9567200022048587 m005 (1/3*3^(1/2)-1/3)/(1/7*Zeta(3)+1/12) 9567200034336331 a007 Real Root Of 853*x^4-830*x^3-676*x^2+122*x-706 9567200040889006 a007 Real Root Of -573*x^4+50*x^3-311*x^2+81*x+886 9567200053871910 m003 -193/2+Sqrt[5]/32+ProductLog[1/2+Sqrt[5]/2] 9567200072161310 m002 -Pi^6+Pi/Log[Pi]+Sinh[Pi]/6 9567200098640147 a007 Real Root Of 645*x^4-263*x^3-590*x^2+8*x-223 9567200100128833 m008 (1/4*Pi^3+4)/(1/5*Pi+3/5) 9567200110264780 a007 Real Root Of 238*x^4-798*x^3-269*x^2+139*x-519 9567200112551034 l006 ln(2608/6789) 9567200117651184 a007 Real Root Of 251*x^4-110*x^3+139*x^2-574*x-983 9567200127374111 a007 Real Root Of -683*x^4+752*x^3+679*x^2-133*x+482 9567200133622300 m001 1/Conway*exp(Backhouse)*Niven^2 9567200142472864 m001 exp(gamma)/GAMMA(2/3)/exp(1/Pi) 9567200149714962 r005 Re(z^2+c),c=-13/14+9/49*I,n=11 9567200163693826 m005 (1/2*5^(1/2)+1/6)/(6/11*2^(1/2)+4/7) 9567200175627736 m001 (exp(Pi)+ln(Pi))/(sin(1/12*Pi)+BesselI(0,2)) 9567200195072571 a007 Real Root Of 547*x^4+169*x^3+406*x^2-67*x-746 9567200224467415 r002 8th iterates of z^2 + 9567200261867279 m001 1/ln(GAMMA(2/3))/DuboisRaymond/sqrt(Pi) 9567200272010219 m001 (BesselJ(1,1)-Gompertz)/(Zeta(1,-1)+gamma(3)) 9567200322800228 r005 Im(z^2+c),c=-17/25+11/34*I,n=47 9567200323265062 m002 -4+Pi^6-(2*Coth[Pi])/3 9567200355546218 m001 (ln(2)-ln(5))/(Paris+Thue) 9567200405033585 m001 Pi/(exp(Pi)-1)-ln(3) 9567200415354107 m001 (LambertW(1)+FeigenbaumMu)/(-MertensB2+Porter) 9567200443859597 r005 Re(z^2+c),c=-19/20+5/59*I,n=15 9567200448287163 m001 Cahen^Stephens/(Cahen^PlouffeB) 9567200462585901 m002 -5+Pi^6+Tanh[Pi]^2/3 9567200501048104 a001 930249/4*55^(6/17) 9567200514556135 a007 Real Root Of -189*x^4+811*x^3+34*x^2-776*x+95 9567200566013937 r009 Re(z^3+c),c=-13/102+33/43*I,n=2 9567200575518750 m005 (1/3*Pi-2/9)/(19/35+1/7*5^(1/2)) 9567200590544034 a007 Real Root Of 467*x^4+205*x^3+56*x^2-478*x+45 9567200621122455 r002 5i'th iterates of 2*x/(1-x^2) of 9567200642136795 a007 Real Root Of -743*x^4+247*x^3+478*x^2-225*x+186 9567200657445361 b008 1-2/(17*E) 9567200672386990 m001 (-Ei(1,1)+FeigenbaumMu)/(5^(1/2)+BesselI(0,1)) 9567200683725527 a007 Real Root Of -388*x^4-68*x^3+53*x^2+624*x+814 9567200699820374 a007 Real Root Of -5*x^4+554*x^3-434*x^2-911*x+15 9567200716670156 m005 (1/2*2^(1/2)-5/9)/(3/11*Pi+8/11) 9567200722398998 a001 7/55*6765^(24/49) 9567200759841960 r009 Re(z^3+c),c=-1/15+35/46*I,n=5 9567200773350947 r002 37th iterates of z^2 + 9567200781343602 m001 Zeta(1,2)*Psi(1,1/3)^ZetaQ(3) 9567200814299930 l006 ln(2099/5464) 9567200826359056 m001 (Trott+ZetaP(2))/(2^(1/3)-StronglyCareFree) 9567200850901583 m001 Ei(1)^GaussAGM(1,1/sqrt(2))*GAMMA(1/6) 9567200875127200 a007 Real Root Of 864*x^4-710*x^3-439*x^2+213*x-740 9567200904260750 a007 Real Root Of -108*x^4+341*x^3+296*x^2+117*x-591 9567200907206957 r005 Re(z^2+c),c=-13/14+22/139*I,n=57 9567200923388599 m001 1/exp(GAMMA(11/12))*Catalan/gamma^2 9567200924481290 m001 (BesselI(0,2)-ln(Pi)*MertensB2)/ln(Pi) 9567200957560547 a007 Real Root Of 765*x^4-665*x^3-91*x^2-987*x+969 9567200963233354 r005 Re(z^2+c),c=-81/94+5/22*I,n=59 9567201034284027 h001 (7/11*exp(2)+6/11)/(8/11*exp(2)+1/9) 9567201040182438 m001 (-Backhouse+KomornikLoreti)/(Si(Pi)+ln(5)) 9567201050406751 a007 Real Root Of 807*x^4-622*x^3-119*x^2+419*x-711 9567201057449549 a007 Real Root Of -941*x^4-806*x^3-275*x^2+191*x+517 9567201058592639 m001 sin(1)^(FellerTornier*Kolakoski) 9567201061652977 r002 3th iterates of z^2 + 9567201083659607 a007 Real Root Of 309*x^4-447*x^3+818*x^2+438*x-980 9567201120515923 a007 Real Root Of -431*x^4+161*x^3-538*x^2-635*x+387 9567201140839363 a007 Real Root Of -698*x^4-788*x^3-72*x^2+523*x+461 9567201154472578 a007 Real Root Of 31*x^4+239*x^3-472*x^2+763*x+77 9567201219148096 a007 Real Root Of -663*x^4+235*x^3-544*x^2-689*x+600 9567201221129585 a003 cos(Pi*8/85)/sin(Pi*50/101) 9567201247546060 a007 Real Root Of 184*x^4-235*x^3+20*x^2-491*x-848 9567201275568988 m001 ln(FeigenbaumKappa)^2*LandauRamanujan/exp(1)^2 9567201310412971 l006 ln(3689/9603) 9567201328626440 a007 Real Root Of -734*x^4+98*x^3+80*x^2-80*x+551 9567201382091893 m001 Trott-Zeta(1,2)^sin(1) 9567201397042246 m001 (Gompertz-Si(Pi))/(-Totient+Trott2nd) 9567201409792828 a003 cos(Pi*11/108)/sin(Pi*52/113) 9567201416365927 r001 43i'th iterates of 2*x^2-1 of 9567201422226845 s001 sum(exp(-Pi/3)^(n-1)*A022749[n],n=1..infinity) 9567201473572477 m002 -Pi^6+6/Log[Pi]-Log[Pi]/2 9567201473694751 a007 Real Root Of 43*x^4+329*x^3-812*x^2-289*x-590 9567201492875852 a007 Real Root Of -124*x^4+429*x^3+95*x^2+202*x-552 9567201500948782 r005 Im(z^2+c),c=-7/10+7/102*I,n=7 9567201502730973 r009 Re(z^3+c),c=-3/34+54/59*I,n=27 9567201524289075 a007 Real Root Of 230*x^4-998*x^3-420*x^2-259*x-930 9567201553742803 a005 (1/sin(100/207*Pi))^1600 9567201568500102 m005 (1/2*5^(1/2)+5/9)/(Catalan+5/6) 9567201604869214 m002 -Pi^6+Cosh[Pi]/Pi^6+5/ProductLog[Pi] 9567201613613213 p004 log(17881/6869) 9567201624789576 m001 (-exp(1/2)+2/3)/(ln(2)+1/3) 9567201644005714 m001 GAMMA(7/12)^2/GAMMA(5/24)*exp(sin(Pi/5)) 9567201679520400 a007 Real Root Of 475*x^4+85*x^3-274*x^2-733*x-774 9567201684354473 r005 Im(z^2+c),c=-15/26+23/41*I,n=13 9567201712330843 a007 Real Root Of -908*x^4+115*x^3+10*x^2-502*x+372 9567201720647112 m001 LaplaceLimit*(ln(2)/ln(10)+Riemann1stZero) 9567201732832888 m001 (Rabbit+ZetaQ(3))/(Cahen+OneNinth) 9567201742760861 a007 Real Root Of 974*x^4-385*x^3-630*x^2+173*x-411 9567201743323494 p003 LerchPhi(1/10,2,86/83) 9567201767386567 a003 sin(Pi*26/105)/sin(Pi*27/103) 9567201819403375 r002 14th iterates of z^2 + 9567201839070347 m001 Ei(1)/(BesselI(0,1)+TravellingSalesman) 9567201840858132 m001 (MertensB2+Niven)/(Landau-Magata) 9567201862989577 a007 Real Root Of 96*x^4+874*x^3-436*x^2-84*x+178 9567201883713482 a007 Real Root Of -951*x^4-374*x^3+61*x^2-707*x-263 9567201889692554 m001 MertensB1^ln(2)/(MertensB1^TwinPrimes) 9567201899821791 a007 Real Root Of 343*x^4-930*x^3-239*x^2-157*x+896 9567201919870737 m005 (1/2*3^(1/2)+1/3)/(2/5*3^(1/2)-9/11) 9567201919880842 a007 Real Root Of 599*x^4-601*x^3-513*x^2-360*x-903 9567201920852049 a007 Real Root Of 479*x^4-94*x^3+235*x^2+561*x-162 9567201965344551 l006 ln(1590/4139) 9567201996639193 r005 Im(z^2+c),c=-11/17+8/41*I,n=49 9567201997767006 r002 17th iterates of z^2 + 9567201998274945 a001 956722026041/843*1364^(14/15) 9567202007371716 a007 Real Root Of 895*x^4-588*x^3-489*x^2+112*x-710 9567202010358782 a003 sin(Pi*9/41)/sin(Pi*22/95) 9567202026023441 a007 Real Root Of -251*x^4+925*x^3+531*x^2-352*x-749 9567202031635988 m001 (FeigenbaumAlpha+Niven)/(Trott2nd+ThueMorse) 9567202054363743 m002 -Pi^6+5/ProductLog[Pi]+Sinh[Pi]/Pi^6 9567202078966154 a007 Real Root Of -431*x^4+673*x^3+493*x^2-943*x-403 9567202084248740 m001 (ln(5)-LandauRamanujan2nd)/(Paris+ZetaQ(3)) 9567202084272500 a007 Real Root Of x^4-745*x^3+417*x^2-644*x+886 9567202097000245 h001 (-8*exp(-2)+5)/(-5*exp(2)-4) 9567202100609764 m001 (ln(2)+arctan(1/2))/(Champernowne-MertensB3) 9567202135592066 v002 sum(1/(3^n+(11/6*n^3-5/6*n+16)),n=1..infinity) 9567202195081012 r005 Re(z^2+c),c=-11/14+198/223*I,n=2 9567202197418122 m001 sin(1/12*Pi)^cos(1)+Weierstrass 9567202203855245 a007 Real Root Of -81*x^4-735*x^3+357*x^2-278*x-358 9567202241957305 a007 Real Root Of 186*x^4-304*x^3+89*x^2+797*x+259 9567202248921531 m001 1/Catalan/ln(Porter)^2/log(1+sqrt(2))^2 9567202269753274 a007 Real Root Of 661*x^4-232*x^3+360*x^2+128*x-964 9567202273711855 m001 KhintchineHarmonic^2*Artin^2*exp(cos(Pi/5)) 9567202288380437 r005 Im(z^2+c),c=-9/14+35/198*I,n=50 9567202299823911 h001 (5/11*exp(2)+3/4)/(1/2*exp(2)+3/5) 9567202306356001 r009 Im(z^3+c),c=-17/78+41/49*I,n=5 9567202327687102 a001 3571/377*377^(23/59) 9567202332600525 r002 17th iterates of z^2 + 9567202341093722 a001 516002918640/281*1364^(13/15) 9567202372588632 r005 Im(z^2+c),c=-16/21+4/57*I,n=12 9567202372968656 a001 76/123*(1/2*5^(1/2)+1/2)^19*123^(7/12) 9567202390258665 m008 (5/6*Pi^2-1/4)/(1/3*Pi^3-2) 9567202435709671 a001 329/13201*11^(23/41) 9567202466663262 r009 Re(z^3+c),c=-1/15+38/45*I,n=17 9567202506674586 a007 Real Root Of -171*x^4+977*x^3+35*x^2-131*x-619 9567202534395897 r008 a(0)=0,K{-n^6,-25-38*n+45*n^2+8*n^3} 9567202543979198 a005 (1/cos(10/191*Pi))^844 9567202583451681 m005 (1/2*5^(1/2)-6/7)/(8/11*exp(1)+3/4) 9567202592968837 m001 (-arctan(1/3)+Stephens)/(5^(1/2)+BesselK(0,1)) 9567202613968146 a007 Real Root Of -64*x^4+523*x^3+818*x^2-275*x-890 9567202618276842 r005 Im(z^2+c),c=-67/126+22/35*I,n=43 9567202619670561 a007 Real Root Of -818*x^4-153*x^3+692*x^2+299*x+204 9567202659345122 a007 Real Root Of -379*x^4-243*x^3-552*x^2-139*x+477 9567202676355646 m001 Tribonacci-KhinchinLevy-ln(5) 9567202683912511 a001 2504730781961/843*1364^(4/5) 9567202692156530 m001 1/exp(sqrt(2))*ArtinRank2/sqrt(Pi) 9567202702761144 a003 cos(Pi*11/106)/sin(Pi*51/112) 9567202729777155 r002 23th iterates of z^2 + 9567202744271873 m001 (sin(1/5*Pi)+CopelandErdos)/(Thue+ZetaQ(4)) 9567202757507013 r005 Re(z^2+c),c=-31/34+17/67*I,n=59 9567202777090741 a001 70711162/305*89^(6/19) 9567202793333559 a007 Real Root Of 336*x^4+19*x^3-76*x^2-30*x-224 9567202813105359 a007 Real Root Of 861*x^4+380*x^3+537*x^2+737*x-175 9567202829528829 m001 (1+2^(1/3))/(-GAMMA(3/4)+MinimumGamma) 9567202851472415 m001 (DuboisRaymond+GaussAGM*Sarnak)/GaussAGM 9567202869890569 l006 ln(2671/6953) 9567202870413960 m001 (Zeta(5)-gamma(2))/(FeigenbaumKappa-MertensB1) 9567202877147348 m001 HardyLittlewoodC4^gamma(2)/Shi(1) 9567202878315041 m005 (1/2*5^(1/2)-1/11)/(5*5^(1/2)-4/9) 9567202884234519 r002 5th iterates of z^2 + 9567202885452012 a007 Real Root Of -358*x^4+266*x^3+275*x^2+743*x+992 9567202905353761 m001 3^(1/3)-FibonacciFactorial^Backhouse 9567202906444033 r005 Im(z^2+c),c=-69/58+7/52*I,n=7 9567202919734736 a007 Real Root Of 581*x^4+235*x^3-30*x^2+173*x-88 9567202936600571 m005 (1/3*2^(1/2)+3/7)/(7/8*Zeta(3)-1/9) 9567202965033981 a007 Real Root Of -415*x^4-454*x^3-780*x^2-322*x+356 9567202983026808 a003 sin(Pi*32/87)/sin(Pi*43/106) 9567202983900773 r002 7th iterates of z^2 + 9567203001618994 m008 (1/2*Pi^3-1/4)/(1/6*Pi^6-4/5) 9567203004151421 m002 -5/Pi^5+Pi+6*ProductLog[Pi] 9567203026731313 a001 4052739537881/843*1364^(11/15) 9567203038286468 m001 Shi(1)*FeigenbaumB+ZetaP(4) 9567203062058558 a001 208010/19*18^(3/4) 9567203062240010 a007 Real Root Of 541*x^4-179*x^3+968*x^2+993*x-546 9567203067082127 a007 Real Root Of 671*x^4+455*x^3+238*x^2-221*x-593 9567203070585981 m001 1/ln(Riemann2ndZero)/Kolakoski^2*Tribonacci 9567203091630178 a007 Real Root Of -925*x^4-556*x^3-530*x^2-966*x-151 9567203103150642 a007 Real Root Of -633*x^4-342*x^3-731*x^2-972*x-30 9567203142094438 a007 Real Root Of -826*x^4-196*x^3-23*x^2-13*x+529 9567203158473923 l006 ln(8038/8845) 9567203159574960 a007 Real Root Of 371*x^4-631*x^3+96*x^2+433*x-537 9567203204231919 m001 GAMMA(7/12)*Salem-sin(1) 9567203227027979 a007 Real Root Of -495*x^4+844*x^3+398*x^2-331*x-372 9567203228294519 m001 (2^(1/3)+ln(Pi))/(Champernowne+Riemann3rdZero) 9567203230755057 s002 sum(A082236[n]/(n^3*10^n+1),n=1..infinity) 9567203235012205 a001 121393/2*29^(5/37) 9567203253213617 l006 ln(3752/9767) 9567203257842530 a007 Real Root Of -461*x^4+672*x^3+966*x^2+414*x-49 9567203270733762 a007 Real Root Of -188*x^4+641*x^3+405*x^2+234*x+572 9567203279946107 r005 Im(z^2+c),c=-17/74+25/33*I,n=6 9567203297147923 a007 Real Root Of -518*x^4-841*x^3-852*x^2+355*x+817 9567203316018293 m001 1/Tribonacci^2/ln(Sierpinski)^2*cos(1)^2 9567203327390991 a007 Real Root Of -152*x^4+946*x^3+473*x^2-813*x-255 9567203363542132 m001 (BesselI(1,2)+RenyiParking)/(ln(2)+Zeta(1,2)) 9567203369550127 a001 6557470319842/843*1364^(2/3) 9567203370719734 a007 Real Root Of 776*x^4+210*x^3-528*x^2-253*x-225 9567203371515718 a003 cos(Pi*14/99)-sin(Pi*43/89) 9567203388512171 m001 (gamma(1)+GaussAGM)/(2^(1/3)-arctan(1/2)) 9567203396557680 m005 (1/2*exp(1)-1/8)/(4*Pi+1/3) 9567203406899510 r002 3th iterates of z^2 + 9567203416795029 a007 Real Root Of 318*x^4-300*x^3-836*x^2-150*x+905 9567203444558419 m005 (1/3*Catalan+1/8)/(4/5*Zeta(3)-11/12) 9567203478806097 r002 12th iterates of z^2 + 9567203482096274 r009 Re(z^3+c),c=-3/34+54/59*I,n=29 9567203504272627 r005 Re(z^2+c),c=19/74+25/52*I,n=6 9567203504416600 r005 Re(z^2+c),c=-73/52+1/38*I,n=25 9567203516581370 r005 Im(z^2+c),c=-11/23+31/60*I,n=22 9567203524041107 m008 (1/3*Pi^4-1/2)/(Pi+1/5) 9567203530790310 b008 1+22*Sin[2/5] 9567203545255845 r002 11th iterates of z^2 + 9567203561429674 a007 Real Root Of 225*x^4-703*x^3+5*x^2-151*x+567 9567203576335049 m002 -Pi-Log[Pi]+Pi^4*Log[Pi]-Sinh[Pi] 9567203577298019 a001 47/7778742049*46368^(9/10) 9567203578098944 a001 47/591286729879*5702887^(9/10) 9567203581919305 m001 (BesselI(1,1)+FeigenbaumD)/(Khinchin+Rabbit) 9567203582583755 a007 Real Root Of -997*x^4-396*x^3+962*x^2+115*x-282 9567203595781886 m001 1/GAMMA(17/24)^2*GAMMA(1/4)^2*ln(cos(Pi/12))^2 9567203625970174 q001 8/83619 9567203635874672 a007 Real Root Of 958*x^4-650*x^3-602*x^2+513*x-330 9567203639146960 r005 Im(z^2+c),c=-3/19+41/45*I,n=7 9567203703075838 b008 Tanh[1+E*EulerGamma^2] 9567203709642554 a007 Real Root Of -601*x^4-959*x^3-614*x^2-145*x+87 9567203712368954 a001 3536736619241/281*1364^(3/5) 9567203746204594 m001 (ZetaP(4)+ZetaQ(4))/(exp(1/exp(1))-Kac) 9567203750906447 m005 (1/2*exp(1)+9/11)/(3/7*2^(1/2)-7/12) 9567203775117871 a007 Real Root Of -593*x^4+519*x^3-733*x^2-711*x+942 9567203849354142 a007 Real Root Of 729*x^4-691*x^3+554*x^2+833*x-926 9567203852380690 r005 Im(z^2+c),c=-51/44+6/49*I,n=42 9567203858185416 m004 3/4+(Sin[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi])/4 9567203875215380 m002 -Pi^2/4+Pi^4*Coth[Pi]^2 9567203877649403 a007 Real Root Of -698*x^4+692*x^3+728*x^2-799*x-240 9567203930848976 m001 (2^(1/3)+GAMMA(13/24))/(-FellerTornier+Kac) 9567203937540177 a007 Real Root Of -383*x^4+401*x^3-831*x^2-470*x+983 9567203947121054 a007 Real Root Of 961*x^4-412*x^3-571*x^2+918*x+235 9567203947639590 h001 (-6*exp(3)-11)/(-8*exp(1)+8) 9567204006202785 a007 Real Root Of -563*x^4-340*x^3-503*x^2+8*x+642 9567204040953448 a007 Real Root Of -94*x^4-919*x^3-159*x^2+331*x+484 9567204072930510 r009 Im(z^3+c),c=-53/90+27/62*I,n=5 9567204075727853 b008 8+ArcSec[6^Pi] 9567204081121475 m005 (1/2*5^(1/2)-4/9)/(2/7*2^(1/2)+3/10) 9567204084480069 r009 Re(z^3+c),c=-3/34+54/59*I,n=37 9567204086907568 r009 Re(z^3+c),c=-3/34+54/59*I,n=35 9567204090413809 m002 -Pi^6+Cosh[Pi]/Pi^2+4/Log[Pi] 9567204098905313 b008 8+ArcTan[6^Pi] 9567204104214832 r009 Re(z^3+c),c=-3/34+54/59*I,n=39 9567204104499776 r009 Re(z^3+c),c=-3/34+54/59*I,n=45 9567204104689490 r009 Re(z^3+c),c=-3/34+54/59*I,n=47 9567204104801525 r009 Re(z^3+c),c=-3/34+54/59*I,n=55 9567204104803857 r009 Re(z^3+c),c=-3/34+54/59*I,n=53 9567204104803976 r009 Re(z^3+c),c=-3/34+54/59*I,n=57 9567204104804303 r009 Re(z^3+c),c=-3/34+54/59*I,n=63 9567204104804435 r009 Re(z^3+c),c=-3/34+54/59*I,n=61 9567204104804671 r009 Re(z^3+c),c=-3/34+54/59*I,n=59 9567204104824051 r009 Re(z^3+c),c=-3/34+54/59*I,n=51 9567204104829251 r009 Re(z^3+c),c=-3/34+54/59*I,n=49 9567204105299616 r009 Re(z^3+c),c=-3/34+54/59*I,n=43 9567204107537279 r009 Re(z^3+c),c=-3/34+54/59*I,n=41 9567204117620855 r005 Re(z^2+c),c=-41/110+23/39*I,n=45 9567204117783261 m001 gamma*GolombDickman+Gompertz 9567204118526900 a001 1292/51841*11^(23/41) 9567204200351260 l006 ln(1081/2814) 9567204231677408 r009 Re(z^3+c),c=-3/34+54/59*I,n=33 9567204236735012 a007 Real Root Of 265*x^4-777*x^3-531*x^2+938*x+481 9567204300855657 a007 Real Root Of 770*x^4-47*x^3+398*x^2+842*x-245 9567204301075268 q001 3559/3720 9567204309898853 r002 22th iterates of z^2 + 9567204343146432 r005 Re(z^2+c),c=-28/31+10/51*I,n=21 9567204354155973 m004 -15625*Pi*Log[Sqrt[5]*Pi]+5*Pi*Sec[Sqrt[5]*Pi] 9567204364046625 a001 2255/90481*11^(23/41) 9567204368162306 r005 Re(z^2+c),c=-101/110+9/49*I,n=59 9567204370491093 a001 2/29*2^(17/36) 9567204371914296 r009 Re(z^3+c),c=-3/34+54/59*I,n=31 9567204377315824 a007 Real Root Of 91*x^4+879*x^3+82*x^2-17*x-326 9567204380432800 m001 (BesselI(0,2)-HeathBrownMoroz)/(Niven-Porter) 9567204399867470 a001 17711/710647*11^(23/41) 9567204405093661 a001 2576/103361*11^(23/41) 9567204405856152 a001 121393/4870847*11^(23/41) 9567204406327398 a001 75025/3010349*11^(23/41) 9567204408323625 a001 28657/1149851*11^(23/41) 9567204422005970 a001 5473/219602*11^(23/41) 9567204424642175 r004 Im(z^2+c),c=-17/30+4/23*I,z(0)=-1,n=48 9567204458150245 a007 Real Root Of -808*x^4+743*x^3+324*x^2-346*x+700 9567204515786160 a001 4181/167761*11^(23/41) 9567204518684947 m003 1/36+Sqrt[5]/2+4*Cot[1/2+Sqrt[5]/2] 9567204520177485 a007 Real Root Of 77*x^4-742*x^3+820*x^2-848*x+646 9567204529710934 m001 (1+Si(Pi))/(-Ei(1,1)+polylog(4,1/2)) 9567204567722953 m009 (5/6*Psi(1,3/4)+2/3)/(3*Pi^2-1/2) 9567204631802921 a003 cos(Pi*1/10)/sin(Pi*47/101) 9567204632627515 r005 Im(z^2+c),c=-23/36+21/38*I,n=6 9567204656437452 r005 Im(z^2+c),c=-13/14+16/193*I,n=24 9567204662134244 m002 -Pi^6+Log[Pi]/Pi^4+5/ProductLog[Pi] 9567204764323978 r005 Re(z^2+c),c=-26/29+15/56*I,n=11 9567204786429810 a003 cos(Pi*5/84)*sin(Pi*35/82) 9567204820244708 r002 7th iterates of z^2 + 9567204833561708 a001 329/281*14662949395604^(19/21) 9567204837753109 a003 sin(Pi*17/75)/sin(Pi*28/117) 9567204839123648 p001 sum((-1)^n/(273*n+94)/(2^n),n=0..infinity) 9567204881388191 a001 2504730781961/322*322^(5/6) 9567204902095857 m001 (Zeta(3)+CareFree)/(MertensB3+TwinPrimes) 9567204909860312 m002 -4+Pi^6-(Pi^3*Sech[Pi])/4 9567204929361497 r005 Im(z^2+c),c=-73/64+4/33*I,n=40 9567205014911229 a001 1/492*(1/2*5^(1/2)+1/2)^6*4^(16/23) 9567205031659937 m001 (Grothendieck-Otter)/(Ei(1)-Pi^(1/2)) 9567205099743666 m001 (exp(1)-gamma(2))/(-HardyLittlewoodC4+Lehmer) 9567205115514322 l006 ln(5777/6357) 9567205120390124 q001 3139/3281 9567205131848011 l006 ln(3815/9931) 9567205134220746 m001 (Zeta(1,2)-sin(1))/(-Cahen+FeigenbaumAlpha) 9567205158565146 a001 1597/64079*11^(23/41) 9567205188572037 r009 Im(z^3+c),c=-2/9+27/28*I,n=18 9567205193593515 r005 Im(z^2+c),c=-5/8+59/181*I,n=38 9567205224198996 a003 sin(Pi*2/73)-sin(Pi*5/86) 9567205257504365 r009 Re(z^3+c),c=-2/15+12/29*I,n=5 9567205284483314 a007 Real Root Of -667*x^4+972*x^3+753*x^2-171*x-818 9567205318916584 a003 cos(Pi*7/118)*sin(Pi*32/75) 9567205328506747 a007 Real Root Of 830*x^4+472*x^3+231*x^2+890*x+358 9567205333612986 a007 Real Root Of 206*x^4-935*x^3+431*x^2-455*x+687 9567205340775348 m001 (Gompertz+Tribonacci)/(FellerTornier-gamma) 9567205394819257 a007 Real Root Of -373*x^4+82*x^3-743*x^2-407*x+675 9567205396180018 r002 33th iterates of z^2 + 9567205396483597 m001 (Rabbit+Riemann3rdZero)/(Catalan+Pi^(1/2)) 9567205413097896 a007 Real Root Of 544*x^4-971*x^3+31*x^2+914*x-460 9567205414014688 m001 Zeta(1,-1)^PrimesInBinary+TravellingSalesman 9567205422474081 m001 gamma(3)+AlladiGrinstead^Ei(1,1) 9567205437763794 s001 sum(1/10^(n-1)*A029554[n],n=1..infinity) 9567205437763794 s001 sum(1/10^n*A029554[n],n=1..infinity) 9567205442378913 a007 Real Root Of -53*x^4+662*x^3+762*x^2-421*x-830 9567205464571756 m001 (exp(Pi)-gamma)/(GAMMA(23/24)+MertensB3) 9567205470570219 m005 (4/5*gamma-1/4)/(11/8+3/8*5^(1/2)) 9567205470738886 m002 -Pi^3/6+Pi^6+Sinh[Pi]/E^Pi 9567205476362431 a007 Real Root Of -641*x^4+443*x^3+88*x^2-568*x+301 9567205500153762 l006 ln(2734/7117) 9567205537120605 a007 Real Root Of -254*x^4+384*x^3-681*x^2-476*x+717 9567205552545386 a007 Real Root Of 89*x^4+757*x^3-803*x^2+923*x-407 9567205567168782 a007 Real Root Of 87*x^4-985*x^3-612*x^2+756*x+348 9567205572471665 m001 Riemann1stZero/ln(LaplaceLimit)/Ei(1)^2 9567205576150722 m002 -Pi^6+Sinh[Pi]/Pi+Tanh[Pi]^2 9567205604065191 a007 Real Root Of -401*x^4+181*x^3+87*x^2-443*x-9 9567205608288821 r002 52th iterates of z^2 + 9567205611765995 p004 log(32771/12589) 9567205624658233 h001 (7/8*exp(1)+3/7)/(7/8*exp(1)+5/9) 9567205641173181 a007 Real Root Of 636*x^4-401*x^3+228*x^2+400*x-710 9567205646161141 a007 Real Root Of -171*x^4-19*x^3-230*x^2+350*x+672 9567205672839842 a007 Real Root Of -820*x^4+412*x^3-165*x^2-582*x+642 9567205683514786 m008 (4/5*Pi^4+3/5)/(1/2*Pi-3/4) 9567205684099535 r002 12th iterates of z^2 + 9567205690294916 r005 Im(z^2+c),c=-15/62+8/59*I,n=9 9567205705168225 m001 (Bloch+Thue)/(ln(2+3^(1/2))-Backhouse) 9567205718910664 s002 sum(A008167[n]/(2^n-1),n=1..infinity) 9567205754588683 r009 Re(z^3+c),c=-3/34+54/59*I,n=25 9567205764174442 r005 Im(z^2+c),c=7/17+5/34*I,n=26 9567205791384849 a003 cos(Pi*5/108)*sin(Pi*28/67) 9567205827580403 a007 Real Root Of 660*x^4+886*x^3+707*x^2+157*x-274 9567205831203438 r005 Re(z^2+c),c=-13/14+22/139*I,n=55 9567205864803404 a007 Real Root Of 201*x^4-749*x^3-506*x^2+89*x-276 9567205904417611 p004 log(27143/10427) 9567205917170801 r002 49th iterates of z^2 + 9567205958225471 r005 Im(z^2+c),c=-9/8+3/256*I,n=37 9567205963428722 s002 sum(A195460[n]/(n!^2),n=1..infinity) 9567205964672975 a003 sin(Pi*8/81)*sin(Pi*7/69) 9567205990371191 m001 Magata^2*exp(ErdosBorwein)*sqrt(1+sqrt(3)) 9567206005658915 h001 (11/12*exp(2)+1/12)/(6/7*exp(2)+5/6) 9567206035969001 a007 Real Root Of -487*x^4+207*x^3-560*x^2-581*x+546 9567206045239241 a003 cos(Pi*4/97)-cos(Pi*22/45) 9567206045352122 m008 (Pi^4-1/5)/(1/3*Pi^5-2/5) 9567206047471114 a001 1527882805781137/1597 9567206050196726 r002 41th iterates of z^2 + 9567206061001489 a007 Real Root Of -145*x^4+746*x^3+346*x^2+163*x+614 9567206063318955 m001 (ln(5)+Zeta(1/2))/(GaussAGM+Sarnak) 9567206079517591 a008 Real Root of x^3-x^2-182*x-774 9567206091622289 a001 365435296162/843*3571^(16/17) 9567206101466608 m001 (-Zeta(1,2)+BesselI(1,2))/(gamma-sin(1)) 9567206117107798 r005 Im(z^2+c),c=-97/118+3/55*I,n=52 9567206135754578 a001 591286729879/843*3571^(15/17) 9567206139310687 a007 Real Root Of 79*x^4-830*x^3-749*x^2+498*x+369 9567206156380031 m001 OrthogonalArrays/(ZetaQ(2)^exp(1/exp(1))) 9567206162447341 a007 Real Root Of 107*x^4-255*x^3-657*x^2-116*x+846 9567206177706130 r005 Re(z^2+c),c=1/70+28/53*I,n=11 9567206179312445 a007 Real Root Of 584*x^4-718*x^3-723*x^2+849*x+356 9567206179886868 a001 956722026041/843*3571^(14/17) 9567206192821956 q001 2719/2842 9567206224019158 a001 516002918640/281*3571^(13/17) 9567206233970953 r009 Re(z^3+c),c=-5/82+49/59*I,n=49 9567206244883855 a007 Real Root Of -162*x^4+270*x^3+278*x^2+443*x-779 9567206248247808 r009 Im(z^3+c),c=-15/52+39/53*I,n=8 9567206251793266 m001 (Cahen-TreeGrowth2nd)/(ln(5)+polylog(4,1/2)) 9567206258667940 a007 Real Root Of 842*x^4-370*x^3-454*x^2+511*x-125 9567206260950969 r002 36th iterates of z^2 + 9567206268151448 a001 2504730781961/843*3571^(12/17) 9567206270739584 h001 (8/11*exp(2)+4/11)/(7/9*exp(2)+1/4) 9567206274890203 m001 OneNinth/Porter/ZetaP(4) 9567206275490343 m001 (BesselJ(0,1)-Cahen)/(-Conway+Salem) 9567206277979723 m006 (5*exp(Pi)+1/2)/(1/4*Pi-2) 9567206293247197 m002 -3-3*Pi^3*Tanh[Pi] 9567206298060618 m001 Pi^(1/2)*(Shi(1)-polylog(4,1/2)) 9567206299564956 m005 (1/2*gamma+5/12)/(5/7*3^(1/2)-1/2) 9567206312283738 a001 4052739537881/843*3571^(11/17) 9567206326466930 m005 (1/2*Pi+1/12)/(159/220+9/20*5^(1/2)) 9567206335067443 a007 Real Root Of 617*x^4-320*x^3-997*x^2-152*x-30 9567206350175754 l006 ln(1653/4303) 9567206356416028 a001 6557470319842/843*3571^(10/17) 9567206381844512 m001 1/Ei(1)^2*exp(FeigenbaumKappa)/GAMMA(5/6) 9567206400548319 a001 3536736619241/281*3571^(9/17) 9567206404181197 r005 Re(z^2+c),c=-1+72/245*I,n=7 9567206422611692 a003 sin(Pi*23/59)/sin(Pi*53/120) 9567206448028837 m001 (GAMMA(7/12)+GaussAGM)/(PrimesInBinary-Robbin) 9567206467496770 a005 (1/sin(64/191*Pi))^327 9567206470699927 a007 Real Root Of -88*x^4-809*x^3+276*x^2-309*x+604 9567206487759156 m001 Catalan^Backhouse+ZetaP(4) 9567206491310743 m001 (GAMMA(13/24)-Shi(1))/(FeigenbaumD+Magata) 9567206511169347 a001 2584/843*3461452808002^(11/12) 9567206539039688 a007 Real Root Of -334*x^4+959*x^3+514*x^2+119*x+763 9567206560366692 r009 Im(z^3+c),c=-5/42+58/61*I,n=4 9567206622816904 r005 Re(z^2+c),c=19/126+33/62*I,n=43 9567206623245468 m001 GAMMA(1/4)^2/exp(Lehmer)^2*cosh(1)^2 9567206626452756 h001 (2/3*exp(1)+5/6)/(3/11*exp(2)+3/4) 9567206666165496 m009 (3/10*Pi^2+1/4)/(16*Catalan+2*Pi^2-5/6) 9567206683747316 h001 (2/11*exp(2)+5/6)/(7/11*exp(1)+6/11) 9567206688260155 a001 4000049116361571/4181 9567206694040142 a001 139583862445/843*9349^(18/19) 9567206699801187 a001 267913919*9349^(17/19) 9567206705562231 a001 365435296162/843*9349^(16/19) 9567206711323276 a001 591286729879/843*9349^(15/19) 9567206717084320 a001 956722026041/843*9349^(14/19) 9567206722845365 a001 516002918640/281*9349^(13/19) 9567206728606409 a001 2504730781961/843*9349^(12/19) 9567206734367454 a001 4052739537881/843*9349^(11/19) 9567206740128498 a001 6557470319842/843*9349^(10/19) 9567206745889543 a001 3536736619241/281*9349^(9/19) 9567206748774253 a007 Real Root Of 210*x^4-357*x^3+299*x^2+780*x-16 9567206755845449 m005 (5/6*Pi+3)/(7/5+2*5^(1/2)) 9567206760936690 a007 Real Root Of 985*x^4-309*x^3+209*x^2+413*x-892 9567206782529443 a001 53316291173/843*24476^(20/21) 9567206783289918 a001 86267571272/843*24476^(19/21) 9567206784050393 a001 139583862445/843*24476^(6/7) 9567206784810868 a001 267913919*24476^(17/21) 9567206785571343 a001 365435296162/843*24476^(16/21) 9567206786331818 a001 591286729879/843*24476^(5/7) 9567206787092293 a001 956722026041/843*24476^(2/3) 9567206787852768 a001 516002918640/281*24476^(13/21) 9567206788613243 a001 2504730781961/843*24476^(4/7) 9567206789373718 a001 4052739537881/843*24476^(11/21) 9567206790134193 a001 6557470319842/843*24476^(10/21) 9567206790894668 a001 3536736619241/281*24476^(3/7) 9567206791638956 a001 17711/843*817138163596^(17/19) 9567206791638956 a001 17711/843*14662949395604^(17/21) 9567206791638956 a001 17711/843*192900153618^(17/18) 9567206792130551 a001 505019158607/233*34^(8/19) 9567206795510259 a001 20365011074/843*64079^(22/23) 9567206795611563 a001 10983760033/281*64079^(21/23) 9567206795712867 a001 53316291173/843*64079^(20/23) 9567206795814171 a001 86267571272/843*64079^(19/23) 9567206795915475 a001 139583862445/843*64079^(18/23) 9567206796016779 a001 267913919*64079^(17/23) 9567206796118082 a001 365435296162/843*64079^(16/23) 9567206796219386 a001 591286729879/843*64079^(15/23) 9567206796320690 a001 956722026041/843*64079^(14/23) 9567206796421994 a001 516002918640/281*64079^(13/23) 9567206796523298 a001 2504730781961/843*64079^(12/23) 9567206796624602 a001 4052739537881/843*64079^(11/23) 9567206796725905 a001 6557470319842/843*64079^(10/23) 9567206796827209 a001 3536736619241/281*64079^(9/23) 9567206796848967 a001 15456/281*14662949395604^(7/9) 9567206796848967 a001 15456/281*505019158607^(7/8) 9567206797466991 a001 53316291173/843*167761^(4/5) 9567206797534979 a001 591286729879/843*167761^(3/5) 9567206797602967 a001 6557470319842/843*167761^(2/5) 9567206797694858 a001 7778742049/843*439204^(8/9) 9567206797700369 a001 10983760033/281*439204^(7/9) 9567206797705879 a001 139583862445/843*439204^(2/3) 9567206797711390 a001 591286729879/843*439204^(5/9) 9567206797716901 a001 2504730781961/843*439204^(4/9) 9567206797720000 a001 377*45537549124^(15/17) 9567206797720000 a001 377*312119004989^(9/11) 9567206797720000 a001 377*14662949395604^(5/7) 9567206797720000 a001 377*192900153618^(5/6) 9567206797720000 a001 377*28143753123^(9/10) 9567206797720000 a001 377*10749957122^(15/16) 9567206797722412 a001 3536736619241/281*439204^(1/3) 9567206797738804 a001 433494437/843*7881196^(10/11) 9567206797738818 a001 1836311903/843*7881196^(9/11) 9567206797738832 a001 7778742049/843*7881196^(8/11) 9567206797738841 a001 20365011074/843*7881196^(2/3) 9567206797738846 a001 10983760033/281*7881196^(7/11) 9567206797738860 a001 139583862445/843*7881196^(6/11) 9567206797738874 a001 591286729879/843*7881196^(5/11) 9567206797738885 a001 5702887/843*2537720636^(13/15) 9567206797738885 a001 5702887/843*45537549124^(13/17) 9567206797738885 a001 5702887/843*14662949395604^(13/21) 9567206797738885 a001 5702887/843*192900153618^(13/18) 9567206797738885 a001 5702887/843*73681302247^(3/4) 9567206797738885 a001 5702887/843*10749957122^(13/16) 9567206797738885 a001 5702887/843*599074578^(13/14) 9567206797738888 a001 2504730781961/843*7881196^(4/11) 9567206797738892 a001 4052739537881/843*7881196^(1/3) 9567206797738902 a001 3536736619241/281*7881196^(3/11) 9567206797738924 a001 433494437/843*20633239^(6/7) 9567206797738926 a001 1134903170/843*20633239^(4/5) 9567206797738928 a001 1602508992/281*20633239^(5/7) 9567206797738930 a001 10983760033/281*20633239^(3/5) 9567206797738931 a001 53316291173/843*20633239^(4/7) 9567206797738934 a001 591286729879/843*20633239^(3/7) 9567206797738935 a001 956722026041/843*20633239^(2/5) 9567206797738937 a001 6557470319842/843*20633239^(2/7) 9567206797738942 a001 39088169/843*2537720636^(7/9) 9567206797738942 a001 39088169/843*17393796001^(5/7) 9567206797738942 a001 39088169/843*312119004989^(7/11) 9567206797738942 a001 39088169/843*14662949395604^(5/9) 9567206797738942 a001 39088169/843*505019158607^(5/8) 9567206797738942 a001 39088169/843*28143753123^(7/10) 9567206797738943 a001 39088169/843*599074578^(5/6) 9567206797738943 a001 39088169/843*228826127^(7/8) 9567206797738943 a001 34111385/281*141422324^(11/13) 9567206797738943 a001 433494437/843*141422324^(10/13) 9567206797738943 a001 1836311903/843*141422324^(9/13) 9567206797738943 a001 2971215073/843*141422324^(2/3) 9567206797738943 a001 7778742049/843*141422324^(8/13) 9567206797738943 a001 10983760033/281*141422324^(7/13) 9567206797738944 a001 139583862445/843*141422324^(6/13) 9567206797738944 a001 591286729879/843*141422324^(5/13) 9567206797738944 a001 34111385/281*2537720636^(11/15) 9567206797738944 a001 34111385/281*45537549124^(11/17) 9567206797738944 a001 34111385/281*312119004989^(3/5) 9567206797738944 a001 34111385/281*817138163596^(11/19) 9567206797738944 a001 34111385/281*14662949395604^(11/21) 9567206797738944 a001 34111385/281*192900153618^(11/18) 9567206797738944 a001 34111385/281*10749957122^(11/16) 9567206797738944 a001 34111385/281*1568397607^(3/4) 9567206797738944 a001 34111385/281*599074578^(11/14) 9567206797738944 a001 516002918640/281*141422324^(1/3) 9567206797738944 a001 2504730781961/843*141422324^(4/13) 9567206797738944 a001 3536736619241/281*141422324^(3/13) 9567206797738944 a001 267914296/843*9062201101803^(1/2) 9567206797738944 a001 233802911/281*1322157322203^(1/2) 9567206797738944 a001 1836311903/843*2537720636^(3/5) 9567206797738944 a001 1602508992/281*2537720636^(5/9) 9567206797738944 a001 7778742049/843*2537720636^(8/15) 9567206797738944 a001 10983760033/281*2537720636^(7/15) 9567206797738944 a001 53316291173/843*2537720636^(4/9) 9567206797738944 a001 139583862445/843*2537720636^(2/5) 9567206797738944 a001 1836311903/843*45537549124^(9/17) 9567206797738944 a001 1836311903/843*817138163596^(9/19) 9567206797738944 a001 1836311903/843*14662949395604^(3/7) 9567206797738944 a001 1836311903/843*192900153618^(1/2) 9567206797738944 a001 1836311903/843*10749957122^(9/16) 9567206797738944 a001 591286729879/843*2537720636^(1/3) 9567206797738944 a001 2504730781961/843*2537720636^(4/15) 9567206797738944 a001 6557470319842/843*2537720636^(2/9) 9567206797738944 a001 3536736619241/281*2537720636^(1/5) 9567206797738944 a001 1602508992/281*312119004989^(5/11) 9567206797738944 a001 1602508992/281*3461452808002^(5/12) 9567206797738944 a001 1602508992/281*28143753123^(1/2) 9567206797738944 a001 10983760033/281*17393796001^(3/7) 9567206797738944 a001 956722026041/843*17393796001^(2/7) 9567206797738944 a001 10983760033/281*45537549124^(7/17) 9567206797738944 a001 10983760033/281*14662949395604^(1/3) 9567206797738944 a001 10983760033/281*192900153618^(7/18) 9567206797738944 a001 267913919*45537549124^(1/3) 9567206797738944 a001 139583862445/843*45537549124^(6/17) 9567206797738944 a001 591286729879/843*45537549124^(5/17) 9567206797738944 a001 2504730781961/843*45537549124^(4/17) 9567206797738944 a001 3536736619241/281*45537549124^(3/17) 9567206797738944 a001 86267571272/843*817138163596^(1/3) 9567206797738944 a001 591286729879/843*312119004989^(3/11) 9567206797738944 a001 6557470319842/843*312119004989^(2/11) 9567206797738944 a001 591286729879/843*14662949395604^(5/21) 9567206797738944 a001 2504730781961/843*817138163596^(4/19) 9567206797738944 a001 3536736619241/281*817138163596^(3/19) 9567206797738944 a001 2504730781961/843*14662949395604^(4/21) 9567206797738944 a001 956722026041/843*505019158607^(1/4) 9567206797738944 a001 3536736619241/281*192900153618^(1/6) 9567206797738944 a001 2504730781961/843*192900153618^(2/9) 9567206797738944 a001 139583862445/843*14662949395604^(2/7) 9567206797738944 a001 139583862445/843*192900153618^(1/3) 9567206797738944 a001 2504730781961/843*73681302247^(3/13) 9567206797738944 a001 516002918640/281*73681302247^(1/4) 9567206797738944 a001 365435296162/843*73681302247^(4/13) 9567206797738944 a001 53316291173/843*23725150497407^(5/16) 9567206797738944 a001 53316291173/843*505019158607^(5/14) 9567206797738944 a001 53316291173/843*73681302247^(5/13) 9567206797738944 a001 6557470319842/843*28143753123^(1/5) 9567206797738944 a001 591286729879/843*28143753123^(3/10) 9567206797738944 a001 20365011074/843*312119004989^(2/5) 9567206797738944 a001 53316291173/843*28143753123^(2/5) 9567206797738944 a001 3536736619241/281*10749957122^(3/16) 9567206797738944 a001 6557470319842/843*10749957122^(5/24) 9567206797738944 a001 2504730781961/843*10749957122^(1/4) 9567206797738944 a001 956722026041/843*10749957122^(7/24) 9567206797738944 a001 591286729879/843*10749957122^(5/16) 9567206797738944 a001 365435296162/843*10749957122^(1/3) 9567206797738944 a001 7778742049/843*45537549124^(8/17) 9567206797738944 a001 139583862445/843*10749957122^(3/8) 9567206797738944 a001 7778742049/843*14662949395604^(8/21) 9567206797738944 a001 7778742049/843*192900153618^(4/9) 9567206797738944 a001 7778742049/843*73681302247^(6/13) 9567206797738944 a001 10983760033/281*10749957122^(7/16) 9567206797738944 a001 53316291173/843*10749957122^(5/12) 9567206797738944 a001 20365011074/843*10749957122^(11/24) 9567206797738944 a001 7778742049/843*10749957122^(1/2) 9567206797738944 a001 6557470319842/843*4106118243^(5/23) 9567206797738944 a001 2504730781961/843*4106118243^(6/23) 9567206797738944 a001 956722026041/843*4106118243^(7/23) 9567206797738944 a001 365435296162/843*4106118243^(8/23) 9567206797738944 a001 2971215073/843*73681302247^(1/2) 9567206797738944 a001 139583862445/843*4106118243^(9/23) 9567206797738944 a001 53316291173/843*4106118243^(10/23) 9567206797738944 a001 2971215073/843*10749957122^(13/24) 9567206797738944 a001 12586269025/843*4106118243^(1/2) 9567206797738944 a001 20365011074/843*4106118243^(11/23) 9567206797738944 a001 7778742049/843*4106118243^(12/23) 9567206797738944 a001 2971215073/843*4106118243^(13/23) 9567206797738944 a001 6557470319842/843*1568397607^(5/22) 9567206797738944 a001 4052739537881/843*1568397607^(1/4) 9567206797738944 a001 2504730781961/843*1568397607^(3/11) 9567206797738944 a001 956722026041/843*1568397607^(7/22) 9567206797738944 a001 365435296162/843*1568397607^(4/11) 9567206797738944 a001 1134903170/843*17393796001^(4/7) 9567206797738944 a001 1134903170/843*14662949395604^(4/9) 9567206797738944 a001 1134903170/843*505019158607^(1/2) 9567206797738944 a001 1134903170/843*73681302247^(7/13) 9567206797738944 a001 1134903170/843*10749957122^(7/12) 9567206797738944 a001 139583862445/843*1568397607^(9/22) 9567206797738944 a001 53316291173/843*1568397607^(5/11) 9567206797738944 a001 1134903170/843*4106118243^(14/23) 9567206797738944 a001 20365011074/843*1568397607^(1/2) 9567206797738944 a001 7778742049/843*1568397607^(6/11) 9567206797738944 a001 2971215073/843*1568397607^(13/22) 9567206797738944 a001 1134903170/843*1568397607^(7/11) 9567206797738944 a001 3536736619241/281*599074578^(3/14) 9567206797738944 a001 6557470319842/843*599074578^(5/21) 9567206797738944 a001 2504730781961/843*599074578^(2/7) 9567206797738944 a001 956722026041/843*599074578^(1/3) 9567206797738944 a001 433494437/843*2537720636^(2/3) 9567206797738944 a001 591286729879/843*599074578^(5/14) 9567206797738944 a001 365435296162/843*599074578^(8/21) 9567206797738944 a001 433494437/843*45537549124^(10/17) 9567206797738944 a001 433494437/843*312119004989^(6/11) 9567206797738944 a001 433494437/843*14662949395604^(10/21) 9567206797738944 a001 433494437/843*192900153618^(5/9) 9567206797738944 a001 433494437/843*28143753123^(3/5) 9567206797738944 a001 433494437/843*10749957122^(5/8) 9567206797738944 a001 433494437/843*4106118243^(15/23) 9567206797738944 a001 139583862445/843*599074578^(3/7) 9567206797738944 a001 53316291173/843*599074578^(10/21) 9567206797738944 a001 433494437/843*1568397607^(15/22) 9567206797738944 a001 10983760033/281*599074578^(1/2) 9567206797738944 a001 20365011074/843*599074578^(11/21) 9567206797738944 a001 7778742049/843*599074578^(4/7) 9567206797738944 a001 1836311903/843*599074578^(9/14) 9567206797738944 a001 2971215073/843*599074578^(13/21) 9567206797738944 a001 1134903170/843*599074578^(2/3) 9567206797738944 a001 433494437/843*599074578^(5/7) 9567206797738944 a001 6557470319842/843*228826127^(1/4) 9567206797738944 a001 2504730781961/843*228826127^(3/10) 9567206797738944 a001 956722026041/843*228826127^(7/20) 9567206797738944 a001 591286729879/843*228826127^(3/8) 9567206797738944 a001 165580141/843*23725150497407^(1/2) 9567206797738944 a001 165580141/843*505019158607^(4/7) 9567206797738944 a001 165580141/843*73681302247^(8/13) 9567206797738944 a001 165580141/843*10749957122^(2/3) 9567206797738944 a001 165580141/843*4106118243^(16/23) 9567206797738944 a001 165580141/843*1568397607^(8/11) 9567206797738944 a001 365435296162/843*228826127^(2/5) 9567206797738944 a001 139583862445/843*228826127^(9/20) 9567206797738944 a001 165580141/843*599074578^(16/21) 9567206797738944 a001 53316291173/843*228826127^(1/2) 9567206797738944 a001 20365011074/843*228826127^(11/20) 9567206797738944 a001 7778742049/843*228826127^(3/5) 9567206797738944 a001 1602508992/281*228826127^(5/8) 9567206797738944 a001 2971215073/843*228826127^(13/20) 9567206797738944 a001 1134903170/843*228826127^(7/10) 9567206797738944 a001 433494437/843*228826127^(3/4) 9567206797738944 a001 165580141/843*228826127^(4/5) 9567206797738944 a001 6557470319842/843*87403803^(5/19) 9567206797738944 a001 2504730781961/843*87403803^(6/19) 9567206797738944 a001 956722026041/843*87403803^(7/19) 9567206797738944 a001 63245986/843*45537549124^(2/3) 9567206797738944 a001 63245986/843*10749957122^(17/24) 9567206797738944 a001 63245986/843*4106118243^(17/23) 9567206797738944 a001 63245986/843*1568397607^(17/22) 9567206797738944 a001 63245986/843*599074578^(17/21) 9567206797738944 a001 365435296162/843*87403803^(8/19) 9567206797738944 a001 139583862445/843*87403803^(9/19) 9567206797738944 a001 86267571272/843*87403803^(1/2) 9567206797738944 a001 63245986/843*228826127^(17/20) 9567206797738944 a001 53316291173/843*87403803^(10/19) 9567206797738944 a001 20365011074/843*87403803^(11/19) 9567206797738945 a001 7778742049/843*87403803^(12/19) 9567206797738945 a001 2971215073/843*87403803^(13/19) 9567206797738945 a001 1134903170/843*87403803^(14/19) 9567206797738945 a001 433494437/843*87403803^(15/19) 9567206797738945 a001 165580141/843*87403803^(16/19) 9567206797738945 a001 63245986/843*87403803^(17/19) 9567206797738946 a001 3536736619241/281*33385282^(1/4) 9567206797738946 a001 6557470319842/843*33385282^(5/18) 9567206797738947 a001 24157817/843*141422324^(12/13) 9567206797738947 a001 2504730781961/843*33385282^(1/3) 9567206797738947 a001 24157817/843*2537720636^(4/5) 9567206797738947 a001 24157817/843*45537549124^(12/17) 9567206797738947 a001 24157817/843*14662949395604^(4/7) 9567206797738947 a001 24157817/843*505019158607^(9/14) 9567206797738947 a001 24157817/843*192900153618^(2/3) 9567206797738947 a001 24157817/843*73681302247^(9/13) 9567206797738947 a001 24157817/843*10749957122^(3/4) 9567206797738947 a001 24157817/843*4106118243^(18/23) 9567206797738947 a001 24157817/843*1568397607^(9/11) 9567206797738947 a001 24157817/843*599074578^(6/7) 9567206797738947 a001 956722026041/843*33385282^(7/18) 9567206797738947 a001 24157817/843*228826127^(9/10) 9567206797738947 a001 591286729879/843*33385282^(5/12) 9567206797738948 a001 365435296162/843*33385282^(4/9) 9567206797738948 a001 139583862445/843*33385282^(1/2) 9567206797738948 a001 24157817/843*87403803^(18/19) 9567206797738949 a001 53316291173/843*33385282^(5/9) 9567206797738949 a001 10983760033/281*33385282^(7/12) 9567206797738949 a001 20365011074/843*33385282^(11/18) 9567206797738949 a001 7778742049/843*33385282^(2/3) 9567206797738950 a001 2971215073/843*33385282^(13/18) 9567206797738950 a001 1836311903/843*33385282^(3/4) 9567206797738950 a001 1134903170/843*33385282^(7/9) 9567206797738951 a001 433494437/843*33385282^(5/6) 9567206797738951 a001 34111385/281*33385282^(11/12) 9567206797738951 a001 165580141/843*33385282^(8/9) 9567206797738952 a001 63245986/843*33385282^(17/18) 9567206797738961 a001 6557470319842/843*12752043^(5/17) 9567206797738965 a001 2504730781961/843*12752043^(6/17) 9567206797738966 a001 9227465/843*817138163596^(2/3) 9567206797738966 a001 9227465/843*10749957122^(19/24) 9567206797738966 a001 9227465/843*4106118243^(19/23) 9567206797738966 a001 9227465/843*1568397607^(19/22) 9567206797738966 a001 9227465/843*599074578^(19/21) 9567206797738966 a001 9227465/843*228826127^(19/20) 9567206797738968 a001 956722026041/843*12752043^(7/17) 9567206797738971 a001 365435296162/843*12752043^(8/17) 9567206797738973 a001 267913919*12752043^(1/2) 9567206797738975 a001 139583862445/843*12752043^(9/17) 9567206797738978 a001 53316291173/843*12752043^(10/17) 9567206797738982 a001 20365011074/843*12752043^(11/17) 9567206797738985 a001 7778742049/843*12752043^(12/17) 9567206797738989 a001 2971215073/843*12752043^(13/17) 9567206797738992 a001 1134903170/843*12752043^(14/17) 9567206797738996 a001 433494437/843*12752043^(15/17) 9567206797738999 a001 165580141/843*12752043^(16/17) 9567206797739070 a001 6557470319842/843*4870847^(5/16) 9567206797739095 a001 2504730781961/843*4870847^(3/8) 9567206797739098 a001 3524578/843*2537720636^(8/9) 9567206797739098 a001 3524578/843*312119004989^(8/11) 9567206797739098 a001 3524578/843*23725150497407^(5/8) 9567206797739098 a001 3524578/843*73681302247^(10/13) 9567206797739098 a001 3524578/843*28143753123^(4/5) 9567206797739098 a001 3524578/843*10749957122^(5/6) 9567206797739098 a001 3524578/843*4106118243^(20/23) 9567206797739098 a001 3524578/843*1568397607^(10/11) 9567206797739098 a001 3524578/843*599074578^(20/21) 9567206797739120 a001 956722026041/843*4870847^(7/16) 9567206797739145 a001 365435296162/843*4870847^(1/2) 9567206797739171 a001 139583862445/843*4870847^(9/16) 9567206797739196 a001 53316291173/843*4870847^(5/8) 9567206797739221 a001 20365011074/843*4870847^(11/16) 9567206797739246 a001 7778742049/843*4870847^(3/4) 9567206797739271 a001 2971215073/843*4870847^(13/16) 9567206797739297 a001 1134903170/843*4870847^(7/8) 9567206797739322 a001 433494437/843*4870847^(15/16) 9567206797739773 a001 3536736619241/281*1860498^(3/10) 9567206797739865 a001 6557470319842/843*1860498^(1/3) 9567206797739999 a001 1346269/843*2537720636^(14/15) 9567206797739999 a001 1346269/843*17393796001^(6/7) 9567206797739999 a001 1346269/843*45537549124^(14/17) 9567206797739999 a001 1346269/843*817138163596^(14/19) 9567206797739999 a001 1346269/843*14662949395604^(2/3) 9567206797739999 a001 1346269/843*505019158607^(3/4) 9567206797739999 a001 1346269/843*192900153618^(7/9) 9567206797739999 a001 1346269/843*10749957122^(7/8) 9567206797739999 a001 1346269/843*4106118243^(21/23) 9567206797739999 a001 1346269/843*1568397607^(21/22) 9567206797740049 a001 2504730781961/843*1860498^(2/5) 9567206797740234 a001 956722026041/843*1860498^(7/15) 9567206797740326 a001 591286729879/843*1860498^(1/2) 9567206797740418 a001 365435296162/843*1860498^(8/15) 9567206797740602 a001 139583862445/843*1860498^(3/5) 9567206797740786 a001 53316291173/843*1860498^(2/3) 9567206797740878 a001 10983760033/281*1860498^(7/10) 9567206797740971 a001 20365011074/843*1860498^(11/15) 9567206797741155 a001 7778742049/843*1860498^(4/5) 9567206797741247 a001 1602508992/281*1860498^(5/6) 9567206797741339 a001 2971215073/843*1860498^(13/15) 9567206797741431 a001 1836311903/843*1860498^(9/10) 9567206797741523 a001 1134903170/843*1860498^(14/15) 9567206797745710 a001 6557470319842/843*710647^(5/14) 9567206797746180 a001 514229/843*312119004989^(4/5) 9567206797746180 a001 514229/843*23725150497407^(11/16) 9567206797746180 a001 514229/843*73681302247^(11/13) 9567206797746180 a001 514229/843*10749957122^(11/12) 9567206797746180 a001 514229/843*4106118243^(22/23) 9567206797747063 a001 2504730781961/843*710647^(3/7) 9567206797748416 a001 956722026041/843*710647^(1/2) 9567206797749769 a001 365435296162/843*710647^(4/7) 9567206797751122 a001 139583862445/843*710647^(9/14) 9567206797752475 a001 53316291173/843*710647^(5/7) 9567206797753152 a001 10983760033/281*710647^(3/4) 9567206797753829 a001 20365011074/843*710647^(11/14) 9567206797755182 a001 7778742049/843*710647^(6/7) 9567206797756535 a001 2971215073/843*710647^(13/14) 9567206797788540 a001 196418/843*10749957122^(23/24) 9567206797788884 a001 6557470319842/843*271443^(5/13) 9567206797798873 a001 2504730781961/843*271443^(6/13) 9567206797803867 a001 516002918640/281*271443^(1/2) 9567206797808861 a001 956722026041/843*271443^(7/13) 9567206797818849 a001 365435296162/843*271443^(8/13) 9567206797828837 a001 139583862445/843*271443^(9/13) 9567206797838825 a001 53316291173/843*271443^(10/13) 9567206797848813 a001 20365011074/843*271443^(11/13) 9567206797858801 a001 7778742049/843*271443^(12/13) 9567206798072685 a001 3536736619241/281*103682^(3/8) 9567206798078884 a001 75025/843*45537549124^(16/17) 9567206798078884 a001 75025/843*14662949395604^(16/21) 9567206798078884 a001 75025/843*192900153618^(8/9) 9567206798078884 a001 75025/843*73681302247^(12/13) 9567206798109767 a001 6557470319842/843*103682^(5/12) 9567206798146850 a001 4052739537881/843*103682^(11/24) 9567206798183932 a001 2504730781961/843*103682^(1/2) 9567206798221014 a001 516002918640/281*103682^(13/24) 9567206798258097 a001 956722026041/843*103682^(7/12) 9567206798295179 a001 591286729879/843*103682^(5/8) 9567206798332261 a001 365435296162/843*103682^(2/3) 9567206798369344 a001 267913919*103682^(17/24) 9567206798406426 a001 139583862445/843*103682^(3/4) 9567206798443508 a001 86267571272/843*103682^(19/24) 9567206798480591 a001 53316291173/843*103682^(5/6) 9567206798517673 a001 10983760033/281*103682^(7/8) 9567206798554755 a001 20365011074/843*103682^(11/12) 9567206798591838 a001 12586269025/843*103682^(23/24) 9567206800068932 a001 28657/843*312119004989^(10/11) 9567206800068932 a001 28657/843*3461452808002^(5/6) 9567206800234393 a001 3536736619241/281*39603^(9/22) 9567206800511666 a001 6557470319842/843*39603^(5/11) 9567206800788938 a001 4052739537881/843*39603^(1/2) 9567206801066210 a001 2504730781961/843*39603^(6/11) 9567206801343482 a001 516002918640/281*39603^(13/22) 9567206801620754 a001 956722026041/843*39603^(7/11) 9567206801898027 a001 591286729879/843*39603^(15/22) 9567206802175299 a001 365435296162/843*39603^(8/11) 9567206802452571 a001 267913919*39603^(17/22) 9567206802729843 a001 139583862445/843*39603^(9/11) 9567206803007115 a001 86267571272/843*39603^(19/22) 9567206803284388 a001 53316291173/843*39603^(10/11) 9567206803561660 a001 10983760033/281*39603^(21/22) 9567206813708920 a001 10946/843*23725150497407^(13/16) 9567206813708920 a001 10946/843*505019158607^(13/14) 9567206816553417 a001 3536736619241/281*15127^(9/20) 9567206818643914 a001 6557470319842/843*15127^(1/2) 9567206820734411 a001 4052739537881/843*15127^(11/20) 9567206822824908 a001 2504730781961/843*15127^(3/5) 9567206824915405 a001 516002918640/281*15127^(13/20) 9567206827005902 a001 956722026041/843*15127^(7/10) 9567206829096399 a001 591286729879/843*15127^(3/4) 9567206831186896 a001 365435296162/843*15127^(4/5) 9567206833277393 a001 267913919*15127^(17/20) 9567206834011074 r002 24th iterates of z^2 + 9567206835367890 a001 139583862445/843*15127^(9/10) 9567206837458387 a001 86267571272/843*15127^(19/20) 9567206885212578 m001 2^(1/2)*Gompertz/QuadraticClass 9567206907198790 a001 4181/843*14662949395604^(6/7) 9567206918229862 r001 33i'th iterates of 2*x^2-1 of 9567206941023741 a001 3536736619241/281*5778^(1/2) 9567206949443407 l006 ln(3878/10095) 9567206956944274 a001 6557470319842/843*5778^(5/9) 9567206966271507 s002 sum(A022966[n]/(n*10^n+1),n=1..infinity) 9567206966271507 s002 sum(A023452[n]/(n*10^n+1),n=1..infinity) 9567206967172321 s002 sum(A178914[n]/(n*10^n+1),n=1..infinity) 9567206967174344 s002 sum(A143473[n]/(n*10^n+1),n=1..infinity) 9567206972738780 a007 Real Root Of 865*x^4-534*x^3-175*x^2+274*x-770 9567206972864807 a001 4052739537881/843*5778^(11/18) 9567206988785341 a001 2504730781961/843*5778^(2/3) 9567206995137057 b008 ArcCosh[Sqrt[Pi]*Erf[1]] 9567206997736701 r001 12i'th iterates of 2*x^2-1 of 9567207001831048 r005 Re(z^2+c),c=9/94+4/7*I,n=63 9567207004705874 a001 516002918640/281*5778^(13/18) 9567207009282261 a003 sin(Pi*13/97)+sin(Pi*12/65) 9567207020626407 a001 956722026041/843*5778^(7/9) 9567207025159063 m002 -Pi^6+Cosh[Pi]/Pi^3+4*ProductLog[Pi] 9567207036546940 a001 591286729879/843*5778^(5/6) 9567207052467474 a001 365435296162/843*5778^(8/9) 9567207059812341 a007 Real Root Of -429*x^4+45*x^3+683*x^2+558*x-839 9567207068388007 a001 267913919*5778^(17/18) 9567207070921174 r005 Im(z^2+c),c=-55/82+5/17*I,n=6 9567207095148857 m001 1/Robbin^2*CopelandErdos^2/exp(Sierpinski) 9567207111277092 a007 Real Root Of -903*x^4+582*x^3-564*x^2-845*x+974 9567207169122371 a001 370248451/1597*89^(6/19) 9567207192993975 a007 Real Root Of -997*x^4-164*x^3+924*x^2+830*x+640 9567207199171308 s002 sum(A211461[n]/(n^2*exp(n)+1),n=1..infinity) 9567207204257348 a007 Real Root Of -181*x^4+742*x^3+777*x^2-411*x-303 9567207226334450 r005 Re(z^2+c),c=-13/14+62/253*I,n=3 9567207228013392 a008 Real Root of (-5+9*x+6*x^2-5*x^4-7*x^8) 9567207242392617 m005 (1/2*exp(1)-3/4)/(4/9*exp(1)-4/7) 9567207248371823 a001 9349/144*28657^(18/37) 9567207254389640 r005 Im(z^2+c),c=-13/14+16/193*I,n=21 9567207287836583 a007 Real Root Of -959*x^4-219*x^3+655*x^2-274*x-250 9567207304075141 a007 Real Root Of -884*x^4+324*x^3+223*x^2+167*x+980 9567207306930790 a007 Real Root Of 975*x^4+110*x^3+23*x^2-207*x-20 9567207308055493 m001 (ln(2)/ln(10)-MasserGramainDelta)/BesselI(1,2) 9567207314327208 r002 48th iterates of z^2 + 9567207379608591 m001 MertensB1^Tribonacci+Trott 9567207381008936 m005 (23/30+1/6*5^(1/2))/(4/9*3^(1/2)-8/9) 9567207394652117 l006 ln(2225/5792) 9567207402399303 m005 (1/2*3^(1/2)+5/7)/(7/8*Zeta(3)+3/5) 9567207424417182 r009 Re(z^3+c),c=-3/58+57/64*I,n=16 9567207435090003 m001 (Salem+Trott)/(BesselJ(0,1)+PlouffeB) 9567207445220653 m001 (arctan(1/2)-HardyLittlewoodC5)^BesselI(1,2) 9567207511713069 m005 (1/2*5^(1/2)+4/7)/(3/11*Pi+10/11) 9567207528493721 m001 LambertW(1)*ln(Pi)+HardyLittlewoodC4 9567207547987888 a001 1597/843*14662949395604^(8/9) 9567207554005865 a007 Real Root Of -751*x^4+924*x^3+622*x^2-924*x-15 9567207554820709 r005 Im(z^2+c),c=-25/66+5/46*I,n=3 9567207556787861 m001 1/FeigenbaumD/FeigenbaumC/exp(GAMMA(7/12))^2 9567207613848237 a001 199/610*4181^(4/31) 9567207617655232 a007 Real Root Of 892*x^4-473*x^3+158*x^2+944*x-403 9567207624989987 a007 Real Root Of -459*x^4+853*x^3-437*x^2-843*x+725 9567207636757155 a007 Real Root Of 413*x^4-974*x^3-33*x^2+653*x-544 9567207657095297 q001 2299/2403 9567207676141708 r005 Im(z^2+c),c=-29/62+1/62*I,n=21 9567207705354655 m005 (1/2*gamma+7/8)/(3/5*Catalan+2/3) 9567207721050133 r004 Re(z^2+c),c=1/6+1/22*I,z(0)=exp(7/12*I*Pi),n=3 9567207723729248 r002 42th iterates of z^2 + 9567207741615115 a003 cos(Pi*8/63)-sin(Pi*30/97) 9567207742005001 a001 17393796001/8*2504730781961^(7/9) 9567207742005001 a001 505019158607/8*32951280099^(7/9) 9567207742005001 a001 3665737348901/2*433494437^(7/9) 9567207775394154 a007 Real Root Of 256*x^4-373*x^3-312*x^2-151*x-400 9567207785307675 m001 (Catalan+Zeta(5))/(-GAMMA(7/12)+FeigenbaumMu) 9567207798013062 p004 log(33427/12841) 9567207809911487 a001 969323029/4181*89^(6/19) 9567207884582436 a001 1568397607/3*3524578^(22/23) 9567207890682278 a001 13201*225851433717^(22/23) 9567207894608056 a007 Real Root Of 250*x^4-737*x^3+233*x^2+552*x-540 9567207897689846 s002 sum(A145961[n]/(n^2*exp(n)+1),n=1..infinity) 9567207898784509 r005 Re(z^2+c),c=-79/86+2/11*I,n=27 9567207902588589 a001 3536736619241/281*2207^(9/16) 9567207903401366 a001 1268860318/5473*89^(6/19) 9567207905612480 a005 (1/cos(16/231*Pi))^1156 9567207917041356 a001 6643838879/28657*89^(6/19) 9567207919031403 a001 17393796001/75025*89^(6/19) 9567207919321747 a001 22768774562/98209*89^(6/19) 9567207919364108 a001 119218851371/514229*89^(6/19) 9567207919370288 a001 312119004989/1346269*89^(6/19) 9567207919371190 a001 408569081798/1762289*89^(6/19) 9567207919371321 a001 2139295485799/9227465*89^(6/19) 9567207919371341 a001 5600748293801/24157817*89^(6/19) 9567207919371343 a001 7331474697802/31622993*89^(6/19) 9567207919371344 a001 23725150497407/102334155*89^(6/19) 9567207919371345 a001 9062201101803/39088169*89^(6/19) 9567207919371353 a001 1730726404001/7465176*89^(6/19) 9567207919371403 a001 1322157322203/5702887*89^(6/19) 9567207919371747 a001 10745088481/46347*89^(6/19) 9567207919374108 a001 96450076809/416020*89^(6/19) 9567207919390288 a001 73681302247/317811*89^(6/19) 9567207919501190 a001 28143753123/121393*89^(6/19) 9567207920261320 a001 5374978561/23184*89^(6/19) 9567207925471333 a001 4106118243/17711*89^(6/19) 9567207941345892 a007 Real Root Of 219*x^4-823*x^3-849*x^2+391*x+247 9567207961181290 a001 1568397607/6765*89^(6/19) 9567207964911021 a007 Real Root Of 377*x^4-872*x^3-770*x^2-131*x-500 9567207978773784 a007 Real Root Of -5*x^4-471*x^3+714*x^2+945*x+569 9567208005852100 m002 -3+Pi^6-6/(Pi*Log[Pi]) 9567208008079915 m001 (Totient+TreeGrowth2nd)/(ln(2+3^(1/2))+Landau) 9567208011927513 l006 ln(2797/7281) 9567208025349669 a001 6557470319842/843*2207^(5/8) 9567208039903660 m005 (1/2*5^(1/2)-1/5)/(32/45+1/9*5^(1/2)) 9567208055083755 a007 Real Root Of -343*x^4+892*x^3+958*x^2+384*x+559 9567208098252760 m005 (1/3*2^(1/2)+3/5)/(2/7*3^(1/2)+5/8) 9567208100040598 s001 sum(exp(-Pi/2)^(n-1)*A102334[n],n=1..infinity) 9567208103787973 m001 (Zeta(1,-1)+ZetaQ(3))^BesselI(0,1) 9567208108016850 m005 (1/2*Catalan-5/6)/(5/12*Pi-11/12) 9567208111395200 a007 Real Root Of 484*x^4-385*x^3+84*x^2+681*x-168 9567208123520511 r005 Re(z^2+c),c=-3/13+19/23*I,n=17 9567208135182533 m001 1/Salem^2/RenyiParking^2/ln(sin(Pi/12)) 9567208141877783 a007 Real Root Of 222*x^4-917*x^3+145*x^2-215*x+690 9567208148110750 a001 4052739537881/843*2207^(11/16) 9567208155737492 m001 (-Ei(1,1)+Mills)/(Psi(1,1/3)+BesselI(0,1)) 9567208170011029 m002 -2+(4*Log[Pi])/Pi^4+Tanh[Pi] 9567208192962003 a007 Real Root Of 808*x^4+71*x^3-552*x^2-35*x-143 9567208201150776 m002 -4+4/Pi^2+Pi^6-ProductLog[Pi] 9567208202541624 q001 1/1045237 9567208205940983 a001 299537289/1292*89^(6/19) 9567208218082480 r005 Re(z^2+c),c=-155/126+1/43*I,n=4 9567208228749028 a003 sin(Pi*13/85)/sin(Pi*13/81) 9567208236114490 m005 (1/2*Zeta(3)+1/7)/(3/8*3^(1/2)-8/11) 9567208243310906 r005 Im(z^2+c),c=-115/122+14/57*I,n=10 9567208245624121 r005 Im(z^2+c),c=-5/8+9/170*I,n=12 9567208251396520 r005 Re(z^2+c),c=55/114+5/34*I,n=4 9567208256377396 m006 (3*exp(2*Pi)-5)/(2*Pi^2-3) 9567208259338716 a007 Real Root Of 957*x^4-399*x^3-395*x^2-107*x-892 9567208270871833 a001 2504730781961/843*2207^(3/4) 9567208309782381 r005 Re(z^2+c),c=7/26+12/35*I,n=31 9567208338625157 m005 (1/2*gamma-4)/(7/11*3^(1/2)-5/7) 9567208345439313 a007 Real Root Of 729*x^4-158*x^3+172*x^2+588*x-344 9567208392642164 m001 StolarskyHarborth^(Cahen*Trott2nd) 9567208393632917 a001 516002918640/281*2207^(13/16) 9567208405352421 r005 Im(z^2+c),c=7/34+29/49*I,n=9 9567208411789262 r009 Re(z^3+c),c=-13/118+14/59*I,n=5 9567208419596758 l006 ln(3369/8770) 9567208432405019 a003 cos(Pi*27/107)-cos(Pi*12/41) 9567208445102750 m002 -1-Pi^2+Pi^3/5+Pi^6 9567208457615081 m001 Grothendieck/(ln(3)+LandauRamanujan) 9567208478412122 m001 (FeigenbaumAlpha+Landau)/(gamma-sin(1/12*Pi)) 9567208505505901 a007 Real Root Of -241*x^4+262*x^3+305*x^2+443*x+576 9567208516394003 a001 956722026041/843*2207^(7/8) 9567208547469167 m001 (QuadraticClass+ZetaR(2))/OneNinth 9567208569133311 m001 1/cos(Pi/12)^3/exp(GAMMA(3/4))^2 9567208570088730 a007 Real Root Of -608*x^4+673*x^3+97*x^2+387*x-539 9567208584972527 m001 (Shi(1)+exp(1/Pi))/(Kolakoski+MadelungNaCl) 9567208585422883 r005 Im(z^2+c),c=-29/90+8/55*I,n=10 9567208592088131 r005 Re(z^2+c),c=-9/10+28/141*I,n=31 9567208608209162 m009 (1/2*Psi(1,1/3)+4/5)/(5/12*Pi^2+2) 9567208610115244 m001 (cos(1/5*Pi)-Backhouse)/(Landau-PlouffeB) 9567208614151954 a007 Real Root Of 901*x^4-554*x^3+126*x^2+986*x-412 9567208639155091 a001 591286729879/843*2207^(15/16) 9567208649138567 m002 -3-Pi/6+Pi^6-Log[Pi] 9567208678764293 h001 (11/12*exp(2)+1/5)/(10/11*exp(2)+4/7) 9567208738995478 m002 -4/E^Pi+6/Pi-Pi^4 9567208746722800 a007 Real Root Of 302*x^4-778*x^3-450*x^2-182*x-14 9567208748734463 r001 16i'th iterates of 2*x^2-1 of 9567208761897639 a001 944283504799297/987 9567208781730312 a007 Real Root Of 995*x^4-190*x^3-939*x^2-35*x-174 9567208782723158 m001 (Cahen*GaussAGM+MertensB1)/GaussAGM 9567208784701382 m001 (Psi(2,1/3)+Zeta(3))/(Zeta(1,2)+Artin) 9567208795320982 m001 (KomornikLoreti+OneNinth)/(Cahen-sin(1)) 9567208803979965 r005 Im(z^2+c),c=-79/122+9/46*I,n=49 9567208807766747 r009 Re(z^3+c),c=-47/122+18/29*I,n=39 9567208811612934 m005 (5/6*exp(1)-2/3)/(3/4*gamma-3/5) 9567208832348751 m001 (HardyLittlewoodC3+QuadraticClass)/(1-sin(1)) 9567208844559541 a007 Real Root Of -73*x^4-809*x^3-982*x^2+783*x+528 9567208885715807 m005 (1/2*2^(1/2)+6/11)/(3/7*Catalan+11/12) 9567208908114457 a003 sin(Pi*23/58)/sin(Pi*26/57) 9567208910351022 r005 Im(z^2+c),c=-2/7+1/7*I,n=6 9567208916830455 a007 Real Root Of 717*x^4+446*x^3+497*x^2+45*x-622 9567208940289998 a007 Real Root Of -107*x^4-974*x^3+421*x^2-506*x+139 9567208954151365 a007 Real Root Of -101*x^4-986*x^3-78*x^2+986*x-689 9567208959135999 m001 BesselK(1,1)^2/exp(FeigenbaumD)/sin(Pi/12) 9567208962623027 m001 (KomornikLoreti-Stephens)/BesselI(0,1) 9567208964893168 m001 gamma(3)^ArtinRank2/HardHexagonsEntropy 9567208966644661 m005 (1/2*gamma+3/10)/(3/11*3^(1/2)+1/7) 9567208968623057 a007 Real Root Of 335*x^4-888*x^3-39*x^2+772*x-284 9567209006297563 s002 sum(A086505[n]/(n^2*pi^n+1),n=1..infinity) 9567209012081693 a001 13/271443*47^(7/9) 9567209026450325 r005 Re(z^2+c),c=-107/114+8/43*I,n=3 9567209084130027 m002 -4+E^Pi/2+Pi-Log[Pi] 9567209091754466 r005 Im(z^2+c),c=9/38+22/39*I,n=54 9567209154098543 a007 Real Root Of -776*x^4+706*x^3+712*x^2+273*x-881 9567209162802308 a001 29/2504730781961*4181^(9/17) 9567209183100917 m001 (-Landau+Trott2nd)/(Psi(2,1/3)+Zeta(3)) 9567209185818604 m005 (-11/42+1/6*5^(1/2))/(1/5*2^(1/2)+7/8) 9567209193915018 r002 15th iterates of z^2 + 9567209194552124 m001 (Pi-ln(2))/(Gompertz+ReciprocalLucas) 9567209194894464 a007 Real Root Of 327*x^4-366*x^3-839*x^2-890*x-678 9567209236545653 r009 Re(z^3+c),c=-15/82+43/62*I,n=60 9567209317252269 b008 10-Coth[1/2]/5 9567209320037449 m002 -Log[Pi]/5+Pi^2*Tanh[Pi]^2 9567209320056547 r005 Re(z^2+c),c=-89/102+12/59*I,n=33 9567209324096474 m002 -Pi^6+(3*Cosh[Pi])/Pi^2+Log[Pi] 9567209344166874 a007 Real Root Of -221*x^4-56*x^3+275*x^2-60*x-173 9567209347169181 a001 2/121393*21^(26/45) 9567209358564446 m001 (Tribonacci+ZetaP(2))/(Si(Pi)+Landau) 9567209404432212 a007 Real Root Of -62*x^4+986*x^3+719*x^2-656*x-842 9567209412286239 a007 Real Root Of 816*x^4-251*x^3-626*x^2-311*x-628 9567209421936607 r005 Re(z^2+c),c=-51/56+7/36*I,n=41 9567209431361079 m004 (Sqrt[5]*Pi)/4+625*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi] 9567209440384331 a007 Real Root Of -935*x^4+941*x^3+705*x^2+25*x+986 9567209443998476 h001 (7/11*exp(2)+1/3)/(7/10*exp(2)+1/11) 9567209467783284 a007 Real Root Of -93*x^4+417*x^3+116*x^2+252*x+578 9567209521512459 a001 199*(1/2*5^(1/2)+1/2)^25*3^(23/24) 9567209529993507 m001 Porter^2/ln(FeigenbaumDelta)^2*GAMMA(11/12) 9567209534762416 m001 TwinPrimes*FeigenbaumD^2/ln(OneNinth)^2 9567209549108157 m001 (-sin(1/12*Pi)+KomornikLoreti)/(Shi(1)+cos(1)) 9567209553723736 a007 Real Root Of 725*x^4+503*x^3-823*x^2-585*x+63 9567209564237861 a001 305/12238*11^(23/41) 9567209575667570 a007 Real Root Of 898*x^4+651*x^3-318*x^2-715*x-65 9567209589544534 l006 ln(3516/3869) 9567209680280173 m001 (BesselJ(0,1)-cos(1/12*Pi))/(Conway+Kolakoski) 9567209693126792 a007 Real Root Of -304*x^4-274*x^3+292*x^2+658*x+377 9567209708493576 m001 (KomornikLoreti-Salem)/(Ei(1)-FeigenbaumC) 9567209713954209 r005 Im(z^2+c),c=-31/66+8/49*I,n=22 9567209757664528 r005 Re(z^2+c),c=-13/14+22/139*I,n=59 9567209775967413 q001 1879/1964 9567209777352416 a007 Real Root Of 742*x^4-408*x^3-582*x^2+457*x-9 9567209778205878 a007 Real Root Of 948*x^4-669*x^3-638*x^2-958*x+98 9567209791099403 m001 ln(Niven)/CopelandErdos^2/Zeta(9)^2 9567209859935045 a007 Real Root Of 310*x^4-213*x^3+557*x^2+368*x-604 9567209865760366 m001 (Champernowne-Paris)/(Sierpinski+ZetaQ(3)) 9567209869220906 r009 Im(z^3+c),c=-5/29+13/14*I,n=45 9567209875043310 r005 Im(z^2+c),c=47/122+33/58*I,n=33 9567209876543209 r002 2th iterates of z^2 + 9567209883549214 a001 4868641/21*89^(6/19) 9567209884851087 m004 -3-25*Pi+25*Sqrt[5]*Pi+(5*Tanh[Sqrt[5]*Pi])/Pi 9567209897371664 m001 1/Salem/ln(Riemann3rdZero)*BesselK(1,1)^2 9567209899459551 a007 Real Root Of -404*x^4+295*x^3+450*x^2-649*x-436 9567209908700812 m002 -1-Cosh[Pi]/Pi^3+Pi^4*Tanh[Pi] 9567209923130447 m001 Ei(1)*RenyiParking/ln(GAMMA(5/24)) 9567209948594763 r005 Im(z^2+c),c=-29/26+13/111*I,n=42 9567210003808219 a007 Real Root Of 661*x^4-716*x^3-727*x^2-401*x-899 9567210008872388 r002 36th iterates of z^2 + 9567210014174274 r001 56i'th iterates of 2*x^2-1 of 9567210023121448 a007 Real Root Of 95*x^4+951*x^3+475*x^2+681*x-82 9567210048053996 m001 (ln(3)+sin(1/12*Pi))/(GolombDickman+Kolakoski) 9567210051994803 a003 cos(Pi*19/104)+cos(Pi*31/67) 9567210069754967 a003 sin(Pi*33/89)/sin(Pi*41/100) 9567210088563378 r005 Im(z^2+c),c=-31/28+11/45*I,n=18 9567210102647420 r005 Im(z^2+c),c=-17/36+9/55*I,n=38 9567210110005032 a007 Real Root Of 552*x^4-546*x^3-289*x^2+368*x-324 9567210132540981 a007 Real Root Of -169*x^4+283*x^3+923*x^2-137*x-820 9567210134458205 a007 Real Root Of 282*x^4-77*x^3+630*x^2+385*x-512 9567210164922636 a007 Real Root Of 492*x^4+211*x^3+351*x^2-409*x-940 9567210196530682 r005 Re(z^2+c),c=-113/122+5/21*I,n=14 9567210243382889 a007 Real Root Of 37*x^4-203*x^3-408*x^2-727*x-66 9567210246736432 m002 -1+6/E^Pi+Pi^4-Tanh[Pi] 9567210272652687 a007 Real Root Of 67*x^4-481*x^3-29*x^2-361*x+737 9567210277709488 a001 1/2*2^(44/47) 9567210277709488 b008 2^(-3/47) 9567210282145715 m006 (1/Pi-4/5)/(5*Pi^2+1) 9567210294078628 b008 Sqrt[ArcTan[ArcCsch[2]]]/7 9567210313120669 a007 Real Root Of -980*x^4+975*x^3+87*x^2-896*x+738 9567210324700857 m001 1/ln(BesselJ(0,1))*Bloch^2*GAMMA(1/12) 9567210331579428 m001 QuadraticClass^(sin(1/12*Pi)*FeigenbaumKappa) 9567210337379023 a007 Real Root Of 502*x^4-874*x^3-181*x^2+687*x-363 9567210341783373 a007 Real Root Of 227*x^4-919*x^3-683*x^2-180*x-542 9567210363751279 h001 (3/10*exp(2)+7/9)/(6/7*exp(1)+4/5) 9567210413042110 l006 ln(572/1489) 9567210463733544 p003 LerchPhi(1/5,5,37/146) 9567210507374526 m001 (Zeta(5)+BesselI(1,1))/(Grothendieck-OneNinth) 9567210542981349 m001 (BesselJ(1,1)+Conway)/(FeigenbaumC-ZetaQ(3)) 9567210568255534 a007 Real Root Of 403*x^4-33*x^3+830*x^2+133*x-999 9567210578287028 a007 Real Root Of 503*x^4+471*x^3+858*x^2+848*x+17 9567210602861727 a001 7881196/5*55^(9/20) 9567210635949929 a007 Real Root Of 164*x^4+230*x^3+834*x^2+939*x+199 9567210679393470 m005 (11/28+1/4*5^(1/2))/(2/11+4/11*5^(1/2)) 9567210688945138 a007 Real Root Of -978*x^4+434*x^3+209*x^2-621*x+414 9567210702330883 a003 sin(Pi*9/68)+sin(Pi*11/59) 9567210723867327 b008 2+E^(1/4)+2*Pi 9567210740556791 a007 Real Root Of 11*x^4-468*x^3-104*x^2-528*x-829 9567210817296807 a007 Real Root Of 227*x^4-515*x^3-117*x^2+160*x-381 9567210854736993 a007 Real Root Of 19*x^4-659*x^3-199*x^2+62*x+684 9567210862989179 m008 (1/5*Pi^3+5)/(5*Pi-4) 9567210868464618 m001 (Stephens+Trott)/(LambertW(1)+2*Pi/GAMMA(5/6)) 9567210882735456 a007 Real Root Of 334*x^4+861*x^3+28*x^2-836*x-8 9567210925023958 m001 ln(abs(Thue-Weierstrass)) 9567210952021291 r009 Im(z^3+c),c=-21/38+27/43*I,n=14 9567210963034901 m005 (1/2*Catalan+6/7)/(6/11*Catalan+7/8) 9567210995349748 a007 Real Root Of -990*x^4-10*x^3+262*x^2-142*x+445 9567210997783189 r005 Re(z^2+c),c=-27/26+11/40*I,n=7 9567211011733775 a007 Real Root Of 46*x^4-81*x^3-107*x^2-821*x-797 9567211039523644 r002 12th iterates of z^2 + 9567211069236894 h001 (-2*exp(2)+3)/(-9*exp(-1)-9) 9567211087995342 s002 sum(A240256[n]/(n*pi^n+1),n=1..infinity) 9567211088156396 h001 (1/10*exp(1)+5/11)/(10/11*exp(2)+7/8) 9567211093089053 r009 Im(z^3+c),c=-67/126+33/46*I,n=2 9567211131320689 a007 Real Root Of 696*x^4-788*x^3-947*x^2-378*x-768 9567211133650368 m005 (1/2*Pi-1/12)/(7/11*Pi-4/9) 9567211162541613 k007 concat of cont frac of 9567211165027366 m002 -4*E^Pi+Pi^(-3)-Pi 9567211176493962 m001 (ln(gamma)+3^(1/3))/(BesselK(0,1)-GAMMA(2/3)) 9567211179169632 a003 sin(Pi*19/47)/sin(Pi*13/27) 9567211180007750 m001 (Pi-2^(1/3))/(GAMMA(2/3)-Riemann2ndZero) 9567211195398941 a007 Real Root Of 905*x^4+469*x^3+382*x^2+135*x-568 9567211200092922 l005 676/11025/(exp(26/105)^2-1) 9567211208231772 m001 (-Zeta(1/2)+Gompertz)/(cos(1)+ln(5)) 9567211235310977 q001 3338/3489 9567211292699295 r009 Im(z^3+c),c=-11/126+58/61*I,n=7 9567211313561290 a007 Real Root Of -681*x^4-265*x^3-101*x^2+137*x+562 9567211346114012 a008 Real Root of (-8+2*x+9*x^2+2*x^4) 9567211389505097 a007 Real Root Of -855*x^4+43*x^3+378*x^2-370*x+54 9567211396058993 a007 Real Root Of 284*x^4-543*x^3-703*x^2+93*x+19 9567211404165435 r002 35i'th iterates of 2*x/(1-x^2) of 9567211405517474 r009 Re(z^3+c),c=-63/106+8/33*I,n=8 9567211437036160 m001 (Grothendieck+TwinPrimes)/(exp(1)+Zeta(1,-1)) 9567211473713556 a007 Real Root Of -580*x^4+366*x^3-472*x^2-567*x+696 9567211481338633 m002 -4*Pi*Sech[Pi]+Pi^6*Tanh[Pi] 9567211493093224 r009 Re(z^3+c),c=-13/22+7/40*I,n=5 9567211498979422 m001 (2^(1/2)+Ei(1))/(FeigenbaumD+StronglyCareFree) 9567211500323352 r009 Re(z^3+c),c=-9/56+34/59*I,n=24 9567211528669349 a007 Real Root Of -722*x^4+762*x^3+901*x^2-220*x+237 9567211535786036 a007 Real Root Of -609*x^4+538*x^3-266*x^2-420*x+823 9567211545113776 a001 13/2*1364^(19/51) 9567211551483562 a007 Real Root Of -16*x^4+145*x^3-139*x^2+678*x-635 9567211574249076 a007 Real Root Of 902*x^4+6*x^3-596*x^2-206*x-402 9567211576592959 a007 Real Root Of 552*x^4-96*x^3+929*x^2+835*x-598 9567211582365591 m005 (1/2*Zeta(3)-5/11)/(1/3*exp(1)+5/8) 9567211586840334 a007 Real Root Of -820*x^4+161*x^3-343*x^2-348*x+809 9567211623146675 a001 3010349/89*514229^(21/22) 9567211661210508 a007 Real Root Of -30*x^4+702*x^3+836*x^2+986*x+818 9567211669956962 r002 9th iterates of z^2 + 9567211686852042 r001 7i'th iterates of 2*x^2-1 of 9567211701383821 a007 Real Root Of -693*x^4+36*x^3-524*x^2-260*x+843 9567211720317010 m001 (-ArtinRank2+Sarnak)/(Chi(1)+Ei(1)) 9567211736786763 a007 Real Root Of -616*x^4+425*x^3+761*x^2+269*x-810 9567211743057087 m005 (1/2*Zeta(3)+2/5)/(5/12*Zeta(3)+6/11) 9567211744416436 r005 Im(z^2+c),c=-4/7+15/86*I,n=41 9567211758326945 a001 144/11*3010349^(2/15) 9567211758327086 a001 144/11*9062201101803^(1/15) 9567211758754961 a007 Real Root Of 260*x^4-825*x^3+470*x^2-911*x+946 9567211763276428 h001 (4/7*exp(1)+1/5)/(5/12*exp(1)+7/10) 9567211824411299 a003 cos(Pi*2/109)*sin(Pi*42/103) 9567211852065572 a007 Real Root Of -681*x^4+576*x^3+360*x^2-868*x-85 9567211858714039 m001 1/3-sqrt(3)^arctan(1/2) 9567211883406483 h001 (8/9*exp(2)+1/5)/(5/6*exp(2)+11/12) 9567211940005527 a001 377/1364*14662949395604^(20/21) 9567211952333002 a007 Real Root Of -492*x^4-314*x^3-760*x^2-211*x+631 9567211958341435 m002 -Pi^6+5/ProductLog[Pi]+ProductLog[Pi]/Pi^4 9567211964829288 m001 (ln(3)+BesselK(1,1))/(FeigenbaumC-ZetaQ(2)) 9567211997394860 a003 cos(Pi*5/51)/sin(Pi*25/53) 9567212010907251 h001 (3/8*exp(1)+7/10)/(3/8*exp(1)+7/9) 9567212016754137 a007 Real Root Of 412*x^4-961*x^3-903*x^2+319*x-55 9567212020253786 a007 Real Root Of -935*x^4-287*x^3+808*x^2+172*x-43 9567212023811722 m001 Bloch-Pi*csc(1/12*Pi)/GAMMA(11/12)-Zeta(1/2) 9567212040885186 m002 3*Pi+(Pi^2*Csch[Pi])/6 9567212069475354 r002 13th iterates of z^2 + 9567212074393807 a007 Real Root Of 277*x^4-405*x^3-821*x^2-676*x-482 9567212089729917 b008 8+ArcSec[279] 9567212112752604 b008 8+ArcTan[279] 9567212117786396 r005 Im(z^2+c),c=-7/10+7/95*I,n=5 9567212153145353 s002 sum(A131663[n]/(n!^3),n=1..infinity) 9567212155047601 a007 Real Root Of -829*x^4-51*x^3+591*x^2+807*x+881 9567212159397452 m005 (1/3*Pi+3/4)/(7/8*exp(1)-1/2) 9567212202452534 a001 7/1597*377^(5/38) 9567212211302145 m001 1/GAMMA(23/24)^2*exp(Ei(1))^2/GAMMA(5/24) 9567212221224283 m001 ZetaP(3)/(ln(5)^BesselI(0,1)) 9567212229647145 m001 (3^(1/3)-gamma(3))/(MasserGramain+Thue) 9567212246843861 r005 Im(z^2+c),c=-9/50+23/32*I,n=57 9567212261845858 r005 Im(z^2+c),c=-5/8+33/160*I,n=30 9567212275413748 m001 (Grothendieck+ZetaQ(2))^gamma(1) 9567212306833707 r009 Re(z^3+c),c=-7/118+44/53*I,n=15 9567212334620387 l006 ln(3495/9098) 9567212408399496 r009 Im(z^3+c),c=-9/98+19/20*I,n=21 9567212423904737 m002 -Pi^2-Pi^6+Sinh[Pi]+3*Tanh[Pi] 9567212438046458 m001 1/GaussKuzminWirsing/Backhouse*exp((3^(1/3))) 9567212441856907 a003 cos(Pi*1/13)*sin(Pi*49/110) 9567212477435680 m001 (Backhouse+OneNinth)/(Shi(1)+gamma) 9567212492961524 r005 Im(z^2+c),c=7/19+3/35*I,n=7 9567212519369834 r005 Re(z^2+c),c=-47/64+48/55*I,n=2 9567212570896005 a001 774004377960/161*322^(11/12) 9567212575443792 a007 Real Root Of 729*x^4+22*x^3+23*x^2+334*x-293 9567212579418619 r002 8th iterates of z^2 + 9567212595143076 a001 2/987*21^(26/51) 9567212595272189 r005 Im(z^2+c),c=41/106+16/61*I,n=41 9567212606231123 a007 Real Root Of -87*x^4-784*x^3+424*x^2-329*x+381 9567212684945328 a007 Real Root Of 808*x^4-549*x^3-620*x^2-259*x-838 9567212701681692 m003 -6+2*Cot[1/2+Sqrt[5]/2]-Tan[1/2+Sqrt[5]/2]/3 9567212704577538 r009 Im(z^3+c),c=-9/98+19/20*I,n=23 9567212708462303 l006 ln(8287/9119) 9567212710652768 l006 ln(2923/7609) 9567212728326401 r009 Im(z^3+c),c=-9/98+19/20*I,n=27 9567212728905849 r009 Im(z^3+c),c=-9/98+19/20*I,n=29 9567212731233423 r009 Im(z^3+c),c=-9/98+19/20*I,n=35 9567212731306849 r009 Im(z^3+c),c=-9/98+19/20*I,n=41 9567212731307762 r009 Im(z^3+c),c=-9/98+19/20*I,n=43 9567212731308082 r009 Im(z^3+c),c=-9/98+19/20*I,n=49 9567212731308097 r009 Im(z^3+c),c=-9/98+19/20*I,n=55 9567212731308097 r009 Im(z^3+c),c=-9/98+19/20*I,n=57 9567212731308097 r009 Im(z^3+c),c=-9/98+19/20*I,n=61 9567212731308097 r009 Im(z^3+c),c=-9/98+19/20*I,n=63 9567212731308097 r009 Im(z^3+c),c=-9/98+19/20*I,n=59 9567212731308098 r009 Im(z^3+c),c=-9/98+19/20*I,n=53 9567212731308099 r009 Im(z^3+c),c=-9/98+19/20*I,n=51 9567212731308100 r009 Im(z^3+c),c=-9/98+19/20*I,n=47 9567212731308262 r009 Im(z^3+c),c=-9/98+19/20*I,n=45 9567212731310984 r009 Im(z^3+c),c=-9/98+19/20*I,n=37 9567212731314204 r009 Im(z^3+c),c=-9/98+19/20*I,n=39 9567212731413302 r009 Im(z^3+c),c=-9/98+19/20*I,n=33 9567212731961621 r009 Im(z^3+c),c=-9/98+19/20*I,n=31 9567212744324069 r002 22th iterates of z^2 + 9567212764095604 r009 Im(z^3+c),c=-9/98+19/20*I,n=25 9567212796175719 m002 -4+Pi^6-(E^Pi*Csch[Pi])/3 9567212804897001 m001 1/GAMMA(3/4)*exp(GAMMA(13/24))/GAMMA(5/24) 9567212808616797 m001 (exp(1/exp(1))-exp(-1/2*Pi))/(Conway-Trott) 9567212837624101 m002 -Pi^(-4)-ProductLog[Pi]+Pi^6*Tanh[Pi] 9567212842673780 m002 -5+Pi^6+Tanh[Pi]/3 9567212842923487 a007 Real Root Of -712*x^4-184*x^3+430*x^2-744*x-670 9567212860959650 m001 (Ei(1)+FeigenbaumAlpha)/(1-cos(1)) 9567212865914716 a007 Real Root Of 557*x^4-77*x^3+187*x^2+595*x-136 9567212907768212 a007 Real Root Of 310*x^4+969*x^3+846*x^2-659*x-816 9567212918611885 a007 Real Root Of 717*x^4-852*x^3-550*x^2+592*x-277 9567212919789897 m001 Zeta(5)^LambertW(1)/(Zeta(5)^KomornikLoreti) 9567212944072487 m002 -Pi+Pi^6-(4*Log[Pi])/3 9567212954992554 m001 (Porter-ZetaP(2))/(polylog(4,1/2)+Landau) 9567212965861542 b008 49*(-2+E)*E 9567213007813480 a005 (1/sin(83/211*Pi))^120 9567213010716675 a007 Real Root Of -43*x^4+192*x^3+436*x^2-65*x-469 9567213032694834 m001 (ln(gamma)-arctan(1/3))/(Kolakoski-Niven) 9567213038633362 a007 Real Root Of -355*x^4-903*x^3-927*x^2+512*x+845 9567213067123038 a007 Real Root Of -212*x^4+684*x^3-128*x^2-514*x+402 9567213112611231 k006 concat of cont frac of 9567213114754098 q001 1459/1525 9567213118113132 k006 concat of cont frac of 9567213153943819 a001 583600002390573/610 9567213184484235 r009 Re(z^3+c),c=-17/90+24/37*I,n=20 9567213184859641 r005 Re(z^2+c),c=-17/26+61/94*I,n=6 9567213207992966 r009 Im(z^3+c),c=-15/82+20/23*I,n=5 9567213220332095 m002 -ProductLog[Pi]-Tanh[Pi]/Pi^4+Pi^6*Tanh[Pi] 9567213255135457 a003 cos(Pi*4/39)/sin(Pi*11/24) 9567213269663022 l006 ln(2351/6120) 9567213277299446 a007 Real Root Of -842*x^4-483*x^3-491*x^2+136*x+862 9567213292340016 a001 8/3010349*123^(35/47) 9567213303174150 m001 1/exp(GAMMA(19/24))/Lehmer*GAMMA(2/3)^2 9567213311844255 r005 Re(z^2+c),c=6/25+19/60*I,n=33 9567213319886378 m001 1/ln(TwinPrimes)^2*Backhouse^2/GAMMA(17/24) 9567213336663592 s002 sum(A073513[n]/(n^3*10^n+1),n=1..infinity) 9567213363255202 m001 (arctan(1/2)-LambertW(1))^MertensB2 9567213364225184 r005 Re(z^2+c),c=-163/118+17/52*I,n=4 9567213393846196 a008 Real Root of (-7-2*x^2+3*x^4+9*x^8) 9567213411471216 a007 Real Root Of -205*x^4+597*x^3+138*x^2-64*x+507 9567213418691239 r005 Im(z^2+c),c=7/32+1/26*I,n=26 9567213428673740 a001 13/2*9349^(5/17) 9567213496760635 a001 2504730781961/2207*1364^(14/15) 9567213513582220 a007 Real Root Of -690*x^4+555*x^3+756*x^2+488*x+839 9567213514355533 m005 (1/2*Pi-7/12)/(1/7*Pi+7/12) 9567213518190839 r009 Re(z^3+c),c=-1/58+36/55*I,n=46 9567213521782588 p004 log(16871/6481) 9567213539698774 a007 Real Root Of 461*x^4-380*x^3+319*x^2+116*x-900 9567213553771405 m001 (GAMMA(13/24)+KhinchinHarmonic)^Si(Pi) 9567213569401024 m005 (1/3*exp(1)-2/11)/(9/11*Pi+5) 9567213569795779 m002 -Pi+Pi^6-2/Log[Pi]^2 9567213585208033 m001 (gamma(2)-FeigenbaumDelta)^Otter 9567213620493270 m006 (4*ln(Pi)+3)/(3/5*Pi^2+2) 9567213631537747 r009 Im(z^3+c),c=-9/98+19/20*I,n=19 9567213661004751 m001 (Zeta(3)-arctan(1/3))/(MertensB3-ThueMorse) 9567213714143443 a007 Real Root Of 784*x^4-23*x^3-150*x^2+146*x-400 9567213715005232 a001 3/591286729879*21^(5/24) 9567213727874077 m005 (1/2*Catalan+2/3)/(7/10*exp(1)-8/11) 9567213734649576 m001 1/Zeta(3)*GAMMA(7/24)*exp(log(2+sqrt(3))) 9567213769152132 a007 Real Root Of 611*x^4-747*x^3-712*x^2+408*x-124 9567213839579825 a001 4052739537881/2207*1364^(13/15) 9567213865003244 r005 Im(z^2+c),c=-29/54+7/41*I,n=50 9567213940061662 a007 Real Root Of -683*x^4+394*x^3+248*x^2+283*x+961 9567213943673010 a007 Real Root Of -144*x^4+511*x^3-707*x^2-410*x+823 9567213987708984 m005 (1/2*Zeta(3)+2/5)/(3/11*gamma+8/9) 9567214034775138 a001 2537720636/89*63245986^(17/24) 9567214034794081 a001 710647/89*6557470319842^(17/24) 9567214035235914 a007 Real Root Of 727*x^4+222*x^3+658*x^2+209*x-817 9567214044198673 m001 (FeigenbaumD-TwinPrimes)/(Ei(1)+Ei(1,1)) 9567214070613913 a007 Real Root Of 542*x^4-378*x^3-645*x^2-215*x+673 9567214071996912 a007 Real Root Of 428*x^4-408*x^3-189*x^2+881*x+300 9567214083175803 r005 Re(z^2+c),c=-7/10+159/184*I,n=2 9567214083185210 r005 Re(z^2+c),c=-21/118+37/51*I,n=12 9567214088527236 m005 (1/2*2^(1/2)+1/9)/(1/3*Zeta(3)+5/11) 9567214091923628 a007 Real Root Of -660*x^4+175*x^3-173*x^2-565*x+324 9567214152306827 r005 Re(z^2+c),c=-7/122+16/61*I,n=7 9567214156714167 m001 1/Niven*GaussKuzminWirsing^2/exp(sqrt(3)) 9567214158719713 a007 Real Root Of -633*x^4-294*x^3+243*x^2-82*x-28 9567214181344549 m001 (Salem+ZetaP(3))/(2^(1/2)-gamma(3)) 9567214182399026 a001 6557470319842/2207*1364^(4/5) 9567214188149168 l006 ln(1779/4631) 9567214190918932 m005 (-17/30+1/10*5^(1/2))/(2^(1/2)-5) 9567214225600767 a003 sin(Pi*30/109)/sin(Pi*12/41) 9567214238354636 r009 Re(z^3+c),c=-71/78+28/55*I,n=2 9567214247749007 a007 Real Root Of 287*x^4+48*x^3+607*x^2+716*x-69 9567214294324414 a007 Real Root Of 193*x^4-499*x^3-441*x^2-114*x+788 9567214316638508 a007 Real Root Of 521*x^4-99*x^3-601*x^2-880*x-815 9567214385635577 a007 Real Root Of 678*x^4+310*x^3+805*x^2+222*x-821 9567214423566972 m001 (exp(Pi)+BesselI(0,1))/(exp(1/Pi)+Salem) 9567214425361135 r005 Im(z^2+c),c=-115/126+11/43*I,n=30 9567214428282208 m001 cos(1/12*Pi)^Conway/(cos(1/12*Pi)^Trott2nd) 9567214441374688 a007 Real Root Of 903*x^4-673*x^3-342*x^2+535*x-521 9567214449568828 a007 Real Root Of 3*x^4+286*x^3-97*x^2+19*x-419 9567214454134484 a007 Real Root Of 382*x^4+135*x^3+844*x^2+870*x-142 9567214471749286 m001 (Khinchin+ThueMorse)/(arctan(1/3)+gamma(3)) 9567214477638509 a007 Real Root Of 278*x^4-679*x^3-504*x^2+277*x+558 9567214502919179 a008 Real Root of (10+6*x+3*x^2+8*x^3) 9567214520151393 a007 Real Root Of 921*x^4-639*x^3-847*x^2+25*x-532 9567214525218240 a001 4807525989*1364^(11/15) 9567214575664678 m001 (BesselI(0,1)+BesselJ(1,1))/(Pi^(1/2)+Trott) 9567214597441705 r009 Re(z^3+c),c=-3/34+54/59*I,n=21 9567214598276177 r005 Im(z^2+c),c=-1/50+35/48*I,n=12 9567214611700692 a007 Real Root Of 225*x^4-82*x^3-162*x^2+161*x+42 9567214626855670 m001 (3^(1/3))/Bloch/exp(sqrt(3))^2 9567214662135297 a007 Real Root Of -639*x^4+527*x^3-177*x^2-835*x+360 9567214666419036 a007 Real Root Of 792*x^4+136*x^3-473*x^2-543*x-631 9567214670431145 a007 Real Root Of -221*x^4+924*x^3+677*x^2+523*x+875 9567214692758804 r005 Re(z^2+c),c=-85/94+10/51*I,n=21 9567214704738846 m005 (1/3*3^(1/2)-1/2)/(4/7*2^(1/2)-8/11) 9567214726382557 m002 Pi^6+Pi^6/(6*E^Pi)-Cosh[Pi] 9567214727189247 m001 (FellerTornier+MertensB2)/(gamma+sin(1)) 9567214734400843 r009 Im(z^3+c),c=-9/98+19/20*I,n=17 9567214751076428 m001 (GAMMA(11/12)-3^(1/2))*2^(1/2) 9567214751076428 m001 sqrt(2)*(GAMMA(11/12)-sqrt(3)) 9567214758778404 a007 Real Root Of -332*x^4+628*x^3+348*x^2+452*x+942 9567214769608485 a007 Real Root Of 549*x^4-306*x^3+142*x^2+557*x-325 9567214807952544 m002 -1/2+Pi^3/6-Pi^6 9567214831552918 a001 291800052362364/305 9567214832074495 a007 Real Root Of -408*x^4+972*x^3+343*x^2-484*x+416 9567214833337344 m001 exp(GAMMA(1/24))/GlaisherKinkelin^2*Zeta(7)^2 9567214847334703 a007 Real Root Of 887*x^4+48*x^3+15*x^2+443*x-291 9567214865899040 a007 Real Root Of -935*x^4-122*x^3+165*x^2-243*x+293 9567214889729137 a007 Real Root Of -772*x^4+498*x^3+753*x^2+223*x+607 9567214895204774 a007 Real Root Of -850*x^4+489*x^3-452*x^2-807*x+782 9567214909689613 a007 Real Root Of -385*x^4+675*x^3+151*x^2-683*x+122 9567214911310839 l006 ln(2986/7773) 9567214918682872 a003 sin(Pi*29/114)/sin(Pi*31/115) 9567214988768784 m001 3^(1/3)-BesselI(1,1)*Thue 9567215006956242 l006 ln(4771/5250) 9567215044907397 r009 Re(z^3+c),c=-4/21+41/59*I,n=49 9567215069430652 m001 1/Si(Pi)^2/ln(Artin)/GAMMA(1/6)^2 9567215076312786 a001 58360011965508/61 9567215086747107 r005 Re(z^2+c),c=-115/122+3/26*I,n=21 9567215087430180 r005 Im(z^2+c),c=-57/110+8/45*I,n=15 9567215112022770 a001 583600121833389/610 9567215117232786 a001 58360012215120/61 9567215117992918 a001 291800061098784/305 9567215118103819 a001 583600122204333/610 9567215118122360 a001 291800061102732/305 9567215118122704 a001 116720024441097/122 9567215118122754 a001 291800061102744/305 9567215118122770 a001 583600122205489/610 9567215118122786 a001 58360012220549/61 9567215118122918 a001 291800061102749/305 9567215118123819 a001 583600122205553/610 9567215118172360 a001 291800061104257/305 9567215118462704 a001 116720024445245/122 9567215120452754 a001 291800061173809/305 9567215134092754 a001 291800061589829/305 9567215139113445 h001 (3/5*exp(2)+5/7)/(2/3*exp(2)+5/11) 9567215154802691 r005 Re(z^2+c),c=15/58+2/5*I,n=4 9567215171136705 r005 Re(z^2+c),c=-7/6+29/106*I,n=33 9567215174369399 a001 3278735159921/2889*1364^(14/15) 9567215202955142 m005 (1/2*Zeta(3)-1/9)/(6*Catalan-3/8) 9567215227582704 a001 116720025776509/122 9567215272341894 m001 BesselI(1,1)/(exp(1)-GAMMA(5/12)) 9567215288052865 a007 Real Root Of -784*x^4-205*x^3-518*x^2-960*x+33 9567215309325745 a007 Real Root Of -243*x^4+9*x^3-728*x^2+42*x+918 9567215310576471 a007 Real Root Of -682*x^4+65*x^3-842*x^2-647*x+780 9567215350550695 r005 Im(z^2+c),c=-25/56+9/56*I,n=29 9567215366617929 r005 Im(z^2+c),c=-75/118+9/53*I,n=39 9567215376513289 r005 Re(z^2+c),c=-17/18+19/175*I,n=19 9567215383251495 m005 (1/3*2^(1/2)-1/3)/(3/11*5^(1/2)+5/6) 9567215400792450 r009 Im(z^3+c),c=-17/110+43/46*I,n=47 9567215414988001 m004 -3-25*Pi*Cot[Sqrt[5]*Pi]^2+Tan[Sqrt[5]*Pi] 9567215434700758 r009 Re(z^3+c),c=-2/17+19/64*I,n=10 9567215452311019 a001 3536736619241/281*843^(9/14) 9567215476059014 a007 Real Root Of -563*x^4-183*x^3-103*x^2+594*x+974 9567215490869424 a007 Real Root Of 381*x^4+68*x^3+723*x^2+406*x-533 9567215500889880 r005 Re(z^2+c),c=5/106+21/43*I,n=18 9567215517188649 a001 3536736619241/1926*1364^(13/15) 9567215526816599 a007 Real Root Of -802*x^4+556*x^3+805*x^2-116*x+311 9567215547629129 a007 Real Root Of -575*x^4-617*x^3-501*x^2+208*x+599 9567215555671115 a007 Real Root Of 43*x^4-507*x^3+491*x^2+614*x-342 9567215570399193 a001 10610209857723/9349*1364^(14/15) 9567215608586645 r005 Im(z^2+c),c=-37/34+9/71*I,n=6 9567215609082518 m001 (Porter+ZetaQ(3))/(Zeta(3)+PolyaRandomWalk3D) 9567215618158597 r005 Re(z^2+c),c=-13/14+120/163*I,n=3 9567215626196859 q001 2498/2611 9567215660736416 r005 Re(z^2+c),c=-13/14+29/182*I,n=25 9567215663805025 m001 (sin(1)+ln(3))/(FellerTornier+Niven) 9567215705450198 m001 (Pi-BesselI(0,1))/(ln(2+3^(1/2))+Cahen) 9567215709137514 m005 (1/2+1/4*5^(1/2))/(5*5^(1/2)-1/9) 9567215713494425 r008 a(0)=1,K{-n^6,16+8*n^3-57*n^2+54*n} 9567215714108301 r009 Im(z^3+c),c=-9/98+19/20*I,n=13 9567215716294882 m001 KhintchineLevy^2*exp(Artin)^2*LambertW(1)^2 9567215719270293 m001 Psi(2,1/3)*(GAMMA(23/24)+Rabbit) 9567215724333848 a007 Real Root Of 571*x^4-817*x^3-920*x^2-410*x-744 9567215745905559 a007 Real Root Of -300*x^4-412*x^3-568*x^2-82*x+332 9567215748804055 a007 Real Root Of -579*x^4+481*x^3+352*x^2+377*x-619 9567215749302703 a007 Real Root Of 235*x^4-619*x^3+378*x^2+972*x-155 9567215824197195 a007 Real Root Of -318*x^4-861*x^3-184*x^2+632*x-58 9567215868372360 a001 291800083985357/305 9567215877948193 a007 Real Root Of 786*x^4-208*x^3-119*x^2+861*x+92 9567215886884552 a001 199/3*1346269^(19/28) 9567215902129725 m001 Shi(1)/(Psi(1,1/3)^exp(-Pi)) 9567215923874664 m005 (1/2*5^(1/2)+1/8)/(3/10*2^(1/2)+7/8) 9567215942556398 r009 Im(z^3+c),c=-9/64+29/31*I,n=3 9567215976205646 m001 (-Paris+Stephens)/(2*Pi/GAMMA(5/6)-gamma) 9567215977180349 l006 ln(1207/3142) 9567216020137188 m001 1/Pi*ln(TreeGrowth2nd)/sqrt(1+sqrt(3))^2 9567216033887666 m001 (Magata-MertensB3)/(GAMMA(3/4)-3^(1/3)) 9567216036888534 a007 Real Root Of -597*x^4+444*x^3+931*x^2+458*x+475 9567216053009871 m001 Backhouse*StronglyCareFree-GAMMA(3/4) 9567216068877439 a007 Real Root Of -211*x^4-406*x^3-658*x^2+12*x+435 9567216072817499 a007 Real Root Of -964*x^4-592*x^3+812*x^2+485*x+10 9567216123848710 m001 Khinchin/(ThueMorse-ln(2)) 9567216130768328 a007 Real Root Of 570*x^4-824*x^3-399*x^2+233*x-611 9567216148095260 m005 (-1/20+1/4*5^(1/2))/(1/4*exp(1)-6) 9567216152598447 m005 (1/2*3^(1/2)+3/11)/(1/6*Pi+2/3) 9567216152880792 a007 Real Root Of 749*x^4+256*x^3-648*x^2-906*x-677 9567216192428962 a007 Real Root Of 720*x^4+436*x^3+389*x^2+613*x+9 9567216211188929 a001 4052739537881/3571*1364^(14/15) 9567216259892514 m001 Gompertz^ln(2^(1/2)+1)/LaplaceLimit 9567216275454252 m001 1/(2^(1/3))/FeigenbaumD/exp(GAMMA(5/6)) 9567216293391269 a007 Real Root Of 379*x^4-861*x^3+338*x^2+511*x-892 9567216329558226 r005 Re(z^2+c),c=-21/23+12/61*I,n=57 9567216351542756 m007 (-3/4*gamma-3/2*ln(2)+2)/(-1/5*gamma+2/3) 9567216360222292 a003 sin(Pi*1/91)-sin(Pi*38/83) 9567216363206895 m001 PrimesInBinary*(BesselK(1,1)+Niven) 9567216371502098 m001 1/ln(MinimumGamma)/MertensB1*GAMMA(7/24)^2 9567216375138887 m001 KhinchinLevy^ZetaP(2)*LandauRamanujan^ZetaP(2) 9567216403417796 m005 (1/4*5^(1/2)+3/4)/(5*exp(1)+1/11) 9567216413930622 a001 6557470319842/843*843^(5/7) 9567216419399088 m001 (ln(5)-ln(2+3^(1/2)))/(Artin+FeigenbaumD) 9567216422293804 m001 Backhouse^StronglyCareFree*TravellingSalesman 9567216475850413 a007 Real Root Of 303*x^4-721*x^3+358*x^2+903*x-349 9567216519851027 m002 -6+Pi^6+ProductLog[Pi]+3*Sech[Pi] 9567216522293368 m001 cos(1/12*Pi)^(FeigenbaumD*PlouffeB) 9567216534592434 a007 Real Root Of 114*x^4+982*x^3-978*x^2+540*x-472 9567216554008216 a001 6557470319842/3571*1364^(13/15) 9567216556141150 m001 (Shi(1)+cos(1))/(HardyLittlewoodC3+MertensB2) 9567216566607464 a007 Real Root Of -90*x^4-920*x^3-568*x^2+62*x+960 9567216601056281 r009 Im(z^3+c),c=-9/118+20/21*I,n=7 9567216602273447 a007 Real Root Of -529*x^4+668*x^3-49*x^2-92*x+985 9567216602899100 a007 Real Root Of -128*x^4+619*x^3+681*x^2-278*x-240 9567216625853808 a007 Real Root Of -889*x^4+9*x^3+218*x^2+119*x+667 9567216626269832 a003 cos(Pi*3/43)*cos(Pi*15/32) 9567216662158506 q001 3537/3697 9567216706744080 r005 Re(z^2+c),c=-1/74+9/25*I,n=27 9567216752834927 m001 (Totient+ZetaQ(3))/(Pi-3^(1/2)) 9567216755761991 a007 Real Root Of -85*x^4-777*x^3+387*x^2+313*x-716 9567216807125942 a001 29/4052739537881*39088169^(7/17) 9567216810137260 r005 Re(z^2+c),c=2/7+19/49*I,n=32 9567216813701822 a001 29/139583862445*10946^(7/17) 9567216824013339 r009 Im(z^3+c),c=-7/66+18/19*I,n=17 9567216853572470 m002 -Cosh[Pi]+Pi^2*Csch[Pi]+Sinh[Pi]/Pi^2 9567216889701385 a007 Real Root Of -573*x^4-439*x^3+91*x^2+285*x+285 9567216896827515 a001 10610209857723/3571*1364^(4/5) 9567216950855585 a007 Real Root Of -81*x^4-218*x^3-412*x^2+741*x+963 9567216960487386 r005 Re(z^2+c),c=-9/10+18/239*I,n=2 9567216971710667 r005 Re(z^2+c),c=-79/74+13/60*I,n=64 9567216971891078 r005 Im(z^2+c),c=-11/8+14/199*I,n=9 9567216973669387 m001 (Psi(1,1/3)+Mills*Tribonacci)/Mills 9567216981822457 r009 Im(z^3+c),c=-11/62+57/62*I,n=25 9567217021026207 l006 ln(3049/7937) 9567217021026207 p004 log(7937/3049) 9567217032072197 m001 PisotVijayaraghavan^Gompertz*cos(1/5*Pi) 9567217074310371 a007 Real Root Of -202*x^4+882*x^3+525*x^2+325*x+772 9567217077257547 a007 Real Root Of 855*x^4-860*x^3-833*x^2+278*x-441 9567217081298804 a007 Real Root Of 40*x^4-963*x^3-4*x^2+82*x+735 9567217088721137 g005 GAMMA(10/11)*GAMMA(5/9)*GAMMA(4/5)/GAMMA(3/7) 9567217089740398 a003 sin(Pi*37/103)/sin(Pi*37/94) 9567217095695216 m001 Cahen/GAMMA(7/12)/TreeGrowth2nd 9567217117058261 s001 sum(exp(-Pi)^n*A110365[n],n=1..infinity) 9567217117058261 s002 sum(A110365[n]/(exp(pi*n)),n=1..infinity) 9567217120237281 h001 (8/11*exp(1)+1/8)/(3/11*exp(2)+2/11) 9567217128691768 r009 Re(z^3+c),c=-9/58+25/43*I,n=12 9567217147076376 r009 Re(z^3+c),c=-9/52+41/59*I,n=39 9567217159782665 r005 Im(z^2+c),c=-13/18+21/115*I,n=16 9567217168386358 r005 Re(z^2+c),c=-13/14+22/139*I,n=63 9567217181382336 m001 FibonacciFactorial/ln(Cahen)/Niven^2 9567217183210612 m003 3+Sqrt[5]/4+(13*Tanh[1/2+Sqrt[5]/2])/2 9567217184378154 a007 Real Root Of -872*x^4+650*x^3+172*x^2-385*x+774 9567217190067352 a001 199/6765*377^(27/46) 9567217190724222 r005 Re(z^2+c),c=-13/14+22/139*I,n=61 9567217200932816 m001 cosh(1)/(GAMMA(7/12)-Pi) 9567217233399398 m001 (2^(1/3)-5^(1/2))/(Zeta(1/2)+BesselJ(1,1)) 9567217238759860 r005 Re(z^2+c),c=-2/3+51/137*I,n=7 9567217261752622 h001 (2/5*exp(2)+9/11)/(3/7*exp(2)+7/9) 9567217303614720 r009 Re(z^3+c),c=-75/118+22/35*I,n=5 9567217336173232 r005 Re(z^2+c),c=-61/82+3/10*I,n=8 9567217357890386 m001 (sin(1/12*Pi)-gamma(3))/(Khinchin-ZetaQ(4)) 9567217360791622 m002 -(ProductLog[Pi]/Pi^4)-Sinh[Pi]+2*Tanh[Pi] 9567217362548208 m001 BesselJ(0,1)^Kolakoski/(cos(1/5*Pi)^Kolakoski) 9567217375550321 a001 4052739537881/843*843^(11/14) 9567217400285686 r005 Re(z^2+c),c=-47/86+25/41*I,n=14 9567217401047693 r005 Re(z^2+c),c=-29/34+23/120*I,n=56 9567217419898764 r002 24th iterates of z^2 + 9567217431933605 a007 Real Root Of 955*x^4+893*x^3-47*x^2-903*x-839 9567217447339653 m005 (1/3*5^(1/2)+1/6)/(1/11*5^(1/2)+3/4) 9567217450326563 a007 Real Root Of 590*x^4-117*x^3+282*x^2+927*x+32 9567217464537357 m002 -3/Pi^5-ProductLog[Pi]+Pi^6*Tanh[Pi] 9567217502615279 a007 Real Root Of -279*x^4+678*x^3+270*x^2-824*x-208 9567217506086355 a007 Real Root Of 88*x^4-760*x^3+654*x^2-351*x+329 9567217539639159 m005 (1/3*2^(1/2)-3/5)/(61/72+2/9*5^(1/2)) 9567217545980212 a001 1527884642093040/1597 9567217570275971 m001 (Salem-Tribonacci)^OneNinth 9567217590112899 a001 956722026041/2207*3571^(16/17) 9567217590559279 r005 Re(z^2+c),c=-53/54+16/59*I,n=8 9567217603980321 r005 Re(z^2+c),c=-97/106+8/45*I,n=19 9567217609319248 a007 Real Root Of -503*x^4+892*x^3+684*x^2-28*x-959 9567217634245242 a001 1548008755920/2207*3571^(15/17) 9567217677227898 a001 9062201101803/89*610^(17/24) 9567217678377584 a001 2504730781961/2207*3571^(14/17) 9567217692308421 r005 Re(z^2+c),c=1/7+21/41*I,n=25 9567217705022864 l006 ln(1842/4795) 9567217710320267 a003 sin(Pi*1/33)/cos(Pi*3/83) 9567217722509927 a001 4052739537881/2207*3571^(13/17) 9567217734550893 m001 (gamma(1)+FeigenbaumC)/(Robbin+Salem) 9567217763153520 a007 Real Root Of -110*x^4+754*x^3-840*x^2-871*x+688 9567217766642270 a001 6557470319842/2207*3571^(12/17) 9567217771388200 s002 sum(A104952[n]/((2^n+1)/n),n=1..infinity) 9567217775863420 g006 -Psi(1,7/12)-Psi(1,5/11)-Psi(1,1/9)-Psi(1,3/5) 9567217786482084 p003 LerchPhi(1/3,2,214/199) 9567217795730515 r002 6th iterates of z^2 + 9567217802326633 a008 Real Root of (-2+2*x-6*x^2-5*x^3+6*x^4) 9567217810774613 a001 4807525989*3571^(11/17) 9567217822221387 m001 exp(GAMMA(7/24))/GAMMA(17/24)/sqrt(Pi) 9567217870280424 r005 Im(z^2+c),c=-3/28+13/19*I,n=39 9567217884718718 r009 Im(z^3+c),c=-31/82+2/59*I,n=27 9567217891976330 r005 Im(z^2+c),c=-21/46+10/61*I,n=10 9567217899510006 m005 (1/2*gamma-1/10)/(3/7*Pi+5/8) 9567217908495495 a003 sin(Pi*1/114)-sin(Pi*51/115) 9567217940026191 m001 1/exp((2^(1/3)))*Tribonacci*GAMMA(2/3)^2 9567217940949256 a007 Real Root Of 911*x^4-146*x^3-958*x^2-860*x-837 9567217956537367 a007 Real Root Of -634*x^4+254*x^3+854*x^2+853*x+788 9567217973175978 m001 (2^(1/2)-OrthogonalArrays)/(Robbin+ThueMorse) 9567217998528847 l006 ln(4265/4306) 9567217999141750 r005 Re(z^2+c),c=-71/74+7/27*I,n=21 9567218009660462 a001 2584/2207*14662949395604^(19/21) 9567218024456121 m002 -(Pi^2/E^Pi)+Pi^4-Log[Pi]^2 9567218024567443 m001 (polylog(4,1/2)-Cahen)/(Lehmer+Sarnak) 9567218031522206 m001 (Si(Pi)+BesselK(0,1))/(Zeta(3)+GAMMA(19/24)) 9567218034398056 b008 JacobiSD[2/21,2] 9567218056152453 r009 Im(z^3+c),c=-23/122+59/64*I,n=49 9567218060350083 r005 Re(z^2+c),c=-85/86+9/31*I,n=15 9567218070255933 m001 (GAMMA(7/12)-Cahen)/(ln(Pi)-Ei(1,1)) 9567218091504383 m005 (1/2*gamma+3/8)/(1/3*2^(1/2)+2/9) 9567218131501564 m001 BesselI(1,2)*(Landau-ln(Pi)) 9567218134611218 a007 Real Root Of -885*x^4+10*x^3+396*x^2+387*x+758 9567218167862107 l006 ln(6026/6631) 9567218169179729 m002 -Pi^4+2/Log[Pi]-Tanh[Pi]/Pi^4 9567218186770023 a001 4000053923888547/4181 9567218190771152 r009 Im(z^3+c),c=-5/34+57/61*I,n=11 9567218192531477 a001 365435296162/2207*9349^(18/19) 9567218198292528 a001 591286729879/2207*9349^(17/19) 9567218204053580 a001 956722026041/2207*9349^(16/19) 9567218206607663 a007 Real Root Of -259*x^4+822*x^3-523*x^2+673*x-668 9567218209814631 a001 1548008755920/2207*9349^(15/19) 9567218215575682 a001 2504730781961/2207*9349^(14/19) 9567218221336734 a001 4052739537881/2207*9349^(13/19) 9567218227097785 a001 6557470319842/2207*9349^(12/19) 9567218232858837 a001 4807525989*9349^(11/19) 9567218254420412 a001 6765/2207*3461452808002^(11/12) 9567218274690735 a007 Real Root Of -316*x^4+271*x^3+860*x^2+552*x+243 9567218280260004 a001 10472277129572601/10946 9567218281020883 a001 139583862445/2207*24476^(20/21) 9567218281781359 a001 225851433717/2207*24476^(19/21) 9567218282541835 a001 365435296162/2207*24476^(6/7) 9567218283302311 a001 591286729879/2207*24476^(17/21) 9567218284062787 a001 956722026041/2207*24476^(16/21) 9567218284823263 a001 1548008755920/2207*24476^(5/7) 9567218285583739 a001 2504730781961/2207*24476^(2/3) 9567218286344215 a001 4052739537881/2207*24476^(13/21) 9567218287104691 a001 6557470319842/2207*24476^(4/7) 9567218287161201 a007 Real Root Of -898*x^4-908*x^3-684*x^2+307*x+877 9567218287865167 a001 4807525989*24476^(11/21) 9567218294001716 a001 53316291173/2207*64079^(22/23) 9567218294103020 a001 86267571272/2207*64079^(21/23) 9567218294204324 a001 139583862445/2207*64079^(20/23) 9567218294305628 a001 225851433717/2207*64079^(19/23) 9567218294406932 a001 365435296162/2207*64079^(18/23) 9567218294508236 a001 591286729879/2207*64079^(17/23) 9567218294609540 a001 956722026041/2207*64079^(16/23) 9567218294710843 a001 1548008755920/2207*64079^(15/23) 9567218294812147 a001 2504730781961/2207*64079^(14/23) 9567218294913451 a001 4052739537881/2207*64079^(13/23) 9567218295014755 a001 6557470319842/2207*64079^(12/23) 9567218295116059 a001 4807525989*64079^(11/23) 9567218295340425 a001 46368/2207*817138163596^(17/19) 9567218295340425 a001 46368/2207*14662949395604^(17/21) 9567218295340425 a001 46368/2207*192900153618^(17/18) 9567218295958450 a001 139583862445/2207*167761^(4/5) 9567218296026438 a001 1548008755920/2207*167761^(3/5) 9567218296100557 a001 121393/2207*14662949395604^(7/9) 9567218296100557 a001 121393/2207*505019158607^(7/8) 9567218296186317 a001 20365011074/2207*439204^(8/9) 9567218296191828 a001 86267571272/2207*439204^(7/9) 9567218296197338 a001 365435296162/2207*439204^(2/3) 9567218296202849 a001 1548008755920/2207*439204^(5/9) 9567218296208360 a001 6557470319842/2207*439204^(4/9) 9567218296227639 a001 832040/2207*45537549124^(15/17) 9567218296227639 a001 832040/2207*312119004989^(9/11) 9567218296227639 a001 832040/2207*14662949395604^(5/7) 9567218296227639 a001 832040/2207*192900153618^(5/6) 9567218296227639 a001 832040/2207*28143753123^(9/10) 9567218296227639 a001 832040/2207*10749957122^(15/16) 9567218296230263 a001 1134903170/2207*7881196^(10/11) 9567218296230277 a001 4807526976/2207*7881196^(9/11) 9567218296230291 a001 20365011074/2207*7881196^(8/11) 9567218296230300 a001 53316291173/2207*7881196^(2/3) 9567218296230305 a001 86267571272/2207*7881196^(7/11) 9567218296230319 a001 365435296162/2207*7881196^(6/11) 9567218296230333 a001 1548008755920/2207*7881196^(5/11) 9567218296230347 a001 6557470319842/2207*7881196^(4/11) 9567218296230351 a001 4807525989*7881196^(1/3) 9567218296230384 a001 1134903170/2207*20633239^(6/7) 9567218296230385 a001 2971215073/2207*20633239^(4/5) 9567218296230387 a001 12586269025/2207*20633239^(5/7) 9567218296230389 a001 86267571272/2207*20633239^(3/5) 9567218296230390 a001 139583862445/2207*20633239^(4/7) 9567218296230393 a001 1548008755920/2207*20633239^(3/7) 9567218296230394 a001 2504730781961/2207*20633239^(2/5) 9567218296230394 a001 14930352/2207*2537720636^(13/15) 9567218296230394 a001 14930352/2207*45537549124^(13/17) 9567218296230394 a001 14930352/2207*14662949395604^(13/21) 9567218296230394 a001 14930352/2207*192900153618^(13/18) 9567218296230394 a001 14930352/2207*73681302247^(3/4) 9567218296230394 a001 14930352/2207*10749957122^(13/16) 9567218296230394 a001 14930352/2207*599074578^(13/14) 9567218296230402 a001 267914296/2207*141422324^(11/13) 9567218296230402 a001 1134903170/2207*141422324^(10/13) 9567218296230402 a001 4807526976/2207*141422324^(9/13) 9567218296230402 a001 7778742049/2207*141422324^(2/3) 9567218296230402 a001 20365011074/2207*141422324^(8/13) 9567218296230403 a001 86267571272/2207*141422324^(7/13) 9567218296230403 a001 365435296162/2207*141422324^(6/13) 9567218296230403 a001 1548008755920/2207*141422324^(5/13) 9567218296230403 a001 102334155/2207*2537720636^(7/9) 9567218296230403 a001 102334155/2207*17393796001^(5/7) 9567218296230403 a001 102334155/2207*312119004989^(7/11) 9567218296230403 a001 102334155/2207*14662949395604^(5/9) 9567218296230403 a001 102334155/2207*505019158607^(5/8) 9567218296230403 a001 102334155/2207*28143753123^(7/10) 9567218296230403 a001 102334155/2207*599074578^(5/6) 9567218296230403 a001 4052739537881/2207*141422324^(1/3) 9567218296230403 a001 6557470319842/2207*141422324^(4/13) 9567218296230403 a001 267914296/2207*2537720636^(11/15) 9567218296230403 a001 267914296/2207*45537549124^(11/17) 9567218296230403 a001 267914296/2207*312119004989^(3/5) 9567218296230403 a001 267914296/2207*817138163596^(11/19) 9567218296230403 a001 267914296/2207*14662949395604^(11/21) 9567218296230403 a001 267914296/2207*192900153618^(11/18) 9567218296230403 a001 267914296/2207*10749957122^(11/16) 9567218296230403 a001 267914296/2207*1568397607^(3/4) 9567218296230403 a001 102334155/2207*228826127^(7/8) 9567218296230403 a001 267914296/2207*599074578^(11/14) 9567218296230403 a001 701408733/2207*9062201101803^(1/2) 9567218296230403 a001 4807526976/2207*2537720636^(3/5) 9567218296230403 a001 12586269025/2207*2537720636^(5/9) 9567218296230403 a001 20365011074/2207*2537720636^(8/15) 9567218296230403 a001 86267571272/2207*2537720636^(7/15) 9567218296230403 a001 139583862445/2207*2537720636^(4/9) 9567218296230403 a001 365435296162/2207*2537720636^(2/5) 9567218296230403 a001 1836311903/2207*1322157322203^(1/2) 9567218296230403 a001 1548008755920/2207*2537720636^(1/3) 9567218296230403 a001 6557470319842/2207*2537720636^(4/15) 9567218296230403 a001 4807526976/2207*45537549124^(9/17) 9567218296230403 a001 4807526976/2207*817138163596^(9/19) 9567218296230403 a001 4807526976/2207*14662949395604^(3/7) 9567218296230403 a001 4807526976/2207*192900153618^(1/2) 9567218296230403 a001 4807526976/2207*10749957122^(9/16) 9567218296230403 a001 86267571272/2207*17393796001^(3/7) 9567218296230403 a001 12586269025/2207*312119004989^(5/11) 9567218296230403 a001 12586269025/2207*3461452808002^(5/12) 9567218296230403 a001 2504730781961/2207*17393796001^(2/7) 9567218296230403 a001 12586269025/2207*28143753123^(1/2) 9567218296230403 a001 86267571272/2207*45537549124^(7/17) 9567218296230403 a001 365435296162/2207*45537549124^(6/17) 9567218296230403 a001 591286729879/2207*45537549124^(1/3) 9567218296230403 a001 1548008755920/2207*45537549124^(5/17) 9567218296230403 a001 6557470319842/2207*45537549124^(4/17) 9567218296230403 a001 86267571272/2207*14662949395604^(1/3) 9567218296230403 a001 86267571272/2207*192900153618^(7/18) 9567218296230403 a001 225851433717/2207*817138163596^(1/3) 9567218296230403 a001 1548008755920/2207*312119004989^(3/11) 9567218296230403 a001 6557470319842/2207*817138163596^(4/19) 9567218296230403 a001 1548008755920/2207*14662949395604^(5/21) 9567218296230403 a001 2504730781961/2207*14662949395604^(2/9) 9567218296230403 a001 2504730781961/2207*505019158607^(1/4) 9567218296230403 a001 365435296162/2207*14662949395604^(2/7) 9567218296230403 a001 6557470319842/2207*192900153618^(2/9) 9567218296230403 a001 139583862445/2207*23725150497407^(5/16) 9567218296230403 a001 365435296162/2207*192900153618^(1/3) 9567218296230403 a001 139583862445/2207*505019158607^(5/14) 9567218296230403 a001 6557470319842/2207*73681302247^(3/13) 9567218296230403 a001 4052739537881/2207*73681302247^(1/4) 9567218296230403 a001 956722026041/2207*73681302247^(4/13) 9567218296230403 a001 53316291173/2207*312119004989^(2/5) 9567218296230403 a001 139583862445/2207*73681302247^(5/13) 9567218296230403 a001 20365011074/2207*45537549124^(8/17) 9567218296230403 a001 1548008755920/2207*28143753123^(3/10) 9567218296230403 a001 20365011074/2207*14662949395604^(8/21) 9567218296230403 a001 20365011074/2207*192900153618^(4/9) 9567218296230403 a001 139583862445/2207*28143753123^(2/5) 9567218296230403 a001 20365011074/2207*73681302247^(6/13) 9567218296230403 a001 6557470319842/2207*10749957122^(1/4) 9567218296230403 a001 2504730781961/2207*10749957122^(7/24) 9567218296230403 a001 1548008755920/2207*10749957122^(5/16) 9567218296230403 a001 956722026041/2207*10749957122^(1/3) 9567218296230403 a001 365435296162/2207*10749957122^(3/8) 9567218296230403 a001 7778742049/2207*73681302247^(1/2) 9567218296230403 a001 139583862445/2207*10749957122^(5/12) 9567218296230403 a001 86267571272/2207*10749957122^(7/16) 9567218296230403 a001 53316291173/2207*10749957122^(11/24) 9567218296230403 a001 20365011074/2207*10749957122^(1/2) 9567218296230403 a001 7778742049/2207*10749957122^(13/24) 9567218296230403 a001 6557470319842/2207*4106118243^(6/23) 9567218296230403 a001 2504730781961/2207*4106118243^(7/23) 9567218296230403 a001 956722026041/2207*4106118243^(8/23) 9567218296230403 a001 2971215073/2207*17393796001^(4/7) 9567218296230403 a001 2971215073/2207*14662949395604^(4/9) 9567218296230403 a001 2971215073/2207*505019158607^(1/2) 9567218296230403 a001 2971215073/2207*73681302247^(7/13) 9567218296230403 a001 365435296162/2207*4106118243^(9/23) 9567218296230403 a001 139583862445/2207*4106118243^(10/23) 9567218296230403 a001 2971215073/2207*10749957122^(7/12) 9567218296230403 a001 53316291173/2207*4106118243^(11/23) 9567218296230403 a001 32951280099/2207*4106118243^(1/2) 9567218296230403 a001 20365011074/2207*4106118243^(12/23) 9567218296230403 a001 7778742049/2207*4106118243^(13/23) 9567218296230403 a001 1134903170/2207*2537720636^(2/3) 9567218296230403 a001 2971215073/2207*4106118243^(14/23) 9567218296230403 a001 4807525989*1568397607^(1/4) 9567218296230403 a001 6557470319842/2207*1568397607^(3/11) 9567218296230403 a001 2504730781961/2207*1568397607^(7/22) 9567218296230403 a001 956722026041/2207*1568397607^(4/11) 9567218296230403 a001 1134903170/2207*45537549124^(10/17) 9567218296230403 a001 1134903170/2207*312119004989^(6/11) 9567218296230403 a001 1134903170/2207*14662949395604^(10/21) 9567218296230403 a001 1134903170/2207*192900153618^(5/9) 9567218296230403 a001 1134903170/2207*28143753123^(3/5) 9567218296230403 a001 1134903170/2207*10749957122^(5/8) 9567218296230403 a001 365435296162/2207*1568397607^(9/22) 9567218296230403 a001 139583862445/2207*1568397607^(5/11) 9567218296230403 a001 1134903170/2207*4106118243^(15/23) 9567218296230403 a001 53316291173/2207*1568397607^(1/2) 9567218296230403 a001 20365011074/2207*1568397607^(6/11) 9567218296230403 a001 7778742049/2207*1568397607^(13/22) 9567218296230403 a001 2971215073/2207*1568397607^(7/11) 9567218296230403 a001 1134903170/2207*1568397607^(15/22) 9567218296230403 a001 6557470319842/2207*599074578^(2/7) 9567218296230403 a001 2504730781961/2207*599074578^(1/3) 9567218296230403 a001 1548008755920/2207*599074578^(5/14) 9567218296230403 a001 956722026041/2207*599074578^(8/21) 9567218296230403 a001 433494437/2207*23725150497407^(1/2) 9567218296230403 a001 433494437/2207*505019158607^(4/7) 9567218296230403 a001 433494437/2207*73681302247^(8/13) 9567218296230403 a001 433494437/2207*10749957122^(2/3) 9567218296230403 a001 433494437/2207*4106118243^(16/23) 9567218296230403 a001 365435296162/2207*599074578^(3/7) 9567218296230403 a001 139583862445/2207*599074578^(10/21) 9567218296230403 a001 433494437/2207*1568397607^(8/11) 9567218296230403 a001 86267571272/2207*599074578^(1/2) 9567218296230403 a001 53316291173/2207*599074578^(11/21) 9567218296230403 a001 20365011074/2207*599074578^(4/7) 9567218296230403 a001 7778742049/2207*599074578^(13/21) 9567218296230403 a001 4807526976/2207*599074578^(9/14) 9567218296230403 a001 2971215073/2207*599074578^(2/3) 9567218296230403 a001 1134903170/2207*599074578^(5/7) 9567218296230403 a001 433494437/2207*599074578^(16/21) 9567218296230403 a001 63245986/2207*141422324^(12/13) 9567218296230403 a001 6557470319842/2207*228826127^(3/10) 9567218296230403 a001 2504730781961/2207*228826127^(7/20) 9567218296230403 a001 1548008755920/2207*228826127^(3/8) 9567218296230403 a001 165580141/2207*45537549124^(2/3) 9567218296230403 a001 165580141/2207*10749957122^(17/24) 9567218296230403 a001 165580141/2207*4106118243^(17/23) 9567218296230403 a001 165580141/2207*1568397607^(17/22) 9567218296230403 a001 956722026041/2207*228826127^(2/5) 9567218296230403 a001 365435296162/2207*228826127^(9/20) 9567218296230403 a001 139583862445/2207*228826127^(1/2) 9567218296230403 a001 165580141/2207*599074578^(17/21) 9567218296230403 a001 53316291173/2207*228826127^(11/20) 9567218296230403 a001 20365011074/2207*228826127^(3/5) 9567218296230403 a001 12586269025/2207*228826127^(5/8) 9567218296230403 a001 7778742049/2207*228826127^(13/20) 9567218296230403 a001 2971215073/2207*228826127^(7/10) 9567218296230403 a001 1134903170/2207*228826127^(3/4) 9567218296230403 a001 433494437/2207*228826127^(4/5) 9567218296230403 a001 165580141/2207*228826127^(17/20) 9567218296230403 a001 6557470319842/2207*87403803^(6/19) 9567218296230403 a001 2504730781961/2207*87403803^(7/19) 9567218296230403 a001 63245986/2207*2537720636^(4/5) 9567218296230403 a001 63245986/2207*45537549124^(12/17) 9567218296230403 a001 63245986/2207*14662949395604^(4/7) 9567218296230403 a001 63245986/2207*505019158607^(9/14) 9567218296230403 a001 63245986/2207*192900153618^(2/3) 9567218296230403 a001 63245986/2207*73681302247^(9/13) 9567218296230403 a001 63245986/2207*10749957122^(3/4) 9567218296230403 a001 63245986/2207*4106118243^(18/23) 9567218296230403 a001 63245986/2207*1568397607^(9/11) 9567218296230403 a001 63245986/2207*599074578^(6/7) 9567218296230403 a001 956722026041/2207*87403803^(8/19) 9567218296230403 a001 365435296162/2207*87403803^(9/19) 9567218296230403 a001 225851433717/2207*87403803^(1/2) 9567218296230403 a001 63245986/2207*228826127^(9/10) 9567218296230403 a001 139583862445/2207*87403803^(10/19) 9567218296230403 a001 53316291173/2207*87403803^(11/19) 9567218296230404 a001 20365011074/2207*87403803^(12/19) 9567218296230404 a001 7778742049/2207*87403803^(13/19) 9567218296230404 a001 2971215073/2207*87403803^(14/19) 9567218296230404 a001 1134903170/2207*87403803^(15/19) 9567218296230404 a001 433494437/2207*87403803^(16/19) 9567218296230404 a001 165580141/2207*87403803^(17/19) 9567218296230404 a001 63245986/2207*87403803^(18/19) 9567218296230406 a001 6557470319842/2207*33385282^(1/3) 9567218296230406 a001 24157817/2207*817138163596^(2/3) 9567218296230406 a001 24157817/2207*10749957122^(19/24) 9567218296230406 a001 24157817/2207*4106118243^(19/23) 9567218296230406 a001 24157817/2207*1568397607^(19/22) 9567218296230406 a001 24157817/2207*599074578^(19/21) 9567218296230406 a001 2504730781961/2207*33385282^(7/18) 9567218296230406 a001 24157817/2207*228826127^(19/20) 9567218296230406 a001 1548008755920/2207*33385282^(5/12) 9567218296230407 a001 956722026041/2207*33385282^(4/9) 9567218296230407 a001 365435296162/2207*33385282^(1/2) 9567218296230408 a001 139583862445/2207*33385282^(5/9) 9567218296230408 a001 86267571272/2207*33385282^(7/12) 9567218296230408 a001 53316291173/2207*33385282^(11/18) 9567218296230408 a001 20365011074/2207*33385282^(2/3) 9567218296230409 a001 7778742049/2207*33385282^(13/18) 9567218296230409 a001 4807526976/2207*33385282^(3/4) 9567218296230409 a001 2971215073/2207*33385282^(7/9) 9567218296230410 a001 1134903170/2207*33385282^(5/6) 9567218296230410 a001 433494437/2207*33385282^(8/9) 9567218296230411 a001 267914296/2207*33385282^(11/12) 9567218296230411 a001 165580141/2207*33385282^(17/18) 9567218296230424 a001 6557470319842/2207*12752043^(6/17) 9567218296230425 a001 9227465/2207*2537720636^(8/9) 9567218296230425 a001 9227465/2207*312119004989^(8/11) 9567218296230425 a001 9227465/2207*23725150497407^(5/8) 9567218296230425 a001 9227465/2207*73681302247^(10/13) 9567218296230425 a001 9227465/2207*28143753123^(4/5) 9567218296230425 a001 9227465/2207*10749957122^(5/6) 9567218296230425 a001 9227465/2207*4106118243^(20/23) 9567218296230425 a001 9227465/2207*1568397607^(10/11) 9567218296230425 a001 9227465/2207*599074578^(20/21) 9567218296230427 a001 2504730781961/2207*12752043^(7/17) 9567218296230430 a001 956722026041/2207*12752043^(8/17) 9567218296230432 a001 591286729879/2207*12752043^(1/2) 9567218296230434 a001 365435296162/2207*12752043^(9/17) 9567218296230437 a001 139583862445/2207*12752043^(10/17) 9567218296230441 a001 53316291173/2207*12752043^(11/17) 9567218296230444 a001 20365011074/2207*12752043^(12/17) 9567218296230448 a001 7778742049/2207*12752043^(13/17) 9567218296230451 a001 2971215073/2207*12752043^(14/17) 9567218296230455 a001 1134903170/2207*12752043^(15/17) 9567218296230458 a001 433494437/2207*12752043^(16/17) 9567218296230554 a001 6557470319842/2207*4870847^(3/8) 9567218296230557 a001 3524578/2207*2537720636^(14/15) 9567218296230557 a001 3524578/2207*17393796001^(6/7) 9567218296230557 a001 3524578/2207*45537549124^(14/17) 9567218296230557 a001 3524578/2207*817138163596^(14/19) 9567218296230557 a001 3524578/2207*14662949395604^(2/3) 9567218296230557 a001 3524578/2207*505019158607^(3/4) 9567218296230557 a001 3524578/2207*192900153618^(7/9) 9567218296230557 a001 3524578/2207*10749957122^(7/8) 9567218296230557 a001 3524578/2207*4106118243^(21/23) 9567218296230557 a001 3524578/2207*1568397607^(21/22) 9567218296230579 a001 2504730781961/2207*4870847^(7/16) 9567218296230604 a001 956722026041/2207*4870847^(1/2) 9567218296230630 a001 365435296162/2207*4870847^(9/16) 9567218296230655 a001 139583862445/2207*4870847^(5/8) 9567218296230680 a001 53316291173/2207*4870847^(11/16) 9567218296230705 a001 20365011074/2207*4870847^(3/4) 9567218296230730 a001 7778742049/2207*4870847^(13/16) 9567218296230756 a001 2971215073/2207*4870847^(7/8) 9567218296230781 a001 1134903170/2207*4870847^(15/16) 9567218296231458 a001 1346269/2207*312119004989^(4/5) 9567218296231458 a001 1346269/2207*23725150497407^(11/16) 9567218296231458 a001 1346269/2207*73681302247^(11/13) 9567218296231458 a001 1346269/2207*10749957122^(11/12) 9567218296231458 a001 1346269/2207*4106118243^(22/23) 9567218296231508 a001 6557470319842/2207*1860498^(2/5) 9567218296231693 a001 2504730781961/2207*1860498^(7/15) 9567218296231785 a001 1548008755920/2207*1860498^(1/2) 9567218296231877 a001 956722026041/2207*1860498^(8/15) 9567218296232061 a001 365435296162/2207*1860498^(3/5) 9567218296232245 a001 139583862445/2207*1860498^(2/3) 9567218296232338 a001 86267571272/2207*1860498^(7/10) 9567218296232430 a001 53316291173/2207*1860498^(11/15) 9567218296232614 a001 20365011074/2207*1860498^(4/5) 9567218296232706 a001 12586269025/2207*1860498^(5/6) 9567218296232798 a001 7778742049/2207*1860498^(13/15) 9567218296232890 a001 4807526976/2207*1860498^(9/10) 9567218296232982 a001 2971215073/2207*1860498^(14/15) 9567218296237639 a001 514229/2207*10749957122^(23/24) 9567218296238522 a001 6557470319842/2207*710647^(3/7) 9567218296239875 a001 2504730781961/2207*710647^(1/2) 9567218296241228 a001 956722026041/2207*710647^(4/7) 9567218296242581 a001 365435296162/2207*710647^(9/14) 9567218296243934 a001 139583862445/2207*710647^(5/7) 9567218296244611 a001 86267571272/2207*710647^(3/4) 9567218296245288 a001 53316291173/2207*710647^(11/14) 9567218296246641 a001 20365011074/2207*710647^(6/7) 9567218296247994 a001 7778742049/2207*710647^(13/14) 9567218296279999 a001 196418/2207*45537549124^(16/17) 9567218296279999 a001 196418/2207*14662949395604^(16/21) 9567218296279999 a001 196418/2207*192900153618^(8/9) 9567218296279999 a001 196418/2207*73681302247^(12/13) 9567218296290332 a001 6557470319842/2207*271443^(6/13) 9567218296295326 a001 4052739537881/2207*271443^(1/2) 9567218296300320 a001 2504730781961/2207*271443^(7/13) 9567218296310308 a001 956722026041/2207*271443^(8/13) 9567218296320296 a001 365435296162/2207*271443^(9/13) 9567218296330284 a001 139583862445/2207*271443^(10/13) 9567218296340272 a001 53316291173/2207*271443^(11/13) 9567218296350261 a001 20365011074/2207*271443^(12/13) 9567218296570344 a001 75025/2207*312119004989^(10/11) 9567218296570344 a001 75025/2207*3461452808002^(5/6) 9567218296638309 a001 4807525989*103682^(11/24) 9567218296675391 a001 6557470319842/2207*103682^(1/2) 9567218296712474 a001 4052739537881/2207*103682^(13/24) 9567218296749556 a001 2504730781961/2207*103682^(7/12) 9567218296786639 a001 1548008755920/2207*103682^(5/8) 9567218296823721 a001 956722026041/2207*103682^(2/3) 9567218296860803 a001 591286729879/2207*103682^(17/24) 9567218296897886 a001 365435296162/2207*103682^(3/4) 9567218296934968 a001 225851433717/2207*103682^(19/24) 9567218296972051 a001 139583862445/2207*103682^(5/6) 9567218297009133 a001 86267571272/2207*103682^(7/8) 9567218297046215 a001 53316291173/2207*103682^(11/12) 9567218297083298 a001 32951280099/2207*103682^(23/24) 9567218298560394 a001 28657/2207*23725150497407^(13/16) 9567218298560394 a001 28657/2207*505019158607^(13/14) 9567218299280400 a001 4807525989*39603^(1/2) 9567218299557673 a001 6557470319842/2207*39603^(6/11) 9567218299834946 a001 4052739537881/2207*39603^(13/22) 9567218300112218 a001 2504730781961/2207*39603^(7/11) 9567218300389491 a001 1548008755920/2207*39603^(15/22) 9567218300666763 a001 956722026041/2207*39603^(8/11) 9567218300944036 a001 591286729879/2207*39603^(17/22) 9567218301221308 a001 365435296162/2207*39603^(9/11) 9567218301498581 a001 225851433717/2207*39603^(19/22) 9567218301775853 a001 139583862445/2207*39603^(10/11) 9567218301865608 r009 Im(z^3+c),c=-2/15+16/17*I,n=9 9567218302053126 a001 86267571272/2207*39603^(21/22) 9567218312200398 a001 10946/2207*14662949395604^(6/7) 9567218318058214 r005 Re(z^2+c),c=7/19+12/23*I,n=36 9567218319225898 a001 4807525989*15127^(11/20) 9567218321316397 a001 6557470319842/2207*15127^(3/5) 9567218323406897 a001 4052739537881/2207*15127^(13/20) 9567218325497396 a001 2504730781961/2207*15127^(7/10) 9567218327587896 a001 1548008755920/2207*15127^(3/4) 9567218329678395 a001 956722026041/2207*15127^(4/5) 9567218331768895 a001 591286729879/2207*15127^(17/20) 9567218332358703 a007 Real Root Of -618*x^4-36*x^3-794*x^2+589*x-49 9567218333859395 a001 365435296162/2207*15127^(9/10) 9567218335949894 a001 225851433717/2207*15127^(19/20) 9567218337170117 a001 2504730781961/843*843^(6/7) 9567218338039991 a001 2157407735228018/2255 9567218352961734 a007 Real Root Of 555*x^4-560*x^3+536*x^2+578*x-893 9567218390657702 m002 -Pi^6+Pi^3*Sech[Pi]+2*Tanh[Pi] 9567218399388763 m001 ln(5)/(ZetaQ(3)^Psi(1,1/3)) 9567218405690380 a001 4181/2207*14662949395604^(8/9) 9567218423801509 m001 (Shi(1)+Gompertz)/(-Grothendieck+ZetaQ(2)) 9567218427834237 a007 Real Root Of -759*x^4-131*x^3-921*x^2+853*x-73 9567218429954159 h001 (1/11*exp(2)+2/5)/(1/9*exp(1)+9/11) 9567218432990206 a003 sin(Pi*29/74)/sin(Pi*37/83) 9567218444139924 m001 Rabbit^(Paris/LandauRamanujan) 9567218456683109 a007 Real Root Of 340*x^4-635*x^3-145*x^2+804*x+61 9567218471356477 a001 4807525989*5778^(11/18) 9567218474047602 a007 Real Root Of -812*x^4-138*x^3+588*x^2+953*x+933 9567218487277029 a001 6557470319842/2207*5778^(2/3) 9567218503197582 a001 4052739537881/2207*5778^(13/18) 9567218505647841 a007 Real Root Of -425*x^4+126*x^3+443*x^2+780*x-906 9567218519118134 a001 2504730781961/2207*5778^(7/9) 9567218533948425 a007 Real Root Of 754*x^4-123*x^3-563*x^2+899*x+636 9567218534406358 r005 Im(z^2+c),c=-61/106+7/40*I,n=47 9567218535038686 a001 1548008755920/2207*5778^(5/6) 9567218541214034 m001 (-ln(Pi)+Magata)/(BesselI(0,1)+ln(3)) 9567218541848148 a007 Real Root Of -360*x^4+379*x^3-987*x^2+623*x+69 9567218546971046 l006 ln(2477/6448) 9567218550959239 a001 956722026041/2207*5778^(8/9) 9567218552713638 a001 47/55*5^(4/57) 9567218554888564 r005 Im(z^2+c),c=17/48+11/28*I,n=14 9567218563520142 a007 Real Root Of -752*x^4+639*x^3+548*x^2-485*x+224 9567218566879791 a001 591286729879/2207*5778^(17/18) 9567218577558118 a001 199/8*2178309^(34/47) 9567218582799949 a001 2472169281795507/2584 9567218630330399 r005 Re(z^2+c),c=-13/14+19/120*I,n=37 9567218639350276 a007 Real Root Of 579*x^4+636*x^3-100*x^2-318*x-29 9567218647571428 a001 3/101521*4^(50/59) 9567218665303534 m009 (5/6*Psi(1,2/3)+2)/(24*Catalan+3*Pi^2-4) 9567218681560162 r005 Re(z^2+c),c=3/106+17/39*I,n=21 9567218693915325 b008 3*EllipticPi[E,-21] 9567218697787627 s002 sum(A085678[n]/(n*exp(n)+1),n=1..infinity) 9567218704422427 m001 (-Paris+TwinPrimes)/(FeigenbaumMu-Psi(2,1/3)) 9567218780682026 r005 Re(z^2+c),c=-109/122+9/38*I,n=29 9567218789744898 a007 Real Root Of -635*x^4-529*x^3-615*x^2+85*x+713 9567218795688475 m001 (Cahen-sin(1))/(FellerTornier+MadelungNaCl) 9567218803361499 r005 Im(z^2+c),c=-23/30+3/35*I,n=8 9567218805821512 a007 Real Root Of 443*x^4-835*x^3-381*x^2+78*x-679 9567218822906533 a007 Real Root Of -67*x^4+890*x^3+406*x^2-396*x-716 9567218855046127 m001 (CareFree+MertensB2)/(GAMMA(2/3)+arctan(1/2)) 9567218879946412 m004 3/4+(Cosh[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/4 9567218887709827 m005 (-19/36+1/4*5^(1/2))/(1/12*exp(1)+1/10) 9567218907113756 m005 (1/2*Catalan+1/6)/(-83/110+1/22*5^(1/2)) 9567218926443695 r005 Im(z^2+c),c=-7/9+3/80*I,n=38 9567218930988492 a007 Real Root Of -803*x^4-485*x^3-72*x^2-371*x-41 9567219012400273 r009 Re(z^3+c),c=-7/20+39/61*I,n=58 9567219018053599 a007 Real Root Of 944*x^4-938*x^3-364*x^2+829*x-486 9567219045322090 l006 ln(3112/8101) 9567219046479904 a001 987/3571*14662949395604^(20/21) 9567219055880078 m002 -5+Pi^6+(E^Pi*Sech[Pi])/6 9567219059599416 a007 Real Root Of -273*x^4+511*x^3-266*x^2-354*x+581 9567219075744614 b008 Sech[Sech[15/8]] 9567219080389606 a007 Real Root Of 429*x^4-865*x^3+308*x^2+836*x-599 9567219085373468 m001 Zeta(5)/(Conway^GaussKuzminWirsing) 9567219099613713 m006 (4*exp(2*Pi)+1/5)/(exp(Pi)-3/4) 9567219112930197 r005 Im(z^2+c),c=-35/26+5/88*I,n=38 9567219127595779 a007 Real Root Of -854*x^4-108*x^3+604*x^2+579*x+622 9567219138129932 a007 Real Root Of 794*x^4+427*x^3+919*x^2+382*x-767 9567219143660923 m002 2-Cosh[Pi]+Log[Pi]/(2*E^Pi) 9567219151128929 r005 Im(z^2+c),c=-9/10+10/131*I,n=25 9567219152854511 q001 1039/1086 9567219223590081 a001 1527884910007336/1597 9567219267722381 a001 2504730781961/5778*3571^(16/17) 9567219277111185 m001 Artin^(ZetaP(4)/Niven) 9567219290482221 a003 sin(Pi*4/99)*sin(Pi*3/11) 9567219298790010 a001 516002918640/281*843^(13/14) 9567219300173347 a003 cos(Pi*13/67)+cos(Pi*47/103) 9567219309105596 a007 Real Root Of 66*x^4+588*x^3-324*x^2+933*x+545 9567219310734762 a007 Real Root Of 570*x^4-840*x^3-556*x^2+249*x-466 9567219311854731 a001 4052739537881/5778*3571^(15/17) 9567219345771418 r008 a(0)=1,K{-n^6,23+5*n^3-27*n^2+29*n} 9567219355987081 a001 3278735159921/2889*3571^(14/17) 9567219374763105 l006 ln(3747/9754) 9567219384059173 h001 (7/11*exp(1)+7/10)/(2/7*exp(2)+3/7) 9567219390108449 m001 Magata/(FeigenbaumMu-ZetaQ(3)) 9567219400119432 a001 3536736619241/1926*3571^(13/17) 9567219405565208 a001 3571/89*987^(23/50) 9567219414373201 r005 Re(z^2+c),c=23/114+14/51*I,n=36 9567219428717277 a007 Real Root Of 240*x^4-974*x^3+312*x^2+980*x-402 9567219468350062 a001 1527884949095505/1597 9567219468445699 m002 -Pi^4-ProductLog[Pi]/Log[Pi]+Pi^3*Sech[Pi] 9567219481551965 m001 (5^(1/2)+Ei(1,1))/(FibonacciFactorial+Totient) 9567219481676585 m001 CareFree^BesselK(1,1)/(CareFree^PlouffeB) 9567219495932529 a007 Real Root Of -78*x^4-759*x^3-34*x^2+910*x+647 9567219504060062 a001 1527884954798392/1597 9567219509270081 a001 1527884955630432/1597 9567219510030212 a001 1527884955751825/1597 9567219510141114 a001 1527884955769536/1597 9567219510157294 a001 1527884955772120/1597 9567219510159655 a001 1527884955772497/1597 9567219510160050 a001 1527884955772560/1597 9567219510160056 a001 1527884955772561/1597 9567219510160062 a001 1527884955772562/1597 9567219510160081 a001 1527884955772565/1597 9567219510160212 a001 1527884955772586/1597 9567219510161114 a001 1527884955772730/1597 9567219510167294 a001 1527884955773717/1597 9567219510209655 a001 1527884955780482/1597 9567219512482355 a001 6557470319842/15127*3571^(16/17) 9567219512490050 a001 1527884956144661/1597 9567219520078642 m002 -Pi^(-4)+Pi^6-5/ProductLog[Pi] 9567219526130056 a001 1527884958322970/1597 9567219528314657 r005 Im(z^2+c),c=-55/86+1/53*I,n=50 9567219539868260 a007 Real Root Of 386*x^4-37*x^3-323*x^2+297*x+224 9567219556614706 a001 1515744265389/2161*3571^(15/17) 9567219561454618 a007 Real Root Of -715*x^4+459*x^3+814*x^2+229*x+475 9567219570262348 a001 10610209857723/24476*3571^(16/17) 9567219577768991 a007 Real Root Of 790*x^4-730*x^3-582*x^2+337*x-446 9567219598235142 a007 Real Root Of 677*x^4-895*x^3-805*x^2+159*x-462 9567219619620050 a001 1527884973253322/1597 9567219629730740 m001 Mills^Zeta(1/2)*Riemann1stZero 9567219644339824 m001 Rabbit*exp(Conway)/sqrt(1+sqrt(3))^2 9567219646603832 a001 4807525989*2207^(11/16) 9567219647762910 a007 Real Root Of 64*x^4+569*x^3-434*x^2-141*x+456 9567219657012011 m001 LambertW(1)^(GAMMA(13/24)/Riemann2ndZero) 9567219661221241 m005 (4*exp(1)-5)/(5/3+2*5^(1/2)) 9567219663752344 a001 4052739537881/9349*3571^(16/17) 9567219676295367 m002 -Pi^6-Log[Pi]^2+6*Tanh[Pi] 9567219707884696 a001 6557470319842/9349*3571^(15/17) 9567219709132780 a007 Real Root Of -234*x^4+53*x^3+502*x^2+369*x+136 9567219713004227 a007 Real Root Of -883*x^4+860*x^3+451*x^2-830*x+286 9567219719076924 a003 sin(Pi*32/81)/sin(Pi*43/95) 9567219726163035 b008 ExpIntegralEi[1+E+E^3] 9567219752017048 a001 10610209857723/9349*3571^(14/17) 9567219753176143 m001 BesselK(1,1)^TwinPrimes/RenyiParking 9567219769365063 a001 6557470319842/2207*2207^(3/4) 9567219797566587 a007 Real Root Of 602*x^4-586*x^3+149*x^2+603*x-577 9567219823771419 a007 Real Root Of 646*x^4+989*x^3+439*x^2+93*x+12 9567219823854984 m005 (1/3*exp(1)+3/5)/(8/11*Zeta(3)+7/10) 9567219848653343 a001 599074578*34^(11/14) 9567219855872560 a001 199/75025*10946^(4/29) 9567219864380004 a001 4000054625297280/4181 9567219870141064 a001 956722026041/5778*9349^(18/19) 9567219875902116 a001 86000486440/321*9349^(17/19) 9567219877893957 r005 Re(z^2+c),c=11/114+12/35*I,n=4 9567219881663169 a001 2504730781961/5778*9349^(16/19) 9567219887424221 a001 4052739537881/5778*9349^(15/19) 9567219892126294 a001 4052739537881/2207*2207^(13/16) 9567219893185274 a001 3278735159921/2889*9349^(14/19) 9567219898946326 a001 3536736619241/1926*9349^(13/19) 9567219902786636 m002 -Pi^6+5/ProductLog[Pi]+Tanh[Pi]/Pi^4 9567219912106839 h001 (9/11*exp(2)+1/4)/(7/9*exp(2)+5/6) 9567219927095839 m005 (1/2*2^(1/2)+5/6)/(3/5*Zeta(3)+8/9) 9567219932030010 a001 2255/1926*14662949395604^(19/21) 9567219957467706 m001 (Ei(1,1)-exp(1/Pi))/(Kac+LandauRamanujan2nd) 9567219957870001 a001 5236139482942252/5473 9567219958630486 a001 182717648081/2889*24476^(20/21) 9567219959390962 a001 591286729879/5778*24476^(19/21) 9567219960151438 a001 956722026041/5778*24476^(6/7) 9567219960911914 a001 86000486440/321*24476^(17/21) 9567219961672390 a001 2504730781961/5778*24476^(16/21) 9567219962432867 a001 4052739537881/5778*24476^(5/7) 9567219963193343 a001 3278735159921/2889*24476^(2/3) 9567219963953819 a001 3536736619241/1926*24476^(13/21) 9567219967740012 a001 17711/5778*3461452808002^(11/12) 9567219971510008 a001 27416782272356232/28657 9567219971611321 a001 139583862445/5778*64079^(22/23) 9567219971712625 a001 75283811239/1926*64079^(21/23) 9567219971813929 a001 182717648081/2889*64079^(20/23) 9567219971915233 a001 591286729879/5778*64079^(19/23) 9567219972016537 a001 956722026041/5778*64079^(18/23) 9567219972117841 a001 86000486440/321*64079^(17/23) 9567219972219145 a001 2504730781961/5778*64079^(16/23) 9567219972320449 a001 4052739537881/5778*64079^(15/23) 9567219972421753 a001 3278735159921/2889*64079^(14/23) 9567219972523057 a001 3536736619241/1926*64079^(13/23) 9567219973568055 a001 182717648081/2889*167761^(4/5) 9567219973636043 a001 4052739537881/5778*167761^(3/5) 9567219973710162 a001 121393/5778*817138163596^(17/19) 9567219973710162 a001 121393/5778*14662949395604^(17/21) 9567219973710162 a001 121393/5778*192900153618^(17/18) 9567219973795922 a001 53316291173/5778*439204^(8/9) 9567219973801433 a001 75283811239/1926*439204^(7/9) 9567219973806944 a001 956722026041/5778*439204^(2/3) 9567219973812454 a001 4052739537881/5778*439204^(5/9) 9567219973821064 a001 105937/1926*14662949395604^(7/9) 9567219973821064 a001 105937/1926*505019158607^(7/8) 9567219973839605 a001 726103/1926*45537549124^(15/17) 9567219973839605 a001 726103/1926*312119004989^(9/11) 9567219973839605 a001 726103/1926*14662949395604^(5/7) 9567219973839605 a001 726103/1926*192900153618^(5/6) 9567219973839605 a001 726103/1926*28143753123^(9/10) 9567219973839605 a001 726103/1926*10749957122^(15/16) 9567219973839868 a001 2971215073/5778*7881196^(10/11) 9567219973839882 a001 12586269025/5778*7881196^(9/11) 9567219973839896 a001 53316291173/5778*7881196^(8/11) 9567219973839905 a001 139583862445/5778*7881196^(2/3) 9567219973839910 a001 75283811239/1926*7881196^(7/11) 9567219973839924 a001 956722026041/5778*7881196^(6/11) 9567219973839938 a001 4052739537881/5778*7881196^(5/11) 9567219973839989 a001 2971215073/5778*20633239^(6/7) 9567219973839990 a001 7778742049/5778*20633239^(4/5) 9567219973839992 a001 10983760033/1926*20633239^(5/7) 9567219973839995 a001 75283811239/1926*20633239^(3/5) 9567219973839995 a001 182717648081/2889*20633239^(4/7) 9567219973839999 a001 4052739537881/5778*20633239^(3/7) 9567219973839999 a001 3278735159921/2889*20633239^(2/5) 9567219973840007 a001 39088169/5778*2537720636^(13/15) 9567219973840007 a001 39088169/5778*45537549124^(13/17) 9567219973840007 a001 39088169/5778*14662949395604^(13/21) 9567219973840007 a001 39088169/5778*192900153618^(13/18) 9567219973840007 a001 39088169/5778*73681302247^(3/4) 9567219973840007 a001 39088169/5778*10749957122^(13/16) 9567219973840007 a001 39088169/5778*599074578^(13/14) 9567219973840008 a001 233802911/1926*141422324^(11/13) 9567219973840008 a001 165580141/5778*141422324^(12/13) 9567219973840008 a001 2971215073/5778*141422324^(10/13) 9567219973840008 a001 12586269025/5778*141422324^(9/13) 9567219973840008 a001 10182505537/2889*141422324^(2/3) 9567219973840008 a001 53316291173/5778*141422324^(8/13) 9567219973840008 a001 75283811239/1926*141422324^(7/13) 9567219973840008 a001 956722026041/5778*141422324^(6/13) 9567219973840008 a001 4052739537881/5778*141422324^(5/13) 9567219973840008 a001 3536736619241/1926*141422324^(1/3) 9567219973840008 a001 133957148/2889*2537720636^(7/9) 9567219973840008 a001 133957148/2889*17393796001^(5/7) 9567219973840008 a001 133957148/2889*312119004989^(7/11) 9567219973840008 a001 133957148/2889*14662949395604^(5/9) 9567219973840008 a001 133957148/2889*505019158607^(5/8) 9567219973840008 a001 133957148/2889*28143753123^(7/10) 9567219973840008 a001 233802911/1926*2537720636^(11/15) 9567219973840008 a001 133957148/2889*599074578^(5/6) 9567219973840008 a001 233802911/1926*45537549124^(11/17) 9567219973840008 a001 233802911/1926*312119004989^(3/5) 9567219973840008 a001 233802911/1926*817138163596^(11/19) 9567219973840008 a001 233802911/1926*14662949395604^(11/21) 9567219973840008 a001 233802911/1926*192900153618^(11/18) 9567219973840008 a001 233802911/1926*10749957122^(11/16) 9567219973840008 a001 233802911/1926*1568397607^(3/4) 9567219973840008 a001 12586269025/5778*2537720636^(3/5) 9567219973840008 a001 10983760033/1926*2537720636^(5/9) 9567219973840008 a001 53316291173/5778*2537720636^(8/15) 9567219973840008 a001 2971215073/5778*2537720636^(2/3) 9567219973840008 a001 75283811239/1926*2537720636^(7/15) 9567219973840008 a001 182717648081/2889*2537720636^(4/9) 9567219973840008 a001 956722026041/5778*2537720636^(2/5) 9567219973840008 a001 1836311903/5778*9062201101803^(1/2) 9567219973840008 a001 4052739537881/5778*2537720636^(1/3) 9567219973840008 a001 267084832/321*1322157322203^(1/2) 9567219973840008 a001 12586269025/5778*45537549124^(9/17) 9567219973840008 a001 75283811239/1926*17393796001^(3/7) 9567219973840008 a001 12586269025/5778*817138163596^(9/19) 9567219973840008 a001 12586269025/5778*14662949395604^(3/7) 9567219973840008 a001 12586269025/5778*192900153618^(1/2) 9567219973840008 a001 3278735159921/2889*17393796001^(2/7) 9567219973840008 a001 75283811239/1926*45537549124^(7/17) 9567219973840008 a001 10983760033/1926*312119004989^(5/11) 9567219973840008 a001 10983760033/1926*3461452808002^(5/12) 9567219973840008 a001 956722026041/5778*45537549124^(6/17) 9567219973840008 a001 86000486440/321*45537549124^(1/3) 9567219973840008 a001 53316291173/5778*45537549124^(8/17) 9567219973840008 a001 4052739537881/5778*45537549124^(5/17) 9567219973840008 a001 75283811239/1926*14662949395604^(1/3) 9567219973840008 a001 4052739537881/5778*312119004989^(3/11) 9567219973840008 a001 591286729879/5778*817138163596^(1/3) 9567219973840008 a001 2504730781961/5778*23725150497407^(1/4) 9567219973840008 a001 956722026041/5778*14662949395604^(2/7) 9567219973840008 a001 182717648081/2889*23725150497407^(5/16) 9567219973840008 a001 139583862445/5778*312119004989^(2/5) 9567219973840008 a001 75283811239/1926*192900153618^(7/18) 9567219973840008 a001 4052739537881/5778*192900153618^(5/18) 9567219973840008 a001 3536736619241/1926*73681302247^(1/4) 9567219973840008 a001 2504730781961/5778*73681302247^(4/13) 9567219973840008 a001 53316291173/5778*14662949395604^(8/21) 9567219973840008 a001 182717648081/2889*73681302247^(5/13) 9567219973840008 a001 53316291173/5778*192900153618^(4/9) 9567219973840008 a001 53316291173/5778*73681302247^(6/13) 9567219973840008 a001 4052739537881/5778*28143753123^(3/10) 9567219973840008 a001 10983760033/1926*28143753123^(1/2) 9567219973840008 a001 182717648081/2889*28143753123^(2/5) 9567219973840008 a001 10182505537/2889*73681302247^(1/2) 9567219973840008 a001 7778742049/5778*17393796001^(4/7) 9567219973840008 a001 3278735159921/2889*10749957122^(7/24) 9567219973840008 a001 4052739537881/5778*10749957122^(5/16) 9567219973840008 a001 2504730781961/5778*10749957122^(1/3) 9567219973840008 a001 956722026041/5778*10749957122^(3/8) 9567219973840008 a001 7778742049/5778*14662949395604^(4/9) 9567219973840008 a001 7778742049/5778*505019158607^(1/2) 9567219973840008 a001 7778742049/5778*73681302247^(7/13) 9567219973840008 a001 12586269025/5778*10749957122^(9/16) 9567219973840008 a001 182717648081/2889*10749957122^(5/12) 9567219973840008 a001 75283811239/1926*10749957122^(7/16) 9567219973840008 a001 139583862445/5778*10749957122^(11/24) 9567219973840008 a001 53316291173/5778*10749957122^(1/2) 9567219973840008 a001 10182505537/2889*10749957122^(13/24) 9567219973840008 a001 7778742049/5778*10749957122^(7/12) 9567219973840008 a001 3278735159921/2889*4106118243^(7/23) 9567219973840008 a001 2504730781961/5778*4106118243^(8/23) 9567219973840008 a001 2971215073/5778*45537549124^(10/17) 9567219973840008 a001 2971215073/5778*312119004989^(6/11) 9567219973840008 a001 2971215073/5778*14662949395604^(10/21) 9567219973840008 a001 2971215073/5778*192900153618^(5/9) 9567219973840008 a001 956722026041/5778*4106118243^(9/23) 9567219973840008 a001 2971215073/5778*28143753123^(3/5) 9567219973840008 a001 182717648081/2889*4106118243^(10/23) 9567219973840008 a001 2971215073/5778*10749957122^(5/8) 9567219973840008 a001 139583862445/5778*4106118243^(11/23) 9567219973840008 a001 43133785636/2889*4106118243^(1/2) 9567219973840008 a001 53316291173/5778*4106118243^(12/23) 9567219973840008 a001 10182505537/2889*4106118243^(13/23) 9567219973840008 a001 7778742049/5778*4106118243^(14/23) 9567219973840008 a001 2971215073/5778*4106118243^(15/23) 9567219973840008 a001 3278735159921/2889*1568397607^(7/22) 9567219973840008 a001 2504730781961/5778*1568397607^(4/11) 9567219973840008 a001 567451585/2889*23725150497407^(1/2) 9567219973840008 a001 567451585/2889*505019158607^(4/7) 9567219973840008 a001 567451585/2889*73681302247^(8/13) 9567219973840008 a001 567451585/2889*10749957122^(2/3) 9567219973840008 a001 956722026041/5778*1568397607^(9/22) 9567219973840008 a001 182717648081/2889*1568397607^(5/11) 9567219973840008 a001 567451585/2889*4106118243^(16/23) 9567219973840008 a001 139583862445/5778*1568397607^(1/2) 9567219973840008 a001 53316291173/5778*1568397607^(6/11) 9567219973840008 a001 10182505537/2889*1568397607^(13/22) 9567219973840008 a001 7778742049/5778*1568397607^(7/11) 9567219973840008 a001 2971215073/5778*1568397607^(15/22) 9567219973840008 a001 567451585/2889*1568397607^(8/11) 9567219973840008 a001 3278735159921/2889*599074578^(1/3) 9567219973840008 a001 4052739537881/5778*599074578^(5/14) 9567219973840008 a001 2504730781961/5778*599074578^(8/21) 9567219973840008 a001 433494437/5778*45537549124^(2/3) 9567219973840008 a001 433494437/5778*10749957122^(17/24) 9567219973840008 a001 433494437/5778*4106118243^(17/23) 9567219973840008 a001 956722026041/5778*599074578^(3/7) 9567219973840008 a001 182717648081/2889*599074578^(10/21) 9567219973840008 a001 433494437/5778*1568397607^(17/22) 9567219973840008 a001 75283811239/1926*599074578^(1/2) 9567219973840008 a001 139583862445/5778*599074578^(11/21) 9567219973840008 a001 53316291173/5778*599074578^(4/7) 9567219973840008 a001 10182505537/2889*599074578^(13/21) 9567219973840008 a001 233802911/1926*599074578^(11/14) 9567219973840008 a001 12586269025/5778*599074578^(9/14) 9567219973840008 a001 7778742049/5778*599074578^(2/3) 9567219973840008 a001 2971215073/5778*599074578^(5/7) 9567219973840008 a001 567451585/2889*599074578^(16/21) 9567219973840008 a001 433494437/5778*599074578^(17/21) 9567219973840008 a001 3278735159921/2889*228826127^(7/20) 9567219973840008 a001 4052739537881/5778*228826127^(3/8) 9567219973840008 a001 165580141/5778*2537720636^(4/5) 9567219973840008 a001 165580141/5778*45537549124^(12/17) 9567219973840008 a001 165580141/5778*14662949395604^(4/7) 9567219973840008 a001 165580141/5778*505019158607^(9/14) 9567219973840008 a001 165580141/5778*192900153618^(2/3) 9567219973840008 a001 165580141/5778*73681302247^(9/13) 9567219973840008 a001 165580141/5778*10749957122^(3/4) 9567219973840008 a001 165580141/5778*4106118243^(18/23) 9567219973840008 a001 165580141/5778*1568397607^(9/11) 9567219973840008 a001 2504730781961/5778*228826127^(2/5) 9567219973840008 a001 956722026041/5778*228826127^(9/20) 9567219973840008 a001 182717648081/2889*228826127^(1/2) 9567219973840008 a001 165580141/5778*599074578^(6/7) 9567219973840008 a001 139583862445/5778*228826127^(11/20) 9567219973840008 a001 53316291173/5778*228826127^(3/5) 9567219973840008 a001 10983760033/1926*228826127^(5/8) 9567219973840008 a001 10182505537/2889*228826127^(13/20) 9567219973840008 a001 7778742049/5778*228826127^(7/10) 9567219973840008 a001 133957148/2889*228826127^(7/8) 9567219973840008 a001 2971215073/5778*228826127^(3/4) 9567219973840008 a001 567451585/2889*228826127^(4/5) 9567219973840008 a001 433494437/5778*228826127^(17/20) 9567219973840008 a001 165580141/5778*228826127^(9/10) 9567219973840009 a001 3278735159921/2889*87403803^(7/19) 9567219973840009 a001 31622993/2889*817138163596^(2/3) 9567219973840009 a001 31622993/2889*10749957122^(19/24) 9567219973840009 a001 31622993/2889*4106118243^(19/23) 9567219973840009 a001 31622993/2889*1568397607^(19/22) 9567219973840009 a001 31622993/2889*599074578^(19/21) 9567219973840009 a001 2504730781961/5778*87403803^(8/19) 9567219973840009 a001 956722026041/5778*87403803^(9/19) 9567219973840009 a001 591286729879/5778*87403803^(1/2) 9567219973840009 a001 31622993/2889*228826127^(19/20) 9567219973840009 a001 182717648081/2889*87403803^(10/19) 9567219973840009 a001 139583862445/5778*87403803^(11/19) 9567219973840009 a001 53316291173/5778*87403803^(12/19) 9567219973840009 a001 10182505537/2889*87403803^(13/19) 9567219973840009 a001 7778742049/5778*87403803^(14/19) 9567219973840009 a001 2971215073/5778*87403803^(15/19) 9567219973840009 a001 567451585/2889*87403803^(16/19) 9567219973840009 a001 433494437/5778*87403803^(17/19) 9567219973840009 a001 165580141/5778*87403803^(18/19) 9567219973840011 a001 24157817/5778*2537720636^(8/9) 9567219973840011 a001 24157817/5778*312119004989^(8/11) 9567219973840011 a001 24157817/5778*23725150497407^(5/8) 9567219973840011 a001 24157817/5778*73681302247^(10/13) 9567219973840011 a001 24157817/5778*28143753123^(4/5) 9567219973840011 a001 24157817/5778*10749957122^(5/6) 9567219973840011 a001 24157817/5778*4106118243^(20/23) 9567219973840011 a001 24157817/5778*1568397607^(10/11) 9567219973840011 a001 24157817/5778*599074578^(20/21) 9567219973840011 a001 3278735159921/2889*33385282^(7/18) 9567219973840012 a001 4052739537881/5778*33385282^(5/12) 9567219973840012 a001 2504730781961/5778*33385282^(4/9) 9567219973840012 a001 956722026041/5778*33385282^(1/2) 9567219973840013 a001 182717648081/2889*33385282^(5/9) 9567219973840013 a001 75283811239/1926*33385282^(7/12) 9567219973840013 a001 139583862445/5778*33385282^(11/18) 9567219973840014 a001 53316291173/5778*33385282^(2/3) 9567219973840014 a001 10182505537/2889*33385282^(13/18) 9567219973840015 a001 12586269025/5778*33385282^(3/4) 9567219973840015 a001 7778742049/5778*33385282^(7/9) 9567219973840015 a001 2971215073/5778*33385282^(5/6) 9567219973840016 a001 567451585/2889*33385282^(8/9) 9567219973840016 a001 233802911/1926*33385282^(11/12) 9567219973840016 a001 433494437/5778*33385282^(17/18) 9567219973840031 a001 9227465/5778*2537720636^(14/15) 9567219973840031 a001 9227465/5778*17393796001^(6/7) 9567219973840031 a001 9227465/5778*45537549124^(14/17) 9567219973840031 a001 9227465/5778*817138163596^(14/19) 9567219973840031 a001 9227465/5778*14662949395604^(2/3) 9567219973840031 a001 9227465/5778*505019158607^(3/4) 9567219973840031 a001 9227465/5778*192900153618^(7/9) 9567219973840031 a001 9227465/5778*10749957122^(7/8) 9567219973840031 a001 9227465/5778*4106118243^(21/23) 9567219973840031 a001 9227465/5778*1568397607^(21/22) 9567219973840032 a001 3278735159921/2889*12752043^(7/17) 9567219973840036 a001 2504730781961/5778*12752043^(8/17) 9567219973840038 a001 86000486440/321*12752043^(1/2) 9567219973840039 a001 956722026041/5778*12752043^(9/17) 9567219973840043 a001 182717648081/2889*12752043^(10/17) 9567219973840046 a001 139583862445/5778*12752043^(11/17) 9567219973840050 a001 53316291173/5778*12752043^(12/17) 9567219973840053 a001 10182505537/2889*12752043^(13/17) 9567219973840057 a001 7778742049/5778*12752043^(14/17) 9567219973840060 a001 2971215073/5778*12752043^(15/17) 9567219973840064 a001 567451585/2889*12752043^(16/17) 9567219973840162 a001 1762289/2889*312119004989^(4/5) 9567219973840162 a001 1762289/2889*23725150497407^(11/16) 9567219973840162 a001 1762289/2889*73681302247^(11/13) 9567219973840162 a001 1762289/2889*10749957122^(11/12) 9567219973840162 a001 1762289/2889*4106118243^(22/23) 9567219973840185 a001 3278735159921/2889*4870847^(7/16) 9567219973840210 a001 2504730781961/5778*4870847^(1/2) 9567219973840235 a001 956722026041/5778*4870847^(9/16) 9567219973840260 a001 182717648081/2889*4870847^(5/8) 9567219973840285 a001 139583862445/5778*4870847^(11/16) 9567219973840311 a001 53316291173/5778*4870847^(3/4) 9567219973840336 a001 10182505537/2889*4870847^(13/16) 9567219973840361 a001 7778742049/5778*4870847^(7/8) 9567219973840386 a001 2971215073/5778*4870847^(15/16) 9567219973841064 a001 1346269/5778*10749957122^(23/24) 9567219973841298 a001 3278735159921/2889*1860498^(7/15) 9567219973841390 a001 4052739537881/5778*1860498^(1/2) 9567219973841482 a001 2504730781961/5778*1860498^(8/15) 9567219973841667 a001 956722026041/5778*1860498^(3/5) 9567219973841851 a001 182717648081/2889*1860498^(2/3) 9567219973841943 a001 75283811239/1926*1860498^(7/10) 9567219973842035 a001 139583862445/5778*1860498^(11/15) 9567219973842219 a001 53316291173/5778*1860498^(4/5) 9567219973842311 a001 10983760033/1926*1860498^(5/6) 9567219973842404 a001 10182505537/2889*1860498^(13/15) 9567219973842496 a001 12586269025/5778*1860498^(9/10) 9567219973842588 a001 7778742049/5778*1860498^(14/15) 9567219973847244 a001 514229/5778*45537549124^(16/17) 9567219973847244 a001 514229/5778*14662949395604^(16/21) 9567219973847244 a001 514229/5778*192900153618^(8/9) 9567219973847244 a001 514229/5778*73681302247^(12/13) 9567219973849480 a001 3278735159921/2889*710647^(1/2) 9567219973850833 a001 2504730781961/5778*710647^(4/7) 9567219973852187 a001 956722026041/5778*710647^(9/14) 9567219973853540 a001 182717648081/2889*710647^(5/7) 9567219973854216 a001 75283811239/1926*710647^(3/4) 9567219973854893 a001 139583862445/5778*710647^(11/14) 9567219973856246 a001 53316291173/5778*710647^(6/7) 9567219973857599 a001 10182505537/2889*710647^(13/14) 9567219973889605 a001 98209/2889*312119004989^(10/11) 9567219973889605 a001 98209/2889*3461452808002^(5/6) 9567219973904931 a001 3536736619241/1926*271443^(1/2) 9567219973909925 a001 3278735159921/2889*271443^(7/13) 9567219973919913 a001 2504730781961/5778*271443^(8/13) 9567219973929902 a001 956722026041/5778*271443^(9/13) 9567219973939890 a001 182717648081/2889*271443^(10/13) 9567219973949878 a001 139583862445/5778*271443^(11/13) 9567219973959866 a001 53316291173/5778*271443^(12/13) 9567219974179949 a001 75025/5778*23725150497407^(13/16) 9567219974179949 a001 75025/5778*505019158607^(13/14) 9567219974322079 a001 3536736619241/1926*103682^(13/24) 9567219974359162 a001 3278735159921/2889*103682^(7/12) 9567219974396244 a001 4052739537881/5778*103682^(5/8) 9567219974433326 a001 2504730781961/5778*103682^(2/3) 9567219974470409 a001 86000486440/321*103682^(17/24) 9567219974507491 a001 956722026041/5778*103682^(3/4) 9567219974544574 a001 591286729879/5778*103682^(19/24) 9567219974581656 a001 182717648081/2889*103682^(5/6) 9567219974618738 a001 75283811239/1926*103682^(7/8) 9567219974655821 a001 139583862445/5778*103682^(11/12) 9567219974692903 a001 43133785636/2889*103682^(23/24) 9567219975863929 p004 log(31079/11939) 9567219976169999 a001 28657/5778*14662949395604^(6/7) 9567219977444552 a001 3536736619241/1926*39603^(13/22) 9567219977721824 a001 3278735159921/2889*39603^(7/11) 9567219977999097 a001 4052739537881/5778*39603^(15/22) 9567219978276369 a001 2504730781961/5778*39603^(8/11) 9567219978553642 a001 86000486440/321*39603^(17/22) 9567219978830914 a001 956722026041/5778*39603^(9/11) 9567219979108187 a001 591286729879/5778*39603^(19/22) 9567219979385460 a001 182717648081/2889*39603^(10/11) 9567219979662732 a001 75283811239/1926*39603^(21/22) 9567219979939996 a001 16944503306471728/17711 9567219989810006 a001 5473/2889*14662949395604^(8/9) 9567220001016507 a001 3536736619241/1926*15127^(13/20) 9567220001100821 r009 Im(z^3+c),c=-17/58+31/32*I,n=5 9567220003107007 a001 3278735159921/2889*15127^(7/10) 9567220005197507 a001 4052739537881/5778*15127^(3/4) 9567220007288007 a001 2504730781961/5778*15127^(4/5) 9567220009378507 a001 86000486440/321*15127^(17/20) 9567220011469007 a001 956722026041/5778*15127^(9/10) 9567220013559507 a001 591286729879/5778*15127^(19/20) 9567220014887528 a001 2504730781961/2207*2207^(7/8) 9567220015649998 a001 6472224340587224/6765 9567220050141291 m001 (gamma(2)+FeigenbaumB)/(MertensB2-ZetaP(3)) 9567220051573152 a001 321/8*233^(32/55) 9567220064616020 m004 2-(Sqrt[5]*E^(Sqrt[5]*Pi))/Pi+100*Sqrt[5]*Pi 9567220072133482 h001 (-2*exp(3)-3)/(-3*exp(5)-6) 9567220083299997 a001 2584/9349*14662949395604^(20/21) 9567220109140002 a001 4000054727631435/4181 9567220114901053 a001 2504730781961/15127*9349^(18/19) 9567220117774748 m001 (ArtinRank2+HeathBrownMoroz)^Champernowne 9567220119590653 a005 (1/cos(12/107*Pi))^871 9567220120662106 a001 4052739537881/15127*9349^(17/19) 9567220126423159 a001 6557470319842/15127*9349^(16/19) 9567220132184211 a001 1515744265389/2161*9349^(15/19) 9567220132875375 a007 Real Root Of 311*x^4-781*x^3-457*x^2+42*x-486 9567220137648763 a001 1548008755920/2207*2207^(15/16) 9567220141470937 a001 1/123*(1/2*5^(1/2)+1/2)^15*199^(16/19) 9567220144850004 a001 4000054742561787/4181 9567220147397230 m001 (CareFree+PlouffeB)/(cos(1)+ln(2)) 9567220150060023 a001 4000054744740096/4181 9567220150611056 a001 6557470319842/39603*9349^(18/19) 9567220150820155 a001 4000054745057907/4181 9567220150931057 a001 4000054745104275/4181 9567220150947237 a001 4000054745111040/4181 9567220150949598 a001 4000054745112027/4181 9567220150949942 a001 4000054745112171/4181 9567220150949992 a001 4000054745112192/4181 9567220150950002 a001 4000054745112196/4181 9567220150950004 a001 4000054745112197/4181 9567220150950023 a001 4000054745112205/4181 9567220150950155 a001 4000054745112260/4181 9567220150951057 a001 4000054745112637/4181 9567220150957237 a001 4000054745115221/4181 9567220150999598 a001 4000054745132932/4181 9567220151289942 a001 4000054745254325/4181 9567220153030795 r005 Re(z^2+c),c=-13/14+22/139*I,n=49 9567220153279992 a001 4000054746086365/4181 9567220156372108 a001 3536736619241/13201*9349^(17/19) 9567220159041044 a001 10610209857723/64079*9349^(18/19) 9567220165396459 r005 Re(z^2+c),c=3/50+15/31*I,n=43 9567220172681051 a001 4052739537881/24476*9349^(18/19) 9567220174413362 a007 Real Root Of 57*x^4+245*x^3+984*x^2+49*x-687 9567220178442103 a001 3278735159921/12238*9349^(17/19) 9567220180807223 a001 3536736619241/1926*5778^(13/18) 9567220184203156 a001 10610209857723/24476*9349^(16/19) 9567220196727778 a001 3278735159921/2889*5778^(7/9) 9567220202599880 r005 Re(z^2+c),c=-19/20+1/12*I,n=7 9567220202630001 a001 5236139616899400/5473 9567220203390478 a001 956722026041/15127*24476^(20/21) 9567220204150954 a001 1548008755920/15127*24476^(19/21) 9567220204911430 a001 2504730781961/15127*24476^(6/7) 9567220205671906 a001 4052739537881/15127*24476^(17/21) 9567220206432382 a001 6557470319842/15127*24476^(16/21) 9567220207192858 a001 1515744265389/2161*24476^(5/7) 9567220212500003 a001 17711/15127*14662949395604^(19/21) 9567220212648334 a001 4052739537881/5778*5778^(5/6) 9567220214271165 a007 Real Root Of -490*x^4+944*x^3+622*x^2-396*x+289 9567220216270009 a001 27416782973764965/28657 9567220216371313 a001 365435296162/15127*64079^(22/23) 9567220216472617 a001 591286729879/15127*64079^(21/23) 9567220216573921 a001 956722026041/15127*64079^(20/23) 9567220216675225 a001 1548008755920/15127*64079^(19/23) 9567220216776529 a001 2504730781961/15127*64079^(18/23) 9567220216877833 a001 4052739537881/15127*64079^(17/23) 9567220216979137 a001 6557470319842/15127*64079^(16/23) 9567220217080441 a001 1515744265389/2161*64079^(15/23) 9567220217710023 a001 6624/2161*3461452808002^(11/12) 9567220218260059 a001 14355613937499219/15005 9567220218328047 a001 956722026041/15127*167761^(4/5) 9567220218396035 a001 1515744265389/2161*167761^(3/5) 9567220218555914 a001 139583862445/15127*439204^(8/9) 9567220218561425 a001 591286729879/15127*439204^(7/9) 9567220218566936 a001 2504730781961/15127*439204^(2/3) 9567220218572446 a001 1515744265389/2161*439204^(5/9) 9567220218581056 a001 317811/15127*817138163596^(17/19) 9567220218581056 a001 317811/15127*14662949395604^(17/21) 9567220218581056 a001 317811/15127*192900153618^(17/18) 9567220218597236 a001 832040/15127*14662949395604^(7/9) 9567220218597236 a001 832040/15127*505019158607^(7/8) 9567220218599860 a001 7778742049/15127*7881196^(10/11) 9567220218599874 a001 32951280099/15127*7881196^(9/11) 9567220218599888 a001 139583862445/15127*7881196^(8/11) 9567220218599897 a001 365435296162/15127*7881196^(2/3) 9567220218599902 a001 591286729879/15127*7881196^(7/11) 9567220218599916 a001 2504730781961/15127*7881196^(6/11) 9567220218599930 a001 1515744265389/2161*7881196^(5/11) 9567220218599941 a001 5702887/15127*45537549124^(15/17) 9567220218599941 a001 5702887/15127*312119004989^(9/11) 9567220218599941 a001 5702887/15127*14662949395604^(5/7) 9567220218599941 a001 5702887/15127*192900153618^(5/6) 9567220218599941 a001 5702887/15127*28143753123^(9/10) 9567220218599941 a001 5702887/15127*10749957122^(15/16) 9567220218599981 a001 7778742049/15127*20633239^(6/7) 9567220218599982 a001 20365011074/15127*20633239^(4/5) 9567220218599984 a001 86267571272/15127*20633239^(5/7) 9567220218599987 a001 591286729879/15127*20633239^(3/5) 9567220218599987 a001 956722026041/15127*20633239^(4/7) 9567220218599991 a001 1515744265389/2161*20633239^(3/7) 9567220218600000 a001 433494437/15127*141422324^(12/13) 9567220218600000 a001 1836311903/15127*141422324^(11/13) 9567220218600000 a001 7778742049/15127*141422324^(10/13) 9567220218600000 a001 32951280099/15127*141422324^(9/13) 9567220218600000 a001 53316291173/15127*141422324^(2/3) 9567220218600000 a001 139583862445/15127*141422324^(8/13) 9567220218600000 a001 591286729879/15127*141422324^(7/13) 9567220218600000 a001 2504730781961/15127*141422324^(6/13) 9567220218600000 a001 6765*2537720636^(13/15) 9567220218600000 a001 1515744265389/2161*141422324^(5/13) 9567220218600000 a001 6765*45537549124^(13/17) 9567220218600000 a001 6765*14662949395604^(13/21) 9567220218600000 a001 6765*192900153618^(13/18) 9567220218600000 a001 6765*73681302247^(3/4) 9567220218600000 a001 6765*10749957122^(13/16) 9567220218600000 a001 6765*599074578^(13/14) 9567220218600000 a001 701408733/15127*2537720636^(7/9) 9567220218600000 a001 701408733/15127*17393796001^(5/7) 9567220218600000 a001 701408733/15127*312119004989^(7/11) 9567220218600000 a001 701408733/15127*14662949395604^(5/9) 9567220218600000 a001 701408733/15127*505019158607^(5/8) 9567220218600000 a001 701408733/15127*28143753123^(7/10) 9567220218600000 a001 1836311903/15127*2537720636^(11/15) 9567220218600000 a001 7778742049/15127*2537720636^(2/3) 9567220218600000 a001 32951280099/15127*2537720636^(3/5) 9567220218600000 a001 86267571272/15127*2537720636^(5/9) 9567220218600000 a001 139583862445/15127*2537720636^(8/15) 9567220218600000 a001 591286729879/15127*2537720636^(7/15) 9567220218600000 a001 956722026041/15127*2537720636^(4/9) 9567220218600000 a001 2504730781961/15127*2537720636^(2/5) 9567220218600000 a001 1836311903/15127*45537549124^(11/17) 9567220218600000 a001 1836311903/15127*312119004989^(3/5) 9567220218600000 a001 1836311903/15127*817138163596^(11/19) 9567220218600000 a001 1836311903/15127*14662949395604^(11/21) 9567220218600000 a001 1836311903/15127*192900153618^(11/18) 9567220218600000 a001 1836311903/15127*10749957122^(11/16) 9567220218600000 a001 1515744265389/2161*2537720636^(1/3) 9567220218600000 a001 686789568/2161*9062201101803^(1/2) 9567220218600000 a001 591286729879/15127*17393796001^(3/7) 9567220218600000 a001 20365011074/15127*17393796001^(4/7) 9567220218600000 a001 12586269025/15127*1322157322203^(1/2) 9567220218600000 a001 32951280099/15127*45537549124^(9/17) 9567220218600000 a001 139583862445/15127*45537549124^(8/17) 9567220218600000 a001 591286729879/15127*45537549124^(7/17) 9567220218600000 a001 32951280099/15127*817138163596^(9/19) 9567220218600000 a001 32951280099/15127*14662949395604^(3/7) 9567220218600000 a001 32951280099/15127*192900153618^(1/2) 9567220218600000 a001 2504730781961/15127*45537549124^(6/17) 9567220218600000 a001 4052739537881/15127*45537549124^(1/3) 9567220218600000 a001 1515744265389/2161*45537549124^(5/17) 9567220218600000 a001 86267571272/15127*312119004989^(5/11) 9567220218600000 a001 86267571272/15127*3461452808002^(5/12) 9567220218600000 a001 1515744265389/2161*312119004989^(3/11) 9567220218600000 a001 365435296162/15127*312119004989^(2/5) 9567220218600000 a001 1548008755920/15127*817138163596^(1/3) 9567220218600000 a001 591286729879/15127*14662949395604^(1/3) 9567220218600000 a001 1515744265389/2161*14662949395604^(5/21) 9567220218600000 a001 6557470319842/15127*23725150497407^(1/4) 9567220218600000 a001 956722026041/15127*23725150497407^(5/16) 9567220218600000 a001 956722026041/15127*505019158607^(5/14) 9567220218600000 a001 1515744265389/2161*192900153618^(5/18) 9567220218600000 a001 2504730781961/15127*192900153618^(1/3) 9567220218600000 a001 591286729879/15127*192900153618^(7/18) 9567220218600000 a001 139583862445/15127*14662949395604^(8/21) 9567220218600000 a001 139583862445/15127*192900153618^(4/9) 9567220218600000 a001 6557470319842/15127*73681302247^(4/13) 9567220218600000 a001 956722026041/15127*73681302247^(5/13) 9567220218600000 a001 139583862445/15127*73681302247^(6/13) 9567220218600000 a001 53316291173/15127*73681302247^(1/2) 9567220218600000 a001 1515744265389/2161*28143753123^(3/10) 9567220218600000 a001 20365011074/15127*14662949395604^(4/9) 9567220218600000 a001 20365011074/15127*505019158607^(1/2) 9567220218600000 a001 956722026041/15127*28143753123^(2/5) 9567220218600000 a001 20365011074/15127*73681302247^(7/13) 9567220218600000 a001 86267571272/15127*28143753123^(1/2) 9567220218600000 a001 1515744265389/2161*10749957122^(5/16) 9567220218600000 a001 6557470319842/15127*10749957122^(1/3) 9567220218600000 a001 7778742049/15127*45537549124^(10/17) 9567220218600000 a001 2504730781961/15127*10749957122^(3/8) 9567220218600000 a001 7778742049/15127*312119004989^(6/11) 9567220218600000 a001 7778742049/15127*14662949395604^(10/21) 9567220218600000 a001 7778742049/15127*192900153618^(5/9) 9567220218600000 a001 956722026041/15127*10749957122^(5/12) 9567220218600000 a001 591286729879/15127*10749957122^(7/16) 9567220218600000 a001 365435296162/15127*10749957122^(11/24) 9567220218600000 a001 7778742049/15127*28143753123^(3/5) 9567220218600000 a001 139583862445/15127*10749957122^(1/2) 9567220218600000 a001 32951280099/15127*10749957122^(9/16) 9567220218600000 a001 53316291173/15127*10749957122^(13/24) 9567220218600000 a001 20365011074/15127*10749957122^(7/12) 9567220218600000 a001 7778742049/15127*10749957122^(5/8) 9567220218600000 a001 6557470319842/15127*4106118243^(8/23) 9567220218600000 a001 2971215073/15127*23725150497407^(1/2) 9567220218600000 a001 2971215073/15127*505019158607^(4/7) 9567220218600000 a001 2971215073/15127*73681302247^(8/13) 9567220218600000 a001 2504730781961/15127*4106118243^(9/23) 9567220218600000 a001 956722026041/15127*4106118243^(10/23) 9567220218600000 a001 365435296162/15127*4106118243^(11/23) 9567220218600000 a001 2971215073/15127*10749957122^(2/3) 9567220218600000 a001 32264490531/2161*4106118243^(1/2) 9567220218600000 a001 139583862445/15127*4106118243^(12/23) 9567220218600000 a001 53316291173/15127*4106118243^(13/23) 9567220218600000 a001 20365011074/15127*4106118243^(14/23) 9567220218600000 a001 7778742049/15127*4106118243^(15/23) 9567220218600000 a001 2971215073/15127*4106118243^(16/23) 9567220218600000 a001 6557470319842/15127*1568397607^(4/11) 9567220218600000 a001 1134903170/15127*45537549124^(2/3) 9567220218600000 a001 1134903170/15127*10749957122^(17/24) 9567220218600000 a001 2504730781961/15127*1568397607^(9/22) 9567220218600000 a001 956722026041/15127*1568397607^(5/11) 9567220218600000 a001 1134903170/15127*4106118243^(17/23) 9567220218600000 a001 365435296162/15127*1568397607^(1/2) 9567220218600000 a001 139583862445/15127*1568397607^(6/11) 9567220218600000 a001 53316291173/15127*1568397607^(13/22) 9567220218600000 a001 1836311903/15127*1568397607^(3/4) 9567220218600000 a001 20365011074/15127*1568397607^(7/11) 9567220218600000 a001 7778742049/15127*1568397607^(15/22) 9567220218600000 a001 2971215073/15127*1568397607^(8/11) 9567220218600000 a001 1134903170/15127*1568397607^(17/22) 9567220218600000 a001 433494437/15127*2537720636^(4/5) 9567220218600000 a001 1515744265389/2161*599074578^(5/14) 9567220218600000 a001 6557470319842/15127*599074578^(8/21) 9567220218600000 a001 433494437/15127*45537549124^(12/17) 9567220218600000 a001 433494437/15127*14662949395604^(4/7) 9567220218600000 a001 433494437/15127*505019158607^(9/14) 9567220218600000 a001 433494437/15127*192900153618^(2/3) 9567220218600000 a001 433494437/15127*73681302247^(9/13) 9567220218600000 a001 433494437/15127*10749957122^(3/4) 9567220218600000 a001 433494437/15127*4106118243^(18/23) 9567220218600000 a001 2504730781961/15127*599074578^(3/7) 9567220218600000 a001 956722026041/15127*599074578^(10/21) 9567220218600000 a001 591286729879/15127*599074578^(1/2) 9567220218600000 a001 433494437/15127*1568397607^(9/11) 9567220218600000 a001 365435296162/15127*599074578^(11/21) 9567220218600000 a001 139583862445/15127*599074578^(4/7) 9567220218600000 a001 53316291173/15127*599074578^(13/21) 9567220218600000 a001 32951280099/15127*599074578^(9/14) 9567220218600000 a001 20365011074/15127*599074578^(2/3) 9567220218600000 a001 701408733/15127*599074578^(5/6) 9567220218600000 a001 7778742049/15127*599074578^(5/7) 9567220218600000 a001 1836311903/15127*599074578^(11/14) 9567220218600000 a001 2971215073/15127*599074578^(16/21) 9567220218600000 a001 1134903170/15127*599074578^(17/21) 9567220218600000 a001 433494437/15127*599074578^(6/7) 9567220218600000 a001 1515744265389/2161*228826127^(3/8) 9567220218600000 a001 165580141/15127*817138163596^(2/3) 9567220218600000 a001 165580141/15127*10749957122^(19/24) 9567220218600000 a001 165580141/15127*4106118243^(19/23) 9567220218600000 a001 6557470319842/15127*228826127^(2/5) 9567220218600000 a001 165580141/15127*1568397607^(19/22) 9567220218600000 a001 2504730781961/15127*228826127^(9/20) 9567220218600000 a001 956722026041/15127*228826127^(1/2) 9567220218600000 a001 165580141/15127*599074578^(19/21) 9567220218600000 a001 365435296162/15127*228826127^(11/20) 9567220218600000 a001 139583862445/15127*228826127^(3/5) 9567220218600000 a001 86267571272/15127*228826127^(5/8) 9567220218600000 a001 53316291173/15127*228826127^(13/20) 9567220218600000 a001 20365011074/15127*228826127^(7/10) 9567220218600000 a001 7778742049/15127*228826127^(3/4) 9567220218600000 a001 2971215073/15127*228826127^(4/5) 9567220218600000 a001 701408733/15127*228826127^(7/8) 9567220218600000 a001 1134903170/15127*228826127^(17/20) 9567220218600000 a001 433494437/15127*228826127^(9/10) 9567220218600000 a001 165580141/15127*228826127^(19/20) 9567220218600001 a001 63245986/15127*2537720636^(8/9) 9567220218600001 a001 63245986/15127*312119004989^(8/11) 9567220218600001 a001 63245986/15127*23725150497407^(5/8) 9567220218600001 a001 63245986/15127*73681302247^(10/13) 9567220218600001 a001 63245986/15127*28143753123^(4/5) 9567220218600001 a001 63245986/15127*10749957122^(5/6) 9567220218600001 a001 63245986/15127*4106118243^(20/23) 9567220218600001 a001 63245986/15127*1568397607^(10/11) 9567220218600001 a001 63245986/15127*599074578^(20/21) 9567220218600001 a001 6557470319842/15127*87403803^(8/19) 9567220218600001 a001 2504730781961/15127*87403803^(9/19) 9567220218600001 a001 1548008755920/15127*87403803^(1/2) 9567220218600001 a001 956722026041/15127*87403803^(10/19) 9567220218600001 a001 365435296162/15127*87403803^(11/19) 9567220218600001 a001 139583862445/15127*87403803^(12/19) 9567220218600001 a001 53316291173/15127*87403803^(13/19) 9567220218600001 a001 20365011074/15127*87403803^(14/19) 9567220218600001 a001 7778742049/15127*87403803^(15/19) 9567220218600001 a001 2971215073/15127*87403803^(16/19) 9567220218600001 a001 1134903170/15127*87403803^(17/19) 9567220218600001 a001 433494437/15127*87403803^(18/19) 9567220218600003 a001 24157817/15127*2537720636^(14/15) 9567220218600003 a001 24157817/15127*17393796001^(6/7) 9567220218600003 a001 24157817/15127*45537549124^(14/17) 9567220218600003 a001 24157817/15127*817138163596^(14/19) 9567220218600003 a001 24157817/15127*14662949395604^(2/3) 9567220218600003 a001 24157817/15127*505019158607^(3/4) 9567220218600003 a001 24157817/15127*192900153618^(7/9) 9567220218600003 a001 24157817/15127*10749957122^(7/8) 9567220218600003 a001 24157817/15127*4106118243^(21/23) 9567220218600003 a001 24157817/15127*1568397607^(21/22) 9567220218600004 a001 1515744265389/2161*33385282^(5/12) 9567220218600004 a001 6557470319842/15127*33385282^(4/9) 9567220218600004 a001 2504730781961/15127*33385282^(1/2) 9567220218600005 a001 956722026041/15127*33385282^(5/9) 9567220218600005 a001 591286729879/15127*33385282^(7/12) 9567220218600005 a001 365435296162/15127*33385282^(11/18) 9567220218600006 a001 139583862445/15127*33385282^(2/3) 9567220218600006 a001 53316291173/15127*33385282^(13/18) 9567220218600007 a001 32951280099/15127*33385282^(3/4) 9567220218600007 a001 20365011074/15127*33385282^(7/9) 9567220218600007 a001 7778742049/15127*33385282^(5/6) 9567220218600008 a001 2971215073/15127*33385282^(8/9) 9567220218600008 a001 1836311903/15127*33385282^(11/12) 9567220218600008 a001 1134903170/15127*33385282^(17/18) 9567220218600023 a001 9227465/15127*312119004989^(4/5) 9567220218600023 a001 9227465/15127*23725150497407^(11/16) 9567220218600023 a001 9227465/15127*73681302247^(11/13) 9567220218600023 a001 9227465/15127*10749957122^(11/12) 9567220218600023 a001 9227465/15127*4106118243^(22/23) 9567220218600028 a001 6557470319842/15127*12752043^(8/17) 9567220218600030 a001 4052739537881/15127*12752043^(1/2) 9567220218600031 a001 2504730781961/15127*12752043^(9/17) 9567220218600035 a001 956722026041/15127*12752043^(10/17) 9567220218600038 a001 365435296162/15127*12752043^(11/17) 9567220218600042 a001 139583862445/15127*12752043^(12/17) 9567220218600045 a001 53316291173/15127*12752043^(13/17) 9567220218600049 a001 20365011074/15127*12752043^(14/17) 9567220218600052 a001 7778742049/15127*12752043^(15/17) 9567220218600056 a001 2971215073/15127*12752043^(16/17) 9567220218600154 a001 3524578/15127*10749957122^(23/24) 9567220218600202 a001 6557470319842/15127*4870847^(1/2) 9567220218600227 a001 2504730781961/15127*4870847^(9/16) 9567220218600252 a001 956722026041/15127*4870847^(5/8) 9567220218600277 a001 365435296162/15127*4870847^(11/16) 9567220218600303 a001 139583862445/15127*4870847^(3/4) 9567220218600328 a001 53316291173/15127*4870847^(13/16) 9567220218600353 a001 20365011074/15127*4870847^(7/8) 9567220218600378 a001 7778742049/15127*4870847^(15/16) 9567220218601056 a001 1346269/15127*45537549124^(16/17) 9567220218601056 a001 1346269/15127*14662949395604^(16/21) 9567220218601056 a001 1346269/15127*192900153618^(8/9) 9567220218601056 a001 1346269/15127*73681302247^(12/13) 9567220218601382 a001 1515744265389/2161*1860498^(1/2) 9567220218601474 a001 6557470319842/15127*1860498^(8/15) 9567220218601659 a001 2504730781961/15127*1860498^(3/5) 9567220218601843 a001 956722026041/15127*1860498^(2/3) 9567220218601935 a001 591286729879/15127*1860498^(7/10) 9567220218602027 a001 365435296162/15127*1860498^(11/15) 9567220218602211 a001 139583862445/15127*1860498^(4/5) 9567220218602303 a001 86267571272/15127*1860498^(5/6) 9567220218602396 a001 53316291173/15127*1860498^(13/15) 9567220218602488 a001 32951280099/15127*1860498^(9/10) 9567220218602580 a001 20365011074/15127*1860498^(14/15) 9567220218607236 a001 514229/15127*312119004989^(10/11) 9567220218607236 a001 514229/15127*3461452808002^(5/6) 9567220218610825 a001 6557470319842/15127*710647^(4/7) 9567220218612179 a001 2504730781961/15127*710647^(9/14) 9567220218613532 a001 956722026041/15127*710647^(5/7) 9567220218614208 a001 591286729879/15127*710647^(3/4) 9567220218614885 a001 365435296162/15127*710647^(11/14) 9567220218616238 a001 139583862445/15127*710647^(6/7) 9567220218617591 a001 53316291173/15127*710647^(13/14) 9567220218649597 a001 196418/15127*23725150497407^(13/16) 9567220218649597 a001 196418/15127*505019158607^(13/14) 9567220218679905 a001 6557470319842/15127*271443^(8/13) 9567220218689894 a001 2504730781961/15127*271443^(9/13) 9567220218699882 a001 956722026041/15127*271443^(10/13) 9567220218709870 a001 365435296162/15127*271443^(11/13) 9567220218719858 a001 139583862445/15127*271443^(12/13) 9567220218939941 a001 75025/15127*14662949395604^(6/7) 9567220219156236 a001 1515744265389/2161*103682^(5/8) 9567220219193319 a001 6557470319842/15127*103682^(2/3) 9567220219230401 a001 4052739537881/15127*103682^(17/24) 9567220219267483 a001 2504730781961/15127*103682^(3/4) 9567220219304566 a001 1548008755920/15127*103682^(19/24) 9567220219341648 a001 956722026041/15127*103682^(5/6) 9567220219378730 a001 591286729879/15127*103682^(7/8) 9567220219415813 a001 365435296162/15127*103682^(11/12) 9567220219452895 a001 32264490531/2161*103682^(23/24) 9567220219489978 a001 7393547785621855/7728 9567220220929992 a001 28657/15127*14662949395604^(8/9) 9567220222759089 a001 1515744265389/2161*39603^(15/22) 9567220223036361 a001 6557470319842/15127*39603^(8/11) 9567220223313634 a001 4052739537881/15127*39603^(17/22) 9567220223590907 a001 2504730781961/15127*39603^(9/11) 9567220223868179 a001 1548008755920/15127*39603^(19/22) 9567220224145452 a001 956722026041/15127*39603^(10/11) 9567220224422724 a001 591286729879/15127*39603^(21/22) 9567220224699997 a001 16944503739966165/17711 9567220228568889 a001 2504730781961/5778*5778^(8/9) 9567220232307805 r002 19i'th iterates of 2*x/(1-x^2) of 9567220234569999 a001 6765/24476*14662949395604^(20/21) 9567220238084627 p003 LerchPhi(1/32,1,13/124) 9567220238340004 a001 10472279272886969/10946 9567220239099779 l006 ln(7281/8012) 9567220239100480 a001 2504730781961/39603*24476^(20/21) 9567220239860956 a001 4052739537881/39603*24476^(19/21) 9567220240621432 a001 6557470319842/39603*24476^(6/7) 9567220241018893 a003 cos(Pi*17/81)+cos(Pi*21/47) 9567220241381909 a001 3536736619241/13201*24476^(17/21) 9567220243550023 a001 402779972253456/421 9567220244310155 a001 5236139639710948/5473 9567220244310499 a001 3278735159921/51841*24476^(20/21) 9567220244421057 a001 805559944580253/842 9567220244437237 a001 5236139639780500/5473 9567220244439598 a001 5236139639781792/5473 9567220244439942 a001 10472279279563961/10946 9567220244439992 a001 5236139639782008/5473 9567220244440000 a001 10472279279564025/10946 9567220244440001 a001 5236139639782013/5473 9567220244440004 a001 10472279279564029/10946 9567220244440023 a001 402779972290925/421 9567220244440155 a001 5236139639782097/5473 9567220244441057 a001 805559944581937/842 9567220244447237 a001 5236139639785973/5473 9567220244489444 a001 86000486440/321*5778^(17/18) 9567220244489598 a001 5236139639809157/5473 9567220244779942 a001 10472279279936125/10946 9567220245070975 a001 225749145909/2206*24476^(19/21) 9567220245540418 a001 10610209857723/167761*24476^(20/21) 9567220246769992 a001 5236139641057217/5473 9567220247530468 a001 4052739537881/64079*24476^(20/21) 9567220248290944 a001 6557470319842/64079*24476^(19/21) 9567220249051421 a001 10610209857723/64079*24476^(6/7) 9567220249453050 m001 Pi/exp(Pi)/(2^(1/3)-2/3*Pi*3^(1/2)/GAMMA(2/3)) 9567220249957500 a001 1515744265389/2161*15127^(3/4) 9567220251980011 a001 27416783076099120/28657 9567220252048000 a001 6557470319842/15127*15127^(4/5) 9567220252081315 a001 956722026041/39603*64079^(22/23) 9567220252182619 a001 516002918640/13201*64079^(21/23) 9567220252283923 a001 2504730781961/39603*64079^(20/23) 9567220252385227 a001 4052739537881/39603*64079^(19/23) 9567220252486531 a001 6557470319842/39603*64079^(18/23) 9567220252587835 a001 3536736619241/13201*64079^(17/23) 9567220253420025 a001 15456/13201*14662949395604^(19/21) 9567220253970062 a001 71778069955410391/75025 9567220254038050 a001 2504730781961/39603*167761^(4/5) 9567220254138500 a001 4052739537881/15127*15127^(17/20) 9567220254180157 a001 121393/39603*3461452808002^(11/12) 9567220254260406 a001 187917426790132053/196418 9567220254265917 a001 365435296162/39603*439204^(8/9) 9567220254271428 a001 516002918640/13201*439204^(7/9) 9567220254276938 a001 6557470319842/39603*439204^(2/3) 9567220254307239 a001 832040/39603*817138163596^(17/19) 9567220254307239 a001 832040/39603*14662949395604^(17/21) 9567220254307239 a001 832040/39603*192900153618^(17/18) 9567220254309600 a001 726103/13201*14662949395604^(7/9) 9567220254309600 a001 726103/13201*505019158607^(7/8) 9567220254309863 a001 20365011074/39603*7881196^(10/11) 9567220254309877 a001 86267571272/39603*7881196^(9/11) 9567220254309891 a001 365435296162/39603*7881196^(8/11) 9567220254309900 a001 956722026041/39603*7881196^(2/3) 9567220254309905 a001 516002918640/13201*7881196^(7/11) 9567220254309919 a001 6557470319842/39603*7881196^(6/11) 9567220254309984 a001 20365011074/39603*20633239^(6/7) 9567220254309985 a001 53316291173/39603*20633239^(4/5) 9567220254309987 a001 75283811239/13201*20633239^(5/7) 9567220254309989 a001 516002918640/13201*20633239^(3/5) 9567220254309990 a001 2504730781961/39603*20633239^(4/7) 9567220254309994 a001 4976784/13201*45537549124^(15/17) 9567220254309994 a001 4976784/13201*312119004989^(9/11) 9567220254309994 a001 4976784/13201*14662949395604^(5/7) 9567220254309994 a001 4976784/13201*192900153618^(5/6) 9567220254309994 a001 4976784/13201*28143753123^(9/10) 9567220254309994 a001 4976784/13201*10749957122^(15/16) 9567220254310002 a001 1134903170/39603*141422324^(12/13) 9567220254310002 a001 1602508992/13201*141422324^(11/13) 9567220254310002 a001 20365011074/39603*141422324^(10/13) 9567220254310002 a001 86267571272/39603*141422324^(9/13) 9567220254310002 a001 139583862445/39603*141422324^(2/3) 9567220254310002 a001 365435296162/39603*141422324^(8/13) 9567220254310003 a001 516002918640/13201*141422324^(7/13) 9567220254310003 a001 6557470319842/39603*141422324^(6/13) 9567220254310003 a001 267914296/39603*2537720636^(13/15) 9567220254310003 a001 267914296/39603*45537549124^(13/17) 9567220254310003 a001 267914296/39603*14662949395604^(13/21) 9567220254310003 a001 267914296/39603*192900153618^(13/18) 9567220254310003 a001 267914296/39603*73681302247^(3/4) 9567220254310003 a001 267914296/39603*10749957122^(13/16) 9567220254310003 a001 267914296/39603*599074578^(13/14) 9567220254310003 a001 1836311903/39603*2537720636^(7/9) 9567220254310003 a001 1602508992/13201*2537720636^(11/15) 9567220254310003 a001 20365011074/39603*2537720636^(2/3) 9567220254310003 a001 86267571272/39603*2537720636^(3/5) 9567220254310003 a001 75283811239/13201*2537720636^(5/9) 9567220254310003 a001 365435296162/39603*2537720636^(8/15) 9567220254310003 a001 516002918640/13201*2537720636^(7/15) 9567220254310003 a001 2504730781961/39603*2537720636^(4/9) 9567220254310003 a001 6557470319842/39603*2537720636^(2/5) 9567220254310003 a001 1836311903/39603*17393796001^(5/7) 9567220254310003 a001 1836311903/39603*312119004989^(7/11) 9567220254310003 a001 1836311903/39603*14662949395604^(5/9) 9567220254310003 a001 1836311903/39603*505019158607^(5/8) 9567220254310003 a001 1836311903/39603*28143753123^(7/10) 9567220254310003 a001 1602508992/13201*45537549124^(11/17) 9567220254310003 a001 1602508992/13201*312119004989^(3/5) 9567220254310003 a001 1602508992/13201*817138163596^(11/19) 9567220254310003 a001 1602508992/13201*14662949395604^(11/21) 9567220254310003 a001 1602508992/13201*192900153618^(11/18) 9567220254310003 a001 1602508992/13201*10749957122^(11/16) 9567220254310003 a001 53316291173/39603*17393796001^(4/7) 9567220254310003 a001 516002918640/13201*17393796001^(3/7) 9567220254310003 a001 12586269025/39603*9062201101803^(1/2) 9567220254310003 a001 86267571272/39603*45537549124^(9/17) 9567220254310003 a001 365435296162/39603*45537549124^(8/17) 9567220254310003 a001 516002918640/13201*45537549124^(7/17) 9567220254310003 a001 10983760033/13201*1322157322203^(1/2) 9567220254310003 a001 6557470319842/39603*45537549124^(6/17) 9567220254310003 a001 3536736619241/13201*45537549124^(1/3) 9567220254310003 a001 86267571272/39603*817138163596^(9/19) 9567220254310003 a001 86267571272/39603*14662949395604^(3/7) 9567220254310003 a001 86267571272/39603*192900153618^(1/2) 9567220254310003 a001 75283811239/13201*312119004989^(5/11) 9567220254310003 a001 75283811239/13201*3461452808002^(5/12) 9567220254310003 a001 4052739537881/39603*817138163596^(1/3) 9567220254310003 a001 516002918640/13201*14662949395604^(1/3) 9567220254310003 a001 2504730781961/39603*23725150497407^(5/16) 9567220254310003 a001 2504730781961/39603*505019158607^(5/14) 9567220254310003 a001 365435296162/39603*14662949395604^(8/21) 9567220254310003 a001 6557470319842/39603*192900153618^(1/3) 9567220254310003 a001 516002918640/13201*192900153618^(7/18) 9567220254310003 a001 365435296162/39603*192900153618^(4/9) 9567220254310003 a001 53316291173/39603*14662949395604^(4/9) 9567220254310003 a001 2504730781961/39603*73681302247^(5/13) 9567220254310003 a001 53316291173/39603*505019158607^(1/2) 9567220254310003 a001 365435296162/39603*73681302247^(6/13) 9567220254310003 a001 139583862445/39603*73681302247^(1/2) 9567220254310003 a001 53316291173/39603*73681302247^(7/13) 9567220254310003 a001 20365011074/39603*45537549124^(10/17) 9567220254310003 a001 20365011074/39603*312119004989^(6/11) 9567220254310003 a001 20365011074/39603*14662949395604^(10/21) 9567220254310003 a001 20365011074/39603*192900153618^(5/9) 9567220254310003 a001 2504730781961/39603*28143753123^(2/5) 9567220254310003 a001 75283811239/13201*28143753123^(1/2) 9567220254310003 a001 20365011074/39603*28143753123^(3/5) 9567220254310003 a001 6557470319842/39603*10749957122^(3/8) 9567220254310003 a001 7778742049/39603*23725150497407^(1/2) 9567220254310003 a001 7778742049/39603*505019158607^(4/7) 9567220254310003 a001 7778742049/39603*73681302247^(8/13) 9567220254310003 a001 2504730781961/39603*10749957122^(5/12) 9567220254310003 a001 516002918640/13201*10749957122^(7/16) 9567220254310003 a001 956722026041/39603*10749957122^(11/24) 9567220254310003 a001 365435296162/39603*10749957122^(1/2) 9567220254310003 a001 139583862445/39603*10749957122^(13/24) 9567220254310003 a001 86267571272/39603*10749957122^(9/16) 9567220254310003 a001 53316291173/39603*10749957122^(7/12) 9567220254310003 a001 20365011074/39603*10749957122^(5/8) 9567220254310003 a001 7778742049/39603*10749957122^(2/3) 9567220254310003 a001 2971215073/39603*45537549124^(2/3) 9567220254310003 a001 6557470319842/39603*4106118243^(9/23) 9567220254310003 a001 2504730781961/39603*4106118243^(10/23) 9567220254310003 a001 956722026041/39603*4106118243^(11/23) 9567220254310003 a001 2971215073/39603*10749957122^(17/24) 9567220254310003 a001 591286729879/39603*4106118243^(1/2) 9567220254310003 a001 365435296162/39603*4106118243^(12/23) 9567220254310003 a001 1134903170/39603*2537720636^(4/5) 9567220254310003 a001 139583862445/39603*4106118243^(13/23) 9567220254310003 a001 53316291173/39603*4106118243^(14/23) 9567220254310003 a001 20365011074/39603*4106118243^(15/23) 9567220254310003 a001 7778742049/39603*4106118243^(16/23) 9567220254310003 a001 2971215073/39603*4106118243^(17/23) 9567220254310003 a001 1134903170/39603*45537549124^(12/17) 9567220254310003 a001 1134903170/39603*14662949395604^(4/7) 9567220254310003 a001 1134903170/39603*505019158607^(9/14) 9567220254310003 a001 1134903170/39603*192900153618^(2/3) 9567220254310003 a001 1134903170/39603*73681302247^(9/13) 9567220254310003 a001 1134903170/39603*10749957122^(3/4) 9567220254310003 a001 6557470319842/39603*1568397607^(9/22) 9567220254310003 a001 2504730781961/39603*1568397607^(5/11) 9567220254310003 a001 1134903170/39603*4106118243^(18/23) 9567220254310003 a001 956722026041/39603*1568397607^(1/2) 9567220254310003 a001 365435296162/39603*1568397607^(6/11) 9567220254310003 a001 139583862445/39603*1568397607^(13/22) 9567220254310003 a001 53316291173/39603*1568397607^(7/11) 9567220254310003 a001 20365011074/39603*1568397607^(15/22) 9567220254310003 a001 1602508992/13201*1568397607^(3/4) 9567220254310003 a001 7778742049/39603*1568397607^(8/11) 9567220254310003 a001 2971215073/39603*1568397607^(17/22) 9567220254310003 a001 1134903170/39603*1568397607^(9/11) 9567220254310003 a001 433494437/39603*817138163596^(2/3) 9567220254310003 a001 433494437/39603*10749957122^(19/24) 9567220254310003 a001 433494437/39603*4106118243^(19/23) 9567220254310003 a001 6557470319842/39603*599074578^(3/7) 9567220254310003 a001 2504730781961/39603*599074578^(10/21) 9567220254310003 a001 516002918640/13201*599074578^(1/2) 9567220254310003 a001 433494437/39603*1568397607^(19/22) 9567220254310003 a001 956722026041/39603*599074578^(11/21) 9567220254310003 a001 365435296162/39603*599074578^(4/7) 9567220254310003 a001 139583862445/39603*599074578^(13/21) 9567220254310003 a001 86267571272/39603*599074578^(9/14) 9567220254310003 a001 53316291173/39603*599074578^(2/3) 9567220254310003 a001 20365011074/39603*599074578^(5/7) 9567220254310003 a001 7778742049/39603*599074578^(16/21) 9567220254310003 a001 1602508992/13201*599074578^(11/14) 9567220254310003 a001 1836311903/39603*599074578^(5/6) 9567220254310003 a001 2971215073/39603*599074578^(17/21) 9567220254310003 a001 1134903170/39603*599074578^(6/7) 9567220254310003 a001 433494437/39603*599074578^(19/21) 9567220254310003 a001 165580141/39603*2537720636^(8/9) 9567220254310003 a001 165580141/39603*312119004989^(8/11) 9567220254310003 a001 165580141/39603*23725150497407^(5/8) 9567220254310003 a001 165580141/39603*73681302247^(10/13) 9567220254310003 a001 165580141/39603*28143753123^(4/5) 9567220254310003 a001 165580141/39603*10749957122^(5/6) 9567220254310003 a001 165580141/39603*4106118243^(20/23) 9567220254310003 a001 165580141/39603*1568397607^(10/11) 9567220254310003 a001 6557470319842/39603*228826127^(9/20) 9567220254310003 a001 2504730781961/39603*228826127^(1/2) 9567220254310003 a001 165580141/39603*599074578^(20/21) 9567220254310003 a001 956722026041/39603*228826127^(11/20) 9567220254310003 a001 365435296162/39603*228826127^(3/5) 9567220254310003 a001 75283811239/13201*228826127^(5/8) 9567220254310003 a001 139583862445/39603*228826127^(13/20) 9567220254310003 a001 53316291173/39603*228826127^(7/10) 9567220254310003 a001 20365011074/39603*228826127^(3/4) 9567220254310003 a001 7778742049/39603*228826127^(4/5) 9567220254310003 a001 2971215073/39603*228826127^(17/20) 9567220254310003 a001 1836311903/39603*228826127^(7/8) 9567220254310003 a001 1134903170/39603*228826127^(9/10) 9567220254310003 a001 433494437/39603*228826127^(19/20) 9567220254310003 a001 63245986/39603*2537720636^(14/15) 9567220254310003 a001 63245986/39603*17393796001^(6/7) 9567220254310003 a001 63245986/39603*45537549124^(14/17) 9567220254310003 a001 63245986/39603*817138163596^(14/19) 9567220254310003 a001 63245986/39603*14662949395604^(2/3) 9567220254310003 a001 63245986/39603*505019158607^(3/4) 9567220254310003 a001 63245986/39603*192900153618^(7/9) 9567220254310003 a001 63245986/39603*10749957122^(7/8) 9567220254310003 a001 63245986/39603*4106118243^(21/23) 9567220254310003 a001 63245986/39603*1568397607^(21/22) 9567220254310003 a001 6557470319842/39603*87403803^(9/19) 9567220254310003 a001 4052739537881/39603*87403803^(1/2) 9567220254310003 a001 2504730781961/39603*87403803^(10/19) 9567220254310004 a001 956722026041/39603*87403803^(11/19) 9567220254310004 a001 365435296162/39603*87403803^(12/19) 9567220254310004 a001 139583862445/39603*87403803^(13/19) 9567220254310004 a001 53316291173/39603*87403803^(14/19) 9567220254310004 a001 20365011074/39603*87403803^(15/19) 9567220254310004 a001 7778742049/39603*87403803^(16/19) 9567220254310004 a001 2971215073/39603*87403803^(17/19) 9567220254310004 a001 1134903170/39603*87403803^(18/19) 9567220254310006 a001 24157817/39603*312119004989^(4/5) 9567220254310006 a001 24157817/39603*23725150497407^(11/16) 9567220254310006 a001 24157817/39603*73681302247^(11/13) 9567220254310006 a001 24157817/39603*10749957122^(11/12) 9567220254310006 a001 24157817/39603*4106118243^(22/23) 9567220254310007 a001 6557470319842/39603*33385282^(1/2) 9567220254310008 a001 2504730781961/39603*33385282^(5/9) 9567220254310008 a001 516002918640/13201*33385282^(7/12) 9567220254310008 a001 956722026041/39603*33385282^(11/18) 9567220254310009 a001 365435296162/39603*33385282^(2/3) 9567220254310009 a001 139583862445/39603*33385282^(13/18) 9567220254310009 a001 86267571272/39603*33385282^(3/4) 9567220254310009 a001 53316291173/39603*33385282^(7/9) 9567220254310010 a001 20365011074/39603*33385282^(5/6) 9567220254310010 a001 7778742049/39603*33385282^(8/9) 9567220254310011 a001 1602508992/13201*33385282^(11/12) 9567220254310011 a001 2971215073/39603*33385282^(17/18) 9567220254310025 a001 9227465/39603*10749957122^(23/24) 9567220254310032 a001 3536736619241/13201*12752043^(1/2) 9567220254310034 a001 6557470319842/39603*12752043^(9/17) 9567220254310037 a001 2504730781961/39603*12752043^(10/17) 9567220254310041 a001 956722026041/39603*12752043^(11/17) 9567220254310044 a001 365435296162/39603*12752043^(12/17) 9567220254310048 a001 139583862445/39603*12752043^(13/17) 9567220254310051 a001 53316291173/39603*12752043^(14/17) 9567220254310055 a001 20365011074/39603*12752043^(15/17) 9567220254310058 a001 7778742049/39603*12752043^(16/17) 9567220254310157 a001 3524578/39603*45537549124^(16/17) 9567220254310157 a001 3524578/39603*14662949395604^(16/21) 9567220254310157 a001 3524578/39603*192900153618^(8/9) 9567220254310157 a001 3524578/39603*73681302247^(12/13) 9567220254310230 a001 6557470319842/39603*4870847^(9/16) 9567220254310255 a001 2504730781961/39603*4870847^(5/8) 9567220254310280 a001 956722026041/39603*4870847^(11/16) 9567220254310305 a001 365435296162/39603*4870847^(3/4) 9567220254310330 a001 139583862445/39603*4870847^(13/16) 9567220254310356 a001 53316291173/39603*4870847^(7/8) 9567220254310381 a001 20365011074/39603*4870847^(15/16) 9567220254311059 a001 1346269/39603*312119004989^(10/11) 9567220254311059 a001 1346269/39603*3461452808002^(5/6) 9567220254311661 a001 6557470319842/39603*1860498^(3/5) 9567220254311845 a001 2504730781961/39603*1860498^(2/3) 9567220254311938 a001 516002918640/13201*1860498^(7/10) 9567220254312030 a001 956722026041/39603*1860498^(11/15) 9567220254312214 a001 365435296162/39603*1860498^(4/5) 9567220254312306 a001 75283811239/13201*1860498^(5/6) 9567220254312398 a001 139583862445/39603*1860498^(13/15) 9567220254312490 a001 86267571272/39603*1860498^(9/10) 9567220254312582 a001 53316291173/39603*1860498^(14/15) 9567220254317239 a001 514229/39603*23725150497407^(13/16) 9567220254317239 a001 514229/39603*505019158607^(13/14) 9567220254322181 a001 6557470319842/39603*710647^(9/14) 9567220254323534 a001 2504730781961/39603*710647^(5/7) 9567220254324211 a001 516002918640/13201*710647^(3/4) 9567220254324888 a001 956722026041/39603*710647^(11/14) 9567220254326241 a001 365435296162/39603*710647^(6/7) 9567220254327594 a001 139583862445/39603*710647^(13/14) 9567220254359600 a001 196418/39603*14662949395604^(6/7) 9567220254399896 a001 6557470319842/39603*271443^(9/13) 9567220254409884 a001 2504730781961/39603*271443^(10/13) 9567220254419872 a001 956722026041/39603*271443^(11/13) 9567220254429861 a001 365435296162/39603*271443^(12/13) 9567220254439849 a001 116139356834721662/121393 9567220254649944 a001 75025/39603*14662949395604^(8/9) 9567220254940404 a001 3536736619241/13201*103682^(17/24) 9567220254977486 a001 6557470319842/39603*103682^(3/4) 9567220255014568 a001 4052739537881/39603*103682^(19/24) 9567220255051651 a001 2504730781961/39603*103682^(5/6) 9567220255088733 a001 516002918640/13201*103682^(7/8) 9567220255125816 a001 956722026041/39603*103682^(11/12) 9567220255162898 a001 591286729879/39603*103682^(23/24) 9567220255199980 a001 44361286879311271/46368 9567220256229000 a001 2504730781961/15127*15127^(9/10) 9567220256639994 a001 17711/64079*14662949395604^(20/21) 9567220257190031 a001 27416783091029472/28657 9567220257291335 a001 2504730781961/103682*64079^(22/23) 9567220257392639 a001 4052739537881/103682*64079^(21/23) 9567220257493942 a001 3278735159921/51841*64079^(20/23) 9567220257595246 a001 225749145909/2206*64079^(19/23) 9567220257950162 a001 27416783093207781/28657 9567220258051466 a001 6557470319842/271443*64079^(22/23) 9567220258061064 a001 27416783093525592/28657 9567220258077244 a001 27416783093571960/28657 9567220258079605 a001 27416783093578725/28657 9567220258079949 a001 27416783093579712/28657 9567220258080007 a001 27416783093579877/28657 9567220258080008 a001 27416783093579880/28657 9567220258080008 a001 27416783093579881/28657 9567220258080009 a001 27416783093579882/28657 9567220258080011 a001 27416783093579890/28657 9567220258080031 a001 27416783093579945/28657 9567220258080162 a001 27416783093580322/28657 9567220258081064 a001 27416783093582906/28657 9567220258087244 a001 27416783093600617/28657 9567220258129605 a001 27416783093722010/28657 9567220258152770 a001 3536736619241/90481*64079^(21/23) 9567220258230909 a001 10610209857723/439204*64079^(22/23) 9567220258319500 a001 1548008755920/15127*15127^(19/20) 9567220258419949 a001 27416783094554050/28657 9567220258521253 a001 4052739537881/167761*64079^(22/23) 9567220258622557 a001 6557470319842/167761*64079^(21/23) 9567220258723861 a001 10610209857723/167761*64079^(20/23) 9567220259023637 a001 3536736619241/13201*39603^(17/22) 9567220259180081 a001 14355613998899712/15005 9567220259248069 a001 3278735159921/51841*167761^(4/5) 9567220259300909 a001 6557470319842/39603*39603^(9/11) 9567220259390176 a001 121393/103682*14662949395604^(19/21) 9567220259470425 a001 93958713446233104/98209 9567220259475936 a001 956722026041/103682*439204^(8/9) 9567220259481447 a001 4052739537881/103682*439204^(7/9) 9567220259501078 a001 317811/103682*3461452808002^(11/12) 9567220259512786 a001 491974210682900064/514229 9567220259519619 a001 46347/2206*817138163596^(17/19) 9567220259519619 a001 46347/2206*14662949395604^(17/21) 9567220259519619 a001 46347/2206*192900153618^(17/18) 9567220259519882 a001 53316291173/103682*7881196^(10/11) 9567220259519896 a001 225851433717/103682*7881196^(9/11) 9567220259519910 a001 956722026041/103682*7881196^(8/11) 9567220259519919 a001 2504730781961/103682*7881196^(2/3) 9567220259519924 a001 4052739537881/103682*7881196^(7/11) 9567220259519963 a001 5702887/103682*14662949395604^(7/9) 9567220259519963 a001 5702887/103682*505019158607^(7/8) 9567220259520003 a001 53316291173/103682*20633239^(6/7) 9567220259520004 a001 139583862445/103682*20633239^(4/5) 9567220259520006 a001 591286729879/103682*20633239^(5/7) 9567220259520008 a001 4052739537881/103682*20633239^(3/5) 9567220259520009 a001 3278735159921/51841*20633239^(4/7) 9567220259520021 a001 39088169/103682*45537549124^(15/17) 9567220259520021 a001 39088169/103682*312119004989^(9/11) 9567220259520021 a001 39088169/103682*14662949395604^(5/7) 9567220259520021 a001 39088169/103682*192900153618^(5/6) 9567220259520021 a001 39088169/103682*28143753123^(9/10) 9567220259520021 a001 39088169/103682*10749957122^(15/16) 9567220259520022 a001 2971215073/103682*141422324^(12/13) 9567220259520022 a001 12586269025/103682*141422324^(11/13) 9567220259520022 a001 53316291173/103682*141422324^(10/13) 9567220259520022 a001 225851433717/103682*141422324^(9/13) 9567220259520022 a001 182717648081/51841*141422324^(2/3) 9567220259520022 a001 956722026041/103682*141422324^(8/13) 9567220259520022 a001 4052739537881/103682*141422324^(7/13) 9567220259520022 a001 701408733/103682*2537720636^(13/15) 9567220259520022 a001 701408733/103682*45537549124^(13/17) 9567220259520022 a001 701408733/103682*14662949395604^(13/21) 9567220259520022 a001 701408733/103682*192900153618^(13/18) 9567220259520022 a001 701408733/103682*73681302247^(3/4) 9567220259520022 a001 701408733/103682*10749957122^(13/16) 9567220259520022 a001 46368*2537720636^(7/9) 9567220259520022 a001 12586269025/103682*2537720636^(11/15) 9567220259520022 a001 53316291173/103682*2537720636^(2/3) 9567220259520022 a001 2971215073/103682*2537720636^(4/5) 9567220259520022 a001 225851433717/103682*2537720636^(3/5) 9567220259520022 a001 591286729879/103682*2537720636^(5/9) 9567220259520022 a001 956722026041/103682*2537720636^(8/15) 9567220259520022 a001 4052739537881/103682*2537720636^(7/15) 9567220259520022 a001 3278735159921/51841*2537720636^(4/9) 9567220259520022 a001 46368*17393796001^(5/7) 9567220259520022 a001 46368*312119004989^(7/11) 9567220259520022 a001 46368*14662949395604^(5/9) 9567220259520022 a001 46368*505019158607^(5/8) 9567220259520022 a001 46368*28143753123^(7/10) 9567220259520022 a001 139583862445/103682*17393796001^(4/7) 9567220259520022 a001 12586269025/103682*45537549124^(11/17) 9567220259520022 a001 4052739537881/103682*17393796001^(3/7) 9567220259520022 a001 12586269025/103682*312119004989^(3/5) 9567220259520022 a001 12586269025/103682*817138163596^(11/19) 9567220259520022 a001 12586269025/103682*14662949395604^(11/21) 9567220259520022 a001 12586269025/103682*192900153618^(11/18) 9567220259520022 a001 225851433717/103682*45537549124^(9/17) 9567220259520022 a001 956722026041/103682*45537549124^(8/17) 9567220259520022 a001 53316291173/103682*45537549124^(10/17) 9567220259520022 a001 4052739537881/103682*45537549124^(7/17) 9567220259520022 a001 32951280099/103682*9062201101803^(1/2) 9567220259520022 a001 43133785636/51841*1322157322203^(1/2) 9567220259520022 a001 591286729879/103682*312119004989^(5/11) 9567220259520022 a001 225851433717/103682*817138163596^(9/19) 9567220259520022 a001 225851433717/103682*14662949395604^(3/7) 9567220259520022 a001 225749145909/2206*817138163596^(1/3) 9567220259520022 a001 4052739537881/103682*14662949395604^(1/3) 9567220259520022 a001 3278735159921/51841*23725150497407^(5/16) 9567220259520022 a001 3278735159921/51841*505019158607^(5/14) 9567220259520022 a001 225851433717/103682*192900153618^(1/2) 9567220259520022 a001 139583862445/103682*14662949395604^(4/9) 9567220259520022 a001 4052739537881/103682*192900153618^(7/18) 9567220259520022 a001 956722026041/103682*192900153618^(4/9) 9567220259520022 a001 139583862445/103682*505019158607^(1/2) 9567220259520022 a001 53316291173/103682*312119004989^(6/11) 9567220259520022 a001 53316291173/103682*14662949395604^(10/21) 9567220259520022 a001 3278735159921/51841*73681302247^(5/13) 9567220259520022 a001 956722026041/103682*73681302247^(6/13) 9567220259520022 a001 53316291173/103682*192900153618^(5/9) 9567220259520022 a001 182717648081/51841*73681302247^(1/2) 9567220259520022 a001 139583862445/103682*73681302247^(7/13) 9567220259520022 a001 10182505537/51841*23725150497407^(1/2) 9567220259520022 a001 10182505537/51841*505019158607^(4/7) 9567220259520022 a001 3278735159921/51841*28143753123^(2/5) 9567220259520022 a001 10182505537/51841*73681302247^(8/13) 9567220259520022 a001 591286729879/103682*28143753123^(1/2) 9567220259520022 a001 53316291173/103682*28143753123^(3/5) 9567220259520022 a001 7778742049/103682*45537549124^(2/3) 9567220259520022 a001 3278735159921/51841*10749957122^(5/12) 9567220259520022 a001 4052739537881/103682*10749957122^(7/16) 9567220259520022 a001 2504730781961/103682*10749957122^(11/24) 9567220259520022 a001 956722026041/103682*10749957122^(1/2) 9567220259520022 a001 12586269025/103682*10749957122^(11/16) 9567220259520022 a001 182717648081/51841*10749957122^(13/24) 9567220259520022 a001 225851433717/103682*10749957122^(9/16) 9567220259520022 a001 139583862445/103682*10749957122^(7/12) 9567220259520022 a001 53316291173/103682*10749957122^(5/8) 9567220259520022 a001 10182505537/51841*10749957122^(2/3) 9567220259520022 a001 7778742049/103682*10749957122^(17/24) 9567220259520022 a001 2971215073/103682*45537549124^(12/17) 9567220259520022 a001 2971215073/103682*14662949395604^(4/7) 9567220259520022 a001 2971215073/103682*505019158607^(9/14) 9567220259520022 a001 2971215073/103682*192900153618^(2/3) 9567220259520022 a001 2971215073/103682*73681302247^(9/13) 9567220259520022 a001 3278735159921/51841*4106118243^(10/23) 9567220259520022 a001 2504730781961/103682*4106118243^(11/23) 9567220259520022 a001 2971215073/103682*10749957122^(3/4) 9567220259520022 a001 774004377960/51841*4106118243^(1/2) 9567220259520022 a001 956722026041/103682*4106118243^(12/23) 9567220259520022 a001 182717648081/51841*4106118243^(13/23) 9567220259520022 a001 139583862445/103682*4106118243^(14/23) 9567220259520022 a001 53316291173/103682*4106118243^(15/23) 9567220259520022 a001 10182505537/51841*4106118243^(16/23) 9567220259520022 a001 7778742049/103682*4106118243^(17/23) 9567220259520022 a001 2971215073/103682*4106118243^(18/23) 9567220259520022 a001 567451585/51841*817138163596^(2/3) 9567220259520022 a001 567451585/51841*10749957122^(19/24) 9567220259520022 a001 3278735159921/51841*1568397607^(5/11) 9567220259520022 a001 2504730781961/103682*1568397607^(1/2) 9567220259520022 a001 567451585/51841*4106118243^(19/23) 9567220259520022 a001 956722026041/103682*1568397607^(6/11) 9567220259520022 a001 182717648081/51841*1568397607^(13/22) 9567220259520022 a001 139583862445/103682*1568397607^(7/11) 9567220259520022 a001 53316291173/103682*1568397607^(15/22) 9567220259520022 a001 10182505537/51841*1568397607^(8/11) 9567220259520022 a001 12586269025/103682*1568397607^(3/4) 9567220259520022 a001 7778742049/103682*1568397607^(17/22) 9567220259520022 a001 2971215073/103682*1568397607^(9/11) 9567220259520022 a001 567451585/51841*1568397607^(19/22) 9567220259520022 a001 433494437/103682*2537720636^(8/9) 9567220259520022 a001 433494437/103682*312119004989^(8/11) 9567220259520022 a001 433494437/103682*23725150497407^(5/8) 9567220259520022 a001 433494437/103682*73681302247^(10/13) 9567220259520022 a001 433494437/103682*28143753123^(4/5) 9567220259520022 a001 433494437/103682*10749957122^(5/6) 9567220259520022 a001 433494437/103682*4106118243^(20/23) 9567220259520022 a001 3278735159921/51841*599074578^(10/21) 9567220259520022 a001 4052739537881/103682*599074578^(1/2) 9567220259520022 a001 433494437/103682*1568397607^(10/11) 9567220259520022 a001 2504730781961/103682*599074578^(11/21) 9567220259520022 a001 956722026041/103682*599074578^(4/7) 9567220259520022 a001 182717648081/51841*599074578^(13/21) 9567220259520022 a001 225851433717/103682*599074578^(9/14) 9567220259520022 a001 139583862445/103682*599074578^(2/3) 9567220259520022 a001 53316291173/103682*599074578^(5/7) 9567220259520022 a001 10182505537/51841*599074578^(16/21) 9567220259520022 a001 701408733/103682*599074578^(13/14) 9567220259520022 a001 12586269025/103682*599074578^(11/14) 9567220259520022 a001 7778742049/103682*599074578^(17/21) 9567220259520022 a001 46368*599074578^(5/6) 9567220259520022 a001 2971215073/103682*599074578^(6/7) 9567220259520022 a001 567451585/51841*599074578^(19/21) 9567220259520022 a001 433494437/103682*599074578^(20/21) 9567220259520022 a001 165580141/103682*2537720636^(14/15) 9567220259520022 a001 165580141/103682*17393796001^(6/7) 9567220259520022 a001 165580141/103682*45537549124^(14/17) 9567220259520022 a001 165580141/103682*817138163596^(14/19) 9567220259520022 a001 165580141/103682*14662949395604^(2/3) 9567220259520022 a001 165580141/103682*505019158607^(3/4) 9567220259520022 a001 165580141/103682*192900153618^(7/9) 9567220259520022 a001 165580141/103682*10749957122^(7/8) 9567220259520022 a001 165580141/103682*4106118243^(21/23) 9567220259520022 a001 165580141/103682*1568397607^(21/22) 9567220259520022 a001 3278735159921/51841*228826127^(1/2) 9567220259520022 a001 2504730781961/103682*228826127^(11/20) 9567220259520022 a001 956722026041/103682*228826127^(3/5) 9567220259520022 a001 591286729879/103682*228826127^(5/8) 9567220259520022 a001 182717648081/51841*228826127^(13/20) 9567220259520022 a001 139583862445/103682*228826127^(7/10) 9567220259520022 a001 53316291173/103682*228826127^(3/4) 9567220259520022 a001 10182505537/51841*228826127^(4/5) 9567220259520022 a001 7778742049/103682*228826127^(17/20) 9567220259520022 a001 46368*228826127^(7/8) 9567220259520022 a001 2971215073/103682*228826127^(9/10) 9567220259520022 a001 567451585/51841*228826127^(19/20) 9567220259520022 a001 31622993/51841*312119004989^(4/5) 9567220259520022 a001 31622993/51841*23725150497407^(11/16) 9567220259520022 a001 31622993/51841*73681302247^(11/13) 9567220259520022 a001 31622993/51841*10749957122^(11/12) 9567220259520022 a001 31622993/51841*4106118243^(22/23) 9567220259520023 a001 225749145909/2206*87403803^(1/2) 9567220259520023 a001 3278735159921/51841*87403803^(10/19) 9567220259520023 a001 2504730781961/103682*87403803^(11/19) 9567220259520023 a001 956722026041/103682*87403803^(12/19) 9567220259520023 a001 182717648081/51841*87403803^(13/19) 9567220259520023 a001 139583862445/103682*87403803^(14/19) 9567220259520023 a001 53316291173/103682*87403803^(15/19) 9567220259520023 a001 10182505537/51841*87403803^(16/19) 9567220259520023 a001 7778742049/103682*87403803^(17/19) 9567220259520023 a001 2971215073/103682*87403803^(18/19) 9567220259520025 a001 24157817/103682*10749957122^(23/24) 9567220259520027 a001 3278735159921/51841*33385282^(5/9) 9567220259520027 a001 4052739537881/103682*33385282^(7/12) 9567220259520027 a001 2504730781961/103682*33385282^(11/18) 9567220259520028 a001 956722026041/103682*33385282^(2/3) 9567220259520028 a001 182717648081/51841*33385282^(13/18) 9567220259520028 a001 225851433717/103682*33385282^(3/4) 9567220259520029 a001 139583862445/103682*33385282^(7/9) 9567220259520029 a001 53316291173/103682*33385282^(5/6) 9567220259520030 a001 10182505537/51841*33385282^(8/9) 9567220259520030 a001 12586269025/103682*33385282^(11/12) 9567220259520030 a001 7778742049/103682*33385282^(17/18) 9567220259520044 a001 9227465/103682*45537549124^(16/17) 9567220259520044 a001 9227465/103682*14662949395604^(16/21) 9567220259520044 a001 9227465/103682*192900153618^(8/9) 9567220259520044 a001 9227465/103682*73681302247^(12/13) 9567220259520057 a001 3278735159921/51841*12752043^(10/17) 9567220259520060 a001 2504730781961/103682*12752043^(11/17) 9567220259520064 a001 956722026041/103682*12752043^(12/17) 9567220259520067 a001 182717648081/51841*12752043^(13/17) 9567220259520070 a001 139583862445/103682*12752043^(14/17) 9567220259520074 a001 53316291173/103682*12752043^(15/17) 9567220259520077 a001 10182505537/51841*12752043^(16/17) 9567220259520176 a001 1762289/51841*312119004989^(10/11) 9567220259520176 a001 1762289/51841*3461452808002^(5/6) 9567220259520274 a001 3278735159921/51841*4870847^(5/8) 9567220259520299 a001 2504730781961/103682*4870847^(11/16) 9567220259520324 a001 956722026041/103682*4870847^(3/4) 9567220259520350 a001 182717648081/51841*4870847^(13/16) 9567220259520375 a001 139583862445/103682*4870847^(7/8) 9567220259520400 a001 53316291173/103682*4870847^(15/16) 9567220259521078 a001 1346269/103682*23725150497407^(13/16) 9567220259521078 a001 1346269/103682*505019158607^(13/14) 9567220259521865 a001 3278735159921/51841*1860498^(2/3) 9567220259521957 a001 4052739537881/103682*1860498^(7/10) 9567220259522049 a001 2504730781961/103682*1860498^(11/15) 9567220259522233 a001 956722026041/103682*1860498^(4/5) 9567220259522325 a001 591286729879/103682*1860498^(5/6) 9567220259522417 a001 182717648081/51841*1860498^(13/15) 9567220259522510 a001 225851433717/103682*1860498^(9/10) 9567220259522602 a001 139583862445/103682*1860498^(14/15) 9567220259527258 a001 514229/103682*14662949395604^(6/7) 9567220259533554 a001 3278735159921/51841*710647^(5/7) 9567220259534230 a001 4052739537881/103682*710647^(3/4) 9567220259534907 a001 2504730781961/103682*710647^(11/14) 9567220259536260 a001 956722026041/103682*710647^(6/7) 9567220259537613 a001 182717648081/51841*710647^(13/14) 9567220259538966 a001 7796327789498304/8149 9567220259569619 a001 98209/51841*14662949395604^(8/9) 9567220259578182 a001 4052739537881/39603*39603^(19/22) 9567220259619903 a001 3278735159921/51841*271443^(10/13) 9567220259629892 a001 2504730781961/103682*271443^(11/13) 9567220259639880 a001 956722026041/103682*271443^(12/13) 9567220259649868 a001 116139356897967648/121393 9567220259855454 a001 2504730781961/39603*39603^(10/11) 9567220259859963 a001 46368/167761*14662949395604^(20/21) 9567220259940212 a001 71778070000201447/75025 9567220260051114 a001 71778070001033487/75025 9567220260067294 a001 14355614000230976/15005 9567220260069655 a001 71778070001172591/75025 9567220260070050 a001 71778070001175552/75025 9567220260070057 a001 71778070001175607/75025 9567220260070058 a001 14355614000235123/15005 9567220260070058 a001 71778070001175616/75025 9567220260070058 a001 71778070001175617/75025 9567220260070059 a001 14355614000235124/15005 9567220260070062 a001 71778070001175641/75025 9567220260070081 a001 14355614000235157/15005 9567220260070212 a001 71778070001176772/75025 9567220260071114 a001 71778070001183537/75025 9567220260077294 a001 14355614000245981/15005 9567220260119655 a001 71778070001547716/75025 9567220260132727 a001 516002918640/13201*39603^(21/22) 9567220260224588 a001 225749145909/2206*103682^(19/24) 9567220260230557 a001 93958713453698280/98209 9567220260236068 a001 2504730781961/271443*439204^(8/9) 9567220260241578 a001 3536736619241/90481*439204^(7/9) 9567220260261209 a001 105937/90481*14662949395604^(19/21) 9567220260261670 a001 3278735159921/51841*103682^(5/6) 9567220260272917 a001 491974210721988233/514229 9567220260277390 a001 832040/271443*3461452808002^(11/12) 9567220260279098 a001 1288005205258568139/1346269 9567220260280014 a001 139583862445/271443*7881196^(10/11) 9567220260280028 a001 591286729879/271443*7881196^(9/11) 9567220260280042 a001 2504730781961/271443*7881196^(8/11) 9567220260280051 a001 6557470319842/271443*7881196^(2/3) 9567220260280056 a001 3536736619241/90481*7881196^(7/11) 9567220260280095 a001 5702887/271443*817138163596^(17/19) 9567220260280095 a001 5702887/271443*14662949395604^(17/21) 9567220260280095 a001 5702887/271443*192900153618^(17/18) 9567220260280134 a001 139583862445/271443*20633239^(6/7) 9567220260280136 a001 365435296162/271443*20633239^(4/5) 9567220260280137 a001 516002918640/90481*20633239^(5/7) 9567220260280140 a001 3536736619241/90481*20633239^(3/5) 9567220260280145 a001 4976784/90481*14662949395604^(7/9) 9567220260280145 a001 4976784/90481*505019158607^(7/8) 9567220260280153 a001 7778742049/271443*141422324^(12/13) 9567220260280153 a001 121393*141422324^(11/13) 9567220260280153 a001 139583862445/271443*141422324^(10/13) 9567220260280153 a001 591286729879/271443*141422324^(9/13) 9567220260280153 a001 956722026041/271443*141422324^(2/3) 9567220260280153 a001 2504730781961/271443*141422324^(8/13) 9567220260280153 a001 3536736619241/90481*141422324^(7/13) 9567220260280153 a001 34111385/90481*45537549124^(15/17) 9567220260280153 a001 34111385/90481*312119004989^(9/11) 9567220260280153 a001 34111385/90481*14662949395604^(5/7) 9567220260280153 a001 34111385/90481*192900153618^(5/6) 9567220260280153 a001 34111385/90481*28143753123^(9/10) 9567220260280153 a001 34111385/90481*10749957122^(15/16) 9567220260280154 a001 1836311903/271443*2537720636^(13/15) 9567220260280154 a001 12586269025/271443*2537720636^(7/9) 9567220260280154 a001 7778742049/271443*2537720636^(4/5) 9567220260280154 a001 121393*2537720636^(11/15) 9567220260280154 a001 139583862445/271443*2537720636^(2/3) 9567220260280154 a001 591286729879/271443*2537720636^(3/5) 9567220260280154 a001 516002918640/90481*2537720636^(5/9) 9567220260280154 a001 2504730781961/271443*2537720636^(8/15) 9567220260280154 a001 3536736619241/90481*2537720636^(7/15) 9567220260280154 a001 1836311903/271443*45537549124^(13/17) 9567220260280154 a001 1836311903/271443*14662949395604^(13/21) 9567220260280154 a001 1836311903/271443*192900153618^(13/18) 9567220260280154 a001 1836311903/271443*73681302247^(3/4) 9567220260280154 a001 1836311903/271443*10749957122^(13/16) 9567220260280154 a001 12586269025/271443*17393796001^(5/7) 9567220260280154 a001 365435296162/271443*17393796001^(4/7) 9567220260280154 a001 3536736619241/90481*17393796001^(3/7) 9567220260280154 a001 12586269025/271443*312119004989^(7/11) 9567220260280154 a001 12586269025/271443*14662949395604^(5/9) 9567220260280154 a001 12586269025/271443*505019158607^(5/8) 9567220260280154 a001 121393*45537549124^(11/17) 9567220260280154 a001 12586269025/271443*28143753123^(7/10) 9567220260280154 a001 139583862445/271443*45537549124^(10/17) 9567220260280154 a001 591286729879/271443*45537549124^(9/17) 9567220260280154 a001 2504730781961/271443*45537549124^(8/17) 9567220260280154 a001 3536736619241/90481*45537549124^(7/17) 9567220260280154 a001 121393*312119004989^(3/5) 9567220260280154 a001 121393*817138163596^(11/19) 9567220260280154 a001 121393*14662949395604^(11/21) 9567220260280154 a001 121393*192900153618^(11/18) 9567220260280154 a001 86267571272/271443*9062201101803^(1/2) 9567220260280154 a001 516002918640/90481*312119004989^(5/11) 9567220260280154 a001 6557470319842/271443*312119004989^(2/5) 9567220260280154 a001 591286729879/271443*817138163596^(9/19) 9567220260280154 a001 3536736619241/90481*14662949395604^(1/3) 9567220260280154 a001 2504730781961/271443*14662949395604^(8/21) 9567220260280154 a001 365435296162/271443*14662949395604^(4/9) 9567220260280154 a001 365435296162/271443*505019158607^(1/2) 9567220260280154 a001 139583862445/271443*312119004989^(6/11) 9567220260280154 a001 139583862445/271443*14662949395604^(10/21) 9567220260280154 a001 3536736619241/90481*192900153618^(7/18) 9567220260280154 a001 2504730781961/271443*192900153618^(4/9) 9567220260280154 a001 591286729879/271443*192900153618^(1/2) 9567220260280154 a001 139583862445/271443*192900153618^(5/9) 9567220260280154 a001 53316291173/271443*23725150497407^(1/2) 9567220260280154 a001 53316291173/271443*505019158607^(4/7) 9567220260280154 a001 2504730781961/271443*73681302247^(6/13) 9567220260280154 a001 956722026041/271443*73681302247^(1/2) 9567220260280154 a001 365435296162/271443*73681302247^(7/13) 9567220260280154 a001 20365011074/271443*45537549124^(2/3) 9567220260280154 a001 53316291173/271443*73681302247^(8/13) 9567220260280154 a001 516002918640/90481*28143753123^(1/2) 9567220260280154 a001 139583862445/271443*28143753123^(3/5) 9567220260280154 a001 7778742049/271443*45537549124^(12/17) 9567220260280154 a001 7778742049/271443*14662949395604^(4/7) 9567220260280154 a001 7778742049/271443*505019158607^(9/14) 9567220260280154 a001 7778742049/271443*192900153618^(2/3) 9567220260280154 a001 7778742049/271443*73681302247^(9/13) 9567220260280154 a001 3536736619241/90481*10749957122^(7/16) 9567220260280154 a001 6557470319842/271443*10749957122^(11/24) 9567220260280154 a001 2504730781961/271443*10749957122^(1/2) 9567220260280154 a001 956722026041/271443*10749957122^(13/24) 9567220260280154 a001 591286729879/271443*10749957122^(9/16) 9567220260280154 a001 365435296162/271443*10749957122^(7/12) 9567220260280154 a001 139583862445/271443*10749957122^(5/8) 9567220260280154 a001 121393*10749957122^(11/16) 9567220260280154 a001 53316291173/271443*10749957122^(2/3) 9567220260280154 a001 20365011074/271443*10749957122^(17/24) 9567220260280154 a001 7778742049/271443*10749957122^(3/4) 9567220260280154 a001 1134903170/271443*2537720636^(8/9) 9567220260280154 a001 2971215073/271443*817138163596^(2/3) 9567220260280154 a001 6557470319842/271443*4106118243^(11/23) 9567220260280154 a001 2971215073/271443*10749957122^(19/24) 9567220260280154 a001 4052739537881/271443*4106118243^(1/2) 9567220260280154 a001 2504730781961/271443*4106118243^(12/23) 9567220260280154 a001 956722026041/271443*4106118243^(13/23) 9567220260280154 a001 365435296162/271443*4106118243^(14/23) 9567220260280154 a001 139583862445/271443*4106118243^(15/23) 9567220260280154 a001 53316291173/271443*4106118243^(16/23) 9567220260280154 a001 20365011074/271443*4106118243^(17/23) 9567220260280154 a001 7778742049/271443*4106118243^(18/23) 9567220260280154 a001 2971215073/271443*4106118243^(19/23) 9567220260280154 a001 1134903170/271443*312119004989^(8/11) 9567220260280154 a001 1134903170/271443*23725150497407^(5/8) 9567220260280154 a001 1134903170/271443*73681302247^(10/13) 9567220260280154 a001 1134903170/271443*28143753123^(4/5) 9567220260280154 a001 1134903170/271443*10749957122^(5/6) 9567220260280154 a001 6557470319842/271443*1568397607^(1/2) 9567220260280154 a001 1134903170/271443*4106118243^(20/23) 9567220260280154 a001 2504730781961/271443*1568397607^(6/11) 9567220260280154 a001 956722026041/271443*1568397607^(13/22) 9567220260280154 a001 365435296162/271443*1568397607^(7/11) 9567220260280154 a001 139583862445/271443*1568397607^(15/22) 9567220260280154 a001 53316291173/271443*1568397607^(8/11) 9567220260280154 a001 121393*1568397607^(3/4) 9567220260280154 a001 20365011074/271443*1568397607^(17/22) 9567220260280154 a001 7778742049/271443*1568397607^(9/11) 9567220260280154 a001 2971215073/271443*1568397607^(19/22) 9567220260280154 a001 1134903170/271443*1568397607^(10/11) 9567220260280154 a001 433494437/271443*2537720636^(14/15) 9567220260280154 a001 433494437/271443*17393796001^(6/7) 9567220260280154 a001 433494437/271443*45537549124^(14/17) 9567220260280154 a001 433494437/271443*817138163596^(14/19) 9567220260280154 a001 433494437/271443*14662949395604^(2/3) 9567220260280154 a001 433494437/271443*505019158607^(3/4) 9567220260280154 a001 433494437/271443*192900153618^(7/9) 9567220260280154 a001 433494437/271443*10749957122^(7/8) 9567220260280154 a001 433494437/271443*4106118243^(21/23) 9567220260280154 a001 3536736619241/90481*599074578^(1/2) 9567220260280154 a001 433494437/271443*1568397607^(21/22) 9567220260280154 a001 6557470319842/271443*599074578^(11/21) 9567220260280154 a001 2504730781961/271443*599074578^(4/7) 9567220260280154 a001 956722026041/271443*599074578^(13/21) 9567220260280154 a001 591286729879/271443*599074578^(9/14) 9567220260280154 a001 365435296162/271443*599074578^(2/3) 9567220260280154 a001 139583862445/271443*599074578^(5/7) 9567220260280154 a001 53316291173/271443*599074578^(16/21) 9567220260280154 a001 121393*599074578^(11/14) 9567220260280154 a001 20365011074/271443*599074578^(17/21) 9567220260280154 a001 12586269025/271443*599074578^(5/6) 9567220260280154 a001 7778742049/271443*599074578^(6/7) 9567220260280154 a001 1836311903/271443*599074578^(13/14) 9567220260280154 a001 2971215073/271443*599074578^(19/21) 9567220260280154 a001 1134903170/271443*599074578^(20/21) 9567220260280154 a001 165580141/271443*312119004989^(4/5) 9567220260280154 a001 165580141/271443*23725150497407^(11/16) 9567220260280154 a001 165580141/271443*73681302247^(11/13) 9567220260280154 a001 165580141/271443*10749957122^(11/12) 9567220260280154 a001 165580141/271443*4106118243^(22/23) 9567220260280154 a001 6557470319842/271443*228826127^(11/20) 9567220260280154 a001 2504730781961/271443*228826127^(3/5) 9567220260280154 a001 516002918640/90481*228826127^(5/8) 9567220260280154 a001 956722026041/271443*228826127^(13/20) 9567220260280154 a001 365435296162/271443*228826127^(7/10) 9567220260280154 a001 139583862445/271443*228826127^(3/4) 9567220260280154 a001 53316291173/271443*228826127^(4/5) 9567220260280154 a001 20365011074/271443*228826127^(17/20) 9567220260280154 a001 12586269025/271443*228826127^(7/8) 9567220260280154 a001 7778742049/271443*228826127^(9/10) 9567220260280154 a001 2971215073/271443*228826127^(19/20) 9567220260280154 a001 63245986/271443*10749957122^(23/24) 9567220260280154 a001 6557470319842/271443*87403803^(11/19) 9567220260280154 a001 2504730781961/271443*87403803^(12/19) 9567220260280154 a001 956722026041/271443*87403803^(13/19) 9567220260280154 a001 365435296162/271443*87403803^(14/19) 9567220260280155 a001 139583862445/271443*87403803^(15/19) 9567220260280155 a001 53316291173/271443*87403803^(16/19) 9567220260280155 a001 20365011074/271443*87403803^(17/19) 9567220260280155 a001 7778742049/271443*87403803^(18/19) 9567220260280157 a001 24157817/271443*45537549124^(16/17) 9567220260280157 a001 24157817/271443*14662949395604^(16/21) 9567220260280157 a001 24157817/271443*192900153618^(8/9) 9567220260280157 a001 24157817/271443*73681302247^(12/13) 9567220260280159 a001 3536736619241/90481*33385282^(7/12) 9567220260280159 a001 6557470319842/271443*33385282^(11/18) 9567220260280159 a001 2504730781961/271443*33385282^(2/3) 9567220260280160 a001 956722026041/271443*33385282^(13/18) 9567220260280160 a001 591286729879/271443*33385282^(3/4) 9567220260280160 a001 365435296162/271443*33385282^(7/9) 9567220260280161 a001 139583862445/271443*33385282^(5/6) 9567220260280161 a001 53316291173/271443*33385282^(8/9) 9567220260280161 a001 121393*33385282^(11/12) 9567220260280162 a001 20365011074/271443*33385282^(17/18) 9567220260280176 a001 9227465/271443*312119004989^(10/11) 9567220260280176 a001 9227465/271443*3461452808002^(5/6) 9567220260280192 a001 6557470319842/271443*12752043^(11/17) 9567220260280195 a001 2504730781961/271443*12752043^(12/17) 9567220260280199 a001 956722026041/271443*12752043^(13/17) 9567220260280202 a001 365435296162/271443*12752043^(14/17) 9567220260280205 a001 139583862445/271443*12752043^(15/17) 9567220260280209 a001 53316291173/271443*12752043^(16/17) 9567220260280308 a001 3524578/271443*23725150497407^(13/16) 9567220260280308 a001 3524578/271443*505019158607^(13/14) 9567220260280431 a001 6557470319842/271443*4870847^(11/16) 9567220260280456 a001 2504730781961/271443*4870847^(3/4) 9567220260280481 a001 956722026041/271443*4870847^(13/16) 9567220260280506 a001 365435296162/271443*4870847^(7/8) 9567220260280532 a001 139583862445/271443*4870847^(15/16) 9567220260281209 a001 1346269/271443*14662949395604^(6/7) 9567220260282088 a001 3536736619241/90481*1860498^(7/10) 9567220260282180 a001 6557470319842/271443*1860498^(11/15) 9567220260282365 a001 2504730781961/271443*1860498^(4/5) 9567220260282457 a001 516002918640/90481*1860498^(5/6) 9567220260282549 a001 956722026041/271443*1860498^(13/15) 9567220260282641 a001 591286729879/271443*1860498^(9/10) 9567220260282733 a001 365435296162/271443*1860498^(14/15) 9567220260282917 a001 398015497268289953/416020 9567220260287390 a001 514229/271443*14662949395604^(8/9) 9567220260294362 a001 3536736619241/90481*710647^(3/4) 9567220260295038 a001 6557470319842/271443*710647^(11/14) 9567220260296391 a001 2504730781961/271443*710647^(6/7) 9567220260297745 a001 956722026041/271443*710647^(13/14) 9567220260298752 a001 4052739537881/103682*103682^(7/8) 9567220260299098 a001 304056783814591673/317811 9567220260329750 a001 121393/439204*14662949395604^(20/21) 9567220260335835 a001 2504730781961/103682*103682^(11/12) 9567220260341458 a001 187917426909574869/196418 9567220260346969 a001 6557470319842/710647*439204^(8/9) 9567220260357639 a001 93958713454946340/98209 9567220260360344 a001 187917426909945813/196418 9567220260360394 a001 5526983144410200/5777 9567220260360401 a001 93958713454973472/98209 9567220260360403 a001 187917426909946965/196418 9567220260360403 a001 93958713454973484/98209 9567220260360403 a001 187917426909946969/196418 9567220260360403 a001 5526983144410205/5777 9567220260360403 a001 93958713454973489/98209 9567220260360406 a001 187917426909947033/196418 9567220260360425 a001 93958713454973705/98209 9567220260360557 a001 93958713454974997/98209 9567220260361458 a001 187917426909967705/196418 9567220260367639 a001 93958713455044549/98209 9567220260372917 a001 774004377960/51841*103682^(23/24) 9567220260373150 a001 10610209857723/1149851*439204^(8/9) 9567220260383819 a001 491974210727691120/514229 9567220260388291 a001 832040/710647*14662949395604^(19/21) 9567220260390023 a001 6557470319842/271443*271443^(11/13) 9567220260390652 a001 311187/101521*3461452808002^(11/12) 9567220260390901 a001 3372041405092804353/3524578 9567220260390915 a001 365435296162/710647*7881196^(10/11) 9567220260390929 a001 1548008755920/710647*7881196^(9/11) 9567220260390943 a001 6557470319842/710647*7881196^(8/11) 9567220260391036 a001 365435296162/710647*20633239^(6/7) 9567220260391037 a001 956722026041/710647*20633239^(4/5) 9567220260391039 a001 4052739537881/710647*20633239^(5/7) 9567220260391047 a001 14930352/710647*817138163596^(17/19) 9567220260391047 a001 14930352/710647*14662949395604^(17/21) 9567220260391047 a001 14930352/710647*192900153618^(17/18) 9567220260391054 a001 39088169/710647*14662949395604^(7/9) 9567220260391054 a001 39088169/710647*505019158607^(7/8) 9567220260391055 a001 20365011074/710647*141422324^(12/13) 9567220260391055 a001 86267571272/710647*141422324^(11/13) 9567220260391055 a001 365435296162/710647*141422324^(10/13) 9567220260391055 a001 1548008755920/710647*141422324^(9/13) 9567220260391055 a001 2504730781961/710647*141422324^(2/3) 9567220260391055 a001 6557470319842/710647*141422324^(8/13) 9567220260391055 a001 267914296/710647*45537549124^(15/17) 9567220260391055 a001 267914296/710647*312119004989^(9/11) 9567220260391055 a001 267914296/710647*14662949395604^(5/7) 9567220260391055 a001 267914296/710647*192900153618^(5/6) 9567220260391055 a001 267914296/710647*28143753123^(9/10) 9567220260391055 a001 267914296/710647*10749957122^(15/16) 9567220260391055 a001 686789568/101521*2537720636^(13/15) 9567220260391055 a001 20365011074/710647*2537720636^(4/5) 9567220260391055 a001 32951280099/710647*2537720636^(7/9) 9567220260391055 a001 2971215073/710647*2537720636^(8/9) 9567220260391055 a001 86267571272/710647*2537720636^(11/15) 9567220260391055 a001 365435296162/710647*2537720636^(2/3) 9567220260391055 a001 1548008755920/710647*2537720636^(3/5) 9567220260391055 a001 4052739537881/710647*2537720636^(5/9) 9567220260391055 a001 6557470319842/710647*2537720636^(8/15) 9567220260391055 a001 686789568/101521*45537549124^(13/17) 9567220260391055 a001 686789568/101521*14662949395604^(13/21) 9567220260391055 a001 686789568/101521*192900153618^(13/18) 9567220260391055 a001 686789568/101521*73681302247^(3/4) 9567220260391055 a001 32951280099/710647*17393796001^(5/7) 9567220260391055 a001 956722026041/710647*17393796001^(4/7) 9567220260391055 a001 686789568/101521*10749957122^(13/16) 9567220260391055 a001 86267571272/710647*45537549124^(11/17) 9567220260391055 a001 365435296162/710647*45537549124^(10/17) 9567220260391055 a001 1548008755920/710647*45537549124^(9/17) 9567220260391055 a001 53316291173/710647*45537549124^(2/3) 9567220260391055 a001 6557470319842/710647*45537549124^(8/17) 9567220260391055 a001 32951280099/710647*312119004989^(7/11) 9567220260391055 a001 32951280099/710647*14662949395604^(5/9) 9567220260391055 a001 32951280099/710647*505019158607^(5/8) 9567220260391055 a001 86267571272/710647*312119004989^(3/5) 9567220260391055 a001 86267571272/710647*817138163596^(11/19) 9567220260391055 a001 86267571272/710647*14662949395604^(11/21) 9567220260391055 a001 86267571272/710647*192900153618^(11/18) 9567220260391055 a001 365435296162/710647*312119004989^(6/11) 9567220260391055 a001 317811*9062201101803^(1/2) 9567220260391055 a001 1548008755920/710647*817138163596^(9/19) 9567220260391055 a001 591286729879/710647*1322157322203^(1/2) 9567220260391055 a001 1548008755920/710647*14662949395604^(3/7) 9567220260391055 a001 365435296162/710647*14662949395604^(10/21) 9567220260391055 a001 139583862445/710647*23725150497407^(1/2) 9567220260391055 a001 6557470319842/710647*192900153618^(4/9) 9567220260391055 a001 139583862445/710647*505019158607^(4/7) 9567220260391055 a001 1548008755920/710647*192900153618^(1/2) 9567220260391055 a001 365435296162/710647*192900153618^(5/9) 9567220260391055 a001 6557470319842/710647*73681302247^(6/13) 9567220260391055 a001 2504730781961/710647*73681302247^(1/2) 9567220260391055 a001 956722026041/710647*73681302247^(7/13) 9567220260391055 a001 139583862445/710647*73681302247^(8/13) 9567220260391055 a001 20365011074/710647*45537549124^(12/17) 9567220260391055 a001 20365011074/710647*14662949395604^(4/7) 9567220260391055 a001 20365011074/710647*505019158607^(9/14) 9567220260391055 a001 20365011074/710647*192900153618^(2/3) 9567220260391055 a001 20365011074/710647*73681302247^(9/13) 9567220260391055 a001 4052739537881/710647*28143753123^(1/2) 9567220260391055 a001 32951280099/710647*28143753123^(7/10) 9567220260391055 a001 365435296162/710647*28143753123^(3/5) 9567220260391055 a001 7778742049/710647*817138163596^(2/3) 9567220260391055 a001 6557470319842/710647*10749957122^(1/2) 9567220260391055 a001 2504730781961/710647*10749957122^(13/24) 9567220260391055 a001 1548008755920/710647*10749957122^(9/16) 9567220260391055 a001 956722026041/710647*10749957122^(7/12) 9567220260391055 a001 365435296162/710647*10749957122^(5/8) 9567220260391055 a001 139583862445/710647*10749957122^(2/3) 9567220260391055 a001 86267571272/710647*10749957122^(11/16) 9567220260391055 a001 53316291173/710647*10749957122^(17/24) 9567220260391055 a001 20365011074/710647*10749957122^(3/4) 9567220260391055 a001 7778742049/710647*10749957122^(19/24) 9567220260391055 a001 1134903170/710647*2537720636^(14/15) 9567220260391055 a001 2971215073/710647*312119004989^(8/11) 9567220260391055 a001 2971215073/710647*23725150497407^(5/8) 9567220260391055 a001 2971215073/710647*73681302247^(10/13) 9567220260391055 a001 2971215073/710647*28143753123^(4/5) 9567220260391055 a001 1515744265389/101521*4106118243^(1/2) 9567220260391055 a001 2971215073/710647*10749957122^(5/6) 9567220260391055 a001 6557470319842/710647*4106118243^(12/23) 9567220260391055 a001 2504730781961/710647*4106118243^(13/23) 9567220260391055 a001 956722026041/710647*4106118243^(14/23) 9567220260391055 a001 365435296162/710647*4106118243^(15/23) 9567220260391055 a001 139583862445/710647*4106118243^(16/23) 9567220260391055 a001 53316291173/710647*4106118243^(17/23) 9567220260391055 a001 20365011074/710647*4106118243^(18/23) 9567220260391055 a001 7778742049/710647*4106118243^(19/23) 9567220260391055 a001 2971215073/710647*4106118243^(20/23) 9567220260391055 a001 1134903170/710647*17393796001^(6/7) 9567220260391055 a001 1134903170/710647*45537549124^(14/17) 9567220260391055 a001 1134903170/710647*817138163596^(14/19) 9567220260391055 a001 1134903170/710647*14662949395604^(2/3) 9567220260391055 a001 1134903170/710647*505019158607^(3/4) 9567220260391055 a001 1134903170/710647*192900153618^(7/9) 9567220260391055 a001 1134903170/710647*10749957122^(7/8) 9567220260391055 a001 1134903170/710647*4106118243^(21/23) 9567220260391055 a001 6557470319842/710647*1568397607^(6/11) 9567220260391055 a001 2504730781961/710647*1568397607^(13/22) 9567220260391055 a001 956722026041/710647*1568397607^(7/11) 9567220260391055 a001 365435296162/710647*1568397607^(15/22) 9567220260391055 a001 139583862445/710647*1568397607^(8/11) 9567220260391055 a001 86267571272/710647*1568397607^(3/4) 9567220260391055 a001 53316291173/710647*1568397607^(17/22) 9567220260391055 a001 20365011074/710647*1568397607^(9/11) 9567220260391055 a001 7778742049/710647*1568397607^(19/22) 9567220260391055 a001 2971215073/710647*1568397607^(10/11) 9567220260391055 a001 1134903170/710647*1568397607^(21/22) 9567220260391055 a001 433494437/710647*312119004989^(4/5) 9567220260391055 a001 433494437/710647*23725150497407^(11/16) 9567220260391055 a001 433494437/710647*73681302247^(11/13) 9567220260391055 a001 433494437/710647*10749957122^(11/12) 9567220260391055 a001 433494437/710647*4106118243^(22/23) 9567220260391055 a001 6557470319842/710647*599074578^(4/7) 9567220260391055 a001 2504730781961/710647*599074578^(13/21) 9567220260391055 a001 1548008755920/710647*599074578^(9/14) 9567220260391055 a001 956722026041/710647*599074578^(2/3) 9567220260391055 a001 365435296162/710647*599074578^(5/7) 9567220260391055 a001 139583862445/710647*599074578^(16/21) 9567220260391055 a001 86267571272/710647*599074578^(11/14) 9567220260391055 a001 53316291173/710647*599074578^(17/21) 9567220260391055 a001 32951280099/710647*599074578^(5/6) 9567220260391055 a001 20365011074/710647*599074578^(6/7) 9567220260391055 a001 7778742049/710647*599074578^(19/21) 9567220260391055 a001 686789568/101521*599074578^(13/14) 9567220260391055 a001 2971215073/710647*599074578^(20/21) 9567220260391055 a001 165580141/710647*10749957122^(23/24) 9567220260391055 a001 6557470319842/710647*228826127^(3/5) 9567220260391055 a001 4052739537881/710647*228826127^(5/8) 9567220260391055 a001 2504730781961/710647*228826127^(13/20) 9567220260391055 a001 956722026041/710647*228826127^(7/10) 9567220260391055 a001 365435296162/710647*228826127^(3/4) 9567220260391055 a001 139583862445/710647*228826127^(4/5) 9567220260391055 a001 53316291173/710647*228826127^(17/20) 9567220260391055 a001 32951280099/710647*228826127^(7/8) 9567220260391055 a001 20365011074/710647*228826127^(9/10) 9567220260391055 a001 7778742049/710647*228826127^(19/20) 9567220260391056 a001 63245986/710647*45537549124^(16/17) 9567220260391056 a001 63245986/710647*14662949395604^(16/21) 9567220260391056 a001 63245986/710647*192900153618^(8/9) 9567220260391056 a001 63245986/710647*73681302247^(12/13) 9567220260391056 a001 6557470319842/710647*87403803^(12/19) 9567220260391056 a001 2504730781961/710647*87403803^(13/19) 9567220260391056 a001 956722026041/710647*87403803^(14/19) 9567220260391056 a001 365435296162/710647*87403803^(15/19) 9567220260391056 a001 139583862445/710647*87403803^(16/19) 9567220260391056 a001 53316291173/710647*87403803^(17/19) 9567220260391056 a001 20365011074/710647*87403803^(18/19) 9567220260391059 a001 24157817/710647*312119004989^(10/11) 9567220260391059 a001 24157817/710647*3461452808002^(5/6) 9567220260391061 a001 6557470319842/710647*33385282^(2/3) 9567220260391061 a001 2504730781961/710647*33385282^(13/18) 9567220260391062 a001 1548008755920/710647*33385282^(3/4) 9567220260391062 a001 956722026041/710647*33385282^(7/9) 9567220260391062 a001 365435296162/710647*33385282^(5/6) 9567220260391063 a001 139583862445/710647*33385282^(8/9) 9567220260391063 a001 86267571272/710647*33385282^(11/12) 9567220260391063 a001 53316291173/710647*33385282^(17/18) 9567220260391078 a001 9227465/710647*23725150497407^(13/16) 9567220260391078 a001 9227465/710647*505019158607^(13/14) 9567220260391097 a001 6557470319842/710647*12752043^(12/17) 9567220260391100 a001 2504730781961/710647*12752043^(13/17) 9567220260391104 a001 956722026041/710647*12752043^(14/17) 9567220260391107 a001 365435296162/710647*12752043^(15/17) 9567220260391111 a001 139583862445/710647*12752043^(16/17) 9567220260391209 a001 3524578/710647*14662949395604^(6/7) 9567220260391358 a001 6557470319842/710647*4870847^(3/4) 9567220260391383 a001 2504730781961/710647*4870847^(13/16) 9567220260391408 a001 956722026041/710647*4870847^(7/8) 9567220260391433 a001 365435296162/710647*4870847^(15/16) 9567220260391458 a001 694678733273101954/726103 9567220260392111 a001 1346269/710647*14662949395604^(8/9) 9567220260393266 a001 6557470319842/710647*1860498^(4/5) 9567220260393359 a001 4052739537881/710647*1860498^(5/6) 9567220260393451 a001 2504730781961/710647*1860498^(13/15) 9567220260393543 a001 1548008755920/710647*1860498^(9/10) 9567220260393635 a001 956722026041/710647*1860498^(14/15) 9567220260393819 a001 796030994545807371/832040 9567220260398291 a001 317811/1149851*14662949395604^(20/21) 9567220260400011 a001 2504730781961/271443*271443^(12/13) 9567220260402360 a001 491974210728644553/514229 9567220260402705 a001 491974210728662264/514229 9567220260402755 a001 491974210728664848/514229 9567220260402762 a001 491974210728665225/514229 9567220260402763 a001 491974210728665280/514229 9567220260402763 a001 491974210728665288/514229 9567220260402763 a001 491974210728665289/514229 9567220260402763 a001 491974210728665290/514229 9567220260402764 a001 491974210728665293/514229 9567220260402764 a001 491974210728665314/514229 9567220260402767 a001 491974210728665458/514229 9567220260402786 a001 491974210728666445/514229 9567220260402917 a001 491974210728673210/514229 9567220260403819 a001 491974210728719578/514229 9567220260406180 a001 1288005205275676800/1346269 9567220260406832 a001 726103/620166*14662949395604^(19/21) 9567220260407082 a001 1686020702549253620/1762289 9567220260407096 a001 956722026041/1860498*7881196^(10/11) 9567220260407110 a001 4052739537881/1860498*7881196^(9/11) 9567220260407177 a001 5702887/1860498*3461452808002^(11/12) 9567220260407213 a001 1765623802003968984/1845493 9567220260407216 a001 956722026041/1860498*20633239^(6/7) 9567220260407218 a001 2504730781961/1860498*20633239^(4/5) 9567220260407220 a001 3536736619241/620166*20633239^(5/7) 9567220260407234 a001 39088169/1860498*817138163596^(17/19) 9567220260407234 a001 39088169/1860498*14662949395604^(17/21) 9567220260407234 a001 39088169/1860498*192900153618^(17/18) 9567220260407235 a001 53316291173/1860498*141422324^(12/13) 9567220260407235 a001 75283811239/620166*141422324^(11/13) 9567220260407235 a001 956722026041/1860498*141422324^(10/13) 9567220260407235 a001 4052739537881/1860498*141422324^(9/13) 9567220260407235 a001 3278735159921/930249*141422324^(2/3) 9567220260407235 a001 831985/15126*14662949395604^(7/9) 9567220260407235 a001 831985/15126*505019158607^(7/8) 9567220260407236 a001 233802911/620166*45537549124^(15/17) 9567220260407236 a001 233802911/620166*312119004989^(9/11) 9567220260407236 a001 233802911/620166*14662949395604^(5/7) 9567220260407236 a001 233802911/620166*192900153618^(5/6) 9567220260407236 a001 233802911/620166*28143753123^(9/10) 9567220260407236 a001 233802911/620166*10749957122^(15/16) 9567220260407236 a001 12586269025/1860498*2537720636^(13/15) 9567220260407236 a001 7778742049/1860498*2537720636^(8/9) 9567220260407236 a001 53316291173/1860498*2537720636^(4/5) 9567220260407236 a001 2971215073/1860498*2537720636^(14/15) 9567220260407236 a001 43133785636/930249*2537720636^(7/9) 9567220260407236 a001 75283811239/620166*2537720636^(11/15) 9567220260407236 a001 956722026041/1860498*2537720636^(2/3) 9567220260407236 a001 4052739537881/1860498*2537720636^(3/5) 9567220260407236 a001 3536736619241/620166*2537720636^(5/9) 9567220260407236 a001 43133785636/930249*17393796001^(5/7) 9567220260407236 a001 2504730781961/1860498*17393796001^(4/7) 9567220260407236 a001 12586269025/1860498*45537549124^(13/17) 9567220260407236 a001 12586269025/1860498*14662949395604^(13/21) 9567220260407236 a001 12586269025/1860498*192900153618^(13/18) 9567220260407236 a001 12586269025/1860498*73681302247^(3/4) 9567220260407236 a001 75283811239/620166*45537549124^(11/17) 9567220260407236 a001 139583862445/1860498*45537549124^(2/3) 9567220260407236 a001 956722026041/1860498*45537549124^(10/17) 9567220260407236 a001 53316291173/1860498*45537549124^(12/17) 9567220260407236 a001 4052739537881/1860498*45537549124^(9/17) 9567220260407236 a001 43133785636/930249*312119004989^(7/11) 9567220260407236 a001 43133785636/930249*14662949395604^(5/9) 9567220260407236 a001 43133785636/930249*505019158607^(5/8) 9567220260407236 a001 75283811239/620166*312119004989^(3/5) 9567220260407236 a001 3536736619241/620166*312119004989^(5/11) 9567220260407236 a001 75283811239/620166*14662949395604^(11/21) 9567220260407236 a001 4052739537881/1860498*14662949395604^(3/7) 9567220260407236 a001 2504730781961/1860498*14662949395604^(4/9) 9567220260407236 a001 182717648081/930249*23725150497407^(1/2) 9567220260407236 a001 2504730781961/1860498*505019158607^(1/2) 9567220260407236 a001 182717648081/930249*505019158607^(4/7) 9567220260407236 a001 4052739537881/1860498*192900153618^(1/2) 9567220260407236 a001 956722026041/1860498*192900153618^(5/9) 9567220260407236 a001 53316291173/1860498*14662949395604^(4/7) 9567220260407236 a001 53316291173/1860498*505019158607^(9/14) 9567220260407236 a001 53316291173/1860498*192900153618^(2/3) 9567220260407236 a001 3278735159921/930249*73681302247^(1/2) 9567220260407236 a001 2504730781961/1860498*73681302247^(7/13) 9567220260407236 a001 182717648081/930249*73681302247^(8/13) 9567220260407236 a001 53316291173/1860498*73681302247^(9/13) 9567220260407236 a001 10182505537/930249*817138163596^(2/3) 9567220260407236 a001 3536736619241/620166*28143753123^(1/2) 9567220260407236 a001 956722026041/1860498*28143753123^(3/5) 9567220260407236 a001 43133785636/930249*28143753123^(7/10) 9567220260407236 a001 7778742049/1860498*312119004989^(8/11) 9567220260407236 a001 7778742049/1860498*23725150497407^(5/8) 9567220260407236 a001 7778742049/1860498*73681302247^(10/13) 9567220260407236 a001 7778742049/1860498*28143753123^(4/5) 9567220260407236 a001 3278735159921/930249*10749957122^(13/24) 9567220260407236 a001 4052739537881/1860498*10749957122^(9/16) 9567220260407236 a001 2504730781961/1860498*10749957122^(7/12) 9567220260407236 a001 956722026041/1860498*10749957122^(5/8) 9567220260407236 a001 12586269025/1860498*10749957122^(13/16) 9567220260407236 a001 182717648081/930249*10749957122^(2/3) 9567220260407236 a001 75283811239/620166*10749957122^(11/16) 9567220260407236 a001 139583862445/1860498*10749957122^(17/24) 9567220260407236 a001 53316291173/1860498*10749957122^(3/4) 9567220260407236 a001 10182505537/930249*10749957122^(19/24) 9567220260407236 a001 7778742049/1860498*10749957122^(5/6) 9567220260407236 a001 2971215073/1860498*17393796001^(6/7) 9567220260407236 a001 2971215073/1860498*45537549124^(14/17) 9567220260407236 a001 2971215073/1860498*817138163596^(14/19) 9567220260407236 a001 2971215073/1860498*14662949395604^(2/3) 9567220260407236 a001 2971215073/1860498*505019158607^(3/4) 9567220260407236 a001 2971215073/1860498*192900153618^(7/9) 9567220260407236 a001 2971215073/1860498*10749957122^(7/8) 9567220260407236 a001 3278735159921/930249*4106118243^(13/23) 9567220260407236 a001 2504730781961/1860498*4106118243^(14/23) 9567220260407236 a001 956722026041/1860498*4106118243^(15/23) 9567220260407236 a001 182717648081/930249*4106118243^(16/23) 9567220260407236 a001 139583862445/1860498*4106118243^(17/23) 9567220260407236 a001 53316291173/1860498*4106118243^(18/23) 9567220260407236 a001 10182505537/930249*4106118243^(19/23) 9567220260407236 a001 7778742049/1860498*4106118243^(20/23) 9567220260407236 a001 2971215073/1860498*4106118243^(21/23) 9567220260407236 a001 567451585/930249*312119004989^(4/5) 9567220260407236 a001 567451585/930249*23725150497407^(11/16) 9567220260407236 a001 567451585/930249*73681302247^(11/13) 9567220260407236 a001 567451585/930249*10749957122^(11/12) 9567220260407236 a001 567451585/930249*4106118243^(22/23) 9567220260407236 a001 3278735159921/930249*1568397607^(13/22) 9567220260407236 a001 2504730781961/1860498*1568397607^(7/11) 9567220260407236 a001 956722026041/1860498*1568397607^(15/22) 9567220260407236 a001 182717648081/930249*1568397607^(8/11) 9567220260407236 a001 75283811239/620166*1568397607^(3/4) 9567220260407236 a001 139583862445/1860498*1568397607^(17/22) 9567220260407236 a001 53316291173/1860498*1568397607^(9/11) 9567220260407236 a001 10182505537/930249*1568397607^(19/22) 9567220260407236 a001 7778742049/1860498*1568397607^(10/11) 9567220260407236 a001 2971215073/1860498*1568397607^(21/22) 9567220260407236 a001 433494437/1860498*10749957122^(23/24) 9567220260407236 a001 3278735159921/930249*599074578^(13/21) 9567220260407236 a001 4052739537881/1860498*599074578^(9/14) 9567220260407236 a001 2504730781961/1860498*599074578^(2/3) 9567220260407236 a001 956722026041/1860498*599074578^(5/7) 9567220260407236 a001 182717648081/930249*599074578^(16/21) 9567220260407236 a001 75283811239/620166*599074578^(11/14) 9567220260407236 a001 139583862445/1860498*599074578^(17/21) 9567220260407236 a001 43133785636/930249*599074578^(5/6) 9567220260407236 a001 53316291173/1860498*599074578^(6/7) 9567220260407236 a001 10182505537/930249*599074578^(19/21) 9567220260407236 a001 12586269025/1860498*599074578^(13/14) 9567220260407236 a001 7778742049/1860498*599074578^(20/21) 9567220260407236 a001 165580141/1860498*45537549124^(16/17) 9567220260407236 a001 165580141/1860498*14662949395604^(16/21) 9567220260407236 a001 165580141/1860498*192900153618^(8/9) 9567220260407236 a001 165580141/1860498*73681302247^(12/13) 9567220260407236 a001 3536736619241/620166*228826127^(5/8) 9567220260407236 a001 3278735159921/930249*228826127^(13/20) 9567220260407236 a001 2504730781961/1860498*228826127^(7/10) 9567220260407236 a001 956722026041/1860498*228826127^(3/4) 9567220260407236 a001 182717648081/930249*228826127^(4/5) 9567220260407236 a001 139583862445/1860498*228826127^(17/20) 9567220260407236 a001 43133785636/930249*228826127^(7/8) 9567220260407236 a001 53316291173/1860498*228826127^(9/10) 9567220260407236 a001 10182505537/930249*228826127^(19/20) 9567220260407236 a001 31622993/930249*312119004989^(10/11) 9567220260407236 a001 31622993/930249*3461452808002^(5/6) 9567220260407236 a001 3278735159921/930249*87403803^(13/19) 9567220260407236 a001 2504730781961/1860498*87403803^(14/19) 9567220260407237 a001 956722026041/1860498*87403803^(15/19) 9567220260407237 a001 182717648081/930249*87403803^(16/19) 9567220260407237 a001 139583862445/1860498*87403803^(17/19) 9567220260407237 a001 53316291173/1860498*87403803^(18/19) 9567220260407239 a001 24157817/1860498*23725150497407^(13/16) 9567220260407239 a001 24157817/1860498*505019158607^(13/14) 9567220260407242 a001 3278735159921/930249*33385282^(13/18) 9567220260407242 a001 4052739537881/1860498*33385282^(3/4) 9567220260407242 a001 2504730781961/1860498*33385282^(7/9) 9567220260407243 a001 956722026041/1860498*33385282^(5/6) 9567220260407243 a001 182717648081/930249*33385282^(8/9) 9567220260407243 a001 75283811239/620166*33385282^(11/12) 9567220260407244 a001 139583862445/1860498*33385282^(17/18) 9567220260407258 a001 9227465/1860498*14662949395604^(6/7) 9567220260407281 a001 3278735159921/930249*12752043^(13/17) 9567220260407284 a001 2504730781961/1860498*12752043^(14/17) 9567220260407287 a001 956722026041/1860498*12752043^(15/17) 9567220260407291 a001 182717648081/930249*12752043^(16/17) 9567220260407293 a001 6557470319842/710647*710647^(6/7) 9567220260407294 a001 5456077604921337680/5702887 9567220260407390 a001 1762289/930249*14662949395604^(8/9) 9567220260407563 a001 3278735159921/930249*4870847^(13/16) 9567220260407588 a001 2504730781961/1860498*4870847^(7/8) 9567220260407614 a001 956722026041/1860498*4870847^(15/16) 9567220260407639 a001 2084036199822830440/2178309 9567220260408291 a001 832040/3010349*14662949395604^(20/21) 9567220260408541 a001 1288005205275994611/1346269 9567220260408646 a001 2504730781961/710647*710647^(13/14) 9567220260408885 a001 1288005205276040979/1346269 9567220260408935 a001 1288005205276047744/1346269 9567220260408943 a001 1288005205276048731/1346269 9567220260408944 a001 1288005205276048875/1346269 9567220260408944 a001 1288005205276048896/1346269 9567220260408944 a001 1288005205276048899/1346269 9567220260408944 a001 1288005205276048900/1346269 9567220260408944 a001 1288005205276048901/1346269 9567220260408944 a001 1288005205276048909/1346269 9567220260408944 a001 1288005205276048964/1346269 9567220260408947 a001 1288005205276049341/1346269 9567220260408966 a001 1288005205276051925/1346269 9567220260409098 a001 1288005205276069636/1346269 9567220260409442 a001 1686020702549669640/1762289 9567220260409456 a001 2504730781961/4870847*7881196^(10/11) 9567220260409470 a001 2178309*7881196^(9/11) 9567220260409537 a001 5702887/4870847*14662949395604^(19/21) 9567220260409539 a001 3536736619241/620166*1860498^(5/6) 9567220260409574 a001 8828119010022023229/9227465 9567220260409577 a001 2504730781961/4870847*20633239^(6/7) 9567220260409578 a001 6557470319842/4870847*20633239^(4/5) 9567220260409588 a001 14930352/4870847*3461452808002^(11/12) 9567220260409593 a001 23112315624966730407/24157817 9567220260409596 a001 139583862445/4870847*141422324^(12/13) 9567220260409596 a001 591286729879/4870847*141422324^(11/13) 9567220260409596 a001 2504730781961/4870847*141422324^(10/13) 9567220260409596 a001 2178309*141422324^(9/13) 9567220260409596 a001 102334155/4870847*817138163596^(17/19) 9567220260409596 a001 102334155/4870847*14662949395604^(17/21) 9567220260409596 a001 102334155/4870847*192900153618^(17/18) 9567220260409596 a001 267914296/4870847*14662949395604^(7/9) 9567220260409596 a001 267914296/4870847*505019158607^(7/8) 9567220260409596 a001 7778742049/4870847*2537720636^(14/15) 9567220260409596 a001 20365011074/4870847*2537720636^(8/9) 9567220260409596 a001 32951280099/4870847*2537720636^(13/15) 9567220260409596 a001 139583862445/4870847*2537720636^(4/5) 9567220260409596 a001 225851433717/4870847*2537720636^(7/9) 9567220260409596 a001 591286729879/4870847*2537720636^(11/15) 9567220260409596 a001 2504730781961/4870847*2537720636^(2/3) 9567220260409596 a001 2178309*2537720636^(3/5) 9567220260409596 a001 1836311903/4870847*45537549124^(15/17) 9567220260409596 a001 1836311903/4870847*312119004989^(9/11) 9567220260409596 a001 1836311903/4870847*14662949395604^(5/7) 9567220260409596 a001 1836311903/4870847*192900153618^(5/6) 9567220260409596 a001 1836311903/4870847*28143753123^(9/10) 9567220260409596 a001 1836311903/4870847*10749957122^(15/16) 9567220260409596 a001 225851433717/4870847*17393796001^(5/7) 9567220260409596 a001 6557470319842/4870847*17393796001^(4/7) 9567220260409596 a001 32951280099/4870847*45537549124^(13/17) 9567220260409596 a001 139583862445/4870847*45537549124^(12/17) 9567220260409596 a001 365435296162/4870847*45537549124^(2/3) 9567220260409596 a001 591286729879/4870847*45537549124^(11/17) 9567220260409596 a001 2504730781961/4870847*45537549124^(10/17) 9567220260409596 a001 2178309*45537549124^(9/17) 9567220260409596 a001 32951280099/4870847*14662949395604^(13/21) 9567220260409596 a001 32951280099/4870847*192900153618^(13/18) 9567220260409596 a001 32951280099/4870847*73681302247^(3/4) 9567220260409596 a001 225851433717/4870847*312119004989^(7/11) 9567220260409596 a001 591286729879/4870847*312119004989^(3/5) 9567220260409596 a001 2504730781961/4870847*312119004989^(6/11) 9567220260409596 a001 225851433717/4870847*14662949395604^(5/9) 9567220260409596 a001 591286729879/4870847*817138163596^(11/19) 9567220260409596 a001 2178309*817138163596^(9/19) 9567220260409596 a001 1548008755920/4870847*9062201101803^(1/2) 9567220260409596 a001 2178309*14662949395604^(3/7) 9567220260409596 a001 956722026041/4870847*23725150497407^(1/2) 9567220260409596 a001 4052739537881/4870847*1322157322203^(1/2) 9567220260409596 a001 6557470319842/4870847*505019158607^(1/2) 9567220260409596 a001 139583862445/4870847*14662949395604^(4/7) 9567220260409596 a001 139583862445/4870847*505019158607^(9/14) 9567220260409596 a001 2178309*192900153618^(1/2) 9567220260409596 a001 2504730781961/4870847*192900153618^(5/9) 9567220260409596 a001 591286729879/4870847*192900153618^(11/18) 9567220260409596 a001 139583862445/4870847*192900153618^(2/3) 9567220260409596 a001 53316291173/4870847*817138163596^(2/3) 9567220260409596 a001 6557470319842/4870847*73681302247^(7/13) 9567220260409596 a001 956722026041/4870847*73681302247^(8/13) 9567220260409596 a001 139583862445/4870847*73681302247^(9/13) 9567220260409596 a001 7778742049/4870847*17393796001^(6/7) 9567220260409596 a001 20365011074/4870847*312119004989^(8/11) 9567220260409596 a001 20365011074/4870847*23725150497407^(5/8) 9567220260409596 a001 20365011074/4870847*73681302247^(10/13) 9567220260409596 a001 2504730781961/4870847*28143753123^(3/5) 9567220260409596 a001 225851433717/4870847*28143753123^(7/10) 9567220260409596 a001 20365011074/4870847*28143753123^(4/5) 9567220260409596 a001 7778742049/4870847*45537549124^(14/17) 9567220260409596 a001 7778742049/4870847*817138163596^(14/19) 9567220260409596 a001 7778742049/4870847*14662949395604^(2/3) 9567220260409596 a001 7778742049/4870847*505019158607^(3/4) 9567220260409596 a001 7778742049/4870847*192900153618^(7/9) 9567220260409596 a001 2178309*10749957122^(9/16) 9567220260409596 a001 6557470319842/4870847*10749957122^(7/12) 9567220260409596 a001 2504730781961/4870847*10749957122^(5/8) 9567220260409596 a001 956722026041/4870847*10749957122^(2/3) 9567220260409596 a001 591286729879/4870847*10749957122^(11/16) 9567220260409596 a001 365435296162/4870847*10749957122^(17/24) 9567220260409596 a001 139583862445/4870847*10749957122^(3/4) 9567220260409596 a001 32951280099/4870847*10749957122^(13/16) 9567220260409596 a001 53316291173/4870847*10749957122^(19/24) 9567220260409596 a001 20365011074/4870847*10749957122^(5/6) 9567220260409596 a001 7778742049/4870847*10749957122^(7/8) 9567220260409596 a001 2971215073/4870847*312119004989^(4/5) 9567220260409596 a001 2971215073/4870847*23725150497407^(11/16) 9567220260409596 a001 2971215073/4870847*73681302247^(11/13) 9567220260409596 a001 2971215073/4870847*10749957122^(11/12) 9567220260409596 a001 6557470319842/4870847*4106118243^(14/23) 9567220260409596 a001 2504730781961/4870847*4106118243^(15/23) 9567220260409596 a001 956722026041/4870847*4106118243^(16/23) 9567220260409596 a001 365435296162/4870847*4106118243^(17/23) 9567220260409596 a001 139583862445/4870847*4106118243^(18/23) 9567220260409596 a001 53316291173/4870847*4106118243^(19/23) 9567220260409596 a001 20365011074/4870847*4106118243^(20/23) 9567220260409596 a001 7778742049/4870847*4106118243^(21/23) 9567220260409596 a001 2971215073/4870847*4106118243^(22/23) 9567220260409596 a001 1134903170/4870847*10749957122^(23/24) 9567220260409596 a001 6557470319842/4870847*1568397607^(7/11) 9567220260409596 a001 2504730781961/4870847*1568397607^(15/22) 9567220260409596 a001 956722026041/4870847*1568397607^(8/11) 9567220260409596 a001 591286729879/4870847*1568397607^(3/4) 9567220260409596 a001 365435296162/4870847*1568397607^(17/22) 9567220260409596 a001 139583862445/4870847*1568397607^(9/11) 9567220260409596 a001 53316291173/4870847*1568397607^(19/22) 9567220260409596 a001 20365011074/4870847*1568397607^(10/11) 9567220260409596 a001 7778742049/4870847*1568397607^(21/22) 9567220260409596 a001 433494437/4870847*45537549124^(16/17) 9567220260409596 a001 433494437/4870847*14662949395604^(16/21) 9567220260409596 a001 433494437/4870847*192900153618^(8/9) 9567220260409596 a001 433494437/4870847*73681302247^(12/13) 9567220260409596 a001 2178309*599074578^(9/14) 9567220260409596 a001 6557470319842/4870847*599074578^(2/3) 9567220260409596 a001 2504730781961/4870847*599074578^(5/7) 9567220260409596 a001 956722026041/4870847*599074578^(16/21) 9567220260409596 a001 591286729879/4870847*599074578^(11/14) 9567220260409596 a001 365435296162/4870847*599074578^(17/21) 9567220260409596 a001 225851433717/4870847*599074578^(5/6) 9567220260409596 a001 139583862445/4870847*599074578^(6/7) 9567220260409596 a001 53316291173/4870847*599074578^(19/21) 9567220260409596 a001 32951280099/4870847*599074578^(13/14) 9567220260409596 a001 20365011074/4870847*599074578^(20/21) 9567220260409596 a001 165580141/4870847*312119004989^(10/11) 9567220260409596 a001 165580141/4870847*3461452808002^(5/6) 9567220260409596 a001 6557470319842/4870847*228826127^(7/10) 9567220260409596 a001 2504730781961/4870847*228826127^(3/4) 9567220260409596 a001 956722026041/4870847*228826127^(4/5) 9567220260409596 a001 365435296162/4870847*228826127^(17/20) 9567220260409596 a001 225851433717/4870847*228826127^(7/8) 9567220260409596 a001 139583862445/4870847*228826127^(9/10) 9567220260409596 a001 53316291173/4870847*228826127^(19/20) 9567220260409597 a001 63245986/4870847*23725150497407^(13/16) 9567220260409597 a001 63245986/4870847*505019158607^(13/14) 9567220260409597 a001 6557470319842/4870847*87403803^(14/19) 9567220260409597 a001 2504730781961/4870847*87403803^(15/19) 9567220260409597 a001 956722026041/4870847*87403803^(16/19) 9567220260409597 a001 365435296162/4870847*87403803^(17/19) 9567220260409597 a001 139583862445/4870847*87403803^(18/19) 9567220260409600 a001 24157817/4870847*14662949395604^(6/7) 9567220260409603 a001 2178309*33385282^(3/4) 9567220260409603 a001 6557470319842/4870847*33385282^(7/9) 9567220260409603 a001 2504730781961/4870847*33385282^(5/6) 9567220260409604 a001 956722026041/4870847*33385282^(8/9) 9567220260409604 a001 591286729879/4870847*33385282^(11/12) 9567220260409604 a001 365435296162/4870847*33385282^(17/18) 9567220260409605 a001 140041143283771639/146376 9567220260409619 a001 9227465/4870847*14662949395604^(8/9) 9567220260409631 a001 3278735159921/930249*1860498^(13/15) 9567220260409645 a001 6557470319842/4870847*12752043^(14/17) 9567220260409648 a001 2504730781961/4870847*12752043^(15/17) 9567220260409652 a001 956722026041/4870847*12752043^(16/17) 9567220260409655 a001 5456077604922683949/5702887 9567220260409723 a001 4052739537881/1860498*1860498^(9/10) 9567220260409750 a001 2178309/7881196*14662949395604^(20/21) 9567220260409787 a001 3372041405099460673/3524578 9567220260409801 a001 6557470319842/12752043*7881196^(10/11) 9567220260409815 a001 2504730781961/1860498*1860498^(14/15) 9567220260409837 a001 1686020702549739192/1762289 9567220260409844 a001 1686020702549740484/1762289 9567220260409845 a001 3372041405099481345/3524578 9567220260409845 a001 1686020702549740700/1762289 9567220260409845 a001 18944052837637536/19801 9567220260409845 a001 3372041405099481409/3524578 9567220260409845 a001 1686020702549740705/1762289 9567220260409845 a001 3372041405099481413/3524578 9567220260409846 a001 1686020702549740717/1762289 9567220260409846 a001 1686020702549740789/1762289 9567220260409849 a001 37888105675275085/39602 9567220260409868 a001 1686020702549744665/1762289 9567220260409882 a001 10610209857723/20633239*7881196^(10/11) 9567220260409918 a001 1765623802004468208/1845493 9567220260409921 a001 6557470319842/12752043*20633239^(6/7) 9567220260409932 a001 4976784/4250681*14662949395604^(19/21) 9567220260409937 a001 23112315624967562447/24157817 9567220260409939 a001 39088169/12752043*3461452808002^(11/12) 9567220260409940 a001 60508827864880346301/63245986 9567220260409940 a001 365435296162/12752043*141422324^(12/13) 9567220260409940 a001 516002918640/4250681*141422324^(11/13) 9567220260409940 a001 6557470319842/12752043*141422324^(10/13) 9567220260409941 a001 267914296/12752043*817138163596^(17/19) 9567220260409941 a001 267914296/12752043*14662949395604^(17/21) 9567220260409941 a001 267914296/12752043*192900153618^(17/18) 9567220260409941 a001 233802911/4250681*14662949395604^(7/9) 9567220260409941 a001 233802911/4250681*505019158607^(7/8) 9567220260409941 a001 20365011074/12752043*2537720636^(14/15) 9567220260409941 a001 53316291173/12752043*2537720636^(8/9) 9567220260409941 a001 86267571272/12752043*2537720636^(13/15) 9567220260409941 a001 365435296162/12752043*2537720636^(4/5) 9567220260409941 a001 591286729879/12752043*2537720636^(7/9) 9567220260409941 a001 516002918640/4250681*2537720636^(11/15) 9567220260409941 a001 6557470319842/12752043*2537720636^(2/3) 9567220260409941 a001 1602508992/4250681*45537549124^(15/17) 9567220260409941 a001 1602508992/4250681*312119004989^(9/11) 9567220260409941 a001 1602508992/4250681*14662949395604^(5/7) 9567220260409941 a001 1602508992/4250681*192900153618^(5/6) 9567220260409941 a001 1602508992/4250681*28143753123^(9/10) 9567220260409941 a001 591286729879/12752043*17393796001^(5/7) 9567220260409941 a001 20365011074/12752043*17393796001^(6/7) 9567220260409941 a001 1602508992/4250681*10749957122^(15/16) 9567220260409941 a001 86267571272/12752043*45537549124^(13/17) 9567220260409941 a001 365435296162/12752043*45537549124^(12/17) 9567220260409941 a001 956722026041/12752043*45537549124^(2/3) 9567220260409941 a001 516002918640/4250681*45537549124^(11/17) 9567220260409941 a001 6557470319842/12752043*45537549124^(10/17) 9567220260409941 a001 86267571272/12752043*14662949395604^(13/21) 9567220260409941 a001 591286729879/12752043*312119004989^(7/11) 9567220260409941 a001 516002918640/4250681*312119004989^(3/5) 9567220260409941 a001 6557470319842/12752043*312119004989^(6/11) 9567220260409941 a001 516002918640/4250681*817138163596^(11/19) 9567220260409941 a001 591286729879/12752043*14662949395604^(5/9) 9567220260409941 a001 516002918640/4250681*14662949395604^(11/21) 9567220260409941 a001 4052739537881/12752043*9062201101803^(1/2) 9567220260409941 a001 2504730781961/12752043*23725150497407^(1/2) 9567220260409941 a001 3536736619241/4250681*1322157322203^(1/2) 9567220260409941 a001 365435296162/12752043*14662949395604^(4/7) 9567220260409941 a001 2504730781961/12752043*505019158607^(4/7) 9567220260409941 a001 139583862445/12752043*817138163596^(2/3) 9567220260409941 a001 516002918640/4250681*192900153618^(11/18) 9567220260409941 a001 365435296162/12752043*192900153618^(2/3) 9567220260409941 a001 53316291173/12752043*312119004989^(8/11) 9567220260409941 a001 53316291173/12752043*23725150497407^(5/8) 9567220260409941 a001 20365011074/12752043*45537549124^(14/17) 9567220260409941 a001 86267571272/12752043*73681302247^(3/4) 9567220260409941 a001 2504730781961/12752043*73681302247^(8/13) 9567220260409941 a001 365435296162/12752043*73681302247^(9/13) 9567220260409941 a001 53316291173/12752043*73681302247^(10/13) 9567220260409941 a001 20365011074/12752043*817138163596^(14/19) 9567220260409941 a001 20365011074/12752043*14662949395604^(2/3) 9567220260409941 a001 20365011074/12752043*505019158607^(3/4) 9567220260409941 a001 20365011074/12752043*192900153618^(7/9) 9567220260409941 a001 6557470319842/12752043*28143753123^(3/5) 9567220260409941 a001 591286729879/12752043*28143753123^(7/10) 9567220260409941 a001 53316291173/12752043*28143753123^(4/5) 9567220260409941 a001 7778742049/12752043*312119004989^(4/5) 9567220260409941 a001 7778742049/12752043*23725150497407^(11/16) 9567220260409941 a001 7778742049/12752043*73681302247^(11/13) 9567220260409941 a001 6557470319842/12752043*10749957122^(5/8) 9567220260409941 a001 2504730781961/12752043*10749957122^(2/3) 9567220260409941 a001 516002918640/4250681*10749957122^(11/16) 9567220260409941 a001 956722026041/12752043*10749957122^(17/24) 9567220260409941 a001 365435296162/12752043*10749957122^(3/4) 9567220260409941 a001 139583862445/12752043*10749957122^(19/24) 9567220260409941 a001 86267571272/12752043*10749957122^(13/16) 9567220260409941 a001 53316291173/12752043*10749957122^(5/6) 9567220260409941 a001 20365011074/12752043*10749957122^(7/8) 9567220260409941 a001 7778742049/12752043*10749957122^(11/12) 9567220260409941 a001 2971215073/12752043*10749957122^(23/24) 9567220260409941 a001 6557470319842/12752043*4106118243^(15/23) 9567220260409941 a001 2504730781961/12752043*4106118243^(16/23) 9567220260409941 a001 956722026041/12752043*4106118243^(17/23) 9567220260409941 a001 365435296162/12752043*4106118243^(18/23) 9567220260409941 a001 139583862445/12752043*4106118243^(19/23) 9567220260409941 a001 53316291173/12752043*4106118243^(20/23) 9567220260409941 a001 20365011074/12752043*4106118243^(21/23) 9567220260409941 a001 7778742049/12752043*4106118243^(22/23) 9567220260409941 a001 1134903170/12752043*45537549124^(16/17) 9567220260409941 a001 1134903170/12752043*14662949395604^(16/21) 9567220260409941 a001 1134903170/12752043*192900153618^(8/9) 9567220260409941 a001 1134903170/12752043*73681302247^(12/13) 9567220260409941 a001 6557470319842/12752043*1568397607^(15/22) 9567220260409941 a001 2504730781961/12752043*1568397607^(8/11) 9567220260409941 a001 516002918640/4250681*1568397607^(3/4) 9567220260409941 a001 956722026041/12752043*1568397607^(17/22) 9567220260409941 a001 365435296162/12752043*1568397607^(9/11) 9567220260409941 a001 139583862445/12752043*1568397607^(19/22) 9567220260409941 a001 53316291173/12752043*1568397607^(10/11) 9567220260409941 a001 20365011074/12752043*1568397607^(21/22) 9567220260409941 a001 433494437/12752043*312119004989^(10/11) 9567220260409941 a001 433494437/12752043*3461452808002^(5/6) 9567220260409941 a001 6557470319842/12752043*599074578^(5/7) 9567220260409941 a001 2504730781961/12752043*599074578^(16/21) 9567220260409941 a001 516002918640/4250681*599074578^(11/14) 9567220260409941 a001 956722026041/12752043*599074578^(17/21) 9567220260409941 a001 591286729879/12752043*599074578^(5/6) 9567220260409941 a001 365435296162/12752043*599074578^(6/7) 9567220260409941 a001 139583862445/12752043*599074578^(19/21) 9567220260409941 a001 86267571272/12752043*599074578^(13/14) 9567220260409941 a001 53316291173/12752043*599074578^(20/21) 9567220260409941 a001 165580141/12752043*23725150497407^(13/16) 9567220260409941 a001 165580141/12752043*505019158607^(13/14) 9567220260409941 a001 6557470319842/12752043*228826127^(3/4) 9567220260409941 a001 2504730781961/12752043*228826127^(4/5) 9567220260409941 a001 956722026041/12752043*228826127^(17/20) 9567220260409941 a001 591286729879/12752043*228826127^(7/8) 9567220260409941 a001 365435296162/12752043*228826127^(9/10) 9567220260409941 a001 139583862445/12752043*228826127^(19/20) 9567220260409941 a001 63245986/12752043*14662949395604^(6/7) 9567220260409942 a001 6557470319842/12752043*87403803^(15/19) 9567220260409942 a001 2504730781961/12752043*87403803^(16/19) 9567220260409942 a001 956722026041/12752043*87403803^(17/19) 9567220260409942 a001 365435296162/12752043*87403803^(18/19) 9567220260409942 a001 37396512239912783854/39088169 9567220260409944 a001 24157817/12752043*14662949395604^(8/9) 9567220260409948 a001 6557470319842/12752043*33385282^(5/6) 9567220260409948 a001 2504730781961/12752043*33385282^(8/9) 9567220260409949 a001 516002918640/4250681*33385282^(11/12) 9567220260409949 a001 956722026041/12752043*33385282^(17/18) 9567220260409949 a001 6557470319842/4870847*4870847^(7/8) 9567220260409949 a001 14284196614945221407/14930352 9567220260409963 a001 5702887/20633239*14662949395604^(20/21) 9567220260409968 a001 8828119010022387408/9227465 9567220260409974 a001 2504730781961/4870847*4870847^(15/16) 9567220260409976 a001 679086077694030321/709805 9567220260409977 a001 1765623802004479032/1845493 9567220260409977 a001 679086077694030408/709805 9567220260409977 a001 1765623802004479065/1845493 9567220260409977 a001 8828119010022395328/9227465 9567220260409977 a001 8828119010022395329/9227465 9567220260409977 a001 135817215538806082/141961 9567220260409977 a001 8828119010022395338/9227465 9567220260409977 a001 8828119010022395393/9227465 9567220260409978 a001 1765623802004479154/1845493 9567220260409980 a001 8828119010022398354/9227465 9567220260409988 a001 23112315624967683840/24157817 9567220260409990 a001 39088169/33385282*14662949395604^(19/21) 9567220260409990 a001 30254413932440332056/31622993 9567220260409990 a001 956722026041/33385282*141422324^(12/13) 9567220260409991 a001 4052739537881/33385282*141422324^(11/13) 9567220260409991 a001 14619165/4769326*3461452808002^(11/12) 9567220260409991 a001 158414167969674308496/165580141 9567220260409991 a001 701408733/33385282*817138163596^(17/19) 9567220260409991 a001 701408733/33385282*14662949395604^(17/21) 9567220260409991 a001 701408733/33385282*192900153618^(17/18) 9567220260409991 a001 53316291173/33385282*2537720636^(14/15) 9567220260409991 a001 139583862445/33385282*2537720636^(8/9) 9567220260409991 a001 32264490531/4769326*2537720636^(13/15) 9567220260409991 a001 956722026041/33385282*2537720636^(4/5) 9567220260409991 a001 774004377960/16692641*2537720636^(7/9) 9567220260409991 a001 4052739537881/33385282*2537720636^(11/15) 9567220260409991 a001 1836311903/33385282*14662949395604^(7/9) 9567220260409991 a001 1836311903/33385282*505019158607^(7/8) 9567220260409991 a001 53316291173/33385282*17393796001^(6/7) 9567220260409991 a001 774004377960/16692641*17393796001^(5/7) 9567220260409991 a001 12586269025/33385282*45537549124^(15/17) 9567220260409991 a001 12586269025/33385282*312119004989^(9/11) 9567220260409991 a001 12586269025/33385282*14662949395604^(5/7) 9567220260409991 a001 12586269025/33385282*192900153618^(5/6) 9567220260409991 a001 32264490531/4769326*45537549124^(13/17) 9567220260409991 a001 956722026041/33385282*45537549124^(12/17) 9567220260409991 a001 53316291173/33385282*45537549124^(14/17) 9567220260409991 a001 2504730781961/33385282*45537549124^(2/3) 9567220260409991 a001 4052739537881/33385282*45537549124^(11/17) 9567220260409991 a001 12586269025/33385282*28143753123^(9/10) 9567220260409991 a001 774004377960/16692641*312119004989^(7/11) 9567220260409991 a001 32264490531/4769326*14662949395604^(13/21) 9567220260409991 a001 1515744265389/4769326*9062201101803^(1/2) 9567220260409991 a001 3278735159921/16692641*23725150497407^(1/2) 9567220260409991 a001 956722026041/33385282*14662949395604^(4/7) 9567220260409991 a001 182717648081/16692641*817138163596^(2/3) 9567220260409991 a001 956722026041/33385282*505019158607^(9/14) 9567220260409991 a001 139583862445/33385282*312119004989^(8/11) 9567220260409991 a001 139583862445/33385282*23725150497407^(5/8) 9567220260409991 a001 32264490531/4769326*192900153618^(13/18) 9567220260409991 a001 4052739537881/33385282*192900153618^(11/18) 9567220260409991 a001 53316291173/33385282*817138163596^(14/19) 9567220260409991 a001 53316291173/33385282*14662949395604^(2/3) 9567220260409991 a001 53316291173/33385282*505019158607^(3/4) 9567220260409991 a001 53316291173/33385282*192900153618^(7/9) 9567220260409991 a001 3278735159921/16692641*73681302247^(8/13) 9567220260409991 a001 956722026041/33385282*73681302247^(9/13) 9567220260409991 a001 32264490531/4769326*73681302247^(3/4) 9567220260409991 a001 139583862445/33385282*73681302247^(10/13) 9567220260409991 a001 10182505537/16692641*312119004989^(4/5) 9567220260409991 a001 10182505537/16692641*23725150497407^(11/16) 9567220260409991 a001 10182505537/16692641*73681302247^(11/13) 9567220260409991 a001 774004377960/16692641*28143753123^(7/10) 9567220260409991 a001 139583862445/33385282*28143753123^(4/5) 9567220260409991 a001 3278735159921/16692641*10749957122^(2/3) 9567220260409991 a001 4052739537881/33385282*10749957122^(11/16) 9567220260409991 a001 2504730781961/33385282*10749957122^(17/24) 9567220260409991 a001 956722026041/33385282*10749957122^(3/4) 9567220260409991 a001 12586269025/33385282*10749957122^(15/16) 9567220260409991 a001 182717648081/16692641*10749957122^(19/24) 9567220260409991 a001 32264490531/4769326*10749957122^(13/16) 9567220260409991 a001 139583862445/33385282*10749957122^(5/6) 9567220260409991 a001 53316291173/33385282*10749957122^(7/8) 9567220260409991 a001 10182505537/16692641*10749957122^(11/12) 9567220260409991 a001 7778742049/33385282*10749957122^(23/24) 9567220260409991 a001 2971215073/33385282*45537549124^(16/17) 9567220260409991 a001 2971215073/33385282*14662949395604^(16/21) 9567220260409991 a001 2971215073/33385282*192900153618^(8/9) 9567220260409991 a001 2971215073/33385282*73681302247^(12/13) 9567220260409991 a001 3278735159921/16692641*4106118243^(16/23) 9567220260409991 a001 2504730781961/33385282*4106118243^(17/23) 9567220260409991 a001 956722026041/33385282*4106118243^(18/23) 9567220260409991 a001 182717648081/16692641*4106118243^(19/23) 9567220260409991 a001 139583862445/33385282*4106118243^(20/23) 9567220260409991 a001 53316291173/33385282*4106118243^(21/23) 9567220260409991 a001 10182505537/16692641*4106118243^(22/23) 9567220260409991 a001 567451585/16692641*312119004989^(10/11) 9567220260409991 a001 567451585/16692641*3461452808002^(5/6) 9567220260409991 a001 3278735159921/16692641*1568397607^(8/11) 9567220260409991 a001 4052739537881/33385282*1568397607^(3/4) 9567220260409991 a001 2504730781961/33385282*1568397607^(17/22) 9567220260409991 a001 956722026041/33385282*1568397607^(9/11) 9567220260409991 a001 182717648081/16692641*1568397607^(19/22) 9567220260409991 a001 139583862445/33385282*1568397607^(10/11) 9567220260409991 a001 53316291173/33385282*1568397607^(21/22) 9567220260409991 a001 433494437/33385282*23725150497407^(13/16) 9567220260409991 a001 433494437/33385282*505019158607^(13/14) 9567220260409991 a001 3278735159921/16692641*599074578^(16/21) 9567220260409991 a001 4052739537881/33385282*599074578^(11/14) 9567220260409991 a001 2504730781961/33385282*599074578^(17/21) 9567220260409991 a001 774004377960/16692641*599074578^(5/6) 9567220260409991 a001 956722026041/33385282*599074578^(6/7) 9567220260409991 a001 182717648081/16692641*599074578^(19/21) 9567220260409991 a001 32264490531/4769326*599074578^(13/14) 9567220260409991 a001 139583862445/33385282*599074578^(20/21) 9567220260409991 a001 165580141/33385282*14662949395604^(6/7) 9567220260409991 a001 3278735159921/16692641*228826127^(4/5) 9567220260409991 a001 2504730781961/33385282*228826127^(17/20) 9567220260409991 a001 774004377960/16692641*228826127^(7/8) 9567220260409991 a001 956722026041/33385282*228826127^(9/10) 9567220260409991 a001 182717648081/16692641*228826127^(19/20) 9567220260409991 a001 32635113368264548128/34111385 9567220260409991 a001 31622993/16692641*14662949395604^(8/9) 9567220260409992 a001 3278735159921/16692641*87403803^(16/19) 9567220260409992 a001 2504730781961/33385282*87403803^(17/19) 9567220260409992 a001 956722026041/33385282*87403803^(18/19) 9567220260409992 a001 37396512239912980272/39088169 9567220260409993 a001 6557470319842/12752043*12752043^(15/17) 9567220260409994 a001 14930352/54018521*14662949395604^(20/21) 9567220260409995 a001 23112315624967701551/24157817 9567220260409996 a001 23112315624967704135/24157817 9567220260409996 a001 2504730781961/12752043*12752043^(16/17) 9567220260409996 a001 23112315624967704512/24157817 9567220260409996 a001 23112315624967704567/24157817 9567220260409996 a001 23112315624967704575/24157817 9567220260409996 a001 23112315624967704576/24157817 9567220260409996 a001 23112315624967704577/24157817 9567220260409996 a001 23112315624967704580/24157817 9567220260409996 a001 23112315624967704601/24157817 9567220260409996 a001 23112315624967704745/24157817 9567220260409997 a001 23112315624967705732/24157817 9567220260409998 a001 30254413932440355240/31622993 9567220260409998 a001 2504730781961/87403803*141422324^(12/13) 9567220260409998 a001 3536736619241/29134601*141422324^(11/13) 9567220260409998 a001 34111385/29134601*14662949395604^(19/21) 9567220260409998 a001 158414167969674429889/165580141 9567220260409998 a001 267914296/87403803*3461452808002^(11/12) 9567220260409998 a001 414733676044142579187/433494437 9567220260409998 a001 139583862445/87403803*2537720636^(14/15) 9567220260409998 a001 365435296162/87403803*2537720636^(8/9) 9567220260409998 a001 591286729879/87403803*2537720636^(13/15) 9567220260409998 a001 2504730781961/87403803*2537720636^(4/5) 9567220260409998 a001 4052739537881/87403803*2537720636^(7/9) 9567220260409998 a001 3536736619241/29134601*2537720636^(11/15) 9567220260409998 a001 1836311903/87403803*817138163596^(17/19) 9567220260409998 a001 1836311903/87403803*14662949395604^(17/21) 9567220260409998 a001 1836311903/87403803*192900153618^(17/18) 9567220260409998 a001 1602508992/29134601*14662949395604^(7/9) 9567220260409998 a001 1602508992/29134601*505019158607^(7/8) 9567220260409998 a001 139583862445/87403803*17393796001^(6/7) 9567220260409998 a001 4052739537881/87403803*17393796001^(5/7) 9567220260409998 a001 10983760033/29134601*45537549124^(15/17) 9567220260409998 a001 139583862445/87403803*45537549124^(14/17) 9567220260409998 a001 591286729879/87403803*45537549124^(13/17) 9567220260409998 a001 2504730781961/87403803*45537549124^(12/17) 9567220260409998 a001 6557470319842/87403803*45537549124^(2/3) 9567220260409998 a001 3536736619241/29134601*45537549124^(11/17) 9567220260409998 a001 10983760033/29134601*312119004989^(9/11) 9567220260409998 a001 10983760033/29134601*14662949395604^(5/7) 9567220260409998 a001 10983760033/29134601*192900153618^(5/6) 9567220260409998 a001 3536736619241/29134601*312119004989^(3/5) 9567220260409998 a001 365435296162/87403803*312119004989^(8/11) 9567220260409998 a001 956722026041/87403803*817138163596^(2/3) 9567220260409998 a001 591286729879/87403803*14662949395604^(13/21) 9567220260409998 a001 3536736619241/29134601*14662949395604^(11/21) 9567220260409998 a001 2504730781961/87403803*14662949395604^(4/7) 9567220260409998 a001 4052739537881/87403803*505019158607^(5/8) 9567220260409998 a001 2504730781961/87403803*505019158607^(9/14) 9567220260409998 a001 139583862445/87403803*817138163596^(14/19) 9567220260409998 a001 139583862445/87403803*14662949395604^(2/3) 9567220260409998 a001 139583862445/87403803*505019158607^(3/4) 9567220260409998 a001 139583862445/87403803*192900153618^(7/9) 9567220260409998 a001 53316291173/87403803*312119004989^(4/5) 9567220260409998 a001 53316291173/87403803*23725150497407^(11/16) 9567220260409998 a001 2504730781961/87403803*73681302247^(9/13) 9567220260409998 a001 591286729879/87403803*73681302247^(3/4) 9567220260409998 a001 365435296162/87403803*73681302247^(10/13) 9567220260409998 a001 53316291173/87403803*73681302247^(11/13) 9567220260409998 a001 4052739537881/87403803*28143753123^(7/10) 9567220260409998 a001 10983760033/29134601*28143753123^(9/10) 9567220260409998 a001 365435296162/87403803*28143753123^(4/5) 9567220260409998 a001 7778742049/87403803*45537549124^(16/17) 9567220260409998 a001 7778742049/87403803*14662949395604^(16/21) 9567220260409998 a001 7778742049/87403803*192900153618^(8/9) 9567220260409998 a001 7778742049/87403803*73681302247^(12/13) 9567220260409998 a001 3536736619241/29134601*10749957122^(11/16) 9567220260409998 a001 6557470319842/87403803*10749957122^(17/24) 9567220260409998 a001 2504730781961/87403803*10749957122^(3/4) 9567220260409998 a001 956722026041/87403803*10749957122^(19/24) 9567220260409998 a001 591286729879/87403803*10749957122^(13/16) 9567220260409998 a001 365435296162/87403803*10749957122^(5/6) 9567220260409998 a001 139583862445/87403803*10749957122^(7/8) 9567220260409998 a001 10983760033/29134601*10749957122^(15/16) 9567220260409998 a001 53316291173/87403803*10749957122^(11/12) 9567220260409998 a001 20365011074/87403803*10749957122^(23/24) 9567220260409998 a001 2971215073/87403803*312119004989^(10/11) 9567220260409998 a001 2971215073/87403803*3461452808002^(5/6) 9567220260409998 a001 6557470319842/87403803*4106118243^(17/23) 9567220260409998 a001 2504730781961/87403803*4106118243^(18/23) 9567220260409998 a001 956722026041/87403803*4106118243^(19/23) 9567220260409998 a001 365435296162/87403803*4106118243^(20/23) 9567220260409998 a001 139583862445/87403803*4106118243^(21/23) 9567220260409998 a001 53316291173/87403803*4106118243^(22/23) 9567220260409998 a001 1134903170/87403803*23725150497407^(13/16) 9567220260409998 a001 1134903170/87403803*505019158607^(13/14) 9567220260409998 a001 3536736619241/29134601*1568397607^(3/4) 9567220260409998 a001 6557470319842/87403803*1568397607^(17/22) 9567220260409998 a001 2504730781961/87403803*1568397607^(9/11) 9567220260409998 a001 956722026041/87403803*1568397607^(19/22) 9567220260409998 a001 365435296162/87403803*1568397607^(10/11) 9567220260409998 a001 139583862445/87403803*1568397607^(21/22) 9567220260409998 a001 433494437/87403803*14662949395604^(6/7) 9567220260409998 a001 3536736619241/29134601*599074578^(11/14) 9567220260409998 a001 6557470319842/87403803*599074578^(17/21) 9567220260409998 a001 4052739537881/87403803*599074578^(5/6) 9567220260409998 a001 2504730781961/87403803*599074578^(6/7) 9567220260409998 a001 956722026041/87403803*599074578^(19/21) 9567220260409998 a001 591286729879/87403803*599074578^(13/14) 9567220260409998 a001 365435296162/87403803*599074578^(20/21) 9567220260409998 a001 23416728309379513/24476 9567220260409998 a001 165580141/87403803*14662949395604^(8/9) 9567220260409998 a001 6557470319842/87403803*228826127^(17/20) 9567220260409998 a001 4052739537881/87403803*228826127^(7/8) 9567220260409998 a001 2504730781961/87403803*228826127^(9/10) 9567220260409998 a001 956722026041/87403803*228826127^(19/20) 9567220260409998 a001 97905340104793719409/102334155 9567220260409999 a001 3278735159921/16692641*33385282^(8/9) 9567220260409999 a001 39088169/141422324*14662949395604^(20/21) 9567220260409999 a001 4052739537881/33385282*33385282^(11/12) 9567220260409999 a001 60508827864880717245/63245986 9567220260409999 a001 6557470319842/228826127*141422324^(12/13) 9567220260409999 a001 30254413932440359116/31622993 9567220260409999 a001 30254413932440359188/31622993 9567220260409999 a001 259694540192621109/271442 9567220260409999 a001 30254413932440359200/31622993 9567220260409999 a001 60508827864880718401/63245986 9567220260409999 a001 30254413932440359201/31622993 9567220260409999 a001 2504730781961/33385282*33385282^(17/18) 9567220260409999 a001 30254413932440359205/31622993 9567220260409999 a001 60508827864880718465/63245986 9567220260409999 a001 30254413932440359421/31622993 9567220260409999 a001 10610209857723/370248451*141422324^(12/13) 9567220260409999 a001 158414167969674447600/165580141 9567220260409999 a001 267914296/228826127*14662949395604^(19/21) 9567220260409999 a001 414733676044142625555/433494437 9567220260409999 a001 701408733/228826127*3461452808002^(11/12) 9567220260409999 a001 217157372032550685813/226980634 9567220260409999 a001 365435296162/228826127*2537720636^(14/15) 9567220260409999 a001 956722026041/228826127*2537720636^(8/9) 9567220260409999 a001 1548008755920/228826127*2537720636^(13/15) 9567220260409999 a001 6557470319842/228826127*2537720636^(4/5) 9567220260409999 a001 225749145909/4868641*2537720636^(7/9) 9567220260409999 a001 102287808/4868641*817138163596^(17/19) 9567220260409999 a001 102287808/4868641*14662949395604^(17/21) 9567220260409999 a001 102287808/4868641*192900153618^(17/18) 9567220260409999 a001 365435296162/228826127*17393796001^(6/7) 9567220260409999 a001 225749145909/4868641*17393796001^(5/7) 9567220260409999 a001 12586269025/228826127*14662949395604^(7/9) 9567220260409999 a001 12586269025/228826127*505019158607^(7/8) 9567220260409999 a001 86267571272/228826127*45537549124^(15/17) 9567220260409999 a001 365435296162/228826127*45537549124^(14/17) 9567220260409999 a001 1548008755920/228826127*45537549124^(13/17) 9567220260409999 a001 6557470319842/228826127*45537549124^(12/17) 9567220260409999 a001 86267571272/228826127*312119004989^(9/11) 9567220260409999 a001 86267571272/228826127*14662949395604^(5/7) 9567220260409999 a001 956722026041/228826127*312119004989^(8/11) 9567220260409999 a001 225749145909/4868641*312119004989^(7/11) 9567220260409999 a001 86267571272/228826127*192900153618^(5/6) 9567220260409999 a001 2504730781961/228826127*817138163596^(2/3) 9567220260409999 a001 1548008755920/228826127*14662949395604^(13/21) 9567220260409999 a001 225749145909/4868641*14662949395604^(5/9) 9567220260409999 a001 365435296162/228826127*817138163596^(14/19) 9567220260409999 a001 365435296162/228826127*14662949395604^(2/3) 9567220260409999 a001 139583862445/228826127*312119004989^(4/5) 9567220260409999 a001 225749145909/4868641*505019158607^(5/8) 9567220260409999 a001 365435296162/228826127*505019158607^(3/4) 9567220260409999 a001 139583862445/228826127*23725150497407^(11/16) 9567220260409999 a001 6557470319842/228826127*192900153618^(2/3) 9567220260409999 a001 1548008755920/228826127*192900153618^(13/18) 9567220260409999 a001 365435296162/228826127*192900153618^(7/9) 9567220260409999 a001 20365011074/228826127*45537549124^(16/17) 9567220260409999 a001 6557470319842/228826127*73681302247^(9/13) 9567220260409999 a001 1548008755920/228826127*73681302247^(3/4) 9567220260409999 a001 956722026041/228826127*73681302247^(10/13) 9567220260409999 a001 139583862445/228826127*73681302247^(11/13) 9567220260409999 a001 20365011074/228826127*14662949395604^(16/21) 9567220260409999 a001 20365011074/228826127*192900153618^(8/9) 9567220260409999 a001 20365011074/228826127*73681302247^(12/13) 9567220260409999 a001 225749145909/4868641*28143753123^(7/10) 9567220260409999 a001 956722026041/228826127*28143753123^(4/5) 9567220260409999 a001 86267571272/228826127*28143753123^(9/10) 9567220260409999 a001 7778742049/228826127*312119004989^(10/11) 9567220260409999 a001 7778742049/228826127*3461452808002^(5/6) 9567220260409999 a001 6557470319842/228826127*10749957122^(3/4) 9567220260409999 a001 2504730781961/228826127*10749957122^(19/24) 9567220260409999 a001 1548008755920/228826127*10749957122^(13/16) 9567220260409999 a001 956722026041/228826127*10749957122^(5/6) 9567220260409999 a001 365435296162/228826127*10749957122^(7/8) 9567220260409999 a001 139583862445/228826127*10749957122^(11/12) 9567220260409999 a001 86267571272/228826127*10749957122^(15/16) 9567220260409999 a001 53316291173/228826127*10749957122^(23/24) 9567220260409999 a001 2971215073/228826127*23725150497407^(13/16) 9567220260409999 a001 2971215073/228826127*505019158607^(13/14) 9567220260409999 a001 6557470319842/228826127*4106118243^(18/23) 9567220260409999 a001 2504730781961/228826127*4106118243^(19/23) 9567220260409999 a001 956722026041/228826127*4106118243^(20/23) 9567220260409999 a001 365435296162/228826127*4106118243^(21/23) 9567220260409999 a001 139583862445/228826127*4106118243^(22/23) 9567220260409999 a001 1134903170/228826127*14662949395604^(6/7) 9567220260409999 a001 6557470319842/228826127*1568397607^(9/11) 9567220260409999 a001 2504730781961/228826127*1568397607^(19/22) 9567220260409999 a001 956722026041/228826127*1568397607^(10/11) 9567220260409999 a001 365435296162/228826127*1568397607^(21/22) 9567220260409999 a001 223684394706203601170/233802911 9567220260409999 a001 433494437/228826127*14662949395604^(8/9) 9567220260409999 a001 225749145909/4868641*599074578^(5/6) 9567220260409999 a001 6557470319842/228826127*599074578^(6/7) 9567220260409999 a001 2504730781961/228826127*599074578^(19/21) 9567220260409999 a001 1548008755920/228826127*599074578^(13/14) 9567220260409999 a001 956722026041/228826127*599074578^(20/21) 9567220260409999 a001 256319508074468177955/267914296 9567220260409999 a001 6557470319842/87403803*87403803^(17/19) 9567220260409999 a001 102334155/370248451*14662949395604^(20/21) 9567220260409999 a001 158414167969674450184/165580141 9567220260409999 a001 158414167969674450561/165580141 9567220260409999 a001 158414167969674450616/165580141 9567220260409999 a001 158414167969674450624/165580141 9567220260409999 a001 158414167969674450625/165580141 9567220260409999 a001 158414167969674450626/165580141 9567220260409999 a001 158414167969674450629/165580141 9567220260409999 a001 158414167969674450650/165580141 9567220260409999 a001 2504730781961/87403803*87403803^(18/19) 9567220260409999 a001 158414167969674450794/165580141 9567220260409999 a001 414733676044142632320/433494437 9567220260409999 a001 233802911/199691526*14662949395604^(19/21) 9567220260409999 a001 542893430081376723388/567451585 9567220260409999 a001 956722026041/599074578*2537720636^(14/15) 9567220260409999 a001 2504730781961/599074578*2537720636^(8/9) 9567220260409999 a001 4052739537881/599074578*2537720636^(13/15) 9567220260409999 a001 1836311903/599074578*3461452808002^(11/12) 9567220260409999 a001 2842626904444117708008/2971215073 9567220260409999 a001 956722026041/599074578*17393796001^(6/7) 9567220260409999 a001 12586269025/599074578*817138163596^(17/19) 9567220260409999 a001 12586269025/599074578*14662949395604^(17/21) 9567220260409999 a001 12586269025/599074578*192900153618^(17/18) 9567220260409999 a001 267913919/710646*45537549124^(15/17) 9567220260409999 a001 956722026041/599074578*45537549124^(14/17) 9567220260409999 a001 53316291173/599074578*45537549124^(16/17) 9567220260409999 a001 4052739537881/599074578*45537549124^(13/17) 9567220260409999 a001 10983760033/199691526*14662949395604^(7/9) 9567220260409999 a001 10983760033/199691526*505019158607^(7/8) 9567220260409999 a001 267913919/710646*312119004989^(9/11) 9567220260409999 a001 2504730781961/599074578*312119004989^(8/11) 9567220260409999 a001 182717648081/299537289*312119004989^(4/5) 9567220260409999 a001 267913919/710646*14662949395604^(5/7) 9567220260409999 a001 3278735159921/299537289*817138163596^(2/3) 9567220260409999 a001 956722026041/599074578*817138163596^(14/19) 9567220260409999 a001 4052739537881/599074578*14662949395604^(13/21) 9567220260409999 a001 2504730781961/599074578*23725150497407^(5/8) 9567220260409999 a001 182717648081/299537289*23725150497407^(11/16) 9567220260409999 a001 267913919/710646*192900153618^(5/6) 9567220260409999 a001 4052739537881/599074578*192900153618^(13/18) 9567220260409999 a001 956722026041/599074578*192900153618^(7/9) 9567220260409999 a001 53316291173/599074578*14662949395604^(16/21) 9567220260409999 a001 53316291173/599074578*192900153618^(8/9) 9567220260409999 a001 4052739537881/599074578*73681302247^(3/4) 9567220260409999 a001 2504730781961/599074578*73681302247^(10/13) 9567220260409999 a001 182717648081/299537289*73681302247^(11/13) 9567220260409999 a001 53316291173/599074578*73681302247^(12/13) 9567220260409999 a001 10182505537/299537289*312119004989^(10/11) 9567220260409999 a001 10182505537/299537289*3461452808002^(5/6) 9567220260409999 a001 2504730781961/599074578*28143753123^(4/5) 9567220260409999 a001 267913919/710646*28143753123^(9/10) 9567220260409999 a001 7778742049/599074578*23725150497407^(13/16) 9567220260409999 a001 7778742049/599074578*505019158607^(13/14) 9567220260409999 a001 3278735159921/299537289*10749957122^(19/24) 9567220260409999 a001 4052739537881/599074578*10749957122^(13/16) 9567220260409999 a001 2504730781961/599074578*10749957122^(5/6) 9567220260409999 a001 956722026041/599074578*10749957122^(7/8) 9567220260409999 a001 182717648081/299537289*10749957122^(11/12) 9567220260409999 a001 267913919/710646*10749957122^(15/16) 9567220260409999 a001 139583862445/599074578*10749957122^(23/24) 9567220260409999 a001 2971215073/599074578*14662949395604^(6/7) 9567220260409999 a001 3278735159921/299537289*4106118243^(19/23) 9567220260409999 a001 2504730781961/599074578*4106118243^(20/23) 9567220260409999 a001 956722026041/599074578*4106118243^(21/23) 9567220260409999 a001 182717648081/299537289*4106118243^(22/23) 9567220260409999 a001 1756840044281364261232/1836311903 9567220260409999 a001 567451585/299537289*14662949395604^(8/9) 9567220260409999 a001 3278735159921/299537289*1568397607^(19/22) 9567220260409999 a001 2504730781961/599074578*1568397607^(10/11) 9567220260409999 a001 956722026041/599074578*1568397607^(21/22) 9567220260409999 a001 225749145909/4868641*228826127^(7/8) 9567220260409999 a001 671053184118610814456/701408733 9567220260409999 a001 6557470319842/228826127*228826127^(9/10) 9567220260409999 a001 267914296/969323029*14662949395604^(20/21) 9567220260409999 a001 414733676044142633307/433494437 9567220260409999 a001 414733676044142633451/433494437 9567220260409999 a001 414733676044142633472/433494437 9567220260409999 a001 414733676044142633475/433494437 9567220260409999 a001 414733676044142633476/433494437 9567220260409999 a001 414733676044142633477/433494437 9567220260409999 a001 414733676044142633485/433494437 9567220260409999 a001 2504730781961/228826127*228826127^(19/20) 9567220260409999 a001 414733676044142633540/433494437 9567220260409999 a001 1779978459283202376/1860497 9567220260409999 a001 2504730781961/1568397607*2537720636^(14/15) 9567220260409999 a001 6557470319842/1568397607*2537720636^(8/9) 9567220260409999 a001 1515744265389/224056801*2537720636^(13/15) 9567220260409999 a001 1836311903/1568397607*14662949395604^(19/21) 9567220260409999 a001 2842626904444117714773/2971215073 9567220260409999 a001 686789568/224056801*3461452808002^(11/12) 9567220260409999 a001 7442093853169599694959/7778742049 9567220260409999 a001 2504730781961/1568397607*17393796001^(6/7) 9567220260409999 a001 139583862445/1568397607*45537549124^(16/17) 9567220260409999 a001 591286729879/1568397607*45537549124^(15/17) 9567220260409999 a001 2504730781961/1568397607*45537549124^(14/17) 9567220260409999 a001 1515744265389/224056801*45537549124^(13/17) 9567220260409999 a001 32951280099/1568397607*817138163596^(17/19) 9567220260409999 a001 32951280099/1568397607*14662949395604^(17/21) 9567220260409999 a001 32951280099/1568397607*192900153618^(17/18) 9567220260409999 a001 86267571272/1568397607*14662949395604^(7/9) 9567220260409999 a001 86267571272/1568397607*505019158607^(7/8) 9567220260409999 a001 591286729879/1568397607*312119004989^(9/11) 9567220260409999 a001 956722026041/1568397607*312119004989^(4/5) 9567220260409999 a001 6557470319842/1568397607*312119004989^(8/11) 9567220260409999 a001 2504730781961/1568397607*817138163596^(14/19) 9567220260409999 a001 591286729879/1568397607*14662949395604^(5/7) 9567220260409999 a001 1515744265389/224056801*14662949395604^(13/21) 9567220260409999 a001 956722026041/1568397607*23725150497407^(11/16) 9567220260409999 a001 2504730781961/1568397607*505019158607^(3/4) 9567220260409999 a001 139583862445/1568397607*14662949395604^(16/21) 9567220260409999 a001 1515744265389/224056801*192900153618^(13/18) 9567220260409999 a001 591286729879/1568397607*192900153618^(5/6) 9567220260409999 a001 139583862445/1568397607*192900153618^(8/9) 9567220260409999 a001 53316291173/1568397607*312119004989^(10/11) 9567220260409999 a001 53316291173/1568397607*3461452808002^(5/6) 9567220260409999 a001 1515744265389/224056801*73681302247^(3/4) 9567220260409999 a001 6557470319842/1568397607*73681302247^(10/13) 9567220260409999 a001 956722026041/1568397607*73681302247^(11/13) 9567220260409999 a001 139583862445/1568397607*73681302247^(12/13) 9567220260409999 a001 20365011074/1568397607*23725150497407^(13/16) 9567220260409999 a001 20365011074/1568397607*505019158607^(13/14) 9567220260409999 a001 6557470319842/1568397607*28143753123^(4/5) 9567220260409999 a001 591286729879/1568397607*28143753123^(9/10) 9567220260409999 a001 7778742049/1568397607*14662949395604^(6/7) 9567220260409999 a001 1515744265389/224056801*10749957122^(13/16) 9567220260409999 a001 6557470319842/1568397607*10749957122^(5/6) 9567220260409999 a001 2504730781961/1568397607*10749957122^(7/8) 9567220260409999 a001 956722026041/1568397607*10749957122^(11/12) 9567220260409999 a001 591286729879/1568397607*10749957122^(15/16) 9567220260409999 a001 365435296162/1568397607*10749957122^(23/24) 9567220260409999 a001 766577824787580330031/801254496 9567220260409999 a001 2971215073/1568397607*14662949395604^(8/9) 9567220260409999 a001 6557470319842/1568397607*4106118243^(20/23) 9567220260409999 a001 2504730781961/1568397607*4106118243^(21/23) 9567220260409999 a001 956722026041/1568397607*4106118243^(22/23) 9567220260409999 a001 1756840044281364265413/1836311903 9567220260409999 a001 3278735159921/299537289*599074578^(19/21) 9567220260409999 a001 701408733/2537720636*14662949395604^(20/21) 9567220260409999 a001 1085786860162753449737/1134903170 9567220260409999 a001 6557470319842/4106118243*2537720636^(14/15) 9567220260409999 a001 4052739537881/599074578*599074578^(13/14) 9567220260409999 a001 542893430081376724896/567451585 9567220260409999 a001 6386981530369137940/6675901 9567220260409999 a001 1085786860162753449801/1134903170 9567220260409999 a001 542893430081376724901/567451585 9567220260409999 a001 217157372032550689961/226980634 9567220260409999 a001 2504730781961/599074578*599074578^(20/21) 9567220260409999 a001 542893430081376724913/567451585 9567220260409999 a001 10610209857723/6643838879*2537720636^(14/15) 9567220260409999 a001 2842626904444117715760/2971215073 9567220260409999 a001 1602508992/1368706081*14662949395604^(19/21) 9567220260409999 a001 7442093853169599697543/7778742049 9567220260409999 a001 6557470319842/4106118243*17393796001^(6/7) 9567220260409999 a001 12586269025/4106118243*3461452808002^(11/12) 9567220260409999 a001 19483654655064681376869/20365011074 9567220260409999 a001 365435296162/4106118243*45537549124^(16/17) 9567220260409999 a001 516002918640/1368706081*45537549124^(15/17) 9567220260409999 a001 6557470319842/4106118243*45537549124^(14/17) 9567220260409999 a001 86267571272/4106118243*817138163596^(17/19) 9567220260409999 a001 86267571272/4106118243*14662949395604^(17/21) 9567220260409999 a001 516002918640/1368706081*312119004989^(9/11) 9567220260409999 a001 2504730781961/4106118243*312119004989^(4/5) 9567220260409999 a001 75283811239/1368706081*14662949395604^(7/9) 9567220260409999 a001 86267571272/4106118243*192900153618^(17/18) 9567220260409999 a001 516002918640/1368706081*14662949395604^(5/7) 9567220260409999 a001 6557470319842/4106118243*14662949395604^(2/3) 9567220260409999 a001 139583862445/4106118243*312119004989^(10/11) 9567220260409999 a001 365435296162/4106118243*14662949395604^(16/21) 9567220260409999 a001 6557470319842/4106118243*505019158607^(3/4) 9567220260409999 a001 139583862445/4106118243*3461452808002^(5/6) 9567220260409999 a001 516002918640/1368706081*192900153618^(5/6) 9567220260409999 a001 365435296162/4106118243*192900153618^(8/9) 9567220260409999 a001 53316291173/4106118243*23725150497407^(13/16) 9567220260409999 a001 53316291173/4106118243*505019158607^(13/14) 9567220260409999 a001 2504730781961/4106118243*73681302247^(11/13) 9567220260409999 a001 365435296162/4106118243*73681302247^(12/13) 9567220260409999 a001 20365011074/4106118243*14662949395604^(6/7) 9567220260409999 a001 516002918640/1368706081*28143753123^(9/10) 9567220260409999 a001 12041560801895081679326/12586269025 9567220260409999 a001 7778742049/4106118243*14662949395604^(8/9) 9567220260409999 a001 6557470319842/4106118243*10749957122^(7/8) 9567220260409999 a001 2504730781961/4106118243*10749957122^(11/12) 9567220260409999 a001 516002918640/1368706081*10749957122^(15/16) 9567220260409999 a001 956722026041/4106118243*10749957122^(23/24) 9567220260409999 a001 4599466948725481981783/4807526976 9567220260409999 a001 6557470319842/1568397607*1568397607^(10/11) 9567220260409999 a001 1836311903/6643838879*14662949395604^(20/21) 9567220260409999 a001 2842626904444117715904/2971215073 9567220260409999 a001 2842626904444117715925/2971215073 9567220260409999 a001 2842626904444117715928/2971215073 9567220260409999 a001 2842626904444117715929/2971215073 9567220260409999 a001 2842626904444117715930/2971215073 9567220260409999 a001 2842626904444117715938/2971215073 9567220260409999 a001 2504730781961/1568397607*1568397607^(21/22) 9567220260409999 a001 7442093853169599697920/7778742049 9567220260409999 a001 12586269025/10749957122*14662949395604^(19/21) 9567220260409999 a001 9741827327532340688928/10182505537 9567220260409999 a001 956722026041/10749957122*45537549124^(16/17) 9567220260409999 a001 4052739537881/10749957122*45537549124^(15/17) 9567220260409999 a001 32951280099/10749957122*3461452808002^(11/12) 9567220260409999 a001 51008870112024444435648/53316291173 9567220260409999 a001 4052739537881/10749957122*312119004989^(9/11) 9567220260409999 a001 3278735159921/5374978561*312119004989^(4/5) 9567220260409999 a001 182717648081/5374978561*312119004989^(10/11) 9567220260409999 a001 225851433717/10749957122*817138163596^(17/19) 9567220260409999 a001 591286729879/10749957122*14662949395604^(7/9) 9567220260409999 a001 4052739537881/10749957122*14662949395604^(5/7) 9567220260409999 a001 182717648081/5374978561*3461452808002^(5/6) 9567220260409999 a001 591286729879/10749957122*505019158607^(7/8) 9567220260409999 a001 139583862445/10749957122*505019158607^(13/14) 9567220260409999 a001 225851433717/10749957122*192900153618^(17/18) 9567220260409999 a001 4052739537881/10749957122*192900153618^(5/6) 9567220260409999 a001 956722026041/10749957122*192900153618^(8/9) 9567220260409999 a001 53316291173/10749957122*14662949395604^(6/7) 9567220260409999 a001 3278735159921/5374978561*73681302247^(11/13) 9567220260409999 a001 956722026041/10749957122*73681302247^(12/13) 9567220260409999 a001 10508405152319921019264/10983760033 9567220260409999 a001 10182505537/5374978561*14662949395604^(8/9) 9567220260409999 a001 4052739537881/10749957122*28143753123^(9/10) 9567220260409999 a001 12041560801895081679936/12586269025 9567220260409999 a001 4807526976/17393796001*14662949395604^(20/21) 9567220260409999 a001 6557470319842/4106118243*4106118243^(21/23) 9567220260409999 a001 7442093853169599697975/7778742049 9567220260409999 a001 572468757936123053691/598364773 9567220260409999 a001 7442093853169599697984/7778742049 9567220260409999 a001 7442093853169599697985/7778742049 9567220260409999 a001 7442093853169599697988/7778742049 9567220260409999 a001 2504730781961/4106118243*4106118243^(22/23) 9567220260409999 a001 9741827327532340689000/10182505537 9567220260409999 a001 2504730781961/28143753123*45537549124^(16/17) 9567220260409999 a001 3536736619241/9381251041*45537549124^(15/17) 9567220260409999 a001 10983760033/9381251041*14662949395604^(19/21) 9567220260409999 a001 51008870112024444436025/53316291173 9567220260409999 a001 86267571272/28143753123*3461452808002^(11/12) 9567220260409999 a001 26708591136201730386015/27916772489 9567220260409999 a001 956722026041/28143753123*312119004989^(10/11) 9567220260409999 a001 12585437040/228811001*14662949395604^(7/9) 9567220260409999 a001 3536736619241/9381251041*14662949395604^(5/7) 9567220260409999 a001 12585437040/228811001*505019158607^(7/8) 9567220260409999 a001 365435296162/28143753123*505019158607^(13/14) 9567220260409999 a001 139583862445/28143753123*14662949395604^(6/7) 9567220260409999 a001 2504730781961/28143753123*192900153618^(8/9) 9567220260409999 a001 591286729879/28143753123*192900153618^(17/18) 9567220260409999 a001 2427473104970123749825/2537281508 9567220260409999 a001 53316291173/28143753123*14662949395604^(8/9) 9567220260409999 a001 2504730781961/28143753123*73681302247^(12/13) 9567220260409999 a001 31525215456959763058025/32951280099 9567220260409999 a001 12586269025/45537549124*14662949395604^(20/21) 9567220260409999 a001 3278735159921/5374978561*10749957122^(11/12) 9567220260409999 a001 19483654655064681378021/20365011074 9567220260409999 a001 6557470319842/73681302247*45537549124^(16/17) 9567220260409999 a001 4052739537881/10749957122*10749957122^(15/16) 9567220260409999 a001 9741827327532340689012/10182505537 9567220260409999 a001 19483654655064681378025/20365011074 9567220260409999 a001 9741827327532340689013/10182505537 9567220260409999 a001 2504730781961/10749957122*10749957122^(23/24) 9567220260409999 a001 51008870112024444436080/53316291173 9567220260409999 a001 86267571272/73681302247*14662949395604^(19/21) 9567220260409999 a001 133542955681008651930219/139583862445 9567220260409999 a001 2504730781961/73681302247*312119004989^(10/11) 9567220260409999 a001 32264490531/10525900321*3461452808002^(11/12) 9567220260409999 a001 1548008755920/73681302247*817138163596^(17/19) 9567220260409999 a001 4052739537881/73681302247*14662949395604^(7/9) 9567220260409999 a001 2504730781961/73681302247*3461452808002^(5/6) 9567220260409999 a001 365435296162/73681302247*14662949395604^(6/7) 9567220260409999 a001 4052739537881/73681302247*505019158607^(7/8) 9567220260409999 a001 5540436955128022036522/5791062403 9567220260409999 a001 139583862445/73681302247*14662949395604^(8/9) 9567220260409999 a001 6557470319842/73681302247*192900153618^(8/9) 9567220260409999 a001 1548008755920/73681302247*192900153618^(17/18) 9567220260409999 a001 82534085568984207494139/86267571272 9567220260409999 a001 3536736619241/9381251041*28143753123^(9/10) 9567220260409999 a001 51008870112024444436088/53316291173 9567220260409999 a001 51008870112024444436089/53316291173 9567220260409999 a001 51008870112024444436090/53316291173 9567220260409999 a001 26708591136201730386048/27916772489 9567220260409999 a001 3278735159921/96450076809*312119004989^(10/11) 9567220260409999 a001 174809998465500755677316/182717648081 9567220260409999 a001 182717648081/96450076809*14662949395604^(8/9) 9567220260409999 a001 216077041249992859424392/225851433717 9567220260409999 a001 133542955681008651930243/139583862445 9567220260409999 a001 133542955681008651930244/139583862445 9567220260409999 a001 174809998465500755677320/182717648081 9567220260409999 a001 2139295485799/5*5^(1/2) 9567220260409999 a001 10151021471800938910964641/10610209857723 9567220260410000 a001 216077041249992859424398/225851433717 9567220260410000 a001 349619996931001511354645/365435296162 9567220260410000 a001 140728068720/28374454999*14662949395604^(6/7) 9567220260410000 a001 72025680416664286474800/75283811239 9567220260410000 a001 225749145909/10745088481*192900153618^(17/18) 9567220260410000 a001 41267042784492103747077/43133785636 9567220260410000 a001 4052739537881/45537549124*45537549124^(16/17) 9567220260410000 a001 82534085568984207494155/86267571272 9567220260410000 a001 133542955681008651930253/139583862445 9567220260410000 a001 174809998465500755677333/182717648081 9567220260410000 a001 6557470319842/119218851371*505019158607^(7/8) 9567220260410000 a001 216077041249992859424413/225851433717 9567220260410000 a001 10610209857723/119218851371*192900153618^(8/9) 9567220260410000 a001 10316760696123025936770/10783446409 9567220260410000 a001 31525215456959763058064/32951280099 9567220260410000 a001 10508405152319921019355/10983760033 9567220260410000 a001 31525215456959763058067/32951280099 9567220260410000 a001 20365011074/73681302247*14662949395604^(20/21) 9567220260410000 a001 51008870112024444436114/53316291173 9567220260410000 a001 21566892818/11384387281*14662949395604^(8/9) 9567220260410000 a001 133542955681008651930308/139583862445 9567220260410000 a001 387002188980/11384387281*312119004989^(10/11) 9567220260410000 a001 225851433717/45537549124*14662949395604^(6/7) 9567220260410000 a001 2504730781961/45537549124*14662949395604^(7/9) 9567220260410000 a001 591286729879/45537549124*505019158607^(13/14) 9567220260410000 a001 2504730781961/45537549124*505019158607^(7/8) 9567220260410000 a001 10289382916666326639262/10754830177 9567220260410000 a001 139583862445/45537549124*3461452808002^(11/12) 9567220260410000 a001 4052739537881/45537549124*192900153618^(8/9) 9567220260410000 a001 41267042784492103747097/43133785636 9567220260410000 a001 53316291173/45537549124*14662949395604^(19/21) 9567220260410000 a001 4052739537881/45537549124*73681302247^(12/13) 9567220260410000 a001 10508405152319921019360/10983760033 9567220260410000 a001 12041560801895081680038/12586269025 9567220260410000 a001 2408312160379016336008/2517253805 9567220260410000 a001 12041560801895081680041/12586269025 9567220260410000 a001 12041560801895081680046/12586269025 9567220260410000 a001 7778742049/28143753123*14662949395604^(20/21) 9567220260410000 a001 19483654655064681378089/20365011074 9567220260410000 a001 1548008755920/17393796001*45537549124^(16/17) 9567220260410000 a001 6557470319842/17393796001*45537549124^(15/17) 9567220260410000 a001 32951280099/17393796001*14662949395604^(8/9) 9567220260410000 a001 51008870112024444436258/53316291173 9567220260410000 a001 86267571272/17393796001*14662949395604^(6/7) 9567220260410000 a001 6557470319842/17393796001*312119004989^(9/11) 9567220260410000 a001 10610209857723/17393796001*312119004989^(4/5) 9567220260410000 a001 7787980473/599786069*23725150497407^(13/16) 9567220260410000 a001 6557470319842/17393796001*14662949395604^(5/7) 9567220260410000 a001 365435296162/17393796001*817138163596^(17/19) 9567220260410000 a001 956722026041/17393796001*505019158607^(7/8) 9567220260410000 a001 1548008755920/17393796001*192900153618^(8/9) 9567220260410000 a001 365435296162/17393796001*192900153618^(17/18) 9567220260410000 a001 53316291173/17393796001*3461452808002^(11/12) 9567220260410000 a001 10610209857723/17393796001*73681302247^(11/13) 9567220260410000 a001 1548008755920/17393796001*73681302247^(12/13) 9567220260410000 a001 31525215456959763058169/32951280099 9567220260410000 a001 20365011074/17393796001*14662949395604^(19/21) 9567220260410000 a001 6557470319842/17393796001*28143753123^(9/10) 9567220260410000 a001 218937469125365121456/228841255 9567220260410000 a001 3536736619241/9381251041*10749957122^(15/16) 9567220260410000 a001 6557470319842/28143753123*10749957122^(23/24) 9567220260410000 a001 2299733474362740991025/2403763488 9567220260410000 a001 1533155649575160660685/1602508992 9567220260410000 a001 574933368590685247757/600940872 9567220260410000 a001 10610209857723/45537549124*10749957122^(23/24) 9567220260410000 a001 109511117826797190049/114464928 9567220260410000 a001 4052739537881/2537720636*2537720636^(14/15) 9567220260410000 a001 10610209857723/17393796001*10749957122^(11/12) 9567220260410000 a001 6557470319842/17393796001*10749957122^(15/16) 9567220260410000 a001 4052739537881/17393796001*10749957122^(23/24) 9567220260410000 a001 4599466948725481982071/4807526976 9567220260410000 a001 2971215073/10749957122*14662949395604^(20/21) 9567220260410000 a001 10610209857723/2537720636*2537720636^(8/9) 9567220260410000 a001 7442093853169599698153/7778742049 9567220260410000 a001 10610209857723/6643838879*17393796001^(6/7) 9567220260410000 a001 12586269025/6643838879*14662949395604^(8/9) 9567220260410000 a001 9741827327532340689233/10182505537 9567220260410000 a001 591286729879/6643838879*45537549124^(16/17) 9567220260410000 a001 2504730781961/6643838879*45537549124^(15/17) 9567220260410000 a001 10610209857723/6643838879*45537549124^(14/17) 9567220260410000 a001 32951280099/6643838879*14662949395604^(6/7) 9567220260410000 a001 86267571272/6643838879*23725150497407^(13/16) 9567220260410000 a001 86267571272/6643838879*505019158607^(13/14) 9567220260410000 a001 225851433717/6643838879*312119004989^(10/11) 9567220260410000 a001 2504730781961/6643838879*312119004989^(9/11) 9567220260410000 a001 225851433717/6643838879*3461452808002^(5/6) 9567220260410000 a001 10610209857723/6643838879*817138163596^(14/19) 9567220260410000 a001 591286729879/6643838879*14662949395604^(16/21) 9567220260410000 a001 10610209857723/6643838879*14662949395604^(2/3) 9567220260410000 a001 2504730781961/6643838879*14662949395604^(5/7) 9567220260410000 a001 10610209857723/6643838879*505019158607^(3/4) 9567220260410000 a001 365435296162/6643838879*505019158607^(7/8) 9567220260410000 a001 139583862445/6643838879*817138163596^(17/19) 9567220260410000 a001 139583862445/6643838879*14662949395604^(17/21) 9567220260410000 a001 10610209857723/6643838879*192900153618^(7/9) 9567220260410000 a001 2504730781961/6643838879*192900153618^(5/6) 9567220260410000 a001 591286729879/6643838879*192900153618^(8/9) 9567220260410000 a001 139583862445/6643838879*192900153618^(17/18) 9567220260410000 a001 4052739537881/6643838879*73681302247^(11/13) 9567220260410000 a001 591286729879/6643838879*73681302247^(12/13) 9567220260410000 a001 10508405152319921019593/10983760033 9567220260410000 a001 20365011074/6643838879*3461452808002^(11/12) 9567220260410000 a001 2504730781961/6643838879*28143753123^(9/10) 9567220260410000 a001 12041560801895081680313/12586269025 9567220260410000 a001 7778742049/6643838879*14662949395604^(19/21) 9567220260410000 a001 10610209857723/6643838879*10749957122^(7/8) 9567220260410000 a001 4052739537881/6643838879*10749957122^(11/12) 9567220260410000 a001 2504730781961/6643838879*10749957122^(15/16) 9567220260410000 a001 1548008755920/6643838879*10749957122^(23/24) 9567220260410000 a001 31940742699482513765/33385604 9567220260410000 a001 3278735159921/5374978561*4106118243^(22/23) 9567220260410000 a001 1756840044281364266112/1836311903 9567220260410000 a001 1756840044281364266125/1836311903 9567220260410000 a001 1756840044281364266127/1836311903 9567220260410000 a001 1756840044281364266128/1836311903 9567220260410000 a001 10610209857723/17393796001*4106118243^(22/23) 9567220260410000 a001 1756840044281364266133/1836311903 9567220260410000 a001 10610209857723/6643838879*4106118243^(21/23) 9567220260410000 a001 4052739537881/6643838879*4106118243^(22/23) 9567220260410000 a001 1756840044281364266167/1836311903 9567220260410000 a001 1134903170/4106118243*14662949395604^(20/21) 9567220260410000 a001 2842626904444117716370/2971215073 9567220260410000 a001 1201881744/634430159*14662949395604^(8/9) 9567220260410000 a001 572468757936123053780/598364773 9567220260410000 a001 4052739537881/2537720636*17393796001^(6/7) 9567220260410000 a001 1144206275/230701876*14662949395604^(6/7) 9567220260410000 a001 225851433717/2537720636*45537549124^(16/17) 9567220260410000 a001 956722026041/2537720636*45537549124^(15/17) 9567220260410000 a001 4052739537881/2537720636*45537549124^(14/17) 9567220260410000 a001 32951280099/2537720636*23725150497407^(13/16) 9567220260410000 a001 32951280099/2537720636*505019158607^(13/14) 9567220260410000 a001 1135099622/33391061*312119004989^(10/11) 9567220260410000 a001 1135099622/33391061*3461452808002^(5/6) 9567220260410000 a001 1134903780/1860499*312119004989^(4/5) 9567220260410000 a001 956722026041/2537720636*312119004989^(9/11) 9567220260410000 a001 10610209857723/2537720636*312119004989^(8/11) 9567220260410000 a001 225851433717/2537720636*14662949395604^(16/21) 9567220260410000 a001 1134903780/1860499*23725150497407^(11/16) 9567220260410000 a001 10610209857723/2537720636*23725150497407^(5/8) 9567220260410000 a001 956722026041/2537720636*14662949395604^(5/7) 9567220260410000 a001 4052739537881/2537720636*505019158607^(3/4) 9567220260410000 a001 139583862445/2537720636*14662949395604^(7/9) 9567220260410000 a001 139583862445/2537720636*505019158607^(7/8) 9567220260410000 a001 225851433717/2537720636*192900153618^(8/9) 9567220260410000 a001 4052739537881/2537720636*192900153618^(7/9) 9567220260410000 a001 956722026041/2537720636*192900153618^(5/6) 9567220260410000 a001 53316291173/2537720636*817138163596^(17/19) 9567220260410000 a001 53316291173/2537720636*14662949395604^(17/21) 9567220260410000 a001 53316291173/2537720636*192900153618^(17/18) 9567220260410000 a001 10610209857723/2537720636*73681302247^(10/13) 9567220260410000 a001 1134903780/1860499*73681302247^(11/13) 9567220260410000 a001 225851433717/2537720636*73681302247^(12/13) 9567220260410000 a001 10610209857723/2537720636*28143753123^(4/5) 9567220260410000 a001 956722026041/2537720636*28143753123^(9/10) 9567220260410000 a001 2408312160379016336382/2517253805 9567220260410000 a001 7778742049/2537720636*3461452808002^(11/12) 9567220260410000 a001 10610209857723/2537720636*10749957122^(5/6) 9567220260410000 a001 4052739537881/2537720636*10749957122^(7/8) 9567220260410000 a001 1134903780/1860499*10749957122^(11/12) 9567220260410000 a001 956722026041/2537720636*10749957122^(15/16) 9567220260410000 a001 591286729879/2537720636*10749957122^(23/24) 9567220260410000 a001 2299733474362740991385/2403763488 9567220260410000 a001 2971215073/2537720636*14662949395604^(19/21) 9567220260410000 a001 10610209857723/2537720636*4106118243^(20/23) 9567220260410000 a001 4052739537881/2537720636*4106118243^(21/23) 9567220260410000 a001 1134903780/1860499*4106118243^(22/23) 9567220260410000 a001 1756840044281364266400/1836311903 9567220260410000 a001 6557470319842/4106118243*1568397607^(21/22) 9567220260410000 a001 671053184118610816286/701408733 9567220260410000 a001 2513307805687680960/2626999 9567220260410000 a001 671053184118610816325/701408733 9567220260410000 a001 223684394706203605442/233802911 9567220260410000 a001 671053184118610816328/701408733 9567220260410000 a001 10610209857723/6643838879*1568397607^(21/22) 9567220260410000 a001 223684394706203605447/233802911 9567220260410000 a001 10610209857723/2537720636*1568397607^(10/11) 9567220260410000 a001 4052739537881/2537720636*1568397607^(21/22) 9567220260410000 a001 671053184118610816430/701408733 9567220260410000 a001 433494437/1568397607*14662949395604^(20/21) 9567220260410000 a001 1085786860162753450957/1134903170 9567220260410000 a001 1548008755920/969323029*2537720636^(14/15) 9567220260410000 a001 4052739537881/969323029*2537720636^(8/9) 9567220260410000 a001 6557470319842/969323029*2537720636^(13/15) 9567220260410000 a001 1836311903/969323029*14662949395604^(8/9) 9567220260410000 a001 2842626904444117718954/2971215073 9567220260410000 a001 4807526976/969323029*14662949395604^(6/7) 9567220260410000 a001 1548008755920/969323029*17393796001^(6/7) 9567220260410000 a001 12586269025/969323029*23725150497407^(13/16) 9567220260410000 a001 12586269025/969323029*505019158607^(13/14) 9567220260410000 a001 86267571272/969323029*45537549124^(16/17) 9567220260410000 a001 365435296162/969323029*45537549124^(15/17) 9567220260410000 a001 1548008755920/969323029*45537549124^(14/17) 9567220260410000 a001 6557470319842/969323029*45537549124^(13/17) 9567220260410000 a001 32951280099/969323029*312119004989^(10/11) 9567220260410000 a001 32951280099/969323029*3461452808002^(5/6) 9567220260410000 a001 86267571272/969323029*14662949395604^(16/21) 9567220260410000 a001 591286729879/969323029*312119004989^(4/5) 9567220260410000 a001 4052739537881/969323029*312119004989^(8/11) 9567220260410000 a001 365435296162/969323029*312119004989^(9/11) 9567220260410000 a001 10610209857723/969323029*817138163596^(2/3) 9567220260410000 a001 1548008755920/969323029*14662949395604^(2/3) 9567220260410000 a001 6557470319842/969323029*14662949395604^(13/21) 9567220260410000 a001 365435296162/969323029*14662949395604^(5/7) 9567220260410000 a001 1548008755920/969323029*505019158607^(3/4) 9567220260410000 a001 6557470319842/969323029*192900153618^(13/18) 9567220260410000 a001 1548008755920/969323029*192900153618^(7/9) 9567220260410000 a001 365435296162/969323029*192900153618^(5/6) 9567220260410000 a001 53316291173/969323029*14662949395604^(7/9) 9567220260410000 a001 53316291173/969323029*505019158607^(7/8) 9567220260410000 a001 6557470319842/969323029*73681302247^(3/4) 9567220260410000 a001 4052739537881/969323029*73681302247^(10/13) 9567220260410000 a001 86267571272/969323029*73681302247^(12/13) 9567220260410000 a001 591286729879/969323029*73681302247^(11/13) 9567220260410000 a001 20365011074/969323029*817138163596^(17/19) 9567220260410000 a001 20365011074/969323029*14662949395604^(17/21) 9567220260410000 a001 20365011074/969323029*192900153618^(17/18) 9567220260410000 a001 4052739537881/969323029*28143753123^(4/5) 9567220260410000 a001 365435296162/969323029*28143753123^(9/10) 9567220260410000 a001 10610209857723/969323029*10749957122^(19/24) 9567220260410000 a001 6557470319842/969323029*10749957122^(13/16) 9567220260410000 a001 4052739537881/969323029*10749957122^(5/6) 9567220260410000 a001 1548008755920/969323029*10749957122^(7/8) 9567220260410000 a001 591286729879/969323029*10749957122^(11/12) 9567220260410000 a001 365435296162/969323029*10749957122^(15/16) 9567220260410000 a001 225851433717/969323029*10749957122^(23/24) 9567220260410000 a001 4660047567097752773/4870848 9567220260410000 a001 2971215073/969323029*3461452808002^(11/12) 9567220260410000 a001 10610209857723/969323029*4106118243^(19/23) 9567220260410000 a001 4052739537881/969323029*4106118243^(20/23) 9567220260410000 a001 1548008755920/969323029*4106118243^(21/23) 9567220260410000 a001 591286729879/969323029*4106118243^(22/23) 9567220260410000 a001 1756840044281364267997/1836311903 9567220260410000 a001 1134903170/969323029*14662949395604^(19/21) 9567220260410000 a001 10610209857723/969323029*1568397607^(19/22) 9567220260410000 a001 4052739537881/969323029*1568397607^(10/11) 9567220260410000 a001 1548008755920/969323029*1568397607^(21/22) 9567220260410000 a001 223684394706203605680/233802911 9567220260410000 a001 1515744265389/224056801*599074578^(13/14) 9567220260410000 a001 6557470319842/1568397607*599074578^(20/21) 9567220260410000 a001 128159754037234091373/133957148 9567220260410000 a001 256319508074468182835/267914296 9567220260410000 a001 32039938509308522856/33489287 9567220260410000 a001 128159754037234091425/133957148 9567220260410000 a001 19716885236497552527/20608792 9567220260410000 a001 10610209857723/2537720636*599074578^(20/21) 9567220260410000 a001 32039938509308522857/33489287 9567220260410000 a001 339946297180992285/355324 9567220260410000 a001 10610209857723/969323029*599074578^(19/21) 9567220260410000 a001 6557470319842/969323029*599074578^(13/14) 9567220260410000 a001 4052739537881/969323029*599074578^(20/21) 9567220260410000 a001 4052739537881/141422324*141422324^(12/13) 9567220260410000 a001 256319508074468183123/267914296 9567220260410000 a001 165580141/599074578*14662949395604^(20/21) 9567220260410000 a001 414733676044142636501/433494437 9567220260410000 a001 701408733/370248451*14662949395604^(8/9) 9567220260410000 a001 31934907651845689933/33379505 9567220260410000 a001 591286729879/370248451*2537720636^(14/15) 9567220260410000 a001 1548008755920/370248451*2537720636^(8/9) 9567220260410000 a001 2504730781961/370248451*2537720636^(13/15) 9567220260410000 a001 10610209857723/370248451*2537720636^(4/5) 9567220260410000 a001 1836311903/370248451*14662949395604^(6/7) 9567220260410000 a001 4807526976/370248451*23725150497407^(13/16) 9567220260410000 a001 4807526976/370248451*505019158607^(13/14) 9567220260410000 a001 591286729879/370248451*17393796001^(6/7) 9567220260410000 a001 12586269025/370248451*312119004989^(10/11) 9567220260410000 a001 12586269025/370248451*3461452808002^(5/6) 9567220260410000 a001 32951280099/370248451*45537549124^(16/17) 9567220260410000 a001 139583862445/370248451*45537549124^(15/17) 9567220260410000 a001 591286729879/370248451*45537549124^(14/17) 9567220260410000 a001 2504730781961/370248451*45537549124^(13/17) 9567220260410000 a001 10610209857723/370248451*45537549124^(12/17) 9567220260410000 a001 32951280099/370248451*14662949395604^(16/21) 9567220260410000 a001 32951280099/370248451*192900153618^(8/9) 9567220260410000 a001 32951280099/370248451*73681302247^(12/13) 9567220260410000 a001 225851433717/370248451*312119004989^(4/5) 9567220260410000 a001 1548008755920/370248451*312119004989^(8/11) 9567220260410000 a001 225851433717/370248451*23725150497407^(11/16) 9567220260410000 a001 1548008755920/370248451*23725150497407^(5/8) 9567220260410000 a001 10610209857723/370248451*14662949395604^(4/7) 9567220260410000 a001 2504730781961/370248451*14662949395604^(13/21) 9567220260410000 a001 10610209857723/370248451*505019158607^(9/14) 9567220260410000 a001 139583862445/370248451*14662949395604^(5/7) 9567220260410000 a001 10610209857723/370248451*192900153618^(2/3) 9567220260410000 a001 2504730781961/370248451*192900153618^(13/18) 9567220260410000 a001 139583862445/370248451*192900153618^(5/6) 9567220260410000 a001 10610209857723/370248451*73681302247^(9/13) 9567220260410000 a001 2504730781961/370248451*73681302247^(3/4) 9567220260410000 a001 1548008755920/370248451*73681302247^(10/13) 9567220260410000 a001 225851433717/370248451*73681302247^(11/13) 9567220260410000 a001 20365011074/370248451*14662949395604^(7/9) 9567220260410000 a001 20365011074/370248451*505019158607^(7/8) 9567220260410000 a001 1548008755920/370248451*28143753123^(4/5) 9567220260410000 a001 139583862445/370248451*28143753123^(9/10) 9567220260410000 a001 7778742049/370248451*817138163596^(17/19) 9567220260410000 a001 7778742049/370248451*14662949395604^(17/21) 9567220260410000 a001 7778742049/370248451*192900153618^(17/18) 9567220260410000 a001 10610209857723/370248451*10749957122^(3/4) 9567220260410000 a001 4052739537881/370248451*10749957122^(19/24) 9567220260410000 a001 2504730781961/370248451*10749957122^(13/16) 9567220260410000 a001 1548008755920/370248451*10749957122^(5/6) 9567220260410000 a001 591286729879/370248451*10749957122^(7/8) 9567220260410000 a001 225851433717/370248451*10749957122^(11/12) 9567220260410000 a001 139583862445/370248451*10749957122^(15/16) 9567220260410000 a001 86267571272/370248451*10749957122^(23/24) 9567220260410000 a001 10610209857723/370248451*4106118243^(18/23) 9567220260410000 a001 4052739537881/370248451*4106118243^(19/23) 9567220260410000 a001 1548008755920/370248451*4106118243^(20/23) 9567220260410000 a001 591286729879/370248451*4106118243^(21/23) 9567220260410000 a001 225851433717/370248451*4106118243^(22/23) 9567220260410000 a001 1756840044281364278943/1836311903 9567220260410000 a001 1134903170/370248451*3461452808002^(11/12) 9567220260410000 a001 10610209857723/370248451*1568397607^(9/11) 9567220260410000 a001 4052739537881/370248451*1568397607^(19/22) 9567220260410000 a001 1548008755920/370248451*1568397607^(10/11) 9567220260410000 a001 591286729879/370248451*1568397607^(21/22) 9567220260410000 a001 671053184118610821221/701408733 9567220260410000 a001 433494437/370248451*14662949395604^(19/21) 9567220260410000 a001 10610209857723/370248451*599074578^(6/7) 9567220260410000 a001 4052739537881/370248451*599074578^(19/21) 9567220260410000 a001 2504730781961/370248451*599074578^(13/14) 9567220260410000 a001 1548008755920/370248451*599074578^(20/21) 9567220260410000 a001 32039938509308523090/33489287 9567220260410000 a001 3278735159921/299537289*228826127^(19/20) 9567220260410000 a001 97905340104793731952/102334155 9567220260410000 a001 6527022673652915479/6822277 9567220260410000 a001 97905340104793732219/102334155 9567220260410000 a001 4662159052609225344/4873055 9567220260410000 a001 1780097092814431495/1860621 9567220260410000 a001 32635113368264577409/34111385 9567220260410000 a001 10610209857723/969323029*228826127^(19/20) 9567220260410000 a001 19581068020958746448/20466831 9567220260410000 a001 4662159052609225349/4873055 9567220260410000 a001 10610209857723/370248451*228826127^(9/10) 9567220260410000 a001 4052739537881/370248451*228826127^(19/20) 9567220260410000 a001 97905340104793732939/102334155 9567220260410000 a001 63245986/228826127*14662949395604^(20/21) 9567220260410000 a001 158414167969674458546/165580141 9567220260410000 a001 66978574/35355581*14662949395604^(8/9) 9567220260410000 a001 414733676044142654212/433494437 9567220260410000 a001 701408733/141422324*14662949395604^(6/7) 9567220260410000 a001 225851433717/141422324*2537720636^(14/15) 9567220260410000 a001 591286729879/141422324*2537720636^(8/9) 9567220260410000 a001 956722026041/141422324*2537720636^(13/15) 9567220260410000 a001 4052739537881/141422324*2537720636^(4/5) 9567220260410000 a001 3278735159921/70711162*2537720636^(7/9) 9567220260410000 a001 1836311903/141422324*23725150497407^(13/16) 9567220260410000 a001 1836311903/141422324*505019158607^(13/14) 9567220260410000 a001 1201881744/35355581*312119004989^(10/11) 9567220260410000 a001 1201881744/35355581*3461452808002^(5/6) 9567220260410000 a001 225851433717/141422324*17393796001^(6/7) 9567220260410000 a001 3278735159921/70711162*17393796001^(5/7) 9567220260410000 a001 12586269025/141422324*45537549124^(16/17) 9567220260410000 a001 12586269025/141422324*14662949395604^(16/21) 9567220260410000 a001 12586269025/141422324*192900153618^(8/9) 9567220260410000 a001 12586269025/141422324*73681302247^(12/13) 9567220260410000 a001 225851433717/141422324*45537549124^(14/17) 9567220260410000 a001 956722026041/141422324*45537549124^(13/17) 9567220260410000 a001 53316291173/141422324*45537549124^(15/17) 9567220260410000 a001 4052739537881/141422324*45537549124^(12/17) 9567220260410000 a001 10610209857723/141422324*45537549124^(2/3) 9567220260410000 a001 21566892818/35355581*312119004989^(4/5) 9567220260410000 a001 21566892818/35355581*23725150497407^(11/16) 9567220260410000 a001 591286729879/141422324*312119004989^(8/11) 9567220260410000 a001 225851433717/141422324*817138163596^(14/19) 9567220260410000 a001 225851433717/141422324*14662949395604^(2/3) 9567220260410000 a001 225851433717/141422324*505019158607^(3/4) 9567220260410000 a001 4052739537881/141422324*14662949395604^(4/7) 9567220260410000 a001 3278735159921/70711162*14662949395604^(5/9) 9567220260410000 a001 3278735159921/70711162*505019158607^(5/8) 9567220260410000 a001 4052739537881/141422324*505019158607^(9/14) 9567220260410000 a001 225851433717/141422324*192900153618^(7/9) 9567220260410000 a001 4052739537881/141422324*192900153618^(2/3) 9567220260410000 a001 956722026041/141422324*192900153618^(13/18) 9567220260410000 a001 53316291173/141422324*312119004989^(9/11) 9567220260410000 a001 53316291173/141422324*14662949395604^(5/7) 9567220260410000 a001 53316291173/141422324*192900153618^(5/6) 9567220260410000 a001 4052739537881/141422324*73681302247^(9/13) 9567220260410000 a001 21566892818/35355581*73681302247^(11/13) 9567220260410000 a001 956722026041/141422324*73681302247^(3/4) 9567220260410000 a001 591286729879/141422324*73681302247^(10/13) 9567220260410000 a001 3278735159921/70711162*28143753123^(7/10) 9567220260410000 a001 591286729879/141422324*28143753123^(4/5) 9567220260410000 a001 53316291173/141422324*28143753123^(9/10) 9567220260410000 a001 7778742049/141422324*14662949395604^(7/9) 9567220260410000 a001 7778742049/141422324*505019158607^(7/8) 9567220260410000 a001 10610209857723/141422324*10749957122^(17/24) 9567220260410000 a001 4052739537881/141422324*10749957122^(3/4) 9567220260410000 a001 387002188980/35355581*10749957122^(19/24) 9567220260410000 a001 956722026041/141422324*10749957122^(13/16) 9567220260410000 a001 591286729879/141422324*10749957122^(5/6) 9567220260410000 a001 225851433717/141422324*10749957122^(7/8) 9567220260410000 a001 21566892818/35355581*10749957122^(11/12) 9567220260410000 a001 63246219/271444*10749957122^(23/24) 9567220260410000 a001 53316291173/141422324*10749957122^(15/16) 9567220260410000 a001 2971215073/141422324*817138163596^(17/19) 9567220260410000 a001 2971215073/141422324*14662949395604^(17/21) 9567220260410000 a001 2971215073/141422324*192900153618^(17/18) 9567220260410000 a001 10610209857723/141422324*4106118243^(17/23) 9567220260410000 a001 4052739537881/141422324*4106118243^(18/23) 9567220260410000 a001 387002188980/35355581*4106118243^(19/23) 9567220260410000 a001 591286729879/141422324*4106118243^(20/23) 9567220260410000 a001 225851433717/141422324*4106118243^(21/23) 9567220260410000 a001 21566892818/35355581*4106118243^(22/23) 9567220260410000 a001 10610209857723/141422324*1568397607^(17/22) 9567220260410000 a001 4052739537881/141422324*1568397607^(9/11) 9567220260410000 a001 387002188980/35355581*1568397607^(19/22) 9567220260410000 a001 591286729879/141422324*1568397607^(10/11) 9567220260410000 a001 225851433717/141422324*1568397607^(21/22) 9567220260410000 a001 223684394706203616626/233802911 9567220260410000 a001 433494437/141422324*3461452808002^(11/12) 9567220260410000 a001 10610209857723/141422324*599074578^(17/21) 9567220260410000 a001 3278735159921/70711162*599074578^(5/6) 9567220260410000 a001 4052739537881/141422324*599074578^(6/7) 9567220260410000 a001 387002188980/35355581*599074578^(19/21) 9567220260410000 a001 956722026041/141422324*599074578^(13/14) 9567220260410000 a001 591286729879/141422324*599074578^(20/21) 9567220260410000 a001 128159754037234097833/133957148 9567220260410000 a001 165580141/141422324*14662949395604^(19/21) 9567220260410000 a001 10610209857723/141422324*228826127^(17/20) 9567220260410000 a001 3278735159921/70711162*228826127^(7/8) 9567220260410000 a001 4052739537881/141422324*228826127^(9/10) 9567220260410000 a001 387002188980/35355581*228826127^(19/20) 9567220260410000 a001 14472334087922208/15127 9567220260410001 a001 6557470319842/228826127*87403803^(18/19) 9567220260410001 a001 8944394221457310/9349 9567220260410001 a001 37396512239913013720/39088169 9567220260410001 a001 37396512239913013809/39088169 9567220260410001 a001 37396512239913013822/39088169 9567220260410001 a001 37396512239913013824/39088169 9567220260410001 a001 37396512239913013825/39088169 9567220260410001 a001 37396512239913013830/39088169 9567220260410001 a001 10610209857723/370248451*87403803^(18/19) 9567220260410001 a001 37396512239913013864/39088169 9567220260410001 a001 37396512239913014097/39088169 9567220260410001 a001 10610209857723/141422324*87403803^(17/19) 9567220260410001 a001 4052739537881/141422324*87403803^(18/19) 9567220260410001 a001 37396512239913015694/39088169 9567220260410002 a001 24157817/87403803*14662949395604^(20/21) 9567220260410002 a001 60508827864880739137/63245986 9567220260410002 a001 1548008755920/54018521*141422324^(12/13) 9567220260410002 a001 6557470319842/54018521*141422324^(11/13) 9567220260410003 a001 102334155/54018521*14662949395604^(8/9) 9567220260410003 a001 158414167969674504914/165580141 9567220260410003 a001 10610209857723/20633239*20633239^(6/7) 9567220260410003 a001 267914296/54018521*14662949395604^(6/7) 9567220260410003 a001 701408733/54018521*23725150497407^(13/16) 9567220260410003 a001 701408733/54018521*505019158607^(13/14) 9567220260410003 a001 86267571272/54018521*2537720636^(14/15) 9567220260410003 a001 225851433717/54018521*2537720636^(8/9) 9567220260410003 a001 365435296162/54018521*2537720636^(13/15) 9567220260410003 a001 1548008755920/54018521*2537720636^(4/5) 9567220260410003 a001 2504730781961/54018521*2537720636^(7/9) 9567220260410003 a001 6557470319842/54018521*2537720636^(11/15) 9567220260410003 a001 1836311903/54018521*312119004989^(10/11) 9567220260410003 a001 1836311903/54018521*3461452808002^(5/6) 9567220260410003 a001 4807526976/54018521*45537549124^(16/17) 9567220260410003 a001 4807526976/54018521*14662949395604^(16/21) 9567220260410003 a001 4807526976/54018521*192900153618^(8/9) 9567220260410003 a001 4807526976/54018521*73681302247^(12/13) 9567220260410003 a001 86267571272/54018521*17393796001^(6/7) 9567220260410003 a001 2504730781961/54018521*17393796001^(5/7) 9567220260410003 a001 86267571272/54018521*45537549124^(14/17) 9567220260410003 a001 365435296162/54018521*45537549124^(13/17) 9567220260410003 a001 1548008755920/54018521*45537549124^(12/17) 9567220260410003 a001 4052739537881/54018521*45537549124^(2/3) 9567220260410003 a001 6557470319842/54018521*45537549124^(11/17) 9567220260410003 a001 32951280099/54018521*312119004989^(4/5) 9567220260410003 a001 32951280099/54018521*23725150497407^(11/16) 9567220260410003 a001 32951280099/54018521*73681302247^(11/13) 9567220260410003 a001 86267571272/54018521*817138163596^(14/19) 9567220260410003 a001 86267571272/54018521*14662949395604^(2/3) 9567220260410003 a001 86267571272/54018521*505019158607^(3/4) 9567220260410003 a001 225851433717/54018521*312119004989^(8/11) 9567220260410003 a001 2504730781961/54018521*312119004989^(7/11) 9567220260410003 a001 86267571272/54018521*192900153618^(7/9) 9567220260410003 a001 1548008755920/54018521*14662949395604^(4/7) 9567220260410003 a001 10610209857723/54018521*23725150497407^(1/2) 9567220260410003 a001 365435296162/54018521*14662949395604^(13/21) 9567220260410003 a001 10610209857723/54018521*505019158607^(4/7) 9567220260410003 a001 1548008755920/54018521*505019158607^(9/14) 9567220260410003 a001 2504730781961/54018521*505019158607^(5/8) 9567220260410003 a001 1548008755920/54018521*192900153618^(2/3) 9567220260410003 a001 365435296162/54018521*192900153618^(13/18) 9567220260410003 a001 20365011074/54018521*45537549124^(15/17) 9567220260410003 a001 10610209857723/54018521*73681302247^(8/13) 9567220260410003 a001 1548008755920/54018521*73681302247^(9/13) 9567220260410003 a001 225851433717/54018521*73681302247^(10/13) 9567220260410003 a001 365435296162/54018521*73681302247^(3/4) 9567220260410003 a001 20365011074/54018521*312119004989^(9/11) 9567220260410003 a001 20365011074/54018521*14662949395604^(5/7) 9567220260410003 a001 20365011074/54018521*192900153618^(5/6) 9567220260410003 a001 2504730781961/54018521*28143753123^(7/10) 9567220260410003 a001 225851433717/54018521*28143753123^(4/5) 9567220260410003 a001 20365011074/54018521*28143753123^(9/10) 9567220260410003 a001 10610209857723/54018521*10749957122^(2/3) 9567220260410003 a001 6557470319842/54018521*10749957122^(11/16) 9567220260410003 a001 4052739537881/54018521*10749957122^(17/24) 9567220260410003 a001 1548008755920/54018521*10749957122^(3/4) 9567220260410003 a001 591286729879/54018521*10749957122^(19/24) 9567220260410003 a001 12586269025/54018521*10749957122^(23/24) 9567220260410003 a001 365435296162/54018521*10749957122^(13/16) 9567220260410003 a001 225851433717/54018521*10749957122^(5/6) 9567220260410003 a001 86267571272/54018521*10749957122^(7/8) 9567220260410003 a001 32951280099/54018521*10749957122^(11/12) 9567220260410003 a001 20365011074/54018521*10749957122^(15/16) 9567220260410003 a001 2971215073/54018521*14662949395604^(7/9) 9567220260410003 a001 2971215073/54018521*505019158607^(7/8) 9567220260410003 a001 10610209857723/54018521*4106118243^(16/23) 9567220260410003 a001 4052739537881/54018521*4106118243^(17/23) 9567220260410003 a001 1548008755920/54018521*4106118243^(18/23) 9567220260410003 a001 591286729879/54018521*4106118243^(19/23) 9567220260410003 a001 225851433717/54018521*4106118243^(20/23) 9567220260410003 a001 86267571272/54018521*4106118243^(21/23) 9567220260410003 a001 32951280099/54018521*4106118243^(22/23) 9567220260410003 a001 1134903170/54018521*817138163596^(17/19) 9567220260410003 a001 1134903170/54018521*14662949395604^(17/21) 9567220260410003 a001 1134903170/54018521*192900153618^(17/18) 9567220260410003 a001 10610209857723/54018521*1568397607^(8/11) 9567220260410003 a001 6557470319842/54018521*1568397607^(3/4) 9567220260410003 a001 4052739537881/54018521*1568397607^(17/22) 9567220260410003 a001 1548008755920/54018521*1568397607^(9/11) 9567220260410003 a001 591286729879/54018521*1568397607^(19/22) 9567220260410003 a001 225851433717/54018521*1568397607^(10/11) 9567220260410003 a001 86267571272/54018521*1568397607^(21/22) 9567220260410003 a001 10610209857723/54018521*599074578^(16/21) 9567220260410003 a001 6557470319842/54018521*599074578^(11/14) 9567220260410003 a001 4052739537881/54018521*599074578^(17/21) 9567220260410003 a001 2504730781961/54018521*599074578^(5/6) 9567220260410003 a001 1548008755920/54018521*599074578^(6/7) 9567220260410003 a001 591286729879/54018521*599074578^(19/21) 9567220260410003 a001 365435296162/54018521*599074578^(13/14) 9567220260410003 a001 225851433717/54018521*599074578^(20/21) 9567220260410003 a001 256319508074468270691/267914296 9567220260410003 a001 165580141/54018521*3461452808002^(11/12) 9567220260410003 a001 10610209857723/54018521*228826127^(4/5) 9567220260410003 a001 4052739537881/54018521*228826127^(17/20) 9567220260410003 a001 2504730781961/54018521*228826127^(7/8) 9567220260410003 a001 1548008755920/54018521*228826127^(9/10) 9567220260410003 a001 591286729879/54018521*228826127^(19/20) 9567220260410003 a001 97905340104793765777/102334155 9567220260410003 a001 63245986/54018521*14662949395604^(19/21) 9567220260410004 a001 10610209857723/54018521*87403803^(16/19) 9567220260410004 a001 4052739537881/54018521*87403803^(17/19) 9567220260410004 a001 1548008755920/54018521*87403803^(18/19) 9567220260410004 a001 37396512239913026640/39088169 9567220260410006 a001 3536736619241/29134601*33385282^(11/12) 9567220260410006 a001 6557470319842/87403803*33385282^(17/18) 9567220260410007 a001 7142098307472653689/7465176 9567220260410008 a001 4761398871648436325/4976784 9567220260410008 a001 1785524576868163651/1866294 9567220260410008 a001 2380699435824218207/2488392 9567220260410008 a001 14284196614945309247/14930352 9567220260410008 a001 99195809826009092/103683 9567220260410008 a001 420123429851332625/439128 9567220260410008 a001 10610209857723/141422324*33385282^(17/18) 9567220260410008 a001 4761398871648436421/4976784 9567220260410008 a001 5527939866464903/5778 9567220260410009 a001 2380699435824218327/2488392 9567220260410010 a001 10610209857723/54018521*33385282^(8/9) 9567220260410011 a001 6557470319842/54018521*33385282^(11/12) 9567220260410011 a001 4052739537881/54018521*33385282^(17/18) 9567220260410011 a001 14284196614945314143/14930352 9567220260410013 a001 9227465/33385282*14662949395604^(20/21) 9567220260410014 a001 4052739537881/7881196*7881196^(10/11) 9567220260410019 a001 23112315624967758865/24157817 9567220260410021 a001 39088169/20633239*14662949395604^(8/9) 9567220260410021 a001 30254413932440430265/31622993 9567220260410022 a001 591286729879/20633239*141422324^(12/13) 9567220260410022 a001 2504730781961/20633239*141422324^(11/13) 9567220260410022 a001 10610209857723/20633239*141422324^(10/13) 9567220260410022 a001 9303105/1875749*14662949395604^(6/7) 9567220260410022 a001 9238424/711491*23725150497407^(13/16) 9567220260410022 a001 9238424/711491*505019158607^(13/14) 9567220260410022 a001 701408733/20633239*312119004989^(10/11) 9567220260410022 a001 701408733/20633239*3461452808002^(5/6) 9567220260410022 a001 32951280099/20633239*2537720636^(14/15) 9567220260410022 a001 86267571272/20633239*2537720636^(8/9) 9567220260410022 a001 139583862445/20633239*2537720636^(13/15) 9567220260410022 a001 591286729879/20633239*2537720636^(4/5) 9567220260410022 a001 956722026041/20633239*2537720636^(7/9) 9567220260410022 a001 2504730781961/20633239*2537720636^(11/15) 9567220260410022 a001 10610209857723/20633239*2537720636^(2/3) 9567220260410022 a001 1836311903/20633239*45537549124^(16/17) 9567220260410022 a001 1836311903/20633239*14662949395604^(16/21) 9567220260410022 a001 1836311903/20633239*192900153618^(8/9) 9567220260410022 a001 1836311903/20633239*73681302247^(12/13) 9567220260410022 a001 32951280099/20633239*17393796001^(6/7) 9567220260410022 a001 956722026041/20633239*17393796001^(5/7) 9567220260410022 a001 1144206275/1875749*312119004989^(4/5) 9567220260410022 a001 1144206275/1875749*23725150497407^(11/16) 9567220260410022 a001 1144206275/1875749*73681302247^(11/13) 9567220260410022 a001 32951280099/20633239*45537549124^(14/17) 9567220260410022 a001 4807526976/20633239*10749957122^(23/24) 9567220260410022 a001 139583862445/20633239*45537549124^(13/17) 9567220260410022 a001 591286729879/20633239*45537549124^(12/17) 9567220260410022 a001 140728068720/1875749*45537549124^(2/3) 9567220260410022 a001 2504730781961/20633239*45537549124^(11/17) 9567220260410022 a001 10610209857723/20633239*45537549124^(10/17) 9567220260410022 a001 32951280099/20633239*817138163596^(14/19) 9567220260410022 a001 32951280099/20633239*14662949395604^(2/3) 9567220260410022 a001 32951280099/20633239*505019158607^(3/4) 9567220260410022 a001 32951280099/20633239*192900153618^(7/9) 9567220260410022 a001 86267571272/20633239*312119004989^(8/11) 9567220260410022 a001 86267571272/20633239*23725150497407^(5/8) 9567220260410022 a001 2504730781961/20633239*312119004989^(3/5) 9567220260410022 a001 10610209857723/20633239*312119004989^(6/11) 9567220260410022 a001 7787980473/711491*817138163596^(2/3) 9567220260410022 a001 2504730781961/20633239*817138163596^(11/19) 9567220260410022 a001 4052739537881/20633239*23725150497407^(1/2) 9567220260410022 a001 10610209857723/20633239*14662949395604^(10/21) 9567220260410022 a001 2504730781961/20633239*14662949395604^(11/21) 9567220260410022 a001 4052739537881/20633239*505019158607^(4/7) 9567220260410022 a001 956722026041/20633239*505019158607^(5/8) 9567220260410022 a001 139583862445/20633239*14662949395604^(13/21) 9567220260410022 a001 10610209857723/20633239*192900153618^(5/9) 9567220260410022 a001 2504730781961/20633239*192900153618^(11/18) 9567220260410022 a001 139583862445/20633239*192900153618^(13/18) 9567220260410022 a001 4052739537881/20633239*73681302247^(8/13) 9567220260410022 a001 86267571272/20633239*73681302247^(10/13) 9567220260410022 a001 591286729879/20633239*73681302247^(9/13) 9567220260410022 a001 139583862445/20633239*73681302247^(3/4) 9567220260410022 a001 10610209857723/20633239*28143753123^(3/5) 9567220260410022 a001 956722026041/20633239*28143753123^(7/10) 9567220260410022 a001 86267571272/20633239*28143753123^(4/5) 9567220260410022 a001 7778742049/20633239*45537549124^(15/17) 9567220260410022 a001 7778742049/20633239*312119004989^(9/11) 9567220260410022 a001 7778742049/20633239*14662949395604^(5/7) 9567220260410022 a001 7778742049/20633239*192900153618^(5/6) 9567220260410022 a001 7778742049/20633239*28143753123^(9/10) 9567220260410022 a001 10610209857723/20633239*10749957122^(5/8) 9567220260410022 a001 4052739537881/20633239*10749957122^(2/3) 9567220260410022 a001 2504730781961/20633239*10749957122^(11/16) 9567220260410022 a001 140728068720/1875749*10749957122^(17/24) 9567220260410022 a001 591286729879/20633239*10749957122^(3/4) 9567220260410022 a001 1144206275/1875749*10749957122^(11/12) 9567220260410022 a001 7787980473/711491*10749957122^(19/24) 9567220260410022 a001 139583862445/20633239*10749957122^(13/16) 9567220260410022 a001 86267571272/20633239*10749957122^(5/6) 9567220260410022 a001 32951280099/20633239*10749957122^(7/8) 9567220260410022 a001 7778742049/20633239*10749957122^(15/16) 9567220260410022 a001 10610209857723/20633239*4106118243^(15/23) 9567220260410022 a001 4052739537881/20633239*4106118243^(16/23) 9567220260410022 a001 140728068720/1875749*4106118243^(17/23) 9567220260410022 a001 591286729879/20633239*4106118243^(18/23) 9567220260410022 a001 7787980473/711491*4106118243^(19/23) 9567220260410022 a001 86267571272/20633239*4106118243^(20/23) 9567220260410022 a001 32951280099/20633239*4106118243^(21/23) 9567220260410022 a001 1144206275/1875749*4106118243^(22/23) 9567220260410022 a001 1134903170/20633239*14662949395604^(7/9) 9567220260410022 a001 1134903170/20633239*505019158607^(7/8) 9567220260410022 a001 10610209857723/20633239*1568397607^(15/22) 9567220260410022 a001 4052739537881/20633239*1568397607^(8/11) 9567220260410022 a001 2504730781961/20633239*1568397607^(3/4) 9567220260410022 a001 140728068720/1875749*1568397607^(17/22) 9567220260410022 a001 591286729879/20633239*1568397607^(9/11) 9567220260410022 a001 7787980473/711491*1568397607^(19/22) 9567220260410022 a001 86267571272/20633239*1568397607^(10/11) 9567220260410022 a001 32951280099/20633239*1568397607^(21/22) 9567220260410022 a001 433494437/20633239*817138163596^(17/19) 9567220260410022 a001 433494437/20633239*14662949395604^(17/21) 9567220260410022 a001 433494437/20633239*192900153618^(17/18) 9567220260410022 a001 10610209857723/20633239*599074578^(5/7) 9567220260410022 a001 4052739537881/20633239*599074578^(16/21) 9567220260410022 a001 2504730781961/20633239*599074578^(11/14) 9567220260410022 a001 140728068720/1875749*599074578^(17/21) 9567220260410022 a001 956722026041/20633239*599074578^(5/6) 9567220260410022 a001 591286729879/20633239*599074578^(6/7) 9567220260410022 a001 7787980473/711491*599074578^(19/21) 9567220260410022 a001 139583862445/20633239*599074578^(13/14) 9567220260410022 a001 86267571272/20633239*599074578^(20/21) 9567220260410022 a001 10610209857723/20633239*228826127^(3/4) 9567220260410022 a001 4052739537881/20633239*228826127^(4/5) 9567220260410022 a001 140728068720/1875749*228826127^(17/20) 9567220260410022 a001 956722026041/20633239*228826127^(7/8) 9567220260410022 a001 591286729879/20633239*228826127^(9/10) 9567220260410022 a001 7787980473/711491*228826127^(19/20) 9567220260410022 a001 932431810521847259/974611 9567220260410022 a001 63245986/20633239*3461452808002^(11/12) 9567220260410023 a001 10610209857723/20633239*87403803^(15/19) 9567220260410023 a001 4052739537881/20633239*87403803^(16/19) 9567220260410023 a001 140728068720/1875749*87403803^(17/19) 9567220260410023 a001 591286729879/20633239*87403803^(18/19) 9567220260410023 a001 37396512239913101665/39088169 9567220260410025 a001 24157817/20633239*14662949395604^(19/21) 9567220260410029 a001 10610209857723/20633239*33385282^(5/6) 9567220260410030 a001 4052739537881/20633239*33385282^(8/9) 9567220260410030 a001 2504730781961/20633239*33385282^(11/12) 9567220260410030 a001 140728068720/1875749*33385282^(17/18) 9567220260410031 a001 99195809826009325/103683 9567220260410046 a001 3278735159921/16692641*12752043^(16/17) 9567220260410050 a001 5456077604922909024/5702887 9567220260410057 a001 5456077604922913205/5702887 9567220260410058 a001 5456077604922913815/5702887 9567220260410058 a001 10610209857723/54018521*12752043^(16/17) 9567220260410058 a001 3416454354992432/3571 9567220260410058 a001 5456077604922913917/5702887 9567220260410058 a001 5456077604922913919/5702887 9567220260410058 a001 5456077604922913920/5702887 9567220260410058 a001 5456077604922913925/5702887 9567220260410058 a001 5456077604922913959/5702887 9567220260410059 a001 5456077604922914192/5702887 9567220260410062 a001 5456077604922915789/5702887 9567220260410074 a001 10610209857723/20633239*12752043^(15/17) 9567220260410077 a001 4052739537881/20633239*12752043^(16/17) 9567220260410081 a001 5456077604922926735/5702887 9567220260410095 a001 3524578/12752043*14662949395604^(20/21) 9567220260410131 a001 8828119010022537458/9227465 9567220260410134 a001 4052739537881/7881196*20633239^(6/7) 9567220260410136 a001 10610209857723/7881196*20633239^(4/5) 9567220260410145 a001 3732588/1970299*14662949395604^(8/9) 9567220260410150 a001 23112315624968076676/24157817 9567220260410152 a001 39088169/7881196*14662949395604^(6/7) 9567220260410153 a001 225851433717/7881196*141422324^(12/13) 9567220260410153 a001 956722026041/7881196*141422324^(11/13) 9567220260410153 a001 4052739537881/7881196*141422324^(10/13) 9567220260410153 a001 102334155/7881196*23725150497407^(13/16) 9567220260410153 a001 102334155/7881196*505019158607^(13/14) 9567220260410154 a001 66978574/1970299*312119004989^(10/11) 9567220260410154 a001 66978574/1970299*3461452808002^(5/6) 9567220260410154 a001 3524667/39604*45537549124^(16/17) 9567220260410154 a001 3524667/39604*14662949395604^(16/21) 9567220260410154 a001 3524667/39604*192900153618^(8/9) 9567220260410154 a001 3524667/39604*73681302247^(12/13) 9567220260410154 a001 12586269025/7881196*2537720636^(14/15) 9567220260410154 a001 32951280099/7881196*2537720636^(8/9) 9567220260410154 a001 53316291173/7881196*2537720636^(13/15) 9567220260410154 a001 225851433717/7881196*2537720636^(4/5) 9567220260410154 a001 182717648081/3940598*2537720636^(7/9) 9567220260410154 a001 956722026041/7881196*2537720636^(11/15) 9567220260410154 a001 4052739537881/7881196*2537720636^(2/3) 9567220260410154 a001 1836311903/7881196*10749957122^(23/24) 9567220260410154 a001 1201881744/1970299*312119004989^(4/5) 9567220260410154 a001 1201881744/1970299*23725150497407^(11/16) 9567220260410154 a001 1201881744/1970299*73681302247^(11/13) 9567220260410154 a001 12586269025/7881196*17393796001^(6/7) 9567220260410154 a001 182717648081/3940598*17393796001^(5/7) 9567220260410154 a001 10610209857723/7881196*17393796001^(4/7) 9567220260410154 a001 12586269025/7881196*45537549124^(14/17) 9567220260410154 a001 12586269025/7881196*817138163596^(14/19) 9567220260410154 a001 12586269025/7881196*14662949395604^(2/3) 9567220260410154 a001 12586269025/7881196*505019158607^(3/4) 9567220260410154 a001 12586269025/7881196*192900153618^(7/9) 9567220260410154 a001 1201881744/1970299*10749957122^(11/12) 9567220260410154 a001 225851433717/7881196*45537549124^(12/17) 9567220260410154 a001 591286729879/7881196*45537549124^(2/3) 9567220260410154 a001 956722026041/7881196*45537549124^(11/17) 9567220260410154 a001 53316291173/7881196*45537549124^(13/17) 9567220260410154 a001 4052739537881/7881196*45537549124^(10/17) 9567220260410154 a001 32951280099/7881196*312119004989^(8/11) 9567220260410154 a001 32951280099/7881196*23725150497407^(5/8) 9567220260410154 a001 32951280099/7881196*73681302247^(10/13) 9567220260410154 a001 21566892818/1970299*817138163596^(2/3) 9567220260410154 a001 956722026041/7881196*312119004989^(3/5) 9567220260410154 a001 4052739537881/7881196*312119004989^(6/11) 9567220260410154 a001 182717648081/3940598*312119004989^(7/11) 9567220260410154 a001 225851433717/7881196*14662949395604^(4/7) 9567220260410154 a001 225851433717/7881196*505019158607^(9/14) 9567220260410154 a001 387002188980/1970299*23725150497407^(1/2) 9567220260410154 a001 10610209857723/7881196*14662949395604^(4/9) 9567220260410154 a001 3278735159921/3940598*1322157322203^(1/2) 9567220260410154 a001 182717648081/3940598*14662949395604^(5/9) 9567220260410154 a001 10610209857723/7881196*505019158607^(1/2) 9567220260410154 a001 387002188980/1970299*505019158607^(4/7) 9567220260410154 a001 182717648081/3940598*505019158607^(5/8) 9567220260410154 a001 225851433717/7881196*192900153618^(2/3) 9567220260410154 a001 4052739537881/7881196*192900153618^(5/9) 9567220260410154 a001 956722026041/7881196*192900153618^(11/18) 9567220260410154 a001 53316291173/7881196*14662949395604^(13/21) 9567220260410154 a001 53316291173/7881196*192900153618^(13/18) 9567220260410154 a001 10610209857723/7881196*73681302247^(7/13) 9567220260410154 a001 387002188980/1970299*73681302247^(8/13) 9567220260410154 a001 225851433717/7881196*73681302247^(9/13) 9567220260410154 a001 53316291173/7881196*73681302247^(3/4) 9567220260410154 a001 4052739537881/7881196*28143753123^(3/5) 9567220260410154 a001 32951280099/7881196*28143753123^(4/5) 9567220260410154 a001 182717648081/3940598*28143753123^(7/10) 9567220260410154 a001 10610209857723/7881196*10749957122^(7/12) 9567220260410154 a001 4052739537881/7881196*10749957122^(5/8) 9567220260410154 a001 387002188980/1970299*10749957122^(2/3) 9567220260410154 a001 956722026041/7881196*10749957122^(11/16) 9567220260410154 a001 591286729879/7881196*10749957122^(17/24) 9567220260410154 a001 12586269025/7881196*10749957122^(7/8) 9567220260410154 a001 225851433717/7881196*10749957122^(3/4) 9567220260410154 a001 21566892818/1970299*10749957122^(19/24) 9567220260410154 a001 32951280099/7881196*10749957122^(5/6) 9567220260410154 a001 53316291173/7881196*10749957122^(13/16) 9567220260410154 a001 2971215073/7881196*45537549124^(15/17) 9567220260410154 a001 2971215073/7881196*312119004989^(9/11) 9567220260410154 a001 2971215073/7881196*14662949395604^(5/7) 9567220260410154 a001 2971215073/7881196*192900153618^(5/6) 9567220260410154 a001 2971215073/7881196*28143753123^(9/10) 9567220260410154 a001 2971215073/7881196*10749957122^(15/16) 9567220260410154 a001 10610209857723/7881196*4106118243^(14/23) 9567220260410154 a001 4052739537881/7881196*4106118243^(15/23) 9567220260410154 a001 387002188980/1970299*4106118243^(16/23) 9567220260410154 a001 591286729879/7881196*4106118243^(17/23) 9567220260410154 a001 225851433717/7881196*4106118243^(18/23) 9567220260410154 a001 1201881744/1970299*4106118243^(22/23) 9567220260410154 a001 21566892818/1970299*4106118243^(19/23) 9567220260410154 a001 32951280099/7881196*4106118243^(20/23) 9567220260410154 a001 12586269025/7881196*4106118243^(21/23) 9567220260410154 a001 10610209857723/7881196*1568397607^(7/11) 9567220260410154 a001 4052739537881/7881196*1568397607^(15/22) 9567220260410154 a001 387002188980/1970299*1568397607^(8/11) 9567220260410154 a001 956722026041/7881196*1568397607^(3/4) 9567220260410154 a001 591286729879/7881196*1568397607^(17/22) 9567220260410154 a001 225851433717/7881196*1568397607^(9/11) 9567220260410154 a001 21566892818/1970299*1568397607^(19/22) 9567220260410154 a001 32951280099/7881196*1568397607^(10/11) 9567220260410154 a001 12586269025/7881196*1568397607^(21/22) 9567220260410154 a001 433494437/7881196*14662949395604^(7/9) 9567220260410154 a001 433494437/7881196*505019158607^(7/8) 9567220260410154 a001 10610209857723/7881196*599074578^(2/3) 9567220260410154 a001 4052739537881/7881196*599074578^(5/7) 9567220260410154 a001 387002188980/1970299*599074578^(16/21) 9567220260410154 a001 956722026041/7881196*599074578^(11/14) 9567220260410154 a001 591286729879/7881196*599074578^(17/21) 9567220260410154 a001 182717648081/3940598*599074578^(5/6) 9567220260410154 a001 225851433717/7881196*599074578^(6/7) 9567220260410154 a001 21566892818/1970299*599074578^(19/21) 9567220260410154 a001 53316291173/7881196*599074578^(13/14) 9567220260410154 a001 32951280099/7881196*599074578^(20/21) 9567220260410154 a001 165580141/7881196*817138163596^(17/19) 9567220260410154 a001 165580141/7881196*14662949395604^(17/21) 9567220260410154 a001 165580141/7881196*192900153618^(17/18) 9567220260410154 a001 10610209857723/7881196*228826127^(7/10) 9567220260410154 a001 4052739537881/7881196*228826127^(3/4) 9567220260410154 a001 387002188980/1970299*228826127^(4/5) 9567220260410154 a001 591286729879/7881196*228826127^(17/20) 9567220260410154 a001 182717648081/3940598*228826127^(7/8) 9567220260410154 a001 225851433717/7881196*228826127^(9/10) 9567220260410154 a001 21566892818/1970299*228826127^(19/20) 9567220260410154 a001 10610209857723/7881196*87403803^(14/19) 9567220260410155 a001 4052739537881/7881196*87403803^(15/19) 9567220260410155 a001 387002188980/1970299*87403803^(16/19) 9567220260410155 a001 591286729879/7881196*87403803^(17/19) 9567220260410155 a001 225851433717/7881196*87403803^(18/19) 9567220260410155 a001 37396512239913615894/39088169 9567220260410157 a001 24157817/7881196*3461452808002^(11/12) 9567220260410160 a001 10610209857723/7881196*33385282^(7/9) 9567220260410161 a001 4052739537881/7881196*33385282^(5/6) 9567220260410161 a001 387002188980/1970299*33385282^(8/9) 9567220260410161 a001 956722026041/7881196*33385282^(11/12) 9567220260410162 a001 591286729879/7881196*33385282^(17/18) 9567220260410162 a001 7142098307472769609/7465176 9567220260410176 a001 9227465/7881196*14662949395604^(19/21) 9567220260410202 a001 10610209857723/7881196*12752043^(14/17) 9567220260410205 a001 4052739537881/7881196*12752043^(15/17) 9567220260410209 a001 387002188980/1970299*12752043^(16/17) 9567220260410212 a001 5456077604923001760/5702887 9567220260410319 a001 6557470319842/12752043*4870847^(15/16) 9567220260410344 a001 2084036199823419694/2178309 9567220260410394 a001 694678733274476880/726103 9567220260410400 a001 10610209857723/20633239*4870847^(15/16) 9567220260410401 a001 2084036199823432237/2178309 9567220260410403 a001 99239819039211070/103729 9567220260410403 a001 2084036199823432504/2178309 9567220260410403 a001 694678733274477503/726103 9567220260410403 a001 2084036199823432510/2178309 9567220260410403 a001 2111485511472576/2207 9567220260410403 a001 2084036199823432525/2178309 9567220260410403 a001 694678733274477538/726103 9567220260410406 a001 2084036199823433224/2178309 9567220260410425 a001 99239819039211305/103729 9567220260410506 a001 10610209857723/7881196*4870847^(7/8) 9567220260410532 a001 4052739537881/7881196*4870847^(15/16) 9567220260410557 a001 2084036199823466062/2178309 9567220260410652 a001 1346269/4870847*14662949395604^(20/21) 9567220260410901 a001 3372041405099853509/3524578 9567220260410915 a001 1548008755920/3010349*7881196^(10/11) 9567220260410929 a001 6557470319842/3010349*7881196^(9/11) 9567220260410996 a001 5702887/3010349*14662949395604^(8/9) 9567220260411033 a001 679086077694105346/709805 9567220260411036 a001 1548008755920/3010349*20633239^(6/7) 9567220260411037 a001 1346269*20633239^(4/5) 9567220260411047 a001 14930352/3010349*14662949395604^(6/7) 9567220260411054 a001 39088169/3010349*23725150497407^(13/16) 9567220260411054 a001 39088169/3010349*505019158607^(13/14) 9567220260411055 a001 86267571272/3010349*141422324^(12/13) 9567220260411055 a001 365435296162/3010349*141422324^(11/13) 9567220260411055 a001 1548008755920/3010349*141422324^(10/13) 9567220260411055 a001 6557470319842/3010349*141422324^(9/13) 9567220260411055 a001 10610209857723/3010349*141422324^(2/3) 9567220260411055 a001 102334155/3010349*312119004989^(10/11) 9567220260411055 a001 102334155/3010349*3461452808002^(5/6) 9567220260411055 a001 267914296/3010349*45537549124^(16/17) 9567220260411055 a001 267914296/3010349*14662949395604^(16/21) 9567220260411055 a001 267914296/3010349*192900153618^(8/9) 9567220260411055 a001 267914296/3010349*73681302247^(12/13) 9567220260411055 a001 701408733/3010349*10749957122^(23/24) 9567220260411055 a001 4807526976/3010349*2537720636^(14/15) 9567220260411055 a001 12586269025/3010349*2537720636^(8/9) 9567220260411055 a001 20365011074/3010349*2537720636^(13/15) 9567220260411055 a001 86267571272/3010349*2537720636^(4/5) 9567220260411055 a001 139583862445/3010349*2537720636^(7/9) 9567220260411055 a001 365435296162/3010349*2537720636^(11/15) 9567220260411055 a001 1548008755920/3010349*2537720636^(2/3) 9567220260411055 a001 6557470319842/3010349*2537720636^(3/5) 9567220260411055 a001 1836311903/3010349*312119004989^(4/5) 9567220260411055 a001 1836311903/3010349*23725150497407^(11/16) 9567220260411055 a001 1836311903/3010349*73681302247^(11/13) 9567220260411055 a001 1836311903/3010349*10749957122^(11/12) 9567220260411055 a001 4807526976/3010349*17393796001^(6/7) 9567220260411055 a001 4807526976/3010349*45537549124^(14/17) 9567220260411055 a001 4807526976/3010349*817138163596^(14/19) 9567220260411055 a001 4807526976/3010349*14662949395604^(2/3) 9567220260411055 a001 4807526976/3010349*505019158607^(3/4) 9567220260411055 a001 4807526976/3010349*192900153618^(7/9) 9567220260411055 a001 1836311903/3010349*4106118243^(22/23) 9567220260411055 a001 139583862445/3010349*17393796001^(5/7) 9567220260411055 a001 1346269*17393796001^(4/7) 9567220260411055 a001 12586269025/3010349*312119004989^(8/11) 9567220260411055 a001 12586269025/3010349*23725150497407^(5/8) 9567220260411055 a001 12586269025/3010349*73681302247^(10/13) 9567220260411055 a001 4807526976/3010349*10749957122^(7/8) 9567220260411055 a001 86267571272/3010349*45537549124^(12/17) 9567220260411055 a001 225851433717/3010349*45537549124^(2/3) 9567220260411055 a001 365435296162/3010349*45537549124^(11/17) 9567220260411055 a001 1548008755920/3010349*45537549124^(10/17) 9567220260411055 a001 6557470319842/3010349*45537549124^(9/17) 9567220260411055 a001 12586269025/3010349*28143753123^(4/5) 9567220260411055 a001 32951280099/3010349*817138163596^(2/3) 9567220260411055 a001 86267571272/3010349*14662949395604^(4/7) 9567220260411055 a001 86267571272/3010349*505019158607^(9/14) 9567220260411055 a001 86267571272/3010349*192900153618^(2/3) 9567220260411055 a001 1548008755920/3010349*312119004989^(6/11) 9567220260411055 a001 365435296162/3010349*312119004989^(3/5) 9567220260411055 a001 1548008755920/3010349*14662949395604^(10/21) 9567220260411055 a001 1346269*14662949395604^(4/9) 9567220260411055 a001 2504730781961/3010349*1322157322203^(1/2) 9567220260411055 a001 365435296162/3010349*14662949395604^(11/21) 9567220260411055 a001 1346269*505019158607^(1/2) 9567220260411055 a001 139583862445/3010349*312119004989^(7/11) 9567220260411055 a001 139583862445/3010349*14662949395604^(5/9) 9567220260411055 a001 139583862445/3010349*505019158607^(5/8) 9567220260411055 a001 6557470319842/3010349*192900153618^(1/2) 9567220260411055 a001 1548008755920/3010349*192900153618^(5/9) 9567220260411055 a001 365435296162/3010349*192900153618^(11/18) 9567220260411055 a001 10610209857723/3010349*73681302247^(1/2) 9567220260411055 a001 1346269*73681302247^(7/13) 9567220260411055 a001 86267571272/3010349*73681302247^(9/13) 9567220260411055 a001 591286729879/3010349*73681302247^(8/13) 9567220260411055 a001 20365011074/3010349*45537549124^(13/17) 9567220260411055 a001 20365011074/3010349*14662949395604^(13/21) 9567220260411055 a001 20365011074/3010349*192900153618^(13/18) 9567220260411055 a001 20365011074/3010349*73681302247^(3/4) 9567220260411055 a001 1548008755920/3010349*28143753123^(3/5) 9567220260411055 a001 139583862445/3010349*28143753123^(7/10) 9567220260411055 a001 10610209857723/3010349*10749957122^(13/24) 9567220260411055 a001 6557470319842/3010349*10749957122^(9/16) 9567220260411055 a001 1346269*10749957122^(7/12) 9567220260411055 a001 1548008755920/3010349*10749957122^(5/8) 9567220260411055 a001 591286729879/3010349*10749957122^(2/3) 9567220260411055 a001 12586269025/3010349*10749957122^(5/6) 9567220260411055 a001 365435296162/3010349*10749957122^(11/16) 9567220260411055 a001 225851433717/3010349*10749957122^(17/24) 9567220260411055 a001 86267571272/3010349*10749957122^(3/4) 9567220260411055 a001 32951280099/3010349*10749957122^(19/24) 9567220260411055 a001 20365011074/3010349*10749957122^(13/16) 9567220260411055 a001 10610209857723/3010349*4106118243^(13/23) 9567220260411055 a001 1346269*4106118243^(14/23) 9567220260411055 a001 1548008755920/3010349*4106118243^(15/23) 9567220260411055 a001 591286729879/3010349*4106118243^(16/23) 9567220260411055 a001 225851433717/3010349*4106118243^(17/23) 9567220260411055 a001 4807526976/3010349*4106118243^(21/23) 9567220260411055 a001 86267571272/3010349*4106118243^(18/23) 9567220260411055 a001 32951280099/3010349*4106118243^(19/23) 9567220260411055 a001 12586269025/3010349*4106118243^(20/23) 9567220260411055 a001 1134903170/3010349*45537549124^(15/17) 9567220260411055 a001 1134903170/3010349*312119004989^(9/11) 9567220260411055 a001 1134903170/3010349*14662949395604^(5/7) 9567220260411055 a001 1134903170/3010349*192900153618^(5/6) 9567220260411055 a001 1134903170/3010349*28143753123^(9/10) 9567220260411055 a001 1134903170/3010349*10749957122^(15/16) 9567220260411055 a001 10610209857723/3010349*1568397607^(13/22) 9567220260411055 a001 1346269*1568397607^(7/11) 9567220260411055 a001 1548008755920/3010349*1568397607^(15/22) 9567220260411055 a001 591286729879/3010349*1568397607^(8/11) 9567220260411055 a001 365435296162/3010349*1568397607^(3/4) 9567220260411055 a001 225851433717/3010349*1568397607^(17/22) 9567220260411055 a001 86267571272/3010349*1568397607^(9/11) 9567220260411055 a001 32951280099/3010349*1568397607^(19/22) 9567220260411055 a001 12586269025/3010349*1568397607^(10/11) 9567220260411055 a001 4807526976/3010349*1568397607^(21/22) 9567220260411055 a001 10610209857723/3010349*599074578^(13/21) 9567220260411055 a001 6557470319842/3010349*599074578^(9/14) 9567220260411055 a001 1346269*599074578^(2/3) 9567220260411055 a001 1548008755920/3010349*599074578^(5/7) 9567220260411055 a001 591286729879/3010349*599074578^(16/21) 9567220260411055 a001 365435296162/3010349*599074578^(11/14) 9567220260411055 a001 225851433717/3010349*599074578^(17/21) 9567220260411055 a001 139583862445/3010349*599074578^(5/6) 9567220260411055 a001 86267571272/3010349*599074578^(6/7) 9567220260411055 a001 32951280099/3010349*599074578^(19/21) 9567220260411055 a001 20365011074/3010349*599074578^(13/14) 9567220260411055 a001 12586269025/3010349*599074578^(20/21) 9567220260411055 a001 165580141/3010349*14662949395604^(7/9) 9567220260411055 a001 165580141/3010349*505019158607^(7/8) 9567220260411055 a001 10610209857723/3010349*228826127^(13/20) 9567220260411055 a001 1346269*228826127^(7/10) 9567220260411055 a001 1548008755920/3010349*228826127^(3/4) 9567220260411055 a001 591286729879/3010349*228826127^(4/5) 9567220260411055 a001 225851433717/3010349*228826127^(17/20) 9567220260411055 a001 139583862445/3010349*228826127^(7/8) 9567220260411055 a001 86267571272/3010349*228826127^(9/10) 9567220260411055 a001 32951280099/3010349*228826127^(19/20) 9567220260411056 a001 63245986/3010349*817138163596^(17/19) 9567220260411056 a001 63245986/3010349*14662949395604^(17/21) 9567220260411056 a001 63245986/3010349*192900153618^(17/18) 9567220260411056 a001 10610209857723/3010349*87403803^(13/19) 9567220260411056 a001 1346269*87403803^(14/19) 9567220260411056 a001 1548008755920/3010349*87403803^(15/19) 9567220260411056 a001 591286729879/3010349*87403803^(16/19) 9567220260411056 a001 225851433717/3010349*87403803^(17/19) 9567220260411056 a001 86267571272/3010349*87403803^(18/19) 9567220260411061 a001 10610209857723/3010349*33385282^(13/18) 9567220260411062 a001 6557470319842/3010349*33385282^(3/4) 9567220260411062 a001 1346269*33385282^(7/9) 9567220260411062 a001 1548008755920/3010349*33385282^(5/6) 9567220260411063 a001 591286729879/3010349*33385282^(8/9) 9567220260411063 a001 365435296162/3010349*33385282^(11/12) 9567220260411063 a001 225851433717/3010349*33385282^(17/18) 9567220260411064 a001 4761398871648961829/4976784 9567220260411078 a001 9227465/3010349*3461452808002^(11/12) 9567220260411100 a001 10610209857723/3010349*12752043^(13/17) 9567220260411104 a001 1346269*12752043^(14/17) 9567220260411107 a001 1548008755920/3010349*12752043^(15/17) 9567220260411111 a001 591286729879/3010349*12752043^(16/17) 9567220260411114 a001 5456077604923515989/5702887 9567220260411209 a001 3524578/3010349*14662949395604^(19/21) 9567220260411383 a001 10610209857723/3010349*4870847^(13/16) 9567220260411408 a001 1346269*4870847^(7/8) 9567220260411433 a001 1548008755920/3010349*4870847^(15/16) 9567220260411458 a001 694678733274554160/726103 9567220260412084 a001 2178309*1860498^(9/10) 9567220260412176 a001 6557470319842/4870847*1860498^(14/15) 9567220260412360 a001 398015497273675029/416020 9567220260412705 a001 159206198909475743/166408 9567220260412733 a001 10610209857723/7881196*1860498^(14/15) 9567220260412755 a001 99503874318422862/104005 9567220260412762 a001 398015497273691753/416020 9567220260412763 a001 14473290809952429/15128 9567220260412763 a001 99503874318422951/104005 9567220260412763 a001 1304968843520301/1364 9567220260412763 a001 796030994547383611/832040 9567220260412764 a001 99503874318422952/104005 9567220260412764 a001 7236645404976215/7564 9567220260412767 a001 796030994547383883/832040 9567220260412786 a001 19900774863684637/20801 9567220260412917 a001 398015497273698213/416020 9567220260413451 a001 10610209857723/3010349*1860498^(13/15) 9567220260413543 a001 6557470319842/3010349*1860498^(9/10) 9567220260413635 a001 1346269*1860498^(14/15) 9567220260413819 a001 796030994547471451/832040 9567220260414472 a001 514229/1860498*14662949395604^(20/21) 9567220260415510 a001 4052739537881/439204*439204^(8/9) 9567220260416180 a001 1288005205277023069/1346269 9567220260416832 a001 2178309/1149851*14662949395604^(8/9) 9567220260417082 a001 1686020702551015909/1762289 9567220260417096 a001 514229*7881196^(10/11) 9567220260417110 a001 2504730781961/1149851*7881196^(9/11) 9567220260417124 a001 10610209857723/1149851*7881196^(8/11) 9567220260417177 a001 5702887/1149851*14662949395604^(6/7) 9567220260417216 a001 514229*20633239^(6/7) 9567220260417218 a001 1548008755920/1149851*20633239^(4/5) 9567220260417220 a001 6557470319842/1149851*20633239^(5/7) 9567220260417227 a001 14930352/1149851*23725150497407^(13/16) 9567220260417227 a001 14930352/1149851*505019158607^(13/14) 9567220260417234 a001 39088169/1149851*312119004989^(10/11) 9567220260417234 a001 39088169/1149851*3461452808002^(5/6) 9567220260417235 a001 32951280099/1149851*141422324^(12/13) 9567220260417235 a001 139583862445/1149851*141422324^(11/13) 9567220260417235 a001 514229*141422324^(10/13) 9567220260417235 a001 2504730781961/1149851*141422324^(9/13) 9567220260417235 a001 4052739537881/1149851*141422324^(2/3) 9567220260417235 a001 10610209857723/1149851*141422324^(8/13) 9567220260417235 a001 102334155/1149851*45537549124^(16/17) 9567220260417235 a001 102334155/1149851*14662949395604^(16/21) 9567220260417235 a001 102334155/1149851*192900153618^(8/9) 9567220260417235 a001 102334155/1149851*73681302247^(12/13) 9567220260417236 a001 267914296/1149851*10749957122^(23/24) 9567220260417236 a001 701408733/1149851*312119004989^(4/5) 9567220260417236 a001 701408733/1149851*23725150497407^(11/16) 9567220260417236 a001 701408733/1149851*73681302247^(11/13) 9567220260417236 a001 701408733/1149851*10749957122^(11/12) 9567220260417236 a001 701408733/1149851*4106118243^(22/23) 9567220260417236 a001 1836311903/1149851*2537720636^(14/15) 9567220260417236 a001 4807526976/1149851*2537720636^(8/9) 9567220260417236 a001 7778742049/1149851*2537720636^(13/15) 9567220260417236 a001 32951280099/1149851*2537720636^(4/5) 9567220260417236 a001 53316291173/1149851*2537720636^(7/9) 9567220260417236 a001 139583862445/1149851*2537720636^(11/15) 9567220260417236 a001 514229*2537720636^(2/3) 9567220260417236 a001 2504730781961/1149851*2537720636^(3/5) 9567220260417236 a001 6557470319842/1149851*2537720636^(5/9) 9567220260417236 a001 10610209857723/1149851*2537720636^(8/15) 9567220260417236 a001 1836311903/1149851*17393796001^(6/7) 9567220260417236 a001 1836311903/1149851*45537549124^(14/17) 9567220260417236 a001 1836311903/1149851*817138163596^(14/19) 9567220260417236 a001 1836311903/1149851*14662949395604^(2/3) 9567220260417236 a001 1836311903/1149851*505019158607^(3/4) 9567220260417236 a001 1836311903/1149851*192900153618^(7/9) 9567220260417236 a001 1836311903/1149851*10749957122^(7/8) 9567220260417236 a001 4807526976/1149851*312119004989^(8/11) 9567220260417236 a001 4807526976/1149851*23725150497407^(5/8) 9567220260417236 a001 4807526976/1149851*73681302247^(10/13) 9567220260417236 a001 4807526976/1149851*28143753123^(4/5) 9567220260417236 a001 1836311903/1149851*4106118243^(21/23) 9567220260417236 a001 53316291173/1149851*17393796001^(5/7) 9567220260417236 a001 1548008755920/1149851*17393796001^(4/7) 9567220260417236 a001 4807526976/1149851*10749957122^(5/6) 9567220260417236 a001 12586269025/1149851*817138163596^(2/3) 9567220260417236 a001 32951280099/1149851*45537549124^(12/17) 9567220260417236 a001 86267571272/1149851*45537549124^(2/3) 9567220260417236 a001 139583862445/1149851*45537549124^(11/17) 9567220260417236 a001 514229*45537549124^(10/17) 9567220260417236 a001 2504730781961/1149851*45537549124^(9/17) 9567220260417236 a001 10610209857723/1149851*45537549124^(8/17) 9567220260417236 a001 32951280099/1149851*14662949395604^(4/7) 9567220260417236 a001 32951280099/1149851*505019158607^(9/14) 9567220260417236 a001 32951280099/1149851*192900153618^(2/3) 9567220260417236 a001 32951280099/1149851*73681302247^(9/13) 9567220260417236 a001 514229*312119004989^(6/11) 9567220260417236 a001 6557470319842/1149851*312119004989^(5/11) 9567220260417236 a001 225851433717/1149851*505019158607^(4/7) 9567220260417236 a001 2504730781961/1149851*817138163596^(9/19) 9567220260417236 a001 10610209857723/1149851*14662949395604^(8/21) 9567220260417236 a001 2504730781961/1149851*14662949395604^(3/7) 9567220260417236 a001 956722026041/1149851*1322157322203^(1/2) 9567220260417236 a001 365435296162/1149851*9062201101803^(1/2) 9567220260417236 a001 1548008755920/1149851*505019158607^(1/2) 9567220260417236 a001 139583862445/1149851*312119004989^(3/5) 9567220260417236 a001 139583862445/1149851*817138163596^(11/19) 9567220260417236 a001 139583862445/1149851*14662949395604^(11/21) 9567220260417236 a001 10610209857723/1149851*192900153618^(4/9) 9567220260417236 a001 2504730781961/1149851*192900153618^(1/2) 9567220260417236 a001 514229*192900153618^(5/9) 9567220260417236 a001 139583862445/1149851*192900153618^(11/18) 9567220260417236 a001 53316291173/1149851*312119004989^(7/11) 9567220260417236 a001 53316291173/1149851*14662949395604^(5/9) 9567220260417236 a001 53316291173/1149851*505019158607^(5/8) 9567220260417236 a001 10610209857723/1149851*73681302247^(6/13) 9567220260417236 a001 4052739537881/1149851*73681302247^(1/2) 9567220260417236 a001 1548008755920/1149851*73681302247^(7/13) 9567220260417236 a001 225851433717/1149851*73681302247^(8/13) 9567220260417236 a001 6557470319842/1149851*28143753123^(1/2) 9567220260417236 a001 514229*28143753123^(3/5) 9567220260417236 a001 53316291173/1149851*28143753123^(7/10) 9567220260417236 a001 7778742049/1149851*45537549124^(13/17) 9567220260417236 a001 7778742049/1149851*14662949395604^(13/21) 9567220260417236 a001 7778742049/1149851*192900153618^(13/18) 9567220260417236 a001 7778742049/1149851*73681302247^(3/4) 9567220260417236 a001 10610209857723/1149851*10749957122^(1/2) 9567220260417236 a001 4052739537881/1149851*10749957122^(13/24) 9567220260417236 a001 2504730781961/1149851*10749957122^(9/16) 9567220260417236 a001 1548008755920/1149851*10749957122^(7/12) 9567220260417236 a001 514229*10749957122^(5/8) 9567220260417236 a001 12586269025/1149851*10749957122^(19/24) 9567220260417236 a001 225851433717/1149851*10749957122^(2/3) 9567220260417236 a001 139583862445/1149851*10749957122^(11/16) 9567220260417236 a001 86267571272/1149851*10749957122^(17/24) 9567220260417236 a001 32951280099/1149851*10749957122^(3/4) 9567220260417236 a001 7778742049/1149851*10749957122^(13/16) 9567220260417236 a001 10610209857723/1149851*4106118243^(12/23) 9567220260417236 a001 4052739537881/1149851*4106118243^(13/23) 9567220260417236 a001 1548008755920/1149851*4106118243^(14/23) 9567220260417236 a001 514229*4106118243^(15/23) 9567220260417236 a001 225851433717/1149851*4106118243^(16/23) 9567220260417236 a001 4807526976/1149851*4106118243^(20/23) 9567220260417236 a001 86267571272/1149851*4106118243^(17/23) 9567220260417236 a001 32951280099/1149851*4106118243^(18/23) 9567220260417236 a001 12586269025/1149851*4106118243^(19/23) 9567220260417236 a001 10610209857723/1149851*1568397607^(6/11) 9567220260417236 a001 4052739537881/1149851*1568397607^(13/22) 9567220260417236 a001 1548008755920/1149851*1568397607^(7/11) 9567220260417236 a001 514229*1568397607^(15/22) 9567220260417236 a001 225851433717/1149851*1568397607^(8/11) 9567220260417236 a001 139583862445/1149851*1568397607^(3/4) 9567220260417236 a001 86267571272/1149851*1568397607^(17/22) 9567220260417236 a001 1836311903/1149851*1568397607^(21/22) 9567220260417236 a001 32951280099/1149851*1568397607^(9/11) 9567220260417236 a001 12586269025/1149851*1568397607^(19/22) 9567220260417236 a001 4807526976/1149851*1568397607^(10/11) 9567220260417236 a001 433494437/1149851*45537549124^(15/17) 9567220260417236 a001 433494437/1149851*312119004989^(9/11) 9567220260417236 a001 433494437/1149851*14662949395604^(5/7) 9567220260417236 a001 433494437/1149851*192900153618^(5/6) 9567220260417236 a001 433494437/1149851*28143753123^(9/10) 9567220260417236 a001 433494437/1149851*10749957122^(15/16) 9567220260417236 a001 10610209857723/1149851*599074578^(4/7) 9567220260417236 a001 4052739537881/1149851*599074578^(13/21) 9567220260417236 a001 2504730781961/1149851*599074578^(9/14) 9567220260417236 a001 1548008755920/1149851*599074578^(2/3) 9567220260417236 a001 514229*599074578^(5/7) 9567220260417236 a001 225851433717/1149851*599074578^(16/21) 9567220260417236 a001 139583862445/1149851*599074578^(11/14) 9567220260417236 a001 86267571272/1149851*599074578^(17/21) 9567220260417236 a001 53316291173/1149851*599074578^(5/6) 9567220260417236 a001 32951280099/1149851*599074578^(6/7) 9567220260417236 a001 12586269025/1149851*599074578^(19/21) 9567220260417236 a001 7778742049/1149851*599074578^(13/14) 9567220260417236 a001 4807526976/1149851*599074578^(20/21) 9567220260417236 a001 10610209857723/1149851*228826127^(3/5) 9567220260417236 a001 6557470319842/1149851*228826127^(5/8) 9567220260417236 a001 4052739537881/1149851*228826127^(13/20) 9567220260417236 a001 1548008755920/1149851*228826127^(7/10) 9567220260417236 a001 514229*228826127^(3/4) 9567220260417236 a001 225851433717/1149851*228826127^(4/5) 9567220260417236 a001 86267571272/1149851*228826127^(17/20) 9567220260417236 a001 53316291173/1149851*228826127^(7/8) 9567220260417236 a001 32951280099/1149851*228826127^(9/10) 9567220260417236 a001 12586269025/1149851*228826127^(19/20) 9567220260417236 a001 63245986/1149851*14662949395604^(7/9) 9567220260417236 a001 63245986/1149851*505019158607^(7/8) 9567220260417236 a001 10610209857723/1149851*87403803^(12/19) 9567220260417236 a001 4052739537881/1149851*87403803^(13/19) 9567220260417236 a001 1548008755920/1149851*87403803^(14/19) 9567220260417237 a001 514229*87403803^(15/19) 9567220260417237 a001 225851433717/1149851*87403803^(16/19) 9567220260417237 a001 86267571272/1149851*87403803^(17/19) 9567220260417237 a001 32951280099/1149851*87403803^(18/19) 9567220260417239 a001 24157817/1149851*817138163596^(17/19) 9567220260417239 a001 24157817/1149851*14662949395604^(17/21) 9567220260417239 a001 24157817/1149851*192900153618^(17/18) 9567220260417241 a001 10610209857723/1149851*33385282^(2/3) 9567220260417242 a001 4052739537881/1149851*33385282^(13/18) 9567220260417242 a001 2504730781961/1149851*33385282^(3/4) 9567220260417242 a001 1548008755920/1149851*33385282^(7/9) 9567220260417243 a001 514229*33385282^(5/6) 9567220260417243 a001 225851433717/1149851*33385282^(8/9) 9567220260417243 a001 139583862445/1149851*33385282^(11/12) 9567220260417244 a001 86267571272/1149851*33385282^(17/18) 9567220260417277 a001 10610209857723/1149851*12752043^(12/17) 9567220260417281 a001 4052739537881/1149851*12752043^(13/17) 9567220260417284 a001 1548008755920/1149851*12752043^(14/17) 9567220260417287 a001 514229*12752043^(15/17) 9567220260417291 a001 225851433717/1149851*12752043^(16/17) 9567220260417294 a001 5456077604927040567/5702887 9567220260417390 a001 3524578/1149851*3461452808002^(11/12) 9567220260417538 a001 10610209857723/1149851*4870847^(3/4) 9567220260417563 a001 4052739537881/1149851*4870847^(13/16) 9567220260417588 a001 1548008755920/1149851*4870847^(7/8) 9567220260417614 a001 514229*4870847^(15/16) 9567220260417639 a001 2084036199825008749/2178309 9567220260418291 a001 1346269/1149851*14662949395604^(19/21) 9567220260419447 a001 10610209857723/1149851*1860498^(4/5) 9567220260419539 a001 6557470319842/1149851*1860498^(5/6) 9567220260419631 a001 4052739537881/1149851*1860498^(13/15) 9567220260419723 a001 2504730781961/1149851*1860498^(9/10) 9567220260419815 a001 1548008755920/1149851*1860498^(14/15) 9567220260424827 a001 3278735159921/930249*710647^(13/14) 9567220260426180 a001 304056783818630480/317811 9567220260428541 a001 101352261272901835/105937 9567220260428646 a001 10610209857723/3010349*710647^(13/14) 9567220260428885 a001 304056783818716451/317811 9567220260428935 a001 101352261272906016/105937 9567220260428943 a001 23388983370670637/24447 9567220260428944 a001 101352261272906105/105937 9567220260428944 a001 806516667954160/843 9567220260428944 a001 101352261272906107/105937 9567220260428944 a001 304056783818718323/317811 9567220260428944 a001 101352261272906112/105937 9567220260428947 a001 304056783818718425/317811 9567220260428966 a001 7796327790223565/8149 9567220260429098 a001 304056783818723216/317811 9567220260433474 a001 10610209857723/1149851*710647^(6/7) 9567220260434827 a001 4052739537881/1149851*710647^(13/14) 9567220260436180 a001 304056783818948291/317811 9567220260440652 a001 196418/710647*14662949395604^(20/21) 9567220260452360 a001 491974210731215698/514229 9567220260456832 a001 208010/109801*14662949395604^(8/9) 9567220260458541 a001 1288005205282725956/1346269 9567220260459193 a001 2178309/439204*14662949395604^(6/7) 9567220260459456 a001 225851433717/439204*7881196^(10/11) 9567220260459470 a001 956722026041/439204*7881196^(9/11) 9567220260459484 a001 4052739537881/439204*7881196^(8/11) 9567220260459494 a001 10610209857723/439204*7881196^(2/3) 9567220260459537 a001 5702887/439204*23725150497407^(13/16) 9567220260459537 a001 5702887/439204*505019158607^(13/14) 9567220260459577 a001 225851433717/439204*20633239^(6/7) 9567220260459578 a001 591286729879/439204*20633239^(4/5) 9567220260459580 a001 2504730781961/439204*20633239^(5/7) 9567220260459588 a001 196452/5779*312119004989^(10/11) 9567220260459588 a001 196452/5779*3461452808002^(5/6) 9567220260459595 a001 39088169/439204*45537549124^(16/17) 9567220260459595 a001 39088169/439204*14662949395604^(16/21) 9567220260459595 a001 39088169/439204*192900153618^(8/9) 9567220260459595 a001 39088169/439204*73681302247^(12/13) 9567220260459596 a001 12586269025/439204*141422324^(12/13) 9567220260459596 a001 53316291173/439204*141422324^(11/13) 9567220260459596 a001 225851433717/439204*141422324^(10/13) 9567220260459596 a001 956722026041/439204*141422324^(9/13) 9567220260459596 a001 387002188980/109801*141422324^(2/3) 9567220260459596 a001 4052739537881/439204*141422324^(8/13) 9567220260459596 a001 102334155/439204*10749957122^(23/24) 9567220260459596 a001 66978574/109801*312119004989^(4/5) 9567220260459596 a001 66978574/109801*23725150497407^(11/16) 9567220260459596 a001 66978574/109801*73681302247^(11/13) 9567220260459596 a001 66978574/109801*10749957122^(11/12) 9567220260459596 a001 66978574/109801*4106118243^(22/23) 9567220260459596 a001 701408733/439204*2537720636^(14/15) 9567220260459596 a001 701408733/439204*17393796001^(6/7) 9567220260459596 a001 701408733/439204*45537549124^(14/17) 9567220260459596 a001 701408733/439204*817138163596^(14/19) 9567220260459596 a001 701408733/439204*14662949395604^(2/3) 9567220260459596 a001 701408733/439204*505019158607^(3/4) 9567220260459596 a001 701408733/439204*192900153618^(7/9) 9567220260459596 a001 701408733/439204*10749957122^(7/8) 9567220260459596 a001 701408733/439204*4106118243^(21/23) 9567220260459596 a001 1836311903/439204*2537720636^(8/9) 9567220260459596 a001 12586269025/439204*2537720636^(4/5) 9567220260459596 a001 10182505537/219602*2537720636^(7/9) 9567220260459596 a001 53316291173/439204*2537720636^(11/15) 9567220260459596 a001 2971215073/439204*2537720636^(13/15) 9567220260459596 a001 225851433717/439204*2537720636^(2/3) 9567220260459596 a001 956722026041/439204*2537720636^(3/5) 9567220260459596 a001 2504730781961/439204*2537720636^(5/9) 9567220260459596 a001 4052739537881/439204*2537720636^(8/15) 9567220260459596 a001 1836311903/439204*312119004989^(8/11) 9567220260459596 a001 1836311903/439204*23725150497407^(5/8) 9567220260459596 a001 1836311903/439204*73681302247^(10/13) 9567220260459596 a001 1836311903/439204*28143753123^(4/5) 9567220260459596 a001 1836311903/439204*10749957122^(5/6) 9567220260459596 a001 701408733/439204*1568397607^(21/22) 9567220260459596 a001 1201881744/109801*817138163596^(2/3) 9567220260459596 a001 1836311903/439204*4106118243^(20/23) 9567220260459596 a001 591286729879/439204*17393796001^(4/7) 9567220260459596 a001 10182505537/219602*17393796001^(5/7) 9567220260459596 a001 1201881744/109801*10749957122^(19/24) 9567220260459596 a001 12586269025/439204*45537549124^(12/17) 9567220260459596 a001 12586269025/439204*14662949395604^(4/7) 9567220260459596 a001 12586269025/439204*505019158607^(9/14) 9567220260459596 a001 12586269025/439204*192900153618^(2/3) 9567220260459596 a001 12586269025/439204*73681302247^(9/13) 9567220260459596 a001 32951280099/439204*45537549124^(2/3) 9567220260459596 a001 225851433717/439204*45537549124^(10/17) 9567220260459596 a001 956722026041/439204*45537549124^(9/17) 9567220260459596 a001 53316291173/439204*45537549124^(11/17) 9567220260459596 a001 4052739537881/439204*45537549124^(8/17) 9567220260459596 a001 196418*23725150497407^(1/2) 9567220260459596 a001 196418*505019158607^(4/7) 9567220260459596 a001 225851433717/439204*312119004989^(6/11) 9567220260459596 a001 2504730781961/439204*312119004989^(5/11) 9567220260459596 a001 10610209857723/439204*312119004989^(2/5) 9567220260459596 a001 225851433717/439204*14662949395604^(10/21) 9567220260459596 a001 4052739537881/439204*14662949395604^(8/21) 9567220260459596 a001 2504730781961/439204*3461452808002^(5/12) 9567220260459596 a001 956722026041/439204*14662949395604^(3/7) 9567220260459596 a001 591286729879/439204*505019158607^(1/2) 9567220260459596 a001 182717648081/219602*1322157322203^(1/2) 9567220260459596 a001 139583862445/439204*9062201101803^(1/2) 9567220260459596 a001 4052739537881/439204*192900153618^(4/9) 9567220260459596 a001 956722026041/439204*192900153618^(1/2) 9567220260459596 a001 53316291173/439204*312119004989^(3/5) 9567220260459596 a001 53316291173/439204*817138163596^(11/19) 9567220260459596 a001 53316291173/439204*14662949395604^(11/21) 9567220260459596 a001 4052739537881/439204*73681302247^(6/13) 9567220260459596 a001 196418*73681302247^(8/13) 9567220260459596 a001 387002188980/109801*73681302247^(1/2) 9567220260459596 a001 591286729879/439204*73681302247^(7/13) 9567220260459596 a001 10182505537/219602*312119004989^(7/11) 9567220260459596 a001 10182505537/219602*14662949395604^(5/9) 9567220260459596 a001 10182505537/219602*505019158607^(5/8) 9567220260459596 a001 2504730781961/439204*28143753123^(1/2) 9567220260459596 a001 225851433717/439204*28143753123^(3/5) 9567220260459596 a001 10182505537/219602*28143753123^(7/10) 9567220260459596 a001 10610209857723/439204*10749957122^(11/24) 9567220260459596 a001 4052739537881/439204*10749957122^(1/2) 9567220260459596 a001 387002188980/109801*10749957122^(13/24) 9567220260459596 a001 956722026041/439204*10749957122^(9/16) 9567220260459596 a001 591286729879/439204*10749957122^(7/12) 9567220260459596 a001 12586269025/439204*10749957122^(3/4) 9567220260459596 a001 225851433717/439204*10749957122^(5/8) 9567220260459596 a001 196418*10749957122^(2/3) 9567220260459596 a001 32951280099/439204*10749957122^(17/24) 9567220260459596 a001 53316291173/439204*10749957122^(11/16) 9567220260459596 a001 2971215073/439204*45537549124^(13/17) 9567220260459596 a001 2971215073/439204*14662949395604^(13/21) 9567220260459596 a001 2971215073/439204*192900153618^(13/18) 9567220260459596 a001 2971215073/439204*73681302247^(3/4) 9567220260459596 a001 10610209857723/439204*4106118243^(11/23) 9567220260459596 a001 3278735159921/219602*4106118243^(1/2) 9567220260459596 a001 2971215073/439204*10749957122^(13/16) 9567220260459596 a001 4052739537881/439204*4106118243^(12/23) 9567220260459596 a001 387002188980/109801*4106118243^(13/23) 9567220260459596 a001 591286729879/439204*4106118243^(14/23) 9567220260459596 a001 225851433717/439204*4106118243^(15/23) 9567220260459596 a001 1201881744/109801*4106118243^(19/23) 9567220260459596 a001 196418*4106118243^(16/23) 9567220260459596 a001 32951280099/439204*4106118243^(17/23) 9567220260459596 a001 12586269025/439204*4106118243^(18/23) 9567220260459596 a001 10610209857723/439204*1568397607^(1/2) 9567220260459596 a001 4052739537881/439204*1568397607^(6/11) 9567220260459596 a001 387002188980/109801*1568397607^(13/22) 9567220260459596 a001 591286729879/439204*1568397607^(7/11) 9567220260459596 a001 225851433717/439204*1568397607^(15/22) 9567220260459596 a001 196418*1568397607^(8/11) 9567220260459596 a001 53316291173/439204*1568397607^(3/4) 9567220260459596 a001 1836311903/439204*1568397607^(10/11) 9567220260459596 a001 32951280099/439204*1568397607^(17/22) 9567220260459596 a001 12586269025/439204*1568397607^(9/11) 9567220260459596 a001 1201881744/109801*1568397607^(19/22) 9567220260459596 a001 10610209857723/439204*599074578^(11/21) 9567220260459596 a001 4052739537881/439204*599074578^(4/7) 9567220260459596 a001 387002188980/109801*599074578^(13/21) 9567220260459596 a001 956722026041/439204*599074578^(9/14) 9567220260459596 a001 591286729879/439204*599074578^(2/3) 9567220260459596 a001 225851433717/439204*599074578^(5/7) 9567220260459596 a001 196418*599074578^(16/21) 9567220260459596 a001 53316291173/439204*599074578^(11/14) 9567220260459596 a001 32951280099/439204*599074578^(17/21) 9567220260459596 a001 10182505537/219602*599074578^(5/6) 9567220260459596 a001 12586269025/439204*599074578^(6/7) 9567220260459596 a001 1201881744/109801*599074578^(19/21) 9567220260459596 a001 1836311903/439204*599074578^(20/21) 9567220260459596 a001 2971215073/439204*599074578^(13/14) 9567220260459596 a001 165580141/439204*45537549124^(15/17) 9567220260459596 a001 165580141/439204*312119004989^(9/11) 9567220260459596 a001 165580141/439204*14662949395604^(5/7) 9567220260459596 a001 165580141/439204*192900153618^(5/6) 9567220260459596 a001 165580141/439204*28143753123^(9/10) 9567220260459596 a001 165580141/439204*10749957122^(15/16) 9567220260459596 a001 10610209857723/439204*228826127^(11/20) 9567220260459596 a001 4052739537881/439204*228826127^(3/5) 9567220260459596 a001 2504730781961/439204*228826127^(5/8) 9567220260459596 a001 387002188980/109801*228826127^(13/20) 9567220260459596 a001 591286729879/439204*228826127^(7/10) 9567220260459596 a001 225851433717/439204*228826127^(3/4) 9567220260459596 a001 196418*228826127^(4/5) 9567220260459596 a001 32951280099/439204*228826127^(17/20) 9567220260459596 a001 10182505537/219602*228826127^(7/8) 9567220260459596 a001 12586269025/439204*228826127^(9/10) 9567220260459596 a001 1201881744/109801*228826127^(19/20) 9567220260459597 a001 10610209857723/439204*87403803^(11/19) 9567220260459597 a001 4052739537881/439204*87403803^(12/19) 9567220260459597 a001 387002188980/109801*87403803^(13/19) 9567220260459597 a001 591286729879/439204*87403803^(14/19) 9567220260459597 a001 225851433717/439204*87403803^(15/19) 9567220260459597 a001 196418*87403803^(16/19) 9567220260459597 a001 32951280099/439204*87403803^(17/19) 9567220260459597 a001 12586269025/439204*87403803^(18/19) 9567220260459600 a001 24157817/439204*14662949395604^(7/9) 9567220260459600 a001 24157817/439204*505019158607^(7/8) 9567220260459601 a001 10610209857723/439204*33385282^(11/18) 9567220260459602 a001 4052739537881/439204*33385282^(2/3) 9567220260459602 a001 387002188980/109801*33385282^(13/18) 9567220260459603 a001 956722026041/439204*33385282^(3/4) 9567220260459603 a001 591286729879/439204*33385282^(7/9) 9567220260459603 a001 225851433717/439204*33385282^(5/6) 9567220260459604 a001 196418*33385282^(8/9) 9567220260459604 a001 53316291173/439204*33385282^(11/12) 9567220260459604 a001 32951280099/439204*33385282^(17/18) 9567220260459619 a001 9227465/439204*817138163596^(17/19) 9567220260459619 a001 9227465/439204*14662949395604^(17/21) 9567220260459619 a001 9227465/439204*192900153618^(17/18) 9567220260459634 a001 10610209857723/439204*12752043^(11/17) 9567220260459638 a001 4052739537881/439204*12752043^(12/17) 9567220260459641 a001 387002188980/109801*12752043^(13/17) 9567220260459645 a001 591286729879/439204*12752043^(14/17) 9567220260459648 a001 225851433717/439204*12752043^(15/17) 9567220260459652 a001 196418*12752043^(16/17) 9567220260459873 a001 10610209857723/439204*4870847^(11/16) 9567220260459899 a001 4052739537881/439204*4870847^(3/4) 9567220260459924 a001 387002188980/109801*4870847^(13/16) 9567220260459949 a001 591286729879/439204*4870847^(7/8) 9567220260459974 a001 225851433717/439204*4870847^(15/16) 9567220260460652 a001 1346269/439204*3461452808002^(11/12) 9567220260461623 a001 10610209857723/439204*1860498^(11/15) 9567220260461807 a001 4052739537881/439204*1860498^(4/5) 9567220260461900 a001 2504730781961/439204*1860498^(5/6) 9567220260461992 a001 387002188980/109801*1860498^(13/15) 9567220260462084 a001 956722026041/439204*1860498^(9/10) 9567220260462176 a001 591286729879/439204*1860498^(14/15) 9567220260462360 a001 398015497275755129/416020 9567220260466832 a001 514229/439204*14662949395604^(19/21) 9567220260474481 a001 10610209857723/439204*710647^(11/14) 9567220260475834 a001 4052739537881/439204*710647^(6/7) 9567220260477187 a001 387002188980/109801*710647^(13/14) 9567220260477988 a001 10610209857723/167761*167761^(4/5) 9567220260478541 a001 101352261273431520/105937 9567220260510913 a001 6557470319842/710647*271443^(12/13) 9567220260511303 a001 1548008755920/64079*64079^(22/23) 9567220260520901 a001 116139356908541382/121393 9567220260537082 a001 116139356908737800/121393 9567220260537093 a001 10610209857723/1149851*271443^(12/13) 9567220260539442 a001 116139356908766457/121393 9567220260539787 a001 116139356908770638/121393 9567220260539837 a001 116139356908771248/121393 9567220260539844 a001 116139356908771337/121393 9567220260539845 a001 116139356908771350/121393 9567220260539845 a001 116139356908771352/121393 9567220260539846 a001 116139356908771353/121393 9567220260539846 a001 498452175574126/521 9567220260539849 a001 116139356908771392/121393 9567220260539868 a001 116139356908771625/121393 9567220260540901 a001 116139356908784168/121393 9567220260547082 a001 116139356908859193/121393 9567220260569466 a001 10610209857723/439204*271443^(11/13) 9567220260579454 a001 4052739537881/439204*271443^(12/13) 9567220260589442 a001 116139356909373422/121393 9567220260612607 a001 2504730781961/64079*64079^(21/23) 9567220260620095 a001 75025/271443*14662949395604^(20/21) 9567220260700344 a001 187917426916624025/196418 9567220260705855 a001 140728068720/15251*439204^(8/9) 9567220260711365 a001 6557470319842/167761*439204^(7/9) 9567220260713911 a001 4052739537881/64079*64079^(20/23) 9567220260730996 a001 317811/167761*14662949395604^(8/9) 9567220260742705 a001 491974210746146050/514229 9567220260747177 a001 75640/15251*14662949395604^(6/7) 9567220260749537 a001 2178309/167761*23725150497407^(13/16) 9567220260749537 a001 2178309/167761*505019158607^(13/14) 9567220260749801 a001 86267571272/167761*7881196^(10/11) 9567220260749815 a001 365435296162/167761*7881196^(9/11) 9567220260749829 a001 140728068720/15251*7881196^(8/11) 9567220260749838 a001 4052739537881/167761*7881196^(2/3) 9567220260749843 a001 6557470319842/167761*7881196^(7/11) 9567220260749882 a001 5702887/167761*312119004989^(10/11) 9567220260749882 a001 5702887/167761*3461452808002^(5/6) 9567220260749921 a001 86267571272/167761*20633239^(6/7) 9567220260749923 a001 225851433717/167761*20633239^(4/5) 9567220260749925 a001 956722026041/167761*20633239^(5/7) 9567220260749927 a001 6557470319842/167761*20633239^(3/5) 9567220260749928 a001 10610209857723/167761*20633239^(4/7) 9567220260749932 a001 14930352/167761*45537549124^(16/17) 9567220260749932 a001 14930352/167761*14662949395604^(16/21) 9567220260749932 a001 14930352/167761*192900153618^(8/9) 9567220260749932 a001 14930352/167761*73681302247^(12/13) 9567220260749939 a001 39088169/167761*10749957122^(23/24) 9567220260749940 a001 4807526976/167761*141422324^(12/13) 9567220260749940 a001 20365011074/167761*141422324^(11/13) 9567220260749940 a001 86267571272/167761*141422324^(10/13) 9567220260749940 a001 365435296162/167761*141422324^(9/13) 9567220260749940 a001 591286729879/167761*141422324^(2/3) 9567220260749940 a001 140728068720/15251*141422324^(8/13) 9567220260749940 a001 6557470319842/167761*141422324^(7/13) 9567220260749940 a001 9303105/15251*312119004989^(4/5) 9567220260749940 a001 9303105/15251*23725150497407^(11/16) 9567220260749940 a001 9303105/15251*73681302247^(11/13) 9567220260749940 a001 9303105/15251*10749957122^(11/12) 9567220260749940 a001 9303105/15251*4106118243^(22/23) 9567220260749941 a001 267914296/167761*2537720636^(14/15) 9567220260749941 a001 267914296/167761*17393796001^(6/7) 9567220260749941 a001 267914296/167761*45537549124^(14/17) 9567220260749941 a001 267914296/167761*817138163596^(14/19) 9567220260749941 a001 267914296/167761*14662949395604^(2/3) 9567220260749941 a001 267914296/167761*505019158607^(3/4) 9567220260749941 a001 267914296/167761*192900153618^(7/9) 9567220260749941 a001 267914296/167761*10749957122^(7/8) 9567220260749941 a001 267914296/167761*4106118243^(21/23) 9567220260749941 a001 267914296/167761*1568397607^(21/22) 9567220260749941 a001 701408733/167761*2537720636^(8/9) 9567220260749941 a001 701408733/167761*312119004989^(8/11) 9567220260749941 a001 701408733/167761*23725150497407^(5/8) 9567220260749941 a001 701408733/167761*73681302247^(10/13) 9567220260749941 a001 701408733/167761*28143753123^(4/5) 9567220260749941 a001 701408733/167761*10749957122^(5/6) 9567220260749941 a001 701408733/167761*4106118243^(20/23) 9567220260749941 a001 4807526976/167761*2537720636^(4/5) 9567220260749941 a001 7778742049/167761*2537720636^(7/9) 9567220260749941 a001 20365011074/167761*2537720636^(11/15) 9567220260749941 a001 86267571272/167761*2537720636^(2/3) 9567220260749941 a001 365435296162/167761*2537720636^(3/5) 9567220260749941 a001 956722026041/167761*2537720636^(5/9) 9567220260749941 a001 140728068720/15251*2537720636^(8/15) 9567220260749941 a001 6557470319842/167761*2537720636^(7/15) 9567220260749941 a001 10610209857723/167761*2537720636^(4/9) 9567220260749941 a001 1836311903/167761*817138163596^(2/3) 9567220260749941 a001 1836311903/167761*10749957122^(19/24) 9567220260749941 a001 701408733/167761*1568397607^(10/11) 9567220260749941 a001 1836311903/167761*4106118243^(19/23) 9567220260749941 a001 4807526976/167761*45537549124^(12/17) 9567220260749941 a001 4807526976/167761*14662949395604^(4/7) 9567220260749941 a001 4807526976/167761*505019158607^(9/14) 9567220260749941 a001 4807526976/167761*192900153618^(2/3) 9567220260749941 a001 4807526976/167761*73681302247^(9/13) 9567220260749941 a001 4807526976/167761*10749957122^(3/4) 9567220260749941 a001 225851433717/167761*17393796001^(4/7) 9567220260749941 a001 75025*45537549124^(2/3) 9567220260749941 a001 6557470319842/167761*17393796001^(3/7) 9567220260749941 a001 86267571272/167761*45537549124^(10/17) 9567220260749941 a001 365435296162/167761*45537549124^(9/17) 9567220260749941 a001 140728068720/15251*45537549124^(8/17) 9567220260749941 a001 6557470319842/167761*45537549124^(7/17) 9567220260749941 a001 32951280099/167761*23725150497407^(1/2) 9567220260749941 a001 32951280099/167761*505019158607^(4/7) 9567220260749941 a001 32951280099/167761*73681302247^(8/13) 9567220260749941 a001 86267571272/167761*312119004989^(6/11) 9567220260749941 a001 86267571272/167761*14662949395604^(10/21) 9567220260749941 a001 86267571272/167761*192900153618^(5/9) 9567220260749941 a001 956722026041/167761*312119004989^(5/11) 9567220260749941 a001 225851433717/167761*14662949395604^(4/9) 9567220260749941 a001 225851433717/167761*505019158607^(1/2) 9567220260749941 a001 140728068720/15251*14662949395604^(8/21) 9567220260749941 a001 10610209857723/167761*23725150497407^(5/16) 9567220260749941 a001 10610209857723/167761*505019158607^(5/14) 9567220260749941 a001 365435296162/167761*14662949395604^(3/7) 9567220260749941 a001 139583862445/167761*1322157322203^(1/2) 9567220260749941 a001 140728068720/15251*192900153618^(4/9) 9567220260749941 a001 365435296162/167761*192900153618^(1/2) 9567220260749941 a001 10610209857723/167761*73681302247^(5/13) 9567220260749941 a001 140728068720/15251*73681302247^(6/13) 9567220260749941 a001 591286729879/167761*73681302247^(1/2) 9567220260749941 a001 225851433717/167761*73681302247^(7/13) 9567220260749941 a001 20365011074/167761*45537549124^(11/17) 9567220260749941 a001 20365011074/167761*312119004989^(3/5) 9567220260749941 a001 20365011074/167761*817138163596^(11/19) 9567220260749941 a001 20365011074/167761*14662949395604^(11/21) 9567220260749941 a001 20365011074/167761*192900153618^(11/18) 9567220260749941 a001 10610209857723/167761*28143753123^(2/5) 9567220260749941 a001 956722026041/167761*28143753123^(1/2) 9567220260749941 a001 86267571272/167761*28143753123^(3/5) 9567220260749941 a001 7778742049/167761*17393796001^(5/7) 9567220260749941 a001 7778742049/167761*312119004989^(7/11) 9567220260749941 a001 7778742049/167761*14662949395604^(5/9) 9567220260749941 a001 7778742049/167761*505019158607^(5/8) 9567220260749941 a001 10610209857723/167761*10749957122^(5/12) 9567220260749941 a001 6557470319842/167761*10749957122^(7/16) 9567220260749941 a001 4052739537881/167761*10749957122^(11/24) 9567220260749941 a001 7778742049/167761*28143753123^(7/10) 9567220260749941 a001 140728068720/15251*10749957122^(1/2) 9567220260749941 a001 591286729879/167761*10749957122^(13/24) 9567220260749941 a001 75025*10749957122^(17/24) 9567220260749941 a001 365435296162/167761*10749957122^(9/16) 9567220260749941 a001 225851433717/167761*10749957122^(7/12) 9567220260749941 a001 86267571272/167761*10749957122^(5/8) 9567220260749941 a001 32951280099/167761*10749957122^(2/3) 9567220260749941 a001 20365011074/167761*10749957122^(11/16) 9567220260749941 a001 1134903170/167761*2537720636^(13/15) 9567220260749941 a001 10610209857723/167761*4106118243^(10/23) 9567220260749941 a001 4052739537881/167761*4106118243^(11/23) 9567220260749941 a001 2504730781961/167761*4106118243^(1/2) 9567220260749941 a001 140728068720/15251*4106118243^(12/23) 9567220260749941 a001 591286729879/167761*4106118243^(13/23) 9567220260749941 a001 225851433717/167761*4106118243^(14/23) 9567220260749941 a001 4807526976/167761*4106118243^(18/23) 9567220260749941 a001 86267571272/167761*4106118243^(15/23) 9567220260749941 a001 32951280099/167761*4106118243^(16/23) 9567220260749941 a001 75025*4106118243^(17/23) 9567220260749941 a001 1134903170/167761*45537549124^(13/17) 9567220260749941 a001 1134903170/167761*14662949395604^(13/21) 9567220260749941 a001 1134903170/167761*192900153618^(13/18) 9567220260749941 a001 1134903170/167761*73681302247^(3/4) 9567220260749941 a001 1134903170/167761*10749957122^(13/16) 9567220260749941 a001 10610209857723/167761*1568397607^(5/11) 9567220260749941 a001 4052739537881/167761*1568397607^(1/2) 9567220260749941 a001 140728068720/15251*1568397607^(6/11) 9567220260749941 a001 591286729879/167761*1568397607^(13/22) 9567220260749941 a001 225851433717/167761*1568397607^(7/11) 9567220260749941 a001 86267571272/167761*1568397607^(15/22) 9567220260749941 a001 1836311903/167761*1568397607^(19/22) 9567220260749941 a001 32951280099/167761*1568397607^(8/11) 9567220260749941 a001 20365011074/167761*1568397607^(3/4) 9567220260749941 a001 75025*1568397607^(17/22) 9567220260749941 a001 4807526976/167761*1568397607^(9/11) 9567220260749941 a001 10610209857723/167761*599074578^(10/21) 9567220260749941 a001 6557470319842/167761*599074578^(1/2) 9567220260749941 a001 4052739537881/167761*599074578^(11/21) 9567220260749941 a001 140728068720/15251*599074578^(4/7) 9567220260749941 a001 591286729879/167761*599074578^(13/21) 9567220260749941 a001 365435296162/167761*599074578^(9/14) 9567220260749941 a001 225851433717/167761*599074578^(2/3) 9567220260749941 a001 86267571272/167761*599074578^(5/7) 9567220260749941 a001 32951280099/167761*599074578^(16/21) 9567220260749941 a001 20365011074/167761*599074578^(11/14) 9567220260749941 a001 701408733/167761*599074578^(20/21) 9567220260749941 a001 75025*599074578^(17/21) 9567220260749941 a001 7778742049/167761*599074578^(5/6) 9567220260749941 a001 4807526976/167761*599074578^(6/7) 9567220260749941 a001 1836311903/167761*599074578^(19/21) 9567220260749941 a001 1134903170/167761*599074578^(13/14) 9567220260749941 a001 10610209857723/167761*228826127^(1/2) 9567220260749941 a001 4052739537881/167761*228826127^(11/20) 9567220260749941 a001 140728068720/15251*228826127^(3/5) 9567220260749941 a001 956722026041/167761*228826127^(5/8) 9567220260749941 a001 591286729879/167761*228826127^(13/20) 9567220260749941 a001 225851433717/167761*228826127^(7/10) 9567220260749941 a001 86267571272/167761*228826127^(3/4) 9567220260749941 a001 32951280099/167761*228826127^(4/5) 9567220260749941 a001 75025*228826127^(17/20) 9567220260749941 a001 7778742049/167761*228826127^(7/8) 9567220260749941 a001 4807526976/167761*228826127^(9/10) 9567220260749941 a001 1836311903/167761*228826127^(19/20) 9567220260749941 a001 63245986/167761*45537549124^(15/17) 9567220260749941 a001 63245986/167761*312119004989^(9/11) 9567220260749941 a001 63245986/167761*14662949395604^(5/7) 9567220260749941 a001 63245986/167761*192900153618^(5/6) 9567220260749941 a001 63245986/167761*28143753123^(9/10) 9567220260749941 a001 63245986/167761*10749957122^(15/16) 9567220260749941 a001 10610209857723/167761*87403803^(10/19) 9567220260749941 a001 4052739537881/167761*87403803^(11/19) 9567220260749941 a001 140728068720/15251*87403803^(12/19) 9567220260749942 a001 591286729879/167761*87403803^(13/19) 9567220260749942 a001 225851433717/167761*87403803^(14/19) 9567220260749942 a001 86267571272/167761*87403803^(15/19) 9567220260749942 a001 32951280099/167761*87403803^(16/19) 9567220260749942 a001 75025*87403803^(17/19) 9567220260749942 a001 4807526976/167761*87403803^(18/19) 9567220260749945 a001 10610209857723/167761*33385282^(5/9) 9567220260749946 a001 6557470319842/167761*33385282^(7/12) 9567220260749946 a001 4052739537881/167761*33385282^(11/18) 9567220260749946 a001 140728068720/15251*33385282^(2/3) 9567220260749947 a001 591286729879/167761*33385282^(13/18) 9567220260749947 a001 365435296162/167761*33385282^(3/4) 9567220260749947 a001 225851433717/167761*33385282^(7/9) 9567220260749948 a001 86267571272/167761*33385282^(5/6) 9567220260749948 a001 32951280099/167761*33385282^(8/9) 9567220260749949 a001 20365011074/167761*33385282^(11/12) 9567220260749949 a001 75025*33385282^(17/18) 9567220260749963 a001 9227465/167761*14662949395604^(7/9) 9567220260749963 a001 9227465/167761*505019158607^(7/8) 9567220260749975 a001 10610209857723/167761*12752043^(10/17) 9567220260749979 a001 4052739537881/167761*12752043^(11/17) 9567220260749982 a001 140728068720/15251*12752043^(12/17) 9567220260749986 a001 591286729879/167761*12752043^(13/17) 9567220260749989 a001 225851433717/167761*12752043^(14/17) 9567220260749993 a001 86267571272/167761*12752043^(15/17) 9567220260749996 a001 32951280099/167761*12752043^(16/17) 9567220260750095 a001 3524578/167761*817138163596^(17/19) 9567220260750095 a001 3524578/167761*14662949395604^(17/21) 9567220260750095 a001 3524578/167761*192900153618^(17/18) 9567220260750193 a001 10610209857723/167761*4870847^(5/8) 9567220260750218 a001 4052739537881/167761*4870847^(11/16) 9567220260750243 a001 140728068720/15251*4870847^(3/4) 9567220260750268 a001 591286729879/167761*4870847^(13/16) 9567220260750294 a001 225851433717/167761*4870847^(7/8) 9567220260750319 a001 86267571272/167761*4870847^(15/16) 9567220260751783 a001 10610209857723/167761*1860498^(2/3) 9567220260751875 a001 6557470319842/167761*1860498^(7/10) 9567220260751968 a001 4052739537881/167761*1860498^(11/15) 9567220260752152 a001 140728068720/15251*1860498^(4/5) 9567220260752244 a001 956722026041/167761*1860498^(5/6) 9567220260752336 a001 591286729879/167761*1860498^(13/15) 9567220260752428 a001 365435296162/167761*1860498^(9/10) 9567220260752520 a001 225851433717/167761*1860498^(14/15) 9567220260752705 a001 159206198915133615/166408 9567220260757177 a001 514229/167761*3461452808002^(11/12) 9567220260763472 a001 10610209857723/167761*710647^(5/7) 9567220260764149 a001 6557470319842/167761*710647^(3/4) 9567220260764825 a001 4052739537881/167761*710647^(11/14) 9567220260766179 a001 140728068720/15251*710647^(6/7) 9567220260767532 a001 591286729879/167761*710647^(13/14) 9567220260768885 a001 304056783829522025/317811 9567220260799537 a001 196418/167761*14662949395604^(19/21) 9567220260815215 a001 6557470319842/64079*64079^(19/23) 9567220260849822 a001 10610209857723/167761*271443^(10/13) 9567220260859810 a001 4052739537881/167761*271443^(11/13) 9567220260869798 a001 140728068720/15251*271443^(12/13) 9567220260879787 a001 116139356912898000/121393 9567220260916519 a001 10610209857723/64079*64079^(18/23) 9567220261058884 a001 3536736619241/90481*103682^(7/8) 9567220261095966 a001 6557470319842/271443*103682^(11/12) 9567220261133049 a001 4052739537881/271443*103682^(23/24) 9567220261170131 a001 22180643453496833/23184 9567220261170476 a001 387002188980/6119*24476^(20/21) 9567220261243950 a001 1515744265389/101521*103682^(23/24) 9567220261275409 a001 10610209857723/439204*103682^(11/12) 9567220261281033 a001 14787095635835965/15456 9567220261297213 a001 5545160863447865/5796 9567220261299574 a001 1056221116847473/1104 9567220261299918 a001 44361286907595463/46368 9567220261299968 a001 308064492413859/322 9567220261299976 a001 22180643453797865/23184 9567220261299977 a001 2112442233695035/2208 9567220261299977 a001 5545160863449467/5796 9567220261299978 a001 7393547817932623/7728 9567220261299980 a001 44361286907595751/46368 9567220261300131 a001 22180643453798225/23184 9567220261301033 a001 14787095635866877/15456 9567220261307213 a001 5545160863453661/5796 9567220261312491 a001 3278735159921/219602*103682^(23/24) 9567220261349574 a001 1056221116852993/1104 9567220261491589 a001 10610209857723/167761*103682^(5/6) 9567220261528671 a001 6557470319842/167761*103682^(7/8) 9567220261565753 a001 4052739537881/167761*103682^(11/12) 9567220261602836 a001 2504730781961/167761*103682^(23/24) 9567220261639918 a001 44361286909171975/46368 9567220261850013 a001 28657/103682*14662949395604^(20/21) 9567220261930952 a001 2504730781961/24476*24476^(19/21) 9567220262400050 a001 71778070018656377/75025 9567220262468038 a001 4052739537881/64079*167761^(4/5) 9567220262610145 a001 121393/64079*14662949395604^(8/9) 9567220262690394 a001 5526983145756241/5777 9567220262691428 a001 4052739537881/24476*24476^(6/7) 9567220262695905 a001 591286729879/64079*439204^(8/9) 9567220262701416 a001 2504730781961/64079*439204^(7/9) 9567220262706926 a001 10610209857723/64079*439204^(2/3) 9567220262721047 a001 317811/64079*14662949395604^(6/7) 9567220262737227 a001 832040/64079*23725150497407^(13/16) 9567220262737227 a001 832040/64079*505019158607^(13/14) 9567220262739588 a001 2178309/64079*312119004989^(10/11) 9567220262739588 a001 2178309/64079*3461452808002^(5/6) 9567220262739851 a001 32951280099/64079*7881196^(10/11) 9567220262739865 a001 139583862445/64079*7881196^(9/11) 9567220262739879 a001 591286729879/64079*7881196^(8/11) 9567220262739888 a001 1548008755920/64079*7881196^(2/3) 9567220262739893 a001 2504730781961/64079*7881196^(7/11) 9567220262739907 a001 10610209857723/64079*7881196^(6/11) 9567220262739932 a001 5702887/64079*45537549124^(16/17) 9567220262739932 a001 5702887/64079*14662949395604^(16/21) 9567220262739932 a001 5702887/64079*192900153618^(8/9) 9567220262739932 a001 5702887/64079*73681302247^(12/13) 9567220262739972 a001 32951280099/64079*20633239^(6/7) 9567220262739973 a001 86267571272/64079*20633239^(4/5) 9567220262739975 a001 365435296162/64079*20633239^(5/7) 9567220262739977 a001 2504730781961/64079*20633239^(3/5) 9567220262739978 a001 4052739537881/64079*20633239^(4/7) 9567220262739982 a001 14930352/64079*10749957122^(23/24) 9567220262739990 a001 39088169/64079*312119004989^(4/5) 9567220262739990 a001 39088169/64079*23725150497407^(11/16) 9567220262739990 a001 39088169/64079*73681302247^(11/13) 9567220262739990 a001 39088169/64079*10749957122^(11/12) 9567220262739990 a001 39088169/64079*4106118243^(22/23) 9567220262739990 a001 28657*141422324^(12/13) 9567220262739991 a001 7778742049/64079*141422324^(11/13) 9567220262739991 a001 32951280099/64079*141422324^(10/13) 9567220262739991 a001 139583862445/64079*141422324^(9/13) 9567220262739991 a001 225851433717/64079*141422324^(2/3) 9567220262739991 a001 591286729879/64079*141422324^(8/13) 9567220262739991 a001 2504730781961/64079*141422324^(7/13) 9567220262739991 a001 10610209857723/64079*141422324^(6/13) 9567220262739991 a001 102334155/64079*2537720636^(14/15) 9567220262739991 a001 102334155/64079*17393796001^(6/7) 9567220262739991 a001 102334155/64079*45537549124^(14/17) 9567220262739991 a001 102334155/64079*817138163596^(14/19) 9567220262739991 a001 102334155/64079*14662949395604^(2/3) 9567220262739991 a001 102334155/64079*505019158607^(3/4) 9567220262739991 a001 102334155/64079*192900153618^(7/9) 9567220262739991 a001 102334155/64079*10749957122^(7/8) 9567220262739991 a001 102334155/64079*4106118243^(21/23) 9567220262739991 a001 102334155/64079*1568397607^(21/22) 9567220262739991 a001 267914296/64079*2537720636^(8/9) 9567220262739991 a001 267914296/64079*312119004989^(8/11) 9567220262739991 a001 267914296/64079*23725150497407^(5/8) 9567220262739991 a001 267914296/64079*73681302247^(10/13) 9567220262739991 a001 267914296/64079*28143753123^(4/5) 9567220262739991 a001 267914296/64079*10749957122^(5/6) 9567220262739991 a001 267914296/64079*4106118243^(20/23) 9567220262739991 a001 267914296/64079*1568397607^(10/11) 9567220262739991 a001 701408733/64079*817138163596^(2/3) 9567220262739991 a001 701408733/64079*10749957122^(19/24) 9567220262739991 a001 701408733/64079*4106118243^(19/23) 9567220262739991 a001 28657*2537720636^(4/5) 9567220262739991 a001 267914296/64079*599074578^(20/21) 9567220262739991 a001 7778742049/64079*2537720636^(11/15) 9567220262739991 a001 32951280099/64079*2537720636^(2/3) 9567220262739991 a001 2971215073/64079*2537720636^(7/9) 9567220262739991 a001 139583862445/64079*2537720636^(3/5) 9567220262739991 a001 365435296162/64079*2537720636^(5/9) 9567220262739991 a001 591286729879/64079*2537720636^(8/15) 9567220262739991 a001 2504730781961/64079*2537720636^(7/15) 9567220262739991 a001 4052739537881/64079*2537720636^(4/9) 9567220262739991 a001 10610209857723/64079*2537720636^(2/5) 9567220262739991 a001 28657*45537549124^(12/17) 9567220262739991 a001 28657*14662949395604^(4/7) 9567220262739991 a001 28657*505019158607^(9/14) 9567220262739991 a001 28657*192900153618^(2/3) 9567220262739991 a001 28657*73681302247^(9/13) 9567220262739991 a001 701408733/64079*1568397607^(19/22) 9567220262739991 a001 28657*10749957122^(3/4) 9567220262739991 a001 28657*4106118243^(18/23) 9567220262739991 a001 4807526976/64079*45537549124^(2/3) 9567220262739991 a001 4807526976/64079*10749957122^(17/24) 9567220262739991 a001 86267571272/64079*17393796001^(4/7) 9567220262739991 a001 2504730781961/64079*17393796001^(3/7) 9567220262739991 a001 12586269025/64079*23725150497407^(1/2) 9567220262739991 a001 12586269025/64079*505019158607^(4/7) 9567220262739991 a001 12586269025/64079*73681302247^(8/13) 9567220262739991 a001 32951280099/64079*45537549124^(10/17) 9567220262739991 a001 139583862445/64079*45537549124^(9/17) 9567220262739991 a001 591286729879/64079*45537549124^(8/17) 9567220262739991 a001 2504730781961/64079*45537549124^(7/17) 9567220262739991 a001 32951280099/64079*312119004989^(6/11) 9567220262739991 a001 32951280099/64079*14662949395604^(10/21) 9567220262739991 a001 10610209857723/64079*45537549124^(6/17) 9567220262739991 a001 32951280099/64079*192900153618^(5/9) 9567220262739991 a001 86267571272/64079*14662949395604^(4/9) 9567220262739991 a001 86267571272/64079*505019158607^(1/2) 9567220262739991 a001 1548008755920/64079*312119004989^(2/5) 9567220262739991 a001 365435296162/64079*312119004989^(5/11) 9567220262739991 a001 6557470319842/64079*817138163596^(1/3) 9567220262739991 a001 4052739537881/64079*23725150497407^(5/16) 9567220262739991 a001 10610209857723/64079*14662949395604^(2/7) 9567220262739991 a001 4052739537881/64079*505019158607^(5/14) 9567220262739991 a001 10610209857723/64079*192900153618^(1/3) 9567220262739991 a001 139583862445/64079*817138163596^(9/19) 9567220262739991 a001 139583862445/64079*14662949395604^(3/7) 9567220262739991 a001 2504730781961/64079*192900153618^(7/18) 9567220262739991 a001 591286729879/64079*192900153618^(4/9) 9567220262739991 a001 139583862445/64079*192900153618^(1/2) 9567220262739991 a001 53316291173/64079*1322157322203^(1/2) 9567220262739991 a001 4052739537881/64079*73681302247^(5/13) 9567220262739991 a001 86267571272/64079*73681302247^(7/13) 9567220262739991 a001 591286729879/64079*73681302247^(6/13) 9567220262739991 a001 225851433717/64079*73681302247^(1/2) 9567220262739991 a001 20365011074/64079*9062201101803^(1/2) 9567220262739991 a001 4052739537881/64079*28143753123^(2/5) 9567220262739991 a001 32951280099/64079*28143753123^(3/5) 9567220262739991 a001 365435296162/64079*28143753123^(1/2) 9567220262739991 a001 7778742049/64079*45537549124^(11/17) 9567220262739991 a001 10610209857723/64079*10749957122^(3/8) 9567220262739991 a001 7778742049/64079*312119004989^(3/5) 9567220262739991 a001 7778742049/64079*817138163596^(11/19) 9567220262739991 a001 7778742049/64079*14662949395604^(11/21) 9567220262739991 a001 7778742049/64079*192900153618^(11/18) 9567220262739991 a001 4052739537881/64079*10749957122^(5/12) 9567220262739991 a001 2504730781961/64079*10749957122^(7/16) 9567220262739991 a001 1548008755920/64079*10749957122^(11/24) 9567220262739991 a001 591286729879/64079*10749957122^(1/2) 9567220262739991 a001 12586269025/64079*10749957122^(2/3) 9567220262739991 a001 225851433717/64079*10749957122^(13/24) 9567220262739991 a001 139583862445/64079*10749957122^(9/16) 9567220262739991 a001 86267571272/64079*10749957122^(7/12) 9567220262739991 a001 32951280099/64079*10749957122^(5/8) 9567220262739991 a001 7778742049/64079*10749957122^(11/16) 9567220262739991 a001 2971215073/64079*17393796001^(5/7) 9567220262739991 a001 2971215073/64079*312119004989^(7/11) 9567220262739991 a001 2971215073/64079*14662949395604^(5/9) 9567220262739991 a001 2971215073/64079*505019158607^(5/8) 9567220262739991 a001 10610209857723/64079*4106118243^(9/23) 9567220262739991 a001 2971215073/64079*28143753123^(7/10) 9567220262739991 a001 4052739537881/64079*4106118243^(10/23) 9567220262739991 a001 1548008755920/64079*4106118243^(11/23) 9567220262739991 a001 956722026041/64079*4106118243^(1/2) 9567220262739991 a001 591286729879/64079*4106118243^(12/23) 9567220262739991 a001 225851433717/64079*4106118243^(13/23) 9567220262739991 a001 4807526976/64079*4106118243^(17/23) 9567220262739991 a001 86267571272/64079*4106118243^(14/23) 9567220262739991 a001 32951280099/64079*4106118243^(15/23) 9567220262739991 a001 12586269025/64079*4106118243^(16/23) 9567220262739991 a001 10610209857723/64079*1568397607^(9/22) 9567220262739991 a001 4052739537881/64079*1568397607^(5/11) 9567220262739991 a001 1548008755920/64079*1568397607^(1/2) 9567220262739991 a001 591286729879/64079*1568397607^(6/11) 9567220262739991 a001 225851433717/64079*1568397607^(13/22) 9567220262739991 a001 86267571272/64079*1568397607^(7/11) 9567220262739991 a001 28657*1568397607^(9/11) 9567220262739991 a001 32951280099/64079*1568397607^(15/22) 9567220262739991 a001 12586269025/64079*1568397607^(8/11) 9567220262739991 a001 4807526976/64079*1568397607^(17/22) 9567220262739991 a001 7778742049/64079*1568397607^(3/4) 9567220262739991 a001 433494437/64079*2537720636^(13/15) 9567220262739991 a001 433494437/64079*45537549124^(13/17) 9567220262739991 a001 433494437/64079*14662949395604^(13/21) 9567220262739991 a001 433494437/64079*192900153618^(13/18) 9567220262739991 a001 433494437/64079*73681302247^(3/4) 9567220262739991 a001 433494437/64079*10749957122^(13/16) 9567220262739991 a001 10610209857723/64079*599074578^(3/7) 9567220262739991 a001 4052739537881/64079*599074578^(10/21) 9567220262739991 a001 2504730781961/64079*599074578^(1/2) 9567220262739991 a001 1548008755920/64079*599074578^(11/21) 9567220262739991 a001 591286729879/64079*599074578^(4/7) 9567220262739991 a001 225851433717/64079*599074578^(13/21) 9567220262739991 a001 139583862445/64079*599074578^(9/14) 9567220262739991 a001 86267571272/64079*599074578^(2/3) 9567220262739991 a001 32951280099/64079*599074578^(5/7) 9567220262739991 a001 701408733/64079*599074578^(19/21) 9567220262739991 a001 12586269025/64079*599074578^(16/21) 9567220262739991 a001 7778742049/64079*599074578^(11/14) 9567220262739991 a001 4807526976/64079*599074578^(17/21) 9567220262739991 a001 28657*599074578^(6/7) 9567220262739991 a001 2971215073/64079*599074578^(5/6) 9567220262739991 a001 433494437/64079*599074578^(13/14) 9567220262739991 a001 10610209857723/64079*228826127^(9/20) 9567220262739991 a001 4052739537881/64079*228826127^(1/2) 9567220262739991 a001 1548008755920/64079*228826127^(11/20) 9567220262739991 a001 591286729879/64079*228826127^(3/5) 9567220262739991 a001 365435296162/64079*228826127^(5/8) 9567220262739991 a001 225851433717/64079*228826127^(13/20) 9567220262739991 a001 86267571272/64079*228826127^(7/10) 9567220262739991 a001 32951280099/64079*228826127^(3/4) 9567220262739991 a001 12586269025/64079*228826127^(4/5) 9567220262739991 a001 4807526976/64079*228826127^(17/20) 9567220262739991 a001 2971215073/64079*228826127^(7/8) 9567220262739991 a001 28657*228826127^(9/10) 9567220262739991 a001 701408733/64079*228826127^(19/20) 9567220262739992 a001 10610209857723/64079*87403803^(9/19) 9567220262739992 a001 6557470319842/64079*87403803^(1/2) 9567220262739992 a001 4052739537881/64079*87403803^(10/19) 9567220262739992 a001 1548008755920/64079*87403803^(11/19) 9567220262739992 a001 591286729879/64079*87403803^(12/19) 9567220262739992 a001 225851433717/64079*87403803^(13/19) 9567220262739992 a001 86267571272/64079*87403803^(14/19) 9567220262739992 a001 32951280099/64079*87403803^(15/19) 9567220262739992 a001 12586269025/64079*87403803^(16/19) 9567220262739992 a001 4807526976/64079*87403803^(17/19) 9567220262739992 a001 28657*87403803^(18/19) 9567220262739994 a001 24157817/64079*45537549124^(15/17) 9567220262739994 a001 24157817/64079*312119004989^(9/11) 9567220262739994 a001 24157817/64079*14662949395604^(5/7) 9567220262739994 a001 24157817/64079*192900153618^(5/6) 9567220262739994 a001 24157817/64079*28143753123^(9/10) 9567220262739994 a001 24157817/64079*10749957122^(15/16) 9567220262739995 a001 10610209857723/64079*33385282^(1/2) 9567220262739996 a001 4052739537881/64079*33385282^(5/9) 9567220262739996 a001 2504730781961/64079*33385282^(7/12) 9567220262739996 a001 1548008755920/64079*33385282^(11/18) 9567220262739997 a001 591286729879/64079*33385282^(2/3) 9567220262739997 a001 225851433717/64079*33385282^(13/18) 9567220262739997 a001 139583862445/64079*33385282^(3/4) 9567220262739998 a001 86267571272/64079*33385282^(7/9) 9567220262739998 a001 32951280099/64079*33385282^(5/6) 9567220262739999 a001 12586269025/64079*33385282^(8/9) 9567220262739999 a001 7778742049/64079*33385282^(11/12) 9567220262739999 a001 4807526976/64079*33385282^(17/18) 9567220262740022 a001 10610209857723/64079*12752043^(9/17) 9567220262740026 a001 4052739537881/64079*12752043^(10/17) 9567220262740029 a001 1548008755920/64079*12752043^(11/17) 9567220262740032 a001 591286729879/64079*12752043^(12/17) 9567220262740036 a001 225851433717/64079*12752043^(13/17) 9567220262740039 a001 86267571272/64079*12752043^(14/17) 9567220262740043 a001 32951280099/64079*12752043^(15/17) 9567220262740046 a001 12586269025/64079*12752043^(16/17) 9567220262740145 a001 3524578/64079*14662949395604^(7/9) 9567220262740145 a001 3524578/64079*505019158607^(7/8) 9567220262740218 a001 10610209857723/64079*4870847^(9/16) 9567220262740243 a001 4052739537881/64079*4870847^(5/8) 9567220262740268 a001 1548008755920/64079*4870847^(11/16) 9567220262740293 a001 591286729879/64079*4870847^(3/4) 9567220262740319 a001 225851433717/64079*4870847^(13/16) 9567220262740344 a001 86267571272/64079*4870847^(7/8) 9567220262740369 a001 32951280099/64079*4870847^(15/16) 9567220262741047 a001 1346269/64079*817138163596^(17/19) 9567220262741047 a001 1346269/64079*14662949395604^(17/21) 9567220262741047 a001 1346269/64079*192900153618^(17/18) 9567220262741649 a001 10610209857723/64079*1860498^(3/5) 9567220262741834 a001 4052739537881/64079*1860498^(2/3) 9567220262741926 a001 2504730781961/64079*1860498^(7/10) 9567220262742018 a001 1548008755920/64079*1860498^(11/15) 9567220262742202 a001 591286729879/64079*1860498^(4/5) 9567220262742294 a001 365435296162/64079*1860498^(5/6) 9567220262742386 a001 225851433717/64079*1860498^(13/15) 9567220262742478 a001 139583862445/64079*1860498^(9/10) 9567220262742571 a001 86267571272/64079*1860498^(14/15) 9567220262752169 a001 10610209857723/64079*710647^(9/14) 9567220262753523 a001 4052739537881/64079*710647^(5/7) 9567220262754199 a001 2504730781961/64079*710647^(3/4) 9567220262754876 a001 1548008755920/64079*710647^(11/14) 9567220262756229 a001 591286729879/64079*710647^(6/7) 9567220262757582 a001 225851433717/64079*710647^(13/14) 9567220262758935 a001 101352261297589337/105937 9567220262789588 a001 196418/64079*3461452808002^(11/12) 9567220262829884 a001 10610209857723/64079*271443^(9/13) 9567220262839872 a001 4052739537881/64079*271443^(10/13) 9567220262849861 a001 1548008755920/64079*271443^(11/13) 9567220262859849 a001 591286729879/64079*271443^(12/13) 9567220262869837 a001 116139356937055817/121393 9567220263079932 a001 75025/64079*14662949395604^(19/21) 9567220263407474 a001 10610209857723/64079*103682^(3/4) 9567220263444556 a001 6557470319842/64079*103682^(19/24) 9567220263451904 a001 3278735159921/12238*24476^(17/21) 9567220263481639 a001 4052739537881/64079*103682^(5/6) 9567220263518721 a001 2504730781961/64079*103682^(7/8) 9567220263555804 a001 1548008755920/64079*103682^(11/12) 9567220263592886 a001 956722026041/64079*103682^(23/24) 9567220263629968 a001 308064492488885/322 9567220264212380 a001 10610209857723/24476*24476^(16/21) 9567220264788201 a001 225749145909/2206*39603^(19/22) 9567220265065474 a001 3278735159921/51841*39603^(10/11) 9567220265342746 a001 4052739537881/103682*39603^(21/22) 9567220265620019 a001 16944503812439616/17711 9567220266102878 a001 3536736619241/90481*39603^(21/22) 9567220266171052 a001 1548008755920/9349*9349^(18/19) 9567220266295392 a001 10610209857723/167761*39603^(10/11) 9567220266380150 a001 190387683300965/199 9567220266491052 a001 16944503813982303/17711 9567220266507232 a001 16944503814010960/17711 9567220266509593 a001 16944503814015141/17711 9567220266509937 a001 16944503814015751/17711 9567220266509988 a001 16944503814015840/17711 9567220266509995 a001 16944503814015853/17711 9567220266509996 a001 16944503814015855/17711 9567220266509997 a001 16944503814015856/17711 9567220266510019 a001 16944503814015895/17711 9567220266510150 a001 190387683303552/199 9567220266511052 a001 16944503814017725/17711 9567220266517232 a001 16944503814028671/17711 9567220266559593 a001 16944503814103696/17711 9567220266572665 a001 6557470319842/167761*39603^(21/22) 9567220266849937 a001 16944503814617925/17711 9567220267730897 a001 10610209857723/64079*39603^(9/11) 9567220268008170 a001 6557470319842/64079*39603^(19/22) 9567220268285442 a001 4052739537881/64079*39603^(10/11) 9567220268562715 a001 2504730781961/64079*39603^(21/22) 9567220268839988 a001 16944503818142503/17711 9567220270280002 a001 10946/39603*14662949395604^(20/21) 9567220271932105 a001 2504730781961/9349*9349^(17/19) 9567220274050007 a001 27416783139345106/28657 9567220274151311 a001 591286729879/24476*64079^(22/23) 9567220274252615 a001 956722026041/24476*64079^(21/23) 9567220274353919 a001 387002188980/6119*64079^(20/23) 9567220274455223 a001 2504730781961/24476*64079^(19/23) 9567220274556527 a001 4052739537881/24476*64079^(18/23) 9567220274657831 a001 3278735159921/12238*64079^(17/23) 9567220274759135 a001 10610209857723/24476*64079^(16/23) 9567220275490021 a001 11592/6119*14662949395604^(8/9) 9567220276040057 a001 71778070120990532/75025 9567220276108045 a001 387002188980/6119*167761^(4/5) 9567220276250152 a001 121393/24476*14662949395604^(6/7) 9567220276335912 a001 7787980473/844*439204^(8/9) 9567220276341423 a001 956722026041/24476*439204^(7/9) 9567220276346934 a001 4052739537881/24476*439204^(2/3) 9567220276361054 a001 10959/844*23725150497407^(13/16) 9567220276361054 a001 10959/844*505019158607^(13/14) 9567220276377234 a001 208010/6119*312119004989^(10/11) 9567220276377234 a001 208010/6119*3461452808002^(5/6) 9567220276379595 a001 2178309/24476*45537549124^(16/17) 9567220276379595 a001 2178309/24476*14662949395604^(16/21) 9567220276379595 a001 2178309/24476*192900153618^(8/9) 9567220276379595 a001 2178309/24476*73681302247^(12/13) 9567220276379858 a001 12586269025/24476*7881196^(10/11) 9567220276379872 a001 53316291173/24476*7881196^(9/11) 9567220276379886 a001 7787980473/844*7881196^(8/11) 9567220276379896 a001 591286729879/24476*7881196^(2/3) 9567220276379900 a001 956722026041/24476*7881196^(7/11) 9567220276379914 a001 4052739537881/24476*7881196^(6/11) 9567220276379939 a001 5702887/24476*10749957122^(23/24) 9567220276379979 a001 12586269025/24476*20633239^(6/7) 9567220276379980 a001 32951280099/24476*20633239^(4/5) 9567220276379982 a001 139583862445/24476*20633239^(5/7) 9567220276379985 a001 956722026041/24476*20633239^(3/5) 9567220276379985 a001 387002188980/6119*20633239^(4/7) 9567220276379990 a001 3732588/6119*312119004989^(4/5) 9567220276379990 a001 3732588/6119*23725150497407^(11/16) 9567220276379990 a001 3732588/6119*73681302247^(11/13) 9567220276379990 a001 3732588/6119*10749957122^(11/12) 9567220276379990 a001 3732588/6119*4106118243^(22/23) 9567220276379997 a001 39088169/24476*2537720636^(14/15) 9567220276379997 a001 39088169/24476*17393796001^(6/7) 9567220276379997 a001 39088169/24476*45537549124^(14/17) 9567220276379997 a001 39088169/24476*817138163596^(14/19) 9567220276379997 a001 39088169/24476*14662949395604^(2/3) 9567220276379997 a001 39088169/24476*505019158607^(3/4) 9567220276379997 a001 39088169/24476*192900153618^(7/9) 9567220276379997 a001 39088169/24476*10749957122^(7/8) 9567220276379997 a001 39088169/24476*4106118243^(21/23) 9567220276379997 a001 39088169/24476*1568397607^(21/22) 9567220276379998 a001 701408733/24476*141422324^(12/13) 9567220276379998 a001 2971215073/24476*141422324^(11/13) 9567220276379998 a001 12586269025/24476*141422324^(10/13) 9567220276379998 a001 53316291173/24476*141422324^(9/13) 9567220276379998 a001 21566892818/6119*141422324^(2/3) 9567220276379998 a001 7787980473/844*141422324^(8/13) 9567220276379998 a001 956722026041/24476*141422324^(7/13) 9567220276379998 a001 4052739537881/24476*141422324^(6/13) 9567220276379998 a001 102334155/24476*2537720636^(8/9) 9567220276379998 a001 102334155/24476*312119004989^(8/11) 9567220276379998 a001 102334155/24476*23725150497407^(5/8) 9567220276379998 a001 102334155/24476*73681302247^(10/13) 9567220276379998 a001 102334155/24476*28143753123^(4/5) 9567220276379998 a001 102334155/24476*10749957122^(5/6) 9567220276379998 a001 102334155/24476*4106118243^(20/23) 9567220276379998 a001 102334155/24476*1568397607^(10/11) 9567220276379998 a001 102334155/24476*599074578^(20/21) 9567220276379998 a001 10946*817138163596^(2/3) 9567220276379998 a001 10946*10749957122^(19/24) 9567220276379998 a001 10946*4106118243^(19/23) 9567220276379998 a001 10946*1568397607^(19/22) 9567220276379998 a001 701408733/24476*2537720636^(4/5) 9567220276379998 a001 701408733/24476*45537549124^(12/17) 9567220276379998 a001 701408733/24476*14662949395604^(4/7) 9567220276379998 a001 701408733/24476*505019158607^(9/14) 9567220276379998 a001 701408733/24476*192900153618^(2/3) 9567220276379998 a001 701408733/24476*73681302247^(9/13) 9567220276379998 a001 701408733/24476*10749957122^(3/4) 9567220276379998 a001 701408733/24476*4106118243^(18/23) 9567220276379998 a001 10946*599074578^(19/21) 9567220276379998 a001 12586269025/24476*2537720636^(2/3) 9567220276379998 a001 53316291173/24476*2537720636^(3/5) 9567220276379998 a001 2971215073/24476*2537720636^(11/15) 9567220276379998 a001 139583862445/24476*2537720636^(5/9) 9567220276379998 a001 7787980473/844*2537720636^(8/15) 9567220276379998 a001 701408733/24476*1568397607^(9/11) 9567220276379998 a001 956722026041/24476*2537720636^(7/15) 9567220276379998 a001 387002188980/6119*2537720636^(4/9) 9567220276379998 a001 4052739537881/24476*2537720636^(2/5) 9567220276379998 a001 1836311903/24476*45537549124^(2/3) 9567220276379998 a001 1836311903/24476*10749957122^(17/24) 9567220276379998 a001 1836311903/24476*4106118243^(17/23) 9567220276379998 a001 1201881744/6119*23725150497407^(1/2) 9567220276379998 a001 1201881744/6119*505019158607^(4/7) 9567220276379998 a001 1201881744/6119*73681302247^(8/13) 9567220276379998 a001 1201881744/6119*10749957122^(2/3) 9567220276379998 a001 32951280099/24476*17393796001^(4/7) 9567220276379998 a001 12586269025/24476*45537549124^(10/17) 9567220276379998 a001 956722026041/24476*17393796001^(3/7) 9567220276379998 a001 12586269025/24476*312119004989^(6/11) 9567220276379998 a001 12586269025/24476*14662949395604^(10/21) 9567220276379998 a001 12586269025/24476*192900153618^(5/9) 9567220276379998 a001 12586269025/24476*28143753123^(3/5) 9567220276379998 a001 7787980473/844*45537549124^(8/17) 9567220276379998 a001 956722026041/24476*45537549124^(7/17) 9567220276379998 a001 53316291173/24476*45537549124^(9/17) 9567220276379998 a001 32951280099/24476*14662949395604^(4/9) 9567220276379998 a001 32951280099/24476*505019158607^(1/2) 9567220276379998 a001 4052739537881/24476*45537549124^(6/17) 9567220276379998 a001 3278735159921/12238*45537549124^(1/3) 9567220276379998 a001 32951280099/24476*73681302247^(7/13) 9567220276379998 a001 591286729879/24476*312119004989^(2/5) 9567220276379998 a001 7787980473/844*14662949395604^(8/21) 9567220276379998 a001 2504730781961/24476*817138163596^(1/3) 9567220276379998 a001 4052739537881/24476*14662949395604^(2/7) 9567220276379998 a001 10610209857723/24476*23725150497407^(1/4) 9567220276379998 a001 139583862445/24476*312119004989^(5/11) 9567220276379998 a001 7787980473/844*192900153618^(4/9) 9567220276379998 a001 4052739537881/24476*192900153618^(1/3) 9567220276379998 a001 139583862445/24476*3461452808002^(5/12) 9567220276379998 a001 956722026041/24476*192900153618^(7/18) 9567220276379998 a001 10610209857723/24476*73681302247^(4/13) 9567220276379998 a001 21566892818/6119*73681302247^(1/2) 9567220276379998 a001 53316291173/24476*817138163596^(9/19) 9567220276379998 a001 387002188980/6119*73681302247^(5/13) 9567220276379998 a001 7787980473/844*73681302247^(6/13) 9567220276379998 a001 53316291173/24476*192900153618^(1/2) 9567220276379998 a001 10182505537/12238*1322157322203^(1/2) 9567220276379998 a001 387002188980/6119*28143753123^(2/5) 9567220276379998 a001 139583862445/24476*28143753123^(1/2) 9567220276379998 a001 10610209857723/24476*10749957122^(1/3) 9567220276379998 a001 4052739537881/24476*10749957122^(3/8) 9567220276379998 a001 7778742049/24476*9062201101803^(1/2) 9567220276379998 a001 387002188980/6119*10749957122^(5/12) 9567220276379998 a001 956722026041/24476*10749957122^(7/16) 9567220276379998 a001 591286729879/24476*10749957122^(11/24) 9567220276379998 a001 12586269025/24476*10749957122^(5/8) 9567220276379998 a001 7787980473/844*10749957122^(1/2) 9567220276379998 a001 21566892818/6119*10749957122^(13/24) 9567220276379998 a001 32951280099/24476*10749957122^(7/12) 9567220276379998 a001 53316291173/24476*10749957122^(9/16) 9567220276379998 a001 10610209857723/24476*4106118243^(8/23) 9567220276379998 a001 2971215073/24476*45537549124^(11/17) 9567220276379998 a001 2971215073/24476*312119004989^(3/5) 9567220276379998 a001 2971215073/24476*817138163596^(11/19) 9567220276379998 a001 2971215073/24476*14662949395604^(11/21) 9567220276379998 a001 2971215073/24476*192900153618^(11/18) 9567220276379998 a001 4052739537881/24476*4106118243^(9/23) 9567220276379998 a001 387002188980/6119*4106118243^(10/23) 9567220276379998 a001 591286729879/24476*4106118243^(11/23) 9567220276379998 a001 2971215073/24476*10749957122^(11/16) 9567220276379998 a001 182717648081/12238*4106118243^(1/2) 9567220276379998 a001 7787980473/844*4106118243^(12/23) 9567220276379998 a001 1201881744/6119*4106118243^(16/23) 9567220276379998 a001 21566892818/6119*4106118243^(13/23) 9567220276379998 a001 567451585/12238*2537720636^(7/9) 9567220276379998 a001 32951280099/24476*4106118243^(14/23) 9567220276379998 a001 12586269025/24476*4106118243^(15/23) 9567220276379998 a001 10610209857723/24476*1568397607^(4/11) 9567220276379998 a001 567451585/12238*17393796001^(5/7) 9567220276379998 a001 567451585/12238*312119004989^(7/11) 9567220276379998 a001 567451585/12238*14662949395604^(5/9) 9567220276379998 a001 567451585/12238*505019158607^(5/8) 9567220276379998 a001 567451585/12238*28143753123^(7/10) 9567220276379998 a001 4052739537881/24476*1568397607^(9/22) 9567220276379998 a001 387002188980/6119*1568397607^(5/11) 9567220276379998 a001 591286729879/24476*1568397607^(1/2) 9567220276379998 a001 7787980473/844*1568397607^(6/11) 9567220276379998 a001 21566892818/6119*1568397607^(13/22) 9567220276379998 a001 1836311903/24476*1568397607^(17/22) 9567220276379998 a001 32951280099/24476*1568397607^(7/11) 9567220276379998 a001 12586269025/24476*1568397607^(15/22) 9567220276379998 a001 1201881744/6119*1568397607^(8/11) 9567220276379998 a001 2971215073/24476*1568397607^(3/4) 9567220276379998 a001 10610209857723/24476*599074578^(8/21) 9567220276379998 a001 4052739537881/24476*599074578^(3/7) 9567220276379998 a001 387002188980/6119*599074578^(10/21) 9567220276379998 a001 956722026041/24476*599074578^(1/2) 9567220276379998 a001 591286729879/24476*599074578^(11/21) 9567220276379998 a001 7787980473/844*599074578^(4/7) 9567220276379998 a001 21566892818/6119*599074578^(13/21) 9567220276379998 a001 53316291173/24476*599074578^(9/14) 9567220276379998 a001 32951280099/24476*599074578^(2/3) 9567220276379998 a001 701408733/24476*599074578^(6/7) 9567220276379998 a001 12586269025/24476*599074578^(5/7) 9567220276379998 a001 1201881744/6119*599074578^(16/21) 9567220276379998 a001 1836311903/24476*599074578^(17/21) 9567220276379998 a001 2971215073/24476*599074578^(11/14) 9567220276379998 a001 567451585/12238*599074578^(5/6) 9567220276379998 a001 165580141/24476*2537720636^(13/15) 9567220276379998 a001 165580141/24476*45537549124^(13/17) 9567220276379998 a001 165580141/24476*14662949395604^(13/21) 9567220276379998 a001 165580141/24476*192900153618^(13/18) 9567220276379998 a001 165580141/24476*73681302247^(3/4) 9567220276379998 a001 165580141/24476*10749957122^(13/16) 9567220276379998 a001 10610209857723/24476*228826127^(2/5) 9567220276379998 a001 4052739537881/24476*228826127^(9/20) 9567220276379998 a001 387002188980/6119*228826127^(1/2) 9567220276379998 a001 165580141/24476*599074578^(13/14) 9567220276379998 a001 591286729879/24476*228826127^(11/20) 9567220276379998 a001 7787980473/844*228826127^(3/5) 9567220276379998 a001 139583862445/24476*228826127^(5/8) 9567220276379998 a001 21566892818/6119*228826127^(13/20) 9567220276379998 a001 32951280099/24476*228826127^(7/10) 9567220276379998 a001 12586269025/24476*228826127^(3/4) 9567220276379998 a001 1201881744/6119*228826127^(4/5) 9567220276379998 a001 10946*228826127^(19/20) 9567220276379998 a001 1836311903/24476*228826127^(17/20) 9567220276379998 a001 701408733/24476*228826127^(9/10) 9567220276379998 a001 567451585/12238*228826127^(7/8) 9567220276379999 a001 10610209857723/24476*87403803^(8/19) 9567220276379999 a001 4052739537881/24476*87403803^(9/19) 9567220276379999 a001 2504730781961/24476*87403803^(1/2) 9567220276379999 a001 387002188980/6119*87403803^(10/19) 9567220276379999 a001 591286729879/24476*87403803^(11/19) 9567220276379999 a001 7787980473/844*87403803^(12/19) 9567220276379999 a001 21566892818/6119*87403803^(13/19) 9567220276379999 a001 32951280099/24476*87403803^(14/19) 9567220276379999 a001 12586269025/24476*87403803^(15/19) 9567220276379999 a001 1201881744/6119*87403803^(16/19) 9567220276379999 a001 1836311903/24476*87403803^(17/19) 9567220276379999 a001 701408733/24476*87403803^(18/19) 9567220276380002 a001 10610209857723/24476*33385282^(4/9) 9567220276380003 a001 4052739537881/24476*33385282^(1/2) 9567220276380003 a001 387002188980/6119*33385282^(5/9) 9567220276380003 a001 956722026041/24476*33385282^(7/12) 9567220276380004 a001 591286729879/24476*33385282^(11/18) 9567220276380004 a001 7787980473/844*33385282^(2/3) 9567220276380004 a001 21566892818/6119*33385282^(13/18) 9567220276380005 a001 53316291173/24476*33385282^(3/4) 9567220276380005 a001 32951280099/24476*33385282^(7/9) 9567220276380005 a001 12586269025/24476*33385282^(5/6) 9567220276380006 a001 1201881744/6119*33385282^(8/9) 9567220276380006 a001 2971215073/24476*33385282^(11/12) 9567220276380006 a001 1836311903/24476*33385282^(17/18) 9567220276380021 a001 9227465/24476*45537549124^(15/17) 9567220276380021 a001 9227465/24476*312119004989^(9/11) 9567220276380021 a001 9227465/24476*14662949395604^(5/7) 9567220276380021 a001 9227465/24476*192900153618^(5/6) 9567220276380021 a001 9227465/24476*28143753123^(9/10) 9567220276380021 a001 9227465/24476*10749957122^(15/16) 9567220276380026 a001 10610209857723/24476*12752043^(8/17) 9567220276380028 a001 3278735159921/12238*12752043^(1/2) 9567220276380029 a001 4052739537881/24476*12752043^(9/17) 9567220276380033 a001 387002188980/6119*12752043^(10/17) 9567220276380036 a001 591286729879/24476*12752043^(11/17) 9567220276380040 a001 7787980473/844*12752043^(12/17) 9567220276380043 a001 21566892818/6119*12752043^(13/17) 9567220276380047 a001 32951280099/24476*12752043^(14/17) 9567220276380050 a001 12586269025/24476*12752043^(15/17) 9567220276380054 a001 1201881744/6119*12752043^(16/17) 9567220276380200 a001 10610209857723/24476*4870847^(1/2) 9567220276380225 a001 4052739537881/24476*4870847^(9/16) 9567220276380250 a001 387002188980/6119*4870847^(5/8) 9567220276380276 a001 591286729879/24476*4870847^(11/16) 9567220276380301 a001 7787980473/844*4870847^(3/4) 9567220276380326 a001 21566892818/6119*4870847^(13/16) 9567220276380351 a001 32951280099/24476*4870847^(7/8) 9567220276380376 a001 12586269025/24476*4870847^(15/16) 9567220276381054 a001 1346269/24476*14662949395604^(7/9) 9567220276381054 a001 1346269/24476*505019158607^(7/8) 9567220276381472 a001 10610209857723/24476*1860498^(8/15) 9567220276381657 a001 4052739537881/24476*1860498^(3/5) 9567220276381841 a001 387002188980/6119*1860498^(2/3) 9567220276381933 a001 956722026041/24476*1860498^(7/10) 9567220276382025 a001 591286729879/24476*1860498^(11/15) 9567220276382209 a001 7787980473/844*1860498^(4/5) 9567220276382302 a001 139583862445/24476*1860498^(5/6) 9567220276382394 a001 21566892818/6119*1860498^(13/15) 9567220276382486 a001 53316291173/24476*1860498^(9/10) 9567220276382578 a001 32951280099/24476*1860498^(14/15) 9567220276387234 a001 514229/24476*817138163596^(17/19) 9567220276387234 a001 514229/24476*14662949395604^(17/21) 9567220276387234 a001 514229/24476*192900153618^(17/18) 9567220276390824 a001 10610209857723/24476*710647^(4/7) 9567220276392177 a001 4052739537881/24476*710647^(9/14) 9567220276393530 a001 387002188980/6119*710647^(5/7) 9567220276394206 a001 956722026041/24476*710647^(3/4) 9567220276394883 a001 591286729879/24476*710647^(11/14) 9567220276396236 a001 7787980473/844*710647^(6/7) 9567220276397589 a001 21566892818/6119*710647^(13/14) 9567220276459903 a001 10610209857723/24476*271443^(8/13) 9567220276469892 a001 4052739537881/24476*271443^(9/13) 9567220276479880 a001 387002188980/6119*271443^(10/13) 9567220276489868 a001 591286729879/24476*271443^(11/13) 9567220276499856 a001 7787980473/844*271443^(12/13) 9567220276509844 a001 116139357102635958/121393 9567220276719939 a001 75025/24476*3461452808002^(11/12) 9567220276973317 a001 10610209857723/24476*103682^(2/3) 9567220277010399 a001 3278735159921/12238*103682^(17/24) 9567220277047481 a001 4052739537881/24476*103682^(3/4) 9567220277084564 a001 2504730781961/24476*103682^(19/24) 9567220277121646 a001 387002188980/6119*103682^(5/6) 9567220277158729 a001 956722026041/24476*103682^(7/8) 9567220277195811 a001 591286729879/24476*103682^(11/12) 9567220277232893 a001 182717648081/12238*103682^(23/24) 9567220277269976 a001 22180643490822713/23184 9567220277693157 a001 4052739537881/9349*9349^(16/19) 9567220278709990 a001 28657/24476*14662949395604^(19/21) 9567220280816360 a001 10610209857723/24476*39603^(8/11) 9567220281093632 a001 3278735159921/12238*39603^(17/22) 9567220281370905 a001 4052739537881/24476*39603^(9/11) 9567220281648177 a001 2504730781961/24476*39603^(19/22) 9567220281925450 a001 387002188980/6119*39603^(10/11) 9567220282202722 a001 956722026041/24476*39603^(21/22) 9567220282479995 a001 16944503842300320/17711 9567220283454210 a001 6557470319842/9349*9349^(15/19) 9567220284633969 m001 (exp(1/Pi)+GAMMA(5/6))/(GaussAGM+Grothendieck) 9567220289215263 a001 10610209857723/9349*9349^(14/19) 9567220289848502 a001 3536736619241/13201*15127^(17/20) 9567220291939002 a001 6557470319842/39603*15127^(9/10) 9567220294029502 a001 4052739537881/39603*15127^(19/20) 9567220296120002 a001 6472224530325182/6765 9567220299239522 a001 225749145909/2206*15127^(19/20) 9567220299669876 r005 Re(z^2+c),c=-8/31+28/39*I,n=8 9567220300368990 a001 10610209857723/64079*15127^(9/10) 9567220301330022 a001 431481635589984/451 9567220301926592 m002 5+Pi^6-Cosh[Pi]+Sinh[Pi]/6 9567220302090153 a001 6472224534363989/6765 9567220302201055 a001 2157408178146338/2255 9567220302217235 a001 117676809717272/123 9567220302219596 a001 2157408178150519/2255 9567220302219940 a001 1294444906890358/1353 9567220302219991 a001 2157408178150608/2255 9567220302219998 a001 6472224534451829/6765 9567220302220002 a001 6472224534451832/6765 9567220302220022 a001 431481635630123/451 9567220302220153 a001 6472224534451934/6765 9567220302221055 a001 2157408178150848/2255 9567220302227235 a001 117676809717395/123 9567220302269596 a001 2157408178161794/2255 9567220302459490 a001 6557470319842/64079*15127^(19/20) 9567220302559940 a001 1294444906936360/1353 9567220304542354 a001 1548008755920/3571*3571^(16/17) 9567220304549991 a001 2157408178676023/2255 9567220309827998 a001 10610209857723/24476*15127^(4/5) 9567220311918498 a001 3278735159921/12238*15127^(17/20) 9567220314008998 a001 4052739537881/24476*15127^(9/10) 9567220316099498 a001 2504730781961/24476*15127^(19/20) 9567220318189998 a001 6472224545255534/6765 9567220328059999 a001 4181/15127*14662949395604^(20/21) 9567220348674709 a001 2504730781961/3571*3571^(15/17) 9567220353900000 a001 10472279399378941/10946 9567220354660478 a001 591286729879/9349*24476^(20/21) 9567220355420954 a001 956722026041/9349*24476^(19/21) 9567220356181430 a001 1548008755920/9349*24476^(6/7) 9567220356941906 a001 2504730781961/9349*24476^(17/21) 9567220357702382 a001 4052739537881/9349*24476^(16/21) 9567220358462858 a001 6557470319842/9349*24476^(5/7) 9567220359223335 a001 10610209857723/9349*24476^(2/3) 9567220363770004 a001 17711/9349*14662949395604^(8/9) 9567220367540008 a001 27416783407259402/28657 9567220367641313 a001 225851433717/9349*64079^(22/23) 9567220367742617 a001 365435296162/9349*64079^(21/23) 9567220367843921 a001 591286729879/9349*64079^(20/23) 9567220367945225 a001 956722026041/9349*64079^(19/23) 9567220368046529 a001 1548008755920/9349*64079^(18/23) 9567220368147833 a001 2504730781961/9349*64079^(17/23) 9567220368249137 a001 4052739537881/9349*64079^(16/23) 9567220368350441 a001 6557470319842/9349*64079^(15/23) 9567220368451745 a001 10610209857723/9349*64079^(14/23) 9567220368980023 a001 46368/9349*14662949395604^(6/7) 9567220369598048 a001 591286729879/9349*167761^(4/5) 9567220369666036 a001 6557470319842/9349*167761^(3/5) 9567220369740155 a001 121393/9349*23725150497407^(13/16) 9567220369740155 a001 121393/9349*505019158607^(13/14) 9567220369825915 a001 86267571272/9349*439204^(8/9) 9567220369831425 a001 365435296162/9349*439204^(7/9) 9567220369836936 a001 1548008755920/9349*439204^(2/3) 9567220369842447 a001 6557470319842/9349*439204^(5/9) 9567220369851056 a001 317811/9349*312119004989^(10/11) 9567220369851056 a001 317811/9349*3461452808002^(5/6) 9567220369867237 a001 832040/9349*45537549124^(16/17) 9567220369867237 a001 832040/9349*14662949395604^(16/21) 9567220369867237 a001 832040/9349*192900153618^(8/9) 9567220369867237 a001 832040/9349*73681302247^(12/13) 9567220369869597 a001 2178309/9349*10749957122^(23/24) 9567220369869861 a001 4807526976/9349*7881196^(10/11) 9567220369869875 a001 20365011074/9349*7881196^(9/11) 9567220369869889 a001 86267571272/9349*7881196^(8/11) 9567220369869898 a001 225851433717/9349*7881196^(2/3) 9567220369869903 a001 365435296162/9349*7881196^(7/11) 9567220369869917 a001 1548008755920/9349*7881196^(6/11) 9567220369869931 a001 6557470319842/9349*7881196^(5/11) 9567220369869942 a001 5702887/9349*312119004989^(4/5) 9567220369869942 a001 5702887/9349*23725150497407^(11/16) 9567220369869942 a001 5702887/9349*73681302247^(11/13) 9567220369869942 a001 5702887/9349*10749957122^(11/12) 9567220369869942 a001 5702887/9349*4106118243^(22/23) 9567220369869981 a001 4807526976/9349*20633239^(6/7) 9567220369869983 a001 12586269025/9349*20633239^(4/5) 9567220369869985 a001 53316291173/9349*20633239^(5/7) 9567220369869987 a001 365435296162/9349*20633239^(3/5) 9567220369869988 a001 591286729879/9349*20633239^(4/7) 9567220369869991 a001 6557470319842/9349*20633239^(3/7) 9567220369869992 a001 10610209857723/9349*20633239^(2/5) 9567220369869992 a001 14930352/9349*2537720636^(14/15) 9567220369869992 a001 14930352/9349*17393796001^(6/7) 9567220369869992 a001 14930352/9349*45537549124^(14/17) 9567220369869992 a001 14930352/9349*817138163596^(14/19) 9567220369869992 a001 14930352/9349*14662949395604^(2/3) 9567220369869992 a001 14930352/9349*505019158607^(3/4) 9567220369869992 a001 14930352/9349*192900153618^(7/9) 9567220369869992 a001 14930352/9349*10749957122^(7/8) 9567220369869992 a001 14930352/9349*4106118243^(21/23) 9567220369869992 a001 14930352/9349*1568397607^(21/22) 9567220369869999 a001 4181*2537720636^(8/9) 9567220369869999 a001 4181*312119004989^(8/11) 9567220369869999 a001 4181*23725150497407^(5/8) 9567220369869999 a001 4181*73681302247^(10/13) 9567220369869999 a001 4181*28143753123^(4/5) 9567220369869999 a001 4181*10749957122^(5/6) 9567220369869999 a001 4181*4106118243^(20/23) 9567220369869999 a001 4181*1568397607^(10/11) 9567220369869999 a001 4181*599074578^(20/21) 9567220369870000 a001 267914296/9349*141422324^(12/13) 9567220369870000 a001 1134903170/9349*141422324^(11/13) 9567220369870000 a001 4807526976/9349*141422324^(10/13) 9567220369870000 a001 20365011074/9349*141422324^(9/13) 9567220369870000 a001 32951280099/9349*141422324^(2/3) 9567220369870000 a001 86267571272/9349*141422324^(8/13) 9567220369870000 a001 365435296162/9349*141422324^(7/13) 9567220369870000 a001 1548008755920/9349*141422324^(6/13) 9567220369870000 a001 6557470319842/9349*141422324^(5/13) 9567220369870000 a001 102334155/9349*817138163596^(2/3) 9567220369870000 a001 102334155/9349*10749957122^(19/24) 9567220369870000 a001 102334155/9349*4106118243^(19/23) 9567220369870000 a001 102334155/9349*1568397607^(19/22) 9567220369870000 a001 102334155/9349*599074578^(19/21) 9567220369870001 a001 267914296/9349*2537720636^(4/5) 9567220369870001 a001 267914296/9349*45537549124^(12/17) 9567220369870001 a001 267914296/9349*14662949395604^(4/7) 9567220369870001 a001 267914296/9349*505019158607^(9/14) 9567220369870001 a001 267914296/9349*192900153618^(2/3) 9567220369870001 a001 267914296/9349*73681302247^(9/13) 9567220369870001 a001 267914296/9349*10749957122^(3/4) 9567220369870001 a001 267914296/9349*4106118243^(18/23) 9567220369870001 a001 267914296/9349*1568397607^(9/11) 9567220369870001 a001 102334155/9349*228826127^(19/20) 9567220369870001 a001 701408733/9349*45537549124^(2/3) 9567220369870001 a001 701408733/9349*10749957122^(17/24) 9567220369870001 a001 267914296/9349*599074578^(6/7) 9567220369870001 a001 701408733/9349*4106118243^(17/23) 9567220369870001 a001 4807526976/9349*2537720636^(2/3) 9567220369870001 a001 20365011074/9349*2537720636^(3/5) 9567220369870001 a001 701408733/9349*1568397607^(17/22) 9567220369870001 a001 53316291173/9349*2537720636^(5/9) 9567220369870001 a001 86267571272/9349*2537720636^(8/15) 9567220369870001 a001 365435296162/9349*2537720636^(7/15) 9567220369870001 a001 591286729879/9349*2537720636^(4/9) 9567220369870001 a001 1548008755920/9349*2537720636^(2/5) 9567220369870001 a001 1836311903/9349*23725150497407^(1/2) 9567220369870001 a001 1836311903/9349*505019158607^(4/7) 9567220369870001 a001 1836311903/9349*73681302247^(8/13) 9567220369870001 a001 1836311903/9349*10749957122^(2/3) 9567220369870001 a001 6557470319842/9349*2537720636^(1/3) 9567220369870001 a001 1836311903/9349*4106118243^(16/23) 9567220369870001 a001 4807526976/9349*45537549124^(10/17) 9567220369870001 a001 4807526976/9349*312119004989^(6/11) 9567220369870001 a001 4807526976/9349*14662949395604^(10/21) 9567220369870001 a001 4807526976/9349*192900153618^(5/9) 9567220369870001 a001 4807526976/9349*28143753123^(3/5) 9567220369870001 a001 4807526976/9349*10749957122^(5/8) 9567220369870001 a001 12586269025/9349*17393796001^(4/7) 9567220369870001 a001 365435296162/9349*17393796001^(3/7) 9567220369870001 a001 12586269025/9349*14662949395604^(4/9) 9567220369870001 a001 12586269025/9349*505019158607^(1/2) 9567220369870001 a001 12586269025/9349*73681302247^(7/13) 9567220369870001 a001 10610209857723/9349*17393796001^(2/7) 9567220369870001 a001 86267571272/9349*45537549124^(8/17) 9567220369870001 a001 365435296162/9349*45537549124^(7/17) 9567220369870001 a001 1548008755920/9349*45537549124^(6/17) 9567220369870001 a001 2504730781961/9349*45537549124^(1/3) 9567220369870001 a001 6557470319842/9349*45537549124^(5/17) 9567220369870001 a001 32951280099/9349*73681302247^(1/2) 9567220369870001 a001 86267571272/9349*14662949395604^(8/21) 9567220369870001 a001 86267571272/9349*192900153618^(4/9) 9567220369870001 a001 225851433717/9349*312119004989^(2/5) 9567220369870001 a001 6557470319842/9349*312119004989^(3/11) 9567220369870001 a001 591286729879/9349*23725150497407^(5/16) 9567220369870001 a001 956722026041/9349*817138163596^(1/3) 9567220369870001 a001 1548008755920/9349*14662949395604^(2/7) 9567220369870001 a001 4052739537881/9349*23725150497407^(1/4) 9567220369870001 a001 10610209857723/9349*14662949395604^(2/9) 9567220369870001 a001 6557470319842/9349*14662949395604^(5/21) 9567220369870001 a001 10610209857723/9349*505019158607^(1/4) 9567220369870001 a001 365435296162/9349*14662949395604^(1/3) 9567220369870001 a001 6557470319842/9349*192900153618^(5/18) 9567220369870001 a001 1548008755920/9349*192900153618^(1/3) 9567220369870001 a001 365435296162/9349*192900153618^(7/18) 9567220369870001 a001 4052739537881/9349*73681302247^(4/13) 9567220369870001 a001 86267571272/9349*73681302247^(6/13) 9567220369870001 a001 53316291173/9349*312119004989^(5/11) 9567220369870001 a001 591286729879/9349*73681302247^(5/13) 9567220369870001 a001 53316291173/9349*3461452808002^(5/12) 9567220369870001 a001 20365011074/9349*45537549124^(9/17) 9567220369870001 a001 6557470319842/9349*28143753123^(3/10) 9567220369870001 a001 20365011074/9349*817138163596^(9/19) 9567220369870001 a001 20365011074/9349*14662949395604^(3/7) 9567220369870001 a001 20365011074/9349*192900153618^(1/2) 9567220369870001 a001 591286729879/9349*28143753123^(2/5) 9567220369870001 a001 53316291173/9349*28143753123^(1/2) 9567220369870001 a001 10610209857723/9349*10749957122^(7/24) 9567220369870001 a001 6557470319842/9349*10749957122^(5/16) 9567220369870001 a001 4052739537881/9349*10749957122^(1/3) 9567220369870001 a001 1548008755920/9349*10749957122^(3/8) 9567220369870001 a001 7778742049/9349*1322157322203^(1/2) 9567220369870001 a001 591286729879/9349*10749957122^(5/12) 9567220369870001 a001 12586269025/9349*10749957122^(7/12) 9567220369870001 a001 365435296162/9349*10749957122^(7/16) 9567220369870001 a001 225851433717/9349*10749957122^(11/24) 9567220369870001 a001 86267571272/9349*10749957122^(1/2) 9567220369870001 a001 32951280099/9349*10749957122^(13/24) 9567220369870001 a001 20365011074/9349*10749957122^(9/16) 9567220369870001 a001 10610209857723/9349*4106118243^(7/23) 9567220369870001 a001 4052739537881/9349*4106118243^(8/23) 9567220369870001 a001 2971215073/9349*9062201101803^(1/2) 9567220369870001 a001 1548008755920/9349*4106118243^(9/23) 9567220369870001 a001 591286729879/9349*4106118243^(10/23) 9567220369870001 a001 225851433717/9349*4106118243^(11/23) 9567220369870001 a001 139583862445/9349*4106118243^(1/2) 9567220369870001 a001 4807526976/9349*4106118243^(15/23) 9567220369870001 a001 86267571272/9349*4106118243^(12/23) 9567220369870001 a001 32951280099/9349*4106118243^(13/23) 9567220369870001 a001 12586269025/9349*4106118243^(14/23) 9567220369870001 a001 1134903170/9349*2537720636^(11/15) 9567220369870001 a001 10610209857723/9349*1568397607^(7/22) 9567220369870001 a001 4052739537881/9349*1568397607^(4/11) 9567220369870001 a001 1134903170/9349*45537549124^(11/17) 9567220369870001 a001 1134903170/9349*312119004989^(3/5) 9567220369870001 a001 1134903170/9349*817138163596^(11/19) 9567220369870001 a001 1134903170/9349*14662949395604^(11/21) 9567220369870001 a001 1134903170/9349*192900153618^(11/18) 9567220369870001 a001 1134903170/9349*10749957122^(11/16) 9567220369870001 a001 1548008755920/9349*1568397607^(9/22) 9567220369870001 a001 591286729879/9349*1568397607^(5/11) 9567220369870001 a001 225851433717/9349*1568397607^(1/2) 9567220369870001 a001 86267571272/9349*1568397607^(6/11) 9567220369870001 a001 1836311903/9349*1568397607^(8/11) 9567220369870001 a001 32951280099/9349*1568397607^(13/22) 9567220369870001 a001 12586269025/9349*1568397607^(7/11) 9567220369870001 a001 4807526976/9349*1568397607^(15/22) 9567220369870001 a001 1134903170/9349*1568397607^(3/4) 9567220369870001 a001 10610209857723/9349*599074578^(1/3) 9567220369870001 a001 433494437/9349*2537720636^(7/9) 9567220369870001 a001 6557470319842/9349*599074578^(5/14) 9567220369870001 a001 4052739537881/9349*599074578^(8/21) 9567220369870001 a001 433494437/9349*17393796001^(5/7) 9567220369870001 a001 433494437/9349*312119004989^(7/11) 9567220369870001 a001 433494437/9349*14662949395604^(5/9) 9567220369870001 a001 433494437/9349*505019158607^(5/8) 9567220369870001 a001 433494437/9349*28143753123^(7/10) 9567220369870001 a001 1548008755920/9349*599074578^(3/7) 9567220369870001 a001 591286729879/9349*599074578^(10/21) 9567220369870001 a001 365435296162/9349*599074578^(1/2) 9567220369870001 a001 225851433717/9349*599074578^(11/21) 9567220369870001 a001 86267571272/9349*599074578^(4/7) 9567220369870001 a001 32951280099/9349*599074578^(13/21) 9567220369870001 a001 20365011074/9349*599074578^(9/14) 9567220369870001 a001 701408733/9349*599074578^(17/21) 9567220369870001 a001 12586269025/9349*599074578^(2/3) 9567220369870001 a001 4807526976/9349*599074578^(5/7) 9567220369870001 a001 1836311903/9349*599074578^(16/21) 9567220369870001 a001 1134903170/9349*599074578^(11/14) 9567220369870001 a001 433494437/9349*599074578^(5/6) 9567220369870001 a001 10610209857723/9349*228826127^(7/20) 9567220369870001 a001 6557470319842/9349*228826127^(3/8) 9567220369870001 a001 4052739537881/9349*228826127^(2/5) 9567220369870001 a001 1548008755920/9349*228826127^(9/20) 9567220369870001 a001 591286729879/9349*228826127^(1/2) 9567220369870001 a001 225851433717/9349*228826127^(11/20) 9567220369870001 a001 86267571272/9349*228826127^(3/5) 9567220369870001 a001 53316291173/9349*228826127^(5/8) 9567220369870001 a001 32951280099/9349*228826127^(13/20) 9567220369870001 a001 12586269025/9349*228826127^(7/10) 9567220369870001 a001 4807526976/9349*228826127^(3/4) 9567220369870001 a001 267914296/9349*228826127^(9/10) 9567220369870001 a001 1836311903/9349*228826127^(4/5) 9567220369870001 a001 701408733/9349*228826127^(17/20) 9567220369870001 a001 433494437/9349*228826127^(7/8) 9567220369870001 a001 10610209857723/9349*87403803^(7/19) 9567220369870001 a001 63245986/9349*2537720636^(13/15) 9567220369870001 a001 63245986/9349*45537549124^(13/17) 9567220369870001 a001 63245986/9349*14662949395604^(13/21) 9567220369870001 a001 63245986/9349*192900153618^(13/18) 9567220369870001 a001 63245986/9349*73681302247^(3/4) 9567220369870001 a001 63245986/9349*10749957122^(13/16) 9567220369870001 a001 63245986/9349*599074578^(13/14) 9567220369870001 a001 4052739537881/9349*87403803^(8/19) 9567220369870001 a001 1548008755920/9349*87403803^(9/19) 9567220369870001 a001 956722026041/9349*87403803^(1/2) 9567220369870001 a001 591286729879/9349*87403803^(10/19) 9567220369870001 a001 225851433717/9349*87403803^(11/19) 9567220369870001 a001 86267571272/9349*87403803^(12/19) 9567220369870001 a001 32951280099/9349*87403803^(13/19) 9567220369870001 a001 12586269025/9349*87403803^(14/19) 9567220369870002 a001 4807526976/9349*87403803^(15/19) 9567220369870002 a001 1836311903/9349*87403803^(16/19) 9567220369870002 a001 701408733/9349*87403803^(17/19) 9567220369870002 a001 267914296/9349*87403803^(18/19) 9567220369870004 a001 10610209857723/9349*33385282^(7/18) 9567220369870004 a001 6557470319842/9349*33385282^(5/12) 9567220369870004 a001 4052739537881/9349*33385282^(4/9) 9567220369870005 a001 1548008755920/9349*33385282^(1/2) 9567220369870005 a001 591286729879/9349*33385282^(5/9) 9567220369870006 a001 365435296162/9349*33385282^(7/12) 9567220369870006 a001 225851433717/9349*33385282^(11/18) 9567220369870006 a001 86267571272/9349*33385282^(2/3) 9567220369870007 a001 32951280099/9349*33385282^(13/18) 9567220369870007 a001 20365011074/9349*33385282^(3/4) 9567220369870007 a001 12586269025/9349*33385282^(7/9) 9567220369870008 a001 4807526976/9349*33385282^(5/6) 9567220369870008 a001 1836311903/9349*33385282^(8/9) 9567220369870008 a001 1134903170/9349*33385282^(11/12) 9567220369870009 a001 701408733/9349*33385282^(17/18) 9567220369870025 a001 10610209857723/9349*12752043^(7/17) 9567220369870028 a001 4052739537881/9349*12752043^(8/17) 9567220369870030 a001 2504730781961/9349*12752043^(1/2) 9567220369870032 a001 1548008755920/9349*12752043^(9/17) 9567220369870035 a001 591286729879/9349*12752043^(10/17) 9567220369870039 a001 225851433717/9349*12752043^(11/17) 9567220369870042 a001 86267571272/9349*12752043^(12/17) 9567220369870046 a001 32951280099/9349*12752043^(13/17) 9567220369870049 a001 12586269025/9349*12752043^(14/17) 9567220369870052 a001 4807526976/9349*12752043^(15/17) 9567220369870056 a001 1836311903/9349*12752043^(16/17) 9567220369870155 a001 3524578/9349*45537549124^(15/17) 9567220369870155 a001 3524578/9349*312119004989^(9/11) 9567220369870155 a001 3524578/9349*14662949395604^(5/7) 9567220369870155 a001 3524578/9349*192900153618^(5/6) 9567220369870155 a001 3524578/9349*28143753123^(9/10) 9567220369870155 a001 3524578/9349*10749957122^(15/16) 9567220369870177 a001 10610209857723/9349*4870847^(7/16) 9567220369870202 a001 4052739537881/9349*4870847^(1/2) 9567220369870227 a001 1548008755920/9349*4870847^(9/16) 9567220369870253 a001 591286729879/9349*4870847^(5/8) 9567220369870278 a001 225851433717/9349*4870847^(11/16) 9567220369870303 a001 86267571272/9349*4870847^(3/4) 9567220369870328 a001 32951280099/9349*4870847^(13/16) 9567220369870353 a001 12586269025/9349*4870847^(7/8) 9567220369870379 a001 4807526976/9349*4870847^(15/16) 9567220369871290 a001 10610209857723/9349*1860498^(7/15) 9567220369871383 a001 6557470319842/9349*1860498^(1/2) 9567220369871475 a001 4052739537881/9349*1860498^(8/15) 9567220369871659 a001 1548008755920/9349*1860498^(3/5) 9567220369871843 a001 591286729879/9349*1860498^(2/3) 9567220369871935 a001 365435296162/9349*1860498^(7/10) 9567220369872027 a001 225851433717/9349*1860498^(11/15) 9567220369872212 a001 86267571272/9349*1860498^(4/5) 9567220369872304 a001 53316291173/9349*1860498^(5/6) 9567220369872396 a001 32951280099/9349*1860498^(13/15) 9567220369872488 a001 20365011074/9349*1860498^(9/10) 9567220369872580 a001 12586269025/9349*1860498^(14/15) 9567220369877237 a001 514229/9349*14662949395604^(7/9) 9567220369877237 a001 514229/9349*505019158607^(7/8) 9567220369879473 a001 10610209857723/9349*710647^(1/2) 9567220369880826 a001 4052739537881/9349*710647^(4/7) 9567220369882179 a001 1548008755920/9349*710647^(9/14) 9567220369883532 a001 591286729879/9349*710647^(5/7) 9567220369884209 a001 365435296162/9349*710647^(3/4) 9567220369884885 a001 225851433717/9349*710647^(11/14) 9567220369886239 a001 86267571272/9349*710647^(6/7) 9567220369887592 a001 32951280099/9349*710647^(13/14) 9567220369919597 a001 196418/9349*817138163596^(17/19) 9567220369919597 a001 196418/9349*14662949395604^(17/21) 9567220369919597 a001 196418/9349*192900153618^(17/18) 9567220369939918 a001 10610209857723/9349*271443^(7/13) 9567220369949906 a001 4052739537881/9349*271443^(8/13) 9567220369959894 a001 1548008755920/9349*271443^(9/13) 9567220369969882 a001 591286729879/9349*271443^(10/13) 9567220369979870 a001 225851433717/9349*271443^(11/13) 9567220369989858 a001 86267571272/9349*271443^(12/13) 9567220370389154 a001 10610209857723/9349*103682^(7/12) 9567220370426237 a001 6557470319842/9349*103682^(5/8) 9567220370463319 a001 4052739537881/9349*103682^(2/3) 9567220370500401 a001 2504730781961/9349*103682^(17/24) 9567220370537484 a001 1548008755920/9349*103682^(3/4) 9567220370574566 a001 956722026041/9349*103682^(19/24) 9567220370611649 a001 591286729879/9349*103682^(5/6) 9567220370648731 a001 365435296162/9349*103682^(7/8) 9567220370685813 a001 225851433717/9349*103682^(11/12) 9567220370722896 a001 139583862445/9349*103682^(23/24) 9567220370759977 a001 2112442257863803/2208 9567220372107850 m005 (-1/4+1/4*5^(1/2))/(6/7*exp(1)+9/10) 9567220372199992 a001 28657/9349*3461452808002^(11/12) 9567220373751817 a001 10610209857723/9349*39603^(7/11) 9567220374029089 a001 6557470319842/9349*39603^(15/22) 9567220374306362 a001 4052739537881/9349*39603^(8/11) 9567220374583634 a001 2504730781961/9349*39603^(17/22) 9567220374860907 a001 1548008755920/9349*39603^(9/11) 9567220375138180 a001 956722026041/9349*39603^(19/22) 9567220375415452 a001 591286729879/9349*39603^(10/11) 9567220375692725 a001 365435296162/9349*39603^(21/22) 9567220375969996 a001 16944504007880461/17711 9567220385840000 a001 10946/9349*14662949395604^(19/21) 9567220392807064 a001 4052739537881/3571*3571^(14/17) 9567220399137001 a001 10610209857723/9349*15127^(7/10) 9567220401227501 a001 6557470319842/9349*15127^(3/4) 9567220403318001 a001 4052739537881/9349*15127^(4/5) 9567220405408501 a001 2504730781961/9349*15127^(17/20) 9567220407499001 a001 1548008755920/9349*15127^(9/10) 9567220409589501 a001 956722026041/9349*15127^(19/20) 9567220436939420 a001 6557470319842/3571*3571^(13/17) 9567220444334306 a007 Real Root Of -969*x^4+304*x^3+859*x^2+180*x+464 9567220457408332 a001 1515744265389/2161*5778^(5/6) 9567220459575573 a007 Real Root Of -275*x^4+517*x^3+321*x^2+73*x-586 9567220460736770 m001 1/Tribonacci*ln(FeigenbaumC)^2/(3^(1/3))^2 9567220471286932 a007 Real Root Of 789*x^4+378*x^3+747*x^2+75*x-942 9567220473328887 a001 6557470319842/15127*5778^(8/9) 9567220481071775 a001 10610209857723/3571*3571^(12/17) 9567220487553938 r008 a(0)=9,K{-n^6,5+2*n^3-6*n^2-5*n} 9567220489249443 a001 4052739537881/15127*5778^(17/18) 9567220494033702 m005 (1/4*Catalan-4)/(Pi+4/5) 9567220496161600 m001 (sin(1)-sin(1/5*Pi))/(-TreeGrowth2nd+ZetaP(3)) 9567220496753994 m001 Niven-StronglyCareFree+Trott2nd 9567220501111935 a007 Real Root Of 550*x^4-93*x^3-716*x^2-667*x-525 9567220503118111 r002 21th iterates of z^2 + 9567220505170007 a001 1236084889267965/1292 9567220524959447 a001 3536736619241/13201*5778^(17/18) 9567220526648794 m001 (-GaussAGM+Tetranacci)/(gamma+BesselI(1,1)) 9567220528518513 m001 (Backhouse+Lehmer)/(Catalan+GAMMA(3/4)) 9567220528739477 r009 Re(z^3+c),c=-19/126+25/37*I,n=18 9567220531108887 a001 10610209857723/24476*5778^(8/9) 9567220540880011 a001 2472169787763395/2584 9567220546090030 a001 309021223638708/323 9567220546850162 a001 1236084894653041/1292 9567220546961064 a001 2472169789334739/2584 9567220546977244 a001 309021223667365/323 9567220546979949 a001 2472169789339619/2584 9567220546980007 a001 1236084894669817/1292 9567220546980011 a001 2472169789339635/2584 9567220546980030 a001 309021223667455/323 9567220546980162 a001 1236084894669837/1292 9567220546981064 a001 2472169789339907/2584 9567220546987244 a001 309021223667688/323 9567220547029443 a001 3278735159921/12238*5778^(17/18) 9567220547319949 a001 2472169789427475/2584 9567220552218230 a007 Real Root Of 81*x^4-420*x^3-307*x^2-200*x-346 9567220562407078 a003 cos(Pi*15/101)-cos(Pi*20/97) 9567220562950007 a001 1236084896733141/1292 9567220592757780 a001 10610209857723/9349*5778^(7/9) 9567220603229431 a001 1134903780*1364^(14/15) 9567220608678336 a001 6557470319842/9349*5778^(5/6) 9567220624598892 a001 4052739537881/9349*5778^(8/9) 9567220640519448 a001 2504730781961/9349*5778^(17/18) 9567220656440011 a001 2472169817624099/2584 9567220724089986 a001 1597/5778*14662949395604^(20/21) 9567220739471397 m002 6/Pi^4-Log[Pi]+Pi^6*Tanh[Pi] 9567220750424751 a007 Real Root Of -120*x^4+959*x^3-36*x^2-571*x+427 9567220755881857 a007 Real Root Of -177*x^4+730*x^3-208*x^2+545*x-822 9567220767334348 a007 Real Root Of -759*x^4+671*x^3+729*x^2-41*x+517 9567220771558421 m001 1/Salem^2/KhintchineHarmonic*ln((2^(1/3))) 9567220831788608 r002 13th iterates of z^2 + 9567220840460863 a007 Real Root Of 606*x^4+64*x^3+370*x^2-77*x-864 9567220878620407 m001 Paris/ln(GolombDickman)^2*Porter^2 9567220881723883 r009 Im(z^3+c),c=-65/118+33/52*I,n=2 9567220901199992 a001 4000055058791717/4181 9567220904028170 m002 -108/E^Pi+Pi^6 9567220906800870 a003 cos(Pi*7/41)+cos(Pi*53/113) 9567220906961103 a001 591286729879/3571*9349^(18/19) 9567220912722156 a001 956722026041/3571*9349^(17/19) 9567220918483209 a001 1548008755920/3571*9349^(16/19) 9567220918780178 a007 Real Root Of -286*x^4+88*x^3-228*x^2-962*x-395 9567220924244262 a001 2504730781961/3571*9349^(15/19) 9567220930005315 a001 4052739537881/3571*9349^(14/19) 9567220935766368 a001 6557470319842/3571*9349^(13/19) 9567220941527421 a001 10610209857723/3571*9349^(12/19) 9567220946048875 a001 2504730781961/1364*1364^(13/15) 9567220950678991 a007 Real Root Of 276*x^4-471*x^3-683*x^2-613*x-605 9567220954553937 m001 FeigenbaumAlpha/(GAMMA(23/24)-LandauRamanujan) 9567220954553937 m001 FeigenbaumAlpha/(LandauRamanujan-GAMMA(23/24)) 9567220962310791 m002 -Pi^6+4*ProductLog[Pi]+Sinh[Pi]/Pi^3 9567220965890766 a007 Real Root Of -812*x^4+679*x^3+632*x^2+287*x+971 9567220968850056 a001 6765/3571*14662949395604^(8/9) 9567220974764259 a003 sin(Pi*16/63)-sin(Pi*22/73) 9567220989283325 l006 ln(635/1653) 9567220995450534 a001 225851433717/3571*24476^(20/21) 9567220996211011 a001 365435296162/3571*24476^(19/21) 9567220996971487 a001 591286729879/3571*24476^(6/7) 9567220997731963 a001 956722026041/3571*24476^(17/21) 9567220998492439 a001 1548008755920/3571*24476^(16/21) 9567220999252915 a001 2504730781961/3571*24476^(5/7) 9567221000013392 a001 4052739537881/3571*24476^(2/3) 9567221000773868 a001 6557470319842/3571*24476^(13/21) 9567221001534344 a001 10610209857723/3571*24476^(4/7) 9567221004560061 a001 17711/3571*14662949395604^(6/7) 9567221008431371 a001 86267571272/3571*64079^(22/23) 9567221008532675 a001 139583862445/3571*64079^(21/23) 9567221008633979 a001 225851433717/3571*64079^(20/23) 9567221008735283 a001 365435296162/3571*64079^(19/23) 9567221008836587 a001 591286729879/3571*64079^(18/23) 9567221008937891 a001 956722026041/3571*64079^(17/23) 9567221009039195 a001 1548008755920/3571*64079^(16/23) 9567221009140499 a001 2504730781961/3571*64079^(15/23) 9567221009241803 a001 4052739537881/3571*64079^(14/23) 9567221009343107 a001 6557470319842/3571*64079^(13/23) 9567221009444411 a001 10610209857723/3571*64079^(12/23) 9567221009770081 a001 46368/3571*23725150497407^(13/16) 9567221009770081 a001 46368/3571*505019158607^(13/14) 9567221010388105 a001 225851433717/3571*167761^(4/5) 9567221010456094 a001 2504730781961/3571*167761^(3/5) 9567221010530212 a001 121393/3571*312119004989^(10/11) 9567221010530212 a001 121393/3571*3461452808002^(5/6) 9567221010615972 a001 32951280099/3571*439204^(8/9) 9567221010621483 a001 139583862445/3571*439204^(7/9) 9567221010626994 a001 591286729879/3571*439204^(2/3) 9567221010632505 a001 2504730781961/3571*439204^(5/9) 9567221010638015 a001 10610209857723/3571*439204^(4/9) 9567221010641114 a001 317811/3571*45537549124^(16/17) 9567221010641114 a001 317811/3571*14662949395604^(16/21) 9567221010641114 a001 317811/3571*192900153618^(8/9) 9567221010641114 a001 317811/3571*73681302247^(12/13) 9567221010657294 a001 832040/3571*10749957122^(23/24) 9567221010659655 a001 2178309/3571*312119004989^(4/5) 9567221010659655 a001 2178309/3571*23725150497407^(11/16) 9567221010659655 a001 2178309/3571*73681302247^(11/13) 9567221010659655 a001 2178309/3571*10749957122^(11/12) 9567221010659655 a001 2178309/3571*4106118243^(22/23) 9567221010659918 a001 1836311903/3571*7881196^(10/11) 9567221010659932 a001 7778742049/3571*7881196^(9/11) 9567221010659946 a001 32951280099/3571*7881196^(8/11) 9567221010659956 a001 86267571272/3571*7881196^(2/3) 9567221010659960 a001 139583862445/3571*7881196^(7/11) 9567221010659974 a001 591286729879/3571*7881196^(6/11) 9567221010659988 a001 2504730781961/3571*7881196^(5/11) 9567221010659999 a001 1597*2537720636^(14/15) 9567221010659999 a001 1597*17393796001^(6/7) 9567221010659999 a001 1597*45537549124^(14/17) 9567221010659999 a001 1597*817138163596^(14/19) 9567221010659999 a001 1597*14662949395604^(2/3) 9567221010659999 a001 1597*505019158607^(3/4) 9567221010659999 a001 1597*192900153618^(7/9) 9567221010659999 a001 1597*10749957122^(7/8) 9567221010659999 a001 1597*4106118243^(21/23) 9567221010659999 a001 1597*1568397607^(21/22) 9567221010660002 a001 10610209857723/3571*7881196^(4/11) 9567221010660039 a001 1836311903/3571*20633239^(6/7) 9567221010660040 a001 4807526976/3571*20633239^(4/5) 9567221010660042 a001 20365011074/3571*20633239^(5/7) 9567221010660045 a001 139583862445/3571*20633239^(3/5) 9567221010660045 a001 225851433717/3571*20633239^(4/7) 9567221010660049 a001 2504730781961/3571*20633239^(3/7) 9567221010660049 a001 4052739537881/3571*20633239^(2/5) 9567221010660050 a001 14930352/3571*2537720636^(8/9) 9567221010660050 a001 14930352/3571*312119004989^(8/11) 9567221010660050 a001 14930352/3571*23725150497407^(5/8) 9567221010660050 a001 14930352/3571*73681302247^(10/13) 9567221010660050 a001 14930352/3571*28143753123^(4/5) 9567221010660050 a001 14930352/3571*10749957122^(5/6) 9567221010660050 a001 14930352/3571*4106118243^(20/23) 9567221010660050 a001 14930352/3571*1568397607^(10/11) 9567221010660050 a001 14930352/3571*599074578^(20/21) 9567221010660057 a001 39088169/3571*817138163596^(2/3) 9567221010660057 a001 39088169/3571*10749957122^(19/24) 9567221010660057 a001 39088169/3571*4106118243^(19/23) 9567221010660057 a001 39088169/3571*1568397607^(19/22) 9567221010660057 a001 39088169/3571*599074578^(19/21) 9567221010660057 a001 39088169/3571*228826127^(19/20) 9567221010660058 a001 102334155/3571*141422324^(12/13) 9567221010660058 a001 433494437/3571*141422324^(11/13) 9567221010660058 a001 1836311903/3571*141422324^(10/13) 9567221010660058 a001 7778742049/3571*141422324^(9/13) 9567221010660058 a001 12586269025/3571*141422324^(2/3) 9567221010660058 a001 32951280099/3571*141422324^(8/13) 9567221010660058 a001 139583862445/3571*141422324^(7/13) 9567221010660058 a001 591286729879/3571*141422324^(6/13) 9567221010660058 a001 2504730781961/3571*141422324^(5/13) 9567221010660058 a001 102334155/3571*2537720636^(4/5) 9567221010660058 a001 102334155/3571*45537549124^(12/17) 9567221010660058 a001 102334155/3571*14662949395604^(4/7) 9567221010660058 a001 102334155/3571*505019158607^(9/14) 9567221010660058 a001 102334155/3571*192900153618^(2/3) 9567221010660058 a001 102334155/3571*73681302247^(9/13) 9567221010660058 a001 102334155/3571*10749957122^(3/4) 9567221010660058 a001 102334155/3571*4106118243^(18/23) 9567221010660058 a001 102334155/3571*1568397607^(9/11) 9567221010660058 a001 102334155/3571*599074578^(6/7) 9567221010660058 a001 6557470319842/3571*141422324^(1/3) 9567221010660058 a001 10610209857723/3571*141422324^(4/13) 9567221010660058 a001 267914296/3571*45537549124^(2/3) 9567221010660058 a001 267914296/3571*10749957122^(17/24) 9567221010660058 a001 267914296/3571*4106118243^(17/23) 9567221010660058 a001 267914296/3571*1568397607^(17/22) 9567221010660058 a001 102334155/3571*228826127^(9/10) 9567221010660058 a001 267914296/3571*599074578^(17/21) 9567221010660058 a001 701408733/3571*23725150497407^(1/2) 9567221010660058 a001 701408733/3571*505019158607^(4/7) 9567221010660058 a001 701408733/3571*73681302247^(8/13) 9567221010660058 a001 701408733/3571*10749957122^(2/3) 9567221010660058 a001 701408733/3571*4106118243^(16/23) 9567221010660058 a001 1836311903/3571*2537720636^(2/3) 9567221010660058 a001 701408733/3571*1568397607^(8/11) 9567221010660058 a001 7778742049/3571*2537720636^(3/5) 9567221010660058 a001 20365011074/3571*2537720636^(5/9) 9567221010660058 a001 32951280099/3571*2537720636^(8/15) 9567221010660058 a001 139583862445/3571*2537720636^(7/15) 9567221010660058 a001 225851433717/3571*2537720636^(4/9) 9567221010660058 a001 591286729879/3571*2537720636^(2/5) 9567221010660058 a001 1836311903/3571*45537549124^(10/17) 9567221010660058 a001 1836311903/3571*312119004989^(6/11) 9567221010660058 a001 1836311903/3571*14662949395604^(10/21) 9567221010660058 a001 1836311903/3571*192900153618^(5/9) 9567221010660058 a001 1836311903/3571*28143753123^(3/5) 9567221010660058 a001 1836311903/3571*10749957122^(5/8) 9567221010660058 a001 2504730781961/3571*2537720636^(1/3) 9567221010660058 a001 10610209857723/3571*2537720636^(4/15) 9567221010660058 a001 1836311903/3571*4106118243^(15/23) 9567221010660058 a001 4807526976/3571*17393796001^(4/7) 9567221010660058 a001 4807526976/3571*14662949395604^(4/9) 9567221010660058 a001 4807526976/3571*505019158607^(1/2) 9567221010660058 a001 4807526976/3571*73681302247^(7/13) 9567221010660058 a001 4807526976/3571*10749957122^(7/12) 9567221010660058 a001 139583862445/3571*17393796001^(3/7) 9567221010660058 a001 12586269025/3571*73681302247^(1/2) 9567221010660058 a001 4052739537881/3571*17393796001^(2/7) 9567221010660058 a001 32951280099/3571*45537549124^(8/17) 9567221010660058 a001 139583862445/3571*45537549124^(7/17) 9567221010660058 a001 32951280099/3571*14662949395604^(8/21) 9567221010660058 a001 32951280099/3571*192900153618^(4/9) 9567221010660058 a001 591286729879/3571*45537549124^(6/17) 9567221010660058 a001 956722026041/3571*45537549124^(1/3) 9567221010660058 a001 2504730781961/3571*45537549124^(5/17) 9567221010660058 a001 10610209857723/3571*45537549124^(4/17) 9567221010660058 a001 32951280099/3571*73681302247^(6/13) 9567221010660058 a001 86267571272/3571*312119004989^(2/5) 9567221010660058 a001 225851433717/3571*23725150497407^(5/16) 9567221010660058 a001 10610209857723/3571*817138163596^(4/19) 9567221010660058 a001 1548008755920/3571*23725150497407^(1/4) 9567221010660058 a001 4052739537881/3571*14662949395604^(2/9) 9567221010660058 a001 10610209857723/3571*14662949395604^(4/21) 9567221010660058 a001 10610209857723/3571*192900153618^(2/9) 9567221010660058 a001 591286729879/3571*192900153618^(1/3) 9567221010660058 a001 139583862445/3571*14662949395604^(1/3) 9567221010660058 a001 139583862445/3571*192900153618^(7/18) 9567221010660058 a001 10610209857723/3571*73681302247^(3/13) 9567221010660058 a001 6557470319842/3571*73681302247^(1/4) 9567221010660058 a001 1548008755920/3571*73681302247^(4/13) 9567221010660058 a001 225851433717/3571*73681302247^(5/13) 9567221010660058 a001 2504730781961/3571*28143753123^(3/10) 9567221010660058 a001 20365011074/3571*312119004989^(5/11) 9567221010660058 a001 20365011074/3571*3461452808002^(5/12) 9567221010660058 a001 225851433717/3571*28143753123^(2/5) 9567221010660058 a001 20365011074/3571*28143753123^(1/2) 9567221010660058 a001 10610209857723/3571*10749957122^(1/4) 9567221010660058 a001 4052739537881/3571*10749957122^(7/24) 9567221010660058 a001 2504730781961/3571*10749957122^(5/16) 9567221010660058 a001 1548008755920/3571*10749957122^(1/3) 9567221010660058 a001 7778742049/3571*45537549124^(9/17) 9567221010660058 a001 591286729879/3571*10749957122^(3/8) 9567221010660058 a001 7778742049/3571*817138163596^(9/19) 9567221010660058 a001 7778742049/3571*14662949395604^(3/7) 9567221010660058 a001 7778742049/3571*192900153618^(1/2) 9567221010660058 a001 12586269025/3571*10749957122^(13/24) 9567221010660058 a001 225851433717/3571*10749957122^(5/12) 9567221010660058 a001 139583862445/3571*10749957122^(7/16) 9567221010660058 a001 86267571272/3571*10749957122^(11/24) 9567221010660058 a001 32951280099/3571*10749957122^(1/2) 9567221010660058 a001 7778742049/3571*10749957122^(9/16) 9567221010660058 a001 10610209857723/3571*4106118243^(6/23) 9567221010660058 a001 4052739537881/3571*4106118243^(7/23) 9567221010660058 a001 1548008755920/3571*4106118243^(8/23) 9567221010660058 a001 2971215073/3571*1322157322203^(1/2) 9567221010660058 a001 591286729879/3571*4106118243^(9/23) 9567221010660058 a001 225851433717/3571*4106118243^(10/23) 9567221010660058 a001 4807526976/3571*4106118243^(14/23) 9567221010660058 a001 86267571272/3571*4106118243^(11/23) 9567221010660058 a001 53316291173/3571*4106118243^(1/2) 9567221010660058 a001 32951280099/3571*4106118243^(12/23) 9567221010660058 a001 12586269025/3571*4106118243^(13/23) 9567221010660058 a001 10610209857723/3571*1568397607^(3/11) 9567221010660058 a001 4052739537881/3571*1568397607^(7/22) 9567221010660058 a001 1548008755920/3571*1568397607^(4/11) 9567221010660058 a001 1134903170/3571*9062201101803^(1/2) 9567221010660058 a001 591286729879/3571*1568397607^(9/22) 9567221010660058 a001 225851433717/3571*1568397607^(5/11) 9567221010660058 a001 86267571272/3571*1568397607^(1/2) 9567221010660058 a001 1836311903/3571*1568397607^(15/22) 9567221010660058 a001 32951280099/3571*1568397607^(6/11) 9567221010660058 a001 12586269025/3571*1568397607^(13/22) 9567221010660058 a001 4807526976/3571*1568397607^(7/11) 9567221010660058 a001 10610209857723/3571*599074578^(2/7) 9567221010660058 a001 4052739537881/3571*599074578^(1/3) 9567221010660058 a001 433494437/3571*2537720636^(11/15) 9567221010660058 a001 2504730781961/3571*599074578^(5/14) 9567221010660058 a001 1548008755920/3571*599074578^(8/21) 9567221010660058 a001 433494437/3571*45537549124^(11/17) 9567221010660058 a001 433494437/3571*312119004989^(3/5) 9567221010660058 a001 433494437/3571*817138163596^(11/19) 9567221010660058 a001 433494437/3571*14662949395604^(11/21) 9567221010660058 a001 433494437/3571*192900153618^(11/18) 9567221010660058 a001 433494437/3571*10749957122^(11/16) 9567221010660058 a001 591286729879/3571*599074578^(3/7) 9567221010660058 a001 225851433717/3571*599074578^(10/21) 9567221010660058 a001 433494437/3571*1568397607^(3/4) 9567221010660058 a001 139583862445/3571*599074578^(1/2) 9567221010660058 a001 86267571272/3571*599074578^(11/21) 9567221010660058 a001 32951280099/3571*599074578^(4/7) 9567221010660058 a001 701408733/3571*599074578^(16/21) 9567221010660058 a001 12586269025/3571*599074578^(13/21) 9567221010660058 a001 7778742049/3571*599074578^(9/14) 9567221010660058 a001 4807526976/3571*599074578^(2/3) 9567221010660058 a001 1836311903/3571*599074578^(5/7) 9567221010660058 a001 433494437/3571*599074578^(11/14) 9567221010660058 a001 10610209857723/3571*228826127^(3/10) 9567221010660058 a001 4052739537881/3571*228826127^(7/20) 9567221010660058 a001 2504730781961/3571*228826127^(3/8) 9567221010660058 a001 165580141/3571*2537720636^(7/9) 9567221010660058 a001 165580141/3571*17393796001^(5/7) 9567221010660058 a001 165580141/3571*312119004989^(7/11) 9567221010660058 a001 165580141/3571*14662949395604^(5/9) 9567221010660058 a001 165580141/3571*505019158607^(5/8) 9567221010660058 a001 165580141/3571*28143753123^(7/10) 9567221010660058 a001 1548008755920/3571*228826127^(2/5) 9567221010660058 a001 591286729879/3571*228826127^(9/20) 9567221010660058 a001 225851433717/3571*228826127^(1/2) 9567221010660058 a001 165580141/3571*599074578^(5/6) 9567221010660058 a001 86267571272/3571*228826127^(11/20) 9567221010660058 a001 32951280099/3571*228826127^(3/5) 9567221010660058 a001 20365011074/3571*228826127^(5/8) 9567221010660058 a001 12586269025/3571*228826127^(13/20) 9567221010660058 a001 4807526976/3571*228826127^(7/10) 9567221010660058 a001 267914296/3571*228826127^(17/20) 9567221010660058 a001 1836311903/3571*228826127^(3/4) 9567221010660058 a001 701408733/3571*228826127^(4/5) 9567221010660059 a001 165580141/3571*228826127^(7/8) 9567221010660059 a001 10610209857723/3571*87403803^(6/19) 9567221010660059 a001 4052739537881/3571*87403803^(7/19) 9567221010660059 a001 1548008755920/3571*87403803^(8/19) 9567221010660059 a001 591286729879/3571*87403803^(9/19) 9567221010660059 a001 365435296162/3571*87403803^(1/2) 9567221010660059 a001 225851433717/3571*87403803^(10/19) 9567221010660059 a001 86267571272/3571*87403803^(11/19) 9567221010660059 a001 32951280099/3571*87403803^(12/19) 9567221010660059 a001 12586269025/3571*87403803^(13/19) 9567221010660059 a001 4807526976/3571*87403803^(14/19) 9567221010660059 a001 1836311903/3571*87403803^(15/19) 9567221010660059 a001 102334155/3571*87403803^(18/19) 9567221010660059 a001 701408733/3571*87403803^(16/19) 9567221010660059 a001 267914296/3571*87403803^(17/19) 9567221010660061 a001 10610209857723/3571*33385282^(1/3) 9567221010660062 a001 24157817/3571*2537720636^(13/15) 9567221010660062 a001 24157817/3571*45537549124^(13/17) 9567221010660062 a001 24157817/3571*14662949395604^(13/21) 9567221010660062 a001 24157817/3571*192900153618^(13/18) 9567221010660062 a001 24157817/3571*73681302247^(3/4) 9567221010660062 a001 24157817/3571*10749957122^(13/16) 9567221010660062 a001 24157817/3571*599074578^(13/14) 9567221010660062 a001 4052739537881/3571*33385282^(7/18) 9567221010660062 a001 2504730781961/3571*33385282^(5/12) 9567221010660062 a001 1548008755920/3571*33385282^(4/9) 9567221010660063 a001 591286729879/3571*33385282^(1/2) 9567221010660063 a001 225851433717/3571*33385282^(5/9) 9567221010660063 a001 139583862445/3571*33385282^(7/12) 9567221010660064 a001 86267571272/3571*33385282^(11/18) 9567221010660064 a001 32951280099/3571*33385282^(2/3) 9567221010660065 a001 12586269025/3571*33385282^(13/18) 9567221010660065 a001 7778742049/3571*33385282^(3/4) 9567221010660065 a001 4807526976/3571*33385282^(7/9) 9567221010660065 a001 1836311903/3571*33385282^(5/6) 9567221010660066 a001 701408733/3571*33385282^(8/9) 9567221010660066 a001 433494437/3571*33385282^(11/12) 9567221010660066 a001 267914296/3571*33385282^(17/18) 9567221010660079 a001 10610209857723/3571*12752043^(6/17) 9567221010660083 a001 4052739537881/3571*12752043^(7/17) 9567221010660086 a001 1548008755920/3571*12752043^(8/17) 9567221010660088 a001 956722026041/3571*12752043^(1/2) 9567221010660089 a001 591286729879/3571*12752043^(9/17) 9567221010660093 a001 225851433717/3571*12752043^(10/17) 9567221010660096 a001 86267571272/3571*12752043^(11/17) 9567221010660100 a001 32951280099/3571*12752043^(12/17) 9567221010660103 a001 12586269025/3571*12752043^(13/17) 9567221010660107 a001 4807526976/3571*12752043^(14/17) 9567221010660110 a001 1836311903/3571*12752043^(15/17) 9567221010660114 a001 701408733/3571*12752043^(16/17) 9567221010660210 a001 10610209857723/3571*4870847^(3/8) 9567221010660235 a001 4052739537881/3571*4870847^(7/16) 9567221010660260 a001 1548008755920/3571*4870847^(1/2) 9567221010660285 a001 591286729879/3571*4870847^(9/16) 9567221010660310 a001 225851433717/3571*4870847^(5/8) 9567221010660336 a001 86267571272/3571*4870847^(11/16) 9567221010660361 a001 32951280099/3571*4870847^(3/4) 9567221010660386 a001 12586269025/3571*4870847^(13/16) 9567221010660411 a001 4807526976/3571*4870847^(7/8) 9567221010660436 a001 1836311903/3571*4870847^(15/16) 9567221010661114 a001 1346269/3571*45537549124^(15/17) 9567221010661114 a001 1346269/3571*312119004989^(9/11) 9567221010661114 a001 1346269/3571*14662949395604^(5/7) 9567221010661114 a001 1346269/3571*192900153618^(5/6) 9567221010661114 a001 1346269/3571*28143753123^(9/10) 9567221010661114 a001 1346269/3571*10749957122^(15/16) 9567221010661164 a001 10610209857723/3571*1860498^(2/5) 9567221010661348 a001 4052739537881/3571*1860498^(7/15) 9567221010661440 a001 2504730781961/3571*1860498^(1/2) 9567221010661532 a001 1548008755920/3571*1860498^(8/15) 9567221010661717 a001 591286729879/3571*1860498^(3/5) 9567221010661901 a001 225851433717/3571*1860498^(2/3) 9567221010661993 a001 139583862445/3571*1860498^(7/10) 9567221010662085 a001 86267571272/3571*1860498^(11/15) 9567221010662269 a001 32951280099/3571*1860498^(4/5) 9567221010662362 a001 20365011074/3571*1860498^(5/6) 9567221010662454 a001 12586269025/3571*1860498^(13/15) 9567221010662546 a001 7778742049/3571*1860498^(9/10) 9567221010662638 a001 4807526976/3571*1860498^(14/15) 9567221010668177 a001 10610209857723/3571*710647^(3/7) 9567221010669530 a001 4052739537881/3571*710647^(1/2) 9567221010670884 a001 1548008755920/3571*710647^(4/7) 9567221010672237 a001 591286729879/3571*710647^(9/14) 9567221010673590 a001 225851433717/3571*710647^(5/7) 9567221010674267 a001 139583862445/3571*710647^(3/4) 9567221010674943 a001 86267571272/3571*710647^(11/14) 9567221010676296 a001 32951280099/3571*710647^(6/7) 9567221010677649 a001 12586269025/3571*710647^(13/14) 9567221010709655 a001 196418/3571*14662949395604^(7/9) 9567221010709655 a001 196418/3571*505019158607^(7/8) 9567221010719987 a001 10610209857723/3571*271443^(6/13) 9567221010724981 a001 6557470319842/3571*271443^(1/2) 9567221010729975 a001 4052739537881/3571*271443^(7/13) 9567221010739964 a001 1548008755920/3571*271443^(8/13) 9567221010749952 a001 591286729879/3571*271443^(9/13) 9567221010759940 a001 225851433717/3571*271443^(10/13) 9567221010769928 a001 86267571272/3571*271443^(11/13) 9567221010779916 a001 32951280099/3571*271443^(12/13) 9567221011000000 a001 75025/3571*817138163596^(17/19) 9567221011000000 a001 75025/3571*14662949395604^(17/21) 9567221011000000 a001 75025/3571*192900153618^(17/18) 9567221011105047 a001 10610209857723/3571*103682^(1/2) 9567221011142130 a001 6557470319842/3571*103682^(13/24) 9567221011179212 a001 4052739537881/3571*103682^(7/12) 9567221011216294 a001 2504730781961/3571*103682^(5/8) 9567221011253377 a001 1548008755920/3571*103682^(2/3) 9567221011290459 a001 956722026041/3571*103682^(17/24) 9567221011327542 a001 591286729879/3571*103682^(3/4) 9567221011364624 a001 365435296162/3571*103682^(19/24) 9567221011401706 a001 225851433717/3571*103682^(5/6) 9567221011438789 a001 139583862445/3571*103682^(7/8) 9567221011475871 a001 86267571272/3571*103682^(11/12) 9567221011512954 a001 53316291173/3571*103682^(23/24) 9567221013987330 a001 10610209857723/3571*39603^(6/11) 9567221014264602 a001 6557470319842/3571*39603^(13/22) 9567221014541875 a001 4052739537881/3571*39603^(7/11) 9567221014819147 a001 2504730781961/3571*39603^(15/22) 9567221015096420 a001 1548008755920/3571*39603^(8/11) 9567221015373693 a001 956722026041/3571*39603^(17/22) 9567221015650965 a001 591286729879/3571*39603^(9/11) 9567221015928238 a001 365435296162/3571*39603^(19/22) 9567221016205510 a001 225851433717/3571*39603^(10/11) 9567221016482783 a001 139583862445/3571*39603^(21/22) 9567221016759997 a001 16944505142783631/17711 9567221026630058 a001 10946/3571*3461452808002^(11/12) 9567221035746060 a001 10610209857723/3571*15127^(3/5) 9567221037836560 a001 6557470319842/3571*15127^(13/20) 9567221039927060 a001 4052739537881/3571*15127^(7/10) 9567221042017560 a001 2504730781961/3571*15127^(3/4) 9567221044108061 a001 1548008755920/3571*15127^(4/5) 9567221046198561 a001 956722026041/3571*15127^(17/20) 9567221048289061 a001 591286729879/3571*15127^(9/10) 9567221050379561 a001 365435296162/3571*15127^(19/20) 9567221051332749 a007 Real Root Of -456*x^4+404*x^3-564*x^2-530*x+745 9567221052470002 a001 6472225041995957/6765 9567221077327303 m005 (1/3*gamma+1/4)/(7/9*Catalan-1/4) 9567221101867204 b008 34+Pi*ExpIntegralEi[4] 9567221120120067 a001 4181/3571*14662949395604^(19/21) 9567221134116185 m001 DuboisRaymond^(ln(3)*Sierpinski) 9567221137098048 a007 Real Root Of 804*x^4+530*x^3+899*x^2+408*x-642 9567221142179266 r005 Re(z^2+c),c=-57/62+11/58*I,n=15 9567221153555310 b008 ArcCoth[2/3+E/4] 9567221164046603 m001 BesselK(0,1)/exp(TwinPrimes)^2/sinh(1) 9567221201706739 a001 10610209857723/3571*5778^(2/3) 9567221208357986 m001 FransenRobinson^GAMMA(11/12)*arctan(1/3) 9567221217627296 a001 6557470319842/3571*5778^(13/18) 9567221218537160 a007 Real Root Of 309*x^4-391*x^3+193*x^2+995*x+174 9567221233547853 a001 4052739537881/3571*5778^(7/9) 9567221238115699 a007 Real Root Of 887*x^4+924*x^3+771*x^2-16*x-655 9567221249468410 a001 2504730781961/3571*5778^(5/6) 9567221265388967 a001 1548008755920/3571*5778^(8/9) 9567221277229911 r001 57i'th iterates of 2*x^2-1 of 9567221279784089 a007 Real Root Of -695*x^4-394*x^3-187*x^2-753*x-312 9567221281215323 a003 sin(Pi*46/111)*sin(Pi*41/89) 9567221281309524 a001 956722026041/3571*5778^(17/18) 9567221281656619 r005 Re(z^2+c),c=-3/94+22/27*I,n=45 9567221288868331 a001 4052739537881/1364*1364^(4/5) 9567221291241478 a007 Real Root Of -213*x^4+340*x^3-389*x^2+52*x+882 9567221295950222 m001 (-ln(2^(1/2)+1)+Cahen)/(exp(Pi)+3^(1/2)) 9567221297230030 a001 309021247900530/323 9567221315846066 m001 (Ei(1)-Bloch)/(Tetranacci-TreeGrowth2nd) 9567221336057356 r009 Im(z^3+c),c=-11/86+17/18*I,n=7 9567221352796832 m002 -6+6/E^Pi+Pi^6+ProductLog[Pi] 9567221364291981 a007 Real Root Of -695*x^4+659*x^3+534*x^2+337*x+993 9567221382062924 a001 87403803/377*89^(6/19) 9567221389382087 a007 Real Root Of -116*x^4+194*x^3+242*x^2+698*x-962 9567221394607672 r002 4th iterates of z^2 + 9567221451655088 a007 Real Root Of -146*x^4+831*x^3-109*x^2-952*x+39 9567221470751078 m001 cos(1)*(CareFree-QuadraticClass) 9567221510883482 q001 3736/3905 9567221533357084 m005 (1/2*Pi-1/3)/(1/11*gamma-2/11) 9567221533685478 h001 (-9*exp(4)+1)/(-3*exp(3)+9) 9567221562149369 r002 5th iterates of z^2 + 9567221569736180 a001 3536736619241/1926*2207^(13/16) 9567221588895342 m001 (3^(1/3))^Cahen/((3^(1/3))^LandauRamanujan) 9567221603468273 m005 (1/2*Zeta(3)-9/10)/(5^(1/2)+8/9) 9567221623929299 r005 Im(z^2+c),c=-11/8+2/231*I,n=9 9567221631687800 a001 3278735159921/682*1364^(11/15) 9567221692497435 a001 3278735159921/2889*2207^(7/8) 9567221701292609 l006 ln(8536/9393) 9567221772133189 r005 Re(z^2+c),c=-13/14+28/155*I,n=13 9567221783440569 m001 exp(GAMMA(23/24))/Catalan*Pi 9567221792658788 m001 1/(3^(1/3))*Riemann2ndZero/exp(BesselK(0,1)) 9567221799218338 a007 Real Root Of -213*x^4+100*x^3-25*x^2+252*x+530 9567221800238877 m005 (1/3*Pi-1/6)/(39/176+5/16*5^(1/2)) 9567221804825110 r005 Im(z^2+c),c=-13/110+7/60*I,n=3 9567221810164329 m001 (2^(1/3)-Kolakoski)/(PlouffeB+Trott) 9567221812397621 r009 Re(z^3+c),c=-1/10+20/31*I,n=7 9567221815258691 a001 4052739537881/5778*2207^(15/16) 9567221824578958 r009 Im(z^3+c),c=-15/26+35/59*I,n=56 9567221848166079 a007 Real Root Of 728*x^4-622*x^3-743*x^2-990*x+102 9567221891731112 r005 Re(z^2+c),c=-73/82+38/41*I,n=2 9567221892369734 a007 Real Root Of 324*x^4-479*x^3+102*x^2-223*x+268 9567221919711419 m001 cos(1/12*Pi)^exp(1/Pi)/(cos(1/12*Pi)^Paris) 9567221938020344 a001 944284805282608/987 9567221938299611 a007 Real Root Of 990*x^4-440*x^3+233*x^2+901*x-566 9567221969202831 m001 (FeigenbaumAlpha+Tetranacci)/(Trott+ZetaP(2)) 9567221974507280 a001 10610209857723/1364*1364^(2/3) 9567221990001876 a007 Real Root Of 613*x^4-540*x^3-847*x^2+689*x+448 9567221996259665 m002 -Pi^(-4)-Pi^4+2/Log[Pi] 9567222012521128 m001 (exp(1/exp(1))+exp(1/Pi))/(Otter-ZetaQ(3)) 9567222040374472 a007 Real Root Of -37*x^4+704*x^3+499*x^2-549*x-517 9567222060018730 a001 1515744265389/2161*2207^(15/16) 9567222067528549 m001 (-FeigenbaumDelta+GolombDickman)/(1-gamma) 9567222088527498 a001 10610209857723/9349*2207^(7/8) 9567222088744071 a007 Real Root Of -389*x^4-14*x^3-197*x^2-255*x+250 9567222094323192 a007 Real Root Of -529*x^4-376*x^3-289*x^2+519*x+875 9567222095969056 r005 Im(z^2+c),c=-13/48+16/19*I,n=11 9567222096114619 m001 (Bloch+LandauRamanujan)/(3^(1/2)-BesselJ(1,1)) 9567222167014438 m001 exp(-1/2*Pi)^(CareFree/Riemann3rdZero) 9567222173795600 a007 Real Root Of -707*x^4+524*x^3+801*x^2-577*x-234 9567222182780395 a001 314761609813475/329 9567222188707558 m001 Magata*(GAMMA(23/24)+Grothendieck) 9567222211288760 a001 6557470319842/9349*2207^(15/16) 9567222218490405 a001 944284832965003/987 9567222220487379 r009 Re(z^3+c),c=-4/27+15/26*I,n=7 9567222224460557 a001 944284833554257/987 9567222224571458 a001 314761611188401/329 9567222224587639 a001 944284833566800/987 9567222224590344 a001 944284833567067/987 9567222224590395 a001 314761611189024/329 9567222224590405 a001 944284833567073/987 9567222224590557 a001 944284833567088/987 9567222224591458 a001 314761611189059/329 9567222224597639 a001 944284833567787/987 9567222224930344 a001 944284833600625/987 9567222226920395 a001 314761611265681/329 9567222231846329 a007 Real Root Of -979*x^4-57*x^3-858*x^2-586*x+995 9567222238591951 a007 Real Root Of -891*x^4-424*x^3-999*x^2-333*x+971 9567222240560405 a001 944284835143312/987 9567222266736710 m003 3+3/Log[1/2+Sqrt[5]/2]+Sin[1/2+Sqrt[5]/2]/3 9567222281606879 r009 Im(z^3+c),c=-1/31+22/23*I,n=3 9567222290617755 a007 Real Root Of 695*x^4-882*x^3-835*x^2+477*x-134 9567222297922877 a007 Real Root Of -46*x^4+965*x^3+954*x^2-815*x-900 9567222317396470 b008 91+3*Tan[1] 9567222319521543 m001 Pi*ln(gamma)+FeigenbaumD 9567222365966365 m001 1/exp(FeigenbaumB)^2*CareFree*GAMMA(1/3)^2 9567222388371529 a007 Real Root Of 570*x^4-369*x^3+281*x^2+95*x-967 9567222419297623 q001 2697/2819 9567222444700783 a007 Real Root Of -580*x^4-121*x^3+742*x^2+989*x+647 9567222471802820 a007 Real Root Of -122*x^4+688*x^3-382*x^2-870*x+222 9567222483795136 a001 10610209857723/3571*2207^(3/4) 9567222497295316 m001 (GAMMA(2/3)-Zeta(1,2))/(GAMMA(11/12)+Totient) 9567222499569937 a003 cos(Pi*5/93)*sin(Pi*30/71) 9567222513706578 a007 Real Root Of 801*x^4-318*x^3+681*x^2+742*x-863 9567222522719976 a007 Real Root Of 773*x^4-846*x^3-941*x^2-304*x-818 9567222551278239 l006 ln(3873/10082) 9567222579554594 r002 26th iterates of z^2 + 9567222586907060 r009 Re(z^3+c),c=-3/58+57/64*I,n=22 9567222601863600 a007 Real Root Of -722*x^4+976*x^3+891*x^2+255*x+888 9567222606556403 a001 6557470319842/3571*2207^(13/16) 9567222615901509 a007 Real Root Of 836*x^4+345*x^3+531*x^2+85*x-803 9567222660517289 m005 (-7/12+1/4*5^(1/2))/(5/7*exp(1)+3/5) 9567222679800325 a007 Real Root Of -276*x^4+504*x^3+565*x^2+865*x+983 9567222729317671 a001 4052739537881/3571*2207^(7/8) 9567222773535477 m001 LandauRamanujan2nd^(Pi^(1/2))-Totient 9567222820415146 g005 GAMMA(5/8)*GAMMA(4/7)/GAMMA(7/12)^2 9567222833926418 r005 Re(z^2+c),c=-11/12+37/56*I,n=3 9567222852078941 a001 2504730781961/3571*2207^(15/16) 9567222857599017 l006 ln(3238/8429) 9567222867147040 m001 (MertensB1*Trott2nd+Riemann3rdZero)/MertensB1 9567222870904401 a007 Real Root Of -84*x^4-783*x^3+101*x^2-881*x+407 9567222916384586 s002 sum(A182788[n]/(n*10^n+1),n=1..infinity) 9567222970212931 r009 Re(z^3+c),c=-19/34+8/57*I,n=28 9567222971629224 a001 1548008755920/521*521^(12/13) 9567222974840557 a001 944284907616763/987 9567222975244494 m005 (1/3*Catalan+1/11)/(7/8*gamma-1/11) 9567222976120746 r005 Re(z^2+c),c=-89/106+8/43*I,n=54 9567222976529318 m001 Zeta(5)/ln(GAMMA(1/4))/sin(1) 9567223016597701 m001 Stephens^Paris-gamma(2) 9567223054030114 r002 5th iterates of z^2 + 9567223064666204 r002 29th iterates of z^2 + 9567223161934219 m008 (3*Pi^5-1)/(1/3*Pi^3-3/4) 9567223175636076 m001 (Rabbit-Trott)/(Zeta(1,-1)-BesselI(1,1)) 9567223183574109 m001 gamma(2)^(GAMMA(2/3)/Landau) 9567223188153580 m002 -4*E^Pi-Pi+Tanh[Pi]/Pi^3 9567223189892263 m001 (BesselJ(1,1)*ZetaQ(3)-sin(1))/ZetaQ(3) 9567223195924045 r002 3th iterates of z^2 + 9567223224341846 m001 (Tetranacci+Trott2nd)/(Landau-RenyiParking) 9567223225348137 m001 (gamma-ln(5))/(-KhinchinLevy+OneNinth) 9567223249782448 b008 8+3/(1/2+Sqrt[2]) 9567223249782448 m005 (3*2^(1/2)-2/3)/(1/2*2^(1/2)-1/3) 9567223262700103 m001 ln(gamma)^ZetaP(4)+ZetaQ(4) 9567223290793058 a007 Real Root Of -564*x^4+697*x^3-571*x^2-935*x+711 9567223301466100 a007 Real Root Of -728*x^4+927*x^3+43*x^2-408*x+992 9567223313373249 l006 ln(2603/6776) 9567223347375800 m005 (-7/12+1/4*5^(1/2))/(6/7*5^(1/2)+5/8) 9567223362442222 r005 Im(z^2+c),c=-5/8+5/61*I,n=7 9567223381493131 m001 (MertensB3+Thue)/(Landau+MadelungNaCl) 9567223438519347 a001 610/2207*14662949395604^(20/21) 9567223463257102 m002 -Csch[Pi]-Tanh[Pi]+Pi^6*Tanh[Pi] 9567223479885469 m001 Pi/(Psi(2,1/3)+LambertW(1))/BesselK(1,1) 9567223483209343 a007 Real Root Of -303*x^4+310*x^3-903*x^2-581*x+796 9567223539744538 m005 (1/2*exp(1)-1/4)/(7/12*Catalan+5/8) 9567223559628101 a007 Real Root Of -135*x^4+531*x^3-925*x^2-814*x+646 9567223561733902 r009 Re(z^3+c),c=-5/126+41/53*I,n=20 9567223611228530 m005 (31/28+1/4*5^(1/2))/(-47/18+7/18*5^(1/2)) 9567223620861731 r009 Re(z^3+c),c=-2/17+19/64*I,n=9 9567223660348440 r009 Im(z^3+c),c=-31/48+13/53*I,n=5 9567223665507415 a007 Real Root Of 339*x^4-581*x^3+814*x^2+650*x-916 9567223669494620 m001 (OrthogonalArrays-PlouffeB)/(Artin+Gompertz) 9567223691914297 m001 (Khinchin-Lehmer)/(MadelungNaCl+TreeGrowth2nd) 9567223701303944 r009 Re(z^3+c),c=-27/64+29/33*I,n=3 9567223739197008 m001 (LaplaceLimit+ZetaP(4))/(ln(2)/ln(10)+Bloch) 9567223798559736 a007 Real Root Of 570*x^4-746*x^3+367*x^2+907*x-599 9567223806472166 r008 a(0)=1,K{-n^6,51+18*n^3-47*n^2+6*n} 9567223834014789 m001 (BesselK(1,1)+CopelandErdos)/ZetaQ(3) 9567223890071286 r005 Re(z^2+c),c=-91/102+3/14*I,n=33 9567223907580946 a001 103361/8*832040^(6/19) 9567223908469032 a001 51841/72*7778742049^(6/19) 9567223942629996 r005 Im(z^2+c),c=3/118+56/57*I,n=3 9567223953415641 a003 cos(Pi*1/32)*sin(Pi*44/107) 9567223979622654 r002 13th iterates of z^2 + 9567224025398157 m001 (OneNinth+Otter)/(5^(1/2)+cos(1/12*Pi)) 9567224055595845 m001 (Ei(1,1)-Pi^(1/2))/(LandauRamanujan+Thue) 9567224063270035 l006 ln(1968/5123) 9567224071830052 a001 3/4870847*76^(6/59) 9567224083131289 r005 Re(z^2+c),c=1/31-11/25*I,n=23 9567224120809695 r005 Im(z^2+c),c=47/98+14/51*I,n=3 9567224126551093 m001 (Artin-Backhouse)/(ErdosBorwein-PlouffeB) 9567224145166203 m002 -Pi^3/6+Pi^6+Cosh[Pi]/E^Pi 9567224146991897 m002 -3/Pi^5+Pi^6-5/ProductLog[Pi] 9567224171206709 a003 sin(Pi*1/118)+sin(Pi*27/71) 9567224193037377 b008 9*Sinh[1/(3*Pi)] 9567224230632988 a007 Real Root Of -350*x^4+825*x^3+696*x^2+338*x+702 9567224303551497 r009 Re(z^3+c),c=-1/25+31/38*I,n=44 9567224310458760 a007 Real Root Of -718*x^4-80*x^3+391*x^2-171*x+10 9567224332992466 p004 log(18839/7237) 9567224380627721 b008 8+Sqrt[3]/E^(1/10) 9567224394201743 r005 Re(z^2+c),c=7/118+14/29*I,n=33 9567224396431392 a001 2/9062201101803*47^(8/21) 9567224399235510 a007 Real Root Of 148*x^4-150*x^3+648*x^2-595*x-63 9567224416197151 a007 Real Root Of -237*x^4+710*x^3-396*x^2-837*x+382 9567224427372497 a007 Real Root Of -195*x^4+787*x^3+350*x^2-735*x-171 9567224466243508 q001 1658/1733 9567224469831273 r005 Im(z^2+c),c=-97/86+5/42*I,n=51 9567224487482819 r005 Re(z^2+c),c=-2/3+115/206*I,n=6 9567224509399551 a001 29/12586269025*317811^(5/17) 9567224509405123 a001 29/1548008755920*4052739537881^(5/17) 9567224509405123 a001 29/139583862445*1134903170^(5/17) 9567224537846949 a007 Real Root Of -583*x^4-76*x^3+604*x^2+255*x+113 9567224539463167 m001 1/Porter/GlaisherKinkelin*exp(sin(Pi/5)) 9567224543753687 m001 (MertensB3-TwinPrimes)/(ln(2)-gamma(2)) 9567224565433290 a007 Real Root Of 771*x^4+108*x^3-916*x^2-507*x-198 9567224588835319 m001 gamma*exp(Porter)^2*log(1+sqrt(2)) 9567224604868460 m002 Pi^3+5*Pi^2*Log[Pi]^2 9567224618122755 a007 Real Root Of -553*x^4-806*x^3-508*x^2+473*x+675 9567224641644552 r009 Re(z^3+c),c=-3/34+54/59*I,n=23 9567224649469206 a007 Real Root Of 777*x^4+426*x^3+513*x^2+243*x-515 9567224652449655 a001 1527885776996210/1597 9567224654600300 l006 ln(3301/8593) 9567224662670556 a003 cos(Pi*2/43)*cos(Pi*5/61) 9567224693729595 a007 Real Root Of -51*x^4-498*x^3-16*x^2+702*x-639 9567224696584735 a001 591286729879/1364*3571^(16/17) 9567224703227901 m001 (DuboisRaymond+LaplaceLimit*Robbin)/Robbin 9567224721960482 r005 Im(z^2+c),c=-18/19+2/23*I,n=24 9567224730367501 a007 Real Root Of -707*x^4+285*x^3+773*x^2-84*x+54 9567224740717110 a001 956722026041/1364*3571^(15/17) 9567224744202980 a007 Real Root Of -294*x^4+122*x^3+94*x^2+95*x+358 9567224759716690 a007 Real Root Of 280*x^4+101*x^3+455*x^2-430*x-974 9567224767393794 a007 Real Root Of -778*x^4-243*x^3-870*x^2-847*x+425 9567224771256252 a007 Real Root Of -571*x^4-153*x^3+226*x^2+544*x+658 9567224779658204 a007 Real Root Of -327*x^4+560*x^3+553*x^2-65*x+196 9567224784849486 a001 1134903780*3571^(14/17) 9567224819143420 a007 Real Root Of 165*x^4-668*x^3+258*x^2+500*x-481 9567224828981862 a001 2504730781961/1364*3571^(13/17) 9567224839776195 p004 log(32719/12569) 9567224847275554 r005 Re(z^2+c),c=7/54+17/50*I,n=38 9567224848665406 a007 Real Root Of 465*x^4-488*x^3-512*x^2-330*x-664 9567224873114237 a001 4052739537881/1364*3571^(12/17) 9567224876065431 a007 Real Root Of -808*x^4-136*x^3+332*x^2+600*x+828 9567224890631101 b008 8+ArcSec[280] 9567224913407997 b008 8+ArcTan[280] 9567224917246613 a001 3278735159921/682*3571^(11/17) 9567224932696927 s001 sum(exp(-2*Pi/5)^n*A043921[n],n=1..infinity) 9567224932696927 s002 sum(A043921[n]/(exp(2/5*pi*n)),n=1..infinity) 9567224936117074 m002 -Pi/2+Pi^4-Tanh[Pi]/6 9567224941868152 a001 123/55*12586269025^(1/16) 9567224951970627 a007 Real Root Of 503*x^4-900*x^3+407*x^2+645*x-965 9567224956993581 a007 Real Root Of 796*x^4-121*x^3-94*x^2-273*x-948 9567224961378990 a001 10610209857723/1364*3571^(10/17) 9567224980344897 a001 121393/843*18^(19/29) 9567225013171092 r002 22th iterates of z^2 + 9567225013464045 m001 (ln(2)-Grothendieck)/(PrimesInBinary+Sarnak) 9567225080267127 m002 -2/E^Pi-Tanh[Pi]+Pi^6*Tanh[Pi] 9567225085892664 m001 (PisotVijayaraghavan-Robbin)^OneNinth 9567225097254360 a001 1/24476*11^(11/31) 9567225115309458 m001 (-2*Pi/GAMMA(5/6)+Robbin)/(GAMMA(2/3)-sin(1)) 9567225116132609 a001 646/341*14662949395604^(8/9) 9567225121270651 r009 Re(z^3+c),c=-2/17+19/64*I,n=12 9567225127860216 a007 Real Root Of -894*x^4+388*x^3-424*x^2-858*x+656 9567225150727953 a001 161/3278735159921*34^(16/19) 9567225157635172 a007 Real Root Of 706*x^4-256*x^3+24*x^2-61*x-896 9567225168929390 a003 sin(Pi*1/79)+sin(Pi*41/111) 9567225177115538 m001 (ln(3)+gamma(2))/(Artin+LandauRamanujan) 9567225206609849 m001 1/BesselK(0,1)*Backhouse/exp(GAMMA(17/24)) 9567225227624214 a007 Real Root Of -594*x^4+876*x^3+977*x^2-589*x-193 9567225269086377 b008 -14/3+Pi^6 9567225269086377 m002 -14/3+Pi^6 9567225293239942 a001 4000056895103620/4181 9567225299003760 a001 225851433717/1364*9349^(18/19) 9567225304764816 a001 182717648081/682*9349^(17/19) 9567225304818301 a007 Real Root Of 736*x^4-414*x^3+455*x^2+794*x-636 9567225310069774 m001 (Zeta(1/2)-FeigenbaumD*ThueMorse)/FeigenbaumD 9567225310525872 a001 591286729879/1364*9349^(16/19) 9567225316286928 a001 956722026041/1364*9349^(15/19) 9567225322047983 a001 1134903780*9349^(14/19) 9567225327809039 a001 2504730781961/1364*9349^(13/19) 9567225333570095 a001 4052739537881/1364*9349^(12/19) 9567225339331150 a001 3278735159921/682*9349^(11/19) 9567225345092206 a001 10610209857723/1364*9349^(10/19) 9567225347862641 m005 (1/2*Catalan+5/6)/(11/12*5^(1/2)-7/10) 9567225352755611 m001 (FeigenbaumB+Mills)/(GAMMA(2/3)+ln(2^(1/2)+1)) 9567225360892741 a001 615/124*14662949395604^(6/7) 9567225387493233 a001 21566892818/341*24476^(20/21) 9567225388253709 a001 139583862445/1364*24476^(19/21) 9567225389014186 a001 225851433717/1364*24476^(6/7) 9567225389774662 a001 182717648081/682*24476^(17/21) 9567225390535139 a001 591286729879/1364*24476^(16/21) 9567225391295615 a001 956722026041/1364*24476^(5/7) 9567225392056092 a001 1134903780*24476^(2/3) 9567225392816568 a001 2504730781961/1364*24476^(13/21) 9567225393577045 a001 4052739537881/1364*24476^(4/7) 9567225394337521 a001 3278735159921/682*24476^(11/21) 9567225395097998 a001 10610209857723/1364*24476^(10/21) 9567225396602763 a001 17711/1364*23725150497407^(13/16) 9567225396602763 a001 17711/1364*505019158607^(13/14) 9567225398876226 a007 Real Root Of 36*x^4-464*x^3-528*x^2+313*x+560 9567225400474075 a001 32951280099/1364*64079^(22/23) 9567225400575379 a001 53316291173/1364*64079^(21/23) 9567225400676683 a001 21566892818/341*64079^(20/23) 9567225400777987 a001 139583862445/1364*64079^(19/23) 9567225400879291 a001 225851433717/1364*64079^(18/23) 9567225400980595 a001 182717648081/682*64079^(17/23) 9567225401081899 a001 591286729879/1364*64079^(16/23) 9567225401183203 a001 956722026041/1364*64079^(15/23) 9567225401284507 a001 1134903780*64079^(14/23) 9567225401385811 a001 2504730781961/1364*64079^(13/23) 9567225401487115 a001 4052739537881/1364*64079^(12/23) 9567225401588419 a001 3278735159921/682*64079^(11/23) 9567225401689723 a001 10610209857723/1364*64079^(10/23) 9567225401812785 a001 11592/341*312119004989^(10/11) 9567225401812785 a001 11592/341*3461452808002^(5/6) 9567225402154315 r005 Im(z^2+c),c=15/74+1/22*I,n=15 9567225402430810 a001 21566892818/341*167761^(4/5) 9567225402498799 a001 956722026041/1364*167761^(3/5) 9567225402566787 a001 10610209857723/1364*167761^(2/5) 9567225402572917 a001 121393/1364*45537549124^(16/17) 9567225402572917 a001 121393/1364*14662949395604^(16/21) 9567225402572917 a001 121393/1364*192900153618^(8/9) 9567225402572917 a001 121393/1364*73681302247^(12/13) 9567225402658677 a001 1144206275/124*439204^(8/9) 9567225402664188 a001 53316291173/1364*439204^(7/9) 9567225402669699 a001 225851433717/1364*439204^(2/3) 9567225402675210 a001 956722026041/1364*439204^(5/9) 9567225402680720 a001 4052739537881/1364*439204^(4/9) 9567225402683819 a001 317811/1364*10749957122^(23/24) 9567225402699999 a001 610*312119004989^(4/5) 9567225402699999 a001 610*23725150497407^(11/16) 9567225402699999 a001 610*73681302247^(11/13) 9567225402699999 a001 610*10749957122^(11/12) 9567225402699999 a001 610*4106118243^(22/23) 9567225402702360 a001 2178309/1364*2537720636^(14/15) 9567225402702360 a001 2178309/1364*17393796001^(6/7) 9567225402702360 a001 2178309/1364*45537549124^(14/17) 9567225402702360 a001 2178309/1364*817138163596^(14/19) 9567225402702360 a001 2178309/1364*14662949395604^(2/3) 9567225402702360 a001 2178309/1364*505019158607^(3/4) 9567225402702360 a001 2178309/1364*192900153618^(7/9) 9567225402702360 a001 2178309/1364*10749957122^(7/8) 9567225402702360 a001 2178309/1364*4106118243^(21/23) 9567225402702360 a001 2178309/1364*1568397607^(21/22) 9567225402702623 a001 701408733/1364*7881196^(10/11) 9567225402702637 a001 2971215073/1364*7881196^(9/11) 9567225402702651 a001 1144206275/124*7881196^(8/11) 9567225402702661 a001 32951280099/1364*7881196^(2/3) 9567225402702665 a001 53316291173/1364*7881196^(7/11) 9567225402702679 a001 225851433717/1364*7881196^(6/11) 9567225402702693 a001 956722026041/1364*7881196^(5/11) 9567225402702705 a001 5702887/1364*2537720636^(8/9) 9567225402702705 a001 5702887/1364*312119004989^(8/11) 9567225402702705 a001 5702887/1364*23725150497407^(5/8) 9567225402702705 a001 5702887/1364*73681302247^(10/13) 9567225402702705 a001 5702887/1364*28143753123^(4/5) 9567225402702705 a001 5702887/1364*10749957122^(5/6) 9567225402702705 a001 5702887/1364*4106118243^(20/23) 9567225402702705 a001 5702887/1364*1568397607^(10/11) 9567225402702705 a001 5702887/1364*599074578^(20/21) 9567225402702707 a001 4052739537881/1364*7881196^(4/11) 9567225402702712 a001 3278735159921/682*7881196^(1/3) 9567225402702744 a001 701408733/1364*20633239^(6/7) 9567225402702745 a001 1836311903/1364*20633239^(4/5) 9567225402702747 a001 7778742049/1364*20633239^(5/7) 9567225402702750 a001 53316291173/1364*20633239^(3/5) 9567225402702751 a001 21566892818/341*20633239^(4/7) 9567225402702754 a001 956722026041/1364*20633239^(3/7) 9567225402702754 a001 1134903780*20633239^(2/5) 9567225402702755 a001 3732588/341*817138163596^(2/3) 9567225402702755 a001 3732588/341*10749957122^(19/24) 9567225402702755 a001 3732588/341*4106118243^(19/23) 9567225402702755 a001 3732588/341*1568397607^(19/22) 9567225402702755 a001 3732588/341*599074578^(19/21) 9567225402702755 a001 3732588/341*228826127^(19/20) 9567225402702757 a001 10610209857723/1364*20633239^(2/7) 9567225402702762 a001 39088169/1364*141422324^(12/13) 9567225402702762 a001 39088169/1364*2537720636^(4/5) 9567225402702762 a001 39088169/1364*45537549124^(12/17) 9567225402702762 a001 39088169/1364*14662949395604^(4/7) 9567225402702762 a001 39088169/1364*505019158607^(9/14) 9567225402702762 a001 39088169/1364*192900153618^(2/3) 9567225402702762 a001 39088169/1364*73681302247^(9/13) 9567225402702762 a001 39088169/1364*10749957122^(3/4) 9567225402702762 a001 39088169/1364*4106118243^(18/23) 9567225402702762 a001 39088169/1364*1568397607^(9/11) 9567225402702762 a001 39088169/1364*599074578^(6/7) 9567225402702762 a001 39088169/1364*228826127^(9/10) 9567225402702763 a001 701408733/1364*141422324^(10/13) 9567225402702763 a001 165580141/1364*141422324^(11/13) 9567225402702763 a001 2971215073/1364*141422324^(9/13) 9567225402702763 a001 1201881744/341*141422324^(2/3) 9567225402702763 a001 1144206275/124*141422324^(8/13) 9567225402702763 a001 53316291173/1364*141422324^(7/13) 9567225402702763 a001 225851433717/1364*141422324^(6/13) 9567225402702763 a001 956722026041/1364*141422324^(5/13) 9567225402702763 a001 9303105/124*45537549124^(2/3) 9567225402702763 a001 9303105/124*10749957122^(17/24) 9567225402702763 a001 9303105/124*4106118243^(17/23) 9567225402702763 a001 9303105/124*1568397607^(17/22) 9567225402702763 a001 9303105/124*599074578^(17/21) 9567225402702763 a001 2504730781961/1364*141422324^(1/3) 9567225402702763 a001 4052739537881/1364*141422324^(4/13) 9567225402702763 a001 39088169/1364*87403803^(18/19) 9567225402702763 a001 9303105/124*228826127^(17/20) 9567225402702763 a001 66978574/341*23725150497407^(1/2) 9567225402702763 a001 66978574/341*505019158607^(4/7) 9567225402702763 a001 66978574/341*73681302247^(8/13) 9567225402702763 a001 66978574/341*10749957122^(2/3) 9567225402702763 a001 66978574/341*4106118243^(16/23) 9567225402702763 a001 66978574/341*1568397607^(8/11) 9567225402702763 a001 66978574/341*599074578^(16/21) 9567225402702763 a001 701408733/1364*2537720636^(2/3) 9567225402702763 a001 701408733/1364*45537549124^(10/17) 9567225402702763 a001 701408733/1364*312119004989^(6/11) 9567225402702763 a001 701408733/1364*14662949395604^(10/21) 9567225402702763 a001 701408733/1364*192900153618^(5/9) 9567225402702763 a001 701408733/1364*28143753123^(3/5) 9567225402702763 a001 701408733/1364*10749957122^(5/8) 9567225402702763 a001 701408733/1364*4106118243^(15/23) 9567225402702763 a001 701408733/1364*1568397607^(15/22) 9567225402702763 a001 1144206275/124*2537720636^(8/15) 9567225402702763 a001 7778742049/1364*2537720636^(5/9) 9567225402702763 a001 53316291173/1364*2537720636^(7/15) 9567225402702763 a001 2971215073/1364*2537720636^(3/5) 9567225402702763 a001 21566892818/341*2537720636^(4/9) 9567225402702763 a001 225851433717/1364*2537720636^(2/5) 9567225402702763 a001 1836311903/1364*17393796001^(4/7) 9567225402702763 a001 1836311903/1364*14662949395604^(4/9) 9567225402702763 a001 1836311903/1364*505019158607^(1/2) 9567225402702763 a001 1836311903/1364*73681302247^(7/13) 9567225402702763 a001 1836311903/1364*10749957122^(7/12) 9567225402702763 a001 956722026041/1364*2537720636^(1/3) 9567225402702763 a001 4052739537881/1364*2537720636^(4/15) 9567225402702763 a001 10610209857723/1364*2537720636^(2/9) 9567225402702763 a001 1836311903/1364*4106118243^(14/23) 9567225402702763 a001 1201881744/341*73681302247^(1/2) 9567225402702763 a001 1201881744/341*10749957122^(13/24) 9567225402702763 a001 1144206275/124*45537549124^(8/17) 9567225402702763 a001 53316291173/1364*17393796001^(3/7) 9567225402702763 a001 1144206275/124*14662949395604^(8/21) 9567225402702763 a001 1144206275/124*192900153618^(4/9) 9567225402702763 a001 1144206275/124*73681302247^(6/13) 9567225402702763 a001 1134903780*17393796001^(2/7) 9567225402702763 a001 32951280099/1364*312119004989^(2/5) 9567225402702763 a001 225851433717/1364*45537549124^(6/17) 9567225402702763 a001 182717648081/682*45537549124^(1/3) 9567225402702763 a001 956722026041/1364*45537549124^(5/17) 9567225402702763 a001 53316291173/1364*45537549124^(7/17) 9567225402702763 a001 4052739537881/1364*45537549124^(4/17) 9567225402702763 a001 21566892818/341*23725150497407^(5/16) 9567225402702763 a001 21566892818/341*505019158607^(5/14) 9567225402702763 a001 225851433717/1364*14662949395604^(2/7) 9567225402702763 a001 956722026041/1364*312119004989^(3/11) 9567225402702763 a001 10610209857723/1364*312119004989^(2/11) 9567225402702763 a001 1134903780*14662949395604^(2/9) 9567225402702763 a001 1134903780*505019158607^(1/4) 9567225402702763 a001 225851433717/1364*192900153618^(1/3) 9567225402702763 a001 139583862445/1364*817138163596^(1/3) 9567225402702763 a001 4052739537881/1364*73681302247^(3/13) 9567225402702763 a001 21566892818/341*73681302247^(5/13) 9567225402702763 a001 2504730781961/1364*73681302247^(1/4) 9567225402702763 a001 591286729879/1364*73681302247^(4/13) 9567225402702763 a001 53316291173/1364*14662949395604^(1/3) 9567225402702763 a001 53316291173/1364*192900153618^(7/18) 9567225402702763 a001 10610209857723/1364*28143753123^(1/5) 9567225402702763 a001 956722026041/1364*28143753123^(3/10) 9567225402702763 a001 21566892818/341*28143753123^(2/5) 9567225402702763 a001 10610209857723/1364*10749957122^(5/24) 9567225402702763 a001 4052739537881/1364*10749957122^(1/4) 9567225402702763 a001 1134903780*10749957122^(7/24) 9567225402702763 a001 956722026041/1364*10749957122^(5/16) 9567225402702763 a001 591286729879/1364*10749957122^(1/3) 9567225402702763 a001 1144206275/124*10749957122^(1/2) 9567225402702763 a001 225851433717/1364*10749957122^(3/8) 9567225402702763 a001 7778742049/1364*312119004989^(5/11) 9567225402702763 a001 7778742049/1364*3461452808002^(5/12) 9567225402702763 a001 21566892818/341*10749957122^(5/12) 9567225402702763 a001 32951280099/1364*10749957122^(11/24) 9567225402702763 a001 53316291173/1364*10749957122^(7/16) 9567225402702763 a001 7778742049/1364*28143753123^(1/2) 9567225402702763 a001 10610209857723/1364*4106118243^(5/23) 9567225402702763 a001 4052739537881/1364*4106118243^(6/23) 9567225402702763 a001 1134903780*4106118243^(7/23) 9567225402702763 a001 591286729879/1364*4106118243^(8/23) 9567225402702763 a001 2971215073/1364*45537549124^(9/17) 9567225402702763 a001 2971215073/1364*817138163596^(9/19) 9567225402702763 a001 2971215073/1364*14662949395604^(3/7) 9567225402702763 a001 2971215073/1364*192900153618^(1/2) 9567225402702763 a001 225851433717/1364*4106118243^(9/23) 9567225402702763 a001 1201881744/341*4106118243^(13/23) 9567225402702763 a001 21566892818/341*4106118243^(10/23) 9567225402702763 a001 2971215073/1364*10749957122^(9/16) 9567225402702763 a001 32951280099/1364*4106118243^(11/23) 9567225402702763 a001 1144206275/124*4106118243^(12/23) 9567225402702763 a001 10182505537/682*4106118243^(1/2) 9567225402702763 a001 10610209857723/1364*1568397607^(5/22) 9567225402702763 a001 3278735159921/682*1568397607^(1/4) 9567225402702763 a001 4052739537881/1364*1568397607^(3/11) 9567225402702763 a001 1134903780*1568397607^(7/22) 9567225402702763 a001 591286729879/1364*1568397607^(4/11) 9567225402702763 a001 567451585/682*1322157322203^(1/2) 9567225402702763 a001 225851433717/1364*1568397607^(9/22) 9567225402702763 a001 21566892818/341*1568397607^(5/11) 9567225402702763 a001 1836311903/1364*1568397607^(7/11) 9567225402702763 a001 32951280099/1364*1568397607^(1/2) 9567225402702763 a001 1144206275/124*1568397607^(6/11) 9567225402702763 a001 1201881744/341*1568397607^(13/22) 9567225402702763 a001 10610209857723/1364*599074578^(5/21) 9567225402702763 a001 4052739537881/1364*599074578^(2/7) 9567225402702763 a001 1134903780*599074578^(1/3) 9567225402702763 a001 956722026041/1364*599074578^(5/14) 9567225402702763 a001 591286729879/1364*599074578^(8/21) 9567225402702763 a001 433494437/1364*9062201101803^(1/2) 9567225402702763 a001 225851433717/1364*599074578^(3/7) 9567225402702763 a001 21566892818/341*599074578^(10/21) 9567225402702763 a001 53316291173/1364*599074578^(1/2) 9567225402702763 a001 32951280099/1364*599074578^(11/21) 9567225402702763 a001 701408733/1364*599074578^(5/7) 9567225402702763 a001 1144206275/124*599074578^(4/7) 9567225402702763 a001 1201881744/341*599074578^(13/21) 9567225402702763 a001 1836311903/1364*599074578^(2/3) 9567225402702763 a001 2971215073/1364*599074578^(9/14) 9567225402702763 a001 10610209857723/1364*228826127^(1/4) 9567225402702763 a001 4052739537881/1364*228826127^(3/10) 9567225402702763 a001 1134903780*228826127^(7/20) 9567225402702763 a001 956722026041/1364*228826127^(3/8) 9567225402702763 a001 165580141/1364*2537720636^(11/15) 9567225402702763 a001 165580141/1364*45537549124^(11/17) 9567225402702763 a001 165580141/1364*312119004989^(3/5) 9567225402702763 a001 165580141/1364*817138163596^(11/19) 9567225402702763 a001 165580141/1364*14662949395604^(11/21) 9567225402702763 a001 165580141/1364*192900153618^(11/18) 9567225402702763 a001 165580141/1364*10749957122^(11/16) 9567225402702764 a001 165580141/1364*1568397607^(3/4) 9567225402702764 a001 591286729879/1364*228826127^(2/5) 9567225402702764 a001 225851433717/1364*228826127^(9/20) 9567225402702764 a001 165580141/1364*599074578^(11/14) 9567225402702764 a001 21566892818/341*228826127^(1/2) 9567225402702764 a001 32951280099/1364*228826127^(11/20) 9567225402702764 a001 1144206275/124*228826127^(3/5) 9567225402702764 a001 7778742049/1364*228826127^(5/8) 9567225402702764 a001 1201881744/341*228826127^(13/20) 9567225402702764 a001 66978574/341*228826127^(4/5) 9567225402702764 a001 1836311903/1364*228826127^(7/10) 9567225402702764 a001 701408733/1364*228826127^(3/4) 9567225402702764 a001 10610209857723/1364*87403803^(5/19) 9567225402702764 a001 4052739537881/1364*87403803^(6/19) 9567225402702764 a001 1134903780*87403803^(7/19) 9567225402702764 a001 31622993/682*2537720636^(7/9) 9567225402702764 a001 31622993/682*17393796001^(5/7) 9567225402702764 a001 31622993/682*312119004989^(7/11) 9567225402702764 a001 31622993/682*14662949395604^(5/9) 9567225402702764 a001 31622993/682*505019158607^(5/8) 9567225402702764 a001 31622993/682*28143753123^(7/10) 9567225402702764 a001 31622993/682*599074578^(5/6) 9567225402702764 a001 591286729879/1364*87403803^(8/19) 9567225402702764 a001 225851433717/1364*87403803^(9/19) 9567225402702764 a001 139583862445/1364*87403803^(1/2) 9567225402702764 a001 31622993/682*228826127^(7/8) 9567225402702764 a001 21566892818/341*87403803^(10/19) 9567225402702764 a001 32951280099/1364*87403803^(11/19) 9567225402702764 a001 1144206275/124*87403803^(12/19) 9567225402702764 a001 1201881744/341*87403803^(13/19) 9567225402702764 a001 1836311903/1364*87403803^(14/19) 9567225402702764 a001 9303105/124*87403803^(17/19) 9567225402702764 a001 701408733/1364*87403803^(15/19) 9567225402702764 a001 66978574/341*87403803^(16/19) 9567225402702766 a001 10610209857723/1364*33385282^(5/18) 9567225402702766 a001 4052739537881/1364*33385282^(1/3) 9567225402702767 a001 1134903780*33385282^(7/18) 9567225402702767 a001 956722026041/1364*33385282^(5/12) 9567225402702767 a001 591286729879/1364*33385282^(4/9) 9567225402702768 a001 225851433717/1364*33385282^(1/2) 9567225402702768 a001 21566892818/341*33385282^(5/9) 9567225402702768 a001 53316291173/1364*33385282^(7/12) 9567225402702769 a001 32951280099/1364*33385282^(11/18) 9567225402702769 a001 1144206275/124*33385282^(2/3) 9567225402702770 a001 1201881744/341*33385282^(13/18) 9567225402702770 a001 2971215073/1364*33385282^(3/4) 9567225402702770 a001 1836311903/1364*33385282^(7/9) 9567225402702771 a001 701408733/1364*33385282^(5/6) 9567225402702771 a001 66978574/341*33385282^(8/9) 9567225402702771 a001 9303105/124*33385282^(17/18) 9567225402702771 a001 165580141/1364*33385282^(11/12) 9567225402702781 a001 10610209857723/1364*12752043^(5/17) 9567225402702784 a001 4052739537881/1364*12752043^(6/17) 9567225402702786 a001 9227465/1364*2537720636^(13/15) 9567225402702786 a001 9227465/1364*45537549124^(13/17) 9567225402702786 a001 9227465/1364*14662949395604^(13/21) 9567225402702786 a001 9227465/1364*192900153618^(13/18) 9567225402702786 a001 9227465/1364*73681302247^(3/4) 9567225402702786 a001 9227465/1364*10749957122^(13/16) 9567225402702786 a001 9227465/1364*599074578^(13/14) 9567225402702788 a001 1134903780*12752043^(7/17) 9567225402702791 a001 591286729879/1364*12752043^(8/17) 9567225402702793 a001 182717648081/682*12752043^(1/2) 9567225402702795 a001 225851433717/1364*12752043^(9/17) 9567225402702798 a001 21566892818/341*12752043^(10/17) 9567225402702801 a001 32951280099/1364*12752043^(11/17) 9567225402702805 a001 1144206275/124*12752043^(12/17) 9567225402702808 a001 1201881744/341*12752043^(13/17) 9567225402702812 a001 1836311903/1364*12752043^(14/17) 9567225402702815 a001 701408733/1364*12752043^(15/17) 9567225402702819 a001 66978574/341*12752043^(16/17) 9567225402702889 a001 10610209857723/1364*4870847^(5/16) 9567225402702915 a001 4052739537881/1364*4870847^(3/8) 9567225402702940 a001 1134903780*4870847^(7/16) 9567225402702965 a001 591286729879/1364*4870847^(1/2) 9567225402702990 a001 225851433717/1364*4870847^(9/16) 9567225402703015 a001 21566892818/341*4870847^(5/8) 9567225402703041 a001 32951280099/1364*4870847^(11/16) 9567225402703066 a001 1144206275/124*4870847^(3/4) 9567225402703091 a001 1201881744/341*4870847^(13/16) 9567225402703116 a001 1836311903/1364*4870847^(7/8) 9567225402703141 a001 701408733/1364*4870847^(15/16) 9567225402703685 a001 10610209857723/1364*1860498^(1/3) 9567225402703869 a001 4052739537881/1364*1860498^(2/5) 9567225402704053 a001 1134903780*1860498^(7/15) 9567225402704145 a001 956722026041/1364*1860498^(1/2) 9567225402704238 a001 591286729879/1364*1860498^(8/15) 9567225402704422 a001 225851433717/1364*1860498^(3/5) 9567225402704606 a001 21566892818/341*1860498^(2/3) 9567225402704698 a001 53316291173/1364*1860498^(7/10) 9567225402704790 a001 32951280099/1364*1860498^(11/15) 9567225402704975 a001 1144206275/124*1860498^(4/5) 9567225402705067 a001 7778742049/1364*1860498^(5/6) 9567225402705159 a001 1201881744/341*1860498^(13/15) 9567225402705251 a001 2971215073/1364*1860498^(9/10) 9567225402705343 a001 1836311903/1364*1860498^(14/15) 9567225402709529 a001 10610209857723/1364*710647^(5/14) 9567225402710000 a001 514229/1364*45537549124^(15/17) 9567225402710000 a001 514229/1364*312119004989^(9/11) 9567225402710000 a001 514229/1364*14662949395604^(5/7) 9567225402710000 a001 514229/1364*192900153618^(5/6) 9567225402710000 a001 514229/1364*28143753123^(9/10) 9567225402710000 a001 514229/1364*10749957122^(15/16) 9567225402710882 a001 4052739537881/1364*710647^(3/7) 9567225402712236 a001 1134903780*710647^(1/2) 9567225402713589 a001 591286729879/1364*710647^(4/7) 9567225402714942 a001 225851433717/1364*710647^(9/14) 9567225402716295 a001 21566892818/341*710647^(5/7) 9567225402716972 a001 53316291173/1364*710647^(3/4) 9567225402717648 a001 32951280099/1364*710647^(11/14) 9567225402719001 a001 1144206275/124*710647^(6/7) 9567225402720355 a001 1201881744/341*710647^(13/14) 9567225402752704 a001 10610209857723/1364*271443^(5/13) 9567225402762692 a001 4052739537881/1364*271443^(6/13) 9567225402767686 a001 2504730781961/1364*271443^(1/2) 9567225402772681 a001 1134903780*271443^(7/13) 9567225402782669 a001 591286729879/1364*271443^(8/13) 9567225402792657 a001 225851433717/1364*271443^(9/13) 9567225402802645 a001 21566892818/341*271443^(10/13) 9567225402812633 a001 32951280099/1364*271443^(11/13) 9567225402822621 a001 1144206275/124*271443^(12/13) 9567225403042705 a001 75025/1364*14662949395604^(7/9) 9567225403042705 a001 75025/1364*505019158607^(7/8) 9567225403073588 a001 10610209857723/1364*103682^(5/12) 9567225403110670 a001 3278735159921/682*103682^(11/24) 9567225403147752 a001 4052739537881/1364*103682^(1/2) 9567225403184835 a001 2504730781961/1364*103682^(13/24) 9567225403221917 a001 1134903780*103682^(7/12) 9567225403259000 a001 956722026041/1364*103682^(5/8) 9567225403296082 a001 591286729879/1364*103682^(2/3) 9567225403333165 a001 182717648081/682*103682^(17/24) 9567225403370247 a001 225851433717/1364*103682^(3/4) 9567225403407329 a001 139583862445/1364*103682^(19/24) 9567225403444412 a001 21566892818/341*103682^(5/6) 9567225403481494 a001 53316291173/1364*103682^(7/8) 9567225403518577 a001 32951280099/1364*103682^(11/12) 9567225403555659 a001 10182505537/682*103682^(23/24) 9567225405032756 a001 28657/1364*817138163596^(17/19) 9567225405032756 a001 28657/1364*14662949395604^(17/21) 9567225405032756 a001 28657/1364*192900153618^(17/18) 9567225405475491 a001 10610209857723/1364*39603^(5/11) 9567225405752763 a001 3278735159921/682*39603^(1/2) 9567225406030036 a001 4052739537881/1364*39603^(6/11) 9567225406307309 a001 2504730781961/1364*39603^(13/22) 9567225406584582 a001 1134903780*39603^(7/11) 9567225406861854 a001 956722026041/1364*39603^(15/22) 9567225407139127 a001 591286729879/1364*39603^(8/11) 9567225407416400 a001 182717648081/682*39603^(17/22) 9567225407693673 a001 225851433717/1364*39603^(9/11) 9567225407970945 a001 139583862445/1364*39603^(19/22) 9567225408248218 a001 21566892818/341*39603^(10/11) 9567225408525491 a001 53316291173/1364*39603^(21/22) 9567225416693330 m001 ZetaP(2)^GAMMA(3/4)*ZetaP(2)^(3^(1/2)) 9567225418711203 a007 Real Root Of 242*x^4-784*x^3-837*x^2-397*x-503 9567225423331877 r002 53th iterates of z^2 + 9567225423548374 r005 Re(z^2+c),c=-1/22+9/31*I,n=14 9567225423607774 a001 10610209857723/1364*15127^(1/2) 9567225425698276 a001 3278735159921/682*15127^(11/20) 9567225427788777 a001 4052739537881/1364*15127^(3/5) 9567225429246617 a005 (1/cos(23/227*Pi))^982 9567225429879278 a001 2504730781961/1364*15127^(13/20) 9567225431969779 a001 1134903780*15127^(7/10) 9567225434060280 a001 956722026041/1364*15127^(3/4) 9567225436150781 a001 591286729879/1364*15127^(4/5) 9567225438241282 a001 182717648081/682*15127^(17/20) 9567225440331783 a001 225851433717/1364*15127^(9/10) 9567225442422284 a001 139583862445/1364*15127^(19/20) 9567225444510022 a001 431481867547402/451 9567225454936295 a008 Real Root of (-3+2*x+7*x^8) 9567225496446289 a007 Real Root Of -157*x^4+878*x^3+414*x^2-359*x+178 9567225498295040 a001 41*196418^(17/38) 9567225503712742 r009 Im(z^3+c),c=-4/25+61/64*I,n=16 9567225509174285 a001 34/7*3571^(51/55) 9567225511453747 m002 -Pi^2+Pi^3+3*E^Pi*ProductLog[Pi] 9567225512162822 a001 4181/1364*3461452808002^(11/12) 9567225515409258 m009 (6*Psi(1,1/3)+3)/(1/6*Pi^2+5) 9567225527621962 l006 ln(1333/3470) 9567225532698836 m005 (1/3*Pi-1/2)/(5/11*5^(1/2)-4/9) 9567225541868016 m001 Ei(1,1)-Pi^(1/2)+Gompertz 9567225557591683 a003 cos(Pi*5/108)-cos(Pi*47/96) 9567225561908403 a001 10610209857723/1364*5778^(5/9) 9567225577157518 r008 a(0)=1,K{-n^6,78-66*n^3-86*n^2+97*n} 9567225577828968 a001 3278735159921/682*5778^(11/18) 9567225593749532 a001 4052739537881/1364*5778^(2/3) 9567225609670096 a001 2504730781961/1364*5778^(13/18) 9567225623870788 r002 2th iterates of z^2 + 9567225625590660 a001 1134903780*5778^(7/9) 9567225627232958 m005 (1/2*Pi+8/9)/(8/9*5^(1/2)+7/12) 9567225641511224 a001 956722026041/1364*5778^(5/6) 9567225653865960 b008 7/Pi^(15/4) 9567225655431941 m001 (sin(1)+GAMMA(2/3))/(arctan(1/2)+FeigenbaumC) 9567225657431789 a001 591286729879/1364*5778^(8/9) 9567225673352353 a001 182717648081/682*5778^(17/18) 9567225682849217 a001 2504730781961/521*521^(11/13) 9567225689270162 a001 1236085559053705/1292 9567225695889393 r005 Re(z^2+c),c=-55/122+16/19*I,n=2 9567225712712287 r009 Re(z^3+c),c=-1/58+19/31*I,n=18 9567225719009121 m001 Thue^(HardyLittlewoodC4/GAMMA(11/12)) 9567225757407070 a001 1364/317811*233^(5/34) 9567225758004335 m001 1/RenyiParking^2*Paris^2*ln(gamma) 9567225773962573 m005 (1/2*3^(1/2)+2/5)/(6/7*2^(1/2)+1/9) 9567225783581886 a001 76/89*377^(35/44) 9567225815321921 r002 11th iterates of z^2 + 9567225815321921 r002 11th iterates of z^2 + 9567225831969746 m002 2-E^Pi/2+3/Pi^6 9567225851284720 a007 Real Root Of -542*x^4-388*x^3-489*x^2-626*x-37 9567225855668000 a007 Real Root Of -737*x^4+850*x^3+292*x^2-311*x+797 9567225891704922 r005 Re(z^2+c),c=17/66+17/50*I,n=24 9567225957489421 r005 Re(z^2+c),c=-79/122+5/14*I,n=7 9567225970290396 a007 Real Root Of -241*x^4+873*x^3-553*x^2+564*x-596 9567225978437797 m001 1/exp(OneNinth)^2*KhintchineLevy 9567225982499408 a003 cos(Pi*4/71)*cos(Pi*9/119) 9567225987149795 a003 cos(Pi*7/62)/cos(Pi*15/32) 9567226006564628 m001 cos(1/12*Pi)^(GAMMA(13/24)/GAMMA(17/24)) 9567226006564628 m001 cos(Pi/12)^(GAMMA(13/24)/GAMMA(17/24)) 9567226044286323 r005 Re(z^2+c),c=-17/18+36/239*I,n=3 9567226064009262 a007 Real Root Of -881*x^4-80*x^3+189*x^2-715*x-189 9567226076125531 a007 Real Root Of 619*x^4-879*x^3-405*x^2+609*x-335 9567226120878737 m001 (cos(1/5*Pi)+Zeta(1,2))/(Kolakoski-TwinPrimes) 9567226134977630 m001 Landau^ln(gamma)/MinimumGamma 9567226146625085 r002 9th iterates of z^2 + 9567226152953167 a001 1597/1364*14662949395604^(19/21) 9567226173145871 a007 Real Root Of -848*x^4+571*x^3-31*x^2-835*x+440 9567226182006646 m009 (32/5*Catalan+4/5*Pi^2+1/6)/(3/2*Pi^2-1/4) 9567226193660436 m002 -6/5+Pi^4-ProductLog[Pi]/2 9567226203826907 m002 -6+Pi^6+3*Csch[Pi]+ProductLog[Pi] 9567226231727566 m002 -2-Pi^(-2)+Pi^4*Coth[Pi] 9567226246552064 a003 cos(Pi*24/97)+cos(Pi*43/102) 9567226255041338 a007 Real Root Of -909*x^4-866*x^3-910*x^2+142*x+972 9567226260086918 a007 Real Root Of -54*x^4+968*x^3-511*x^2-307*x-41 9567226287041995 a007 Real Root Of 547*x^4+253*x^3-318*x^2-847*x-756 9567226287862854 m001 (Psi(1,1/3)+2^(1/2))/(cos(1)+LaplaceLimit) 9567226291530253 r002 23th iterates of z^2 + 9567226308604554 r005 Re(z^2+c),c=-11/8+16/211*I,n=4 9567226353550112 a007 Real Root Of -x^4+541*x^3+424*x^2-69*x-795 9567226367499280 r009 Re(z^3+c),c=-2/17+19/64*I,n=15 9567226381382141 a007 Real Root Of 862*x^4-651*x^3-853*x^2+797*x+251 9567226383084855 r009 Re(z^3+c),c=-2/17+19/64*I,n=17 9567226384293857 l006 ln(3364/8757) 9567226384658176 r009 Re(z^3+c),c=-2/17+19/64*I,n=20 9567226384682210 r009 Re(z^3+c),c=-2/17+19/64*I,n=22 9567226384684154 r009 Re(z^3+c),c=-2/17+19/64*I,n=25 9567226384684190 r009 Re(z^3+c),c=-2/17+19/64*I,n=27 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=30 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=32 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=35 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=37 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=38 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=40 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=42 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=43 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=45 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=47 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=48 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=50 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=52 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=53 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=55 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=58 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=57 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=60 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=63 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=62 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=64 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=61 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=59 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=56 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=54 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=51 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=49 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=46 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=44 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=41 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=39 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=36 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=33 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=34 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=31 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=29 9567226384684193 r009 Re(z^3+c),c=-2/17+19/64*I,n=28 9567226384684205 r009 Re(z^3+c),c=-2/17+19/64*I,n=26 9567226384684250 r009 Re(z^3+c),c=-2/17+19/64*I,n=24 9567226384684389 r009 Re(z^3+c),c=-2/17+19/64*I,n=23 9567226384693247 r009 Re(z^3+c),c=-2/17+19/64*I,n=21 9567226384711607 r009 Re(z^3+c),c=-2/17+19/64*I,n=19 9567226384887627 r009 Re(z^3+c),c=-2/17+19/64*I,n=18 9567226387507659 r005 Re(z^2+c),c=19/122+10/47*I,n=17 9567226391349916 r009 Re(z^3+c),c=-2/17+19/64*I,n=16 9567226393136920 r009 Re(z^3+c),c=-2/17+19/64*I,n=14 9567226396516792 m001 CopelandErdos*(PlouffeB-QuadraticClass) 9567226410685920 a001 9/4*28657^(19/52) 9567226411025606 a003 cos(Pi*12/101)/sin(Pi*26/61) 9567226459203968 a007 Real Root Of -217*x^4+590*x^3+306*x^2-176*x+250 9567226464174324 r005 Im(z^2+c),c=-7/102+24/35*I,n=57 9567226469232805 a007 Real Root Of -628*x^4-178*x^3+187*x^2+925*x-90 9567226481391738 r005 Re(z^2+c),c=-6/7+116/127*I,n=2 9567226484535459 m001 ln(BesselJ(1,1))^2*TreeGrowth2nd/GAMMA(1/6)^2 9567226487951652 m001 GAMMA(5/6)^ZetaQ(3)/(GAMMA(5/6)^Artin) 9567226525174140 m001 (Shi(1)+Magata)/(Mills+ReciprocalFibonacci) 9567226541714335 r009 Im(z^3+c),c=-5/11+2/61*I,n=9 9567226558863978 a007 Real Root Of 60*x^4-843*x^3+154*x^2-254*x+790 9567226573439217 p001 sum(1/(145*n+19)/n/(64^n),n=0..infinity) 9567226573986646 m001 (1-exp(1/Pi))/(MertensB3+Sierpinski) 9567226576620640 r009 Re(z^3+c),c=-2/17+19/64*I,n=13 9567226593847300 m001 ln(GAMMA(19/24))^2*GAMMA(1/6)*sin(Pi/12)^2 9567226630315876 a001 10610209857723/1364*2207^(5/8) 9567226660419253 a007 Real Root Of -858*x^4-314*x^3-444*x^2+430*x+45 9567226675081494 r005 Re(z^2+c),c=-1/56+13/37*I,n=21 9567226679809272 a007 Real Root Of 738*x^4+87*x^3-81*x^2+740*x+240 9567226691249062 m002 -Sech[Pi]-Tanh[Pi]+Pi^6*Tanh[Pi] 9567226705843415 m001 (sin(1/5*Pi)-LaplaceLimit)/(ZetaP(4)+ZetaQ(4)) 9567226724400327 m001 1/exp(GAMMA(11/12))/Tribonacci^2/Zeta(5)^2 9567226727736973 a007 Real Root Of -516*x^4+747*x^3+461*x^2-104*x+565 9567226753077196 a001 3278735159921/682*2207^(11/16) 9567226754481105 m001 Weierstrass^Chi(1)/(gamma(3)^Chi(1)) 9567226754526841 a007 Real Root Of -861*x^4+539*x^3+722*x^2+335*x+853 9567226798744566 h001 (3/7*exp(1)+9/10)/(7/11*exp(1)+3/7) 9567226798962118 m001 (1-Shi(1))/(Champernowne+Weierstrass) 9567226834115880 m001 (BesselJ(0,1)-Ei(1,1))/(Bloch+Paris) 9567226857282457 m001 (Catalan-FeigenbaumKappa)^ZetaQ(2) 9567226864791295 m001 1/cosh(1)/ln(GAMMA(5/12))^2*sin(1) 9567226875838517 a001 4052739537881/1364*2207^(3/4) 9567226880486078 m001 1/arctan(1/2)^2/CareFree/exp(cos(Pi/12))^2 9567226890756302 q001 2277/2380 9567226890756302 r002 2th iterates of z^2 + 9567226930711253 a007 Real Root Of -718*x^4+673*x^3+621*x^2-890*x-229 9567226946550655 l006 ln(2031/5287) 9567226998599840 a001 2504730781961/1364*2207^(13/16) 9567227010159055 a007 Real Root Of 68*x^4-439*x^3-629*x^2+342*x+576 9567227068757181 r005 Re(z^2+c),c=35/102+24/61*I,n=21 9567227077797996 a007 Real Root Of 83*x^4+722*x^3-784*x^2-799*x+996 9567227121361165 a001 1134903780*2207^(7/8) 9567227168575825 r002 3th iterates of z^2 + 9567227170451799 a007 Real Root Of 109*x^4+161*x^3+948*x^2-163*x-974 9567227174659684 s002 sum(A136643[n]/(n*10^n+1),n=1..infinity) 9567227181807390 m004 -3*Sqrt[5]*Pi+15625*Pi*Log[Sqrt[5]*Pi] 9567227197906422 m001 Kolakoski*Totient^HardyLittlewoodC3 9567227212329437 a003 cos(Pi*4/63)*sin(Pi*37/86) 9567227216205700 r005 Im(z^2+c),c=-11/10+25/218*I,n=38 9567227218672904 a003 sin(Pi*13/83)+sin(Pi*14/87) 9567227223317453 m001 Trott2nd^(Trott/QuadraticClass) 9567227244122491 a001 956722026041/1364*2207^(15/16) 9567227268967489 m001 (ln(Pi)-DuboisRaymond)/(GolombDickman-Sarnak) 9567227277021712 m005 (1/2*gamma+7/11)/(1/10*gamma+10/11) 9567227291832644 m005 (1/3*Pi+1/12)/(5*5^(1/2)+7/11) 9567227291933206 a001 76*1597^(30/31) 9567227342238610 m001 exp(-1/2*Pi)^Trott*StolarskyHarborth^Trott 9567227347212147 a008 Real Root of x^3-70*x-206 9567227348664282 r005 Re(z^2+c),c=-67/74+19/37*I,n=3 9567227357171397 m001 1/ln(GAMMA(11/24))/Catalan*gamma 9567227363636326 a007 Real Root Of 970*x^4+492*x^3-27*x^2+344*x-28 9567227366881458 a001 314761780370400/329 9567227390723542 h001 (5/12*exp(1)+6/11)/(2/5*exp(1)+2/3) 9567227415795005 r001 33i'th iterates of 2*x^2-1 of 9567227428817638 v002 sum(1/(3^n*(16*n^2-16*n+43)),n=1..infinity) 9567227470839611 a007 Real Root Of 88*x^4+836*x^3-98*x^2-408*x-114 9567227471453776 m001 1/Ei(1)*exp((3^(1/3)))^2/Pi^2 9567227483820109 m009 (5/6*Psi(1,3/4)-6)/(3/5*Psi(1,1/3)-2) 9567227539356743 r005 Re(z^2+c),c=-7/5+17/121*I,n=7 9567227572773023 r005 Im(z^2+c),c=-41/58+10/59*I,n=53 9567227587428298 a007 Real Root Of 64*x^4-579*x^3+905*x^2-932*x-9 9567227587695364 r004 Re(z^2+c),c=1/6+7/18*I,z(0)=exp(5/8*I*Pi),n=60 9567227591578160 m001 1/RenyiParking^2/exp(Khintchine)^2*GAMMA(1/12) 9567227613020362 a007 Real Root Of -918*x^4+805*x^3+413*x^2-554*x+566 9567227617816418 m001 ln(Riemann1stZero)*Artin*cos(Pi/12) 9567227625176534 m001 (cos(1)+Champernowne)/(-RenyiParking+ZetaQ(2)) 9567227639636675 l006 ln(2729/7104) 9567227695668555 a007 Real Root Of -482*x^4+712*x^3+48*x^2-430*x+572 9567227695905543 a007 Real Root Of 265*x^4+77*x^3+783*x^2+548*x-347 9567227711732171 m001 (Riemann2ndZero+ZetaQ(4))/(2^(1/3)-Zeta(1,2)) 9567227712972475 r002 49th iterates of z^2 + 9567227722041440 h001 (3/11*exp(2)+7/10)/(1/3*exp(2)+3/8) 9567227735456236 a007 Real Root Of 769*x^4-193*x^3+663*x^2+921*x-539 9567227743833371 m001 1/GAMMA(13/24)^2/ln(Cahen)/log(1+sqrt(2)) 9567227744699020 a007 Real Root Of -697*x^4+966*x^3+233*x^2+491*x-945 9567227749978360 a007 Real Root Of 936*x^4-312*x^3-186*x^2-73*x-957 9567227770259317 r005 Im(z^2+c),c=-57/64+2/27*I,n=21 9567227779914816 a007 Real Root Of 613*x^4+541*x^3+529*x^2+762*x+205 9567227784500875 a007 Real Root Of -654*x^4+751*x^3-286*x^2-939*x+569 9567227796803185 m001 1/Tribonacci^2/ln(Lehmer)^2/GAMMA(5/6) 9567227804769579 m001 1/exp(GAMMA(11/24))*TreeGrowth2nd*GAMMA(3/4)^2 9567227806152465 r009 Re(z^3+c),c=-13/22+14/43*I,n=9 9567227837422481 a007 Real Root Of 25*x^4+286*x^3+432*x^2-159*x-63 9567227857310880 m001 1/exp(1)^2*GAMMA(13/24)/exp(sin(1)) 9567227866093950 a007 Real Root Of 62*x^4+550*x^3-401*x^2+94*x-199 9567227889382130 m001 sin(1)/Shi(1)*Zeta(3) 9567227893214105 m001 GAMMA(13/24)/ln(KhintchineLevy)/Zeta(9) 9567227910419322 m004 4+(125*Sqrt[5])/Pi+4*Sin[Sqrt[5]*Pi] 9567227935934332 m001 (FeigenbaumB*Paris-GAMMA(23/24))/Paris 9567227960361966 a001 64079*1836311903^(15/17) 9567227962698345 a001 87403803*514229^(15/17) 9567228025332420 r002 2th iterates of z^2 + 9567228050391746 l006 ln(3427/8921) 9567228052185051 a007 Real Root Of 755*x^4+372*x^3-356*x^2-137*x-112 9567228059234587 m002 -Pi^2/2+Pi^6+ProductLog[Pi]/4 9567228122823695 a007 Real Root Of -755*x^4-988*x^3-168*x^2+696*x+587 9567228136251724 r002 46th iterates of z^2 + 9567228150420236 m002 (-6*Log[Pi])/5+Pi^4*Tanh[Pi] 9567228163128178 m009 (4*Psi(1,3/4)-1/5)/(48*Catalan+6*Pi^2+1) 9567228179833131 m006 (2/3*exp(2*Pi)+4)/(2/5/Pi+1/4) 9567228206598153 a005 (1/cos(3/65*Pi))^1742 9567228210845178 l001 sinh(221/48*Pi) 9567228210845178 l004 sinh(221/48*Pi) 9567228210850404 l001 cosh(221/48*Pi) 9567228210850404 l004 cosh(221/48*Pi) 9567228212959083 r005 Im(z^2+c),c=-9/16+17/98*I,n=51 9567228214292429 a007 Real Root Of -462*x^4-905*x^3-101*x^2+594*x+57 9567228238462093 a007 Real Root Of -687*x^4+718*x^3+295*x^2-39*x+897 9567228259752407 m005 (1/2*gamma-1/8)/(1/4*Catalan-2/5) 9567228261883392 m008 (3/5*Pi^4+3/4)/(1/4*Pi-1/6) 9567228270378698 r009 Re(z^3+c),c=-1/19+9/10*I,n=6 9567228273206759 a007 Real Root Of 45*x^4-832*x^3-564*x^2+461*x+191 9567228278823918 q001 2896/3027 9567228304641567 a001 1364/17711*1597^(1/34) 9567228327456261 r005 Re(z^2+c),c=-18/19+3/31*I,n=21 9567228357689765 r002 3th iterates of z^2 + 9567228386059576 a007 Real Root Of -532*x^4+410*x^3-229*x^2-500*x+536 9567228394069978 a001 4052739537881/521*521^(10/13) 9567228404445788 a001 18/121393*377^(11/35) 9567228427698443 r002 21th iterates of z^2 + 9567228467688046 m001 (-Niven+Trott2nd)/(LambertW(1)+KhinchinLevy) 9567228494051694 m001 (CareFree+Porter)/(Zeta(1/2)-AlladiGrinstead) 9567228504207589 r002 54i'th iterates of 2*x/(1-x^2) of 9567228524679170 a007 Real Root Of 227*x^4-280*x^3-203*x^2-406*x-638 9567228551672652 r005 Im(z^2+c),c=-19/23*I,n=4 9567228569928114 m001 (OneNinth+Sierpinski)/(Lehmer-Magata) 9567228581112806 a007 Real Root Of 967*x^4+275*x^3+318*x^2+106*x-759 9567228585907679 a003 sin(Pi*31/76)*sin(Pi*38/79) 9567228595423947 a007 Real Root Of -810*x^4-256*x^3-416*x^2+5*x+840 9567228598317539 a007 Real Root Of -942*x^4+462*x^3+632*x^2-894*x-240 9567228599839863 m005 (13/4+1/4*5^(1/2))/(2/9*Pi-3/10) 9567228627902847 m001 sin(1)^gamma(2)/(ZetaQ(3)^gamma(2)) 9567228652421332 r005 Im(z^2+c),c=41/114+23/38*I,n=11 9567228676780076 s002 sum(A266125[n]/(exp(n)-1),n=1..infinity) 9567228686850916 m001 (2^(1/2)-3^(1/3))/(BesselI(1,2)+Totient) 9567228691261065 r002 14th iterates of z^2 + 9567228704705088 a007 Real Root Of -644*x^4-738*x^3-340*x^2+612*x+790 9567228755244088 a007 Real Root Of 628*x^4+906*x^3+688*x^2+289*x-86 9567228784825901 r005 Im(z^2+c),c=-75/118+5/29*I,n=33 9567228785319908 r008 a(0)=1,K{-n^6,-43-13*n^3-20*n^2+97*n} 9567228798216466 m001 (Pi^(1/2)-Bloch)/(OneNinth-Porter) 9567228822356539 a007 Real Root Of 920*x^4+49*x^3-301*x^2+292*x-173 9567228850069833 h001 (3/8*exp(1)+1/7)/(1/8*exp(1)+7/8) 9567228852181100 a007 Real Root Of -865*x^4+512*x^3+345*x^2-964*x-65 9567228858511799 m001 1/exp(GAMMA(11/24))/Rabbit/Zeta(1/2)^2 9567228860986929 r001 59i'th iterates of 2*x^2-1 of 9567228869926949 a007 Real Root Of -605*x^4-308*x^3-704*x^2-311*x+584 9567228874054493 a001 4807525989*843^(11/14) 9567228877009717 m005 (1/2*5^(1/2)+1/10)/(9/10*3^(1/2)-2/7) 9567228886679056 r002 4th iterates of z^2 + 9567228923211752 r005 Re(z^2+c),c=-103/110+3/22*I,n=25 9567228960206118 m001 (-Mills+Thue)/(LambertW(1)-MertensB2) 9567228977319723 b008 (5*Sqrt[Tan[Pi^(-1)]])/3 9567228997311535 h001 (1/10*exp(1)+5/8)/(2/9*exp(1)+1/3) 9567229057388580 a007 Real Root Of -x^4+925*x^3-357*x^2-563*x+599 9567229083842122 r009 Im(z^3+c),c=-57/98+19/33*I,n=11 9567229088883097 a007 Real Root Of -230*x^4-761*x^3-681*x^2+615*x+738 9567229104366857 m001 (2^(1/2)-exp(-1/2*Pi))/(HardyLittlewoodC3+Kac) 9567229106464463 m001 1/exp(MadelungNaCl)^2*ArtinRank2^2/cosh(1) 9567229124362628 a007 Real Root Of 657*x^4-936*x^3-982*x^2-445*x-897 9567229153831116 r005 Im(z^2+c),c=-157/106+1/54*I,n=18 9567229157977007 a007 Real Root Of 17*x^4-602*x^3+176*x^2-597*x+923 9567229171323368 a007 Real Root Of 574*x^4-324*x^3-606*x^2-692*x-872 9567229178007621 q001 3515/3674 9567229179507423 r005 Re(z^2+c),c=17/46+5/32*I,n=6 9567229182392251 p001 sum((-1)^n/(143*n+97)/(5^n),n=0..infinity) 9567229182725787 a003 sin(Pi*1/75)-sin(Pi*43/89) 9567229190841136 g004 abs(GAMMA(-37/12+I*(-131/30))) 9567229232602648 h001 (-5*exp(3)+12)/(-5*exp(3)+8) 9567229237307641 a007 Real Root Of -594*x^4-58*x^3+318*x^2-282*x-114 9567229298052427 m005 (5/6+1/6*5^(1/2))/(2/7*2^(1/2)-5/12) 9567229325887953 m001 (KhinchinLevy+Thue)/(Conway+GaussAGM) 9567229325979309 a007 Real Root Of 765*x^4-850*x^3-139*x^2+438*x-839 9567229360277339 m001 (Pi-Shi(1))/(LandauRamanujan+Riemann2ndZero) 9567229361213827 r005 Im(z^2+c),c=-13/14+17/205*I,n=18 9567229380725194 r002 2th iterates of z^2 + 9567229405029942 m001 1/Trott^2/Sierpinski^2*exp(Zeta(7))^2 9567229409579398 r005 Re(z^2+c),c=-85/94+11/48*I,n=16 9567229421026736 a007 Real Root Of -450*x^4-836*x^3-874*x^2-210*x+244 9567229451527995 r009 Im(z^3+c),c=-23/98+55/58*I,n=47 9567229481690742 a001 1364/21*514229^(9/44) 9567229488135971 a007 Real Root Of -778*x^4-855*x^3+68*x^2+990*x+788 9567229495374447 r009 Re(z^3+c),c=-15/94+22/37*I,n=14 9567229498205196 a007 Real Root Of 936*x^4-54*x^3-537*x^2-461*x-781 9567229498304901 m005 (1/3*exp(1)-1/5)/(2/3*3^(1/2)-5/12) 9567229521595139 m002 4+Pi^6-E^Pi/Log[Pi]+Sinh[Pi] 9567229524259730 m008 (2*Pi^3+5/6)/(3/4*Pi^2-5/6) 9567229529548815 r005 Re(z^2+c),c=11/38+11/25*I,n=45 9567229542095269 a001 7/2584*514229^(34/35) 9567229558383425 r005 Re(z^2+c),c=5/64+11/36*I,n=9 9567229559159993 r002 8th iterates of z^2 + 9567229578103562 r002 32th iterates of z^2 + 9567229621898795 a007 Real Root Of -844*x^4-842*x^3-434*x^2-69*x+301 9567229632338013 a007 Real Root Of 301*x^4-506*x^3-786*x^2+315*x+609 9567229636247970 a007 Real Root Of -654*x^4+313*x^3-171*x^2-103*x+880 9567229640715951 a007 Real Root Of 615*x^4-448*x^3-214*x^2+839*x+91 9567229646044692 m002 6+E^Pi*Pi+Pi^8 9567229656337987 l006 ln(698/1817) 9567229730026151 a001 1/305*514229^(43/55) 9567229734213271 m001 exp(cos(Pi/5))^2/GAMMA(1/6)^2*sin(Pi/5) 9567229772366680 r005 Im(z^2+c),c=45/122+19/33*I,n=13 9567229792692766 r005 Im(z^2+c),c=-49/74+6/37*I,n=18 9567229823857338 m005 (1/2*3^(1/2)-7/8)/(6/11*2^(1/2)+1/6) 9567229823947924 m005 (1/2*Zeta(3)-3/10)/(9/10*exp(1)+7/10) 9567229835675445 a001 6557470319842/2207*843^(6/7) 9567229845823464 a007 Real Root Of -406*x^4+411*x^3+549*x^2+145*x-661 9567229875961716 r005 Re(z^2+c),c=-3/29+2/45*I,n=5 9567229883117270 r005 Re(z^2+c),c=-11/12+12/67*I,n=17 9567229907207314 m002 -Tanh[Pi]+Pi^6*Tanh[Pi]-Sech[Pi]*Tanh[Pi] 9567229912294407 m001 (Khinchin+Sarnak)/(3^(1/2)+FeigenbaumC) 9567229934356423 r004 Im(z^2+c),c=13/42-18/19*I,z(0)=I,n=5 9567229971850618 a007 Real Root Of 564*x^4+677*x^3+634*x^2+347*x-128 9567229990061965 a007 Real Root Of 893*x^4-693*x^3-143*x^2+898*x-365 9567229994170310 h001 (4/7*exp(1)+3/8)/(7/11*exp(1)+2/7) 9567230009478221 r005 Re(z^2+c),c=-13/14+22/139*I,n=53 9567230030189622 a007 Real Root Of 582*x^4-747*x^3-777*x^2+380*x-67 9567230031791857 r002 24th iterates of z^2 + 9567230038106978 m001 1/ln(Kolakoski)^2/Si(Pi)*Zeta(1,2) 9567230059207108 r005 Re(z^2+c),c=-65/82+10/63*I,n=40 9567230073475710 m001 1/LaplaceLimit^2/ln(ArtinRank2)^2/GAMMA(2/3)^2 9567230079753270 r009 Im(z^3+c),c=-6/11+13/14*I,n=2 9567230085309535 r005 Re(z^2+c),c=-21/22+6/103*I,n=7 9567230132034591 h001 (3/4*exp(2)+1/7)/(3/4*exp(2)+2/5) 9567230149039734 a007 Real Root Of -717*x^4+66*x^3-255*x^2-210*x+691 9567230149435774 a001 3571/832040*233^(5/34) 9567230169435280 a007 Real Root Of -708*x^4+748*x^3+633*x^2-952*x-242 9567230169551760 a007 Real Root Of 737*x^4+522*x^3+960*x^2+692*x-377 9567230177364521 m009 (8*Catalan+Pi^2+3/4)/(2/3*Psi(1,2/3)-1/6) 9567230184340785 l006 ln(1255/1381) 9567230230502891 m001 BesselJ(0,1)^2*Riemann1stZero/ln(BesselK(0,1)) 9567230271849150 r005 Im(z^2+c),c=-3/11+36/43*I,n=4 9567230277754640 a003 cos(Pi*1/45)*sin(Pi*38/93) 9567230307270652 h001 (5/7*exp(1)+2/5)/(7/9*exp(1)+1/3) 9567230376146271 a007 Real Root Of -2*x^4+260*x^3+172*x^2+807*x+844 9567230377098391 m003 -3/2+Sqrt[5]/4+Cos[1/2+Sqrt[5]/2]/3 9567230389111659 p001 sum(1/(464*n+113)/(3^n),n=0..infinity) 9567230397995426 m001 (FeigenbaumD-Sarnak)/(sin(1/5*Pi)-Zeta(1/2)) 9567230423383653 a007 Real Root Of 361*x^4-689*x^3-311*x^2+297*x-337 9567230432109977 r005 Im(z^2+c),c=-1+19/195*I,n=16 9567230448532393 m001 (BesselI(0,2)-FeigenbaumKappa)/cos(1/12*Pi) 9567230449827419 m001 exp(Zeta(1/2))/Zeta(1,2)/sin(Pi/12) 9567230467055582 h001 (-3*exp(2/3)+6)/(-exp(2)-9) 9567230473119897 m001 (Khinchin+ZetaP(2))/(Bloch+FransenRobinson) 9567230488425057 b008 -1/13+LogGamma[Pi^(-1)] 9567230549785219 m001 (-FransenRobinson+TwinPrimes)/(exp(Pi)-ln(2)) 9567230579713870 m005 (1/2*Zeta(3)+7/9)/(7/10*Catalan+4/5) 9567230589972343 a007 Real Root Of -501*x^4+572*x^3+502*x^2-216*x-334 9567230591216891 r005 Im(z^2+c),c=-41/30+32/121*I,n=5 9567230600723058 b008 9+Sqrt[ArcCot[3]] 9567230606677101 a007 Real Root Of -504*x^4+728*x^3-159*x^2-224*x+991 9567230645659051 a003 cos(Pi*4/117)*sin(Pi*47/114) 9567230672250319 a007 Real Root Of -963*x^4-424*x^3-869*x^2-695*x+566 9567230695110022 m001 (Otter+ThueMorse)/(Zeta(1,-1)+polylog(4,1/2)) 9567230728037674 r005 Im(z^2+c),c=-15/23+1/51*I,n=52 9567230731351548 m005 (1/2*Catalan-1/12)/(1/10*Catalan+3/10) 9567230790224126 a001 9349/2178309*233^(5/34) 9567230797296494 a001 4052739537881/2207*843^(13/14) 9567230813877192 m001 FibonacciFactorial-Weierstrass^Zeta(1,-1) 9567230840388631 h001 (1/6*exp(2)+10/11)/(5/9*exp(1)+8/11) 9567230869182159 a003 cos(Pi*17/120)/sin(Pi*31/79) 9567230908636015 r005 Im(z^2+c),c=-9/16+1/58*I,n=49 9567230952670979 r005 Im(z^2+c),c=13/48+28/55*I,n=20 9567230971267892 a007 Real Root Of 7*x^4-994*x^3-838*x^2-769*x-845 9567230988786790 m001 (Psi(1,1/3)+GAMMA(3/4))/(-Pi^(1/2)+Otter) 9567231050719376 a007 Real Root Of -996*x^4+23*x^3-465*x^2-457*x+843 9567231087188436 a007 Real Root Of -978*x^4-278*x^3-207*x^2-268*x+509 9567231090520511 r002 18th iterates of z^2 + 9567231097918550 m005 (1/2*3^(1/2)+4)/(2/5*Catalan-7/8) 9567231105291507 a001 6557470319842/521*521^(9/13) 9567231108338590 a007 Real Root Of -558*x^4+694*x^3+814*x^2-620*x-263 9567231141324824 m001 1/Rabbit^2/ln(Porter)^2*sin(1)^2 9567231149129270 a001 45537549124*34^(4/19) 9567231154193331 r002 16th iterates of z^2 + 9567231172005265 v002 sum(1/(2^n+(n^2+42*n-26)),n=1..infinity) 9567231172341193 m001 Psi(1,1/3)*LandauRamanujan+Si(Pi) 9567231186253107 a001 5778/1346269*233^(5/34) 9567231191269286 m001 (ln(2)+FeigenbaumAlpha)/(Mills-Totient) 9567231205332329 l006 ln(3553/9249) 9567231209941875 r009 Re(z^3+c),c=-2/17+19/64*I,n=11 9567231211405717 a007 Real Root Of -710*x^4-404*x^3-808*x^2-355*x+641 9567231228581994 r009 Im(z^3+c),c=-17/90+31/34*I,n=59 9567231233001682 r005 Im(z^2+c),c=-69/82+2/33*I,n=30 9567231258296661 a008 Real Root of x^4-x^3-22*x^2+56*x+72 9567231272985212 r005 Im(z^2+c),c=-5/106+36/49*I,n=45 9567231274183624 m001 exp(HardHexagonsEntropy)/Bloch^2/Ei(1) 9567231275150630 r005 Re(z^2+c),c=-55/58+7/29*I,n=29 9567231275743202 a001 8/843*11^(53/55) 9567231300360626 m001 1/GAMMA(23/24)*LaplaceLimit*ln(GAMMA(5/24)) 9567231324316337 a007 Real Root Of -646*x^4-481*x^3-760*x^2-216*x+609 9567231328083149 m001 1/FeigenbaumD*LaplaceLimit*exp(GAMMA(2/3)) 9567231354784579 a007 Real Root Of 131*x^4-423*x^3-524*x^2-30*x+769 9567231361578519 r005 Im(z^2+c),c=-25/46+6/35*I,n=51 9567231369570416 a007 Real Root Of 25*x^4-405*x^3+422*x^2-565*x+488 9567231379028177 r009 Im(z^3+c),c=-17/27+31/63*I,n=8 9567231397695120 b008 1/2+(-1+E)*Sech[2] 9567231412640549 m005 (1/3*2^(1/2)-1/9)/(4/7*Catalan-9/10) 9567231431787892 a007 Real Root Of -432*x^4+768*x^3+593*x^2-631*x-112 9567231470897105 a003 cos(Pi*1/89)*cos(Pi*7/75) 9567231487326905 a007 Real Root Of 587*x^4-399*x^3-360*x^2+169*x-350 9567231497707676 r005 Re(z^2+c),c=-17/18+17/73*I,n=11 9567231499170727 m001 (GAMMA(19/24)-TreeGrowth2nd)/ZetaP(4) 9567231505541706 m002 -5+Pi^6+(E^Pi*Csch[Pi])/6 9567231544887301 m001 (Sierpinski-Totient)/(gamma(3)-Conway) 9567231548407588 r002 23th iterates of z^2 + 9567231557290600 b008 76+3*Sqrt[43] 9567231558229272 m001 (ln(Pi)+Sarnak)/(Catalan+Zeta(5)) 9567231566812236 a007 Real Root Of 445*x^4-558*x^3-307*x^2+590*x-16 9567231568676040 p003 LerchPhi(1/1024,6,312/211) 9567231584035638 l006 ln(2855/7432) 9567231590432196 a007 Real Root Of -509*x^4-566*x^3-146*x^2+449*x+494 9567231601616126 a005 (1/cos(11/163*Pi))^1625 9567231622012541 a007 Real Root Of -118*x^4+935*x^3+273*x^2-120*x-855 9567231623951395 m004 -1/2+25*Pi-5*Sqrt[5]*Pi*Log[Sqrt[5]*Pi] 9567231623991252 a007 Real Root Of -417*x^4-144*x^3-226*x^2+234*x+654 9567231666288725 a007 Real Root Of 265*x^4-619*x^3+226*x^2+371*x-616 9567231748359109 m007 (-3/5*gamma-6/5*ln(2)+2)/(-1/3*gamma-2/3) 9567231752852828 m002 -E^Pi/5+Pi^6-Cosh[Pi]/Pi^5 9567231755070698 p004 log(20479/7867) 9567231758936180 a001 360684637311894/377 9567231776907380 r002 13th iterates of z^2 + 9567231781980193 a007 Real Root Of 962*x^4+179*x^3-846*x^2-43*x+84 9567231783803600 m005 (5/6*Catalan+1/4)/(5*exp(1)-3) 9567231808065901 a007 Real Root Of 741*x^4-320*x^3+719*x^2+782*x-811 9567231821850888 p001 sum(1/(518*n+377)/n/(12^n),n=1..infinity) 9567231839670625 m001 (Shi(1)+gamma)/(-FeigenbaumAlpha+Kolakoski) 9567231865070041 a001 29/102334155*987^(3/17) 9567231893870859 a001 521/196418*6765^(8/55) 9567231897372375 r009 Im(z^3+c),c=-3/98+22/23*I,n=5 9567231916168800 a001 11*987^(16/51) 9567231918657778 a007 Real Root Of -35*x^4+775*x^3+466*x^2+750*x+999 9567231922073443 r005 Re(z^2+c),c=-20/21+5/53*I,n=3 9567231922579938 r002 13th iterates of z^2 + 9567231933982824 m001 (Catalan*Cahen+2*Pi/GAMMA(5/6))/Cahen 9567231933982824 m001 (Catalan*Cahen+GAMMA(1/6))/Cahen 9567231946861110 m001 (FeigenbaumC+FeigenbaumD)/Bloch 9567231998367828 r009 Im(z^3+c),c=-3/19+57/61*I,n=21 9567232053498856 m001 (Chi(1)+GAMMA(3/4))/(Ei(1)+MertensB1) 9567232059377818 r009 Im(z^3+c),c=-17/90+57/62*I,n=43 9567232080875314 r005 Im(z^2+c),c=-37/54+1/39*I,n=58 9567232105650791 m001 1/Conway^2/Cahen/exp(GAMMA(5/6))^2 9567232129537317 a007 Real Root Of 871*x^4+277*x^3+306*x^2+156*x-618 9567232145928097 a007 Real Root Of 3*x^4-749*x^3-174*x^2+239*x+584 9567232146356585 a007 Real Root Of 991*x^4+813*x^3+697*x^2+178*x-586 9567232159084677 a007 Real Root Of 658*x^4-507*x^3+389*x^2+732*x-651 9567232195156374 m001 Psi(1,1/3)^(OrthogonalArrays/CopelandErdos) 9567232207833871 l006 ln(2157/5615) 9567232211690503 a001 29/1836311903*12586269025^(3/17) 9567232211690530 a001 29/433494437*3524578^(3/17) 9567232265993829 m001 (GAMMA(2/3)-exp(-1/2*Pi))/(KhinchinLevy-Mills) 9567232298129919 r009 Im(z^3+c),c=-17/110+43/46*I,n=53 9567232300685626 r005 Re(z^2+c),c=1/62+45/64*I,n=4 9567232301423621 m005 (1/3*Zeta(3)+2/7)/(10/11*3^(1/2)-6/7) 9567232302328020 a001 11/86267571272*13^(11/14) 9567232306579087 a007 Real Root Of -741*x^4-51*x^3-105*x^2-17*x+656 9567232323822203 m001 1/5*(1-5^(1/2)*OrthogonalArrays)*5^(1/2) 9567232335878178 a007 Real Root Of -98*x^4+754*x^3+791*x^2+748*x+734 9567232371733557 a007 Real Root Of 12*x^4-648*x^3-620*x^2+164*x+968 9567232386998805 r005 Im(z^2+c),c=-127/110+3/16*I,n=15 9567232403577743 a007 Real Root Of 791*x^4-784*x^3-40*x^2+632*x-708 9567232408690577 m001 1/exp(BesselJ(1,1))^2/LaplaceLimit^2/Pi^2 9567232412674310 m001 (MinimumGamma+Robbin)/(BesselJ(0,1)-Landau) 9567232421760395 a007 Real Root Of 158*x^4-364*x^3-548*x^2-359*x-293 9567232431082517 r002 36th iterates of z^2 + 9567232467256772 m001 (ln(2)+ln(3))/(Zeta(1/2)-ThueMorse) 9567232474908291 a001 3536736619241/1926*843^(13/14) 9567232484160245 m004 -6-125*Pi+3*Sec[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 9567232550108375 a001 10610209857723/3571*843^(6/7) 9567232572998911 b008 -4+E*ArcCos[-1/4] 9567232620277104 m001 Psi(2,1/3)^OneNinth/ln(5) 9567232628966942 m002 -Pi^6+Pi*Log[Pi]+ProductLog[Pi]*Tanh[Pi] 9567232641831749 r009 Im(z^3+c),c=-19/82+27/28*I,n=25 9567232644313531 v002 sum(1/(3^n*(28*n^2-33*n+46)),n=1..infinity) 9567232676767586 r002 25th iterates of z^2 + 9567232691477594 a001 3571/46368*1597^(1/34) 9567232700351531 l006 ln(3616/9413) 9567232706421032 a007 Real Root Of -700*x^4+946*x^3+672*x^2-906*x-67 9567232710520128 a007 Real Root Of 46*x^4+490*x^3+364*x^2-990*x+915 9567232720074999 a007 Real Root Of 186*x^4-130*x^3+333*x^2-688*x-69 9567232734991648 m002 -2/E^Pi+Pi-ProductLog[Pi]-Sinh[Pi] 9567232750137488 m001 (2^(1/2)-GAMMA(2/3))/(-CareFree+MertensB3) 9567232756708929 m001 BesselI(1,1)^RenyiParking-ln(5) 9567232776333115 m005 (1/2*Pi-6/11)/(1/7*Zeta(3)+9/10) 9567232784071463 a007 Real Root Of 739*x^4-468*x^3-766*x^2-158*x-479 9567232792235193 r002 23th iterates of z^2 + 9567232807083288 m008 (3/4*Pi^5+3/4)/(1/4*Pi^6+1/3) 9567232819489666 m001 (-Artin+KhinchinLevy)/(Shi(1)-exp(-1/2*Pi)) 9567232825153906 m005 (1/2*Pi-1/2)/(2/11*exp(1)+5/8) 9567232834736513 a007 Real Root Of -812*x^4+132*x^3-567*x^2-488*x+848 9567232860561035 a007 Real Root Of -576*x^4-544*x^3-254*x^2-377*x-122 9567232863858793 a001 2207/514229*233^(5/34) 9567232895495164 a007 Real Root Of 559*x^4-811*x^3-542*x^2+198*x-493 9567232903406619 a007 Real Root Of 936*x^4+438*x^3-466*x^2+668*x+665 9567232914422782 a007 Real Root Of -613*x^4-611*x^3-943*x^2+866*x+91 9567232932910840 a007 Real Root Of -862*x^4-707*x^3+294*x^2+878*x-86 9567232935140929 m001 (GAMMA(17/24)/OrthogonalArrays)^(1/2) 9567232939591075 a007 Real Root Of 314*x^4-643*x^3+560*x^2+607*x-758 9567232948846631 r005 Im(z^2+c),c=-36/31+1/8*I,n=39 9567233002464817 m005 (1/2*3^(1/2)+5/8)/(31/45+7/18*5^(1/2)) 9567233036608805 a007 Real Root Of -850*x^4+655*x^3-207*x^2-550*x+949 9567233043570560 m002 4+Pi^6-Cosh[Pi]+Pi/ProductLog[Pi] 9567233055085416 a008 Real Root of (-7+9*x-5*x^2-4*x^4+9*x^8) 9567233082712793 m001 (3^(1/3)-exp(1/exp(1))*Otter)/Otter 9567233082764140 m005 (1/2*3^(1/2)+5)/(4/5*2^(1/2)+5) 9567233099085627 p004 log(20807/7993) 9567233108619674 a007 Real Root Of -828*x^4+593*x^3+962*x^2+288*x+608 9567233142767640 r005 Re(z^2+c),c=-7/5+77/113*I,n=2 9567233164981538 m002 -E^Pi/5+Pi^6-Sinh[Pi]/Pi^5 9567233221605893 m005 (1/2*Catalan+5/6)/(5/11*5^(1/2)+1/3) 9567233238100013 p004 log(35999/13829) 9567233250253195 m001 GolombDickman/(FeigenbaumMu+Otter) 9567233262112396 m005 (1/2*gamma+1/12)/(2/7*5^(1/2)-3/5) 9567233262979897 r005 Re(z^2+c),c=-17/18-61/252*I,n=37 9567233331508345 a001 9349/121393*1597^(1/34) 9567233334231977 r005 Re(z^2+c),c=-3/5+52/83*I,n=13 9567233346419170 a007 Real Root Of 625*x^4-391*x^3-20*x^2+584*x-289 9567233359557576 r005 Im(z^2+c),c=-17/32+3/4*I,n=4 9567233384853168 q001 619/647 9567233410333373 r005 Im(z^2+c),c=-13/22+2/105*I,n=28 9567233423604092 r002 9th iterates of z^2 + 9567233424887573 a001 844/10959*1597^(1/34) 9567233428494455 l006 ln(1459/3798) 9567233436548541 a001 360684700557880/377 9567233446931418 a001 39603/514229*1597^(1/34) 9567233448327071 m001 (Zeta(3)+Landau)/(MadelungNaCl+ZetaP(4)) 9567233453876086 a007 Real Root Of 514*x^4+789*x^3+498*x^2-174*x-362 9567233456898957 r005 Im(z^2+c),c=-43/52+26/63*I,n=5 9567233473600037 m002 -Pi^6+E^Pi/(6*ProductLog[Pi])+ProductLog[Pi] 9567233482599109 a001 15127/196418*1597^(1/34) 9567233506201565 r005 Re(z^2+c),c=-21/22+5/86*I,n=15 9567233511729696 a001 6557470319842/3571*843^(13/14) 9567233519101168 m005 (1/2*Catalan+5/12)/(2^(1/2)-1/2) 9567233521562383 m005 (13/12+1/4*5^(1/2))/(3/5*5^(1/2)+3/8) 9567233523357276 m001 (ln(3)+exp(-1/2*Pi)*Porter)/Porter 9567233554486489 a007 Real Root Of -40*x^4-430*x^3-358*x^2+816*x-855 9567233570945119 h001 (7/9*exp(1)+6/7)/(7/8*exp(1)+8/11) 9567233588761997 m001 Kolakoski^Rabbit/(Kolakoski^polylog(4,1/2)) 9567233592209062 g007 Psi(2,8/9)+Psi(2,6/7)+Psi(2,2/3)-Psi(2,7/9) 9567233610084626 r009 Re(z^3+c),c=-5/32+28/51*I,n=22 9567233617827601 r002 19th iterates of z^2 + 9567233638495356 a007 Real Root Of 13*x^4-513*x^3+610*x^2+197*x-830 9567233662285982 a007 Real Root Of -577*x^4+18*x^3-997*x^2-930*x+522 9567233666833801 r005 Re(z^2+c),c=-11/10+12/145*I,n=42 9567233681308885 a001 360684709785345/377 9567233709188951 m005 (-19/4+1/4*5^(1/2))/(6/11*2^(1/2)-1/3) 9567233711637946 a007 Real Root Of 713*x^4-132*x^3+501*x^2+242*x-940 9567233717018938 a001 360684711131614/377 9567233722989098 a001 360684711356689/377 9567233723116180 a001 360684711361480/377 9567233723118541 a001 360684711361569/377 9567233723118885 a001 360684711361582/377 9567233723118938 a001 360684711361584/377 9567233723119098 a001 360684711361590/377 9567233723126180 a001 360684711361857/377 9567233723168541 a001 360684711363454/377 9567233723216074 m001 StronglyCareFree^(ZetaP(4)/TreeGrowth2nd) 9567233723458885 a001 360684711374400/377 9567233725448938 a001 360684711449425/377 9567233726642989 m001 arctan(1/3)*(Rabbit-ThueMorse) 9567233727069102 a001 5778/75025*1597^(1/34) 9567233740186745 a007 Real Root Of 427*x^4-82*x^3+431*x^2+276*x-560 9567233745962749 m005 (1/2*Zeta(3)+1/8)/(5/9*Catalan+1/4) 9567233756247597 r002 2th iterates of z^2 + 9567233765827252 m001 sin(1/5*Pi)^(FeigenbaumDelta/Shi(1)) 9567233780493841 a007 Real Root Of -238*x^4+826*x^3+659*x^2-436*x-710 9567233790378866 r005 Im(z^2+c),c=-71/110+17/53*I,n=4 9567233816513805 a001 10610209857723/521*521^(8/13) 9567233822871866 m008 (3/4*Pi^2-1/2)/(3/4*Pi^6+2/5) 9567233830065046 r005 Re(z^2+c),c=31/102+25/46*I,n=30 9567233832579098 a001 360684715488232/377 9567233833436292 r009 Im(z^3+c),c=-6/11+18/29*I,n=5 9567233837072034 b008 6^(-2/81) 9567233855735349 a007 Real Root Of 100*x^4+935*x^3-241*x^2-236*x+778 9567233874896384 a007 Real Root Of -946*x^4-938*x^3-274*x^2+669*x+862 9567233879200508 a001 281*4181^(11/26) 9567233888723298 m005 (1/2*Pi-1/11)/(5/8*Pi-5/12) 9567233904250593 a007 Real Root Of -480*x^4-77*x^3+342*x^2+940*x+921 9567233914544238 a007 Real Root Of 647*x^4-997*x^3-930*x^2-298*x-849 9567233920694916 r005 Im(z^2+c),c=-5/74+7/64*I,n=6 9567233929928697 a007 Real Root Of 278*x^4-652*x^3-380*x^2-205*x+882 9567233974977754 a003 cos(Pi*2/95)*sin(Pi*49/120) 9567233992650122 a007 Real Root Of 557*x^4+964*x^3+995*x^2+18*x-516 9567233998411708 a007 Real Root Of -401*x^4+939*x^3+48*x^2+905*x+87 9567233999425960 r009 Im(z^3+c),c=-3/16+9/10*I,n=11 9567234022144856 m005 (5*Catalan-2/3)/(-3/2+5/2*5^(1/2)) 9567234026640286 r002 3th iterates of z^2 + 9567234027105713 r005 Im(z^2+c),c=5/12+2/11*I,n=6 9567234039638135 m006 (2*Pi-5)/(1/4*exp(2*Pi)+1/4) 9567234055406743 m001 1/ln(LambertW(1))/Tribonacci/Zeta(9) 9567234085760266 p003 LerchPhi(1/10,3,211/207) 9567234137310268 r005 Re(z^2+c),c=-19/22+23/103*I,n=31 9567234144168449 l006 ln(3679/9577) 9567234156410169 r009 Im(z^3+c),c=-11/98+35/37*I,n=11 9567234160677855 m001 1/(2^(1/3))^2*Khintchine^2/exp(GAMMA(7/24))^2 9567234175876776 a007 Real Root Of 350*x^4+548*x^3+719*x^2-519*x-968 9567234201828358 h001 (5/6*exp(2)+2/7)/(8/9*exp(2)+1/6) 9567234210148499 r005 Im(z^2+c),c=-24/23+2/19*I,n=25 9567234219421711 a008 Real Root of (-1-x-x^3+x^4+x^7+x^8-x^9+x^10+x^12) 9567234251694555 a007 Real Root Of 621*x^4-946*x^3+162*x^2+555*x-966 9567234304750732 a007 Real Root Of 800*x^4-152*x^3+783*x^2+900*x-659 9567234332696190 r005 Re(z^2+c),c=-21/22+5/86*I,n=17 9567234351995645 a007 Real Root Of 703*x^4-946*x^3-141*x^2+824*x-500 9567234385646606 m006 (2*exp(2*Pi)-2/3)/(1/4*Pi+1/3) 9567234396852070 a007 Real Root Of 319*x^4+161*x^3+263*x^2+439*x+53 9567234416571332 r002 3th iterates of z^2 + 9567234427767201 m001 (BesselI(1,1)-sin(1)*Stephens)/sin(1) 9567234432211293 m001 MertensB1^PlouffeB-Psi(1,1/3) 9567234432340793 a007 Real Root Of -874*x^4+477*x^3-126*x^2-571*x+719 9567234449891353 r005 Im(z^2+c),c=-19/30+5/29*I,n=33 9567234454299459 a007 Real Root Of -921*x^4+469*x^3+985*x^2+641*x+894 9567234483806582 a007 Real Root Of 287*x^4-897*x^3-732*x^2-45*x-399 9567234522872755 r002 49th iterates of z^2 + 9567234541839023 a007 Real Root Of 802*x^4-683*x^3-580*x^2+297*x-455 9567234548167952 m001 (2^(1/3)+GAMMA(19/24))/(CareFree+Tribonacci) 9567234557322036 m001 (Grothendieck+ThueMorse)/(Chi(1)+Backhouse) 9567234557682074 r001 53i'th iterates of 2*x^2-1 of 9567234577448485 r002 2th iterates of z^2 + 9567234579534873 m005 (1/3*gamma-4)/(5*Catalan-3/5) 9567234599080379 m009 (1/3*Psi(1,3/4)+1/3)/(1/4*Psi(1,2/3)-2) 9567234614514528 l006 ln(2220/5779) 9567234621689774 m001 1/FeigenbaumB^2*Lehmer^2/exp(Riemann3rdZero)^2 9567234684265182 p003 LerchPhi(1/25,5,533/210) 9567234704129115 m005 (1/2*2^(1/2)+8/11)/(7/12*Pi-1/3) 9567234726285437 m001 (Ei(1)+GAMMA(7/12))/(FeigenbaumMu+ZetaQ(3)) 9567234730466442 m001 (Otter-Riemann1stZero)/(Artin+Kolakoski) 9567234745882106 r005 Im(z^2+c),c=35/86+3/5*I,n=4 9567234748956196 m005 (1/2*Pi+3/4)/(3/11*gamma-2/5) 9567234767272839 a007 Real Root Of -703*x^4+148*x^3-204*x^2-247*x+669 9567234822747724 m001 1/BesselJ(0,1)/Lehmer*ln(GAMMA(11/24))^2 9567234846811983 m001 (1+Porter)/(Riemann3rdZero+StronglyCareFree) 9567234908530277 m001 ln(BesselJ(1,1))^2/Cahen^2*sin(Pi/5) 9567234924662042 a005 (1/cos(17/122*Pi))^604 9567234946069218 r005 Im(z^2+c),c=-11/82+3/25*I,n=10 9567234976186998 r005 Re(z^2+c),c=-12/11+7/38*I,n=26 9567234990635750 a001 3/199*1364^(23/40) 9567234992213485 a005 (1/sin(85/181*Pi))^1504 9567234997260717 m002 -(Coth[Pi]^2*ProductLog[Pi])+Pi^6*Tanh[Pi] 9567235018913142 a001 10610209857723/1364*843^(5/7) 9567235019116505 m001 Catalan^(5^(1/2))/(Catalan^(3^(1/2))) 9567235019116505 m001 Catalan^sqrt(5)/(Catalan^sqrt(3)) 9567235045517529 m001 Khinchin^gamma(2)*cos(1/12*Pi) 9567235069467375 m002 -1-3/Pi^6+ProductLog[Pi]/E^Pi 9567235070197984 a007 Real Root Of 667*x^4-119*x^3-560*x^2-357*x-492 9567235081101551 a007 Real Root Of 470*x^4-149*x^3+148*x^2+330*x-344 9567235091945857 a007 Real Root Of -782*x^4-685*x^3-150*x^2+661*x+825 9567235092594020 a007 Real Root Of 245*x^4+308*x^3+883*x^2+814*x+35 9567235147928825 m001 (LambertW(1)-Robbin)/(Stephens+ThueMorse) 9567235164850807 r002 5th iterates of z^2 + 9567235190611772 r005 Re(z^2+c),c=-13/14+44/255*I,n=11 9567235194991929 l006 ln(2981/7760) 9567235244868465 a007 Real Root Of -563*x^4+203*x^3-585*x^2-672*x+542 9567235267552080 a007 Real Root Of -742*x^4-48*x^3-316*x^2-396*x+490 9567235282393198 r005 Re(z^2+c),c=-7/74+38/59*I,n=4 9567235297022988 m001 (sin(1/5*Pi)-ln(5))/(Conway-CopelandErdos) 9567235306666549 r005 Re(z^2+c),c=-2/3+32/89*I,n=26 9567235337799515 r005 Re(z^2+c),c=-13/14+29/183*I,n=35 9567235338011688 m001 (ln(Pi)+Ei(1,1))/(Champernowne+Riemann1stZero) 9567235341008397 m005 (1/3*5^(1/2)+2/11)/(5/11*3^(1/2)+2/11) 9567235341991972 m001 1/Robbin^2/exp(ArtinRank2)*sin(1) 9567235344450295 a007 Real Root Of -257*x^4+843*x^3+490*x^2-161*x+351 9567235352307562 m001 GAMMA(11/24)*ln(KhintchineLevy)/sin(Pi/5)^2 9567235384828644 a007 Real Root Of 935*x^4-2*x^3-856*x^2+125*x+118 9567235401324832 r002 31th iterates of z^2 + 9567235402691360 a001 2207/28657*1597^(1/34) 9567235435715648 a007 Real Root Of -569*x^4+584*x^3-469*x^2-753*x+697 9567235453988649 b008 8+7*BesselJ[0,2] 9567235463762273 m001 gamma(1)+MinimumGamma^ZetaP(4) 9567235479165880 r001 49i'th iterates of 2*x^2-1 of 9567235484047610 m001 (-Mills+Riemann3rdZero)/(Si(Pi)+Kac) 9567235501524993 r005 Re(z^2+c),c=8/29+13/37*I,n=51 9567235539369207 l006 ln(3742/9741) 9567235564359316 a007 Real Root Of 700*x^4+257*x^3+304*x^2+77*x-566 9567235599979507 r005 Re(z^2+c),c=-81/110+6/37*I,n=56 9567235620283469 r009 Im(z^3+c),c=-15/58+49/50*I,n=10 9567235638119065 r002 33th iterates of z^2 + 9567235664979966 a001 7881196*1836311903^(13/17) 9567235664985653 a001 4106118243*514229^(13/17) 9567235665637369 a007 Real Root Of -96*x^4-883*x^3+290*x^2-396*x+715 9567235668471788 a008 Real Root of x^4+14*x^2-216*x+193 9567235672384617 m001 Riemann3rdZero*(BesselK(1,1)-Ei(1,1)) 9567235687517077 a001 199/55*610^(24/47) 9567235706790187 a001 15127*6557470319842^(13/17) 9567235714665492 m001 (Landau+ZetaP(2))/(2^(1/3)-Ei(1,1)) 9567235735338363 a007 Real Root Of 855*x^4+292*x^3-123*x^2-463*x-791 9567235738261247 m001 (1-exp(-1/2*Pi))/(-Conway+PlouffeB) 9567235756231395 r005 Re(z^2+c),c=-1/74+9/25*I,n=28 9567235766048070 a007 Real Root Of 291*x^4-209*x^3+494*x^2+832*x-83 9567235788081563 r009 Im(z^3+c),c=-1/5+55/58*I,n=13 9567235818967452 m005 (1/2*Catalan+7/10)/(7/12*3^(1/2)+1/5) 9567235821049867 m002 -8-Pi^6+Cosh[Pi]+ProductLog[Pi] 9567235832495143 a007 Real Root Of 332*x^4+105*x^3+369*x^2+648*x+96 9567235847209654 m001 (TreeGrowth2nd*ZetaQ(3)-sin(1))/ZetaQ(3) 9567235849215172 r005 Re(z^2+c),c=-35/38+11/63*I,n=29 9567235857673815 m005 (1/2*exp(1)-5/12)/(22/7+3*5^(1/2)) 9567235897722120 m001 OneNinth/Niven*exp(exp(1)) 9567235901428502 m005 (1/2*2^(1/2)-2)/(2/11*exp(1)+6/7) 9567235937829713 a007 Real Root Of -351*x^4+709*x^3+640*x^2-713*x-353 9567235950005696 a007 Real Root Of -835*x^4+536*x^3-16*x^2-587*x+622 9567235980534711 a001 3278735159921/682*843^(11/14) 9567235991558723 v002 sum(1/(5^n+(6+5*n)),n=1..infinity) 9567236023664095 m001 (Shi(1)+Zeta(3))/(-Bloch+CopelandErdos) 9567236026756908 a007 Real Root Of -667*x^4+537*x^3-304*x^2-570*x+762 9567236033353290 m005 (1/3*2^(1/2)+3/7)/(2/5*2^(1/2)+3/8) 9567236038244908 a007 Real Root Of 543*x^4-296*x^3+495*x^2+896*x-310 9567236044970104 a007 Real Root Of 620*x^4-801*x^3-507*x^2+605*x-178 9567236057483431 a007 Real Root Of 802*x^4+76*x^3+667*x^2+742*x-506 9567236151303074 a007 Real Root Of -673*x^4-528*x^3-600*x^2-493*x+179 9567236152927365 a007 Real Root Of 825*x^4-534*x^3-801*x^2+424*x-20 9567236155907702 m005 (1/3*exp(1)-1/11)/(4/11*3^(1/2)+2/9) 9567236178688505 r009 Re(z^3+c),c=-19/126+16/31*I,n=17 9567236239721472 m001 (TwinPrimes+ZetaQ(2))/(Backhouse-Rabbit) 9567236266161890 r005 Re(z^2+c),c=3/17+13/25*I,n=37 9567236272487169 a007 Real Root Of 685*x^4-223*x^3-546*x^2-726*x-964 9567236289158404 m001 exp(Trott)^2*HardHexagonsEntropy^2/(3^(1/3))^2 9567236298799304 a007 Real Root Of 781*x^4-339*x^3-281*x^2-483*x-44 9567236302524004 a007 Real Root Of -778*x^4-363*x^3-520*x^2-372*x+454 9567236326736373 r001 46i'th iterates of 2*x^2-1 of 9567236331847048 r005 Re(z^2+c),c=-15/16+13/98*I,n=31 9567236338938935 m001 1/2*ZetaP(2)/Pi*2^(1/2)*GAMMA(3/4)*ZetaP(4) 9567236373819591 m001 Salem/ln(Khintchine)^2/(2^(1/3)) 9567236386325420 a005 (1/cos(7/228*Pi))^979 9567236409663985 a007 Real Root Of -146*x^4+824*x^3+159*x^2-513*x-254 9567236411657196 m001 (QuadraticClass+ZetaQ(2))^Robbin 9567236423347008 r005 Im(z^2+c),c=-11/10+29/253*I,n=30 9567236434975063 r005 Re(z^2+c),c=-13/14+33/232*I,n=7 9567236478969111 a001 317811/2207*18^(19/29) 9567236481878410 p001 sum((-1)^n/(553*n+460)/n/(10^n),n=1..infinity) 9567236484753961 r005 Im(z^2+c),c=-49/122+7/45*I,n=22 9567236511113139 m005 (1/3*gamma+3/7)/(1/9*Pi+3/10) 9567236531209023 h005 exp(sin(Pi*22/59)/cos(Pi*16/35)) 9567236560310856 r002 33th iterates of z^2 + 9567236628248941 r005 Re(z^2+c),c=-5/6+40/221*I,n=27 9567236652099090 r005 Re(z^2+c),c=-16/17+5/43*I,n=9 9567236683340962 r005 Re(z^2+c),c=-21/22+5/86*I,n=19 9567236693309223 a001 19/2*21^(22/29) 9567236729088848 m001 (DuboisRaymond-exp(1))/(MinimumGamma+Salem) 9567236794351462 m001 (Si(Pi)+gamma(3))/(-Khinchin+RenyiParking) 9567236813230654 r005 Re(z^2+c),c=3/11+29/57*I,n=26 9567236844943767 m002 -Pi^6+Csch[Pi]+4*Log[Pi] 9567236860152398 m001 Riemann1stZero^2*exp(Cahen)^2*GAMMA(1/12)^2 9567236888368650 l006 ln(761/1981) 9567236895561993 a001 1322157322203/610*34^(8/19) 9567236899286410 m001 HeathBrownMoroz^FeigenbaumKappa*ZetaP(4) 9567236922134223 a007 Real Root Of 869*x^4-78*x^3+980*x^2-950*x-100 9567236931949458 p001 sum(1/(212*n+135)/(2^n),n=0..infinity) 9567236942156377 a001 4052739537881/1364*843^(6/7) 9567236972315520 m001 Shi(1)^PrimesInBinary/(Salem^PrimesInBinary) 9567236989693794 r009 Im(z^3+c),c=-33/58+10/43*I,n=55 9567237036056519 r005 Re(z^2+c),c=-17/18+23/211*I,n=15 9567237041549647 m001 (-RenyiParking+TwinPrimes)/(Catalan-gamma(3)) 9567237043068005 h001 (-5*exp(3)-12)/(-6*exp(3)+3) 9567237052518955 m001 ArtinRank2^2/ln(Backhouse)*exp(1)^2 9567237057496807 m001 (Ei(1)+MertensB1)/(1-GAMMA(3/4)) 9567237083428379 a007 Real Root Of -795*x^4+638*x^3+966*x^2+13*x+353 9567237160506383 m001 exp(BesselK(0,1))*LandauRamanujan^2*Zeta(5)^2 9567237163814180 q001 3913/4090 9567237198285683 m001 Khinchin*(Pi+BesselK(0,1)) 9567237232185681 r005 Im(z^2+c),c=-5/8+47/128*I,n=6 9567237237319742 g001 GAMMA(3/10,8/35) 9567237244847546 m001 cosh(1)^2*ln(Kolakoski)^2/log(2+sqrt(3)) 9567237254972999 a007 Real Root Of -77*x^4+944*x^3-179*x^2+377*x-959 9567237260050961 r005 Im(z^2+c),c=-12/17+4/39*I,n=46 9567237266651818 r005 Re(z^2+c),c=-17/18+44/179*I,n=21 9567237271147229 a007 Real Root Of -74*x^4-770*x^3-600*x^2+39*x+977 9567237289509809 r002 5th iterates of z^2 + 9567237303743199 s002 sum(A245955[n]/((exp(n)+1)/n),n=1..infinity) 9567237306012687 a005 (1/cos(11/179*Pi))^366 9567237328253481 r002 35th iterates of z^2 + 9567237372746635 m001 ZetaQ(4)*(exp(1)+Pi*csc(7/24*Pi)/GAMMA(17/24)) 9567237393563434 m001 exp(FeigenbaumB)^2/LandauRamanujan*Salem^2 9567237395435584 m007 (-3/5*gamma-4)/(-1/2*gamma-3/2*ln(2)+1/4*Pi-4) 9567237431316638 a007 Real Root Of -653*x^4-86*x^3+78*x^2+32*x+431 9567237435563609 r005 Im(z^2+c),c=-41/106+29/56*I,n=5 9567237445244577 a007 Real Root Of -609*x^4-310*x^3+198*x^2-11*x+47 9567237452438881 h001 (1/8*exp(2)+4/5)/(2/5*exp(1)+5/7) 9567237460078964 p003 LerchPhi(1/512,5,331/207) 9567237466114203 r005 Re(z^2+c),c=-21/22+5/86*I,n=21 9567237481228730 r005 Re(z^2+c),c=-21/22+5/86*I,n=29 9567237481514429 r005 Re(z^2+c),c=-21/22+5/86*I,n=31 9567237481704720 r002 45th iterates of z^2 + 9567237481962161 r002 47th iterates of z^2 + 9567237481992681 r005 Re(z^2+c),c=-21/22+5/86*I,n=33 9567237482114014 r002 49th iterates of z^2 + 9567237482140836 r005 Re(z^2+c),c=-21/22+5/86*I,n=43 9567237482140916 r005 Re(z^2+c),c=-21/22+5/86*I,n=45 9567237482140949 r002 59th iterates of z^2 + 9567237482141005 r002 61th iterates of z^2 + 9567237482141013 r005 Re(z^2+c),c=-21/22+5/86*I,n=47 9567237482141035 r002 63th iterates of z^2 + 9567237482141040 r005 Re(z^2+c),c=-21/22+5/86*I,n=57 9567237482141040 r005 Re(z^2+c),c=-21/22+5/86*I,n=59 9567237482141040 r005 Re(z^2+c),c=-21/22+5/86*I,n=61 9567237482141040 r005 Re(z^2+c),c=-21/22+5/86*I,n=63 9567237482141040 r005 Re(z^2+c),c=-21/22+5/86*I,n=55 9567237482141041 r005 Re(z^2+c),c=-21/22+5/86*I,n=49 9567237482141041 r005 Re(z^2+c),c=-21/22+5/86*I,n=53 9567237482141043 r005 Re(z^2+c),c=-21/22+5/86*I,n=51 9567237482141058 r002 57th iterates of z^2 + 9567237482141613 r005 Re(z^2+c),c=-21/22+5/86*I,n=41 9567237482141695 r005 Re(z^2+c),c=-21/22+5/86*I,n=35 9567237482142156 r002 55th iterates of z^2 + 9567237482145490 r002 53th iterates of z^2 + 9567237482145771 r005 Re(z^2+c),c=-21/22+5/86*I,n=39 9567237482146800 r002 51th iterates of z^2 + 9567237482154206 r005 Re(z^2+c),c=-21/22+5/86*I,n=37 9567237482373046 r002 43th iterates of z^2 + 9567237485524773 r005 Re(z^2+c),c=-21/22+5/86*I,n=27 9567237488116245 r002 41th iterates of z^2 + 9567237504412904 r002 39th iterates of z^2 + 9567237506511319 r002 37th iterates of z^2 + 9567237506730556 r005 Re(z^2+c),c=-21/22+5/86*I,n=25 9567237526332500 a007 Real Root Of 730*x^4+435*x^3+459*x^2+952*x+260 9567237531789287 r005 Im(z^2+c),c=-3/5+9/85*I,n=11 9567237545921577 r005 Re(z^2+c),c=-21/22+5/86*I,n=23 9567237576799974 m002 6/Pi^2-E^Pi/Pi^2+Pi^4 9567237606399899 a001 7/6765*20365011074^(17/22) 9567237619759902 m001 (arctan(1/3)-exp(1/Pi))/(Kac+Weierstrass) 9567237619783464 m001 (Paris-Riemann2ndZero)/(BesselI(1,2)+Gompertz) 9567237628218247 a005 (1/cos(5/73*Pi))^985 9567237635801271 a003 cos(Pi*18/89)/sin(Pi*7/22) 9567237638805061 a007 Real Root Of 813*x^4+992*x^3-289*x^2-876*x-386 9567237695498975 m002 -4+Pi^6-(E^Pi*Sech[Pi])/3 9567237697486087 m001 (-Zeta(1,2)+Trott2nd)/(Psi(1,1/3)+gamma(2)) 9567237721894383 m001 1/FeigenbaumB^2*ln(Champernowne)^2/TwinPrimes 9567237738494656 a007 Real Root Of -361*x^4+901*x^3+975*x^2+301*x+487 9567237741997035 m002 -5+Pi^6+Coth[Pi]/3 9567237747549142 a001 11/7778742049*7778742049^(19/24) 9567237747821027 a001 1/75640*75025^(19/24) 9567237761515969 m001 GAMMA(7/12)/exp(Champernowne)*sin(1)^2 9567237763602258 r005 Im(z^2+c),c=-9/74+43/53*I,n=33 9567237781895883 h001 (8/9*exp(1)+1/10)/(7/10*exp(1)+8/11) 9567237787532961 a007 Real Root Of -665*x^4+141*x^3-656*x^2-345*x+951 9567237791846232 a007 Real Root Of 476*x^4-391*x^3-687*x^2-725*x-806 9567237819239882 m006 (exp(2*Pi)-5/6)/(3/5*Pi^2-1/3) 9567237832051365 m001 (GolombDickman+Niven)/(Riemann3rdZero-Robbin) 9567237849232309 r005 Im(z^2+c),c=-81/82+31/54*I,n=3 9567237873947139 q001 3294/3443 9567237903778140 a001 2504730781961/1364*843^(13/14) 9567237921786248 m001 (Ei(1)-Ei(1,1))/((1+3^(1/2))^(1/2)+Paris) 9567237927390206 a007 Real Root Of 619*x^4-626*x^3-357*x^2+577*x-188 9567237940899185 a001 3/199*24476^(23/56) 9567237946584556 a001 3/199*64079^(3/8) 9567237947458304 a001 3/199*4106118243^(3/16) 9567237969440074 m001 (Pi+Psi(2,1/3)/sin(1/5*Pi))*GAMMA(11/12) 9567237971915701 r002 4th iterates of z^2 + 9567237980508509 r002 33th iterates of z^2 + 9567238000609094 a007 Real Root Of -40*x^4+492*x^3+393*x^2-68*x-692 9567238000739053 m001 Conway^(ln(gamma)*GaussKuzminWirsing) 9567238007315742 m002 -3+Pi^4+Log[Pi]+Sinh[Pi]/Pi^4 9567238014985440 m001 cos(1/5*Pi)^ZetaQ(2)*Landau^ZetaQ(2) 9567238029034519 a007 Real Root Of -427*x^4+805*x^3+231*x^2-387*x+481 9567238067681997 m001 PisotVijayaraghavan-ThueMorse^GAMMA(5/6) 9567238084773349 a001 3/199*5778^(23/48) 9567238106050613 r002 8th iterates of z^2 + 9567238110946906 m001 Salem^Rabbit+Zeta(1,-1) 9567238156598085 a001 416020/2889*18^(19/29) 9567238185147071 m001 (GolombDickman-Robbin)/(Pi+BesselJ(0,1)) 9567238193424299 l006 ln(3868/10069) 9567238199759565 l006 ln(9034/9941) 9567238206196951 m001 1/(3^(1/3))/ln(MertensB1)/cos(1) 9567238226415826 m005 (1/3*exp(1)+2/3)/(6/7*5^(1/2)-3/11) 9567238227112180 a007 Real Root Of 669*x^4+233*x^3+740*x^2+51*x-985 9567238238464654 m001 Riemann1stZero^2*Si(Pi)^2/ln(BesselJ(0,1))^2 9567238239118587 a007 Real Root Of 881*x^4+192*x^3-629*x^2-537*x-508 9567238293244260 r009 Im(z^3+c),c=-31/52+33/50*I,n=14 9567238324521103 r005 Re(z^2+c),c=-11/10+12/145*I,n=46 9567238343092735 r009 Im(z^3+c),c=-17/110+43/46*I,n=59 9567238371164570 a003 sin(Pi*29/82)/sin(Pi*39/101) 9567238379721382 r002 25th iterates of z^2 + 9567238388605454 m001 (TravellingSalesman+ThueMorse)/(Sarnak-sin(1)) 9567238401360903 a001 311187/2161*18^(19/29) 9567238461953792 m002 -2/E^Pi+Pi^6-4*Log[Pi] 9567238467444609 b008 Sqrt[(-7/13)!!] 9567238513072599 l006 ln(3107/8088) 9567238516787321 a007 Real Root Of -836*x^4+7*x^3-96*x^2-314*x+494 9567238536946443 a007 Real Root Of -835*x^4+731*x^3+339*x^2-799*x+265 9567238552632650 a001 1346269/9349*18^(19/29) 9567238568085051 m001 (exp(1)+KhinchinHarmonic)/(-Landau+ZetaP(4)) 9567238602562486 a007 Real Root Of -516*x^4-35*x^3-257*x^2-788*x-117 9567238636705818 m005 (1/2*5^(1/2)+2/11)/(1/9*gamma-1/5) 9567238662166721 r009 Im(z^3+c),c=-23/70+32/43*I,n=25 9567238662515850 r005 Im(z^2+c),c=-3/31+4/35*I,n=5 9567238692483589 m001 (5^(1/2)+ln(5))/(-KhinchinHarmonic+Niven) 9567238724204082 b008 Sqrt[6]*ProductLog[EulerGamma] 9567238731459255 a007 Real Root Of 37*x^4-689*x^3+35*x^2+37*x-631 9567238740894561 a007 Real Root Of -66*x^4-654*x^3-209*x^2-11*x-733 9567238740926323 a007 Real Root Of -524*x^4+546*x^3+841*x^2+771*x+885 9567238780854595 m005 (1/2*3^(1/2)+4/9)/(8/9*Catalan+5/9) 9567238791211200 m001 (Conway+MasserGramainDelta)/(exp(1)-ln(gamma)) 9567238795095614 r005 Im(z^2+c),c=-7/8+58/251*I,n=47 9567238816608338 r002 40th iterates of z^2 + 9567238825804002 r005 Im(z^2+c),c=-25/46+8/45*I,n=13 9567238851989301 m001 (2^(1/3)-BesselJ(1,1))/(-MertensB3+PlouffeB) 9567238865416180 a001 360684905226190/377 9567238869968702 m001 (Shi(1)+3^(1/3))/(-Kolakoski+Magata) 9567238898427334 r008 a(0)=1,K{-n^6,42-98*n^3-6*n^2+85*n} 9567238912732474 q001 2675/2796 9567238913645817 s002 sum(A066462[n]/(exp(n)-1),n=1..infinity) 9567238946714261 a001 832040^(39/58) 9567238965713823 s001 sum(exp(-4*Pi/5)^n*A032799[n],n=1..infinity) 9567238968604672 m005 (1/2*gamma+3/7)/(37/112+3/16*5^(1/2)) 9567238986328908 m001 Ei(1)*Landau+gamma(1) 9567239007453744 r008 a(0)=1,K{-n^6,8+3*n^3+9*n^2+4*n} 9567239040097139 l006 ln(2346/6107) 9567239070886850 a007 Real Root Of -288*x^4-713*x^3-845*x^2+609*x+973 9567239091372440 m001 (Pi+sin(1))/(FeigenbaumKappa+FransenRobinson) 9567239111850394 m002 ProductLog[Pi]/E^Pi+Tanh[Pi]-Sech[Pi]*Tanh[Pi] 9567239139194937 a003 cos(Pi*3/106)*sin(Pi*16/39) 9567239141756577 r009 Im(z^3+c),c=-11/58+51/55*I,n=59 9567239179165842 m001 (-Riemann3rdZero+Salem)/(Mills-Shi(1)) 9567239191232016 r005 Im(z^2+c),c=-53/110+7/22*I,n=4 9567239193430106 a001 514229/3571*18^(19/29) 9567239229992209 p004 log(22447/8623) 9567239273197969 a007 Real Root Of 880*x^4-322*x^3+351*x^2+473*x-888 9567239279915418 r005 Re(z^2+c),c=-11/10+12/145*I,n=52 9567239323524966 r009 Re(z^3+c),c=-7/102+3/4*I,n=42 9567239359682905 a007 Real Root Of -219*x^4-161*x^3+668*x^2+392*x-662 9567239365644380 a007 Real Root Of -672*x^4-84*x^3-221*x^2+242*x-21 9567239377562158 r002 29th iterates of z^2 + 9567239433725093 a005 (1/cos(51/143*Pi))^83 9567239463898076 a007 Real Root Of 251*x^4-792*x^3-442*x^2+512*x+398 9567239487068020 a007 Real Root Of -157*x^4+26*x^3-403*x^2+189*x+704 9567239492901370 l006 ln(7779/8560) 9567239503346604 r005 Re(z^2+c),c=-11/10+12/145*I,n=56 9567239512587347 r005 Re(z^2+c),c=-29/31+5/36*I,n=35 9567239520280472 r005 Re(z^2+c),c=-11/10+12/145*I,n=58 9567239520850007 r005 Re(z^2+c),c=-11/10+12/145*I,n=62 9567239534011838 r005 Re(z^2+c),c=-11/10+12/145*I,n=64 9567239545953631 r005 Re(z^2+c),c=-11/10+12/145*I,n=60 9567239548847607 a003 cos(Pi*1/75)-cos(Pi*11/78) 9567239553159810 a001 1/532*(1/2*5^(1/2)+1/2)^12*7^(4/17) 9567239556183972 r005 Re(z^2+c),c=-11/10+12/145*I,n=48 9567239562630732 m001 1/Robbin^2*Rabbit^2*ln(Zeta(7)) 9567239564236820 m001 ln(2)/ln(10)+ln(gamma)^Artin 9567239584369473 r005 Im(z^2+c),c=-113/122+5/61*I,n=9 9567239585989347 m001 (1/2+FeigenbaumDelta)/cos(1) 9567239585989347 m001 (FeigenbaumDelta+1/2)/cos(1) 9567239607152138 m001 Artin-OneNinth*Sierpinski 9567239618201928 a007 Real Root Of 530*x^4-336*x^3-200*x^2-444*x-980 9567239618861048 r005 Re(z^2+c),c=-13/14+22/139*I,n=43 9567239628784509 p001 sum(1/(463*n+433)/n/(12^n),n=1..infinity) 9567239631437687 m001 FeigenbaumC*Magata*exp(Zeta(1,2))^2 9567239638394034 a007 Real Root Of 475*x^4+415*x^3-54*x^2-511*x-474 9567239648800747 b008 Coth[3]-Sin[2] 9567239648831049 r005 Re(z^2+c),c=-11/10+12/145*I,n=54 9567239655539221 b008 E^2+Cosh[Sqrt[2]] 9567239668003387 m001 gamma+FellerTornier*Salem 9567239669421487 r002 2th iterates of z^2 + 9567239709909751 r005 Re(z^2+c),c=31/114+8/23*I,n=42 9567239741447167 a003 sin(Pi*4/77)+sin(Pi*26/89) 9567239759564090 r002 3th iterates of z^2 + 9567239761168216 a001 233/9349*11^(23/41) 9567239777270194 a007 Real Root Of 998*x^4-211*x^3-661*x^2+72*x-347 9567239779043055 r009 Im(z^3+c),c=-17/110+43/46*I,n=45 9567239785229203 r005 Im(z^2+c),c=-7/10+56/123*I,n=11 9567239788385153 a007 Real Root Of -654*x^4+653*x^3+614*x^2+110*x+663 9567239793176935 r009 Im(z^3+c),c=-17/110+43/46*I,n=61 9567239826228959 a007 Real Root Of -402*x^4+245*x^3+839*x^2+841*x+588 9567239834254332 m001 (-Bloch+FeigenbaumAlpha)/(Chi(1)+GAMMA(17/24)) 9567239835023124 r005 Re(z^2+c),c=-11/10+12/145*I,n=50 9567239837227476 p004 log(26737/10271) 9567239859208461 m001 (2^(1/3)-Ei(1))/(-Cahen+Rabbit) 9567239859495893 m002 -2-5/Pi+Pi^6-ProductLog[Pi] 9567239869288304 m005 (19/44+1/4*5^(1/2))/(5/6*2^(1/2)-1/7) 9567239913929792 a001 29/5702887*46368^(1/17) 9567239913982062 a001 29/9227465*165580141^(1/17) 9567239913982093 a001 29/14930352*591286729879^(1/17) 9567239914035008 h001 (-9*exp(1/3)+4)/(-exp(2/3)-7) 9567239922062359 v005 sum((13+7*n)/(exp(Pi*n)-1),n=1..infinity) 9567239932888042 r005 Re(z^2+c),c=11/106+22/41*I,n=56 9567239969646409 m001 1/GAMMA(1/24)/ln(MinimumGamma)/GAMMA(19/24) 9567239970265996 m005 (25/36+1/4*5^(1/2))/(7/11*Catalan+8/11) 9567239971432691 m001 1/Catalan/ln((3^(1/3)))^2*sinh(1) 9567240010979590 m001 Zeta(1/2)/Magata^2/ln(Zeta(5))^2 9567240021461163 m002 -1-(7*Pi)/6+Pi^6 9567240034972763 a003 cos(Pi*6/37)/sin(Pi*15/41) 9567240042025246 a007 Real Root Of 550*x^4-167*x^3-98*x^2+385*x-149 9567240051067193 a007 Real Root Of -636*x^4+109*x^3+474*x^2+195*x+381 9567240052336564 r005 Re(z^2+c),c=-9/94+43/52*I,n=7 9567240072935727 m002 -Pi^6+4*Log[Pi]+Sech[Pi] 9567240073198161 l006 ln(1585/4126) 9567240074672944 m001 (Pi^(1/2)+5)/(exp(-1/2*Pi)+1/2) 9567240102273753 m001 (MertensB3-Niven)/(ln(2)-GaussKuzminWirsing) 9567240161606184 r005 Re(z^2+c),c=-13/66+42/47*I,n=2 9567240220880338 r002 8th iterates of z^2 + 9567240238723294 a007 Real Root Of 88*x^4+945*x^3+927*x^2-623*x-540 9567240259484946 m005 (1/3*Catalan-1/9)/(6/7*exp(1)-3/10) 9567240306046376 r005 Im(z^2+c),c=-55/114+1/61*I,n=28 9567240306771056 p003 LerchPhi(1/512,4,401/223) 9567240309670086 p004 log(15739/14303) 9567240322715851 m001 (5^(1/2)-Si(Pi))/(-GAMMA(23/24)+GolombDickman) 9567240366860400 a007 Real Root Of -967*x^4-936*x^3-24*x^2+265*x+266 9567240388905879 m001 cos(Pi/12)^ln(5)/cos(Pi/12)^(1/3) 9567240397631796 r005 Re(z^2+c),c=-67/48+2/25*I,n=7 9567240464301888 r005 Re(z^2+c),c=-31/34+20/99*I,n=47 9567240473367999 m001 cos(1/12*Pi)*Zeta(1,2)^ZetaR(2) 9567240497630129 m001 BesselI(0,2)^OneNinth/(BesselI(0,2)^Otter) 9567240506973086 a007 Real Root Of -795*x^4+11*x^3+837*x^2+406*x+298 9567240577012563 q001 2056/2149 9567240577960825 a001 1364*1597^(34/59) 9567240585179288 m001 1-ZetaQ(3)^LaplaceLimit 9567240592029123 m001 (Pi+exp(Pi))*(cos(1/12*Pi)-BesselK(1,1)) 9567240601689141 a007 Real Root Of -392*x^4-158*x^3-823*x^2-107*x+841 9567240604461686 r005 Im(z^2+c),c=-73/94+2/53*I,n=33 9567240608795709 m001 Pi^gamma*Pi^Magata 9567240609128316 p004 log(35317/13567) 9567240629494612 r009 Im(z^3+c),c=-6/31+29/31*I,n=31 9567240637862244 a007 Real Root Of -652*x^4-988*x^3-845*x^2+543*x+974 9567240642326176 m001 1/sinh(1)*Robbin/exp(sqrt(Pi)) 9567240643606379 m001 1/GAMMA(5/24)*exp(GAMMA(1/24))*exp(1) 9567240677949893 a007 Real Root Of -626*x^4-828*x^3-559*x^2+625*x+909 9567240695270198 m002 -Pi^6+Pi^2*Coth[Pi]-6/Log[Pi] 9567240703206128 r001 37i'th iterates of 2*x^2-1 of 9567240712615487 b008 13*EulerGamma+ArcCosh[4] 9567240725582937 a007 Real Root Of 91*x^4+861*x^3-79*x^2+57*x-647 9567240748176476 m001 (Niven-OneNinth)/(HardyLittlewoodC3+MertensB2) 9567240755107150 r005 Re(z^2+c),c=11/114+35/62*I,n=33 9567240774003486 a007 Real Root Of 731*x^4+603*x^3+45*x^2-799*x-890 9567240775698490 m001 (Shi(1)+ln(3))/(BesselI(1,2)+LaplaceLimit) 9567240779779190 m005 (1/2*5^(1/2)+4/5)/(11/12*Pi-7/8) 9567240787263151 m002 11+Pi^4-Cosh[Pi]-Log[Pi] 9567240814200974 r005 Re(z^2+c),c=-15/16+11/87*I,n=9 9567240864566919 m005 (1/2*2^(1/2)+7/9)/(3/4*5^(1/2)-1/8) 9567240893607727 h001 (7/10*exp(2)+5/7)/(5/7*exp(2)+7/8) 9567240894439055 r009 Im(z^3+c),c=-1/7+52/63*I,n=21 9567240913584809 m001 (ln(5)+BesselI(1,1))/(Si(Pi)+BesselK(0,1)) 9567240950872036 m002 -Pi^3/6-Pi^6+Pi^2*Tanh[Pi] 9567240979341591 r005 Re(z^2+c),c=-31/34+21/106*I,n=59 9567240992244750 a007 Real Root Of -871*x^4+588*x^3+204*x^2-926*x+172 9567241007753546 m001 (CopelandErdos-Mills)/(gamma(2)+GAMMA(5/6)) 9567241011039002 m001 1/exp(TwinPrimes)*Cahen^2/sqrt(5) 9567241012262707 m002 -6+Pi^6+(Pi^3*Tanh[Pi])/E^Pi 9567241012827783 a007 Real Root Of 874*x^4-58*x^3-94*x^2-702*x+68 9567241034334977 r009 Im(z^3+c),c=-7/38+43/47*I,n=31 9567241079195978 m002 -6/Pi+Pi^4+2*Csch[Pi] 9567241079281494 l006 ln(2409/6271) 9567241090860158 m009 (3/10*Pi^2-1/4)/(4/5*Psi(1,3/4)+4/5) 9567241138461906 m001 (Gompertz+Niven)/(exp(Pi)+Catalan) 9567241143352795 a007 Real Root Of 357*x^4-314*x^3-346*x^2-101*x-354 9567241170737922 r009 Im(z^3+c),c=-4/29+59/63*I,n=3 9567241182408822 m001 (GAMMA(3/4)+ln(3))/(Si(Pi)+gamma) 9567241192373718 a001 47/196418*233^(15/59) 9567241237046203 r005 Re(z^2+c),c=-2/3+71/162*I,n=18 9567241242141275 m001 BesselI(0,1)*Zeta(3)-BesselI(1,1) 9567241280511658 r005 Re(z^2+c),c=3/23+9/53*I,n=8 9567241283557852 l006 ln(6524/7179) 9567241287609285 a001 3461452808002/1597*34^(8/19) 9567241333991539 r002 6th iterates of z^2 + 9567241357534183 m002 -E^Pi/5+Pi^6-Log[Pi]/Pi^3 9567241378759671 r009 Im(z^3+c),c=-17/110+43/46*I,n=63 9567241379483315 m004 -6-125*Pi-Cosh[Sqrt[5]*Pi]+3*Sec[Sqrt[5]*Pi] 9567241387571529 r005 Im(z^2+c),c=-7/10+2/227*I,n=51 9567241389998101 m001 Bloch^3*exp(Magata)^2 9567241393067172 a007 Real Root Of -531*x^4-207*x^3+150*x^2+839*x+929 9567241403835327 r009 Im(z^3+c),c=-17/110+43/46*I,n=55 9567241415280486 a007 Real Root Of 676*x^4-551*x^3-303*x^2+496*x-297 9567241415389141 m001 (Kolakoski+Totient)/(FeigenbaumB-exp(Pi)) 9567241417261344 a007 Real Root Of 882*x^4-422*x^3+398*x^2+721*x-783 9567241455846624 a007 Real Root Of -640*x^4+865*x^3+837*x^2+429*x+938 9567241456874715 m001 1/GAMMA(5/12)*GAMMA(11/12)^2*ln(sin(Pi/12))^2 9567241461851643 m005 (31/44+1/4*5^(1/2))/(7/10*gamma+11/12) 9567241473067860 m001 (Cahen+Thue)/(ln(3)+Bloch) 9567241487213458 a003 cos(Pi*29/90)*cos(Pi*43/87) 9567241494459753 r009 Re(z^3+c),c=-31/60+18/41*I,n=41 9567241542042947 a001 28374454999/5*377^(10/21) 9567241562659641 a007 Real Root Of -666*x^4-624*x^3-596*x^2-784*x-193 9567241566107997 h001 (5/12*exp(2)+1/12)/(8/9*exp(1)+8/9) 9567241571918401 r005 Re(z^2+c),c=-17/19+13/61*I,n=17 9567241572293255 m005 (1/2*Zeta(3)+10/11)/(1/5*2^(1/2)-1/8) 9567241572520580 l006 ln(3233/8416) 9567241575178395 m001 ln(GAMMA(1/24))^2*ArtinRank2*GAMMA(19/24)^2 9567241617329620 m001 (Grothendieck-Zeta(3))^StolarskyHarborth 9567241619881555 m001 GAMMA(13/24)/(BesselI(1,2)+Champernowne) 9567241634166446 m001 (Magata-Trott)/(GAMMA(7/12)-GAMMA(19/24)) 9567241644022563 r008 a(0)=0,K{-n^6,87-73*n^3+97*n^2-7*n} 9567241666758004 a007 Real Root Of -390*x^4+485*x^3+558*x^2+109*x+345 9567241676488844 m005 (1/2*Catalan-4)/(8/9*gamma-1/7) 9567241676886718 m001 1/GAMMA(11/12)/RenyiParking*ln(GAMMA(5/12)) 9567241692518360 m002 -5+Pi^3/(4*E^Pi)+Pi^6 9567241738257372 a007 Real Root Of 817*x^4-191*x^3+582*x^2+821*x-599 9567241741815615 m001 (ln(5)+MasserGramainDelta)^FeigenbaumC 9567241764199381 q001 3/31357 9567241774641307 r005 Im(z^2+c),c=-31/50+7/41*I,n=28 9567241781006792 m001 Pi^2/ln(Robbin)^2*sqrt(1+sqrt(3)) 9567241785803879 a007 Real Root Of 334*x^4-652*x^3-418*x^2+422*x+270 9567241834642726 r005 Re(z^2+c),c=11/62+19/45*I,n=5 9567241839368873 a007 Real Root Of 880*x^4+224*x^3-360*x^2-684*x-866 9567241841933327 a007 Real Root Of 615*x^4-384*x^3+658*x^2+559*x-919 9567241851547521 q001 3493/3651 9567241926826364 m001 (-HeathBrownMoroz+Paris)/(gamma+BesselJ(1,1)) 9567241928400686 a001 9062201101803/4181*34^(8/19) 9567241929352781 a003 cos(Pi*17/120)+cos(Pi*14/29) 9567241974890051 a003 sin(Pi*1/51)+sin(Pi*6/17) 9567242004958093 m001 Psi(1,1/3)^ln(Pi)/(OrthogonalArrays^ln(Pi)) 9567242018412353 h001 (-5*exp(2/3)-8)/(-7*exp(1/2)-7) 9567242021890899 a001 23725150497407/10946*34^(8/19) 9567242043469347 a001 233/843*14662949395604^(20/21) 9567242048950018 m001 (2^(1/3)-ln(5))/(ArtinRank2+Otter) 9567242079671029 a001 14662949395604/6765*34^(8/19) 9567242099193432 r002 11th iterates of z^2 + 9567242116411392 m001 (cos(1)+Ei(1,1))/(-GAMMA(11/12)+MertensB1) 9567242125718274 a007 Real Root Of -151*x^4+716*x^3+853*x^2+595*x+542 9567242137029641 m003 -1/2+Sqrt[5]/8+96*Sin[1/2+Sqrt[5]/2] 9567242147867145 a007 Real Root Of 863*x^4-222*x^3+241*x^2+161*x-984 9567242164719313 a003 sin(Pi*8/35)/cos(Pi*15/58) 9567242190808864 a001 34/39603*2^(5/32) 9567242222364302 a001 1548008755920/199*199^(10/11) 9567242240597037 a007 Real Root Of -131*x^4+504*x^3-65*x^2+222*x+823 9567242253020695 r005 Im(z^2+c),c=-7/6+30/247*I,n=25 9567242262073645 g002 Psi(5/11)+Psi(1/10)-Psi(7/11)-Psi(4/7) 9567242271771358 m001 GAMMA(5/6)*MinimumGamma-ln(2) 9567242301772494 m001 (PlouffeB+Tribonacci)/(exp(Pi)+GAMMA(11/12)) 9567242319728430 a007 Real Root Of -260*x^4+455*x^3-181*x^2+923*x-898 9567242319882817 a007 Real Root Of -928*x^4-112*x^3+725*x^2+758*x+741 9567242324431595 a001 5600748293801/2584*34^(8/19) 9567242329219204 r005 Re(z^2+c),c=-10/11+3/56*I,n=24 9567242496583474 p004 log(23431/9001) 9567242504063119 m001 (FeigenbaumDelta+StronglyCareFree)^MertensB3 9567242521584206 a007 Real Root Of -527*x^4-307*x^3-347*x^2+446*x+917 9567242573173934 r001 47i'th iterates of 2*x^2-1 of 9567242594585038 m005 (1/2*2^(1/2)+7/8)/(3/5*gamma-2) 9567242615826347 a007 Real Root Of 804*x^4-107*x^3-925*x^2-107*x-23 9567242640581032 m001 (Trott+ZetaP(3))/(Magata-Porter) 9567242647643737 r005 Im(z^2+c),c=-59/102+19/60*I,n=6 9567242663045423 r005 Re(z^2+c),c=-115/122+3/26*I,n=17 9567242664418095 r008 a(0)=1,K{-n^6,23+9*n^3-2*n^2-6*n} 9567242669031886 a007 Real Root Of -291*x^4+764*x^3+406*x^2-41*x+502 9567242732864222 m001 (-MinimumGamma+Tribonacci)/(cos(1)+Magata) 9567242742317424 r005 Im(z^2+c),c=7/32+1/26*I,n=27 9567242761158279 m001 Zeta(1,2)^(Rabbit/MertensB2) 9567242786589831 a007 Real Root Of 846*x^4-694*x^3-724*x^2+928*x+234 9567242793361413 a007 Real Root Of x^4+957*x^3+264*x^2+203*x+765 9567242796642829 a007 Real Root Of -626*x^4+949*x^3+592*x^2-632*x+209 9567242826808721 m001 (OneNinth+ZetaQ(2))/(Kac-Kolakoski) 9567242849085839 m001 (Gompertz+MertensB3)/(Mills+Rabbit) 9567242873177093 m005 (2/5*Pi-5)/(2/5*exp(1)-5) 9567242937172444 m001 (Pi*2^(1/2)/GAMMA(3/4)+Artin)/(Bloch-ZetaQ(2)) 9567242956299629 a007 Real Root Of -318*x^4-322*x^3-458*x^2-54*x+352 9567242961483333 m001 AlladiGrinstead/(Pi-UniversalParabolic) 9567242964866358 r005 Re(z^2+c),c=23/114+14/51*I,n=35 9567242991826366 a007 Real Root Of -570*x^4+426*x^3+933*x^2+846*x+806 9567243013857743 r005 Re(z^2+c),c=-11/10+12/145*I,n=44 9567243014526456 l006 ln(824/2145) 9567243021571196 r009 Im(z^3+c),c=-57/82+24/49*I,n=5 9567243031299546 m001 GAMMA(2/3)^ReciprocalLucas/Ei(1) 9567243075670832 a007 Real Root Of 805*x^4-19*x^3-46*x^2-346*x-980 9567243118901852 r005 Im(z^2+c),c=-19/26+3/44*I,n=30 9567243175086100 a001 7/144*17711^(27/50) 9567243188045165 a007 Real Root Of 404*x^4+325*x^3+250*x^2-617*x-873 9567243194516258 m001 Pi*2^(1/2)/GAMMA(3/4)*(Sierpinski+ZetaQ(2)) 9567243198658950 m001 (OneNinth-Weierstrass)/(Pi+ArtinRank2) 9567243208635713 r005 Im(z^2+c),c=-11/14+2/49*I,n=31 9567243211285418 m005 (1/2*2^(1/2)-7/10)/(5/11*2^(1/2)+1/10) 9567243228761643 m001 arctan(1/2)^(ZetaP(4)/MertensB3) 9567243240468465 a007 Real Root Of 163*x^4-461*x^3-51*x^2-458*x+752 9567243277751867 m001 (BesselJ(0,1)-Ei(1))/((1+3^(1/2))^(1/2)-Bloch) 9567243288893979 m002 -Pi^6+4*Log[Pi]+Sech[Pi]*Tanh[Pi] 9567243298541257 a007 Real Root Of -54*x^4+657*x^3-94*x^2-933*x-186 9567243318861839 a007 Real Root Of -905*x^4+144*x^3+584*x^2+249*x+588 9567243330080269 m005 (1/3*2^(1/2)+3)/(2*2^(1/2)+4/5) 9567243345846517 p004 log(36629/14071) 9567243347707429 a007 Real Root Of -538*x^4+715*x^3+895*x^2-701*x-413 9567243355304224 r009 Im(z^3+c),c=-17/110+43/46*I,n=57 9567243360141848 m001 ReciprocalLucas^(exp(1/exp(1))*Riemann1stZero) 9567243367274482 a001 969323029*1836311903^(11/17) 9567243367274885 a001 4870847*6557470319842^(11/17) 9567243367279164 a001 192900153618*514229^(11/17) 9567243376472498 a001 7/6765*121393^(42/43) 9567243389991614 m001 1/GAMMA(1/12)^2/Artin^2/exp(sqrt(3)) 9567243391655396 s001 sum(exp(-3*Pi/4)^n*A267445[n],n=1..infinity) 9567243404512917 m001 cos(1)*BesselJ(0,1)/exp(-Pi) 9567243404512917 m001 exp(Pi)*BesselJ(0,1)*cos(1) 9567243404512917 m001 exp(Pi)*cos(1)*BesselJ(0,1) 9567243483727360 m001 ln(2^(1/2)+1)^(MertensB1*Totient) 9567243547073469 m002 -2+Pi^6-Pi^3*Sech[Pi]*Tanh[Pi] 9567243569784305 m002 6+Pi^4/Log[Pi]+4*Log[Pi] 9567243585523519 a001 98209/682*18^(19/29) 9567243601236745 a001 7/13*5^(5/14) 9567243624578316 a003 cos(Pi*1/99)*cos(Pi*10/107) 9567243640563824 r009 Im(z^3+c),c=-9/44+23/24*I,n=41 9567243645745147 m001 1/BesselK(1,1)^2/exp(Conway)^2/GAMMA(5/12) 9567243647590745 a007 Real Root Of 713*x^4-574*x^3-758*x^2-490*x-875 9567243668445176 r005 Re(z^2+c),c=-15/16+17/128*I,n=23 9567243675099866 q001 1437/1502 9567243701998264 a007 Real Root Of 166*x^4-779*x^3+180*x^2+924*x-102 9567243708791648 h001 (8/9*exp(2)+5/12)/(10/11*exp(2)+7/12) 9567243713411620 r005 Im(z^2+c),c=-7/10+10/77*I,n=57 9567243717424070 m001 GlaisherKinkelin-MertensB3^Gompertz 9567243722248418 m001 Pi^(1/2)*(Psi(2,1/3)+ln(Pi)) 9567243724891471 r009 Im(z^3+c),c=-23/56+5/8*I,n=7 9567243737044236 a007 Real Root Of -715*x^4-3*x^3-364*x^2-749*x+213 9567243740324611 a007 Real Root Of -897*x^4+295*x^3+296*x^2-25*x+715 9567243765630075 a007 Real Root Of -55*x^4-467*x^3+600*x^2+225*x-926 9567243766137063 m001 Paris^2/ln(Bloch)/GAMMA(2/3) 9567243767391054 m001 1/ln(KhintchineHarmonic)^2*Artin/(2^(1/3)) 9567243770475580 m001 1/GAMMA(1/4)*GaussKuzminWirsing/exp(sqrt(5))^2 9567243796993771 a007 Real Root Of 170*x^4-796*x^3-702*x^2-91*x-284 9567243800596851 a007 Real Root Of -683*x^4+x^3-624*x^2-225*x+929 9567243803876698 r005 Re(z^2+c),c=-13/14+35/219*I,n=23 9567243848883793 m001 GAMMA(1/24)*TwinPrimes^2*exp(sqrt(5)) 9567243852354518 m001 Catalan^(exp(-1/2*Pi)/ThueMorse) 9567243926142752 a007 Real Root Of -966*x^4-479*x^3+216*x^2-112*x+85 9567243927231502 l006 ln(5269/5798) 9567243958240533 a007 Real Root Of -327*x^4+865*x^3-49*x^2+108*x-542 9567244002045808 a001 2139295485799/987*34^(8/19) 9567244009754274 r005 Re(z^2+c),c=-11/10+12/145*I,n=40 9567244021611423 h001 (1/5*exp(1)+5/7)/(1/6*exp(2)+1/12) 9567244033789731 a007 Real Root Of 514*x^4-877*x^3-943*x^2+682*x+317 9567244034216018 a007 Real Root Of -266*x^4+856*x^3+65*x^2+75*x-658 9567244055508645 a008 Real Root of (-5+9*x^2+2*x^4-7*x^8) 9567244070860757 g002 -Psi(4/11)-Psi(8/9)-Psi(2/9)-Psi(5/7) 9567244072448946 a007 Real Root Of 813*x^4+400*x^3-534*x^2-695*x-507 9567244073573488 m001 (2^(1/2)+ln(2^(1/2)+1))/(Bloch+Tetranacci) 9567244136674920 m001 (Psi(2,1/3)+Chi(1))/(2*Pi/GAMMA(5/6)+OneNinth) 9567244145523207 a007 Real Root Of 515*x^4-352*x^3+859*x^2+786*x-774 9567244168113765 r009 Re(z^3+c),c=-7/60+18/41*I,n=3 9567244247274589 a007 Real Root Of 217*x^4-909*x^3+943*x^2+948*x-934 9567244255312859 a003 sin(Pi*23/85)/sin(Pi*23/80) 9567244273441615 m001 (Paris+ZetaP(2))/(sin(1/12*Pi)-GaussAGM) 9567244285686870 m005 (1/2*Catalan-2/5)/(1/7*Zeta(3)-7/9) 9567244301978262 m001 1/Magata^2*exp(Khintchine)^2/BesselJ(1,1)^2 9567244327922784 a003 cos(Pi*1/58)*cos(Pi*11/119) 9567244339615481 a007 Real Root Of -746*x^4+319*x^3-635*x^2-980*x+548 9567244342715409 m008 (1/5*Pi^3+3/4)/(3/4*Pi^4-2/5) 9567244354730967 r005 Re(z^2+c),c=-26/23+11/48*I,n=14 9567244362339219 a001 843/196418*233^(5/34) 9567244373090164 r009 Im(z^3+c),c=-25/52+3/53*I,n=2 9567244379381775 a007 Real Root Of -66*x^4-19*x^3+620*x^2+429*x-906 9567244402440817 l006 ln(3359/8744) 9567244404936838 a007 Real Root Of -327*x^4+781*x^3-264*x^2-519*x+703 9567244420407524 m001 BesselJ(0,1)/GAMMA(17/24)*ErdosBorwein 9567244449158138 r005 Re(z^2+c),c=-21/22+9/121*I,n=3 9567244497053473 m002 E^Pi+Pi^6-Pi^3/ProductLog[Pi]+ProductLog[Pi] 9567244540186599 a007 Real Root Of 77*x^4+712*x^3-145*x^2+877*x+52 9567244545271303 a007 Real Root Of -111*x^4-530*x^3-857*x^2+90*x+16 9567244576259581 m005 (1/2*Catalan+6/7)/(11/12*Zeta(3)+3/11) 9567244583358394 a007 Real Root Of -766*x^4-74*x^3+492*x^2-78*x+52 9567244614229004 r002 14th iterates of z^2 + 9567244615146593 m001 (gamma(2)-Khinchin)/(3^(1/3)+exp(1/Pi)) 9567244656694582 a007 Real Root Of 173*x^4-540*x^3-304*x^2+342*x+279 9567244674163759 r005 Im(z^2+c),c=-7/8+65/187*I,n=6 9567244695575506 a007 Real Root Of -85*x^4-766*x^3+390*x^2-518*x+694 9567244697700713 m001 ln(arctan(1/2))*GAMMA(1/3)^2*log(2+sqrt(3))^2 9567244706721602 m001 (ln(5)+BesselJ(1,1))/(Khinchin-Landau) 9567244719524557 a007 Real Root Of 3*x^4+283*x^3-388*x^2-341*x+795 9567244744100649 r002 2th iterates of z^2 + 9567244768907316 m001 (exp(1)+gamma(2))/(-Magata+Stephens) 9567244771620410 m001 ReciprocalFibonacci^Cahen/BesselI(0,2) 9567244780519802 a007 Real Root Of 36*x^4-971*x^3+302*x^2+811*x-381 9567244781268407 m001 (-GAMMA(5/6)+PlouffeB)/(2^(1/3)-gamma) 9567244837149904 a003 cos(Pi*7/74)/sin(Pi*45/92) 9567244843424847 m005 (1/2*exp(1)+4)/(6/11*gamma-7/8) 9567244853581380 l006 ln(2535/6599) 9567244896153220 l006 ln(8634/8717) 9567244901013212 a001 75025/11*7^(4/23) 9567244912192939 m005 (1/3*2^(1/2)-3/5)/(4/11*3^(1/2)+5/7) 9567244926264111 r009 Im(z^3+c),c=-97/114+14/45*I,n=2 9567244927415374 m001 OrthogonalArrays/(Grothendieck^Psi(2,1/3)) 9567244928367978 r005 Im(z^2+c),c=27/64+6/35*I,n=7 9567244956992982 r004 Im(z^2+c),c=-9/14+3/22*I,z(0)=-1,n=25 9567244975800301 r002 5th iterates of z^2 + 9567245004542133 a007 Real Root Of -768*x^4+317*x^3-349*x^2-266*x+986 9567245042656000 a007 Real Root Of 32*x^4-815*x^3+468*x^2+719*x-481 9567245096726454 m001 FransenRobinson*(1-cos(1/12*Pi)) 9567245099016438 r009 Re(z^3+c),c=-11/102+11/54*I,n=2 9567245111454467 a007 Real Root Of 111*x^4+983*x^3-778*x^2-219*x-33 9567245121665250 a007 Real Root Of -604*x^4-118*x^3+589*x^2-79*x-212 9567245122516471 m005 (16/5+1/5*5^(1/2))/(2/3*exp(1)+2) 9567245137126077 a007 Real Root Of 946*x^4-507*x^3-578*x^2+543*x-188 9567245152959098 r005 Re(z^2+c),c=-23/18+10/181*I,n=28 9567245185542396 a003 sin(Pi*8/93)*sin(Pi*7/60) 9567245273574456 m005 (1/3*3^(1/2)-1/4)/(1/5*2^(1/2)-5/8) 9567245278686752 a007 Real Root Of -980*x^4-187*x^3+181*x^2-517*x-3 9567245297591592 a001 89/123*3^(15/59) 9567245376629365 a007 Real Root Of -371*x^4+541*x^3-637*x^2-840*x+564 9567245400362788 q001 3692/3859 9567245529386271 a007 Real Root Of 694*x^4+213*x^3+330*x^2+509*x-210 9567245561479878 a003 cos(Pi*9/91)/sin(Pi*15/32) 9567245568080354 m001 PlouffeB^(sin(1)/Riemann1stZero) 9567245617679905 r005 Im(z^2+c),c=-73/126+8/45*I,n=32 9567245623840843 r009 Re(z^3+c),c=-3/25+29/41*I,n=18 9567245649413240 m001 (Artin+Conway)/(Paris+ZetaP(4)) 9567245658880234 m001 MasserGramain*(Ei(1)-PrimesInBinary) 9567245686164385 r005 Re(z^2+c),c=1/23+11/24*I,n=19 9567245692199170 r005 Im(z^2+c),c=-3/52+53/54*I,n=6 9567245703584583 m002 -Pi^2+Pi^6+6/ProductLog[Pi]^2 9567245724340542 m002 -Pi^2+Pi^3/5+Pi^6-Tanh[Pi] 9567245739251194 l006 ln(1711/4454) 9567245741454269 m001 (Thue+ZetaQ(4))/(3^(1/2)-FeigenbaumB) 9567245780112418 m001 ErdosBorwein^Bloch/(ErdosBorwein^BesselI(1,1)) 9567245798719337 s002 sum(A191183[n]/((2^n-1)/n),n=1..infinity) 9567245812371194 a007 Real Root Of -273*x^4-151*x^3-935*x^2-62*x+893 9567245814838528 m001 1/Tribonacci/TreeGrowth2nd^2*exp(GAMMA(3/4)) 9567245826465849 m001 Porter^MertensB3-Rabbit 9567245826875700 r009 Re(z^3+c),c=-11/70+31/43*I,n=60 9567245862203142 m001 (Pi-Magata)/(ZetaP(2)-ZetaP(3)) 9567245916714817 a007 Real Root Of 883*x^4-283*x^3-523*x^2+164*x-352 9567245998684772 r005 Im(z^2+c),c=-55/78+15/56*I,n=33 9567246015430824 r009 Im(z^3+c),c=-17/110+43/46*I,n=51 9567246031922835 m001 cos(1/12*Pi)^cos(1)/GAMMA(23/24) 9567246031922835 m001 cos(Pi/12)^cos(1)/GAMMA(23/24) 9567246074144601 m006 (3*Pi^2+2/5)/(1/5/Pi+1/4) 9567246105315156 r005 Im(z^2+c),c=-27/22+14/97*I,n=10 9567246154798071 a007 Real Root Of 849*x^4+421*x^3+59*x^2-721*x+68 9567246157722348 r002 2th iterates of z^2 + 9567246176727267 m005 (1/2*2^(1/2)-1/9)/(-9/35+1/7*5^(1/2)) 9567246179730177 a007 Real Root Of 88*x^4+906*x^3+539*x^2-673*x+343 9567246192148172 m001 (2^(1/2)+FellerTornier)/(PlouffeB+Totient) 9567246211333408 r009 Im(z^3+c),c=-7/62+35/37*I,n=21 9567246238681882 h001 (1/9*exp(2)+5/12)/(1/5*exp(1)+3/4) 9567246269777563 m005 (1/3*exp(1)-1/10)/(2/9*gamma+5/7) 9567246282427546 v002 sum(1/(5^n+(31*n^2-53*n+30)),n=1..infinity) 9567246357529396 m001 (ArtinRank2-BesselI(0,1))/(Lehmer+ZetaQ(4)) 9567246414539036 m001 (HardyLittlewoodC4+Robbin)^(2^(1/2)) 9567246415400352 a007 Real Root Of -522*x^4+60*x^3-383*x^2-290*x+563 9567246423973029 m001 sin(1)*Zeta(3)^ArtinRank2 9567246444802941 m001 1/GAMMA(17/24)^2/ArtinRank2^2*ln(arctan(1/2)) 9567246482955090 m001 (sin(1)+GAMMA(3/4))/(-Magata+Riemann3rdZero) 9567246499787865 q001 2255/2357 9567246518512552 a007 Real Root Of -828*x^4+177*x^3+670*x^2-267*x-20 9567246570526965 r009 Im(z^3+c),c=-51/98+2/21*I,n=13 9567246603443951 l006 ln(2598/6763) 9567246609679161 a007 Real Root Of 677*x^4-303*x^3+104*x^2+191*x-745 9567246622091602 a007 Real Root Of -366*x^4+908*x^3+235*x^2-377*x+526 9567246634206801 r005 Re(z^2+c),c=9/46+17/64*I,n=14 9567246657801680 a007 Real Root Of 645*x^4+x^3-285*x^2+193*x-94 9567246663280676 r005 Re(z^2+c),c=-13/14+39/226*I,n=11 9567246668394811 r005 Im(z^2+c),c=-125/118+3/25*I,n=6 9567246761918782 r005 Re(z^2+c),c=-14/13+12/61*I,n=62 9567246783017409 a007 Real Root Of -571*x^4+617*x^3+979*x^2-323*x-649 9567246799251232 a007 Real Root Of -889*x^4+994*x^3+995*x^2-34*x+672 9567246814738631 a007 Real Root Of -960*x^4+877*x^3+625*x^2-249*x+762 9567246820000808 a001 123/121393*514229^(7/41) 9567246850588030 r002 42th iterates of z^2 + 9567246855056433 m001 (LambertW(1)-GAMMA(7/12))^GAMMA(5/6) 9567246869413400 a007 Real Root Of 262*x^4+418*x^3+566*x^2-590*x-936 9567246887577153 a001 843/10946*1597^(1/34) 9567246909140440 m001 (HeathBrownMoroz+Robbin)^OneNinth 9567246913860269 m002 -E^Pi/2+Pi^4/6-Pi^6 9567247027729090 l006 ln(3485/9072) 9567247029116957 a007 Real Root Of 745*x^4-190*x^3+449*x^2+288*x-926 9567247032898507 a007 Real Root Of -538*x^4+80*x^3+88*x^2+468*x+888 9567247041384204 r005 Re(z^2+c),c=-59/64+7/40*I,n=49 9567247066172239 a001 1/72*(1/2*5^(1/2)+1/2)^32*4^(1/4) 9567247066172642 a001 4870847/144*8^(1/2) 9567247077794063 r005 Re(z^2+c),c=4/15+8/19*I,n=12 9567247096716411 a001 5/28143753123*29^(1/2) 9567247102346208 a007 Real Root Of 717*x^4-950*x^3-282*x^2+196*x-987 9567247117754620 m002 -6+Pi^6+(7*Log[Pi])/6 9567247123995342 m001 (Landau+Riemann2ndZero)/(Bloch+Grothendieck) 9567247158641714 m001 1/OneNinth^2*DuboisRaymond*ln(GAMMA(5/12))^2 9567247166524652 a005 (1/sin(73/215*Pi))^17 9567247189077927 m002 -3-3*Pi^3+4*Csch[Pi] 9567247250498603 r001 48i'th iterates of 2*x^2-1 of 9567247257760770 m001 (ln(3)+GAMMA(17/24))/(BesselI(0,1)+GAMMA(3/4)) 9567247289068741 m004 -4+30*Pi+4*Sec[Sqrt[5]*Pi] 9567247302899563 a007 Real Root Of -457*x^4+953*x^3+204*x^2-492*x+560 9567247303887633 h001 (5/7*exp(1)+5/9)/(3/4*exp(1)+4/7) 9567247330547807 p004 log(27883/25339) 9567247352803019 b008 ArcCot[5*ArcSinh[2]^2] 9567247361811918 s002 sum(A179224[n]/((pi^n-1)/n),n=1..infinity) 9567247367959827 a007 Real Root Of 999*x^4-576*x^3-281*x^2+250*x-845 9567247392329315 m001 1/exp(GAMMA(3/4))^2/LandauRamanujan^2/cosh(1) 9567247403883214 m001 arctan(1/3)*GAMMA(17/24)+Landau 9567247410946489 m001 Lehmer/Pi/csc(5/24*Pi)*GAMMA(19/24)*Rabbit 9567247516544716 a001 1/5473*610^(41/42) 9567247516795773 r009 Im(z^3+c),c=-1/6+59/63*I,n=13 9567247516799719 m005 (1/3*2^(1/2)+3/4)/(2/7*exp(1)+1/2) 9567247521690066 a007 Real Root Of -413*x^4+590*x^3-392*x^2+759*x-538 9567247532763002 a007 Real Root Of 603*x^4+677*x^3+903*x^2+488*x-272 9567247546129097 m001 (Porter+Sierpinski)/(MadelungNaCl-Niven) 9567247573034019 a007 Real Root Of -553*x^4+871*x^3+320*x^2-112*x+826 9567247590372278 a007 Real Root Of -773*x^4-857*x^3+156*x^2+817*x+536 9567247616298811 a001 1/10959*5^(1/34) 9567247622024131 a007 Real Root Of 924*x^4-497*x^3-591*x^2-102*x-766 9567247628880600 m009 (3*Pi^2-1/4)/(3*Psi(1,1/3)+2/5) 9567247631447017 m005 (1/3*2^(1/2)+1/5)/(1/9*Catalan+3/5) 9567247639258396 s001 sum(exp(-Pi)^(n-1)*A209184[n],n=1..infinity) 9567247652157174 m001 exp(1)/(Totient^FeigenbaumMu) 9567247660966835 a007 Real Root Of -715*x^4+622*x^3+26*x^2-949*x+212 9567247682502920 a001 521/53316291173*377^(17/22) 9567247766044923 m001 (exp(1/Pi)-AlladiGrinstead)/(Lehmer-ZetaQ(4)) 9567247790380515 a007 Real Root Of 126*x^4-55*x^3+135*x^2-677*x-925 9567247808106273 r005 Re(z^2+c),c=-13/21+45/53*I,n=2 9567247817574658 r005 Re(z^2+c),c=-5/54+41/54*I,n=7 9567247820672478 q001 3073/3212 9567247875267293 m002 -Pi^6+4/Log[Pi]+Sinh[Pi]/Pi^2 9567247880215353 b008 Tanh[1+2^(-1/7)] 9567247880659172 a007 Real Root Of 596*x^4+197*x^3-65*x^2-747*x-982 9567247896975938 a007 Real Root Of 503*x^4+390*x^3-173*x^2+103*x+177 9567247920902030 a007 Real Root Of -599*x^4-190*x^3-870*x^2-282*x+862 9567247926610073 r002 16th iterates of z^2 + 9567247937479000 a007 Real Root Of 692*x^4-833*x^3+390*x^2+827*x-875 9567247952868605 a001 1875749/5*225851433717^(10/21) 9567247952868638 a001 230701876/5*9227465^(10/21) 9567247954303391 a007 Real Root Of -169*x^4+186*x^3-227*x^2-595*x-57 9567247964200501 m001 (Zeta(1/2)-AlladiGrinstead)/(Magata-MertensB2) 9567247988815587 r005 Re(z^2+c),c=-11/10+12/145*I,n=38 9567248013018324 a007 Real Root Of -421*x^4+94*x^3-9*x^2+145*x+582 9567248016645572 m001 Robbin^(1/2*Gompertz/Pi*GAMMA(5/6)) 9567248021934620 a003 cos(Pi*7/117)*sin(Pi*41/96) 9567248045641500 a007 Real Root Of 512*x^4-657*x^3-441*x^2+401*x-217 9567248063927826 m005 (1/2*gamma-5)/(1/9*3^(1/2)+3/10) 9567248089431936 m005 (1/2*Pi-5/6)/(1/10+3/10*5^(1/2)) 9567248095961407 r005 Re(z^2+c),c=-10/11+9/43*I,n=21 9567248177715298 a007 Real Root Of 835*x^4-3*x^3+775*x^2+703*x-739 9567248185336111 a007 Real Root Of -29*x^4+962*x^3+253*x^2-307*x-756 9567248213230850 a007 Real Root Of 904*x^4-358*x^3-276*x^2+641*x-205 9567248224024301 l006 ln(4014/4417) 9567248234154136 r009 Re(z^3+c),c=-79/98+11/28*I,n=2 9567248241919447 a007 Real Root Of -725*x^4+896*x^3-65*x^2-565*x+911 9567248248938051 a007 Real Root Of 740*x^4+526*x^3+874*x^2+870*x-127 9567248260664248 m008 (3*Pi^4+1/6)/(Pi^5-2/5) 9567248270449158 l006 ln(887/2309) 9567248270449158 p004 log(2309/887) 9567248325249082 s002 sum(A012035[n]/(10^n+1),n=1..infinity) 9567248325252700 s002 sum(A012035[n]/(10^n-1),n=1..infinity) 9567248334301832 a007 Real Root Of -72*x^4-644*x^3+415*x^2-77*x+546 9567248371613395 a007 Real Root Of 356*x^4-947*x^3+74*x^2-7*x+470 9567248411329048 a007 Real Root Of -255*x^4+932*x^3+986*x^2+30*x+156 9567248417308321 m001 (3^(1/3)-Chi(1))/(-PlouffeB+ThueMorse) 9567248420537676 r005 Im(z^2+c),c=-19/29+35/52*I,n=3 9567248428754049 a007 Real Root Of 272*x^4-698*x^3-738*x^2+78*x-89 9567248439938124 r005 Re(z^2+c),c=-13/14+22/139*I,n=51 9567248446821024 a003 cos(Pi*8/85)/sin(Pi*49/99) 9567248512521027 a007 Real Root Of -281*x^4+211*x^3+734*x^2+609*x+331 9567248539313723 a001 7/10946*3^(11/30) 9567248567941419 r001 37i'th iterates of 2*x^2-1 of 9567248586181460 q001 3891/4067 9567248587864509 a007 Real Root Of 874*x^4-929*x^3-648*x^2-756*x+79 9567248599828667 m002 -25/E^Pi+Pi^6*Tanh[Pi] 9567248671336219 a007 Real Root Of 72*x^4+611*x^3-676*x^2+755*x+932 9567248683154054 m005 (1/3*2^(1/2)+2/5)/(12/5+3*5^(1/2)) 9567248717419491 a007 Real Root Of 103*x^4-175*x^3+583*x^2+874*x+63 9567248745071136 a007 Real Root Of -384*x^4+428*x^3+936*x^2+850*x+653 9567248776048798 m005 (1/2*Zeta(3)+7/8)/(8/9*2^(1/2)+2/7) 9567248789805507 m005 (1/2*exp(1)+2/5)/(3/4*exp(1)-1/5) 9567248807884423 m001 (exp(-1/2*Pi)+Trott)/(sin(1)+exp(1/exp(1))) 9567248821196945 m001 (ln(Pi)+BesselI(1,1))/KomornikLoreti 9567248892493856 m005 (1/3*gamma+1/3)/(3/8*3^(1/2)-1/10) 9567248919748543 a007 Real Root Of -684*x^4+63*x^3+263*x^2+602*x-60 9567248936449599 r002 60th iterates of z^2 + 9567248948386044 a007 Real Root Of 346*x^4-56*x^3+130*x^2-414*x-854 9567248949534662 m005 (1/2*2^(1/2)+10/11)/(6*exp(1)+7/12) 9567248982191813 a007 Real Root Of 173*x^4+395*x^3+986*x^2-105*x-802 9567249038701615 a007 Real Root Of 343*x^4-661*x^3-481*x^2+29*x+704 9567249138604401 a007 Real Root Of -835*x^4-8*x^3-550*x^2-416*x+798 9567249147037357 a007 Real Root Of -745*x^4+570*x^3+251*x^2-726*x+199 9567249161430111 a007 Real Root Of -663*x^4+200*x^3+887*x^2+294*x+200 9567249164969635 m001 (Pi*2^(1/2)/GAMMA(3/4))^(3^(1/2))+sin(1/12*Pi) 9567249164969635 m001 GAMMA(1/4)^sqrt(3)+sin(Pi/12) 9567249217538956 m005 (1/2*5^(1/2)-1/6)/(7/9*gamma+6/11) 9567249240218615 m008 (2/3*Pi^2-2/5)/(2/3*Pi^6+5) 9567249264642747 m002 -3+Pi^6-6*Csch[Pi]-Log[Pi] 9567249283834720 a007 Real Root Of 403*x^4-321*x^3-660*x^2+748*x+701 9567249381575165 a007 Real Root Of 740*x^4-784*x^3-77*x^2+946*x-331 9567249409631887 m002 -1/3-Pi^4+ProductLog[Pi]+Tanh[Pi] 9567249410873661 m001 Kolakoski^Catalan/(Kolakoski^Sarnak) 9567249414047472 h001 (-2*exp(3)+1)/(-exp(6)-6) 9567249421547717 a001 144/2207*199^(49/52) 9567249424185045 a007 Real Root Of 621*x^4-919*x^3+178*x^2-198*x+311 9567249431780100 r005 Re(z^2+c),c=-145/118+9/26*I,n=6 9567249466823529 m001 GAMMA(5/24)^2/ln(FeigenbaumDelta)^2*sinh(1) 9567249469806375 l006 ln(3611/9400) 9567249474420613 r002 33th iterates of z^2 + 9567249489113372 m001 (Ei(1)+3^(1/3))/(Magata+StolarskyHarborth) 9567249494073355 r005 Im(z^2+c),c=-25/46+6/35*I,n=56 9567249507207713 m001 1/GAMMA(13/24)/exp(Conway)^2*GAMMA(5/12) 9567249521839228 a007 Real Root Of -635*x^4+482*x^3+96*x^2-87*x+783 9567249523855246 r005 Re(z^2+c),c=-12/13+9/52*I,n=35 9567249564453906 m002 -Pi^6+5*Tanh[Pi]-Tanh[Pi]/Pi 9567249603398265 a007 Real Root Of 484*x^4+413*x^3+503*x^2-98*x-598 9567249638199574 m001 (Psi(2,1/3)+Si(Pi))/(-GAMMA(3/4)+Grothendieck) 9567249640393471 r005 Im(z^2+c),c=-69/58+8/59*I,n=63 9567249646959268 a007 Real Root Of 742*x^4-467*x^3+91*x^2+418*x-714 9567249650163176 m001 exp(FeigenbaumAlpha)/Cahen*Rabbit^2 9567249664623068 a007 Real Root Of 618*x^4-564*x^3+745*x^2+749*x-977 9567249678129156 s002 sum(A216472[n]/((2^n+1)/n),n=1..infinity) 9567249678972045 m001 (PisotVijayaraghavan-ZetaP(3))/(ln(2)-Ei(1)) 9567249699152043 a007 Real Root Of 774*x^4+588*x^3+761*x^2-95*x-921 9567249701956889 m001 (-ln(gamma)+MertensB3)/(BesselJ(0,1)+Zeta(3)) 9567249708755818 m001 Zeta(7)*GlaisherKinkelin/ln(sin(Pi/12)) 9567249711698048 r005 Re(z^2+c),c=-79/86+11/60*I,n=37 9567249711779717 r002 51th iterates of z^2 + 9567249723431028 m001 (sin(1/5*Pi)+ArtinRank2)/(MertensB3+Trott) 9567249737650756 a007 Real Root Of 775*x^4-11*x^3+513*x^2+751*x-410 9567249807849655 h001 (8/11*exp(2)+1/8)/(1/9*exp(1)+3/11) 9567249811224780 m002 2/Pi^3-Log[Pi]+Pi^6*Tanh[Pi] 9567249813508516 a007 Real Root Of -624*x^4-130*x^3-787*x^2-686*x+473 9567249860345937 l006 ln(2724/7091) 9567249869071080 r005 Re(z^2+c),c=-19/21+13/62*I,n=27 9567249903175467 a007 Real Root Of -959*x^4-88*x^3+611*x^2+165*x+325 9567249907265201 r002 3th iterates of z^2 + 9567249917497911 m005 (1/2*Zeta(3)-2)/(5/9*3^(1/2)+1/2) 9567249995107042 r005 Im(z^2+c),c=-55/98+1/10*I,n=7 9567250010157685 a007 Real Root Of -992*x^4+639*x^3+429*x^2-739*x+291 9567250015778069 a007 Real Root Of -800*x^4+386*x^3+994*x^2-914*x-776 9567250037439518 m005 (1/2*exp(1)+1/10)/(1/9*exp(1)-5/11) 9567250045778303 r002 4th iterates of z^2 + 9567250060696813 m005 (1/2*Zeta(3)-6/7)/(1/8*Pi-1/8) 9567250079004454 m001 exp(FeigenbaumDelta)^2*Artin^2*BesselK(1,1) 9567250121911572 m002 -4+Pi^6-(2*Tanh[Pi])/3 9567250126409247 m001 (Psi(1,1/3)+Psi(2,1/3))/(-Cahen+Gompertz) 9567250129825468 m001 Khintchine*Backhouse*ln(GAMMA(13/24))^2 9567250142173787 m002 -2/Pi^5-ProductLog[Pi]+Pi^6*Tanh[Pi] 9567250190180222 r005 Im(z^2+c),c=-79/74+7/64*I,n=28 9567250194597224 a007 Real Root Of -434*x^4+68*x^3+769*x^2+561*x+256 9567250210080005 m008 (1/3*Pi^6-1/6)/(2/5*Pi^2-3/5) 9567250213442793 m001 Pi*2^(1/3)*(Si(Pi)+BesselI(1,1)) 9567250220072147 b008 8+ArcSec[282] 9567250242367857 b008 8+ArcTan[282] 9567250253490460 m001 (Zeta(5)-ln(5))/(Champernowne+Weierstrass) 9567250258941478 r005 Re(z^2+c),c=19/40+31/49*I,n=3 9567250287791023 a007 Real Root Of 692*x^4-392*x^3-384*x^2-221*x-783 9567250332518731 h001 (6/11*exp(1)+1/3)/(1/6*exp(2)+2/3) 9567250341132872 m001 (Gompertz+Magata)/(2^(1/3)-sin(1)) 9567250345399200 a007 Real Root Of -870*x^4-244*x^3-191*x^2-45*x+647 9567250347664933 r005 Re(z^2+c),c=-9/10+42/241*I,n=9 9567250350166737 m005 (1/2*Zeta(3)-1)/(5/8*gamma-7/9) 9567250363883819 a001 583602272196913/610 9567250373504299 r005 Im(z^2+c),c=-51/98+22/41*I,n=55 9567250374291890 a007 Real Root Of 697*x^4+96*x^3-726*x^2+84*x+245 9567250381531119 r005 Re(z^2+c),c=25/114+35/44*I,n=3 9567250399845690 m001 (Riemann1stZero+Sierpinski)/(1+RenyiParking) 9567250400185214 p003 LerchPhi(1/8,3,479/216) 9567250478060089 m001 Kolakoski^2/MertensB1^2*ln(Riemann3rdZero)^2 9567250487684399 a007 Real Root Of 717*x^4-138*x^3+616*x^2+476*x-830 9567250500198369 r002 12th iterates of z^2 + 9567250521104599 r005 Re(z^2+c),c=-45/82+17/37*I,n=5 9567250552868463 r005 Im(z^2+c),c=-71/110+1/61*I,n=45 9567250620518501 a007 Real Root Of -423*x^4+260*x^3-19*x^2-613*x+13 9567250628031443 l006 ln(1837/4782) 9567250645117718 m001 (Zeta(5)-Cahen)/(GaussKuzminWirsing+OneNinth) 9567250662341593 h001 (4/7*exp(1)+7/11)/(3/4*exp(1)+1/4) 9567250694806258 r009 Re(z^3+c),c=-5/11+9/16*I,n=15 9567250705680891 m001 GAMMA(5/6)+GAMMA(7/24)^Ei(1) 9567250706831412 a001 591286729879/521*1364^(14/15) 9567250713243481 r005 Im(z^2+c),c=-13/22+14/79*I,n=28 9567250744303114 r009 Re(z^3+c),c=-3/74+50/63*I,n=21 9567250748488550 a007 Real Root Of 81*x^4+754*x^3-143*x^2+516*x-318 9567250757031287 m001 Pi/ln(GAMMA(23/24))*log(1+sqrt(2))^2 9567250765503250 r005 Im(z^2+c),c=-7/10+50/113*I,n=6 9567250773110310 m006 (5*Pi^2+1/5)/(4*ln(Pi)+3/5) 9567250810637495 a007 Real Root Of 797*x^4+629*x^3+698*x^2+998*x+199 9567250904439231 a001 38/5473*55^(2/25) 9567250910138296 a007 Real Root Of 59*x^4-764*x^3+378*x^2-153*x+420 9567250919051837 r005 Im(z^2+c),c=-19/34+42/89*I,n=19 9567250957964272 r009 Im(z^3+c),c=-11/52+43/45*I,n=61 9567250963291640 a008 Real Root of (11+9*x+6*x^2+9*x^3) 9567250980590151 a007 Real Root Of 640*x^4+126*x^3+668*x^2+825*x-248 9567250984437294 a007 Real Root Of -685*x^4+310*x^3+831*x^2-653*x-540 9567251011373900 a007 Real Root Of -342*x^4+453*x^3+47*x^2+374*x-511 9567251031038082 m001 exp(GAMMA(7/24))*TreeGrowth2nd/Zeta(9) 9567251034641744 a008 Real Root of (1+6*x+x^2-4*x^3-4*x^4-x^5) 9567251044758651 m001 (Sarnak+ZetaP(4))/(Chi(1)-HeathBrownMoroz) 9567251049651934 a001 956722026041/521*1364^(13/15) 9567251053917206 a001 1368706081/48*102334155^(4/21) 9567251053917206 a001 33281921/8*2504730781961^(4/21) 9567251069575044 a001 119218851371*1836311903^(9/17) 9567251069575044 a001 1568397607*6557470319842^(9/17) 9567251069578875 a001 9062201101803*514229^(9/17) 9567251074766797 a001 9381251041/48*4181^(4/21) 9567251084442810 a007 Real Root Of 936*x^4-497*x^3-636*x^2-122*x-754 9567251108230754 m001 (-ln(5)+5)/(-Backhouse+5) 9567251112122930 h001 (1/11*exp(2)+1/8)/(1/7*exp(1)+4/9) 9567251139180460 r008 a(0)=1,K{-n^6,-5-19*n^3+17*n^2+28*n} 9567251180844058 m001 (-PlouffeB+Tribonacci)/(2^(1/3)-Zeta(1,-1)) 9567251185062949 r002 15th iterates of z^2 + 9567251189663170 a007 Real Root Of -934*x^4+250*x^3-209*x^2-699*x+524 9567251198469812 a007 Real Root Of -11*x^4+980*x^3+684*x^2-738*x-769 9567251216627192 r005 Re(z^2+c),c=-97/106+4/21*I,n=43 9567251247662054 m002 -(Pi^2/Log[Pi])-Log[Pi]+Tanh[Pi]/5 9567251269075805 r005 Im(z^2+c),c=-13/24+11/64*I,n=28 9567251273390758 a007 Real Root Of -465*x^4+60*x^3+359*x^2-450*x-317 9567251292112757 a007 Real Root Of 513*x^4+101*x^3-322*x^2-592*x-613 9567251346978121 a003 cos(Pi*10/21)+cos(Pi*37/75) 9567251368854676 s002 sum(A059413[n]/(exp(pi*n)+1),n=1..infinity) 9567251371672613 r005 Re(z^2+c),c=-11/10+12/145*I,n=30 9567251375574567 a003 cos(Pi*26/83)+cos(Pi*39/106) 9567251378363400 l006 ln(2787/7255) 9567251387524626 a007 Real Root Of -285*x^4+419*x^3+79*x^2-638*x-77 9567251392472469 a001 1548008755920/521*1364^(4/5) 9567251397025625 m003 19/2+(Sqrt[5]*Log[1/2+Sqrt[5]/2])/16 9567251411453703 m001 2^(1/3)/(sinh(1)^Niven) 9567251421497902 r002 23th iterates of z^2 + 9567251430567158 m001 (2^(1/3)-arctan(1/3))^ln(2) 9567251441140277 b008 1/(9*E^(Pi/21)) 9567251452475750 a001 11/1597*610^(16/39) 9567251461988304 q001 818/855 9567251463950677 h001 (7/9*exp(1)+5/8)/(9/10*exp(1)+5/12) 9567251477495898 a007 Real Root Of 990*x^4+284*x^3-10*x^2-129*x-695 9567251477972049 r009 Im(z^3+c),c=-4/11+30/43*I,n=49 9567251492696397 h001 (1/12*exp(2)+7/10)/(1/10*exp(2)+7/11) 9567251517269833 a001 18/514229*987^(7/48) 9567251518987884 m001 (2^(1/2))^ln(Pi)*Cahen 9567251518987884 m001 (Pi^(1/2))^ln(2)*Cahen 9567251518987884 m001 sqrt(2)^ln(Pi)*Cahen 9567251518987884 m001 sqrt(Pi)^ln(2)*Cahen 9567251549648355 a007 Real Root Of -12*x^4+441*x^3+334*x^2+197*x+279 9567251566679017 l006 ln(6773/7453) 9567251583897719 a007 Real Root Of -555*x^4+700*x^3-67*x^2-686*x+483 9567251591107411 m005 (1/3*exp(1)-2/3)/(1/8*Zeta(3)+1/10) 9567251632468153 m002 6+Pi^6-Cosh[Pi]+Tanh[Pi]/ProductLog[Pi] 9567251676940472 m001 (ReciprocalLucas-Trott2nd)/(Zeta(5)-GaussAGM) 9567251692824296 m001 Chi(1)^ZetaR(2)/(GAMMA(5/6)^ZetaR(2)) 9567251729600954 a007 Real Root Of -562*x^4+492*x^3+967*x^2-102*x-81 9567251735293017 a001 2504730781961/521*1364^(11/15) 9567251745676149 a007 Real Root Of -698*x^4-445*x^3-122*x^2+688*x+965 9567251747204643 l006 ln(3737/9728) 9567251784843258 a007 Real Root Of -8*x^4+894*x^3-991*x^2+580*x-424 9567251790950254 r005 Re(z^2+c),c=-109/102+15/61*I,n=16 9567251831733919 p004 log(31657/12161) 9567251853171803 g007 2*Psi(2,1/9)+Psi(2,3/8)-Psi(2,1/10) 9567251867500473 r005 Im(z^2+c),c=-19/28+8/47*I,n=49 9567251907947683 m001 (Ei(1)-AlladiGrinstead)/(Bloch-ErdosBorwein) 9567251909936652 a007 Real Root Of 805*x^4+129*x^3-739*x^2+253*x+357 9567251926638284 p003 LerchPhi(1/16,4,91/160) 9567251933756056 m001 ln(Pi)^GAMMA(5/6)/(ln(Pi)^Backhouse) 9567251972275012 r005 Im(z^2+c),c=1/19+2/23*I,n=7 9567251986115671 m001 (AlladiGrinstead-MadelungNaCl)^ln(2) 9567251988744780 r005 Im(z^2+c),c=-67/90+6/35*I,n=19 9567252007190747 a007 Real Root Of -693*x^4+593*x^3+328*x^2-770*x+63 9567252014826481 r001 22i'th iterates of 2*x^2-1 of 9567252039859157 a007 Real Root Of 255*x^4-798*x^3-419*x^2+140*x-395 9567252069561148 r009 Im(z^3+c),c=-17/110+43/46*I,n=49 9567252078113576 a001 4052739537881/521*1364^(2/3) 9567252091501305 m002 -4/5+Pi^6-Cosh[Pi]/3 9567252117073178 r005 Im(z^2+c),c=-7/40+20/21*I,n=7 9567252119375940 m005 (1/2*gamma-3)/(1/10*Catalan-3/8) 9567252131198444 a007 Real Root Of 566*x^4-280*x^3-910*x^2-519*x-383 9567252144561599 m005 (1/2*3^(1/2)-3/4)/(59/198+9/22*5^(1/2)) 9567252153623020 m001 (3^(1/3)-gamma)/(-FeigenbaumAlpha+Magata) 9567252161894220 m005 (1/2*exp(1)+6/7)/(31/24+11/24*5^(1/2)) 9567252169261465 m001 (BesselK(1,1)-Magata)/(Zeta(5)+Ei(1)) 9567252186577692 r005 Re(z^2+c),c=-13/14+25/158*I,n=39 9567252228257157 a007 Real Root Of -569*x^4+886*x^3-512*x^2-988*x+776 9567252228931479 h001 (1/8*exp(1)+3/8)/(1/11*exp(1)+1/2) 9567252232171219 a003 cos(Pi*2/21)/sin(Pi*31/64) 9567252238056381 m001 1/ln(GAMMA(2/3))*Riemann3rdZero^2*arctan(1/2) 9567252255937835 a007 Real Root Of -264*x^4+267*x^3+650*x^2+83*x-687 9567252262524611 a001 3/28657*17711^(23/33) 9567252286475223 a007 Real Root Of 939*x^4+335*x^3+985*x^2+556*x-863 9567252301140233 m001 (FeigenbaumMu+KomornikLoreti)/(1-BesselJ(1,1)) 9567252302918297 m001 (gamma(2)+PrimesInBinary)/(Pi-exp(1)) 9567252336176699 a007 Real Root Of -855*x^4-929*x^3-232*x^2-528*x-390 9567252340110916 m005 (1/3*gamma+2/5)/(4/9*5^(1/2)-1) 9567252343186807 r005 Re(z^2+c),c=-91/114+9/61*I,n=17 9567252367840640 a007 Real Root Of -802*x^4-279*x^3-610*x^2-833*x+189 9567252390420358 a007 Real Root Of 153*x^4-950*x^3+433*x^2+706*x-681 9567252398935274 r005 Re(z^2+c),c=-1/74+9/25*I,n=31 9567252412060154 m001 Salem^2*Rabbit*ln(FeigenbaumD)^2 9567252420934148 a001 6557470319842/521*1364^(3/5) 9567252428932556 m001 (GAMMA(2/3)-CopelandErdos)/(Kac+Landau) 9567252455418073 a003 sin(Pi*27/79)/sin(Pi*33/89) 9567252456136704 m001 (Trott2nd+ZetaQ(4))/(1-Conway) 9567252458372958 m001 (5^(1/2)+cos(1))/(-Otter+ZetaQ(2)) 9567252464991916 a007 Real Root Of 430*x^4-506*x^3+890*x^2+901*x-756 9567252497891469 a007 Real Root Of -713*x^4+274*x^3-37*x^2-435*x+455 9567252501382184 a007 Real Root Of -62*x^4-597*x^3-47*x^2-63*x+345 9567252505834674 a007 Real Root Of 971*x^4+59*x^3-218*x^2+894*x+293 9567252507337351 r002 4th iterates of z^2 + 9567252523061981 r002 12th iterates of z^2 + 9567252527260410 m001 (Conway-ReciprocalLucas)/(Robbin+Trott2nd) 9567252645286075 a007 Real Root Of 841*x^4+561*x^3-150*x^2-278*x-342 9567252661211938 a007 Real Root Of -925*x^4+821*x^3+609*x^2-150*x+793 9567252690038430 a007 Real Root Of 174*x^4-957*x^3+391*x^2+376*x-982 9567252763754732 a001 10610209857723/521*1364^(8/15) 9567252829268296 l006 ln(950/2473) 9567252832677072 m001 (3^(1/3)+GaussAGM)/(KomornikLoreti+Lehmer) 9567252847731788 m001 (1-Zeta(5))/(-AlladiGrinstead+FeigenbaumDelta) 9567252858557210 s002 sum(A175461[n]/(n^3*2^n+1),n=1..infinity) 9567252881273292 a007 Real Root Of -36*x^4+30*x^3-991*x^2-196*x+776 9567252890784455 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*Magata+TreeGrowth2nd 9567252897485275 m002 -Pi^2+Pi^4/E^Pi+Pi^6+Tanh[Pi] 9567252926604968 a001 20633239/2*34^(12/19) 9567252928266949 r005 Im(z^2+c),c=-41/78+10/59*I,n=40 9567252946266661 r005 Re(z^2+c),c=-47/46+7/26*I,n=4 9567252972780226 h001 (5/11*exp(1)+3/7)/(1/3*exp(1)+5/6) 9567253023014324 a007 Real Root Of -820*x^4-387*x^3-740*x^2-706*x+350 9567253032276146 m001 2/3-GAMMA(1/3)+GAMMA(11/12) 9567253087758251 m002 -6/Pi^6-ProductLog[Pi]+Pi^6*Tanh[Pi] 9567253102282000 a007 Real Root Of 382*x^4-145*x^3+584*x^2+680*x-331 9567253116177793 m001 (Kac+Otter)/(Pi+BesselK(1,1)) 9567253160871603 m008 (Pi^6-3/4)/(Pi^4+3) 9567253166063943 r009 Im(z^3+c),c=-51/86+6/11*I,n=47 9567253166517939 m001 (Zeta(1,-1)+Niven)/ln(5) 9567253180065690 r005 Im(z^2+c),c=-19/30+10/91*I,n=15 9567253183829952 h001 (1/2*exp(1)+9/11)/(1/2*exp(1)+11/12) 9567253183829952 m005 (1/2*exp(1)+9/11)/(1/2*exp(1)+11/12) 9567253190662044 r005 Re(z^2+c),c=-29/31+5/36*I,n=27 9567253202538133 a007 Real Root Of 961*x^4+522*x^3+416*x^2+698*x-61 9567253213138714 r002 9th iterates of z^2 + 9567253213903660 p004 log(27367/10513) 9567253252266438 h001 (-8*exp(1/3)+3)/(-4*exp(3)-5) 9567253260451194 m001 (2^(1/3)-HardyLittlewoodC4)/(Landau+ZetaP(2)) 9567253284220162 r005 Re(z^2+c),c=-95/86+1/64*I,n=18 9567253300118896 s001 sum(exp(-Pi/3)^n*A277939[n],n=1..infinity) 9567253325140000 a007 Real Root Of -324*x^4+702*x^3+16*x^2-819*x+88 9567253329373598 h001 (10/11*exp(2)+3/5)/(11/12*exp(2)+7/8) 9567253329994920 m001 LandauRamanujan2nd-ln(gamma)-ZetaP(3) 9567253334390006 m001 (gamma(3)+GaussAGM)/(Paris+StronglyCareFree) 9567253338802475 a007 Real Root Of 926*x^4-213*x^3+88*x^2+973*x-112 9567253356366096 r005 Re(z^2+c),c=-3/31+36/53*I,n=3 9567253374339344 a007 Real Root Of -19*x^4+493*x^3-226*x^2+484*x-672 9567253417447299 m004 25*Pi+(5*Sqrt[5]*Pi)/3+4*Sec[Sqrt[5]*Pi] 9567253457390715 a007 Real Root Of 400*x^4-304*x^3+757*x^2+341*x-968 9567253464984158 r009 Im(z^3+c),c=-4/19+1/12*I,n=5 9567253468008888 s002 sum(A120106[n]/(n^2*pi^n-1),n=1..infinity) 9567253525462236 b008 BesselY[2,ArcTan[10]] 9567253533492460 a003 sin(Pi*10/107)+sin(Pi*10/43) 9567253542132610 a001 987/521*14662949395604^(8/9) 9567253590520083 a007 Real Root Of -872*x^4-40*x^3+152*x^2+79*x+632 9567253608457877 a007 Real Root Of -665*x^4-427*x^3-778*x^2-177*x+726 9567253610256085 a007 Real Root Of -419*x^4+850*x^3-3*x^2-297*x+814 9567253658586547 a007 Real Root Of -626*x^4-643*x^3-105*x^2+560*x-52 9567253677859816 r005 Re(z^2+c),c=15/58+25/54*I,n=32 9567253720722357 a007 Real Root Of -272*x^4+177*x^3-343*x^2-512*x+207 9567253721320043 m001 BesselI(0,1)*(FeigenbaumB-ZetaP(4)) 9567253734196670 m001 (-FeigenbaumKappa+Kac)/(BesselJ(0,1)-sin(1)) 9567253735539555 m001 (1-sinh(1))/FeigenbaumC 9567253736997396 m005 (1/2*2^(1/2)+2/9)/(8/9*2^(1/2)-2/7) 9567253748928777 r005 Im(z^2+c),c=-103/114+8/29*I,n=40 9567253759107972 p003 LerchPhi(1/256,3,57/121) 9567253761452302 a007 Real Root Of -746*x^4+963*x^3+988*x^2-347*x+232 9567253767236888 a007 Real Root Of 313*x^4-617*x^3+639*x^2+683*x-734 9567253773632832 r005 Im(z^2+c),c=-47/74+7/38*I,n=42 9567253789530163 m001 Trott*TreeGrowth2nd^2/ln(GAMMA(5/24))^2 9567253812051664 a005 (1/cos(8/151*Pi))^1486 9567253876038020 l006 ln(3863/10056) 9567253894043227 m001 (ln(2)-sin(1))/(-MertensB2+Sierpinski) 9567253900451856 r009 Im(z^3+c),c=-31/52+16/51*I,n=7 9567253937434101 a007 Real Root Of -838*x^4+341*x^3-20*x^2-716*x+334 9567253941728034 r002 2th iterates of z^2 + 9567254009945477 a007 Real Root Of 232*x^4-229*x^3-372*x^2-541*x-572 9567254056656207 a003 cos(Pi*11/47)*cos(Pi*39/85) 9567254060551056 m001 ln(Riemann1stZero)^2/Khintchine^2/Zeta(7)^2 9567254063261591 m002 -Pi^2/2+Pi^6+Pi*Sech[Pi] 9567254065724533 m001 (3^(1/2)+cos(1/5*Pi))/(ln(2)+ReciprocalLucas) 9567254068809616 h001 (3/5*exp(2)+1/6)/(6/11*exp(2)+7/9) 9567254093764519 a007 Real Root Of 615*x^4+166*x^3+630*x^2+958*x-30 9567254111880727 a003 sin(Pi*28/69)/sin(Pi*38/77) 9567254112478241 a007 Real Root Of 541*x^4-782*x^3-462*x^2+920*x+165 9567254124940557 a007 Real Root Of 432*x^4-596*x^3-675*x^2+92*x-178 9567254129476836 m002 1/(4*Pi^2)+ProductLog[Pi]^(-1) 9567254132656498 r005 Re(z^2+c),c=-113/122+9/55*I,n=21 9567254141801064 a001 11/1346269*5^(5/51) 9567254147148438 m008 (2/3*Pi^6+1/5)/(2*Pi^3+5) 9567254207077529 a001 15127/3*75025^(39/58) 9567254211611692 a007 Real Root Of -775*x^4-501*x^3-769*x^2-336*x+593 9567254211689619 m001 (-Porter+ZetaQ(4))/(KhinchinLevy-exp(1)) 9567254214658469 a007 Real Root Of -934*x^4-99*x^3-55*x^2+27*x+772 9567254217415009 l006 ln(2913/7583) 9567254232871705 a007 Real Root Of 315*x^4-462*x^3+4*x^2+112*x-565 9567254235123703 a007 Real Root Of 994*x^4+214*x^3-925*x^2-340*x-124 9567254243108662 r009 Im(z^3+c),c=-19/31+5/17*I,n=51 9567254250845973 m001 (polylog(4,1/2)+GaussAGM)/(Porter-ZetaQ(2)) 9567254281525924 a007 Real Root Of -972*x^4+678*x^3+157*x^2-615*x+676 9567254301009979 r005 Re(z^2+c),c=15/58+12/35*I,n=25 9567254309056188 a007 Real Root Of 582*x^4-541*x^3-498*x^2+727*x+190 9567254330426447 a007 Real Root Of -911*x^4+530*x^3+446*x^2-713*x+137 9567254335265337 a001 192900153618/233*6557470319842^(16/17) 9567254358127620 a007 Real Root Of -487*x^4-166*x^3-92*x^2+482*x+808 9567254373498828 a007 Real Root Of -578*x^4+437*x^3-261*x^2-304*x+815 9567254388965542 a007 Real Root Of -96*x^4-964*x^3-474*x^2-427*x-582 9567254458188314 a007 Real Root Of 466*x^4-269*x^3+230*x^2-989*x-97 9567254464423536 r005 Re(z^2+c),c=-10/29+27/41*I,n=12 9567254467813683 m001 (-Pi^(1/2)+Landau)/(LambertW(1)-Si(Pi)) 9567254471503583 r002 41th iterates of z^2 + 9567254472864528 a007 Real Root Of -662*x^4+640*x^3+541*x^2+370*x-855 9567254491755867 a007 Real Root Of 563*x^4-679*x^3-269*x^2-165*x+527 9567254510223506 r005 Im(z^2+c),c=-63/118+15/44*I,n=9 9567254523941074 a007 Real Root Of 361*x^4-115*x^3+389*x^2+226*x-543 9567254550339559 a007 Real Root Of -666*x^4+643*x^3-544*x^2-670*x+978 9567254554311292 b008 ArcCsc[31/4+E] 9567254557676944 a007 Real Root Of -476*x^4-31*x^3+406*x^2+694*x+664 9567254594496108 a007 Real Root Of 635*x^4+423*x^3+881*x^2+578*x-415 9567254598590327 m001 gamma(3)/(3^(1/2)+PrimesInBinary) 9567254609901316 a007 Real Root Of 791*x^4+149*x^3+842*x^2+533*x-793 9567254613000361 m006 (2/5*Pi-3/5)/(1/5/Pi-3/4) 9567254651518431 m001 CareFree*gamma(3)^FellerTornier 9567254659565992 a007 Real Root Of 295*x^4+660*x^3+967*x^2+848*x+257 9567254669520897 a007 Real Root Of -822*x^4+658*x^3+824*x^2-770*x-226 9567254685777287 q001 3471/3628 9567254736790663 a007 Real Root Of -14*x^4-186*x^3-432*x^2+718*x+823 9567254740491788 m001 (ln(2+3^(1/2))-ZetaQ(4))/exp(1/Pi) 9567254755937294 a001 1527890584523186/1597 9567254784171987 a007 Real Root Of 680*x^4-383*x^3-749*x^2-567*x-762 9567254790971783 m001 (Zeta(5)-CopelandErdos)/(MertensB1+Stephens) 9567254800199596 a001 225851433717/521*3571^(16/17) 9567254806987472 a007 Real Root Of -587*x^4+323*x^3+852*x^2+989*x+941 9567254837896247 m005 (1/2*Pi-1/2)/(6*3^(1/2)+4/5) 9567254838436755 r005 Im(z^2+c),c=-4/7+13/103*I,n=11 9567254844332110 a001 365435296162/521*3571^(15/17) 9567254888464624 a001 591286729879/521*3571^(14/17) 9567254889212890 l006 ln(1963/5110) 9567254928140772 m005 (1/3*Catalan-1/3)/(1/8*gamma-3) 9567254928528094 r002 25th iterates of z^2 + 9567254932597139 a001 956722026041/521*3571^(13/17) 9567254959831457 m001 (MadelungNaCl-Weierstrass)/(CareFree+Kac) 9567254976729654 a001 1548008755920/521*3571^(12/17) 9567254984976274 b008 -96+ArcCsch[3] 9567254990014324 m005 (1/2*exp(1)-5/6)/(-5/56+2/7*5^(1/2)) 9567255020448215 m001 (exp(Pi)+gamma(3))/(-Paris+PolyaRandomWalk3D) 9567255020862168 a001 2504730781961/521*3571^(11/17) 9567255061522000 m001 1/exp(GAMMA(5/6))/BesselJ(0,1)^2*sqrt(3) 9567255064994684 a001 4052739537881/521*3571^(10/17) 9567255065389538 a008 Real Root of x^3-x^2-78*x+221 9567255103396094 a007 Real Root Of -464*x^4-400*x^3-354*x^2+173*x+528 9567255109127199 a001 6557470319842/521*3571^(9/17) 9567255114066168 r002 64th iterates of z^2 + 9567255130466065 a007 Real Root Of 546*x^4+494*x^3-205*x^2-490*x-306 9567255153259714 a001 10610209857723/521*3571^(8/17) 9567255188000762 a007 Real Root Of -698*x^4+584*x^3-121*x^2-694*x+543 9567255198846696 a003 sin(Pi*3/29)+sin(Pi*11/50) 9567255219748790 a001 2584/521*14662949395604^(6/7) 9567255226131635 m005 (1/3*5^(1/2)+3/7)/(5/6*5^(1/2)-7/11) 9567255229238523 r005 Im(z^2+c),c=17/126+13/19*I,n=24 9567255285151074 a007 Real Root Of -266*x^4+892*x^3-665*x^2+961*x-869 9567255296750395 a007 Real Root Of 331*x^4+576*x^3+89*x^2-956*x-769 9567255320407816 a007 Real Root Of -85*x^4-872*x^3-518*x^2+447*x+213 9567255324936345 r005 Re(z^2+c),c=-13/14+43/238*I,n=13 9567255328248764 a007 Real Root Of -877*x^4-751*x^3+95*x^2+974*x+922 9567255370138320 m001 RenyiParking*ln(Rabbit)*GAMMA(11/24)^2 9567255402620517 a001 86267571272/521*9349^(18/19) 9567255408381591 a001 139583862445/521*9349^(17/19) 9567255411896239 a007 Real Root Of -707*x^4+211*x^3-211*x^2-780*x+224 9567255414142664 a001 225851433717/521*9349^(16/19) 9567255419903738 a001 365435296162/521*9349^(15/19) 9567255425664812 a001 591286729879/521*9349^(14/19) 9567255428267277 p004 log(28351/10891) 9567255431425886 a001 956722026041/521*9349^(13/19) 9567255437186960 a001 1548008755920/521*9349^(12/19) 9567255439022153 a007 Real Root Of -391*x^4+856*x^3-898*x^2-990*x+952 9567255442948033 a001 2504730781961/521*9349^(11/19) 9567255448709107 a001 4052739537881/521*9349^(10/19) 9567255450137128 r005 Im(z^2+c),c=-18/19+2/23*I,n=26 9567255454470181 a001 6557470319842/521*9349^(9/19) 9567255460231255 a001 10610209857723/521*9349^(8/19) 9567255464509692 a001 6765/521*23725150497407^(13/16) 9567255464509692 a001 6765/521*505019158607^(13/14) 9567255491110267 a001 63246219*24476^(20/21) 9567255491870746 a001 53316291173/521*24476^(19/21) 9567255492631225 a001 86267571272/521*24476^(6/7) 9567255493391704 a001 139583862445/521*24476^(17/21) 9567255494152183 a001 225851433717/521*24476^(16/21) 9567255494912662 a001 365435296162/521*24476^(5/7) 9567255495673141 a001 591286729879/521*24476^(2/3) 9567255496433620 a001 956722026041/521*24476^(13/21) 9567255497194099 a001 1548008755920/521*24476^(4/7) 9567255497954578 a001 2504730781961/521*24476^(11/21) 9567255498715057 a001 4052739537881/521*24476^(10/21) 9567255499475536 a001 6557470319842/521*24476^(3/7) 9567255500219827 a001 17711/521*312119004989^(10/11) 9567255500219827 a001 17711/521*3461452808002^(5/6) 9567255500236014 a001 10610209857723/521*24476^(8/21) 9567255500600523 a001 817138163596/377*34^(8/19) 9567255504091150 a001 12586269025/521*64079^(22/23) 9567255504192455 a001 20365011074/521*64079^(21/23) 9567255504293759 a001 63246219*64079^(20/23) 9567255504395063 a001 53316291173/521*64079^(19/23) 9567255504496368 a001 86267571272/521*64079^(18/23) 9567255504597672 a001 139583862445/521*64079^(17/23) 9567255504698976 a001 225851433717/521*64079^(16/23) 9567255504800281 a001 365435296162/521*64079^(15/23) 9567255504901585 a001 591286729879/521*64079^(14/23) 9567255505002889 a001 956722026041/521*64079^(13/23) 9567255505104194 a001 1548008755920/521*64079^(12/23) 9567255505205498 a001 2504730781961/521*64079^(11/23) 9567255505306802 a001 4052739537881/521*64079^(10/23) 9567255505408107 a001 6557470319842/521*64079^(9/23) 9567255505429865 a001 46368/521*45537549124^(16/17) 9567255505429865 a001 46368/521*14662949395604^(16/21) 9567255505429865 a001 46368/521*192900153618^(8/9) 9567255505429865 a001 46368/521*73681302247^(12/13) 9567255505509411 a001 10610209857723/521*64079^(8/23) 9567255506047892 a001 63246219*167761^(4/5) 9567255506115880 a001 365435296162/521*167761^(3/5) 9567255506183869 a001 4052739537881/521*167761^(2/5) 9567255506189999 a001 233*10749957122^(23/24) 9567255506275760 a001 4807526976/521*439204^(8/9) 9567255506281271 a001 20365011074/521*439204^(7/9) 9567255506286781 a001 86267571272/521*439204^(2/3) 9567255506292292 a001 365435296162/521*439204^(5/9) 9567255506297803 a001 1548008755920/521*439204^(4/9) 9567255506300902 a001 317811/521*312119004989^(4/5) 9567255506300902 a001 317811/521*23725150497407^(11/16) 9567255506300902 a001 317811/521*73681302247^(11/13) 9567255506300902 a001 317811/521*10749957122^(11/12) 9567255506300902 a001 317811/521*4106118243^(22/23) 9567255506303314 a001 6557470319842/521*439204^(1/3) 9567255506317082 a001 832040/521*2537720636^(14/15) 9567255506317082 a001 832040/521*17393796001^(6/7) 9567255506317082 a001 832040/521*45537549124^(14/17) 9567255506317082 a001 832040/521*817138163596^(14/19) 9567255506317082 a001 832040/521*14662949395604^(2/3) 9567255506317082 a001 832040/521*505019158607^(3/4) 9567255506317082 a001 832040/521*192900153618^(7/9) 9567255506317082 a001 832040/521*10749957122^(7/8) 9567255506317082 a001 832040/521*4106118243^(21/23) 9567255506317082 a001 832040/521*1568397607^(21/22) 9567255506319443 a001 2178309/521*2537720636^(8/9) 9567255506319443 a001 2178309/521*312119004989^(8/11) 9567255506319443 a001 2178309/521*23725150497407^(5/8) 9567255506319443 a001 2178309/521*73681302247^(10/13) 9567255506319443 a001 2178309/521*28143753123^(4/5) 9567255506319443 a001 2178309/521*10749957122^(5/6) 9567255506319443 a001 2178309/521*4106118243^(20/23) 9567255506319443 a001 2178309/521*1568397607^(10/11) 9567255506319443 a001 2178309/521*599074578^(20/21) 9567255506319706 a001 267914296/521*7881196^(10/11) 9567255506319720 a001 1134903170/521*7881196^(9/11) 9567255506319734 a001 4807526976/521*7881196^(8/11) 9567255506319743 a001 12586269025/521*7881196^(2/3) 9567255506319748 a001 20365011074/521*7881196^(7/11) 9567255506319762 a001 86267571272/521*7881196^(6/11) 9567255506319776 a001 365435296162/521*7881196^(5/11) 9567255506319787 a001 5702887/521*817138163596^(2/3) 9567255506319787 a001 5702887/521*10749957122^(19/24) 9567255506319787 a001 5702887/521*4106118243^(19/23) 9567255506319787 a001 5702887/521*1568397607^(19/22) 9567255506319787 a001 5702887/521*599074578^(19/21) 9567255506319787 a001 5702887/521*228826127^(19/20) 9567255506319790 a001 1548008755920/521*7881196^(4/11) 9567255506319795 a001 2504730781961/521*7881196^(1/3) 9567255506319804 a001 6557470319842/521*7881196^(3/11) 9567255506319827 a001 267914296/521*20633239^(6/7) 9567255506319828 a001 701408733/521*20633239^(4/5) 9567255506319830 a001 2971215073/521*20633239^(5/7) 9567255506319832 a001 20365011074/521*20633239^(3/5) 9567255506319833 a001 63246219*20633239^(4/7) 9567255506319836 a001 365435296162/521*20633239^(3/7) 9567255506319837 a001 14930352/521*141422324^(12/13) 9567255506319837 a001 591286729879/521*20633239^(2/5) 9567255506319837 a001 14930352/521*2537720636^(4/5) 9567255506319837 a001 14930352/521*45537549124^(12/17) 9567255506319837 a001 14930352/521*14662949395604^(4/7) 9567255506319837 a001 14930352/521*505019158607^(9/14) 9567255506319837 a001 14930352/521*192900153618^(2/3) 9567255506319837 a001 14930352/521*73681302247^(9/13) 9567255506319837 a001 14930352/521*10749957122^(3/4) 9567255506319837 a001 14930352/521*4106118243^(18/23) 9567255506319837 a001 14930352/521*1568397607^(9/11) 9567255506319837 a001 14930352/521*599074578^(6/7) 9567255506319838 a001 14930352/521*228826127^(9/10) 9567255506319839 a001 14930352/521*87403803^(18/19) 9567255506319840 a001 4052739537881/521*20633239^(2/7) 9567255506319845 a001 39088169/521*45537549124^(2/3) 9567255506319845 a001 39088169/521*10749957122^(17/24) 9567255506319845 a001 39088169/521*4106118243^(17/23) 9567255506319845 a001 39088169/521*1568397607^(17/22) 9567255506319845 a001 39088169/521*599074578^(17/21) 9567255506319845 a001 39088169/521*228826127^(17/20) 9567255506319846 a001 267914296/521*141422324^(10/13) 9567255506319846 a001 1134903170/521*141422324^(9/13) 9567255506319846 a001 1836311903/521*141422324^(2/3) 9567255506319846 a001 4807526976/521*141422324^(8/13) 9567255506319846 a001 20365011074/521*141422324^(7/13) 9567255506319846 a001 86267571272/521*141422324^(6/13) 9567255506319846 a001 365435296162/521*141422324^(5/13) 9567255506319846 a001 102334155/521*23725150497407^(1/2) 9567255506319846 a001 102334155/521*505019158607^(4/7) 9567255506319846 a001 102334155/521*73681302247^(8/13) 9567255506319846 a001 102334155/521*10749957122^(2/3) 9567255506319846 a001 102334155/521*4106118243^(16/23) 9567255506319846 a001 102334155/521*1568397607^(8/11) 9567255506319846 a001 102334155/521*599074578^(16/21) 9567255506319846 a001 956722026041/521*141422324^(1/3) 9567255506319846 a001 1548008755920/521*141422324^(4/13) 9567255506319846 a001 39088169/521*87403803^(17/19) 9567255506319846 a001 6557470319842/521*141422324^(3/13) 9567255506319846 a001 102334155/521*228826127^(4/5) 9567255506319846 a001 267914296/521*2537720636^(2/3) 9567255506319846 a001 267914296/521*45537549124^(10/17) 9567255506319846 a001 267914296/521*312119004989^(6/11) 9567255506319846 a001 267914296/521*14662949395604^(10/21) 9567255506319846 a001 267914296/521*192900153618^(5/9) 9567255506319846 a001 267914296/521*28143753123^(3/5) 9567255506319846 a001 267914296/521*10749957122^(5/8) 9567255506319846 a001 267914296/521*4106118243^(15/23) 9567255506319846 a001 267914296/521*1568397607^(15/22) 9567255506319846 a001 267914296/521*599074578^(5/7) 9567255506319846 a001 701408733/521*17393796001^(4/7) 9567255506319846 a001 701408733/521*14662949395604^(4/9) 9567255506319846 a001 701408733/521*505019158607^(1/2) 9567255506319846 a001 701408733/521*73681302247^(7/13) 9567255506319846 a001 701408733/521*10749957122^(7/12) 9567255506319846 a001 701408733/521*4106118243^(14/23) 9567255506319846 a001 701408733/521*1568397607^(7/11) 9567255506319846 a001 4807526976/521*2537720636^(8/15) 9567255506319846 a001 20365011074/521*2537720636^(7/15) 9567255506319846 a001 63246219*2537720636^(4/9) 9567255506319846 a001 2971215073/521*2537720636^(5/9) 9567255506319846 a001 86267571272/521*2537720636^(2/5) 9567255506319846 a001 1836311903/521*73681302247^(1/2) 9567255506319846 a001 1836311903/521*10749957122^(13/24) 9567255506319846 a001 365435296162/521*2537720636^(1/3) 9567255506319846 a001 1548008755920/521*2537720636^(4/15) 9567255506319846 a001 4052739537881/521*2537720636^(2/9) 9567255506319846 a001 6557470319842/521*2537720636^(1/5) 9567255506319846 a001 1836311903/521*4106118243^(13/23) 9567255506319846 a001 4807526976/521*45537549124^(8/17) 9567255506319846 a001 4807526976/521*14662949395604^(8/21) 9567255506319846 a001 4807526976/521*192900153618^(4/9) 9567255506319846 a001 4807526976/521*73681302247^(6/13) 9567255506319846 a001 4807526976/521*10749957122^(1/2) 9567255506319846 a001 12586269025/521*312119004989^(2/5) 9567255506319846 a001 591286729879/521*17393796001^(2/7) 9567255506319846 a001 20365011074/521*17393796001^(3/7) 9567255506319846 a001 86267571272/521*45537549124^(6/17) 9567255506319846 a001 63246219*23725150497407^(5/16) 9567255506319846 a001 63246219*505019158607^(5/14) 9567255506319846 a001 139583862445/521*45537549124^(1/3) 9567255506319846 a001 365435296162/521*45537549124^(5/17) 9567255506319846 a001 1548008755920/521*45537549124^(4/17) 9567255506319846 a001 63246219*73681302247^(5/13) 9567255506319846 a001 6557470319842/521*45537549124^(3/17) 9567255506319846 a001 86267571272/521*14662949395604^(2/7) 9567255506319846 a001 86267571272/521*192900153618^(1/3) 9567255506319846 a001 225851433717/521*23725150497407^(1/4) 9567255506319846 a001 2504730781961/521*312119004989^(1/5) 9567255506319846 a001 4052739537881/521*312119004989^(2/11) 9567255506319846 a001 1548008755920/521*14662949395604^(4/21) 9567255506319846 a001 10610209857723/521*23725150497407^(1/8) 9567255506319846 a001 10610209857723/521*505019158607^(1/7) 9567255506319846 a001 365435296162/521*14662949395604^(5/21) 9567255506319846 a001 1548008755920/521*192900153618^(2/9) 9567255506319846 a001 365435296162/521*192900153618^(5/18) 9567255506319846 a001 10610209857723/521*73681302247^(2/13) 9567255506319846 a001 1548008755920/521*73681302247^(3/13) 9567255506319846 a001 956722026041/521*73681302247^(1/4) 9567255506319846 a001 225851433717/521*73681302247^(4/13) 9567255506319846 a001 53316291173/521*817138163596^(1/3) 9567255506319846 a001 4052739537881/521*28143753123^(1/5) 9567255506319846 a001 20365011074/521*45537549124^(7/17) 9567255506319846 a001 63246219*28143753123^(2/5) 9567255506319846 a001 365435296162/521*28143753123^(3/10) 9567255506319846 a001 20365011074/521*14662949395604^(1/3) 9567255506319846 a001 20365011074/521*192900153618^(7/18) 9567255506319846 a001 10610209857723/521*10749957122^(1/6) 9567255506319846 a001 6557470319842/521*10749957122^(3/16) 9567255506319846 a001 4052739537881/521*10749957122^(5/24) 9567255506319846 a001 1548008755920/521*10749957122^(1/4) 9567255506319846 a001 591286729879/521*10749957122^(7/24) 9567255506319846 a001 12586269025/521*10749957122^(11/24) 9567255506319846 a001 365435296162/521*10749957122^(5/16) 9567255506319846 a001 225851433717/521*10749957122^(1/3) 9567255506319846 a001 86267571272/521*10749957122^(3/8) 9567255506319846 a001 63246219*10749957122^(5/12) 9567255506319846 a001 20365011074/521*10749957122^(7/16) 9567255506319846 a001 10610209857723/521*4106118243^(4/23) 9567255506319846 a001 4052739537881/521*4106118243^(5/23) 9567255506319846 a001 1548008755920/521*4106118243^(6/23) 9567255506319846 a001 591286729879/521*4106118243^(7/23) 9567255506319846 a001 225851433717/521*4106118243^(8/23) 9567255506319846 a001 4807526976/521*4106118243^(12/23) 9567255506319846 a001 2971215073/521*312119004989^(5/11) 9567255506319846 a001 2971215073/521*3461452808002^(5/12) 9567255506319846 a001 86267571272/521*4106118243^(9/23) 9567255506319846 a001 2971215073/521*28143753123^(1/2) 9567255506319846 a001 63246219*4106118243^(10/23) 9567255506319846 a001 12586269025/521*4106118243^(11/23) 9567255506319846 a001 7778742049/521*4106118243^(1/2) 9567255506319846 a001 1134903170/521*2537720636^(3/5) 9567255506319846 a001 10610209857723/521*1568397607^(2/11) 9567255506319846 a001 4052739537881/521*1568397607^(5/22) 9567255506319846 a001 2504730781961/521*1568397607^(1/4) 9567255506319846 a001 1548008755920/521*1568397607^(3/11) 9567255506319846 a001 591286729879/521*1568397607^(7/22) 9567255506319846 a001 225851433717/521*1568397607^(4/11) 9567255506319846 a001 1134903170/521*45537549124^(9/17) 9567255506319846 a001 1134903170/521*817138163596^(9/19) 9567255506319846 a001 1134903170/521*14662949395604^(3/7) 9567255506319846 a001 1134903170/521*192900153618^(1/2) 9567255506319846 a001 1134903170/521*10749957122^(9/16) 9567255506319846 a001 86267571272/521*1568397607^(9/22) 9567255506319846 a001 1836311903/521*1568397607^(13/22) 9567255506319846 a001 63246219*1568397607^(5/11) 9567255506319846 a001 12586269025/521*1568397607^(1/2) 9567255506319846 a001 4807526976/521*1568397607^(6/11) 9567255506319846 a001 10610209857723/521*599074578^(4/21) 9567255506319846 a001 6557470319842/521*599074578^(3/14) 9567255506319846 a001 4052739537881/521*599074578^(5/21) 9567255506319846 a001 1548008755920/521*599074578^(2/7) 9567255506319846 a001 591286729879/521*599074578^(1/3) 9567255506319846 a001 365435296162/521*599074578^(5/14) 9567255506319846 a001 225851433717/521*599074578^(8/21) 9567255506319846 a001 433494437/521*1322157322203^(1/2) 9567255506319846 a001 86267571272/521*599074578^(3/7) 9567255506319846 a001 63246219*599074578^(10/21) 9567255506319846 a001 20365011074/521*599074578^(1/2) 9567255506319846 a001 701408733/521*599074578^(2/3) 9567255506319846 a001 12586269025/521*599074578^(11/21) 9567255506319846 a001 4807526976/521*599074578^(4/7) 9567255506319846 a001 1836311903/521*599074578^(13/21) 9567255506319846 a001 1134903170/521*599074578^(9/14) 9567255506319846 a001 10610209857723/521*228826127^(1/5) 9567255506319846 a001 4052739537881/521*228826127^(1/4) 9567255506319846 a001 1548008755920/521*228826127^(3/10) 9567255506319846 a001 591286729879/521*228826127^(7/20) 9567255506319846 a001 365435296162/521*228826127^(3/8) 9567255506319846 a001 165580141/521*9062201101803^(1/2) 9567255506319846 a001 225851433717/521*228826127^(2/5) 9567255506319846 a001 63245986/521*141422324^(11/13) 9567255506319846 a001 86267571272/521*228826127^(9/20) 9567255506319846 a001 63246219*228826127^(1/2) 9567255506319846 a001 12586269025/521*228826127^(11/20) 9567255506319846 a001 4807526976/521*228826127^(3/5) 9567255506319846 a001 267914296/521*228826127^(3/4) 9567255506319846 a001 2971215073/521*228826127^(5/8) 9567255506319846 a001 1836311903/521*228826127^(13/20) 9567255506319846 a001 701408733/521*228826127^(7/10) 9567255506319846 a001 10610209857723/521*87403803^(4/19) 9567255506319846 a001 4052739537881/521*87403803^(5/19) 9567255506319846 a001 1548008755920/521*87403803^(6/19) 9567255506319846 a001 591286729879/521*87403803^(7/19) 9567255506319846 a001 63245986/521*2537720636^(11/15) 9567255506319846 a001 63245986/521*45537549124^(11/17) 9567255506319846 a001 63245986/521*312119004989^(3/5) 9567255506319846 a001 63245986/521*817138163596^(11/19) 9567255506319846 a001 63245986/521*14662949395604^(11/21) 9567255506319846 a001 63245986/521*192900153618^(11/18) 9567255506319846 a001 63245986/521*10749957122^(11/16) 9567255506319846 a001 63245986/521*1568397607^(3/4) 9567255506319846 a001 63245986/521*599074578^(11/14) 9567255506319846 a001 225851433717/521*87403803^(8/19) 9567255506319847 a001 86267571272/521*87403803^(9/19) 9567255506319847 a001 53316291173/521*87403803^(1/2) 9567255506319847 a001 63246219*87403803^(10/19) 9567255506319847 a001 12586269025/521*87403803^(11/19) 9567255506319847 a001 4807526976/521*87403803^(12/19) 9567255506319847 a001 1836311903/521*87403803^(13/19) 9567255506319847 a001 102334155/521*87403803^(16/19) 9567255506319847 a001 701408733/521*87403803^(14/19) 9567255506319847 a001 267914296/521*87403803^(15/19) 9567255506319848 a001 10610209857723/521*33385282^(2/9) 9567255506319848 a001 6557470319842/521*33385282^(1/4) 9567255506319848 a001 4052739537881/521*33385282^(5/18) 9567255506319849 a001 1548008755920/521*33385282^(1/3) 9567255506319849 a001 24157817/521*2537720636^(7/9) 9567255506319849 a001 24157817/521*17393796001^(5/7) 9567255506319849 a001 24157817/521*312119004989^(7/11) 9567255506319849 a001 24157817/521*14662949395604^(5/9) 9567255506319849 a001 24157817/521*505019158607^(5/8) 9567255506319849 a001 24157817/521*28143753123^(7/10) 9567255506319849 a001 24157817/521*599074578^(5/6) 9567255506319849 a001 591286729879/521*33385282^(7/18) 9567255506319849 a001 24157817/521*228826127^(7/8) 9567255506319850 a001 365435296162/521*33385282^(5/12) 9567255506319850 a001 225851433717/521*33385282^(4/9) 9567255506319850 a001 86267571272/521*33385282^(1/2) 9567255506319851 a001 63246219*33385282^(5/9) 9567255506319851 a001 20365011074/521*33385282^(7/12) 9567255506319851 a001 12586269025/521*33385282^(11/18) 9567255506319852 a001 4807526976/521*33385282^(2/3) 9567255506319852 a001 1836311903/521*33385282^(13/18) 9567255506319852 a001 1134903170/521*33385282^(3/4) 9567255506319853 a001 701408733/521*33385282^(7/9) 9567255506319853 a001 39088169/521*33385282^(17/18) 9567255506319853 a001 267914296/521*33385282^(5/6) 9567255506319853 a001 102334155/521*33385282^(8/9) 9567255506319854 a001 63245986/521*33385282^(11/12) 9567255506319860 a001 10610209857723/521*12752043^(4/17) 9567255506319863 a001 4052739537881/521*12752043^(5/17) 9567255506319867 a001 1548008755920/521*12752043^(6/17) 9567255506319870 a001 591286729879/521*12752043^(7/17) 9567255506319874 a001 225851433717/521*12752043^(8/17) 9567255506319875 a001 139583862445/521*12752043^(1/2) 9567255506319877 a001 86267571272/521*12752043^(9/17) 9567255506319881 a001 63246219*12752043^(10/17) 9567255506319884 a001 12586269025/521*12752043^(11/17) 9567255506319887 a001 4807526976/521*12752043^(12/17) 9567255506319891 a001 1836311903/521*12752043^(13/17) 9567255506319894 a001 701408733/521*12752043^(14/17) 9567255506319898 a001 267914296/521*12752043^(15/17) 9567255506319901 a001 102334155/521*12752043^(16/17) 9567255506319947 a001 10610209857723/521*4870847^(1/4) 9567255506319972 a001 4052739537881/521*4870847^(5/16) 9567255506319997 a001 1548008755920/521*4870847^(3/8) 9567255506320000 a001 3524578/521*2537720636^(13/15) 9567255506320000 a001 3524578/521*45537549124^(13/17) 9567255506320000 a001 3524578/521*14662949395604^(13/21) 9567255506320000 a001 3524578/521*192900153618^(13/18) 9567255506320000 a001 3524578/521*73681302247^(3/4) 9567255506320000 a001 3524578/521*10749957122^(13/16) 9567255506320000 a001 3524578/521*599074578^(13/14) 9567255506320022 a001 591286729879/521*4870847^(7/16) 9567255506320048 a001 225851433717/521*4870847^(1/2) 9567255506320073 a001 86267571272/521*4870847^(9/16) 9567255506320098 a001 63246219*4870847^(5/8) 9567255506320123 a001 12586269025/521*4870847^(11/16) 9567255506320148 a001 4807526976/521*4870847^(3/4) 9567255506320174 a001 1836311903/521*4870847^(13/16) 9567255506320199 a001 701408733/521*4870847^(7/8) 9567255506320224 a001 267914296/521*4870847^(15/16) 9567255506320583 a001 10610209857723/521*1860498^(4/15) 9567255506320675 a001 6557470319842/521*1860498^(3/10) 9567255506320767 a001 4052739537881/521*1860498^(1/3) 9567255506320952 a001 1548008755920/521*1860498^(2/5) 9567255506321136 a001 591286729879/521*1860498^(7/15) 9567255506321228 a001 365435296162/521*1860498^(1/2) 9567255506321320 a001 225851433717/521*1860498^(8/15) 9567255506321504 a001 86267571272/521*1860498^(3/5) 9567255506321689 a001 63246219*1860498^(2/3) 9567255506321781 a001 20365011074/521*1860498^(7/10) 9567255506321873 a001 12586269025/521*1860498^(11/15) 9567255506322057 a001 4807526976/521*1860498^(4/5) 9567255506322149 a001 2971215073/521*1860498^(5/6) 9567255506322241 a001 1836311903/521*1860498^(13/15) 9567255506322333 a001 1134903170/521*1860498^(9/10) 9567255506322426 a001 701408733/521*1860498^(14/15) 9567255506325259 a001 10610209857723/521*710647^(2/7) 9567255506326612 a001 4052739537881/521*710647^(5/14) 9567255506327965 a001 1548008755920/521*710647^(3/7) 9567255506329318 a001 591286729879/521*710647^(1/2) 9567255506330671 a001 225851433717/521*710647^(4/7) 9567255506332024 a001 86267571272/521*710647^(9/14) 9567255506333378 a001 63246219*710647^(5/7) 9567255506334054 a001 20365011074/521*710647^(3/4) 9567255506334731 a001 12586269025/521*710647^(11/14) 9567255506336084 a001 4807526976/521*710647^(6/7) 9567255506337437 a001 1836311903/521*710647^(13/14) 9567255506359799 a001 10610209857723/521*271443^(4/13) 9567255506369443 a001 196418/521*45537549124^(15/17) 9567255506369443 a001 196418/521*312119004989^(9/11) 9567255506369443 a001 196418/521*14662949395604^(5/7) 9567255506369443 a001 196418/521*192900153618^(5/6) 9567255506369443 a001 196418/521*28143753123^(9/10) 9567255506369443 a001 196418/521*10749957122^(15/16) 9567255506369787 a001 4052739537881/521*271443^(5/13) 9567255506379775 a001 1548008755920/521*271443^(6/13) 9567255506384769 a001 956722026041/521*271443^(1/2) 9567255506389763 a001 591286729879/521*271443^(7/13) 9567255506399751 a001 225851433717/521*271443^(8/13) 9567255506409740 a001 86267571272/521*271443^(9/13) 9567255506419728 a001 63246219*271443^(10/13) 9567255506429716 a001 12586269025/521*271443^(11/13) 9567255506439704 a001 4807526976/521*271443^(12/13) 9567255506616506 a001 10610209857723/521*103682^(1/3) 9567255506653589 a001 6557470319842/521*103682^(3/8) 9567255506690671 a001 4052739537881/521*103682^(5/12) 9567255506727754 a001 2504730781961/521*103682^(11/24) 9567255506764836 a001 1548008755920/521*103682^(1/2) 9567255506801919 a001 956722026041/521*103682^(13/24) 9567255506839001 a001 591286729879/521*103682^(7/12) 9567255506876084 a001 365435296162/521*103682^(5/8) 9567255506913166 a001 225851433717/521*103682^(2/3) 9567255506950249 a001 139583862445/521*103682^(17/24) 9567255506987332 a001 86267571272/521*103682^(3/4) 9567255507024414 a001 53316291173/521*103682^(19/24) 9567255507061497 a001 63246219*103682^(5/6) 9567255507098579 a001 20365011074/521*103682^(7/8) 9567255507135662 a001 12586269025/521*103682^(11/12) 9567255507172744 a001 7778742049/521*103682^(23/24) 9567255508538035 a001 10610209857723/521*39603^(4/11) 9567255508649846 a001 28657/521*14662949395604^(7/9) 9567255508649846 a001 28657/521*505019158607^(7/8) 9567255508815308 a001 6557470319842/521*39603^(9/22) 9567255509092582 a001 4052739537881/521*39603^(5/11) 9567255509369856 a001 2504730781961/521*39603^(1/2) 9567255509647129 a001 1548008755920/521*39603^(6/11) 9567255509924403 a001 956722026041/521*39603^(13/22) 9567255510201676 a001 591286729879/521*39603^(7/11) 9567255510478950 a001 365435296162/521*39603^(15/22) 9567255510756224 a001 225851433717/521*39603^(8/11) 9567255511033497 a001 139583862445/521*39603^(17/22) 9567255511310771 a001 86267571272/521*39603^(9/11) 9567255511588044 a001 53316291173/521*39603^(19/22) 9567255511865318 a001 63246219*39603^(10/11) 9567255512142592 a001 20365011074/521*39603^(21/22) 9567255518898173 a007 Real Root Of 591*x^4-90*x^3+817*x^2+860*x-499 9567255522289904 a001 10946/521*817138163596^(17/19) 9567255522289904 a001 10946/521*14662949395604^(17/21) 9567255522289904 a001 10946/521*192900153618^(17/18) 9567255523043907 a001 10610209857723/521*15127^(2/5) 9567255525134415 a001 6557470319842/521*15127^(9/20) 9567255527224923 a001 4052739537881/521*15127^(1/2) 9567255529315430 a001 2504730781961/521*15127^(11/20) 9567255531405938 a001 1548008755920/521*15127^(3/5) 9567255533496446 a001 956722026041/521*15127^(13/20) 9567255535586953 a001 591286729879/521*15127^(7/10) 9567255537677461 a001 365435296162/521*15127^(3/4) 9567255539767969 a001 225851433717/521*15127^(4/5) 9567255541858476 a001 139583862445/521*15127^(17/20) 9567255543948984 a001 86267571272/521*15127^(9/10) 9567255546039492 a001 53316291173/521*15127^(19/20) 9567255546789200 l006 ln(2976/7747) 9567255600787660 r009 Im(z^3+c),c=-23/64+30/43*I,n=25 9567255612140085 a007 Real Root Of -296*x^4+472*x^3+656*x^2-257*x-185 9567255629533903 s001 sum(exp(-Pi/3)^(n-1)*A165598[n],n=1..infinity) 9567255633684759 a001 10610209857723/521*5778^(4/9) 9567255649605373 a001 6557470319842/521*5778^(1/2) 9567255653287415 a007 Real Root Of 944*x^4-696*x^3-367*x^2+613*x-478 9567255662961187 a001 11*317811^(7/41) 9567255665525987 a001 4052739537881/521*5778^(5/9) 9567255673886222 r009 Re(z^3+c),c=-5/16+29/44*I,n=44 9567255679769203 q001 2653/2773 9567255681446601 a001 2504730781961/521*5778^(11/18) 9567255697367215 a001 1548008755920/521*5778^(2/3) 9567255713287830 a001 956722026041/521*5778^(13/18) 9567255721696058 a007 Real Root Of 892*x^4-628*x^3-958*x^2+476*x+35 9567255729208444 a001 591286729879/521*5778^(7/9) 9567255739820830 r005 Im(z^2+c),c=-117/106+3/26*I,n=21 9567255745129058 a001 365435296162/521*5778^(5/6) 9567255745612682 r005 Im(z^2+c),c=-18/19+2/23*I,n=23 9567255756846317 b008 8-33*Pi 9567255758043336 m004 -1-25*Pi-125*Sqrt[5]*Pi+Tan[Sqrt[5]*Pi] 9567255761049673 a001 225851433717/521*5778^(8/9) 9567255763742932 m005 (1/2*Catalan-11/12)/(1/10*Zeta(3)-1/8) 9567255768011881 a007 Real Root Of -675*x^4+379*x^3-407*x^2-440*x+849 9567255776970287 a001 139583862445/521*5778^(17/18) 9567255777795460 m001 GAMMA(11/24)/exp(Riemann1stZero)^2*Zeta(1,2) 9567255792761064 a001 2472178896849459/2584 9567255830664753 a007 Real Root Of -123*x^4+805*x^3+410*x^2-538*x-82 9567255843859545 a007 Real Root Of -853*x^4+667*x^3-475*x^2-935*x+839 9567255880645060 a007 Real Root Of 170*x^4+74*x^3+438*x^2+80*x-402 9567255918035888 m008 (1/6*Pi^4-5/6)/(1/6*Pi^6+3/4) 9567255925028422 a007 Real Root Of -893*x^4+264*x^3+2*x^2-889*x+127 9567255936754255 a007 Real Root Of 859*x^4+272*x^3+495*x^2+56*x-881 9567255938192533 a007 Real Root Of 287*x^4+184*x^3-88*x^2-896*x-856 9567255943429012 m001 GAMMA(1/24)^2*OneNinth*ln(sinh(1)) 9567255955746004 a007 Real Root Of -904*x^4-161*x^3+362*x^2+394*x+662 9567256004102670 a001 1/17*591286729879^(20/21) 9567256021995887 r005 Re(z^2+c),c=-35/38+6/35*I,n=17 9567256050681160 a007 Real Root Of 581*x^4-236*x^3+519*x^2+289*x-892 9567256136462901 m001 ln(Catalan)^2/FeigenbaumD*gamma^2 9567256138785983 a007 Real Root Of 107*x^4+924*x^3-992*x^2-299*x+634 9567256172077426 a007 Real Root Of -660*x^4+607*x^3+3*x^2-375*x+723 9567256173609511 s001 sum(1/10^(n-1)*A177748[n]/n^n,n=1..infinity) 9567256195447922 m001 (2^(1/2)-Zeta(5))/(-Ei(1,1)+sin(1/12*Pi)) 9567256247223297 a007 Real Root Of -313*x^4-770*x^3-910*x^2+617*x-50 9567256248408428 r005 Re(z^2+c),c=41/106+21/32*I,n=3 9567256256572610 a001 1597/521*3461452808002^(11/12) 9567256344564291 a003 sin(Pi*33/83)/sin(Pi*50/109) 9567256380879678 a001 4/4181*233^(49/58) 9567256384131878 m001 ln(TreeGrowth2nd)*MinimumGamma^2/GAMMA(2/3)^2 9567256413600598 m001 1/GAMMA(5/12)/exp(PrimesInBinary)*GAMMA(7/24) 9567256429823446 l006 ln(2759/3036) 9567256449201880 a001 123/4052739537881*514229^(7/16) 9567256472468897 r005 Im(z^2+c),c=-63/110+8/35*I,n=15 9567256488413414 a001 10610209857723/521*2207^(1/2) 9567256509329249 r009 Im(z^3+c),c=-2/29+41/43*I,n=3 9567256533762924 m001 (2^(1/2)-Zeta(5))/(PolyaRandomWalk3D+ZetaQ(2)) 9567256552480561 a007 Real Root Of -422*x^4+560*x^3+917*x^2+222*x+217 9567256557562590 m009 (32*Catalan+4*Pi^2-4/5)/(1/6*Psi(1,2/3)+1/5) 9567256569566265 a007 Real Root Of 461*x^4-468*x^3+367*x^2+601*x-557 9567256574967218 r002 46th iterates of z^2 + 9567256576460596 a007 Real Root Of 297*x^4-152*x^3+36*x^2-529*x-921 9567256595348452 h001 (-7*exp(4)+1)/(-exp(6)+5) 9567256598016551 r005 Re(z^2+c),c=-11/16+19/63*I,n=19 9567256601572277 m001 (-Zeta(1,-1)+FeigenbaumB)/(Si(Pi)-cos(1/5*Pi)) 9567256611175117 a001 6557470319842/521*2207^(9/16) 9567256629551475 r002 4th iterates of z^2 + 9567256648352942 s002 sum(A171123[n]/(n^3*2^n-1),n=1..infinity) 9567256665126015 m001 (-OneNinth+Riemann2ndZero)/(Shi(1)+GAMMA(5/6)) 9567256665591625 m001 (Zeta(1/2)+sin(1/12*Pi))/(MertensB3-ZetaP(4)) 9567256669901707 b008 8+ArcSinh[ArcCosh[5]] 9567256672888580 m001 Catalan^exp(1/2)/(Catalan^ln(Pi)) 9567256706533706 r002 25th iterates of z^2 + 9567256733936821 a001 4052739537881/521*2207^(5/8) 9567256738559895 a007 Real Root Of -609*x^4+339*x^3-87*x^2-815*x+107 9567256771580685 r009 Re(z^3+c),c=-4/23+40/59*I,n=41 9567256788803593 r002 8th iterates of z^2 + 9567256801493867 m005 (1/2*5^(1/2)-2)/(3/8*5^(1/2)+1/12) 9567256803984186 r004 Re(z^2+c),c=-2/5-5/8*I,z(0)=exp(5/24*I*Pi),n=5 9567256815912465 a007 Real Root Of -726*x^4+151*x^3+141*x^2+33*x+643 9567256821046033 l006 ln(1013/2637) 9567256824628328 m002 -2/Pi^5+Pi^6-5/ProductLog[Pi] 9567256836933612 a007 Real Root Of -741*x^4-268*x^3+86*x^2+102*x+405 9567256842695704 a007 Real Root Of 613*x^4-453*x^3-642*x^2-685*x-978 9567256843660152 a007 Real Root Of -540*x^4+259*x^3-711*x^2-346*x+999 9567256856698527 a001 2504730781961/521*2207^(11/16) 9567256861149543 r001 23i'th iterates of 2*x^2-1 of 9567256878881731 r001 30i'th iterates of 2*x^2-1 of 9567256926843442 a007 Real Root Of 683*x^4-521*x^3-202*x^2+79*x-768 9567256932522645 r009 Im(z^3+c),c=-31/82+2/59*I,n=25 9567256941522831 a007 Real Root Of 40*x^4+470*x^3+723*x^2-995*x+761 9567256947620313 s002 sum(A072270[n]/((exp(n)+1)*n),n=1..infinity) 9567256953337291 m005 (1/3*Zeta(3)+2/7)/(1/4*Pi-6/7) 9567256979460235 a001 1548008755920/521*2207^(3/4) 9567256990996087 m002 -Pi^6+4/ProductLog[Pi]+ProductLog[Pi]/Log[Pi] 9567257034011155 r005 Re(z^2+c),c=-21/22+5/86*I,n=13 9567257063968499 m001 (-GAMMA(5/6)+Tribonacci)/(Zeta(1,-1)-gamma) 9567257075851529 a007 Real Root Of -167*x^4-396*x^3-913*x^2-628*x+28 9567257095378609 a003 sin(Pi*9/82)/sin(Pi*10/87) 9567257102221945 a001 956722026041/521*2207^(13/16) 9567257119515617 g006 Psi(1,1/9)+2*Psi(1,3/8)-Psi(1,2/3) 9567257123832353 r009 Im(z^3+c),c=-13/98+16/17*I,n=23 9567257169307587 a007 Real Root Of -672*x^4+980*x^3+233*x^2-787*x+455 9567257186721553 m005 (-23/4+1/4*5^(1/2))/(5/8*gamma+2/11) 9567257196543168 s001 sum(exp(-2*Pi)^n*A061184[n],n=1..infinity) 9567257224983655 a001 591286729879/521*2207^(7/8) 9567257227069824 m001 (MertensB3+Otter)/(PlouffeB-Trott2nd) 9567257236537031 a007 Real Root Of -788*x^4-973*x^3-272*x^2+580*x+612 9567257240498521 r005 Re(z^2+c),c=-23/110+50/61*I,n=58 9567257240624060 a007 Real Root Of -907*x^4-421*x^3-687*x^2-900*x+159 9567257252448113 r005 Re(z^2+c),c=-13/14+47/256*I,n=11 9567257294466604 r005 Re(z^2+c),c=-95/102+6/37*I,n=13 9567257319696011 m001 (HardHexagonsEntropy-ThueMorse)^Sierpinski 9567257347745368 a001 365435296162/521*2207^(15/16) 9567257368578890 m005 (1/3*exp(1)+1/7)/(3/7*Pi-1/4) 9567257395714068 r005 Im(z^2+c),c=-17/26+17/92*I,n=30 9567257418090763 a007 Real Root Of -815*x^4-174*x^3+633*x^2+833*x+748 9567257443287523 r005 Im(z^2+c),c=-3/4+17/154*I,n=27 9567257470377639 a001 944288312326273/987 9567257559958289 q001 1835/1918 9567257610595195 r008 a(0)=1,K{-n^6,54-54*n+37*n^2-16*n^3} 9567257632509776 a008 Real Root of (1+x+5*x^2-5*x^3-5*x^4+6*x^5) 9567257650768584 a007 Real Root Of 728*x^4+33*x^3-819*x^2+384*x+536 9567257670290057 r005 Im(z^2+c),c=-35/26+5/53*I,n=5 9567257739014976 a007 Real Root Of -189*x^4+264*x^3-893*x^2-464*x+763 9567257767350595 a003 cos(Pi*5/88)*cos(Pi*7/93) 9567257827113833 r005 Re(z^2+c),c=-67/74+25/53*I,n=3 9567257830762447 m001 Backhouse*PlouffeB^BesselI(1,1) 9567257907921292 m001 (ZetaP(4)+ZetaQ(2))/(GAMMA(2/3)-exp(1)) 9567257922397510 a007 Real Root Of -770*x^4-361*x^3-754*x^2-482*x+558 9567257931005492 s002 sum(A241452[n]/(10^n-1),n=1..infinity) 9567257940065715 b008 -1/2+Log[3]^4 9567257971680159 r005 Im(z^2+c),c=-5/6+15/209*I,n=5 9567257981175573 a007 Real Root Of 530*x^4-134*x^3-404*x^2-476*x-647 9567257995229237 r005 Re(z^2+c),c=-83/90+9/52*I,n=21 9567257995967692 a007 Real Root Of -379*x^4-839*x^3-849*x^2+183*x+535 9567258021718696 m001 (DuboisRaymond+Rabbit)^TreeGrowth2nd 9567258024092941 m001 (GAMMA(5/6)+GAMMA(23/24))/(2^(1/2)+Chi(1)) 9567258024582558 a007 Real Root Of -411*x^4-246*x^3+877*x^2+785*x-994 9567258043543731 l006 ln(3102/8075) 9567258070452044 m001 GlaisherKinkelin^ZetaP(2)/((2^(1/2))^ZetaP(2)) 9567258082470987 m001 (Paris-Rabbit)/(GAMMA(17/24)-MasserGramain) 9567258094224078 m003 -1+Coth[1/2+Sqrt[5]/2]/25 9567258107022045 a007 Real Root Of -934*x^4+54*x^3+763*x^2+79*x+207 9567258137817243 m005 (1/2*exp(1)+2/11)/(3/5*3^(1/2)+4/7) 9567258159774922 a001 1/843*(1/2*5^(1/2)+1/2)^24*76^(9/19) 9567258161428917 m001 (Paris+Riemann1stZero)/(sin(1)+MasserGramain) 9567258172478230 r009 Re(z^3+c),c=-5/106+43/55*I,n=43 9567258196693290 a007 Real Root Of 362*x^4-207*x^3+471*x^2+354*x-577 9567258207629192 r005 Re(z^2+c),c=-22/23+3/59*I,n=3 9567258224637278 a007 Real Root Of 248*x^4-978*x^3-388*x^2-25*x-733 9567258320988767 a007 Real Root Of -173*x^4+578*x^3-327*x^2-337*x+628 9567258337240042 r009 Re(z^3+c),c=-5/32+28/51*I,n=25 9567258375148511 r005 Re(z^2+c),c=-7/52+21/32*I,n=12 9567258385765602 m001 1/LambertW(1)^2*exp(GAMMA(7/24))^2/cosh(1) 9567258387491847 a003 sin(Pi*14/113)+sin(Pi*19/97) 9567258440968004 m005 (1/2*2^(1/2)-7/11)/(1/5*Pi+1/9) 9567258447308677 s002 sum(A263286[n]/(exp(2*pi*n)-1),n=1..infinity) 9567258466234887 m001 Thue^Backhouse/Chi(1) 9567258503359558 a007 Real Root Of -918*x^4-211*x^3+629*x^2-610*x-575 9567258549832038 r005 Re(z^2+c),c=-18/19+3/31*I,n=19 9567258582590797 m001 (3^(1/3)-Kolakoski)/(LaplaceLimit-Totient) 9567258621626176 a007 Real Root Of -978*x^4+71*x^3+628*x^2+641*x+920 9567258636265311 a007 Real Root Of -993*x^4-41*x^3+14*x^2-87*x+700 9567258636358502 l006 ln(2089/5438) 9567258757037182 m002 -1+Pi^4+3*Csch[Pi]-Tanh[Pi] 9567258771881807 a001 14662949395604*1836311903^(7/17) 9567258771881807 a001 505019158607*6557470319842^(7/17) 9567258774988872 r005 Im(z^2+c),c=-9/14+85/173*I,n=20 9567258792690107 p001 sum((-1)^n/(545*n+102)/(6^n),n=0..infinity) 9567258794018076 a003 cos(Pi*7/107)*cos(Pi*7/103) 9567258817503370 r005 Re(z^2+c),c=-11/10+17/198*I,n=12 9567258838079299 a007 Real Root Of 119*x^4-885*x^3+364*x^2+719*x-520 9567258877367299 m001 (-Kac+Otter)/(cos(1)+Ei(1)) 9567258895743367 m003 -75+Log[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2] 9567258912380843 m001 exp(BesselJ(1,1))*Porter/cosh(1)^2 9567258943727550 m005 (1/3*gamma-3/4)/(2/9*gamma+5/11) 9567258944134404 a007 Real Root Of 111*x^4+992*x^3-635*x^2+259*x-669 9567258967784086 a007 Real Root Of -857*x^4-600*x^3-263*x^2-39*x+396 9567258988655140 m001 GAMMA(13/24)^ln(2)-ZetaP(2) 9567258993581225 m001 (Catalan-OneNinth)^exp(-1/2*Pi) 9567259008459380 a001 47/13*5^(26/43) 9567259044151480 a003 sin(Pi*19/109)/cos(Pi*32/101) 9567259083825232 r001 57i'th iterates of 2*x^2-1 of 9567259093126119 a008 Real Root of x^4-37*x^2-70*x+100 9567259125044853 a007 Real Root Of -435*x^4-582*x^3-967*x^2+44*x+782 9567259182251550 a007 Real Root Of -617*x^4-828*x^3-133*x^2+776*x+656 9567259217373134 l006 ln(3165/8239) 9567259217998456 a007 Real Root Of -581*x^4-142*x^3-110*x^2-737*x-242 9567259231514385 a007 Real Root Of -468*x^4+853*x^3+817*x^2-261*x-853 9567259308956725 q001 2852/2981 9567259316071929 m002 -Cosh[Pi]-Log[Pi]-Pi^6*Sech[Pi] 9567259333858361 m005 (1/3*Zeta(3)-3/5)/(6/7*5^(1/2)+1/6) 9567259391062498 a007 Real Root Of 87*x^4+760*x^3-624*x^2+700*x+454 9567259395115899 m001 Robbin^ln(Pi)*DuboisRaymond^ln(Pi) 9567259423769642 m001 (ln(Pi)-BesselI(1,2))/(Pi^(1/2)-Mills) 9567259426158774 r005 Re(z^2+c),c=-27/29+10/61*I,n=13 9567259502450514 a007 Real Root Of 776*x^4-770*x^3-591*x^2-150*x-927 9567259512588712 a007 Real Root Of -296*x^4+300*x^3+553*x^2+151*x+149 9567259515378004 m001 Ei(1)*ln(Niven)^2*sqrt(Pi) 9567259526921305 a007 Real Root Of 628*x^4+664*x^3+722*x^2-336*x-927 9567259552949859 m002 -Pi^6+3*Log[Pi]+Log[Pi]*ProductLog[Pi] 9567259585228992 a007 Real Root Of -519*x^4+760*x^3+738*x^2+251*x+665 9567259587569683 r001 5i'th iterates of 2*x^2-1 of 9567259636507129 m001 (-MadelungNaCl+Paris)/(BesselJ(0,1)+Zeta(1,2)) 9567259643789275 a007 Real Root Of -578*x^4+96*x^3+860*x^2+974*x+713 9567259666054395 a007 Real Root Of 519*x^4-717*x^3-826*x^2+239*x-78 9567259706130139 a007 Real Root Of -100*x^4+662*x^3+879*x^2-589*x-737 9567259750894653 m001 (Chi(1)-gamma)^KhinchinHarmonic 9567259757395716 m001 ReciprocalLucas*(Magata+Porter) 9567259770212791 m002 -6/Pi^6+Pi^6-5/ProductLog[Pi] 9567259784507370 m005 (1/2*3^(1/2)-7/8)/(4/7*Pi-6/7) 9567259785503700 m003 -17/18+Sqrt[5]/64+Cos[1/2+Sqrt[5]/2] 9567259788557772 a007 Real Root Of 42*x^4-326*x^3-44*x^2-610*x-864 9567259834120892 a007 Real Root Of -615*x^4-752*x^3-460*x^2+272*x+538 9567259836527111 a007 Real Root Of -802*x^4+883*x^3+52*x^2+807*x-921 9567259848960803 a007 Real Root Of -508*x^4+497*x^3+366*x^2+389*x+898 9567259856374129 a007 Real Root Of -831*x^4+495*x^3+872*x^2-958*x-585 9567259871036369 m001 sin(1)/ln(Riemann3rdZero)/sqrt(1+sqrt(3))^2 9567259892333319 m005 (1/12+5/12*5^(1/2))/(1/3*exp(1)-4/5) 9567259893468134 m001 ArtinRank2+DuboisRaymond*MertensB3 9567259901801109 m005 (-55/12+5/12*5^(1/2))/(1/5*Catalan-4) 9567259905902682 r009 Im(z^3+c),c=-7/62+35/37*I,n=27 9567259926454593 a007 Real Root Of -890*x^4+563*x^3+533*x^2+250*x+990 9567259927777343 a007 Real Root Of -20*x^4-170*x^3+211*x^2+127*x+594 9567259976599447 a007 Real Root Of -747*x^4-114*x^3-376*x^2-250*x+631 9567260046948392 m001 1/exp(1)^2/ln(Zeta(7))*sin(Pi/5) 9567260099697105 r001 35i'th iterates of 2*x^2-1 of 9567260113314955 m001 3^(1/3)*(Robbin+ZetaQ(4)) 9567260126006115 m001 Kolakoski^(exp(1)/Riemann1stZero) 9567260128974136 b008 Cos[(5/2)^(-2+Pi)] 9567260138476755 q001 3869/4044 9567260144756324 b008 8+E^E^(-4/5) 9567260148616609 a007 Real Root Of 111*x^4+23*x^3+128*x^2-763*x-920 9567260162641272 a007 Real Root Of -522*x^4+794*x^3+503*x^2-803*x-96 9567260186393046 m001 ln(GAMMA(2/3))*Khintchine*sinh(1) 9567260206911991 p001 sum(1/(527*n+138)/n/(16^n),n=1..infinity) 9567260210103920 a007 Real Root Of -249*x^4+816*x^3+505*x^2-24*x+438 9567260222779209 a007 Real Root Of 552*x^4+300*x^3+376*x^2-160*x-697 9567260255645929 s002 sum(A168393[n]/(pi^n+1),n=1..infinity) 9567260260678103 a007 Real Root Of -488*x^4+953*x^3+387*x^2-250*x+650 9567260260715529 m001 (5^(1/2)-Champernowne)/(-Otter+RenyiParking) 9567260268668525 m005 (1/2*2^(1/2)-3/5)/(5/11*gamma+6/7) 9567260314791051 m005 (-13/20+1/4*5^(1/2))/(1/10*3^(1/2)+7/9) 9567260326534655 a007 Real Root Of 261*x^4+292*x^3+573*x^2-172*x-652 9567260345383787 l006 ln(1076/2801) 9567260350290912 a007 Real Root Of 323*x^4+758*x^3+656*x^2-561*x-744 9567260367336846 a007 Real Root Of 48*x^4-98*x^3+162*x^2-146*x-414 9567260427844109 a007 Real Root Of 422*x^4-481*x^3+398*x^2+807*x-367 9567260456081947 r005 Im(z^2+c),c=-155/118+21/55*I,n=5 9567260460868366 a007 Real Root Of 153*x^4-981*x^3-884*x^2-72*x-247 9567260472253496 a007 Real Root Of -913*x^4+375*x^3+150*x^2-115*x+846 9567260477907746 a007 Real Root Of 88*x^4-907*x^3+287*x^2+446*x-704 9567260501609685 m001 (sin(1)+Backhouse)/(-Kolakoski+MertensB2) 9567260514785815 r005 Re(z^2+c),c=-107/118+11/49*I,n=47 9567260559890767 b008 4*Sqrt[3]+Log[14] 9567260602333840 a003 sin(Pi*28/73)/sin(Pi*37/86) 9567260607022849 a007 Real Root Of -169*x^4+850*x^3+377*x^2-512*x-458 9567260648628790 a001 610/521*14662949395604^(19/21) 9567260685865489 a003 cos(Pi*7/72)/sin(Pi*47/99) 9567260717097770 m001 (-Riemann2ndZero+Totient)/(1+Shi(1)) 9567260727091843 a007 Real Root Of 629*x^4-790*x^3-985*x^2+360*x+722 9567260732093008 m005 (1/2*Zeta(3)+5/6)/(37/56+3/8*5^(1/2)) 9567260740170021 h001 (4/7*exp(1)+1/12)/(7/12*exp(1)+1/8) 9567260756209287 r005 Im(z^2+c),c=-85/106+7/64*I,n=4 9567260770789323 r005 Im(z^2+c),c=-79/110+11/57*I,n=19 9567260787864960 m001 (Pi^(1/2))^HardyLittlewoodC4-CopelandErdos 9567260789676076 a007 Real Root Of -157*x^4-79*x^3-472*x^2+9*x+503 9567260792027795 r009 Im(z^3+c),c=-7/62+35/37*I,n=33 9567260799580267 r009 Im(z^3+c),c=-7/62+35/37*I,n=29 9567260813425669 r009 Im(z^3+c),c=-7/62+35/37*I,n=35 9567260828446681 r009 Im(z^3+c),c=-7/62+35/37*I,n=41 9567260830101105 r009 Im(z^3+c),c=-7/62+35/37*I,n=47 9567260830127725 r009 Im(z^3+c),c=-7/62+35/37*I,n=39 9567260830220970 r009 Im(z^3+c),c=-7/62+35/37*I,n=53 9567260830225597 r009 Im(z^3+c),c=-7/62+35/37*I,n=55 9567260830226957 r009 Im(z^3+c),c=-7/62+35/37*I,n=61 9567260830227039 r009 Im(z^3+c),c=-7/62+35/37*I,n=59 9567260830227242 r009 Im(z^3+c),c=-7/62+35/37*I,n=63 9567260830228616 r009 Im(z^3+c),c=-7/62+35/37*I,n=57 9567260830233334 r009 Im(z^3+c),c=-7/62+35/37*I,n=49 9567260830246513 r009 Im(z^3+c),c=-7/62+35/37*I,n=51 9567260830392277 r009 Im(z^3+c),c=-7/62+35/37*I,n=45 9567260830719269 r009 Im(z^3+c),c=-7/62+35/37*I,n=43 9567260835279080 m005 (1/2*Catalan-3/10)/(5/8*Zeta(3)+9/10) 9567260841076819 r009 Im(z^3+c),c=-7/62+35/37*I,n=37 9567260844357667 m001 (BesselI(0,1)*ln(Pi)-Totient)/ln(Pi) 9567260936220155 m001 1/BesselK(1,1)/Trott/ln(GAMMA(19/24)) 9567260992361561 r009 Im(z^3+c),c=-7/62+35/37*I,n=31 9567260997543530 a001 9381251041/7*987^(13/21) 9567261004288494 m001 exp(ArtinRank2)*DuboisRaymond^2/Kolakoski 9567261015540153 m001 (ln(5)-Pi^(1/2))/(HeathBrownMoroz-Niven) 9567261016991882 m005 (1/3*Pi+1/7)/(gamma+2/3) 9567261100911245 r005 Im(z^2+c),c=7/32+1/26*I,n=28 9567261105573587 m001 (Artin+2/3)/(BesselK(0,1)+2/3) 9567261120520632 l006 ln(7022/7727) 9567261144610422 m002 -Pi^6+(4*Sinh[Pi]*Tanh[Pi])/Pi^2 9567261151839004 r002 7th iterates of z^2 + 9567261156076083 m001 (GAMMA(11/12)-Trott)/(ln(5)-polylog(4,1/2)) 9567261210001232 r005 Im(z^2+c),c=-57/50+5/36*I,n=9 9567261343011113 m003 -1/3+Sqrt[5]/16-2*Sech[1/2+Sqrt[5]/2] 9567261430207040 l006 ln(3291/8567) 9567261430803844 m002 -Pi^(-1)-Pi^6+5*Tanh[Pi] 9567261434086011 m001 (Lehmer-Niven)/(GolombDickman-KomornikLoreti) 9567261446706294 r005 Im(z^2+c),c=-91/114+2/41*I,n=22 9567261456163238 m006 (1/5/Pi-2)/(2*Pi^2+1/2) 9567261464655264 r005 Re(z^2+c),c=-13/14+34/197*I,n=11 9567261469355580 a007 Real Root Of 545*x^4+194*x^3+469*x^2-162*x-871 9567261487506963 a007 Real Root Of -636*x^4-990*x^3-473*x^2+551*x+626 9567261491445411 m001 (cos(1)+ln(gamma))/(-BesselI(1,1)+Robbin) 9567261495746385 r005 Re(z^2+c),c=-1/74+9/25*I,n=34 9567261511003869 a007 Real Root Of -443*x^4+565*x^3-113*x^2-84*x+889 9567261518342004 m005 (-23/60+5/12*5^(1/2))/(3*gamma+4) 9567261569678258 b008 -13+Coth[3/10] 9567261575521144 m001 Psi(1,1/3)/(ZetaP(4)^(Pi^(1/2))) 9567261586786417 r002 22th iterates of z^2 + 9567261591895691 a007 Real Root Of -515*x^4+955*x^3-611*x^2-877*x+988 9567261591948973 a003 sin(Pi*17/113)/cos(Pi*16/33) 9567261592614701 r005 Re(z^2+c),c=-3/31+5/42*I,n=3 9567261596547253 r005 Re(z^2+c),c=-67/62+11/59*I,n=58 9567261605523434 m002 -(E^Pi/Pi^2)+Pi^6-Cosh[Pi]/5 9567261647874845 m001 1/ln(BesselJ(1,1))/TreeGrowth2nd*sin(Pi/5)^2 9567261665829400 r005 Re(z^2+c),c=-41/44+3/20*I,n=25 9567261679376116 s002 sum(A185509[n]/(n^2*2^n+1),n=1..infinity) 9567261679501511 m001 (1+gamma(3))/(-BesselI(1,2)+Landau) 9567261711224211 m001 1/Si(Pi)^2*exp(KhintchineHarmonic)^2 9567261716263791 r002 21th iterates of z^2 + 9567261745858837 h001 (-2*exp(3)-2)/(-8*exp(4)-4) 9567261755793410 a007 Real Root Of -732*x^4+952*x^3+949*x^2-85*x+497 9567261788829725 m005 (1/2*2^(1/2)-5/11)/(2/3*Pi+6/11) 9567261795582281 m008 (3/4*Pi^3-3)/(2/3*Pi^3+1/2) 9567261825941905 a003 cos(Pi*12/89)/sin(Pi*43/107) 9567261839053404 a007 Real Root Of -482*x^4+418*x^3-266*x^2-246*x+778 9567261856878763 r005 Re(z^2+c),c=29/102+2/5*I,n=33 9567261857850706 r005 Re(z^2+c),c=-51/56+2/47*I,n=18 9567261867510844 m001 (FeigenbaumDelta+2/3)/(gamma+5) 9567261877551550 a008 Real Root of (-6+3*x-3*x^2+8*x^4+7*x^8) 9567261954471846 m001 (Bloch+Weierstrass)^AlladiGrinstead 9567261957191114 l006 ln(2215/5766) 9567261960452794 m001 (Psi(2,1/3)+Si(Pi))/(2*Pi/GAMMA(5/6)+ZetaQ(4)) 9567261960483102 s002 sum(A234136[n]/(exp(2*pi*n)+1),n=1..infinity) 9567261977787931 a007 Real Root Of -653*x^4+214*x^3+429*x^2+643*x+957 9567261997550727 a001 1364/514229*6765^(8/55) 9567262009979912 r005 Re(z^2+c),c=-15/16+11/83*I,n=21 9567262036251709 a007 Real Root Of 931*x^4-534*x^3+198*x^2+673*x-785 9567262039017629 m001 (LambertW(1)-exp(-1/2*Pi))^exp(-Pi) 9567262058749408 a007 Real Root Of 10*x^4-68*x^3+288*x^2-808*x-80 9567262063032527 m001 exp(Conway)*Backhouse^2*GAMMA(3/4) 9567262082533865 a003 sin(Pi*6/67)+sin(Pi*24/101) 9567262093177162 a001 1368706081/48*4807526976^(6/23) 9567262093265843 a001 73681302247/144*75025^(6/23) 9567262112283532 m005 (1/3*5^(1/2)+1/11)/(36/77+2/11*5^(1/2)) 9567262118926910 m002 5*Pi^2+3*Cosh[Pi]+Sinh[Pi] 9567262126031698 a007 Real Root Of 342*x^4+359*x^3+757*x^2-163*x-821 9567262160340308 a007 Real Root Of 952*x^4-159*x^3-899*x^2+47*x-69 9567262166179077 m001 Robbin*FeigenbaumC/ln(GAMMA(7/24))^2 9567262213469861 a001 54018521/21*24157817^(13/21) 9567262214359844 a001 103682/21*591286729879^(13/21) 9567262223900721 m002 -Pi^4+2*Coth[Pi]-Pi*Sech[Pi] 9567262234293258 m001 1/ln(sinh(1))^2/(2^(1/3))*sqrt(Pi)^2 9567262235061980 m005 (1/2*exp(1)+7/12)/(6/7*Zeta(3)+1) 9567262256734404 r005 Re(z^2+c),c=17/78+15/52*I,n=14 9567262340396745 a008 Real Root of x^4-49*x^2-180*x-2171 9567262355523124 a007 Real Root Of -527*x^4-706*x^3-251*x^2+740*x+761 9567262413080950 m001 ln(GAMMA(1/12))*MinimumGamma^2*GAMMA(2/3)^2 9567262422492465 r002 63th iterates of z^2 + 9567262447057084 a007 Real Root Of -476*x^4+140*x^3+969*x^2+126*x-245 9567262464722483 q001 1017/1063 9567262474276534 l006 ln(3354/8731) 9567262474662517 m005 (1/2*5^(1/2)+1/6)/(2/3*2^(1/2)+2/5) 9567262494344101 a007 Real Root Of 30*x^4+256*x^3-258*x^2+304*x-639 9567262496488623 r009 Im(z^3+c),c=-7/62+35/37*I,n=25 9567262527995164 a001 18/4181*17711^(4/49) 9567262542622946 m005 (1/2*Pi-3/11)/(1/2*2^(1/2)-4/7) 9567262547198679 r009 Im(z^3+c),c=-19/110+13/14*I,n=59 9567262548324170 m002 -11/3+Pi^6-Tanh[Pi] 9567262567429268 p004 log(29527/26833) 9567262578961462 m001 (exp(Pi)+Psi(2,1/3))/(-GAMMA(5/6)+Kolakoski) 9567262584693086 m001 MinimumGamma*exp(Artin)^2*GAMMA(1/6)^2 9567262606351670 m001 exp(GAMMA(5/24))*OneNinth^2*Zeta(7)^2 9567262611285321 a007 Real Root Of 244*x^4-981*x^3-755*x^2+637*x+237 9567262626000351 a008 Real Root of x^4-2*x^3-18*x^2-9*x+26 9567262627280984 a007 Real Root Of -543*x^4+932*x^3+666*x^2-728*x-35 9567262663334577 m001 gamma(2)*HardyLittlewoodC4^Trott 9567262688511258 m001 exp(Pi)/(LambertW(1)-cos(1/5*Pi)) 9567262688511258 m001 exp(Pi)/(LambertW(1)-cos(Pi/5)) 9567262698221390 m002 -5-Pi^6+9*ProductLog[Pi] 9567262700182651 r005 Im(z^2+c),c=-11/16+35/102*I,n=47 9567262714663637 s002 sum(A270162[n]/((2^n-1)/n),n=1..infinity) 9567262715011555 a001 1364/13*987^(36/55) 9567262762498086 m005 (1/3*Catalan-1/7)/(2/9*Pi+1) 9567262774825351 a007 Real Root Of 204*x^4-141*x^3-206*x^2-488*x+608 9567262823067985 r009 Im(z^3+c),c=-9/118+20/21*I,n=9 9567262827445968 a007 Real Root Of -732*x^4+610*x^3+582*x^2-699*x-54 9567262828580029 m005 (1/2*exp(1)+2)/(5*gamma+5/8) 9567262846253292 a007 Real Root Of 98*x^4+942*x^3+89*x^2+439*x-86 9567262882170590 m001 1/Zeta(1/2)/ln(GAMMA(3/4))^2/sqrt(3) 9567262894993676 r005 Re(z^2+c),c=-23/25+7/39*I,n=59 9567262904036327 h001 (5/6*exp(1)+1/7)/(2/9*exp(2)+7/8) 9567262919566770 m001 (Magata+ZetaQ(2))/(ln(3)+Zeta(1/2)) 9567262987829101 r009 Re(z^3+c),c=-11/64+30/43*I,n=45 9567262999815613 a007 Real Root Of 271*x^4-554*x^3-413*x^2-674*x-979 9567263047151000 m001 ln(Bloch)^2/Champernowne^2*Sierpinski 9567263054762262 r009 Re(z^3+c),c=-41/70+32/51*I,n=30 9567263061061831 a001 1/322*(1/2*5^(1/2)+1/2)^28*47^(8/21) 9567263074524726 m005 (1/2*Catalan-1/4)/(5/9*Pi+3/7) 9567263075439667 h001 (10/11*exp(1)+7/9)/(3/8*exp(2)+5/8) 9567263082541236 a007 Real Root Of -935*x^4+231*x^3-252*x^2-686*x+560 9567263095914268 m002 -1+Pi^(-3)+ProductLog[Pi]/Pi^4 9567263103176668 a007 Real Root Of 221*x^4-434*x^3-564*x^2-970*x-977 9567263109225772 a007 Real Root Of -620*x^4-175*x^3+123*x^2+615*x+842 9567263119689788 a007 Real Root Of 118*x^4-978*x^3-275*x^2+587*x-142 9567263124457618 a007 Real Root Of -858*x^4-9*x^3+43*x^2+812*x-78 9567263154911946 a007 Real Root Of -92*x^4-881*x^3-98*x^2-822*x+395 9567263155183575 m001 (GAMMA(13/24)+Artin)/(LaplaceLimit-ZetaP(2)) 9567263158743666 p001 sum((-1)^n/(568*n+103)/(10^n),n=0..infinity) 9567263161058060 m001 CopelandErdos*(5^(1/2)+MasserGramainDelta) 9567263167222333 r005 Im(z^2+c),c=-5/7+31/107*I,n=24 9567263188670797 m001 (GlaisherKinkelin+Salem)/(3^(1/2)+Chi(1)) 9567263199311582 a001 10610209857723/521*843^(4/7) 9567263203682693 m001 (ln(Pi)+Ei(1,1))/(arctan(1/3)-MadelungNaCl) 9567263214476050 a007 Real Root Of -251*x^4+45*x^3+196*x^2-386*x-299 9567263223136206 r009 Im(z^3+c),c=-41/78+37/59*I,n=3 9567263228680237 r005 Re(z^2+c),c=-11/12+3/16*I,n=57 9567263248354838 a007 Real Root Of -95*x^4-884*x^3+318*x^2+844*x+764 9567263279861764 r002 2th iterates of z^2 + 9567263296107232 r005 Re(z^2+c),c=-51/56+8/39*I,n=57 9567263392126875 m001 exp(1)^(Artin/Trott) 9567263392126875 m001 exp(Artin/Trott) 9567263450867595 m001 1/exp(GAMMA(1/6))/MertensB1/GAMMA(7/12) 9567263464263343 a003 sin(Pi*30/79)/cos(Pi*53/113) 9567263479846436 l006 ln(1139/2965) 9567263489372983 m002 -5/Pi^6-ProductLog[Pi]+Pi^6*Tanh[Pi] 9567263530957378 m005 (1/2*Zeta(3)+7/8)/(7/9*exp(1)-4/7) 9567263544323226 m002 Pi^6-(E^Pi*Coth[Pi]^2)/5 9567263552806231 m005 (19/44+1/4*5^(1/2))/(5/11*gamma-3/11) 9567263553692247 a007 Real Root Of -581*x^4+481*x^3+845*x^2+298*x-993 9567263555367886 m002 -2+(ProductLog[Pi]*Sech[Pi])/5+Sinh[Pi] 9567263564968302 m001 (ReciprocalLucas+Robbin)/(LambertW(1)-sin(1)) 9567263633920721 r009 Im(z^3+c),c=-43/78+29/46*I,n=56 9567263634647053 a007 Real Root Of 552*x^4+360*x^3-218*x^2-85*x-29 9567263706631550 r002 5th iterates of z^2 + 9567263707900806 r009 Im(z^3+c),c=-7/62+35/37*I,n=23 9567263713477890 a007 Real Root Of 716*x^4-592*x^3-188*x^2+873*x-111 9567263740052683 a007 Real Root Of -13*x^4+22*x^3-29*x^2+620*x-575 9567263780593486 a007 Real Root Of -594*x^4+678*x^3+876*x^2-264*x+37 9567263782743769 a007 Real Root Of -750*x^4+181*x^3+786*x^2+264*x+320 9567263793770001 m001 (-exp(-1/2*Pi)+ZetaP(3))/(5^(1/2)+GAMMA(3/4)) 9567263829899907 m004 -5-5*Pi+15625*Pi*Log[Sqrt[5]*Pi] 9567263859047219 m001 ArtinRank2^Rabbit/AlladiGrinstead 9567263864511988 a007 Real Root Of 4*x^4+38*x^3-54*x^2-515*x-220 9567263899527364 r002 22th iterates of z^2 + 9567263901195510 a003 cos(Pi*13/119)/sin(Pi*51/115) 9567263902860010 a007 Real Root Of 404*x^4-695*x^3+164*x^2+203*x-903 9567263905410442 a008 Real Root of (-1+4*x-2*x^2+3*x^4-5*x^8) 9567263939002235 r002 3th iterates of z^2 + 9567263940130052 a007 Real Root Of -431*x^4-27*x^3-338*x^2-50*x+599 9567263990125260 a007 Real Root Of 855*x^4-354*x^3-173*x^2+370*x-514 9567264000886605 m008 (1/6*Pi^3+2/5)/(3/5*Pi^4-1/4) 9567264003492550 m002 -2+Pi^4*Coth[Pi]-Tanh[Pi]/Pi^2 9567264035491914 a007 Real Root Of 89*x^4+777*x^3-785*x^2-714*x-207 9567264059196309 a007 Real Root Of -416*x^4+478*x^3+55*x^2-213*x+513 9567264102794512 r005 Re(z^2+c),c=-1/74+9/25*I,n=37 9567264120446852 a007 Real Root Of 814*x^4-179*x^3+285*x^2+841*x-295 9567264152168742 m001 MasserGramain/GAMMA(3/4)/Psi(2,1/3) 9567264156324770 l006 ln(4263/4691) 9567264160935984 a001 6557470319842/521*843^(9/14) 9567264165629581 r005 Im(z^2+c),c=-25/74+4/27*I,n=8 9567264184369019 a001 2504730781961/199*199^(9/11) 9567264204297418 m002 -Pi^2/2+Pi^6+Pi*Csch[Pi] 9567264205272964 m001 ZetaP(2)^(BesselI(1,1)*Paris) 9567264220031722 r005 Re(z^2+c),c=-1/74+9/25*I,n=38 9567264227193175 h001 (4/5*exp(1)+7/8)/(3/8*exp(2)+5/12) 9567264249071377 r005 Im(z^2+c),c=-97/86+5/42*I,n=39 9567264279245096 m002 -E^Pi/5+Pi^6-ProductLog[Pi]/Pi^3 9567264341672904 m001 (-3^(1/3)+KomornikLoreti)/(Zeta(3)-sin(1)) 9567264392986454 m005 (1/3*gamma+1/11)/(3/4*exp(1)-5) 9567264407323171 a007 Real Root Of 999*x^4-11*x^3-64*x^2+808*x-15 9567264412032704 m001 KomornikLoreti^Stephens/Zeta(1/2) 9567264422798604 m001 (ArtinRank2-Paris)/(ln(2)+2*Pi/GAMMA(5/6)) 9567264423222043 r005 Re(z^2+c),c=-1/74+9/25*I,n=41 9567264440510153 m001 Gompertz^(DuboisRaymond*TreeGrowth2nd) 9567264441190977 a007 Real Root Of 617*x^4-131*x^3-278*x^2-328*x-691 9567264449007677 l006 ln(3480/9059) 9567264449258711 m005 (25/36+1/4*5^(1/2))/(5/9*exp(1)-1/5) 9567264457693680 m001 (1-BesselI(0,1))/(-Otter+ZetaP(3)) 9567264463547659 r005 Im(z^2+c),c=-123/106+8/43*I,n=9 9567264473160380 m001 GAMMA(7/24)*ErdosBorwein^2/ln(Zeta(7)) 9567264476050089 r005 Re(z^2+c),c=-1/74+9/25*I,n=35 9567264503746352 m004 1+(125*Pi)/2+E^(Sqrt[5]*Pi)*Sin[Sqrt[5]*Pi] 9567264522194527 r005 Re(z^2+c),c=-1/74+9/25*I,n=44 9567264548942508 a007 Real Root Of -750*x^4+428*x^3+30*x^2-931*x+85 9567264549123489 r005 Re(z^2+c),c=-1/74+9/25*I,n=47 9567264549481499 r005 Re(z^2+c),c=-1/74+9/25*I,n=48 9567264550097689 r005 Re(z^2+c),c=-1/74+9/25*I,n=30 9567264550853271 r005 Re(z^2+c),c=-1/74+9/25*I,n=45 9567264551900441 r005 Re(z^2+c),c=-1/74+9/25*I,n=51 9567264552969915 r005 Re(z^2+c),c=-1/74+9/25*I,n=54 9567264553241015 r005 Re(z^2+c),c=-1/74+9/25*I,n=58 9567264553241566 r005 Re(z^2+c),c=-1/74+9/25*I,n=55 9567264553246410 r005 Re(z^2+c),c=-1/74+9/25*I,n=57 9567264553269256 r005 Re(z^2+c),c=-1/74+9/25*I,n=61 9567264553280739 r005 Re(z^2+c),c=-1/74+9/25*I,n=64 9567264553287401 r005 Re(z^2+c),c=-1/74+9/25*I,n=62 9567264553288421 r005 Re(z^2+c),c=-1/74+9/25*I,n=63 9567264553289073 r005 Re(z^2+c),c=-1/74+9/25*I,n=60 9567264553315353 r005 Re(z^2+c),c=-1/74+9/25*I,n=59 9567264553426256 r005 Re(z^2+c),c=-1/74+9/25*I,n=56 9567264553615232 r005 Re(z^2+c),c=-1/74+9/25*I,n=50 9567264553680162 r005 Re(z^2+c),c=-1/74+9/25*I,n=52 9567264553688190 r005 Re(z^2+c),c=-1/74+9/25*I,n=53 9567264556410932 r005 Re(z^2+c),c=-1/74+9/25*I,n=49 9567264559327254 a007 Real Root Of 908*x^4-178*x^3+291*x^2+532*x-674 9567264566707710 r005 Re(z^2+c),c=-1/74+9/25*I,n=46 9567264569119666 r005 Re(z^2+c),c=-1/74+9/25*I,n=40 9567264588938414 r005 Re(z^2+c),c=-1/74+9/25*I,n=43 9567264596693522 r005 Re(z^2+c),c=-1/74+9/25*I,n=42 9567264599473600 a007 Real Root Of -963*x^4+56*x^3-454*x^2+650*x-58 9567264615877284 a007 Real Root Of -9*x^4+532*x^3+x^2+289*x+749 9567264617648516 m001 CopelandErdos*ArtinRank2^FeigenbaumAlpha 9567264619631687 r002 37i'th iterates of 2*x/(1-x^2) of 9567264631222928 r005 Im(z^2+c),c=-7/94+19/22*I,n=29 9567264646492392 a007 Real Root Of -210*x^4+571*x^3-525*x^2-427*x+748 9567264652820485 m001 1/FeigenbaumKappa*GolombDickman^2*exp(Zeta(3)) 9567264660474351 a007 Real Root Of 40*x^4+390*x^3+126*x^2+552*x+149 9567264691402388 a007 Real Root Of -807*x^4+609*x^3-403*x^2-871*x+745 9567264706228514 m005 (-23/4+1/4*5^(1/2))/(3/11*gamma-7/10) 9567264711236181 r005 Im(z^2+c),c=41/118+14/37*I,n=28 9567264748782992 m001 (GolombDickman+MadelungNaCl)/(Zeta(5)+3^(1/3)) 9567264751917913 s002 sum(A137094[n]/(n*exp(pi*n)-1),n=1..infinity) 9567264805001653 r005 Im(z^2+c),c=-9/31+46/57*I,n=4 9567264839141375 m002 Pi^6-Cosh[Pi]+(3*Sinh[Pi])/5 9567264844734073 m001 1/GAMMA(17/24)*Salem^2/ln(GAMMA(7/24)) 9567264857495355 r005 Im(z^2+c),c=7/32+1/26*I,n=20 9567264861851166 r005 Re(z^2+c),c=-1/74+9/25*I,n=39 9567264869883506 r005 Im(z^2+c),c=-9/10+14/185*I,n=9 9567264897184041 a001 3/2584*2584^(47/55) 9567264919293864 r005 Re(z^2+c),c=9/110+25/48*I,n=33 9567264920547435 l006 ln(2341/6094) 9567264941893925 a007 Real Root Of 600*x^4-134*x^3-238*x^2+296*x-119 9567264958405066 m001 GAMMA(11/12)^Paris/(((1+3^(1/2))^(1/2))^Paris) 9567264972462947 m001 1/Zeta(7)^2*ln(Paris)/cosh(1)^2 9567264982481164 m001 ArtinRank2^(StolarskyHarborth/Robbin) 9567265007359040 a007 Real Root Of 988*x^4-277*x^3-121*x^2+102*x-862 9567265007859067 a007 Real Root Of 577*x^4-829*x^3-559*x^2+353*x-360 9567265015192276 a007 Real Root Of 74*x^4+649*x^3-637*x^2-648*x+459 9567265027094432 m001 FeigenbaumC^2/ln(Artin)^2/BesselK(1,1)^2 9567265041207651 a007 Real Root Of -545*x^4+190*x^3-50*x^2+87*x+752 9567265047684517 p004 log(33599/12907) 9567265084026995 r005 Re(z^2+c),c=-85/122+19/51*I,n=10 9567265115397693 m001 (Champernowne-HardyLittlewoodC5)/(ln(3)+Ei(1)) 9567265117786330 a007 Real Root Of -501*x^4+457*x^3+170*x^2-200*x+473 9567265122560482 a001 4052739537881/521*843^(5/7) 9567265126504060 m001 ZetaP(4)^(Zeta(5)*ln(2^(1/2)+1)) 9567265141518341 a001 199/8*75025^(3/25) 9567265144046509 a007 Real Root Of -17*x^4+650*x^3-275*x^2+4*x+839 9567265161111710 a007 Real Root Of -328*x^4-565*x^3-914*x^2-332*x+299 9567265163836311 m001 (GAMMA(5/6)-Magata)/(Niven-Porter) 9567265178735095 a007 Real Root Of 626*x^4+665*x^3+49*x^2+93*x+102 9567265192481189 r005 Re(z^2+c),c=-65/74+5/33*I,n=58 9567265234030026 q001 325/3397 9567265240654174 a007 Real Root Of -213*x^4-276*x^3-663*x^2-263*x+292 9567265247140085 m002 2-Cosh[Pi]+(Log[Pi]*Sech[Pi])/4 9567265248423415 r005 Re(z^2+c),c=-28/25+13/45*I,n=37 9567265283438358 m006 (1/3*exp(2*Pi)+2/3)/(2/5/Pi-2) 9567265293693653 a007 Real Root Of 196*x^4-513*x^3+62*x^2-122*x+345 9567265317912999 a007 Real Root Of -461*x^4-4*x^3+124*x^2+352*x+606 9567265345721272 r002 42th iterates of z^2 + 9567265349358736 r005 Im(z^2+c),c=-109/106+4/39*I,n=15 9567265349756043 m001 GAMMA(3/4)^2*exp(GAMMA(1/3))^2/gamma^2 9567265367996474 a007 Real Root Of 541*x^4-173*x^3+340*x^2+70*x-849 9567265383702468 l006 ln(3543/9223) 9567265395509924 r005 Im(z^2+c),c=-39/110+3/20*I,n=15 9567265411244956 m001 1/OneNinth^2/LandauRamanujan^2*ln(sqrt(5))^2 9567265453283007 s001 sum(exp(-Pi/2)^n*A219879[n],n=1..infinity) 9567265495118227 r002 32th iterates of z^2 + 9567265518902630 r002 34th iterates of z^2 + 9567265552357116 m006 (3/5/Pi+5/6)/(2*exp(2*Pi)-1/3) 9567265573024761 m006 (4/5/Pi+1)/(ln(Pi)+1/6) 9567265577781598 a007 Real Root Of 420*x^4-788*x^3-453*x^2-19*x+771 9567265594023140 m002 -1/6+E^Pi+E^Pi*Pi 9567265594598546 a003 sin(Pi*12/97)/cos(Pi*10/27) 9567265637760192 m005 (1/2*Zeta(3)+4/11)/(1/4*2^(1/2)-4/11) 9567265659297863 m002 -(Tanh[Pi]/Pi^3)+Tanh[Pi]^3 9567265686289163 r005 Re(z^2+c),c=-9/94+38/45*I,n=49 9567265690019252 m001 ln(OneNinth)*Rabbit^2/GAMMA(19/24) 9567265720096043 r005 Re(z^2+c),c=-9/10+23/245*I,n=28 9567265727803806 m001 CareFree^(ln(2)/ln(10))/(CareFree^ZetaP(3)) 9567265737972608 a007 Real Root Of -405*x^4-159*x^3-8*x^2+567*x-54 9567265771420233 a007 Real Root Of 336*x^4+618*x^3-74*x^2-984*x-614 9567265811550394 r005 Re(z^2+c),c=-1/74+9/25*I,n=36 9567265833630530 r005 Im(z^2+c),c=9/29+13/27*I,n=16 9567265839693196 m001 BesselK(0,1)^2/FransenRobinson*exp(exp(1)) 9567265890569822 r005 Re(z^2+c),c=-111/122+7/33*I,n=57 9567265904293042 m001 BesselI(0,1)^GAMMA(5/12)-MadelungNaCl 9567265906565912 a007 Real Root Of -827*x^4+575*x^3+219*x^2-648*x+376 9567265913468692 m006 (1/6*exp(2*Pi)-1/2)/(4*exp(Pi)+1/5) 9567265947990637 a007 Real Root Of -68*x^4-603*x^3+368*x^2-928*x-901 9567265961484345 a003 cos(Pi*1/77)-cos(Pi*18/37) 9567265978348162 a001 7/3*8^(19/28) 9567265987538507 m002 -6+Pi^6+(Pi^3*Sech[Pi])/2 9567265990466372 r008 a(0)=1,K{-n^6,6+4*n^3+5*n^2+9*n} 9567265992116970 m001 Landau^StolarskyHarborth/(Landau^ZetaQ(3)) 9567266008262250 a007 Real Root Of 711*x^4+739*x^3+456*x^2+695*x+299 9567266023973224 r005 Re(z^2+c),c=2/9+23/56*I,n=6 9567266084185077 a001 2504730781961/521*843^(11/14) 9567266099473240 m001 1/exp(Ei(1))/Magata^2*exp(1)^2 9567266149638708 a007 Real Root Of -378*x^4+424*x^3+334*x^2-525*x-120 9567266160723436 a007 Real Root Of -249*x^4+434*x^3-457*x^2-763*x+277 9567266171322431 b008 7+(17*E)/18 9567266202235516 r005 Re(z^2+c),c=-13/14+52/197*I,n=19 9567266202506832 h001 (5/9*exp(2)+4/7)/(3/5*exp(2)+5/11) 9567266213282993 r005 Re(z^2+c),c=-105/118+10/41*I,n=18 9567266231272739 m001 (-Chi(1)+exp(1/Pi))/(1-Psi(2,1/3)) 9567266241397051 m001 (LaplaceLimit+MertensB1)/(Cahen+FellerTornier) 9567266268323500 b008 7*Sqrt[CoshIntegral[5/3]] 9567266274163358 m001 LandauRamanujan^(Champernowne*MertensB3) 9567266285737292 l006 ln(1202/3129) 9567266328969757 m001 Rabbit^(ZetaP(3)/GAMMA(2/3)) 9567266385539990 m001 (Shi(1)-FeigenbaumC)/cos(1/5*Pi) 9567266389618429 a001 3571/1346269*6765^(8/55) 9567266409250974 m006 (Pi+1)/(4*ln(Pi)-1/4) 9567266461105829 a007 Real Root Of 221*x^4+3*x^3+458*x^2-156*x-751 9567266495287060 q001 2233/2334 9567266495619627 p003 LerchPhi(1/32,6,519/239) 9567266515504547 a003 cos(Pi*10/87)/sin(Pi*29/67) 9567266532438465 r005 Im(z^2+c),c=-29/90+6/41*I,n=9 9567266550619998 m001 BesselJ(1,1)+GolombDickman-OneNinth 9567266550619998 m001 GolombDickman+BesselJ(1,1)-OneNinth 9567266559993191 r005 Im(z^2+c),c=-31/54+5/47*I,n=6 9567266570572485 m001 Salem/PlouffeB/Sierpinski 9567266605980995 m001 BesselJ(1,1)^Salem+Stephens 9567266646950916 a007 Real Root Of -59*x^4-535*x^3+239*x^2-453*x-404 9567266664286844 m001 gamma(2)/(LaplaceLimit^(2*Pi/GAMMA(5/6))) 9567266676556561 a007 Real Root Of -355*x^4+977*x^3-80*x^2-688*x+568 9567266680839924 m001 (3^(1/2)+LambertW(1))/(PlouffeB+Tetranacci) 9567266729511000 a007 Real Root Of -430*x^4+824*x^3+836*x^2+477*x+773 9567266735087920 r002 27th iterates of z^2 + 9567266750766508 m001 Trott/ln(PrimesInBinary)*log(1+sqrt(2))^2 9567266758693282 r005 Im(z^2+c),c=-31/70+21/32*I,n=8 9567266773540264 m001 1/GAMMA(11/24)^2*Riemann2ndZero/exp(sqrt(Pi)) 9567266811986123 p004 log(15809/6073) 9567266823383970 r005 Re(z^2+c),c=35/118+7/10*I,n=4 9567266825517456 m001 BesselJ(0,1)^(ZetaP(3)/Shi(1)) 9567266855244316 p004 log(17383/15797) 9567266958747415 r005 Re(z^2+c),c=-3/44+11/48*I,n=7 9567266980180634 r009 Im(z^3+c),c=-45/86+19/31*I,n=35 9567266981327294 r009 Re(z^3+c),c=-35/62+15/26*I,n=27 9567266991693935 a007 Real Root Of -896*x^4-73*x^3+164*x^2-401*x+153 9567266991832831 m001 (exp(-1/2*Pi)+Mills)/(Sarnak+Thue) 9567266991910861 r005 Re(z^2+c),c=-13/14+25/158*I,n=41 9567266995135700 r009 Im(z^3+c),c=-7/62+35/37*I,n=19 9567267030998537 m005 (5/6*2^(1/2)+1/2)/(2*gamma+3/5) 9567267045809769 a001 1548008755920/521*843^(6/7) 9567267068252318 a007 Real Root Of -695*x^4+34*x^3+313*x^2+221*x+537 9567267086350243 m005 (1/2*exp(1)+2/3)/(-30/11+3/11*5^(1/2)) 9567267089929865 r005 Im(z^2+c),c=17/48+7/20*I,n=5 9567267115560894 m001 (exp(1/exp(1))-gamma(3))/(Kac-Weierstrass) 9567267132537159 m001 (GAMMA(23/24)+ZetaQ(3))/(Catalan-Zeta(1,-1)) 9567267156794555 l006 ln(3669/9551) 9567267165264823 a007 Real Root Of 868*x^4-354*x^3-48*x^2+178*x-823 9567267170253432 a007 Real Root Of -823*x^4+200*x^3-75*x^2-501*x+454 9567267179982503 r005 Re(z^2+c),c=-9/10+29/139*I,n=51 9567267225959052 a007 Real Root Of -225*x^4-375*x^3-979*x^2-226*x+540 9567267227495687 m002 -Pi^6+Pi*Log[Pi]+Log[Pi]/ProductLog[Pi] 9567267255953199 a007 Real Root Of 966*x^4-713*x^3-466*x^2+666*x-370 9567267276150283 m001 GolombDickman/ArtinRank2^2/ln(MertensB1) 9567267324747791 m001 ln(2)/ln(10)+2^(1/2)*arctan(1/2) 9567267418417484 a007 Real Root Of 845*x^4-642*x^3-606*x^2+867*x+114 9567267426444968 a001 1926/726103*6765^(8/55) 9567267443801047 r009 Im(z^3+c),c=-51/86+6/11*I,n=41 9567267463440571 a001 7/620166*11^(41/46) 9567267463549846 m007 (-2/5*gamma+1/3)/(-4/5*gamma-8/5*ln(2)+1/2) 9567267509455782 r005 Im(z^2+c),c=-7/12+72/109*I,n=16 9567267536900326 r005 Re(z^2+c),c=-13/14+39/241*I,n=15 9567267551460726 r005 Re(z^2+c),c=-119/110+17/53*I,n=7 9567267565790972 a007 Real Root Of -951*x^4+283*x^3+220*x^2+812*x+76 9567267581201025 l006 ln(2467/6422) 9567267591733313 a007 Real Root Of 659*x^4+720*x^3+887*x^2+543*x-214 9567267610904566 a007 Real Root Of -272*x^4+928*x^3-353*x^2+944*x-9 9567267621473637 a007 Real Root Of -456*x^4+311*x^3+950*x^2+805*x+555 9567267627219769 m001 (KhinchinLevy+Robbin)/(Artin-LambertW(1)) 9567267652975834 r002 22th iterates of z^2 + 9567267657142730 r005 Re(z^2+c),c=-1/74+9/25*I,n=33 9567267683772538 q001 3449/3605 9567267689059205 r009 Re(z^3+c),c=-7/60+36/49*I,n=6 9567267690314791 a007 Real Root Of 408*x^4-230*x^3-320*x^2-589*x+716 9567267696935145 a007 Real Root Of -80*x^4-812*x^3-390*x^2+557*x+202 9567267734048025 m001 GAMMA(7/12)/(FeigenbaumD^FransenRobinson) 9567267776333491 a007 Real Root Of 648*x^4-981*x^3-918*x^2-317*x-865 9567267797268152 a007 Real Root Of 653*x^4-984*x^3-378*x^2-37*x+696 9567267835602634 r005 Re(z^2+c),c=-69/74+7/46*I,n=11 9567267850155281 a007 Real Root Of 945*x^4-912*x^3-825*x^2+803*x-67 9567267852772825 l006 ln(5767/6346) 9567267855352775 a007 Real Root Of 94*x^4+955*x^3+456*x^2-725*x+82 9567267863434271 a007 Real Root Of -511*x^4-470*x^3-781*x^2-938*x-166 9567267909965252 a003 sin(Pi*19/94)/cos(Pi*29/101) 9567267917772442 m001 sin(Pi/5)^2/exp(GAMMA(1/12))*sqrt(1+sqrt(3))^2 9567267948951199 m001 (2^(1/3)+Stephens)^gamma(1) 9567267963773918 b008 1/2+ArcCsc[Sqrt[2+Pi]] 9567267998443060 l006 ln(3732/9715) 9567268007434558 a001 956722026041/521*843^(13/14) 9567268021531366 r005 Re(z^2+c),c=-5/6+22/119*I,n=41 9567268027150660 a007 Real Root Of -318*x^4+263*x^3-980*x^2-953*x+482 9567268046539571 a007 Real Root Of 277*x^4-30*x^3+844*x^2+280*x-763 9567268055631950 m001 TwinPrimes*MertensB1^2*ln(cos(Pi/5)) 9567268071436442 m002 -5/E^Pi+Pi^2-Sech[Pi] 9567268072747277 a003 cos(Pi*17/52)-cos(Pi*30/83) 9567268087222077 a001 21/47*9349^(27/46) 9567268124803525 m005 (1/2*Zeta(3)+5)/(3/10*Catalan-1/3) 9567268126103247 a007 Real Root Of -347*x^4+341*x^3-174*x^2-9*x+740 9567268179482435 m001 Zeta(3)/exp(GAMMA(7/24))*log(2+sqrt(3))^2 9567268181541442 m001 (MertensB3-sin(1))/(Paris+PrimesInBinary) 9567268198031859 m002 -1+Pi^6-(Sinh[Pi]*Tanh[Pi])/Pi 9567268201317427 m005 (1/2*Zeta(3)-5/11)/(4*gamma-7/9) 9567268206318103 r002 37th iterates of z^2 + 9567268216454699 a007 Real Root Of -689*x^4-99*x^3+790*x^2+958*x+684 9567268216652415 a007 Real Root Of -559*x^4-768*x^3-255*x^2+721*x+719 9567268218633327 m005 (1/2*gamma+3/7)/(6/11*Catalan+1/4) 9567268225766592 m001 (FeigenbaumMu-MadelungNaCl)/(Ei(1)-gamma(2)) 9567268237507378 a007 Real Root Of -259*x^4+597*x^3-833*x^2-872*x+668 9567268239933831 m001 1/ln(GAMMA(3/4))^2/Porter^2/sinh(1) 9567268280984319 m001 (Otter+ZetaQ(4))/(2^(1/3)+FeigenbaumC) 9567268308878573 a007 Real Root Of 78*x^4+763*x^3+66*x^2-941*x-373 9567268319521306 a007 Real Root Of -123*x^4+797*x^3+954*x^2+873*x+763 9567268337328364 r005 Re(z^2+c),c=-23/42+20/33*I,n=24 9567268343722931 m005 (1/2*Zeta(3)-1)/(1/2*Catalan-7/8) 9567268347943297 r005 Re(z^2+c),c=-107/114+8/61*I,n=5 9567268402166041 r009 Im(z^3+c),c=-21/118+51/55*I,n=35 9567268443197858 a007 Real Root Of 64*x^4-449*x^3-98*x^2-72*x-426 9567268463883204 a007 Real Root Of -363*x^4+668*x^3+445*x^2-28*x+455 9567268479554430 m006 (1/5*Pi^2-5)/(3/5*exp(2*Pi)-5) 9567268488767207 r005 Re(z^2+c),c=-27/29+3/19*I,n=11 9567268512148255 m001 BesselI(1,2)/((1+3^(1/2))^(1/2)-gamma(2)) 9567268517724443 r009 Re(z^3+c),c=-17/98+37/53*I,n=52 9567268526990911 h001 (5/7*exp(1)+1/11)/(5/11*exp(1)+8/9) 9567268539403996 a001 4181/76*11^(3/13) 9567268627051550 h001 (3/4*exp(1)+3/10)/(2/7*exp(2)+1/3) 9567268631003505 m001 (BesselI(0,2)-BesselI(1,2))/(Cahen+ZetaP(4)) 9567268632594507 m002 -3+Pi^6-Log[Pi]-6*Sech[Pi] 9567268658326447 a007 Real Root Of -931*x^4-948*x^3-226*x^2-215*x-49 9567268705335220 a007 Real Root Of -719*x^4+394*x^3-512*x^2-784*x+666 9567268724262947 r005 Re(z^2+c),c=5/24+26/59*I,n=9 9567268754735848 a003 cos(Pi*26/99)+cos(Pi*16/39) 9567268764031144 m001 1/Kolakoski/ln(CareFree)^2*cos(Pi/12)^2 9567268785960239 m001 (2^(1/2)+gamma(3))/(CareFree+StronglyCareFree) 9567268793398109 m001 BesselJ(1,1)^ZetaP(4)-MertensB2 9567268812147436 l006 ln(1265/3293) 9567268815466520 a003 cos(Pi*29/119)+cos(Pi*14/33) 9567268907819201 m004 30*Pi+ProductLog[Sqrt[5]*Pi]/3+Tan[Sqrt[5]*Pi] 9567268910112083 m005 (1/3*Zeta(3)-1/9)/(10/11*exp(1)+5/9) 9567268936192006 m001 (GAMMA(17/24)-Shi(1))/(-Cahen+QuadraticClass) 9567268968948541 a001 360686040129360/377 9567269022377371 a007 Real Root Of -441*x^4+580*x^3+351*x^2-99*x-365 9567269024345567 s002 sum(A250678[n]/(64^n),n=1..infinity) 9567269087477134 a007 Real Root Of 77*x^4+793*x^3+547*x^2+174*x+917 9567269087682683 r005 Re(z^2+c),c=-31/122+45/53*I,n=15 9567269099893843 m008 (4/5*Pi^4-4/5)/(5/6*Pi^6+5) 9567269104065549 a001 2207/832040*6765^(8/55) 9567269105252642 m005 (1/3*3^(1/2)+1/3)/(11/28+1/4*5^(1/2)) 9567269136132293 a008 Real Root of x^3-x^2-196*x+1091 9567269144586055 m001 GolombDickman/DuboisRaymond^2/ln(TwinPrimes)^2 9567269162680437 a007 Real Root Of -334*x^4+640*x^3+955*x^2-329*x-840 9567269205918490 r005 Re(z^2+c),c=-1/74+9/25*I,n=32 9567269232120406 a007 Real Root Of -574*x^4+370*x^3+954*x^2-677*x-716 9567269255473095 m001 (Paris-Tribonacci)/(FibonacciFactorial+Lehmer) 9567269257220314 a007 Real Root Of -528*x^4+710*x^3-756*x^2-991*x+808 9567269272313819 r002 27th iterates of z^2 + 9567269302093592 m001 Gompertz^Chi(1)*BesselI(1,2)^Chi(1) 9567269328562768 m001 Rabbit*(MasserGramainDelta-Weierstrass) 9567269330300271 m001 (TwinPrimes-ZetaP(2))/(Rabbit+Riemann2ndZero) 9567269363690975 r005 Re(z^2+c),c=-17/18+19/175*I,n=11 9567269372391805 m001 (Lehmer-PisotVijayaraghavan)/BesselJ(0,1) 9567269414784744 a007 Real Root Of -960*x^4+810*x^3+288*x^2-554*x+720 9567269498716773 m001 (-OneNinth+Trott2nd)/(2^(1/3)-BesselK(0,1)) 9567269543591758 a007 Real Root Of -47*x^4+899*x^3-69*x^2-191*x-502 9567269568710075 r005 Re(z^2+c),c=-97/106+3/16*I,n=21 9567269576753727 r005 Re(z^2+c),c=-11/14+27/187*I,n=17 9567269599276646 l006 ln(3858/10043) 9567269604527854 m009 (3/5*Psi(1,1/3)+4/5)/(4*Psi(1,3/4)-3) 9567269607679103 m001 Porter^Mills-ln(2) 9567269620162898 m001 (ln(3)+GAMMA(5/6))/(FeigenbaumAlpha-ZetaP(3)) 9567269657190053 a007 Real Root Of -472*x^4-177*x^3+227*x^2+755*x+755 9567269658328111 a001 1/2207*(1/2*5^(1/2)+1/2)^26*76^(9/19) 9567269671284036 m001 (GAMMA(11/12)-LandauRamanujan)/(Niven+Totient) 9567269684143374 a007 Real Root Of 453*x^4-609*x^3-31*x^2+174*x-718 9567269697987894 h001 (1/8*exp(1)+7/8)/(1/3*exp(1)+4/11) 9567269704705492 a003 cos(Pi*2/63)*cos(Pi*7/79) 9567269723726299 m001 1/Trott^2/exp(CareFree)/GAMMA(5/24) 9567269727311432 a008 Real Root of (-1+x-x^2-x^3-x^5+x^7+x^9+x^10+x^12) 9567269734066541 a003 sin(Pi*17/104)/cos(Pi*22/67) 9567269857126859 m001 (BesselJ(1,1)-TwinPrimes)/(Zeta(3)+ln(3)) 9567269866247049 q001 1216/1271 9567269866247049 r005 Im(z^2+c),c=-105/82+19/31*I,n=2 9567269916688205 a007 Real Root Of -745*x^4+492*x^3-207*x^2-335*x+924 9567269943584109 m005 (1/2*exp(1)-1/6)/(1/5*3^(1/2)+9/10) 9567269983279111 l006 ln(2593/6750) 9567270010583769 a003 cos(Pi*2/81)-cos(Pi*19/39) 9567270020006713 l006 ln(7271/8001) 9567270035184346 r005 Re(z^2+c),c=-139/114+10/29*I,n=8 9567270048055241 r005 Re(z^2+c),c=-35/36+15/58*I,n=9 9567270091083382 m005 (1/2*3^(1/2)+9/11)/(3/4*5^(1/2)+1/12) 9567270095703469 a007 Real Root Of -128*x^4+291*x^3-938*x^2-632*x+616 9567270113387524 m001 exp(Zeta(1/2))/GAMMA(5/6)/arctan(1/2)^2 9567270116628424 m001 DuboisRaymond^(sin(1/12*Pi)/ZetaQ(3)) 9567270131329029 a003 cos(Pi*18/71)*cos(Pi*47/103) 9567270171827524 m002 -5/Pi^6+Pi^6-5/ProductLog[Pi] 9567270197434334 a007 Real Root Of 724*x^4-334*x^3+173*x^2+799*x-293 9567270244692165 a007 Real Root Of 690*x^4+706*x^3+679*x^2+847*x+229 9567270246559919 a007 Real Root Of 400*x^4-864*x^3+649*x^2-839*x-87 9567270252296455 r002 4th iterates of z^2 + 9567270289297077 a007 Real Root Of 913*x^4+179*x^3-345*x^2+846*x+517 9567270329390963 s002 sum(A160705[n]/((2^n-1)/n),n=1..infinity) 9567270371081582 m001 exp(Salem)^2*GaussKuzminWirsing^2*Pi^2 9567270386564075 a007 Real Root Of 411*x^4-856*x^3-738*x^2+914*x+456 9567270397510535 r005 Re(z^2+c),c=-1/20+33/40*I,n=61 9567270401669793 m001 (GAMMA(5/6)+Pi^(1/2))/(Otter+ZetaP(4)) 9567270446613805 m001 Ei(1)^KhinchinHarmonic*Ei(1)^KomornikLoreti 9567270448506698 m001 1/GAMMA(7/24)/exp(GAMMA(3/4))*Zeta(9)^2 9567270459892423 m001 (Pi^(1/2)-ZetaP(4))/Pi^(1/2) 9567270487160730 m007 (-3/5*gamma-1/3)/(-4*gamma-8*ln(2)+3/4) 9567270490005066 a007 Real Root Of 920*x^4-84*x^3-153*x^2+39*x-667 9567270495978103 m001 (1-Si(Pi))/(-GAMMA(2/3)+arctan(1/2)) 9567270496227888 m005 (1/2*2^(1/2)+1/2)/(2/7*Catalan+1) 9567270498773410 p003 LerchPhi(1/2,3,82/173) 9567270517349470 b008 ArcCot[9*Tan[4]] 9567270525219206 m001 1/GAMMA(7/24)^2/Salem^2/exp(Zeta(5))^2 9567270555168047 a007 Real Root Of 960*x^4+303*x^3+527*x^2+408*x-631 9567270556475227 m001 1/FeigenbaumD/ln(Si(Pi))^2/GAMMA(23/24) 9567270594521290 a001 5778/13*34^(47/54) 9567270606501988 h001 (9/10*exp(1)+11/12)/(1/12*exp(1)+1/8) 9567270641030453 r005 Re(z^2+c),c=-13/14+38/207*I,n=11 9567270650845650 m005 (1/2+1/2*5^(1/2))/(8/11*exp(1)-2/7) 9567270683398025 m001 (sin(1)+OneNinth)^GaussAGM(1,1/sqrt(2)) 9567270693441829 m001 (Shi(1)-Si(Pi))/(-sin(1)+Trott) 9567270702962271 a001 33385282/5*4807526976^(17/23) 9567270703213524 a001 119218851371/5*75025^(17/23) 9567270733851892 m001 Mills-OneNinth*Riemann2ndZero 9567270773117909 a007 Real Root Of 574*x^4-668*x^3-676*x^2+205*x-251 9567270776442796 m001 ArtinRank2^Zeta(3)/(Sarnak^Zeta(3)) 9567270809095954 r005 Im(z^2+c),c=-49/86+10/59*I,n=24 9567270828605985 a007 Real Root Of 626*x^4+981*x^3+552*x^2-794*x+70 9567270885308944 a001 21/2*76^(25/49) 9567270916178079 r004 Re(z^2+c),c=1/6+7/18*I,z(0)=exp(5/8*I*Pi),n=61 9567270934826943 a007 Real Root Of -676*x^4+326*x^3+343*x^2+298*x+823 9567270976222071 a007 Real Root Of 163*x^4-516*x^3-362*x^2-210*x-458 9567270981484932 m001 ln(Niven)^2/MadelungNaCl^2*GAMMA(23/24) 9567270984328134 r005 Re(z^2+c),c=-61/66+10/59*I,n=37 9567271015210802 m001 Rabbit*(ErdosBorwein-sin(1/12*Pi)) 9567271029185765 m002 Pi^6-(E^Pi*Coth[Pi])/4+Log[Pi] 9567271046986069 r005 Re(z^2+c),c=-27/29+5/33*I,n=31 9567271081569299 a007 Real Root Of -962*x^4+353*x^3+137*x^2-515*x+497 9567271098852453 l006 ln(1328/3457) 9567271113951494 a007 Real Root Of 436*x^4-984*x^3+119*x^2-358*x+730 9567271121684747 s002 sum(A270911[n]/((2^n-1)/n),n=1..infinity) 9567271124825596 r008 a(0)=1,K{-n^6,14+23*n-15*n^3} 9567271136776197 r009 Re(z^3+c),c=-7/50+43/57*I,n=15 9567271153503851 l006 ln(4369/4411) 9567271171810146 a001 4/28657*121393^(13/36) 9567271187292061 m001 exp(FeigenbaumD)/FeigenbaumB/FeigenbaumKappa^2 9567271202123665 r002 42th iterates of z^2 + 9567271219828328 a007 Real Root Of -396*x^4+17*x^3-530*x^2-28*x+805 9567271231689477 m002 Pi^6-Cosh[Pi]^2/E^Pi+Log[Pi] 9567271264504920 a007 Real Root Of -224*x^4+416*x^3-76*x^2-704*x-52 9567271283191157 m005 (1/3*3^(1/2)-2/3)/(1/9*Zeta(3)+4/5) 9567271284571670 m005 (1/2*exp(1)-1/3)/(8/45+2/5*5^(1/2)) 9567271335946723 a001 1/5778*(1/2*5^(1/2)+1/2)^28*76^(9/19) 9567271338785975 m001 gamma(2)-GaussAGM^(ln(2)/ln(10)) 9567271346041417 m001 Niven/Pi/csc(11/24*Pi)*GAMMA(13/24)*Trott 9567271349324298 a007 Real Root Of -947*x^4-797*x^3-410*x^2+133*x+598 9567271352985638 r005 Re(z^2+c),c=-115/126+59/63*I,n=2 9567271372452039 m005 (1/2*2^(1/2)+5/7)/(4/9*2^(1/2)+6/7) 9567271386987542 a007 Real Root Of 14*x^4-890*x^3+629*x^2-183*x+367 9567271403662283 a007 Real Root Of -583*x^4+431*x^3+382*x^2-64*x+455 9567271404079159 r005 Re(z^2+c),c=-23/18+61/229*I,n=5 9567271410398456 a007 Real Root Of -149*x^4+471*x^3+485*x^2-403*x-346 9567271411179431 p003 LerchPhi(1/2,3,557/238) 9567271433438271 m002 E^Pi/4+Pi^6-Cosh[Pi]+Log[Pi] 9567271444330087 l006 ln(8775/9656) 9567271485539955 a007 Real Root Of 226*x^4-801*x^3+583*x^2-57*x+33 9567271486811939 m001 (BesselK(1,1)-GAMMA(7/12))^LandauRamanujan2nd 9567271497905931 r005 Im(z^2+c),c=7/32+1/26*I,n=29 9567271530402722 p004 log(17449/6703) 9567271533329798 r005 Re(z^2+c),c=-89/106+5/31*I,n=30 9567271580708029 a001 1/15127*(1/2*5^(1/2)+1/2)^30*76^(9/19) 9567271610817963 a007 Real Root Of 283*x^4-74*x^3+681*x^2+133*x-798 9567271611287124 r002 10th iterates of z^2 + 9567271613060882 a001 1/33*(1/2*5^(1/2)+1/2)^15*11^(7/20) 9567271616418223 a001 1/39603*(1/2*5^(1/2)+1/2)^32*76^(9/19) 9567271616639620 a007 Real Root Of 179*x^4-143*x^3+24*x^2-674*x-942 9567271622518253 a001 (1/2*5^(1/2)+1/2)^10*76^(9/19) 9567271638488337 a001 1/24476*(1/2*5^(1/2)+1/2)^31*76^(9/19) 9567271646782856 m002 -2-Pi^6+6/ProductLog[Pi]+ProductLog[Pi] 9567271679197077 a007 Real Root Of -63*x^4-617*x^3-105*x^2+371*x+671 9567271731978842 a001 1/9349*(1/2*5^(1/2)+1/2)^29*76^(9/19) 9567271743038519 a007 Real Root Of 460*x^4-915*x^3+528*x^2+717*x-984 9567271777586680 b008 ArcCoth[ArcSec[E+Sqrt[Pi]]] 9567271822929619 q001 3847/4021 9567271858855169 a007 Real Root Of -764*x^4+170*x^3+215*x^2+212*x+795 9567271869269814 a001 123/139583862445*233^(7/16) 9567271896643663 a001 123/233*12586269025^(11/12) 9567271940630627 m001 MertensB3/BesselK(1,1)/exp(Pi) 9567271971852075 a007 Real Root Of 794*x^4-575*x^3-897*x^2-86*x-430 9567271984549593 r005 Re(z^2+c),c=-1/74+9/25*I,n=25 9567271987558589 a001 521/701408733*317811^(13/23) 9567271987569296 a001 521/365435296162*20365011074^(13/23) 9567271997497847 r005 Im(z^2+c),c=-9/8+3/256*I,n=38 9567272010839695 a007 Real Root Of 36*x^4-142*x^3+211*x^2+401*x+36 9567272011576656 s001 sum(exp(-3*Pi/4)^n*A201490[n],n=1..infinity) 9567272034821973 a007 Real Root Of -259*x^4+882*x^3-621*x^2+785*x-738 9567272048663341 m001 (arctan(1/2)+exp(gamma))/GAMMA(1/24) 9567272061453337 r005 Im(z^2+c),c=11/28+19/50*I,n=24 9567272078243704 a007 Real Root Of -804*x^4-469*x^3-382*x^2+59*x+669 9567272085664335 a003 cos(Pi*10/89)/sin(Pi*7/16) 9567272095082361 m006 (Pi+1/6)/(2/5*ln(Pi)+3) 9567272162729379 l006 ln(2719/7078) 9567272186258566 a007 Real Root Of -204*x^4+170*x^3-561*x^2-548*x+309 9567272216693110 m002 -6+Pi^6+ProductLog[Pi]/Pi+Tanh[Pi] 9567272222702447 a007 Real Root Of -399*x^4+648*x^3+368*x^2-69*x-504 9567272235025171 m001 (exp(-1/2*Pi)-Conway)/(DuboisRaymond-Totient) 9567272247188811 r005 Re(z^2+c),c=-8/11+12/47*I,n=12 9567272265908124 a007 Real Root Of 974*x^4-236*x^3+466*x^2+803*x-681 9567272267092761 m001 (2^(1/3)+2)/(-Lehmer+4) 9567272279248986 m001 ln(2)/ln(10)/ln(2^(1/2)+1)/FeigenbaumMu 9567272315538933 m007 (-4/5*gamma+1/4)/(-gamma-2*ln(2)-1/4) 9567272334856871 r002 22th iterates of z^2 + 9567272353393708 m005 (1/2*gamma+5/8)/(4/11*Catalan-3/7) 9567272372772339 a001 1/3571*(1/2*5^(1/2)+1/2)^27*76^(9/19) 9567272393428808 m005 (3*Catalan+1/5)/(3*Catalan+1/3) 9567272411235036 a007 Real Root Of -175*x^4+849*x^3+66*x^2+16*x+845 9567272438639628 a007 Real Root Of 278*x^4-757*x^3+331*x^2-486*x+592 9567272454494739 a007 Real Root Of -899*x^4+408*x^3+685*x^2-728*x-213 9567272456623821 a007 Real Root Of -246*x^4+897*x^3+588*x^2-522*x-46 9567272482135585 a007 Real Root Of -907*x^4+635*x^3-438*x^2-996*x+764 9567272540780469 a007 Real Root Of 328*x^4-935*x^3+250*x^2+845*x-514 9567272545250873 a007 Real Root Of -653*x^4+431*x^3-697*x^2-820*x+778 9567272555722141 a005 (1/cos(32/185*Pi))^355 9567272560464240 b008 87*Sqrt[Erfc[E]] 9567272560871915 a007 Real Root Of -226*x^4+535*x^3+522*x^2-276*x-84 9567272569995328 r005 Im(z^2+c),c=-83/102+2/37*I,n=18 9567272584214121 a001 1926*8^(37/48) 9567272589159178 a007 Real Root Of -53*x^4-561*x^3-458*x^2+602*x+450 9567272592606892 m008 (3/4*Pi^5-1/3)/(1/4*Pi^6-4/5) 9567272611441098 a007 Real Root Of 729*x^4+499*x^3+486*x^2+147*x-478 9567272657514258 a001 3010349/3*75025^(11/18) 9567272686178178 r002 5th iterates of z^2 + 9567272687762602 m001 (Artin+MadelungNaCl)/(cos(1/12*Pi)-exp(Pi)) 9567272699117799 a001 15127/3*433494437^(11/18) 9567272706726275 a001 4976784/41*18^(5/7) 9567272709662379 a007 Real Root Of -109*x^4-947*x^3+905*x^2-184*x-675 9567272714870378 m001 BesselJ(0,1)^exp(-1/2*Pi)+Trott 9567272723200654 a007 Real Root Of -760*x^4+328*x^3-285*x^2-327*x+872 9567272734145221 a007 Real Root Of 59*x^4-843*x^3+214*x^2+311*x-686 9567272757647684 a003 cos(Pi*29/106)+cos(Pi*47/117) 9567272832622402 m001 Paris^2*Backhouse/ln(GAMMA(5/24)) 9567272844772937 a007 Real Root Of 204*x^4-80*x^3-88*x^2-472*x-612 9567272848005433 a007 Real Root Of 944*x^4+27*x^3-142*x^2-307*x-931 9567272859995479 m001 2*Pi/GAMMA(5/6)/BesselK(0,1)*Sarnak 9567272892141306 a007 Real Root Of 28*x^4-325*x^3-286*x^2-99*x-141 9567272919604066 m003 3-Cosh[1/2+Sqrt[5]/2]+(6*Log[1/2+Sqrt[5]/2])/5 9567272956673393 a007 Real Root Of 960*x^4-171*x^3-269*x^2+258*x-461 9567272999705976 p003 LerchPhi(1/125,1,25/239) 9567273005423915 r005 Re(z^2+c),c=1/20+15/32*I,n=48 9567273018891102 r005 Im(z^2+c),c=-25/114+25/32*I,n=3 9567273056948844 r005 Re(z^2+c),c=-59/64+11/63*I,n=39 9567273073683590 a007 Real Root Of 620*x^4+621*x^3+840*x^2+127*x-623 9567273074010381 a007 Real Root Of 407*x^4-142*x^3-189*x^2+431*x+120 9567273094003990 p001 sum((-1)^n/(295*n+29)/n/(32^n),n=1..infinity) 9567273095498646 r005 Im(z^2+c),c=-5/6+133/204*I,n=4 9567273101937089 r005 Re(z^2+c),c=-16/17+4/33*I,n=15 9567273102832303 m001 (ln(Pi)-gamma(1))/(MadelungNaCl-Weierstrass) 9567273119841447 r005 Re(z^2+c),c=-13/14+31/213*I,n=9 9567273143206091 m001 exp(GAMMA(1/24))*Niven*GAMMA(1/4) 9567273173732649 a007 Real Root Of -939*x^4+514*x^3+418*x^2-480*x+395 9567273175166187 a007 Real Root Of -873*x^4-362*x^3-483*x^2-381*x+492 9567273178421982 l006 ln(1391/3621) 9567273209371378 m002 -(E^Pi/Pi^4)+Pi^2/5-Pi^4 9567273228314661 g007 Psi(2,3/10)+Psi(2,1/6)-Psi(2,8/11)-Psi(2,1/9) 9567273241831028 m001 1/ln(KhintchineLevy)^2*CareFree^2/sqrt(Pi) 9567273260036828 r002 7th iterates of z^2 + 9567273271760256 a007 Real Root Of -63*x^4+819*x^3-482*x^2+722*x-914 9567273288432006 m001 (2^(1/2))^Robbin-ln(2)/ln(10) 9567273310485569 r008 a(0)=1,K{-n^6,82-88*n^3-11*n^2+40*n} 9567273365184159 a003 -1/2+2*cos(1/8*Pi)-cos(5/21*Pi)+cos(7/18*Pi) 9567273399945191 a007 Real Root Of -10*x^4-956*x^3+70*x^2+40*x+43 9567273423162367 h001 (1/6*exp(2)+10/11)/(3/11*exp(2)+2/9) 9567273448700221 m001 (2^(1/2)-cos(1/5*Pi))/(-Cahen+Trott) 9567273486941526 a005 (1/sin(76/187*Pi))^104 9567273493010336 h001 (3/8*exp(2)+2/9)/(7/8*exp(1)+3/4) 9567273499938922 m005 (13/20+1/4*5^(1/2))/(2/11*5^(1/2)+6/7) 9567273514985606 a007 Real Root Of 952*x^4-858*x^3-887*x^2+599*x-164 9567273547654321 m005 (1/2*Pi-10/11)/(1/10*Zeta(3)+4/7) 9567273585950481 m001 Zeta(1,2)^GAMMA(19/24)/gamma(2) 9567273643849006 a007 Real Root Of 549*x^4-913*x^3-795*x^2+351*x-196 9567273662124430 r009 Re(z^3+c),c=-3/58+57/64*I,n=24 9567273689488161 a001 75025/521*18^(19/29) 9567273702160770 m001 (-Ei(1)+Sierpinski)/(2^(1/2)-ln(2)) 9567273706941813 a005 (1/cos(19/235*Pi))^1552 9567273729649198 a007 Real Root Of 859*x^4+610*x^3+763*x^2+557*x-351 9567273743078226 g003 Im(GAMMA(269/60+I*(-23/10))) 9567273748121492 r005 Im(z^2+c),c=-20/23+11/52*I,n=62 9567273786907288 a003 sin(Pi*15/73)-sin(Pi*14/57) 9567273794390614 a007 Real Root Of -345*x^4-82*x^3-717*x^2+979*x-87 9567273823709893 m001 1/exp(MertensB1)^2*CopelandErdos/Zeta(1/2) 9567273830973833 a001 9349/5*610^(14/55) 9567273844266602 a007 Real Root Of -379*x^4+837*x^3+944*x^2+172*x+351 9567273890344060 r005 Im(z^2+c),c=-33/58+23/39*I,n=13 9567273890987716 m002 -4/Pi^6-ProductLog[Pi]+Pi^6*Tanh[Pi] 9567273921042860 r005 Re(z^2+c),c=-1/54+7/20*I,n=24 9567273941382201 a001 4/121393*1346269^(41/46) 9567273943977533 m003 -9+12*Cot[1/2+Sqrt[5]/2] 9567273957194806 a007 Real Root Of 209*x^4-658*x^3-943*x^2-420*x-290 9567273971191485 a007 Real Root Of -833*x^4-660*x^3-360*x^2-290*x+172 9567273988875732 h001 (3/11*exp(1)+4/9)/(1/3*exp(1)+1/3) 9567273991164360 r008 a(0)=9,K{-n^6,3+3*n^3-5*n^2-4*n} 9567273997531429 r005 Im(z^2+c),c=-53/52+11/39*I,n=8 9567274026152701 p001 sum((-1)^n/(173*n+103)/(25^n),n=0..infinity) 9567274027824844 r008 a(0)=1,K{-n^6,44-5*n-40*n^2+25*n^3} 9567274056431703 m001 (Grothendieck-PlouffeB)^Zeta(1,-1) 9567274101440102 a007 Real Root Of 599*x^4-341*x^3+447*x^2+517*x-715 9567274137528555 m001 (3^(1/3)-ErdosBorwein)/(GaussAGM-LaplaceLimit) 9567274149131267 l006 ln(2845/7406) 9567274178052607 a007 Real Root Of 602*x^4-898*x^3-427*x^2+672*x-257 9567274211545668 m001 1/ln(Tribonacci)/Backhouse^2/cos(Pi/5) 9567274256472748 a007 Real Root Of -61*x^4+631*x^3+299*x^2+96*x-867 9567274272906274 a007 Real Root Of -899*x^4-816*x^3-399*x^2+389*x+776 9567274282071270 a003 sin(Pi*13/96)+sin(Pi*13/71) 9567274289902400 r005 Re(z^2+c),c=-29/31+5/36*I,n=37 9567274313836670 r005 Re(z^2+c),c=35/122+15/37*I,n=45 9567274326677530 m002 -6+6/Pi^3+Pi^6+Log[Pi] 9567274359026273 m008 (2*Pi^5+5/6)/(2/3*Pi^6-1/3) 9567274372130960 r005 Im(z^2+c),c=-45/94+46/63*I,n=5 9567274381490795 m001 1/Rabbit^2*FransenRobinson*ln(GAMMA(1/6)) 9567274399641639 a007 Real Root Of 490*x^4-364*x^3+629*x^2+600*x-731 9567274419581409 m001 1/ln(GAMMA(1/3))^2/FeigenbaumC/sin(Pi/5) 9567274491577011 m001 (cos(1/5*Pi)-MadelungNaCl)^ArtinRank2 9567274505768579 a007 Real Root Of 731*x^4+222*x^3-186*x^2-180*x-420 9567274546412595 a007 Real Root Of 950*x^4-880*x^3-647*x^2+639*x-363 9567274563539018 a007 Real Root Of 97*x^4+835*x^3-821*x^2+638*x-212 9567274566066648 m001 (GAMMA(19/24)+Stephens)/(ln(5)+Ei(1,1)) 9567274571447461 m001 1/FeigenbaumD*exp(Riemann2ndZero)^2/sin(1)^2 9567274604239741 m005 (1/2*Pi+7/10)/(6/7*3^(1/2)+8/9) 9567274636312454 a007 Real Root Of 905*x^4-55*x^3-364*x^2-5*x-478 9567274652866955 m001 (LambertW(1)-exp(1/exp(1)))/(Artin+Landau) 9567274772910430 a007 Real Root Of 218*x^4-565*x^3+314*x^2+489*x-497 9567274783562026 a007 Real Root Of -845*x^4+688*x^3+946*x^2-380*x+81 9567274790547452 r005 Re(z^2+c),c=11/126+23/45*I,n=21 9567274791234913 a007 Real Root Of -572*x^4+425*x^3-418*x^2-323*x+925 9567274792763485 a003 sin(Pi*2/65)*sin(Pi*49/107) 9567274809570434 a007 Real Root Of 296*x^4-600*x^3-459*x^2+363*x-6 9567274844056782 a007 Real Root Of -375*x^4+426*x^3-705*x^2-542*x+814 9567274847116605 r005 Im(z^2+c),c=1/8+25/39*I,n=19 9567274879880310 a007 Real Root Of 726*x^4+130*x^3+719*x^2+288*x-877 9567274930109124 m001 (2^(1/3)+Psi(2,1/3)*gamma(1))/Psi(2,1/3) 9567274974353165 s002 sum(A152880[n]/(n*pi^n-1),n=1..infinity) 9567274987880992 r005 Re(z^2+c),c=1/26+23/51*I,n=42 9567274990089572 r005 Im(z^2+c),c=-19/70+33/40*I,n=8 9567275045458043 m001 (Zeta(3)+BesselJ(1,1))/(RenyiParking-Stephens) 9567275048398889 r005 Re(z^2+c),c=-15/16+13/98*I,n=29 9567275057765632 v003 sum((7*n-3)/(n!+1),n=1..infinity) 9567275062776194 m005 (9/2+1/2*5^(1/2))/(7/5+2*5^(1/2)) 9567275069919402 r009 Im(z^3+c),c=-23/114+41/44*I,n=27 9567275077780844 l006 ln(1454/3785) 9567275151230235 g005 GAMMA(5/8)/GAMMA(1/9)/GAMMA(4/7)/GAMMA(5/6) 9567275160729008 m002 -6+Pi^6+(4*Coth[Pi])/3 9567275162193883 r005 Im(z^2+c),c=31/82+11/19*I,n=3 9567275163758395 r002 46th iterates of z^2 + 9567275185936443 q001 1415/1479 9567275192758275 b008 8+ArcSec[284] 9567275204962926 a007 Real Root Of 398*x^4+506*x^3+626*x^2+362*x-117 9567275214586259 b008 8+ArcTan[284] 9567275241290050 a007 Real Root Of 695*x^4+395*x^3+549*x^2+118*x-626 9567275250814097 r005 Re(z^2+c),c=-8/9+19/91*I,n=55 9567275265779440 r008 a(0)=8,K{-n^6,26-56*n+13*n^2+17*n^3} 9567275322518426 m002 -(Coth[Pi]*ProductLog[Pi])+Pi^6*Tanh[Pi] 9567275353432114 a007 Real Root Of -629*x^4+551*x^3+15*x^2-213*x+792 9567275360976601 a007 Real Root Of 351*x^4+175*x^3+178*x^2+283*x-33 9567275364416365 r009 Im(z^3+c),c=-43/114+38/55*I,n=4 9567275375790825 a007 Real Root Of -903*x^4+543*x^3+698*x^2-204*x+398 9567275378745142 a003 sin(Pi*19/52)/sin(Pi*37/92) 9567275417757483 a003 sin(Pi*34/81)*sin(Pi*41/91) 9567275422074877 m005 (1/2*2^(1/2)-1/9)/(7/11*5^(1/2)-4/5) 9567275438112196 m001 (GAMMA(1/4)-exp(1/exp(1)))/BesselI(0,2) 9567275440908424 a003 sin(Pi*21/55)/sin(Pi*47/110) 9567275453394368 a007 Real Root Of -980*x^4-741*x^3-859*x^2-383*x+592 9567275496581548 r009 Im(z^3+c),c=-73/122+35/64*I,n=14 9567275542466924 r005 Re(z^2+c),c=-41/38+3/17*I,n=24 9567275543106944 m005 (1/2*gamma-1/7)/(53/48+3/16*5^(1/2)) 9567275606169627 m001 LambertW(1)*HardyLittlewoodC3-ln(2+3^(1/2)) 9567275613687235 m001 1/Lehmer^2*exp(GlaisherKinkelin)^2*Sierpinski 9567275636973563 a007 Real Root Of -448*x^4-65*x^3-337*x^2-95*x+536 9567275638781898 h001 (10/11*exp(1)+4/11)/(1/3*exp(2)+1/2) 9567275692734785 h001 (-9*exp(1/3)+7)/(-6*exp(-2)-5) 9567275693903519 r005 Re(z^2+c),c=-13/14+37/149*I,n=53 9567275758939807 a001 161/72*233^(4/15) 9567275763276028 r009 Im(z^3+c),c=-65/86+13/35*I,n=2 9567275770082730 a007 Real Root Of 988*x^4-433*x^3-982*x^2+90*x-222 9567275825588846 a007 Real Root Of 562*x^4-37*x^3-216*x^2-82*x-384 9567275838546292 a003 sin(Pi*25/58)*sin(Pi*44/101) 9567275848321609 a007 Real Root Of -394*x^4-929*x^3-690*x^2+396*x+527 9567275876298982 m001 1/sqrt(5)^2*sinh(1)^2*exp(sqrt(Pi))^2 9567275889493035 m001 GAMMA(23/24)^2*ln(Magata)^2/sqrt(1+sqrt(3)) 9567275912674689 m001 HardHexagonsEntropy^Chi(1)*Sarnak 9567275919197106 a007 Real Root Of -325*x^4+177*x^3+916*x^2+119*x-835 9567275952870104 m001 (Stephens+ZetaQ(3))/(Paris-Rabbit) 9567275967046347 l006 ln(2971/7734) 9567276003545624 a001 3536736619241/281*322^(3/4) 9567276004289512 m001 1/exp(Zeta(3))/GAMMA(1/12)/sqrt(1+sqrt(3))^2 9567276011740318 r002 7th iterates of z^2 + 9567276029526574 m001 Zeta(1,2)^(QuadraticClass/GAMMA(17/24)) 9567276062613687 a007 Real Root Of 593*x^4-591*x^3-984*x^2-201*x-306 9567276082128795 m001 (Ei(1)+Champernowne)/(Riemann2ndZero+ZetaP(4)) 9567276111087132 m002 3*Pi^3+(Cosh[Pi]*Log[Pi])/5 9567276113190396 r002 42th iterates of z^2 + 9567276127984857 a007 Real Root Of -459*x^4-197*x^3+458*x^2+851*x+607 9567276128823672 r009 Re(z^3+c),c=-3/58+57/64*I,n=34 9567276132094429 a007 Real Root Of -545*x^4+711*x^3+30*x^2-675*x+406 9567276140392904 p004 log(19417/7459) 9567276148979397 r005 Im(z^2+c),c=-18/19+2/23*I,n=25 9567276149215822 r009 Re(z^3+c),c=-3/58+57/64*I,n=36 9567276171423078 a007 Real Root Of 832*x^4+172*x^3+388*x^2+772*x-163 9567276179592838 r009 Re(z^3+c),c=-3/58+57/64*I,n=38 9567276192731997 r009 Re(z^3+c),c=-3/58+57/64*I,n=40 9567276194981295 r009 Re(z^3+c),c=-3/58+57/64*I,n=52 9567276194983670 r009 Re(z^3+c),c=-3/58+57/64*I,n=50 9567276194986745 r009 Re(z^3+c),c=-3/58+57/64*I,n=54 9567276194989851 r009 Re(z^3+c),c=-3/58+57/64*I,n=56 9567276194990755 r009 Re(z^3+c),c=-3/58+57/64*I,n=64 9567276194990777 r009 Re(z^3+c),c=-3/58+57/64*I,n=58 9567276194990801 r009 Re(z^3+c),c=-3/58+57/64*I,n=62 9567276194990869 r009 Re(z^3+c),c=-3/58+57/64*I,n=60 9567276195037412 r009 Re(z^3+c),c=-3/58+57/64*I,n=48 9567276195241531 r009 Re(z^3+c),c=-3/58+57/64*I,n=46 9567276195656709 r009 Re(z^3+c),c=-3/58+57/64*I,n=44 9567276195737836 r009 Re(z^3+c),c=-3/58+57/64*I,n=42 9567276197696814 a007 Real Root Of -891*x^4-101*x^3+667*x^2+590*x+612 9567276200196011 a007 Real Root Of 460*x^4-427*x^3-693*x^2+46*x-81 9567276208004162 m001 TwinPrimes^2/exp(GolombDickman)^2*BesselJ(0,1) 9567276218792952 a007 Real Root Of -431*x^4+360*x^3+753*x^2-159*x-165 9567276226636924 m001 (CareFree+FeigenbaumMu)/(gamma(1)-Artin) 9567276231246056 r005 Im(z^2+c),c=-5/22+28/39*I,n=60 9567276235811802 a007 Real Root Of -918*x^4-373*x^3-824*x^2-492*x+726 9567276288699599 r009 Re(z^3+c),c=-3/58+57/64*I,n=32 9567276298551127 m001 Paris/exp(ErdosBorwein)^2/PrimesInBinary 9567276302020994 a001 11/5*196418^(13/42) 9567276311350986 r002 2th iterates of z^2 + 9567276316832981 a007 Real Root Of -518*x^4+572*x^3-148*x^2-546*x+548 9567276353313920 a003 sin(Pi*17/115)-sin(Pi*15/82) 9567276367065257 s002 sum(A132034[n]/(2^n-1),n=1..infinity) 9567276368091716 r005 Im(z^2+c),c=-47/82+7/40*I,n=38 9567276370479083 a001 34/11*7^(18/31) 9567276375983615 r005 Re(z^2+c),c=9/40+11/46*I,n=4 9567276376221301 m006 (2/3*Pi^2+1/4)/(1/3*Pi-1/3) 9567276376221301 m008 (2/3*Pi^2+1/4)/(1/3*Pi-1/3) 9567276385726641 s002 sum(A031039[n]/(n^3*pi^n+1),n=1..infinity) 9567276390573611 m002 -4-Pi^6+(3*Sinh[Pi])/4 9567276391098235 a007 Real Root Of 320*x^4-195*x^3-249*x^2-230*x-431 9567276400492406 m005 (1/2*Catalan+1/9)/(2/7*exp(1)-2/11) 9567276416598996 a007 Real Root Of -284*x^4+87*x^3-292*x^2+989*x-92 9567276458902101 a007 Real Root Of 328*x^4-707*x^3-558*x^2+65*x-321 9567276463764968 a001 18/9227465*8^(13/17) 9567276497853281 a007 Real Root Of 446*x^4+20*x^3+660*x^2+687*x-303 9567276523611611 a007 Real Root Of -101*x^4+784*x^3+353*x^2+487*x+914 9567276528358443 r009 Im(z^3+c),c=-3/22+35/46*I,n=12 9567276549277176 r002 25th iterates of z^2 + 9567276567026241 m001 1/OneNinth^2/ln(GlaisherKinkelin)/GAMMA(1/4) 9567276569796719 m005 (1/2*Pi+3)/(4/7*5^(1/2)-4/5) 9567276577223529 a007 Real Root Of 94*x^4-51*x^3+513*x^2+116*x-482 9567276586988680 r005 Re(z^2+c),c=-1/12+23/29*I,n=28 9567276605635412 r009 Re(z^3+c),c=-7/40+31/47*I,n=42 9567276649505434 m005 (1/2*gamma+1/7)/(7/12*Catalan-1/12) 9567276661355081 m001 (Otter+Paris)/(exp(1/Pi)-GAMMA(11/12)) 9567276682822294 a007 Real Root Of 376*x^4-864*x^3-994*x^2-88*x-246 9567276689406598 a007 Real Root Of -261*x^4+136*x^3+187*x^2-610*x-417 9567276695453455 r005 Im(z^2+c),c=7/32+1/26*I,n=30 9567276732233760 r005 Re(z^2+c),c=-55/58+4/43*I,n=13 9567276745686683 p003 LerchPhi(1/1024,1,160/153) 9567276748191222 a001 341/36*377^(23/59) 9567276756777829 a007 Real Root Of 971*x^4-512*x^3+34*x^2+508*x-807 9567276764838623 a001 1/1364*(1/2*5^(1/2)+1/2)^25*76^(9/19) 9567276765798256 m001 (FeigenbaumMu+Magata)/(Artin-ln(2)/ln(10)) 9567276787347384 r009 Im(z^3+c),c=-13/66+31/34*I,n=37 9567276791201809 a007 Real Root Of 313*x^4-705*x^3+969*x^2+888*x-917 9567276806458789 m005 (1/2*exp(1)-1/11)/(5/9*5^(1/2)+1/12) 9567276811141126 r008 a(0)=1,K{-n^6,81-88*n^3-11*n^2+41*n} 9567276819381171 l006 ln(1517/3949) 9567276847151884 m002 -4/Pi^3-Pi^2+5*Sech[Pi] 9567276848318531 m001 1/ln(GAMMA(11/24))^2/Magata*sqrt(2) 9567276857526166 a007 Real Root Of 361*x^4+158*x^3+77*x^2-161*x-16 9567276868845478 m002 -2/3+Pi^4-ProductLog[Pi]*Tanh[Pi] 9567276876205784 a007 Real Root Of -572*x^4-15*x^3-461*x^2-322*x+580 9567276912272519 r002 46th iterates of z^2 + 9567276936252481 m001 (Zeta(1/2)*Rabbit+Salem)/Zeta(1/2) 9567276962010653 r005 Im(z^2+c),c=-25/46+6/35*I,n=58 9567276982144452 r009 Im(z^3+c),c=-13/66+49/52*I,n=31 9567277022145144 r005 Im(z^2+c),c=7/32+1/26*I,n=42 9567277023816952 r005 Im(z^2+c),c=7/32+1/26*I,n=43 9567277026245956 a007 Real Root Of 325*x^4+371*x^3+714*x^2+579*x-47 9567277027958690 r005 Im(z^2+c),c=7/32+1/26*I,n=41 9567277028108116 r005 Im(z^2+c),c=7/32+1/26*I,n=44 9567277028344968 a007 Real Root Of -256*x^4+598*x^3-406*x^2+591*x-503 9567277032581218 r005 Im(z^2+c),c=7/32+1/26*I,n=45 9567277036239356 r005 Im(z^2+c),c=7/32+1/26*I,n=46 9567277038851092 r005 Im(z^2+c),c=7/32+1/26*I,n=47 9567277040532618 r005 Im(z^2+c),c=7/32+1/26*I,n=48 9567277041514130 r005 Im(z^2+c),c=7/32+1/26*I,n=49 9567277042025132 r005 Im(z^2+c),c=7/32+1/26*I,n=50 9567277042138580 r005 Im(z^2+c),c=7/32+1/26*I,n=62 9567277042138592 r005 Im(z^2+c),c=7/32+1/26*I,n=63 9567277042138899 r005 Im(z^2+c),c=7/32+1/26*I,n=64 9567277042139323 r005 Im(z^2+c),c=7/32+1/26*I,n=61 9567277042141605 r005 Im(z^2+c),c=7/32+1/26*I,n=60 9567277042146646 r005 Im(z^2+c),c=7/32+1/26*I,n=59 9567277042156148 r005 Im(z^2+c),c=7/32+1/26*I,n=58 9567277042172193 r005 Im(z^2+c),c=7/32+1/26*I,n=57 9567277042196763 r005 Im(z^2+c),c=7/32+1/26*I,n=56 9567277042230608 r005 Im(z^2+c),c=7/32+1/26*I,n=55 9567277042249364 r005 Im(z^2+c),c=7/32+1/26*I,n=51 9567277042270958 r005 Im(z^2+c),c=7/32+1/26*I,n=54 9567277042307524 r005 Im(z^2+c),c=7/32+1/26*I,n=53 9567277042316101 r005 Im(z^2+c),c=7/32+1/26*I,n=52 9567277044327412 a001 3571/3*144^(13/31) 9567277045398785 m001 LandauRamanujan^(Artin*TreeGrowth2nd) 9567277048630883 m001 Psi(1,1/3)-polylog(4,1/2)-Trott 9567277049837430 r005 Im(z^2+c),c=7/32+1/26*I,n=40 9567277093971421 a007 Real Root Of -231*x^4+19*x^3+876*x^2+137*x-756 9567277094973928 a007 Real Root Of 990*x^4-983*x^3-791*x^2-29*x-994 9567277101467937 r005 Im(z^2+c),c=7/32+1/26*I,n=39 9567277116997257 r009 Re(z^3+c),c=-3/58+57/64*I,n=30 9567277139676988 m001 (KhinchinHarmonic+Tetranacci)/(Pi+ArtinRank2) 9567277173644889 m002 -(ProductLog[Pi]/Pi^5)-Tanh[Pi]+Tanh[Pi]/E^Pi 9567277176305310 m001 1/ln(TwinPrimes)^2*MinimumGamma*GAMMA(5/6) 9567277181375535 a007 Real Root Of 978*x^4+249*x^3-644*x^2-621*x+6 9567277188073769 m002 Pi^2/3+Pi^6*Coth[Pi]-Sinh[Pi] 9567277202609028 r005 Im(z^2+c),c=7/32+1/26*I,n=38 9567277247252700 a007 Real Root Of -340*x^4-570*x^3-522*x^2+520*x+761 9567277300698955 m002 (-7*Pi)/6+Pi^6-Tanh[Pi] 9567277309710263 a007 Real Root Of -972*x^4+224*x^3+982*x^2+732*x+812 9567277317177163 m008 (1/2*Pi^5+2/5)/(1/6*Pi^4-1/5) 9567277321541377 q001 3029/3166 9567277378487559 r005 Im(z^2+c),c=7/32+1/26*I,n=37 9567277404277743 m005 (1/3*Pi-1/11)/(7/11*2^(1/2)-4/5) 9567277480175351 a007 Real Root Of 344*x^4+660*x^3+351*x^2-867*x-861 9567277488927784 m001 (FeigenbaumMu+Weierstrass)/(1-gamma) 9567277507906234 a001 7/377*610^(37/38) 9567277524181251 m001 GaussAGM^(OneNinth/TreeGrowth2nd) 9567277530431785 r005 Re(z^2+c),c=-13/14+25/158*I,n=27 9567277530785450 r009 Re(z^3+c),c=-1/58+19/29*I,n=56 9567277561952549 a007 Real Root Of 989*x^4+234*x^3-528*x^2+453*x+293 9567277567291558 m005 (1/2*5^(1/2)-3/5)/(8/9*Catalan-3/11) 9567277608387799 a007 Real Root Of -497*x^4+755*x^3+489*x^2+346*x+961 9567277637039082 l006 ln(3097/8062) 9567277654227920 m001 (3^(1/2)+GAMMA(11/12))/(-GaussAGM+Landau) 9567277655516122 r005 Im(z^2+c),c=7/32+1/26*I,n=36 9567277664474754 a007 Real Root Of 52*x^4+387*x^3-992*x^2+693*x+665 9567277674971153 m001 (Landau+ZetaP(3))/(ZetaP(4)-ZetaQ(4)) 9567277689988076 a005 (1/cos(11/111*Pi))^373 9567277712580276 m001 GAMMA(1/3)^exp(sqrt(2))/BesselK(1,1) 9567277732406050 a003 cos(Pi*11/109)/sin(Pi*31/67) 9567277754387369 a007 Real Root Of -378*x^4+578*x^3-90*x^2-549*x+380 9567277759156845 a007 Real Root Of 843*x^4+810*x^3+921*x^2+70*x-773 9567277759971004 m001 (ln(2^(1/2)+1)+ZetaQ(2))^TwinPrimes 9567277786190106 a001 1364/139583862445*377^(17/22) 9567277802734799 r005 Im(z^2+c),c=4/11+28/45*I,n=7 9567277818695808 a007 Real Root Of 923*x^4+433*x^3+890*x^2+352*x-872 9567277819908952 m002 -Cosh[Pi]+2*Tanh[Pi]+Tanh[Pi]/Pi^3 9567277834565863 a007 Real Root Of 773*x^4-658*x^3-559*x^2+943*x+190 9567277887325760 m001 Mills^(gamma(1)/TreeGrowth2nd) 9567277923832297 m001 (FeigenbaumC+Niven)/(5^(1/2)-Zeta(1/2)) 9567277932850940 a005 (1/sin(97/211*Pi))^568 9567277953846314 m005 (1/3*Pi-2/5)/(7/8*Catalan-1/8) 9567278003168257 r002 36th iterates of z^2 + 9567278005444829 p003 LerchPhi(1/25,1,95/89) 9567278017796683 m001 (Backhouse+Conway)/(FransenRobinson+ZetaP(4)) 9567278019886338 m001 MertensB1*FibonacciFactorial^2/exp(sqrt(2)) 9567278022180465 a001 440719107401/7*12586269025^(10/11) 9567278022180465 a001 10749957122/21*2504730781961^(10/11) 9567278049833579 r005 Im(z^2+c),c=7/32+1/26*I,n=35 9567278058305437 a007 Real Root Of 102*x^4+960*x^3-147*x^2+47*x+14 9567278069938042 a001 521*(1/2*5^(1/2)+1/2)^20*3^(3/17) 9567278090379627 m002 -(Log[Pi]/Pi^5)-ProductLog[Pi]+Pi^6*Tanh[Pi] 9567278126438685 a007 Real Root Of -200*x^4+728*x^3-751*x^2+99*x+17 9567278130944082 r008 a(0)=1,K{-n^6,8+4*n^3+6*n^2+6*n} 9567278193471419 a007 Real Root Of -685*x^4+332*x^3+975*x^2+906*x+839 9567278210250212 m001 (Kac-KomornikLoreti)/(gamma(3)-Champernowne) 9567278218208856 m002 -1-ProductLog[Pi]+Tanh[Pi]+Pi^6*Tanh[Pi] 9567278219639595 a007 Real Root Of -865*x^4-921*x^3-494*x^2-870*x-462 9567278248205583 a007 Real Root Of -104*x^4+985*x^3+644*x^2+491*x+830 9567278255527460 m001 (Kolakoski-ZetaQ(3))/(Ei(1,1)+BesselK(1,1)) 9567278263676291 m001 (Grothendieck+Paris)/(1+cos(1/12*Pi)) 9567278276757349 m002 -3/(Pi^2*Log[Pi])+Pi^2*Tanh[Pi] 9567278278905449 m001 (LaplaceLimit+ZetaP(2))/(1-Zeta(1,-1)) 9567278293699114 a003 cos(Pi*3/97)*cos(Pi*4/45) 9567278303212298 m001 (gamma(1)+HardyLittlewoodC3)/sin(1/5*Pi) 9567278307699545 a007 Real Root Of -787*x^4+535*x^3-134*x^2-265*x+997 9567278311498199 m002 -1-4/Pi^2+Pi-Pi^4 9567278313505946 a007 Real Root Of 990*x^4+234*x^3-260*x^2-105*x-487 9567278322720129 a007 Real Root Of 102*x^4+971*x^3+60*x^2+915*x-996 9567278330137814 l006 ln(1504/1655) 9567278346851643 m005 (1/3*exp(1)+1/5)/(7/9*gamma-1/3) 9567278368489828 m006 (3*Pi^2-4)/(5*exp(2*Pi)-3/4) 9567278370266459 a007 Real Root Of -984*x^4-508*x^3+641*x^2+828*x+585 9567278378752501 m001 exp(Riemann1stZero)^2/MadelungNaCl^2*cosh(1) 9567278399633933 m001 GAMMA(1/6)/KhintchineLevy^2/ln(GAMMA(3/4))^2 9567278401977881 m006 (2/5/Pi+3/5)/(3/4*Pi^2+1/5) 9567278422094115 l006 ln(1580/4113) 9567278430868600 m002 -2-Pi^2+Pi^6*Coth[Pi]^2 9567278476269252 a003 cos(Pi*2/61)*cos(Pi*3/34) 9567278543401340 r005 Im(z^2+c),c=7/32+1/26*I,n=34 9567278587408858 r005 Re(z^2+c),c=7/86+15/59*I,n=4 9567278614582296 a007 Real Root Of -18*x^4+690*x^3-33*x^2-57*x+595 9567278617143798 m001 (1+Bloch)/(-MertensB1+OneNinth) 9567278636989123 a003 cos(Pi*9/115)-cos(Pi*59/119) 9567278659154805 a003 sin(Pi*1/105)-sin(Pi*43/96) 9567278659249248 a003 sin(Pi*36/89)/sin(Pi*14/29) 9567278715873350 m001 (gamma+Ei(1,1))^DuboisRaymond 9567278728493635 a007 Real Root Of -183*x^4-65*x^3+90*x^2+532*x+523 9567278730032410 a007 Real Root Of -207*x^4+604*x^3+280*x^2+279*x+713 9567278733241334 r005 Im(z^2+c),c=-73/122+8/45*I,n=49 9567278751741453 r005 Re(z^2+c),c=-7/36+42/59*I,n=18 9567278752159547 b008 9+(2*Csch[1])/3 9567278752854903 r009 Im(z^3+c),c=-13/86+24/29*I,n=22 9567278755365469 m001 Zeta(1,2)^(3^(1/3)*PlouffeB) 9567278767298887 a007 Real Root Of -136*x^4+492*x^3+310*x^2-438*x-158 9567278786338362 a007 Real Root Of 777*x^4+144*x^3-222*x^2-478*x-779 9567278787926011 a007 Real Root Of 272*x^4-708*x^3+437*x^2-881*x+835 9567278813068920 r005 Im(z^2+c),c=7/32+1/26*I,n=31 9567278825703352 a007 Real Root Of -270*x^4-617*x^3-815*x^2+552*x+960 9567278833792300 a007 Real Root Of -35*x^4+211*x^3-52*x^2+66*x-171 9567278840390565 r005 Im(z^2+c),c=-125/106+10/63*I,n=35 9567278843372694 a007 Real Root Of -452*x^4-248*x^3-189*x^2+451*x+766 9567278851387364 a007 Real Root Of -838*x^4-62*x^3+978*x^2+615*x+341 9567278876694112 m001 (Artin-FeigenbaumKappa)/(MertensB2-ZetaQ(3)) 9567278882979038 m001 (-exp(1/Pi)+Trott)/(Chi(1)+sin(1/5*Pi)) 9567278906358431 r004 Im(z^2+c),c=-3/4-4/9*I,z(0)=exp(5/24*I*Pi),n=2 9567279025926282 r005 Re(z^2+c),c=5/19+9/26*I,n=29 9567279027019508 r002 48th iterates of z^2 + 9567279040551550 r005 Im(z^2+c),c=7/32+1/26*I,n=33 9567279081004489 a007 Real Root Of 69*x^4-327*x^3+670*x^2+660*x-326 9567279103546709 r005 Re(z^2+c),c=-101/118+7/36*I,n=9 9567279122786445 a007 Real Root Of -69*x^4+859*x^3-960*x^2+733*x-517 9567279125953092 a001 9349/13*1597^(20/57) 9567279128351547 r005 Im(z^2+c),c=-24/23+2/19*I,n=32 9567279134298748 a007 Real Root Of 858*x^4+612*x^3+52*x^2-474*x-684 9567279176458140 l006 ln(3223/8390) 9567279192036061 r002 19th iterates of z^2 + 9567279193835210 q001 1614/1687 9567279218654111 m001 (Psi(2,1/3)-arctan(1/3))/(Bloch+OneNinth) 9567279232214544 a007 Real Root Of 897*x^4+748*x^3-48*x^2-891*x-905 9567279235902090 m002 -(Pi^4*Coth[Pi])+(Pi^4*Sech[Pi])/4 9567279241359807 m001 exp(-Pi)^exp(1)/(exp(-Pi)^GAMMA(1/12)) 9567279241359807 m001 exp(Pi)^GAMMA(1/12)/(exp(Pi)^exp(1)) 9567279247648147 m001 (GAMMA(1/24)-GAMMA(11/24))^sqrt(5) 9567279247948620 a007 Real Root Of -961*x^4+576*x^3+548*x^2-255*x+564 9567279262755682 r005 Re(z^2+c),c=-71/110+23/57*I,n=19 9567279270409440 r009 Re(z^3+c),c=-3/58+57/64*I,n=28 9567279276523478 m001 (gamma(2)-gamma(3))/(GAMMA(19/24)+ZetaQ(2)) 9567279296796390 r005 Im(z^2+c),c=7/32+1/26*I,n=32 9567279300034682 m001 (Conway+Trott2nd)/(ln(2+3^(1/2))-Backhouse) 9567279303018726 a007 Real Root Of -219*x^4+106*x^3-709*x^2-294*x+644 9567279331303148 r009 Re(z^3+c),c=-13/40+37/56*I,n=44 9567279342867082 a007 Real Root Of 999*x^4+718*x^3-805*x^2-679*x-121 9567279347298476 r009 Im(z^3+c),c=-3/98+22/23*I,n=13 9567279348958360 r009 Im(z^3+c),c=-3/98+22/23*I,n=15 9567279349240618 r009 Im(z^3+c),c=-3/98+22/23*I,n=17 9567279349248255 r009 Im(z^3+c),c=-3/98+22/23*I,n=25 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=27 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=35 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=37 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=39 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=47 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=49 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=51 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=59 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=57 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=61 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=63 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=55 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=53 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=45 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=43 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=41 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=33 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=31 9567279349248256 r009 Im(z^3+c),c=-3/98+22/23*I,n=29 9567279349248258 r009 Im(z^3+c),c=-3/98+22/23*I,n=23 9567279349248418 r009 Im(z^3+c),c=-3/98+22/23*I,n=21 9567279349249728 r009 Im(z^3+c),c=-3/98+22/23*I,n=19 9567279359809490 a001 29/10946*987^(41/48) 9567279370137925 r009 Im(z^3+c),c=-3/98+22/23*I,n=11 9567279373388744 r002 12th iterates of z^2 + 9567279378989189 r005 Im(z^2+c),c=-17/14+29/251*I,n=11 9567279390464899 g007 Psi(2,1/8)-Psi(2,6/11)-Psi(2,4/9)-Psi(2,2/5) 9567279420467989 a007 Real Root Of 440*x^4-733*x^3+216*x^2+826*x-418 9567279463811808 a007 Real Root Of -238*x^4+129*x^3+573*x^2+968*x+714 9567279483829131 a007 Real Root Of 156*x^4-273*x^3-582*x^2-187*x+820 9567279493596568 r005 Im(z^2+c),c=-15/14+30/121*I,n=32 9567279528107647 a007 Real Root Of -567*x^4+161*x^3-839*x^2-416*x+986 9567279533920379 a008 Real Root of x^4-2*x^3-192*x^2+193*x+9101 9567279581325928 m001 Gompertz/(Robbin^ln(Pi)) 9567279610487392 m001 BesselK(0,1)/ln(Riemann2ndZero)/Zeta(3)^2 9567279670115505 a007 Real Root Of -541*x^4+808*x^3+105*x^2+976*x-95 9567279675413088 r005 Re(z^2+c),c=-151/122+11/62*I,n=9 9567279682795689 a008 Real Root of (-1+x^3+x^8+x^9+x^10-x^11+x^12) 9567279710813010 m001 (GaussKuzminWirsing+Rabbit)/(Shi(1)+gamma(3)) 9567279727003843 a007 Real Root Of -452*x^4-969*x^3-793*x^2-324*x-54 9567279728519089 m005 (1/2*2^(1/2)-1/3)/(-43/70+1/10*5^(1/2)) 9567279732186938 r005 Im(z^2+c),c=-59/110+29/56*I,n=18 9567279755801626 a003 sin(Pi*1/106)-sin(Pi*17/38) 9567279759916935 a007 Real Root Of -907*x^4+113*x^3-738*x^2-985*x+592 9567279763124036 s002 sum(A276695[n]/(n*10^n+1),n=1..infinity) 9567279772691884 m005 (1/3*Zeta(3)-2/7)/(5/6*Zeta(3)+1/5) 9567279808885408 h001 (7/10*exp(2)+5/12)/(3/4*exp(2)+3/10) 9567279846165191 r009 Im(z^3+c),c=-3/98+22/23*I,n=9 9567279855789348 l005 731/112/(exp(731/112)-1) 9567279883881790 m001 (BesselJ(0,1)-Si(Pi))/(Landau+Lehmer) 9567279894787721 a007 Real Root Of 925*x^4-665*x^3-226*x^2+636*x-542 9567279897700428 m001 (Zeta(1,2)+Sierpinski)/(gamma+ln(Pi)) 9567279901896405 l006 ln(1643/4277) 9567279907277489 m005 (1/2*gamma-4/9)/(6/7*2^(1/2)+5/12) 9567279937417590 a003 sin(Pi*25/61)*sin(Pi*44/93) 9567279960610739 a007 Real Root Of 548*x^4-370*x^3-750*x^2+176*x+383 9567279970661989 a001 13/64079*18^(22/41) 9567279989655892 m001 (-GaussAGM+Landau)/(5^(1/2)+AlladiGrinstead) 9567280026233683 r009 Im(z^3+c),c=-2/23+49/51*I,n=2 9567280057423579 a007 Real Root Of -299*x^4+751*x^3+766*x^2-178*x-938 9567280073874518 r005 Im(z^2+c),c=-39/40+5/54*I,n=19 9567280158534124 r005 Im(z^2+c),c=-15/106+49/57*I,n=34 9567280161653886 a001 5/11*3^(21/31) 9567280209794174 a007 Real Root Of -884*x^4-767*x^3+32*x^2+755*x+762 9567280270659593 a007 Real Root Of 637*x^4-808*x^3-609*x^2-228*x-17 9567280280808617 p004 log(28579/2) 9567280321765175 r005 Re(z^2+c),c=-5/22+26/31*I,n=5 9567280324649432 r005 Im(z^2+c),c=-3/32+41/52*I,n=12 9567280328920864 a007 Real Root Of -636*x^4-370*x^3-687*x^2-516*x+344 9567280341517620 a007 Real Root Of 842*x^4-266*x^3+62*x^2+898*x-136 9567280350706035 a007 Real Root Of 170*x^4-466*x^3-512*x^2-215*x+940 9567280384788265 m005 (1/2*5^(1/2)+5/12)/(2*Zeta(3)-4/5) 9567280411251381 a007 Real Root Of 16*x^4-410*x^3-38*x^2+152*x+235 9567280416753660 a003 cos(Pi*2/63)-cos(Pi*20/41) 9567280439946462 m002 -1/30+4/Pi^3 9567280451237863 a007 Real Root Of 974*x^4-649*x^3-478*x^2+789*x-192 9567280456936369 r005 Re(z^2+c),c=-113/122+6/41*I,n=7 9567280484388333 m001 (KhinchinLevy+Stephens)/(Si(Pi)+gamma(2)) 9567280494129659 a007 Real Root Of 960*x^4+634*x^3+988*x^2+290*x-876 9567280504215540 m001 (BesselK(0,1)+Cahen)/(-Lehmer+Niven) 9567280508701779 a003 sin(Pi*47/116)/sin(Pi*19/39) 9567280526508470 m002 -(Cosh[Pi]/Pi^6)+Pi^4*Csch[Pi]+Log[Pi] 9567280530320384 b008 -96+Sin[1/3] 9567280550093716 r005 Re(z^2+c),c=15/106+11/58*I,n=13 9567280555025755 r002 21th iterates of z^2 + 9567280557323563 m001 (exp(1)+ln(3))/(FeigenbaumD+Mills) 9567280573442257 m002 -4/Pi^6+Pi^6-5/ProductLog[Pi] 9567280575514598 m003 -7/6+Sqrt[5]/32+Csc[1/2+Sqrt[5]/2] 9567280600041333 l006 ln(3349/8718) 9567280602648072 a001 1/377*6765^(8/55) 9567280617161496 m001 gamma^(Paris/GAMMA(3/4)) 9567280636965343 m002 -1-Pi+Pi^6-6*Csch[Pi] 9567280646028463 m001 1/Zeta(3)^2/exp(Catalan)*sin(Pi/5)^2 9567280648525426 a007 Real Root Of -458*x^4-311*x^3-494*x^2-126*x+443 9567280674293840 m001 GAMMA(13/24)*HeathBrownMoroz^StolarskyHarborth 9567280690843039 m001 Lehmer^cos(1/12*Pi)/(Lehmer^ln(2^(1/2)+1)) 9567280690843039 m001 Lehmer^cos(Pi/12)/(Lehmer^ln(1+sqrt(2))) 9567280765802744 a007 Real Root Of -463*x^4+952*x^3+782*x^2+65*x+568 9567280775540947 a007 Real Root Of -187*x^4-715*x^3-848*x^2+456*x+743 9567280848687883 q001 3427/3582 9567280904832922 m001 (ArtinRank2+MasserGramain)/(2^(1/2)+gamma(2)) 9567280911001304 a007 Real Root Of -631*x^4+207*x^3+134*x^2+76*x+660 9567280914739168 m001 (Zeta(3)+exp(1/Pi))/(Si(Pi)+sin(1)) 9567280926259434 a007 Real Root Of 931*x^4-549*x^3+203*x^2+795*x-686 9567280958314675 h001 (8/9*exp(1)+11/12)/(5/11*exp(2)+1/8) 9567280960424453 a007 Real Root Of -56*x^4-460*x^3+815*x^2+950*x+841 9567280965199566 a007 Real Root Of -673*x^4-158*x^3+617*x^2+17*x-123 9567280968988575 a007 Real Root Of 17*x^4-448*x^3+4*x^2-79*x+450 9567280985635340 m001 (KomornikLoreti-MertensB1*Porter)/Porter 9567280991735537 r005 Re(z^2+c),c=-12/25+37/44*I,n=2 9567281019465535 m001 (ln(Pi)+Paris)/(Sarnak+Stephens) 9567281059279582 a007 Real Root Of -767*x^4+3*x^3-226*x^2-506*x+368 9567281061562249 a007 Real Root Of 881*x^4-356*x^3+80*x^2+945*x-219 9567281081195445 r009 Re(z^3+c),c=-19/56+36/53*I,n=30 9567281100237528 m001 (BesselI(0,2)-Paris)/BesselI(0,2) 9567281107078216 m001 (Shi(1)+Zeta(1/2))/(Cahen+FeigenbaumMu) 9567281107329515 a007 Real Root Of -839*x^4-868*x^3+243*x^2+299*x-30 9567281108509445 r005 Im(z^2+c),c=-11/8+1/209*I,n=10 9567281123159050 r009 Im(z^3+c),c=-27/52+5/48*I,n=53 9567281167978935 m001 (Ei(1,1)-Shi(1))/(Kolakoski+StolarskyHarborth) 9567281167978935 m001 Chi(1)/(Kolakoski+StolarskyHarborth) 9567281169933214 a007 Real Root Of -213*x^4+990*x^3-770*x^2-873*x+915 9567281171723408 m002 -1+5/Pi-Pi^4+Log[Pi] 9567281171951779 r005 Im(z^2+c),c=-3/40+17/22*I,n=36 9567281189028244 b008 ArcSinh[11]^2 9567281196529169 a007 Real Root Of -160*x^4+681*x^3-620*x^2-464*x+854 9567281247362638 m001 (FeigenbaumB-Niven)/(exp(-1/2*Pi)+CareFree) 9567281272404778 l006 ln(1706/4441) 9567281279210524 a007 Real Root Of 679*x^4-832*x^3-245*x^2+896*x-216 9567281288702134 r005 Re(z^2+c),c=-13/14+29/168*I,n=11 9567281302898661 b008 Tanh[1+ArcCosh[Pi]/2] 9567281319479475 r009 Re(z^3+c),c=-11/20+13/64*I,n=9 9567281340025522 b008 ArcCsch[2^Sqrt[3]*Pi] 9567281374618586 a007 Real Root Of -701*x^4+620*x^3+730*x^2+487*x+928 9567281401982400 a003 cos(Pi*5/86)*sin(Pi*43/101) 9567281419031948 m001 ZetaQ(3)/(Rabbit^sin(1/12*Pi)) 9567281428280309 q001 1/1045229 9567281458736857 m001 Zeta(3)/(3^(1/2)-PlouffeB) 9567281468676773 m001 (exp(Pi)+ErdosBorwein)/(-GaussAGM+Stephens) 9567281471630772 r005 Im(z^2+c),c=-85/122+7/50*I,n=57 9567281502890686 a007 Real Root Of 894*x^4+227*x^3-299*x^2-729*x-974 9567281517774367 a007 Real Root Of 780*x^4-238*x^3+654*x^2+565*x-920 9567281546364999 r009 Re(z^3+c),c=-3/58+57/64*I,n=26 9567281579747310 r009 Im(z^3+c),c=-3/98+22/23*I,n=7 9567281581311542 a007 Real Root Of -813*x^4-495*x^3-164*x^2+619*x+990 9567281647361515 m005 (1/2*exp(1)+5/12)/(9/10*2^(1/2)+7/12) 9567281658023627 m001 Zeta(1/2)^GAMMA(7/12)/((1/3)^GAMMA(7/12)) 9567281661556704 a007 Real Root Of 914*x^4-798*x^3-759*x^2+396*x-391 9567281671590565 a007 Real Root Of -954*x^4-908*x^3+291*x^2+896*x+595 9567281711542092 r005 Re(z^2+c),c=13/82+9/22*I,n=17 9567281715843740 a007 Real Root Of -41*x^4-356*x^3+265*x^2-686*x+933 9567281742195294 a001 439204/5*2504730781961^(17/21) 9567281742244891 a001 1568397607/5*102334155^(17/21) 9567281758329553 a003 cos(Pi*2/51)-cos(Pi*43/88) 9567281785861576 m005 (1/2*exp(1)-9/11)/(5/7*Catalan+5) 9567281808933086 a003 cos(Pi*23/119)-sin(Pi*23/89) 9567281817950729 a005 (1/cos(14/181*Pi))^1929 9567281830855936 a001 5600748293801/5*4181^(17/21) 9567281837563627 m001 GAMMA(1/24)^2*Kolakoski^2*ln(log(2+sqrt(3))) 9567281869643802 a003 cos(Pi*5/77)*sin(Pi*41/95) 9567281887216188 r005 Re(z^2+c),c=-16/17+7/41*I,n=3 9567281896643859 r009 Im(z^3+c),c=-15/62+23/24*I,n=25 9567281920388959 l006 ln(3475/9046) 9567281936488430 r002 2th iterates of z^2 + 9567281968166390 m005 (-1/10+3/10*5^(1/2))/(5/6*Catalan-1/6) 9567281990535568 a001 521/610*832040^(9/26) 9567281991486454 m006 (3/5*exp(2*Pi)+1/4)/(3*Pi^2+4) 9567282005970839 a007 Real Root Of 675*x^4-666*x^3-415*x^2+788*x-15 9567282022283257 a008 Real Root of (-3+7*x-3*x^2-7*x^4+7*x^8) 9567282025581971 a007 Real Root Of -930*x^4+333*x^3+899*x^2-2*x+246 9567282047176546 p004 log(22697/8719) 9567282047407072 a007 Real Root Of -742*x^4+218*x^3+500*x^2+645*x+972 9567282075944604 m001 OneNinth^Zeta(1,-1)*Robbin 9567282087526040 m001 1/FransenRobinson^2/Artin*exp(Zeta(5)) 9567282133808939 m001 sin(1/5*Pi)^ln(Pi)+ThueMorse 9567282133808939 m001 sin(Pi/5)^ln(Pi)+ThueMorse 9567282144669131 s001 sum(exp(-Pi/2)^(n-1)*A187752[n],n=1..infinity) 9567282178258876 a001 3571/365435296162*377^(17/22) 9567282214401756 a007 Real Root Of -605*x^4+980*x^3+635*x^2-997*x-170 9567282218255143 a008 Real Root of x^4+7*x^2-9019 9567282240815218 m001 KomornikLoreti^(Zeta(1,2)*StolarskyHarborth) 9567282278836420 a007 Real Root Of 608*x^4+72*x^3-360*x^2-620*x-710 9567282281066561 b008 10-LogIntegral[3]/5 9567282282964000 m001 (GaussAGM+TwinPrimes)/(sin(1/12*Pi)+Conway) 9567282289050025 a001 54018521/8*55^(2/23) 9567282294617829 m001 CopelandErdos-GAMMA(7/12)^PrimesInBinary 9567282304302677 m001 (GAMMA(5/6)+FeigenbaumD)/(exp(1)+BesselI(0,1)) 9567282321899736 q001 1813/1895 9567282333740854 m001 PrimesInBinary^(Paris/ReciprocalLucas) 9567282355116921 a007 Real Root Of -552*x^4+762*x^3+279*x^2-268*x+618 9567282370647547 m002 -3+Pi^4+Cosh[Pi]/Pi^4+Log[Pi] 9567282375079798 m001 (ln(2)/ln(10))^exp(-Pi)/(Chi(1)^exp(-Pi)) 9567282390823688 m002 Cosh[Pi]/(6*Pi)+ProductLog[Pi]/Pi 9567282430715572 m002 -2+6/Pi^4+Sinh[Pi]*Tanh[Pi] 9567282447915493 a007 Real Root Of 383*x^4-886*x^3-893*x^2+615*x+309 9567282467414191 m009 (1/6*Pi^2-1/6)/(6*Psi(1,3/4)+1/5) 9567282536961036 m001 Pi-Psi(1,1/3)*BesselI(0,1)-gamma(1) 9567282545296219 l006 ln(1769/4605) 9567282569275974 m008 (4/5*Pi^5-4/5)/(5/6*Pi^3-1/3) 9567282614002377 r005 Re(z^2+c),c=-29/31+5/36*I,n=33 9567282658812717 m001 1/Magata/GaussKuzminWirsing^2/exp(Zeta(3)) 9567282668932661 m005 (3/4*Catalan+1)/(4/5*Pi-3/4) 9567282671689713 r005 Re(z^2+c),c=-93/98+3/34*I,n=9 9567282676788417 m001 cos(1/12*Pi)^Si(Pi)/(cos(1/12*Pi)^Stephens) 9567282700754732 a007 Real Root Of -236*x^4+915*x^3+264*x^2-84*x+677 9567282716282765 r009 Im(z^3+c),c=-7/38+12/13*I,n=63 9567282725932971 a007 Real Root Of 743*x^4-898*x^3-752*x^2+472*x-269 9567282728931563 a007 Real Root Of 861*x^4-292*x^3-323*x^2-241*x-912 9567282739125874 a007 Real Root Of 325*x^4+85*x^3+899*x^2+838*x-219 9567282744438825 a007 Real Root Of -594*x^4+409*x^3-767*x^2-973*x+627 9567282757834590 a007 Real Root Of 623*x^4-980*x^3-700*x^2-172*x-904 9567282759450627 r004 Re(z^2+c),c=1/24-2/5*I,z(0)=exp(7/12*I*Pi),n=4 9567282773280157 a003 sin(Pi*2/65)+sin(Pi*30/91) 9567282819053073 a001 9349/956722026041*377^(17/22) 9567282819810218 m002 -Pi^(-5)-ProductLog[Pi]+Pi^6*Tanh[Pi] 9567282828681337 a007 Real Root Of -161*x^4+243*x^3-193*x^2+345*x+35 9567282858878132 r002 40th iterates of z^2 + 9567282877107929 a001 1/11*76^(25/46) 9567282886757975 r001 45i'th iterates of 2*x^2-1 of 9567282890501026 a007 Real Root Of 181*x^4-756*x^3-669*x^2+491*x+653 9567282904998960 m001 ArtinRank2*(BesselJ(1,1)-gamma) 9567282912543687 a001 24476/2504730781961*377^(17/22) 9567282915832334 m001 gamma/(BesselI(0,1)-LaplaceLimit) 9567282926041057 a008 Real Root of (-1+x-x^2-x^3-x^5-x^6+x^8-x^9+x^12) 9567282926183783 a001 64079/6557470319842*377^(17/22) 9567282929403773 a001 2206/225749145909*377^(17/22) 9567282934613827 a001 39603/4052739537881*377^(17/22) 9567282941629956 m002 -ProductLog[Pi]-Tanh[Pi]/Pi^5+Pi^6*Tanh[Pi] 9567282944219341 s002 sum(A133693[n]/(n^2*2^n-1),n=1..infinity) 9567282946012611 r002 10th iterates of z^2 + 9567282970324063 a001 15127/1548008755920*377^(17/22) 9567283014603897 m006 (3/4*ln(Pi)+1/6)/(2*exp(2*Pi)+3/5) 9567283015989512 m008 (1/4*Pi^3+1/2)/(3*Pi-4/5) 9567283036076163 r005 Im(z^2+c),c=-9/46+4/31*I,n=10 9567283053055404 a007 Real Root Of -631*x^4+456*x^3+514*x^2-196*x+270 9567283132205058 a007 Real Root Of 993*x^4-453*x^3-973*x^2-394*x-715 9567283146080695 m005 (1/2*Catalan-6/7)/(2*5^(1/2)-3/10) 9567283148337761 l006 ln(3601/9374) 9567283171770558 a007 Real Root Of 240*x^4+29*x^3-23*x^2-107*x-257 9567283180864519 m001 (3^(1/2)-5^(1/2))/(FeigenbaumD+Sierpinski) 9567283181349743 a003 -3/2+cos(1/15*Pi)-cos(5/18*Pi)+cos(13/30*Pi) 9567283211693743 a007 Real Root Of -394*x^4+53*x^3+549*x^2+624*x+471 9567283215085667 a001 5778/591286729879*377^(17/22) 9567283226364781 a007 Real Root Of -76*x^4+457*x^3-792*x^2-813*x+411 9567283284059163 r005 Im(z^2+c),c=-23/62+11/17*I,n=5 9567283297225803 m005 (1/2*Catalan+8/9)/(10/11*5^(1/2)-5/8) 9567283321212140 m001 1/Rabbit^2/exp(DuboisRaymond)*BesselJ(0,1)^2 9567283345942882 m001 (FeigenbaumMu-Trott)/(Zeta(5)+FeigenbaumD) 9567283360032231 r005 Re(z^2+c),c=-11/10+21/184*I,n=12 9567283381567752 a007 Real Root Of -545*x^4-561*x^3-415*x^2+305*x+637 9567283388588743 a007 Real Root Of -200*x^4-228*x^3-765*x^2-829*x-125 9567283405971081 m001 Gompertz^(ln(2)*Champernowne) 9567283435406069 m005 (2/3*2^(1/2)+1/6)/(Catalan-4/5) 9567283467022532 m001 ln(2)*(Zeta(1,-1)+Trott2nd) 9567283511630132 a007 Real Root Of -90*x^4-866*x^3+36*x^2+716*x-775 9567283525625619 a007 Real Root Of 909*x^4+184*x^3-90*x^2-279*x-785 9567283540650603 a007 Real Root Of -609*x^4-598*x^3-146*x^2+536*x+633 9567283546503643 m005 (1/3*Catalan-1/5)/(4/7*3^(1/2)+1/9) 9567283557299950 a001 24476/13*2584^(6/29) 9567283641820910 q001 3825/3998 9567283648551051 a001 208010*11^(7/11) 9567283652347402 m005 (1/2*5^(1/2)-1/6)/(2/9*Zeta(3)+8/11) 9567283692923323 m001 Rabbit*exp(GlaisherKinkelin)^2*Zeta(5) 9567283693110602 a001 6557470319842/843*322^(5/6) 9567283702742498 m002 -Pi^6+5*Coth[Pi]-ProductLog[Pi]/3 9567283703707147 m001 (Psi(2,1/3)+BesselI(0,2))/(PlouffeB+ZetaP(4)) 9567283715795357 a007 Real Root Of 758*x^4-447*x^3+163*x^2+746*x-462 9567283716153198 m001 ln(Zeta(5))/Ei(1)*sqrt(5)^2 9567283717047974 m001 (Totient-TreeGrowth2nd)/(Zeta(3)-MertensB1) 9567283730641487 l006 ln(1832/4769) 9567283740865899 a001 2504730781961/76*11^(4/9) 9567283776567125 m005 (1/3*Pi-1/11)/(4/11*Pi-1/7) 9567283780483846 r005 Im(z^2+c),c=-7/66+22/23*I,n=14 9567283798247748 m005 (1/2*2^(1/2)-1/10)/(1/5*exp(1)+1/11) 9567283801506851 m005 (1/2*exp(1)-3/8)/(1/264+11/24*5^(1/2)) 9567283813497826 m001 ln(Pi)/GaussAGM(1,1/sqrt(2))*sin(1)^2 9567283818400707 r005 Re(z^2+c),c=-97/110+11/53*I,n=31 9567283828033734 a007 Real Root Of 53*x^4-789*x^3-573*x^2-20*x-230 9567283849346840 r008 a(0)=1,K{-n^6,81-88*n^3-10*n^2+40*n} 9567283852659416 a007 Real Root Of -255*x^4-605*x^3-943*x^2-162*x+392 9567283853164844 a007 Real Root Of 601*x^4-210*x^3+108*x^2+779*x-41 9567283873308601 s002 sum(A251540[n]/(n^3*exp(n)+1),n=1..infinity) 9567283921288149 a001 3/165580141*365435296162^(1/16) 9567283921288149 a001 1/34111385*165580141^(1/16) 9567283921309395 a001 3/63245986*75025^(1/16) 9567283937070004 m001 Niven/gamma(2)/Tribonacci 9567283971902773 a007 Real Root Of -155*x^4+922*x^3+219*x^2-254*x-635 9567283999237520 a007 Real Root Of 229*x^4-273*x^3+82*x^2-462*x-948 9567284059340087 m004 2+Sqrt[5]*Pi+(2*Sec[Sqrt[5]*Pi])/5 9567284075705907 a007 Real Root Of 988*x^4+39*x^3+977*x^2+765*x-956 9567284081050006 r005 Im(z^2+c),c=-5/6+13/206*I,n=9 9567284097480882 m001 (Psi(2,1/3)*Zeta(1,2)+Shi(1))/Psi(2,1/3) 9567284115350017 r005 Re(z^2+c),c=-11/10+19/229*I,n=22 9567284116086951 m001 BesselK(1,1)*(GAMMA(5/6)-exp(1)) 9567284116086951 m001 BesselK(1,1)*(exp(1)-GAMMA(5/6)) 9567284177140650 r005 Im(z^2+c),c=13/34+17/39*I,n=3 9567284180772834 a007 Real Root Of -348*x^4+848*x^3+33*x^2-486*x+539 9567284182674885 a007 Real Root Of 916*x^4-448*x^3-697*x^2-180*x-694 9567284223146651 a007 Real Root Of -985*x^4+637*x^3+693*x^2-999*x-207 9567284225935132 a007 Real Root Of 801*x^4-871*x^3-851*x^2+187*x-476 9567284235957682 a007 Real Root Of -781*x^4+803*x^3+687*x^2+109*x+833 9567284242472078 r005 Re(z^2+c),c=9/98+13/24*I,n=46 9567284256930873 a007 Real Root Of -539*x^4+981*x^3+157*x^2-463*x+724 9567284274789145 r009 Im(z^3+c),c=-21/38+19/51*I,n=7 9567284292602449 m002 -3/Pi^6-ProductLog[Pi]+Pi^6*Tanh[Pi] 9567284293259034 l006 ln(3727/9702) 9567284302065649 a007 Real Root Of 573*x^4-10*x^3-229*x^2-398*x-660 9567284309409853 m001 Zeta(5)*(3^(1/2)-AlladiGrinstead) 9567284310820922 a007 Real Root Of 243*x^4-650*x^3+831*x^2+914*x-659 9567284331696392 m001 1/GAMMA(19/24)^2*ln(GAMMA(1/6))^2/sqrt(5) 9567284375509665 m005 (1/2*Pi-2/11)/(7/8*Zeta(3)+2/5) 9567284403507757 p004 log(24337/9349) 9567284414537897 m001 GAMMA(1/6)*exp(Lehmer)/GAMMA(23/24)^2 9567284431849627 m001 (Zeta(5)-GAMMA(19/24))/(Champernowne+Mills) 9567284433846234 m001 cos(1/5*Pi)^(1/3*ln(2)/ln(10)*3^(2/3)) 9567284438846374 a001 505019158607/610*6557470319842^(16/17) 9567284455584732 r008 a(0)=1,K{-n^6,5+31*n-26*n^2+14*n^3} 9567284456560929 r005 Re(z^2+c),c=7/48+11/56*I,n=9 9567284497212471 r009 Im(z^3+c),c=-43/122+30/41*I,n=21 9567284512523223 m005 (1/2*3^(1/2)-2/7)/(2/11*5^(1/2)+1/5) 9567284517766510 r005 Re(z^2+c),c=-7/8+33/208*I,n=64 9567284535368351 r002 34th iterates of z^2 + 9567284561439210 h001 (-12*exp(1)+7)/(-2*exp(2)-12) 9567284579032373 m001 sin(1/5*Pi)^Tribonacci*Weierstrass^Tribonacci 9567284600114274 a003 sin(Pi*47/119)/sin(Pi*19/42) 9567284636508388 a007 Real Root Of -614*x^4+634*x^3+643*x^2+48*x+527 9567284654933436 a007 Real Root Of -671*x^4+972*x^3+667*x^2-581*x+247 9567284737059782 a007 Real Root Of 827*x^4-166*x^3+417*x^2+579*x-666 9567284772834168 m002 -Pi^6+Log[Pi]/Pi^5+5/ProductLog[Pi] 9567284831193533 q001 2012/2103 9567284837172115 l006 ln(1895/4933) 9567284862553258 a007 Real Root Of -475*x^4+542*x^3-363*x^2-442*x+782 9567284892706656 a001 2207/225851433717*377^(17/22) 9567284900663396 m002 -1+Pi^6-5/ProductLog[Pi]+Tanh[Pi] 9567284906162142 m001 (2*Pi/GAMMA(5/6)+Lehmer*ZetaP(3))/Lehmer 9567284952956068 a001 11/196418*21^(55/59) 9567284957562416 a007 Real Root Of 425*x^4-672*x^3-230*x^2-530*x+950 9567284963950157 a001 29/2584*1597^(43/47) 9567284970130808 r005 Re(z^2+c),c=-17/18+24/221*I,n=19 9567284972336879 r009 Re(z^3+c),c=-29/52+5/61*I,n=4 9567284987679582 a007 Real Root Of -108*x^4+33*x^3-8*x^2+511*x+49 9567285007435010 m005 (1/2*3^(1/2)-3/8)/(5/12*gamma+3/11) 9567285011894889 a007 Real Root Of -945*x^4-592*x^3+590*x^2+769*x+469 9567285054324863 m001 (ArtinRank2-FeigenbaumC)/(Salem+ZetaQ(3)) 9567285069404059 r005 Im(z^2+c),c=-13/102+37/44*I,n=18 9567285072828653 s001 sum(exp(-4*Pi/5)^n*A037113[n],n=1..infinity) 9567285073729306 m001 GAMMA(11/12)/(exp(Pi)^LandauRamanujan) 9567285073729306 m001 exp(-Pi)^LandauRamanujan*GAMMA(11/12) 9567285079852450 a007 Real Root Of 995*x^4+211*x^3-726*x^2-285*x-257 9567285137780076 r009 Re(z^3+c),c=-27/82+25/37*I,n=42 9567285147278989 a007 Real Root Of 400*x^4-570*x^3+54*x^2+330*x-568 9567285292602502 a001 11/34*2178309^(23/42) 9567285330032825 m005 (1/2*5^(1/2)+5/6)/(5/11*3^(1/2)-7/12) 9567285332113239 m001 (Porter-Riemann1stZero)/(GAMMA(3/4)+Paris) 9567285334496739 h001 (7/9*exp(2)+3/8)/(3/4*exp(2)+6/7) 9567285339049544 r009 Im(z^3+c),c=-6/13+41/62*I,n=5 9567285341955420 a007 Real Root Of -574*x^4+706*x^3+679*x^2+713*x-75 9567285345253613 a007 Real Root Of 345*x^4-392*x^3+235*x^2+637*x-238 9567285347805253 a007 Real Root Of -759*x^4-563*x^3-481*x^2-112*x+476 9567285351119372 q001 7/73166 9567285363298236 l006 ln(3853/10030) 9567285396462514 a007 Real Root Of 893*x^4-x^3-303*x^2+76*x-399 9567285411359800 a007 Real Root Of 575*x^4+16*x^3-395*x^2-790*x-862 9567285433597216 m001 (-Rabbit+ReciprocalLucas)/(Chi(1)+Bloch) 9567285474025495 m001 (BesselJ(0,1)+Zeta(3))/(MertensB3+Sarnak) 9567285479301392 m001 (1-Si(Pi))/(-Kac+TravellingSalesman) 9567285494948474 r005 Re(z^2+c),c=-107/118+13/62*I,n=5 9567285496214817 m001 (ln(gamma)-arctan(1/3))/(Pi^(1/2)-FeigenbaumD) 9567285500651358 a001 199/514229*21^(11/37) 9567285554133067 a007 Real Root Of 516*x^4+244*x^3+155*x^2-12*x-372 9567285560771588 a007 Real Root Of 964*x^4+786*x^3+736*x^2+993*x+157 9567285568297935 m001 LaplaceLimit*exp(DuboisRaymond)/sin(1) 9567285576139545 m001 CopelandErdos^2/Artin^2/ln(TwinPrimes) 9567285594511345 m004 -3+(125*Pi)/4+Cos[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 9567285660222028 a007 Real Root Of 695*x^4+528*x^3+589*x^2-24*x-682 9567285672616159 r005 Re(z^2+c),c=-12/13+10/47*I,n=21 9567285673203452 m009 (5/6*Psi(1,3/4)-1/5)/(3/5*Psi(1,2/3)+1/6) 9567285704184781 m009 (2/5*Psi(1,3/4)+4/5)/(2*Pi^2-3/4) 9567285718320634 m001 (exp(Pi)+Magata)/(-ZetaP(2)+ZetaP(3)) 9567285719953196 a007 Real Root Of 740*x^4-286*x^3-697*x^2+775*x+509 9567285742473302 m002 -5+Pi^6+Log[Pi]/(Pi*ProductLog[Pi]) 9567285750135219 r005 Re(z^2+c),c=-53/62+18/49*I,n=5 9567285773609182 m001 RenyiParking^Mills/TravellingSalesman 9567285824106262 m001 Backhouse^Kolakoski*Rabbit 9567285872495860 l006 ln(1958/5097) 9567285938779164 m005 (1/3*Catalan+1/3)/(1/7*gamma-3/4) 9567285939030612 a007 Real Root Of -798*x^4+685*x^3+903*x^2+206*x+639 9567285967902167 r005 Re(z^2+c),c=-21/22+4/69*I,n=9 9567286015018045 a001 28657/322*76^(17/31) 9567286033136403 m001 (Conway+ZetaP(2))/(2^(1/2)+BesselK(0,1)) 9567286065272328 a007 Real Root Of 617*x^4+557*x^3+332*x^2+253*x-91 9567286097602830 m009 (5/6*Psi(1,2/3)-1/4)/(5/2*Pi^2-3/5) 9567286107581291 l006 ln(7769/8549) 9567286137752470 r002 12th iterates of z^2 + 9567286146424151 a001 4052739537881/199*199^(8/11) 9567286257905165 r005 Re(z^2+c),c=9/34+13/25*I,n=4 9567286354168200 m002 6+Pi^6-Cosh[Pi]+ProductLog[Pi]^(-1) 9567286358551315 r005 Re(z^2+c),c=15/106+21/53*I,n=39 9567286374821036 r005 Re(z^2+c),c=13/50+27/49*I,n=16 9567286382530893 a007 Real Root Of -969*x^4-669*x^3-986*x^2-797*x+366 9567286481243219 m001 (Thue-TwinPrimes)^Trott2nd 9567286561010825 a003 cos(Pi*16/109)/sin(Pi*32/83) 9567286621845623 a001 38/98209*13^(6/17) 9567286627473450 m001 Riemann3rdZero^(2^(1/2))+StronglyCareFree 9567286752952209 m001 (GAMMA(3/4)+HardHexagonsEntropy)/Trott2nd 9567286774224586 m001 (FeigenbaumB-ZetaQ(4))/(sin(1/5*Pi)-Backhouse) 9567286785788451 m002 -6+Pi^6+(Log[Pi]*Sinh[Pi])/Pi^2 9567286790389491 m001 (MertensB1+Sarnak)^Otter 9567286791331064 r009 Im(z^3+c),c=-5/24+61/64*I,n=7 9567286843271862 l006 ln(2021/5261) 9567286849145085 m001 (3^(1/2)-ErdosBorwein)/(GaussAGM+PlouffeB) 9567286881783585 m001 (ln(5)+BesselI(0,2))/(BesselI(0,1)-GAMMA(3/4)) 9567286888792730 q001 2211/2311 9567286940577061 r005 Re(z^2+c),c=-1/74+12/31*I,n=7 9567286955014193 m005 (1/2*2^(1/2)-2/11)/(47/22+3/2*5^(1/2)) 9567286971652267 m001 (3^(1/3)-ErdosBorwein)/(Mills+ThueMorse) 9567286976698296 r005 Re(z^2+c),c=17/64+1/2*I,n=44 9567286977184080 r008 a(0)=1,K{-n^6,-11-44*n^3+92*n^2-n} 9567286980973166 a007 Real Root Of -616*x^4-713*x^3-120*x^2+653*x+63 9567286981426570 r002 26th iterates of z^2 + 9567287009652543 a007 Real Root Of -387*x^4-23*x^3-701*x^2-445*x+520 9567287038154327 m001 1/FeigenbaumD^2/exp(Paris)^2*Catalan^2 9567287042152314 a007 Real Root Of 687*x^4+395*x^3-244*x^2-470*x-456 9567287044946360 a007 Real Root Of 250*x^4-476*x^3-662*x^2-817*x-802 9567287053017300 a007 Real Root Of 893*x^4+73*x^3+427*x^2+899*x-215 9567287054139725 a007 Real Root Of 297*x^4-539*x^3+602*x^2+881*x-429 9567287082858062 m001 Zeta(5)-cos(1)*ZetaR(2) 9567287095289049 m002 -Pi^6+5/ProductLog[Pi]+ProductLog[Pi]/Pi^5 9567287114451260 a007 Real Root Of -887*x^4+45*x^3-334*x^2-941*x+188 9567287144541159 a007 Real Root Of -899*x^4-101*x^3+900*x^2+808*x+614 9567287174940919 r009 Im(z^3+c),c=-19/102+58/63*I,n=39 9567287175914446 a007 Real Root Of 209*x^4-881*x^3-112*x^2+464*x+255 9567287177462148 m006 (1/3*exp(Pi)-1)/(3*exp(Pi)+3/4) 9567287217373812 h001 (5/12*exp(1)+5/12)/(3/8*exp(1)+3/5) 9567287241332121 r002 12th iterates of z^2 + 9567287277037126 a001 47/1346269*63245986^(5/16) 9567287277038190 a001 47/14930352*139583862445^(5/16) 9567287277896156 a001 47/121393*28657^(5/16) 9567287329033594 a007 Real Root Of -456*x^4+297*x^3+893*x^2-52*x-225 9567287358067625 m001 FeigenbaumC^FellerTornier-sin(1/12*Pi) 9567287401149365 m002 -3+Pi^6-(5*Tanh[Pi])/3 9567287405005141 a008 Real Root of (12+12*x+9*x^2+10*x^3) 9567287414589337 a003 cos(Pi*4/95)*sin(Pi*37/89) 9567287432675198 p002 log(2^(7/3)-3^(7/5)) 9567287455409056 a007 Real Root Of -640*x^4-137*x^3+533*x^2+124*x+47 9567287458201142 m002 -Pi^6+6/ProductLog[Pi]-Tanh[Pi]/ProductLog[Pi] 9567287467854120 a007 Real Root Of 392*x^4-516*x^3+733*x^2+942*x-550 9567287477329423 r005 Re(z^2+c),c=-17/18+5/46*I,n=25 9567287493965928 m001 ln(Zeta(7))^2*GlaisherKinkelin^2*sin(1) 9567287523723682 m001 (Weierstrass-ZetaP(3))/(FeigenbaumC+Mills) 9567287527977518 m005 (1/2*exp(1)+6)/(1/9*gamma-5/6) 9567287536438452 r005 Re(z^2+c),c=3/28+21/38*I,n=53 9567287541306186 m005 (1/2*2^(1/2)+6)/(2*Pi+8/11) 9567287541757934 m005 (1/2*2^(1/2)-5/6)/(3/8*exp(1)+3/10) 9567287547665335 b008 8+ArcSec[285] 9567287569264358 b008 8+ArcTan[285] 9567287574695687 a007 Real Root Of -241*x^4+418*x^3+869*x^2-380*x-596 9567287583946807 r009 Re(z^3+c),c=-23/126+16/23*I,n=53 9567287587333214 a007 Real Root Of -618*x^4+466*x^3+909*x^2-859*x-728 9567287601478330 a003 cos(Pi*4/83)-sin(Pi*37/77) 9567287602792423 r009 Im(z^3+c),c=-13/70+35/38*I,n=43 9567287632354997 r002 43i'th iterates of 2*x/(1-x^2) of 9567287643087530 a007 Real Root Of -862*x^4-240*x^3+700*x^2+631*x+475 9567287700338794 a007 Real Root Of -501*x^4+29*x^3-597*x^2-379*x+629 9567287702348406 a007 Real Root Of 937*x^4+538*x^3+580*x^2-134*x-973 9567287731295756 a007 Real Root Of -656*x^4+214*x^3+858*x^2-493*x-520 9567287737579278 a007 Real Root Of -79*x^4-791*x^3-343*x^2-99*x-363 9567287753843166 m001 Landau^QuadraticClass/(Landau^cos(1/5*Pi)) 9567287755354027 l006 ln(2084/5425) 9567287779378829 h001 (1/9*exp(2)+3/7)/(1/3*exp(1)+2/5) 9567287886083573 a007 Real Root Of -358*x^4+888*x^3+470*x^2+44*x-950 9567287886258406 a007 Real Root Of 505*x^4+78*x^3-87*x^2-50*x-323 9567287893010742 a007 Real Root Of 930*x^4-657*x^3+366*x^2+935*x-795 9567287928744379 m001 (GaussAGM+KhinchinLevy)/(5^(1/2)-Champernowne) 9567287934498540 m001 (HardyLittlewoodC4-Shi(1))/(-Kolakoski+Trott) 9567287952602926 a007 Real Root Of -753*x^4+867*x^3+527*x^2-930*x+18 9567287957034174 m005 (1/2*2^(1/2)+2/5)/(8/33+9/22*5^(1/2)) 9567287974664200 l006 ln(6265/6894) 9567287981479064 p003 LerchPhi(1/12,4,55/172) 9567288006853852 a007 Real Root Of 348*x^4+196*x^3+330*x^2-508*x-908 9567288012570159 a007 Real Root Of -867*x^4+434*x^3+828*x^2+406*x+737 9567288035143153 m002 -E^Pi/5-Pi^(-3)+Pi^6 9567288037500187 a007 Real Root Of -384*x^4+421*x^3+995*x^2-261*x-708 9567288047446263 r005 Re(z^2+c),c=-79/110+7/16*I,n=7 9567288051628807 m001 Chi(1)^sin(1/12*Pi)/(Chi(1)^ZetaQ(3)) 9567288052132481 m005 (1/2*Zeta(3)-2/9)/(2/7*2^(1/2)-4/5) 9567288059304224 a007 Real Root Of 249*x^4-776*x^3+225*x^2+205*x-898 9567288119957706 a007 Real Root Of -594*x^4+999*x^3+770*x^2-116*x-971 9567288174745435 a001 2/317811*28657^(2/49) 9567288183559324 m006 (5/6*Pi-2/5)/(1/Pi+2) 9567288204556220 a007 Real Root Of 441*x^4+256*x^3+99*x^2-975*x-94 9567288230954071 a007 Real Root Of 397*x^4-986*x^3-627*x^2-235*x-847 9567288276233068 r005 Re(z^2+c),c=-11/30+7/12*I,n=16 9567288279042052 a007 Real Root Of -541*x^4+331*x^3+378*x^2+188*x+577 9567288290095001 m005 (1/2*gamma+6/7)/(8/11*gamma+7/9) 9567288305536241 a007 Real Root Of 784*x^4+2*x^3-37*x^2+526*x-118 9567288306259223 a001 47/55*144^(1/44) 9567288313521910 a003 sin(Pi*43/106)/sin(Pi*59/120) 9567288322110780 a007 Real Root Of -758*x^4-889*x^3-78*x^2+438*x+347 9567288327516389 r005 Im(z^2+c),c=45/118+28/47*I,n=3 9567288374538268 a007 Real Root Of 256*x^4-192*x^3+107*x^2-429*x-891 9567288422874842 r005 Re(z^2+c),c=19/70+34/59*I,n=48 9567288460258678 a003 sin(Pi*1/119)-sin(Pi*49/111) 9567288484371214 m001 Salem*Thue-ZetaQ(2) 9567288511207149 r005 Re(z^2+c),c=7/32+5/17*I,n=30 9567288515861412 a007 Real Root Of 623*x^4-379*x^3-248*x^2+396*x-248 9567288516141889 h001 (3/8*exp(1)+9/11)/(2/5*exp(1)+5/6) 9567288531715117 r009 Re(z^3+c),c=-1/58+18/25*I,n=2 9567288580688501 r002 47th iterates of z^2 + 9567288606589916 q001 241/2519 9567288613909171 l006 ln(2147/5589) 9567288652658670 r009 Im(z^3+c),c=-17/98+13/14*I,n=47 9567288658219022 a003 sin(Pi*25/63)/sin(Pi*37/81) 9567288664446771 m001 (GAMMA(19/24)+Kolakoski)/(1+Shi(1)) 9567288682030614 m005 (1/24+1/6*5^(1/2))/(-7/11+1/11*5^(1/2)) 9567288691514832 r005 Im(z^2+c),c=-31/58+1/59*I,n=52 9567288695227133 a007 Real Root Of -661*x^4-335*x^3+895*x^2+629*x+43 9567288736728665 m001 (sin(1/12*Pi)-FeigenbaumMu)/(Magata+ZetaQ(2)) 9567288785847009 a007 Real Root Of 202*x^4-898*x^3+122*x^2+871*x-234 9567288796589850 r009 Re(z^3+c),c=-5/94+38/41*I,n=16 9567288808379562 m001 GAMMA(2/3)*exp(KhintchineLevy)/arctan(1/2) 9567288827994094 m001 (Magata-MertensB2)/(ArtinRank2+Grothendieck) 9567288830915492 a001 1322157322203/1597*6557470319842^(16/17) 9567288883253287 m001 (Ei(1)-exp(1))/(-arctan(1/3)+CopelandErdos) 9567288919671978 h001 (4/11*exp(2)+10/11)/(5/11*exp(2)+2/5) 9567288955792000 a007 Real Root Of 994*x^4-298*x^3-445*x^2+683*x-33 9567288957663878 r002 4th iterates of z^2 + 9567288967120590 a007 Real Root Of -853*x^4-280*x^3-275*x^2-458*x+283 9567288981826775 m001 GAMMA(11/12)*exp(Champernowne)^2*sin(1)^2 9567288995356852 a007 Real Root Of 985*x^4-766*x^3-836*x^2+743*x-20 9567288997744468 m001 (Gompertz-Psi(1,1/3)*GAMMA(5/6))/GAMMA(5/6) 9567289016220425 r002 60th iterates of z^2 + 9567289035458324 m005 (1/2*2^(1/2)+5/11)/(8/9*Catalan+2/5) 9567289049839130 m005 (1/2*2^(1/2)-7/11)/(1/3*exp(1)-1/6) 9567289064212141 r009 Im(z^3+c),c=-43/78+19/30*I,n=2 9567289071152063 a001 1/219602*76^(6/35) 9567289079607106 r005 Re(z^2+c),c=-109/118+7/41*I,n=45 9567289094269447 m005 (1/2*exp(1)+1/5)/(101/110+7/22*5^(1/2)) 9567289124055143 a008 Real Root of (2+3*x+4*x^2-5*x^3-4*x^4-x^5) 9567289128849416 r005 Im(z^2+c),c=-23/19+8/63*I,n=56 9567289136886885 r005 Im(z^2+c),c=-24/23+2/19*I,n=31 9567289142730719 r005 Im(z^2+c),c=-15/14+25/227*I,n=15 9567289174525381 r005 Im(z^2+c),c=-4/9+10/51*I,n=6 9567289176610174 a007 Real Root Of -422*x^4-829*x^3-331*x^2+415*x+4 9567289192095935 r002 2th iterates of z^2 + 9567289234531240 a007 Real Root Of -437*x^4+410*x^3-586*x^2-611*x+677 9567289237455775 m002 -E^Pi/5+Pi^6-Tanh[Pi]/Pi^3 9567289238528253 a007 Real Root Of 299*x^4-901*x^3-648*x^2+268*x-190 9567289252899147 h001 (1/12*exp(1)+3/5)/(1/10*exp(2)+1/8) 9567289269944709 r005 Im(z^2+c),c=41/126+26/45*I,n=10 9567289353699609 a007 Real Root Of 929*x^4+625*x^3+788*x^2+594*x-384 9567289365972091 g006 Psi(1,6/11)+Psi(1,1/10)-Psi(1,5/7)-Psi(1,2/5) 9567289391417003 r005 Re(z^2+c),c=-149/114+2/31*I,n=12 9567289423514949 l006 ln(2210/5753) 9567289431584006 m001 MertensB3^ZetaQ(2)/(MertensB3^exp(-1/2*Pi)) 9567289446109069 r005 Re(z^2+c),c=-47/52+8/37*I,n=5 9567289471710078 a001 3461452808002/4181*6557470319842^(16/17) 9567289472040326 a005 (1/sin(113/237*Pi))^849 9567289475702967 m002 -Pi^2-Cosh[Pi]/5+3/Log[Pi] 9567289476772196 m006 (2*Pi^2+5/6)/(2/5*exp(2*Pi)+5/6) 9567289490619319 r009 Im(z^3+c),c=-9/50+37/40*I,n=45 9567289502264758 m002 -Pi^(-5)+Pi^6-5/ProductLog[Pi] 9567289508030663 m001 (LandauRamanujan+OneNinth)^FellerTornier 9567289521707686 r005 Re(z^2+c),c=-22/23+1/24*I,n=9 9567289525569701 r005 Re(z^2+c),c=-51/44+14/47*I,n=2 9567289530375067 a007 Real Root Of -62*x^4-543*x^3+443*x^2-373*x-181 9567289551056270 a007 Real Root Of -495*x^4+556*x^3-363*x^2-950*x+325 9567289565200755 a001 9062201101803/10946*6557470319842^(16/17) 9567289578840861 a001 23725150497407/28657*6557470319842^(16/17) 9567289587270911 a001 14662949395604/17711*6557470319842^(16/17) 9567289590395890 m005 (1/2*5^(1/2)-5)/(6/11*gamma+1/11) 9567289615641377 r005 Re(z^2+c),c=-9/19+23/38*I,n=3 9567289619922869 p001 sum((-1)^n/(420*n+11)/n/(24^n),n=1..infinity) 9567289622981172 a001 5600748293801/6765*6557470319842^(16/17) 9567289624084496 m002 -Pi^6+5/ProductLog[Pi]+Tanh[Pi]/Pi^5 9567289641070031 a007 Real Root Of 848*x^4+169*x^3-192*x^2+838*x+415 9567289702599960 h001 (1/4*exp(2)+3/10)/(5/8*exp(1)+6/11) 9567289714695778 a007 Real Root Of -905*x^4-747*x^3+356*x^2+860*x+601 9567289761620215 m001 (2^(1/2)+ln(5))/(-Paris+PrimesInBinary) 9567289777725131 m005 (-13/20+1/4*5^(1/2))/(7/12*Catalan+5/12) 9567289794838761 g002 -gamma-2*ln(2)-Psi(1/8)-Psi(8/9)-Psi(3/7) 9567289805713002 m001 GolombDickman^Backhouse+Zeta(1/2) 9567289805713002 m001 Zeta(1/2)+GolombDickman^Backhouse 9567289823310977 m001 ln(2^(1/2)+1)^(GolombDickman/Grothendieck) 9567289839770210 m001 (exp(Pi)+Chi(1))/(GAMMA(19/24)+MertensB3) 9567289867742955 a001 2139295485799/2584*6557470319842^(16/17) 9567289907536228 a007 Real Root Of 973*x^4+418*x^3-127*x^2-229*x-552 9567289925320026 m001 (3^(1/2)+Zeta(5))/(BesselI(1,2)+Conway) 9567289942698711 m001 1/GAMMA(19/24)/GAMMA(13/24)^2*ln(gamma)^2 9567289981139119 r002 2th iterates of z^2 + 9567289982038729 m001 (FibonacciFactorial-ZetaP(4))/Zeta(3) 9567290010763964 a003 cos(Pi*19/113)-cos(Pi*25/113) 9567290015648586 m001 Lehmer+Stephens^FeigenbaumC 9567290029713424 m001 (Sarnak+Thue)/(arctan(1/3)+MertensB3) 9567290050875346 r005 Im(z^2+c),c=-25/46+6/35*I,n=54 9567290056092636 r005 Im(z^2+c),c=-19/60+5/37*I,n=5 9567290058868405 m001 (Zeta(5)+1/3)/(-GAMMA(11/24)+1/2) 9567290061005999 r009 Im(z^3+c),c=-9/58+43/46*I,n=27 9567290062339567 q001 2609/2727 9567290083651562 r002 4th iterates of z^2 + 9567290096699824 m005 (1/2*Catalan-3)/(3*Catalan-1/11) 9567290127541938 a007 Real Root Of -773*x^4-103*x^3-115*x^2-469*x+214 9567290127556517 m002 -Pi+Pi^6-Cosh[Pi]/Pi^3-Log[Pi] 9567290160693022 r005 Im(z^2+c),c=7/30+15/26*I,n=4 9567290176723068 m002 -1+Pi^2-Pi^4/E^Pi-Pi^6 9567290188241508 l006 ln(2273/5917) 9567290201606268 r005 Im(z^2+c),c=-29/48+11/29*I,n=27 9567290216650802 a007 Real Root Of -963*x^4-547*x^3+259*x^2-838*x-711 9567290223980593 a007 Real Root Of 586*x^4+819*x^3+416*x^2+242*x+77 9567290238010101 a001 199/46368*377^(5/37) 9567290292177327 a007 Real Root Of -572*x^4-67*x^3-582*x^2-548*x+429 9567290295077579 m001 exp(LandauRamanujan)^2/CareFree*MinimumGamma 9567290306923561 r002 19th iterates of z^2 + 9567290327672204 m006 (exp(2*Pi)-2/3)/(3/5/Pi-3/4) 9567290364258245 m005 (19/44+1/4*5^(1/2))/(10/11*2^(1/2)-1/4) 9567290423960187 a003 sin(Pi*26/73)/sin(Pi*37/95) 9567290442557230 m001 LaplaceLimit*GlaisherKinkelin^2*ln(Catalan) 9567290515772996 a007 Real Root Of 754*x^4-670*x^3-667*x^2-114*x-717 9567290536337488 m001 cos(1/12*Pi)^(Sarnak/LambertW(1)) 9567290551048991 r005 Im(z^2+c),c=29/98+15/31*I,n=16 9567290570977213 a001 377/11*4870847^(1/15) 9567290630819408 a007 Real Root Of -628*x^4-18*x^3+319*x^2-60*x+161 9567290640171056 r005 Re(z^2+c),c=7/86+33/64*I,n=50 9567290654075365 a007 Real Root Of 275*x^4+263*x^3+856*x^2-199*x-974 9567290682210587 m003 6-E^(1/2+Sqrt[5]/2)+Cos[1/2+Sqrt[5]/2]^3 9567290692002745 a007 Real Root Of 813*x^4+79*x^3-839*x^2-994*x-795 9567290716298187 s002 sum(A079817[n]/((2*n)!),n=1..infinity) 9567290770163031 p004 log(30241/11617) 9567290832869754 a001 377/11*2207^(2/15) 9567290887027605 a001 3/75025*377^(5/34) 9567290897915260 a007 Real Root Of -905*x^4+319*x^3+142*x^2-240*x+678 9567290906340270 r005 Re(z^2+c),c=-13/14+40/251*I,n=25 9567290911719920 l006 ln(2336/6081) 9567290911769186 r005 Re(z^2+c),c=-61/78+31/59*I,n=4 9567290959765246 r001 61i'th iterates of 2*x^2-1 of 9567290962814308 m002 -6+Pi^3/E^Pi+Pi^6 9567290975056990 m002 -3/Pi^6+Pi^6-5/ProductLog[Pi] 9567290992189556 m001 1/TwinPrimes^2*ln(FeigenbaumB)/BesselJ(1,1) 9567290996352708 a001 29/17711*377^(24/35) 9567291021370095 l006 ln(4761/5239) 9567291033949709 a007 Real Root Of -847*x^4-379*x^3+348*x^2+675*x+705 9567291065444455 h001 (10/11*exp(1)+3/7)/(7/9*exp(1)+11/12) 9567291083579929 a007 Real Root Of 655*x^4+459*x^3+x^2-849*x-960 9567291088653624 m001 GAMMA(11/12)^ZetaP(2)*Thue^ZetaP(2) 9567291110602007 m001 (sin(1/5*Pi)-3^(1/3))/(cos(1/12*Pi)+gamma(1)) 9567291130748239 a007 Real Root Of 76*x^4-878*x^3+613*x^2+447*x-966 9567291162865985 m002 -2*Pi+Pi^2-Pi^6+ProductLog[Pi] 9567291164123336 r005 Re(z^2+c),c=7/66+16/27*I,n=40 9567291170671358 a007 Real Root Of 957*x^4+100*x^3-55*x^2+927*x+223 9567291182474163 m001 (Psi(2,1/3)+GAMMA(11/12))/(-Stephens+Trott) 9567291187890213 a007 Real Root Of -661*x^4+564*x^3+40*x^2-275*x+748 9567291204569946 a007 Real Root Of -803*x^4+598*x^3+488*x^2+18*x+767 9567291214661753 r002 15th iterates of z^2 + 9567291225003814 a007 Real Root Of 916*x^4-973*x^3+57*x^2-497*x-49 9567291250275180 m006 (2/5*exp(2*Pi)-1)/(5/6*exp(Pi)+3) 9567291261840110 r005 Re(z^2+c),c=-13/14+38/239*I,n=5 9567291292536087 a007 Real Root Of 97*x^4-771*x^3+233*x^2+977*x-35 9567291311754684 q001 2808/2935 9567291312191825 m001 (Porter+Rabbit)/(Zeta(5)-AlladiGrinstead) 9567291322655055 a007 Real Root Of 977*x^4-424*x^3-840*x^2+786*x+331 9567291347785878 a007 Real Root Of 980*x^4-57*x^3+892*x^2+983*x-747 9567291360594485 a007 Real Root Of 405*x^4-941*x^3+780*x^2+986*x-934 9567291372563480 m004 6/5+125*Pi+Cos[Sqrt[5]*Pi]+Sinh[Sqrt[5]*Pi] 9567291373004004 m005 (1/2*gamma-9/10)/(3/11*3^(1/2)+1/6) 9567291376091149 a007 Real Root Of -95*x^4-911*x^3-2*x^2+154*x-189 9567291382681760 a001 4052739537881/843*322^(11/12) 9567291432912951 r005 Re(z^2+c),c=-113/118+1/35*I,n=9 9567291503137276 a007 Real Root Of 464*x^4+340*x^3+266*x^2+243*x-102 9567291545365505 a001 817138163596/987*6557470319842^(16/17) 9567291572362770 h001 (-exp(4)-2)/(-11*exp(4)+9) 9567291574289700 m001 (FeigenbaumC-MertensB2)^DuboisRaymond 9567291578313370 m001 (HeathBrownMoroz-Kac)/(Stephens+ZetaP(4)) 9567291585699082 a007 Real Root Of 695*x^4+269*x^3+385*x^2+182*x-525 9567291597199834 l006 ln(2399/6245) 9567291605667408 a003 cos(Pi*54/115)/sin(Pi*23/48) 9567291611157216 r005 Re(z^2+c),c=-49/44+19/63*I,n=10 9567291618757321 a007 Real Root Of -989*x^4+815*x^3+547*x^2-794*x+282 9567291641982196 r005 Re(z^2+c),c=-15/16+17/128*I,n=25 9567291660556649 r009 Im(z^3+c),c=-19/98+24/25*I,n=60 9567291691791360 b008 Zeta[14/43] 9567291730075905 m001 Sarnak/(Grothendieck-GAMMA(23/24)) 9567291778326225 r005 Im(z^2+c),c=-1/23+2/19*I,n=9 9567291786883574 a007 Real Root Of -371*x^4+961*x^3+127*x^2-135*x+907 9567291799002174 r005 Im(z^2+c),c=-18/19+2/23*I,n=28 9567291817013130 m001 1/Khintchine*FeigenbaumDelta*exp(Niven) 9567291828390978 a007 Real Root Of 523*x^4-320*x^3+288*x^2+993*x-32 9567291894625396 r009 Re(z^3+c),c=-5/94+38/41*I,n=24 9567291932349015 a007 Real Root Of 588*x^4-951*x^3-545*x^2-93*x+928 9567291937739934 r009 Re(z^3+c),c=-5/94+38/41*I,n=26 9567291940269546 r009 Re(z^3+c),c=-5/94+38/41*I,n=22 9567291947946955 r009 Re(z^3+c),c=-5/94+38/41*I,n=34 9567291947949837 r009 Re(z^3+c),c=-5/94+38/41*I,n=36 9567291947955145 r009 Re(z^3+c),c=-5/94+38/41*I,n=38 9567291947955929 r009 Re(z^3+c),c=-5/94+38/41*I,n=46 9567291947955930 r009 Re(z^3+c),c=-5/94+38/41*I,n=48 9567291947955931 r009 Re(z^3+c),c=-5/94+38/41*I,n=50 9567291947955931 r009 Re(z^3+c),c=-5/94+38/41*I,n=58 9567291947955931 r009 Re(z^3+c),c=-5/94+38/41*I,n=60 9567291947955931 r009 Re(z^3+c),c=-5/94+38/41*I,n=62 9567291947955931 r009 Re(z^3+c),c=-5/94+38/41*I,n=64 9567291947955931 r009 Re(z^3+c),c=-5/94+38/41*I,n=56 9567291947955931 r009 Re(z^3+c),c=-5/94+38/41*I,n=54 9567291947955931 r009 Re(z^3+c),c=-5/94+38/41*I,n=52 9567291947955937 r009 Re(z^3+c),c=-5/94+38/41*I,n=44 9567291947955994 r009 Re(z^3+c),c=-5/94+38/41*I,n=42 9567291947956062 r009 Re(z^3+c),c=-5/94+38/41*I,n=40 9567291948047565 r009 Re(z^3+c),c=-5/94+38/41*I,n=32 9567291948439859 r009 Re(z^3+c),c=-5/94+38/41*I,n=28 9567291948532771 r009 Re(z^3+c),c=-5/94+38/41*I,n=30 9567291958329089 m001 (FeigenbaumB-GAMMA(17/24)*ZetaP(4))/ZetaP(4) 9567291980614373 a007 Real Root Of -923*x^4+678*x^3+271*x^2-855*x+301 9567291996081000 r002 52th iterates of z^2 + 9567292022090405 a007 Real Root Of 983*x^4+337*x^3-518*x^2-100*x-150 9567292033606551 r001 14i'th iterates of 2*x^2-1 of 9567292046432984 a007 Real Root Of 962*x^4-140*x^3+204*x^2+293*x-835 9567292103522863 m001 (GAMMA(19/24)+PolyaRandomWalk3D)/(Sarnak+Thue) 9567292155192701 a007 Real Root Of -484*x^4-476*x^3-976*x^2-346*x+551 9567292167878476 m001 gamma(2)^GAMMA(3/4)*FransenRobinson 9567292188399439 r005 Im(z^2+c),c=-43/34+21/128*I,n=3 9567292192458833 m001 (Zeta(1,-1)+GlaisherKinkelin)/(Salem-ZetaQ(3)) 9567292229584810 r005 Re(z^2+c),c=-13/14+29/158*I,n=11 9567292247598280 l006 ln(2462/6409) 9567292263601284 p003 LerchPhi(1/8,6,385/177) 9567292272619723 m001 HardyLittlewoodC4/GAMMA(17/24)/Riemann3rdZero 9567292307438260 r005 Re(z^2+c),c=-87/94+15/62*I,n=53 9567292325123698 m002 -5-Pi^6+(5*Cosh[Pi])/6 9567292345198816 m001 LandauRamanujan2nd^polylog(4,1/2)*BesselI(0,1) 9567292360670882 r001 25i'th iterates of 2*x^2-1 of 9567292380066716 m005 (1/2*gamma+7/10)/(29/8+3*5^(1/2)) 9567292395800190 q001 3007/3143 9567292400202500 m001 ErdosBorwein^FeigenbaumDelta+PrimesInBinary 9567292411697524 a001 1/24476*199^(28/47) 9567292420193728 m001 1/GAMMA(1/3)*Robbin*exp(GAMMA(2/3)) 9567292440335533 a003 sin(Pi*37/99)/sin(Pi*46/111) 9567292449516501 a007 Real Root Of 803*x^4-118*x^3+749*x^2+631*x-858 9567292499827063 m003 (129*Sqrt[5])/1024-3*Csch[1/2+Sqrt[5]/2] 9567292502688635 m001 Bloch*CareFree+GolombDickman 9567292526464055 a007 Real Root Of -83*x^4+763*x^3+253*x^2-203*x-636 9567292585763325 a007 Real Root Of -603*x^4+501*x^3+917*x^2-280*x-505 9567292603094546 a007 Real Root Of -800*x^4+784*x^3+967*x^2+779*x-84 9567292684765135 a007 Real Root Of -98*x^4-828*x^3+958*x^2-765*x+967 9567292687684009 a007 Real Root Of 42*x^4-681*x^3-876*x^2+462*x+921 9567292708137585 m001 (exp(1/Pi)+Cahen)/(Khinchin-Stephens) 9567292750202384 a007 Real Root Of 702*x^4-52*x^3+649*x^2+445*x-802 9567292802222658 r002 25th iterates of z^2 + 9567292815243265 m001 GAMMA(1/4)^2/exp(Conway)^2*Pi^2 9567292850127727 m001 (ArtinRank2+Cahen)/(ln(5)-exp(-1/2*Pi)) 9567292865541160 l006 ln(2525/6573) 9567292897323215 b008 3+Cosh[1/3+Sqrt[5]] 9567292904350639 m001 ZetaP(3)/(2^(1/2)+ThueMorse) 9567292931198905 a007 Real Root Of -383*x^4+617*x^3+499*x^2-42*x-636 9567292942763849 a007 Real Root Of -782*x^4+443*x^3+414*x^2-250*x+425 9567292943317354 a001 6/75283811239*591286729879^(16/17) 9567292943317354 a001 6/34111385*165580141^(16/17) 9567292943369706 a001 1/2576*46368^(16/17) 9567292961140710 m001 Otter^BesselK(0,1)/ZetaQ(4) 9567292981431433 m001 (MertensB2+ZetaP(3))/(FeigenbaumC-LambertW(1)) 9567292999641569 m001 Khinchin/(exp(gamma)+GAMMA(23/24)) 9567293030310827 r005 Re(z^2+c),c=5/52+6/11*I,n=57 9567293041266033 a007 Real Root Of 780*x^4+362*x^3+876*x^2+732*x-438 9567293048597819 r009 Re(z^3+c),c=-5/94+38/41*I,n=20 9567293110645585 m001 (GAMMA(5/6)+Conway)/(GAMMA(3/4)+ln(2+3^(1/2))) 9567293113017499 m001 (GAMMA(19/24)+Gompertz)/(Tribonacci+Trott) 9567293116529246 r009 Im(z^3+c),c=-13/106+41/43*I,n=20 9567293128410310 r005 Re(z^2+c),c=35/118+19/48*I,n=47 9567293215065736 s002 sum(A014302[n]/((2*n+1)!),n=1..infinity) 9567293217308568 r005 Re(z^2+c),c=29/110+16/47*I,n=49 9567293308222419 b008 8-13*Cosh[5] 9567293309676287 m001 LambertW(1)^2/GAMMA(23/24)^2/exp(sqrt(3))^2 9567293319182900 b008 7+Sqrt[2*(E+EulerGamma)] 9567293327391399 m001 1/ln(TwinPrimes)^2*Riemann2ndZero/GAMMA(5/6)^2 9567293345270068 q001 3206/3351 9567293348951592 m002 (2*Tanh[Pi])/(9*E^Pi) 9567293361105829 m001 3^(1/3)*sin(1/12*Pi)^GaussKuzminWirsing 9567293361105829 m001 sin(Pi/12)^GaussKuzminWirsing*(3^(1/3)) 9567293401965245 l006 ln(8018/8823) 9567293416444364 r005 Re(z^2+c),c=-119/106+7/25*I,n=8 9567293421981975 r002 5th iterates of z^2 + 9567293445610132 r005 Im(z^2+c),c=-29/48+8/45*I,n=57 9567293453398686 l006 ln(2588/6737) 9567293456015816 a007 Real Root Of -73*x^4-793*x^3-889*x^2+248*x+913 9567293485780951 a007 Real Root Of -404*x^4+359*x^3+444*x^2+80*x+323 9567293504105003 m001 ErdosBorwein-FibonacciFactorial-PlouffeB 9567293514281215 a007 Real Root Of 729*x^4-232*x^3-144*x^2+251*x-442 9567293514741042 a003 cos(Pi*1/70)*sin(Pi*46/113) 9567293519434591 a007 Real Root Of -101*x^4+302*x^3-225*x^2+440*x+976 9567293543505059 a007 Real Root Of 248*x^4-931*x^3+357*x^2+974*x-418 9567293563512620 m001 (MinimumGamma+Trott)/(exp(1/Pi)-GAMMA(7/12)) 9567293591250936 m002 -6+ProductLog[Pi]/Pi^2-Sinh[Pi]/Pi 9567293596458925 m001 1/BesselJ(1,1)^2/Lehmer^2*ln(GAMMA(23/24))^2 9567293607480505 a001 11/4181*75025^(29/31) 9567293617653893 m001 CopelandErdos/(ZetaP(4)^(3^(1/3))) 9567293624615821 r002 48th iterates of z^2 + 9567293666553869 a008 Real Root of x^3-x^2-92*x+96 9567293668527042 m001 Trott2nd^Thue/(Trott2nd^Magata) 9567293685064061 a005 (1/cos(27/127*Pi))^95 9567293698655626 a007 Real Root Of -762*x^4+967*x^3+233*x^2-324*x+962 9567293715704140 r005 Im(z^2+c),c=25/82+16/29*I,n=64 9567293732623842 m005 (1/3*Pi+1/9)/(1/4*2^(1/2)+6/7) 9567293785551754 r002 9th iterates of z^2 + 9567293812805228 m005 (27/44+1/4*5^(1/2))/(5/7*Catalan+4/7) 9567293817485106 a007 Real Root Of -202*x^4+124*x^3-368*x^2+316*x+917 9567293817555589 b008 -1+3^(-6+Pi) 9567293818386122 r005 Im(z^2+c),c=-11/82+3/25*I,n=12 9567293819718365 a003 cos(Pi*15/113)-sin(Pi*29/95) 9567293830750309 r009 Im(z^3+c),c=-18/31+23/40*I,n=14 9567293845094491 a007 Real Root Of -380*x^4+908*x^3+332*x^2-586*x+249 9567293854684723 m005 (25/36+1/4*5^(1/2))/(5/7*2^(1/2)+3/10) 9567293874989751 a001 2/55*196418^(11/41) 9567293909715730 m001 gamma(1)*((1+3^(1/2))^(1/2))^Landau 9567293928383041 r002 31th iterates of z^2 + 9567293994308217 a007 Real Root Of -761*x^4+183*x^3-706*x^2-969*x+517 9567294002125071 a007 Real Root Of 105*x^4-507*x^3+361*x^2+37*x-827 9567294013315762 l006 ln(2651/6901) 9567294082720546 m005 (13/42+1/6*5^(1/2))/(5/11*Zeta(3)+1/6) 9567294128717215 r005 Im(z^2+c),c=-93/82+3/25*I,n=49 9567294140085607 a007 Real Root Of -323*x^4-336*x^3-745*x^2-178*x+488 9567294176503950 h001 (1/4*exp(2)+11/12)/(2/7*exp(2)+7/9) 9567294183759483 q001 3405/3559 9567294197763051 a007 Real Root Of -677*x^4+732*x^3+842*x^2-473*x-15 9567294224454159 a001 75025/29*4^(50/53) 9567294229180448 r002 4th iterates of z^2 + 9567294250751088 a007 Real Root Of 132*x^4-43*x^3-20*x^2-692*x-792 9567294284605210 b008 Log[9*Sqrt[6]]^2 9567294321417827 a007 Real Root Of 334*x^4-189*x^3+737*x^2+371*x-765 9567294348299216 a007 Real Root Of 834*x^4+741*x^3+883*x^2-48*x-904 9567294409379456 r002 38th iterates of z^2 + 9567294422105967 a007 Real Root Of 830*x^4+782*x^3-96*x^2-132*x-49 9567294457201599 a001 123/610*2584^(28/57) 9567294459559378 p001 sum((-1)^n/(535*n+104)/(32^n),n=0..infinity) 9567294462756280 r002 46th iterates of z^2 + 9567294499216824 a007 Real Root Of 385*x^4-602*x^3-919*x^2+611*x+576 9567294508932150 m009 (6*Psi(1,1/3)+5)/(32*Catalan+4*Pi^2-1/4) 9567294514097822 r009 Im(z^3+c),c=-19/34+36/59*I,n=50 9567294516001209 a001 55/123*76^(29/41) 9567294516864235 m005 (1/2*exp(1)-4)/(2/7*gamma+1/9) 9567294522413589 a007 Real Root Of 853*x^4+432*x^3+521*x^2+341*x-487 9567294526557027 a007 Real Root Of 344*x^4-153*x^3+839*x^2+574*x-641 9567294547238133 l006 ln(2714/7065) 9567294603147173 r005 Re(z^2+c),c=-7/30+19/27*I,n=11 9567294610701845 a007 Real Root Of -925*x^4+729*x^3+467*x^2-117*x+874 9567294625604446 r005 Im(z^2+c),c=-57/106+11/62*I,n=13 9567294660548565 m001 (Pi^(1/2)+StolarskyHarborth)/(1-Zeta(1,2)) 9567294683490355 a007 Real Root Of 125*x^4+416*x^3+404*x^2-190*x-292 9567294694217182 m002 -2/Pi^6-ProductLog[Pi]+Pi^6*Tanh[Pi] 9567294694882549 r009 Re(z^3+c),c=-15/94+17/32*I,n=6 9567294696014768 a007 Real Root Of 757*x^3-578*x^2-555*x+661 9567294764158999 m001 (Catalan-Shi(1))/(-gamma(1)+OrthogonalArrays) 9567294776901405 m001 Ei(1,1)*exp(-1/2*Pi)^Zeta(1,2) 9567294801353377 r005 Re(z^2+c),c=-1/74+9/25*I,n=29 9567294823716727 m001 (cos(1)-exp(1/exp(1)))^BesselJ(1,1) 9567294823716727 m001 (exp(1/exp(1))-cos(1))^BesselJ(1,1) 9567294839936167 a007 Real Root Of -147*x^4+772*x^3-627*x^2+769*x+80 9567294843512257 a001 228826127/55*377^(11/12) 9567294858769303 a007 Real Root Of 860*x^4+281*x^3+784*x^2+576*x-641 9567294869111617 a007 Real Root Of 844*x^4+204*x^3+426*x^2+314*x-618 9567294872832412 s002 sum(A019159[n]/(n^3*exp(n)+1),n=1..infinity) 9567294909808260 r005 Im(z^2+c),c=-11/25+15/26*I,n=7 9567294923911282 a007 Real Root Of -762*x^4-912*x^3-647*x^2+485*x+896 9567294929652243 q001 3604/3767 9567294970544623 m008 (4/5*Pi^6+1/4)/(5/6*Pi^6+3) 9567294981987199 r005 Im(z^2+c),c=-17/30+49/104*I,n=36 9567294983755653 r009 Im(z^3+c),c=-19/34+13/38*I,n=4 9567295018471461 m001 Zeta(3)*Zeta(1/2)^2*exp(log(2+sqrt(3))) 9567295023702692 m001 exp(1)*FeigenbaumDelta^2*ln(sinh(1)) 9567295024798393 a007 Real Root Of -284*x^4+831*x^3-43*x^2+472*x-902 9567295032508065 m005 (1/2*2^(1/2)-7/10)/(4*3^(1/2)+1/2) 9567295033122398 a007 Real Root Of -531*x^4+364*x^3-x^2+198*x+954 9567295053110073 a001 1/228826127*4^(13/23) 9567295056934975 l006 ln(2777/7229) 9567295056934975 p004 log(7229/2777) 9567295106536581 a007 Real Root Of -707*x^4+810*x^3-328*x^2-834*x+804 9567295116745300 a007 Real Root Of 43*x^4-968*x^3+417*x^2-508*x+916 9567295131595926 r009 Im(z^3+c),c=-11/98+39/49*I,n=45 9567295136346589 l005 393129/6400/(exp(627/80)^2-1) 9567295165332811 r009 Im(z^3+c),c=-31/82+2/59*I,n=26 9567295166195799 r008 a(0)=0,K{-n^6,-31-47*n-48*n^2+21*n^3} 9567295182024982 a007 Real Root Of -701*x^4+598*x^3-134*x^2-863*x+408 9567295211876287 a007 Real Root Of -945*x^4+728*x^3+923*x^2-383*x+218 9567295218138006 m001 (FeigenbaumC+Landau)/(GAMMA(23/24)+Backhouse) 9567295231004642 r002 2th iterates of z^2 + 9567295231004642 r002 2th iterates of z^2 + 9567295254396567 p004 log(36473/14011) 9567295293396177 r002 31th iterates of z^2 + 9567295300063669 a007 Real Root Of 840*x^4+125*x^3+979*x^2+568*x-947 9567295304303008 a007 Real Root Of 829*x^4-924*x^3+61*x^2-897*x+86 9567295337439990 m005 (13/12+1/4*5^(1/2))/(6/7*5^(1/2)-1/5) 9567295339459293 r005 Re(z^2+c),c=-21/22+21/86*I,n=27 9567295355648023 m001 2^(1/2)*exp(-1/2*Pi)+LaplaceLimit 9567295372060918 h001 (3/8*exp(1)+6/11)/(5/11*exp(1)+2/5) 9567295375193099 r009 Im(z^3+c),c=-5/29+41/44*I,n=15 9567295385978545 r005 Im(z^2+c),c=-18/19+2/23*I,n=27 9567295399010671 r009 Im(z^3+c),c=-81/122+14/31*I,n=2 9567295421881012 r005 Re(z^2+c),c=-29/31+5/36*I,n=45 9567295426365662 r002 47th iterates of z^2 + 9567295428222525 r002 45th iterates of z^2 + 9567295433172071 m001 (-Zeta(1,-1)+MertensB3)/(BesselK(0,1)+ln(Pi)) 9567295444799404 r005 Re(z^2+c),c=-59/64+7/40*I,n=53 9567295473799846 r005 Im(z^2+c),c=-24/23+2/19*I,n=29 9567295488394753 a007 Real Root Of 399*x^4-765*x^3-529*x^2+485*x-56 9567295503233808 a007 Real Root Of 864*x^4-706*x^3-560*x^2-13*x-842 9567295532920034 m001 Paris^Khinchin/exp(-1/2*Pi) 9567295538176381 m001 (Paris+ZetaQ(3))/(Champernowne-CopelandErdos) 9567295539358600 r005 Im(z^2+c),c=19/50+33/56*I,n=3 9567295541142264 m005 (1/3*Zeta(3)+1/2)/(1/10*2^(1/2)+4/5) 9567295544018483 l006 ln(2840/7393) 9567295561206411 a001 29/1134903170*89^(5/17) 9567295584801772 r005 Im(z^2+c),c=-24/23+2/19*I,n=38 9567295586475823 b008 Erfc[-1+Cosh[Sqrt[2]]] 9567295597484276 q001 3803/3975 9567295599516201 r002 15th iterates of z^2 + 9567295655028920 m001 (PrimesInBinary+TwinPrimes)/(1+Champernowne) 9567295675604002 r005 Re(z^2+c),c=-29/31+5/36*I,n=47 9567295711140108 b008 1/7+39*Sqrt[6] 9567295789721929 m001 1/GAMMA(11/12)*Riemann3rdZero^2*ln(sinh(1)) 9567295795300236 a003 cos(Pi*1/95)*sin(Pi*37/91) 9567295812075676 m001 (ln(gamma)+ln(3))/(gamma(3)-Stephens) 9567295841353447 m001 1/exp(GAMMA(1/24))^2*GolombDickman^2*sin(Pi/5) 9567295896254005 m002 -1-E^Pi/Pi^5+Pi^6*Tanh[Pi] 9567295898443143 m001 ArtinRank2^2/ErdosBorwein^2*ln(BesselK(1,1)) 9567295970652366 a007 Real Root Of 564*x^4+675*x^3+797*x^2+140*x-477 9567295974860659 a007 Real Root Of 556*x^4-551*x^3-634*x^2-370*x+951 9567295976456357 p004 log(33911/30817) 9567295976563083 a007 Real Root Of 38*x^4+431*x^3+691*x^2+455*x+165 9567295979300330 a007 Real Root Of 222*x^4-764*x^3-154*x^2+21*x-694 9567295980759127 r009 Im(z^3+c),c=-17/110+43/46*I,n=43 9567295981185076 r005 Im(z^2+c),c=-7/8+1/132*I,n=5 9567295981663993 m005 (1/3*2^(1/2)+1/11)/(1/9*exp(1)+2/7) 9567296006550732 r002 54th iterates of z^2 + 9567296009960899 l006 ln(2903/7557) 9567296022055930 m001 ln(Ei(1))^2*Conway^2*GAMMA(19/24)^2 9567296031326576 r005 Re(z^2+c),c=-4/25+48/61*I,n=21 9567296051141643 r002 5th iterates of z^2 + 9567296066998358 m002 -2+Pi*ProductLog[Pi]-Pi^4*Tanh[Pi] 9567296068197736 a007 Real Root Of -822*x^4+354*x^3+593*x^2-626*x-143 9567296084003062 a007 Real Root Of -334*x^4+720*x^3+872*x^2-558*x-615 9567296086165648 m001 FeigenbaumB*exp(Kolakoski)^2*GAMMA(1/24) 9567296121915363 a007 Real Root Of -955*x^4+574*x^3-32*x^2-414*x+936 9567296135033280 a007 Real Root Of 35*x^4+262*x^3-681*x^2+166*x+121 9567296181345723 a003 sin(Pi*11/31)/cos(Pi*55/117) 9567296182089367 m001 (BesselI(1,2)-PlouffeB)/(Salem-Trott) 9567296185223845 r002 31th iterates of z^2 + 9567296188120926 a007 Real Root Of -185*x^4+328*x^3+941*x^2+853*x+397 9567296233425770 m002 -Pi-Pi^4+6*Coth[Pi]-Log[Pi] 9567296254047121 m002 -Pi^4/(36*E^Pi)+ProductLog[Pi] 9567296257395653 r005 Re(z^2+c),c=-17/18+20/189*I,n=9 9567296267531701 m001 (-Grothendieck+MertensB1)/(GAMMA(5/6)-exp(1)) 9567296285277121 a007 Real Root Of -868*x^4+932*x^3+52*x^2-790*x+740 9567296328553255 b008 9+ArcCosh[3]^(-1) 9567296328996942 m001 GAMMA(1/3)/(polylog(4,1/2)^GAMMA(11/24)) 9567296335537700 r005 Re(z^2+c),c=-9/10+21/95*I,n=43 9567296341808455 a007 Real Root Of -103*x^4-971*x^3+244*x^2+922*x-875 9567296344056342 r002 50th iterates of z^2 + 9567296372515838 r002 3th iterates of z^2 + 9567296380208617 a007 Real Root Of 558*x^4-689*x^3-997*x^2-862*x-983 9567296391291974 a001 843/86267571272*377^(17/22) 9567296404207538 a007 Real Root Of -806*x^4+808*x^3+943*x^2-538*x+5 9567296435048104 a007 Real Root Of -366*x^4+333*x^3-188*x^2-824*x-18 9567296456109383 l006 ln(2966/7721) 9567296482995092 m001 1/Sierpinski/Salem^2/ln(GAMMA(11/12))^2 9567296491688117 m001 (Pi+gamma(1))/(FeigenbaumDelta-MinimumGamma) 9567296523063700 a007 Real Root Of 519*x^4-595*x^3-759*x^2-512*x-751 9567296531526201 r009 Im(z^3+c),c=-13/58+59/62*I,n=11 9567296577100770 r005 Im(z^2+c),c=-24/23+2/19*I,n=37 9567296580539795 m005 (1/2*Zeta(3)+9/10)/(5/11*exp(1)+1/3) 9567296592432693 m001 exp(1)/(GaussKuzminWirsing-sin(1/5*Pi)) 9567296592432693 m001 exp(1)/(GaussKuzminWirsing-sin(Pi/5)) 9567296592996414 m001 LandauRamanujan*ln(Backhouse)*gamma^2 9567296602341759 a007 Real Root Of 989*x^4-376*x^3-64*x^2+432*x-686 9567296620395284 r005 Re(z^2+c),c=-63/74+11/54*I,n=39 9567296643209116 h001 (1/12*exp(2)+10/11)/(6/11*exp(1)+1/9) 9567296644742315 a007 Real Root Of -942*x^4-732*x^3-730*x^2+929*x+95 9567296721120555 a007 Real Root Of 382*x^4-331*x^3+304*x^2+227*x-671 9567296727788000 m001 exp(Riemann1stZero)*MertensB1^2*Zeta(7)^2 9567296731752297 r002 53th iterates of z^2 + 9567296749256756 r009 Re(z^3+c),c=-5/94+38/41*I,n=18 9567296755527048 m002 -5+Pi^6+(ProductLog[Pi]*Tanh[Pi])/Pi 9567296758070091 a007 Real Root Of 157*x^4-450*x^3-435*x^2+475*x+327 9567296771429881 a007 Real Root Of -522*x^4+836*x^3+354*x^2-799*x+81 9567296790606688 a007 Real Root Of 408*x^4-390*x^3-99*x^2-364*x-941 9567296790977436 a007 Real Root Of 765*x^4-177*x^3+14*x^2+98*x-715 9567296793173548 l006 ln(8842/8927) 9567296802725701 a007 Real Root Of 247*x^4+115*x^3+208*x^2-130*x-421 9567296849156621 a007 Real Root Of 828*x^4+529*x^3+419*x^2-46*x-658 9567296854445999 m001 (-Sierpinski+Totient)/(Chi(1)+arctan(1/2)) 9567296870112297 m001 Psi(1,1/3)^gamma/(Psi(1,1/3)^Gompertz) 9567296872315719 a001 64079/34*55^(15/37) 9567296881858759 l006 ln(3257/3584) 9567296883699014 l006 ln(3029/7885) 9567296930416438 r002 4th iterates of z^2 + 9567296943091826 r002 49th iterates of z^2 + 9567296952755075 r002 14i'th iterates of 2*x/(1-x^2) of 9567296965642834 r002 10th iterates of z^2 + 9567296967731494 b008 1/5+9*E^(1/25) 9567296999292862 a007 Real Root Of -712*x^4+273*x^3+609*x^2-620*x-315 9567297024561804 m001 FeigenbaumD-OrthogonalArrays^ln(5) 9567297027567888 r009 Re(z^3+c),c=-31/58+20/51*I,n=23 9567297035968038 r002 4th iterates of z^2 + 9567297047462563 a007 Real Root Of 396*x^4+201*x^3+570*x^2+104*x-578 9567297058956651 a007 Real Root Of 928*x^4-445*x^3-208*x^2+374*x-619 9567297071469452 m001 Rabbit/(LambertW(1)+ZetaP(3)) 9567297080638589 a007 Real Root Of -734*x^4+591*x^3+508*x^2+151*x+812 9567297113906048 m001 (-Riemann2ndZero+Trott)/(ln(2)/ln(10)+Ei(1)) 9567297151506045 m001 (gamma+ln(2^(1/2)+1))/(Paris+ZetaQ(2)) 9567297165912284 h001 (5/6*exp(2)+3/7)/(10/11*exp(2)+1/6) 9567297181563576 r005 Im(z^2+c),c=-18/19+2/23*I,n=36 9567297206207088 r002 48th iterates of z^2 + 9567297225228860 r005 Im(z^2+c),c=-24/23+2/19*I,n=30 9567297244172542 b008 (-1/12+E)^(-1)+EulerGamma 9567297271266834 r005 Im(z^2+c),c=-18/19+2/23*I,n=38 9567297277041636 m001 (Zeta(3)-Gompertz)/(Rabbit-ZetaP(4)) 9567297283901473 r002 56th iterates of z^2 + 9567297293864212 l006 ln(3092/8049) 9567297297847382 r005 Im(z^2+c),c=-18/19+2/23*I,n=35 9567297300600890 r005 Im(z^2+c),c=-24/23+2/19*I,n=44 9567297306789310 r005 Im(z^2+c),c=1/19+2/23*I,n=11 9567297337536472 m005 (-13/20+1/4*5^(1/2))/(4/7*2^(1/2)+1/7) 9567297346884853 m005 (1/2*Catalan-1)/(-11/24+11/24*5^(1/2)) 9567297351292642 m008 (3/5*Pi^6+3/4)/(1/5*Pi^5-5/6) 9567297365283762 r005 Im(z^2+c),c=-18/19+2/23*I,n=37 9567297375090455 r002 60th iterates of z^2 + 9567297384272290 r005 Im(z^2+c),c=-24/23+2/19*I,n=43 9567297385009293 m005 (1/2*gamma+3)/(1/2*Catalan-5/11) 9567297401944466 a008 Real Root of (-7+3*x+8*x^2-8*x^4+5*x^8) 9567297407281966 r005 Im(z^2+c),c=-1/23+2/19*I,n=12 9567297412155765 h001 (1/2*exp(1)+4/9)/(5/9*exp(1)+3/8) 9567297412155765 m005 (1/2*exp(1)+4/9)/(5/9*exp(1)+3/8) 9567297413456110 r002 55th iterates of z^2 + 9567297416226219 r002 59th iterates of z^2 + 9567297416587992 a007 Real Root Of -865*x^4+511*x^3-36*x^2-620*x+612 9567297420014924 r002 62th iterates of z^2 + 9567297426034273 r005 Im(z^2+c),c=1/19+2/23*I,n=12 9567297430057234 r005 Im(z^2+c),c=-18/19+2/23*I,n=40 9567297430251248 s002 sum(A177503[n]/(2^n-1),n=1..infinity) 9567297432742876 a007 Real Root Of 807*x^4+177*x^3-14*x^2-169*x-670 9567297446292508 r002 61th iterates of z^2 + 9567297447988248 r002 60th iterates of z^2 + 9567297450421094 r005 Im(z^2+c),c=-18/19+2/23*I,n=39 9567297452870990 r005 Im(z^2+c),c=-24/23+2/19*I,n=50 9567297455711048 r002 59th iterates of z^2 + 9567297456399769 r002 58th iterates of z^2 + 9567297458157920 r002 57th iterates of z^2 + 9567297458600049 r005 Im(z^2+c),c=-24/23+2/19*I,n=49 9567297459034641 r002 62th iterates of z^2 + 9567297461730619 r005 Im(z^2+c),c=-24/23+2/19*I,n=52 9567297461995717 r002 61th iterates of z^2 + 9567297463600727 r005 Im(z^2+c),c=-24/23+2/19*I,n=51 9567297463644806 r005 Im(z^2+c),c=-18/19+2/23*I,n=48 9567297463822004 r005 Im(z^2+c),c=-18/19+2/23*I,n=50 9567297464054255 r005 Im(z^2+c),c=-18/19+2/23*I,n=47 9567297464101900 r005 Im(z^2+c),c=-24/23+2/19*I,n=56 9567297464127808 r005 Im(z^2+c),c=-1/23+2/19*I,n=15 9567297464182743 r005 Im(z^2+c),c=-24/23+2/19*I,n=58 9567297464242498 r005 Im(z^2+c),c=-18/19+2/23*I,n=49 9567297464353596 r005 Im(z^2+c),c=-24/23+2/19*I,n=55 9567297464476935 r005 Im(z^2+c),c=-24/23+2/19*I,n=57 9567297464495967 r005 Im(z^2+c),c=-24/23+2/19*I,n=46 9567297464503850 r005 Im(z^2+c),c=-18/19+2/23*I,n=52 9567297464613217 r005 Im(z^2+c),c=-18/19+2/23*I,n=51 9567297464635289 r005 Im(z^2+c),c=-24/23+2/19*I,n=64 9567297464669903 r005 Im(z^2+c),c=-24/23+2/19*I,n=63 9567297464677972 r005 Im(z^2+c),c=1/19+2/23*I,n=16 9567297464680815 r005 Im(z^2+c),c=1/19+2/23*I,n=17 9567297464693080 r005 Im(z^2+c),c=-24/23+2/19*I,n=61 9567297464693207 r005 Im(z^2+c),c=-1/23+2/19*I,n=18 9567297464694884 r005 Im(z^2+c),c=-18/19+2/23*I,n=62 9567297464695125 r005 Im(z^2+c),c=-18/19+2/23*I,n=60 9567297464696423 r005 Im(z^2+c),c=-18/19+2/23*I,n=59 9567297464696456 r005 Im(z^2+c),c=1/19+2/23*I,n=18 9567297464696735 r005 Im(z^2+c),c=-18/19+2/23*I,n=61 9567297464697756 r005 Im(z^2+c),c=-18/19+2/23*I,n=64 9567297464698321 r005 Im(z^2+c),c=-18/19+2/23*I,n=63 9567297464698743 r005 Im(z^2+c),c=-1/23+2/19*I,n=21 9567297464698792 r005 Im(z^2+c),c=1/19+2/23*I,n=22 9567297464698795 r005 Im(z^2+c),c=1/19+2/23*I,n=23 9567297464698796 r005 Im(z^2+c),c=-1/23+2/19*I,n=24 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=24 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=25 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=27 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=28 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=28 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=27 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=29 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=30 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=31 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=33 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=33 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=34 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=34 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=35 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=36 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=37 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=39 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=39 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=40 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=40 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=42 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=43 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=44 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=45 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=46 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=45 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=46 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=49 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=48 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=50 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=51 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=52 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=52 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=55 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=56 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=55 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=58 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=57 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=61 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=64 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=61 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=62 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=63 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=64 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=62 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=63 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=60 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=60 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=59 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=59 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=58 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=57 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=56 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=54 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=54 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=53 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=53 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=51 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=49 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=50 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=48 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=47 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=47 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=44 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=43 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=41 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=42 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=41 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=38 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=38 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=37 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=36 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=35 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=32 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=32 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=31 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=30 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=29 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=26 9567297464698797 r005 Im(z^2+c),c=-1/23+2/19*I,n=26 9567297464698797 r005 Im(z^2+c),c=1/19+2/23*I,n=25 9567297464698798 r005 Im(z^2+c),c=-1/23+2/19*I,n=22 9567297464698799 r005 Im(z^2+c),c=-1/23+2/19*I,n=23 9567297464698812 r005 Im(z^2+c),c=1/19+2/23*I,n=21 9567297464698971 r005 Im(z^2+c),c=1/19+2/23*I,n=20 9567297464699010 r005 Im(z^2+c),c=-1/23+2/19*I,n=20 9567297464699034 r005 Im(z^2+c),c=-1/23+2/19*I,n=19 9567297464699178 r005 Im(z^2+c),c=1/19+2/23*I,n=19 9567297464700374 r005 Im(z^2+c),c=-24/23+2/19*I,n=62 9567297464705225 r005 Im(z^2+c),c=-18/19+2/23*I,n=57 9567297464713119 r005 Im(z^2+c),c=-18/19+2/23*I,n=58 9567297464717732 r005 Im(z^2+c),c=-1/23+2/19*I,n=17 9567297464729531 r005 Im(z^2+c),c=-18/19+2/23*I,n=55 9567297464737244 r005 Im(z^2+c),c=-1/23+2/19*I,n=16 9567297464738191 r005 Im(z^2+c),c=-18/19+2/23*I,n=53 9567297464745900 r005 Im(z^2+c),c=1/19+2/23*I,n=13 9567297464757488 r005 Im(z^2+c),c=-18/19+2/23*I,n=56 9567297464761652 r005 Im(z^2+c),c=-18/19+2/23*I,n=54 9567297464847606 r005 Im(z^2+c),c=-24/23+2/19*I,n=59 9567297465002169 r005 Im(z^2+c),c=-24/23+2/19*I,n=60 9567297465014671 r005 Im(z^2+c),c=1/19+2/23*I,n=15 9567297465046372 r002 63th iterates of z^2 + 9567297465076215 r002 64th iterates of z^2 + 9567297465817418 r005 Im(z^2+c),c=-18/19+2/23*I,n=45 9567297466328076 r005 Im(z^2+c),c=-1/23+2/19*I,n=14 9567297466346414 r005 Im(z^2+c),c=-24/23+2/19*I,n=53 9567297466443947 r005 Im(z^2+c),c=1/19+2/23*I,n=14 9567297467318253 r005 Im(z^2+c),c=-18/19+2/23*I,n=46 9567297468086320 r005 Im(z^2+c),c=-24/23+2/19*I,n=45 9567297468185844 r005 Im(z^2+c),c=-24/23+2/19*I,n=54 9567297469906527 r005 Re(z^2+c),c=-87/110+13/42*I,n=8 9567297469935556 r005 Im(z^2+c),c=-1/23+2/19*I,n=13 9567297471447203 r005 Im(z^2+c),c=-18/19+2/23*I,n=43 9567297472751172 m005 (1/2*exp(1)+1/12)/(3/8*Zeta(3)-3/10) 9567297475120867 r005 Im(z^2+c),c=-18/19+2/23*I,n=41 9567297477746972 r005 Im(z^2+c),c=-18/19+2/23*I,n=44 9567297480211527 r005 Im(z^2+c),c=-24/23+2/19*I,n=47 9567297481160550 r002 63th iterates of z^2 + 9567297482088014 r005 Im(z^2+c),c=-18/19+2/23*I,n=42 9567297492144934 a001 2/13*17711^(19/45) 9567297498824760 r005 Im(z^2+c),c=-24/23+2/19*I,n=48 9567297498837528 r002 64th iterates of z^2 + 9567297502409220 r002 55th iterates of z^2 + 9567297544649653 r002 56th iterates of z^2 + 9567297574397362 m008 (1/3*Pi^4+3/5)/(1/3*Pi^2+1/6) 9567297582019987 r002 51th iterates of z^2 + 9567297583172214 r005 Im(z^2+c),c=-24/23+2/19*I,n=41 9567297599159127 r005 Im(z^2+c),c=-1/23+2/19*I,n=11 9567297600321083 r002 53th iterates of z^2 + 9567297601236139 a007 Real Root Of 890*x^4-423*x^3-680*x^2+955*x+420 9567297613631734 m002 -Pi^4+2/Log[Pi]-ProductLog[Pi]/Pi^4 9567297627631460 r002 52th iterates of z^2 + 9567297627747137 m001 (MinimumGamma+Trott)/(CareFree+GaussAGM) 9567297634631506 r002 57th iterates of z^2 + 9567297641111703 r005 Im(z^2+c),c=-18/19+2/23*I,n=33 9567297641483424 r005 Re(z^2+c),c=-5/7+31/102*I,n=10 9567297653674666 r005 Im(z^2+c),c=-24/23+2/19*I,n=39 9567297655293782 r009 Re(z^3+c),c=-15/86+41/59*I,n=50 9567297680010480 m001 OneNinth*GaussAGM(1,1/sqrt(2))*exp(sinh(1))^2 9567297684927509 r005 Im(z^2+c),c=1/19+2/23*I,n=10 9567297687648787 l006 ln(3155/8213) 9567297708930272 m001 (exp(Pi)-MadelungNaCl)/sqrt(5) 9567297708930272 m001 1/5*(exp(Pi)-MadelungNaCl)*5^(1/2) 9567297709929669 m008 (3/5*Pi^3-1/5)/(2*Pi^6+5/6) 9567297718549071 r002 54th iterates of z^2 + 9567297740707415 r005 Im(z^2+c),c=-24/23+2/19*I,n=42 9567297754563200 g006 Psi(1,8/9)-Psi(1,3/7)-2*Psi(1,3/4) 9567297775014414 m001 (GaussAGM+ZetaQ(2))^Artin 9567297775571849 m005 (1/2*Catalan+2/3)/(1/4*Zeta(3)+7/8) 9567297792817927 r005 Im(z^2+c),c=-24/23+2/19*I,n=40 9567297799002309 m001 RenyiParking^(ln(2)*Ei(1,1)) 9567297802926798 r005 Im(z^2+c),c=-57/82+1/25*I,n=32 9567297810675159 r005 Re(z^2+c),c=-89/102+11/59*I,n=9 9567297827389099 a001 1/21*21^(11/48) 9567297830195841 r002 58th iterates of z^2 + 9567297849276816 r005 Re(z^2+c),c=-75/82+9/47*I,n=43 9567297913671634 r005 Im(z^2+c),c=-18/19+2/23*I,n=34 9567297952718494 a007 Real Root Of 931*x^4+697*x^3+608*x^2+158*x-575 9567297956396396 a007 Real Root Of -996*x^4-880*x^3-721*x^2-906*x-143 9567297958698377 a007 Real Root Of -354*x^4+101*x^3-384*x^2-450*x+306 9567297970001942 m005 (1/2*5^(1/2)-1/4)/(1/5*exp(1)+4/11) 9567297973839895 a003 sin(Pi*15/109)+sin(Pi*15/83) 9567297990714751 a007 Real Root Of -758*x^4-323*x^3-426*x^2+119*x+856 9567298005224421 r005 Im(z^2+c),c=-53/98+7/41*I,n=27 9567298032403998 a003 sin(Pi*49/116)*sin(Pi*25/56) 9567298041739677 r005 Im(z^2+c),c=-24/23+2/19*I,n=35 9567298062823104 a007 Real Root Of -120*x^4+798*x^3+737*x^2-144*x-13 9567298064358020 m008 (3*Pi^4-1/6)/(Pi^5-3/4) 9567298066014809 l006 ln(3218/8377) 9567298074216902 r008 a(0)=1,K{-n^6,81-87*n^3-11*n^2+40*n} 9567298117499351 r005 Im(z^2+c),c=-1/23+2/19*I,n=10 9567298122997270 m001 (-gamma(3)+CopelandErdos)/(1+3^(1/3)) 9567298125338326 m001 (ln(2)-BesselI(1,1))/(Kolakoski+Landau) 9567298136164850 a007 Real Root Of 31*x^4-937*x^3-578*x^2+775*x+424 9567298136843753 r005 Re(z^2+c),c=-7/8+16/119*I,n=14 9567298144840306 m001 (BesselK(0,1)+Bloch)/(GaussAGM+Paris) 9567298161999527 m001 GAMMA(19/24)-CopelandErdos^Shi(1) 9567298211262820 a007 Real Root Of 430*x^4+99*x^3+481*x^2+304*x-423 9567298213391790 a001 17711/7*199^(35/51) 9567298227562165 a007 Real Root Of -648*x^4-909*x^3-118*x^2+945*x+759 9567298230851047 a007 Real Root Of -989*x^4+592*x^3+667*x^2+220*x+947 9567298234426293 a007 Real Root Of -547*x^4+308*x^3-589*x^2-713*x+585 9567298268331627 a001 521*196418^(29/36) 9567298271904087 p003 LerchPhi(1/64,3,311/142) 9567298286521569 b008 Sech[(3+CosIntegral[1])^(-1)] 9567298304894352 a003 sin(Pi*17/94)-sin(Pi*26/119) 9567298308956354 p003 LerchPhi(1/1024,3,164/75) 9567298310366612 a001 89/167761*7^(10/33) 9567298314282925 r002 19th iterates of z^2 + 9567298316366116 a007 Real Root Of -391*x^4-748*x^3-217*x^2+477*x+47 9567298335321707 a003 cos(Pi*24/115)/sin(Pi*23/74) 9567298360208628 a007 Real Root Of -596*x^4+699*x^3-519*x^2-912*x+714 9567298369655260 a001 7/13*2^(34/41) 9567298392874092 r005 Im(z^2+c),c=-83/70+8/53*I,n=49 9567298401983316 a007 Real Root Of 879*x^4+355*x^3+794*x^2+200*x-961 9567298405635863 a007 Real Root Of -17*x^4+175*x^3-226*x^2-477*x-82 9567298405810800 m005 (4*Pi+5/6)/(1/6*Catalan-1/6) 9567298409035876 m001 Zeta(1,2)^(sin(1)/FibonacciFactorial) 9567298411135198 r005 Im(z^2+c),c=-47/78+8/45*I,n=42 9567298429850456 l006 ln(3281/8541) 9567298461014337 a008 Real Root of (-2+5*x-x^2+5*x^4+5*x^8) 9567298471217339 a007 Real Root Of 458*x^4-159*x^3+169*x^2-177*x-847 9567298472900021 r005 Re(z^2+c),c=-29/31+5/36*I,n=49 9567298486834912 a007 Real Root Of 635*x^4-343*x^3-346*x^2-432*x-929 9567298516045401 m005 (1/2*2^(1/2)+5/6)/(95/84+3/14*5^(1/2)) 9567298523731220 r002 49th iterates of z^2 + 9567298551744988 a001 17711/123*24476^(27/31) 9567298556611167 r005 Re(z^2+c),c=-29/31+5/36*I,n=57 9567298565035851 a007 Real Root Of -929*x^4+817*x^3+996*x^2-690*x-78 9567298587853260 a007 Real Root Of -349*x^4+726*x^3+721*x^2-41*x+229 9567298612865515 a007 Real Root Of 933*x^4+224*x^3+464*x^2+572*x-463 9567298624129806 a003 cos(Pi*8/85)/sin(Pi*48/97) 9567298625574789 m001 sqrt(1+sqrt(3))/Zeta(7)^2*exp(sqrt(Pi)) 9567298638410389 m005 (-1/18+1/6*5^(1/2))/(5*gamma+3/7) 9567298647743769 r002 46th iterates of z^2 + 9567298687118669 a001 4181/123*39603^(30/31) 9567298700046534 r005 Re(z^2+c),c=-29/31+5/36*I,n=59 9567298709776863 a007 Real Root Of -442*x^4+55*x^3-120*x^2-108*x+425 9567298719663865 a001 1346269/123*5778^(16/31) 9567298721699669 r005 Re(z^2+c),c=-1/17+9/31*I,n=4 9567298725421574 a007 Real Root Of -439*x^4+90*x^3+61*x^2+180*x+563 9567298727043510 a007 Real Root Of 688*x^4-9*x^3-749*x^2-895*x-755 9567298748567766 m001 StronglyCareFree^(cos(1)*FellerTornier) 9567298749631267 h001 (4/5*exp(2)+1/7)/(4/5*exp(2)+5/12) 9567298755023073 a007 Real Root Of 484*x^4-995*x^3+38*x^2-371*x+786 9567298760682112 r005 Re(z^2+c),c=-13/14+25/102*I,n=3 9567298766163312 m009 (8*Catalan+Pi^2-3/4)/(2*Psi(1,1/3)-3) 9567298771649472 r009 Re(z^3+c),c=-21/122+39/61*I,n=31 9567298779299702 r005 Re(z^2+c),c=-29/31+5/36*I,n=55 9567298779976971 l006 ln(3344/8705) 9567298830660548 a007 Real Root Of -558*x^4+770*x^3+184*x^2-869*x+142 9567298857639184 r005 Re(z^2+c),c=-29/31+5/36*I,n=61 9567298884840690 r002 5th iterates of z^2 + 9567298885154769 r005 Re(z^2+c),c=-29/31+5/36*I,n=63 9567298895576528 m005 (2/5*Catalan+5/6)/(2/5*exp(1)+1/6) 9567298923405411 r005 Im(z^2+c),c=-18/19+2/23*I,n=31 9567298934753459 r002 50th iterates of z^2 + 9567298940046961 r002 51th iterates of z^2 + 9567298956088848 m005 (1/2*2^(1/2)-2/7)/(33/8+1/8*5^(1/2)) 9567298973003343 a007 Real Root Of -942*x^4+197*x^3+412*x^2+269*x+842 9567298982825060 a007 Real Root Of 388*x^4-659*x^3+735*x^2+602*x-999 9567298983810195 m001 (Ei(1,1)+PrimesInBinary)/LaplaceLimit 9567299002241950 m001 (-Gompertz+KomornikLoreti)/(cos(1)+CareFree) 9567299017931405 a007 Real Root Of -562*x^4-121*x^3+267*x^2+913*x+994 9567299029166928 m001 1/GAMMA(11/12)^2/ln(GAMMA(1/6))^2*Pi 9567299034382612 r005 Im(z^2+c),c=-24/23+2/19*I,n=36 9567299073123772 m001 TwinPrimes^2*Niven^2*ln(GAMMA(5/12)) 9567299085064875 m001 (2^(1/3))^2/ln(Backhouse)^2/sinh(1) 9567299117154857 l006 ln(3407/8869) 9567299142452833 a003 cos(Pi*4/63)-cos(Pi*33/67) 9567299146213695 m001 (GaussAGM*Gompertz-gamma(1))/Gompertz 9567299149848522 a001 13/2*3^(19/54) 9567299177027064 a007 Real Root Of 296*x^4+518*x^3+847*x^2-385*x-938 9567299203552237 r009 Im(z^3+c),c=-3/20+59/63*I,n=21 9567299220935508 a007 Real Root Of 13*x^4-323*x^3+165*x^2-299*x+407 9567299223301181 m001 exp(Riemann1stZero)^2*MertensB1^2*exp(1)^2 9567299253135580 r005 Re(z^2+c),c=37/114+37/64*I,n=2 9567299289582455 m001 ErdosBorwein^MertensB2*Gompertz^MertensB2 9567299321819258 m008 (1/2*Pi^6+1)/(5*Pi^2+1) 9567299375547804 m001 (Catalan+Trott)^LandauRamanujan2nd 9567299442089386 l006 ln(3470/9033) 9567299450910237 a001 3/55*10946^(5/9) 9567299455919691 m005 (1/3*gamma+1/5)/(5/7*2^(1/2)-3/5) 9567299467851308 r005 Re(z^2+c),c=-29/31+5/36*I,n=53 9567299552394106 h001 (2/5*exp(1)+4/9)/(1/7*exp(2)+6/11) 9567299572517281 m001 (Psi(1,1/3)+3^(1/2))/(GAMMA(3/4)+Trott) 9567299584498265 r005 Im(z^2+c),c=-73/98+1/9*I,n=6 9567299586351600 a007 Real Root Of -676*x^4+178*x^3-211*x^2+9*x+924 9567299589894134 r005 Re(z^2+c),c=-13/14+39/251*I,n=19 9567299596435762 a007 Real Root Of 812*x^4-780*x^3+343*x^2+824*x-889 9567299611144679 s002 sum(A239685[n]/(n^3*pi^n+1),n=1..infinity) 9567299624865250 a003 cos(Pi*6/119)*cos(Pi*9/113) 9567299657995217 a007 Real Root Of 953*x^4-111*x^3-99*x^2+831*x-10 9567299664356836 a007 Real Root Of 545*x^4-51*x^3-412*x^2-882*x-968 9567299671821159 m001 (Zeta(1,2)-CareFree)/(HardyLittlewoodC5+Mills) 9567299694145525 m008 (5/6*Pi^2-3/4)/(4/5*Pi^4+1/5) 9567299711219311 a007 Real Root Of 924*x^4-169*x^3-767*x^2+668*x+419 9567299712256457 a001 1346269/123*2207^(18/31) 9567299715948091 a007 Real Root Of -29*x^4+380*x^3-45*x^2+284*x-539 9567299753319946 a007 Real Root Of -726*x^4+985*x^3+679*x^2+8*x+857 9567299755435523 l006 ln(3533/9197) 9567299776630446 m001 (Mills+ZetaQ(4))/(CareFree+LaplaceLimit) 9567299784138960 r005 Re(z^2+c),c=-41/62+18/43*I,n=6 9567299818662866 m005 (1/3*3^(1/2)+1/3)/(8/11*Catalan+2/7) 9567299821471704 r005 Re(z^2+c),c=-29/31+5/36*I,n=51 9567299826276121 m001 (MadelungNaCl+PrimesInBinary)/(cos(1)-exp(Pi)) 9567299846326567 a007 Real Root Of 675*x^4-27*x^3+707*x^2+293*x-956 9567299851742625 m001 Lehmer^StolarskyHarborth-ZetaQ(4) 9567299853299596 p003 LerchPhi(1/32,4,87/86) 9567299900672431 a007 Real Root Of -68*x^4+998*x^3-132*x^2-19*x-678 9567299907618479 m001 (Zeta(1/2)-polylog(4,1/2))/(Magata-Totient) 9567299931770023 a007 Real Root Of 787*x^4+487*x^3-91*x^2-37*x-185 9567299948498036 a007 Real Root Of 841*x^4+464*x^3-715*x^2-501*x+54 9567299950373418 r005 Re(z^2+c),c=-47/50+8/45*I,n=3 9567299978323373 m002 -3+Sinh[Pi]/6+Pi^6*Tanh[Pi] 9567299981927061 a007 Real Root Of 704*x^4-282*x^3-160*x^2+570*x-145 9567299982464399 m001 Rabbit^MinimumGamma/(Rabbit^MertensB3) 9567299999836465 r005 Im(z^2+c),c=-7/6+1/90*I,n=13