9421100004384444 r002 14th iterates of z^2 + 9421100006294125 a001 47*(1/2*5^(1/2)+1/2)^8*521^(3/5) 9421100010380733 m001 (3^(1/3)+Grothendieck)/(Kolakoski-ZetaP(2)) 9421100033575086 a007 Real Root Of -962*x^4-556*x^3-105*x^2+123*x+502 9421100091685488 a007 Real Root Of -57*x^4-482*x^3+485*x^2-412*x-936 9421100110065156 m001 (arctan(1/2)+Zeta(1,2))/(PlouffeB+Trott2nd) 9421100125814161 k001 Champernowne real with 158*n+784 9421100153950191 a007 Real Root Of -730*x^4+298*x^3+331*x^2-199*x+343 9421100180947049 h001 (4/5*exp(2)+8/11)/(5/6*exp(2)+8/9) 9421100230712393 m001 Salem^OneNinth/(Salem^Weierstrass) 9421100233200664 r005 Re(z^2+c),c=27/106+5/16*I,n=14 9421100242269738 a007 Real Root Of 749*x^4-956*x^3-361*x^2+414*x-679 9421100251271907 r002 3th iterates of z^2 + 9421100254703396 m001 (MertensB2+Salem)/(gamma(1)+HardyLittlewoodC4) 9421100264183691 l006 ln(2791/7160) 9421100277280748 a007 Real Root Of -569*x^4+848*x^3+770*x^2-468*x+33 9421100312194392 a001 47/610*377^(2/59) 9421100346422585 m001 (arctan(1/3)+ReciprocalLucas)/(Si(Pi)-ln(5)) 9421100354504912 m001 MertensB1/(PrimesInBinary^Backhouse) 9421100358439102 m001 (Pi^(1/2))^Cahen/((Pi^(1/2))^RenyiParking) 9421100358439102 m001 sqrt(Pi)^Cahen/(sqrt(Pi)^RenyiParking) 9421100368692385 a007 Real Root Of -412*x^4+242*x^3+613*x^2+861*x+794 9421100375540147 m005 (1/2*Catalan-7/12)/(6*5^(1/2)-1/9) 9421100377543970 b008 94+PolyLog[2,1/5] 9421100421426772 a007 Real Root Of -566*x^4+899*x^3+835*x^2+475*x+904 9421100452745594 b008 13+Csc[6] 9421100481795037 a007 Real Root Of -58*x^4-476*x^3+757*x^2+780*x-953 9421100489608020 m001 (Shi(1)-gamma)^StolarskyHarborth 9421100502304817 m005 (1/3*Zeta(3)-2/3)/(-40/11+4/11*5^(1/2)) 9421100509685571 m005 (1/2*2^(1/2)+1/9)/(8/9*Zeta(3)-1/5) 9421100510491638 m005 (1/2*Zeta(3)+9/10)/(3/10*exp(1)+7/9) 9421100535526423 m001 GAMMA(11/12)-LandauRamanujan*ZetaR(2) 9421100606180907 a007 Real Root Of -855*x^4+247*x^3+275*x^2-138*x+506 9421100629354548 r009 Re(z^3+c),c=-5/32+22/39*I,n=23 9421100723848248 a007 Real Root Of -158*x^4+999*x^3+367*x^2-352*x-705 9421100731638048 r005 Re(z^2+c),c=1/28+13/60*I,n=24 9421100763691001 a007 Real Root Of 206*x^4-35*x^3+467*x^2-329*x-916 9421100782281265 p001 sum((-1)^n/(197*n+106)/(256^n),n=0..infinity) 9421100805691028 r002 3th iterates of z^2 + 9421100821903353 r005 Re(z^2+c),c=1/28+13/60*I,n=25 9421100828645934 r009 Re(z^3+c),c=-19/118+35/59*I,n=36 9421100846739715 r005 Re(z^2+c),c=1/28+13/60*I,n=28 9421100850387576 r005 Re(z^2+c),c=1/28+13/60*I,n=29 9421100850879016 r005 Re(z^2+c),c=1/28+13/60*I,n=32 9421100851017527 r005 Re(z^2+c),c=1/28+13/60*I,n=33 9421100851022507 r005 Re(z^2+c),c=1/28+13/60*I,n=36 9421100851027320 r005 Re(z^2+c),c=1/28+13/60*I,n=40 9421100851027439 r005 Re(z^2+c),c=1/28+13/60*I,n=39 9421100851027476 r005 Re(z^2+c),c=1/28+13/60*I,n=44 9421100851027478 r005 Re(z^2+c),c=1/28+13/60*I,n=43 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=47 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=48 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=51 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=52 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=55 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=56 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=59 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=60 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=63 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=64 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=62 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=61 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=58 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=57 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=54 9421100851027481 r005 Re(z^2+c),c=1/28+13/60*I,n=53 9421100851027482 r005 Re(z^2+c),c=1/28+13/60*I,n=50 9421100851027482 r005 Re(z^2+c),c=1/28+13/60*I,n=49 9421100851027482 r005 Re(z^2+c),c=1/28+13/60*I,n=45 9421100851027482 r005 Re(z^2+c),c=1/28+13/60*I,n=46 9421100851027495 r005 Re(z^2+c),c=1/28+13/60*I,n=41 9421100851027510 r005 Re(z^2+c),c=1/28+13/60*I,n=42 9421100851027528 r005 Re(z^2+c),c=1/28+13/60*I,n=37 9421100851028258 r005 Re(z^2+c),c=1/28+13/60*I,n=35 9421100851028381 r005 Re(z^2+c),c=1/28+13/60*I,n=38 9421100851054766 r005 Re(z^2+c),c=1/28+13/60*I,n=34 9421100851113270 r005 Re(z^2+c),c=1/28+13/60*I,n=31 9421100851828760 r005 Re(z^2+c),c=1/28+13/60*I,n=30 9421100855449444 r005 Re(z^2+c),c=1/28+13/60*I,n=27 9421100873764533 r005 Re(z^2+c),c=1/28+13/60*I,n=26 9421100884113838 m005 (1/2*gamma-4)/(1/7*Zeta(3)+2/9) 9421100931432111 k007 concat of cont frac of 9421100937356722 h001 (8/9*exp(1)+1/6)/(5/7*exp(1)+4/5) 9421100945846812 m001 (Zeta(1/2)-GAMMA(23/24))/(MertensB3+Mills) 9421100973364082 r001 37i'th iterates of 2*x^2-1 of 9421100991828319 r005 Im(z^2+c),c=7/62+21/32*I,n=5 9421101010015191 a001 377/2207*521^(25/39) 9421101013177137 a001 377/3571*521^(28/39) 9421101036533417 r005 Re(z^2+c),c=1/28+13/60*I,n=23 9421101041082213 m001 (-Zeta(1/2)+Thue)/(2^(1/3)+Zeta(3)) 9421101051471171 l006 ln(1774/4551) 9421101054124938 a007 Real Root Of 61*x^4-978*x^3-482*x^2+483*x+17 9421101063890255 r009 Im(z^3+c),c=-19/106+44/49*I,n=11 9421101086926013 l006 ln(8027/8820) 9421101089536695 a007 Real Root Of 9*x^4+840*x^3-750*x^2-544*x+388 9421101091240530 a001 1/439128*(1/2*5^(1/2)+1/2)^18*76^(5/11) 9421101092346961 r005 Re(z^2+c),c=-9/10+40/211*I,n=59 9421101102719912 m001 1/ln(Zeta(3))*Niven*Zeta(7)^2 9421101108424472 a007 Real Root Of 898*x^4+536*x^3+273*x^2-891*x+81 9421101111132111 k008 concat of cont frac of 9421101113113571 k006 concat of cont frac of 9421101119357374 a007 Real Root Of 571*x^4-721*x^3-934*x^2+903*x+627 9421101126014191 k001 Champernowne real with 159*n+783 9421101126411631 k007 concat of cont frac of 9421101135118111 k007 concat of cont frac of 9421101141039100 r005 Re(z^2+c),c=-49/48+8/33*I,n=60 9421101190379760 m001 Catalan^Niven/(Catalan^GAMMA(23/24)) 9421101236454134 a007 Real Root Of 498*x^4+373*x^3-232*x^2-976*x-794 9421101251248832 a007 Real Root Of 80*x^4+757*x^3+58*x^2+215*x-353 9421101273261145 a007 Real Root Of 762*x^4-356*x^3+958*x^2+980*x-825 9421101274929869 m001 FeigenbaumKappa-Weierstrass^KhinchinLevy 9421101291236422 a007 Real Root Of -744*x^4+329*x^3+838*x^2-148*x-22 9421101309192592 m001 1/exp(GAMMA(19/24))^2/GAMMA(11/24)^2/exp(1) 9421101310534118 m001 (Zeta(3)-sin(1/5*Pi))/(gamma(2)+Robbin) 9421101316114611 k006 concat of cont frac of 9421101332262336 a001 1/1149652*(1/2*5^(1/2)+1/2)^20*76^(5/11) 9421101337759954 m001 (Tetranacci-ZetaP(4))/(BesselI(1,2)+Artin) 9421101351081616 r002 35th iterates of z^2 + 9421101362095669 r005 Im(z^2+c),c=-5/8+36/191*I,n=30 9421101367426944 a001 1/3009828*(1/2*5^(1/2)+1/2)^22*76^(5/11) 9421101367848459 m001 (KhinchinLevy+ThueMorse)/(GAMMA(3/4)+Bloch) 9421101373433776 a001 1/76*76^(5/11) 9421101375728182 a001 1/4870004*(1/2*5^(1/2)+1/2)^23*76^(5/11) 9421101387611453 a007 Real Root Of -204*x^4+754*x^3+141*x^2-174*x-431 9421101389159867 a001 1/1860176*(1/2*5^(1/2)+1/2)^21*76^(5/11) 9421101405883418 m001 GAMMA(17/24)^MertensB2-Zeta(3) 9421101411742530 m001 cos(1)^GAMMA(23/24)/(cos(1)^FeigenbaumDelta) 9421101433905756 r005 Re(z^2+c),c=4/21+5/19*I,n=35 9421101443990887 a003 -3^(1/2)-cos(5/12*Pi)+cos(3/7*Pi)+cos(4/21*Pi) 9421101451584634 r009 Re(z^3+c),c=-1/64+29/51*I,n=20 9421101462512434 r005 Re(z^2+c),c=13/38+16/45*I,n=3 9421101471153046 r005 Re(z^2+c),c=1/28+13/60*I,n=22 9421101474792282 k007 concat of cont frac of 9421101481222009 a001 1/710524*(1/2*5^(1/2)+1/2)^19*76^(5/11) 9421101495161024 m001 ln(2)*(MasserGramainDelta-arctan(1/2)) 9421101547279870 a007 Real Root Of -222*x^4+920*x^3+974*x^2+271*x+335 9421101557302278 m001 1/TreeGrowth2nd^2/ln(Robbin)^2/LambertW(1)^2 9421101608170272 m001 Bloch*ErdosBorwein*exp((2^(1/3)))^2 9421101633842439 m005 (13/20+1/4*5^(1/2))/(6*5^(1/2)-7/12) 9421101714809529 a005 (1/cos(10/231*Pi))^490 9421101752567676 m001 arctan(1/2)*CareFree/ln(cos(Pi/12)) 9421101759511579 a007 Real Root Of 364*x^4-416*x^3+595*x^2+575*x-621 9421101763831791 a001 76*(1/2*5^(1/2)+1/2)^29*322^(7/17) 9421101774042950 q001 1009/1071 9421101775639701 m001 (Pi+Bloch)/(FeigenbaumAlpha+MertensB3) 9421101794972107 a007 Real Root Of 618*x^4-x^3+426*x^2+470*x-423 9421101796037994 r009 Re(z^3+c),c=-7/25+39/56*I,n=40 9421101830608435 m005 (1/2*gamma-3/4)/(4/7*3^(1/2)-1/2) 9421101837105938 m001 MadelungNaCl^(gamma(1)*Porter) 9421101888703821 a007 Real Root Of 952*x^4-615*x^3+338*x^2+998*x-624 9421101897471883 a007 Real Root Of 476*x^4+632*x^3+922*x^2-396*x-45 9421101919633626 l006 ln(2531/6493) 9421101927665821 a007 Real Root Of -821*x^4+100*x^3+110*x^2+324*x+938 9421101931132824 k006 concat of cont frac of 9421101933593868 m001 BesselI(1,2)^Stephens/(BesselI(1,2)^CareFree) 9421101941273080 m005 (1/2*Zeta(3)+1/9)/(1/6*Zeta(3)+5/9) 9421101949456053 r005 Re(z^2+c),c=4/21+5/19*I,n=36 9421102068614079 a007 Real Root Of -938*x^4+349*x^3-650*x^2-679*x+968 9421102069788124 m005 (-17/44+1/4*5^(1/2))/(21/20+7/20*5^(1/2)) 9421102097780314 r005 Re(z^2+c),c=-3/32+7/61*I,n=5 9421102112225365 a001 1/271396*(1/2*5^(1/2)+1/2)^17*76^(5/11) 9421102114021000 a007 Real Root Of 799*x^4-445*x^3-737*x^2-387*x-712 9421102121111151 k008 concat of cont frac of 9421102123371111 k009 concat of cont frac of 9421102126214221 k001 Champernowne real with 160*n+782 9421102133515247 k002 Champernowne real with 35/2*n^2-39/2*n+11 9421102143555347 k003 Champernowne real with 1/6*n^3+33/2*n^2-53/3*n+10 9421102151691043 r009 Im(z^3+c),c=-23/36+23/49*I,n=5 9421102153595447 k003 Champernowne real with 1/3*n^3+31/2*n^2-95/6*n+9 9421102161002933 a003 cos(Pi*7/93)*cos(Pi*5/63) 9421102163635547 k003 Champernowne real with 1/2*n^3+29/2*n^2-14*n+8 9421102170893056 a007 Real Root Of -217*x^4+214*x^3-334*x^2-115*x+538 9421102173675648 k003 Champernowne real with 2/3*n^3+27/2*n^2-73/6*n+7 9421102183715748 k003 Champernowne real with 5/6*n^3+25/2*n^2-31/3*n+6 9421102193755848 k003 Champernowne real with n^3+23/2*n^2-17/2*n+5 9421102203795948 k003 Champernowne real with 7/6*n^3+21/2*n^2-20/3*n+4 9421102212114162 k008 concat of cont frac of 9421102213836048 k003 Champernowne real with 4/3*n^3+19/2*n^2-29/6*n+3 9421102221689616 m008 (5*Pi^6-4/5)/(1/2*Pi^2+1/6) 9421102223876149 k003 Champernowne real with 3/2*n^3+17/2*n^2-3*n+2 9421102230927880 a007 Real Root Of -596*x^4+113*x^3+236*x^2+113*x+461 9421102231889912 m001 (PolyaRandomWalk3D-Totient)/(Ei(1)-Otter) 9421102233916249 k003 Champernowne real with 5/3*n^3+15/2*n^2-7/6*n+1 9421102243956349 k003 Champernowne real with 11/6*n^3+13/2*n^2+2/3*n 9421102245512363 k006 concat of cont frac of 9421102253380338 r009 Re(z^3+c),c=-11/48+32/53*I,n=2 9421102253996449 k003 Champernowne real with 2*n^3+11/2*n^2+5/2*n-1 9421102264029361 a007 Real Root Of -568*x^4+993*x^3+125*x^2-849*x+367 9421102264036549 k003 Champernowne real with 13/6*n^3+9/2*n^2+13/3*n-2 9421102272521432 a001 55/18*76^(13/50) 9421102274076641 k003 Champernowne real with 7/3*n^3+7/2*n^2+37/6*n-3 9421102284116741 k003 Champernowne real with 5/2*n^3+5/2*n^2+8*n-4 9421102292632650 m001 OneNinth*ln(CopelandErdos)/GAMMA(17/24)^2 9421102293093477 m001 Zeta(1,-1)+OrthogonalArrays^(ln(2)/ln(10)) 9421102294156841 k003 Champernowne real with 8/3*n^3+3/2*n^2+59/6*n-5 9421102304196941 k003 Champernowne real with 17/6*n^3+1/2*n^2+35/3*n-6 9421102314237041 k003 Champernowne real with 3*n^3-1/2*n^2+27/2*n-7 9421102320490104 a007 Real Root Of -72*x^4-644*x^3+390*x^2+700*x+677 9421102324277141 k003 Champernowne real with 19/6*n^3-3/2*n^2+46/3*n-8 9421102334317241 k003 Champernowne real with 10/3*n^3-5/2*n^2+103/6*n-9 9421102344357341 k003 Champernowne real with 7/2*n^3-7/2*n^2+19*n-10 9421102373441803 m001 Ei(1)/(gamma(3)^MadelungNaCl) 9421102374477641 k003 Champernowne real with 4*n^3-13/2*n^2+49/2*n-13 9421102388039981 l006 ln(3288/8435) 9421102399360310 m001 BesselK(1,1)^2/exp(GlaisherKinkelin)*Zeta(1,2) 9421102404597941 k003 Champernowne real with 9/2*n^3-19/2*n^2+30*n-16 9421102434718241 k003 Champernowne real with 5*n^3-25/2*n^2+71/2*n-19 9421102464838541 k003 Champernowne real with 11/2*n^3-31/2*n^2+41*n-22 9421102470475118 m004 -3+3000*Pi-Sin[Sqrt[5]*Pi] 9421102483507827 b008 1/32+Zeta[1/3] 9421102494958841 k003 Champernowne real with 6*n^3-37/2*n^2+93/2*n-25 9421102506607662 r002 11th iterates of z^2 + 9421102525079141 k003 Champernowne real with 13/2*n^3-43/2*n^2+52*n-28 9421102554275687 a001 22768774562/17*591286729879^(7/17) 9421102554275687 a001 1322157322203/34*165580141^(7/17) 9421102555199441 k003 Champernowne real with 7*n^3-49/2*n^2+115/2*n-31 9421102577390857 r008 a(0)=1,K{-n^6,-38-68*n^3+51*n^2+72*n} 9421102584304944 m001 Shi(1)^ln(2+3^(1/2))*ZetaQ(3) 9421102585319741 k003 Champernowne real with 15/2*n^3-55/2*n^2+63*n-34 9421102591480707 m001 (Magata+Tribonacci)/(BesselI(1,1)-Psi(2,1/3)) 9421102599366478 a007 Real Root Of -217*x^4+544*x^3+516*x^2+602*x+735 9421102600680553 a007 Real Root Of 555*x^4-662*x^3-837*x^2-758*x-962 9421102615431004 k003 Champernowne real with 8*n^3-61/2*n^2+137/2*n-37 9421102642935964 m001 Sarnak^GAMMA(23/24)/(Sarnak^sin(1)) 9421102645551034 k003 Champernowne real with 17/2*n^3-67/2*n^2+74*n-40 9421102675671064 k003 Champernowne real with 9*n^3-73/2*n^2+159/2*n-43 9421102680231771 r005 Re(z^2+c),c=-107/114+4/55*I,n=9 9421102694381749 m001 cos(1/12*Pi)^(LandauRamanujan2nd*Otter) 9421102705791094 k003 Champernowne real with 19/2*n^3-79/2*n^2+85*n-46 9421102711789343 r005 Re(z^2+c),c=31/106+31/54*I,n=16 9421102732362556 r002 14th iterates of z^2 + 9421102734703211 r008 a(0)=9,K{-n^6,-58+45*n-13*n^2+24*n^3} 9421102735911124 k003 Champernowne real with 10*n^3-85/2*n^2+181/2*n-49 9421102753145279 a007 Real Root Of -987*x^4+431*x^3+971*x^2-620*x-308 9421102754287131 p003 LerchPhi(1/256,6,346/159) 9421102766031154 k003 Champernowne real with 21/2*n^3-91/2*n^2+96*n-52 9421102789211280 m001 (-cos(Pi/5)+3)/(-Cahen+2/3) 9421102796151184 k003 Champernowne real with 11*n^3-97/2*n^2+203/2*n-55 9421102843989151 m005 (1/3*exp(1)-3/4)/(2/5*2^(1/2)-2/5) 9421102846353386 m009 (40*Catalan+5*Pi^2+1/3)/(2*Psi(1,3/4)-6) 9421102876869671 a007 Real Root Of -409*x^4-177*x^3-533*x^2+22*x+668 9421102894561617 a007 Real Root Of -152*x^4+793*x^3-392*x^2-384*x+769 9421102900967763 m001 (ZetaP(3)+ZetaP(4))/(Zeta(3)+Porter) 9421102902842249 a007 Real Root Of 289*x^4-405*x^3-304*x^2-204*x+573 9421102903181538 a007 Real Root Of -55*x^4-424*x^3+972*x^2+859*x+557 9421102969565914 m005 (1/2*Zeta(3)-2/3)/(4/11*Catalan+4/11) 9421102979371597 a007 Real Root Of 526*x^4+927*x^3+742*x^2-273*x-555 9421102987387042 r009 Im(z^3+c),c=-67/110+8/37*I,n=6 9421103028897406 a008 Real Root of (-2+3*x+2*x^2+3*x^4-8*x^8) 9421103031174443 a001 521/2178309*13^(31/58) 9421103070239908 m001 (Robbin+ZetaP(2))/(ln(2)/ln(10)+ln(2^(1/2)+1)) 9421103099276273 a001 281/7*610^(40/47) 9421103103803448 a003 cos(Pi*4/65)-cos(Pi*39/80) 9421103105825180 m001 HeathBrownMoroz^Trott/(FellerTornier^Trott) 9421103116497207 m001 (cos(1/5*Pi)+ln(gamma))/(Ei(1)+Thue) 9421103126414251 k001 Champernowne real with 161*n+781 9421103138528104 m001 (Psi(1,1/3)+ln(Pi)*BesselK(1,1))/ln(Pi) 9421103140164161 k007 concat of cont frac of 9421103141411866 m005 (1/3*5^(1/2)-2/3)/(3/11*Catalan-1/3) 9421103177913854 m009 (3/2*Pi^2-2)/(32/5*Catalan+4/5*Pi^2-1/6) 9421103187185380 m001 (Sierpinski-ZetaQ(2))/(GAMMA(2/3)+MertensB3) 9421103192832882 r005 Re(z^2+c),c=-13/14+25/141*I,n=3 9421103241699967 m006 (1/3*ln(Pi)-2/3)/(1/5*Pi^2-5) 9421103258020299 m001 sqrt(5)^(1/3)*Artin^(1/3) 9421103279710568 m001 GAMMA(1/24)/PrimesInBinary^2*exp(GAMMA(11/24)) 9421103283957055 r002 26th iterates of z^2 + 9421103288955702 a001 199/233*28657^(39/43) 9421103289256641 m001 (1+gamma(1))/(AlladiGrinstead+ZetaP(3)) 9421103290267012 a007 Real Root Of 908*x^4+500*x^3-201*x^2-14*x-132 9421103299766136 a007 Real Root Of -886*x^4-360*x^3+562*x^2+866*x+714 9421103303440608 m001 (exp(1)+Backhouse)/(KhinchinHarmonic+Khinchin) 9421103310615576 r008 a(0)=1,K{-n^6,5+7*n^3+9*n^2-3*n} 9421103311114911 k008 concat of cont frac of 9421103312420419 s001 sum(exp(-3*Pi/4)^n*A012473[n],n=1..infinity) 9421103313233777 a007 Real Root Of 84*x^4+781*x^3-160*x^2-683*x-907 9421103323543208 m005 (1/2*5^(1/2)+5/9)/(2/3*5^(1/2)+2/7) 9421103354692102 a007 Real Root Of 473*x^4-327*x^3+755*x^2+878*x-489 9421103384189870 m005 (1/2*2^(1/2)+3/8)/(1/6*Pi+5/8) 9421103392617713 r005 Re(z^2+c),c=-7/82+10/63*I,n=6 9421103414880614 r005 Im(z^2+c),c=-85/82+15/26*I,n=3 9421103445036625 a001 123*(1/2*5^(1/2)+1/2)^7*47^(17/20) 9421103467699564 a003 sin(Pi*1/73)+sin(Pi*37/104) 9421103471777045 a008 Real Root of (12+16*x+11*x^2+8*x^3) 9421103473011414 a007 Real Root Of 293*x^4-263*x^3-26*x^2-236*x-650 9421103482410676 r005 Re(z^2+c),c=-103/114+3/35*I,n=30 9421103490544487 l006 ln(4717/5183) 9421103490781409 m005 (1/2*3^(1/2)-5/11)/(3*2^(1/2)+1/8) 9421103531575369 a007 Real Root Of 697*x^4-885*x^3-455*x^2+99*x-792 9421103544411428 m005 (1/2*Catalan-6/11)/(1/12*Pi+2/3) 9421103547392745 r008 a(0)=1,K{-n^6,-1+8*n^3+3*n^2+8*n} 9421103579445752 r008 a(0)=1,K{-n^6,-14+44*n+51*n^2-64*n^3} 9421103581850643 a001 329/13201*521^(37/39) 9421103603322098 a007 Real Root Of 562*x^4-411*x^3-464*x^2-314*x+34 9421103643589645 r002 3th iterates of z^2 + 9421103698992837 h001 (3/10*exp(2)+7/9)/(7/8*exp(1)+4/5) 9421103705188817 m001 (exp(1/Pi)-exp(-1/2*Pi))/(FeigenbaumC-Lehmer) 9421103708617597 a007 Real Root Of -397*x^4+693*x^3+641*x^2+627*x+914 9421103724383544 a007 Real Root Of -307*x^4-675*x^3-928*x^2+347*x+828 9421103725359074 m001 FeigenbaumC*TreeGrowth2nd^AlladiGrinstead 9421103748315567 a007 Real Root Of 32*x^4+236*x^3-579*x^2+381*x+230 9421103755443296 m001 (-Khinchin+LaplaceLimit)/(cos(1)+ErdosBorwein) 9421103787708348 m005 (1/3*5^(1/2)-2/9)/(1/5*5^(1/2)-6) 9421103790795143 m001 GAMMA(19/24)^sin(1)/((2^(1/3))^sin(1)) 9421103792615146 m001 BesselJ(1,1)^2/ln(TwinPrimes)^2*Catalan^2 9421103798580291 m001 GAMMA(7/12)^2/GAMMA(11/12)^2*ln(cos(Pi/5))^2 9421103852307783 a007 Real Root Of 756*x^4+191*x^3-388*x^2+130*x+31 9421103882346213 a007 Real Root Of 621*x^4+582*x^3+507*x^2-545*x-966 9421103908777588 m002 -3*Pi+ProductLog[Pi]/(3*Pi^4) 9421103954138214 l006 ln(757/1942) 9421103970966746 a007 Real Root Of 237*x^4-153*x^3+469*x^2+537*x-225 9421103971683382 b008 5+(7*E^(2*Pi))/4 9421103973656297 a007 Real Root Of -587*x^4+611*x^3-73*x^2-585*x+487 9421104024451849 a005 (1/sin(89/199*Pi))^663 9421104030773732 p001 sum((-1)^n/(499*n+106)/(128^n),n=0..infinity) 9421104031684096 a007 Real Root Of -946*x^4+67*x^3+138*x^2-902*x-171 9421104048218990 m005 (1/2*2^(1/2)-1/11)/(2/7*2^(1/2)+1/4) 9421104054714215 q001 3857/4094 9421104095020051 a007 Real Root Of 585*x^4-397*x^3+964*x^2+787*x-907 9421104104135426 a007 Real Root Of -203*x^4+416*x^3-793*x^2-853*x+408 9421104120521190 k009 concat of cont frac of 9421104126614281 k001 Champernowne real with 162*n+780 9421104173279196 m001 (ln(gamma)-Artin)/(Khinchin-Niven) 9421104178111768 m001 (-CareFree+FeigenbaumMu)/(gamma-ln(2^(1/2)+1)) 9421104228882075 r005 Re(z^2+c),c=3/23+9/16*I,n=50 9421104261704251 a001 11/20365011074*956722026041^(7/16) 9421104261704251 a001 11/701408733*433494437^(7/16) 9421104261725615 a001 11/24157817*196418^(7/16) 9421104275519635 r005 Re(z^2+c),c=-17/18+5/177*I,n=11 9421104276421622 a007 Real Root Of -708*x^4+154*x^3-70*x^2-386*x+385 9421104282846631 p004 log(11731/11621) 9421104289546035 a007 Real Root Of -177*x^4+446*x^3-494*x^2-521*x+460 9421104296097800 m005 (5/4+1/4*5^(1/2))/(4/11*Pi+7/9) 9421104313431125 k006 concat of cont frac of 9421104318504694 m001 1/CareFree^2*exp(Artin)*LambertW(1)^2 9421104339495996 m005 (1/2*Pi-1/10)/(4/7*3^(1/2)+4/7) 9421104374980583 m001 Gompertz/CopelandErdos/Khinchin 9421104438354181 r008 a(0)=1,K{-n^6,-25+52*n-21*n^2+12*n^3} 9421104473535301 m001 MadelungNaCl^Thue/(MadelungNaCl^cos(1/12*Pi)) 9421104473881892 m001 1/Lehmer^2*ln(FeigenbaumDelta)^2/GAMMA(1/3)^2 9421104492408299 a007 Real Root Of 480*x^4-660*x^3+621*x^2+912*x-622 9421104550683005 a007 Real Root Of -728*x^4+429*x^3-115*x^2-703*x+372 9421104568970069 a007 Real Root Of -593*x^4+255*x^3+668*x^2-458*x-344 9421104577582822 a007 Real Root Of 222*x^4-280*x^3+787*x^2+768*x-384 9421104613463629 m001 (-GAMMA(23/24)+CareFree)/(exp(1)+ln(2)) 9421104637208156 v002 sum(1/(3^n*(32*n^2-87*n+102)),n=1..infinity) 9421104652695457 a007 Real Root Of 108*x^4+969*x^3-492*x^2-265*x+634 9421104664021459 a007 Real Root Of 133*x^4-788*x^3-792*x^2-30*x-89 9421104738900119 m002 3*Pi^3+ProductLog[Pi]+Sinh[Pi]/Pi^4 9421104739935617 p004 log(16811/6553) 9421104752331393 a007 Real Root Of -745*x^4+931*x^3-241*x^2-634*x+982 9421104754896748 v003 sum((13/2*n^2-33/2*n+16)/n^n,n=1..infinity) 9421104771737730 r009 Re(z^3+c),c=-13/90+26/53*I,n=23 9421104777145030 a001 322/28657*233^(13/16) 9421104788242358 r005 Im(z^2+c),c=-11/42+47/55*I,n=4 9421104793456989 a007 Real Root Of -521*x^4+611*x^3+473*x^2+247*x-753 9421104815400170 a001 1/1363*(1/2*5^(1/2)+1/2)^24*47^(1/18) 9421104862719153 q001 2848/3023 9421104882866012 a007 Real Root Of -432*x^4+321*x^3+800*x^2+340*x+219 9421104886209073 m001 (GAMMA(7/12)+ZetaQ(4))/(Shi(1)+LambertW(1)) 9421104934589108 a003 sin(Pi*9/64)+sin(Pi*16/93) 9421104954767844 a007 Real Root Of -991*x^4-135*x^3-251*x^2+62*x+949 9421104986729788 a007 Real Root Of -745*x^4-983*x^3-827*x^2+310*x+791 9421104989026669 r005 Re(z^2+c),c=-11/12+27/107*I,n=43 9421105026096095 m001 (MertensB2+MertensB3)/(FeigenbaumMu-Shi(1)) 9421105074535943 m001 (2^(1/2)+3)/(Khinchin+2) 9421105077977853 m001 KomornikLoreti^(Riemann2ndZero/Khinchin) 9421105079468455 m001 1/GAMMA(1/3)*LandauRamanujan^2/exp(Pi) 9421105080614391 r005 Im(z^2+c),c=-73/122+7/40*I,n=49 9421105103514595 a007 Real Root Of -899*x^4+625*x^3+93*x^2-755*x+437 9421105117136467 m001 (arctan(1/2)+Riemann1stZero)/(1-ln(gamma)) 9421105126814311 k001 Champernowne real with 163*n+779 9421105147067071 m001 (-GaussAGM+Tribonacci)/(ErdosBorwein-cos(1)) 9421105167157282 m001 1/GlaisherKinkelin/ln(Artin)/sin(1) 9421105196373476 r005 Im(z^2+c),c=-29/52+8/47*I,n=42 9421105210096847 a007 Real Root Of 64*x^4+546*x^3-522*x^2+134*x-28 9421105210621313 a007 Real Root Of -823*x^4+489*x^3-934*x^2-946*x+995 9421105214171698 a007 Real Root Of -461*x^4+317*x^3+292*x^2-327*x+61 9421105238969904 a001 1292/51841*521^(37/39) 9421105284831746 a007 Real Root Of -601*x^4+466*x^3+156*x^2-835*x-62 9421105394541264 m001 1/exp(BesselK(1,1))^2*Paris/Pi 9421105408551262 a007 Real Root Of -460*x^4+782*x^3-683*x^2-907*x+768 9421105414941111 l006 ln(3525/9043) 9421105445061310 m001 BesselK(1,1)^(exp(1)*exp(-Pi)) 9421105445061310 m001 BesselK(1,1)^(exp(1)/exp(Pi)) 9421105445592542 m005 (1/3*Zeta(3)+1/6)/(7/11*3^(1/2)-1/2) 9421105480740346 a001 2255/90481*521^(37/39) 9421105487243120 m002 5+Pi+(3*Pi^2)/E^Pi 9421105488222526 a007 Real Root Of -101*x^4-930*x^3+143*x^2-630*x-623 9421105516014178 a001 17711/710647*521^(37/39) 9421105517159449 a007 Real Root Of 64*x^4-517*x^3-317*x^2+82*x+586 9421105521160561 a001 2576/103361*521^(37/39) 9421105521911408 a001 121393/4870847*521^(37/39) 9421105522375457 a001 75025/3010349*521^(37/39) 9421105524341200 a001 28657/1149851*521^(37/39) 9421105537814605 a001 5473/219602*521^(37/39) 9421105539010036 m001 (Pi^(1/2)+Cahen)/(Niven+Thue) 9421105585476841 r009 Re(z^3+c),c=-11/64+27/41*I,n=45 9421105625462838 s001 sum(exp(-2*Pi)^n*A030766[n],n=1..infinity) 9421105630162697 a001 4181/167761*521^(37/39) 9421105646778881 m001 ((1+3^(1/2))^(1/2)+PlouffeB)/(Shi(1)+Zeta(3)) 9421105728959017 m005 (1/5*2^(1/2)-1/4)/(5*gamma+3/5) 9421105737701031 a007 Real Root Of 92*x^4-962*x^3+291*x^2-305*x+761 9421105739901755 a007 Real Root Of 688*x^4+675*x^3-139*x^2-107*x+45 9421105742018281 r005 Re(z^2+c),c=23/94+13/42*I,n=14 9421105748256235 m002 -4/Pi^2+Pi^2-Cosh[Pi]+Sinh[Pi] 9421105750071449 b008 E^(1/8)*Tanh[1/12] 9421105755920020 r002 5th iterates of z^2 + 9421105758882224 r005 Re(z^2+c),c=-3/46+25/38*I,n=28 9421105769696581 a007 Real Root Of -279*x^4+307*x^3-469*x^2-73*x+824 9421105780087640 a001 39603/5*610^(38/51) 9421105790115999 m002 -4+Pi^4/4-Pi^6-ProductLog[Pi] 9421105814445334 l006 ln(2768/7101) 9421105869833443 b008 3*E+E^(-2+Sqrt[5]) 9421105879076013 a007 Real Root Of -446*x^4+674*x^3-143*x^2-866*x+226 9421105880367987 m005 (1/3*2^(1/2)+1/2)/(1/3*exp(1)+1/8) 9421105929899756 a007 Real Root Of -257*x^4+23*x^3-632*x^2-369*x+435 9421105937341950 m001 (FellerTornier-Kac)/(MertensB1+Otter) 9421105940039492 m001 1/GAMMA(11/12)/FeigenbaumKappa/exp(Zeta(9))^2 9421105967711464 a003 sin(Pi*11/98)+sin(Pi*23/113) 9421105992847283 m002 -Pi^3+Pi^6+ProductLog[Pi]/6+Sinh[Pi] 9421106010236427 m001 Zeta(1/2)*KhinchinLevy/Tribonacci 9421106022664568 r005 Re(z^2+c),c=-13/14+19/168*I,n=11 9421106029038211 m001 (Zeta(1,2)+ArtinRank2)/(Magata-Thue) 9421106127014341 k001 Champernowne real with 164*n+778 9421106141850388 m001 Catalan^BesselI(0,2)+Champernowne 9421106159639098 m002 -4/Pi+Pi^4-Sinh[Pi]/6 9421106216992420 m001 (Zeta(5)+ln(Pi))/(Pi^(1/2)+Landau) 9421106227636145 r008 a(0)=1,K{-n^6,12-50*n^3+22*n^2+33*n} 9421106263125932 a001 1597/64079*521^(37/39) 9421106273395337 a001 987/24476*521^(34/39) 9421106281687272 m005 (1/2*Zeta(3)+4/7)/(3/11*Zeta(3)+11/12) 9421106284957027 m001 (1+2^(1/3))/(MasserGramainDelta+Stephens) 9421106290177122 m005 (1/2*exp(1)+6/7)/(5/6*3^(1/2)+10/11) 9421106306986764 m002 -(Pi/E^Pi)+Pi^3-Pi^6-Cosh[Pi] 9421106338042264 a007 Real Root Of 580*x^4+126*x^3+265*x^2-255*x-827 9421106365788946 a007 Real Root Of -425*x^4+381*x^3+271*x^2+610*x-799 9421106370752903 m001 Magata^HardyLittlewoodC4*MasserGramain 9421106405079859 m001 (FransenRobinson-Psi(2,1/3))/(-Kac+Trott) 9421106406126233 h001 (8/9*exp(2)+4/5)/(1/12*exp(1)+5/9) 9421106432142854 h001 (7/11*exp(1)+5/12)/(2/9*exp(2)+7/11) 9421106437188984 a001 1/103664*(1/2*5^(1/2)+1/2)^15*76^(5/11) 9421106438984366 a007 Real Root Of -84*x^4+937*x^3+30*x^2-277*x-483 9421106440793561 a001 55/2*11^(19/37) 9421106507847158 a007 Real Root Of 237*x^4-618*x^3-159*x^2-6*x-568 9421106514719978 l006 ln(2011/5159) 9421106515488180 r005 Re(z^2+c),c=-5/78+15/64*I,n=6 9421106542037029 m001 (5^(1/2)+GAMMA(13/24))/(FransenRobinson+Mills) 9421106554898936 a007 Real Root Of 374*x^4-579*x^3-726*x^2-318*x-434 9421106557377049 q001 1839/1952 9421106584803990 a007 Real Root Of 492*x^4-629*x^3-293*x^2+216*x-450 9421106611620512 a001 9349/377*89^(47/58) 9421106613730092 m003 -1/2+(11*Sqrt[5])/32-4*Sinh[1/2+Sqrt[5]/2] 9421106636500704 m001 Trott^2*ln(FeigenbaumB)^2*cosh(1)^2 9421106641074363 l006 ln(6124/6729) 9421106647799297 a007 Real Root Of 222*x^4+9*x^3+104*x^2-668*x-889 9421106649734610 s002 sum(A163098[n]/(pi^n+1),n=1..infinity) 9421106682913948 s001 sum(exp(-Pi/4)^(n-1)*A104142[n],n=1..infinity) 9421106697656798 a007 Real Root Of 469*x^4+313*x^3+139*x^2-2*x-233 9421106717138934 m001 ln(Bloch)*Backhouse/Magata^2 9421106753720050 m001 (-ln(5)+Tribonacci)/(Si(Pi)+sin(1/5*Pi)) 9421106760017404 r005 Re(z^2+c),c=-5/6+95/106*I,n=2 9421106764619576 m001 (cos(1/12*Pi)-exp(1))/(sin(1/12*Pi)+gamma(1)) 9421106765143602 m005 (1/2*Zeta(3)-1/11)/(8/9*Catalan-3/11) 9421106860093134 a007 Real Root Of -685*x^4+23*x^3+476*x^2+663*x+761 9421106865810568 m001 Zeta(1,2)^Catalan*Zeta(1,2)^ZetaQ(3) 9421106881355272 r005 Re(z^2+c),c=-21/86+22/25*I,n=16 9421106885804238 m005 (1/6*Catalan+2/3)/(41/60+1/12*5^(1/2)) 9421106923334399 a003 sin(Pi*17/107)/cos(Pi*37/112) 9421106926236563 a007 Real Root Of 66*x^4+638*x^3+221*x^2+618*x-241 9421106948839571 h001 (7/8*exp(2)+3/4)/(1/5*exp(1)+2/9) 9421106960023170 a007 Real Root Of 525*x^4+280*x^3+631*x^2+233*x-520 9421106972355362 a007 Real Root Of -677*x^4+143*x^3+163*x^2+4*x+512 9421106986608456 a007 Real Root Of -357*x^4+687*x^3-96*x^2-848*x+142 9421107042058207 m001 gamma(1)+ln(2+3^(1/2))^ZetaQ(2) 9421107050221450 m001 Shi(1)^GaussKuzminWirsing/(Shi(1)^exp(1/Pi)) 9421107060220202 a003 cos(Pi*5/44)/sin(Pi*7/15) 9421107073720821 a007 Real Root Of 996*x^4+63*x^3-552*x^2-363*x-584 9421107076675963 r009 Im(z^3+c),c=-41/74+39/62*I,n=17 9421107090701670 r005 Im(z^2+c),c=-17/14+65/154*I,n=5 9421107108398413 l006 ln(3265/8376) 9421107127214371 k001 Champernowne real with 165*n+777 9421107131869657 a007 Real Root Of -405*x^4+208*x^3+97*x^2-382*x+47 9421107136387204 a007 Real Root Of 597*x^4+737*x^3-380*x^2-969*x+94 9421107165462051 a007 Real Root Of 504*x^4-797*x^3-484*x^2+363*x+357 9421107203097790 r005 Re(z^2+c),c=-13/10+76/231*I,n=4 9421107220398323 m001 BesselI(0,2)^(GAMMA(5/6)/PrimesInBinary) 9421107222516771 m001 GAMMA(7/12)/ln(Rabbit)^2/sinh(1)^2 9421107229534734 m001 (KhinchinLevy-Rabbit)/(ZetaP(2)+ZetaQ(2)) 9421107311264616 m001 (gamma(1)-Conway)/(Riemann1stZero+Weierstrass) 9421107311384769 a007 Real Root Of 464*x^4-571*x^3+416*x^2+307*x-923 9421107311642033 r005 Re(z^2+c),c=-28/31+10/49*I,n=35 9421107342322587 m005 (1/2*2^(1/2)-1/9)/(5/12*exp(1)-1/2) 9421107372591217 p004 log(11593/4519) 9421107373808757 a007 Real Root Of 772*x^4-528*x^3-170*x^2+470*x-456 9421107402777103 m001 (cos(1)+GolombDickman*ZetaP(4))/GolombDickman 9421107418488186 m001 exp((3^(1/3)))/Salem^2*GAMMA(7/24) 9421107453927834 m001 (ArtinRank2+MertensB3)/(Chi(1)+ln(2+3^(1/2))) 9421107460405946 a007 Real Root Of -535*x^4+302*x^3-594*x^2-480*x+749 9421107466572795 a007 Real Root Of -722*x^4-121*x^3-645*x^2-344*x+716 9421107506515457 m005 (-7/36+1/4*5^(1/2))/(3/4*Catalan-3/10) 9421107538093217 r005 Re(z^2+c),c=-11/60+39/55*I,n=48 9421107544139139 m002 -Pi^3+Pi^8-Pi*Cosh[Pi] 9421107556197675 s002 sum(A106555[n]/(n*exp(pi*n)+1),n=1..infinity) 9421107557704685 s002 sum(A106557[n]/(n*exp(pi*n)+1),n=1..infinity) 9421107576965654 a007 Real Root Of 756*x^4+339*x^3+809*x^2+153*x-886 9421107592614789 a007 Real Root Of -417*x^4+357*x^3+165*x^2-681*x-161 9421107595540797 r005 Re(z^2+c),c=-1/78+23/37*I,n=49 9421107597475884 a007 Real Root Of 201*x^4-603*x^3+108*x^2+960*x+146 9421107613394222 r005 Re(z^2+c),c=-3/58+41/64*I,n=19 9421107614557500 r005 Re(z^2+c),c=-9/10+46/251*I,n=33 9421107622726371 r005 Re(z^2+c),c=21/118+13/53*I,n=8 9421107636056090 a007 Real Root Of -189*x^4+649*x^3+626*x^2-321*x-647 9421107642722685 r009 Im(z^3+c),c=-17/90+5/59*I,n=4 9421107654698789 s001 sum(exp(-Pi/3)^(n-1)*A170908[n],n=1..infinity) 9421107662803326 s002 sum(A095330[n]/(n*2^n+1),n=1..infinity) 9421107679361835 h001 (7/10*exp(2)+2/9)/(2/3*exp(2)+4/5) 9421107686562751 m001 GAMMA(1/12)^2/Porter^2*exp(Zeta(1,2))^2 9421107693291633 a007 Real Root Of 99*x^4-878*x^3+317*x^2+250*x-858 9421107695908511 a001 10946/2207*199^(4/33) 9421107717460768 r005 Re(z^2+c),c=-53/58+22/53*I,n=6 9421107724730253 m004 -2+(125*Pi)/3-(25*Sqrt[5]*Log[Sqrt[5]*Pi])/Pi 9421107725130133 r002 57th iterates of z^2 + 9421107730048347 a007 Real Root Of -497*x^4+909*x^3+397*x^2+258*x-964 9421107809693110 b008 E*Pi+ArcCsch[1] 9421107809693110 m001 Pi*exp(1)+ln(1+sqrt(2)) 9421107809693110 m001 Pi*exp(1)+ln(2^(1/2)+1) 9421107861369822 a001 18/5*610^(3/20) 9421107870585262 r005 Re(z^2+c),c=1/28+13/60*I,n=19 9421107907454412 r002 12th iterates of z^2 + 9421107911952925 a001 2584/64079*521^(34/39) 9421107914314507 a007 Real Root Of -968*x^4-909*x^3-576*x^2+237*x+737 9421107923258726 a001 521/317811*28657^(15/38) 9421107923604092 a007 Real Root Of 66*x^4-224*x^3+896*x^2-433*x+4 9421107948878553 r002 62th iterates of z^2 + 9421107949331493 a007 Real Root Of -673*x^4+465*x^3+648*x^2+274*x+602 9421107978026902 r009 Im(z^3+c),c=-35/66+43/49*I,n=2 9421108038583098 r002 10th iterates of z^2 + 9421108057709769 h001 (6/7*exp(1)+3/8)/(10/11*exp(1)+2/5) 9421108060461603 l006 ln(1254/3217) 9421108068752171 m001 (ln(1+sqrt(2))*sqrt(Pi)+OneNinth)/sqrt(Pi) 9421108068752171 m001 (ln(2^(1/2)+1)*Pi^(1/2)+OneNinth)/Pi^(1/2) 9421108102017970 m005 (1/2*Zeta(3)-1/3)/(7/10*Zeta(3)+2) 9421108106722148 a007 Real Root Of 577*x^4-111*x^3+450*x^2+643*x-341 9421108112128111 k007 concat of cont frac of 9421108118873786 m001 1/cos(1)^2/ln(GAMMA(5/6))*gamma^2 9421108122751673 h001 (7/9*exp(2)+5/6)/(8/9*exp(2)+5/12) 9421108127414401 k001 Champernowne real with 166*n+776 9421108133982167 r005 Im(z^2+c),c=-33/62+1/60*I,n=50 9421108151015255 a001 615/15251*521^(34/39) 9421108185893979 a001 17711/439204*521^(34/39) 9421108190982716 a001 46368/1149851*521^(34/39) 9421108191725153 a001 121393/3010349*521^(34/39) 9421108191900418 a001 196418/4870847*521^(34/39) 9421108192184004 a001 75025/1860498*521^(34/39) 9421108194127729 a001 28657/710647*521^(34/39) 9421108196572108 m006 (5/6*exp(2*Pi)-4/5)/(2*exp(Pi)+1) 9421108199554057 b008 ArcSec[E^(1/225)] 9421108206949084 m001 TravellingSalesman-Thue^Pi 9421108207450216 a001 10946/271443*521^(34/39) 9421108214245213 a007 Real Root Of -580*x^4+703*x^3+822*x^2+3*x+318 9421108222673451 r005 Re(z^2+c),c=-11/12+38/65*I,n=4 9421108227935973 a007 Real Root Of 88*x^4+835*x^3+125*x^2+550*x-944 9421108229056805 a007 Real Root Of 750*x^4+729*x^3+391*x^2+254*x-89 9421108254696919 a007 Real Root Of -921*x^4+507*x^3-839*x^2-148*x-6 9421108255254022 a007 Real Root Of 159*x^4-514*x^3-556*x^2-649*x-673 9421108281539385 m008 (3/4*Pi^4-2/3)/(1/4*Pi^5+1/3) 9421108290243045 m005 (39/44+1/4*5^(1/2))/(3/4*5^(1/2)-1/7) 9421108298763900 a001 4181/103682*521^(34/39) 9421108306232535 m001 exp(BesselK(0,1))*Robbin^2/sin(1)^2 9421108319796341 a007 Real Root Of -935*x^4+244*x^3+733*x^2+294*x+567 9421108336247607 a001 1/167761*521^(3/41) 9421108342135632 a007 Real Root Of 128*x^4+56*x^3+444*x^2-468*x-889 9421108344307606 a007 Real Root Of 194*x^4-555*x^3+353*x^2+687*x-283 9421108346350117 r005 Re(z^2+c),c=-11/12+31/123*I,n=63 9421108355692501 p004 log(27011/10529) 9421108365690081 q001 2669/2833 9421108410274983 a001 843/514229*55^(24/55) 9421108466736957 a007 Real Root Of -444*x^4-192*x^3-930*x^2-403*x+635 9421108480846111 a007 Real Root Of 587*x^4-58*x^3+993*x^2+876*x-567 9421108486568690 a007 Real Root Of 676*x^4+397*x^3+80*x^2-420*x-40 9421108496398654 m006 (5/6*Pi+3/4)/(2/3*exp(2*Pi)+1/2) 9421108498289822 r005 Re(z^2+c),c=-5/86+49/59*I,n=60 9421108501960841 m001 (Otter+ZetaP(2))/(ln(3)+Zeta(1/2)) 9421108502532495 r005 Im(z^2+c),c=-131/122+5/46*I,n=17 9421108513074734 a001 7/1134903170*2^(11/18) 9421108515359435 m002 -1+Pi^(-3)+6/Pi 9421108528872488 a001 1/3010349*1364^(19/41) 9421108534381486 a007 Real Root Of 108*x^4+990*x^3-189*x^2+701*x+401 9421108554761176 r009 Re(z^3+c),c=-45/82+9/16*I,n=3 9421108561841131 p001 sum(1/(410*n+19)/n/(25^n),n=1..infinity) 9421108562567603 m001 (polylog(4,1/2)+Magata)/(GAMMA(2/3)+Zeta(1,2)) 9421108569438194 r005 Re(z^2+c),c=-57/62+1/7*I,n=35 9421108614391193 l006 ln(7531/8275) 9421108615559826 r005 Re(z^2+c),c=-17/18+5/202*I,n=3 9421108646045058 r005 Re(z^2+c),c=6/19+20/51*I,n=39 9421108648461086 a007 Real Root Of 634*x^4-816*x^3-392*x^2+417*x-441 9421108724795250 r005 Re(z^2+c),c=-1+75/247*I,n=54 9421108733055191 a007 Real Root Of -111*x^4+46*x^3-556*x^2+76*x+691 9421108764274384 a008 Real Root of (-9+3*x-2*x^2+3*x^4+9*x^8) 9421108768582760 a007 Real Root Of 390*x^4-941*x^3-433*x^2+73*x-641 9421108769427015 m001 (ZetaP(3)+ZetaQ(4))/(Chi(1)+MertensB2) 9421108772472324 r001 54i'th iterates of 2*x^2-1 of 9421108800862288 m001 (MadelungNaCl+Paris)/(FeigenbaumAlpha-Landau) 9421108809273999 h001 (3/5*exp(1)+6/11)/(5/9*exp(1)+4/5) 9421108825824720 m001 (TwinPrimes+ZetaQ(3))/(Zeta(5)-cos(1/12*Pi)) 9421108858237172 r002 11i'th iterates of 2*x/(1-x^2) of 9421108878239621 a007 Real Root Of -535*x^4-104*x^3-807*x^2-764*x+331 9421108885401109 s002 sum(A107140[n]/(exp(n)+1),n=1..infinity) 9421108886310280 a001 141/2161*521^(31/39) 9421108898061877 r005 Im(z^2+c),c=-11/20+1/44*I,n=14 9421108915857572 r005 Re(z^2+c),c=-5/102+8/29*I,n=8 9421108924637205 a001 1597/39603*521^(34/39) 9421108925722413 r005 Re(z^2+c),c=-4/9+59/61*I,n=3 9421108927553896 b008 JacobiNC[1,3]/13 9421108934126938 a003 cos(Pi*10/87)*cos(Pi*51/109) 9421108936309404 r005 Re(z^2+c),c=-2/17+23/36*I,n=3 9421108937913997 m001 (Psi(2,1/3)-exp(Pi))/(-FeigenbaumB+ZetaQ(4)) 9421108938172236 m002 -2+3*E^Pi-Pi^8 9421108938936969 r005 Im(z^2+c),c=-15/23+8/35*I,n=41 9421108939922438 a007 Real Root Of -732*x^4+342*x^3+142*x^2-266*x+486 9421108975549519 r002 4th iterates of z^2 + 9421108982510568 r002 5th iterates of z^2 + 9421108983596234 r008 a(0)=1,K{-n^6,22-36*n^3-15*n^2+46*n} 9421108988469028 m001 Robbin/(Zeta(1,2)+GAMMA(13/24)) 9421109009112204 m001 1/Lehmer^2/Champernowne^2*exp(cos(Pi/5))^2 9421109015625524 s002 sum(A228102[n]/(n^2*2^n+1),n=1..infinity) 9421109022757269 m001 RenyiParking*ln(Cahen)^2/cosh(1) 9421109026616092 m001 KhinchinLevy^Champernowne/Trott 9421109040393008 h001 (1/4*exp(2)+1/8)/(7/11*exp(1)+4/11) 9421109043362107 m001 1/Rabbit/Bloch*ln(GAMMA(1/24)) 9421109055755301 a007 Real Root Of -885*x^4+904*x^3-196*x^2-707*x+961 9421109071200714 a001 72*18^(4/43) 9421109072987287 a007 Real Root Of -840*x^4+397*x^3+161*x^2-677*x+213 9421109076567639 r005 Im(z^2+c),c=-33/58+6/35*I,n=41 9421109077351294 m001 ln(gamma)*Sarnak+Totient 9421109083891809 m005 (1/2*Pi+2/11)/(10/11*3^(1/2)+2/7) 9421109094899542 l006 ln(3005/7709) 9421109127614431 k001 Champernowne real with 167*n+775 9421109184431211 k006 concat of cont frac of 9421109232528956 a007 Real Root Of 214*x^4-95*x^3-887*x^2-963*x-368 9421109271369343 m005 (1/2*3^(1/2)-3/4)/(11/12*5^(1/2)-9/11) 9421109308743622 r008 a(0)=1,K{-n^6,62-24*n+20*n^2-41*n^3} 9421109316101238 q001 3499/3714 9421109320203496 r005 Re(z^2+c),c=-1/50+37/47*I,n=27 9421109330691135 m001 (3^(1/3)-KhinchinLevy)^(3^(1/2)) 9421109334465959 a001 28657/5778*199^(4/33) 9421109336483423 a007 Real Root Of 641*x^4-425*x^3-800*x^2-126*x-269 9421109375106504 r005 Re(z^2+c),c=-61/70+5/28*I,n=9 9421109409779614 a007 Real Root Of 982*x^4+31*x^3-651*x^2+935*x+711 9421109420484174 a007 Real Root Of -674*x^4+112*x^3-217*x^2-618*x+235 9421109441564128 a007 Real Root Of 897*x^4+903*x^3+362*x^2+106*x-173 9421109481069537 m008 (5*Pi^3-1/6)/(3/4*Pi-4) 9421109556102914 a007 Real Root Of -564*x^4-27*x^3+30*x^2+641*x+999 9421109573528316 a001 75025/15127*199^(4/33) 9421109599355036 m001 1/ln(cos(Pi/5))^2*FeigenbaumD^2*sin(Pi/5) 9421109608407045 a001 196418/39603*199^(4/33) 9421109613495783 a001 514229/103682*199^(4/33) 9421109614238220 a001 1346269/271443*199^(4/33) 9421109614413486 a001 2178309/439204*199^(4/33) 9421109614697072 a001 75640/15251*199^(4/33) 9421109616640796 a001 317811/64079*199^(4/33) 9421109621548833 a007 Real Root Of 355*x^4-814*x^3-124*x^2+410*x-464 9421109629963286 a001 121393/24476*199^(4/33) 9421109637617996 m001 BesselJ(1,1)/ln(LaplaceLimit)^2*BesselK(1,1)^2 9421109659123434 a001 1/3*9349^(5/44) 9421109659427753 a007 Real Root Of 970*x^4+200*x^3+709*x^2-985*x-99 9421109674646770 r005 Re(z^2+c),c=-17/26+23/28*I,n=3 9421109674660330 a001 19/11592*13^(15/22) 9421109682354220 a001 199/8*514229^(42/43) 9421109704559360 a007 Real Root Of -933*x^4-471*x^3+647*x^2+361*x+107 9421109714851025 a007 Real Root Of 965*x^4+701*x^3+279*x^2-599*x-986 9421109720821034 r008 a(0)=1,K{-n^6,1+8*n^3+4*n^2+5*n} 9421109721276985 a001 46368/9349*199^(4/33) 9421109741282054 a007 Real Root Of 852*x^4-32*x^3+867*x^2+700*x-808 9421109766871969 a007 Real Root Of -298*x^4+789*x^3+384*x^2+271*x+809 9421109774468726 a007 Real Root Of 512*x^4-333*x^3+532*x^2+553*x-633 9421109777745297 r008 a(0)=1,K{-n^6,46+10*n-3*n^2-36*n^3} 9421109794516761 s002 sum(A103029[n]/(n^2*pi^n+1),n=1..infinity) 9421109797526848 a001 377/843*1364^(19/45) 9421109809288670 b008 -28/3+Log[Catalan] 9421109812170450 a007 Real Root Of 838*x^4+685*x^3+699*x^2+401*x-330 9421109828292737 a007 Real Root Of 749*x^4-342*x^3+108*x^2-744*x+7 9421109835724819 l006 ln(1751/4492) 9421109838277538 m001 sin(1/12*Pi)/(Catalan+FeigenbaumC) 9421109838398351 m001 (exp(1/exp(1))+Weierstrass)/(Zeta(1/2)-gamma) 9421109846478617 r008 a(0)=1,K{-n^6,24+51*n-26*n^2-32*n^3} 9421109850256475 s001 sum(exp(-2*Pi/5)^n*A231295[n],n=1..infinity) 9421109850256475 s002 sum(A231295[n]/(exp(2/5*pi*n)),n=1..infinity) 9421109873414394 r002 4th iterates of z^2 + 9421109890380675 a007 Real Root Of 892*x^4-6*x^3+758*x^2+475*x-933 9421109946811210 m001 Lehmer^2*KhintchineHarmonic/ln(GAMMA(23/24))^2 9421109966437743 l006 ln(8938/9821) 9421109991514060 m001 (sin(1/5*Pi)-FellerTornier)/(Lehmer-Magata) 9421110029133669 r009 Re(z^3+c),c=-10/17+21/34*I,n=21 9421110111531510 k009 concat of cont frac of 9421110114683718 m001 (-cos(1/12*Pi)+Conway)/(3^(1/2)+Si(Pi)) 9421110115114212 k006 concat of cont frac of 9421110118064219 m005 (1/3*gamma-1/8)/(2/3*3^(1/2)+6) 9421110121940943 a007 Real Root Of 113*x^4-402*x^3-42*x^2-508*x+763 9421110127814461 k001 Champernowne real with 168*n+774 9421110138922666 a001 7331474697802/17*225851433717^(5/17) 9421110165445776 a007 Real Root Of 245*x^4-379*x^3+491*x^2+333*x-632 9421110166410175 m001 (LambertW(1)+ln(2))/(-gamma(3)+Totient) 9421110205380454 m001 (BesselK(0,1)+sin(1/12*Pi))/(-Khinchin+Magata) 9421110221394207 a008 Real Root of (1+6*x+2*x^2-2*x^4-6*x^5) 9421110225168633 a001 47/843*(1/2*5^(1/2)+1/2)^27*843^(1/5) 9421110228147774 b008 LogBarnesG[159/5] 9421110230172066 a007 Real Root Of -826*x^4+565*x^3+541*x^2+207*x+838 9421110232456278 a007 Real Root Of -544*x^4+561*x^3+434*x^2-44*x+471 9421110236146518 a007 Real Root Of 595*x^4+631*x^3+981*x^2+798*x-60 9421110254026091 a007 Real Root Of 551*x^4-841*x^3-242*x^2-78*x-996 9421110266851880 r005 Im(z^2+c),c=-51/82+7/41*I,n=33 9421110274867796 m005 (-17/28+1/4*5^(1/2))/(1/2*gamma+2/9) 9421110276557992 m005 (1/3*2^(1/2)+3/5)/(7/11*5^(1/2)-2/7) 9421110290815753 a007 Real Root Of 629*x^4-715*x^3-749*x^2-425*x-829 9421110304065036 a003 cos(Pi*17/69)/sin(Pi*31/113) 9421110311151212 k007 concat of cont frac of 9421110314739060 a007 Real Root Of 557*x^4-687*x^3-874*x^2+183*x+739 9421110347150441 a001 17711/3571*199^(4/33) 9421110351077409 m001 (OneNinth+Otter)/(Pi*2^(1/2)/GAMMA(3/4)-Artin) 9421110356262009 r008 a(0)=1,K{-n^6,19-3*n+10*n^2-6*n^3} 9421110357558717 m001 ArtinRank2*(StolarskyHarborth+ZetaQ(2)) 9421110363933774 r005 Im(z^2+c),c=10/21+3/11*I,n=3 9421110409854078 m005 (1/2*Pi-1/11)/(3/10*5^(1/2)+9/10) 9421110421548255 a007 Real Root Of -926*x^4+637*x^3+864*x^2-427*x+93 9421110436091370 r005 Re(z^2+c),c=1/118+25/63*I,n=23 9421110438571366 m001 PisotVijayaraghavan/exp(Conway)^2/Zeta(5) 9421110442699089 a007 Real Root Of 813*x^4-974*x^3-18*x^2+571*x-901 9421110472705711 m001 1/Paris/Conway*ln(GAMMA(5/6)) 9421110497095540 r005 Im(z^2+c),c=-7/17+24/43*I,n=23 9421110522411764 a007 Real Root Of -667*x^4+242*x^3+76*x^2+248*x+894 9421110526777807 a007 Real Root Of 89*x^4+817*x^3-262*x^2-482*x+753 9421110535682157 r005 Re(z^2+c),c=-9/10+32/171*I,n=55 9421110551448659 m002 5+(2*Pi^6*ProductLog[Pi])/E^Pi 9421110565379211 r005 Re(z^2+c),c=-6/11+18/31*I,n=41 9421110569455781 m001 (1-GAMMA(11/12))/(-Cahen+ZetaQ(2)) 9421110573464664 a001 2584/39603*521^(31/39) 9421110583971549 h001 (3/7*exp(2)+1/3)/(5/12*exp(2)+7/11) 9421110601520491 a001 305/12238*521^(37/39) 9421110606818763 r005 Re(z^2+c),c=-37/34+11/60*I,n=26 9421110611144453 k007 concat of cont frac of 9421110615759331 m008 (2/3*Pi^5+1/2)/(1/2*Pi+3/5) 9421110663441590 a007 Real Root Of 449*x^4-459*x^3+98*x^2+924*x+46 9421110677765520 a001 377/1364*521^(22/39) 9421110690657413 a007 Real Root Of -16*x^4-222*x^3-589*x^2+705*x-669 9421110701377734 a007 Real Root Of -928*x^4+73*x^3+920*x^2+303*x+261 9421110713556011 m001 PrimesInBinary^(Paris/Backhouse) 9421110723316210 r002 44th iterates of z^2 + 9421110735506691 a007 Real Root Of 283*x^4-209*x^3-90*x^2+884*x+515 9421110778657165 m001 ln(Salem)^2*DuboisRaymond*FeigenbaumKappa^2 9421110804368338 m005 (1/2*5^(1/2)+2/11)/(5/11*Zeta(3)+5/6) 9421110819617173 a001 6765/103682*521^(31/39) 9421110826018309 l006 ln(2248/5767) 9421110831889466 r008 a(0)=1,K{-n^6,52+9*n-12*n^2-32*n^3} 9421110836057441 a001 1/3010349*9349^(15/41) 9421110842042595 m001 (sin(1/5*Pi)-ln(2))/(Cahen+Weierstrass) 9421110842958217 a007 Real Root Of -819*x^4+397*x^3+254*x^2-143*x+617 9421110854058809 a007 Real Root Of 291*x^4-631*x^3-35*x^2+435*x-316 9421110855530340 a001 17711/271443*521^(31/39) 9421110860770000 a001 6624/101521*521^(31/39) 9421110861534456 a001 121393/1860498*521^(31/39) 9421110861645989 a001 317811/4870847*521^(31/39) 9421110861714920 a001 196418/3010349*521^(31/39) 9421110862006916 a001 75025/1149851*521^(31/39) 9421110864008288 a001 28657/439204*521^(31/39) 9421110877725898 a001 10946/167761*521^(31/39) 9421110879380027 a001 1/271443*15127^(4/41) 9421110898524203 m001 CareFree/CopelandErdos/exp(gamma)^2 9421110901607385 m001 GAMMA(5/6)^2*exp(FeigenbaumB)*LambertW(1)^2 9421110937417427 a001 1/710647*5778^(9/41) 9421110962812684 a007 Real Root Of 3*x^4-417*x^3-831*x^2-937*x+96 9421110971747789 a001 4181/64079*521^(31/39) 9421110988026367 a007 Real Root Of -652*x^4+397*x^3+519*x^2+552*x+905 9421111021711429 k007 concat of cont frac of 9421111043788556 r001 33i'th iterates of 2*x^2-1 of 9421111047611790 b008 3-15*Sqrt[42] 9421111057866414 m001 (Backhouse-exp(Pi))/(GaussAGM+Porter) 9421111079400343 m001 (2*Pi/GAMMA(5/6))^(QuadraticClass/gamma(1)) 9421111079545799 a008 Real Root of (-4+6*x-6*x^3+4*x^4-2*x^5) 9421111091947795 r005 Im(z^2+c),c=-8/7+11/92*I,n=39 9421111101151211 k008 concat of cont frac of 9421111105549722 m005 (1/2*2^(1/2)-5)/(6/11*Zeta(3)-1/5) 9421111111131161 k006 concat of cont frac of 9421111111216122 k007 concat of cont frac of 9421111111239286 a001 1/271443*2207^(5/41) 9421111111318511 k006 concat of cont frac of 9421111113621121 k006 concat of cont frac of 9421111119234624 k006 concat of cont frac of 9421111121711212 k006 concat of cont frac of 9421111122164141 k006 concat of cont frac of 9421111123201511 k007 concat of cont frac of 9421111124231211 k006 concat of cont frac of 9421111124323226 k008 concat of cont frac of 9421111128014491 k001 Champernowne real with 169*n+773 9421111128111336 k006 concat of cont frac of 9421111131011921 k007 concat of cont frac of 9421111131111613 k007 concat of cont frac of 9421111131216171 k009 concat of cont frac of 9421111131434151 k007 concat of cont frac of 9421111131750123 k006 concat of cont frac of 9421111131956943 h001 (3/4*exp(1)+1/11)/(6/11*exp(1)+7/9) 9421111132344121 k009 concat of cont frac of 9421111133111475 k006 concat of cont frac of 9421111134391134 a007 Real Root Of -212*x^4+367*x^3-331*x^2+727*x-531 9421111135326131 k007 concat of cont frac of 9421111141814211 k006 concat of cont frac of 9421111151112321 k007 concat of cont frac of 9421111151114102 k007 concat of cont frac of 9421111151134131 k009 concat of cont frac of 9421111151171115 k007 concat of cont frac of 9421111151322212 k006 concat of cont frac of 9421111171123744 k006 concat of cont frac of 9421111171415113 k006 concat of cont frac of 9421111173305267 p004 log(12809/4993) 9421111182122115 k006 concat of cont frac of 9421111186240755 a001 11/17711*7778742049^(11/21) 9421111187101131 k006 concat of cont frac of 9421111187421112 k008 concat of cont frac of 9421111191711121 k006 concat of cont frac of 9421111211135582 k007 concat of cont frac of 9421111211161312 k009 concat of cont frac of 9421111211331132 k009 concat of cont frac of 9421111211563431 k009 concat of cont frac of 9421111213411246 k009 concat of cont frac of 9421111215121531 k006 concat of cont frac of 9421111215121946 m005 (1/2*Zeta(3)+2)/(5/6*Pi+1/7) 9421111217320126 a007 Real Root Of 996*x^4-163*x^3+220*x^2+152*x-973 9421111221111131 k008 concat of cont frac of 9421111221132173 k008 concat of cont frac of 9421111221141142 k006 concat of cont frac of 9421111224116412 k007 concat of cont frac of 9421111231311112 k006 concat of cont frac of 9421111231821112 k007 concat of cont frac of 9421111234791872 a007 Real Root Of 843*x^4-47*x^3-840*x^2-671*x-590 9421111241233631 k008 concat of cont frac of 9421111241621111 k007 concat of cont frac of 9421111241775068 m001 (Salem+Trott2nd)/(Zeta(1/2)+MinimumGamma) 9421111242161128 k009 concat of cont frac of 9421111249380554 a005 (1/cos(2/115*Pi))^1502 9421111259532262 m001 (MertensB1-Riemann1stZero)/(ln(3)+Artin) 9421111260337773 m008 (2/5*Pi^5+3/4)/(1/5*Pi^2-2/3) 9421111292413162 k006 concat of cont frac of 9421111294842553 m001 (Khinchin-LambertW(1))/(Landau+Niven) 9421111297285522 k007 concat of cont frac of 9421111310939300 a007 Real Root Of 521*x^4-716*x^3-667*x^2-608*x-52 9421111311212111 k006 concat of cont frac of 9421111311227211 k006 concat of cont frac of 9421111312128011 k007 concat of cont frac of 9421111313111431 k008 concat of cont frac of 9421111313327122 k007 concat of cont frac of 9421111313331215 k006 concat of cont frac of 9421111316412136 k008 concat of cont frac of 9421111334111439 k006 concat of cont frac of 9421111348885827 a007 Real Root Of -219*x^4+621*x^3-625*x^2+674*x-427 9421111359411321 k006 concat of cont frac of 9421111368331111 k006 concat of cont frac of 9421111400321251 k009 concat of cont frac of 9421111401343423 k006 concat of cont frac of 9421111424961346 k007 concat of cont frac of 9421111457713668 l006 ln(2745/7042) 9421111462211141 k006 concat of cont frac of 9421111467282292 m005 (1/2*gamma-1/3)/(2/7*Zeta(3)-9/11) 9421111477064855 m001 (Psi(2,1/3)-cos(1/12*Pi))^GAMMA(5/6) 9421111481131151 k007 concat of cont frac of 9421111491268151 k007 concat of cont frac of 9421111496964192 m001 (3^(1/2)-GAMMA(3/4))/(-BesselI(1,1)+Trott2nd) 9421111511028191 k007 concat of cont frac of 9421111511215217 k008 concat of cont frac of 9421111511619171 k006 concat of cont frac of 9421111521312442 k006 concat of cont frac of 9421111538186068 a007 Real Root Of 210*x^4-762*x^3-125*x^2-167*x-849 9421111542146112 k009 concat of cont frac of 9421111556142113 k008 concat of cont frac of 9421111577774352 p002 log(12^(5/7)-18^(5/12)) 9421111590932196 a007 Real Root Of 418*x^4-147*x^3+807*x^2+458*x-737 9421111612231114 k009 concat of cont frac of 9421111614151341 k006 concat of cont frac of 9421111616183424 a001 1597/24476*521^(31/39) 9421111660322028 a001 377/843*3571^(19/51) 9421111661794040 a007 Real Root Of 623*x^4+127*x^3+17*x^2-150*x-541 9421111667349253 a007 Real Root Of 225*x^4-932*x^3-141*x^2-163*x-985 9421111671161115 k007 concat of cont frac of 9421111689282106 a001 329/281*521^(1/3) 9421111690079553 m001 Pi/exp(1)/FibonacciFactorial 9421111694902762 p004 log(15359/5987) 9421111704165726 a001 12238/17*75025^(38/45) 9421111705083377 a001 987/9349*521^(28/39) 9421111722648314 r009 Re(z^3+c),c=-11/20+18/37*I,n=57 9421111729237112 r008 a(0)=1,K{-n^6,34+50*n-42*n^2-25*n^3} 9421111731217471 m005 (-11/30+3/10*5^(1/2))/(2*2^(1/2)+2/5) 9421111744332286 a001 47/322*(1/2*5^(1/2)+1/2)^17*322^(9/10) 9421111754211226 k007 concat of cont frac of 9421111792221351 k009 concat of cont frac of 9421111800376909 m001 (-Porter+ZetaP(3))/(gamma+Kolakoski) 9421111819555565 a003 sin(Pi*31/96)-sin(Pi*31/79) 9421111843768438 a008 Real Root of (-5-2*x^2+6*x^3+6*x^4-4*x^5) 9421111851323909 a003 sin(Pi*3/56)+sin(Pi*11/39) 9421111852645068 a007 Real Root Of 964*x^4+616*x^3+148*x^2-392*x-745 9421111869284159 m005 (17/36+1/4*5^(1/2))/(19/48+5/16*5^(1/2)) 9421111877398442 a007 Real Root Of 973*x^4-753*x^3-995*x^2-212*x+946 9421111883609474 m001 1/Robbin*ln(Riemann3rdZero)*BesselJ(1,1)^2 9421111895730660 l006 ln(3242/8317) 9421111899628953 a001 377/843*9349^(1/3) 9421111913212111 k006 concat of cont frac of 9421111913221721 k007 concat of cont frac of 9421111918838585 m001 StolarskyHarborth/(ZetaQ(2)^(2*Pi/GAMMA(5/6))) 9421111921764885 a007 Real Root Of -510*x^4-272*x^3+213*x^2+903*x+836 9421111935558404 a001 377/843*817138163596^(1/9) 9421111935558405 a001 377/843*87403803^(1/6) 9421111935975465 r002 18th iterates of z^2 + 9421111941113614 k008 concat of cont frac of 9421111948596042 a001 377/843*15127^(19/60) 9421111969144408 a007 Real Root Of 332*x^4+438*x^3+961*x^2+583*x-199 9421111981119505 s002 sum(A079246[n]/(n*pi^n-1),n=1..infinity) 9421111999298532 a001 987/199*521^(26/31) 9421112034848734 a001 377/843*5778^(19/54) 9421112101411127 k007 concat of cont frac of 9421112111172232 k008 concat of cont frac of 9421112112281141 k006 concat of cont frac of 9421112113227431 k008 concat of cont frac of 9421112116121421 k006 concat of cont frac of 9421112119611251 k007 concat of cont frac of 9421112121121114 k007 concat of cont frac of 9421112128214521 k001 Champernowne real with 170*n+772 9421112131311531 k008 concat of cont frac of 9421112141316188 k006 concat of cont frac of 9421112144645867 a007 Real Root Of -434*x^4-203*x^3-863*x^2-326*x+631 9421112145116113 k007 concat of cont frac of 9421112156531623 m001 exp(Kolakoski)^2/Artin^2*GAMMA(13/24)^2 9421112162112723 k008 concat of cont frac of 9421112163575347 k002 Champernowne real with 18*n^2-21*n+12 9421112172143141 k006 concat of cont frac of 9421112173615447 k003 Champernowne real with 1/6*n^3+17*n^2-115/6*n+11 9421112183111131 k006 concat of cont frac of 9421112183655547 k003 Champernowne real with 1/3*n^3+16*n^2-52/3*n+10 9421112187531412 k009 concat of cont frac of 9421112191231123 k006 concat of cont frac of 9421112193695648 k003 Champernowne real with 1/2*n^3+15*n^2-31/2*n+9 9421112203735748 k003 Champernowne real with 2/3*n^3+14*n^2-41/3*n+8 9421112205072588 a007 Real Root Of -952*x^4+474*x^3+599*x^2+288*x+886 9421112210125171 k006 concat of cont frac of 9421112212181942 k008 concat of cont frac of 9421112213151611 k006 concat of cont frac of 9421112213323566 m001 (1-ln(3))/(-CopelandErdos+GlaisherKinkelin) 9421112213775848 k003 Champernowne real with 5/6*n^3+13*n^2-71/6*n+7 9421112217302364 l006 ln(3739/9592) 9421112221217127 k008 concat of cont frac of 9421112221245276 k007 concat of cont frac of 9421112223815948 k003 Champernowne real with n^3+12*n^2-10*n+6 9421112229222131 k009 concat of cont frac of 9421112232937017 a007 Real Root Of -620*x^4-186*x^3-279*x^2+441*x+996 9421112233856048 k003 Champernowne real with 7/6*n^3+11*n^2-49/6*n+5 9421112233941212 k007 concat of cont frac of 9421112235373055 a007 Real Root Of 742*x^4-290*x^3+855*x^2+658*x-966 9421112241264126 k007 concat of cont frac of 9421112243896149 k003 Champernowne real with 4/3*n^3+10*n^2-19/3*n+4 9421112246311373 k008 concat of cont frac of 9421112253936249 k003 Champernowne real with 3/2*n^3+9*n^2-9/2*n+3 9421112263976349 k003 Champernowne real with 5/3*n^3+8*n^2-8/3*n+2 9421112264401962 a007 Real Root Of 370*x^4-924*x^3+167*x^2-68*x+397 9421112273311131 k006 concat of cont frac of 9421112274016449 k003 Champernowne real with 11/6*n^3+7*n^2-5/6*n+1 9421112281134911 k008 concat of cont frac of 9421112284056549 k003 Champernowne real with 2*n^3+6*n^2+n 9421112294096641 k003 Champernowne real with 13/6*n^3+5*n^2+17/6*n-1 9421112304136741 k003 Champernowne real with 7/3*n^3+4*n^2+14/3*n-2 9421112314176841 k003 Champernowne real with 5/2*n^3+3*n^2+13/2*n-3 9421112316341132 k007 concat of cont frac of 9421112321119114 k008 concat of cont frac of 9421112324216941 k003 Champernowne real with 8/3*n^3+2*n^2+25/3*n-4 9421112334257041 k003 Champernowne real with 17/6*n^3+n^2+61/6*n-5 9421112334537171 k006 concat of cont frac of 9421112344297141 k003 Champernowne real with 3*n^3+12*n-6 9421112345576149 m005 (1/2*Pi-3/7)/(2/5*2^(1/2)-4/9) 9421112354337241 k003 Champernowne real with 19/6*n^3-n^2+83/6*n-7 9421112356936199 a005 (1/sin(71/179*Pi))^1329 9421112364377341 k003 Champernowne real with 10/3*n^3-2*n^2+47/3*n-8 9421112372304199 q001 83/881 9421112373545982 m002 3+(6*Coth[Pi]*Log[Pi])/ProductLog[Pi] 9421112374417441 k003 Champernowne real with 7/2*n^3-3*n^2+35/2*n-9 9421112381314112 k009 concat of cont frac of 9421112384457541 k003 Champernowne real with 11/3*n^3-4*n^2+58/3*n-10 9421112394497641 k003 Champernowne real with 23/6*n^3-5*n^2+127/6*n-11 9421112404537741 k003 Champernowne real with 4*n^3-6*n^2+23*n-12 9421112405419784 a007 Real Root Of -200*x^4-232*x^3+436*x^2+612*x-612 9421112414542520 m001 (ln(2)/ln(10)+HardyLittlewoodC5)^ZetaP(3) 9421112414577841 k003 Champernowne real with 25/6*n^3-7*n^2+149/6*n-13 9421112422858246 r005 Re(z^2+c),c=-115/122+2/39*I,n=5 9421112424617941 k003 Champernowne real with 13/3*n^3-8*n^2+80/3*n-14 9421112424842886 m004 (125*Sqrt[5])/Pi+8/ProductLog[Sqrt[5]*Pi] 9421112430693848 r002 4th iterates of z^2 + 9421112432619573 m001 (3^(1/3)-QuadraticClass)/(ln(gamma)+ln(Pi)) 9421112434658041 k003 Champernowne real with 9/2*n^3-9*n^2+57/2*n-15 9421112444698141 k003 Champernowne real with 14/3*n^3-10*n^2+91/3*n-16 9421112445486131 p003 LerchPhi(1/8,5,281/110) 9421112454738241 k003 Champernowne real with 29/6*n^3-11*n^2+193/6*n-17 9421112461325412 r005 Re(z^2+c),c=-1/118+15/41*I,n=10 9421112464778341 k003 Champernowne real with 5*n^3-12*n^2+34*n-18 9421112473088687 m002 -3+6*Pi^2*Csch[Pi]-Sinh[Pi] 9421112474818441 k003 Champernowne real with 31/6*n^3-13*n^2+215/6*n-19 9421112476548267 m005 (1/2*5^(1/2)-1/12)/(7/11*Zeta(3)+1/3) 9421112484858541 k003 Champernowne real with 16/3*n^3-14*n^2+113/3*n-20 9421112494898641 k003 Champernowne real with 11/2*n^3-15*n^2+79/2*n-21 9421112504938741 k003 Champernowne real with 17/3*n^3-16*n^2+124/3*n-22 9421112511326120 k007 concat of cont frac of 9421112514978841 k003 Champernowne real with 35/6*n^3-17*n^2+259/6*n-23 9421112521241213 k006 concat of cont frac of 9421112525018941 k003 Champernowne real with 6*n^3-18*n^2+45*n-24 9421112530721574 a007 Real Root Of -547*x^4-13*x^3-485*x^2-181*x+680 9421112535059041 k003 Champernowne real with 37/6*n^3-19*n^2+281/6*n-25 9421112545099141 k003 Champernowne real with 19/3*n^3-20*n^2+146/3*n-26 9421112551895373 m001 (ln(5)-FeigenbaumAlpha)/(FellerTornier+Kac) 9421112555139241 k003 Champernowne real with 13/2*n^3-21*n^2+101/2*n-27 9421112565179341 k003 Champernowne real with 20/3*n^3-22*n^2+157/3*n-28 9421112571064047 m001 2^(1/2)/(Bloch-arctan(1/3)) 9421112573550424 b008 Sech[(2+EulerGamma)/E^2] 9421112575219441 k003 Champernowne real with 41/6*n^3-23*n^2+325/6*n-29 9421112585259541 k003 Champernowne real with 7*n^3-24*n^2+56*n-30 9421112595299641 k003 Champernowne real with 43/6*n^3-25*n^2+347/6*n-31 9421112605339741 k003 Champernowne real with 22/3*n^3-26*n^2+179/3*n-32 9421112615379841 k003 Champernowne real with 15/2*n^3-27*n^2+123/2*n-33 9421112617121221 k007 concat of cont frac of 9421112625419941 k003 Champernowne real with 23/3*n^3-28*n^2+190/3*n-34 9421112631745074 a007 Real Root Of -354*x^4+133*x^3+388*x^2-195*x-138 9421112635451004 k003 Champernowne real with 47/6*n^3-29*n^2+391/6*n-35 9421112637145997 h001 (-5*exp(4)-1)/(-2*exp(5)+6) 9421112643759780 a007 Real Root Of -682*x^4-503*x^3+307*x^2+625*x+433 9421112645491014 k003 Champernowne real with 8*n^3-30*n^2+67*n-36 9421112648879058 m001 (DuboisRaymond+HeathBrownMoroz)/exp(-1/2*Pi) 9421112655531024 k003 Champernowne real with 49/6*n^3-31*n^2+413/6*n-37 9421112657338347 m001 ln(2)^GAMMA(2/3)+1/3 9421112665571034 k003 Champernowne real with 25/3*n^3-32*n^2+212/3*n-38 9421112668488225 r005 Im(z^2+c),c=-53/110+6/37*I,n=44 9421112673665800 r005 Im(z^2+c),c=-4/3+28/247*I,n=11 9421112675611044 k003 Champernowne real with 17/2*n^3-33*n^2+145/2*n-39 9421112685651054 k003 Champernowne real with 26/3*n^3-34*n^2+223/3*n-40 9421112687057092 m001 ln(GAMMA(1/4))/ErdosBorwein*sinh(1) 9421112687321631 a007 Real Root Of 212*x^4-512*x^3+144*x^2-51*x-771 9421112695691064 k003 Champernowne real with 53/6*n^3-35*n^2+457/6*n-41 9421112697674256 a007 Real Root Of -575*x^4+637*x^3-89*x^2-922*x+196 9421112701172662 a001 377/843*2207^(19/48) 9421112705731074 k003 Champernowne real with 9*n^3-36*n^2+78*n-42 9421112715771084 k003 Champernowne real with 55/6*n^3-37*n^2+479/6*n-43 9421112725811094 k003 Champernowne real with 28/3*n^3-38*n^2+245/3*n-44 9421112735851104 k003 Champernowne real with 19/2*n^3-39*n^2+167/2*n-45 9421112745891114 k003 Champernowne real with 29/3*n^3-40*n^2+256/3*n-46 9421112747378155 a007 Real Root Of 57*x^4-856*x^3-574*x^2-522*x-743 9421112755931124 k003 Champernowne real with 59/6*n^3-41*n^2+523/6*n-47 9421112760165305 a007 Real Root Of -971*x^4+239*x^3-948*x^2-981*x+882 9421112765971134 k003 Champernowne real with 10*n^3-42*n^2+89*n-48 9421112770302675 m001 (-HardyLittlewoodC5+Niven)/(cos(1)+GaussAGM) 9421112776011144 k003 Champernowne real with 61/6*n^3-43*n^2+545/6*n-49 9421112786051154 k003 Champernowne real with 31/3*n^3-44*n^2+278/3*n-50 9421112790360163 m001 polylog(4,1/2)/(Psi(2,1/3)+DuboisRaymond) 9421112796091164 k003 Champernowne real with 21/2*n^3-45*n^2+189/2*n-51 9421112806131174 k003 Champernowne real with 32/3*n^3-46*n^2+289/3*n-52 9421112816171184 k003 Champernowne real with 65/6*n^3-47*n^2+589/6*n-53 9421112826211194 k003 Champernowne real with 11*n^3-48*n^2+100*n-54 9421112833294298 r005 Re(z^2+c),c=-19/21+7/39*I,n=35 9421112836251204 k003 Champernowne real with 67/6*n^3-49*n^2+611/6*n-55 9421112846291214 k003 Champernowne real with 34/3*n^3-50*n^2+311/3*n-56 9421112856331224 k003 Champernowne real with 23/2*n^3-51*n^2+211/2*n-57 9421112866371234 k003 Champernowne real with 35/3*n^3-52*n^2+322/3*n-58 9421112870458759 a001 4181/521*76^(1/27) 9421112876411244 k003 Champernowne real with 71/6*n^3-53*n^2+655/6*n-59 9421112883337582 p004 log(28109/10957) 9421112886451254 k003 Champernowne real with 12*n^3-54*n^2+111*n-60 9421112911114111 k007 concat of cont frac of 9421112911765993 m002 2-E^Pi+Pi^6+2/ProductLog[Pi] 9421112961336443 r005 Re(z^2+c),c=25/78+13/40*I,n=29 9421112978465618 a007 Real Root Of 727*x^4-676*x^3+404*x^2+733*x-806 9421113013230063 k006 concat of cont frac of 9421113024241767 m005 (1/2*2^(1/2)+7/8)/(3/4*Zeta(3)+7/9) 9421113026432050 a007 Real Root Of -281*x^4-723*x^3-969*x^2+435*x+49 9421113061566199 a003 sin(Pi*13/105)/sin(Pi*12/91) 9421113100756186 a007 Real Root Of 881*x^4-479*x^3-203*x^2-76*x-986 9421113103021471 k008 concat of cont frac of 9421113111332211 k006 concat of cont frac of 9421113111541354 k007 concat of cont frac of 9421113114113572 k006 concat of cont frac of 9421113115643801 h001 (2/5*exp(1)+1/8)/(3/11*exp(1)+6/11) 9421113117112434 k009 concat of cont frac of 9421113121421152 k007 concat of cont frac of 9421113128414551 k001 Champernowne real with 171*n+771 9421113131213113 k006 concat of cont frac of 9421113138111211 k007 concat of cont frac of 9421113141521760 k006 concat of cont frac of 9421113142221213 k007 concat of cont frac of 9421113153773352 p004 log(17551/15973) 9421113162128212 k009 concat of cont frac of 9421113163531728 r005 Re(z^2+c),c=-59/64+5/37*I,n=19 9421113174616497 m005 (1/3*gamma+1/9)/(7/9*2^(1/2)-7/9) 9421113178127638 m001 (gamma(3)+ZetaP(3))/(exp(1)-sin(1)) 9421113211345412 k008 concat of cont frac of 9421113213411314 k009 concat of cont frac of 9421113214436635 a001 610/15127*521^(34/39) 9421113214821292 k008 concat of cont frac of 9421113221362156 k007 concat of cont frac of 9421113225969408 m005 (1/3*Zeta(3)-3/5)/(157/126+7/18*5^(1/2)) 9421113227689875 a007 Real Root Of -998*x^4+325*x^3+118*x^2-635*x+355 9421113231211912 k009 concat of cont frac of 9421113234298097 r002 3th iterates of z^2 + 9421113238611119 k006 concat of cont frac of 9421113259245969 a003 cos(Pi*2/45)-sin(Pi*31/63) 9421113265011355 a001 646/6119*521^(28/39) 9421113312651412 k009 concat of cont frac of 9421113344741617 m001 Catalan^(MasserGramainDelta/FeigenbaumD) 9421113382538905 r005 Re(z^2+c),c=-20/23+7/37*I,n=23 9421113389679896 r008 a(0)=9,K{-n^6,-44+24*n^3-6*n^2+24*n} 9421113396159173 v002 sum(1/(5^n+(23/2*n^2-15/2*n+5)),n=1..infinity) 9421113414960634 r002 2th iterates of z^2 + 9421113430831157 m005 (1/2*gamma-7/8)/(7/12*gamma+2/7) 9421113433356125 a007 Real Root Of 293*x^4-245*x^3+337*x^2+228*x-520 9421113442317211 k008 concat of cont frac of 9421113492601777 a001 6765/64079*521^(28/39) 9421113500092506 r009 Im(z^3+c),c=-9/56+32/35*I,n=35 9421113525806772 a001 17711/167761*521^(28/39) 9421113530651316 a001 11592/109801*521^(28/39) 9421113531358125 a001 121393/1149851*521^(28/39) 9421113531461247 a001 317811/3010349*521^(28/39) 9421113531485591 a001 514229/4870847*521^(28/39) 9421113531524980 a001 98209/930249*521^(28/39) 9421113531794957 a001 75025/710647*521^(28/39) 9421113533645408 a001 28657/271443*521^(28/39) 9421113546328588 a001 5473/51841*521^(28/39) 9421113558882414 a007 Real Root Of 303*x^4-905*x^3-396*x^2+509*x+390 9421113599029435 m001 (-GaussKuzminWirsing+4)/(-OneNinth+1/2) 9421113603736793 b008 -30*Pi+Csch[4] 9421113611852141 k008 concat of cont frac of 9421113614620728 h001 (7/10*exp(2)+1/7)/(3/4*exp(2)+1/10) 9421113621825576 m001 (3^(1/2)-sin(1/5*Pi))/(-GAMMA(3/4)+Trott) 9421113633107371 m004 30*Pi-Tan[Sqrt[5]*Pi]/25 9421113633260393 a001 4181/39603*521^(28/39) 9421113660355795 r002 5th iterates of z^2 + 9421113711112115 k006 concat of cont frac of 9421113725671473 m001 (-Artin+StolarskyHarborth)/(3^(1/2)+exp(1/Pi)) 9421113727832795 a007 Real Root Of -664*x^4+32*x^3+316*x^2+542*x+780 9421113735144886 a003 cos(Pi*15/118)/sin(Pi*42/97) 9421113745586052 b008 ExpIntegralEi[2^Sqrt[34]] 9421113746457848 a007 Real Root Of 738*x^4-253*x^3-554*x^2-574*x-842 9421113763530292 a007 Real Root Of -740*x^4+113*x^3+367*x^2-385*x-11 9421113776788236 h001 (8/11*exp(2)+3/4)/(6/7*exp(2)+1/6) 9421113777782866 p003 LerchPhi(1/10,6,194/89) 9421113787626422 a007 Real Root Of -226*x^4+130*x^3-534*x^2-696*x+105 9421113788068881 r002 19th iterates of z^2 + 9421113806915476 a007 Real Root Of -948*x^4+252*x^3-52*x^2-368*x+657 9421113807771169 r001 33i'th iterates of 2*x^2-1 of 9421113819090613 r009 Re(z^3+c),c=-11/20+18/37*I,n=54 9421113834113111 k007 concat of cont frac of 9421113835137810 m009 (3/4*Psi(1,2/3)+5)/(5/6*Psi(1,1/3)-2/3) 9421113871170340 r002 34th iterates of z^2 + 9421113916752262 m001 (Trott2nd-ZetaP(3))/(Gompertz-TreeGrowth2nd) 9421113917088777 r009 Im(z^3+c),c=-61/102+11/21*I,n=2 9421113928658245 a001 89*18^(40/49) 9421113944098150 m001 1/exp(GAMMA(1/24))*Magata/GAMMA(7/12)^2 9421113974328441 a003 cos(Pi*9/77)/sin(Pi*21/46) 9421113984915425 a001 329/1926*521^(25/39) 9421114002536804 a003 sin(Pi*9/31)/sin(Pi*13/41) 9421114014465846 m001 1/GAMMA(5/6)^2/FeigenbaumC^2*ln(Zeta(9))^2 9421114022111152 k006 concat of cont frac of 9421114024017516 a007 Real Root Of -323*x^4+474*x^3+539*x^2-563*x-358 9421114085477606 m001 GAMMA(17/24)^OneNinth/((5^(1/2))^OneNinth) 9421114112331733 k008 concat of cont frac of 9421114112982590 a007 Real Root Of 516*x^4-515*x^3+178*x^2+827*x-216 9421114120340888 a007 Real Root Of 133*x^4-918*x^3-479*x^2+501*x+616 9421114122111232 k006 concat of cont frac of 9421114122312221 k008 concat of cont frac of 9421114122324221 k009 concat of cont frac of 9421114128614581 k001 Champernowne real with 172*n+770 9421114129969958 m001 (GaussAGM-Paris)^DuboisRaymond 9421114131132614 k007 concat of cont frac of 9421114134181141 k007 concat of cont frac of 9421114146111215 k007 concat of cont frac of 9421114160967993 m001 (gamma+ln(2))/(-Backhouse+OneNinth) 9421114169100917 a007 Real Root Of -969*x^4+874*x^3+770*x^2+186*x+986 9421114171812412 k006 concat of cont frac of 9421114188136293 a007 Real Root Of -607*x^4+400*x^3+586*x^2-647*x-317 9421114212122116 k009 concat of cont frac of 9421114228112231 k007 concat of cont frac of 9421114229099850 a001 1597/15127*521^(28/39) 9421114235389478 a007 Real Root Of -374*x^4+163*x^3-341*x^2-7*x+727 9421114251112171 k006 concat of cont frac of 9421114269041243 m001 (Pi-CopelandErdos)/(FellerTornier-Magata) 9421114273953407 m005 (1/2*3^(1/2)+5/11)/(5/6*Zeta(3)+2/5) 9421114314958977 l006 ln(497/1275) 9421114315111155 k008 concat of cont frac of 9421114328411500 a007 Real Root Of 50*x^4-855*x^3+422*x^2+261*x-883 9421114339311751 k007 concat of cont frac of 9421114394883593 b008 Sqrt[2]*Gudermannian[1/15] 9421114395319915 b008 (5*Sqrt[6])/13 9421114395319915 b008 E^ArcCoth[5]/13 9421114401887384 p004 log(37039/3) 9421114423348062 a007 Real Root Of -461*x^4-507*x^3-356*x^2+608*x+828 9421114432116312 k009 concat of cont frac of 9421114456472134 m001 ln(GAMMA(11/24))*(3^(1/3))/Zeta(7) 9421114468937328 r002 12th iterates of z^2 + 9421114476400851 m005 (2/5*exp(1)-1/6)/(gamma+2/5) 9421114480923906 m001 (MertensB2+Salem)/(Zeta(3)+ln(Pi)) 9421114487355544 p001 sum(1/(388*n+289)/n/(16^n),n=1..infinity) 9421114494353492 m001 (Conway-Landau)/(arctan(1/3)-GAMMA(5/6)) 9421114499424211 m001 MertensB1*ln(Artin)^2/Khintchine 9421114512698374 a007 Real Root Of -957*x^4-232*x^3+362*x^2+287*x+509 9421114529779920 a001 161/416020*55^(47/59) 9421114541053786 m001 GAMMA(7/24)^2/GolombDickman/ln(sinh(1)) 9421114549810160 m001 Paris^Trott2nd/(Paris^ZetaQ(4)) 9421114554260757 r009 Im(z^3+c),c=-7/48+23/25*I,n=23 9421114560014123 a007 Real Root Of 668*x^4+824*x^3+353*x^2-752*x-859 9421114569971735 a007 Real Root Of -265*x^4+584*x^3+300*x^2+291*x-820 9421114611322362 k006 concat of cont frac of 9421114630462133 a007 Real Root Of -389*x^4+852*x^3+106*x^2-327*x-192 9421114636953182 a001 615/124*199^(4/33) 9421114643285765 m005 (1/3*Pi-1/2)/(3*5^(1/2)-9/10) 9421114658472802 r008 a(0)=1,K{-n^6,32-13*n^3-79*n^2+77*n} 9421114677628686 r005 Re(z^2+c),c=-43/48+7/36*I,n=53 9421114730628760 a007 Real Root Of -774*x^4+467*x^3+226*x^2-75*x+729 9421114734939477 m001 (Zeta(1,-1)-Lehmer)/(MertensB2-Tribonacci) 9421114808599784 m008 (1/4*Pi^6-4/5)/(5/6*Pi^5-3/4) 9421114810697624 a007 Real Root Of 521*x^4-568*x^3+428*x^2+548*x-749 9421114831802002 a007 Real Root Of 453*x^4-904*x^3+57*x^2-578*x+893 9421114846849590 a007 Real Root Of -504*x^4+6*x^3-16*x^2-30*x+388 9421114847753496 a007 Real Root Of 608*x^4+347*x^3-339*x^2-375*x+38 9421114907192873 a007 Real Root Of 706*x^4-819*x^3+67*x^2+648*x-690 9421114911690063 r005 Re(z^2+c),c=-97/110+9/46*I,n=23 9421114918103654 m001 Kolakoski/Bloch/KomornikLoreti 9421114926105497 a007 Real Root Of 235*x^4-760*x^3+774*x^2-836*x+551 9421114932234461 r008 a(0)=1,K{-n^6,62+24*n-52*n^2-17*n^3} 9421114967842816 a007 Real Root Of 809*x^4+171*x^3-343*x^2-240*x-416 9421114989381292 m001 1/KhintchineLevy^2*LaplaceLimit^2*ln(gamma)^2 9421115003831501 r002 47i'th iterates of 2*x/(1-x^2) of 9421115016341171 k006 concat of cont frac of 9421115040466463 a007 Real Root Of -490*x^4+871*x^3+780*x^2-224*x+211 9421115047324375 r005 Re(z^2+c),c=-19/22+24/127*I,n=23 9421115052956699 m002 -Pi+Pi^4-2/(Pi^3*Log[Pi]) 9421115077312157 a005 (1/sin(71/205*Pi))^398 9421115111133331 k006 concat of cont frac of 9421115115218921 k006 concat of cont frac of 9421115128814611 k001 Champernowne real with 173*n+769 9421115143313212 k006 concat of cont frac of 9421115145521261 k007 concat of cont frac of 9421115149218283 k007 concat of cont frac of 9421115156680662 a007 Real Root Of -971*x^4-310*x^3+254*x^2+143*x+415 9421115168220322 m001 (GAMMA(5/6)-Psi(2,1/3))/(Landau+ZetaQ(2)) 9421115171041213 k007 concat of cont frac of 9421115210846622 m001 gamma(1)*(ln(2^(1/2)+1)+ThueMorse) 9421115215752123 a007 Real Root Of -909*x^4-258*x^3-952*x^2-858*x+537 9421115216091711 a007 Real Root Of -967*x^4+282*x^3+651*x^2-401*x+42 9421115225665778 a007 Real Root Of -704*x^4+397*x^3+289*x^2-759*x-85 9421115225809281 a007 Real Root Of 979*x^4+69*x^3-554*x^2-118*x-333 9421115230538801 m001 (Si(Pi)+Zeta(3))/(Zeta(1,-1)+Magata) 9421115270133624 m001 (MasserGramain-Shi(1))/(MertensB1+ZetaP(3)) 9421115273688494 b008 3*(1/4+Log[18]) 9421115324362863 k007 concat of cont frac of 9421115347954042 m005 (7/6+2*5^(1/2))/(3/5*2^(1/2)-1/4) 9421115364975684 a007 Real Root Of 816*x^4-278*x^3-15*x^2+674*x-227 9421115401901704 a007 Real Root Of 61*x^4+677*x^3+946*x^2-195*x-249 9421115434521732 a007 Real Root Of -152*x^4+869*x^3+441*x^2+466*x+894 9421115446526589 a007 Real Root Of 838*x^4-803*x^3-640*x^2+560*x-236 9421115462190782 m001 (QuadraticClass+Totient)/(3^(1/2)+Kac) 9421115471559265 m001 (-Ei(1)+Khinchin)/(2^(1/3)-BesselK(0,1)) 9421115478691108 m001 (GaussAGM-Psi(2,1/3))/(HeathBrownMoroz+Lehmer) 9421115511223221 k008 concat of cont frac of 9421115520144623 r005 Re(z^2+c),c=-9/10+43/230*I,n=41 9421115531043446 p004 log(33091/12899) 9421115538880405 r005 Re(z^2+c),c=-9/10+65/154*I,n=3 9421115567205255 r009 Im(z^3+c),c=-21/122+45/47*I,n=54 9421115570641859 a007 Real Root Of -773*x^4-535*x^3-115*x^2+167*x+421 9421115571522180 m001 GaussAGM/(sin(1/12*Pi)-ln(Pi)) 9421115571944424 m001 exp(arctan(1/2))*Robbin^2/exp(1)^2 9421115611407994 a007 Real Root Of 13*x^4-954*x^3-51*x^2+627*x-172 9421115640435651 m001 (exp(1)+ln(5))/(KhinchinLevy+Magata) 9421115642228555 r009 Im(z^3+c),c=-7/32+51/53*I,n=29 9421115644744090 a007 Real Root Of -539*x^4+752*x^3+453*x^2-201*x+462 9421115651609227 m001 (GAMMA(2/3)+FibonacciFactorial)/Trott2nd 9421115667360587 r004 Im(z^2+c),c=1/10+1/18*I,z(0)=I,n=4 9421115678102843 a007 Real Root Of 624*x^4-79*x^3+612*x^2+452*x-675 9421115684716318 a007 Real Root Of 979*x^4-143*x^3+392*x^2+298*x-958 9421115724015710 m009 (8/3*Catalan+1/3*Pi^2+2/3)/(3*Psi(1,3/4)-5/6) 9421115742490404 a007 Real Root Of 942*x^4-852*x^3-196*x^2+923*x-411 9421115776844631 q001 3141/3334 9421115788979435 r008 a(0)=1,K{-n^6,3+8*n^3+5*n^2+2*n} 9421115795154881 a001 46368/199*7^(28/39) 9421115843625591 m005 (1/2*3^(1/2)+7/10)/(5/9*3^(1/2)+7/10) 9421115852275038 m001 ln(2^(1/2)+1)^ln(Pi)+ZetaP(4) 9421115858459042 a001 7/29*(1/2*5^(1/2)+1/2)^6*29^(3/13) 9421115866305450 a003 cos(Pi*12/67)/sin(Pi*11/31) 9421115877928238 a001 2584/15127*521^(25/39) 9421115912212111 k006 concat of cont frac of 9421115942081518 b008 ArcCot[15*Sqrt[2]]/5 9421115956454634 m005 (1/3*5^(1/2)-3/7)/(2*gamma-9/11) 9421115978324398 r005 Re(z^2+c),c=-89/82+15/62*I,n=33 9421116013327895 m009 (3/5*Psi(1,1/3)+3/4)/(3*Psi(1,3/4)-2/5) 9421116017409749 a001 610/843*521^(16/39) 9421116028971990 r005 Re(z^2+c),c=-17/18+7/243*I,n=7 9421116033211027 a001 610/9349*521^(31/39) 9421116055191211 k008 concat of cont frac of 9421116061422011 b008 -30*Pi+Sech[4] 9421116078198218 m001 (Ei(1,1)-KhinchinLevy)^KomornikLoreti 9421116079064007 a007 Real Root Of -530*x^4+556*x^3+982*x^2-158*x-138 9421116079812523 h001 (-exp(-3)-3)/(-7*exp(3/2)-1) 9421116111112222 k007 concat of cont frac of 9421116111217218 k007 concat of cont frac of 9421116129014641 k001 Champernowne real with 174*n+768 9421116142834734 a007 Real Root Of 529*x^4+11*x^3-332*x^2-205*x-306 9421116145520266 r005 Im(z^2+c),c=-65/66+4/43*I,n=15 9421116148673283 a007 Real Root Of -725*x^4-808*x^3-421*x^2-308*x-21 9421116153714082 a003 sin(Pi*1/69)/sin(Pi*13/81) 9421116154115093 a001 2255/13201*521^(25/39) 9421116177819154 a007 Real Root Of -2*x^4+944*x^3+430*x^2+575*x+951 9421116180696517 s001 sum(exp(-Pi/3)^(n-1)*A074767[n],n=1..infinity) 9421116194410212 a001 17711/103682*521^(25/39) 9421116200289191 a001 15456/90481*521^(25/39) 9421116201146922 a001 121393/710647*521^(25/39) 9421116201272064 a001 105937/620166*521^(25/39) 9421116201290322 a001 832040/4870847*521^(25/39) 9421116201301606 a001 514229/3010349*521^(25/39) 9421116201349405 a001 196418/1149851*521^(25/39) 9421116201677030 a001 75025/439204*521^(25/39) 9421116203922600 a001 28657/167761*521^(25/39) 9421116216599024 r005 Re(z^2+c),c=1/66+37/52*I,n=4 9421116217800901 a003 cos(Pi*19/63)+cos(Pi*23/60) 9421116219313966 a001 10946/64079*521^(25/39) 9421116245801895 m001 (-Ei(1,1)+Mills)/(Psi(1,1/3)+3^(1/3)) 9421116255999380 a007 Real Root Of 996*x^4-177*x^3+76*x^2+672*x-367 9421116266707878 m001 (Si(Pi)+gamma(2))/(exp(-1/2*Pi)+MadelungNaCl) 9421116297781801 a005 (1/sin(107/238*Pi))^1823 9421116298308996 m001 1/Catalan^2*Artin^2*exp(sqrt(3)) 9421116313231716 a007 Real Root Of 813*x^4+106*x^3-513*x^2-147*x-235 9421116313431016 k009 concat of cont frac of 9421116318752023 a005 (1/sin(53/135*Pi))^356 9421116324807958 a001 4181/24476*521^(25/39) 9421116339541268 m001 (BesselI(0,1)-gamma(1))/(ArtinRank2+Sarnak) 9421116341662345 b008 3+2*(2/29+Pi) 9421116363185403 r005 Re(z^2+c),c=-38/31+6/55*I,n=38 9421116368566709 r001 53i'th iterates of 2*x^2-1 of 9421116376344679 a007 Real Root Of 512*x^4-607*x^3+153*x^2+74*x-977 9421116378245992 b008 Gamma[-1+6*Sqrt[3]] 9421116382312149 k006 concat of cont frac of 9421116406752961 a007 Real Root Of -247*x^4-238*x^3-523*x^2-384*x+98 9421116411344890 a007 Real Root Of 825*x^4+130*x^3+460*x^2+665*x-323 9421116413815563 a001 21/4*123^(3/5) 9421116425598490 l006 ln(3716/9533) 9421116441084613 a007 Real Root Of 552*x^4+875*x^3+845*x^2+14*x-440 9421116464150868 a007 Real Root Of -489*x^4-382*x^3-436*x^2-902*x-397 9421116479616606 a007 Real Root Of 757*x^4-12*x^3-522*x^2+396*x+230 9421116502641082 m001 1/exp(BesselJ(0,1))/Khintchine^2*Zeta(1/2) 9421116507696955 m001 Zeta(1/2)^Conway/(GAMMA(7/12)^Conway) 9421116548846689 a008 Real Root of (-1+5*x+3*x^2-x^4-9*x^8) 9421116551194474 a007 Real Root Of 830*x^4-971*x^3-123*x^2+870*x-537 9421116570378753 a007 Real Root Of 594*x^4-128*x^3-303*x^2-519*x-795 9421116597227714 s002 sum(A148857[n]/((2^n+1)/n),n=1..infinity) 9421116644905542 m001 (Psi(1,1/3)+ln(2))/(BesselK(1,1)+Landau) 9421116673483736 r005 Re(z^2+c),c=1/34+13/34*I,n=6 9421116674832563 m001 ln(RenyiParking)^2*FransenRobinson^2/sin(1)^2 9421116703713549 a007 Real Root Of 416*x^4-834*x^3-531*x^2+608*x+19 9421116722129261 a007 Real Root Of 278*x^4-686*x^3-37*x^2+182*x+216 9421116748558136 r005 Re(z^2+c),c=-17/18-7/248*I,n=13 9421116751472273 l006 ln(3219/8258) 9421116779544653 a001 1/167761*2^(35/53) 9421116808304669 s002 sum(A148857[n]/((2^n-1)/n),n=1..infinity) 9421116811141230 k006 concat of cont frac of 9421116813684142 m001 exp(Tribonacci)^2*RenyiParking/Pi 9421116818665386 m001 (Khinchin*OneNinth+Riemann3rdZero)/Khinchin 9421116839762375 m001 Pi*FeigenbaumAlpha/GaussAGM 9421116853710589 a001 47/843*(1/2*5^(1/2)+1/2)^20*843^(7/10) 9421116855023742 a003 cos(Pi*10/107)*sin(Pi*47/106) 9421116884768694 m001 1/exp(Lehmer)^2/GolombDickman^2/FeigenbaumB 9421116900874590 a007 Real Root Of -297*x^4+919*x^3-15*x^2-298*x+735 9421116921811531 k006 concat of cont frac of 9421116945922111 r005 Re(z^2+c),c=1/28+13/60*I,n=18 9421116969478554 a007 Real Root Of 367*x^4+508*x^3+261*x^2-138*x-226 9421116999592335 q001 2311/2453 9421117032073265 a001 1597/843*521^(10/39) 9421117047874545 a001 1597/9349*521^(25/39) 9421117062115331 k006 concat of cont frac of 9421117081356239 m005 (1/3*3^(1/2)+1/3)/(3/5*5^(1/2)-3/8) 9421117085017637 a007 Real Root Of 533*x^4-426*x^3-761*x^2-307*x+901 9421117088388408 a001 7/610*6765^(35/46) 9421117113221114 k008 concat of cont frac of 9421117129214671 k001 Champernowne real with 175*n+767 9421117132112113 k006 concat of cont frac of 9421117196346239 l006 ln(2722/6983) 9421117203297821 l006 ln(1407/1546) 9421117221121111 k008 concat of cont frac of 9421117248250439 a007 Real Root Of 338*x^4-937*x^3-411*x^2+622*x-99 9421117314111211 k007 concat of cont frac of 9421117318126360 m001 Catalan^(CareFree/Zeta(5)) 9421117332832708 a007 Real Root Of -865*x^4-112*x^3+783*x^2+515*x+378 9421117386963538 m002 -3-Log[Pi]-Sinh[Pi]+Pi^6*Tanh[Pi] 9421117387466373 m001 (-Zeta(1,2)+KhinchinLevy)/(arctan(1/2)-exp(1)) 9421117388830806 a001 1/18*(1/2*5^(1/2)+1/2)^28*3^(19/24) 9421117394374415 m001 exp(1)*FeigenbaumD+Pi*csc(5/12*Pi)/GAMMA(7/12) 9421117410578786 a007 Real Root Of 882*x^4-964*x^3-299*x^2+699*x-577 9421117412214141 k007 concat of cont frac of 9421117424334171 k009 concat of cont frac of 9421117425655193 s001 sum(exp(-4*Pi/5)^n*A126634[n],n=1..infinity) 9421117446686050 a007 Real Root Of -945*x^4+663*x^3+215*x^2-345*x+783 9421117463591514 r004 Re(z^2+c),c=-8/9-4/19*I,z(0)=-1,n=44 9421117521690453 m005 (1/3*Zeta(3)+1/3)/(3*exp(1)-4/11) 9421117525318541 m001 1/Riemann2ndZero/Conway/exp(GAMMA(2/3)) 9421117550630224 m001 ln(FeigenbaumD)*RenyiParking^2/BesselJ(0,1)^2 9421117554038328 r005 Re(z^2+c),c=-29/32+21/62*I,n=3 9421117575277185 a007 Real Root Of -71*x^4-717*x^3-348*x^2+933*x-544 9421117593434587 a007 Real Root Of 306*x^4-972*x^3+75*x^2-469*x+947 9421117602014054 r005 Re(z^2+c),c=-19/106+14/17*I,n=6 9421117617844187 m001 (Chi(1)-GAMMA(13/24))/(-Conway+ZetaP(2)) 9421117623131131 k006 concat of cont frac of 9421117641891769 a007 Real Root Of -738*x^4+745*x^3+915*x^2+643*x+998 9421117653529136 p004 log(24107/9397) 9421117672554701 a001 987/2207*521^(19/39) 9421117675716653 a001 987/3571*521^(22/39) 9421117701921606 m001 FeigenbaumC^ZetaP(2)/HardHexagonsEntropy 9421117708487605 a001 34/1149851*123^(41/57) 9421117717251338 a007 Real Root Of -550*x^4+806*x^3+817*x^2-430*x-23 9421117749500397 a007 Real Root Of -727*x^4-57*x^3+360*x^2-129*x+84 9421117784551591 m001 ln(Salem)/DuboisRaymond*GAMMA(5/6) 9421117803189421 r001 47i'th iterates of 2*x^2-1 of 9421117824146734 m008 (1/4*Pi^3-1/5)/(5/6*Pi^6+2/5) 9421117825889117 m001 (-Ei(1,1)+ZetaQ(2))/(Catalan+sin(1)) 9421117838716470 p001 sum(1/(533*n+532)/n/(100^n),n=1..infinity) 9421117839963864 l006 ln(2225/5708) 9421117847041754 a007 Real Root Of -674*x^4+947*x^3-147*x^2-530*x+954 9421117854012489 a008 Real Root of (-2+4*x+4*x^2+3*x^3+6*x^4) 9421117890204653 a001 1364*(1/2*5^(1/2)+1/2)^7*29^(16/17) 9421117921065554 m001 Sarnak/polylog(4,1/2)/ZetaR(2) 9421117931015355 a007 Real Root Of 811*x^4-613*x^3+19*x^2+875*x-344 9421117932811538 a001 377/843*843^(19/42) 9421117942645239 a001 2255/281*199^(1/33) 9421117946885374 r002 22th iterates of z^2 + 9421118012422360 q001 3792/4025 9421118026522027 a007 Real Root Of -197*x^4-67*x^3+30*x^2+804*x+830 9421118033308712 a007 Real Root Of -574*x^4+590*x^3+268*x^2-282*x+442 9421118052768940 r002 5th iterates of z^2 + 9421118073214111 k008 concat of cont frac of 9421118100232012 a007 Real Root Of -596*x^4+837*x^3+17*x^2-288*x+883 9421118101133211 k008 concat of cont frac of 9421118121122312 k007 concat of cont frac of 9421118129414701 k001 Champernowne real with 176*n+766 9421118137522839 r002 3th iterates of z^2 + 9421118146263851 a007 Real Root Of -492*x^4+268*x^3+980*x^2+706*x+407 9421118150650727 a001 38/98209*13^(17/49) 9421118185808633 r009 Im(z^3+c),c=-3/86+49/52*I,n=3 9421118227073636 a003 sin(Pi*25/61)*sin(Pi*39/89) 9421118229386937 a007 Real Root Of -393*x^4-730*x^3-568*x^2+218*x+25 9421118240000211 a005 (1/cos(3/139*Pi))^975 9421118269570984 r005 Re(z^2+c),c=-103/114+3/35*I,n=32 9421118272386412 m001 KhinchinHarmonic-Thue^(3^(1/3)) 9421118276044918 a007 Real Root Of 256*x^4-217*x^3-469*x^2-343*x-290 9421118297664804 m001 (Otter-PlouffeB)/(GAMMA(23/24)+ErdosBorwein) 9421118303239452 r002 2th iterates of z^2 + 9421118310799450 r005 Im(z^2+c),c=-16/27+14/45*I,n=9 9421118312380724 a001 7/6765*144^(4/9) 9421118312411122 k007 concat of cont frac of 9421118313044122 a001 305/2889*521^(28/39) 9421118371558321 g001 GAMMA(4/5,10/81) 9421118442094627 a007 Real Root Of 764*x^4-403*x^3+555*x^2+493*x-967 9421118450798062 a007 Real Root Of -165*x^4+578*x^3-622*x^2-529*x+667 9421118512118339 a007 Real Root Of 193*x^4-375*x^3-601*x^2-55*x+16 9421118517790274 m002 -Pi^2+Pi^6+Log[Pi]-Sinh[Pi]+Tanh[Pi] 9421118561679404 m001 1/Trott*Bloch/exp(BesselJ(0,1))^2 9421118570920528 a007 Real Root Of -90*x^4+951*x^3-605*x^2-741*x+705 9421118572242974 a007 Real Root Of 81*x^4-465*x^3+406*x^2+311*x-520 9421118602975986 m002 -6+4/Pi^5-3*Log[Pi] 9421118606957923 p003 LerchPhi(1/5,1,287/240) 9421118612550071 h001 (9/11*exp(2)+7/8)/(8/9*exp(2)+7/9) 9421118627071664 r009 Re(z^3+c),c=-15/34+11/20*I,n=42 9421118640787036 m005 (1/3*5^(1/2)+2/11)/(3*Pi+5/12) 9421118644645397 a001 15127/55*377^(11/53) 9421118669690098 r009 Im(z^3+c),c=-37/70+13/15*I,n=2 9421118674490221 a007 Real Root Of -738*x^4-82*x^3+794*x^2+537*x+314 9421118678318754 r005 Re(z^2+c),c=17/114+4/21*I,n=4 9421118680902144 a001 2584/843*521^(7/39) 9421118685053980 a007 Real Root Of 827*x^4+290*x^3+172*x^2+714*x+111 9421118696292983 p004 log(36739/14321) 9421118696703426 a001 2584/9349*521^(22/39) 9421118716495577 a007 Real Root Of 56*x^4-948*x^3-603*x^2+608*x+711 9421118725746436 r002 61th iterates of z^2 + 9421118739762273 m001 DuboisRaymond/(Artin-Riemann2ndZero) 9421118755675901 m001 Catalan^(Zeta(3)*BesselI(1,1)) 9421118798116597 m001 Riemann3rdZero/(Magata-Pi) 9421118800946349 m001 (GAMMA(11/12)-Gompertz)/(Magata+Porter) 9421118822897755 m001 GAMMA(13/24)*Porter*exp(Zeta(1,2)) 9421118824985083 a007 Real Root Of 368*x^4-441*x^3+648*x^2+936*x-352 9421118845663378 a001 6765/24476*521^(22/39) 9421118853810525 l006 ln(1728/4433) 9421118867396342 a001 17711/64079*521^(22/39) 9421118870567138 a001 46368/167761*521^(22/39) 9421118871029751 a001 121393/439204*521^(22/39) 9421118871097246 a001 317811/1149851*521^(22/39) 9421118871107093 a001 832040/3010349*521^(22/39) 9421118871109417 a001 1346269/4870847*521^(22/39) 9421118871113179 a001 514229/1860498*521^(22/39) 9421118871138959 a001 196418/710647*521^(22/39) 9421118871315662 a001 75025/271443*521^(22/39) 9421118872526798 a001 28657/103682*521^(22/39) 9421118872677011 m001 1/ln(GAMMA(11/24))^2*Ei(1)/arctan(1/2) 9421118880828052 a001 10946/39603*521^(22/39) 9421118888568773 a007 Real Root Of -864*x^4-66*x^3+297*x^2+222*x+571 9421118913553766 r005 Im(z^2+c),c=-2/3+20/139*I,n=22 9421118913773718 h001 (9/10*exp(2)+5/6)/(1/8*exp(1)+5/11) 9421118937725689 a001 4181/15127*521^(22/39) 9421118938032353 m005 (1/2*Pi+7/11)/(1/11*Zeta(3)+1/8) 9421118975252378 a003 sin(Pi*9/40)/sin(Pi*23/95) 9421118980223784 a007 Real Root Of 772*x^4-45*x^3-335*x^2+182*x-177 9421118993164833 a007 Real Root Of -706*x^4-639*x^3-459*x^2-13*x+417 9421118993362302 a001 47/2207*(1/2*5^(1/2)+1/2)^31*2207^(1/20) 9421119051923289 a001 29/21*55^(23/48) 9421119054585396 a007 Real Root Of 774*x^4+114*x^3+746*x^2+906*x-323 9421119095767489 a007 Real Root Of -914*x^4+420*x^3+467*x^2-229*x+441 9421119113213249 k007 concat of cont frac of 9421119129614731 k001 Champernowne real with 177*n+765 9421119164582004 a007 Real Root Of -992*x^4+86*x^3+307*x^2-537*x+75 9421119211111104 k007 concat of cont frac of 9421119221230156 k006 concat of cont frac of 9421119225153111 k009 concat of cont frac of 9421119234122451 m001 (-FeigenbaumDelta+ZetaQ(4))/(exp(1)+5^(1/2)) 9421119240944982 a007 Real Root Of 616*x^4-517*x^3+501*x^2+410*x-976 9421119259120141 a003 sin(Pi*1/89)-sin(Pi*51/118) 9421119262525711 m001 1/Riemann2ndZero*GolombDickman*exp(gamma)^2 9421119286345514 g006 Psi(1,7/9)-Psi(1,7/8)-Psi(1,2/5)-Psi(1,3/4) 9421119292175223 r005 Re(z^2+c),c=1/15+20/41*I,n=34 9421119319824353 r005 Im(z^2+c),c=-11/14+27/203*I,n=50 9421119327707886 a001 1597/5778*521^(22/39) 9421119331200510 m001 1/Catalan*Tribonacci^2*ln(GAMMA(23/24)) 9421119348723993 m001 (BesselJ(0,1)+ZetaR(2))^TwinPrimes 9421119353857559 a007 Real Root Of -688*x^4+625*x^3-527*x^2-650*x+920 9421119370476072 a007 Real Root Of 241*x^4-618*x^3-226*x^2-467*x-946 9421119389078930 a007 Real Root Of 162*x^4+152*x^3+505*x^2-272*x-705 9421119390000225 r005 Im(z^2+c),c=-17/14+16/91*I,n=13 9421119414146445 r005 Re(z^2+c),c=-39/44+5/24*I,n=41 9421119428516126 r009 Im(z^3+c),c=-71/114+29/61*I,n=26 9421119476908504 a001 47/2207*(1/2*5^(1/2)+1/2)^27*2207^(3/10) 9421119485299380 m001 GlaisherKinkelin^GaussKuzminWirsing/ln(Pi) 9421119504235693 m001 (gamma(2)-Tribonacci)/(sin(1/5*Pi)+exp(1/Pi)) 9421119527917923 s001 sum(1/10^(n-1)*A002554[n]/n!^2,n=1..infinity) 9421119529402609 r005 Im(z^2+c),c=-43/98+22/35*I,n=9 9421119563167724 r002 17th iterates of z^2 + 9421119592875318 q001 1481/1572 9421119616165585 l006 ln(2959/7591) 9421119644787290 m001 GAMMA(1/24)^(GAMMA(11/24)/exp(1)) 9421119657487841 a007 Real Root Of 975*x^4+390*x^3-98*x^2-570*x-892 9421119675836703 m001 (BesselJ(0,1)-gamma)/(LaplaceLimit+MertensB3) 9421119677090882 r002 12th iterates of z^2 + 9421119697087147 m001 1/GAMMA(3/4)^2*exp(RenyiParking)*sin(Pi/12)^2 9421119701235027 h001 (1/6*exp(1)+4/5)/(1/12*exp(2)+5/7) 9421119735710381 r009 Im(z^3+c),c=-3/40+15/16*I,n=11 9421119771679887 m005 (1/2*Catalan+9/11)/(9/10*Zeta(3)+3/11) 9421119781686210 m006 (3/4*exp(2*Pi)+3)/(1/5*exp(Pi)-1/3) 9421119795742863 a007 Real Root Of -394*x^4+363*x^3+140*x^2+167*x+647 9421119811278348 m001 exp(FeigenbaumDelta)/Conway^2*GAMMA(3/4)^2 9421119831537209 r005 Im(z^2+c),c=11/58+32/33*I,n=3 9421119844679526 a007 Real Root Of 287*x^4-350*x^3-335*x^2-802*x-977 9421119846006473 m001 GAMMA(2/3)*FibonacciFactorial*ln(LambertW(1)) 9421119846006473 m001 LambertW(1)*GAMMA(2/3)*FibonacciFactorial 9421119866606916 a007 Real Root Of -513*x^4+264*x^3-204*x^2+172*x+968 9421119867201955 m005 (-9/20+1/4*5^(1/2))/(7/9*Zeta(3)+2/9) 9421119892028503 r008 a(0)=0,K{-n^6,61+63*n+23*n^2-42*n^3} 9421119897813136 a003 cos(Pi*5/24)/sin(Pi*29/91) 9421119898412782 r009 Im(z^3+c),c=-9/82+42/53*I,n=31 9421119928567740 r005 Re(z^2+c),c=-5/98+16/59*I,n=14 9421119941971963 r005 Re(z^2+c),c=-11/12+14/87*I,n=5 9421119948432452 s001 sum(exp(-Pi/3)^(n-1)*A084006[n],n=1..infinity) 9421119960454731 a001 47/2207*(1/2*5^(1/2)+1/2)^23*2207^(11/20) 9421119964306911 r005 Im(z^2+c),c=19/48+37/63*I,n=8 9421120016199330 a007 Real Root Of -518*x^4+436*x^3+762*x^2-409*x-289 9421120074718173 m001 1/Ei(1)^2*exp(Kolakoski)*GAMMA(7/12) 9421120107290701 m005 (1/2*3^(1/2)+5/7)/(3/11*exp(1)-10/11) 9421120110888386 a007 Real Root Of 86*x^4-981*x^3+26*x^2+395*x-539 9421120127118853 r005 Re(z^2+c),c=-89/98+7/41*I,n=57 9421120128953429 r002 40th iterates of z^2 + 9421120129814761 k001 Champernowne real with 178*n+764 9421120131146131 k007 concat of cont frac of 9421120145364763 r002 3th iterates of z^2 + 9421120158897638 r005 Im(z^2+c),c=-7/6+33/140*I,n=64 9421120172520409 r005 Re(z^2+c),c=-29/31+3/34*I,n=13 9421120175217291 m001 (ln(2)/ln(10)+Zeta(5))/(-Ei(1)+Weierstrass) 9421120188531913 m001 (Catalan+LambertW(1))/(ln(3)+PlouffeB) 9421120203900921 a007 Real Root Of -743*x^4-327*x^3-534*x^2+153*x+930 9421120248377016 m001 exp(-1/2*Pi)^(Champernowne*HardyLittlewoodC4) 9421120259598789 a007 Real Root Of 95*x^4-598*x^3+990*x^2+750*x-747 9421120276682121 m001 (Pi-2^(1/3))*BesselI(1,1)/GAMMA(5/6) 9421120302918490 a007 Real Root Of -750*x^4-139*x^3+267*x^2+460*x+671 9421120321978148 a007 Real Root Of -324*x^4+702*x^3-312*x^2-377*x+764 9421120347933431 a001 377/39603*1364^(43/45) 9421120395356762 a007 Real Root Of 79*x^4-938*x^3+396*x^2+448*x-776 9421120444000982 a001 47/2207*(1/2*5^(1/2)+1/2)^19*2207^(4/5) 9421120445260858 a001 377/2207*1364^(5/9) 9421120450518078 m001 (FeigenbaumMu+Mills)/(Chi(1)-FeigenbaumKappa) 9421120470280833 r008 a(0)=1,K{-n^6,71+21*n^3-38*n^2-33*n} 9421120490463491 a007 Real Root Of -416*x^4-536*x^3+94*x^2+406*x+37 9421120504888323 m001 Tribonacci/ln(GlaisherKinkelin)*GAMMA(5/6)^2 9421120535320772 a001 47*(1/2*5^(1/2)+1/2)^9*3571^(2/5) 9421120556397404 a003 sin(Pi*32/81)*sin(Pi*8/17) 9421120571132348 a003 cos(Pi*25/93)-sin(Pi*20/73) 9421120573431930 a007 Real Root Of -707*x^4+782*x^3+838*x^2+36*x+501 9421120575843838 b008 Sqrt[2]*ArcCsch[15] 9421120576863555 a001 47/5778*(1/2*5^(1/2)+1/2)^32*5778^(1/10) 9421120579265937 r009 Re(z^3+c),c=-13/90+26/53*I,n=25 9421120593540951 a007 Real Root Of 566*x^4-696*x^3+147*x^2+253*x-920 9421120606368254 a007 Real Root Of -506*x^4+425*x^3+720*x^2-450*x-309 9421120621472705 r005 Im(z^2+c),c=-47/64+17/45*I,n=7 9421120622840520 a001 1364/514229*2178309^(28/39) 9421120623895860 a001 47/5778*(1/2*5^(1/2)+1/2)^29*5778^(4/15) 9421120638746476 p004 log(31567/31271) 9421120665003835 m001 (exp(1/Pi)+BesselI(0,2))/(Bloch+Magata) 9421120665911777 a001 233*123^(9/31) 9421120679148870 m001 GAMMA(17/24)^2*RenyiParking/ln(Pi)^2 9421120686311338 l006 ln(1231/3158) 9421120707250675 a001 13/844*1364^(8/9) 9421120717960469 a001 47/5778*(1/2*5^(1/2)+1/2)^23*5778^(3/5) 9421120801995887 m001 (FeigenbaumC+Porter)/(BesselI(0,1)-Catalan) 9421120809280311 a001 47*(1/2*5^(1/2)+1/2)^12*9349^(1/5) 9421120812025079 a001 47/5778*(1/2*5^(1/2)+1/2)^17*5778^(14/15) 9421120823499144 a001 47*(1/2*5^(1/2)+1/2)^6*24476^(7/15) 9421120824989346 a007 Real Root Of 665*x^4-867*x^3+93*x^2+874*x-508 9421120827233895 a001 47/39603*(1/2*5^(1/2)+1/2)^29*39603^(2/5) 9421120828741185 a001 47*(1/2*5^(1/2)+1/2)^13*24476^(2/15) 9421120829461355 a001 47*(1/2*5^(1/2)+1/2)^2*64079^(3/5) 9421120830237317 a001 47/39603*(1/2*5^(1/2)+1/2)^18*39603^(9/10) 9421120830657559 a005 (1/cos(14/157*Pi))^925 9421120831755766 a001 47/64079*(1/2*5^(1/2)+1/2)^25*64079^(3/5) 9421120832863458 a001 8/87403803*2^(1/24) 9421120833240739 a001 47*(1/2*5^(1/2)+1/2)^7*39603^(2/5) 9421120833983226 a001 47/24476*(1/2*5^(1/2)+1/2)^20*24476^(4/5) 9421120839225267 a001 47/24476*(1/2*5^(1/2)+1/2)^27*24476^(7/15) 9421120859057385 a001 47*(1/2*5^(1/2)+1/2)^14*5778^(1/10) 9421120874560900 r005 Re(z^2+c),c=-17/18+5/176*I,n=9 9421120896089497 r002 48th iterates of z^2 + 9421120903583185 r005 Re(z^2+c),c=-17/14+50/187*I,n=5 9421120906089691 a001 47*(1/2*5^(1/2)+1/2)^11*5778^(4/15) 9421120917068766 a001 47/9349*(1/2*5^(1/2)+1/2)^31*9349^(1/5) 9421120927547259 a001 47*(1/2*5^(1/2)+1/2)^15*2207^(1/20) 9421120939147532 m001 gamma^sqrt(5)/(gamma^GAMMA(5/12)) 9421120943908541 b008 3*Zeta[10,Sqrt[2]] 9421120947285055 m009 (3*Psi(1,1/3)+5/6)/(5/6*Psi(1,2/3)+3/4) 9421120973944920 a007 Real Root Of 327*x^4+126*x^3+113*x^2+77*x-180 9421120976537166 a001 1292/2889*521^(19/39) 9421120981437946 r002 5th iterates of z^2 + 9421120987937313 a001 377/15127*1364^(37/45) 9421120995673693 r005 Im(z^2+c),c=-23/34+73/128*I,n=4 9421121000154303 a001 47*(1/2*5^(1/2)+1/2)^5*5778^(3/5) 9421121025111129 k009 concat of cont frac of 9421121035435812 a007 Real Root Of 8*x^4+760*x^3+603*x^2+808*x+702 9421121039951321 a007 Real Root Of 496*x^4-400*x^3-887*x^2-690*x-588 9421121058750322 a001 341/2*24157817^(7/9) 9421121064591109 r009 Im(z^3+c),c=-41/106+3/46*I,n=2 9421121078620215 a001 36/6119*3^(3/7) 9421121102111316 k006 concat of cont frac of 9421121111151111 k007 concat of cont frac of 9421121111651315 k008 concat of cont frac of 9421121113112211 k006 concat of cont frac of 9421121119312182 k007 concat of cont frac of 9421121121124723 k008 concat of cont frac of 9421121121132911 k007 concat of cont frac of 9421121121189165 k007 concat of cont frac of 9421121121218172 k006 concat of cont frac of 9421121121317116 k007 concat of cont frac of 9421121121921097 a007 Real Root Of 712*x^4+195*x^3+651*x^2+265*x-726 9421121122626141 k006 concat of cont frac of 9421121123421412 k006 concat of cont frac of 9421121128557694 r005 Im(z^2+c),c=-5/6+23/233*I,n=4 9421121130014791 k001 Champernowne real with 179*n+763 9421121132118621 k008 concat of cont frac of 9421121141128111 k007 concat of cont frac of 9421121142241611 k007 concat of cont frac of 9421121150401106 a007 Real Root Of -405*x^4-111*x^3+634*x^2+959*x+567 9421121151211013 k006 concat of cont frac of 9421121153121731 k008 concat of cont frac of 9421121167052382 h001 (1/2*exp(1)+7/10)/(7/12*exp(1)+3/5) 9421121167052382 m005 (1/2*exp(1)+7/10)/(7/12*exp(1)+3/5) 9421121190041136 k008 concat of cont frac of 9421121208269752 a005 (1/sin(99/229*Pi))^806 9421121211111371 k006 concat of cont frac of 9421121211121564 k008 concat of cont frac of 9421121217861111 k007 concat of cont frac of 9421121224222211 k006 concat of cont frac of 9421121227112711 k007 concat of cont frac of 9421121233611611 k008 concat of cont frac of 9421121243041231 a001 9227465/199*29^(4/19) 9421121251629726 q001 3613/3835 9421121268098035 m002 Pi^6-E^Pi/Log[Pi]+ProductLog[Pi]/Log[Pi] 9421121269564859 a007 Real Root Of 573*x^4-392*x^3+880*x^2+842*x-767 9421121274113863 a001 47/3571*(1/2*5^(1/2)+1/2)^26*3571^(2/5) 9421121279720652 a007 Real Root Of 695*x^4+595*x^3+701*x^2-72*x-740 9421121301508349 r005 Im(z^2+c),c=-99/94+16/63*I,n=27 9421121310887755 r008 a(0)=1,K{-n^6,-55-18*n^3+23*n^2+69*n} 9421121313155213 k007 concat of cont frac of 9421121318151114 k008 concat of cont frac of 9421121335837836 a007 Real Root Of 159*x^4-214*x^3+987*x^2+635*x-582 9421121341804312 k006 concat of cont frac of 9421121344872920 a007 Real Root Of 684*x^4+845*x^3+948*x^2+40*x-636 9421121358299907 a007 Real Root Of 653*x^4-146*x^3-827*x^2-423*x-301 9421121364172402 k007 concat of cont frac of 9421121365254337 r005 Im(z^2+c),c=17/36+13/47*I,n=3 9421121371289161 a007 Real Root Of 576*x^4-213*x^3-425*x^2-115*x-363 9421121384857398 r005 Im(z^2+c),c=-11/86+49/55*I,n=19 9421121389732363 r002 2th iterates of z^2 + 9421121396713362 a007 Real Root Of 468*x^4+137*x^3+703*x^2+413*x-489 9421121399814985 m001 (Bloch+KomornikLoreti)/(Zeta(1/2)+Zeta(1,2)) 9421121411093560 a001 47*(1/2*5^(1/2)+1/2)^11*2207^(3/10) 9421121412235113 k008 concat of cont frac of 9421121418657347 a007 Real Root Of -507*x^4+854*x^3+533*x^2-96*x+550 9421121422083597 a001 377/5778*1364^(31/45) 9421121436192777 a007 Real Root Of -783*x^4+277*x^3+943*x^2+302*x+296 9421121446303642 a007 Real Root Of 476*x^4-921*x^3-574*x^2-305*x-923 9421121458247277 r009 Im(z^3+c),c=-25/56+1/25*I,n=3 9421121458581808 a001 6765/15127*521^(19/39) 9421121459336092 m001 (Niven+Weierstrass)/(BesselI(0,1)-MertensB2) 9421121459340688 r005 Re(z^2+c),c=-1/11+8/61*I,n=8 9421121472192178 k006 concat of cont frac of 9421121474481601 a001 377/9349*1364^(34/45) 9421121475979022 a007 Real Root Of -589*x^4+719*x^3-72*x^2-965*x+220 9421121477827513 r005 Re(z^2+c),c=11/70+20/53*I,n=29 9421121483543538 a007 Real Root Of -25*x^4+712*x^3+431*x^2-48*x-913 9421121493370435 a007 Real Root Of -595*x^4-163*x^3-388*x^2-556*x+153 9421121504957694 a007 Real Root Of 849*x^4-637*x^3-318*x^2+635*x-321 9421121511114116 k009 concat of cont frac of 9421121516628349 r005 Re(z^2+c),c=-17/56+50/59*I,n=10 9421121521117543 k008 concat of cont frac of 9421121521121491 k009 concat of cont frac of 9421121528911176 a001 17711/39603*521^(19/39) 9421121532013821 a007 Real Root Of 25*x^4-635*x^3+286*x^2-130*x-927 9421121534696469 a007 Real Root Of -240*x^4+502*x^3-291*x^2-447*x+446 9421121539172092 a001 23184/51841*521^(19/39) 9421121540669140 a001 121393/271443*521^(19/39) 9421121540887556 a001 317811/710647*521^(19/39) 9421121540919423 a001 416020/930249*521^(19/39) 9421121540924072 a001 2178309/4870847*521^(19/39) 9421121540926945 a001 1346269/3010349*521^(19/39) 9421121540939117 a001 514229/1149851*521^(19/39) 9421121541022545 a001 98209/219602*521^(19/39) 9421121541594366 a001 75025/167761*521^(19/39) 9421121545071076 a007 Real Root Of 709*x^4-544*x^3+175*x^2+937*x-286 9421121545513687 a001 28657/64079*521^(19/39) 9421121556268446 a008 Real Root of (-3-2*x-6*x^2+5*x^3+2*x^4+6*x^5) 9421121564314448 m001 cos(1)*KhintchineHarmonic^2*ln(sqrt(Pi)) 9421121572377116 a001 5473/12238*521^(19/39) 9421121588037058 a007 Real Root Of 760*x^4-566*x^3+530*x^2+891*x-703 9421121612211415 k007 concat of cont frac of 9421121613131112 k007 concat of cont frac of 9421121614211371 k006 concat of cont frac of 9421121629865333 a007 Real Root Of 987*x^4+790*x^3+898*x^2+311*x-621 9421121632392816 g007 Psi(2,3/11)+Psi(2,8/9)+Psi(2,7/8)-Psi(2,5/9) 9421121634499332 r009 Re(z^3+c),c=-7/48+26/53*I,n=9 9421121644557557 m001 1/GAMMA(13/24)*Cahen^2*exp(log(2+sqrt(3))) 9421121667134056 r002 53th iterates of z^2 + 9421121677100124 l006 ln(3196/8199) 9421121725033709 a007 Real Root Of 911*x^4-378*x^3-207*x^2-156*x-997 9421121740700506 a001 4181/843*521^(4/39) 9421121756501794 a001 4181/9349*521^(19/39) 9421121775339472 a005 (1/sin(82/207*Pi))^721 9421121795616305 a001 329/281*1364^(13/45) 9421121797911766 m002 -3+Pi^4-(4*Log[Pi])/E^Pi 9421121826956058 r005 Re(z^2+c),c=-23/26+7/36*I,n=19 9421121840609514 m001 Psi(1,1/3)*(ln(3)+Zeta(1,-1)) 9421121878389297 a007 Real Root Of 725*x^4-598*x^3+142*x^2+307*x-908 9421121881063874 a008 Real Root of x^3-x^2-83*x+143 9421121888633975 a007 Real Root Of 380*x^4+839*x^3+848*x^2-267*x-602 9421121894639886 a001 47*(1/2*5^(1/2)+1/2)^7*2207^(11/20) 9421121927651464 a007 Real Root Of 746*x^4+781*x^3+235*x^2-349*x-472 9421121930075812 m001 (5^(1/2)-HardyLittlewoodC5)/(Tetranacci+Trott) 9421121981030591 a007 Real Root Of 13*x^4+142*x^3+231*x^2+451*x+73 9421122000685092 a001 610/2207*521^(22/39) 9421122003847046 a001 610/3571*521^(25/39) 9421122020000916 m001 BesselJ(0,1)^Catalan/(BesselJ(0,1)^ln(2)) 9421122053582093 a007 Real Root Of 75*x^4+774*x^3+541*x^2-843*x+413 9421122058195013 a007 Real Root Of -737*x^4-282*x^3+554*x^2+986*x+782 9421122072342549 a007 Real Root Of 491*x^4-130*x^3-12*x^2+227*x-271 9421122073718824 r001 34i'th iterates of 2*x^2-1 of 9421122079327392 h001 (-9*exp(1/2)-2)/(-4*exp(1)-7) 9421122101231324 k008 concat of cont frac of 9421122111113119 k007 concat of cont frac of 9421122120213721 k006 concat of cont frac of 9421122123333154 k006 concat of cont frac of 9421122123560568 m001 Catalan^Ei(1,1)/(Zeta(3)^Ei(1,1)) 9421122125317613 k007 concat of cont frac of 9421122127132321 k006 concat of cont frac of 9421122130214821 k001 Champernowne real with 180*n+762 9421122130332111 k007 concat of cont frac of 9421122132089594 m001 1/3*3^(1/2)*gamma(3)*Kolakoski 9421122137330636 a007 Real Root Of -338*x^4+50*x^3-289*x^2+373*x+916 9421122143113111 k008 concat of cont frac of 9421122152064167 a007 Real Root Of 389*x^4+169*x^3+88*x^2+445*x+176 9421122176780470 a007 Real Root Of -721*x^4+951*x^3+890*x^2+333*x+887 9421122179896498 a007 Real Root Of -608*x^4-160*x^3-746*x^2-841*x+215 9421122181114211 k008 concat of cont frac of 9421122193635447 k002 Champernowne real with 37/2*n^2-45/2*n+13 9421122203675547 k003 Champernowne real with 1/6*n^3+35/2*n^2-62/3*n+12 9421122210221131 k008 concat of cont frac of 9421122213231231 k006 concat of cont frac of 9421122215175516 a001 3571*(1/2*5^(1/2)+1/2)^5*29^(16/17) 9421122215531478 a001 9349/55*10946^(38/41) 9421122223175926 k007 concat of cont frac of 9421122223595485 a007 Real Root Of 199*x^4-902*x^3-570*x^2+862*x+407 9421122223755748 k003 Champernowne real with 1/2*n^3+31/2*n^2-17*n+10 9421122228941511 k006 concat of cont frac of 9421122233795848 k003 Champernowne real with 2/3*n^3+29/2*n^2-91/6*n+9 9421122243835948 k003 Champernowne real with 5/6*n^3+27/2*n^2-40/3*n+8 9421122251140131 a007 Real Root Of -6*x^4+313*x^3-626*x^2+105*x+921 9421122253876048 k003 Champernowne real with n^3+25/2*n^2-23/2*n+7 9421122263916149 k003 Champernowne real with 7/6*n^3+23/2*n^2-29/3*n+6 9421122273956249 k003 Champernowne real with 4/3*n^3+21/2*n^2-47/6*n+5 9421122283902837 a007 Real Root Of 747*x^4+71*x^3+258*x^2+551*x-239 9421122283996349 k003 Champernowne real with 3/2*n^3+19/2*n^2-6*n+4 9421122294036449 k003 Champernowne real with 5/3*n^3+17/2*n^2-25/6*n+3 9421122297792692 l006 ln(1965/5041) 9421122304076549 k003 Champernowne real with 11/6*n^3+15/2*n^2-7/3*n+2 9421122309733479 r005 Re(z^2+c),c=-113/118+13/51*I,n=17 9421122314116641 k003 Champernowne real with 2*n^3+13/2*n^2-1/2*n+1 9421122318221111 k007 concat of cont frac of 9421122324156741 k003 Champernowne real with 13/6*n^3+11/2*n^2+4/3*n 9421122334196841 k003 Champernowne real with 7/3*n^3+9/2*n^2+19/6*n-1 9421122338525418 r005 Im(z^2+c),c=-7/10+38/219*I,n=4 9421122339556898 a007 Real Root Of -971*x^4+826*x^3+819*x^2-264*x+480 9421122344236941 k003 Champernowne real with 5/2*n^3+7/2*n^2+5*n-2 9421122354277041 k003 Champernowne real with 8/3*n^3+5/2*n^2+41/6*n-3 9421122364317141 k003 Champernowne real with 17/6*n^3+3/2*n^2+26/3*n-4 9421122373328399 r009 Re(z^3+c),c=-17/48+17/24*I,n=54 9421122374357241 k003 Champernowne real with 3*n^3+1/2*n^2+21/2*n-5 9421122378186237 a001 47*(1/2*5^(1/2)+1/2)^3*2207^(4/5) 9421122383621825 a007 Real Root Of 320*x^4+506*x^3+278*x^2-358*x-413 9421122383952094 m001 GAMMA(7/12)*Landau/QuadraticClass 9421122384397341 k003 Champernowne real with 19/6*n^3-1/2*n^2+37/3*n-6 9421122394437441 k003 Champernowne real with 10/3*n^3-3/2*n^2+85/6*n-7 9421122400377077 a007 Real Root Of -244*x^4+121*x^3+31*x^2+751*x-644 9421122403888643 q001 2132/2263 9421122404477541 k003 Champernowne real with 7/2*n^3-5/2*n^2+16*n-8 9421122412399283 r005 Im(z^2+c),c=-3/4+5/129*I,n=27 9421122414517641 k003 Champernowne real with 11/3*n^3-7/2*n^2+107/6*n-9 9421122421154611 k007 concat of cont frac of 9421122424557741 k003 Champernowne real with 23/6*n^3-9/2*n^2+59/3*n-10 9421122434597841 k003 Champernowne real with 4*n^3-11/2*n^2+43/2*n-11 9421122463604443 m006 (5*exp(Pi)+4/5)/(2/Pi+3/5) 9421122464718141 k003 Champernowne real with 9/2*n^3-17/2*n^2+27*n-14 9421122479924169 r005 Re(z^2+c),c=-17/18+3/121*I,n=3 9421122481185706 m001 Ei(1)/(Trott2nd^(2*Pi/GAMMA(5/6))) 9421122493585889 a003 cos(Pi*1/10)*sin(Pi*47/103) 9421122494838441 k003 Champernowne real with 5*n^3-23/2*n^2+65/2*n-17 9421122506764128 a007 Real Root Of -925*x^4-280*x^3+313*x^2+445*x+636 9421122524958741 k003 Champernowne real with 11/2*n^3-29/2*n^2+38*n-20 9421122539114934 m005 (1/2*Pi+1/6)/(9/10*2^(1/2)+4/7) 9421122546911107 a007 Real Root Of -453*x^4-662*x^3-628*x^2+64*x+421 9421122553381234 a007 Real Root Of 227*x^4-122*x^3+719*x^2+829*x-138 9421122555079041 k003 Champernowne real with 6*n^3-35/2*n^2+87/2*n-23 9421122558291722 m001 1/BesselJ(0,1)*(3^(1/3))^2*ln(sqrt(2)) 9421122561052820 a007 Real Root Of -906*x^4-294*x^3+673*x^2-785*x-869 9421122573035075 a007 Real Root Of 153*x^4-835*x^3+397*x^2+257*x-929 9421122585199341 k003 Champernowne real with 13/2*n^3-41/2*n^2+49*n-26 9421122590698526 b008 9+Log[Pi]/E 9421122615319641 k003 Champernowne real with 7*n^3-47/2*n^2+109/2*n-29 9421122645439941 k003 Champernowne real with 15/2*n^3-53/2*n^2+60*n-32 9421122675551024 k003 Champernowne real with 8*n^3-59/2*n^2+131/2*n-35 9421122676307020 a007 Real Root Of -624*x^4+292*x^3-408*x^2-313*x+803 9421122676633357 a001 233/322*322^(4/9) 9421122679076139 a001 1/9349*322^(38/49) 9421122685817699 a007 Real Root Of -872*x^4-376*x^3+180*x^2-142*x+79 9421122705671054 k003 Champernowne real with 17/2*n^3-65/2*n^2+71*n-38 9421122735791084 k003 Champernowne real with 9*n^3-71/2*n^2+153/2*n-41 9421122736361272 m001 ErdosBorwein*Weierstrass-Niven 9421122762622903 r005 Re(z^2+c),c=-55/102+12/19*I,n=14 9421122763873220 m001 KhinchinLevy-ThueMorse^BesselI(1,2) 9421122765911114 k003 Champernowne real with 19/2*n^3-77/2*n^2+82*n-44 9421122774683106 m009 (4/5*Psi(1,3/4)+1)/(5/6*Psi(1,2/3)+2/3) 9421122780654986 a001 377/3571*1364^(28/45) 9421122796031144 k003 Champernowne real with 10*n^3-83/2*n^2+175/2*n-47 9421122809211034 a003 sin(Pi*23/98)/cos(Pi*21/85) 9421122811110122 k006 concat of cont frac of 9421122815411112 k009 concat of cont frac of 9421122819115336 r009 Re(z^3+c),c=-3/44+33/37*I,n=2 9421122823706282 a007 Real Root Of 95*x^4+822*x^3-585*x^2+999*x+287 9421122826151174 k003 Champernowne real with 21/2*n^3-89/2*n^2+93*n-50 9421122830713305 r005 Re(z^2+c),c=-13/18+25/127*I,n=46 9421122838195703 a007 Real Root Of -901*x^4-825*x^3-645*x^2-390*x+225 9421122846180261 a001 9349*(1/2*5^(1/2)+1/2)^3*29^(16/17) 9421122856271204 k003 Champernowne real with 11*n^3-95/2*n^2+197/2*n-53 9421122866156002 r005 Im(z^2+c),c=-17/29+7/43*I,n=16 9421122878225871 m001 PisotVijayaraghavan^2*KhintchineLevy*ln(Trott) 9421122896309995 a001 377/2207*3571^(25/51) 9421122907785609 r005 Im(z^2+c),c=-51/64+1/21*I,n=19 9421122938242612 a001 24476*(1/2*5^(1/2)+1/2)*29^(16/17) 9421122950905301 r005 Re(z^2+c),c=-13/66+17/27*I,n=18 9421122952511099 a007 Real Root Of -10*x^4+2*x^3+942*x^2+416*x+761 9421122953968739 a001 (1/2*5^(1/2)+1/2)^22*29^(16/17) 9421122969677032 m001 (3^(1/3))*(cos(Pi/12)+GAMMA(1/6)) 9421122969677032 m001 3^(1/3)*(cos(1/12*Pi)+2*Pi/GAMMA(5/6)) 9421122976985179 m003 1/10+Sqrt[5]/64-36*Cosh[1/2+Sqrt[5]/2] 9421122995140274 a001 15127*(1/2*5^(1/2)+1/2)^2*29^(16/17) 9421123002286227 a007 Real Root Of 905*x^4+482*x^3+760*x^2+493*x-520 9421123008505090 s001 sum(exp(-2*Pi)^n*A043304[n],n=1..infinity) 9421123015349254 a001 1597/2207*521^(16/39) 9421123018511207 a001 1597/3571*521^(19/39) 9421123032780952 l006 ln(2699/6924) 9421123033327688 a003 cos(Pi*7/83)*sin(Pi*34/79) 9421123057603856 m006 (3/4*ln(Pi)+2)/(3*ln(Pi)-2/5) 9421123060804710 r002 11th iterates of z^2 + 9421123070161960 a001 329/281*3571^(13/51) 9421123073105953 a003 sin(Pi*29/103)/sin(Pi*23/75) 9421123081686433 a007 Real Root Of -729*x^4+992*x^3+987*x^2-4*x+524 9421123094906728 r005 Re(z^2+c),c=-12/11+8/61*I,n=58 9421123111481132 k006 concat of cont frac of 9421123113211214 k007 concat of cont frac of 9421123121314121 k007 concat of cont frac of 9421123130414851 k001 Champernowne real with 181*n+761 9421123143282768 a007 Real Root Of 529*x^4-724*x^3+191*x^2+783*x-454 9421123151239117 k009 concat of cont frac of 9421123161521354 k007 concat of cont frac of 9421123174560953 m001 (Psi(1,1/3)*Grothendieck-Zeta(3))/Grothendieck 9421123198495757 a007 Real Root Of 392*x^4-327*x^3-589*x^2-820*x-832 9421123211187905 a001 377/2207*9349^(25/57) 9421123211413171 k007 concat of cont frac of 9421123212028086 a007 Real Root Of 692*x^4-236*x^3+632*x^2+597*x-741 9421123212362111 k007 concat of cont frac of 9421123218976084 h001 (8/11*exp(2)+3/4)/(9/11*exp(2)+5/11) 9421123219231231 k009 concat of cont frac of 9421123223147112 k007 concat of cont frac of 9421123225160282 m001 (GAMMA(17/24)+GolombDickman)/(2^(1/3)-Shi(1)) 9421123233898475 a001 329/281*9349^(13/57) 9421123236162640 a001 5778*(1/2*5^(1/2)+1/2)^4*29^(16/17) 9421123258351971 a001 377/2207*167761^(1/3) 9421123258463550 a001 377/2207*20633239^(5/21) 9421123258463555 a001 377/2207*28143753123^(1/6) 9421123258463555 a001 377/2207*228826127^(5/24) 9421123258464311 a001 377/2207*1860498^(5/18) 9421123258481813 a001 329/281*141422324^(1/9) 9421123258481813 a001 329/281*73681302247^(1/12) 9421123258503123 a001 329/281*271443^(1/6) 9421123267402312 a001 329/281*15127^(13/60) 9421123275618362 a001 377/2207*15127^(5/12) 9421123280907313 a007 Real Root Of 534*x^4-297*x^3+321*x^2+x-953 9421123282517306 a007 Real Root Of -822*x^4+496*x^3+14*x^2-952*x+153 9421123320404791 a001 36/341*322^(7/9) 9421123326417383 a001 329/281*5778^(13/54) 9421123360058309 r009 Im(z^3+c),c=-37/56+25/56*I,n=2 9421123370245825 r005 Im(z^2+c),c=-17/62+32/41*I,n=8 9421123373087056 m001 2^(1/2)*ln(Pi)*LandauRamanujan2nd 9421123374087120 a007 Real Root Of 356*x^4-975*x^3+33*x^2+414*x-735 9421123375747254 p003 LerchPhi(1/10,5,80/79) 9421123381155575 r005 Im(z^2+c),c=-7/6+41/138*I,n=23 9421123389108882 a001 377/2207*5778^(25/54) 9421123394598821 m005 (1/3*3^(1/2)-1/12)/(6/7*gamma-1/2) 9421123434211113 a001 1597/521*199^(7/33) 9421123438272956 a007 Real Root Of -690*x^4+577*x^3+927*x^2+143*x+338 9421123440948886 a007 Real Root Of -538*x^4+737*x^3+630*x^2-283*x-485 9421123453477674 l006 ln(3433/8807) 9421123453477674 p004 log(8807/3433) 9421123471349791 m001 (Psi(2,1/3)+ln(3))/(gamma(1)+MasserGramain) 9421123476234892 a007 Real Root Of -153*x^4+524*x^3-109*x^2+810*x-984 9421123482257209 a001 47*(1/2*5^(1/2)+1/2)^13*843^(1/5) 9421123489940254 r005 Re(z^2+c),c=-13/14+17/148*I,n=23 9421123494387455 r005 Im(z^2+c),c=-43/40+8/21*I,n=5 9421123527367111 r005 Re(z^2+c),c=-17/18-7/248*I,n=15 9421123528358334 m001 (Chi(1)+ln(5))/(cos(1/12*Pi)+Riemann3rdZero) 9421123543341320 a001 29/4181*987^(14/37) 9421123565161878 a007 Real Root Of -74*x^4-77*x^3-922*x^2-963*x-95 9421123616415614 r001 34i'th iterates of 2*x^2-1 of 9421123623283653 a007 Real Root Of -613*x^4+211*x^3+702*x^2-168*x-122 9421123625744923 h001 (5/9*exp(1)+8/9)/(9/10*exp(1)+1/10) 9421123632216251 k008 concat of cont frac of 9421123683974851 r005 Re(z^2+c),c=-13/14+10/87*I,n=27 9421123693104301 r005 Re(z^2+c),c=-11/16+37/109*I,n=44 9421123711085508 a007 Real Root Of -795*x^4+739*x^3+284*x^2+669*x-874 9421123713521623 a007 Real Root Of 18*x^4-163*x^3+43*x^2-552*x+604 9421123717976352 v002 sum(1/(3^n*(9*n^2-8*n+45)),n=1..infinity) 9421123720001116 a007 Real Root Of -660*x^4+157*x^3+64*x^2+180*x+764 9421123723126059 r002 34th iterates of z^2 + 9421123727335672 m001 (cos(1/12*Pi)-gamma)/(-FeigenbaumDelta+Landau) 9421123745526680 l003 KelvinBei(1,32/119) 9421123750892620 m001 OrthogonalArrays*(Champernowne-Kolakoski) 9421123782323770 a001 329/281*2207^(13/48) 9421123792876373 a003 cos(Pi*26/99)-cos(Pi*22/73) 9421123811281231 k006 concat of cont frac of 9421123867295075 a007 Real Root Of -562*x^4+765*x^3+884*x^2-867*x-519 9421123884197816 m001 (ArtinRank2-FeigenbaumC)/(Landau+TwinPrimes) 9421123894547268 a001 144/2207*322^(31/36) 9421123899796885 q001 2783/2954 9421123906686122 a007 Real Root Of 334*x^4-939*x^3-100*x^2-377*x+966 9421123921108995 r009 Im(z^3+c),c=-29/114+25/34*I,n=6 9421123947962149 m001 (Trott+ZetaP(4))/(Ei(1)-cos(1/12*Pi)) 9421123982624234 m005 (1/3*2^(1/2)+3/7)/(1/2*gamma+2/3) 9421123986750005 s002 sum(A165988[n]/(pi^n-1),n=1..infinity) 9421124032061024 a007 Real Root Of -79*x^4+454*x^3-332*x^2-958*x-166 9421124036336274 a001 4181/5778*521^(16/39) 9421124077981705 r005 Im(z^2+c),c=11/70+31/46*I,n=6 9421124112293217 k006 concat of cont frac of 9421124114615243 h001 (3/4*exp(1)+5/11)/(9/10*exp(1)+1/5) 9421124122777096 a001 2584/843*1364^(7/45) 9421124127942398 a007 Real Root Of 346*x^4-939*x^3-501*x^2-157*x-761 9421124130614881 k001 Champernowne real with 182*n+760 9421124131121178 k006 concat of cont frac of 9421124141122216 k008 concat of cont frac of 9421124151535651 m001 1/Zeta(1/2)^2/Catalan*ln(Zeta(3)) 9421124152207066 r005 Im(z^2+c),c=-5/114+48/55*I,n=9 9421124168126040 a007 Real Root Of -3*x^4+49*x^3+703*x^2-301*x-625 9421124185296302 a001 10946/15127*521^(16/39) 9421124191145323 k006 concat of cont frac of 9421124195311814 r005 Im(z^2+c),c=-93/82+13/49*I,n=24 9421124207029278 a001 28657/39603*521^(16/39) 9421124210200077 a001 75025/103682*521^(16/39) 9421124210662690 a001 196418/271443*521^(16/39) 9421124210730184 a001 514229/710647*521^(16/39) 9421124210740032 a001 1346269/1860498*521^(16/39) 9421124210742356 a001 2178309/3010349*521^(16/39) 9421124210746118 a001 832040/1149851*521^(16/39) 9421124210771898 a001 317811/439204*521^(16/39) 9421124210948601 a001 121393/167761*521^(16/39) 9421124211415070 m002 -5+Pi^6-Cosh[Pi]-Pi^3*Csch[Pi] 9421124212159738 a001 46368/64079*521^(16/39) 9421124220460996 a001 17711/24476*521^(16/39) 9421124237940515 r001 50i'th iterates of 2*x^2-1 of 9421124254160996 q001 9/9553 9421124261557375 a001 2255/281*521^(1/39) 9421124264827419 a003 sin(Pi*29/81)/sin(Pi*35/86) 9421124265851960 a001 377/2207*2207^(25/48) 9421124277358667 a001 6765/9349*521^(16/39) 9421124316683011 m002 -Pi^6+Cosh[Pi]+(E^Pi*Tanh[Pi])/3 9421124334367507 m001 Mills-Artin-gamma(2) 9421124337154878 a007 Real Root Of 134*x^4+359*x^3+403*x^2-813*x-929 9421124341152021 k007 concat of cont frac of 9421124345229584 r005 Im(z^2+c),c=-8/7+8/67*I,n=54 9421124352711601 a007 Real Root Of -407*x^4+782*x^3-634*x^2+676*x+70 9421124352875514 a007 Real Root Of 321*x^4-918*x^3-717*x^2+188*x-207 9421124357086565 r005 Im(z^2+c),c=-15/16+1/122*I,n=7 9421124401473207 a007 Real Root Of -566*x^4-561*x^3-888*x^2+241*x+992 9421124424705471 m002 -1+Pi-Pi^2+Pi^6-Sinh[Pi] 9421124443728333 a007 Real Root Of -135*x^4+434*x^3+6*x^2+188*x-439 9421124453087601 m001 (MertensB1+Totient)/(Zeta(5)+LaplaceLimit) 9421124461384937 a001 377/5778*3571^(31/51) 9421124473042600 a007 Real Root Of 471*x^4+226*x^3+509*x^2-291*x-908 9421124481951890 a001 377/103682*3571^(49/51) 9421124496900184 a007 Real Root Of 93*x^4+823*x^3-443*x^2+597*x+488 9421124517950963 m001 (Khinchin+Otter)/(sin(1/5*Pi)-KhinchinLevy) 9421124528581122 a001 377/64079*3571^(46/51) 9421124537165540 a007 Real Root Of 775*x^4+64*x^3-435*x^2+675*x+465 9421124563738298 a001 377/39603*3571^(43/51) 9421124565352679 a007 Real Root Of 854*x^4-806*x^3-352*x^2+720*x-356 9421124572122592 a007 Real Root Of -664*x^4+782*x^3+347*x^2-639*x+267 9421124587850526 a007 Real Root Of -704*x^4-590*x^2-859*x+269 9421124592105919 m005 (1/3*Catalan-1/5)/(5/8*Catalan+6/11) 9421124609126396 r005 Re(z^2+c),c=-17/18-7/248*I,n=31 9421124609126891 r005 Re(z^2+c),c=-17/18-7/248*I,n=33 9421124609130237 r005 Re(z^2+c),c=-17/18-7/248*I,n=35 9421124609131694 r005 Re(z^2+c),c=-17/18-7/248*I,n=37 9421124609132133 r005 Re(z^2+c),c=-17/18-7/248*I,n=39 9421124609132238 r005 Re(z^2+c),c=-17/18-7/248*I,n=41 9421124609132258 r005 Re(z^2+c),c=-17/18-7/248*I,n=43 9421124609132259 r005 Re(z^2+c),c=-17/18-7/248*I,n=59 9421124609132259 r005 Re(z^2+c),c=-17/18-7/248*I,n=61 9421124609132259 r005 Re(z^2+c),c=-17/18-7/248*I,n=63 9421124609132259 r005 Re(z^2+c),c=-17/18-7/248*I,n=57 9421124609132259 r005 Re(z^2+c),c=-17/18-7/248*I,n=55 9421124609132259 r005 Re(z^2+c),c=-17/18-7/248*I,n=53 9421124609132259 r005 Re(z^2+c),c=-17/18-7/248*I,n=51 9421124609132259 r005 Re(z^2+c),c=-17/18-7/248*I,n=49 9421124609132259 r005 Re(z^2+c),c=-17/18-7/248*I,n=47 9421124609132260 r005 Re(z^2+c),c=-17/18-7/248*I,n=45 9421124609176723 r005 Re(z^2+c),c=-17/18-7/248*I,n=29 9421124609544704 r005 Re(z^2+c),c=-17/18-7/248*I,n=27 9421124611367003 r005 Re(z^2+c),c=-17/18-7/248*I,n=25 9421124615490471 a001 377/15127*3571^(37/51) 9421124616731369 r005 Re(z^2+c),c=-17/18-7/248*I,n=17 9421124617808822 m001 Backhouse^MasserGramainDelta*Weierstrass 9421124618480012 r005 Re(z^2+c),c=-17/18-7/248*I,n=23 9421124626914551 r005 Re(z^2+c),c=-1/12+41/52*I,n=49 9421124628929709 a001 13/844*3571^(40/51) 9421124631491849 r009 Re(z^3+c),c=-19/118+35/59*I,n=34 9421124640032270 r005 Re(z^2+c),c=-17/18-7/248*I,n=21 9421124649157735 m001 (-ln(2)+Riemann2ndZero)/(Shi(1)-sin(1)) 9421124664167919 m001 Pi-Psi(1,1/3)/sin(1)-BesselI(1,1) 9421124664179179 a001 2584/2207*521^(1/3) 9421124667341133 a001 2584/3571*521^(16/39) 9421124671007324 m001 HardyLittlewoodC5-sin(1)*ErdosBorwein 9421124679719631 r005 Re(z^2+c),c=-17/18-7/248*I,n=19 9421124682684117 m001 (Pi^(1/2)+Bloch)/(exp(1/exp(1))-Zeta(1,2)) 9421124697852615 a007 Real Root Of -897*x^4+65*x^3-571*x^2-988*x+337 9421124698421516 r009 Re(z^3+c),c=-5/102+17/21*I,n=15 9421124712166529 a007 Real Root Of 674*x^4-891*x^3-206*x^2-85*x+477 9421124764793008 a001 6/7*2^(3/22) 9421124775944096 a007 Real Root Of -693*x^4+296*x^3+566*x^2-154*x+146 9421124777200253 a007 Real Root Of 187*x^4-589*x^3+526*x^2+938*x-223 9421124806179942 a001 1597/843*1364^(2/9) 9421124807908948 a001 377/9349*3571^(2/3) 9421124809071058 a001 2584/843*3571^(7/51) 9421124810447929 m001 (BesselJ(1,1)-Catalan)/(-GaussAGM+Totient) 9421124828532235 q001 3434/3645 9421124846139270 m001 (GAMMA(3/4)-gamma(3))/(GAMMA(19/24)-Conway) 9421124850343961 a001 4181/843*1364^(4/45) 9421124850665823 r005 Re(z^2+c),c=-11/10+5/241*I,n=6 9421124851833611 a001 377/5778*9349^(31/57) 9421124853676990 m002 -E^Pi+Pi^6+Cosh[Pi]/3 9421124857445507 a007 Real Root Of 285*x^4-767*x^3+120*x^2-524*x+804 9421124888154509 a001 2207*(1/2*5^(1/2)+1/2)^6*29^(16/17) 9421124897236890 a001 2584/843*9349^(7/57) 9421124908726726 a001 2584/843*24476^(1/9) 9421124910455081 a001 377/5778*3010349^(1/3) 9421124910455428 a001 377/5778*9062201101803^(1/6) 9421124910474073 a001 2584/843*20633239^(1/15) 9421124910474074 a001 2584/843*17393796001^(1/21) 9421124910474074 a001 2584/843*505019158607^(1/24) 9421124910474074 a001 2584/843*599074578^(1/18) 9421124910475629 a001 2584/843*710647^(1/12) 9421124915277421 a001 2584/843*15127^(7/60) 9421124931727392 a001 377/5778*15127^(31/60) 9421124947054772 a001 2584/843*5778^(7/54) 9421124947818722 a001 3571/1346269*2178309^(28/39) 9421124984135382 m009 (3/10*Pi^2-2/5)/(5/6*Psi(1,3/4)+3/5) 9421125000426368 l006 ln(734/1883) 9421125009194698 a007 Real Root Of 941*x^4+295*x^3-961*x^2-98*x+266 9421125012597441 m001 ln(GAMMA(19/24))^2/GAMMA(1/6)^2/Zeta(1,2)^2 9421125017502029 r002 3i'th iterates of 2*x/(1-x^2) of 9421125038968350 a001 2255/281*1364^(1/45) 9421125044031093 a008 Real Root of (-3-2*x^2+x^3+5*x^4) 9421125045235302 m001 (Khinchin-ReciprocalLucas)/ZetaP(4) 9421125072455663 a001 377/5778*5778^(31/54) 9421125077048723 m005 (23/20+1/4*5^(1/2))/(17/18+7/18*5^(1/2)) 9421125081509866 a001 377/15127*9349^(37/57) 9421125088515072 a001 377/271443*9349^(55/57) 9421125094650765 a001 377/167761*9349^(52/57) 9421125099112707 a001 377/103682*9349^(49/57) 9421125105328405 a001 377/39603*9349^(43/57) 9421125107956585 a001 377/64079*9349^(46/57) 9421125117192171 k008 concat of cont frac of 9421125120141211 k009 concat of cont frac of 9421125130814911 k001 Champernowne real with 183*n+759 9421125131561112 k008 concat of cont frac of 9421125132734462 a001 13/844*9349^(40/57) 9421125133317655 a003 cos(Pi*23/81)+cos(Pi*45/113) 9421125137010351 a001 2255/281*3571^(1/51) 9421125149605471 a001 2255/281*9349^(1/57) 9421125151477841 a001 377/15127*54018521^(1/3) 9421125152182689 a001 2255/281*15127^(1/60) 9421125156722311 a001 2255/281*5778^(1/54) 9421125176866961 a001 377/15127*15127^(37/60) 9421125179387280 m001 (3^(1/2)-GAMMA(19/24))/Lehmer 9421125179387280 m001 (sqrt(3)-GAMMA(19/24))/Lehmer 9421125179541565 a001 377/103682*24476^(7/9) 9421125186642540 a001 377/39603*969323029^(1/3) 9421125191772989 a001 377/103682*20633239^(7/15) 9421125191773000 a001 377/103682*17393796001^(1/3) 9421125191773000 a001 377/103682*505019158607^(7/24) 9421125191773000 a001 377/103682*599074578^(7/18) 9421125191783882 a001 377/103682*710647^(7/12) 9421125191792039 a001 2255/281*2207^(1/48) 9421125192276040 a001 377/271443*167761^(11/15) 9421125192337993 a001 377/3010349*167761^(14/15) 9421125192521440 a001 377/271443*7881196^(5/9) 9421125192521512 a001 377/271443*20633239^(11/21) 9421125192521524 a001 377/271443*312119004989^(1/3) 9421125192521524 a001 377/271443*1568397607^(5/12) 9421125192521524 a001 377/271443*228826127^(11/24) 9421125192523187 a001 377/271443*1860498^(11/18) 9421125192542866 a001 2584/843*2207^(7/48) 9421125192630732 a001 377/710647*5600748293801^(1/3) 9421125192649255 a001 377/54018521*7881196^(8/9) 9421125192649361 a001 377/33385282*20633239^(17/21) 9421125192649366 a001 377/370248451*20633239^(20/21) 9421125192649367 a001 377/87403803*20633239^(13/15) 9421125192649379 a001 377/33385282*45537549124^(5/9) 9421125192649379 a001 377/33385282*228826127^(17/24) 9421125192649385 a001 377/87403803*141422324^(7/9) 9421125192649386 a001 377/87403803*17393796001^(13/21) 9421125192649386 a001 377/87403803*505019158607^(13/24) 9421125192649386 a001 377/87403803*73681302247^(7/12) 9421125192649386 a001 377/87403803*599074578^(13/18) 9421125192649387 a001 377/4106118243*4106118243^(5/6) 9421125192649387 a001 377/10749957122*312119004989^(11/15) 9421125192649387 a001 377/73681302247*17393796001^(19/21) 9421125192649387 a001 377/119218851371*45537549124^(8/9) 9421125192649387 a001 377/73681302247*505019158607^(19/24) 9421125192649387 a001 377/2139295485799*312119004989^(14/15) 9421125192649387 a001 377/505019158607*1322157322203^(5/6) 9421125192649387 a001 377/5600748293801*23725150497407^(5/6) 9421125192649387 a001 377/2139295485799*505019158607^(11/12) 9421125192649387 a001 377/119218851371*23725150497407^(17/24) 9421125192649387 a001 377/119218851371*505019158607^(17/21) 9421125192649387 a001 377/45537549124*3461452808002^(13/18) 9421125192649387 a001 377/45537549124*73681302247^(5/6) 9421125192649387 a001 377/45537549124*28143753123^(13/15) 9421125192649387 a001 13/599786069*9062201101803^(2/3) 9421125192649387 a001 377/119218851371*10749957122^(17/18) 9421125192649387 a001 377/6643838879*2139295485799^(2/3) 9421125192649387 a001 377/2537720636*17393796001^(16/21) 9421125192649387 a001 377/2537720636*23725150497407^(7/12) 9421125192649387 a001 377/2537720636*505019158607^(2/3) 9421125192649387 a001 377/2537720636*10749957122^(7/9) 9421125192649387 a001 377/10749957122*1568397607^(11/12) 9421125192649387 a001 377/969323029*119218851371^(2/3) 9421125192649387 a001 377/2537720636*599074578^(8/9) 9421125192649387 a001 377/370248451*3461452808002^(5/9) 9421125192649387 a001 377/370248451*28143753123^(2/3) 9421125192649387 a001 377/2537720636*228826127^(14/15) 9421125192649387 a001 377/4106118243*228826127^(23/24) 9421125192649387 a001 377/370248451*228826127^(5/6) 9421125192649387 a001 377/141422324*6643838879^(2/3) 9421125192649390 a001 377/54018521*312119004989^(8/15) 9421125192649390 a001 377/54018521*23725150497407^(11/24) 9421125192649390 a001 377/54018521*10749957122^(11/18) 9421125192649390 a001 377/54018521*1568397607^(2/3) 9421125192649390 a001 377/54018521*228826127^(11/15) 9421125192649409 a001 13/711491*370248451^(2/3) 9421125192649427 a001 377/33385282*12752043^(5/6) 9421125192649539 a001 377/7881196*817138163596^(4/9) 9421125192649540 a001 377/7881196*87403803^(2/3) 9421125192649754 a001 377/54018521*4870847^(11/12) 9421125192649853 a001 377/7881196*4870847^(19/24) 9421125192650412 a001 377/3010349*20633239^(2/3) 9421125192650427 a001 377/3010349*17393796001^(10/21) 9421125192650427 a001 377/3010349*3461452808002^(7/18) 9421125192650427 a001 377/3010349*505019158607^(5/12) 9421125192650427 a001 377/3010349*28143753123^(7/15) 9421125192650427 a001 377/3010349*599074578^(5/9) 9421125192650427 a001 377/3010349*228826127^(7/12) 9421125192651949 a001 377/33385282*1860498^(17/18) 9421125192652544 a001 377/3010349*1860498^(7/9) 9421125192656513 a001 377/1149851*23725150497407^(1/3) 9421125192656513 a001 377/1149851*505019158607^(8/21) 9421125192656513 a001 377/1149851*10749957122^(4/9) 9421125192656513 a001 377/1149851*228826127^(8/15) 9421125192656777 a001 377/1149851*4870847^(2/3) 9421125192665972 a001 377/3010349*710647^(5/6) 9421125192666417 a001 377/7881196*710647^(19/21) 9421125192670726 a001 377/1149851*710647^(16/21) 9421125192693476 a001 377/439204*1149851^(2/3) 9421125192698226 a001 377/439204*1322157322203^(1/3) 9421125192984137 a001 377/167761*141422324^(4/9) 9421125192984137 a001 377/167761*73681302247^(1/3) 9421125192984352 a001 377/167761*4870847^(13/24) 9421125192995685 a001 377/167761*710647^(13/21) 9421125193069379 a001 377/167761*271443^(2/3) 9421125193414191 a001 377/64079*64079^(2/3) 9421125193435523 a001 377/1149851*103682^(8/9) 9421125193617083 a001 377/167761*103682^(13/18) 9421125194943799 a001 377/64079*4106118243^(1/3) 9421125197527230 a001 377/271443*39603^(5/6) 9421125197716805 a001 377/167761*39603^(26/33) 9421125197976971 a001 377/439204*39603^(29/33) 9421125198481334 a001 377/1149851*39603^(32/33) 9421125199130389 a001 377/64079*39603^(23/33) 9421125208196984 a001 13/844*167761^(8/15) 9421125208375509 a001 13/844*20633239^(8/21) 9421125208375518 a001 13/844*23725150497407^(5/24) 9421125208375518 a001 13/844*3461452808002^(2/9) 9421125208375518 a001 13/844*28143753123^(4/15) 9421125208375518 a001 13/844*10749957122^(5/18) 9421125208375518 a001 13/844*228826127^(1/3) 9421125208375683 a001 13/844*4870847^(5/12) 9421125208376728 a001 13/844*1860498^(4/9) 9421125208384401 a001 13/844*710647^(10/21) 9421125208862400 a001 13/844*103682^(5/9) 9421125212016032 a001 13/844*39603^(20/33) 9421125216148813 a001 377/39603*15127^(43/60) 9421125225396428 a001 377/103682*15127^(49/60) 9421125226508650 a001 377/64079*15127^(23/30) 9421125228666143 a001 377/167761*15127^(13/15) 9421125230262107 a001 377/271443*15127^(11/12) 9421125232497387 a001 377/439204*15127^(29/30) 9421125233231420 r002 38th iterates of z^2 + 9421125235823215 a001 13/844*15127^(2/3) 9421125236142994 a001 377/9349*9349^(34/57) 9421125242511963 a001 4181/843*3571^(4/51) 9421125262816236 m003 13/2+Sqrt[5]/2+(5*Coth[1/2+Sqrt[5]/2])/3 9421125263831819 r005 Im(z^2+c),c=-3/5+18/101*I,n=36 9421125285966415 m001 (Pi+Si(Pi))/(MasserGramain-Salem) 9421125292892441 a001 4181/843*9349^(4/57) 9421125300437893 a001 377/9349*45537549124^(2/9) 9421125300437912 a001 377/9349*12752043^(1/3) 9421125300456563 a001 4181/843*4870847^(1/24) 9421125300457435 a001 4181/843*710647^(1/21) 9421125300505234 a001 4181/843*103682^(1/18) 9421125300820598 a001 4181/843*39603^(2/33) 9421125303201316 a001 4181/843*15127^(1/15) 9421125303532329 a001 377/9349*39603^(17/33) 9421125309168442 a001 123/121393*10946^(56/57) 9421125317540912 r005 Im(z^2+c),c=-21/32+11/64*I,n=56 9421125321359803 a001 4181/843*5778^(2/27) 9421125323768435 a001 377/9349*15127^(17/30) 9421125335409128 r009 Re(z^3+c),c=-17/23+32/33*I,n=2 9421125336268526 r002 17th iterates of z^2 + 9421125343626339 l006 ln(7946/8731) 9421125344832966 a001 377/15127*5778^(37/54) 9421125377315580 m001 1/ln(Niven)*CareFree^2/Pi^2 9421125398813634 r005 Re(z^2+c),c=-55/62+13/55*I,n=5 9421125411352550 a001 377/39603*5778^(43/54) 9421125417408086 a001 13/844*5778^(20/27) 9421125429975434 a007 Real Root Of 997*x^4-371*x^3-917*x^2+298*x-1 9421125435331252 a001 377/64079*5778^(23/27) 9421125443111411 k007 concat of cont frac of 9421125447837896 a001 377/103682*5778^(49/54) 9421125451278915 r005 Im(z^2+c),c=-67/118+6/35*I,n=47 9421125461638719 a001 4181/843*2207^(1/12) 9421125464726476 a001 377/167761*5778^(26/27) 9421125466779583 m001 (BesselK(0,1)+ZetaP(2))^BesselJ(1,1) 9421125467141746 a001 2255/281*843^(1/42) 9421125467544493 r002 13th iterates of z^2 + 9421125478115577 a001 377/9349*5778^(17/27) 9421125483345827 m001 (BesselK(0,1)+ln(gamma))/(ln(Pi)+Ei(1,1)) 9421125488615067 r002 6th iterates of z^2 + 9421125488615067 r002 6th iterates of z^2 + 9421125513297264 a003 sin(Pi*11/118)+sin(Pi*17/75) 9421125519789134 m001 ln(GAMMA(1/4))^2*DuboisRaymond*cos(1)^2 9421125520254990 h001 (-2*exp(1)+10)/(-9*exp(4)+7) 9421125525830743 a001 377/3571*3571^(28/51) 9421125527707214 s002 sum(A061388[n]/(exp(2*pi*n)-1),n=1..infinity) 9421125534317146 m001 (3^(1/2)-ln(2)/ln(10))/(3^(1/3)+ZetaP(4)) 9421125534434113 k008 concat of cont frac of 9421125545301569 r004 Re(z^2+c),c=5/24-7/16*I,z(0)=I,n=12 9421125572117357 r002 38th iterates of z^2 + 9421125578754795 m001 Zeta(1/2)/gamma/Khinchin 9421125582300728 a007 Real Root Of 174*x^4-644*x^3+853*x^2+610*x-858 9421125585811740 m001 (Pi-sin(1))/(Gompertz-Riemann3rdZero) 9421125621734775 a007 Real Root Of -653*x^4+71*x^3-161*x^2-368*x+370 9421125639049980 a007 Real Root Of -475*x^4+373*x^3+997*x^2+816*x-86 9421125649345653 a007 Real Root Of -274*x^4+793*x^3-119*x^2-180*x+815 9421125651989600 r005 Im(z^2+c),c=-5/8+11/241*I,n=18 9421125755626627 m001 Artin^(GAMMA(5/6)*GAMMA(5/12)) 9421125755626627 m001 Artin^(GAMMA(5/6)*Pi*csc(5/12*Pi)/GAMMA(7/12)) 9421125773412603 h001 (1/2*exp(1)+3/7)/(4/11*exp(1)+10/11) 9421125773412603 m005 (1/2*exp(1)+3/7)/(4/11*exp(1)+10/11) 9421125786599974 a001 1597/843*3571^(10/51) 9421125819112513 k006 concat of cont frac of 9421125826684638 h001 (-2*exp(2)+5)/(-7*exp(5)+1) 9421125827300534 r002 22th iterates of z^2 + 9421125838330427 g002 -Psi(11/12)-Psi(8/11)-Psi(3/11)-Psi(2/7) 9421125840350969 r005 Im(z^2+c),c=-9/14+23/34*I,n=3 9421125866176738 m001 BesselK(0,1)*Trott-Zeta(1,2) 9421125878494101 a001 377/3571*9349^(28/57) 9421125890236289 a007 Real Root Of 99*x^4+896*x^3-364*x^2-260*x-823 9421125894399682 r002 25th iterates of z^2 + 9421125896047598 m001 (Zeta(5)+Zeta(1/2))/(FeigenbaumDelta-ZetaP(3)) 9421125905011886 m009 (3/4*Psi(1,3/4)-1/3)/(8*Catalan+Pi^2-1/2) 9421125912551176 a001 1597/843*9349^(10/57) 9421125913753889 m001 (3^(1/2)+Catalan)/(-Gompertz+Magata) 9421125924453452 a001 377/3571*24476^(4/9) 9421125931416808 a001 1597/843*167761^(2/15) 9421125931442838 a001 377/3571*20633239^(4/15) 9421125931442844 a001 377/3571*17393796001^(4/21) 9421125931442844 a001 377/3571*505019158607^(1/6) 9421125931442844 a001 377/3571*599074578^(2/9) 9421125931442960 a001 377/3571*4870847^(7/24) 9421125931449062 a001 377/3571*710647^(1/3) 9421125931461439 a001 1597/843*20633239^(2/21) 9421125931461441 a001 1597/843*3461452808002^(1/18) 9421125931461441 a001 1597/843*28143753123^(1/15) 9421125931461441 a001 1597/843*228826127^(1/12) 9421125931461743 a001 1597/843*1860498^(1/9) 9421125931783661 a001 377/3571*103682^(7/18) 9421125932371570 a001 1597/843*39603^(5/33) 9421125932632797 m001 MertensB1^2/exp(ErdosBorwein)^2/cos(1)^2 9421125933991204 a001 377/3571*39603^(14/33) 9421125938323366 a001 1597/843*15127^(1/6) 9421125950656233 a001 377/3571*15127^(7/15) 9421125963024592 r005 Im(z^2+c),c=6/17+19/50*I,n=16 9421125968807580 a001 1926/726103*2178309^(28/39) 9421125974520226 a007 Real Root Of 77*x^4+663*x^3-554*x^2+231*x-853 9421125974867719 r005 Re(z^2+c),c=-12/11+8/61*I,n=54 9421125983719587 a001 1597/843*5778^(5/27) 9421125985402686 a007 Real Root Of -966*x^4-14*x^3+854*x^2+109*x+94 9421125991351728 a001 4/55*5702887^(14/23) 9421125996472770 m005 (1/2*Pi-5/6)/(1/7*Zeta(3)-1/4) 9421126050389650 a007 Real Root Of -551*x^4+761*x^3+452*x^2-376*x+315 9421126077765653 a001 377/3571*5778^(14/27) 9421126096957853 m001 (-exp(1/Pi)+Porter)/(Psi(1,1/3)-ln(2)/ln(10)) 9421126128331129 r005 Re(z^2+c),c=-29/78+37/57*I,n=55 9421126128508447 a001 39603/8*317811^(7/9) 9421126131014941 k001 Champernowne real with 184*n+758 9421126159617285 a001 377/5778*2207^(31/48) 9421126194042753 m005 (1/2*3^(1/2)-1/12)/(4/11*Catalan-1/4) 9421126204838327 m001 (GAMMA(19/24)+Tribonacci)/(exp(Pi)+Psi(2,1/3)) 9421126205858281 s001 sum(exp(-2*Pi/5)^n*A248053[n],n=1..infinity) 9421126205858281 s002 sum(A248053[n]/(exp(2/5*pi*n)),n=1..infinity) 9421126206344494 a001 1149851/8*4181^(7/9) 9421126208127550 r005 Im(z^2+c),c=-3/4+1/126*I,n=12 9421126216114082 r005 Re(z^2+c),c=5/11+23/58*I,n=14 9421126237315811 a007 Real Root Of -328*x^4+247*x^3-571*x^2-730*x+284 9421126238247498 m001 (Bloch-LaplaceLimit)/(ln(Pi)+ln(2^(1/2)+1)) 9421126239822258 m001 (QuadraticClass+Trott2nd)^GolombDickman 9421126311048122 k007 concat of cont frac of 9421126318039681 r002 3th iterates of z^2 + 9421126325297989 b008 ProductLog[ArcSec[Pi]^4] 9421126334416904 a001 1597/843*2207^(5/24) 9421126347821317 r002 41th iterates of z^2 + 9421126357470724 h001 (1/11*exp(2)+1/2)/(5/12*exp(1)+1/9) 9421126358960441 m005 (5*Pi-1/3)/(2*Catalan-1/5) 9421126359697956 l006 ln(3907/10023) 9421126374230342 m001 (gamma(2)-GlaisherKinkelin)/(Rabbit+Robbin) 9421126379790531 m001 ArtinRank2-Catalan-Sarnak 9421126391945734 a007 Real Root Of -562*x^4+323*x^3+288*x^2+280*x+721 9421126421310111 k008 concat of cont frac of 9421126424747801 a007 Real Root Of 272*x^4-602*x^3+841*x^2+758*x-750 9421126446461730 r009 Im(z^3+c),c=-29/56+3/32*I,n=13 9421126450583791 a007 Real Root Of 401*x^4-780*x^3+458*x^2-256*x+171 9421126450934563 m001 StolarskyHarborth^Kolakoski/exp(1/exp(1)) 9421126470788334 m005 (1/2*Zeta(3)+7/10)/(3/5*exp(1)-1/4) 9421126516234231 r005 Re(z^2+c),c=-3/74+15/52*I,n=5 9421126540396712 a007 Real Root Of -281*x^4-58*x^3-504*x^2+280*x+884 9421126551060102 m001 (Zeta(1,2)-polylog(4,1/2))/(GaussAGM+Rabbit) 9421126557193757 a001 2255/1926*521^(1/3) 9421126563037627 a001 4181/843*843^(2/21) 9421126569138728 a005 (1/sin(58/223*Pi))^80 9421126570221932 a007 Real Root Of 604*x^4-115*x^3-819*x^2-623*x-432 9421126607933727 a007 Real Root Of -62*x^4+712*x^3-598*x^2+635*x-614 9421126610182919 m001 (-MertensB2+Robbin)/(Backhouse-Si(Pi)) 9421126632373087 m001 (Ei(1,1)-Pi^(1/2))/(FeigenbaumD-MertensB2) 9421126638770743 m001 (gamma+ln(5))/(ln(Pi)+Salem) 9421126642413019 a001 377/15127*2207^(37/48) 9421126657320628 m001 (GAMMA(5/6)-GAMMA(13/24))/(Gompertz-ZetaQ(2)) 9421126665731374 a007 Real Root Of 599*x^4-524*x^3+772*x^2+721*x-916 9421126670486446 a001 377/9349*2207^(17/24) 9421126674133904 l006 ln(3173/8140) 9421126740932357 a001 47/832040*4181^(27/44) 9421126761469116 a001 3571/233*233^(34/45) 9421126774388983 p001 sum((-1)^n/(129*n+98)/(5^n),n=0..infinity) 9421126806973384 r009 Im(z^3+c),c=-23/98+35/38*I,n=43 9421126818483441 r005 Re(z^2+c),c=-31/34+6/37*I,n=43 9421126820197351 a001 13/844*2207^(5/6) 9421126821705779 r005 Im(z^2+c),c=-77/74+26/45*I,n=3 9421126833380917 a001 17711/15127*521^(1/3) 9421126836195922 a007 Real Root Of -56*x^4+806*x^3-416*x^2-41*x-222 9421126873676082 a001 15456/13201*521^(1/3) 9421126876013129 a001 89/322*199^(2/3) 9421126879555068 a001 121393/103682*521^(1/3) 9421126880412800 a001 105937/90481*521^(1/3) 9421126880537941 a001 832040/710647*521^(1/3) 9421126880556199 a001 726103/620166*521^(1/3) 9421126880558863 a001 5702887/4870847*521^(1/3) 9421126880559252 a001 4976784/4250681*521^(1/3) 9421126880559308 a001 39088169/33385282*521^(1/3) 9421126880559317 a001 34111385/29134601*521^(1/3) 9421126880559318 a001 267914296/228826127*521^(1/3) 9421126880559318 a001 233802911/199691526*521^(1/3) 9421126880559318 a001 1836311903/1568397607*521^(1/3) 9421126880559318 a001 1602508992/1368706081*521^(1/3) 9421126880559318 a001 12586269025/10749957122*521^(1/3) 9421126880559318 a001 10983760033/9381251041*521^(1/3) 9421126880559318 a001 86267571272/73681302247*521^(1/3) 9421126880559318 a001 75283811239/64300051206*521^(1/3) 9421126880559318 a001 2504730781961/2139295485799*521^(1/3) 9421126880559318 a001 365435296162/312119004989*521^(1/3) 9421126880559318 a001 139583862445/119218851371*521^(1/3) 9421126880559318 a001 53316291173/45537549124*521^(1/3) 9421126880559318 a001 20365011074/17393796001*521^(1/3) 9421126880559318 a001 7778742049/6643838879*521^(1/3) 9421126880559318 a001 2971215073/2537720636*521^(1/3) 9421126880559318 a001 1134903170/969323029*521^(1/3) 9421126880559318 a001 433494437/370248451*521^(1/3) 9421126880559319 a001 165580141/141422324*521^(1/3) 9421126880559322 a001 63245986/54018521*521^(1/3) 9421126880559344 a001 24157817/20633239*521^(1/3) 9421126880559492 a001 9227465/7881196*521^(1/3) 9421126880560509 a001 3524578/3010349*521^(1/3) 9421126880567483 a001 1346269/1149851*521^(1/3) 9421126880615283 a001 514229/439204*521^(1/3) 9421126880942908 a001 196418/167761*521^(1/3) 9421126883188480 a001 75025/64079*521^(1/3) 9421126888513347 a001 47*(1/2*5^(1/2)+1/2)^15*322^(1/15) 9421126898579864 a001 28657/24476*521^(1/3) 9421126907092908 m005 (1/2*3^(1/2)+1/11)/(1/9*Pi+2/3) 9421126909569491 m002 -6+E^Pi+Pi^6-Pi*Cosh[Pi] 9421126915956534 a007 Real Root Of -59*x^4+227*x^3+61*x^2+682*x-840 9421126919351017 a001 377/39603*2207^(43/48) 9421126992917639 r002 19th iterates of z^2 + 9421127004073977 a001 10946/9349*521^(1/3) 9421127022525786 r005 Re(z^2+c),c=-59/66+7/36*I,n=45 9421127026116481 r009 Re(z^3+c),c=-7/40+32/47*I,n=61 9421127040310166 a007 Real Root Of 965*x^4-41*x^3+318*x^2+678*x-438 9421127046627386 p001 sum(1/(440*n+7)/n/(24^n),n=1..infinity) 9421127048538928 a001 377/64079*2207^(23/24) 9421127059718185 a001 377/3571*2207^(7/12) 9421127073183937 m001 (Zeta(3)-Zeta(1,-1))/(exp(1/Pi)+ZetaP(4)) 9421127095184935 l006 ln(6539/7185) 9421127104438490 a003 sin(Pi*25/106)/cos(Pi*29/118) 9421127112613434 k007 concat of cont frac of 9421127113361121 k006 concat of cont frac of 9421127118112602 m005 (1/3*Pi-3/7)/(2/5*Pi-3/5) 9421127119990986 a001 2584/843*843^(1/6) 9421127127988229 a007 Real Root Of -616*x^4+641*x^3+548*x^2+192*x-718 9421127128948358 m001 (2^(1/2)-CareFree)/(-LandauRamanujan+Trott) 9421127131214971 k001 Champernowne real with 185*n+757 9421127145783518 m001 GAMMA(11/12)/DuboisRaymond/Stephens 9421127152428990 a007 Real Root Of 792*x^4+700*x^3+663*x^2+500*x-156 9421127158276560 s001 sum(exp(-Pi/3)^n*A148101[n],n=1..infinity) 9421127170254947 a007 Real Root Of -396*x^4-692*x^3-821*x^2+484*x+918 9421127177824432 l006 ln(2439/6257) 9421127191015506 m005 (1/2*gamma-6/11)/(7/12*Zeta(3)-3/7) 9421127195390375 m005 (1/2*gamma+9/10)/(6*5^(1/2)-4/5) 9421127241511785 a007 Real Root Of 131*x^4+38*x^3-272*x^2-812*x-595 9421127251582728 a001 2/969323029*76^(15/17) 9421127280034382 a001 3/4181*2^(11/28) 9421127310655372 a007 Real Root Of -651*x^4+343*x^3+18*x^2-299*x+502 9421127315846655 a007 Real Root Of -272*x^4+702*x^3-735*x^2-766*x+732 9421127329137580 r005 Re(z^2+c),c=-9/10+22/103*I,n=22 9421127340322129 a001 987/1364*521^(16/39) 9421127343377990 a007 Real Root Of -586*x^4+263*x^3+235*x^2-864*x-341 9421127361870055 a001 329/281*843^(13/42) 9421127393311536 m005 (1/2*exp(1)-2/3)/(32/77+1/7*5^(1/2)) 9421127404143748 m002 -4+E^Pi+Pi/E^Pi-Pi^6 9421127423281633 m003 11/2+Sqrt[5]/4+(2*E^(1/2+Sqrt[5]/2))/3 9421127423998343 m008 (4/5*Pi^3+5)/(1/3*Pi^4-5/6) 9421127455461257 r009 Re(z^3+c),c=-15/98+17/23*I,n=2 9421127462728684 a007 Real Root Of 334*x^4-809*x^3-424*x^2-22*x-584 9421127478683523 m001 (gamma(1)+GlaisherKinkelin)/(OneNinth+Salem) 9421127498326040 a007 Real Root Of 679*x^4-362*x^3+110*x^2+13*x-923 9421127538684802 b008 9+Gudermannian[1]^6 9421127550785794 a007 Real Root Of 405*x^4-353*x^3+85*x^2-219*x-896 9421127562608872 m001 (ErdosBorwein+Grothendieck)/(Kac-Robbin) 9421127564501648 m002 (5*Pi^4*Cosh[Pi])/6+Log[Pi] 9421127566857368 r009 Re(z^3+c),c=-7/118+34/41*I,n=37 9421127582671414 a003 cos(Pi*13/119)/sin(Pi*51/104) 9421127620642562 r008 a(0)=1,K{-n^6,7+8*n^3+7*n^2-4*n} 9421127620802252 a001 2207/832040*2178309^(28/39) 9421127621399630 a007 Real Root Of 977*x^4+528*x^3+98*x^2+844*x+380 9421127671228253 m005 (-5/24+1/8*5^(1/2))/(3*exp(1)-3/5) 9421127675528575 a001 2255/281*322^(1/36) 9421127676993390 a001 15456/41*4^(37/56) 9421127692606539 m001 (MertensB1+ThueMorse)/(GAMMA(5/6)-Shi(1)) 9421127701288294 a003 cos(Pi*1/78)*sin(Pi*29/74) 9421127711162267 r009 Re(z^3+c),c=-1/126+44/59*I,n=20 9421127715220021 m001 1/ln(TwinPrimes)*FeigenbaumB/GAMMA(5/12) 9421127723979484 a001 4181/2207*521^(10/39) 9421127727141440 a001 4181/3571*521^(1/3) 9421127778924339 r005 Im(z^2+c),c=-61/56+19/58*I,n=8 9421127780797141 a001 377/1364*1364^(22/45) 9421127812099772 a007 Real Root Of 904*x^4-618*x^3-280*x^2+252*x-743 9421127818886927 r008 a(0)=1,K{-n^6,1+9*n^3+n^2+7*n} 9421127832765239 a007 Real Root Of 4*x^4+380*x^3+295*x^2-216*x-593 9421127855603978 m001 Kolakoski^(DuboisRaymond*MertensB3) 9421127881420172 a007 Real Root Of 224*x^4+184*x^3+277*x^2-824*x+75 9421127906013128 m001 ln(PrimesInBinary)/GolombDickman*Sierpinski^2 9421127920157268 a007 Real Root Of -876*x^4-974*x^3-501*x^2+92*x+407 9421127933268689 a007 Real Root Of 730*x^4-734*x^3-362*x^2+215*x-665 9421127938430463 a007 Real Root Of 712*x^4-627*x^3+52*x^2-934*x+88 9421127992391140 r002 28th iterates of z^2 + 9421128014880014 a003 sin(Pi*41/105)/sin(Pi*39/80) 9421128025236679 r002 3th iterates of z^2 + 9421128025481629 r005 Re(z^2+c),c=-9/10+42/187*I,n=37 9421128026739061 p004 log(32833/29881) 9421128076417565 r005 Im(z^2+c),c=-29/98+8/57*I,n=15 9421128092900697 a007 Real Root Of -194*x^4+708*x^3+842*x^2-509*x-707 9421128097787240 r002 22th iterates of z^2 + 9421128115190959 l006 ln(1705/4374) 9421128125405232 a007 Real Root Of 321*x^4-312*x^3-553*x^2+381*x+336 9421128131415001 k001 Champernowne real with 186*n+756 9421128160215660 m001 (3^(1/2))^LaplaceLimit/(Ei(1)^LaplaceLimit) 9421128201716871 m002 -1+Pi^3-Pi^4+Pi^8 9421128223558416 a007 Real Root Of -652*x^4+949*x^3-27*x^2-481*x+878 9421128313008761 a007 Real Root Of 134*x^4-733*x^3+395*x^2-428*x+560 9421128345932011 a007 Real Root Of -867*x^4+492*x^3+430*x^2-505*x+237 9421128356791180 a001 8/47*1149851^(18/23) 9421128356796756 a001 8/47*1322157322203^(9/23) 9421128359446382 a007 Real Root Of 48*x^4-126*x^3+736*x^2-42*x-836 9421128370492610 a007 Real Root Of 797*x^4-567*x^3-501*x^2-351*x-988 9421128409818314 r005 Re(z^2+c),c=17/126+41/61*I,n=30 9421128430045514 m002 -25+Pi^6+5*Log[Pi] 9421128438200148 m001 GAMMA(1/24)*Backhouse/ln(Zeta(5)) 9421128443813518 m005 (15/28+1/4*5^(1/2))/(5/9*Pi-7/12) 9421128455982171 a001 610/843*1364^(16/45) 9421128466934566 a007 Real Root Of -840*x^4+419*x^3+604*x^2-708*x-191 9421128510753941 a007 Real Root Of -631*x^4+378*x^3+35*x^2+192*x+963 9421128527921890 a007 Real Root Of -429*x^4+651*x^3+679*x^2+737*x+974 9421128540293669 r002 25th iterates of z^2 + 9421128552923229 m001 (1+Chi(1))/(KhinchinLevy+LandauRamanujan) 9421128566130316 r005 Im(z^2+c),c=-5/6+47/246*I,n=14 9421128574835679 r005 Im(z^2+c),c=-71/64+6/47*I,n=10 9421128580301518 a007 Real Root Of 951*x^4+40*x^3+212*x^2+468*x-463 9421128581661103 a007 Real Root Of -819*x^4+415*x^3-689*x^2-816*x+835 9421128592463119 a007 Real Root Of 802*x^4+460*x^3+575*x^2-78*x-831 9421128627565726 a007 Real Root Of -884*x^4-417*x^3-715*x^2-668*x+353 9421128649047686 m005 (1/2*5^(1/2)+1/9)/(47/144+7/16*5^(1/2)) 9421128653584909 r009 Im(z^3+c),c=-49/78+42/61*I,n=3 9421128679938361 r009 Im(z^3+c),c=-27/34+19/56*I,n=2 9421128697056052 r005 Re(z^2+c),c=-13/54+14/23*I,n=9 9421128706209373 r005 Re(z^2+c),c=-9/10+22/115*I,n=47 9421128721766496 m001 (FransenRobinson-ln(gamma))^Si(Pi) 9421128729064887 a007 Real Root Of -781*x^4+127*x^3-216*x^2-757*x+200 9421128783144397 a007 Real Root Of 839*x^4-343*x^3+737*x^2+917*x-738 9421128798842257 q001 651/691 9421128846148990 m001 PrimesInBinary/LandauRamanujan/Stephens 9421128856814500 m001 (Pi+Robbin)/(ThueMorse-ZetaQ(3)) 9421128866715853 r009 Im(z^3+c),c=-3/34+57/61*I,n=5 9421128869070924 r005 Im(z^2+c),c=-15/62+2/15*I,n=12 9421128892572946 m005 (1/2*Zeta(3)+7/9)/(3/8*5^(1/2)+5/8) 9421128916172953 m001 Porter^2*ln(GaussKuzminWirsing)^2*GAMMA(7/24) 9421128932887641 m001 (-MasserGramain+Niven)/(Psi(1,1/3)+ln(Pi)) 9421128938414713 a007 Real Root Of -901*x^4+87*x^3+983*x^2-569*x-626 9421128942215781 m006 (5/6*Pi+1/4)/(3*Pi^2+5/6) 9421128942215781 m008 (5/6*Pi+1/4)/(3*Pi^2+5/6) 9421128969539523 l006 ln(2676/6865) 9421129007400844 m001 (GAMMA(19/24)+ArtinRank2)/(sin(1)+ln(Pi)) 9421129030007846 r002 8th iterates of z^2 + 9421129046287367 h001 (7/10*exp(1)+2/9)/(1/5*exp(2)+7/9) 9421129053088815 b008 3/32+Sqrt[87] 9421129059686675 a003 cos(Pi*2/89)-cos(Pi*3/61) 9421129082933656 m001 (FeigenbaumD-Rabbit)/(Robbin-ZetaP(2)) 9421129087914672 a001 1597/843*843^(5/21) 9421129114262010 r009 Re(z^3+c),c=-29/94+23/37*I,n=12 9421129131615031 k001 Champernowne real with 187*n+755 9421129141882839 a007 Real Root Of -363*x^4-565*x^3-785*x^2+471*x+954 9421129150490962 a007 Real Root Of 908*x^4+830*x^3+283*x^2-267*x-524 9421129151989803 p004 log(29741/27067) 9421129159305263 m001 (KhinchinLevy-Sierpinski)/ZetaR(2) 9421129176023860 a007 Real Root Of 983*x^4-804*x^3-357*x^2+141*x-997 9421129188780831 a007 Real Root Of -947*x^4+326*x^3+964*x^2+674*x+798 9421129191226021 k007 concat of cont frac of 9421129191837589 a007 Real Root Of -898*x^4+371*x^3+532*x^2+371*x+895 9421129196520573 a007 Real Root Of 979*x^4-88*x^3+100*x^2+318*x-634 9421129282265616 m006 (1/2/Pi+3/5)/(5/6*Pi^2-1/6) 9421129283909727 a001 5473/2889*521^(10/39) 9421129300722323 a001 17711/2207*199^(1/33) 9421129328170808 a007 Real Root Of 163*x^4+99*x^3+393*x^2+286*x-125 9421129337462731 m001 (ArtinRank2-BesselJ(0,1))/(Rabbit+ZetaQ(3)) 9421129338500242 a007 Real Root Of 153*x^4-517*x^3+498*x^2+227*x-781 9421129357471220 a007 Real Root Of -492*x^4-687*x^3-592*x^2-422*x-59 9421129367253404 r005 Im(z^2+c),c=-25/34+7/115*I,n=49 9421129368953894 l006 ln(3647/9356) 9421129384959238 a007 Real Root Of -508*x^4+349*x^3-907*x^2-759*x+782 9421129401963052 a001 29/1346269*6557470319842^(1/20) 9421129401966813 a001 29/832040*433494437^(1/20) 9421129402071686 a001 29/514229*28657^(1/20) 9421129439830586 a007 Real Root Of 410*x^4-997*x^3-201*x^2+292*x+414 9421129511500528 a001 28657/15127*521^(10/39) 9421129517613957 a007 Real Root Of 880*x^4-598*x^3-938*x^2-144*x+775 9421129521471984 a007 Real Root Of 982*x^4+271*x^3+802*x^2+331*x-947 9421129525454307 r002 17th iterates of z^2 + 9421129544705579 a001 75025/39603*521^(10/39) 9421129549550131 a001 98209/51841*521^(10/39) 9421129550256941 a001 514229/271443*521^(10/39) 9421129550360064 a001 1346269/710647*521^(10/39) 9421129550384408 a001 2178309/1149851*521^(10/39) 9421129550423797 a001 208010/109801*521^(10/39) 9421129550693774 a001 317811/167761*521^(10/39) 9421129552544228 a001 121393/64079*521^(10/39) 9421129565227430 a001 11592/6119*521^(10/39) 9421129576893204 a007 Real Root Of -936*x^4+420*x^3+509*x^2-38*x+601 9421129581650142 a003 sin(Pi*4/71)+sin(Pi*5/18) 9421129603307149 m008 (2*Pi-4)/(1/4*Pi^6+2) 9421129613375755 r005 Re(z^2+c),c=-31/34+19/117*I,n=35 9421129632988881 a007 Real Root Of -414*x^4+614*x^3+523*x^2+302*x-936 9421129634803210 a007 Real Root Of -89*x^4+953*x^3-193*x^2-199*x-368 9421129652159384 a001 17711/9349*521^(10/39) 9421129667648458 a007 Real Root Of 761*x^4+309*x^3-315*x^2+889*x+776 9421129743153499 a007 Real Root Of 21*x^4+249*x^3+449*x^2-405*x-891 9421129766251453 r008 a(0)=0,K{-n^6,-98+16*n^3-24*n^2-n} 9421129780638047 r002 56th iterates of z^2 + 9421129802306549 m001 Paris/ln(Champernowne)*Riemann1stZero^2 9421129807165507 l006 ln(5132/5639) 9421129812543288 a001 377/199*15127^(20/31) 9421129830189269 m001 FeigenbaumKappa^2/Robbin/ln(GAMMA(1/6))^2 9421129853819067 a001 (5+5^(1/2))^(17/15) 9421129864896806 m001 Trott/(TreeGrowth2nd-BesselI(1,2)) 9421129926195041 a007 Real Root Of 407*x^4+478*x^3+358*x^2+351*x+92 9421129932530545 s001 sum(exp(-4*Pi/5)^n*A192575[n],n=1..infinity) 9421129937722028 a001 377/1364*3571^(22/51) 9421129945001832 a007 Real Root Of -216*x^4+335*x^3-396*x^2-194*x+619 9421129947658586 a007 Real Root Of -740*x^4+524*x^3-740*x^2+944*x+96 9421129951803360 a007 Real Root Of -147*x^4-199*x^3+190*x^2+756*x+493 9421130023599964 a007 Real Root Of x^4+88*x^3-591*x^2-555*x-583 9421130024654879 a001 610/843*3571^(16/51) 9421130051389260 a007 Real Root Of 122*x^4+229*x^3+714*x^2-476*x-51 9421130104698372 a007 Real Root Of 54*x^4-723*x^3-552*x^2+118*x-46 9421130110808493 a001 47*(1/2*5^(1/2)+1/2)^6*843^(7/10) 9421130116519950 a007 Real Root Of -487*x^4-197*x^3-933*x^2-915*x+185 9421130131815061 k001 Champernowne real with 188*n+754 9421130131915071 k005 Champernowne real with floor(Pi*(60*n+240)) 9421130132474616 a001 10946/7*29^(8/15) 9421130162396204 m001 ZetaP(2)/(gamma-Shi(1)) 9421130200979847 m005 (1/2*exp(1)-6/7)/(1/5*2^(1/2)+1/4) 9421130214814795 a001 377/1364*9349^(22/57) 9421130221306402 g002 -gamma-2*ln(2)+Psi(7/9)-Psi(1/11)-Psi(4/5) 9421130226176892 a001 610/843*9349^(16/57) 9421130238398396 m008 (5*Pi^4+1)/(1/6*Pi^5+4/5) 9421130244837954 a001 6765/2207*521^(7/39) 9421130247999910 a001 6765/3571*521^(10/39) 9421130256417364 a001 377/1364*7881196^(2/9) 9421130256417398 a001 377/1364*312119004989^(2/15) 9421130256417398 a001 377/1364*1568397607^(1/6) 9421130256433331 a001 610/843*23725150497407^(1/12) 9421130256433331 a001 610/843*10749957122^(1/9) 9421130256433331 a001 610/843*228826127^(2/15) 9421130256433397 a001 610/843*4870847^(1/6) 9421130256436884 a001 610/843*710647^(4/21) 9421130256628084 a001 610/843*103682^(2/9) 9421130257889537 a001 610/843*39603^(8/33) 9421130258419681 a001 377/1364*39603^(1/3) 9421130267412416 a001 610/843*15127^(4/15) 9421130268728953 b008 ArcSin[Sqrt[-3+Pi]/4] 9421130271513639 a001 377/1364*15127^(11/30) 9421130308188557 m001 Conway^ln(Pi)-ThueMorse 9421130311617194 l006 ln(3275/3306) 9421130316286030 r009 Im(z^3+c),c=-7/38+49/54*I,n=31 9421130329084424 r002 20th iterates of z^2 + 9421130339847393 a007 Real Root Of -254*x^4+327*x^3+499*x^2+892*x+871 9421130340046403 a001 610/843*5778^(8/27) 9421130345343528 a001 3/5*514229^(36/49) 9421130352924871 m001 (Backhouse-ln(2^(1/2)+1))^OneNinth 9421130363682112 r005 Re(z^2+c),c=-29/31+5/52*I,n=5 9421130371385371 a001 377/1364*5778^(11/27) 9421130391684154 p003 LerchPhi(1/16,1,191/174) 9421130410019621 m001 (-TwinPrimes+Weierstrass)/(1+cos(1/12*Pi)) 9421130422878737 m003 5/6+(5*Sqrt[5])/32-Log[1/2+Sqrt[5]/2]/2 9421130434979456 a007 Real Root Of 379*x^4-413*x^3-398*x^2+34*x+368 9421130469708555 l006 ln(971/2491) 9421130470466131 m001 (Zeta(5)-gamma(1))/(Salem+ZetaQ(4)) 9421130491619924 a003 sin(Pi*8/117)/cos(Pi*50/117) 9421130518767473 r009 Re(z^3+c),c=-13/90+26/53*I,n=27 9421130536815484 m001 (Artin-Khinchin)/(PlouffeB-Riemann3rdZero) 9421130602757443 a007 Real Root Of -752*x^4-812*x^3-822*x^2-17*x+627 9421130604039405 r009 Re(z^3+c),c=-4/29+17/38*I,n=6 9421130609017403 h001 (5/12*exp(1)+5/12)/(1/5*exp(2)+1/6) 9421130618566811 m001 cos(1/5*Pi)+CopelandErdos^HardHexagonsEntropy 9421130635298489 m008 (3/5*Pi^5+2/5)/(2*Pi^4+1/2) 9421130667398930 m001 LambertW(1)+2*BesselI(1,2)*Pi/GAMMA(5/6) 9421130667398930 m001 LambertW(1)+BesselI(1,2)*GAMMA(1/6) 9421130720892236 m001 1/ln(Kolakoski)^2/Backhouse/GAMMA(19/24)^2 9421130741065506 a007 Real Root Of -340*x^4+794*x^3+153*x^2-933*x-83 9421130742202508 m001 exp(Bloch)*ErdosBorwein^2/LaplaceLimit^2 9421130755152470 m001 (Mills+Totient)/(Zeta(3)+ErdosBorwein) 9421130755954664 a007 Real Root Of -420*x^4+993*x^3+812*x^2+26*x+465 9421130770883213 r002 21th iterates of z^2 + 9421130772890022 r008 a(0)=1,K{-n^6,38+29*n^3-41*n^2-8*n} 9421130782112197 r009 Re(z^3+c),c=-7/13+17/48*I,n=3 9421130803230597 s002 sum(A160935[n]/((exp(n)+1)*n),n=1..infinity) 9421130827375313 m008 (2/5*Pi^5-1/4)/(4*Pi+2/5) 9421130836387147 a007 Real Root Of 882*x^4-739*x^3-971*x^2-120*x-564 9421130856937292 r009 Im(z^3+c),c=-11/52+50/51*I,n=25 9421130861880577 m001 (MertensB2-Sierpinski)/(GAMMA(19/24)+Bloch) 9421130862696641 a003 cos(Pi*10/111)*sin(Pi*46/105) 9421130893366538 r005 Im(z^2+c),c=-75/122+9/20*I,n=32 9421130894817387 m005 (1/2*exp(1)+6/11)/(7/8*Pi-8/11) 9421130901162377 a001 610/843*2207^(1/3) 9421130957845718 a001 2576/321*199^(1/33) 9421130959658340 r005 Im(z^2+c),c=-17/26+10/69*I,n=22 9421130962954100 m001 (Champernowne+FeigenbaumMu)/(exp(1)+Zeta(3)) 9421130982357015 m001 GAMMA(5/12)/GolombDickman^2*ln(sin(1)) 9421130988232937 a007 Real Root Of 12*x^4+14*x^3-987*x^2-495*x+112 9421130988407465 a007 Real Root Of -811*x^4+452*x^3+115*x^2-781*x+179 9421131006187405 r005 Im(z^2+c),c=-87/122+10/53*I,n=40 9421131016352417 k009 concat of cont frac of 9421131016599387 a007 Real Root Of -976*x^4+849*x^3+118*x^2-655*x+757 9421131041344221 k006 concat of cont frac of 9421131064770062 m005 (-7/12+1/6*5^(1/2))/(1/6*Pi-3/10) 9421131076481932 r002 40th iterates of z^2 + 9421131110392311 k008 concat of cont frac of 9421131111101212 k006 concat of cont frac of 9421131111216211 k006 concat of cont frac of 9421131111481222 k008 concat of cont frac of 9421131112141321 k009 concat of cont frac of 9421131115111111 k006 concat of cont frac of 9421131121611631 k006 concat of cont frac of 9421131122342148 k009 concat of cont frac of 9421131124391111 k007 concat of cont frac of 9421131132015091 k001 Champernowne real with 189*n+753 9421131142919847 a001 377/1364*2207^(11/24) 9421131149596377 a001 377/2207*843^(25/42) 9421131161411171 k008 concat of cont frac of 9421131166261314 a007 Real Root Of 522*x^4-337*x^3+87*x^2-177*x-937 9421131198306496 a007 Real Root Of -773*x^4+281*x^3+458*x^2+111*x+542 9421131199616812 a001 121393/15127*199^(1/33) 9421131202745351 m001 Pi*csc(1/12*Pi)/GAMMA(11/12)/Catalan/MertensB3 9421131211211111 k006 concat of cont frac of 9421131231361811 k006 concat of cont frac of 9421131232645527 h001 (4/9*exp(2)+5/11)/(1/10*exp(1)+1/8) 9421131234761413 r002 33th iterates of z^2 + 9421131234890740 a001 105937/13201*199^(1/33) 9421131237066998 s002 sum(A001990[n]/(exp(2*pi*n)+1),n=1..infinity) 9421131240037137 a001 416020/51841*199^(1/33) 9421131240787986 a001 726103/90481*199^(1/33) 9421131241252037 a001 1346269/167761*199^(1/33) 9421131242021845 a007 Real Root Of 961*x^4-349*x^3+556*x^2+736*x-849 9421131243217785 a001 514229/64079*199^(1/33) 9421131256691227 a001 98209/12238*199^(1/33) 9421131286068778 m001 (exp(1/Pi)-DuboisRaymond)/(Lehmer+TwinPrimes) 9421131311134121 k006 concat of cont frac of 9421131312125113 k007 concat of cont frac of 9421131313111941 k009 concat of cont frac of 9421131315219811 k007 concat of cont frac of 9421131328082945 a007 Real Root Of 319*x^4-853*x^3-830*x^2+265*x+949 9421131332971311 a001 1/29*(1/2*5^(1/2)+1/2)^26*24476^(13/19) 9421131333758812 m002 -6*Pi-Pi^2/E^Pi+Pi^6 9421131341799165 a001 1/29*(1/2*5^(1/2)+1/2)^21*64079^(16/19) 9421131342365391 m006 (3*Pi+2/3)/(2*exp(2*Pi)+1/6) 9421131343731302 a001 1/29*2139295485799^(13/19) 9421131343931093 a007 Real Root Of -788*x^4+488*x^3+93*x^2-133*x+821 9421131345809322 a001 377/199*2207^(25/31) 9421131348473553 a001 1/29*(1/2*5^(1/2)+1/2)^23*39603^(15/19) 9421131349039572 a001 75025/9349*199^(1/33) 9421131360937250 a001 1597/322*123^(2/15) 9421131369951715 r009 Im(z^3+c),c=-7/32+26/27*I,n=5 9421131379305120 a007 Real Root Of 759*x^4-490*x^3-771*x^2-317*x-622 9421131411750206 m005 (1/2*3^(1/2)-1/5)/(6*Zeta(3)-1/7) 9421131412326115 k006 concat of cont frac of 9421131419648819 a007 Real Root Of -834*x^4+50*x^3+162*x^2+18*x+572 9421131426022982 r005 Re(z^2+c),c=-125/122+5/18*I,n=20 9421131506344159 m005 (1/2*gamma+1/9)/(Zeta(3)-7/9) 9421131521959187 a001 1/29*(1/2*5^(1/2)+1/2)^29*5778^(12/19) 9421131564281123 k007 concat of cont frac of 9421131597468264 a001 55/521*123^(14/15) 9421131606948020 a001 2584/3*123^(40/41) 9421131607072621 a003 sin(Pi*4/109)+sin(Pi*31/100) 9421131617416838 r009 Im(z^3+c),c=-5/27+44/51*I,n=47 9421131639206231 m005 (1/2*5^(1/2)+1/5)/(2/5*2^(1/2)+5/6) 9421131668456962 a001 305/682*521^(19/39) 9421131672149326 m001 (GAMMA(2/3)+gamma(2))/(Champernowne+Conway) 9421131675997414 a001 21/2206*1364^(43/45) 9421131707318484 a007 Real Root Of -234*x^4+695*x^3+733*x^2-373*x-696 9421131711101152 k007 concat of cont frac of 9421131723136421 k006 concat of cont frac of 9421131725646015 a007 Real Root Of 180*x^4-831*x^3+297*x^2+565*x-568 9421131744137688 l006 ln(3150/8081) 9421131747152318 m001 (exp(1/Pi)+DuboisRaymond)/(LambertW(1)+ln(3)) 9421131748034808 r005 Im(z^2+c),c=-83/114+3/26*I,n=57 9421131755399141 a001 4/3*4181^(24/47) 9421131761185141 r002 7th iterates of z^2 + 9421131786058007 a007 Real Root Of -685*x^4+118*x^3+19*x^2-476*x+173 9421131809383023 l006 ln(8857/9732) 9421131830757987 a007 Real Root Of 974*x^4-261*x^3-319*x^2+701*x-42 9421131831227529 a007 Real Root Of 355*x^4-345*x^3-741*x^2+303*x+375 9421131834661593 m001 (Backhouse+Conway)/(5^(1/2)+ln(2)) 9421131838216984 a007 Real Root Of 978*x^4+103*x^3+765*x^2+478*x-913 9421131852699335 r005 Re(z^2+c),c=-11/20+19/31*I,n=14 9421131868617181 s002 sum(A155238[n]/(n^3*exp(n)-1),n=1..infinity) 9421131871324065 m001 GAMMA(1/24)^2*exp(ArtinRank2)/GAMMA(19/24) 9421131876284566 m008 (3/5*Pi^6-3/5)/(2*Pi^5-2/5) 9421131879758778 a007 Real Root Of -821*x^4+232*x^3+521*x^2+507*x+856 9421131909779289 m001 gamma(1)^(StolarskyHarborth/FeigenbaumMu) 9421131916206150 m001 (Gompertz-gamma(1))^ZetaR(2) 9421131929640650 m002 -Pi^3+Pi^4-Pi^8+Tanh[Pi] 9421131930194395 a001 89/103682*47^(28/45) 9421131931995775 a001 17711/5778*521^(7/39) 9421131933995739 m001 BesselJZeros(0,1)*(GAMMA(1/6)-exp(1/2)) 9421131956347663 m001 (ReciprocalLucas+ZetaP(2))/(2^(1/3)+Conway) 9421131966945313 s002 sum(A270865[n]/(exp(2*pi*n)-1),n=1..infinity) 9421131967036669 s002 sum(A106072[n]/(exp(2*pi*n)-1),n=1..infinity) 9421131967445551 s002 sum(A106062[n]/(exp(2*pi*n)-1),n=1..infinity) 9421131982004591 a001 28657/3571*199^(1/33) 9421132012852317 a003 sin(Pi*2/109)-sin(Pi*33/67) 9421132016752896 a001 987/64079*1364^(8/9) 9421132026113812 a007 Real Root Of 479*x^4-20*x^3+392*x^2+259*x-498 9421132040005328 s002 sum(A161891[n]/(exp(2*pi*n)-1),n=1..infinity) 9421132043901108 a007 Real Root Of 458*x^4-269*x^3+969*x^2+487*x-987 9421132063668571 a007 Real Root Of -671*x^4-776*x^3+704*x^2+962*x+9 9421132073787991 a007 Real Root Of -169*x^4+491*x^3-901*x^2+781*x+82 9421132080237985 a007 Real Root Of -740*x^4+485*x^3+28*x^2+673*x-64 9421132089106795 s002 sum(A251623[n]/(exp(2*pi*n)-1),n=1..infinity) 9421132112111121 k007 concat of cont frac of 9421132112982275 m001 GAMMA(11/12)/ln(Riemann2ndZero)*exp(1) 9421132113111699 s002 sum(A045456[n]/(exp(2*pi*n)-1),n=1..infinity) 9421132113202288 s002 sum(A115167[n]/(exp(2*pi*n)-1),n=1..infinity) 9421132113567113 s002 sum(A115103[n]/(exp(2*pi*n)-1),n=1..infinity) 9421132119742643 r009 Re(z^3+c),c=-13/90+26/53*I,n=30 9421132123113341 k006 concat of cont frac of 9421132132131133 k006 concat of cont frac of 9421132132215121 k001 Champernowne real with 190*n+752 9421132135297180 a007 Real Root Of 240*x^4-417*x^3+739*x^2+731*x-505 9421132142130331 m001 (GAMMA(3/4)-3^(1/3))/(Gompertz+Niven) 9421132149666801 a007 Real Root Of -964*x^4+127*x^3+593*x^2-254*x+100 9421132178148833 a001 6624/2161*521^(7/39) 9421132211190763 r005 Im(z^2+c),c=-55/114+6/37*I,n=25 9421132214062081 a001 121393/39603*521^(7/39) 9421132214202838 a007 Real Root Of -825*x^4+648*x^3+289*x^2+180*x-20 9421132215101531 k007 concat of cont frac of 9421132216904133 r005 Re(z^2+c),c=-1+55/184*I,n=7 9421132219301754 a001 317811/103682*521^(7/39) 9421132220066212 a001 832040/271443*521^(7/39) 9421132220177744 a001 311187/101521*521^(7/39) 9421132220246676 a001 1346269/439204*521^(7/39) 9421132220538673 a001 514229/167761*521^(7/39) 9421132222540049 a001 196418/64079*521^(7/39) 9421132223695547 k002 Champernowne real with 19*n^2-24*n+14 9421132224202038 r002 3th iterates of z^2 + 9421132228736712 a005 (1/cos(38/163*Pi))^163 9421132233735647 k003 Champernowne real with 1/6*n^3+18*n^2-133/6*n+13 9421132235956975 s002 sum(A241043[n]/(exp(2*pi*n)-1),n=1..infinity) 9421132236257690 a001 75025/24476*521^(7/39) 9421132243764951 a003 cos(Pi*31/116)-cos(Pi*11/36) 9421132243775748 k003 Champernowne real with 1/3*n^3+17*n^2-61/3*n+12 9421132252112312 k007 concat of cont frac of 9421132253815848 k003 Champernowne real with 1/2*n^3+16*n^2-37/2*n+11 9421132258423827 r005 Im(z^2+c),c=-11/14+7/180*I,n=56 9421132260026765 a007 Real Root Of 841*x^4+118*x^3-355*x^2+574*x+292 9421132263855948 k003 Champernowne real with 2/3*n^3+15*n^2-50/3*n+10 9421132269028621 a003 cos(Pi*17/63)+cos(Pi*43/105) 9421132273896048 k003 Champernowne real with 5/6*n^3+14*n^2-89/6*n+9 9421132283936148 k003 Champernowne real with n^3+13*n^2-13*n+8 9421132293976249 k003 Champernowne real with 7/6*n^3+12*n^2-67/6*n+7 9421132294497299 h001 (5/11*exp(2)+6/7)/(6/11*exp(2)+4/9) 9421132304016349 k003 Champernowne real with 4/3*n^3+11*n^2-28/3*n+6 9421132308424549 s002 sum(A045457[n]/(exp(2*pi*n)-1),n=1..infinity) 9421132312045249 l006 ln(2179/5590) 9421132313195135 a001 199/165580141*139583862445^(17/24) 9421132314056449 k003 Champernowne real with 3/2*n^3+10*n^2-15/2*n+5 9421132314072259 a001 199/46368*1346269^(17/24) 9421132324096549 k003 Champernowne real with 5/3*n^3+9*n^2-17/3*n+4 9421132330279796 a001 28657/9349*521^(7/39) 9421132332974570 r005 Re(z^2+c),c=-1/11+8/61*I,n=11 9421132334136649 k003 Champernowne real with 11/6*n^3+8*n^2-23/6*n+3 9421132344176741 k003 Champernowne real with 2*n^3+7*n^2-2*n+2 9421132346036325 a001 329/13201*1364^(37/45) 9421132354216841 k003 Champernowne real with 13/6*n^3+6*n^2-1/6*n+1 9421132364256941 k003 Champernowne real with 7/3*n^3+5*n^2+5/3*n 9421132374297041 k003 Champernowne real with 5/2*n^3+4*n^2+7/2*n-1 9421132377229540 r009 Re(z^3+c),c=-13/90+26/53*I,n=32 9421132379981058 a007 Real Root Of -220*x^4+190*x^3-849*x^2-419*x+691 9421132383642584 r005 Re(z^2+c),c=-23/32+17/33*I,n=4 9421132384337141 k003 Champernowne real with 8/3*n^3+3*n^2+16/3*n-2 9421132393347015 a007 Real Root Of 42*x^4-869*x^3-753*x^2+537*x+856 9421132394377241 k003 Champernowne real with 17/6*n^3+2*n^2+43/6*n-3 9421132398885041 a007 Real Root Of 702*x^4-649*x^3-744*x^2+391*x-67 9421132404417341 k003 Champernowne real with 3*n^3+n^2+9*n-4 9421132414261111 k006 concat of cont frac of 9421132414457441 k003 Champernowne real with 19/6*n^3+65/6*n-5 9421132422521131 k007 concat of cont frac of 9421132423581056 m001 GAMMA(13/24)-ln(3)*HardyLittlewoodC3 9421132423994015 r005 Re(z^2+c),c=17/64+21/38*I,n=60 9421132424497541 k003 Champernowne real with 10/3*n^3-n^2+38/3*n-6 9421132434537641 k003 Champernowne real with 7/2*n^3-2*n^2+29/2*n-7 9421132443363876 a001 987/2207*1364^(19/45) 9421132444577741 k003 Champernowne real with 11/3*n^3-3*n^2+49/3*n-8 9421132454617841 k003 Champernowne real with 23/6*n^3-4*n^2+109/6*n-9 9421132455048484 s002 sum(A165557[n]/(exp(2*pi*n)-1),n=1..infinity) 9421132457027300 q001 3727/3956 9421132464657941 k003 Champernowne real with 4*n^3-5*n^2+20*n-10 9421132474698041 k003 Champernowne real with 25/6*n^3-6*n^2+131/6*n-11 9421132478642278 r005 Re(z^2+c),c=-79/90+7/53*I,n=12 9421132481331651 a007 Real Root Of -391*x^4+77*x^3-74*x^2+589*x+993 9421132484738141 k003 Champernowne real with 13/3*n^3-7*n^2+71/3*n-12 9421132486540518 b008 94+(3+Sqrt[3])^(-1) 9421132494778241 k003 Champernowne real with 9/2*n^3-8*n^2+51/2*n-13 9421132499899013 m001 (cos(1)+GAMMA(2/3))/(CareFree+Mills) 9421132504818341 k003 Champernowne real with 14/3*n^3-9*n^2+82/3*n-14 9421132514858441 k003 Champernowne real with 29/6*n^3-10*n^2+175/6*n-15 9421132517143880 l003 tanh(1+87/115) 9421132517143880 l004 tanh(202/115) 9421132521857731 a007 Real Root Of -459*x^4+905*x^3+96*x^2-913*x+173 9421132524898541 k003 Champernowne real with 5*n^3-11*n^2+31*n-16 9421132530497140 m001 MertensB3^ZetaQ(2)/(MertensB3^MertensB1) 9421132534938641 k003 Champernowne real with 31/6*n^3-12*n^2+197/6*n-17 9421132544978741 k003 Champernowne real with 16/3*n^3-13*n^2+104/3*n-18 9421132551324221 a007 Real Root Of -910*x^4+734*x^3+149*x^2-943*x+310 9421132552122701 k006 concat of cont frac of 9421132554730285 r001 34i'th iterates of 2*x^2-1 of 9421132555018841 k003 Champernowne real with 11/2*n^3-14*n^2+73/2*n-19 9421132564887812 r009 Re(z^3+c),c=-13/90+26/53*I,n=34 9421132565058941 k003 Champernowne real with 17/3*n^3-15*n^2+115/3*n-20 9421132575099041 k003 Champernowne real with 35/6*n^3-16*n^2+241/6*n-21 9421132585139141 k003 Champernowne real with 6*n^3-17*n^2+42*n-22 9421132591439992 a007 Real Root Of 499*x^4-497*x^3+610*x^2+758*x-636 9421132595179241 k003 Champernowne real with 37/6*n^3-18*n^2+263/6*n-23 9421132597634182 m001 1/GAMMA(11/12)^2/ln(Khintchine)*Zeta(5) 9421132602092816 r009 Re(z^3+c),c=-13/90+26/53*I,n=37 9421132605219341 k003 Champernowne real with 19/3*n^3-19*n^2+137/3*n-24 9421132606111026 r009 Re(z^3+c),c=-13/90+26/53*I,n=39 9421132609624750 r009 Re(z^3+c),c=-13/90+26/53*I,n=41 9421132609649698 a007 Real Root Of -432*x^4+847*x^3+632*x^2+512*x+970 9421132610458189 r009 Re(z^3+c),c=-13/90+26/53*I,n=44 9421132610516896 r009 Re(z^3+c),c=-13/90+26/53*I,n=46 9421132610582114 r009 Re(z^3+c),c=-13/90+26/53*I,n=48 9421132610600287 r009 Re(z^3+c),c=-13/90+26/53*I,n=51 9421132610601050 r009 Re(z^3+c),c=-13/90+26/53*I,n=53 9421132610602249 r009 Re(z^3+c),c=-13/90+26/53*I,n=55 9421132610602637 r009 Re(z^3+c),c=-13/90+26/53*I,n=58 9421132610602645 r009 Re(z^3+c),c=-13/90+26/53*I,n=60 9421132610602667 r009 Re(z^3+c),c=-13/90+26/53*I,n=62 9421132610602668 r009 Re(z^3+c),c=-13/90+26/53*I,n=57 9421132610602675 r009 Re(z^3+c),c=-13/90+26/53*I,n=64 9421132610602679 r009 Re(z^3+c),c=-13/90+26/53*I,n=63 9421132610602693 r009 Re(z^3+c),c=-13/90+26/53*I,n=61 9421132610602717 r009 Re(z^3+c),c=-13/90+26/53*I,n=59 9421132610602816 r009 Re(z^3+c),c=-13/90+26/53*I,n=56 9421132610603096 r009 Re(z^3+c),c=-13/90+26/53*I,n=50 9421132610603599 r009 Re(z^3+c),c=-13/90+26/53*I,n=54 9421132610605001 r009 Re(z^3+c),c=-13/90+26/53*I,n=52 9421132610608718 r009 Re(z^3+c),c=-13/90+26/53*I,n=49 9421132610649532 r009 Re(z^3+c),c=-13/90+26/53*I,n=47 9421132610665787 r009 Re(z^3+c),c=-13/90+26/53*I,n=43 9421132610731214 r009 Re(z^3+c),c=-13/90+26/53*I,n=45 9421132610848258 r009 Re(z^3+c),c=-13/90+26/53*I,n=42 9421132612960455 r009 Re(z^3+c),c=-13/90+26/53*I,n=40 9421132615259441 k003 Champernowne real with 13/2*n^3-20*n^2+95/2*n-25 9421132616000869 r009 Re(z^3+c),c=-13/90+26/53*I,n=36 9421132617629520 r009 Re(z^3+c),c=-13/90+26/53*I,n=38 9421132619708266 r009 Re(z^3+c),c=-13/90+26/53*I,n=35 9421132621712520 m005 (1/2*Zeta(3)-5/7)/(3/8*5^(1/2)+4/11) 9421132625299541 k003 Champernowne real with 20/3*n^3-21*n^2+148/3*n-26 9421132635339641 k003 Champernowne real with 41/6*n^3-22*n^2+307/6*n-27 9421132645379741 k003 Champernowne real with 7*n^3-23*n^2+53*n-28 9421132655419841 k003 Champernowne real with 43/6*n^3-24*n^2+329/6*n-29 9421132665459941 k003 Champernowne real with 22/3*n^3-25*n^2+170/3*n-30 9421132675028141 a008 Real Root of (1+x+6*x^2+2*x^3+5*x^5) 9421132675491004 k003 Champernowne real with 15/2*n^3-26*n^2+117/2*n-31 9421132683122165 a001 1597/1364*521^(1/3) 9421132685531014 k003 Champernowne real with 23/3*n^3-27*n^2+181/3*n-32 9421132695571024 k003 Champernowne real with 47/6*n^3-28*n^2+373/6*n-33 9421132705354026 a001 987/24476*1364^(34/45) 9421132705611034 k003 Champernowne real with 8*n^3-29*n^2+64*n-34 9421132712280028 m001 (ln(2)-exp(1/exp(1)))/(FeigenbaumAlpha-Niven) 9421132715651044 k003 Champernowne real with 49/6*n^3-30*n^2+395/6*n-35 9421132725691054 k003 Champernowne real with 25/3*n^3-31*n^2+203/3*n-36 9421132728163448 r009 Re(z^3+c),c=-13/90+26/53*I,n=33 9421132735731064 k003 Champernowne real with 17/2*n^3-32*n^2+139/2*n-37 9421132737173270 a003 cos(Pi*11/87)/sin(Pi*43/99) 9421132745771074 k003 Champernowne real with 26/3*n^3-33*n^2+214/3*n-38 9421132755811084 k003 Champernowne real with 53/6*n^3-34*n^2+439/6*n-39 9421132765851094 k003 Champernowne real with 9*n^3-35*n^2+75*n-40 9421132775891104 k003 Champernowne real with 55/6*n^3-36*n^2+461/6*n-41 9421132785931114 k003 Champernowne real with 28/3*n^3-37*n^2+236/3*n-42 9421132789904334 r005 Im(z^2+c),c=-4/7+17/99*I,n=53 9421132795971124 k003 Champernowne real with 19/2*n^3-38*n^2+161/2*n-43 9421132796645521 p001 sum((-1)^n/(303*n+103)/(8^n),n=0..infinity) 9421132804383166 m001 (-HeathBrownMoroz+Trott2nd)/(Si(Pi)+Catalan) 9421132806011134 k003 Champernowne real with 29/3*n^3-39*n^2+247/3*n-44 9421132816051144 k003 Champernowne real with 59/6*n^3-40*n^2+505/6*n-45 9421132822851149 m005 (1/2*Catalan+1/9)/(2/7*2^(1/2)+1/5) 9421132826091154 k003 Champernowne real with 10*n^3-41*n^2+86*n-46 9421132828833729 a001 987/199*76^(4/27) 9421132836131164 k003 Champernowne real with 61/6*n^3-42*n^2+527/6*n-47 9421132840214342 l006 ln(3387/8689) 9421132846171174 k003 Champernowne real with 31/3*n^3-43*n^2+269/3*n-48 9421132856211184 k003 Champernowne real with 21/2*n^3-44*n^2+183/2*n-49 9421132862543161 a007 Real Root Of -647*x^4+162*x^3-693*x^2-652*x+646 9421132866251194 k003 Champernowne real with 32/3*n^3-45*n^2+280/3*n-50 9421132868871892 a007 Real Root Of -237*x^4+822*x^3-276*x^2-915*x+257 9421132876291204 k003 Champernowne real with 65/6*n^3-46*n^2+571/6*n-51 9421132886331214 k003 Champernowne real with 11*n^3-47*n^2+97*n-52 9421132890019636 r009 Re(z^3+c),c=-13/90+26/53*I,n=28 9421132894417885 a007 Real Root Of 45*x^4+507*x^3+686*x^2-930*x-204 9421132896371224 k003 Champernowne real with 67/6*n^3-48*n^2+593/6*n-53 9421132906411234 k003 Champernowne real with 34/3*n^3-49*n^2+302/3*n-54 9421132916451244 k003 Champernowne real with 23/2*n^3-50*n^2+205/2*n-55 9421132918636112 r005 Im(z^2+c),c=-1/34+51/56*I,n=4 9421132920444271 m001 (FellerTornier-ZetaQ(4))/Magata 9421132926491254 k003 Champernowne real with 35/3*n^3-51*n^2+313/3*n-56 9421132936531264 k003 Champernowne real with 71/6*n^3-52*n^2+637/6*n-57 9421132944856868 k002 Champernowne real with 1/2*n^2+231/2*n-22 9421132946571274 k003 Champernowne real with 12*n^3-53*n^2+108*n-58 9421132948321642 r008 a(0)=9,K{-n^6,14-25*n+33*n^2-25*n^3} 9421132949590238 a007 Real Root Of -728*x^4-227*x^3-84*x^2-82*x+381 9421132950390116 a007 Real Root Of 955*x^4-879*x^3+109*x^2+931*x-707 9421132951952093 r009 Im(z^3+c),c=-11/98+53/57*I,n=15 9421132961153122 k008 concat of cont frac of 9421132971554991 a001 10946/2207*521^(4/39) 9421132974716948 a001 10946/3571*521^(7/39) 9421132980980883 m001 (PrimesInBinary-Sarnak)/(FeigenbaumD+Gompertz) 9421132986041022 a001 141/2161*1364^(31/45) 9421132990979639 r009 Re(z^3+c),c=-13/90+26/53*I,n=31 9421132999093797 r009 Re(z^3+c),c=-13/90+26/53*I,n=29 9421133045157469 k002 Champernowne real with n^2+114*n-21 9421133046275169 a007 Real Root Of -607*x^4+67*x^3-253*x^2+650*x-59 9421133075909038 m001 1/Robbin^2/CareFree^2*ln(Trott)^2 9421133090721285 r004 Re(z^2+c),c=-4/7-1/12*I,z(0)=exp(1/8*I*Pi),n=2 9421133122161127 k008 concat of cont frac of 9421133132415151 k001 Champernowne real with 191*n+751 9421133140001688 m008 (1/4*Pi^2+1/4)/(3*Pi^6+1/5) 9421133145458070 k002 Champernowne real with 3/2*n^2+225/2*n-20 9421133148125705 a007 Real Root Of 606*x^4+880*x^3+104*x^2-844*x-629 9421133202346884 m002 6+E^Pi/Pi^3+Pi^3*Sech[Pi] 9421133211138319 k008 concat of cont frac of 9421133212132132 k006 concat of cont frac of 9421133212163716 a007 Real Root Of -760*x^4+245*x^3+155*x^2-207*x+471 9421133216970790 m001 (OneNinth-PlouffeB)/(Pi+LandauRamanujan) 9421133230022951 r005 Re(z^2+c),c=-23/110+10/13*I,n=21 9421133231240428 q001 3076/3265 9421133238401757 r005 Re(z^2+c),c=-12/11+8/61*I,n=64 9421133245758671 k002 Champernowne real with 2*n^2+111*n-19 9421133282946590 s002 sum(A138242[n]/(exp(2*pi*n)-1),n=1..infinity) 9421133285764946 s002 sum(A163076[n]/(exp(2*pi*n)-1),n=1..infinity) 9421133292780620 a007 Real Root Of -129*x^4-15*x^3-55*x^2+430*x-40 9421133328739676 a001 2584/271443*1364^(43/45) 9421133340984608 m001 (polylog(4,1/2)+(1+3^(1/2))^(1/2))/(Pi-Chi(1)) 9421133346059272 k002 Champernowne real with 5/2*n^2+219/2*n-18 9421133362301742 a007 Real Root Of 259*x^4-348*x^3-995*x^2-795*x+84 9421133362582259 a007 Real Root Of 51*x^4-774*x^3-212*x^2+307*x-210 9421133416442788 a007 Real Root Of 212*x^4+382*x^3+323*x^2-212*x-334 9421133416747455 a007 Real Root Of 952*x^4-823*x^3-738*x^2+274*x-525 9421133420187859 a001 329/1926*1364^(5/9) 9421133420495271 m001 (Shi(1)-gamma(3))/(-GAMMA(5/6)+ZetaQ(3)) 9421133421077533 m005 (1/2*2^(1/2)+9/11)/(5/9*2^(1/2)+5/6) 9421133423724717 m005 (1/2*5^(1/2)+1/9)/(3/8*exp(1)-8/9) 9421133446359873 k002 Champernowne real with 3*n^2+108*n-17 9421133460400638 a007 Real Root Of 423*x^4-619*x^3+253*x^2+114*x-968 9421133472585930 a001 987/9349*1364^(28/45) 9421133495600684 m001 (Ei(1)+Tetranacci)/(Pi+Catalan) 9421133496696270 a007 Real Root Of 924*x^4+586*x^3-263*x^2+320*x+297 9421133535419589 a007 Real Root Of 14*x^4+199*x^3+544*x^2-746*x+800 9421133546660474 k002 Champernowne real with 7/2*n^2+213/2*n-16 9421133569871522 a001 6765/710647*1364^(43/45) 9421133580482966 r008 a(0)=1,K{-n^6,3+9*n^3+2*n^2+4*n} 9421133605052185 a001 17711/1860498*1364^(43/45) 9421133610184974 a001 46368/4870847*1364^(43/45) 9421133611141131 k006 concat of cont frac of 9421133613357212 a001 28657/3010349*1364^(43/45) 9421133623091266 a007 Real Root Of -440*x^4+75*x^3-304*x^2+72*x+747 9421133626795030 a001 10946/1149851*1364^(43/45) 9421133646961075 k002 Champernowne real with 4*n^2+105*n-15 9421133647566648 r005 Im(z^2+c),c=-7/16+1/64*I,n=30 9421133658079774 a007 Real Root Of -97*x^4+248*x^3-585*x^2+675*x+69 9421133660893936 a007 Real Root Of -834*x^4+514*x^3+997*x^2+534*x+705 9421133662199251 a007 Real Root Of -585*x^4-329*x^3+860*x^2+814*x-84 9421133664014304 a007 Real Root Of -355*x^4+255*x^3-879*x^2+930*x-80 9421133666787030 a001 2584/167761*1364^(8/9) 9421133669674461 m005 (1/3*Catalan+1/4)/(2/5*5^(1/2)+5) 9421133675610348 b008 8+AiryBi[6/5] 9421133683874155 a007 Real Root Of -711*x^4-481*x^3-51*x^2+314*x+499 9421133691768634 m005 (4*2^(1/2)-5)/(5/2+2*5^(1/2)) 9421133691955287 a007 Real Root Of -11*x^4-106*x^3-111*x^2-870*x-324 9421133718899199 a001 4181/439204*1364^(43/45) 9421133747261676 k002 Champernowne real with 9/2*n^2+207/2*n-14 9421133767373008 r005 Re(z^2+c),c=-9/10+38/179*I,n=45 9421133768553543 a007 Real Root Of 34*x^4+322*x^3+53*x^2+347*x-29 9421133769166404 r005 Re(z^2+c),c=1/22+6/13*I,n=12 9421133789062500 r005 Re(z^2+c),c=-15/16+9/80*I,n=3 9421133792929879 l006 ln(1208/3099) 9421133804452243 m001 2^(1/3)/HardyLittlewoodC3*Weierstrass 9421133847562277 k002 Champernowne real with 5*n^2+102*n-13 9421133851348571 m001 1/GAMMA(19/24)/exp(GAMMA(17/24))^2*Zeta(3)^2 9421133899732185 a007 Real Root Of -674*x^4-440*x^3-751*x^2-93*x+742 9421133907523766 a001 6765/439204*1364^(8/9) 9421133942646783 a001 17711/1149851*1364^(8/9) 9421133947771162 a001 46368/3010349*1364^(8/9) 9421133947862878 k002 Champernowne real with 11/2*n^2+201/2*n-12 9421133948518798 a001 121393/7881196*1364^(8/9) 9421133948627877 a001 10959/711491*1364^(8/9) 9421133948643792 a001 832040/54018521*1364^(8/9) 9421133948646113 a001 2178309/141422324*1364^(8/9) 9421133948646452 a001 5702887/370248451*1364^(8/9) 9421133948646502 a001 14930352/969323029*1364^(8/9) 9421133948646509 a001 39088169/2537720636*1364^(8/9) 9421133948646510 a001 102334155/6643838879*1364^(8/9) 9421133948646510 a001 9238424/599786069*1364^(8/9) 9421133948646510 a001 701408733/45537549124*1364^(8/9) 9421133948646510 a001 1836311903/119218851371*1364^(8/9) 9421133948646510 a001 4807526976/312119004989*1364^(8/9) 9421133948646510 a001 12586269025/817138163596*1364^(8/9) 9421133948646510 a001 32951280099/2139295485799*1364^(8/9) 9421133948646510 a001 86267571272/5600748293801*1364^(8/9) 9421133948646510 a001 7787980473/505618944676*1364^(8/9) 9421133948646510 a001 365435296162/23725150497407*1364^(8/9) 9421133948646510 a001 139583862445/9062201101803*1364^(8/9) 9421133948646510 a001 53316291173/3461452808002*1364^(8/9) 9421133948646510 a001 20365011074/1322157322203*1364^(8/9) 9421133948646510 a001 7778742049/505019158607*1364^(8/9) 9421133948646510 a001 2971215073/192900153618*1364^(8/9) 9421133948646510 a001 1134903170/73681302247*1364^(8/9) 9421133948646510 a001 433494437/28143753123*1364^(8/9) 9421133948646510 a001 165580141/10749957122*1364^(8/9) 9421133948646511 a001 63245986/4106118243*1364^(8/9) 9421133948646513 a001 24157817/1568397607*1364^(8/9) 9421133948646532 a001 9227465/599074578*1364^(8/9) 9421133948646662 a001 3524578/228826127*1364^(8/9) 9421133948647548 a001 1346269/87403803*1364^(8/9) 9421133948653627 a001 514229/33385282*1364^(8/9) 9421133948695292 a001 196418/12752043*1364^(8/9) 9421133948980863 a001 75025/4870847*1364^(8/9) 9421133950056434 r005 Re(z^2+c),c=-3/122+15/47*I,n=6 9421133950938202 a001 28657/1860498*1364^(8/9) 9421133954713204 a007 Real Root Of -698*x^4+181*x^3-189*x^2-674*x+234 9421133958355299 a003 cos(Pi*4/41)*sin(Pi*23/51) 9421133964354001 a001 10946/710647*1364^(8/9) 9421133986195799 m005 (1/2*Catalan+8/11)/(9/11*5^(1/2)-4/7) 9421134003160645 a001 1292/51841*1364^(37/45) 9421134010407614 a007 Real Root Of -997*x^4+827*x^3+972*x^2+56*x+667 9421134014949418 m001 GAMMA(3/4)^Bloch/(GAMMA(3/4)^BesselJ(0,1)) 9421134018380654 r005 Re(z^2+c),c=1/82+23/57*I,n=38 9421134030626111 r002 20th iterates of z^2 + 9421134048163479 k002 Champernowne real with 6*n^2+99*n-11 9421134056307251 a001 4181/271443*1364^(8/9) 9421134110115448 a007 Real Root Of 942*x^4+313*x^3-541*x^2-297*x-280 9421134114310133 k009 concat of cont frac of 9421134132515171 k005 Champernowne real with floor(Pi*(61*n+239)) 9421134132615181 k001 Champernowne real with 192*n+750 9421134139626139 a001 144/3571*322^(17/18) 9421134148464080 k002 Champernowne real with 13/2*n^2+195/2*n-10 9421134148720259 m001 (5^(1/2)-Magata)/(-Niven+Riemann1stZero) 9421134150098115 a007 Real Root Of 974*x^4+140*x^3-266*x^2+723*x+267 9421134163115427 r005 Re(z^2+c),c=23/118+17/62*I,n=11 9421134170330069 a001 10749957122*55^(13/24) 9421134171134122 k008 concat of cont frac of 9421134171791466 b008 94+Sech[Sqrt[5]] 9421134186110981 m001 exp(1/exp(1))*polylog(4,1/2)+DuboisRaymond 9421134211918994 r002 5th iterates of z^2 + 9421134216124216 k007 concat of cont frac of 9421134244931825 a001 2255/90481*1364^(37/45) 9421134248764681 k002 Champernowne real with 7*n^2+96*n-9 9421134280205765 a001 17711/710647*1364^(37/45) 9421134280549585 a007 Real Root Of -380*x^4+827*x^3+701*x^2-126*x+250 9421134285352163 a001 2576/103361*1364^(37/45) 9421134286103013 a001 121393/4870847*1364^(37/45) 9421134286567063 a001 75025/3010349*1364^(37/45) 9421134288532813 a001 28657/1149851*1364^(37/45) 9421134302006259 a001 5473/219602*1364^(37/45) 9421134303115580 m001 (HeathBrownMoroz+Kac)/(LandauRamanujan-Paris) 9421134306163534 a001 987/2207*3571^(19/51) 9421134307004642 p004 log(16103/6277) 9421134331953782 a001 646/341*521^(10/39) 9421134343916212 a001 2584/64079*1364^(34/45) 9421134349065282 k002 Champernowne real with 15/2*n^2+189/2*n-8 9421134350190569 a001 1597/167761*1364^(43/45) 9421134394354632 a001 4181/167761*1364^(37/45) 9421134421134421 q001 2425/2574 9421134421134421 r002 2th iterates of z^2 + 9421134421402724 r005 Re(z^2+c),c=-1/34+10/31*I,n=20 9421134444620928 m009 (2/5*Pi^2-1/2)/(1/4*Psi(1,2/3)-2/5) 9421134448409079 a007 Real Root Of 841*x^4-453*x^3-826*x^2-107*x-409 9421134449365883 k002 Champernowne real with 8*n^2+93*n-7 9421134456927334 m001 1/ArtinRank2/Bloch^2*exp(FeigenbaumD) 9421134460613007 a001 47*(1/2*5^(1/2)+1/2)^14*322^(3/20) 9421134467792571 a007 Real Root Of 845*x^4+929*x^3+637*x^2-367*x-800 9421134544862042 a003 cos(Pi*9/107)*sin(Pi*40/93) 9421134545471034 a001 987/2207*9349^(1/3) 9421134549666484 k002 Champernowne real with 17/2*n^2+183/2*n-6 9421134567874311 l006 ln(3725/4093) 9421134581400572 a001 987/2207*817138163596^(1/9) 9421134581400572 a001 987/2207*87403803^(1/6) 9421134582979213 a001 615/15251*1364^(34/45) 9421134594438241 a001 987/2207*15127^(19/60) 9421134610116835 a001 28657/5778*521^(4/39) 9421134617858034 a001 17711/439204*1364^(34/45) 9421134619447414 a007 Real Root Of 886*x^4-875*x^3-471*x^2+24*x-989 9421134622946786 a001 46368/1149851*1364^(34/45) 9421134623689225 a001 121393/3010349*1364^(34/45) 9421134623864491 a001 196418/4870847*1364^(34/45) 9421134624148077 a001 75025/1860498*1364^(34/45) 9421134626091807 a001 28657/710647*1364^(34/45) 9421134628684149 l006 ln(3861/9905) 9421134637253116 r001 26i'th iterates of 2*x^2-1 of 9421134638144548 m001 1/GAMMA(11/24)^2*ln(Lehmer)^2*GAMMA(17/24) 9421134639414332 a001 10946/271443*1364^(34/45) 9421134641106832 m005 (1/2*Zeta(3)+1/10)/(9/11*Zeta(3)-10/11) 9421134649967085 k002 Champernowne real with 9*n^2+90*n-5 9421134654877253 m001 Zeta(1/2)*exp(BesselJ(0,1))/gamma^2 9421134661476924 r005 Im(z^2+c),c=-157/126+1/35*I,n=19 9421134664953373 a007 Real Root Of -966*x^4+329*x^3-314*x^2-936*x+433 9421134673199722 a001 2584/39603*1364^(31/45) 9421134680691140 a001 987/2207*5778^(19/54) 9421134686564208 a001 1597/103682*1364^(8/9) 9421134693100541 m001 (Magata+Niven)/(FeigenbaumDelta-Psi(1,1/3)) 9421134695462826 a001 377/5778*843^(31/42) 9421134707900652 m001 (gamma+sin(1/12*Pi))/(ThueMorse+Weierstrass) 9421134713892825 a001 47/521*(1/2*5^(1/2)+1/2)^21*521^(3/5) 9421134730728272 a001 4181/103682*1364^(34/45) 9421134735832508 a003 sin(Pi*22/61)/sin(Pi*44/107) 9421134743835920 r005 Im(z^2+c),c=-115/102+7/59*I,n=13 9421134750267686 k002 Champernowne real with 19/2*n^2+177/2*n-4 9421134767855625 r002 7th iterates of z^2 + 9421134769206464 m005 (1/2*exp(1)+2/11)/(4/5*3^(1/2)+1/4) 9421134769514556 a001 377/3571*843^(2/3) 9421134770527297 a001 2584/2207*1364^(13/45) 9421134778760978 a001 987/3571*1364^(22/45) 9421134783723533 m005 (-17/44+1/4*5^(1/2))/(5/12*exp(1)+7/10) 9421134802502895 m002 1+3*Pi^5+E^Pi*Tanh[Pi] 9421134804922372 a007 Real Root Of 523*x^4+296*x^3+339*x^2-525*x-960 9421134838072096 a001 5778/233*514229^(13/47) 9421134849179834 a001 75025/15127*521^(4/39) 9421134850568287 k002 Champernowne real with 10*n^2+87*n-3 9421134862398711 m001 AlladiGrinstead/sin(1/5*Pi)/MinimumGamma 9421134867941624 m001 (ZetaP(3)+ZetaP(4))/(Chi(1)+FeigenbaumC) 9421134868396270 a007 Real Root Of -741*x^4-805*x^3+125*x^2+668*x+429 9421134871485080 m005 (1/3*Zeta(3)+1/9)/(5/9*Catalan-5/11) 9421134883600977 r002 22th iterates of z^2 + 9421134884058656 a001 196418/39603*521^(4/39) 9421134889147408 a001 514229/103682*521^(4/39) 9421134889889847 a001 1346269/271443*521^(4/39) 9421134890065113 a001 2178309/439204*521^(4/39) 9421134890146178 a007 Real Root Of -616*x^4-350*x^3-799*x^2-902*x+52 9421134890348699 a001 75640/15251*521^(4/39) 9421134892292430 a001 317811/64079*521^(4/39) 9421134896580112 r005 Re(z^2+c),c=-107/114+3/41*I,n=13 9421134905614954 a001 121393/24476*521^(4/39) 9421134919352860 a001 6765/103682*1364^(31/45) 9421134950868888 k002 Champernowne real with 21/2*n^2+171/2*n-2 9421134955266119 a001 17711/271443*1364^(31/45) 9421134960505793 a001 6624/101521*1364^(31/45) 9421134961270251 a001 121393/1860498*1364^(31/45) 9421134961381784 a001 317811/4870847*1364^(31/45) 9421134961450715 a001 196418/3010349*1364^(31/45) 9421134961742712 a001 75025/1149851*1364^(31/45) 9421134963744089 a001 28657/439204*1364^(31/45) 9421134977461733 a001 10946/167761*1364^(31/45) 9421134996928899 a001 46368/9349*521^(4/39) 9421135009231113 l006 ln(2653/6806) 9421135027319799 a001 1597/64079*1364^(37/45) 9421135032517512 a001 646/6119*1364^(28/45) 9421135036457416 r005 Im(z^2+c),c=-27/122+49/62*I,n=26 9421135046110702 a007 Real Root Of -724*x^4+796*x^3+504*x^2-128*x-422 9421135051169489 k002 Champernowne real with 11*n^2+84*n-1 9421135060490821 h001 (3/5*exp(2)+3/5)/(2/3*exp(2)+5/12) 9421135071483866 a001 4181/64079*1364^(31/45) 9421135088476782 m001 Ei(1,1)/(BesselI(0,2)^GAMMA(23/24)) 9421135112819086 h001 (5/9*exp(2)+1/2)/(3/5*exp(2)+5/11) 9421135116333286 r005 Re(z^2+c),c=-43/48+7/32*I,n=27 9421135117850563 m001 (Chi(1)+ln(5))/(-AlladiGrinstead+Magata) 9421135117906418 b008 E*Pi+(3*Sinh[1])/4 9421135122522161 k006 concat of cont frac of 9421135132815211 k001 Champernowne real with 193*n+749 9421135150949922 m004 -4+2*Csch[Sqrt[5]*Pi]-4*Sec[Sqrt[5]*Pi] 9421135151470090 k002 Champernowne real with 23/2*n^2+165/2*n 9421135153765357 m004 -4+4/E^(Sqrt[5]*Pi)-4*Sec[Sqrt[5]*Pi] 9421135154875362 r005 Im(z^2+c),c=-8/7+1/73*I,n=12 9421135156580787 m004 -4-4*Sec[Sqrt[5]*Pi]+2*Sech[Sqrt[5]*Pi] 9421135163025219 m001 (-Gompertz+PlouffeB)/(Psi(1,1/3)+exp(1)) 9421135219399186 a007 Real Root Of -170*x^4+17*x^3+60*x^2+925*x-805 9421135223574796 a007 Real Root Of 662*x^4-194*x^3+930*x^2+705*x-845 9421135235717980 a007 Real Root Of -600*x^4+970*x^3-103*x^2-17*x-231 9421135251770691 k002 Champernowne real with 12*n^2+81*n+1 9421135260108460 a001 6765/64079*1364^(28/45) 9421135266588438 r005 Re(z^2+c),c=-17/18+5/177*I,n=13 9421135276917184 a007 Real Root Of -719*x^4-479*x^3-672*x^2-46*x+719 9421135286403781 r009 Re(z^3+c),c=-15/94+29/43*I,n=10 9421135293313532 a001 17711/167761*1364^(28/45) 9421135298158086 a001 11592/109801*1364^(28/45) 9421135298864897 a001 121393/1149851*1364^(28/45) 9421135298968020 a001 317811/3010349*1364^(28/45) 9421135298992364 a001 514229/4870847*1364^(28/45) 9421135299031753 a001 98209/930249*1364^(28/45) 9421135299301731 a001 75025/710647*1364^(28/45) 9421135301152186 a001 28657/271443*1364^(28/45) 9421135306761327 a001 610/843*843^(8/21) 9421135313204577 a001 2584/15127*1364^(5/9) 9421135313835395 a001 5473/51841*1364^(28/45) 9421135327950730 m001 exp(OneNinth)/Rabbit^2/GAMMA(1/24) 9421135347016670 a001 987/2207*2207^(19/48) 9421135352071292 k002 Champernowne real with 25/2*n^2+159/2*n+2 9421135356603333 a001 1597/39603*1364^(34/45) 9421135387834594 r005 Im(z^2+c),c=-13/31+9/58*I,n=29 9421135396589076 a001 4181/843*322^(1/9) 9421135400767401 a001 4181/39603*1364^(28/45) 9421135418541981 a003 sin(Pi*29/70)*sin(Pi*35/81) 9421135418816740 a007 Real Root Of 328*x^4+559*x^3+789*x^2-350*x-821 9421135429265750 a007 Real Root Of -96*x^4-842*x^3+594*x^2-45*x-943 9421135452211312 r005 Im(z^2+c),c=-12/25+1/8*I,n=7 9421135452371893 k002 Champernowne real with 13*n^2+78*n+3 9421135453930915 a001 1597/2207*1364^(16/45) 9421135457625041 m001 Shi(1)^MertensB1/(Shi(1)^MertensB3) 9421135497261027 b008 9+Zeta[4,Glaisher] 9421135498094984 a001 4181/2207*1364^(2/9) 9421135541247686 a005 (1/cos(11/181*Pi))^499 9421135552672494 k002 Champernowne real with 27/2*n^2+153/2*n+4 9421135589392002 a001 2255/13201*1364^(5/9) 9421135596884551 r002 23th iterates of z^2 + 9421135603969495 m008 (5*Pi^3-1)/(3/5*Pi-1/4) 9421135619642076 a001 17711/2207*521^(1/39) 9421135622804034 a001 17711/3571*521^(4/39) 9421135622984183 a003 cos(Pi*19/93)/sin(Pi*11/34) 9421135629687204 a001 17711/103682*1364^(5/9) 9421135635566195 a001 15456/90481*1364^(5/9) 9421135636423928 a001 121393/710647*1364^(5/9) 9421135636549070 a001 105937/620166*1364^(5/9) 9421135636567328 a001 832040/4870847*1364^(5/9) 9421135636569992 a001 726103/4250681*1364^(5/9) 9421135636570380 a001 5702887/33385282*1364^(5/9) 9421135636570437 a001 4976784/29134601*1364^(5/9) 9421135636570445 a001 39088169/228826127*1364^(5/9) 9421135636570446 a001 34111385/199691526*1364^(5/9) 9421135636570447 a001 267914296/1568397607*1364^(5/9) 9421135636570447 a001 233802911/1368706081*1364^(5/9) 9421135636570447 a001 1836311903/10749957122*1364^(5/9) 9421135636570447 a001 1602508992/9381251041*1364^(5/9) 9421135636570447 a001 12586269025/73681302247*1364^(5/9) 9421135636570447 a001 10983760033/64300051206*1364^(5/9) 9421135636570447 a001 86267571272/505019158607*1364^(5/9) 9421135636570447 a001 75283811239/440719107401*1364^(5/9) 9421135636570447 a001 2504730781961/14662949395604*1364^(5/9) 9421135636570447 a001 139583862445/817138163596*1364^(5/9) 9421135636570447 a001 53316291173/312119004989*1364^(5/9) 9421135636570447 a001 20365011074/119218851371*1364^(5/9) 9421135636570447 a001 7778742049/45537549124*1364^(5/9) 9421135636570447 a001 2971215073/17393796001*1364^(5/9) 9421135636570447 a001 1134903170/6643838879*1364^(5/9) 9421135636570447 a001 433494437/2537720636*1364^(5/9) 9421135636570447 a001 165580141/969323029*1364^(5/9) 9421135636570447 a001 63245986/370248451*1364^(5/9) 9421135636570450 a001 24157817/141422324*1364^(5/9) 9421135636570472 a001 9227465/54018521*1364^(5/9) 9421135636570620 a001 3524578/20633239*1364^(5/9) 9421135636571638 a001 1346269/7881196*1364^(5/9) 9421135636578612 a001 514229/3010349*1364^(5/9) 9421135636626412 a001 196418/1149851*1364^(5/9) 9421135636954037 a001 75025/439204*1364^(5/9) 9421135639199611 a001 28657/167761*1364^(5/9) 9421135652973095 k002 Champernowne real with 14*n^2+75*n+5 9421135654591009 a001 10946/64079*1364^(5/9) 9421135667811493 r008 a(0)=0,K{-n^6,-21-39*n^3+34*n^2+15*n} 9421135686719586 a001 6765/2207*1364^(7/45) 9421135692036039 r002 8th iterates of z^2 + 9421135706156118 m001 (Robbin+Salem)/(FeigenbaumDelta-exp(1)) 9421135709749983 m001 StronglyCareFree^gamma(2)/(ZetaQ(4)^gamma(2)) 9421135715921149 a001 1597/24476*1364^(31/45) 9421135725555960 a003 cos(Pi*7/79)-cos(Pi*40/81) 9421135747351521 a001 1292/2889*1364^(19/45) 9421135753273696 k002 Champernowne real with 29/2*n^2+147/2*n+6 9421135760085219 a001 4181/24476*1364^(5/9) 9421135799749605 a001 2584/9349*1364^(22/45) 9421135800911210 a007 Real Root Of -831*x^4+327*x^3+872*x^2+583*x-942 9421135802469135 r002 3th iterates of z^2 + 9421135805638902 a001 329/90481*3571^(49/51) 9421135818214535 b008 JacobiCD[1/5,-2] 9421135820097646 m001 GAMMA(3/4)^gamma(1)/(cos(1)^gamma(1)) 9421135840525470 a007 Real Root Of 54*x^4-144*x^3-270*x^2-990*x-856 9421135846277876 p001 sum((-1)^n/(515*n+106)/(125^n),n=0..infinity) 9421135849560002 a001 987/167761*3571^(46/51) 9421135853574297 k002 Champernowne real with 15*n^2+72*n+7 9421135856004225 r004 Re(z^2+c),c=5/13*I,z(0)=exp(7/8*I*Pi),n=14 9421135871240372 a001 329/1926*3571^(25/51) 9421135875501072 a007 Real Root Of -507*x^4+119*x^3-153*x^2+237*x+858 9421135884614533 a003 sin(Pi*37/120)/sin(Pi*20/59) 9421135891807349 a001 21/2206*3571^(43/51) 9421135894205735 a007 Real Root Of -169*x^4+817*x^3+434*x^2-514*x-451 9421135907622997 m001 ZetaQ(4)/(gamma+GAMMA(19/24)) 9421135915859777 r005 Im(z^2+c),c=27/62+22/61*I,n=28 9421135923165415 s002 sum(A110991[n]/(n*exp(pi*n)-1),n=1..infinity) 9421135938436638 a001 987/64079*3571^(40/51) 9421135942340223 a007 Real Root Of -226*x^4-648*x^3-975*x^2+79*x+576 9421135948709827 a001 6765/24476*1364^(22/45) 9421135953874898 k002 Champernowne real with 31/2*n^2+141/2*n+8 9421135961937828 m001 1/Pi/exp(Cahen)^2/cos(Pi/12)^2 9421135963738275 r005 Im(z^2+c),c=-89/110+3/53*I,n=11 9421135970442830 a001 17711/64079*1364^(22/45) 9421135973593856 a001 329/13201*3571^(37/51) 9421135973613633 a001 46368/167761*1364^(22/45) 9421135974076246 a001 121393/439204*1364^(22/45) 9421135974143741 a001 317811/1149851*1364^(22/45) 9421135974153588 a001 832040/3010349*1364^(22/45) 9421135974155913 a001 1346269/4870847*1364^(22/45) 9421135974159674 a001 514229/1860498*1364^(22/45) 9421135974185455 a001 196418/710647*1364^(22/45) 9421135974362157 a001 75025/271443*1364^(22/45) 9421135975573296 a001 28657/103682*1364^(22/45) 9421135983874565 a001 10946/39603*1364^(22/45) 9421135996608234 a001 1597/15127*1364^(28/45) 9421136025346092 a001 141/2161*3571^(31/51) 9421136026041997 l006 ln(1445/3707) 9421136032382474 a001 377/9349*843^(17/21) 9421136038785346 a001 987/24476*3571^(2/3) 9421136040772305 a001 4181/15127*1364^(22/45) 9421136045074707 a001 2584/2207*3571^(13/51) 9421136054175499 k002 Champernowne real with 16*n^2+69*n+9 9421136081037513 a001 1/39596*(1/2*5^(1/2)+1/2)^13*76^(5/11) 9421136081202153 a001 10946/2207*1364^(4/45) 9421136115121511 k008 concat of cont frac of 9421136121130411 k007 concat of cont frac of 9421136121686266 a007 Real Root Of -76*x^4-749*x^3-382*x^2-606*x+607 9421136133015241 k001 Champernowne real with 194*n+748 9421136153445122 a007 Real Root Of 504*x^4-312*x^3+755*x^2+759*x-613 9421136154476010 k002 Champernowne real with 33/2*n^2+135/2*n+10 9421136167339192 a007 Real Root Of -452*x^4+709*x^3-600*x^2-717*x+806 9421136186118715 a001 329/1926*9349^(25/57) 9421136188062591 a007 Real Root Of 269*x^4-829*x^3-247*x^2-50*x-733 9421136200526359 m001 exp((2^(1/3)))^2/FibonacciFactorial/Zeta(5)^2 9421136208811447 a001 2584/2207*9349^(13/57) 9421136211075227 a001 843*(1/2*5^(1/2)+1/2)^8*29^(16/17) 9421136217764802 a001 987/9349*3571^(28/51) 9421136229396919 a001 6765/15127*1364^(19/45) 9421136231666074 m001 ThueMorse/(FeigenbaumAlpha^ln(5)) 9421136233282847 a001 329/1926*167761^(1/3) 9421136233394425 a001 329/1926*20633239^(5/21) 9421136233394430 a001 329/1926*28143753123^(1/6) 9421136233394430 a001 329/1926*228826127^(5/24) 9421136233394819 a001 2584/2207*141422324^(1/9) 9421136233394819 a001 2584/2207*73681302247^(1/12) 9421136233395186 a001 329/1926*1860498^(5/18) 9421136233416129 a001 2584/2207*271443^(1/6) 9421136242315331 a001 2584/2207*15127^(13/60) 9421136250549261 a001 329/1926*15127^(5/12) 9421136254247971 m006 (5/6*exp(Pi)-2)/(4/5*exp(Pi)-1/6) 9421136254776610 k002 Champernowne real with 17*n^2+66*n+11 9421136291634011 h001 (1/10*exp(2)+8/9)/(1/5*exp(2)+1/4) 9421136295622759 a001 7/4181*4181^(29/60) 9421136299726397 a001 17711/39603*1364^(19/45) 9421136301330482 a001 2584/2207*5778^(13/54) 9421136309987329 a001 23184/51841*1364^(19/45) 9421136311484379 a001 121393/271443*1364^(19/45) 9421136311702796 a001 317811/710647*1364^(19/45) 9421136311734663 a001 416020/930249*1364^(19/45) 9421136311739312 a001 2178309/4870847*1364^(19/45) 9421136311742185 a001 1346269/3010349*1364^(19/45) 9421136311754357 a001 514229/1149851*1364^(19/45) 9421136311837785 a001 98209/219602*1364^(19/45) 9421136312409607 a001 75025/167761*1364^(19/45) 9421136316328935 a001 28657/64079*1364^(19/45) 9421136316604165 a007 Real Root Of -594*x^4+943*x^3+487*x^2+49*x-799 9421136320413658 a001 5473/682*199^(1/33) 9421136322111142 k006 concat of cont frac of 9421136322487864 a007 Real Root Of 600*x^4-630*x^3-238*x^2+255*x-548 9421136331771928 a007 Real Root Of 95*x^4-856*x^3-450*x^2+443*x+623 9421136343192405 a001 5473/12238*1364^(19/45) 9421136355077210 k002 Champernowne real with 35/2*n^2+129/2*n+12 9421136364039938 a001 329/1926*5778^(25/54) 9421136373014391 a001 6765/2207*3571^(7/51) 9421136380528176 m001 (gamma(3)-CopelandErdos)/(Otter-PlouffeB) 9421136397053989 a001 17711/2207*1364^(1/45) 9421136406825192 r009 Im(z^3+c),c=-7/44+43/47*I,n=39 9421136411563497 a001 141/101521*9349^(55/57) 9421136415795246 a001 141/2161*9349^(31/57) 9421136417304078 a001 987/439204*9349^(52/57) 9421136419906985 r005 Im(z^2+c),c=-33/52+13/19*I,n=3 9421136422800461 a001 329/90481*9349^(49/57) 9421136422978344 a001 89/167761*3^(23/44) 9421136428936161 a001 987/167761*9349^(46/57) 9421136430755210 a001 1597/5778*1364^(22/45) 9421136433398108 a001 21/2206*9349^(43/57) 9421136439613813 a001 329/13201*9349^(37/57) 9421136442241996 a001 987/64079*9349^(40/57) 9421136455377810 k002 Champernowne real with 18*n^2+63*n+13 9421136461180331 a001 6765/2207*9349^(7/57) 9421136467019904 a001 987/24476*9349^(34/57) 9421136468554683 r009 Im(z^3+c),c=-10/27+26/37*I,n=39 9421136472670181 a001 6765/2207*24476^(1/9) 9421136473370623 a001 10946/2207*3571^(4/51) 9421136474416788 a001 141/2161*3010349^(1/3) 9421136474417134 a001 141/2161*9062201101803^(1/6) 9421136474417530 a001 6765/2207*20633239^(1/15) 9421136474417531 a001 6765/2207*17393796001^(1/21) 9421136474417531 a001 6765/2207*505019158607^(1/24) 9421136474417531 a001 6765/2207*599074578^(1/18) 9421136474419086 a001 6765/2207*710647^(1/12) 9421136474919283 a001 4181/5778*1364^(16/45) 9421136478516128 a001 4181/2207*3571^(10/51) 9421136479220884 a001 6765/2207*15127^(7/60) 9421136483153298 a001 1597/9349*1364^(5/9) 9421136484333510 q001 1774/1883 9421136489265433 a007 Real Root Of 970*x^4+168*x^3-732*x^2-155*x-120 9421136495096108 a001 17711/2207*3571^(1/51) 9421136495689125 a001 141/2161*15127^(31/60) 9421136503229415 a001 329/90481*24476^(7/9) 9421136504232912 b008 QPochhammer[Csch[Pi],-5/8] 9421136507691242 a001 17711/2207*9349^(1/57) 9421136509581873 a001 329/13201*54018521^(1/3) 9421136510268464 a001 17711/2207*15127^(1/60) 9421136510998274 a001 6765/2207*5778^(7/54) 9421136514393870 a001 987/167761*64079^(2/3) 9421136514712340 a001 21/2206*969323029^(1/3) 9421136514808091 a001 17711/2207*5778^(1/54) 9421136515276446 a001 987/7881196*167761^(14/15) 9421136515324590 a001 141/101521*167761^(11/15) 9421136515460855 a001 329/90481*20633239^(7/15) 9421136515460865 a001 329/90481*17393796001^(1/3) 9421136515460865 a001 329/90481*505019158607^(7/24) 9421136515460865 a001 329/90481*599074578^(7/18) 9421136515471747 a001 329/90481*710647^(7/12) 9421136515569989 a001 141/101521*7881196^(5/9) 9421136515570062 a001 141/101521*20633239^(11/21) 9421136515570074 a001 141/101521*312119004989^(1/3) 9421136515570074 a001 141/101521*1568397607^(5/12) 9421136515570074 a001 141/101521*228826127^(11/24) 9421136515571737 a001 141/101521*1860498^(11/18) 9421136515586007 a001 329/620166*5600748293801^(1/3) 9421136515588594 a001 987/141422324*7881196^(8/9) 9421136515588708 a001 987/969323029*20633239^(20/21) 9421136515588709 a001 21/4868641*20633239^(13/15) 9421136515588709 a001 329/29134601*20633239^(17/21) 9421136515588727 a001 329/29134601*45537549124^(5/9) 9421136515588728 a001 329/29134601*228826127^(17/24) 9421136515588728 a001 21/4868641*141422324^(7/9) 9421136515588728 a001 21/4868641*17393796001^(13/21) 9421136515588728 a001 21/4868641*505019158607^(13/24) 9421136515588728 a001 21/4868641*73681302247^(7/12) 9421136515588728 a001 21/4868641*599074578^(13/18) 9421136515588729 a001 329/64300051206*17393796001^(19/21) 9421136515588729 a001 329/9381251041*312119004989^(11/15) 9421136515588729 a001 987/312119004989*45537549124^(8/9) 9421136515588729 a001 329/64300051206*505019158607^(19/24) 9421136515588729 a001 987/5600748293801*312119004989^(14/15) 9421136515588729 a001 329/440719107401*1322157322203^(5/6) 9421136515588729 a001 987/14662949395604*23725150497407^(5/6) 9421136515588729 a001 987/5600748293801*505019158607^(11/12) 9421136515588729 a001 987/312119004989*23725150497407^(17/24) 9421136515588729 a001 987/312119004989*505019158607^(17/21) 9421136515588729 a001 987/119218851371*3461452808002^(13/18) 9421136515588729 a001 987/119218851371*73681302247^(5/6) 9421136515588729 a001 987/45537549124*9062201101803^(2/3) 9421136515588729 a001 987/119218851371*28143753123^(13/15) 9421136515588729 a001 987/17393796001*2139295485799^(2/3) 9421136515588729 a001 987/312119004989*10749957122^(17/18) 9421136515588729 a001 987/6643838879*17393796001^(16/21) 9421136515588729 a001 987/6643838879*23725150497407^(7/12) 9421136515588729 a001 987/6643838879*505019158607^(2/3) 9421136515588729 a001 987/6643838879*10749957122^(7/9) 9421136515588729 a001 987/10749957122*4106118243^(5/6) 9421136515588729 a001 987/2537720636*119218851371^(2/3) 9421136515588729 a001 329/9381251041*1568397607^(11/12) 9421136515588729 a001 987/969323029*3461452808002^(5/9) 9421136515588729 a001 987/969323029*28143753123^(2/3) 9421136515588729 a001 987/6643838879*599074578^(8/9) 9421136515588729 a001 987/370248451*6643838879^(2/3) 9421136515588729 a001 987/969323029*228826127^(5/6) 9421136515588729 a001 987/6643838879*228826127^(14/15) 9421136515588729 a001 987/10749957122*228826127^(23/24) 9421136515588729 a001 987/141422324*312119004989^(8/15) 9421136515588729 a001 987/141422324*23725150497407^(11/24) 9421136515588729 a001 987/141422324*10749957122^(11/18) 9421136515588729 a001 987/141422324*1568397607^(2/3) 9421136515588729 a001 987/141422324*228826127^(11/15) 9421136515588732 a001 987/54018521*370248451^(2/3) 9421136515588751 a001 987/20633239*817138163596^(4/9) 9421136515588752 a001 987/20633239*87403803^(2/3) 9421136515588776 a001 329/29134601*12752043^(5/6) 9421136515588866 a001 987/7881196*20633239^(2/3) 9421136515588880 a001 987/7881196*17393796001^(10/21) 9421136515588880 a001 987/7881196*3461452808002^(7/18) 9421136515588880 a001 987/7881196*505019158607^(5/12) 9421136515588880 a001 987/7881196*28143753123^(7/15) 9421136515588880 a001 987/7881196*599074578^(5/9) 9421136515588880 a001 987/7881196*228826127^(7/12) 9421136515589065 a001 987/20633239*4870847^(19/24) 9421136515589093 a001 987/141422324*4870847^(11/12) 9421136515589768 a001 987/3010349*23725150497407^(1/3) 9421136515589768 a001 987/3010349*505019158607^(8/21) 9421136515589768 a001 987/3010349*10749957122^(4/9) 9421136515589768 a001 987/3010349*228826127^(8/15) 9421136515590033 a001 987/3010349*4870847^(2/3) 9421136515590997 a001 987/7881196*1860498^(7/9) 9421136515591104 a001 987/1149851*1149851^(2/3) 9421136515591298 a001 329/29134601*1860498^(17/18) 9421136515595854 a001 987/1149851*1322157322203^(1/3) 9421136515603982 a001 987/3010349*710647^(16/21) 9421136515604426 a001 987/7881196*710647^(5/6) 9421136515605629 a001 987/20633239*710647^(19/21) 9421136515637568 a001 987/439204*141422324^(4/9) 9421136515637568 a001 987/439204*73681302247^(1/3) 9421136515637783 a001 987/439204*4870847^(13/24) 9421136515649116 a001 987/439204*710647^(13/21) 9421136515722810 a001 987/439204*271443^(2/3) 9421136515923479 a001 987/167761*4106118243^(1/3) 9421136516270515 a001 987/439204*103682^(13/18) 9421136516368780 a001 987/3010349*103682^(8/9) 9421136517704609 a001 987/64079*167761^(8/15) 9421136517883135 a001 987/64079*20633239^(8/21) 9421136517883143 a001 987/64079*23725150497407^(5/24) 9421136517883143 a001 987/64079*3461452808002^(2/9) 9421136517883143 a001 987/64079*28143753123^(4/15) 9421136517883143 a001 987/64079*10749957122^(5/18) 9421136517883143 a001 987/64079*228826127^(1/3) 9421136517883308 a001 987/64079*4870847^(5/12) 9421136517884353 a001 987/64079*1860498^(4/9) 9421136517892026 a001 987/64079*710647^(10/21) 9421136518370025 a001 987/64079*103682^(5/9) 9421136520110075 a001 987/167761*39603^(23/33) 9421136520370241 a001 987/439204*39603^(26/33) 9421136520575786 a001 141/101521*39603^(5/6) 9421136520874605 a001 987/1149851*39603^(29/33) 9421136521414597 a001 987/3010349*39603^(32/33) 9421136521523661 a001 987/64079*39603^(20/33) 9421136523751161 a001 10946/2207*9349^(4/57) 9421136527317371 a001 4181/9349*1364^(19/45) 9421136531314878 a001 987/24476*45537549124^(2/9) 9421136531314898 a001 987/24476*12752043^(1/3) 9421136531315292 a001 10946/2207*4870847^(1/24) 9421136531316164 a001 10946/2207*710647^(1/21) 9421136531363964 a001 10946/2207*103682^(1/18) 9421136531679327 a001 10946/2207*39603^(2/33) 9421136534060048 a001 10946/2207*15127^(1/15) 9421136534409319 a001 987/24476*39603^(17/33) 9421136534971024 a001 329/13201*15127^(37/60) 9421136540659437 a007 Real Root Of -269*x^4+525*x^3+563*x^2+712*x+822 9421136544218650 a001 21/2206*15127^(43/60) 9421136545330873 a001 987/64079*15127^(2/3) 9421136547488368 a001 987/167761*15127^(23/30) 9421136549084334 a001 329/90481*15127^(49/60) 9421136549877862 a001 17711/2207*2207^(1/48) 9421136551319617 a001 987/439204*15127^(13/15) 9421136552218557 a001 10946/2207*5778^(2/27) 9421136553310702 a001 141/101521*15127^(11/12) 9421136554645449 a001 987/24476*15127^(17/30) 9421136555395062 a001 987/1149851*15127^(29/30) 9421136555678410 k002 Champernowne real with 37/2*n^2+123/2*n+14 9421136570428560 a001 987/9349*9349^(28/57) 9421136578928575 a007 Real Root Of 340*x^4+125*x^3+857*x^2+104*x-826 9421136604467473 a001 4181/2207*9349^(10/57) 9421136615528198 a007 Real Root Of 876*x^4+867*x^3-24*x^2-567*x-478 9421136616387964 a001 987/9349*24476^(4/9) 9421136623333126 a001 4181/2207*167761^(2/15) 9421136623377358 a001 987/9349*20633239^(4/15) 9421136623377364 a001 987/9349*17393796001^(4/21) 9421136623377364 a001 987/9349*505019158607^(1/6) 9421136623377364 a001 987/9349*599074578^(2/9) 9421136623377479 a001 987/9349*4870847^(7/24) 9421136623377757 a001 4181/2207*20633239^(2/21) 9421136623377760 a001 4181/2207*3461452808002^(1/18) 9421136623377760 a001 4181/2207*28143753123^(1/15) 9421136623377760 a001 4181/2207*228826127^(1/12) 9421136623378062 a001 4181/2207*1860498^(1/9) 9421136623383582 a001 987/9349*710647^(1/3) 9421136623718181 a001 987/9349*103682^(7/18) 9421136623879509 a001 10946/15127*1364^(16/45) 9421136624287889 a001 4181/2207*39603^(5/33) 9421136625925726 a001 987/9349*39603^(14/33) 9421136630239692 a001 4181/2207*15127^(1/6) 9421136636417568 a001 141/2161*5778^(31/54) 9421136642590775 a001 987/9349*15127^(7/15) 9421136645612513 a001 28657/39603*1364^(16/45) 9421136648437417 a001 3/10946*6765^(7/50) 9421136648783316 a001 75025/103682*1364^(16/45) 9421136649245930 a001 196418/271443*1364^(16/45) 9421136649313424 a001 514229/710647*1364^(16/45) 9421136649323272 a001 1346269/1860498*1364^(16/45) 9421136649325596 a001 2178309/3010349*1364^(16/45) 9421136649329358 a001 832040/1149851*1364^(16/45) 9421136649355138 a001 317811/439204*1364^(16/45) 9421136649531841 a001 121393/167761*1364^(16/45) 9421136650742980 a001 46368/64079*1364^(16/45) 9421136655979010 k002 Champernowne real with 19*n^2+60*n+15 9421136659044249 a001 17711/24476*1364^(16/45) 9421136663543906 a001 2255/1926*1364^(13/45) 9421136675635964 a001 4181/2207*5778^(5/27) 9421136691921280 m001 (-Pi^(1/2)+ZetaP(2))/(exp(1)-ln(2+3^(1/2))) 9421136692497640 a001 10946/2207*2207^(1/12) 9421136702937231 a001 329/13201*5778^(37/54) 9421136708992775 a001 987/24476*5778^(17/27) 9421136710342494 m001 GAMMA(5/12)/ln(OneNinth)*Pi^2 9421136715941995 a001 6765/9349*1364^(16/45) 9421136716449211 r005 Re(z^2+c),c=-13/14+23/199*I,n=13 9421136718090903 m001 (ln(2)-Ei(1,1))/(GAMMA(7/12)-GAMMA(23/24)) 9421136726808081 p004 log(19751/7699) 9421136726915962 a001 987/64079*5778^(20/27) 9421136729628736 a007 Real Root Of 630*x^4-41*x^3+977*x^2+747*x-694 9421136739422621 a001 21/2206*5778^(43/54) 9421136756279610 k002 Champernowne real with 39/2*n^2+117/2*n+16 9421136756311222 a001 987/167761*5778^(23/27) 9421136756486669 a001 6765/2207*2207^(7/48) 9421136757237497 a001 2584/2207*2207^(13/48) 9421136769700338 a001 987/9349*5778^(14/27) 9421136771526069 a001 329/90481*5778^(49/54) 9421136787380234 a001 987/439204*5778^(26/27) 9421136816673563 r005 Re(z^2+c),c=-1/11+8/61*I,n=12 9421136825227901 a001 17711/2207*843^(1/42) 9421136830359113 a001 377/15127*843^(37/42) 9421136856580210 k002 Champernowne real with 20*n^2+57*n+17 9421136860625154 m001 sqrt(Pi)*(Zeta(3)+exp(sqrt(2))) 9421136879220302 m001 1/Zeta(9)^2*exp((3^(1/3)))*sqrt(5) 9421136888721568 l006 ln(3127/8022) 9421136893514028 r002 4th iterates of z^2 + 9421136899607529 m001 GAMMA(3/4)/exp(GAMMA(11/12))/GAMMA(5/12)^2 9421136911727641 m001 (FeigenbaumD+Kolakoski)/(cos(1)-gamma) 9421136922292395 a007 Real Root Of -916*x^4+202*x^3+345*x^2+62*x-9 9421136935687467 a001 987/3571*3571^(22/51) 9421136939731362 a001 17711/15127*1364^(13/45) 9421136944374541 r009 Re(z^3+c),c=-13/90+26/53*I,n=21 9421136956008858 a003 cos(Pi*22/97)/sin(Pi*19/64) 9421136956880810 k002 Champernowne real with 41/2*n^2+111/2*n+18 9421136957859659 r002 4th iterates of z^2 + 9421136980026570 a001 15456/13201*1364^(13/45) 9421136985905562 a001 121393/103682*1364^(13/45) 9421136986763295 a001 105937/90481*1364^(13/45) 9421136986888437 a001 832040/710647*1364^(13/45) 9421136986906695 a001 726103/620166*1364^(13/45) 9421136986917979 a001 1346269/1149851*1364^(13/45) 9421136986965779 a001 514229/439204*1364^(13/45) 9421136987293404 a001 196418/167761*1364^(13/45) 9421136989538979 a001 75025/64079*1364^(13/45) 9421137001180606 s002 sum(A114695[n]/(exp(n)-1),n=1..infinity) 9421137004930379 a001 28657/24476*1364^(13/45) 9421137006822042 a007 Real Root Of 424*x^4-671*x^3-567*x^2+37*x-357 9421137022604788 a001 1597/2207*3571^(16/51) 9421137026333680 a001 4181/2207*2207^(5/24) 9421137044661409 m001 (PrimesInBinary+Totient)/(gamma+GAMMA(17/24)) 9421137046754689 r005 Im(z^2+c),c=31/94+29/51*I,n=50 9421137057181410 k002 Champernowne real with 21*n^2+54*n+19 9421137058026514 a001 5473/2889*1364^(2/9) 9421137060370897 a007 Real Root Of 562*x^4-803*x^3-248*x^2+33*x-863 9421137063464768 m001 (Shi(1)+RenyiParking)/(Stephens+Totient) 9421137074842685 r005 Re(z^2+c),c=4/17+11/35*I,n=43 9421137079196256 m001 (MadelungNaCl-Thue)/(HardyLittlewoodC3-Kac) 9421137098738446 m009 (1/6*Pi^2-3)/(3/5*Psi(1,2/3)-2/5) 9421137101253184 a007 Real Root Of -178*x^4-34*x^3-564*x^2-166*x+456 9421137105924976 a001 2584/3571*1364^(16/45) 9421137110424605 a001 10946/9349*1364^(13/45) 9421137111213111 k008 concat of cont frac of 9421137122428256 k006 concat of cont frac of 9421137133215261 k005 Champernowne real with floor(Pi*(62*n+238)) 9421137133215271 k001 Champernowne real with 195*n+747 9421137140431211 k006 concat of cont frac of 9421137155181525 k009 concat of cont frac of 9421137157482011 k002 Champernowne real with 43/2*n^2+105/2*n+20 9421137164645911 a007 Real Root Of 659*x^4-259*x^3-770*x^2+945*x+838 9421137199045838 a003 cos(Pi*9/76)/sin(Pi*19/42) 9421137200619090 a001 377/1364*843^(11/21) 9421137212780440 a001 987/3571*9349^(22/57) 9421137224126952 a001 1597/2207*9349^(16/57) 9421137240784222 a001 329/1926*2207^(25/48) 9421137254383040 a001 987/3571*7881196^(2/9) 9421137254383074 a001 987/3571*312119004989^(2/15) 9421137254383074 a001 987/3571*1568397607^(1/6) 9421137254383413 a001 1597/2207*23725150497407^(1/12) 9421137254383413 a001 1597/2207*10749957122^(1/9) 9421137254383413 a001 1597/2207*228826127^(2/15) 9421137254383479 a001 1597/2207*4870847^(1/6) 9421137254386966 a001 1597/2207*710647^(4/21) 9421137254578166 a001 1597/2207*103682^(2/9) 9421137255839620 a001 1597/2207*39603^(8/33) 9421137256385359 a001 987/3571*39603^(1/3) 9421137257782611 k002 Champernowne real with 22*n^2+51*n+21 9421137265362505 a001 1597/2207*15127^(4/15) 9421137268648916 a007 Real Root Of 842*x^4-439*x^3-864*x^2+647*x+346 9421137269479326 a001 987/3571*15127^(11/30) 9421137276766583 a001 2576/321*521^(1/39) 9421137285617502 a001 28657/15127*1364^(2/9) 9421137292523541 b008 9+(2*ExpIntegralEi[1])/9 9421137314765114 a007 Real Root Of -887*x^4-320*x^3-453*x^2-30*x+805 9421137318822581 a001 75025/39603*1364^(2/9) 9421137321813637 r005 Re(z^2+c),c=-12/11+8/61*I,n=60 9421137323667137 a001 98209/51841*1364^(2/9) 9421137324373948 a001 514229/271443*1364^(2/9) 9421137324477070 a001 1346269/710647*1364^(2/9) 9421137324492116 a001 1762289/930249*1364^(2/9) 9421137324494311 a001 9227465/4870847*1364^(2/9) 9421137324494631 a001 24157817/12752043*1364^(2/9) 9421137324494678 a001 31622993/16692641*1364^(2/9) 9421137324494685 a001 165580141/87403803*1364^(2/9) 9421137324494686 a001 433494437/228826127*1364^(2/9) 9421137324494686 a001 567451585/299537289*1364^(2/9) 9421137324494686 a001 2971215073/1568397607*1364^(2/9) 9421137324494686 a001 7778742049/4106118243*1364^(2/9) 9421137324494686 a001 10182505537/5374978561*1364^(2/9) 9421137324494686 a001 53316291173/28143753123*1364^(2/9) 9421137324494686 a001 139583862445/73681302247*1364^(2/9) 9421137324494686 a001 182717648081/96450076809*1364^(2/9) 9421137324494686 a001 956722026041/505019158607*1364^(2/9) 9421137324494686 a001 10610209857723/5600748293801*1364^(2/9) 9421137324494686 a001 591286729879/312119004989*1364^(2/9) 9421137324494686 a001 225851433717/119218851371*1364^(2/9) 9421137324494686 a001 21566892818/11384387281*1364^(2/9) 9421137324494686 a001 32951280099/17393796001*1364^(2/9) 9421137324494686 a001 12586269025/6643838879*1364^(2/9) 9421137324494686 a001 1201881744/634430159*1364^(2/9) 9421137324494686 a001 1836311903/969323029*1364^(2/9) 9421137324494686 a001 701408733/370248451*1364^(2/9) 9421137324494686 a001 66978574/35355581*1364^(2/9) 9421137324494689 a001 102334155/54018521*1364^(2/9) 9421137324494707 a001 39088169/20633239*1364^(2/9) 9421137324494829 a001 3732588/1970299*1364^(2/9) 9421137324495667 a001 5702887/3010349*1364^(2/9) 9421137324501414 a001 2178309/1149851*1364^(2/9) 9421137324540803 a001 208010/109801*1364^(2/9) 9421137324810781 a001 317811/167761*1364^(2/9) 9421137326661237 a001 121393/64079*1364^(2/9) 9421137337996546 a001 1597/2207*5778^(8/27) 9421137339344448 a001 11592/6119*1364^(2/9) 9421137340973319 r005 Re(z^2+c),c=-1/11+8/61*I,n=14 9421137350322510 m005 (1/2*Pi+3/10)/(221/198+7/18*5^(1/2)) 9421137358083211 k002 Champernowne real with 45/2*n^2+99/2*n+22 9421137364081152 a007 Real Root Of 119*x^4-85*x^3+275*x^2-223*x-619 9421137369222962 a007 Real Root Of -355*x^4-240*x^3-519*x^2-110*x+436 9421137369351132 a001 987/3571*5778^(11/27) 9421137373878382 a001 17711/5778*1364^(7/45) 9421137377681097 m001 Si(Pi)*Bloch/ln(Riemann2ndZero)^2 9421137382454118 a007 Real Root Of 270*x^4-432*x^3+206*x^2-893*x+807 9421137391757227 a001 4181/1364*521^(7/39) 9421137401851329 a007 Real Root Of -525*x^4+753*x^3+582*x^2-161*x+375 9421137423484595 r002 36th iterates of z^2 + 9421137424304565 a001 5/2139295485799*521^(13/22) 9421137424368625 m001 MertensB2^GaussAGM/(MertensB2^Sierpinski) 9421137426276475 a001 17711/9349*1364^(2/9) 9421137443232909 a001 4/89*32951280099^(6/19) 9421137457742572 a001 2584/710647*3571^(49/51) 9421137458383811 k002 Champernowne real with 23*n^2+48*n+23 9421137501268560 a001 34/5779*3571^(46/51) 9421137518521832 a007 Real Root Of -514*x^4-513*x^3-648*x^2+771*x+78 9421137518537839 a001 121393/15127*521^(1/39) 9421137533131819 m001 (Si(Pi)+GAMMA(3/4))/(Conway+ReciprocalLucas) 9421137539552821 m001 ThueMorse^FeigenbaumB+arctan(1/2) 9421137543270149 r005 Re(z^2+c),c=-1/11+8/61*I,n=17 9421137544550351 a001 2584/271443*3571^(43/51) 9421137548713115 r005 Re(z^2+c),c=-1/11+8/61*I,n=20 9421137548814753 r005 Re(z^2+c),c=-1/11+8/61*I,n=22 9421137548819216 r005 Re(z^2+c),c=-1/11+8/61*I,n=23 9421137548820127 r005 Re(z^2+c),c=-1/11+8/61*I,n=25 9421137548820366 r005 Re(z^2+c),c=-1/11+8/61*I,n=28 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=31 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=33 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=34 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=36 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=39 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=42 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=44 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=45 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=47 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=50 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=53 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=55 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=56 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=58 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=61 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=59 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=64 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=63 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=62 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=60 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=57 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=54 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=52 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=51 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=48 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=49 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=46 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=43 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=41 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=40 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=37 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=38 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=35 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=32 9421137548820372 r005 Re(z^2+c),c=-1/11+8/61*I,n=30 9421137548820374 r005 Re(z^2+c),c=-1/11+8/61*I,n=29 9421137548820387 r005 Re(z^2+c),c=-1/11+8/61*I,n=27 9421137548820388 r005 Re(z^2+c),c=-1/11+8/61*I,n=26 9421137548821282 r005 Re(z^2+c),c=-1/11+8/61*I,n=24 9421137548838640 r005 Re(z^2+c),c=-1/11+8/61*I,n=19 9421137548859253 r005 Re(z^2+c),c=-1/11+8/61*I,n=21 9421137549955583 a007 Real Root Of 471*x^4-805*x^3-813*x^2+109*x+921 9421137550012232 r005 Re(z^2+c),c=-1/11+8/61*I,n=18 9421137553811791 a001 105937/13201*521^(1/39) 9421137558684411 k002 Champernowne real with 47/2*n^2+93/2*n+24 9421137558958191 a001 416020/51841*521^(1/39) 9421137559503891 r005 Re(z^2+c),c=-1/11+8/61*I,n=16 9421137559709041 a001 726103/90481*521^(1/39) 9421137560173092 a001 1346269/167761*521^(1/39) 9421137562138841 a001 514229/64079*521^(1/39) 9421137564161078 m005 (1/3*Catalan-1/9)/(7/9*3^(1/2)+5/7) 9421137566919048 r005 Re(z^2+c),c=-1/11+8/61*I,n=15 9421137567095998 a001 1/610*28657^(15/38) 9421137570861072 a007 Real Root Of 829*x^4-504*x^3-430*x^2-15*x-707 9421137575612292 a001 98209/12238*521^(1/39) 9421137584541788 r005 Re(z^2+c),c=-99/106+25/32*I,n=3 9421137588471459 a001 2584/167761*3571^(40/51) 9421137588796680 r005 Im(z^2+c),c=-13/46+41/52*I,n=7 9421137594124027 a007 Real Root Of 873*x^4+992*x^3+478*x^2-285*x-551 9421137600198607 m001 (-arctan(1/3)+GaussAGM)/(Catalan+Zeta(1/2)) 9421137602363921 m005 (1/2*Pi-3/10)/(7/8*3^(1/2)-1/6) 9421137610151833 a001 1292/2889*3571^(19/51) 9421137614159131 a007 Real Root Of 191*x^4-463*x^3+661*x^2+340*x-804 9421137619622363 r009 Im(z^3+c),c=-9/70+45/49*I,n=5 9421137620031582 a001 6624/2161*1364^(7/45) 9421137629846349 l006 ln(1682/4315) 9421137630718815 a001 1292/51841*3571^(37/51) 9421137642653203 a007 Real Root Of -145*x^4+122*x^3-453*x^2+161*x+770 9421137642800244 a003 cos(Pi*7/26)+cos(Pi*41/100) 9421137644808146 m001 ln(PisotVijayaraghavan)^2/FeigenbaumB/Zeta(7) 9421137651797971 p001 sum((-1)^n/(493*n+369)/n/(12^n),n=1..infinity) 9421137655944851 a001 121393/39603*1364^(7/45) 9421137658985011 k002 Champernowne real with 24*n^2+45*n+25 9421137661184526 a001 317811/103682*1364^(7/45) 9421137661948985 a001 832040/271443*1364^(7/45) 9421137662060518 a001 311187/101521*1364^(7/45) 9421137662129449 a001 1346269/439204*1364^(7/45) 9421137662421446 a001 514229/167761*1364^(7/45) 9421137664422824 a001 196418/64079*1364^(7/45) 9421137667960699 a001 75025/9349*521^(1/39) 9421137677348112 a001 2584/64079*3571^(2/3) 9421137678140472 a001 75025/24476*1364^(7/45) 9421137682394593 m001 (1+cos(1/5*Pi))/(KhinchinHarmonic+ZetaP(3)) 9421137684316096 a007 Real Root Of -460*x^4+97*x^3+708*x^2+969*x+728 9421137698781249 a001 55/15126*3571^(49/51) 9421137712505337 a001 2584/39603*3571^(31/51) 9421137719764538 a001 28657/5778*1364^(4/45) 9421137721920870 m001 GAMMA(7/12)^(Riemann2ndZero/ReciprocalLucas) 9421137723580525 a001 141/2161*2207^(31/48) 9421137733948318 a001 17711/4870847*3571^(49/51) 9421137742249591 a001 6765/1149851*3571^(46/51) 9421137751653985 a001 987/9349*2207^(7/12) 9421137755682762 a001 10946/3010349*3571^(49/51) 9421137759285611 k002 Champernowne real with 49/2*n^2+87/2*n+26 9421137764257582 a001 2584/15127*3571^(25/51) 9421137772162633 a001 28657/9349*1364^(7/45) 9421137777408250 a001 17711/3010349*3571^(46/51) 9421137777696839 a001 646/6119*3571^(28/51) 9421137785682306 a001 6765/710647*3571^(43/51) 9421137785708083 a001 28657/4870847*3571^(46/51) 9421137785890652 m001 FeigenbaumC/exp(LaplaceLimit)^2*BesselJ(1,1)^2 9421137789328764 a001 1597/3571*1364^(19/45) 9421137793897862 a001 10946/2207*843^(2/21) 9421137799137496 a001 5473/930249*3571^(46/51) 9421137820083466 a001 144/521*322^(11/18) 9421137820862984 a001 17711/1860498*3571^(43/51) 9421137825995775 a001 46368/4870847*3571^(43/51) 9421137829168015 a001 28657/3010349*3571^(43/51) 9421137829208295 a001 6765/439204*3571^(40/51) 9421137833492843 a001 4181/3571*1364^(13/45) 9421137834193818 a001 13/844*843^(20/21) 9421137842047883 m001 (Chi(1)+BesselI(0,1))/(-Khinchin+ZetaP(2)) 9421137842605838 a001 10946/1149851*3571^(43/51) 9421137843529947 a007 Real Root Of -49*x^4-145*x^3-539*x^2+635*x+994 9421137843734046 h001 (-9*exp(2)-1)/(-8*exp(1/3)+4) 9421137847751344 a001 4181/1149851*3571^(49/51) 9421137849459417 a001 1292/2889*9349^(1/3) 9421137859586211 k002 Champernowne real with 25*n^2+42*n+27 9421137864331326 a001 17711/1149851*3571^(40/51) 9421137869455707 a001 46368/3010349*3571^(40/51) 9421137870665410 a001 75025/4870847*3571^(40/51) 9421137872490088 a001 2255/90481*3571^(37/51) 9421137872622749 a001 28657/1860498*3571^(40/51) 9421137877082322 r005 Im(z^2+c),c=13/110+39/50*I,n=4 9421137885388967 a001 1292/2889*817138163596^(1/9) 9421137885388967 a001 1292/2889*87403803^(1/6) 9421137886038553 a001 10946/710647*3571^(40/51) 9421137891184059 a001 4181/710647*3571^(46/51) 9421137898426640 a001 1292/2889*15127^(19/60) 9421137899052958 r005 Re(z^2+c),c=-7/8+31/143*I,n=23 9421137899112937 a001 1597/2207*2207^(1/3) 9421137901365065 a001 987/24476*2207^(17/24) 9421137907764041 a001 17711/710647*3571^(37/51) 9421137912910442 a001 2576/103361*3571^(37/51) 9421137913661291 a001 121393/4870847*3571^(37/51) 9421137914125342 a001 75025/3010349*3571^(37/51) 9421137915361822 r005 Im(z^2+c),c=15/34+11/30*I,n=15 9421137916091092 a001 28657/1149851*3571^(37/51) 9421137916411197 a001 615/15251*3571^(2/3) 9421137923111631 k009 concat of cont frac of 9421137929564543 a001 5473/219602*3571^(37/51) 9421137934710049 a001 4181/439204*3571^(43/51) 9421137938091571 a001 2255/1926*3571^(13/51) 9421137951290031 a001 17711/439204*3571^(2/3) 9421137953328788 m001 (arctan(1/3)-PrimesInBinary)/Paris 9421137955539377 m005 (1/2*Catalan-6/7)/(-15/154+1/22*5^(1/2)) 9421137956378785 a001 46368/1149851*3571^(2/3) 9421137956676327 a001 2584/9349*3571^(22/51) 9421137957121224 a001 121393/3010349*3571^(2/3) 9421137957229544 a001 317811/7881196*3571^(2/3) 9421137957245348 a001 75640/1875749*3571^(2/3) 9421137957247654 a001 2178309/54018521*3571^(2/3) 9421137957247990 a001 5702887/141422324*3571^(2/3) 9421137957248039 a001 14930352/370248451*3571^(2/3) 9421137957248046 a001 39088169/969323029*3571^(2/3) 9421137957248047 a001 9303105/230701876*3571^(2/3) 9421137957248047 a001 267914296/6643838879*3571^(2/3) 9421137957248047 a001 701408733/17393796001*3571^(2/3) 9421137957248047 a001 1836311903/45537549124*3571^(2/3) 9421137957248047 a001 4807526976/119218851371*3571^(2/3) 9421137957248047 a001 1144206275/28374454999*3571^(2/3) 9421137957248047 a001 32951280099/817138163596*3571^(2/3) 9421137957248047 a001 86267571272/2139295485799*3571^(2/3) 9421137957248047 a001 225851433717/5600748293801*3571^(2/3) 9421137957248047 a001 591286729879/14662949395604*3571^(2/3) 9421137957248047 a001 365435296162/9062201101803*3571^(2/3) 9421137957248047 a001 139583862445/3461452808002*3571^(2/3) 9421137957248047 a001 53316291173/1322157322203*3571^(2/3) 9421137957248047 a001 20365011074/505019158607*3571^(2/3) 9421137957248047 a001 7778742049/192900153618*3571^(2/3) 9421137957248047 a001 2971215073/73681302247*3571^(2/3) 9421137957248047 a001 1134903170/28143753123*3571^(2/3) 9421137957248047 a001 433494437/10749957122*3571^(2/3) 9421137957248048 a001 165580141/4106118243*3571^(2/3) 9421137957248048 a001 63245986/1568397607*3571^(2/3) 9421137957248051 a001 24157817/599074578*3571^(2/3) 9421137957248069 a001 9227465/228826127*3571^(2/3) 9421137957248198 a001 3524578/87403803*3571^(2/3) 9421137957249079 a001 1346269/33385282*3571^(2/3) 9421137957255115 a001 514229/12752043*3571^(2/3) 9421137957296490 a001 196418/4870847*3571^(2/3) 9421137957580076 a001 75025/1860498*3571^(2/3) 9421137958658554 a001 6765/103682*3571^(31/51) 9421137958827616 a001 75025/15127*1364^(4/45) 9421137959523807 a001 28657/710647*3571^(2/3) 9421137959886811 k002 Champernowne real with 51/2*n^2+81/2*n+28 9421137972846336 a001 10946/271443*3571^(2/3) 9421137977991842 a001 4181/271443*3571^(40/51) 9421137982882918 m001 (Shi(1)+BesselI(0,1))/(-Ei(1,1)+Khinchin) 9421137984679570 a001 1292/2889*5778^(19/54) 9421137990470818 a007 Real Root Of -433*x^4+710*x^3+719*x^2-127*x+177 9421137993706450 a001 196418/39603*1364^(4/45) 9421137994571824 a001 17711/271443*3571^(31/51) 9421137995124621 a007 Real Root Of 430*x^4-965*x^3+137*x^2-960*x+90 9421137998795203 a001 514229/103682*1364^(4/45) 9421137999537642 a001 1346269/271443*1364^(4/45) 9421137999712908 a001 2178309/439204*1364^(4/45) 9421137999811500 a001 6624/101521*3571^(31/51) 9421137999996495 a001 75640/15251*1364^(4/45) 9421138000518848 a001 329/13201*2207^(37/48) 9421138000575958 a001 121393/1860498*3571^(31/51) 9421138000687491 a001 317811/4870847*3571^(31/51) 9421138000756422 a001 196418/3010349*3571^(31/51) 9421138001048420 a001 75025/1149851*3571^(31/51) 9421138001940226 a001 317811/64079*1364^(4/45) 9421138003049798 a001 28657/439204*3571^(31/51) 9421138005287853 a001 6765/64079*3571^(28/51) 9421138015262755 a001 121393/24476*1364^(4/45) 9421138016767446 a001 10946/167761*3571^(31/51) 9421138021912952 a001 4181/167761*3571^(37/51) 9421138022117493 a001 6765/3571*1364^(2/9) 9421138034110548 m002 -Pi^4+5/Log[Pi]-Sinh[Pi]/Pi^2 9421138038447821 a001 5473/2889*3571^(10/51) 9421138038492934 a001 17711/167761*3571^(28/51) 9421138040445079 a001 2255/13201*3571^(25/51) 9421138043337491 a001 11592/109801*3571^(28/51) 9421138043593327 a001 4181/5778*3571^(16/51) 9421138044044302 a001 121393/1149851*3571^(28/51) 9421138044147424 a001 317811/3010349*3571^(28/51) 9421138044171768 a001 514229/4870847*3571^(28/51) 9421138044211157 a001 98209/930249*3571^(28/51) 9421138044481135 a001 75025/710647*3571^(28/51) 9421138046331591 a001 28657/271443*3571^(28/51) 9421138054178633 a001 2576/321*1364^(1/45) 9421138059014803 a001 5473/51841*3571^(28/51) 9421138060173309 a001 17711/5778*3571^(7/51) 9421138060187411 k002 Champernowne real with 26*n^2+39*n+29 9421138063573998 a001 1292/930249*9349^(55/57) 9421138064160309 a001 4181/103682*3571^(2/3) 9421138065188554 m001 (GAMMA(19/24)+Cahen)/(DuboisRaymond-ZetaQ(4)) 9421138069256933 a001 2584/1149851*9349^(52/57) 9421138073991223 r005 Re(z^2+c),c=-43/46+13/51*I,n=4 9421138074904239 a001 2584/710647*9349^(49/57) 9421138079135988 a001 2584/15127*9349^(25/57) 9421138080391923 m001 Trott^FeigenbaumD/LambertW(1) 9421138080644820 a001 34/5779*9349^(46/57) 9421138080740292 a001 17711/103682*3571^(25/51) 9421138086141205 a001 2584/271443*9349^(43/57) 9421138086619284 a001 15456/90481*3571^(25/51) 9421138087477017 a001 121393/710647*3571^(25/51) 9421138087602159 a001 105937/620166*3571^(25/51) 9421138087620417 a001 832040/4870847*3571^(25/51) 9421138087631701 a001 514229/3010349*3571^(25/51) 9421138087679501 a001 196418/1149851*3571^(25/51) 9421138088007126 a001 75025/439204*3571^(25/51) 9421138090252701 a001 28657/167761*3571^(25/51) 9421138092197326 a001 6765/15127*3571^(19/51) 9421138092276905 a001 2584/167761*9349^(40/57) 9421138095071767 m001 (Shi(1)-ln(3))/(-KhinchinHarmonic+Mills) 9421138096738853 a001 1292/51841*9349^(37/57) 9421138101828345 a001 2255/1926*9349^(13/57) 9421138102954560 a001 2584/39603*9349^(31/57) 9421138105582744 a001 2584/64079*9349^(34/57) 9421138105636583 a001 6765/24476*3571^(22/51) 9421138105644103 a001 10946/64079*3571^(25/51) 9421138106576730 a001 46368/9349*1364^(4/45) 9421138110789609 a001 4181/64079*3571^(31/51) 9421138111138767 a007 Real Root Of 595*x^4-588*x^3-765*x^2-612*x-858 9421138111933076 a001 28657/5778*3571^(4/51) 9421138126300130 a001 2584/15127*167761^(1/3) 9421138126411708 a001 2584/15127*20633239^(5/21) 9421138126411713 a001 2584/15127*28143753123^(1/6) 9421138126411713 a001 2584/15127*228826127^(5/24) 9421138126411721 a001 2255/1926*141422324^(1/9) 9421138126411722 a001 2255/1926*73681302247^(1/12) 9421138126412469 a001 2584/15127*1860498^(5/18) 9421138126433032 a001 2255/1926*271443^(1/6) 9421138127369591 a001 17711/64079*3571^(22/51) 9421138129706911 a001 987/64079*2207^(5/6) 9421138130360655 a001 646/6119*9349^(28/57) 9421138130540395 a001 46368/167761*3571^(22/51) 9421138131003008 a001 121393/439204*3571^(22/51) 9421138131070503 a001 317811/1149851*3571^(22/51) 9421138131080350 a001 832040/3010349*3571^(22/51) 9421138131082675 a001 1346269/4870847*3571^(22/51) 9421138131086436 a001 514229/1860498*3571^(22/51) 9421138131112217 a001 196418/710647*3571^(22/51) 9421138131288920 a001 75025/271443*3571^(22/51) 9421138132500059 a001 28657/103682*3571^(22/51) 9421138133415301 k001 Champernowne real with 196*n+746 9421138135332235 a001 2255/1926*15127^(13/60) 9421138137840369 a007 Real Root Of 920*x^4+85*x^3-78*x^2+683*x+59 9421138139721451 b008 (11*(1/3+Sqrt[5]))/3 9421138139721451 m005 (1/2*5^(1/2)+9/10)/(27/22+9/22*5^(1/2)) 9421138140801329 a001 10946/39603*3571^(22/51) 9421138140886181 a001 987/3571*2207^(11/24) 9421138143566547 a001 2584/15127*15127^(5/12) 9421138145946835 a001 4181/39603*3571^(28/51) 9421138148339265 a001 17711/5778*9349^(7/57) 9421138152220769 a001 2576/321*3571^(1/51) 9421138153322744 m005 (1/2*Catalan-5/8)/(9/10*2^(1/2)+1/2) 9421138155333208 a001 2584/710647*24476^(7/9) 9421138159829117 a001 17711/5778*24476^(1/9) 9421138160488012 k002 Champernowne real with 53/2*n^2+75/2*n+30 9421138161576113 a001 2584/39603*3010349^(1/3) 9421138161576459 a001 2584/39603*9062201101803^(1/6) 9421138161576466 a001 17711/5778*20633239^(1/15) 9421138161576468 a001 17711/5778*17393796001^(1/21) 9421138161576468 a001 17711/5778*505019158607^(1/24) 9421138161576468 a001 17711/5778*599074578^(1/18) 9421138161578022 a001 17711/5778*710647^(1/12) 9421138162313622 a001 28657/5778*9349^(4/57) 9421138162526818 a001 17711/39603*3571^(19/51) 9421138164399186 a001 5473/2889*9349^(10/57) 9421138164815906 a001 2576/321*9349^(1/57) 9421138166102544 a001 34/5779*64079^(2/3) 9421138166379821 a001 17711/5778*15127^(7/60) 9421138166706925 a001 1292/51841*54018521^(1/3) 9421138167270903 a001 2584/20633239*167761^(14/15) 9421138167335109 a001 1292/930249*167761^(11/15) 9421138167393128 a001 2576/321*15127^(1/60) 9421138167455451 a001 2584/271443*969323029^(1/3) 9421138167564649 a001 2584/710647*20633239^(7/15) 9421138167564660 a001 2584/710647*17393796001^(1/3) 9421138167564660 a001 2584/710647*505019158607^(7/24) 9421138167564660 a001 2584/710647*599074578^(7/18) 9421138167575542 a001 2584/710647*710647^(7/12) 9421138167579604 a001 2584/3010349*1149851^(2/3) 9421138167580509 a001 1292/930249*7881196^(5/9) 9421138167580582 a001 1292/930249*20633239^(11/21) 9421138167580593 a001 1292/930249*312119004989^(1/3) 9421138167580593 a001 1292/930249*1568397607^(5/12) 9421138167580593 a001 1292/930249*228826127^(11/24) 9421138167582256 a001 1292/930249*1860498^(11/18) 9421138167582918 a001 2584/4870847*5600748293801^(1/3) 9421138167583180 a001 2584/370248451*7881196^(8/9) 9421138167583294 a001 34/33391061*20633239^(20/21) 9421138167583296 a001 1292/299537289*20633239^(13/15) 9421138167583297 a001 2584/228826127*20633239^(17/21) 9421138167583314 a001 1292/299537289*141422324^(7/9) 9421138167583315 a001 2584/228826127*45537549124^(5/9) 9421138167583315 a001 2584/228826127*228826127^(17/24) 9421138167583315 a001 1292/299537289*17393796001^(13/21) 9421138167583315 a001 1292/299537289*505019158607^(13/24) 9421138167583315 a001 1292/299537289*73681302247^(7/12) 9421138167583315 a001 1292/299537289*599074578^(13/18) 9421138167583315 a001 2584/505019158607*17393796001^(19/21) 9421138167583315 a001 646/204284540899*45537549124^(8/9) 9421138167583315 a001 2584/73681302247*312119004989^(11/15) 9421138167583315 a001 34/192933544679*312119004989^(14/15) 9421138167583315 a001 2584/505019158607*505019158607^(19/24) 9421138167583315 a001 1292/1730726404001*1322157322203^(5/6) 9421138167583315 a001 646/204284540899*23725150497407^(17/24) 9421138167583315 a001 34/192933544679*505019158607^(11/12) 9421138167583315 a001 646/204284540899*505019158607^(17/21) 9421138167583315 a001 2584/312119004989*3461452808002^(13/18) 9421138167583315 a001 2584/119218851371*9062201101803^(2/3) 9421138167583315 a001 2584/312119004989*73681302247^(5/6) 9421138167583315 a001 646/11384387281*2139295485799^(2/3) 9421138167583315 a001 2584/17393796001*17393796001^(16/21) 9421138167583315 a001 2584/312119004989*28143753123^(13/15) 9421138167583315 a001 2584/17393796001*23725150497407^(7/12) 9421138167583315 a001 2584/17393796001*505019158607^(2/3) 9421138167583315 a001 646/204284540899*10749957122^(17/18) 9421138167583315 a001 2584/17393796001*10749957122^(7/9) 9421138167583315 a001 2584/6643838879*119218851371^(2/3) 9421138167583315 a001 2584/28143753123*4106118243^(5/6) 9421138167583315 a001 34/33391061*3461452808002^(5/9) 9421138167583315 a001 34/33391061*28143753123^(2/3) 9421138167583315 a001 2584/73681302247*1568397607^(11/12) 9421138167583315 a001 2584/969323029*6643838879^(2/3) 9421138167583315 a001 2584/17393796001*599074578^(8/9) 9421138167583315 a001 2584/370248451*312119004989^(8/15) 9421138167583315 a001 2584/370248451*23725150497407^(11/24) 9421138167583315 a001 2584/370248451*10749957122^(11/18) 9421138167583315 a001 2584/370248451*1568397607^(2/3) 9421138167583315 a001 34/33391061*228826127^(5/6) 9421138167583315 a001 2584/17393796001*228826127^(14/15) 9421138167583315 a001 2584/28143753123*228826127^(23/24) 9421138167583315 a001 2584/370248451*228826127^(11/15) 9421138167583315 a001 646/35355581*370248451^(2/3) 9421138167583318 a001 2584/54018521*817138163596^(4/9) 9421138167583319 a001 2584/54018521*87403803^(2/3) 9421138167583322 a001 2584/20633239*20633239^(2/3) 9421138167583337 a001 2584/20633239*17393796001^(10/21) 9421138167583337 a001 2584/20633239*3461452808002^(7/18) 9421138167583337 a001 2584/20633239*505019158607^(5/12) 9421138167583337 a001 2584/20633239*28143753123^(7/15) 9421138167583337 a001 2584/20633239*599074578^(5/9) 9421138167583337 a001 2584/20633239*228826127^(7/12) 9421138167583363 a001 2584/228826127*12752043^(5/6) 9421138167583466 a001 646/1970299*23725150497407^(1/3) 9421138167583466 a001 646/1970299*505019158607^(8/21) 9421138167583466 a001 646/1970299*10749957122^(4/9) 9421138167583467 a001 646/1970299*228826127^(8/15) 9421138167583632 a001 2584/54018521*4870847^(19/24) 9421138167583679 a001 2584/370248451*4870847^(11/12) 9421138167583731 a001 646/1970299*4870847^(2/3) 9421138167584354 a001 2584/3010349*1322157322203^(1/3) 9421138167585454 a001 2584/20633239*1860498^(7/9) 9421138167585885 a001 2584/228826127*1860498^(17/18) 9421138167590440 a001 2584/1149851*141422324^(4/9) 9421138167590440 a001 2584/1149851*73681302247^(1/3) 9421138167590655 a001 2584/1149851*4870847^(13/24) 9421138167597680 a001 646/1970299*710647^(16/21) 9421138167598883 a001 2584/20633239*710647^(5/6) 9421138167600196 a001 2584/54018521*710647^(19/21) 9421138167601989 a001 2584/1149851*710647^(13/21) 9421138167632154 a001 34/5779*4106118243^(1/3) 9421138167675683 a001 2584/1149851*271443^(2/3) 9421138167739532 a001 2584/167761*167761^(8/15) 9421138167918057 a001 2584/167761*20633239^(8/21) 9421138167918065 a001 2584/167761*23725150497407^(5/24) 9421138167918065 a001 2584/167761*3461452808002^(2/9) 9421138167918065 a001 2584/167761*28143753123^(4/15) 9421138167918065 a001 2584/167761*10749957122^(5/18) 9421138167918065 a001 2584/167761*228826127^(1/3) 9421138167918231 a001 2584/167761*4870847^(5/12) 9421138167919275 a001 2584/167761*1860498^(4/9) 9421138167926949 a001 2584/167761*710647^(10/21) 9421138168223388 a001 2584/1149851*103682^(13/18) 9421138168362478 a001 646/1970299*103682^(8/9) 9421138168404948 a001 2584/167761*103682^(5/9) 9421138169877730 a001 2584/64079*45537549124^(2/9) 9421138169877749 a001 2584/64079*12752043^(1/3) 9421138169877755 a001 28657/5778*4870847^(1/24) 9421138169878626 a001 28657/5778*710647^(1/21) 9421138169926426 a001 28657/5778*103682^(1/18) 9421138170241790 a001 28657/5778*39603^(2/33) 9421138171558584 a001 2584/167761*39603^(20/33) 9421138171818751 a001 34/5779*39603^(23/33) 9421138171932756 a001 2576/321*5778^(1/54) 9421138172323115 a001 2584/1149851*39603^(26/33) 9421138172586306 a001 1292/930249*39603^(5/6) 9421138172622511 a001 28657/5778*15127^(1/15) 9421138172787752 a001 23184/51841*3571^(19/51) 9421138172863106 a001 2584/3010349*39603^(29/33) 9421138172972170 a001 2584/64079*39603^(17/33) 9421138174284802 a001 121393/271443*3571^(19/51) 9421138174503219 a001 317811/710647*3571^(19/51) 9421138174535086 a001 416020/930249*3571^(19/51) 9421138174539735 a001 2178309/4870847*3571^(19/51) 9421138174542608 a001 1346269/3010349*3571^(19/51) 9421138174554780 a001 514229/1149851*3571^(19/51) 9421138174638208 a001 98209/219602*3571^(19/51) 9421138175210030 a001 75025/167761*3571^(19/51) 9421138176320066 a001 646/6119*24476^(4/9) 9421138177328438 a007 Real Root Of -107*x^4+255*x^3+45*x^2+632*x+853 9421138179129359 a001 28657/64079*3571^(19/51) 9421138182848453 a001 2584/39603*15127^(31/60) 9421138183264842 a001 5473/2889*167761^(2/15) 9421138183309461 a001 646/6119*20633239^(4/15) 9421138183309467 a001 646/6119*17393796001^(4/21) 9421138183309467 a001 646/6119*505019158607^(1/6) 9421138183309467 a001 646/6119*599074578^(2/9) 9421138183309474 a001 5473/2889*20633239^(2/21) 9421138183309476 a001 5473/2889*3461452808002^(1/18) 9421138183309476 a001 5473/2889*28143753123^(1/15) 9421138183309476 a001 5473/2889*228826127^(1/12) 9421138183309583 a001 646/6119*4870847^(7/24) 9421138183309778 a001 5473/2889*1860498^(1/9) 9421138183315686 a001 646/6119*710647^(1/3) 9421138183650285 a001 646/6119*103682^(7/18) 9421138184219605 a001 5473/2889*39603^(5/33) 9421138185857830 a001 646/6119*39603^(14/33) 9421138188019554 a007 Real Root Of 932*x^4+486*x^3+816*x^2+793*x-305 9421138190171409 a001 5473/2889*15127^(1/6) 9421138190781023 a001 28657/5778*5778^(2/27) 9421138191403028 r002 10th iterates of z^2 + 9421138192096081 a001 1292/51841*15127^(37/60) 9421138192553577 a001 10946/15127*3571^(16/51) 9421138193208304 a001 2584/64079*15127^(17/30) 9421138194347399 a001 2255/1926*5778^(13/54) 9421138195365800 a001 2584/167761*15127^(2/3) 9421138196961766 a001 2584/271443*15127^(43/60) 9421138197699083 a001 4181/15127*3571^(22/51) 9421138198157217 a001 17711/5778*5778^(7/54) 9421138199197049 a001 34/5779*15127^(23/30) 9421138201188135 a001 2584/710647*15127^(49/60) 9421138202407838 m009 (5*Psi(1,2/3)+1/5)/(1/3*Psi(1,3/4)+4/5) 9421138202522881 a001 646/6119*15127^(7/15) 9421138203272495 a001 2584/1149851*15127^(13/15) 9421138205321228 a001 1292/930249*15127^(11/12) 9421138205992834 a001 5473/12238*3571^(19/51) 9421138207002533 a001 2576/321*2207^(1/48) 9421138207383569 a001 2584/3010349*15127^(29/30) 9421138211138340 a001 4181/24476*3571^(25/51) 9421138211382113 q001 2897/3075 9421138214279065 a001 17711/15127*3571^(13/51) 9421138214286585 a001 28657/39603*3571^(16/51) 9421138217457388 a001 75025/103682*3571^(16/51) 9421138217920002 a001 196418/271443*3571^(16/51) 9421138217987497 a001 514229/710647*3571^(16/51) 9421138217997344 a001 1346269/1860498*3571^(16/51) 9421138217999669 a001 2178309/3010349*3571^(16/51) 9421138218003430 a001 832040/1149851*3571^(16/51) 9421138218029210 a001 317811/439204*3571^(16/51) 9421138218205913 a001 121393/167761*3571^(16/51) 9421138219417052 a001 46368/64079*3571^(16/51) 9421138227718323 a001 17711/24476*3571^(16/51) 9421138233769330 a001 2584/9349*9349^(22/57) 9421138235567689 a001 5473/2889*5778^(5/27) 9421138245115512 a001 4181/5778*9349^(16/57) 9421138247422901 a001 21/2206*2207^(43/48) 9421138251615589 a007 Real Root Of -674*x^4+879*x^3-315*x^2-871*x+725 9421138253841487 a007 Real Root Of 8*x^4+744*x^3-911*x^2+181*x-772 9421138254574279 a001 15456/13201*3571^(13/51) 9421138257057247 a001 2584/15127*5778^(25/54) 9421138260453271 a001 121393/103682*3571^(13/51) 9421138260788612 k002 Champernowne real with 27*n^2+36*n+31 9421138261311005 a001 105937/90481*3571^(13/51) 9421138261436146 a001 832040/710647*3571^(13/51) 9421138261454404 a001 726103/620166*3571^(13/51) 9421138261465688 a001 1346269/1149851*3571^(13/51) 9421138261513488 a001 514229/439204*3571^(13/51) 9421138261841113 a001 196418/167761*3571^(13/51) 9421138263981115 r005 Re(z^2+c),c=-1/11+8/61*I,n=13 9421138264086689 a001 75025/64079*3571^(13/51) 9421138266038833 a001 28657/15127*3571^(10/51) 9421138267742739 m001 GAMMA(3/4)^ZetaR(2)/(FeigenbaumC^ZetaR(2)) 9421138270271818 r002 44th iterates of z^2 + 9421138273416754 l006 ln(3601/9238) 9421138275371935 a001 2584/9349*7881196^(2/9) 9421138275371969 a001 2584/9349*312119004989^(2/15) 9421138275371969 a001 2584/9349*1568397607^(1/6) 9421138275371976 a001 4181/5778*23725150497407^(1/12) 9421138275371976 a001 4181/5778*10749957122^(1/9) 9421138275371976 a001 4181/5778*228826127^(2/15) 9421138275372042 a001 4181/5778*4870847^(1/6) 9421138275375529 a001 4181/5778*710647^(4/21) 9421138275566729 a001 4181/5778*103682^(2/9) 9421138276222363 m001 (LambertW(1)+ReciprocalLucas)/Khinchin 9421138276828183 a001 4181/5778*39603^(8/33) 9421138277374254 a001 2584/9349*39603^(1/3) 9421138279478091 a001 28657/24476*3571^(13/51) 9421138284616078 a001 6765/9349*3571^(16/51) 9421138286351070 a001 4181/5778*15127^(4/15) 9421138290468223 a001 2584/9349*15127^(11/30) 9421138291632130 a007 Real Root Of 266*x^4-760*x^3-621*x^2-568*x-829 9421138295949909 a001 121393/15127*1364^(1/45) 9421138299243915 a001 75025/39603*3571^(10/51) 9421138300926143 a001 28657/3571*521^(1/39) 9421138303118038 a007 Real Root Of -795*x^4-349*x^3+492*x^2+244*x-27 9421138304088471 a001 98209/51841*3571^(10/51) 9421138304599082 a001 6765/4870847*9349^(55/57) 9421138304795283 a001 514229/271443*3571^(10/51) 9421138304898405 a001 1346269/710647*3571^(10/51) 9421138304922749 a001 2178309/1149851*3571^(10/51) 9421138304962138 a001 208010/109801*3571^(10/51) 9421138305232116 a001 317811/167761*3571^(10/51) 9421138306326527 a001 6624/2161*3571^(7/51) 9421138307082572 a001 121393/64079*3571^(10/51) 9421138310273606 a001 6765/3010349*9349^(52/57) 9421138315942932 a001 55/15126*9349^(49/57) 9421138317596166 m005 (1/2*3^(1/2)+1/2)/(7/12*2^(1/2)+5/8) 9421138319674256 m002 -4/Pi^2-ProductLog[Pi]/2 9421138319765785 a001 11592/6119*3571^(10/51) 9421138321625866 a001 6765/1149851*9349^(46/57) 9421138323576922 a001 2584/39603*5778^(31/54) 9421138327273173 a001 6765/710647*9349^(43/57) 9421138329235871 r005 Im(z^2+c),c=-1/29+5/49*I,n=5 9421138329632466 a001 646/6119*5778^(14/27) 9421138331060131 a001 28657/5778*2207^(1/12) 9421138331223863 a001 105937/13201*1364^(1/45) 9421138331504922 a001 6765/15127*9349^(1/3) 9421138333013754 a001 6765/439204*9349^(40/57) 9421138336370264 a001 416020/51841*1364^(1/45) 9421138337121114 a001 726103/90481*1364^(1/45) 9421138337585164 a001 1346269/167761*1364^(1/45) 9421138338510139 a001 2255/90481*9349^(37/57) 9421138339550915 a001 514229/64079*1364^(1/45) 9421138342239799 a001 121393/39603*3571^(7/51) 9421138342687177 q001 7/74301 9421138344645840 a001 615/15251*9349^(34/57) 9421138347479475 a001 317811/103682*3571^(7/51) 9421138347555657 a001 2584/64079*5778^(17/27) 9421138348243933 a001 832040/271443*3571^(7/51) 9421138348355466 a001 311187/101521*3571^(7/51) 9421138348424397 a001 1346269/439204*3571^(7/51) 9421138348716394 a001 514229/167761*3571^(7/51) 9421138349107788 a001 6765/103682*9349^(31/57) 9421138350717772 a001 196418/64079*3571^(7/51) 9421138350996164 a001 75025/15127*3571^(4/51) 9421138351110003 a001 17711/4870847*9349^(49/57) 9421138353024366 a001 98209/12238*1364^(1/45) 9421138353992801 m005 (-1/3+1/4*5^(1/2))/(4/5*gamma-2/9) 9421138354738808 m001 (Artin+Conway)/(arctan(1/2)+ln(2+3^(1/2))) 9421138355323495 a001 2255/13201*9349^(25/57) 9421138356784527 a001 17711/3010349*9349^(46/57) 9421138357951678 a001 6765/64079*9349^(28/57) 9421138358985119 a001 4181/5778*5778^(8/27) 9421138360062318 a001 1292/51841*5778^(37/54) 9421138361089212 k002 Champernowne real with 55/2*n^2+69/2*n+32 9421138362453853 a001 17711/1860498*9349^(43/57) 9421138364435421 a001 75025/24476*3571^(7/51) 9421138365084361 a001 28657/4870847*9349^(46/57) 9421138367169925 a001 10946/4870847*9349^(52/57) 9421138367434474 a001 6765/15127*817138163596^(1/9) 9421138367434474 a001 6765/15127*87403803^(1/6) 9421138367586645 a001 46368/4870847*9349^(43/57) 9421138368136787 a001 17711/1149851*9349^(40/57) 9421138369520836 a001 987/167761*2207^(23/24) 9421138370758885 a001 28657/3010349*9349^(43/57) 9421138372844448 a001 10946/3010349*9349^(49/57) 9421138373261169 a001 46368/3010349*9349^(40/57) 9421138373784094 a001 17711/710647*9349^(37/57) 9421138374470871 a001 75025/4870847*9349^(40/57) 9421138376428211 a001 28657/1860498*9349^(40/57) 9421138376950921 a001 2584/167761*5778^(20/27) 9421138378015843 a001 17711/15127*9349^(13/57) 9421138378513774 a001 5473/930249*9349^(46/57) 9421138378930494 a001 2576/103361*9349^(37/57) 9421138379524675 a001 17711/439204*9349^(34/57) 9421138379681344 a001 121393/4870847*9349^(37/57) 9421138380145395 a001 75025/3010349*9349^(37/57) 9421138380472148 a001 6765/15127*15127^(19/60) 9421138381523873 m005 (39/44+1/4*5^(1/2))/(-131/198+5/22*5^(1/2)) 9421138382111145 a001 28657/1149851*9349^(37/57) 9421138382729590 a001 6765/24476*9349^(22/57) 9421138384196709 a001 10946/1149851*9349^(43/57) 9421138384613429 a001 46368/1149851*9349^(34/57) 9421138384972331 a001 10946/9349*3571^(13/51) 9421138385021060 a001 17711/271443*9349^(31/57) 9421138385355868 a001 121393/3010349*9349^(34/57) 9421138385531134 a001 196418/4870847*9349^(34/57) 9421138385814721 a001 75025/1860498*9349^(34/57) 9421138385874999 a001 196418/39603*3571^(4/51) 9421138387758452 a001 28657/710647*9349^(34/57) 9421138389844015 a001 10946/710647*9349^(40/57) 9421138390117837 a001 4181/9349*3571^(19/51) 9421138390260735 a001 6624/101521*9349^(31/57) 9421138390340040 a001 2584/9349*5778^(11/27) 9421138390963753 a001 514229/103682*3571^(4/51) 9421138391025194 a001 121393/1860498*9349^(31/57) 9421138391136727 a001 317811/4870847*9349^(31/57) 9421138391156761 a001 17711/167761*9349^(28/57) 9421138391205658 a001 196418/3010349*9349^(31/57) 9421138391497655 a001 75025/1149851*9349^(31/57) 9421138391706192 a001 1346269/271443*3571^(4/51) 9421138391881458 a001 2178309/439204*3571^(4/51) 9421138391990201 a001 28657/15127*9349^(10/57) 9421138392165045 a001 75640/15251*3571^(4/51) 9421138392165772 a001 2584/271443*5778^(43/54) 9421138393499033 a001 28657/439204*9349^(31/57) 9421138393992048 a001 121393/15127*3571^(1/51) 9421138394075765 a001 10946/15127*9349^(16/57) 9421138394108776 a001 317811/64079*3571^(4/51) 9421138394492485 a001 6624/2161*9349^(7/57) 9421138395584597 a001 5473/219602*9349^(37/57) 9421138395618709 a001 17711/103682*9349^(25/57) 9421138396001317 a001 11592/109801*9349^(28/57) 9421138396371903 a001 55/15126*24476^(7/9) 9421138396708128 a001 121393/1149851*9349^(28/57) 9421138396811251 a001 317811/3010349*9349^(28/57) 9421138396835595 a001 514229/4870847*9349^(28/57) 9421138396874984 a001 98209/930249*9349^(28/57) 9421138397144962 a001 75025/710647*9349^(28/57) 9421138398995418 a001 28657/271443*9349^(28/57) 9421138401080981 a001 10946/271443*9349^(34/57) 9421138401376711 a001 75025/15127*9349^(4/57) 9421138401497701 a001 15456/90481*9349^(25/57) 9421138401834416 a001 17711/39603*9349^(1/3) 9421138402355435 a001 121393/710647*9349^(25/57) 9421138402480577 a001 105937/620166*9349^(25/57) 9421138402487637 a001 2255/13201*167761^(1/3) 9421138402498834 a001 832040/4870847*9349^(25/57) 9421138402510118 a001 514229/3010349*9349^(25/57) 9421138402557918 a001 196418/1149851*9349^(25/57) 9421138402599216 a001 2255/13201*20633239^(5/21) 9421138402599221 a001 2255/13201*28143753123^(1/6) 9421138402599221 a001 2255/13201*228826127^(5/24) 9421138402599221 a001 17711/15127*141422324^(1/9) 9421138402599221 a001 17711/15127*73681302247^(1/12) 9421138402599977 a001 2255/13201*1860498^(5/18) 9421138402620532 a001 17711/15127*271443^(1/6) 9421138402885543 a001 75025/439204*9349^(25/57) 9421138403911090 a001 6765/64079*24476^(4/9) 9421138404462599 a001 17711/64079*9349^(22/57) 9421138405131119 a001 28657/167761*9349^(25/57) 9421138405982338 a001 6624/2161*24476^(1/9) 9421138406587184 a001 121393/15127*9349^(1/57) 9421138406697820 a001 17711/9349*3571^(10/51) 9421138407083592 a001 6765/1149851*64079^(2/3) 9421138407216682 a001 10946/167761*9349^(31/57) 9421138407431305 a001 121393/24476*3571^(4/51) 9421138407633403 a001 46368/167761*9349^(22/57) 9421138407729342 a001 6765/103682*3010349^(1/3) 9421138407729687 a001 6624/2161*20633239^(1/15) 9421138407729688 a001 6765/103682*9062201101803^(1/6) 9421138407729688 a001 6624/2161*17393796001^(1/21) 9421138407729688 a001 6624/2161*505019158607^(1/24) 9421138407729688 a001 6624/2161*599074578^(1/18) 9421138407731243 a001 6624/2161*710647^(1/12) 9421138408019939 a001 34/5779*5778^(23/27) 9421138408096017 a001 121393/439204*9349^(22/57) 9421138408163511 a001 317811/1149851*9349^(22/57) 9421138408173358 a001 832040/3010349*9349^(22/57) 9421138408175683 a001 1346269/4870847*9349^(22/57) 9421138408179444 a001 514229/1860498*9349^(22/57) 9421138408205225 a001 196418/710647*9349^(22/57) 9421138408293646 a001 6765/54018521*167761^(14/15) 9421138408360196 a001 6765/4870847*167761^(11/15) 9421138408381928 a001 75025/271443*9349^(22/57) 9421138408476383 a001 6765/439204*167761^(8/15) 9421138408478212 a001 2255/90481*54018521^(1/3) 9421138408587422 a001 6765/710647*969323029^(1/3) 9421138408601478 a001 6765/7881196*1149851^(2/3) 9421138408603345 a001 55/15126*20633239^(7/15) 9421138408603355 a001 55/15126*17393796001^(1/3) 9421138408603355 a001 55/15126*505019158607^(7/24) 9421138408603355 a001 55/15126*599074578^(7/18) 9421138408605595 a001 6765/4870847*7881196^(5/9) 9421138408605668 a001 6765/4870847*20633239^(11/21) 9421138408605680 a001 6765/4870847*312119004989^(1/3) 9421138408605680 a001 6765/4870847*1568397607^(5/12) 9421138408605680 a001 6765/4870847*228826127^(11/24) 9421138408605942 a001 6765/969323029*7881196^(8/9) 9421138408606019 a001 2255/4250681*5600748293801^(1/3) 9421138408606056 a001 6765/6643838879*20633239^(20/21) 9421138408606058 a001 6765/1568397607*20633239^(13/15) 9421138408606059 a001 2255/199691526*20633239^(17/21) 9421138408606065 a001 6765/54018521*20633239^(2/3) 9421138408606076 a001 6765/1568397607*141422324^(7/9) 9421138408606077 a001 2255/199691526*45537549124^(5/9) 9421138408606077 a001 6765/1568397607*17393796001^(13/21) 9421138408606077 a001 6765/1568397607*505019158607^(13/24) 9421138408606077 a001 6765/1568397607*73681302247^(7/12) 9421138408606077 a001 2255/440719107401*17393796001^(19/21) 9421138408606077 a001 6765/45537549124*17393796001^(16/21) 9421138408606077 a001 6765/2139295485799*45537549124^(8/9) 9421138408606077 a001 2255/64300051206*312119004989^(11/15) 9421138408606077 a001 2255/3020733700601*1322157322203^(5/6) 9421138408606077 a001 6765/817138163596*3461452808002^(13/18) 9421138408606077 a001 6765/2139295485799*505019158607^(17/21) 9421138408606077 a001 615/28374454999*9062201101803^(2/3) 9421138408606077 a001 6765/119218851371*2139295485799^(2/3) 9421138408606077 a001 6765/817138163596*73681302247^(5/6) 9421138408606077 a001 6765/45537549124*23725150497407^(7/12) 9421138408606077 a001 6765/45537549124*505019158607^(2/3) 9421138408606077 a001 6765/817138163596*28143753123^(13/15) 9421138408606077 a001 6765/17393796001*119218851371^(2/3) 9421138408606077 a001 6765/45537549124*10749957122^(7/9) 9421138408606077 a001 6765/2139295485799*10749957122^(17/18) 9421138408606077 a001 6765/6643838879*3461452808002^(5/9) 9421138408606077 a001 6765/6643838879*28143753123^(2/3) 9421138408606077 a001 6765/73681302247*4106118243^(5/6) 9421138408606077 a001 615/230701876*6643838879^(2/3) 9421138408606077 a001 2255/64300051206*1568397607^(11/12) 9421138408606077 a001 6765/969323029*312119004989^(8/15) 9421138408606077 a001 6765/969323029*23725150497407^(11/24) 9421138408606077 a001 6765/969323029*10749957122^(11/18) 9421138408606077 a001 6765/969323029*1568397607^(2/3) 9421138408606077 a001 6765/1568397607*599074578^(13/18) 9421138408606077 a001 6765/370248451*370248451^(2/3) 9421138408606077 a001 6765/45537549124*599074578^(8/9) 9421138408606077 a001 2255/199691526*228826127^(17/24) 9421138408606077 a001 6765/969323029*228826127^(11/15) 9421138408606077 a001 6765/6643838879*228826127^(5/6) 9421138408606077 a001 6765/45537549124*228826127^(14/15) 9421138408606077 a001 6765/73681302247*228826127^(23/24) 9421138408606077 a001 6765/141422324*817138163596^(4/9) 9421138408606078 a001 6765/141422324*87403803^(2/3) 9421138408606080 a001 6765/54018521*17393796001^(10/21) 9421138408606080 a001 6765/54018521*3461452808002^(7/18) 9421138408606080 a001 6765/54018521*505019158607^(5/12) 9421138408606080 a001 6765/54018521*28143753123^(7/15) 9421138408606080 a001 6765/54018521*599074578^(5/9) 9421138408606080 a001 6765/54018521*228826127^(7/12) 9421138408606099 a001 615/1875749*23725150497407^(1/3) 9421138408606099 a001 615/1875749*505019158607^(8/21) 9421138408606099 a001 615/1875749*10749957122^(4/9) 9421138408606099 a001 615/1875749*228826127^(8/15) 9421138408606125 a001 2255/199691526*12752043^(5/6) 9421138408606228 a001 6765/7881196*1322157322203^(1/3) 9421138408606364 a001 615/1875749*4870847^(2/3) 9421138408606392 a001 6765/141422324*4870847^(19/24) 9421138408606441 a001 6765/969323029*4870847^(11/12) 9421138408607116 a001 6765/3010349*141422324^(4/9) 9421138408607116 a001 6765/3010349*73681302247^(1/3) 9421138408607331 a001 6765/3010349*4870847^(13/24) 9421138408607343 a001 6765/4870847*1860498^(11/18) 9421138408608197 a001 6765/54018521*1860498^(7/9) 9421138408608647 a001 2255/199691526*1860498^(17/18) 9421138408613202 a001 6765/1149851*4106118243^(1/3) 9421138408614237 a001 55/15126*710647^(7/12) 9421138408618665 a001 6765/3010349*710647^(13/21) 9421138408620312 a001 615/1875749*710647^(16/21) 9421138408621626 a001 6765/54018521*710647^(5/6) 9421138408622956 a001 6765/141422324*710647^(19/21) 9421138408654908 a001 6765/439204*20633239^(8/21) 9421138408654916 a001 6765/439204*23725150497407^(5/24) 9421138408654916 a001 6765/439204*3461452808002^(2/9) 9421138408654916 a001 6765/439204*28143753123^(4/15) 9421138408654916 a001 6765/439204*10749957122^(5/18) 9421138408654916 a001 6765/439204*228826127^(1/3) 9421138408655082 a001 6765/439204*4870847^(5/12) 9421138408656126 a001 6765/439204*1860498^(4/9) 9421138408663800 a001 6765/439204*710647^(10/21) 9421138408692359 a001 6765/3010349*271443^(2/3) 9421138408940827 a001 615/15251*45537549124^(2/9) 9421138408940844 a001 75025/15127*4870847^(1/24) 9421138408940847 a001 615/15251*12752043^(1/3) 9421138408941716 a001 75025/15127*710647^(1/21) 9421138408989516 a001 75025/15127*103682^(1/18) 9421138409141799 a001 6765/439204*103682^(5/9) 9421138409164407 a001 121393/15127*15127^(1/60) 9421138409240064 a001 6765/3010349*103682^(13/18) 9421138409304879 a001 75025/15127*39603^(2/33) 9421138409385111 a001 615/1875749*103682^(8/9) 9421138409593067 a001 28657/103682*9349^(22/57) 9421138409747057 m001 cos(1/12*Pi)^Shi(1)*cos(1/12*Pi)^LaplaceLimit 9421138410855858 a001 28657/15127*167761^(2/15) 9421138410900486 a001 6765/64079*20633239^(4/15) 9421138410900490 a001 28657/15127*20633239^(2/21) 9421138410900492 a001 6765/64079*17393796001^(4/21) 9421138410900492 a001 6765/64079*505019158607^(1/6) 9421138410900492 a001 6765/64079*599074578^(2/9) 9421138410900492 a001 28657/15127*3461452808002^(1/18) 9421138410900492 a001 28657/15127*28143753123^(1/15) 9421138410900492 a001 28657/15127*228826127^(1/12) 9421138410900607 a001 6765/64079*4870847^(7/24) 9421138410900794 a001 28657/15127*1860498^(1/9) 9421138410906710 a001 6765/64079*710647^(1/3) 9421138411241309 a001 6765/64079*103682^(7/18) 9421138411519735 a001 17711/15127*15127^(13/60) 9421138411678630 a001 5473/51841*9349^(28/57) 9421138411685601 a001 75025/15127*15127^(1/15) 9421138411810621 a001 28657/15127*39603^(5/33) 9421138412035268 a001 615/15251*39603^(17/33) 9421138412095351 a001 23184/51841*9349^(1/3) 9421138412295435 a001 6765/439204*39603^(20/33) 9421138412533042 a001 6624/2161*15127^(7/60) 9421138412799799 a001 6765/1149851*39603^(23/33) 9421138413339791 a001 6765/3010349*39603^(26/33) 9421138413448855 a001 6765/64079*39603^(14/33) 9421138413592401 a001 121393/271443*9349^(1/3) 9421138413611393 a001 6765/4870847*39603^(5/6) 9421138413704035 a001 121393/15127*5778^(1/54) 9421138413810818 a001 317811/710647*9349^(1/3) 9421138413842684 a001 416020/930249*9349^(1/3) 9421138413847333 a001 2178309/4870847*9349^(1/3) 9421138413848012 a001 5702887/12752043*9349^(1/3) 9421138413848111 a001 7465176/16692641*9349^(1/3) 9421138413848125 a001 39088169/87403803*9349^(1/3) 9421138413848127 a001 102334155/228826127*9349^(1/3) 9421138413848128 a001 133957148/299537289*9349^(1/3) 9421138413848128 a001 701408733/1568397607*9349^(1/3) 9421138413848128 a001 1836311903/4106118243*9349^(1/3) 9421138413848128 a001 2403763488/5374978561*9349^(1/3) 9421138413848128 a001 12586269025/28143753123*9349^(1/3) 9421138413848128 a001 32951280099/73681302247*9349^(1/3) 9421138413848128 a001 43133785636/96450076809*9349^(1/3) 9421138413848128 a001 225851433717/505019158607*9349^(1/3) 9421138413848128 a001 591286729879/1322157322203*9349^(1/3) 9421138413848128 a001 10610209857723/23725150497407*9349^(1/3) 9421138413848128 a001 182717648081/408569081798*9349^(1/3) 9421138413848128 a001 139583862445/312119004989*9349^(1/3) 9421138413848128 a001 53316291173/119218851371*9349^(1/3) 9421138413848128 a001 10182505537/22768774562*9349^(1/3) 9421138413848128 a001 7778742049/17393796001*9349^(1/3) 9421138413848128 a001 2971215073/6643838879*9349^(1/3) 9421138413848128 a001 567451585/1268860318*9349^(1/3) 9421138413848128 a001 433494437/969323029*9349^(1/3) 9421138413848128 a001 165580141/370248451*9349^(1/3) 9421138413848129 a001 31622993/70711162*9349^(1/3) 9421138413848134 a001 24157817/54018521*9349^(1/3) 9421138413848172 a001 9227465/20633239*9349^(1/3) 9421138413848431 a001 1762289/3940598*9349^(1/3) 9421138413850207 a001 1346269/3010349*9349^(1/3) 9421138413862379 a001 514229/1149851*9349^(1/3) 9421138413945806 a001 98209/219602*9349^(1/3) 9421138414327043 r009 Re(z^3+c),c=-13/90+26/53*I,n=26 9421138414517629 a001 75025/167761*9349^(1/3) 9421138415808774 a001 28657/39603*9349^(16/57) 9421138416600157 a001 10946/3571*1364^(7/45) 9421138417762425 a001 28657/15127*15127^(1/6) 9421138417894337 a001 10946/39603*9349^(22/57) 9421138418311058 a001 15456/13201*9349^(13/57) 9421138418436957 a001 28657/64079*9349^(1/3) 9421138418979577 a001 75025/103682*9349^(16/57) 9421138419442191 a001 196418/271443*9349^(16/57) 9421138419509685 a001 514229/710647*9349^(16/57) 9421138419519533 a001 1346269/1860498*9349^(16/57) 9421138419521857 a001 2178309/3010349*9349^(16/57) 9421138419525619 a001 832040/1149851*9349^(16/57) 9421138419551399 a001 317811/439204*9349^(16/57) 9421138419728102 a001 121393/167761*9349^(16/57) 9421138419754055 a001 2255/13201*15127^(5/12) 9421138420522521 a001 10946/64079*9349^(25/57) 9421138420939241 a001 46368/64079*9349^(16/57) 9421138423629909 a001 2584/710647*5778^(49/54) 9421138424190050 a001 121393/103682*9349^(13/57) 9421138424332196 a001 6765/24476*7881196^(2/9) 9421138424332230 a001 6765/24476*312119004989^(2/15) 9421138424332230 a001 6765/24476*1568397607^(1/6) 9421138424332230 a001 10946/15127*23725150497407^(1/12) 9421138424332230 a001 10946/15127*10749957122^(1/9) 9421138424332230 a001 10946/15127*228826127^(2/15) 9421138424332296 a001 10946/15127*4870847^(1/6) 9421138424335783 a001 10946/15127*710647^(4/21) 9421138424526983 a001 10946/15127*103682^(2/9) 9421138425047784 a001 105937/90481*9349^(13/57) 9421138425172925 a001 832040/710647*9349^(13/57) 9421138425191183 a001 726103/620166*9349^(13/57) 9421138425195284 a001 75025/39603*9349^(10/57) 9421138425202467 a001 1346269/1149851*9349^(13/57) 9421138425250267 a001 514229/439204*9349^(13/57) 9421138425577892 a001 196418/167761*9349^(13/57) 9421138425788437 a001 10946/15127*39603^(8/33) 9421138426334515 a001 6765/24476*39603^(1/3) 9421138427823467 a001 75025/64079*9349^(13/57) 9421138429001683 a001 6765/103682*15127^(31/60) 9421138429240512 a001 17711/24476*9349^(16/57) 9421138429266003 a001 105937/13201*3571^(1/51) 9421138429844113 a001 75025/15127*5778^(2/27) 9421138430039840 a001 98209/51841*9349^(10/57) 9421138430113906 a001 6765/64079*15127^(7/15) 9421138430405757 a001 121393/39603*9349^(7/57) 9421138430746651 a001 514229/271443*9349^(10/57) 9421138430849774 a001 1346269/710647*9349^(10/57) 9421138430874118 a001 2178309/1149851*9349^(10/57) 9421138430913507 a001 208010/109801*9349^(10/57) 9421138431183485 a001 317811/167761*9349^(10/57) 9421138431538974 a001 17711/4870847*24476^(7/9) 9421138432271402 a001 615/15251*15127^(17/30) 9421138433033941 a001 121393/64079*9349^(10/57) 9421138433867368 a001 2255/90481*15127^(37/60) 9421138434412403 a001 416020/51841*3571^(1/51) 9421138435163253 a001 726103/90481*3571^(1/51) 9421138435311324 a001 10946/15127*15127^(4/15) 9421138435627304 a001 1346269/167761*3571^(1/51) 9421138435645433 a001 317811/103682*9349^(7/57) 9421138436102651 a001 6765/439204*15127^(2/3) 9421138436255547 a001 196418/39603*9349^(4/57) 9421138436409891 a001 832040/271443*9349^(7/57) 9421138436521424 a001 311187/101521*9349^(7/57) 9421138436590355 a001 1346269/439204*9349^(7/57) 9421138436669781 a001 15456/4250681*24476^(7/9) 9421138436882352 a001 514229/167761*9349^(7/57) 9421138437116173 a001 17711/167761*24476^(4/9) 9421138437418356 a001 121393/33385282*24476^(7/9) 9421138437527571 a001 105937/29134601*24476^(7/9) 9421138437543505 a001 832040/228826127*24476^(7/9) 9421138437545830 a001 726103/199691526*24476^(7/9) 9421138437546169 a001 5702887/1568397607*24476^(7/9) 9421138437546219 a001 4976784/1368706081*24476^(7/9) 9421138437546226 a001 39088169/10749957122*24476^(7/9) 9421138437546227 a001 831985/228811001*24476^(7/9) 9421138437546227 a001 267914296/73681302247*24476^(7/9) 9421138437546227 a001 233802911/64300051206*24476^(7/9) 9421138437546227 a001 1836311903/505019158607*24476^(7/9) 9421138437546227 a001 1602508992/440719107401*24476^(7/9) 9421138437546227 a001 12586269025/3461452808002*24476^(7/9) 9421138437546227 a001 10983760033/3020733700601*24476^(7/9) 9421138437546227 a001 86267571272/23725150497407*24476^(7/9) 9421138437546227 a001 53316291173/14662949395604*24476^(7/9) 9421138437546227 a001 20365011074/5600748293801*24476^(7/9) 9421138437546227 a001 7778742049/2139295485799*24476^(7/9) 9421138437546227 a001 2971215073/817138163596*24476^(7/9) 9421138437546227 a001 1134903170/312119004989*24476^(7/9) 9421138437546227 a001 433494437/119218851371*24476^(7/9) 9421138437546227 a001 165580141/45537549124*24476^(7/9) 9421138437546228 a001 63245986/17393796001*24476^(7/9) 9421138437546231 a001 24157817/6643838879*24476^(7/9) 9421138437546250 a001 9227465/2537720636*24476^(7/9) 9421138437546379 a001 3524578/969323029*24476^(7/9) 9421138437547267 a001 1346269/370248451*24476^(7/9) 9421138437553353 a001 514229/141422324*24476^(7/9) 9421138437593054 a001 514229/64079*3571^(1/51) 9421138437595070 a001 196418/54018521*24476^(7/9) 9421138437763968 a001 17711/39603*817138163596^(1/9) 9421138437763968 a001 17711/39603*87403803^(1/6) 9421138437881000 a001 75025/20633239*24476^(7/9) 9421138438093737 a001 6765/710647*15127^(43/60) 9421138438883731 a001 196418/64079*9349^(7/57) 9421138439333154 a001 2584/1149851*5778^(26/27) 9421138439428484 a001 6765/24476*15127^(11/30) 9421138439840794 a001 28657/7881196*24476^(7/9) 9421138440178098 a001 6765/1149851*15127^(23/30) 9421138441344301 a001 514229/103682*9349^(4/57) 9421138441861140 a001 105937/13201*9349^(1/57) 9421138441895610 a001 121393/39603*24476^(1/9) 9421138441960729 a001 11592/109801*24476^(4/9) 9421138442086740 a001 1346269/271443*9349^(4/57) 9421138442226831 a001 55/15126*15127^(49/60) 9421138442242254 a001 17711/3010349*64079^(2/3) 9421138442262006 a001 2178309/439204*9349^(4/57) 9421138442545592 a001 75640/15251*9349^(4/57) 9421138442667541 a001 121393/1149851*24476^(4/9) 9421138442770663 a001 317811/3010349*24476^(4/9) 9421138442782852 a001 17711/103682*167761^(1/3) 9421138442785708 a001 208010/1970299*24476^(4/9) 9421138442787903 a001 2178309/20633239*24476^(4/9) 9421138442788224 a001 5702887/54018521*24476^(4/9) 9421138442788270 a001 3732588/35355581*24476^(4/9) 9421138442788277 a001 39088169/370248451*24476^(4/9) 9421138442788278 a001 102334155/969323029*24476^(4/9) 9421138442788278 a001 66978574/634430159*24476^(4/9) 9421138442788278 a001 701408733/6643838879*24476^(4/9) 9421138442788278 a001 1836311903/17393796001*24476^(4/9) 9421138442788278 a001 1201881744/11384387281*24476^(4/9) 9421138442788278 a001 12586269025/119218851371*24476^(4/9) 9421138442788278 a001 32951280099/312119004989*24476^(4/9) 9421138442788278 a001 21566892818/204284540899*24476^(4/9) 9421138442788278 a001 225851433717/2139295485799*24476^(4/9) 9421138442788278 a001 182717648081/1730726404001*24476^(4/9) 9421138442788278 a001 139583862445/1322157322203*24476^(4/9) 9421138442788278 a001 53316291173/505019158607*24476^(4/9) 9421138442788278 a001 10182505537/96450076809*24476^(4/9) 9421138442788278 a001 7778742049/73681302247*24476^(4/9) 9421138442788278 a001 2971215073/28143753123*24476^(4/9) 9421138442788278 a001 567451585/5374978561*24476^(4/9) 9421138442788278 a001 433494437/4106118243*24476^(4/9) 9421138442788278 a001 165580141/1568397607*24476^(4/9) 9421138442788279 a001 31622993/299537289*24476^(4/9) 9421138442788281 a001 24157817/228826127*24476^(4/9) 9421138442788299 a001 9227465/87403803*24476^(4/9) 9421138442788422 a001 1762289/16692641*24476^(4/9) 9421138442789260 a001 1346269/12752043*24476^(4/9) 9421138442795007 a001 514229/4870847*24476^(4/9) 9421138442834396 a001 98209/930249*24476^(4/9) 9421138442894430 a001 17711/103682*20633239^(5/21) 9421138442894435 a001 15456/13201*141422324^(1/9) 9421138442894435 a001 17711/103682*28143753123^(1/6) 9421138442894435 a001 15456/13201*73681302247^(1/12) 9421138442894435 a001 17711/103682*228826127^(5/24) 9421138442895191 a001 17711/103682*1860498^(5/18) 9421138442915746 a001 15456/13201*271443^(1/6) 9421138443104374 a001 75025/710647*24476^(4/9) 9421138443214870 a001 28657/24476*9349^(13/57) 9421138443444168 a007 Real Root Of -204*x^4+727*x^3-197*x^2-199*x+756 9421138443458390 a001 17711/141422324*167761^(14/15) 9421138443525282 a001 17711/12752043*167761^(11/15) 9421138443599416 a001 17711/1149851*167761^(8/15) 9421138443642614 a001 17711/271443*3010349^(1/3) 9421138443642959 a001 121393/39603*20633239^(1/15) 9421138443642960 a001 17711/271443*9062201101803^(1/6) 9421138443642960 a001 121393/39603*17393796001^(1/21) 9421138443642960 a001 121393/39603*505019158607^(1/24) 9421138443642960 a001 121393/39603*599074578^(1/18) 9421138443644515 a001 121393/39603*710647^(1/12) 9421138443645656 a001 17711/5778*2207^(7/48) 9421138443752168 a001 17711/710647*54018521^(1/3) 9421138443766096 a001 17711/20633239*1149851^(2/3) 9421138443768102 a001 17711/1860498*969323029^(1/3) 9421138443770416 a001 17711/4870847*20633239^(7/15) 9421138443770427 a001 17711/4870847*17393796001^(1/3) 9421138443770427 a001 17711/4870847*505019158607^(7/24) 9421138443770427 a001 17711/4870847*599074578^(7/18) 9421138443770682 a001 17711/12752043*7881196^(5/9) 9421138443770689 a001 17711/2537720636*7881196^(8/9) 9421138443770754 a001 17711/12752043*20633239^(11/21) 9421138443770766 a001 17711/12752043*312119004989^(1/3) 9421138443770766 a001 17711/12752043*1568397607^(5/12) 9421138443770766 a001 17711/12752043*228826127^(11/24) 9421138443770803 a001 17711/17393796001*20633239^(20/21) 9421138443770805 a001 17711/4106118243*20633239^(13/15) 9421138443770806 a001 17711/1568397607*20633239^(17/21) 9421138443770809 a001 17711/141422324*20633239^(2/3) 9421138443770815 a001 17711/33385282*5600748293801^(1/3) 9421138443770823 a001 17711/4106118243*141422324^(7/9) 9421138443770824 a001 17711/969323029*370248451^(2/3) 9421138443770824 a001 17711/1568397607*45537549124^(5/9) 9421138443770824 a001 17711/4106118243*17393796001^(13/21) 9421138443770824 a001 17711/4106118243*505019158607^(13/24) 9421138443770824 a001 17711/4106118243*73681302247^(7/12) 9421138443770824 a001 17711/3461452808002*17393796001^(19/21) 9421138443770824 a001 17711/119218851371*17393796001^(16/21) 9421138443770824 a001 17711/5600748293801*45537549124^(8/9) 9421138443770824 a001 17711/505019158607*312119004989^(11/15) 9421138443770824 a001 17711/5600748293801*23725150497407^(17/24) 9421138443770824 a001 17711/2139295485799*3461452808002^(13/18) 9421138443770824 a001 17711/23725150497407*1322157322203^(5/6) 9421138443770824 a001 17711/817138163596*9062201101803^(2/3) 9421138443770824 a001 17711/5600748293801*505019158607^(17/21) 9421138443770824 a001 89/1568437211*2139295485799^(2/3) 9421138443770824 a001 17711/119218851371*23725150497407^(7/12) 9421138443770824 a001 17711/119218851371*505019158607^(2/3) 9421138443770824 a001 17711/2139295485799*73681302247^(5/6) 9421138443770824 a001 17711/45537549124*119218851371^(2/3) 9421138443770824 a001 17711/2139295485799*28143753123^(13/15) 9421138443770824 a001 17711/17393796001*3461452808002^(5/9) 9421138443770824 a001 17711/17393796001*28143753123^(2/3) 9421138443770824 a001 17711/119218851371*10749957122^(7/9) 9421138443770824 a001 17711/6643838879*6643838879^(2/3) 9421138443770824 a001 17711/5600748293801*10749957122^(17/18) 9421138443770824 a001 17711/192900153618*4106118243^(5/6) 9421138443770824 a001 17711/2537720636*312119004989^(8/15) 9421138443770824 a001 17711/2537720636*23725150497407^(11/24) 9421138443770824 a001 17711/2537720636*10749957122^(11/18) 9421138443770824 a001 17711/505019158607*1568397607^(11/12) 9421138443770824 a001 17711/2537720636*1568397607^(2/3) 9421138443770824 a001 17711/4106118243*599074578^(13/18) 9421138443770824 a001 17711/119218851371*599074578^(8/9) 9421138443770824 a001 17711/370248451*817138163596^(4/9) 9421138443770824 a001 17711/1568397607*228826127^(17/24) 9421138443770824 a001 17711/2537720636*228826127^(11/15) 9421138443770824 a001 17711/17393796001*228826127^(5/6) 9421138443770824 a001 17711/119218851371*228826127^(14/15) 9421138443770824 a001 17711/192900153618*228826127^(23/24) 9421138443770824 a001 17711/141422324*17393796001^(10/21) 9421138443770824 a001 17711/141422324*3461452808002^(7/18) 9421138443770824 a001 17711/141422324*505019158607^(5/12) 9421138443770824 a001 17711/141422324*28143753123^(7/15) 9421138443770824 a001 17711/141422324*599074578^(5/9) 9421138443770824 a001 17711/141422324*228826127^(7/12) 9421138443770825 a001 17711/370248451*87403803^(2/3) 9421138443770827 a001 17711/54018521*23725150497407^(1/3) 9421138443770827 a001 17711/54018521*505019158607^(8/21) 9421138443770827 a001 17711/54018521*10749957122^(4/9) 9421138443770827 a001 17711/54018521*228826127^(8/15) 9421138443770846 a001 17711/20633239*1322157322203^(1/3) 9421138443770872 a001 17711/1568397607*12752043^(5/6) 9421138443770975 a001 89/39604*141422324^(4/9) 9421138443770975 a001 89/39604*73681302247^(1/3) 9421138443771092 a001 17711/54018521*4870847^(2/3) 9421138443771138 a001 17711/370248451*4870847^(19/24) 9421138443771188 a001 17711/2537720636*4870847^(11/12) 9421138443771191 a001 89/39604*4870847^(13/24) 9421138443771863 a001 17711/3010349*4106118243^(1/3) 9421138443772429 a001 17711/12752043*1860498^(11/18) 9421138443772941 a001 17711/141422324*1860498^(7/9) 9421138443773394 a001 17711/1568397607*1860498^(17/18) 9421138443777941 a001 17711/1149851*20633239^(8/21) 9421138443777949 a001 17711/1149851*23725150497407^(5/24) 9421138443777949 a001 17711/1149851*3461452808002^(2/9) 9421138443777949 a001 17711/1149851*28143753123^(4/15) 9421138443777949 a001 17711/1149851*10749957122^(5/18) 9421138443777949 a001 17711/1149851*228826127^(1/3) 9421138443778115 a001 17711/1149851*4870847^(5/12) 9421138443779159 a001 17711/1149851*1860498^(4/9) 9421138443781309 a001 17711/4870847*710647^(7/12) 9421138443782524 a001 89/39604*710647^(13/21) 9421138443785040 a001 17711/54018521*710647^(16/21) 9421138443786370 a001 17711/141422324*710647^(5/6) 9421138443786833 a001 17711/1149851*710647^(10/21) 9421138443787702 a001 17711/370248451*710647^(19/21) 9421138443819663 a001 17711/439204*45537549124^(2/9) 9421138443819680 a001 196418/39603*4870847^(1/24) 9421138443819683 a001 17711/439204*12752043^(1/3) 9421138443820552 a001 196418/39603*710647^(1/21) 9421138443856218 a001 89/39604*271443^(2/3) 9421138443868351 a001 196418/39603*103682^(1/18) 9421138444060941 a001 75025/39603*167761^(2/15) 9421138444105568 a001 17711/167761*20633239^(4/15) 9421138444105572 a001 75025/39603*20633239^(2/21) 9421138444105574 a001 17711/167761*17393796001^(4/21) 9421138444105574 a001 17711/167761*505019158607^(1/6) 9421138444105574 a001 75025/39603*3461452808002^(1/18) 9421138444105574 a001 75025/39603*28143753123^(1/15) 9421138444105574 a001 17711/167761*599074578^(2/9) 9421138444105574 a001 75025/39603*228826127^(1/12) 9421138444105690 a001 17711/167761*4870847^(7/24) 9421138444105877 a001 75025/39603*1860498^(1/9) 9421138444111793 a001 17711/167761*710647^(1/3) 9421138444183715 a001 196418/39603*39603^(2/33) 9421138444264832 a001 17711/1149851*103682^(5/9) 9421138444289172 a001 6765/3010349*15127^(13/15) 9421138444310439 a001 6624/2161*5778^(7/54) 9421138444403923 a001 89/39604*103682^(13/18) 9421138444438362 a001 105937/13201*15127^(1/60) 9421138444446392 a001 17711/167761*103682^(7/18) 9421138444489323 a001 317811/64079*9349^(4/57) 9421138444549839 a001 17711/54018521*103682^(8/9) 9421138444954830 a001 28657/271443*24476^(4/9) 9421138445015704 a001 75025/39603*39603^(5/33) 9421138445300433 a001 5473/12238*9349^(1/3) 9421138445372781 a001 75025/9349*1364^(1/45) 9421138445717154 a001 11592/6119*9349^(10/57) 9421138446065205 a001 17711/64079*7881196^(2/9) 9421138446065239 a001 17711/64079*312119004989^(2/15) 9421138446065239 a001 17711/64079*1568397607^(1/6) 9421138446065239 a001 28657/39603*23725150497407^(1/12) 9421138446065239 a001 28657/39603*10749957122^(1/9) 9421138446065239 a001 28657/39603*228826127^(2/15) 9421138446065305 a001 28657/39603*4870847^(1/6) 9421138446068792 a001 28657/39603*710647^(4/21) 9421138446259992 a001 28657/39603*103682^(2/9) 9421138446346316 a001 6765/4870847*15127^(11/12) 9421138446564437 a001 196418/39603*15127^(1/15) 9421138446653937 a001 17711/167761*39603^(14/33) 9421138446914104 a001 17711/439204*39603^(17/33) 9421138447007540 a001 416020/51841*9349^(1/57) 9421138447135286 a001 317811/103682*24476^(1/9) 9421138447371833 a001 11592/1970299*64079^(2/3) 9421138447418468 a001 17711/1149851*39603^(20/33) 9421138447521446 a001 28657/39603*39603^(8/33) 9421138447758390 a001 726103/90481*9349^(1/57) 9421138447899744 a001 832040/271443*24476^(1/9) 9421138447958460 a001 17711/3010349*39603^(23/33) 9421138448011277 a001 311187/101521*24476^(1/9) 9421138448024903 a001 23184/51841*817138163596^(1/9) 9421138448024903 a001 23184/51841*87403803^(1/6) 9421138448027550 a001 5702887/1860498*24476^(1/9) 9421138448029924 a001 14930352/4870847*24476^(1/9) 9421138448030270 a001 39088169/12752043*24476^(1/9) 9421138448030321 a001 14619165/4769326*24476^(1/9) 9421138448030328 a001 267914296/87403803*24476^(1/9) 9421138448030329 a001 701408733/228826127*24476^(1/9) 9421138448030329 a001 1836311903/599074578*24476^(1/9) 9421138448030329 a001 686789568/224056801*24476^(1/9) 9421138448030329 a001 12586269025/4106118243*24476^(1/9) 9421138448030329 a001 32951280099/10749957122*24476^(1/9) 9421138448030329 a001 86267571272/28143753123*24476^(1/9) 9421138448030329 a001 32264490531/10525900321*24476^(1/9) 9421138448030329 a001 591286729879/192900153618*24476^(1/9) 9421138448030329 a001 1548008755920/505019158607*24476^(1/9) 9421138448030329 a001 1515744265389/494493258286*24476^(1/9) 9421138448030329 a001 2504730781961/817138163596*24476^(1/9) 9421138448030329 a001 956722026041/312119004989*24476^(1/9) 9421138448030329 a001 365435296162/119218851371*24476^(1/9) 9421138448030329 a001 139583862445/45537549124*24476^(1/9) 9421138448030329 a001 53316291173/17393796001*24476^(1/9) 9421138448030329 a001 20365011074/6643838879*24476^(1/9) 9421138448030329 a001 7778742049/2537720636*24476^(1/9) 9421138448030329 a001 2971215073/969323029*24476^(1/9) 9421138448030329 a001 1134903170/370248451*24476^(1/9) 9421138448030330 a001 433494437/141422324*24476^(1/9) 9421138448030333 a001 165580141/54018521*24476^(1/9) 9421138448030352 a001 63245986/20633239*24476^(1/9) 9421138448030484 a001 24157817/7881196*24476^(1/9) 9421138448031391 a001 9227465/3010349*24476^(1/9) 9421138448037607 a001 3524578/1149851*24476^(1/9) 9421138448067524 a001 17711/64079*39603^(1/3) 9421138448080208 a001 1346269/439204*24476^(1/9) 9421138448120229 a001 121393/20633239*64079^(2/3) 9421138448222441 a001 1346269/167761*9349^(1/57) 9421138448229418 a001 317811/54018521*64079^(2/3) 9421138448245349 a001 208010/35355581*64079^(2/3) 9421138448247673 a001 2178309/370248451*64079^(2/3) 9421138448248012 a001 5702887/969323029*64079^(2/3) 9421138448248061 a001 196452/33391061*64079^(2/3) 9421138448248069 a001 39088169/6643838879*64079^(2/3) 9421138448248070 a001 102334155/17393796001*64079^(2/3) 9421138448248070 a001 66978574/11384387281*64079^(2/3) 9421138448248070 a001 701408733/119218851371*64079^(2/3) 9421138448248070 a001 1836311903/312119004989*64079^(2/3) 9421138448248070 a001 1201881744/204284540899*64079^(2/3) 9421138448248070 a001 12586269025/2139295485799*64079^(2/3) 9421138448248070 a001 32951280099/5600748293801*64079^(2/3) 9421138448248070 a001 1135099622/192933544679*64079^(2/3) 9421138448248070 a001 139583862445/23725150497407*64079^(2/3) 9421138448248070 a001 53316291173/9062201101803*64079^(2/3) 9421138448248070 a001 10182505537/1730726404001*64079^(2/3) 9421138448248070 a001 7778742049/1322157322203*64079^(2/3) 9421138448248070 a001 2971215073/505019158607*64079^(2/3) 9421138448248070 a001 567451585/96450076809*64079^(2/3) 9421138448248070 a001 433494437/73681302247*64079^(2/3) 9421138448248070 a001 165580141/28143753123*64079^(2/3) 9421138448248070 a001 31622993/5374978561*64079^(2/3) 9421138448248073 a001 24157817/4106118243*64079^(2/3) 9421138448248092 a001 9227465/1568397607*64079^(2/3) 9421138448248221 a001 1762289/299537289*64079^(2/3) 9421138448249109 a001 1346269/228826127*64079^(2/3) 9421138448255194 a001 514229/87403803*64079^(2/3) 9421138448296901 a001 98209/16692641*64079^(2/3) 9421138448372206 a001 514229/167761*24476^(1/9) 9421138448446314 a001 121393/39603*15127^(7/60) 9421138448582762 a001 75025/12752043*64079^(2/3) 9421138448588857 a001 46368/370248451*167761^(14/15) 9421138448655799 a001 144/103681*167761^(11/15) 9421138448661844 a001 15456/90481*167761^(1/3) 9421138448723797 a001 46368/3010349*167761^(8/15) 9421138448773423 a001 15456/90481*20633239^(5/21) 9421138448773428 a001 121393/103682*141422324^(1/9) 9421138448773428 a001 15456/90481*28143753123^(1/6) 9421138448773428 a001 121393/103682*73681302247^(1/12) 9421138448773428 a001 15456/90481*228826127^(5/24) 9421138448773812 a001 121393/15127*2207^(1/48) 9421138448774184 a001 15456/90481*1860498^(5/18) 9421138448776479 a001 17711/12752043*39603^(5/6) 9421138448794738 a001 121393/103682*271443^(1/6) 9421138448882290 a001 6624/101521*3010349^(1/3) 9421138448882635 a001 317811/103682*20633239^(1/15) 9421138448882636 a001 6624/101521*9062201101803^(1/6) 9421138448882636 a001 317811/103682*17393796001^(1/21) 9421138448882636 a001 317811/103682*505019158607^(1/24) 9421138448882636 a001 317811/103682*599074578^(1/18) 9421138448884191 a001 317811/103682*710647^(1/12) 9421138448896544 a001 46368/54018521*1149851^(2/3) 9421138448898568 a001 2576/103361*54018521^(1/3) 9421138448900894 a001 46368/4870847*969323029^(1/3) 9421138448901156 a001 46368/6643838879*7881196^(8/9) 9421138448901198 a001 144/103681*7881196^(5/9) 9421138448901223 a001 15456/4250681*20633239^(7/15) 9421138448901233 a001 15456/4250681*17393796001^(1/3) 9421138448901233 a001 15456/4250681*505019158607^(7/24) 9421138448901233 a001 15456/4250681*599074578^(7/18) 9421138448901270 a001 11592/11384387281*20633239^(20/21) 9421138448901271 a001 144/103681*20633239^(11/21) 9421138448901272 a001 23184/5374978561*20633239^(13/15) 9421138448901273 a001 15456/1368706081*20633239^(17/21) 9421138448901277 a001 46368/370248451*20633239^(2/3) 9421138448901283 a001 144/103681*312119004989^(1/3) 9421138448901283 a001 144/103681*1568397607^(5/12) 9421138448901283 a001 144/103681*228826127^(11/24) 9421138448901290 a001 15456/29134601*5600748293801^(1/3) 9421138448901291 a001 23184/5374978561*141422324^(7/9) 9421138448901291 a001 11592/634430159*370248451^(2/3) 9421138448901291 a001 15456/1368706081*45537549124^(5/9) 9421138448901291 a001 46368/17393796001*6643838879^(2/3) 9421138448901291 a001 23184/5374978561*17393796001^(13/21) 9421138448901291 a001 23184/5374978561*505019158607^(13/24) 9421138448901291 a001 23184/5374978561*73681302247^(7/12) 9421138448901291 a001 15456/3020733700601*17393796001^(19/21) 9421138448901291 a001 46368/312119004989*17393796001^(16/21) 9421138448901291 a001 11592/3665737348901*45537549124^(8/9) 9421138448901291 a001 15456/440719107401*312119004989^(11/15) 9421138448901291 a001 11592/3665737348901*23725150497407^(17/24) 9421138448901291 a001 46368/5600748293801*3461452808002^(13/18) 9421138448901291 a001 11592/204284540899*2139295485799^(2/3) 9421138448901291 a001 15456/3020733700601*505019158607^(19/24) 9421138448901291 a001 11592/3665737348901*505019158607^(17/21) 9421138448901291 a001 46368/312119004989*23725150497407^(7/12) 9421138448901291 a001 46368/312119004989*505019158607^(2/3) 9421138448901291 a001 46368/119218851371*119218851371^(2/3) 9421138448901291 a001 46368/5600748293801*73681302247^(5/6) 9421138448901291 a001 11592/11384387281*3461452808002^(5/9) 9421138448901291 a001 46368/5600748293801*28143753123^(13/15) 9421138448901291 a001 11592/11384387281*28143753123^(2/3) 9421138448901291 a001 46368/312119004989*10749957122^(7/9) 9421138448901291 a001 11592/3665737348901*10749957122^(17/18) 9421138448901291 a001 46368/6643838879*312119004989^(8/15) 9421138448901291 a001 46368/6643838879*23725150497407^(11/24) 9421138448901291 a001 46368/6643838879*10749957122^(11/18) 9421138448901291 a001 46368/505019158607*4106118243^(5/6) 9421138448901291 a001 46368/6643838879*1568397607^(2/3) 9421138448901291 a001 15456/440719107401*1568397607^(11/12) 9421138448901291 a001 46368/969323029*817138163596^(4/9) 9421138448901291 a001 23184/5374978561*599074578^(13/18) 9421138448901291 a001 46368/312119004989*599074578^(8/9) 9421138448901291 a001 46368/370248451*17393796001^(10/21) 9421138448901291 a001 46368/370248451*3461452808002^(7/18) 9421138448901291 a001 46368/370248451*505019158607^(5/12) 9421138448901291 a001 46368/370248451*28143753123^(7/15) 9421138448901291 a001 46368/370248451*599074578^(5/9) 9421138448901291 a001 15456/1368706081*228826127^(17/24) 9421138448901291 a001 46368/6643838879*228826127^(11/15) 9421138448901291 a001 11592/11384387281*228826127^(5/6) 9421138448901291 a001 46368/312119004989*228826127^(14/15) 9421138448901291 a001 46368/505019158607*228826127^(23/24) 9421138448901291 a001 46368/370248451*228826127^(7/12) 9421138448901292 a001 11592/35355581*23725150497407^(1/3) 9421138448901292 a001 11592/35355581*505019158607^(8/21) 9421138448901292 a001 11592/35355581*10749957122^(4/9) 9421138448901292 a001 11592/35355581*228826127^(8/15) 9421138448901292 a001 46368/969323029*87403803^(2/3) 9421138448901294 a001 46368/54018521*1322157322203^(1/3) 9421138448901313 a001 46368/20633239*141422324^(4/9) 9421138448901313 a001 46368/20633239*73681302247^(1/3) 9421138448901339 a001 15456/1368706081*12752043^(5/6) 9421138448901443 a001 11592/1970299*4106118243^(1/3) 9421138448901528 a001 46368/20633239*4870847^(13/24) 9421138448901556 a001 11592/35355581*4870847^(2/3) 9421138448901606 a001 46368/969323029*4870847^(19/24) 9421138448901655 a001 46368/6643838879*4870847^(11/12) 9421138448902322 a001 46368/3010349*20633239^(8/21) 9421138448902331 a001 46368/3010349*23725150497407^(5/24) 9421138448902331 a001 46368/3010349*3461452808002^(2/9) 9421138448902331 a001 46368/3010349*28143753123^(4/15) 9421138448902331 a001 46368/3010349*10749957122^(5/18) 9421138448902331 a001 46368/3010349*228826127^(1/3) 9421138448902496 a001 46368/3010349*4870847^(5/12) 9421138448902946 a001 144/103681*1860498^(11/18) 9421138448903408 a001 46368/370248451*1860498^(7/9) 9421138448903540 a001 46368/3010349*1860498^(4/9) 9421138448903862 a001 15456/1368706081*1860498^(17/18) 9421138448905497 a001 98209/51841*167761^(2/15) 9421138448908417 a001 46368/1149851*45537549124^(2/9) 9421138448908433 a001 514229/103682*4870847^(1/24) 9421138448908436 a001 46368/1149851*12752043^(1/3) 9421138448909305 a001 514229/103682*710647^(1/21) 9421138448911214 a001 46368/3010349*710647^(10/21) 9421138448912115 a001 15456/4250681*710647^(7/12) 9421138448912862 a001 46368/20633239*710647^(13/21) 9421138448915505 a001 11592/35355581*710647^(16/21) 9421138448916837 a001 46368/370248451*710647^(5/6) 9421138448918170 a001 46368/969323029*710647^(19/21) 9421138448950125 a001 11592/109801*20633239^(4/15) 9421138448950129 a001 98209/51841*20633239^(2/21) 9421138448950131 a001 11592/109801*17393796001^(4/21) 9421138448950131 a001 11592/109801*505019158607^(1/6) 9421138448950131 a001 98209/51841*3461452808002^(1/18) 9421138448950131 a001 98209/51841*28143753123^(1/15) 9421138448950131 a001 11592/109801*599074578^(2/9) 9421138448950131 a001 98209/51841*228826127^(1/12) 9421138448950246 a001 11592/109801*4870847^(7/24) 9421138448950433 a001 98209/51841*1860498^(1/9) 9421138448956349 a001 11592/109801*710647^(1/3) 9421138448957105 a001 514229/103682*103682^(1/18) 9421138448977990 a001 105937/13201*5778^(1/54) 9421138448986556 a001 46368/20633239*271443^(2/3) 9421138449236008 a001 46368/167761*7881196^(2/9) 9421138449236042 a001 46368/167761*312119004989^(2/15) 9421138449236042 a001 75025/103682*23725150497407^(1/12) 9421138449236042 a001 75025/103682*10749957122^(1/9) 9421138449236042 a001 46368/167761*1568397607^(1/6) 9421138449236042 a001 75025/103682*228826127^(2/15) 9421138449236108 a001 75025/103682*4870847^(1/6) 9421138449239595 a001 75025/103682*710647^(4/21) 9421138449272469 a001 514229/103682*39603^(2/33) 9421138449290948 a001 11592/109801*103682^(7/18) 9421138449337382 a001 121393/969323029*167761^(14/15) 9421138449389213 a001 46368/3010349*103682^(5/9) 9421138449404331 a001 121393/87403803*167761^(11/15) 9421138449430795 a001 75025/103682*103682^(2/9) 9421138449446591 a001 317811/2537720636*167761^(14/15) 9421138449462524 a001 832040/6643838879*167761^(14/15) 9421138449464849 a001 2178309/17393796001*167761^(14/15) 9421138449465188 a001 1597/12752044*167761^(14/15) 9421138449465237 a001 14930352/119218851371*167761^(14/15) 9421138449465245 a001 39088169/312119004989*167761^(14/15) 9421138449465246 a001 102334155/817138163596*167761^(14/15) 9421138449465246 a001 267914296/2139295485799*167761^(14/15) 9421138449465246 a001 701408733/5600748293801*167761^(14/15) 9421138449465246 a001 1836311903/14662949395604*167761^(14/15) 9421138449465246 a001 2971215073/23725150497407*167761^(14/15) 9421138449465246 a001 1134903170/9062201101803*167761^(14/15) 9421138449465246 a001 433494437/3461452808002*167761^(14/15) 9421138449465246 a001 165580141/1322157322203*167761^(14/15) 9421138449465246 a001 63245986/505019158607*167761^(14/15) 9421138449465249 a001 24157817/192900153618*167761^(14/15) 9421138449465268 a001 9227465/73681302247*167761^(14/15) 9421138449465397 a001 3524578/28143753123*167761^(14/15) 9421138449466285 a001 1346269/10749957122*167761^(14/15) 9421138449471434 a001 121393/7881196*167761^(8/15) 9421138449472371 a001 514229/4106118243*167761^(14/15) 9421138449513541 a001 317811/228826127*167761^(11/15) 9421138449514085 a001 196418/1568397607*167761^(14/15) 9421138449519578 a001 121393/710647*167761^(1/3) 9421138449521953 a001 121393/271443*817138163596^(1/9) 9421138449521953 a001 121393/271443*87403803^(1/6) 9421138449529474 a001 416020/299537289*167761^(11/15) 9421138449531799 a001 311187/224056801*167761^(11/15) 9421138449532138 a001 5702887/4106118243*167761^(11/15) 9421138449532187 a001 7465176/5374978561*167761^(11/15) 9421138449532195 a001 39088169/28143753123*167761^(11/15) 9421138449532196 a001 14619165/10525900321*167761^(11/15) 9421138449532196 a001 133957148/96450076809*167761^(11/15) 9421138449532196 a001 701408733/505019158607*167761^(11/15) 9421138449532196 a001 1836311903/1322157322203*167761^(11/15) 9421138449532196 a001 14930208/10749853441*167761^(11/15) 9421138449532196 a001 12586269025/9062201101803*167761^(11/15) 9421138449532196 a001 32951280099/23725150497407*167761^(11/15) 9421138449532196 a001 10182505537/7331474697802*167761^(11/15) 9421138449532196 a001 7778742049/5600748293801*167761^(11/15) 9421138449532196 a001 2971215073/2139295485799*167761^(11/15) 9421138449532196 a001 567451585/408569081798*167761^(11/15) 9421138449532196 a001 433494437/312119004989*167761^(11/15) 9421138449532196 a001 165580141/119218851371*167761^(11/15) 9421138449532196 a001 31622993/22768774562*167761^(11/15) 9421138449532199 a001 24157817/17393796001*167761^(11/15) 9421138449532218 a001 9227465/6643838879*167761^(11/15) 9421138449532348 a001 1762289/1268860318*167761^(11/15) 9421138449533236 a001 1346269/969323029*167761^(11/15) 9421138449534261 a001 46368/20633239*103682^(13/18) 9421138449539322 a001 514229/370248451*167761^(11/15) 9421138449580513 a001 10959/711491*167761^(8/15) 9421138449581036 a001 98209/70711162*167761^(11/15) 9421138449584763 a001 416020/51841*15127^(1/60) 9421138449596428 a001 832040/54018521*167761^(8/15) 9421138449598749 a001 2178309/141422324*167761^(8/15) 9421138449599088 a001 5702887/370248451*167761^(8/15) 9421138449599138 a001 14930352/969323029*167761^(8/15) 9421138449599145 a001 39088169/2537720636*167761^(8/15) 9421138449599146 a001 102334155/6643838879*167761^(8/15) 9421138449599146 a001 9238424/599786069*167761^(8/15) 9421138449599146 a001 701408733/45537549124*167761^(8/15) 9421138449599146 a001 1836311903/119218851371*167761^(8/15) 9421138449599146 a001 4807526976/312119004989*167761^(8/15) 9421138449599146 a001 12586269025/817138163596*167761^(8/15) 9421138449599146 a001 32951280099/2139295485799*167761^(8/15) 9421138449599146 a001 86267571272/5600748293801*167761^(8/15) 9421138449599146 a001 7787980473/505618944676*167761^(8/15) 9421138449599146 a001 365435296162/23725150497407*167761^(8/15) 9421138449599146 a001 139583862445/9062201101803*167761^(8/15) 9421138449599146 a001 53316291173/3461452808002*167761^(8/15) 9421138449599146 a001 20365011074/1322157322203*167761^(8/15) 9421138449599146 a001 7778742049/505019158607*167761^(8/15) 9421138449599146 a001 2971215073/192900153618*167761^(8/15) 9421138449599146 a001 1134903170/73681302247*167761^(8/15) 9421138449599146 a001 433494437/28143753123*167761^(8/15) 9421138449599146 a001 165580141/10749957122*167761^(8/15) 9421138449599146 a001 63245986/4106118243*167761^(8/15) 9421138449599149 a001 24157817/1568397607*167761^(8/15) 9421138449599168 a001 9227465/599074578*167761^(8/15) 9421138449599298 a001 3524578/228826127*167761^(8/15) 9421138449600184 a001 1346269/87403803*167761^(8/15) 9421138449606263 a001 514229/33385282*167761^(8/15) 9421138449612308 a001 514229/271443*167761^(2/15) 9421138449631156 a001 121393/710647*20633239^(5/21) 9421138449631161 a001 105937/90481*141422324^(1/9) 9421138449631161 a001 105937/90481*73681302247^(1/12) 9421138449631161 a001 121393/710647*28143753123^(1/6) 9421138449631161 a001 121393/710647*228826127^(5/24) 9421138449631917 a001 121393/710647*1860498^(5/18) 9421138449644719 a001 105937/620166*167761^(1/3) 9421138449645066 a001 233/271444*1149851^(2/3) 9421138449646748 a001 121393/1860498*3010349^(1/3) 9421138449647093 a001 832040/271443*20633239^(1/15) 9421138449647095 a001 121393/1860498*9062201101803^(1/6) 9421138449647095 a001 832040/271443*17393796001^(1/21) 9421138449647095 a001 832040/271443*505019158607^(1/24) 9421138449647095 a001 832040/271443*599074578^(1/18) 9421138449647928 a001 196418/12752043*167761^(8/15) 9421138449648649 a001 832040/271443*710647^(1/12) 9421138449649418 a001 121393/4870847*54018521^(1/3) 9421138449649682 a001 121393/17393796001*7881196^(8/9) 9421138449649731 a001 121393/87403803*7881196^(5/9) 9421138449649758 a001 121393/12752043*969323029^(1/3) 9421138449649795 a001 121393/119218851371*20633239^(20/21) 9421138449649797 a001 121393/28143753123*20633239^(13/15) 9421138449649798 a001 121393/33385282*20633239^(7/15) 9421138449649798 a001 121393/10749957122*20633239^(17/21) 9421138449649802 a001 121393/969323029*20633239^(2/3) 9421138449649804 a001 121393/87403803*20633239^(11/21) 9421138449649808 a001 121393/33385282*17393796001^(1/3) 9421138449649808 a001 121393/33385282*505019158607^(7/24) 9421138449649808 a001 121393/33385282*599074578^(7/18) 9421138449649815 a001 121393/87403803*312119004989^(1/3) 9421138449649815 a001 121393/87403803*1568397607^(5/12) 9421138449649815 a001 121393/87403803*228826127^(11/24) 9421138449649816 a001 121393/28143753123*141422324^(7/9) 9421138449649816 a001 121393/228826127*5600748293801^(1/3) 9421138449649816 a001 121393/6643838879*370248451^(2/3) 9421138449649816 a001 121393/45537549124*6643838879^(2/3) 9421138449649816 a001 121393/10749957122*45537549124^(5/9) 9421138449649816 a001 121393/28143753123*17393796001^(13/21) 9421138449649816 a001 121393/23725150497407*17393796001^(19/21) 9421138449649816 a001 121393/817138163596*17393796001^(16/21) 9421138449649816 a001 121393/28143753123*505019158607^(13/24) 9421138449649816 a001 121393/28143753123*73681302247^(7/12) 9421138449649816 a001 121393/312119004989*119218851371^(2/3) 9421138449649816 a001 121393/3461452808002*312119004989^(11/15) 9421138449649816 a001 121393/5600748293801*9062201101803^(2/3) 9421138449649816 a001 121393/14662949395604*3461452808002^(13/18) 9421138449649816 a001 121393/2139295485799*2139295485799^(2/3) 9421138449649816 a001 121393/23725150497407*505019158607^(19/24) 9421138449649816 a001 121393/119218851371*3461452808002^(5/9) 9421138449649816 a001 121393/14662949395604*73681302247^(5/6) 9421138449649816 a001 121393/119218851371*28143753123^(2/3) 9421138449649816 a001 121393/14662949395604*28143753123^(13/15) 9421138449649816 a001 121393/17393796001*312119004989^(8/15) 9421138449649816 a001 121393/17393796001*23725150497407^(11/24) 9421138449649816 a001 121393/817138163596*10749957122^(7/9) 9421138449649816 a001 121393/17393796001*10749957122^(11/18) 9421138449649816 a001 121393/1322157322203*4106118243^(5/6) 9421138449649816 a001 121393/2537720636*817138163596^(4/9) 9421138449649816 a001 121393/17393796001*1568397607^(2/3) 9421138449649816 a001 121393/3461452808002*1568397607^(11/12) 9421138449649816 a001 121393/969323029*17393796001^(10/21) 9421138449649816 a001 121393/969323029*3461452808002^(7/18) 9421138449649816 a001 121393/969323029*505019158607^(5/12) 9421138449649816 a001 121393/969323029*28143753123^(7/15) 9421138449649816 a001 121393/28143753123*599074578^(13/18) 9421138449649816 a001 121393/817138163596*599074578^(8/9) 9421138449649816 a001 121393/969323029*599074578^(5/9) 9421138449649816 a001 121393/370248451*23725150497407^(1/3) 9421138449649816 a001 121393/370248451*505019158607^(8/21) 9421138449649816 a001 121393/370248451*10749957122^(4/9) 9421138449649816 a001 121393/969323029*228826127^(7/12) 9421138449649816 a001 121393/10749957122*228826127^(17/24) 9421138449649816 a001 121393/17393796001*228826127^(11/15) 9421138449649816 a001 121393/119218851371*228826127^(5/6) 9421138449649816 a001 121393/370248451*228826127^(8/15) 9421138449649816 a001 121393/817138163596*228826127^(14/15) 9421138449649817 a001 121393/1322157322203*228826127^(23/24) 9421138449649817 a001 233/271444*1322157322203^(1/3) 9421138449649817 a001 121393/2537720636*87403803^(2/3) 9421138449649819 a001 121393/54018521*141422324^(4/9) 9421138449649820 a001 121393/54018521*73681302247^(1/3) 9421138449649838 a001 121393/20633239*4106118243^(1/3) 9421138449649865 a001 121393/10749957122*12752043^(5/6) 9421138449649960 a001 121393/7881196*20633239^(8/21) 9421138449649968 a001 121393/7881196*23725150497407^(5/24) 9421138449649968 a001 121393/7881196*3461452808002^(2/9) 9421138449649968 a001 121393/7881196*28143753123^(4/15) 9421138449649968 a001 121393/7881196*10749957122^(5/18) 9421138449649968 a001 121393/7881196*228826127^(1/3) 9421138449650035 a001 121393/54018521*4870847^(13/24) 9421138449650081 a001 121393/370248451*4870847^(2/3) 9421138449650131 a001 121393/2537720636*4870847^(19/24) 9421138449650133 a001 121393/7881196*4870847^(5/12) 9421138449650180 a001 121393/17393796001*4870847^(11/12) 9421138449650856 a001 121393/3010349*45537549124^(2/9) 9421138449650872 a001 1346269/271443*4870847^(1/24) 9421138449650875 a001 121393/3010349*12752043^(1/3) 9421138449651178 a001 121393/7881196*1860498^(4/9) 9421138449651478 a001 121393/87403803*1860498^(11/18) 9421138449651744 a001 1346269/271443*710647^(1/21) 9421138449651933 a001 121393/969323029*1860498^(7/9) 9421138449652387 a001 121393/10749957122*1860498^(17/18) 9421138449652472 a001 105937/90481*271443^(1/6) 9421138449656936 a001 121393/1149851*20633239^(4/15) 9421138449656940 a001 514229/271443*20633239^(2/21) 9421138449656942 a001 121393/1149851*17393796001^(4/21) 9421138449656942 a001 121393/1149851*505019158607^(1/6) 9421138449656942 a001 514229/271443*3461452808002^(1/18) 9421138449656942 a001 514229/271443*28143753123^(1/15) 9421138449656942 a001 121393/1149851*599074578^(2/9) 9421138449656942 a001 514229/271443*228826127^(1/12) 9421138449657058 a001 121393/1149851*4870847^(7/24) 9421138449657244 a001 514229/271443*1860498^(1/9) 9421138449658851 a001 121393/7881196*710647^(10/21) 9421138449660690 a001 121393/33385282*710647^(7/12) 9421138449661368 a001 121393/54018521*710647^(13/21) 9421138449662977 a001 832040/4870847*167761^(1/3) 9421138449663160 a001 121393/1149851*710647^(1/3) 9421138449664030 a001 121393/370248451*710647^(16/21) 9421138449665362 a001 121393/969323029*710647^(5/6) 9421138449665641 a001 726103/4250681*167761^(1/3) 9421138449666030 a001 5702887/33385282*167761^(1/3) 9421138449666086 a001 4976784/29134601*167761^(1/3) 9421138449666095 a001 39088169/228826127*167761^(1/3) 9421138449666096 a001 34111385/199691526*167761^(1/3) 9421138449666096 a001 267914296/1568397607*167761^(1/3) 9421138449666096 a001 233802911/1368706081*167761^(1/3) 9421138449666096 a001 1836311903/10749957122*167761^(1/3) 9421138449666096 a001 1602508992/9381251041*167761^(1/3) 9421138449666096 a001 12586269025/73681302247*167761^(1/3) 9421138449666096 a001 10983760033/64300051206*167761^(1/3) 9421138449666096 a001 86267571272/505019158607*167761^(1/3) 9421138449666096 a001 75283811239/440719107401*167761^(1/3) 9421138449666096 a001 2504730781961/14662949395604*167761^(1/3) 9421138449666096 a001 139583862445/817138163596*167761^(1/3) 9421138449666096 a001 53316291173/312119004989*167761^(1/3) 9421138449666096 a001 20365011074/119218851371*167761^(1/3) 9421138449666096 a001 7778742049/45537549124*167761^(1/3) 9421138449666096 a001 2971215073/17393796001*167761^(1/3) 9421138449666096 a001 1134903170/6643838879*167761^(1/3) 9421138449666096 a001 433494437/2537720636*167761^(1/3) 9421138449666096 a001 165580141/969323029*167761^(1/3) 9421138449666097 a001 63245986/370248451*167761^(1/3) 9421138449666100 a001 24157817/141422324*167761^(1/3) 9421138449666122 a001 9227465/54018521*167761^(1/3) 9421138449666270 a001 3524578/20633239*167761^(1/3) 9421138449666695 a001 121393/2537720636*710647^(19/21) 9421138449667287 a001 1346269/7881196*167761^(1/3) 9421138449674261 a001 514229/3010349*167761^(1/3) 9421138449680304 a001 11592/35355581*103682^(8/9) 9421138449698622 a001 121393/439204*7881196^(2/9) 9421138449698656 a001 121393/439204*312119004989^(2/15) 9421138449698656 a001 196418/271443*23725150497407^(1/12) 9421138449698656 a001 196418/271443*10749957122^(1/9) 9421138449698656 a001 121393/439204*1568397607^(1/6) 9421138449698656 a001 196418/271443*228826127^(2/15) 9421138449698722 a001 196418/271443*4870847^(1/6) 9421138449699544 a001 1346269/271443*103682^(1/18) 9421138449702209 a001 196418/271443*710647^(4/21) 9421138449715431 a001 1346269/710647*167761^(2/15) 9421138449722061 a001 196418/1149851*167761^(1/3) 9421138449730476 a001 1762289/930249*167761^(2/15) 9421138449732671 a001 9227465/4870847*167761^(2/15) 9421138449732992 a001 24157817/12752043*167761^(2/15) 9421138449733038 a001 31622993/16692641*167761^(2/15) 9421138449733045 a001 165580141/87403803*167761^(2/15) 9421138449733046 a001 433494437/228826127*167761^(2/15) 9421138449733046 a001 567451585/299537289*167761^(2/15) 9421138449733046 a001 2971215073/1568397607*167761^(2/15) 9421138449733046 a001 7778742049/4106118243*167761^(2/15) 9421138449733046 a001 10182505537/5374978561*167761^(2/15) 9421138449733046 a001 53316291173/28143753123*167761^(2/15) 9421138449733046 a001 139583862445/73681302247*167761^(2/15) 9421138449733046 a001 182717648081/96450076809*167761^(2/15) 9421138449733046 a001 956722026041/505019158607*167761^(2/15) 9421138449733046 a001 10610209857723/5600748293801*167761^(2/15) 9421138449733046 a001 591286729879/312119004989*167761^(2/15) 9421138449733046 a001 225851433717/119218851371*167761^(2/15) 9421138449733046 a001 21566892818/11384387281*167761^(2/15) 9421138449733046 a001 32951280099/17393796001*167761^(2/15) 9421138449733046 a001 12586269025/6643838879*167761^(2/15) 9421138449733046 a001 1201881744/634430159*167761^(2/15) 9421138449733046 a001 1836311903/969323029*167761^(2/15) 9421138449733046 a001 701408733/370248451*167761^(2/15) 9421138449733047 a001 66978574/35355581*167761^(2/15) 9421138449733049 a001 102334155/54018521*167761^(2/15) 9421138449733067 a001 39088169/20633239*167761^(2/15) 9421138449733189 a001 3732588/1970299*167761^(2/15) 9421138449734028 a001 5702887/3010349*167761^(2/15) 9421138449735062 a001 121393/54018521*271443^(2/3) 9421138449739775 a001 2178309/1149851*167761^(2/15) 9421138449740370 a001 317811/710647*817138163596^(1/9) 9421138449740370 a001 317811/710647*87403803^(1/6) 9421138449754274 a001 317811/370248451*1149851^(2/3) 9421138449756298 a001 105937/620166*20633239^(5/21) 9421138449756303 a001 832040/710647*141422324^(1/9) 9421138449756303 a001 832040/710647*73681302247^(1/12) 9421138449756303 a001 105937/620166*28143753123^(1/6) 9421138449756303 a001 105937/620166*228826127^(5/24) 9421138449757059 a001 105937/620166*1860498^(5/18) 9421138449758281 a001 317811/4870847*3010349^(1/3) 9421138449758626 a001 311187/101521*20633239^(1/15) 9421138449758628 a001 311187/101521*17393796001^(1/21) 9421138449758628 a001 317811/4870847*9062201101803^(1/6) 9421138449758628 a001 311187/101521*505019158607^(1/24) 9421138449758628 a001 311187/101521*599074578^(1/18) 9421138449758890 a001 317811/45537549124*7881196^(8/9) 9421138449758940 a001 317811/228826127*7881196^(5/9) 9421138449758966 a001 105937/4250681*54018521^(1/3) 9421138449759004 a001 317811/312119004989*20633239^(20/21) 9421138449759005 a001 317811/73681302247*20633239^(13/15) 9421138449759007 a001 105937/9381251041*20633239^(17/21) 9421138449759010 a001 317811/2537720636*20633239^(2/3) 9421138449759013 a001 317811/228826127*20633239^(11/21) 9421138449759013 a001 105937/29134601*20633239^(7/15) 9421138449759016 a001 317811/33385282*969323029^(1/3) 9421138449759023 a001 105937/29134601*17393796001^(1/3) 9421138449759023 a001 105937/29134601*505019158607^(7/24) 9421138449759023 a001 105937/29134601*599074578^(7/18) 9421138449759024 a001 317811/73681302247*141422324^(7/9) 9421138449759024 a001 317811/228826127*312119004989^(1/3) 9421138449759024 a001 317811/228826127*1568397607^(5/12) 9421138449759025 a001 317811/228826127*228826127^(11/24) 9421138449759025 a001 10959/599786069*370248451^(2/3) 9421138449759025 a001 377/710646*5600748293801^(1/3) 9421138449759025 a001 317811/119218851371*6643838879^(2/3) 9421138449759025 a001 317811/2139295485799*17393796001^(16/21) 9421138449759025 a001 317811/73681302247*17393796001^(13/21) 9421138449759025 a001 105937/9381251041*45537549124^(5/9) 9421138449759025 a001 317811/73681302247*505019158607^(13/24) 9421138449759025 a001 317811/73681302247*73681302247^(7/12) 9421138449759025 a001 317811/817138163596*119218851371^(2/3) 9421138449759025 a001 105937/3020733700601*312119004989^(11/15) 9421138449759025 a001 317811/5600748293801*2139295485799^(2/3) 9421138449759025 a001 10959/505618944676*9062201101803^(2/3) 9421138449759025 a001 317811/2139295485799*23725150497407^(7/12) 9421138449759025 a001 317811/2139295485799*505019158607^(2/3) 9421138449759025 a001 317811/312119004989*3461452808002^(5/9) 9421138449759025 a001 317811/45537549124*312119004989^(8/15) 9421138449759025 a001 317811/45537549124*23725150497407^(11/24) 9421138449759025 a001 317811/312119004989*28143753123^(2/3) 9421138449759025 a001 317811/45537549124*10749957122^(11/18) 9421138449759025 a001 317811/2139295485799*10749957122^(7/9) 9421138449759025 a001 317811/6643838879*817138163596^(4/9) 9421138449759025 a001 317811/3461452808002*4106118243^(5/6) 9421138449759025 a001 317811/2537720636*17393796001^(10/21) 9421138449759025 a001 317811/2537720636*3461452808002^(7/18) 9421138449759025 a001 317811/2537720636*505019158607^(5/12) 9421138449759025 a001 317811/2537720636*28143753123^(7/15) 9421138449759025 a001 317811/45537549124*1568397607^(2/3) 9421138449759025 a001 105937/3020733700601*1568397607^(11/12) 9421138449759025 a001 317811/969323029*23725150497407^(1/3) 9421138449759025 a001 317811/969323029*505019158607^(8/21) 9421138449759025 a001 317811/969323029*10749957122^(4/9) 9421138449759025 a001 317811/2537720636*599074578^(5/9) 9421138449759025 a001 317811/73681302247*599074578^(13/18) 9421138449759025 a001 317811/2139295485799*599074578^(8/9) 9421138449759025 a001 317811/370248451*1322157322203^(1/3) 9421138449759025 a001 317811/969323029*228826127^(8/15) 9421138449759025 a001 317811/2537720636*228826127^(7/12) 9421138449759025 a001 105937/9381251041*228826127^(17/24) 9421138449759025 a001 317811/45537549124*228826127^(11/15) 9421138449759025 a001 317811/312119004989*228826127^(5/6) 9421138449759025 a001 317811/2139295485799*228826127^(14/15) 9421138449759025 a001 317811/3461452808002*228826127^(23/24) 9421138449759025 a001 317811/141422324*141422324^(4/9) 9421138449759025 a001 317811/141422324*73681302247^(1/3) 9421138449759025 a001 317811/6643838879*87403803^(2/3) 9421138449759028 a001 317811/54018521*4106118243^(1/3) 9421138449759038 a001 10959/711491*20633239^(8/21) 9421138449759047 a001 10959/711491*23725150497407^(5/24) 9421138449759047 a001 10959/711491*3461452808002^(2/9) 9421138449759047 a001 10959/711491*28143753123^(4/15) 9421138449759047 a001 10959/711491*10749957122^(5/18) 9421138449759047 a001 10959/711491*228826127^(1/3) 9421138449759073 a001 105937/9381251041*12752043^(5/6) 9421138449759176 a001 317811/7881196*45537549124^(2/9) 9421138449759193 a001 3524578/710647*4870847^(1/24) 9421138449759196 a001 317811/7881196*12752043^(1/3) 9421138449759212 a001 10959/711491*4870847^(5/12) 9421138449759240 a001 317811/141422324*4870847^(13/24) 9421138449759289 a001 317811/969323029*4870847^(2/3) 9421138449759339 a001 317811/6643838879*4870847^(19/24) 9421138449759389 a001 317811/45537549124*4870847^(11/12) 9421138449760058 a001 317811/3010349*20633239^(4/15) 9421138449760062 a001 1346269/710647*20633239^(2/21) 9421138449760064 a001 317811/3010349*17393796001^(4/21) 9421138449760064 a001 317811/3010349*505019158607^(1/6) 9421138449760064 a001 1346269/710647*3461452808002^(1/18) 9421138449760064 a001 1346269/710647*28143753123^(1/15) 9421138449760064 a001 317811/3010349*599074578^(2/9) 9421138449760064 a001 1346269/710647*228826127^(1/12) 9421138449760065 a001 3524578/710647*710647^(1/21) 9421138449760180 a001 317811/3010349*4870847^(7/24) 9421138449760182 a001 311187/101521*710647^(1/12) 9421138449760256 a001 10959/711491*1860498^(4/9) 9421138449760367 a001 1346269/710647*1860498^(1/9) 9421138449760688 a001 317811/228826127*1860498^(11/18) 9421138449761142 a001 317811/2537720636*1860498^(7/9) 9421138449761595 a001 105937/9381251041*1860498^(17/18) 9421138449766117 a001 317811/1149851*7881196^(2/9) 9421138449766150 a001 317811/1149851*312119004989^(2/15) 9421138449766150 a001 514229/710647*23725150497407^(1/12) 9421138449766150 a001 514229/710647*10749957122^(1/9) 9421138449766150 a001 317811/1149851*1568397607^(1/6) 9421138449766150 a001 514229/710647*228826127^(2/15) 9421138449766216 a001 514229/710647*4870847^(1/6) 9421138449766283 a001 317811/3010349*710647^(1/3) 9421138449767930 a001 10959/711491*710647^(10/21) 9421138449769704 a001 514229/710647*710647^(4/21) 9421138449769906 a001 105937/29134601*710647^(7/12) 9421138449770208 a001 832040/969323029*1149851^(2/3) 9421138449770573 a001 317811/141422324*710647^(13/21) 9421138449772236 a001 416020/930249*817138163596^(1/9) 9421138449772236 a001 416020/930249*87403803^(1/6) 9421138449772532 a001 2178309/2537720636*1149851^(2/3) 9421138449772871 a001 5702887/6643838879*1149851^(2/3) 9421138449772921 a001 14930352/17393796001*1149851^(2/3) 9421138449772928 a001 39088169/45537549124*1149851^(2/3) 9421138449772929 a001 102334155/119218851371*1149851^(2/3) 9421138449772929 a001 267914296/312119004989*1149851^(2/3) 9421138449772929 a001 701408733/817138163596*1149851^(2/3) 9421138449772929 a001 1836311903/2139295485799*1149851^(2/3) 9421138449772929 a001 4807526976/5600748293801*1149851^(2/3) 9421138449772929 a001 12586269025/14662949395604*1149851^(2/3) 9421138449772929 a001 20365011074/23725150497407*1149851^(2/3) 9421138449772929 a001 7778742049/9062201101803*1149851^(2/3) 9421138449772929 a001 2971215073/3461452808002*1149851^(2/3) 9421138449772929 a001 1134903170/1322157322203*1149851^(2/3) 9421138449772929 a001 433494437/505019158607*1149851^(2/3) 9421138449772929 a001 165580141/192900153618*1149851^(2/3) 9421138449772930 a001 63245986/73681302247*1149851^(2/3) 9421138449772933 a001 24157817/28143753123*1149851^(2/3) 9421138449772951 a001 9227465/10749957122*1149851^(2/3) 9421138449773081 a001 3524578/4106118243*1149851^(2/3) 9421138449773238 a001 317811/969323029*710647^(16/21) 9421138449773969 a001 1346269/1568397607*1149851^(2/3) 9421138449774553 a001 832040/12752043*3010349^(1/3) 9421138449774556 a001 832040/4870847*20633239^(5/21) 9421138449774561 a001 726103/620166*141422324^(1/9) 9421138449774561 a001 726103/620166*73681302247^(1/12) 9421138449774561 a001 832040/4870847*28143753123^(1/6) 9421138449774561 a001 832040/4870847*228826127^(5/24) 9421138449774571 a001 317811/2537720636*710647^(5/6) 9421138449774823 a001 832040/119218851371*7881196^(8/9) 9421138449774874 a001 416020/299537289*7881196^(5/9) 9421138449774899 a001 5702887/1860498*20633239^(1/15) 9421138449774900 a001 5702887/1860498*17393796001^(1/21) 9421138449774900 a001 832040/12752043*9062201101803^(1/6) 9421138449774900 a001 5702887/1860498*505019158607^(1/24) 9421138449774900 a001 5702887/1860498*599074578^(1/18) 9421138449774937 a001 208010/204284540899*20633239^(20/21) 9421138449774939 a001 416020/96450076809*20633239^(13/15) 9421138449774940 a001 832040/73681302247*20633239^(17/21) 9421138449774943 a001 832040/6643838879*20633239^(2/3) 9421138449774946 a001 416020/299537289*20633239^(11/21) 9421138449774947 a001 832040/228826127*20633239^(7/15) 9421138449774948 a001 416020/16692641*54018521^(1/3) 9421138449774953 a001 832040/54018521*20633239^(8/21) 9421138449774957 a001 832040/87403803*969323029^(1/3) 9421138449774958 a001 416020/96450076809*141422324^(7/9) 9421138449774958 a001 832040/228826127*17393796001^(1/3) 9421138449774958 a001 832040/228826127*505019158607^(7/24) 9421138449774958 a001 832040/228826127*599074578^(7/18) 9421138449774958 a001 832040/370248451*141422324^(4/9) 9421138449774958 a001 208010/11384387281*370248451^(2/3) 9421138449774958 a001 416020/299537289*312119004989^(1/3) 9421138449774958 a001 416020/299537289*1568397607^(5/12) 9421138449774958 a001 832040/1568397607*5600748293801^(1/3) 9421138449774958 a001 75640/28374454999*6643838879^(2/3) 9421138449774958 a001 832040/5600748293801*17393796001^(16/21) 9421138449774958 a001 416020/96450076809*17393796001^(13/21) 9421138449774958 a001 832040/73681302247*45537549124^(5/9) 9421138449774958 a001 832040/2139295485799*119218851371^(2/3) 9421138449774958 a001 416020/96450076809*505019158607^(13/24) 9421138449774958 a001 832040/23725150497407*312119004989^(11/15) 9421138449774958 a001 208010/3665737348901*2139295485799^(2/3) 9421138449774958 a001 832040/5600748293801*23725150497407^(7/12) 9421138449774958 a001 208010/204284540899*3461452808002^(5/9) 9421138449774958 a001 832040/5600748293801*505019158607^(2/3) 9421138449774958 a001 832040/119218851371*312119004989^(8/15) 9421138449774958 a001 832040/119218851371*23725150497407^(11/24) 9421138449774958 a001 416020/96450076809*73681302247^(7/12) 9421138449774958 a001 208010/204284540899*28143753123^(2/3) 9421138449774958 a001 832040/17393796001*817138163596^(4/9) 9421138449774958 a001 832040/119218851371*10749957122^(11/18) 9421138449774958 a001 832040/5600748293801*10749957122^(7/9) 9421138449774958 a001 832040/6643838879*17393796001^(10/21) 9421138449774958 a001 832040/6643838879*3461452808002^(7/18) 9421138449774958 a001 832040/6643838879*505019158607^(5/12) 9421138449774958 a001 832040/6643838879*28143753123^(7/15) 9421138449774958 a001 832040/9062201101803*4106118243^(5/6) 9421138449774958 a001 610/1860499*23725150497407^(1/3) 9421138449774958 a001 610/1860499*505019158607^(8/21) 9421138449774958 a001 610/1860499*10749957122^(4/9) 9421138449774958 a001 832040/119218851371*1568397607^(2/3) 9421138449774958 a001 832040/23725150497407*1568397607^(11/12) 9421138449774958 a001 832040/969323029*1322157322203^(1/3) 9421138449774958 a001 832040/6643838879*599074578^(5/9) 9421138449774958 a001 416020/96450076809*599074578^(13/18) 9421138449774958 a001 832040/5600748293801*599074578^(8/9) 9421138449774958 a001 416020/299537289*228826127^(11/24) 9421138449774958 a001 832040/370248451*73681302247^(1/3) 9421138449774958 a001 610/1860499*228826127^(8/15) 9421138449774958 a001 832040/6643838879*228826127^(7/12) 9421138449774958 a001 832040/73681302247*228826127^(17/24) 9421138449774958 a001 832040/119218851371*228826127^(11/15) 9421138449774958 a001 208010/204284540899*228826127^(5/6) 9421138449774958 a001 832040/5600748293801*228826127^(14/15) 9421138449774958 a001 832040/9062201101803*228826127^(23/24) 9421138449774958 a001 208010/35355581*4106118243^(1/3) 9421138449774959 a001 832040/17393796001*87403803^(2/3) 9421138449774961 a001 832040/54018521*23725150497407^(5/24) 9421138449774961 a001 832040/54018521*3461452808002^(2/9) 9421138449774961 a001 832040/54018521*28143753123^(4/15) 9421138449774961 a001 832040/54018521*10749957122^(5/18) 9421138449774961 a001 832040/54018521*228826127^(1/3) 9421138449774980 a001 75640/1875749*45537549124^(2/9) 9421138449774997 a001 9227465/1860498*4870847^(1/24) 9421138449774999 a001 75640/1875749*12752043^(1/3) 9421138449775006 a001 832040/73681302247*12752043^(5/6) 9421138449775104 a001 208010/1970299*20633239^(4/15) 9421138449775108 a001 1762289/930249*20633239^(2/21) 9421138449775110 a001 208010/1970299*17393796001^(4/21) 9421138449775110 a001 1762289/930249*3461452808002^(1/18) 9421138449775110 a001 208010/1970299*505019158607^(1/6) 9421138449775110 a001 1762289/930249*28143753123^(1/15) 9421138449775110 a001 208010/1970299*599074578^(2/9) 9421138449775110 a001 1762289/930249*228826127^(1/12) 9421138449775127 a001 832040/54018521*4870847^(5/12) 9421138449775173 a001 832040/370248451*4870847^(13/24) 9421138449775223 a001 610/1860499*4870847^(2/3) 9421138449775225 a001 208010/1970299*4870847^(7/24) 9421138449775272 a001 832040/17393796001*4870847^(19/24) 9421138449775317 a001 832040/4870847*1860498^(5/18) 9421138449775322 a001 832040/119218851371*4870847^(11/12) 9421138449775412 a001 1762289/930249*1860498^(1/9) 9421138449775868 a001 9227465/1860498*710647^(1/21) 9421138449775903 a001 317811/6643838879*710647^(19/21) 9421138449775964 a001 832040/3010349*7881196^(2/9) 9421138449775998 a001 832040/3010349*312119004989^(2/15) 9421138449775998 a001 1346269/1860498*23725150497407^(1/12) 9421138449775998 a001 1346269/1860498*10749957122^(1/9) 9421138449775998 a001 832040/3010349*1568397607^(1/6) 9421138449775998 a001 1346269/1860498*228826127^(2/15) 9421138449776064 a001 1346269/1860498*4870847^(1/6) 9421138449776171 a001 832040/54018521*1860498^(4/9) 9421138449776455 a001 5702887/1860498*710647^(1/12) 9421138449776621 a001 416020/299537289*1860498^(11/18) 9421138449776885 a001 2178309/4870847*817138163596^(1/9) 9421138449776886 a001 2178309/4870847*87403803^(1/6) 9421138449776928 a001 311187/4769326*3010349^(1/3) 9421138449777075 a001 832040/6643838879*1860498^(7/9) 9421138449777148 a001 2178309/312119004989*7881196^(8/9) 9421138449777198 a001 311187/224056801*7881196^(5/9) 9421138449777219 a001 726103/4250681*20633239^(5/21) 9421138449777225 a001 5702887/4870847*141422324^(1/9) 9421138449777225 a001 5702887/4870847*73681302247^(1/12) 9421138449777225 a001 726103/4250681*28143753123^(1/6) 9421138449777225 a001 726103/4250681*228826127^(5/24) 9421138449777262 a001 2178309/2139295485799*20633239^(20/21) 9421138449777263 a001 46347/10745088481*20633239^(13/15) 9421138449777265 a001 726103/64300051206*20633239^(17/21) 9421138449777268 a001 2178309/17393796001*20633239^(2/3) 9421138449777271 a001 311187/224056801*20633239^(11/21) 9421138449777272 a001 726103/199691526*20633239^(7/15) 9421138449777273 a001 14930352/4870847*20633239^(1/15) 9421138449777274 a001 5702887/87403803*3010349^(1/3) 9421138449777274 a001 14930352/4870847*17393796001^(1/21) 9421138449777274 a001 311187/4769326*9062201101803^(1/6) 9421138449777274 a001 14930352/4870847*505019158607^(1/24) 9421138449777274 a001 14930352/4870847*599074578^(1/18) 9421138449777275 a001 2178309/141422324*20633239^(8/21) 9421138449777280 a001 726103/29134601*54018521^(1/3) 9421138449777282 a001 46347/10745088481*141422324^(7/9) 9421138449777282 a001 2178309/969323029*141422324^(4/9) 9421138449777282 a001 46347/4868641*969323029^(1/3) 9421138449777283 a001 2178309/119218851371*370248451^(2/3) 9421138449777283 a001 726103/199691526*17393796001^(1/3) 9421138449777283 a001 726103/199691526*505019158607^(7/24) 9421138449777283 a001 726103/199691526*599074578^(7/18) 9421138449777283 a001 311187/224056801*312119004989^(1/3) 9421138449777283 a001 311187/224056801*1568397607^(5/12) 9421138449777283 a001 726103/1368706081*5600748293801^(1/3) 9421138449777283 a001 2178309/817138163596*6643838879^(2/3) 9421138449777283 a001 2178309/14662949395604*17393796001^(16/21) 9421138449777283 a001 46347/10745088481*17393796001^(13/21) 9421138449777283 a001 726103/64300051206*45537549124^(5/9) 9421138449777283 a001 2178309/5600748293801*119218851371^(2/3) 9421138449777283 a001 46347/10745088481*505019158607^(13/24) 9421138449777283 a001 2178309/14662949395604*23725150497407^(7/12) 9421138449777283 a001 2178309/2139295485799*3461452808002^(5/9) 9421138449777283 a001 2178309/14662949395604*505019158607^(2/3) 9421138449777283 a001 2178309/312119004989*23725150497407^(11/24) 9421138449777283 a001 46347/10745088481*73681302247^(7/12) 9421138449777283 a001 2178309/45537549124*817138163596^(4/9) 9421138449777283 a001 2178309/2139295485799*28143753123^(2/3) 9421138449777283 a001 2178309/17393796001*17393796001^(10/21) 9421138449777283 a001 2178309/17393796001*3461452808002^(7/18) 9421138449777283 a001 2178309/17393796001*505019158607^(5/12) 9421138449777283 a001 2178309/17393796001*28143753123^(7/15) 9421138449777283 a001 2178309/312119004989*10749957122^(11/18) 9421138449777283 a001 2178309/14662949395604*10749957122^(7/9) 9421138449777283 a001 2178309/6643838879*23725150497407^(1/3) 9421138449777283 a001 2178309/6643838879*505019158607^(8/21) 9421138449777283 a001 2178309/6643838879*10749957122^(4/9) 9421138449777283 a001 2178309/23725150497407*4106118243^(5/6) 9421138449777283 a001 2178309/2537720636*1322157322203^(1/3) 9421138449777283 a001 2178309/312119004989*1568397607^(2/3) 9421138449777283 a001 2178309/969323029*73681302247^(1/3) 9421138449777283 a001 2178309/17393796001*599074578^(5/9) 9421138449777283 a001 46347/10745088481*599074578^(13/18) 9421138449777283 a001 2178309/14662949395604*599074578^(8/9) 9421138449777283 a001 2178309/370248451*4106118243^(1/3) 9421138449777283 a001 311187/224056801*228826127^(11/24) 9421138449777283 a001 2178309/6643838879*228826127^(8/15) 9421138449777283 a001 2178309/17393796001*228826127^(7/12) 9421138449777283 a001 726103/64300051206*228826127^(17/24) 9421138449777283 a001 2178309/312119004989*228826127^(11/15) 9421138449777283 a001 2178309/2139295485799*228826127^(5/6) 9421138449777283 a001 2178309/14662949395604*228826127^(14/15) 9421138449777283 a001 2178309/23725150497407*228826127^(23/24) 9421138449777283 a001 2178309/141422324*23725150497407^(5/24) 9421138449777283 a001 2178309/141422324*3461452808002^(2/9) 9421138449777283 a001 2178309/141422324*28143753123^(4/15) 9421138449777283 a001 2178309/141422324*10749957122^(5/18) 9421138449777283 a001 2178309/141422324*228826127^(1/3) 9421138449777283 a001 2178309/45537549124*87403803^(2/3) 9421138449777286 a001 2178309/54018521*45537549124^(2/9) 9421138449777299 a001 2178309/20633239*20633239^(4/15) 9421138449777302 a001 24157817/4870847*4870847^(1/24) 9421138449777303 a001 9227465/4870847*20633239^(2/21) 9421138449777305 a001 2178309/20633239*17393796001^(4/21) 9421138449777305 a001 9227465/4870847*3461452808002^(1/18) 9421138449777305 a001 2178309/20633239*505019158607^(1/6) 9421138449777305 a001 9227465/4870847*28143753123^(1/15) 9421138449777305 a001 2178309/20633239*599074578^(2/9) 9421138449777305 a001 9227465/4870847*228826127^(1/12) 9421138449777305 a001 2178309/54018521*12752043^(1/3) 9421138449777325 a001 14930352/228826127*3010349^(1/3) 9421138449777331 a001 726103/64300051206*12752043^(5/6) 9421138449777332 a001 39088169/599074578*3010349^(1/3) 9421138449777333 a001 14619165/224056801*3010349^(1/3) 9421138449777333 a001 267914296/4106118243*3010349^(1/3) 9421138449777333 a001 701408733/10749957122*3010349^(1/3) 9421138449777333 a001 1836311903/28143753123*3010349^(1/3) 9421138449777333 a001 686789568/10525900321*3010349^(1/3) 9421138449777333 a001 12586269025/192900153618*3010349^(1/3) 9421138449777333 a001 32951280099/505019158607*3010349^(1/3) 9421138449777333 a001 86267571272/1322157322203*3010349^(1/3) 9421138449777333 a001 32264490531/494493258286*3010349^(1/3) 9421138449777333 a001 591286729879/9062201101803*3010349^(1/3) 9421138449777333 a001 1548008755920/23725150497407*3010349^(1/3) 9421138449777333 a001 365435296162/5600748293801*3010349^(1/3) 9421138449777333 a001 139583862445/2139295485799*3010349^(1/3) 9421138449777333 a001 53316291173/817138163596*3010349^(1/3) 9421138449777333 a001 20365011074/312119004989*3010349^(1/3) 9421138449777333 a001 7778742049/119218851371*3010349^(1/3) 9421138449777333 a001 2971215073/45537549124*3010349^(1/3) 9421138449777333 a001 1134903170/17393796001*3010349^(1/3) 9421138449777333 a001 433494437/6643838879*3010349^(1/3) 9421138449777333 a001 165580141/2537720636*3010349^(1/3) 9421138449777334 a001 63245986/969323029*3010349^(1/3) 9421138449777336 a001 24157817/370248451*3010349^(1/3) 9421138449777356 a001 9227465/141422324*3010349^(1/3) 9421138449777401 a001 2178309/7881196*7881196^(2/9) 9421138449777421 a001 2178309/20633239*4870847^(7/24) 9421138449777434 a001 2178309/7881196*312119004989^(2/15) 9421138449777434 a001 3524578/4870847*23725150497407^(1/12) 9421138449777434 a001 3524578/4870847*10749957122^(1/9) 9421138449777434 a001 2178309/7881196*1568397607^(1/6) 9421138449777434 a001 3524578/4870847*228826127^(2/15) 9421138449777449 a001 2178309/141422324*4870847^(5/12) 9421138449777487 a001 5702887/817138163596*7881196^(8/9) 9421138449777488 a001 3524578/54018521*3010349^(1/3) 9421138449777498 a001 2178309/969323029*4870847^(13/24) 9421138449777500 a001 3524578/4870847*4870847^(1/6) 9421138449777528 a001 832040/73681302247*1860498^(17/18) 9421138449777536 a001 14930352/2139295485799*7881196^(8/9) 9421138449777537 a001 5702887/4106118243*7881196^(5/9) 9421138449777544 a001 39088169/5600748293801*7881196^(8/9) 9421138449777545 a001 102334155/14662949395604*7881196^(8/9) 9421138449777545 a001 165580141/23725150497407*7881196^(8/9) 9421138449777545 a001 63245986/9062201101803*7881196^(8/9) 9421138449777547 a001 2178309/6643838879*4870847^(2/3) 9421138449777548 a001 24157817/3461452808002*7881196^(8/9) 9421138449777564 a001 5702887/12752043*817138163596^(1/9) 9421138449777564 a001 5702887/12752043*87403803^(1/6) 9421138449777567 a001 9227465/1322157322203*7881196^(8/9) 9421138449777587 a001 7465176/5374978561*7881196^(5/9) 9421138449777594 a001 39088169/28143753123*7881196^(5/9) 9421138449777595 a001 14619165/10525900321*7881196^(5/9) 9421138449777595 a001 133957148/96450076809*7881196^(5/9) 9421138449777595 a001 701408733/505019158607*7881196^(5/9) 9421138449777595 a001 1836311903/1322157322203*7881196^(5/9) 9421138449777595 a001 14930208/10749853441*7881196^(5/9) 9421138449777595 a001 12586269025/9062201101803*7881196^(5/9) 9421138449777595 a001 32951280099/23725150497407*7881196^(5/9) 9421138449777595 a001 10182505537/7331474697802*7881196^(5/9) 9421138449777595 a001 7778742049/5600748293801*7881196^(5/9) 9421138449777595 a001 2971215073/2139295485799*7881196^(5/9) 9421138449777595 a001 567451585/408569081798*7881196^(5/9) 9421138449777595 a001 433494437/312119004989*7881196^(5/9) 9421138449777595 a001 165580141/119218851371*7881196^(5/9) 9421138449777596 a001 31622993/22768774562*7881196^(5/9) 9421138449777597 a001 2178309/45537549124*4870847^(19/24) 9421138449777599 a001 24157817/17393796001*7881196^(5/9) 9421138449777601 a001 5702887/5600748293801*20633239^(20/21) 9421138449777603 a001 5702887/1322157322203*20633239^(13/15) 9421138449777604 a001 5702887/505019158607*20633239^(17/21) 9421138449777607 a001 1597/12752044*20633239^(2/3) 9421138449777607 a001 9227465/4870847*1860498^(1/9) 9421138449777608 a001 5702887/33385282*20633239^(5/21) 9421138449777610 a001 5702887/4106118243*20633239^(11/21) 9421138449777610 a001 5702887/20633239*7881196^(2/9) 9421138449777611 a001 5702887/1568397607*20633239^(7/15) 9421138449777613 a001 4976784/4250681*141422324^(1/9) 9421138449777613 a001 4976784/4250681*73681302247^(1/12) 9421138449777613 a001 5702887/33385282*28143753123^(1/6) 9421138449777613 a001 5702887/33385282*228826127^(5/24) 9421138449777613 a001 5702887/370248451*20633239^(8/21) 9421138449777614 a001 832040/710647*271443^(1/6) 9421138449777618 a001 9227465/6643838879*7881196^(5/9) 9421138449777619 a001 39088169/12752043*20633239^(1/15) 9421138449777619 a001 5702887/54018521*20633239^(4/15) 9421138449777620 a001 5702887/228826127*54018521^(1/3) 9421138449777621 a001 39088169/12752043*17393796001^(1/21) 9421138449777621 a001 5702887/87403803*9062201101803^(1/6) 9421138449777621 a001 39088169/12752043*505019158607^(1/24) 9421138449777621 a001 39088169/12752043*599074578^(1/18) 9421138449777621 a001 5702887/1322157322203*141422324^(7/9) 9421138449777622 a001 5702887/2537720636*141422324^(4/9) 9421138449777622 a001 5702887/312119004989*370248451^(2/3) 9421138449777622 a001 5702887/599074578*969323029^(1/3) 9421138449777622 a001 5702887/1568397607*17393796001^(1/3) 9421138449777622 a001 5702887/1568397607*505019158607^(7/24) 9421138449777622 a001 5702887/4106118243*312119004989^(1/3) 9421138449777622 a001 5702887/2139295485799*6643838879^(2/3) 9421138449777622 a001 5702887/10749957122*5600748293801^(1/3) 9421138449777622 a001 5702887/1322157322203*17393796001^(13/21) 9421138449777622 a001 1597/12752044*17393796001^(10/21) 9421138449777622 a001 5702887/505019158607*45537549124^(5/9) 9421138449777622 a001 5702887/14662949395604*119218851371^(2/3) 9421138449777622 a001 5702887/817138163596*312119004989^(8/15) 9421138449777622 a001 5702887/5600748293801*3461452808002^(5/9) 9421138449777622 a001 5702887/817138163596*23725150497407^(11/24) 9421138449777622 a001 5702887/1322157322203*505019158607^(13/24) 9421138449777622 a001 5702887/119218851371*817138163596^(4/9) 9421138449777622 a001 5702887/1322157322203*73681302247^(7/12) 9421138449777622 a001 1597/12752044*3461452808002^(7/18) 9421138449777622 a001 1597/12752044*505019158607^(5/12) 9421138449777622 a001 5702887/5600748293801*28143753123^(2/3) 9421138449777622 a001 1597/12752044*28143753123^(7/15) 9421138449777622 a001 5702887/17393796001*23725150497407^(1/3) 9421138449777622 a001 5702887/17393796001*505019158607^(8/21) 9421138449777622 a001 5702887/817138163596*10749957122^(11/18) 9421138449777622 a001 5702887/17393796001*10749957122^(4/9) 9421138449777622 a001 5702887/6643838879*1322157322203^(1/3) 9421138449777622 a001 5702887/4106118243*1568397607^(5/12) 9421138449777622 a001 5702887/2537720636*73681302247^(1/3) 9421138449777622 a001 5702887/817138163596*1568397607^(2/3) 9421138449777622 a001 5702887/1568397607*599074578^(7/18) 9421138449777622 a001 5702887/969323029*4106118243^(1/3) 9421138449777622 a001 1597/12752044*599074578^(5/9) 9421138449777622 a001 5702887/1322157322203*599074578^(13/18) 9421138449777622 a001 5702887/370248451*23725150497407^(5/24) 9421138449777622 a001 5702887/370248451*3461452808002^(2/9) 9421138449777622 a001 5702887/370248451*28143753123^(4/15) 9421138449777622 a001 5702887/370248451*10749957122^(5/18) 9421138449777622 a001 5702887/4106118243*228826127^(11/24) 9421138449777622 a001 5702887/17393796001*228826127^(8/15) 9421138449777622 a001 1597/12752044*228826127^(7/12) 9421138449777622 a001 5702887/505019158607*228826127^(17/24) 9421138449777622 a001 5702887/370248451*228826127^(1/3) 9421138449777622 a001 5702887/817138163596*228826127^(11/15) 9421138449777622 a001 5702887/5600748293801*228826127^(5/6) 9421138449777622 a001 5702887/141422324*45537549124^(2/9) 9421138449777623 a001 5702887/119218851371*87403803^(2/3) 9421138449777623 a001 24157817/12752043*20633239^(2/21) 9421138449777625 a001 5702887/54018521*17393796001^(4/21) 9421138449777625 a001 24157817/12752043*3461452808002^(1/18) 9421138449777625 a001 5702887/54018521*505019158607^(1/6) 9421138449777625 a001 24157817/12752043*28143753123^(1/15) 9421138449777625 a001 5702887/54018521*599074578^(2/9) 9421138449777625 a001 24157817/12752043*228826127^(1/12) 9421138449777639 a001 63245986/12752043*4870847^(1/24) 9421138449777641 a001 14930352/54018521*7881196^(2/9) 9421138449777642 a001 5702887/141422324*12752043^(1/3) 9421138449777644 a001 5702887/20633239*312119004989^(2/15) 9421138449777644 a001 9227465/12752043*23725150497407^(1/12) 9421138449777644 a001 9227465/12752043*10749957122^(1/9) 9421138449777644 a001 5702887/20633239*1568397607^(1/6) 9421138449777644 a001 9227465/12752043*228826127^(2/15) 9421138449777645 a001 39088169/141422324*7881196^(2/9) 9421138449777646 a001 102334155/370248451*7881196^(2/9) 9421138449777646 a001 267914296/969323029*7881196^(2/9) 9421138449777646 a001 701408733/2537720636*7881196^(2/9) 9421138449777646 a001 1836311903/6643838879*7881196^(2/9) 9421138449777646 a001 4807526976/17393796001*7881196^(2/9) 9421138449777646 a001 12586269025/45537549124*7881196^(2/9) 9421138449777646 a001 32951280099/119218851371*7881196^(2/9) 9421138449777646 a001 86267571272/312119004989*7881196^(2/9) 9421138449777646 a001 225851433717/817138163596*7881196^(2/9) 9421138449777646 a001 1548008755920/5600748293801*7881196^(2/9) 9421138449777646 a001 139583862445/505019158607*7881196^(2/9) 9421138449777646 a001 53316291173/192900153618*7881196^(2/9) 9421138449777646 a001 20365011074/73681302247*7881196^(2/9) 9421138449777646 a001 7778742049/28143753123*7881196^(2/9) 9421138449777646 a001 2971215073/10749957122*7881196^(2/9) 9421138449777646 a001 1134903170/4106118243*7881196^(2/9) 9421138449777646 a001 433494437/1568397607*7881196^(2/9) 9421138449777646 a001 165580141/599074578*7881196^(2/9) 9421138449777646 a001 63245986/228826127*7881196^(2/9) 9421138449777647 a001 2178309/312119004989*4870847^(11/12) 9421138449777648 a001 24157817/87403803*7881196^(2/9) 9421138449777650 a001 196452/192933544679*20633239^(20/21) 9421138449777652 a001 7465176/1730726404001*20633239^(13/15) 9421138449777653 a001 4976784/440719107401*20633239^(17/21) 9421138449777656 a001 14930352/119218851371*20633239^(2/3) 9421138449777659 a001 39088169/9062201101803*20633239^(13/15) 9421138449777660 a001 7465176/5374978561*20633239^(11/21) 9421138449777660 a001 9227465/33385282*7881196^(2/9) 9421138449777660 a001 102334155/23725150497407*20633239^(13/15) 9421138449777661 a001 39088169/3461452808002*20633239^(17/21) 9421138449777661 a001 4976784/1368706081*20633239^(7/15) 9421138449777661 a001 31622993/7331474697802*20633239^(13/15) 9421138449777662 a001 34111385/3020733700601*20633239^(17/21) 9421138449777662 a001 267914296/23725150497407*20633239^(17/21) 9421138449777662 a001 24157817/23725150497407*20633239^(20/21) 9421138449777662 a001 165580141/14662949395604*20633239^(17/21) 9421138449777662 a001 63245986/5600748293801*20633239^(17/21) 9421138449777663 a001 7465176/16692641*817138163596^(1/9) 9421138449777663 a001 14930352/969323029*20633239^(8/21) 9421138449777663 a001 7465176/16692641*87403803^(1/6) 9421138449777664 a001 39088169/312119004989*20633239^(2/3) 9421138449777664 a001 24157817/5600748293801*20633239^(13/15) 9421138449777665 a001 4976784/29134601*20633239^(5/21) 9421138449777665 a001 102334155/817138163596*20633239^(2/3) 9421138449777665 a001 267914296/2139295485799*20633239^(2/3) 9421138449777665 a001 701408733/5600748293801*20633239^(2/3) 9421138449777665 a001 1836311903/14662949395604*20633239^(2/3) 9421138449777665 a001 2971215073/23725150497407*20633239^(2/3) 9421138449777665 a001 1134903170/9062201101803*20633239^(2/3) 9421138449777665 a001 433494437/3461452808002*20633239^(2/3) 9421138449777665 a001 24157817/2139295485799*20633239^(17/21) 9421138449777665 a001 165580141/1322157322203*20633239^(2/3) 9421138449777665 a001 63245986/505019158607*20633239^(2/3) 9421138449777666 a001 3732588/35355581*20633239^(4/15) 9421138449777667 a001 39088169/28143753123*20633239^(11/21) 9421138449777668 a001 14619165/10525900321*20633239^(11/21) 9421138449777668 a001 133957148/96450076809*20633239^(11/21) 9421138449777668 a001 701408733/505019158607*20633239^(11/21) 9421138449777668 a001 1836311903/1322157322203*20633239^(11/21) 9421138449777668 a001 14930208/10749853441*20633239^(11/21) 9421138449777668 a001 12586269025/9062201101803*20633239^(11/21) 9421138449777668 a001 32951280099/23725150497407*20633239^(11/21) 9421138449777668 a001 10182505537/7331474697802*20633239^(11/21) 9421138449777668 a001 7778742049/5600748293801*20633239^(11/21) 9421138449777668 a001 2971215073/2139295485799*20633239^(11/21) 9421138449777668 a001 567451585/408569081798*20633239^(11/21) 9421138449777668 a001 433494437/312119004989*20633239^(11/21) 9421138449777668 a001 39088169/10749957122*20633239^(7/15) 9421138449777668 a001 24157817/192900153618*20633239^(2/3) 9421138449777668 a001 165580141/119218851371*20633239^(11/21) 9421138449777669 a001 31622993/22768774562*20633239^(11/21) 9421138449777669 a001 831985/228811001*20633239^(7/15) 9421138449777669 a001 267914296/73681302247*20633239^(7/15) 9421138449777669 a001 233802911/64300051206*20633239^(7/15) 9421138449777669 a001 1836311903/505019158607*20633239^(7/15) 9421138449777669 a001 1602508992/440719107401*20633239^(7/15) 9421138449777669 a001 12586269025/3461452808002*20633239^(7/15) 9421138449777669 a001 10983760033/3020733700601*20633239^(7/15) 9421138449777669 a001 86267571272/23725150497407*20633239^(7/15) 9421138449777669 a001 53316291173/14662949395604*20633239^(7/15) 9421138449777669 a001 20365011074/5600748293801*20633239^(7/15) 9421138449777669 a001 7778742049/2139295485799*20633239^(7/15) 9421138449777669 a001 2971215073/817138163596*20633239^(7/15) 9421138449777669 a001 1134903170/312119004989*20633239^(7/15) 9421138449777669 a001 433494437/119218851371*20633239^(7/15) 9421138449777669 a001 165580141/45537549124*20633239^(7/15) 9421138449777670 a001 14619165/4769326*20633239^(1/15) 9421138449777670 a001 31622993/16692641*20633239^(2/21) 9421138449777670 a001 63245986/17393796001*20633239^(7/15) 9421138449777670 a001 39088169/33385282*141422324^(1/9) 9421138449777670 a001 39088169/33385282*73681302247^(1/12) 9421138449777670 a001 4976784/29134601*28143753123^(1/6) 9421138449777670 a001 39088169/2537720636*20633239^(8/21) 9421138449777670 a001 5702887/505019158607*12752043^(5/6) 9421138449777670 a001 4976784/29134601*228826127^(5/24) 9421138449777670 a001 829464/33281921*54018521^(1/3) 9421138449777671 a001 7465176/1730726404001*141422324^(7/9) 9421138449777671 a001 14930352/6643838879*141422324^(4/9) 9421138449777671 a001 14619165/4769326*17393796001^(1/21) 9421138449777671 a001 14930352/228826127*9062201101803^(1/6) 9421138449777671 a001 14619165/4769326*505019158607^(1/24) 9421138449777671 a001 14619165/4769326*599074578^(1/18) 9421138449777671 a001 102334155/6643838879*20633239^(8/21) 9421138449777671 a001 3732588/204284540899*370248451^(2/3) 9421138449777671 a001 14930352/1568397607*969323029^(1/3) 9421138449777671 a001 9238424/599786069*20633239^(8/21) 9421138449777671 a001 4976784/1368706081*17393796001^(1/3) 9421138449777671 a001 4976784/1368706081*505019158607^(7/24) 9421138449777671 a001 14930352/5600748293801*6643838879^(2/3) 9421138449777671 a001 7465176/5374978561*312119004989^(1/3) 9421138449777671 a001 7465176/1730726404001*17393796001^(13/21) 9421138449777671 a001 14930352/119218851371*17393796001^(10/21) 9421138449777671 a001 4976784/9381251041*5600748293801^(1/3) 9421138449777671 a001 4976784/440719107401*45537549124^(5/9) 9421138449777671 a001 14930352/2139295485799*312119004989^(8/15) 9421138449777671 a001 196452/192933544679*3461452808002^(5/9) 9421138449777671 a001 14930352/2139295485799*23725150497407^(11/24) 9421138449777671 a001 7465176/1730726404001*505019158607^(13/24) 9421138449777671 a001 14930352/312119004989*817138163596^(4/9) 9421138449777671 a001 14930352/119218851371*3461452808002^(7/18) 9421138449777671 a001 14930352/119218851371*505019158607^(5/12) 9421138449777671 a001 7465176/1730726404001*73681302247^(7/12) 9421138449777671 a001 3732588/11384387281*23725150497407^(1/3) 9421138449777671 a001 3732588/11384387281*505019158607^(8/21) 9421138449777671 a001 14930352/119218851371*28143753123^(7/15) 9421138449777671 a001 196452/192933544679*28143753123^(2/3) 9421138449777671 a001 14930352/17393796001*1322157322203^(1/3) 9421138449777671 a001 3732588/11384387281*10749957122^(4/9) 9421138449777671 a001 14930352/2139295485799*10749957122^(11/18) 9421138449777671 a001 14930352/6643838879*73681302247^(1/3) 9421138449777671 a001 7465176/5374978561*1568397607^(5/12) 9421138449777671 a001 196452/33391061*4106118243^(1/3) 9421138449777671 a001 14930352/2139295485799*1568397607^(2/3) 9421138449777671 a001 4976784/1368706081*599074578^(7/18) 9421138449777671 a001 14930352/969323029*23725150497407^(5/24) 9421138449777671 a001 14930352/969323029*3461452808002^(2/9) 9421138449777671 a001 14930352/969323029*28143753123^(4/15) 9421138449777671 a001 14930352/969323029*10749957122^(5/18) 9421138449777671 a001 14930352/119218851371*599074578^(5/9) 9421138449777671 a001 701408733/45537549124*20633239^(8/21) 9421138449777671 a001 7465176/1730726404001*599074578^(13/18) 9421138449777671 a001 1836311903/119218851371*20633239^(8/21) 9421138449777671 a001 4807526976/312119004989*20633239^(8/21) 9421138449777671 a001 12586269025/817138163596*20633239^(8/21) 9421138449777671 a001 32951280099/2139295485799*20633239^(8/21) 9421138449777671 a001 86267571272/5600748293801*20633239^(8/21) 9421138449777671 a001 7787980473/505618944676*20633239^(8/21) 9421138449777671 a001 365435296162/23725150497407*20633239^(8/21) 9421138449777671 a001 139583862445/9062201101803*20633239^(8/21) 9421138449777671 a001 53316291173/3461452808002*20633239^(8/21) 9421138449777671 a001 20365011074/1322157322203*20633239^(8/21) 9421138449777671 a001 7778742049/505019158607*20633239^(8/21) 9421138449777671 a001 2971215073/192900153618*20633239^(8/21) 9421138449777671 a001 1134903170/73681302247*20633239^(8/21) 9421138449777671 a001 433494437/28143753123*20633239^(8/21) 9421138449777671 a001 14930352/370248451*45537549124^(2/9) 9421138449777671 a001 14930352/969323029*228826127^(1/3) 9421138449777671 a001 7465176/5374978561*228826127^(11/24) 9421138449777671 a001 24157817/17393796001*20633239^(11/21) 9421138449777671 a001 165580141/10749957122*20633239^(8/21) 9421138449777671 a001 3732588/11384387281*228826127^(8/15) 9421138449777671 a001 14930352/119218851371*228826127^(7/12) 9421138449777671 a001 4976784/440719107401*228826127^(17/24) 9421138449777671 a001 14930352/2139295485799*228826127^(11/15) 9421138449777671 a001 196452/192933544679*228826127^(5/6) 9421138449777672 a001 3732588/35355581*17393796001^(4/21) 9421138449777672 a001 31622993/16692641*3461452808002^(1/18) 9421138449777672 a001 3732588/35355581*505019158607^(1/6) 9421138449777672 a001 31622993/16692641*28143753123^(1/15) 9421138449777672 a001 3732588/35355581*599074578^(2/9) 9421138449777672 a001 31622993/16692641*228826127^(1/12) 9421138449777672 a001 63245986/4106118243*20633239^(8/21) 9421138449777672 a001 14930352/312119004989*87403803^(2/3) 9421138449777673 a001 24157817/6643838879*20633239^(7/15) 9421138449777673 a001 39088169/370248451*20633239^(4/15) 9421138449777673 a001 39088169/228826127*20633239^(5/21) 9421138449777674 a001 102334155/969323029*20633239^(4/15) 9421138449777674 a001 66978574/634430159*20633239^(4/15) 9421138449777674 a001 701408733/6643838879*20633239^(4/15) 9421138449777674 a001 1836311903/17393796001*20633239^(4/15) 9421138449777674 a001 1201881744/11384387281*20633239^(4/15) 9421138449777674 a001 12586269025/119218851371*20633239^(4/15) 9421138449777674 a001 32951280099/312119004989*20633239^(4/15) 9421138449777674 a001 21566892818/204284540899*20633239^(4/15) 9421138449777674 a001 225851433717/2139295485799*20633239^(4/15) 9421138449777674 a001 182717648081/1730726404001*20633239^(4/15) 9421138449777674 a001 139583862445/1322157322203*20633239^(4/15) 9421138449777674 a001 53316291173/505019158607*20633239^(4/15) 9421138449777674 a001 10182505537/96450076809*20633239^(4/15) 9421138449777674 a001 7778742049/73681302247*20633239^(4/15) 9421138449777674 a001 2971215073/28143753123*20633239^(4/15) 9421138449777674 a001 567451585/5374978561*20633239^(4/15) 9421138449777674 a001 433494437/4106118243*20633239^(4/15) 9421138449777674 a001 165580141/1568397607*20633239^(4/15) 9421138449777674 a001 34111385/199691526*20633239^(5/21) 9421138449777674 a001 31622993/299537289*20633239^(4/15) 9421138449777674 a001 267914296/1568397607*20633239^(5/21) 9421138449777674 a001 233802911/1368706081*20633239^(5/21) 9421138449777674 a001 1836311903/10749957122*20633239^(5/21) 9421138449777674 a001 1602508992/9381251041*20633239^(5/21) 9421138449777674 a001 12586269025/73681302247*20633239^(5/21) 9421138449777674 a001 10983760033/64300051206*20633239^(5/21) 9421138449777674 a001 86267571272/505019158607*20633239^(5/21) 9421138449777674 a001 75283811239/440719107401*20633239^(5/21) 9421138449777674 a001 2504730781961/14662949395604*20633239^(5/21) 9421138449777674 a001 139583862445/817138163596*20633239^(5/21) 9421138449777674 a001 53316291173/312119004989*20633239^(5/21) 9421138449777674 a001 20365011074/119218851371*20633239^(5/21) 9421138449777674 a001 7778742049/45537549124*20633239^(5/21) 9421138449777674 a001 2971215073/17393796001*20633239^(5/21) 9421138449777674 a001 1134903170/6643838879*20633239^(5/21) 9421138449777674 a001 433494437/2537720636*20633239^(5/21) 9421138449777674 a001 14930352/54018521*312119004989^(2/15) 9421138449777674 a001 24157817/33385282*23725150497407^(1/12) 9421138449777674 a001 24157817/33385282*10749957122^(1/9) 9421138449777674 a001 14930352/54018521*1568397607^(1/6) 9421138449777674 a001 24157817/1568397607*20633239^(8/21) 9421138449777674 a001 24157817/33385282*228826127^(2/15) 9421138449777674 a001 165580141/969323029*20633239^(5/21) 9421138449777675 a001 63245986/370248451*20633239^(5/21) 9421138449777676 a001 165580141/87403803*20633239^(2/21) 9421138449777677 a001 24157817/228826127*20633239^(4/15) 9421138449777677 a001 267914296/87403803*20633239^(1/15) 9421138449777677 a001 39088169/87403803*817138163596^(1/9) 9421138449777677 a001 39088169/1568397607*54018521^(1/3) 9421138449777677 a001 433494437/228826127*20633239^(2/21) 9421138449777677 a001 39088169/87403803*87403803^(1/6) 9421138449777678 a001 567451585/299537289*20633239^(2/21) 9421138449777678 a001 2971215073/1568397607*20633239^(2/21) 9421138449777678 a001 7778742049/4106118243*20633239^(2/21) 9421138449777678 a001 10182505537/5374978561*20633239^(2/21) 9421138449777678 a001 53316291173/28143753123*20633239^(2/21) 9421138449777678 a001 139583862445/73681302247*20633239^(2/21) 9421138449777678 a001 182717648081/96450076809*20633239^(2/21) 9421138449777678 a001 956722026041/505019158607*20633239^(2/21) 9421138449777678 a001 10610209857723/5600748293801*20633239^(2/21) 9421138449777678 a001 591286729879/312119004989*20633239^(2/21) 9421138449777678 a001 225851433717/119218851371*20633239^(2/21) 9421138449777678 a001 21566892818/11384387281*20633239^(2/21) 9421138449777678 a001 32951280099/17393796001*20633239^(2/21) 9421138449777678 a001 12586269025/6643838879*20633239^(2/21) 9421138449777678 a001 1201881744/634430159*20633239^(2/21) 9421138449777678 a001 1836311903/969323029*20633239^(2/21) 9421138449777678 a001 701408733/370248451*20633239^(2/21) 9421138449777678 a001 66978574/35355581*20633239^(2/21) 9421138449777678 a001 701408733/228826127*20633239^(1/15) 9421138449777678 a001 39088169/9062201101803*141422324^(7/9) 9421138449777678 a001 24157817/141422324*20633239^(5/21) 9421138449777678 a001 1836311903/599074578*20633239^(1/15) 9421138449777678 a001 686789568/224056801*20633239^(1/15) 9421138449777678 a001 12586269025/4106118243*20633239^(1/15) 9421138449777678 a001 32951280099/10749957122*20633239^(1/15) 9421138449777678 a001 86267571272/28143753123*20633239^(1/15) 9421138449777678 a001 32264490531/10525900321*20633239^(1/15) 9421138449777678 a001 591286729879/192900153618*20633239^(1/15) 9421138449777678 a001 1548008755920/505019158607*20633239^(1/15) 9421138449777678 a001 1515744265389/494493258286*20633239^(1/15) 9421138449777678 a001 2504730781961/817138163596*20633239^(1/15) 9421138449777678 a001 956722026041/312119004989*20633239^(1/15) 9421138449777678 a001 365435296162/119218851371*20633239^(1/15) 9421138449777678 a001 139583862445/45537549124*20633239^(1/15) 9421138449777678 a001 53316291173/17393796001*20633239^(1/15) 9421138449777678 a001 20365011074/6643838879*20633239^(1/15) 9421138449777678 a001 7778742049/2537720636*20633239^(1/15) 9421138449777678 a001 34111385/29134601*141422324^(1/9) 9421138449777678 a001 2971215073/969323029*20633239^(1/15) 9421138449777678 a001 39088169/17393796001*141422324^(4/9) 9421138449777678 a001 34111385/29134601*73681302247^(1/12) 9421138449777678 a001 39088169/228826127*28143753123^(1/6) 9421138449777678 a001 1134903170/370248451*20633239^(1/15) 9421138449777678 a001 39088169/228826127*228826127^(5/24) 9421138449777678 a001 39088169/2139295485799*370248451^(2/3) 9421138449777678 a001 267914296/87403803*17393796001^(1/21) 9421138449777678 a001 39088169/599074578*9062201101803^(1/6) 9421138449777678 a001 267914296/87403803*505019158607^(1/24) 9421138449777678 a001 267914296/87403803*599074578^(1/18) 9421138449777678 a001 34111385/1368706081*54018521^(1/3) 9421138449777678 a001 39088169/4106118243*969323029^(1/3) 9421138449777678 a001 39088169/14662949395604*6643838879^(2/3) 9421138449777678 a001 39088169/10749957122*17393796001^(1/3) 9421138449777678 a001 39088169/10749957122*505019158607^(7/24) 9421138449777678 a001 39088169/9062201101803*17393796001^(13/21) 9421138449777678 a001 39088169/312119004989*17393796001^(10/21) 9421138449777678 a001 39088169/28143753123*312119004989^(1/3) 9421138449777678 a001 39088169/3461452808002*45537549124^(5/9) 9421138449777678 a001 39088169/73681302247*5600748293801^(1/3) 9421138449777678 a001 39088169/5600748293801*312119004989^(8/15) 9421138449777678 a001 39088169/5600748293801*23725150497407^(11/24) 9421138449777678 a001 4181/87403804*817138163596^(4/9) 9421138449777678 a001 39088169/9062201101803*505019158607^(13/24) 9421138449777678 a001 39088169/312119004989*3461452808002^(7/18) 9421138449777678 a001 39088169/312119004989*505019158607^(5/12) 9421138449777678 a001 39088169/119218851371*23725150497407^(1/3) 9421138449777678 a001 39088169/119218851371*505019158607^(8/21) 9421138449777678 a001 39088169/9062201101803*73681302247^(7/12) 9421138449777678 a001 39088169/45537549124*1322157322203^(1/3) 9421138449777678 a001 39088169/312119004989*28143753123^(7/15) 9421138449777678 a001 39088169/17393796001*73681302247^(1/3) 9421138449777678 a001 39088169/119218851371*10749957122^(4/9) 9421138449777678 a001 39088169/5600748293801*10749957122^(11/18) 9421138449777678 a001 39088169/6643838879*4106118243^(1/3) 9421138449777678 a001 39088169/2537720636*23725150497407^(5/24) 9421138449777678 a001 39088169/2537720636*3461452808002^(2/9) 9421138449777678 a001 39088169/2537720636*28143753123^(4/15) 9421138449777678 a001 39088169/2537720636*10749957122^(5/18) 9421138449777678 a001 39088169/28143753123*1568397607^(5/12) 9421138449777678 a001 39088169/5600748293801*1568397607^(2/3) 9421138449777678 a001 39088169/969323029*45537549124^(2/9) 9421138449777678 a001 39088169/10749957122*599074578^(7/18) 9421138449777678 a001 39088169/312119004989*599074578^(5/9) 9421138449777678 a001 39088169/9062201101803*599074578^(13/18) 9421138449777679 a001 39088169/2537720636*228826127^(1/3) 9421138449777679 a001 39088169/370248451*17393796001^(4/21) 9421138449777679 a001 165580141/87403803*3461452808002^(1/18) 9421138449777679 a001 39088169/370248451*505019158607^(1/6) 9421138449777679 a001 165580141/87403803*28143753123^(1/15) 9421138449777679 a001 39088169/370248451*599074578^(2/9) 9421138449777679 a001 39088169/28143753123*228826127^(11/24) 9421138449777679 a001 165580141/87403803*228826127^(1/12) 9421138449777679 a001 39088169/119218851371*228826127^(8/15) 9421138449777679 a001 39088169/312119004989*228826127^(7/12) 9421138449777679 a001 39088169/3461452808002*228826127^(17/24) 9421138449777679 a001 133957148/5374978561*54018521^(1/3) 9421138449777679 a001 39088169/5600748293801*228826127^(11/15) 9421138449777679 a001 233802911/9381251041*54018521^(1/3) 9421138449777679 a001 1836311903/73681302247*54018521^(1/3) 9421138449777679 a001 267084832/10716675201*54018521^(1/3) 9421138449777679 a001 12586269025/505019158607*54018521^(1/3) 9421138449777679 a001 10983760033/440719107401*54018521^(1/3) 9421138449777679 a001 43133785636/1730726404001*54018521^(1/3) 9421138449777679 a001 75283811239/3020733700601*54018521^(1/3) 9421138449777679 a001 182717648081/7331474697802*54018521^(1/3) 9421138449777679 a001 139583862445/5600748293801*54018521^(1/3) 9421138449777679 a001 53316291173/2139295485799*54018521^(1/3) 9421138449777679 a001 10182505537/408569081798*54018521^(1/3) 9421138449777679 a001 7778742049/312119004989*54018521^(1/3) 9421138449777679 a001 2971215073/119218851371*54018521^(1/3) 9421138449777679 a001 567451585/22768774562*54018521^(1/3) 9421138449777679 a001 433494437/17393796001*54018521^(1/3) 9421138449777679 a001 165580141/6643838879*54018521^(1/3) 9421138449777679 a001 433494437/141422324*20633239^(1/15) 9421138449777679 a001 39088169/141422324*312119004989^(2/15) 9421138449777679 a001 63245986/87403803*23725150497407^(1/12) 9421138449777679 a001 63245986/87403803*10749957122^(1/9) 9421138449777679 a001 39088169/141422324*1568397607^(1/6) 9421138449777679 a001 63245986/87403803*228826127^(2/15) 9421138449777679 a001 31622993/1268860318*54018521^(1/3) 9421138449777679 a001 102334155/23725150497407*141422324^(7/9) 9421138449777679 a001 4181/87403804*87403803^(2/3) 9421138449777679 a001 102334155/45537549124*141422324^(4/9) 9421138449777679 a001 102334155/228826127*817138163596^(1/9) 9421138449777679 a001 267914296/228826127*141422324^(1/9) 9421138449777679 a001 267914296/119218851371*141422324^(4/9) 9421138449777679 a001 102334155/5600748293801*370248451^(2/3) 9421138449777679 a001 3524667/1568437211*141422324^(4/9) 9421138449777679 a001 1836311903/817138163596*141422324^(4/9) 9421138449777679 a001 4807526976/2139295485799*141422324^(4/9) 9421138449777679 a001 12586269025/5600748293801*141422324^(4/9) 9421138449777679 a001 32951280099/14662949395604*141422324^(4/9) 9421138449777679 a001 53316291173/23725150497407*141422324^(4/9) 9421138449777679 a001 20365011074/9062201101803*141422324^(4/9) 9421138449777679 a001 7778742049/3461452808002*141422324^(4/9) 9421138449777679 a001 2971215073/1322157322203*141422324^(4/9) 9421138449777679 a001 1134903170/505019158607*141422324^(4/9) 9421138449777679 a001 267914296/228826127*73681302247^(1/12) 9421138449777679 a001 34111385/199691526*28143753123^(1/6) 9421138449777679 a001 433494437/192900153618*141422324^(4/9) 9421138449777680 a001 701408733/228826127*17393796001^(1/21) 9421138449777680 a001 14619165/224056801*9062201101803^(1/6) 9421138449777680 a001 701408733/228826127*505019158607^(1/24) 9421138449777680 a001 102334155/10749957122*969323029^(1/3) 9421138449777680 a001 701408733/228826127*599074578^(1/18) 9421138449777680 a001 831985/228811001*17393796001^(1/3) 9421138449777680 a001 102334155/23725150497407*17393796001^(13/21) 9421138449777680 a001 102334155/817138163596*17393796001^(10/21) 9421138449777680 a001 831985/228811001*505019158607^(7/24) 9421138449777680 a001 34111385/3020733700601*45537549124^(5/9) 9421138449777680 a001 14619165/10525900321*312119004989^(1/3) 9421138449777680 a001 34111385/64300051206*5600748293801^(1/3) 9421138449777680 a001 102334155/14662949395604*312119004989^(8/15) 9421138449777680 a001 102334155/2139295485799*817138163596^(4/9) 9421138449777680 a001 102334155/817138163596*3461452808002^(7/18) 9421138449777680 a001 102334155/817138163596*505019158607^(5/12) 9421138449777680 a001 9303105/28374454999*23725150497407^(1/3) 9421138449777680 a001 9303105/28374454999*505019158607^(8/21) 9421138449777680 a001 102334155/119218851371*1322157322203^(1/3) 9421138449777680 a001 102334155/23725150497407*73681302247^(7/12) 9421138449777680 a001 102334155/45537549124*73681302247^(1/3) 9421138449777680 a001 102334155/817138163596*28143753123^(7/15) 9421138449777680 a001 9303105/28374454999*10749957122^(4/9) 9421138449777680 a001 102334155/14662949395604*10749957122^(11/18) 9421138449777680 a001 102334155/6643838879*23725150497407^(5/24) 9421138449777680 a001 102334155/6643838879*3461452808002^(2/9) 9421138449777680 a001 102334155/6643838879*28143753123^(4/15) 9421138449777680 a001 102334155/17393796001*4106118243^(1/3) 9421138449777680 a001 102334155/6643838879*10749957122^(5/18) 9421138449777680 a001 9303105/230701876*45537549124^(2/9) 9421138449777680 a001 14619165/10525900321*1568397607^(5/12) 9421138449777680 a001 102334155/14662949395604*1568397607^(2/3) 9421138449777680 a001 102334155/969323029*17393796001^(4/21) 9421138449777680 a001 433494437/228826127*3461452808002^(1/18) 9421138449777680 a001 102334155/969323029*505019158607^(1/6) 9421138449777680 a001 433494437/228826127*28143753123^(1/15) 9421138449777680 a001 831985/228811001*599074578^(7/18) 9421138449777680 a001 34111385/199691526*228826127^(5/24) 9421138449777680 a001 102334155/817138163596*599074578^(5/9) 9421138449777680 a001 102334155/969323029*599074578^(2/9) 9421138449777680 a001 102334155/23725150497407*599074578^(13/18) 9421138449777680 a001 433494437/228826127*228826127^(1/12) 9421138449777680 a001 102334155/228826127*87403803^(1/6) 9421138449777680 a001 165580141/73681302247*141422324^(4/9) 9421138449777680 a001 102334155/6643838879*228826127^(1/3) 9421138449777680 a001 102334155/370248451*312119004989^(2/15) 9421138449777680 a001 165580141/228826127*23725150497407^(1/12) 9421138449777680 a001 165580141/228826127*10749957122^(1/9) 9421138449777680 a001 102334155/370248451*1568397607^(1/6) 9421138449777680 a001 14619165/10525900321*228826127^(11/24) 9421138449777680 a001 165580141/228826127*228826127^(2/15) 9421138449777680 a001 9303105/28374454999*228826127^(8/15) 9421138449777680 a001 233802911/199691526*141422324^(1/9) 9421138449777680 a001 102334155/817138163596*228826127^(7/12) 9421138449777680 a001 10946/599074579*370248451^(2/3) 9421138449777680 a001 1836311903/1568397607*141422324^(1/9) 9421138449777680 a001 1602508992/1368706081*141422324^(1/9) 9421138449777680 a001 133957148/299537289*817138163596^(1/9) 9421138449777680 a001 34111385/3020733700601*228826127^(17/24) 9421138449777680 a001 12586269025/10749957122*141422324^(1/9) 9421138449777680 a001 10983760033/9381251041*141422324^(1/9) 9421138449777680 a001 86267571272/73681302247*141422324^(1/9) 9421138449777680 a001 75283811239/64300051206*141422324^(1/9) 9421138449777680 a001 2504730781961/2139295485799*141422324^(1/9) 9421138449777680 a001 365435296162/312119004989*141422324^(1/9) 9421138449777680 a001 139583862445/119218851371*141422324^(1/9) 9421138449777680 a001 53316291173/45537549124*141422324^(1/9) 9421138449777680 a001 20365011074/17393796001*141422324^(1/9) 9421138449777680 a001 7778742049/6643838879*141422324^(1/9) 9421138449777680 a001 2971215073/2537720636*141422324^(1/9) 9421138449777680 a001 102334155/14662949395604*228826127^(11/15) 9421138449777680 a001 1134903170/969323029*141422324^(1/9) 9421138449777680 a001 433494437/23725150497407*370248451^(2/3) 9421138449777680 a001 233802911/199691526*73681302247^(1/12) 9421138449777680 a001 267914296/1568397607*28143753123^(1/6) 9421138449777680 a001 267914296/28143753123*969323029^(1/3) 9421138449777680 a001 1836311903/599074578*17393796001^(1/21) 9421138449777680 a001 267914296/4106118243*9062201101803^(1/6) 9421138449777680 a001 1836311903/599074578*505019158607^(1/24) 9421138449777680 a001 267914296/2139295485799*17393796001^(10/21) 9421138449777680 a001 267914296/73681302247*17393796001^(1/3) 9421138449777680 a001 267914296/23725150497407*45537549124^(5/9) 9421138449777680 a001 267914296/73681302247*505019158607^(7/24) 9421138449777680 a001 133957148/96450076809*312119004989^(1/3) 9421138449777680 a001 267914296/505019158607*5600748293801^(1/3) 9421138449777680 a001 267914296/2139295485799*3461452808002^(7/18) 9421138449777680 a001 267914296/2139295485799*505019158607^(5/12) 9421138449777680 a001 267914296/312119004989*1322157322203^(1/3) 9421138449777680 a001 267914296/119218851371*73681302247^(1/3) 9421138449777680 a001 267914296/2139295485799*28143753123^(7/15) 9421138449777680 a001 9238424/599786069*23725150497407^(5/24) 9421138449777680 a001 9238424/599786069*3461452808002^(2/9) 9421138449777680 a001 9238424/599786069*28143753123^(4/15) 9421138449777680 a001 66978574/204284540899*10749957122^(4/9) 9421138449777680 a001 9238424/599786069*10749957122^(5/18) 9421138449777680 a001 66978574/11384387281*4106118243^(1/3) 9421138449777680 a001 267914296/6643838879*45537549124^(2/9) 9421138449777680 a001 1836311903/599074578*599074578^(1/18) 9421138449777680 a001 66978574/634430159*17393796001^(4/21) 9421138449777680 a001 567451585/299537289*3461452808002^(1/18) 9421138449777680 a001 66978574/634430159*505019158607^(1/6) 9421138449777680 a001 567451585/299537289*28143753123^(1/15) 9421138449777680 a001 133957148/96450076809*1568397607^(5/12) 9421138449777680 a001 66978574/634430159*599074578^(2/9) 9421138449777680 a001 267914296/969323029*312119004989^(2/15) 9421138449777680 a001 433494437/599074578*23725150497407^(1/12) 9421138449777680 a001 433494437/599074578*10749957122^(1/9) 9421138449777680 a001 267914296/73681302247*599074578^(7/18) 9421138449777680 a001 267914296/969323029*1568397607^(1/6) 9421138449777680 a001 267914296/2139295485799*599074578^(5/9) 9421138449777680 a001 567451585/299537289*228826127^(1/12) 9421138449777680 a001 701408733/1568397607*817138163596^(1/9) 9421138449777680 a001 701408733/73681302247*969323029^(1/3) 9421138449777680 a001 1836311903/1568397607*73681302247^(1/12) 9421138449777680 a001 233802911/1368706081*28143753123^(1/6) 9421138449777680 a001 686789568/224056801*17393796001^(1/21) 9421138449777680 a001 701408733/10749957122*9062201101803^(1/6) 9421138449777680 a001 686789568/224056801*505019158607^(1/24) 9421138449777680 a001 1836311903/192900153618*969323029^(1/3) 9421138449777680 a001 701408733/5600748293801*17393796001^(10/21) 9421138449777680 a001 233802911/64300051206*17393796001^(1/3) 9421138449777680 a001 233802911/64300051206*505019158607^(7/24) 9421138449777680 a001 701408733/505019158607*312119004989^(1/3) 9421138449777680 a001 701408733/14662949395604*817138163596^(4/9) 9421138449777680 a001 233802911/440719107401*5600748293801^(1/3) 9421138449777680 a001 701408733/5600748293801*3461452808002^(7/18) 9421138449777680 a001 701408733/2139295485799*23725150497407^(1/3) 9421138449777680 a001 701408733/817138163596*1322157322203^(1/3) 9421138449777680 a001 3524667/1568437211*73681302247^(1/3) 9421138449777680 a001 701408733/45537549124*23725150497407^(5/24) 9421138449777680 a001 701408733/45537549124*3461452808002^(2/9) 9421138449777680 a001 701408733/5600748293801*28143753123^(7/15) 9421138449777680 a001 701408733/45537549124*28143753123^(4/15) 9421138449777680 a001 701408733/45537549124*10749957122^(5/18) 9421138449777680 a001 701408733/17393796001*45537549124^(2/9) 9421138449777680 a001 701408733/2139295485799*10749957122^(4/9) 9421138449777680 a001 701408733/119218851371*4106118243^(1/3) 9421138449777680 a001 701408733/6643838879*17393796001^(4/21) 9421138449777680 a001 2971215073/1568397607*3461452808002^(1/18) 9421138449777680 a001 2971215073/1568397607*28143753123^(1/15) 9421138449777680 a001 102287808/10745088481*969323029^(1/3) 9421138449777680 a001 12586269025/1322157322203*969323029^(1/3) 9421138449777680 a001 32951280099/3461452808002*969323029^(1/3) 9421138449777680 a001 86267571272/9062201101803*969323029^(1/3) 9421138449777680 a001 225851433717/23725150497407*969323029^(1/3) 9421138449777680 a001 139583862445/14662949395604*969323029^(1/3) 9421138449777680 a001 53316291173/5600748293801*969323029^(1/3) 9421138449777680 a001 20365011074/2139295485799*969323029^(1/3) 9421138449777680 a001 7778742049/817138163596*969323029^(1/3) 9421138449777680 a001 2971215073/312119004989*969323029^(1/3) 9421138449777680 a001 686789568/224056801*599074578^(1/18) 9421138449777680 a001 701408733/2537720636*312119004989^(2/15) 9421138449777680 a001 1134903170/1568397607*23725150497407^(1/12) 9421138449777680 a001 1134903170/1568397607*10749957122^(1/9) 9421138449777680 a001 701408733/505019158607*1568397607^(5/12) 9421138449777680 a001 1134903170/119218851371*969323029^(1/3) 9421138449777680 a001 701408733/2537720636*1568397607^(1/6) 9421138449777680 a001 1836311903/4106118243*817138163596^(1/9) 9421138449777680 a001 1602508992/1368706081*73681302247^(1/12) 9421138449777680 a001 1836311903/10749957122*28143753123^(1/6) 9421138449777680 a001 1836311903/14662949395604*17393796001^(10/21) 9421138449777680 a001 12586269025/4106118243*17393796001^(1/21) 9421138449777680 a001 1836311903/28143753123*9062201101803^(1/6) 9421138449777680 a001 12586269025/4106118243*505019158607^(1/24) 9421138449777680 a001 1836311903/505019158607*17393796001^(1/3) 9421138449777680 a001 1836311903/1322157322203*312119004989^(1/3) 9421138449777680 a001 1836311903/505019158607*505019158607^(7/24) 9421138449777680 a001 1836311903/14662949395604*3461452808002^(7/18) 9421138449777680 a001 1836311903/2139295485799*1322157322203^(1/3) 9421138449777680 a001 1836311903/5600748293801*505019158607^(8/21) 9421138449777680 a001 1836311903/14662949395604*505019158607^(5/12) 9421138449777680 a001 1836311903/817138163596*73681302247^(1/3) 9421138449777680 a001 1836311903/119218851371*23725150497407^(5/24) 9421138449777680 a001 1836311903/119218851371*3461452808002^(2/9) 9421138449777680 a001 1836311903/45537549124*45537549124^(2/9) 9421138449777680 a001 1836311903/119218851371*28143753123^(4/15) 9421138449777680 a001 1836311903/14662949395604*28143753123^(7/15) 9421138449777680 a001 1836311903/119218851371*10749957122^(5/18) 9421138449777680 a001 1836311903/17393796001*17393796001^(4/21) 9421138449777680 a001 7778742049/4106118243*3461452808002^(1/18) 9421138449777680 a001 1836311903/17393796001*505019158607^(1/6) 9421138449777680 a001 7778742049/4106118243*28143753123^(1/15) 9421138449777680 a001 1836311903/5600748293801*10749957122^(4/9) 9421138449777680 a001 1836311903/312119004989*4106118243^(1/3) 9421138449777680 a001 1836311903/6643838879*312119004989^(2/15) 9421138449777680 a001 2971215073/4106118243*23725150497407^(1/12) 9421138449777680 a001 2971215073/4106118243*10749957122^(1/9) 9421138449777680 a001 2403763488/5374978561*817138163596^(1/9) 9421138449777680 a001 12586269025/10749957122*73681302247^(1/12) 9421138449777680 a001 1602508992/440719107401*17393796001^(1/3) 9421138449777680 a001 1602508992/9381251041*28143753123^(1/6) 9421138449777680 a001 32951280099/10749957122*17393796001^(1/21) 9421138449777680 a001 686789568/10525900321*9062201101803^(1/6) 9421138449777680 a001 32951280099/10749957122*505019158607^(1/24) 9421138449777680 a001 1201881744/11384387281*17393796001^(4/21) 9421138449777680 a001 4807526976/119218851371*45537549124^(2/9) 9421138449777680 a001 14930208/10749853441*312119004989^(1/3) 9421138449777680 a001 1602508992/3020733700601*5600748293801^(1/3) 9421138449777680 a001 1201881744/3665737348901*23725150497407^(1/3) 9421138449777680 a001 1602508992/440719107401*505019158607^(7/24) 9421138449777680 a001 1201881744/3665737348901*505019158607^(8/21) 9421138449777680 a001 4807526976/312119004989*23725150497407^(5/24) 9421138449777680 a001 4807526976/312119004989*3461452808002^(2/9) 9421138449777680 a001 4807526976/2139295485799*73681302247^(1/3) 9421138449777680 a001 4807526976/312119004989*28143753123^(4/15) 9421138449777680 a001 10182505537/5374978561*3461452808002^(1/18) 9421138449777680 a001 1201881744/11384387281*505019158607^(1/6) 9421138449777680 a001 10182505537/5374978561*28143753123^(1/15) 9421138449777680 a001 4807526976/312119004989*10749957122^(5/18) 9421138449777680 a001 4807526976/17393796001*312119004989^(2/15) 9421138449777680 a001 1201881744/3665737348901*10749957122^(4/9) 9421138449777680 a001 7778742049/10749957122*10749957122^(1/9) 9421138449777680 a001 12586269025/28143753123*817138163596^(1/9) 9421138449777680 a001 12586269025/3461452808002*17393796001^(1/3) 9421138449777680 a001 12586269025/119218851371*17393796001^(4/21) 9421138449777680 a001 86267571272/28143753123*17393796001^(1/21) 9421138449777680 a001 10983760033/9381251041*73681302247^(1/12) 9421138449777680 a001 1144206275/28374454999*45537549124^(2/9) 9421138449777680 a001 86267571272/28143753123*505019158607^(1/24) 9421138449777680 a001 10983760033/3020733700601*17393796001^(1/3) 9421138449777680 a001 12586269025/9062201101803*312119004989^(1/3) 9421138449777680 a001 12586269025/14662949395604*1322157322203^(1/3) 9421138449777680 a001 12586269025/3461452808002*505019158607^(7/24) 9421138449777680 a001 12586269025/817138163596*23725150497407^(5/24) 9421138449777680 a001 12586269025/817138163596*3461452808002^(2/9) 9421138449777680 a001 12586269025/73681302247*28143753123^(1/6) 9421138449777680 a001 12586269025/5600748293801*73681302247^(1/3) 9421138449777680 a001 53316291173/28143753123*3461452808002^(1/18) 9421138449777680 a001 12586269025/119218851371*505019158607^(1/6) 9421138449777680 a001 86267571272/23725150497407*17393796001^(1/3) 9421138449777680 a001 53316291173/28143753123*28143753123^(1/15) 9421138449777680 a001 53316291173/14662949395604*17393796001^(1/3) 9421138449777680 a001 12586269025/817138163596*28143753123^(4/15) 9421138449777680 a001 32951280099/312119004989*17393796001^(4/21) 9421138449777680 a001 12586269025/45537549124*312119004989^(2/15) 9421138449777680 a001 20365011074/28143753123*23725150497407^(1/12) 9421138449777680 a001 21566892818/204284540899*17393796001^(4/21) 9421138449777680 a001 225851433717/2139295485799*17393796001^(4/21) 9421138449777680 a001 182717648081/1730726404001*17393796001^(4/21) 9421138449777680 a001 139583862445/1322157322203*17393796001^(4/21) 9421138449777680 a001 20365011074/5600748293801*17393796001^(1/3) 9421138449777680 a001 53316291173/505019158607*17393796001^(4/21) 9421138449777680 a001 32951280099/73681302247*817138163596^(1/9) 9421138449777680 a001 32264490531/10525900321*17393796001^(1/21) 9421138449777680 a001 32951280099/817138163596*45537549124^(2/9) 9421138449777680 a001 86267571272/73681302247*73681302247^(1/12) 9421138449777680 a001 32264490531/10525900321*505019158607^(1/24) 9421138449777680 a001 32951280099/2139295485799*3461452808002^(2/9) 9421138449777680 a001 10983760033/3020733700601*505019158607^(7/24) 9421138449777680 a001 10182505537/96450076809*17393796001^(4/21) 9421138449777680 a001 139583862445/73681302247*3461452808002^(1/18) 9421138449777680 a001 32951280099/312119004989*505019158607^(1/6) 9421138449777680 a001 1548008755920/505019158607*17393796001^(1/21) 9421138449777680 a001 1515744265389/494493258286*17393796001^(1/21) 9421138449777680 a001 2504730781961/817138163596*17393796001^(1/21) 9421138449777680 a001 956722026041/312119004989*17393796001^(1/21) 9421138449777680 a001 86267571272/2139295485799*45537549124^(2/9) 9421138449777680 a001 32951280099/14662949395604*73681302247^(1/3) 9421138449777680 a001 32951280099/119218851371*312119004989^(2/15) 9421138449777680 a001 53316291173/73681302247*23725150497407^(1/12) 9421138449777680 a001 225851433717/5600748293801*45537549124^(2/9) 9421138449777680 a001 591286729879/14662949395604*45537549124^(2/9) 9421138449777680 a001 365435296162/9062201101803*45537549124^(2/9) 9421138449777680 a001 139583862445/3461452808002*45537549124^(2/9) 9421138449777680 a001 139583862445/73681302247*28143753123^(1/15) 9421138449777680 a001 365435296162/119218851371*17393796001^(1/21) 9421138449777680 a001 43133785636/96450076809*817138163596^(1/9) 9421138449777680 a001 53316291173/1322157322203*45537549124^(2/9) 9421138449777680 a001 591286729879/192900153618*505019158607^(1/24) 9421138449777680 a001 86267571272/5600748293801*3461452808002^(2/9) 9421138449777680 a001 182717648081/96450076809*3461452808002^(1/18) 9421138449777680 a001 21566892818/204284540899*505019158607^(1/6) 9421138449777680 a001 86267571272/312119004989*312119004989^(2/15) 9421138449777680 a001 75283811239/64300051206*73681302247^(1/12) 9421138449777680 a001 225851433717/505019158607*817138163596^(1/9) 9421138449777680 a001 1548008755920/505019158607*505019158607^(1/24) 9421138449777680 a001 10983760033/64300051206*28143753123^(1/6) 9421138449777680 a001 1515744265389/494493258286*505019158607^(1/24) 9421138449777680 a001 182717648081/1730726404001*505019158607^(1/6) 9421138449777680 a001 182717648081/408569081798*817138163596^(1/9) 9421138449777680 a001 139583862445/505019158607*312119004989^(2/15) 9421138449777680 a001 591286729879/312119004989*3461452808002^(1/18) 9421138449777680 a001 139583862445/9062201101803*3461452808002^(2/9) 9421138449777680 a001 139583862445/1322157322203*505019158607^(1/6) 9421138449777680 a001 2504730781961/2139295485799*73681302247^(1/12) 9421138449777680 a001 139583862445/312119004989*817138163596^(1/9) 9421138449777680 a001 365435296162/312119004989*73681302247^(1/12) 9421138449777680 a001 53316291173/192900153618*312119004989^(2/15) 9421138449777680 a001 86267571272/119218851371*23725150497407^(1/12) 9421138449777680 a001 182717648081/96450076809*28143753123^(1/15) 9421138449777680 a001 225851433717/119218851371*3461452808002^(1/18) 9421138449777680 a001 53316291173/3461452808002*3461452808002^(2/9) 9421138449777680 a001 53316291173/817138163596*9062201101803^(1/6) 9421138449777680 a001 365435296162/119218851371*505019158607^(1/24) 9421138449777680 a001 956722026041/505019158607*28143753123^(1/15) 9421138449777680 a001 591286729879/312119004989*28143753123^(1/15) 9421138449777680 a001 139583862445/119218851371*73681302247^(1/12) 9421138449777680 a001 53316291173/23725150497407*73681302247^(1/3) 9421138449777680 a001 53316291173/119218851371*817138163596^(1/9) 9421138449777680 a001 225851433717/119218851371*28143753123^(1/15) 9421138449777680 a001 32951280099/2139295485799*28143753123^(4/15) 9421138449777680 a001 86267571272/505019158607*28143753123^(1/6) 9421138449777680 a001 20365011074/28143753123*10749957122^(1/9) 9421138449777680 a001 75283811239/440719107401*28143753123^(1/6) 9421138449777680 a001 2504730781961/14662949395604*28143753123^(1/6) 9421138449777680 a001 139583862445/817138163596*28143753123^(1/6) 9421138449777680 a001 53316291173/312119004989*28143753123^(1/6) 9421138449777680 a001 20365011074/73681302247*312119004989^(2/15) 9421138449777680 a001 32951280099/45537549124*23725150497407^(1/12) 9421138449777680 a001 86267571272/5600748293801*28143753123^(4/15) 9421138449777680 a001 7787980473/505618944676*28143753123^(4/15) 9421138449777680 a001 139583862445/45537549124*17393796001^(1/21) 9421138449777680 a001 365435296162/23725150497407*28143753123^(4/15) 9421138449777680 a001 139583862445/9062201101803*28143753123^(4/15) 9421138449777680 a001 20365011074/505019158607*45537549124^(2/9) 9421138449777680 a001 53316291173/3461452808002*28143753123^(4/15) 9421138449777680 a001 21566892818/11384387281*3461452808002^(1/18) 9421138449777680 a001 10182505537/96450076809*505019158607^(1/6) 9421138449777680 a001 10182505537/7331474697802*312119004989^(1/3) 9421138449777680 a001 20365011074/1322157322203*3461452808002^(2/9) 9421138449777680 a001 20365011074/5600748293801*505019158607^(7/24) 9421138449777680 a001 20365011074/312119004989*9062201101803^(1/6) 9421138449777680 a001 139583862445/45537549124*505019158607^(1/24) 9421138449777680 a001 21566892818/11384387281*28143753123^(1/15) 9421138449777680 a001 20365011074/9062201101803*73681302247^(1/3) 9421138449777680 a001 53316291173/45537549124*73681302247^(1/12) 9421138449777680 a001 20365011074/119218851371*28143753123^(1/6) 9421138449777680 a001 20365011074/1322157322203*28143753123^(4/15) 9421138449777680 a001 53316291173/73681302247*10749957122^(1/9) 9421138449777680 a001 139583862445/192900153618*10749957122^(1/9) 9421138449777680 a001 365435296162/505019158607*10749957122^(1/9) 9421138449777680 a001 591286729879/817138163596*10749957122^(1/9) 9421138449777680 a001 10182505537/22768774562*817138163596^(1/9) 9421138449777680 a001 225851433717/312119004989*10749957122^(1/9) 9421138449777680 a001 86267571272/119218851371*10749957122^(1/9) 9421138449777680 a001 12586269025/817138163596*10749957122^(5/18) 9421138449777680 a001 32951280099/45537549124*10749957122^(1/9) 9421138449777680 a001 12586269025/17393796001*23725150497407^(1/12) 9421138449777680 a001 7778742049/2139295485799*17393796001^(1/3) 9421138449777680 a001 32951280099/2139295485799*10749957122^(5/18) 9421138449777680 a001 86267571272/5600748293801*10749957122^(5/18) 9421138449777680 a001 7787980473/505618944676*10749957122^(5/18) 9421138449777680 a001 365435296162/23725150497407*10749957122^(5/18) 9421138449777680 a001 139583862445/9062201101803*10749957122^(5/18) 9421138449777680 a001 53316291173/3461452808002*10749957122^(5/18) 9421138449777680 a001 7778742049/73681302247*17393796001^(4/21) 9421138449777680 a001 20365011074/1322157322203*10749957122^(5/18) 9421138449777680 a001 12586269025/17393796001*10749957122^(1/9) 9421138449777680 a001 32951280099/17393796001*3461452808002^(1/18) 9421138449777680 a001 7778742049/73681302247*505019158607^(1/6) 9421138449777680 a001 7778742049/192900153618*45537549124^(2/9) 9421138449777680 a001 32951280099/17393796001*28143753123^(1/15) 9421138449777680 a001 53316291173/17393796001*17393796001^(1/21) 9421138449777680 a001 7778742049/505019158607*23725150497407^(5/24) 9421138449777680 a001 7778742049/505019158607*3461452808002^(2/9) 9421138449777680 a001 7778742049/14662949395604*5600748293801^(1/3) 9421138449777680 a001 7778742049/9062201101803*1322157322203^(1/3) 9421138449777680 a001 7778742049/2139295485799*505019158607^(7/24) 9421138449777680 a001 7778742049/3461452808002*73681302247^(1/3) 9421138449777680 a001 7778742049/119218851371*9062201101803^(1/6) 9421138449777680 a001 53316291173/17393796001*505019158607^(1/24) 9421138449777680 a001 7778742049/505019158607*28143753123^(4/15) 9421138449777680 a001 20365011074/17393796001*73681302247^(1/12) 9421138449777680 a001 7778742049/45537549124*28143753123^(1/6) 9421138449777680 a001 7778742049/505019158607*10749957122^(5/18) 9421138449777680 a001 7778742049/17393796001*817138163596^(1/9) 9421138449777680 a001 7778742049/23725150497407*10749957122^(4/9) 9421138449777680 a001 1201881744/204284540899*4106118243^(1/3) 9421138449777680 a001 2971215073/10749957122*312119004989^(2/15) 9421138449777680 a001 4807526976/6643838879*23725150497407^(1/12) 9421138449777680 a001 4807526976/6643838879*10749957122^(1/9) 9421138449777680 a001 12586269025/2139295485799*4106118243^(1/3) 9421138449777680 a001 32951280099/5600748293801*4106118243^(1/3) 9421138449777680 a001 1135099622/192933544679*4106118243^(1/3) 9421138449777680 a001 139583862445/23725150497407*4106118243^(1/3) 9421138449777680 a001 53316291173/9062201101803*4106118243^(1/3) 9421138449777680 a001 10182505537/1730726404001*4106118243^(1/3) 9421138449777680 a001 2971215073/28143753123*17393796001^(4/21) 9421138449777680 a001 2971215073/23725150497407*17393796001^(10/21) 9421138449777680 a001 12586269025/6643838879*3461452808002^(1/18) 9421138449777680 a001 2971215073/28143753123*505019158607^(1/6) 9421138449777680 a001 12586269025/6643838879*28143753123^(1/15) 9421138449777680 a001 2971215073/817138163596*17393796001^(1/3) 9421138449777680 a001 2971215073/73681302247*45537549124^(2/9) 9421138449777680 a001 2971215073/192900153618*23725150497407^(5/24) 9421138449777680 a001 2971215073/192900153618*3461452808002^(2/9) 9421138449777680 a001 2971215073/2139295485799*312119004989^(1/3) 9421138449777680 a001 2971215073/9062201101803*23725150497407^(1/3) 9421138449777680 a001 2971215073/5600748293801*5600748293801^(1/3) 9421138449777680 a001 2971215073/23725150497407*3461452808002^(7/18) 9421138449777680 a001 2971215073/3461452808002*1322157322203^(1/3) 9421138449777680 a001 2971215073/23725150497407*505019158607^(5/12) 9421138449777680 a001 2971215073/817138163596*505019158607^(7/24) 9421138449777680 a001 2971215073/1322157322203*73681302247^(1/3) 9421138449777680 a001 2971215073/192900153618*28143753123^(4/15) 9421138449777680 a001 20365011074/6643838879*17393796001^(1/21) 9421138449777680 a001 7778742049/1322157322203*4106118243^(1/3) 9421138449777680 a001 2971215073/45537549124*9062201101803^(1/6) 9421138449777680 a001 20365011074/6643838879*505019158607^(1/24) 9421138449777680 a001 2971215073/23725150497407*28143753123^(7/15) 9421138449777680 a001 2971215073/192900153618*10749957122^(5/18) 9421138449777680 a001 7778742049/6643838879*73681302247^(1/12) 9421138449777680 a001 2971215073/17393796001*28143753123^(1/6) 9421138449777680 a001 2971215073/9062201101803*10749957122^(4/9) 9421138449777680 a001 1836311903/6643838879*1568397607^(1/6) 9421138449777680 a001 2971215073/505019158607*4106118243^(1/3) 9421138449777680 a001 2971215073/6643838879*817138163596^(1/9) 9421138449777680 a001 4807526976/17393796001*1568397607^(1/6) 9421138449777680 a001 12586269025/45537549124*1568397607^(1/6) 9421138449777680 a001 32951280099/119218851371*1568397607^(1/6) 9421138449777680 a001 86267571272/312119004989*1568397607^(1/6) 9421138449777680 a001 225851433717/817138163596*1568397607^(1/6) 9421138449777680 a001 1548008755920/5600748293801*1568397607^(1/6) 9421138449777680 a001 139583862445/505019158607*1568397607^(1/6) 9421138449777680 a001 53316291173/192900153618*1568397607^(1/6) 9421138449777680 a001 20365011074/73681302247*1568397607^(1/6) 9421138449777680 a001 7778742049/28143753123*1568397607^(1/6) 9421138449777680 a001 2971215073/10749957122*1568397607^(1/6) 9421138449777680 a001 12586269025/4106118243*599074578^(1/18) 9421138449777680 a001 1134903170/4106118243*312119004989^(2/15) 9421138449777680 a001 1836311903/2537720636*10749957122^(1/9) 9421138449777680 a001 1836311903/1322157322203*1568397607^(5/12) 9421138449777680 a001 32951280099/10749957122*599074578^(1/18) 9421138449777680 a001 567451585/5374978561*17393796001^(4/21) 9421138449777680 a001 1201881744/634430159*3461452808002^(1/18) 9421138449777680 a001 567451585/5374978561*505019158607^(1/6) 9421138449777680 a001 1201881744/634430159*28143753123^(1/15) 9421138449777680 a001 86267571272/28143753123*599074578^(1/18) 9421138449777680 a001 1134903170/9062201101803*17393796001^(10/21) 9421138449777680 a001 1134903170/28143753123*45537549124^(2/9) 9421138449777680 a001 1134903170/312119004989*17393796001^(1/3) 9421138449777680 a001 32264490531/10525900321*599074578^(1/18) 9421138449777680 a001 591286729879/192900153618*599074578^(1/18) 9421138449777680 a001 1548008755920/505019158607*599074578^(1/18) 9421138449777680 a001 1515744265389/494493258286*599074578^(1/18) 9421138449777680 a001 2504730781961/817138163596*599074578^(1/18) 9421138449777680 a001 956722026041/312119004989*599074578^(1/18) 9421138449777680 a001 365435296162/119218851371*599074578^(1/18) 9421138449777680 a001 1134903170/73681302247*23725150497407^(5/24) 9421138449777680 a001 1134903170/73681302247*3461452808002^(2/9) 9421138449777680 a001 1134903170/1322157322203*1322157322203^(1/3) 9421138449777680 a001 567451585/1730726404001*23725150497407^(1/3) 9421138449777680 a001 1134903170/9062201101803*3461452808002^(7/18) 9421138449777680 a001 1134903170/2139295485799*5600748293801^(1/3) 9421138449777680 a001 1134903170/9062201101803*505019158607^(5/12) 9421138449777680 a001 1134903170/312119004989*505019158607^(7/24) 9421138449777680 a001 139583862445/45537549124*599074578^(1/18) 9421138449777680 a001 1134903170/505019158607*73681302247^(1/3) 9421138449777680 a001 1134903170/73681302247*28143753123^(4/15) 9421138449777680 a001 1134903170/9062201101803*28143753123^(7/15) 9421138449777680 a001 1134903170/73681302247*10749957122^(5/18) 9421138449777680 a001 53316291173/17393796001*599074578^(1/18) 9421138449777680 a001 7778742049/2537720636*17393796001^(1/21) 9421138449777680 a001 1134903170/17393796001*9062201101803^(1/6) 9421138449777680 a001 7778742049/2537720636*505019158607^(1/24) 9421138449777680 a001 567451585/1730726404001*10749957122^(4/9) 9421138449777680 a001 14930208/10749853441*1568397607^(5/12) 9421138449777680 a001 1134903170/4106118243*1568397607^(1/6) 9421138449777680 a001 12586269025/9062201101803*1568397607^(5/12) 9421138449777680 a001 32951280099/23725150497407*1568397607^(5/12) 9421138449777680 a001 10182505537/7331474697802*1568397607^(5/12) 9421138449777680 a001 7778742049/5600748293801*1568397607^(5/12) 9421138449777680 a001 567451585/96450076809*4106118243^(1/3) 9421138449777680 a001 20365011074/6643838879*599074578^(1/18) 9421138449777680 a001 2971215073/2537720636*73681302247^(1/12) 9421138449777680 a001 1134903170/6643838879*28143753123^(1/6) 9421138449777680 a001 2971215073/2139295485799*1568397607^(5/12) 9421138449777680 a001 701408733/6643838879*599074578^(2/9) 9421138449777680 a001 567451585/1268860318*817138163596^(1/9) 9421138449777680 a001 7778742049/2537720636*599074578^(1/18) 9421138449777680 a001 567451585/408569081798*1568397607^(5/12) 9421138449777680 a001 1836311903/17393796001*599074578^(2/9) 9421138449777680 a001 1201881744/11384387281*599074578^(2/9) 9421138449777680 a001 12586269025/119218851371*599074578^(2/9) 9421138449777680 a001 32951280099/312119004989*599074578^(2/9) 9421138449777680 a001 21566892818/204284540899*599074578^(2/9) 9421138449777680 a001 225851433717/2139295485799*599074578^(2/9) 9421138449777680 a001 182717648081/1730726404001*599074578^(2/9) 9421138449777680 a001 139583862445/1322157322203*599074578^(2/9) 9421138449777680 a001 53316291173/505019158607*599074578^(2/9) 9421138449777680 a001 10182505537/96450076809*599074578^(2/9) 9421138449777680 a001 7778742049/73681302247*599074578^(2/9) 9421138449777680 a001 2971215073/28143753123*599074578^(2/9) 9421138449777680 a001 433494437/1568397607*312119004989^(2/15) 9421138449777680 a001 701408733/969323029*10749957122^(1/9) 9421138449777680 a001 233802911/64300051206*599074578^(7/18) 9421138449777680 a001 433494437/45537549124*969323029^(1/3) 9421138449777680 a001 433494437/1568397607*1568397607^(1/6) 9421138449777680 a001 567451585/5374978561*599074578^(2/9) 9421138449777680 a001 267914296/1568397607*228826127^(5/24) 9421138449777680 a001 433494437/599074578*228826127^(2/15) 9421138449777680 a001 433494437/4106118243*17393796001^(4/21) 9421138449777680 a001 1836311903/969323029*3461452808002^(1/18) 9421138449777680 a001 433494437/4106118243*505019158607^(1/6) 9421138449777680 a001 1836311903/969323029*28143753123^(1/15) 9421138449777680 a001 1836311903/505019158607*599074578^(7/18) 9421138449777680 a001 433494437/10749957122*45537549124^(2/9) 9421138449777680 a001 433494437/3461452808002*17393796001^(10/21) 9421138449777680 a001 433494437/28143753123*23725150497407^(5/24) 9421138449777680 a001 433494437/28143753123*3461452808002^(2/9) 9421138449777680 a001 433494437/119218851371*17393796001^(1/3) 9421138449777680 a001 433494437/28143753123*28143753123^(4/15) 9421138449777680 a001 433494437/505019158607*1322157322203^(1/3) 9421138449777680 a001 433494437/9062201101803*817138163596^(4/9) 9421138449777680 a001 433494437/1322157322203*23725150497407^(1/3) 9421138449777680 a001 433494437/1322157322203*505019158607^(8/21) 9421138449777680 a001 433494437/817138163596*5600748293801^(1/3) 9421138449777680 a001 433494437/3461452808002*505019158607^(5/12) 9421138449777680 a001 433494437/312119004989*312119004989^(1/3) 9421138449777680 a001 433494437/192900153618*73681302247^(1/3) 9421138449777680 a001 433494437/119218851371*505019158607^(7/24) 9421138449777680 a001 433494437/3461452808002*28143753123^(7/15) 9421138449777680 a001 433494437/28143753123*10749957122^(5/18) 9421138449777680 a001 433494437/1322157322203*10749957122^(4/9) 9421138449777680 a001 1602508992/440719107401*599074578^(7/18) 9421138449777680 a001 12586269025/3461452808002*599074578^(7/18) 9421138449777680 a001 10983760033/3020733700601*599074578^(7/18) 9421138449777680 a001 86267571272/23725150497407*599074578^(7/18) 9421138449777680 a001 53316291173/14662949395604*599074578^(7/18) 9421138449777680 a001 433494437/73681302247*4106118243^(1/3) 9421138449777680 a001 20365011074/5600748293801*599074578^(7/18) 9421138449777680 a001 2971215073/969323029*17393796001^(1/21) 9421138449777680 a001 7778742049/2139295485799*599074578^(7/18) 9421138449777680 a001 433494437/6643838879*9062201101803^(1/6) 9421138449777680 a001 2971215073/969323029*505019158607^(1/24) 9421138449777680 a001 2971215073/817138163596*599074578^(7/18) 9421138449777680 a001 701408733/5600748293801*599074578^(5/9) 9421138449777680 a001 2971215073/1568397607*228826127^(1/12) 9421138449777680 a001 1134903170/969323029*73681302247^(1/12) 9421138449777680 a001 433494437/2537720636*28143753123^(1/6) 9421138449777680 a001 433494437/312119004989*1568397607^(5/12) 9421138449777680 a001 1134903170/312119004989*599074578^(7/18) 9421138449777680 a001 2971215073/969323029*599074578^(1/18) 9421138449777680 a001 1836311903/14662949395604*599074578^(5/9) 9421138449777680 a001 7778742049/4106118243*228826127^(1/12) 9421138449777680 a001 2971215073/23725150497407*599074578^(5/9) 9421138449777680 a001 10182505537/5374978561*228826127^(1/12) 9421138449777680 a001 53316291173/28143753123*228826127^(1/12) 9421138449777680 a001 139583862445/73681302247*228826127^(1/12) 9421138449777680 a001 182717648081/96450076809*228826127^(1/12) 9421138449777680 a001 956722026041/505019158607*228826127^(1/12) 9421138449777680 a001 10610209857723/5600748293801*228826127^(1/12) 9421138449777680 a001 591286729879/312119004989*228826127^(1/12) 9421138449777680 a001 225851433717/119218851371*228826127^(1/12) 9421138449777680 a001 21566892818/11384387281*228826127^(1/12) 9421138449777680 a001 32951280099/17393796001*228826127^(1/12) 9421138449777680 a001 12586269025/6643838879*228826127^(1/12) 9421138449777680 a001 433494437/4106118243*599074578^(2/9) 9421138449777680 a001 1134903170/9062201101803*599074578^(5/9) 9421138449777680 a001 1201881744/634430159*228826127^(1/12) 9421138449777680 a001 433494437/969323029*817138163596^(1/9) 9421138449777680 a001 433494437/119218851371*599074578^(7/18) 9421138449777680 a001 1134903170/1568397607*228826127^(2/15) 9421138449777680 a001 165580141/9062201101803*370248451^(2/3) 9421138449777680 a001 2971215073/4106118243*228826127^(2/15) 9421138449777680 a001 7778742049/10749957122*228826127^(2/15) 9421138449777680 a001 20365011074/28143753123*228826127^(2/15) 9421138449777680 a001 53316291173/73681302247*228826127^(2/15) 9421138449777680 a001 139583862445/192900153618*228826127^(2/15) 9421138449777680 a001 365435296162/505019158607*228826127^(2/15) 9421138449777680 a001 10610209857723/14662949395604*228826127^(2/15) 9421138449777680 a001 591286729879/817138163596*228826127^(2/15) 9421138449777680 a001 225851433717/312119004989*228826127^(2/15) 9421138449777680 a001 86267571272/119218851371*228826127^(2/15) 9421138449777680 a001 32951280099/45537549124*228826127^(2/15) 9421138449777680 a001 12586269025/17393796001*228826127^(2/15) 9421138449777680 a001 4807526976/6643838879*228826127^(2/15) 9421138449777680 a001 1836311903/969323029*228826127^(1/12) 9421138449777680 a001 433494437/3461452808002*599074578^(5/9) 9421138449777680 a001 1836311903/2537720636*228826127^(2/15) 9421138449777680 a001 433494437/370248451*141422324^(1/9) 9421138449777680 a001 701408733/969323029*228826127^(2/15) 9421138449777680 a001 233802911/1368706081*228826127^(5/24) 9421138449777680 a001 9238424/599786069*228826127^(1/3) 9421138449777680 a001 1836311903/10749957122*228826127^(5/24) 9421138449777680 a001 1602508992/9381251041*228826127^(5/24) 9421138449777680 a001 12586269025/73681302247*228826127^(5/24) 9421138449777680 a001 10983760033/64300051206*228826127^(5/24) 9421138449777680 a001 86267571272/505019158607*228826127^(5/24) 9421138449777680 a001 75283811239/440719107401*228826127^(5/24) 9421138449777680 a001 2504730781961/14662949395604*228826127^(5/24) 9421138449777680 a001 139583862445/817138163596*228826127^(5/24) 9421138449777680 a001 53316291173/312119004989*228826127^(5/24) 9421138449777680 a001 20365011074/119218851371*228826127^(5/24) 9421138449777680 a001 7778742049/45537549124*228826127^(5/24) 9421138449777680 a001 2971215073/17393796001*228826127^(5/24) 9421138449777680 a001 1134903170/6643838879*228826127^(5/24) 9421138449777680 a001 165580141/599074578*312119004989^(2/15) 9421138449777680 a001 267914296/370248451*23725150497407^(1/12) 9421138449777680 a001 267914296/370248451*10749957122^(1/9) 9421138449777680 a001 165580141/599074578*1568397607^(1/6) 9421138449777680 a001 433494437/2537720636*228826127^(5/24) 9421138449777680 a001 701408733/45537549124*228826127^(1/3) 9421138449777680 a001 133957148/96450076809*228826127^(11/24) 9421138449777680 a001 1836311903/119218851371*228826127^(1/3) 9421138449777680 a001 4807526976/312119004989*228826127^(1/3) 9421138449777680 a001 12586269025/817138163596*228826127^(1/3) 9421138449777680 a001 32951280099/2139295485799*228826127^(1/3) 9421138449777680 a001 86267571272/5600748293801*228826127^(1/3) 9421138449777680 a001 7787980473/505618944676*228826127^(1/3) 9421138449777680 a001 365435296162/23725150497407*228826127^(1/3) 9421138449777680 a001 139583862445/9062201101803*228826127^(1/3) 9421138449777680 a001 53316291173/3461452808002*228826127^(1/3) 9421138449777680 a001 20365011074/1322157322203*228826127^(1/3) 9421138449777680 a001 7778742049/505019158607*228826127^(1/3) 9421138449777680 a001 2971215073/192900153618*228826127^(1/3) 9421138449777680 a001 1134903170/73681302247*228826127^(1/3) 9421138449777680 a001 165580141/1568397607*17393796001^(4/21) 9421138449777680 a001 701408733/370248451*3461452808002^(1/18) 9421138449777680 a001 165580141/1568397607*505019158607^(1/6) 9421138449777680 a001 701408733/370248451*28143753123^(1/15) 9421138449777680 a001 165580141/17393796001*969323029^(1/3) 9421138449777680 a001 267914296/370248451*228826127^(2/15) 9421138449777680 a001 165580141/4106118243*45537549124^(2/9) 9421138449777680 a001 165580141/10749957122*23725150497407^(5/24) 9421138449777680 a001 165580141/10749957122*3461452808002^(2/9) 9421138449777680 a001 165580141/10749957122*28143753123^(4/15) 9421138449777680 a001 165580141/10749957122*10749957122^(5/18) 9421138449777680 a001 165580141/1322157322203*17393796001^(10/21) 9421138449777680 a001 165580141/45537549124*17393796001^(1/3) 9421138449777680 a001 165580141/14662949395604*45537549124^(5/9) 9421138449777680 a001 165580141/73681302247*73681302247^(1/3) 9421138449777680 a001 165580141/192900153618*1322157322203^(1/3) 9421138449777680 a001 165580141/23725150497407*312119004989^(8/15) 9421138449777680 a001 165580141/505019158607*23725150497407^(1/3) 9421138449777680 a001 165580141/3461452808002*817138163596^(4/9) 9421138449777680 a001 165580141/1322157322203*3461452808002^(7/18) 9421138449777680 a001 165580141/1322157322203*505019158607^(5/12) 9421138449777680 a001 165580141/312119004989*5600748293801^(1/3) 9421138449777680 a001 165580141/119218851371*312119004989^(1/3) 9421138449777680 a001 165580141/45537549124*505019158607^(7/24) 9421138449777680 a001 165580141/1322157322203*28143753123^(7/15) 9421138449777680 a001 165580141/505019158607*10749957122^(4/9) 9421138449777680 a001 165580141/23725150497407*10749957122^(11/18) 9421138449777680 a001 165580141/28143753123*4106118243^(1/3) 9421138449777680 a001 66978574/204284540899*228826127^(8/15) 9421138449777680 a001 433494437/28143753123*228826127^(1/3) 9421138449777680 a001 1134903170/370248451*17393796001^(1/21) 9421138449777680 a001 165580141/2537720636*9062201101803^(1/6) 9421138449777680 a001 1134903170/370248451*505019158607^(1/24) 9421138449777680 a001 165580141/119218851371*1568397607^(5/12) 9421138449777680 a001 165580141/1568397607*599074578^(2/9) 9421138449777680 a001 165580141/23725150497407*1568397607^(2/3) 9421138449777680 a001 1134903170/370248451*599074578^(1/18) 9421138449777680 a001 701408733/505019158607*228826127^(11/24) 9421138449777680 a001 267914296/2139295485799*228826127^(7/12) 9421138449777680 a001 433494437/370248451*73681302247^(1/12) 9421138449777680 a001 165580141/969323029*28143753123^(1/6) 9421138449777680 a001 165580141/45537549124*599074578^(7/18) 9421138449777680 a001 701408733/370248451*228826127^(1/12) 9421138449777680 a001 1836311903/1322157322203*228826127^(11/24) 9421138449777680 a001 14930208/10749853441*228826127^(11/24) 9421138449777680 a001 12586269025/9062201101803*228826127^(11/24) 9421138449777680 a001 32951280099/23725150497407*228826127^(11/24) 9421138449777680 a001 10182505537/7331474697802*228826127^(11/24) 9421138449777680 a001 7778742049/5600748293801*228826127^(11/24) 9421138449777680 a001 2971215073/2139295485799*228826127^(11/24) 9421138449777680 a001 165580141/1322157322203*599074578^(5/9) 9421138449777680 a001 567451585/408569081798*228826127^(11/24) 9421138449777680 a001 701408733/2139295485799*228826127^(8/15) 9421138449777680 a001 433494437/312119004989*228826127^(11/24) 9421138449777680 a001 1836311903/5600748293801*228826127^(8/15) 9421138449777680 a001 1201881744/3665737348901*228826127^(8/15) 9421138449777680 a001 7778742049/23725150497407*228826127^(8/15) 9421138449777680 a001 2971215073/9062201101803*228826127^(8/15) 9421138449777680 a001 567451585/1730726404001*228826127^(8/15) 9421138449777680 a001 701408733/5600748293801*228826127^(7/12) 9421138449777680 a001 267914296/23725150497407*228826127^(17/24) 9421138449777680 a001 1836311903/14662949395604*228826127^(7/12) 9421138449777680 a001 31622993/7331474697802*141422324^(7/9) 9421138449777680 a001 2971215073/23725150497407*228826127^(7/12) 9421138449777680 a001 433494437/1322157322203*228826127^(8/15) 9421138449777680 a001 1134903170/9062201101803*228826127^(7/12) 9421138449777680 a001 433494437/3461452808002*228826127^(7/12) 9421138449777680 a001 165580141/969323029*228826127^(5/24) 9421138449777680 a001 165580141/10749957122*228826127^(1/3) 9421138449777680 a001 165580141/370248451*817138163596^(1/9) 9421138449777680 a001 165580141/119218851371*228826127^(11/24) 9421138449777680 a001 133957148/299537289*87403803^(1/6) 9421138449777680 a001 165580141/505019158607*228826127^(8/15) 9421138449777680 a001 165580141/1322157322203*228826127^(7/12) 9421138449777680 a001 165580141/14662949395604*228826127^(17/24) 9421138449777680 a001 701408733/1568397607*87403803^(1/6) 9421138449777680 a001 165580141/23725150497407*228826127^(11/15) 9421138449777680 a001 1836311903/4106118243*87403803^(1/6) 9421138449777680 a001 2403763488/5374978561*87403803^(1/6) 9421138449777680 a001 12586269025/28143753123*87403803^(1/6) 9421138449777680 a001 32951280099/73681302247*87403803^(1/6) 9421138449777680 a001 43133785636/96450076809*87403803^(1/6) 9421138449777680 a001 225851433717/505019158607*87403803^(1/6) 9421138449777680 a001 591286729879/1322157322203*87403803^(1/6) 9421138449777680 a001 10610209857723/23725150497407*87403803^(1/6) 9421138449777680 a001 182717648081/408569081798*87403803^(1/6) 9421138449777680 a001 139583862445/312119004989*87403803^(1/6) 9421138449777680 a001 53316291173/119218851371*87403803^(1/6) 9421138449777680 a001 10182505537/22768774562*87403803^(1/6) 9421138449777680 a001 7778742049/17393796001*87403803^(1/6) 9421138449777680 a001 2971215073/6643838879*87403803^(1/6) 9421138449777680 a001 567451585/1268860318*87403803^(1/6) 9421138449777680 a001 433494437/969323029*87403803^(1/6) 9421138449777680 a001 63245986/28143753123*141422324^(4/9) 9421138449777680 a001 63245986/228826127*312119004989^(2/15) 9421138449777680 a001 102334155/141422324*23725150497407^(1/12) 9421138449777680 a001 102334155/141422324*10749957122^(1/9) 9421138449777680 a001 63245986/228826127*1568397607^(1/6) 9421138449777680 a001 102334155/141422324*228826127^(2/15) 9421138449777680 a001 165580141/370248451*87403803^(1/6) 9421138449777680 a001 31622993/1730726404001*370248451^(2/3) 9421138449777680 a001 31622993/299537289*17393796001^(4/21) 9421138449777680 a001 31622993/299537289*505019158607^(1/6) 9421138449777680 a001 66978574/35355581*28143753123^(1/15) 9421138449777680 a001 31622993/299537289*599074578^(2/9) 9421138449777680 a001 66978574/35355581*228826127^(1/12) 9421138449777680 a001 63245986/1568397607*45537549124^(2/9) 9421138449777680 a001 63245986/6643838879*969323029^(1/3) 9421138449777680 a001 63245986/4106118243*23725150497407^(5/24) 9421138449777680 a001 63245986/4106118243*3461452808002^(2/9) 9421138449777680 a001 63245986/4106118243*28143753123^(4/15) 9421138449777680 a001 63245986/4106118243*10749957122^(5/18) 9421138449777680 a001 63245986/23725150497407*6643838879^(2/3) 9421138449777680 a001 31622993/7331474697802*17393796001^(13/21) 9421138449777680 a001 63245986/505019158607*17393796001^(10/21) 9421138449777680 a001 63245986/28143753123*73681302247^(1/3) 9421138449777680 a001 63245986/5600748293801*45537549124^(5/9) 9421138449777680 a001 63245986/73681302247*1322157322203^(1/3) 9421138449777680 a001 31622993/96450076809*23725150497407^(1/3) 9421138449777680 a001 31622993/96450076809*505019158607^(8/21) 9421138449777680 a001 63245986/9062201101803*312119004989^(8/15) 9421138449777680 a001 63245986/505019158607*3461452808002^(7/18) 9421138449777680 a001 63245986/505019158607*505019158607^(5/12) 9421138449777680 a001 63245986/1322157322203*817138163596^(4/9) 9421138449777680 a001 63245986/9062201101803*23725150497407^(11/24) 9421138449777680 a001 31622993/7331474697802*505019158607^(13/24) 9421138449777680 a001 63245986/119218851371*5600748293801^(1/3) 9421138449777680 a001 31622993/7331474697802*73681302247^(7/12) 9421138449777680 a001 31622993/22768774562*312119004989^(1/3) 9421138449777680 a001 63245986/505019158607*28143753123^(7/15) 9421138449777680 a001 63245986/17393796001*17393796001^(1/3) 9421138449777680 a001 63245986/17393796001*505019158607^(7/24) 9421138449777680 a001 31622993/96450076809*10749957122^(4/9) 9421138449777680 a001 63245986/9062201101803*10749957122^(11/18) 9421138449777680 a001 31622993/5374978561*4106118243^(1/3) 9421138449777680 a001 31622993/22768774562*1568397607^(5/12) 9421138449777680 a001 63245986/9062201101803*1568397607^(2/3) 9421138449777680 a001 433494437/141422324*17393796001^(1/21) 9421138449777680 a001 63245986/969323029*9062201101803^(1/6) 9421138449777680 a001 433494437/141422324*505019158607^(1/24) 9421138449777680 a001 63245986/17393796001*599074578^(7/18) 9421138449777680 a001 433494437/141422324*599074578^(1/18) 9421138449777680 a001 63245986/505019158607*599074578^(5/9) 9421138449777680 a001 165580141/141422324*141422324^(1/9) 9421138449777680 a001 31622993/7331474697802*599074578^(13/18) 9421138449777680 a001 63245986/4106118243*228826127^(1/3) 9421138449777680 a001 165580141/141422324*73681302247^(1/12) 9421138449777680 a001 63245986/370248451*28143753123^(1/6) 9421138449777680 a001 31622993/22768774562*228826127^(11/24) 9421138449777680 a001 31622993/96450076809*228826127^(8/15) 9421138449777680 a001 63245986/505019158607*228826127^(7/12) 9421138449777680 a001 63245986/370248451*228826127^(5/24) 9421138449777680 a001 63245986/5600748293801*228826127^(17/24) 9421138449777680 a001 63245986/9062201101803*228826127^(11/15) 9421138449777680 a001 102334155/2139295485799*87403803^(2/3) 9421138449777680 a001 267914296/5600748293801*87403803^(2/3) 9421138449777681 a001 701408733/14662949395604*87403803^(2/3) 9421138449777681 a001 1134903170/23725150497407*87403803^(2/3) 9421138449777681 a001 433494437/9062201101803*87403803^(2/3) 9421138449777681 a001 165580141/3461452808002*87403803^(2/3) 9421138449777681 a001 102334155/54018521*20633239^(2/21) 9421138449777681 a001 31622993/70711162*817138163596^(1/9) 9421138449777681 a001 9227465/9062201101803*20633239^(20/21) 9421138449777681 a001 31622993/70711162*87403803^(1/6) 9421138449777681 a001 63245986/1322157322203*87403803^(2/3) 9421138449777682 a001 165580141/54018521*20633239^(1/15) 9421138449777682 a001 24157817/87403803*312119004989^(2/15) 9421138449777682 a001 39088169/54018521*23725150497407^(1/12) 9421138449777682 a001 39088169/54018521*10749957122^(1/9) 9421138449777682 a001 24157817/87403803*1568397607^(1/6) 9421138449777682 a001 39088169/54018521*228826127^(2/15) 9421138449777682 a001 24157817/969323029*54018521^(1/3) 9421138449777683 a001 24157817/5600748293801*141422324^(7/9) 9421138449777683 a001 9227465/2139295485799*20633239^(13/15) 9421138449777683 a001 24157817/10749957122*141422324^(4/9) 9421138449777683 a001 24157817/228826127*17393796001^(4/21) 9421138449777683 a001 102334155/54018521*3461452808002^(1/18) 9421138449777683 a001 24157817/228826127*505019158607^(1/6) 9421138449777683 a001 102334155/54018521*28143753123^(1/15) 9421138449777683 a001 24157817/228826127*599074578^(2/9) 9421138449777683 a001 102334155/54018521*228826127^(1/12) 9421138449777683 a001 24157817/1322157322203*370248451^(2/3) 9421138449777683 a001 24157817/599074578*45537549124^(2/9) 9421138449777683 a001 24157817/1568397607*23725150497407^(5/24) 9421138449777683 a001 24157817/1568397607*3461452808002^(2/9) 9421138449777683 a001 24157817/1568397607*28143753123^(4/15) 9421138449777683 a001 24157817/1568397607*10749957122^(5/18) 9421138449777683 a001 24157817/2537720636*969323029^(1/3) 9421138449777683 a001 24157817/4106118243*4106118243^(1/3) 9421138449777683 a001 24157817/9062201101803*6643838879^(2/3) 9421138449777683 a001 24157817/10749957122*73681302247^(1/3) 9421138449777683 a001 24157817/5600748293801*17393796001^(13/21) 9421138449777683 a001 24157817/192900153618*17393796001^(10/21) 9421138449777683 a001 24157817/28143753123*1322157322203^(1/3) 9421138449777683 a001 24157817/2139295485799*45537549124^(5/9) 9421138449777683 a001 24157817/73681302247*23725150497407^(1/3) 9421138449777683 a001 24157817/73681302247*505019158607^(8/21) 9421138449777683 a001 24157817/192900153618*3461452808002^(7/18) 9421138449777683 a001 24157817/192900153618*505019158607^(5/12) 9421138449777683 a001 24157817/3461452808002*312119004989^(8/15) 9421138449777683 a001 24157817/505019158607*817138163596^(4/9) 9421138449777683 a001 24157817/3461452808002*23725150497407^(11/24) 9421138449777683 a001 24157817/23725150497407*3461452808002^(5/9) 9421138449777683 a001 24157817/5600748293801*505019158607^(13/24) 9421138449777683 a001 24157817/5600748293801*73681302247^(7/12) 9421138449777683 a001 24157817/45537549124*5600748293801^(1/3) 9421138449777683 a001 24157817/192900153618*28143753123^(7/15) 9421138449777683 a001 24157817/23725150497407*28143753123^(2/3) 9421138449777683 a001 24157817/17393796001*312119004989^(1/3) 9421138449777683 a001 24157817/73681302247*10749957122^(4/9) 9421138449777683 a001 24157817/3461452808002*10749957122^(11/18) 9421138449777683 a001 24157817/6643838879*17393796001^(1/3) 9421138449777683 a001 24157817/6643838879*505019158607^(7/24) 9421138449777683 a001 24157817/17393796001*1568397607^(5/12) 9421138449777683 a001 24157817/3461452808002*1568397607^(2/3) 9421138449777683 a001 24157817/6643838879*599074578^(7/18) 9421138449777683 a001 24157817/192900153618*599074578^(5/9) 9421138449777683 a001 24157817/5600748293801*599074578^(13/18) 9421138449777683 a001 24157817/1568397607*228826127^(1/3) 9421138449777683 a001 165580141/54018521*17393796001^(1/21) 9421138449777683 a001 24157817/370248451*9062201101803^(1/6) 9421138449777683 a001 165580141/54018521*505019158607^(1/24) 9421138449777683 a001 165580141/54018521*599074578^(1/18) 9421138449777683 a001 24157817/17393796001*228826127^(11/24) 9421138449777683 a001 24157817/73681302247*228826127^(8/15) 9421138449777683 a001 24157817/192900153618*228826127^(7/12) 9421138449777683 a001 24157817/2139295485799*228826127^(17/24) 9421138449777683 a001 24157817/3461452808002*228826127^(11/15) 9421138449777683 a001 24157817/23725150497407*228826127^(5/6) 9421138449777683 a001 63245986/54018521*141422324^(1/9) 9421138449777683 a001 63245986/54018521*73681302247^(1/12) 9421138449777683 a001 24157817/141422324*28143753123^(1/6) 9421138449777683 a001 24157817/141422324*228826127^(5/24) 9421138449777684 a001 24157817/505019158607*87403803^(2/3) 9421138449777684 a001 9227465/817138163596*20633239^(17/21) 9421138449777686 a001 24157817/54018521*817138163596^(1/9) 9421138449777686 a001 24157817/54018521*87403803^(1/6) 9421138449777687 a001 9227465/73681302247*20633239^(2/3) 9421138449777688 a001 165580141/33385282*4870847^(1/24) 9421138449777690 a001 9227465/6643838879*20633239^(11/21) 9421138449777691 a001 14930352/370248451*12752043^(1/3) 9421138449777691 a001 9227465/2537720636*20633239^(7/15) 9421138449777693 a001 9227465/599074578*20633239^(8/21) 9421138449777693 a001 9227465/33385282*312119004989^(2/15) 9421138449777693 a001 14930352/20633239*23725150497407^(1/12) 9421138449777693 a001 14930352/20633239*10749957122^(1/9) 9421138449777693 a001 9227465/33385282*1568397607^(1/6) 9421138449777693 a001 14930352/20633239*228826127^(2/15) 9421138449777695 a001 9227465/87403803*20633239^(4/15) 9421138449777695 a001 433494437/87403803*4870847^(1/24) 9421138449777696 a001 1134903170/228826127*4870847^(1/24) 9421138449777696 a001 2971215073/599074578*4870847^(1/24) 9421138449777696 a001 7778742049/1568397607*4870847^(1/24) 9421138449777696 a001 20365011074/4106118243*4870847^(1/24) 9421138449777696 a001 53316291173/10749957122*4870847^(1/24) 9421138449777696 a001 139583862445/28143753123*4870847^(1/24) 9421138449777696 a001 365435296162/73681302247*4870847^(1/24) 9421138449777696 a001 956722026041/192900153618*4870847^(1/24) 9421138449777696 a001 2504730781961/505019158607*4870847^(1/24) 9421138449777696 a001 10610209857723/2139295485799*4870847^(1/24) 9421138449777696 a001 4052739537881/817138163596*4870847^(1/24) 9421138449777696 a001 140728068720/28374454999*4870847^(1/24) 9421138449777696 a001 591286729879/119218851371*4870847^(1/24) 9421138449777696 a001 225851433717/45537549124*4870847^(1/24) 9421138449777696 a001 86267571272/17393796001*4870847^(1/24) 9421138449777696 a001 32951280099/6643838879*4870847^(1/24) 9421138449777696 a001 1144206275/230701876*4870847^(1/24) 9421138449777696 a001 4807526976/969323029*4870847^(1/24) 9421138449777696 a001 1836311903/370248451*4870847^(1/24) 9421138449777697 a001 3524578/505019158607*7881196^(8/9) 9421138449777697 a001 701408733/141422324*4870847^(1/24) 9421138449777698 a001 39088169/969323029*12752043^(1/3) 9421138449777698 a001 39088169/20633239*20633239^(2/21) 9421138449777699 a001 9303105/230701876*12752043^(1/3) 9421138449777699 a001 267914296/6643838879*12752043^(1/3) 9421138449777699 a001 701408733/17393796001*12752043^(1/3) 9421138449777699 a001 1836311903/45537549124*12752043^(1/3) 9421138449777699 a001 4807526976/119218851371*12752043^(1/3) 9421138449777699 a001 1144206275/28374454999*12752043^(1/3) 9421138449777699 a001 32951280099/817138163596*12752043^(1/3) 9421138449777699 a001 86267571272/2139295485799*12752043^(1/3) 9421138449777699 a001 225851433717/5600748293801*12752043^(1/3) 9421138449777699 a001 591286729879/14662949395604*12752043^(1/3) 9421138449777699 a001 365435296162/9062201101803*12752043^(1/3) 9421138449777699 a001 139583862445/3461452808002*12752043^(1/3) 9421138449777699 a001 53316291173/1322157322203*12752043^(1/3) 9421138449777699 a001 20365011074/505019158607*12752043^(1/3) 9421138449777699 a001 7778742049/192900153618*12752043^(1/3) 9421138449777699 a001 2971215073/73681302247*12752043^(1/3) 9421138449777699 a001 1134903170/28143753123*12752043^(1/3) 9421138449777699 a001 433494437/10749957122*12752043^(1/3) 9421138449777699 a001 165580141/4106118243*12752043^(1/3) 9421138449777699 a001 267914296/54018521*4870847^(1/24) 9421138449777699 a001 63245986/1568397607*12752043^(1/3) 9421138449777700 a001 9227465/54018521*20633239^(5/21) 9421138449777701 a001 9227465/87403803*17393796001^(4/21) 9421138449777701 a001 39088169/20633239*3461452808002^(1/18) 9421138449777701 a001 9227465/87403803*505019158607^(1/6) 9421138449777701 a001 39088169/20633239*28143753123^(1/15) 9421138449777701 a001 9227465/87403803*599074578^(2/9) 9421138449777701 a001 39088169/20633239*228826127^(1/12) 9421138449777701 a001 9227465/370248451*54018521^(1/3) 9421138449777701 a001 63245986/20633239*20633239^(1/15) 9421138449777701 a001 9227465/2139295485799*141422324^(7/9) 9421138449777702 a001 9227465/4106118243*141422324^(4/9) 9421138449777702 a001 9227465/228826127*45537549124^(2/9) 9421138449777702 a001 9227465/505019158607*370248451^(2/3) 9421138449777702 a001 9227465/599074578*23725150497407^(5/24) 9421138449777702 a001 9227465/599074578*3461452808002^(2/9) 9421138449777702 a001 9227465/599074578*28143753123^(4/15) 9421138449777702 a001 9227465/599074578*10749957122^(5/18) 9421138449777702 a001 9227465/1568397607*4106118243^(1/3) 9421138449777702 a001 9227465/4106118243*73681302247^(1/3) 9421138449777702 a001 9227465/3461452808002*6643838879^(2/3) 9421138449777702 a001 9227465/10749957122*1322157322203^(1/3) 9421138449777702 a001 9227465/2139295485799*17393796001^(13/21) 9421138449777702 a001 9227465/73681302247*17393796001^(10/21) 9421138449777702 a001 9227465/28143753123*23725150497407^(1/3) 9421138449777702 a001 9227465/28143753123*505019158607^(8/21) 9421138449777702 a001 9227465/817138163596*45537549124^(5/9) 9421138449777702 a001 9227465/73681302247*3461452808002^(7/18) 9421138449777702 a001 9227465/73681302247*505019158607^(5/12) 9421138449777702 a001 9227465/23725150497407*119218851371^(2/3) 9421138449777702 a001 9227465/192900153618*817138163596^(4/9) 9421138449777702 a001 9227465/1322157322203*312119004989^(8/15) 9421138449777702 a001 9227465/1322157322203*23725150497407^(11/24) 9421138449777702 a001 9227465/2139295485799*505019158607^(13/24) 9421138449777702 a001 9227465/2139295485799*73681302247^(7/12) 9421138449777702 a001 9227465/73681302247*28143753123^(7/15) 9421138449777702 a001 9227465/9062201101803*28143753123^(2/3) 9421138449777702 a001 9227465/28143753123*10749957122^(4/9) 9421138449777702 a001 9227465/17393796001*5600748293801^(1/3) 9421138449777702 a001 9227465/1322157322203*10749957122^(11/18) 9421138449777702 a001 9227465/6643838879*312119004989^(1/3) 9421138449777702 a001 9227465/2537720636*17393796001^(1/3) 9421138449777702 a001 9227465/2537720636*505019158607^(7/24) 9421138449777702 a001 9227465/6643838879*1568397607^(5/12) 9421138449777702 a001 9227465/1322157322203*1568397607^(2/3) 9421138449777702 a001 9227465/969323029*969323029^(1/3) 9421138449777702 a001 9227465/2537720636*599074578^(7/18) 9421138449777702 a001 9227465/73681302247*599074578^(5/9) 9421138449777702 a001 9227465/2139295485799*599074578^(13/18) 9421138449777702 a001 9227465/599074578*228826127^(1/3) 9421138449777702 a001 9227465/6643838879*228826127^(11/24) 9421138449777702 a001 9227465/28143753123*228826127^(8/15) 9421138449777702 a001 9227465/73681302247*228826127^(7/12) 9421138449777702 a001 9227465/817138163596*228826127^(17/24) 9421138449777702 a001 9227465/1322157322203*228826127^(11/15) 9421138449777702 a001 9227465/9062201101803*228826127^(5/6) 9421138449777702 a001 24157817/599074578*12752043^(1/3) 9421138449777702 a001 63245986/20633239*17393796001^(1/21) 9421138449777702 a001 9227465/141422324*9062201101803^(1/6) 9421138449777702 a001 63245986/20633239*505019158607^(1/24) 9421138449777702 a001 63245986/20633239*599074578^(1/18) 9421138449777703 a001 9227465/192900153618*87403803^(2/3) 9421138449777705 a001 24157817/20633239*141422324^(1/9) 9421138449777705 a001 24157817/20633239*73681302247^(1/12) 9421138449777705 a001 9227465/54018521*28143753123^(1/6) 9421138449777705 a001 9227465/54018521*228826127^(5/24) 9421138449777710 a001 9227465/12752043*4870847^(1/6) 9421138449777718 a001 9303105/1875749*4870847^(1/24) 9421138449777720 a001 4976784/440719107401*12752043^(5/6) 9421138449777721 a001 9227465/228826127*12752043^(1/3) 9421138449777724 a001 9227465/20633239*817138163596^(1/9) 9421138449777724 a001 9227465/20633239*87403803^(1/6) 9421138449777727 a001 39088169/3461452808002*12752043^(5/6) 9421138449777728 a001 34111385/3020733700601*12752043^(5/6) 9421138449777728 a001 267914296/23725150497407*12752043^(5/6) 9421138449777728 a001 165580141/14662949395604*12752043^(5/6) 9421138449777728 a001 63245986/5600748293801*12752043^(5/6) 9421138449777731 a001 24157817/2139295485799*12752043^(5/6) 9421138449777740 a001 3524578/12752043*7881196^(2/9) 9421138449777741 a001 24157817/33385282*4870847^(1/6) 9421138449777741 a001 5702887/54018521*4870847^(7/24) 9421138449777745 a001 63245986/87403803*4870847^(1/6) 9421138449777746 a001 165580141/228826127*4870847^(1/6) 9421138449777746 a001 433494437/599074578*4870847^(1/6) 9421138449777746 a001 1134903170/1568397607*4870847^(1/6) 9421138449777746 a001 2971215073/4106118243*4870847^(1/6) 9421138449777746 a001 7778742049/10749957122*4870847^(1/6) 9421138449777746 a001 20365011074/28143753123*4870847^(1/6) 9421138449777746 a001 53316291173/73681302247*4870847^(1/6) 9421138449777746 a001 139583862445/192900153618*4870847^(1/6) 9421138449777746 a001 365435296162/505019158607*4870847^(1/6) 9421138449777746 a001 10610209857723/14662949395604*4870847^(1/6) 9421138449777746 a001 591286729879/817138163596*4870847^(1/6) 9421138449777746 a001 225851433717/312119004989*4870847^(1/6) 9421138449777746 a001 86267571272/119218851371*4870847^(1/6) 9421138449777746 a001 32951280099/45537549124*4870847^(1/6) 9421138449777746 a001 12586269025/17393796001*4870847^(1/6) 9421138449777746 a001 4807526976/6643838879*4870847^(1/6) 9421138449777746 a001 1836311903/2537720636*4870847^(1/6) 9421138449777746 a001 701408733/969323029*4870847^(1/6) 9421138449777746 a001 267914296/370248451*4870847^(1/6) 9421138449777746 a001 102334155/141422324*4870847^(1/6) 9421138449777747 a001 1762289/1268860318*7881196^(5/9) 9421138449777748 a001 39088169/54018521*4870847^(1/6) 9421138449777750 a001 9227465/817138163596*12752043^(5/6) 9421138449777760 a001 14930352/20633239*4870847^(1/6) 9421138449777773 a001 3524578/12752043*312119004989^(2/15) 9421138449777773 a001 5702887/7881196*23725150497407^(1/12) 9421138449777773 a001 5702887/7881196*10749957122^(1/9) 9421138449777773 a001 3524578/12752043*1568397607^(1/6) 9421138449777773 a001 5702887/7881196*228826127^(2/15) 9421138449777787 a001 5702887/370248451*4870847^(5/12) 9421138449777788 a001 3732588/35355581*4870847^(7/24) 9421138449777794 a001 39088169/370248451*4870847^(7/24) 9421138449777795 a001 102334155/969323029*4870847^(7/24) 9421138449777795 a001 66978574/634430159*4870847^(7/24) 9421138449777796 a001 701408733/6643838879*4870847^(7/24) 9421138449777796 a001 1836311903/17393796001*4870847^(7/24) 9421138449777796 a001 1201881744/11384387281*4870847^(7/24) 9421138449777796 a001 12586269025/119218851371*4870847^(7/24) 9421138449777796 a001 32951280099/312119004989*4870847^(7/24) 9421138449777796 a001 21566892818/204284540899*4870847^(7/24) 9421138449777796 a001 225851433717/2139295485799*4870847^(7/24) 9421138449777796 a001 182717648081/1730726404001*4870847^(7/24) 9421138449777796 a001 139583862445/1322157322203*4870847^(7/24) 9421138449777796 a001 53316291173/505019158607*4870847^(7/24) 9421138449777796 a001 10182505537/96450076809*4870847^(7/24) 9421138449777796 a001 7778742049/73681302247*4870847^(7/24) 9421138449777796 a001 2971215073/28143753123*4870847^(7/24) 9421138449777796 a001 567451585/5374978561*4870847^(7/24) 9421138449777796 a001 433494437/4106118243*4870847^(7/24) 9421138449777796 a001 165580141/1568397607*4870847^(7/24) 9421138449777796 a001 31622993/299537289*4870847^(7/24) 9421138449777799 a001 24157817/228826127*4870847^(7/24) 9421138449777810 a001 1762289/1730726404001*20633239^(20/21) 9421138449777812 a001 1762289/408569081798*20633239^(13/15) 9421138449777813 a001 3524578/312119004989*20633239^(17/21) 9421138449777816 a001 9227465/87403803*4870847^(7/24) 9421138449777817 a001 3524578/28143753123*20633239^(2/3) 9421138449777817 a001 1762289/16692641*20633239^(4/15) 9421138449777820 a001 1762289/1268860318*20633239^(11/21) 9421138449777821 a001 3732588/1970299*20633239^(2/21) 9421138449777821 a001 3524578/969323029*20633239^(7/15) 9421138449777823 a001 3524578/228826127*20633239^(8/21) 9421138449777823 a001 1762289/16692641*17393796001^(4/21) 9421138449777823 a001 3732588/1970299*3461452808002^(1/18) 9421138449777823 a001 1762289/16692641*505019158607^(1/6) 9421138449777823 a001 3732588/1970299*28143753123^(1/15) 9421138449777823 a001 1762289/16692641*599074578^(2/9) 9421138449777823 a001 3732588/1970299*228826127^(1/12) 9421138449777830 a001 3524578/87403803*45537549124^(2/9) 9421138449777831 a001 1762289/70711162*54018521^(1/3) 9421138449777831 a001 1762289/408569081798*141422324^(7/9) 9421138449777831 a001 3524578/1568397607*141422324^(4/9) 9421138449777831 a001 3524578/228826127*23725150497407^(5/24) 9421138449777831 a001 3524578/228826127*3461452808002^(2/9) 9421138449777831 a001 3524578/228826127*28143753123^(4/15) 9421138449777831 a001 3524578/228826127*10749957122^(5/18) 9421138449777831 a001 3524578/228826127*228826127^(1/3) 9421138449777831 a001 1762289/96450076809*370248451^(2/3) 9421138449777831 a001 1762289/299537289*4106118243^(1/3) 9421138449777831 a001 3524578/1568397607*73681302247^(1/3) 9421138449777831 a001 3524578/4106118243*1322157322203^(1/3) 9421138449777831 a001 3524578/1322157322203*6643838879^(2/3) 9421138449777831 a001 1762289/5374978561*23725150497407^(1/3) 9421138449777831 a001 1762289/5374978561*505019158607^(8/21) 9421138449777831 a001 1762289/5374978561*10749957122^(4/9) 9421138449777831 a001 3524578/28143753123*17393796001^(10/21) 9421138449777831 a001 3524578/23725150497407*17393796001^(16/21) 9421138449777831 a001 1762289/408569081798*17393796001^(13/21) 9421138449777831 a001 3524578/28143753123*3461452808002^(7/18) 9421138449777831 a001 3524578/28143753123*505019158607^(5/12) 9421138449777831 a001 3524578/28143753123*28143753123^(7/15) 9421138449777831 a001 3524578/312119004989*45537549124^(5/9) 9421138449777831 a001 3524578/73681302247*817138163596^(4/9) 9421138449777831 a001 3524578/9062201101803*119218851371^(2/3) 9421138449777831 a001 3524578/505019158607*312119004989^(8/15) 9421138449777831 a001 3524578/505019158607*23725150497407^(11/24) 9421138449777831 a001 1762289/1730726404001*3461452808002^(5/9) 9421138449777831 a001 3524578/23725150497407*23725150497407^(7/12) 9421138449777831 a001 3524578/23725150497407*505019158607^(2/3) 9421138449777831 a001 1762289/408569081798*505019158607^(13/24) 9421138449777831 a001 1762289/408569081798*73681302247^(7/12) 9421138449777831 a001 1762289/1730726404001*28143753123^(2/3) 9421138449777831 a001 3524578/505019158607*10749957122^(11/18) 9421138449777831 a001 3524578/23725150497407*10749957122^(7/9) 9421138449777831 a001 3524578/6643838879*5600748293801^(1/3) 9421138449777831 a001 1762289/1268860318*312119004989^(1/3) 9421138449777831 a001 3524578/505019158607*1568397607^(2/3) 9421138449777831 a001 1762289/1268860318*1568397607^(5/12) 9421138449777831 a001 3524578/969323029*17393796001^(1/3) 9421138449777831 a001 3524578/969323029*505019158607^(7/24) 9421138449777831 a001 3524578/28143753123*599074578^(5/9) 9421138449777831 a001 1762289/408569081798*599074578^(13/18) 9421138449777831 a001 3524578/969323029*599074578^(7/18) 9421138449777831 a001 3524578/23725150497407*599074578^(8/9) 9421138449777831 a001 3524578/370248451*969323029^(1/3) 9421138449777831 a001 1762289/1268860318*228826127^(11/24) 9421138449777831 a001 1762289/5374978561*228826127^(8/15) 9421138449777831 a001 3524578/28143753123*228826127^(7/12) 9421138449777831 a001 3524578/312119004989*228826127^(17/24) 9421138449777831 a001 3524578/505019158607*228826127^(11/15) 9421138449777832 a001 1762289/1730726404001*228826127^(5/6) 9421138449777832 a001 3524578/23725150497407*228826127^(14/15) 9421138449777832 a001 3524578/73681302247*87403803^(2/3) 9421138449777833 a001 24157817/7881196*20633239^(1/15) 9421138449777835 a001 24157817/7881196*17393796001^(1/21) 9421138449777835 a001 3524578/54018521*9062201101803^(1/6) 9421138449777835 a001 24157817/7881196*505019158607^(1/24) 9421138449777835 a001 24157817/7881196*599074578^(1/18) 9421138449777837 a001 14930352/969323029*4870847^(5/12) 9421138449777837 a001 5702887/2537720636*4870847^(13/24) 9421138449777840 a001 5702887/7881196*4870847^(1/6) 9421138449777844 a001 39088169/2537720636*4870847^(5/12) 9421138449777845 a001 102334155/6643838879*4870847^(5/12) 9421138449777845 a001 9238424/599786069*4870847^(5/12) 9421138449777845 a001 701408733/45537549124*4870847^(5/12) 9421138449777845 a001 1836311903/119218851371*4870847^(5/12) 9421138449777845 a001 4807526976/312119004989*4870847^(5/12) 9421138449777845 a001 12586269025/817138163596*4870847^(5/12) 9421138449777845 a001 32951280099/2139295485799*4870847^(5/12) 9421138449777845 a001 86267571272/5600748293801*4870847^(5/12) 9421138449777845 a001 7787980473/505618944676*4870847^(5/12) 9421138449777845 a001 365435296162/23725150497407*4870847^(5/12) 9421138449777845 a001 139583862445/9062201101803*4870847^(5/12) 9421138449777845 a001 53316291173/3461452808002*4870847^(5/12) 9421138449777845 a001 20365011074/1322157322203*4870847^(5/12) 9421138449777845 a001 7778742049/505019158607*4870847^(5/12) 9421138449777845 a001 2971215073/192900153618*4870847^(5/12) 9421138449777845 a001 1134903170/73681302247*4870847^(5/12) 9421138449777845 a001 433494437/28143753123*4870847^(5/12) 9421138449777845 a001 165580141/10749957122*4870847^(5/12) 9421138449777846 a001 63245986/4106118243*4870847^(5/12) 9421138449777847 a001 39088169/7881196*4870847^(1/24) 9421138449777848 a001 3524578/20633239*20633239^(5/21) 9421138449777848 a001 24157817/1568397607*4870847^(5/12) 9421138449777849 a001 3524578/87403803*12752043^(1/3) 9421138449777853 a001 9227465/7881196*141422324^(1/9) 9421138449777853 a001 9227465/7881196*73681302247^(1/12) 9421138449777853 a001 3524578/20633239*28143753123^(1/6) 9421138449777854 a001 3524578/20633239*228826127^(5/24) 9421138449777867 a001 9227465/599074578*4870847^(5/12) 9421138449777880 a001 3524578/312119004989*12752043^(5/6) 9421138449777886 a001 14930352/6643838879*4870847^(13/24) 9421138449777886 a001 5702887/17393796001*4870847^(2/3) 9421138449777894 a001 39088169/17393796001*4870847^(13/24) 9421138449777895 a001 102334155/45537549124*4870847^(13/24) 9421138449777895 a001 267914296/119218851371*4870847^(13/24) 9421138449777895 a001 3524667/1568437211*4870847^(13/24) 9421138449777895 a001 1836311903/817138163596*4870847^(13/24) 9421138449777895 a001 4807526976/2139295485799*4870847^(13/24) 9421138449777895 a001 12586269025/5600748293801*4870847^(13/24) 9421138449777895 a001 32951280099/14662949395604*4870847^(13/24) 9421138449777895 a001 53316291173/23725150497407*4870847^(13/24) 9421138449777895 a001 20365011074/9062201101803*4870847^(13/24) 9421138449777895 a001 7778742049/3461452808002*4870847^(13/24) 9421138449777895 a001 2971215073/1322157322203*4870847^(13/24) 9421138449777895 a001 1134903170/505019158607*4870847^(13/24) 9421138449777895 a001 433494437/192900153618*4870847^(13/24) 9421138449777895 a001 165580141/73681302247*4870847^(13/24) 9421138449777895 a001 63245986/28143753123*4870847^(13/24) 9421138449777898 a001 24157817/10749957122*4870847^(13/24) 9421138449777917 a001 9227465/4106118243*4870847^(13/24) 9421138449777927 a001 24157817/12752043*1860498^(1/9) 9421138449777936 a001 3732588/11384387281*4870847^(2/3) 9421138449777936 a001 5702887/119218851371*4870847^(19/24) 9421138449777939 a001 1762289/16692641*4870847^(7/24) 9421138449777943 a001 39088169/119218851371*4870847^(2/3) 9421138449777944 a001 9303105/28374454999*4870847^(2/3) 9421138449777944 a001 66978574/204284540899*4870847^(2/3) 9421138449777944 a001 701408733/2139295485799*4870847^(2/3) 9421138449777944 a001 1836311903/5600748293801*4870847^(2/3) 9421138449777944 a001 1201881744/3665737348901*4870847^(2/3) 9421138449777944 a001 7778742049/23725150497407*4870847^(2/3) 9421138449777944 a001 2971215073/9062201101803*4870847^(2/3) 9421138449777944 a001 567451585/1730726404001*4870847^(2/3) 9421138449777944 a001 433494437/1322157322203*4870847^(2/3) 9421138449777944 a001 165580141/505019158607*4870847^(2/3) 9421138449777945 a001 31622993/96450076809*4870847^(2/3) 9421138449777948 a001 24157817/73681302247*4870847^(2/3) 9421138449777967 a001 9227465/28143753123*4870847^(2/3) 9421138449777974 a001 31622993/16692641*1860498^(1/9) 9421138449777981 a001 726103/4250681*1860498^(5/18) 9421138449777981 a001 165580141/87403803*1860498^(1/9) 9421138449777982 a001 433494437/228826127*1860498^(1/9) 9421138449777982 a001 567451585/299537289*1860498^(1/9) 9421138449777982 a001 2971215073/1568397607*1860498^(1/9) 9421138449777982 a001 7778742049/4106118243*1860498^(1/9) 9421138449777982 a001 10182505537/5374978561*1860498^(1/9) 9421138449777982 a001 53316291173/28143753123*1860498^(1/9) 9421138449777982 a001 139583862445/73681302247*1860498^(1/9) 9421138449777982 a001 182717648081/96450076809*1860498^(1/9) 9421138449777982 a001 956722026041/505019158607*1860498^(1/9) 9421138449777982 a001 10610209857723/5600748293801*1860498^(1/9) 9421138449777982 a001 591286729879/312119004989*1860498^(1/9) 9421138449777982 a001 225851433717/119218851371*1860498^(1/9) 9421138449777982 a001 21566892818/11384387281*1860498^(1/9) 9421138449777982 a001 32951280099/17393796001*1860498^(1/9) 9421138449777982 a001 12586269025/6643838879*1860498^(1/9) 9421138449777982 a001 1201881744/634430159*1860498^(1/9) 9421138449777982 a001 1836311903/969323029*1860498^(1/9) 9421138449777982 a001 701408733/370248451*1860498^(1/9) 9421138449777983 a001 66978574/35355581*1860498^(1/9) 9421138449777983 a001 1762289/3940598*817138163596^(1/9) 9421138449777983 a001 1762289/3940598*87403803^(1/6) 9421138449777985 a001 102334155/54018521*1860498^(1/9) 9421138449777986 a001 14930352/312119004989*4870847^(19/24) 9421138449777986 a001 5702887/817138163596*4870847^(11/12) 9421138449777993 a001 4181/87403804*4870847^(19/24) 9421138449777994 a001 102334155/2139295485799*4870847^(19/24) 9421138449777994 a001 267914296/5600748293801*4870847^(19/24) 9421138449777994 a001 701408733/14662949395604*4870847^(19/24) 9421138449777994 a001 1134903170/23725150497407*4870847^(19/24) 9421138449777994 a001 433494437/9062201101803*4870847^(19/24) 9421138449777994 a001 165580141/3461452808002*4870847^(19/24) 9421138449777995 a001 63245986/1322157322203*4870847^(19/24) 9421138449777997 a001 3524578/228826127*4870847^(5/12) 9421138449777997 a001 24157817/505019158607*4870847^(19/24) 9421138449778003 a001 39088169/20633239*1860498^(1/9) 9421138449778016 a001 9227465/192900153618*4870847^(19/24) 9421138449778035 a001 14930352/2139295485799*4870847^(11/12) 9421138449778042 a001 39088169/5600748293801*4870847^(11/12) 9421138449778044 a001 102334155/14662949395604*4870847^(11/12) 9421138449778044 a001 165580141/23725150497407*4870847^(11/12) 9421138449778044 a001 63245986/9062201101803*4870847^(11/12) 9421138449778046 a001 3524578/1568397607*4870847^(13/24) 9421138449778047 a001 24157817/3461452808002*4870847^(11/12) 9421138449778066 a001 9227465/1322157322203*4870847^(11/12) 9421138449778096 a001 1762289/5374978561*4870847^(2/3) 9421138449778125 a001 3732588/1970299*1860498^(1/9) 9421138449778146 a001 3524578/73681302247*4870847^(19/24) 9421138449778174 a001 24157817/4870847*710647^(1/21) 9421138449778195 a001 3524578/505019158607*4870847^(11/12) 9421138449778288 a001 1346269/4870847*7881196^(2/9) 9421138449778322 a001 1346269/4870847*312119004989^(2/15) 9421138449778322 a001 2178309/3010349*23725150497407^(1/12) 9421138449778322 a001 2178309/3010349*10749957122^(1/9) 9421138449778322 a001 1346269/4870847*1568397607^(1/6) 9421138449778322 a001 2178309/3010349*228826127^(2/15) 9421138449778369 a001 5702887/33385282*1860498^(5/18) 9421138449778388 a001 2178309/3010349*4870847^(1/6) 9421138449778395 a001 1346269/20633239*3010349^(1/3) 9421138449778426 a001 4976784/29134601*1860498^(5/18) 9421138449778434 a001 39088169/228826127*1860498^(5/18) 9421138449778436 a001 34111385/199691526*1860498^(5/18) 9421138449778436 a001 267914296/1568397607*1860498^(5/18) 9421138449778436 a001 233802911/1368706081*1860498^(5/18) 9421138449778436 a001 1836311903/10749957122*1860498^(5/18) 9421138449778436 a001 1602508992/9381251041*1860498^(5/18) 9421138449778436 a001 12586269025/73681302247*1860498^(5/18) 9421138449778436 a001 10983760033/64300051206*1860498^(5/18) 9421138449778436 a001 86267571272/505019158607*1860498^(5/18) 9421138449778436 a001 75283811239/440719107401*1860498^(5/18) 9421138449778436 a001 2504730781961/14662949395604*1860498^(5/18) 9421138449778436 a001 139583862445/817138163596*1860498^(5/18) 9421138449778436 a001 53316291173/312119004989*1860498^(5/18) 9421138449778436 a001 20365011074/119218851371*1860498^(5/18) 9421138449778436 a001 7778742049/45537549124*1860498^(5/18) 9421138449778436 a001 2971215073/17393796001*1860498^(5/18) 9421138449778436 a001 1134903170/6643838879*1860498^(5/18) 9421138449778436 a001 433494437/2537720636*1860498^(5/18) 9421138449778436 a001 165580141/969323029*1860498^(5/18) 9421138449778436 a001 63245986/370248451*1860498^(5/18) 9421138449778439 a001 24157817/141422324*1860498^(5/18) 9421138449778461 a001 9227465/54018521*1860498^(5/18) 9421138449778493 a001 2178309/141422324*1860498^(4/9) 9421138449778511 a001 63245986/12752043*710647^(1/21) 9421138449778560 a001 165580141/33385282*710647^(1/21) 9421138449778567 a001 433494437/87403803*710647^(1/21) 9421138449778568 a001 1134903170/228826127*710647^(1/21) 9421138449778568 a001 2971215073/599074578*710647^(1/21) 9421138449778568 a001 7778742049/1568397607*710647^(1/21) 9421138449778568 a001 20365011074/4106118243*710647^(1/21) 9421138449778568 a001 53316291173/10749957122*710647^(1/21) 9421138449778568 a001 139583862445/28143753123*710647^(1/21) 9421138449778568 a001 365435296162/73681302247*710647^(1/21) 9421138449778568 a001 956722026041/192900153618*710647^(1/21) 9421138449778568 a001 2504730781961/505019158607*710647^(1/21) 9421138449778568 a001 10610209857723/2139295485799*710647^(1/21) 9421138449778568 a001 4052739537881/817138163596*710647^(1/21) 9421138449778568 a001 140728068720/28374454999*710647^(1/21) 9421138449778568 a001 591286729879/119218851371*710647^(1/21) 9421138449778568 a001 225851433717/45537549124*710647^(1/21) 9421138449778568 a001 86267571272/17393796001*710647^(1/21) 9421138449778568 a001 32951280099/6643838879*710647^(1/21) 9421138449778568 a001 1144206275/230701876*710647^(1/21) 9421138449778568 a001 4807526976/969323029*710647^(1/21) 9421138449778568 a001 1836311903/370248451*710647^(1/21) 9421138449778568 a001 701408733/141422324*710647^(1/21) 9421138449778571 a001 267914296/54018521*710647^(1/21) 9421138449778584 a001 1346269/192900153618*7881196^(8/9) 9421138449778590 a001 9303105/1875749*710647^(1/21) 9421138449778610 a001 3524578/20633239*1860498^(5/18) 9421138449778635 a001 1346269/969323029*7881196^(5/9) 9421138449778655 a001 1346269/12752043*20633239^(4/15) 9421138449778659 a001 5702887/3010349*20633239^(2/21) 9421138449778661 a001 1346269/12752043*17393796001^(4/21) 9421138449778661 a001 5702887/3010349*3461452808002^(1/18) 9421138449778661 a001 1346269/12752043*505019158607^(1/6) 9421138449778661 a001 5702887/3010349*28143753123^(1/15) 9421138449778661 a001 1346269/12752043*599074578^(2/9) 9421138449778661 a001 5702887/3010349*228826127^(1/12) 9421138449778698 a001 1346269/1322157322203*20633239^(20/21) 9421138449778700 a001 1346269/312119004989*20633239^(13/15) 9421138449778701 a001 1346269/119218851371*20633239^(17/21) 9421138449778705 a001 1346269/10749957122*20633239^(2/3) 9421138449778708 a001 1346269/969323029*20633239^(11/21) 9421138449778709 a001 1346269/370248451*20633239^(7/15) 9421138449778710 a001 1346269/87403803*20633239^(8/21) 9421138449778711 a001 1346269/33385282*45537549124^(2/9) 9421138449778718 a001 1346269/87403803*23725150497407^(5/24) 9421138449778718 a001 1346269/87403803*3461452808002^(2/9) 9421138449778718 a001 1346269/87403803*28143753123^(4/15) 9421138449778718 a001 1346269/87403803*10749957122^(5/18) 9421138449778718 a001 1346269/87403803*228826127^(1/3) 9421138449778718 a001 39088169/7881196*710647^(1/21) 9421138449778719 a001 1346269/312119004989*141422324^(7/9) 9421138449778719 a001 1346269/599074578*141422324^(4/9) 9421138449778719 a001 1346269/228826127*4106118243^(1/3) 9421138449778719 a001 1346269/73681302247*370248451^(2/3) 9421138449778719 a001 1346269/599074578*73681302247^(1/3) 9421138449778719 a001 1346269/1568397607*1322157322203^(1/3) 9421138449778719 a001 1346269/4106118243*23725150497407^(1/3) 9421138449778719 a001 1346269/4106118243*505019158607^(8/21) 9421138449778719 a001 1346269/4106118243*10749957122^(4/9) 9421138449778719 a001 1346269/505019158607*6643838879^(2/3) 9421138449778719 a001 1346269/10749957122*17393796001^(10/21) 9421138449778719 a001 1346269/10749957122*3461452808002^(7/18) 9421138449778719 a001 1346269/10749957122*505019158607^(5/12) 9421138449778719 a001 1346269/10749957122*28143753123^(7/15) 9421138449778719 a001 1346269/9062201101803*17393796001^(16/21) 9421138449778719 a001 1346269/312119004989*17393796001^(13/21) 9421138449778719 a001 1346269/28143753123*817138163596^(4/9) 9421138449778719 a001 1346269/119218851371*45537549124^(5/9) 9421138449778719 a001 1346269/3461452808002*119218851371^(2/3) 9421138449778719 a001 1346269/192900153618*312119004989^(8/15) 9421138449778719 a001 1346269/192900153618*23725150497407^(11/24) 9421138449778719 a001 1346269/1322157322203*3461452808002^(5/9) 9421138449778719 a001 1346269/9062201101803*23725150497407^(7/12) 9421138449778719 a001 1346269/9062201101803*505019158607^(2/3) 9421138449778719 a001 1346269/312119004989*505019158607^(13/24) 9421138449778719 a001 1346269/312119004989*73681302247^(7/12) 9421138449778719 a001 1346269/1322157322203*28143753123^(2/3) 9421138449778719 a001 1346269/192900153618*10749957122^(11/18) 9421138449778719 a001 1346269/9062201101803*10749957122^(7/9) 9421138449778719 a001 1346269/14662949395604*4106118243^(5/6) 9421138449778719 a001 1346269/2537720636*5600748293801^(1/3) 9421138449778719 a001 1346269/192900153618*1568397607^(2/3) 9421138449778719 a001 1346269/969323029*312119004989^(1/3) 9421138449778719 a001 1346269/969323029*1568397607^(5/12) 9421138449778719 a001 1346269/10749957122*599074578^(5/9) 9421138449778719 a001 1346269/312119004989*599074578^(13/18) 9421138449778719 a001 1346269/9062201101803*599074578^(8/9) 9421138449778719 a001 1346269/370248451*17393796001^(1/3) 9421138449778719 a001 1346269/370248451*505019158607^(7/24) 9421138449778719 a001 1346269/370248451*599074578^(7/18) 9421138449778719 a001 1346269/969323029*228826127^(11/24) 9421138449778719 a001 1346269/4106118243*228826127^(8/15) 9421138449778719 a001 1346269/10749957122*228826127^(7/12) 9421138449778719 a001 1346269/119218851371*228826127^(17/24) 9421138449778719 a001 1346269/192900153618*228826127^(11/15) 9421138449778719 a001 1346269/1322157322203*228826127^(5/6) 9421138449778719 a001 1346269/9062201101803*228826127^(14/15) 9421138449778719 a001 1346269/14662949395604*228826127^(23/24) 9421138449778720 a001 1346269/141422324*969323029^(1/3) 9421138449778720 a001 1346269/28143753123*87403803^(2/3) 9421138449778721 a001 1346269/54018521*54018521^(1/3) 9421138449778727 a001 14930352/3010349*4870847^(1/24) 9421138449778730 a001 1346269/33385282*12752043^(1/3) 9421138449778740 a001 9227465/3010349*20633239^(1/15) 9421138449778741 a001 9227465/3010349*17393796001^(1/21) 9421138449778741 a001 1346269/20633239*9062201101803^(1/6) 9421138449778741 a001 9227465/3010349*505019158607^(1/24) 9421138449778741 a001 9227465/3010349*599074578^(1/18) 9421138449778768 a001 1346269/119218851371*12752043^(5/6) 9421138449778777 a001 1346269/12752043*4870847^(7/24) 9421138449778829 a001 14930352/4870847*710647^(1/12) 9421138449778831 a001 5702887/370248451*1860498^(4/9) 9421138449778866 a001 1346269/7881196*20633239^(5/21) 9421138449778871 a001 3524578/3010349*141422324^(1/9) 9421138449778871 a001 3524578/3010349*73681302247^(1/12) 9421138449778871 a001 1346269/7881196*28143753123^(1/6) 9421138449778871 a001 1346269/7881196*228826127^(5/24) 9421138449778881 a001 14930352/969323029*1860498^(4/9) 9421138449778884 a001 1346269/87403803*4870847^(5/12) 9421138449778888 a001 39088169/2537720636*1860498^(4/9) 9421138449778889 a001 102334155/6643838879*1860498^(4/9) 9421138449778889 a001 9238424/599786069*1860498^(4/9) 9421138449778889 a001 701408733/45537549124*1860498^(4/9) 9421138449778889 a001 1836311903/119218851371*1860498^(4/9) 9421138449778889 a001 4807526976/312119004989*1860498^(4/9) 9421138449778889 a001 12586269025/817138163596*1860498^(4/9) 9421138449778889 a001 32951280099/2139295485799*1860498^(4/9) 9421138449778889 a001 86267571272/5600748293801*1860498^(4/9) 9421138449778889 a001 7787980473/505618944676*1860498^(4/9) 9421138449778889 a001 365435296162/23725150497407*1860498^(4/9) 9421138449778889 a001 139583862445/9062201101803*1860498^(4/9) 9421138449778889 a001 53316291173/3461452808002*1860498^(4/9) 9421138449778889 a001 20365011074/1322157322203*1860498^(4/9) 9421138449778889 a001 7778742049/505019158607*1860498^(4/9) 9421138449778889 a001 2971215073/192900153618*1860498^(4/9) 9421138449778889 a001 1134903170/73681302247*1860498^(4/9) 9421138449778889 a001 433494437/28143753123*1860498^(4/9) 9421138449778889 a001 165580141/10749957122*1860498^(4/9) 9421138449778890 a001 63245986/4106118243*1860498^(4/9) 9421138449778893 a001 24157817/1568397607*1860498^(4/9) 9421138449778911 a001 9227465/599074578*1860498^(4/9) 9421138449778934 a001 1346269/599074578*4870847^(13/24) 9421138449778946 a001 311187/224056801*1860498^(11/18) 9421138449778964 a001 5702887/3010349*1860498^(1/9) 9421138449778984 a001 1346269/4106118243*4870847^(2/3) 9421138449779034 a001 1346269/28143753123*4870847^(19/24) 9421138449779041 a001 3524578/228826127*1860498^(4/9) 9421138449779083 a001 1346269/192900153618*4870847^(11/12) 9421138449779164 a001 208010/109801*167761^(2/15) 9421138449779175 a001 39088169/12752043*710647^(1/12) 9421138449779226 a001 14619165/4769326*710647^(1/12) 9421138449779233 a001 267914296/87403803*710647^(1/12) 9421138449779234 a001 701408733/228826127*710647^(1/12) 9421138449779234 a001 1836311903/599074578*710647^(1/12) 9421138449779234 a001 686789568/224056801*710647^(1/12) 9421138449779234 a001 12586269025/4106118243*710647^(1/12) 9421138449779234 a001 32951280099/10749957122*710647^(1/12) 9421138449779234 a001 86267571272/28143753123*710647^(1/12) 9421138449779234 a001 32264490531/10525900321*710647^(1/12) 9421138449779234 a001 591286729879/192900153618*710647^(1/12) 9421138449779234 a001 1548008755920/505019158607*710647^(1/12) 9421138449779234 a001 1515744265389/494493258286*710647^(1/12) 9421138449779234 a001 2504730781961/817138163596*710647^(1/12) 9421138449779234 a001 956722026041/312119004989*710647^(1/12) 9421138449779234 a001 365435296162/119218851371*710647^(1/12) 9421138449779234 a001 139583862445/45537549124*710647^(1/12) 9421138449779234 a001 53316291173/17393796001*710647^(1/12) 9421138449779234 a001 20365011074/6643838879*710647^(1/12) 9421138449779234 a001 7778742049/2537720636*710647^(1/12) 9421138449779234 a001 2971215073/969323029*710647^(1/12) 9421138449779234 a001 1134903170/370248451*710647^(1/12) 9421138449779235 a001 433494437/141422324*710647^(1/12) 9421138449779238 a001 165580141/54018521*710647^(1/12) 9421138449779257 a001 63245986/20633239*710647^(1/12) 9421138449779285 a001 5702887/4106118243*1860498^(11/18) 9421138449779335 a001 7465176/5374978561*1860498^(11/18) 9421138449779342 a001 39088169/28143753123*1860498^(11/18) 9421138449779343 a001 14619165/10525900321*1860498^(11/18) 9421138449779343 a001 133957148/96450076809*1860498^(11/18) 9421138449779343 a001 701408733/505019158607*1860498^(11/18) 9421138449779343 a001 1836311903/1322157322203*1860498^(11/18) 9421138449779343 a001 14930208/10749853441*1860498^(11/18) 9421138449779343 a001 12586269025/9062201101803*1860498^(11/18) 9421138449779343 a001 32951280099/23725150497407*1860498^(11/18) 9421138449779343 a001 10182505537/7331474697802*1860498^(11/18) 9421138449779343 a001 7778742049/5600748293801*1860498^(11/18) 9421138449779343 a001 2971215073/2139295485799*1860498^(11/18) 9421138449779343 a001 567451585/408569081798*1860498^(11/18) 9421138449779343 a001 433494437/312119004989*1860498^(11/18) 9421138449779343 a001 165580141/119218851371*1860498^(11/18) 9421138449779343 a001 31622993/22768774562*1860498^(11/18) 9421138449779346 a001 24157817/17393796001*1860498^(11/18) 9421138449779365 a001 9227465/6643838879*1860498^(11/18) 9421138449779389 a001 24157817/7881196*710647^(1/12) 9421138449779399 a001 2178309/17393796001*1860498^(7/9) 9421138449779495 a001 1762289/1268860318*1860498^(11/18) 9421138449779551 a001 1346269/1860498*710647^(4/21) 9421138449779599 a001 14930352/3010349*710647^(1/21) 9421138449779627 a001 1346269/7881196*1860498^(5/18) 9421138449779739 a001 1597/12752044*1860498^(7/9) 9421138449779759 a001 1346269/3010349*817138163596^(1/9) 9421138449779759 a001 1346269/3010349*87403803^(1/6) 9421138449779788 a001 14930352/119218851371*1860498^(7/9) 9421138449779795 a001 39088169/312119004989*1860498^(7/9) 9421138449779796 a001 102334155/817138163596*1860498^(7/9) 9421138449779797 a001 267914296/2139295485799*1860498^(7/9) 9421138449779797 a001 701408733/5600748293801*1860498^(7/9) 9421138449779797 a001 1836311903/14662949395604*1860498^(7/9) 9421138449779797 a001 2971215073/23725150497407*1860498^(7/9) 9421138449779797 a001 1134903170/9062201101803*1860498^(7/9) 9421138449779797 a001 433494437/3461452808002*1860498^(7/9) 9421138449779797 a001 165580141/1322157322203*1860498^(7/9) 9421138449779797 a001 63245986/505019158607*1860498^(7/9) 9421138449779800 a001 24157817/192900153618*1860498^(7/9) 9421138449779819 a001 9227465/73681302247*1860498^(7/9) 9421138449779853 a001 726103/64300051206*1860498^(17/18) 9421138449779928 a001 1346269/87403803*1860498^(4/9) 9421138449779948 a001 3524578/28143753123*1860498^(7/9) 9421138449780055 a001 514229/599074578*1149851^(2/3) 9421138449780192 a001 5702887/505019158607*1860498^(17/18) 9421138449780242 a001 4976784/440719107401*1860498^(17/18) 9421138449780249 a001 39088169/3461452808002*1860498^(17/18) 9421138449780250 a001 34111385/3020733700601*1860498^(17/18) 9421138449780250 a001 267914296/23725150497407*1860498^(17/18) 9421138449780250 a001 165580141/14662949395604*1860498^(17/18) 9421138449780251 a001 63245986/5600748293801*1860498^(17/18) 9421138449780253 a001 24157817/2139295485799*1860498^(17/18) 9421138449780272 a001 9227465/817138163596*1860498^(17/18) 9421138449780296 a001 9227465/3010349*710647^(1/12) 9421138449780383 a001 1346269/969323029*1860498^(11/18) 9421138449780402 a001 3524578/312119004989*1860498^(17/18) 9421138449780836 a001 1346269/10749957122*1860498^(7/9) 9421138449780988 a001 3524578/4870847*710647^(4/21) 9421138449781197 a001 9227465/12752043*710647^(4/21) 9421138449781228 a001 24157817/33385282*710647^(4/21) 9421138449781232 a001 63245986/87403803*710647^(4/21) 9421138449781233 a001 165580141/228826127*710647^(4/21) 9421138449781233 a001 433494437/599074578*710647^(4/21) 9421138449781233 a001 1134903170/1568397607*710647^(4/21) 9421138449781233 a001 2971215073/4106118243*710647^(4/21) 9421138449781233 a001 7778742049/10749957122*710647^(4/21) 9421138449781233 a001 20365011074/28143753123*710647^(4/21) 9421138449781233 a001 53316291173/73681302247*710647^(4/21) 9421138449781233 a001 139583862445/192900153618*710647^(4/21) 9421138449781233 a001 365435296162/505019158607*710647^(4/21) 9421138449781233 a001 10610209857723/14662949395604*710647^(4/21) 9421138449781233 a001 591286729879/817138163596*710647^(4/21) 9421138449781233 a001 225851433717/312119004989*710647^(4/21) 9421138449781233 a001 86267571272/119218851371*710647^(4/21) 9421138449781233 a001 32951280099/45537549124*710647^(4/21) 9421138449781233 a001 12586269025/17393796001*710647^(4/21) 9421138449781233 a001 4807526976/6643838879*710647^(4/21) 9421138449781233 a001 1836311903/2537720636*710647^(4/21) 9421138449781233 a001 701408733/969323029*710647^(4/21) 9421138449781233 a001 267914296/370248451*710647^(4/21) 9421138449781233 a001 102334155/141422324*710647^(4/21) 9421138449781235 a001 39088169/54018521*710647^(4/21) 9421138449781247 a001 14930352/20633239*710647^(4/21) 9421138449781290 a001 1346269/119218851371*1860498^(17/18) 9421138449781327 a001 5702887/7881196*710647^(4/21) 9421138449781328 a001 208010/1970299*710647^(1/3) 9421138449781876 a001 2178309/3010349*710647^(4/21) 9421138449782050 a001 514229/1860498*7881196^(2/9) 9421138449782084 a001 514229/1860498*312119004989^(2/15) 9421138449782084 a001 832040/1149851*23725150497407^(1/12) 9421138449782084 a001 832040/1149851*10749957122^(1/9) 9421138449782084 a001 514229/1860498*1568397607^(1/6) 9421138449782084 a001 832040/1149851*228826127^(2/15) 9421138449782150 a001 832040/1149851*4870847^(1/6) 9421138449783523 a001 2178309/20633239*710647^(1/3) 9421138449783843 a001 5702887/54018521*710647^(1/3) 9421138449783845 a001 832040/54018521*710647^(10/21) 9421138449783890 a001 3732588/35355581*710647^(1/3) 9421138449783897 a001 39088169/370248451*710647^(1/3) 9421138449783898 a001 102334155/969323029*710647^(1/3) 9421138449783898 a001 66978574/634430159*710647^(1/3) 9421138449783898 a001 701408733/6643838879*710647^(1/3) 9421138449783898 a001 1836311903/17393796001*710647^(1/3) 9421138449783898 a001 1201881744/11384387281*710647^(1/3) 9421138449783898 a001 12586269025/119218851371*710647^(1/3) 9421138449783898 a001 32951280099/312119004989*710647^(1/3) 9421138449783898 a001 21566892818/204284540899*710647^(1/3) 9421138449783898 a001 225851433717/2139295485799*710647^(1/3) 9421138449783898 a001 182717648081/1730726404001*710647^(1/3) 9421138449783898 a001 139583862445/1322157322203*710647^(1/3) 9421138449783898 a001 53316291173/505019158607*710647^(1/3) 9421138449783898 a001 10182505537/96450076809*710647^(1/3) 9421138449783898 a001 7778742049/73681302247*710647^(1/3) 9421138449783898 a001 2971215073/28143753123*710647^(1/3) 9421138449783898 a001 567451585/5374978561*710647^(1/3) 9421138449783898 a001 433494437/4106118243*710647^(1/3) 9421138449783898 a001 165580141/1568397607*710647^(1/3) 9421138449783898 a001 31622993/299537289*710647^(1/3) 9421138449783901 a001 24157817/228826127*710647^(1/3) 9421138449783919 a001 9227465/87403803*710647^(1/3) 9421138449784041 a001 1762289/16692641*710647^(1/3) 9421138449784402 a001 514229/4870847*20633239^(4/15) 9421138449784406 a001 2178309/1149851*20633239^(2/21) 9421138449784408 a001 514229/4870847*17393796001^(4/21) 9421138449784408 a001 2178309/1149851*3461452808002^(1/18) 9421138449784408 a001 514229/4870847*505019158607^(1/6) 9421138449784408 a001 2178309/1149851*28143753123^(1/15) 9421138449784408 a001 514229/4870847*599074578^(2/9) 9421138449784408 a001 2178309/1149851*228826127^(1/12) 9421138449784524 a001 514229/4870847*4870847^(7/24) 9421138449784610 a001 514229/7881196*3010349^(1/3) 9421138449784670 a001 514229/73681302247*7881196^(8/9) 9421138449784711 a001 2178309/1149851*1860498^(1/9) 9421138449784721 a001 514229/370248451*7881196^(5/9) 9421138449784747 a001 514229/12752043*45537549124^(2/9) 9421138449784764 a001 5702887/1149851*4870847^(1/24) 9421138449784767 a001 514229/12752043*12752043^(1/3) 9421138449784784 a001 514229/505019158607*20633239^(20/21) 9421138449784786 a001 514229/119218851371*20633239^(13/15) 9421138449784787 a001 514229/45537549124*20633239^(17/21) 9421138449784788 a001 514229/33385282*20633239^(8/21) 9421138449784791 a001 514229/4106118243*20633239^(2/3) 9421138449784794 a001 514229/370248451*20633239^(11/21) 9421138449784795 a001 514229/141422324*20633239^(7/15) 9421138449784797 a001 514229/33385282*23725150497407^(5/24) 9421138449784797 a001 514229/33385282*3461452808002^(2/9) 9421138449784797 a001 514229/33385282*28143753123^(4/15) 9421138449784797 a001 514229/33385282*10749957122^(5/18) 9421138449784797 a001 514229/33385282*228826127^(1/3) 9421138449784804 a001 514229/87403803*4106118243^(1/3) 9421138449784805 a001 514229/228826127*141422324^(4/9) 9421138449784805 a001 514229/119218851371*141422324^(7/9) 9421138449784805 a001 514229/228826127*73681302247^(1/3) 9421138449784805 a001 514229/28143753123*370248451^(2/3) 9421138449784805 a001 514229/599074578*1322157322203^(1/3) 9421138449784805 a001 514229/1568397607*23725150497407^(1/3) 9421138449784805 a001 514229/1568397607*505019158607^(8/21) 9421138449784805 a001 514229/1568397607*10749957122^(4/9) 9421138449784805 a001 514229/4106118243*17393796001^(10/21) 9421138449784805 a001 514229/4106118243*3461452808002^(7/18) 9421138449784805 a001 514229/4106118243*505019158607^(5/12) 9421138449784805 a001 514229/4106118243*28143753123^(7/15) 9421138449784805 a001 514229/192900153618*6643838879^(2/3) 9421138449784805 a001 514229/10749957122*817138163596^(4/9) 9421138449784805 a001 514229/3461452808002*17393796001^(16/21) 9421138449784805 a001 514229/119218851371*17393796001^(13/21) 9421138449784805 a001 514229/73681302247*312119004989^(8/15) 9421138449784805 a001 514229/73681302247*23725150497407^(11/24) 9421138449784805 a001 514229/1322157322203*119218851371^(2/3) 9421138449784805 a001 514229/14662949395604*312119004989^(11/15) 9421138449784805 a001 514229/505019158607*3461452808002^(5/9) 9421138449784805 a001 514229/9062201101803*2139295485799^(2/3) 9421138449784805 a001 514229/3461452808002*23725150497407^(7/12) 9421138449784805 a001 514229/23725150497407*9062201101803^(2/3) 9421138449784805 a001 514229/3461452808002*505019158607^(2/3) 9421138449784805 a001 514229/119218851371*505019158607^(13/24) 9421138449784805 a001 514229/119218851371*73681302247^(7/12) 9421138449784805 a001 514229/45537549124*45537549124^(5/9) 9421138449784805 a001 514229/505019158607*28143753123^(2/3) 9421138449784805 a001 514229/73681302247*10749957122^(11/18) 9421138449784805 a001 514229/3461452808002*10749957122^(7/9) 9421138449784805 a001 514229/5600748293801*4106118243^(5/6) 9421138449784805 a001 514229/73681302247*1568397607^(2/3) 9421138449784805 a001 514229/14662949395604*1568397607^(11/12) 9421138449784805 a001 514229/969323029*5600748293801^(1/3) 9421138449784805 a001 514229/4106118243*599074578^(5/9) 9421138449784805 a001 514229/119218851371*599074578^(13/18) 9421138449784805 a001 514229/3461452808002*599074578^(8/9) 9421138449784805 a001 514229/370248451*312119004989^(1/3) 9421138449784805 a001 514229/370248451*1568397607^(5/12) 9421138449784805 a001 514229/1568397607*228826127^(8/15) 9421138449784805 a001 514229/4106118243*228826127^(7/12) 9421138449784805 a001 514229/45537549124*228826127^(17/24) 9421138449784805 a001 514229/73681302247*228826127^(11/15) 9421138449784805 a001 514229/505019158607*228826127^(5/6) 9421138449784805 a001 514229/370248451*228826127^(11/24) 9421138449784805 a001 514229/3461452808002*228826127^(14/15) 9421138449784805 a001 514229/5600748293801*228826127^(23/24) 9421138449784806 a001 514229/141422324*17393796001^(1/3) 9421138449784806 a001 514229/141422324*505019158607^(7/24) 9421138449784806 a001 514229/141422324*599074578^(7/18) 9421138449784806 a001 514229/10749957122*87403803^(2/3) 9421138449784808 a001 514229/54018521*969323029^(1/3) 9421138449784826 a001 514229/20633239*54018521^(1/3) 9421138449784854 a001 514229/45537549124*12752043^(5/6) 9421138449784880 a001 1346269/12752043*710647^(1/3) 9421138449784955 a001 3524578/1149851*20633239^(1/15) 9421138449784957 a001 3524578/1149851*17393796001^(1/21) 9421138449784957 a001 514229/7881196*9062201101803^(1/6) 9421138449784957 a001 3524578/1149851*505019158607^(1/24) 9421138449784957 a001 3524578/1149851*599074578^(1/18) 9421138449784962 a001 514229/33385282*4870847^(5/12) 9421138449785020 a001 514229/228826127*4870847^(13/24) 9421138449785070 a001 514229/1568397607*4870847^(2/3) 9421138449785120 a001 514229/10749957122*4870847^(19/24) 9421138449785169 a001 514229/73681302247*4870847^(11/12) 9421138449785636 a001 5702887/1149851*710647^(1/21) 9421138449785637 a001 832040/1149851*710647^(4/21) 9421138449785840 a001 514229/3010349*20633239^(5/21) 9421138449785840 a001 832040/228826127*710647^(7/12) 9421138449785845 a001 1346269/1149851*141422324^(1/9) 9421138449785845 a001 1346269/1149851*73681302247^(1/12) 9421138449785845 a001 514229/3010349*28143753123^(1/6) 9421138449785845 a001 514229/3010349*228826127^(5/24) 9421138449786006 a001 514229/33385282*1860498^(4/9) 9421138449786166 a001 2178309/141422324*710647^(10/21) 9421138449786469 a001 514229/370248451*1860498^(11/18) 9421138449786505 a001 5702887/370248451*710647^(10/21) 9421138449786506 a001 832040/370248451*710647^(13/21) 9421138449786512 a001 3524578/1149851*710647^(1/12) 9421138449786555 a001 14930352/969323029*710647^(10/21) 9421138449786562 a001 39088169/2537720636*710647^(10/21) 9421138449786563 a001 102334155/6643838879*710647^(10/21) 9421138449786563 a001 9238424/599786069*710647^(10/21) 9421138449786563 a001 701408733/45537549124*710647^(10/21) 9421138449786563 a001 1836311903/119218851371*710647^(10/21) 9421138449786563 a001 4807526976/312119004989*710647^(10/21) 9421138449786563 a001 12586269025/817138163596*710647^(10/21) 9421138449786563 a001 32951280099/2139295485799*710647^(10/21) 9421138449786563 a001 86267571272/5600748293801*710647^(10/21) 9421138449786563 a001 7787980473/505618944676*710647^(10/21) 9421138449786563 a001 365435296162/23725150497407*710647^(10/21) 9421138449786563 a001 139583862445/9062201101803*710647^(10/21) 9421138449786563 a001 53316291173/3461452808002*710647^(10/21) 9421138449786563 a001 20365011074/1322157322203*710647^(10/21) 9421138449786563 a001 7778742049/505019158607*710647^(10/21) 9421138449786563 a001 2971215073/192900153618*710647^(10/21) 9421138449786563 a001 1134903170/73681302247*710647^(10/21) 9421138449786563 a001 433494437/28143753123*710647^(10/21) 9421138449786563 a001 165580141/10749957122*710647^(10/21) 9421138449786563 a001 63245986/4106118243*710647^(10/21) 9421138449786566 a001 24157817/1568397607*710647^(10/21) 9421138449786585 a001 9227465/599074578*710647^(10/21) 9421138449786601 a001 514229/3010349*1860498^(5/18) 9421138449786715 a001 3524578/228826127*710647^(10/21) 9421138449786922 a001 514229/4106118243*1860498^(7/9) 9421138449787376 a001 514229/45537549124*1860498^(17/18) 9421138449787601 a001 1346269/87403803*710647^(10/21) 9421138449788165 a001 726103/199691526*710647^(7/12) 9421138449788504 a001 5702887/1568397607*710647^(7/12) 9421138449788553 a001 4976784/1368706081*710647^(7/12) 9421138449788561 a001 39088169/10749957122*710647^(7/12) 9421138449788562 a001 831985/228811001*710647^(7/12) 9421138449788562 a001 267914296/73681302247*710647^(7/12) 9421138449788562 a001 233802911/64300051206*710647^(7/12) 9421138449788562 a001 1836311903/505019158607*710647^(7/12) 9421138449788562 a001 1602508992/440719107401*710647^(7/12) 9421138449788562 a001 12586269025/3461452808002*710647^(7/12) 9421138449788562 a001 10983760033/3020733700601*710647^(7/12) 9421138449788562 a001 86267571272/23725150497407*710647^(7/12) 9421138449788562 a001 53316291173/14662949395604*710647^(7/12) 9421138449788562 a001 20365011074/5600748293801*710647^(7/12) 9421138449788562 a001 7778742049/2139295485799*710647^(7/12) 9421138449788562 a001 2971215073/817138163596*710647^(7/12) 9421138449788562 a001 1134903170/312119004989*710647^(7/12) 9421138449788562 a001 433494437/119218851371*710647^(7/12) 9421138449788562 a001 165580141/45537549124*710647^(7/12) 9421138449788562 a001 63245986/17393796001*710647^(7/12) 9421138449788565 a001 24157817/6643838879*710647^(7/12) 9421138449788584 a001 9227465/2537720636*710647^(7/12) 9421138449788713 a001 3524578/969323029*710647^(7/12) 9421138449788831 a001 2178309/969323029*710647^(13/21) 9421138449789170 a001 5702887/2537720636*710647^(13/21) 9421138449789171 a001 610/1860499*710647^(16/21) 9421138449789220 a001 14930352/6643838879*710647^(13/21) 9421138449789227 a001 39088169/17393796001*710647^(13/21) 9421138449789228 a001 102334155/45537549124*710647^(13/21) 9421138449789228 a001 267914296/119218851371*710647^(13/21) 9421138449789228 a001 3524667/1568437211*710647^(13/21) 9421138449789228 a001 1836311903/817138163596*710647^(13/21) 9421138449789228 a001 4807526976/2139295485799*710647^(13/21) 9421138449789228 a001 12586269025/5600748293801*710647^(13/21) 9421138449789228 a001 32951280099/14662949395604*710647^(13/21) 9421138449789228 a001 53316291173/23725150497407*710647^(13/21) 9421138449789228 a001 20365011074/9062201101803*710647^(13/21) 9421138449789228 a001 7778742049/3461452808002*710647^(13/21) 9421138449789228 a001 2971215073/1322157322203*710647^(13/21) 9421138449789228 a001 1134903170/505019158607*710647^(13/21) 9421138449789228 a001 433494437/192900153618*710647^(13/21) 9421138449789228 a001 165580141/73681302247*710647^(13/21) 9421138449789228 a001 63245986/28143753123*710647^(13/21) 9421138449789231 a001 24157817/10749957122*710647^(13/21) 9421138449789250 a001 9227465/4106118243*710647^(13/21) 9421138449789380 a001 3524578/1568397607*710647^(13/21) 9421138449789601 a001 1346269/370248451*710647^(7/12) 9421138449790268 a001 1346269/599074578*710647^(13/21) 9421138449790504 a001 832040/6643838879*710647^(5/6) 9421138449790627 a001 514229/4870847*710647^(1/3) 9421138449791496 a001 2178309/6643838879*710647^(16/21) 9421138449791835 a001 5702887/17393796001*710647^(16/21) 9421138449791836 a001 832040/17393796001*710647^(19/21) 9421138449791885 a001 3732588/11384387281*710647^(16/21) 9421138449791892 a001 39088169/119218851371*710647^(16/21) 9421138449791893 a001 9303105/28374454999*710647^(16/21) 9421138449791893 a001 66978574/204284540899*710647^(16/21) 9421138449791893 a001 701408733/2139295485799*710647^(16/21) 9421138449791893 a001 1836311903/5600748293801*710647^(16/21) 9421138449791893 a001 1201881744/3665737348901*710647^(16/21) 9421138449791893 a001 7778742049/23725150497407*710647^(16/21) 9421138449791893 a001 2971215073/9062201101803*710647^(16/21) 9421138449791893 a001 567451585/1730726404001*710647^(16/21) 9421138449791893 a001 433494437/1322157322203*710647^(16/21) 9421138449791893 a001 165580141/505019158607*710647^(16/21) 9421138449791893 a001 31622993/96450076809*710647^(16/21) 9421138449791896 a001 24157817/73681302247*710647^(16/21) 9421138449791915 a001 9227465/28143753123*710647^(16/21) 9421138449791931 a001 514229/1149851*817138163596^(1/9) 9421138449791931 a001 514229/1149851*87403803^(1/6) 9421138449792045 a001 1762289/5374978561*710647^(16/21) 9421138449792828 a001 2178309/17393796001*710647^(5/6) 9421138449792933 a001 1346269/4106118243*710647^(16/21) 9421138449793168 a001 1597/12752044*710647^(5/6) 9421138449793217 a001 14930352/119218851371*710647^(5/6) 9421138449793224 a001 39088169/312119004989*710647^(5/6) 9421138449793225 a001 102334155/817138163596*710647^(5/6) 9421138449793226 a001 267914296/2139295485799*710647^(5/6) 9421138449793226 a001 701408733/5600748293801*710647^(5/6) 9421138449793226 a001 1836311903/14662949395604*710647^(5/6) 9421138449793226 a001 2971215073/23725150497407*710647^(5/6) 9421138449793226 a001 1134903170/9062201101803*710647^(5/6) 9421138449793226 a001 433494437/3461452808002*710647^(5/6) 9421138449793226 a001 165580141/1322157322203*710647^(5/6) 9421138449793226 a001 63245986/505019158607*710647^(5/6) 9421138449793229 a001 24157817/192900153618*710647^(5/6) 9421138449793248 a001 9227465/73681302247*710647^(5/6) 9421138449793377 a001 3524578/28143753123*710647^(5/6) 9421138449793680 a001 514229/33385282*710647^(10/21) 9421138449794161 a001 2178309/45537549124*710647^(19/21) 9421138449794265 a001 1346269/10749957122*710647^(5/6) 9421138449794500 a001 5702887/119218851371*710647^(19/21) 9421138449794550 a001 14930352/312119004989*710647^(19/21) 9421138449794557 a001 4181/87403804*710647^(19/21) 9421138449794558 a001 102334155/2139295485799*710647^(19/21) 9421138449794558 a001 267914296/5600748293801*710647^(19/21) 9421138449794558 a001 701408733/14662949395604*710647^(19/21) 9421138449794558 a001 1134903170/23725150497407*710647^(19/21) 9421138449794558 a001 433494437/9062201101803*710647^(19/21) 9421138449794558 a001 165580141/3461452808002*710647^(19/21) 9421138449794558 a001 63245986/1322157322203*710647^(19/21) 9421138449794561 a001 24157817/505019158607*710647^(19/21) 9421138449794580 a001 9227465/192900153618*710647^(19/21) 9421138449794710 a001 3524578/73681302247*710647^(19/21) 9421138449795598 a001 1346269/28143753123*710647^(19/21) 9421138449795688 a001 514229/141422324*710647^(7/12) 9421138449795871 a001 726103/620166*271443^(1/6) 9421138449796353 a001 514229/228826127*710647^(13/21) 9421138449798535 a001 5702887/4870847*271443^(1/6) 9421138449798924 a001 4976784/4250681*271443^(1/6) 9421138449798981 a001 39088169/33385282*271443^(1/6) 9421138449798989 a001 34111385/29134601*271443^(1/6) 9421138449798990 a001 267914296/228826127*271443^(1/6) 9421138449798990 a001 233802911/199691526*271443^(1/6) 9421138449798990 a001 1836311903/1568397607*271443^(1/6) 9421138449798990 a001 1602508992/1368706081*271443^(1/6) 9421138449798990 a001 12586269025/10749957122*271443^(1/6) 9421138449798990 a001 10983760033/9381251041*271443^(1/6) 9421138449798990 a001 86267571272/73681302247*271443^(1/6) 9421138449798990 a001 75283811239/64300051206*271443^(1/6) 9421138449798990 a001 2504730781961/2139295485799*271443^(1/6) 9421138449798990 a001 365435296162/312119004989*271443^(1/6) 9421138449798990 a001 139583862445/119218851371*271443^(1/6) 9421138449798990 a001 53316291173/45537549124*271443^(1/6) 9421138449798990 a001 20365011074/17393796001*271443^(1/6) 9421138449798990 a001 7778742049/6643838879*271443^(1/6) 9421138449798990 a001 2971215073/2537720636*271443^(1/6) 9421138449798990 a001 1134903170/969323029*271443^(1/6) 9421138449798990 a001 433494437/370248451*271443^(1/6) 9421138449798991 a001 165580141/141422324*271443^(1/6) 9421138449798994 a001 63245986/54018521*271443^(1/6) 9421138449799016 a001 24157817/20633239*271443^(1/6) 9421138449799019 a001 514229/1568397607*710647^(16/21) 9421138449799164 a001 9227465/7881196*271443^(1/6) 9421138449799996 a001 75025/599074578*167761^(14/15) 9421138449800182 a001 3524578/3010349*271443^(1/6) 9421138449800351 a001 514229/4106118243*710647^(5/6) 9421138449801684 a001 514229/10749957122*710647^(19/21) 9421138449807155 a001 1346269/1149851*271443^(1/6) 9421138449807830 a001 196418/710647*7881196^(2/9) 9421138449807864 a001 196418/710647*312119004989^(2/15) 9421138449807864 a001 317811/439204*23725150497407^(1/12) 9421138449807864 a001 317811/439204*10749957122^(1/9) 9421138449807864 a001 196418/710647*1568397607^(1/6) 9421138449807864 a001 317811/439204*228826127^(2/15) 9421138449807865 a001 3524578/710647*103682^(1/18) 9421138449807930 a001 317811/439204*4870847^(1/6) 9421138449811417 a001 317811/439204*710647^(4/21) 9421138449821769 a001 196418/228826127*1149851^(2/3) 9421138449823668 a001 9227465/1860498*103682^(1/18) 9421138449823792 a001 98209/930249*20633239^(4/15) 9421138449823795 a001 208010/109801*20633239^(2/21) 9421138449823797 a001 98209/930249*17393796001^(4/21) 9421138449823797 a001 98209/930249*505019158607^(1/6) 9421138449823797 a001 208010/109801*3461452808002^(1/18) 9421138449823797 a001 208010/109801*28143753123^(1/15) 9421138449823797 a001 98209/930249*599074578^(2/9) 9421138449823797 a001 208010/109801*228826127^(1/12) 9421138449823913 a001 98209/930249*4870847^(7/24) 9421138449824100 a001 208010/109801*1860498^(1/9) 9421138449825974 a001 24157817/4870847*103682^(1/18) 9421138449826122 a001 196418/4870847*45537549124^(2/9) 9421138449826139 a001 2178309/439204*4870847^(1/24) 9421138449826141 a001 196418/4870847*12752043^(1/3) 9421138449826310 a001 63245986/12752043*103682^(1/18) 9421138449826360 a001 165580141/33385282*103682^(1/18) 9421138449826367 a001 433494437/87403803*103682^(1/18) 9421138449826368 a001 1134903170/228826127*103682^(1/18) 9421138449826368 a001 2971215073/599074578*103682^(1/18) 9421138449826368 a001 7778742049/1568397607*103682^(1/18) 9421138449826368 a001 20365011074/4106118243*103682^(1/18) 9421138449826368 a001 53316291173/10749957122*103682^(1/18) 9421138449826368 a001 139583862445/28143753123*103682^(1/18) 9421138449826368 a001 365435296162/73681302247*103682^(1/18) 9421138449826368 a001 956722026041/192900153618*103682^(1/18) 9421138449826368 a001 2504730781961/505019158607*103682^(1/18) 9421138449826368 a001 10610209857723/2139295485799*103682^(1/18) 9421138449826368 a001 4052739537881/817138163596*103682^(1/18) 9421138449826368 a001 140728068720/28374454999*103682^(1/18) 9421138449826368 a001 591286729879/119218851371*103682^(1/18) 9421138449826368 a001 225851433717/45537549124*103682^(1/18) 9421138449826368 a001 86267571272/17393796001*103682^(1/18) 9421138449826368 a001 32951280099/6643838879*103682^(1/18) 9421138449826368 a001 1144206275/230701876*103682^(1/18) 9421138449826368 a001 4807526976/969323029*103682^(1/18) 9421138449826368 a001 1836311903/370248451*103682^(1/18) 9421138449826368 a001 701408733/141422324*103682^(1/18) 9421138449826371 a001 267914296/54018521*103682^(1/18) 9421138449826384 a001 196418/28143753123*7881196^(8/9) 9421138449826390 a001 9303105/1875749*103682^(1/18) 9421138449826435 a001 98209/70711162*7881196^(5/9) 9421138449826453 a001 196418/12752043*20633239^(8/21) 9421138449826461 a001 196418/12752043*23725150497407^(5/24) 9421138449826461 a001 196418/12752043*3461452808002^(2/9) 9421138449826461 a001 196418/12752043*28143753123^(4/15) 9421138449826461 a001 196418/12752043*10749957122^(5/18) 9421138449826461 a001 196418/12752043*228826127^(1/3) 9421138449826498 a001 98209/96450076809*20633239^(20/21) 9421138449826500 a001 98209/22768774562*20633239^(13/15) 9421138449826501 a001 196418/17393796001*20633239^(17/21) 9421138449826504 a001 196418/1568397607*20633239^(2/3) 9421138449826508 a001 98209/70711162*20633239^(11/21) 9421138449826511 a001 98209/16692641*4106118243^(1/3) 9421138449826512 a001 196418/54018521*20633239^(7/15) 9421138449826518 a001 196418/87403803*141422324^(4/9) 9421138449826518 a001 196418/87403803*73681302247^(1/3) 9421138449826518 a001 39088169/7881196*103682^(1/18) 9421138449826519 a001 98209/22768774562*141422324^(7/9) 9421138449826519 a001 196418/228826127*1322157322203^(1/3) 9421138449826519 a001 98209/5374978561*370248451^(2/3) 9421138449826519 a001 98209/299537289*23725150497407^(1/3) 9421138449826519 a001 98209/299537289*505019158607^(8/21) 9421138449826519 a001 98209/299537289*10749957122^(4/9) 9421138449826519 a001 196418/1568397607*17393796001^(10/21) 9421138449826519 a001 196418/1568397607*3461452808002^(7/18) 9421138449826519 a001 196418/1568397607*505019158607^(5/12) 9421138449826519 a001 196418/1568397607*28143753123^(7/15) 9421138449826519 a001 196418/4106118243*817138163596^(4/9) 9421138449826519 a001 196418/73681302247*6643838879^(2/3) 9421138449826519 a001 196418/1322157322203*17393796001^(16/21) 9421138449826519 a001 98209/22768774562*17393796001^(13/21) 9421138449826519 a001 196418/28143753123*312119004989^(8/15) 9421138449826519 a001 196418/28143753123*23725150497407^(11/24) 9421138449826519 a001 196418/505019158607*119218851371^(2/3) 9421138449826519 a001 98209/96450076809*3461452808002^(5/9) 9421138449826519 a001 196418/5600748293801*312119004989^(11/15) 9421138449826519 a001 196418/1322157322203*23725150497407^(7/12) 9421138449826519 a001 196418/9062201101803*9062201101803^(2/3) 9421138449826519 a001 196418/23725150497407*3461452808002^(13/18) 9421138449826519 a001 196418/1322157322203*505019158607^(2/3) 9421138449826519 a001 196418/23725150497407*73681302247^(5/6) 9421138449826519 a001 98209/22768774562*505019158607^(13/24) 9421138449826519 a001 98209/22768774562*73681302247^(7/12) 9421138449826519 a001 98209/96450076809*28143753123^(2/3) 9421138449826519 a001 196418/23725150497407*28143753123^(13/15) 9421138449826519 a001 196418/17393796001*45537549124^(5/9) 9421138449826519 a001 196418/28143753123*10749957122^(11/18) 9421138449826519 a001 196418/1322157322203*10749957122^(7/9) 9421138449826519 a001 196418/2139295485799*4106118243^(5/6) 9421138449826519 a001 196418/28143753123*1568397607^(2/3) 9421138449826519 a001 196418/5600748293801*1568397607^(11/12) 9421138449826519 a001 196418/1568397607*599074578^(5/9) 9421138449826519 a001 98209/22768774562*599074578^(13/18) 9421138449826519 a001 196418/1322157322203*599074578^(8/9) 9421138449826519 a001 196418/370248451*5600748293801^(1/3) 9421138449826519 a001 98209/299537289*228826127^(8/15) 9421138449826519 a001 196418/1568397607*228826127^(7/12) 9421138449826519 a001 196418/17393796001*228826127^(17/24) 9421138449826519 a001 196418/28143753123*228826127^(11/15) 9421138449826519 a001 98209/96450076809*228826127^(5/6) 9421138449826519 a001 196418/1322157322203*228826127^(14/15) 9421138449826519 a001 196418/2139295485799*228826127^(23/24) 9421138449826520 a001 98209/70711162*312119004989^(1/3) 9421138449826520 a001 98209/70711162*1568397607^(5/12) 9421138449826520 a001 98209/70711162*228826127^(11/24) 9421138449826520 a001 196418/4106118243*87403803^(2/3) 9421138449826522 a001 196418/54018521*17393796001^(1/3) 9421138449826522 a001 196418/54018521*505019158607^(7/24) 9421138449826522 a001 196418/54018521*599074578^(7/18) 9421138449826541 a001 196418/20633239*969323029^(1/3) 9421138449826567 a001 196418/17393796001*12752043^(5/6) 9421138449826627 a001 196418/12752043*4870847^(5/12) 9421138449826670 a001 98209/3940598*54018521^(1/3) 9421138449826733 a001 196418/87403803*4870847^(13/24) 9421138449826784 a001 98209/299537289*4870847^(2/3) 9421138449826834 a001 196418/4106118243*4870847^(19/24) 9421138449826883 a001 196418/28143753123*4870847^(11/12) 9421138449827010 a001 2178309/439204*710647^(1/21) 9421138449827212 a001 196418/3010349*3010349^(1/3) 9421138449827399 a001 14930352/3010349*103682^(1/18) 9421138449827557 a001 1346269/439204*20633239^(1/15) 9421138449827559 a001 1346269/439204*17393796001^(1/21) 9421138449827559 a001 196418/3010349*9062201101803^(1/6) 9421138449827559 a001 1346269/439204*505019158607^(1/24) 9421138449827559 a001 1346269/439204*599074578^(1/18) 9421138449827671 a001 196418/12752043*1860498^(4/9) 9421138449828183 a001 98209/70711162*1860498^(11/18) 9421138449828636 a001 196418/1568397607*1860498^(7/9) 9421138449829090 a001 196418/17393796001*1860498^(17/18) 9421138449829113 a001 1346269/439204*710647^(1/12) 9421138449830016 a001 98209/930249*710647^(1/3) 9421138449833436 a001 5702887/1149851*103682^(1/18) 9421138449833639 a001 196418/1149851*20633239^(5/21) 9421138449833645 a001 514229/439204*141422324^(1/9) 9421138449833645 a001 514229/439204*73681302247^(1/12) 9421138449833645 a001 196418/1149851*28143753123^(1/6) 9421138449833645 a001 196418/1149851*228826127^(5/24) 9421138449834401 a001 196418/1149851*1860498^(5/18) 9421138449835345 a001 196418/12752043*710647^(10/21) 9421138449837404 a001 196418/54018521*710647^(7/12) 9421138449838066 a001 196418/87403803*710647^(13/21) 9421138449840732 a001 98209/299537289*710647^(16/21) 9421138449842065 a001 196418/1568397607*710647^(5/6) 9421138449843397 a001 196418/4106118243*710647^(19/21) 9421138449844267 a001 317811/141422324*271443^(2/3) 9421138449854955 a001 514229/439204*271443^(1/6) 9421138449860200 a001 832040/370248451*271443^(2/3) 9421138449860260 a001 98209/51841*39603^(5/33) 9421138449862525 a001 2178309/969323029*271443^(2/3) 9421138449862864 a001 5702887/2537720636*271443^(2/3) 9421138449862913 a001 14930352/6643838879*271443^(2/3) 9421138449862921 a001 39088169/17393796001*271443^(2/3) 9421138449862922 a001 102334155/45537549124*271443^(2/3) 9421138449862922 a001 267914296/119218851371*271443^(2/3) 9421138449862922 a001 3524667/1568437211*271443^(2/3) 9421138449862922 a001 1836311903/817138163596*271443^(2/3) 9421138449862922 a001 4807526976/2139295485799*271443^(2/3) 9421138449862922 a001 12586269025/5600748293801*271443^(2/3) 9421138449862922 a001 32951280099/14662949395604*271443^(2/3) 9421138449862922 a001 53316291173/23725150497407*271443^(2/3) 9421138449862922 a001 20365011074/9062201101803*271443^(2/3) 9421138449862922 a001 7778742049/3461452808002*271443^(2/3) 9421138449862922 a001 2971215073/1322157322203*271443^(2/3) 9421138449862922 a001 1134903170/505019158607*271443^(2/3) 9421138449862922 a001 433494437/192900153618*271443^(2/3) 9421138449862922 a001 165580141/73681302247*271443^(2/3) 9421138449862922 a001 63245986/28143753123*271443^(2/3) 9421138449862925 a001 24157817/10749957122*271443^(2/3) 9421138449862944 a001 9227465/4106118243*271443^(2/3) 9421138449863074 a001 3524578/1568397607*271443^(2/3) 9421138449863962 a001 1346269/599074578*271443^(2/3) 9421138449866950 a001 75025/54018521*167761^(11/15) 9421138449870047 a001 514229/228826127*271443^(2/3) 9421138449874810 a001 2178309/439204*103682^(1/18) 9421138449875359 a001 98209/219602*817138163596^(1/9) 9421138449875359 a001 98209/219602*87403803^(1/6) 9421138449893409 a001 196418/271443*103682^(2/9) 9421138449911760 a001 196418/87403803*271443^(2/3) 9421138449933500 a001 75025/4870847*167761^(8/15) 9421138449960903 a001 514229/710647*103682^(2/9) 9421138449970751 a001 1346269/1860498*103682^(2/9) 9421138449972187 a001 3524578/4870847*103682^(2/9) 9421138449972397 a001 9227465/12752043*103682^(2/9) 9421138449972427 a001 24157817/33385282*103682^(2/9) 9421138449972432 a001 63245986/87403803*103682^(2/9) 9421138449972433 a001 165580141/228826127*103682^(2/9) 9421138449972433 a001 433494437/599074578*103682^(2/9) 9421138449972433 a001 1134903170/1568397607*103682^(2/9) 9421138449972433 a001 2971215073/4106118243*103682^(2/9) 9421138449972433 a001 7778742049/10749957122*103682^(2/9) 9421138449972433 a001 20365011074/28143753123*103682^(2/9) 9421138449972433 a001 53316291173/73681302247*103682^(2/9) 9421138449972433 a001 139583862445/192900153618*103682^(2/9) 9421138449972433 a001 365435296162/505019158607*103682^(2/9) 9421138449972433 a001 10610209857723/14662949395604*103682^(2/9) 9421138449972433 a001 591286729879/817138163596*103682^(2/9) 9421138449972433 a001 225851433717/312119004989*103682^(2/9) 9421138449972433 a001 86267571272/119218851371*103682^(2/9) 9421138449972433 a001 32951280099/45537549124*103682^(2/9) 9421138449972433 a001 12586269025/17393796001*103682^(2/9) 9421138449972433 a001 4807526976/6643838879*103682^(2/9) 9421138449972433 a001 1836311903/2537720636*103682^(2/9) 9421138449972433 a001 701408733/969323029*103682^(2/9) 9421138449972433 a001 267914296/370248451*103682^(2/9) 9421138449972433 a001 102334155/141422324*103682^(2/9) 9421138449972435 a001 39088169/54018521*103682^(2/9) 9421138449972446 a001 14930352/20633239*103682^(2/9) 9421138449972526 a001 5702887/7881196*103682^(2/9) 9421138449973075 a001 2178309/3010349*103682^(2/9) 9421138449976837 a001 832040/1149851*103682^(2/9) 9421138449984533 a001 75025/271443*7881196^(2/9) 9421138449984567 a001 75025/271443*312119004989^(2/15) 9421138449984567 a001 121393/167761*23725150497407^(1/12) 9421138449984567 a001 121393/167761*10749957122^(1/9) 9421138449984567 a001 75025/271443*1568397607^(1/6) 9421138449984567 a001 121393/167761*228826127^(2/15) 9421138449984633 a001 121393/167761*4870847^(1/6) 9421138449988120 a001 121393/167761*710647^(4/21) 9421138449997760 a001 121393/1149851*103682^(7/18) 9421138450002617 a001 317811/439204*103682^(2/9) 9421138450014908 a001 1346269/271443*39603^(2/33) 9421138450049142 a001 317811/167761*167761^(2/15) 9421138450049686 a001 75025/439204*167761^(1/3) 9421138450093769 a001 75025/710647*20633239^(4/15) 9421138450093773 a001 317811/167761*20633239^(2/21) 9421138450093775 a001 75025/710647*17393796001^(4/21) 9421138450093775 a001 75025/710647*505019158607^(1/6) 9421138450093775 a001 317811/167761*3461452808002^(1/18) 9421138450093775 a001 317811/167761*28143753123^(1/15) 9421138450093775 a001 75025/710647*599074578^(2/9) 9421138450093775 a001 317811/167761*228826127^(1/12) 9421138450093891 a001 75025/710647*4870847^(7/24) 9421138450094078 a001 317811/167761*1860498^(1/9) 9421138450099994 a001 75025/710647*710647^(1/3) 9421138450100882 a001 317811/3010349*103682^(7/18) 9421138450107679 a001 75025/87403803*1149851^(2/3) 9421138450109709 a001 75025/1860498*45537549124^(2/9) 9421138450109725 a001 75640/15251*4870847^(1/24) 9421138450109728 a001 75025/1860498*12752043^(1/3) 9421138450110597 a001 75640/15251*710647^(1/21) 9421138450112025 a001 75025/4870847*20633239^(8/21) 9421138450112033 a001 75025/4870847*23725150497407^(5/24) 9421138450112033 a001 75025/4870847*3461452808002^(2/9) 9421138450112033 a001 75025/4870847*28143753123^(4/15) 9421138450112033 a001 75025/4870847*10749957122^(5/18) 9421138450112033 a001 75025/4870847*228826127^(1/3) 9421138450112199 a001 75025/4870847*4870847^(5/12) 9421138450112295 a001 75025/10749957122*7881196^(8/9) 9421138450112349 a001 75025/54018521*7881196^(5/9) 9421138450112372 a001 75025/12752043*4106118243^(1/3) 9421138450112409 a001 75025/73681302247*20633239^(20/21) 9421138450112411 a001 75025/17393796001*20633239^(13/15) 9421138450112412 a001 75025/6643838879*20633239^(17/21) 9421138450112416 a001 75025/599074578*20633239^(2/3) 9421138450112422 a001 75025/33385282*141422324^(4/9) 9421138450112422 a001 75025/33385282*73681302247^(1/3) 9421138450112422 a001 75025/54018521*20633239^(11/21) 9421138450112429 a001 75025/87403803*1322157322203^(1/3) 9421138450112430 a001 75025/17393796001*141422324^(7/9) 9421138450112430 a001 75025/228826127*23725150497407^(1/3) 9421138450112430 a001 75025/228826127*505019158607^(8/21) 9421138450112430 a001 75025/228826127*10749957122^(4/9) 9421138450112430 a001 75025/228826127*228826127^(8/15) 9421138450112430 a001 75025/4106118243*370248451^(2/3) 9421138450112430 a001 75025/599074578*17393796001^(10/21) 9421138450112430 a001 75025/599074578*3461452808002^(7/18) 9421138450112430 a001 75025/599074578*505019158607^(5/12) 9421138450112430 a001 75025/599074578*28143753123^(7/15) 9421138450112430 a001 75025/599074578*599074578^(5/9) 9421138450112430 a001 75025/1568397607*817138163596^(4/9) 9421138450112430 a001 75025/28143753123*6643838879^(2/3) 9421138450112430 a001 75025/10749957122*312119004989^(8/15) 9421138450112430 a001 75025/10749957122*23725150497407^(11/24) 9421138450112430 a001 75025/10749957122*10749957122^(11/18) 9421138450112430 a001 75025/14662949395604*17393796001^(19/21) 9421138450112430 a001 75025/505019158607*17393796001^(16/21) 9421138450112430 a001 75025/23725150497407*45537549124^(8/9) 9421138450112430 a001 75025/73681302247*3461452808002^(5/9) 9421138450112430 a001 75025/192900153618*119218851371^(2/3) 9421138450112430 a001 75025/2139295485799*312119004989^(11/15) 9421138450112430 a001 75025/505019158607*23725150497407^(7/12) 9421138450112430 a001 75025/505019158607*505019158607^(2/3) 9421138450112430 a001 75025/1322157322203*2139295485799^(2/3) 9421138450112430 a001 75025/3461452808002*9062201101803^(2/3) 9421138450112430 a001 75025/23725150497407*23725150497407^(17/24) 9421138450112430 a001 75025/14662949395604*505019158607^(19/24) 9421138450112430 a001 75025/23725150497407*505019158607^(17/21) 9421138450112430 a001 75025/9062201101803*73681302247^(5/6) 9421138450112430 a001 75025/73681302247*28143753123^(2/3) 9421138450112430 a001 75025/9062201101803*28143753123^(13/15) 9421138450112430 a001 75025/17393796001*17393796001^(13/21) 9421138450112430 a001 75025/17393796001*505019158607^(13/24) 9421138450112430 a001 75025/17393796001*73681302247^(7/12) 9421138450112430 a001 75025/505019158607*10749957122^(7/9) 9421138450112430 a001 75025/23725150497407*10749957122^(17/18) 9421138450112430 a001 75025/6643838879*45537549124^(5/9) 9421138450112430 a001 75025/817138163596*4106118243^(5/6) 9421138450112430 a001 75025/10749957122*1568397607^(2/3) 9421138450112430 a001 75025/2139295485799*1568397607^(11/12) 9421138450112430 a001 75025/17393796001*599074578^(13/18) 9421138450112430 a001 75025/505019158607*599074578^(8/9) 9421138450112430 a001 75025/599074578*228826127^(7/12) 9421138450112430 a001 75025/6643838879*228826127^(17/24) 9421138450112430 a001 75025/10749957122*228826127^(11/15) 9421138450112430 a001 75025/73681302247*228826127^(5/6) 9421138450112430 a001 75025/505019158607*228826127^(14/15) 9421138450112430 a001 75025/817138163596*228826127^(23/24) 9421138450112431 a001 75025/141422324*5600748293801^(1/3) 9421138450112431 a001 75025/1568397607*87403803^(2/3) 9421138450112434 a001 75025/54018521*312119004989^(1/3) 9421138450112434 a001 75025/54018521*1568397607^(5/12) 9421138450112434 a001 75025/54018521*228826127^(11/24) 9421138450112442 a001 75025/20633239*20633239^(7/15) 9421138450112452 a001 75025/20633239*17393796001^(1/3) 9421138450112452 a001 75025/20633239*505019158607^(7/24) 9421138450112452 a001 75025/20633239*599074578^(7/18) 9421138450112479 a001 75025/6643838879*12752043^(5/6) 9421138450112582 a001 75025/7881196*969323029^(1/3) 9421138450112637 a001 75025/33385282*4870847^(13/24) 9421138450112695 a001 75025/228826127*4870847^(2/3) 9421138450112745 a001 75025/1568397607*4870847^(19/24) 9421138450112794 a001 75025/10749957122*4870847^(11/12) 9421138450113243 a001 75025/4870847*1860498^(4/9) 9421138450113469 a001 75025/3010349*54018521^(1/3) 9421138450114097 a001 75025/54018521*1860498^(11/18) 9421138450114547 a001 75025/599074578*1860498^(7/9) 9421138450115001 a001 75025/6643838879*1860498^(17/18) 9421138450115927 a001 208010/1970299*103682^(7/18) 9421138450118122 a001 2178309/20633239*103682^(7/18) 9421138450118443 a001 5702887/54018521*103682^(7/18) 9421138450118489 a001 3732588/35355581*103682^(7/18) 9421138450118496 a001 39088169/370248451*103682^(7/18) 9421138450118497 a001 102334155/969323029*103682^(7/18) 9421138450118497 a001 66978574/634430159*103682^(7/18) 9421138450118497 a001 701408733/6643838879*103682^(7/18) 9421138450118497 a001 1836311903/17393796001*103682^(7/18) 9421138450118497 a001 1201881744/11384387281*103682^(7/18) 9421138450118497 a001 12586269025/119218851371*103682^(7/18) 9421138450118497 a001 32951280099/312119004989*103682^(7/18) 9421138450118497 a001 21566892818/204284540899*103682^(7/18) 9421138450118497 a001 225851433717/2139295485799*103682^(7/18) 9421138450118497 a001 182717648081/1730726404001*103682^(7/18) 9421138450118497 a001 139583862445/1322157322203*103682^(7/18) 9421138450118497 a001 53316291173/505019158607*103682^(7/18) 9421138450118497 a001 10182505537/96450076809*103682^(7/18) 9421138450118497 a001 7778742049/73681302247*103682^(7/18) 9421138450118497 a001 2971215073/28143753123*103682^(7/18) 9421138450118497 a001 567451585/5374978561*103682^(7/18) 9421138450118497 a001 433494437/4106118243*103682^(7/18) 9421138450118497 a001 165580141/1568397607*103682^(7/18) 9421138450118498 a001 31622993/299537289*103682^(7/18) 9421138450118500 a001 24157817/228826127*103682^(7/18) 9421138450118518 a001 9227465/87403803*103682^(7/18) 9421138450118641 a001 1762289/16692641*103682^(7/18) 9421138450119209 a001 75025/1149851*3010349^(1/3) 9421138450119479 a001 1346269/12752043*103682^(7/18) 9421138450119554 a001 514229/167761*20633239^(1/15) 9421138450119556 a001 75025/1149851*9062201101803^(1/6) 9421138450119556 a001 514229/167761*17393796001^(1/21) 9421138450119556 a001 514229/167761*505019158607^(1/24) 9421138450119556 a001 514229/167761*599074578^(1/18) 9421138450120917 a001 75025/4870847*710647^(10/21) 9421138450121110 a001 514229/167761*710647^(1/12) 9421138450123335 a001 75025/20633239*710647^(7/12) 9421138450123970 a001 75025/33385282*710647^(13/21) 9421138450125226 a001 514229/4870847*103682^(7/18) 9421138450126643 a001 75025/228826127*710647^(16/21) 9421138450127976 a001 75025/599074578*710647^(5/6) 9421138450129309 a001 75025/1568397607*710647^(19/21) 9421138450136850 a001 121393/7881196*103682^(5/9) 9421138450158397 a001 75640/15251*103682^(1/18) 9421138450161264 a001 75025/439204*20633239^(5/21) 9421138450161270 a001 196418/167761*141422324^(1/9) 9421138450161270 a001 75025/439204*28143753123^(1/6) 9421138450161270 a001 196418/167761*73681302247^(1/12) 9421138450161270 a001 75025/439204*228826127^(5/24) 9421138450162026 a001 75025/439204*1860498^(5/18) 9421138450164615 a001 98209/930249*103682^(7/18) 9421138450179320 a001 121393/167761*103682^(2/9) 9421138450182580 a001 196418/167761*271443^(1/6) 9421138450188191 a001 514229/64079*9349^(1/57) 9421138450190174 a001 2178309/439204*39603^(2/33) 9421138450197664 a001 75025/33385282*271443^(2/3) 9421138450245929 a001 10959/711491*103682^(5/9) 9421138450261844 a001 832040/54018521*103682^(5/9) 9421138450264166 a001 2178309/141422324*103682^(5/9) 9421138450264504 a001 5702887/370248451*103682^(5/9) 9421138450264554 a001 14930352/969323029*103682^(5/9) 9421138450264561 a001 39088169/2537720636*103682^(5/9) 9421138450264562 a001 102334155/6643838879*103682^(5/9) 9421138450264562 a001 9238424/599786069*103682^(5/9) 9421138450264562 a001 701408733/45537549124*103682^(5/9) 9421138450264562 a001 1836311903/119218851371*103682^(5/9) 9421138450264562 a001 4807526976/312119004989*103682^(5/9) 9421138450264562 a001 12586269025/817138163596*103682^(5/9) 9421138450264562 a001 32951280099/2139295485799*103682^(5/9) 9421138450264562 a001 86267571272/5600748293801*103682^(5/9) 9421138450264562 a001 7787980473/505618944676*103682^(5/9) 9421138450264562 a001 365435296162/23725150497407*103682^(5/9) 9421138450264562 a001 139583862445/9062201101803*103682^(5/9) 9421138450264562 a001 53316291173/3461452808002*103682^(5/9) 9421138450264562 a001 20365011074/1322157322203*103682^(5/9) 9421138450264562 a001 7778742049/505019158607*103682^(5/9) 9421138450264562 a001 2971215073/192900153618*103682^(5/9) 9421138450264562 a001 1134903170/73681302247*103682^(5/9) 9421138450264562 a001 433494437/28143753123*103682^(5/9) 9421138450264562 a001 165580141/10749957122*103682^(5/9) 9421138450264563 a001 63245986/4106118243*103682^(5/9) 9421138450264565 a001 24157817/1568397607*103682^(5/9) 9421138450264584 a001 9227465/599074578*103682^(5/9) 9421138450264714 a001 3524578/228826127*103682^(5/9) 9421138450265601 a001 1346269/87403803*103682^(5/9) 9421138450271679 a001 514229/33385282*103682^(5/9) 9421138450282767 a001 121393/54018521*103682^(13/18) 9421138450313344 a001 196418/12752043*103682^(5/9) 9421138450335613 a001 726103/90481*15127^(1/60) 9421138450373584 a001 196418/64079*24476^(1/9) 9421138450391972 a001 317811/141422324*103682^(13/18) 9421138450407905 a001 832040/370248451*103682^(13/18) 9421138450410230 a001 2178309/969323029*103682^(13/18) 9421138450410569 a001 5702887/2537720636*103682^(13/18) 9421138450410618 a001 14930352/6643838879*103682^(13/18) 9421138450410626 a001 39088169/17393796001*103682^(13/18) 9421138450410627 a001 102334155/45537549124*103682^(13/18) 9421138450410627 a001 267914296/119218851371*103682^(13/18) 9421138450410627 a001 3524667/1568437211*103682^(13/18) 9421138450410627 a001 1836311903/817138163596*103682^(13/18) 9421138450410627 a001 4807526976/2139295485799*103682^(13/18) 9421138450410627 a001 12586269025/5600748293801*103682^(13/18) 9421138450410627 a001 32951280099/14662949395604*103682^(13/18) 9421138450410627 a001 53316291173/23725150497407*103682^(13/18) 9421138450410627 a001 20365011074/9062201101803*103682^(13/18) 9421138450410627 a001 7778742049/3461452808002*103682^(13/18) 9421138450410627 a001 2971215073/1322157322203*103682^(13/18) 9421138450410627 a001 1134903170/505019158607*103682^(13/18) 9421138450410627 a001 433494437/192900153618*103682^(13/18) 9421138450410627 a001 165580141/73681302247*103682^(13/18) 9421138450410627 a001 63245986/28143753123*103682^(13/18) 9421138450410630 a001 24157817/10749957122*103682^(13/18) 9421138450410649 a001 9227465/4106118243*103682^(13/18) 9421138450410779 a001 3524578/1568397607*103682^(13/18) 9421138450411666 a001 1346269/599074578*103682^(13/18) 9421138450417752 a001 514229/228826127*103682^(13/18) 9421138450428828 a001 121393/370248451*103682^(8/9) 9421138450434593 a001 75025/710647*103682^(7/18) 9421138450447181 a001 75025/167761*817138163596^(1/9) 9421138450447181 a001 75025/167761*87403803^(1/6) 9421138450459465 a001 196418/87403803*103682^(13/18) 9421138450473760 a001 75640/15251*39603^(2/33) 9421138450538037 a001 317811/969323029*103682^(8/9) 9421138450542088 a001 28657/4870847*64079^(2/3) 9421138450553970 a001 610/1860499*103682^(8/9) 9421138450556295 a001 2178309/6643838879*103682^(8/9) 9421138450556634 a001 5702887/17393796001*103682^(8/9) 9421138450556683 a001 3732588/11384387281*103682^(8/9) 9421138450556690 a001 39088169/119218851371*103682^(8/9) 9421138450556691 a001 9303105/28374454999*103682^(8/9) 9421138450556692 a001 66978574/204284540899*103682^(8/9) 9421138450556692 a001 701408733/2139295485799*103682^(8/9) 9421138450556692 a001 1836311903/5600748293801*103682^(8/9) 9421138450556692 a001 1201881744/3665737348901*103682^(8/9) 9421138450556692 a001 7778742049/23725150497407*103682^(8/9) 9421138450556692 a001 2971215073/9062201101803*103682^(8/9) 9421138450556692 a001 567451585/1730726404001*103682^(8/9) 9421138450556692 a001 433494437/1322157322203*103682^(8/9) 9421138450556692 a001 165580141/505019158607*103682^(8/9) 9421138450556692 a001 31622993/96450076809*103682^(8/9) 9421138450556695 a001 24157817/73681302247*103682^(8/9) 9421138450556714 a001 9227465/28143753123*103682^(8/9) 9421138450556843 a001 1762289/5374978561*103682^(8/9) 9421138450557731 a001 1346269/4106118243*103682^(8/9) 9421138450563817 a001 514229/1568397607*103682^(8/9) 9421138450567072 a001 514229/271443*39603^(5/33) 9421138450598916 a001 75025/4870847*103682^(5/9) 9421138450605531 a001 98209/299537289*103682^(8/9) 9421138450670194 a001 1346269/710647*39603^(5/33) 9421138450692249 a001 75025/103682*39603^(8/33) 9421138450694538 a001 2178309/1149851*39603^(5/33) 9421138450733927 a001 208010/109801*39603^(5/33) 9421138450745369 a001 75025/33385282*103682^(13/18) 9421138450799663 a001 1346269/167761*15127^(1/60) 9421138450801642 a001 17711/39603*15127^(19/60) 9421138450891442 a001 75025/228826127*103682^(8/9) 9421138450967508 a001 75025/39603*15127^(1/6) 9421138451003905 a001 317811/167761*39603^(5/33) 9421138451066506 a001 98209/12238*3571^(1/51) 9421138451154863 a001 196418/271443*39603^(8/33) 9421138451195672 a001 28657/103682*7881196^(2/9) 9421138451195706 a001 28657/103682*312119004989^(2/15) 9421138451195706 a001 46368/64079*23725150497407^(1/12) 9421138451195706 a001 46368/64079*10749957122^(1/9) 9421138451195706 a001 28657/103682*1568397607^(1/6) 9421138451195706 a001 46368/64079*228826127^(2/15) 9421138451195772 a001 46368/64079*4870847^(1/6) 9421138451199259 a001 46368/64079*710647^(4/21) 9421138451222358 a001 514229/710647*39603^(8/33) 9421138451232205 a001 1346269/1860498*39603^(8/33) 9421138451234530 a001 2178309/3010349*39603^(8/33) 9421138451238291 a001 832040/1149851*39603^(8/33) 9421138451238327 a001 46368/167761*39603^(1/3) 9421138451264072 a001 317811/439204*39603^(8/33) 9421138451390459 a001 46368/64079*103682^(2/9) 9421138451440774 a001 121393/167761*39603^(8/33) 9421138451498494 a001 11592/109801*39603^(14/33) 9421138451653190 a001 514229/103682*15127^(1/15) 9421138451700941 a001 121393/439204*39603^(1/3) 9421138451759660 a001 28657/228826127*167761^(14/15) 9421138451768436 a001 317811/1149851*39603^(1/3) 9421138451778283 a001 832040/3010349*39603^(1/3) 9421138451779720 a001 2178309/7881196*39603^(1/3) 9421138451779929 a001 5702887/20633239*39603^(1/3) 9421138451779960 a001 14930352/54018521*39603^(1/3) 9421138451779964 a001 39088169/141422324*39603^(1/3) 9421138451779965 a001 102334155/370248451*39603^(1/3) 9421138451779965 a001 267914296/969323029*39603^(1/3) 9421138451779965 a001 701408733/2537720636*39603^(1/3) 9421138451779965 a001 1836311903/6643838879*39603^(1/3) 9421138451779965 a001 4807526976/17393796001*39603^(1/3) 9421138451779965 a001 12586269025/45537549124*39603^(1/3) 9421138451779965 a001 32951280099/119218851371*39603^(1/3) 9421138451779965 a001 86267571272/312119004989*39603^(1/3) 9421138451779965 a001 225851433717/817138163596*39603^(1/3) 9421138451779965 a001 1548008755920/5600748293801*39603^(1/3) 9421138451779965 a001 139583862445/505019158607*39603^(1/3) 9421138451779965 a001 53316291173/192900153618*39603^(1/3) 9421138451779965 a001 20365011074/73681302247*39603^(1/3) 9421138451779965 a001 7778742049/28143753123*39603^(1/3) 9421138451779965 a001 2971215073/10749957122*39603^(1/3) 9421138451779965 a001 1134903170/4106118243*39603^(1/3) 9421138451779965 a001 433494437/1568397607*39603^(1/3) 9421138451779965 a001 165580141/599074578*39603^(1/3) 9421138451779965 a001 63245986/228826127*39603^(1/3) 9421138451779967 a001 24157817/87403803*39603^(1/3) 9421138451779979 a001 9227465/33385282*39603^(1/3) 9421138451780059 a001 3524578/12752043*39603^(1/3) 9421138451780608 a001 1346269/4870847*39603^(1/3) 9421138451784369 a001 514229/1860498*39603^(1/3) 9421138451810149 a001 196418/710647*39603^(1/3) 9421138451814949 a001 15456/13201*15127^(13/60) 9421138451826633 a001 28657/20633239*167761^(11/15) 9421138451890839 a001 28657/1860498*167761^(8/15) 9421138451899598 a001 121393/64079*167761^(2/15) 9421138451944225 a001 28657/271443*20633239^(4/15) 9421138451944229 a001 121393/64079*20633239^(2/21) 9421138451944231 a001 28657/271443*17393796001^(4/21) 9421138451944231 a001 28657/271443*505019158607^(1/6) 9421138451944231 a001 121393/64079*3461452808002^(1/18) 9421138451944231 a001 121393/64079*28143753123^(1/15) 9421138451944231 a001 28657/271443*599074578^(2/9) 9421138451944231 a001 121393/64079*228826127^(1/12) 9421138451944347 a001 28657/271443*4870847^(7/24) 9421138451944534 a001 121393/64079*1860498^(1/9) 9421138451950449 a001 28657/271443*710647^(1/3) 9421138451986852 a001 75025/271443*39603^(1/3) 9421138452002858 a001 46368/1149851*39603^(17/33) 9421138452053439 a001 28657/710647*45537549124^(2/9) 9421138452053456 a001 317811/64079*4870847^(1/24) 9421138452053459 a001 28657/710647*12752043^(1/3) 9421138452054328 a001 317811/64079*710647^(1/21) 9421138452067336 a001 28657/33385282*1149851^(2/3) 9421138452069364 a001 28657/1860498*20633239^(8/21) 9421138452069373 a001 28657/1860498*23725150497407^(5/24) 9421138452069373 a001 28657/1860498*3461452808002^(2/9) 9421138452069373 a001 28657/1860498*28143753123^(4/15) 9421138452069373 a001 28657/1860498*10749957122^(5/18) 9421138452069373 a001 28657/1860498*228826127^(1/3) 9421138452069538 a001 28657/1860498*4870847^(5/12) 9421138452070582 a001 28657/1860498*1860498^(4/9) 9421138452071697 a001 28657/4870847*4106118243^(1/3) 9421138452071960 a001 28657/4106118243*7881196^(8/9) 9421138452072032 a001 28657/20633239*7881196^(5/9) 9421138452072036 a001 28657/12752043*141422324^(4/9) 9421138452072037 a001 28657/12752043*73681302247^(1/3) 9421138452072073 a001 28657/28143753123*20633239^(20/21) 9421138452072075 a001 28657/6643838879*20633239^(13/15) 9421138452072077 a001 28657/2537720636*20633239^(17/21) 9421138452072080 a001 28657/228826127*20633239^(2/3) 9421138452072086 a001 28657/33385282*1322157322203^(1/3) 9421138452072093 a001 28657/87403803*23725150497407^(1/3) 9421138452072093 a001 28657/87403803*505019158607^(8/21) 9421138452072093 a001 28657/87403803*10749957122^(4/9) 9421138452072093 a001 28657/87403803*228826127^(8/15) 9421138452072094 a001 28657/6643838879*141422324^(7/9) 9421138452072094 a001 28657/228826127*17393796001^(10/21) 9421138452072094 a001 28657/228826127*3461452808002^(7/18) 9421138452072094 a001 28657/228826127*505019158607^(5/12) 9421138452072094 a001 28657/228826127*28143753123^(7/15) 9421138452072094 a001 28657/228826127*599074578^(5/9) 9421138452072094 a001 28657/228826127*228826127^(7/12) 9421138452072094 a001 28657/1568397607*370248451^(2/3) 9421138452072094 a001 28657/599074578*817138163596^(4/9) 9421138452072094 a001 28657/4106118243*312119004989^(8/15) 9421138452072094 a001 28657/4106118243*23725150497407^(11/24) 9421138452072094 a001 28657/4106118243*10749957122^(11/18) 9421138452072094 a001 28657/10749957122*6643838879^(2/3) 9421138452072094 a001 28657/5600748293801*17393796001^(19/21) 9421138452072094 a001 28657/192900153618*17393796001^(16/21) 9421138452072094 a001 28657/28143753123*3461452808002^(5/9) 9421138452072094 a001 28657/9062201101803*45537549124^(8/9) 9421138452072094 a001 28657/28143753123*28143753123^(2/3) 9421138452072094 a001 28657/73681302247*119218851371^(2/3) 9421138452072094 a001 28657/192900153618*23725150497407^(7/12) 9421138452072094 a001 28657/192900153618*505019158607^(2/3) 9421138452072094 a001 28657/505019158607*2139295485799^(2/3) 9421138452072094 a001 28657/1322157322203*9062201101803^(2/3) 9421138452072094 a001 28657/9062201101803*23725150497407^(17/24) 9421138452072094 a001 28657/5600748293801*505019158607^(19/24) 9421138452072094 a001 28657/9062201101803*505019158607^(17/21) 9421138452072094 a001 28657/3461452808002*73681302247^(5/6) 9421138452072094 a001 28657/3461452808002*28143753123^(13/15) 9421138452072094 a001 28657/192900153618*10749957122^(7/9) 9421138452072094 a001 28657/9062201101803*10749957122^(17/18) 9421138452072094 a001 28657/6643838879*17393796001^(13/21) 9421138452072094 a001 28657/6643838879*505019158607^(13/24) 9421138452072094 a001 28657/6643838879*73681302247^(7/12) 9421138452072094 a001 28657/312119004989*4106118243^(5/6) 9421138452072094 a001 28657/2537720636*45537549124^(5/9) 9421138452072094 a001 28657/4106118243*1568397607^(2/3) 9421138452072094 a001 28657/817138163596*1568397607^(11/12) 9421138452072094 a001 28657/6643838879*599074578^(13/18) 9421138452072095 a001 28657/192900153618*599074578^(8/9) 9421138452072095 a001 28657/2537720636*228826127^(17/24) 9421138452072095 a001 28657/4106118243*228826127^(11/15) 9421138452072095 a001 28657/28143753123*228826127^(5/6) 9421138452072095 a001 28657/192900153618*228826127^(14/15) 9421138452072095 a001 28657/312119004989*228826127^(23/24) 9421138452072095 a001 28657/599074578*87403803^(2/3) 9421138452072098 a001 28657/54018521*5600748293801^(1/3) 9421138452072105 a001 28657/20633239*20633239^(11/21) 9421138452072117 a001 28657/20633239*312119004989^(1/3) 9421138452072117 a001 28657/20633239*1568397607^(5/12) 9421138452072117 a001 28657/20633239*228826127^(11/24) 9421138452072143 a001 28657/2537720636*12752043^(5/6) 9421138452072236 a001 28657/7881196*20633239^(7/15) 9421138452072246 a001 28657/7881196*17393796001^(1/3) 9421138452072246 a001 28657/7881196*505019158607^(7/24) 9421138452072246 a001 28657/7881196*599074578^(7/18) 9421138452072252 a001 28657/12752043*4870847^(13/24) 9421138452072358 a001 28657/87403803*4870847^(2/3) 9421138452072409 a001 28657/599074578*4870847^(19/24) 9421138452072458 a001 28657/4106118243*4870847^(11/12) 9421138452073134 a001 28657/3010349*969323029^(1/3) 9421138452073780 a001 28657/20633239*1860498^(11/18) 9421138452074211 a001 28657/228826127*1860498^(7/9) 9421138452074665 a001 28657/2537720636*1860498^(17/18) 9421138452078256 a001 28657/1860498*710647^(10/21) 9421138452079219 a001 28657/1149851*54018521^(1/3) 9421138452083128 a001 28657/7881196*710647^(7/12) 9421138452083585 a001 28657/12752043*710647^(13/21) 9421138452086307 a001 28657/87403803*710647^(16/21) 9421138452087640 a001 28657/228826127*710647^(5/6) 9421138452088973 a001 28657/599074578*710647^(19/21) 9421138452102128 a001 317811/64079*103682^(1/18) 9421138452120587 a001 28657/439204*3010349^(1/3) 9421138452120932 a001 196418/64079*20633239^(1/15) 9421138452120934 a001 28657/439204*9062201101803^(1/6) 9421138452120934 a001 196418/64079*17393796001^(1/21) 9421138452120934 a001 196418/64079*505019158607^(1/24) 9421138452120934 a001 196418/64079*599074578^(1/18) 9421138452122489 a001 196418/64079*710647^(1/12) 9421138452157279 a001 28657/12752043*271443^(2/3) 9421138452205305 a001 121393/1149851*39603^(14/33) 9421138452285049 a001 28657/271443*103682^(7/18) 9421138452295262 a001 28657/167761*167761^(1/3) 9421138452308427 a001 317811/3010349*39603^(14/33) 9421138452332771 a001 514229/4870847*39603^(14/33) 9421138452372161 a001 98209/930249*39603^(14/33) 9421138452395629 a001 1346269/271443*15127^(1/15) 9421138452406840 a001 28657/167761*20633239^(5/21) 9421138452406845 a001 75025/64079*141422324^(1/9) 9421138452406845 a001 28657/167761*28143753123^(1/6) 9421138452406845 a001 75025/64079*73681302247^(1/12) 9421138452406845 a001 28657/167761*228826127^(5/24) 9421138452407601 a001 28657/167761*1860498^(5/18) 9421138452417491 a001 317811/64079*39603^(2/33) 9421138452428156 a001 75025/64079*271443^(1/6) 9421138452503950 a001 3524578/710647*15127^(1/15) 9421138452519754 a001 9227465/1860498*15127^(1/15) 9421138452522059 a001 24157817/4870847*15127^(1/15) 9421138452522396 a001 63245986/12752043*15127^(1/15) 9421138452522445 a001 165580141/33385282*15127^(1/15) 9421138452522452 a001 433494437/87403803*15127^(1/15) 9421138452522453 a001 1134903170/228826127*15127^(1/15) 9421138452522453 a001 2971215073/599074578*15127^(1/15) 9421138452522453 a001 7778742049/1568397607*15127^(1/15) 9421138452522453 a001 20365011074/4106118243*15127^(1/15) 9421138452522453 a001 53316291173/10749957122*15127^(1/15) 9421138452522453 a001 139583862445/28143753123*15127^(1/15) 9421138452522453 a001 365435296162/73681302247*15127^(1/15) 9421138452522453 a001 956722026041/192900153618*15127^(1/15) 9421138452522453 a001 2504730781961/505019158607*15127^(1/15) 9421138452522453 a001 10610209857723/2139295485799*15127^(1/15) 9421138452522453 a001 4052739537881/817138163596*15127^(1/15) 9421138452522453 a001 140728068720/28374454999*15127^(1/15) 9421138452522453 a001 591286729879/119218851371*15127^(1/15) 9421138452522453 a001 225851433717/45537549124*15127^(1/15) 9421138452522453 a001 86267571272/17393796001*15127^(1/15) 9421138452522453 a001 32951280099/6643838879*15127^(1/15) 9421138452522453 a001 1144206275/230701876*15127^(1/15) 9421138452522453 a001 4807526976/969323029*15127^(1/15) 9421138452522453 a001 1836311903/370248451*15127^(1/15) 9421138452522454 a001 701408733/141422324*15127^(1/15) 9421138452522456 a001 267914296/54018521*15127^(1/15) 9421138452522475 a001 9303105/1875749*15127^(1/15) 9421138452522604 a001 39088169/7881196*15127^(1/15) 9421138452523484 a001 14930352/3010349*15127^(1/15) 9421138452529521 a001 5702887/1149851*15127^(1/15) 9421138452542850 a001 46368/3010349*39603^(20/33) 9421138452556255 a001 28657/1860498*103682^(5/9) 9421138452570896 a001 2178309/439204*15127^(1/15) 9421138452601380 a001 75025/24476*9349^(7/57) 9421138452642138 a001 75025/710647*39603^(14/33) 9421138452651914 a001 46368/64079*39603^(8/33) 9421138452704984 a001 28657/12752043*103682^(13/18) 9421138452745297 a001 121393/3010349*39603^(17/33) 9421138452765413 a001 514229/64079*15127^(1/60) 9421138452851105 a001 28657/87403803*103682^(8/9) 9421138452854361 a001 121393/64079*39603^(5/33) 9421138452854482 a001 75640/15251*15127^(1/15) 9421138452920563 a001 196418/4870847*39603^(17/33) 9421138453197991 a001 28657/103682*39603^(1/3) 9421138453204149 a001 75025/1860498*39603^(17/33) 9421138453273420 a001 10946/3010349*24476^(7/9) 9421138453560776 a001 4181/3010349*9349^(55/57) 9421138453685990 a001 317811/103682*15127^(7/60) 9421138453752552 a001 75025/4870847*39603^(20/33) 9421138453906996 a001 144/103681*39603^(5/6) 9421138454124391 a001 416020/51841*5778^(1/54) 9421138454366509 a001 28657/64079*817138163596^(1/9) 9421138454366509 a001 28657/64079*87403803^(1/6) 9421138454450448 a001 832040/271443*15127^(7/60) 9421138454492594 a001 28657/271443*39603^(14/33) 9421138454561981 a001 311187/101521*15127^(7/60) 9421138454630912 a001 1346269/439204*15127^(7/60) 9421138454655528 a001 121393/87403803*39603^(5/6) 9421138454764738 a001 317811/228826127*39603^(5/6) 9421138454780671 a001 416020/299537289*39603^(5/6) 9421138454782996 a001 311187/224056801*39603^(5/6) 9421138454783335 a001 5702887/4106118243*39603^(5/6) 9421138454783384 a001 7465176/5374978561*39603^(5/6) 9421138454783392 a001 39088169/28143753123*39603^(5/6) 9421138454783393 a001 14619165/10525900321*39603^(5/6) 9421138454783393 a001 133957148/96450076809*39603^(5/6) 9421138454783393 a001 701408733/505019158607*39603^(5/6) 9421138454783393 a001 1836311903/1322157322203*39603^(5/6) 9421138454783393 a001 14930208/10749853441*39603^(5/6) 9421138454783393 a001 12586269025/9062201101803*39603^(5/6) 9421138454783393 a001 32951280099/23725150497407*39603^(5/6) 9421138454783393 a001 10182505537/7331474697802*39603^(5/6) 9421138454783393 a001 7778742049/5600748293801*39603^(5/6) 9421138454783393 a001 2971215073/2139295485799*39603^(5/6) 9421138454783393 a001 567451585/408569081798*39603^(5/6) 9421138454783393 a001 433494437/312119004989*39603^(5/6) 9421138454783393 a001 165580141/119218851371*39603^(5/6) 9421138454783393 a001 31622993/22768774562*39603^(5/6) 9421138454783396 a001 24157817/17393796001*39603^(5/6) 9421138454783415 a001 9227465/6643838879*39603^(5/6) 9421138454783545 a001 1762289/1268860318*39603^(5/6) 9421138454784433 a001 1346269/969323029*39603^(5/6) 9421138454790519 a001 514229/370248451*39603^(5/6) 9421138454798213 a001 317811/64079*15127^(1/15) 9421138454832233 a001 98209/70711162*39603^(5/6) 9421138454875241 a001 726103/90481*5778^(1/54) 9421138454922910 a001 514229/167761*15127^(7/60) 9421138455118147 a001 75025/54018521*39603^(5/6) 9421138455147880 a001 28657/710647*39603^(17/33) 9421138455339291 a001 1346269/167761*5778^(1/54) 9421138455709891 a001 28657/1860498*39603^(20/33) 9421138455812064 a001 98209/51841*15127^(1/6) 9421138456258294 a001 28657/4870847*39603^(23/33) 9421138456518876 a001 514229/271443*15127^(1/6) 9421138456621998 a001 1346269/710647*15127^(1/6) 9421138456637043 a001 1762289/930249*15127^(1/6) 9421138456639239 a001 9227465/4870847*15127^(1/6) 9421138456639559 a001 24157817/12752043*15127^(1/6) 9421138456639606 a001 31622993/16692641*15127^(1/6) 9421138456639612 a001 165580141/87403803*15127^(1/6) 9421138456639613 a001 433494437/228826127*15127^(1/6) 9421138456639613 a001 567451585/299537289*15127^(1/6) 9421138456639613 a001 2971215073/1568397607*15127^(1/6) 9421138456639613 a001 7778742049/4106118243*15127^(1/6) 9421138456639614 a001 10182505537/5374978561*15127^(1/6) 9421138456639614 a001 53316291173/28143753123*15127^(1/6) 9421138456639614 a001 139583862445/73681302247*15127^(1/6) 9421138456639614 a001 182717648081/96450076809*15127^(1/6) 9421138456639614 a001 956722026041/505019158607*15127^(1/6) 9421138456639614 a001 10610209857723/5600748293801*15127^(1/6) 9421138456639614 a001 591286729879/312119004989*15127^(1/6) 9421138456639614 a001 225851433717/119218851371*15127^(1/6) 9421138456639614 a001 21566892818/11384387281*15127^(1/6) 9421138456639614 a001 32951280099/17393796001*15127^(1/6) 9421138456639614 a001 12586269025/6643838879*15127^(1/6) 9421138456639614 a001 1201881744/634430159*15127^(1/6) 9421138456639614 a001 1836311903/969323029*15127^(1/6) 9421138456639614 a001 701408733/370248451*15127^(1/6) 9421138456639614 a001 66978574/35355581*15127^(1/6) 9421138456639617 a001 102334155/54018521*15127^(1/6) 9421138456639634 a001 39088169/20633239*15127^(1/6) 9421138456639757 a001 3732588/1970299*15127^(1/6) 9421138456640595 a001 5702887/3010349*15127^(1/6) 9421138456646342 a001 2178309/1149851*15127^(1/6) 9421138456685731 a001 208010/109801*15127^(1/6) 9421138456924288 a001 196418/64079*15127^(7/60) 9421138456955709 a001 317811/167761*15127^(1/6) 9421138457044333 a001 28657/39603*15127^(4/15) 9421138457077830 a001 28657/20633239*39603^(5/6) 9421138457305042 a001 514229/64079*5778^(1/54) 9421138457638043 a001 5473/51841*24476^(4/9) 9421138457693942 a001 121393/103682*15127^(13/60) 9421138457811853 a001 121393/24476*9349^(4/57) 9421138458457589 a001 28657/9349*3571^(7/51) 9421138458551675 a001 105937/90481*15127^(13/60) 9421138458676817 a001 832040/710647*15127^(13/60) 9421138458695075 a001 726103/620166*15127^(13/60) 9421138458706359 a001 1346269/1149851*15127^(13/60) 9421138458754159 a001 514229/439204*15127^(13/60) 9421138458806165 a001 121393/64079*15127^(1/6) 9421138459081784 a001 196418/167761*15127^(13/60) 9421138459230102 a001 4181/1860498*9349^(52/57) 9421138459496943 a001 10946/39603*7881196^(2/9) 9421138459496977 a001 10946/39603*312119004989^(2/15) 9421138459496977 a001 10946/39603*1568397607^(1/6) 9421138459496977 a001 17711/24476*23725150497407^(1/12) 9421138459496977 a001 17711/24476*10749957122^(1/9) 9421138459496977 a001 17711/24476*228826127^(2/15) 9421138459497043 a001 17711/24476*4870847^(1/6) 9421138459500530 a001 17711/24476*710647^(4/21) 9421138459691730 a001 17711/24476*103682^(2/9) 9421138460049270 a001 17711/103682*15127^(5/12) 9421138460215136 a001 75025/103682*15127^(4/15) 9421138460677750 a001 196418/271443*15127^(4/15) 9421138460745244 a001 514229/710647*15127^(4/15) 9421138460755092 a001 1346269/1860498*15127^(4/15) 9421138460756528 a001 3524578/4870847*15127^(4/15) 9421138460756738 a001 9227465/12752043*15127^(4/15) 9421138460756769 a001 24157817/33385282*15127^(4/15) 9421138460756773 a001 63245986/87403803*15127^(4/15) 9421138460756774 a001 165580141/228826127*15127^(4/15) 9421138460756774 a001 433494437/599074578*15127^(4/15) 9421138460756774 a001 1134903170/1568397607*15127^(4/15) 9421138460756774 a001 2971215073/4106118243*15127^(4/15) 9421138460756774 a001 7778742049/10749957122*15127^(4/15) 9421138460756774 a001 20365011074/28143753123*15127^(4/15) 9421138460756774 a001 53316291173/73681302247*15127^(4/15) 9421138460756774 a001 139583862445/192900153618*15127^(4/15) 9421138460756774 a001 365435296162/505019158607*15127^(4/15) 9421138460756774 a001 10610209857723/14662949395604*15127^(4/15) 9421138460756774 a001 591286729879/817138163596*15127^(4/15) 9421138460756774 a001 225851433717/312119004989*15127^(4/15) 9421138460756774 a001 86267571272/119218851371*15127^(4/15) 9421138460756774 a001 32951280099/45537549124*15127^(4/15) 9421138460756774 a001 12586269025/17393796001*15127^(4/15) 9421138460756774 a001 4807526976/6643838879*15127^(4/15) 9421138460756774 a001 1836311903/2537720636*15127^(4/15) 9421138460756774 a001 701408733/969323029*15127^(4/15) 9421138460756774 a001 267914296/370248451*15127^(4/15) 9421138460756774 a001 102334155/141422324*15127^(4/15) 9421138460756776 a001 39088169/54018521*15127^(4/15) 9421138460756787 a001 14930352/20633239*15127^(4/15) 9421138460756868 a001 5702887/7881196*15127^(4/15) 9421138460757416 a001 2178309/3010349*15127^(4/15) 9421138460761178 a001 832040/1149851*15127^(4/15) 9421138460786958 a001 317811/439204*15127^(4/15) 9421138460953184 a001 17711/24476*39603^(8/33) 9421138460963661 a001 121393/167761*15127^(4/15) 9421138461062577 a001 23184/51841*15127^(19/60) 9421138461161493 a001 17711/64079*15127^(11/30) 9421138461327359 a001 75025/64079*15127^(13/60) 9421138461389812 k002 Champernowne real with 28*n^2+33*n+33 9421138461499262 a001 10946/39603*39603^(1/3) 9421138462174800 a001 46368/64079*15127^(4/15) 9421138462559627 a001 121393/271443*15127^(19/60) 9421138462778044 a001 317811/710647*15127^(19/60) 9421138462809910 a001 416020/930249*15127^(19/60) 9421138462814560 a001 2178309/4870847*15127^(19/60) 9421138462817433 a001 1346269/3010349*15127^(19/60) 9421138462829605 a001 514229/1149851*15127^(19/60) 9421138462913033 a001 98209/219602*15127^(19/60) 9421138463158707 a001 28657/15127*5778^(5/27) 9421138463318989 a001 17711/167761*15127^(7/15) 9421138463484855 a001 75025/167761*15127^(19/60) 9421138463661643 a001 98209/12238*9349^(1/57) 9421138463971501 a001 5473/930249*64079^(2/3) 9421138464091233 a001 75025/24476*24476^(1/9) 9421138464332296 a001 46368/167761*15127^(11/30) 9421138464582811 a001 11592/6119*167761^(2/15) 9421138464627438 a001 5473/51841*20633239^(4/15) 9421138464627442 a001 11592/6119*20633239^(2/21) 9421138464627444 a001 5473/51841*17393796001^(4/21) 9421138464627444 a001 5473/51841*505019158607^(1/6) 9421138464627444 a001 5473/51841*599074578^(2/9) 9421138464627444 a001 11592/6119*3461452808002^(1/18) 9421138464627444 a001 11592/6119*28143753123^(1/15) 9421138464627444 a001 11592/6119*228826127^(1/12) 9421138464627560 a001 5473/51841*4870847^(7/24) 9421138464627747 a001 11592/6119*1860498^(1/9) 9421138464633663 a001 5473/51841*710647^(1/3) 9421138464722949 a001 196418/39603*5778^(2/27) 9421138464794910 a001 121393/439204*15127^(11/30) 9421138464862405 a001 317811/1149851*15127^(11/30) 9421138464872252 a001 832040/3010349*15127^(11/30) 9421138464874577 a001 1346269/4870847*15127^(11/30) 9421138464878338 a001 514229/1860498*15127^(11/30) 9421138464904119 a001 196418/710647*15127^(11/30) 9421138464913037 a001 4181/1149851*9349^(49/57) 9421138464914955 a001 17711/271443*15127^(31/60) 9421138464968262 a001 5473/51841*103682^(7/18) 9421138465080821 a001 75025/271443*15127^(11/30) 9421138465191398 a001 10946/87403803*167761^(14/15) 9421138465258501 a001 5473/3940598*167761^(11/15) 9421138465306644 a001 10946/710647*167761^(8/15) 9421138465375969 a001 10946/271443*45537549124^(2/9) 9421138465375986 a001 121393/24476*4870847^(1/24) 9421138465375989 a001 10946/271443*12752043^(1/3) 9421138465376858 a001 121393/24476*710647^(1/21) 9421138465424658 a001 121393/24476*103682^(1/18) 9421138465485169 a001 10946/710647*20633239^(8/21) 9421138465485178 a001 10946/710647*23725150497407^(5/24) 9421138465485178 a001 10946/710647*3461452808002^(2/9) 9421138465485178 a001 10946/710647*28143753123^(4/15) 9421138465485178 a001 10946/710647*10749957122^(5/18) 9421138465485178 a001 10946/710647*228826127^(1/3) 9421138465485343 a001 10946/710647*4870847^(5/12) 9421138465486387 a001 10946/710647*1860498^(4/9) 9421138465494061 a001 10946/710647*710647^(10/21) 9421138465499024 a001 10946/12752043*1149851^(2/3) 9421138465501111 a001 5473/930249*4106118243^(1/3) 9421138465503435 a001 10946/4870847*141422324^(4/9) 9421138465503436 a001 10946/4870847*73681302247^(1/3) 9421138465503651 a001 10946/4870847*4870847^(13/24) 9421138465503698 a001 10946/1568397607*7881196^(8/9) 9421138465503775 a001 10946/12752043*1322157322203^(1/3) 9421138465503812 a001 5473/5374978561*20633239^(20/21) 9421138465503813 a001 5473/1268860318*20633239^(13/15) 9421138465503815 a001 10946/969323029*20633239^(17/21) 9421138465503817 a001 10946/87403803*20633239^(2/3) 9421138465503824 a001 5473/16692641*23725150497407^(1/3) 9421138465503824 a001 5473/16692641*505019158607^(8/21) 9421138465503824 a001 5473/16692641*10749957122^(4/9) 9421138465503824 a001 5473/16692641*228826127^(8/15) 9421138465503831 a001 10946/87403803*17393796001^(10/21) 9421138465503831 a001 10946/87403803*3461452808002^(7/18) 9421138465503831 a001 10946/87403803*505019158607^(5/12) 9421138465503831 a001 10946/87403803*28143753123^(7/15) 9421138465503831 a001 10946/87403803*599074578^(5/9) 9421138465503832 a001 10946/87403803*228826127^(7/12) 9421138465503832 a001 5473/1268860318*141422324^(7/9) 9421138465503832 a001 10946/228826127*817138163596^(4/9) 9421138465503833 a001 5473/299537289*370248451^(2/3) 9421138465503833 a001 10946/1568397607*312119004989^(8/15) 9421138465503833 a001 10946/1568397607*23725150497407^(11/24) 9421138465503833 a001 10946/1568397607*10749957122^(11/18) 9421138465503833 a001 10946/1568397607*1568397607^(2/3) 9421138465503833 a001 10946/4106118243*6643838879^(2/3) 9421138465503833 a001 5473/5374978561*3461452808002^(5/9) 9421138465503833 a001 5473/5374978561*28143753123^(2/3) 9421138465503833 a001 10946/2139295485799*17393796001^(19/21) 9421138465503833 a001 10946/73681302247*17393796001^(16/21) 9421138465503833 a001 10946/28143753123*119218851371^(2/3) 9421138465503833 a001 5473/1730726404001*45537549124^(8/9) 9421138465503833 a001 10946/73681302247*23725150497407^(7/12) 9421138465503833 a001 10946/73681302247*505019158607^(2/3) 9421138465503833 a001 5473/96450076809*2139295485799^(2/3) 9421138465503833 a001 10946/1322157322203*3461452808002^(13/18) 9421138465503833 a001 5473/1730726404001*23725150497407^(17/24) 9421138465503833 a001 10946/312119004989*312119004989^(11/15) 9421138465503833 a001 10946/2139295485799*505019158607^(19/24) 9421138465503833 a001 10946/1322157322203*73681302247^(5/6) 9421138465503833 a001 10946/1322157322203*28143753123^(13/15) 9421138465503833 a001 10946/73681302247*10749957122^(7/9) 9421138465503833 a001 5473/1730726404001*10749957122^(17/18) 9421138465503833 a001 10946/119218851371*4106118243^(5/6) 9421138465503833 a001 5473/1268860318*17393796001^(13/21) 9421138465503833 a001 5473/1268860318*505019158607^(13/24) 9421138465503833 a001 5473/1268860318*73681302247^(7/12) 9421138465503833 a001 10946/312119004989*1568397607^(11/12) 9421138465503833 a001 10946/969323029*45537549124^(5/9) 9421138465503833 a001 5473/1268860318*599074578^(13/18) 9421138465503833 a001 10946/73681302247*599074578^(8/9) 9421138465503833 a001 10946/1568397607*228826127^(11/15) 9421138465503833 a001 10946/969323029*228826127^(17/24) 9421138465503833 a001 5473/5374978561*228826127^(5/6) 9421138465503833 a001 10946/73681302247*228826127^(14/15) 9421138465503833 a001 10946/119218851371*228826127^(23/24) 9421138465503833 a001 10946/228826127*87403803^(2/3) 9421138465503855 a001 10946/20633239*5600748293801^(1/3) 9421138465503881 a001 10946/969323029*12752043^(5/6) 9421138465503900 a001 5473/3940598*7881196^(5/9) 9421138465503973 a001 5473/3940598*20633239^(11/21) 9421138465503984 a001 5473/3940598*312119004989^(1/3) 9421138465503984 a001 5473/3940598*1568397607^(5/12) 9421138465503984 a001 5473/3940598*228826127^(11/24) 9421138465504089 a001 5473/16692641*4870847^(2/3) 9421138465504147 a001 10946/228826127*4870847^(19/24) 9421138465504197 a001 10946/1568397607*4870847^(11/12) 9421138465504862 a001 10946/3010349*20633239^(7/15) 9421138465504872 a001 10946/3010349*17393796001^(1/3) 9421138465504872 a001 10946/3010349*505019158607^(7/24) 9421138465504872 a001 10946/3010349*599074578^(7/18) 9421138465505648 a001 5473/3940598*1860498^(11/18) 9421138465505948 a001 10946/87403803*1860498^(7/9) 9421138465506403 a001 10946/969323029*1860498^(17/18) 9421138465510958 a001 10946/1149851*969323029^(1/3) 9421138465514984 a001 10946/4870847*710647^(13/21) 9421138465515754 a001 10946/3010349*710647^(7/12) 9421138465518038 a001 5473/16692641*710647^(16/21) 9421138465519377 a001 10946/87403803*710647^(5/6) 9421138465520711 a001 10946/228826127*710647^(19/21) 9421138465537574 a001 11592/6119*39603^(5/33) 9421138465552671 a001 5473/219602*54018521^(1/3) 9421138465588678 a001 10946/4870847*271443^(2/3) 9421138465740021 a001 121393/24476*39603^(2/33) 9421138465838237 a001 10946/167761*3010349^(1/3) 9421138465838582 a001 75025/24476*20633239^(1/15) 9421138465838583 a001 10946/167761*9062201101803^(1/6) 9421138465838583 a001 75025/24476*17393796001^(1/21) 9421138465838583 a001 75025/24476*505019158607^(1/24) 9421138465838583 a001 75025/24476*599074578^(1/18) 9421138465840138 a001 75025/24476*710647^(1/12) 9421138465928262 a001 15456/90481*15127^(5/12) 9421138465972060 a001 10946/710647*103682^(5/9) 9421138466136383 a001 10946/4870847*103682^(13/18) 9421138466238866 a001 98209/12238*15127^(1/60) 9421138466282836 a001 5473/16692641*103682^(8/9) 9421138466291960 a001 28657/103682*15127^(11/30) 9421138466725082 a001 6765/15127*5778^(19/54) 9421138466785996 a001 121393/710647*15127^(5/12) 9421138466911137 a001 105937/620166*15127^(5/12) 9421138466929395 a001 832040/4870847*15127^(5/12) 9421138466932059 a001 726103/4250681*15127^(5/12) 9421138466932448 a001 5702887/33385282*15127^(5/12) 9421138466932505 a001 4976784/29134601*15127^(5/12) 9421138466932513 a001 39088169/228826127*15127^(5/12) 9421138466932514 a001 34111385/199691526*15127^(5/12) 9421138466932514 a001 267914296/1568397607*15127^(5/12) 9421138466932514 a001 233802911/1368706081*15127^(5/12) 9421138466932514 a001 1836311903/10749957122*15127^(5/12) 9421138466932514 a001 1602508992/9381251041*15127^(5/12) 9421138466932514 a001 12586269025/73681302247*15127^(5/12) 9421138466932514 a001 10983760033/64300051206*15127^(5/12) 9421138466932514 a001 86267571272/505019158607*15127^(5/12) 9421138466932514 a001 75283811239/440719107401*15127^(5/12) 9421138466932514 a001 2504730781961/14662949395604*15127^(5/12) 9421138466932514 a001 139583862445/817138163596*15127^(5/12) 9421138466932514 a001 53316291173/312119004989*15127^(5/12) 9421138466932514 a001 20365011074/119218851371*15127^(5/12) 9421138466932514 a001 7778742049/45537549124*15127^(5/12) 9421138466932514 a001 2971215073/17393796001*15127^(5/12) 9421138466932514 a001 1134903170/6643838879*15127^(5/12) 9421138466932514 a001 433494437/2537720636*15127^(5/12) 9421138466932514 a001 165580141/969323029*15127^(5/12) 9421138466932515 a001 63245986/370248451*15127^(5/12) 9421138466932518 a001 24157817/141422324*15127^(5/12) 9421138466932540 a001 9227465/54018521*15127^(5/12) 9421138466932688 a001 3524578/20633239*15127^(5/12) 9421138466933706 a001 1346269/7881196*15127^(5/12) 9421138466940679 a001 514229/3010349*15127^(5/12) 9421138466988479 a001 196418/1149851*15127^(5/12) 9421138467150238 a001 17711/439204*15127^(17/30) 9421138467175807 a001 5473/51841*39603^(14/33) 9421138467316104 a001 75025/439204*15127^(5/12) 9421138467404184 a001 28657/64079*15127^(19/60) 9421138467686664 a001 10946/64079*167761^(1/3) 9421138467798242 a001 10946/64079*20633239^(5/21) 9421138467798247 a001 28657/24476*141422324^(1/9) 9421138467798247 a001 10946/64079*28143753123^(1/6) 9421138467798247 a001 28657/24476*73681302247^(1/12) 9421138467798247 a001 10946/64079*228826127^(5/24) 9421138467799003 a001 10946/64079*1860498^(5/18) 9421138467819558 a001 28657/24476*271443^(1/6) 9421138468120743 a001 121393/24476*15127^(1/15) 9421138468163545 a001 11592/109801*15127^(7/15) 9421138468470410 a001 10946/271443*39603^(17/33) 9421138468870357 a001 121393/1149851*15127^(7/15) 9421138468973479 a001 317811/3010349*15127^(7/15) 9421138468988524 a001 208010/1970299*15127^(7/15) 9421138468990719 a001 2178309/20633239*15127^(7/15) 9421138468991040 a001 5702887/54018521*15127^(7/15) 9421138468991086 a001 3732588/35355581*15127^(7/15) 9421138468991093 a001 39088169/370248451*15127^(7/15) 9421138468991094 a001 102334155/969323029*15127^(7/15) 9421138468991094 a001 66978574/634430159*15127^(7/15) 9421138468991094 a001 701408733/6643838879*15127^(7/15) 9421138468991094 a001 1836311903/17393796001*15127^(7/15) 9421138468991094 a001 1201881744/11384387281*15127^(7/15) 9421138468991094 a001 12586269025/119218851371*15127^(7/15) 9421138468991094 a001 32951280099/312119004989*15127^(7/15) 9421138468991094 a001 21566892818/204284540899*15127^(7/15) 9421138468991094 a001 225851433717/2139295485799*15127^(7/15) 9421138468991094 a001 182717648081/1730726404001*15127^(7/15) 9421138468991094 a001 139583862445/1322157322203*15127^(7/15) 9421138468991094 a001 53316291173/505019158607*15127^(7/15) 9421138468991094 a001 10182505537/96450076809*15127^(7/15) 9421138468991094 a001 7778742049/73681302247*15127^(7/15) 9421138468991094 a001 2971215073/28143753123*15127^(7/15) 9421138468991094 a001 567451585/5374978561*15127^(7/15) 9421138468991094 a001 433494437/4106118243*15127^(7/15) 9421138468991094 a001 165580141/1568397607*15127^(7/15) 9421138468991095 a001 31622993/299537289*15127^(7/15) 9421138468991097 a001 24157817/228826127*15127^(7/15) 9421138468991115 a001 9227465/87403803*15127^(7/15) 9421138468991238 a001 1762289/16692641*15127^(7/15) 9421138468992076 a001 1346269/12752043*15127^(7/15) 9421138468997823 a001 514229/4870847*15127^(7/15) 9421138469037212 a001 98209/930249*15127^(7/15) 9421138469125696 a001 10946/710647*39603^(20/33) 9421138469141324 a001 17711/710647*15127^(37/60) 9421138469307190 a001 75025/710647*15127^(7/15) 9421138469561680 a001 28657/167761*15127^(5/12) 9421138469687707 a001 5473/930249*39603^(23/33) 9421138469811703 a001 514229/103682*5778^(2/27) 9421138470154631 a001 6624/101521*15127^(31/60) 9421138470236110 a001 10946/4870847*39603^(26/33) 9421138470476071 a001 17711/24476*15127^(4/15) 9421138470509698 a001 5473/3940598*39603^(5/6) 9421138470534900 a001 17711/15127*5778^(13/54) 9421138470554142 a001 1346269/271443*5778^(2/27) 9421138470560343 a001 4181/710647*9349^(46/57) 9421138470641937 a001 75025/24476*15127^(7/60) 9421138470729408 a001 2178309/439204*5778^(2/27) 9421138470778494 a001 98209/12238*5778^(1/54) 9421138470919089 a001 121393/1860498*15127^(31/60) 9421138471012995 a001 75640/15251*5778^(2/27) 9421138471030622 a001 317811/4870847*15127^(31/60) 9421138471099554 a001 196418/3010349*15127^(31/60) 9421138471157646 a001 28657/271443*15127^(7/15) 9421138471225685 a001 17711/1149851*15127^(2/3) 9421138471391551 a001 75025/1149851*15127^(31/60) 9421138471489378 a001 11592/6119*15127^(1/6) 9421138472238992 a001 46368/1149851*15127^(17/30) 9421138472956725 a001 317811/64079*5778^(2/27) 9421138472981431 a001 121393/3010349*15127^(17/30) 9421138473156697 a001 196418/4870847*15127^(17/30) 9421138473274417 a001 17711/1860498*15127^(43/60) 9421138473392929 a001 28657/439204*15127^(31/60) 9421138473440284 a001 75025/1860498*15127^(17/30) 9421138474287725 a001 2576/103361*15127^(37/60) 9421138474593231 a001 10946/39603*15127^(11/30) 9421138474792093 a001 4181/15127*9349^(22/57) 9421138475038574 a001 121393/4870847*15127^(37/60) 9421138475336759 a001 17711/3010349*15127^(23/30) 9421138475384014 a001 28657/710647*15127^(17/30) 9421138475502625 a001 75025/3010349*15127^(37/60) 9421138476300925 a001 4181/439204*9349^(43/57) 9421138476350066 a001 46368/3010349*15127^(2/3) 9421138476718761 a001 28657/24476*15127^(13/60) 9421138477097703 a001 121393/7881196*15127^(2/3) 9421138477206782 a001 10959/711491*15127^(2/3) 9421138477222696 a001 832040/54018521*15127^(2/3) 9421138477225018 a001 2178309/141422324*15127^(2/3) 9421138477225357 a001 5702887/370248451*15127^(2/3) 9421138477225407 a001 14930352/969323029*15127^(2/3) 9421138477225414 a001 39088169/2537720636*15127^(2/3) 9421138477225415 a001 102334155/6643838879*15127^(2/3) 9421138477225415 a001 9238424/599786069*15127^(2/3) 9421138477225415 a001 701408733/45537549124*15127^(2/3) 9421138477225415 a001 1836311903/119218851371*15127^(2/3) 9421138477225415 a001 4807526976/312119004989*15127^(2/3) 9421138477225415 a001 12586269025/817138163596*15127^(2/3) 9421138477225415 a001 32951280099/2139295485799*15127^(2/3) 9421138477225415 a001 86267571272/5600748293801*15127^(2/3) 9421138477225415 a001 7787980473/505618944676*15127^(2/3) 9421138477225415 a001 365435296162/23725150497407*15127^(2/3) 9421138477225415 a001 139583862445/9062201101803*15127^(2/3) 9421138477225415 a001 53316291173/3461452808002*15127^(2/3) 9421138477225415 a001 20365011074/1322157322203*15127^(2/3) 9421138477225415 a001 7778742049/505019158607*15127^(2/3) 9421138477225415 a001 2971215073/192900153618*15127^(2/3) 9421138477225415 a001 1134903170/73681302247*15127^(2/3) 9421138477225415 a001 433494437/28143753123*15127^(2/3) 9421138477225415 a001 165580141/10749957122*15127^(2/3) 9421138477225415 a001 63245986/4106118243*15127^(2/3) 9421138477225418 a001 24157817/1568397607*15127^(2/3) 9421138477225437 a001 9227465/599074578*15127^(2/3) 9421138477225566 a001 3524578/228826127*15127^(2/3) 9421138477226453 a001 1346269/87403803*15127^(2/3) 9421138477232532 a001 514229/33385282*15127^(2/3) 9421138477274196 a001 196418/12752043*15127^(2/3) 9421138477393902 a001 17711/4870847*15127^(49/60) 9421138477468375 a001 28657/1149851*15127^(37/60) 9421138477559768 a001 75025/4870847*15127^(2/3) 9421138478407210 a001 46368/4870847*15127^(43/60) 9421138478798793 a001 1597/439204*3571^(49/51) 9421138479453031 a001 89/39604*15127^(13/15) 9421138479517108 a001 28657/1860498*15127^(2/3) 9421138480223711 a001 121393/39603*5778^(7/54) 9421138481229986 a001 5473/12238*817138163596^(1/9) 9421138481229986 a001 5473/12238*87403803^(1/6) 9421138481511402 a001 17711/12752043*15127^(11/12) 9421138481579450 a001 28657/3010349*15127^(43/60) 9421138481797309 a001 4181/271443*9349^(40/57) 9421138482352620 a001 2576/321*843^(1/42) 9421138483636593 a001 28657/4870847*15127^(23/30) 9421138483840859 a001 5473/51841*15127^(7/15) 9421138484047768 a001 105937/13201*2207^(1/48) 9421138484583369 a001 46368/20633239*15127^(13/15) 9421138484953082 a001 10946/64079*15127^(5/12) 9421138485331875 a001 121393/54018521*15127^(13/15) 9421138485441081 a001 317811/141422324*15127^(13/15) 9421138485457014 a001 832040/370248451*15127^(13/15) 9421138485459338 a001 2178309/969323029*15127^(13/15) 9421138485459678 a001 5702887/2537720636*15127^(13/15) 9421138485459727 a001 14930352/6643838879*15127^(13/15) 9421138485459734 a001 39088169/17393796001*15127^(13/15) 9421138485459735 a001 102334155/45537549124*15127^(13/15) 9421138485459736 a001 267914296/119218851371*15127^(13/15) 9421138485459736 a001 3524667/1568437211*15127^(13/15) 9421138485459736 a001 1836311903/817138163596*15127^(13/15) 9421138485459736 a001 4807526976/2139295485799*15127^(13/15) 9421138485459736 a001 12586269025/5600748293801*15127^(13/15) 9421138485459736 a001 32951280099/14662949395604*15127^(13/15) 9421138485459736 a001 53316291173/23725150497407*15127^(13/15) 9421138485459736 a001 20365011074/9062201101803*15127^(13/15) 9421138485459736 a001 7778742049/3461452808002*15127^(13/15) 9421138485459736 a001 2971215073/1322157322203*15127^(13/15) 9421138485459736 a001 1134903170/505019158607*15127^(13/15) 9421138485459736 a001 433494437/192900153618*15127^(13/15) 9421138485459736 a001 165580141/73681302247*15127^(13/15) 9421138485459736 a001 63245986/28143753123*15127^(13/15) 9421138485459739 a001 24157817/10749957122*15127^(13/15) 9421138485459758 a001 9227465/4106118243*15127^(13/15) 9421138485459887 a001 3524578/1568397607*15127^(13/15) 9421138485460775 a001 1346269/599074578*15127^(13/15) 9421138485463387 a001 317811/103682*5778^(7/54) 9421138485466861 a001 514229/228826127*15127^(13/15) 9421138485508574 a001 196418/87403803*15127^(13/15) 9421138485794478 a001 75025/33385282*15127^(13/15) 9421138486138268 a001 6765/9349*9349^(16/57) 9421138486227845 a001 832040/271443*5778^(7/54) 9421138486279255 a001 121393/24476*5778^(2/27) 9421138486339378 a001 311187/101521*5778^(7/54) 9421138486408309 a001 1346269/439204*5778^(7/54) 9421138486641919 a001 144/103681*15127^(11/12) 9421138486700306 a001 514229/167761*5778^(7/54) 9421138487110578 a001 10946/167761*15127^(31/60) 9421138487390451 a001 121393/87403803*15127^(11/12) 9421138487499661 a001 317811/228826127*15127^(11/12) 9421138487515594 a001 416020/299537289*15127^(11/12) 9421138487517919 a001 311187/224056801*15127^(11/12) 9421138487518258 a001 5702887/4106118243*15127^(11/12) 9421138487518307 a001 7465176/5374978561*15127^(11/12) 9421138487518314 a001 39088169/28143753123*15127^(11/12) 9421138487518316 a001 14619165/10525900321*15127^(11/12) 9421138487518316 a001 133957148/96450076809*15127^(11/12) 9421138487518316 a001 701408733/505019158607*15127^(11/12) 9421138487518316 a001 1836311903/1322157322203*15127^(11/12) 9421138487518316 a001 14930208/10749853441*15127^(11/12) 9421138487518316 a001 12586269025/9062201101803*15127^(11/12) 9421138487518316 a001 32951280099/23725150497407*15127^(11/12) 9421138487518316 a001 10182505537/7331474697802*15127^(11/12) 9421138487518316 a001 7778742049/5600748293801*15127^(11/12) 9421138487518316 a001 2971215073/2139295485799*15127^(11/12) 9421138487518316 a001 567451585/408569081798*15127^(11/12) 9421138487518316 a001 433494437/312119004989*15127^(11/12) 9421138487518316 a001 165580141/119218851371*15127^(11/12) 9421138487518316 a001 31622993/22768774562*15127^(11/12) 9421138487518319 a001 24157817/17393796001*15127^(11/12) 9421138487518338 a001 9227465/6643838879*15127^(11/12) 9421138487518467 a001 1762289/1268860318*15127^(11/12) 9421138487519355 a001 1346269/969323029*15127^(11/12) 9421138487525441 a001 514229/370248451*15127^(11/12) 9421138487567156 a001 98209/70711162*15127^(11/12) 9421138487754092 a001 28657/12752043*15127^(13/15) 9421138487853070 a001 75025/54018521*15127^(11/12) 9421138487933010 a001 4181/167761*9349^(37/57) 9421138488701684 a001 196418/64079*5778^(7/54) 9421138488706544 a001 10946/271443*15127^(17/30) 9421138489194169 a001 416020/51841*2207^(1/48) 9421138489812753 a001 28657/20633239*15127^(11/12) 9421138489945018 a001 726103/90481*2207^(1/48) 9421138490409069 a001 1346269/167761*2207^(1/48) 9421138490941827 a001 5473/219602*15127^(37/60) 9421138492374819 a001 514229/64079*2207^(1/48) 9421138492394959 a001 4181/103682*9349^(34/57) 9421138492932913 a001 10946/710647*15127^(2/3) 9421138494267660 a001 5473/12238*15127^(19/60) 9421138495017274 a001 10946/1149851*15127^(43/60) 9421138496136127 r002 8th iterates of z^2 + 9421138496363789 a001 75025/39603*5778^(5/27) 9421138497066007 a001 5473/930249*15127^(23/30) 9421138498610665 a001 4181/39603*9349^(28/57) 9421138498745284 a001 46368/9349*3571^(4/51) 9421138499128348 a001 10946/3010349*15127^(49/60) 9421138501185492 a001 10946/4870847*15127^(13/15) 9421138501208346 a001 98209/51841*5778^(5/27) 9421138501238849 a001 4181/64079*9349^(31/57) 9421138501915157 a001 514229/271443*5778^(5/27) 9421138502018279 a001 1346269/710647*5778^(5/27) 9421138502042623 a001 2178309/1149851*5778^(5/27) 9421138502082012 a001 208010/109801*5778^(5/27) 9421138502351990 a001 317811/167761*5778^(5/27) 9421138502419334 a001 75025/24476*5778^(7/54) 9421138503244620 a001 5473/3940598*15127^(11/12) 9421138504202446 a001 121393/64079*5778^(5/27) 9421138505848271 a001 98209/12238*2207^(1/48) 9421138507710015 a007 Real Root Of 578*x^4-37*x^3+6*x^2+24*x-469 9421138507945374 a001 10946/15127*5778^(8/27) 9421138510830115 a001 15456/13201*5778^(13/54) 9421138516394699 a001 4181/15127*7881196^(2/9) 9421138516394732 a001 4181/15127*312119004989^(2/15) 9421138516394732 a001 4181/15127*1568397607^(1/6) 9421138516394733 a001 6765/9349*23725150497407^(1/12) 9421138516394733 a001 6765/9349*10749957122^(1/9) 9421138516394733 a001 6765/9349*228826127^(2/15) 9421138516394800 a001 6765/9349*4870847^(1/6) 9421138516398287 a001 6765/9349*710647^(4/21) 9421138516589486 a001 6765/9349*103682^(2/9) 9421138516709108 a001 121393/103682*5778^(13/54) 9421138516885659 a001 11592/6119*5778^(5/27) 9421138517566841 a001 105937/90481*5778^(13/54) 9421138517691983 a001 832040/710647*5778^(13/54) 9421138517710241 a001 726103/620166*5778^(13/54) 9421138517721525 a001 1346269/1149851*5778^(13/54) 9421138517769324 a001 514229/439204*5778^(13/54) 9421138517850941 a001 6765/9349*39603^(8/33) 9421138518096949 a001 196418/167761*5778^(13/54) 9421138518397018 a001 4181/15127*39603^(1/3) 9421138520342525 a001 75025/64079*5778^(13/54) 9421138522080589 a001 1597/271443*3571^(46/51) 9421138526016762 a001 4181/24476*9349^(25/57) 9421138527373828 a001 6765/9349*15127^(4/15) 9421138529678383 a001 28657/39603*5778^(8/27) 9421138531490987 a001 4181/15127*15127^(11/30) 9421138532649190 a001 17711/9349*9349^(10/57) 9421138532849186 a001 75025/103682*5778^(8/27) 9421138533244758 a001 2255/13201*5778^(25/54) 9421138533311800 a001 196418/271443*5778^(8/27) 9421138533379295 a001 514229/710647*5778^(8/27) 9421138533389142 a001 1346269/1860498*5778^(8/27) 9421138533391466 a001 2178309/3010349*5778^(8/27) 9421138533395228 a001 832040/1149851*5778^(8/27) 9421138533421008 a001 317811/439204*5778^(8/27) 9421138533597711 a001 121393/167761*5778^(8/27) 9421138534808850 a001 46368/64079*5778^(8/27) 9421138535733927 a001 28657/24476*5778^(13/54) 9421138537054577 a001 17711/39603*5778^(19/54) 9421138539300303 a001 6765/24476*5778^(11/27) 9421138540964783 a007 Real Root Of 894*x^4-937*x^3-611*x^2+406*x-563 9421138543110121 a001 17711/24476*5778^(8/27) 9421138543414921 a001 75025/9349*3571^(1/51) 9421138544570078 a001 4181/39603*24476^(4/9) 9421138545342009 a001 4181/1149851*24476^(7/9) 9421138546623548 a001 28657/9349*9349^(7/57) 9421138547315512 a001 23184/51841*5778^(19/54) 9421138548709112 a001 10946/9349*9349^(13/57) 9421138548812562 a001 121393/271443*5778^(19/54) 9421138549030979 a001 317811/710647*5778^(19/54) 9421138549062845 a001 416020/930249*5778^(19/54) 9421138549067494 a001 2178309/4870847*5778^(19/54) 9421138549070368 a001 1346269/3010349*5778^(19/54) 9421138549082540 a001 514229/1149851*5778^(19/54) 9421138549125832 a001 46368/9349*9349^(4/57) 9421138549165967 a001 98209/219602*5778^(19/54) 9421138549737790 a001 75025/167761*5778^(19/54) 9421138551514847 a001 17711/9349*167761^(2/15) 9421138551559474 a001 4181/39603*20633239^(4/15) 9421138551559479 a001 17711/9349*20633239^(2/21) 9421138551559480 a001 4181/39603*17393796001^(4/21) 9421138551559480 a001 4181/39603*505019158607^(1/6) 9421138551559480 a001 4181/39603*599074578^(2/9) 9421138551559481 a001 17711/9349*3461452808002^(1/18) 9421138551559481 a001 17711/9349*28143753123^(1/15) 9421138551559481 a001 17711/9349*228826127^(1/12) 9421138551559595 a001 4181/39603*4870847^(7/24) 9421138551559783 a001 17711/9349*1860498^(1/9) 9421138551565698 a001 4181/39603*710647^(1/3) 9421138551900297 a001 4181/39603*103682^(7/18) 9421138552469611 a001 17711/9349*39603^(5/33) 9421138553657118 a001 28657/64079*5778^(19/54) 9421138554107843 a001 4181/39603*39603^(14/33) 9421138556010058 a001 75025/9349*9349^(1/57) 9421138556018071 a001 4181/710647*64079^(2/3) 9421138556689947 a001 4181/103682*45537549124^(2/9) 9421138556689965 a001 46368/9349*4870847^(1/24) 9421138556689966 a001 4181/103682*12752043^(1/3) 9421138556690837 a001 46368/9349*710647^(1/21) 9421138556738637 a001 46368/9349*103682^(1/18) 9421138557054000 a001 46368/9349*39603^(2/33) 9421138557223494 a001 6765/64079*5778^(14/27) 9421138557253893 a001 4181/33385282*167761^(14/15) 9421138557259939 a001 4181/271443*167761^(8/15) 9421138557321891 a001 4181/3010349*167761^(11/15) 9421138557438464 a001 4181/271443*20633239^(8/21) 9421138557438472 a001 4181/271443*23725150497407^(5/24) 9421138557438472 a001 4181/271443*3461452808002^(2/9) 9421138557438472 a001 4181/271443*28143753123^(4/15) 9421138557438472 a001 4181/271443*10749957122^(5/18) 9421138557438472 a001 4181/271443*228826127^(1/3) 9421138557438638 a001 4181/271443*4870847^(5/12) 9421138557439682 a001 4181/271443*1860498^(4/9) 9421138557447356 a001 4181/271443*710647^(10/21) 9421138557547681 a001 4181/710647*4106118243^(1/3) 9421138557561188 a001 4181/4870847*1149851^(2/3) 9421138557563614 a001 4181/1860498*141422324^(4/9) 9421138557563614 a001 4181/1860498*73681302247^(1/3) 9421138557563829 a001 4181/1860498*4870847^(13/24) 9421138557565939 a001 4181/4870847*1322157322203^(1/3) 9421138557566201 a001 4181/599074578*7881196^(8/9) 9421138557566278 a001 4181/12752043*23725150497407^(1/3) 9421138557566278 a001 4181/12752043*505019158607^(8/21) 9421138557566278 a001 4181/12752043*10749957122^(4/9) 9421138557566278 a001 4181/12752043*228826127^(8/15) 9421138557566312 a001 4181/33385282*20633239^(2/3) 9421138557566315 a001 4181/4106118243*20633239^(20/21) 9421138557566316 a001 4181/969323029*20633239^(13/15) 9421138557566318 a001 4181/370248451*20633239^(17/21) 9421138557566327 a001 4181/33385282*17393796001^(10/21) 9421138557566327 a001 4181/33385282*3461452808002^(7/18) 9421138557566327 a001 4181/33385282*505019158607^(5/12) 9421138557566327 a001 4181/33385282*28143753123^(7/15) 9421138557566327 a001 4181/33385282*599074578^(5/9) 9421138557566327 a001 4181/33385282*228826127^(7/12) 9421138557566334 a001 4181/87403803*817138163596^(4/9) 9421138557566335 a001 4181/87403803*87403803^(2/3) 9421138557566335 a001 4181/969323029*141422324^(7/9) 9421138557566335 a001 4181/228826127*370248451^(2/3) 9421138557566336 a001 4181/599074578*312119004989^(8/15) 9421138557566336 a001 4181/599074578*23725150497407^(11/24) 9421138557566336 a001 4181/599074578*10749957122^(11/18) 9421138557566336 a001 4181/599074578*1568397607^(2/3) 9421138557566336 a001 4181/1568397607*6643838879^(2/3) 9421138557566336 a001 4181/4106118243*3461452808002^(5/9) 9421138557566336 a001 4181/4106118243*28143753123^(2/3) 9421138557566336 a001 4181/10749957122*119218851371^(2/3) 9421138557566336 a001 4181/28143753123*17393796001^(16/21) 9421138557566336 a001 4181/817138163596*17393796001^(19/21) 9421138557566336 a001 4181/28143753123*23725150497407^(7/12) 9421138557566336 a001 4181/28143753123*505019158607^(2/3) 9421138557566336 a001 4181/1322157322203*45537549124^(8/9) 9421138557566336 a001 4181/73681302247*2139295485799^(2/3) 9421138557566336 a001 4181/192900153618*9062201101803^(2/3) 9421138557566336 a001 4181/23725150497407*312119004989^(14/15) 9421138557566336 a001 4181/505019158607*3461452808002^(13/18) 9421138557566336 a001 4181/1322157322203*23725150497407^(17/24) 9421138557566336 a001 4181/5600748293801*1322157322203^(5/6) 9421138557566336 a001 4181/1322157322203*505019158607^(17/21) 9421138557566336 a001 4181/23725150497407*505019158607^(11/12) 9421138557566336 a001 4181/119218851371*312119004989^(11/15) 9421138557566336 a001 4181/505019158607*73681302247^(5/6) 9421138557566336 a001 4181/505019158607*28143753123^(13/15) 9421138557566336 a001 4181/28143753123*10749957122^(7/9) 9421138557566336 a001 4181/1322157322203*10749957122^(17/18) 9421138557566336 a001 4181/45537549124*4106118243^(5/6) 9421138557566336 a001 4181/119218851371*1568397607^(11/12) 9421138557566336 a001 4181/969323029*17393796001^(13/21) 9421138557566336 a001 4181/969323029*505019158607^(13/24) 9421138557566336 a001 4181/969323029*73681302247^(7/12) 9421138557566336 a001 4181/28143753123*599074578^(8/9) 9421138557566336 a001 4181/969323029*599074578^(13/18) 9421138557566336 a001 4181/370248451*45537549124^(5/9) 9421138557566336 a001 4181/599074578*228826127^(11/15) 9421138557566336 a001 4181/4106118243*228826127^(5/6) 9421138557566336 a001 4181/28143753123*228826127^(14/15) 9421138557566336 a001 4181/45537549124*228826127^(23/24) 9421138557566336 a001 4181/370248451*228826127^(17/24) 9421138557566384 a001 4181/370248451*12752043^(5/6) 9421138557566487 a001 4181/7881196*5600748293801^(1/3) 9421138557566542 a001 4181/12752043*4870847^(2/3) 9421138557566649 a001 4181/87403803*4870847^(19/24) 9421138557566700 a001 4181/599074578*4870847^(11/12) 9421138557567291 a001 4181/3010349*7881196^(5/9) 9421138557567364 a001 4181/3010349*20633239^(11/21) 9421138557567375 a001 4181/3010349*312119004989^(1/3) 9421138557567375 a001 4181/3010349*1568397607^(5/12) 9421138557567375 a001 4181/3010349*228826127^(11/24) 9421138557568444 a001 4181/33385282*1860498^(7/9) 9421138557568906 a001 4181/370248451*1860498^(17/18) 9421138557569039 a001 4181/3010349*1860498^(11/18) 9421138557573451 a001 4181/1149851*20633239^(7/15) 9421138557573461 a001 4181/1149851*17393796001^(1/3) 9421138557573461 a001 4181/1149851*505019158607^(7/24) 9421138557573461 a001 4181/1149851*599074578^(7/18) 9421138557575162 a001 4181/1860498*710647^(13/21) 9421138557580491 a001 4181/12752043*710647^(16/21) 9421138557581873 a001 4181/33385282*710647^(5/6) 9421138557583213 a001 4181/87403803*710647^(19/21) 9421138557584343 a001 4181/1149851*710647^(7/12) 9421138557615175 a001 4181/439204*969323029^(1/3) 9421138557648856 a001 4181/1860498*271443^(2/3) 9421138557901085 a001 4181/167761*54018521^(1/3) 9421138557925355 a001 4181/271443*103682^(5/9) 9421138558113401 a001 28657/9349*24476^(1/9) 9421138558196561 a001 4181/1860498*103682^(13/18) 9421138558345290 a001 4181/12752043*103682^(8/9) 9421138558421415 a001 17711/9349*15127^(1/6) 9421138558587281 a001 75025/9349*15127^(1/60) 9421138559434722 a001 46368/9349*15127^(1/15) 9421138559784388 a001 4181/103682*39603^(17/33) 9421138559860404 a001 4181/64079*3010349^(1/3) 9421138559860750 a001 28657/9349*20633239^(1/15) 9421138559860750 a001 4181/64079*9062201101803^(1/6) 9421138559860752 a001 28657/9349*17393796001^(1/21) 9421138559860752 a001 28657/9349*505019158607^(1/24) 9421138559860752 a001 28657/9349*599074578^(1/18) 9421138559862306 a001 28657/9349*710647^(1/12) 9421138561033312 a001 17711/64079*5778^(11/27) 9421138561078991 a001 4181/271443*39603^(20/33) 9421138561690412 k002 Champernowne real with 57/2*n^2+63/2*n+34 9421138561734277 a001 4181/710647*39603^(23/33) 9421138562296288 a001 4181/1860498*39603^(26/33) 9421138562573089 a001 4181/3010349*39603^(5/6) 9421138562844691 a001 4181/4870847*39603^(29/33) 9421138563126909 a001 75025/9349*5778^(1/54) 9421138564204115 a001 46368/167761*5778^(11/27) 9421138564664105 a001 28657/9349*15127^(7/60) 9421138564666729 a001 121393/439204*5778^(11/27) 9421138564734224 a001 317811/1149851*5778^(11/27) 9421138564744071 a001 832040/3010349*5778^(11/27) 9421138564746396 a001 1346269/4870847*5778^(11/27) 9421138564750157 a001 514229/1860498*5778^(11/27) 9421138564775938 a001 196418/710647*5778^(11/27) 9421138564952640 a001 75025/271443*5778^(11/27) 9421138566001701 a001 1597/167761*3571^(43/51) 9421138566163780 a001 28657/103682*5778^(11/27) 9421138569730155 a001 6765/103682*5778^(31/54) 9421138570123224 a001 75025/15127*2207^(1/12) 9421138570772895 a001 4181/39603*15127^(7/15) 9421138571685304 r009 Im(z^3+c),c=-9/74+51/55*I,n=19 9421138573180905 a001 4181/24476*167761^(1/3) 9421138573292484 a001 4181/24476*20633239^(5/21) 9421138573292489 a001 4181/24476*28143753123^(1/6) 9421138573292489 a001 4181/24476*228826127^(5/24) 9421138573292490 a001 10946/9349*141422324^(1/9) 9421138573292490 a001 10946/9349*73681302247^(1/12) 9421138573293245 a001 4181/24476*1860498^(5/18) 9421138573313801 a001 10946/9349*271443^(1/6) 9421138573539973 a001 17711/103682*5778^(25/54) 9421138574465050 a001 10946/39603*5778^(11/27) 9421138577593235 a001 46368/9349*5778^(2/27) 9421138579418966 a001 15456/90481*5778^(25/54) 9421138580020522 a001 4181/103682*15127^(17/30) 9421138580276700 a001 121393/710647*5778^(25/54) 9421138580401841 a001 105937/620166*5778^(25/54) 9421138580420099 a001 832040/4870847*5778^(25/54) 9421138580431383 a001 514229/3010349*5778^(25/54) 9421138580479183 a001 196418/1149851*5778^(25/54) 9421138580520595 a001 5473/12238*5778^(19/54) 9421138580806808 a001 75025/439204*5778^(25/54) 9421138581132746 a001 4181/64079*15127^(31/60) 9421138582213004 a001 10946/9349*15127^(13/60) 9421138583052383 a001 28657/167761*5778^(25/54) 9421138583290242 a001 4181/167761*15127^(37/60) 9421138584886208 a001 4181/271443*15127^(2/3) 9421138586265463 a001 5473/2889*2207^(5/24) 9421138586618759 a001 615/15251*5778^(17/27) 9421138587121491 a001 4181/439204*15127^(43/60) 9421138587682077 a001 1597/5778*3571^(22/51) 9421138589112577 a001 4181/710647*15127^(23/30) 9421138589408062 a007 Real Root Of -609*x^4+950*x^3+462*x^2-793*x+117 9421138590428577 a001 17711/167761*5778^(14/27) 9421138590447324 a001 4181/24476*15127^(5/12) 9421138591196937 a001 4181/1149851*15127^(49/60) 9421138593245670 a001 4181/1860498*15127^(13/15) 9421138594324546 r009 Im(z^3+c),c=-5/27+58/63*I,n=13 9421138595273134 a001 11592/109801*5778^(14/27) 9421138595308012 a001 4181/3010349*15127^(11/12) 9421138595979945 a001 121393/1149851*5778^(14/27) 9421138596083067 a001 317811/3010349*5778^(14/27) 9421138596107411 a001 514229/4870847*5778^(14/27) 9421138596146800 a001 98209/930249*5778^(14/27) 9421138596416778 a001 75025/710647*5778^(14/27) 9421138596441503 a001 28657/9349*5778^(7/54) 9421138597365155 a001 4181/4870847*15127^(29/30) 9421138598196687 a001 75025/9349*2207^(1/48) 9421138598267234 a001 28657/271443*5778^(14/27) 9421138598443786 a001 10946/64079*5778^(25/54) 9421138600007878 a001 6765/9349*5778^(8/27) 9421138601833610 a001 2255/90481*5778^(37/54) 9421138603817697 a001 17711/9349*5778^(5/27) 9421138605002061 a001 196418/39603*2207^(1/12) 9421138605643428 a001 17711/271443*5778^(31/54) 9421138608249061 a001 1597/103682*3571^(40/51) 9421138608396972 a007 Real Root Of 652*x^4-748*x^3-795*x^2-432*x-4 9421138610090814 a001 514229/103682*2207^(1/12) 9421138610833253 a001 1346269/271443*2207^(1/12) 9421138610883104 a001 6624/101521*5778^(31/54) 9421138610892101 l006 ln(6043/6640) 9421138610941574 a001 3524578/710647*2207^(1/12) 9421138610950447 a001 5473/51841*5778^(14/27) 9421138610957378 a001 9227465/1860498*2207^(1/12) 9421138610959683 a001 24157817/4870847*2207^(1/12) 9421138610960020 a001 63245986/12752043*2207^(1/12) 9421138610960069 a001 165580141/33385282*2207^(1/12) 9421138610960076 a001 433494437/87403803*2207^(1/12) 9421138610960077 a001 1134903170/228826127*2207^(1/12) 9421138610960077 a001 2971215073/599074578*2207^(1/12) 9421138610960077 a001 7778742049/1568397607*2207^(1/12) 9421138610960077 a001 20365011074/4106118243*2207^(1/12) 9421138610960077 a001 53316291173/10749957122*2207^(1/12) 9421138610960077 a001 139583862445/28143753123*2207^(1/12) 9421138610960077 a001 365435296162/73681302247*2207^(1/12) 9421138610960077 a001 956722026041/192900153618*2207^(1/12) 9421138610960077 a001 2504730781961/505019158607*2207^(1/12) 9421138610960077 a001 10610209857723/2139295485799*2207^(1/12) 9421138610960077 a001 4052739537881/817138163596*2207^(1/12) 9421138610960077 a001 140728068720/28374454999*2207^(1/12) 9421138610960077 a001 591286729879/119218851371*2207^(1/12) 9421138610960077 a001 225851433717/45537549124*2207^(1/12) 9421138610960077 a001 86267571272/17393796001*2207^(1/12) 9421138610960077 a001 32951280099/6643838879*2207^(1/12) 9421138610960077 a001 1144206275/230701876*2207^(1/12) 9421138610960077 a001 4807526976/969323029*2207^(1/12) 9421138610960077 a001 1836311903/370248451*2207^(1/12) 9421138610960078 a001 701408733/141422324*2207^(1/12) 9421138610960080 a001 267914296/54018521*2207^(1/12) 9421138610960099 a001 9303105/1875749*2207^(1/12) 9421138610960228 a001 39088169/7881196*2207^(1/12) 9421138610961108 a001 14930352/3010349*2207^(1/12) 9421138610967145 a001 5702887/1149851*2207^(1/12) 9421138611008519 a001 2178309/439204*2207^(1/12) 9421138611292106 a001 75640/15251*2207^(1/12) 9421138611647562 a001 121393/1860498*5778^(31/54) 9421138611759095 a001 317811/4870847*5778^(31/54) 9421138611828026 a001 196418/3010349*5778^(31/54) 9421138612120024 a001 75025/1149851*5778^(31/54) 9421138613235837 a001 317811/64079*2207^(1/12) 9421138614121402 a001 28657/439204*5778^(31/54) 9421138617687777 a001 6765/439204*5778^(20/27) 9421138621497596 a001 17711/439204*5778^(17/27) 9421138622420735 r005 Im(z^2+c),c=-29/28+4/39*I,n=12 9421138626558367 a001 121393/24476*2207^(1/12) 9421138626586349 a001 46368/1149851*5778^(17/27) 9421138627328788 a001 121393/3010349*5778^(17/27) 9421138627504054 a001 196418/4870847*5778^(17/27) 9421138627787641 a001 75025/1860498*5778^(17/27) 9421138627839051 a001 10946/167761*5778^(31/54) 9421138629425441 a001 4181/9349*9349^(1/3) 9421138629731372 a001 28657/710647*5778^(17/27) 9421138631362807 a001 4181/15127*5778^(11/27) 9421138633297748 a001 6765/710647*5778^(43/54) 9421138637107566 a001 17711/710647*5778^(37/54) 9421138638919842 a007 Real Root Of 538*x^4-988*x^3-212*x^2+406*x+208 9421138641228171 a001 10946/9349*5778^(13/54) 9421138642253967 a001 2576/103361*5778^(37/54) 9421138643004816 a001 121393/4870847*5778^(37/54) 9421138643053902 a001 10946/271443*5778^(17/27) 9421138643468867 a001 75025/3010349*5778^(37/54) 9421138645434617 a001 28657/1149851*5778^(37/54) 9421138649000993 a001 6765/1149851*5778^(23/27) 9421138650254505 a001 2255/1926*2207^(13/48) 9421138651005333 a001 1292/2889*2207^(19/48) 9421138652810811 a001 17711/1149851*5778^(20/27) 9421138654878363 a001 1597/64079*3571^(37/51) 9421138657935193 a001 46368/3010349*5778^(20/27) 9421138658908070 a001 5473/219602*5778^(37/54) 9421138659144895 a001 75025/4870847*5778^(20/27) 9421138660819678 a005 (1/sin(96/229*Pi))^1059 9421138661102235 a001 28657/1860498*5778^(20/27) 9421138661991012 k002 Champernowne real with 29*n^2+30*n+35 9421138664668611 a001 55/15126*5778^(49/54) 9421138665354994 a001 4181/9349*817138163596^(1/9) 9421138665354994 a001 4181/9349*87403803^(1/6) 9421138668478429 a001 17711/1860498*5778^(43/54) 9421138673611221 a001 46368/4870847*5778^(43/54) 9421138674518040 a001 10946/710647*5778^(20/27) 9421138674599124 a001 2584/3571*3571^(16/51) 9421138676783461 a001 28657/3010349*5778^(43/54) 9421138677125988 a001 610/64079*1364^(43/45) 9421138678392669 a001 4181/9349*15127^(19/60) 9421138680055197 a007 Real Root Of 335*x^4-668*x^3-745*x^2+36*x+922 9421138680349837 a001 6765/3010349*5778^(26/27) 9421138683937155 a001 6765/2207*843^(1/6) 9421138684159655 a001 17711/3010349*5778^(23/27) 9421138689798884 a001 6624/2161*2207^(7/48) 9421138690035591 a001 1597/39603*3571^(2/3) 9421138690221285 a001 10946/1149851*5778^(43/54) 9421138691461640 a001 843/5*144^(17/21) 9421138692459489 a001 28657/4870847*5778^(23/27) 9421138697882484 a001 4181/39603*5778^(14/27) 9421138699835683 a001 17711/4870847*5778^(49/54) 9421138703938029 a001 4181/24476*5778^(25/54) 9421138705888903 a001 5473/930249*5778^(23/27) 9421138717872348 a001 46368/9349*2207^(1/12) 9421138721570129 a001 10946/3010349*5778^(49/54) 9421138721861220 a001 4181/64079*5778^(31/54) 9421138724123907 a001 121393/15127*843^(1/42) 9421138725712158 a001 121393/39603*2207^(7/48) 9421138730951833 a001 317811/103682*2207^(7/48) 9421138731716292 a001 832040/271443*2207^(7/48) 9421138731827825 a001 311187/101521*2207^(7/48) 9421138731896756 a001 1346269/439204*2207^(7/48) 9421138732188753 a001 514229/167761*2207^(7/48) 9421138732452071 a001 17711/3571*1364^(4/45) 9421138734190131 a001 196418/64079*2207^(7/48) 9421138734367882 a001 4181/103682*5778^(17/27) 9421138737246158 a001 10946/4870847*5778^(26/27) 9421138741787842 a001 1597/15127*3571^(28/51) 9421138747907781 a001 75025/24476*2207^(7/48) 9421138751256486 a001 4181/167761*5778^(37/54) 9421138755227100 a001 1597/24476*3571^(31/51) 9421138759397863 a001 105937/13201*843^(1/42) 9421138762291612 k002 Champernowne real with 59/2*n^2+57/2*n+36 9421138764544264 a001 416020/51841*843^(1/42) 9421138764645605 a001 4181/9349*5778^(19/54) 9421138765295114 a001 726103/90481*843^(1/42) 9421138765759165 a001 1346269/167761*843^(1/42) 9421138766471337 a001 4181/271443*5778^(20/27) 9421138767724915 a001 514229/64079*843^(1/42) 9421138781198368 a001 98209/12238*843^(1/42) 9421138782325505 a001 4181/439204*5778^(43/54) 9421138797935475 a001 4181/710647*5778^(23/27) 9421138813638721 a001 4181/1149851*5778^(49/54) 9421138813856489 a001 28657/15127*2207^(5/24) 9421138815570003 m001 BesselK(0,1)^DuboisRaymond-KomornikLoreti 9421138825900730 r005 Re(z^2+c),c=-89/126+6/7*I,n=2 9421138829306339 a001 4181/1860498*5778^(26/27) 9421138837505006 l006 ln(1919/4923) 9421138841929952 a001 28657/9349*2207^(7/48) 9421138847061573 a001 75025/39603*2207^(5/24) 9421138851906129 a001 98209/51841*2207^(5/24) 9421138852612941 a001 514229/271443*2207^(5/24) 9421138852716063 a001 1346269/710647*2207^(5/24) 9421138852731108 a001 1762289/930249*2207^(5/24) 9421138852733303 a001 9227465/4870847*2207^(5/24) 9421138852733624 a001 24157817/12752043*2207^(5/24) 9421138852733670 a001 31622993/16692641*2207^(5/24) 9421138852733677 a001 165580141/87403803*2207^(5/24) 9421138852733678 a001 433494437/228826127*2207^(5/24) 9421138852733678 a001 567451585/299537289*2207^(5/24) 9421138852733678 a001 2971215073/1568397607*2207^(5/24) 9421138852733678 a001 7778742049/4106118243*2207^(5/24) 9421138852733678 a001 10182505537/5374978561*2207^(5/24) 9421138852733678 a001 53316291173/28143753123*2207^(5/24) 9421138852733678 a001 139583862445/73681302247*2207^(5/24) 9421138852733678 a001 182717648081/96450076809*2207^(5/24) 9421138852733678 a001 956722026041/505019158607*2207^(5/24) 9421138852733678 a001 10610209857723/5600748293801*2207^(5/24) 9421138852733678 a001 591286729879/312119004989*2207^(5/24) 9421138852733678 a001 225851433717/119218851371*2207^(5/24) 9421138852733678 a001 21566892818/11384387281*2207^(5/24) 9421138852733678 a001 32951280099/17393796001*2207^(5/24) 9421138852733678 a001 12586269025/6643838879*2207^(5/24) 9421138852733678 a001 1201881744/634430159*2207^(5/24) 9421138852733678 a001 1836311903/969323029*2207^(5/24) 9421138852733678 a001 701408733/370248451*2207^(5/24) 9421138852733679 a001 66978574/35355581*2207^(5/24) 9421138852733681 a001 102334155/54018521*2207^(5/24) 9421138852733699 a001 39088169/20633239*2207^(5/24) 9421138852733822 a001 3732588/1970299*2207^(5/24) 9421138852734660 a001 5702887/3010349*2207^(5/24) 9421138852740407 a001 2178309/1149851*2207^(5/24) 9421138852779796 a001 208010/109801*2207^(5/24) 9421138853049774 a001 317811/167761*2207^(5/24) 9421138854900230 a001 121393/64079*2207^(5/24) 9421138862592212 k002 Champernowne real with 30*n^2+27*n+37 9421138864775098 a001 1597/5778*9349^(22/57) 9421138866962327 m002 -Pi^2+6*Csch[Pi]-Log[Pi]+ProductLog[Pi] 9421138867583444 a001 11592/6119*2207^(5/24) 9421138873546786 a001 75025/9349*843^(1/42) 9421138876121323 a001 2584/3571*9349^(16/57) 9421138878951990 m001 QuadraticClass^(1/5*5^(1/2)*Shi(1)) 9421138906377706 a001 1597/5778*7881196^(2/9) 9421138906377740 a001 1597/5778*312119004989^(2/15) 9421138906377740 a001 1597/5778*1568397607^(1/6) 9421138906377789 a001 2584/3571*23725150497407^(1/12) 9421138906377789 a001 2584/3571*10749957122^(1/9) 9421138906377789 a001 2584/3571*228826127^(2/15) 9421138906377855 a001 2584/3571*4870847^(1/6) 9421138906381343 a001 2584/3571*710647^(4/21) 9421138906572542 a001 2584/3571*103682^(2/9) 9421138907833997 a001 2584/3571*39603^(8/33) 9421138908380025 a001 1597/5778*39603^(1/3) 9421138909744827 h001 (3/8*exp(2)+1/7)/(7/8*exp(1)+5/7) 9421138917356884 a001 2584/3571*15127^(4/15) 9421138920101570 a001 4181/5778*2207^(1/3) 9421138921473995 a001 1597/5778*15127^(11/30) 9421138926442020 a001 17711/15127*2207^(13/48) 9421138934206608 a001 1597/9349*3571^(25/51) 9421138943742188 a001 1/377*2178309^(28/39) 9421138954515484 a001 17711/9349*2207^(5/24) 9421138962892812 k002 Champernowne real with 61/2*n^2+51/2*n+38 9421138966737237 a001 15456/13201*2207^(13/48) 9421138967227603 r002 6th iterates of z^2 + 9421138972616230 a001 121393/103682*2207^(13/48) 9421138973473963 a001 105937/90481*2207^(13/48) 9421138973599105 a001 832040/710647*2207^(13/48) 9421138973617363 a001 726103/620166*2207^(13/48) 9421138973628647 a001 1346269/1149851*2207^(13/48) 9421138973676446 a001 514229/439204*2207^(13/48) 9421138974004071 a001 196418/167761*2207^(13/48) 9421138976249647 a001 75025/64079*2207^(13/48) 9421138984479308 m002 2+(E^Pi*Coth[Pi]^2)/Pi 9421138989990938 a001 2584/3571*5778^(8/27) 9421138991641050 a001 28657/24476*2207^(13/48) 9421138994929468 r002 10th iterates of z^2 + 9421139002538900 a001 6765/3571*3571^(10/51) 9421139002607186 r005 Re(z^2+c),c=-111/98+6/31*I,n=30 9421139006409649 a001 610/39603*1364^(8/9) 9421139021345819 a001 1597/5778*5778^(11/27) 9421139030219948 r005 Re(z^2+c),c=13/98+7/18*I,n=12 9421139033617392 a001 17711/2207*322^(1/36) 9421139040701887 a007 Real Root Of 171*x^4-911*x^3-23*x^2+396*x-503 9421139044548290 a007 Real Root Of 708*x^4-517*x^3+72*x^2+795*x-305 9421139045960483 r002 6th iterates of z^2 + 9421139059836783 r002 3th iterates of z^2 + 9421139061253735 r002 4th iterates of z^2 + 9421139063193412 k002 Champernowne real with 31*n^2+24*n+39 9421139066417660 a007 Real Root Of 717*x^4+273*x^3+936*x^2+426*x-766 9421139069061834 a001 10946/15127*2207^(1/3) 9421139071682393 r009 Re(z^3+c),c=-9/118+51/62*I,n=3 9421139073814086 p004 log(35747/32533) 9421139076588219 r005 Re(z^2+c),c=-1/17+19/41*I,n=4 9421139078338277 a001 28657/3571*1364^(1/45) 9421139082121999 r005 Im(z^2+c),c=-27/44+25/59*I,n=16 9421139084572638 a001 1597/1149851*9349^(55/57) 9421139087105251 h001 (-7*exp(1)+3)/(-6*exp(-3)+2) 9421139090219945 a001 1597/710647*9349^(52/57) 9421139090794845 a001 28657/39603*2207^(1/3) 9421139093965648 a001 75025/103682*2207^(1/3) 9421139094428262 a001 196418/271443*2207^(1/3) 9421139094451695 a001 1597/15127*9349^(28/57) 9421139094495756 a001 514229/710647*2207^(1/3) 9421139094505604 a001 1346269/1860498*2207^(1/3) 9421139094507041 a001 3524578/4870847*2207^(1/3) 9421139094507250 a001 9227465/12752043*2207^(1/3) 9421139094507281 a001 24157817/33385282*2207^(1/3) 9421139094507285 a001 63245986/87403803*2207^(1/3) 9421139094507286 a001 165580141/228826127*2207^(1/3) 9421139094507286 a001 433494437/599074578*2207^(1/3) 9421139094507286 a001 1134903170/1568397607*2207^(1/3) 9421139094507286 a001 2971215073/4106118243*2207^(1/3) 9421139094507286 a001 7778742049/10749957122*2207^(1/3) 9421139094507286 a001 20365011074/28143753123*2207^(1/3) 9421139094507286 a001 53316291173/73681302247*2207^(1/3) 9421139094507286 a001 139583862445/192900153618*2207^(1/3) 9421139094507286 a001 365435296162/505019158607*2207^(1/3) 9421139094507286 a001 10610209857723/14662949395604*2207^(1/3) 9421139094507286 a001 591286729879/817138163596*2207^(1/3) 9421139094507286 a001 225851433717/312119004989*2207^(1/3) 9421139094507286 a001 86267571272/119218851371*2207^(1/3) 9421139094507286 a001 32951280099/45537549124*2207^(1/3) 9421139094507286 a001 12586269025/17393796001*2207^(1/3) 9421139094507286 a001 4807526976/6643838879*2207^(1/3) 9421139094507286 a001 1836311903/2537720636*2207^(1/3) 9421139094507286 a001 701408733/969323029*2207^(1/3) 9421139094507286 a001 267914296/370248451*2207^(1/3) 9421139094507286 a001 102334155/141422324*2207^(1/3) 9421139094507288 a001 39088169/54018521*2207^(1/3) 9421139094507300 a001 14930352/20633239*2207^(1/3) 9421139094507380 a001 5702887/7881196*2207^(1/3) 9421139094507928 a001 2178309/3010349*2207^(1/3) 9421139094511690 a001 832040/1149851*2207^(1/3) 9421139094537470 a001 317811/439204*2207^(1/3) 9421139094714173 a001 121393/167761*2207^(1/3) 9421139095925312 a001 46368/64079*2207^(1/3) 9421139095960527 a001 1597/439204*9349^(49/57) 9421139097135299 a001 10946/9349*2207^(13/48) 9421139101456912 a001 1597/271443*9349^(46/57) 9421139102895161 a001 10946/3571*3571^(7/51) 9421139103737269 a001 610/2207*1364^(22/45) 9421139104226584 a001 17711/24476*2207^(1/3) 9421139107592613 a001 1597/167761*9349^(43/57) 9421139108040667 a001 4181/3571*3571^(13/51) 9421139112054562 a001 1597/103682*9349^(40/57) 9421139116212171 k007 concat of cont frac of 9421139118270269 a001 1597/39603*9349^(34/57) 9421139120898453 a001 1597/64079*9349^(37/57) 9421139124620651 a001 17711/3571*3571^(4/51) 9421139128490278 a001 6765/3571*9349^(10/57) 9421139129602657 a007 Real Root Of 913*x^4+335*x^3-228*x^2-65*x-298 9421139129628643 p004 log(35677/13907) 9421139133050880 a001 6765/15127*2207^(19/48) 9421139133615331 k001 Champernowne real with 197*n+745 9421139133801708 a001 2584/15127*2207^(25/48) 9421139135511887 m001 (Chi(1)+exp(1/Pi))/(Cahen+Niven) 9421139140411110 a001 1597/15127*24476^(4/9) 9421139142055862 a001 4/9*123^(33/52) 9421139145676367 a001 1597/24476*9349^(31/57) 9421139147355937 a001 6765/3571*167761^(2/15) 9421139147400506 a001 1597/15127*20633239^(4/15) 9421139147400512 a001 1597/15127*17393796001^(4/21) 9421139147400512 a001 1597/15127*505019158607^(1/6) 9421139147400512 a001 1597/15127*599074578^(2/9) 9421139147400568 a001 6765/3571*20633239^(2/21) 9421139147400570 a001 6765/3571*3461452808002^(1/18) 9421139147400570 a001 6765/3571*28143753123^(1/15) 9421139147400570 a001 6765/3571*228826127^(1/12) 9421139147400628 a001 1597/15127*4870847^(7/24) 9421139147400872 a001 6765/3571*1860498^(1/9) 9421139147406731 a001 1597/15127*710647^(1/3) 9421139147741330 a001 1597/15127*103682^(7/18) 9421139148310700 a001 6765/3571*39603^(5/33) 9421139149948876 a001 1597/15127*39603^(14/33) 9421139154262504 a001 6765/3571*15127^(1/6) 9421139161124344 a001 6765/9349*2207^(1/3) 9421139161875172 a001 2584/9349*2207^(11/24) 9421139163494013 k002 Champernowne real with 63/2*n^2+45/2*n+40 9421139166613928 a001 1597/15127*15127^(7/15) 9421139169900790 b008 ArcCot[4*Sqrt[7]] 9421139175001203 a001 17711/3571*9349^(4/57) 9421139176380424 a001 28657/3571*3571^(1/51) 9421139176389505 a001 1597/439204*24476^(7/9) 9421139182565262 a001 1597/39603*45537549124^(2/9) 9421139182565281 a001 1597/39603*12752043^(1/3) 9421139182565336 a001 17711/3571*4870847^(1/24) 9421139182566208 a001 17711/3571*710647^(1/21) 9421139182614008 a001 17711/3571*103682^(1/18) 9421139182929372 a001 17711/3571*39603^(2/33) 9421139185310094 a001 17711/3571*15127^(1/15) 9421139185659703 a001 1597/39603*39603^(17/33) 9421139186914645 a001 1597/271443*64079^(2/3) 9421139187517196 a001 1597/103682*167761^(8/15) 9421139187695721 a001 1597/103682*20633239^(8/21) 9421139187695730 a001 1597/103682*23725150497407^(5/24) 9421139187695730 a001 1597/103682*3461452808002^(2/9) 9421139187695730 a001 1597/103682*28143753123^(4/15) 9421139187695730 a001 1597/103682*10749957122^(5/18) 9421139187695730 a001 1597/103682*228826127^(1/3) 9421139187695895 a001 1597/103682*4870847^(5/12) 9421139187696939 a001 1597/103682*1860498^(4/9) 9421139187704613 a001 1597/103682*710647^(10/21) 9421139188182612 a001 1597/103682*103682^(5/9) 9421139188259626 a001 1597/12752043*167761^(14/15) 9421139188333760 a001 1597/1149851*167761^(11/15) 9421139188444255 a001 1597/271443*4106118243^(1/3) 9421139188553463 a001 1597/710647*141422324^(4/9) 9421139188553463 a001 1597/710647*73681302247^(1/3) 9421139188553678 a001 1597/710647*4870847^(13/24) 9421139188564646 a001 1597/1860498*1149851^(2/3) 9421139188565012 a001 1597/710647*710647^(13/21) 9421139188569397 a001 1597/1860498*1322157322203^(1/3) 9421139188571721 a001 1597/4870847*23725150497407^(1/3) 9421139188571721 a001 1597/4870847*505019158607^(8/21) 9421139188571721 a001 1597/4870847*10749957122^(4/9) 9421139188571721 a001 1597/4870847*228826127^(8/15) 9421139188571983 a001 1597/228826127*7881196^(8/9) 9421139188571986 a001 1597/4870847*4870847^(2/3) 9421139188572046 a001 1597/12752043*20633239^(2/3) 9421139188572060 a001 1597/12752043*17393796001^(10/21) 9421139188572060 a001 1597/12752043*3461452808002^(7/18) 9421139188572060 a001 1597/12752043*505019158607^(5/12) 9421139188572060 a001 1597/12752043*28143753123^(7/15) 9421139188572060 a001 1597/12752043*599074578^(5/9) 9421139188572061 a001 1597/12752043*228826127^(7/12) 9421139188572097 a001 1597/1568397607*20633239^(20/21) 9421139188572099 a001 1597/370248451*20633239^(13/15) 9421139188572101 a001 1597/141422324*20633239^(17/21) 9421139188572110 a001 1597/33385282*817138163596^(4/9) 9421139188572111 a001 1597/33385282*87403803^(2/3) 9421139188572117 a001 1597/87403803*370248451^(2/3) 9421139188572118 a001 1597/370248451*141422324^(7/9) 9421139188572118 a001 1597/228826127*312119004989^(8/15) 9421139188572118 a001 1597/228826127*23725150497407^(11/24) 9421139188572118 a001 1597/228826127*10749957122^(11/18) 9421139188572118 a001 1597/228826127*1568397607^(2/3) 9421139188572118 a001 1597/228826127*228826127^(11/15) 9421139188572118 a001 1597/599074578*6643838879^(2/3) 9421139188572118 a001 1597/1568397607*3461452808002^(5/9) 9421139188572118 a001 1597/1568397607*28143753123^(2/3) 9421139188572118 a001 1597/4106118243*119218851371^(2/3) 9421139188572118 a001 1597/10749957122*17393796001^(16/21) 9421139188572118 a001 1597/10749957122*23725150497407^(7/12) 9421139188572118 a001 1597/10749957122*505019158607^(2/3) 9421139188572118 a001 1597/312119004989*17393796001^(19/21) 9421139188572118 a001 1597/10749957122*10749957122^(7/9) 9421139188572118 a001 1597/28143753123*2139295485799^(2/3) 9421139188572118 a001 1597/505019158607*45537549124^(8/9) 9421139188572118 a001 1597/73681302247*9062201101803^(2/3) 9421139188572118 a001 1597/192900153618*3461452808002^(13/18) 9421139188572118 a001 1597/9062201101803*312119004989^(14/15) 9421139188572118 a001 1597/505019158607*23725150497407^(17/24) 9421139188572118 a001 1597/505019158607*505019158607^(17/21) 9421139188572118 a001 1597/23725150497407*23725150497407^(5/6) 9421139188572118 a001 1597/2139295485799*1322157322203^(5/6) 9421139188572118 a001 1597/9062201101803*505019158607^(11/12) 9421139188572118 a001 1597/312119004989*505019158607^(19/24) 9421139188572118 a001 1597/192900153618*73681302247^(5/6) 9421139188572118 a001 1597/45537549124*312119004989^(11/15) 9421139188572118 a001 1597/192900153618*28143753123^(13/15) 9421139188572118 a001 1597/505019158607*10749957122^(17/18) 9421139188572118 a001 1597/17393796001*4106118243^(5/6) 9421139188572118 a001 1597/45537549124*1568397607^(11/12) 9421139188572118 a001 1597/10749957122*599074578^(8/9) 9421139188572118 a001 1597/370248451*17393796001^(13/21) 9421139188572118 a001 1597/370248451*505019158607^(13/24) 9421139188572118 a001 1597/370248451*73681302247^(7/12) 9421139188572118 a001 1597/370248451*599074578^(13/18) 9421139188572118 a001 1597/1568397607*228826127^(5/6) 9421139188572118 a001 1597/10749957122*228826127^(14/15) 9421139188572119 a001 1597/17393796001*228826127^(23/24) 9421139188572119 a001 1597/141422324*45537549124^(5/9) 9421139188572119 a001 1597/141422324*228826127^(17/24) 9421139188572167 a001 1597/141422324*12752043^(5/6) 9421139188572424 a001 1597/33385282*4870847^(19/24) 9421139188572482 a001 1597/228826127*4870847^(11/12) 9421139188573158 a001 1597/3010349*5600748293801^(1/3) 9421139188574177 a001 1597/12752043*1860498^(7/9) 9421139188574689 a001 1597/141422324*1860498^(17/18) 9421139188579160 a001 1597/1149851*7881196^(5/9) 9421139188579232 a001 1597/1149851*20633239^(11/21) 9421139188579244 a001 1597/1149851*312119004989^(1/3) 9421139188579244 a001 1597/1149851*1568397607^(5/12) 9421139188579244 a001 1597/1149851*228826127^(11/24) 9421139188580907 a001 1597/1149851*1860498^(11/18) 9421139188585935 a001 1597/4870847*710647^(16/21) 9421139188587606 a001 1597/12752043*710647^(5/6) 9421139188588988 a001 1597/33385282*710647^(19/21) 9421139188620947 a001 1597/439204*20633239^(7/15) 9421139188620958 a001 1597/439204*17393796001^(1/3) 9421139188620958 a001 1597/439204*505019158607^(7/24) 9421139188620958 a001 1597/439204*599074578^(7/18) 9421139188631840 a001 1597/439204*710647^(7/12) 9421139188638706 a001 1597/710647*271443^(2/3) 9421139188906869 a001 1597/167761*969323029^(1/3) 9421139188975562 a001 28657/3571*9349^(1/57) 9421139189186411 a001 1597/710647*103682^(13/18) 9421139189350733 a001 1597/4870847*103682^(8/9) 9421139190866532 a001 1597/64079*54018521^(1/3) 9421139191061126 a001 10946/3571*9349^(7/57) 9421139191336249 a001 1597/103682*39603^(20/33) 9421139191552785 a001 28657/3571*15127^(1/60) 9421139192630852 a001 1597/271443*39603^(23/33) 9421139193286138 a001 1597/710647*39603^(26/33) 9421139193584958 a001 1597/1149851*39603^(5/6) 9421139193848149 a001 1597/1860498*39603^(29/33) 9421139194396552 a001 1597/4870847*39603^(32/33) 9421139196092413 a001 28657/3571*5778^(1/54) 9421139198429140 s002 sum(A209848[n]/(n^3*10^n-1),n=1..infinity) 9421139199658789 a001 6765/3571*5778^(5/27) 9421139202550980 a001 10946/3571*24476^(1/9) 9421139202981469 a003 sin(Pi*9/34)/sin(Pi*31/108) 9421139203380379 a001 17711/39603*2207^(19/48) 9421139203468607 a001 17711/3571*5778^(2/27) 9421139204297926 a001 1597/24476*3010349^(1/3) 9421139204298273 a001 1597/24476*9062201101803^(1/6) 9421139204298329 a001 10946/3571*20633239^(1/15) 9421139204298330 a001 10946/3571*17393796001^(1/21) 9421139204298330 a001 10946/3571*505019158607^(1/24) 9421139204298330 a001 10946/3571*599074578^(1/18) 9421139204299885 a001 10946/3571*710647^(1/12) 9421139205895839 a001 1597/39603*15127^(17/30) 9421139209101685 a001 10946/3571*15127^(7/60) 9421139213641315 a001 23184/51841*2207^(19/48) 9421139215138365 a001 121393/271443*2207^(19/48) 9421139215143467 a001 1597/103682*15127^(2/3) 9421139215356782 a001 317811/710647*2207^(19/48) 9421139215388649 a001 416020/930249*2207^(19/48) 9421139215393298 a001 2178309/4870847*2207^(19/48) 9421139215396171 a001 1346269/3010349*2207^(19/48) 9421139215408343 a001 514229/1149851*2207^(19/48) 9421139215491771 a001 98209/219602*2207^(19/48) 9421139216063593 a001 75025/167761*2207^(19/48) 9421139216255690 a001 1597/64079*15127^(37/60) 9421139218413187 a001 1597/167761*15127^(43/60) 9421139219982922 a001 28657/64079*2207^(19/48) 9421139220009153 a001 1597/271443*15127^(23/30) 9421139222244436 a001 1597/439204*15127^(49/60) 9421139224235522 a001 1597/710647*15127^(13/15) 9421139225565117 m005 (1/2*exp(1)-7/12)/(1/6*gamma+8/11) 9421139225570269 a001 1597/24476*15127^(31/60) 9421139226319883 a001 1597/1149851*15127^(11/12) 9421139228368616 a001 1597/1860498*15127^(29/30) 9421139231162194 a001 28657/3571*2207^(1/48) 9421139240468166 m001 Niven^OneNinth/(Niven^Ei(1,1)) 9421139240879084 a001 10946/3571*5778^(7/54) 9421139246846401 a001 5473/12238*2207^(19/48) 9421139249085053 a001 1597/9349*9349^(25/57) 9421139263794613 k002 Champernowne real with 32*n^2+21*n+41 9421139271777461 a001 4181/3571*9349^(13/57) 9421139286393718 m001 1/Niven^2*ln(GolombDickman)/PrimesInBinary^2 9421139287436945 a007 Real Root Of 977*x^4-238*x^3-294*x^2+229*x-492 9421139293723526 a001 1597/15127*5778^(14/27) 9421139296249200 a001 1597/9349*167761^(1/3) 9421139296360779 a001 1597/9349*20633239^(5/21) 9421139296360784 a001 1597/9349*28143753123^(1/6) 9421139296360784 a001 1597/9349*228826127^(5/24) 9421139296360841 a001 4181/3571*141422324^(1/9) 9421139296360841 a001 4181/3571*73681302247^(1/12) 9421139296361540 a001 1597/9349*1860498^(5/18) 9421139296382151 a001 4181/3571*271443^(1/6) 9421139301376529 a001 1/1288*(1/2*5^(1/2)+1/2)^17*4^(15/17) 9421139305281355 a001 4181/3571*15127^(13/60) 9421139310835447 a001 6765/24476*2207^(11/24) 9421139311586275 a001 646/6119*2207^(7/12) 9421139313515620 a001 1597/9349*15127^(5/12) 9421139315236719 a007 Real Root Of 891*x^4-687*x^3-31*x^2+814*x-482 9421139316088743 a007 Real Root Of 348*x^4-840*x^3+292*x^2-226*x+382 9421139332568458 a001 17711/64079*2207^(11/24) 9421139333517366 m001 (Chi(1)-Shi(1))/(-Ei(1,1)+ZetaP(2)) 9421139335739262 a001 46368/167761*2207^(11/24) 9421139336201876 a001 121393/439204*2207^(11/24) 9421139336269370 a001 317811/1149851*2207^(11/24) 9421139336279218 a001 832040/3010349*2207^(11/24) 9421139336280654 a001 2178309/7881196*2207^(11/24) 9421139336280864 a001 5702887/20633239*2207^(11/24) 9421139336280894 a001 14930352/54018521*2207^(11/24) 9421139336280899 a001 39088169/141422324*2207^(11/24) 9421139336280900 a001 102334155/370248451*2207^(11/24) 9421139336280900 a001 267914296/969323029*2207^(11/24) 9421139336280900 a001 701408733/2537720636*2207^(11/24) 9421139336280900 a001 1836311903/6643838879*2207^(11/24) 9421139336280900 a001 4807526976/17393796001*2207^(11/24) 9421139336280900 a001 12586269025/45537549124*2207^(11/24) 9421139336280900 a001 32951280099/119218851371*2207^(11/24) 9421139336280900 a001 86267571272/312119004989*2207^(11/24) 9421139336280900 a001 225851433717/817138163596*2207^(11/24) 9421139336280900 a001 1548008755920/5600748293801*2207^(11/24) 9421139336280900 a001 139583862445/505019158607*2207^(11/24) 9421139336280900 a001 53316291173/192900153618*2207^(11/24) 9421139336280900 a001 20365011074/73681302247*2207^(11/24) 9421139336280900 a001 7778742049/28143753123*2207^(11/24) 9421139336280900 a001 2971215073/10749957122*2207^(11/24) 9421139336280900 a001 1134903170/4106118243*2207^(11/24) 9421139336280900 a001 433494437/1568397607*2207^(11/24) 9421139336280900 a001 165580141/599074578*2207^(11/24) 9421139336280900 a001 63245986/228826127*2207^(11/24) 9421139336280902 a001 24157817/87403803*2207^(11/24) 9421139336280913 a001 9227465/33385282*2207^(11/24) 9421139336280993 a001 3524578/12752043*2207^(11/24) 9421139336281542 a001 1346269/4870847*2207^(11/24) 9421139336285303 a001 514229/1860498*2207^(11/24) 9421139336311084 a001 196418/710647*2207^(11/24) 9421139336487787 a001 75025/271443*2207^(11/24) 9421139337698926 a001 28657/103682*2207^(11/24) 9421139343747730 a001 17711/3571*2207^(1/12) 9421139346000198 a001 10946/39603*2207^(11/24) 9421139358988531 m001 HeathBrownMoroz+Bloch^StolarskyHarborth 9421139360243208 a001 1597/39603*5778^(17/27) 9421139364095213 k002 Champernowne real with 65/2*n^2+39/2*n+42 9421139364296526 a001 4181/3571*5778^(13/54) 9421139365727604 a001 305/12238*1364^(37/45) 9421139366298753 a001 1597/24476*5778^(31/54) 9421139384221946 a001 1597/64079*5778^(37/54) 9421139396728608 a001 1597/103682*5778^(20/27) 9421139402897959 a001 4181/15127*2207^(11/24) 9421139406177471 a007 Real Root Of 632*x^4-487*x^3-343*x^2-219*x-807 9421139409989245 a001 2255/13201*2207^(25/48) 9421139410740073 a001 2584/39603*2207^(31/48) 9421139413617213 a001 1597/167761*5778^(43/54) 9421139424502824 m006 (1/2/Pi-4/5)/(3/4*Pi^2-3/5) 9421139427006334 a001 1597/9349*5778^(25/54) 9421139428832066 a001 1597/271443*5778^(23/27) 9421139429196633 a007 Real Root Of 776*x^4+915*x^3+994*x^2+804*x+29 9421139430971424 a001 4181/9349*2207^(19/48) 9421139432460544 a001 28657/5778*843^(2/21) 9421139444686235 a001 1597/439204*5778^(49/54) 9421139447850833 a007 Real Root Of 803*x^4-838*x^3+118*x^2-883*x-85 9421139450284464 a001 17711/103682*2207^(25/48) 9421139456163457 a001 15456/90481*2207^(25/48) 9421139457021190 a001 121393/710647*2207^(25/48) 9421139457146332 a001 105937/620166*2207^(25/48) 9421139457164590 a001 832040/4870847*2207^(25/48) 9421139457175874 a001 514229/3010349*2207^(25/48) 9421139457223674 a001 196418/1149851*2207^(25/48) 9421139457551299 a001 75025/439204*2207^(25/48) 9421139459796875 a001 28657/167761*2207^(25/48) 9421139460296206 a001 1597/710647*5778^(26/27) 9421139464395813 k002 Champernowne real with 33*n^2+18*n+43 9421139467643317 a007 Real Root Of 361*x^4-322*x^3+463*x^2+577*x-421 9421139475188279 a001 10946/64079*2207^(25/48) 9421139486367550 a001 10946/3571*2207^(7/48) 9421139503705468 m008 (1/6*Pi^6-1)/(1/6*Pi^4+2/3) 9421139506512311 a001 28657/3571*843^(1/42) 9421139522558376 m005 (1/2*3^(1/2)+1/4)/(4/9*gamma-3/8) 9421139539177327 a001 6765/64079*2207^(7/12) 9421139539928155 a001 2584/64079*2207^(17/24) 9421139550356599 a001 6765/3571*2207^(5/24) 9421139551107427 a001 2584/3571*2207^(1/3) 9421139564696413 k002 Champernowne real with 67/2*n^2+33/2*n+44 9421139572382414 a001 17711/167761*2207^(7/12) 9421139577226970 a001 11592/109801*2207^(7/12) 9421139577933782 a001 121393/1149851*2207^(7/12) 9421139578036904 a001 317811/3010349*2207^(7/12) 9421139578051950 a001 208010/1970299*2207^(7/12) 9421139578054145 a001 2178309/20633239*2207^(7/12) 9421139578054465 a001 5702887/54018521*2207^(7/12) 9421139578054512 a001 3732588/35355581*2207^(7/12) 9421139578054518 a001 39088169/370248451*2207^(7/12) 9421139578054519 a001 102334155/969323029*2207^(7/12) 9421139578054520 a001 66978574/634430159*2207^(7/12) 9421139578054520 a001 701408733/6643838879*2207^(7/12) 9421139578054520 a001 1836311903/17393796001*2207^(7/12) 9421139578054520 a001 1201881744/11384387281*2207^(7/12) 9421139578054520 a001 12586269025/119218851371*2207^(7/12) 9421139578054520 a001 32951280099/312119004989*2207^(7/12) 9421139578054520 a001 21566892818/204284540899*2207^(7/12) 9421139578054520 a001 225851433717/2139295485799*2207^(7/12) 9421139578054520 a001 182717648081/1730726404001*2207^(7/12) 9421139578054520 a001 139583862445/1322157322203*2207^(7/12) 9421139578054520 a001 53316291173/505019158607*2207^(7/12) 9421139578054520 a001 10182505537/96450076809*2207^(7/12) 9421139578054520 a001 7778742049/73681302247*2207^(7/12) 9421139578054520 a001 2971215073/28143753123*2207^(7/12) 9421139578054520 a001 567451585/5374978561*2207^(7/12) 9421139578054520 a001 433494437/4106118243*2207^(7/12) 9421139578054520 a001 165580141/1568397607*2207^(7/12) 9421139578054520 a001 31622993/299537289*2207^(7/12) 9421139578054523 a001 24157817/228826127*2207^(7/12) 9421139578054540 a001 9227465/87403803*2207^(7/12) 9421139578054663 a001 1762289/16692641*2207^(7/12) 9421139578055501 a001 1346269/12752043*2207^(7/12) 9421139578061248 a001 514229/4870847*2207^(7/12) 9421139578100637 a001 98209/930249*2207^(7/12) 9421139578370615 a001 75025/710647*2207^(7/12) 9421139580221071 a001 28657/271443*2207^(7/12) 9421139580682531 a001 4181/24476*2207^(25/48) 9421139587326090 m001 GolombDickman/(BesselK(0,1)^PlouffeB) 9421139592904286 a001 5473/51841*2207^(7/12) 9421139594007133 h001 (-7*exp(8)+9)/(-4*exp(4)-3) 9421139607311050 m001 LambertW(1)^2/FeigenbaumKappa^2*exp(sin(1))^2 9421139646414798 a001 610/15127*1364^(34/45) 9421139652129479 a001 1597/3571*3571^(19/51) 9421139656893335 a001 6765/103682*2207^(31/48) 9421139657644163 a001 1292/51841*2207^(37/48) 9421139664997013 k002 Champernowne real with 34*n^2+15*n+45 9421139670231822 r005 Im(z^2+c),c=-39/70+8/47*I,n=62 9421139671523665 a001 75025/15127*843^(2/21) 9421139672575425 a007 Real Root Of -9*x^4+871*x^3+600*x^2+637*x+803 9421139674868432 m001 (CopelandErdos+GaussAGM)/(Sarnak+ThueMorse) 9421139679454538 b008 6+(3+EulerGamma)^(-1)+Pi 9421139679836332 a001 4181/39603*2207^(7/12) 9421139681200753 r005 Re(z^2+c),c=-101/114+7/33*I,n=29 9421139689440018 r005 Im(z^2+c),c=1/52+41/51*I,n=4 9421139692806612 a001 17711/271443*2207^(31/48) 9421139698046288 a001 6624/101521*2207^(31/48) 9421139698810747 a001 121393/1860498*2207^(31/48) 9421139698922280 a001 317811/4870847*2207^(31/48) 9421139698991211 a001 196418/3010349*2207^(31/48) 9421139699283208 a001 75025/1149851*2207^(31/48) 9421139701284586 a001 28657/439204*2207^(31/48) 9421139706402506 a001 196418/39603*843^(2/21) 9421139707846370 m001 (2^(1/3)+Ei(1))/(HardyLittlewoodC4+Trott2nd) 9421139711491260 a001 514229/103682*843^(2/21) 9421139712233699 a001 1346269/271443*843^(2/21) 9421139712342020 a001 3524578/710647*843^(2/21) 9421139712357823 a001 9227465/1860498*843^(2/21) 9421139712360129 a001 24157817/4870847*843^(2/21) 9421139712360465 a001 63245986/12752043*843^(2/21) 9421139712360514 a001 165580141/33385282*843^(2/21) 9421139712360522 a001 433494437/87403803*843^(2/21) 9421139712360523 a001 1134903170/228826127*843^(2/21) 9421139712360523 a001 2971215073/599074578*843^(2/21) 9421139712360523 a001 7778742049/1568397607*843^(2/21) 9421139712360523 a001 20365011074/4106118243*843^(2/21) 9421139712360523 a001 53316291173/10749957122*843^(2/21) 9421139712360523 a001 139583862445/28143753123*843^(2/21) 9421139712360523 a001 365435296162/73681302247*843^(2/21) 9421139712360523 a001 956722026041/192900153618*843^(2/21) 9421139712360523 a001 2504730781961/505019158607*843^(2/21) 9421139712360523 a001 10610209857723/2139295485799*843^(2/21) 9421139712360523 a001 4052739537881/817138163596*843^(2/21) 9421139712360523 a001 140728068720/28374454999*843^(2/21) 9421139712360523 a001 591286729879/119218851371*843^(2/21) 9421139712360523 a001 225851433717/45537549124*843^(2/21) 9421139712360523 a001 86267571272/17393796001*843^(2/21) 9421139712360523 a001 32951280099/6643838879*843^(2/21) 9421139712360523 a001 1144206275/230701876*843^(2/21) 9421139712360523 a001 4807526976/969323029*843^(2/21) 9421139712360523 a001 1836311903/370248451*843^(2/21) 9421139712360523 a001 701408733/141422324*843^(2/21) 9421139712360526 a001 267914296/54018521*843^(2/21) 9421139712360545 a001 9303105/1875749*843^(2/21) 9421139712360673 a001 39088169/7881196*843^(2/21) 9421139712361554 a001 14930352/3010349*843^(2/21) 9421139712367591 a001 5702887/1149851*843^(2/21) 9421139712408965 a001 2178309/439204*843^(2/21) 9421139712692552 a001 75640/15251*843^(2/21) 9421139714636283 a001 317811/64079*843^(2/21) 9421139715002238 a001 10946/167761*2207^(31/48) 9421139727958815 a001 121393/24476*843^(2/21) 9421139765297613 k002 Champernowne real with 69/2*n^2+27/2*n+46 9421139767423515 a008 Real Root of (-1+2*x-x^2+4*x^4+x^8) 9421139778909501 a001 987/1364*1364^(16/45) 9421139778991287 a001 615/15251*2207^(17/24) 9421139779657902 l006 ln(2156/5531) 9421139779742116 a001 2584/167761*2207^(5/6) 9421139779834573 a001 4181/2207*843^(5/21) 9421139792881003 a001 1597/5778*2207^(11/24) 9421139809024417 a001 4181/64079*2207^(31/48) 9421139809268316 a001 9227465/322*18^(7/17) 9421139813870128 a001 17711/439204*2207^(17/24) 9421139818958883 a001 46368/1149851*2207^(17/24) 9421139819272806 a001 46368/9349*843^(2/21) 9421139819701322 a001 121393/3010349*2207^(17/24) 9421139819809642 a001 317811/7881196*2207^(17/24) 9421139819825446 a001 75640/1875749*2207^(17/24) 9421139819827752 a001 2178309/54018521*2207^(17/24) 9421139819828088 a001 5702887/141422324*2207^(17/24) 9421139819828137 a001 14930352/370248451*2207^(17/24) 9421139819828144 a001 39088169/969323029*2207^(17/24) 9421139819828145 a001 9303105/230701876*2207^(17/24) 9421139819828146 a001 267914296/6643838879*2207^(17/24) 9421139819828146 a001 701408733/17393796001*2207^(17/24) 9421139819828146 a001 1836311903/45537549124*2207^(17/24) 9421139819828146 a001 4807526976/119218851371*2207^(17/24) 9421139819828146 a001 1144206275/28374454999*2207^(17/24) 9421139819828146 a001 32951280099/817138163596*2207^(17/24) 9421139819828146 a001 86267571272/2139295485799*2207^(17/24) 9421139819828146 a001 225851433717/5600748293801*2207^(17/24) 9421139819828146 a001 591286729879/14662949395604*2207^(17/24) 9421139819828146 a001 365435296162/9062201101803*2207^(17/24) 9421139819828146 a001 139583862445/3461452808002*2207^(17/24) 9421139819828146 a001 53316291173/1322157322203*2207^(17/24) 9421139819828146 a001 20365011074/505019158607*2207^(17/24) 9421139819828146 a001 7778742049/192900153618*2207^(17/24) 9421139819828146 a001 2971215073/73681302247*2207^(17/24) 9421139819828146 a001 1134903170/28143753123*2207^(17/24) 9421139819828146 a001 433494437/10749957122*2207^(17/24) 9421139819828146 a001 165580141/4106118243*2207^(17/24) 9421139819828146 a001 63245986/1568397607*2207^(17/24) 9421139819828149 a001 24157817/599074578*2207^(17/24) 9421139819828168 a001 9227465/228826127*2207^(17/24) 9421139819828296 a001 3524578/87403803*2207^(17/24) 9421139819829177 a001 1346269/33385282*2207^(17/24) 9421139819835213 a001 514229/12752043*2207^(17/24) 9421139819876588 a001 196418/4870847*2207^(17/24) 9421139820160175 a001 75025/1860498*2207^(17/24) 9421139820203689 a001 4181/3571*2207^(13/48) 9421139822103906 a001 28657/710647*2207^(17/24) 9421139827474688 r002 42th iterates of z^2 + 9421139829510321 k006 concat of cont frac of 9421139830546247 r005 Im(z^2+c),c=-10/23+10/63*I,n=13 9421139831931941 m001 (-Bloch+CopelandErdos)/(Catalan+BesselI(1,2)) 9421139835426438 a001 10946/271443*2207^(17/24) 9421139846260047 a003 cos(Pi*17/77)/sin(Pi*31/102) 9421139863531005 a008 Real Root of (1+2*x^2+4*x^3-4*x^4-4*x^5) 9421139865598213 k002 Champernowne real with 35*n^2+12*n+47 9421139874595937 a007 Real Root Of 7*x^4+670*x^3+996*x^2+459*x-39 9421139877133065 m001 (Totient-ZetaP(4))/(FransenRobinson-Porter) 9421139891437115 a001 1597/3571*9349^(1/3) 9421139899415488 a001 2255/90481*2207^(37/48) 9421139900166316 a001 2584/271443*2207^(43/48) 9421139906494850 a007 Real Root Of 766*x^4-103*x^3+641*x^2+302*x-974 9421139906693135 m001 Porter*StronglyCareFree^KhinchinHarmonic 9421139906851511 a007 Real Root Of -486*x^4+336*x^3-674*x^2-880*x+433 9421139907234926 r005 Re(z^2+c),c=-17/18+4/161*I,n=3 9421139912618284 a001 615/124*521^(4/39) 9421139926740429 a001 4181/103682*2207^(17/24) 9421139927366673 a001 1597/3571*817138163596^(1/9) 9421139927366673 a001 1597/3571*87403803^(1/6) 9421139933891914 m001 OneNinth+LaplaceLimit^TreeGrowth2nd 9421139934689449 a001 17711/710647*2207^(37/48) 9421139935512783 a005 (1/cos(25/112*Pi))^34 9421139939835851 a001 2576/103361*2207^(37/48) 9421139940404349 a001 1597/3571*15127^(19/60) 9421139940586701 a001 121393/4870847*2207^(37/48) 9421139941050751 a001 75025/3010349*2207^(37/48) 9421139943016502 a001 28657/1149851*2207^(37/48) 9421139948733966 m001 ErdosBorwein^DuboisRaymond*Thue 9421139956489956 a001 5473/219602*2207^(37/48) 9421139957560255 r002 3th iterates of z^2 + 9421139965898813 k002 Champernowne real with 71/2*n^2+21/2*n+48 9421139993925137 a007 Real Root Of -679*x^4-595*x^3-700*x^2-662*x+35 9421140015012961 r009 Re(z^3+c),c=-7/86+25/37*I,n=3 9421140020479007 a001 6765/439204*2207^(5/6) 9421140021229836 a001 34/5779*2207^(23/24) 9421140026657297 a001 1597/3571*5778^(19/54) 9421140026789620 a007 Real Root Of -194*x^4+88*x^3+446*x^2+597*x+393 9421140048838385 a001 4181/167761*2207^(37/48) 9421140055602047 a001 17711/1149851*2207^(5/6) 9421140059434433 m001 Sarnak^OneNinth*Sarnak^ZetaP(4) 9421140060726429 a001 46368/3010349*2207^(5/6) 9421140061474066 a001 121393/7881196*2207^(5/6) 9421140061583145 a001 10959/711491*2207^(5/6) 9421140061599060 a001 832040/54018521*2207^(5/6) 9421140061601381 a001 2178309/141422324*2207^(5/6) 9421140061601720 a001 5702887/370248451*2207^(5/6) 9421140061601770 a001 14930352/969323029*2207^(5/6) 9421140061601777 a001 39088169/2537720636*2207^(5/6) 9421140061601778 a001 102334155/6643838879*2207^(5/6) 9421140061601778 a001 9238424/599786069*2207^(5/6) 9421140061601778 a001 701408733/45537549124*2207^(5/6) 9421140061601778 a001 1836311903/119218851371*2207^(5/6) 9421140061601778 a001 4807526976/312119004989*2207^(5/6) 9421140061601778 a001 12586269025/817138163596*2207^(5/6) 9421140061601778 a001 32951280099/2139295485799*2207^(5/6) 9421140061601778 a001 86267571272/5600748293801*2207^(5/6) 9421140061601778 a001 7787980473/505618944676*2207^(5/6) 9421140061601778 a001 365435296162/23725150497407*2207^(5/6) 9421140061601778 a001 139583862445/9062201101803*2207^(5/6) 9421140061601778 a001 53316291173/3461452808002*2207^(5/6) 9421140061601778 a001 20365011074/1322157322203*2207^(5/6) 9421140061601778 a001 7778742049/505019158607*2207^(5/6) 9421140061601778 a001 2971215073/192900153618*2207^(5/6) 9421140061601778 a001 1134903170/73681302247*2207^(5/6) 9421140061601778 a001 433494437/28143753123*2207^(5/6) 9421140061601778 a001 165580141/10749957122*2207^(5/6) 9421140061601778 a001 63245986/4106118243*2207^(5/6) 9421140061601781 a001 24157817/1568397607*2207^(5/6) 9421140061601800 a001 9227465/599074578*2207^(5/6) 9421140061601930 a001 3524578/228826127*2207^(5/6) 9421140061602816 a001 1346269/87403803*2207^(5/6) 9421140061608895 a001 514229/33385282*2207^(5/6) 9421140061650560 a001 196418/12752043*2207^(5/6) 9421140061936132 a001 75025/4870847*2207^(5/6) 9421140063893471 a001 28657/1860498*2207^(5/6) 9421140066199413 k002 Champernowne real with 36*n^2+9*n+49 9421140071109946 m001 (3^(1/2)-Chi(1))/(sin(1)+OneNinth) 9421140077309279 a001 10946/710647*2207^(5/6) 9421140078516377 m001 Conway-ln(2+3^(1/2))*Niven 9421140080561943 a001 305/2889*1364^(28/45) 9421140100905993 m001 (GAMMA(2/3)-Psi(1,1/3))/(-gamma(2)+Zeta(1,2)) 9421140113213934 a007 Real Root Of -242*x^4+386*x^3-787*x^2-882*x+381 9421140131113111 k007 concat of cont frac of 9421140132960051 a001 610/9349*1364^(31/45) 9421140133437450 a007 Real Root Of -175*x^4+995*x^3+917*x^2-35*x+123 9421140133815361 k005 Champernowne real with floor(Pi*(63*n+237)) 9421140133815361 k001 Champernowne real with 198*n+744 9421140141298331 a001 6765/710647*2207^(43/48) 9421140166410001 k002 Champernowne real with 73/2*n^2+15/2*n+50 9421140169262589 a001 4181/271443*2207^(5/6) 9421140176479018 a001 17711/1860498*2207^(43/48) 9421140181611811 a001 46368/4870847*2207^(43/48) 9421140184784051 a001 28657/3010349*2207^(43/48) 9421140191354130 a003 cos(Pi*27/97)+cos(Pi*29/72) 9421140197355817 p001 sum(1/(436*n+107)/(25^n),n=0..infinity) 9421140198221878 a001 10946/1149851*2207^(43/48) 9421140202836873 m001 sin(1)^(Weierstrass/exp(1/Pi)) 9421140218152787 r001 53i'th iterates of 2*x^2-1 of 9421140238758324 a007 Real Root Of 651*x^4-279*x^3-315*x^2+543*x+45 9421140260949024 r008 a(0)=0,K{-n^6,62-37*n^3+71*n^2+11*n} 9421140262210931 a001 6765/1149851*2207^(23/24) 9421140266710061 k002 Champernowne real with 37*n^2+6*n+51 9421140275677436 a001 1597/15127*2207^(7/12) 9421140290326112 a001 4181/439204*2207^(43/48) 9421140297369599 a001 17711/3010349*2207^(23/24) 9421140302499180 a001 11592/1970299*2207^(23/24) 9421140303247575 a001 121393/20633239*2207^(23/24) 9421140303356765 a001 317811/54018521*2207^(23/24) 9421140303372695 a001 208010/35355581*2207^(23/24) 9421140303375020 a001 2178309/370248451*2207^(23/24) 9421140303375359 a001 5702887/969323029*2207^(23/24) 9421140303375408 a001 196452/33391061*2207^(23/24) 9421140303375415 a001 39088169/6643838879*2207^(23/24) 9421140303375416 a001 102334155/17393796001*2207^(23/24) 9421140303375417 a001 66978574/11384387281*2207^(23/24) 9421140303375417 a001 701408733/119218851371*2207^(23/24) 9421140303375417 a001 1836311903/312119004989*2207^(23/24) 9421140303375417 a001 1201881744/204284540899*2207^(23/24) 9421140303375417 a001 12586269025/2139295485799*2207^(23/24) 9421140303375417 a001 32951280099/5600748293801*2207^(23/24) 9421140303375417 a001 1135099622/192933544679*2207^(23/24) 9421140303375417 a001 139583862445/23725150497407*2207^(23/24) 9421140303375417 a001 53316291173/9062201101803*2207^(23/24) 9421140303375417 a001 10182505537/1730726404001*2207^(23/24) 9421140303375417 a001 7778742049/1322157322203*2207^(23/24) 9421140303375417 a001 2971215073/505019158607*2207^(23/24) 9421140303375417 a001 567451585/96450076809*2207^(23/24) 9421140303375417 a001 433494437/73681302247*2207^(23/24) 9421140303375417 a001 165580141/28143753123*2207^(23/24) 9421140303375417 a001 31622993/5374978561*2207^(23/24) 9421140303375420 a001 24157817/4106118243*2207^(23/24) 9421140303375439 a001 9227465/1568397607*2207^(23/24) 9421140303375568 a001 1762289/299537289*2207^(23/24) 9421140303376456 a001 1346269/228826127*2207^(23/24) 9421140303382541 a001 514229/87403803*2207^(23/24) 9421140303424248 a001 98209/16692641*2207^(23/24) 9421140303710109 a001 75025/12752043*2207^(23/24) 9421140303750904 a001 1597/9349*2207^(25/48) 9421140304547564 m001 Mills^OneNinth*TreeGrowth2nd^OneNinth 9421140305669435 a001 28657/4870847*2207^(23/24) 9421140319098851 a001 5473/930249*2207^(23/24) 9421140321518184 a001 233/843*521^(22/39) 9421140336788712 a001 2584/2207*843^(13/42) 9421140337319503 a001 233/9349*521^(37/39) 9421140354388629 r008 a(0)=9,K{-n^6,-30+50*n-37*n^2+16*n^3} 9421140355544988 a007 Real Root Of 791*x^4+716*x^3+42*x^2-565*x-594 9421140367010121 k002 Champernowne real with 75/2*n^2+9/2*n+52 9421140371096487 a001 17711/5778*843^(1/6) 9421140374843992 a008 Real Root of x^2-x-8970 9421140382209193 r009 Re(z^3+c),c=-73/118+40/57*I,n=5 9421140411145439 a001 4181/710647*2207^(23/24) 9421140412140854 l006 ln(8361/9187) 9421140414562929 m001 exp(GAMMA(11/24))^2/Riemann3rdZero^2/cos(Pi/5) 9421140417747404 r002 41th iterates of z^2 + 9421140445148261 a001 17711/3571*843^(2/21) 9421140453462025 a001 1597/24476*2207^(31/48) 9421140467310181 k002 Champernowne real with 38*n^2+3*n+53 9421140498204672 r009 Im(z^3+c),c=-17/90+45/47*I,n=38 9421140504520091 r005 Im(z^2+c),c=-11/12+10/127*I,n=11 9421140506720920 a007 Real Root Of -485*x^4+533*x^3+251*x^2+456*x-716 9421140535191230 l006 ln(2393/6139) 9421140535417490 r005 Im(z^2+c),c=-7/10+41/192*I,n=10 9421140552615835 a001 1597/39603*2207^(17/24) 9421140553483601 m001 (-Artin+ReciprocalLucas)/(5^(1/2)+ln(gamma)) 9421140567610241 k002 Champernowne real with 77/2*n^2+3/2*n+54 9421140570994788 m001 1/Porter^2/Cahen^2*exp(GAMMA(5/12)) 9421140578668121 a001 987/2207*843^(19/42) 9421140617249765 a001 6624/2161*843^(1/6) 9421140635931227 a007 Real Root Of -518*x^4+908*x^3-100*x^2+353*x-595 9421140646785775 r002 36i'th iterates of 2*x/(1-x^2) of 9421140653163046 a001 121393/39603*843^(1/6) 9421140658402723 a001 317811/103682*843^(1/6) 9421140659167181 a001 832040/271443*843^(1/6) 9421140659278714 a001 311187/101521*843^(1/6) 9421140659294987 a001 5702887/1860498*843^(1/6) 9421140659297361 a001 14930352/4870847*843^(1/6) 9421140659297707 a001 39088169/12752043*843^(1/6) 9421140659297758 a001 14619165/4769326*843^(1/6) 9421140659297765 a001 267914296/87403803*843^(1/6) 9421140659297766 a001 701408733/228826127*843^(1/6) 9421140659297766 a001 1836311903/599074578*843^(1/6) 9421140659297766 a001 686789568/224056801*843^(1/6) 9421140659297766 a001 12586269025/4106118243*843^(1/6) 9421140659297766 a001 32951280099/10749957122*843^(1/6) 9421140659297766 a001 86267571272/28143753123*843^(1/6) 9421140659297766 a001 32264490531/10525900321*843^(1/6) 9421140659297766 a001 591286729879/192900153618*843^(1/6) 9421140659297766 a001 1548008755920/505019158607*843^(1/6) 9421140659297766 a001 1515744265389/494493258286*843^(1/6) 9421140659297766 a001 2504730781961/817138163596*843^(1/6) 9421140659297766 a001 956722026041/312119004989*843^(1/6) 9421140659297766 a001 365435296162/119218851371*843^(1/6) 9421140659297766 a001 139583862445/45537549124*843^(1/6) 9421140659297766 a001 53316291173/17393796001*843^(1/6) 9421140659297766 a001 20365011074/6643838879*843^(1/6) 9421140659297766 a001 7778742049/2537720636*843^(1/6) 9421140659297766 a001 2971215073/969323029*843^(1/6) 9421140659297766 a001 1134903170/370248451*843^(1/6) 9421140659297767 a001 433494437/141422324*843^(1/6) 9421140659297770 a001 165580141/54018521*843^(1/6) 9421140659297789 a001 63245986/20633239*843^(1/6) 9421140659297921 a001 24157817/7881196*843^(1/6) 9421140659298828 a001 9227465/3010349*843^(1/6) 9421140659305044 a001 3524578/1149851*843^(1/6) 9421140659347645 a001 1346269/439204*843^(1/6) 9421140659639643 a001 514229/167761*843^(1/6) 9421140661641021 a001 196418/64079*843^(1/6) 9421140667910301 k002 Champernowne real with 39*n^2+55 9421140669126186 r009 Im(z^3+c),c=-7/32+22/23*I,n=11 9421140675358674 a001 75025/24476*843^(1/6) 9421140681803932 a001 1597/64079*2207^(37/48) 9421140690742500 a001 2576/321*322^(1/36) 9421140692983205 a001 1597/3571*2207^(19/48) 9421140693699425 m001 BesselJ(0,1)/Salem/exp(GAMMA(11/24)) 9421140713411001 m001 (Gompertz-LandauRamanujan)/(Niven+ZetaP(4)) 9421140721078555 r005 Im(z^2+c),c=-25/18+48/187*I,n=5 9421140745244688 r009 Im(z^3+c),c=-15/52+31/33*I,n=5 9421140756373343 a007 Real Root Of -697*x^4-810*x^3-798*x^2-189*x+402 9421140768210361 k002 Champernowne real with 79/2*n^2-3/2*n+56 9421140769380864 a001 28657/9349*843^(1/6) 9421140799519954 a001 1597/103682*2207^(5/6) 9421140845974131 a007 Real Root Of 924*x^4+110*x^3+106*x^2+466*x-291 9421140849900457 m002 -4-2*E^Pi+Pi^3+Pi^6 9421140857028240 m005 (1/2*5^(1/2)-5/8)/(1/12*gamma-4/7) 9421140868510421 k002 Champernowne real with 40*n^2-3*n+57 9421140886422603 r002 6th iterates of z^2 + 9421140921617922 a001 1597/167761*2207^(43/48) 9421140924276351 s002 sum(A097698[n]/(n*exp(pi*n)-1),n=1..infinity) 9421140932513844 a001 121393/15127*322^(1/36) 9421140939597315 q001 1123/1192 9421140948434836 m005 (1/2*3^(1/2)+2/7)/(3/4*5^(1/2)-5/11) 9421140967787808 a001 105937/13201*322^(1/36) 9421140968810481 k002 Champernowne real with 81/2*n^2-9/2*n+58 9421140972934210 a001 416020/51841*322^(1/36) 9421140973685060 a001 726103/90481*322^(1/36) 9421140974149111 a001 1346269/167761*322^(1/36) 9421140976114862 a001 514229/64079*322^(1/36) 9421140989588317 a001 98209/12238*322^(1/36) 9421141025280352 a007 Real Root Of -245*x^4+545*x^3-966*x^2+840*x-71 9421141042042137 a001 1597/271443*2207^(23/24) 9421141058288859 a007 Real Root Of 708*x^4+795*x^3+439*x^2+732*x+407 9421141068590469 m001 Shi(1)+sin(1/12*Pi)-Artin 9421141069110541 k002 Champernowne real with 41*n^2-6*n+59 9421141081936757 a001 75025/9349*322^(1/36) 9421141092247046 a007 Real Root Of 170*x^4+216*x^3+483*x^2-432*x-789 9421141110111211 k008 concat of cont frac of 9421141112521281 k009 concat of cont frac of 9421141113354111 k006 concat of cont frac of 9421141114142711 k006 concat of cont frac of 9421141117112025 k006 concat of cont frac of 9421141119663714 a003 cos(Pi*3/80)*sin(Pi*33/83) 9421141121074538 k007 concat of cont frac of 9421141121111366 k007 concat of cont frac of 9421141121774036 a007 Real Root Of 82*x^4+795*x^3+247*x^2+244*x-838 9421141125692942 r005 Re(z^2+c),c=-3/86+61/64*I,n=2 9421141131114233 k009 concat of cont frac of 9421141134015391 k001 Champernowne real with 199*n+743 9421141135211816 k007 concat of cont frac of 9421141154556151 l006 ln(2630/6747) 9421141169410601 k002 Champernowne real with 83/2*n^2-15/2*n+60 9421141175860449 a008 Real Root of x^4-x^3+105*x^2+277*x-18971 9421141180253960 a007 Real Root Of -489*x^4-143*x^3-805*x^2-481*x+527 9421141204178645 r005 Im(z^2+c),c=-31/66+9/56*I,n=22 9421141211442215 k007 concat of cont frac of 9421141214135112 k007 concat of cont frac of 9421141232131117 k006 concat of cont frac of 9421141234259478 h001 (7/11*exp(1)+3/8)/(1/2*exp(1)+7/8) 9421141260664748 a001 610/2207*3571^(22/51) 9421141269710661 k002 Champernowne real with 42*n^2-9*n+61 9421141271204986 r005 Im(z^2+c),c=5/14+17/41*I,n=7 9421141283965581 r008 a(0)=9,K{-n^6,8-58*n+26*n^2+22*n^3} 9421141323692016 a007 Real Root Of -82*x^4+725*x^3-11*x^2-335*x+365 9421141324512217 k006 concat of cont frac of 9421141331183213 k006 concat of cont frac of 9421141339766812 a001 5473/2889*843^(5/21) 9421141341471221 k006 concat of cont frac of 9421141347584095 a001 987/1364*3571^(16/51) 9421141370010721 k002 Champernowne real with 85/2*n^2-21/2*n+62 9421141372735533 r005 Re(z^2+c),c=-5/6+43/236*I,n=26 9421141373080664 a007 Real Root Of -129*x^4+550*x^3+663*x^2+865*x+788 9421141376579104 m001 BesselI(0,1)-FellerTornier-HeathBrownMoroz 9421141411111144 k006 concat of cont frac of 9421141413818594 a001 10946/3571*843^(1/6) 9421141417432111 k009 concat of cont frac of 9421141431107378 a007 Real Root Of -755*x^4-210*x^3-112*x^2+183*x+691 9421141439136022 a001 610/3571*1364^(5/9) 9421141446099006 s002 sum(A043903[n]/(n^3*10^n+1),n=1..infinity) 9421141446868139 a007 Real Root Of -221*x^4-641*x^3-913*x^2+578*x+993 9421141450406124 a007 Real Root Of -316*x^4+846*x^3+771*x^2+139*x+403 9421141466230889 m009 (3/2*Pi^2-3/4)/(6*Psi(1,3/4)-1/3) 9421141468350982 a007 Real Root Of -645*x^4+842*x^3+326*x^2-728*x+237 9421141470310781 k002 Champernowne real with 43*n^2-12*n+63 9421141511171372 k007 concat of cont frac of 9421141529942795 a007 Real Root Of -802*x^4-726*x^3-632*x^2+806*x+81 9421141537757848 a001 610/2207*9349^(22/57) 9421141549106350 a001 987/1364*9349^(16/57) 9421141567357904 a001 28657/15127*843^(5/21) 9421141570610841 k002 Champernowne real with 87/2*n^2-27/2*n+64 9421141578916005 m005 (1/2*exp(1)+6/11)/(3/8*5^(1/2)-7/11) 9421141579360467 a001 610/2207*7881196^(2/9) 9421141579360501 a001 610/2207*312119004989^(2/15) 9421141579360501 a001 610/2207*1568397607^(1/6) 9421141579362825 a001 987/1364*23725150497407^(1/12) 9421141579362825 a001 987/1364*10749957122^(1/9) 9421141579362825 a001 987/1364*228826127^(2/15) 9421141579362891 a001 987/1364*4870847^(1/6) 9421141579366379 a001 987/1364*710647^(4/21) 9421141579557578 a001 987/1364*103682^(2/9) 9421141580819033 a001 987/1364*39603^(8/33) 9421141581362787 a001 610/2207*39603^(1/3) 9421141583756073 m001 (Zeta(1/2)+Ei(1,1))/(Mills+Trott) 9421141590341923 a001 987/1364*15127^(4/15) 9421141594456760 a001 610/2207*15127^(11/30) 9421141599179230 m001 1/ln(Lehmer)^2/CareFree/GAMMA(1/24)^2 9421141600562998 a001 75025/39603*843^(5/21) 9421141605407556 a001 98209/51841*843^(5/21) 9421141606114367 a001 514229/271443*843^(5/21) 9421141606217490 a001 1346269/710647*843^(5/21) 9421141606232535 a001 1762289/930249*843^(5/21) 9421141606234730 a001 9227465/4870847*843^(5/21) 9421141606235050 a001 24157817/12752043*843^(5/21) 9421141606235097 a001 31622993/16692641*843^(5/21) 9421141606235104 a001 165580141/87403803*843^(5/21) 9421141606235105 a001 433494437/228826127*843^(5/21) 9421141606235105 a001 567451585/299537289*843^(5/21) 9421141606235105 a001 2971215073/1568397607*843^(5/21) 9421141606235105 a001 7778742049/4106118243*843^(5/21) 9421141606235105 a001 10182505537/5374978561*843^(5/21) 9421141606235105 a001 53316291173/28143753123*843^(5/21) 9421141606235105 a001 139583862445/73681302247*843^(5/21) 9421141606235105 a001 182717648081/96450076809*843^(5/21) 9421141606235105 a001 956722026041/505019158607*843^(5/21) 9421141606235105 a001 10610209857723/5600748293801*843^(5/21) 9421141606235105 a001 591286729879/312119004989*843^(5/21) 9421141606235105 a001 225851433717/119218851371*843^(5/21) 9421141606235105 a001 21566892818/11384387281*843^(5/21) 9421141606235105 a001 32951280099/17393796001*843^(5/21) 9421141606235105 a001 12586269025/6643838879*843^(5/21) 9421141606235105 a001 1201881744/634430159*843^(5/21) 9421141606235105 a001 1836311903/969323029*843^(5/21) 9421141606235105 a001 701408733/370248451*843^(5/21) 9421141606235105 a001 66978574/35355581*843^(5/21) 9421141606235108 a001 102334155/54018521*843^(5/21) 9421141606235126 a001 39088169/20633239*843^(5/21) 9421141606235248 a001 3732588/1970299*843^(5/21) 9421141606236087 a001 5702887/3010349*843^(5/21) 9421141606241833 a001 2178309/1149851*843^(5/21) 9421141606281223 a001 208010/109801*843^(5/21) 9421141606551201 a001 317811/167761*843^(5/21) 9421141608401657 a001 121393/64079*843^(5/21) 9421141613111218 k009 concat of cont frac of 9421141617243254 h001 (7/11*exp(1)+8/9)/(9/11*exp(1)+5/9) 9421141621084874 a001 11592/6119*843^(5/21) 9421141662975997 a001 987/1364*5778^(8/27) 9421141670910901 k002 Champernowne real with 44*n^2-15*n+65 9421141671521680 l006 ln(2867/7355) 9421141675168879 m001 ln(2)^(ZetaQ(3)/ZetaQ(2)) 9421141678875306 m001 1/ln(TwinPrimes)^2/Sierpinski/cosh(1)^2 9421141682187499 a003 cos(Pi*5/46)*sin(Pi*44/89) 9421141694328612 a001 610/2207*5778^(11/27) 9421141704844833 m001 (ln(Pi)+HardHexagonsEntropy)/(Khinchin+Trott) 9421141708016940 a001 17711/9349*843^(5/21) 9421141714902431 a001 28657/3571*322^(1/36) 9421141718312413 k007 concat of cont frac of 9421141762007409 r008 a(0)=1,K{-n^6,36+31*n^3-48*n^2-n} 9421141767430207 a007 Real Root Of 440*x^4-913*x^3+432*x^2-905*x+886 9421141769567640 m001 (exp(Pi)+2^(1/2))/(ln(Pi)+MinimumGamma) 9421141771210961 k002 Champernowne real with 89/2*n^2-33/2*n+66 9421141776467668 a003 sin(Pi*11/48)/sin(Pi*19/77) 9421141782778291 m001 Champernowne-cos(1)+FellerTornier 9421141841466733 b008 -1+KelvinBei[0,ArcCsch[2]] 9421141848456489 m001 DuboisRaymond^(OneNinth/Otter) 9421141849759412 m001 ln(2+3^(1/2))^(KomornikLoreti/Ei(1,1)) 9421141852161471 m001 Pi/Psi(1,1/3)+ln(2)/ln(3) 9421141861687022 r002 15th iterates of z^2 + 9421141871511021 k002 Champernowne real with 45*n^2-18*n+67 9421141888111144 k009 concat of cont frac of 9421141892073568 a001 3571/2178309*28657^(15/38) 9421141892245929 a007 Real Root Of 634*x^4+274*x^3-711*x^2-541*x+57 9421141900622832 a007 Real Root Of 635*x^4+299*x^3-793*x^2-853*x-350 9421141905024549 a007 Real Root Of -319*x^4+147*x^3-623*x^2-705*x+263 9421141912632476 r005 Re(z^2+c),c=5/122+7/15*I,n=4 9421141931239122 k006 concat of cont frac of 9421141939399247 m001 (Zeta(1,2)-sin(1))/(LandauRamanujan2nd+Mills) 9421141957514426 m001 1/exp(Rabbit)^2*FeigenbaumC*GAMMA(5/12) 9421141971811081 k002 Champernowne real with 91/2*n^2-39/2*n+68 9421141984989526 m001 exp(-1/2*Pi)^CopelandErdos-Gompertz 9421141991457919 r002 40th iterates of z^2 + 9421142008143148 m005 (1/2*Zeta(3)-7/10)/(4/7*Zeta(3)+4/11) 9421142031548983 r005 Im(z^2+c),c=-33/58+6/35*I,n=57 9421142045202774 r005 Re(z^2+c),c=-17/18+5/177*I,n=15 9421142045669851 a007 Real Root Of -768*x^4+911*x^3-328*x^2-744*x+957 9421142047954873 a007 Real Root Of 774*x^4+101*x^3-567*x^2-709*x-690 9421142051956821 m001 (-BesselJ(1,1)+ThueMorse)/(5^(1/2)+ln(2)) 9421142062153682 a001 46368/199*1364^(6/31) 9421142063032685 m001 1/GAMMA(7/12)/exp(TreeGrowth2nd)*sqrt(5) 9421142068229735 a007 Real Root Of 677*x^4-872*x^3-424*x^2+999*x+55 9421142068995245 a007 Real Root Of -477*x^4+790*x^3-237*x^2-281*x+982 9421142072111141 k002 Champernowne real with 46*n^2-21*n+69 9421142106074734 a001 646/341*1364^(2/9) 9421142109543354 l006 ln(3104/7963) 9421142111222131 k008 concat of cont frac of 9421142121706339 a007 Real Root Of -904*x^4+962*x^3+78*x^2-512*x+965 9421142124351152 a007 Real Root Of -139*x^4-257*x^3-605*x^2+442*x+848 9421142131133509 a007 Real Root Of -947*x^4-400*x^3+451*x^2+972*x+927 9421142134215421 k001 Champernowne real with 200*n+742 9421142141812121 k008 concat of cont frac of 9421142146342530 h001 (4/9*exp(1)+4/5)/(1/6*exp(2)+9/10) 9421142158941298 r008 a(0)=1,K{-n^6,-39-68*n^3+51*n^2+73*n} 9421142159850979 a007 Real Root Of -847*x^4-372*x^3+166*x^2+464*x+646 9421142165755477 m001 FibonacciFactorial/(GAMMA(3/4)+ZetaP(4)) 9421142172411201 k002 Champernowne real with 93/2*n^2-45/2*n+70 9421142181113228 k007 concat of cont frac of 9421142215993933 m002 -3+Pi^3/5-ProductLog[Pi]-Sinh[Pi] 9421142221213986 a003 sin(Pi*7/67)+sin(Pi*10/47) 9421142224092646 a001 987/1364*2207^(1/3) 9421142229806440 a001 2255/1926*843^(13/42) 9421142236907502 m008 (2*Pi^2-1/2)/(2/3*Pi^5+1/5) 9421142253755647 k002 Champernowne real with 39/2*n^2-51/2*n+15 9421142263795748 k003 Champernowne real with 1/6*n^3+37/2*n^2-71/3*n+14 9421142272711261 k002 Champernowne real with 47*n^2-24*n+71 9421142274145945 m001 (cos(1)-BesselK(0,1))/BesselI(0,1) 9421142274372005 a007 Real Root Of -534*x^4-553*x^3+128*x^2+996*x+783 9421142278823564 m001 (Otter+Trott)/(polylog(4,1/2)-FeigenbaumB) 9421142283875948 k003 Champernowne real with 1/2*n^3+33/2*n^2-20*n+12 9421142303858229 a001 6765/3571*843^(5/21) 9421142303956148 k003 Champernowne real with 5/6*n^3+29/2*n^2-49/3*n+10 9421142303980915 b005 Number DB table 9421142304715160 a001 1597/2207*843^(8/21) 9421142313996249 k003 Champernowne real with n^3+27/2*n^2-29/2*n+9 9421142315511121 k006 concat of cont frac of 9421142324036349 k003 Champernowne real with 7/6*n^3+25/2*n^2-38/3*n+8 9421142334076449 k003 Champernowne real with 4/3*n^3+23/2*n^2-65/6*n+7 9421142344116549 k003 Champernowne real with 3/2*n^3+21/2*n^2-9*n+6 9421142352694980 a007 Real Root Of 323*x^4-734*x^3+715*x^2+780*x-768 9421142354156649 k003 Champernowne real with 5/3*n^3+19/2*n^2-43/6*n+5 9421142358301258 a007 Real Root Of 322*x^4-324*x^3+319*x^2+661*x-185 9421142364196741 k003 Champernowne real with 11/6*n^3+17/2*n^2-16/3*n+4 9421142371835363 a007 Real Root Of -154*x^4+565*x^3-333*x^2-737*x+195 9421142373011321 k002 Champernowne real with 95/2*n^2-51/2*n+72 9421142374236841 k003 Champernowne real with 2*n^3+15/2*n^2-7/2*n+3 9421142384276941 k003 Champernowne real with 13/6*n^3+13/2*n^2-5/3*n+2 9421142394317041 k003 Champernowne real with 7/3*n^3+11/2*n^2+1/6*n+1 9421142404357141 k003 Champernowne real with 5/2*n^3+9/2*n^2+2*n 9421142410168752 a007 Real Root Of 828*x^4+235*x^3+702*x^2+676*x-442 9421142414397241 k003 Champernowne real with 8/3*n^3+7/2*n^2+23/6*n-1 9421142418862558 m001 polylog(4,1/2)^(ZetaR(2)/GAMMA(13/24)) 9421142424437341 k003 Champernowne real with 17/6*n^3+5/2*n^2+17/3*n-2 9421142434477441 k003 Champernowne real with 3*n^3+3/2*n^2+15/2*n-3 9421142435907293 a007 Real Root Of -792*x^4-197*x^3-303*x^2+227*x+942 9421142444517541 k003 Champernowne real with 19/6*n^3+1/2*n^2+28/3*n-4 9421142452230616 m006 (1/4*exp(2*Pi)+4)/(3/5*exp(Pi)+3/4) 9421142454557641 k003 Champernowne real with 10/3*n^3-1/2*n^2+67/6*n-5 9421142464597741 k003 Champernowne real with 7/2*n^3-3/2*n^2+13*n-6 9421142465864015 a001 610/2207*2207^(11/24) 9421142465867982 a007 Real Root Of 343*x^4-817*x^3-594*x^2-573*x-966 9421142473311381 k002 Champernowne real with 48*n^2-27*n+73 9421142474637841 k003 Champernowne real with 11/3*n^3-5/2*n^2+89/6*n-7 9421142484677941 k003 Champernowne real with 23/6*n^3-7/2*n^2+50/3*n-8 9421142485421262 l006 ln(3341/8571) 9421142494450090 m001 (Zeta(1,-1)-KhinchinLevy)/(Stephens+Thue) 9421142494718041 k003 Champernowne real with 4*n^3-9/2*n^2+37/2*n-9 9421142496191528 m001 (2^(1/2)+Chi(1))/(-DuboisRaymond+Sierpinski) 9421142505994059 a001 17711/15127*843^(13/42) 9421142512521034 k008 concat of cont frac of 9421142514551435 m001 1/gamma*CareFree/exp(sin(Pi/12)) 9421142515909757 m001 1/ln(GaussKuzminWirsing)*DuboisRaymond*gamma 9421142524838341 k003 Champernowne real with 9/2*n^3-15/2*n^2+24*n-12 9421142546289291 a001 15456/13201*843^(13/42) 9421142552168286 a001 121393/103682*843^(13/42) 9421142553026020 a001 105937/90481*843^(13/42) 9421142553151162 a001 832040/710647*843^(13/42) 9421142553169420 a001 726103/620166*843^(13/42) 9421142553180704 a001 1346269/1149851*843^(13/42) 9421142553228504 a001 514229/439204*843^(13/42) 9421142553556129 a001 196418/167761*843^(13/42) 9421142554958641 k003 Champernowne real with 5*n^3-21/2*n^2+59/2*n-15 9421142555801705 a001 75025/64079*843^(13/42) 9421142567035840 s001 sum(exp(-Pi/3)^(n-1)*A242915[n],n=1..infinity) 9421142571193114 a001 28657/24476*843^(13/42) 9421142573611441 k002 Champernowne real with 97/2*n^2-57/2*n+74 9421142577280032 s002 sum(A242068[n]/((pi^n+1)/n),n=1..infinity) 9421142578712371 a001 2584/843*322^(7/36) 9421142585078941 k003 Champernowne real with 11/2*n^3-27/2*n^2+35*n-18 9421142601703387 a007 Real Root Of 813*x^4-855*x^3-440*x^2+140*x-833 9421142603389647 b008 -1+Sech[2/5+Pi] 9421142611639268 r009 Im(z^3+c),c=-21/110+48/53*I,n=31 9421142613803562 r005 Re(z^2+c),c=-17/18+6/211*I,n=9 9421142615199241 k003 Champernowne real with 6*n^3-33/2*n^2+81/2*n-21 9421142617158479 a001 233/5778*521^(34/39) 9421142622980143 r005 Re(z^2+c),c=-11/38+16/19*I,n=12 9421142639338119 a001 5473/682*521^(1/39) 9421142645319541 k003 Champernowne real with 13/2*n^3-39/2*n^2+46*n-24 9421142673911501 k002 Champernowne real with 49*n^2-30*n+75 9421142675439841 k003 Champernowne real with 7*n^3-45/2*n^2+103/2*n-27 9421142676687403 a001 10946/9349*843^(13/42) 9421142680128883 r002 5th iterates of z^2 + 9421142680128883 r002 5th iterates of z^2 + 9421142705551014 k003 Champernowne real with 15/2*n^3-51/2*n^2+57*n-30 9421142724654751 a007 Real Root Of 805*x^4-817*x^3-248*x^2+186*x-922 9421142735671044 k003 Champernowne real with 8*n^3-57/2*n^2+125/2*n-33 9421142739395359 m006 (2*exp(2*Pi)-3/5)/(1/6/Pi-1/6) 9421142749054580 m001 (Ei(1,1)-GAMMA(17/24))^Zeta(1,2) 9421142765791074 k003 Champernowne real with 17/2*n^3-63/2*n^2+68*n-36 9421142774211561 k002 Champernowne real with 99/2*n^2-63/2*n+76 9421142777817347 m001 GAMMA(17/24)^2*GAMMA(11/24)/ln(Zeta(3))^2 9421142779170453 a003 sin(Pi*1/77)-sin(Pi*5/116) 9421142789478885 a001 1597/1364*1364^(13/45) 9421142790395699 g007 Psi(2,1/7)+Psi(2,1/5)+Psi(2,2/3)-Psi(2,4/5) 9421142795911104 k003 Champernowne real with 9*n^3-69/2*n^2+147/2*n-39 9421142802305763 a007 Real Root Of 964*x^4-154*x^3+686*x^2+724*x-815 9421142804062355 a001 610/167761*3571^(49/51) 9421142811504265 l006 ln(3578/9179) 9421142825742740 a001 305/2889*3571^(28/51) 9421142826031134 k003 Champernowne real with 19/2*n^3-75/2*n^2+79*n-42 9421142831106740 m005 (1/2*Pi-1)/(6/7*gamma+1/9) 9421142833642988 a001 4181/1364*1364^(7/45) 9421142846309733 a001 305/51841*3571^(46/51) 9421142856151164 k003 Champernowne real with 10*n^3-81/2*n^2+169/2*n-45 9421142874511621 k002 Champernowne real with 50*n^2-33*n+77 9421142882081652 r005 Im(z^2+c),c=-33/118+20/31*I,n=21 9421142886271194 k003 Champernowne real with 21/2*n^3-87/2*n^2+90*n-48 9421142892939057 a001 610/64079*3571^(43/51) 9421142916391224 k003 Champernowne real with 11*n^3-93/2*n^2+191/2*n-51 9421142928096301 a001 610/39603*3571^(40/51) 9421142939265231 m001 1/cos(Pi/12)^2*FeigenbaumD*ln(sqrt(Pi))^2 9421142944595021 m001 (ln(gamma)-CareFree)/(Totient-ZetaQ(3)) 9421142946511254 k003 Champernowne real with 23/2*n^3-99/2*n^2+101*n-54 9421142955270379 a007 Real Root Of -63*x^4-481*x^3+974*x^2-708*x+979 9421142974811681 k002 Champernowne real with 101/2*n^2-69/2*n+78 9421142977858421 a007 Real Root Of 296*x^4-537*x^3-31*x^2-306*x-943 9421142979848575 a001 610/15127*3571^(2/3) 9421142993287839 a001 305/12238*3571^(37/51) 9421142997301937 q001 3841/4077 9421142999910376 a007 Real Root Of -595*x^4+290*x^3-26*x^2-461*x+300 9421143008536882 h001 (6/7*exp(2)+2/11)/(1/11*exp(1)+4/9) 9421143008626342 a007 Real Root Of -303*x^4+621*x^3-583*x^2-597*x+713 9421143009292444 a001 89*9349^(8/31) 9421143022267737 a001 615/124*1364^(4/45) 9421143026808822 b008 3*Pi*Sech[1/36] 9421143054668270 m001 BesselJ(0,1)^(Stephens/Sierpinski) 9421143057712761 a003 cos(Pi*1/105)*cos(Pi*9/83) 9421143060231711 a007 Real Root Of -275*x^4+695*x^3+805*x^2+869*x+902 9421143075111741 k002 Champernowne real with 51*n^2-36*n+79 9421143075913816 m001 1/GAMMA(5/6)^2*DuboisRaymond^2*exp(gamma)^2 9421143086496567 a001 646/341*3571^(10/51) 9421143087754597 a001 46368/199*5778^(5/31) 9421143097072621 l006 ln(3815/9787) 9421143115148189 a007 Real Root Of 573*x^4-571*x^3-120*x^2+80*x-747 9421143116121112 k009 concat of cont frac of 9421143118514112 k007 concat of cont frac of 9421143119468579 m002 -E^Pi+Pi^6*Coth[Pi]+ProductLog[Pi]/4 9421143121761532 k006 concat of cont frac of 9421143122078470 r005 Re(z^2+c),c=-17/18+5/177*I,n=31 9421143122079123 r005 Re(z^2+c),c=-17/18+5/177*I,n=33 9421143122082516 r005 Re(z^2+c),c=-17/18+5/177*I,n=35 9421143122083984 r005 Re(z^2+c),c=-17/18+5/177*I,n=37 9421143122084425 r005 Re(z^2+c),c=-17/18+5/177*I,n=39 9421143122084530 r005 Re(z^2+c),c=-17/18+5/177*I,n=41 9421143122084549 r005 Re(z^2+c),c=-17/18+5/177*I,n=43 9421143122084550 r005 Re(z^2+c),c=-17/18+5/177*I,n=59 9421143122084550 r005 Re(z^2+c),c=-17/18+5/177*I,n=61 9421143122084550 r005 Re(z^2+c),c=-17/18+5/177*I,n=63 9421143122084550 r005 Re(z^2+c),c=-17/18+5/177*I,n=57 9421143122084550 r005 Re(z^2+c),c=-17/18+5/177*I,n=55 9421143122084550 r005 Re(z^2+c),c=-17/18+5/177*I,n=53 9421143122084550 r005 Re(z^2+c),c=-17/18+5/177*I,n=51 9421143122084551 r005 Re(z^2+c),c=-17/18+5/177*I,n=49 9421143122084551 r005 Re(z^2+c),c=-17/18+5/177*I,n=47 9421143122084551 r005 Re(z^2+c),c=-17/18+5/177*I,n=45 9421143122128401 r005 Re(z^2+c),c=-17/18+5/177*I,n=29 9421143122495961 r005 Re(z^2+c),c=-17/18+5/177*I,n=27 9421143124321041 r005 Re(z^2+c),c=-17/18+5/177*I,n=25 9421143131458340 r005 Re(z^2+c),c=-17/18+5/177*I,n=23 9421143131700260 r005 Re(z^2+c),c=-17/18+5/177*I,n=17 9421143134415451 k001 Champernowne real with 201*n+741 9421143134415451 k005 Champernowne real with floor(Pi*(64*n+236)) 9421143151040393 r002 3th iterates of z^2 + 9421143153132418 r005 Re(z^2+c),c=-17/18+5/177*I,n=21 9421143154668365 a007 Real Root Of -551*x^4+740*x^3-42*x^2-153*x+946 9421143165279544 r001 54i'th iterates of 2*x^2-1 of 9421143172267427 a001 610/9349*3571^(31/51) 9421143175411801 k002 Champernowne real with 103/2*n^2-75/2*n+80 9421143178406746 a001 305/2889*9349^(28/57) 9421143179064548 a007 Real Root Of -631*x^4+556*x^3+169*x^2-656*x+194 9421143193286950 r005 Re(z^2+c),c=-17/18+5/177*I,n=19 9421143212447999 a001 646/341*9349^(10/57) 9421143224366181 a001 305/2889*24476^(4/9) 9421143231313666 a001 646/341*167761^(2/15) 9421143231355580 a001 305/2889*20633239^(4/15) 9421143231355586 a001 305/2889*17393796001^(4/21) 9421143231355586 a001 305/2889*505019158607^(1/6) 9421143231355586 a001 305/2889*599074578^(2/9) 9421143231355702 a001 305/2889*4870847^(7/24) 9421143231358297 a001 646/341*20633239^(2/21) 9421143231358299 a001 646/341*3461452808002^(1/18) 9421143231358299 a001 646/341*28143753123^(1/15) 9421143231358299 a001 646/341*228826127^(1/12) 9421143231358602 a001 646/341*1860498^(1/9) 9421143231361805 a001 305/2889*710647^(1/3) 9421143231696404 a001 305/2889*103682^(7/18) 9421143232268430 a001 646/341*39603^(5/33) 9421143233903951 a001 305/2889*39603^(14/33) 9421143238220237 a001 646/341*15127^(1/6) 9421143243798406 m001 (Zeta(3)-BesselJ(1,1))^Ei(1,1) 9421143245236031 a007 Real Root Of -52*x^4+463*x^3-544*x^2-156*x+764 9421143250569011 a001 305/2889*15127^(7/15) 9421143261176026 a007 Real Root Of -263*x^4+811*x^3+457*x^2-318*x-577 9421143262760822 a007 Real Root Of -282*x^4+311*x^3+276*x^2+948*x-92 9421143275711861 k002 Champernowne real with 52*n^2-39*n+81 9421143283616541 a001 646/341*5778^(5/27) 9421143284073594 a007 Real Root Of -612*x^4-390*x^3-896*x^2-617*x+370 9421143302388120 a001 377/45537549124*3^(2/17) 9421143324270883 a007 Real Root Of 393*x^4-440*x^3-515*x^2-232*x-439 9421143325704270 a001 4181/5778*843^(8/21) 9421143330803219 a007 Real Root Of -370*x^4+225*x^3+512*x^2-14*x+12 9421143332044062 r002 59th iterates of z^2 + 9421143344477895 h001 (6/11*exp(1)+7/9)/(6/11*exp(1)+11/12) 9421143346930219 a007 Real Root Of 112*x^4+960*x^3-808*x^2+834*x-6 9421143351404096 a008 Real Root of (-6+2*x-4*x^2+9*x^4+7*x^8) 9421143351465809 m002 -3*Pi+4/(Pi^6*Log[Pi]) 9421143376011921 k002 Champernowne real with 105/2*n^2-81/2*n+82 9421143377678663 a001 305/2889*5778^(14/27) 9421143379000210 m006 (5*ln(Pi)-5/6)/(1/6*ln(Pi)+5) 9421143399756068 a001 4181/3571*843^(13/42) 9421143403088382 a007 Real Root Of -567*x^4+179*x^3-86*x^2+202*x+863 9421143403224420 r005 Re(z^2+c),c=-15/16+3/38*I,n=17 9421143408083447 a001 610/15127*9349^(34/57) 9421143409592280 a001 305/219602*9349^(55/57) 9421143413141121 k006 concat of cont frac of 9421143414436496 a001 615/124*3571^(4/51) 9421143415088667 a001 610/271443*9349^(52/57) 9421143416750611 a001 5473/682*1364^(1/45) 9421143417122101 k007 concat of cont frac of 9421143421224372 a001 610/167761*9349^(49/57) 9421143425686322 a001 305/51841*9349^(46/57) 9421143431902032 a001 610/39603*9349^(40/57) 9421143433335839 r005 Re(z^2+c),c=35/94+8/15*I,n=8 9421143433917189 k009 concat of cont frac of 9421143434530217 a001 610/64079*9349^(43/57) 9421143459308143 a001 305/12238*9349^(37/57) 9421143464817071 a001 615/124*9349^(4/57) 9421143472378469 a001 610/15127*45537549124^(2/9) 9421143472378489 a001 610/15127*12752043^(1/3) 9421143472381207 a001 615/124*4870847^(1/24) 9421143472382079 a001 615/124*710647^(1/21) 9421143472429879 a001 615/124*103682^(1/18) 9421143472745243 a001 615/124*39603^(2/33) 9421143474664604 a001 10946/15127*843^(8/21) 9421143475125966 a001 615/124*15127^(1/15) 9421143475472912 a001 610/15127*39603^(17/33) 9421143476311981 k002 Champernowne real with 53*n^2-42*n+83 9421143493284488 a001 615/124*5778^(2/27) 9421143493386976 r009 Re(z^3+c),c=-17/110+31/56*I,n=24 9421143495709057 a001 610/15127*15127^(17/30) 9421143496397625 a001 28657/39603*843^(8/21) 9421143499568430 a001 75025/103682*843^(8/21) 9421143500031044 a001 196418/271443*843^(8/21) 9421143500098538 a001 514229/710647*843^(8/21) 9421143500108386 a001 1346269/1860498*843^(8/21) 9421143500109822 a001 3524578/4870847*843^(8/21) 9421143500110032 a001 9227465/12752043*843^(8/21) 9421143500110062 a001 24157817/33385282*843^(8/21) 9421143500110067 a001 63245986/87403803*843^(8/21) 9421143500110068 a001 165580141/228826127*843^(8/21) 9421143500110068 a001 433494437/599074578*843^(8/21) 9421143500110068 a001 1134903170/1568397607*843^(8/21) 9421143500110068 a001 2971215073/4106118243*843^(8/21) 9421143500110068 a001 7778742049/10749957122*843^(8/21) 9421143500110068 a001 20365011074/28143753123*843^(8/21) 9421143500110068 a001 53316291173/73681302247*843^(8/21) 9421143500110068 a001 139583862445/192900153618*843^(8/21) 9421143500110068 a001 365435296162/505019158607*843^(8/21) 9421143500110068 a001 10610209857723/14662949395604*843^(8/21) 9421143500110068 a001 591286729879/817138163596*843^(8/21) 9421143500110068 a001 225851433717/312119004989*843^(8/21) 9421143500110068 a001 86267571272/119218851371*843^(8/21) 9421143500110068 a001 32951280099/45537549124*843^(8/21) 9421143500110068 a001 12586269025/17393796001*843^(8/21) 9421143500110068 a001 4807526976/6643838879*843^(8/21) 9421143500110068 a001 1836311903/2537720636*843^(8/21) 9421143500110068 a001 701408733/969323029*843^(8/21) 9421143500110068 a001 267914296/370248451*843^(8/21) 9421143500110068 a001 102334155/141422324*843^(8/21) 9421143500110070 a001 39088169/54018521*843^(8/21) 9421143500110081 a001 14930352/20633239*843^(8/21) 9421143500110161 a001 5702887/7881196*843^(8/21) 9421143500110710 a001 2178309/3010349*843^(8/21) 9421143500114472 a001 832040/1149851*843^(8/21) 9421143500140252 a001 317811/439204*843^(8/21) 9421143500316955 a001 121393/167761*843^(8/21) 9421143501528095 a001 46368/64079*843^(8/21) 9421143501653386 a001 610/167761*24476^(7/9) 9421143507364701 a001 610/39603*167761^(8/15) 9421143507543227 a001 610/39603*20633239^(8/21) 9421143507543235 a001 610/39603*23725150497407^(5/24) 9421143507543235 a001 610/39603*3461452808002^(2/9) 9421143507543235 a001 610/39603*28143753123^(4/15) 9421143507543235 a001 610/39603*10749957122^(5/18) 9421143507543235 a001 610/39603*228826127^(1/3) 9421143507543401 a001 610/39603*4870847^(5/12) 9421143507544445 a001 610/39603*1860498^(4/9) 9421143507552118 a001 610/39603*710647^(10/21) 9421143508030118 a001 610/39603*103682^(5/9) 9421143509829370 a001 17711/24476*843^(8/21) 9421143511144095 a001 305/51841*64079^(2/3) 9421143511183756 a001 610/39603*39603^(20/33) 9421143511843621 k006 concat of cont frac of 9421143512673705 a001 305/51841*4106118243^(1/3) 9421143513237263 a001 610/4870847*167761^(14/15) 9421143513353450 a001 305/219602*167761^(11/15) 9421143513422231 a001 610/271443*141422324^(4/9) 9421143513422231 a001 610/271443*73681302247^(1/3) 9421143513422446 a001 610/271443*4870847^(13/24) 9421143513433779 a001 610/271443*710647^(13/21) 9421143513507473 a001 610/271443*271443^(2/3) 9421143513526689 a001 610/710647*1149851^(2/3) 9421143513531439 a001 610/710647*1322157322203^(1/3) 9421143513547373 a001 305/930249*23725150497407^(1/3) 9421143513547373 a001 305/930249*505019158607^(8/21) 9421143513547373 a001 305/930249*10749957122^(4/9) 9421143513547373 a001 305/930249*228826127^(8/15) 9421143513547637 a001 305/930249*4870847^(2/3) 9421143513549682 a001 610/4870847*20633239^(2/3) 9421143513549697 a001 610/4870847*17393796001^(10/21) 9421143513549697 a001 610/4870847*3461452808002^(7/18) 9421143513549697 a001 610/4870847*505019158607^(5/12) 9421143513549697 a001 610/4870847*28143753123^(7/15) 9421143513549697 a001 610/4870847*599074578^(5/9) 9421143513549697 a001 610/4870847*228826127^(7/12) 9421143513549958 a001 610/87403803*7881196^(8/9) 9421143513550036 a001 610/12752043*817138163596^(4/9) 9421143513550037 a001 610/12752043*87403803^(2/3) 9421143513550073 a001 305/299537289*20633239^(20/21) 9421143513550076 a001 305/70711162*20633239^(13/15) 9421143513550080 a001 610/54018521*20633239^(17/21) 9421143513550086 a001 305/16692641*370248451^(2/3) 9421143513550093 a001 610/87403803*312119004989^(8/15) 9421143513550093 a001 610/87403803*23725150497407^(11/24) 9421143513550093 a001 610/87403803*10749957122^(11/18) 9421143513550093 a001 610/87403803*1568397607^(2/3) 9421143513550093 a001 610/87403803*228826127^(11/15) 9421143513550094 a001 610/228826127*6643838879^(2/3) 9421143513550094 a001 305/299537289*3461452808002^(5/9) 9421143513550094 a001 305/299537289*28143753123^(2/3) 9421143513550094 a001 610/1568397607*119218851371^(2/3) 9421143513550094 a001 610/4106118243*17393796001^(16/21) 9421143513550094 a001 610/4106118243*23725150497407^(7/12) 9421143513550094 a001 610/4106118243*505019158607^(2/3) 9421143513550094 a001 610/4106118243*10749957122^(7/9) 9421143513550094 a001 305/5374978561*2139295485799^(2/3) 9421143513550094 a001 610/119218851371*17393796001^(19/21) 9421143513550094 a001 610/28143753123*9062201101803^(2/3) 9421143513550094 a001 305/96450076809*45537549124^(8/9) 9421143513550094 a001 610/73681302247*3461452808002^(13/18) 9421143513550094 a001 610/73681302247*73681302247^(5/6) 9421143513550094 a001 305/96450076809*23725150497407^(17/24) 9421143513550094 a001 305/96450076809*505019158607^(17/21) 9421143513550094 a001 305/1730726404001*312119004989^(14/15) 9421143513550094 a001 610/9062201101803*23725150497407^(5/6) 9421143513550094 a001 305/408569081798*1322157322203^(5/6) 9421143513550094 a001 305/1730726404001*505019158607^(11/12) 9421143513550094 a001 610/119218851371*505019158607^(19/24) 9421143513550094 a001 610/73681302247*28143753123^(13/15) 9421143513550094 a001 610/17393796001*312119004989^(11/15) 9421143513550094 a001 305/96450076809*10749957122^(17/18) 9421143513550094 a001 610/6643838879*4106118243^(5/6) 9421143513550094 a001 610/17393796001*1568397607^(11/12) 9421143513550094 a001 610/4106118243*599074578^(8/9) 9421143513550094 a001 305/70711162*141422324^(7/9) 9421143513550094 a001 305/299537289*228826127^(5/6) 9421143513550094 a001 610/4106118243*228826127^(14/15) 9421143513550094 a001 610/6643838879*228826127^(23/24) 9421143513550095 a001 305/70711162*17393796001^(13/21) 9421143513550095 a001 305/70711162*505019158607^(13/24) 9421143513550095 a001 305/70711162*73681302247^(7/12) 9421143513550095 a001 305/70711162*599074578^(13/18) 9421143513550097 a001 610/54018521*45537549124^(5/9) 9421143513550098 a001 610/54018521*228826127^(17/24) 9421143513550146 a001 610/54018521*12752043^(5/6) 9421143513550351 a001 610/12752043*4870847^(19/24) 9421143513550457 a001 610/87403803*4870847^(11/12) 9421143513551814 a001 610/4870847*1860498^(7/9) 9421143513552668 a001 610/54018521*1860498^(17/18) 9421143513557220 a001 610/1149851*5600748293801^(1/3) 9421143513561586 a001 305/930249*710647^(16/21) 9421143513565243 a001 610/4870847*710647^(5/6) 9421143513566915 a001 610/12752043*710647^(19/21) 9421143513598849 a001 305/219602*7881196^(5/9) 9421143513598922 a001 305/219602*20633239^(11/21) 9421143513598934 a001 305/219602*312119004989^(1/3) 9421143513598934 a001 305/219602*1568397607^(5/12) 9421143513598934 a001 305/219602*228826127^(11/24) 9421143513600597 a001 305/219602*1860498^(11/18) 9421143513884835 a001 610/167761*20633239^(7/15) 9421143513884845 a001 610/167761*17393796001^(1/3) 9421143513884845 a001 610/167761*505019158607^(7/24) 9421143513884845 a001 610/167761*599074578^(7/18) 9421143513895727 a001 610/167761*710647^(7/12) 9421143514055178 a001 610/271443*103682^(13/18) 9421143514326385 a001 305/930249*103682^(8/9) 9421143514792804 a001 5473/682*3571^(1/51) 9421143515844510 a001 610/64079*969323029^(1/3) 9421143516860304 a001 305/51841*39603^(23/33) 9421143518154908 a001 610/271443*39603^(26/33) 9421143518604650 a001 305/219602*39603^(5/6) 9421143518810194 a001 610/710647*39603^(29/33) 9421143519372206 a001 305/930249*39603^(32/33) 9421143519378041 r002 54th iterates of z^2 + 9421143519938313 a001 4181/1364*3571^(7/51) 9421143521231181 k009 concat of cont frac of 9421143527387947 a001 5473/682*9349^(1/57) 9421143529276255 a001 305/12238*54018521^(1/3) 9421143529965171 a001 5473/682*15127^(1/60) 9421143534504802 a001 5473/682*5778^(1/54) 9421143534990985 a001 610/39603*15127^(2/3) 9421143544238618 a001 305/51841*15127^(23/30) 9421143545350842 a001 610/64079*15127^(43/60) 9421143547508339 a001 610/167761*15127^(49/60) 9421143549104306 a001 610/271443*15127^(13/15) 9421143551339590 a001 305/219602*15127^(11/12) 9421143553330677 a001 610/710647*15127^(29/30) 9421143554665425 a001 305/12238*15127^(37/60) 9421143561660927 r005 Re(z^2+c),c=-49/102+34/43*I,n=4 9421143562716876 a001 610/9349*9349^(31/57) 9421143566727157 a001 6765/9349*843^(8/21) 9421143569574598 a001 5473/682*2207^(1/48) 9421143573530322 p004 log(11003/4289) 9421143576612041 k002 Champernowne real with 107/2*n^2-87/2*n+84 9421143602818579 r005 Re(z^2+c),c=-12/11+8/61*I,n=62 9421143608104319 a001 4181/1364*9349^(7/57) 9421143619594179 a001 4181/1364*24476^(1/9) 9421143621338463 a001 610/9349*3010349^(1/3) 9421143621338809 a001 610/9349*9062201101803^(1/6) 9421143621341528 a001 4181/1364*20633239^(1/15) 9421143621341530 a001 4181/1364*17393796001^(1/21) 9421143621341530 a001 4181/1364*505019158607^(1/24) 9421143621341530 a001 4181/1364*599074578^(1/18) 9421143621343084 a001 4181/1364*710647^(1/12) 9421143626144886 a001 4181/1364*15127^(7/60) 9421143633563674 a001 615/124*2207^(1/12) 9421143634314503 a001 646/341*2207^(5/24) 9421143642610816 a001 610/9349*15127^(31/60) 9421143649587327 a007 Real Root Of -932*x^4+14*x^3+542*x^2-296*x-14 9421143650056497 a001 610/15127*5778^(17/27) 9421143651993761 m001 (1-exp(1))/(polylog(4,1/2)+Mills) 9421143657922300 a001 4181/1364*5778^(7/54) 9421143676912101 k002 Champernowne real with 54*n^2-45*n+85 9421143716576209 a001 610/39603*5778^(20/27) 9421143722631757 a001 305/12238*5778^(37/54) 9421143740554958 a001 610/64079*5778^(43/54) 9421143753061626 a001 305/51841*5778^(23/27) 9421143753672748 a007 Real Root Of -879*x^4-487*x^3+29*x^2+717*x+935 9421143768889561 a007 Real Root Of -22*x^4-174*x^3+341*x^2+354*x+885 9421143769950239 a001 610/167761*5778^(49/54) 9421143777212161 k002 Champernowne real with 109/2*n^2-93/2*n+86 9421143783339366 a001 610/9349*5778^(31/54) 9421143785165098 a001 610/271443*5778^(26/27) 9421143798183866 a001 8/321*521^(18/31) 9421143844924843 a001 5473/682*843^(1/42) 9421143847487001 q001 2718/2885 9421143851146006 r008 a(0)=1,K{-n^6,9+11*n+60*n^2-63*n^3} 9421143877512221 k002 Champernowne real with 55*n^2-48*n+87 9421143877724297 m005 (1/3*Catalan-1/10)/(7/12*5^(1/2)+7/8) 9421143882658620 a001 1292/2889*843^(19/42) 9421143889312992 m001 KhinchinLevy/(Porter^BesselK(1,1)) 9421143890190621 a001 610/3571*3571^(25/51) 9421143898286334 a001 121393/199*843^(2/31) 9421143899176334 m005 (1/3*Zeta(3)-1/5)/(5/8*Pi+1/6) 9421143903410882 a001 4181/1364*2207^(7/48) 9421143942708380 p003 LerchPhi(1/64,4,233/129) 9421143944669200 r002 4th iterates of z^2 + 9421143956710422 a001 2584/3571*843^(8/21) 9421143977812281 k002 Champernowne real with 111/2*n^2-99/2*n+88 9421143994870669 a007 Real Root Of 848*x^4-527*x^3+463*x^2+662*x-896 9421144012259285 r002 12th iterates of z^2 + 9421144039804600 a001 2584/521*199^(4/33) 9421144064027379 a001 1597/1364*3571^(13/51) 9421144066474219 m001 Porter^2/ln(MinimumGamma)/BesselK(1,1) 9421144078112341 k002 Champernowne real with 56*n^2-51*n+89 9421144092139448 a007 Real Root Of 694*x^4+872*x^3+896*x^2+953*x+285 9421144097085352 r005 Re(z^2+c),c=-9/10+84/199*I,n=3 9421144124538120 a001 329/1926*843^(25/42) 9421144134615481 k001 Champernowne real with 202*n+740 9421144150947334 a007 Real Root Of -635*x^4+587*x^3+942*x^2-190*x-24 9421144178412401 k002 Champernowne real with 113/2*n^2-105/2*n+90 9421144181063195 a003 cos(Pi*8/107)*sin(Pi*50/119) 9421144185927259 a007 Real Root Of -197*x^4+892*x^3+422*x^2+251*x+763 9421144193046425 r002 11th iterates of z^2 + 9421144193651092 m001 Paris*(Trott-cos(1/12*Pi)) 9421144198589924 a001 987/3571*843^(11/21) 9421144205069232 a001 610/3571*9349^(25/57) 9421144214788632 a007 Real Root Of -834*x^4+610*x^3-222*x^2-723*x+683 9421144227764259 a001 1597/1364*9349^(13/57) 9421144243500761 r009 Re(z^3+c),c=-13/82+25/43*I,n=17 9421144252233404 a001 610/3571*167761^(1/3) 9421144252344983 a001 610/3571*20633239^(5/21) 9421144252344988 a001 610/3571*28143753123^(1/6) 9421144252344988 a001 610/3571*228826127^(5/24) 9421144252345744 a001 610/3571*1860498^(5/18) 9421144252347652 a001 1597/1364*141422324^(1/9) 9421144252347652 a001 1597/1364*73681302247^(1/12) 9421144252368962 a001 1597/1364*271443^(1/6) 9421144261268171 a001 1597/1364*15127^(13/60) 9421144269499833 a001 610/3571*15127^(5/12) 9421144269889992 m002 -3+Pi^2/5+Cosh[Pi]-Log[Pi] 9421144278712461 k002 Champernowne real with 57*n^2-54*n+91 9421144313429750 a007 Real Root Of 577*x^4+173*x^3-490*x^2-207*x-70 9421144316384695 m005 (1/2*exp(1)-1)/(4/11*Catalan-5/7) 9421144320283373 a001 1597/1364*5778^(13/54) 9421144326166090 a007 Real Root Of -599*x^4-586*x^3-571*x^2-40*x+451 9421144326434332 m002 Pi^6/Log[Pi]+Pi^4/ProductLog[Pi]+Sinh[Pi] 9421144354012721 m001 Pi^(1/2)/GAMMA(7/12)*StolarskyHarborth 9421144358817415 a007 Real Root Of 339*x^4-923*x^3+884*x^2+907*x-969 9421144359632999 a001 305/2889*2207^(7/12) 9421144364704434 a001 6765/15127*843^(19/42) 9421144369756321 m001 (LaplaceLimit+Salem)/(gamma+exp(1/Pi)) 9421144379012521 k002 Champernowne real with 115/2*n^2-111/2*n+92 9421144382990607 a001 610/3571*5778^(25/54) 9421144389820449 a007 Real Root Of -452*x^4-451*x^3-516*x^2+431*x+843 9421144427862353 a007 Real Root Of 308*x^4-226*x^3+739*x^2+267*x-836 9421144435033972 a001 17711/39603*843^(19/42) 9421144445192554 a007 Real Root Of 937*x^4+777*x^3+940*x^2-65*x-984 9421144445294914 a001 23184/51841*843^(19/42) 9421144446791965 a001 121393/271443*843^(19/42) 9421144447010382 a001 317811/710647*843^(19/42) 9421144447042248 a001 416020/930249*843^(19/42) 9421144447046898 a001 2178309/4870847*843^(19/42) 9421144447049771 a001 1346269/3010349*843^(19/42) 9421144447061943 a001 514229/1149851*843^(19/42) 9421144447145371 a001 98209/219602*843^(19/42) 9421144447717193 a001 75025/167761*843^(19/42) 9421144451636524 a001 28657/64079*843^(19/42) 9421144478500018 a001 5473/12238*843^(19/42) 9421144479312581 k002 Champernowne real with 58*n^2-57*n+93 9421144491185034 m001 Backhouse/DuboisRaymond/Kolakoski 9421144510012141 m002 5*Coth[Pi]*Log[Pi]+Sinh[Pi]/Pi 9421144534857418 a007 Real Root Of 49*x^4-29*x^3+297*x^2-8*x-334 9421144539081208 a007 Real Root Of 180*x^4-761*x^3-705*x^2-128*x-273 9421144554451237 s002 sum(A243012[n]/(exp(2*pi*n)+1),n=1..infinity) 9421144565056708 a001 2207/1346269*28657^(15/38) 9421144572581891 a007 Real Root Of 329*x^4-278*x^3-652*x^2-397*x+926 9421144579612641 k002 Champernowne real with 117/2*n^2-117/2*n+94 9421144590933104 a008 Real Root of (-5-3*x^2+5*x^4+6*x^8) 9421144596449204 a007 Real Root Of 879*x^4-242*x^3+588*x^2+592*x-859 9421144607797723 a007 Real Root Of 868*x^4+244*x^3-34*x^2-955*x+9 9421144621113127 k006 concat of cont frac of 9421144621331147 r005 Im(z^2+c),c=-39/34+12/101*I,n=32 9421144635959053 b008 Tan[(8+Sqrt[7])^(-1)] 9421144662625143 a001 4181/9349*843^(19/42) 9421144670598893 m001 (sin(1)+GAMMA(2/3))/(KomornikLoreti+Landau) 9421144679912701 k002 Champernowne real with 59*n^2-60*n+95 9421144699983838 r005 Re(z^2+c),c=-137/110+9/56*I,n=9 9421144700391037 h001 (-2*exp(3/2)-4)/(-7*exp(3)+3) 9421144715301262 m001 (2^(1/2)-Si(Pi))/(-Shi(1)+Lehmer) 9421144720212226 m001 ((1+3^(1/2))^(1/2)+Conway)/(Paris-ThueMorse) 9421144734964707 a001 615/124*843^(2/21) 9421144737558621 a007 Real Root Of 857*x^4-589*x^3-551*x^2-166*x-835 9421144737560085 a007 Real Root Of -526*x^4-2*x^3+673*x^2+611*x+391 9421144776190776 a001 1597/1364*2207^(13/48) 9421144780212761 k002 Champernowne real with 119/2*n^2-123/2*n+96 9421144781157400 a007 Real Root Of 860*x^4+319*x^3-367*x^2+17*x-69 9421144823219636 r008 a(0)=1,K{-n^6,7+9*n^3+4*n^2-2*n} 9421144831347318 a007 Real Root Of -909*x^4-446*x^3+78*x^2+638*x+875 9421144842429666 a001 610/15127*2207^(17/24) 9421144870503147 a001 610/9349*2207^(31/48) 9421144880512821 k002 Champernowne real with 60*n^2-63*n+97 9421144884970172 a007 Real Root Of -132*x^4+490*x^3-393*x^2+44*x+904 9421144885376359 a007 Real Root Of -320*x^4+366*x^3+719*x^2+967*x+831 9421144889436339 r004 Im(z^2+c),c=5/14+11/19*I,z(0)=I,n=6 9421144890823724 r009 Re(z^3+c),c=-43/126+23/30*I,n=6 9421144895116398 m001 cos(1/12*Pi)^gamma(2)/(gamma(3)^gamma(2)) 9421144895318240 a007 Real Root Of 135*x^4-88*x^3-365*x^2-38*x+327 9421144948337190 a007 Real Root Of 597*x^4+501*x^3+587*x^2-214*x-774 9421144955531903 m001 (2*Pi/GAMMA(5/6)+MertensB2)/(PlouffeB-Salem) 9421144965611144 m005 (1/2*3^(1/2)-6/7)/(4/11*2^(1/2)+3/7) 9421144967468718 r005 Im(z^2+c),c=-1/66+14/15*I,n=5 9421144970257279 a007 Real Root Of 902*x^4+162*x^3+853*x^2+877*x-506 9421144977470626 m005 (1/3*3^(1/2)+2/7)/(9/11*Catalan+1/6) 9421144980812881 k002 Champernowne real with 121/2*n^2-129/2*n+98 9421144984270608 a007 Real Root Of 543*x^4-458*x^3-794*x^2-310*x+952 9421145020214341 a001 305/12238*2207^(37/48) 9421145048491505 a007 Real Root Of 628*x^4+318*x^3-136*x^2-192*x-289 9421145050453388 s002 sum(A157331[n]/(n^3*10^n+1),n=1..infinity) 9421145063578753 m001 1/GAMMA(1/6)^2/Si(Pi)*ln(GAMMA(11/12)) 9421145072350347 a007 Real Root Of -389*x^4-604*x^3-800*x^2+146*x+649 9421145074021681 m001 (GAMMA(17/24)+OneNinth)/(Shi(1)+BesselK(0,1)) 9421145081112941 k002 Champernowne real with 61*n^2-66*n+99 9421145081928325 m001 (FellerTornier+Trott)/(5^(1/2)+Conway) 9421145107975998 l006 ln(2318/2547) 9421145117645353 r005 Re(z^2+c),c=-9/14+55/124*I,n=6 9421145119368199 a001 610/39603*2207^(5/6) 9421145134815511 k001 Champernowne real with 203*n+739 9421145141116756 r002 56th iterates of z^2 + 9421145168567747 m005 (1/2*exp(1)+8/11)/(10/11*5^(1/2)+2/11) 9421145181413001 k002 Champernowne real with 123/2*n^2-135/2*n+100 9421145207032297 a003 sin(Pi*7/29)/cos(Pi*41/86) 9421145215877053 m005 (1/2*2^(1/2)-4/7)/(2*gamma+2/7) 9421145219343091 r002 35th iterates of z^2 + 9421145219579572 a001 2584/9349*843^(11/21) 9421145223923217 a007 Real Root Of -431*x^4-364*x^3-170*x^2+70*x+252 9421145248556359 a001 610/64079*2207^(43/48) 9421145259735638 a001 610/3571*2207^(25/48) 9421145281713061 k002 Champernowne real with 62*n^2-69*n+101 9421145288906607 a007 Real Root Of -649*x^4+523*x^3+201*x^2-601*x+204 9421145297426104 r005 Re(z^2+c),c=-11/48+38/49*I,n=23 9421145333066962 s002 sum(A122729[n]/(exp(2*pi*n)-1),n=1..infinity) 9421145366272438 a001 305/51841*2207^(23/24) 9421145368539942 a001 6765/24476*843^(11/21) 9421145372996647 p004 log(20731/8081) 9421145376283895 r008 a(0)=1,K{-n^6,11-53*n^3+31*n^2+28*n} 9421145382013121 k002 Champernowne real with 125/2*n^2-141/2*n+102 9421145390272967 a001 17711/64079*843^(11/21) 9421145393443773 a001 46368/167761*843^(11/21) 9421145393906387 a001 121393/439204*843^(11/21) 9421145393973882 a001 317811/1149851*843^(11/21) 9421145393983729 a001 832040/3010349*843^(11/21) 9421145393985166 a001 2178309/7881196*843^(11/21) 9421145393985375 a001 5702887/20633239*843^(11/21) 9421145393985406 a001 14930352/54018521*843^(11/21) 9421145393985410 a001 39088169/141422324*843^(11/21) 9421145393985411 a001 102334155/370248451*843^(11/21) 9421145393985411 a001 267914296/969323029*843^(11/21) 9421145393985411 a001 701408733/2537720636*843^(11/21) 9421145393985411 a001 1836311903/6643838879*843^(11/21) 9421145393985411 a001 4807526976/17393796001*843^(11/21) 9421145393985411 a001 12586269025/45537549124*843^(11/21) 9421145393985411 a001 32951280099/119218851371*843^(11/21) 9421145393985411 a001 86267571272/312119004989*843^(11/21) 9421145393985411 a001 225851433717/817138163596*843^(11/21) 9421145393985411 a001 1548008755920/5600748293801*843^(11/21) 9421145393985411 a001 139583862445/505019158607*843^(11/21) 9421145393985411 a001 53316291173/192900153618*843^(11/21) 9421145393985411 a001 20365011074/73681302247*843^(11/21) 9421145393985411 a001 7778742049/28143753123*843^(11/21) 9421145393985411 a001 2971215073/10749957122*843^(11/21) 9421145393985411 a001 1134903170/4106118243*843^(11/21) 9421145393985411 a001 433494437/1568397607*843^(11/21) 9421145393985411 a001 165580141/599074578*843^(11/21) 9421145393985411 a001 63245986/228826127*843^(11/21) 9421145393985413 a001 24157817/87403803*843^(11/21) 9421145393985425 a001 9227465/33385282*843^(11/21) 9421145393985505 a001 3524578/12752043*843^(11/21) 9421145393986054 a001 1346269/4870847*843^(11/21) 9421145393989815 a001 514229/1860498*843^(11/21) 9421145394015596 a001 196418/710647*843^(11/21) 9421145394192299 a001 75025/271443*843^(11/21) 9421145395403439 a001 28657/103682*843^(11/21) 9421145403704715 a001 10946/39603*843^(11/21) 9421145415141446 m001 ln(2)^(OneNinth/Robbin) 9421145417868308 a007 Real Root Of 99*x^4+962*x^3+363*x^2+743*x-713 9421145459577700 a007 Real Root Of 484*x^4-5*x^3+466*x^2+344*x-475 9421145460602513 a001 4181/15127*843^(11/21) 9421145461459106 a001 987/9349*843^(2/3) 9421145463149914 m001 (CareFree-GolombDickman)/(Thue-ZetaQ(3)) 9421145467026729 a007 Real Root Of -708*x^4+207*x^3-547*x^2-322*x+913 9421145482313181 k002 Champernowne real with 63*n^2-72*n+103 9421145505454024 a007 Real Root Of 172*x^4-891*x^3-779*x^2+605*x+731 9421145508267862 m001 GAMMA(13/24)*ln(TreeGrowth2nd)^2/GAMMA(19/24) 9421145525747636 m009 (4/5*Psi(1,1/3)+2)/(Psi(1,1/3)+3/5) 9421145537511192 s002 sum(A057168[n]/(n*exp(pi*n)-1),n=1..infinity) 9421145546684499 m001 (Shi(1)-ln(gamma))/(-Grothendieck+ZetaP(4)) 9421145547106958 r008 a(0)=1,K{-n^6,2-n^2+3*n} 9421145557079713 r002 3th iterates of z^2 + 9421145557952230 a007 Real Root Of -696*x^4-376*x^3-880*x^2-277*x+754 9421145560839515 a007 Real Root Of 272*x^4-186*x^3+40*x^2-351*x-736 9421145582613241 k002 Champernowne real with 127/2*n^2-147/2*n+104 9421145591588573 m002 -Pi^6+(4*Pi^4*Log[Pi])/E^Pi 9421145625165096 a007 Real Root Of -201*x^4-388*x^3-698*x^2+543*x+965 9421145661272489 a001 377/521*521^(16/39) 9421145682913301 k002 Champernowne real with 64*n^2-75*n+105 9421145699443290 r002 16th iterates of z^2 + 9421145774714540 a007 Real Root Of 781*x^4+688*x^3+779*x^2+978*x+190 9421145780141073 a007 Real Root Of 689*x^4+228*x^3-437*x^2-782*x-701 9421145783213361 k002 Champernowne real with 129/2*n^2-153/2*n+106 9421145791076287 a007 Real Root Of -941*x^4-587*x^3-111*x^2+639*x+951 9421145822829420 m001 (Pi^(1/2)+Lehmer)/(exp(-1/2*Pi)-exp(1)) 9421145830862829 a001 4181/1364*843^(1/6) 9421145850585808 a001 1597/5778*843^(11/21) 9421145851559075 r005 Re(z^2+c),c=-3/62+17/63*I,n=5 9421145853496870 r008 a(0)=1,K{-n^6,11-50*n^3+22*n^2+34*n} 9421145861563734 m001 (FeigenbaumC+ZetaQ(3))/(2^(1/3)+ln(2)) 9421145874612362 h001 (6/11*exp(1)+3/5)/(7/12*exp(1)+5/8) 9421145875242545 r002 7th iterates of z^2 + 9421145883513421 k002 Champernowne real with 65*n^2-78*n+107 9421145894861193 q001 1595/1693 9421145910898416 a001 2255/281*123^(1/30) 9421145911312728 r002 9th iterates of z^2 + 9421145924637626 a001 1597/3571*843^(19/42) 9421145942367512 a007 Real Root Of -845*x^4+263*x^3+261*x^2+51*x+702 9421145942856161 m001 Paris^2*ln(GaussKuzminWirsing)^2/Porter 9421145946599943 a007 Real Root Of 929*x^4-547*x^3+128*x^2+935*x-422 9421145946824611 m001 GlaisherKinkelin*HardyLittlewoodC4^MertensB1 9421145952824593 a003 sin(Pi*2/115)-sin(Pi*46/97) 9421145954119255 r005 Im(z^2+c),c=-57/70+3/59*I,n=42 9421145965432069 p004 log(29243/11399) 9421145969380491 a007 Real Root Of 10*x^4+952*x^3+936*x^2+441*x-7 9421145976600339 r005 Im(z^2+c),c=5/48+29/48*I,n=45 9421145979010321 a007 Real Root Of -975*x^4+361*x^3+826*x^2+619*x+920 9421145980592808 r009 Im(z^3+c),c=-15/86+50/57*I,n=23 9421145983813481 k002 Champernowne real with 131/2*n^2-159/2*n+108 9421146005739326 a007 Real Root Of 409*x^4-169*x^3+300*x^2+729*x-43 9421146017556988 a001 2584/15127*843^(25/42) 9421146017590825 a007 Real Root Of -919*x^4+364*x^3-123*x^2-509*x+658 9421146024642689 m001 (BesselJ(0,1)-exp(1))/(ln(5)+arctan(1/2)) 9421146027399032 a007 Real Root Of -752*x^4+660*x^3-402*x^2-948*x+608 9421146039863846 r002 46th iterates of z^2 + 9421146046371467 h001 (-exp(8)+8)/(-4*exp(2)-2) 9421146048461511 r005 Im(z^2+c),c=-3/34+40/51*I,n=60 9421146053253974 m005 (1/2*2^(1/2)+5/12)/(2/5*3^(1/2)+1/2) 9421146053315979 a001 5473/682*322^(1/36) 9421146058184103 m001 Conway/gamma(3)*ZetaR(2) 9421146084113541 k002 Champernowne real with 66*n^2-81*n+109 9421146135015541 k001 Champernowne real with 204*n+738 9421146135015551 k005 Champernowne real with floor(Pi*(65*n+235)) 9421146169691246 a007 Real Root Of -783*x^4+683*x^3-457*x^2-698*x+936 9421146184413602 k002 Champernowne real with 133/2*n^2-165/2*n+110 9421146187686811 r005 Im(z^2+c),c=-6/23+31/36*I,n=4 9421146187910973 a007 Real Root Of 836*x^4-676*x^3+373*x^2+813*x-789 9421146219694471 r002 4th iterates of z^2 + 9421146221021311 m005 (1/2*Catalan+6/11)/(4*exp(1)-2/9) 9421146259436543 a001 141/2161*843^(31/42) 9421146273479979 a007 Real Root Of 201*x^4-58*x^3+554*x^2+353*x-366 9421146284713662 k002 Champernowne real with 67*n^2-84*n+111 9421146293744727 a001 2255/13201*843^(25/42) 9421146304808963 a001 233/2207*521^(28/39) 9421146307970924 a001 233/3571*521^(31/39) 9421146334039976 a001 17711/103682*843^(25/42) 9421146335491043 a008 Real Root of (-1-x+x^4+x^6-x^9+x^10+x^12) 9421146336752862 m004 -Cos[Sqrt[5]*Pi]+(11*Tan[Sqrt[5]*Pi])/6 9421146339918973 a001 15456/90481*843^(25/42) 9421146340776707 a001 121393/710647*843^(25/42) 9421146340901849 a001 105937/620166*843^(25/42) 9421146340920107 a001 832040/4870847*843^(25/42) 9421146340931391 a001 514229/3010349*843^(25/42) 9421146340979191 a001 196418/1149851*843^(25/42) 9421146341306816 a001 75025/439204*843^(25/42) 9421146343552393 a001 28657/167761*843^(25/42) 9421146358943809 a001 10946/64079*843^(25/42) 9421146379977233 p001 sum((-1)^n/(501*n+106)/(128^n),n=0..infinity) 9421146385013722 k002 Champernowne real with 135/2*n^2-171/2*n+112 9421146387817327 a001 646/341*843^(5/21) 9421146391442717 m001 (1-HeathBrownMoroz)/(-OneNinth+ZetaQ(4)) 9421146403009971 h001 (1/10*exp(2)+4/11)/(4/11*exp(1)+2/11) 9421146439288080 a001 305/682*1364^(19/45) 9421146451690101 m001 GolombDickman+ZetaP(2)^exp(1/exp(1)) 9421146462722233 r005 Re(z^2+c),c=25/118+13/45*I,n=17 9421146464438138 a001 4181/24476*843^(25/42) 9421146466057685 s002 sum(A262700[n]/(exp(2*pi*n)-1),n=1..infinity) 9421146478976444 r005 Re(z^2+c),c=-29/32+9/50*I,n=27 9421146485313782 k002 Champernowne real with 68*n^2-87*n+113 9421146486656924 m001 FeigenbaumKappa*Lehmer-KhinchinHarmonic 9421146507653098 a007 Real Root Of 52*x^4+379*x^3-999*x^2+466*x+325 9421146511106967 m001 (Trott-ZetaQ(3))/(MertensB3+QuadraticClass) 9421146524854537 a007 Real Root Of 670*x^4+533*x^3+433*x^2-146*x-604 9421146564282658 r005 Im(z^2+c),c=-13/28+37/59*I,n=7 9421146583460444 r005 Re(z^2+c),c=-29/26+9/56*I,n=12 9421146585613842 k002 Champernowne real with 137/2*n^2-177/2*n+114 9421146586213410 a007 Real Root Of 740*x^4+571*x^3-115*x^2-422*x-401 9421146627459841 a001 10946/2207*322^(1/9) 9421146629696891 a001 987/1364*843^(8/21) 9421146639945514 m005 (1/2*gamma-1/11)/(3/4*Zeta(3)-3) 9421146642313848 a007 Real Root Of 634*x^4-14*x^3-372*x^2+743*x+519 9421146685913902 k002 Champernowne real with 69*n^2-90*n+115 9421146700453587 a007 Real Root Of 358*x^4-698*x^3-159*x^2-65*x+504 9421146722236060 a007 Real Root Of -502*x^4+812*x^3+666*x^2-616*x-97 9421146757031050 m001 (Rabbit+ZetaP(2))/(cos(1)+ln(2)) 9421146773661083 m001 GAMMA(11/12)/LaplaceLimit^2/ln(GAMMA(23/24)) 9421146784853924 m001 1/(3^(1/3))*exp(Conway)^2*Zeta(9) 9421146786213962 k002 Champernowne real with 139/2*n^2-183/2*n+116 9421146811175174 a007 Real Root Of 609*x^4-836*x^3-583*x^2+149*x-521 9421146847852400 m005 (1/3*Catalan-2/7)/(43/40+9/20*5^(1/2)) 9421146851805340 m001 (Catalan+cos(1)*BesselI(0,2))/BesselI(0,2) 9421146875917694 r005 Im(z^2+c),c=-7/10+79/151*I,n=5 9421146886514022 k002 Champernowne real with 70*n^2-93*n+117 9421146895826329 m005 (-7/30+1/6*5^(1/2))/(2/9*exp(1)+7/8) 9421146899337441 a007 Real Root Of 798*x^4-750*x^3-938*x^2+721*x+256 9421146911909522 r005 Re(z^2+c),c=-17/18+3/104*I,n=7 9421146912573877 r005 Re(z^2+c),c=-3/106+13/40*I,n=21 9421146937367612 a007 Real Root Of 379*x^4-364*x^3+617*x^2+629*x-558 9421146986814082 k002 Champernowne real with 141/2*n^2-189/2*n+118 9421146986961581 a005 (1/cos(29/121*Pi))^219 9421146993536031 h002 exp(5^(10/3)-18^(9/10)) 9421146993536031 h007 exp(5^(10/3)-18^(9/10)) 9421147021392673 a001 646/6119*843^(2/3) 9421147055839207 m001 ln(gamma)/QuadraticClass/Robbin 9421147087114142 k002 Champernowne real with 71*n^2-96*n+119 9421147104420569 g006 Psi(1,1/4)-Psi(1,2/9)-Psi(1,6/7)-Psi(1,2/3) 9421147110540113 k006 concat of cont frac of 9421147117421111 k007 concat of cont frac of 9421147121198685 m001 ln(3)^gamma(2)/(ln(3)^GolombDickman) 9421147129272980 m006 (2/3*Pi^2+5/6)/(4/5/Pi-1/3) 9421147135215571 k001 Champernowne real with 205*n+737 9421147141157658 a008 Real Root of (-4+2*x-2*x^2+x^4+5*x^8) 9421147144271791 m002 -3*Pi-Pi^4+ProductLog[Pi]+Sinh[Pi] 9421147144757304 m005 (1/2*2^(1/2)+1/6)/(1/11*Zeta(3)+9/11) 9421147187414202 k002 Champernowne real with 143/2*n^2-195/2*n+120 9421147187507039 a001 1597/9349*843^(25/42) 9421147232606190 a007 Real Root Of 179*x^4-687*x^3+383*x^2+960*x-151 9421147240232760 a007 Real Root Of 95*x^4-729*x^3-385*x^2+61*x+819 9421147244221613 b008 1-27*ArcCoth[E] 9421147248700089 a007 Real Root Of -84*x^4+917*x^3+148*x^2-24*x+679 9421147248983911 a001 6765/64079*843^(2/3) 9421147249936552 a007 Real Root Of -623*x^4+152*x^3-409*x^2-606*x+410 9421147253498289 a007 Real Root Of -507*x^4+595*x^3+8*x^2-659*x+269 9421147258614409 a001 1/1860498*29^(1/6) 9421147263272254 a001 987/24476*843^(17/21) 9421147282189025 a001 17711/167761*843^(2/3) 9421147287033586 a001 11592/109801*843^(2/3) 9421147287714262 k002 Champernowne real with 72*n^2-99*n+121 9421147287740397 a001 121393/1149851*843^(2/3) 9421147287843520 a001 317811/3010349*843^(2/3) 9421147287858565 a001 208010/1970299*843^(2/3) 9421147287860760 a001 2178309/20633239*843^(2/3) 9421147287861081 a001 5702887/54018521*843^(2/3) 9421147287861127 a001 3732588/35355581*843^(2/3) 9421147287861134 a001 39088169/370248451*843^(2/3) 9421147287861135 a001 102334155/969323029*843^(2/3) 9421147287861135 a001 66978574/634430159*843^(2/3) 9421147287861135 a001 701408733/6643838879*843^(2/3) 9421147287861135 a001 1836311903/17393796001*843^(2/3) 9421147287861135 a001 1201881744/11384387281*843^(2/3) 9421147287861135 a001 12586269025/119218851371*843^(2/3) 9421147287861135 a001 32951280099/312119004989*843^(2/3) 9421147287861135 a001 21566892818/204284540899*843^(2/3) 9421147287861135 a001 225851433717/2139295485799*843^(2/3) 9421147287861135 a001 182717648081/1730726404001*843^(2/3) 9421147287861135 a001 139583862445/1322157322203*843^(2/3) 9421147287861135 a001 53316291173/505019158607*843^(2/3) 9421147287861135 a001 10182505537/96450076809*843^(2/3) 9421147287861135 a001 7778742049/73681302247*843^(2/3) 9421147287861135 a001 2971215073/28143753123*843^(2/3) 9421147287861135 a001 567451585/5374978561*843^(2/3) 9421147287861135 a001 433494437/4106118243*843^(2/3) 9421147287861135 a001 165580141/1568397607*843^(2/3) 9421147287861136 a001 31622993/299537289*843^(2/3) 9421147287861138 a001 24157817/228826127*843^(2/3) 9421147287861156 a001 9227465/87403803*843^(2/3) 9421147287861279 a001 1762289/16692641*843^(2/3) 9421147287862117 a001 1346269/12752043*843^(2/3) 9421147287867864 a001 514229/4870847*843^(2/3) 9421147287907253 a001 98209/930249*843^(2/3) 9421147288177231 a001 75025/710647*843^(2/3) 9421147290027689 a001 28657/271443*843^(2/3) 9421147302710914 a001 5473/51841*843^(2/3) 9421147307154188 r002 18th iterates of z^2 + 9421147356636998 a005 (1/cos(17/191*Pi))^231 9421147388014322 k002 Champernowne real with 145/2*n^2-201/2*n+122 9421147389643031 a001 4181/39603*843^(2/3) 9421147408310358 l006 ln(237/608) 9421147414458451 q001 3662/3887 9421147437685864 a007 Real Root Of -688*x^4+631*x^3-116*x^2-335*x+857 9421147449890768 r002 6th iterates of z^2 + 9421147460921790 r002 29th iterates of z^2 + 9421147472713655 r009 Im(z^3+c),c=-31/90+39/55*I,n=4 9421147474534366 a001 4/987*3^(43/56) 9421147488314382 k002 Champernowne real with 73*n^2-102*n+123 9421147501114049 m005 (1/3*Zeta(3)+1/2)/(5*3^(1/2)+9/10) 9421147508888469 r008 a(0)=9,K{-n^6,1+2*n^3+2*n^2-7*n} 9421147519954972 m005 (1/2*Catalan-2/3)/(2/11*exp(1)-3/11) 9421147523203640 m005 (1/3*Pi+1/11)/(5*5^(1/2)+9/10) 9421147548689868 h001 (5/12*exp(1)+7/8)/(3/5*exp(1)+1/2) 9421147549915746 a007 Real Root Of 742*x^4+620*x^3+798*x^2-888*x+76 9421147577547864 r005 Re(z^2+c),c=-17/18+3/106*I,n=11 9421147588614442 k002 Champernowne real with 147/2*n^2-207/2*n+124 9421147588649983 m001 (Cahen-GolombDickman)/(Khinchin-TwinPrimes) 9421147601247391 a007 Real Root Of 762*x^4-489*x^3+31*x-980 9421147613109577 m001 GAMMA(5/12)*MertensB1^2*ln(sqrt(5))^2 9421147663834299 m001 (ln(2^(1/2)+1)-gamma(3))^arctan(1/2) 9421147688914502 k002 Champernowne real with 74*n^2-105*n+125 9421147697765926 a007 Real Root Of 525*x^4-10*x^3-422*x^2-266*x-298 9421147709777782 a007 Real Root Of -811*x^4+256*x^3+589*x^2+176*x+496 9421147752567740 a007 Real Root Of -559*x^4-483*x^3-85*x^2-122*x-3 9421147764514955 r002 3th iterates of z^2 + 9421147780124509 m005 (2/5*Pi-1/6)/(14/15+1/10*5^(1/2)) 9421147789214562 k002 Champernowne real with 149/2*n^2-213/2*n+126 9421147818241414 r002 3i'th iterates of 2*x/(1-x^2) of 9421147831950574 m001 GAMMA(11/12)^2*exp(FeigenbaumAlpha)/Zeta(3)^2 9421147844358343 m001 KhintchineLevy^2*MertensB1^2/exp(Trott)^2 9421147885088955 a007 Real Root Of -353*x^4+648*x^3-268*x^2+551*x-545 9421147888101121 a007 Real Root Of -326*x^4+489*x^3+810*x^2+981*x+871 9421147889514622 k002 Champernowne real with 75*n^2-108*n+127 9421147901244571 m005 (1/3*exp(1)-2/9)/(3/7*Catalan+1/3) 9421147904112469 a007 Real Root Of -484*x^4+982*x^3+24*x^2+521*x-952 9421147907431735 m001 RenyiParking*(3^(1/2)-Bloch) 9421147908199021 m001 (Grothendieck+Thue)/(2^(1/2)-3^(1/3)) 9421147908337063 a007 Real Root Of 882*x^4+16*x^3-372*x^2+47*x-307 9421147946597620 a001 2584/39603*843^(31/42) 9421147953903112 r009 Im(z^3+c),c=-15/74+47/50*I,n=7 9421147963032032 g007 Psi(2,9/11)+Psi(2,2/3)-2*Psi(2,3/4) 9421147976498951 a008 Real Root of (4+13*x-7*x^2-12*x^3) 9421147985484622 a001 1597/15127*843^(2/3) 9421147989814682 k002 Champernowne real with 151/2*n^2-219/2*n+128 9421147991642636 s002 sum(A286256[n]/(n*exp(pi*n)+1),n=1..infinity) 9421148002192426 a007 Real Root Of 995*x^4+324*x^3-102*x^2+235*x-201 9421148042317977 s002 sum(A100358[n]/(16^n),n=1..infinity) 9421148061537980 r005 Re(z^2+c),c=-67/62+11/57*I,n=34 9421148063527875 a007 Real Root Of 115*x^4-116*x^3+571*x^2+494*x-229 9421148090114742 k002 Champernowne real with 76*n^2-111*n+129 9421148092553303 m005 (1/2*exp(1)-2/11)/(8/11*exp(1)-8/11) 9421148095228904 m001 Zeta(5)^2/ln(Kolakoski)^2*arctan(1/2) 9421148100753383 s002 sum(A141401[n]/(pi^n-1),n=1..infinity) 9421148113095581 a007 Real Root Of 534*x^4-642*x^3-895*x^2-538*x-670 9421148135415601 k001 Champernowne real with 206*n+736 9421148188477225 a001 329/13201*843^(37/42) 9421148190414802 k002 Champernowne real with 153/2*n^2-225/2*n+130 9421148192751105 a001 6765/103682*843^(31/42) 9421148206251523 s002 sum(A160960[n]/(n^3*exp(n)-1),n=1..infinity) 9421148211231611 k006 concat of cont frac of 9421148228664415 a001 17711/271443*843^(31/42) 9421148233904096 a001 6624/101521*843^(31/42) 9421148234668555 a001 121393/1860498*843^(31/42) 9421148234780088 a001 317811/4870847*843^(31/42) 9421148234849019 a001 196418/3010349*843^(31/42) 9421148235141017 a001 75025/1149851*843^(31/42) 9421148237142397 a001 28657/439204*843^(31/42) 9421148246312664 s002 sum(A158302[n]/(pi^n-1),n=1..infinity) 9421148250860060 a001 10946/167761*843^(31/42) 9421148257148170 r008 a(0)=1,K{-n^6,15+54*n-15*n^2-37*n^3} 9421148266024060 a001 28657/5778*322^(1/9) 9421148290714862 k002 Champernowne real with 77*n^2-114*n+131 9421148300773362 a007 Real Root Of 29*x^4+165*x^3-926*x^2+979*x+925 9421148302090506 a001 305/682*3571^(19/51) 9421148322480632 m005 (1/2*5^(1/2)-6/7)/(5/12*Zeta(3)-7/9) 9421148344882325 a001 4181/64079*843^(31/42) 9421148355745038 a001 1597/1364*843^(13/42) 9421148361320953 r001 22i'th iterates of 2*x^2-1 of 9421148391014922 k002 Champernowne real with 155/2*n^2-231/2*n+132 9421148394122212 m005 (1/2*3^(1/2)-10/11)/(3*3^(1/2)-5/8) 9421148402466528 m005 (1/2+1/2*5^(1/2))/(10/11*3^(1/2)+1/7) 9421148419267273 r009 Im(z^3+c),c=-19/122+11/12*I,n=17 9421148442099808 s002 sum(A087711[n]/(n*exp(pi*n)-1),n=1..infinity) 9421148469036448 m001 1/BesselK(0,1)^2/exp(Khintchine)^2*Ei(1)^2 9421148476730061 r002 15th iterates of z^2 + 9421148491096164 r005 Im(z^2+c),c=-21/50+31/54*I,n=49 9421148491314982 k002 Champernowne real with 78*n^2-117*n+133 9421148495415838 a007 Real Root Of 371*x^4-894*x^3+174*x^2-533*x+803 9421148505087405 a001 75025/15127*322^(1/9) 9421148523570539 a001 610/2207*843^(11/21) 9421148534941479 a007 Real Root Of -720*x^4+754*x^3+348*x^2-262*x+642 9421148537233325 g006 Psi(1,7/12)+Psi(1,8/9)+Psi(1,1/3)-Psi(1,3/7) 9421148539966278 a001 196418/39603*322^(1/9) 9421148541398362 a001 305/682*9349^(1/3) 9421148545055037 a001 514229/103682*322^(1/9) 9421148545797477 a001 1346269/271443*322^(1/9) 9421148545905798 a001 3524578/710647*322^(1/9) 9421148545921602 a001 9227465/1860498*322^(1/9) 9421148545923907 a001 24157817/4870847*322^(1/9) 9421148545924244 a001 63245986/12752043*322^(1/9) 9421148545924293 a001 165580141/33385282*322^(1/9) 9421148545924300 a001 433494437/87403803*322^(1/9) 9421148545924301 a001 1134903170/228826127*322^(1/9) 9421148545924301 a001 2971215073/599074578*322^(1/9) 9421148545924301 a001 7778742049/1568397607*322^(1/9) 9421148545924301 a001 20365011074/4106118243*322^(1/9) 9421148545924301 a001 53316291173/10749957122*322^(1/9) 9421148545924301 a001 139583862445/28143753123*322^(1/9) 9421148545924301 a001 365435296162/73681302247*322^(1/9) 9421148545924301 a001 956722026041/192900153618*322^(1/9) 9421148545924301 a001 2504730781961/505019158607*322^(1/9) 9421148545924301 a001 10610209857723/2139295485799*322^(1/9) 9421148545924301 a001 4052739537881/817138163596*322^(1/9) 9421148545924301 a001 140728068720/28374454999*322^(1/9) 9421148545924301 a001 591286729879/119218851371*322^(1/9) 9421148545924301 a001 225851433717/45537549124*322^(1/9) 9421148545924301 a001 86267571272/17393796001*322^(1/9) 9421148545924301 a001 32951280099/6643838879*322^(1/9) 9421148545924301 a001 1144206275/230701876*322^(1/9) 9421148545924301 a001 4807526976/969323029*322^(1/9) 9421148545924301 a001 1836311903/370248451*322^(1/9) 9421148545924302 a001 701408733/141422324*322^(1/9) 9421148545924304 a001 267914296/54018521*322^(1/9) 9421148545924323 a001 9303105/1875749*322^(1/9) 9421148545924452 a001 39088169/7881196*322^(1/9) 9421148545925332 a001 14930352/3010349*322^(1/9) 9421148545931369 a001 5702887/1149851*322^(1/9) 9421148545972744 a001 2178309/439204*322^(1/9) 9421148546256330 a001 75640/15251*322^(1/9) 9421148548200063 a001 317811/64079*322^(1/9) 9421148561522608 a001 121393/24476*322^(1/9) 9421148577327952 a001 305/682*817138163596^(1/9) 9421148577327953 a001 305/682*87403803^(1/6) 9421148587055606 q001 2067/2194 9421148590365641 a001 305/682*15127^(19/60) 9421148591615042 k002 Champernowne real with 157/2*n^2-237/2*n+134 9421148592064248 m001 1/FeigenbaumD*MadelungNaCl/ln(Zeta(7))^2 9421148627786554 m005 (1/2*Pi+5/9)/(2*2^(1/2)-4/7) 9421148651466423 s002 sum(A123128[n]/(n*exp(pi*n)-1),n=1..infinity) 9421148652836685 a001 46368/9349*322^(1/9) 9421148672950120 m005 (1/2*5^(1/2)+2/3)/(3/8*exp(1)+7/8) 9421148676618668 a001 305/682*5778^(19/54) 9421148679095537 m005 (1/2*Pi+3/4)/(5/6*5^(1/2)+3/5) 9421148686989622 m001 cos(1)^(ZetaP(2)/FeigenbaumDelta) 9421148691915102 k002 Champernowne real with 79*n^2-120*n+135 9421148704094841 a007 Real Root Of -646*x^4+858*x^3+327*x^2-464*x+499 9421148724166571 r009 Im(z^3+c),c=-25/102+28/37*I,n=32 9421148737498982 m002 -4+Pi^6-4/ProductLog[Pi]-Sinh[Pi] 9421148759286134 m002 -1-Pi-Sinh[Pi]+Pi^6*Tanh[Pi] 9421148776649076 a007 Real Root Of 590*x^4-491*x^3-77*x^2+725*x-124 9421148779084460 a007 Real Root Of 256*x^4+39*x^3-87*x^2-608*x+58 9421148789935566 a007 Real Root Of -572*x^4-10*x^3+715*x^2+322*x+111 9421148792215162 k002 Champernowne real with 159/2*n^2-243/2*n+136 9421148798973018 p004 log(30341/11827) 9421148831968013 m001 (2^(1/3)-ln(5))/(-StolarskyHarborth+ZetaP(2)) 9421148834590368 m001 (2^(1/3)-exp(Pi))/(cos(1)+Grothendieck) 9421148876905131 s002 sum(A144831[n]/(n*exp(pi*n)-1),n=1..infinity) 9421148892515222 k002 Champernowne real with 80*n^2-123*n+137 9421148895989337 a007 Real Root Of 172*x^4-566*x^3-481*x^2+296*x+97 9421148901836971 a001 2584/64079*843^(17/21) 9421148918431061 a007 Real Root Of 784*x^4+71*x^3+107*x^2+376*x-299 9421148919890250 a007 Real Root Of 910*x^4+760*x^3+289*x^2+451*x+87 9421148933785353 a007 Real Root Of -707*x^4-735*x^3-900*x^2-325*x+435 9421148937467994 m001 1/ln(Porter)^2/Artin/GAMMA(11/24) 9421148944733967 r002 22th iterates of z^2 + 9421148971115328 m001 (GAMMA(17/24)+Kac)/(5^(1/2)-exp(-1/2*Pi)) 9421148973803087 r008 a(0)=1,K{-n^6,49-n+8*n^2-39*n^3} 9421148977690828 s002 sum(A088580[n]/(n*exp(pi*n)-1),n=1..infinity) 9421148989320517 a001 1597/24476*843^(31/42) 9421148992815282 k002 Champernowne real with 161/2*n^2-249/2*n+138 9421148993562758 m005 (1/3*Catalan-2/7)/(3*Catalan-2/3) 9421149000295413 m001 ln(PisotVijayaraghavan)^2*Artin^2/GAMMA(19/24) 9421149084506941 a007 Real Root Of 156*x^4+251*x^3+741*x^2-375*x-924 9421149093115342 k002 Champernowne real with 81*n^2-126*n+139 9421149102231924 m002 3*Pi^3+Cosh[Pi]/Pi^4+ProductLog[Pi] 9421149135615631 k001 Champernowne real with 207*n+735 9421149135715641 k005 Champernowne real with floor(Pi*(66*n+234)) 9421149137195201 r005 Re(z^2+c),c=-13/14+19/164*I,n=15 9421149140900341 a001 615/15251*843^(17/21) 9421149143716600 a001 987/64079*843^(20/21) 9421149167486246 r005 Im(z^2+c),c=-21/23+5/64*I,n=25 9421149168930083 a007 Real Root Of 977*x^4+367*x^3+570*x^2+385*x-606 9421149174374275 a007 Real Root Of -862*x^4+673*x^3+643*x^2-706*x+6 9421149175779217 a001 17711/439204*843^(17/21) 9421149180181720 b008 Sqrt[E]+4*E^Pi 9421149180867976 a001 46368/1149851*843^(17/21) 9421149181610416 a001 121393/3010349*843^(17/21) 9421149181718737 a001 317811/7881196*843^(17/21) 9421149181734541 a001 75640/1875749*843^(17/21) 9421149181736846 a001 2178309/54018521*843^(17/21) 9421149181737183 a001 5702887/141422324*843^(17/21) 9421149181737232 a001 14930352/370248451*843^(17/21) 9421149181737239 a001 39088169/969323029*843^(17/21) 9421149181737240 a001 9303105/230701876*843^(17/21) 9421149181737240 a001 267914296/6643838879*843^(17/21) 9421149181737240 a001 701408733/17393796001*843^(17/21) 9421149181737240 a001 1836311903/45537549124*843^(17/21) 9421149181737240 a001 4807526976/119218851371*843^(17/21) 9421149181737240 a001 1144206275/28374454999*843^(17/21) 9421149181737240 a001 32951280099/817138163596*843^(17/21) 9421149181737240 a001 86267571272/2139295485799*843^(17/21) 9421149181737240 a001 225851433717/5600748293801*843^(17/21) 9421149181737240 a001 591286729879/14662949395604*843^(17/21) 9421149181737240 a001 365435296162/9062201101803*843^(17/21) 9421149181737240 a001 139583862445/3461452808002*843^(17/21) 9421149181737240 a001 53316291173/1322157322203*843^(17/21) 9421149181737240 a001 20365011074/505019158607*843^(17/21) 9421149181737240 a001 7778742049/192900153618*843^(17/21) 9421149181737240 a001 2971215073/73681302247*843^(17/21) 9421149181737240 a001 1134903170/28143753123*843^(17/21) 9421149181737240 a001 433494437/10749957122*843^(17/21) 9421149181737240 a001 165580141/4106118243*843^(17/21) 9421149181737241 a001 63245986/1568397607*843^(17/21) 9421149181737243 a001 24157817/599074578*843^(17/21) 9421149181737262 a001 9227465/228826127*843^(17/21) 9421149181737391 a001 3524578/87403803*843^(17/21) 9421149181738271 a001 1346269/33385282*843^(17/21) 9421149181744308 a001 514229/12752043*843^(17/21) 9421149181785683 a001 196418/4870847*843^(17/21) 9421149182069270 a001 75025/1860498*843^(17/21) 9421149184013003 a001 28657/710647*843^(17/21) 9421149193415402 k002 Champernowne real with 163/2*n^2-255/2*n+140 9421149197335548 a001 10946/271443*843^(17/21) 9421149216067462 r005 Im(z^2+c),c=-61/94+1/63*I,n=45 9421149230473174 a007 Real Root Of -548*x^4+82*x^3-751*x^2-849*x+367 9421149278712727 a001 17711/3571*322^(1/9) 9421149288649630 a001 4181/103682*843^(17/21) 9421149293033450 m001 (3^(1/3)-Pi^(1/2))^ZetaQ(2) 9421149293715462 k002 Champernowne real with 82*n^2-129*n+141 9421149330659984 r005 Im(z^2+c),c=-117/122+9/20*I,n=4 9421149335097505 a007 Real Root Of 533*x^4-624*x^3-249*x^2-672*x+66 9421149342945188 a001 305/682*2207^(19/48) 9421149387005168 a007 Real Root Of 685*x^4+440*x^3+205*x^2-668*x-983 9421149394015522 k002 Champernowne real with 165/2*n^2-261/2*n+142 9421149419038168 a007 Real Root Of 585*x^4+682*x^3+76*x^2-969*x+90 9421149427104521 a007 Real Root Of 771*x^4+428*x^3-303*x^2-718*x-657 9421149485098005 r005 Im(z^2+c),c=-55/118+4/25*I,n=20 9421149485776451 a007 Real Root Of 917*x^4-534*x^3+200*x^2+804*x-589 9421149494315582 k002 Champernowne real with 83*n^2-132*n+143 9421149508926369 a007 Real Root Of -981*x^4+851*x^3+821*x^2-471*x+312 9421149513084507 r009 Re(z^3+c),c=-19/64+39/58*I,n=14 9421149516795552 a007 Real Root Of 237*x^4-475*x^3+955*x^2+768*x-708 9421149585836415 a007 Real Root Of 315*x^4-240*x^3+43*x^2+639*x+115 9421149594615642 k002 Champernowne real with 167/2*n^2-267/2*n+144 9421149611326942 a007 Real Root Of 939*x^4-360*x^3-5*x^2+737*x-342 9421149621136319 r009 Im(z^3+c),c=-3/19+22/23*I,n=58 9421149635052300 a007 Real Root Of -721*x^4+154*x^3+376*x^2+450*x+787 9421149667239532 m006 (2/5*Pi^2+1/4)/(5/6*exp(2*Pi)-2/3) 9421149667306020 r005 Re(z^2+c),c=-17/18+7/237*I,n=5 9421149675313712 r002 45th iterates of z^2 + 9421149684042323 m001 (ln(2)/ln(10)*GAMMA(5/6)+Sarnak)/GAMMA(5/6) 9421149688625899 a007 Real Root Of 943*x^4-646*x^3+240*x^2+672*x-863 9421149694456539 m005 (1/2*3^(1/2)-9/10)/(2*2^(1/2)+7/9) 9421149694915702 k002 Champernowne real with 84*n^2-135*n+145 9421149706754940 m009 (-1+1/6*Pi^2)/(32*Catalan+4*Pi^2-1/3) 9421149714844261 r005 Im(z^2+c),c=-145/118+1/34*I,n=40 9421149790898363 a008 Real Root of (-7+6*x-3*x^2-2*x^4+9*x^8) 9421149795215762 k002 Champernowne real with 169/2*n^2-273/2*n+146 9421149808925898 r001 5i'th iterates of 2*x^2-1 of 9421149809870074 m001 1/Salem/exp(Niven)/GAMMA(13/24) 9421149834687033 m001 DuboisRaymond-GAMMA(5/6)^Shi(1) 9421149838718711 r009 Im(z^3+c),c=-11/62+49/54*I,n=53 9421149845604331 a001 1292/51841*843^(37/42) 9421149851596805 m001 FeigenbaumC^FeigenbaumD/ZetaQ(2) 9421149895515822 k002 Champernowne real with 85*n^2-138*n+147 9421149905954697 m008 (2*Pi^2-3/5)/(1/5*Pi^4+5/6) 9421149914525657 a001 1597/39603*843^(17/21) 9421149937063132 r002 10th iterates of z^2 + 9421149979014969 b008 -7+Sqrt[1+E]*Pi 9421149995815882 k002 Champernowne real with 171/2*n^2-279/2*n+148 9421150049821924 h001 (5/6*exp(1)+1/4)/(7/9*exp(1)+5/9) 9421150061049843 m002 -4/3+(Log[Pi]*ProductLog[Pi])/Pi 9421150077054865 a007 Real Root Of -965*x^4-352*x^3+223*x^2+552*x+788 9421150082747979 m001 (RenyiParking+Tribonacci)/(3^(1/3)+Conway) 9421150087375918 a001 2255/90481*843^(37/42) 9421150096115942 k002 Champernowne real with 86*n^2-141*n+149 9421150099950027 l006 ln(7865/8642) 9421150118642691 a007 Real Root Of 531*x^4-938*x^3-790*x^2-354*x-835 9421150122649917 a001 17711/710647*843^(37/42) 9421150127796324 a001 2576/103361*843^(37/42) 9421150128547175 a001 121393/4870847*843^(37/42) 9421150129011226 a001 75025/3010349*843^(37/42) 9421150130976979 a001 28657/1149851*843^(37/42) 9421150132950388 m009 (5*Psi(1,2/3)-2)/(3/2*Pi^2-2/3) 9421150135815661 k001 Champernowne real with 208*n+734 9421150144450447 a001 5473/219602*843^(37/42) 9421150152772805 r002 3th iterates of z^2 + 9421150177148690 a007 Real Root Of -615*x^4-832*x^3-682*x^2-50*x+347 9421150194901633 a007 Real Root Of -357*x^4-491*x^3-628*x^2-638*x-173 9421150195086519 a007 Real Root Of 637*x^4+424*x^3+644*x^2+123*x-603 9421150196294858 r005 Re(z^2+c),c=-9/10+43/81*I,n=3 9421150196416002 k002 Champernowne real with 173/2*n^2-285/2*n+150 9421150230655449 r005 Im(z^2+c),c=-17/26+9/47*I,n=53 9421150236798976 a001 4181/167761*843^(37/42) 9421150245414499 r005 Re(z^2+c),c=-83/90+6/47*I,n=7 9421150248662022 l004 Ssi(217/22) 9421150253285924 a007 Real Root Of 826*x^4-791*x^3-337*x^2-438*x-39 9421150278293135 q001 2539/2695 9421150296716062 k002 Champernowne real with 87*n^2-144*n+151 9421150312090067 a007 Real Root Of -334*x^4+629*x^3+797*x^2+513*x+565 9421150322183807 a007 Real Root Of 598*x^4-71*x^3+667*x^2+147*x-984 9421150353895287 r002 8th iterates of z^2 + 9421150394879002 m001 Bloch*ErdosBorwein/ln(sqrt(5)) 9421150397016122 k002 Champernowne real with 175/2*n^2-291/2*n+152 9421150415619971 r005 Re(z^2+c),c=-17/18+5/201*I,n=3 9421150426173814 r005 Im(z^2+c),c=-10/9+17/123*I,n=4 9421150469251458 m001 exp(Robbin)^2/Conway^2/GAMMA(1/24) 9421150480105742 a003 sin(Pi*27/110)/sin(Pi*22/83) 9421150497316182 k002 Champernowne real with 88*n^2-147*n+153 9421150501203748 a007 Real Root Of -988*x^4-834*x^3-128*x^2+27*x+220 9421150539113534 m001 (exp(1)+5^(1/2))/(-cos(1/12*Pi)+BesselJ(1,1)) 9421150555802689 m001 (Landau+QuadraticClass)/(Catalan+Gompertz) 9421150588843448 a007 Real Root Of 783*x^4-29*x^3+748*x^2+760*x-589 9421150595528867 a007 Real Root Of 648*x^4-912*x^3-348*x^2+186*x-789 9421150597616242 k002 Champernowne real with 177/2*n^2-297/2*n+154 9421150619767065 r005 Re(z^2+c),c=-35/38+1/7*I,n=13 9421150646586334 r005 Re(z^2+c),c=-7/66+23/34*I,n=49 9421150668680203 a007 Real Root Of -526*x^4+622*x^3+828*x^2-6*x-835 9421150681851509 r005 Re(z^2+c),c=-59/102+14/29*I,n=41 9421150690533700 m007 (-gamma+1/5)/(-3/4*gamma-9/4*ln(2)-3/8*Pi-5/6) 9421150697916302 k002 Champernowne real with 89*n^2-150*n+155 9421150733798918 a007 Real Root Of -804*x^4-95*x^3-938*x^2-786*x+646 9421150735853814 m004 -(Sqrt[5]/Pi)+30*Pi+Sin[Sqrt[5]*Pi] 9421150791636324 m001 1/GAMMA(3/4)*ln(Tribonacci)^2/LambertW(1)^2 9421150793753734 a001 2584/167761*843^(20/21) 9421150798216362 k002 Champernowne real with 179/2*n^2-303/2*n+156 9421150810131562 a007 Real Root Of 972*x^4+168*x^3-410*x^2+374*x+91 9421150822227129 m005 (1/2*Catalan+3/7)/(5*3^(1/2)+3/4) 9421150855431440 a007 Real Root Of -711*x^4-252*x^3-683*x^2-974*x+38 9421150858505139 a007 Real Root Of -820*x^4+324*x^3+153*x^2+54*x+832 9421150858941856 a003 cos(Pi*1/94)*sin(Pi*47/120) 9421150869765208 a001 1597/64079*843^(37/42) 9421150880973244 a007 Real Root Of 561*x^4-952*x^3-364*x^2+502*x-442 9421150886468687 m002 E^Pi*Pi+(2*Sinh[Pi])/ProductLog[Pi] 9421150898516422 k002 Champernowne real with 90*n^2-153*n+157 9421150901245239 l001 sinh(29/31*Pi) 9421150901245239 l003 sinh(Pi*29/31) 9421150901245239 l004 sinh(29/31*Pi) 9421150917652162 a007 Real Root Of 824*x^4+13*x^3+536*x^2+397*x-740 9421150922919062 m001 MertensB1*(GAMMA(13/24)+ReciprocalLucas) 9421150934139073 m001 (BesselK(1,1)-MasserGramain)^(5^(1/2)) 9421150964793582 a003 sin(Pi*45/116)/sin(Pi*26/55) 9421150966035988 r005 Im(z^2+c),c=-149/122+1/60*I,n=43 9421150977079278 a001 48/281*39603^(5/31) 9421150978438356 a007 Real Root Of -520*x^4+452*x^3-751*x^2-895*x+611 9421150992481541 a007 Real Root Of 269*x^4-943*x^3+238*x^2-162*x+518 9421150998816482 k002 Champernowne real with 181/2*n^2-309/2*n+158 9421151034490907 a001 6765/439204*843^(20/21) 9421151039762889 r005 Re(z^2+c),c=19/86+32/63*I,n=16 9421151043551892 a007 Real Root Of -618*x^4+203*x^3+617*x^2+155*x+255 9421151063813498 m001 1/exp(Rabbit)*PisotVijayaraghavan^2/Catalan 9421151069613987 a001 17711/1149851*843^(20/21) 9421151071648298 a007 Real Root Of -117*x^4+838*x^3-424*x^2+4*x-236 9421151074738376 a001 46368/3010349*843^(20/21) 9421151075486014 a001 121393/7881196*843^(20/21) 9421151075595093 a001 10959/711491*843^(20/21) 9421151075611007 a001 832040/54018521*843^(20/21) 9421151075613329 a001 2178309/141422324*843^(20/21) 9421151075613668 a001 5702887/370248451*843^(20/21) 9421151075613717 a001 14930352/969323029*843^(20/21) 9421151075613725 a001 39088169/2537720636*843^(20/21) 9421151075613726 a001 102334155/6643838879*843^(20/21) 9421151075613726 a001 9238424/599786069*843^(20/21) 9421151075613726 a001 701408733/45537549124*843^(20/21) 9421151075613726 a001 1836311903/119218851371*843^(20/21) 9421151075613726 a001 4807526976/312119004989*843^(20/21) 9421151075613726 a001 12586269025/817138163596*843^(20/21) 9421151075613726 a001 32951280099/2139295485799*843^(20/21) 9421151075613726 a001 86267571272/5600748293801*843^(20/21) 9421151075613726 a001 7787980473/505618944676*843^(20/21) 9421151075613726 a001 365435296162/23725150497407*843^(20/21) 9421151075613726 a001 139583862445/9062201101803*843^(20/21) 9421151075613726 a001 53316291173/3461452808002*843^(20/21) 9421151075613726 a001 20365011074/1322157322203*843^(20/21) 9421151075613726 a001 7778742049/505019158607*843^(20/21) 9421151075613726 a001 2971215073/192900153618*843^(20/21) 9421151075613726 a001 1134903170/73681302247*843^(20/21) 9421151075613726 a001 433494437/28143753123*843^(20/21) 9421151075613726 a001 165580141/10749957122*843^(20/21) 9421151075613726 a001 63245986/4106118243*843^(20/21) 9421151075613729 a001 24157817/1568397607*843^(20/21) 9421151075613748 a001 9227465/599074578*843^(20/21) 9421151075613877 a001 3524578/228826127*843^(20/21) 9421151075614764 a001 1346269/87403803*843^(20/21) 9421151075620843 a001 514229/33385282*843^(20/21) 9421151075662507 a001 196418/12752043*843^(20/21) 9421151075948080 a001 75025/4870847*843^(20/21) 9421151077905422 a001 28657/1860498*843^(20/21) 9421151078350331 a007 Real Root Of 286*x^4-881*x^3+202*x^2+254*x-902 9421151082810034 m001 1/exp(MadelungNaCl)*LaplaceLimit/GAMMA(3/4) 9421151082819059 m001 Bloch^Salem-FeigenbaumKappa 9421151086678635 a001 55/969323029*3^(6/13) 9421151091321245 a001 10946/710647*843^(20/21) 9421151099116542 k002 Champernowne real with 91*n^2-156*n+159 9421151105986948 r005 Re(z^2+c),c=37/102+13/61*I,n=23 9421151112611411 k007 concat of cont frac of 9421151121111121 k007 concat of cont frac of 9421151127131701 k007 concat of cont frac of 9421151135726235 m005 (1/2*Pi-1/10)/(4/5*Catalan-8/9) 9421151136015691 k001 Champernowne real with 209*n+733 9421151141522291 k007 concat of cont frac of 9421151146732160 a007 Real Root Of -444*x^4+745*x^3+117*x^2-779*x+135 9421151171181831 k009 concat of cont frac of 9421151171814743 a001 1597/843*322^(5/18) 9421151172335383 p004 log(35569/32371) 9421151174059837 h001 (9/11*exp(1)+1/12)/(3/5*exp(1)+9/11) 9421151183274663 a001 4181/271443*843^(20/21) 9421151199416602 k002 Champernowne real with 183/2*n^2-315/2*n+160 9421151201022940 a007 Real Root Of 354*x^4-943*x^3-534*x^2+545*x-80 9421151211413132 k007 concat of cont frac of 9421151216649784 r005 Re(z^2+c),c=-77/74+10/43*I,n=40 9421151244747421 a007 Real Root Of -219*x^4-465*x^3-874*x^2+284*x+827 9421151249814320 a001 2/6119*76^(11/45) 9421151256048275 m001 (3^(1/2)-Psi(2,1/3))/(Lehmer+Trott) 9421151276644045 a007 Real Root Of -289*x^4+157*x^3+41*x^2+649*x+934 9421151297287569 a007 Real Root Of 319*x^4-694*x^3-135*x^2-170*x+609 9421151299012248 m001 ln(2)/GaussAGM/QuadraticClass 9421151299716662 k002 Champernowne real with 92*n^2-159*n+161 9421151306513036 a007 Real Root Of -976*x^4-213*x^3+61*x^2+322*x+840 9421151309581841 r004 Re(z^2+c),c=-15/38+10/23*I,z(0)=-1,n=5 9421151310001672 k002 Champernowne real with 185/2*n^2-321/2*n+162 9421151312287918 m001 1/Sierpinski/exp(PisotVijayaraghavan)*Catalan 9421151381253604 r009 Im(z^3+c),c=-11/122+43/46*I,n=17 9421151382956972 r005 Im(z^2+c),c=-15/14+55/204*I,n=22 9421151401612111 k006 concat of cont frac of 9421151410031678 k002 Champernowne real with 93*n^2-162*n+163 9421151425518680 r008 a(0)=1,K{-n^6,33+51*n-42*n^2-25*n^3} 9421151439299123 q001 3011/3196 9421151455863348 a007 Real Root Of 683*x^4+263*x^3-360*x^2+93*x+89 9421151465819692 m001 (5^(1/2)-ln(3))/(-GAMMA(11/12)+Salem) 9421151466501390 r005 Re(z^2+c),c=3/106+5/37*I,n=10 9421151498590611 a007 Real Root Of -97*x^4-907*x^3+111*x^2+536*x+927 9421151510061684 k002 Champernowne real with 187/2*n^2-327/2*n+164 9421151516245791 a007 Real Root Of 337*x^4-231*x^3+726*x^2+915*x-241 9421151519813089 m001 GAMMA(5/24)^2/RenyiParking^2*exp(Zeta(9)) 9421151536122567 m001 (-Lehmer+Riemann2ndZero)/(Backhouse-exp(Pi)) 9421151538297431 a003 cos(Pi*1/15)*sin(Pi*31/75) 9421151547833560 m008 (3/5*Pi^4-4/5)/(2*Pi^5-1/6) 9421151550042310 s002 sum(A271158[n]/(16^n-1),n=1..infinity) 9421151551686628 s002 sum(A272116[n]/(16^n-1),n=1..infinity) 9421151565464036 m009 (2/5*Psi(1,2/3)-6)/(5*Psi(1,1/3)+1/5) 9421151584530229 a007 Real Root Of 393*x^4+178*x^3+933*x^2+54*x-938 9421151588381287 r009 Im(z^3+c),c=-15/82+54/59*I,n=29 9421151609860656 r009 Im(z^3+c),c=-9/62+23/25*I,n=37 9421151610091690 k002 Champernowne real with 94*n^2-165*n+165 9421151628944138 a007 Real Root Of 395*x^4+385*x^3+256*x^2-509*x-696 9421151656841085 m008 (5/6*Pi^6-3)/(1/3*Pi-1/5) 9421151673840942 s002 sum(A085624[n]/(n*exp(pi*n)-1),n=1..infinity) 9421151710121696 k002 Champernowne real with 189/2*n^2-333/2*n+166 9421151743497366 r005 Re(z^2+c),c=-7/10+50/173*I,n=55 9421151759267261 m001 (Bloch+MasserGramain)/(Psi(1,1/3)+Pi^(1/2)) 9421151764806043 a007 Real Root Of -251*x^4+468*x^3+560*x^2+184*x-864 9421151772164121 l006 ln(3769/9669) 9421151773258852 a003 sin(Pi*40/103)/sin(Pi*28/59) 9421151786325546 v002 sum(1/(3^n*(9+35*n)),n=1..infinity) 9421151807145864 a007 Real Root Of 462*x^4-228*x^3+176*x^2+72*x-643 9421151810151702 k002 Champernowne real with 95*n^2-168*n+167 9421151813532765 a001 1597/103682*843^(20/21) 9421151872041092 m001 sin(1)^2*ln(cosh(1))^2/sqrt(2) 9421151874352318 a007 Real Root Of -245*x^4+881*x^3+239*x^2-612*x+141 9421151885870604 m005 (1/2*2^(1/2)+2/3)/(1/6*3^(1/2)-1/7) 9421151910181708 k002 Champernowne real with 191/2*n^2-339/2*n+168 9421151918706908 a007 Real Root Of 33*x^4-341*x^3+682*x^2-60*x-973 9421151943989004 m001 (-BesselK(1,1)+Lehmer)/(Shi(1)+gamma(1)) 9421151967419732 a007 Real Root Of -978*x^4+778*x^3+783*x^2-16*x-560 9421151970570673 m005 (1/2*2^(1/2)+6/11)/(3/11*3^(1/2)+6/7) 9421151970744544 m001 (-BesselI(1,1)+4)/(-GAMMA(2/3)+5) 9421151978349947 a007 Real Root Of -824*x^4-775*x^3-354*x^2-375*x-38 9421151999976543 b008 ArcCot[2+(1+Sqrt[3])*Pi] 9421152010211714 k002 Champernowne real with 96*n^2-171*n+169 9421152010852420 m001 Trott*DuboisRaymond^2*exp(exp(1))^2 9421152064982099 l006 ln(3532/9061) 9421152069443527 a001 305/2889*843^(2/3) 9421152081871462 a007 Real Root Of -868*x^4+771*x^3-213*x^2-992*x+583 9421152105684232 a007 Real Root Of 596*x^4-820*x^3+635*x^2+884*x-886 9421152110241720 k002 Champernowne real with 193/2*n^2-345/2*n+170 9421152121096131 m005 (1/2*Catalan+3/10)/(41/126+3/14*5^(1/2)) 9421152133577146 m005 (1/2*2^(1/2)+4/11)/(2/11*3^(1/2)-3/7) 9421152136215721 k001 Champernowne real with 210*n+732 9421152136315731 k005 Champernowne real with floor(Pi*(67*n+233)) 9421152143495394 a001 610/3571*843^(25/42) 9421152147597177 h001 (1/4*exp(2)+6/11)/(2/7*exp(2)+3/7) 9421152167328435 r002 7th iterates of z^2 + 9421152182924259 r009 Im(z^3+c),c=-25/46+36/59*I,n=44 9421152185571715 m001 1/MinimumGamma^2/Bloch*ln(Sierpinski) 9421152186013736 l006 ln(5547/6095) 9421152210271726 k002 Champernowne real with 97*n^2-174*n+171 9421152212249746 a007 Real Root Of -441*x^4+660*x^3+98*x^2+23*x+834 9421152213429514 m001 (5^(1/2)+FeigenbaumD)/(-Stephens+ZetaQ(2)) 9421152218780407 p001 sum((-1)^n/(499*n+104)/(8^n),n=0..infinity) 9421152218985313 m002 -1-Pi^3+Pi^8*Tanh[Pi] 9421152242386367 r002 3th iterates of z^2 + 9421152248803524 m001 (GAMMA(3/4)-exp(Pi))/(Porter+Thue) 9421152262619420 a007 Real Root Of -116*x^4+880*x^3-831*x^2+551*x-426 9421152283815748 k002 Champernowne real with 20*n^2-27*n+16 9421152285637002 q001 3483/3697 9421152293855848 k003 Champernowne real with 1/6*n^3+19*n^2-151/6*n+15 9421152303895948 k003 Champernowne real with 1/3*n^3+18*n^2-70/3*n+14 9421152310301732 k002 Champernowne real with 195/2*n^2-351/2*n+172 9421152311638269 m005 (1/2*5^(1/2)+5/11)/(-25/56+1/8*5^(1/2)) 9421152313936048 k003 Champernowne real with 1/2*n^3+17*n^2-43/2*n+13 9421152323976148 k003 Champernowne real with 2/3*n^3+16*n^2-59/3*n+12 9421152332707040 r002 5th iterates of z^2 + 9421152334016249 k003 Champernowne real with 5/6*n^3+15*n^2-107/6*n+11 9421152337646116 r005 Im(z^2+c),c=-49/66+2/47*I,n=23 9421152344056349 k003 Champernowne real with n^3+14*n^2-16*n+10 9421152354096449 k003 Champernowne real with 7/6*n^3+13*n^2-85/6*n+9 9421152362641701 m001 (Bloch-KhinchinLevy*Totient)/KhinchinLevy 9421152363825282 m001 (LandauRamanujan2nd-MertensB3)^exp(-1/2*Pi) 9421152364136549 k003 Champernowne real with 4/3*n^3+12*n^2-37/3*n+8 9421152364792032 a007 Real Root Of -720*x^4-429*x^3-988*x^2-442*x+669 9421152374176649 k003 Champernowne real with 3/2*n^3+11*n^2-21/2*n+7 9421152381111481 k006 concat of cont frac of 9421152384216741 k003 Champernowne real with 5/3*n^3+10*n^2-26/3*n+6 9421152385275738 a005 (1/cos(11/172*Pi))^337 9421152394256841 k003 Champernowne real with 11/6*n^3+9*n^2-41/6*n+5 9421152395103765 m001 (-Ei(1,1)+Grothendieck)/(5^(1/2)-gamma) 9421152399923200 l006 ln(3295/8453) 9421152404296941 k003 Champernowne real with 2*n^3+8*n^2-5*n+4 9421152410331738 k002 Champernowne real with 98*n^2-177*n+173 9421152414337041 k003 Champernowne real with 13/6*n^3+7*n^2-19/6*n+3 9421152422706631 r004 Re(z^2+c),c=3/10+3/4*I,z(0)=exp(5/12*I*Pi),n=2 9421152424377141 k003 Champernowne real with 7/3*n^3+6*n^2-4/3*n+2 9421152430273339 a007 Real Root Of 47*x^4-591*x^3-659*x^2+154*x+897 9421152434417241 k003 Champernowne real with 5/2*n^3+5*n^2+1/2*n+1 9421152439453666 m001 1/Rabbit/Paris^2*ln(GAMMA(23/24))^2 9421152444457341 k003 Champernowne real with 8/3*n^3+4*n^2+7/3*n 9421152454497441 k003 Champernowne real with 17/6*n^3+3*n^2+25/6*n-1 9421152458687945 r002 46th iterates of z^2 + 9421152464537541 k003 Champernowne real with 3*n^3+2*n^2+6*n-2 9421152474577641 k003 Champernowne real with 19/6*n^3+n^2+47/6*n-3 9421152484617741 k003 Champernowne real with 10/3*n^3+29/3*n-4 9421152494657841 k003 Champernowne real with 7/2*n^3-n^2+23/2*n-5 9421152499798007 a007 Real Root Of 923*x^4-443*x^3-990*x^2-637*x-819 9421152504697941 k003 Champernowne real with 11/3*n^3-2*n^2+40/3*n-6 9421152505941905 a007 Real Root Of 359*x^4-752*x^3-698*x^2-192*x-473 9421152510361744 k002 Champernowne real with 197/2*n^2-357/2*n+174 9421152511166886 a007 Real Root Of 785*x^4+680*x^3+119*x^2+580*x+391 9421152512514621 k006 concat of cont frac of 9421152514738041 k003 Champernowne real with 23/6*n^3-3*n^2+91/6*n-7 9421152520336332 a007 Real Root Of -951*x^4-298*x^3-876*x^2-941*x+391 9421152524778141 k003 Champernowne real with 4*n^3-4*n^2+17*n-8 9421152528550014 r005 Re(z^2+c),c=-39/110+27/35*I,n=6 9421152534064548 m003 8+(5*Sqrt[5])/8-Cos[1/2+Sqrt[5]/2]/2 9421152534818241 k003 Champernowne real with 25/6*n^3-5*n^2+113/6*n-9 9421152544858341 k003 Champernowne real with 13/3*n^3-6*n^2+62/3*n-10 9421152550089963 m001 (Catalan-ln(2))/(Pi^(1/2)+Lehmer) 9421152554898441 k003 Champernowne real with 9/2*n^3-7*n^2+45/2*n-11 9421152564938541 k003 Champernowne real with 14/3*n^3-8*n^2+73/3*n-12 9421152566923752 s002 sum(A054946[n]/(n*pi^n+1),n=1..infinity) 9421152574978641 k003 Champernowne real with 29/6*n^3-9*n^2+157/6*n-13 9421152584349037 m005 (-25/44+1/4*5^(1/2))/(9/10*2^(1/2)-3/10) 9421152585018741 k003 Champernowne real with 5*n^3-10*n^2+28*n-14 9421152595058841 k003 Champernowne real with 31/6*n^3-11*n^2+179/6*n-15 9421152603122698 a007 Real Root Of 361*x^4-498*x^3-x^2+623*x-113 9421152605058078 a007 Real Root Of -890*x^4-672*x^3-96*x^2-10*x+215 9421152605098941 k003 Champernowne real with 16/3*n^3-12*n^2+95/3*n-16 9421152610391750 k002 Champernowne real with 99*n^2-180*n+175 9421152610487596 m005 (1/3*5^(1/2)+2/11)/(1/2*exp(1)-3/8) 9421152610777402 s002 sum(A054946[n]/(n*pi^n-1),n=1..infinity) 9421152615139041 k003 Champernowne real with 11/2*n^3-13*n^2+67/2*n-17 9421152619510747 m005 (1/2*exp(1)-1/10)/(3/11*exp(1)-7/8) 9421152625179141 k003 Champernowne real with 17/3*n^3-14*n^2+106/3*n-18 9421152634630948 r008 a(0)=1,K{-n^6,57+17*n-33*n^2-24*n^3} 9421152635219241 k003 Champernowne real with 35/6*n^3-15*n^2+223/6*n-19 9421152645259341 k003 Champernowne real with 6*n^3-16*n^2+39*n-20 9421152651613679 h001 (1/3*exp(2)+1/7)/(3/4*exp(1)+8/11) 9421152655299441 k003 Champernowne real with 37/6*n^3-17*n^2+245/6*n-21 9421152664580727 a007 Real Root Of 591*x^4-56*x^3+557*x^2+539*x-499 9421152665339541 k003 Champernowne real with 19/3*n^3-18*n^2+128/3*n-22 9421152675379641 k003 Champernowne real with 13/2*n^3-19*n^2+89/2*n-23 9421152685419741 k003 Champernowne real with 20/3*n^3-20*n^2+139/3*n-24 9421152695459841 k003 Champernowne real with 41/6*n^3-21*n^2+289/6*n-25 9421152705499941 k003 Champernowne real with 7*n^3-22*n^2+50*n-26 9421152710421756 k002 Champernowne real with 199/2*n^2-363/2*n+176 9421152715113810 m001 ln(gamma)^(ZetaQ(2)/cos(1)) 9421152715531004 k003 Champernowne real with 43/6*n^3-23*n^2+311/6*n-27 9421152716465484 a007 Real Root Of -713*x^4+272*x^3+514*x^2+448*x+755 9421152725571014 k003 Champernowne real with 22/3*n^3-24*n^2+161/3*n-28 9421152735611024 k003 Champernowne real with 15/2*n^3-25*n^2+111/2*n-29 9421152745651034 k003 Champernowne real with 23/3*n^3-26*n^2+172/3*n-30 9421152746777580 r005 Re(z^2+c),c=-25/23+8/53*I,n=60 9421152754910182 a007 Real Root Of 531*x^4-458*x^3-143*x^2+28*x-648 9421152755691044 k003 Champernowne real with 47/6*n^3-27*n^2+355/6*n-31 9421152756973680 a007 Real Root Of -847*x^4+830*x^3+166*x^2-916*x+351 9421152765731054 k003 Champernowne real with 8*n^3-28*n^2+61*n-32 9421152775771064 k003 Champernowne real with 49/6*n^3-29*n^2+377/6*n-33 9421152780056716 a007 Real Root Of 936*x^4+584*x^3+302*x^2+344*x-193 9421152785811074 k003 Champernowne real with 25/3*n^3-30*n^2+194/3*n-34 9421152786781253 l006 ln(3058/7845) 9421152795851084 k003 Champernowne real with 17/2*n^3-31*n^2+133/2*n-35 9421152805891094 k003 Champernowne real with 26/3*n^3-32*n^2+205/3*n-36 9421152810451762 k002 Champernowne real with 100*n^2-183*n+177 9421152815931104 k003 Champernowne real with 53/6*n^3-33*n^2+421/6*n-37 9421152825971114 k003 Champernowne real with 9*n^3-34*n^2+72*n-38 9421152829925370 r009 Re(z^3+c),c=-7/118+35/61*I,n=2 9421152836011124 k003 Champernowne real with 55/6*n^3-35*n^2+443/6*n-39 9421152837959147 m001 Mills^Paris/(Mills^arctan(1/3)) 9421152838483132 a007 Real Root Of -107*x^4-907*x^3+853*x^2-959*x-236 9421152846051134 k003 Champernowne real with 28/3*n^3-36*n^2+227/3*n-40 9421152856091144 k003 Champernowne real with 19/2*n^3-37*n^2+155/2*n-41 9421152866131154 k003 Champernowne real with 29/3*n^3-38*n^2+238/3*n-42 9421152876171164 k003 Champernowne real with 59/6*n^3-39*n^2+487/6*n-43 9421152878376947 r002 23th iterates of z^2 + 9421152886211174 k003 Champernowne real with 10*n^3-40*n^2+83*n-44 9421152886559642 a007 Real Root Of 704*x^4+653*x^3+493*x^2-469*x-888 9421152896251184 k003 Champernowne real with 61/6*n^3-41*n^2+509/6*n-45 9421152906291194 k003 Champernowne real with 31/3*n^3-42*n^2+260/3*n-46 9421152910481768 k002 Champernowne real with 201/2*n^2-369/2*n+178 9421152916331204 k003 Champernowne real with 21/2*n^3-43*n^2+177/2*n-47 9421152918699254 a007 Real Root Of 64*x^4-215*x^3-173*x^2+36*x+249 9421152926371214 k003 Champernowne real with 32/3*n^3-44*n^2+271/3*n-48 9421152936411224 k003 Champernowne real with 65/6*n^3-45*n^2+553/6*n-49 9421152946451234 k003 Champernowne real with 11*n^3-46*n^2+94*n-50 9421152956491244 k003 Champernowne real with 67/6*n^3-47*n^2+575/6*n-51 9421152957794763 a007 Real Root Of 949*x^4+853*x^3+297*x^2-552*x-818 9421152966531254 k003 Champernowne real with 34/3*n^3-48*n^2+293/3*n-52 9421152976571264 k003 Champernowne real with 23/2*n^3-49*n^2+199/2*n-53 9421152986611274 k003 Champernowne real with 35/3*n^3-50*n^2+304/3*n-54 9421152993635366 b008 Sin[Sqrt[5*E]/3] 9421152996651284 k003 Champernowne real with 71/6*n^3-51*n^2+619/6*n-55 9421152997175607 a007 Real Root Of -966*x^4+431*x^3+824*x^2+571*x+928 9421153006691294 k003 Champernowne real with 12*n^3-52*n^2+105*n-56 9421153010511774 k002 Champernowne real with 101*n^2-186*n+179 9421153012997044 m001 (Psi(2,1/3)+gamma*GAMMA(17/24))/gamma 9421153015256288 r009 Re(z^3+c),c=-13/90+26/53*I,n=24 9421153047220523 r009 Im(z^3+c),c=-57/94+21/41*I,n=8 9421153057062165 r008 a(0)=1,K{-n^6,73-25*n^3-22*n^2-9*n} 9421153065727957 r005 Re(z^2+c),c=-113/122+6/49*I,n=19 9421153094174192 a007 Real Root Of -729*x^4+542*x^3+226*x^2-934*x-53 9421153094265660 a007 Real Root Of -291*x^4+585*x^3-876*x^2+534*x-43 9421153110541780 k002 Champernowne real with 203/2*n^2-375/2*n+180 9421153112494226 k006 concat of cont frac of 9421153113127111 k006 concat of cont frac of 9421153115301681 m002 -Pi^2+Pi^3-Pi^6-2/ProductLog[Pi] 9421153120434388 r002 10th iterates of z^2 + 9421153123549496 a007 Real Root Of -832*x^4+259*x^3+371*x^2-782*x-194 9421153136415751 k001 Champernowne real with 211*n+731 9421153157911206 m008 (Pi+3)/(2/3*Pi^4+1/4) 9421153158435916 m005 (1/2*2^(1/2)-8/9)/(9/11*5^(1/2)+1/10) 9421153165940433 r009 Im(z^3+c),c=-41/74+47/48*I,n=2 9421153175906614 r002 22th iterates of z^2 + 9421153185333213 p003 LerchPhi(1/1024,3,211/96) 9421153188797779 r008 a(0)=0,K{-n^6,3+41*n^3-49*n^2+16*n} 9421153210571786 k002 Champernowne real with 102*n^2-189*n+181 9421153217058934 r001 1i'th iterates of 2*x^2-1 of 9421153219749038 m001 (ReciprocalLucas-Salem)/(Zeta(1,2)+Pi^(1/2)) 9421153222164237 a007 Real Root Of 576*x^4-877*x^3-276*x^2+412*x-554 9421153238641314 l006 ln(2821/7237) 9421153239624844 a001 41/7*832040^(27/38) 9421153252558612 m001 (Stephens-ZetaP(3))/(arctan(1/3)-RenyiParking) 9421153261844777 m001 exp(Niven)*FransenRobinson/GAMMA(13/24) 9421153274806232 r005 Im(z^2+c),c=-55/98+1/6*I,n=13 9421153302270120 m004 -2-(15*Sqrt[5])/Pi+125*Pi+Sinh[Sqrt[5]*Pi] 9421153308675398 r005 Re(z^2+c),c=-57/62+5/21*I,n=3 9421153310601792 k002 Champernowne real with 205/2*n^2-381/2*n+182 9421153313954215 p003 LerchPhi(1/256,1,184/173) 9421153316158503 r002 21th iterates of z^2 + 9421153322041338 a007 Real Root Of 625*x^4-93*x^3+191*x^2+714*x-67 9421153334820748 r005 Re(z^2+c),c=-101/110+7/48*I,n=23 9421153383378411 a007 Real Root Of -34*x^4-239*x^3+698*x^2-637*x+45 9421153391645655 r005 Re(z^2+c),c=-105/118+9/47*I,n=33 9421153406365641 a001 610/9349*843^(31/42) 9421153410631798 k002 Champernowne real with 103*n^2-192*n+183 9421153415548824 r005 Re(z^2+c),c=-69/74+8/53*I,n=3 9421153479314421 r005 Im(z^2+c),c=11/86+3/44*I,n=8 9421153510661804 k002 Champernowne real with 207/2*n^2-387/2*n+184 9421153537663643 r009 Im(z^3+c),c=-7/48+23/25*I,n=17 9421153554626212 m001 (3^(1/3)-gamma)/(-GAMMA(23/24)+OneNinth) 9421153568533195 a001 615/124*322^(1/9) 9421153574052983 a007 Real Root Of -672*x^4-667*x^3+98*x^2+789*x+628 9421153575893705 m005 (1/2*gamma+7/12)/(1/4*Zeta(3)+5/8) 9421153587806901 a007 Real Root Of -746*x^4+817*x^3+233*x^2-828*x+284 9421153599730806 r005 Re(z^2+c),c=-101/98+11/31*I,n=6 9421153610691810 k002 Champernowne real with 104*n^2-195*n+185 9421153649451468 s001 sum(exp(-4*Pi/5)^n*A119818[n],n=1..infinity) 9421153690278399 m001 KhinchinLevy-HardyLittlewoodC5-Zeta(1,-1) 9421153710721816 k002 Champernowne real with 209/2*n^2-393/2*n+186 9421153750129281 a007 Real Root Of 836*x^4+461*x^3-458*x^2-615*x-446 9421153773388990 l006 ln(2584/6629) 9421153781944137 m001 Zeta(1,-1)^Ei(1)*Zeta(1,-1)^ArtinRank2 9421153810751822 k002 Champernowne real with 105*n^2-198*n+187 9421153818007216 m005 (1/2*gamma-9/11)/(4/11*Zeta(3)+1/8) 9421153829982163 h001 (8/11*exp(2)+7/10)/(7/9*exp(2)+7/10) 9421153833466708 r005 Re(z^2+c),c=-31/34+19/117*I,n=49 9421153849469709 m005 (1/2*Zeta(3)-3/5)/(3/5*5^(1/2)-1/4) 9421153853728432 a007 Real Root Of -87*x^4-812*x^3+151*x^2+830*x+806 9421153868042308 m001 cos(1/5*Pi)^(polylog(4,1/2)/Tribonacci) 9421153879329117 a007 Real Root Of -260*x^4+927*x^3+302*x^2-813*x-54 9421153889814387 m001 (exp(1/Pi)+Pi^(1/2))/(Mills-Totient) 9421153897680850 r005 Im(z^2+c),c=-95/126+3/58*I,n=13 9421153910781828 k002 Champernowne real with 211/2*n^2-399/2*n+188 9421153932571242 a003 sin(Pi*1/16)+sin(Pi*29/108) 9421153948536490 m008 (1/4*Pi^3-1/2)/(4/5*Pi^6+3/5) 9421153998227923 m008 (1/3*Pi-4/5)/(5/6*Pi^3+2/5) 9421154002400726 m002 -6+Pi^6-(Pi^5*Coth[Pi])/E^Pi 9421154008416488 a007 Real Root Of -352*x^4+186*x^3+246*x^2-527*x-282 9421154010468707 r002 59i'th iterates of 2*x/(1-x^2) of 9421154010811834 k002 Champernowne real with 106*n^2-201*n+189 9421154018197248 a007 Real Root Of -940*x^4+729*x^3+805*x^2-663*x+11 9421154020070567 s001 sum(exp(-4*Pi/5)^n*A069517[n],n=1..infinity) 9421154055531824 l006 ln(8776/9643) 9421154068540662 a007 Real Root Of 935*x^4+803*x^3-339*x^2-505*x-240 9421154069037311 m001 (exp(1)-KomornikLoreti)^GaussAGM 9421154084184258 g007 Psi(2,7/10)-Psi(13/10)-Psi(2,5/6)-Psi(2,3/4) 9421154099613456 r005 Im(z^2+c),c=13/62+18/31*I,n=12 9421154110841840 k002 Champernowne real with 213/2*n^2-405/2*n+190 9421154117857367 r008 a(0)=1,K{-n^6,49-17*n^3-58*n^2+43*n} 9421154121143334 k007 concat of cont frac of 9421154121482511 k008 concat of cont frac of 9421154136615781 k001 Champernowne real with 212*n+730 9421154142677515 a001 6765/2207*322^(7/36) 9421154160821446 r009 Im(z^3+c),c=-11/32+2/39*I,n=6 9421154179255231 m005 (1/2*gamma-4/9)/(2*Zeta(3)-3/4) 9421154190530496 a007 Real Root Of 583*x^4+742*x^3+796*x^2+236*x-323 9421154204343751 a001 610/15127*843^(17/21) 9421154210871846 k002 Champernowne real with 107*n^2-204*n+191 9421154212491806 a007 Real Root Of 203*x^4-178*x^3-735*x^2-957*x-558 9421154225124548 a007 Real Root Of 823*x^4+807*x^3+881*x^2-900*x-92 9421154230725343 r005 Re(z^2+c),c=-79/94+11/56*I,n=55 9421154232142193 k007 concat of cont frac of 9421154243493915 m001 Weierstrass^Landau-ln(5) 9421154245394947 a007 Real Root Of -911*x^4+240*x^3-7*x^2-439*x+511 9421154255119828 a007 Real Root Of 467*x^4-878*x^3-792*x^2-54*x-450 9421154279042664 r002 49th iterates of z^2 + 9421154305039350 a007 Real Root Of -652*x^4+723*x^3+898*x^2+3*x+324 9421154310901852 k002 Champernowne real with 215/2*n^2-411/2*n+192 9421154319576649 m001 (5^(1/2)+GAMMA(5/6))/(FeigenbaumMu+ZetaQ(4)) 9421154334531108 m006 (3/5*ln(Pi)+4)/(5*Pi^2+2/5) 9421154353533095 m001 ln(OneNinth)^2*Magata*GAMMA(1/6) 9421154356093332 a007 Real Root Of -142*x^4+809*x^3+666*x^2+384*x+559 9421154372254999 m001 cos(1)^(ln(2)/ln(10)*arctan(1/3)) 9421154382004174 r005 Re(z^2+c),c=-15/16+3/38*I,n=15 9421154383499315 r001 46i'th iterates of 2*x^2-1 of 9421154390595963 p003 LerchPhi(1/5,2,230/217) 9421154410931858 k002 Champernowne real with 108*n^2-207*n+193 9421154416134243 l006 ln(2347/6021) 9421154442799464 r002 2th iterates of z^2 + 9421154461928851 r005 Im(z^2+c),c=-23/58+9/59*I,n=27 9421154461969046 r005 Im(z^2+c),c=45/122+6/61*I,n=16 9421154510961864 k002 Champernowne real with 217/2*n^2-417/2*n+194 9421154520225997 s002 sum(A268275[n]/(16^n-1),n=1..infinity) 9421154522844552 r009 Im(z^3+c),c=-45/82+11/32*I,n=37 9421154528997772 p001 sum(1/(459*n+107)/(24^n),n=0..infinity) 9421154560576457 r005 Re(z^2+c),c=-49/54+5/29*I,n=53 9421154574604411 a001 305/682*843^(19/42) 9421154596257340 a007 Real Root Of 598*x^4-678*x^3-101*x^2-734*x+877 9421154602899976 m001 GAMMA(13/24)^cos(1)/(FeigenbaumC^cos(1)) 9421154610991870 k002 Champernowne real with 109*n^2-210*n+195 9421154617332213 m001 (Trott-ZetaQ(4))/(cos(1/12*Pi)-gamma(2)) 9421154619218697 m005 (1/2*gamma-5/11)/(5/11*Pi+1/3) 9421154625349227 a001 987/119218851371*3^(2/17) 9421154687881658 s002 sum(A072008[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154687887507 s002 sum(A175141[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154688197612 s002 sum(A004754[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154692217996 s002 sum(A166110[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154696554571 s002 sum(A101185[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154700100705 s002 sum(A166021[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154709254181 s002 sum(A277075[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154711021876 k002 Champernowne real with 219/2*n^2-423/2*n+196 9421154711627295 s002 sum(A272548[n]/(16^n-1),n=1..infinity) 9421154734638095 m008 (4/5*Pi^4-2/3)/(5/6*Pi^4+5/6) 9421154758651433 m001 (LandauRamanujan+Porter)/(exp(Pi)+Landau) 9421154800612986 s002 sum(A117121[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154804462883 s002 sum(A118179[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154808647183 s002 sum(A080148[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154808799202 s002 sum(A241572[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154811051882 k002 Champernowne real with 110*n^2-213*n+197 9421154817004687 s002 sum(A099628[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154826316300 q001 1/1061441 9421154834834630 a007 Real Root Of 830*x^4+605*x^3+8*x^2-174*x-319 9421154893962750 m001 (exp(Pi)+Psi(2,1/3))/(Porter+Tetranacci) 9421154911081888 k002 Champernowne real with 221/2*n^2-429/2*n+198 9421154913476907 s002 sum(A189205[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154914670980 s002 sum(A137169[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154921365655 s002 sum(A259558[n]/(n*exp(pi*n)-1),n=1..infinity) 9421154933397320 m009 (16*Catalan+2*Pi^2+3/4)/(2/3*Psi(1,1/3)-3) 9421155011111894 k002 Champernowne real with 111*n^2-216*n+199 9421155025739502 s002 sum(A189134[n]/(n*exp(pi*n)-1),n=1..infinity) 9421155025739502 s002 sum(A189019[n]/(n*exp(pi*n)-1),n=1..infinity) 9421155025739502 s002 sum(A189016[n]/(n*exp(pi*n)-1),n=1..infinity) 9421155025739522 s002 sum(A102821[n]/(n*exp(pi*n)-1),n=1..infinity) 9421155029930380 s002 sum(A143989[n]/(n*exp(pi*n)-1),n=1..infinity) 9421155036515765 m006 (3*exp(Pi)-1/4)/(3*exp(Pi)+4) 9421155071983389 h001 (-7*exp(6)+9)/(-exp(8)-7) 9421155077660441 m001 StronglyCareFree/(cos(1/5*Pi)^Catalan) 9421155083340619 m001 (ln(2)+PrimesInBinary)/(Sarnak+ZetaP(2)) 9421155111141900 k002 Champernowne real with 223/2*n^2-435/2*n+200 9421155113263105 k009 concat of cont frac of 9421155121100935 m001 (BesselJ(1,1)-Trott)/(Pi+2^(1/2)) 9421155136815811 k001 Champernowne real with 213*n+729 9421155149297759 m001 (MinimumGamma+OneNinth)/(Zeta(3)+arctan(1/2)) 9421155153430292 a007 Real Root Of -609*x^4+704*x^3+554*x^2+341*x+898 9421155154635485 a001 1/18*1364^(3/41) 9421155155241749 r005 Re(z^2+c),c=1/56+12/29*I,n=21 9421155162121152 k006 concat of cont frac of 9421155203268657 l006 ln(2110/5413) 9421155208180308 a001 305/12238*843^(37/42) 9421155210482693 a007 Real Root Of -575*x^4+751*x^3+866*x^2+714*x+985 9421155211171906 k002 Champernowne real with 112*n^2-219*n+201 9421155236810655 r005 Re(z^2+c),c=-119/106+12/55*I,n=32 9421155247595745 a007 Real Root Of 296*x^4-926*x^3+186*x^2+456*x-743 9421155252126391 s002 sum(A271392[n]/(n*exp(pi*n)-1),n=1..infinity) 9421155256641281 s002 sum(A195364[n]/(n*exp(pi*n)-1),n=1..infinity) 9421155264510626 s002 sum(A279793[n]/(n*exp(pi*n)-1),n=1..infinity) 9421155264560179 m001 (CareFree-MertensB2)/(GAMMA(3/4)+BesselI(0,2)) 9421155278746008 a007 Real Root Of -956*x^4+52*x^3+700*x^2+230*x+392 9421155279461006 a001 3571/144*377^(9/40) 9421155285064360 a001 2/305*233^(22/45) 9421155311201912 k002 Champernowne real with 225/2*n^2-441/2*n+202 9421155347281059 r005 Re(z^2+c),c=-79/90+6/29*I,n=43 9421155357572293 r009 Im(z^3+c),c=-47/114+2/3*I,n=8 9421155366093193 s002 sum(A092739[n]/(n*exp(pi*n)-1),n=1..infinity) 9421155375760348 m002 -5-Log[Pi]^2+5*ProductLog[Pi] 9421155385778949 a007 Real Root Of -488*x^4+631*x^3-72*x^2-311*x+683 9421155411231918 k002 Champernowne real with 113*n^2-222*n+203 9421155413168293 a008 Real Root of (-3+4*x-x^2-3*x^4+4*x^8) 9421155426067722 r005 Re(z^2+c),c=-49/54+3/17*I,n=27 9421155446869390 m008 (3/5*Pi^4+2)/(2/3*Pi^6+2/3) 9421155449171374 r005 Re(z^2+c),c=19/86+3/10*I,n=20 9421155464491264 a007 Real Root Of 370*x^4-629*x^3+417*x^2+681*x-546 9421155511261924 k002 Champernowne real with 227/2*n^2-447/2*n+204 9421155519856976 m001 1/Zeta(1/2)^2/Artin*exp(Zeta(7))^2 9421155529318069 a007 Real Root Of 778*x^4-288*x^3-420*x^2+450*x-57 9421155552321449 r005 Re(z^2+c),c=4/21+5/19*I,n=30 9421155552340349 a007 Real Root Of -293*x^4+877*x^3+716*x^2-23*x+307 9421155570376700 a007 Real Root Of 538*x^4-738*x^3-370*x^2+336*x-396 9421155598071862 m001 (Pi^(1/2)+Niven)/(cos(1)-gamma) 9421155611291930 k002 Champernowne real with 114*n^2-225*n+205 9421155625191742 r002 10th iterates of z^2 + 9421155648666352 a007 Real Root Of 370*x^4-45*x^3+504*x^2+925*x+95 9421155671816787 r005 Re(z^2+c),c=1/82+23/57*I,n=42 9421155711321936 k002 Champernowne real with 229/2*n^2-453/2*n+206 9421155738624483 m001 (Pi-Shi(1))/(GAMMA(23/24)+KhinchinLevy) 9421155745965667 r001 44i'th iterates of 2*x^2-1 of 9421155773615903 a007 Real Root Of -804*x^4+946*x^3+207*x^2-696*x+585 9421155777903742 r005 Re(z^2+c),c=-9/10+29/151*I,n=39 9421155797028067 m002 -1+Pi^2-Pi^6-Log[Pi]+Sinh[Pi] 9421155811351942 k002 Champernowne real with 115*n^2-228*n+207 9421155817200939 m001 GAMMA(5/6)/(BesselI(0,2)^Ei(1,1)) 9421155829839615 a001 17711/5778*322^(7/36) 9421155838649357 r005 Im(z^2+c),c=-73/64+3/25*I,n=24 9421155887994988 a001 843/514229*28657^(15/38) 9421155911381948 k002 Champernowne real with 231/2*n^2-459/2*n+208 9421155942484355 r009 Re(z^3+c),c=-3/14+47/49*I,n=53 9421155946909092 m002 -Pi^3-Tanh[Pi]+Pi^8*Tanh[Pi] 9421155958609733 m001 ln(Zeta(5))*Rabbit/sqrt(1+sqrt(3))^2 9421155960652322 r005 Re(z^2+c),c=-33/34+7/41*I,n=12 9421155972605773 a001 233/1364*521^(25/39) 9421155978444590 a007 Real Root Of 624*x^4-420*x^3-834*x^2+336*x+214 9421156011411954 k002 Champernowne real with 116*n^2-231*n+209 9421156013026321 m001 (GAMMA(13/24)-GolombDickman)/(Kac+ZetaP(2)) 9421156025009660 m001 Pi*(1/Zeta(1,2)-Pi*csc(11/24*Pi)/GAMMA(13/24)) 9421156045414450 m002 1-(Log[Pi]*Sinh[Pi])/(E^Pi*Pi^2) 9421156070944982 a001 329/281*322^(13/36) 9421156075993298 a001 6624/2161*322^(7/36) 9421156105182069 a007 Real Root Of -916*x^4-40*x^3-408*x^2-81*x+974 9421156111441960 k002 Champernowne real with 233/2*n^2-465/2*n+210 9421156111906637 a001 121393/39603*322^(7/36) 9421156117146323 a001 317811/103682*322^(7/36) 9421156117910782 a001 832040/271443*322^(7/36) 9421156118022316 a001 311187/101521*322^(7/36) 9421156118091247 a001 1346269/439204*322^(7/36) 9421156118383245 a001 514229/167761*322^(7/36) 9421156120384626 a001 196418/64079*322^(7/36) 9421156128474465 m009 (1/2*Psi(1,3/4)-5/6)/(1/6*Pi^2+3) 9421156133386060 a001 610/39603*843^(20/21) 9421156134102301 a001 75025/24476*322^(7/36) 9421156136915831 k005 Champernowne real with floor(Pi*(68*n+232)) 9421156137015841 k001 Champernowne real with 214*n+728 9421156144333800 a007 Real Root Of -336*x^4-769*x^3-490*x^2+891*x+896 9421156145749747 m001 ZetaP(4)/(Thue^GAMMA(2/3)) 9421156160228193 a007 Real Root Of 283*x^4-980*x^3+475*x^2+846*x-667 9421156189603043 l006 ln(1873/4805) 9421156211391669 a001 610/11*18^(49/50) 9421156211471966 k002 Champernowne real with 117*n^2-234*n+211 9421156224376609 m001 (arctan(1/3)+Lehmer)/(BesselK(0,1)-ln(gamma)) 9421156228124646 a001 28657/9349*322^(7/36) 9421156241843906 m001 LambertW(1)+BesselK(1,1)^GAMMA(11/24) 9421156277346988 a001 2584/312119004989*3^(2/17) 9421156308143740 m001 1/GAMMA(11/12)/ln(RenyiParking)^2*sin(1) 9421156308459461 s001 sum(exp(-4*Pi/5)^n*A091395[n],n=1..infinity) 9421156311501972 k002 Champernowne real with 235/2*n^2-471/2*n+212 9421156322124191 k008 concat of cont frac of 9421156322611349 r005 Re(z^2+c),c=-11/14+95/108*I,n=2 9421156327423283 r005 Im(z^2+c),c=-121/122+5/53*I,n=24 9421156332312640 m001 (1-FeigenbaumC)^FellerTornier 9421156342136881 a007 Real Root Of 626*x^4-492*x^3+180*x^2+426*x-663 9421156357744255 m001 GAMMA(11/12)/(Ei(1,1)-Totient) 9421156362172172 m002 -4+Pi^3/5-Pi^4+Tanh[Pi] 9421156411531978 k002 Champernowne real with 118*n^2-237*n+213 9421156412287390 a007 Real Root Of 641*x^4-731*x^3-300*x^2+847*x-52 9421156468791153 r009 Re(z^3+c),c=-43/90+1/55*I,n=5 9421156470599831 a007 Real Root Of 808*x^4-70*x^3-65*x^2+97*x-546 9421156473160105 a001 7/34*610^(31/52) 9421156499233471 r008 a(0)=9,K{-n^6,-40+34*n^3-34*n^2+38*n} 9421156511561984 k002 Champernowne real with 237/2*n^2-477/2*n+214 9421156518370214 a001 6765/817138163596*3^(2/17) 9421156553535028 a001 17711/2139295485799*3^(2/17) 9421156555019006 a007 Real Root Of 371*x^4-437*x^3-614*x^2-548*x-629 9421156558665506 a001 46368/5600748293801*3^(2/17) 9421156559414032 a001 121393/14662949395604*3^(2/17) 9421156559541893 a001 2/24157817*3^(2/17) 9421156559590735 a001 196418/23725150497407*3^(2/17) 9421156559876647 a001 75025/9062201101803*3^(2/17) 9421156561836315 a001 28657/3461452808002*3^(2/17) 9421156575268079 a001 10946/1322157322203*3^(2/17) 9421156581887353 r005 Im(z^2+c),c=-61/110+10/59*I,n=26 9421156584966028 r005 Re(z^2+c),c=-67/74+5/28*I,n=23 9421156588542355 a007 Real Root Of 299*x^4-102*x^3+5*x^2-575*x-867 9421156606326415 r009 Im(z^3+c),c=-17/94+55/61*I,n=21 9421156611591990 k002 Champernowne real with 119*n^2-240*n+215 9421156613641721 a007 Real Root Of -896*x^4+747*x^3+158*x^2-859*x+381 9421156627980313 a007 Real Root Of -600*x^4+963*x^3-215*x^2-764*x+749 9421156667330759 a001 4181/505019158607*3^(2/17) 9421156676783717 m001 (Pi+FeigenbaumB)/(PlouffeB-ZetaQ(2)) 9421156711621996 k002 Champernowne real with 239/2*n^2-483/2*n+216 9421156732544054 r005 Re(z^2+c),c=1/82+23/57*I,n=39 9421156756404623 m001 1/GAMMA(3/4)^2/GAMMA(1/3)*ln(cos(1))^2 9421156779339578 a007 Real Root Of -454*x^4+429*x^3-110*x^2-656*x+196 9421156780954810 a007 Real Root Of 564*x^4+209*x^3-270*x^2-413*x-419 9421156782696628 l006 ln(3509/9002) 9421156783773571 r009 Re(z^3+c),c=-71/114+7/48*I,n=3 9421156803753219 a003 sin(Pi*29/75)/sin(Pi*29/62) 9421156811652002 k002 Champernowne real with 120*n^2-243*n+217 9421156829802536 a007 Real Root Of 901*x^4+231*x^3+2*x^2-491*x-981 9421156844621975 m001 FibonacciFactorial/(GaussAGM^Zeta(1/2)) 9421156865399890 a007 Real Root Of -40*x^4+97*x^3-481*x^2-336*x+223 9421156872563433 a001 10946/3571*322^(7/36) 9421156879691991 m001 (-Magata+OneNinth)/(5^(1/2)+BesselI(0,1)) 9421156893399730 m001 gamma(1)*exp(-1/2*Pi)/ErdosBorwein 9421156895967557 r005 Im(z^2+c),c=-3/106+20/23*I,n=4 9421156948726624 m002 3/5+Pi/2-Cosh[Pi] 9421156959142476 p001 sum(1/(337*n+111)/(6^n),n=0..infinity) 9421157017716111 m001 (-Porter+ThueMorse)/(Psi(1,1/3)+ln(3)) 9421157036263489 a001 9349/610*233^(34/45) 9421157050854372 r005 Im(z^2+c),c=-53/110+6/37*I,n=42 9421157054633626 r005 Re(z^2+c),c=-11/12+11/73*I,n=27 9421157115950632 a007 Real Root Of -171*x^4+837*x^3+655*x^2-894*x-589 9421157137215871 k001 Champernowne real with 215*n+727 9421157142228491 m001 1/Zeta(1,2)*ln(Sierpinski)/Zeta(5)^2 9421157147299268 a007 Real Root Of 892*x^4-325*x^3+216*x^2+342*x-844 9421157147598076 a007 Real Root Of 771*x^4-792*x^3-123*x^2+717*x-485 9421157167466198 m001 5^(1/2)/(ErdosBorwein^MasserGramainDelta) 9421157176948502 a001 47*(1/2*5^(1/2)+1/2)^11*322^(2/5) 9421157187623992 r002 51th iterates of z^2 + 9421157220209756 m001 sin(1/5*Pi)+arctan(1/2)*LandauRamanujan 9421157220209756 m001 sin(Pi/5)+arctan(1/2)*LandauRamanujan 9421157221680341 a007 Real Root Of 262*x^4-963*x^3-36*x^2+575*x-438 9421157223582590 a007 Real Root Of -589*x^4-127*x^3+176*x^2+736*x+895 9421157256410190 m001 1/cos(Pi/12)/exp(GAMMA(23/24))^2*sin(1)^2 9421157267119489 l006 ln(3229/3548) 9421157269009217 a001 17711/2207*123^(1/30) 9421157298337755 a001 1597/192900153618*3^(2/17) 9421157305159093 m001 (gamma(3)+ZetaP(2))/(5^(1/2)-exp(1)) 9421157342231482 m001 BesselK(0,1)/ln(GlaisherKinkelin)*GAMMA(1/6) 9421157356808023 a005 (1/cos(41/121*Pi))^89 9421157359760450 m001 (Lehmer+ZetaP(2))/(ln(2+3^(1/2))-exp(-1/2*Pi)) 9421157360968827 a007 Real Root Of -660*x^4+105*x^3+124*x^2-109*x+395 9421157370207986 a001 17393796001*225851433717^(10/13) 9421157370207986 a001 2139295485799*433494437^(10/13) 9421157372073038 a007 Real Root Of -288*x^4+479*x^3-557*x^2-176*x+956 9421157397588226 m001 Zeta(3)^2/ln(HardHexagonsEntropy)^2/sinh(1)^2 9421157424603620 a001 233/843*1364^(22/45) 9421157436549265 r005 Re(z^2+c),c=-13/14+10/87*I,n=29 9421157436947898 a007 Real Root Of 468*x^4-835*x^3-740*x^2-382*x-770 9421157442995837 r005 Re(z^2+c),c=-17/18+6/241*I,n=3 9421157448154550 a007 Real Root Of 5*x^4-137*x^3+824*x^2+200*x+149 9421157452728520 m001 (3^(1/3)+gamma(3))/(AlladiGrinstead+Sarnak) 9421157461708985 l006 ln(1636/4197) 9421157476497035 m001 (2^(1/3)-ArtinRank2)/(-Backhouse+Thue) 9421157513844189 b008 3^(-1/3)+Log[Glaisher] 9421157522558142 a007 Real Root Of -589*x^4+919*x^3+702*x^2+7*x+616 9421157533865356 m008 (1/5*Pi^4+2/3)/(1/3*Pi-5/6) 9421157541551058 a007 Real Root Of 59*x^4+523*x^3-223*x^2+890*x+710 9421157552662350 a007 Real Root Of -155*x^4+284*x^3-387*x^2-655*x+86 9421157568645984 r005 Im(z^2+c),c=-5/8+2/109*I,n=44 9421157593489708 m002 (E^Pi*Pi^4)/4+Pi^10 9421157684630738 q001 236/2505 9421157684630738 q001 472/501 9421157684630738 r005 Im(z^2+c),c=-7/6+118/167*I,n=2 9421157691984613 m001 cos(1/12*Pi)/(Rabbit^gamma(1)) 9421157703234154 a001 5/73681302247*1364^(1/22) 9421157754728671 a007 Real Root Of -538*x^4+476*x^3+621*x^2-351*x-60 9421157806348202 a007 Real Root Of 986*x^4-358*x^3-245*x^2+282*x-593 9421157806653861 a007 Real Root Of 932*x^4+249*x^3-270*x^2+80*x-211 9421157818503128 s002 sum(A134191[n]/(n*exp(pi*n)-1),n=1..infinity) 9421157818655147 s002 sum(A120685[n]/(n*exp(pi*n)-1),n=1..infinity) 9421157818655610 s002 sum(A284472[n]/(n*exp(pi*n)-1),n=1..infinity) 9421157818813478 s002 sum(A185392[n]/(n*exp(pi*n)-1),n=1..infinity) 9421157822687909 s002 sum(A284880[n]/(n*exp(pi*n)-1),n=1..infinity) 9421157822834089 s002 sum(A047261[n]/(n*exp(pi*n)-1),n=1..infinity) 9421157822839702 s002 sum(A286687[n]/(n*exp(pi*n)-1),n=1..infinity) 9421157823186885 h001 (10/11*exp(1)+2/3)/(2/5*exp(2)+3/8) 9421157823480044 s002 sum(A247886[n]/(n*exp(pi*n)-1),n=1..infinity) 9421157824929617 r005 Re(z^2+c),c=31/122+1/3*I,n=26 9421157826854473 s002 sum(A244991[n]/(n*exp(pi*n)-1),n=1..infinity) 9421157829462588 m005 (1/2*5^(1/2)+3/7)/(5/7*exp(1)-3/10) 9421157831044858 s002 sum(A066208[n]/(n*exp(pi*n)-1),n=1..infinity) 9421157854053148 a007 Real Root Of 443*x^4-729*x^3+568*x^2+972*x-547 9421157887363497 m001 1/ln(OneNinth)^2/Kolakoski/GAMMA(13/24)^2 9421157913343645 m001 GAMMA(11/12)/Trott^2*exp(sinh(1))^2 9421157914417775 a007 Real Root Of -740*x^4+294*x^3+897*x^2+616*x+613 9421157925293112 a001 89/1364*199^(31/33) 9421157927037472 s002 sum(A112777[n]/(n*exp(pi*n)-1),n=1..infinity) 9421157927201662 s002 sum(A188972[n]/(n*exp(pi*n)-1),n=1..infinity) 9421157928402376 a001 5/1322157322203*24476^(7/22) 9421157931374065 s002 sum(A188975[n]/(n*exp(pi*n)-1),n=1..infinity) 9421157933330083 a001 5/817138163596*167761^(5/22) 9421157933399503 a001 5/312119004989*439204^(3/22) 9421157933405737 a001 5/23725150497407*3010349^(9/22) 9421157933406162 a001 5/119218851371*54018521^(1/22) 9421157933406162 a001 5/9062201101803*6643838879^(5/22) 9421157933406162 a001 5/1322157322203*17393796001^(3/22) 9421157933406162 a001 5/192900153618*2139295485799^(1/22) 9421157964328899 m005 (1/2*Zeta(3)+7/12)/(2/11*2^(1/2)+1) 9421157975635471 m005 (1/2*3^(1/2)-8/9)/(5/9*exp(1)+11/12) 9421157984168704 r005 Im(z^2+c),c=-23/62+47/57*I,n=5 9421157985149330 r002 25th iterates of z^2 + 9421158014934774 r002 9th iterates of z^2 + 9421158016341639 a007 Real Root Of -650*x^4-641*x^3-389*x^2+334*x+636 9421158025430991 a005 (1/cos(5/17*Pi))^109 9421158040975699 a007 Real Root Of 562*x^4-853*x^3-383*x^2+966*x+94 9421158048174361 s002 sum(A076614[n]/(n*exp(pi*n)-1),n=1..infinity) 9421158049806644 m006 (1/4*Pi+2)/(1/3*Pi^2-1/3) 9421158049806644 m008 (1/4*Pi+2)/(1/3*Pi^2-1/3) 9421158063490508 r005 Re(z^2+c),c=1/17+25/31*I,n=5 9421158063712802 r002 3th iterates of z^2 + 9421158072308392 a007 Real Root Of -557*x^4-458*x^3-522*x^2+37*x+554 9421158080008477 r005 Im(z^2+c),c=-81/118+3/7*I,n=12 9421158098516726 r005 Im(z^2+c),c=7/62+21/32*I,n=9 9421158099884049 a001 377/521*1364^(16/45) 9421158116490286 s002 sum(A236477[n]/(n*exp(n)+1),n=1..infinity) 9421158131918162 k006 concat of cont frac of 9421158137415901 k001 Champernowne real with 216*n+726 9421158145366930 m002 -2-Pi^6+Pi^4/(4*Log[Pi]) 9421158154976203 a007 Real Root Of -704*x^4+728*x^3+8*x^2-600*x+591 9421158161800543 s002 sum(A249508[n]/(n*exp(pi*n)-1),n=1..infinity) 9421158168997214 m001 (Zeta(3)-Ei(1))/(Champernowne-Thue) 9421158179743999 r005 Re(z^2+c),c=-17/18-7/246*I,n=9 9421158211428883 s002 sum(A031019[n]/(exp(2*pi*n)-1),n=1..infinity) 9421158211725189 v005 sum((-9+14*n)/(exp(2*Pi*n)-1),n=1..infinity) 9421158214396014 m005 (1/3*exp(1)-1/7)/(5/6*gamma-2/5) 9421158227168349 s001 sum(exp(-4*Pi/5)^n*A221645[n],n=1..infinity) 9421158228741200 r005 Re(z^2+c),c=7/114+14/29*I,n=36 9421158246443591 r009 Im(z^3+c),c=-15/82+43/49*I,n=31 9421158246768024 l006 ln(3035/7786) 9421158248352450 a003 cos(Pi*7/110)*cos(Pi*4/45) 9421158255667853 r009 Re(z^3+c),c=-13/90+26/53*I,n=22 9421158288013143 m005 (1/2*2^(1/2)+4/5)/(5^(1/2)-7/11) 9421158299501250 a007 Real Root Of -487*x^4+704*x^3-297*x^2-709*x+568 9421158309798211 r005 Re(z^2+c),c=11/48+29/39*I,n=5 9421158323974824 r009 Im(z^3+c),c=-5/32+57/62*I,n=15 9421158341557985 r002 24th iterates of z^2 + 9421158368401832 m001 (HardyLittlewoodC3+MinimumGamma)/(Pi-Catalan) 9421158378252502 s002 sum(A089653[n]/(n*exp(pi*n)-1),n=1..infinity) 9421158438680651 a007 Real Root Of 486*x^4-548*x^3-581*x^2+120*x+478 9421158445417356 a007 Real Root Of 847*x^4+592*x^3+550*x^2+494*x-195 9421158470228131 r005 Im(z^2+c),c=-21/34+87/124*I,n=3 9421158473690563 a001 9/4*987^(13/24) 9421158493447828 m001 (Tribonacci-ZetaQ(4))/(ln(Pi)-Totient) 9421158496971970 r005 Im(z^2+c),c=-19/18+19/180*I,n=9 9421158556231713 a005 (1/cos(91/233*Pi))^55 9421158576185260 a007 Real Root Of -848*x^4-954*x^3-649*x^2-944*x-443 9421158617665360 s002 sum(A190141[n]/(n*exp(pi*n)-1),n=1..infinity) 9421158622054820 p004 log(26339/10267) 9421158656163622 a001 1/14619165*365435296162^(4/9) 9421158656163630 a001 7/14930352*4807526976^(4/9) 9421158656164019 a001 1/311187*63245986^(4/9) 9421158656181067 a001 7/317811*832040^(4/9) 9421158664029428 a001 1/6624*10946^(4/9) 9421158680695095 m002 -3+Pi^4-2*Log[Pi]*Sech[Pi] 9421158720847386 m001 ln(GAMMA(1/6))*GolombDickman*Zeta(1,2)^2 9421158729378654 a007 Real Root Of 956*x^4-295*x^3-745*x^2-269*x-592 9421158738228158 r005 Re(z^2+c),c=23/110+25/57*I,n=61 9421158763580951 m001 (Kolakoski+PlouffeB)/(Ei(1,1)+GAMMA(5/6)) 9421158783283594 s001 sum(exp(-4*Pi/5)^n*A058087[n],n=1..infinity) 9421158788716691 r002 28th iterates of z^2 + 9421158818520802 r005 Re(z^2+c),c=-31/34+21/128*I,n=27 9421158825756458 a007 Real Root Of -209*x^4+24*x^3-562*x^2+113*x+790 9421158830483272 a007 Real Root Of 502*x^4-617*x^3+651*x^2+998*x-549 9421158833520356 a007 Real Root Of -250*x^4+442*x^3+793*x^2+26*x-901 9421158838171593 s001 sum(exp(-Pi/3)^n*A279570[n],n=1..infinity) 9421158843938311 m001 GAMMA(13/24)^ln(2)/(KomornikLoreti^ln(2)) 9421158868593044 a003 cos(Pi*11/103)*sin(Pi*56/117) 9421158910747098 h001 (2/7*exp(2)+2/5)/(1/4*exp(2)+9/11) 9421158917080834 a007 Real Root Of -746*x^4+813*x^3-306*x^2-896*x+695 9421158926137533 a001 2576/321*123^(1/30) 9421158934564241 r002 46th iterates of z^2 + 9421158941901603 r009 Re(z^3+c),c=-59/126+2/45*I,n=31 9421158943354124 m001 (Riemann2ndZero-Thue)/(ln(gamma)-BesselI(1,2)) 9421158972178995 r005 Re(z^2+c),c=5/86+21/44*I,n=46 9421158972892363 m001 (Pi+Ei(1,1))/(GAMMA(13/24)+Tetranacci) 9421158990951315 a005 (1/cos(17/215*Pi))^1623 9421159003066420 m001 (arctan(1/3)+Lehmer)/(Si(Pi)-ln(2^(1/2)+1)) 9421159009062514 h001 (1/11*exp(2)+7/11)/(4/11*exp(1)+2/5) 9421159023221217 a007 Real Root Of 266*x^4-497*x^3-909*x^2-956*x-719 9421159033095044 m005 (1/2*3^(1/2)-4/5)/(3*5^(1/2)+3/10) 9421159042022788 m001 (AlladiGrinstead+Bloch)/(MertensB3+Trott2nd) 9421159050597583 h001 (5/8*exp(2)+8/11)/(8/11*exp(2)+3/10) 9421159085537099 a007 Real Root Of 908*x^4+294*x^3+587*x^2+648*x-380 9421159087755496 a007 Real Root Of -909*x^4+207*x^3+4*x^2+115*x+994 9421159093865956 m001 ln(5)/(ZetaQ(4)^HardyLittlewoodC3) 9421159110753456 a007 Real Root Of -605*x^4+709*x^3-47*x^2+873*x-897 9421159111812175 k007 concat of cont frac of 9421159137615921 k005 Champernowne real with floor(Pi*(69*n+231)) 9421159137615931 k001 Champernowne real with 217*n+725 9421159162347203 r009 Re(z^3+c),c=-12/23+28/53*I,n=9 9421159164118971 m001 1/Zeta(3)/GAMMA(5/24)^2*exp(cosh(1))^2 9421159164821260 l006 ln(1399/3589) 9421159167909344 a001 121393/15127*123^(1/30) 9421159177895710 h001 (7/12*exp(1)+2/3)/(9/11*exp(1)+1/6) 9421159183166417 m005 (1/2*Pi+3)/(7/10*3^(1/2)-8/11) 9421159203183377 a001 105937/13201*123^(1/30) 9421159208329789 a001 416020/51841*123^(1/30) 9421159209080640 a001 726103/90481*123^(1/30) 9421159209544692 a001 1346269/167761*123^(1/30) 9421159211510447 a001 514229/64079*123^(1/30) 9421159215461024 r009 Re(z^3+c),c=-7/118+34/41*I,n=35 9421159224983928 a001 98209/12238*123^(1/30) 9421159254881484 m001 (Conway+ZetaP(2))/(Chi(1)+GAMMA(23/24)) 9421159265058373 r005 Re(z^2+c),c=-37/38+9/31*I,n=16 9421159278181807 r005 Re(z^2+c),c=-28/31+3/16*I,n=23 9421159303087609 r005 Re(z^2+c),c=1/82+23/57*I,n=41 9421159306032925 h001 (9/10*exp(1)+3/10)/(3/11*exp(2)+9/10) 9421159317332547 a001 75025/9349*123^(1/30) 9421159324525960 r005 Im(z^2+c),c=-9/8+23/192*I,n=16 9421159364993956 m005 (1/2*5^(1/2)+10/11)/(3/7*Zeta(3)-3/10) 9421159408802145 r005 Re(z^2+c),c=4/15+14/37*I,n=24 9421159416942545 a007 Real Root Of 181*x^4-123*x^3+88*x^2-476*x-772 9421159458317341 r005 Im(z^2+c),c=-5/4+4/31*I,n=4 9421159462393126 m001 1/sin(Pi/5)*Artin^2/ln(sqrt(1+sqrt(3)))^2 9421159536948767 g005 1/2*Pi^(1/2)*2^(1/2)/GAMMA(3/4)^2*GAMMA(5/6) 9421159536948767 m001 GAMMA(5/6)*GaussAGM 9421159536948767 m001 GAMMA(5/6)/GaussAGM(1,1/sqrt(2))/sqrt(2) 9421159552538100 r005 Im(z^2+c),c=-121/122+5/53*I,n=26 9421159558174558 r005 Im(z^2+c),c=-33/31+3/28*I,n=26 9421159569557120 a007 Real Root Of 469*x^4+621*x^3+237*x^2-476*x-509 9421159576116366 a007 Real Root Of 95*x^4+826*x^3-667*x^2-145*x+129 9421159581535293 a001 233/843*3571^(22/51) 9421159585268784 a007 Real Root Of 715*x^4+413*x^3+473*x^2-13*x-650 9421159586632686 r005 Im(z^2+c),c=-5/4+38/109*I,n=4 9421159603287626 a007 Real Root Of -898*x^4+801*x^3-62*x^2-859*x+623 9421159635606256 h001 (-8*exp(8)+3)/(-6*exp(1)-9) 9421159658637399 a001 72/51841*1364^(28/31) 9421159668561693 a001 377/521*3571^(16/51) 9421159668916376 a007 Real Root Of 207*x^4-564*x^3+66*x^2+669*x-63 9421159684123196 a007 Real Root Of 302*x^4-624*x^3-439*x^2+690*x+280 9421159760039431 m001 Ei(1)^GaussKuzminWirsing*StronglyCareFree 9421159763688623 a007 Real Root Of 164*x^4-786*x^3-629*x^2+495*x+620 9421159784593547 r005 Re(z^2+c),c=1/82+23/57*I,n=45 9421159805539597 m009 (1/4*Psi(1,2/3)+2/5)/(5*Psi(1,3/4)-1/3) 9421159825229005 r005 Im(z^2+c),c=-43/34+3/109*I,n=32 9421159829239752 a007 Real Root Of 439*x^4+379*x^3-116*x^2-915*x-788 9421159858628932 a001 233/843*9349^(22/57) 9421159859488952 r002 25th iterates of z^2 + 9421159870084341 a001 377/521*9349^(16/57) 9421159875786371 a007 Real Root Of 912*x^4-379*x^3+627*x^2+658*x-972 9421159892216252 a001 377/843*322^(19/36) 9421159893284740 a007 Real Root Of 475*x^4-518*x^3-969*x^2-126*x-66 9421159900231632 a001 233/843*7881196^(2/9) 9421159900231666 a001 233/843*312119004989^(2/15) 9421159900231666 a001 233/843*1568397607^(1/6) 9421159900340875 a001 377/521*23725150497407^(1/12) 9421159900340875 a001 377/521*10749957122^(1/9) 9421159900340875 a001 377/521*228826127^(2/15) 9421159900340941 a001 377/521*4870847^(1/6) 9421159900344428 a001 377/521*710647^(4/21) 9421159900535628 a001 377/521*103682^(2/9) 9421159901797085 a001 377/521*39603^(8/33) 9421159902233956 a001 233/843*39603^(1/3) 9421159911319994 a001 377/521*15127^(4/15) 9421159915327955 a001 233/843*15127^(11/30) 9421159950299446 a001 28657/3571*123^(1/30) 9421159983954209 a001 377/521*5778^(8/27) 9421159997484525 r002 17th iterates of z^2 + 9421160004481856 m005 (1/2*3^(1/2)+7/12)/(3/8*3^(1/2)+8/9) 9421160011512836 a007 Real Root Of 166*x^4-503*x^3-425*x^2-598*x-53 9421160015200001 a001 233/843*5778^(11/27) 9421160019380784 p004 log(16729/6521) 9421160024796676 a007 Real Root Of 768*x^4+273*x^3-302*x^2-634*x-706 9421160044445897 r002 42th iterates of z^2 + 9421160078674038 r005 Im(z^2+c),c=-9/8+23/197*I,n=31 9421160083105100 a007 Real Root Of 690*x^4-873*x^3+60*x^2+901*x-478 9421160092427351 a007 Real Root Of -170*x^4+948*x^3+321*x^2-5*x-939 9421160107782964 a007 Real Root Of -328*x^4+807*x^3-261*x^2-745*x+463 9421160112101230 m001 (Psi(1,1/3)+Landau)/(-Niven+Stephens) 9421160137815961 k001 Champernowne real with 218*n+724 9421160158287024 m001 (Pi+BesselJ(0,1))/PrimesInBinary 9421160178999054 r009 Re(z^3+c),c=-17/94+43/64*I,n=27 9421160188153819 s002 sum(A016787[n]/(exp(pi*n)+1),n=1..infinity) 9421160252791309 l006 ln(2561/6570) 9421160259063292 b008 -1+(Pi+Csch[Pi])^2 9421160269940474 a005 (1/cos(38/167*Pi))^213 9421160296507316 a007 Real Root Of 777*x^4-359*x^3-104*x^2+639*x-218 9421160317304950 a007 Real Root Of -558*x^4+653*x^3+919*x^2+431*x+576 9421160318121014 a007 Real Root Of 335*x^4+173*x^3+400*x^2-74*x-544 9421160333826333 r005 Re(z^2+c),c=-13/14+17/148*I,n=19 9421160344347050 a007 Real Root Of 562*x^4+73*x^3-156*x^2-747*x-947 9421160346781274 a007 Real Root Of -931*x^4-433*x^3-956*x^2-641*x+616 9421160353561720 a005 (1/cos(11/169*Pi))^544 9421160361767468 p004 log(35831/13967) 9421160365547097 r005 Im(z^2+c),c=-111/86+2/49*I,n=12 9421160368253147 a003 cos(Pi*1/42)-cos(Pi*55/114) 9421160390583226 r009 Re(z^3+c),c=-3/22+25/57*I,n=11 9421160395478901 a007 Real Root Of -812*x^4+430*x^3+67*x^2-159*x+790 9421160406672178 m001 sin(1/5*Pi)^Magata*Stephens 9421160448367542 m005 (3/4*exp(1)-2/3)/(1/5*exp(1)-2) 9421160499307753 m001 (-BesselI(1,1)+RenyiParking)/(Chi(1)+ln(3)) 9421160502515148 a007 Real Root Of -900*x^4+310*x^3+478*x^2+207*x+739 9421160507818129 m001 Gompertz^(StolarskyHarborth/CareFree) 9421160518135781 m001 1/ln(GAMMA(23/24))^2/CopelandErdos*Zeta(3)^2 9421160529274267 s001 sum(exp(-4*Pi/5)^n*A254218[n],n=1..infinity) 9421160545071949 a001 377/521*2207^(1/3) 9421160572207387 a007 Real Root Of -319*x^4+178*x^3+526*x^2+385*x+296 9421160573584954 a007 Real Root Of -841*x^4-357*x^3-182*x^2+96*x+616 9421160603901517 m001 ReciprocalFibonacci^BesselI(1,1)*Weierstrass 9421160619421127 m005 (1/3*5^(1/2)-1/8)/(-19/90+7/18*5^(1/2)) 9421160628630347 m001 (3^(1/2)+Landau)/(ReciprocalLucas+ZetaP(2)) 9421160630933325 m001 ErdosBorwein*ZetaP(4)^exp(-1/2*Pi) 9421160636701183 m001 (polylog(4,1/2)-Trott)/(Pi+5^(1/2)) 9421160655151163 m001 (CareFree-MertensB2)^ZetaQ(2) 9421160661620206 l006 ln(3723/9551) 9421160693961862 r005 Im(z^2+c),c=-6/5+3/43*I,n=10 9421160709629051 m009 (6*Catalan+3/4*Pi^2-5)/(3/5*Psi(1,2/3)-1) 9421160716724017 m001 (exp(1/Pi)+FeigenbaumKappa)/(3^(1/2)-3^(1/3)) 9421160738977025 r005 Im(z^2+c),c=-5/6+30/167*I,n=16 9421160766132622 a007 Real Root Of -410*x^4+995*x^3-492*x^2-886*x+757 9421160775518119 a007 Real Root Of 863*x^4-541*x^3-43*x^2-236*x+23 9421160781404484 r005 Re(z^2+c),c=29/118+21/64*I,n=25 9421160781667512 r002 13th iterates of z^2 + 9421160786736904 a001 233/843*2207^(11/24) 9421160793760666 m001 FeigenbaumB^2*ln(MertensB1)/Paris 9421160796601823 m006 (2*exp(Pi)-1/6)/(5*Pi^2-2/5) 9421160824399734 m001 (Ei(1,1)-GAMMA(11/12))/(Totient-ZetaP(2)) 9421160836118971 s002 sum(A262332[n]/(pi^n+1),n=1..infinity) 9421160861482781 r008 a(0)=1,K{-n^6,19-22*n+13*n^2+8*n^3} 9421160877302555 r009 Im(z^3+c),c=-11/122+43/46*I,n=19 9421160903149857 m001 (Porter/(1+3^(1/2))^(1/2))^(1/2) 9421160905492751 a003 cos(Pi*2/71)*sin(Pi*15/38) 9421160931476158 a007 Real Root Of 953*x^4-457*x^3-937*x^2-39*x-338 9421160981903948 a007 Real Root Of -683*x^4+378*x^3+919*x^2+630*x+632 9421160994780800 r005 Im(z^2+c),c=-89/78+5/17*I,n=16 9421160997214346 a003 sin(Pi*1/75)+sin(Pi*1/60) 9421161009396868 a001 75283811239*45537549124^(18/19) 9421161009396868 a001 591286729879/3*312119004989^(16/19) 9421161009396868 a001 75283811239*192900153618^(17/19) 9421161065898352 r009 Im(z^3+c),c=-11/122+43/46*I,n=25 9421161091911504 l006 ln(7369/8097) 9421161113631412 k007 concat of cont frac of 9421161114111312 k006 concat of cont frac of 9421161124923217 k008 concat of cont frac of 9421161138015991 k001 Champernowne real with 219*n+723 9421161141624116 k009 concat of cont frac of 9421161172764056 r009 Im(z^3+c),c=-11/122+43/46*I,n=33 9421161173228217 r009 Im(z^3+c),c=-11/122+43/46*I,n=31 9421161173594512 r009 Im(z^3+c),c=-11/122+43/46*I,n=23 9421161173899225 r009 Im(z^3+c),c=-11/122+43/46*I,n=39 9421161173902130 r009 Im(z^3+c),c=-11/122+43/46*I,n=41 9421161173913686 r009 Im(z^3+c),c=-11/122+43/46*I,n=47 9421161173913804 r009 Im(z^3+c),c=-11/122+43/46*I,n=49 9421161173913917 r009 Im(z^3+c),c=-11/122+43/46*I,n=55 9421161173913919 r009 Im(z^3+c),c=-11/122+43/46*I,n=57 9421161173913920 r009 Im(z^3+c),c=-11/122+43/46*I,n=63 9421161173913920 r009 Im(z^3+c),c=-11/122+43/46*I,n=61 9421161173913920 r009 Im(z^3+c),c=-11/122+43/46*I,n=59 9421161173913931 r009 Im(z^3+c),c=-11/122+43/46*I,n=53 9421161173913948 r009 Im(z^3+c),c=-11/122+43/46*I,n=51 9421161173915095 r009 Im(z^3+c),c=-11/122+43/46*I,n=45 9421161173915814 r009 Im(z^3+c),c=-11/122+43/46*I,n=43 9421161174020504 r009 Im(z^3+c),c=-11/122+43/46*I,n=35 9421161174030929 r009 Im(z^3+c),c=-11/122+43/46*I,n=37 9421161177223821 r009 Im(z^3+c),c=-11/122+43/46*I,n=27 9421161185108828 r009 Im(z^3+c),c=-11/122+43/46*I,n=29 9421161189999197 a007 Real Root Of 315*x^4+364*x^3+954*x^2+129*x-669 9421161197763602 a007 Real Root Of 33*x^4+225*x^3-862*x^2-432*x+611 9421161201754844 m001 Catalan^(FellerTornier/Weierstrass) 9421161211112341 k006 concat of cont frac of 9421161218241841 k008 concat of cont frac of 9421161231000358 a001 89/843*199^(28/33) 9421161231517372 k007 concat of cont frac of 9421161233744212 k006 concat of cont frac of 9421161239457021 m005 (1/2*3^(1/2)-2/7)/(Catalan-3/10) 9421161245161161 k008 concat of cont frac of 9421161281963586 a007 Real Root Of 732*x^4-718*x^3-271*x^2+129*x-815 9421161289614917 a001 4181/1364*322^(7/36) 9421161310714283 k008 concat of cont frac of 9421161315956449 m001 BesselK(1,1)^StronglyCareFree-Psi(1,1/3) 9421161316843272 m001 Pi*csc(11/24*Pi)/GAMMA(13/24)*Otter*ZetaQ(4) 9421161320877723 a007 Real Root Of 466*x^4-891*x^3+359*x^2-869*x+878 9421161339893447 a007 Real Root Of -152*x^4-263*x^3-884*x^2+25*x+708 9421161379409312 m001 (OneNinth+Salem)/(FeigenbaumKappa-exp(1)) 9421161395614531 s002 sum(A216566[n]/(n*exp(pi*n)-1),n=1..infinity) 9421161397454390 m001 cos(1/5*Pi)^(Ei(1,1)*GlaisherKinkelin) 9421161415720095 m001 (-Porter+ZetaP(2))/(sin(1)+CopelandErdos) 9421161419499085 a001 2/6119*4^(42/55) 9421161427071766 s002 sum(A288523[n]/(n*exp(pi*n)-1),n=1..infinity) 9421161427215017 a007 Real Root Of -250*x^4+267*x^3+389*x^2-70*x+9 9421161435558346 a007 Real Root Of 4*x^4+372*x^3-453*x^2+336*x-232 9421161453312387 a001 24476/1597*233^(34/45) 9421161465370539 r005 Im(z^2+c),c=-47/42+7/53*I,n=3 9421161488339281 m001 Paris^2/Backhouse*exp(GAMMA(1/4))^2 9421161512311612 k007 concat of cont frac of 9421161550173480 a007 Real Root Of -613*x^4+483*x^3-421*x^2-890*x+422 9421161562662149 l006 ln(1162/2981) 9421161587127817 r005 Re(z^2+c),c=-33/38+8/39*I,n=45 9421161623324044 a001 610/73681302247*3^(2/17) 9421161633538103 a003 sin(Pi*33/95)/sin(Pi*34/87) 9421161651112301 k006 concat of cont frac of 9421161655951023 r005 Re(z^2+c),c=-9/10+41/190*I,n=33 9421161662058848 m001 exp(Robbin)^2/GlaisherKinkelin*LambertW(1)^2 9421161684619931 r008 a(0)=1,K{-n^6,24-56*n+55*n^2-5*n^3} 9421161696882240 a003 cos(Pi*5/48)*sin(Pi*51/109) 9421161703943263 m002 -Pi+Pi^2-Pi^6+Sinh[Pi]+Tanh[Pi] 9421161782559307 a007 Real Root Of -806*x^4+467*x^3+750*x^2-591*x-197 9421161792862602 m001 (3^(1/2)+GAMMA(2/3))/(FeigenbaumD+Lehmer) 9421161798344298 a001 17/219602*2^(17/60) 9421161802070906 b008 (33*ArcSec[7])/5 9421161807743406 a007 Real Root Of 338*x^4-438*x^3-260*x^2-376*x-756 9421161819912727 m001 (Psi(1,1/3)-gamma(2))/(ThueMorse+TwinPrimes) 9421161863759707 a001 4181/2207*322^(5/18) 9421161871097639 m001 (ln(2)+gamma(1))/(GAMMA(5/6)-KomornikLoreti) 9421161891518754 m008 (3/4*Pi^3-1/6)/(4/5*Pi^5+1/4) 9421161908207523 a007 Real Root Of 304*x^4-205*x^3-536*x^2-409*x+793 9421161942207333 m005 (1/2*5^(1/2)-4/11)/(4/11*Zeta(3)+4/11) 9421162003596130 r005 Re(z^2+c),c=1/82+23/57*I,n=48 9421162006192503 a003 cos(Pi*16/77)/sin(Pi*38/119) 9421162013823433 b008 Sqrt[2]-58*Sqrt[E] 9421162051265612 a007 Real Root Of -949*x^4-974*x^3+188*x^2+938*x+650 9421162067271688 a007 Real Root Of -348*x^4+853*x^3-298*x^2+270*x-429 9421162073792652 a007 Real Root Of -681*x^4-140*x^3-682*x^2-868*x+207 9421162097751475 a001 64079/4181*233^(34/45) 9421162114248333 r002 14th iterates of z^2 + 9421162114850047 r005 Re(z^2+c),c=-9/10+103/244*I,n=3 9421162129024038 r005 Re(z^2+c),c=1/82+23/57*I,n=49 9421162138216021 k005 Champernowne real with floor(Pi*(70*n+230)) 9421162138216021 k001 Champernowne real with 220*n+722 9421162144111233 k007 concat of cont frac of 9421162156658696 a001 2/75025*610^(43/47) 9421162159297686 a007 Real Root Of 849*x^4+461*x^3+970*x^2+392*x-775 9421162163503579 m001 (MertensB1-Mills)/(ln(2+3^(1/2))-exp(-1/2*Pi)) 9421162197593191 m004 -2-(15*Sqrt[5])/Pi+125*Pi+Cosh[Sqrt[5]*Pi] 9421162199157077 a007 Real Root Of -95*x^4+212*x^3+116*x^2+521*x+640 9421162206946283 r009 Im(z^3+c),c=-11/122+43/46*I,n=21 9421162268467962 a007 Real Root Of 690*x^4-488*x^3-501*x^2+35*x-474 9421162313875848 k002 Champernowne real with 41/2*n^2-57/2*n+17 9421162323890971 a001 987/521*521^(10/39) 9421162323915948 k003 Champernowne real with 1/6*n^3+39/2*n^2-80/3*n+16 9421162331053372 a001 1926*6765^(9/50) 9421162331618399 r005 Re(z^2+c),c=1/82+23/57*I,n=52 9421162343996148 k003 Champernowne real with 1/2*n^3+35/2*n^2-23*n+14 9421162359756560 m001 PlouffeB^Sarnak/(PlouffeB^Cahen) 9421162364076349 k003 Champernowne real with 5/6*n^3+31/2*n^2-58/3*n+12 9421162368383420 a003 cos(Pi*13/101)+cos(Pi*34/69) 9421162374116449 k003 Champernowne real with n^3+29/2*n^2-35/2*n+11 9421162384156549 k003 Champernowne real with 7/6*n^3+27/2*n^2-47/3*n+10 9421162388223433 a007 Real Root Of -409*x^4+986*x^3+812*x^2+570*x+963 9421162389683336 m001 (Ei(1)-sin(1))/(-CareFree+MasserGramainDelta) 9421162390742432 r005 Im(z^2+c),c=-39/34+13/103*I,n=13 9421162394196649 k003 Champernowne real with 4/3*n^3+25/2*n^2-83/6*n+9 9421162404236741 k003 Champernowne real with 3/2*n^3+23/2*n^2-12*n+8 9421162414276841 k003 Champernowne real with 5/3*n^3+21/2*n^2-61/6*n+7 9421162424316941 k003 Champernowne real with 11/6*n^3+19/2*n^2-25/3*n+6 9421162429385666 r002 4th iterates of z^2 + 9421162434357041 k003 Champernowne real with 2*n^3+17/2*n^2-13/2*n+5 9421162444397141 k003 Champernowne real with 13/6*n^3+15/2*n^2-14/3*n+4 9421162454437241 k003 Champernowne real with 7/3*n^3+13/2*n^2-17/6*n+3 9421162464477341 k003 Champernowne real with 5/2*n^3+11/2*n^2-n+2 9421162474517441 k003 Champernowne real with 8/3*n^3+9/2*n^2+5/6*n+1 9421162481855329 s002 sum(A280017[n]/(n*exp(pi*n)-1),n=1..infinity) 9421162484557541 k003 Champernowne real with 17/6*n^3+7/2*n^2+8/3*n 9421162494597641 k003 Champernowne real with 3*n^3+5/2*n^2+9/2*n-1 9421162496036778 a001 39603/2584*233^(34/45) 9421162496295234 r005 Re(z^2+c),c=-14/31+28/47*I,n=8 9421162504637741 k003 Champernowne real with 19/6*n^3+3/2*n^2+19/3*n-2 9421162506391575 r005 Re(z^2+c),c=1/82+23/57*I,n=55 9421162514677841 k003 Champernowne real with 10/3*n^3+1/2*n^2+49/6*n-3 9421162524717941 k003 Champernowne real with 7/2*n^3-1/2*n^2+10*n-4 9421162534758041 k003 Champernowne real with 11/3*n^3-3/2*n^2+71/6*n-5 9421162544798141 k003 Champernowne real with 23/6*n^3-5/2*n^2+41/3*n-6 9421162549291569 a007 Real Root Of 307*x^4-203*x^3-346*x^2-190*x+414 9421162553979469 r005 Re(z^2+c),c=1/82+23/57*I,n=56 9421162554838241 k003 Champernowne real with 4*n^3-7/2*n^2+31/2*n-7 9421162556491257 r005 Re(z^2+c),c=1/82+23/57*I,n=59 9421162564878341 k003 Champernowne real with 25/6*n^3-9/2*n^2+52/3*n-8 9421162568041931 m001 (3^(1/2)-ln(3))/(Zeta(1/2)+Porter) 9421162568561289 r005 Re(z^2+c),c=1/82+23/57*I,n=62 9421162570350813 r005 Re(z^2+c),c=1/82+23/57*I,n=58 9421162575415396 r005 Re(z^2+c),c=1/82+23/57*I,n=63 9421162579223659 r005 Re(z^2+c),c=1/82+23/57*I,n=64 9421162581430351 r005 Re(z^2+c),c=1/82+23/57*I,n=61 9421162584958541 k003 Champernowne real with 9/2*n^3-13/2*n^2+21*n-10 9421162585466416 r005 Re(z^2+c),c=1/82+23/57*I,n=60 9421162595157940 l006 ln(3249/8335) 9421162605373365 a007 Real Root Of -723*x^4-324*x^3-617*x^2-997*x-93 9421162610233631 a003 sin(Pi*11/28)*sin(Pi*37/77) 9421162615078841 k003 Champernowne real with 5*n^3-19/2*n^2+53/2*n-13 9421162618177284 r005 Re(z^2+c),c=1/82+23/57*I,n=57 9421162626948154 r005 Re(z^2+c),c=1/82+23/57*I,n=51 9421162642100823 r005 Re(z^2+c),c=1/82+23/57*I,n=53 9421162645199141 k003 Champernowne real with 11/2*n^3-25/2*n^2+32*n-16 9421162656826410 h001 (7/8*exp(2)+4/7)/(2/9*exp(1)+1/7) 9421162671767297 r005 Re(z^2+c),c=1/82+23/57*I,n=54 9421162675319441 k003 Champernowne real with 6*n^3-31/2*n^2+75/2*n-19 9421162704072654 m002 -Pi^4-Tanh[Pi]+(Pi^4*Tanh[Pi])/E^Pi 9421162705439741 k003 Champernowne real with 13/2*n^3-37/2*n^2+43*n-22 9421162710261507 r005 Im(z^2+c),c=-4/7+2/117*I,n=48 9421162715722915 r005 Re(z^2+c),c=1/82+23/57*I,n=46 9421162735551004 k003 Champernowne real with 7*n^3-43/2*n^2+97/2*n-25 9421162751927713 b008 (11*ArcCsc[9])/13 9421162765671034 k003 Champernowne real with 15/2*n^3-49/2*n^2+54*n-28 9421162780840082 m004 -12+125*Pi-Sin[Sqrt[5]*Pi]+Sinh[Sqrt[5]*Pi] 9421162795791064 k003 Champernowne real with 8*n^3-55/2*n^2+119/2*n-31 9421162806417396 a007 Real Root Of -557*x^4+395*x^3+801*x^2+336*x-919 9421162817978966 m001 (GAMMA(2/3)-CopelandErdos)/(Salem+Trott) 9421162825911094 k003 Champernowne real with 17/2*n^3-61/2*n^2+65*n-34 9421162829510550 p003 LerchPhi(1/256,4,129/226) 9421162842082462 a007 Real Root Of 511*x^4-318*x^3+274*x^2+973*x+5 9421162856031124 k003 Champernowne real with 9*n^3-67/2*n^2+141/2*n-37 9421162858038668 a008 Real Root of (17+15*x-7*x^2-4*x^3) 9421162870218804 a007 Real Root Of -16*x^4+798*x^3+596*x^2+171*x+312 9421162886151154 k003 Champernowne real with 19/2*n^3-73/2*n^2+76*n-40 9421162901019945 a007 Real Root Of 278*x^4-782*x^3-417*x^2+466*x+366 9421162902079462 r002 6th iterates of z^2 + 9421162910282555 m001 Mills/(FeigenbaumC^cos(1)) 9421162912519643 q001 3597/3818 9421162916271184 k003 Champernowne real with 10*n^3-79/2*n^2+163/2*n-43 9421162946391214 k003 Champernowne real with 21/2*n^3-85/2*n^2+87*n-46 9421162950813780 a007 Real Root Of -40*x^4-86*x^3-918*x^2-926*x-98 9421162963024396 a005 (1/sin(87/218*Pi))^1305 9421162967600206 m001 (GAMMA(17/24)-GAMMA(19/24))/(Bloch+Rabbit) 9421162972127674 a007 Real Root Of 876*x^4-654*x^3-469*x^2+264*x-572 9421162976511244 k003 Champernowne real with 11*n^3-91/2*n^2+185/2*n-49 9421163006631274 k003 Champernowne real with 23/2*n^3-97/2*n^2+98*n-52 9421163023353773 m001 (gamma(2)+BesselI(1,1))/(Cahen-ZetaQ(2)) 9421163028025376 r005 Re(z^2+c),c=1/82+23/57*I,n=50 9421163032798960 m001 (ErdosBorwein+GolombDickman)/(exp(Pi)+cos(1)) 9421163037626166 m001 ln(Salem)/Cahen*GAMMA(11/24)^2 9421163087774334 a007 Real Root Of -401*x^4+943*x^3+431*x^2-256*x-614 9421163091512509 g006 Psi(1,5/12)-Psi(1,7/8)-Psi(1,6/7)-Psi(1,3/5) 9421163100262752 h001 (2/5*exp(1)+10/11)/(6/11*exp(1)+7/11) 9421163137700626 r005 Im(z^2+c),c=-21/23+5/64*I,n=28 9421163138416051 k001 Champernowne real with 221*n+721 9421163141413611 k007 concat of cont frac of 9421163156394441 p004 log(26293/23929) 9421163168552382 a001 377/2207*199^(10/31) 9421163170030970 l006 ln(2087/5354) 9421163173407508 a007 Real Root Of 92*x^4-459*x^3-154*x^2+335*x-4 9421163187266383 m001 (Zeta(5)+ln(3))/(GAMMA(5/6)-FeigenbaumKappa) 9421163196175238 s002 sum(A048155[n]/((2^n-1)/n),n=1..infinity) 9421163200973113 g007 Psi(2,11/12)+Psi(2,2/7)+Psi(2,2/3)-Psi(2,9/10) 9421163209396139 m001 1/GAMMA(11/12)^2*FeigenbaumC^2/exp(sqrt(3))^2 9421163227568703 m001 (-Zeta(1,2)+Totient)/(exp(1)-ln(2)/ln(10)) 9421163237361335 a001 4/1597*2178309^(22/39) 9421163258000873 a007 Real Root Of 747*x^4+840*x^3+627*x^2-373*x-794 9421163262462895 a007 Real Root Of 662*x^4-839*x^3-734*x^2+509*x+352 9421163293303725 m001 (Ei(1,1)+gamma(2))/(BesselI(0,2)-ZetaQ(2)) 9421163350466361 a007 Real Root Of 841*x^4+984*x^3+959*x^2-223*x-901 9421163351691091 r002 30th iterates of z^2 + 9421163390698434 a003 cos(Pi*11/101)/sin(Pi*59/119) 9421163423695602 a001 5473/2889*322^(5/18) 9421163426001405 a007 Real Root Of -598*x^4+984*x^3+57*x^2-927*x+370 9421163438954930 r002 37th iterates of z^2 + 9421163444884326 m002 -E^Pi+Pi^6+3/ProductLog[Pi]+ProductLog[Pi] 9421163457679604 r005 Im(z^2+c),c=-16/23+11/57*I,n=62 9421163460249222 m001 ReciprocalFibonacci-Khinchin-Psi(1,1/3) 9421163512753183 m001 1/Robbin^2/Lehmer^2/exp(cos(Pi/12))^2 9421163531448651 m001 exp(1/2)^Conway/(Psi(1,1/3)^Conway) 9421163556509861 a007 Real Root Of 561*x^4-668*x^3+715*x^2+740*x-938 9421163564922174 a005 (1/cos(10/213*Pi))^1471 9421163590214181 a007 Real Root Of -344*x^4+682*x^3-564*x^2-451*x+917 9421163598323218 a005 (1/cos(13/102*Pi))^139 9421163612149719 a008 Real Root of x^3-x^2-159*x-573 9421163628372236 r002 36th iterates of z^2 + 9421163630306426 a007 Real Root Of 588*x^4+15*x^3+930*x^2+585*x-725 9421163648462520 a007 Real Root Of 246*x^4-457*x^3-367*x^2-660*x-872 9421163651287228 a001 28657/15127*322^(5/18) 9421163659969451 m001 (Niven-PlouffeB)/(ZetaP(4)+ZetaQ(2)) 9421163660060323 a007 Real Root Of -181*x^4+564*x^3+334*x^2+302*x-910 9421163681923157 a007 Real Root Of 382*x^4-263*x^3+737*x^2+639*x-573 9421163684492400 a001 75025/39603*322^(5/18) 9421163689336969 a001 98209/51841*322^(5/18) 9421163690043782 a001 514229/271443*322^(5/18) 9421163690146905 a001 1346269/710647*322^(5/18) 9421163690161950 a001 1762289/930249*322^(5/18) 9421163690164145 a001 9227465/4870847*322^(5/18) 9421163690164465 a001 24157817/12752043*322^(5/18) 9421163690164512 a001 31622993/16692641*322^(5/18) 9421163690164519 a001 165580141/87403803*322^(5/18) 9421163690164520 a001 433494437/228826127*322^(5/18) 9421163690164520 a001 567451585/299537289*322^(5/18) 9421163690164520 a001 2971215073/1568397607*322^(5/18) 9421163690164520 a001 7778742049/4106118243*322^(5/18) 9421163690164520 a001 10182505537/5374978561*322^(5/18) 9421163690164520 a001 53316291173/28143753123*322^(5/18) 9421163690164520 a001 139583862445/73681302247*322^(5/18) 9421163690164520 a001 182717648081/96450076809*322^(5/18) 9421163690164520 a001 956722026041/505019158607*322^(5/18) 9421163690164520 a001 10610209857723/5600748293801*322^(5/18) 9421163690164520 a001 591286729879/312119004989*322^(5/18) 9421163690164520 a001 225851433717/119218851371*322^(5/18) 9421163690164520 a001 21566892818/11384387281*322^(5/18) 9421163690164520 a001 32951280099/17393796001*322^(5/18) 9421163690164520 a001 12586269025/6643838879*322^(5/18) 9421163690164520 a001 1201881744/634430159*322^(5/18) 9421163690164520 a001 1836311903/969323029*322^(5/18) 9421163690164520 a001 701408733/370248451*322^(5/18) 9421163690164521 a001 66978574/35355581*322^(5/18) 9421163690164523 a001 102334155/54018521*322^(5/18) 9421163690164541 a001 39088169/20633239*322^(5/18) 9421163690164663 a001 3732588/1970299*322^(5/18) 9421163690165502 a001 5702887/3010349*322^(5/18) 9421163690171249 a001 2178309/1149851*322^(5/18) 9421163690210638 a001 208010/109801*322^(5/18) 9421163690480617 a001 317811/167761*322^(5/18) 9421163692331077 a001 121393/64079*322^(5/18) 9421163702140488 q001 3125/3317 9421163702140488 q001 5/53072 9421163705014324 a001 11592/6119*322^(5/18) 9421163729432568 r005 Im(z^2+c),c=-121/122+5/53*I,n=23 9421163731845519 r005 Im(z^2+c),c=17/46+19/35*I,n=3 9421163749195264 r005 Re(z^2+c),c=-19/16+25/88*I,n=5 9421163761439255 r005 Re(z^2+c),c=4/23+25/46*I,n=27 9421163785929658 r005 Re(z^2+c),c=-17/18+6/203*I,n=5 9421163790137996 l006 ln(3012/7727) 9421163791946594 a001 17711/9349*322^(5/18) 9421163798587400 m009 (2*Psi(1,3/4)-1/6)/(24*Catalan+3*Pi^2+3/5) 9421163808563557 r002 27th iterates of z^2 + 9421163818844191 g006 Psi(1,2/11)+Psi(1,1/3)-Psi(1,1/11)-Psi(1,2/7) 9421163888508508 a007 Real Root Of -43*x^4-351*x^3+514*x^2+132*x+869 9421163906823515 r005 Re(z^2+c),c=-12/11+8/61*I,n=56 9421163908961283 r005 Re(z^2+c),c=1/82+23/57*I,n=47 9421163952860859 r005 Im(z^2+c),c=-61/78+11/60*I,n=14 9421163976375341 p004 log(17827/6949) 9421163988881588 r005 Re(z^2+c),c=-25/94+21/32*I,n=15 9421164012835382 r005 Re(z^2+c),c=-43/46+1/11*I,n=7 9421164021181963 h001 (7/11*exp(1)+5/7)/(3/4*exp(1)+5/9) 9421164053464852 a007 Real Root Of -443*x^4+195*x^3-853*x^2-740*x+572 9421164069401111 a001 8/321*5778^(13/31) 9421164072010293 s002 sum(A063465[n]/(n*exp(pi*n)-1),n=1..infinity) 9421164075064401 l006 ln(4140/4549) 9421164104244482 a007 Real Root Of -259*x^4+307*x^3+37*x^2-36*x+394 9421164118856132 l006 ln(3937/10100) 9421164138616081 k001 Champernowne real with 222*n+720 9421164139424489 a001 36/109801*9349^(27/31) 9421164151171114 k006 concat of cont frac of 9421164176570385 h001 (10/11*exp(2)+1/5)/(10/11*exp(2)+5/8) 9421164180872743 s002 sum(A287346[n]/(n*exp(pi*n)-1),n=1..infinity) 9421164183200763 a001 2161/141*233^(34/45) 9421164206273059 m005 (1/3*gamma-1/10)/(1/10*Pi+2/3) 9421164222234025 a001 72/51841*24476^(20/31) 9421164231413134 a001 144/1149851*64079^(25/31) 9421164233271279 a007 Real Root Of 400*x^4+563*x^3+47*x^2-381*x-245 9421164237877421 s002 sum(A053244[n]/(exp(2*pi*n)+1),n=1..infinity) 9421164240861427 a001 15127/610*514229^(13/47) 9421164244091327 a007 Real Root Of -73*x^4+914*x^3-433*x^2-948*x+313 9421164246066267 m002 -1-Pi^2+Pi^6-Pi^4*Sech[Pi] 9421164260270474 a001 72/51841*15127^(21/31) 9421164273457149 m001 1/GAMMA(1/4)/exp(Riemann1stZero)/GAMMA(5/12) 9421164279214121 m001 GAMMA(5/24)^2/ln(Bloch)/sqrt(1+sqrt(3))^2 9421164282261735 a007 Real Root Of -584*x^4-71*x^3-350*x^2+179*x+880 9421164284064437 a007 Real Root Of 535*x^4-303*x^3+386*x^2+44*x-976 9421164288721392 a001 5473/682*123^(1/30) 9421164351982100 m005 (1/2*exp(1)+1/6)/(2/3*Zeta(3)+9/11) 9421164354910257 m001 AlladiGrinstead*KomornikLoreti^MertensB1 9421164358112846 m001 (-GAMMA(11/12)+Salem)/(sin(1)+BesselJ(1,1)) 9421164361899070 m001 exp(Tribonacci)^2/FibonacciFactorial*cos(1)^2 9421164387789280 a001 6765/3571*322^(5/18) 9421164407037082 a007 Real Root Of 541*x^4-792*x^3-610*x^2-265*x+31 9421164411393043 r005 Re(z^2+c),c=1/82+23/57*I,n=44 9421164412432034 m001 (Kac+Tribonacci)/(BesselI(1,2)+GAMMA(23/24)) 9421164430666408 m001 (Ei(1)+Landau)/sin(1/12*Pi) 9421164433930789 r005 Im(z^2+c),c=-19/94+37/56*I,n=21 9421164458348877 r005 Im(z^2+c),c=-71/114+8/43*I,n=30 9421164479125547 a007 Real Root Of -630*x^4-48*x^3+132*x^2+294*x+616 9421164497117276 r001 13i'th iterates of 2*x^2-1 of 9421164525939148 a007 Real Root Of -530*x^4+427*x^3+966*x^2+798*x+669 9421164540329018 a007 Real Root Of 184*x^4-614*x^3+476*x^2+745*x-379 9421164540525880 m001 FeigenbaumB^(BesselJ(1,1)/GAMMA(2/3)) 9421164556937348 a003 cos(Pi*11/113)*sin(Pi*41/91) 9421164589913306 a007 Real Root Of -977*x^4+548*x^3+633*x^2-154*x+521 9421164590341068 a007 Real Root Of -999*x^4-265*x^3-353*x^2-160*x+728 9421164614211113 k007 concat of cont frac of 9421164628241159 m002 -3+Pi-Pi^3+Pi^6+Cosh[Pi] 9421164678748932 m001 ln(BesselK(1,1))^2*Sierpinski*sqrt(2) 9421164720888897 m002 -Pi^3/2-Pi^6+3*Cosh[Pi] 9421164729356976 r005 Re(z^2+c),c=17/66+25/54*I,n=42 9421164742052640 a007 Real Root Of 553*x^4+727*x^3+809*x^2-100*x-640 9421164743301965 m001 (ln(gamma)-3^(1/3))/(Zeta(1,-1)+BesselI(0,2)) 9421164746439777 h002 exp(11^(2/5)+18^(7/5)) 9421164746439777 h007 exp(11^(2/5)+18^(7/5)) 9421164751332976 a007 Real Root Of -346*x^4+807*x^3-994*x^2-887*x+994 9421164752747262 a007 Real Root Of 818*x^4+446*x^3-8*x^2-352*x-596 9421164754933852 r009 Im(z^3+c),c=-47/126+9/13*I,n=44 9421164760566742 a007 Real Root Of 616*x^4+422*x^3-10*x^2-873*x-946 9421164764379987 m005 (2/3*2^(1/2)+4)/(5*Catalan+2/3) 9421164772727272 q001 2653/2816 9421164801676418 a001 29/1134903170*21^(3/7) 9421164824599397 r005 Re(z^2+c),c=-109/122+13/59*I,n=5 9421164858806386 a005 (1/cos(13/222*Pi))^673 9421164904164208 r005 Im(z^2+c),c=-35/82+1/64*I,n=16 9421164925032154 r005 Re(z^2+c),c=-1/10+11/16*I,n=7 9421164950684761 a001 377/521*843^(8/21) 9421164975307505 a001 18*10946^(20/47) 9421164983943139 r002 55th iterates of z^2 + 9421165013051031 a007 Real Root Of 797*x^4-220*x^3+840*x^2+943*x-669 9421165026056702 r005 Re(z^2+c),c=-97/106+9/55*I,n=15 9421165031123113 k009 concat of cont frac of 9421165066928548 m005 (1/2*gamma+8/9)/(1/8*Pi+6/7) 9421165081912810 r005 Im(z^2+c),c=-77/118+5/22*I,n=34 9421165099477587 a007 Real Root Of -43*x^4-357*x^3+370*x^2-889*x-986 9421165138816111 k001 Champernowne real with 223*n+719 9421165138816111 k005 Champernowne real with floor(Pi*(71*n+229)) 9421165156148358 a003 cos(Pi*8/101)-sin(Pi*39/115) 9421165162697199 b008 3*(-1/10+Sech[E]) 9421165162697199 b008 3-30*Sech[E] 9421165169379761 a007 Real Root Of 778*x^4-533*x^3+86*x^2+502*x-662 9421165176402459 a003 cos(Pi*11/107)*sin(Pi*51/110) 9421165189233383 l006 ln(925/2373) 9421165222587402 m001 (Ei(1,1)-PolyaRandomWalk3D)/(Totient-ZetaQ(2)) 9421165224329851 r005 Re(z^2+c),c=-6/5+7/32*I,n=11 9421165248305155 m001 (Khinchin-Niven)/(ZetaQ(3)+ZetaQ(4)) 9421165267355026 r005 Re(z^2+c),c=-13/14+10/87*I,n=25 9421165305547903 a007 Real Root Of -150*x^4+739*x^3+50*x^2-108*x+590 9421165306135677 r009 Im(z^3+c),c=-15/44+31/36*I,n=3 9421165336301216 a007 Real Root Of 954*x^4-154*x^3-424*x^2+69*x-439 9421165343085441 a007 Real Root Of 994*x^4+52*x^3+539*x^2+691*x-567 9421165361002746 r002 7th iterates of z^2 + 9421165361350601 r005 Re(z^2+c),c=9/40+15/49*I,n=12 9421165372031285 m005 (1/2*exp(1)+3/5)/(9/11*5^(1/2)+1/4) 9421165397508428 a007 Real Root Of -64*x^4-592*x^3+135*x^2+202*x-919 9421165434484577 a003 sin(Pi*5/42)/sin(Pi*9/71) 9421165494981786 r005 Im(z^2+c),c=-13/50+47/53*I,n=4 9421165500066446 a007 Real Root Of -521*x^4+645*x^3+157*x^2-165*x+655 9421165501224981 m005 (1/3*Catalan+2/3)/(17/88+3/8*5^(1/2)) 9421165504228385 r009 Im(z^3+c),c=-19/32+19/32*I,n=8 9421165538905273 a007 Real Root Of 709*x^4+231*x^3-722*x^2-787*x-466 9421165562250703 a007 Real Root Of -277*x^4+343*x^3-135*x^2-607*x+53 9421165569260713 a007 Real Root Of 194*x^4-195*x^3-124*x^2-239*x-431 9421165574231703 r005 Im(z^2+c),c=-117/94+1/27*I,n=31 9421165579847896 a001 123/29*(1/2*5^(1/2)+1/2)^30*29^(1/19) 9421165599831811 r005 Im(z^2+c),c=-55/98+32/57*I,n=7 9421165652619608 a001 6/726103*2^(7/37) 9421165653581354 r004 Im(z^2+c),c=-19/30+1/18*I,z(0)=-1,n=9 9421165669991121 a001 123/10946*10946^(10/21) 9421165678227614 a001 123/1346269*267914296^(10/21) 9421165678228653 a001 123/165580141*6557470319842^(10/21) 9421165713113496 m001 (Khinchin+BesselJZeros(0,1))/cos(1) 9421165750217257 m001 1/Salem^2/GaussAGM(1,1/sqrt(2))^2*exp(sqrt(5)) 9421165775340508 r005 Re(z^2+c),c=-115/122+3/50*I,n=3 9421165815080471 a001 41/7*121393^(14/59) 9421165822483487 a007 Real Root Of -358*x^4-187*x^3+231*x^2+522*x+47 9421165836308767 a007 Real Root Of -527*x^4+422*x^3-315*x^2-870*x+228 9421165848348139 r005 Re(z^2+c),c=-37/94+26/31*I,n=2 9421165848412153 m001 MasserGramainDelta^HardyLittlewoodC3*Cahen 9421165858487925 a007 Real Root Of 324*x^4-53*x^3+198*x^2-109*x-578 9421165859453307 a007 Real Root Of -146*x^4+491*x^3-561*x^2-941*x+137 9421165863339516 a007 Real Root Of 95*x^4+87*x^3+187*x^2-364*x-511 9421165918880142 p004 log(29633/11551) 9421165949442599 a007 Real Root Of -488*x^4+714*x^3-953*x^2-892*x+987 9421166020873519 m001 GAMMA(1/6)^2*ln(TwinPrimes)^2/LambertW(1) 9421166056418987 a001 4181/521*199^(1/33) 9421166060905525 r005 Re(z^2+c),c=-21/44+17/30*I,n=15 9421166061133307 m001 (cos(1/5*Pi)-Bloch)/(FeigenbaumMu+ZetaQ(3)) 9421166095363524 a007 Real Root Of 928*x^4-764*x^3-142*x^2+278*x-982 9421166111211821 k008 concat of cont frac of 9421166129285085 m008 (3/5*Pi^6+1/4)/(2*Pi^5+1/2) 9421166139016141 k001 Champernowne real with 224*n+718 9421166145360516 b008 -5+Pi+Log[5/2] 9421166155189483 a007 Real Root Of -954*x^4-348*x^3-117*x^2+249*x+799 9421166164187466 a001 24476/3*(1/2*5^(1/2)+1/2)^32*3^(11/14) 9421166176065006 r005 Im(z^2+c),c=-11/14+7/177*I,n=61 9421166177619243 a001 64079/3*(1/2*5^(1/2)+1/2)^30*3^(11/14) 9421166179913665 a001 119218851371/3*3^(11/14) 9421166185920539 a001 13201*(1/2*5^(1/2)+1/2)^31*3^(11/14) 9421166190402304 m001 Kolakoski^OrthogonalArrays/(Kolakoski^ln(Pi)) 9421166209051454 m001 1/FeigenbaumKappa/DuboisRaymond/ln(Zeta(9))^2 9421166230457501 a007 Real Root Of -642*x^4+531*x^3+822*x^2+660*x+842 9421166242984902 m005 (4/5*gamma-1/3)/(5/6*Catalan+3/5) 9421166297847353 a001 10946/3*29^(28/29) 9421166306695464 q001 2181/2315 9421166401189715 r005 Im(z^2+c),c=-17/30+13/120*I,n=9 9421166406118960 l006 ln(3463/8884) 9421166429277088 a007 Real Root Of -773*x^4-744*x^3-541*x^2+294*x+744 9421166453842856 r002 13th iterates of z^2 + 9421166457955799 a007 Real Root Of 89*x^4+927*x^3+797*x^2-400*x-491 9421166466844742 l006 ln(9191/10099) 9421166467036650 m001 (FellerTornier+MertensB3)/(GAMMA(17/24)+Bloch) 9421166476418100 a007 Real Root Of 61*x^4+523*x^3-512*x^2-206*x+279 9421166535089883 a007 Real Root Of -643*x^4+389*x^3+850*x^2+798*x-83 9421166545798562 r005 Im(z^2+c),c=-139/114+6/55*I,n=26 9421166550227934 a007 Real Root Of -842*x^4-85*x^3-527*x^2-950*x+165 9421166592486804 m004 Sqrt[5]*Pi+(5*Sqrt[5]*Pi*Cot[Sqrt[5]*Pi])/16 9421166608867025 m008 (4/5*Pi^6-2)/(5/6*Pi^4+1/4) 9421166641211517 a007 Real Root Of 970*x^4+873*x^3-183*x^2-721*x-551 9421166652041875 a001 610/521*521^(1/3) 9421166690139600 a007 Real Root Of -883*x^4+357*x^3+774*x^2-429*x-97 9421166762291292 a007 Real Root Of 576*x^4-485*x^3-338*x^2-334*x-874 9421166763320090 m001 Tribonacci^exp(1/exp(1))*Tribonacci^(5^(1/2)) 9421166769606872 m005 (1/2*Catalan+9/11)/(1/8*Zeta(3)-2/7) 9421166795955683 r002 9th iterates of z^2 + 9421166802564141 r005 Re(z^2+c),c=1/82+23/57*I,n=43 9421166805512694 a007 Real Root Of 561*x^4-7*x^3+308*x^2+325*x-415 9421166816820216 a007 Real Root Of 399*x^4+516*x^3+43*x^2-795*x-670 9421166822109446 m001 (TreeGrowth2nd+ZetaP(2))/(Kac-Psi(1,1/3)) 9421166844455208 a001 233/843*843^(11/21) 9421166849625290 l006 ln(2538/6511) 9421166850585260 r009 Im(z^3+c),c=-11/122+43/46*I,n=15 9421166891602029 a007 Real Root Of -187*x^4+904*x^3+95*x^2+291*x-29 9421166900871050 m005 (-19/36+1/4*5^(1/2))/(2/7*gamma+1/6) 9421166904571979 a007 Real Root Of -662*x^4+348*x^3+939*x^2-154*x-166 9421166930473355 b008 Cos[1/2+ExpIntegralEi[1/3]] 9421166932097414 b008 Sech[ArcCot[11/4]] 9421166935407627 m001 (Backhouse+GaussAGM)/(exp(Pi)+GAMMA(19/24)) 9421166937663309 a007 Real Root Of -98*x^4-182*x^3-128*x^2+961*x+944 9421166948001356 r005 Im(z^2+c),c=1/122+5/53*I,n=8 9421166957281374 a007 Real Root Of -876*x^4+539*x^3-459*x^2-687*x+901 9421166983718841 r005 Re(z^2+c),c=-5/8+129/241*I,n=4 9421167016078349 p004 log(23671/9227) 9421167038208538 r009 Re(z^3+c),c=-15/94+37/63*I,n=21 9421167054035779 r005 Re(z^2+c),c=-31/34+19/72*I,n=23 9421167086478527 s002 sum(A066421[n]/((pi^n+1)/n),n=1..infinity) 9421167139216171 k001 Champernowne real with 225*n+717 9421167154636641 a007 Real Root Of -257*x^4+221*x^3-493*x^2-400*x+448 9421167165980826 a007 Real Root Of 758*x^4-221*x^3-328*x^2+383*x-130 9421167176116131 m001 1/ln(GAMMA(1/3))^2*FeigenbaumAlpha^2*Zeta(1/2) 9421167182943609 a007 Real Root Of 803*x^4-994*x^3-579*x^2+693*x-297 9421167205560248 a007 Real Root Of -43*x^4-424*x^3-140*x^2+436*x+738 9421167254549876 a007 Real Root Of 437*x^4-566*x^3-27*x^2+888*x+43 9421167297959589 s002 sum(A136493[n]/((10^n-1)/n),n=1..infinity) 9421167326370863 m001 Kolakoski^(ln(2)*Artin) 9421167355673399 a007 Real Root Of 148*x^4-805*x^3+613*x^2-540*x-57 9421167362823314 r005 Im(z^2+c),c=-121/122+5/53*I,n=25 9421167377151386 a007 Real Root Of -392*x^4+475*x^3-474*x^2-592*x+569 9421167383858206 m001 FibonacciFactorial-arctan(1/2)-Niven 9421167393688253 a007 Real Root Of 616*x^4+231*x^3+502*x^2+610*x-163 9421167413522423 k007 concat of cont frac of 9421167417435379 b008 8+ArcSec[3*Sqrt[5]] 9421167430358047 r009 Im(z^3+c),c=-25/44+19/32*I,n=38 9421167462447616 r005 Re(z^2+c),c=1/82+23/57*I,n=34 9421167502924097 r009 Re(z^3+c),c=-11/52+20/29*I,n=22 9421167577567845 r005 Re(z^2+c),c=-9/10+36/175*I,n=47 9421167579566481 m001 (MertensB2+Thue)/(ln(2)+ln(2+3^(1/2))) 9421167582169747 a007 Real Root Of -593*x^4+886*x^3+364*x^2+960*x+88 9421167584794605 a007 Real Root Of 323*x^4+5*x^3+63*x^2+273*x-49 9421167616097865 r005 Im(z^2+c),c=-35/31+16/53*I,n=13 9421167639188151 a007 Real Root Of 186*x^4-259*x^3+299*x^2+216*x-425 9421167655502043 m001 1/Zeta(1/2)^2/exp(GAMMA(11/12))/sqrt(3) 9421167666710846 a001 1597/521*521^(7/39) 9421167672551690 r009 Im(z^3+c),c=-45/74+27/53*I,n=14 9421167689581891 s002 sum(A288668[n]/(n*exp(pi*n)-1),n=1..infinity) 9421167696964175 a007 Real Root Of -562*x^4+766*x^3-449*x^2-608*x+909 9421167707042704 a007 Real Root Of 915*x^4+797*x^3-91*x^2-598*x-537 9421167711467549 p001 sum(1/(501*n+128)/n/(2^n),n=1..infinity) 9421167713494456 a007 Real Root Of -100*x^4-900*x^3+470*x^2+665*x-233 9421167729190264 m001 (5^(1/2)+cos(1))/(Khinchin+MertensB1) 9421167731714269 a007 Real Root Of -869*x^4-663*x^3+97*x^2+330*x+355 9421167784989936 a007 Real Root Of 659*x^4-145*x^3+621*x^2+767*x-469 9421167801541851 a003 cos(Pi*28/113)/sin(Pi*3/11) 9421167801802794 l006 ln(1613/4138) 9421167880599761 m001 1/GAMMA(11/24)^2*ln(Tribonacci)*gamma 9421167985092481 l006 ln(8029/8105) 9421167996677669 m001 FeigenbaumMu/exp(-1/2*Pi)/MasserGramainDelta 9421168001052359 r005 Re(z^2+c),c=-57/52+5/49*I,n=16 9421168007940937 m001 Zeta(3)^2*Conway^2/ln(sinh(1))^2 9421168009483259 a007 Real Root Of -685*x^4+574*x^3+154*x^2-x+882 9421168047887996 m002 -2+Pi^6-5*Log[Pi]-Sinh[Pi] 9421168051708217 r002 2th iterates of z^2 + 9421168072391458 a001 233/2207*1364^(28/45) 9421168079237421 a007 Real Root Of 331*x^4-949*x^3+214*x^2+410*x-858 9421168121152670 a003 sin(Pi*1/102)-sin(Pi*43/101) 9421168126022602 r005 Re(z^2+c),c=-79/114+22/49*I,n=9 9421168139416201 k001 Champernowne real with 226*n+716 9421168139416211 k005 Champernowne real with floor(Pi*(72*n+228)) 9421168142614095 r005 Im(z^2+c),c=-17/18+1/120*I,n=7 9421168165538361 b008 86+ExpIntegralEi[E] 9421168201187128 a007 Real Root Of 526*x^4-546*x^3-423*x^2+164*x-341 9421168207387758 m005 (1/2*exp(1)+8/11)/(1/4*Pi-3) 9421168208635224 a007 Real Root Of 834*x^4+887*x^3+689*x^2+538*x-20 9421168222795218 a007 Real Root Of -197*x^4+165*x^3+167*x^2+621*x+730 9421168247477526 h001 (-6*exp(1/2)+9)/(-4*exp(-1)-8) 9421168269769637 h001 (-8*exp(-2)-3)/(-9*exp(3/2)-3) 9421168270672404 r008 a(0)=0,K{-n^6,-4-2*n^3-2*n} 9421168270672404 r008 a(0)=0,K{-n^6,4+2*n^3+2*n} 9421168326140611 k006 concat of cont frac of 9421168334382599 a001 233/24476*1364^(43/45) 9421168363138197 a003 cos(Pi*8/43)+cos(Pi*27/58) 9421168364235941 a007 Real Root Of 963*x^4-690*x^3-251*x^2+348*x-785 9421168376808600 a007 Real Root Of -600*x^4+628*x^3+439*x^2-809*x-154 9421168379322204 m001 FeigenbaumAlpha-Zeta(5)*GAMMA(1/12) 9421168379854984 a007 Real Root Of -859*x^4+13*x^3-95*x^2-36*x+738 9421168380760192 m006 (1/6*exp(Pi)-4)/(3/5*ln(Pi)+5/6) 9421168397567743 l003 log(12347) 9421168407450938 g007 Psi(2,11/12)+Psi(2,2/7)+Psi(2,3/5)-Psi(2,8/11) 9421168409372824 a001 47/199*(1/2*5^(1/2)+1/2)^18*199^(4/5) 9421168416660289 m001 exp(1/2)^cos(Pi/5)/BesselI(1,2) 9421168419234147 l006 ln(3914/10041) 9421168427242761 l006 ln(5051/5550) 9421168471757950 a001 646/341*322^(5/18) 9421168490592353 a007 Real Root Of -932*x^4-269*x^3-245*x^2-488*x+267 9421168530686044 a001 39603/1597*514229^(13/47) 9421168532619534 a007 Real Root Of -538*x^4-102*x^3+719*x^2+41*x-261 9421168533027511 m001 (gamma+polylog(4,1/2))/(-Landau+Niven) 9421168551235304 r005 Re(z^2+c),c=-67/74+5/64*I,n=22 9421168615070656 a001 233/15127*1364^(8/9) 9421168630200718 m005 (1/2*2^(1/2)+1/4)/(4/7*Catalan-5/8) 9421168635083855 a001 1/34*610^(20/37) 9421168664577110 r002 19th iterates of z^2 + 9421168679075865 h001 (5/8*exp(1)+7/9)/(5/6*exp(1)+4/11) 9421168686736386 a007 Real Root Of -117*x^4+168*x^3+672*x^2+186*x-820 9421168687982359 q001 1709/1814 9421168734537297 a001 1/199*(1/2*5^(1/2)+1/2)^14*11^(1/3) 9421168758289970 r005 Re(z^2+c),c=-3/4+86/99*I,n=2 9421168772216976 a001 322/317811*121393^(4/21) 9421168772223073 a001 46/311187*2971215073^(4/21) 9421168785950553 m003 9+Sqrt[5]/8-3*Cos[1/2+Sqrt[5]/2] 9421168787200191 a007 Real Root Of -864*x^4+586*x^3+351*x^2-274*x+601 9421168798107060 m001 BesselI(1,1)*(FeigenbaumB+GaussAGM) 9421168802576215 m002 -3-E^Pi+Pi^6+6*Log[Pi] 9421168819554772 m009 (5/12*Pi^2-1/5)/(1/3*Psi(1,3/4)-5) 9421168832480022 a007 Real Root Of 866*x^4-572*x^3-619*x^2+395*x-239 9421168852053234 l006 ln(2301/5903) 9421168860904620 a007 Real Root Of -933*x^4-365*x^3-970*x^2-937*x+408 9421168888650188 s002 sum(A145419[n]/(n^3*pi^n-1),n=1..infinity) 9421168891217863 r005 Re(z^2+c),c=-105/118+4/19*I,n=17 9421168901144255 a007 Real Root Of 952*x^4+145*x^3+141*x^2+71*x-687 9421168941854441 a007 Real Root Of 795*x^4-856*x^3+554*x^2+936*x-952 9421168988242741 a007 Real Root Of -175*x^4-123*x^3-507*x^2+294*x+762 9421169006884498 r009 Im(z^3+c),c=-7/20+41/58*I,n=29 9421169008817381 a007 Real Root Of 466*x^4-704*x^3+93*x^2+63*x-979 9421169016329695 a007 Real Root Of 430*x^4-26*x^3+267*x^2-112*x-703 9421169023540625 a003 sin(Pi*17/43)*sin(Pi*54/115) 9421169045903178 a001 2584/2207*322^(13/36) 9421169046128070 a007 Real Root Of -741*x^4+216*x^3-585*x^2-974*x+366 9421169047307251 a007 Real Root Of 815*x^4+971*x^3+231*x^2-106*x-135 9421169049219136 a001 233/5778*1364^(34/45) 9421169083924460 m001 Pi/exp(Pi)/arctan(1/2)*arctan(1/3) 9421169090443443 r005 Im(z^2+c),c=-73/114+5/57*I,n=13 9421169101617405 a001 233/9349*1364^(37/45) 9421169121530493 m005 (1/3*3^(1/2)-1/12)/(9/10*Catalan-3/10) 9421169123495583 m002 -E^Pi+Pi^6*Coth[Pi]+Pi*Sech[Pi] 9421169139616231 k001 Champernowne real with 227*n+715 9421169168266652 a007 Real Root Of -59*x^4-489*x^3+597*x^2-344*x-330 9421169181740447 b008 57*Csch[5/2] 9421169188623406 a007 Real Root Of 450*x^4-320*x^3-553*x^2-281*x-396 9421169212817519 a007 Real Root Of -838*x^4+287*x^3+975*x^2+48*x+80 9421169227120822 a007 Real Root Of -854*x^4+887*x^3+747*x^2-320*x+450 9421169258491983 a008 Real Root of x^4-x^2-19*x+18 9421169265912437 m001 LandauRamanujan/(LaplaceLimit+ZetaR(2)) 9421169307402062 m001 (3^(1/3))^2*Artin^2*exp(sinh(1)) 9421169309104848 a007 Real Root Of 843*x^4-45*x^3+809*x^2+919*x-554 9421169315548586 a001 2584/521*521^(4/39) 9421169318891284 m005 (1/2*Zeta(3)+3/5)/(4*Pi+2/11) 9421169329313382 m001 MinimumGamma^2/Cahen^2*exp(BesselK(1,1)) 9421169334163011 m001 PisotVijayaraghavan/exp(Cahen)/exp(1)^2 9421169342965265 m001 exp(Niven)^2/MadelungNaCl^2/GAMMA(23/24)^2 9421169382626249 r002 62th iterates of z^2 + 9421169385739847 r005 Im(z^2+c),c=-12/17+11/53*I,n=19 9421169412080541 a007 Real Root Of 63*x^4+675*x^3+790*x^2+281*x+651 9421169418815972 l006 ln(2989/7668) 9421169468056449 a007 Real Root Of -860*x^4+209*x^3+218*x^2-712*x-12 9421169485907009 a007 Real Root Of 662*x^4-46*x^3-341*x^2-403*x-637 9421169491805213 a007 Real Root Of -465*x^4+337*x^3+18*x^2+210*x+830 9421169522003411 a007 Real Root Of -877*x^4+516*x^3+656*x^2-205*x+347 9421169530743630 r009 Re(z^3+c),c=-59/102+26/43*I,n=9 9421169550182722 a007 Real Root Of 121*x^4-653*x^3-173*x^2+55*x-436 9421169571537620 a007 Real Root Of -965*x^4-761*x^3+120*x^2+922*x+886 9421169574358942 m001 ArtinRank2-QuadraticClass^Si(Pi) 9421169579432886 m001 1/MadelungNaCl/CareFree*exp(GAMMA(3/4))^2 9421169582303482 r005 Re(z^2+c),c=-1/11+8/61*I,n=10 9421169599908432 m001 1/GAMMA(1/24)*(2^(1/3))/ln(GAMMA(5/12))^2 9421169606975138 h001 (6/7*exp(2)+2/9)/(6/7*exp(2)+5/8) 9421169619728737 a007 Real Root Of 266*x^4-786*x^3+598*x^2+629*x-805 9421169625315286 a007 Real Root Of -630*x^4+501*x^3-459*x^2-576*x+780 9421169670847838 a007 Real Root Of -370*x^4+182*x^3-318*x^2+137*x+855 9421169684070895 a003 sin(Pi*4/47)/cos(Pi*43/105) 9421169689883862 a007 Real Root Of 962*x^4+71*x^3-245*x^2-681*x-62 9421169716730124 a007 Real Root Of -630*x^4-177*x^3+109*x^2+528*x+749 9421169733006691 a007 Real Root Of -435*x^4+887*x^3-179*x^2-496*x+776 9421169751943880 r005 Im(z^2+c),c=-23/36+4/21*I,n=27 9421169773485811 l006 ln(3677/9433) 9421169773485811 p004 log(9433/3677) 9421169775273675 r009 Im(z^3+c),c=-13/74+39/43*I,n=55 9421169788803926 a007 Real Root Of -978*x^4+144*x^3-380*x^2-619*x+645 9421169789427010 a003 cos(Pi*1/87)*sin(Pi*38/97) 9421169843146066 a007 Real Root Of 477*x^4-704*x^3-800*x^2+536*x+418 9421169869266392 m001 (arctan(1/3)+PisotVijayaraghavan)/ZetaP(3) 9421169870696319 m001 (BesselI(1,2)-Zeta(3))/ThueMorse 9421169874930145 a007 Real Root Of 274*x^4+351*x^3+301*x^2-268*x-442 9421169879751565 m001 (GAMMA(2/3)+GAMMA(19/24))/FeigenbaumD 9421169910232558 m001 ln(PrimesInBinary)*CareFree^2/arctan(1/2) 9421169937125863 r009 Im(z^3+c),c=-3/40+15/16*I,n=17 9421169980720645 a003 sin(Pi*8/79)+sin(Pi*13/60) 9421169995164374 r005 Re(z^2+c),c=-13/14+36/203*I,n=3 9421170000831098 a007 Real Root Of -947*x^4-172*x^3+284*x^2-723*x-331 9421170005248078 r005 Re(z^2+c),c=-1/14+30/49*I,n=19 9421170038455357 m001 (Zeta(1,-1)+sin(1/12*Pi))/(Zeta(1,2)-ZetaQ(2)) 9421170066218321 a007 Real Root Of 589*x^4+24*x^3-451*x^2-374*x-396 9421170097613339 r005 Im(z^2+c),c=-3/70+21/29*I,n=54 9421170098035022 a001 987/521*1364^(2/9) 9421170098613020 b008 EulerGamma*(16+ArcCot[3]) 9421170108736049 m001 (Khinchin+Porter)/(Pi+BesselI(0,1)) 9421170134374914 a001 144/199*199^(16/33) 9421170138358464 a003 cos(Pi*11/61)-cos(Pi*21/113) 9421170139816261 k001 Champernowne real with 228*n+714 9421170143955844 m001 KhinchinLevy-Riemann2ndZero^StolarskyHarborth 9421170150674349 r009 Im(z^3+c),c=-3/40+15/16*I,n=19 9421170202066581 m001 GaussKuzminWirsing^Artin*FransenRobinson^Artin 9421170203686206 r005 Re(z^2+c),c=-77/94+19/62*I,n=7 9421170227543087 a007 Real Root Of -107*x^4+704*x^3-314*x^2-731*x+263 9421170236511152 m001 (3^(1/3))^(5^(1/2)*gamma(1)) 9421170256382102 a007 Real Root Of -751*x^4+437*x^3+793*x^2+401*x+631 9421170271611897 m005 (1/3*Pi+1/2)/(6/7*Catalan+6/7) 9421170276406859 b008 7+Pi^(-1+Sqrt[Pi]) 9421170276771815 r009 Im(z^3+c),c=-15/64+37/38*I,n=7 9421170282708744 r005 Re(z^2+c),c=-1/13+14/15*I,n=2 9421170335272648 a003 sin(Pi*1/108)-sin(Pi*47/111) 9421170336749569 r005 Re(z^2+c),c=-9/10+31/166*I,n=29 9421170346376394 s002 sum(A228997[n]/(n!^3),n=1..infinity) 9421170360420461 a007 Real Root Of -635*x^4+722*x^3-192*x^2-442*x+858 9421170366023220 r008 a(0)=0,K{-n^6,62-17*n-63*n^2+7*n^3} 9421170375437818 h001 (2/7*exp(2)+3/8)/(7/11*exp(1)+10/11) 9421170391257432 r009 Im(z^3+c),c=-3/40+15/16*I,n=27 9421170391273663 r009 Im(z^3+c),c=-3/40+15/16*I,n=25 9421170392347144 r009 Im(z^3+c),c=-3/40+15/16*I,n=35 9421170392351124 r009 Im(z^3+c),c=-3/40+15/16*I,n=33 9421170392351803 r009 Im(z^3+c),c=-3/40+15/16*I,n=37 9421170392351860 r009 Im(z^3+c),c=-3/40+15/16*I,n=43 9421170392351878 r009 Im(z^3+c),c=-3/40+15/16*I,n=45 9421170392351879 r009 Im(z^3+c),c=-3/40+15/16*I,n=51 9421170392351879 r009 Im(z^3+c),c=-3/40+15/16*I,n=53 9421170392351879 r009 Im(z^3+c),c=-3/40+15/16*I,n=59 9421170392351879 r009 Im(z^3+c),c=-3/40+15/16*I,n=61 9421170392351879 r009 Im(z^3+c),c=-3/40+15/16*I,n=63 9421170392351879 r009 Im(z^3+c),c=-3/40+15/16*I,n=57 9421170392351879 r009 Im(z^3+c),c=-3/40+15/16*I,n=55 9421170392351879 r009 Im(z^3+c),c=-3/40+15/16*I,n=49 9421170392351880 r009 Im(z^3+c),c=-3/40+15/16*I,n=47 9421170392351892 r009 Im(z^3+c),c=-3/40+15/16*I,n=41 9421170392352186 r009 Im(z^3+c),c=-3/40+15/16*I,n=39 9421170392393020 r009 Im(z^3+c),c=-3/40+15/16*I,n=29 9421170392424267 r009 Im(z^3+c),c=-3/40+15/16*I,n=31 9421170394577678 r009 Re(z^3+c),c=-1/26+45/59*I,n=34 9421170407797393 a001 233/3571*1364^(31/45) 9421170408712798 r009 Im(z^3+c),c=-3/40+15/16*I,n=23 9421170415580897 r009 Im(z^3+c),c=-3/40+15/16*I,n=21 9421170415732971 a007 Real Root Of -739*x^4+427*x^3-511*x^2-919*x+527 9421170430753424 r005 Re(z^2+c),c=-9/10+11/58*I,n=61 9421170450911416 q001 2946/3127 9421170464517873 a007 Real Root Of 778*x^4+214*x^3-408*x^2-118*x-183 9421170483775679 b008 Pi*(3+ExpIntegralEi[-5]) 9421170502148477 a007 Real Root Of 300*x^4-64*x^3+835*x^2+242*x-803 9421170504480066 a007 Real Root Of -649*x^4+62*x^3+418*x^2-879*x-636 9421170514530523 b008 -10+ArcSinh[3]/Pi 9421170518055933 m001 (BesselI(1,2)+Gompertz)/(exp(Pi)-gamma(1)) 9421170541818253 a007 Real Root Of -976*x^4+433*x^3-82*x^2-557*x+679 9421170551751043 s002 sum(A105134[n]/(n*exp(pi*n)-1),n=1..infinity) 9421170562024282 r005 Im(z^2+c),c=-8/7+47/107*I,n=4 9421170601703695 m001 (Ei(1,1)-Champernowne)/(Landau+Weierstrass) 9421170615531719 r002 2th iterates of z^2 + 9421170617836066 m001 1/ln(ErdosBorwein)^2*Artin^2/TwinPrimes 9421170631616159 m005 (1/2*2^(1/2)-7/12)/(4*Pi+4/7) 9421170636883218 a007 Real Root Of 795*x^4-99*x^3-655*x^2-766*x+78 9421170637121021 b008 ProductLog[Sqrt[5+Sin[1]]] 9421170641049613 a001 610/843*322^(4/9) 9421170676564686 r005 Re(z^2+c),c=-65/94+29/48*I,n=5 9421170701972526 a001 161/72*5^(42/47) 9421170717705645 m001 (Trott+ZetaP(4))/(Ei(1,1)+Rabbit) 9421170730258867 a007 Real Root Of 16*x^4-315*x^3-103*x^2+439*x+229 9421170763328927 a007 Real Root Of -667*x^4-649*x^3-889*x^2+118*x+883 9421170772698255 m002 -Cosh[Pi]+Cosh[Pi]/Pi^2+Tanh[Pi] 9421170773571252 m001 (Backhouse+Cahen)/(PrimesInBinary-ThueMorse) 9421170798089592 m001 Zeta(1,2)*Thue+MadelungNaCl 9421170817580412 a001 233/2207*3571^(28/51) 9421170830548449 m001 (CareFree+MertensB2)/(Zeta(5)+cos(1/5*Pi)) 9421170848003885 r002 2th iterates of z^2 + 9421170874418017 a007 Real Root Of -169*x^4+869*x^3+535*x^2-408*x-684 9421170881981841 a007 Real Root Of 926*x^4+232*x^3+202*x^2+38*x-679 9421170906078689 a007 Real Root Of -714*x^4+68*x^3+623*x^2+335*x+382 9421170926087701 a007 Real Root Of 275*x^4-882*x^3-695*x^2+81*x-261 9421170938926674 a001 2255/1926*322^(13/36) 9421170975336921 m001 (BesselI(1,2)+OneNinth)/(gamma+GAMMA(3/4)) 9421170994825705 a007 Real Root Of 284*x^4-551*x^3-95*x^2-645*x+929 9421170998600028 s002 sum(A184775[n]/(n*exp(pi*n)-1),n=1..infinity) 9421171030684803 m005 (1/2*2^(1/2)+3/7)/(11/12*2^(1/2)-1/11) 9421171057949841 a007 Real Root Of -445*x^4+332*x^3+382*x^2-84*x+210 9421171070244761 m001 (cos(1/5*Pi)-gamma(1))/(MertensB2-Paris) 9421171078459767 a001 987/521*3571^(10/51) 9421171092375577 a007 Real Root Of -13*x^4+942*x^3+54*x^2-397*x+376 9421171116121111 k006 concat of cont frac of 9421171122155906 r005 Im(z^2+c),c=-79/102+1/30*I,n=50 9421171127122135 k006 concat of cont frac of 9421171140016291 k001 Champernowne real with 229*n+713 9421171140116301 k005 Champernowne real with floor(Pi*(73*n+227)) 9421171170245466 a001 233/2207*9349^(28/57) 9421171181945433 a001 24476/987*514229^(13/47) 9421171204411574 a001 987/521*9349^(10/57) 9421171215115136 a001 17711/15127*322^(13/36) 9421171216205038 a001 233/2207*24476^(4/9) 9421171223194458 a001 233/2207*20633239^(4/15) 9421171223194464 a001 233/2207*17393796001^(4/21) 9421171223194464 a001 233/2207*505019158607^(1/6) 9421171223194464 a001 233/2207*599074578^(2/9) 9421171223194579 a001 233/2207*4870847^(7/24) 9421171223200682 a001 233/2207*710647^(1/3) 9421171223277297 a001 987/521*167761^(2/15) 9421171223321928 a001 987/521*20633239^(2/21) 9421171223321930 a001 987/521*3461452808002^(1/18) 9421171223321930 a001 987/521*28143753123^(1/15) 9421171223321930 a001 987/521*228826127^(1/12) 9421171223322233 a001 987/521*1860498^(1/9) 9421171223535282 a001 233/2207*103682^(7/18) 9421171224232063 a001 987/521*39603^(5/33) 9421171225742836 a001 233/2207*39603^(14/33) 9421171230183888 a001 987/521*15127^(1/6) 9421171242407945 a001 233/2207*15127^(7/15) 9421171255410490 a001 15456/13201*322^(13/36) 9421171260963674 s002 sum(A255413[n]/(exp(2*pi*n)-1),n=1..infinity) 9421171261289503 a001 121393/103682*322^(13/36) 9421171262147240 a001 105937/90481*322^(13/36) 9421171262272382 a001 832040/710647*322^(13/36) 9421171262290640 a001 726103/620166*322^(13/36) 9421171262301924 a001 1346269/1149851*322^(13/36) 9421171262349724 a001 514229/439204*322^(13/36) 9421171262677350 a001 196418/167761*322^(13/36) 9421171264922933 a001 75025/64079*322^(13/36) 9421171275580327 a001 987/521*5778^(5/27) 9421171280314389 a001 28657/24476*322^(13/36) 9421171281137969 m001 sin(1/12*Pi)^(1/5*5^(1/2)*Paris) 9421171285331911 s002 sum(A031041[n]/(exp(2*pi*n)-1),n=1..infinity) 9421171297345833 m001 (FeigenbaumDelta+ZetaQ(2))/(ln(Pi)-Cahen) 9421171311611421 k006 concat of cont frac of 9421171314340534 l006 ln(688/1765) 9421171318375211 m009 (4/3*Catalan+1/6*Pi^2-1)/(1/5*Psi(1,1/3)-4) 9421171339838098 a007 Real Root Of -532*x^4+447*x^3-540*x^2-394*x+901 9421171341237632 a003 cos(Pi*8/95)*sin(Pi*37/86) 9421171343514042 h001 (3/7*exp(1)+1/8)/(2/11*exp(1)+7/8) 9421171348462018 a007 Real Root Of 72*x^3+650*x^2-209*x+545 9421171369517975 a001 233/2207*5778^(14/27) 9421171385808999 a001 10946/9349*322^(13/36) 9421171432324741 h001 (7/8*exp(1)+6/11)/(4/11*exp(2)+5/12) 9421171433125198 a007 Real Root Of 484*x^4+341*x^3+84*x^2-185*x-345 9421171447613731 m001 FeigenbaumKappa^FeigenbaumAlpha*BesselJ(1,1) 9421171449385959 l006 ln(5962/6551) 9421171451973836 m005 (1/2*gamma-4/5)/(3/11*5^(1/2)-5/9) 9421171482156198 a001 521/3*956722026041^(13/16) 9421171487516078 a007 Real Root Of -847*x^4-156*x^3+831*x^2+557*x+324 9421171499680023 r002 3th iterates of z^2 + 9421171526964097 a008 Real Root of (-1+x^3+x^4+x^6+x^7-x^11+x^12) 9421171538713326 a007 Real Root Of 693*x^4-422*x^3-850*x^2-93*x-232 9421171552861130 a003 cos(Pi*17/53)*cos(Pi*44/89) 9421171571221676 m001 (1+LambertW(1))/(cos(1/12*Pi)+ArtinRank2) 9421171576115921 m001 BesselJ(1,1)/ln(Niven)^2/GAMMA(13/24) 9421171587417676 a007 Real Root Of 651*x^4+426*x^3+550*x^2+297*x-365 9421171591833699 r002 44th iterates of z^2 + 9421171611264998 m001 1/Ei(1)^2*TwinPrimes^2/ln(GAMMA(1/4)) 9421171626279331 a001 987/521*2207^(5/24) 9421171633070804 r009 Re(z^3+c),c=-7/58+39/53*I,n=52 9421171676163152 m004 -12+125*Pi+Cosh[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 9421171701420650 m004 -151*Sqrt[5]*Pi+25*Sqrt[5]*Pi*Sin[Sqrt[5]*Pi] 9421171724883922 a003 cos(Pi*18/103)/sin(Pi*31/86) 9421171741437556 a007 Real Root Of 133*x^4-364*x^3+953*x^2+466*x-816 9421171754239758 a001 45537549124*12586269025^(10/19) 9421171754240306 a001 5600748293801*1346269^(10/19) 9421171765296126 r005 Im(z^2+c),c=1/122+5/53*I,n=5 9421171765365046 a005 (1/sin(78/175*Pi))^1414 9421171820304114 a005 (1/sin(111/229*Pi))^1945 9421171881611974 a007 Real Root Of 160*x^4+135*x^3+110*x^2-843*x-905 9421171886162522 a007 Real Root Of 712*x^4+371*x^3+671*x^2+583*x-297 9421171896010568 a007 Real Root Of 796*x^4-211*x^3+470*x^2+368*x-874 9421171924095844 m006 (4*exp(2*Pi)+1/3)/(2*Pi^2+3) 9421171927082842 a007 Real Root Of 344*x^4-93*x^3+880*x^2+901*x-281 9421171948196671 a001 21/4870847*3^(37/52) 9421171955826772 a007 Real Root Of 287*x^4-827*x^3+162*x^2+649*x-450 9421172013541394 m001 (Pi^(1/2))^GAMMA(5/6)-cos(1/12*Pi) 9421172013541394 m001 cos(Pi/12)-sqrt(Pi)^GAMMA(5/6) 9421172028762298 m001 1/GAMMA(3/4)/exp(GAMMA(2/3))^2*sqrt(3) 9421172054833775 r001 4i'th iterates of 2*x^2-1 of 9421172057329071 a003 sin(Pi*23/107)-sin(Pi*23/90) 9421172061270429 a007 Real Root Of 817*x^4-472*x^3+369*x^2+901*x-517 9421172070054320 r002 38th iterates of z^2 + 9421172079964793 a007 Real Root Of -904*x^4+873*x^3+483*x^2-890*x+175 9421172090457098 m001 Zeta(3)^polylog(4,1/2)/(Zeta(3)^sin(1)) 9421172092019523 m005 (1/2*2^(1/2)+1)/(4/9*5^(1/2)+9/11) 9421172095646443 m001 BesselJ(0,1)*ln(2^(1/2)+1)-Psi(1,1/3) 9421172108879868 a001 4181/3571*322^(13/36) 9421172132121423 k008 concat of cont frac of 9421172140216321 k001 Champernowne real with 230*n+712 9421172145257833 m001 (ln(2)/ln(10)+ln(5))/(FellerTornier+Niven) 9421172173211011 k007 concat of cont frac of 9421172179036419 a008 Real Root of x^4-x^3-233*x^2+211*x+11651 9421172187997596 a001 1/5901*(1/2*5^(1/2)+1/2)^26*7^(7/19) 9421172250215039 h001 (10/11*exp(1)+1/7)/(4/5*exp(1)+3/5) 9421172264852583 r005 Re(z^2+c),c=-133/122+1/5*I,n=32 9421172282244058 r005 Re(z^2+c),c=17/122+21/41*I,n=25 9421172302323561 b008 2^(-8/93) 9421172343935948 k002 Champernowne real with 21*n^2-30*n+18 9421172351475228 a001 233/2207*2207^(7/12) 9421172353976048 k003 Champernowne real with 1/6*n^3+20*n^2-169/6*n+17 9421172364016148 k003 Champernowne real with 1/3*n^3+19*n^2-79/3*n+16 9421172374056248 k003 Champernowne real with 1/2*n^3+18*n^2-49/2*n+15 9421172375363393 a001 4181/521*521^(1/39) 9421172376906491 a007 Real Root Of 364*x^4+522*x^3+997*x^2+757*x-22 9421172380250188 a007 Real Root Of -157*x^4+120*x^3+146*x^2+488*x-566 9421172382663315 a001 233/5778*3571^(2/3) 9421172384096349 k003 Champernowne real with 2/3*n^3+17*n^2-68/3*n+14 9421172386419444 m001 (-ErdosBorwein+FeigenbaumKappa)/(Shi(1)+ln(5)) 9421172394136449 k003 Champernowne real with 5/6*n^3+16*n^2-125/6*n+13 9421172404176549 k003 Champernowne real with n^3+15*n^2-19*n+12 9421172414216649 k003 Champernowne real with 7/6*n^3+14*n^2-103/6*n+11 9421172424256749 k003 Champernowne real with 4/3*n^3+13*n^2-46/3*n+10 9421172425207744 a001 2584/521*1364^(4/45) 9421172426119144 a007 Real Root Of 857*x^4-159*x^3-405*x^2+801*x+306 9421172426277829 h001 (5/9*exp(2)+1/5)/(1/2*exp(2)+7/8) 9421172431292208 a007 Real Root Of 51*x^4+530*x^3+527*x^2+495*x-703 9421172434296841 k003 Champernowne real with 3/2*n^3+12*n^2-27/2*n+9 9421172444336941 k003 Champernowne real with 5/3*n^3+11*n^2-35/3*n+8 9421172449859842 a001 233/64079*3571^(49/51) 9421172454377041 k003 Champernowne real with 11/6*n^3+10*n^2-59/6*n+7 9421172464417141 k003 Champernowne real with 2*n^3+9*n^2-8*n+6 9421172467159925 a007 Real Root Of 567*x^4-306*x^3+58*x^2+362*x-413 9421172474457241 k003 Champernowne real with 13/6*n^3+8*n^2-37/6*n+5 9421172482810692 r005 Im(z^2+c),c=-29/86+8/55*I,n=16 9421172484497341 k003 Champernowne real with 7/3*n^3+7*n^2-13/3*n+4 9421172485017197 a001 233/39603*3571^(46/51) 9421172494537441 k003 Champernowne real with 5/2*n^3+6*n^2-5/2*n+3 9421172504577541 k003 Champernowne real with 8/3*n^3+5*n^2-2/3*n+2 9421172511677975 s002 sum(A187190[n]/((exp(n)+1)*n),n=1..infinity) 9421172514617641 k003 Champernowne real with 17/6*n^3+4*n^2+7/6*n+1 9421172518026014 s002 sum(A002939[n]/((exp(n)+1)/n),n=1..infinity) 9421172524657741 k003 Champernowne real with 3*n^3+3*n^2+3*n 9421172525646822 a007 Real Root Of -179*x^4+993*x^3-63*x^2-997*x+88 9421172525889844 m001 (GAMMA(5/6)-exp(-1/2*Pi))^Sarnak 9421172532074477 r002 11th iterates of z^2 + 9421172534697841 k003 Champernowne real with 19/6*n^3+2*n^2+29/6*n-1 9421172536769633 a001 233/15127*3571^(40/51) 9421172543041053 m009 (3/4*Psi(1,2/3)+4/5)/(2/5*Psi(1,1/3)-3/4) 9421172544737941 k003 Champernowne real with 10/3*n^3+n^2+20/3*n-2 9421172550208939 a001 233/24476*3571^(43/51) 9421172554778041 k003 Champernowne real with 7/2*n^3+17/2*n-3 9421172559834373 a003 cos(Pi*3/59)*sin(Pi*48/119) 9421172564818141 k003 Champernowne real with 11/3*n^3-n^2+31/3*n-4 9421172567708000 a007 Real Root Of 265*x^4-364*x^3+828*x^2+949*x-354 9421172574858241 k003 Champernowne real with 23/6*n^3-2*n^2+73/6*n-5 9421172584898341 k003 Champernowne real with 4*n^3-3*n^2+14*n-6 9421172594938441 k003 Champernowne real with 25/6*n^3-4*n^2+95/6*n-7 9421172604978541 k003 Champernowne real with 13/3*n^3-5*n^2+53/3*n-8 9421172615018641 k003 Champernowne real with 9/2*n^3-6*n^2+39/2*n-9 9421172616527519 a007 Real Root Of -561*x^4-184*x^3-91*x^2+516*x+855 9421172622324332 r005 Im(z^2+c),c=-83/114+2/47*I,n=35 9421172625058741 k003 Champernowne real with 14/3*n^3-7*n^2+64/3*n-10 9421172634399145 r005 Re(z^2+c),c=6/29+23/53*I,n=39 9421172635098841 k003 Champernowne real with 29/6*n^3-8*n^2+139/6*n-11 9421172645138941 k003 Champernowne real with 5*n^3-9*n^2+25*n-12 9421172655179041 k003 Champernowne real with 31/6*n^3-10*n^2+161/6*n-13 9421172665219141 k003 Champernowne real with 16/3*n^3-11*n^2+86/3*n-14 9421172675259241 k003 Champernowne real with 11/2*n^3-12*n^2+61/2*n-15 9421172677867273 r005 Re(z^2+c),c=1/60+10/27*I,n=6 9421172678824749 h001 (1/3*exp(2)+5/12)/(3/8*exp(2)+2/7) 9421172684392745 a007 Real Root Of -347*x^4+581*x^3-138*x^2+207*x-285 9421172685299341 k003 Champernowne real with 17/3*n^3-13*n^2+97/3*n-16 9421172695339441 k003 Champernowne real with 35/6*n^3-14*n^2+205/6*n-17 9421172695438293 m005 (3/5*gamma-1/4)/(3*Pi+4/5) 9421172696171729 m001 (Sarnak+StronglyCareFree)/(cos(1/12*Pi)+Kac) 9421172699224371 m001 (Si(Pi)+GAMMA(17/24))/(Artin+Otter) 9421172705379541 k003 Champernowne real with 6*n^3-15*n^2+36*n-18 9421172715419641 k003 Champernowne real with 37/6*n^3-16*n^2+227/6*n-19 9421172725459741 k003 Champernowne real with 19/3*n^3-17*n^2+119/3*n-20 9421172729189089 a001 233/9349*3571^(37/51) 9421172735499841 k003 Champernowne real with 13/2*n^3-18*n^2+83/2*n-21 9421172741110232 b008 1-Sin[Pi/18]/3 9421172743901236 r002 60i'th iterates of 2*x/(1-x^2) of 9421172745539941 k003 Champernowne real with 20/3*n^3-19*n^2+130/3*n-22 9421172752201120 m005 (1/2*gamma+9/11)/(3/10*Catalan+9/10) 9421172755571004 k003 Champernowne real with 41/6*n^3-20*n^2+271/6*n-23 9421172765611014 k003 Champernowne real with 7*n^3-21*n^2+47*n-24 9421172766214218 r005 Re(z^2+c),c=-127/110+7/26*I,n=18 9421172770450009 l006 ln(3891/9982) 9421172774750015 m001 (gamma(3)+Gompertz)/HardyLittlewoodC3 9421172775651024 k003 Champernowne real with 43/6*n^3-22*n^2+293/6*n-25 9421172783265292 r009 Re(z^3+c),c=-7/102+17/24*I,n=9 9421172785268180 a007 Real Root Of 81*x^4+26*x^3+135*x^2-862*x-974 9421172785691034 k003 Champernowne real with 22/3*n^3-23*n^2+152/3*n-26 9421172795731044 k003 Champernowne real with 15/2*n^3-24*n^2+105/2*n-27 9421172803983541 m001 (Ei(1)-Zeta(1,-1))/(Pi^(1/2)+PrimesInBinary) 9421172805771054 k003 Champernowne real with 23/3*n^3-25*n^2+163/3*n-28 9421172810899524 a001 233/5778*9349^(34/57) 9421172812194866 a007 Real Root Of -482*x^4+345*x^3+94*x^2+169*x+744 9421172815811064 k003 Champernowne real with 47/6*n^3-26*n^2+337/6*n-29 9421172815930776 a001 29/34*46368^(15/23) 9421172817377727 a001 2584/521*3571^(4/51) 9421172825851074 k003 Champernowne real with 8*n^3-27*n^2+58*n-30 9421172835891084 k003 Champernowne real with 49/6*n^3-28*n^2+359/6*n-31 9421172841534745 h001 (1/3*exp(2)+1/12)/(7/10*exp(1)+4/5) 9421172845931094 k003 Champernowne real with 25/3*n^3-29*n^2+185/3*n-32 9421172848651430 m001 (-HardHexagonsEntropy+Mills)/(Pi^(1/2)-exp(1)) 9421172855971104 k003 Champernowne real with 17/2*n^3-30*n^2+127/2*n-33 9421172866011114 k003 Champernowne real with 26/3*n^3-31*n^2+196/3*n-34 9421172867758459 a001 2584/521*9349^(4/57) 9421172875194747 a001 233/5778*45537549124^(2/9) 9421172875194766 a001 233/5778*12752043^(1/3) 9421172875322619 a001 2584/521*4870847^(1/24) 9421172875323491 a001 2584/521*710647^(1/21) 9421172875371291 a001 2584/521*103682^(1/18) 9421172875686656 a001 2584/521*39603^(2/33) 9421172876051124 k003 Champernowne real with 53/6*n^3-32*n^2+403/6*n-35 9421172878067386 a001 2584/521*15127^(1/15) 9421172878289199 a001 233/5778*39603^(17/33) 9421172886091134 k003 Champernowne real with 9*n^3-33*n^2+69*n-36 9421172886294198 h001 (1/3*exp(2)+1/6)/(8/9*exp(1)+3/8) 9421172886519421 q001 1237/1313 9421172889683140 a007 Real Root Of -888*x^4+488*x^3+30*x^2-829*x+300 9421172896131144 k003 Champernowne real with 55/6*n^3-34*n^2+425/6*n-37 9421172896225965 a001 2584/521*5778^(2/27) 9421172898525407 a001 233/5778*15127^(17/30) 9421172901117449 m001 (Chi(1)-Pi^(1/2))^ln(2^(1/2)+1) 9421172905100195 a007 Real Root Of -190*x^4+464*x^3+633*x^2+792*x+722 9421172906171154 k003 Champernowne real with 28/3*n^3-35*n^2+218/3*n-38 9421172916211164 k003 Champernowne real with 19/2*n^3-36*n^2+149/2*n-39 9421172926251174 k003 Champernowne real with 29/3*n^3-37*n^2+229/3*n-40 9421172928128667 m001 BesselI(0,1)^ZetaQ(3)/(BesselI(0,1)^MertensB1) 9421172936291184 k003 Champernowne real with 59/6*n^3-38*n^2+469/6*n-41 9421172946331194 k003 Champernowne real with 10*n^3-39*n^2+80*n-42 9421172952371787 p001 sum(1/(383*n+6)/n/(3^n),n=1..infinity) 9421172956371204 k003 Champernowne real with 61/6*n^3-40*n^2+491/6*n-43 9421172966411214 k003 Champernowne real with 31/3*n^3-41*n^2+251/3*n-44 9421172966864705 m001 Magata*ln(FransenRobinson)/GAMMA(11/24)^2 9421172976451224 k003 Champernowne real with 21/2*n^3-42*n^2+171/2*n-45 9421172982770649 m001 (sin(1/5*Pi)+Otter)/(Salem+Sierpinski) 9421172986491234 k003 Champernowne real with 32/3*n^3-43*n^2+262/3*n-46 9421172996531244 k003 Champernowne real with 65/6*n^3-44*n^2+535/6*n-47 9421172998532953 r009 Re(z^3+c),c=-5/28+34/57*I,n=11 9421173006571254 k003 Champernowne real with 11*n^3-45*n^2+91*n-48 9421173016611264 k003 Champernowne real with 67/6*n^3-46*n^2+557/6*n-49 9421173021237538 r002 43th iterates of z^2 + 9421173026651274 k003 Champernowne real with 34/3*n^3-47*n^2+284/3*n-50 9421173027058497 r005 Im(z^2+c),c=-3/5+19/73*I,n=8 9421173028346290 a007 Real Root Of 121*x^4-273*x^3+720*x^2+213*x-762 9421173028476814 a007 Real Root Of -150*x^4+382*x^3-359*x^2-324*x+451 9421173036505589 a001 2584/521*2207^(1/12) 9421173036691284 k003 Champernowne real with 23/2*n^3-48*n^2+193/2*n-51 9421173040576948 a001 233/15127*9349^(40/57) 9421173046731294 k003 Champernowne real with 35/3*n^3-49*n^2+295/3*n-52 9421173052873329 a001 233/5778*5778^(17/27) 9421173053717914 a001 233/167761*9349^(55/57) 9421173053883729 m005 (1/3*5^(1/2)-2/9)/(2/9*Pi-1/7) 9421173056771304 k003 Champernowne real with 71/6*n^3-50*n^2+601/6*n-53 9421173058179878 a001 233/103682*9349^(52/57) 9421173064395608 a001 233/39603*9349^(46/57) 9421173066811314 k003 Champernowne real with 12*n^3-51*n^2+102*n-54 9421173067023801 a001 233/64079*9349^(49/57) 9421173083220297 l006 ln(3203/8217) 9421173088646124 r005 Im(z^2+c),c=-27/32+3/49*I,n=14 9421173091801805 a001 233/24476*9349^(43/57) 9421173108614094 a001 1597/521*1364^(7/45) 9421173116039854 a001 233/15127*167761^(8/15) 9421173116218380 a001 233/15127*20633239^(8/21) 9421173116218389 a001 233/15127*23725150497407^(5/24) 9421173116218389 a001 233/15127*3461452808002^(2/9) 9421173116218389 a001 233/15127*28143753123^(4/15) 9421173116218389 a001 233/15127*10749957122^(5/18) 9421173116218389 a001 233/15127*228826127^(1/3) 9421173116218554 a001 233/15127*4870847^(5/12) 9421173116219598 a001 233/15127*1860498^(4/9) 9421173116227272 a001 233/15127*710647^(10/21) 9421173116705273 a001 233/15127*103682^(5/9) 9421173119858921 a001 233/15127*39603^(20/33) 9421173123128701 m005 (1/2*3^(1/2)+5/12)/(32/35+1/5*5^(1/2)) 9421173128589162 m001 1/2*(2^(1/2)*DuboisRaymond+Shi(1))*2^(1/2) 9421173139455000 r009 Im(z^3+c),c=-55/106+31/51*I,n=5 9421173140416351 k001 Champernowne real with 231*n+711 9421173143666225 a001 233/15127*15127^(2/3) 9421173147453069 a001 233/64079*24476^(7/9) 9421173149853650 a001 233/39603*64079^(2/3) 9421173151383265 a001 233/39603*4106118243^(1/3) 9421173152778339 a001 4181/521*1364^(1/45) 9421173155569877 a001 233/39603*39603^(23/33) 9421173156513751 a001 233/103682*141422324^(4/9) 9421173156513751 a001 233/103682*73681302247^(1/3) 9421173156513966 a001 233/103682*4870847^(13/24) 9421173156525300 a001 233/103682*710647^(13/21) 9421173156598994 a001 233/103682*271443^(2/3) 9421173157074986 a001 233/1860498*167761^(14/15) 9421173157146701 a001 233/103682*103682^(13/18) 9421173157257529 a001 233/271443*1149851^(2/3) 9421173157262279 a001 233/271443*1322157322203^(1/3) 9421173157371488 a001 233/710647*23725150497407^(1/3) 9421173157371488 a001 233/710647*505019158607^(8/21) 9421173157371488 a001 233/710647*10749957122^(4/9) 9421173157371488 a001 233/710647*228826127^(8/15) 9421173157371753 a001 233/710647*4870847^(2/3) 9421173157385701 a001 233/710647*710647^(16/21) 9421173157387407 a001 233/1860498*20633239^(2/3) 9421173157387421 a001 233/1860498*17393796001^(10/21) 9421173157387421 a001 233/1860498*3461452808002^(7/18) 9421173157387421 a001 233/1860498*505019158607^(5/12) 9421173157387421 a001 233/1860498*28143753123^(7/15) 9421173157387421 a001 233/1860498*599074578^(5/9) 9421173157387421 a001 233/1860498*228826127^(7/12) 9421173157389538 a001 233/1860498*1860498^(7/9) 9421173157389746 a001 233/4870847*817138163596^(4/9) 9421173157389747 a001 233/4870847*87403803^(2/3) 9421173157390000 a001 233/33385282*7881196^(8/9) 9421173157390060 a001 233/4870847*4870847^(19/24) 9421173157390085 a001 233/12752043*370248451^(2/3) 9421173157390122 a001 233/228826127*20633239^(20/21) 9421173157390127 a001 233/54018521*20633239^(13/15) 9421173157390135 a001 233/33385282*312119004989^(8/15) 9421173157390135 a001 233/33385282*23725150497407^(11/24) 9421173157390135 a001 233/33385282*10749957122^(11/18) 9421173157390135 a001 233/33385282*1568397607^(2/3) 9421173157390135 a001 233/33385282*228826127^(11/15) 9421173157390142 a001 233/87403803*6643838879^(2/3) 9421173157390143 a001 233/228826127*3461452808002^(5/9) 9421173157390143 a001 233/228826127*28143753123^(2/3) 9421173157390143 a001 233/228826127*228826127^(5/6) 9421173157390143 a001 233/599074578*119218851371^(2/3) 9421173157390143 a001 233/1568397607*17393796001^(16/21) 9421173157390143 a001 233/1568397607*23725150497407^(7/12) 9421173157390143 a001 233/1568397607*505019158607^(2/3) 9421173157390143 a001 233/1568397607*10749957122^(7/9) 9421173157390143 a001 233/4106118243*2139295485799^(2/3) 9421173157390143 a001 233/10749957122*9062201101803^(2/3) 9421173157390143 a001 233/45537549124*17393796001^(19/21) 9421173157390143 a001 233/28143753123*3461452808002^(13/18) 9421173157390143 a001 233/28143753123*73681302247^(5/6) 9421173157390143 a001 233/73681302247*45537549124^(8/9) 9421173157390143 a001 233/73681302247*23725150497407^(17/24) 9421173157390143 a001 233/73681302247*505019158607^(17/21) 9421173157390143 a001 233/28143753123*28143753123^(13/15) 9421173157390143 a001 233/1322157322203*312119004989^(14/15) 9421173157390143 a001 233/1322157322203*505019158607^(11/12) 9421173157390143 a001 233/312119004989*1322157322203^(5/6) 9421173157390143 a001 233/45537549124*505019158607^(19/24) 9421173157390143 a001 233/73681302247*10749957122^(17/18) 9421173157390143 a001 233/6643838879*312119004989^(11/15) 9421173157390143 a001 233/2537720636*4106118243^(5/6) 9421173157390143 a001 233/6643838879*1568397607^(11/12) 9421173157390143 a001 233/1568397607*599074578^(8/9) 9421173157390143 a001 233/1568397607*228826127^(14/15) 9421173157390143 a001 233/2537720636*228826127^(23/24) 9421173157390146 a001 233/54018521*141422324^(7/9) 9421173157390146 a001 233/54018521*17393796001^(13/21) 9421173157390146 a001 233/54018521*505019158607^(13/24) 9421173157390146 a001 233/54018521*73681302247^(7/12) 9421173157390146 a001 233/54018521*599074578^(13/18) 9421173157390147 a001 233/20633239*20633239^(17/21) 9421173157390165 a001 233/20633239*45537549124^(5/9) 9421173157390165 a001 233/20633239*228826127^(17/24) 9421173157390214 a001 233/20633239*12752043^(5/6) 9421173157390499 a001 233/33385282*4870847^(11/12) 9421173157392736 a001 233/20633239*1860498^(17/18) 9421173157402967 a001 233/1860498*710647^(5/6) 9421173157406624 a001 233/4870847*710647^(19/21) 9421173157438983 a001 233/439204*5600748293801^(1/3) 9421173157479410 a001 233/167761*167761^(11/15) 9421173157724811 a001 233/167761*7881196^(5/9) 9421173157724883 a001 233/167761*20633239^(11/21) 9421173157724895 a001 233/167761*312119004989^(1/3) 9421173157724895 a001 233/167761*1568397607^(5/12) 9421173157724895 a001 233/167761*228826127^(11/24) 9421173157726558 a001 233/167761*1860498^(11/18) 9421173158150503 a001 233/710647*103682^(8/9) 9421173159684556 a001 233/64079*20633239^(7/15) 9421173159684566 a001 233/64079*17393796001^(1/3) 9421173159684566 a001 233/64079*505019158607^(7/24) 9421173159684566 a001 233/64079*599074578^(7/18) 9421173159695448 a001 233/64079*710647^(7/12) 9421173161246443 a001 233/103682*39603^(26/33) 9421173162541051 a001 233/271443*39603^(29/33) 9421173162730627 a001 233/167761*39603^(5/6) 9421173163196339 a001 233/710647*39603^(32/33) 9421173173116354 a001 233/24476*969323029^(1/3) 9421173173660944 m001 ArtinRank2^BesselI(0,2)/FeigenbaumDelta 9421173182948277 a001 233/39603*15127^(23/30) 9421173185202547 a007 Real Root Of 607*x^4+618*x^3+760*x^2+173*x-473 9421173192195939 a001 233/103682*15127^(13/15) 9421173193308166 a001 233/64079*15127^(49/60) 9421173195210864 a001 233/9349*9349^(37/57) 9421173195465670 a001 233/167761*15127^(11/12) 9421173197061642 a001 233/271443*15127^(29/30) 9421173198727900 m001 (BesselI(1,1)+Artin)/(Chi(1)+Zeta(1,2)) 9421173202622778 a001 233/24476*15127^(43/60) 9421173234543246 a001 29/3*1346269^(35/43) 9421173250820840 a001 4181/521*3571^(1/51) 9421173263416024 a001 4181/521*9349^(1/57) 9421173265179196 a001 233/9349*54018521^(1/3) 9421173265993256 a001 4181/521*15127^(1/60) 9421173266363352 a007 Real Root Of -971*x^4-648*x^3+127*x^2+853*x+914 9421173270473291 a007 Real Root Of 805*x^4+934*x^3+175*x^2-164*x-163 9421173270532901 a001 4181/521*5778^(1/54) 9421173287646059 r005 Re(z^2+c),c=-19/42+17/30*I,n=22 9421173290568446 a001 233/9349*15127^(37/60) 9421173305602808 a001 4181/521*2207^(1/48) 9421173325252020 a001 233/15127*5778^(20/27) 9421173326083349 a007 Real Root Of 328*x^4-345*x^3+540*x^2+826*x-248 9421173328369183 a007 Real Root Of -606*x^4-311*x^3-146*x^2+379*x+704 9421173341286635 a007 Real Root Of -967*x^4+420*x^3+764*x^2-209*x+238 9421173348465419 a001 46368/11*76^(33/46) 9421173359534069 m005 (1/2*3^(1/2)-1/7)/(2/7*3^(1/2)+3/11) 9421173369528885 a007 Real Root Of -452*x^4+295*x^3-291*x^2+x+862 9421173377468341 m001 GAMMA(3/4)*arctan(1/2)+Artin 9421173378857161 p004 log(21121/8233) 9421173391771942 a001 233/39603*5778^(23/27) 9421173397827509 a001 233/24476*5778^(43/54) 9421173415750766 a001 233/64079*5778^(49/54) 9421173427739916 m002 -4+Pi^4+ProductLog[Pi]-Pi*Sech[Pi] 9421173428257474 a001 233/103682*5778^(26/27) 9421173431020820 m001 1/GAMMA(1/12)^2/ln(Artin)*GAMMA(3/4) 9421173447114536 a001 233/3571*3571^(31/51) 9421173453704742 s002 sum(A272229[n]/(n*exp(pi*n)-1),n=1..infinity) 9421173454816681 a001 123/28657*46368^(3/41) 9421173458535309 a001 233/9349*5778^(37/54) 9421173473666729 a007 Real Root Of -12*x^4+266*x^3-550*x^2-811*x-44 9421173491842336 m001 PisotVijayaraghavan/(ln(3)+HardyLittlewoodC4) 9421173513259782 a003 sin(Pi*19/54)/sin(Pi*31/78) 9421173522527324 a007 Real Root Of 913*x^4-417*x^3-416*x^2+903*x+152 9421173531084298 p001 sum((-1)^n/(589*n+100)/(2^n),n=0..infinity) 9421173567112598 l006 ln(2515/6452) 9421173575483713 a007 Real Root Of 898*x^4-980*x^3-594*x^2+5*x-995 9421173580953921 a001 4181/521*843^(1/42) 9421173616827155 a007 Real Root Of -263*x^4+972*x^3-207*x^2+136*x-550 9421173622330565 m001 (-gamma(1)+GaussAGM)/(Psi(1,1/3)-arctan(1/2)) 9421173624527635 r002 9th iterates of z^2 + 9421173650119793 a007 Real Root Of -603*x^4-780*x^3-728*x^2-277*x+208 9421173670373140 l006 ln(6873/7552) 9421173689807282 r002 40th iterates of z^2 + 9421173716364219 a007 Real Root Of -897*x^4+504*x^3+869*x^2-539*x-151 9421173739353056 r005 Re(z^2+c),c=-27/50+5/8*I,n=25 9421173777775725 a007 Real Root Of 153*x^4-873*x^3+496*x^2+712*x-620 9421173789897906 r005 Re(z^2+c),c=-19/18+67/234*I,n=7 9421173794911624 a001 1597/521*3571^(7/51) 9421173801854608 r005 Re(z^2+c),c=1/13+28/53*I,n=21 9421173813225354 a007 Real Root Of 846*x^4-897*x^3-470*x^2+425*x-599 9421173824913311 k007 concat of cont frac of 9421173832629084 m001 gamma/ln(RenyiParking)^2*sinh(1)^2 9421173833255686 m005 (1/2*exp(1)+4/5)/(3/10*5^(1/2)-9/10) 9421173837565240 a001 233/3571*9349^(31/57) 9421173839699794 a003 cos(Pi*12/113)*sin(Pi*49/103) 9421173871205961 a007 Real Root Of 253*x^4+378*x^3+309*x^2-665*x-784 9421173883077914 a001 1597/521*9349^(7/57) 9421173894567810 a001 1597/521*24476^(1/9) 9421173896187015 a001 233/3571*3010349^(1/3) 9421173896187361 a001 233/3571*9062201101803^(1/6) 9421173896315166 a001 1597/521*20633239^(1/15) 9421173896315167 a001 1597/521*17393796001^(1/21) 9421173896315167 a001 1597/521*505019158607^(1/24) 9421173896315167 a001 1597/521*599074578^(1/18) 9421173896316722 a001 1597/521*710647^(1/12) 9421173901118539 a001 1597/521*15127^(7/60) 9421173912970204 a007 Real Root Of 7*x^4+657*x^3-234*x^2-24*x-929 9421173916602289 r009 Im(z^3+c),c=-3/40+15/16*I,n=15 9421173917459436 a001 233/3571*15127^(31/60) 9421173922383192 m001 BesselI(0,1)^Sarnak/(exp(1/Pi)^Sarnak) 9421173924948825 p003 LerchPhi(1/3,2,116/107) 9421173930029292 a007 Real Root Of 149*x^4-524*x^3+651*x^2-967*x+654 9421173932896055 a001 1597/521*5778^(7/54) 9421173949972645 r001 5i'th iterates of 2*x^2-1 of 9421173962907364 h001 (1/2*exp(2)+1/3)/(5/11*exp(2)+11/12) 9421173968596280 m008 (1/3*Pi^2+1/3)/(4*Pi^6+1/4) 9421173973638962 m002 Pi^(-1)-Sinh[Pi]/Pi^3+Tanh[Pi] 9421174013290988 a007 Real Root Of -177*x^4+671*x^3-839*x^2-549*x+928 9421174025069471 a007 Real Root Of 293*x^4-978*x^3-498*x^2+162*x-454 9421174029851320 r005 Im(z^2+c),c=1/122+5/53*I,n=7 9421174051918273 m005 (-1/3+1/2*5^(1/2))/(3/4*gamma+2/5) 9421174053375037 m005 (1/2*2^(1/2)-7/8)/(9/11*2^(1/2)+5/8) 9421174058188439 a001 233/3571*5778^(31/54) 9421174068071468 r002 46th iterates of z^2 + 9421174082407490 m005 (1/2*3^(1/2)+5/8)/(Catalan+2/3) 9421174087975328 m001 GolombDickman+exp(-1/2*Pi)*GAMMA(7/12) 9421174087975328 m001 exp(-1/2*Pi)*GAMMA(7/12)+GolombDickman 9421174108809508 a007 Real Root Of -87*x^4-760*x^3+641*x^2+769*x+224 9421174117699201 a007 Real Root Of -913*x^4+220*x^3-369*x^2-488*x+771 9421174137910059 a001 2584/521*843^(2/21) 9421174140616381 k001 Champernowne real with 232*n+710 9421174140716391 k005 Champernowne real with floor(Pi*(74*n+226)) 9421174145029756 m001 (5^(1/2)-GAMMA(11/12)*Salem)/GAMMA(11/12) 9421174166073383 r005 Re(z^2+c),c=-23/26+18/127*I,n=34 9421174178385426 a001 1597/521*2207^(7/48) 9421174179392485 r005 Im(z^2+c),c=-121/122+5/53*I,n=34 9421174194639527 a007 Real Root Of 447*x^4-843*x^3+684*x^2+757*x-951 9421174198510027 r005 Im(z^2+c),c=-8/15+1/60*I,n=39 9421174245250219 a001 233/5778*2207^(17/24) 9421174263689526 b008 ProductLog[Sqrt[3]]^(1/4) 9421174272880347 a007 Real Root Of -752*x^4-345*x^3-634*x^2-835*x+80 9421174282924060 a007 Real Root Of -922*x^4+482*x^3+807*x^2-326*x+106 9421174330294877 r002 42th iterates of z^2 + 9421174340135193 r002 45th iterates of z^2 + 9421174343107288 m001 (Magata+Robbin)/(Pi*2^(1/2)/GAMMA(3/4)+ln(2)) 9421174345539168 r005 Im(z^2+c),c=-121/122+5/53*I,n=33 9421174379790336 a001 987/521*843^(5/21) 9421174387717393 h001 (3/10*exp(2)+1/6)/(7/11*exp(1)+4/5) 9421174404236386 r005 Re(z^2+c),c=-115/126+4/25*I,n=45 9421174406059729 a007 Real Root Of -494*x^4+62*x^3-271*x^2-405*x+300 9421174415446994 l006 ln(1827/4687) 9421174422356039 r005 Im(z^2+c),c=-121/122+5/53*I,n=32 9421174425400980 r005 Im(z^2+c),c=-121/122+5/53*I,n=31 9421174441525494 a007 Real Root Of -377*x^4+326*x^3+709*x^2+921*x+808 9421174449800617 a007 Real Root Of 959*x^4-879*x^3-569*x^2-96*x+575 9421174458120075 r002 52th iterates of z^2 + 9421174460280633 a007 Real Root Of -125*x^4+604*x^3-457*x^2-809*x+247 9421174473168446 m004 -3000*Pi+(Sqrt[5]*Pi)/Log[Sqrt[5]*Pi] 9421174481619849 r002 51th iterates of z^2 + 9421174492187798 r002 54th iterates of z^2 + 9421174498675155 r005 Im(z^2+c),c=1/122+5/53*I,n=12 9421174498951496 r005 Im(z^2+c),c=-121/122+5/53*I,n=36 9421174501090782 r002 53th iterates of z^2 + 9421174501802298 r005 Im(z^2+c),c=-121/122+5/53*I,n=42 9421174504926080 r005 Im(z^2+c),c=-121/122+5/53*I,n=41 9421174506136273 r005 Im(z^2+c),c=1/122+5/53*I,n=11 9421174507148774 r005 Im(z^2+c),c=-121/122+5/53*I,n=44 9421174507493285 r002 60th iterates of z^2 + 9421174507763131 r002 62th iterates of z^2 + 9421174507786707 r005 Im(z^2+c),c=-121/122+5/53*I,n=43 9421174507797517 r002 59th iterates of z^2 + 9421174507992576 r002 61th iterates of z^2 + 9421174508088239 r005 Im(z^2+c),c=-121/122+5/53*I,n=50 9421174508138791 r005 Im(z^2+c),c=-121/122+5/53*I,n=49 9421174508159848 r005 Im(z^2+c),c=-121/122+5/53*I,n=52 9421174508180118 r005 Im(z^2+c),c=-121/122+5/53*I,n=51 9421174508184518 r005 Im(z^2+c),c=1/122+5/53*I,n=16 9421174508192068 r005 Im(z^2+c),c=1/122+5/53*I,n=15 9421174508195017 r005 Im(z^2+c),c=-121/122+5/53*I,n=58 9421174508195524 r005 Im(z^2+c),c=-121/122+5/53*I,n=60 9421174508195651 r005 Im(z^2+c),c=-121/122+5/53*I,n=57 9421174508196039 r005 Im(z^2+c),c=-121/122+5/53*I,n=59 9421174508196484 r005 Im(z^2+c),c=1/122+5/53*I,n=20 9421174508196492 r005 Im(z^2+c),c=1/122+5/53*I,n=19 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=24 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=23 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=28 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=27 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=32 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=31 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=35 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=36 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=39 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=40 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=43 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=44 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=47 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=48 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=51 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=52 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=55 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=56 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=57 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=58 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=59 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=60 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=61 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=62 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=63 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=64 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=54 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=53 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=50 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=49 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=46 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=45 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=42 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=41 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=38 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=37 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=34 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=33 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=29 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=30 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=25 9421174508196499 r005 Im(z^2+c),c=1/122+5/53*I,n=26 9421174508196500 r005 Im(z^2+c),c=1/122+5/53*I,n=21 9421174508196500 r005 Im(z^2+c),c=1/122+5/53*I,n=22 9421174508196572 r005 Im(z^2+c),c=-121/122+5/53*I,n=63 9421174508196591 r005 Im(z^2+c),c=-121/122+5/53*I,n=61 9421174508196648 r005 Im(z^2+c),c=-121/122+5/53*I,n=62 9421174508196649 r005 Im(z^2+c),c=-121/122+5/53*I,n=64 9421174508196689 r005 Im(z^2+c),c=1/122+5/53*I,n=17 9421174508196924 r005 Im(z^2+c),c=1/122+5/53*I,n=18 9421174508199322 r005 Im(z^2+c),c=-121/122+5/53*I,n=55 9421174508202619 r005 Im(z^2+c),c=-121/122+5/53*I,n=56 9421174508203705 r005 Im(z^2+c),c=-121/122+5/53*I,n=53 9421174508209629 r005 Im(z^2+c),c=-121/122+5/53*I,n=54 9421174508240371 r002 63th iterates of z^2 + 9421174508268975 r002 64th iterates of z^2 + 9421174508284301 r005 Im(z^2+c),c=-121/122+5/53*I,n=47 9421174508295496 r005 Im(z^2+c),c=1/122+5/53*I,n=13 9421174508402474 r005 Im(z^2+c),c=-121/122+5/53*I,n=48 9421174508534288 r005 Im(z^2+c),c=1/122+5/53*I,n=14 9421174508638849 r005 Im(z^2+c),c=-121/122+5/53*I,n=45 9421174509045200 r005 Im(z^2+c),c=-121/122+5/53*I,n=46 9421174509409486 r005 Im(z^2+c),c=-121/122+5/53*I,n=35 9421174509435471 r002 57th iterates of z^2 + 9421174509557989 r005 Im(z^2+c),c=-121/122+5/53*I,n=39 9421174510895629 r002 58th iterates of z^2 + 9421174511543620 r002 55th iterates of z^2 + 9421174512576608 r005 Im(z^2+c),c=-121/122+5/53*I,n=40 9421174514084900 a001 47/144*46368^(29/55) 9421174514331434 r002 56th iterates of z^2 + 9421174526354392 g005 GAMMA(7/11)/GAMMA(7/10)/GAMMA(1/9)/GAMMA(2/3) 9421174531613204 r005 Im(z^2+c),c=-121/122+5/53*I,n=37 9421174545575894 r002 49th iterates of z^2 + 9421174545706820 r005 Im(z^2+c),c=1/122+5/53*I,n=9 9421174554765231 r005 Im(z^2+c),c=-121/122+5/53*I,n=38 9421174567378682 b008 3+(17*E^(1/8))/3 9421174588313650 a007 Real Root Of 663*x^4+153*x^3-494*x^2-534*x-459 9421174593071143 r005 Re(z^2+c),c=-9/14+31/68*I,n=39 9421174596888284 r002 50th iterates of z^2 + 9421174622967658 r005 Im(z^2+c),c=-9/14+2/111*I,n=64 9421174641190808 m001 (Tribonacci-ZetaP(3))/(Pi-exp(1/Pi)) 9421174648861987 a005 (1/cos(23/227*Pi))^803 9421174652036785 m001 (Backhouse-Shi(1))/(-GlaisherKinkelin+Thue) 9421174661414001 a003 cos(Pi*41/109)/cos(Pi*19/39) 9421174668003547 a007 Real Root Of -284*x^4-321*x^3-174*x^2+324*x+415 9421174675057601 m001 (gamma(1)+Conway)/Mills 9421174682993160 a003 cos(Pi*8/117)-cos(Pi*22/45) 9421174693628603 a007 Real Root Of 772*x^4-361*x^3-69*x^2+867*x-32 9421174710516606 r002 47th iterates of z^2 + 9421174711786650 m001 MadelungNaCl^Khinchin*MadelungNaCl^MertensB3 9421174715559905 a007 Real Root Of -244*x^4+699*x^3-401*x^2-386*x+769 9421174728048418 a001 233/15127*2207^(5/6) 9421174756121988 a001 233/9349*2207^(37/48) 9421174776521213 r005 Im(z^2+c),c=1/122+5/53*I,n=10 9421174810717028 r005 Re(z^2+c),c=-5/28+19/27*I,n=12 9421174840439845 r005 Re(z^2+c),c=-63/118+17/28*I,n=44 9421174851171674 m001 GAMMA(23/24)^Bloch*Thue^Bloch 9421174863685794 m001 1/(2^(1/3))/Salem/ln(BesselJ(0,1))^2 9421174866169591 a007 Real Root Of 279*x^4-896*x^3-151*x^2+518*x-347 9421174893825555 m003 -2+Sqrt[5]/2-Log[1/2+Sqrt[5]/2]/8 9421174897759194 r002 48th iterates of z^2 + 9421174905833657 a001 233/24476*2207^(43/48) 9421174915155542 r005 Re(z^2+c),c=-43/34+2/119*I,n=52 9421174950300746 a003 cos(Pi*35/114)*cos(Pi*47/95) 9421174957794903 a007 Real Root Of 25*x^4-878*x^3-626*x^2-350*x-528 9421174960129812 a003 sin(Pi*2/119)+sin(Pi*15/43) 9421174964833101 r005 Im(z^2+c),c=-59/64+2/25*I,n=6 9421174999964249 r002 41th iterates of z^2 + 9421175004987829 a001 233/39603*2207^(23/24) 9421175006298239 a007 Real Root Of -98*x^4+684*x^3-308*x^2+715*x-895 9421175006608378 m005 (1/2*Pi+7/12)/(2*Catalan+5/11) 9421175049336513 r002 4th iterates of z^2 + 9421175049438603 r002 4th iterates of z^2 + 9421175101803374 q001 3239/3438 9421175121605644 b008 6+Sqrt[E]+Sqrt[Pi] 9421175133113129 k008 concat of cont frac of 9421175134786453 l006 ln(2966/7609) 9421175140816411 k001 Champernowne real with 233*n+709 9421175145355713 a001 233/3571*2207^(31/48) 9421175167579911 m001 (exp(1/2)+1/2)/(-exp(Pi)+1/3) 9421175173021127 h001 (7/11*exp(1)+2/11)/(1/4*exp(2)+2/11) 9421175190347008 m001 Psi(1,1/3)-RenyiParking^GAMMA(2/3) 9421175194288366 a007 Real Root Of 55*x^4+548*x^3+325*x^2+496*x+775 9421175233198574 a007 Real Root Of 983*x^4+875*x^3-100*x^2-632*x-58 9421175252574816 b008 1+7*2^(4/15) 9421175269516656 a007 Real Root Of 678*x^4-677*x^3+426*x^2-852*x+77 9421175328127716 m001 1/CopelandErdos^2/exp(Conway)^2*Rabbit 9421175371494069 l006 ln(7784/8553) 9421175379957231 a005 (1/cos(18/191*Pi))^361 9421175407964825 a001 233/1364*1364^(5/9) 9421175411211652 k009 concat of cont frac of 9421175431544777 s003 concatenated sequence A232249 9421175448398357 a007 Real Root Of 867*x^4+261*x^3-870*x^2-822*x-467 9421175508092346 a003 sin(Pi*13/44)/sin(Pi*32/99) 9421175518903411 a007 Real Root Of -351*x^4+189*x^3-44*x^2+318*x+3 9421175544705176 m005 (1/3*gamma-1/9)/(1/12*exp(1)+7/11) 9421175586126683 r005 Im(z^2+c),c=-121/122+5/53*I,n=27 9421175604058119 r005 Im(z^2+c),c=-121/122+5/53*I,n=29 9421175628763176 m001 1/GAMMA(1/6)^2/KhintchineLevy*exp(sqrt(Pi))^2 9421175637388487 m001 (3^(1/3)+Zeta(1,2))/(Conway-Tribonacci) 9421175642656893 m001 (BesselK(0,1)-exp(1/Pi))^(2^(1/3)) 9421175692985583 r002 56th iterates of z^2 + 9421175699286135 a005 (1/cos(13/129*Pi))^44 9421175711276850 a007 Real Root Of 762*x^4-822*x^3-58*x^2+394*x-865 9421175735473272 a007 Real Root Of 586*x^4-575*x^3-873*x^2+715*x+506 9421175747210675 a001 5778/377*233^(34/45) 9421175748680727 a007 Real Root Of 982*x^4+764*x^3-491*x^2-794*x-447 9421175749461288 r005 Re(z^2+c),c=-7/8+26/145*I,n=11 9421175772740378 a007 Real Root Of 105*x^4-593*x^3+874*x^2+426*x-953 9421175782980049 a007 Real Root Of -206*x^4+854*x^3+427*x^2+249*x+732 9421175784190755 m001 Tribonacci^(Conway/gamma(3)) 9421175789352029 a001 4181/521*322^(1/36) 9421175793279670 a007 Real Root Of 703*x^4-217*x^3+976*x^2-691*x-74 9421175807386682 m001 (LambertW(1)-ln(3))/(Khinchin+Otter) 9421175826469151 a008 Real Root of x^4-x^3-26*x^2-40*x+4 9421175826866886 r002 44th iterates of z^2 + 9421175835963629 m001 (2^(1/3)+BesselI(0,1))/(exp(1/Pi)+Mills) 9421175873427510 a007 Real Root Of -769*x^4+726*x^3+887*x^2+149*x+566 9421175906582689 a007 Real Root Of 426*x^4-828*x^3-233*x^2+567*x-287 9421175920191266 r002 37th iterates of z^2 + 9421175980451122 a007 Real Root Of 995*x^4+230*x^3+325*x^2+69*x-815 9421175994648469 a007 Real Root Of 784*x^4+187*x^3-573*x^2-461*x-387 9421176000158309 r005 Im(z^2+c),c=37/114+4/7*I,n=34 9421176006625380 m001 (-ReciprocalLucas+Tribonacci)/(Si(Pi)-cos(1)) 9421176045756183 a007 Real Root Of -728*x^4+417*x^3+878*x^2+206*x+337 9421176086882735 m005 (1/2*Zeta(3)-2/11)/(5/11*5^(1/2)-4/7) 9421176105843567 a001 1597/521*843^(1/6) 9421176115530829 m005 (1/2*5^(1/2)+3/10)/(3/4*Catalan+9/11) 9421176125399637 r005 Re(z^2+c),c=-11/10+7/106*I,n=34 9421176135978960 r005 Im(z^2+c),c=-121/122+5/53*I,n=28 9421176141016441 k001 Champernowne real with 234*n+708 9421176143538222 a001 329/1926*199^(10/31) 9421176161984854 m001 Sarnak^FeigenbaumC/(RenyiParking^FeigenbaumC) 9421176189977958 r009 Im(z^3+c),c=-19/102+29/31*I,n=7 9421176202780987 m005 (4*2^(1/2)-2/5)/(5*Catalan+1) 9421176209292203 r002 44th iterates of z^2 + 9421176242921915 r002 42th iterates of z^2 + 9421176288634626 l006 ln(1139/2922) 9421176322547496 b008 ArcCosh[(2+E)*ArcCsch[Pi]] 9421176335090639 m001 (MinimumGamma-Stephens)/(Pi^(1/2)-FeigenbaumB) 9421176343080629 a007 Real Root Of -991*x^4-538*x^3-280*x^2+179*x+748 9421176351137132 s001 sum(exp(-Pi/4)^(n-1)*A238795[n],n=1..infinity) 9421176384074830 a007 Real Root Of 52*x^4+124*x^3+264*x^2-114*x-279 9421176387975101 r005 Re(z^2+c),c=-13/19+16/37*I,n=33 9421176411170712 k009 concat of cont frac of 9421176436010014 r005 Re(z^2+c),c=-5/4+11/124*I,n=60 9421176436984490 r005 Re(z^2+c),c=-97/110+9/44*I,n=23 9421176437670375 m006 (5/6*Pi-1)/(1/4*Pi^2-3/4) 9421176437670375 m008 (5/6*Pi-1)/(1/4*Pi^2-3/4) 9421176461377972 r005 Re(z^2+c),c=-59/66+7/38*I,n=19 9421176481883979 r009 Re(z^3+c),c=-9/22+35/54*I,n=8 9421176524573748 m002 -5/6-ProductLog[Pi]/Pi^2 9421176533716832 a007 Real Root Of 148*x^4-276*x^3-556*x^2-323*x+912 9421176565077976 a007 Real Root Of -137*x^4+113*x^3-789*x^2-22*x+882 9421176588562374 a007 Real Root Of -799*x^4-393*x^3-752*x^2-686*x+322 9421176620392509 a007 Real Root Of 976*x^4-37*x^3+4*x^2+978*x+118 9421176645635079 a007 Real Root Of 38*x^4+279*x^3-640*x^2+900*x-780 9421176656639550 m005 (1/2*2^(1/2)-3/10)/(4/11*gamma+2/9) 9421176663521511 m001 (BesselI(0,2)-Artin)/(Khinchin-LaplaceLimit) 9421176667448010 a007 Real Root Of 301*x^4-666*x^3+549*x^2+789*x-538 9421176675688295 m001 (5^(1/2)-ln(2))/(Zeta(1,-1)+ZetaQ(4)) 9421176679950018 r002 18th iterates of z^2 + 9421176694132177 a001 3571/5*1346269^(28/55) 9421176695741798 s001 sum(exp(-Pi)^n*A209041[n],n=1..infinity) 9421176695741798 s002 sum(A209041[n]/(exp(pi*n)),n=1..infinity) 9421176699781352 a007 Real Root Of -284*x^4+718*x^3-928*x^2-867*x+831 9421176711940913 m001 GAMMA(11/12)^Zeta(1,2)*GAMMA(11/12)^Zeta(1,-1) 9421176716152374 l006 ln(8695/9554) 9421176736927043 r005 Im(z^2+c),c=-79/126+6/17*I,n=50 9421176758435035 a001 610/521*1364^(13/45) 9421176760689433 r005 Im(z^2+c),c=-121/122+5/53*I,n=30 9421176802317221 r009 Im(z^3+c),c=-11/106+41/44*I,n=13 9421176809736254 a007 Real Root Of 729*x^4+332*x^3+749*x^2+648*x-351 9421176832809856 m001 1/cos(1)^2*MinimumGamma*ln(cosh(1))^2 9421176834550919 a007 Real Root Of 9*x^4+842*x^3-546*x^2+989*x+807 9421176836258131 a007 Real Root Of 182*x^4-288*x^3+940*x^2+699*x-560 9421176841389545 r009 Im(z^3+c),c=-23/44+5/8*I,n=11 9421176841827908 r002 26th iterates of z^2 + 9421176842087719 a007 Real Root Of 691*x^4-477*x^3-249*x^2-246*x-954 9421176844436831 a001 20633239/144*2504730781961^(5/22) 9421176844436853 a001 228826127/144*63245986^(5/22) 9421176858346740 a007 Real Root Of -7*x^4-670*x^3-989*x^2+181*x+334 9421176863997869 r005 Im(z^2+c),c=-15/28+5/31*I,n=18 9421176864821698 r008 a(0)=9,K{-n^6,-30-16*n^3-16*n^2+59*n} 9421176875177728 m001 GolombDickman/ErdosBorwein/ThueMorse 9421176877143668 m001 (Kac+Lehmer)/((1+3^(1/2))^(1/2)-Grothendieck) 9421176886517528 a007 Real Root Of -564*x^4+585*x^3+880*x^2+854*x+957 9421176886992268 a007 Real Root Of -244*x^4+446*x^3+204*x^2+221*x-570 9421176896576434 m005 (1/3*3^(1/2)-3/5)/(1/2*Pi+5/6) 9421176899757137 a007 Real Root Of 584*x^4-592*x^3-674*x^2+814*x+410 9421176904508066 a007 Real Root Of -59*x^4+849*x^3+69*x^2-66*x+633 9421176936433009 m001 (MinimumGamma-Sierpinski)/(Zeta(3)+gamma(2)) 9421176940013314 r005 Im(z^2+c),c=19/118+21/32*I,n=6 9421176968205457 r008 a(0)=9,K{-n^6,-7+3*n+32*n^2-16*n^3} 9421176979640565 r005 Im(z^2+c),c=-7/6+14/103*I,n=19 9421176981697487 m001 (FeigenbaumKappa+Totient)/(3^(1/2)+GAMMA(5/6)) 9421176989284114 a007 Real Root Of -101*x^4+744*x^3+376*x^2-323*x-572 9421176998489935 m005 (1/3*2^(1/2)+1/7)/(8/11*Zeta(3)-2/9) 9421177005888878 p001 sum((-1)^n/(517*n+106)/(125^n),n=0..infinity) 9421177012345359 a001 634430159/36*1597^(5/22) 9421177061893769 a001 72/51841*843^(30/31) 9421177064883940 a001 1597/1364*322^(13/36) 9421177107930695 a003 cos(Pi*12/71)-sin(Pi*28/69) 9421177116760696 m001 HardyLittlewoodC4-arctan(1/2)^KhinchinLevy 9421177120035480 r005 Im(z^2+c),c=-27/122+47/52*I,n=5 9421177141216471 k001 Champernowne real with 235*n+707 9421177155114311 k007 concat of cont frac of 9421177173410565 l006 ln(3868/9923) 9421177205352294 m006 (4/5*Pi-1/2)/(2/5*exp(2*Pi)-1/2) 9421177215589308 r001 14i'th iterates of 2*x^2-1 of 9421177257671310 m005 (1/2*Zeta(3)+5)/(1/8*gamma-2/3) 9421177266824650 a007 Real Root Of 385*x^4-678*x^3-383*x^2+81*x-454 9421177311296492 a007 Real Root Of 404*x^4+233*x^3+183*x^2-205*x-479 9421177327549526 m002 2/3+Pi^4-Cosh[Pi]/3 9421177330141556 s002 sum(A075114[n]/(64^n-1),n=1..infinity) 9421177360705973 a007 Real Root Of 858*x^4+23*x^3-85*x^2+341*x-260 9421177391524120 r005 Im(z^2+c),c=-25/38+7/43*I,n=32 9421177399732323 a007 Real Root Of 508*x^4-211*x^3-520*x^2-641*x-719 9421177408063757 m001 exp(Rabbit)^2/ErdosBorwein/sqrt(1+sqrt(3))^2 9421177412567069 a007 Real Root Of -968*x^4-758*x^3-939*x^2-394*x+591 9421177413529935 a007 Real Root Of 200*x^4-473*x^3+955*x^2+592*x-843 9421177413549671 m001 (ln(2+3^(1/2))+Bloch)/(Shi(1)+sin(1)) 9421177447034203 m001 1/Zeta(5)/GAMMA(13/24)^2*exp(cos(Pi/12)) 9421177512726188 a007 Real Root Of -314*x^4+840*x^3-52*x^2-502*x+523 9421177512826382 a007 Real Root Of 394*x^4-842*x^3-362*x^2+311*x+422 9421177523112111 k007 concat of cont frac of 9421177526530965 a007 Real Root Of 211*x^4-428*x^3-861*x^2-966*x-670 9421177542688591 l006 ln(2729/7001) 9421177542688591 p004 log(7001/2729) 9421177639029692 a001 1597/2207*322^(4/9) 9421177648320427 a007 Real Root Of -110*x^4-692*x^3-898*x^2+802*x-67 9421177676257210 a007 Real Root Of -895*x^4-866*x^3-287*x^2+478*x+686 9421177709838152 a007 Real Root Of -887*x^4+782*x^3+721*x^2-488*x+253 9421177725462765 a007 Real Root Of 491*x^4+635*x^3+847*x^2+456*x-178 9421177731269028 m005 (1/2*Catalan+8/9)/(5/8*Catalan+6/7) 9421177760525550 m001 1/ln(TwinPrimes)*FransenRobinson/GAMMA(1/3)^2 9421177797336784 a007 Real Root Of 846*x^4-156*x^3+351*x^2+320*x-807 9421177804514069 r005 Re(z^2+c),c=-25/106+41/45*I,n=5 9421177823070073 m002 -Pi^6+Sinh[Pi]+(Pi^3*Tanh[Pi])/4 9421177827185104 a001 47/28657*28657^(13/21) 9421177828059178 a001 47/14930352*701408733^(13/21) 9421177834990590 a007 Real Root Of -997*x^4-259*x^3+101*x^2+453*x+906 9421177859028262 a001 233/1364*3571^(25/51) 9421177872812348 m001 (Si(Pi)+ln(2^(1/2)+1))/(GAMMA(5/6)+Pi^(1/2)) 9421177891202487 m006 (5*Pi+4/5)/(3/4*exp(Pi)+1/6) 9421177898867951 s002 sum(A285488[n]/(n^3*exp(n)-1),n=1..infinity) 9421177899994256 m001 (-GaussAGM(1,1/sqrt(2))+3)/(GAMMA(17/24)+1) 9421177935757849 a007 Real Root Of 378*x^4-265*x^3+388*x^2+194*x-681 9421177940076058 m001 (Zeta(1,2)*ZetaP(4)+Kolakoski)/ZetaP(4) 9421177955925860 b008 4+Pi+BesselI[0,2] 9421178021407089 m005 (1/3*Pi-2/11)/(41/198+7/22*5^(1/2)) 9421178032988125 a001 610/521*3571^(13/51) 9421178036563524 a001 2584/15127*199^(10/31) 9421178054020610 a003 cos(Pi*1/67)*cos(Pi*11/102) 9421178072863466 q001 2767/2937 9421178097230762 a007 Real Root Of 771*x^4-239*x^3+486*x^2+473*x-793 9421178141316491 k005 Champernowne real with floor(Pi*(75*n+225)) 9421178141416501 k001 Champernowne real with 236*n+706 9421178141510407 a007 Real Root Of -617*x^4-152*x^3-49*x^2+630*x+996 9421178147697618 a007 Real Root Of 851*x^4-460*x^3-860*x^2+868*x+526 9421178151426566 m005 (1/2*3^(1/2)+8/9)/(6*Pi-2/9) 9421178173908008 a001 233/1364*9349^(25/57) 9421178179693826 r009 Im(z^3+c),c=-21/86+33/35*I,n=15 9421178187539063 a007 Real Root Of 438*x^4-970*x^3+575*x^2+768*x-943 9421178196725595 a001 610/521*9349^(13/57) 9421178200411236 r009 Im(z^3+c),c=-7/29+36/47*I,n=9 9421178200655136 m001 1/ln(cos(Pi/12))^2/Zeta(9)/log(1+sqrt(2)) 9421178221072350 a001 233/1364*167761^(1/3) 9421178221183929 a001 233/1364*20633239^(5/21) 9421178221183934 a001 233/1364*28143753123^(1/6) 9421178221183934 a001 233/1364*228826127^(5/24) 9421178221184690 a001 233/1364*1860498^(5/18) 9421178221309077 a001 610/521*141422324^(1/9) 9421178221309077 a001 610/521*73681302247^(1/12) 9421178221330387 a001 610/521*271443^(1/6) 9421178230229628 a001 610/521*15127^(13/60) 9421178238338841 a001 233/1364*15127^(5/12) 9421178276578767 p004 log(22111/20123) 9421178289245043 a001 610/521*5778^(13/54) 9421178304028714 s002 sum(A038794[n]/((exp(n)+1)*n),n=1..infinity) 9421178312752202 a001 2255/13201*199^(10/31) 9421178345297687 g002 Psi(5/12)+Psi(7/10)-Psi(1/11)-Psi(4/7) 9421178351830024 a001 233/1364*5778^(25/54) 9421178353047587 a001 17711/103682*199^(10/31) 9421178358412219 a007 Real Root Of 431*x^4-53*x^3-63*x^2+381*x+31 9421178358926605 a001 15456/90481*199^(10/31) 9421178359784342 a001 121393/710647*199^(10/31) 9421178359909484 a001 105937/620166*199^(10/31) 9421178359927742 a001 832040/4870847*199^(10/31) 9421178359939026 a001 514229/3010349*199^(10/31) 9421178359986826 a001 196418/1149851*199^(10/31) 9421178360314452 a001 75025/439204*199^(10/31) 9421178362560037 a001 28657/167761*199^(10/31) 9421178363808941 a007 Real Root Of 210*x^4-970*x^3-13*x^2+777*x-233 9421178371721019 m006 (Pi^2-5/6)/(3*Pi+1/6) 9421178371721019 m008 (Pi^2-5/6)/(3*Pi+1/6) 9421178377951505 a001 10946/64079*199^(10/31) 9421178404478743 b008 Sinh[5*ArcSec[16]] 9421178406106472 b008 (9*SinIntegral[(2*Pi)/5])/11 9421178420108844 m001 LaplaceLimit*Tribonacci^gamma 9421178423589930 m001 GAMMA(13/24)*ln(FeigenbaumC)*GAMMA(7/24)^2 9421178441032812 l006 ln(1590/4079) 9421178448722523 a007 Real Root Of -542*x^4+571*x^3-717*x^2-797*x+790 9421178459963513 a003 cos(Pi*9/73)+cos(Pi*48/97) 9421178483446193 a001 4181/24476*199^(10/31) 9421178486223751 a007 Real Root Of -461*x^4-41*x^3+135*x^2-638*x-392 9421178503407018 m001 Kolakoski-StronglyCareFree^OrthogonalArrays 9421178520880844 b008 ArcCot[83+E^Pi] 9421178530896843 m005 (1/3*2^(1/2)+1/8)/(5/6*Catalan-7/10) 9421178541577957 a007 Real Root Of -269*x^4+968*x^3-445*x^2-495*x+950 9421178564393127 a007 Real Root Of 411*x^4+898*x^3-58*x^2-979*x-91 9421178606347789 m001 (FeigenbaumD-Kac)/(cos(1/5*Pi)+exp(1/Pi)) 9421178615815486 r005 Re(z^2+c),c=-67/82+11/60*I,n=63 9421178617684904 m001 1/exp(GAMMA(11/12))*MertensB1/cos(Pi/12) 9421178632419219 m001 1/Niven/exp(Khintchine)^2*sin(Pi/5)^2 9421178648909966 r005 Re(z^2+c),c=-17/18+3/106*I,n=13 9421178653724816 m001 ln(2^(1/2)+1)+GAMMA(5/6)*ZetaQ(2) 9421178657275694 r005 Re(z^2+c),c=-17/18-7/247*I,n=11 9421178660022632 a001 4181/5778*322^(4/9) 9421178675778177 a007 Real Root Of -259*x^4-4*x^3-802*x^2-388*x+547 9421178694269456 r002 45th iterates of z^2 + 9421178745154090 a001 610/521*2207^(13/48) 9421178765746176 r009 Im(z^3+c),c=-29/54+29/55*I,n=6 9421178767287632 m001 sqrt(1+sqrt(3))*GlaisherKinkelin^2*ln(sqrt(2)) 9421178776546672 m001 exp(GAMMA(1/3))^2/Rabbit^2*sqrt(5) 9421178808983524 a001 10946/15127*322^(4/9) 9421178818512490 r009 Im(z^3+c),c=-3/40+15/16*I,n=13 9421178827282783 m001 (3^(1/2)-Zeta(1,-1))/(Tribonacci+ZetaP(3)) 9421178828247709 m001 (Zeta(5)+Mills)/(exp(Pi)+3^(1/2)) 9421178830716626 a001 28657/39603*322^(4/9) 9421178833887443 a001 75025/103682*322^(4/9) 9421178834350059 a001 196418/271443*322^(4/9) 9421178834417554 a001 514229/710647*322^(4/9) 9421178834427401 a001 1346269/1860498*322^(4/9) 9421178834428838 a001 3524578/4870847*322^(4/9) 9421178834429047 a001 9227465/12752043*322^(4/9) 9421178834429078 a001 24157817/33385282*322^(4/9) 9421178834429082 a001 63245986/87403803*322^(4/9) 9421178834429083 a001 165580141/228826127*322^(4/9) 9421178834429083 a001 433494437/599074578*322^(4/9) 9421178834429083 a001 1134903170/1568397607*322^(4/9) 9421178834429083 a001 2971215073/4106118243*322^(4/9) 9421178834429083 a001 7778742049/10749957122*322^(4/9) 9421178834429083 a001 20365011074/28143753123*322^(4/9) 9421178834429083 a001 53316291173/73681302247*322^(4/9) 9421178834429083 a001 139583862445/192900153618*322^(4/9) 9421178834429083 a001 365435296162/505019158607*322^(4/9) 9421178834429083 a001 10610209857723/14662949395604*322^(4/9) 9421178834429083 a001 591286729879/817138163596*322^(4/9) 9421178834429083 a001 225851433717/312119004989*322^(4/9) 9421178834429083 a001 86267571272/119218851371*322^(4/9) 9421178834429083 a001 32951280099/45537549124*322^(4/9) 9421178834429083 a001 12586269025/17393796001*322^(4/9) 9421178834429083 a001 4807526976/6643838879*322^(4/9) 9421178834429083 a001 1836311903/2537720636*322^(4/9) 9421178834429083 a001 701408733/969323029*322^(4/9) 9421178834429083 a001 267914296/370248451*322^(4/9) 9421178834429083 a001 102334155/141422324*322^(4/9) 9421178834429085 a001 39088169/54018521*322^(4/9) 9421178834429097 a001 14930352/20633239*322^(4/9) 9421178834429177 a001 5702887/7881196*322^(4/9) 9421178834429726 a001 2178309/3010349*322^(4/9) 9421178834433487 a001 832040/1149851*322^(4/9) 9421178834459268 a001 317811/439204*322^(4/9) 9421178834635971 a001 121393/167761*322^(4/9) 9421178835847115 a001 46368/64079*322^(4/9) 9421178844148422 a001 17711/24476*322^(4/9) 9421178856674389 a007 Real Root Of -826*x^4-237*x^3+428*x^2+547*x+588 9421178864289377 a007 Real Root Of -837*x^4+54*x^3+671*x^2-605*x-461 9421178897092731 a007 Real Root Of 349*x^4-808*x^3-252*x^2+865*x+88 9421178901046422 a001 6765/9349*322^(4/9) 9421178948394984 a007 Real Root Of 325*x^4-686*x^3+200*x^2+83*x-929 9421178956155939 m001 (TwinPrimes+ZetaQ(4))/(GAMMA(5/6)-FeigenbaumC) 9421178960066551 r005 Re(z^2+c),c=1/82+23/57*I,n=40 9421178981061616 q001 3532/3749 9421179000045430 a007 Real Root Of 274*x^4-600*x^3+222*x^2+732*x-225 9421179013076372 a007 Real Root Of -557*x^4-378*x^3-623*x^2-731*x-13 9421179018213452 r009 Im(z^3+c),c=-11/60+32/37*I,n=37 9421179034226076 b008 5+6*(-4+Pi)^2 9421179054045658 m001 MertensB2/(ln(Pi)^ln(2)) 9421179059089161 r008 a(0)=1,K{-n^6,50-14*n-53*n^2+35*n^3} 9421179076600299 a007 Real Root Of 237*x^4-485*x^3+49*x^2+125*x-518 9421179100734819 m001 (3^(1/3))^(1/2)-sin(Pi/12) 9421179100734819 m001 (sqrt(3)-(3^(1/3))*sin(Pi/12))/(3^(1/3)) 9421179100734819 m001 1/3*(3^(1/2)-3^(1/3)*sin(1/12*Pi))*3^(2/3) 9421179104297261 a001 17393796001/89*17711^(12/19) 9421179107756329 a001 167761/89*1548008755920^(12/19) 9421179108091078 a001 54018521/89*165580141^(12/19) 9421179116213530 l006 ln(3631/9315) 9421179141616531 k001 Champernowne real with 237*n+705 9421179183751007 r002 39th iterates of z^2 + 9421179206517551 a001 1597/9349*199^(10/31) 9421179228578216 a001 233/1364*2207^(25/48) 9421179235031542 a007 Real Root Of 412*x^4-472*x^3+137*x^2-15*x-855 9421179264531410 m002 -E^Pi+Pi^6*Coth[Pi]+Pi*Csch[Pi] 9421179264831273 m001 1/ln(GAMMA(5/6))^2/ArtinRank2/Zeta(5) 9421179275535835 r009 Re(z^3+c),c=-25/38+1/61*I,n=2 9421179279149425 a007 Real Root Of 639*x^4-217*x^3+6*x^2-107*x-791 9421179283547747 a008 Real Root of (-5+8*x+4*x^2-3*x^4-6*x^8) 9421179284265021 r002 3th iterates of z^2 + 9421179290892784 a007 Real Root Of -99*x^4+587*x^3-991*x^2-787*x+707 9421179291031150 a001 2584/3571*322^(4/9) 9421179310935267 r001 25i'th iterates of 2*x^2-1 of 9421179334037371 r002 6th iterates of z^2 + 9421179361215155 m001 (Pi^(1/2)*FeigenbaumB+DuboisRaymond)/Pi^(1/2) 9421179362404119 r005 Re(z^2+c),c=-63/50+9/59*I,n=9 9421179365678986 m001 (Pi-CareFree)/(RenyiParking+Tribonacci) 9421179378635399 a007 Real Root Of -44*x^4+844*x^3-345*x^2-58*x+992 9421179399577689 r005 Re(z^2+c),c=-101/102+20/63*I,n=7 9421179419356827 m001 ln(Kolakoski)/FransenRobinson*GAMMA(1/12) 9421179427058913 r002 48th iterates of z^2 + 9421179466880839 r005 Im(z^2+c),c=-45/118+37/63*I,n=10 9421179481874472 a007 Real Root Of 588*x^4-476*x^3-547*x^2+56*x-323 9421179495497921 m001 BesselJ(1,1)^ZetaQ(2)/(MertensB3^ZetaQ(2)) 9421179524498316 a007 Real Root Of 28*x^4-191*x^3+112*x^2+446*x+139 9421179543685885 a007 Real Root Of 274*x^4-240*x^3+793*x^2+494*x-655 9421179566582166 m008 (4/5*Pi^4+1/5)/(4/5*Pi^4+5) 9421179582926503 a007 Real Root Of 878*x^4-757*x^3-810*x^2+436*x-195 9421179583192745 a007 Real Root Of 749*x^4-949*x^3-263*x^2+273*x-893 9421179588415171 m001 1/MadelungNaCl^2/Lehmer*ln(Robbin)^2 9421179642199457 l006 ln(2041/5236) 9421179671538911 a007 Real Root Of 952*x^4-97*x^3+114*x^2+185*x-758 9421179676005234 m001 GAMMA(7/12)-log(gamma)-GAMMA(1/12) 9421179690829449 s002 sum(A283514[n]/(n*exp(pi*n)+1),n=1..infinity) 9421179691066030 a001 17711/7*47^(14/41) 9421179696445804 a001 521/987*2178309^(29/35) 9421179722950726 a007 Real Root Of 837*x^4-549*x^3-973*x^2-654*x-871 9421179776809133 a007 Real Root Of -770*x^4-478*x^3-584*x^2-583*x+176 9421179780000425 a003 sin(Pi*25/64)/sin(Pi*22/45) 9421179792617259 p004 log(32573/12697) 9421179795888369 m001 (BesselI(1,2)+MertensB1)/(1+cos(1/12*Pi)) 9421179833380881 a007 Real Root Of 114*x^4-261*x^3+335*x^2-197*x-791 9421179862954212 a007 Real Root Of 387*x^4-924*x^3-856*x^2-497*x-786 9421179893338770 a001 47*(1/2*5^(1/2)+1/2)^8*322^(13/20) 9421179906821562 r005 Im(z^2+c),c=-13/74+23/32*I,n=21 9421179908040029 a007 Real Root Of 24*x^4-662*x^3+673*x^2-981*x+87 9421179956253217 m005 (1/3*Zeta(3)+1/8)/(1/2*Catalan+1/10) 9421179965138638 a007 Real Root Of 703*x^4+850*x^3-200*x^2-683*x-309 9421179969452732 a001 55/76*76^(16/27) 9421180014914636 a007 Real Root Of 686*x^4-430*x^3-248*x^2+192*x-499 9421180049229529 a007 Real Root Of -77*x^4+921*x^3+996*x^2-574*x-594 9421180061308664 a001 233/2207*843^(2/3) 9421180090180496 m001 (OneNinth-QuadraticClass)/(arctan(1/2)-Bloch) 9421180096925691 a007 Real Root Of 65*x^4+121*x^3+597*x^2-465*x-918 9421180111335085 a007 Real Root Of 936*x^4+578*x^3-599*x^2-767*x-445 9421180130875414 m001 (-TwinPrimes+ZetaQ(4))/(1-ln(2)/ln(10)) 9421180141816561 k001 Champernowne real with 238*n+704 9421180157170935 m001 (LaplaceLimit+Magata*RenyiParking)/Magata 9421180173208150 m001 (exp(1)+Shi(1))/(-FeigenbaumDelta+Robbin) 9421180188816050 r005 Re(z^2+c),c=-1/17+1/4*I,n=12 9421180200246206 m001 ln(GlaisherKinkelin)^2*Bloch^2*MertensB1^2 9421180225524836 m006 (1/5*exp(Pi)+1)/(1/5*Pi^2+4) 9421180229642616 r005 Re(z^2+c),c=-105/118+11/61*I,n=7 9421180268773646 r005 Re(z^2+c),c=-63/118+28/51*I,n=50 9421180297738473 m001 (Gompertz+Landau)/(Catalan-Zeta(5)) 9421180318058229 m001 (Magata-Thue)/(Ei(1)+AlladiGrinstead) 9421180369771751 m002 -5+Pi^2+Pi^4+Pi^6/Log[Pi] 9421180389665017 m001 GAMMA(5/6)/exp(Artin)^2/LambertW(1) 9421180393904050 r005 Re(z^2+c),c=31/102+19/51*I,n=60 9421180403525493 r009 Re(z^3+c),c=-1/11+41/57*I,n=15 9421180408593830 l006 ln(2492/6393) 9421180411304824 m001 exp(Rabbit)/Artin/gamma 9421180457099439 m001 (ln(2)+ln(Pi))/(KhinchinLevy+LandauRamanujan) 9421180465492380 m001 Pi/(Psi(2,1/3)*gamma-GAMMA(7/12)) 9421180487321898 m001 (-GaussAGM(1,1/sqrt(2))+1/2)/(Khinchin+1) 9421180512449486 a007 Real Root Of -708*x^4-828*x^3+x^2+95*x-46 9421180577805842 r002 52th iterates of z^2 + 9421180605233769 a007 Real Root Of 721*x^4-3*x^3-272*x^2+914*x+532 9421180632324154 p001 sum((-1)^n/(313*n+124)/n/(24^n),n=1..infinity) 9421180654393620 a007 Real Root Of -290*x^4+133*x^3-171*x^2+388*x+857 9421180661725838 m001 ln(GAMMA(19/24))*RenyiParking^2*GAMMA(23/24)^2 9421180666529194 r005 Re(z^2+c),c=-11/10+15/223*I,n=16 9421180747275709 r005 Im(z^2+c),c=-11/8+1/75*I,n=37 9421180776447622 a007 Real Root Of -624*x^4+927*x^3+507*x^2-989*x-115 9421180810711768 a007 Real Root Of -690*x^4+798*x^3+192*x^2+555*x-817 9421180811990622 a007 Real Root Of -98*x^4-854*x^3+689*x^2+348*x+53 9421180864690229 m001 (BesselK(0,1)-exp(1))/(ln(3)+Totient) 9421180868878767 m001 BesselK(1,1)/Catalan/ArtinRank2 9421180873083829 m005 (1/2*Zeta(3)-2/5)/(1/8*Zeta(3)-4/11) 9421180914256144 a003 sin(Pi*7/95)+sin(Pi*25/99) 9421180922081114 a007 Real Root Of -218*x^4-87*x^3-474*x^2+185*x+694 9421180925286611 r002 3th iterates of z^2 + 9421180931899127 a007 Real Root Of 62*x^4-940*x^3-725*x^2-718*x-62 9421180940095976 l006 ln(2943/7550) 9421180958504519 h001 (3/5*exp(2)+1/8)/(1/9*exp(1)+2/11) 9421181014742546 a007 Real Root Of 634*x^4-792*x^3-466*x^2-106*x-848 9421181036683140 r005 Re(z^2+c),c=-23/24+15/59*I,n=17 9421181053436145 m002 -6+Pi^2+Pi^6-Cosh[Pi]-Sinh[Pi] 9421181063003192 r002 10i'th iterates of 2*x/(1-x^2) of 9421181101093265 a007 Real Root Of -681*x^4+45*x^3-168*x^2-445*x+304 9421181106171332 k007 concat of cont frac of 9421181112611812 k006 concat of cont frac of 9421181113361113 k006 concat of cont frac of 9421181122153911 k007 concat of cont frac of 9421181128782577 a003 sin(Pi*3/101)/cos(Pi*5/106) 9421181141916581 k005 Champernowne real with floor(Pi*(76*n+224)) 9421181142016591 k001 Champernowne real with 239*n+703 9421181142211251 k006 concat of cont frac of 9421181189311370 a007 Real Root Of 991*x^4+218*x^3+2*x^2+463*x-164 9421181232421611 k009 concat of cont frac of 9421181248325957 a007 Real Root Of -209*x^4-386*x^3-283*x^2+934*x+973 9421181269022402 r005 Im(z^2+c),c=-127/102+2/23*I,n=55 9421181293982340 m001 (Porter-Weierstrass)/(GAMMA(7/12)-PlouffeB) 9421181303940957 a007 Real Root Of -139*x^4+542*x^3-306*x^2-979*x-88 9421181304964465 r005 Im(z^2+c),c=-13/12+3/28*I,n=7 9421181317590350 r009 Im(z^3+c),c=-47/78+26/49*I,n=59 9421181319412850 m005 (1/2*Catalan-1/10)/(11/12*gamma-10/11) 9421181330344439 l006 ln(3394/8707) 9421181332197059 a007 Real Root Of -445*x^4+330*x^3+896*x^2+799*x+584 9421181335252295 m001 1/BesselJ(0,1)/Rabbit^2/ln(log(2+sqrt(3))) 9421181344448732 a008 Real Root of x^3+49*x-47 9421181375215262 a007 Real Root Of 443*x^4-297*x^3+454*x^2+651*x-387 9421181396238473 m005 (1/2*2^(1/2)-1/8)/(2/11*2^(1/2)-7/8) 9421181418866093 r005 Re(z^2+c),c=-17/18+44/181*I,n=47 9421181431994639 a007 Real Root Of 179*x^4-380*x^3+515*x^2+503*x-442 9421181443248789 m005 (1/2*Pi+3)/(8/9*Zeta(3)-7/12) 9421181474444375 r002 10th iterates of z^2 + 9421181476114203 m001 1/Lehmer^2/Backhouse^2*ln(Riemann1stZero)^2 9421181477512904 r005 Im(z^2+c),c=-85/118+7/55*I,n=6 9421181490719935 a001 1/13201*123^(11/21) 9421181507887186 a007 Real Root Of 822*x^4-257*x^3+60*x^2+350*x-586 9421181521367510 g006 Psi(1,2/9)-Psi(1,5/12)-Psi(1,10/11)-Psi(1,5/8) 9421181534804479 m005 (1/2*2^(1/2)-4/11)/(-7/36+1/4*5^(1/2)) 9421181537202819 a003 cos(Pi*12/91)-cos(Pi*16/115) 9421181537391011 r009 Im(z^3+c),c=-61/118+4/43*I,n=55 9421181538964774 r009 Im(z^3+c),c=-37/118+47/58*I,n=4 9421181559099667 a007 Real Root Of 14*x^4+56*x^3-761*x^2-358*x+707 9421181562316881 a007 Real Root Of 5*x^4-536*x^3+499*x^2+932*x-17 9421181564856216 a007 Real Root Of 104*x^4-943*x^3-27*x^2+491*x+268 9421181569171921 a003 cos(Pi*17/81)/sin(Pi*32/101) 9421181617475366 a007 Real Root Of 472*x^4-668*x^3-114*x^2-334*x+33 9421181618438868 a007 Real Root Of 893*x^4-190*x^3+241*x^2+634*x-479 9421181629044358 l006 ln(3845/9864) 9421181642579076 r005 Re(z^2+c),c=6/29+15/53*I,n=26 9421181661816564 a001 167761/2*144^(19/20) 9421181662065496 m002 -Pi^2+Pi^6+2*ProductLog[Pi]-Sinh[Pi] 9421181727169620 a008 Real Root of (-5+x-6*x^2+8*x^4+8*x^8) 9421181788846454 a008 Real Root of (-3-3*x-3*x^2+2*x^3+3*x^4+6*x^5) 9421181792633781 m005 (1/2*Catalan+5/8)/(3/8*3^(1/2)+1/2) 9421181809330805 m001 (ln(3)-Zeta(1,2))/(Kolakoski-Otter) 9421181812299592 h001 (5/7*exp(2)+2/7)/(3/4*exp(2)+4/11) 9421181817348552 m006 (1/3*Pi+1/6)/(3/5*exp(Pi)-1) 9421181825293822 r005 Re(z^2+c),c=-22/25+8/53*I,n=52 9421181827934135 m001 1/exp(GAMMA(11/24))*Artin^2/arctan(1/2)^2 9421181837011991 a001 1/41*2207^(28/59) 9421181838764515 r002 27th iterates of z^2 + 9421181858970461 r005 Re(z^2+c),c=4/21+5/19*I,n=31 9421181860922617 a007 Real Root Of 499*x^4-615*x^3-109*x^2-132*x-935 9421181898988792 s001 sum(exp(-4*Pi/5)^n*A278500[n],n=1..infinity) 9421181914503764 a007 Real Root Of -704*x^4-551*x^3-726*x^2-82*x+661 9421181916751100 r009 Re(z^3+c),c=-19/40+22/39*I,n=48 9421181936822448 m001 (sin(1/12*Pi)-DuboisRaymond)/(Rabbit-Trott2nd) 9421181964027644 a001 987/1364*322^(4/9) 9421181970373341 m002 -6+6/ProductLog[Pi]+Pi^2*Tanh[Pi] 9421181988046740 a003 sin(Pi*34/87)/sin(Pi*27/55) 9421181990503651 a005 (1/cos(7/124*Pi))^1744 9421181993332901 m001 sqrt(3)^(1/2)-Artin 9421181995121501 m005 (1/3*5^(1/2)+2/5)/(5/8*5^(1/2)-2/11) 9421182013144827 a005 (1/sin(37/155*Pi))^138 9421182024471344 a007 Real Root Of 568*x^4-397*x^3+90*x^2-144*x-995 9421182026980348 m001 (1+Si(Pi))/(Ei(1,1)+FransenRobinson) 9421182029386871 h001 (1/9*exp(2)+3/5)/(5/11*exp(1)+3/11) 9421182066418669 m001 (MertensB1+Riemann2ndZero)/(exp(Pi)+ln(gamma)) 9421182067338578 r005 Im(z^2+c),c=-35/102+27/40*I,n=9 9421182088736248 r002 14i'th iterates of 2*x/(1-x^2) of 9421182105890521 r009 Im(z^3+c),c=-5/98+16/17*I,n=3 9421182109693884 m001 1/GAMMA(1/3)^2*exp(Artin)/arctan(1/2)^2 9421182115566088 s001 sum(exp(-4*Pi/5)^n*A090193[n],n=1..infinity) 9421182118350819 m001 log(1+sqrt(2))^2/Salem^2*exp(sin(Pi/12))^2 9421182129669682 a007 Real Root Of 729*x^4-485*x^3+145*x^2+612*x-532 9421182133245298 r009 Im(z^3+c),c=-1/44+33/35*I,n=3 9421182142216621 k001 Champernowne real with 240*n+702 9421182145505048 m001 gamma(1)/(BesselK(1,1)-exp(1/Pi)) 9421182158675480 r005 Im(z^2+c),c=-37/60+7/40*I,n=48 9421182177165376 m001 ln(3)^ln(2+3^(1/2))*FeigenbaumB 9421182200066334 r002 3th iterates of z^2 + 9421182258585312 g001 Re(GAMMA(61/15+I*46/15)) 9421182262591518 r005 Re(z^2+c),c=-19/40+33/34*I,n=3 9421182266009852 q001 153/1624 9421182266009852 q001 765/812 9421182266009852 r002 2th iterates of z^2 + 9421182266009852 r002 2th iterates of z^2 + 9421182266009852 r002 2th iterates of z^2 + 9421182266009852 r002 2th iterates of z^2 + 9421182266009852 r005 Im(z^2+c),c=-31/28+45/58*I,n=2 9421182269619612 r005 Re(z^2+c),c=-31/34+29/110*I,n=23 9421182283281690 p004 log(27827/10847) 9421182299855717 h001 (-4*exp(1)-9)/(-11*exp(3)+10) 9421182303843921 m001 GAMMA(1/6)*exp(Kolakoski)^2*sin(Pi/5)^2 9421182313477980 m005 (1/2*5^(1/2)+7/10)/(3/7*Pi+7/12) 9421182324721258 a001 610/521*843^(13/42) 9421182330752874 m005 (1/2*Catalan-1/3)/(4/7*3^(1/2)+1/3) 9421182333287103 r002 26th iterates of z^2 + 9421182337507689 r009 Re(z^3+c),c=-15/86+19/28*I,n=46 9421182349910691 l004 sinh(707/104*Pi) 9421182349910691 l004 cosh(707/104*Pi) 9421182373996048 k002 Champernowne real with 43/2*n^2-63/2*n+19 9421182384036148 k003 Champernowne real with 1/6*n^3+41/2*n^2-89/3*n+18 9421182384074908 a007 Real Root Of -516*x^4+690*x^3-157*x^2-400*x+746 9421182386324393 r002 6th iterates of z^2 + 9421182404116349 k003 Champernowne real with 1/2*n^3+37/2*n^2-26*n+16 9421182412877114 a001 9349/377*514229^(13/47) 9421182418286791 a007 Real Root Of -848*x^4+281*x^3+403*x^2-737*x-149 9421182424196549 k003 Champernowne real with 5/6*n^3+33/2*n^2-67/3*n+14 9421182434236649 k003 Champernowne real with n^3+31/2*n^2-41/2*n+13 9421182444276749 k003 Champernowne real with 7/6*n^3+29/2*n^2-56/3*n+12 9421182464356941 k003 Champernowne real with 3/2*n^3+25/2*n^2-15*n+10 9421182474397041 k003 Champernowne real with 5/3*n^3+23/2*n^2-79/6*n+9 9421182484437141 k003 Champernowne real with 11/6*n^3+21/2*n^2-34/3*n+8 9421182484535970 r005 Re(z^2+c),c=-53/102+37/59*I,n=4 9421182494477241 k003 Champernowne real with 2*n^3+19/2*n^2-19/2*n+7 9421182504517341 k003 Champernowne real with 13/6*n^3+17/2*n^2-23/3*n+6 9421182513283537 a007 Real Root Of -353*x^4+324*x^3+939*x^2-47*x-782 9421182514557441 k003 Champernowne real with 7/3*n^3+15/2*n^2-35/6*n+5 9421182524597541 k003 Champernowne real with 5/2*n^3+13/2*n^2-4*n+4 9421182532628618 a007 Real Root Of 685*x^4-256*x^3-462*x^2+196*x-159 9421182534637641 k003 Champernowne real with 8/3*n^3+11/2*n^2-13/6*n+3 9421182538173694 a001 987/2207*322^(19/36) 9421182538785425 a003 sin(Pi*9/32)/sin(Pi*34/111) 9421182543274660 a007 Real Root Of 336*x^4-318*x^3-275*x^2-683*x-930 9421182544677741 k003 Champernowne real with 17/6*n^3+9/2*n^2-1/3*n+2 9421182554717841 k003 Champernowne real with 3*n^3+7/2*n^2+3/2*n+1 9421182564757941 k003 Champernowne real with 19/6*n^3+5/2*n^2+10/3*n 9421182574798041 k003 Champernowne real with 10/3*n^3+3/2*n^2+31/6*n-1 9421182580251114 m001 MertensB2^PrimesInBinary/OneNinth 9421182584838141 k003 Champernowne real with 7/2*n^3+1/2*n^2+7*n-2 9421182594878241 k003 Champernowne real with 11/3*n^3-1/2*n^2+53/6*n-3 9421182604918341 k003 Champernowne real with 23/6*n^3-3/2*n^2+32/3*n-4 9421182614958441 k003 Champernowne real with 4*n^3-5/2*n^2+25/2*n-5 9421182624998541 k003 Champernowne real with 25/6*n^3-7/2*n^2+43/3*n-6 9421182635038641 k003 Champernowne real with 13/3*n^3-9/2*n^2+97/6*n-7 9421182637017733 a007 Real Root Of 574*x^4+48*x^3+128*x^2-219*x-732 9421182645078741 k003 Champernowne real with 9/2*n^3-11/2*n^2+18*n-8 9421182675199041 k003 Champernowne real with 5*n^3-17/2*n^2+47/2*n-11 9421182679141614 m005 (1/2*Catalan-5/9)/(5/9*2^(1/2)+1/4) 9421182705319341 k003 Champernowne real with 11/2*n^3-23/2*n^2+29*n-14 9421182735439641 k003 Champernowne real with 6*n^3-29/2*n^2+69/2*n-17 9421182737101814 m002 E^Pi/Pi^5+(Csch[Pi]*ProductLog[Pi])/5 9421182743450521 b008 1+68*SinIntegral[Pi/2] 9421182747668330 r005 Re(z^2+c),c=11/114+3/35*I,n=8 9421182765559941 k003 Champernowne real with 13/2*n^3-35/2*n^2+40*n-20 9421182767183825 r005 Im(z^2+c),c=49/118+17/61*I,n=4 9421182768184052 a007 Real Root Of 728*x^4-202*x^3+522*x^2+246*x-974 9421182783286172 a003 cos(Pi*17/95)+cos(Pi*23/49) 9421182788854739 a003 cos(Pi*2/61)*sin(Pi*40/101) 9421182795671024 k003 Champernowne real with 7*n^3-41/2*n^2+91/2*n-23 9421182821342150 m001 exp(-1/2*Pi)*RenyiParking/ZetaQ(4) 9421182822637851 m001 (ln(2+3^(1/2))+Bloch)/(FeigenbaumKappa+Landau) 9421182825791054 k003 Champernowne real with 15/2*n^3-47/2*n^2+51*n-26 9421182831585324 r005 Re(z^2+c),c=-25/23+8/53*I,n=62 9421182855911084 k003 Champernowne real with 8*n^3-53/2*n^2+113/2*n-29 9421182857362662 a007 Real Root Of -70*x^4-663*x^3-96*x^2-600*x-73 9421182886031114 k003 Champernowne real with 17/2*n^3-59/2*n^2+62*n-32 9421182916151144 k003 Champernowne real with 9*n^3-65/2*n^2+135/2*n-35 9421182917762384 a007 Real Root Of 427*x^4-229*x^3+99*x^2+868*x+202 9421182929592404 a003 sin(Pi*26/73)/sin(Pi*40/99) 9421182937850604 m005 (1/3*Zeta(3)-2/3)/(1/8*2^(1/2)-3) 9421182946271174 k003 Champernowne real with 19/2*n^3-71/2*n^2+73*n-38 9421182971208942 m001 (2^(1/3)-3^(1/3))/(-Zeta(1/2)+Weierstrass) 9421182971506116 a001 2584/521*322^(1/9) 9421182972819094 a007 Real Root Of -449*x^4+459*x^3+429*x^2+428*x+760 9421182976391204 k003 Champernowne real with 10*n^3-77/2*n^2+157/2*n-41 9421182991143817 r005 Re(z^2+c),c=-7/110+29/33*I,n=8 9421183006511234 k003 Champernowne real with 21/2*n^3-83/2*n^2+84*n-44 9421183009651511 m001 ln(5)^ln(2+3^(1/2))/(ln(5)^(3^(1/3))) 9421183009651511 m001 ln(5)^ln(2+sqrt(3))/(ln(5)^(3^(1/3))) 9421183025817226 m005 (1/2*exp(1)-4/5)/(7/9*Zeta(3)+5) 9421183036631264 k003 Champernowne real with 11*n^3-89/2*n^2+179/2*n-47 9421183039544153 a007 Real Root Of -572*x^4-235*x^3-31*x^2-110*x+178 9421183066751294 k003 Champernowne real with 23/2*n^3-95/2*n^2+95*n-50 9421183087873568 r009 Re(z^3+c),c=-7/106+34/41*I,n=4 9421183099270933 r009 Re(z^3+c),c=-21/38+24/49*I,n=30 9421183142039057 a007 Real Root Of 83*x^4+764*x^3-236*x^2-651*x-203 9421183142416651 k001 Champernowne real with 241*n+701 9421183199032225 a001 843/13*3^(17/50) 9421183207598430 a007 Real Root Of 831*x^4+831*x^3+956*x^2+81*x-732 9421183226091486 m001 Thue^(exp(1)/ZetaP(3)) 9421183233240406 r009 Re(z^3+c),c=-13/90+20/41*I,n=11 9421183237332945 r005 Re(z^2+c),c=-11/18+37/82*I,n=20 9421183246000835 m001 Champernowne/Lehmer*ZetaP(2) 9421183247417041 r005 Re(z^2+c),c=-1/22+29/46*I,n=23 9421183251774343 r005 Re(z^2+c),c=-3/17+46/61*I,n=12 9421183283185690 r005 Im(z^2+c),c=3/19+33/46*I,n=6 9421183297294244 a008 Real Root of x^3-x^2-178*x-752 9421183324882043 a007 Real Root Of 608*x^4-257*x^3+755*x^2+587*x-811 9421183391773543 m001 (GAMMA(3/4)+FeigenbaumKappa)/Trott2nd 9421183393243615 m001 Chi(1)^gamma(1)*Chi(1)^HardyLittlewoodC5 9421183394782723 a007 Real Root Of 674*x^4-353*x^3+302*x^2-408*x+36 9421183413562501 a007 Real Root Of 395*x^4-668*x^3+124*x^2+115*x+29 9421183443274096 p002 log(3^(3/7)-10^(1/12)) 9421183444942902 a007 Real Root Of 461*x^4-406*x^3-154*x^2-864*x+927 9421183510975162 a001 1/15449*(1/2*5^(1/2)+1/2)^28*7^(7/19) 9421183530178402 a007 Real Root Of -883*x^4-931*x^3-391*x^2-118*x+153 9421183562218732 r009 Re(z^3+c),c=-17/98+35/51*I,n=50 9421183566624422 r002 2th iterates of z^2 + 9421183568145466 a007 Real Root Of 906*x^4-950*x^3-21*x^2+613*x-912 9421183587281258 s002 sum(A205126[n]/(n^2*pi^n+1),n=1..infinity) 9421183589678718 a001 3571/144*89^(47/58) 9421183589684108 a007 Real Root Of -517*x^4+784*x^3+872*x^2+655*x+906 9421183602644524 r005 Re(z^2+c),c=-17/18+5/169*I,n=5 9421183607193523 a001 233/5778*843^(17/21) 9421183624655703 r009 Re(z^3+c),c=-9/58+34/61*I,n=34 9421183628969390 s002 sum(A115279[n]/(exp(2*pi*n)+1),n=1..infinity) 9421183635985972 r002 27th iterates of z^2 + 9421183650749355 a001 514229/11*24476^(51/52) 9421183674338087 a003 cos(Pi*12/109)/sin(Pi*57/118) 9421183681245637 a001 233/3571*843^(31/42) 9421183685522145 a007 Real Root Of -786*x^4-56*x^3-189*x^2+158*x+889 9421183698476837 r005 Re(z^2+c),c=1/44+37/54*I,n=9 9421183711668966 b008 Cosh[5*ArcSec[16]] 9421183726535906 s002 sum(A279393[n]/(exp(2*pi*n)+1),n=1..infinity) 9421183726535912 s002 sum(A182288[n]/(exp(2*pi*n)+1),n=1..infinity) 9421183727174874 s002 sum(A087879[n]/(exp(2*pi*n)+1),n=1..infinity) 9421183728891080 a001 521/2178309*55^(13/38) 9421183764121157 a007 Real Root Of -623*x^4-726*x^3+320*x^2+893*x+441 9421183769866864 a003 sin(Pi*5/81)/sin(Pi*4/61) 9421183783726765 m001 1/Sierpinski^2*exp(Kolakoski)^2*GAMMA(17/24) 9421183812607541 a007 Real Root Of -810*x^4+56*x^3+293*x^2+240*x+651 9421183818093431 r009 Re(z^3+c),c=-5/126+31/48*I,n=10 9421183845641173 a007 Real Root Of -841*x^4-657*x^3-304*x^2+17*x+399 9421183859813359 p002 log(1/5*(5^(1/3)+9^(2/3))^(1/2)*5^(1/2)) 9421183876909982 l006 ln(451/1157) 9421183969177309 m001 exp(GAMMA(1/12))^2*Riemann1stZero/Zeta(1/2) 9421184036062794 p001 sum((-1)^n/(558*n+305)/n/(12^n),n=1..infinity) 9421184036402317 a007 Real Root Of 698*x^4+213*x^3-482*x^2-103*x-41 9421184061628209 m005 (1/2*Zeta(3)+7/11)/(3/4*5^(1/2)-4/11) 9421184065638939 r002 62th iterates of z^2 + 9421184090832029 a007 Real Root Of -83*x^4-732*x^3+481*x^2+67*x-286 9421184100941022 a001 144/167761*3^(5/59) 9421184106769331 a007 Real Root Of 257*x^4-584*x^3+476*x^2+513*x-630 9421184128166122 k006 concat of cont frac of 9421184142616681 k005 Champernowne real with floor(Pi*(77*n+223)) 9421184142616681 k001 Champernowne real with 242*n+700 9421184162522750 a001 610/3571*199^(10/31) 9421184202143942 p003 LerchPhi(1/100,3,199/195) 9421184212864877 s002 sum(A213631[n]/(exp(2*pi*n)-1),n=1..infinity) 9421184213547106 s002 sum(A242589[n]/(exp(2*pi*n)-1),n=1..infinity) 9421184243127953 a003 sin(Pi*16/83)/cos(Pi*27/92) 9421184257495078 m001 (HardyLittlewoodC3-Thue)/(ThueMorse-ZetaP(3)) 9421184261373896 s002 sum(A232057[n]/(exp(2*pi*n)-1),n=1..infinity) 9421184323990576 a007 Real Root Of -173*x^4+901*x^3-586*x^2+52*x-146 9421184327077112 r002 56th iterates of z^2 + 9421184335602712 m001 (ln(3)+1)/(-Pi^(1/2)+4) 9421184347998113 m001 GAMMA(23/24)/(3^(1/3))/ln(GAMMA(5/12)) 9421184358939186 s002 sum(A031093[n]/(exp(2*pi*n)-1),n=1..infinity) 9421184361172811 a007 Real Root Of 80*x^4-95*x^3+790*x^2+75*x-773 9421184371389142 s001 sum(exp(-4*Pi/5)^n*A240592[n],n=1..infinity) 9421184378254145 m001 LandauRamanujan^Trott2nd*ZetaR(2)^Trott2nd 9421184388482373 r009 Im(z^3+c),c=-19/86+23/24*I,n=17 9421184389085667 m002 -Pi^2/3+Pi^4+ProductLog[Pi]*Sech[Pi] 9421184390057132 a007 Real Root Of -205*x^4+777*x^3-678*x^2+832*x-73 9421184414152051 b008 5*BesselK[1,EulerGamma]^2 9421184421698639 m005 (5/6*2^(1/2)-2/3)/(3/4*gamma+5) 9421184439310260 a007 Real Root Of 296*x^4+287*x^3+837*x^2-71*x-803 9421184477574315 m009 (8/5*Catalan+1/5*Pi^2-5)/(3/4*Psi(1,3/4)-1/4) 9421184481933110 r005 Im(z^2+c),c=-15/34+7/44*I,n=15 9421184519293721 m005 (1/3*5^(1/2)+2/9)/(5/8*Catalan+5/11) 9421184535467189 m001 exp(Riemann1stZero)^2*Magata*Zeta(1/2) 9421184550611590 s002 sum(A158927[n]/(exp(pi*n)-1),n=1..infinity) 9421184582214098 a007 Real Root Of -539*x^4-243*x^3-561*x^2+110*x+823 9421184601889054 s002 sum(A053151[n]/(10^n+1),n=1..infinity) 9421184605523501 s002 sum(A285226[n]/(exp(2*pi*n)-1),n=1..infinity) 9421184630532361 m001 (-OneNinth+Trott)/(3^(1/2)-CareFree) 9421184640237884 m001 cos(1)*Conway/RenyiParking 9421184656348080 a007 Real Root Of 695*x^4+883*x^3+381*x^2+219*x+59 9421184664325238 a007 Real Root Of 363*x^4-413*x^3+941*x^2+647*x-857 9421184681653336 r009 Re(z^3+c),c=-19/52+22/35*I,n=38 9421184693805385 r005 Im(z^2+c),c=-25/21+3/28*I,n=30 9421184712391893 r005 Im(z^2+c),c=13/64+11/20*I,n=25 9421184713221366 a007 Real Root Of -942*x^4+121*x^3-907*x^2-737*x+954 9421184752411798 r005 Re(z^2+c),c=-11/10+7/106*I,n=40 9421184759494230 a007 Real Root Of 454*x^4+910*x^3+942*x^2-66*x-495 9421184767716309 a007 Real Root Of -707*x^4-5*x^3+509*x^2+916*x+964 9421184828656667 h001 (5/12*exp(1)+1/2)/(2/9*exp(2)+1/11) 9421184851212309 r002 11th iterates of z^2 + 9421184851212309 r002 11th iterates of z^2 + 9421184854422315 m005 (1/2*Pi-7/10)/(3*Pi-2/11) 9421184902584788 a001 123/196418*28657^(14/53) 9421184914404846 m001 (DuboisRaymond+Mills)/(Si(Pi)-sin(1/12*Pi)) 9421184921817761 m001 (-Pi^(1/2)+2/3)/GAMMA(19/24) 9421184921817761 m001 (2/3-sqrt(Pi))/GAMMA(19/24) 9421184938196582 m001 (FeigenbaumD-Kac)/(PisotVijayaraghavan+Thue) 9421184943747726 m001 (-Kac+ZetaP(2))/(1+sin(1)) 9421184944120112 a001 233/9349*843^(37/42) 9421184986733260 r002 29th iterates of z^2 + 9421184987414225 m001 1/Zeta(5)^2/FibonacciFactorial/ln(sqrt(5)) 9421185001356712 a007 Real Root Of -305*x^4+529*x^3+73*x^2-210*x+420 9421185020579580 a007 Real Root Of 222*x^4-220*x^3+21*x^2-664*x+616 9421185054080599 r001 4i'th iterates of 2*x^2-1 of 9421185077948067 p001 sum((-1)^n/(199*n+106)/(256^n),n=0..infinity) 9421185086979753 a001 11/5*377^(19/30) 9421185096872398 r002 39th iterates of z^2 + 9421185135635905 h001 (9/10*exp(2)+4/9)/(1/6*exp(1)+3/10) 9421185142816711 k001 Champernowne real with 243*n+699 9421185143454584 a007 Real Root Of 268*x^4-558*x^3+99*x^2+836*x+22 9421185162977600 a001 1/40446*(1/2*5^(1/2)+1/2)^30*7^(7/19) 9421185170559664 r005 Re(z^2+c),c=-7/6+58/225*I,n=8 9421185178910286 a007 Real Root Of 694*x^4-940*x^3-696*x^2+708*x-48 9421185180477314 m001 1/RenyiParking^2/exp(Cahen)*Zeta(9) 9421185187866200 a007 Real Root Of -628*x^4+506*x^3-256*x^2-534*x+642 9421185242642172 m001 (GAMMA(17/24)-Paris)/(arctan(1/3)-Zeta(1,2)) 9421185288839065 a007 Real Root Of -667*x^4-137*x^3-172*x^2-422*x+166 9421185304004026 a007 Real Root Of -408*x^4-71*x^3-91*x^2-3*x+340 9421185339540717 m001 gamma(2)+FibonacciFactorial*StronglyCareFree 9421185357857288 m002 -4-Pi^6+2*Cosh[Pi]*Coth[Pi] 9421185366947480 m001 GAMMA(19/24)/Lehmer/Riemann2ndZero 9421185374184023 a007 Real Root Of 102*x^4-700*x^3-607*x^2+367*x+698 9421185377300302 r005 Im(z^2+c),c=-87/122+5/8*I,n=3 9421185383624026 a007 Real Root Of 536*x^4-873*x^3+310*x^2-805*x+791 9421185390362399 m002 -4-6/Pi^3+Pi^4+Tanh[Pi] 9421185400336605 a007 Real Root Of -326*x^4+535*x^3-528*x^2-711*x+503 9421185404001556 a001 1/105889*(1/2*5^(1/2)+1/2)^32*7^(7/19) 9421185419380473 a007 Real Root Of 776*x^4-62*x^3+113*x^2+389*x-397 9421185426881073 r005 Re(z^2+c),c=-17/18+3/106*I,n=15 9421185431793837 a007 Real Root Of -985*x^4+143*x^3+541*x^2+525*x+910 9421185431865888 r005 Im(z^2+c),c=-3/29+43/63*I,n=21 9421185445173364 a001 1/7*(1/2*5^(1/2)+1/2)^12*7^(7/19) 9421185447932837 r005 Re(z^2+c),c=-47/74+21/53*I,n=20 9421185510027287 m001 1/exp(GAMMA(7/12))*Conway/sqrt(3)^2 9421185519958325 a007 Real Root Of -857*x^4+760*x^3+782*x^2+198*x-841 9421185524025989 r002 50th iterates of z^2 + 9421185552962559 a001 1/65443*(1/2*5^(1/2)+1/2)^31*7^(7/19) 9421185554124135 m005 (1/24+1/6*5^(1/2))/(5*Catalan-2/11) 9421185605056835 m005 (1/2*exp(1)+2/7)/(4/5*gamma-7/11) 9421185639282507 m001 (Kolakoski-LandauRamanujan)/(Pi-gamma(1)) 9421185666533868 a007 Real Root Of 858*x^4-252*x^3-190*x^2+777*x+14 9421185671144258 a008 Real Root of (-1-x+x^2+x^4-x^5-x^6-x^8-x^10-x^12) 9421185686218392 a007 Real Root Of -651*x^4+705*x^3+496*x^2-723*x-19 9421185711537053 r002 4th iterates of z^2 + 9421185721489603 r005 Re(z^2+c),c=-77/106+17/45*I,n=6 9421185726327620 q001 3353/3559 9421185727593076 a007 Real Root Of 740*x^4-257*x^3-784*x^2+207*x+93 9421185742100893 a001 233/15127*843^(20/21) 9421185755890591 a007 Real Root Of -810*x^4-157*x^3-42*x^2+434*x+953 9421185777764179 r005 Im(z^2+c),c=-7/78+18/23*I,n=12 9421185781605562 a007 Real Root Of -227*x^4+421*x^3+152*x^2+54*x-359 9421185785309416 a001 377/1364*322^(11/18) 9421185796060499 r005 Im(z^2+c),c=-73/126+5/29*I,n=41 9421185811975414 s002 sum(A053088[n]/(10^n+1),n=1..infinity) 9421185842178908 a001 1292/2889*322^(19/36) 9421185858537658 a007 Real Root Of 674*x^4+293*x^3-410*x^2-744*x-623 9421185862619014 v002 sum(1/(3^n*(16*n^2+16*n+9)),n=1..infinity) 9421185891774127 q001 8/84915 9421185900887956 r005 Re(z^2+c),c=-13/14+10/87*I,n=39 9421185912154563 m001 GAMMA(17/24)/exp(Bloch)*sinh(1) 9421185917499377 a007 Real Root Of -670*x^4+738*x^3-126*x^2-781*x+521 9421185928285229 r002 43i'th iterates of 2*x/(1-x^2) of 9421185960149751 r009 Im(z^3+c),c=-5/29+46/51*I,n=27 9421185982010416 r008 a(0)=1,K{-n^6,10+37*n+19*n^2-49*n^3} 9421186000778918 r002 31th iterates of z^2 + 9421186012899634 a007 Real Root Of 444*x^4-528*x^3-24*x^2+881*x+60 9421186018457410 a001 161/98209*55^(24/55) 9421186038523927 m002 -Pi-Sinh[Pi]-Tanh[Pi]+Pi^6*Tanh[Pi] 9421186071469087 a007 Real Root Of -875*x^4+364*x^3+341*x^2+260*x+936 9421186112362793 a001 233/1364*843^(25/42) 9421186112711221 k007 concat of cont frac of 9421186113864195 m001 LambertW(1)*ln(CareFree)^2/exp(1)^2 9421186124912358 a007 Real Root Of -772*x^4-195*x^3-279*x^2+186*x+868 9421186128857459 a007 Real Root Of -447*x^4-150*x^3+682*x^2+715*x+295 9421186138302283 l006 ln(3822/9805) 9421186143016741 k001 Champernowne real with 244*n+698 9421186165154003 a007 Real Root Of 79*x^4-964*x^3-960*x^2+640*x+993 9421186176682768 m001 BesselJ(1,1)/cos(1/5*Pi)*3^(1/2) 9421186176682768 m001 sqrt(3)/cos(Pi/5)*BesselJ(1,1) 9421186183971546 a001 1/24997*(1/2*5^(1/2)+1/2)^29*7^(7/19) 9421186184299729 a007 Real Root Of -724*x^4-434*x^3+32*x^2+502*x+652 9421186192768101 m001 HeathBrownMoroz+arctan(1/3)^ZetaQ(2) 9421186221331121 k007 concat of cont frac of 9421186282602931 m008 (3/5*Pi^3-4)/(1/2*Pi^5+2) 9421186293696569 a007 Real Root Of 16*x^4+154*x^3+9*x^2-183*x+204 9421186309922830 a007 Real Root Of 168*x^4-392*x^3+326*x^2+95*x-660 9421186324226869 a001 6765/15127*322^(19/36) 9421186328075928 r002 40th iterates of z^2 + 9421186346321133 r005 Re(z^2+c),c=-11/10+7/106*I,n=36 9421186355361247 m001 sin(1)^(2*Pi/GAMMA(5/6))-PisotVijayaraghavan 9421186359455699 a001 377/2207*322^(25/36) 9421186362119130 m001 ln(GAMMA(2/3))^2/GAMMA(19/24)^2/sin(1)^2 9421186367456670 r002 33th iterates of z^2 + 9421186388491380 a007 Real Root Of 90*x^4-926*x^3-91*x^2+182*x-593 9421186391487797 a007 Real Root Of -368*x^4+592*x^3-45*x^2+50*x+872 9421186394556720 a001 17711/39603*322^(19/36) 9421186404817708 a001 23184/51841*322^(19/36) 9421186406314765 a001 121393/271443*322^(19/36) 9421186406533183 a001 317811/710647*322^(19/36) 9421186406565050 a001 416020/930249*322^(19/36) 9421186406569699 a001 2178309/4870847*322^(19/36) 9421186406572573 a001 1346269/3010349*322^(19/36) 9421186406584745 a001 514229/1149851*322^(19/36) 9421186406668173 a001 98209/219602*322^(19/36) 9421186407239998 a001 75025/167761*322^(19/36) 9421186407344915 m001 (cos(1/5*Pi)-Artin)/(ArtinRank2-CopelandErdos) 9421186411159346 a001 28657/64079*322^(19/36) 9421186412561675 m005 (1/2*2^(1/2)-3/8)/(2/5*Zeta(3)-5/6) 9421186438022960 a001 5473/12238*322^(19/36) 9421186440849834 l006 ln(3371/8648) 9421186442500301 a007 Real Root Of -613*x^4+25*x^3-243*x^2-924*x-151 9421186461911083 s002 sum(A029855[n]/(n*exp(n)-1),n=1..infinity) 9421186467352516 r002 35th iterates of z^2 + 9421186483253866 a008 Real Root of x^4-x^3-26*x^2+170*x-4805 9421186487227954 r009 Re(z^3+c),c=-57/94+23/38*I,n=7 9421186488943799 r002 37th iterates of z^2 + 9421186492239148 r005 Re(z^2+c),c=-17/18+3/106*I,n=31 9421186492240173 r005 Re(z^2+c),c=-17/18+3/106*I,n=33 9421186492243676 r005 Re(z^2+c),c=-17/18+3/106*I,n=35 9421186492245169 r005 Re(z^2+c),c=-17/18+3/106*I,n=37 9421186492245614 r005 Re(z^2+c),c=-17/18+3/106*I,n=39 9421186492245716 r002 53th iterates of z^2 + 9421186492245719 r005 Re(z^2+c),c=-17/18+3/106*I,n=41 9421186492245721 r002 55th iterates of z^2 + 9421186492245733 r002 57th iterates of z^2 + 9421186492245738 r002 59th iterates of z^2 + 9421186492245739 r005 Re(z^2+c),c=-17/18+3/106*I,n=43 9421186492245739 r002 61th iterates of z^2 + 9421186492245740 r002 63th iterates of z^2 + 9421186492245740 r005 Re(z^2+c),c=-17/18+3/106*I,n=59 9421186492245740 r005 Re(z^2+c),c=-17/18+3/106*I,n=61 9421186492245740 r005 Re(z^2+c),c=-17/18+3/106*I,n=57 9421186492245740 r005 Re(z^2+c),c=-17/18+3/106*I,n=63 9421186492245740 r005 Re(z^2+c),c=-17/18+3/106*I,n=55 9421186492245740 r005 Re(z^2+c),c=-17/18+3/106*I,n=53 9421186492245740 r005 Re(z^2+c),c=-17/18+3/106*I,n=51 9421186492245740 r005 Re(z^2+c),c=-17/18+3/106*I,n=49 9421186492245740 r005 Re(z^2+c),c=-17/18+3/106*I,n=47 9421186492245740 r005 Re(z^2+c),c=-17/18+3/106*I,n=45 9421186492245868 r002 51th iterates of z^2 + 9421186492247031 r002 49th iterates of z^2 + 9421186492252902 r002 47th iterates of z^2 + 9421186492276160 r002 45th iterates of z^2 + 9421186492288135 r005 Re(z^2+c),c=-17/18+3/106*I,n=29 9421186492326536 r002 39th iterates of z^2 + 9421186492347952 r002 43th iterates of z^2 + 9421186492487025 r002 41th iterates of z^2 + 9421186492654666 r005 Re(z^2+c),c=-17/18+3/106*I,n=27 9421186494486130 r005 Re(z^2+c),c=-17/18+3/106*I,n=25 9421186501680079 r005 Re(z^2+c),c=-17/18+3/106*I,n=23 9421186503054621 r005 Re(z^2+c),c=-13/14+10/87*I,n=41 9421186504274379 s001 sum(exp(-4*Pi/5)^n*A152855[n],n=1..infinity) 9421186505574385 s001 sum(exp(-4*Pi/5)^n*A218907[n],n=1..infinity) 9421186506602652 r005 Re(z^2+c),c=-17/18+3/106*I,n=17 9421186523639482 r005 Re(z^2+c),c=-17/18+3/106*I,n=21 9421186527890464 a007 Real Root Of 935*x^4-170*x^3-330*x^2+659*x+35 9421186564890919 r005 Re(z^2+c),c=-17/18+3/106*I,n=19 9421186578477983 a007 Real Root Of -434*x^4-131*x^3-436*x^2+248*x+853 9421186622148905 a001 4181/9349*322^(19/36) 9421186670933217 r005 Re(z^2+c),c=-11/10+7/106*I,n=44 9421186672278105 r002 8th iterates of z^2 + 9421186692522741 r005 Re(z^2+c),c=23/102+26/51*I,n=39 9421186698335490 a007 Real Root Of -121*x^4-382*x^3-231*x^2+517*x+468 9421186702609053 m001 1/GAMMA(17/24)*Backhouse*ln(Zeta(7)) 9421186711534611 m001 (KhinchinLevy-ZetaQ(2))/(Zeta(5)-Zeta(1,-1)) 9421186712846011 r002 54th iterates of z^2 + 9421186725152406 a007 Real Root Of 336*x^4-977*x^3-915*x^2+388*x+96 9421186735118335 a007 Real Root Of 902*x^4-752*x^3-600*x^2+503*x-333 9421186743478578 m001 BesselJ(0,1)^(MertensB1/GAMMA(19/24)) 9421186749180924 q001 2588/2747 9421186782676323 m001 GAMMA(1/4)/MinimumGamma^2/ln(GAMMA(7/12))^2 9421186822640388 m001 1/log(1+sqrt(2))^2/ln(Artin)^2*sin(1)^2 9421186836855554 l006 ln(2920/7491) 9421186849247783 r005 Re(z^2+c),c=-137/110+5/19*I,n=5 9421186859146069 a001 55/710647*47^(37/57) 9421186859395275 a007 Real Root Of 118*x^4-28*x^3+255*x^2+5*x-338 9421186904019906 a001 9349/2*3^(37/58) 9421186925810520 r002 39th iterates of z^2 + 9421186931684818 a007 Real Root Of 607*x^4-51*x^3+831*x^2+960*x-354 9421186972893006 r005 Im(z^2+c),c=10/27+21/44*I,n=3 9421186974825368 m005 (2/5*exp(1)+2/5)/(5/6+1/3*5^(1/2)) 9421186995996298 r005 Re(z^2+c),c=-11/10+7/106*I,n=50 9421187008013167 r002 30th iterates of z^2 + 9421187014265455 m001 (Shi(1)+gamma)/(-Kac+ZetaP(2)) 9421187015774235 r002 60th iterates of z^2 + 9421187018117173 r005 Re(z^2+c),c=-47/52+7/36*I,n=5 9421187019801373 m001 1/RenyiParking/ln(Kolakoski)^2/FeigenbaumD 9421187028463542 m001 (FeigenbaumAlpha-ZetaQ(2))/(Ei(1)+CareFree) 9421187035987093 m001 exp(GolombDickman)/Bloch*cosh(1)^2 9421187036517812 r005 Re(z^2+c),c=-11/10+7/106*I,n=54 9421187038532822 r002 64th iterates of z^2 + 9421187043309303 r005 Re(z^2+c),c=-19/17+1/57*I,n=4 9421187047036759 r005 Re(z^2+c),c=-11/10+7/106*I,n=60 9421187047808016 r005 Re(z^2+c),c=-11/10+7/106*I,n=64 9421187048795878 r005 Re(z^2+c),c=-11/10+7/106*I,n=58 9421187048872028 r005 Re(z^2+c),c=-11/10+7/106*I,n=62 9421187050658448 r005 Re(z^2+c),c=-11/10+7/106*I,n=56 9421187068105213 r002 58th iterates of z^2 + 9421187068662452 a007 Real Root Of 223*x^4-666*x^3+498*x^2+594*x-615 9421187069445231 r002 62th iterates of z^2 + 9421187077644606 r005 Re(z^2+c),c=-11/10+7/106*I,n=52 9421187083882266 h001 (7/11*exp(1)+4/5)/(1/3*exp(2)+2/9) 9421187090055212 r005 Re(z^2+c),c=-11/10+7/106*I,n=46 9421187099597588 m001 CareFree^(TreeGrowth2nd/Sierpinski) 9421187101280931 r005 Re(z^2+c),c=-11/10+7/106*I,n=48 9421187108248967 m001 (-cos(1/5*Pi)+Gompertz)/(LambertW(1)-exp(Pi)) 9421187119486680 r002 56th iterates of z^2 + 9421187121128416 k007 concat of cont frac of 9421187129883746 a003 sin(Pi*9/74)+sin(Pi*16/83) 9421187131128111 k006 concat of cont frac of 9421187138600086 s002 sum(A129828[n]/(exp(2*pi*n)-1),n=1..infinity) 9421187141784200 a007 Real Root Of 894*x^4-637*x^3-908*x^2-18*x-448 9421187143216771 k001 Champernowne real with 245*n+697 9421187143216771 k005 Champernowne real with floor(Pi*(78*n+222)) 9421187147815363 r005 Im(z^2+c),c=-73/64+3/28*I,n=5 9421187205508122 a007 Real Root Of 730*x^4-658*x^3-102*x^2+159*x-885 9421187230444317 m001 (3^(1/2)-ln(2^(1/2)+1))/(-exp(1/Pi)+Bloch) 9421187289485332 r005 Re(z^2+c),c=-13/14+10/87*I,n=43 9421187300086390 a001 199/4181*5^(14/33) 9421187304275421 r009 Re(z^3+c),c=-31/98+35/53*I,n=54 9421187308927872 a007 Real Root Of 723*x^4-999*x^3-842*x^2+404*x-277 9421187317221876 r005 Re(z^2+c),c=-13/14+10/87*I,n=51 9421187325585814 r005 Re(z^2+c),c=-13/14+10/87*I,n=53 9421187329346333 a001 2/161*(1/2*5^(1/2)+1/2)^17*322^(3/23) 9421187344488015 r005 Re(z^2+c),c=-13/14+10/87*I,n=55 9421187347762313 r005 Re(z^2+c),c=-13/14+10/87*I,n=63 9421187348444785 r005 Re(z^2+c),c=41/90+10/31*I,n=8 9421187349186221 r005 Re(z^2+c),c=-13/14+10/87*I,n=61 9421187352071401 r005 Re(z^2+c),c=-13/14+10/87*I,n=59 9421187352838463 r005 Re(z^2+c),c=-13/14+10/87*I,n=57 9421187354623382 m001 (HeathBrownMoroz+ZetaP(4))/(Zeta(3)-Artin) 9421187365419100 r005 Re(z^2+c),c=-13/14+10/87*I,n=49 9421187377534056 l006 ln(2469/6334) 9421187385941121 m004 4*Sin[Sqrt[5]*Pi]+(125*Sin[Sqrt[5]*Pi])/(4*Pi) 9421187394953879 m001 (cos(1/12*Pi)+MertensB3)/(Si(Pi)+sin(1/5*Pi)) 9421187410457238 r005 Re(z^2+c),c=-13/14+10/87*I,n=37 9421187429816390 a007 Real Root Of 830*x^4-477*x^3-589*x^2+778*x+203 9421187465481032 a001 47*(1/2*5^(1/2)+1/2)^7*322^(11/15) 9421187468672210 a001 29/55*317811^(21/22) 9421187487953620 r005 Re(z^2+c),c=-13/14+10/87*I,n=47 9421187509108506 a007 Real Root Of x^4-68*x^3-333*x^2-443*x+769 9421187529585245 m001 (-Backhouse+Rabbit)/(1-exp(-1/2*Pi)) 9421187554395801 m001 (Artin+GaussAGM)/(Mills-Riemann1stZero) 9421187555056361 r009 Re(z^3+c),c=-21/122+25/38*I,n=36 9421187562427671 r005 Re(z^2+c),c=-13/14+10/87*I,n=45 9421187574608283 a007 Real Root Of 993*x^4-346*x^3-115*x^2+526*x-474 9421187575482092 a007 Real Root Of -231*x^4+357*x^3+340*x^2-91*x+93 9421187600604147 a007 Real Root Of -834*x^4+234*x^3-124*x^2-505*x+487 9421187615705854 a003 cos(Pi*5/82)-cos(Pi*58/119) 9421187623809615 a007 Real Root Of -961*x^4+538*x^3-145*x^2-524*x+842 9421187660084564 m002 -2-E^(2*Pi)/Pi^3+Pi^6 9421187662641302 a007 Real Root Of -672*x^4+283*x^3-126*x^2+50*x+925 9421187679712034 a003 cos(Pi*16/109)/cos(Pi*31/66) 9421187705664013 m001 (Psi(2,1/3)+CareFree)/(Stephens+ZetaQ(4)) 9421187725970157 r009 Re(z^3+c),c=-45/86+37/51*I,n=3 9421187742840591 a007 Real Root Of 329*x^4-765*x^3+277*x^2+177*x-978 9421187773168365 m001 Zeta(1,2)^exp(-Pi)*Zeta(1,2)^ln(1+sqrt(2)) 9421187782748286 m005 (1/2*Pi+4/7)/(exp(1)-4/9) 9421187790455255 r002 11th iterates of z^2 + 9421187806149292 a007 Real Root Of -181*x^4+869*x^3+983*x^2+687*x+644 9421187806197020 m001 1/BesselJ(1,1)*ln(Niven)*log(1+sqrt(2))^2 9421187837546966 m006 (1/2/Pi-2)/(5/6*ln(Pi)+1) 9421187859262549 a007 Real Root Of -966*x^4-126*x^3-354*x^2-486*x+512 9421187884167008 a001 1597/3571*322^(19/36) 9421187888427229 r005 Re(z^2+c),c=-65/74+7/45*I,n=46 9421187905013138 r002 52th iterates of z^2 + 9421187923297105 s002 sum(A106507[n]/(n^2*2^n-1),n=1..infinity) 9421187991879691 r008 a(0)=9,K{-n^6,-38+53*n-60*n^2+43*n^3} 9421188065152107 m001 1/Salem/KhintchineLevy*ln(Zeta(5))^2 9421188076785291 a001 18/89*832040^(45/47) 9421188078375476 a007 Real Root Of -752*x^4-713*x^3-403*x^2-157*x+206 9421188109424691 a001 1/41*843^(32/59) 9421188122929230 a007 Real Root Of -776*x^4+x^3+409*x^2+210*x+447 9421188128724714 m002 3-E^Pi+Pi^6+Tanh[Pi]/Log[Pi] 9421188143416801 k001 Champernowne real with 246*n+696 9421188159883470 l006 ln(2018/5177) 9421188167018176 a007 Real Root Of -805*x^4-490*x^3-135*x^2-410*x-42 9421188174314581 m005 (1/3*gamma-2/7)/(9/11*2^(1/2)-1/6) 9421188179026848 r005 Re(z^2+c),c=-11/10+7/106*I,n=42 9421188189683079 r002 46th iterates of z^2 + 9421188205526226 l006 ln(911/1001) 9421188206235700 a005 (1/cos(19/221*Pi))^809 9421188221111155 k007 concat of cont frac of 9421188221817959 m001 ZetaQ(2)^FeigenbaumAlpha+ZetaQ(3) 9421188251128668 m001 ln(5)*(Pi-Psi(2,1/3))+BesselJ(1,1) 9421188253022805 m008 (1/5*Pi^3+2/3)/(1/3*Pi^2+4) 9421188278718264 p001 sum((-1)^n/(484*n+105)/(16^n),n=0..infinity) 9421188305329678 a001 3461452808002/3*6765^(5/21) 9421188315132492 a001 9381251041*4052739537881^(5/21) 9421188315132492 a001 312119004989/3*165580141^(5/21) 9421188323653924 r005 Re(z^2+c),c=-71/78+5/31*I,n=19 9421188357964813 m001 ln(TreeGrowth2nd)^2*ErdosBorwein/GAMMA(1/12) 9421188380078596 a007 Real Root Of -52*x^4+667*x^3-932*x^2+908*x-545 9421188437109537 r002 2th iterates of z^2 + 9421188449937421 r009 Re(z^3+c),c=-23/62+40/59*I,n=32 9421188451149058 p001 sum((-1)^n/(503*n+106)/(128^n),n=0..infinity) 9421188465115422 a007 Real Root Of 316*x^4-806*x^3+252*x^2+646*x-538 9421188543917081 r005 Re(z^2+c),c=-15/16+3/38*I,n=19 9421188576209384 m002 -(Cosh[Pi]*Sinh[Pi])+3*Log[Pi]*Sinh[Pi] 9421188582938878 r005 Im(z^2+c),c=-5/4+17/106*I,n=8 9421188591877338 m002 -4+3/E^Pi+E^Pi-Pi^6 9421188598153399 r009 Im(z^3+c),c=-17/110+11/12*I,n=43 9421188603911793 a007 Real Root Of -800*x^4+54*x^3+521*x^2-657*x-406 9421188625409838 r002 48th iterates of z^2 + 9421188630490956 q001 1823/1935 9421188647452440 a007 Real Root Of -839*x^4-493*x^3-226*x^2+351*x+780 9421188647958922 m001 (sin(1/5*Pi)+ln(5))/(GAMMA(23/24)+Mills) 9421188650420427 g005 GAMMA(8/11)*GAMMA(8/9)*GAMMA(1/9)/GAMMA(3/4) 9421188672426887 r005 Im(z^2+c),c=-11/20+10/59*I,n=41 9421188698689768 l006 ln(3585/9197) 9421188702793114 h001 (2/11*exp(2)+4/7)/(5/7*exp(1)+1/11) 9421188706831872 r005 Im(z^2+c),c=-9/106+25/32*I,n=39 9421188725788623 m008 (2/3*Pi^6+1/4)/(3/4*Pi^4-5) 9421188749824068 m001 MasserGramain^(sin(1/12*Pi)/Ei(1)) 9421188778751722 s001 sum(exp(-4*Pi/5)^n*A268189[n],n=1..infinity) 9421188778752364 s001 sum(exp(-4*Pi/5)^n*A265247[n],n=1..infinity) 9421188815793728 r009 Im(z^3+c),c=-9/26+37/52*I,n=44 9421188829108253 a003 sin(Pi*47/116)*sin(Pi*37/83) 9421188839819045 a007 Real Root Of -351*x^4-502*x^3-684*x^2+343*x+787 9421188849188129 k006 concat of cont frac of 9421188864705509 m001 Zeta(5)^DuboisRaymond*Rabbit^DuboisRaymond 9421188870662293 m005 (1/2*exp(1)+7/10)/(10/11*2^(1/2)+9/10) 9421188882495661 a003 cos(Pi*1/39)*cos(Pi*9/85) 9421188910144076 r005 Re(z^2+c),c=-13/14+10/87*I,n=31 9421188926153321 m001 (-Paris+Tribonacci)/(Chi(1)-Khinchin) 9421188973123497 a008 Real Root of (-4-5*x^2+6*x^4+5*x^5) 9421189047662103 m005 (1/2*gamma-1/11)/(6/7*5^(1/2)+2/11) 9421189076602962 a003 sin(Pi*3/83)*sin(Pi*5/16) 9421189088290192 r005 Re(z^2+c),c=-13/14+25/221*I,n=11 9421189101597618 m004 -1-6*Log[Sqrt[5]*Pi]+5/ProductLog[Sqrt[5]*Pi] 9421189104618058 a007 Real Root Of 127*x^4-892*x^3-855*x^2+471*x+961 9421189143616831 k001 Champernowne real with 247*n+695 9421189144097983 a001 1364/13*1597^(25/41) 9421189161871276 r002 4th iterates of z^2 + 9421189235066628 m005 (1/2*exp(1)-8/9)/(5/12*Zeta(3)-1) 9421189237500847 m001 (gamma(1)-LandauRamanujan)/(MadelungNaCl-Thue) 9421189261397171 m001 gamma*BesselI(1,2)^GAMMA(11/12) 9421189292250524 a007 Real Root Of 287*x^4-911*x^3-556*x^2-456*x-924 9421189333608955 m005 (1/2*2^(1/2)-5/7)/(7/12*Zeta(3)-5/8) 9421189334049219 r005 Im(z^2+c),c=-85/106+2/43*I,n=62 9421189347417531 m009 (6*Psi(1,1/3)+1/3)/(16/3*Catalan+2/3*Pi^2-5) 9421189392570459 l006 ln(1567/4020) 9421189392807827 m001 (Paris+TwinPrimes)/(GAMMA(23/24)-FeigenbaumC) 9421189413290260 a007 Real Root Of -812*x^4+78*x^3-63*x^2-711*x+91 9421189417075974 m001 ln(Lehmer)^2*ArtinRank2^2/Riemann1stZero 9421189418291416 r009 Im(z^3+c),c=-9/25+1/23*I,n=9 9421189421777791 a007 Real Root Of -202*x^4+927*x^3+512*x^2+395*x+852 9421189423097255 m001 (3^(1/2)-Robbin)/(Sarnak+ThueMorse) 9421189425806230 r002 2th iterates of z^2 + 9421189431679394 a001 3461452808002/233*34^(11/21) 9421189502626036 a007 Real Root Of 501*x^4-369*x^3+132*x^2-180*x-990 9421189539126493 m005 (1/3*Catalan-2/3)/(4/5*Zeta(3)-1) 9421189553384615 a007 Real Root Of 467*x^4-223*x^3-73*x^2+439*x-76 9421189578810843 h001 (2/3*exp(2)+9/10)/(4/5*exp(2)+3/11) 9421189591810443 a001 710647/13*5702887^(12/13) 9421189598577160 r008 a(0)=1,K{-n^6,24+50*n-25*n^2-32*n^3} 9421189606308369 a001 228826127/13*10946^(12/13) 9421189618730543 a007 Real Root Of 243*x^4-861*x^3-407*x^2+118*x-439 9421189642240998 r005 Re(z^2+c),c=19/64+9/28*I,n=19 9421189662005385 s002 sum(A052775[n]/(n^2*10^n+1),n=1..infinity) 9421189663094049 a007 Real Root Of 881*x^4-4*x^3+567*x^2+524*x-707 9421189670479313 p004 log(22963/8951) 9421189685393032 a007 Real Root Of -906*x^4+385*x^3-558*x^2-847*x+733 9421189744337642 a007 Real Root Of -227*x^4+808*x^3+62*x^2-804*x+42 9421189810636317 a007 Real Root Of -719*x^4-936*x^3+368*x^2+883*x+289 9421189826559384 r005 Im(z^2+c),c=-3/34+40/51*I,n=63 9421189840070688 a007 Real Root Of 967*x^4-459*x^3-699*x^2-211*x-724 9421189845937582 a007 Real Root Of 428*x^4-368*x^3+599*x^2+923*x-307 9421189919774175 b008 5/6+Sqrt[2]/13 9421189978349610 m006 (3/4*Pi+1/6)/(5*exp(2*Pi)+2/5) 9421189997729611 a007 Real Root Of 81*x^4-775*x^3+576*x^2-622*x+659 9421190047683988 m001 (TwinPrimes+ZetaP(2))/(3^(1/3)-MertensB1) 9421190053479309 a007 Real Root Of 53*x^4-203*x^3+716*x^2+207*x-652 9421190098674699 r008 a(0)=1,K{-n^6,32-31*n^3-24*n^2+40*n} 9421190100082407 a007 Real Root Of 108*x^4+925*x^3-891*x^2-261*x-715 9421190119378092 r005 Re(z^2+c),c=-11/10+7/106*I,n=38 9421190123428555 a007 Real Root Of 464*x^4-344*x^3+511*x^2+557*x-582 9421190143816861 k001 Champernowne real with 248*n+694 9421190143816871 k005 Champernowne real with floor(Pi*(79*n+221)) 9421190175411277 a007 Real Root Of -229*x^4+65*x^3+456*x^2+360*x-38 9421190194165712 b008 Pi^2+PolyLog[2,-1/2] 9421190205575902 m001 PlouffeB^(DuboisRaymond*ThueMorse) 9421190230843854 a007 Real Root Of -585*x^4-823*x^3-190*x^2+921*x+809 9421190253189983 m001 (Riemann3rdZero-Robbin)/(FeigenbaumD-Paris) 9421190267603475 a007 Real Root Of 66*x^4-481*x^3-733*x^2+314*x+705 9421190267711151 a008 Real Root of (-3+2*x+4*x^2+4*x^4-9*x^8) 9421190272089801 m005 (1/2*Pi-7/8)/(7/176+5/16*5^(1/2)) 9421190286815333 r002 25th iterates of z^2 + 9421190299407314 h001 (8/11*exp(1)+7/9)/(7/8*exp(1)+6/11) 9421190302990326 a007 Real Root Of 745*x^4+182*x^3+590*x^2+494*x-493 9421190316052486 m001 1/ln(GAMMA(23/24))*Conway^2*sqrt(2) 9421190319727400 l006 ln(2683/6883) 9421190319727400 p004 log(6883/2683) 9421190320470896 q001 2881/3058 9421190363971047 r005 Re(z^2+c),c=-17/18+5/173*I,n=7 9421190372880367 m001 1/ln(Tribonacci)/FeigenbaumKappa/GAMMA(17/24) 9421190404227648 a007 Real Root Of 42*x^4-955*x^3+12*x^2+210*x+557 9421190410588596 a007 Real Root Of -907*x^4+115*x^3+829*x^2-19*x+57 9421190415826663 a007 Real Root Of 836*x^4-704*x^3-344*x^2+536*x-437 9421190473003167 r002 52th iterates of z^2 + 9421190495621920 m001 (exp(Pi)+ln(2))/(Grothendieck+RenyiParking) 9421190508973760 a001 1/9548*(1/2*5^(1/2)+1/2)^27*7^(7/19) 9421190540177371 r005 Re(z^2+c),c=-5/4+57/122*I,n=2 9421190540965879 a007 Real Root Of 208*x^4-432*x^3+470*x^2+168*x-784 9421190544160741 r005 Im(z^2+c),c=-117/82+1/39*I,n=12 9421190555780041 m001 (Catalan-GAMMA(7/12))/(PlouffeB+ZetaP(3)) 9421190569592656 m001 BesselI(1,1)^(3^(1/2))/(Trott^(3^(1/2))) 9421190585803401 m001 PisotVijayaraghavan/Paris*ln(Riemann1stZero)^2 9421190635380266 r004 Re(z^2+c),c=-19/22-3/17*I,z(0)=-1,n=51 9421190653811735 r005 Re(z^2+c),c=-57/62+13/54*I,n=63 9421190655412171 m001 cos(1)^2/ln(FransenRobinson)*gamma^2 9421190664794263 a007 Real Root Of -90*x^4-927*x^3-805*x^2-478*x+809 9421190702070869 m001 (ln(gamma)+MinimumGamma)/(OneNinth-Trott) 9421190702158259 l006 ln(3799/9746) 9421190731302119 m009 (6*Psi(1,2/3)-3/4)/(6*Psi(1,2/3)+1/3) 9421190755129589 r005 Re(z^2+c),c=1/6+13/56*I,n=11 9421190760567767 m006 (1/3*Pi^2-1/3)/(1/4*ln(Pi)-3/5) 9421190776971027 a003 cos(Pi*13/103)/sin(Pi*10/23) 9421190786370529 a007 Real Root Of -668*x^4+588*x^3-98*x^2-744*x+404 9421190805416248 m001 1/GAMMA(1/12)^2/exp(BesselK(1,1))/GAMMA(5/24) 9421190809441941 m005 (1/3*Pi-1/8)/(2/3*exp(1)-5/6) 9421190840943193 r008 a(0)=1,K{-n^6,46+21*n-20*n^2-30*n^3} 9421190845186001 a007 Real Root Of -302*x^4+582*x^3+307*x^2-324*x-216 9421190851918688 s002 sum(A281646[n]/(n*exp(pi*n)-1),n=1..infinity) 9421190920617777 r005 Re(z^2+c),c=-17/22+12/97*I,n=32 9421190956280935 a001 233/521*521^(19/39) 9421190966322445 a001 141/46*123^(7/30) 9421190996231294 a001 14619165/46*76^(18/23) 9421191010778183 r002 8th iterates of z^2 + 9421191011116431 k008 concat of cont frac of 9421191021213118 k006 concat of cont frac of 9421191024890078 r005 Re(z^2+c),c=7/64+13/25*I,n=31 9421191026458609 g005 GAMMA(1/11)*GAMMA(5/8)*GAMMA(3/7)/GAMMA(3/11) 9421191037363506 a005 (1/cos(25/194*Pi))^491 9421191085777147 m001 (arctan(1/2)-Sarnak)/(Sierpinski+ZetaP(3)) 9421191086402721 m001 (MertensB2-Otter)/(exp(-1/2*Pi)+FeigenbaumC) 9421191098066712 a007 Real Root Of 994*x^4+376*x^3-927*x^2-257*x+112 9421191105391931 s002 sum(A240460[n]/(n*exp(pi*n)-1),n=1..infinity) 9421191107417838 m001 (exp(1/Pi)+Kolakoski)/(ln(2)+ln(5)) 9421191113321391 k007 concat of cont frac of 9421191122427945 m001 (ZetaP(3)+ZetaP(4))/(ErdosBorwein-Totient) 9421191144016891 k001 Champernowne real with 249*n+693 9421191173221113 k008 concat of cont frac of 9421191174705461 b008 -1+(-1+Pi)/37 9421191246561007 a007 Real Root Of -801*x^4-416*x^3-297*x^2-211*x+348 9421191250496637 a007 Real Root Of 705*x^4+211*x^3-932*x^2-531*x-52 9421191256239777 a007 Real Root Of 192*x^4-927*x^3-295*x^2+940*x+221 9421191258206137 a003 sin(Pi*21/55)/sin(Pi*53/117) 9421191261122398 k007 concat of cont frac of 9421191267221076 a001 233/28143753123*3^(2/17) 9421191314804211 m001 (Riemann1stZero+Trott)/(GAMMA(23/24)+PlouffeB) 9421191318657150 m001 (sin(1)+Bloch)/(-DuboisRaymond+Riemann1stZero) 9421191345775653 m001 (AlladiGrinstead+Mills)/(5^(1/2)-gamma(2)) 9421191360638494 a007 Real Root Of -217*x^4+503*x^3+367*x^2+7*x-582 9421191371691618 s002 sum(A243718[n]/(n^3*exp(n)-1),n=1..infinity) 9421191373341211 k008 concat of cont frac of 9421191386016990 r005 Re(z^2+c),c=2/17+32/55*I,n=39 9421191392956040 a007 Real Root Of 380*x^4-955*x^3-891*x^2+119*x-195 9421191404763447 r002 26th iterates of z^2 + 9421191427535677 r009 Re(z^3+c),c=-9/58+34/61*I,n=32 9421191432579958 a007 Real Root Of 887*x^4-299*x^3-785*x^2-122*x-367 9421191438134095 r002 37th iterates of z^2 + 9421191445943730 a007 Real Root Of -391*x^4-77*x^3-252*x^2+161*x+619 9421191460948940 m005 (1/2*5^(1/2)-3/10)/(4/7*gamma-5/12) 9421191499242015 a007 Real Root Of 412*x^4-501*x^3-588*x^2+220*x+409 9421191501743723 r005 Re(z^2+c),c=-9/10+19/101*I,n=57 9421191519597958 m001 (Trott2nd-ZetaQ(3))/(GAMMA(2/3)+GolombDickman) 9421191525991292 a001 2207/13*2971215073^(12/13) 9421191564645331 a001 1597/521*322^(7/36) 9421191603332838 m001 FeigenbaumKappa^2/ln(CareFree)/GAMMA(1/6) 9421191621568588 l006 ln(1116/2863) 9421191630555465 a007 Real Root Of 96*x^4+337*x^3+619*x^2-678*x-982 9421191652554013 a007 Real Root Of -406*x^4+439*x^3-135*x^2-73*x+738 9421191657122157 a001 55/7*2^(11/42) 9421191688249572 a007 Real Root Of 933*x^4+399*x^3-764*x^2-782*x-460 9421191692687478 a003 cos(Pi*11/101)/sin(Pi*58/117) 9421191713378013 m001 exp(1)^Porter*exp(1)^StronglyCareFree 9421191713378013 m001 exp(Porter+StronglyCareFree) 9421191721476946 a007 Real Root Of 196*x^4-546*x^3+443*x^2+135*x-877 9421191735570134 a007 Real Root Of -73*x^4-640*x^3+454*x^2+104*x+610 9421191751127732 m001 (LandauRamanujan+MertensB3)/(Pi-Catalan) 9421191772114959 a007 Real Root Of 196*x^4-217*x^3-13*x^2-23*x-346 9421191774629454 a007 Real Root Of 338*x^4-836*x^3-100*x^2+25*x+498 9421191832747628 r008 a(0)=1,K{-n^6,98+13*n^3-29*n^2-67*n} 9421191845059032 r005 Im(z^2+c),c=-25/32+11/26*I,n=5 9421191848486256 s002 sum(A065521[n]/(n*2^n+1),n=1..infinity) 9421191848777983 r004 Re(z^2+c),c=-3/34-5/18*I,z(0)=I,n=6 9421191883407782 l002 polylog(4,89/101) 9421191886161982 r009 Re(z^3+c),c=-19/126+26/49*I,n=19 9421191891473512 p004 log(33199/12941) 9421191901612592 m006 (3/5*Pi^2+2)/(1/2/Pi-1) 9421191908903355 a001 28143753123/34*5702887^(7/23) 9421191908903372 a001 969323029/34*365435296162^(7/23) 9421191912053769 a007 Real Root Of 706*x^4-110*x^3-286*x^2-524*x-888 9421191978092881 a007 Real Root Of 373*x^4-650*x^3+454*x^2-859*x+656 9421191983094942 h001 (1/8*exp(2)+8/11)/(7/12*exp(1)+1/6) 9421192001026393 a007 Real Root Of -496*x^4+354*x^3-705*x^2-682*x+670 9421192022061933 a007 Real Root Of 904*x^4+381*x^3+25*x^2+885*x+418 9421192090876474 r009 Im(z^3+c),c=-21/122+49/55*I,n=21 9421192112117192 k007 concat of cont frac of 9421192115123411 k007 concat of cont frac of 9421192130613567 a007 Real Root Of 866*x^4-109*x^3+817*x^2+837*x-710 9421192143181131 k007 concat of cont frac of 9421192144216921 k001 Champernowne real with 250*n+692 9421192147976210 m001 (-ln(2^(1/2)+1)+TwinPrimes)/(1-BesselJ(0,1)) 9421192149072594 m001 Robbin^(FeigenbaumD*ZetaQ(2)) 9421192153600105 a007 Real Root Of -672*x^4+140*x^3+627*x^2+414*x+480 9421192154719687 m001 ln(2)/ln(10)+gamma^cos(1/5*Pi) 9421192186342383 m001 Ei(1,1)^(Pi*2^(1/2)/GAMMA(3/4)*Trott) 9421192233935914 h001 (4/9*exp(2)+2/11)/(5/12*exp(2)+3/5) 9421192275697472 a003 -1/2+cos(4/21*Pi)+cos(5/18*Pi)-2*cos(2/21*Pi) 9421192305562282 r009 Im(z^3+c),c=-65/102+22/45*I,n=14 9421192320983015 a007 Real Root Of 145*x^4-647*x^3+593*x^2+266*x-931 9421192348765221 a003 cos(Pi*19/55)*cos(Pi*37/85) 9421192349511933 m008 (4/5*Pi^3+3)/(5/6*Pi+1/3) 9421192363402118 a007 Real Root Of -527*x^4+633*x^3-354*x^2-938*x+375 9421192378901999 m001 ln(5)/(Bloch-ln(2)/ln(10)) 9421192404056148 k002 Champernowne real with 22*n^2-33*n+20 9421192409371422 r005 Re(z^2+c),c=-13/14+10/87*I,n=35 9421192409845255 r009 Im(z^3+c),c=-47/74+18/53*I,n=3 9421192414096248 k003 Champernowne real with 1/6*n^3+21*n^2-187/6*n+19 9421192419311982 a007 Real Root Of -599*x^4+820*x^3+376*x^2-728*x+138 9421192424136349 k003 Champernowne real with 1/3*n^3+20*n^2-88/3*n+18 9421192434176449 k003 Champernowne real with 1/2*n^3+19*n^2-55/2*n+17 9421192444216549 k003 Champernowne real with 2/3*n^3+18*n^2-77/3*n+16 9421192453968255 a007 Real Root Of -144*x^4+416*x^3-965*x^2-884*x+485 9421192454256649 k003 Champernowne real with 5/6*n^3+17*n^2-143/6*n+15 9421192462357012 m005 (1/2*Pi-1/9)/(4/9*5^(1/2)+5/9) 9421192464296749 k003 Champernowne real with n^3+16*n^2-22*n+14 9421192474336841 k003 Champernowne real with 7/6*n^3+15*n^2-121/6*n+13 9421192484376941 k003 Champernowne real with 4/3*n^3+14*n^2-55/3*n+12 9421192494417041 k003 Champernowne real with 3/2*n^3+13*n^2-33/2*n+11 9421192504457141 k003 Champernowne real with 5/3*n^3+12*n^2-44/3*n+10 9421192514497241 k003 Champernowne real with 11/6*n^3+11*n^2-77/6*n+9 9421192519129395 a007 Real Root Of -5*x^4-461*x^3+945*x^2-259*x-110 9421192524537341 k003 Champernowne real with 2*n^3+10*n^2-11*n+8 9421192534577441 k003 Champernowne real with 13/6*n^3+9*n^2-55/6*n+7 9421192544617541 k003 Champernowne real with 7/3*n^3+8*n^2-22/3*n+6 9421192554657641 k003 Champernowne real with 5/2*n^3+7*n^2-11/2*n+5 9421192564697741 k003 Champernowne real with 8/3*n^3+6*n^2-11/3*n+4 9421192574737841 k003 Champernowne real with 17/6*n^3+5*n^2-11/6*n+3 9421192581319742 r005 Im(z^2+c),c=-1+39/148*I,n=8 9421192584777941 k003 Champernowne real with 3*n^3+4*n^2+2 9421192585844143 s002 sum(A000144[n]/(2^n+1),n=1..infinity) 9421192594818041 k003 Champernowne real with 19/6*n^3+3*n^2+11/6*n+1 9421192604858141 k003 Champernowne real with 10/3*n^3+2*n^2+11/3*n 9421192614898241 k003 Champernowne real with 7/2*n^3+n^2+11/2*n-1 9421192624938341 k003 Champernowne real with 11/3*n^3+22/3*n-2 9421192634978441 k003 Champernowne real with 23/6*n^3-n^2+55/6*n-3 9421192645018541 k003 Champernowne real with 4*n^3-2*n^2+11*n-4 9421192655058641 k003 Champernowne real with 25/6*n^3-3*n^2+77/6*n-5 9421192665098741 k003 Champernowne real with 13/3*n^3-4*n^2+44/3*n-6 9421192675138841 k003 Champernowne real with 9/2*n^3-5*n^2+33/2*n-7 9421192685178941 k003 Champernowne real with 14/3*n^3-6*n^2+55/3*n-8 9421192686009427 r008 a(0)=1,K{-n^6,56+18*n-33*n^2-24*n^3} 9421192695219041 k003 Champernowne real with 29/6*n^3-7*n^2+121/6*n-9 9421192705259141 k003 Champernowne real with 5*n^3-8*n^2+22*n-10 9421192715299241 k003 Champernowne real with 31/6*n^3-9*n^2+143/6*n-11 9421192725339341 k003 Champernowne real with 16/3*n^3-10*n^2+77/3*n-12 9421192735379441 k003 Champernowne real with 11/2*n^3-11*n^2+55/2*n-13 9421192743018954 a007 Real Root Of -738*x^4-24*x^3-769*x^2-261*x+998 9421192745419541 k003 Champernowne real with 17/3*n^3-12*n^2+88/3*n-14 9421192747823535 b008 9+E^(-1+E^(-2)) 9421192749357554 a007 Real Root Of -580*x^4-528*x^3-392*x^2+507*x+841 9421192755459641 k003 Champernowne real with 35/6*n^3-13*n^2+187/6*n-15 9421192765499741 k003 Champernowne real with 6*n^3-14*n^2+33*n-16 9421192772244736 m001 ln(Pi)^FeigenbaumMu*Thue^FeigenbaumMu 9421192775539841 k003 Champernowne real with 37/6*n^3-15*n^2+209/6*n-17 9421192776744752 m001 (Zeta(1,2)+BesselK(1,1))/(Pi+BesselK(0,1)) 9421192783316338 a001 987/3571*322^(11/18) 9421192785579941 k003 Champernowne real with 19/3*n^3-16*n^2+110/3*n-18 9421192795611004 k003 Champernowne real with 13/2*n^3-17*n^2+77/2*n-19 9421192798356971 a007 Real Root Of -302*x^4+757*x^3+783*x^2-206*x-896 9421192805651014 k003 Champernowne real with 20/3*n^3-18*n^2+121/3*n-20 9421192815691024 k003 Champernowne real with 41/6*n^3-19*n^2+253/6*n-21 9421192825731034 k003 Champernowne real with 7*n^3-20*n^2+44*n-22 9421192827243240 l006 ln(2897/7432) 9421192828581546 r002 35th iterates of z^2 + 9421192835771044 k003 Champernowne real with 43/6*n^3-21*n^2+275/6*n-23 9421192843483272 r005 Re(z^2+c),c=-17/18+1/40*I,n=3 9421192845811054 k003 Champernowne real with 22/3*n^3-22*n^2+143/3*n-24 9421192855851064 k003 Champernowne real with 15/2*n^3-23*n^2+99/2*n-25 9421192865891074 k003 Champernowne real with 23/3*n^3-24*n^2+154/3*n-26 9421192867542113 a001 6765/199*4^(25/34) 9421192875931084 k003 Champernowne real with 47/6*n^3-25*n^2+319/6*n-27 9421192885971094 k003 Champernowne real with 8*n^3-26*n^2+55*n-28 9421192886949738 a007 Real Root Of -626*x^4+432*x^3-39*x^2-34*x+857 9421192896011104 k003 Champernowne real with 49/6*n^3-27*n^2+341/6*n-29 9421192906051114 k003 Champernowne real with 25/3*n^3-28*n^2+176/3*n-30 9421192912121115 k006 concat of cont frac of 9421192916091124 k003 Champernowne real with 17/2*n^3-29*n^2+121/2*n-31 9421192926131134 k003 Champernowne real with 26/3*n^3-30*n^2+187/3*n-32 9421192936171144 k003 Champernowne real with 53/6*n^3-31*n^2+385/6*n-33 9421192946211154 k003 Champernowne real with 9*n^3-32*n^2+66*n-34 9421192956251164 k003 Champernowne real with 55/6*n^3-33*n^2+407/6*n-35 9421192966244503 a001 1/199*24476^(44/59) 9421192966291174 k003 Champernowne real with 28/3*n^3-34*n^2+209/3*n-36 9421192976331184 k003 Champernowne real with 19/2*n^3-35*n^2+143/2*n-37 9421192982248641 a001 1/199*39603^(42/59) 9421192986371194 k003 Champernowne real with 29/3*n^3-36*n^2+220/3*n-38 9421192996411204 k003 Champernowne real with 59/6*n^3-37*n^2+451/6*n-39 9421193006451214 k003 Champernowne real with 10*n^3-38*n^2+77*n-40 9421193016491224 k003 Champernowne real with 61/6*n^3-39*n^2+473/6*n-41 9421193026531234 k003 Champernowne real with 31/3*n^3-40*n^2+242/3*n-42 9421193027313519 r008 a(0)=1,K{-n^6,76-26*n^3-17*n^2-16*n} 9421193029373491 m005 (1/2*3^(1/2)+4)/(3/7*exp(1)+4) 9421193036571244 k003 Champernowne real with 21/2*n^3-41*n^2+165/2*n-43 9421193046611254 k003 Champernowne real with 32/3*n^3-42*n^2+253/3*n-44 9421193056651264 k003 Champernowne real with 65/6*n^3-43*n^2+517/6*n-45 9421193066691274 k003 Champernowne real with 11*n^3-44*n^2+88*n-46 9421193076731284 k003 Champernowne real with 67/6*n^3-45*n^2+539/6*n-47 9421193077455712 m008 (4*Pi+1/4)/(3/5*Pi^3-5) 9421193086771294 k003 Champernowne real with 34/3*n^3-46*n^2+275/3*n-48 9421193092071311 m001 (Lehmer-Sarnak)/(ln(2)+ArtinRank2) 9421193096811304 k003 Champernowne real with 23/2*n^3-47*n^2+187/2*n-49 9421193106851314 k003 Champernowne real with 35/3*n^3-48*n^2+286/3*n-50 9421193116891324 k003 Champernowne real with 71/6*n^3-49*n^2+583/6*n-51 9421193122291187 a007 Real Root Of 565*x^4-458*x^3-229*x^2+832*x+159 9421193126931334 k003 Champernowne real with 12*n^3-50*n^2+99*n-52 9421193132108804 a007 Real Root Of -92*x^4-919*x^3-557*x^2-580*x+282 9421193133448458 m001 1/FeigenbaumB/Khintchine/exp(GAMMA(7/24))^2 9421193144365176 r005 Re(z^2+c),c=-1/20+11/32*I,n=4 9421193144416951 k001 Champernowne real with 251*n+691 9421193144516961 k005 Champernowne real with floor(Pi*(80*n+220)) 9421193160364940 m001 (gamma(3)+Pi^(1/2))/(GAMMA(19/24)+Rabbit) 9421193167240772 a007 Real Root Of 676*x^4+493*x^3-106*x^2-324*x+31 9421193172069309 m005 (1/3*Catalan-2/7)/(4/7*2^(1/2)-3/5) 9421193210536986 m005 (1/2*Catalan+1/2)/(1/12*Zeta(3)+11/12) 9421193229904066 a007 Real Root Of 429*x^4+316*x^3+147*x^2+653*x+411 9421193232413178 q001 1058/1123 9421193236936087 m009 (4*Psi(1,2/3)+3/5)/(1/4*Psi(1,3/4)-2) 9421193251710521 a007 Real Root Of 681*x^4-670*x^3-298*x^2+30*x-804 9421193253577710 r005 Re(z^2+c),c=4/21+5/19*I,n=27 9421193275918966 h001 (9/10*exp(1)+11/12)/(4/9*exp(2)+2/7) 9421193298019276 a007 Real Root Of -593*x^4+448*x^3+76*x^2+75*x+845 9421193301965473 r002 28i'th iterates of 2*x/(1-x^2) of 9421193320284860 a007 Real Root Of 717*x^4-48*x^3+244*x^2-79*x-896 9421193407619080 m001 1/Niven^2*ln(LaplaceLimit)/GAMMA(3/4)^2 9421193504360507 a007 Real Root Of -91*x^4-942*x^3-883*x^2-804*x-4 9421193508847314 a007 Real Root Of 239*x^4-839*x^3-291*x^2+681*x+10 9421193512717225 a007 Real Root Of -873*x^4+494*x^3+987*x^2-850*x-576 9421193554122147 p003 LerchPhi(1/8,4,314/173) 9421193566154870 m001 (sin(1)+gamma(2))/(Zeta(1,2)+GAMMA(23/24)) 9421193582736098 l006 ln(1781/4569) 9421193588196915 m001 (3^(1/3)+arctan(1/2))/(FeigenbaumD-TwinPrimes) 9421193594650523 a007 Real Root Of -558*x^4+666*x^3+652*x^2-798*x-334 9421193621166968 r005 Im(z^2+c),c=5/32+23/39*I,n=33 9421193640481997 r005 Re(z^2+c),c=-31/34+18/109*I,n=25 9421193641618690 m001 (Stephens-StronglyCareFree)/(Zeta(1/2)-Robbin) 9421193721535568 r005 Re(z^2+c),c=1/36+19/35*I,n=8 9421193727735521 r005 Re(z^2+c),c=-3/110+18/55*I,n=17 9421193752572042 a007 Real Root Of 406*x^4-653*x^3+974*x^2+874*x-907 9421193767744158 r009 Re(z^3+c),c=-39/58+3/23*I,n=2 9421193769580508 a007 Real Root Of 230*x^4-568*x^3-876*x^2-944*x-768 9421193780650039 m001 (Conway-LandauRamanujan2nd)/(ln(2)-gamma(1)) 9421193783418970 r005 Re(z^2+c),c=-33/62+19/28*I,n=13 9421193791991938 a007 Real Root Of -8*x^4-747*x^3+631*x^2+17*x-206 9421193804311251 a001 2584/9349*322^(11/18) 9421193810969272 m004 5*Sec[Sqrt[5]*Pi]^2+Sin[Sqrt[5]*Pi]/3 9421193860645544 m005 (1/3*Catalan+1/9)/(1/2*Catalan-9/10) 9421193873097454 s001 sum(exp(-2*Pi/5)^n*A152270[n],n=1..infinity) 9421193873097454 s002 sum(A152270[n]/(exp(2/5*pi*n)),n=1..infinity) 9421193890955895 a003 sin(Pi*1/62)/cos(Pi*38/119) 9421193911284230 a007 Real Root Of -379*x^4-960*x^3-912*x^2+247*x+538 9421193913848313 a007 Real Root Of 437*x^4-494*x^3-813*x^2-946*x-927 9421193933232621 m001 (2^(1/3))^MertensB3/((2^(1/3))^BesselI(1,2)) 9421193934051474 r009 Im(z^3+c),c=-3/28+27/29*I,n=11 9421193938106289 l006 ln(4754/4799) 9421193953272390 a001 6765/24476*322^(11/18) 9421193956671723 a005 (1/cos(19/157*Pi))^310 9421193970585162 b008 ArcCoth[8+Sqrt[7]] 9421193975005527 a001 17711/64079*322^(11/18) 9421193977196139 r005 Re(z^2+c),c=-9/94+7/62*I,n=3 9421193978176349 a001 46368/167761*322^(11/18) 9421193978638966 a001 121393/439204*322^(11/18) 9421193978706460 a001 317811/1149851*322^(11/18) 9421193978716308 a001 832040/3010349*322^(11/18) 9421193978717744 a001 2178309/7881196*322^(11/18) 9421193978717954 a001 5702887/20633239*322^(11/18) 9421193978717985 a001 14930352/54018521*322^(11/18) 9421193978717989 a001 39088169/141422324*322^(11/18) 9421193978717990 a001 102334155/370248451*322^(11/18) 9421193978717990 a001 267914296/969323029*322^(11/18) 9421193978717990 a001 701408733/2537720636*322^(11/18) 9421193978717990 a001 1836311903/6643838879*322^(11/18) 9421193978717990 a001 4807526976/17393796001*322^(11/18) 9421193978717990 a001 12586269025/45537549124*322^(11/18) 9421193978717990 a001 32951280099/119218851371*322^(11/18) 9421193978717990 a001 86267571272/312119004989*322^(11/18) 9421193978717990 a001 225851433717/817138163596*322^(11/18) 9421193978717990 a001 1548008755920/5600748293801*322^(11/18) 9421193978717990 a001 139583862445/505019158607*322^(11/18) 9421193978717990 a001 53316291173/192900153618*322^(11/18) 9421193978717990 a001 20365011074/73681302247*322^(11/18) 9421193978717990 a001 7778742049/28143753123*322^(11/18) 9421193978717990 a001 2971215073/10749957122*322^(11/18) 9421193978717990 a001 1134903170/4106118243*322^(11/18) 9421193978717990 a001 433494437/1568397607*322^(11/18) 9421193978717990 a001 165580141/599074578*322^(11/18) 9421193978717990 a001 63245986/228826127*322^(11/18) 9421193978717992 a001 24157817/87403803*322^(11/18) 9421193978718004 a001 9227465/33385282*322^(11/18) 9421193978718084 a001 3524578/12752043*322^(11/18) 9421193978718632 a001 1346269/4870847*322^(11/18) 9421193978722394 a001 514229/1860498*322^(11/18) 9421193978748175 a001 196418/710647*322^(11/18) 9421193978924878 a001 75025/271443*322^(11/18) 9421193980136025 a001 28657/103682*322^(11/18) 9421193981352873 m001 (Zeta(1/2)-Backhouse)/(FeigenbaumD+ThueMorse) 9421193988437344 a001 10946/39603*322^(11/18) 9421194024814997 a001 4181/521*123^(1/30) 9421194027899309 r005 Re(z^2+c),c=-17/26+53/101*I,n=4 9421194039621980 a007 Real Root Of 977*x^4-248*x^3-307*x^2-252*x-942 9421194040256908 m008 (2/3*Pi^6-1/6)/(1/5*Pi^3+3/5) 9421194042257061 a007 Real Root Of 833*x^4+418*x^3+252*x^2+719*x+147 9421194045335435 a001 4181/15127*322^(11/18) 9421194102118311 k008 concat of cont frac of 9421194104965789 a007 Real Root Of -380*x^4+519*x^3+864*x^2-268*x-286 9421194112938787 s002 sum(A070983[n]/(exp(n)-1),n=1..infinity) 9421194136272620 r005 Re(z^2+c),c=-9/110+23/29*I,n=55 9421194144616981 k001 Champernowne real with 252*n+690 9421194160098470 h001 (-9*exp(2)+4)/(-7*exp(2/3)+7) 9421194188292036 m008 (5/6*Pi^3-1/2)/(3/4*Pi+1/3) 9421194202039948 m001 1/exp(RenyiParking)/Rabbit/sin(1)^2 9421194202288495 a007 Real Root Of 884*x^4-282*x^3+137*x^2-833*x-80 9421194210364571 a007 Real Root Of 488*x^4-884*x^3-853*x^2-286*x-636 9421194227105677 m001 (Zeta(3)-ln(2))/(exp(1/Pi)-GaussAGM) 9421194236219959 m005 (1/3*exp(1)-2/7)/(1/8*3^(1/2)-7/8) 9421194237709421 k006 concat of cont frac of 9421194244242347 m001 (Shi(1)+BesselK(0,1))/(GAMMA(23/24)+Landau) 9421194281915728 m001 (ln(Pi)+Bloch)/(LandauRamanujan-Lehmer) 9421194282485708 m002 -1/18-Pi+Pi^4 9421194290696972 a001 196418/29*47^(3/35) 9421194316051650 g006 Psi(1,8/11)-Psi(1,9/11)-Psi(1,3/10)-Psi(1,1/9) 9421194319616229 a007 Real Root Of -861*x^4+50*x^3-103*x^2+113*x+918 9421194344168798 m001 CopelandErdos^(Riemann3rdZero*ZetaQ(4)) 9421194398452470 m001 (exp(Pi)+gamma(2))/(KhinchinHarmonic+Rabbit) 9421194399546514 m005 (1/3*Pi-1/3)/(1/10*gamma+7/10) 9421194431133470 m001 (-PisotVijayaraghavan+Trott)/(5^(1/2)-sin(1)) 9421194435320741 a001 1597/5778*322^(11/18) 9421194445373760 r002 9th iterates of z^2 + 9421194450977519 m001 (Catalan+Lehmer)/(MertensB1+Totient) 9421194452284992 a007 Real Root Of -806*x^4-71*x^3-622*x^2-230*x+911 9421194463726948 m001 TravellingSalesman^(Ei(1,1)*AlladiGrinstead) 9421194477528669 l006 ln(2446/6275) 9421194492534830 a003 cos(Pi*6/55)/sin(Pi*32/65) 9421194562175285 m001 1/OneNinth*Bloch*exp(BesselJ(0,1)) 9421194564468101 m001 GAMMA(5/12)*FeigenbaumAlpha/exp(sqrt(3)) 9421194601233040 r005 Im(z^2+c),c=-81/98+3/55*I,n=23 9421194601650619 m001 (Zeta(1/2)-BesselI(1,1))/(ErdosBorwein+Landau) 9421194604638402 m005 (1/3*Catalan-2/5)/(2/11*gamma+9/10) 9421194608347239 r005 Im(z^2+c),c=-8/7+11/92*I,n=35 9421194617713265 p001 sum((-1)^n/(527*n+501)/n/(10^n),n=1..infinity) 9421194627868822 r009 Im(z^3+c),c=-41/78+49/58*I,n=2 9421194662609142 m005 (1/3*gamma-1/10)/(2/5*Zeta(3)+1/2) 9421194706921374 r005 Re(z^2+c),c=1/82+23/57*I,n=36 9421194708183835 a007 Real Root Of -679*x^4-232*x^3-614*x^2+102*x+982 9421194714867036 m001 (Zeta(3)+Zeta(5))/((1+3^(1/2))^(1/2)+Sarnak) 9421194725072874 r005 Im(z^2+c),c=-19/106+18/25*I,n=21 9421194739509488 a007 Real Root Of -931*x^4+855*x^3+516*x^2-511*x+509 9421194765694409 a007 Real Root Of 496*x^4-408*x^3-748*x^2-795*x-817 9421194806923597 m001 1/Rabbit^2/ln(KhintchineLevy)^2/FeigenbaumD^2 9421194853141923 m001 (Niven+Robbin)/(ErdosBorwein-FeigenbaumKappa) 9421194866583465 m005 (1/3*Zeta(3)-1/9)/(3/8*gamma+1/11) 9421194948047923 m002 -4+E^Pi+4/Pi^3-Pi^6 9421194970659657 m001 (Zeta(3)-ln(Pi))/(GAMMA(19/24)-Grothendieck) 9421194989783718 l006 ln(3111/7981) 9421194991240087 a007 Real Root Of -389*x^4+713*x^3+834*x^2+353*x+495 9421195114975046 a007 Real Root Of -469*x^4+756*x^3+918*x^2-659*x-434 9421195144817011 k001 Champernowne real with 253*n+689 9421195145436011 a007 Real Root Of 508*x^4+792*x^3+710*x^2-2*x-370 9421195151153933 p003 LerchPhi(1/125,5,84/83) 9421195165758088 a007 Real Root Of 573*x^4+504*x^3-138*x^2-803*x-664 9421195188766066 r002 64th iterates of z^2 + 9421195203410530 r005 Im(z^2+c),c=-53/46+11/56*I,n=38 9421195228917626 m001 ln(Rabbit)^2*GaussKuzminWirsing^2/GAMMA(1/12) 9421195243439578 h001 (2/7*exp(1)+7/8)/(2/9*exp(2)+1/9) 9421195278179287 a003 sin(Pi*43/107)*sin(Pi*52/115) 9421195284218036 a007 Real Root Of 102*x^4-880*x^3+304*x^2+431*x-680 9421195321609935 l006 ln(3776/9687) 9421195322948690 a007 Real Root Of 104*x^4-656*x^3-745*x^2-436*x-380 9421195334327242 m001 ln(GAMMA(1/12))^2*(3^(1/3))^2/log(2+sqrt(3)) 9421195358971431 r005 Re(z^2+c),c=1/98+2/5*I,n=27 9421195382254451 m002 -6+Pi^6-Cosh[Pi]*Log[Pi] 9421195476610159 r005 Re(z^2+c),c=-28/31+9/49*I,n=35 9421195514261923 r002 7th iterates of z^2 + 9421195518996147 r005 Re(z^2+c),c=-3/106+13/40*I,n=18 9421195543088346 m008 (1/6*Pi^3+3/5)/(2*Pi^5+1/6) 9421195554060134 p004 log(11393/4441) 9421195598498365 a007 Real Root Of -829*x^4+534*x^3+832*x^2-360*x+22 9421195606787864 a001 682*28657^(31/44) 9421195620893811 r005 Im(z^2+c),c=-59/74+2/45*I,n=49 9421195627720335 r002 40th iterates of z^2 + 9421195638481815 a007 Real Root Of -371*x^4-80*x^3-329*x^2+76*x+589 9421195652173913 q001 3467/3680 9421195680135470 m001 1/GAMMA(13/24)^2/OneNinth^2/exp(GAMMA(3/4)) 9421195715239069 m001 (Salem+ZetaP(4))/(Ei(1)-BesselI(1,1)) 9421195724812318 a007 Real Root Of 975*x^4+77*x^3+352*x^2+671*x-384 9421195735254485 a007 Real Root Of 381*x^4-927*x^3-799*x^2-158*x-515 9421195742196016 r005 Im(z^2+c),c=49/110+21/58*I,n=19 9421195747676317 m008 (1/2*Pi+5/6)/(5/6*Pi^5+1/6) 9421195756604161 m001 (Artin-ZetaP(2))^FeigenbaumC 9421195764438770 p003 LerchPhi(1/2,5,147/230) 9421195794395810 a007 Real Root Of 639*x^4+399*x^3+345*x^2-518*x-964 9421195849510115 m001 BesselK(1,1)/GaussAGM*Mills 9421195854767057 r005 Re(z^2+c),c=-9/10+35/192*I,n=31 9421195868984511 m001 1/ln(RenyiParking)*FeigenbaumC/Sierpinski^2 9421195952257335 a007 Real Root Of 538*x^4-206*x^3-621*x^2-477*x+749 9421195992867500 a007 Real Root Of -55*x^4-541*x^3-144*x^2+634*x-340 9421196000563755 m002 -1-Pi^3+Pi^6+Cosh[Pi]+Log[Pi] 9421196007132320 r009 Re(z^3+c),c=-83/122+5/31*I,n=2 9421196010331070 r005 Re(z^2+c),c=1/82+23/57*I,n=37 9421196036714495 a007 Real Root Of 26*x^4-433*x^3-694*x^2+59*x+902 9421196101403095 a007 Real Root Of -325*x^4-492*x^3-929*x^2-204*x+477 9421196124592177 m001 GAMMA(5/6)*ln(BesselJ(1,1))*Zeta(7)^2 9421196145017041 k001 Champernowne real with 254*n+688 9421196145117051 k005 Champernowne real with floor(Pi*(81*n+219)) 9421196145235316 a003 cos(Pi*8/101)-cos(Pi*57/116) 9421196186836003 a007 Real Root Of 898*x^4-852*x^3-504*x^2+353*x-640 9421196215793734 m001 (ZetaP(4)-ZetaQ(4))/(FeigenbaumC-MertensB2) 9421196224726951 a007 Real Root Of -948*x^4-763*x^3-673*x^2-49*x+660 9421196264477714 m001 1/Robbin/ln(CareFree)^2*BesselJ(0,1) 9421196266942330 m005 (1/2*gamma+4/9)/(6/11*3^(1/2)-1/6) 9421196272138626 r005 Im(z^2+c),c=-16/27+4/23*I,n=64 9421196272360950 a007 Real Root Of 703*x^4-995*x^3-553*x^2+345*x-570 9421196277964606 a005 (1/cos(20/169*Pi))^292 9421196304044026 a001 39603/13*75025^(35/38) 9421196307142818 m001 (2^(1/3)+Catalan)/(-Cahen+ThueMorse) 9421196317464212 a007 Real Root Of 286*x^4+125*x^3-412*x^2-641*x-359 9421196323985916 r004 Im(z^2+c),c=-17/38+3/19*I,z(0)=-1,n=22 9421196331906271 m001 GlaisherKinkelin-Pi*Magata 9421196372156396 m001 (PlouffeB+Weierstrass)^Salem 9421196389764821 m005 (9/8+1/8*5^(1/2))/(5*Pi-4/5) 9421196408760086 a007 Real Root Of 403*x^4-937*x^3-303*x^2-36*x-866 9421196438781886 a007 Real Root Of 113*x^4-402*x^3-393*x^2+18*x+579 9421196463796575 a001 987/521*322^(5/18) 9421196469205859 m001 HardyLittlewoodC3^Stephens/(CareFree^Stephens) 9421196531120229 a008 Real Root of (-4+x-5*x^2+4*x^4+7*x^8) 9421196533300417 r002 40th iterates of z^2 + 9421196534172319 a001 305/682*322^(19/36) 9421196537751940 a007 Real Root Of -340*x^4+865*x^3+599*x^2-112*x+354 9421196549641701 a007 Real Root Of -789*x^4+7*x^3-710*x^2-853*x+454 9421196550031838 a007 Real Root Of 532*x^4-787*x^3-611*x^2+444*x+363 9421196561844941 a003 sin(Pi*17/66)/sin(Pi*29/104) 9421196604602498 a001 377/3571*322^(7/9) 9421196614612446 m005 (1/2*2^(1/2)+4/7)/(9/11*2^(1/2)+1/5) 9421196620592858 r005 Im(z^2+c),c=17/118+1/15*I,n=3 9421196622649190 a007 Real Root Of -727*x^4+416*x^3-580*x^2-995*x+498 9421196640951219 p001 sum(1/(321*n+109)/(10^n),n=0..infinity) 9421196643603314 r009 Im(z^3+c),c=-35/64+41/43*I,n=2 9421196645821276 a007 Real Root Of -183*x^4+851*x^3-938*x^2-806*x+929 9421196661808169 a001 1568397607/34*3^(13/20) 9421196676164536 r009 Im(z^3+c),c=-61/106+31/55*I,n=17 9421196681871884 m005 (1/2*2^(1/2)-1/12)/(2/9*Zeta(3)-1/3) 9421196714900273 q001 2409/2557 9421196757270034 m005 (1/3*Zeta(3)+1/3)/(11/12*gamma+1/4) 9421196793615726 a007 Real Root Of -911*x^4+58*x^3+61*x^2-310*x+420 9421196795958804 m001 (AlladiGrinstead+Backhouse)/(2^(1/3)+ln(Pi)) 9421196801790748 s001 sum(exp(-Pi/3)^n*A260905[n],n=1..infinity) 9421196836507442 m001 exp(1/Pi)+Riemann1stZero^Sierpinski 9421196873957702 l006 ln(665/1706) 9421196898391296 m001 (Chi(1)-Ei(1,1))/(-Mills+ReciprocalLucas) 9421196948638604 m001 (GolombDickman+Tribonacci)/MertensB1 9421196949736641 a007 Real Root Of -974*x^4+511*x^3+808*x^2-182*x+306 9421196962894338 a007 Real Root Of 955*x^4-149*x^3-997*x^2-277*x-253 9421196974009360 a007 Real Root Of 68*x^4+688*x^3+453*x^2+85*x+195 9421197001176969 m001 (Kac-Totient)/(ln(2^(1/2)+1)-Champernowne) 9421197006029175 r005 Re(z^2+c),c=-13/14+10/87*I,n=33 9421197036948628 h001 (7/11*exp(2)+1/12)/(4/7*exp(2)+6/7) 9421197040684053 r005 Im(z^2+c),c=-2/3+20/99*I,n=62 9421197105992230 r005 Re(z^2+c),c=-2/19+37/44*I,n=55 9421197108319257 a001 610/2207*322^(11/18) 9421197117389355 r002 8th iterates of z^2 + 9421197118971411 r005 Im(z^2+c),c=-99/94+2/19*I,n=23 9421197132905832 a007 Real Root Of -765*x^4+858*x^3+582*x^2-422*x+406 9421197136051233 s002 sum(A239405[n]/(n*exp(pi*n)-1),n=1..infinity) 9421197145217071 k001 Champernowne real with 255*n+687 9421197146375767 m002 -E^Pi+Pi^6+(E^Pi*Coth[Pi])/6 9421197154892393 m001 (GAMMA(2/3)-gamma(3))/(AlladiGrinstead+Kac) 9421197161431594 b008 7+2^(1+Csch[2]) 9421197163772660 m005 (1/2*5^(1/2)+1/8)/(5^(1/2)-11/12) 9421197172747296 a007 Real Root Of 109*x^4-910*x^3+792*x^2+660*x-928 9421197191157993 m005 (1/2*Catalan+5/8)/(2/9*exp(1)+6/11) 9421197201474722 s001 sum(exp(-2*Pi)^n*A063143[n],n=1..infinity) 9421197269558532 a007 Real Root Of -573*x^4+805*x^3-265*x^2-643*x+754 9421197284328207 r005 Re(z^2+c),c=-67/62+7/39*I,n=46 9421197306095423 r002 29i'th iterates of 2*x/(1-x^2) of 9421197319023892 a007 Real Root Of 982*x^4+767*x^3+80*x^2-281*x-468 9421197321290494 r002 20th iterates of z^2 + 9421197366427672 a003 sin(Pi*35/114)/sin(Pi*28/83) 9421197410767869 a007 Real Root Of 7*x^4+659*x^3-48*x^2-232*x-391 9421197412313118 m001 ZetaR(2)^(FeigenbaumMu*ZetaQ(3)) 9421197524013230 r005 Re(z^2+c),c=-151/126+19/61*I,n=19 9421197530340727 s002 sum(A239831[n]/(exp(2*pi*n)-1),n=1..infinity) 9421197550376527 r005 Re(z^2+c),c=-107/114+11/48*I,n=64 9421197572457019 r005 Re(z^2+c),c=-95/102+16/61*I,n=13 9421197586140062 a007 Real Root Of 411*x^4-964*x^3-746*x^2-65*x-529 9421197586680884 a007 Real Root Of 525*x^4-440*x^3-862*x^2+649*x+595 9421197602387796 a007 Real Root Of 675*x^4+257*x^3+273*x^2+66*x-497 9421197604273799 a007 Real Root Of 998*x^4-768*x^3+63*x^2+581*x-937 9421197624247573 r002 10th iterates of z^2 + 9421197669623327 m004 -25*Pi+2*Cos[Sqrt[5]*Pi]-5*Pi*Cot[Sqrt[5]*Pi] 9421197684588817 r009 Im(z^3+c),c=-5/34+57/62*I,n=37 9421197688708299 m003 1+Sqrt[5]/4+3*Cosh[1/2+Sqrt[5]/2] 9421197689299720 m001 exp(cos(1))^2*Salem*exp(1) 9421197694813329 q001 376/3991 9421197703390147 b008 ProductLog[E^E^(-1/8)] 9421197719347855 a007 Real Root Of -393*x^4+653*x^3+193*x^2-564*x+153 9421197729692071 m001 GAMMA(3/4)*Backhouse^2*ln(Zeta(5)) 9421197796023431 r009 Im(z^3+c),c=-37/62+13/43*I,n=31 9421197798156186 a007 Real Root Of 244*x^4-198*x^3+20*x^2+146*x-238 9421197840868397 a007 Real Root Of 55*x^4+486*x^3-332*x^2-300*x-256 9421197860857063 a007 Real Root Of 753*x^4+806*x^3+423*x^2-271*x-550 9421197883104261 a007 Real Root Of 940*x^4-224*x^3+330*x^2+747*x-517 9421197940914045 r002 9th iterates of z^2 + 9421197948349597 a007 Real Root Of 7*x^4-29*x^3-959*x^2-609*x-15 9421197976064486 m005 (1/3*exp(1)+2/7)/(1/3+5/12*5^(1/2)) 9421198001569098 m001 DuboisRaymond^2*exp(Backhouse)^2/exp(1)^2 9421198008229470 a007 Real Root Of 555*x^4-955*x^3+73*x^2-597*x+859 9421198013568979 r009 Im(z^3+c),c=-3/19+22/23*I,n=64 9421198021107896 m001 (Niven-Trott)/(CareFree-FeigenbaumAlpha) 9421198027182474 r009 Im(z^3+c),c=-13/86+45/49*I,n=23 9421198030579480 a007 Real Root Of -76*x^4+661*x^3+130*x^2+384*x+859 9421198145417101 k001 Champernowne real with 256*n+686 9421198187482276 a007 Real Root Of 531*x^4-873*x^3-367*x^2+76*x-751 9421198191642341 m001 (Sierpinski+ZetaP(2))/(BesselK(0,1)-Paris) 9421198204716146 a007 Real Root Of 142*x^4-841*x^3+336*x^2-20*x+312 9421198220383184 m001 LambertW(1)^Grothendieck*Niven^Grothendieck 9421198223677716 a007 Real Root Of -594*x^4+165*x^3-292*x^2-620*x+281 9421198275684565 a007 Real Root Of -571*x^4-658*x^3-232*x^2-129*x-16 9421198330474963 r002 7th iterates of z^2 + 9421198335068268 a007 Real Root Of -652*x^4+897*x^3-685*x^2-972*x+956 9421198339355723 h001 (2/11*exp(2)+3/11)/(3/10*exp(1)+9/10) 9421198347199463 m005 (1/2*2^(1/2)-7/9)/(2/11*Catalan-11/12) 9421198358065153 a007 Real Root Of 630*x^4-720*x^3-575*x^2-2*x+618 9421198374842831 m004 -11+6/Log[Sqrt[5]*Pi]^2 9421198375616306 a007 Real Root Of -743*x^4+571*x^3+474*x^2-240*x+416 9421198390354087 a007 Real Root Of 70*x^4-759*x^3-390*x^2+57*x+872 9421198430809119 h001 (4/5*exp(2)+5/11)/(1/11*exp(1)+3/7) 9421198440919903 r005 Re(z^2+c),c=31/126+14/43*I,n=35 9421198445349651 a007 Real Root Of 882*x^4+30*x^3+295*x^2+767*x-209 9421198530262938 l006 ln(3539/9079) 9421198538593979 m001 (GolombDickman-Otter)/(Cahen+FeigenbaumC) 9421198545875922 m006 (3/4/Pi+2/5)/(2/3*Pi^2+1/5) 9421198612630099 a007 Real Root Of 23*x^4-57*x^3-101*x^2-608*x+692 9421198666357887 r009 Im(z^3+c),c=-15/82+21/23*I,n=23 9421198674374629 a001 377/64079*3^(3/7) 9421198699353732 m001 (ln(2^(1/2)+1)-Artin)/(MasserGramain-OneNinth) 9421198713538731 r005 Im(z^2+c),c=-83/94+13/59*I,n=46 9421198741536453 r009 Im(z^3+c),c=-43/78+5/16*I,n=8 9421198760878158 a001 199/28657*10946^(38/49) 9421198804263004 a007 Real Root Of 351*x^4+182*x^3+444*x^2-301*x-802 9421198809619498 h001 (3/5*exp(2)+1/4)/(1/11*exp(1)+1/4) 9421198824881185 a007 Real Root Of -342*x^4+888*x^3-611*x^2-703*x+892 9421198893594903 r002 38th iterates of z^2 + 9421198913506803 l006 ln(2874/7373) 9421198916475891 m001 (BesselK(1,1)+Stephens)/(2^(1/3)+gamma(2)) 9421198918007960 a001 233/322*3571^(1/31) 9421198948462209 m003 -3/2+Sqrt[5]/32-8*Sin[1/2+Sqrt[5]/2] 9421198954077650 a003 sin(Pi*43/118)/sin(Pi*43/103) 9421198957739719 a007 Real Root Of -67*x^4-677*x^3-393*x^2+312*x-460 9421198961001388 m005 (1/2*Catalan-5/7)/(1/8*5^(1/2)-3) 9421198997920490 r005 Im(z^2+c),c=-73/114+9/55*I,n=30 9421198998085066 a007 Real Root Of 943*x^4+950*x^3+113*x^2-895*x-892 9421199008430041 a007 Real Root Of 609*x^4-474*x^3-603*x^2-137*x-470 9421199019854635 a007 Real Root Of 94*x^4+881*x^3+30*x^2+739*x+459 9421199036441413 a007 Real Root Of -604*x^4+681*x^3+730*x^2-11*x+387 9421199071973240 a007 Real Root Of -194*x^4+208*x^3+397*x^2+927*x+84 9421199081068980 m005 (1/2*5^(1/2)+4/9)/(71/90+7/18*5^(1/2)) 9421199122229382 a007 Real Root Of -75*x^4+71*x^3-776*x^2-428*x+404 9421199131180348 r005 Re(z^2+c),c=-59/64+5/37*I,n=21 9421199145617131 k001 Champernowne real with 257*n+685 9421199148634363 a007 Real Root Of 983*x^4-53*x^3-935*x^2-101*x-84 9421199163603769 a007 Real Root Of -915*x^4-717*x^3-240*x^2+299*x+616 9421199167359457 m001 BesselI(0,2)-Si(Pi)^Bloch 9421199191318783 r002 49th iterates of z^2 + 9421199195514119 r002 56th iterates of z^2 + 9421199267458602 a007 Real Root Of 947*x^4-286*x^3-746*x^2-105*x-422 9421199270031038 m005 (1/2*gamma+5/9)/(5*3^(1/2)+3/10) 9421199280310961 h001 (-12*exp(3)+12)/(-6*exp(1)-8) 9421199285815794 m001 polylog(4,1/2)^Gompertz*HardHexagonsEntropy 9421199296612315 m005 (1/2*exp(1)+2/7)/(-13/28+2/7*5^(1/2)) 9421199334473478 a001 329/1926*322^(25/36) 9421199339815616 m001 Thue^(Stephens/Porter) 9421199341877361 a007 Real Root Of 380*x^4-483*x^3-498*x^2-678*x-900 9421199364329119 a007 Real Root Of 244*x^4+349*x^3+877*x^2-83*x-757 9421199365350323 h001 (4/9*exp(2)+1/11)/(1/11*exp(1)+1/9) 9421199389799833 a007 Real Root Of 68*x^4-851*x^3+339*x^2-521*x+848 9421199393097136 m005 (1/2*gamma+7/11)/(3/11*Pi+1/8) 9421199420210592 m002 -Pi+Pi^6-4*Log[Pi]-Sinh[Pi] 9421199430349545 m001 1/LambertW(1)^2*GAMMA(1/4)^2/ln(cosh(1)) 9421199430623367 a007 Real Root Of 965*x^4-35*x^3+660*x^2+962*x-469 9421199442119944 q001 1351/1434 9421199474132861 r005 Re(z^2+c),c=1/98+2/5*I,n=30 9421199482995072 m001 HardHexagonsEntropy-ZetaR(2)^PrimesInBinary 9421199495097208 a007 Real Root Of x^4+942*x^3-114*x^2-936*x-293 9421199516433902 a007 Real Root Of -120*x^4+406*x^3+501*x^2+991*x+923 9421199523369761 m001 cos(1/5*Pi)^Zeta(1,-1)*(Pi^(1/2))^Zeta(1,-1) 9421199527495020 l006 ln(2209/5667) 9421199534648911 a007 Real Root Of -494*x^4+406*x^3+239*x^2+476*x+965 9421199566764793 r005 Re(z^2+c),c=-113/126+5/26*I,n=41 9421199572547110 a005 (1/cos(8/87*Pi))^53 9421199613140288 h001 (4/5*exp(2)+1/11)/(2/11*exp(1)+1/7) 9421199629047450 r005 Re(z^2+c),c=-11/10+11/134*I,n=10 9421199649581590 m005 (3*Catalan+4)/(3/5*Catalan+1/6) 9421199666141039 r002 40th iterates of z^2 + 9421199686973580 a007 Real Root Of 274*x^4-124*x^3+690*x^2+363*x-590 9421199692535011 a007 Real Root Of 865*x^4-713*x^3-533*x^2+197*x-619 9421199711004512 r001 32i'th iterates of 2*x^2-1 of 9421199741178841 a007 Real Root Of -651*x^4-182*x^3+466*x^2+934*x+827 9421199741247379 a007 Real Root Of 189*x^4-670*x^3-329*x^2-158*x-566 9421199747950482 a003 sin(Pi*7/102)/cos(Pi*41/96) 9421199750052387 a007 Real Root Of -153*x^4+794*x^3+113*x^2+237*x-867 9421199768582842 r002 21th iterates of z^2 + 9421199792156154 m001 (-Grothendieck+MertensB1)/(gamma+Zeta(5)) 9421199794432550 a007 Real Root Of 45*x^4+460*x^3+301*x^2-434*x-663 9421199802936733 l006 ln(8614/9465) 9421199805465408 a007 Real Root Of 597*x^4+699*x^3+439*x^2-8*x-283 9421199901498108 a007 Real Root Of 147*x^4-930*x^3-884*x^2+538*x+398 9421199907474918 a007 Real Root Of 545*x^4-355*x^3+432*x^2+196*x-925 9421199909373658 a007 Real Root Of 673*x^4+693*x^3-290*x^2-990*x-626 9421199974637384 m001 (-cos(1/5*Pi)+3^(1/3))/(2^(1/3)-sin(1/5*Pi)) 9421199994151097 m001 (ArtinRank2-Paris)/(cos(1/5*Pi)-exp(1/exp(1))) 9421199996435223 a007 Real Root Of 244*x^4-472*x^3-505*x^2-81*x-215 9421199996916646 r005 Im(z^2+c),c=-113/122+3/37*I,n=17 9421199997679417 l006 ln(3753/9628)