 a001 17711/439204*710647^(11/12) 9323798860787300 a001 34111385/13201*103682^(1/9) 9323798860931848 a001 4976784/13201*103682^(5/18) 9323798861022222 a001 75025/39603*119218851371^(1/3) 9323798861076019 a001 726103/13201*103682^(4/9) 9323798861202505 a001 105937/13201*103682^(11/18) 9323798861681729 a001 63245986/39603*39603^(1/6) 9323798862309796 a001 102334155/103682*24476^(2/9) 9323798862674519 a001 17711/64079*167761^(13/15) 9323798862961625 a001 17711/64079*20633239^(13/21) 9323798862961638 a001 17711/64079*141422324^(5/9) 9323798862961639 a001 17711/64079*73681302247^(5/12) 9323798862961639 a001 28657/39603*2139295485799^(1/3) 9323798862961639 a001 17711/64079*228826127^(13/24) 9323798862963584 a001 17711/64079*1860498^(13/18) 9323798863050587 a001 267914296/271443*24476^(2/9) 9323798863067091 a001 17711/64079*271443^(5/6) 9323798863158667 a001 701408733/710647*24476^(2/9) 9323798863174436 a001 1836311903/1860498*24476^(2/9) 9323798863176736 a001 4807526976/4870847*24476^(2/9) 9323798863177072 a001 12586269025/12752043*24476^(2/9) 9323798863177121 a001 32951280099/33385282*24476^(2/9) 9323798863177128 a001 86267571272/87403803*24476^(2/9) 9323798863177129 a001 225851433717/228826127*24476^(2/9) 9323798863177129 a001 591286729879/599074578*24476^(2/9) 9323798863177129 a001 1548008755920/1568397607*24476^(2/9) 9323798863177129 a001 4052739537881/4106118243*24476^(2/9) 9323798863177129 a001 4807525989/4870846*24476^(2/9) 9323798863177129 a001 6557470319842/6643838879*24476^(2/9) 9323798863177129 a001 2504730781961/2537720636*24476^(2/9) 9323798863177129 a001 956722026041/969323029*24476^(2/9) 9323798863177130 a001 365435296162/370248451*24476^(2/9) 9323798863177130 a001 139583862445/141422324*24476^(2/9) 9323798863177133 a001 53316291173/54018521*24476^(2/9) 9323798863177151 a001 20365011074/20633239*24476^(2/9) 9323798863177280 a001 7778742049/7881196*24476^(2/9) 9323798863178158 a001 2971215073/3010349*24476^(2/9) 9323798863184181 a001 1134903170/1149851*24476^(2/9) 9323798863225464 a001 433494437/439204*24476^(2/9) 9323798863508422 a001 165580141/167761*24476^(2/9) 9323798863572861 a001 726103/13201*39603^(16/33) 9323798864086448 a001 165580141/39603*15127^(1/12) 9323798864110996 a001 832040/39603*39603^(19/33) 9323798864152706 a001 28657/15127*15127^(53/60) 9323798864635663 a001 105937/13201*39603^(2/3) 9323798864867663 a001 15456/13201*39603^(28/33) 9323798864900370 a001 23184/51841*3010349^(2/3) 9323798864901056 a001 23184/51841*9062201101803^(1/3) 9323798865011489 a001 24157817/103682*64079^(1/3) 9323798865068019 a001 121393/39603*39603^(25/33) 9323798865447839 a001 63245986/64079*24476^(2/9) 9323798865529066 a001 317811/103682*167761^(2/3) 9323798865613936 a001 1762289/51841*167761^(7/15) 9323798865641835 a001 121393/103682*20633239^(8/15) 9323798865641847 a001 15456/90481*45537549124^(4/9) 9323798865641847 a001 121393/103682*17393796001^(8/21) 9323798865641847 a001 121393/103682*23725150497407^(7/24) 9323798865641847 a001 121393/103682*505019158607^(1/3) 9323798865641847 a001 121393/103682*10749957122^(7/18) 9323798865641847 a001 121393/103682*599074578^(4/9) 9323798865641847 a001 121393/103682*228826127^(7/15) 9323798865641885 a001 15456/90481*12752043^(2/3) 9323798865642076 a001 121393/103682*4870847^(7/12) 9323798865642125 a001 15456/90481*4870847^(17/24) 9323798865654155 a001 121393/103682*710647^(2/3) 9323798865656793 a001 15456/90481*710647^(17/21) 9323798865680043 a001 39088169/103682*167761^(4/15) 9323798865746303 a001 433494437/103682*167761^(1/15) 9323798865749916 a001 317811/103682*20633239^(10/21) 9323798865749925 a001 6624/101521*54018521^(2/3) 9323798865749927 a001 317811/103682*3461452808002^(5/18) 9323798865749927 a001 317811/103682*28143753123^(1/3) 9323798865749927 a001 317811/103682*228826127^(5/12) 9323798865751423 a001 317811/103682*1860498^(5/9) 9323798865752278 a001 63245986/271443*64079^(1/3) 9323798865765629 a001 416020/51841*7881196^(4/9) 9323798865765679 a001 2576/103361*20633239^(16/21) 9323798865765696 a001 2576/103361*23725150497407^(5/12) 9323798865765696 a001 2576/103361*505019158607^(10/21) 9323798865765696 a001 2576/103361*28143753123^(8/15) 9323798865765696 a001 2576/103361*10749957122^(5/9) 9323798865765696 a001 416020/51841*312119004989^(4/15) 9323798865765696 a001 416020/51841*1568397607^(1/3) 9323798865765696 a001 2576/103361*228826127^(2/3) 9323798865765876 a001 416020/51841*4870847^(11/24) 9323798865766023 a001 2576/103361*4870847^(5/6) 9323798865766060 a001 9227465/103682*1149851^(1/3) 9323798865767996 a001 46368/4870847*969323029^(2/3) 9323798865767996 a001 46347/2206*817138163596^(2/9) 9323798865767997 a001 46347/2206*87403803^(1/3) 9323798865768090 a001 2576/103361*1860498^(8/9) 9323798865768332 a001 5702887/103682*23725150497407^(1/6) 9323798865768332 a001 5702887/103682*10749957122^(2/9) 9323798865768332 a001 15456/4250681*4106118243^(2/3) 9323798865768332 a001 5702887/103682*228826127^(4/15) 9323798865768360 a001 144/103681*20633239^(14/15) 9323798865768373 a001 165580141/103682*7881196^(1/9) 9323798865768381 a001 7465176/51841*141422324^(2/9) 9323798865768381 a001 144/103681*17393796001^(2/3) 9323798865768381 a001 144/103681*505019158607^(7/12) 9323798865768381 a001 7465176/51841*73681302247^(1/6) 9323798865768381 a001 144/103681*599074578^(7/9) 9323798865768384 a001 39088169/103682*20633239^(4/21) 9323798865768386 a001 102334155/103682*20633239^(2/15) 9323798865768388 a001 15456/29134601*141422324^(8/9) 9323798865768388 a001 15456/29134601*23725150497407^(13/24) 9323798865768388 a001 15456/29134601*505019158607^(13/21) 9323798865768388 a001 15456/29134601*73681302247^(2/3) 9323798865768388 a001 15456/29134601*10749957122^(13/18) 9323798865768388 a001 39088169/103682*3461452808002^(1/9) 9323798865768388 a001 39088169/103682*28143753123^(2/15) 9323798865768388 a001 39088169/103682*228826127^(1/6) 9323798865768388 a001 15456/29134601*228826127^(13/15) 9323798865768388 a001 433494437/103682*20633239^(1/21) 9323798865768389 a001 46368/228826127*312119004989^(2/3) 9323798865768389 a001 46368/228826127*3461452808002^(11/18) 9323798865768389 a001 46368/228826127*28143753123^(11/15) 9323798865768389 a001 102334155/103682*17393796001^(2/21) 9323798865768389 a001 102334155/103682*505019158607^(1/12) 9323798865768389 a001 102334155/103682*599074578^(1/9) 9323798865768389 a001 46368/228826127*1568397607^(5/6) 9323798865768389 a001 2576/33281921*1322157322203^(2/3) 9323798865768389 a001 133957148/51841*23725150497407^(1/24) 9323798865768389 a001 133957148/51841*10749957122^(1/18) 9323798865768389 a001 46368/228826127*228826127^(11/12) 9323798865768389 a001 133957148/51841*228826127^(1/15) 9323798865768389 a001 6624/224056801*5600748293801^(2/3) 9323798865768389 a001 15456/1368706081*23725150497407^(2/3) 9323798865768389 a001 15456/1368706081*505019158607^(16/21) 9323798865768389 a001 15456/1368706081*10749957122^(8/9) 9323798865768389 a001 15456/9381251041*17393796001^(20/21) 9323798865768389 a001 15456/9381251041*3461452808002^(7/9) 9323798865768389 a001 15456/9381251041*505019158607^(5/6) 9323798865768389 a001 15456/9381251041*28143753123^(14/15) 9323798865768389 a001 2576/10716675201*23725150497407^(19/24) 9323798865768389 a001 2576/10716675201*505019158607^(19/21) 9323798865768389 a001 15456/3020733700601*23725150497407^(11/12) 9323798865768389 a001 144/10749853441*3461452808002^(17/18) 9323798865768389 a001 11592/204284540899*505019158607^(23/24) 9323798865768389 a001 46368/312119004989*9062201101803^(5/6) 9323798865768389 a001 11592/11384387281*312119004989^(13/15) 9323798865768389 a001 11592/11384387281*73681302247^(11/12) 9323798865768389 a001 11592/634430159*28143753123^(5/6) 9323798865768389 a001 46368/969323029*17393796001^(17/21) 9323798865768389 a001 46368/969323029*45537549124^(7/9) 9323798865768389 a001 46368/969323029*505019158607^(17/24) 9323798865768389 a001 433494437/103682*228826127^(1/24) 9323798865768389 a001 46368/969323029*599074578^(17/18) 9323798865768389 a001 165580141/103682*312119004989^(1/15) 9323798865768389 a001 165580141/103682*1568397607^(1/12) 9323798865768390 a001 31622993/51841*45537549124^(1/9) 9323798865768391 a001 46368/20633239*20633239^(19/21) 9323798865768392 a001 24157817/103682*4106118243^(1/6) 9323798865768399 a001 31622993/51841*12752043^(1/6) 9323798865768411 a001 46368/20633239*817138163596^(5/9) 9323798865768411 a001 9227465/103682*1322157322203^(1/6) 9323798865768411 a001 46368/20633239*228826127^(19/24) 9323798865768412 a001 46368/20633239*87403803^(5/6) 9323798865768422 a001 133957148/51841*4870847^(1/12) 9323798865768463 a001 5702887/103682*4870847^(1/3) 9323798865768470 a001 39088169/103682*4870847^(5/24) 9323798865768532 a001 1762289/51841*20633239^(1/3) 9323798865768539 a001 433494437/103682*1860498^(1/18) 9323798865768539 a001 1762289/51841*17393796001^(5/21) 9323798865768539 a001 1762289/51841*505019158607^(5/24) 9323798865768539 a001 1762289/51841*599074578^(5/18) 9323798865768539 a001 1762289/51841*228826127^(7/24) 9323798865768708 a001 15456/4250681*4870847^(23/24) 9323798865768987 a001 39088169/103682*1860498^(2/9) 9323798865769418 a001 1346269/103682*370248451^(1/3) 9323798865769587 a001 1762289/51841*1860498^(7/18) 9323798865770147 a001 133957148/51841*710647^(2/21) 9323798865771466 a001 102334155/103682*710647^(1/6) 9323798865772784 a001 39088169/103682*710647^(5/21) 9323798865775324 a001 46368/1149851*7881196^(7/9) 9323798865775365 a001 5702887/103682*710647^(8/21) 9323798865775366 a001 416020/51841*710647^(11/21) 9323798865775425 a001 46368/1149851*20633239^(11/15) 9323798865775441 a001 46368/1149851*17393796001^(11/21) 9323798865775441 a001 46368/1149851*312119004989^(7/15) 9323798865775441 a001 46368/1149851*505019158607^(11/24) 9323798865775441 a001 514229/103682*6643838879^(1/3) 9323798865775441 a001 46368/1149851*1568397607^(7/12) 9323798865775441 a001 46368/1149851*599074578^(11/18) 9323798865776232 a001 1762289/51841*710647^(5/12) 9323798865783279 a001 2576/103361*710647^(20/21) 9323798865792365 a001 46368/1149851*710647^(11/12) 9323798865810562 a001 7465176/51841*271443^(1/3) 9323798865812561 a001 46368/167761*167761^(13/15) 9323798865816724 a001 98209/51841*119218851371^(1/3) 9323798865860358 a001 165580141/710647*64079^(1/3) 9323798865864760 a001 133957148/51841*103682^(1/9) 9323798865876126 a001 433494437/1860498*64079^(1/3) 9323798865878427 a001 1134903170/4870847*64079^(1/3) 9323798865878762 a001 2971215073/12752043*64079^(1/3) 9323798865878811 a001 7778742049/33385282*64079^(1/3) 9323798865878819 a001 20365011074/87403803*64079^(1/3) 9323798865878820 a001 53316291173/228826127*64079^(1/3) 9323798865878820 a001 139583862445/599074578*64079^(1/3) 9323798865878820 a001 365435296162/1568397607*64079^(1/3) 9323798865878820 a001 956722026041/4106118243*64079^(1/3) 9323798865878820 a001 2504730781961/10749957122*64079^(1/3) 9323798865878820 a001 6557470319842/28143753123*64079^(1/3) 9323798865878820 a001 10610209857723/45537549124*64079^(1/3) 9323798865878820 a001 4052739537881/17393796001*64079^(1/3) 9323798865878820 a001 1548008755920/6643838879*64079^(1/3) 9323798865878820 a001 591286729879/2537720636*64079^(1/3) 9323798865878820 a001 225851433717/969323029*64079^(1/3) 9323798865878820 a001 86267571272/370248451*64079^(1/3) 9323798865878820 a001 63246219/271444*64079^(1/3) 9323798865878823 a001 12586269025/54018521*64079^(1/3) 9323798865878842 a001 4807526976/20633239*64079^(1/3) 9323798865878970 a001 1836311903/7881196*64079^(1/3) 9323798865879849 a001 701408733/3010349*64079^(1/3) 9323798865885872 a001 267914296/1149851*64079^(1/3) 9323798865927154 a001 102334155/439204*64079^(1/3) 9323798866009314 a001 39088169/103682*103682^(5/18) 9323798866099668 a001 46368/167761*20633239^(13/21) 9323798866099681 a001 46368/167761*141422324^(5/9) 9323798866099681 a001 46368/167761*73681302247^(5/12) 9323798866099681 a001 75025/103682*2139295485799^(1/3) 9323798866099681 a001 46368/167761*228826127^(13/24) 9323798866101627 a001 46368/167761*1860498^(13/18) 9323798866123759 a001 34111385/13201*15127^(2/15) 9323798866153813 a001 5702887/103682*103682^(4/9) 9323798866205133 a001 46368/167761*271443^(5/6) 9323798866210111 a001 39088169/167761*64079^(1/3) 9323798866270396 a001 121393/439204*167761^(13/15) 9323798866285626 a001 832040/271443*167761^(2/3) 9323798866295733 a001 416020/51841*103682^(11/18) 9323798866316440 a001 121393/103682*103682^(7/9) 9323798866337193 a001 317811/1149851*167761^(13/15) 9323798866346938 a001 832040/3010349*167761^(13/15) 9323798866348360 a001 2178309/7881196*167761^(13/15) 9323798866348568 a001 5702887/20633239*167761^(13/15) 9323798866348598 a001 14930352/54018521*167761^(13/15) 9323798866348602 a001 39088169/141422324*167761^(13/15) 9323798866348603 a001 102334155/370248451*167761^(13/15) 9323798866348603 a001 267914296/969323029*167761^(13/15) 9323798866348603 a001 701408733/2537720636*167761^(13/15) 9323798866348603 a001 1836311903/6643838879*167761^(13/15) 9323798866348603 a001 4807526976/17393796001*167761^(13/15) 9323798866348603 a001 12586269025/45537549124*167761^(13/15) 9323798866348603 a001 32951280099/119218851371*167761^(13/15) 9323798866348603 a001 86267571272/312119004989*167761^(13/15) 9323798866348603 a001 225851433717/817138163596*167761^(13/15) 9323798866348603 a001 1548008755920/5600748293801*167761^(13/15) 9323798866348603 a001 139583862445/505019158607*167761^(13/15) 9323798866348603 a001 53316291173/192900153618*167761^(13/15) 9323798866348603 a001 20365011074/73681302247*167761^(13/15) 9323798866348603 a001 7778742049/28143753123*167761^(13/15) 9323798866348603 a001 2971215073/10749957122*167761^(13/15) 9323798866348603 a001 1134903170/4106118243*167761^(13/15) 9323798866348603 a001 433494437/1568397607*167761^(13/15) 9323798866348603 a001 165580141/599074578*167761^(13/15) 9323798866348603 a001 63245986/228826127*167761^(13/15) 9323798866348605 a001 24157817/87403803*167761^(13/15) 9323798866348617 a001 9227465/33385282*167761^(13/15) 9323798866348696 a001 3524578/12752043*167761^(13/15) 9323798866349239 a001 1346269/4870847*167761^(13/15) 9323798866352961 a001 514229/1860498*167761^(13/15) 9323798866354599 a001 9227465/271443*167761^(7/15) 9323798866378476 a001 196418/710647*167761^(13/15) 9323798866381952 a001 121393/271443*3010349^(2/3) 9323798866382638 a001 121393/271443*9062201101803^(1/3) 9323798866396006 a001 311187/101521*167761^(2/3) 9323798866412111 a001 5702887/1860498*167761^(2/3) 9323798866414460 a001 14930352/4870847*167761^(2/3) 9323798866414803 a001 39088169/12752043*167761^(2/3) 9323798866414853 a001 14619165/4769326*167761^(2/3) 9323798866414860 a001 267914296/87403803*167761^(2/3) 9323798866414861 a001 701408733/228826127*167761^(2/3) 9323798866414861 a001 1836311903/599074578*167761^(2/3) 9323798866414861 a001 686789568/224056801*167761^(2/3) 9323798866414861 a001 12586269025/4106118243*167761^(2/3) 9323798866414861 a001 32951280099/10749957122*167761^(2/3) 9323798866414861 a001 86267571272/28143753123*167761^(2/3) 9323798866414861 a001 32264490531/10525900321*167761^(2/3) 9323798866414861 a001 591286729879/192900153618*167761^(2/3) 9323798866414861 a001 1548008755920/505019158607*167761^(2/3) 9323798866414861 a001 1515744265389/494493258286*167761^(2/3) 9323798866414861 a001 2504730781961/817138163596*167761^(2/3) 9323798866414861 a001 956722026041/312119004989*167761^(2/3) 9323798866414861 a001 365435296162/119218851371*167761^(2/3) 9323798866414861 a001 139583862445/45537549124*167761^(2/3) 9323798866414861 a001 53316291173/17393796001*167761^(2/3) 9323798866414861 a001 20365011074/6643838879*167761^(2/3) 9323798866414861 a001 7778742049/2537720636*167761^(2/3) 9323798866414861 a001 2971215073/969323029*167761^(2/3) 9323798866414862 a001 1134903170/370248451*167761^(2/3) 9323798866414862 a001 433494437/141422324*167761^(2/3) 9323798866414865 a001 165580141/54018521*167761^(2/3) 9323798866414884 a001 63245986/20633239*167761^(2/3) 9323798866415015 a001 24157817/7881196*167761^(2/3) 9323798866415912 a001 9227465/3010349*167761^(2/3) 9323798866420836 a001 34111385/90481*167761^(4/15) 9323798866422064 a001 3524578/1149851*167761^(2/3) 9323798866460995 a001 15456/90481*103682^(17/18) 9323798866462661 a001 24157817/710647*167761^(7/15) 9323798866464225 a001 1346269/439204*167761^(2/3) 9323798866478427 a001 31622993/930249*167761^(7/15) 9323798866480727 a001 165580141/4870847*167761^(7/15) 9323798866481063 a001 433494437/12752043*167761^(7/15) 9323798866481111 a001 567451585/16692641*167761^(7/15) 9323798866481119 a001 2971215073/87403803*167761^(7/15) 9323798866481120 a001 7778742049/228826127*167761^(7/15) 9323798866481120 a001 10182505537/299537289*167761^(7/15) 9323798866481120 a001 53316291173/1568397607*167761^(7/15) 9323798866481120 a001 139583862445/4106118243*167761^(7/15) 9323798866481120 a001 182717648081/5374978561*167761^(7/15) 9323798866481120 a001 956722026041/28143753123*167761^(7/15) 9323798866481120 a001 2504730781961/73681302247*167761^(7/15) 9323798866481120 a001 3278735159921/96450076809*167761^(7/15) 9323798866481120 a001 10610209857723/312119004989*167761^(7/15) 9323798866481120 a001 4052739537881/119218851371*167761^(7/15) 9323798866481120 a001 387002188980/11384387281*167761^(7/15) 9323798866481120 a001 591286729879/17393796001*167761^(7/15) 9323798866481120 a001 225851433717/6643838879*167761^(7/15) 9323798866481120 a001 1135099622/33391061*167761^(7/15) 9323798866481120 a001 32951280099/969323029*167761^(7/15) 9323798866481120 a001 12586269025/370248451*167761^(7/15) 9323798866481120 a001 1201881744/35355581*167761^(7/15) 9323798866481123 a001 1836311903/54018521*167761^(7/15) 9323798866481142 a001 701408733/20633239*167761^(7/15) 9323798866481270 a001 66978574/1970299*167761^(7/15) 9323798866482149 a001 102334155/3010349*167761^(7/15) 9323798866487094 a001 1134903170/271443*167761^(1/15) 9323798866488171 a001 39088169/1149851*167761^(7/15) 9323798866490707 a001 105937/90481*20633239^(8/15) 9323798866490718 a001 105937/90481*17393796001^(8/21) 9323798866490718 a001 121393/710647*45537549124^(4/9) 9323798866490718 a001 105937/90481*23725150497407^(7/24) 9323798866490718 a001 105937/90481*505019158607^(1/3) 9323798866490718 a001 105937/90481*10749957122^(7/18) 9323798866490718 a001 105937/90481*599074578^(4/9) 9323798866490718 a001 105937/90481*228826127^(7/15) 9323798866490756 a001 121393/710647*12752043^(2/3) 9323798866490947 a001 105937/90481*4870847^(7/12) 9323798866490997 a001 121393/710647*4870847^(17/24) 9323798866503026 a001 105937/90481*710647^(2/3) 9323798866505664 a001 121393/710647*710647^(17/21) 9323798866506476 a001 832040/271443*20633239^(10/21) 9323798866506485 a001 121393/1860498*54018521^(2/3) 9323798866506487 a001 832040/271443*3461452808002^(5/18) 9323798866506487 a001 832040/271443*28143753123^(1/3) 9323798866506487 a001 832040/271443*228826127^(5/12) 9323798866506833 a001 24157817/271443*1149851^(1/3) 9323798866507983 a001 832040/271443*1860498^(5/9) 9323798866508721 a001 726103/90481*7881196^(4/9) 9323798866508771 a001 121393/4870847*20633239^(16/21) 9323798866508787 a001 121393/4870847*23725150497407^(5/12) 9323798866508787 a001 121393/4870847*505019158607^(10/21) 9323798866508787 a001 726103/90481*312119004989^(4/15) 9323798866508787 a001 121393/4870847*28143753123^(8/15) 9323798866508787 a001 121393/4870847*10749957122^(5/9) 9323798866508787 a001 726103/90481*1568397607^(1/3) 9323798866508788 a001 121393/4870847*228826127^(2/3) 9323798866508968 a001 726103/90481*4870847^(11/24) 9323798866509115 a001 121393/4870847*4870847^(5/6) 9323798866509123 a001 121393/12752043*969323029^(2/3) 9323798866509123 a001 5702887/271443*817138163596^(2/9) 9323798866509124 a001 5702887/271443*87403803^(1/3) 9323798866509159 a001 121393/87403803*20633239^(14/15) 9323798866509164 a001 433494437/271443*7881196^(1/9) 9323798866509164 a001 121393/54018521*20633239^(19/21) 9323798866509172 a001 4976784/90481*23725150497407^(1/6) 9323798866509172 a001 4976784/90481*10749957122^(2/9) 9323798866509172 a001 121393/33385282*4106118243^(2/3) 9323798866509172 a001 4976784/90481*228826127^(4/15) 9323798866509176 a001 34111385/90481*20633239^(4/21) 9323798866509178 a001 267914296/271443*20633239^(2/15) 9323798866509179 a001 39088169/271443*141422324^(2/9) 9323798866509179 a001 121393/87403803*17393796001^(2/3) 9323798866509179 a001 121393/87403803*505019158607^(7/12) 9323798866509179 a001 39088169/271443*73681302247^(1/6) 9323798866509179 a001 121393/87403803*599074578^(7/9) 9323798866509179 a001 1134903170/271443*20633239^(1/21) 9323798866509180 a001 121393/228826127*141422324^(8/9) 9323798866509180 a001 121393/228826127*23725150497407^(13/24) 9323798866509180 a001 121393/228826127*505019158607^(13/21) 9323798866509180 a001 121393/228826127*73681302247^(2/3) 9323798866509180 a001 34111385/90481*3461452808002^(1/9) 9323798866509180 a001 34111385/90481*28143753123^(2/15) 9323798866509180 a001 121393/228826127*10749957122^(13/18) 9323798866509180 a001 34111385/90481*228826127^(1/6) 9323798866509180 a001 267914296/271443*17393796001^(2/21) 9323798866509180 a001 121393/599074578*312119004989^(2/3) 9323798866509180 a001 121393/599074578*3461452808002^(11/18) 9323798866509180 a001 267914296/271443*505019158607^(1/12) 9323798866509180 a001 121393/599074578*28143753123^(11/15) 9323798866509180 a001 121393/228826127*228826127^(13/15) 9323798866509180 a001 267914296/271443*599074578^(1/9) 9323798866509180 a001 121393/599074578*1568397607^(5/6) 9323798866509180 a001 121393/1568397607*1322157322203^(2/3) 9323798866509180 a001 233802911/90481*23725150497407^(1/24) 9323798866509180 a001 233802911/90481*10749957122^(1/18) 9323798866509180 a001 121393/4106118243*5600748293801^(2/3) 9323798866509180 a001 121393/10749957122*23725150497407^(2/3) 9323798866509180 a001 121393/10749957122*505019158607^(16/21) 9323798866509180 a001 121393/73681302247*17393796001^(20/21) 9323798866509180 a001 121393/10749957122*10749957122^(8/9) 9323798866509180 a001 121393/73681302247*3461452808002^(7/9) 9323798866509180 a001 121393/73681302247*505019158607^(5/6) 9323798866509180 a001 121393/505019158607*23725150497407^(19/24) 9323798866509180 a001 121393/505019158607*505019158607^(19/21) 9323798866509180 a001 121393/23725150497407*23725150497407^(11/12) 9323798866509180 a001 121393/817138163596*9062201101803^(5/6) 9323798866509180 a001 121393/2139295485799*505019158607^(23/24) 9323798866509180 a001 121393/119218851371*312119004989^(13/15) 9323798866509180 a001 121393/119218851371*73681302247^(11/12) 9323798866509180 a001 121393/73681302247*28143753123^(14/15) 9323798866509180 a001 121393/6643838879*28143753123^(5/6) 9323798866509180 a001 121393/2537720636*17393796001^(17/21) 9323798866509180 a001 121393/2537720636*45537549124^(7/9) 9323798866509180 a001 121393/2537720636*505019158607^(17/24) 9323798866509180 a001 233802911/90481*228826127^(1/15) 9323798866509180 a001 1134903170/271443*228826127^(1/24) 9323798866509181 a001 433494437/271443*312119004989^(1/15) 9323798866509181 a001 433494437/271443*1568397607^(1/12) 9323798866509181 a001 121393/2537720636*599074578^(17/18) 9323798866509181 a001 165580141/271443*45537549124^(1/9) 9323798866509181 a001 121393/599074578*228826127^(11/12) 9323798866509181 a001 63245986/271443*4106118243^(1/6) 9323798866509184 a001 121393/54018521*817138163596^(5/9) 9323798866509184 a001 24157817/271443*1322157322203^(1/6) 9323798866509184 a001 121393/54018521*228826127^(19/24) 9323798866509185 a001 121393/54018521*87403803^(5/6) 9323798866509190 a001 165580141/271443*12752043^(1/6) 9323798866509195 a001 9227465/271443*20633239^(1/3) 9323798866509202 a001 9227465/271443*17393796001^(5/21) 9323798866509202 a001 9227465/271443*505019158607^(5/24) 9323798866509202 a001 9227465/271443*599074578^(5/18) 9323798866509202 a001 9227465/271443*228826127^(7/24) 9323798866509213 a001 233802911/90481*4870847^(1/12) 9323798866509262 a001 34111385/90481*4870847^(5/24) 9323798866509303 a001 4976784/90481*4870847^(1/3) 9323798866509330 a001 1134903170/271443*1860498^(1/18) 9323798866509331 a001 3524578/271443*370248451^(1/3) 9323798866509549 a001 121393/33385282*4870847^(23/24) 9323798866509779 a001 34111385/90481*1860498^(2/9) 9323798866510093 a001 121393/3010349*7881196^(7/9) 9323798866510193 a001 121393/3010349*20633239^(11/15) 9323798866510209 a001 1346269/271443*6643838879^(1/3) 9323798866510209 a001 121393/3010349*17393796001^(11/21) 9323798866510209 a001 121393/3010349*312119004989^(7/15) 9323798866510209 a001 121393/3010349*505019158607^(11/24) 9323798866510209 a001 121393/3010349*1568397607^(7/12) 9323798866510209 a001 121393/3010349*599074578^(11/18) 9323798866510250 a001 9227465/271443*1860498^(7/18) 9323798866510939 a001 233802911/90481*710647^(2/21) 9323798866511182 a001 121393/4870847*1860498^(8/9) 9323798866512258 a001 267914296/271443*710647^(1/6) 9323798866513576 a001 34111385/90481*710647^(5/21) 9323798866516205 a001 4976784/90481*710647^(8/21) 9323798866516232 a001 514229/271443*119218851371^(1/3) 9323798866516895 a001 9227465/271443*710647^(5/12) 9323798866518458 a001 726103/90481*710647^(11/21) 9323798866526371 a001 121393/4870847*710647^(20/21) 9323798866527133 a001 121393/3010349*710647^(11/12) 9323798866528916 a001 267914296/710647*167761^(4/15) 9323798866529446 a001 196452/5779*167761^(7/15) 9323798866544685 a001 233802911/620166*167761^(4/15) 9323798866546985 a001 1836311903/4870847*167761^(4/15) 9323798866547321 a001 1602508992/4250681*167761^(4/15) 9323798866547370 a001 12586269025/33385282*167761^(4/15) 9323798866547377 a001 10983760033/29134601*167761^(4/15) 9323798866547378 a001 86267571272/228826127*167761^(4/15) 9323798866547378 a001 267913919/710646*167761^(4/15) 9323798866547378 a001 591286729879/1568397607*167761^(4/15) 9323798866547378 a001 516002918640/1368706081*167761^(4/15) 9323798866547378 a001 4052739537881/10749957122*167761^(4/15) 9323798866547378 a001 3536736619241/9381251041*167761^(4/15) 9323798866547378 a001 6557470319842/17393796001*167761^(4/15) 9323798866547378 a001 2504730781961/6643838879*167761^(4/15) 9323798866547378 a001 956722026041/2537720636*167761^(4/15) 9323798866547378 a001 365435296162/969323029*167761^(4/15) 9323798866547378 a001 139583862445/370248451*167761^(4/15) 9323798866547379 a001 53316291173/141422324*167761^(4/15) 9323798866547381 a001 20365011074/54018521*167761^(4/15) 9323798866547400 a001 7778742049/20633239*167761^(4/15) 9323798866547528 a001 2971215073/7881196*167761^(4/15) 9323798866548407 a001 1134903170/3010349*167761^(4/15) 9323798866551360 a001 39088169/271443*271443^(1/3) 9323798866553353 a001 75025/271443*167761^(13/15) 9323798866554430 a001 433494437/1149851*167761^(4/15) 9323798866557502 a001 121393/439204*20633239^(13/21) 9323798866557515 a001 121393/439204*141422324^(5/9) 9323798866557515 a001 121393/439204*73681302247^(5/12) 9323798866557515 a001 196418/271443*2139295485799^(1/3) 9323798866557515 a001 121393/439204*228826127^(13/24) 9323798866559461 a001 121393/439204*1860498^(13/18) 9323798866595174 a001 2971215073/710647*167761^(1/15) 9323798866595713 a001 165580141/439204*167761^(4/15) 9323798866598112 a001 317811/710647*3010349^(2/3) 9323798866598798 a001 317811/710647*9062201101803^(1/3) 9323798866605551 a001 233802911/90481*103682^(1/9) 9323798866610943 a001 7778742049/1860498*167761^(1/15) 9323798866613244 a001 20365011074/4870847*167761^(1/15) 9323798866613579 a001 53316291173/12752043*167761^(1/15) 9323798866613628 a001 139583862445/33385282*167761^(1/15) 9323798866613635 a001 365435296162/87403803*167761^(1/15) 9323798866613636 a001 956722026041/228826127*167761^(1/15) 9323798866613637 a001 2504730781961/599074578*167761^(1/15) 9323798866613637 a001 6557470319842/1568397607*167761^(1/15) 9323798866613637 a001 10610209857723/2537720636*167761^(1/15) 9323798866613637 a001 4052739537881/969323029*167761^(1/15) 9323798866613637 a001 1548008755920/370248451*167761^(1/15) 9323798866613637 a001 591286729879/141422324*167761^(1/15) 9323798866613640 a001 225851433717/54018521*167761^(1/15) 9323798866613659 a001 86267571272/20633239*167761^(1/15) 9323798866613787 a001 32951280099/7881196*167761^(1/15) 9323798866614555 a001 832040/710647*20633239^(8/15) 9323798866614567 a001 832040/710647*17393796001^(8/21) 9323798866614567 a001 105937/620166*45537549124^(4/9) 9323798866614567 a001 832040/710647*23725150497407^(7/24) 9323798866614567 a001 832040/710647*505019158607^(1/3) 9323798866614567 a001 832040/710647*10749957122^(7/18) 9323798866614567 a001 832040/710647*599074578^(4/9) 9323798866614567 a001 832040/710647*228826127^(7/15) 9323798866614605 a001 105937/620166*12752043^(2/3) 9323798866614665 a001 12586269025/3010349*167761^(1/15) 9323798866614796 a001 832040/710647*4870847^(7/12) 9323798866614845 a001 105937/620166*4870847^(17/24) 9323798866614910 a001 63245986/710647*1149851^(1/3) 9323798866616857 a001 311187/101521*20633239^(10/21) 9323798866616865 a001 317811/4870847*54018521^(2/3) 9323798866616867 a001 311187/101521*3461452808002^(5/18) 9323798866616867 a001 311187/101521*28143753123^(1/3) 9323798866616868 a001 311187/101521*228826127^(5/12) 9323798866617136 a001 5702887/710647*7881196^(4/9) 9323798866617186 a001 105937/4250681*20633239^(16/21) 9323798866617203 a001 105937/4250681*23725150497407^(5/12) 9323798866617203 a001 105937/4250681*505019158607^(10/21) 9323798866617203 a001 105937/4250681*28143753123^(8/15) 9323798866617203 a001 105937/4250681*10749957122^(5/9) 9323798866617203 a001 5702887/710647*1568397607^(1/3) 9323798866617203 a001 105937/4250681*228826127^(2/3) 9323798866617240 a001 317811/228826127*20633239^(14/15) 9323798866617241 a001 317811/141422324*20633239^(19/21) 9323798866617244 a001 1134903170/710647*7881196^(1/9) 9323798866617252 a001 317811/33385282*969323029^(2/3) 9323798866617252 a001 14930352/710647*817138163596^(2/9) 9323798866617253 a001 14930352/710647*87403803^(1/3) 9323798866617256 a001 267914296/710647*20633239^(4/21) 9323798866617256 a001 24157817/710647*20633239^(1/3) 9323798866617258 a001 701408733/710647*20633239^(2/15) 9323798866617259 a001 39088169/710647*23725150497407^(1/6) 9323798866617259 a001 39088169/710647*10749957122^(2/9) 9323798866617259 a001 105937/29134601*4106118243^(2/3) 9323798866617259 a001 39088169/710647*228826127^(4/15) 9323798866617259 a001 2971215073/710647*20633239^(1/21) 9323798866617260 a001 377/710646*141422324^(8/9) 9323798866617260 a001 14619165/101521*141422324^(2/9) 9323798866617260 a001 317811/228826127*17393796001^(2/3) 9323798866617260 a001 317811/228826127*505019158607^(7/12) 9323798866617260 a001 14619165/101521*73681302247^(1/6) 9323798866617260 a001 317811/228826127*599074578^(7/9) 9323798866617260 a001 377/710646*23725150497407^(13/24) 9323798866617260 a001 377/710646*505019158607^(13/21) 9323798866617260 a001 267914296/710647*3461452808002^(1/9) 9323798866617260 a001 377/710646*73681302247^(2/3) 9323798866617260 a001 267914296/710647*28143753123^(2/15) 9323798866617260 a001 377/710646*10749957122^(13/18) 9323798866617260 a001 701408733/710647*17393796001^(2/21) 9323798866617260 a001 317811/1568397607*312119004989^(2/3) 9323798866617260 a001 317811/1568397607*3461452808002^(11/18) 9323798866617260 a001 701408733/710647*505019158607^(1/12) 9323798866617260 a001 317811/1568397607*28143753123^(11/15) 9323798866617260 a001 701408733/710647*599074578^(1/9) 9323798866617260 a001 317811/1568397607*1568397607^(5/6) 9323798866617260 a001 105937/1368706081*1322157322203^(2/3) 9323798866617260 a001 1836311903/710647*23725150497407^(1/24) 9323798866617260 a001 1836311903/710647*10749957122^(1/18) 9323798866617260 a001 317811/10749957122*5600748293801^(2/3) 9323798866617260 a001 105937/64300051206*17393796001^(20/21) 9323798866617260 a001 105937/9381251041*23725150497407^(2/3) 9323798866617260 a001 105937/9381251041*505019158607^(16/21) 9323798866617260 a001 105937/64300051206*3461452808002^(7/9) 9323798866617260 a001 105937/64300051206*505019158607^(5/6) 9323798866617260 a001 105937/440719107401*23725150497407^(19/24) 9323798866617260 a001 317811/23725150497407*3461452808002^(17/18) 9323798866617260 a001 317811/312119004989*312119004989^(13/15) 9323798866617260 a001 105937/440719107401*505019158607^(19/21) 9323798866617260 a001 317811/5600748293801*505019158607^(23/24) 9323798866617260 a001 317811/312119004989*73681302247^(11/12) 9323798866617260 a001 105937/64300051206*28143753123^(14/15) 9323798866617260 a001 10959/599786069*28143753123^(5/6) 9323798866617260 a001 105937/9381251041*10749957122^(8/9) 9323798866617260 a001 317811/6643838879*17393796001^(17/21) 9323798866617260 a001 317811/6643838879*45537549124^(7/9) 9323798866617260 a001 317811/6643838879*505019158607^(17/24) 9323798866617260 a001 1134903170/710647*312119004989^(1/15) 9323798866617260 a001 1134903170/710647*1568397607^(1/12) 9323798866617260 a001 267914296/710647*228826127^(1/6) 9323798866617260 a001 2971215073/710647*228826127^(1/24) 9323798866617260 a001 433494437/710647*45537549124^(1/9) 9323798866617260 a001 1836311903/710647*228826127^(1/15) 9323798866617261 a001 317811/6643838879*599074578^(17/18) 9323798866617261 a001 165580141/710647*4106118243^(1/6) 9323798866617261 a001 377/710646*228826127^(13/15) 9323798866617261 a001 317811/1568397607*228826127^(11/12) 9323798866617261 a001 317811/141422324*817138163596^(5/9) 9323798866617261 a001 63245986/710647*1322157322203^(1/6) 9323798866617261 a001 317811/141422324*228826127^(19/24) 9323798866617262 a001 317811/141422324*87403803^(5/6) 9323798866617264 a001 24157817/710647*17393796001^(5/21) 9323798866617264 a001 24157817/710647*505019158607^(5/24) 9323798866617264 a001 24157817/710647*599074578^(5/18) 9323798866617264 a001 24157817/710647*228826127^(7/24) 9323798866617270 a001 433494437/710647*12752043^(1/6) 9323798866617282 a001 9227465/710647*370248451^(1/3) 9323798866617293 a001 1836311903/710647*4870847^(1/12) 9323798866617294 a001 317811/7881196*7881196^(7/9) 9323798866617342 a001 267914296/710647*4870847^(5/24) 9323798866617383 a001 5702887/710647*4870847^(11/24) 9323798866617390 a001 39088169/710647*4870847^(1/3) 9323798866617395 a001 317811/7881196*20633239^(11/15) 9323798866617410 a001 2971215073/710647*1860498^(1/18) 9323798866617411 a001 3524578/710647*6643838879^(1/3) 9323798866617411 a001 317811/7881196*17393796001^(11/21) 9323798866617411 a001 317811/7881196*312119004989^(7/15) 9323798866617411 a001 317811/7881196*505019158607^(11/24) 9323798866617411 a001 317811/7881196*1568397607^(7/12) 9323798866617411 a001 317811/7881196*599074578^(11/18) 9323798866617531 a001 105937/4250681*4870847^(5/6) 9323798866617636 a001 105937/29134601*4870847^(23/24) 9323798866617859 a001 267914296/710647*1860498^(2/9) 9323798866618289 a001 1346269/710647*119218851371^(1/3) 9323798866618311 a001 24157817/710647*1860498^(7/18) 9323798866618364 a001 311187/101521*1860498^(5/9) 9323798866619019 a001 1836311903/710647*710647^(2/21) 9323798866619597 a001 105937/4250681*1860498^(8/9) 9323798866620338 a001 701408733/710647*710647^(1/6) 9323798866620689 a001 4807526976/1149851*167761^(1/15) 9323798866621656 a001 267914296/710647*710647^(5/21) 9323798866624293 a001 39088169/710647*710647^(8/21) 9323798866624299 a001 317811/1149851*20633239^(13/21) 9323798866624312 a001 317811/1149851*141422324^(5/9) 9323798866624312 a001 514229/710647*2139295485799^(1/3) 9323798866624312 a001 317811/1149851*73681302247^(5/12) 9323798866624313 a001 317811/1149851*228826127^(13/24) 9323798866624956 a001 24157817/710647*710647^(5/12) 9323798866626258 a001 317811/1149851*1860498^(13/18) 9323798866626874 a001 5702887/710647*710647^(11/21) 9323798866626875 a001 832040/710647*710647^(2/3) 9323798866629513 a001 105937/620166*710647^(17/21) 9323798866629650 a001 416020/930249*3010349^(2/3) 9323798866630336 a001 416020/930249*9062201101803^(1/3) 9323798866630679 a001 165580141/1860498*1149851^(1/3) 9323798866632624 a001 726103/620166*20633239^(8/15) 9323798866632636 a001 726103/620166*17393796001^(8/21) 9323798866632636 a001 832040/4870847*45537549124^(4/9) 9323798866632636 a001 726103/620166*23725150497407^(7/24) 9323798866632636 a001 726103/620166*505019158607^(1/3) 9323798866632636 a001 726103/620166*10749957122^(7/18) 9323798866632636 a001 726103/620166*599074578^(4/9) 9323798866632636 a001 726103/620166*228826127^(7/15) 9323798866632674 a001 832040/4870847*12752043^(2/3) 9323798866632865 a001 726103/620166*4870847^(7/12) 9323798866632915 a001 832040/4870847*4870847^(17/24) 9323798866632934 a001 75640/1875749*7881196^(7/9) 9323798866632954 a001 829464/103361*7881196^(4/9) 9323798866632961 a001 5702887/1860498*20633239^(10/21) 9323798866632970 a001 832040/12752043*54018521^(2/3) 9323798866632972 a001 5702887/1860498*3461452808002^(5/18) 9323798866632972 a001 5702887/1860498*28143753123^(1/3) 9323798866632972 a001 5702887/1860498*228826127^(5/12) 9323798866632979 a001 433494437/4870847*1149851^(1/3) 9323798866633004 a001 416020/16692641*20633239^(16/21) 9323798866633009 a001 416020/299537289*20633239^(14/15) 9323798866633009 a001 832040/370248451*20633239^(19/21) 9323798866633012 a001 2971215073/1860498*7881196^(1/9) 9323798866633021 a001 416020/16692641*23725150497407^(5/12) 9323798866633021 a001 416020/16692641*505019158607^(10/21) 9323798866633021 a001 416020/16692641*28143753123^(8/15) 9323798866633021 a001 416020/16692641*10749957122^(5/9) 9323798866633021 a001 829464/103361*1568397607^(1/3) 9323798866633021 a001 416020/16692641*228826127^(2/3) 9323798866633022 a001 31622993/930249*20633239^(1/3) 9323798866633025 a001 233802911/620166*20633239^(4/21) 9323798866633026 a001 1836311903/1860498*20633239^(2/15) 9323798866633028 a001 832040/87403803*969323029^(2/3) 9323798866633028 a001 39088169/1860498*817138163596^(2/9) 9323798866633028 a001 7778742049/1860498*20633239^(1/21) 9323798866633028 a001 39088169/1860498*87403803^(1/3) 9323798866633029 a001 832040/1568397607*141422324^(8/9) 9323798866633029 a001 831985/15126*23725150497407^(1/6) 9323798866633029 a001 831985/15126*10749957122^(2/9) 9323798866633029 a001 832040/228826127*4106118243^(2/3) 9323798866633029 a001 831985/15126*228826127^(4/15) 9323798866633029 a001 133957148/930249*141422324^(2/9) 9323798866633029 a001 416020/299537289*17393796001^(2/3) 9323798866633029 a001 416020/299537289*505019158607^(7/12) 9323798866633029 a001 133957148/930249*73681302247^(1/6) 9323798866633029 a001 416020/299537289*599074578^(7/9) 9323798866633029 a001 832040/1568397607*23725150497407^(13/24) 9323798866633029 a001 233802911/620166*3461452808002^(1/9) 9323798866633029 a001 832040/1568397607*505019158607^(13/21) 9323798866633029 a001 832040/1568397607*73681302247^(2/3) 9323798866633029 a001 233802911/620166*28143753123^(2/15) 9323798866633029 a001 832040/1568397607*10749957122^(13/18) 9323798866633029 a001 1836311903/1860498*17393796001^(2/21) 9323798866633029 a001 832040/4106118243*312119004989^(2/3) 9323798866633029 a001 832040/4106118243*3461452808002^(11/18) 9323798866633029 a001 1836311903/1860498*505019158607^(1/12) 9323798866633029 a001 832040/4106118243*28143753123^(11/15) 9323798866633029 a001 267084832/103361*23725150497407^(1/24) 9323798866633029 a001 416020/5374978561*1322157322203^(2/3) 9323798866633029 a001 267084832/103361*10749957122^(1/18) 9323798866633029 a001 832040/505019158607*17393796001^(20/21) 9323798866633029 a001 832040/28143753123*5600748293801^(2/3) 9323798866633029 a001 832040/73681302247*23725150497407^(2/3) 9323798866633029 a001 832040/73681302247*505019158607^(16/21) 9323798866633029 a001 208010/204284540899*312119004989^(13/15) 9323798866633029 a001 832040/505019158607*3461452808002^(7/9) 9323798866633029 a001 416020/1730726404001*23725150497407^(19/24) 9323798866633029 a001 832040/5600748293801*9062201101803^(5/6) 9323798866633029 a001 416020/1730726404001*505019158607^(19/21) 9323798866633029 a001 208010/3665737348901*505019158607^(23/24) 9323798866633029 a001 208010/204284540899*73681302247^(11/12) 9323798866633029 a001 832040/17393796001*17393796001^(17/21) 9323798866633029 a001 832040/505019158607*28143753123^(14/15) 9323798866633029 a001 208010/11384387281*28143753123^(5/6) 9323798866633029 a001 832040/17393796001*45537549124^(7/9) 9323798866633029 a001 832040/17393796001*505019158607^(17/24) 9323798866633029 a001 832040/73681302247*10749957122^(8/9) 9323798866633029 a001 2971215073/1860498*312119004989^(1/15) 9323798866633029 a001 2971215073/1860498*1568397607^(1/12) 9323798866633029 a001 567451585/930249*45537549124^(1/9) 9323798866633029 a001 1836311903/1860498*599074578^(1/9) 9323798866633029 a001 832040/4106118243*1568397607^(5/6) 9323798866633029 a001 7778742049/1860498*228826127^(1/24) 9323798866633029 a001 433494437/1860498*4106118243^(1/6) 9323798866633029 a001 267084832/103361*228826127^(1/15) 9323798866633029 a001 832040/17393796001*599074578^(17/18) 9323798866633029 a001 233802911/620166*228826127^(1/6) 9323798866633029 a001 832040/370248451*817138163596^(5/9) 9323798866633029 a001 165580141/1860498*1322157322203^(1/6) 9323798866633029 a001 832040/1568397607*228826127^(13/15) 9323798866633029 a001 832040/4106118243*228826127^(11/12) 9323798866633029 a001 832040/370248451*228826127^(19/24) 9323798866633030 a001 31622993/930249*17393796001^(5/21) 9323798866633030 a001 31622993/930249*505019158607^(5/24) 9323798866633030 a001 31622993/930249*599074578^(5/18) 9323798866633030 a001 31622993/930249*228826127^(7/24) 9323798866633030 a001 832040/370248451*87403803^(5/6) 9323798866633032 a001 24157817/1860498*370248451^(1/3) 9323798866633035 a001 75640/1875749*20633239^(11/15) 9323798866633039 a001 567451585/930249*12752043^(1/6) 9323798866633051 a001 9227465/1860498*6643838879^(1/3) 9323798866633051 a001 75640/1875749*17393796001^(11/21) 9323798866633051 a001 75640/1875749*312119004989^(7/15) 9323798866633051 a001 75640/1875749*505019158607^(11/24) 9323798866633051 a001 75640/1875749*1568397607^(7/12) 9323798866633051 a001 75640/1875749*599074578^(11/18) 9323798866633062 a001 267084832/103361*4870847^(1/12) 9323798866633111 a001 233802911/620166*4870847^(5/24) 9323798866633160 a001 831985/15126*4870847^(1/3) 9323798866633179 a001 7778742049/1860498*1860498^(1/18) 9323798866633179 a001 1762289/930249*119218851371^(1/3) 9323798866633201 a001 829464/103361*4870847^(11/24) 9323798866633315 a001 1134903170/12752043*1149851^(1/3) 9323798866633348 a001 416020/16692641*4870847^(5/6) 9323798866633364 a001 2971215073/33385282*1149851^(1/3) 9323798866633371 a001 7778742049/87403803*1149851^(1/3) 9323798866633372 a001 20365011074/228826127*1149851^(1/3) 9323798866633372 a001 53316291173/599074578*1149851^(1/3) 9323798866633372 a001 139583862445/1568397607*1149851^(1/3) 9323798866633372 a001 365435296162/4106118243*1149851^(1/3) 9323798866633372 a001 956722026041/10749957122*1149851^(1/3) 9323798866633372 a001 2504730781961/28143753123*1149851^(1/3) 9323798866633372 a001 6557470319842/73681302247*1149851^(1/3) 9323798866633372 a001 10610209857723/119218851371*1149851^(1/3) 9323798866633372 a001 4052739537881/45537549124*1149851^(1/3) 9323798866633372 a001 1548008755920/17393796001*1149851^(1/3) 9323798866633372 a001 591286729879/6643838879*1149851^(1/3) 9323798866633372 a001 225851433717/2537720636*1149851^(1/3) 9323798866633372 a001 86267571272/969323029*1149851^(1/3) 9323798866633372 a001 32951280099/370248451*1149851^(1/3) 9323798866633373 a001 12586269025/141422324*1149851^(1/3) 9323798866633375 a001 4807526976/54018521*1149851^(1/3) 9323798866633394 a001 1836311903/20633239*1149851^(1/3) 9323798866633406 a001 832040/228826127*4870847^(23/24) 9323798866633522 a001 3524667/39604*1149851^(1/3) 9323798866633628 a001 233802911/620166*1860498^(2/9) 9323798866634044 a001 832040/3010349*20633239^(13/21) 9323798866634058 a001 832040/3010349*141422324^(5/9) 9323798866634058 a001 1346269/1860498*2139295485799^(1/3) 9323798866634058 a001 832040/3010349*73681302247^(5/12) 9323798866634058 a001 832040/3010349*228826127^(13/24) 9323798866634077 a001 31622993/930249*1860498^(7/18) 9323798866634251 a001 2178309/4870847*3010349^(2/3) 9323798866634334 a001 317811/7881196*710647^(11/12) 9323798866634401 a001 267914296/3010349*1149851^(1/3) 9323798866634468 a001 5702887/1860498*1860498^(5/9) 9323798866634786 a001 105937/4250681*710647^(20/21) 9323798866634787 a001 267084832/103361*710647^(2/21) 9323798866634922 a001 5702887/12752043*3010349^(2/3) 9323798866634937 a001 2178309/4870847*9062201101803^(1/3) 9323798866635020 a001 7465176/16692641*3010349^(2/3) 9323798866635034 a001 39088169/87403803*3010349^(2/3) 9323798866635036 a001 102334155/228826127*3010349^(2/3) 9323798866635037 a001 133957148/299537289*3010349^(2/3) 9323798866635037 a001 701408733/1568397607*3010349^(2/3) 9323798866635037 a001 1836311903/4106118243*3010349^(2/3) 9323798866635037 a001 2403763488/5374978561*3010349^(2/3) 9323798866635037 a001 12586269025/28143753123*3010349^(2/3) 9323798866635037 a001 32951280099/73681302247*3010349^(2/3) 9323798866635037 a001 43133785636/96450076809*3010349^(2/3) 9323798866635037 a001 225851433717/505019158607*3010349^(2/3) 9323798866635037 a001 591286729879/1322157322203*3010349^(2/3) 9323798866635037 a001 10610209857723/23725150497407*3010349^(2/3) 9323798866635037 a001 182717648081/408569081798*3010349^(2/3) 9323798866635037 a001 139583862445/312119004989*3010349^(2/3) 9323798866635037 a001 53316291173/119218851371*3010349^(2/3) 9323798866635037 a001 10182505537/22768774562*3010349^(2/3) 9323798866635037 a001 7778742049/17393796001*3010349^(2/3) 9323798866635037 a001 2971215073/6643838879*3010349^(2/3) 9323798866635037 a001 567451585/1268860318*3010349^(2/3) 9323798866635037 a001 433494437/969323029*3010349^(2/3) 9323798866635037 a001 165580141/370248451*3010349^(2/3) 9323798866635038 a001 31622993/70711162*3010349^(2/3) 9323798866635043 a001 24157817/54018521*3010349^(2/3) 9323798866635081 a001 9227465/20633239*3010349^(2/3) 9323798866635216 a001 2178309/54018521*7881196^(7/9) 9323798866635261 a001 5702887/4870847*20633239^(8/15) 9323798866635262 a001 39088169/4870847*7881196^(4/9) 9323798866635272 a001 5702887/4870847*17393796001^(8/21) 9323798866635272 a001 726103/4250681*45537549124^(4/9) 9323798866635272 a001 5702887/4870847*23725150497407^(7/24) 9323798866635272 a001 5702887/4870847*505019158607^(1/3) 9323798866635272 a001 5702887/4870847*10749957122^(7/18) 9323798866635272 a001 5702887/4870847*599074578^(4/9) 9323798866635273 a001 5702887/4870847*228826127^(7/15) 9323798866635309 a001 311187/224056801*20633239^(14/15) 9323798866635310 a001 2178309/969323029*20633239^(19/21) 9323798866635311 a001 726103/4250681*12752043^(2/3) 9323798866635311 a001 14930352/4870847*20633239^(10/21) 9323798866635312 a001 726103/29134601*20633239^(16/21) 9323798866635313 a001 7778742049/4870847*7881196^(1/9) 9323798866635317 a001 2178309/54018521*20633239^(11/15) 9323798866635319 a001 311187/4769326*54018521^(2/3) 9323798866635321 a001 14930352/4870847*3461452808002^(5/18) 9323798866635321 a001 14930352/4870847*28143753123^(1/3) 9323798866635321 a001 14930352/4870847*228826127^(5/12) 9323798866635323 a001 165580141/4870847*20633239^(1/3) 9323798866635326 a001 1836311903/4870847*20633239^(4/21) 9323798866635327 a001 4807526976/4870847*20633239^(2/15) 9323798866635329 a001 39088169/4870847*312119004989^(4/15) 9323798866635329 a001 726103/29134601*23725150497407^(5/12) 9323798866635329 a001 726103/29134601*28143753123^(8/15) 9323798866635329 a001 726103/29134601*10749957122^(5/9) 9323798866635329 a001 39088169/4870847*1568397607^(1/3) 9323798866635329 a001 726103/29134601*228826127^(2/3) 9323798866635329 a001 20365011074/4870847*20633239^(1/21) 9323798866635329 a001 726103/1368706081*141422324^(8/9) 9323798866635330 a001 46347/4868641*969323029^(2/3) 9323798866635330 a001 102334155/4870847*817138163596^(2/9) 9323798866635330 a001 701408733/4870847*141422324^(2/9) 9323798866635330 a001 267914296/4870847*23725150497407^(1/6) 9323798866635330 a001 267914296/4870847*10749957122^(2/9) 9323798866635330 a001 726103/199691526*4106118243^(2/3) 9323798866635330 a001 311187/224056801*17393796001^(2/3) 9323798866635330 a001 311187/224056801*505019158607^(7/12) 9323798866635330 a001 701408733/4870847*73681302247^(1/6) 9323798866635330 a001 726103/1368706081*23725150497407^(13/24) 9323798866635330 a001 1836311903/4870847*3461452808002^(1/9) 9323798866635330 a001 726103/1368706081*505019158607^(13/21) 9323798866635330 a001 726103/1368706081*73681302247^(2/3) 9323798866635330 a001 1836311903/4870847*28143753123^(2/15) 9323798866635330 a001 726103/1368706081*10749957122^(13/18) 9323798866635330 a001 4807526976/4870847*17393796001^(2/21) 9323798866635330 a001 987/4870846*312119004989^(2/3) 9323798866635330 a001 4807526976/4870847*505019158607^(1/12) 9323798866635330 a001 987/4870846*28143753123^(11/15) 9323798866635330 a001 726103/440719107401*17393796001^(20/21) 9323798866635330 a001 2178309/45537549124*17393796001^(17/21) 9323798866635330 a001 12586269025/4870847*23725150497407^(1/24) 9323798866635330 a001 726103/9381251041*1322157322203^(2/3) 9323798866635330 a001 12586269025/4870847*10749957122^(1/18) 9323798866635330 a001 311187/10525900321*5600748293801^(2/3) 9323798866635330 a001 726103/64300051206*23725150497407^(2/3) 9323798866635330 a001 726103/64300051206*505019158607^(16/21) 9323798866635330 a001 2178309/2139295485799*312119004989^(13/15) 9323798866635330 a001 726103/3020733700601*23725150497407^(19/24) 9323798866635330 a001 2178309/14662949395604*9062201101803^(5/6) 9323798866635330 a001 726103/440719107401*505019158607^(5/6) 9323798866635330 a001 726103/3020733700601*505019158607^(19/21) 9323798866635330 a001 2178309/45537549124*45537549124^(7/9) 9323798866635330 a001 2178309/2139295485799*73681302247^(11/12) 9323798866635330 a001 2178309/45537549124*505019158607^(17/24) 9323798866635330 a001 2178309/119218851371*28143753123^(5/6) 9323798866635330 a001 726103/440719107401*28143753123^(14/15) 9323798866635330 a001 7778742049/4870847*312119004989^(1/15) 9323798866635330 a001 726103/64300051206*10749957122^(8/9) 9323798866635330 a001 2971215073/4870847*45537549124^(1/9) 9323798866635330 a001 7778742049/4870847*1568397607^(1/12) 9323798866635330 a001 1134903170/4870847*4106118243^(1/6) 9323798866635330 a001 4807526976/4870847*599074578^(1/9) 9323798866635330 a001 987/4870846*1568397607^(5/6) 9323798866635330 a001 20365011074/4870847*228826127^(1/24) 9323798866635330 a001 2178309/969323029*817138163596^(5/9) 9323798866635330 a001 433494437/4870847*1322157322203^(1/6) 9323798866635330 a001 12586269025/4870847*228826127^(1/15) 9323798866635330 a001 311187/224056801*599074578^(7/9) 9323798866635330 a001 267914296/4870847*228826127^(4/15) 9323798866635330 a001 2178309/45537549124*599074578^(17/18) 9323798866635330 a001 1836311903/4870847*228826127^(1/6) 9323798866635330 a001 165580141/4870847*17393796001^(5/21) 9323798866635330 a001 165580141/4870847*505019158607^(5/24) 9323798866635330 a001 165580141/4870847*599074578^(5/18) 9323798866635330 a001 165580141/4870847*228826127^(7/24) 9323798866635330 a001 2178309/969323029*228826127^(19/24) 9323798866635330 a001 726103/1368706081*228826127^(13/15) 9323798866635330 a001 987/4870846*228826127^(11/12) 9323798866635330 a001 102334155/4870847*87403803^(1/3) 9323798866635330 a001 63245986/4870847*370248451^(1/3) 9323798866635331 a001 2178309/969323029*87403803^(5/6) 9323798866635333 a001 24157817/4870847*6643838879^(1/3) 9323798866635333 a001 2178309/54018521*17393796001^(11/21) 9323798866635333 a001 2178309/54018521*312119004989^(7/15) 9323798866635333 a001 2178309/54018521*505019158607^(11/24) 9323798866635333 a001 2178309/54018521*1568397607^(7/12) 9323798866635333 a001 2178309/54018521*599074578^(11/18) 9323798866635337 a001 1762289/3940598*3010349^(2/3) 9323798866635339 a001 2971215073/4870847*12752043^(1/6) 9323798866635352 a001 9227465/4870847*119218851371^(1/3) 9323798866635363 a001 12586269025/4870847*4870847^(1/12) 9323798866635412 a001 1836311903/4870847*4870847^(5/24) 9323798866635415 a001 416020/16692641*1860498^(8/9) 9323798866635461 a001 267914296/4870847*4870847^(1/3) 9323798866635466 a001 2178309/7881196*20633239^(13/21) 9323798866635479 a001 20365011074/4870847*1860498^(1/18) 9323798866635480 a001 2178309/7881196*141422324^(5/9) 9323798866635480 a001 3524578/4870847*2139295485799^(1/3) 9323798866635480 a001 2178309/7881196*73681302247^(5/12) 9323798866635480 a001 2178309/7881196*228826127^(13/24) 9323798866635502 a001 5702887/4870847*4870847^(7/12) 9323798866635509 a001 39088169/4870847*4870847^(11/24) 9323798866635549 a001 5702887/141422324*7881196^(7/9) 9323798866635551 a001 726103/4250681*4870847^(17/24) 9323798866635598 a001 14930352/370248451*7881196^(7/9) 9323798866635599 a001 34111385/4250681*7881196^(4/9) 9323798866635605 a001 39088169/969323029*7881196^(7/9) 9323798866635606 a001 9303105/230701876*7881196^(7/9) 9323798866635606 a001 267914296/6643838879*7881196^(7/9) 9323798866635606 a001 701408733/17393796001*7881196^(7/9) 9323798866635606 a001 1836311903/45537549124*7881196^(7/9) 9323798866635606 a001 4807526976/119218851371*7881196^(7/9) 9323798866635606 a001 1144206275/28374454999*7881196^(7/9) 9323798866635606 a001 32951280099/817138163596*7881196^(7/9) 9323798866635606 a001 86267571272/2139295485799*7881196^(7/9) 9323798866635606 a001 225851433717/5600748293801*7881196^(7/9) 9323798866635606 a001 591286729879/14662949395604*7881196^(7/9) 9323798866635606 a001 365435296162/9062201101803*7881196^(7/9) 9323798866635606 a001 139583862445/3461452808002*7881196^(7/9) 9323798866635606 a001 53316291173/1322157322203*7881196^(7/9) 9323798866635606 a001 20365011074/505019158607*7881196^(7/9) 9323798866635606 a001 7778742049/192900153618*7881196^(7/9) 9323798866635606 a001 2971215073/73681302247*7881196^(7/9) 9323798866635606 a001 1134903170/28143753123*7881196^(7/9) 9323798866635606 a001 433494437/10749957122*7881196^(7/9) 9323798866635606 a001 165580141/4106118243*7881196^(7/9) 9323798866635606 a001 63245986/1568397607*7881196^(7/9) 9323798866635608 a001 5702887/12752043*9062201101803^(1/3) 9323798866635609 a001 24157817/599074578*7881196^(7/9) 9323798866635628 a001 9227465/228826127*7881196^(7/9) 9323798866635645 a001 5702887/4106118243*20633239^(14/15) 9323798866635645 a001 4976784/4250681*20633239^(8/15) 9323798866635646 a001 5702887/2537720636*20633239^(19/21) 9323798866635648 a001 133957148/16692641*7881196^(4/9) 9323798866635649 a001 5702887/228826127*20633239^(16/21) 9323798866635649 a001 20365011074/12752043*7881196^(1/9) 9323798866635650 a001 5702887/141422324*20633239^(11/15) 9323798866635654 a001 39088169/12752043*20633239^(10/21) 9323798866635655 a001 233802911/29134601*7881196^(4/9) 9323798866635656 a001 1836311903/228826127*7881196^(4/9) 9323798866635656 a001 267084832/33281921*7881196^(4/9) 9323798866635656 a001 12586269025/1568397607*7881196^(4/9) 9323798866635656 a001 726103/29134601*4870847^(5/6) 9323798866635656 a001 10983760033/1368706081*7881196^(4/9) 9323798866635656 a001 43133785636/5374978561*7881196^(4/9) 9323798866635656 a001 75283811239/9381251041*7881196^(4/9) 9323798866635656 a001 591286729879/73681302247*7881196^(4/9) 9323798866635656 a001 86000486440/10716675201*7881196^(4/9) 9323798866635656 a001 4052739537881/505019158607*7881196^(4/9) 9323798866635656 a001 3536736619241/440719107401*7881196^(4/9) 9323798866635656 a001 3278735159921/408569081798*7881196^(4/9) 9323798866635656 a001 2504730781961/312119004989*7881196^(4/9) 9323798866635656 a001 956722026041/119218851371*7881196^(4/9) 9323798866635656 a001 182717648081/22768774562*7881196^(4/9) 9323798866635656 a001 139583862445/17393796001*7881196^(4/9) 9323798866635656 a001 53316291173/6643838879*7881196^(4/9) 9323798866635656 a001 10182505537/1268860318*7881196^(4/9) 9323798866635656 a001 7778742049/969323029*7881196^(4/9) 9323798866635656 a001 2971215073/370248451*7881196^(4/9) 9323798866635657 a001 567451585/70711162*7881196^(4/9) 9323798866635657 a001 4976784/4250681*17393796001^(8/21) 9323798866635657 a001 5702887/33385282*45537549124^(4/9) 9323798866635657 a001 4976784/4250681*23725150497407^(7/24) 9323798866635657 a001 4976784/4250681*505019158607^(1/3) 9323798866635657 a001 4976784/4250681*10749957122^(7/18) 9323798866635657 a001 4976784/4250681*599074578^(4/9) 9323798866635657 a001 4976784/4250681*228826127^(7/15) 9323798866635658 a001 433494437/12752043*20633239^(1/3) 9323798866635659 a001 433494437/54018521*7881196^(4/9) 9323798866635661 a001 1602508992/4250681*20633239^(4/21) 9323798866635662 a001 5702887/87403803*54018521^(2/3) 9323798866635662 a001 12586269025/12752043*20633239^(2/15) 9323798866635664 a001 39088169/12752043*3461452808002^(5/18) 9323798866635664 a001 39088169/12752043*28143753123^(1/3) 9323798866635664 a001 39088169/12752043*228826127^(5/12) 9323798866635664 a001 53316291173/12752043*20633239^(1/21) 9323798866635665 a001 5702887/10749957122*141422324^(8/9) 9323798866635665 a001 34111385/4250681*312119004989^(4/15) 9323798866635665 a001 5702887/228826127*23725150497407^(5/12) 9323798866635665 a001 5702887/228826127*505019158607^(10/21) 9323798866635665 a001 5702887/228826127*28143753123^(8/15) 9323798866635665 a001 5702887/228826127*10749957122^(5/9) 9323798866635665 a001 34111385/4250681*1568397607^(1/3) 9323798866635665 a001 1836311903/12752043*141422324^(2/9) 9323798866635665 a001 5702887/228826127*228826127^(2/3) 9323798866635665 a001 5702887/599074578*969323029^(2/3) 9323798866635665 a001 267914296/12752043*817138163596^(2/9) 9323798866635665 a001 233802911/4250681*23725150497407^(1/6) 9323798866635665 a001 233802911/4250681*10749957122^(2/9) 9323798866635665 a001 5702887/1568397607*4106118243^(2/3) 9323798866635665 a001 5702887/4106118243*17393796001^(2/3) 9323798866635665 a001 5702887/4106118243*505019158607^(7/12) 9323798866635665 a001 1836311903/12752043*73681302247^(1/6) 9323798866635665 a001 5702887/10749957122*23725150497407^(13/24) 9323798866635665 a001 1602508992/4250681*3461452808002^(1/9) 9323798866635665 a001 5702887/10749957122*505019158607^(13/21) 9323798866635665 a001 5702887/10749957122*73681302247^(2/3) 9323798866635665 a001 1602508992/4250681*28143753123^(2/15) 9323798866635665 a001 5702887/3461452808002*17393796001^(20/21) 9323798866635665 a001 5702887/119218851371*17393796001^(17/21) 9323798866635665 a001 5702887/10749957122*10749957122^(13/18) 9323798866635665 a001 12586269025/12752043*17393796001^(2/21) 9323798866635665 a001 5702887/28143753123*312119004989^(2/3) 9323798866635665 a001 5702887/28143753123*3461452808002^(11/18) 9323798866635665 a001 12586269025/12752043*505019158607^(1/12) 9323798866635665 a001 5702887/28143753123*28143753123^(11/15) 9323798866635665 a001 5702887/119218851371*45537549124^(7/9) 9323798866635665 a001 10983760033/4250681*23725150497407^(1/24) 9323798866635665 a001 5702887/192900153618*5600748293801^(2/3) 9323798866635665 a001 5702887/5600748293801*312119004989^(13/15) 9323798866635665 a001 5702887/505019158607*505019158607^(16/21) 9323798866635665 a001 5702887/3461452808002*3461452808002^(7/9) 9323798866635665 a001 5702887/23725150497407*23725150497407^(19/24) 9323798866635665 a001 5702887/3461452808002*505019158607^(5/6) 9323798866635665 a001 5702887/23725150497407*505019158607^(19/21) 9323798866635665 a001 5702887/119218851371*505019158607^(17/24) 9323798866635665 a001 5702887/5600748293801*73681302247^(11/12) 9323798866635665 a001 10983760033/4250681*10749957122^(1/18) 9323798866635665 a001 20365011074/12752043*312119004989^(1/15) 9323798866635665 a001 5702887/312119004989*28143753123^(5/6) 9323798866635665 a001 5702887/3461452808002*28143753123^(14/15) 9323798866635665 a001 7778742049/12752043*45537549124^(1/9) 9323798866635665 a001 5702887/505019158607*10749957122^(8/9) 9323798866635665 a001 2971215073/12752043*4106118243^(1/6) 9323798866635665 a001 20365011074/12752043*1568397607^(1/12) 9323798866635665 a001 5702887/2537720636*817138163596^(5/9) 9323798866635665 a001 1134903170/12752043*1322157322203^(1/6) 9323798866635665 a001 12586269025/12752043*599074578^(1/9) 9323798866635665 a001 5702887/28143753123*1568397607^(5/6) 9323798866635665 a001 53316291173/12752043*228826127^(1/24) 9323798866635665 a001 433494437/12752043*17393796001^(5/21) 9323798866635665 a001 433494437/12752043*505019158607^(5/24) 9323798866635665 a001 10983760033/4250681*228826127^(1/15) 9323798866635665 a001 433494437/12752043*599074578^(5/18) 9323798866635665 a001 5702887/4106118243*599074578^(7/9) 9323798866635665 a001 5702887/119218851371*599074578^(17/18) 9323798866635665 a001 1602508992/4250681*228826127^(1/6) 9323798866635665 a001 233802911/4250681*228826127^(4/15) 9323798866635665 a001 165580141/12752043*370248451^(1/3) 9323798866635665 a001 433494437/12752043*228826127^(7/24) 9323798866635666 a001 5702887/2537720636*228826127^(19/24) 9323798866635666 a001 5702887/10749957122*228826127^(13/15) 9323798866635666 a001 5702887/28143753123*228826127^(11/12) 9323798866635666 a001 267914296/12752043*87403803^(1/3) 9323798866635666 a001 63245986/12752043*6643838879^(1/3) 9323798866635666 a001 5702887/141422324*17393796001^(11/21) 9323798866635666 a001 5702887/141422324*312119004989^(7/15) 9323798866635666 a001 5702887/141422324*505019158607^(11/24) 9323798866635666 a001 5702887/141422324*1568397607^(7/12) 9323798866635666 a001 5702887/141422324*599074578^(11/18) 9323798866635666 a001 5702887/2537720636*87403803^(5/6) 9323798866635669 a001 24157817/12752043*119218851371^(1/3) 9323798866635674 a001 5702887/20633239*20633239^(13/21) 9323798866635675 a001 7778742049/12752043*12752043^(1/6) 9323798866635678 a001 165580141/20633239*7881196^(4/9) 9323798866635687 a001 5702887/20633239*141422324^(5/9) 9323798866635687 a001 9227465/12752043*2139295485799^(1/3) 9323798866635687 a001 5702887/20633239*73681302247^(5/12) 9323798866635687 a001 5702887/20633239*228826127^(13/24) 9323798866635694 a001 7465176/5374978561*20633239^(14/15) 9323798866635695 a001 14930352/6643838879*20633239^(19/21) 9323798866635695 a001 5702887/33385282*12752043^(2/3) 9323798866635698 a001 829464/33281921*20633239^(16/21) 9323798866635698 a001 53316291173/33385282*7881196^(1/9) 9323798866635698 a001 10983760033/4250681*4870847^(1/12) 9323798866635698 a001 14930352/370248451*20633239^(11/15) 9323798866635701 a001 39088169/28143753123*20633239^(14/15) 9323798866635701 a001 39088169/33385282*20633239^(8/15) 9323798866635702 a001 39088169/17393796001*20633239^(19/21) 9323798866635702 a001 14619165/10525900321*20633239^(14/15) 9323798866635702 a001 133957148/96450076809*20633239^(14/15) 9323798866635702 a001 701408733/505019158607*20633239^(14/15) 9323798866635702 a001 1836311903/1322157322203*20633239^(14/15) 9323798866635702 a001 14930208/10749853441*20633239^(14/15) 9323798866635702 a001 12586269025/9062201101803*20633239^(14/15) 9323798866635702 a001 32951280099/23725150497407*20633239^(14/15) 9323798866635702 a001 10182505537/7331474697802*20633239^(14/15) 9323798866635702 a001 7778742049/5600748293801*20633239^(14/15) 9323798866635702 a001 2971215073/2139295485799*20633239^(14/15) 9323798866635702 a001 567451585/408569081798*20633239^(14/15) 9323798866635702 a001 433494437/312119004989*20633239^(14/15) 9323798866635702 a001 165580141/119218851371*20633239^(14/15) 9323798866635703 a001 102334155/45537549124*20633239^(19/21) 9323798866635703 a001 31622993/22768774562*20633239^(14/15) 9323798866635703 a001 267914296/119218851371*20633239^(19/21) 9323798866635703 a001 3524667/1568437211*20633239^(19/21) 9323798866635703 a001 1836311903/817138163596*20633239^(19/21) 9323798866635703 a001 4807526976/2139295485799*20633239^(19/21) 9323798866635703 a001 12586269025/5600748293801*20633239^(19/21) 9323798866635703 a001 32951280099/14662949395604*20633239^(19/21) 9323798866635703 a001 53316291173/23725150497407*20633239^(19/21) 9323798866635703 a001 20365011074/9062201101803*20633239^(19/21) 9323798866635703 a001 7778742049/3461452808002*20633239^(19/21) 9323798866635703 a001 2971215073/1322157322203*20633239^(19/21) 9323798866635703 a001 1134903170/505019158607*20633239^(19/21) 9323798866635703 a001 433494437/192900153618*20633239^(19/21) 9323798866635703 a001 165580141/73681302247*20633239^(19/21) 9323798866635703 a001 63245986/28143753123*20633239^(19/21) 9323798866635704 a001 14619165/4769326*20633239^(10/21) 9323798866635704 a001 14930352/54018521*20633239^(13/21) 9323798866635705 a001 39088169/1568397607*20633239^(16/21) 9323798866635705 a001 139583862445/87403803*7881196^(1/9) 9323798866635705 a001 39088169/969323029*20633239^(11/15) 9323798866635706 a001 24157817/17393796001*20633239^(14/15) 9323798866635706 a001 34111385/1368706081*20633239^(16/21) 9323798866635706 a001 365435296162/228826127*7881196^(1/9) 9323798866635706 a001 7465176/16692641*9062201101803^(1/3) 9323798866635706 a001 133957148/5374978561*20633239^(16/21) 9323798866635706 a001 956722026041/599074578*7881196^(1/9) 9323798866635706 a001 233802911/9381251041*20633239^(16/21) 9323798866635706 a001 1836311903/73681302247*20633239^(16/21) 9323798866635706 a001 267084832/10716675201*20633239^(16/21) 9323798866635706 a001 12586269025/505019158607*20633239^(16/21) 9323798866635706 a001 10983760033/440719107401*20633239^(16/21) 9323798866635706 a001 43133785636/1730726404001*20633239^(16/21) 9323798866635706 a001 75283811239/3020733700601*20633239^(16/21) 9323798866635706 a001 182717648081/7331474697802*20633239^(16/21) 9323798866635706 a001 139583862445/5600748293801*20633239^(16/21) 9323798866635706 a001 53316291173/2139295485799*20633239^(16/21) 9323798866635706 a001 10182505537/408569081798*20633239^(16/21) 9323798866635706 a001 7778742049/312119004989*20633239^(16/21) 9323798866635706 a001 2971215073/119218851371*20633239^(16/21) 9323798866635706 a001 567451585/22768774562*20633239^(16/21) 9323798866635706 a001 2504730781961/1568397607*7881196^(1/9) 9323798866635706 a001 6557470319842/4106118243*7881196^(1/9) 9323798866635706 a001 10610209857723/6643838879*7881196^(1/9) 9323798866635706 a001 4052739537881/2537720636*7881196^(1/9) 9323798866635706 a001 433494437/17393796001*20633239^(16/21) 9323798866635706 a001 1548008755920/969323029*7881196^(1/9) 9323798866635706 a001 24157817/10749957122*20633239^(19/21) 9323798866635706 a001 165580141/6643838879*20633239^(16/21) 9323798866635706 a001 591286729879/370248451*7881196^(1/9) 9323798866635706 a001 726103/199691526*4870847^(23/24) 9323798866635707 a001 9303105/230701876*20633239^(11/15) 9323798866635707 a001 31622993/1268860318*20633239^(16/21) 9323798866635707 a001 225851433717/141422324*7881196^(1/9) 9323798866635707 a001 267914296/6643838879*20633239^(11/15) 9323798866635707 a001 701408733/17393796001*20633239^(11/15) 9323798866635707 a001 1836311903/45537549124*20633239^(11/15) 9323798866635707 a001 4807526976/119218851371*20633239^(11/15) 9323798866635707 a001 1144206275/28374454999*20633239^(11/15) 9323798866635707 a001 32951280099/817138163596*20633239^(11/15) 9323798866635707 a001 86267571272/2139295485799*20633239^(11/15) 9323798866635707 a001 225851433717/5600748293801*20633239^(11/15) 9323798866635707 a001 591286729879/14662949395604*20633239^(11/15) 9323798866635707 a001 365435296162/9062201101803*20633239^(11/15) 9323798866635707 a001 139583862445/3461452808002*20633239^(11/15) 9323798866635707 a001 53316291173/1322157322203*20633239^(11/15) 9323798866635707 a001 20365011074/505019158607*20633239^(11/15) 9323798866635707 a001 7778742049/192900153618*20633239^(11/15) 9323798866635707 a001 2971215073/73681302247*20633239^(11/15) 9323798866635707 a001 1134903170/28143753123*20633239^(11/15) 9323798866635707 a001 433494437/10749957122*20633239^(11/15) 9323798866635707 a001 165580141/4106118243*20633239^(11/15) 9323798866635707 a001 567451585/16692641*20633239^(1/3) 9323798866635707 a001 63245986/1568397607*20633239^(11/15) 9323798866635708 a001 39088169/141422324*20633239^(13/21) 9323798866635709 a001 102334155/370248451*20633239^(13/21) 9323798866635709 a001 267914296/969323029*20633239^(13/21) 9323798866635709 a001 701408733/2537720636*20633239^(13/21) 9323798866635709 a001 1836311903/6643838879*20633239^(13/21) 9323798866635709 a001 4807526976/17393796001*20633239^(13/21) 9323798866635709 a001 12586269025/45537549124*20633239^(13/21) 9323798866635709 a001 32951280099/119218851371*20633239^(13/21) 9323798866635709 a001 86267571272/312119004989*20633239^(13/21) 9323798866635709 a001 225851433717/817138163596*20633239^(13/21) 9323798866635709 a001 1548008755920/5600748293801*20633239^(13/21) 9323798866635709 a001 139583862445/505019158607*20633239^(13/21) 9323798866635709 a001 53316291173/192900153618*20633239^(13/21) 9323798866635709 a001 20365011074/73681302247*20633239^(13/21) 9323798866635709 a001 7778742049/28143753123*20633239^(13/21) 9323798866635709 a001 2971215073/10749957122*20633239^(13/21) 9323798866635709 a001 1134903170/4106118243*20633239^(13/21) 9323798866635709 a001 433494437/1568397607*20633239^(13/21) 9323798866635709 a001 165580141/599074578*20633239^(13/21) 9323798866635709 a001 86267571272/54018521*7881196^(1/9) 9323798866635709 a001 24157817/969323029*20633239^(16/21) 9323798866635709 a001 63245986/228826127*20633239^(13/21) 9323798866635710 a001 34111385/29134601*20633239^(8/15) 9323798866635710 a001 24157817/599074578*20633239^(11/15) 9323798866635710 a001 12586269025/33385282*20633239^(4/21) 9323798866635711 a001 267914296/228826127*20633239^(8/15) 9323798866635711 a001 233802911/199691526*20633239^(8/15) 9323798866635711 a001 1836311903/1568397607*20633239^(8/15) 9323798866635711 a001 1602508992/1368706081*20633239^(8/15) 9323798866635711 a001 12586269025/10749957122*20633239^(8/15) 9323798866635711 a001 10983760033/9381251041*20633239^(8/15) 9323798866635711 a001 86267571272/73681302247*20633239^(8/15) 9323798866635711 a001 75283811239/64300051206*20633239^(8/15) 9323798866635711 a001 2504730781961/2139295485799*20633239^(8/15) 9323798866635711 a001 365435296162/312119004989*20633239^(8/15) 9323798866635711 a001 139583862445/119218851371*20633239^(8/15) 9323798866635711 a001 53316291173/45537549124*20633239^(8/15) 9323798866635711 a001 20365011074/17393796001*20633239^(8/15) 9323798866635711 a001 7778742049/6643838879*20633239^(8/15) 9323798866635711 a001 2971215073/2537720636*20633239^(8/15) 9323798866635711 a001 267914296/87403803*20633239^(10/21) 9323798866635711 a001 1134903170/969323029*20633239^(8/15) 9323798866635711 a001 433494437/370248451*20633239^(8/15) 9323798866635711 a001 24157817/87403803*20633239^(13/21) 9323798866635711 a001 32951280099/33385282*20633239^(2/15) 9323798866635712 a001 165580141/141422324*20633239^(8/15) 9323798866635712 a001 14930352/228826127*54018521^(2/3) 9323798866635712 a001 701408733/228826127*20633239^(10/21) 9323798866635712 a001 1836311903/599074578*20633239^(10/21) 9323798866635712 a001 686789568/224056801*20633239^(10/21) 9323798866635712 a001 12586269025/4106118243*20633239^(10/21) 9323798866635712 a001 32951280099/10749957122*20633239^(10/21) 9323798866635712 a001 86267571272/28143753123*20633239^(10/21) 9323798866635712 a001 32264490531/10525900321*20633239^(10/21) 9323798866635712 a001 591286729879/192900153618*20633239^(10/21) 9323798866635712 a001 1548008755920/505019158607*20633239^(10/21) 9323798866635712 a001 1515744265389/494493258286*20633239^(10/21) 9323798866635712 a001 2504730781961/817138163596*20633239^(10/21) 9323798866635712 a001 956722026041/312119004989*20633239^(10/21) 9323798866635712 a001 365435296162/119218851371*20633239^(10/21) 9323798866635712 a001 139583862445/45537549124*20633239^(10/21) 9323798866635712 a001 53316291173/17393796001*20633239^(10/21) 9323798866635712 a001 20365011074/6643838879*20633239^(10/21) 9323798866635712 a001 7778742049/2537720636*20633239^(10/21) 9323798866635712 a001 2971215073/969323029*20633239^(10/21) 9323798866635712 a001 1134903170/370248451*20633239^(10/21) 9323798866635713 a001 433494437/141422324*20633239^(10/21) 9323798866635713 a001 39088169/33385282*17393796001^(8/21) 9323798866635713 a001 4976784/29134601*45537549124^(4/9) 9323798866635713 a001 39088169/33385282*23725150497407^(7/24) 9323798866635713 a001 39088169/33385282*505019158607^(1/3) 9323798866635713 a001 39088169/33385282*10749957122^(7/18) 9323798866635713 a001 39088169/33385282*599074578^(4/9) 9323798866635713 a001 39088169/33385282*228826127^(7/15) 9323798866635713 a001 139583862445/33385282*20633239^(1/21) 9323798866635714 a001 4976784/9381251041*141422324^(8/9) 9323798866635714 a001 14619165/4769326*3461452808002^(5/18) 9323798866635714 a001 14619165/4769326*28143753123^(1/3) 9323798866635714 a001 2971215073/87403803*20633239^(1/3) 9323798866635714 a001 14619165/4769326*228826127^(5/12) 9323798866635714 a001 14930208/103681*141422324^(2/9) 9323798866635714 a001 133957148/16692641*312119004989^(4/15) 9323798866635714 a001 829464/33281921*23725150497407^(5/12) 9323798866635714 a001 829464/33281921*505019158607^(10/21) 9323798866635714 a001 829464/33281921*28143753123^(8/15) 9323798866635714 a001 829464/33281921*10749957122^(5/9) 9323798866635714 a001 133957148/16692641*1568397607^(1/3) 9323798866635714 a001 433494437/33385282*370248451^(1/3) 9323798866635714 a001 14930352/1568397607*969323029^(2/3) 9323798866635714 a001 701408733/33385282*817138163596^(2/9) 9323798866635714 a001 1836311903/33385282*23725150497407^(1/6) 9323798866635714 a001 1836311903/33385282*10749957122^(2/9) 9323798866635714 a001 4976784/1368706081*4106118243^(2/3) 9323798866635714 a001 7465176/5374978561*17393796001^(2/3) 9323798866635714 a001 7465176/5374978561*505019158607^(7/12) 9323798866635714 a001 14930208/103681*73681302247^(1/6) 9323798866635714 a001 4976784/3020733700601*17393796001^(20/21) 9323798866635714 a001 14930352/312119004989*17393796001^(17/21) 9323798866635714 a001 4976784/9381251041*23725150497407^(13/24) 9323798866635714 a001 12586269025/33385282*3461452808002^(1/9) 9323798866635714 a001 4976784/9381251041*505019158607^(13/21) 9323798866635714 a001 4976784/9381251041*73681302247^(2/3) 9323798866635714 a001 12586269025/33385282*28143753123^(2/15) 9323798866635714 a001 32951280099/33385282*17393796001^(2/21) 9323798866635714 a001 14930352/312119004989*45537549124^(7/9) 9323798866635714 a001 14930352/73681302247*312119004989^(2/3) 9323798866635714 a001 14930352/73681302247*3461452808002^(11/18) 9323798866635714 a001 32951280099/33385282*505019158607^(1/12) 9323798866635714 a001 43133785636/16692641*23725150497407^(1/24) 9323798866635714 a001 2584/33385281*1322157322203^(2/3) 9323798866635714 a001 196452/192933544679*312119004989^(13/15) 9323798866635714 a001 14930352/505019158607*5600748293801^(2/3) 9323798866635714 a001 4976784/440719107401*23725150497407^(2/3) 9323798866635714 a001 4976784/3020733700601*3461452808002^(7/9) 9323798866635714 a001 4976784/440719107401*505019158607^(16/21) 9323798866635714 a001 4976784/3020733700601*505019158607^(5/6) 9323798866635714 a001 14930352/312119004989*505019158607^(17/24) 9323798866635714 a001 53316291173/33385282*312119004989^(1/15) 9323798866635714 a001 196452/192933544679*73681302247^(11/12) 9323798866635714 a001 10182505537/16692641*45537549124^(1/9) 9323798866635714 a001 43133785636/16692641*10749957122^(1/18) 9323798866635714 a001 14930352/73681302247*28143753123^(11/15) 9323798866635714 a001 3732588/204284540899*28143753123^(5/6) 9323798866635714 a001 4976784/3020733700601*28143753123^(14/15) 9323798866635714 a001 4976784/9381251041*10749957122^(13/18) 9323798866635714 a001 4976784/440719107401*10749957122^(8/9) 9323798866635714 a001 7778742049/33385282*4106118243^(1/6) 9323798866635714 a001 14930352/6643838879*817138163596^(5/9) 9323798866635714 a001 2971215073/33385282*1322157322203^(1/6) 9323798866635714 a001 53316291173/33385282*1568397607^(1/12) 9323798866635714 a001 567451585/16692641*17393796001^(5/21) 9323798866635714 a001 567451585/16692641*505019158607^(5/24) 9323798866635714 a001 32951280099/33385282*599074578^(1/9) 9323798866635714 a001 14930352/73681302247*1568397607^(5/6) 9323798866635714 a001 139583862445/33385282*228826127^(1/24) 9323798866635714 a001 567451585/16692641*599074578^(5/18) 9323798866635714 a001 43133785636/16692641*228826127^(1/15) 9323798866635714 a001 7465176/5374978561*599074578^(7/9) 9323798866635714 a001 14930352/312119004989*599074578^(17/18) 9323798866635714 a001 12586269025/33385282*228826127^(1/6) 9323798866635714 a001 1836311903/33385282*228826127^(4/15) 9323798866635714 a001 567451585/16692641*228826127^(7/24) 9323798866635714 a001 165580141/33385282*6643838879^(1/3) 9323798866635714 a001 14930352/370248451*17393796001^(11/21) 9323798866635714 a001 14930352/370248451*312119004989^(7/15) 9323798866635714 a001 14930352/370248451*505019158607^(11/24) 9323798866635714 a001 14930352/370248451*1568397607^(7/12) 9323798866635714 a001 14930352/370248451*599074578^(11/18) 9323798866635714 a001 829464/33281921*228826127^(2/3) 9323798866635715 a001 14930352/6643838879*228826127^(19/24) 9323798866635715 a001 4976784/9381251041*228826127^(13/15) 9323798866635715 a001 14930352/73681302247*228826127^(11/12) 9323798866635715 a001 63245986/54018521*20633239^(8/15) 9323798866635715 a001 701408733/33385282*87403803^(1/3) 9323798866635715 a001 31622993/16692641*119218851371^(1/3) 9323798866635715 a001 7778742049/228826127*20633239^(1/3) 9323798866635715 a001 14930352/6643838879*87403803^(5/6) 9323798866635715 a001 10182505537/299537289*20633239^(1/3) 9323798866635715 a001 53316291173/1568397607*20633239^(1/3) 9323798866635715 a001 139583862445/4106118243*20633239^(1/3) 9323798866635715 a001 182717648081/5374978561*20633239^(1/3) 9323798866635715 a001 956722026041/28143753123*20633239^(1/3) 9323798866635715 a001 2504730781961/73681302247*20633239^(1/3) 9323798866635715 a001 3278735159921/96450076809*20633239^(1/3) 9323798866635715 a001 10610209857723/312119004989*20633239^(1/3) 9323798866635715 a001 4052739537881/119218851371*20633239^(1/3) 9323798866635715 a001 387002188980/11384387281*20633239^(1/3) 9323798866635715 a001 591286729879/17393796001*20633239^(1/3) 9323798866635715 a001 225851433717/6643838879*20633239^(1/3) 9323798866635715 a001 1135099622/33391061*20633239^(1/3) 9323798866635715 a001 32951280099/969323029*20633239^(1/3) 9323798866635716 a001 12586269025/370248451*20633239^(1/3) 9323798866635716 a001 165580141/54018521*20633239^(10/21) 9323798866635716 a001 1201881744/35355581*20633239^(1/3) 9323798866635717 a001 14930352/54018521*141422324^(5/9) 9323798866635717 a001 10983760033/29134601*20633239^(4/21) 9323798866635718 a001 24157817/33385282*2139295485799^(1/3) 9323798866635718 a001 14930352/54018521*73681302247^(5/12) 9323798866635718 a001 14930352/54018521*228826127^(13/24) 9323798866635718 a001 86267571272/228826127*20633239^(4/21) 9323798866635719 a001 267913919/710646*20633239^(4/21) 9323798866635719 a001 591286729879/1568397607*20633239^(4/21) 9323798866635719 a001 516002918640/1368706081*20633239^(4/21) 9323798866635719 a001 4052739537881/10749957122*20633239^(4/21) 9323798866635719 a001 3536736619241/9381251041*20633239^(4/21) 9323798866635719 a001 6557470319842/17393796001*20633239^(4/21) 9323798866635719 a001 2504730781961/6643838879*20633239^(4/21) 9323798866635719 a001 956722026041/2537720636*20633239^(4/21) 9323798866635719 a001 365435296162/969323029*20633239^(4/21) 9323798866635719 a001 86267571272/87403803*20633239^(2/15) 9323798866635719 a001 1836311903/54018521*20633239^(1/3) 9323798866635719 a001 139583862445/370248451*20633239^(4/21) 9323798866635719 a001 53316291173/141422324*20633239^(4/21) 9323798866635719 a001 39088169/599074578*54018521^(2/3) 9323798866635720 a001 225851433717/228826127*20633239^(2/15) 9323798866635720 a001 591286729879/599074578*20633239^(2/15) 9323798866635720 a001 1548008755920/1568397607*20633239^(2/15) 9323798866635720 a001 4052739537881/4106118243*20633239^(2/15) 9323798866635720 a001 4807525989/4870846*20633239^(2/15) 9323798866635720 a001 6557470319842/6643838879*20633239^(2/15) 9323798866635720 a001 2504730781961/2537720636*20633239^(2/15) 9323798866635720 a001 956722026041/969323029*20633239^(2/15) 9323798866635720 a001 365435296162/370248451*20633239^(2/15) 9323798866635720 a001 139583862445/141422324*20633239^(2/15) 9323798866635720 a001 39088169/87403803*9062201101803^(1/3) 9323798866635720 a001 14619165/224056801*54018521^(2/3) 9323798866635720 a001 365435296162/87403803*20633239^(1/21) 9323798866635721 a001 267914296/4106118243*54018521^(2/3) 9323798866635721 a001 701408733/10749957122*54018521^(2/3) 9323798866635721 a001 1836311903/28143753123*54018521^(2/3) 9323798866635721 a001 686789568/10525900321*54018521^(2/3) 9323798866635721 a001 12586269025/192900153618*54018521^(2/3) 9323798866635721 a001 32951280099/505019158607*54018521^(2/3) 9323798866635721 a001 86267571272/1322157322203*54018521^(2/3) 9323798866635721 a001 32264490531/494493258286*54018521^(2/3) 9323798866635721 a001 591286729879/9062201101803*54018521^(2/3) 9323798866635721 a001 1548008755920/23725150497407*54018521^(2/3) 9323798866635721 a001 365435296162/5600748293801*54018521^(2/3) 9323798866635721 a001 139583862445/2139295485799*54018521^(2/3) 9323798866635721 a001 53316291173/817138163596*54018521^(2/3) 9323798866635721 a001 20365011074/312119004989*54018521^(2/3) 9323798866635721 a001 7778742049/119218851371*54018521^(2/3) 9323798866635721 a001 2971215073/45537549124*54018521^(2/3) 9323798866635721 a001 1134903170/17393796001*54018521^(2/3) 9323798866635721 a001 433494437/6643838879*54018521^(2/3) 9323798866635721 a001 165580141/2537720636*54018521^(2/3) 9323798866635721 a001 63245986/969323029*54018521^(2/3) 9323798866635721 a001 39088169/73681302247*141422324^(8/9) 9323798866635721 a001 34111385/29134601*17393796001^(8/21) 9323798866635721 a001 39088169/228826127*45537549124^(4/9) 9323798866635721 a001 34111385/29134601*23725150497407^(7/24) 9323798866635721 a001 34111385/29134601*505019158607^(1/3) 9323798866635721 a001 34111385/29134601*10749957122^(7/18) 9323798866635721 a001 34111385/29134601*599074578^(4/9) 9323798866635721 a001 12586269025/87403803*141422324^(2/9) 9323798866635721 a001 34111385/29134601*228826127^(7/15) 9323798866635722 a001 267914296/87403803*3461452808002^(5/18) 9323798866635722 a001 267914296/87403803*28143753123^(1/3) 9323798866635722 a001 1134903170/87403803*370248451^(1/3) 9323798866635722 a001 39088169/4106118243*969323029^(2/3) 9323798866635722 a001 233802911/29134601*312119004989^(4/15) 9323798866635722 a001 39088169/1568397607*23725150497407^(5/12) 9323798866635722 a001 39088169/1568397607*505019158607^(10/21) 9323798866635722 a001 39088169/1568397607*28143753123^(8/15) 9323798866635722 a001 39088169/1568397607*10749957122^(5/9) 9323798866635722 a001 233802911/29134601*1568397607^(1/3) 9323798866635722 a001 1836311903/87403803*817138163596^(2/9) 9323798866635722 a001 956722026041/228826127*20633239^(1/21) 9323798866635722 a001 1602508992/29134601*23725150497407^(1/6) 9323798866635722 a001 1602508992/29134601*10749957122^(2/9) 9323798866635722 a001 39088169/28143753123*17393796001^(2/3) 9323798866635722 a001 39088169/23725150497407*17393796001^(20/21) 9323798866635722 a001 4181/87403804*17393796001^(17/21) 9323798866635722 a001 39088169/28143753123*505019158607^(7/12) 9323798866635722 a001 12586269025/87403803*73681302247^(1/6) 9323798866635722 a001 4181/87403804*45537549124^(7/9) 9323798866635722 a001 86267571272/87403803*17393796001^(2/21) 9323798866635722 a001 39088169/73681302247*23725150497407^(13/24) 9323798866635722 a001 10983760033/29134601*3461452808002^(1/9) 9323798866635722 a001 39088169/73681302247*505019158607^(13/21) 9323798866635722 a001 39088169/73681302247*73681302247^(2/3) 9323798866635722 a001 39088169/192900153618*312119004989^(2/3) 9323798866635722 a001 39088169/192900153618*3461452808002^(11/18) 9323798866635722 a001 86267571272/87403803*505019158607^(1/12) 9323798866635722 a001 10983760033/29134601*28143753123^(2/15) 9323798866635722 a001 75283811239/29134601*23725150497407^(1/24) 9323798866635722 a001 39088169/505019158607*1322157322203^(2/3) 9323798866635722 a001 39088169/1322157322203*5600748293801^(2/3) 9323798866635722 a001 39088169/3461452808002*23725150497407^(2/3) 9323798866635722 a001 39088169/23725150497407*3461452808002^(7/9) 9323798866635722 a001 39088169/23725150497407*505019158607^(5/6) 9323798866635722 a001 4181/87403804*505019158607^(17/24) 9323798866635722 a001 139583862445/87403803*312119004989^(1/15) 9323798866635722 a001 53316291173/87403803*45537549124^(1/9) 9323798866635722 a001 75283811239/29134601*10749957122^(1/18) 9323798866635722 a001 39088169/192900153618*28143753123^(11/15) 9323798866635722 a001 39088169/2139295485799*28143753123^(5/6) 9323798866635722 a001 39088169/23725150497407*28143753123^(14/15) 9323798866635722 a001 39088169/17393796001*817138163596^(5/9) 9323798866635722 a001 7778742049/87403803*1322157322203^(1/6) 9323798866635722 a001 39088169/73681302247*10749957122^(13/18) 9323798866635722 a001 39088169/3461452808002*10749957122^(8/9) 9323798866635722 a001 20365011074/87403803*4106118243^(1/6) 9323798866635722 a001 2971215073/87403803*17393796001^(5/21) 9323798866635722 a001 2971215073/87403803*505019158607^(5/24) 9323798866635722 a001 39088169/10749957122*4106118243^(2/3) 9323798866635722 a001 139583862445/87403803*1568397607^(1/12) 9323798866635722 a001 86267571272/87403803*599074578^(1/9) 9323798866635722 a001 39088169/192900153618*1568397607^(5/6) 9323798866635722 a001 365435296162/87403803*228826127^(1/24) 9323798866635722 a001 2971215073/87403803*599074578^(5/18) 9323798866635722 a001 433494437/87403803*6643838879^(1/3) 9323798866635722 a001 39088169/969323029*17393796001^(11/21) 9323798866635722 a001 39088169/969323029*312119004989^(7/15) 9323798866635722 a001 39088169/969323029*505019158607^(11/24) 9323798866635722 a001 75283811239/29134601*228826127^(1/15) 9323798866635722 a001 39088169/969323029*1568397607^(7/12) 9323798866635722 a001 39088169/28143753123*599074578^(7/9) 9323798866635722 a001 4181/87403804*599074578^(17/18) 9323798866635722 a001 39088169/969323029*599074578^(11/18) 9323798866635722 a001 10983760033/29134601*228826127^(1/6) 9323798866635722 a001 1602508992/29134601*228826127^(4/15) 9323798866635722 a001 267914296/87403803*228826127^(5/12) 9323798866635722 a001 2971215073/87403803*228826127^(7/24) 9323798866635722 a001 165580141/87403803*119218851371^(1/3) 9323798866635722 a001 39088169/1568397607*228826127^(2/3) 9323798866635722 a001 39088169/17393796001*228826127^(19/24) 9323798866635722 a001 2504730781961/599074578*20633239^(1/21) 9323798866635722 a001 39088169/73681302247*228826127^(13/15) 9323798866635722 a001 39088169/192900153618*228826127^(11/12) 9323798866635722 a001 6557470319842/1568397607*20633239^(1/21) 9323798866635722 a001 10610209857723/2537720636*20633239^(1/21) 9323798866635722 a001 4052739537881/969323029*20633239^(1/21) 9323798866635722 a001 39088169/141422324*141422324^(5/9) 9323798866635722 a001 20365011074/54018521*20633239^(4/21) 9323798866635722 a001 1548008755920/370248451*20633239^(1/21) 9323798866635722 a001 1836311903/87403803*87403803^(1/3) 9323798866635722 a001 63245986/87403803*2139295485799^(1/3) 9323798866635722 a001 39088169/141422324*73681302247^(5/12) 9323798866635722 a001 39088169/141422324*228826127^(13/24) 9323798866635722 a001 34111385/64300051206*141422324^(8/9) 9323798866635722 a001 591286729879/141422324*20633239^(1/21) 9323798866635722 a001 267914296/505019158607*141422324^(8/9) 9323798866635722 a001 233802911/440719107401*141422324^(8/9) 9323798866635722 a001 1836311903/3461452808002*141422324^(8/9) 9323798866635722 a001 1602508992/3020733700601*141422324^(8/9) 9323798866635722 a001 12586269025/23725150497407*141422324^(8/9) 9323798866635722 a001 7778742049/14662949395604*141422324^(8/9) 9323798866635722 a001 2971215073/5600748293801*141422324^(8/9) 9323798866635722 a001 1134903170/2139295485799*141422324^(8/9) 9323798866635722 a001 433494437/817138163596*141422324^(8/9) 9323798866635722 a001 102334155/370248451*141422324^(5/9) 9323798866635722 a001 102334155/228826127*9062201101803^(1/3) 9323798866635722 a001 165580141/312119004989*141422324^(8/9) 9323798866635722 a001 32951280099/228826127*141422324^(2/9) 9323798866635722 a001 267914296/969323029*141422324^(5/9) 9323798866635722 a001 701408733/2537720636*141422324^(5/9) 9323798866635722 a001 1836311903/6643838879*141422324^(5/9) 9323798866635722 a001 4807526976/17393796001*141422324^(5/9) 9323798866635722 a001 12586269025/45537549124*141422324^(5/9) 9323798866635722 a001 32951280099/119218851371*141422324^(5/9) 9323798866635722 a001 86267571272/312119004989*141422324^(5/9) 9323798866635722 a001 225851433717/817138163596*141422324^(5/9) 9323798866635722 a001 1548008755920/5600748293801*141422324^(5/9) 9323798866635722 a001 139583862445/505019158607*141422324^(5/9) 9323798866635722 a001 53316291173/192900153618*141422324^(5/9) 9323798866635722 a001 20365011074/73681302247*141422324^(5/9) 9323798866635722 a001 7778742049/28143753123*141422324^(5/9) 9323798866635722 a001 2971215073/10749957122*141422324^(5/9) 9323798866635722 a001 1134903170/4106118243*141422324^(5/9) 9323798866635723 a001 433494437/1568397607*141422324^(5/9) 9323798866635723 a001 165580141/599074578*141422324^(5/9) 9323798866635723 a001 267914296/228826127*17393796001^(8/21) 9323798866635723 a001 34111385/199691526*45537549124^(4/9) 9323798866635723 a001 267914296/228826127*23725150497407^(7/24) 9323798866635723 a001 267914296/228826127*505019158607^(1/3) 9323798866635723 a001 267914296/228826127*10749957122^(7/18) 9323798866635723 a001 39088169/17393796001*87403803^(5/6) 9323798866635723 a001 2971215073/228826127*370248451^(1/3) 9323798866635723 a001 267914296/228826127*599074578^(4/9) 9323798866635723 a001 102334155/10749957122*969323029^(2/3) 9323798866635723 a001 701408733/228826127*3461452808002^(5/18) 9323798866635723 a001 701408733/228826127*28143753123^(1/3) 9323798866635723 a001 1836311903/228826127*312119004989^(4/15) 9323798866635723 a001 34111385/1368706081*505019158607^(10/21) 9323798866635723 a001 34111385/1368706081*28143753123^(8/15) 9323798866635723 a001 34111385/1368706081*10749957122^(5/9) 9323798866635723 a001 102287808/4868641*817138163596^(2/9) 9323798866635723 a001 102334155/2139295485799*17393796001^(17/21) 9323798866635723 a001 14619165/10525900321*17393796001^(2/3) 9323798866635723 a001 12586269025/228826127*23725150497407^(1/6) 9323798866635723 a001 102334155/2139295485799*45537549124^(7/9) 9323798866635723 a001 225851433717/228826127*17393796001^(2/21) 9323798866635723 a001 14619165/10525900321*505019158607^(7/12) 9323798866635723 a001 32951280099/228826127*73681302247^(1/6) 9323798866635723 a001 139583862445/228826127*45537549124^(1/9) 9323798866635723 a001 34111385/64300051206*23725150497407^(13/24) 9323798866635723 a001 86267571272/228826127*3461452808002^(1/9) 9323798866635723 a001 34111385/64300051206*505019158607^(13/21) 9323798866635723 a001 102334155/505019158607*312119004989^(2/3) 9323798866635723 a001 102334155/505019158607*3461452808002^(11/18) 9323798866635723 a001 225851433717/228826127*505019158607^(1/12) 9323798866635723 a001 6765/228826126*5600748293801^(2/3) 9323798866635723 a001 365435296162/228826127*312119004989^(1/15) 9323798866635723 a001 34111385/3020733700601*505019158607^(16/21) 9323798866635723 a001 102334155/2139295485799*505019158607^(17/24) 9323798866635723 a001 34111385/64300051206*73681302247^(2/3) 9323798866635723 a001 86267571272/228826127*28143753123^(2/15) 9323798866635723 a001 591286729879/228826127*10749957122^(1/18) 9323798866635723 a001 102334155/45537549124*817138163596^(5/9) 9323798866635723 a001 20365011074/228826127*1322157322203^(1/6) 9323798866635723 a001 12586269025/228826127*10749957122^(2/9) 9323798866635723 a001 102334155/505019158607*28143753123^(11/15) 9323798866635723 a001 102334155/5600748293801*28143753123^(5/6) 9323798866635723 a001 7778742049/228826127*17393796001^(5/21) 9323798866635723 a001 7778742049/228826127*505019158607^(5/24) 9323798866635723 a001 34111385/64300051206*10749957122^(13/18) 9323798866635723 a001 34111385/3020733700601*10749957122^(8/9) 9323798866635723 a001 53316291173/228826127*4106118243^(1/6) 9323798866635723 a001 365435296162/228826127*1568397607^(1/12) 9323798866635723 a001 831985/228811001*4106118243^(2/3) 9323798866635723 a001 1836311903/228826127*1568397607^(1/3) 9323798866635723 a001 1134903170/228826127*6643838879^(1/3) 9323798866635723 a001 9303105/230701876*17393796001^(11/21) 9323798866635723 a001 9303105/230701876*312119004989^(7/15) 9323798866635723 a001 9303105/230701876*505019158607^(11/24) 9323798866635723 a001 225851433717/228826127*599074578^(1/9) 9323798866635723 a001 102334155/505019158607*1568397607^(5/6) 9323798866635723 a001 9303105/230701876*1568397607^(7/12) 9323798866635723 a001 7778742049/228826127*599074578^(5/18) 9323798866635723 a001 956722026041/228826127*228826127^(1/24) 9323798866635723 a001 433494437/228826127*119218851371^(1/3) 9323798866635723 a001 591286729879/228826127*228826127^(1/15) 9323798866635723 a001 9303105/230701876*599074578^(11/18) 9323798866635723 a001 14619165/10525900321*599074578^(7/9) 9323798866635723 a001 102334155/2139295485799*599074578^(17/18) 9323798866635723 a001 86267571272/228826127*228826127^(1/6) 9323798866635723 a001 12586269025/228826127*228826127^(4/15) 9323798866635723 a001 43133785636/299537289*141422324^(2/9) 9323798866635723 a001 7778742049/228826127*228826127^(7/24) 9323798866635723 a001 267914296/228826127*228826127^(7/15) 9323798866635723 a001 165580141/228826127*2139295485799^(1/3) 9323798866635723 a001 102334155/370248451*73681302247^(5/12) 9323798866635723 a001 701408733/228826127*228826127^(5/12) 9323798866635723 a001 32264490531/224056801*141422324^(2/9) 9323798866635723 a001 591286729879/4106118243*141422324^(2/9) 9323798866635723 a001 774004377960/5374978561*141422324^(2/9) 9323798866635723 a001 4052739537881/28143753123*141422324^(2/9) 9323798866635723 a001 1515744265389/10525900321*141422324^(2/9) 9323798866635723 a001 3278735159921/22768774562*141422324^(2/9) 9323798866635723 a001 2504730781961/17393796001*141422324^(2/9) 9323798866635723 a001 956722026041/6643838879*141422324^(2/9) 9323798866635723 a001 182717648081/1268860318*141422324^(2/9) 9323798866635723 a001 139583862445/969323029*141422324^(2/9) 9323798866635723 a001 34111385/1368706081*228826127^(2/3) 9323798866635723 a001 133957148/299537289*9062201101803^(1/3) 9323798866635723 a001 7778742049/599074578*370248451^(1/3) 9323798866635723 a001 102334155/45537549124*228826127^(19/24) 9323798866635723 a001 53316291173/370248451*141422324^(2/9) 9323798866635723 a001 267914296/28143753123*969323029^(2/3) 9323798866635723 a001 233802911/199691526*17393796001^(8/21) 9323798866635723 a001 267914296/1568397607*45537549124^(4/9) 9323798866635723 a001 233802911/199691526*23725150497407^(7/24) 9323798866635723 a001 233802911/199691526*505019158607^(1/3) 9323798866635723 a001 233802911/199691526*10749957122^(7/18) 9323798866635723 a001 1836311903/599074578*3461452808002^(5/18) 9323798866635723 a001 1836311903/599074578*28143753123^(1/3) 9323798866635723 a001 20365011074/1568397607*370248451^(1/3) 9323798866635723 a001 267084832/33281921*312119004989^(4/15) 9323798866635723 a001 133957148/5374978561*23725150497407^(5/12) 9323798866635723 a001 133957148/5374978561*505019158607^(10/21) 9323798866635723 a001 133957148/5374978561*28143753123^(8/15) 9323798866635723 a001 133957148/5374978561*10749957122^(5/9) 9323798866635723 a001 267914296/5600748293801*17393796001^(17/21) 9323798866635723 a001 133957148/96450076809*17393796001^(2/3) 9323798866635723 a001 12586269025/599074578*817138163596^(2/9) 9323798866635723 a001 267914296/5600748293801*45537549124^(7/9) 9323798866635723 a001 591286729879/599074578*17393796001^(2/21) 9323798866635723 a001 10182505537/299537289*17393796001^(5/21) 9323798866635723 a001 10983760033/199691526*23725150497407^(1/6) 9323798866635723 a001 182717648081/299537289*45537549124^(1/9) 9323798866635723 a001 133957148/96450076809*505019158607^(7/12) 9323798866635723 a001 267914296/1322157322203*312119004989^(2/3) 9323798866635723 a001 267914296/505019158607*505019158607^(13/21) 9323798866635723 a001 267914296/1322157322203*3461452808002^(11/18) 9323798866635723 a001 86000486440/33281921*23725150497407^(1/24) 9323798866635723 a001 267914296/23725150497407*23725150497407^(2/3) 9323798866635723 a001 133957148/1730726404001*1322157322203^(2/3) 9323798866635723 a001 267914296/5600748293801*505019158607^(17/24) 9323798866635723 a001 267914296/23725150497407*505019158607^(16/21) 9323798866635723 a001 43133785636/299537289*73681302247^(1/6) 9323798866635723 a001 267914296/119218851371*817138163596^(5/9) 9323798866635723 a001 53316291173/599074578*1322157322203^(1/6) 9323798866635723 a001 267914296/505019158607*73681302247^(2/3) 9323798866635723 a001 267913919/710646*28143753123^(2/15) 9323798866635723 a001 86000486440/33281921*10749957122^(1/18) 9323798866635723 a001 10182505537/299537289*505019158607^(5/24) 9323798866635723 a001 267914296/1322157322203*28143753123^(11/15) 9323798866635723 a001 10946/599074579*28143753123^(5/6) 9323798866635723 a001 10983760033/199691526*10749957122^(2/9) 9323798866635723 a001 267914296/505019158607*10749957122^(13/18) 9323798866635723 a001 267914296/23725150497407*10749957122^(8/9) 9323798866635723 a001 139583862445/599074578*4106118243^(1/6) 9323798866635723 a001 2971215073/599074578*6643838879^(1/3) 9323798866635723 a001 267914296/6643838879*17393796001^(11/21) 9323798866635723 a001 267914296/6643838879*312119004989^(7/15) 9323798866635723 a001 267914296/6643838879*505019158607^(11/24) 9323798866635723 a001 956722026041/599074578*1568397607^(1/12) 9323798866635723 a001 267914296/73681302247*4106118243^(2/3) 9323798866635723 a001 267084832/33281921*1568397607^(1/3) 9323798866635723 a001 567451585/299537289*119218851371^(1/3) 9323798866635723 a001 34111385/64300051206*228826127^(13/15) 9323798866635723 a001 267914296/6643838879*1568397607^(7/12) 9323798866635723 a001 53316291173/4106118243*370248451^(1/3) 9323798866635723 a001 591286729879/599074578*599074578^(1/9) 9323798866635723 a001 267914296/1322157322203*1568397607^(5/6) 9323798866635723 a001 139583862445/10749957122*370248451^(1/3) 9323798866635723 a001 365435296162/28143753123*370248451^(1/3) 9323798866635723 a001 956722026041/73681302247*370248451^(1/3) 9323798866635723 a001 2504730781961/192900153618*370248451^(1/3) 9323798866635723 a001 10610209857723/817138163596*370248451^(1/3) 9323798866635723 a001 4052739537881/312119004989*370248451^(1/3) 9323798866635723 a001 1548008755920/119218851371*370248451^(1/3) 9323798866635723 a001 591286729879/45537549124*370248451^(1/3) 9323798866635723 a001 7787980473/599786069*370248451^(1/3) 9323798866635723 a001 86267571272/6643838879*370248451^(1/3) 9323798866635723 a001 9227465/33385282*20633239^(13/21) 9323798866635723 a001 32951280099/2537720636*370248451^(1/3) 9323798866635723 a001 10182505537/299537289*599074578^(5/18) 9323798866635723 a001 2504730781961/599074578*228826127^(1/24) 9323798866635723 a001 233802911/199691526*599074578^(4/9) 9323798866635723 a001 433494437/599074578*2139295485799^(1/3) 9323798866635723 a001 267914296/969323029*73681302247^(5/12) 9323798866635723 a001 102334155/505019158607*228826127^(11/12) 9323798866635723 a001 86000486440/33281921*228826127^(1/15) 9323798866635723 a001 102334155/370248451*228826127^(13/24) 9323798866635723 a001 12586269025/969323029*370248451^(1/3) 9323798866635723 a001 701408733/73681302247*969323029^(2/3) 9323798866635723 a001 267914296/6643838879*599074578^(11/18) 9323798866635723 a001 701408733/1568397607*9062201101803^(1/3) 9323798866635723 a001 1836311903/192900153618*969323029^(2/3) 9323798866635723 a001 102287808/10745088481*969323029^(2/3) 9323798866635723 a001 12586269025/1322157322203*969323029^(2/3) 9323798866635723 a001 32951280099/3461452808002*969323029^(2/3) 9323798866635723 a001 86267571272/9062201101803*969323029^(2/3) 9323798866635723 a001 225851433717/23725150497407*969323029^(2/3) 9323798866635723 a001 139583862445/14662949395604*969323029^(2/3) 9323798866635723 a001 53316291173/5600748293801*969323029^(2/3) 9323798866635723 a001 20365011074/2139295485799*969323029^(2/3) 9323798866635723 a001 7778742049/817138163596*969323029^(2/3) 9323798866635723 a001 2971215073/312119004989*969323029^(2/3) 9323798866635723 a001 133957148/96450076809*599074578^(7/9) 9323798866635723 a001 1134903170/119218851371*969323029^(2/3) 9323798866635723 a001 1836311903/1568397607*17393796001^(8/21) 9323798866635723 a001 233802911/1368706081*45537549124^(4/9) 9323798866635723 a001 1836311903/1568397607*23725150497407^(7/24) 9323798866635723 a001 1836311903/1568397607*505019158607^(1/3) 9323798866635723 a001 1836311903/1568397607*10749957122^(7/18) 9323798866635723 a001 686789568/224056801*3461452808002^(5/18) 9323798866635723 a001 686789568/224056801*28143753123^(1/3) 9323798866635723 a001 7778742049/1568397607*6643838879^(1/3) 9323798866635723 a001 701408733/14662949395604*17393796001^(17/21) 9323798866635723 a001 701408733/505019158607*17393796001^(2/3) 9323798866635723 a001 12586269025/1568397607*312119004989^(4/15) 9323798866635723 a001 233802911/9381251041*23725150497407^(5/12) 9323798866635723 a001 233802911/9381251041*505019158607^(10/21) 9323798866635723 a001 53316291173/1568397607*17393796001^(5/21) 9323798866635723 a001 233802911/9381251041*28143753123^(8/15) 9323798866635723 a001 701408733/14662949395604*45537549124^(7/9) 9323798866635723 a001 1548008755920/1568397607*17393796001^(2/21) 9323798866635723 a001 32951280099/1568397607*817138163596^(2/9) 9323798866635723 a001 956722026041/1568397607*45537549124^(1/9) 9323798866635723 a001 86267571272/1568397607*23725150497407^(1/6) 9323798866635723 a001 701408733/3461452808002*312119004989^(2/3) 9323798866635723 a001 701408733/505019158607*505019158607^(7/12) 9323798866635723 a001 233802911/440719107401*23725150497407^(13/24) 9323798866635723 a001 591286729879/1568397607*3461452808002^(1/9) 9323798866635723 a001 4052739537881/1568397607*23725150497407^(1/24) 9323798866635723 a001 1548008755920/1568397607*505019158607^(1/12) 9323798866635723 a001 233802911/3020733700601*1322157322203^(2/3) 9323798866635723 a001 233802911/440719107401*505019158607^(13/21) 9323798866635723 a001 3524667/1568437211*817138163596^(5/9) 9323798866635723 a001 139583862445/1568397607*1322157322203^(1/6) 9323798866635723 a001 32264490531/224056801*73681302247^(1/6) 9323798866635723 a001 53316291173/1568397607*505019158607^(5/24) 9323798866635723 a001 233802911/440719107401*73681302247^(2/3) 9323798866635723 a001 591286729879/1568397607*28143753123^(2/15) 9323798866635723 a001 4052739537881/1568397607*10749957122^(1/18) 9323798866635723 a001 701408733/3461452808002*28143753123^(11/15) 9323798866635723 a001 701408733/17393796001*17393796001^(11/21) 9323798866635723 a001 86267571272/1568397607*10749957122^(2/9) 9323798866635723 a001 701408733/17393796001*312119004989^(7/15) 9323798866635723 a001 701408733/17393796001*505019158607^(11/24) 9323798866635723 a001 233802911/9381251041*10749957122^(5/9) 9323798866635723 a001 233802911/440719107401*10749957122^(13/18) 9323798866635723 a001 365435296162/1568397607*4106118243^(1/6) 9323798866635723 a001 2971215073/1568397607*119218851371^(1/3) 9323798866635723 a001 2504730781961/1568397607*1568397607^(1/12) 9323798866635723 a001 233802911/64300051206*4106118243^(2/3) 9323798866635723 a001 12586269025/1568397607*1568397607^(1/3) 9323798866635723 a001 1134903170/1568397607*2139295485799^(1/3) 9323798866635723 a001 701408733/2537720636*73681302247^(5/12) 9323798866635723 a001 701408733/17393796001*1568397607^(7/12) 9323798866635723 a001 267914296/5600748293801*599074578^(17/18) 9323798866635723 a001 1836311903/4106118243*9062201101803^(1/3) 9323798866635723 a001 1548008755920/1568397607*599074578^(1/9) 9323798866635723 a001 1602508992/1368706081*17393796001^(8/21) 9323798866635723 a001 1836311903/10749957122*45537549124^(4/9) 9323798866635723 a001 1602508992/1368706081*23725150497407^(7/24) 9323798866635723 a001 1602508992/1368706081*505019158607^(1/3) 9323798866635723 a001 701408733/3461452808002*1568397607^(5/6) 9323798866635723 a001 20365011074/4106118243*6643838879^(1/3) 9323798866635723 a001 1602508992/1368706081*10749957122^(7/18) 9323798866635723 a001 1836311903/1322157322203*17393796001^(2/3) 9323798866635723 a001 12586269025/4106118243*3461452808002^(5/18) 9323798866635723 a001 1836311903/45537549124*17393796001^(11/21) 9323798866635723 a001 12586269025/4106118243*28143753123^(1/3) 9323798866635723 a001 139583862445/4106118243*17393796001^(5/21) 9323798866635723 a001 4052739537881/4106118243*17393796001^(2/21) 9323798866635723 a001 10983760033/1368706081*312119004989^(4/15) 9323798866635723 a001 1836311903/73681302247*23725150497407^(5/12) 9323798866635723 a001 1836311903/73681302247*505019158607^(10/21) 9323798866635723 a001 2504730781961/4106118243*45537549124^(1/9) 9323798866635723 a001 86267571272/4106118243*817138163596^(2/9) 9323798866635723 a001 1836311903/9062201101803*312119004989^(2/3) 9323798866635723 a001 516002918640/1368706081*3461452808002^(1/9) 9323798866635723 a001 3536736619241/1368706081*23725150497407^(1/24) 9323798866635723 a001 4052739537881/4106118243*505019158607^(1/12) 9323798866635723 a001 1836311903/23725150497407*1322157322203^(2/3) 9323798866635723 a001 1836311903/817138163596*817138163596^(5/9) 9323798866635723 a001 1836311903/1322157322203*505019158607^(7/12) 9323798866635723 a001 1836311903/3461452808002*505019158607^(13/21) 9323798866635723 a001 139583862445/4106118243*505019158607^(5/24) 9323798866635723 a001 591286729879/4106118243*73681302247^(1/6) 9323798866635723 a001 1836311903/3461452808002*73681302247^(2/3) 9323798866635723 a001 516002918640/1368706081*28143753123^(2/15) 9323798866635723 a001 1836311903/45537549124*312119004989^(7/15) 9323798866635723 a001 3536736619241/1368706081*10749957122^(1/18) 9323798866635723 a001 1836311903/45537549124*505019158607^(11/24) 9323798866635723 a001 1836311903/73681302247*28143753123^(8/15) 9323798866635723 a001 1836311903/9062201101803*28143753123^(11/15) 9323798866635723 a001 75283811239/1368706081*10749957122^(2/9) 9323798866635723 a001 7778742049/4106118243*119218851371^(1/3) 9323798866635723 a001 1836311903/73681302247*10749957122^(5/9) 9323798866635723 a001 1836311903/3461452808002*10749957122^(13/18) 9323798866635723 a001 956722026041/4106118243*4106118243^(1/6) 9323798866635723 a001 2971215073/4106118243*2139295485799^(1/3) 9323798866635723 a001 1836311903/6643838879*73681302247^(5/12) 9323798866635723 a001 6557470319842/4106118243*1568397607^(1/12) 9323798866635723 a001 1836311903/505019158607*4106118243^(2/3) 9323798866635723 a001 2403763488/5374978561*9062201101803^(1/3) 9323798866635723 a001 53316291173/10749957122*6643838879^(1/3) 9323798866635723 a001 12586269025/10749957122*17393796001^(8/21) 9323798866635723 a001 14930208/10749853441*17393796001^(2/3) 9323798866635723 a001 4807526976/119218851371*17393796001^(11/21) 9323798866635723 a001 1602508992/9381251041*45537549124^(4/9) 9323798866635723 a001 12586269025/10749957122*23725150497407^(7/24) 9323798866635723 a001 12586269025/10749957122*505019158607^(1/3) 9323798866635723 a001 182717648081/5374978561*17393796001^(5/21) 9323798866635723 a001 4807525989/4870846*17393796001^(2/21) 9323798866635723 a001 32951280099/10749957122*3461452808002^(5/18) 9323798866635723 a001 139583862445/28143753123*6643838879^(1/3) 9323798866635723 a001 3278735159921/5374978561*45537549124^(1/9) 9323798866635723 a001 43133785636/5374978561*312119004989^(4/15) 9323798866635723 a001 267084832/10716675201*23725150497407^(5/12) 9323798866635723 a001 267084832/10716675201*505019158607^(10/21) 9323798866635723 a001 4807526976/23725150497407*312119004989^(2/3) 9323798866635723 a001 225851433717/10749957122*817138163596^(2/9) 9323798866635723 a001 4052739537881/10749957122*3461452808002^(1/9) 9323798866635723 a001 14930208/10749853441*505019158607^(7/12) 9323798866635723 a001 182717648081/5374978561*505019158607^(5/24) 9323798866635723 a001 1602508992/3020733700601*505019158607^(13/21) 9323798866635723 a001 774004377960/5374978561*73681302247^(1/6) 9323798866635723 a001 4807526976/119218851371*312119004989^(7/15) 9323798866635723 a001 4807526976/119218851371*505019158607^(11/24) 9323798866635723 a001 1602508992/3020733700601*73681302247^(2/3) 9323798866635723 a001 4052739537881/10749957122*28143753123^(2/15) 9323798866635723 a001 32951280099/10749957122*28143753123^(1/3) 9323798866635723 a001 10182505537/5374978561*119218851371^(1/3) 9323798866635723 a001 267084832/10716675201*28143753123^(8/15) 9323798866635723 a001 365435296162/73681302247*6643838879^(1/3) 9323798866635723 a001 4807526976/23725150497407*28143753123^(11/15) 9323798866635723 a001 956722026041/192900153618*6643838879^(1/3) 9323798866635723 a001 2504730781961/505019158607*6643838879^(1/3) 9323798866635723 a001 10610209857723/2139295485799*6643838879^(1/3) 9323798866635723 a001 4052739537881/817138163596*6643838879^(1/3) 9323798866635723 a001 140728068720/28374454999*6643838879^(1/3) 9323798866635723 a001 591286729879/119218851371*6643838879^(1/3) 9323798866635723 a001 225851433717/45537549124*6643838879^(1/3) 9323798866635723 a001 591286729879/10749957122*10749957122^(2/9) 9323798866635723 a001 12586269025/10749957122*10749957122^(7/18) 9323798866635723 a001 7778742049/10749957122*2139295485799^(1/3) 9323798866635723 a001 4807526976/17393796001*73681302247^(5/12) 9323798866635723 a001 86267571272/17393796001*6643838879^(1/3) 9323798866635723 a001 267084832/10716675201*10749957122^(5/9) 9323798866635723 a001 12586269025/9062201101803*17393796001^(2/3) 9323798866635723 a001 1144206275/28374454999*17393796001^(11/21) 9323798866635723 a001 10983760033/9381251041*17393796001^(8/21) 9323798866635723 a001 12586269025/28143753123*9062201101803^(1/3) 9323798866635723 a001 1602508992/3020733700601*10749957122^(13/18) 9323798866635723 a001 32951280099/23725150497407*17393796001^(2/3) 9323798866635723 a001 956722026041/28143753123*17393796001^(5/21) 9323798866635723 a001 32951280099/817138163596*17393796001^(11/21) 9323798866635723 a001 86267571272/2139295485799*17393796001^(11/21) 9323798866635723 a001 225851433717/5600748293801*17393796001^(11/21) 9323798866635723 a001 365435296162/9062201101803*17393796001^(11/21) 9323798866635723 a001 10182505537/7331474697802*17393796001^(2/3) 9323798866635723 a001 12586269025/73681302247*45537549124^(4/9) 9323798866635723 a001 86267571272/73681302247*17393796001^(8/21) 9323798866635723 a001 10983760033/9381251041*23725150497407^(7/24) 9323798866635723 a001 10983760033/9381251041*505019158607^(1/3) 9323798866635723 a001 75283811239/64300051206*17393796001^(8/21) 9323798866635723 a001 86267571272/28143753123*3461452808002^(5/18) 9323798866635723 a001 75283811239/9381251041*312119004989^(4/15) 9323798866635723 a001 12586269025/505019158607*23725150497407^(5/12) 9323798866635723 a001 12586269025/5600748293801*817138163596^(5/9) 9323798866635723 a001 12585437040/228811001*23725150497407^(1/6) 9323798866635723 a001 3536736619241/9381251041*3461452808002^(1/9) 9323798866635723 a001 2504730781961/28143753123*1322157322203^(1/6) 9323798866635723 a001 956722026041/28143753123*505019158607^(5/24) 9323798866635723 a001 1144206275/28374454999*312119004989^(7/15) 9323798866635723 a001 20365011074/505019158607*17393796001^(11/21) 9323798866635723 a001 1144206275/28374454999*505019158607^(11/24) 9323798866635723 a001 365435296162/312119004989*17393796001^(8/21) 9323798866635723 a001 4052739537881/28143753123*73681302247^(1/6) 9323798866635723 a001 53316291173/28143753123*119218851371^(1/3) 9323798866635723 a001 139583862445/119218851371*17393796001^(8/21) 9323798866635723 a001 12586269025/23725150497407*73681302247^(2/3) 9323798866635723 a001 3536736619241/9381251041*28143753123^(2/15) 9323798866635723 a001 2504730781961/73681302247*17393796001^(5/21) 9323798866635723 a001 86267571272/28143753123*28143753123^(1/3) 9323798866635723 a001 3278735159921/96450076809*17393796001^(5/21) 9323798866635723 a001 20365011074/28143753123*2139295485799^(1/3) 9323798866635723 a001 10610209857723/312119004989*17393796001^(5/21) 9323798866635723 a001 4052739537881/119218851371*17393796001^(5/21) 9323798866635723 a001 53316291173/45537549124*17393796001^(8/21) 9323798866635723 a001 12586269025/45537549124*73681302247^(5/12) 9323798866635723 a001 12586269025/505019158607*28143753123^(8/15) 9323798866635723 a001 10983760033/64300051206*45537549124^(4/9) 9323798866635723 a001 32951280099/73681302247*9062201101803^(1/3) 9323798866635723 a001 387002188980/11384387281*17393796001^(5/21) 9323798866635723 a001 86267571272/505019158607*45537549124^(4/9) 9323798866635723 a001 75283811239/440719107401*45537549124^(4/9) 9323798866635723 a001 2504730781961/14662949395604*45537549124^(4/9) 9323798866635723 a001 86267571272/73681302247*505019158607^(1/3) 9323798866635723 a001 139583862445/817138163596*45537549124^(4/9) 9323798866635723 a001 139583862445/73681302247*119218851371^(1/3) 9323798866635723 a001 32264490531/10525900321*3461452808002^(5/18) 9323798866635723 a001 32951280099/817138163596*312119004989^(7/15) 9323798866635723 a001 10983760033/440719107401*23725150497407^(5/12) 9323798866635723 a001 1548008755920/73681302247*817138163596^(2/9) 9323798866635723 a001 10983760033/440719107401*505019158607^(10/21) 9323798866635723 a001 32951280099/23725150497407*505019158607^(7/12) 9323798866635723 a001 32951280099/817138163596*505019158607^(11/24) 9323798866635723 a001 1515744265389/10525900321*73681302247^(1/6) 9323798866635723 a001 53316291173/312119004989*45537549124^(4/9) 9323798866635723 a001 53316291173/73681302247*2139295485799^(1/3) 9323798866635723 a001 43133785636/96450076809*9062201101803^(1/3) 9323798866635723 a001 182717648081/96450076809*119218851371^(1/3) 9323798866635723 a001 32951280099/119218851371*73681302247^(5/12) 9323798866635723 a001 86267571272/2139295485799*312119004989^(7/15) 9323798866635723 a001 75283811239/64300051206*505019158607^(1/3) 9323798866635723 a001 4052739537881/192900153618*817138163596^(2/9) 9323798866635723 a001 3278735159921/96450076809*505019158607^(5/24) 9323798866635723 a001 43133785636/1730726404001*505019158607^(10/21) 9323798866635723 a001 139583862445/192900153618*2139295485799^(1/3) 9323798866635723 a001 591286729879/312119004989*119218851371^(1/3) 9323798866635723 a001 225851433717/5600748293801*312119004989^(7/15) 9323798866635723 a001 225851433717/505019158607*9062201101803^(1/3) 9323798866635723 a001 4052739537881/505019158607*312119004989^(4/15) 9323798866635723 a001 225749145909/10745088481*817138163596^(2/9) 9323798866635723 a001 139583862445/3461452808002*312119004989^(7/15) 9323798866635723 a001 2504730781961/312119004989*312119004989^(4/15) 9323798866635723 a001 6557470319842/312119004989*817138163596^(2/9) 9323798866635723 a001 365435296162/312119004989*505019158607^(1/3) 9323798866635723 a001 139583862445/312119004989*9062201101803^(1/3) 9323798866635723 a001 225851433717/119218851371*119218851371^(1/3) 9323798866635723 a001 86267571272/312119004989*73681302247^(5/12) 9323798866635723 a001 53316291173/1322157322203*312119004989^(7/15) 9323798866635723 a001 2504730781961/119218851371*817138163596^(2/9) 9323798866635723 a001 4052739537881/119218851371*505019158607^(5/24) 9323798866635723 a001 365435296162/119218851371*3461452808002^(5/18) 9323798866635723 a001 53316291173/2139295485799*505019158607^(10/21) 9323798866635723 a001 225851433717/817138163596*73681302247^(5/12) 9323798866635723 a001 1548008755920/5600748293801*73681302247^(5/12) 9323798866635723 a001 139583862445/119218851371*505019158607^(1/3) 9323798866635723 a001 139583862445/505019158607*73681302247^(5/12) 9323798866635723 a001 53316291173/192900153618*73681302247^(5/12) 9323798866635723 a001 53316291173/119218851371*9062201101803^(1/3) 9323798866635723 a001 32264490531/10525900321*28143753123^(1/3) 9323798866635723 a001 32951280099/45537549124*2139295485799^(1/3) 9323798866635723 a001 20365011074/119218851371*45537549124^(4/9) 9323798866635723 a001 20365011074/73681302247*73681302247^(5/12) 9323798866635723 a001 591286729879/192900153618*28143753123^(1/3) 9323798866635723 a001 1548008755920/505019158607*28143753123^(1/3) 9323798866635723 a001 1515744265389/494493258286*28143753123^(1/3) 9323798866635723 a001 2504730781961/817138163596*28143753123^(1/3) 9323798866635723 a001 956722026041/312119004989*28143753123^(1/3) 9323798866635723 a001 21566892818/11384387281*119218851371^(1/3) 9323798866635723 a001 20365011074/505019158607*312119004989^(7/15) 9323798866635723 a001 20365011074/505019158607*505019158607^(11/24) 9323798866635723 a001 182717648081/22768774562*312119004989^(4/15) 9323798866635723 a001 2504730781961/45537549124*23725150497407^(1/6) 9323798866635723 a001 10182505537/408569081798*23725150497407^(5/12) 9323798866635723 a001 10182505537/7331474697802*505019158607^(7/12) 9323798866635723 a001 10182505537/408569081798*505019158607^(10/21) 9323798866635723 a001 10983760033/440719107401*28143753123^(8/15) 9323798866635723 a001 139583862445/45537549124*3461452808002^(5/18) 9323798866635723 a001 3278735159921/22768774562*73681302247^(1/6) 9323798866635723 a001 53316291173/45537549124*23725150497407^(7/24) 9323798866635723 a001 53316291173/45537549124*505019158607^(1/3) 9323798866635723 a001 43133785636/1730726404001*28143753123^(8/15) 9323798866635723 a001 12585437040/228811001*10749957122^(2/9) 9323798866635723 a001 75283811239/3020733700601*28143753123^(8/15) 9323798866635723 a001 182717648081/7331474697802*28143753123^(8/15) 9323798866635723 a001 139583862445/5600748293801*28143753123^(8/15) 9323798866635723 a001 53316291173/2139295485799*28143753123^(8/15) 9323798866635723 a001 139583862445/45537549124*28143753123^(1/3) 9323798866635723 a001 10182505537/22768774562*9062201101803^(1/3) 9323798866635723 a001 7778742049/5600748293801*17393796001^(2/3) 9323798866635723 a001 10182505537/408569081798*28143753123^(8/15) 9323798866635723 a001 2504730781961/10749957122*4106118243^(1/6) 9323798866635723 a001 7778742049/192900153618*17393796001^(11/21) 9323798866635723 a001 4052739537881/73681302247*10749957122^(2/9) 9323798866635723 a001 3536736619241/64300051206*10749957122^(2/9) 9323798866635723 a001 10983760033/9381251041*10749957122^(7/18) 9323798866635723 a001 6557470319842/119218851371*10749957122^(2/9) 9323798866635723 a001 12586269025/17393796001*2139295485799^(1/3) 9323798866635723 a001 7778742049/28143753123*73681302247^(5/12) 9323798866635723 a001 2504730781961/45537549124*10749957122^(2/9) 9323798866635723 a001 591286729879/17393796001*17393796001^(5/21) 9323798866635723 a001 20365011074/17393796001*17393796001^(8/21) 9323798866635723 a001 32951280099/17393796001*119218851371^(1/3) 9323798866635723 a001 86267571272/73681302247*10749957122^(7/18) 9323798866635723 a001 10610209857723/17393796001*45537549124^(1/9) 9323798866635723 a001 7778742049/192900153618*312119004989^(7/15) 9323798866635723 a001 7778742049/192900153618*505019158607^(11/24) 9323798866635723 a001 1548008755920/17393796001*1322157322203^(1/6) 9323798866635723 a001 6557470319842/17393796001*3461452808002^(1/9) 9323798866635723 a001 956722026041/17393796001*23725150497407^(1/6) 9323798866635723 a001 591286729879/17393796001*505019158607^(5/24) 9323798866635723 a001 7778742049/14662949395604*505019158607^(13/21) 9323798866635723 a001 139583862445/17393796001*312119004989^(4/15) 9323798866635723 a001 7778742049/312119004989*23725150497407^(5/12) 9323798866635723 a001 7778742049/312119004989*505019158607^(10/21) 9323798866635723 a001 75283811239/64300051206*10749957122^(7/18) 9323798866635723 a001 2504730781961/17393796001*73681302247^(1/6) 9323798866635723 a001 2504730781961/2139295485799*10749957122^(7/18) 9323798866635723 a001 53316291173/17393796001*3461452808002^(5/18) 9323798866635723 a001 365435296162/312119004989*10749957122^(7/18) 9323798866635723 a001 7778742049/14662949395604*73681302247^(2/3) 9323798866635723 a001 139583862445/119218851371*10749957122^(7/18) 9323798866635723 a001 6557470319842/17393796001*28143753123^(2/15) 9323798866635723 a001 12586269025/505019158607*10749957122^(5/9) 9323798866635723 a001 7778742049/45537549124*45537549124^(4/9) 9323798866635723 a001 20365011074/17393796001*23725150497407^(7/24) 9323798866635723 a001 20365011074/17393796001*505019158607^(1/3) 9323798866635723 a001 53316291173/17393796001*28143753123^(1/3) 9323798866635723 a001 53316291173/45537549124*10749957122^(7/18) 9323798866635723 a001 7778742049/312119004989*28143753123^(8/15) 9323798866635723 a001 10983760033/440719107401*10749957122^(5/9) 9323798866635723 a001 43133785636/1730726404001*10749957122^(5/9) 9323798866635723 a001 75283811239/3020733700601*10749957122^(5/9) 9323798866635723 a001 182717648081/7331474697802*10749957122^(5/9) 9323798866635723 a001 139583862445/5600748293801*10749957122^(5/9) 9323798866635723 a001 53316291173/2139295485799*10749957122^(5/9) 9323798866635723 a001 12586269025/23725150497407*10749957122^(13/18) 9323798866635723 a001 956722026041/17393796001*10749957122^(2/9) 9323798866635723 a001 10182505537/408569081798*10749957122^(5/9) 9323798866635723 a001 7778742049/17393796001*9062201101803^(1/3) 9323798866635723 a001 20365011074/17393796001*10749957122^(7/18) 9323798866635723 a001 7778742049/312119004989*10749957122^(5/9) 9323798866635723 a001 6557470319842/28143753123*4106118243^(1/6) 9323798866635723 a001 7778742049/14662949395604*10749957122^(13/18) 9323798866635723 a001 10610209857723/45537549124*4106118243^(1/6) 9323798866635723 a001 4052739537881/17393796001*4106118243^(1/6) 9323798866635723 a001 4807526976/6643838879*2139295485799^(1/3) 9323798866635723 a001 2971215073/10749957122*73681302247^(5/12) 9323798866635723 a001 32951280099/6643838879*6643838879^(1/3) 9323798866635723 a001 2971215073/2139295485799*17393796001^(2/3) 9323798866635723 a001 2971215073/73681302247*17393796001^(11/21) 9323798866635723 a001 12586269025/6643838879*119218851371^(1/3) 9323798866635723 a001 225851433717/6643838879*17393796001^(5/21) 9323798866635723 a001 6557470319842/6643838879*17393796001^(2/21) 9323798866635723 a001 2971215073/73681302247*312119004989^(7/15) 9323798866635723 a001 2971215073/73681302247*505019158607^(11/24) 9323798866635723 a001 4052739537881/6643838879*45537549124^(1/9) 9323798866635723 a001 2971215073/14662949395604*312119004989^(2/3) 9323798866635723 a001 225851433717/6643838879*505019158607^(5/24) 9323798866635723 a001 2971215073/1322157322203*817138163596^(5/9) 9323798866635723 a001 10610209857723/6643838879*312119004989^(1/15) 9323798866635723 a001 2504730781961/6643838879*3461452808002^(1/9) 9323798866635723 a001 6557470319842/6643838879*505019158607^(1/12) 9323798866635723 a001 2971215073/5600748293801*505019158607^(13/21) 9323798866635723 a001 2971215073/2139295485799*505019158607^(7/12) 9323798866635723 a001 139583862445/6643838879*817138163596^(2/9) 9323798866635723 a001 956722026041/6643838879*73681302247^(1/6) 9323798866635723 a001 53316291173/6643838879*312119004989^(4/15) 9323798866635723 a001 2971215073/119218851371*23725150497407^(5/12) 9323798866635723 a001 2971215073/119218851371*505019158607^(10/21) 9323798866635723 a001 2971215073/5600748293801*73681302247^(2/3) 9323798866635723 a001 2504730781961/6643838879*28143753123^(2/15) 9323798866635723 a001 20365011074/6643838879*3461452808002^(5/18) 9323798866635723 a001 2971215073/119218851371*28143753123^(8/15) 9323798866635723 a001 20365011074/6643838879*28143753123^(1/3) 9323798866635723 a001 2971215073/14662949395604*28143753123^(11/15) 9323798866635723 a001 365435296162/6643838879*10749957122^(2/9) 9323798866635723 a001 7778742049/6643838879*17393796001^(8/21) 9323798866635723 a001 2971215073/17393796001*45537549124^(4/9) 9323798866635723 a001 7778742049/6643838879*23725150497407^(7/24) 9323798866635723 a001 7778742049/6643838879*505019158607^(1/3) 9323798866635723 a001 2971215073/119218851371*10749957122^(5/9) 9323798866635723 a001 2971215073/5600748293801*10749957122^(13/18) 9323798866635723 a001 7778742049/6643838879*10749957122^(7/18) 9323798866635723 a001 1602508992/440719107401*4106118243^(2/3) 9323798866635723 a001 1548008755920/6643838879*4106118243^(1/6) 9323798866635723 a001 12586269025/3461452808002*4106118243^(2/3) 9323798866635723 a001 10983760033/3020733700601*4106118243^(2/3) 9323798866635723 a001 86267571272/23725150497407*4106118243^(2/3) 9323798866635723 a001 53316291173/14662949395604*4106118243^(2/3) 9323798866635723 a001 20365011074/5600748293801*4106118243^(2/3) 9323798866635723 a001 7778742049/2139295485799*4106118243^(2/3) 9323798866635723 a001 2971215073/6643838879*9062201101803^(1/3) 9323798866635723 a001 10610209857723/6643838879*1568397607^(1/12) 9323798866635723 a001 2971215073/817138163596*4106118243^(2/3) 9323798866635723 a001 10983760033/1368706081*1568397607^(1/3) 9323798866635723 a001 1836311903/2537720636*2139295485799^(1/3) 9323798866635723 a001 1134903170/4106118243*73681302247^(5/12) 9323798866635723 a001 43133785636/5374978561*1568397607^(1/3) 9323798866635723 a001 75283811239/9381251041*1568397607^(1/3) 9323798866635723 a001 591286729879/73681302247*1568397607^(1/3) 9323798866635723 a001 86000486440/10716675201*1568397607^(1/3) 9323798866635723 a001 4052739537881/505019158607*1568397607^(1/3) 9323798866635723 a001 3536736619241/440719107401*1568397607^(1/3) 9323798866635723 a001 3278735159921/408569081798*1568397607^(1/3) 9323798866635723 a001 2504730781961/312119004989*1568397607^(1/3) 9323798866635723 a001 956722026041/119218851371*1568397607^(1/3) 9323798866635723 a001 182717648081/22768774562*1568397607^(1/3) 9323798866635723 a001 139583862445/17393796001*1568397607^(1/3) 9323798866635723 a001 1144206275/230701876*6643838879^(1/3) 9323798866635723 a001 1201881744/634430159*119218851371^(1/3) 9323798866635723 a001 1134903170/28143753123*17393796001^(11/21) 9323798866635723 a001 1134903170/23725150497407*17393796001^(17/21) 9323798866635723 a001 567451585/408569081798*17393796001^(2/3) 9323798866635723 a001 1134903170/28143753123*312119004989^(7/15) 9323798866635723 a001 1134903170/28143753123*505019158607^(11/24) 9323798866635723 a001 1135099622/33391061*17393796001^(5/21) 9323798866635723 a001 1134903170/23725150497407*45537549124^(7/9) 9323798866635723 a001 2504730781961/2537720636*17393796001^(2/21) 9323798866635723 a001 1134903780/1860499*45537549124^(1/9) 9323798866635723 a001 1135099622/33391061*505019158607^(5/24) 9323798866635723 a001 1134903170/5600748293801*312119004989^(2/3) 9323798866635723 a001 1134903170/505019158607*817138163596^(5/9) 9323798866635723 a001 225851433717/2537720636*1322157322203^(1/6) 9323798866635723 a001 4052739537881/2537720636*312119004989^(1/15) 9323798866635723 a001 1134903170/5600748293801*3461452808002^(11/18) 9323798866635723 a001 2504730781961/2537720636*505019158607^(1/12) 9323798866635723 a001 567451585/7331474697802*1322157322203^(2/3) 9323798866635723 a001 1134903170/2139295485799*505019158607^(13/21) 9323798866635723 a001 1134903170/23725150497407*505019158607^(17/24) 9323798866635723 a001 139583862445/2537720636*23725150497407^(1/6) 9323798866635723 a001 182717648081/1268860318*73681302247^(1/6) 9323798866635723 a001 53316291173/2537720636*817138163596^(2/9) 9323798866635723 a001 1134903170/2139295485799*73681302247^(2/3) 9323798866635723 a001 956722026041/2537720636*28143753123^(2/15) 9323798866635723 a001 10182505537/1268860318*312119004989^(4/15) 9323798866635723 a001 3278735159921/1268860318*10749957122^(1/18) 9323798866635723 a001 567451585/22768774562*505019158607^(10/21) 9323798866635723 a001 1134903170/5600748293801*28143753123^(11/15) 9323798866635723 a001 567451585/22768774562*28143753123^(8/15) 9323798866635723 a001 139583862445/2537720636*10749957122^(2/9) 9323798866635723 a001 53316291173/6643838879*1568397607^(1/3) 9323798866635723 a001 7778742049/2537720636*3461452808002^(5/18) 9323798866635723 a001 7778742049/2537720636*28143753123^(1/3) 9323798866635723 a001 567451585/22768774562*10749957122^(5/9) 9323798866635723 a001 1134903170/2139295485799*10749957122^(13/18) 9323798866635723 a001 591286729879/2537720636*4106118243^(1/6) 9323798866635723 a001 2971215073/2537720636*17393796001^(8/21) 9323798866635723 a001 1134903170/6643838879*45537549124^(4/9) 9323798866635723 a001 2971215073/2537720636*23725150497407^(7/24) 9323798866635723 a001 2971215073/2537720636*505019158607^(1/3) 9323798866635723 a001 1836311903/45537549124*1568397607^(7/12) 9323798866635723 a001 2971215073/2537720636*10749957122^(7/18) 9323798866635723 a001 4052739537881/2537720636*1568397607^(1/12) 9323798866635723 a001 1134903170/312119004989*4106118243^(2/3) 9323798866635723 a001 4807526976/119218851371*1568397607^(7/12) 9323798866635723 a001 1144206275/28374454999*1568397607^(7/12) 9323798866635723 a001 32951280099/817138163596*1568397607^(7/12) 9323798866635723 a001 86267571272/2139295485799*1568397607^(7/12) 9323798866635723 a001 225851433717/5600748293801*1568397607^(7/12) 9323798866635723 a001 591286729879/14662949395604*1568397607^(7/12) 9323798866635723 a001 365435296162/9062201101803*1568397607^(7/12) 9323798866635723 a001 139583862445/3461452808002*1568397607^(7/12) 9323798866635723 a001 53316291173/1322157322203*1568397607^(7/12) 9323798866635723 a001 20365011074/505019158607*1568397607^(7/12) 9323798866635723 a001 7778742049/192900153618*1568397607^(7/12) 9323798866635723 a001 4052739537881/4106118243*599074578^(1/9) 9323798866635723 a001 2971215073/73681302247*1568397607^(7/12) 9323798866635723 a001 1836311903/9062201101803*1568397607^(5/6) 9323798866635723 a001 10182505537/1268860318*1568397607^(1/3) 9323798866635723 a001 4807525989/4870846*599074578^(1/9) 9323798866635723 a001 567451585/1268860318*9062201101803^(1/3) 9323798866635723 a001 4807526976/23725150497407*1568397607^(5/6) 9323798866635723 a001 6557470319842/6643838879*599074578^(1/9) 9323798866635723 a001 433494437/45537549124*969323029^(2/3) 9323798866635723 a001 2971215073/14662949395604*1568397607^(5/6) 9323798866635723 a001 53316291173/1568397607*599074578^(5/18) 9323798866635723 a001 6557470319842/1568397607*228826127^(1/24) 9323798866635723 a001 1134903170/28143753123*1568397607^(7/12) 9323798866635723 a001 267913919/710646*228826127^(1/6) 9323798866635723 a001 2504730781961/2537720636*599074578^(1/9) 9323798866635723 a001 1134903170/5600748293801*1568397607^(5/6) 9323798866635723 a001 701408733/969323029*2139295485799^(1/3) 9323798866635723 a001 433494437/1568397607*73681302247^(5/12) 9323798866635723 a001 139583862445/4106118243*599074578^(5/18) 9323798866635723 a001 182717648081/5374978561*599074578^(5/18) 9323798866635723 a001 1836311903/1568397607*599074578^(4/9) 9323798866635723 a001 956722026041/28143753123*599074578^(5/18) 9323798866635723 a001 2504730781961/73681302247*599074578^(5/18) 9323798866635723 a001 3278735159921/96450076809*599074578^(5/18) 9323798866635723 a001 10610209857723/312119004989*599074578^(5/18) 9323798866635723 a001 4052739537881/119218851371*599074578^(5/18) 9323798866635723 a001 387002188980/11384387281*599074578^(5/18) 9323798866635723 a001 591286729879/17393796001*599074578^(5/18) 9323798866635723 a001 225851433717/6643838879*599074578^(5/18) 9323798866635723 a001 4052739537881/1568397607*228826127^(1/15) 9323798866635723 a001 1135099622/33391061*599074578^(5/18) 9323798866635723 a001 10610209857723/2537720636*228826127^(1/24) 9323798866635723 a001 1836311903/969323029*119218851371^(1/3) 9323798866635723 a001 4807526976/969323029*6643838879^(1/3) 9323798866635723 a001 433494437/10749957122*17393796001^(11/21) 9323798866635723 a001 433494437/10749957122*312119004989^(7/15) 9323798866635723 a001 433494437/10749957122*505019158607^(11/24) 9323798866635723 a001 433494437/9062201101803*17393796001^(17/21) 9323798866635723 a001 433494437/312119004989*17393796001^(2/3) 9323798866635723 a001 32951280099/969323029*17393796001^(5/21) 9323798866635723 a001 433494437/9062201101803*45537549124^(7/9) 9323798866635723 a001 956722026041/969323029*17393796001^(2/21) 9323798866635723 a001 32951280099/969323029*505019158607^(5/24) 9323798866635723 a001 591286729879/969323029*45537549124^(1/9) 9323798866635723 a001 433494437/192900153618*817138163596^(5/9) 9323798866635723 a001 86267571272/969323029*1322157322203^(1/6) 9323798866635723 a001 433494437/2139295485799*312119004989^(2/3) 9323798866635723 a001 1548008755920/969323029*312119004989^(1/15) 9323798866635723 a001 2504730781961/969323029*23725150497407^(1/24) 9323798866635723 a001 433494437/2139295485799*3461452808002^(11/18) 9323798866635723 a001 433494437/817138163596*23725150497407^(13/24) 9323798866635723 a001 365435296162/969323029*3461452808002^(1/9) 9323798866635723 a001 433494437/817138163596*505019158607^(13/21) 9323798866635723 a001 433494437/312119004989*505019158607^(7/12) 9323798866635723 a001 139583862445/969323029*73681302247^(1/6) 9323798866635723 a001 53316291173/969323029*23725150497407^(1/6) 9323798866635723 a001 433494437/817138163596*73681302247^(2/3) 9323798866635723 a001 365435296162/969323029*28143753123^(2/15) 9323798866635723 a001 2504730781961/969323029*10749957122^(1/18) 9323798866635723 a001 20365011074/969323029*817138163596^(2/9) 9323798866635723 a001 433494437/2139295485799*28143753123^(11/15) 9323798866635723 a001 433494437/23725150497407*28143753123^(5/6) 9323798866635723 a001 53316291173/969323029*10749957122^(2/9) 9323798866635723 a001 7778742049/969323029*312119004989^(4/15) 9323798866635723 a001 433494437/17393796001*23725150497407^(5/12) 9323798866635723 a001 433494437/17393796001*505019158607^(10/21) 9323798866635723 a001 433494437/17393796001*28143753123^(8/15) 9323798866635723 a001 433494437/817138163596*10749957122^(13/18) 9323798866635723 a001 433494437/17393796001*10749957122^(5/9) 9323798866635723 a001 225851433717/969323029*4106118243^(1/6) 9323798866635723 a001 2971215073/969323029*3461452808002^(5/18) 9323798866635723 a001 2971215073/969323029*28143753123^(1/3) 9323798866635723 a001 1548008755920/969323029*1568397607^(1/12) 9323798866635723 a001 433494437/119218851371*4106118243^(2/3) 9323798866635723 a001 1602508992/1368706081*599074578^(4/9) 9323798866635723 a001 7778742049/969323029*1568397607^(1/3) 9323798866635723 a001 3536736619241/1368706081*228826127^(1/15) 9323798866635723 a001 1134903170/969323029*17393796001^(8/21) 9323798866635723 a001 433494437/2537720636*45537549124^(4/9) 9323798866635723 a001 1134903170/969323029*23725150497407^(7/24) 9323798866635723 a001 1134903170/969323029*505019158607^(1/3) 9323798866635723 a001 1134903170/969323029*10749957122^(7/18) 9323798866635723 a001 12586269025/10749957122*599074578^(4/9) 9323798866635723 a001 10983760033/9381251041*599074578^(4/9) 9323798866635723 a001 86267571272/73681302247*599074578^(4/9) 9323798866635723 a001 75283811239/64300051206*599074578^(4/9) 9323798866635723 a001 2504730781961/2139295485799*599074578^(4/9) 9323798866635723 a001 365435296162/312119004989*599074578^(4/9) 9323798866635723 a001 139583862445/119218851371*599074578^(4/9) 9323798866635723 a001 53316291173/45537549124*599074578^(4/9) 9323798866635723 a001 20365011074/17393796001*599074578^(4/9) 9323798866635723 a001 7778742049/6643838879*599074578^(4/9) 9323798866635723 a001 433494437/10749957122*1568397607^(7/12) 9323798866635723 a001 701408733/17393796001*599074578^(11/18) 9323798866635723 a001 956722026041/969323029*599074578^(1/9) 9323798866635723 a001 433494437/2139295485799*1568397607^(5/6) 9323798866635723 a001 2971215073/2537720636*599074578^(4/9) 9323798866635723 a001 3278735159921/1268860318*228826127^(1/15) 9323798866635723 a001 1836311903/45537549124*599074578^(11/18) 9323798866635723 a001 4807526976/119218851371*599074578^(11/18) 9323798866635723 a001 1144206275/28374454999*599074578^(11/18) 9323798866635723 a001 32951280099/817138163596*599074578^(11/18) 9323798866635723 a001 86267571272/2139295485799*599074578^(11/18) 9323798866635723 a001 225851433717/5600748293801*599074578^(11/18) 9323798866635723 a001 591286729879/14662949395604*599074578^(11/18) 9323798866635723 a001 365435296162/9062201101803*599074578^(11/18) 9323798866635723 a001 139583862445/3461452808002*599074578^(11/18) 9323798866635723 a001 53316291173/1322157322203*599074578^(11/18) 9323798866635723 a001 20365011074/505019158607*599074578^(11/18) 9323798866635723 a001 7778742049/192900153618*599074578^(11/18) 9323798866635723 a001 2971215073/73681302247*599074578^(11/18) 9323798866635723 a001 701408733/505019158607*599074578^(7/9) 9323798866635723 a001 32951280099/969323029*599074578^(5/18) 9323798866635723 a001 1134903170/28143753123*599074578^(11/18) 9323798866635723 a001 4052739537881/969323029*228826127^(1/24) 9323798866635723 a001 1836311903/1322157322203*599074578^(7/9) 9323798866635723 a001 433494437/969323029*9062201101803^(1/3) 9323798866635723 a001 14930208/10749853441*599074578^(7/9) 9323798866635723 a001 12586269025/9062201101803*599074578^(7/9) 9323798866635723 a001 32951280099/23725150497407*599074578^(7/9) 9323798866635723 a001 10182505537/7331474697802*599074578^(7/9) 9323798866635723 a001 7778742049/5600748293801*599074578^(7/9) 9323798866635723 a001 2971215073/2139295485799*599074578^(7/9) 9323798866635723 a001 701408733/14662949395604*599074578^(17/18) 9323798866635723 a001 10983760033/199691526*228826127^(4/15) 9323798866635723 a001 567451585/408569081798*599074578^(7/9) 9323798866635723 a001 2504730781961/969323029*228826127^(1/15) 9323798866635723 a001 1134903170/969323029*599074578^(4/9) 9323798866635723 a001 433494437/10749957122*599074578^(11/18) 9323798866635723 a001 591286729879/1568397607*228826127^(1/6) 9323798866635723 a001 10182505537/299537289*228826127^(7/24) 9323798866635723 a001 1134903170/23725150497407*599074578^(17/18) 9323798866635723 a001 516002918640/1368706081*228826127^(1/6) 9323798866635723 a001 63245986/228826127*141422324^(5/9) 9323798866635723 a001 4052739537881/10749957122*228826127^(1/6) 9323798866635723 a001 3536736619241/9381251041*228826127^(1/6) 9323798866635723 a001 6557470319842/17393796001*228826127^(1/6) 9323798866635723 a001 2504730781961/6643838879*228826127^(1/6) 9323798866635723 a001 433494437/312119004989*599074578^(7/9) 9323798866635723 a001 956722026041/2537720636*228826127^(1/6) 9323798866635723 a001 433494437/9062201101803*599074578^(17/18) 9323798866635723 a001 365435296162/969323029*228826127^(1/6) 9323798866635723 a001 267914296/370248451*2139295485799^(1/3) 9323798866635723 a001 165580141/599074578*73681302247^(5/12) 9323798866635723 a001 86267571272/1568397607*228826127^(4/15) 9323798866635723 a001 4807526976/370248451*370248451^(1/3) 9323798866635723 a001 75283811239/1368706081*228826127^(4/15) 9323798866635723 a001 591286729879/10749957122*228826127^(4/15) 9323798866635723 a001 12585437040/228811001*228826127^(4/15) 9323798866635723 a001 4052739537881/73681302247*228826127^(4/15) 9323798866635723 a001 3536736619241/64300051206*228826127^(4/15) 9323798866635723 a001 6557470319842/119218851371*228826127^(4/15) 9323798866635723 a001 2504730781961/45537549124*228826127^(4/15) 9323798866635723 a001 956722026041/17393796001*228826127^(4/15) 9323798866635723 a001 1836311903/599074578*228826127^(5/12) 9323798866635723 a001 365435296162/6643838879*228826127^(4/15) 9323798866635723 a001 53316291173/1568397607*228826127^(7/24) 9323798866635723 a001 139583862445/2537720636*228826127^(4/15) 9323798866635723 a001 139583862445/4106118243*228826127^(7/24) 9323798866635723 a001 63245986/119218851371*141422324^(8/9) 9323798866635723 a001 182717648081/5374978561*228826127^(7/24) 9323798866635723 a001 956722026041/28143753123*228826127^(7/24) 9323798866635723 a001 2504730781961/73681302247*228826127^(7/24) 9323798866635723 a001 3278735159921/96450076809*228826127^(7/24) 9323798866635723 a001 10610209857723/312119004989*228826127^(7/24) 9323798866635723 a001 4052739537881/119218851371*228826127^(7/24) 9323798866635723 a001 387002188980/11384387281*228826127^(7/24) 9323798866635723 a001 591286729879/17393796001*228826127^(7/24) 9323798866635723 a001 225851433717/6643838879*228826127^(7/24) 9323798866635723 a001 233802911/199691526*228826127^(7/15) 9323798866635723 a001 1135099622/33391061*228826127^(7/24) 9323798866635723 a001 53316291173/969323029*228826127^(4/15) 9323798866635723 a001 165580141/17393796001*969323029^(2/3) 9323798866635723 a001 32951280099/969323029*228826127^(7/24) 9323798866635723 a001 701408733/370248451*119218851371^(1/3) 9323798866635723 a001 1836311903/370248451*6643838879^(1/3) 9323798866635723 a001 165580141/4106118243*17393796001^(11/21) 9323798866635723 a001 165580141/4106118243*312119004989^(7/15) 9323798866635723 a001 165580141/4106118243*505019158607^(11/24) 9323798866635723 a001 165580141/3461452808002*17393796001^(17/21) 9323798866635723 a001 165580141/119218851371*17393796001^(2/3) 9323798866635723 a001 12586269025/370248451*17393796001^(5/21) 9323798866635723 a001 12586269025/370248451*505019158607^(5/24) 9323798866635723 a001 165580141/3461452808002*45537549124^(7/9) 9323798866635723 a001 365435296162/370248451*17393796001^(2/21) 9323798866635723 a001 165580141/73681302247*817138163596^(5/9) 9323798866635723 a001 32951280099/370248451*1322157322203^(1/6) 9323798866635723 a001 225851433717/370248451*45537549124^(1/9) 9323798866635723 a001 165580141/14662949395604*23725150497407^(2/3) 9323798866635723 a001 165580141/5600748293801*5600748293801^(2/3) 9323798866635723 a001 956722026041/370248451*23725150497407^(1/24) 9323798866635723 a001 165580141/817138163596*3461452808002^(11/18) 9323798866635723 a001 165580141/3461452808002*505019158607^(17/24) 9323798866635723 a001 165580141/14662949395604*505019158607^(16/21) 9323798866635723 a001 165580141/312119004989*23725150497407^(13/24) 9323798866635723 a001 139583862445/370248451*3461452808002^(1/9) 9323798866635723 a001 165580141/312119004989*505019158607^(13/21) 9323798866635723 a001 165580141/119218851371*505019158607^(7/12) 9323798866635723 a001 53316291173/370248451*73681302247^(1/6) 9323798866635723 a001 165580141/312119004989*73681302247^(2/3) 9323798866635723 a001 139583862445/370248451*28143753123^(2/15) 9323798866635723 a001 956722026041/370248451*10749957122^(1/18) 9323798866635723 a001 20365011074/370248451*23725150497407^(1/6) 9323798866635723 a001 165580141/817138163596*28143753123^(11/15) 9323798866635723 a001 165580141/9062201101803*28143753123^(5/6) 9323798866635723 a001 20365011074/370248451*10749957122^(2/9) 9323798866635723 a001 7778742049/370248451*817138163596^(2/9) 9323798866635723 a001 165580141/312119004989*10749957122^(13/18) 9323798866635723 a001 165580141/14662949395604*10749957122^(8/9) 9323798866635723 a001 86267571272/370248451*4106118243^(1/6) 9323798866635723 a001 2971215073/370248451*312119004989^(4/15) 9323798866635723 a001 165580141/6643838879*23725150497407^(5/12) 9323798866635723 a001 165580141/6643838879*505019158607^(10/21) 9323798866635723 a001 165580141/6643838879*28143753123^(8/15) 9323798866635723 a001 165580141/6643838879*10749957122^(5/9) 9323798866635723 a001 591286729879/370248451*1568397607^(1/12) 9323798866635723 a001 165580141/45537549124*4106118243^(2/3) 9323798866635723 a001 1134903170/370248451*3461452808002^(5/18) 9323798866635723 a001 1134903170/370248451*28143753123^(1/3) 9323798866635723 a001 2971215073/370248451*1568397607^(1/3) 9323798866635723 a001 165580141/4106118243*1568397607^(7/12) 9323798866635723 a001 686789568/224056801*228826127^(5/12) 9323798866635723 a001 365435296162/370248451*599074578^(1/9) 9323798866635723 a001 165580141/817138163596*1568397607^(5/6) 9323798866635723 a001 12586269025/4106118243*228826127^(5/12) 9323798866635723 a001 32951280099/10749957122*228826127^(5/12) 9323798866635723 a001 86267571272/28143753123*228826127^(5/12) 9323798866635723 a001 32264490531/10525900321*228826127^(5/12) 9323798866635723 a001 591286729879/192900153618*228826127^(5/12) 9323798866635723 a001 1548008755920/505019158607*228826127^(5/12) 9323798866635723 a001 1515744265389/494493258286*228826127^(5/12) 9323798866635723 a001 2504730781961/817138163596*228826127^(5/12) 9323798866635723 a001 956722026041/312119004989*228826127^(5/12) 9323798866635723 a001 365435296162/119218851371*228826127^(5/12) 9323798866635723 a001 139583862445/45537549124*228826127^(5/12) 9323798866635723 a001 53316291173/17393796001*228826127^(5/12) 9323798866635723 a001 20365011074/6643838879*228826127^(5/12) 9323798866635723 a001 12586269025/370248451*599074578^(5/18) 9323798866635723 a001 1548008755920/370248451*228826127^(1/24) 9323798866635723 a001 7778742049/2537720636*228826127^(5/12) 9323798866635723 a001 433494437/370248451*17393796001^(8/21) 9323798866635723 a001 165580141/969323029*45537549124^(4/9) 9323798866635723 a001 433494437/370248451*23725150497407^(7/24) 9323798866635723 a001 433494437/370248451*505019158607^(1/3) 9323798866635723 a001 433494437/370248451*10749957122^(7/18) 9323798866635723 a001 1836311903/1568397607*228826127^(7/15) 9323798866635723 a001 956722026041/370248451*228826127^(1/15) 9323798866635723 a001 267914296/969323029*228826127^(13/24) 9323798866635723 a001 1602508992/1368706081*228826127^(7/15) 9323798866635723 a001 12586269025/10749957122*228826127^(7/15) 9323798866635723 a001 10983760033/9381251041*228826127^(7/15) 9323798866635723 a001 86267571272/73681302247*228826127^(7/15) 9323798866635723 a001 75283811239/64300051206*228826127^(7/15) 9323798866635723 a001 2504730781961/2139295485799*228826127^(7/15) 9323798866635723 a001 365435296162/312119004989*228826127^(7/15) 9323798866635723 a001 139583862445/119218851371*228826127^(7/15) 9323798866635723 a001 53316291173/45537549124*228826127^(7/15) 9323798866635723 a001 20365011074/17393796001*228826127^(7/15) 9323798866635723 a001 165580141/4106118243*599074578^(11/18) 9323798866635723 a001 7778742049/6643838879*228826127^(7/15) 9323798866635723 a001 2971215073/969323029*228826127^(5/12) 9323798866635723 a001 2971215073/2537720636*228826127^(7/15) 9323798866635723 a001 165580141/119218851371*599074578^(7/9) 9323798866635723 a001 433494437/370248451*599074578^(4/9) 9323798866635723 a001 165580141/3461452808002*599074578^(17/18) 9323798866635723 a001 133957148/5374978561*228826127^(2/3) 9323798866635723 a001 701408733/2537720636*228826127^(13/24) 9323798866635723 a001 1134903170/969323029*228826127^(7/15) 9323798866635723 a001 1836311903/6643838879*228826127^(13/24) 9323798866635723 a001 4807526976/17393796001*228826127^(13/24) 9323798866635723 a001 12586269025/45537549124*228826127^(13/24) 9323798866635723 a001 32951280099/119218851371*228826127^(13/24) 9323798866635723 a001 86267571272/312119004989*228826127^(13/24) 9323798866635723 a001 225851433717/817138163596*228826127^(13/24) 9323798866635723 a001 1548008755920/5600748293801*228826127^(13/24) 9323798866635723 a001 139583862445/505019158607*228826127^(13/24) 9323798866635723 a001 53316291173/192900153618*228826127^(13/24) 9323798866635723 a001 20365011074/73681302247*228826127^(13/24) 9323798866635723 a001 7778742049/28143753123*228826127^(13/24) 9323798866635723 a001 2971215073/10749957122*228826127^(13/24) 9323798866635723 a001 1134903170/4106118243*228826127^(13/24) 9323798866635723 a001 139583862445/370248451*228826127^(1/6) 9323798866635723 a001 433494437/1568397607*228826127^(13/24) 9323798866635723 a001 233802911/9381251041*228826127^(2/3) 9323798866635723 a001 267914296/119218851371*228826127^(19/24) 9323798866635723 a001 20365011074/370248451*228826127^(4/15) 9323798866635723 a001 1836311903/73681302247*228826127^(2/3) 9323798866635723 a001 267084832/10716675201*228826127^(2/3) 9323798866635723 a001 12586269025/505019158607*228826127^(2/3) 9323798866635723 a001 10983760033/440719107401*228826127^(2/3) 9323798866635723 a001 43133785636/1730726404001*228826127^(2/3) 9323798866635723 a001 75283811239/3020733700601*228826127^(2/3) 9323798866635723 a001 182717648081/7331474697802*228826127^(2/3) 9323798866635723 a001 139583862445/5600748293801*228826127^(2/3) 9323798866635723 a001 53316291173/2139295485799*228826127^(2/3) 9323798866635723 a001 10182505537/408569081798*228826127^(2/3) 9323798866635723 a001 7778742049/312119004989*228826127^(2/3) 9323798866635723 a001 2971215073/119218851371*228826127^(2/3) 9323798866635723 a001 12586269025/370248451*228826127^(7/24) 9323798866635723 a001 567451585/22768774562*228826127^(2/3) 9323798866635723 a001 267914296/505019158607*228826127^(13/15) 9323798866635723 a001 433494437/17393796001*228826127^(2/3) 9323798866635723 a001 165580141/370248451*9062201101803^(1/3) 9323798866635723 a001 3524667/1568437211*228826127^(19/24) 9323798866635723 a001 267914296/1322157322203*228826127^(11/12) 9323798866635723 a001 165580141/599074578*228826127^(13/24) 9323798866635723 a001 1836311903/817138163596*228826127^(19/24) 9323798866635723 a001 4807526976/2139295485799*228826127^(19/24) 9323798866635723 a001 12586269025/5600748293801*228826127^(19/24) 9323798866635723 a001 32951280099/14662949395604*228826127^(19/24) 9323798866635723 a001 53316291173/23725150497407*228826127^(19/24) 9323798866635723 a001 20365011074/9062201101803*228826127^(19/24) 9323798866635723 a001 7778742049/3461452808002*228826127^(19/24) 9323798866635723 a001 2971215073/1322157322203*228826127^(19/24) 9323798866635723 a001 1134903170/505019158607*228826127^(19/24) 9323798866635723 a001 1134903170/370248451*228826127^(5/12) 9323798866635723 a001 233802911/440719107401*228826127^(13/15) 9323798866635723 a001 433494437/192900153618*228826127^(19/24) 9323798866635723 a001 1836311903/3461452808002*228826127^(13/15) 9323798866635723 a001 1602508992/3020733700601*228826127^(13/15) 9323798866635723 a001 12586269025/23725150497407*228826127^(13/15) 9323798866635723 a001 7778742049/14662949395604*228826127^(13/15) 9323798866635723 a001 2971215073/5600748293801*228826127^(13/15) 9323798866635723 a001 1134903170/2139295485799*228826127^(13/15) 9323798866635723 a001 701408733/3461452808002*228826127^(11/12) 9323798866635723 a001 433494437/370248451*228826127^(7/15) 9323798866635723 a001 1836311903/9062201101803*228826127^(11/12) 9323798866635723 a001 4807526976/23725150497407*228826127^(11/12) 9323798866635723 a001 2971215073/14662949395604*228826127^(11/12) 9323798866635723 a001 433494437/817138163596*228826127^(13/15) 9323798866635723 a001 1134903170/5600748293801*228826127^(11/12) 9323798866635723 a001 433494437/2139295485799*228826127^(11/12) 9323798866635723 a001 165580141/6643838879*228826127^(2/3) 9323798866635723 a001 165580141/73681302247*228826127^(19/24) 9323798866635723 a001 165580141/312119004989*228826127^(13/15) 9323798866635723 a001 102287808/4868641*87403803^(1/3) 9323798866635723 a001 165580141/817138163596*228826127^(11/12) 9323798866635723 a001 53316291173/54018521*20633239^(2/15) 9323798866635723 a001 102334155/141422324*2139295485799^(1/3) 9323798866635723 a001 63245986/228826127*73681302247^(5/12) 9323798866635723 a001 10182505537/70711162*141422324^(2/9) 9323798866635723 a001 12586269025/599074578*87403803^(1/3) 9323798866635723 a001 63245986/228826127*228826127^(13/24) 9323798866635723 a001 32951280099/1568397607*87403803^(1/3) 9323798866635723 a001 86267571272/4106118243*87403803^(1/3) 9323798866635723 a001 225851433717/10749957122*87403803^(1/3) 9323798866635723 a001 591286729879/28143753123*87403803^(1/3) 9323798866635723 a001 1548008755920/73681302247*87403803^(1/3) 9323798866635723 a001 4052739537881/192900153618*87403803^(1/3) 9323798866635723 a001 225749145909/10745088481*87403803^(1/3) 9323798866635723 a001 6557470319842/312119004989*87403803^(1/3) 9323798866635723 a001 2504730781961/119218851371*87403803^(1/3) 9323798866635723 a001 956722026041/45537549124*87403803^(1/3) 9323798866635723 a001 365435296162/17393796001*87403803^(1/3) 9323798866635723 a001 139583862445/6643838879*87403803^(1/3) 9323798866635723 a001 53316291173/2537720636*87403803^(1/3) 9323798866635723 a001 20365011074/969323029*87403803^(1/3) 9323798866635723 a001 66978574/35355581*119218851371^(1/3) 9323798866635723 a001 1836311903/141422324*370248451^(1/3) 9323798866635723 a001 63245986/6643838879*969323029^(2/3) 9323798866635723 a001 701408733/141422324*6643838879^(1/3) 9323798866635723 a001 63245986/1568397607*17393796001^(11/21) 9323798866635723 a001 63245986/1568397607*312119004989^(7/15) 9323798866635723 a001 63245986/1568397607*505019158607^(11/24) 9323798866635723 a001 63245986/1568397607*1568397607^(7/12) 9323798866635723 a001 1201881744/35355581*17393796001^(5/21) 9323798866635723 a001 1201881744/35355581*505019158607^(5/24) 9323798866635723 a001 63245986/1322157322203*17393796001^(17/21) 9323798866635723 a001 31622993/22768774562*17393796001^(2/3) 9323798866635723 a001 63245986/28143753123*817138163596^(5/9) 9323798866635723 a001 12586269025/141422324*1322157322203^(1/6) 9323798866635723 a001 63245986/1322157322203*45537549124^(7/9) 9323798866635723 a001 139583862445/141422324*17393796001^(2/21) 9323798866635723 a001 21566892818/35355581*45537549124^(1/9) 9323798866635723 a001 225851433717/141422324*312119004989^(1/15) 9323798866635723 a001 63245986/5600748293801*23725150497407^(2/3) 9323798866635723 a001 182717648081/70711162*23725150497407^(1/24) 9323798866635723 a001 31622993/408569081798*1322157322203^(2/3) 9323798866635723 a001 63245986/1322157322203*505019158607^(17/24) 9323798866635723 a001 63245986/312119004989*312119004989^(2/3) 9323798866635723 a001 63245986/312119004989*3461452808002^(11/18) 9323798866635723 a001 139583862445/141422324*505019158607^(1/12) 9323798866635723 a001 63245986/119218851371*23725150497407^(13/24) 9323798866635723 a001 53316291173/141422324*3461452808002^(1/9) 9323798866635723 a001 63245986/119218851371*505019158607^(13/21) 9323798866635723 a001 63245986/119218851371*73681302247^(2/3) 9323798866635723 a001 53316291173/141422324*28143753123^(2/15) 9323798866635723 a001 182717648081/70711162*10749957122^(1/18) 9323798866635723 a001 31622993/22768774562*505019158607^(7/12) 9323798866635723 a001 10182505537/70711162*73681302247^(1/6) 9323798866635723 a001 63245986/312119004989*28143753123^(11/15) 9323798866635723 a001 31622993/1730726404001*28143753123^(5/6) 9323798866635723 a001 7778742049/141422324*23725150497407^(1/6) 9323798866635723 a001 7778742049/141422324*10749957122^(2/9) 9323798866635723 a001 63245986/119218851371*10749957122^(13/18) 9323798866635723 a001 63245986/5600748293801*10749957122^(8/9) 9323798866635723 a001 63246219/271444*4106118243^(1/6) 9323798866635723 a001 2971215073/141422324*817138163596^(2/9) 9323798866635723 a001 225851433717/141422324*1568397607^(1/12) 9323798866635723 a001 63245986/17393796001*4106118243^(2/3) 9323798866635723 a001 567451585/70711162*312119004989^(4/15) 9323798866635723 a001 31622993/1268860318*23725150497407^(5/12) 9323798866635723 a001 31622993/1268860318*505019158607^(10/21) 9323798866635723 a001 31622993/1268860318*28143753123^(8/15) 9323798866635723 a001 31622993/1268860318*10749957122^(5/9) 9323798866635723 a001 567451585/70711162*1568397607^(1/3) 9323798866635723 a001 139583862445/141422324*599074578^(1/9) 9323798866635723 a001 63245986/312119004989*1568397607^(5/6) 9323798866635723 a001 1201881744/35355581*599074578^(5/18) 9323798866635723 a001 591286729879/141422324*228826127^(1/24) 9323798866635723 a001 7778742049/370248451*87403803^(1/3) 9323798866635723 a001 433494437/141422324*3461452808002^(5/18) 9323798866635723 a001 433494437/141422324*28143753123^(1/3) 9323798866635723 a001 182717648081/70711162*228826127^(1/15) 9323798866635723 a001 63245986/1568397607*599074578^(11/18) 9323798866635723 a001 31622993/22768774562*599074578^(7/9) 9323798866635723 a001 63245986/1322157322203*599074578^(17/18) 9323798866635723 a001 53316291173/141422324*228826127^(1/6) 9323798866635723 a001 7778742049/141422324*228826127^(4/15) 9323798866635723 a001 1201881744/35355581*228826127^(7/24) 9323798866635723 a001 165580141/141422324*17393796001^(8/21) 9323798866635723 a001 63245986/370248451*45537549124^(4/9) 9323798866635723 a001 165580141/141422324*23725150497407^(7/24) 9323798866635723 a001 165580141/141422324*505019158607^(1/3) 9323798866635723 a001 165580141/141422324*10749957122^(7/18) 9323798866635723 a001 165580141/141422324*599074578^(4/9) 9323798866635723 a001 433494437/141422324*228826127^(5/12) 9323798866635723 a001 31622993/1268860318*228826127^(2/3) 9323798866635723 a001 63245986/28143753123*228826127^(19/24) 9323798866635723 a001 165580141/141422324*228826127^(7/15) 9323798866635723 a001 63245986/119218851371*228826127^(13/15) 9323798866635723 a001 63245986/312119004989*228826127^(11/12) 9323798866635724 a001 102334155/45537549124*87403803^(5/6) 9323798866635724 a001 2971215073/141422324*87403803^(1/3) 9323798866635724 a001 31622993/70711162*9062201101803^(1/3) 9323798866635724 a001 267914296/119218851371*87403803^(5/6) 9323798866635724 a001 3524667/1568437211*87403803^(5/6) 9323798866635724 a001 1836311903/817138163596*87403803^(5/6) 9323798866635724 a001 4807526976/2139295485799*87403803^(5/6) 9323798866635724 a001 12586269025/5600748293801*87403803^(5/6) 9323798866635724 a001 32951280099/14662949395604*87403803^(5/6) 9323798866635724 a001 53316291173/23725150497407*87403803^(5/6) 9323798866635724 a001 20365011074/9062201101803*87403803^(5/6) 9323798866635724 a001 7778742049/3461452808002*87403803^(5/6) 9323798866635724 a001 2971215073/1322157322203*87403803^(5/6) 9323798866635724 a001 1134903170/505019158607*87403803^(5/6) 9323798866635724 a001 433494437/192900153618*87403803^(5/6) 9323798866635724 a001 165580141/73681302247*87403803^(5/6) 9323798866635724 a001 24157817/370248451*54018521^(2/3) 9323798866635724 a001 10182505537/16692641*12752043^(1/6) 9323798866635724 a001 9227465/6643838879*20633239^(14/15) 9323798866635724 a001 63245986/28143753123*87403803^(5/6) 9323798866635724 a001 24157817/87403803*141422324^(5/9) 9323798866635725 a001 39088169/54018521*2139295485799^(1/3) 9323798866635725 a001 24157817/87403803*73681302247^(5/12) 9323798866635725 a001 24157817/87403803*228826127^(13/24) 9323798866635725 a001 9227465/4106118243*20633239^(19/21) 9323798866635725 a001 225851433717/54018521*20633239^(1/21) 9323798866635726 a001 24157817/45537549124*141422324^(8/9) 9323798866635726 a001 102334155/54018521*119218851371^(1/3) 9323798866635726 a001 7778742049/54018521*141422324^(2/9) 9323798866635726 a001 701408733/54018521*370248451^(1/3) 9323798866635726 a001 267914296/54018521*6643838879^(1/3) 9323798866635726 a001 24157817/599074578*17393796001^(11/21) 9323798866635726 a001 24157817/599074578*312119004989^(7/15) 9323798866635726 a001 24157817/599074578*505019158607^(11/24) 9323798866635726 a001 24157817/599074578*1568397607^(7/12) 9323798866635726 a001 24157817/599074578*599074578^(11/18) 9323798866635726 a001 24157817/2537720636*969323029^(2/3) 9323798866635726 a001 1836311903/54018521*17393796001^(5/21) 9323798866635726 a001 1836311903/54018521*505019158607^(5/24) 9323798866635726 a001 24157817/10749957122*817138163596^(5/9) 9323798866635726 a001 4807526976/54018521*1322157322203^(1/6) 9323798866635726 a001 24157817/14662949395604*17393796001^(20/21) 9323798866635726 a001 24157817/505019158607*17393796001^(17/21) 9323798866635726 a001 24157817/505019158607*45537549124^(7/9) 9323798866635726 a001 53316291173/54018521*17393796001^(2/21) 9323798866635726 a001 32951280099/54018521*45537549124^(1/9) 9323798866635726 a001 86267571272/54018521*312119004989^(1/15) 9323798866635726 a001 24157817/23725150497407*312119004989^(13/15) 9323798866635726 a001 24157817/14662949395604*3461452808002^(7/9) 9323798866635726 a001 24157817/2139295485799*23725150497407^(2/3) 9323798866635726 a001 24157817/2139295485799*505019158607^(16/21) 9323798866635726 a001 24157817/14662949395604*505019158607^(5/6) 9323798866635726 a001 139583862445/54018521*23725150497407^(1/24) 9323798866635726 a001 24157817/312119004989*1322157322203^(2/3) 9323798866635726 a001 24157817/119218851371*312119004989^(2/3) 9323798866635726 a001 24157817/119218851371*3461452808002^(11/18) 9323798866635726 a001 53316291173/54018521*505019158607^(1/12) 9323798866635726 a001 24157817/23725150497407*73681302247^(11/12) 9323798866635726 a001 24157817/45537549124*23725150497407^(13/24) 9323798866635726 a001 20365011074/54018521*3461452808002^(1/9) 9323798866635726 a001 24157817/45537549124*505019158607^(13/21) 9323798866635726 a001 139583862445/54018521*10749957122^(1/18) 9323798866635726 a001 24157817/45537549124*73681302247^(2/3) 9323798866635726 a001 20365011074/54018521*28143753123^(2/15) 9323798866635726 a001 24157817/119218851371*28143753123^(11/15) 9323798866635726 a001 24157817/1322157322203*28143753123^(5/6) 9323798866635726 a001 24157817/17393796001*17393796001^(2/3) 9323798866635726 a001 24157817/14662949395604*28143753123^(14/15) 9323798866635726 a001 24157817/17393796001*505019158607^(7/12) 9323798866635726 a001 7778742049/54018521*73681302247^(1/6) 9323798866635726 a001 24157817/45537549124*10749957122^(13/18) 9323798866635726 a001 24157817/2139295485799*10749957122^(8/9) 9323798866635726 a001 12586269025/54018521*4106118243^(1/6) 9323798866635726 a001 2971215073/54018521*23725150497407^(1/6) 9323798866635726 a001 2971215073/54018521*10749957122^(2/9) 9323798866635726 a001 86267571272/54018521*1568397607^(1/12) 9323798866635726 a001 24157817/6643838879*4106118243^(2/3) 9323798866635726 a001 1134903170/54018521*817138163596^(2/9) 9323798866635726 a001 53316291173/54018521*599074578^(1/9) 9323798866635726 a001 24157817/119218851371*1568397607^(5/6) 9323798866635726 a001 1836311903/54018521*599074578^(5/18) 9323798866635726 a001 225851433717/54018521*228826127^(1/24) 9323798866635726 a001 433494437/54018521*312119004989^(4/15) 9323798866635726 a001 24157817/969323029*23725150497407^(5/12) 9323798866635726 a001 24157817/969323029*505019158607^(10/21) 9323798866635726 a001 24157817/969323029*28143753123^(8/15) 9323798866635726 a001 24157817/969323029*10749957122^(5/9) 9323798866635726 a001 433494437/54018521*1568397607^(1/3) 9323798866635726 a001 139583862445/54018521*228826127^(1/15) 9323798866635726 a001 24157817/17393796001*599074578^(7/9) 9323798866635726 a001 24157817/505019158607*599074578^(17/18) 9323798866635726 a001 20365011074/54018521*228826127^(1/6) 9323798866635726 a001 2971215073/54018521*228826127^(4/15) 9323798866635726 a001 1836311903/54018521*228826127^(7/24) 9323798866635726 a001 165580141/54018521*3461452808002^(5/18) 9323798866635726 a001 165580141/54018521*28143753123^(1/3) 9323798866635726 a001 24157817/969323029*228826127^(2/3) 9323798866635726 a001 24157817/10749957122*228826127^(19/24) 9323798866635726 a001 165580141/54018521*228826127^(5/12) 9323798866635726 a001 24157817/45537549124*228826127^(13/15) 9323798866635726 a001 24157817/119218851371*228826127^(11/12) 9323798866635726 a001 1134903170/54018521*87403803^(1/3) 9323798866635726 a001 63245986/54018521*17393796001^(8/21) 9323798866635726 a001 24157817/141422324*45537549124^(4/9) 9323798866635726 a001 63245986/54018521*23725150497407^(7/24) 9323798866635726 a001 63245986/54018521*505019158607^(1/3) 9323798866635726 a001 63245986/54018521*10749957122^(7/18) 9323798866635726 a001 63245986/54018521*599074578^(4/9) 9323798866635726 a001 63245986/54018521*228826127^(7/15) 9323798866635727 a001 24157817/10749957122*87403803^(5/6) 9323798866635728 a001 32951280099/20633239*7881196^(1/9) 9323798866635728 a001 9227465/370248451*20633239^(16/21) 9323798866635728 a001 9227465/228826127*20633239^(11/15) 9323798866635729 a001 24157817/54018521*9062201101803^(1/3) 9323798866635731 a001 53316291173/87403803*12752043^(1/6) 9323798866635732 a001 139583862445/228826127*12752043^(1/6) 9323798866635732 a001 182717648081/299537289*12752043^(1/6) 9323798866635732 a001 956722026041/1568397607*12752043^(1/6) 9323798866635732 a001 2504730781961/4106118243*12752043^(1/6) 9323798866635732 a001 3278735159921/5374978561*12752043^(1/6) 9323798866635732 a001 10610209857723/17393796001*12752043^(1/6) 9323798866635732 a001 4052739537881/6643838879*12752043^(1/6) 9323798866635732 a001 1134903780/1860499*12752043^(1/6) 9323798866635732 a001 591286729879/969323029*12752043^(1/6) 9323798866635732 a001 225851433717/370248451*12752043^(1/6) 9323798866635733 a001 21566892818/35355581*12752043^(1/6) 9323798866635735 a001 63245986/20633239*20633239^(10/21) 9323798866635736 a001 32951280099/54018521*12752043^(1/6) 9323798866635736 a001 9227465/33385282*141422324^(5/9) 9323798866635736 a001 24157817/20633239*20633239^(8/15) 9323798866635736 a001 14930352/20633239*2139295485799^(1/3) 9323798866635736 a001 9227465/33385282*73681302247^(5/12) 9323798866635736 a001 9227465/33385282*228826127^(13/24) 9323798866635737 a001 701408733/20633239*20633239^(1/3) 9323798866635740 a001 7778742049/20633239*20633239^(4/21) 9323798866635742 a001 20365011074/20633239*20633239^(2/15) 9323798866635743 a001 9227465/141422324*54018521^(2/3) 9323798866635743 a001 39088169/20633239*119218851371^(1/3) 9323798866635744 a001 86267571272/20633239*20633239^(1/21) 9323798866635744 a001 9227465/17393796001*141422324^(8/9) 9323798866635744 a001 9303105/1875749*6643838879^(1/3) 9323798866635744 a001 9227465/228826127*17393796001^(11/21) 9323798866635744 a001 9227465/228826127*312119004989^(7/15) 9323798866635744 a001 9227465/228826127*505019158607^(11/24) 9323798866635744 a001 9227465/228826127*1568397607^(7/12) 9323798866635744 a001 9227465/228826127*599074578^(11/18) 9323798866635745 a001 2971215073/20633239*141422324^(2/9) 9323798866635745 a001 9238424/711491*370248451^(1/3) 9323798866635745 a001 701408733/20633239*17393796001^(5/21) 9323798866635745 a001 701408733/20633239*505019158607^(5/24) 9323798866635745 a001 9227465/4106118243*817138163596^(5/9) 9323798866635745 a001 1836311903/20633239*1322157322203^(1/6) 9323798866635745 a001 9227465/5600748293801*17393796001^(20/21) 9323798866635745 a001 9227465/192900153618*17393796001^(17/21) 9323798866635745 a001 1144206275/1875749*45537549124^(1/9) 9323798866635745 a001 9227465/192900153618*45537549124^(7/9) 9323798866635745 a001 32951280099/20633239*312119004989^(1/15) 9323798866635745 a001 9227465/192900153618*505019158607^(17/24) 9323798866635745 a001 9227465/9062201101803*312119004989^(13/15) 9323798866635745 a001 9227465/5600748293801*3461452808002^(7/9) 9323798866635745 a001 9227465/817138163596*23725150497407^(2/3) 9323798866635745 a001 9227465/5600748293801*505019158607^(5/6) 9323798866635745 a001 9227465/817138163596*505019158607^(16/21) 9323798866635745 a001 9227465/312119004989*5600748293801^(2/3) 9323798866635745 a001 53316291173/20633239*23725150497407^(1/24) 9323798866635745 a001 9227465/119218851371*1322157322203^(2/3) 9323798866635745 a001 20365011074/20633239*17393796001^(2/21) 9323798866635745 a001 9227465/9062201101803*73681302247^(11/12) 9323798866635745 a001 9227465/45537549124*312119004989^(2/3) 9323798866635745 a001 20365011074/20633239*505019158607^(1/12) 9323798866635745 a001 53316291173/20633239*10749957122^(1/18) 9323798866635745 a001 9227465/505019158607*28143753123^(5/6) 9323798866635745 a001 9227465/5600748293801*28143753123^(14/15) 9323798866635745 a001 4807526976/20633239*4106118243^(1/6) 9323798866635745 a001 9227465/45537549124*28143753123^(11/15) 9323798866635745 a001 9227465/17393796001*23725150497407^(13/24) 9323798866635745 a001 7778742049/20633239*3461452808002^(1/9) 9323798866635745 a001 9227465/17393796001*505019158607^(13/21) 9323798866635745 a001 9227465/17393796001*73681302247^(2/3) 9323798866635745 a001 7778742049/20633239*28143753123^(2/15) 9323798866635745 a001 9227465/817138163596*10749957122^(8/9) 9323798866635745 a001 9227465/17393796001*10749957122^(13/18) 9323798866635745 a001 9227465/6643838879*17393796001^(2/3) 9323798866635745 a001 9227465/6643838879*505019158607^(7/12) 9323798866635745 a001 2971215073/20633239*73681302247^(1/6) 9323798866635745 a001 32951280099/20633239*1568397607^(1/12) 9323798866635745 a001 1134903170/20633239*23725150497407^(1/6) 9323798866635745 a001 1134903170/20633239*10749957122^(2/9) 9323798866635745 a001 9227465/2537720636*4106118243^(2/3) 9323798866635745 a001 20365011074/20633239*599074578^(1/9) 9323798866635745 a001 9227465/45537549124*1568397607^(5/6) 9323798866635745 a001 9227465/969323029*969323029^(2/3) 9323798866635745 a001 701408733/20633239*599074578^(5/18) 9323798866635745 a001 86267571272/20633239*228826127^(1/24) 9323798866635745 a001 433494437/20633239*817138163596^(2/9) 9323798866635745 a001 53316291173/20633239*228826127^(1/15) 9323798866635745 a001 9227465/6643838879*599074578^(7/9) 9323798866635745 a001 9227465/192900153618*599074578^(17/18) 9323798866635745 a001 7778742049/20633239*228826127^(1/6) 9323798866635745 a001 701408733/20633239*228826127^(7/24) 9323798866635745 a001 1134903170/20633239*228826127^(4/15) 9323798866635745 a001 165580141/20633239*312119004989^(4/15) 9323798866635745 a001 9227465/370248451*23725150497407^(5/12) 9323798866635745 a001 9227465/370248451*505019158607^(10/21) 9323798866635745 a001 9227465/370248451*28143753123^(8/15) 9323798866635745 a001 9227465/370248451*10749957122^(5/9) 9323798866635745 a001 165580141/20633239*1568397607^(1/3) 9323798866635745 a001 9227465/4106118243*228826127^(19/24) 9323798866635745 a001 9227465/17393796001*228826127^(13/15) 9323798866635745 a001 9227465/45537549124*228826127^(11/12) 9323798866635745 a001 9227465/370248451*228826127^(2/3) 9323798866635745 a001 433494437/20633239*87403803^(1/3) 9323798866635745 a001 63245986/20633239*3461452808002^(5/18) 9323798866635745 a001 63245986/20633239*28143753123^(1/3) 9323798866635745 a001 63245986/20633239*228826127^(5/12) 9323798866635746 a001 9227465/4106118243*87403803^(5/6) 9323798866635747 a001 43133785636/16692641*4870847^(1/12) 9323798866635747 a001 1602508992/4250681*4870847^(5/24) 9323798866635748 a001 24157817/20633239*17393796001^(8/21) 9323798866635748 a001 9227465/54018521*45537549124^(4/9) 9323798866635748 a001 24157817/20633239*23725150497407^(7/24) 9323798866635748 a001 24157817/20633239*505019158607^(1/3) 9323798866635748 a001 24157817/20633239*10749957122^(7/18) 9323798866635748 a001 24157817/20633239*599074578^(4/9) 9323798866635748 a001 24157817/20633239*228826127^(7/15) 9323798866635751 a001 4976784/29134601*12752043^(2/3) 9323798866635754 a001 1144206275/1875749*12752043^(1/6) 9323798866635754 a001 75283811239/29134601*4870847^(1/12) 9323798866635755 a001 3524578/87403803*7881196^(7/9) 9323798866635755 a001 591286729879/228826127*4870847^(1/12) 9323798866635755 a001 86000486440/33281921*4870847^(1/12) 9323798866635756 a001 4052739537881/1568397607*4870847^(1/12) 9323798866635756 a001 3536736619241/1368706081*4870847^(1/12) 9323798866635756 a001 3278735159921/1268860318*4870847^(1/12) 9323798866635756 a001 2504730781961/969323029*4870847^(1/12) 9323798866635756 a001 956722026041/370248451*4870847^(1/12) 9323798866635756 a001 182717648081/70711162*4870847^(1/12) 9323798866635759 a001 139583862445/54018521*4870847^(1/12) 9323798866635760 a001 39088169/228826127*12752043^(2/3) 9323798866635761 a001 34111385/199691526*12752043^(2/3) 9323798866635761 a001 267914296/1568397607*12752043^(2/3) 9323798866635761 a001 233802911/1368706081*12752043^(2/3) 9323798866635761 a001 1836311903/10749957122*12752043^(2/3) 9323798866635761 a001 1602508992/9381251041*12752043^(2/3) 9323798866635761 a001 12586269025/73681302247*12752043^(2/3) 9323798866635761 a001 10983760033/64300051206*12752043^(2/3) 9323798866635761 a001 86267571272/505019158607*12752043^(2/3) 9323798866635761 a001 75283811239/440719107401*12752043^(2/3) 9323798866635761 a001 2504730781961/14662949395604*12752043^(2/3) 9323798866635761 a001 139583862445/817138163596*12752043^(2/3) 9323798866635761 a001 53316291173/312119004989*12752043^(2/3) 9323798866635761 a001 20365011074/119218851371*12752043^(2/3) 9323798866635761 a001 7778742049/45537549124*12752043^(2/3) 9323798866635761 a001 2971215073/17393796001*12752043^(2/3) 9323798866635761 a001 1134903170/6643838879*12752043^(2/3) 9323798866635761 a001 433494437/2537720636*12752043^(2/3) 9323798866635761 a001 165580141/969323029*12752043^(2/3) 9323798866635762 a001 63245986/370248451*12752043^(2/3) 9323798866635765 a001 24157817/141422324*12752043^(2/3) 9323798866635767 a001 9227465/20633239*9062201101803^(1/3) 9323798866635777 a001 53316291173/20633239*4870847^(1/12) 9323798866635786 a001 9227465/54018521*12752043^(2/3) 9323798866635796 a001 12586269025/33385282*4870847^(5/24) 9323798866635796 a001 233802911/4250681*4870847^(1/3) 9323798866635802 a001 3524578/12752043*20633239^(13/21) 9323798866635803 a001 10983760033/29134601*4870847^(5/24) 9323798866635804 a001 86267571272/228826127*4870847^(5/24) 9323798866635805 a001 267913919/710646*4870847^(5/24) 9323798866635805 a001 591286729879/1568397607*4870847^(5/24) 9323798866635805 a001 516002918640/1368706081*4870847^(5/24) 9323798866635805 a001 4052739537881/10749957122*4870847^(5/24) 9323798866635805 a001 3536736619241/9381251041*4870847^(5/24) 9323798866635805 a001 6557470319842/17393796001*4870847^(5/24) 9323798866635805 a001 2504730781961/6643838879*4870847^(5/24) 9323798866635805 a001 956722026041/2537720636*4870847^(5/24) 9323798866635805 a001 365435296162/969323029*4870847^(5/24) 9323798866635805 a001 139583862445/370248451*4870847^(5/24) 9323798866635805 a001 53316291173/141422324*4870847^(5/24) 9323798866635807 a001 31622993/3940598*7881196^(4/9) 9323798866635808 a001 20365011074/54018521*4870847^(5/24) 9323798866635815 a001 53316291173/12752043*1860498^(1/18) 9323798866635815 a001 3524578/12752043*141422324^(5/9) 9323798866635816 a001 5702887/7881196*2139295485799^(1/3) 9323798866635816 a001 3524578/12752043*73681302247^(5/12) 9323798866635816 a001 3524578/12752043*228826127^(13/24) 9323798866635827 a001 7778742049/20633239*4870847^(5/24) 9323798866635845 a001 34111385/4250681*4870847^(11/24) 9323798866635845 a001 1836311903/33385282*4870847^(1/3) 9323798866635852 a001 1762289/1268860318*20633239^(14/15) 9323798866635853 a001 1602508992/29134601*4870847^(1/3) 9323798866635853 a001 3524578/1568397607*20633239^(19/21) 9323798866635854 a001 12586269025/228826127*4870847^(1/3) 9323798866635854 a001 10983760033/199691526*4870847^(1/3) 9323798866635854 a001 86267571272/1568397607*4870847^(1/3) 9323798866635854 a001 75283811239/1368706081*4870847^(1/3) 9323798866635854 a001 591286729879/10749957122*4870847^(1/3) 9323798866635854 a001 12585437040/228811001*4870847^(1/3) 9323798866635854 a001 4052739537881/73681302247*4870847^(1/3) 9323798866635854 a001 3536736619241/64300051206*4870847^(1/3) 9323798866635854 a001 6557470319842/119218851371*4870847^(1/3) 9323798866635854 a001 2504730781961/45537549124*4870847^(1/3) 9323798866635854 a001 956722026041/17393796001*4870847^(1/3) 9323798866635854 a001 365435296162/6643838879*4870847^(1/3) 9323798866635854 a001 139583862445/2537720636*4870847^(1/3) 9323798866635854 a001 53316291173/969323029*4870847^(1/3) 9323798866635854 a001 20365011074/370248451*4870847^(1/3) 9323798866635854 a001 7778742049/141422324*4870847^(1/3) 9323798866635856 a001 3524578/87403803*20633239^(11/15) 9323798866635856 a001 12586269025/7881196*7881196^(1/9) 9323798866635857 a001 1762289/70711162*20633239^(16/21) 9323798866635857 a001 2971215073/54018521*4870847^(1/3) 9323798866635864 a001 139583862445/33385282*1860498^(1/18) 9323798866635864 a001 3732588/1970299*119218851371^(1/3) 9323798866635866 a001 66978574/1970299*20633239^(1/3) 9323798866635866 a001 24157817/7881196*20633239^(10/21) 9323798866635869 a001 2971215073/7881196*20633239^(4/21) 9323798866635870 a001 7778742049/7881196*20633239^(2/15) 9323798866635871 a001 365435296162/87403803*1860498^(1/18) 9323798866635872 a001 39088169/7881196*6643838879^(1/3) 9323798866635872 a001 3524578/87403803*17393796001^(11/21) 9323798866635872 a001 3524578/87403803*312119004989^(7/15) 9323798866635872 a001 3524578/87403803*505019158607^(11/24) 9323798866635872 a001 3524578/87403803*1568397607^(7/12) 9323798866635872 a001 3524578/87403803*599074578^(11/18) 9323798866635872 a001 32951280099/7881196*20633239^(1/21) 9323798866635872 a001 956722026041/228826127*1860498^(1/18) 9323798866635872 a001 2504730781961/599074578*1860498^(1/18) 9323798866635872 a001 6557470319842/1568397607*1860498^(1/18) 9323798866635872 a001 10610209857723/2537720636*1860498^(1/18) 9323798866635872 a001 4052739537881/969323029*1860498^(1/18) 9323798866635872 a001 3524578/6643838879*141422324^(8/9) 9323798866635872 a001 1548008755920/370248451*1860498^(1/18) 9323798866635873 a001 102334155/7881196*370248451^(1/3) 9323798866635873 a001 567451585/3940598*141422324^(2/9) 9323798866635873 a001 66978574/1970299*17393796001^(5/21) 9323798866635873 a001 66978574/1970299*505019158607^(5/24) 9323798866635873 a001 66978574/1970299*599074578^(5/18) 9323798866635873 a001 3524578/1568397607*817138163596^(5/9) 9323798866635873 a001 3524667/39604*1322157322203^(1/6) 9323798866635873 a001 1836311903/7881196*4106118243^(1/6) 9323798866635873 a001 1201881744/1970299*45537549124^(1/9) 9323798866635873 a001 3524578/2139295485799*17393796001^(20/21) 9323798866635873 a001 3524578/73681302247*17393796001^(17/21) 9323798866635873 a001 12586269025/7881196*312119004989^(1/15) 9323798866635873 a001 3524578/73681302247*45537549124^(7/9) 9323798866635873 a001 3524578/73681302247*505019158607^(17/24) 9323798866635873 a001 1762289/1730726404001*312119004989^(13/15) 9323798866635873 a001 1762289/7331474697802*23725150497407^(19/24) 9323798866635873 a001 3524578/2139295485799*3461452808002^(7/9) 9323798866635873 a001 1762289/7331474697802*505019158607^(19/21) 9323798866635873 a001 3524578/312119004989*23725150497407^(2/3) 9323798866635873 a001 3524578/312119004989*505019158607^(16/21) 9323798866635873 a001 3524578/119218851371*5600748293801^(2/3) 9323798866635873 a001 1762289/1730726404001*73681302247^(11/12) 9323798866635873 a001 10182505537/3940598*23725150497407^(1/24) 9323798866635873 a001 1762289/22768774562*1322157322203^(2/3) 9323798866635873 a001 10182505537/3940598*10749957122^(1/18) 9323798866635873 a001 1762289/96450076809*28143753123^(5/6) 9323798866635873 a001 3524578/2139295485799*28143753123^(14/15) 9323798866635873 a001 7778742049/7881196*17393796001^(2/21) 9323798866635873 a001 3524578/17393796001*312119004989^(2/3) 9323798866635873 a001 3524578/17393796001*3461452808002^(11/18) 9323798866635873 a001 3524578/17393796001*28143753123^(11/15) 9323798866635873 a001 3524578/312119004989*10749957122^(8/9) 9323798866635873 a001 3524578/6643838879*23725150497407^(13/24) 9323798866635873 a001 2971215073/7881196*3461452808002^(1/9) 9323798866635873 a001 3524578/6643838879*505019158607^(13/21) 9323798866635873 a001 3524578/6643838879*73681302247^(2/3) 9323798866635873 a001 2971215073/7881196*28143753123^(2/15) 9323798866635873 a001 3524578/6643838879*10749957122^(13/18) 9323798866635873 a001 12586269025/7881196*1568397607^(1/12) 9323798866635873 a001 1762289/1268860318*17393796001^(2/3) 9323798866635873 a001 591286729879/141422324*1860498^(1/18) 9323798866635873 a001 1762289/1268860318*505019158607^(7/12) 9323798866635873 a001 567451585/3940598*73681302247^(1/6) 9323798866635873 a001 7778742049/7881196*599074578^(1/9) 9323798866635873 a001 3524578/17393796001*1568397607^(5/6) 9323798866635873 a001 32951280099/7881196*228826127^(1/24) 9323798866635873 a001 433494437/7881196*23725150497407^(1/6) 9323798866635873 a001 433494437/7881196*10749957122^(2/9) 9323798866635873 a001 3524578/969323029*4106118243^(2/3) 9323798866635873 a001 10182505537/3940598*228826127^(1/15) 9323798866635873 a001 1762289/1268860318*599074578^(7/9) 9323798866635873 a001 3524578/73681302247*599074578^(17/18) 9323798866635873 a001 66978574/1970299*228826127^(7/24) 9323798866635873 a001 2971215073/7881196*228826127^(1/6) 9323798866635873 a001 433494437/7881196*228826127^(4/15) 9323798866635873 a001 3524578/370248451*969323029^(2/3) 9323798866635873 a001 165580141/7881196*817138163596^(2/9) 9323798866635873 a001 3524578/1568397607*228826127^(19/24) 9323798866635873 a001 3524578/6643838879*228826127^(13/15) 9323798866635873 a001 3524578/17393796001*228826127^(11/12) 9323798866635873 a001 31622993/3940598*312119004989^(4/15) 9323798866635873 a001 1762289/70711162*23725150497407^(5/12) 9323798866635873 a001 1762289/70711162*505019158607^(10/21) 9323798866635873 a001 1762289/70711162*28143753123^(8/15) 9323798866635873 a001 1762289/70711162*10749957122^(5/9) 9323798866635873 a001 31622993/3940598*1568397607^(1/3) 9323798866635873 a001 165580141/7881196*87403803^(1/3) 9323798866635873 a001 1762289/70711162*228826127^(2/3) 9323798866635874 a001 3524578/1568397607*87403803^(5/6) 9323798866635874 a001 3524578/54018521*54018521^(2/3) 9323798866635876 a001 225851433717/54018521*1860498^(1/18) 9323798866635876 a001 1134903170/20633239*4870847^(1/3) 9323798866635876 a001 24157817/7881196*3461452808002^(5/18) 9323798866635876 a001 24157817/7881196*28143753123^(1/3) 9323798866635876 a001 24157817/7881196*228826127^(5/12) 9323798866635882 a001 1201881744/1970299*12752043^(1/6) 9323798866635883 a001 9227465/7881196*20633239^(8/15) 9323798866635886 a001 4976784/4250681*4870847^(7/12) 9323798866635894 a001 86267571272/20633239*1860498^(1/18) 9323798866635894 a001 133957148/16692641*4870847^(11/24) 9323798866635895 a001 9227465/7881196*17393796001^(8/21) 9323798866635895 a001 3524578/20633239*45537549124^(4/9) 9323798866635895 a001 9227465/7881196*23725150497407^(7/24) 9323798866635895 a001 9227465/7881196*505019158607^(1/3) 9323798866635895 a001 9227465/7881196*10749957122^(7/18) 9323798866635895 a001 9227465/7881196*599074578^(4/9) 9323798866635895 a001 9227465/7881196*228826127^(7/15) 9323798866635902 a001 233802911/29134601*4870847^(11/24) 9323798866635903 a001 1836311903/228826127*4870847^(11/24) 9323798866635903 a001 267084832/33281921*4870847^(11/24) 9323798866635903 a001 12586269025/1568397607*4870847^(11/24) 9323798866635903 a001 10983760033/1368706081*4870847^(11/24) 9323798866635903 a001 43133785636/5374978561*4870847^(11/24) 9323798866635903 a001 75283811239/9381251041*4870847^(11/24) 9323798866635903 a001 591286729879/73681302247*4870847^(11/24) 9323798866635903 a001 86000486440/10716675201*4870847^(11/24) 9323798866635903 a001 4052739537881/505019158607*4870847^(11/24) 9323798866635903 a001 3536736619241/440719107401*4870847^(11/24) 9323798866635903 a001 3278735159921/408569081798*4870847^(11/24) 9323798866635903 a001 2504730781961/312119004989*4870847^(11/24) 9323798866635903 a001 956722026041/119218851371*4870847^(11/24) 9323798866635903 a001 182717648081/22768774562*4870847^(11/24) 9323798866635903 a001 139583862445/17393796001*4870847^(11/24) 9323798866635903 a001 53316291173/6643838879*4870847^(11/24) 9323798866635903 a001 10182505537/1268860318*4870847^(11/24) 9323798866635903 a001 7778742049/969323029*4870847^(11/24) 9323798866635903 a001 2971215073/370248451*4870847^(11/24) 9323798866635903 a001 567451585/70711162*4870847^(11/24) 9323798866635906 a001 10182505537/3940598*4870847^(1/12) 9323798866635906 a001 433494437/54018521*4870847^(11/24) 9323798866635925 a001 165580141/20633239*4870847^(11/24) 9323798866635928 a001 1836311903/4870847*1860498^(2/9) 9323798866635933 a001 3524578/20633239*12752043^(2/3) 9323798866635935 a001 5702887/33385282*4870847^(17/24) 9323798866635942 a001 39088169/33385282*4870847^(7/12) 9323798866635951 a001 34111385/29134601*4870847^(7/12) 9323798866635952 a001 267914296/228826127*4870847^(7/12) 9323798866635952 a001 233802911/199691526*4870847^(7/12) 9323798866635952 a001 1836311903/1568397607*4870847^(7/12) 9323798866635952 a001 1602508992/1368706081*4870847^(7/12) 9323798866635952 a001 12586269025/10749957122*4870847^(7/12) 9323798866635952 a001 10983760033/9381251041*4870847^(7/12) 9323798866635952 a001 86267571272/73681302247*4870847^(7/12) 9323798866635952 a001 75283811239/64300051206*4870847^(7/12) 9323798866635952 a001 2504730781961/2139295485799*4870847^(7/12) 9323798866635952 a001 365435296162/312119004989*4870847^(7/12) 9323798866635952 a001 139583862445/119218851371*4870847^(7/12) 9323798866635952 a001 53316291173/45537549124*4870847^(7/12) 9323798866635952 a001 20365011074/17393796001*4870847^(7/12) 9323798866635952 a001 7778742049/6643838879*4870847^(7/12) 9323798866635952 a001 2971215073/2537720636*4870847^(7/12) 9323798866635952 a001 1134903170/969323029*4870847^(7/12) 9323798866635952 a001 433494437/370248451*4870847^(7/12) 9323798866635953 a001 165580141/141422324*4870847^(7/12) 9323798866635955 a001 2971215073/7881196*4870847^(5/24) 9323798866635956 a001 63245986/54018521*4870847^(7/12) 9323798866635977 a001 24157817/20633239*4870847^(7/12) 9323798866635992 a001 4976784/29134601*4870847^(17/24) 9323798866635993 a001 5702887/228826127*4870847^(5/6) 9323798866636000 a001 39088169/228826127*4870847^(17/24) 9323798866636001 a001 34111385/199691526*4870847^(17/24) 9323798866636001 a001 267914296/1568397607*4870847^(17/24) 9323798866636001 a001 233802911/1368706081*4870847^(17/24) 9323798866636001 a001 1836311903/10749957122*4870847^(17/24) 9323798866636001 a001 1602508992/9381251041*4870847^(17/24) 9323798866636001 a001 12586269025/73681302247*4870847^(17/24) 9323798866636001 a001 10983760033/64300051206*4870847^(17/24) 9323798866636001 a001 86267571272/505019158607*4870847^(17/24) 9323798866636001 a001 75283811239/440719107401*4870847^(17/24) 9323798866636001 a001 2504730781961/14662949395604*4870847^(17/24) 9323798866636001 a001 139583862445/817138163596*4870847^(17/24) 9323798866636001 a001 53316291173/312119004989*4870847^(17/24) 9323798866636001 a001 20365011074/119218851371*4870847^(17/24) 9323798866636001 a001 7778742049/45537549124*4870847^(17/24) 9323798866636001 a001 2971215073/17393796001*4870847^(17/24) 9323798866636001 a001 1134903170/6643838879*4870847^(17/24) 9323798866636001 a001 433494437/2537720636*4870847^(17/24) 9323798866636001 a001 165580141/969323029*4870847^(17/24) 9323798866636002 a001 63245986/370248451*4870847^(17/24) 9323798866636003 a001 832040/3010349*1860498^(13/18) 9323798866636004 a001 433494437/7881196*4870847^(1/3) 9323798866636005 a001 24157817/141422324*4870847^(17/24) 9323798866636023 a001 32951280099/7881196*1860498^(1/18) 9323798866636023 a001 1762289/3940598*9062201101803^(1/3) 9323798866636026 a001 9227465/54018521*4870847^(17/24) 9323798866636042 a001 829464/33281921*4870847^(5/6) 9323798866636042 a001 5702887/1568397607*4870847^(23/24) 9323798866636049 a001 39088169/1568397607*4870847^(5/6) 9323798866636050 a001 34111385/1368706081*4870847^(5/6) 9323798866636050 a001 133957148/5374978561*4870847^(5/6) 9323798866636050 a001 233802911/9381251041*4870847^(5/6) 9323798866636050 a001 1836311903/73681302247*4870847^(5/6) 9323798866636050 a001 267084832/10716675201*4870847^(5/6) 9323798866636050 a001 12586269025/505019158607*4870847^(5/6) 9323798866636050 a001 10983760033/440719107401*4870847^(5/6) 9323798866636050 a001 43133785636/1730726404001*4870847^(5/6) 9323798866636050 a001 75283811239/3020733700601*4870847^(5/6) 9323798866636050 a001 182717648081/7331474697802*4870847^(5/6) 9323798866636050 a001 139583862445/5600748293801*4870847^(5/6) 9323798866636050 a001 53316291173/2139295485799*4870847^(5/6) 9323798866636050 a001 10182505537/408569081798*4870847^(5/6) 9323798866636050 a001 7778742049/312119004989*4870847^(5/6) 9323798866636050 a001 2971215073/119218851371*4870847^(5/6) 9323798866636050 a001 567451585/22768774562*4870847^(5/6) 9323798866636050 a001 433494437/17393796001*4870847^(5/6) 9323798866636050 a001 165580141/6643838879*4870847^(5/6) 9323798866636051 a001 31622993/1268860318*4870847^(5/6) 9323798866636053 a001 31622993/3940598*4870847^(11/24) 9323798866636053 a001 24157817/969323029*4870847^(5/6) 9323798866636072 a001 9227465/370248451*4870847^(5/6) 9323798866636091 a001 4976784/1368706081*4870847^(23/24) 9323798866636098 a001 39088169/10749957122*4870847^(23/24) 9323798866636099 a001 831985/228811001*4870847^(23/24) 9323798866636099 a001 267914296/73681302247*4870847^(23/24) 9323798866636099 a001 233802911/64300051206*4870847^(23/24) 9323798866636099 a001 1836311903/505019158607*4870847^(23/24) 9323798866636099 a001 1602508992/440719107401*4870847^(23/24) 9323798866636099 a001 12586269025/3461452808002*4870847^(23/24) 9323798866636099 a001 10983760033/3020733700601*4870847^(23/24) 9323798866636099 a001 86267571272/23725150497407*4870847^(23/24) 9323798866636099 a001 53316291173/14662949395604*4870847^(23/24) 9323798866636099 a001 20365011074/5600748293801*4870847^(23/24) 9323798866636099 a001 7778742049/2139295485799*4870847^(23/24) 9323798866636099 a001 2971215073/817138163596*4870847^(23/24) 9323798866636099 a001 1134903170/312119004989*4870847^(23/24) 9323798866636099 a001 433494437/119218851371*4870847^(23/24) 9323798866636099 a001 165580141/45537549124*4870847^(23/24) 9323798866636100 a001 63245986/17393796001*4870847^(23/24) 9323798866636103 a001 24157817/6643838879*4870847^(23/24) 9323798866636106 a001 1836311903/1860498*710647^(1/6) 9323798866636121 a001 9227465/2537720636*4870847^(23/24) 9323798866636124 a001 9227465/7881196*4870847^(7/12) 9323798866636173 a001 3524578/20633239*4870847^(17/24) 9323798866636201 a001 1762289/70711162*4870847^(5/6) 9323798866636249 a001 3524578/969323029*4870847^(23/24) 9323798866636264 a001 1602508992/4250681*1860498^(2/9) 9323798866636313 a001 12586269025/33385282*1860498^(2/9) 9323798866636320 a001 10983760033/29134601*1860498^(2/9) 9323798866636321 a001 86267571272/228826127*1860498^(2/9) 9323798866636321 a001 267913919/710646*1860498^(2/9) 9323798866636321 a001 591286729879/1568397607*1860498^(2/9) 9323798866636321 a001 516002918640/1368706081*1860498^(2/9) 9323798866636321 a001 4052739537881/10749957122*1860498^(2/9) 9323798866636321 a001 3536736619241/9381251041*1860498^(2/9) 9323798866636321 a001 6557470319842/17393796001*1860498^(2/9) 9323798866636321 a001 2504730781961/6643838879*1860498^(2/9) 9323798866636321 a001 956722026041/2537720636*1860498^(2/9) 9323798866636321 a001 365435296162/969323029*1860498^(2/9) 9323798866636321 a001 139583862445/370248451*1860498^(2/9) 9323798866636322 a001 53316291173/141422324*1860498^(2/9) 9323798866636325 a001 20365011074/54018521*1860498^(2/9) 9323798866636343 a001 7778742049/20633239*1860498^(2/9) 9323798866636345 a001 1346269/4870847*20633239^(13/21) 9323798866636358 a001 1346269/4870847*141422324^(5/9) 9323798866636359 a001 2178309/3010349*2139295485799^(1/3) 9323798866636359 a001 1346269/4870847*73681302247^(5/12) 9323798866636359 a001 1346269/4870847*228826127^(13/24) 9323798866636377 a001 165580141/4870847*1860498^(7/18) 9323798866636471 a001 2971215073/7881196*1860498^(2/9) 9323798866636627 a001 1346269/33385282*7881196^(7/9) 9323798866636688 a001 24157817/3010349*7881196^(4/9) 9323798866636694 a001 5702887/3010349*119218851371^(1/3) 9323798866636713 a001 433494437/12752043*1860498^(7/18) 9323798866636727 a001 1346269/33385282*20633239^(11/15) 9323798866636731 a001 1346269/969323029*20633239^(14/15) 9323798866636732 a001 1346269/599074578*20633239^(19/21) 9323798866636735 a001 4807526976/3010349*7881196^(1/9) 9323798866636738 a001 1346269/54018521*20633239^(16/21) 9323798866636743 a001 14930352/3010349*6643838879^(1/3) 9323798866636743 a001 1346269/33385282*17393796001^(11/21) 9323798866636743 a001 1346269/33385282*312119004989^(7/15) 9323798866636743 a001 1346269/33385282*505019158607^(11/24) 9323798866636743 a001 1346269/33385282*1568397607^(7/12) 9323798866636743 a001 1346269/33385282*599074578^(11/18) 9323798866636744 a001 102334155/3010349*20633239^(1/3) 9323798866636747 a001 1134903170/3010349*20633239^(4/21) 9323798866636749 a001 2971215073/3010349*20633239^(2/15) 9323798866636750 a001 39088169/3010349*370248451^(1/3) 9323798866636751 a001 12586269025/3010349*20633239^(1/21) 9323798866636751 a001 1346269/2537720636*141422324^(8/9) 9323798866636751 a001 102334155/3010349*17393796001^(5/21) 9323798866636751 a001 102334155/3010349*505019158607^(5/24) 9323798866636751 a001 102334155/3010349*599074578^(5/18) 9323798866636751 a001 102334155/3010349*228826127^(7/24) 9323798866636752 a001 433494437/3010349*141422324^(2/9) 9323798866636752 a001 1346269/599074578*817138163596^(5/9) 9323798866636752 a001 267914296/3010349*1322157322203^(1/6) 9323798866636752 a001 701408733/3010349*4106118243^(1/6) 9323798866636752 a001 1836311903/3010349*45537549124^(1/9) 9323798866636752 a001 4807526976/3010349*312119004989^(1/15) 9323798866636752 a001 1346269/28143753123*17393796001^(17/21) 9323798866636752 a001 1346269/817138163596*17393796001^(20/21) 9323798866636752 a001 1346269/28143753123*45537549124^(7/9) 9323798866636752 a001 1346269/28143753123*505019158607^(17/24) 9323798866636752 a001 1346269/1322157322203*312119004989^(13/15) 9323798866636752 a001 1346269/5600748293801*23725150497407^(19/24) 9323798866636752 a001 1346269/817138163596*3461452808002^(7/9) 9323798866636752 a001 1346269/5600748293801*505019158607^(19/21) 9323798866636752 a001 1346269/23725150497407*505019158607^(23/24) 9323798866636752 a001 1346269/817138163596*505019158607^(5/6) 9323798866636752 a001 1346269/119218851371*23725150497407^(2/3) 9323798866636752 a001 1346269/119218851371*505019158607^(16/21) 9323798866636752 a001 1346269/1322157322203*73681302247^(11/12) 9323798866636752 a001 1346269/45537549124*5600748293801^(2/3) 9323798866636752 a001 1346269/73681302247*28143753123^(5/6) 9323798866636752 a001 1346269/817138163596*28143753123^(14/15) 9323798866636752 a001 7778742049/3010349*23725150497407^(1/24) 9323798866636752 a001 1346269/17393796001*1322157322203^(2/3) 9323798866636752 a001 7778742049/3010349*10749957122^(1/18) 9323798866636752 a001 1346269/119218851371*10749957122^(8/9) 9323798866636752 a001 2971215073/3010349*17393796001^(2/21) 9323798866636752 a001 1346269/6643838879*312119004989^(2/3) 9323798866636752 a001 1346269/6643838879*3461452808002^(11/18) 9323798866636752 a001 2971215073/3010349*505019158607^(1/12) 9323798866636752 a001 1346269/6643838879*28143753123^(11/15) 9323798866636752 a001 4807526976/3010349*1568397607^(1/12) 9323798866636752 a001 1346269/2537720636*23725150497407^(13/24) 9323798866636752 a001 1134903170/3010349*3461452808002^(1/9) 9323798866636752 a001 1346269/2537720636*505019158607^(13/21) 9323798866636752 a001 1346269/2537720636*73681302247^(2/3) 9323798866636752 a001 1134903170/3010349*28143753123^(2/15) 9323798866636752 a001 1346269/2537720636*10749957122^(13/18) 9323798866636752 a001 2971215073/3010349*599074578^(1/9) 9323798866636752 a001 1346269/6643838879*1568397607^(5/6) 9323798866636752 a001 12586269025/3010349*228826127^(1/24) 9323798866636752 a001 1346269/969323029*17393796001^(2/3) 9323798866636752 a001 1346269/969323029*505019158607^(7/12) 9323798866636752 a001 433494437/3010349*73681302247^(1/6) 9323798866636752 a001 7778742049/3010349*228826127^(1/15) 9323798866636752 a001 1346269/28143753123*599074578^(17/18) 9323798866636752 a001 1346269/969323029*599074578^(7/9) 9323798866636752 a001 1134903170/3010349*228826127^(1/6) 9323798866636752 a001 165580141/3010349*23725150497407^(1/6) 9323798866636752 a001 165580141/3010349*10749957122^(2/9) 9323798866636752 a001 1346269/370248451*4106118243^(2/3) 9323798866636752 a001 1346269/599074578*228826127^(19/24) 9323798866636752 a001 165580141/3010349*228826127^(4/15) 9323798866636752 a001 1346269/2537720636*228826127^(13/15) 9323798866636752 a001 1346269/6643838879*228826127^(11/12) 9323798866636752 a001 1346269/141422324*969323029^(2/3) 9323798866636752 a001 63245986/3010349*817138163596^(2/9) 9323798866636752 a001 63245986/3010349*87403803^(1/3) 9323798866636753 a001 1346269/599074578*87403803^(5/6) 9323798866636755 a001 1346269/54018521*23725150497407^(5/12) 9323798866636755 a001 1346269/54018521*505019158607^(10/21) 9323798866636755 a001 1346269/54018521*28143753123^(8/15) 9323798866636755 a001 1346269/54018521*10749957122^(5/9) 9323798866636755 a001 24157817/3010349*1568397607^(1/3) 9323798866636755 a001 1346269/54018521*228826127^(2/3) 9323798866636761 a001 1836311903/3010349*12752043^(1/6) 9323798866636762 a001 567451585/16692641*1860498^(7/18) 9323798866636763 a001 9227465/3010349*20633239^(10/21) 9323798866636769 a001 2971215073/87403803*1860498^(7/18) 9323798866636770 a001 7778742049/228826127*1860498^(7/18) 9323798866636770 a001 10182505537/299537289*1860498^(7/18) 9323798866636770 a001 53316291173/1568397607*1860498^(7/18) 9323798866636770 a001 139583862445/4106118243*1860498^(7/18) 9323798866636770 a001 182717648081/5374978561*1860498^(7/18) 9323798866636770 a001 956722026041/28143753123*1860498^(7/18) 9323798866636770 a001 2504730781961/73681302247*1860498^(7/18) 9323798866636770 a001 3278735159921/96450076809*1860498^(7/18) 9323798866636770 a001 10610209857723/312119004989*1860498^(7/18) 9323798866636770 a001 4052739537881/119218851371*1860498^(7/18) 9323798866636770 a001 387002188980/11384387281*1860498^(7/18) 9323798866636770 a001 591286729879/17393796001*1860498^(7/18) 9323798866636770 a001 225851433717/6643838879*1860498^(7/18) 9323798866636770 a001 1135099622/33391061*1860498^(7/18) 9323798866636770 a001 32951280099/969323029*1860498^(7/18) 9323798866636770 a001 12586269025/370248451*1860498^(7/18) 9323798866636771 a001 1201881744/35355581*1860498^(7/18) 9323798866636771 a001 1346269/20633239*54018521^(2/3) 9323798866636773 a001 1836311903/54018521*1860498^(7/18) 9323798866636774 a001 9227465/3010349*3461452808002^(5/18) 9323798866636774 a001 9227465/3010349*28143753123^(1/3) 9323798866636774 a001 9227465/3010349*228826127^(5/12) 9323798866636784 a001 7778742049/3010349*4870847^(1/12) 9323798866636792 a001 701408733/20633239*1860498^(7/18) 9323798866636818 a001 14930352/4870847*1860498^(5/9) 9323798866636833 a001 1134903170/3010349*4870847^(5/24) 9323798866636883 a001 165580141/3010349*4870847^(1/3) 9323798866636890 a001 3524578/3010349*20633239^(8/15) 9323798866636901 a001 12586269025/3010349*1860498^(1/18) 9323798866636902 a001 3524578/3010349*17393796001^(8/21) 9323798866636902 a001 1346269/7881196*45537549124^(4/9) 9323798866636902 a001 3524578/3010349*23725150497407^(7/24) 9323798866636902 a001 3524578/3010349*505019158607^(1/3) 9323798866636902 a001 3524578/3010349*10749957122^(7/18) 9323798866636902 a001 3524578/3010349*599074578^(4/9) 9323798866636902 a001 3524578/3010349*228826127^(7/15) 9323798866636920 a001 66978574/1970299*1860498^(7/18) 9323798866636935 a001 24157817/3010349*4870847^(11/24) 9323798866636940 a001 1346269/7881196*12752043^(2/3) 9323798866637082 a001 1346269/54018521*4870847^(5/6) 9323798866637088 a001 12586269025/4870847*710647^(2/21) 9323798866637095 a001 1346269/3010349*3010349^(2/3) 9323798866637128 a001 1346269/370248451*4870847^(23/24) 9323798866637131 a001 3524578/3010349*4870847^(7/12) 9323798866637161 a001 39088169/12752043*1860498^(5/9) 9323798866637180 a001 1346269/7881196*4870847^(17/24) 9323798866637211 a001 14619165/4769326*1860498^(5/9) 9323798866637218 a001 267914296/87403803*1860498^(5/9) 9323798866637219 a001 701408733/228826127*1860498^(5/9) 9323798866637219 a001 1836311903/599074578*1860498^(5/9) 9323798866637219 a001 686789568/224056801*1860498^(5/9) 9323798866637219 a001 12586269025/4106118243*1860498^(5/9) 9323798866637219 a001 32951280099/10749957122*1860498^(5/9) 9323798866637219 a001 86267571272/28143753123*1860498^(5/9) 9323798866637219 a001 32264490531/10525900321*1860498^(5/9) 9323798866637219 a001 591286729879/192900153618*1860498^(5/9) 9323798866637219 a001 1548008755920/505019158607*1860498^(5/9) 9323798866637219 a001 1515744265389/494493258286*1860498^(5/9) 9323798866637219 a001 2504730781961/817138163596*1860498^(5/9) 9323798866637219 a001 956722026041/312119004989*1860498^(5/9) 9323798866637219 a001 365435296162/119218851371*1860498^(5/9) 9323798866637219 a001 139583862445/45537549124*1860498^(5/9) 9323798866637219 a001 53316291173/17393796001*1860498^(5/9) 9323798866637219 a001 20365011074/6643838879*1860498^(5/9) 9323798866637219 a001 7778742049/2537720636*1860498^(5/9) 9323798866637219 a001 2971215073/969323029*1860498^(5/9) 9323798866637219 a001 1134903170/370248451*1860498^(5/9) 9323798866637220 a001 433494437/141422324*1860498^(5/9) 9323798866637222 a001 165580141/54018521*1860498^(5/9) 9323798866637242 a001 63245986/20633239*1860498^(5/9) 9323798866637350 a001 1134903170/3010349*1860498^(2/9) 9323798866637373 a001 24157817/7881196*1860498^(5/9) 9323798866637424 a001 10983760033/4250681*710647^(2/21) 9323798866637425 a001 233802911/620166*710647^(5/21) 9323798866637425 a001 2178309/7881196*1860498^(13/18) 9323798866637473 a001 43133785636/16692641*710647^(2/21) 9323798866637480 a001 75283811239/29134601*710647^(2/21) 9323798866637481 a001 591286729879/228826127*710647^(2/21) 9323798866637481 a001 86000486440/33281921*710647^(2/21) 9323798866637481 a001 4052739537881/1568397607*710647^(2/21) 9323798866637481 a001 3536736619241/1368706081*710647^(2/21) 9323798866637481 a001 3278735159921/1268860318*710647^(2/21) 9323798866637481 a001 2504730781961/969323029*710647^(2/21) 9323798866637481 a001 956722026041/370248451*710647^(2/21) 9323798866637482 a001 182717648081/70711162*710647^(2/21) 9323798866637484 a001 139583862445/54018521*710647^(2/21) 9323798866637503 a001 53316291173/20633239*710647^(2/21) 9323798866637631 a001 10182505537/3940598*710647^(2/21) 9323798866637633 a001 5702887/20633239*1860498^(13/18) 9323798866637663 a001 14930352/54018521*1860498^(13/18) 9323798866637667 a001 39088169/141422324*1860498^(13/18) 9323798866637668 a001 102334155/370248451*1860498^(13/18) 9323798866637668 a001 267914296/969323029*1860498^(13/18) 9323798866637668 a001 701408733/2537720636*1860498^(13/18) 9323798866637668 a001 1836311903/6643838879*1860498^(13/18) 9323798866637668 a001 4807526976/17393796001*1860498^(13/18) 9323798866637668 a001 12586269025/45537549124*1860498^(13/18) 9323798866637668 a001 32951280099/119218851371*1860498^(13/18) 9323798866637668 a001 86267571272/312119004989*1860498^(13/18) 9323798866637668 a001 225851433717/817138163596*1860498^(13/18) 9323798866637668 a001 1548008755920/5600748293801*1860498^(13/18) 9323798866637668 a001 139583862445/505019158607*1860498^(13/18) 9323798866637668 a001 53316291173/192900153618*1860498^(13/18) 9323798866637668 a001 20365011074/73681302247*1860498^(13/18) 9323798866637668 a001 7778742049/28143753123*1860498^(13/18) 9323798866637668 a001 2971215073/10749957122*1860498^(13/18) 9323798866637668 a001 1134903170/4106118243*1860498^(13/18) 9323798866637668 a001 433494437/1568397607*1860498^(13/18) 9323798866637668 a001 165580141/599074578*1860498^(13/18) 9323798866637668 a001 63245986/228826127*1860498^(13/18) 9323798866637670 a001 24157817/87403803*1860498^(13/18) 9323798866637682 a001 9227465/33385282*1860498^(13/18) 9323798866637723 a001 726103/29134601*1860498^(8/9) 9323798866637761 a001 3524578/12752043*1860498^(13/18) 9323798866637780 a001 1346269/3010349*9062201101803^(1/3) 9323798866637799 a001 102334155/3010349*1860498^(7/18) 9323798866638060 a001 5702887/228826127*1860498^(8/9) 9323798866638109 a001 829464/33281921*1860498^(8/9) 9323798866638116 a001 39088169/1568397607*1860498^(8/9) 9323798866638117 a001 34111385/1368706081*1860498^(8/9) 9323798866638117 a001 133957148/5374978561*1860498^(8/9) 9323798866638117 a001 233802911/9381251041*1860498^(8/9) 9323798866638117 a001 1836311903/73681302247*1860498^(8/9) 9323798866638117 a001 267084832/10716675201*1860498^(8/9) 9323798866638117 a001 12586269025/505019158607*1860498^(8/9) 9323798866638117 a001 10983760033/440719107401*1860498^(8/9) 9323798866638117 a001 43133785636/1730726404001*1860498^(8/9) 9323798866638117 a001 75283811239/3020733700601*1860498^(8/9) 9323798866638117 a001 182717648081/7331474697802*1860498^(8/9) 9323798866638117 a001 139583862445/5600748293801*1860498^(8/9) 9323798866638117 a001 53316291173/2139295485799*1860498^(8/9) 9323798866638117 a001 10182505537/408569081798*1860498^(8/9) 9323798866638117 a001 7778742049/312119004989*1860498^(8/9) 9323798866638117 a001 2971215073/119218851371*1860498^(8/9) 9323798866638117 a001 567451585/22768774562*1860498^(8/9) 9323798866638117 a001 433494437/17393796001*1860498^(8/9) 9323798866638117 a001 165580141/6643838879*1860498^(8/9) 9323798866638118 a001 31622993/1268860318*1860498^(8/9) 9323798866638120 a001 24157817/969323029*1860498^(8/9) 9323798866638139 a001 9227465/370248451*1860498^(8/9) 9323798866638268 a001 1762289/70711162*1860498^(8/9) 9323798866638270 a001 9227465/3010349*1860498^(5/9) 9323798866638304 a001 1346269/4870847*1860498^(13/18) 9323798866638407 a001 4807526976/4870847*710647^(1/6) 9323798866638510 a001 7778742049/3010349*710647^(2/21) 9323798866638742 a001 12586269025/12752043*710647^(1/6) 9323798866638791 a001 32951280099/33385282*710647^(1/6) 9323798866638799 a001 86267571272/87403803*710647^(1/6) 9323798866638800 a001 225851433717/228826127*710647^(1/6) 9323798866638800 a001 591286729879/599074578*710647^(1/6) 9323798866638800 a001 1548008755920/1568397607*710647^(1/6) 9323798866638800 a001 4052739537881/4106118243*710647^(1/6) 9323798866638800 a001 4807525989/4870846*710647^(1/6) 9323798866638800 a001 6557470319842/6643838879*710647^(1/6) 9323798866638800 a001 2504730781961/2537720636*710647^(1/6) 9323798866638800 a001 956722026041/969323029*710647^(1/6) 9323798866638800 a001 365435296162/370248451*710647^(1/6) 9323798866638800 a001 139583862445/141422324*710647^(1/6) 9323798866638803 a001 53316291173/54018521*710647^(1/6) 9323798866638822 a001 20365011074/20633239*710647^(1/6) 9323798866638950 a001 7778742049/7881196*710647^(1/6) 9323798866639149 a001 1346269/54018521*1860498^(8/9) 9323798866639726 a001 1836311903/4870847*710647^(5/21) 9323798866639829 a001 2971215073/3010349*710647^(1/6) 9323798866640061 a001 1602508992/4250681*710647^(5/21) 9323798866640062 a001 831985/15126*710647^(8/21) 9323798866640068 a001 514229/1860498*20633239^(13/21) 9323798866640081 a001 514229/1860498*141422324^(5/9) 9323798866640081 a001 832040/1149851*2139295485799^(1/3) 9323798866640081 a001 514229/1860498*73681302247^(5/12) 9323798866640081 a001 514229/1860498*228826127^(13/24) 9323798866640110 a001 12586269025/33385282*710647^(5/21) 9323798866640117 a001 10983760033/29134601*710647^(5/21) 9323798866640118 a001 86267571272/228826127*710647^(5/21) 9323798866640119 a001 267913919/710646*710647^(5/21) 9323798866640119 a001 591286729879/1568397607*710647^(5/21) 9323798866640119 a001 516002918640/1368706081*710647^(5/21) 9323798866640119 a001 4052739537881/10749957122*710647^(5/21) 9323798866640119 a001 3536736619241/9381251041*710647^(5/21) 9323798866640119 a001 6557470319842/17393796001*710647^(5/21) 9323798866640119 a001 2504730781961/6643838879*710647^(5/21) 9323798866640119 a001 956722026041/2537720636*710647^(5/21) 9323798866640119 a001 365435296162/969323029*710647^(5/21) 9323798866640119 a001 139583862445/370248451*710647^(5/21) 9323798866640119 a001 53316291173/141422324*710647^(5/21) 9323798866640122 a001 20365011074/54018521*710647^(5/21) 9323798866640140 a001 7778742049/20633239*710647^(5/21) 9323798866640269 a001 2971215073/7881196*710647^(5/21) 9323798866640424 a001 102334155/1149851*1149851^(1/3) 9323798866640722 a001 31622993/930249*710647^(5/12) 9323798866641147 a001 1134903170/3010349*710647^(5/21) 9323798866642026 a001 514229/1860498*1860498^(13/18) 9323798866642363 a001 267914296/4870847*710647^(8/21) 9323798866642382 a001 2178309/1149851*119218851371^(1/3) 9323798866642601 a001 514229/12752043*7881196^(7/9) 9323798866642691 a001 829464/103361*710647^(11/21) 9323798866642699 a001 233802911/4250681*710647^(8/21) 9323798866642701 a001 514229/12752043*20633239^(11/15) 9323798866642717 a001 5702887/1149851*6643838879^(1/3) 9323798866642717 a001 514229/12752043*17393796001^(11/21) 9323798866642717 a001 514229/12752043*312119004989^(7/15) 9323798866642717 a001 514229/12752043*505019158607^(11/24) 9323798866642717 a001 514229/12752043*1568397607^(7/12) 9323798866642717 a001 514229/12752043*599074578^(11/18) 9323798866642730 a001 9227465/1149851*7881196^(4/9) 9323798866642748 a001 1836311903/33385282*710647^(8/21) 9323798866642754 a001 514229/370248451*20633239^(14/15) 9323798866642755 a001 514229/228826127*20633239^(19/21) 9323798866642755 a001 1602508992/29134601*710647^(8/21) 9323798866642756 a001 12586269025/228826127*710647^(8/21) 9323798866642756 a001 10983760033/199691526*710647^(8/21) 9323798866642756 a001 86267571272/1568397607*710647^(8/21) 9323798866642756 a001 75283811239/1368706081*710647^(8/21) 9323798866642756 a001 591286729879/10749957122*710647^(8/21) 9323798866642756 a001 12585437040/228811001*710647^(8/21) 9323798866642756 a001 4052739537881/73681302247*710647^(8/21) 9323798866642756 a001 3536736619241/64300051206*710647^(8/21) 9323798866642756 a001 6557470319842/119218851371*710647^(8/21) 9323798866642756 a001 2504730781961/45537549124*710647^(8/21) 9323798866642756 a001 956722026041/17393796001*710647^(8/21) 9323798866642756 a001 365435296162/6643838879*710647^(8/21) 9323798866642756 a001 139583862445/2537720636*710647^(8/21) 9323798866642756 a001 53316291173/969323029*710647^(8/21) 9323798866642756 a001 20365011074/370248451*710647^(8/21) 9323798866642756 a001 7778742049/141422324*710647^(8/21) 9323798866642758 a001 1836311903/1149851*7881196^(1/9) 9323798866642759 a001 2971215073/54018521*710647^(8/21) 9323798866642766 a001 39088169/1149851*20633239^(1/3) 9323798866642766 a001 14930352/1149851*370248451^(1/3) 9323798866642771 a001 433494437/1149851*20633239^(4/21) 9323798866642772 a001 1134903170/1149851*20633239^(2/15) 9323798866642773 a001 39088169/1149851*17393796001^(5/21) 9323798866642773 a001 39088169/1149851*505019158607^(5/24) 9323798866642774 a001 39088169/1149851*599074578^(5/18) 9323798866642774 a001 39088169/1149851*228826127^(7/24) 9323798866642774 a001 4807526976/1149851*20633239^(1/21) 9323798866642774 a001 514229/969323029*141422324^(8/9) 9323798866642775 a001 514229/228826127*817138163596^(5/9) 9323798866642775 a001 102334155/1149851*1322157322203^(1/6) 9323798866642775 a001 514229/228826127*228826127^(19/24) 9323798866642775 a001 165580141/1149851*141422324^(2/9) 9323798866642775 a001 267914296/1149851*4106118243^(1/6) 9323798866642775 a001 701408733/1149851*45537549124^(1/9) 9323798866642775 a001 1836311903/1149851*312119004989^(1/15) 9323798866642775 a001 1836311903/1149851*1568397607^(1/12) 9323798866642775 a001 514229/10749957122*17393796001^(17/21) 9323798866642775 a001 514229/10749957122*45537549124^(7/9) 9323798866642775 a001 514229/10749957122*505019158607^(17/24) 9323798866642775 a001 514229/312119004989*17393796001^(20/21) 9323798866642775 a001 514229/28143753123*28143753123^(5/6) 9323798866642775 a001 514229/505019158607*312119004989^(13/15) 9323798866642775 a001 514229/3461452808002*9062201101803^(5/6) 9323798866642775 a001 514229/2139295485799*23725150497407^(19/24) 9323798866642775 a001 514229/2139295485799*505019158607^(19/21) 9323798866642775 a001 514229/312119004989*3461452808002^(7/9) 9323798866642775 a001 514229/312119004989*505019158607^(5/6) 9323798866642775 a001 514229/505019158607*73681302247^(11/12) 9323798866642775 a001 514229/45537549124*23725150497407^(2/3) 9323798866642775 a001 514229/45537549124*505019158607^(16/21) 9323798866642775 a001 514229/312119004989*28143753123^(14/15) 9323798866642775 a001 514229/17393796001*5600748293801^(2/3) 9323798866642775 a001 514229/45537549124*10749957122^(8/9) 9323798866642775 a001 514229/6643838879*1322157322203^(2/3) 9323798866642775 a001 2971215073/1149851*23725150497407^(1/24) 9323798866642775 a001 2971215073/1149851*10749957122^(1/18) 9323798866642775 a001 1134903170/1149851*17393796001^(2/21) 9323798866642775 a001 514229/2537720636*312119004989^(2/3) 9323798866642775 a001 514229/2537720636*3461452808002^(11/18) 9323798866642775 a001 1134903170/1149851*505019158607^(1/12) 9323798866642775 a001 514229/2537720636*28143753123^(11/15) 9323798866642775 a001 1134903170/1149851*599074578^(1/9) 9323798866642775 a001 514229/2537720636*1568397607^(5/6) 9323798866642775 a001 4807526976/1149851*228826127^(1/24) 9323798866642775 a001 514229/969323029*23725150497407^(13/24) 9323798866642775 a001 433494437/1149851*3461452808002^(1/9) 9323798866642775 a001 514229/969323029*73681302247^(2/3) 9323798866642775 a001 433494437/1149851*28143753123^(2/15) 9323798866642775 a001 514229/969323029*10749957122^(13/18) 9323798866642775 a001 2971215073/1149851*228826127^(1/15) 9323798866642775 a001 514229/10749957122*599074578^(17/18) 9323798866642775 a001 433494437/1149851*228826127^(1/6) 9323798866642775 a001 514229/370248451*17393796001^(2/3) 9323798866642775 a001 514229/370248451*505019158607^(7/12) 9323798866642775 a001 165580141/1149851*73681302247^(1/6) 9323798866642775 a001 514229/370248451*599074578^(7/9) 9323798866642775 a001 514229/969323029*228826127^(13/15) 9323798866642775 a001 514229/2537720636*228826127^(11/12) 9323798866642775 a001 63245986/1149851*23725150497407^(1/6) 9323798866642775 a001 63245986/1149851*10749957122^(2/9) 9323798866642775 a001 514229/141422324*4106118243^(2/3) 9323798866642775 a001 63245986/1149851*228826127^(4/15) 9323798866642776 a001 514229/228826127*87403803^(5/6) 9323798866642778 a001 1134903170/20633239*710647^(8/21) 9323798866642778 a001 514229/54018521*969323029^(2/3) 9323798866642778 a001 24157817/1149851*817138163596^(2/9) 9323798866642778 a001 24157817/1149851*87403803^(1/3) 9323798866642780 a001 514229/20633239*20633239^(16/21) 9323798866642784 a001 701408733/1149851*12752043^(1/6) 9323798866642797 a001 9227465/1149851*312119004989^(4/15) 9323798866642797 a001 514229/20633239*23725150497407^(5/12) 9323798866642797 a001 514229/20633239*505019158607^(10/21) 9323798866642797 a001 514229/20633239*28143753123^(8/15) 9323798866642797 a001 514229/20633239*10749957122^(5/9) 9323798866642797 a001 9227465/1149851*1568397607^(1/3) 9323798866642797 a001 514229/20633239*228826127^(2/3) 9323798866642807 a001 2971215073/1149851*4870847^(1/12) 9323798866642857 a001 433494437/1149851*4870847^(5/24) 9323798866642906 a001 433494437/7881196*710647^(8/21) 9323798866642906 a001 63245986/1149851*4870847^(1/3) 9323798866642914 a001 3524578/1149851*20633239^(10/21) 9323798866642923 a001 514229/7881196*54018521^(2/3) 9323798866642924 a001 4807526976/1149851*1860498^(1/18) 9323798866642925 a001 3524578/1149851*3461452808002^(5/18) 9323798866642925 a001 3524578/1149851*28143753123^(1/3) 9323798866642925 a001 3524578/1149851*228826127^(5/12) 9323798866642977 a001 9227465/1149851*4870847^(11/24) 9323798866643022 a001 165580141/4870847*710647^(5/12) 9323798866643124 a001 514229/20633239*4870847^(5/6) 9323798866643152 a001 514229/141422324*4870847^(23/24) 9323798866643358 a001 433494437/12752043*710647^(5/12) 9323798866643373 a001 433494437/1149851*1860498^(2/9) 9323798866643407 a001 567451585/16692641*710647^(5/12) 9323798866643414 a001 2971215073/87403803*710647^(5/12) 9323798866643415 a001 7778742049/228826127*710647^(5/12) 9323798866643415 a001 10182505537/299537289*710647^(5/12) 9323798866643415 a001 53316291173/1568397607*710647^(5/12) 9323798866643415 a001 139583862445/4106118243*710647^(5/12) 9323798866643415 a001 182717648081/5374978561*710647^(5/12) 9323798866643415 a001 956722026041/28143753123*710647^(5/12) 9323798866643415 a001 2504730781961/73681302247*710647^(5/12) 9323798866643415 a001 3278735159921/96450076809*710647^(5/12) 9323798866643415 a001 10610209857723/312119004989*710647^(5/12) 9323798866643415 a001 4052739537881/119218851371*710647^(5/12) 9323798866643415 a001 387002188980/11384387281*710647^(5/12) 9323798866643415 a001 591286729879/17393796001*710647^(5/12) 9323798866643415 a001 225851433717/6643838879*710647^(5/12) 9323798866643415 a001 1135099622/33391061*710647^(5/12) 9323798866643415 a001 32951280099/969323029*710647^(5/12) 9323798866643415 a001 12586269025/370248451*710647^(5/12) 9323798866643416 a001 1201881744/35355581*710647^(5/12) 9323798866643419 a001 1836311903/54018521*710647^(5/12) 9323798866643437 a001 701408733/20633239*710647^(5/12) 9323798866643565 a001 66978574/1970299*710647^(5/12) 9323798866643785 a001 165580141/3010349*710647^(8/21) 9323798866643792 a001 1346269/1149851*20633239^(8/15) 9323798866643804 a001 1346269/1149851*17393796001^(8/21) 9323798866643804 a001 514229/3010349*45537549124^(4/9) 9323798866643804 a001 1346269/1149851*23725150497407^(7/24) 9323798866643804 a001 1346269/1149851*505019158607^(1/3) 9323798866643804 a001 1346269/1149851*10749957122^(7/18) 9323798866643804 a001 1346269/1149851*599074578^(4/9) 9323798866643804 a001 1346269/1149851*228826127^(7/15) 9323798866643821 a001 39088169/1149851*1860498^(7/18) 9323798866643842 a001 514229/3010349*12752043^(2/3) 9323798866644033 a001 1346269/1149851*4870847^(7/12) 9323798866644082 a001 514229/3010349*4870847^(17/24) 9323798866644421 a001 3524578/1149851*1860498^(5/9) 9323798866644444 a001 102334155/3010349*710647^(5/12) 9323798866644533 a001 2971215073/1149851*710647^(2/21) 9323798866644944 a001 726103/620166*710647^(2/3) 9323798866644999 a001 39088169/4870847*710647^(11/21) 9323798866645191 a001 514229/20633239*1860498^(8/9) 9323798866645336 a001 34111385/4250681*710647^(11/21) 9323798866645385 a001 133957148/16692641*710647^(11/21) 9323798866645392 a001 233802911/29134601*710647^(11/21) 9323798866645393 a001 1836311903/228826127*710647^(11/21) 9323798866645393 a001 267084832/33281921*710647^(11/21) 9323798866645393 a001 12586269025/1568397607*710647^(11/21) 9323798866645393 a001 10983760033/1368706081*710647^(11/21) 9323798866645393 a001 43133785636/5374978561*710647^(11/21) 9323798866645393 a001 75283811239/9381251041*710647^(11/21) 9323798866645393 a001 591286729879/73681302247*710647^(11/21) 9323798866645393 a001 86000486440/10716675201*710647^(11/21) 9323798866645393 a001 4052739537881/505019158607*710647^(11/21) 9323798866645393 a001 3536736619241/440719107401*710647^(11/21) 9323798866645393 a001 3278735159921/408569081798*710647^(11/21) 9323798866645393 a001 2504730781961/312119004989*710647^(11/21) 9323798866645393 a001 956722026041/119218851371*710647^(11/21) 9323798866645393 a001 182717648081/22768774562*710647^(11/21) 9323798866645393 a001 139583862445/17393796001*710647^(11/21) 9323798866645393 a001 53316291173/6643838879*710647^(11/21) 9323798866645393 a001 10182505537/1268860318*710647^(11/21) 9323798866645393 a001 7778742049/969323029*710647^(11/21) 9323798866645394 a001 2971215073/370248451*710647^(11/21) 9323798866645394 a001 567451585/70711162*710647^(11/21) 9323798866645397 a001 433494437/54018521*710647^(11/21) 9323798866645415 a001 165580141/20633239*710647^(11/21) 9323798866645544 a001 31622993/3940598*710647^(11/21) 9323798866645852 a001 1134903170/1149851*710647^(1/6) 9323798866646426 a001 24157817/3010349*710647^(11/21) 9323798866647171 a001 433494437/1149851*710647^(5/21) 9323798866647581 a001 5702887/4870847*710647^(2/3) 9323798866647582 a001 832040/4870847*710647^(17/21) 9323798866647965 a001 4976784/4250681*710647^(2/3) 9323798866648021 a001 39088169/33385282*710647^(2/3) 9323798866648030 a001 34111385/29134601*710647^(2/3) 9323798866648031 a001 267914296/228826127*710647^(2/3) 9323798866648031 a001 233802911/199691526*710647^(2/3) 9323798866648031 a001 1836311903/1568397607*710647^(2/3) 9323798866648031 a001 1602508992/1368706081*710647^(2/3) 9323798866648031 a001 12586269025/10749957122*710647^(2/3) 9323798866648031 a001 10983760033/9381251041*710647^(2/3) 9323798866648031 a001 86267571272/73681302247*710647^(2/3) 9323798866648031 a001 75283811239/64300051206*710647^(2/3) 9323798866648031 a001 2504730781961/2139295485799*710647^(2/3) 9323798866648031 a001 365435296162/312119004989*710647^(2/3) 9323798866648031 a001 139583862445/119218851371*710647^(2/3) 9323798866648031 a001 53316291173/45537549124*710647^(2/3) 9323798866648031 a001 20365011074/17393796001*710647^(2/3) 9323798866648031 a001 7778742049/6643838879*710647^(2/3) 9323798866648031 a001 2971215073/2537720636*710647^(2/3) 9323798866648031 a001 1134903170/969323029*710647^(2/3) 9323798866648031 a001 433494437/370248451*710647^(2/3) 9323798866648031 a001 165580141/141422324*710647^(2/3) 9323798866648035 a001 63245986/54018521*710647^(2/3) 9323798866648056 a001 24157817/20633239*710647^(2/3) 9323798866648203 a001 9227465/7881196*710647^(2/3) 9323798866649141 a001 514229/1149851*3010349^(2/3) 9323798866649210 a001 3524578/3010349*710647^(2/3) 9323798866649808 a001 63245986/1149851*710647^(8/21) 9323798866649827 a001 514229/1149851*9062201101803^(1/3) 9323798866649975 a001 75640/1875749*710647^(11/12) 9323798866650218 a001 726103/4250681*710647^(17/21) 9323798866650466 a001 39088169/1149851*710647^(5/12) 9323798866650603 a001 5702887/33385282*710647^(17/21) 9323798866650604 a001 416020/16692641*710647^(20/21) 9323798866650659 a001 4976784/29134601*710647^(17/21) 9323798866650667 a001 39088169/228826127*710647^(17/21) 9323798866650668 a001 34111385/199691526*710647^(17/21) 9323798866650668 a001 267914296/1568397607*710647^(17/21) 9323798866650668 a001 233802911/1368706081*710647^(17/21) 9323798866650668 a001 1836311903/10749957122*710647^(17/21) 9323798866650668 a001 1602508992/9381251041*710647^(17/21) 9323798866650668 a001 12586269025/73681302247*710647^(17/21) 9323798866650668 a001 10983760033/64300051206*710647^(17/21) 9323798866650668 a001 86267571272/505019158607*710647^(17/21) 9323798866650668 a001 75283811239/440719107401*710647^(17/21) 9323798866650668 a001 2504730781961/14662949395604*710647^(17/21) 9323798866650668 a001 139583862445/817138163596*710647^(17/21) 9323798866650668 a001 53316291173/312119004989*710647^(17/21) 9323798866650668 a001 20365011074/119218851371*710647^(17/21) 9323798866650668 a001 7778742049/45537549124*710647^(17/21) 9323798866650668 a001 2971215073/17393796001*710647^(17/21) 9323798866650668 a001 1134903170/6643838879*710647^(17/21) 9323798866650668 a001 433494437/2537720636*710647^(17/21) 9323798866650668 a001 165580141/969323029*710647^(17/21) 9323798866650669 a001 63245986/370248451*710647^(17/21) 9323798866650672 a001 24157817/141422324*710647^(17/21) 9323798866650693 a001 9227465/54018521*710647^(17/21) 9323798866650840 a001 3524578/20633239*710647^(17/21) 9323798866651847 a001 1346269/7881196*710647^(17/21) 9323798866652257 a001 2178309/54018521*710647^(11/12) 9323798866652467 a001 9227465/1149851*710647^(11/21) 9323798866652590 a001 5702887/141422324*710647^(11/12) 9323798866652638 a001 14930352/370248451*710647^(11/12) 9323798866652645 a001 39088169/969323029*710647^(11/12) 9323798866652646 a001 9303105/230701876*710647^(11/12) 9323798866652646 a001 267914296/6643838879*710647^(11/12) 9323798866652646 a001 701408733/17393796001*710647^(11/12) 9323798866652646 a001 1836311903/45537549124*710647^(11/12) 9323798866652647 a001 4807526976/119218851371*710647^(11/12) 9323798866652647 a001 1144206275/28374454999*710647^(11/12) 9323798866652647 a001 32951280099/817138163596*710647^(11/12) 9323798866652647 a001 86267571272/2139295485799*710647^(11/12) 9323798866652647 a001 225851433717/5600748293801*710647^(11/12) 9323798866652647 a001 591286729879/14662949395604*710647^(11/12) 9323798866652647 a001 365435296162/9062201101803*710647^(11/12) 9323798866652647 a001 139583862445/3461452808002*710647^(11/12) 9323798866652647 a001 53316291173/1322157322203*710647^(11/12) 9323798866652647 a001 20365011074/505019158607*710647^(11/12) 9323798866652647 a001 7778742049/192900153618*710647^(11/12) 9323798866652647 a001 2971215073/73681302247*710647^(11/12) 9323798866652647 a001 1134903170/28143753123*710647^(11/12) 9323798866652647 a001 433494437/10749957122*710647^(11/12) 9323798866652647 a001 165580141/4106118243*710647^(11/12) 9323798866652647 a001 63245986/1568397607*710647^(11/12) 9323798866652650 a001 24157817/599074578*710647^(11/12) 9323798866652668 a001 9227465/228826127*710647^(11/12) 9323798866652795 a001 3524578/87403803*710647^(11/12) 9323798866652912 a001 726103/29134601*710647^(20/21) 9323798866653248 a001 5702887/228826127*710647^(20/21) 9323798866653297 a001 829464/33281921*710647^(20/21) 9323798866653305 a001 39088169/1568397607*710647^(20/21) 9323798866653306 a001 34111385/1368706081*710647^(20/21) 9323798866653306 a001 133957148/5374978561*710647^(20/21) 9323798866653306 a001 233802911/9381251041*710647^(20/21) 9323798866653306 a001 1836311903/73681302247*710647^(20/21) 9323798866653306 a001 267084832/10716675201*710647^(20/21) 9323798866653306 a001 12586269025/505019158607*710647^(20/21) 9323798866653306 a001 10983760033/440719107401*710647^(20/21) 9323798866653306 a001 43133785636/1730726404001*710647^(20/21) 9323798866653306 a001 75283811239/3020733700601*710647^(20/21) 9323798866653306 a001 182717648081/7331474697802*710647^(20/21) 9323798866653306 a001 139583862445/5600748293801*710647^(20/21) 9323798866653306 a001 53316291173/2139295485799*710647^(20/21) 9323798866653306 a001 10182505537/408569081798*710647^(20/21) 9323798866653306 a001 7778742049/312119004989*710647^(20/21) 9323798866653306 a001 2971215073/119218851371*710647^(20/21) 9323798866653306 a001 567451585/22768774562*710647^(20/21) 9323798866653306 a001 433494437/17393796001*710647^(20/21) 9323798866653306 a001 165580141/6643838879*710647^(20/21) 9323798866653306 a001 31622993/1268860318*710647^(20/21) 9323798866653309 a001 24157817/969323029*710647^(20/21) 9323798866653328 a001 9227465/370248451*710647^(20/21) 9323798866653456 a001 1762289/70711162*710647^(20/21) 9323798866653667 a001 1346269/33385282*710647^(11/12) 9323798866654338 a001 1346269/54018521*710647^(20/21) 9323798866656112 a001 1346269/1149851*710647^(2/3) 9323798866658749 a001 514229/3010349*710647^(17/21) 9323798866659441 a001 14619165/101521*271443^(1/3) 9323798866659641 a001 514229/12752043*710647^(11/12) 9323798866660380 a001 514229/20633239*710647^(20/21) 9323798866661971 a001 1836311903/439204*167761^(1/15) 9323798866662967 a001 121393/439204*271443^(5/6) 9323798866665582 a001 196418/710647*20633239^(13/21) 9323798866665595 a001 196418/710647*141422324^(5/9) 9323798866665595 a001 317811/439204*2139295485799^(1/3) 9323798866665595 a001 196418/710647*73681302247^(5/12) 9323798866665595 a001 196418/710647*228826127^(13/24) 9323798866667541 a001 196418/710647*1860498^(13/18) 9323798866675210 a001 133957148/930249*271443^(1/3) 9323798866677511 a001 701408733/4870847*271443^(1/3) 9323798866677846 a001 1836311903/12752043*271443^(1/3) 9323798866677895 a001 14930208/103681*271443^(1/3) 9323798866677902 a001 12586269025/87403803*271443^(1/3) 9323798866677903 a001 32951280099/228826127*271443^(1/3) 9323798866677903 a001 43133785636/299537289*271443^(1/3) 9323798866677904 a001 32264490531/224056801*271443^(1/3) 9323798866677904 a001 591286729879/4106118243*271443^(1/3) 9323798866677904 a001 774004377960/5374978561*271443^(1/3) 9323798866677904 a001 4052739537881/28143753123*271443^(1/3) 9323798866677904 a001 1515744265389/10525900321*271443^(1/3) 9323798866677904 a001 3278735159921/22768774562*271443^(1/3) 9323798866677904 a001 2504730781961/17393796001*271443^(1/3) 9323798866677904 a001 956722026041/6643838879*271443^(1/3) 9323798866677904 a001 182717648081/1268860318*271443^(1/3) 9323798866677904 a001 139583862445/969323029*271443^(1/3) 9323798866677904 a001 53316291173/370248451*271443^(1/3) 9323798866677904 a001 10182505537/70711162*271443^(1/3) 9323798866677907 a001 7778742049/54018521*271443^(1/3) 9323798866677925 a001 2971215073/20633239*271443^(1/3) 9323798866678054 a001 567451585/3940598*271443^(1/3) 9323798866678932 a001 433494437/3010349*271443^(1/3) 9323798866681364 a001 208010/109801*119218851371^(1/3) 9323798866681706 a001 39088169/439204*1149851^(1/3) 9323798866683548 a001 196418/4870847*7881196^(7/9) 9323798866683649 a001 196418/4870847*20633239^(11/15) 9323798866683665 a001 2178309/439204*6643838879^(1/3) 9323798866683665 a001 196418/4870847*17393796001^(11/21) 9323798866683665 a001 196418/4870847*312119004989^(7/15) 9323798866683665 a001 196418/4870847*505019158607^(11/24) 9323798866683665 a001 196418/4870847*1568397607^(7/12) 9323798866683665 a001 196418/4870847*599074578^(11/18) 9323798866684000 a001 5702887/439204*370248451^(1/3) 9323798866684037 a001 196418/87403803*20633239^(19/21) 9323798866684038 a001 98209/70711162*20633239^(14/15) 9323798866684041 a001 701408733/439204*7881196^(1/9) 9323798866684042 a001 196452/5779*20633239^(1/3) 9323798866684049 a001 196452/5779*17393796001^(5/21) 9323798866684049 a001 196452/5779*505019158607^(5/24) 9323798866684049 a001 196452/5779*599074578^(5/18) 9323798866684049 a001 196452/5779*228826127^(7/24) 9323798866684053 a001 165580141/439204*20633239^(4/21) 9323798866684055 a001 433494437/439204*20633239^(2/15) 9323798866684056 a001 196418/87403803*817138163596^(5/9) 9323798866684056 a001 39088169/439204*1322157322203^(1/6) 9323798866684057 a001 196418/87403803*228826127^(19/24) 9323798866684057 a001 1836311903/439204*20633239^(1/21) 9323798866684057 a001 196418/370248451*141422324^(8/9) 9323798866684057 a001 196418/87403803*87403803^(5/6) 9323798866684057 a001 102334155/439204*4106118243^(1/6) 9323798866684058 a001 66978574/109801*45537549124^(1/9) 9323798866684058 a001 701408733/439204*312119004989^(1/15) 9323798866684058 a001 701408733/439204*1568397607^(1/12) 9323798866684058 a001 196418/4106118243*17393796001^(17/21) 9323798866684058 a001 196418/4106118243*45537549124^(7/9) 9323798866684058 a001 196418/4106118243*505019158607^(17/24) 9323798866684058 a001 98209/5374978561*28143753123^(5/6) 9323798866684058 a001 196418/119218851371*17393796001^(20/21) 9323798866684058 a001 98209/96450076809*312119004989^(13/15) 9323798866684058 a001 196418/1322157322203*9062201101803^(5/6) 9323798866684058 a001 98209/7331474697802*3461452808002^(17/18) 9323798866684058 a001 98209/408569081798*23725150497407^(19/24) 9323798866684058 a001 98209/1730726404001*505019158607^(23/24) 9323798866684058 a001 98209/408569081798*505019158607^(19/21) 9323798866684058 a001 196418/119218851371*3461452808002^(7/9) 9323798866684058 a001 196418/119218851371*505019158607^(5/6) 9323798866684058 a001 98209/96450076809*73681302247^(11/12) 9323798866684058 a001 196418/119218851371*28143753123^(14/15) 9323798866684058 a001 196418/17393796001*23725150497407^(2/3) 9323798866684058 a001 196418/17393796001*505019158607^(16/21) 9323798866684058 a001 196418/17393796001*10749957122^(8/9) 9323798866684058 a001 196418/6643838879*5600748293801^(2/3) 9323798866684058 a001 98209/1268860318*1322157322203^(2/3) 9323798866684058 a001 567451585/219602*23725150497407^(1/24) 9323798866684058 a001 567451585/219602*10749957122^(1/18) 9323798866684058 a001 1836311903/439204*228826127^(1/24) 9323798866684058 a001 433494437/439204*17393796001^(2/21) 9323798866684058 a001 196418/969323029*312119004989^(2/3) 9323798866684058 a001 196418/969323029*3461452808002^(11/18) 9323798866684058 a001 433494437/439204*505019158607^(1/12) 9323798866684058 a001 196418/969323029*28143753123^(11/15) 9323798866684058 a001 433494437/439204*599074578^(1/9) 9323798866684058 a001 196418/969323029*1568397607^(5/6) 9323798866684058 a001 567451585/219602*228826127^(1/15) 9323798866684058 a001 196418/4106118243*599074578^(17/18) 9323798866684058 a001 196418/370248451*23725150497407^(13/24) 9323798866684058 a001 196418/370248451*505019158607^(13/21) 9323798866684058 a001 165580141/439204*3461452808002^(1/9) 9323798866684058 a001 196418/370248451*73681302247^(2/3) 9323798866684058 a001 165580141/439204*28143753123^(2/15) 9323798866684058 a001 196418/370248451*10749957122^(13/18) 9323798866684058 a001 165580141/439204*228826127^(1/6) 9323798866684058 a001 196418/969323029*228826127^(11/12) 9323798866684058 a001 196418/370248451*228826127^(13/15) 9323798866684058 a001 31622993/219602*141422324^(2/9) 9323798866684058 a001 98209/70711162*17393796001^(2/3) 9323798866684058 a001 98209/70711162*505019158607^(7/12) 9323798866684058 a001 31622993/219602*73681302247^(1/6) 9323798866684058 a001 98209/70711162*599074578^(7/9) 9323798866684061 a001 24157817/439204*23725150497407^(1/6) 9323798866684061 a001 24157817/439204*10749957122^(2/9) 9323798866684061 a001 196418/54018521*4106118243^(2/3) 9323798866684061 a001 24157817/439204*228826127^(4/15) 9323798866684067 a001 66978574/109801*12752043^(1/6) 9323798866684079 a001 196418/20633239*969323029^(2/3) 9323798866684079 a001 9227465/439204*817138163596^(2/9) 9323798866684080 a001 9227465/439204*87403803^(1/3) 9323798866684090 a001 567451585/219602*4870847^(1/12) 9323798866684140 a001 165580141/439204*4870847^(5/24) 9323798866684141 a001 1762289/219602*7881196^(4/9) 9323798866684191 a001 98209/3940598*20633239^(16/21) 9323798866684192 a001 24157817/439204*4870847^(1/3) 9323798866684207 a001 1836311903/439204*1860498^(1/18) 9323798866684208 a001 98209/3940598*23725150497407^(5/12) 9323798866684208 a001 98209/3940598*505019158607^(10/21) 9323798866684208 a001 1762289/219602*312119004989^(4/15) 9323798866684208 a001 98209/3940598*28143753123^(8/15) 9323798866684208 a001 98209/3940598*10749957122^(5/9) 9323798866684208 a001 1762289/219602*1568397607^(1/3) 9323798866684208 a001 98209/3940598*228826127^(2/3) 9323798866684388 a001 1762289/219602*4870847^(11/24) 9323798866684437 a001 196418/54018521*4870847^(23/24) 9323798866684535 a001 98209/3940598*4870847^(5/6) 9323798866684656 a001 165580141/439204*1860498^(2/9) 9323798866684956 a001 165580141/1149851*271443^(1/3) 9323798866685076 a001 1346269/439204*20633239^(10/21) 9323798866685084 a001 196418/3010349*54018521^(2/3) 9323798866685086 a001 1346269/439204*3461452808002^(5/18) 9323798866685086 a001 1346269/439204*28143753123^(1/3) 9323798866685087 a001 1346269/439204*228826127^(5/12) 9323798866685097 a001 196452/5779*1860498^(7/18) 9323798866685816 a001 567451585/219602*710647^(2/21) 9323798866686583 a001 1346269/439204*1860498^(5/9) 9323798866686602 a001 98209/3940598*1860498^(8/9) 9323798866687135 a001 433494437/439204*710647^(1/6) 9323798866688453 a001 165580141/439204*710647^(5/21) 9323798866691094 a001 24157817/439204*710647^(8/21) 9323798866691098 a001 514229/439204*20633239^(8/15) 9323798866691110 a001 514229/439204*17393796001^(8/21) 9323798866691110 a001 196418/1149851*45537549124^(4/9) 9323798866691110 a001 514229/439204*23725150497407^(7/24) 9323798866691110 a001 514229/439204*505019158607^(1/3) 9323798866691110 a001 514229/439204*10749957122^(7/18) 9323798866691110 a001 514229/439204*599074578^(4/9) 9323798866691110 a001 514229/439204*228826127^(7/15) 9323798866691148 a001 196418/1149851*12752043^(2/3) 9323798866691339 a001 514229/439204*4870847^(7/12) 9323798866691388 a001 196418/1149851*4870847^(17/24) 9323798866691742 a001 196452/5779*710647^(5/12) 9323798866693878 a001 1762289/219602*710647^(11/21) 9323798866700588 a001 196418/4870847*710647^(11/12) 9323798866701791 a001 98209/3940598*710647^(20/21) 9323798866703418 a001 514229/439204*710647^(2/3) 9323798866706055 a001 196418/1149851*710647^(17/21) 9323798866713631 a001 1836311903/710647*103682^(1/9) 9323798866726239 a001 31622993/219602*271443^(1/3) 9323798866729400 a001 267084832/103361*103682^(1/9) 9323798866729764 a001 317811/1149851*271443^(5/6) 9323798866731700 a001 12586269025/4870847*103682^(1/9) 9323798866731707 a001 98209/219602*3010349^(2/3) 9323798866732036 a001 10983760033/4250681*103682^(1/9) 9323798866732085 a001 43133785636/16692641*103682^(1/9) 9323798866732092 a001 75283811239/29134601*103682^(1/9) 9323798866732093 a001 591286729879/228826127*103682^(1/9) 9323798866732093 a001 86000486440/33281921*103682^(1/9) 9323798866732093 a001 4052739537881/1568397607*103682^(1/9) 9323798866732093 a001 3536736619241/1368706081*103682^(1/9) 9323798866732093 a001 3278735159921/1268860318*103682^(1/9) 9323798866732093 a001 2504730781961/969323029*103682^(1/9) 9323798866732093 a001 956722026041/370248451*103682^(1/9) 9323798866732094 a001 182717648081/70711162*103682^(1/9) 9323798866732096 a001 139583862445/54018521*103682^(1/9) 9323798866732115 a001 53316291173/20633239*103682^(1/9) 9323798866732243 a001 10182505537/3940598*103682^(1/9) 9323798866732392 a001 98209/219602*9062201101803^(1/3) 9323798866733122 a001 7778742049/3010349*103682^(1/9) 9323798866739145 a001 2971215073/1149851*103682^(1/9) 9323798866739510 a001 832040/3010349*271443^(5/6) 9323798866740932 a001 2178309/7881196*271443^(5/6) 9323798866741139 a001 5702887/20633239*271443^(5/6) 9323798866741169 a001 14930352/54018521*271443^(5/6) 9323798866741174 a001 39088169/141422324*271443^(5/6) 9323798866741175 a001 102334155/370248451*271443^(5/6) 9323798866741175 a001 267914296/969323029*271443^(5/6) 9323798866741175 a001 701408733/2537720636*271443^(5/6) 9323798866741175 a001 1836311903/6643838879*271443^(5/6) 9323798866741175 a001 4807526976/17393796001*271443^(5/6) 9323798866741175 a001 12586269025/45537549124*271443^(5/6) 9323798866741175 a001 32951280099/119218851371*271443^(5/6) 9323798866741175 a001 86267571272/312119004989*271443^(5/6) 9323798866741175 a001 225851433717/817138163596*271443^(5/6) 9323798866741175 a001 1548008755920/5600748293801*271443^(5/6) 9323798866741175 a001 139583862445/505019158607*271443^(5/6) 9323798866741175 a001 53316291173/192900153618*271443^(5/6) 9323798866741175 a001 20365011074/73681302247*271443^(5/6) 9323798866741175 a001 7778742049/28143753123*271443^(5/6) 9323798866741175 a001 2971215073/10749957122*271443^(5/6) 9323798866741175 a001 1134903170/4106118243*271443^(5/6) 9323798866741175 a001 433494437/1568397607*271443^(5/6) 9323798866741175 a001 165580141/599074578*271443^(5/6) 9323798866741175 a001 63245986/228826127*271443^(5/6) 9323798866741177 a001 24157817/87403803*271443^(5/6) 9323798866741188 a001 9227465/33385282*271443^(5/6) 9323798866741267 a001 3524578/12752043*271443^(5/6) 9323798866741811 a001 1346269/4870847*271443^(5/6) 9323798866745533 a001 514229/1860498*271443^(5/6) 9323798866750106 a001 34111385/90481*103682^(5/18) 9323798866753205 a001 514229/167761*167761^(2/3) 9323798866759188 a001 165580141/103682*39603^(1/6) 9323798866771047 a001 196418/710647*271443^(5/6) 9323798866780428 a001 567451585/219602*103682^(1/9) 9323798866812354 a001 5702887/167761*167761^(7/15) 9323798866840459 a001 75025/271443*20633239^(13/21) 9323798866840472 a001 75025/271443*141422324^(5/9) 9323798866840472 a001 75025/271443*73681302247^(5/12) 9323798866840472 a001 121393/167761*2139295485799^(1/3) 9323798866840473 a001 75025/271443*228826127^(13/24) 9323798866842418 a001 75025/271443*1860498^(13/18) 9323798866858186 a001 267914296/710647*103682^(5/18) 9323798866873955 a001 233802911/620166*103682^(5/18) 9323798866876256 a001 1836311903/4870847*103682^(5/18) 9323798866876591 a001 1602508992/4250681*103682^(5/18) 9323798866876640 a001 12586269025/33385282*103682^(5/18) 9323798866876648 a001 10983760033/29134601*103682^(5/18) 9323798866876649 a001 86267571272/228826127*103682^(5/18) 9323798866876649 a001 267913919/710646*103682^(5/18) 9323798866876649 a001 591286729879/1568397607*103682^(5/18) 9323798866876649 a001 516002918640/1368706081*103682^(5/18) 9323798866876649 a001 4052739537881/10749957122*103682^(5/18) 9323798866876649 a001 3536736619241/9381251041*103682^(5/18) 9323798866876649 a001 6557470319842/17393796001*103682^(5/18) 9323798866876649 a001 2504730781961/6643838879*103682^(5/18) 9323798866876649 a001 956722026041/2537720636*103682^(5/18) 9323798866876649 a001 365435296162/969323029*103682^(5/18) 9323798866876649 a001 139583862445/370248451*103682^(5/18) 9323798866876649 a001 53316291173/141422324*103682^(5/18) 9323798866876652 a001 20365011074/54018521*103682^(5/18) 9323798866876671 a001 7778742049/20633239*103682^(5/18) 9323798866876799 a001 2971215073/7881196*103682^(5/18) 9323798866877678 a001 1134903170/3010349*103682^(5/18) 9323798866878671 a001 63245986/167761*167761^(4/15) 9323798866883701 a001 433494437/1149851*103682^(5/18) 9323798866894654 a001 4976784/90481*103682^(4/9) 9323798866924984 a001 165580141/439204*103682^(5/18) 9323798866944929 a001 701408733/167761*167761^(1/15) 9323798866945924 a001 75025/271443*271443^(5/6) 9323798866948552 a001 317811/167761*119218851371^(1/3) 9323798866964204 a001 75025/1860498*7881196^(7/9) 9323798866964305 a001 75025/1860498*20633239^(11/15) 9323798866964321 a001 75640/15251*6643838879^(1/3) 9323798866964321 a001 75025/1860498*17393796001^(11/21) 9323798866964321 a001 75025/1860498*312119004989^(7/15) 9323798866964321 a001 75025/1860498*505019158607^(11/24) 9323798866964321 a001 75025/1860498*1568397607^(7/12) 9323798866964321 a001 75025/1860498*599074578^(11/18) 9323798866964656 a001 14930352/167761*1149851^(1/3) 9323798866966622 a001 2178309/167761*370248451^(1/3) 9323798866966950 a001 5702887/167761*20633239^(1/3) 9323798866966957 a001 5702887/167761*17393796001^(5/21) 9323798866966957 a001 5702887/167761*505019158607^(5/24) 9323798866966957 a001 5702887/167761*599074578^(5/18) 9323798866966957 a001 5702887/167761*228826127^(7/24) 9323798866966987 a001 75025/33385282*20633239^(19/21) 9323798866966997 a001 75025/54018521*20633239^(14/15) 9323798866966998 a001 267914296/167761*7881196^(1/9) 9323798866967006 a001 75025/33385282*817138163596^(5/9) 9323798866967006 a001 14930352/167761*1322157322203^(1/6) 9323798866967006 a001 75025/33385282*228826127^(19/24) 9323798866967007 a001 75025/33385282*87403803^(5/6) 9323798866967011 a001 63245986/167761*20633239^(4/21) 9323798866967012 a001 165580141/167761*20633239^(2/15) 9323798866967013 a001 39088169/167761*4106118243^(1/6) 9323798866967014 a001 701408733/167761*20633239^(1/21) 9323798866967015 a001 9303105/15251*45537549124^(1/9) 9323798866967015 a001 267914296/167761*312119004989^(1/15) 9323798866967015 a001 267914296/167761*1568397607^(1/12) 9323798866967015 a001 75025/1568397607*17393796001^(17/21) 9323798866967015 a001 75025/1568397607*45537549124^(7/9) 9323798866967015 a001 75025/1568397607*505019158607^(17/24) 9323798866967015 a001 75025/4106118243*28143753123^(5/6) 9323798866967015 a001 75025/45537549124*17393796001^(20/21) 9323798866967015 a001 75025/73681302247*312119004989^(13/15) 9323798866967015 a001 75025/73681302247*73681302247^(11/12) 9323798866967015 a001 75025/505019158607*9062201101803^(5/6) 9323798866967015 a001 75025/14662949395604*23725150497407^(11/12) 9323798866967015 a001 75025/1322157322203*505019158607^(23/24) 9323798866967015 a001 75025/312119004989*23725150497407^(19/24) 9323798866967015 a001 75025/312119004989*505019158607^(19/21) 9323798866967015 a001 75025/45537549124*3461452808002^(7/9) 9323798866967015 a001 75025/45537549124*505019158607^(5/6) 9323798866967015 a001 75025/45537549124*28143753123^(14/15) 9323798866967015 a001 75025/6643838879*23725150497407^(2/3) 9323798866967015 a001 75025/6643838879*505019158607^(16/21) 9323798866967015 a001 75025/6643838879*10749957122^(8/9) 9323798866967015 a001 75025/2537720636*5600748293801^(2/3) 9323798866967015 a001 701408733/167761*228826127^(1/24) 9323798866967015 a001 75025/969323029*1322157322203^(2/3) 9323798866967015 a001 433494437/167761*23725150497407^(1/24) 9323798866967015 a001 433494437/167761*10749957122^(1/18) 9323798866967015 a001 75025/1568397607*599074578^(17/18) 9323798866967015 a001 433494437/167761*228826127^(1/15) 9323798866967015 a001 75025/141422324*141422324^(8/9) 9323798866967015 a001 75025/370248451*312119004989^(2/3) 9323798866967015 a001 75025/370248451*3461452808002^(11/18) 9323798866967015 a001 75025/370248451*28143753123^(11/15) 9323798866967015 a001 165580141/167761*17393796001^(2/21) 9323798866967015 a001 165580141/167761*505019158607^(1/12) 9323798866967015 a001 165580141/167761*599074578^(1/9) 9323798866967015 a001 75025/370248451*1568397607^(5/6) 9323798866967015 a001 75025/370248451*228826127^(11/12) 9323798866967015 a001 75025/141422324*23725150497407^(13/24) 9323798866967015 a001 75025/141422324*505019158607^(13/21) 9323798866967015 a001 75025/141422324*73681302247^(2/3) 9323798866967015 a001 63245986/167761*3461452808002^(1/9) 9323798866967015 a001 63245986/167761*28143753123^(2/15) 9323798866967015 a001 75025/141422324*10749957122^(13/18) 9323798866967015 a001 63245986/167761*228826127^(1/6) 9323798866967015 a001 75025/141422324*228826127^(13/15) 9323798866967018 a001 24157817/167761*141422324^(2/9) 9323798866967018 a001 75025/54018521*17393796001^(2/3) 9323798866967018 a001 75025/54018521*505019158607^(7/12) 9323798866967018 a001 24157817/167761*73681302247^(1/6) 9323798866967018 a001 75025/54018521*599074578^(7/9) 9323798866967024 a001 9303105/15251*12752043^(1/6) 9323798866967037 a001 9227465/167761*23725150497407^(1/6) 9323798866967037 a001 9227465/167761*10749957122^(2/9) 9323798866967037 a001 75025/20633239*4106118243^(2/3) 9323798866967037 a001 9227465/167761*228826127^(4/15) 9323798866967047 a001 433494437/167761*4870847^(1/12) 9323798866967097 a001 63245986/167761*4870847^(5/24) 9323798866967164 a001 701408733/167761*1860498^(1/18) 9323798866967165 a001 75025/7881196*969323029^(2/3) 9323798866967165 a001 3524578/167761*817138163596^(2/9) 9323798866967165 a001 3524578/167761*87403803^(1/3) 9323798866967168 a001 9227465/167761*4870847^(1/3) 9323798866967413 a001 75025/20633239*4870847^(23/24) 9323798866967614 a001 63245986/167761*1860498^(2/9) 9323798866967977 a001 1346269/167761*7881196^(4/9) 9323798866968005 a001 5702887/167761*1860498^(7/18) 9323798866968027 a001 75025/3010349*20633239^(16/21) 9323798866968044 a001 75025/3010349*23725150497407^(5/12) 9323798866968044 a001 75025/3010349*505019158607^(10/21) 9323798866968044 a001 75025/3010349*28143753123^(8/15) 9323798866968044 a001 1346269/167761*312119004989^(4/15) 9323798866968044 a001 75025/3010349*10749957122^(5/9) 9323798866968044 a001 1346269/167761*1568397607^(1/3) 9323798866968044 a001 75025/3010349*228826127^(2/3) 9323798866968224 a001 1346269/167761*4870847^(11/24) 9323798866968371 a001 75025/3010349*4870847^(5/6) 9323798866968773 a001 433494437/167761*710647^(2/21) 9323798866970092 a001 165580141/167761*710647^(1/6) 9323798866970438 a001 75025/3010349*1860498^(8/9) 9323798866971411 a001 63245986/167761*710647^(5/21) 9323798866974056 a001 514229/167761*20633239^(10/21) 9323798866974065 a001 75025/1149851*54018521^(2/3) 9323798866974067 a001 514229/167761*3461452808002^(5/18) 9323798866974067 a001 514229/167761*28143753123^(1/3) 9323798866974067 a001 514229/167761*228826127^(5/12) 9323798866974070 a001 9227465/167761*710647^(8/21) 9323798866974650 a001 5702887/167761*710647^(5/12) 9323798866975563 a001 514229/167761*1860498^(5/9) 9323798866977714 a001 1346269/167761*710647^(11/21) 9323798866981245 a001 75025/1860498*710647^(11/12) 9323798866985627 a001 75025/3010349*710647^(20/21) 9323798867002741 a001 39088169/710647*103682^(4/9) 9323798867009199 a001 24157817/167761*271443^(1/3) 9323798867015338 a001 196418/167761*20633239^(8/15) 9323798867015350 a001 75025/439204*45537549124^(4/9) 9323798867015350 a001 196418/167761*17393796001^(8/21) 9323798867015350 a001 196418/167761*23725150497407^(7/24) 9323798867015350 a001 196418/167761*505019158607^(1/3) 9323798867015350 a001 196418/167761*10749957122^(7/18) 9323798867015350 a001 196418/167761*599074578^(4/9) 9323798867015350 a001 196418/167761*228826127^(7/15) 9323798867015388 a001 75025/439204*12752043^(2/3) 9323798867015579 a001 196418/167761*4870847^(7/12) 9323798867015628 a001 75025/439204*4870847^(17/24) 9323798867018511 a001 831985/15126*103682^(4/9) 9323798867020811 a001 267914296/4870847*103682^(4/9) 9323798867021147 a001 233802911/4250681*103682^(4/9) 9323798867021196 a001 1836311903/33385282*103682^(4/9) 9323798867021203 a001 1602508992/29134601*103682^(4/9) 9323798867021204 a001 12586269025/228826127*103682^(4/9) 9323798867021204 a001 10983760033/199691526*103682^(4/9) 9323798867021204 a001 86267571272/1568397607*103682^(4/9) 9323798867021204 a001 75283811239/1368706081*103682^(4/9) 9323798867021204 a001 591286729879/10749957122*103682^(4/9) 9323798867021204 a001 12585437040/228811001*103682^(4/9) 9323798867021204 a001 4052739537881/73681302247*103682^(4/9) 9323798867021204 a001 3536736619241/64300051206*103682^(4/9) 9323798867021204 a001 6557470319842/119218851371*103682^(4/9) 9323798867021204 a001 2504730781961/45537549124*103682^(4/9) 9323798867021204 a001 956722026041/17393796001*103682^(4/9) 9323798867021204 a001 365435296162/6643838879*103682^(4/9) 9323798867021204 a001 139583862445/2537720636*103682^(4/9) 9323798867021204 a001 53316291173/969323029*103682^(4/9) 9323798867021204 a001 20365011074/370248451*103682^(4/9) 9323798867021205 a001 7778742049/141422324*103682^(4/9) 9323798867021208 a001 2971215073/54018521*103682^(4/9) 9323798867021226 a001 1134903170/20633239*103682^(4/9) 9323798867021354 a001 433494437/7881196*103682^(4/9) 9323798867022233 a001 165580141/3010349*103682^(4/9) 9323798867027658 a001 196418/167761*710647^(2/3) 9323798867028257 a001 63245986/1149851*103682^(4/9) 9323798867030295 a001 75025/439204*710647^(17/21) 9323798867038825 a001 726103/90481*103682^(11/18) 9323798867063385 a001 433494437/167761*103682^(1/9) 9323798867069542 a001 24157817/439204*103682^(4/9) 9323798867147240 a001 5702887/710647*103682^(11/18) 9323798867163058 a001 829464/103361*103682^(11/18) 9323798867165311 a001 105937/90481*103682^(7/9) 9323798867165366 a001 39088169/4870847*103682^(11/18) 9323798867165702 a001 34111385/4250681*103682^(11/18) 9323798867165752 a001 133957148/16692641*103682^(11/18) 9323798867165759 a001 233802911/29134601*103682^(11/18) 9323798867165760 a001 1836311903/228826127*103682^(11/18) 9323798867165760 a001 267084832/33281921*103682^(11/18) 9323798867165760 a001 12586269025/1568397607*103682^(11/18) 9323798867165760 a001 10983760033/1368706081*103682^(11/18) 9323798867165760 a001 43133785636/5374978561*103682^(11/18) 9323798867165760 a001 75283811239/9381251041*103682^(11/18) 9323798867165760 a001 591286729879/73681302247*103682^(11/18) 9323798867165760 a001 86000486440/10716675201*103682^(11/18) 9323798867165760 a001 4052739537881/505019158607*103682^(11/18) 9323798867165760 a001 3536736619241/440719107401*103682^(11/18) 9323798867165760 a001 3278735159921/408569081798*103682^(11/18) 9323798867165760 a001 2504730781961/312119004989*103682^(11/18) 9323798867165760 a001 956722026041/119218851371*103682^(11/18) 9323798867165760 a001 182717648081/22768774562*103682^(11/18) 9323798867165760 a001 139583862445/17393796001*103682^(11/18) 9323798867165760 a001 53316291173/6643838879*103682^(11/18) 9323798867165760 a001 10182505537/1268860318*103682^(11/18) 9323798867165760 a001 7778742049/969323029*103682^(11/18) 9323798867165760 a001 2971215073/370248451*103682^(11/18) 9323798867165760 a001 567451585/70711162*103682^(11/18) 9323798867165763 a001 433494437/54018521*103682^(11/18) 9323798867165782 a001 165580141/20633239*103682^(11/18) 9323798867165911 a001 31622993/3940598*103682^(11/18) 9323798867166792 a001 24157817/3010349*103682^(11/18) 9323798867172834 a001 9227465/1149851*103682^(11/18) 9323798867207941 a001 63245986/167761*103682^(5/18) 9323798867214245 a001 1762289/219602*103682^(11/18) 9323798867289160 a001 832040/710647*103682^(7/9) 9323798867297621 a001 75025/167761*3010349^(2/3) 9323798867298307 a001 75025/167761*9062201101803^(1/3) 9323798867307229 a001 726103/620166*103682^(7/9) 9323798867309865 a001 5702887/4870847*103682^(7/9) 9323798867309867 a001 121393/710647*103682^(17/18) 9323798867310250 a001 4976784/4250681*103682^(7/9) 9323798867310306 a001 39088169/33385282*103682^(7/9) 9323798867310314 a001 34111385/29134601*103682^(7/9) 9323798867310315 a001 267914296/228826127*103682^(7/9) 9323798867310316 a001 233802911/199691526*103682^(7/9) 9323798867310316 a001 1836311903/1568397607*103682^(7/9) 9323798867310316 a001 1602508992/1368706081*103682^(7/9) 9323798867310316 a001 12586269025/10749957122*103682^(7/9) 9323798867310316 a001 10983760033/9381251041*103682^(7/9) 9323798867310316 a001 86267571272/73681302247*103682^(7/9) 9323798867310316 a001 75283811239/64300051206*103682^(7/9) 9323798867310316 a001 2504730781961/2139295485799*103682^(7/9) 9323798867310316 a001 365435296162/312119004989*103682^(7/9) 9323798867310316 a001 139583862445/119218851371*103682^(7/9) 9323798867310316 a001 53316291173/45537549124*103682^(7/9) 9323798867310316 a001 20365011074/17393796001*103682^(7/9) 9323798867310316 a001 7778742049/6643838879*103682^(7/9) 9323798867310316 a001 2971215073/2537720636*103682^(7/9) 9323798867310316 a001 1134903170/969323029*103682^(7/9) 9323798867310316 a001 433494437/370248451*103682^(7/9) 9323798867310316 a001 165580141/141422324*103682^(7/9) 9323798867310319 a001 63245986/54018521*103682^(7/9) 9323798867310341 a001 24157817/20633239*103682^(7/9) 9323798867310488 a001 9227465/7881196*103682^(7/9) 9323798867311495 a001 3524578/3010349*103682^(7/9) 9323798867318396 a001 1346269/1149851*103682^(7/9) 9323798867352518 a001 9227465/167761*103682^(4/9) 9323798867365702 a001 514229/439204*103682^(7/9) 9323798867433715 a001 105937/620166*103682^(17/18) 9323798867451785 a001 832040/4870847*103682^(17/18) 9323798867454421 a001 726103/4250681*103682^(17/18) 9323798867454805 a001 5702887/33385282*103682^(17/18) 9323798867454862 a001 4976784/29134601*103682^(17/18) 9323798867454870 a001 39088169/228826127*103682^(17/18) 9323798867454871 a001 34111385/199691526*103682^(17/18) 9323798867454871 a001 267914296/1568397607*103682^(17/18) 9323798867454871 a001 233802911/1368706081*103682^(17/18) 9323798867454871 a001 1836311903/10749957122*103682^(17/18) 9323798867454871 a001 1602508992/9381251041*103682^(17/18) 9323798867454871 a001 12586269025/73681302247*103682^(17/18) 9323798867454871 a001 10983760033/64300051206*103682^(17/18) 9323798867454871 a001 86267571272/505019158607*103682^(17/18) 9323798867454871 a001 75283811239/440719107401*103682^(17/18) 9323798867454871 a001 2504730781961/14662949395604*103682^(17/18) 9323798867454871 a001 139583862445/817138163596*103682^(17/18) 9323798867454871 a001 53316291173/312119004989*103682^(17/18) 9323798867454871 a001 20365011074/119218851371*103682^(17/18) 9323798867454871 a001 7778742049/45537549124*103682^(17/18) 9323798867454871 a001 2971215073/17393796001*103682^(17/18) 9323798867454871 a001 1134903170/6643838879*103682^(17/18) 9323798867454871 a001 433494437/2537720636*103682^(17/18) 9323798867454871 a001 165580141/969323029*103682^(17/18) 9323798867454872 a001 63245986/370248451*103682^(17/18) 9323798867454875 a001 24157817/141422324*103682^(17/18) 9323798867454896 a001 9227465/54018521*103682^(17/18) 9323798867455043 a001 3524578/20633239*103682^(17/18) 9323798867456050 a001 1346269/7881196*103682^(17/18) 9323798867462952 a001 514229/3010349*103682^(17/18) 9323798867498081 a001 1346269/167761*103682^(11/18) 9323798867499979 a001 433494437/271443*39603^(1/6) 9323798867510258 a001 196418/1149851*103682^(17/18) 9323798867608059 a001 1134903170/710647*39603^(1/6) 9323798867623828 a001 2971215073/1860498*39603^(1/6) 9323798867626129 a001 7778742049/4870847*39603^(1/6) 9323798867626464 a001 20365011074/12752043*39603^(1/6) 9323798867626513 a001 53316291173/33385282*39603^(1/6) 9323798867626520 a001 139583862445/87403803*39603^(1/6) 9323798867626521 a001 365435296162/228826127*39603^(1/6) 9323798867626522 a001 956722026041/599074578*39603^(1/6) 9323798867626522 a001 2504730781961/1568397607*39603^(1/6) 9323798867626522 a001 6557470319842/4106118243*39603^(1/6) 9323798867626522 a001 10610209857723/6643838879*39603^(1/6) 9323798867626522 a001 4052739537881/2537720636*39603^(1/6) 9323798867626522 a001 1548008755920/969323029*39603^(1/6) 9323798867626522 a001 591286729879/370248451*39603^(1/6) 9323798867626522 a001 225851433717/141422324*39603^(1/6) 9323798867626525 a001 86267571272/54018521*39603^(1/6) 9323798867626543 a001 32951280099/20633239*39603^(1/6) 9323798867626672 a001 12586269025/7881196*39603^(1/6) 9323798867627550 a001 4807526976/3010349*39603^(1/6) 9323798867633574 a001 1836311903/1149851*39603^(1/6) 9323798867674856 a001 701408733/439204*39603^(1/6) 9323798867689942 a001 196418/167761*103682^(7/9) 9323798867751978 a001 28657/103682*167761^(13/15) 9323798867834498 a001 75025/439204*103682^(17/18) 9323798867957813 a001 267914296/167761*39603^(1/6) 9323798868039084 a001 28657/103682*20633239^(13/21) 9323798868039098 a001 28657/103682*141422324^(5/9) 9323798868039098 a001 28657/103682*73681302247^(5/12) 9323798868039098 a001 46368/64079*2139295485799^(1/3) 9323798868039098 a001 28657/103682*228826127^(13/24) 9323798868041043 a001 28657/103682*1860498^(13/18) 9323798868144550 a001 28657/103682*271443^(5/6) 9323798868149520 a001 14930352/64079*64079^(1/3) 9323798868176893 a001 17711/9349*9349^(53/57) 9323798868733905 a001 196418/64079*167761^(2/3) 9323798868751436 a001 2178309/64079*167761^(7/15) 9323798868779889 a001 121393/64079*119218851371^(1/3) 9323798868818090 a001 24157817/64079*167761^(4/15) 9323798868884345 a001 267914296/64079*167761^(1/15) 9323798868887853 a001 28657/710647*7881196^(7/9) 9323798868887953 a001 28657/710647*20633239^(11/15) 9323798868887969 a001 28657/710647*17393796001^(11/21) 9323798868887969 a001 28657/710647*312119004989^(7/15) 9323798868887969 a001 28657/710647*505019158607^(11/24) 9323798868887969 a001 317811/64079*6643838879^(1/3) 9323798868887969 a001 28657/710647*1568397607^(7/12) 9323798868887969 a001 28657/710647*599074578^(11/18) 9323798868903738 a001 832040/64079*370248451^(1/3) 9323798868904024 a001 5702887/64079*1149851^(1/3) 9323798868904893 a001 28657/710647*710647^(11/12) 9323798868906031 a001 2178309/64079*20633239^(1/3) 9323798868906039 a001 2178309/64079*17393796001^(5/21) 9323798868906039 a001 2178309/64079*505019158607^(5/24) 9323798868906039 a001 2178309/64079*599074578^(5/18) 9323798868906039 a001 2178309/64079*228826127^(7/24) 9323798868906354 a001 28657/12752043*20633239^(19/21) 9323798868906374 a001 28657/12752043*817138163596^(5/9) 9323798868906374 a001 5702887/64079*1322157322203^(1/6) 9323798868906374 a001 28657/12752043*228826127^(19/24) 9323798868906375 a001 28657/12752043*87403803^(5/6) 9323798868906415 a001 102334155/64079*7881196^(1/9) 9323798868906423 a001 14930352/64079*4106118243^(1/6) 9323798868906429 a001 63245986/64079*20633239^(2/15) 9323798868906430 a001 39088169/64079*45537549124^(1/9) 9323798868906430 a001 267914296/64079*20633239^(1/21) 9323798868906431 a001 24157817/64079*20633239^(4/21) 9323798868906431 a001 102334155/64079*312119004989^(1/15) 9323798868906431 a001 102334155/64079*1568397607^(1/12) 9323798868906432 a001 28657/599074578*17393796001^(17/21) 9323798868906432 a001 28657/599074578*45537549124^(7/9) 9323798868906432 a001 28657/599074578*505019158607^(17/24) 9323798868906432 a001 267914296/64079*228826127^(1/24) 9323798868906432 a001 28657/1568397607*28143753123^(5/6) 9323798868906432 a001 28657/599074578*599074578^(17/18) 9323798868906432 a001 28657/28143753123*312119004989^(13/15) 9323798868906432 a001 28657/28143753123*73681302247^(11/12) 9323798868906432 a001 28657/192900153618*9062201101803^(5/6) 9323798868906432 a001 28657/2139295485799*3461452808002^(17/18) 9323798868906432 a001 28657/119218851371*23725150497407^(19/24) 9323798868906432 a001 28657/119218851371*505019158607^(19/21) 9323798868906432 a001 28657/17393796001*17393796001^(20/21) 9323798868906432 a001 28657/17393796001*3461452808002^(7/9) 9323798868906432 a001 28657/17393796001*505019158607^(5/6) 9323798868906432 a001 28657/17393796001*28143753123^(14/15) 9323798868906432 a001 28657/2537720636*23725150497407^(2/3) 9323798868906432 a001 28657/2537720636*505019158607^(16/21) 9323798868906432 a001 28657/2537720636*10749957122^(8/9) 9323798868906432 a001 28657/969323029*5600748293801^(2/3) 9323798868906432 a001 28657/370248451*1322157322203^(2/3) 9323798868906432 a001 165580141/64079*23725150497407^(1/24) 9323798868906432 a001 165580141/64079*10749957122^(1/18) 9323798868906432 a001 165580141/64079*228826127^(1/15) 9323798868906432 a001 28657/141422324*312119004989^(2/3) 9323798868906432 a001 28657/141422324*3461452808002^(11/18) 9323798868906432 a001 28657/141422324*28143753123^(11/15) 9323798868906432 a001 63245986/64079*17393796001^(2/21) 9323798868906432 a001 63245986/64079*505019158607^(1/12) 9323798868906432 a001 28657/141422324*1568397607^(5/6) 9323798868906432 a001 63245986/64079*599074578^(1/9) 9323798868906432 a001 28657/141422324*228826127^(11/12) 9323798868906433 a001 28657/20633239*20633239^(14/15) 9323798868906434 a001 28657/54018521*141422324^(8/9) 9323798868906435 a001 28657/54018521*23725150497407^(13/24) 9323798868906435 a001 28657/54018521*505019158607^(13/21) 9323798868906435 a001 28657/54018521*73681302247^(2/3) 9323798868906435 a001 28657/54018521*10749957122^(13/18) 9323798868906435 a001 24157817/64079*3461452808002^(1/9) 9323798868906435 a001 24157817/64079*28143753123^(2/15) 9323798868906435 a001 24157817/64079*228826127^(1/6) 9323798868906435 a001 28657/54018521*228826127^(13/15) 9323798868906440 a001 39088169/64079*12752043^(1/6) 9323798868906453 a001 9227465/64079*141422324^(2/9) 9323798868906453 a001 28657/20633239*17393796001^(2/3) 9323798868906453 a001 28657/20633239*505019158607^(7/12) 9323798868906453 a001 9227465/64079*73681302247^(1/6) 9323798868906453 a001 28657/20633239*599074578^(7/9) 9323798868906464 a001 165580141/64079*4870847^(1/12) 9323798868906517 a001 24157817/64079*4870847^(5/24) 9323798868906581 a001 267914296/64079*1860498^(1/18) 9323798868906582 a001 28657/7881196*4106118243^(2/3) 9323798868906582 a001 3524578/64079*23725150497407^(1/6) 9323798868906582 a001 3524578/64079*10749957122^(2/9) 9323798868906582 a001 3524578/64079*228826127^(4/15) 9323798868906713 a001 3524578/64079*4870847^(1/3) 9323798868906958 a001 28657/7881196*4870847^(23/24) 9323798868907033 a001 24157817/64079*1860498^(2/9) 9323798868907086 a001 2178309/64079*1860498^(7/18) 9323798868907460 a001 28657/3010349*969323029^(2/3) 9323798868907460 a001 1346269/64079*817138163596^(2/9) 9323798868907461 a001 1346269/64079*87403803^(1/3) 9323798868908190 a001 165580141/64079*710647^(2/21) 9323798868909509 a001 63245986/64079*710647^(1/6) 9323798868910831 a001 24157817/64079*710647^(5/21) 9323798868913417 a001 514229/64079*7881196^(4/9) 9323798868913467 a001 28657/1149851*20633239^(16/21) 9323798868913484 a001 28657/1149851*23725150497407^(5/12) 9323798868913484 a001 28657/1149851*505019158607^(10/21) 9323798868913484 a001 28657/1149851*28143753123^(8/15) 9323798868913484 a001 28657/1149851*10749957122^(5/9) 9323798868913484 a001 514229/64079*312119004989^(4/15) 9323798868913484 a001 514229/64079*1568397607^(1/3) 9323798868913484 a001 28657/1149851*228826127^(2/3) 9323798868913615 a001 3524578/64079*710647^(8/21) 9323798868913664 a001 514229/64079*4870847^(11/24) 9323798868913731 a001 2178309/64079*710647^(5/12) 9323798868913811 a001 28657/1149851*4870847^(5/6) 9323798868915878 a001 28657/1149851*1860498^(8/9) 9323798868923154 a001 514229/64079*710647^(11/21) 9323798868931067 a001 28657/1149851*710647^(20/21) 9323798868948634 a001 9227465/64079*271443^(1/3) 9323798868954756 a001 196418/64079*20633239^(10/21) 9323798868954764 a001 28657/439204*54018521^(2/3) 9323798868954766 a001 196418/64079*3461452808002^(5/18) 9323798868954766 a001 196418/64079*28143753123^(1/3) 9323798868954766 a001 196418/64079*228826127^(5/12) 9323798868956263 a001 196418/64079*1860498^(5/9) 9323798869002802 a001 165580141/64079*103682^(1/9) 9323798869147361 a001 24157817/64079*103682^(5/18) 9323798869163907 a001 433494437/103682*15127^(1/12) 9323798869190756 a001 46347/2206*39603^(19/33) 9323798869237712 a001 75025/64079*20633239^(8/15) 9323798869237724 a001 28657/167761*45537549124^(4/9) 9323798869237724 a001 75025/64079*17393796001^(8/21) 9323798869237724 a001 75025/64079*23725150497407^(7/24) 9323798869237724 a001 75025/64079*505019158607^(1/3) 9323798869237724 a001 75025/64079*10749957122^(7/18) 9323798869237724 a001 75025/64079*599074578^(4/9) 9323798869237724 a001 75025/64079*228826127^(7/15) 9323798869237762 a001 28657/167761*12752043^(2/3) 9323798869237953 a001 75025/64079*4870847^(7/12) 9323798869238002 a001 28657/167761*4870847^(17/24) 9323798869250032 a001 75025/64079*710647^(2/3) 9323798869252669 a001 28657/167761*710647^(17/21) 9323798869292063 a001 3524578/64079*103682^(4/9) 9323798869443521 a001 514229/64079*103682^(11/18) 9323798869728891 a001 416020/51841*39603^(2/3) 9323798869897230 a001 102334155/64079*39603^(1/6) 9323798869904699 a001 1134903170/271443*15127^(1/12) 9323798869912316 a001 75025/64079*103682^(7/9) 9323798870012779 a001 2971215073/710647*15127^(1/12) 9323798870028547 a001 7778742049/1860498*15127^(1/12) 9323798870030848 a001 20365011074/4870847*15127^(1/12) 9323798870031183 a001 53316291173/12752043*15127^(1/12) 9323798870031232 a001 139583862445/33385282*15127^(1/12) 9323798870031240 a001 365435296162/87403803*15127^(1/12) 9323798870031241 a001 956722026041/228826127*15127^(1/12) 9323798870031241 a001 2504730781961/599074578*15127^(1/12) 9323798870031241 a001 6557470319842/1568397607*15127^(1/12) 9323798870031241 a001 10610209857723/2537720636*15127^(1/12) 9323798870031241 a001 4052739537881/969323029*15127^(1/12) 9323798870031241 a001 1548008755920/370248451*15127^(1/12) 9323798870031241 a001 591286729879/141422324*15127^(1/12) 9323798870031244 a001 225851433717/54018521*15127^(1/12) 9323798870031263 a001 86267571272/20633239*15127^(1/12) 9323798870031391 a001 32951280099/7881196*15127^(1/12) 9323798870032270 a001 12586269025/3010349*15127^(1/12) 9323798870038293 a001 4807526976/1149851*15127^(1/12) 9323798870056872 a001 28657/167761*103682^(17/18) 9323798870079576 a001 1836311903/439204*15127^(1/12) 9323798870253558 a001 317811/103682*39603^(25/33) 9323798870362533 a001 701408733/167761*15127^(1/12) 9323798870471983 a001 726103/90481*39603^(2/3) 9323798870485558 a001 23184/51841*39603^(31/33) 9323798870580398 a001 5702887/710647*39603^(2/3) 9323798870596216 a001 829464/103361*39603^(2/3) 9323798870598524 a001 39088169/4870847*39603^(2/3) 9323798870598860 a001 34111385/4250681*39603^(2/3) 9323798870598910 a001 133957148/16692641*39603^(2/3) 9323798870598917 a001 233802911/29134601*39603^(2/3) 9323798870598918 a001 1836311903/228826127*39603^(2/3) 9323798870598918 a001 267084832/33281921*39603^(2/3) 9323798870598918 a001 12586269025/1568397607*39603^(2/3) 9323798870598918 a001 10983760033/1368706081*39603^(2/3) 9323798870598918 a001 43133785636/5374978561*39603^(2/3) 9323798870598918 a001 75283811239/9381251041*39603^(2/3) 9323798870598918 a001 591286729879/73681302247*39603^(2/3) 9323798870598918 a001 86000486440/10716675201*39603^(2/3) 9323798870598918 a001 4052739537881/505019158607*39603^(2/3) 9323798870598918 a001 3536736619241/440719107401*39603^(2/3) 9323798870598918 a001 3278735159921/408569081798*39603^(2/3) 9323798870598918 a001 2504730781961/312119004989*39603^(2/3) 9323798870598918 a001 956722026041/119218851371*39603^(2/3) 9323798870598918 a001 182717648081/22768774562*39603^(2/3) 9323798870598918 a001 139583862445/17393796001*39603^(2/3) 9323798870598918 a001 53316291173/6643838879*39603^(2/3) 9323798870598918 a001 10182505537/1268860318*39603^(2/3) 9323798870598918 a001 7778742049/969323029*39603^(2/3) 9323798870598918 a001 2971215073/370248451*39603^(2/3) 9323798870598918 a001 567451585/70711162*39603^(2/3) 9323798870598921 a001 433494437/54018521*39603^(2/3) 9323798870598940 a001 165580141/20633239*39603^(2/3) 9323798870599069 a001 31622993/3940598*39603^(2/3) 9323798870599950 a001 24157817/3010349*39603^(2/3) 9323798870605992 a001 9227465/1149851*39603^(2/3) 9323798870635728 a001 28657/24476*24476^(8/9) 9323798870647403 a001 1762289/219602*39603^(2/3) 9323798870685914 a001 121393/103682*39603^(28/33) 9323798870931239 a001 1346269/167761*39603^(2/3) 9323798871010118 a001 832040/271443*39603^(25/33) 9323798871120498 a001 311187/101521*39603^(25/33) 9323798871176454 a001 28657/64079*3010349^(2/3) 9323798871177140 a001 28657/64079*9062201101803^(1/3) 9323798871188717 a001 1346269/439204*39603^(25/33) 9323798871201218 a001 133957148/51841*15127^(2/15) 9323798871477698 a001 514229/167761*39603^(25/33) 9323798871534785 a001 105937/90481*39603^(28/33) 9323798871658634 a001 832040/710647*39603^(28/33) 9323798871676703 a001 726103/620166*39603^(28/33) 9323798871687870 a001 1346269/1149851*39603^(28/33) 9323798871735176 a001 514229/439204*39603^(28/33) 9323798871942009 a001 233802911/90481*15127^(2/15) 9323798871967141 a001 121393/271443*39603^(31/33) 9323798872050089 a001 1836311903/710647*15127^(2/15) 9323798872059416 a001 196418/167761*39603^(28/33) 9323798872065858 a001 267084832/103361*15127^(2/15) 9323798872068159 a001 12586269025/4870847*15127^(2/15) 9323798872068494 a001 10983760033/4250681*15127^(2/15) 9323798872068543 a001 43133785636/16692641*15127^(2/15) 9323798872068550 a001 75283811239/29134601*15127^(2/15) 9323798872068551 a001 591286729879/228826127*15127^(2/15) 9323798872068552 a001 86000486440/33281921*15127^(2/15) 9323798872068552 a001 4052739537881/1568397607*15127^(2/15) 9323798872068552 a001 3536736619241/1368706081*15127^(2/15) 9323798872068552 a001 3278735159921/1268860318*15127^(2/15) 9323798872068552 a001 2504730781961/969323029*15127^(2/15) 9323798872068552 a001 956722026041/370248451*15127^(2/15) 9323798872068552 a001 182717648081/70711162*15127^(2/15) 9323798872068555 a001 139583862445/54018521*15127^(2/15) 9323798872068573 a001 53316291173/20633239*15127^(2/15) 9323798872068702 a001 10182505537/3940598*15127^(2/15) 9323798872069580 a001 7778742049/3010349*15127^(2/15) 9323798872075604 a001 2971215073/1149851*15127^(2/15) 9323798872116886 a001 567451585/219602*15127^(2/15) 9323798872183301 a001 317811/710647*39603^(31/33) 9323798872214838 a001 416020/930249*39603^(31/33) 9323798872219439 a001 2178309/4870847*39603^(31/33) 9323798872222283 a001 1346269/3010349*39603^(31/33) 9323798872234329 a001 514229/1149851*39603^(31/33) 9323798872301950 a001 267914296/64079*15127^(1/12) 9323798872316895 a001 98209/219602*39603^(31/33) 9323798872330220 a001 1346269/64079*39603^(19/33) 9323798872399844 a001 433494437/167761*15127^(2/15) 9323798872876679 a001 514229/64079*39603^(2/3) 9323798872882809 a001 75025/167761*39603^(31/33) 9323798873458397 a001 196418/64079*39603^(25/33) 9323798873550216 a001 208010/6119*24476^(5/9) 9323798874272994 a001 4976784/13201*15127^(1/3) 9323798874281790 a001 75025/64079*39603^(28/33) 9323798874339260 a001 165580141/64079*15127^(2/15) 9323798875967480 a001 10946/39603*167761^(13/15) 9323798876254586 a001 10946/39603*20633239^(13/21) 9323798876254599 a001 10946/39603*141422324^(5/9) 9323798876254600 a001 10946/39603*73681302247^(5/12) 9323798876254600 a001 17711/24476*2139295485799^(1/3) 9323798876254600 a001 10946/39603*228826127^(13/24) 9323798876256545 a001 10946/39603*1860498^(13/18) 9323798876360052 a001 10946/39603*271443^(5/6) 9323798876761643 a001 28657/64079*39603^(31/33) 9323798877027564 a001 5473/2889*5778^(53/54) 9323798878740802 a001 24157817/24476*24476^(2/9) 9323798879350460 a001 39088169/103682*15127^(1/3) 9323798880091252 a001 34111385/90481*15127^(1/3) 9323798880199333 a001 267914296/710647*15127^(1/3) 9323798880215101 a001 233802911/620166*15127^(1/3) 9323798880217402 a001 1836311903/4870847*15127^(1/3) 9323798880217737 a001 1602508992/4250681*15127^(1/3) 9323798880217786 a001 12586269025/33385282*15127^(1/3) 9323798880217794 a001 10983760033/29134601*15127^(1/3) 9323798880217795 a001 86267571272/228826127*15127^(1/3) 9323798880217795 a001 267913919/710646*15127^(1/3) 9323798880217795 a001 591286729879/1568397607*15127^(1/3) 9323798880217795 a001 516002918640/1368706081*15127^(1/3) 9323798880217795 a001 4052739537881/10749957122*15127^(1/3) 9323798880217795 a001 3536736619241/9381251041*15127^(1/3) 9323798880217795 a001 6557470319842/17393796001*15127^(1/3) 9323798880217795 a001 2504730781961/6643838879*15127^(1/3) 9323798880217795 a001 956722026041/2537720636*15127^(1/3) 9323798880217795 a001 365435296162/969323029*15127^(1/3) 9323798880217795 a001 139583862445/370248451*15127^(1/3) 9323798880217795 a001 53316291173/141422324*15127^(1/3) 9323798880217798 a001 20365011074/54018521*15127^(1/3) 9323798880217817 a001 7778742049/20633239*15127^(1/3) 9323798880217945 a001 2971215073/7881196*15127^(1/3) 9323798880218824 a001 1134903170/3010349*15127^(1/3) 9323798880224847 a001 433494437/1149851*15127^(1/3) 9323798880266130 a001 165580141/439204*15127^(1/3) 9323798880549087 a001 63245986/167761*15127^(1/3) 9323798881332059 a001 11592/6119*119218851371^(1/3) 9323798881442432 a001 5702887/24476*64079^(1/3) 9323798881520289 a001 10946/15127*15127^(59/60) 9323798882006868 a001 28657/9349*9349^(50/57) 9323798882042096 a001 208010/6119*167761^(7/15) 9323798882072733 a001 10946/271443*7881196^(7/9) 9323798882072834 a001 10946/271443*20633239^(11/15) 9323798882072850 a001 10946/271443*17393796001^(11/21) 9323798882072850 a001 10946/271443*312119004989^(7/15) 9323798882072850 a001 10946/271443*505019158607^(11/24) 9323798882072850 a001 10946/271443*1568397607^(7/12) 9323798882072850 a001 10946/271443*599074578^(11/18) 9323798882072850 a001 121393/24476*6643838879^(1/3) 9323798882089774 a001 10946/271443*710647^(11/12) 9323798882111070 a001 9227465/24476*167761^(4/15) 9323798882177306 a001 102334155/24476*167761^(1/15) 9323798882180930 a001 10959/844*370248451^(1/3) 9323798882196649 a001 2178309/24476*1149851^(1/3) 9323798882196692 a001 208010/6119*20633239^(1/3) 9323798882196699 a001 208010/6119*17393796001^(5/21) 9323798882196699 a001 208010/6119*505019158607^(5/24) 9323798882196699 a001 208010/6119*599074578^(5/18) 9323798882196699 a001 208010/6119*228826127^(7/24) 9323798882197746 a001 208010/6119*1860498^(7/18) 9323798882198980 a001 10946/4870847*20633239^(19/21) 9323798882198999 a001 10946/4870847*817138163596^(5/9) 9323798882199000 a001 2178309/24476*1322157322203^(1/6) 9323798882199000 a001 10946/4870847*228826127^(19/24) 9323798882199000 a001 10946/4870847*87403803^(5/6) 9323798882199335 a001 5702887/24476*4106118243^(1/6) 9323798882199375 a001 39088169/24476*7881196^(1/9) 9323798882199384 a001 3732588/6119*45537549124^(1/9) 9323798882199391 a001 102334155/24476*20633239^(1/21) 9323798882199391 a001 39088169/24476*312119004989^(1/15) 9323798882199391 a001 39088169/24476*1568397607^(1/12) 9323798882199392 a001 10946/228826127*17393796001^(17/21) 9323798882199392 a001 10946/228826127*45537549124^(7/9) 9323798882199392 a001 10946/228826127*505019158607^(17/24) 9323798882199392 a001 10946/228826127*599074578^(17/18) 9323798882199392 a001 102334155/24476*228826127^(1/24) 9323798882199392 a001 5473/299537289*28143753123^(5/6) 9323798882199392 a001 5473/5374978561*312119004989^(13/15) 9323798882199392 a001 5473/5374978561*73681302247^(11/12) 9323798882199392 a001 10946/73681302247*9062201101803^(5/6) 9323798882199392 a001 5473/96450076809*505019158607^(23/24) 9323798882199392 a001 10946/2139295485799*23725150497407^(11/12) 9323798882199392 a001 5473/408569081798*3461452808002^(17/18) 9323798882199392 a001 5473/22768774562*23725150497407^(19/24) 9323798882199392 a001 5473/22768774562*505019158607^(19/21) 9323798882199392 a001 10946/6643838879*17393796001^(20/21) 9323798882199392 a001 10946/6643838879*3461452808002^(7/9) 9323798882199392 a001 10946/6643838879*505019158607^(5/6) 9323798882199392 a001 10946/6643838879*28143753123^(14/15) 9323798882199392 a001 10946/969323029*23725150497407^(2/3) 9323798882199392 a001 10946/969323029*505019158607^(16/21) 9323798882199392 a001 10946/969323029*10749957122^(8/9) 9323798882199393 a001 10946/370248451*5600748293801^(2/3) 9323798882199393 a001 24157817/24476*20633239^(2/15) 9323798882199393 a001 5473/70711162*1322157322203^(2/3) 9323798882199393 a001 31622993/12238*23725150497407^(1/24) 9323798882199393 a001 31622993/12238*10749957122^(1/18) 9323798882199393 a001 31622993/12238*228826127^(1/15) 9323798882199394 a001 3732588/6119*12752043^(1/6) 9323798882199396 a001 10946/54018521*312119004989^(2/3) 9323798882199396 a001 10946/54018521*3461452808002^(11/18) 9323798882199396 a001 10946/54018521*28143753123^(11/15) 9323798882199396 a001 10946/54018521*1568397607^(5/6) 9323798882199396 a001 24157817/24476*17393796001^(2/21) 9323798882199396 a001 24157817/24476*505019158607^(1/12) 9323798882199396 a001 24157817/24476*599074578^(1/9) 9323798882199396 a001 10946/54018521*228826127^(11/12) 9323798882199410 a001 9227465/24476*20633239^(4/21) 9323798882199414 a001 10946/20633239*141422324^(8/9) 9323798882199414 a001 10946/20633239*23725150497407^(13/24) 9323798882199414 a001 10946/20633239*505019158607^(13/21) 9323798882199414 a001 10946/20633239*73681302247^(2/3) 9323798882199414 a001 10946/20633239*10749957122^(13/18) 9323798882199414 a001 9227465/24476*3461452808002^(1/9) 9323798882199414 a001 9227465/24476*28143753123^(2/15) 9323798882199414 a001 9227465/24476*228826127^(1/6) 9323798882199415 a001 10946/20633239*228826127^(13/15) 9323798882199426 a001 31622993/12238*4870847^(1/12) 9323798882199496 a001 9227465/24476*4870847^(5/24) 9323798882199522 a001 5473/3940598*20633239^(14/15) 9323798882199542 a001 102334155/24476*1860498^(1/18) 9323798882199543 a001 1762289/12238*141422324^(2/9) 9323798882199543 a001 5473/3940598*17393796001^(2/3) 9323798882199543 a001 5473/3940598*505019158607^(7/12) 9323798882199543 a001 5473/3940598*599074578^(7/9) 9323798882199543 a001 1762289/12238*73681302247^(1/6) 9323798882200013 a001 9227465/24476*1860498^(2/9) 9323798882200421 a001 10946/3010349*4106118243^(2/3) 9323798882200421 a001 1346269/24476*23725150497407^(1/6) 9323798882200421 a001 1346269/24476*10749957122^(2/9) 9323798882200421 a001 1346269/24476*228826127^(4/15) 9323798882200552 a001 1346269/24476*4870847^(1/3) 9323798882200798 a001 10946/3010349*4870847^(23/24) 9323798882201151 a001 31622993/12238*710647^(2/21) 9323798882202473 a001 24157817/24476*710647^(1/6) 9323798882203810 a001 9227465/24476*710647^(5/21) 9323798882204391 a001 208010/6119*710647^(5/12) 9323798882206444 a001 10946/1149851*969323029^(2/3) 9323798882206444 a001 514229/24476*817138163596^(2/9) 9323798882206445 a001 514229/24476*87403803^(1/3) 9323798882207455 a001 1346269/24476*710647^(8/21) 9323798882241723 a001 1762289/12238*271443^(1/3) 9323798882247661 a001 98209/12238*7881196^(4/9) 9323798882247711 a001 5473/219602*20633239^(16/21) 9323798882247727 a001 5473/219602*23725150497407^(5/12) 9323798882247727 a001 5473/219602*505019158607^(10/21) 9323798882247727 a001 5473/219602*28143753123^(8/15) 9323798882247727 a001 5473/219602*10749957122^(5/9) 9323798882247727 a001 98209/12238*312119004989^(4/15) 9323798882247727 a001 98209/12238*1568397607^(1/3) 9323798882247727 a001 5473/219602*228826127^(2/3) 9323798882247907 a001 98209/12238*4870847^(11/24) 9323798882248055 a001 5473/219602*4870847^(5/6) 9323798882250122 a001 5473/219602*1860498^(8/9) 9323798882257398 a001 98209/12238*710647^(11/21) 9323798882265310 a001 5473/219602*710647^(20/21) 9323798882295763 a001 31622993/12238*103682^(1/9) 9323798882309823 a001 75025/24476*167761^(2/3) 9323798882421852 a001 726103/13201*15127^(8/15) 9323798882440340 a001 9227465/24476*103682^(5/18) 9323798882488507 a001 24157817/64079*15127^(1/3) 9323798882530674 a001 75025/24476*20633239^(10/21) 9323798882530682 a001 10946/167761*54018521^(2/3) 9323798882530684 a001 75025/24476*3461452808002^(5/18) 9323798882530684 a001 75025/24476*28143753123^(1/3) 9323798882530685 a001 75025/24476*228826127^(5/12) 9323798882532181 a001 75025/24476*1860498^(5/9) 9323798882585903 a001 1346269/24476*103682^(4/9) 9323798882777765 a001 98209/12238*103682^(11/18) 9323798883190190 a001 39088169/24476*39603^(1/6) 9323798884070883 a001 10946/9349*9349^(56/57) 9323798884460585 a001 1346269/39603*15127^(7/12) 9323798884470090 a001 28657/24476*20633239^(8/15) 9323798884470101 a001 10946/64079*45537549124^(4/9) 9323798884470101 a001 28657/24476*17393796001^(8/21) 9323798884470101 a001 28657/24476*23725150497407^(7/24) 9323798884470101 a001 28657/24476*505019158607^(1/3) 9323798884470101 a001 28657/24476*10749957122^(7/18) 9323798884470101 a001 28657/24476*599074578^(4/9) 9323798884470101 a001 28657/24476*228826127^(7/15) 9323798884470140 a001 10946/64079*12752043^(2/3) 9323798884470331 a001 28657/24476*4870847^(7/12) 9323798884470380 a001 10946/64079*4870847^(17/24) 9323798884482409 a001 28657/24476*710647^(2/3) 9323798884483298 a001 46368/9349*9349^(47/57) 9323798884485047 a001 10946/64079*710647^(17/21) 9323798885082745 a001 1346269/24476*39603^(16/33) 9323798885144694 a001 28657/24476*103682^(7/9) 9323798885289250 a001 10946/64079*103682^(17/18) 9323798885594910 a001 102334155/24476*15127^(1/12) 9323798885629204 a001 514229/24476*39603^(19/33) 9323798886210923 a001 98209/12238*39603^(2/3) 9323798886494173 a001 832040/39603*15127^(19/30) 9323798887034315 a001 75025/24476*39603^(25/33) 9323798887499647 a001 5702887/103682*15127^(8/15) 9323798887632222 a001 31622993/12238*15127^(2/15) 9323798888240487 a001 4976784/90481*15127^(8/15) 9323798888348575 a001 39088169/710647*15127^(8/15) 9323798888364344 a001 831985/15126*15127^(8/15) 9323798888366645 a001 267914296/4870847*15127^(8/15) 9323798888366981 a001 233802911/4250681*15127^(8/15) 9323798888367030 a001 1836311903/33385282*15127^(8/15) 9323798888367037 a001 1602508992/29134601*15127^(8/15) 9323798888367038 a001 12586269025/228826127*15127^(8/15) 9323798888367038 a001 10983760033/199691526*15127^(8/15) 9323798888367038 a001 86267571272/1568397607*15127^(8/15) 9323798888367038 a001 75283811239/1368706081*15127^(8/15) 9323798888367038 a001 591286729879/10749957122*15127^(8/15) 9323798888367038 a001 12585437040/228811001*15127^(8/15) 9323798888367038 a001 4052739537881/73681302247*15127^(8/15) 9323798888367038 a001 3536736619241/64300051206*15127^(8/15) 9323798888367038 a001 6557470319842/119218851371*15127^(8/15) 9323798888367038 a001 2504730781961/45537549124*15127^(8/15) 9323798888367038 a001 956722026041/17393796001*15127^(8/15) 9323798888367038 a001 365435296162/6643838879*15127^(8/15) 9323798888367038 a001 139583862445/2537720636*15127^(8/15) 9323798888367038 a001 53316291173/969323029*15127^(8/15) 9323798888367038 a001 20365011074/370248451*15127^(8/15) 9323798888367039 a001 7778742049/141422324*15127^(8/15) 9323798888367041 a001 2971215073/54018521*15127^(8/15) 9323798888367060 a001 1134903170/20633239*15127^(8/15) 9323798888367188 a001 433494437/7881196*15127^(8/15) 9323798888368067 a001 165580141/3010349*15127^(8/15) 9323798888374091 a001 63245986/1149851*15127^(8/15) 9323798888415376 a001 24157817/439204*15127^(8/15) 9323798888541230 a001 514229/39603*15127^(41/60) 9323798888698352 a001 9227465/167761*15127^(8/15) 9323798889514168 a001 28657/24476*39603^(28/33) 9323798889537165 a001 1762289/51841*15127^(7/12) 9323798890277829 a001 9227465/271443*15127^(7/12) 9323798890385890 a001 24157817/710647*15127^(7/12) 9323798890401656 a001 31622993/930249*15127^(7/12) 9323798890403956 a001 165580141/4870847*15127^(7/12) 9323798890404292 a001 433494437/12752043*15127^(7/12) 9323798890404341 a001 567451585/16692641*15127^(7/12) 9323798890404348 a001 2971215073/87403803*15127^(7/12) 9323798890404349 a001 7778742049/228826127*15127^(7/12) 9323798890404349 a001 10182505537/299537289*15127^(7/12) 9323798890404349 a001 53316291173/1568397607*15127^(7/12) 9323798890404349 a001 139583862445/4106118243*15127^(7/12) 9323798890404349 a001 182717648081/5374978561*15127^(7/12) 9323798890404349 a001 956722026041/28143753123*15127^(7/12) 9323798890404349 a001 2504730781961/73681302247*15127^(7/12) 9323798890404349 a001 3278735159921/96450076809*15127^(7/12) 9323798890404349 a001 10610209857723/312119004989*15127^(7/12) 9323798890404349 a001 4052739537881/119218851371*15127^(7/12) 9323798890404349 a001 387002188980/11384387281*15127^(7/12) 9323798890404349 a001 591286729879/17393796001*15127^(7/12) 9323798890404349 a001 225851433717/6643838879*15127^(7/12) 9323798890404349 a001 1135099622/33391061*15127^(7/12) 9323798890404349 a001 32951280099/969323029*15127^(7/12) 9323798890404349 a001 12586269025/370248451*15127^(7/12) 9323798890404349 a001 1201881744/35355581*15127^(7/12) 9323798890404352 a001 1836311903/54018521*15127^(7/12) 9323798890404371 a001 701408733/20633239*15127^(7/12) 9323798890404499 a001 66978574/1970299*15127^(7/12) 9323798890405378 a001 102334155/3010349*15127^(7/12) 9323798890411400 a001 39088169/1149851*15127^(7/12) 9323798890452675 a001 196452/5779*15127^(7/12) 9323798890553026 a001 105937/13201*15127^(11/15) 9323798890637897 a001 3524578/64079*15127^(8/15) 9323798890735584 a001 5702887/167761*15127^(7/12) 9323798891296396 a001 75025/9349*9349^(44/57) 9323798891573933 a001 46347/2206*15127^(19/30) 9323798892657134 a001 196418/39603*15127^(47/60) 9323798892674665 a001 2178309/64079*15127^(7/12) 9323798893612666 a001 1346269/103682*15127^(41/60) 9323798894519568 a001 121393/39603*15127^(5/6) 9323798894713397 a001 1346269/64079*15127^(19/30) 9323798894809870 a001 2178309/167761*15127^(41/60) 9323798895646254 a001 416020/51841*15127^(11/15) 9323798895781487 a001 9227465/24476*15127^(1/3) 9323798896389346 a001 726103/90481*15127^(11/15) 9323798896453035 a001 121393/9349*9349^(41/57) 9323798896497762 a001 5702887/710647*15127^(11/15) 9323798896513579 a001 829464/103361*15127^(11/15) 9323798896515887 a001 39088169/4870847*15127^(11/15) 9323798896516224 a001 34111385/4250681*15127^(11/15) 9323798896516273 a001 133957148/16692641*15127^(11/15) 9323798896516280 a001 233802911/29134601*15127^(11/15) 9323798896516281 a001 1836311903/228826127*15127^(11/15) 9323798896516281 a001 267084832/33281921*15127^(11/15) 9323798896516281 a001 12586269025/1568397607*15127^(11/15) 9323798896516281 a001 10983760033/1368706081*15127^(11/15) 9323798896516281 a001 43133785636/5374978561*15127^(11/15) 9323798896516281 a001 75283811239/9381251041*15127^(11/15) 9323798896516281 a001 591286729879/73681302247*15127^(11/15) 9323798896516281 a001 86000486440/10716675201*15127^(11/15) 9323798896516281 a001 4052739537881/505019158607*15127^(11/15) 9323798896516281 a001 3536736619241/440719107401*15127^(11/15) 9323798896516281 a001 3278735159921/408569081798*15127^(11/15) 9323798896516281 a001 2504730781961/312119004989*15127^(11/15) 9323798896516281 a001 956722026041/119218851371*15127^(11/15) 9323798896516281 a001 182717648081/22768774562*15127^(11/15) 9323798896516281 a001 139583862445/17393796001*15127^(11/15) 9323798896516281 a001 53316291173/6643838879*15127^(11/15) 9323798896516281 a001 10182505537/1268860318*15127^(11/15) 9323798896516281 a001 7778742049/969323029*15127^(11/15) 9323798896516281 a001 2971215073/370248451*15127^(11/15) 9323798896516282 a001 567451585/70711162*15127^(11/15) 9323798896516285 a001 433494437/54018521*15127^(11/15) 9323798896516303 a001 165580141/20633239*15127^(11/15) 9323798896516432 a001 31622993/3940598*15127^(11/15) 9323798896517313 a001 24157817/3010349*15127^(11/15) 9323798896523355 a001 9227465/1149851*15127^(11/15) 9323798896535887 a001 10946/3571*3571^(50/51) 9323798896564766 a001 1762289/219602*15127^(11/15) 9323798896746986 a001 832040/64079*15127^(41/60) 9323798896848602 a001 1346269/167761*15127^(11/15) 9323798897014713 a001 75025/39603*15127^(53/60) 9323798897693311 a001 514229/103682*15127^(47/60) 9323798897762376 a001 5473/12238*3010349^(2/3) 9323798897763062 a001 5473/12238*9062201101803^(1/3) 9323798897853398 a001 15456/13201*15127^(14/15) 9323798898428079 a001 1346269/271443*15127^(47/60) 9323798898601534 a001 2178309/439204*15127^(47/60) 9323798898794042 a001 514229/64079*15127^(11/15) 9323798898882191 a001 75640/15251*15127^(47/60) 9323798899705107 a001 317811/103682*15127^(5/6) 9323798900461667 a001 832040/271443*15127^(5/6) 9323798900572048 a001 311187/101521*15127^(5/6) 9323798900588152 a001 5702887/1860498*15127^(5/6) 9323798900590502 a001 14930352/4870847*15127^(5/6) 9323798900590844 a001 39088169/12752043*15127^(5/6) 9323798900590894 a001 14619165/4769326*15127^(5/6) 9323798900590902 a001 267914296/87403803*15127^(5/6) 9323798900590903 a001 701408733/228826127*15127^(5/6) 9323798900590903 a001 1836311903/599074578*15127^(5/6) 9323798900590903 a001 686789568/224056801*15127^(5/6) 9323798900590903 a001 12586269025/4106118243*15127^(5/6) 9323798900590903 a001 32951280099/10749957122*15127^(5/6) 9323798900590903 a001 86267571272/28143753123*15127^(5/6) 9323798900590903 a001 32264490531/10525900321*15127^(5/6) 9323798900590903 a001 591286729879/192900153618*15127^(5/6) 9323798900590903 a001 1548008755920/505019158607*15127^(5/6) 9323798900590903 a001 1515744265389/494493258286*15127^(5/6) 9323798900590903 a001 2504730781961/817138163596*15127^(5/6) 9323798900590903 a001 956722026041/312119004989*15127^(5/6) 9323798900590903 a001 365435296162/119218851371*15127^(5/6) 9323798900590903 a001 139583862445/45537549124*15127^(5/6) 9323798900590903 a001 53316291173/17393796001*15127^(5/6) 9323798900590903 a001 20365011074/6643838879*15127^(5/6) 9323798900590903 a001 7778742049/2537720636*15127^(5/6) 9323798900590903 a001 2971215073/969323029*15127^(5/6) 9323798900590903 a001 1134903170/370248451*15127^(5/6) 9323798900590903 a001 433494437/141422324*15127^(5/6) 9323798900590906 a001 165580141/54018521*15127^(5/6) 9323798900590925 a001 63245986/20633239*15127^(5/6) 9323798900591056 a001 24157817/7881196*15127^(5/6) 9323798900591954 a001 9227465/3010349*15127^(5/6) 9323798900598105 a001 3524578/1149851*15127^(5/6) 9323798900640267 a001 1346269/439204*15127^(5/6) 9323798900805839 a001 317811/64079*15127^(47/60) 9323798900929247 a001 514229/167761*15127^(5/6) 9323798901809215 a001 98209/51841*15127^(53/60) 9323798901893004 a001 2178309/24476*15127^(29/60) 9323798902242384 a001 196418/9349*9349^(2/3) 9323798902508724 a001 514229/271443*15127^(53/60) 9323798902610780 a001 1346269/710647*15127^(53/60) 9323798902634873 a001 2178309/1149851*15127^(53/60) 9323798902673855 a001 208010/109801*15127^(53/60) 9323798902909947 a001 196418/64079*15127^(5/6) 9323798902941043 a001 317811/167761*15127^(53/60) 9323798903028751 a001 28657/39603*15127^(59/60) 9323798903347565 a001 5473/12238*39603^(31/33) 9323798903671649 a001 121393/103682*15127^(14/15) 9323798903931737 a001 1346269/24476*15127^(8/15) 9323798904520520 a001 105937/90481*15127^(14/15) 9323798904644369 a001 832040/710647*15127^(14/15) 9323798904662438 a001 726103/620166*15127^(14/15) 9323798904665074 a001 5702887/4870847*15127^(14/15) 9323798904665459 a001 4976784/4250681*15127^(14/15) 9323798904665515 a001 39088169/33385282*15127^(14/15) 9323798904665523 a001 34111385/29134601*15127^(14/15) 9323798904665524 a001 267914296/228826127*15127^(14/15) 9323798904665525 a001 233802911/199691526*15127^(14/15) 9323798904665525 a001 1836311903/1568397607*15127^(14/15) 9323798904665525 a001 1602508992/1368706081*15127^(14/15) 9323798904665525 a001 12586269025/10749957122*15127^(14/15) 9323798904665525 a001 10983760033/9381251041*15127^(14/15) 9323798904665525 a001 86267571272/73681302247*15127^(14/15) 9323798904665525 a001 75283811239/64300051206*15127^(14/15) 9323798904665525 a001 2504730781961/2139295485799*15127^(14/15) 9323798904665525 a001 365435296162/312119004989*15127^(14/15) 9323798904665525 a001 139583862445/119218851371*15127^(14/15) 9323798904665525 a001 53316291173/45537549124*15127^(14/15) 9323798904665525 a001 20365011074/17393796001*15127^(14/15) 9323798904665525 a001 7778742049/6643838879*15127^(14/15) 9323798904665525 a001 2971215073/2537720636*15127^(14/15) 9323798904665525 a001 1134903170/969323029*15127^(14/15) 9323798904665525 a001 433494437/370248451*15127^(14/15) 9323798904665525 a001 165580141/141422324*15127^(14/15) 9323798904665528 a001 63245986/54018521*15127^(14/15) 9323798904665550 a001 24157817/20633239*15127^(14/15) 9323798904665697 a001 9227465/7881196*15127^(14/15) 9323798904666704 a001 3524578/3010349*15127^(14/15) 9323798904673605 a001 1346269/1149851*15127^(14/15) 9323798904720911 a001 514229/439204*15127^(14/15) 9323798904772380 a001 121393/64079*15127^(53/60) 9323798905045151 a001 196418/167761*15127^(14/15) 9323798905648033 a001 6765*2207^(1/24) 9323798905965325 a001 208010/6119*15127^(7/12) 9323798906166794 a001 75025/103682*15127^(59/60) 9323798906391103 a001 2584*2207^(1/6) 9323798906624628 a001 196418/271443*15127^(59/60) 9323798906691425 a001 514229/710647*15127^(59/60) 9323798906701171 a001 1346269/1860498*15127^(59/60) 9323798906703471 a001 2178309/3010349*15127^(59/60) 9323798906707194 a001 832040/1149851*15127^(59/60) 9323798906732708 a001 317811/439204*15127^(59/60) 9323798906907585 a001 121393/167761*15127^(59/60) 9323798907267525 a001 75025/64079*15127^(14/15) 9323798907790060 a001 317811/9349*9349^(35/57) 9323798908012381 a001 514229/24476*15127^(19/30) 9323798908106211 a001 46368/64079*15127^(59/60) 9323798910024178 a001 10959/844*15127^(41/60) 9323798912128286 a001 98209/12238*15127^(11/15) 9323798913430047 a001 514229/9349*9349^(32/57) 9323798913990720 a001 121393/24476*15127^(47/60) 9323798916321712 a001 17711/24476*15127^(59/60) 9323798916485865 a001 75025/24476*15127^(5/6) 9323798917324550 a001 11592/6119*15127^(53/60) 9323798918036908 a001 17711/3571*3571^(47/51) 9323798918688792 m001 (ln(Pi)*polylog(4,1/2)+Weierstrass)/ln(Pi) 9323798919034774 a001 832040/9349*9349^(29/57) 9323798922499903 a001 28657/24476*15127^(14/15) 9323798924652969 a001 1346269/9349*9349^(26/57) 9323798926227752 a007 Real Root Of 916*x^4+884*x^3+234*x^2-653*x-788 9323798930266020 a001 2178309/9349*9349^(23/57) 9323798932277366 a001 4181/15127*167761^(13/15) 9323798932564472 a001 4181/15127*20633239^(13/21) 9323798932564485 a001 4181/15127*141422324^(5/9) 9323798932564485 a001 4181/15127*73681302247^(5/12) 9323798932564485 a001 4181/15127*228826127^(13/24) 9323798932564486 a001 6765/9349*2139295485799^(1/3) 9323798932566431 a001 4181/15127*1860498^(13/18) 9323798932669937 a001 4181/15127*271443^(5/6) 9323798933066515 a007 Real Root Of 356*x^4+656*x^3+70*x^2-535*x-297 9323798940449457 a001 267914296/39603*2207^(1/24) 9323798940784632 m001 (-gamma(3)+Grothendieck)/(cos(1/5*Pi)-exp(1)) 9323798945526916 a001 701408733/103682*2207^(1/24) 9323798946267707 a001 1836311903/271443*2207^(1/24) 9323798946375787 a001 686789568/101521*2207^(1/24) 9323798946391556 a001 12586269025/1860498*2207^(1/24) 9323798946393857 a001 32951280099/4870847*2207^(1/24) 9323798946394192 a001 86267571272/12752043*2207^(1/24) 9323798946394241 a001 32264490531/4769326*2207^(1/24) 9323798946394248 a001 591286729879/87403803*2207^(1/24) 9323798946394249 a001 1548008755920/228826127*2207^(1/24) 9323798946394250 a001 4052739537881/599074578*2207^(1/24) 9323798946394250 a001 1515744265389/224056801*2207^(1/24) 9323798946394250 a001 6557470319842/969323029*2207^(1/24) 9323798946394250 a001 2504730781961/370248451*2207^(1/24) 9323798946394250 a001 956722026041/141422324*2207^(1/24) 9323798946394253 a001 365435296162/54018521*2207^(1/24) 9323798946394272 a001 139583862445/20633239*2207^(1/24) 9323798946394400 a001 53316291173/7881196*2207^(1/24) 9323798946395278 a001 20365011074/3010349*2207^(1/24) 9323798946401302 a001 7778742049/1149851*2207^(1/24) 9323798946442584 a001 2971215073/439204*2207^(1/24) 9323798946725542 a001 1134903170/167761*2207^(1/24) 9323798948664958 a001 433494437/64079*2207^(1/24) 9323798950118806 r005 Re(z^2+c),c=-1/94+19/53*I,n=37 9323798960356644 a001 311187/2161*5778^(13/27) 9323798961957920 a001 165580141/24476*2207^(1/24) 9323798964645758 a001 317811/9349*24476^(5/9) 9323798967365910 a001 17711/9349*119218851371^(1/3) 9323798969261893 a001 28657/3571*3571^(44/51) 9323798969852132 a001 9227465/9349*24476^(2/9) 9323798972443252 a001 4181/103682*7881196^(7/9) 9323798972443352 a001 4181/103682*20633239^(11/15) 9323798972443368 a001 4181/103682*17393796001^(11/21) 9323798972443368 a001 4181/103682*312119004989^(7/15) 9323798972443368 a001 4181/103682*505019158607^(11/24) 9323798972443368 a001 4181/103682*1568397607^(7/12) 9323798972443368 a001 4181/103682*599074578^(11/18) 9323798972443370 a001 46368/9349*6643838879^(1/3) 9323798972460292 a001 4181/103682*710647^(11/12) 9323798972553407 a001 2178309/9349*64079^(1/3) 9323798972631599 a001 6765/9349*15127^(59/60) 9323798973137638 a001 317811/9349*167761^(7/15) 9323798973184161 a001 121393/9349*370248451^(1/3) 9323798973222509 a001 3524578/9349*167761^(4/15) 9323798973288616 a001 4181*167761^(1/15) 9323798973292234 a001 317811/9349*20633239^(1/3) 9323798973292241 a001 317811/9349*17393796001^(5/21) 9323798973292241 a001 317811/9349*505019158607^(5/24) 9323798973292241 a001 317811/9349*599074578^(5/18) 9323798973292241 a001 317811/9349*228826127^(7/24) 9323798973293288 a001 317811/9349*1860498^(7/18) 9323798973299934 a001 317811/9349*710647^(5/12) 9323798973305659 a001 832040/9349*1149851^(1/3) 9323798973307989 a001 4181/1860498*20633239^(19/21) 9323798973308008 a001 4181/1860498*817138163596^(5/9) 9323798973308008 a001 4181/1860498*228826127^(19/24) 9323798973308009 a001 4181/1860498*87403803^(5/6) 9323798973308010 a001 832040/9349*1322157322203^(1/6) 9323798973310310 a001 2178309/9349*4106118243^(1/6) 9323798973310646 a001 5702887/9349*45537549124^(1/9) 9323798973310655 a001 5702887/9349*12752043^(1/6) 9323798973310678 a001 14930352/9349*7881196^(1/9) 9323798973310695 a001 14930352/9349*312119004989^(1/15) 9323798973310695 a001 14930352/9349*1568397607^(1/12) 9323798973310701 a001 4181/87403803*17393796001^(17/21) 9323798973310701 a001 4181/87403803*45537549124^(7/9) 9323798973310701 a001 4181/87403803*505019158607^(17/24) 9323798973310701 a001 4181/87403803*599074578^(17/18) 9323798973310701 a001 4181*20633239^(1/21) 9323798973310702 a001 4181/228826127*28143753123^(5/6) 9323798973310702 a001 4181/4106118243*312119004989^(13/15) 9323798973310702 a001 4181/4106118243*73681302247^(11/12) 9323798973310702 a001 4181/28143753123*9062201101803^(5/6) 9323798973310702 a001 4181/73681302247*505019158607^(23/24) 9323798973310702 a001 4181/817138163596*23725150497407^(11/12) 9323798973310702 a001 4181/312119004989*3461452808002^(17/18) 9323798973310702 a001 4181/17393796001*23725150497407^(19/24) 9323798973310702 a001 4181/17393796001*505019158607^(19/21) 9323798973310702 a001 4181/2537720636*17393796001^(20/21) 9323798973310702 a001 4181/2537720636*3461452808002^(7/9) 9323798973310702 a001 4181/2537720636*505019158607^(5/6) 9323798973310702 a001 4181/2537720636*28143753123^(14/15) 9323798973310702 a001 4181*228826127^(1/24) 9323798973310702 a001 4181/370248451*23725150497407^(2/3) 9323798973310702 a001 4181/370248451*505019158607^(16/21) 9323798973310702 a001 4181/370248451*10749957122^(8/9) 9323798973310702 a001 4181/141422324*5600748293801^(2/3) 9323798973310705 a001 4181/54018521*1322157322203^(2/3) 9323798973310706 a001 24157817/9349*23725150497407^(1/24) 9323798973310706 a001 24157817/9349*10749957122^(1/18) 9323798973310706 a001 24157817/9349*228826127^(1/15) 9323798973310722 a001 9227465/9349*20633239^(2/15) 9323798973310724 a001 4181/20633239*312119004989^(2/3) 9323798973310724 a001 4181/20633239*3461452808002^(11/18) 9323798973310724 a001 4181/20633239*28143753123^(11/15) 9323798973310724 a001 4181/20633239*1568397607^(5/6) 9323798973310724 a001 4181/20633239*228826127^(11/12) 9323798973310725 a001 9227465/9349*17393796001^(2/21) 9323798973310725 a001 9227465/9349*505019158607^(1/12) 9323798973310725 a001 9227465/9349*599074578^(1/9) 9323798973310739 a001 24157817/9349*4870847^(1/12) 9323798973310849 a001 3524578/9349*20633239^(4/21) 9323798973310852 a001 4181*1860498^(1/18) 9323798973310852 a001 4181/7881196*141422324^(8/9) 9323798973310852 a001 4181/7881196*23725150497407^(13/24) 9323798973310852 a001 4181/7881196*505019158607^(13/21) 9323798973310852 a001 4181/7881196*73681302247^(2/3) 9323798973310852 a001 4181/7881196*10749957122^(13/18) 9323798973310852 a001 4181/7881196*228826127^(13/15) 9323798973310853 a001 3524578/9349*3461452808002^(1/9) 9323798973310853 a001 3524578/9349*28143753123^(2/15) 9323798973310853 a001 3524578/9349*228826127^(1/6) 9323798973310935 a001 3524578/9349*4870847^(5/24) 9323798973311452 a001 3524578/9349*1860498^(2/9) 9323798973311710 a001 4181/3010349*20633239^(14/15) 9323798973311731 a001 4181/3010349*17393796001^(2/3) 9323798973311731 a001 4181/3010349*505019158607^(7/12) 9323798973311731 a001 4181/3010349*599074578^(7/9) 9323798973311732 a001 1346269/9349*141422324^(2/9) 9323798973311732 a001 1346269/9349*73681302247^(1/6) 9323798973312465 a001 24157817/9349*710647^(2/21) 9323798973313802 a001 9227465/9349*710647^(1/6) 9323798973315249 a001 3524578/9349*710647^(5/21) 9323798973317754 a001 4181/1149851*4106118243^(2/3) 9323798973317755 a001 514229/9349*23725150497407^(1/6) 9323798973317755 a001 514229/9349*10749957122^(2/9) 9323798973317755 a001 514229/9349*228826127^(4/15) 9323798973317886 a001 514229/9349*4870847^(1/3) 9323798973318131 a001 4181/1149851*4870847^(23/24) 9323798973324788 a001 514229/9349*710647^(8/21) 9323798973353913 a001 1346269/9349*271443^(1/3) 9323798973359037 a001 4181/439204*969323029^(2/3) 9323798973359038 a001 196418/9349*817138163596^(2/9) 9323798973359038 a001 196418/9349*87403803^(1/3) 9323798973407077 a001 24157817/9349*103682^(1/9) 9323798973551779 a001 3524578/9349*103682^(5/18) 9323798973641928 a001 75025/9349*7881196^(4/9) 9323798973641977 a001 4181/167761*20633239^(16/21) 9323798973641994 a001 4181/167761*23725150497407^(5/12) 9323798973641994 a001 4181/167761*505019158607^(10/21) 9323798973641994 a001 4181/167761*28143753123^(8/15) 9323798973641994 a001 4181/167761*10749957122^(5/9) 9323798973641994 a001 4181/167761*228826127^(2/3) 9323798973641995 a001 75025/9349*312119004989^(4/15) 9323798973641995 a001 75025/9349*1568397607^(1/3) 9323798973642175 a001 75025/9349*4870847^(11/24) 9323798973642321 a001 4181/167761*4870847^(5/6) 9323798973644388 a001 4181/167761*1860498^(8/9) 9323798973651666 a001 75025/9349*710647^(11/21) 9323798973659577 a001 4181/167761*710647^(20/21) 9323798973703237 a001 514229/9349*103682^(4/9) 9323798974172032 a001 75025/9349*103682^(11/18) 9323798974301494 a001 14930352/9349*39603^(1/6) 9323798975040000 a001 10946/9349*24476^(8/9) 9323798975360551 a001 28657/9349*167761^(2/3) 9323798975581402 a001 28657/9349*20633239^(10/21) 9323798975581409 a001 4181/64079*54018521^(2/3) 9323798975581412 a001 28657/9349*3461452808002^(5/18) 9323798975581412 a001 28657/9349*28143753123^(1/3) 9323798975581412 a001 28657/9349*228826127^(5/12) 9323798975582908 a001 28657/9349*1860498^(5/9) 9323798975653620 a001 1346269/9349*39603^(13/33) 9323798975873551 a001 1346269/15127*5778^(29/54) 9323798976200079 a001 514229/9349*39603^(16/33) 9323798976706220 a001 4181*15127^(1/12) 9323798976781798 a001 196418/9349*39603^(19/33) 9323798977605190 a001 75025/9349*39603^(2/3) 9323798978743535 a001 24157817/9349*15127^(2/15) 9323798980085043 a001 28657/9349*39603^(25/33) 9323798986892926 a001 3524578/9349*15127^(1/3) 9323798987146118 r005 Re(z^2+c),c=-13/14+19/240*I,n=33 9323798988874361 a001 10946/9349*20633239^(8/15) 9323798988874372 a001 4181/24476*45537549124^(4/9) 9323798988874373 a001 10946/9349*17393796001^(8/21) 9323798988874373 a001 10946/9349*23725150497407^(7/24) 9323798988874373 a001 10946/9349*505019158607^(1/3) 9323798988874373 a001 10946/9349*10749957122^(7/18) 9323798988874373 a001 10946/9349*599074578^(4/9) 9323798988874373 a001 10946/9349*228826127^(7/15) 9323798988874410 a001 4181/24476*12752043^(2/3) 9323798988874602 a001 10946/9349*4870847^(7/12) 9323798988874650 a001 4181/24476*4870847^(17/24) 9323798988886681 a001 10946/9349*710647^(2/3) 9323798988889318 a001 4181/24476*710647^(17/21) 9323798988929693 a001 2178309/9349*15127^(23/60) 9323798989548966 a001 10946/9349*103682^(7/9) 9323798989693520 a001 4181/24476*103682^(17/18) 9323798990968426 a001 1346269/9349*15127^(13/30) 9323798991385313 a001 832040/15127*5778^(16/27) 9323798993002014 a001 832040/9349*15127^(29/60) 9323798993565052 a001 5473/682*1364^(44/45) 9323798993918440 a001 10946/9349*39603^(28/33) 9323798995049071 a001 514229/9349*15127^(8/15) 9323798997060867 a001 317811/9349*15127^(7/12) 9323798999164975 a001 196418/9349*15127^(19/30) 9323799001027409 a001 121393/9349*15127^(41/60) 9323799003358402 a001 17711/9349*15127^(53/60) 9323799003394238 m001 (Pi+Pi^(1/2))/(Khinchin+Sierpinski) 9323799003522554 a001 75025/9349*15127^(11/15) 9323799004361239 a001 46368/9349*15127^(47/60) 9323799006910543 a001 514229/15127*5778^(35/54) 9323799009133334 a001 46368/3571*3571^(41/51) 9323799009536593 a001 28657/9349*15127^(5/6) 9323799022400513 a001 317811/15127*5778^(19/27) 9323799026189037 a001 726103/13201*5778^(16/27) 9323799026904175 a001 10946/9349*15127^(14/15) 9323799032182016 a001 2178309/24476*5778^(29/54) 9323799037982795 a001 196418/15127*5778^(41/54) 9323799040968634 a001 14930352/3571*1364^(1/9) 9323799041705944 a001 1346269/39603*5778^(35/54) 9323799043744617 m003 -19/2+(Sqrt[5]*E^(1/2+Sqrt[5]/2))/64 9323799047698922 a001 1346269/24476*5778^(16/27) 9323799049717141 r005 Re(z^2+c),c=-13/14+19/240*I,n=35 9323799049920024 a001 2178309/64079*5778^(35/54) 9323799050823875 r005 Re(z^2+c),c=-1/94+19/53*I,n=41 9323799053069231 a001 63245986/9349*2207^(1/24) 9323799053323402 a001 121393/15127*5778^(22/27) 9323799053341444 a001 75025/3571*3571^(38/51) 9323799057217706 a001 832040/39603*5778^(19/27) 9323799057253501 r005 Re(z^2+c),c=-13/14+19/240*I,n=31 9323799062297466 a001 46347/2206*5778^(19/27) 9323799063210684 a001 208010/6119*5778^(35/54) 9323799065436930 a001 1346269/64079*5778^(19/27) 9323799069296721 a001 75025/15127*5778^(47/54) 9323799072742936 a001 514229/39603*5778^(41/54) 9323799073989701 l006 ln(3502/8897) 9323799077668903 r005 Re(z^2+c),c=1/27+23/52*I,n=42 9323799077814372 a001 1346269/103682*5778^(41/54) 9323799078735914 a001 514229/24476*5778^(19/27) 9323799079011576 a001 2178309/167761*5778^(41/54) 9323799079984998 a001 4181/9349*3010349^(2/3) 9323799079985684 a001 4181/9349*9062201101803^(1/3) 9323799080948692 a001 832040/64079*5778^(41/54) 9323799083613580 a001 6624/2161*5778^(25/27) 9323799085570186 a001 4181/9349*39603^(31/33) 9323799088232906 a001 105937/13201*5778^(22/27) 9323799088759243 a003 cos(Pi*12/73)+cos(Pi*12/25) 9323799092262358 a001 2178309/9349*5778^(23/54) 9323799093326134 a001 416020/51841*5778^(22/27) 9323799094069226 a001 726103/90481*5778^(22/27) 9323799094225885 a001 10959/844*5778^(41/54) 9323799094528483 a001 1346269/167761*5778^(22/27) 9323799095893093 a001 121393/3571*3571^(35/51) 9323799096473923 a001 514229/64079*5778^(22/27) 9323799097918835 a007 Real Root Of 386*x^4-408*x^3+339*x^2+501*x-450 9323799098225286 r005 Re(z^2+c),c=-13/14+19/240*I,n=37 9323799102267107 a001 28657/15127*5778^(53/54) 9323799103815188 a001 196418/39603*5778^(47/54) 9323799107779265 a001 1346269/9349*5778^(13/27) 9323799108851365 a001 514229/103682*5778^(47/54) 9323799109586133 a001 1346269/271443*5778^(47/54) 9323799109759588 a001 2178309/439204*5778^(47/54) 9323799109808167 a001 98209/12238*5778^(22/27) 9323799110040245 a001 75640/15251*5778^(47/54) 9323799110328289 r005 Re(z^2+c),c=-13/14+19/240*I,n=47 9323799110371946 r005 Re(z^2+c),c=-13/14+19/240*I,n=49 9323799110477056 r005 Re(z^2+c),c=-13/14+19/240*I,n=51 9323799110529177 r005 Re(z^2+c),c=-13/14+19/240*I,n=53 9323799110530769 r005 Re(z^2+c),c=-13/14+19/240*I,n=63 9323799110530978 r005 Re(z^2+c),c=-13/14+19/240*I,n=61 9323799110532576 r005 Re(z^2+c),c=-13/14+19/240*I,n=59 9323799110536452 r005 Re(z^2+c),c=-13/14+19/240*I,n=57 9323799110539840 r005 Re(z^2+c),c=-13/14+19/240*I,n=55 9323799110768962 r005 Re(z^2+c),c=-13/14+19/240*I,n=45 9323799111963893 a001 317811/64079*5778^(47/54) 9323799112393223 r005 Re(z^2+c),c=-13/14+19/240*I,n=43 9323799114561908 r005 Re(z^2+c),c=-13/14+19/240*I,n=39 9323799115072983 r005 Re(z^2+c),c=-13/14+19/240*I,n=41 9323799119155796 a001 121393/39603*5778^(25/27) 9323799123291027 a001 832040/9349*5778^(29/54) 9323799124341335 a001 317811/103682*5778^(25/27) 9323799125097895 a001 832040/271443*5778^(25/27) 9323799125148774 a001 121393/24476*5778^(47/54) 9323799125208276 a001 311187/101521*5778^(25/27) 9323799125276495 a001 1346269/439204*5778^(25/27) 9323799125565475 a001 514229/167761*5778^(25/27) 9323799127546175 a001 196418/64079*5778^(25/27) 9323799135129115 a001 75025/39603*5778^(53/54) 9323799138816258 a001 514229/9349*5778^(16/27) 9323799139077455 a001 196418/3571*3571^(32/51) 9323799139923617 a001 98209/51841*5778^(53/54) 9323799140623125 a001 514229/271443*5778^(53/54) 9323799140725182 a001 1346269/710647*5778^(53/54) 9323799140749275 a001 2178309/1149851*5778^(53/54) 9323799140788257 a001 208010/109801*5778^(53/54) 9323799141055445 a001 317811/167761*5778^(53/54) 9323799141122093 a001 75025/24476*5778^(25/27) 9323799142886782 a001 121393/64079*5778^(53/54) 9323799143722373 k002 Champernowne real with 81*n^2+71*n-143 9323799144923616 a001 39088169/15127*2207^(1/6) 9323799145666638 a001 5702887/5778*2207^(7/24) 9323799148911707 r005 Re(z^2+c),c=-1/94+19/53*I,n=44 9323799154306228 a001 317811/9349*5778^(35/54) 9323799155438952 a001 11592/6119*5778^(53/54) 9323799162882602 r005 Re(z^2+c),c=-1/94+19/53*I,n=45 9323799163534596 h001 (3/10*exp(1)+5/11)/(1/6*exp(1)+10/11) 9323799166881257 r005 Re(z^2+c),c=-1/94+19/53*I,n=48 9323799169888510 a001 196418/9349*5778^(19/27) 9323799170081541 r005 Re(z^2+c),c=-1/94+19/53*I,n=51 9323799170141496 r005 Re(z^2+c),c=-1/94+19/53*I,n=47 9323799171091783 r005 Re(z^2+c),c=-1/94+19/53*I,n=54 9323799171175336 r005 Re(z^2+c),c=-1/94+19/53*I,n=55 9323799171238938 r005 Re(z^2+c),c=-1/94+19/53*I,n=58 9323799171274949 r005 Re(z^2+c),c=-1/94+19/53*I,n=61 9323799171285126 r005 Re(z^2+c),c=-1/94+19/53*I,n=64 9323799171286137 r005 Re(z^2+c),c=-1/94+19/53*I,n=62 9323799171286707 r005 Re(z^2+c),c=-1/94+19/53*I,n=57 9323799171291660 r005 Re(z^2+c),c=-1/94+19/53*I,n=63 9323799171299192 r005 Re(z^2+c),c=-1/94+19/53*I,n=60 9323799171304560 r005 Re(z^2+c),c=-1/94+19/53*I,n=59 9323799171344918 r005 Re(z^2+c),c=-1/94+19/53*I,n=52 9323799171406240 r005 Re(z^2+c),c=-1/94+19/53*I,n=56 9323799171747036 r005 Re(z^2+c),c=-1/94+19/53*I,n=53 9323799172265082 r005 Re(z^2+c),c=-1/94+19/53*I,n=50 9323799173387788 r005 Re(z^2+c),c=-1/94+19/53*I,n=49 9323799179725041 a001 34111385/13201*2207^(1/6) 9323799182020142 a001 317811/3571*3571^(29/51) 9323799183369850 r005 Re(z^2+c),c=-1/94+19/53*I,n=46 9323799184802501 a001 133957148/51841*2207^(1/6) 9323799185229118 a001 121393/9349*5778^(41/54) 9323799185543292 a001 233802911/90481*2207^(1/6) 9323799185651372 a001 1836311903/710647*2207^(1/6) 9323799185667141 a001 267084832/103361*2207^(1/6) 9323799185669441 a001 12586269025/4870847*2207^(1/6) 9323799185669777 a001 10983760033/4250681*2207^(1/6) 9323799185669826 a001 43133785636/16692641*2207^(1/6) 9323799185669833 a001 75283811239/29134601*2207^(1/6) 9323799185669834 a001 591286729879/228826127*2207^(1/6) 9323799185669834 a001 86000486440/33281921*2207^(1/6) 9323799185669834 a001 4052739537881/1568397607*2207^(1/6) 9323799185669834 a001 3536736619241/1368706081*2207^(1/6) 9323799185669834 a001 3278735159921/1268860318*2207^(1/6) 9323799185669834 a001 2504730781961/969323029*2207^(1/6) 9323799185669834 a001 956722026041/370248451*2207^(1/6) 9323799185669835 a001 182717648081/70711162*2207^(1/6) 9323799185669837 a001 139583862445/54018521*2207^(1/6) 9323799185669856 a001 53316291173/20633239*2207^(1/6) 9323799185669984 a001 10182505537/3940598*2207^(1/6) 9323799185670863 a001 7778742049/3010349*2207^(1/6) 9323799185676886 a001 2971215073/1149851*2207^(1/6) 9323799185718169 a001 567451585/219602*2207^(1/6) 9323799186001126 a001 433494437/167761*2207^(1/6) 9323799187940543 a001 165580141/64079*2207^(1/6) 9323799188180329 r005 Re(z^2+c),c=-1/94+19/53*I,n=42 9323799195117676 r009 Im(z^3+c),c=-1/19+41/44*I,n=3 9323799201202437 a001 75025/9349*5778^(22/27) 9323799201233505 a001 31622993/12238*2207^(1/6) 9323799212060851 a007 Real Root Of 188*x^4-760*x^3-242*x^2+158*x+537 9323799212125862 a001 39088169/5778*843^(1/21) 9323799213164786 r005 Re(z^2+c),c=-1/94+19/53*I,n=43 9323799215519296 a001 46368/9349*5778^(47/54) 9323799223573980 a003 cos(Pi*13/96)+cos(Pi*36/73) 9323799223707881 r009 Re(z^3+c),c=-39/118+29/46*I,n=15 9323799225055141 a001 514229/3571*3571^(26/51) 9323799234172823 a001 28657/9349*5778^(25/27) 9323799239102222 m001 Weierstrass/(exp(-1/2*Pi)-sin(1/12*Pi)) 9323799241379447 r005 Re(z^2+c),c=-1/94+19/53*I,n=40 9323799241472806 a001 17711/9349*5778^(53/54) 9323799246295240 m005 1/6*5^(1/2)/(1/7*Zeta(3)-4/7) 9323799253844885 a007 Real Root Of 106*x^4-419*x^3-168*x^2-84*x-352 9323799259532440 m004 -3*Csc[Sqrt[5]*Pi]+(5*Sinh[Sqrt[5]*Pi])/3 9323799266260129 r002 3th iterates of z^2 + 9323799268054880 a001 832040/3571*3571^(23/51) 9323799274305045 m001 gamma(1)+exp(Pi)^ZetaQ(4) 9323799274944284 a007 Real Root Of -746*x^4-279*x^3-744*x^2-467*x+549 9323799287602094 a001 3*(1/2*5^(1/2)+1/2)^14*4^(16/17) 9323799290440038 a007 Real Root Of -740*x^4-746*x^3-342*x^2-46*x+209 9323799292344822 a001 24157817/9349*2207^(1/6) 9323799303819655 m004 -6-Sqrt[5]*Pi+(5*Csc[Sqrt[5]*Pi])/2 9323799306153577 a001 17711/1364*1364^(41/45) 9323799311068088 a001 1346269/3571*3571^(20/51) 9323799318231053 a001 1597/5778*167761^(13/15) 9323799318518159 a001 1597/5778*20633239^(13/21) 9323799318518172 a001 1597/5778*141422324^(5/9) 9323799318518173 a001 1597/5778*73681302247^(5/12) 9323799318518173 a001 1597/5778*228826127^(13/24) 9323799318518222 a001 2584/3571*2139295485799^(1/3) 9323799318520118 a001 1597/5778*1860498^(13/18) 9323799318623624 a001 1597/5778*271443^(5/6) 9323799320163042 m001 (2^(1/3)+ln(2))/(cos(1/12*Pi)+GAMMA(5/6)) 9323799354076151 a001 2178309/3571*3571^(1/3) 9323799358585336 a001 2584/3571*15127^(59/60) 9323799362701690 m001 (Magata+Riemann2ndZero)/(Chi(1)+Grothendieck) 9323799366374889 a007 Real Root Of -224*x^4+684*x^3-696*x^2-536*x+829 9323799366501337 m001 CopelandErdos*ZetaP(4)-ZetaQ(3) 9323799367824047 a001 377/505019158607*18^(1/13) 9323799368969427 a001 5778/1597*17711^(3/31) 9323799370206222 a007 Real Root Of 352*x^4-430*x^3+526*x^2+254*x-835 9323799384199198 a001 14930352/15127*2207^(7/24) 9323799384941892 a001 726103/1926*2207^(5/12) 9323799396902440 a007 Real Root Of -59*x^4-569*x^3-118*x^2+574*x+294 9323799398369025 l006 ln(3465/8803) 9323799407123033 r005 Re(z^2+c),c=-1/94+19/53*I,n=39 9323799419000631 a001 39088169/39603*2207^(7/24) 9323799424078091 a001 102334155/103682*2207^(7/24) 9323799424818883 a001 267914296/271443*2207^(7/24) 9323799424926963 a001 701408733/710647*2207^(7/24) 9323799424942731 a001 1836311903/1860498*2207^(7/24) 9323799424945032 a001 4807526976/4870847*2207^(7/24) 9323799424945368 a001 12586269025/12752043*2207^(7/24) 9323799424945417 a001 32951280099/33385282*2207^(7/24) 9323799424945424 a001 86267571272/87403803*2207^(7/24) 9323799424945425 a001 225851433717/228826127*2207^(7/24) 9323799424945425 a001 591286729879/599074578*2207^(7/24) 9323799424945425 a001 1548008755920/1568397607*2207^(7/24) 9323799424945425 a001 4052739537881/4106118243*2207^(7/24) 9323799424945425 a001 4807525989/4870846*2207^(7/24) 9323799424945425 a001 6557470319842/6643838879*2207^(7/24) 9323799424945425 a001 2504730781961/2537720636*2207^(7/24) 9323799424945425 a001 956722026041/969323029*2207^(7/24) 9323799424945425 a001 365435296162/370248451*2207^(7/24) 9323799424945425 a001 139583862445/141422324*2207^(7/24) 9323799424945428 a001 53316291173/54018521*2207^(7/24) 9323799424945447 a001 20365011074/20633239*2207^(7/24) 9323799424945575 a001 7778742049/7881196*2207^(7/24) 9323799424946454 a001 2971215073/3010349*2207^(7/24) 9323799424952477 a001 1134903170/1149851*2207^(7/24) 9323799424993760 a001 433494437/439204*2207^(7/24) 9323799425276717 a001 165580141/167761*2207^(7/24) 9323799427140311 a007 Real Root Of -123*x^4+252*x^3-820*x^2+557*x-45 9323799427216134 a001 63245986/64079*2207^(7/24) 9323799440509099 a001 24157817/24476*2207^(7/24) 9323799450658376 a001 6765*843^(1/21) 9323799451506453 a001 5702887/2207*843^(4/21) 9323799451750799 a007 Real Root Of -665*x^4-721*x^3-331*x^2+605*x+770 9323799452316183 m002 -Pi^4/4+Pi^6-5/ProductLog[Pi] 9323799457861722 a001 6765/3571*9349^(53/57) 9323799485459802 a001 267914296/39603*843^(1/21) 9323799490537261 a001 701408733/103682*843^(1/21) 9323799491278053 a001 1836311903/271443*843^(1/21) 9323799491386133 a001 686789568/101521*843^(1/21) 9323799491401901 a001 12586269025/1860498*843^(1/21) 9323799491404202 a001 32951280099/4870847*843^(1/21) 9323799491404538 a001 86267571272/12752043*843^(1/21) 9323799491404587 a001 32264490531/4769326*843^(1/21) 9323799491404594 a001 591286729879/87403803*843^(1/21) 9323799491404595 a001 1548008755920/228826127*843^(1/21) 9323799491404595 a001 4052739537881/599074578*843^(1/21) 9323799491404595 a001 1515744265389/224056801*843^(1/21) 9323799491404595 a001 6557470319842/969323029*843^(1/21) 9323799491404595 a001 2504730781961/370248451*843^(1/21) 9323799491404595 a001 956722026041/141422324*843^(1/21) 9323799491404598 a001 365435296162/54018521*843^(1/21) 9323799491404617 a001 139583862445/20633239*843^(1/21) 9323799491404745 a001 53316291173/7881196*843^(1/21) 9323799491405624 a001 20365011074/3010349*843^(1/21) 9323799491411647 a001 7778742049/1149851*843^(1/21) 9323799491452930 a001 2971215073/439204*843^(1/21) 9323799491735887 a001 1134903170/167761*843^(1/21) 9323799493675304 a001 433494437/64079*843^(1/21) 9323799502862525 r005 Im(z^2+c),c=-47/106+5/32*I,n=35 9323799503892094 a001 17711/3571*9349^(47/57) 9323799504581111 a001 1346269/5778*2207^(23/48) 9323799506968266 a001 165580141/24476*843^(1/21) 9323799507961722 m005 (1/20+1/4*5^(1/2))/(4*2^(1/2)+7/8) 9323799517722069 a001 28657/3571*9349^(44/57) 9323799519786085 a001 10946/3571*9349^(50/57) 9323799520198500 a001 46368/3571*9349^(41/57) 9323799527011598 a001 75025/3571*9349^(2/3) 9323799531620434 a001 9227465/9349*2207^(7/24) 9323799532168237 a001 121393/3571*9349^(35/57) 9323799537957587 a001 196418/3571*9349^(32/57) 9323799539073958 h001 (3/11*exp(1)+2/3)/(2/11*exp(2)+1/6) 9323799540547250 r004 Im(z^2+c),c=-11/24+3/19*I,z(0)=-1,n=35 9323799541626471 m005 (1/3*Zeta(3)-1/10)/(Pi+1/12) 9323799543505263 a001 317811/3571*9349^(29/57) 9323799549145250 a001 514229/3571*9349^(26/57) 9323799554749978 a001 832040/3571*9349^(23/57) 9323799557050745 a001 6765/3571*119218851371^(1/3) 9323799560368173 a001 1346269/3571*9349^(20/57) 9323799562023707 a008 Real Root of (-5+2*x-3*x^2+8*x^4+6*x^8) 9323799565981224 a001 2178309/3571*9349^(17/57) 9323799589023939 a001 121393/3571*24476^(5/9) 9323799591851997 a001 1597/39603*7881196^(7/9) 9323799591852098 a001 1597/39603*20633239^(11/15) 9323799591852114 a001 1597/39603*17393796001^(11/21) 9323799591852114 a001 1597/39603*312119004989^(7/15) 9323799591852114 a001 1597/39603*505019158607^(11/24) 9323799591852114 a001 1597/39603*1568397607^(7/12) 9323799591852114 a001 1597/39603*599074578^(11/18) 9323799591852171 a001 17711/3571*6643838879^(1/3) 9323799591869038 a001 1597/39603*710647^(11/12) 9323799593043239 a001 6765/3571*15127^(53/60) 9323799594338521 a001 3524578/3571*24476^(2/9) 9323799596929631 a001 46368/3571*370248451^(1/3) 9323799597037368 a001 832040/3571*64079^(1/3) 9323799597515820 a001 121393/3571*167761^(7/15) 9323799597670415 a001 121393/3571*20633239^(1/3) 9323799597670422 a001 121393/3571*17393796001^(5/21) 9323799597670422 a001 121393/3571*505019158607^(5/24) 9323799597670422 a001 121393/3571*599074578^(5/18) 9323799597670423 a001 121393/3571*228826127^(7/24) 9323799597671470 a001 121393/3571*1860498^(7/18) 9323799597678115 a001 121393/3571*710647^(5/12) 9323799597709649 a001 1346269/3571*167761^(4/15) 9323799597774870 a001 14930352/3571*167761^(1/15) 9323799597776152 a001 317811/3571*1149851^(1/3) 9323799597778425 a001 1597/710647*20633239^(19/21) 9323799597778445 a001 1597/710647*817138163596^(5/9) 9323799597778445 a001 1597/710647*228826127^(19/24) 9323799597778446 a001 1597/710647*87403803^(5/6) 9323799597778502 a001 317811/3571*1322157322203^(1/6) 9323799597794271 a001 832040/3571*4106118243^(1/6) 9323799597796572 a001 2178309/3571*45537549124^(1/9) 9323799597796581 a001 2178309/3571*12752043^(1/6) 9323799597796891 a001 1597*7881196^(1/9) 9323799597796899 a001 1597/33385282*17393796001^(17/21) 9323799597796899 a001 1597/33385282*45537549124^(7/9) 9323799597796899 a001 1597/33385282*505019158607^(17/24) 9323799597796899 a001 1597/33385282*599074578^(17/18) 9323799597796906 a001 1597/87403803*28143753123^(5/6) 9323799597796907 a001 1597/1568397607*312119004989^(13/15) 9323799597796907 a001 1597/1568397607*73681302247^(11/12) 9323799597796907 a001 1597/10749957122*9062201101803^(5/6) 9323799597796907 a001 1597/28143753123*505019158607^(23/24) 9323799597796907 a001 1597*312119004989^(1/15) 9323799597796907 a001 1597/312119004989*23725150497407^(11/12) 9323799597796907 a001 1597/119218851371*3461452808002^(17/18) 9323799597796907 a001 1597/6643838879*23725150497407^(19/24) 9323799597796907 a001 1597/6643838879*505019158607^(19/21) 9323799597796907 a001 1597*1568397607^(1/12) 9323799597796907 a001 1597/969323029*17393796001^(20/21) 9323799597796907 a001 1597/969323029*3461452808002^(7/9) 9323799597796907 a001 1597/969323029*505019158607^(5/6) 9323799597796907 a001 1597/969323029*28143753123^(14/15) 9323799597796908 a001 1597/141422324*23725150497407^(2/3) 9323799597796908 a001 1597/141422324*505019158607^(16/21) 9323799597796908 a001 1597/141422324*10749957122^(8/9) 9323799597796911 a001 1597/54018521*5600748293801^(2/3) 9323799597796929 a001 1597/20633239*1322157322203^(2/3) 9323799597796955 a001 14930352/3571*20633239^(1/21) 9323799597796956 a001 14930352/3571*228826127^(1/24) 9323799597796987 a001 9227465/3571*23725150497407^(1/24) 9323799597796987 a001 9227465/3571*10749957122^(1/18) 9323799597796987 a001 9227465/3571*228826127^(1/15) 9323799597797019 a001 9227465/3571*4870847^(1/12) 9323799597797058 a001 1597/7881196*312119004989^(2/3) 9323799597797058 a001 1597/7881196*3461452808002^(11/18) 9323799597797058 a001 1597/7881196*28143753123^(11/15) 9323799597797058 a001 1597/7881196*1568397607^(5/6) 9323799597797058 a001 1597/7881196*228826127^(11/12) 9323799597797106 a001 14930352/3571*1860498^(1/18) 9323799597797112 a001 3524578/3571*20633239^(2/15) 9323799597797115 a001 3524578/3571*17393796001^(2/21) 9323799597797115 a001 3524578/3571*505019158607^(1/12) 9323799597797115 a001 3524578/3571*599074578^(1/9) 9323799597797936 a001 1597/3010349*141422324^(8/9) 9323799597797936 a001 1597/3010349*23725150497407^(13/24) 9323799597797936 a001 1597/3010349*505019158607^(13/21) 9323799597797936 a001 1597/3010349*73681302247^(2/3) 9323799597797936 a001 1597/3010349*10749957122^(13/18) 9323799597797936 a001 1597/3010349*228826127^(13/15) 9323799597797989 a001 1346269/3571*20633239^(4/21) 9323799597797994 a001 1346269/3571*3461452808002^(1/9) 9323799597797994 a001 1346269/3571*28143753123^(2/15) 9323799597797994 a001 1346269/3571*228826127^(1/6) 9323799597798075 a001 1346269/3571*4870847^(5/24) 9323799597798592 a001 1346269/3571*1860498^(2/9) 9323799597798745 a001 9227465/3571*710647^(2/21) 9323799597800192 a001 3524578/3571*710647^(1/6) 9323799597802389 a001 1346269/3571*710647^(5/21) 9323799597803939 a001 1597/1149851*20633239^(14/15) 9323799597803959 a001 1597/1149851*17393796001^(2/3) 9323799597803959 a001 1597/1149851*505019158607^(7/12) 9323799597803959 a001 1597/1149851*599074578^(7/9) 9323799597804017 a001 514229/3571*141422324^(2/9) 9323799597804017 a001 514229/3571*73681302247^(1/6) 9323799597845242 a001 1597/439204*4106118243^(2/3) 9323799597845300 a001 196418/3571*23725150497407^(1/6) 9323799597845300 a001 196418/3571*10749957122^(2/9) 9323799597845300 a001 196418/3571*228826127^(4/15) 9323799597845431 a001 196418/3571*4870847^(1/3) 9323799597845619 a001 1597/439204*4870847^(23/24) 9323799597846197 a001 514229/3571*271443^(1/3) 9323799597852333 a001 196418/3571*710647^(8/21) 9323799597893357 a001 9227465/3571*103682^(1/9) 9323799598038920 a001 1346269/3571*103682^(5/18) 9323799598079583 a001 63245986/9349*843^(1/21) 9323799598128199 a001 1597/167761*969323029^(2/3) 9323799598128257 a001 75025/3571*817138163596^(2/9) 9323799598128257 a001 75025/3571*87403803^(1/3) 9323799598230781 a001 196418/3571*103682^(4/9) 9323799598787706 a001 1597*39603^(1/6) 9323799599599446 a001 1346269/3571*39603^(10/33) 9323799599668455 a001 4181/3571*9349^(56/57) 9323799600067600 a001 1597/64079*20633239^(16/21) 9323799600067607 a001 28657/3571*7881196^(4/9) 9323799600067616 a001 1597/64079*23725150497407^(5/12) 9323799600067616 a001 1597/64079*505019158607^(10/21) 9323799600067616 a001 1597/64079*28143753123^(8/15) 9323799600067616 a001 1597/64079*10749957122^(5/9) 9323799600067617 a001 1597/64079*228826127^(2/3) 9323799600067674 a001 28657/3571*312119004989^(4/15) 9323799600067674 a001 28657/3571*1568397607^(1/3) 9323799600067854 a001 28657/3571*4870847^(11/24) 9323799600067944 a001 1597/64079*4870847^(5/6) 9323799600070011 a001 1597/64079*1860498^(8/9) 9323799600077344 a001 28657/3571*710647^(11/21) 9323799600085200 a001 1597/64079*710647^(20/21) 9323799600145905 a001 514229/3571*39603^(13/33) 9323799600597711 a001 28657/3571*103682^(11/18) 9323799600727624 a001 196418/3571*39603^(16/33) 9323799601192475 a001 14930352/3571*15127^(1/12) 9323799601551017 a001 75025/3571*39603^(19/33) 9323799603229816 a001 9227465/3571*15127^(2/15) 9323799603813546 p001 sum((-1)^n/(439*n+431)/n/(12^n),n=1..infinity) 9323799604030869 a001 28657/3571*39603^(2/3) 9323799609341334 a001 2178309/3571*15127^(17/60) 9323799611380067 a001 1346269/3571*15127^(1/3) 9323799613139774 a001 10946/3571*167761^(2/3) 9323799613360576 a001 1597/24476*54018521^(2/3) 9323799613360625 a001 10946/3571*20633239^(10/21) 9323799613360636 a001 10946/3571*3461452808002^(5/18) 9323799613360636 a001 10946/3571*28143753123^(1/3) 9323799613360636 a001 10946/3571*228826127^(5/12) 9323799613362132 a001 10946/3571*1860498^(5/9) 9323799613413655 a001 832040/3571*15127^(23/60) 9323799615460712 a001 514229/3571*15127^(13/30) 9323799617472509 a001 317811/3571*15127^(29/60) 9323799617864267 a001 10946/3571*39603^(25/33) 9323799618136173 r005 Re(z^2+c),c=-53/110+18/25*I,n=4 9323799619576617 a001 196418/3571*15127^(8/15) 9323799621439050 a001 121393/3571*15127^(7/12) 9323799621446070 r005 Re(z^2+c),c=-13/14+19/240*I,n=29 9323799623474745 a001 5702887/15127*2207^(5/12) 9323799623770043 a001 17711/3571*15127^(47/60) 9323799623934196 a001 75025/3571*15127^(19/30) 9323799624215187 a001 416020/2889*2207^(13/24) 9323799624772881 a001 46368/3571*15127^(41/60) 9323799629948235 a001 28657/3571*15127^(11/15) 9323799647315819 a001 10946/3571*15127^(5/6) 9323799648466078 a001 28657/1364*1364^(38/45) 9323799658276220 a001 4976784/13201*2207^(5/12) 9323799663353687 a001 39088169/103682*2207^(5/12) 9323799664094479 a001 34111385/90481*2207^(5/12) 9323799664202560 a001 267914296/710647*2207^(5/12) 9323799664218328 a001 233802911/620166*2207^(5/12) 9323799664220629 a001 1836311903/4870847*2207^(5/12) 9323799664220965 a001 1602508992/4250681*2207^(5/12) 9323799664221014 a001 12586269025/33385282*2207^(5/12) 9323799664221021 a001 10983760033/29134601*2207^(5/12) 9323799664221022 a001 86267571272/228826127*2207^(5/12) 9323799664221022 a001 267913919/710646*2207^(5/12) 9323799664221022 a001 591286729879/1568397607*2207^(5/12) 9323799664221022 a001 516002918640/1368706081*2207^(5/12) 9323799664221022 a001 4052739537881/10749957122*2207^(5/12) 9323799664221022 a001 3536736619241/9381251041*2207^(5/12) 9323799664221022 a001 6557470319842/17393796001*2207^(5/12) 9323799664221022 a001 2504730781961/6643838879*2207^(5/12) 9323799664221022 a001 956722026041/2537720636*2207^(5/12) 9323799664221022 a001 365435296162/969323029*2207^(5/12) 9323799664221022 a001 139583862445/370248451*2207^(5/12) 9323799664221022 a001 53316291173/141422324*2207^(5/12) 9323799664221025 a001 20365011074/54018521*2207^(5/12) 9323799664221044 a001 7778742049/20633239*2207^(5/12) 9323799664221172 a001 2971215073/7881196*2207^(5/12) 9323799664222051 a001 1134903170/3010349*2207^(5/12) 9323799664228074 a001 433494437/1149851*2207^(5/12) 9323799664269357 a001 165580141/439204*2207^(5/12) 9323799664552314 a001 63245986/167761*2207^(5/12) 9323799666491734 a001 24157817/64079*2207^(5/12) 9323799677555501 a001 24157817/3571*2207^(1/24) 9323799679784715 a001 9227465/24476*2207^(5/12) 9323799685717657 a001 2178309/3571*5778^(17/54) 9323799690637578 a001 4181/3571*24476^(8/9) 9323799701234564 a001 1346269/3571*5778^(10/27) 9323799704471896 a001 1597/9349*45537549124^(4/9) 9323799704471934 a001 1597/9349*12752043^(2/3) 9323799704471941 a001 4181/3571*20633239^(8/15) 9323799704471952 a001 4181/3571*17393796001^(8/21) 9323799704471952 a001 4181/3571*23725150497407^(7/24) 9323799704471952 a001 4181/3571*505019158607^(1/3) 9323799704471952 a001 4181/3571*10749957122^(7/18) 9323799704471952 a001 4181/3571*599074578^(4/9) 9323799704471952 a001 4181/3571*228826127^(7/15) 9323799704472175 a001 1597/9349*4870847^(17/24) 9323799704472182 a001 4181/3571*4870847^(7/12) 9323799704484260 a001 4181/3571*710647^(2/3) 9323799704486842 a001 1597/9349*710647^(17/21) 9323799705146545 a001 4181/3571*103682^(7/9) 9323799705291045 a001 1597/9349*103682^(17/18) 9323799709516019 a001 4181/3571*39603^(28/33) 9323799716746327 a001 832040/3571*5778^(23/54) 9323799725651577 r005 Im(z^2+c),c=-27/20+13/45*I,n=3 9323799729750691 l006 ln(3428/8709) 9323799732095373 a007 Real Root Of -770*x^4-101*x^3+37*x^2-327*x+163 9323799732271559 a001 514229/3571*5778^(13/27) 9323799742501758 a001 4181/3571*15127^(14/15) 9323799743862733 a001 514229/5778*2207^(29/48) 9323799747761530 a001 317811/3571*5778^(29/54) 9323799754923133 a001 15127/4181*17711^(3/31) 9323799762944956 a001 10946/521*521^(38/39) 9323799763343813 a001 196418/3571*5778^(16/27) 9323799770896162 a001 3524578/9349*2207^(5/12) 9323799775038897 a007 Real Root Of -783*x^4+692*x^3+465*x^2-556*x+230 9323799778684422 a001 121393/3571*5778^(35/54) 9323799779335345 r005 Im(z^2+c),c=-47/106+5/32*I,n=39 9323799794657742 a001 75025/3571*5778^(19/27) 9323799808974602 a001 46368/3571*5778^(41/54) 9323799809236893 l006 ln(1054/1157) 9323799811233024 a001 39603/10946*17711^(3/31) 9323799827628131 a001 28657/3571*5778^(22/27) 9323799831157659 a001 6765/3571*5778^(53/54) 9323799834835087 r005 Re(z^2+c),c=33/118+22/59*I,n=38 9323799834928114 a001 17711/3571*5778^(47/54) 9323799846034451 a001 24476/6765*17711^(3/31) 9323799862750011 a001 311187/2161*2207^(13/24) 9323799863475021 a001 105937/1926*2207^(2/3) 9323799871952065 a001 10946/3571*5778^(25/27) 9323799890533421 a001 2178309/9349*2207^(23/48) 9323799891991733 a007 Real Root Of 907*x^4-797*x^3+623*x^2+990*x-950 9323799897551774 a001 5702887/39603*2207^(13/24) 9323799902629283 a001 7465176/51841*2207^(13/24) 9323799903370082 a001 39088169/271443*2207^(13/24) 9323799903478163 a001 14619165/101521*2207^(13/24) 9323799903493931 a001 133957148/930249*2207^(13/24) 9323799903496232 a001 701408733/4870847*2207^(13/24) 9323799903496568 a001 1836311903/12752043*2207^(13/24) 9323799903496617 a001 14930208/103681*2207^(13/24) 9323799903496624 a001 12586269025/87403803*2207^(13/24) 9323799903496625 a001 32951280099/228826127*2207^(13/24) 9323799903496625 a001 43133785636/299537289*2207^(13/24) 9323799903496625 a001 32264490531/224056801*2207^(13/24) 9323799903496625 a001 591286729879/4106118243*2207^(13/24) 9323799903496625 a001 774004377960/5374978561*2207^(13/24) 9323799903496625 a001 4052739537881/28143753123*2207^(13/24) 9323799903496625 a001 1515744265389/10525900321*2207^(13/24) 9323799903496625 a001 3278735159921/22768774562*2207^(13/24) 9323799903496625 a001 2504730781961/17393796001*2207^(13/24) 9323799903496625 a001 956722026041/6643838879*2207^(13/24) 9323799903496625 a001 182717648081/1268860318*2207^(13/24) 9323799903496625 a001 139583862445/969323029*2207^(13/24) 9323799903496625 a001 53316291173/370248451*2207^(13/24) 9323799903496625 a001 10182505537/70711162*2207^(13/24) 9323799903496628 a001 7778742049/54018521*2207^(13/24) 9323799903496647 a001 2971215073/20633239*2207^(13/24) 9323799903496775 a001 567451585/3940598*2207^(13/24) 9323799903497654 a001 433494437/3010349*2207^(13/24) 9323799903503677 a001 165580141/1149851*2207^(13/24) 9323799903544960 a001 31622993/219602*2207^(13/24) 9323799903827920 a001 24157817/167761*2207^(13/24) 9323799905767356 a001 9227465/64079*2207^(13/24) 9323799912584160 m001 (Lehmer+MasserGramainDelta)/(1+BesselI(1,2)) 9323799912980127 r005 Re(z^2+c),c=9/58+8/37*I,n=17 9323799914021905 a001 2161/3*34^(3/41) 9323799916831123 a001 9227465/3571*2207^(1/6) 9323799919060447 a001 1762289/12238*2207^(13/24) 9323799942514047 m001 QuadraticClass-Zeta(1,-1)*HardyLittlewoodC4 9323799949947979 a007 Real Root Of -190*x^4+822*x^3-674*x^2+647*x-540 9323799979425047 a001 11592/341*1364^(7/9) 9323799982389237 a001 1346269/15127*2207^(29/48) 9323799983179621 a001 98209/2889*2207^(35/48) 9323799993455666 a001 9349/2584*17711^(3/31)