9870000000000000 a004 Fibonacci(16)*Lucas(88)/(1/2+sqrt(5)/2)^88 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^87/Lucas(87) 9870000000000000 a004 Fibonacci(16)*Lucas(86)/(1/2+sqrt(5)/2)^86 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^85/Lucas(85) 9870000000000000 a004 Fibonacci(16)*Lucas(84)/(1/2+sqrt(5)/2)^84 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^83/Lucas(83) 9870000000000000 a004 Fibonacci(16)*Lucas(82)/(1/2+sqrt(5)/2)^82 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^81/Lucas(81) 9870000000000000 a004 Fibonacci(16)*Lucas(80)/(1/2+sqrt(5)/2)^80 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^79/Lucas(79) 9870000000000000 a004 Fibonacci(16)*Lucas(78)/(1/2+sqrt(5)/2)^78 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^77/Lucas(77) 9870000000000000 a004 Fibonacci(16)*Lucas(76)/(1/2+sqrt(5)/2)^76 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^75/Lucas(75) 9870000000000000 a004 Fibonacci(16)*Lucas(74)/(1/2+sqrt(5)/2)^74 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^73/Lucas(73) 9870000000000000 a004 Fibonacci(16)*Lucas(72)/(1/2+sqrt(5)/2)^72 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^71/Lucas(71) 9870000000000000 a004 Fibonacci(16)*Lucas(70)/(1/2+sqrt(5)/2)^70 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^69/Lucas(69) 9870000000000000 a004 Fibonacci(16)*Lucas(68)/(1/2+sqrt(5)/2)^68 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^67/Lucas(67) 9870000000000000 a004 Fibonacci(16)*Lucas(66)/(1/2+sqrt(5)/2)^66 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^65/Lucas(65) 9870000000000000 a004 Fibonacci(16)*Lucas(64)/(1/2+sqrt(5)/2)^64 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^63/Lucas(63) 9870000000000000 a004 Fibonacci(16)*Lucas(62)/(1/2+sqrt(5)/2)^62 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^61/Lucas(61) 9870000000000000 a004 Fibonacci(16)*Lucas(60)/(1/2+sqrt(5)/2)^60 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^59/Lucas(59) 9870000000000000 a004 Fibonacci(16)*Lucas(58)/(1/2+sqrt(5)/2)^58 9870000000000000 a001 987/817138163596*14662949395604^(19/21) 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^57/Lucas(57) 9870000000000000 a004 Fibonacci(16)*Lucas(56)/(1/2+sqrt(5)/2)^56 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^55/Lucas(55) 9870000000000000 a001 987/312119004989*3461452808002^(11/12) 9870000000000000 a004 Fibonacci(16)*Lucas(54)/(1/2+sqrt(5)/2)^54 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^53/Lucas(53) 9870000000000000 a004 Fibonacci(16)*Lucas(52)/(1/2+sqrt(5)/2)^52 9870000000000000 a001 987/45537549124*817138163596^(17/19) 9870000000000000 a001 987/45537549124*14662949395604^(17/21) 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^51/Lucas(51) 9870000000000000 a001 987/45537549124*192900153618^(17/18) 9870000000000000 a004 Fibonacci(16)*Lucas(50)/(1/2+sqrt(5)/2)^50 9870000000000000 a001 987/17393796001*14662949395604^(7/9) 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^49/Lucas(49) 9870000000000000 a001 987/17393796001*505019158607^(7/8) 9870000000000000 a004 Fibonacci(16)*Lucas(48)/(1/2+sqrt(5)/2)^48 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^47/Lucas(47) 9870000000000000 a004 Fibonacci(16)*Lucas(46)/(1/2+sqrt(5)/2)^46 9870000000000000 a001 987/2537720636*45537549124^(15/17) 9870000000000000 a001 987/2537720636*312119004989^(9/11) 9870000000000000 a001 987/2537720636*14662949395604^(5/7) 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^45/Lucas(45) 9870000000000000 a001 987/2537720636*192900153618^(5/6) 9870000000000000 a001 987/2537720636*28143753123^(9/10) 9870000000000000 a001 987/2537720636*10749957122^(15/16) 9870000000000000 a004 Fibonacci(16)*Lucas(44)/(1/2+sqrt(5)/2)^44 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^43/Lucas(43) 9870000000000000 a004 Fibonacci(16)*Lucas(42)/(1/2+sqrt(5)/2)^42 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^41/Lucas(41) 9870000000000000 a004 Fibonacci(16)*Lucas(40)/(1/2+sqrt(5)/2)^40 9870000000000000 a001 987/141422324*2537720636^(13/15) 9870000000000000 a001 987/141422324*45537549124^(13/17) 9870000000000000 a001 987/141422324*14662949395604^(13/21) 9870000000000000 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^39/Lucas(39) 9870000000000000 a001 987/141422324*192900153618^(13/18) 9870000000000000 a001 987/141422324*73681302247^(3/4) 9870000000000000 a001 987/141422324*10749957122^(13/16) 9870000000000000 a001 987/141422324*599074578^(13/14) 9870000000000001 a004 Fibonacci(16)*Lucas(38)/(1/2+sqrt(5)/2)^38 9870000000000003 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^37/Lucas(37) 9870000000000008 a004 Fibonacci(16)*Lucas(36)/(1/2+sqrt(5)/2)^36 9870000000000023 a001 987/20633239*2537720636^(7/9) 9870000000000023 a001 987/20633239*17393796001^(5/7) 9870000000000023 a001 987/20633239*312119004989^(7/11) 9870000000000023 a001 987/20633239*14662949395604^(5/9) 9870000000000023 a001 987/20633239*(1/2+1/2*5^(1/2))^35 9870000000000023 a001 987/20633239*505019158607^(5/8) 9870000000000023 a001 987/20633239*28143753123^(7/10) 9870000000000023 a001 987/20633239*599074578^(5/6) 9870000000000023 a001 987/20633239*228826127^(7/8) 9870000000000060 a004 Fibonacci(16)*Lucas(34)/(1/2+sqrt(5)/2)^34 9870000000000158 a001 987/7881196*141422324^(11/13) 9870000000000158 a001 987/7881196*2537720636^(11/15) 9870000000000158 a001 987/7881196*45537549124^(11/17) 9870000000000158 a001 987/7881196*312119004989^(3/5) 9870000000000158 a001 987/7881196*817138163596^(11/19) 9870000000000158 a001 987/7881196*14662949395604^(11/21) 9870000000000158 a001 987/7881196*(1/2+1/2*5^(1/2))^33 9870000000000158 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^33/Lucas(33) 9870000000000158 a001 987/7881196*192900153618^(11/18) 9870000000000158 a001 987/7881196*10749957122^(11/16) 9870000000000158 a001 987/7881196*1568397607^(3/4) 9870000000000158 a001 987/7881196*599074578^(11/14) 9870000000000167 a001 987/7881196*33385282^(11/12) 9870000000000355 a004 Fibonacci(34)/Lucas(16)/(1/2+sqrt(5)/2)^2 9870000000000407 a004 Fibonacci(36)/Lucas(16)/(1/2+sqrt(5)/2)^4 9870000000000414 a004 Fibonacci(38)/Lucas(16)/(1/2+sqrt(5)/2)^6 9870000000000415 a004 Fibonacci(40)/Lucas(16)/(1/2+sqrt(5)/2)^8 9870000000000415 a004 Fibonacci(42)/Lucas(16)/(1/2+sqrt(5)/2)^10 9870000000000416 a004 Fibonacci(44)/Lucas(16)/(1/2+sqrt(5)/2)^12 9870000000000416 a004 Fibonacci(46)/Lucas(16)/(1/2+sqrt(5)/2)^14 9870000000000416 a004 Fibonacci(48)/Lucas(16)/(1/2+sqrt(5)/2)^16 9870000000000416 a004 Fibonacci(50)/Lucas(16)/(1/2+sqrt(5)/2)^18 9870000000000416 a004 Fibonacci(52)/Lucas(16)/(1/2+sqrt(5)/2)^20 9870000000000416 a004 Fibonacci(54)/Lucas(16)/(1/2+sqrt(5)/2)^22 9870000000000416 a004 Fibonacci(56)/Lucas(16)/(1/2+sqrt(5)/2)^24 9870000000000416 a004 Fibonacci(58)/Lucas(16)/(1/2+sqrt(5)/2)^26 9870000000000416 a004 Fibonacci(60)/Lucas(16)/(1/2+sqrt(5)/2)^28 9870000000000416 a004 Fibonacci(62)/Lucas(16)/(1/2+sqrt(5)/2)^30 9870000000000416 a004 Fibonacci(16)*Lucas(32)/(1/2+sqrt(5)/2)^32 9870000000000416 a004 Fibonacci(66)/Lucas(16)/(1/2+sqrt(5)/2)^34 9870000000000416 a004 Fibonacci(68)/Lucas(16)/(1/2+sqrt(5)/2)^36 9870000000000416 a004 Fibonacci(70)/Lucas(16)/(1/2+sqrt(5)/2)^38 9870000000000416 a004 Fibonacci(72)/Lucas(16)/(1/2+sqrt(5)/2)^40 9870000000000416 a004 Fibonacci(74)/Lucas(16)/(1/2+sqrt(5)/2)^42 9870000000000416 a004 Fibonacci(76)/Lucas(16)/(1/2+sqrt(5)/2)^44 9870000000000416 a004 Fibonacci(78)/Lucas(16)/(1/2+sqrt(5)/2)^46 9870000000000416 a004 Fibonacci(80)/Lucas(16)/(1/2+sqrt(5)/2)^48 9870000000000416 a004 Fibonacci(82)/Lucas(16)/(1/2+sqrt(5)/2)^50 9870000000000416 a004 Fibonacci(84)/Lucas(16)/(1/2+sqrt(5)/2)^52 9870000000000416 a004 Fibonacci(86)/Lucas(16)/(1/2+sqrt(5)/2)^54 9870000000000416 a004 Fibonacci(88)/Lucas(16)/(1/2+sqrt(5)/2)^56 9870000000000416 a004 Fibonacci(90)/Lucas(16)/(1/2+sqrt(5)/2)^58 9870000000000416 a004 Fibonacci(92)/Lucas(16)/(1/2+sqrt(5)/2)^60 9870000000000416 a004 Fibonacci(94)/Lucas(16)/(1/2+sqrt(5)/2)^62 9870000000000416 a004 Fibonacci(96)/Lucas(16)/(1/2+sqrt(5)/2)^64 9870000000000416 a004 Fibonacci(98)/Lucas(16)/(1/2+sqrt(5)/2)^66 9870000000000416 a004 Fibonacci(100)/Lucas(16)/(1/2+sqrt(5)/2)^68 9870000000000416 a004 Fibonacci(99)/Lucas(16)/(1/2+sqrt(5)/2)^67 9870000000000416 a004 Fibonacci(97)/Lucas(16)/(1/2+sqrt(5)/2)^65 9870000000000416 a004 Fibonacci(95)/Lucas(16)/(1/2+sqrt(5)/2)^63 9870000000000416 a004 Fibonacci(93)/Lucas(16)/(1/2+sqrt(5)/2)^61 9870000000000416 a004 Fibonacci(91)/Lucas(16)/(1/2+sqrt(5)/2)^59 9870000000000416 a004 Fibonacci(89)/Lucas(16)/(1/2+sqrt(5)/2)^57 9870000000000416 a004 Fibonacci(87)/Lucas(16)/(1/2+sqrt(5)/2)^55 9870000000000416 a004 Fibonacci(85)/Lucas(16)/(1/2+sqrt(5)/2)^53 9870000000000416 a004 Fibonacci(83)/Lucas(16)/(1/2+sqrt(5)/2)^51 9870000000000416 a004 Fibonacci(81)/Lucas(16)/(1/2+sqrt(5)/2)^49 9870000000000416 a004 Fibonacci(79)/Lucas(16)/(1/2+sqrt(5)/2)^47 9870000000000416 a004 Fibonacci(77)/Lucas(16)/(1/2+sqrt(5)/2)^45 9870000000000416 a004 Fibonacci(75)/Lucas(16)/(1/2+sqrt(5)/2)^43 9870000000000416 a004 Fibonacci(73)/Lucas(16)/(1/2+sqrt(5)/2)^41 9870000000000416 a004 Fibonacci(71)/Lucas(16)/(1/2+sqrt(5)/2)^39 9870000000000416 a004 Fibonacci(69)/Lucas(16)/(1/2+sqrt(5)/2)^37 9870000000000416 a004 Fibonacci(67)/Lucas(16)/(1/2+sqrt(5)/2)^35 9870000000000416 a004 Fibonacci(65)/Lucas(16)/(1/2+sqrt(5)/2)^33 9870000000000416 a004 Fibonacci(63)/Lucas(16)/(1/2+sqrt(5)/2)^31 9870000000000416 a004 Fibonacci(61)/Lucas(16)/(1/2+sqrt(5)/2)^29 9870000000000416 a004 Fibonacci(59)/Lucas(16)/(1/2+sqrt(5)/2)^27 9870000000000416 a004 Fibonacci(57)/Lucas(16)/(1/2+sqrt(5)/2)^25 9870000000000416 a004 Fibonacci(55)/Lucas(16)/(1/2+sqrt(5)/2)^23 9870000000000416 a004 Fibonacci(53)/Lucas(16)/(1/2+sqrt(5)/2)^21 9870000000000416 a004 Fibonacci(51)/Lucas(16)/(1/2+sqrt(5)/2)^19 9870000000000416 a004 Fibonacci(49)/Lucas(16)/(1/2+sqrt(5)/2)^17 9870000000000416 a004 Fibonacci(47)/Lucas(16)/(1/2+sqrt(5)/2)^15 9870000000000416 a004 Fibonacci(45)/Lucas(16)/(1/2+sqrt(5)/2)^13 9870000000000416 a004 Fibonacci(43)/Lucas(16)/(1/2+sqrt(5)/2)^11 9870000000000416 a004 Fibonacci(41)/Lucas(16)/(1/2+sqrt(5)/2)^9 9870000000000416 a004 Fibonacci(39)/Lucas(16)/(1/2+sqrt(5)/2)^7 9870000000000419 a004 Fibonacci(37)/Lucas(16)/(1/2+sqrt(5)/2)^5 9870000000000439 a004 Fibonacci(35)/Lucas(16)/(1/2+sqrt(5)/2)^3 9870000000000574 a004 Fibonacci(33)/Lucas(16)/(1/2+sqrt(5)/2) 9870000000001089 a001 987/3010349*(1/2+1/2*5^(1/2))^31 9870000000001089 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^31/Lucas(31) 9870000000001089 a001 987/3010349*9062201101803^(1/2) 9870000000001480 a001 317811/2207*271443^(2/13) 9870000000001505 a001 1346269/4414+1346269/4414*5^(1/2) 9870000000002195 a001 514229/2207*439204^(1/9) 9870000000002851 a004 Fibonacci(16)*Lucas(30)/(1/2+sqrt(5)/2)^30 9870000000007465 a001 987/1149851*(1/2+1/2*5^(1/2))^29 9870000000007465 a001 987/1149851*1322157322203^(1/2) 9870000000007866 a001 514229/2207*7881196^(1/11) 9870000000007868 a001 832040/2207*271443^(1/13) 9870000000007881 a001 514229/2207*141422324^(1/13) 9870000000007881 a001 514229/2207*2537720636^(1/15) 9870000000007881 a001 514229/2207*45537549124^(1/17) 9870000000007881 a001 514229/2207*14662949395604^(1/21) 9870000000007881 a001 514229/2207*(1/2+1/2*5^(1/2))^3 9870000000007881 a001 514229/2207*192900153618^(1/18) 9870000000007881 a001 514229/2207*10749957122^(1/16) 9870000000007881 a001 514229/2207*599074578^(1/14) 9870000000007881 a001 514229/2207*33385282^(1/12) 9870000000008166 a001 514229/2207*1860498^(1/10) 9870000000019543 a004 Fibonacci(16)*Lucas(28)/(1/2+sqrt(5)/2)^28 9870000000039761 a001 1346269/2207*103682^(1/24) 9870000000051036 a001 987/439204*7881196^(9/11) 9870000000051166 a001 987/439204*141422324^(9/13) 9870000000051166 a001 987/439204*2537720636^(3/5) 9870000000051166 a001 987/439204*45537549124^(9/17) 9870000000051166 a001 987/439204*817138163596^(9/19) 9870000000051166 a001 987/439204*14662949395604^(3/7) 9870000000051166 a001 987/439204*(1/2+1/2*5^(1/2))^27 9870000000051166 a001 987/439204*192900153618^(1/2) 9870000000051166 a001 987/439204*10749957122^(9/16) 9870000000051166 a001 987/439204*599074578^(9/14) 9870000000051173 a001 987/439204*33385282^(3/4) 9870000000051579 a001 196418/2207*20633239^(1/7) 9870000000051582 a001 196418/2207*2537720636^(1/9) 9870000000051582 a001 196418/2207*312119004989^(1/11) 9870000000051582 a001 196418/2207*(1/2+1/2*5^(1/2))^5 9870000000051582 a001 196418/2207*28143753123^(1/10) 9870000000051582 a001 196418/2207*228826127^(1/8) 9870000000052057 a001 196418/2207*1860498^(1/6) 9870000000053732 a001 987/439204*1860498^(9/10) 9870000000074076 a001 832040/2207*103682^(1/12) 9870000000095996 a001 121393/2207*103682^(1/4) 9870000000122648 a001 514229/2207*103682^(1/8) 9870000000133896 a001 317811/2207*103682^(1/6) 9870000000133955 a004 Fibonacci(16)*Lucas(26)/(1/2+sqrt(5)/2)^26 9870000000242862 a001 196418/2207*103682^(5/24) 9870000000287552 a001 1346269/2207*39603^(1/22) 9870000000350682 a001 987/167761*20633239^(5/7) 9870000000350699 a001 987/167761*2537720636^(5/9) 9870000000350699 a001 987/167761*312119004989^(5/11) 9870000000350699 a001 987/167761*(1/2+1/2*5^(1/2))^25 9870000000350699 a001 987/167761*3461452808002^(5/12) 9870000000350699 a001 987/167761*28143753123^(1/2) 9870000000350699 a001 987/167761*228826127^(5/8) 9870000000351110 a001 75025/2207*20633239^(1/5) 9870000000351115 a001 75025/2207*17393796001^(1/7) 9870000000351115 a001 75025/2207*14662949395604^(1/9) 9870000000351115 a001 75025/2207*(1/2+1/2*5^(1/2))^7 9870000000351115 a001 75025/2207*599074578^(1/6) 9870000000353075 a001 987/167761*1860498^(5/6) 9870000000356001 a001 75025/2207*710647^(1/4) 9870000000569659 a001 832040/2207*39603^(1/11) 9870000000618907 a001 75025/2207*103682^(7/24) 9870000000866023 a001 514229/2207*39603^(3/22) 9870000000918143 a004 Fibonacci(16)*Lucas(24)/(1/2+sqrt(5)/2)^24 9870000001083721 s004 Continued Fraction of A045733 9870000001083721 s004 Continued fraction of A045733 9870000001125062 a001 317811/2207*39603^(2/11) 9870000001370653 a001 46368/2207*39603^(4/11) 9870000001463556 a001 28657/2207*64079^(9/23) 9870000001481820 a001 196418/2207*39603^(5/22) 9870000001582746 a001 121393/2207*39603^(3/11) 9870000002158164 a001 1346269/2207*15127^(1/20) 9870000002353448 a001 75025/2207*39603^(7/22) 9870000002387090 a001 28657/2207*439204^(1/3) 9870000002403730 a001 987/64079*(1/2+1/2*5^(1/2))^23 9870000002403730 a001 987/64079*4106118243^(1/2) 9870000002404102 a001 28657/2207*7881196^(3/11) 9870000002404145 a001 28657/2207*141422324^(3/13) 9870000002404146 a001 28657/2207*2537720636^(1/5) 9870000002404146 a001 28657/2207*45537549124^(3/17) 9870000002404146 a001 28657/2207*817138163596^(3/19) 9870000002404146 a001 28657/2207*14662949395604^(1/7) 9870000002404146 a001 28657/2207*(1/2+1/2*5^(1/2))^9 9870000002404146 a001 28657/2207*192900153618^(1/6) 9870000002404146 a001 28657/2207*10749957122^(3/16) 9870000002404146 a001 28657/2207*599074578^(3/14) 9870000002404148 a001 28657/2207*33385282^(1/4) 9870000002405001 a001 28657/2207*1860498^(3/10) 9870000002748449 a001 28657/2207*103682^(3/8) 9870000003283617 a001 987/64079*103682^(23/24) 9870000003312607 a001 2178309/3571*521^(1/13) 9870000004310883 a001 832040/2207*15127^(1/10) 9870000004978574 a001 28657/2207*39603^(9/22) 9870000006293047 a004 Fibonacci(16)*Lucas(22)/(1/2+sqrt(5)/2)^22 9870000006477859 a001 514229/2207*15127^(3/20) 9870000007845849 a001 10946/2207*24476^(11/21) 9870000008607509 a001 317811/2207*15127^(1/5) 9870000010834878 a001 196418/2207*15127^(1/4) 9870000012806416 a001 121393/2207*15127^(3/10) 9870000013351547 a007 Real Root Of 497*x^4-104*x^3-403*x^2-774*x-943 9870000014280701 a001 987/24476*64079^(21/23) 9870000015273962 a001 17711/2207*15127^(1/2) 9870000015326217 a001 10946/2207*64079^(11/23) 9870000015447730 a001 75025/2207*15127^(7/20) 9870000016335547 a001 46368/2207*15127^(2/5) 9870000016425908 a001 1346269/2207*5778^(1/18) 9870000016435615 a001 987/24476*439204^(7/9) 9870000016475310 a001 987/24476*7881196^(7/11) 9870000016475397 a001 987/24476*20633239^(3/5) 9870000016475410 a001 987/24476*141422324^(7/13) 9870000016475411 a001 987/24476*2537720636^(7/15) 9870000016475411 a001 987/24476*17393796001^(3/7) 9870000016475411 a001 987/24476*45537549124^(7/17) 9870000016475411 a001 987/24476*14662949395604^(1/3) 9870000016475411 a001 987/24476*(1/2+1/2*5^(1/2))^21 9870000016475411 a001 987/24476*192900153618^(7/18) 9870000016475411 a001 987/24476*10749957122^(7/16) 9870000016475411 a001 987/24476*599074578^(1/2) 9870000016475416 a001 987/24476*33385282^(7/12) 9870000016475774 a001 10946/2207*7881196^(1/3) 9870000016475827 a001 10946/2207*312119004989^(1/5) 9870000016475827 a001 10946/2207*(1/2+1/2*5^(1/2))^11 9870000016475827 a001 10946/2207*1568397607^(1/4) 9870000016477407 a001 987/24476*1860498^(7/10) 9870000016490069 a001 987/24476*710647^(3/4) 9870000016896642 a001 10946/2207*103682^(11/24) 9870000017260378 a001 514229/9349*1364^(2/5) 9870000017278786 a001 987/24476*103682^(7/8) 9870000019622350 a001 10946/2207*39603^(1/2) 9870000021814079 a001 28657/2207*15127^(9/20) 9870000022482410 a001 987/24476*39603^(21/22) 9870000032846370 a001 832040/2207*5778^(1/9) 9870000035660672 a001 4181/2207*9349^(13/19) 9870000035771218 a007 Real Root Of 562*x^4-50*x^3-226*x^2-558*x-912 9870000040199079 a001 10946/2207*15127^(11/20) 9870000043133186 a004 Fibonacci(16)*Lucas(20)/(1/2+sqrt(5)/2)^20 9870000049281090 a001 514229/2207*5778^(1/6) 9870000050857207 r008 a(0)=0,K{-n^6,51-33*n^3+11*n^2+70*n} 9870000065678484 a001 317811/2207*5778^(2/9) 9870000082173597 a001 196418/2207*5778^(5/18) 9870000091058432 a001 1597/2207*3571^(15/17) 9870000098017824 a001 987/9349*24476^(19/21) 9870000098412879 a001 121393/2207*5778^(1/3) 9870000102725499 a001 4181/2207*24476^(13/21) 9870000110938459 a001 987/9349*64079^(19/23) 9870000111565934 a001 4181/2207*64079^(13/23) 9870000112380361 a007 Real Root Of -526*x^4+99*x^3+691*x^2+551*x-813 9870000112924149 a001 987/9349*817138163596^(1/3) 9870000112924149 a001 987/9349*(1/2+1/2*5^(1/2))^19 9870000112924150 a001 987/9349*87403803^(1/2) 9870000112924564 a001 4181/2207*141422324^(1/3) 9870000112924564 a001 4181/2207*(1/2+1/2*5^(1/2))^13 9870000112924564 a001 4181/2207*73681302247^(1/4) 9870000112991541 a001 4181/2207*271443^(1/2) 9870000113421891 a001 4181/2207*103682^(13/24) 9870000113651012 a001 987/9349*103682^(19/24) 9870000115321937 a001 75025/2207*5778^(7/18) 9870000116643182 a001 4181/2207*39603^(13/22) 9870000118359053 a001 987/9349*39603^(19/22) 9870000126647844 a001 1346269/2207*2207^(1/16) 9870000130477497 a001 46368/2207*5778^(4/9) 9870000135731371 m001 KhinchinHarmonic^(gamma(1)*FellerTornier) 9870000140961135 a001 4181/2207*15127^(13/20) 9870000145840977 a007 Real Root Of -667*x^4+991*x^3+561*x^2-667*x+381 9870000150223774 a001 28657/2207*5778^(1/2) 9870000153900677 a001 987/9349*15127^(19/20) 9870000153960066 a001 6765/2207*5778^(2/3) 9870000157420539 a003 cos(Pi*5/39)/sin(Pi*34/89) 9870000157951399 a001 17711/2207*5778^(5/9) 9870000175419396 m001 exp(Zeta(5))/Si(Pi)/cosh(1) 9870000175861847 r005 Re(z^2+c),c=5/86+34/55*I,n=31 9870000197144261 a001 10946/2207*5778^(11/18) 9870000205662159 m001 1/FeigenbaumD^2*Si(Pi)/ln(sinh(1))^2 9870000214865513 a001 1346269/15127*1364^(1/3) 9870000251704723 a001 3524578/39603*1364^(1/3) 9870000253290244 a001 832040/2207*2207^(1/8) 9870000257079491 a001 9227465/103682*1364^(1/3) 9870000257863659 a001 24157817/271443*1364^(1/3) 9870000257978068 a001 63245986/710647*1364^(1/3) 9870000257994760 a001 165580141/1860498*1364^(1/3) 9870000257997195 a001 433494437/4870847*1364^(1/3) 9870000257997550 a001 1134903170/12752043*1364^(1/3) 9870000257997602 a001 2971215073/33385282*1364^(1/3) 9870000257997610 a001 7778742049/87403803*1364^(1/3) 9870000257997611 a001 20365011074/228826127*1364^(1/3) 9870000257997611 a001 53316291173/599074578*1364^(1/3) 9870000257997611 a001 139583862445/1568397607*1364^(1/3) 9870000257997611 a001 365435296162/4106118243*1364^(1/3) 9870000257997611 a001 956722026041/10749957122*1364^(1/3) 9870000257997611 a001 2504730781961/28143753123*1364^(1/3) 9870000257997611 a001 6557470319842/73681302247*1364^(1/3) 9870000257997611 a001 10610209857723/119218851371*1364^(1/3) 9870000257997611 a001 4052739537881/45537549124*1364^(1/3) 9870000257997611 a001 1548008755920/17393796001*1364^(1/3) 9870000257997611 a001 591286729879/6643838879*1364^(1/3) 9870000257997611 a001 225851433717/2537720636*1364^(1/3) 9870000257997611 a001 86267571272/969323029*1364^(1/3) 9870000257997611 a001 32951280099/370248451*1364^(1/3) 9870000257997611 a001 12586269025/141422324*1364^(1/3) 9870000257997614 a001 4807526976/54018521*1364^(1/3) 9870000257997634 a001 1836311903/20633239*1364^(1/3) 9870000257997770 a001 3524667/39604*1364^(1/3) 9870000257998700 a001 267914296/3010349*1364^(1/3) 9870000258005076 a001 102334155/1149851*1364^(1/3) 9870000258048776 a001 39088169/439204*1364^(1/3) 9870000258348302 a001 14930352/167761*1364^(1/3) 9870000260401280 a001 5702887/64079*1364^(1/3) 9870000268005400 r008 a(0)=1,K{-n^6,-98+70*n^3+81*n^2+24*n} 9870000272779103 m001 (Pi+1+cos(1/12*Pi))/polylog(4,1/2) 9870000274472607 a001 2178309/24476*1364^(1/3) 9870000274991396 m004 -3/2+(5*Sqrt[5]*E^(Sqrt[5]*Pi)*Pi)/4 9870000275071161 a007 Real Root Of 738*x^4-238*x^3+35*x^2+900*x-75 9870000287618807 m001 Robbin/Stephens*Thue 9870000295639258 a004 Fibonacci(16)*Lucas(18)/(1/2+sqrt(5)/2)^18 9870000316024352 a001 416020/2889*1364^(4/15) 9870000316815886 a007 Real Root Of 200*x^4-365*x^3-718*x^2-869*x-699 9870000324519626 a001 121393/3571*1364^(7/15) 9870000326441807 a001 4181/2207*5778^(13/18) 9870000352816013 m001 Chi(1)*DuboisRaymond^Mills 9870000370918912 a001 832040/9349*1364^(1/3) 9870000379946903 a001 514229/2207*2207^(3/16) 9870000393310316 p003 LerchPhi(1/1024,6,203/138) 9870000425091853 r005 Im(z^2+c),c=-35/52+1/25*I,n=36 9870000428214062 m001 (QuadraticClass-Tribonacci)/(3^(1/3)-Bloch) 9870000445537434 r008 a(0)=1,K{-n^6,40+34*n+30*n^2-25*n^3} 9870000473953175 r005 Re(z^2+c),c=-27/31+9/56*I,n=58 9870000490075527 a007 Real Root Of -819*x^4+82*x^3-557*x^2-793*x+616 9870000494045173 r002 40th iterates of z^2 + 9870000506566238 a001 317811/2207*2207^(1/4) 9870000519790961 a007 Real Root Of -145*x^4+942*x^3+322*x^2-103*x+628 9870000554952574 h001 (9/10*exp(1)+2/3)/(5/6*exp(1)+8/9) 9870000567546681 r005 Re(z^2+c),c=17/46+3/17*I,n=64 9870000568532866 a001 311187/2161*1364^(4/15) 9870000584095269 r005 Re(z^2+c),c=-25/26+16/91*I,n=11 9870000605373362 a001 5702887/39603*1364^(4/15) 9870000607566045 m001 Zeta(1/2)^2*Riemann3rdZero^2/ln(sin(Pi/12)) 9870000610748318 a001 7465176/51841*1364^(4/15) 9870000611532514 a001 39088169/271443*1364^(4/15) 9870000611646926 a001 14619165/101521*1364^(4/15) 9870000611663619 a001 133957148/930249*1364^(4/15) 9870000611666054 a001 701408733/4870847*1364^(4/15) 9870000611666410 a001 1836311903/12752043*1364^(4/15) 9870000611666462 a001 14930208/103681*1364^(4/15) 9870000611666469 a001 12586269025/87403803*1364^(4/15) 9870000611666470 a001 32951280099/228826127*1364^(4/15) 9870000611666470 a001 43133785636/299537289*1364^(4/15) 9870000611666470 a001 32264490531/224056801*1364^(4/15) 9870000611666470 a001 591286729879/4106118243*1364^(4/15) 9870000611666470 a001 774004377960/5374978561*1364^(4/15) 9870000611666470 a001 4052739537881/28143753123*1364^(4/15) 9870000611666470 a001 1515744265389/10525900321*1364^(4/15) 9870000611666470 a001 3278735159921/22768774562*1364^(4/15) 9870000611666470 a001 2504730781961/17393796001*1364^(4/15) 9870000611666470 a001 956722026041/6643838879*1364^(4/15) 9870000611666471 a001 182717648081/1268860318*1364^(4/15) 9870000611666471 a001 139583862445/969323029*1364^(4/15) 9870000611666471 a001 53316291173/370248451*1364^(4/15) 9870000611666471 a001 10182505537/70711162*1364^(4/15) 9870000611666474 a001 7778742049/54018521*1364^(4/15) 9870000611666494 a001 2971215073/20633239*1364^(4/15) 9870000611666629 a001 567451585/3940598*1364^(4/15) 9870000611667560 a001 433494437/3010349*1364^(4/15) 9870000611673936 a001 165580141/1149851*1364^(4/15) 9870000611717637 a001 31622993/219602*1364^(4/15) 9870000612017173 a001 24157817/167761*1364^(4/15) 9870000614070224 a001 9227465/64079*1364^(4/15) 9870000628142042 a001 1762289/12238*1364^(4/15) 9870000629398067 a001 12238/17*121393^(29/47) 9870000631485985 a007 Real Root Of 629*x^4-553*x^3-702*x^2-290*x-731 9870000632647156 m001 (BesselI(0,1)+gamma(3))/(-CareFree+Stephens) 9870000633121674 m002 3/5+(Pi^4*Cosh[Pi])/Log[Pi] 9870000633283293 a001 196418/2207*2207^(5/16) 9870000641571651 m004 -6+3*Sqrt[5]*Pi-25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870000669697154 a001 1346269/5778*1364^(1/5) 9870000672956282 a001 987/3571*9349^(17/19) 9870000678373610 a001 196418/3571*1364^(2/5) 9870000684843391 a001 1597/2207*9349^(15/19) 9870000693099764 b008 Tanh[(-3+Sqrt[2])^2] 9870000706598719 a001 1292/2889*3571^(16/17) 9870000724591716 a001 1346269/9349*1364^(4/15) 9870000745314916 a007 Real Root Of -255*x^4-628*x^3-974*x^2-76*x+512 9870000759744519 a001 121393/2207*2207^(3/8) 9870000760656447 a001 987/3571*24476^(17/21) 9870000762225890 a001 1597/2207*24476^(5/7) 9870000772217016 a001 987/3571*64079^(17/23) 9870000772426391 a001 1597/2207*64079^(15/23) 9870000773783622 a001 1597/2207*167761^(3/5) 9870000773965616 a001 1597/2207*439204^(5/9) 9870000773993686 a001 987/3571*45537549124^(1/3) 9870000773993686 a001 987/3571*(1/2+1/2*5^(1/2))^17 9870000773993717 a001 987/3571*12752043^(1/2) 9870000773993969 a001 1597/2207*7881196^(5/11) 9870000773994032 a001 1597/2207*20633239^(3/7) 9870000773994041 a001 1597/2207*141422324^(5/13) 9870000773994041 a001 1597/2207*2537720636^(1/3) 9870000773994041 a001 1597/2207*45537549124^(5/17) 9870000773994041 a001 1597/2207*312119004989^(3/11) 9870000773994041 a001 1597/2207*14662949395604^(5/21) 9870000773994041 a001 1597/2207*(1/2+1/2*5^(1/2))^15 9870000773994041 a001 1597/2207*192900153618^(5/18) 9870000773994041 a001 1597/2207*28143753123^(3/10) 9870000773994041 a001 1597/2207*10749957122^(5/16) 9870000773994041 a001 1597/2207*599074578^(5/14) 9870000773994042 a001 1597/2207*228826127^(3/8) 9870000773994045 a001 1597/2207*33385282^(5/12) 9870000773995467 a001 1597/2207*1860498^(1/2) 9870000774567881 a001 1597/2207*103682^(5/8) 9870000774644038 a001 987/3571*103682^(17/24) 9870000778284756 a001 1597/2207*39603^(15/22) 9870000778856496 a001 987/3571*39603^(17/22) 9870000780930699 l006 ln(2080/5581) 9870000806343934 a001 1597/2207*15127^(3/4) 9870000808474538 a007 Real Root Of -516*x^4-94*x^3+298*x^2+231*x+337 9870000810656898 a001 987/3571*15127^(17/20) 9870000814156775 a007 Real Root Of -931*x^4+683*x^3+787*x^2+197*x+968 9870000827335152 s004 Continued Fraction of A222351 9870000827335152 s004 Continued fraction of A222351 9870000855416564 r009 Re(z^3+c),c=-83/114+51/52*I,n=2 9870000855546557 m005 (1/2*gamma-1/7)/(5/8*exp(1)-2/9) 9870000868841127 a007 Real Root Of 603*x^4-66*x^3+463*x^2+250*x-840 9870000883199147 m005 (11/20+1/4*5^(1/2))/(11/12*Catalan-8/11) 9870000886875523 a001 75025/2207*2207^(7/16) 9870000906514399 m005 (1/2*5^(1/2)-3/11)/(5/9*Pi-8/9) 9870000914560909 m004 -1+50/Pi-25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870000922202311 a001 3524578/15127*1364^(1/5) 9870000956708955 a004 Fibonacci(18)*Lucas(17)/(1/2+sqrt(5)/2)^19 9870000959042318 a001 9227465/39603*1364^(1/5) 9870000964417203 a001 24157817/103682*1364^(1/5) 9870000965201388 a001 63245986/271443*1364^(1/5) 9870000965315799 a001 165580141/710647*1364^(1/5) 9870000965332491 a001 433494437/1860498*1364^(1/5) 9870000965334927 a001 1134903170/4870847*1364^(1/5) 9870000965335282 a001 2971215073/12752043*1364^(1/5) 9870000965335334 a001 7778742049/33385282*1364^(1/5) 9870000965335341 a001 20365011074/87403803*1364^(1/5) 9870000965335343 a001 53316291173/228826127*1364^(1/5) 9870000965335343 a001 139583862445/599074578*1364^(1/5) 9870000965335343 a001 365435296162/1568397607*1364^(1/5) 9870000965335343 a001 956722026041/4106118243*1364^(1/5) 9870000965335343 a001 2504730781961/10749957122*1364^(1/5) 9870000965335343 a001 6557470319842/28143753123*1364^(1/5) 9870000965335343 a001 10610209857723/45537549124*1364^(1/5) 9870000965335343 a001 4052739537881/17393796001*1364^(1/5) 9870000965335343 a001 1548008755920/6643838879*1364^(1/5) 9870000965335343 a001 591286729879/2537720636*1364^(1/5) 9870000965335343 a001 225851433717/969323029*1364^(1/5) 9870000965335343 a001 86267571272/370248451*1364^(1/5) 9870000965335343 a001 63246219/271444*1364^(1/5) 9870000965335346 a001 12586269025/54018521*1364^(1/5) 9870000965335366 a001 4807526976/20633239*1364^(1/5) 9870000965335502 a001 1836311903/7881196*1364^(1/5) 9870000965336432 a001 701408733/3010349*1364^(1/5) 9870000965342808 a001 267914296/1149851*1364^(1/5) 9870000965386509 a001 102334155/439204*1364^(1/5) 9870000965686041 a001 39088169/167761*1364^(1/5) 9870000967739064 a001 14930352/64079*1364^(1/5) 9870000981810695 a001 5702887/24476*1364^(1/5) 9870000983451365 a007 Real Root Of 641*x^4-513*x^3-678*x^2-6*x-447 9870000992054577 a001 1346269/2207*843^(1/14) 9870000997536081 a007 Real Root Of -513*x^4+656*x^3-5*x^2-734*x+398 9870000999089332 m002 -E^Pi+Cosh[Pi]*Log[Pi]+Tanh[Pi]/Pi^6 9870001012253030 a001 46368/2207*2207^(1/2) 9870001020360109 a001 1597/2207*5778^(5/6) 9870001023364523 a001 726103/1926*1364^(2/15) 9870001025769529 a007 Real Root Of -579*x^4-838*x^3-715*x^2+328*x+764 9870001031971774 a001 317811/3571*1364^(1/3) 9870001032861261 r009 Im(z^3+c),c=-5/42+49/50*I,n=19 9870001044547006 r008 a(0)=1,K{-n^6,-71+97*n^3+16*n^2+35*n} 9870001045251261 r008 a(0)=1,K{-n^6,-15+96*n^3+47*n^2-51*n} 9870001050162903 a001 2255/1926*3571^(14/17) 9870001053208563 a001 987/3571*5778^(17/18) 9870001078259087 a001 2178309/9349*1364^(1/5) 9870001095645742 m001 KhintchineLevy*exp(DuboisRaymond)/Zeta(1/2) 9870001109650325 m001 GAMMA(1/12)^2/exp(BesselK(0,1))^2/gamma 9870001115863423 r005 Re(z^2+c),c=-5/54+38/49*I,n=19 9870001142221256 a001 28657/2207*2207^(9/16) 9870001155300551 a001 5473/2889*3571^(13/17) 9870001160691210 a001 4181/5778*3571^(15/17) 9870001178061134 a001 17711/5778*3571^(12/17) 9870001197118029 m001 GaussAGM*Trott^Bloch 9870001205677388 m001 gamma(3)^ZetaQ(4)*ZetaP(3)^ZetaQ(4) 9870001209215059 a004 Fibonacci(20)*Lucas(17)/(1/2+sqrt(5)/2)^21 9870001210006355 s001 sum(exp(-Pi/2)^n*A249234[n],n=1..infinity) 9870001211610911 a001 6765/15127*3571^(16/17) 9870001232286956 a001 28657/5778*3571^(11/17) 9870001242786786 m001 Zeta(1,2)*GaussKuzminWirsing*ln(cos(Pi/12)) 9870001246055203 a004 Fibonacci(22)*Lucas(17)/(1/2+sqrt(5)/2)^23 9870001251430107 a004 Fibonacci(24)*Lucas(17)/(1/2+sqrt(5)/2)^25 9870001252214295 a004 Fibonacci(26)*Lucas(17)/(1/2+sqrt(5)/2)^27 9870001252328707 a004 Fibonacci(28)*Lucas(17)/(1/2+sqrt(5)/2)^29 9870001252345399 a004 Fibonacci(30)*Lucas(17)/(1/2+sqrt(5)/2)^31 9870001252347834 a004 Fibonacci(32)*Lucas(17)/(1/2+sqrt(5)/2)^33 9870001252348190 a004 Fibonacci(34)*Lucas(17)/(1/2+sqrt(5)/2)^35 9870001252348242 a004 Fibonacci(36)*Lucas(17)/(1/2+sqrt(5)/2)^37 9870001252348249 a004 Fibonacci(38)*Lucas(17)/(1/2+sqrt(5)/2)^39 9870001252348250 a004 Fibonacci(40)*Lucas(17)/(1/2+sqrt(5)/2)^41 9870001252348250 a004 Fibonacci(42)*Lucas(17)/(1/2+sqrt(5)/2)^43 9870001252348250 a004 Fibonacci(44)*Lucas(17)/(1/2+sqrt(5)/2)^45 9870001252348250 a004 Fibonacci(46)*Lucas(17)/(1/2+sqrt(5)/2)^47 9870001252348250 a004 Fibonacci(48)*Lucas(17)/(1/2+sqrt(5)/2)^49 9870001252348250 a004 Fibonacci(50)*Lucas(17)/(1/2+sqrt(5)/2)^51 9870001252348250 a004 Fibonacci(52)*Lucas(17)/(1/2+sqrt(5)/2)^53 9870001252348250 a004 Fibonacci(54)*Lucas(17)/(1/2+sqrt(5)/2)^55 9870001252348250 a004 Fibonacci(56)*Lucas(17)/(1/2+sqrt(5)/2)^57 9870001252348250 a004 Fibonacci(58)*Lucas(17)/(1/2+sqrt(5)/2)^59 9870001252348250 a004 Fibonacci(60)*Lucas(17)/(1/2+sqrt(5)/2)^61 9870001252348250 a004 Fibonacci(62)*Lucas(17)/(1/2+sqrt(5)/2)^63 9870001252348250 a004 Fibonacci(64)*Lucas(17)/(1/2+sqrt(5)/2)^65 9870001252348250 a004 Fibonacci(66)*Lucas(17)/(1/2+sqrt(5)/2)^67 9870001252348250 a004 Fibonacci(68)*Lucas(17)/(1/2+sqrt(5)/2)^69 9870001252348250 a004 Fibonacci(70)*Lucas(17)/(1/2+sqrt(5)/2)^71 9870001252348250 a004 Fibonacci(72)*Lucas(17)/(1/2+sqrt(5)/2)^73 9870001252348250 a004 Fibonacci(74)*Lucas(17)/(1/2+sqrt(5)/2)^75 9870001252348250 a004 Fibonacci(76)*Lucas(17)/(1/2+sqrt(5)/2)^77 9870001252348250 a004 Fibonacci(78)*Lucas(17)/(1/2+sqrt(5)/2)^79 9870001252348250 a004 Fibonacci(80)*Lucas(17)/(1/2+sqrt(5)/2)^81 9870001252348250 a004 Fibonacci(82)*Lucas(17)/(1/2+sqrt(5)/2)^83 9870001252348250 a004 Fibonacci(84)*Lucas(17)/(1/2+sqrt(5)/2)^85 9870001252348250 a004 Fibonacci(86)*Lucas(17)/(1/2+sqrt(5)/2)^87 9870001252348250 a004 Fibonacci(88)*Lucas(17)/(1/2+sqrt(5)/2)^89 9870001252348250 a004 Fibonacci(90)*Lucas(17)/(1/2+sqrt(5)/2)^91 9870001252348250 a004 Fibonacci(92)*Lucas(17)/(1/2+sqrt(5)/2)^93 9870001252348250 a004 Fibonacci(94)*Lucas(17)/(1/2+sqrt(5)/2)^95 9870001252348250 a004 Fibonacci(96)*Lucas(17)/(1/2+sqrt(5)/2)^97 9870001252348250 a004 Fibonacci(98)*Lucas(17)/(1/2+sqrt(5)/2)^99 9870001252348250 a004 Fibonacci(99)*Lucas(17)/(1/2+sqrt(5)/2)^100 9870001252348250 a004 Fibonacci(97)*Lucas(17)/(1/2+sqrt(5)/2)^98 9870001252348250 a004 Fibonacci(95)*Lucas(17)/(1/2+sqrt(5)/2)^96 9870001252348250 a004 Fibonacci(93)*Lucas(17)/(1/2+sqrt(5)/2)^94 9870001252348250 a004 Fibonacci(91)*Lucas(17)/(1/2+sqrt(5)/2)^92 9870001252348250 a004 Fibonacci(89)*Lucas(17)/(1/2+sqrt(5)/2)^90 9870001252348250 a004 Fibonacci(87)*Lucas(17)/(1/2+sqrt(5)/2)^88 9870001252348250 a004 Fibonacci(85)*Lucas(17)/(1/2+sqrt(5)/2)^86 9870001252348250 a004 Fibonacci(83)*Lucas(17)/(1/2+sqrt(5)/2)^84 9870001252348250 a004 Fibonacci(81)*Lucas(17)/(1/2+sqrt(5)/2)^82 9870001252348250 a004 Fibonacci(79)*Lucas(17)/(1/2+sqrt(5)/2)^80 9870001252348250 a004 Fibonacci(77)*Lucas(17)/(1/2+sqrt(5)/2)^78 9870001252348250 a004 Fibonacci(75)*Lucas(17)/(1/2+sqrt(5)/2)^76 9870001252348250 a004 Fibonacci(73)*Lucas(17)/(1/2+sqrt(5)/2)^74 9870001252348250 a004 Fibonacci(71)*Lucas(17)/(1/2+sqrt(5)/2)^72 9870001252348250 a004 Fibonacci(69)*Lucas(17)/(1/2+sqrt(5)/2)^70 9870001252348250 a004 Fibonacci(67)*Lucas(17)/(1/2+sqrt(5)/2)^68 9870001252348250 a004 Fibonacci(65)*Lucas(17)/(1/2+sqrt(5)/2)^66 9870001252348250 a004 Fibonacci(63)*Lucas(17)/(1/2+sqrt(5)/2)^64 9870001252348250 a004 Fibonacci(61)*Lucas(17)/(1/2+sqrt(5)/2)^62 9870001252348250 a004 Fibonacci(59)*Lucas(17)/(1/2+sqrt(5)/2)^60 9870001252348250 a004 Fibonacci(57)*Lucas(17)/(1/2+sqrt(5)/2)^58 9870001252348250 a004 Fibonacci(55)*Lucas(17)/(1/2+sqrt(5)/2)^56 9870001252348250 a004 Fibonacci(53)*Lucas(17)/(1/2+sqrt(5)/2)^54 9870001252348250 a004 Fibonacci(51)*Lucas(17)/(1/2+sqrt(5)/2)^52 9870001252348250 a004 Fibonacci(49)*Lucas(17)/(1/2+sqrt(5)/2)^50 9870001252348250 a004 Fibonacci(47)*Lucas(17)/(1/2+sqrt(5)/2)^48 9870001252348250 a004 Fibonacci(45)*Lucas(17)/(1/2+sqrt(5)/2)^46 9870001252348251 a004 Fibonacci(43)*Lucas(17)/(1/2+sqrt(5)/2)^44 9870001252348251 a004 Fibonacci(41)*Lucas(17)/(1/2+sqrt(5)/2)^42 9870001252348251 a004 Fibonacci(39)*Lucas(17)/(1/2+sqrt(5)/2)^40 9870001252348254 a004 Fibonacci(37)*Lucas(17)/(1/2+sqrt(5)/2)^38 9870001252348274 a004 Fibonacci(35)*Lucas(17)/(1/2+sqrt(5)/2)^36 9870001252348311 a001 2/1597*(1/2+1/2*5^(1/2))^33 9870001252348409 a004 Fibonacci(33)*Lucas(17)/(1/2+sqrt(5)/2)^34 9870001252349340 a004 Fibonacci(31)*Lucas(17)/(1/2+sqrt(5)/2)^32 9870001252355716 a004 Fibonacci(29)*Lucas(17)/(1/2+sqrt(5)/2)^30 9870001252399417 a004 Fibonacci(27)*Lucas(17)/(1/2+sqrt(5)/2)^28 9870001252698950 a004 Fibonacci(25)*Lucas(17)/(1/2+sqrt(5)/2)^26 9870001254751981 a004 Fibonacci(23)*Lucas(17)/(1/2+sqrt(5)/2)^24 9870001260170831 a001 17711/2207*2207^(5/8) 9870001268823664 a004 Fibonacci(21)*Lucas(17)/(1/2+sqrt(5)/2)^22 9870001274494127 a001 2576/321*3571^(10/17) 9870001275870975 a001 5702887/15127*1364^(2/15) 9870001281913950 m005 (1/3*Zeta(3)-1/10)/(11/12*Pi+1/6) 9870001284600931 a007 Real Root Of -804*x^4+30*x^3-764*x^2+623*x-54 9870001285291199 a001 17711/39603*3571^(16/17) 9870001296041008 a001 23184/51841*3571^(16/17) 9870001297609384 a001 121393/271443*3571^(16/17) 9870001297838207 a001 317811/710647*3571^(16/17) 9870001297871592 a001 416020/930249*3571^(16/17) 9870001297876463 a001 2178309/4870847*3571^(16/17) 9870001297877174 a001 5702887/12752043*3571^(16/17) 9870001297877277 a001 7465176/16692641*3571^(16/17) 9870001297877292 a001 39088169/87403803*3571^(16/17) 9870001297877295 a001 102334155/228826127*3571^(16/17) 9870001297877295 a001 133957148/299537289*3571^(16/17) 9870001297877295 a001 701408733/1568397607*3571^(16/17) 9870001297877295 a001 1836311903/4106118243*3571^(16/17) 9870001297877295 a001 2403763488/5374978561*3571^(16/17) 9870001297877295 a001 12586269025/28143753123*3571^(16/17) 9870001297877295 a001 32951280099/73681302247*3571^(16/17) 9870001297877295 a001 43133785636/96450076809*3571^(16/17) 9870001297877295 a001 225851433717/505019158607*3571^(16/17) 9870001297877295 a001 591286729879/1322157322203*3571^(16/17) 9870001297877295 a001 10610209857723/23725150497407*3571^(16/17) 9870001297877295 a001 182717648081/408569081798*3571^(16/17) 9870001297877295 a001 139583862445/312119004989*3571^(16/17) 9870001297877295 a001 53316291173/119218851371*3571^(16/17) 9870001297877295 a001 10182505537/22768774562*3571^(16/17) 9870001297877295 a001 7778742049/17393796001*3571^(16/17) 9870001297877295 a001 2971215073/6643838879*3571^(16/17) 9870001297877295 a001 567451585/1268860318*3571^(16/17) 9870001297877295 a001 433494437/969323029*3571^(16/17) 9870001297877295 a001 165580141/370248451*3571^(16/17) 9870001297877296 a001 31622993/70711162*3571^(16/17) 9870001297877302 a001 24157817/54018521*3571^(16/17) 9870001297877341 a001 9227465/20633239*3571^(16/17) 9870001297877613 a001 1762289/3940598*3571^(16/17) 9870001297879473 a001 1346269/3010349*3571^(16/17) 9870001297892225 a001 514229/1149851*3571^(16/17) 9870001297979628 a001 98209/219602*3571^(16/17) 9870001298578694 a001 75025/167761*3571^(16/17) 9870001302397555 m002 -Pi^2-Log[Pi]/(3*Pi^6) 9870001302684756 a001 28657/64079*3571^(16/17) 9870001312711171 a001 4976784/13201*1364^(2/15) 9870001312736777 r005 Re(z^2+c),c=-7/8+50/221*I,n=19 9870001316669823 a007 Real Root Of -927*x^4-966*x^3-926*x^2-385*x+473 9870001316748561 a001 10946/15127*3571^(15/17) 9870001318086083 a001 39088169/103682*1364^(2/15) 9870001318870272 a001 34111385/90481*1364^(2/15) 9870001318984684 a001 267914296/710647*1364^(2/15) 9870001319001376 a001 233802911/620166*1364^(2/15) 9870001319003812 a001 1836311903/4870847*1364^(2/15) 9870001319004167 a001 1602508992/4250681*1364^(2/15) 9870001319004219 a001 12586269025/33385282*1364^(2/15) 9870001319004226 a001 10983760033/29134601*1364^(2/15) 9870001319004227 a001 86267571272/228826127*1364^(2/15) 9870001319004228 a001 267913919/710646*1364^(2/15) 9870001319004228 a001 591286729879/1568397607*1364^(2/15) 9870001319004228 a001 516002918640/1368706081*1364^(2/15) 9870001319004228 a001 4052739537881/10749957122*1364^(2/15) 9870001319004228 a001 3536736619241/9381251041*1364^(2/15) 9870001319004228 a001 6557470319842/17393796001*1364^(2/15) 9870001319004228 a001 2504730781961/6643838879*1364^(2/15) 9870001319004228 a001 956722026041/2537720636*1364^(2/15) 9870001319004228 a001 365435296162/969323029*1364^(2/15) 9870001319004228 a001 139583862445/370248451*1364^(2/15) 9870001319004228 a001 53316291173/141422324*1364^(2/15) 9870001319004231 a001 20365011074/54018521*1364^(2/15) 9870001319004251 a001 7778742049/20633239*1364^(2/15) 9870001319004386 a001 2971215073/7881196*1364^(2/15) 9870001319005317 a001 1134903170/3010349*1364^(2/15) 9870001319011693 a001 433494437/1149851*1364^(2/15) 9870001319055394 a001 165580141/439204*1364^(2/15) 9870001319354928 a001 63245986/167761*1364^(2/15) 9870001321292014 a001 75025/5778*3571^(9/17) 9870001321407961 a001 24157817/64079*1364^(2/15) 9870001330828122 a001 5473/12238*3571^(16/17) 9870001335479664 a001 9227465/24476*1364^(2/15) 9870001339509144 a001 17711/15127*3571^(14/17) 9870001339517022 a001 28657/39603*3571^(15/17) 9870001339969382 a001 1292/2889*9349^(16/19) 9870001342838896 a001 75025/103682*3571^(15/17) 9870001343323551 a001 196418/271443*3571^(15/17) 9870001343394261 a001 514229/710647*3571^(15/17) 9870001343404577 a001 1346269/1860498*3571^(15/17) 9870001343406083 a001 3524578/4870847*3571^(15/17) 9870001343406302 a001 9227465/12752043*3571^(15/17) 9870001343406334 a001 24157817/33385282*3571^(15/17) 9870001343406339 a001 63245986/87403803*3571^(15/17) 9870001343406340 a001 165580141/228826127*3571^(15/17) 9870001343406340 a001 433494437/599074578*3571^(15/17) 9870001343406340 a001 1134903170/1568397607*3571^(15/17) 9870001343406340 a001 2971215073/4106118243*3571^(15/17) 9870001343406340 a001 7778742049/10749957122*3571^(15/17) 9870001343406340 a001 20365011074/28143753123*3571^(15/17) 9870001343406340 a001 53316291173/73681302247*3571^(15/17) 9870001343406340 a001 139583862445/192900153618*3571^(15/17) 9870001343406340 a001 365435296162/505019158607*3571^(15/17) 9870001343406340 a001 10610209857723/14662949395604*3571^(15/17) 9870001343406340 a001 591286729879/817138163596*3571^(15/17) 9870001343406340 a001 225851433717/312119004989*3571^(15/17) 9870001343406340 a001 86267571272/119218851371*3571^(15/17) 9870001343406340 a001 32951280099/45537549124*3571^(15/17) 9870001343406340 a001 12586269025/17393796001*3571^(15/17) 9870001343406340 a001 4807526976/6643838879*3571^(15/17) 9870001343406340 a001 1836311903/2537720636*3571^(15/17) 9870001343406340 a001 701408733/969323029*3571^(15/17) 9870001343406340 a001 267914296/370248451*3571^(15/17) 9870001343406340 a001 102334155/141422324*3571^(15/17) 9870001343406342 a001 39088169/54018521*3571^(15/17) 9870001343406354 a001 14930352/20633239*3571^(15/17) 9870001343406438 a001 5702887/7881196*3571^(15/17) 9870001343407013 a001 2178309/3010349*3571^(15/17) 9870001343410953 a001 832040/1149851*3571^(15/17) 9870001343437962 a001 317811/439204*3571^(15/17) 9870001343623084 a001 121393/167761*3571^(15/17) 9870001344891927 a001 46368/64079*3571^(15/17) 9870001350343396 r008 a(0)=1,K{-n^6,-29+78*n^3+95*n^2-67*n} 9870001353588705 a001 17711/24476*3571^(15/17) 9870001353621761 r009 Re(z^3+c),c=-23/126+19/28*I,n=55 9870001355883635 l006 ln(5890/6501) 9870001365034930 r005 Im(z^2+c),c=-21/40+9/55*I,n=11 9870001365272413 a004 Fibonacci(19)*Lucas(17)/(1/2+sqrt(5)/2)^20 9870001366336404 a001 121393/5778*3571^(8/17) 9870001377033985 a001 1762289/2889*1364^(1/15) 9870001381724193 a001 15456/13201*3571^(14/17) 9870001385667670 a001 514229/3571*1364^(4/15) 9870001387883286 a001 121393/103682*3571^(14/17) 9870001388781885 a001 105937/90481*3571^(14/17) 9870001388912989 a001 832040/710647*3571^(14/17) 9870001388932117 a001 726103/620166*3571^(14/17) 9870001388934908 a001 5702887/4870847*3571^(14/17) 9870001388935315 a001 4976784/4250681*3571^(14/17) 9870001388935374 a001 39088169/33385282*3571^(14/17) 9870001388935383 a001 34111385/29134601*3571^(14/17) 9870001388935384 a001 267914296/228826127*3571^(14/17) 9870001388935385 a001 233802911/199691526*3571^(14/17) 9870001388935385 a001 1836311903/1568397607*3571^(14/17) 9870001388935385 a001 1602508992/1368706081*3571^(14/17) 9870001388935385 a001 12586269025/10749957122*3571^(14/17) 9870001388935385 a001 10983760033/9381251041*3571^(14/17) 9870001388935385 a001 86267571272/73681302247*3571^(14/17) 9870001388935385 a001 75283811239/64300051206*3571^(14/17) 9870001388935385 a001 2504730781961/2139295485799*3571^(14/17) 9870001388935385 a001 365435296162/312119004989*3571^(14/17) 9870001388935385 a001 139583862445/119218851371*3571^(14/17) 9870001388935385 a001 53316291173/45537549124*3571^(14/17) 9870001388935385 a001 20365011074/17393796001*3571^(14/17) 9870001388935385 a001 7778742049/6643838879*3571^(14/17) 9870001388935385 a001 2971215073/2537720636*3571^(14/17) 9870001388935385 a001 1134903170/969323029*3571^(14/17) 9870001388935385 a001 433494437/370248451*3571^(14/17) 9870001388935385 a001 165580141/141422324*3571^(14/17) 9870001388935388 a001 63245986/54018521*3571^(14/17) 9870001388935411 a001 24157817/20633239*3571^(14/17) 9870001388935567 a001 9227465/7881196*3571^(14/17) 9870001388936633 a001 3524578/3010349*3571^(14/17) 9870001388943939 a001 1346269/1149851*3571^(14/17) 9870001388994016 a001 514229/439204*3571^(14/17) 9870001389337251 a001 196418/167761*3571^(14/17) 9870001391689815 a001 75025/64079*3571^(14/17) 9870001393734968 a001 28657/15127*3571^(13/17) 9870001398843183 r005 Im(z^2+c),c=-13/10+5/187*I,n=47 9870001407814529 a001 28657/24476*3571^(14/17) 9870001409585648 a001 10946/2207*2207^(11/16) 9870001412050571 a001 98209/2889*3571^(7/17) 9870001413197312 a001 6765/9349*3571^(15/17) 9870001415433819 m005 (1/2*3^(1/2)+1)/(5/6*Zeta(3)+8/9) 9870001422510720 a001 1292/2889*24476^(16/21) 9870001426548087 m005 (1/2*Pi+6/11)/(-17/48+1/16*5^(1/2)) 9870001428522081 a001 75025/39603*3571^(13/17) 9870001431928551 a001 3524578/9349*1364^(2/15) 9870001433391255 a001 1292/2889*64079^(16/23) 9870001433597453 a001 98209/51841*3571^(13/17) 9870001434337939 a001 514229/271443*3571^(13/17) 9870001434445975 a001 1346269/710647*3571^(13/17) 9870001434461737 a001 1762289/930249*3571^(13/17) 9870001434464037 a001 9227465/4870847*3571^(13/17) 9870001434464372 a001 24157817/12752043*3571^(13/17) 9870001434464421 a001 31622993/16692641*3571^(13/17) 9870001434464428 a001 165580141/87403803*3571^(13/17) 9870001434464430 a001 433494437/228826127*3571^(13/17) 9870001434464430 a001 567451585/299537289*3571^(13/17) 9870001434464430 a001 2971215073/1568397607*3571^(13/17) 9870001434464430 a001 7778742049/4106118243*3571^(13/17) 9870001434464430 a001 10182505537/5374978561*3571^(13/17) 9870001434464430 a001 53316291173/28143753123*3571^(13/17) 9870001434464430 a001 139583862445/73681302247*3571^(13/17) 9870001434464430 a001 182717648081/96450076809*3571^(13/17) 9870001434464430 a001 956722026041/505019158607*3571^(13/17) 9870001434464430 a001 10610209857723/5600748293801*3571^(13/17) 9870001434464430 a001 591286729879/312119004989*3571^(13/17) 9870001434464430 a001 225851433717/119218851371*3571^(13/17) 9870001434464430 a001 21566892818/11384387281*3571^(13/17) 9870001434464430 a001 32951280099/17393796001*3571^(13/17) 9870001434464430 a001 12586269025/6643838879*3571^(13/17) 9870001434464430 a001 1201881744/634430159*3571^(13/17) 9870001434464430 a001 1836311903/969323029*3571^(13/17) 9870001434464430 a001 701408733/370248451*3571^(13/17) 9870001434464430 a001 66978574/35355581*3571^(13/17) 9870001434464433 a001 102334155/54018521*3571^(13/17) 9870001434464452 a001 39088169/20633239*3571^(13/17) 9870001434464580 a001 3732588/1970299*3571^(13/17) 9870001434465458 a001 5702887/3010349*3571^(13/17) 9870001434471479 a001 2178309/1149851*3571^(13/17) 9870001434512745 a001 208010/109801*3571^(13/17) 9870001434795585 a001 317811/167761*3571^(13/17) 9870001435063416 a001 1292/2889*(1/2+1/2*5^(1/2))^16 9870001435063416 a001 1292/2889*23725150497407^(1/4) 9870001435063416 a001 1292/2889*73681302247^(4/13) 9870001435063416 a001 1292/2889*10749957122^(1/3) 9870001435063416 a001 1292/2889*4106118243^(8/23) 9870001435063416 a001 1292/2889*1568397607^(4/11) 9870001435063416 a001 1292/2889*599074578^(8/21) 9870001435063416 a001 1292/2889*228826127^(2/5) 9870001435063416 a001 1292/2889*87403803^(8/19) 9870001435063420 a001 1292/2889*33385282^(4/9) 9870001435063444 a001 1292/2889*12752043^(8/17) 9870001435063624 a001 1292/2889*4870847^(1/2) 9870001435064936 a001 1292/2889*1860498^(8/15) 9870001435070676 h001 (11/12*exp(1)+1/8)/(7/8*exp(1)+3/11) 9870001435074583 a001 1292/2889*710647^(4/7) 9870001435145850 a001 1292/2889*271443^(8/13) 9870001435675511 a001 1292/2889*103682^(2/3) 9870001435942139 a001 6624/2161*3571^(12/17) 9870001436734205 a001 121393/64079*3571^(13/17) 9870001439640178 a001 1292/2889*39603^(8/11) 9870001443035376 a007 Real Root Of 196*x^4+58*x^3+285*x^2+548*x+133 9870001450021700 a001 11592/6119*3571^(13/17) 9870001457508906 a001 105937/1926*3571^(6/17) 9870001469569970 a001 1292/2889*15127^(4/5) 9870001473566472 a001 121393/39603*3571^(12/17) 9870001476623398 a001 6765/2207*2207^(3/4) 9870001477409999 a001 2584/2207*2207^(7/8) 9870001478196600 a001 6677056/6765 9870001479055788 a001 317811/103682*3571^(12/17) 9870001479706051 r005 Im(z^2+c),c=11/60+3/55*I,n=7 9870001479856668 a001 832040/271443*3571^(12/17) 9870001479973515 a001 311187/101521*3571^(12/17) 9870001479990563 a001 5702887/1860498*3571^(12/17) 9870001479993050 a001 14930352/4870847*3571^(12/17) 9870001479993413 a001 39088169/12752043*3571^(12/17) 9870001479993466 a001 14619165/4769326*3571^(12/17) 9870001479993474 a001 267914296/87403803*3571^(12/17) 9870001479993475 a001 701408733/228826127*3571^(12/17) 9870001479993475 a001 1836311903/599074578*3571^(12/17) 9870001479993475 a001 686789568/224056801*3571^(12/17) 9870001479993475 a001 12586269025/4106118243*3571^(12/17) 9870001479993475 a001 32951280099/10749957122*3571^(12/17) 9870001479993475 a001 86267571272/28143753123*3571^(12/17) 9870001479993475 a001 32264490531/10525900321*3571^(12/17) 9870001479993475 a001 591286729879/192900153618*3571^(12/17) 9870001479993475 a001 1548008755920/505019158607*3571^(12/17) 9870001479993475 a001 1515744265389/494493258286*3571^(12/17) 9870001479993475 a001 2504730781961/817138163596*3571^(12/17) 9870001479993475 a001 956722026041/312119004989*3571^(12/17) 9870001479993475 a001 365435296162/119218851371*3571^(12/17) 9870001479993475 a001 139583862445/45537549124*3571^(12/17) 9870001479993475 a001 53316291173/17393796001*3571^(12/17) 9870001479993475 a001 20365011074/6643838879*3571^(12/17) 9870001479993475 a001 7778742049/2537720636*3571^(12/17) 9870001479993475 a001 2971215073/969323029*3571^(12/17) 9870001479993475 a001 1134903170/370248451*3571^(12/17) 9870001479993476 a001 433494437/141422324*3571^(12/17) 9870001479993478 a001 165580141/54018521*3571^(12/17) 9870001479993499 a001 63245986/20633239*3571^(12/17) 9870001479993637 a001 24157817/7881196*3571^(12/17) 9870001479994587 a001 9227465/3010349*3571^(12/17) 9870001480001099 a001 3524578/1149851*3571^(12/17) 9870001480045731 a001 1346269/439204*3571^(12/17) 9870001480351640 a001 514229/167761*3571^(12/17) 9870001482448372 a001 196418/64079*3571^(12/17) 9870001482740027 a001 75025/15127*3571^(11/17) 9870001496819588 a001 75025/24476*3571^(12/17) 9870001502775562 r005 Re(z^2+c),c=-59/64+10/47*I,n=27 9870001503064960 a001 514229/5778*3571^(5/17) 9870001503208894 r008 a(0)=1,K{-n^6,-30+78*n^3+95*n^2-66*n} 9870001503475569 r008 a(0)=1,K{-n^6,-36+82*n^3+80*n^2-49*n} 9870001518334964 a001 10946/9349*3571^(14/17) 9870001519280639 a001 196418/39603*3571^(11/17) 9870001523725624 a001 4181/9349*3571^(16/17) 9870001524611842 a001 514229/103682*3571^(11/17) 9870001525389654 a001 1346269/271443*3571^(11/17) 9870001525503136 a001 3524578/710647*3571^(11/17) 9870001525519692 a001 9227465/1860498*3571^(11/17) 9870001525522108 a001 24157817/4870847*3571^(11/17) 9870001525522460 a001 63245986/12752043*3571^(11/17) 9870001525522512 a001 165580141/33385282*3571^(11/17) 9870001525522519 a001 433494437/87403803*3571^(11/17) 9870001525522520 a001 1134903170/228826127*3571^(11/17) 9870001525522521 a001 2971215073/599074578*3571^(11/17) 9870001525522521 a001 7778742049/1568397607*3571^(11/17) 9870001525522521 a001 20365011074/4106118243*3571^(11/17) 9870001525522521 a001 53316291173/10749957122*3571^(11/17) 9870001525522521 a001 139583862445/28143753123*3571^(11/17) 9870001525522521 a001 365435296162/73681302247*3571^(11/17) 9870001525522521 a001 956722026041/192900153618*3571^(11/17) 9870001525522521 a001 2504730781961/505019158607*3571^(11/17) 9870001525522521 a001 10610209857723/2139295485799*3571^(11/17) 9870001525522521 a001 4052739537881/817138163596*3571^(11/17) 9870001525522521 a001 140728068720/28374454999*3571^(11/17) 9870001525522521 a001 591286729879/119218851371*3571^(11/17) 9870001525522521 a001 225851433717/45537549124*3571^(11/17) 9870001525522521 a001 86267571272/17393796001*3571^(11/17) 9870001525522521 a001 32951280099/6643838879*3571^(11/17) 9870001525522521 a001 1144206275/230701876*3571^(11/17) 9870001525522521 a001 4807526976/969323029*3571^(11/17) 9870001525522521 a001 1836311903/370248451*3571^(11/17) 9870001525522521 a001 701408733/141422324*3571^(11/17) 9870001525522524 a001 267914296/54018521*3571^(11/17) 9870001525522544 a001 9303105/1875749*3571^(11/17) 9870001525522678 a001 39088169/7881196*3571^(11/17) 9870001525523601 a001 14930352/3010349*3571^(11/17) 9870001525529925 a001 5702887/1149851*3571^(11/17) 9870001525573271 a001 2178309/439204*3571^(11/17) 9870001525870369 a001 75640/15251*3571^(11/17) 9870001527264042 r005 Re(z^2+c),c=-17/18+45/224*I,n=33 9870001527784418 a001 121393/15127*3571^(10/17) 9870001527906707 a001 317811/64079*3571^(11/17) 9870001530435366 r005 Im(z^2+c),c=-13/12+14/121*I,n=21 9870001541095547 a001 17711/9349*3571^(13/17) 9870001541863979 a001 121393/24476*3571^(11/17) 9870001547431365 m005 (1/3+1/4*5^(1/2))/(7/8*2^(1/2)-1/3) 9870001548583689 a001 416020/2889*3571^(4/17) 9870001564738974 a001 105937/13201*3571^(10/17) 9870001570130572 a001 416020/51841*3571^(10/17) 9870001570917195 a001 726103/90481*3571^(10/17) 9870001571031962 a001 5702887/710647*3571^(10/17) 9870001571048706 a001 829464/103361*3571^(10/17) 9870001571051149 a001 39088169/4870847*3571^(10/17) 9870001571051505 a001 34111385/4250681*3571^(10/17) 9870001571051557 a001 133957148/16692641*3571^(10/17) 9870001571051565 a001 233802911/29134601*3571^(10/17) 9870001571051566 a001 1836311903/228826127*3571^(10/17) 9870001571051566 a001 267084832/33281921*3571^(10/17) 9870001571051566 a001 12586269025/1568397607*3571^(10/17) 9870001571051566 a001 10983760033/1368706081*3571^(10/17) 9870001571051566 a001 43133785636/5374978561*3571^(10/17) 9870001571051566 a001 75283811239/9381251041*3571^(10/17) 9870001571051566 a001 591286729879/73681302247*3571^(10/17) 9870001571051566 a001 86000486440/10716675201*3571^(10/17) 9870001571051566 a001 4052739537881/505019158607*3571^(10/17) 9870001571051566 a001 3536736619241/440719107401*3571^(10/17) 9870001571051566 a001 3278735159921/408569081798*3571^(10/17) 9870001571051566 a001 2504730781961/312119004989*3571^(10/17) 9870001571051566 a001 956722026041/119218851371*3571^(10/17) 9870001571051566 a001 182717648081/22768774562*3571^(10/17) 9870001571051566 a001 139583862445/17393796001*3571^(10/17) 9870001571051566 a001 53316291173/6643838879*3571^(10/17) 9870001571051566 a001 10182505537/1268860318*3571^(10/17) 9870001571051566 a001 7778742049/969323029*3571^(10/17) 9870001571051566 a001 2971215073/370248451*3571^(10/17) 9870001571051567 a001 567451585/70711162*3571^(10/17) 9870001571051570 a001 433494437/54018521*3571^(10/17) 9870001571051590 a001 165580141/20633239*3571^(10/17) 9870001571051726 a001 31622993/3940598*3571^(10/17) 9870001571052659 a001 24157817/3010349*3571^(10/17) 9870001571059055 a001 9227465/1149851*3571^(10/17) 9870001571102892 a001 1762289/219602*3571^(10/17) 9870001571403355 a001 1346269/167761*3571^(10/17) 9870001573462762 a001 514229/64079*3571^(10/17) 9870001573498585 a001 196418/15127*3571^(9/17) 9870001580588733 a001 2584/15127*9349^(18/19) 9870001587578147 a001 98209/12238*3571^(10/17) 9870001594116676 a001 1346269/5778*3571^(3/17) 9870001595321372 a001 28657/9349*3571^(12/17) 9870001600793352 m001 (BesselJ(1,1)+GAMMA(13/24))/(2^(1/2)+ln(2)) 9870001604362250 a001 2255/1926*9349^(14/19) 9870001610295029 a001 514229/39603*3571^(9/17) 9870001615663558 a001 1346269/103682*3571^(9/17) 9870001616446816 a001 3524578/271443*3571^(9/17) 9870001616561092 a001 9227465/710647*3571^(9/17) 9870001616577764 a001 24157817/1860498*3571^(9/17) 9870001616580197 a001 63245986/4870847*3571^(9/17) 9870001616580552 a001 165580141/12752043*3571^(9/17) 9870001616580603 a001 433494437/33385282*3571^(9/17) 9870001616580611 a001 1134903170/87403803*3571^(9/17) 9870001616580612 a001 2971215073/228826127*3571^(9/17) 9870001616580612 a001 7778742049/599074578*3571^(9/17) 9870001616580612 a001 20365011074/1568397607*3571^(9/17) 9870001616580612 a001 53316291173/4106118243*3571^(9/17) 9870001616580612 a001 139583862445/10749957122*3571^(9/17) 9870001616580612 a001 365435296162/28143753123*3571^(9/17) 9870001616580612 a001 956722026041/73681302247*3571^(9/17) 9870001616580612 a001 2504730781961/192900153618*3571^(9/17) 9870001616580612 a001 10610209857723/817138163596*3571^(9/17) 9870001616580612 a001 4052739537881/312119004989*3571^(9/17) 9870001616580612 a001 1548008755920/119218851371*3571^(9/17) 9870001616580612 a001 591286729879/45537549124*3571^(9/17) 9870001616580612 a001 7787980473/599786069*3571^(9/17) 9870001616580612 a001 86267571272/6643838879*3571^(9/17) 9870001616580612 a001 32951280099/2537720636*3571^(9/17) 9870001616580612 a001 12586269025/969323029*3571^(9/17) 9870001616580612 a001 4807526976/370248451*3571^(9/17) 9870001616580613 a001 1836311903/141422324*3571^(9/17) 9870001616580616 a001 701408733/54018521*3571^(9/17) 9870001616580635 a001 9238424/711491*3571^(9/17) 9870001616580771 a001 102334155/7881196*3571^(9/17) 9870001616581700 a001 39088169/3010349*3571^(9/17) 9870001616588069 a001 14930352/1149851*3571^(9/17) 9870001616631718 a001 5702887/439204*3571^(9/17) 9870001616930896 a001 2178309/167761*3571^(9/17) 9870001617778549 a004 Fibonacci(18)*Lucas(19)/(1/2+sqrt(5)/2)^21 9870001618956921 a001 317811/15127*3571^(8/17) 9870001618981491 a001 832040/64079*3571^(9/17) 9870001629539955 a001 9227465/15127*1364^(1/15) 9870001633036482 a001 10959/844*3571^(9/17) 9870001637528544 a001 46368/9349*3571^(11/17) 9870001639644217 a001 726103/1926*3571^(2/17) 9870001644633441 a007 Real Root Of -53*x^4-274*x^3-473*x^2+279*x+523 9870001653089150 a001 17711/5778*9349^(12/19) 9870001655813759 a001 832040/39603*3571^(8/17) 9870001655976789 r008 a(0)=1,K{-n^6,-37+82*n^3+80*n^2-48*n} 9870001661191099 a001 46347/2206*3571^(8/17) 9870001661975642 a001 5702887/271443*3571^(8/17) 9870001662090106 a001 14930352/710647*3571^(8/17) 9870001662106806 a001 39088169/1860498*3571^(8/17) 9870001662109242 a001 102334155/4870847*3571^(8/17) 9870001662109598 a001 267914296/12752043*3571^(8/17) 9870001662109650 a001 701408733/33385282*3571^(8/17) 9870001662109657 a001 1836311903/87403803*3571^(8/17) 9870001662109658 a001 102287808/4868641*3571^(8/17) 9870001662109658 a001 12586269025/599074578*3571^(8/17) 9870001662109658 a001 32951280099/1568397607*3571^(8/17) 9870001662109658 a001 86267571272/4106118243*3571^(8/17) 9870001662109658 a001 225851433717/10749957122*3571^(8/17) 9870001662109658 a001 591286729879/28143753123*3571^(8/17) 9870001662109658 a001 1548008755920/73681302247*3571^(8/17) 9870001662109658 a001 4052739537881/192900153618*3571^(8/17) 9870001662109658 a001 225749145909/10745088481*3571^(8/17) 9870001662109658 a001 6557470319842/312119004989*3571^(8/17) 9870001662109658 a001 2504730781961/119218851371*3571^(8/17) 9870001662109658 a001 956722026041/45537549124*3571^(8/17) 9870001662109658 a001 365435296162/17393796001*3571^(8/17) 9870001662109658 a001 139583862445/6643838879*3571^(8/17) 9870001662109658 a001 53316291173/2537720636*3571^(8/17) 9870001662109658 a001 20365011074/969323029*3571^(8/17) 9870001662109659 a001 7778742049/370248451*3571^(8/17) 9870001662109659 a001 2971215073/141422324*3571^(8/17) 9870001662109662 a001 1134903170/54018521*3571^(8/17) 9870001662109682 a001 433494437/20633239*3571^(8/17) 9870001662109817 a001 165580141/7881196*3571^(8/17) 9870001662110748 a001 63245986/3010349*3571^(8/17) 9870001662117127 a001 24157817/1149851*3571^(8/17) 9870001662160848 a001 9227465/439204*3571^(8/17) 9870001662460517 a001 3524578/167761*3571^(8/17) 9870001664512976 a001 514229/15127*3571^(7/17) 9870001664514478 a001 1346269/64079*3571^(8/17) 9870001666380080 a001 24157817/39603*1364^(1/15) 9870001667665033 m004 -4/5+5*Pi-25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870001667729306 a001 28657/5778*9349^(11/19) 9870001669914235 a001 5473/2889*9349^(13/19) 9870001670350809 a001 2576/321*9349^(10/19) 9870001671754982 a001 31622993/51841*1364^(1/15) 9870001672539170 a001 165580141/271443*1364^(1/15) 9870001672653581 a001 433494437/710647*1364^(1/15) 9870001672670274 a001 567451585/930249*1364^(1/15) 9870001672672709 a001 2971215073/4870847*1364^(1/15) 9870001672673064 a001 7778742049/12752043*1364^(1/15) 9870001672673116 a001 10182505537/16692641*1364^(1/15) 9870001672673124 a001 53316291173/87403803*1364^(1/15) 9870001672673125 a001 139583862445/228826127*1364^(1/15) 9870001672673125 a001 182717648081/299537289*1364^(1/15) 9870001672673125 a001 956722026041/1568397607*1364^(1/15) 9870001672673125 a001 2504730781961/4106118243*1364^(1/15) 9870001672673125 a001 3278735159921/5374978561*1364^(1/15) 9870001672673125 a001 10610209857723/17393796001*1364^(1/15) 9870001672673125 a001 4052739537881/6643838879*1364^(1/15) 9870001672673125 a001 1134903780/1860499*1364^(1/15) 9870001672673125 a001 591286729879/969323029*1364^(1/15) 9870001672673125 a001 225851433717/370248451*1364^(1/15) 9870001672673126 a001 21566892818/35355581*1364^(1/15) 9870001672673129 a001 32951280099/54018521*1364^(1/15) 9870001672673148 a001 1144206275/1875749*1364^(1/15) 9870001672673284 a001 1201881744/1970299*1364^(1/15) 9870001672674214 a001 1836311903/3010349*1364^(1/15) 9870001672680590 a001 701408733/1149851*1364^(1/15) 9870001672724291 a001 66978574/109801*1364^(1/15) 9870001673023825 a001 9303105/15251*1364^(1/15) 9870001673447739 a001 2584/15127*24476^(6/7) 9870001675076854 a001 39088169/64079*1364^(1/15) 9870001676585922 a001 2255/1926*24476^(2/3) 9870001677563030 a001 75025/5778*9349^(9/19) 9870001678592538 a001 514229/24476*3571^(8/17) 9870001683021752 a001 121393/5778*9349^(8/19) 9870001684326433 a001 75025/9349*3571^(10/17) 9870001685173838 a001 1762289/2889*3571^(1/17) 9870001685688342 a001 2584/15127*64079^(18/23) 9870001686106391 a001 2255/1926*64079^(14/23) 9870001686334187 l006 ln(1979/5310) 9870001687535412 a001 2584/15127*439204^(2/3) 9870001687569436 a001 2584/15127*7881196^(6/11) 9870001687569522 a001 2255/1926*20633239^(2/5) 9870001687569523 a001 2584/15127*141422324^(6/13) 9870001687569523 a001 2584/15127*2537720636^(2/5) 9870001687569523 a001 2584/15127*45537549124^(6/17) 9870001687569523 a001 2584/15127*14662949395604^(2/7) 9870001687569523 a001 2584/15127*(1/2+1/2*5^(1/2))^18 9870001687569523 a001 2584/15127*192900153618^(1/3) 9870001687569523 a001 2584/15127*10749957122^(3/8) 9870001687569523 a001 2584/15127*4106118243^(9/23) 9870001687569523 a001 2584/15127*1568397607^(9/22) 9870001687569523 a001 2584/15127*599074578^(3/7) 9870001687569523 a001 2584/15127*228826127^(9/20) 9870001687569523 a001 2584/15127*87403803^(9/19) 9870001687569527 a001 2584/15127*33385282^(1/2) 9870001687569531 a001 2255/1926*17393796001^(2/7) 9870001687569531 a001 2255/1926*14662949395604^(2/9) 9870001687569531 a001 2255/1926*(1/2+1/2*5^(1/2))^14 9870001687569531 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^14/Lucas(18) 9870001687569531 a001 2255/1926*505019158607^(1/4) 9870001687569531 a001 2255/1926*10749957122^(7/24) 9870001687569531 a001 2255/1926*4106118243^(7/23) 9870001687569531 a001 2255/1926*1568397607^(7/22) 9870001687569531 a001 2255/1926*599074578^(1/3) 9870001687569532 a001 2255/1926*228826127^(7/20) 9870001687569532 a001 2255/1926*87403803^(7/19) 9870001687569535 a001 2255/1926*33385282^(7/18) 9870001687569555 a001 2584/15127*12752043^(9/17) 9870001687569556 a001 2255/1926*12752043^(7/17) 9870001687569713 a001 2255/1926*4870847^(7/16) 9870001687569757 a001 2584/15127*4870847^(9/16) 9870001687570862 a001 2255/1926*1860498^(7/15) 9870001687571234 a001 2584/15127*1860498^(3/5) 9870001687579303 a001 2255/1926*710647^(1/2) 9870001687582087 a001 2584/15127*710647^(9/14) 9870001687641661 a001 2255/1926*271443^(7/13) 9870001687662261 a001 2584/15127*271443^(9/13) 9870001688105115 a001 2255/1926*103682^(7/12) 9870001688258130 a001 2584/15127*103682^(3/4) 9870001689148530 a001 3732588/6119*1364^(1/15) 9870001689150251 a001 98209/2889*9349^(7/19) 9870001691574198 a001 2255/1926*39603^(7/11) 9870001692718380 a001 2584/15127*39603^(9/11) 9870001693862571 a001 17480760/17711 9870001695022918 a001 105937/1926*9349^(6/19) 9870001697853905 a001 1292/2889*5778^(8/9) 9870001698921499 r008 a(0)=1,K{-n^6,-8-50*n^3+59*n^2+88*n} 9870001699511958 m001 (MinimumGamma+TwinPrimes)/(cos(1)+ln(5)) 9870001700993304 a001 514229/5778*9349^(5/19) 9870001701346746 a001 1346269/39603*3571^(7/17) 9870001706720720 a001 1762289/51841*3571^(7/17) 9870001706926365 a001 416020/2889*9349^(4/19) 9870001707504773 a001 9227465/271443*3571^(7/17) 9870001707619164 a001 24157817/710647*3571^(7/17) 9870001707635854 a001 31622993/930249*3571^(7/17) 9870001707638289 a001 165580141/4870847*3571^(7/17) 9870001707638644 a001 433494437/12752043*3571^(7/17) 9870001707638696 a001 567451585/16692641*3571^(7/17) 9870001707638704 a001 2971215073/87403803*3571^(7/17) 9870001707638705 a001 7778742049/228826127*3571^(7/17) 9870001707638705 a001 10182505537/299537289*3571^(7/17) 9870001707638705 a001 53316291173/1568397607*3571^(7/17) 9870001707638705 a001 139583862445/4106118243*3571^(7/17) 9870001707638705 a001 182717648081/5374978561*3571^(7/17) 9870001707638705 a001 956722026041/28143753123*3571^(7/17) 9870001707638705 a001 2504730781961/73681302247*3571^(7/17) 9870001707638705 a001 3278735159921/96450076809*3571^(7/17) 9870001707638705 a001 10610209857723/312119004989*3571^(7/17) 9870001707638705 a001 4052739537881/119218851371*3571^(7/17) 9870001707638705 a001 387002188980/11384387281*3571^(7/17) 9870001707638705 a001 591286729879/17393796001*3571^(7/17) 9870001707638705 a001 225851433717/6643838879*3571^(7/17) 9870001707638705 a001 1135099622/33391061*3571^(7/17) 9870001707638705 a001 32951280099/969323029*3571^(7/17) 9870001707638705 a001 12586269025/370248451*3571^(7/17) 9870001707638705 a001 1201881744/35355581*3571^(7/17) 9870001707638708 a001 1836311903/54018521*3571^(7/17) 9870001707638728 a001 701408733/20633239*3571^(7/17) 9870001707638864 a001 66978574/1970299*3571^(7/17) 9870001707639794 a001 102334155/3010349*3571^(7/17) 9870001707646169 a001 39088169/1149851*3571^(7/17) 9870001707689862 a001 196452/5779*3571^(7/17) 9870001707989344 a001 5702887/167761*3571^(7/17) 9870001708718798 a001 2584/39603*24476^(20/21) 9870001710031706 a001 832040/15127*3571^(6/17) 9870001710042019 a001 2178309/64079*3571^(7/17) 9870001712873683 a001 1346269/5778*9349^(3/19) 9870001714227303 a004 Fibonacci(18)*Lucas(21)/(1/2+sqrt(5)/2)^23 9870001714995155 a001 17711/5778*24476^(4/7) 9870001715134182 m001 cos(1)^(StronglyCareFree*Trott2nd) 9870001716502602 l004 Chi(190/27) 9870001717762767 a001 2255/1926*15127^(7/10) 9870001718815555 a001 726103/1926*9349^(2/19) 9870001721085014 a007 Real Root Of -349*x^4+251*x^3+627*x^2+303*x-820 9870001721939147 a001 2576/321*24476^(10/21) 9870001722319468 a001 2584/39603*64079^(20/23) 9870001723155557 a001 17711/5778*64079^(12/23) 9870001723992533 a001 75025/5778*24476^(3/7) 9870001724111267 a001 208010/6119*3571^(7/17) 9870001724129109 a001 2584/39603*167761^(4/5) 9870001724292422 a001 121393/5778*24476^(8/21) 9870001724386937 a001 17711/5778*439204^(4/9) 9870001724409619 a001 17711/5778*7881196^(4/11) 9870001724409655 a001 2584/39603*20633239^(4/7) 9870001724409668 a001 2584/39603*2537720636^(4/9) 9870001724409668 a001 2584/39603*(1/2+1/2*5^(1/2))^20 9870001724409668 a001 2584/39603*23725150497407^(5/16) 9870001724409668 a001 2584/39603*505019158607^(5/14) 9870001724409668 a001 2584/39603*73681302247^(5/13) 9870001724409668 a001 2584/39603*28143753123^(2/5) 9870001724409668 a001 2584/39603*10749957122^(5/12) 9870001724409668 a001 2584/39603*4106118243^(10/23) 9870001724409668 a001 2584/39603*1568397607^(5/11) 9870001724409668 a001 2584/39603*599074578^(10/21) 9870001724409669 a001 2584/39603*228826127^(1/2) 9870001724409669 a001 2584/39603*87403803^(10/19) 9870001724409673 a001 2584/39603*33385282^(5/9) 9870001724409677 a001 17711/5778*141422324^(4/13) 9870001724409677 a001 17711/5778*2537720636^(4/15) 9870001724409677 a001 17711/5778*45537549124^(4/17) 9870001724409677 a001 17711/5778*817138163596^(4/19) 9870001724409677 a001 17711/5778*14662949395604^(4/21) 9870001724409677 a001 17711/5778*(1/2+1/2*5^(1/2))^12 9870001724409677 a001 17711/5778*192900153618^(2/9) 9870001724409677 a001 17711/5778*73681302247^(3/13) 9870001724409677 a001 17711/5778*10749957122^(1/4) 9870001724409677 a001 17711/5778*4106118243^(6/23) 9870001724409677 a001 17711/5778*1568397607^(3/11) 9870001724409677 a001 17711/5778*599074578^(2/7) 9870001724409677 a001 17711/5778*228826127^(3/10) 9870001724409678 a001 17711/5778*87403803^(6/19) 9870001724409680 a001 17711/5778*33385282^(1/3) 9870001724409699 a001 17711/5778*12752043^(6/17) 9870001724409704 a001 2584/39603*12752043^(10/17) 9870001724409833 a001 17711/5778*4870847^(3/8) 9870001724409928 a001 2584/39603*4870847^(5/8) 9870001724410818 a001 17711/5778*1860498^(2/5) 9870001724411569 a001 2584/39603*1860498^(2/3) 9870001724418053 a001 17711/5778*710647^(3/7) 9870001724423628 a001 2584/39603*710647^(5/7) 9870001724471503 a001 17711/5778*271443^(6/13) 9870001724476477 a001 28657/5778*24476^(11/21) 9870001724512711 a001 2584/39603*271443^(10/13) 9870001724759507 a001 1762289/2889*9349^(1/19) 9870001724868749 a001 17711/5778*103682^(1/2) 9870001725174788 a001 2584/39603*103682^(5/6) 9870001725262087 a001 98209/2889*24476^(1/3) 9870001725327812 a001 5720653/5796 9870001725975920 a001 105937/1926*24476^(2/7) 9870001726389397 a001 2584/15127*15127^(9/10) 9870001726787473 a001 514229/5778*24476^(5/21) 9870001727485353 a001 1292/51841*64079^(22/23) 9870001727561700 a001 416020/2889*24476^(4/21) 9870001727842249 a001 17711/5778*39603^(6/11) 9870001728298986 a004 Fibonacci(18)*Lucas(23)/(1/2+sqrt(5)/2)^25 9870001728350184 a001 1346269/5778*24476^(1/7) 9870001728739482 a001 2576/321*64079^(10/23) 9870001729133222 a001 726103/1926*24476^(2/21) 9870001729370825 a001 121393/9349*3571^(9/17) 9870001729644302 a001 2576/321*167761^(2/5) 9870001729732690 a001 121393/5778*64079^(8/23) 9870001729784467 a001 1292/51841*7881196^(2/3) 9870001729784573 a001 1292/51841*312119004989^(2/5) 9870001729784573 a001 1292/51841*(1/2+1/2*5^(1/2))^22 9870001729784573 a001 1292/51841*10749957122^(11/24) 9870001729784573 a001 1292/51841*4106118243^(11/23) 9870001729784573 a001 1292/51841*1568397607^(1/2) 9870001729784573 a001 1292/51841*599074578^(11/21) 9870001729784573 a001 1292/51841*228826127^(11/20) 9870001729784574 a001 1292/51841*87403803^(11/19) 9870001729784575 a001 2576/321*20633239^(2/7) 9870001729784579 a001 1292/51841*33385282^(11/18) 9870001729784582 a001 2576/321*2537720636^(2/9) 9870001729784582 a001 2576/321*312119004989^(2/11) 9870001729784582 a001 2576/321*(1/2+1/2*5^(1/2))^10 9870001729784582 a001 2576/321*28143753123^(1/5) 9870001729784582 a001 2576/321*10749957122^(5/24) 9870001729784582 a001 2576/321*4106118243^(5/23) 9870001729784582 a001 2576/321*1568397607^(5/22) 9870001729784582 a001 2576/321*599074578^(5/21) 9870001729784582 a001 2576/321*228826127^(1/4) 9870001729784582 a001 2576/321*87403803^(5/19) 9870001729784585 a001 2576/321*33385282^(5/18) 9870001729784600 a001 2576/321*12752043^(5/17) 9870001729784613 a001 1292/51841*12752043^(11/17) 9870001729784712 a001 2576/321*4870847^(5/16) 9870001729784859 a001 1292/51841*4870847^(11/16) 9870001729785533 a001 2576/321*1860498^(1/3) 9870001729786664 a001 1292/51841*1860498^(11/15) 9870001729791562 a001 2576/321*710647^(5/14) 9870001729799929 a001 1292/51841*710647^(11/14) 9870001729836103 a001 2576/321*271443^(5/13) 9870001729897920 a001 1292/51841*271443^(11/13) 9870001729918341 a001 1762289/2889*24476^(1/21) 9870001729918529 a001 119814912/121393 9870001730022322 a001 98209/2889*64079^(7/23) 9870001730056122 a001 105937/1926*64079^(6/23) 9870001730112835 a001 75025/5778*64079^(9/23) 9870001730130621 a001 2584/39603*39603^(10/11) 9870001730167142 a001 2576/321*103682^(5/12) 9870001730187640 a001 514229/5778*64079^(5/23) 9870001730281834 a001 416020/2889*64079^(4/23) 9870001730352017 a004 Fibonacci(18)*Lucas(25)/(1/2+sqrt(5)/2)^27 9870001730390285 a001 1346269/5778*64079^(3/23) 9870001730493289 a001 726103/1926*64079^(2/23) 9870001730523280 a001 2584/271443*439204^(8/9) 9870001730568646 a001 2584/271443*7881196^(8/11) 9870001730568761 a001 2584/271443*141422324^(8/13) 9870001730568761 a001 2584/271443*2537720636^(8/15) 9870001730568761 a001 2584/271443*45537549124^(8/17) 9870001730568761 a001 2584/271443*14662949395604^(8/21) 9870001730568761 a001 2584/271443*(1/2+1/2*5^(1/2))^24 9870001730568761 a001 2584/271443*192900153618^(4/9) 9870001730568761 a001 2584/271443*73681302247^(6/13) 9870001730568761 a001 2584/271443*10749957122^(1/2) 9870001730568761 a001 2584/271443*4106118243^(12/23) 9870001730568761 a001 2584/271443*1568397607^(6/11) 9870001730568761 a001 2584/271443*599074578^(4/7) 9870001730568761 a001 2584/271443*228826127^(3/5) 9870001730568762 a001 2584/271443*87403803^(12/19) 9870001730568767 a001 2584/271443*33385282^(2/3) 9870001730568770 a001 121393/5778*(1/2+1/2*5^(1/2))^8 9870001730568770 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^8/Lucas(18) 9870001730568770 a001 121393/5778*23725150497407^(1/8) 9870001730568770 a001 121393/5778*505019158607^(1/7) 9870001730568770 a001 121393/5778*73681302247^(2/13) 9870001730568770 a001 121393/5778*10749957122^(1/6) 9870001730568770 a001 121393/5778*4106118243^(4/23) 9870001730568770 a001 121393/5778*1568397607^(2/11) 9870001730568770 a001 121393/5778*599074578^(4/21) 9870001730568770 a001 121393/5778*228826127^(1/5) 9870001730568770 a001 121393/5778*87403803^(4/19) 9870001730568772 a001 121393/5778*33385282^(2/9) 9870001730568784 a001 121393/5778*12752043^(4/17) 9870001730568804 a001 2584/271443*12752043^(12/17) 9870001730568874 a001 121393/5778*4870847^(1/4) 9870001730569073 a001 2584/271443*4870847^(3/4) 9870001730569531 a001 121393/5778*1860498^(4/15) 9870001730571042 a001 2584/271443*1860498^(4/5) 9870001730574354 a001 121393/5778*710647^(2/7) 9870001730585513 a001 2584/271443*710647^(6/7) 9870001730588305 a001 313679512/317811 9870001730598374 a001 1762289/2889*64079^(1/23) 9870001730609987 a001 121393/5778*271443^(4/13) 9870001730626205 a001 1292/51841*103682^(11/12) 9870001730640051 a001 514229/5778*167761^(1/5) 9870001730651550 a004 Fibonacci(18)*Lucas(27)/(1/2+sqrt(5)/2)^29 9870001730671811 a001 105937/1926*439204^(2/9) 9870001730683153 a001 105937/1926*7881196^(2/11) 9870001730683172 a001 2584/710647*141422324^(2/3) 9870001730683173 a001 2584/710647*(1/2+1/2*5^(1/2))^26 9870001730683173 a001 2584/710647*73681302247^(1/2) 9870001730683173 a001 2584/710647*10749957122^(13/24) 9870001730683173 a001 2584/710647*4106118243^(13/23) 9870001730683173 a001 2584/710647*1568397607^(13/22) 9870001730683173 a001 2584/710647*599074578^(13/21) 9870001730683173 a001 2584/710647*228826127^(13/20) 9870001730683174 a001 2584/710647*87403803^(13/19) 9870001730683179 a001 2584/710647*33385282^(13/18) 9870001730683182 a001 105937/1926*141422324^(2/13) 9870001730683182 a001 105937/1926*2537720636^(2/15) 9870001730683182 a001 105937/1926*45537549124^(2/17) 9870001730683182 a001 105937/1926*14662949395604^(2/21) 9870001730683182 a001 105937/1926*(1/2+1/2*5^(1/2))^6 9870001730683182 a001 105937/1926*10749957122^(1/8) 9870001730683182 a001 105937/1926*4106118243^(3/23) 9870001730683182 a001 105937/1926*1568397607^(3/22) 9870001730683182 a001 105937/1926*599074578^(1/7) 9870001730683182 a001 105937/1926*228826127^(3/20) 9870001730683182 a001 105937/1926*87403803^(3/19) 9870001730683183 a001 105937/1926*33385282^(1/6) 9870001730683192 a001 105937/1926*12752043^(3/17) 9870001730683219 a001 2584/710647*12752043^(13/17) 9870001730683260 a001 105937/1926*4870847^(3/16) 9870001730683511 a001 2584/710647*4870847^(13/16) 9870001730683752 a001 105937/1926*1860498^(1/5) 9870001730685644 a001 2584/710647*1860498^(13/15) 9870001730686024 a001 102652953/104005 9870001730687370 a001 105937/1926*710647^(3/14) 9870001730692412 a001 2584/271443*271443^(12/13) 9870001730695252 a004 Fibonacci(18)*Lucas(29)/(1/2+sqrt(5)/2)^31 9870001730698129 a001 1346269/5778*439204^(1/9) 9870001730699847 a001 1292/930249*20633239^(4/5) 9870001730699865 a001 1292/930249*17393796001^(4/7) 9870001730699865 a001 1292/930249*14662949395604^(4/9) 9870001730699865 a001 1292/930249*(1/2+1/2*5^(1/2))^28 9870001730699865 a001 1292/930249*505019158607^(1/2) 9870001730699865 a001 1292/930249*73681302247^(7/13) 9870001730699865 a001 1292/930249*10749957122^(7/12) 9870001730699865 a001 1292/930249*4106118243^(14/23) 9870001730699865 a001 1292/930249*1568397607^(7/11) 9870001730699865 a001 1292/930249*599074578^(2/3) 9870001730699865 a001 1292/930249*228826127^(7/10) 9870001730699866 a001 1292/930249*87403803^(14/19) 9870001730699872 a001 1292/930249*33385282^(7/9) 9870001730699874 a001 416020/2889*(1/2+1/2*5^(1/2))^4 9870001730699874 a001 416020/2889*23725150497407^(1/16) 9870001730699874 a001 416020/2889*73681302247^(1/13) 9870001730699874 a001 416020/2889*10749957122^(1/12) 9870001730699874 a001 416020/2889*4106118243^(2/23) 9870001730699874 a001 416020/2889*1568397607^(1/11) 9870001730699874 a001 416020/2889*599074578^(2/21) 9870001730699874 a001 416020/2889*228826127^(1/10) 9870001730699874 a001 416020/2889*87403803^(2/19) 9870001730699875 a001 416020/2889*33385282^(1/9) 9870001730699881 a001 416020/2889*12752043^(2/17) 9870001730699915 a001 1292/930249*12752043^(14/17) 9870001730699926 a001 416020/2889*4870847^(1/8) 9870001730700229 a001 1292/930249*4870847^(7/8) 9870001730700254 a001 416020/2889*1860498^(2/15) 9870001730700281 a001 2149991360/2178309 9870001730701321 a001 2584/710647*710647^(13/14) 9870001730701627 a004 Fibonacci(18)*Lucas(31)/(1/2+sqrt(5)/2)^33 9870001730702156 a001 2584/4870847*7881196^(10/11) 9870001730702281 a001 2584/4870847*20633239^(6/7) 9870001730702300 a001 2584/4870847*141422324^(10/13) 9870001730702301 a001 2584/4870847*2537720636^(2/3) 9870001730702301 a001 2584/4870847*45537549124^(10/17) 9870001730702301 a001 2584/4870847*312119004989^(6/11) 9870001730702301 a001 2584/4870847*14662949395604^(10/21) 9870001730702301 a001 2584/4870847*(1/2+1/2*5^(1/2))^30 9870001730702301 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^30/Lucas(32) 9870001730702301 a001 2584/4870847*192900153618^(5/9) 9870001730702301 a001 2584/4870847*28143753123^(3/5) 9870001730702301 a001 2584/4870847*10749957122^(5/8) 9870001730702301 a001 2584/4870847*4106118243^(15/23) 9870001730702301 a001 2584/4870847*1568397607^(15/22) 9870001730702301 a001 2584/4870847*599074578^(5/7) 9870001730702301 a001 2584/4870847*228826127^(3/4) 9870001730702302 a001 2584/4870847*87403803^(15/19) 9870001730702308 a001 2584/4870847*33385282^(5/6) 9870001730702309 a001 726103/1926*(1/2+1/2*5^(1/2))^2 9870001730702309 a001 726103/1926*10749957122^(1/24) 9870001730702309 a001 726103/1926*4106118243^(1/23) 9870001730702309 a001 726103/1926*1568397607^(1/22) 9870001730702309 a001 726103/1926*599074578^(1/21) 9870001730702309 a001 726103/1926*228826127^(1/20) 9870001730702310 a001 726103/1926*87403803^(1/19) 9870001730702310 a001 726103/1926*33385282^(1/18) 9870001730702313 a001 726103/1926*12752043^(1/17) 9870001730702335 a001 726103/1926*4870847^(1/16) 9870001730702354 a001 2584/4870847*12752043^(15/17) 9870001730702361 a001 5628750456/5702887 9870001730702500 a001 726103/1926*1860498^(1/15) 9870001730702527 a001 1292/930249*1860498^(14/15) 9870001730702558 a004 Fibonacci(18)*Lucas(33)/(1/2+sqrt(5)/2)^35 9870001730702656 a001 2584/12752043*(1/2+1/2*5^(1/2))^32 9870001730702656 a001 2584/12752043*23725150497407^(1/2) 9870001730702656 a001 2584/12752043*505019158607^(4/7) 9870001730702656 a001 2584/12752043*73681302247^(8/13) 9870001730702656 a001 2584/12752043*10749957122^(2/3) 9870001730702656 a001 2584/12752043*4106118243^(16/23) 9870001730702656 a001 2584/12752043*1568397607^(8/11) 9870001730702656 a001 2584/12752043*599074578^(16/21) 9870001730702656 a001 2584/12752043*228826127^(4/5) 9870001730702657 a001 2584/12752043*87403803^(16/19) 9870001730702664 a001 2584/12752043*33385282^(8/9) 9870001730702665 a001 5702887/5778 9870001730702666 a001 416020/2889*710647^(1/7) 9870001730702691 a001 2584/4870847*4870847^(15/16) 9870001730702693 a004 Fibonacci(18)*Lucas(35)/(1/2+sqrt(5)/2)^37 9870001730702708 a001 1292/16692641*45537549124^(2/3) 9870001730702708 a001 1292/16692641*(1/2+1/2*5^(1/2))^34 9870001730702708 a001 1292/16692641*10749957122^(17/24) 9870001730702708 a001 1292/16692641*4106118243^(17/23) 9870001730702708 a001 1292/16692641*1568397607^(17/22) 9870001730702708 a001 1292/16692641*599074578^(17/21) 9870001730702708 a001 1292/16692641*228826127^(17/20) 9870001730702709 a001 1292/16692641*87403803^(17/19) 9870001730702709 a001 38580029568/39088169 9870001730702713 a001 2584/12752043*12752043^(16/17) 9870001730702713 a004 Fibonacci(18)*Lucas(37)/(1/2+sqrt(5)/2)^39 9870001730702715 a001 2584/87403803*141422324^(12/13) 9870001730702715 a001 2584/87403803*2537720636^(4/5) 9870001730702715 a001 2584/87403803*45537549124^(12/17) 9870001730702715 a001 2584/87403803*14662949395604^(4/7) 9870001730702715 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^36/Lucas(38) 9870001730702715 a001 2584/87403803*505019158607^(9/14) 9870001730702715 a001 2584/87403803*192900153618^(2/3) 9870001730702715 a001 2584/87403803*73681302247^(9/13) 9870001730702715 a001 2584/87403803*10749957122^(3/4) 9870001730702715 a001 2584/87403803*4106118243^(18/23) 9870001730702715 a001 2584/87403803*1568397607^(9/11) 9870001730702715 a001 2584/87403803*599074578^(6/7) 9870001730702716 a001 2584/87403803*228826127^(9/10) 9870001730702716 a001 101003828696/102334155 9870001730702716 a004 Fibonacci(18)*Lucas(39)/(1/2+sqrt(5)/2)^41 9870001730702716 a001 1292/16692641*33385282^(17/18) 9870001730702716 a001 2584/228826127*817138163596^(2/3) 9870001730702716 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^38/Lucas(40) 9870001730702716 a001 2584/228826127*10749957122^(19/24) 9870001730702716 a001 2584/228826127*4106118243^(19/23) 9870001730702716 a001 2584/228826127*1568397607^(19/22) 9870001730702716 a001 2584/228826127*599074578^(19/21) 9870001730702716 a001 33053932065/33489287 9870001730702717 a004 Fibonacci(18)*Lucas(41)/(1/2+sqrt(5)/2)^43 9870001730702717 a001 2584/87403803*87403803^(18/19) 9870001730702717 a001 1292/299537289*2537720636^(8/9) 9870001730702717 a001 1292/299537289*312119004989^(8/11) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^40/Lucas(42) 9870001730702717 a001 1292/299537289*23725150497407^(5/8) 9870001730702717 a001 1292/299537289*73681302247^(10/13) 9870001730702717 a001 1292/299537289*28143753123^(4/5) 9870001730702717 a001 1292/299537289*10749957122^(5/6) 9870001730702717 a001 1292/299537289*4106118243^(20/23) 9870001730702717 a001 1292/299537289*1568397607^(10/11) 9870001730702717 a001 692290540864/701408733 9870001730702717 a004 Fibonacci(18)*Lucas(43)/(1/2+sqrt(5)/2)^45 9870001730702717 a001 2584/228826127*228826127^(19/20) 9870001730702717 a001 2584/1568397607*2537720636^(14/15) 9870001730702717 a001 2584/1568397607*17393796001^(6/7) 9870001730702717 a001 2584/1568397607*45537549124^(14/17) 9870001730702717 a001 2584/1568397607*817138163596^(14/19) 9870001730702717 a001 2584/1568397607*14662949395604^(2/3) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^42/Lucas(44) 9870001730702717 a001 2584/1568397607*505019158607^(3/4) 9870001730702717 a001 2584/1568397607*192900153618^(7/9) 9870001730702717 a001 2584/1568397607*10749957122^(7/8) 9870001730702717 a001 2584/1568397607*4106118243^(21/23) 9870001730702717 a001 1812440166072/1836311903 9870001730702717 a004 Fibonacci(18)*Lucas(45)/(1/2+sqrt(5)/2)^47 9870001730702717 a001 1292/299537289*599074578^(20/21) 9870001730702717 a001 2584/4106118243*312119004989^(4/5) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^44/Lucas(46) 9870001730702717 a001 2584/4106118243*23725150497407^(11/16) 9870001730702717 a001 2584/4106118243*73681302247^(11/13) 9870001730702717 a001 2584/4106118243*10749957122^(11/12) 9870001730702717 a001 593128744669/600940872 9870001730702717 a004 Fibonacci(18)*Lucas(47)/(1/2+sqrt(5)/2)^49 9870001730702717 a001 2584/1568397607*1568397607^(21/22) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^46/Lucas(48) 9870001730702717 a001 12422649705984/12586269025 9870001730702717 a004 Fibonacci(18)*Lucas(49)/(1/2+sqrt(5)/2)^51 9870001730702717 a001 2584/4106118243*4106118243^(22/23) 9870001730702717 a001 2584/28143753123*45537549124^(16/17) 9870001730702717 a001 2584/28143753123*14662949395604^(16/21) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^48/Lucas(50) 9870001730702717 a001 2584/28143753123*192900153618^(8/9) 9870001730702717 a001 2584/28143753123*73681302247^(12/13) 9870001730702717 a001 32522919160600/32951280099 9870001730702717 a004 Fibonacci(18)*Lucas(51)/(1/2+sqrt(5)/2)^53 9870001730702717 a001 1292/5374978561*10749957122^(23/24) 9870001730702717 a001 2584/73681302247*312119004989^(10/11) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^50/Lucas(52) 9870001730702717 a001 2584/73681302247*3461452808002^(5/6) 9870001730702717 a001 32951280099/33385283 9870001730702717 a004 Fibonacci(18)*Lucas(53)/(1/2+sqrt(5)/2)^55 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^52/Lucas(54) 9870001730702717 a001 1292/96450076809*23725150497407^(13/16) 9870001730702717 a001 1292/96450076809*505019158607^(13/14) 9870001730702717 a001 222915404166848/225851433717 9870001730702717 a004 Fibonacci(18)*Lucas(55)/(1/2+sqrt(5)/2)^57 9870001730702717 a001 2584/505019158607*14662949395604^(6/7) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^54/Lucas(56) 9870001730702717 a004 Fibonacci(18)*Lucas(57)/(1/2+sqrt(5)/2)^59 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^56/Lucas(58) 9870001730702717 a001 190985613750917/193501094490 9870001730702717 a004 Fibonacci(18)*Lucas(59)/(1/2+sqrt(5)/2)^61 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^58/Lucas(60) 9870001730702717 a004 Fibonacci(18)*Lucas(61)/(1/2+sqrt(5)/2)^63 9870001730702717 a001 2584/9062201101803*14662949395604^(20/21) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^60/Lucas(62) 9870001730702717 a001 10472278965884504/10610209857723 9870001730702717 a004 Fibonacci(18)*Lucas(63)/(1/2+sqrt(5)/2)^65 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^62/Lucas(64) 9870001730702717 a004 Fibonacci(18)*Lucas(65)/(1/2+sqrt(5)/2)^67 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^64/Lucas(66) 9870001730702717 a004 Fibonacci(18)*Lucas(67)/(1/2+sqrt(5)/2)^69 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^66/Lucas(68) 9870001730702717 a004 Fibonacci(18)*Lucas(69)/(1/2+sqrt(5)/2)^71 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^68/Lucas(70) 9870001730702717 a004 Fibonacci(18)*Lucas(71)/(1/2+sqrt(5)/2)^73 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^70/Lucas(72) 9870001730702717 a004 Fibonacci(18)*Lucas(73)/(1/2+sqrt(5)/2)^75 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^72/Lucas(74) 9870001730702717 a004 Fibonacci(18)*Lucas(75)/(1/2+sqrt(5)/2)^77 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^74/Lucas(76) 9870001730702717 a004 Fibonacci(18)*Lucas(77)/(1/2+sqrt(5)/2)^79 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^76/Lucas(78) 9870001730702717 a004 Fibonacci(18)*Lucas(79)/(1/2+sqrt(5)/2)^81 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^78/Lucas(80) 9870001730702717 a004 Fibonacci(18)*Lucas(81)/(1/2+sqrt(5)/2)^83 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^80/Lucas(82) 9870001730702717 a004 Fibonacci(18)*Lucas(83)/(1/2+sqrt(5)/2)^85 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^82/Lucas(84) 9870001730702717 a004 Fibonacci(18)*Lucas(85)/(1/2+sqrt(5)/2)^87 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^84/Lucas(86) 9870001730702717 a004 Fibonacci(18)*Lucas(87)/(1/2+sqrt(5)/2)^89 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^86/Lucas(88) 9870001730702717 a004 Fibonacci(18)*Lucas(89)/(1/2+sqrt(5)/2)^91 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^88/Lucas(90) 9870001730702717 a004 Fibonacci(18)*Lucas(91)/(1/2+sqrt(5)/2)^93 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^90/Lucas(92) 9870001730702717 a004 Fibonacci(18)*Lucas(93)/(1/2+sqrt(5)/2)^95 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^92/Lucas(94) 9870001730702717 a004 Fibonacci(18)*Lucas(95)/(1/2+sqrt(5)/2)^97 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^94/Lucas(96) 9870001730702717 a004 Fibonacci(18)*Lucas(97)/(1/2+sqrt(5)/2)^99 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^96/Lucas(98) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^98/Lucas(100) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^97/Lucas(99) 9870001730702717 a004 Fibonacci(9)*Lucas(9)/(1/2+sqrt(5)/2)^2 9870001730702717 a004 Fibonacci(18)*Lucas(98)/(1/2+sqrt(5)/2)^100 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^95/Lucas(97) 9870001730702717 a004 Fibonacci(18)*Lucas(96)/(1/2+sqrt(5)/2)^98 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^93/Lucas(95) 9870001730702717 a004 Fibonacci(18)*Lucas(94)/(1/2+sqrt(5)/2)^96 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^91/Lucas(93) 9870001730702717 a004 Fibonacci(18)*Lucas(92)/(1/2+sqrt(5)/2)^94 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^89/Lucas(91) 9870001730702717 a004 Fibonacci(18)*Lucas(90)/(1/2+sqrt(5)/2)^92 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^87/Lucas(89) 9870001730702717 a004 Fibonacci(18)*Lucas(88)/(1/2+sqrt(5)/2)^90 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^85/Lucas(87) 9870001730702717 a004 Fibonacci(18)*Lucas(86)/(1/2+sqrt(5)/2)^88 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^83/Lucas(85) 9870001730702717 a004 Fibonacci(18)*Lucas(84)/(1/2+sqrt(5)/2)^86 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^81/Lucas(83) 9870001730702717 a004 Fibonacci(18)*Lucas(82)/(1/2+sqrt(5)/2)^84 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^79/Lucas(81) 9870001730702717 a004 Fibonacci(18)*Lucas(80)/(1/2+sqrt(5)/2)^82 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^77/Lucas(79) 9870001730702717 a004 Fibonacci(18)*Lucas(78)/(1/2+sqrt(5)/2)^80 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^75/Lucas(77) 9870001730702717 a004 Fibonacci(18)*Lucas(76)/(1/2+sqrt(5)/2)^78 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^73/Lucas(75) 9870001730702717 a004 Fibonacci(18)*Lucas(74)/(1/2+sqrt(5)/2)^76 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^71/Lucas(73) 9870001730702717 a004 Fibonacci(18)*Lucas(72)/(1/2+sqrt(5)/2)^74 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^69/Lucas(71) 9870001730702717 a004 Fibonacci(18)*Lucas(70)/(1/2+sqrt(5)/2)^72 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^67/Lucas(69) 9870001730702717 a004 Fibonacci(18)*Lucas(68)/(1/2+sqrt(5)/2)^70 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^65/Lucas(67) 9870001730702717 a004 Fibonacci(18)*Lucas(66)/(1/2+sqrt(5)/2)^68 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^63/Lucas(65) 9870001730702717 a004 Fibonacci(18)*Lucas(64)/(1/2+sqrt(5)/2)^66 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^61/Lucas(63) 9870001730702717 a004 Fibonacci(18)*Lucas(62)/(1/2+sqrt(5)/2)^64 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^59/Lucas(61) 9870001730702717 a004 Fibonacci(18)*Lucas(60)/(1/2+sqrt(5)/2)^62 9870001730702717 a001 2584/2139295485799*14662949395604^(19/21) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^57/Lucas(59) 9870001730702717 a004 Fibonacci(18)*Lucas(58)/(1/2+sqrt(5)/2)^60 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^55/Lucas(57) 9870001730702717 a004 Fibonacci(18)*Lucas(56)/(1/2+sqrt(5)/2)^58 9870001730702717 a001 180342350278940/182717648081 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^53/Lucas(55) 9870001730702717 a004 Fibonacci(18)*Lucas(54)/(1/2+sqrt(5)/2)^56 9870001730702717 a001 137769296391032/139583862445 9870001730702717 a001 2584/119218851371*817138163596^(17/19) 9870001730702717 a001 2584/119218851371*14662949395604^(17/21) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^51/Lucas(53) 9870001730702717 a001 2584/119218851371*192900153618^(17/18) 9870001730702717 a004 Fibonacci(18)*Lucas(52)/(1/2+sqrt(5)/2)^54 9870001730702717 a001 52623188615216/53316291173 9870001730702717 a001 646/11384387281*14662949395604^(7/9) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^49/Lucas(51) 9870001730702717 a001 646/11384387281*505019158607^(7/8) 9870001730702717 a004 Fibonacci(18)*Lucas(50)/(1/2+sqrt(5)/2)^52 9870001730702717 a001 10050134727308/10182505537 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^47/Lucas(49) 9870001730702717 a004 Fibonacci(18)*Lucas(48)/(1/2+sqrt(5)/2)^50 9870001730702717 a001 7677619748632/7778742049 9870001730702717 a001 2584/6643838879*45537549124^(15/17) 9870001730702717 a001 2584/6643838879*312119004989^(9/11) 9870001730702717 a001 2584/6643838879*14662949395604^(5/7) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^45/Lucas(47) 9870001730702717 a001 2584/6643838879*192900153618^(5/6) 9870001730702717 a001 2584/6643838879*28143753123^(9/10) 9870001730702717 a001 2584/6643838879*10749957122^(15/16) 9870001730702717 a004 Fibonacci(18)*Lucas(46)/(1/2+sqrt(5)/2)^48 9870001730702717 a001 2932589791280/2971215073 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^43/Lucas(45) 9870001730702717 a004 Fibonacci(18)*Lucas(44)/(1/2+sqrt(5)/2)^46 9870001730702717 a001 32945577212/33379505 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^41/Lucas(43) 9870001730702717 a004 Fibonacci(18)*Lucas(42)/(1/2+sqrt(5)/2)^44 9870001730702717 a001 427859084344/433494437 9870001730702717 a001 2584/370248451*2537720636^(13/15) 9870001730702717 a001 2584/370248451*45537549124^(13/17) 9870001730702717 a001 2584/370248451*14662949395604^(13/21) 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^39/Lucas(41) 9870001730702717 a001 2584/370248451*192900153618^(13/18) 9870001730702717 a001 2584/370248451*73681302247^(3/4) 9870001730702717 a001 2584/370248451*10749957122^(13/16) 9870001730702717 a001 2584/370248451*599074578^(13/14) 9870001730702717 a004 Fibonacci(18)*Lucas(40)/(1/2+sqrt(5)/2)^42 9870001730702717 a001 163427627824/165580141 9870001730702717 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^37/Lucas(39) 9870001730702718 a004 Fibonacci(18)*Lucas(38)/(1/2+sqrt(5)/2)^40 9870001730702720 a001 31211899564/31622993 9870001730702720 a001 2584/54018521*2537720636^(7/9) 9870001730702720 a001 2584/54018521*17393796001^(5/7) 9870001730702720 a001 2584/54018521*312119004989^(7/11) 9870001730702720 a001 2584/54018521*14662949395604^(5/9) 9870001730702720 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^35/Lucas(37) 9870001730702720 a001 2584/54018521*505019158607^(5/8) 9870001730702720 a001 2584/54018521*28143753123^(7/10) 9870001730702720 a001 2584/54018521*599074578^(5/6) 9870001730702720 a001 2584/54018521*228826127^(7/8) 9870001730702724 a004 Fibonacci(38)/Lucas(18)/(1/2+sqrt(5)/2)^4 9870001730702725 a004 Fibonacci(40)/Lucas(18)/(1/2+sqrt(5)/2)^6 9870001730702725 a004 Fibonacci(42)/Lucas(18)/(1/2+sqrt(5)/2)^8 9870001730702725 a004 Fibonacci(44)/Lucas(18)/(1/2+sqrt(5)/2)^10 9870001730702725 a004 Fibonacci(46)/Lucas(18)/(1/2+sqrt(5)/2)^12 9870001730702725 a004 Fibonacci(48)/Lucas(18)/(1/2+sqrt(5)/2)^14 9870001730702725 a004 Fibonacci(50)/Lucas(18)/(1/2+sqrt(5)/2)^16 9870001730702725 a004 Fibonacci(52)/Lucas(18)/(1/2+sqrt(5)/2)^18 9870001730702725 a004 Fibonacci(54)/Lucas(18)/(1/2+sqrt(5)/2)^20 9870001730702725 a004 Fibonacci(56)/Lucas(18)/(1/2+sqrt(5)/2)^22 9870001730702725 a004 Fibonacci(58)/Lucas(18)/(1/2+sqrt(5)/2)^24 9870001730702725 a004 Fibonacci(60)/Lucas(18)/(1/2+sqrt(5)/2)^26 9870001730702725 a004 Fibonacci(62)/Lucas(18)/(1/2+sqrt(5)/2)^28 9870001730702725 a004 Fibonacci(64)/Lucas(18)/(1/2+sqrt(5)/2)^30 9870001730702725 a004 Fibonacci(66)/Lucas(18)/(1/2+sqrt(5)/2)^32 9870001730702725 a004 Fibonacci(68)/Lucas(18)/(1/2+sqrt(5)/2)^34 9870001730702725 a004 Fibonacci(70)/Lucas(18)/(1/2+sqrt(5)/2)^36 9870001730702725 a004 Fibonacci(18)*Lucas(36)/(1/2+sqrt(5)/2)^38 9870001730702725 a004 Fibonacci(74)/Lucas(18)/(1/2+sqrt(5)/2)^40 9870001730702725 a004 Fibonacci(76)/Lucas(18)/(1/2+sqrt(5)/2)^42 9870001730702725 a004 Fibonacci(78)/Lucas(18)/(1/2+sqrt(5)/2)^44 9870001730702725 a004 Fibonacci(80)/Lucas(18)/(1/2+sqrt(5)/2)^46 9870001730702725 a004 Fibonacci(82)/Lucas(18)/(1/2+sqrt(5)/2)^48 9870001730702725 a004 Fibonacci(84)/Lucas(18)/(1/2+sqrt(5)/2)^50 9870001730702725 a004 Fibonacci(86)/Lucas(18)/(1/2+sqrt(5)/2)^52 9870001730702725 a004 Fibonacci(88)/Lucas(18)/(1/2+sqrt(5)/2)^54 9870001730702725 a004 Fibonacci(90)/Lucas(18)/(1/2+sqrt(5)/2)^56 9870001730702725 a004 Fibonacci(92)/Lucas(18)/(1/2+sqrt(5)/2)^58 9870001730702725 a004 Fibonacci(94)/Lucas(18)/(1/2+sqrt(5)/2)^60 9870001730702725 a004 Fibonacci(96)/Lucas(18)/(1/2+sqrt(5)/2)^62 9870001730702725 a004 Fibonacci(98)/Lucas(18)/(1/2+sqrt(5)/2)^64 9870001730702725 a004 Fibonacci(100)/Lucas(18)/(1/2+sqrt(5)/2)^66 9870001730702725 a004 Fibonacci(99)/Lucas(18)/(1/2+sqrt(5)/2)^65 9870001730702725 a004 Fibonacci(97)/Lucas(18)/(1/2+sqrt(5)/2)^63 9870001730702725 a004 Fibonacci(95)/Lucas(18)/(1/2+sqrt(5)/2)^61 9870001730702725 a004 Fibonacci(93)/Lucas(18)/(1/2+sqrt(5)/2)^59 9870001730702725 a004 Fibonacci(91)/Lucas(18)/(1/2+sqrt(5)/2)^57 9870001730702725 a004 Fibonacci(89)/Lucas(18)/(1/2+sqrt(5)/2)^55 9870001730702725 a004 Fibonacci(87)/Lucas(18)/(1/2+sqrt(5)/2)^53 9870001730702725 a004 Fibonacci(85)/Lucas(18)/(1/2+sqrt(5)/2)^51 9870001730702725 a004 Fibonacci(83)/Lucas(18)/(1/2+sqrt(5)/2)^49 9870001730702725 a004 Fibonacci(81)/Lucas(18)/(1/2+sqrt(5)/2)^47 9870001730702725 a004 Fibonacci(79)/Lucas(18)/(1/2+sqrt(5)/2)^45 9870001730702725 a004 Fibonacci(77)/Lucas(18)/(1/2+sqrt(5)/2)^43 9870001730702725 a004 Fibonacci(75)/Lucas(18)/(1/2+sqrt(5)/2)^41 9870001730702725 a004 Fibonacci(73)/Lucas(18)/(1/2+sqrt(5)/2)^39 9870001730702725 a004 Fibonacci(71)/Lucas(18)/(1/2+sqrt(5)/2)^37 9870001730702725 a004 Fibonacci(69)/Lucas(18)/(1/2+sqrt(5)/2)^35 9870001730702725 a004 Fibonacci(67)/Lucas(18)/(1/2+sqrt(5)/2)^33 9870001730702725 a004 Fibonacci(65)/Lucas(18)/(1/2+sqrt(5)/2)^31 9870001730702725 a004 Fibonacci(63)/Lucas(18)/(1/2+sqrt(5)/2)^29 9870001730702725 a004 Fibonacci(61)/Lucas(18)/(1/2+sqrt(5)/2)^27 9870001730702725 a004 Fibonacci(59)/Lucas(18)/(1/2+sqrt(5)/2)^25 9870001730702725 a004 Fibonacci(57)/Lucas(18)/(1/2+sqrt(5)/2)^23 9870001730702725 a004 Fibonacci(55)/Lucas(18)/(1/2+sqrt(5)/2)^21 9870001730702725 a004 Fibonacci(53)/Lucas(18)/(1/2+sqrt(5)/2)^19 9870001730702725 a004 Fibonacci(51)/Lucas(18)/(1/2+sqrt(5)/2)^17 9870001730702725 a004 Fibonacci(49)/Lucas(18)/(1/2+sqrt(5)/2)^15 9870001730702725 a004 Fibonacci(47)/Lucas(18)/(1/2+sqrt(5)/2)^13 9870001730702725 a004 Fibonacci(45)/Lucas(18)/(1/2+sqrt(5)/2)^11 9870001730702725 a004 Fibonacci(43)/Lucas(18)/(1/2+sqrt(5)/2)^9 9870001730702726 a004 Fibonacci(41)/Lucas(18)/(1/2+sqrt(5)/2)^7 9870001730702726 a004 Fibonacci(39)/Lucas(18)/(1/2+sqrt(5)/2)^5 9870001730702729 a004 Fibonacci(37)/Lucas(18)/(1/2+sqrt(5)/2)^3 9870001730702736 a001 23843769560/24157817 9870001730702739 a001 2584/20633239*141422324^(11/13) 9870001730702740 a001 2584/20633239*2537720636^(11/15) 9870001730702740 a001 2584/20633239*45537549124^(11/17) 9870001730702740 a001 2584/20633239*312119004989^(3/5) 9870001730702740 a001 2584/20633239*817138163596^(11/19) 9870001730702740 a001 2584/20633239*14662949395604^(11/21) 9870001730702740 a001 2584/20633239*(1/2+1/2*5^(1/2))^33 9870001730702740 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^33/Lucas(35) 9870001730702740 a001 2584/20633239*192900153618^(11/18) 9870001730702740 a001 2584/20633239*10749957122^(11/16) 9870001730702740 a001 2584/20633239*1568397607^(3/4) 9870001730702740 a001 2584/20633239*599074578^(11/14) 9870001730702748 a001 2584/20633239*33385282^(11/12) 9870001730702749 a004 Fibonacci(35)/Lucas(18)/(1/2+sqrt(5)/2) 9870001730702777 a004 Fibonacci(18)*Lucas(34)/(1/2+sqrt(5)/2)^36 9870001730702852 a001 9107509552/9227465 9870001730702876 a001 646/1970299*(1/2+1/2*5^(1/2))^31 9870001730702876 a001 646/1970299*9062201101803^(1/2) 9870001730702884 a001 1762289/5778+1762289/5778*5^(1/2) 9870001730702884 a004 Fibonacci(33)*(1/2+sqrt(5)/2)/Lucas(18) 9870001730703133 a004 Fibonacci(18)*Lucas(32)/(1/2+sqrt(5)/2)^34 9870001730703647 a001 1739379548/1762289 9870001730703705 a001 726103/1926*710647^(1/14) 9870001730703800 a001 1346269/5778*7881196^(1/11) 9870001730703806 a001 2584/3010349*(1/2+1/2*5^(1/2))^29 9870001730703806 a001 2584/3010349*1322157322203^(1/2) 9870001730703815 a001 1346269/5778*141422324^(1/13) 9870001730703815 a001 1346269/5778*2537720636^(1/15) 9870001730703815 a001 1346269/5778*45537549124^(1/17) 9870001730703815 a001 1346269/5778*14662949395604^(1/21) 9870001730703815 a001 1346269/5778*(1/2+1/2*5^(1/2))^3 9870001730703815 a001 1346269/5778*192900153618^(1/18) 9870001730703815 a001 1346269/5778*10749957122^(1/16) 9870001730703815 a001 1346269/5778*599074578^(1/14) 9870001730703815 a001 1346269/5778*33385282^(1/12) 9870001730704100 a001 1346269/5778*1860498^(1/10) 9870001730705568 a004 Fibonacci(18)*Lucas(30)/(1/2+sqrt(5)/2)^32 9870001730709093 a001 1328767736/1346269 9870001730710052 a001 2584/1149851*7881196^(9/11) 9870001730710181 a001 2584/1149851*141422324^(9/13) 9870001730710182 a001 2584/1149851*2537720636^(3/5) 9870001730710182 a001 2584/1149851*45537549124^(9/17) 9870001730710182 a001 2584/1149851*817138163596^(9/19) 9870001730710182 a001 2584/1149851*14662949395604^(3/7) 9870001730710182 a001 2584/1149851*(1/2+1/2*5^(1/2))^27 9870001730710182 a001 2584/1149851*192900153618^(1/2) 9870001730710182 a001 2584/1149851*10749957122^(9/16) 9870001730710182 a001 2584/1149851*599074578^(9/14) 9870001730710187 a001 514229/5778*20633239^(1/7) 9870001730710188 a001 2584/1149851*33385282^(3/4) 9870001730710191 a001 514229/5778*2537720636^(1/9) 9870001730710191 a001 514229/5778*312119004989^(1/11) 9870001730710191 a001 514229/5778*(1/2+1/2*5^(1/2))^5 9870001730710191 a001 514229/5778*28143753123^(1/10) 9870001730710191 a001 514229/5778*228826127^(1/8) 9870001730710666 a001 514229/5778*1860498^(1/6) 9870001730712614 a001 726103/1926*271443^(1/13) 9870001730712748 a001 2584/1149851*1860498^(9/10) 9870001730714094 a001 105937/1926*271443^(3/13) 9870001730720483 a001 416020/2889*271443^(2/13) 9870001730722260 a004 Fibonacci(18)*Lucas(28)/(1/2+sqrt(5)/2)^30 9870001730741140 a001 1762289/2889*103682^(1/24) 9870001730746418 a001 507544112/514229 9870001730753866 a001 34/5779*20633239^(5/7) 9870001730753883 a001 34/5779*2537720636^(5/9) 9870001730753883 a001 34/5779*312119004989^(5/11) 9870001730753883 a001 34/5779*(1/2+1/2*5^(1/2))^25 9870001730753883 a001 34/5779*3461452808002^(5/12) 9870001730753883 a001 34/5779*28143753123^(1/2) 9870001730753883 a001 34/5779*228826127^(5/8) 9870001730753887 a001 98209/2889*20633239^(1/5) 9870001730753892 a001 98209/2889*17393796001^(1/7) 9870001730753892 a001 98209/2889*14662949395604^(1/9) 9870001730753892 a001 98209/2889*(1/2+1/2*5^(1/2))^7 9870001730753892 a001 98209/2889*599074578^(1/6) 9870001730756259 a001 34/5779*1860498^(5/6) 9870001730758778 a001 98209/2889*710647^(1/4) 9870001730778821 a001 726103/1926*103682^(1/12) 9870001730818583 a001 1346269/5778*103682^(1/8) 9870001730836672 a004 Fibonacci(18)*Lucas(26)/(1/2+sqrt(5)/2)^28 9870001730852898 a001 416020/2889*103682^(1/6) 9870001730874818 a001 121393/5778*103682^(1/3) 9870001730901470 a001 514229/5778*103682^(5/24) 9870001730911737 a001 2584/64079*64079^(21/23) 9870001730912718 a001 105937/1926*103682^(1/4) 9870001730988932 a001 1762289/2889*39603^(1/22) 9870001731002250 a001 5701900/5777 9870001731021684 a001 98209/2889*103682^(7/24) 9870001731036370 a001 75025/5778*439204^(1/3) 9870001731053382 a001 75025/5778*7881196^(3/11) 9870001731053416 a001 2584/167761*(1/2+1/2*5^(1/2))^23 9870001731053416 a001 2584/167761*4106118243^(1/2) 9870001731053425 a001 75025/5778*141422324^(3/13) 9870001731053425 a001 75025/5778*2537720636^(1/5) 9870001731053425 a001 75025/5778*45537549124^(3/17) 9870001731053425 a001 75025/5778*817138163596^(3/19) 9870001731053425 a001 75025/5778*14662949395604^(1/7) 9870001731053425 a001 75025/5778*(1/2+1/2*5^(1/2))^9 9870001731053425 a001 75025/5778*192900153618^(1/6) 9870001731053425 a001 75025/5778*10749957122^(3/16) 9870001731053425 a001 75025/5778*599074578^(3/14) 9870001731053427 a001 75025/5778*33385282^(1/4) 9870001731054280 a001 75025/5778*1860498^(3/10) 9870001731274405 a001 726103/1926*39603^(1/11) 9870001731397729 a001 75025/5778*103682^(3/8) 9870001731561958 a001 1346269/5778*39603^(3/22) 9870001731620860 a004 Fibonacci(18)*Lucas(24)/(1/2+sqrt(5)/2)^26 9870001731844065 a001 416020/2889*39603^(2/11) 9870001731933304 a001 2584/167761*103682^(23/24) 9870001731956846 a001 28657/5778*64079^(11/23) 9870001732140429 a001 514229/5778*39603^(5/22) 9870001732271804 a001 646/6119*24476^(19/21) 9870001732399468 a001 105937/1926*39603^(3/11) 9870001732645059 a001 2576/321*39603^(5/11) 9870001732755748 a001 74049688/75025 9870001732756225 a001 98209/2889*39603^(7/22) 9870001732857151 a001 121393/5778*39603^(4/11) 9870001732859544 a001 1762289/2889*15127^(1/20) 9870001733066651 a001 2584/64079*439204^(7/9) 9870001733106346 a001 2584/64079*7881196^(7/11) 9870001733106403 a001 28657/5778*7881196^(1/3) 9870001733106433 a001 2584/64079*20633239^(3/5) 9870001733106447 a001 2584/64079*141422324^(7/13) 9870001733106447 a001 2584/64079*2537720636^(7/15) 9870001733106447 a001 2584/64079*17393796001^(3/7) 9870001733106447 a001 2584/64079*45537549124^(7/17) 9870001733106447 a001 2584/64079*14662949395604^(1/3) 9870001733106447 a001 2584/64079*(1/2+1/2*5^(1/2))^21 9870001733106447 a001 2584/64079*192900153618^(7/18) 9870001733106447 a001 2584/64079*10749957122^(7/16) 9870001733106447 a001 2584/64079*599074578^(1/2) 9870001733106452 a001 2584/64079*33385282^(7/12) 9870001733106456 a001 28657/5778*312119004989^(1/5) 9870001733106456 a001 28657/5778*(1/2+1/2*5^(1/2))^11 9870001733106456 a001 28657/5778*1568397607^(1/4) 9870001733108443 a001 2584/64079*1860498^(7/10) 9870001733121105 a001 2584/64079*710647^(3/4) 9870001733527272 a001 28657/5778*103682^(11/24) 9870001733627854 a001 75025/5778*39603^(9/22) 9870001733909823 a001 2584/64079*103682^(7/8) 9870001735015629 a001 726103/1926*15127^(1/10) 9870001736252980 a001 28657/5778*39603^(1/2) 9870001736979074 a001 5473/2889*24476^(13/21) 9870001736995765 a004 Fibonacci(18)*Lucas(22)/(1/2+sqrt(5)/2)^24 9870001737173794 a001 1346269/5778*15127^(3/20) 9870001737337184 a001 514229/1364*521^(2/13) 9870001739113448 a001 2584/64079*39603^(21/22) 9870001739326254 a001 832040/3571*1364^(1/5) 9870001739326513 a001 416020/2889*15127^(1/5) 9870001741493489 a001 514229/5778*15127^(1/4) 9870001742589471 a001 2584/9349*9349^(17/19) 9870001743623140 a001 105937/1926*15127^(3/10) 9870001744686662 m001 (HardyLittlewoodC4-Otter)/FeigenbaumD 9870001744774400 a001 28284464/28657 9870001745192440 a001 646/6119*64079^(19/23) 9870001745819509 a001 5473/2889*64079^(13/23) 9870001745850510 a001 98209/2889*15127^(7/20) 9870001746874287 a001 726103/13201*3571^(6/17) 9870001747127290 a001 1762289/2889*5778^(1/18) 9870001747178131 a001 646/6119*817138163596^(1/3) 9870001747178131 a001 646/6119*(1/2+1/2*5^(1/2))^19 9870001747178131 a001 646/6119*87403803^(1/2) 9870001747178139 a001 5473/2889*141422324^(1/3) 9870001747178140 a001 5473/2889*(1/2+1/2*5^(1/2))^13 9870001747178140 a001 5473/2889*73681302247^(1/4) 9870001747245117 a001 5473/2889*271443^(1/2) 9870001747675467 a001 5473/2889*103682^(13/24) 9870001747822048 a001 121393/5778*15127^(2/5) 9870001747904994 a001 646/6119*103682^(19/24) 9870001750289594 a001 17711/5778*15127^(3/5) 9870001750463362 a001 75025/5778*15127^(9/20) 9870001750896759 a001 5473/2889*39603^(13/22) 9870001751351179 a001 2576/321*15127^(1/2) 9870001752249547 a001 5702887/103682*3571^(6/17) 9870001752613036 a001 646/6119*39603^(19/22) 9870001753033787 a001 4976784/90481*3571^(6/17) 9870001753148206 a001 39088169/710647*3571^(6/17) 9870001753164900 a001 831985/15126*3571^(6/17) 9870001753167335 a001 267914296/4870847*3571^(6/17) 9870001753167691 a001 233802911/4250681*3571^(6/17) 9870001753167743 a001 1836311903/33385282*3571^(6/17) 9870001753167750 a001 1602508992/29134601*3571^(6/17) 9870001753167751 a001 12586269025/228826127*3571^(6/17) 9870001753167751 a001 10983760033/199691526*3571^(6/17) 9870001753167751 a001 86267571272/1568397607*3571^(6/17) 9870001753167751 a001 75283811239/1368706081*3571^(6/17) 9870001753167751 a001 591286729879/10749957122*3571^(6/17) 9870001753167751 a001 12585437040/228811001*3571^(6/17) 9870001753167751 a001 4052739537881/73681302247*3571^(6/17) 9870001753167751 a001 3536736619241/64300051206*3571^(6/17) 9870001753167751 a001 6557470319842/119218851371*3571^(6/17) 9870001753167751 a001 2504730781961/45537549124*3571^(6/17) 9870001753167751 a001 956722026041/17393796001*3571^(6/17) 9870001753167751 a001 365435296162/6643838879*3571^(6/17) 9870001753167751 a001 139583862445/2537720636*3571^(6/17) 9870001753167751 a001 53316291173/969323029*3571^(6/17) 9870001753167751 a001 20365011074/370248451*3571^(6/17) 9870001753167752 a001 7778742049/141422324*3571^(6/17) 9870001753167755 a001 2971215073/54018521*3571^(6/17) 9870001753167775 a001 1134903170/20633239*3571^(6/17) 9870001753167910 a001 433494437/7881196*3571^(6/17) 9870001753168841 a001 165580141/3010349*3571^(6/17) 9870001753175217 a001 63245986/1149851*3571^(6/17) 9870001753218921 a001 24157817/439204*3571^(6/17) 9870001753518474 a001 9227465/167761*3571^(6/17) 9870001754476233 a001 4181/5778*9349^(15/19) 9870001755564693 a001 1346269/15127*3571^(5/17) 9870001755571641 a001 3524578/64079*3571^(6/17) 9870001756829713 a001 28657/5778*15127^(11/20) 9870001759327117 a001 4181/2207*2207^(13/16) 9870001763551121 a001 726103/1926*5778^(1/9) 9870001769644255 a001 1346269/24476*3571^(6/17) 9870001773835911 a004 Fibonacci(18)*Lucas(20)/(1/2+sqrt(5)/2)^22 9870001775084993 a001 196418/9349*3571^(8/17) 9870001775214716 a001 5473/2889*15127^(13/20) 9870001776591280 m005 (1/2*Zeta(3)+2/3)/(4/5*gamma-1/3) 9870001779977032 a001 1346269/5778*5778^(1/6) 9870001780119510 a007 Real Root Of -315*x^4+455*x^3+377*x^2+320*x+685 9870001785597233 a001 5702887/9349*1364^(1/15) 9870001788154665 a001 646/6119*15127^(19/20) 9870001792403909 a001 3524578/39603*3571^(5/17) 9870001796397498 a001 416020/2889*5778^(2/9) 9870001797778678 a001 9227465/103682*3571^(5/17) 9870001798562846 a001 24157817/271443*3571^(5/17) 9870001798677255 a001 63245986/710647*3571^(5/17) 9870001798693947 a001 165580141/1860498*3571^(5/17) 9870001798696382 a001 433494437/4870847*3571^(5/17) 9870001798696738 a001 1134903170/12752043*3571^(5/17) 9870001798696789 a001 2971215073/33385282*3571^(5/17) 9870001798696797 a001 7778742049/87403803*3571^(5/17) 9870001798696798 a001 20365011074/228826127*3571^(5/17) 9870001798696798 a001 53316291173/599074578*3571^(5/17) 9870001798696798 a001 139583862445/1568397607*3571^(5/17) 9870001798696798 a001 365435296162/4106118243*3571^(5/17) 9870001798696798 a001 956722026041/10749957122*3571^(5/17) 9870001798696798 a001 2504730781961/28143753123*3571^(5/17) 9870001798696798 a001 6557470319842/73681302247*3571^(5/17) 9870001798696798 a001 10610209857723/119218851371*3571^(5/17) 9870001798696798 a001 4052739537881/45537549124*3571^(5/17) 9870001798696798 a001 1548008755920/17393796001*3571^(5/17) 9870001798696798 a001 591286729879/6643838879*3571^(5/17) 9870001798696798 a001 225851433717/2537720636*3571^(5/17) 9870001798696798 a001 86267571272/969323029*3571^(5/17) 9870001798696798 a001 32951280099/370248451*3571^(5/17) 9870001798696799 a001 12586269025/141422324*3571^(5/17) 9870001798696802 a001 4807526976/54018521*3571^(5/17) 9870001798696821 a001 1836311903/20633239*3571^(5/17) 9870001798696957 a001 3524667/39604*3571^(5/17) 9870001798697887 a001 267914296/3010349*3571^(5/17) 9870001798704263 a001 102334155/1149851*3571^(5/17) 9870001798747963 a001 39088169/439204*3571^(5/17) 9870001799047489 a001 14930352/167761*3571^(5/17) 9870001801092235 a001 311187/2161*3571^(4/17) 9870001801100468 a001 5702887/64079*3571^(5/17) 9870001807880985 r008 a(0)=1,K{-n^6,-30+78*n^3+96*n^2-67*n} 9870001808282567 a001 1597/843*843^(13/14) 9870001812832220 a001 514229/5778*5778^(5/18) 9870001815171796 a001 2178309/24476*3571^(5/17) 9870001817522417 r001 56i'th iterates of 2*x^2-1 of 9870001820543330 a001 317811/9349*3571^(7/17) 9870001821760810 a001 2584/3571*3571^(15/17) 9870001827151470 a001 5401852/5473 9870001829229617 a001 105937/1926*5778^(1/3) 9870001830289646 a001 2584/9349*24476^(17/21) 9870001831858740 a001 4181/5778*24476^(5/7) 9870001837932736 a001 5702887/39603*3571^(4/17) 9870001841850215 a001 2584/9349*64079^(17/23) 9870001842059243 a001 4181/5778*64079^(15/23) 9870001843307693 a001 7465176/51841*3571^(4/17) 9870001843416474 a001 4181/5778*167761^(3/5) 9870001843598468 a001 4181/5778*439204^(5/9) 9870001843626821 a001 4181/5778*7881196^(5/11) 9870001843626884 a001 4181/5778*20633239^(3/7) 9870001843626886 a001 2584/9349*45537549124^(1/3) 9870001843626886 a001 2584/9349*(1/2+1/2*5^(1/2))^17 9870001843626893 a001 4181/5778*141422324^(5/13) 9870001843626893 a001 4181/5778*2537720636^(1/3) 9870001843626893 a001 4181/5778*45537549124^(5/17) 9870001843626893 a001 4181/5778*312119004989^(3/11) 9870001843626893 a001 4181/5778*14662949395604^(5/21) 9870001843626893 a001 4181/5778*(1/2+1/2*5^(1/2))^15 9870001843626893 a001 4181/5778*192900153618^(5/18) 9870001843626893 a001 4181/5778*28143753123^(3/10) 9870001843626893 a001 4181/5778*10749957122^(5/16) 9870001843626893 a001 4181/5778*599074578^(5/14) 9870001843626894 a001 4181/5778*228826127^(3/8) 9870001843626897 a001 4181/5778*33385282^(5/12) 9870001843626916 a001 2584/9349*12752043^(1/2) 9870001843628319 a001 4181/5778*1860498^(1/2) 9870001844091889 a001 39088169/271443*3571^(4/17) 9870001844200733 a001 4181/5778*103682^(5/8) 9870001844206301 a001 14619165/101521*3571^(4/17) 9870001844222994 a001 133957148/930249*3571^(4/17) 9870001844225429 a001 701408733/4870847*3571^(4/17) 9870001844225785 a001 1836311903/12752043*3571^(4/17) 9870001844225836 a001 14930208/103681*3571^(4/17) 9870001844225844 a001 12586269025/87403803*3571^(4/17) 9870001844225845 a001 32951280099/228826127*3571^(4/17) 9870001844225845 a001 43133785636/299537289*3571^(4/17) 9870001844225845 a001 32264490531/224056801*3571^(4/17) 9870001844225845 a001 591286729879/4106118243*3571^(4/17) 9870001844225845 a001 774004377960/5374978561*3571^(4/17) 9870001844225845 a001 4052739537881/28143753123*3571^(4/17) 9870001844225845 a001 1515744265389/10525900321*3571^(4/17) 9870001844225845 a001 3278735159921/22768774562*3571^(4/17) 9870001844225845 a001 2504730781961/17393796001*3571^(4/17) 9870001844225845 a001 956722026041/6643838879*3571^(4/17) 9870001844225845 a001 182717648081/1268860318*3571^(4/17) 9870001844225845 a001 139583862445/969323029*3571^(4/17) 9870001844225845 a001 53316291173/370248451*3571^(4/17) 9870001844225846 a001 10182505537/70711162*3571^(4/17) 9870001844225849 a001 7778742049/54018521*3571^(4/17) 9870001844225868 a001 2971215073/20633239*3571^(4/17) 9870001844226004 a001 567451585/3940598*3571^(4/17) 9870001844226934 a001 433494437/3010349*3571^(4/17) 9870001844233310 a001 165580141/1149851*3571^(4/17) 9870001844277012 a001 31622993/219602*3571^(4/17) 9870001844277237 a001 2584/9349*103682^(17/24) 9870001844576548 a001 24157817/167761*3571^(4/17) 9870001844981607 a001 6765/15127*9349^(16/19) 9870001845724734 a001 98209/2889*5778^(7/18) 9870001846621857 a001 3524578/15127*3571^(3/17) 9870001846629599 a001 9227465/64079*3571^(4/17) 9870001847917608 a001 4181/5778*39603^(15/22) 9870001848489696 a001 2584/9349*39603^(17/22) 9870001857349246 a001 1762289/2889*2207^(1/16) 9870001857697060 r005 Re(z^2+c),c=47/126+17/26*I,n=8 9870001860701418 a001 1762289/12238*3571^(4/17) 9870001861964018 a001 121393/5778*5778^(4/9) 9870001865476610 a007 Real Root Of 253*x^4-707*x^3+277*x^2-757*x+917 9870001865600790 m001 1/GAMMA(1/3)^2*Riemann1stZero^2/exp(Zeta(5)) 9870001866099386 a001 514229/9349*3571^(6/17) 9870001869934998 a001 2255/13201*9349^(18/19) 9870001870284669 a004 Fibonacci(20)*Lucas(19)/(1/2+sqrt(5)/2)^23 9870001872935266 a007 Real Root Of -775*x^4+97*x^3+298*x^2-889*x-339 9870001875976789 a001 4181/5778*15127^(3/4) 9870001878873079 a001 75025/5778*5778^(1/2) 9870001880290101 a001 2584/9349*15127^(17/20) 9870001883461867 a001 9227465/39603*3571^(3/17) 9870001888836752 a001 24157817/103682*3571^(3/17) 9870001889620938 a001 63245986/271443*3571^(3/17) 9870001889735349 a001 165580141/710647*3571^(3/17) 9870001889752041 a001 433494437/1860498*3571^(3/17) 9870001889754476 a001 1134903170/4870847*3571^(3/17) 9870001889754832 a001 2971215073/12752043*3571^(3/17) 9870001889754884 a001 7778742049/33385282*3571^(3/17) 9870001889754891 a001 20365011074/87403803*3571^(3/17) 9870001889754892 a001 53316291173/228826127*3571^(3/17) 9870001889754892 a001 139583862445/599074578*3571^(3/17) 9870001889754892 a001 365435296162/1568397607*3571^(3/17) 9870001889754892 a001 956722026041/4106118243*3571^(3/17) 9870001889754892 a001 2504730781961/10749957122*3571^(3/17) 9870001889754892 a001 6557470319842/28143753123*3571^(3/17) 9870001889754892 a001 10610209857723/45537549124*3571^(3/17) 9870001889754892 a001 4052739537881/17393796001*3571^(3/17) 9870001889754892 a001 1548008755920/6643838879*3571^(3/17) 9870001889754892 a001 591286729879/2537720636*3571^(3/17) 9870001889754892 a001 225851433717/969323029*3571^(3/17) 9870001889754893 a001 86267571272/370248451*3571^(3/17) 9870001889754893 a001 63246219/271444*3571^(3/17) 9870001889754896 a001 12586269025/54018521*3571^(3/17) 9870001889754916 a001 4807526976/20633239*3571^(3/17) 9870001889755051 a001 1836311903/7881196*3571^(3/17) 9870001889755982 a001 701408733/3010349*3571^(3/17) 9870001889762357 a001 267914296/1149851*3571^(3/17) 9870001889806059 a001 102334155/439204*3571^(3/17) 9870001890105591 a001 39088169/167761*3571^(3/17) 9870001892150684 a001 5702887/15127*3571^(2/17) 9870001892158614 a001 14930352/64079*3571^(3/17) 9870001893708508 a001 17711/15127*9349^(14/19) 9870001894028642 a001 2576/321*5778^(5/9) 9870001898646838 a001 6765/24476*9349^(17/19) 9870001906230246 a001 5702887/24476*3571^(3/17) 9870001907124816 a004 Fibonacci(22)*Lucas(19)/(1/2+sqrt(5)/2)^25 9870001908348664 a001 28657/15127*9349^(13/19) 9870001910533593 a001 10946/15127*9349^(15/19) 9870001910970168 a001 6624/2161*9349^(12/19) 9870001911618117 a001 832040/9349*3571^(5/17) 9870001912150050 a001 17711/103682*9349^(18/19) 9870001912499721 a004 Fibonacci(24)*Lucas(19)/(1/2+sqrt(5)/2)^27 9870001913283909 a004 Fibonacci(26)*Lucas(19)/(1/2+sqrt(5)/2)^29 9870001913398320 a004 Fibonacci(28)*Lucas(19)/(1/2+sqrt(5)/2)^31 9870001913415013 a004 Fibonacci(30)*Lucas(19)/(1/2+sqrt(5)/2)^33 9870001913417448 a004 Fibonacci(32)*Lucas(19)/(1/2+sqrt(5)/2)^35 9870001913417803 a004 Fibonacci(34)*Lucas(19)/(1/2+sqrt(5)/2)^37 9870001913417855 a004 Fibonacci(36)*Lucas(19)/(1/2+sqrt(5)/2)^39 9870001913417863 a004 Fibonacci(38)*Lucas(19)/(1/2+sqrt(5)/2)^41 9870001913417864 a004 Fibonacci(40)*Lucas(19)/(1/2+sqrt(5)/2)^43 9870001913417864 a004 Fibonacci(42)*Lucas(19)/(1/2+sqrt(5)/2)^45 9870001913417864 a004 Fibonacci(44)*Lucas(19)/(1/2+sqrt(5)/2)^47 9870001913417864 a004 Fibonacci(46)*Lucas(19)/(1/2+sqrt(5)/2)^49 9870001913417864 a004 Fibonacci(48)*Lucas(19)/(1/2+sqrt(5)/2)^51 9870001913417864 a004 Fibonacci(50)*Lucas(19)/(1/2+sqrt(5)/2)^53 9870001913417864 a004 Fibonacci(52)*Lucas(19)/(1/2+sqrt(5)/2)^55 9870001913417864 a004 Fibonacci(54)*Lucas(19)/(1/2+sqrt(5)/2)^57 9870001913417864 a004 Fibonacci(56)*Lucas(19)/(1/2+sqrt(5)/2)^59 9870001913417864 a004 Fibonacci(58)*Lucas(19)/(1/2+sqrt(5)/2)^61 9870001913417864 a004 Fibonacci(60)*Lucas(19)/(1/2+sqrt(5)/2)^63 9870001913417864 a004 Fibonacci(62)*Lucas(19)/(1/2+sqrt(5)/2)^65 9870001913417864 a004 Fibonacci(64)*Lucas(19)/(1/2+sqrt(5)/2)^67 9870001913417864 a004 Fibonacci(66)*Lucas(19)/(1/2+sqrt(5)/2)^69 9870001913417864 a004 Fibonacci(68)*Lucas(19)/(1/2+sqrt(5)/2)^71 9870001913417864 a004 Fibonacci(70)*Lucas(19)/(1/2+sqrt(5)/2)^73 9870001913417864 a004 Fibonacci(72)*Lucas(19)/(1/2+sqrt(5)/2)^75 9870001913417864 a004 Fibonacci(74)*Lucas(19)/(1/2+sqrt(5)/2)^77 9870001913417864 a004 Fibonacci(76)*Lucas(19)/(1/2+sqrt(5)/2)^79 9870001913417864 a004 Fibonacci(78)*Lucas(19)/(1/2+sqrt(5)/2)^81 9870001913417864 a004 Fibonacci(80)*Lucas(19)/(1/2+sqrt(5)/2)^83 9870001913417864 a004 Fibonacci(82)*Lucas(19)/(1/2+sqrt(5)/2)^85 9870001913417864 a004 Fibonacci(84)*Lucas(19)/(1/2+sqrt(5)/2)^87 9870001913417864 a004 Fibonacci(86)*Lucas(19)/(1/2+sqrt(5)/2)^89 9870001913417864 a004 Fibonacci(88)*Lucas(19)/(1/2+sqrt(5)/2)^91 9870001913417864 a004 Fibonacci(90)*Lucas(19)/(1/2+sqrt(5)/2)^93 9870001913417864 a004 Fibonacci(92)*Lucas(19)/(1/2+sqrt(5)/2)^95 9870001913417864 a004 Fibonacci(94)*Lucas(19)/(1/2+sqrt(5)/2)^97 9870001913417864 a004 Fibonacci(96)*Lucas(19)/(1/2+sqrt(5)/2)^99 9870001913417864 a004 Fibonacci(97)*Lucas(19)/(1/2+sqrt(5)/2)^100 9870001913417864 a004 Fibonacci(95)*Lucas(19)/(1/2+sqrt(5)/2)^98 9870001913417864 a004 Fibonacci(93)*Lucas(19)/(1/2+sqrt(5)/2)^96 9870001913417864 a004 Fibonacci(91)*Lucas(19)/(1/2+sqrt(5)/2)^94 9870001913417864 a004 Fibonacci(89)*Lucas(19)/(1/2+sqrt(5)/2)^92 9870001913417864 a004 Fibonacci(87)*Lucas(19)/(1/2+sqrt(5)/2)^90 9870001913417864 a004 Fibonacci(85)*Lucas(19)/(1/2+sqrt(5)/2)^88 9870001913417864 a004 Fibonacci(83)*Lucas(19)/(1/2+sqrt(5)/2)^86 9870001913417864 a004 Fibonacci(81)*Lucas(19)/(1/2+sqrt(5)/2)^84 9870001913417864 a004 Fibonacci(79)*Lucas(19)/(1/2+sqrt(5)/2)^82 9870001913417864 a004 Fibonacci(77)*Lucas(19)/(1/2+sqrt(5)/2)^80 9870001913417864 a004 Fibonacci(75)*Lucas(19)/(1/2+sqrt(5)/2)^78 9870001913417864 a004 Fibonacci(73)*Lucas(19)/(1/2+sqrt(5)/2)^76 9870001913417864 a004 Fibonacci(71)*Lucas(19)/(1/2+sqrt(5)/2)^74 9870001913417864 a004 Fibonacci(69)*Lucas(19)/(1/2+sqrt(5)/2)^72 9870001913417864 a004 Fibonacci(67)*Lucas(19)/(1/2+sqrt(5)/2)^70 9870001913417864 a004 Fibonacci(65)*Lucas(19)/(1/2+sqrt(5)/2)^68 9870001913417864 a004 Fibonacci(63)*Lucas(19)/(1/2+sqrt(5)/2)^66 9870001913417864 a004 Fibonacci(61)*Lucas(19)/(1/2+sqrt(5)/2)^64 9870001913417864 a004 Fibonacci(59)*Lucas(19)/(1/2+sqrt(5)/2)^62 9870001913417864 a004 Fibonacci(57)*Lucas(19)/(1/2+sqrt(5)/2)^60 9870001913417864 a004 Fibonacci(55)*Lucas(19)/(1/2+sqrt(5)/2)^58 9870001913417864 a004 Fibonacci(53)*Lucas(19)/(1/2+sqrt(5)/2)^56 9870001913417864 a004 Fibonacci(51)*Lucas(19)/(1/2+sqrt(5)/2)^54 9870001913417864 a004 Fibonacci(49)*Lucas(19)/(1/2+sqrt(5)/2)^52 9870001913417864 a004 Fibonacci(47)*Lucas(19)/(1/2+sqrt(5)/2)^50 9870001913417864 a004 Fibonacci(45)*Lucas(19)/(1/2+sqrt(5)/2)^48 9870001913417864 a004 Fibonacci(43)*Lucas(19)/(1/2+sqrt(5)/2)^46 9870001913417864 a004 Fibonacci(41)*Lucas(19)/(1/2+sqrt(5)/2)^44 9870001913417865 a004 Fibonacci(39)*Lucas(19)/(1/2+sqrt(5)/2)^42 9870001913417865 a001 2/4181*(1/2+1/2*5^(1/2))^35 9870001913417867 a004 Fibonacci(37)*Lucas(19)/(1/2+sqrt(5)/2)^40 9870001913417887 a004 Fibonacci(35)*Lucas(19)/(1/2+sqrt(5)/2)^38 9870001913418023 a004 Fibonacci(33)*Lucas(19)/(1/2+sqrt(5)/2)^36 9870001913418953 a004 Fibonacci(31)*Lucas(19)/(1/2+sqrt(5)/2)^34 9870001913425329 a004 Fibonacci(29)*Lucas(19)/(1/2+sqrt(5)/2)^32 9870001913469030 a004 Fibonacci(27)*Lucas(19)/(1/2+sqrt(5)/2)^30 9870001913768564 a004 Fibonacci(25)*Lucas(19)/(1/2+sqrt(5)/2)^28 9870001913774922 a001 28657/5778*5778^(11/18) 9870001915821595 a004 Fibonacci(23)*Lucas(19)/(1/2+sqrt(5)/2)^26 9870001917511215 a001 2255/1926*5778^(7/9) 9870001918182388 a001 75025/15127*9349^(11/19) 9870001918309143 a001 15456/90481*9349^(18/19) 9870001918661900 a001 17711/39603*9349^(16/19) 9870001919207742 a001 121393/710647*9349^(18/19) 9870001919338846 a001 105937/620166*9349^(18/19) 9870001919357974 a001 832040/4870847*9349^(18/19) 9870001919360765 a001 726103/4250681*9349^(18/19) 9870001919361172 a001 5702887/33385282*9349^(18/19) 9870001919361231 a001 4976784/29134601*9349^(18/19) 9870001919361240 a001 39088169/228826127*9349^(18/19) 9870001919361241 a001 34111385/199691526*9349^(18/19) 9870001919361241 a001 267914296/1568397607*9349^(18/19) 9870001919361241 a001 233802911/1368706081*9349^(18/19) 9870001919361241 a001 1836311903/10749957122*9349^(18/19) 9870001919361241 a001 1602508992/9381251041*9349^(18/19) 9870001919361241 a001 12586269025/73681302247*9349^(18/19) 9870001919361241 a001 10983760033/64300051206*9349^(18/19) 9870001919361241 a001 86267571272/505019158607*9349^(18/19) 9870001919361241 a001 75283811239/440719107401*9349^(18/19) 9870001919361241 a001 2504730781961/14662949395604*9349^(18/19) 9870001919361241 a001 139583862445/817138163596*9349^(18/19) 9870001919361241 a001 53316291173/312119004989*9349^(18/19) 9870001919361241 a001 20365011074/119218851371*9349^(18/19) 9870001919361241 a001 7778742049/45537549124*9349^(18/19) 9870001919361241 a001 2971215073/17393796001*9349^(18/19) 9870001919361241 a001 1134903170/6643838879*9349^(18/19) 9870001919361241 a001 433494437/2537720636*9349^(18/19) 9870001919361242 a001 165580141/969323029*9349^(18/19) 9870001919361242 a001 63245986/370248451*9349^(18/19) 9870001919361245 a001 24157817/141422324*9349^(18/19) 9870001919361268 a001 9227465/54018521*9349^(18/19) 9870001919361424 a001 3524578/20633239*9349^(18/19) 9870001919362489 a001 1346269/7881196*9349^(18/19) 9870001919369796 a001 514229/3010349*9349^(18/19) 9870001919419873 a001 196418/1149851*9349^(18/19) 9870001919763107 a001 75025/439204*9349^(18/19) 9870001921415301 a001 17711/64079*9349^(17/19) 9870001921502549 a001 17711/5778*5778^(2/3) 9870001922115672 a001 28657/167761*9349^(18/19) 9870001923641111 a001 121393/15127*9349^(10/19) 9870001924737175 a001 46368/167761*9349^(17/19) 9870001925221830 a001 121393/439204*9349^(17/19) 9870001925292540 a001 317811/1149851*9349^(17/19) 9870001925302857 a001 832040/3010349*9349^(17/19) 9870001925304362 a001 2178309/7881196*9349^(17/19) 9870001925304581 a001 5702887/20633239*9349^(17/19) 9870001925304613 a001 14930352/54018521*9349^(17/19) 9870001925304618 a001 39088169/141422324*9349^(17/19) 9870001925304619 a001 102334155/370248451*9349^(17/19) 9870001925304619 a001 267914296/969323029*9349^(17/19) 9870001925304619 a001 701408733/2537720636*9349^(17/19) 9870001925304619 a001 1836311903/6643838879*9349^(17/19) 9870001925304619 a001 4807526976/17393796001*9349^(17/19) 9870001925304619 a001 12586269025/45537549124*9349^(17/19) 9870001925304619 a001 32951280099/119218851371*9349^(17/19) 9870001925304619 a001 86267571272/312119004989*9349^(17/19) 9870001925304619 a001 225851433717/817138163596*9349^(17/19) 9870001925304619 a001 1548008755920/5600748293801*9349^(17/19) 9870001925304619 a001 139583862445/505019158607*9349^(17/19) 9870001925304619 a001 53316291173/192900153618*9349^(17/19) 9870001925304619 a001 20365011074/73681302247*9349^(17/19) 9870001925304619 a001 7778742049/28143753123*9349^(17/19) 9870001925304619 a001 2971215073/10749957122*9349^(17/19) 9870001925304619 a001 1134903170/4106118243*9349^(17/19) 9870001925304619 a001 433494437/1568397607*9349^(17/19) 9870001925304619 a001 165580141/599074578*9349^(17/19) 9870001925304619 a001 63245986/228826127*9349^(17/19) 9870001925304621 a001 24157817/87403803*9349^(17/19) 9870001925304633 a001 9227465/33385282*9349^(17/19) 9870001925304717 a001 3524578/12752043*9349^(17/19) 9870001925305292 a001 1346269/4870847*9349^(17/19) 9870001925309233 a001 514229/1860498*9349^(17/19) 9870001925336241 a001 196418/710647*9349^(17/19) 9870001925521363 a001 75025/271443*9349^(17/19) 9870001926790206 a001 28657/103682*9349^(17/19) 9870001927522948 a001 6765/15127*24476^(16/21) 9870001928990883 a001 4976784/13201*3571^(2/17) 9870001929411709 a001 23184/51841*9349^(16/19) 9870001929769610 a001 196418/15127*9349^(9/19) 9870001929893278 a004 Fibonacci(21)*Lucas(19)/(1/2+sqrt(5)/2)^24 9870001930980086 a001 121393/271443*9349^(16/19) 9870001931208909 a001 317811/710647*9349^(16/19) 9870001931242293 a001 416020/930249*9349^(16/19) 9870001931247164 a001 2178309/4870847*9349^(16/19) 9870001931247875 a001 5702887/12752043*9349^(16/19) 9870001931247979 a001 7465176/16692641*9349^(16/19) 9870001931247994 a001 39088169/87403803*9349^(16/19) 9870001931247996 a001 102334155/228826127*9349^(16/19) 9870001931247996 a001 133957148/299537289*9349^(16/19) 9870001931247996 a001 701408733/1568397607*9349^(16/19) 9870001931247996 a001 1836311903/4106118243*9349^(16/19) 9870001931247996 a001 2403763488/5374978561*9349^(16/19) 9870001931247996 a001 12586269025/28143753123*9349^(16/19) 9870001931247996 a001 32951280099/73681302247*9349^(16/19) 9870001931247996 a001 43133785636/96450076809*9349^(16/19) 9870001931247996 a001 225851433717/505019158607*9349^(16/19) 9870001931247996 a001 591286729879/1322157322203*9349^(16/19) 9870001931247996 a001 10610209857723/23725150497407*9349^(16/19) 9870001931247996 a001 182717648081/408569081798*9349^(16/19) 9870001931247996 a001 139583862445/312119004989*9349^(16/19) 9870001931247996 a001 53316291173/119218851371*9349^(16/19) 9870001931247996 a001 10182505537/22768774562*9349^(16/19) 9870001931247996 a001 7778742049/17393796001*9349^(16/19) 9870001931247996 a001 2971215073/6643838879*9349^(16/19) 9870001931247996 a001 567451585/1268860318*9349^(16/19) 9870001931247996 a001 433494437/969323029*9349^(16/19) 9870001931247996 a001 165580141/370248451*9349^(16/19) 9870001931247997 a001 31622993/70711162*9349^(16/19) 9870001931248003 a001 24157817/54018521*9349^(16/19) 9870001931248043 a001 9227465/20633239*9349^(16/19) 9870001931248314 a001 1762289/3940598*9349^(16/19) 9870001931250175 a001 1346269/3010349*9349^(16/19) 9870001931262926 a001 514229/1149851*9349^(16/19) 9870001931350329 a001 98209/219602*9349^(16/19) 9870001931949395 a001 75025/167761*9349^(16/19) 9870001933302056 a001 28657/39603*9349^(15/19) 9870001934365795 a001 39088169/103682*3571^(2/17) 9870001935149984 a001 34111385/90481*3571^(2/17) 9870001935264396 a001 267914296/710647*3571^(2/17) 9870001935281088 a001 233802911/620166*3571^(2/17) 9870001935283524 a001 1836311903/4870847*3571^(2/17) 9870001935283879 a001 1602508992/4250681*3571^(2/17) 9870001935283931 a001 12586269025/33385282*3571^(2/17) 9870001935283939 a001 10983760033/29134601*3571^(2/17) 9870001935283940 a001 86267571272/228826127*3571^(2/17) 9870001935283940 a001 267913919/710646*3571^(2/17) 9870001935283940 a001 591286729879/1568397607*3571^(2/17) 9870001935283940 a001 516002918640/1368706081*3571^(2/17) 9870001935283940 a001 4052739537881/10749957122*3571^(2/17) 9870001935283940 a001 3536736619241/9381251041*3571^(2/17) 9870001935283940 a001 6557470319842/17393796001*3571^(2/17) 9870001935283940 a001 2504730781961/6643838879*3571^(2/17) 9870001935283940 a001 956722026041/2537720636*3571^(2/17) 9870001935283940 a001 365435296162/969323029*3571^(2/17) 9870001935283940 a001 139583862445/370248451*3571^(2/17) 9870001935283940 a001 53316291173/141422324*3571^(2/17) 9870001935283943 a001 20365011074/54018521*3571^(2/17) 9870001935283963 a001 7778742049/20633239*3571^(2/17) 9870001935284099 a001 2971215073/7881196*3571^(2/17) 9870001935285029 a001 1134903170/3010349*3571^(2/17) 9870001935291405 a001 433494437/1149851*3571^(2/17) 9870001935335106 a001 165580141/439204*3571^(2/17) 9870001935486985 a001 10946/39603*9349^(17/19) 9870001935634640 a001 63245986/167761*3571^(2/17) 9870001935642277 a001 317811/15127*9349^(8/19) 9870001935923559 a001 15456/13201*9349^(14/19) 9870001936055457 a001 28657/64079*9349^(16/19) 9870001936623930 a001 75025/103682*9349^(15/19) 9870001937108585 a001 196418/271443*9349^(15/19) 9870001937179295 a001 514229/710647*9349^(15/19) 9870001937189611 a001 1346269/1860498*9349^(15/19) 9870001937191117 a001 3524578/4870847*9349^(15/19) 9870001937191336 a001 9227465/12752043*9349^(15/19) 9870001937191368 a001 24157817/33385282*9349^(15/19) 9870001937191373 a001 63245986/87403803*9349^(15/19) 9870001937191374 a001 165580141/228826127*9349^(15/19) 9870001937191374 a001 433494437/599074578*9349^(15/19) 9870001937191374 a001 1134903170/1568397607*9349^(15/19) 9870001937191374 a001 2971215073/4106118243*9349^(15/19) 9870001937191374 a001 7778742049/10749957122*9349^(15/19) 9870001937191374 a001 20365011074/28143753123*9349^(15/19) 9870001937191374 a001 53316291173/73681302247*9349^(15/19) 9870001937191374 a001 139583862445/192900153618*9349^(15/19) 9870001937191374 a001 365435296162/505019158607*9349^(15/19) 9870001937191374 a001 10610209857723/14662949395604*9349^(15/19) 9870001937191374 a001 591286729879/817138163596*9349^(15/19) 9870001937191374 a001 225851433717/312119004989*9349^(15/19) 9870001937191374 a001 86267571272/119218851371*9349^(15/19) 9870001937191374 a001 32951280099/45537549124*9349^(15/19) 9870001937191374 a001 12586269025/17393796001*9349^(15/19) 9870001937191374 a001 4807526976/6643838879*9349^(15/19) 9870001937191374 a001 1836311903/2537720636*9349^(15/19) 9870001937191374 a001 701408733/969323029*9349^(15/19) 9870001937191374 a001 267914296/370248451*9349^(15/19) 9870001937191374 a001 102334155/141422324*9349^(15/19) 9870001937191376 a001 39088169/54018521*9349^(15/19) 9870001937191388 a001 14930352/20633239*9349^(15/19) 9870001937191472 a001 5702887/7881196*9349^(15/19) 9870001937192047 a001 2178309/3010349*9349^(15/19) 9870001937195987 a001 832040/1149851*9349^(15/19) 9870001937222996 a001 317811/439204*9349^(15/19) 9870001937408118 a001 121393/167761*9349^(15/19) 9870001937679816 a001 9227465/15127*3571^(1/17) 9870001937687674 a001 24157817/64079*3571^(2/17) 9870001938240386 a001 10946/64079*9349^(18/19) 9870001938403485 a001 6765/15127*64079^(16/23) 9870001938676961 a001 46368/64079*9349^(15/19) 9870001939720557 r005 Re(z^2+c),c=-65/74+5/34*I,n=32 9870001940075645 a001 6765/15127*(1/2+1/2*5^(1/2))^16 9870001940075645 a001 6765/15127*23725150497407^(1/4) 9870001940075645 a001 6765/15127*73681302247^(4/13) 9870001940075645 a001 6765/15127*10749957122^(1/3) 9870001940075645 a001 6765/15127*4106118243^(8/23) 9870001940075645 a001 6765/15127*1568397607^(4/11) 9870001940075645 a001 6765/15127*599074578^(8/21) 9870001940075645 a001 6765/15127*228826127^(2/5) 9870001940075646 a001 6765/15127*87403803^(8/19) 9870001940075649 a001 6765/15127*33385282^(4/9) 9870001940075674 a001 6765/15127*12752043^(8/17) 9870001940075853 a001 6765/15127*4870847^(1/2) 9870001940077166 a001 6765/15127*1860498^(8/15) 9870001940086813 a001 6765/15127*710647^(4/7) 9870001940158079 a001 6765/15127*271443^(8/13) 9870001940687741 a001 6765/15127*103682^(2/3) 9870001940993788 a001 5085025/5152 9870001941612663 a001 514229/15127*9349^(7/19) 9870001942082652 a001 121393/103682*9349^(14/19) 9870001942981252 a001 105937/90481*9349^(14/19) 9870001943112356 a001 832040/710647*9349^(14/19) 9870001943131484 a001 726103/620166*9349^(14/19) 9870001943134274 a001 5702887/4870847*9349^(14/19) 9870001943134682 a001 4976784/4250681*9349^(14/19) 9870001943134741 a001 39088169/33385282*9349^(14/19) 9870001943134750 a001 34111385/29134601*9349^(14/19) 9870001943134751 a001 267914296/228826127*9349^(14/19) 9870001943134751 a001 233802911/199691526*9349^(14/19) 9870001943134751 a001 1836311903/1568397607*9349^(14/19) 9870001943134751 a001 1602508992/1368706081*9349^(14/19) 9870001943134751 a001 12586269025/10749957122*9349^(14/19) 9870001943134751 a001 10983760033/9381251041*9349^(14/19) 9870001943134751 a001 86267571272/73681302247*9349^(14/19) 9870001943134751 a001 75283811239/64300051206*9349^(14/19) 9870001943134751 a001 2504730781961/2139295485799*9349^(14/19) 9870001943134751 a001 365435296162/312119004989*9349^(14/19) 9870001943134751 a001 139583862445/119218851371*9349^(14/19) 9870001943134751 a001 53316291173/45537549124*9349^(14/19) 9870001943134751 a001 20365011074/17393796001*9349^(14/19) 9870001943134751 a001 7778742049/6643838879*9349^(14/19) 9870001943134751 a001 2971215073/2537720636*9349^(14/19) 9870001943134751 a001 1134903170/969323029*9349^(14/19) 9870001943134751 a001 433494437/370248451*9349^(14/19) 9870001943134752 a001 165580141/141422324*9349^(14/19) 9870001943134755 a001 63245986/54018521*9349^(14/19) 9870001943134778 a001 24157817/20633239*9349^(14/19) 9870001943134933 a001 9227465/7881196*9349^(14/19) 9870001943135780 a001 75025/39603*9349^(13/19) 9870001943135999 a001 3524578/3010349*9349^(14/19) 9870001943143305 a001 1346269/1149851*9349^(14/19) 9870001943193383 a001 514229/439204*9349^(14/19) 9870001943536617 a001 196418/167761*9349^(14/19) 9870001944652408 a001 6765/15127*39603^(8/11) 9870001945889181 a001 75025/64079*9349^(14/19) 9870001947373740 a001 17711/24476*9349^(15/19) 9870001947545724 a001 832040/15127*9349^(6/19) 9870001948211152 a001 98209/51841*9349^(13/19) 9870001948594502 a001 121393/39603*9349^(12/19) 9870001948951638 a001 514229/271443*9349^(13/19) 9870001949059674 a001 1346269/710647*9349^(13/19) 9870001949075436 a001 1762289/930249*9349^(13/19) 9870001949077736 a001 9227465/4870847*9349^(13/19) 9870001949078071 a001 24157817/12752043*9349^(13/19) 9870001949078120 a001 31622993/16692641*9349^(13/19) 9870001949078127 a001 165580141/87403803*9349^(13/19) 9870001949078128 a001 433494437/228826127*9349^(13/19) 9870001949078128 a001 567451585/299537289*9349^(13/19) 9870001949078129 a001 2971215073/1568397607*9349^(13/19) 9870001949078129 a001 7778742049/4106118243*9349^(13/19) 9870001949078129 a001 10182505537/5374978561*9349^(13/19) 9870001949078129 a001 53316291173/28143753123*9349^(13/19) 9870001949078129 a001 139583862445/73681302247*9349^(13/19) 9870001949078129 a001 182717648081/96450076809*9349^(13/19) 9870001949078129 a001 956722026041/505019158607*9349^(13/19) 9870001949078129 a001 10610209857723/5600748293801*9349^(13/19) 9870001949078129 a001 591286729879/312119004989*9349^(13/19) 9870001949078129 a001 225851433717/119218851371*9349^(13/19) 9870001949078129 a001 21566892818/11384387281*9349^(13/19) 9870001949078129 a001 32951280099/17393796001*9349^(13/19) 9870001949078129 a001 12586269025/6643838879*9349^(13/19) 9870001949078129 a001 1201881744/634430159*9349^(13/19) 9870001949078129 a001 1836311903/969323029*9349^(13/19) 9870001949078129 a001 701408733/370248451*9349^(13/19) 9870001949078129 a001 66978574/35355581*9349^(13/19) 9870001949078132 a001 102334155/54018521*9349^(13/19) 9870001949078150 a001 39088169/20633239*9349^(13/19) 9870001949078279 a001 3732588/1970299*9349^(13/19) 9870001949079157 a001 5702887/3010349*9349^(13/19) 9870001949085178 a001 2178309/1149851*9349^(13/19) 9870001949126443 a001 208010/109801*9349^(13/19) 9870001949409284 a001 317811/167761*9349^(13/19) 9870001951347904 a001 121393/64079*9349^(13/19) 9870001951759377 a001 9227465/24476*3571^(2/17) 9870001953493042 a001 1346269/15127*9349^(5/19) 9870001954083819 a001 317811/103682*9349^(12/19) 9870001954723001 a001 196418/39603*9349^(11/19) 9870001954884699 a001 832040/271443*9349^(12/19) 9870001955001546 a001 311187/101521*9349^(12/19) 9870001955018594 a001 5702887/1860498*9349^(12/19) 9870001955021081 a001 14930352/4870847*9349^(12/19) 9870001955021444 a001 39088169/12752043*9349^(12/19) 9870001955021497 a001 14619165/4769326*9349^(12/19) 9870001955021505 a001 267914296/87403803*9349^(12/19) 9870001955021506 a001 701408733/228826127*9349^(12/19) 9870001955021506 a001 1836311903/599074578*9349^(12/19) 9870001955021506 a001 686789568/224056801*9349^(12/19) 9870001955021506 a001 12586269025/4106118243*9349^(12/19) 9870001955021506 a001 32951280099/10749957122*9349^(12/19) 9870001955021506 a001 86267571272/28143753123*9349^(12/19) 9870001955021506 a001 32264490531/10525900321*9349^(12/19) 9870001955021506 a001 591286729879/192900153618*9349^(12/19) 9870001955021506 a001 1548008755920/505019158607*9349^(12/19) 9870001955021506 a001 1515744265389/494493258286*9349^(12/19) 9870001955021506 a001 2504730781961/817138163596*9349^(12/19) 9870001955021506 a001 956722026041/312119004989*9349^(12/19) 9870001955021506 a001 365435296162/119218851371*9349^(12/19) 9870001955021506 a001 139583862445/45537549124*9349^(12/19) 9870001955021506 a001 53316291173/17393796001*9349^(12/19) 9870001955021506 a001 20365011074/6643838879*9349^(12/19) 9870001955021506 a001 7778742049/2537720636*9349^(12/19) 9870001955021506 a001 2971215073/969323029*9349^(12/19) 9870001955021506 a001 1134903170/370248451*9349^(12/19) 9870001955021506 a001 433494437/141422324*9349^(12/19) 9870001955021509 a001 165580141/54018521*9349^(12/19) 9870001955021530 a001 63245986/20633239*9349^(12/19) 9870001955021668 a001 24157817/7881196*9349^(12/19) 9870001955022618 a001 9227465/3010349*9349^(12/19) 9870001955029130 a001 3524578/1149851*9349^(12/19) 9870001955073761 a001 1346269/439204*9349^(12/19) 9870001955379671 a001 514229/167761*9349^(12/19) 9870001957151105 a001 1346269/9349*3571^(4/17) 9870001957476403 a001 196418/64079*9349^(12/19) 9870001957682883 a007 Real Root Of -823*x^4-452*x^3+375*x^2+86*x+66 9870001959434914 a001 311187/2161*9349^(4/19) 9870001959571956 r008 a(0)=1,K{-n^6,-31+77*n^3+99*n^2-68*n} 9870001959923713 r008 a(0)=1,K{-n^6,-37+82*n^3+81*n^2-49*n} 9870001960054205 a001 514229/103682*9349^(11/19) 9870001960166967 a007 Real Root Of -838*x^4-890*x^3-252*x^2+386*x+566 9870001960595669 a001 105937/13201*9349^(10/19) 9870001960637198 r008 a(0)=1,K{-n^6,-47+92*n^3+46*n^2-14*n} 9870001960695418 a001 5473/2889*5778^(13/18) 9870001960832017 a001 1346269/271443*9349^(11/19) 9870001960945498 a001 3524578/710647*9349^(11/19) 9870001960962055 a001 9227465/1860498*9349^(11/19) 9870001960964471 a001 24157817/4870847*9349^(11/19) 9870001960964823 a001 63245986/12752043*9349^(11/19) 9870001960964875 a001 165580141/33385282*9349^(11/19) 9870001960964882 a001 433494437/87403803*9349^(11/19) 9870001960964883 a001 1134903170/228826127*9349^(11/19) 9870001960964883 a001 2971215073/599074578*9349^(11/19) 9870001960964883 a001 7778742049/1568397607*9349^(11/19) 9870001960964883 a001 20365011074/4106118243*9349^(11/19) 9870001960964883 a001 53316291173/10749957122*9349^(11/19) 9870001960964883 a001 139583862445/28143753123*9349^(11/19) 9870001960964883 a001 365435296162/73681302247*9349^(11/19) 9870001960964883 a001 956722026041/192900153618*9349^(11/19) 9870001960964883 a001 2504730781961/505019158607*9349^(11/19) 9870001960964883 a001 10610209857723/2139295485799*9349^(11/19) 9870001960964883 a001 4052739537881/817138163596*9349^(11/19) 9870001960964883 a001 140728068720/28374454999*9349^(11/19) 9870001960964883 a001 591286729879/119218851371*9349^(11/19) 9870001960964883 a001 225851433717/45537549124*9349^(11/19) 9870001960964883 a001 86267571272/17393796001*9349^(11/19) 9870001960964883 a001 32951280099/6643838879*9349^(11/19) 9870001960964883 a001 1144206275/230701876*9349^(11/19) 9870001960964883 a001 4807526976/969323029*9349^(11/19) 9870001960964883 a001 1836311903/370248451*9349^(11/19) 9870001960964884 a001 701408733/141422324*9349^(11/19) 9870001960964887 a001 267914296/54018521*9349^(11/19) 9870001960964906 a001 9303105/1875749*9349^(11/19) 9870001960965041 a001 39088169/7881196*9349^(11/19) 9870001960965964 a001 14930352/3010349*9349^(11/19) 9870001960972288 a001 5702887/1149851*9349^(11/19) 9870001961015634 a001 2178309/439204*9349^(11/19) 9870001961312732 a001 75640/15251*9349^(11/19) 9870001962013896 a001 28657/24476*9349^(14/19) 9870001962794008 a001 2255/13201*24476^(6/7) 9870001963349070 a001 317811/64079*9349^(11/19) 9870001964198825 a001 5473/12238*9349^(16/19) 9870001964635400 a001 11592/6119*9349^(13/19) 9870001965378867 a001 3524578/15127*9349^(3/19) 9870001965932182 a001 17711/15127*24476^(2/3) 9870001965987266 a001 416020/51841*9349^(10/19) 9870001966566055 a001 514229/39603*9349^(9/19) 9870001966599826 a001 6765/103682*24476^(20/21) 9870001966733426 a004 Fibonacci(20)*Lucas(21)/(1/2+sqrt(5)/2)^25 9870001966773889 a001 726103/90481*9349^(10/19) 9870001966888656 a001 5702887/710647*9349^(10/19) 9870001966905401 a001 829464/103361*9349^(10/19) 9870001966907843 a001 39088169/4870847*9349^(10/19) 9870001966908200 a001 34111385/4250681*9349^(10/19) 9870001966908252 a001 133957148/16692641*9349^(10/19) 9870001966908260 a001 233802911/29134601*9349^(10/19) 9870001966908261 a001 1836311903/228826127*9349^(10/19) 9870001966908261 a001 267084832/33281921*9349^(10/19) 9870001966908261 a001 12586269025/1568397607*9349^(10/19) 9870001966908261 a001 10983760033/1368706081*9349^(10/19) 9870001966908261 a001 43133785636/5374978561*9349^(10/19) 9870001966908261 a001 75283811239/9381251041*9349^(10/19) 9870001966908261 a001 591286729879/73681302247*9349^(10/19) 9870001966908261 a001 86000486440/10716675201*9349^(10/19) 9870001966908261 a001 4052739537881/505019158607*9349^(10/19) 9870001966908261 a001 3536736619241/440719107401*9349^(10/19) 9870001966908261 a001 3278735159921/408569081798*9349^(10/19) 9870001966908261 a001 2504730781961/312119004989*9349^(10/19) 9870001966908261 a001 956722026041/119218851371*9349^(10/19) 9870001966908261 a001 182717648081/22768774562*9349^(10/19) 9870001966908261 a001 139583862445/17393796001*9349^(10/19) 9870001966908261 a001 53316291173/6643838879*9349^(10/19) 9870001966908261 a001 10182505537/1268860318*9349^(10/19) 9870001966908261 a001 7778742049/969323029*9349^(10/19) 9870001966908261 a001 2971215073/370248451*9349^(10/19) 9870001966908261 a001 567451585/70711162*9349^(10/19) 9870001966908264 a001 433494437/54018521*9349^(10/19) 9870001966908284 a001 165580141/20633239*9349^(10/19) 9870001966908420 a001 31622993/3940598*9349^(10/19) 9870001966909353 a001 24157817/3010349*9349^(10/19) 9870001966915749 a001 9227465/1149851*9349^(10/19) 9870001966959586 a001 1762289/219602*9349^(10/19) 9870001967260050 a001 1346269/167761*9349^(10/19) 9870001969319456 a001 514229/64079*9349^(10/19) 9870001970706243 a001 6765/64079*24476^(19/21) 9870001971322025 a001 5702887/15127*9349^(2/19) 9870001971847620 a001 75025/24476*9349^(12/19) 9870001971934584 a001 1346269/103682*9349^(9/19) 9870001972499116 a001 832040/39603*9349^(8/19) 9870001972717842 a001 3524578/271443*9349^(9/19) 9870001972832118 a001 9227465/710647*9349^(9/19) 9870001972848790 a001 24157817/1860498*9349^(9/19) 9870001972851223 a001 63245986/4870847*9349^(9/19) 9870001972851578 a001 165580141/12752043*9349^(9/19) 9870001972851629 a001 433494437/33385282*9349^(9/19) 9870001972851637 a001 1134903170/87403803*9349^(9/19) 9870001972851638 a001 2971215073/228826127*9349^(9/19) 9870001972851638 a001 7778742049/599074578*9349^(9/19) 9870001972851638 a001 20365011074/1568397607*9349^(9/19) 9870001972851638 a001 53316291173/4106118243*9349^(9/19) 9870001972851638 a001 139583862445/10749957122*9349^(9/19) 9870001972851638 a001 365435296162/28143753123*9349^(9/19) 9870001972851638 a001 956722026041/73681302247*9349^(9/19) 9870001972851638 a001 2504730781961/192900153618*9349^(9/19) 9870001972851638 a001 10610209857723/817138163596*9349^(9/19) 9870001972851638 a001 4052739537881/312119004989*9349^(9/19) 9870001972851638 a001 1548008755920/119218851371*9349^(9/19) 9870001972851638 a001 591286729879/45537549124*9349^(9/19) 9870001972851638 a001 7787980473/599786069*9349^(9/19) 9870001972851638 a001 86267571272/6643838879*9349^(9/19) 9870001972851638 a001 32951280099/2537720636*9349^(9/19) 9870001972851638 a001 12586269025/969323029*9349^(9/19) 9870001972851638 a001 4807526976/370248451*9349^(9/19) 9870001972851639 a001 1836311903/141422324*9349^(9/19) 9870001972851642 a001 701408733/54018521*9349^(9/19) 9870001972851661 a001 9238424/711491*9349^(9/19) 9870001972851797 a001 102334155/7881196*9349^(9/19) 9870001972852726 a001 39088169/3010349*9349^(9/19) 9870001972859094 a001 14930352/1149851*9349^(9/19) 9870001972876174 a001 6624/2161*24476^(4/7) 9870001972902744 a001 5702887/439204*9349^(9/19) 9870001973201922 a001 2178309/167761*9349^(9/19) 9870001974519943 a001 24157817/39603*3571^(1/17) 9870001974582201 a001 6765/15127*15127^(4/5) 9870001974929561 a001 75025/15127*24476^(11/21) 9870001975034611 a001 2255/13201*64079^(18/23) 9870001975229449 a001 121393/15127*24476^(10/21) 9870001975252517 a001 832040/64079*9349^(9/19) 9870001975413505 a001 28657/15127*24476^(13/21) 9870001975452652 a001 17711/15127*64079^(14/23) 9870001976199115 a001 196418/15127*24476^(3/7) 9870001976881681 a001 2255/13201*439204^(2/3) 9870001976912948 a001 317811/15127*24476^(8/21) 9870001976915705 a001 2255/13201*7881196^(6/11) 9870001976915783 a001 17711/15127*20633239^(2/5) 9870001976915791 a001 2255/13201*141422324^(6/13) 9870001976915792 a001 2255/13201*2537720636^(2/5) 9870001976915792 a001 2255/13201*45537549124^(6/17) 9870001976915792 a001 2255/13201*14662949395604^(2/7) 9870001976915792 a001 2255/13201*(1/2+1/2*5^(1/2))^18 9870001976915792 a001 2255/13201*192900153618^(1/3) 9870001976915792 a001 2255/13201*10749957122^(3/8) 9870001976915792 a001 2255/13201*4106118243^(9/23) 9870001976915792 a001 2255/13201*1568397607^(9/22) 9870001976915792 a001 2255/13201*599074578^(3/7) 9870001976915792 a001 2255/13201*228826127^(9/20) 9870001976915792 a001 17711/15127*17393796001^(2/7) 9870001976915792 a001 17711/15127*14662949395604^(2/9) 9870001976915792 a001 17711/15127*(1/2+1/2*5^(1/2))^14 9870001976915792 a001 17711/15127*505019158607^(1/4) 9870001976915792 a001 17711/15127*10749957122^(7/24) 9870001976915792 a001 17711/15127*4106118243^(7/23) 9870001976915792 a001 17711/15127*1568397607^(7/22) 9870001976915792 a001 17711/15127*599074578^(1/3) 9870001976915792 a001 17711/15127*228826127^(7/20) 9870001976915792 a001 2255/13201*87403803^(9/19) 9870001976915792 a001 17711/15127*87403803^(7/19) 9870001976915795 a001 17711/15127*33385282^(7/18) 9870001976915796 a001 2255/13201*33385282^(1/2) 9870001976915817 a001 17711/15127*12752043^(7/17) 9870001976915824 a001 2255/13201*12752043^(9/17) 9870001976915974 a001 17711/15127*4870847^(7/16) 9870001976916026 a001 2255/13201*4870847^(9/16) 9870001976917123 a001 17711/15127*1860498^(7/15) 9870001976917503 a001 2255/13201*1860498^(3/5) 9870001976925564 a001 17711/15127*710647^(1/2) 9870001976928356 a001 2255/13201*710647^(9/14) 9870001976987922 a001 17711/15127*271443^(7/13) 9870001977008530 a001 2255/13201*271443^(9/13) 9870001977049747 a001 119814915/121393 9870001977265486 a001 9227465/15127*9349^(1/19) 9870001977306343 a001 121393/24476*9349^(11/19) 9870001977451376 a001 17711/15127*103682^(7/12) 9870001977604399 a001 2255/13201*103682^(3/4) 9870001977724500 a001 514229/15127*24476^(1/3) 9870001977865939 m001 GAMMA(17/24)^2/LandauRamanujan/exp(cosh(1))^2 9870001977876456 a001 46347/2206*9349^(8/19) 9870001978446434 a001 1346269/39603*9349^(7/19) 9870001978498728 a001 832040/15127*24476^(2/7) 9870001978661000 a001 5702887/271443*9349^(8/19) 9870001978775463 a001 14930352/710647*9349^(8/19) 9870001978792163 a001 39088169/1860498*9349^(8/19) 9870001978794599 a001 102334155/4870847*9349^(8/19) 9870001978794955 a001 267914296/12752043*9349^(8/19) 9870001978795007 a001 701408733/33385282*9349^(8/19) 9870001978795014 a001 1836311903/87403803*9349^(8/19) 9870001978795015 a001 102287808/4868641*9349^(8/19) 9870001978795016 a001 12586269025/599074578*9349^(8/19) 9870001978795016 a001 32951280099/1568397607*9349^(8/19) 9870001978795016 a001 86267571272/4106118243*9349^(8/19) 9870001978795016 a001 225851433717/10749957122*9349^(8/19) 9870001978795016 a001 591286729879/28143753123*9349^(8/19) 9870001978795016 a001 1548008755920/73681302247*9349^(8/19) 9870001978795016 a001 4052739537881/192900153618*9349^(8/19) 9870001978795016 a001 225749145909/10745088481*9349^(8/19) 9870001978795016 a001 6557470319842/312119004989*9349^(8/19) 9870001978795016 a001 2504730781961/119218851371*9349^(8/19) 9870001978795016 a001 956722026041/45537549124*9349^(8/19) 9870001978795016 a001 365435296162/17393796001*9349^(8/19) 9870001978795016 a001 139583862445/6643838879*9349^(8/19) 9870001978795016 a001 53316291173/2537720636*9349^(8/19) 9870001978795016 a001 20365011074/969323029*9349^(8/19) 9870001978795016 a001 7778742049/370248451*9349^(8/19) 9870001978795016 a001 2971215073/141422324*9349^(8/19) 9870001978795019 a001 1134903170/54018521*9349^(8/19) 9870001978795039 a001 433494437/20633239*9349^(8/19) 9870001978795175 a001 165580141/7881196*9349^(8/19) 9870001978796105 a001 63245986/3010349*9349^(8/19) 9870001978802484 a001 24157817/1149851*9349^(8/19) 9870001978846205 a001 9227465/439204*9349^(8/19) 9870001979145874 a001 3524578/167761*9349^(8/19) 9870001979287212 a001 1346269/15127*24476^(5/21) 9870001979894845 a001 31622993/51841*3571^(1/17) 9870001980070250 a001 311187/2161*24476^(4/21) 9870001980200496 a001 6765/103682*64079^(20/23) 9870001980679032 a001 165580141/271443*3571^(1/17) 9870001980775664 a001 2255/90481*64079^(22/23) 9870001980793444 a001 433494437/710647*3571^(1/17) 9870001980805109 a004 Fibonacci(20)*Lucas(23)/(1/2+sqrt(5)/2)^27 9870001980810136 a001 567451585/930249*3571^(1/17) 9870001980812571 a001 2971215073/4870847*3571^(1/17) 9870001980812927 a001 7778742049/12752043*3571^(1/17) 9870001980812979 a001 10182505537/16692641*3571^(1/17) 9870001980812986 a001 53316291173/87403803*3571^(1/17) 9870001980812987 a001 139583862445/228826127*3571^(1/17) 9870001980812987 a001 182717648081/299537289*3571^(1/17) 9870001980812988 a001 956722026041/1568397607*3571^(1/17) 9870001980812988 a001 2504730781961/4106118243*3571^(1/17) 9870001980812988 a001 3278735159921/5374978561*3571^(1/17) 9870001980812988 a001 10610209857723/17393796001*3571^(1/17) 9870001980812988 a001 4052739537881/6643838879*3571^(1/17) 9870001980812988 a001 1134903780/1860499*3571^(1/17) 9870001980812988 a001 591286729879/969323029*3571^(1/17) 9870001980812988 a001 225851433717/370248451*3571^(1/17) 9870001980812988 a001 21566892818/35355581*3571^(1/17) 9870001980812991 a001 32951280099/54018521*3571^(1/17) 9870001980813011 a001 1144206275/1875749*3571^(1/17) 9870001980813146 a001 1201881744/1970299*3571^(1/17) 9870001980814077 a001 1836311903/3010349*3571^(1/17) 9870001980820453 a001 701408733/1149851*3571^(1/17) 9870001980855369 a001 3524578/15127*24476^(1/7) 9870001980864154 a001 66978574/109801*3571^(1/17) 9870001980920459 a001 17711/15127*39603^(7/11) 9870001981036577 a001 6624/2161*64079^(12/23) 9870001981163687 a001 9303105/15251*3571^(1/17) 9870001981199835 a001 1346269/64079*9349^(8/19) 9870001981364829 a001 615/15251*64079^(21/23) 9870001981639692 a001 5702887/15127*24476^(2/21) 9870001982010137 a001 6765/103682*167761^(4/5) 9870001982029785 a001 121393/15127*64079^(10/23) 9870001982064649 a001 2255/13201*39603^(9/11) 9870001982267956 a001 6624/2161*439204^(4/9) 9870001982290639 a001 6624/2161*7881196^(4/11) 9870001982290683 a001 6765/103682*20633239^(4/7) 9870001982290697 a001 6765/103682*2537720636^(4/9) 9870001982290697 a001 6765/103682*(1/2+1/2*5^(1/2))^20 9870001982290697 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^20/Lucas(24) 9870001982290697 a001 6765/103682*23725150497407^(5/16) 9870001982290697 a001 6765/103682*505019158607^(5/14) 9870001982290697 a001 6765/103682*73681302247^(5/13) 9870001982290697 a001 6765/103682*28143753123^(2/5) 9870001982290697 a001 6765/103682*10749957122^(5/12) 9870001982290697 a001 6765/103682*4106118243^(10/23) 9870001982290697 a001 6765/103682*1568397607^(5/11) 9870001982290697 a001 6765/103682*599074578^(10/21) 9870001982290697 a001 6624/2161*141422324^(4/13) 9870001982290697 a001 6765/103682*228826127^(1/2) 9870001982290697 a001 6624/2161*2537720636^(4/15) 9870001982290697 a001 6624/2161*45537549124^(4/17) 9870001982290697 a001 6624/2161*817138163596^(4/19) 9870001982290697 a001 6624/2161*14662949395604^(4/21) 9870001982290697 a001 6624/2161*(1/2+1/2*5^(1/2))^12 9870001982290697 a001 6624/2161*192900153618^(2/9) 9870001982290697 a001 6624/2161*73681302247^(3/13) 9870001982290697 a001 6624/2161*10749957122^(1/4) 9870001982290697 a001 6624/2161*4106118243^(6/23) 9870001982290697 a001 6624/2161*1568397607^(3/11) 9870001982290697 a001 6624/2161*599074578^(2/7) 9870001982290697 a001 6624/2161*228826127^(3/10) 9870001982290697 a001 6624/2161*87403803^(6/19) 9870001982290697 a001 6765/103682*87403803^(10/19) 9870001982290700 a001 6624/2161*33385282^(1/3) 9870001982290702 a001 6765/103682*33385282^(5/9) 9870001982290718 a001 6624/2161*12752043^(6/17) 9870001982290732 a001 6765/103682*12752043^(10/17) 9870001982290853 a001 6624/2161*4870847^(3/8) 9870001982290957 a001 6765/103682*4870847^(5/8) 9870001982291837 a001 6624/2161*1860498^(2/5) 9870001982292598 a001 6765/103682*1860498^(2/3) 9870001982299073 a001 6624/2161*710647^(3/7) 9870001982304657 a001 6765/103682*710647^(5/7) 9870001982310240 a001 104559840/105937 9870001982319416 a001 196418/15127*64079^(9/23) 9870001982352522 a001 6624/2161*271443^(6/13) 9870001982353216 a001 317811/15127*64079^(8/23) 9870001982393739 a001 6765/103682*271443^(10/13) 9870001982409930 a001 75025/15127*64079^(11/23) 9870001982424320 a001 9227465/15127*24476^(1/21) 9870001982484735 a001 514229/15127*64079^(7/23) 9870001982578929 a001 832040/15127*64079^(6/23) 9870001982687379 a001 1346269/15127*64079^(5/23) 9870001982749769 a001 6624/2161*103682^(1/2) 9870001982790384 a001 311187/2161*64079^(4/23) 9870001982858140 a004 Fibonacci(20)*Lucas(25)/(1/2+sqrt(5)/2)^29 9870001982895469 a001 3524578/15127*64079^(3/23) 9870001982934605 a001 121393/15127*167761^(2/5) 9870001982999759 a001 5702887/15127*64079^(2/23) 9870001983055816 a001 6765/103682*103682^(5/6) 9870001983074779 a001 2255/90481*7881196^(2/3) 9870001983074878 a001 121393/15127*20633239^(2/7) 9870001983074885 a001 2255/90481*312119004989^(2/5) 9870001983074885 a001 2255/90481*(1/2+1/2*5^(1/2))^22 9870001983074885 a001 2255/90481*10749957122^(11/24) 9870001983074885 a001 2255/90481*4106118243^(11/23) 9870001983074885 a001 2255/90481*1568397607^(1/2) 9870001983074885 a001 2255/90481*599074578^(11/21) 9870001983074885 a001 2255/90481*228826127^(11/20) 9870001983074885 a001 121393/15127*2537720636^(2/9) 9870001983074885 a001 121393/15127*312119004989^(2/11) 9870001983074885 a001 121393/15127*(1/2+1/2*5^(1/2))^10 9870001983074885 a001 121393/15127*28143753123^(1/5) 9870001983074885 a001 121393/15127*10749957122^(5/24) 9870001983074885 a001 121393/15127*4106118243^(5/23) 9870001983074885 a001 121393/15127*1568397607^(5/22) 9870001983074885 a001 121393/15127*599074578^(5/21) 9870001983074885 a001 121393/15127*228826127^(1/4) 9870001983074885 a001 121393/15127*87403803^(5/19) 9870001983074885 a001 2255/90481*87403803^(11/19) 9870001983074887 a001 121393/15127*33385282^(5/18) 9870001983074890 a001 2255/90481*33385282^(11/18) 9870001983074903 a001 121393/15127*12752043^(5/17) 9870001983074924 a001 2255/90481*12752043^(11/17) 9870001983075015 a001 121393/15127*4870847^(5/16) 9870001983075171 a001 2255/90481*4870847^(11/16) 9870001983075835 a001 121393/15127*1860498^(1/3) 9870001983076976 a001 2255/90481*1860498^(11/15) 9870001983077736 a001 14931339/15128 9870001983081865 a001 121393/15127*710647^(5/14) 9870001983090241 a001 2255/90481*710647^(11/14) 9870001983104353 a001 9227465/15127*64079^(1/23) 9870001983126406 a001 121393/15127*271443^(5/13) 9870001983139789 a001 1346269/15127*167761^(1/5) 9870001983143815 a001 6765/710647*439204^(8/9) 9870001983157674 a004 Fibonacci(20)*Lucas(27)/(1/2+sqrt(5)/2)^31 9870001983188232 a001 2255/90481*271443^(11/13) 9870001983189181 a001 6765/710647*7881196^(8/11) 9870001983189296 a001 6765/710647*141422324^(8/13) 9870001983189296 a001 6765/710647*2537720636^(8/15) 9870001983189296 a001 6765/710647*45537549124^(8/17) 9870001983189296 a001 6765/710647*14662949395604^(8/21) 9870001983189296 a001 6765/710647*(1/2+1/2*5^(1/2))^24 9870001983189296 a001 6765/710647*192900153618^(4/9) 9870001983189296 a001 6765/710647*73681302247^(6/13) 9870001983189296 a001 6765/710647*10749957122^(1/2) 9870001983189296 a001 6765/710647*4106118243^(12/23) 9870001983189296 a001 6765/710647*1568397607^(6/11) 9870001983189296 a001 6765/710647*599074578^(4/7) 9870001983189296 a001 6765/710647*228826127^(3/5) 9870001983189296 a001 317811/15127*(1/2+1/2*5^(1/2))^8 9870001983189296 a001 317811/15127*23725150497407^(1/8) 9870001983189296 a001 317811/15127*505019158607^(1/7) 9870001983189296 a001 317811/15127*73681302247^(2/13) 9870001983189296 a001 317811/15127*10749957122^(1/6) 9870001983189296 a001 317811/15127*4106118243^(4/23) 9870001983189296 a001 317811/15127*1568397607^(2/11) 9870001983189296 a001 317811/15127*599074578^(4/21) 9870001983189296 a001 317811/15127*228826127^(1/5) 9870001983189297 a001 317811/15127*87403803^(4/19) 9870001983189297 a001 6765/710647*87403803^(12/19) 9870001983189298 a001 317811/15127*33385282^(2/9) 9870001983189302 a001 6765/710647*33385282^(2/3) 9870001983189311 a001 317811/15127*12752043^(4/17) 9870001983189339 a001 6765/710647*12752043^(12/17) 9870001983189400 a001 317811/15127*4870847^(1/4) 9870001983189608 a001 6765/710647*4870847^(3/4) 9870001983189712 a001 716663805/726103 9870001983190057 a001 317811/15127*1860498^(4/15) 9870001983191577 a001 6765/710647*1860498^(4/5) 9870001983194619 a001 832040/15127*439204^(2/9) 9870001983194880 a001 317811/15127*710647^(2/7) 9870001983201375 a004 Fibonacci(20)*Lucas(29)/(1/2+sqrt(5)/2)^33 9870001983203314 a001 3524578/15127*439204^(1/9) 9870001983205960 a001 832040/15127*7881196^(2/11) 9870001983205988 a001 55/15126*141422324^(2/3) 9870001983205989 a001 55/15126*(1/2+1/2*5^(1/2))^26 9870001983205989 a001 55/15126*73681302247^(1/2) 9870001983205989 a001 55/15126*10749957122^(13/24) 9870001983205989 a001 55/15126*4106118243^(13/23) 9870001983205989 a001 55/15126*1568397607^(13/22) 9870001983205989 a001 55/15126*599074578^(13/21) 9870001983205989 a001 832040/15127*141422324^(2/13) 9870001983205989 a001 55/15126*228826127^(13/20) 9870001983205989 a001 832040/15127*2537720636^(2/15) 9870001983205989 a001 832040/15127*45537549124^(2/17) 9870001983205989 a001 832040/15127*14662949395604^(2/21) 9870001983205989 a001 832040/15127*(1/2+1/2*5^(1/2))^6 9870001983205989 a001 832040/15127*10749957122^(1/8) 9870001983205989 a001 832040/15127*4106118243^(3/23) 9870001983205989 a001 832040/15127*1568397607^(3/22) 9870001983205989 a001 832040/15127*599074578^(1/7) 9870001983205989 a001 832040/15127*228826127^(3/20) 9870001983205989 a001 832040/15127*87403803^(3/19) 9870001983205990 a001 55/15126*87403803^(13/19) 9870001983205990 a001 832040/15127*33385282^(1/6) 9870001983205995 a001 55/15126*33385282^(13/18) 9870001983206000 a001 832040/15127*12752043^(3/17) 9870001983206035 a001 55/15126*12752043^(13/17) 9870001983206048 a001 6765/710647*710647^(6/7) 9870001983206049 a001 5628750600/5702887 9870001983206067 a001 832040/15127*4870847^(3/16) 9870001983206327 a001 55/15126*4870847^(13/16) 9870001983206559 a001 832040/15127*1860498^(1/5) 9870001983207751 a004 Fibonacci(20)*Lucas(31)/(1/2+sqrt(5)/2)^35 9870001983208405 a001 6765/4870847*20633239^(4/5) 9870001983208424 a001 6765/4870847*17393796001^(4/7) 9870001983208424 a001 6765/4870847*14662949395604^(4/9) 9870001983208424 a001 6765/4870847*(1/2+1/2*5^(1/2))^28 9870001983208424 a001 6765/4870847*505019158607^(1/2) 9870001983208424 a001 6765/4870847*73681302247^(7/13) 9870001983208424 a001 6765/4870847*10749957122^(7/12) 9870001983208424 a001 6765/4870847*4106118243^(14/23) 9870001983208424 a001 6765/4870847*1568397607^(7/11) 9870001983208424 a001 6765/4870847*599074578^(2/3) 9870001983208424 a001 6765/4870847*228826127^(7/10) 9870001983208424 a001 311187/2161*(1/2+1/2*5^(1/2))^4 9870001983208424 a001 311187/2161*23725150497407^(1/16) 9870001983208424 a001 311187/2161*73681302247^(1/13) 9870001983208424 a001 311187/2161*10749957122^(1/12) 9870001983208424 a001 311187/2161*4106118243^(2/23) 9870001983208424 a001 311187/2161*1568397607^(1/11) 9870001983208424 a001 311187/2161*599074578^(2/21) 9870001983208424 a001 311187/2161*228826127^(1/10) 9870001983208424 a001 311187/2161*87403803^(2/19) 9870001983208425 a001 6765/4870847*87403803^(14/19) 9870001983208425 a001 311187/2161*33385282^(1/9) 9870001983208431 a001 6765/4870847*33385282^(7/9) 9870001983208431 a001 311187/2161*12752043^(2/17) 9870001983208433 a001 1637362265/1658928 9870001983208460 a001 55/15126*1860498^(13/15) 9870001983208474 a001 6765/4870847*12752043^(14/17) 9870001983208476 a001 311187/2161*4870847^(1/8) 9870001983208635 a001 2255/4250681*7881196^(10/11) 9870001983208681 a004 Fibonacci(20)*Lucas(33)/(1/2+sqrt(5)/2)^37 9870001983208759 a001 2255/4250681*20633239^(6/7) 9870001983208779 a001 2255/4250681*141422324^(10/13) 9870001983208779 a001 2255/4250681*2537720636^(2/3) 9870001983208779 a001 2255/4250681*45537549124^(10/17) 9870001983208779 a001 2255/4250681*312119004989^(6/11) 9870001983208779 a001 2255/4250681*14662949395604^(10/21) 9870001983208779 a001 2255/4250681*(1/2+1/2*5^(1/2))^30 9870001983208779 a001 2255/4250681*192900153618^(5/9) 9870001983208779 a001 2255/4250681*28143753123^(3/5) 9870001983208779 a001 2255/4250681*10749957122^(5/8) 9870001983208779 a001 2255/4250681*4106118243^(15/23) 9870001983208779 a001 2255/4250681*1568397607^(15/22) 9870001983208779 a001 2255/4250681*599074578^(5/7) 9870001983208780 a001 2255/4250681*228826127^(3/4) 9870001983208780 a001 5702887/15127*(1/2+1/2*5^(1/2))^2 9870001983208780 a001 5702887/15127*10749957122^(1/24) 9870001983208780 a001 5702887/15127*4106118243^(1/23) 9870001983208780 a001 5702887/15127*1568397607^(1/22) 9870001983208780 a001 5702887/15127*599074578^(1/21) 9870001983208780 a001 5702887/15127*228826127^(1/20) 9870001983208780 a001 5702887/15127*87403803^(1/19) 9870001983208780 a001 5702887/15127*33385282^(1/18) 9870001983208780 a001 2255/4250681*87403803^(15/19) 9870001983208781 a001 38580030555/39088169 9870001983208783 a001 5702887/15127*12752043^(1/17) 9870001983208787 a001 2255/4250681*33385282^(5/6) 9870001983208788 a001 6765/4870847*4870847^(7/8) 9870001983208804 a001 311187/2161*1860498^(2/15) 9870001983208806 a001 5702887/15127*4870847^(1/16) 9870001983208817 a004 Fibonacci(20)*Lucas(35)/(1/2+sqrt(5)/2)^39 9870001983208831 a001 6765/33385282*(1/2+1/2*5^(1/2))^32 9870001983208831 a001 6765/33385282*23725150497407^(1/2) 9870001983208831 a001 6765/33385282*505019158607^(4/7) 9870001983208831 a001 6765/33385282*73681302247^(8/13) 9870001983208831 a001 6765/33385282*10749957122^(2/3) 9870001983208831 a001 6765/33385282*4106118243^(16/23) 9870001983208831 a001 6765/33385282*1568397607^(8/11) 9870001983208831 a001 6765/33385282*599074578^(16/21) 9870001983208831 a001 6765/33385282*228826127^(4/5) 9870001983208831 a001 14930352/15127 9870001983208832 a001 6765/33385282*87403803^(16/19) 9870001983208833 a001 2255/4250681*12752043^(15/17) 9870001983208837 a004 Fibonacci(20)*Lucas(37)/(1/2+sqrt(5)/2)^41 9870001983208839 a001 2255/29134601*45537549124^(2/3) 9870001983208839 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^34/Lucas(38) 9870001983208839 a001 2255/29134601*10749957122^(17/24) 9870001983208839 a001 2255/29134601*4106118243^(17/23) 9870001983208839 a001 2255/29134601*1568397607^(17/22) 9870001983208839 a001 2255/29134601*599074578^(17/21) 9870001983208839 a001 264431463285/267914296 9870001983208839 a001 2255/29134601*228826127^(17/20) 9870001983208839 a004 Fibonacci(38)/Lucas(20)/(1/2+sqrt(5)/2)^2 9870001983208839 a001 6765/33385282*33385282^(8/9) 9870001983208839 a001 6765/228826127*141422324^(12/13) 9870001983208840 a004 Fibonacci(20)*Lucas(39)/(1/2+sqrt(5)/2)^43 9870001983208840 a001 6765/228826127*2537720636^(4/5) 9870001983208840 a001 6765/228826127*45537549124^(12/17) 9870001983208840 a001 6765/228826127*14662949395604^(4/7) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^36/Lucas(40) 9870001983208840 a001 6765/228826127*505019158607^(9/14) 9870001983208840 a001 6765/228826127*192900153618^(2/3) 9870001983208840 a001 6765/228826127*73681302247^(9/13) 9870001983208840 a001 6765/228826127*10749957122^(3/4) 9870001983208840 a001 6765/228826127*4106118243^(18/23) 9870001983208840 a001 6765/228826127*1568397607^(9/11) 9870001983208840 a001 230763519525/233802911 9870001983208840 a001 6765/228826127*599074578^(6/7) 9870001983208840 a001 2255/29134601*87403803^(17/19) 9870001983208840 a004 Fibonacci(20)*Lucas(41)/(1/2+sqrt(5)/2)^45 9870001983208840 a001 2255/199691526*817138163596^(2/3) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^38/Lucas(42) 9870001983208840 a001 2255/199691526*10749957122^(19/24) 9870001983208840 a001 2255/199691526*4106118243^(19/23) 9870001983208840 a001 1812440212440/1836311903 9870001983208840 a001 2255/199691526*1568397607^(19/22) 9870001983208840 a001 6765/228826127*228826127^(9/10) 9870001983208840 a004 Fibonacci(20)*Lucas(43)/(1/2+sqrt(5)/2)^47 9870001983208840 a001 6765/1568397607*2537720636^(8/9) 9870001983208840 a001 6765/1568397607*312119004989^(8/11) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^40/Lucas(44) 9870001983208840 a001 6765/1568397607*23725150497407^(5/8) 9870001983208840 a001 6765/1568397607*73681302247^(10/13) 9870001983208840 a001 6765/1568397607*28143753123^(4/5) 9870001983208840 a001 6765/1568397607*10749957122^(5/6) 9870001983208840 a001 527225564305/534169664 9870001983208840 a001 6765/1568397607*4106118243^(20/23) 9870001983208840 a001 2255/199691526*599074578^(19/21) 9870001983208840 a001 2255/1368706081*2537720636^(14/15) 9870001983208840 a004 Fibonacci(20)*Lucas(45)/(1/2+sqrt(5)/2)^49 9870001983208840 a001 2255/1368706081*17393796001^(6/7) 9870001983208840 a001 2255/1368706081*45537549124^(14/17) 9870001983208840 a001 2255/1368706081*817138163596^(14/19) 9870001983208840 a001 2255/1368706081*14662949395604^(2/3) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^42/Lucas(46) 9870001983208840 a001 2255/1368706081*505019158607^(3/4) 9870001983208840 a001 2255/1368706081*192900153618^(7/9) 9870001983208840 a001 225866364069/228841255 9870001983208840 a001 2255/1368706081*10749957122^(7/8) 9870001983208840 a001 6765/1568397607*1568397607^(10/11) 9870001983208840 a004 Fibonacci(20)*Lucas(47)/(1/2+sqrt(5)/2)^51 9870001983208840 a001 6765/10749957122*312119004989^(4/5) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^44/Lucas(48) 9870001983208840 a001 6765/10749957122*23725150497407^(11/16) 9870001983208840 a001 6765/10749957122*73681302247^(11/13) 9870001983208840 a001 10840973330880/10983760033 9870001983208840 a001 2255/1368706081*4106118243^(21/23) 9870001983208840 a004 Fibonacci(20)*Lucas(49)/(1/2+sqrt(5)/2)^53 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^46/Lucas(50) 9870001983208840 a001 85146109954125/86267571272 9870001983208840 a001 6765/10749957122*10749957122^(11/12) 9870001983208840 a001 6765/73681302247*45537549124^(16/17) 9870001983208840 a004 Fibonacci(20)*Lucas(51)/(1/2+sqrt(5)/2)^55 9870001983208840 a001 6765/73681302247*14662949395604^(16/21) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^48/Lucas(52) 9870001983208840 a001 74305136623245/75283811239 9870001983208840 a001 6765/73681302247*192900153618^(8/9) 9870001983208840 a004 Fibonacci(20)*Lucas(53)/(1/2+sqrt(5)/2)^57 9870001983208840 a001 2255/64300051206*312119004989^(10/11) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^50/Lucas(54) 9870001983208840 a001 2255/64300051206*3461452808002^(5/6) 9870001983208840 a001 583600119655080/591286729879 9870001983208840 a001 6765/73681302247*73681302247^(12/13) 9870001983208840 a004 Fibonacci(20)*Lucas(55)/(1/2+sqrt(5)/2)^59 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^52/Lucas(56) 9870001983208840 a001 6765/505019158607*23725150497407^(13/16) 9870001983208840 a001 75283811239/76275376 9870001983208840 a004 Fibonacci(20)*Lucas(57)/(1/2+sqrt(5)/2)^61 9870001983208840 a001 2255/440719107401*14662949395604^(6/7) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^54/Lucas(58) 9870001983208840 a001 6765/505019158607*505019158607^(13/14) 9870001983208840 a004 Fibonacci(20)*Lucas(59)/(1/2+sqrt(5)/2)^63 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^56/Lucas(60) 9870001983208840 a004 Fibonacci(20)*Lucas(61)/(1/2+sqrt(5)/2)^65 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^58/Lucas(62) 9870001983208840 a001 6765/23725150497407*14662949395604^(20/21) 9870001983208840 a004 Fibonacci(20)*Lucas(63)/(1/2+sqrt(5)/2)^67 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^60/Lucas(64) 9870001983208840 a004 Fibonacci(20)*Lucas(65)/(1/2+sqrt(5)/2)^69 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^62/Lucas(66) 9870001983208840 a004 Fibonacci(20)*Lucas(67)/(1/2+sqrt(5)/2)^71 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^64/Lucas(68) 9870001983208840 a004 Fibonacci(20)*Lucas(69)/(1/2+sqrt(5)/2)^73 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^66/Lucas(70) 9870001983208840 a004 Fibonacci(20)*Lucas(71)/(1/2+sqrt(5)/2)^75 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^68/Lucas(72) 9870001983208840 a004 Fibonacci(20)*Lucas(73)/(1/2+sqrt(5)/2)^77 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^70/Lucas(74) 9870001983208840 a004 Fibonacci(20)*Lucas(75)/(1/2+sqrt(5)/2)^79 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^72/Lucas(76) 9870001983208840 a004 Fibonacci(20)*Lucas(77)/(1/2+sqrt(5)/2)^81 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^74/Lucas(78) 9870001983208840 a004 Fibonacci(20)*Lucas(79)/(1/2+sqrt(5)/2)^83 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^76/Lucas(80) 9870001983208840 a004 Fibonacci(20)*Lucas(81)/(1/2+sqrt(5)/2)^85 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^78/Lucas(82) 9870001983208840 a004 Fibonacci(20)*Lucas(83)/(1/2+sqrt(5)/2)^87 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^80/Lucas(84) 9870001983208840 a004 Fibonacci(20)*Lucas(85)/(1/2+sqrt(5)/2)^89 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^82/Lucas(86) 9870001983208840 a004 Fibonacci(20)*Lucas(87)/(1/2+sqrt(5)/2)^91 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^84/Lucas(88) 9870001983208840 a004 Fibonacci(20)*Lucas(89)/(1/2+sqrt(5)/2)^93 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^86/Lucas(90) 9870001983208840 a004 Fibonacci(20)*Lucas(91)/(1/2+sqrt(5)/2)^95 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^88/Lucas(92) 9870001983208840 a004 Fibonacci(20)*Lucas(93)/(1/2+sqrt(5)/2)^97 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^90/Lucas(94) 9870001983208840 a004 Fibonacci(20)*Lucas(95)/(1/2+sqrt(5)/2)^99 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^92/Lucas(96) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^94/Lucas(98) 9870001983208840 a004 Fibonacci(10)*Lucas(10)/(1/2+sqrt(5)/2)^4 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^95/Lucas(99) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^96/Lucas(100) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^93/Lucas(97) 9870001983208840 a004 Fibonacci(20)*Lucas(96)/(1/2+sqrt(5)/2)^100 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^91/Lucas(95) 9870001983208840 a004 Fibonacci(20)*Lucas(94)/(1/2+sqrt(5)/2)^98 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^89/Lucas(93) 9870001983208840 a004 Fibonacci(20)*Lucas(92)/(1/2+sqrt(5)/2)^96 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^87/Lucas(91) 9870001983208840 a004 Fibonacci(20)*Lucas(90)/(1/2+sqrt(5)/2)^94 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^85/Lucas(89) 9870001983208840 a004 Fibonacci(20)*Lucas(88)/(1/2+sqrt(5)/2)^92 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^83/Lucas(87) 9870001983208840 a004 Fibonacci(20)*Lucas(86)/(1/2+sqrt(5)/2)^90 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^81/Lucas(85) 9870001983208840 a004 Fibonacci(20)*Lucas(84)/(1/2+sqrt(5)/2)^88 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^79/Lucas(83) 9870001983208840 a004 Fibonacci(20)*Lucas(82)/(1/2+sqrt(5)/2)^86 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^77/Lucas(81) 9870001983208840 a004 Fibonacci(20)*Lucas(80)/(1/2+sqrt(5)/2)^84 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^75/Lucas(79) 9870001983208840 a004 Fibonacci(20)*Lucas(78)/(1/2+sqrt(5)/2)^82 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^73/Lucas(77) 9870001983208840 a004 Fibonacci(20)*Lucas(76)/(1/2+sqrt(5)/2)^80 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^71/Lucas(75) 9870001983208840 a004 Fibonacci(20)*Lucas(74)/(1/2+sqrt(5)/2)^78 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^69/Lucas(73) 9870001983208840 a004 Fibonacci(20)*Lucas(72)/(1/2+sqrt(5)/2)^76 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^67/Lucas(71) 9870001983208840 a004 Fibonacci(20)*Lucas(70)/(1/2+sqrt(5)/2)^74 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^65/Lucas(69) 9870001983208840 a004 Fibonacci(20)*Lucas(68)/(1/2+sqrt(5)/2)^72 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^63/Lucas(67) 9870001983208840 a004 Fibonacci(20)*Lucas(66)/(1/2+sqrt(5)/2)^70 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^61/Lucas(65) 9870001983208840 a004 Fibonacci(20)*Lucas(64)/(1/2+sqrt(5)/2)^68 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^59/Lucas(63) 9870001983208840 a004 Fibonacci(20)*Lucas(62)/(1/2+sqrt(5)/2)^66 9870001983208840 a001 6765/5600748293801*14662949395604^(19/21) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^57/Lucas(61) 9870001983208840 a004 Fibonacci(20)*Lucas(60)/(1/2+sqrt(5)/2)^64 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^55/Lucas(59) 9870001983208840 a004 Fibonacci(20)*Lucas(58)/(1/2+sqrt(5)/2)^62 9870001983208840 a001 2472169778535930/2504730781961 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^53/Lucas(57) 9870001983208840 a004 Fibonacci(20)*Lucas(56)/(1/2+sqrt(5)/2)^60 9870001983208840 a001 615/28374454999*817138163596^(17/19) 9870001983208840 a001 944284829440425/956722026041 9870001983208840 a001 615/28374454999*14662949395604^(17/21) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^51/Lucas(55) 9870001983208840 a004 Fibonacci(20)*Lucas(54)/(1/2+sqrt(5)/2)^58 9870001983208840 a001 615/28374454999*192900153618^(17/18) 9870001983208840 a001 360684709785345/365435296162 9870001983208840 a001 6765/119218851371*14662949395604^(7/9) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^49/Lucas(53) 9870001983208840 a001 6765/119218851371*505019158607^(7/8) 9870001983208840 a004 Fibonacci(20)*Lucas(52)/(1/2+sqrt(5)/2)^56 9870001983208840 a001 27553859983122/27916772489 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^47/Lucas(51) 9870001983208840 a004 Fibonacci(20)*Lucas(50)/(1/2+sqrt(5)/2)^54 9870001983208840 a001 6765/17393796001*45537549124^(15/17) 9870001983208840 a001 52623189961485/53316291173 9870001983208840 a001 6765/17393796001*312119004989^(9/11) 9870001983208840 a001 6765/17393796001*14662949395604^(5/7) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^45/Lucas(49) 9870001983208840 a001 6765/17393796001*192900153618^(5/6) 9870001983208840 a001 6765/17393796001*28143753123^(9/10) 9870001983208840 a001 55/228811001*10749957122^(23/24) 9870001983208840 a004 Fibonacci(20)*Lucas(48)/(1/2+sqrt(5)/2)^52 9870001983208840 a001 6765/17393796001*10749957122^(15/16) 9870001983208840 a001 20100269968845/20365011074 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^43/Lucas(47) 9870001983208840 a001 6765/10749957122*4106118243^(22/23) 9870001983208840 a004 Fibonacci(20)*Lucas(46)/(1/2+sqrt(5)/2)^50 9870001983208840 a001 7677619945050/7778742049 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^41/Lucas(45) 9870001983208840 a001 2255/1368706081*1568397607^(21/22) 9870001983208840 a004 Fibonacci(20)*Lucas(44)/(1/2+sqrt(5)/2)^48 9870001983208840 a001 6765/969323029*2537720636^(13/15) 9870001983208840 a001 2932589866305/2971215073 9870001983208840 a001 6765/969323029*45537549124^(13/17) 9870001983208840 a001 6765/969323029*14662949395604^(13/21) 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^39/Lucas(43) 9870001983208840 a001 6765/969323029*192900153618^(13/18) 9870001983208840 a001 6765/969323029*73681302247^(3/4) 9870001983208840 a001 6765/969323029*10749957122^(13/16) 9870001983208840 a001 6765/1568397607*599074578^(20/21) 9870001983208840 a004 Fibonacci(20)*Lucas(42)/(1/2+sqrt(5)/2)^46 9870001983208840 a001 6765/969323029*599074578^(13/14) 9870001983208840 a001 224029930773/226980634 9870001983208840 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^37/Lucas(41) 9870001983208840 a001 2255/199691526*228826127^(19/20) 9870001983208840 a004 Fibonacci(42)/Lucas(20)/(1/2+sqrt(5)/2)^6 9870001983208840 a004 Fibonacci(44)/Lucas(20)/(1/2+sqrt(5)/2)^8 9870001983208840 a004 Fibonacci(46)/Lucas(20)/(1/2+sqrt(5)/2)^10 9870001983208840 a004 Fibonacci(48)/Lucas(20)/(1/2+sqrt(5)/2)^12 9870001983208840 a004 Fibonacci(50)/Lucas(20)/(1/2+sqrt(5)/2)^14 9870001983208840 a004 Fibonacci(52)/Lucas(20)/(1/2+sqrt(5)/2)^16 9870001983208840 a004 Fibonacci(54)/Lucas(20)/(1/2+sqrt(5)/2)^18 9870001983208840 a004 Fibonacci(56)/Lucas(20)/(1/2+sqrt(5)/2)^20 9870001983208840 a004 Fibonacci(58)/Lucas(20)/(1/2+sqrt(5)/2)^22 9870001983208840 a004 Fibonacci(60)/Lucas(20)/(1/2+sqrt(5)/2)^24 9870001983208840 a004 Fibonacci(62)/Lucas(20)/(1/2+sqrt(5)/2)^26 9870001983208840 a004 Fibonacci(64)/Lucas(20)/(1/2+sqrt(5)/2)^28 9870001983208840 a004 Fibonacci(66)/Lucas(20)/(1/2+sqrt(5)/2)^30 9870001983208840 a004 Fibonacci(68)/Lucas(20)/(1/2+sqrt(5)/2)^32 9870001983208840 a004 Fibonacci(70)/Lucas(20)/(1/2+sqrt(5)/2)^34 9870001983208840 a004 Fibonacci(72)/Lucas(20)/(1/2+sqrt(5)/2)^36 9870001983208840 a004 Fibonacci(74)/Lucas(20)/(1/2+sqrt(5)/2)^38 9870001983208840 a004 Fibonacci(76)/Lucas(20)/(1/2+sqrt(5)/2)^40 9870001983208840 a004 Fibonacci(78)/Lucas(20)/(1/2+sqrt(5)/2)^42 9870001983208840 a004 Fibonacci(20)*Lucas(40)/(1/2+sqrt(5)/2)^44 9870001983208840 a004 Fibonacci(82)/Lucas(20)/(1/2+sqrt(5)/2)^46 9870001983208840 a004 Fibonacci(84)/Lucas(20)/(1/2+sqrt(5)/2)^48 9870001983208840 a004 Fibonacci(86)/Lucas(20)/(1/2+sqrt(5)/2)^50 9870001983208840 a004 Fibonacci(88)/Lucas(20)/(1/2+sqrt(5)/2)^52 9870001983208840 a004 Fibonacci(90)/Lucas(20)/(1/2+sqrt(5)/2)^54 9870001983208840 a004 Fibonacci(92)/Lucas(20)/(1/2+sqrt(5)/2)^56 9870001983208840 a004 Fibonacci(94)/Lucas(20)/(1/2+sqrt(5)/2)^58 9870001983208840 a004 Fibonacci(96)/Lucas(20)/(1/2+sqrt(5)/2)^60 9870001983208840 a004 Fibonacci(98)/Lucas(20)/(1/2+sqrt(5)/2)^62 9870001983208840 a004 Fibonacci(100)/Lucas(20)/(1/2+sqrt(5)/2)^64 9870001983208840 a004 Fibonacci(99)/Lucas(20)/(1/2+sqrt(5)/2)^63 9870001983208840 a004 Fibonacci(97)/Lucas(20)/(1/2+sqrt(5)/2)^61 9870001983208840 a004 Fibonacci(95)/Lucas(20)/(1/2+sqrt(5)/2)^59 9870001983208840 a004 Fibonacci(93)/Lucas(20)/(1/2+sqrt(5)/2)^57 9870001983208840 a004 Fibonacci(91)/Lucas(20)/(1/2+sqrt(5)/2)^55 9870001983208840 a004 Fibonacci(89)/Lucas(20)/(1/2+sqrt(5)/2)^53 9870001983208840 a004 Fibonacci(87)/Lucas(20)/(1/2+sqrt(5)/2)^51 9870001983208840 a004 Fibonacci(85)/Lucas(20)/(1/2+sqrt(5)/2)^49 9870001983208840 a004 Fibonacci(83)/Lucas(20)/(1/2+sqrt(5)/2)^47 9870001983208840 a004 Fibonacci(81)/Lucas(20)/(1/2+sqrt(5)/2)^45 9870001983208840 a004 Fibonacci(79)/Lucas(20)/(1/2+sqrt(5)/2)^43 9870001983208840 a004 Fibonacci(77)/Lucas(20)/(1/2+sqrt(5)/2)^41 9870001983208840 a004 Fibonacci(75)/Lucas(20)/(1/2+sqrt(5)/2)^39 9870001983208840 a004 Fibonacci(73)/Lucas(20)/(1/2+sqrt(5)/2)^37 9870001983208840 a004 Fibonacci(71)/Lucas(20)/(1/2+sqrt(5)/2)^35 9870001983208840 a004 Fibonacci(69)/Lucas(20)/(1/2+sqrt(5)/2)^33 9870001983208840 a004 Fibonacci(67)/Lucas(20)/(1/2+sqrt(5)/2)^31 9870001983208840 a004 Fibonacci(65)/Lucas(20)/(1/2+sqrt(5)/2)^29 9870001983208840 a004 Fibonacci(63)/Lucas(20)/(1/2+sqrt(5)/2)^27 9870001983208840 a004 Fibonacci(61)/Lucas(20)/(1/2+sqrt(5)/2)^25 9870001983208840 a004 Fibonacci(59)/Lucas(20)/(1/2+sqrt(5)/2)^23 9870001983208840 a004 Fibonacci(57)/Lucas(20)/(1/2+sqrt(5)/2)^21 9870001983208840 a004 Fibonacci(55)/Lucas(20)/(1/2+sqrt(5)/2)^19 9870001983208840 a004 Fibonacci(53)/Lucas(20)/(1/2+sqrt(5)/2)^17 9870001983208840 a004 Fibonacci(51)/Lucas(20)/(1/2+sqrt(5)/2)^15 9870001983208840 a004 Fibonacci(49)/Lucas(20)/(1/2+sqrt(5)/2)^13 9870001983208840 a004 Fibonacci(47)/Lucas(20)/(1/2+sqrt(5)/2)^11 9870001983208840 a004 Fibonacci(45)/Lucas(20)/(1/2+sqrt(5)/2)^9 9870001983208840 a004 Fibonacci(43)/Lucas(20)/(1/2+sqrt(5)/2)^7 9870001983208840 a004 Fibonacci(41)/Lucas(20)/(1/2+sqrt(5)/2)^5 9870001983208841 a001 427859095290/433494437 9870001983208841 a001 6765/141422324*2537720636^(7/9) 9870001983208841 a001 6765/141422324*17393796001^(5/7) 9870001983208841 a001 6765/141422324*312119004989^(7/11) 9870001983208841 a001 6765/141422324*14662949395604^(5/9) 9870001983208841 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^35/Lucas(39) 9870001983208841 a001 6765/141422324*505019158607^(5/8) 9870001983208841 a001 6765/141422324*28143753123^(7/10) 9870001983208841 a001 6765/141422324*599074578^(5/6) 9870001983208841 a001 6765/141422324*228826127^(7/8) 9870001983208841 a004 Fibonacci(39)/Lucas(20)/(1/2+sqrt(5)/2)^3 9870001983208841 a001 6765/228826127*87403803^(18/19) 9870001983208841 a004 Fibonacci(20)*Lucas(38)/(1/2+sqrt(5)/2)^42 9870001983208843 a001 6765/54018521*141422324^(11/13) 9870001983208843 a001 163427632005/165580141 9870001983208843 a001 6765/54018521*2537720636^(11/15) 9870001983208843 a001 6765/54018521*45537549124^(11/17) 9870001983208843 a001 6765/54018521*312119004989^(3/5) 9870001983208843 a001 6765/54018521*817138163596^(11/19) 9870001983208843 a001 6765/54018521*14662949395604^(11/21) 9870001983208843 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^33/Lucas(37) 9870001983208843 a001 6765/54018521*192900153618^(11/18) 9870001983208843 a001 6765/54018521*10749957122^(11/16) 9870001983208843 a001 6765/54018521*1568397607^(3/4) 9870001983208843 a001 6765/54018521*599074578^(11/14) 9870001983208844 a004 Fibonacci(37)/Lucas(20)/(1/2+sqrt(5)/2) 9870001983208847 a001 2255/29134601*33385282^(17/18) 9870001983208849 a004 Fibonacci(20)*Lucas(36)/(1/2+sqrt(5)/2)^40 9870001983208852 a001 6765/54018521*33385282^(11/12) 9870001983208863 a001 62423800725/63245986 9870001983208863 a001 615/1875749*(1/2+1/2*5^(1/2))^31 9870001983208863 a001 615/1875749*9062201101803^(1/2) 9870001983208863 a001 9227465/30254+9227465/30254*5^(1/2) 9870001983208888 a001 6765/33385282*12752043^(16/17) 9870001983208901 a004 Fibonacci(20)*Lucas(34)/(1/2+sqrt(5)/2)^38 9870001983208970 a001 5702887/15127*1860498^(1/15) 9870001983208985 a001 3524578/15127*7881196^(1/11) 9870001983208996 a001 23843770170/24157817 9870001983208999 a001 6765/7881196*(1/2+1/2*5^(1/2))^29 9870001983208999 a001 6765/7881196*1322157322203^(1/2) 9870001983208999 a001 3524578/15127*141422324^(1/13) 9870001983208999 a001 3524578/15127*2537720636^(1/15) 9870001983208999 a001 3524578/15127*45537549124^(1/17) 9870001983208999 a001 3524578/15127*14662949395604^(1/21) 9870001983208999 a001 3524578/15127*(1/2+1/2*5^(1/2))^3 9870001983208999 a001 3524578/15127*192900153618^(1/18) 9870001983208999 a001 3524578/15127*10749957122^(1/16) 9870001983208999 a001 3524578/15127*599074578^(1/14) 9870001983209000 a001 3524578/15127*33385282^(1/12) 9870001983209169 a001 2255/4250681*4870847^(15/16) 9870001983209256 a004 Fibonacci(20)*Lucas(32)/(1/2+sqrt(5)/2)^36 9870001983209284 a001 3524578/15127*1860498^(1/10) 9870001983209799 a001 6765/3010349*7881196^(9/11) 9870001983209906 a001 1821501957/1845493 9870001983209926 a001 1346269/15127*20633239^(1/7) 9870001983209929 a001 6765/3010349*141422324^(9/13) 9870001983209929 a001 6765/3010349*2537720636^(3/5) 9870001983209929 a001 6765/3010349*45537549124^(9/17) 9870001983209929 a001 6765/3010349*817138163596^(9/19) 9870001983209929 a001 6765/3010349*14662949395604^(3/7) 9870001983209929 a001 6765/3010349*(1/2+1/2*5^(1/2))^27 9870001983209929 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^27/Lucas(31) 9870001983209929 a001 6765/3010349*192900153618^(1/2) 9870001983209929 a001 6765/3010349*10749957122^(9/16) 9870001983209929 a001 6765/3010349*599074578^(9/14) 9870001983209929 a001 1346269/15127*2537720636^(1/9) 9870001983209929 a001 1346269/15127*312119004989^(1/11) 9870001983209929 a001 1346269/15127*(1/2+1/2*5^(1/2))^5 9870001983209929 a001 1346269/15127*28143753123^(1/10) 9870001983209929 a001 1346269/15127*228826127^(1/8) 9870001983209936 a001 6765/3010349*33385282^(3/4) 9870001983210176 a001 5702887/15127*710647^(1/14) 9870001983210177 a001 832040/15127*710647^(3/14) 9870001983210405 a001 1346269/15127*1860498^(1/6) 9870001983211085 a001 6765/4870847*1860498^(14/15) 9870001983211216 a001 311187/2161*710647^(1/7) 9870001983211691 a004 Fibonacci(20)*Lucas(30)/(1/2+sqrt(5)/2)^34 9870001983212495 a001 6765/3010349*1860498^(9/10) 9870001983216146 a001 3478759185/3524578 9870001983216289 a001 6765/1149851*20633239^(5/7) 9870001983216301 a001 514229/15127*20633239^(1/5) 9870001983216305 a001 6765/1149851*2537720636^(5/9) 9870001983216305 a001 6765/1149851*312119004989^(5/11) 9870001983216305 a001 6765/1149851*(1/2+1/2*5^(1/2))^25 9870001983216305 a001 6765/1149851*3461452808002^(5/12) 9870001983216305 a001 6765/1149851*28143753123^(1/2) 9870001983216305 a001 6765/1149851*228826127^(5/8) 9870001983216305 a001 514229/15127*17393796001^(1/7) 9870001983216305 a001 514229/15127*14662949395604^(1/9) 9870001983216305 a001 514229/15127*(1/2+1/2*5^(1/2))^7 9870001983216305 a001 514229/15127*599074578^(1/6) 9870001983216717 a001 39088169/64079*3571^(1/17) 9870001983218681 a001 6765/1149851*1860498^(5/6) 9870001983219084 a001 5702887/15127*271443^(1/13) 9870001983221191 a001 514229/15127*710647^(1/4) 9870001983224136 a001 55/15126*710647^(13/14) 9870001983228384 a004 Fibonacci(20)*Lucas(28)/(1/2+sqrt(5)/2)^32 9870001983229033 a001 311187/2161*271443^(2/13) 9870001983230513 a001 317811/15127*271443^(4/13) 9870001983236902 a001 832040/15127*271443^(3/13) 9870001983242951 a001 196418/15127*439204^(1/3) 9870001983247119 a001 9227465/15127*103682^(1/24) 9870001983258917 a001 1328767770/1346269 9870001983259963 a001 196418/15127*7881196^(3/11) 9870001983260006 a001 6765/439204*(1/2+1/2*5^(1/2))^23 9870001983260006 a001 6765/439204*4106118243^(1/2) 9870001983260007 a001 196418/15127*141422324^(3/13) 9870001983260007 a001 196418/15127*2537720636^(1/5) 9870001983260007 a001 196418/15127*45537549124^(3/17) 9870001983260007 a001 196418/15127*817138163596^(3/19) 9870001983260007 a001 196418/15127*14662949395604^(1/7) 9870001983260007 a001 196418/15127*(1/2+1/2*5^(1/2))^9 9870001983260007 a001 196418/15127*192900153618^(1/6) 9870001983260007 a001 196418/15127*10749957122^(3/16) 9870001983260007 a001 196418/15127*599074578^(3/14) 9870001983260009 a001 196418/15127*33385282^(1/4) 9870001983260862 a001 196418/15127*1860498^(3/10) 9870001983285291 a001 5702887/15127*103682^(1/12) 9870001983312947 a001 6765/710647*271443^(12/13) 9870001983323767 a001 3524578/15127*103682^(1/8) 9870001983342795 a004 Fibonacci(20)*Lucas(26)/(1/2+sqrt(5)/2)^30 9870001983361448 a001 311187/2161*103682^(1/6) 9870001983401209 a001 1346269/15127*103682^(5/24) 9870001983434842 a001 98209/12238*9349^(10/19) 9870001983435525 a001 832040/15127*103682^(1/4) 9870001983457445 a001 121393/15127*103682^(5/12) 9870001983484097 a001 514229/15127*103682^(7/24) 9870001983494911 a001 9227465/15127*39603^(1/22) 9870001983495344 a001 317811/15127*103682^(1/3) 9870001983519744 a001 615/15251*439204^(7/9) 9870001983552075 a001 507544125/514229 9870001983559439 a001 615/15251*7881196^(7/11) 9870001983559487 a001 75025/15127*7881196^(1/3) 9870001983559526 a001 615/15251*20633239^(3/5) 9870001983559539 a001 615/15251*141422324^(7/13) 9870001983559540 a001 615/15251*2537720636^(7/15) 9870001983559540 a001 615/15251*17393796001^(3/7) 9870001983559540 a001 615/15251*45537549124^(7/17) 9870001983559540 a001 615/15251*14662949395604^(1/3) 9870001983559540 a001 615/15251*(1/2+1/2*5^(1/2))^21 9870001983559540 a001 615/15251*192900153618^(7/18) 9870001983559540 a001 615/15251*10749957122^(7/16) 9870001983559540 a001 615/15251*599074578^(1/2) 9870001983559540 a001 75025/15127*312119004989^(1/5) 9870001983559540 a001 75025/15127*(1/2+1/2*5^(1/2))^11 9870001983559540 a001 75025/15127*1568397607^(1/4) 9870001983559545 a001 615/15251*33385282^(7/12) 9870001983561536 a001 615/15251*1860498^(7/10) 9870001983574197 a001 615/15251*710647^(3/4) 9870001983604310 a001 196418/15127*103682^(3/8) 9870001983626880 a001 6765/64079*64079^(19/23) 9870001983780875 a001 5702887/15127*39603^(1/11) 9870001983820409 a001 1762289/51841*9349^(7/19) 9870001983916516 a001 2255/90481*103682^(11/12) 9870001983980356 a001 75025/15127*103682^(11/24) 9870001983995034 a001 726103/1926*2207^(1/8) 9870001984067142 a001 3524578/15127*39603^(3/22) 9870001984103808 a001 832040/2207*843^(1/7) 9870001984126983 a004 Fibonacci(20)*Lucas(24)/(1/2+sqrt(5)/2)^28 9870001984139894 a001 6765/439204*103682^(23/24) 9870001984253940 a001 28657/15127*64079^(13/23) 9870001984352615 a001 311187/2161*39603^(2/11) 9870001984362915 a001 615/15251*103682^(7/8) 9870001984388306 a001 726103/13201*9349^(6/19) 9870001984604461 a001 9227465/271443*9349^(7/19) 9870001984640168 a001 1346269/15127*39603^(5/22) 9870001984718853 a001 24157817/710647*9349^(7/19) 9870001984735542 a001 31622993/930249*9349^(7/19) 9870001984737977 a001 165580141/4870847*9349^(7/19) 9870001984738332 a001 433494437/12752043*9349^(7/19) 9870001984738384 a001 567451585/16692641*9349^(7/19) 9870001984738392 a001 2971215073/87403803*9349^(7/19) 9870001984738393 a001 7778742049/228826127*9349^(7/19) 9870001984738393 a001 10182505537/299537289*9349^(7/19) 9870001984738393 a001 53316291173/1568397607*9349^(7/19) 9870001984738393 a001 139583862445/4106118243*9349^(7/19) 9870001984738393 a001 182717648081/5374978561*9349^(7/19) 9870001984738393 a001 956722026041/28143753123*9349^(7/19) 9870001984738393 a001 2504730781961/73681302247*9349^(7/19) 9870001984738393 a001 3278735159921/96450076809*9349^(7/19) 9870001984738393 a001 10610209857723/312119004989*9349^(7/19) 9870001984738393 a001 4052739537881/119218851371*9349^(7/19) 9870001984738393 a001 387002188980/11384387281*9349^(7/19) 9870001984738393 a001 591286729879/17393796001*9349^(7/19) 9870001984738393 a001 225851433717/6643838879*9349^(7/19) 9870001984738393 a001 1135099622/33391061*9349^(7/19) 9870001984738393 a001 32951280099/969323029*9349^(7/19) 9870001984738393 a001 12586269025/370248451*9349^(7/19) 9870001984738394 a001 1201881744/35355581*9349^(7/19) 9870001984738397 a001 1836311903/54018521*9349^(7/19) 9870001984738416 a001 701408733/20633239*9349^(7/19) 9870001984738552 a001 66978574/1970299*9349^(7/19) 9870001984739482 a001 102334155/3010349*9349^(7/19) 9870001984745857 a001 39088169/1149851*9349^(7/19) 9870001984789551 a001 196452/5779*9349^(7/19) 9870001984922275 a001 832040/15127*39603^(3/11) 9870001985089032 a001 5702887/167761*9349^(7/19) 9870001985218639 a001 514229/15127*39603^(7/22) 9870001985365523 a001 9227465/15127*15127^(1/20) 9870001985477678 a001 317811/15127*39603^(4/11) 9870001985561404 a001 193864605/196418 9870001985612571 a001 6765/64079*817138163596^(1/3) 9870001985612571 a001 6765/64079*(1/2+1/2*5^(1/2))^19 9870001985612571 a001 28657/15127*141422324^(1/3) 9870001985612571 a001 28657/15127*(1/2+1/2*5^(1/2))^13 9870001985612571 a001 28657/15127*73681302247^(1/4) 9870001985612571 a001 6765/64079*87403803^(1/2) 9870001985679548 a001 28657/15127*271443^(1/2) 9870001985723269 a001 6624/2161*39603^(6/11) 9870001985834435 a001 196418/15127*39603^(9/22) 9870001985935361 a001 121393/15127*39603^(5/11) 9870001986109898 a001 28657/15127*103682^(13/24) 9870001986339434 a001 6765/64079*103682^(19/24) 9870001986347014 a001 6765/24476*24476^(17/21) 9870001986706064 a001 75025/15127*39603^(1/2) 9870001987141708 a001 2178309/64079*9349^(7/19) 9870001987522099 a001 5702887/15127*15127^(1/10) 9870001987916102 a001 10946/15127*24476^(5/7) 9870001988011650 a001 6765/103682*39603^(10/11) 9870001989307509 a001 10959/844*9349^(9/19) 9870001989331190 a001 28657/15127*39603^(13/22) 9870001989501888 a004 Fibonacci(20)*Lucas(22)/(1/2+sqrt(5)/2)^26 9870001989566540 a001 615/15251*39603^(21/22) 9870001989678978 a001 3524578/15127*15127^(3/20) 9870001989763567 a001 5702887/103682*9349^(6/19) 9870001990332259 a001 3524578/39603*9349^(5/19) 9870001990547806 a001 4976784/90481*9349^(6/19) 9870001990662225 a001 39088169/710647*9349^(6/19) 9870001990678919 a001 831985/15126*9349^(6/19) 9870001990681355 a001 267914296/4870847*9349^(6/19) 9870001990681710 a001 233802911/4250681*9349^(6/19) 9870001990681762 a001 1836311903/33385282*9349^(6/19) 9870001990681769 a001 1602508992/29134601*9349^(6/19) 9870001990681770 a001 12586269025/228826127*9349^(6/19) 9870001990681771 a001 10983760033/199691526*9349^(6/19) 9870001990681771 a001 86267571272/1568397607*9349^(6/19) 9870001990681771 a001 75283811239/1368706081*9349^(6/19) 9870001990681771 a001 591286729879/10749957122*9349^(6/19) 9870001990681771 a001 12585437040/228811001*9349^(6/19) 9870001990681771 a001 4052739537881/73681302247*9349^(6/19) 9870001990681771 a001 3536736619241/64300051206*9349^(6/19) 9870001990681771 a001 6557470319842/119218851371*9349^(6/19) 9870001990681771 a001 2504730781961/45537549124*9349^(6/19) 9870001990681771 a001 956722026041/17393796001*9349^(6/19) 9870001990681771 a001 365435296162/6643838879*9349^(6/19) 9870001990681771 a001 139583862445/2537720636*9349^(6/19) 9870001990681771 a001 53316291173/969323029*9349^(6/19) 9870001990681771 a001 20365011074/370248451*9349^(6/19) 9870001990681771 a001 7778742049/141422324*9349^(6/19) 9870001990681774 a001 2971215073/54018521*9349^(6/19) 9870001990681794 a001 1134903170/20633239*9349^(6/19) 9870001990681929 a001 433494437/7881196*9349^(6/19) 9870001990682860 a001 165580141/3010349*9349^(6/19) 9870001990689236 a001 63245986/1149851*9349^(6/19) 9870001990732940 a001 24157817/439204*9349^(6/19) 9870001991032493 a001 9227465/167761*9349^(6/19) 9870001991047476 a001 6765/64079*39603^(19/22) 9870001991835063 a001 311187/2161*15127^(1/5) 9870001993085660 a001 3524578/64079*9349^(6/19) 9870001993993228 a001 1346269/15127*15127^(1/4) 9870001995095594 a001 4181/15127*9349^(17/19) 9870001995277895 a001 514229/24476*9349^(8/19) 9870001995707028 a001 9227465/103682*9349^(5/19) 9870001996145947 a001 832040/15127*15127^(3/10) 9870001996275416 a001 5702887/39603*9349^(4/19) 9870001996491196 a001 24157817/271443*9349^(5/19) 9870001996605605 a001 63245986/710647*9349^(5/19) 9870001996622297 a001 165580141/1860498*9349^(5/19) 9870001996624732 a001 433494437/4870847*9349^(5/19) 9870001996625087 a001 1134903170/12752043*9349^(5/19) 9870001996625139 a001 2971215073/33385282*9349^(5/19) 9870001996625147 a001 7778742049/87403803*9349^(5/19) 9870001996625148 a001 20365011074/228826127*9349^(5/19) 9870001996625148 a001 53316291173/599074578*9349^(5/19) 9870001996625148 a001 139583862445/1568397607*9349^(5/19) 9870001996625148 a001 365435296162/4106118243*9349^(5/19) 9870001996625148 a001 956722026041/10749957122*9349^(5/19) 9870001996625148 a001 2504730781961/28143753123*9349^(5/19) 9870001996625148 a001 6557470319842/73681302247*9349^(5/19) 9870001996625148 a001 10610209857723/119218851371*9349^(5/19) 9870001996625148 a001 4052739537881/45537549124*9349^(5/19) 9870001996625148 a001 1548008755920/17393796001*9349^(5/19) 9870001996625148 a001 591286729879/6643838879*9349^(5/19) 9870001996625148 a001 225851433717/2537720636*9349^(5/19) 9870001996625148 a001 86267571272/969323029*9349^(5/19) 9870001996625148 a001 32951280099/370248451*9349^(5/19) 9870001996625149 a001 12586269025/141422324*9349^(5/19) 9870001996625151 a001 4807526976/54018521*9349^(5/19) 9870001996625171 a001 1836311903/20633239*9349^(5/19) 9870001996625307 a001 3524667/39604*9349^(5/19) 9870001996626237 a001 267914296/3010349*9349^(5/19) 9870001996632613 a001 102334155/1149851*9349^(5/19) 9870001996676313 a001 39088169/439204*9349^(5/19) 9870001996975839 a001 14930352/167761*9349^(5/19) 9870001997288393 a001 3732588/6119*3571^(1/17) 9870001997907584 a001 6765/24476*64079^(17/23) 9870001998116604 a001 10946/15127*64079^(15/23) 9870001998312924 a001 514229/15127*15127^(7/20) 9870001999028818 a001 5702887/64079*9349^(5/19) 9870001999333555 a001 14809938/15005 9870001999473835 a001 10946/15127*167761^(3/5) 9870001999633270 a001 9227465/15127*5778^(1/18) 9870001999655829 a001 10946/15127*439204^(5/9) 9870001999684183 a001 10946/15127*7881196^(5/11) 9870001999684245 a001 10946/15127*20633239^(3/7) 9870001999684255 a001 10946/15127*141422324^(5/13) 9870001999684255 a001 6765/24476*45537549124^(1/3) 9870001999684255 a001 6765/24476*(1/2+1/2*5^(1/2))^17 9870001999684255 a001 10946/15127*2537720636^(1/3) 9870001999684255 a001 10946/15127*45537549124^(5/17) 9870001999684255 a001 10946/15127*312119004989^(3/11) 9870001999684255 a001 10946/15127*14662949395604^(5/21) 9870001999684255 a001 10946/15127*(1/2+1/2*5^(1/2))^15 9870001999684255 a001 10946/15127*192900153618^(5/18) 9870001999684255 a001 10946/15127*28143753123^(3/10) 9870001999684255 a001 10946/15127*10749957122^(5/16) 9870001999684255 a001 10946/15127*599074578^(5/14) 9870001999684255 a001 10946/15127*228826127^(3/8) 9870001999684258 a001 10946/15127*33385282^(5/12) 9870001999684285 a001 6765/24476*12752043^(1/2) 9870001999685680 a001 10946/15127*1860498^(1/2) 9870002000258094 a001 10946/15127*103682^(5/8) 9870002000334606 a001 6765/24476*103682^(17/24) 9870002000442574 a001 317811/15127*15127^(2/5) 9870002001203242 a001 17711/39603*24476^(16/21) 9870002001210956 a001 208010/6119*9349^(7/19) 9870002001650373 a001 7465176/51841*9349^(4/19) 9870002002060179 a007 Real Root Of 998*x^4+63*x^3+189*x^2+873*x-209 9870002002218878 a001 9227465/39603*9349^(3/19) 9870002002434569 a001 39088169/271443*9349^(4/19) 9870002002548981 a001 14619165/101521*9349^(4/19) 9870002002565674 a001 133957148/930249*9349^(4/19) 9870002002568109 a001 701408733/4870847*9349^(4/19) 9870002002568465 a001 1836311903/12752043*9349^(4/19) 9870002002568517 a001 14930208/103681*9349^(4/19) 9870002002568524 a001 12586269025/87403803*9349^(4/19) 9870002002568525 a001 32951280099/228826127*9349^(4/19) 9870002002568525 a001 43133785636/299537289*9349^(4/19) 9870002002568525 a001 32264490531/224056801*9349^(4/19) 9870002002568525 a001 591286729879/4106118243*9349^(4/19) 9870002002568525 a001 774004377960/5374978561*9349^(4/19) 9870002002568525 a001 4052739537881/28143753123*9349^(4/19) 9870002002568525 a001 1515744265389/10525900321*9349^(4/19) 9870002002568525 a001 3278735159921/22768774562*9349^(4/19) 9870002002568525 a001 2504730781961/17393796001*9349^(4/19) 9870002002568525 a001 956722026041/6643838879*9349^(4/19) 9870002002568525 a001 182717648081/1268860318*9349^(4/19) 9870002002568526 a001 139583862445/969323029*9349^(4/19) 9870002002568526 a001 53316291173/370248451*9349^(4/19) 9870002002568526 a001 10182505537/70711162*9349^(4/19) 9870002002568529 a001 7778742049/54018521*9349^(4/19) 9870002002568549 a001 2971215073/20633239*9349^(4/19) 9870002002568684 a001 567451585/3940598*9349^(4/19) 9870002002569615 a001 433494437/3010349*9349^(4/19) 9870002002575991 a001 165580141/1149851*9349^(4/19) 9870002002619692 a001 31622993/219602*9349^(4/19) 9870002002669944 a001 196418/15127*15127^(9/20) 9870002002678648 a001 2178309/9349*3571^(3/17) 9870002002919228 a001 24157817/167761*9349^(4/19) 9870002003573572 a004 Fibonacci(22)*Lucas(21)/(1/2+sqrt(5)/2)^27 9870002003974970 a001 10946/15127*39603^(15/22) 9870002004224161 a001 17711/271443*24476^(20/21) 9870002004547065 a001 6765/24476*39603^(17/22) 9870002004641482 a001 121393/15127*15127^(1/2) 9870002004972279 a001 9227465/64079*9349^(4/19) 9870002005009060 a001 17711/103682*24476^(6/7) 9870002005493359 a001 17711/167761*24476^(19/21) 9870002006982350 a001 6765/9349*9349^(15/19) 9870002007109028 a001 17711/15127*15127^(7/10) 9870002007158274 a001 1346269/24476*9349^(6/19) 9870002007282797 a001 75025/15127*15127^(11/20) 9870002007593763 a001 24157817/103682*9349^(3/19) 9870002008147234 a001 15456/13201*24476^(2/3) 9870002008162223 a001 4976784/13201*9349^(2/19) 9870002008170614 a001 6624/2161*15127^(3/5) 9870002008377948 a001 63245986/271443*9349^(3/19) 9870002008492359 a001 165580141/710647*9349^(3/19) 9870002008509052 a001 433494437/1860498*9349^(3/19) 9870002008511487 a001 1134903170/4870847*9349^(3/19) 9870002008511842 a001 2971215073/12752043*9349^(3/19) 9870002008511894 a001 7778742049/33385282*9349^(3/19) 9870002008511902 a001 20365011074/87403803*9349^(3/19) 9870002008511903 a001 53316291173/228826127*9349^(3/19) 9870002008511903 a001 139583862445/599074578*9349^(3/19) 9870002008511903 a001 365435296162/1568397607*9349^(3/19) 9870002008511903 a001 956722026041/4106118243*9349^(3/19) 9870002008511903 a001 2504730781961/10749957122*9349^(3/19) 9870002008511903 a001 6557470319842/28143753123*9349^(3/19) 9870002008511903 a001 10610209857723/45537549124*9349^(3/19) 9870002008511903 a001 4052739537881/17393796001*9349^(3/19) 9870002008511903 a001 1548008755920/6643838879*9349^(3/19) 9870002008511903 a001 591286729879/2537720636*9349^(3/19) 9870002008511903 a001 225851433717/969323029*9349^(3/19) 9870002008511903 a001 86267571272/370248451*9349^(3/19) 9870002008511903 a001 63246219/271444*9349^(3/19) 9870002008511906 a001 12586269025/54018521*9349^(3/19) 9870002008511926 a001 4807526976/20633239*9349^(3/19) 9870002008512062 a001 1836311903/7881196*9349^(3/19) 9870002008512992 a001 701408733/3010349*9349^(3/19) 9870002008519368 a001 267914296/1149851*9349^(3/19) 9870002008563069 a001 102334155/439204*9349^(3/19) 9870002008862601 a001 39088169/167761*9349^(3/19) 9870002008948477 a004 Fibonacci(24)*Lucas(21)/(1/2+sqrt(5)/2)^29 9870002009115477 a001 17711/64079*24476^(17/21) 9870002009713477 a001 6624/101521*24476^(20/21) 9870002009732665 a004 Fibonacci(26)*Lucas(21)/(1/2+sqrt(5)/2)^31 9870002009847077 a004 Fibonacci(28)*Lucas(21)/(1/2+sqrt(5)/2)^33 9870002009863769 a004 Fibonacci(30)*Lucas(21)/(1/2+sqrt(5)/2)^35 9870002009866205 a004 Fibonacci(32)*Lucas(21)/(1/2+sqrt(5)/2)^37 9870002009866560 a004 Fibonacci(34)*Lucas(21)/(1/2+sqrt(5)/2)^39 9870002009866612 a004 Fibonacci(36)*Lucas(21)/(1/2+sqrt(5)/2)^41 9870002009866620 a004 Fibonacci(38)*Lucas(21)/(1/2+sqrt(5)/2)^43 9870002009866621 a004 Fibonacci(40)*Lucas(21)/(1/2+sqrt(5)/2)^45 9870002009866621 a004 Fibonacci(42)*Lucas(21)/(1/2+sqrt(5)/2)^47 9870002009866621 a004 Fibonacci(44)*Lucas(21)/(1/2+sqrt(5)/2)^49 9870002009866621 a004 Fibonacci(46)*Lucas(21)/(1/2+sqrt(5)/2)^51 9870002009866621 a004 Fibonacci(48)*Lucas(21)/(1/2+sqrt(5)/2)^53 9870002009866621 a004 Fibonacci(50)*Lucas(21)/(1/2+sqrt(5)/2)^55 9870002009866621 a004 Fibonacci(52)*Lucas(21)/(1/2+sqrt(5)/2)^57 9870002009866621 a004 Fibonacci(54)*Lucas(21)/(1/2+sqrt(5)/2)^59 9870002009866621 a004 Fibonacci(56)*Lucas(21)/(1/2+sqrt(5)/2)^61 9870002009866621 a004 Fibonacci(58)*Lucas(21)/(1/2+sqrt(5)/2)^63 9870002009866621 a004 Fibonacci(60)*Lucas(21)/(1/2+sqrt(5)/2)^65 9870002009866621 a004 Fibonacci(62)*Lucas(21)/(1/2+sqrt(5)/2)^67 9870002009866621 a004 Fibonacci(64)*Lucas(21)/(1/2+sqrt(5)/2)^69 9870002009866621 a004 Fibonacci(66)*Lucas(21)/(1/2+sqrt(5)/2)^71 9870002009866621 a004 Fibonacci(68)*Lucas(21)/(1/2+sqrt(5)/2)^73 9870002009866621 a004 Fibonacci(70)*Lucas(21)/(1/2+sqrt(5)/2)^75 9870002009866621 a004 Fibonacci(72)*Lucas(21)/(1/2+sqrt(5)/2)^77 9870002009866621 a004 Fibonacci(74)*Lucas(21)/(1/2+sqrt(5)/2)^79 9870002009866621 a004 Fibonacci(76)*Lucas(21)/(1/2+sqrt(5)/2)^81 9870002009866621 a004 Fibonacci(78)*Lucas(21)/(1/2+sqrt(5)/2)^83 9870002009866621 a004 Fibonacci(80)*Lucas(21)/(1/2+sqrt(5)/2)^85 9870002009866621 a004 Fibonacci(82)*Lucas(21)/(1/2+sqrt(5)/2)^87 9870002009866621 a004 Fibonacci(84)*Lucas(21)/(1/2+sqrt(5)/2)^89 9870002009866621 a004 Fibonacci(86)*Lucas(21)/(1/2+sqrt(5)/2)^91 9870002009866621 a004 Fibonacci(88)*Lucas(21)/(1/2+sqrt(5)/2)^93 9870002009866621 a004 Fibonacci(90)*Lucas(21)/(1/2+sqrt(5)/2)^95 9870002009866621 a004 Fibonacci(92)*Lucas(21)/(1/2+sqrt(5)/2)^97 9870002009866621 a004 Fibonacci(94)*Lucas(21)/(1/2+sqrt(5)/2)^99 9870002009866621 a004 Fibonacci(95)*Lucas(21)/(1/2+sqrt(5)/2)^100 9870002009866621 a004 Fibonacci(93)*Lucas(21)/(1/2+sqrt(5)/2)^98 9870002009866621 a004 Fibonacci(91)*Lucas(21)/(1/2+sqrt(5)/2)^96 9870002009866621 a004 Fibonacci(89)*Lucas(21)/(1/2+sqrt(5)/2)^94 9870002009866621 a004 Fibonacci(87)*Lucas(21)/(1/2+sqrt(5)/2)^92 9870002009866621 a004 Fibonacci(85)*Lucas(21)/(1/2+sqrt(5)/2)^90 9870002009866621 a004 Fibonacci(83)*Lucas(21)/(1/2+sqrt(5)/2)^88 9870002009866621 a004 Fibonacci(81)*Lucas(21)/(1/2+sqrt(5)/2)^86 9870002009866621 a004 Fibonacci(79)*Lucas(21)/(1/2+sqrt(5)/2)^84 9870002009866621 a004 Fibonacci(77)*Lucas(21)/(1/2+sqrt(5)/2)^82 9870002009866621 a004 Fibonacci(75)*Lucas(21)/(1/2+sqrt(5)/2)^80 9870002009866621 a004 Fibonacci(73)*Lucas(21)/(1/2+sqrt(5)/2)^78 9870002009866621 a004 Fibonacci(71)*Lucas(21)/(1/2+sqrt(5)/2)^76 9870002009866621 a004 Fibonacci(69)*Lucas(21)/(1/2+sqrt(5)/2)^74 9870002009866621 a004 Fibonacci(67)*Lucas(21)/(1/2+sqrt(5)/2)^72 9870002009866621 a004 Fibonacci(65)*Lucas(21)/(1/2+sqrt(5)/2)^70 9870002009866621 a004 Fibonacci(63)*Lucas(21)/(1/2+sqrt(5)/2)^68 9870002009866621 a004 Fibonacci(61)*Lucas(21)/(1/2+sqrt(5)/2)^66 9870002009866621 a004 Fibonacci(59)*Lucas(21)/(1/2+sqrt(5)/2)^64 9870002009866621 a004 Fibonacci(57)*Lucas(21)/(1/2+sqrt(5)/2)^62 9870002009866621 a004 Fibonacci(55)*Lucas(21)/(1/2+sqrt(5)/2)^60 9870002009866621 a004 Fibonacci(53)*Lucas(21)/(1/2+sqrt(5)/2)^58 9870002009866621 a004 Fibonacci(51)*Lucas(21)/(1/2+sqrt(5)/2)^56 9870002009866621 a004 Fibonacci(49)*Lucas(21)/(1/2+sqrt(5)/2)^54 9870002009866621 a004 Fibonacci(47)*Lucas(21)/(1/2+sqrt(5)/2)^52 9870002009866621 a004 Fibonacci(45)*Lucas(21)/(1/2+sqrt(5)/2)^50 9870002009866621 a004 Fibonacci(43)*Lucas(21)/(1/2+sqrt(5)/2)^48 9870002009866621 a001 1/5473*(1/2+1/2*5^(1/2))^37 9870002009866621 a004 Fibonacci(41)*Lucas(21)/(1/2+sqrt(5)/2)^46 9870002009866621 a004 Fibonacci(39)*Lucas(21)/(1/2+sqrt(5)/2)^44 9870002009866624 a004 Fibonacci(37)*Lucas(21)/(1/2+sqrt(5)/2)^42 9870002009866644 a004 Fibonacci(35)*Lucas(21)/(1/2+sqrt(5)/2)^40 9870002009866780 a004 Fibonacci(33)*Lucas(21)/(1/2+sqrt(5)/2)^38 9870002009867710 a004 Fibonacci(31)*Lucas(21)/(1/2+sqrt(5)/2)^36 9870002009874086 a004 Fibonacci(29)*Lucas(21)/(1/2+sqrt(5)/2)^34 9870002009917787 a004 Fibonacci(27)*Lucas(21)/(1/2+sqrt(5)/2)^32 9870002010200620 a001 75025/39603*24476^(13/21) 9870002010217320 a004 Fibonacci(25)*Lucas(21)/(1/2+sqrt(5)/2)^30 9870002010500509 a001 121393/39603*24476^(4/7) 9870002010514358 a001 121393/1860498*24476^(20/21) 9870002010568731 a001 11592/109801*24476^(19/21) 9870002010631205 a001 317811/4870847*24476^(20/21) 9870002010648252 a001 832040/12752043*24476^(20/21) 9870002010650739 a001 311187/4769326*24476^(20/21) 9870002010651102 a001 5702887/87403803*24476^(20/21) 9870002010651155 a001 14930352/228826127*24476^(20/21) 9870002010651163 a001 39088169/599074578*24476^(20/21) 9870002010651164 a001 14619165/224056801*24476^(20/21) 9870002010651164 a001 267914296/4106118243*24476^(20/21) 9870002010651164 a001 701408733/10749957122*24476^(20/21) 9870002010651164 a001 1836311903/28143753123*24476^(20/21) 9870002010651164 a001 686789568/10525900321*24476^(20/21) 9870002010651164 a001 12586269025/192900153618*24476^(20/21) 9870002010651164 a001 32951280099/505019158607*24476^(20/21) 9870002010651164 a001 86267571272/1322157322203*24476^(20/21) 9870002010651164 a001 32264490531/494493258286*24476^(20/21) 9870002010651164 a001 591286729879/9062201101803*24476^(20/21) 9870002010651164 a001 1548008755920/23725150497407*24476^(20/21) 9870002010651164 a001 365435296162/5600748293801*24476^(20/21) 9870002010651164 a001 139583862445/2139295485799*24476^(20/21) 9870002010651164 a001 53316291173/817138163596*24476^(20/21) 9870002010651164 a001 20365011074/312119004989*24476^(20/21) 9870002010651164 a001 7778742049/119218851371*24476^(20/21) 9870002010651164 a001 2971215073/45537549124*24476^(20/21) 9870002010651164 a001 1134903170/17393796001*24476^(20/21) 9870002010651164 a001 433494437/6643838879*24476^(20/21) 9870002010651164 a001 165580141/2537720636*24476^(20/21) 9870002010651165 a001 63245986/969323029*24476^(20/21) 9870002010651168 a001 24157817/370248451*24476^(20/21) 9870002010651188 a001 9227465/141422324*24476^(20/21) 9870002010651327 a001 3524578/54018521*24476^(20/21) 9870002010652277 a001 1346269/20633239*24476^(20/21) 9870002010658788 a001 514229/7881196*24476^(20/21) 9870002010684564 a001 28657/39603*24476^(5/7) 9870002010703420 a001 196418/3010349*24476^(20/21) 9870002010915625 a001 14930352/64079*9349^(3/19) 9870002011009329 a001 75025/1149851*24476^(20/21) 9870002011168153 a001 15456/90481*24476^(6/7) 9870002011309218 a001 121393/1149851*24476^(19/21) 9870002011417253 a001 317811/3010349*24476^(19/21) 9870002011433015 a001 208010/1970299*24476^(19/21) 9870002011435315 a001 2178309/20633239*24476^(19/21) 9870002011435651 a001 5702887/54018521*24476^(19/21) 9870002011435700 a001 3732588/35355581*24476^(19/21) 9870002011435707 a001 39088169/370248451*24476^(19/21) 9870002011435708 a001 102334155/969323029*24476^(19/21) 9870002011435708 a001 66978574/634430159*24476^(19/21) 9870002011435708 a001 701408733/6643838879*24476^(19/21) 9870002011435708 a001 1836311903/17393796001*24476^(19/21) 9870002011435708 a001 1201881744/11384387281*24476^(19/21) 9870002011435708 a001 12586269025/119218851371*24476^(19/21) 9870002011435708 a001 32951280099/312119004989*24476^(19/21) 9870002011435708 a001 21566892818/204284540899*24476^(19/21) 9870002011435708 a001 225851433717/2139295485799*24476^(19/21) 9870002011435708 a001 182717648081/1730726404001*24476^(19/21) 9870002011435708 a001 139583862445/1322157322203*24476^(19/21) 9870002011435708 a001 53316291173/505019158607*24476^(19/21) 9870002011435708 a001 10182505537/96450076809*24476^(19/21) 9870002011435708 a001 7778742049/73681302247*24476^(19/21) 9870002011435708 a001 2971215073/28143753123*24476^(19/21) 9870002011435708 a001 567451585/5374978561*24476^(19/21) 9870002011435708 a001 433494437/4106118243*24476^(19/21) 9870002011435708 a001 165580141/1568397607*24476^(19/21) 9870002011435708 a001 31622993/299537289*24476^(19/21) 9870002011435711 a001 24157817/228826127*24476^(19/21) 9870002011435730 a001 9227465/87403803*24476^(19/21) 9870002011435858 a001 1762289/16692641*24476^(19/21) 9870002011436736 a001 1346269/12752043*24476^(19/21) 9870002011442757 a001 514229/4870847*24476^(19/21) 9870002011470174 a001 196418/39603*24476^(11/21) 9870002011484023 a001 98209/930249*24476^(19/21) 9870002011766864 a001 75025/710647*24476^(19/21) 9870002011953052 a001 23184/51841*24476^(16/21) 9870002012066752 a001 121393/710647*24476^(6/7) 9870002012083778 a001 17711/39603*64079^(16/23) 9870002012184008 a001 105937/13201*24476^(10/21) 9870002012197856 a001 105937/620166*24476^(6/7) 9870002012216984 a001 832040/4870847*24476^(6/7) 9870002012219775 a001 726103/4250681*24476^(6/7) 9870002012220182 a001 5702887/33385282*24476^(6/7) 9870002012220241 a001 4976784/29134601*24476^(6/7) 9870002012220250 a001 39088169/228826127*24476^(6/7) 9870002012220251 a001 34111385/199691526*24476^(6/7) 9870002012220251 a001 267914296/1568397607*24476^(6/7) 9870002012220251 a001 233802911/1368706081*24476^(6/7) 9870002012220251 a001 1836311903/10749957122*24476^(6/7) 9870002012220251 a001 1602508992/9381251041*24476^(6/7) 9870002012220251 a001 12586269025/73681302247*24476^(6/7) 9870002012220251 a001 10983760033/64300051206*24476^(6/7) 9870002012220251 a001 86267571272/505019158607*24476^(6/7) 9870002012220251 a001 75283811239/440719107401*24476^(6/7) 9870002012220251 a001 2504730781961/14662949395604*24476^(6/7) 9870002012220251 a001 139583862445/817138163596*24476^(6/7) 9870002012220251 a001 53316291173/312119004989*24476^(6/7) 9870002012220251 a001 20365011074/119218851371*24476^(6/7) 9870002012220251 a001 7778742049/45537549124*24476^(6/7) 9870002012220251 a001 2971215073/17393796001*24476^(6/7) 9870002012220251 a001 1134903170/6643838879*24476^(6/7) 9870002012220251 a001 433494437/2537720636*24476^(6/7) 9870002012220252 a001 165580141/969323029*24476^(6/7) 9870002012220252 a001 63245986/370248451*24476^(6/7) 9870002012220255 a001 24157817/141422324*24476^(6/7) 9870002012220278 a001 9227465/54018521*24476^(6/7) 9870002012220434 a001 3524578/20633239*24476^(6/7) 9870002012221499 a001 1346269/7881196*24476^(6/7) 9870002012228806 a001 514229/3010349*24476^(6/7) 9870002012270351 a004 Fibonacci(23)*Lucas(21)/(1/2+sqrt(5)/2)^28 9870002012278883 a001 196418/1149851*24476^(6/7) 9870002012437351 a001 46368/167761*24476^(17/21) 9870002012622117 a001 75025/439204*24476^(6/7) 9870002012922006 a001 121393/439204*24476^(17/21) 9870002012992716 a001 317811/1149851*24476^(17/21) 9870002012995560 a001 514229/39603*24476^(3/7) 9870002013003033 a001 832040/3010349*24476^(17/21) 9870002013004538 a001 2178309/7881196*24476^(17/21) 9870002013004757 a001 5702887/20633239*24476^(17/21) 9870002013004790 a001 14930352/54018521*24476^(17/21) 9870002013004794 a001 39088169/141422324*24476^(17/21) 9870002013004795 a001 102334155/370248451*24476^(17/21) 9870002013004795 a001 267914296/969323029*24476^(17/21) 9870002013004795 a001 701408733/2537720636*24476^(17/21) 9870002013004795 a001 1836311903/6643838879*24476^(17/21) 9870002013004795 a001 4807526976/17393796001*24476^(17/21) 9870002013004795 a001 12586269025/45537549124*24476^(17/21) 9870002013004795 a001 32951280099/119218851371*24476^(17/21) 9870002013004795 a001 86267571272/312119004989*24476^(17/21) 9870002013004795 a001 225851433717/817138163596*24476^(17/21) 9870002013004795 a001 1548008755920/5600748293801*24476^(17/21) 9870002013004795 a001 139583862445/505019158607*24476^(17/21) 9870002013004795 a001 53316291173/192900153618*24476^(17/21) 9870002013004795 a001 20365011074/73681302247*24476^(17/21) 9870002013004795 a001 7778742049/28143753123*24476^(17/21) 9870002013004795 a001 2971215073/10749957122*24476^(17/21) 9870002013004795 a001 1134903170/4106118243*24476^(17/21) 9870002013004795 a001 433494437/1568397607*24476^(17/21) 9870002013004795 a001 165580141/599074578*24476^(17/21) 9870002013004795 a001 63245986/228826127*24476^(17/21) 9870002013004797 a001 24157817/87403803*24476^(17/21) 9870002013004809 a001 9227465/33385282*24476^(17/21) 9870002013004893 a001 3524578/12752043*24476^(17/21) 9870002013005468 a001 1346269/4870847*24476^(17/21) 9870002013009409 a001 514229/1860498*24476^(17/21) 9870002013036418 a001 196418/710647*24476^(17/21) 9870002013100147 a001 2178309/24476*9349^(5/19) 9870002013106061 a001 28657/439204*24476^(20/21) 9870002013221539 a001 75025/271443*24476^(17/21) 9870002013521428 a001 121393/271443*24476^(16/21) 9870002013537136 a001 39088169/103682*9349^(2/19) 9870002013649148 a001 28657/15127*15127^(13/20) 9870002013705483 a001 28657/271443*24476^(19/21) 9870002013750251 a001 317811/710647*24476^(16/21) 9870002013755939 a001 17711/39603*(1/2+1/2*5^(1/2))^16 9870002013755939 a001 17711/39603*23725150497407^(1/4) 9870002013755939 a001 17711/39603*73681302247^(4/13) 9870002013755939 a001 17711/39603*10749957122^(1/3) 9870002013755939 a001 17711/39603*4106118243^(8/23) 9870002013755939 a001 17711/39603*1568397607^(4/11) 9870002013755939 a001 17711/39603*599074578^(8/21) 9870002013755939 a001 17711/39603*228826127^(2/5) 9870002013755939 a001 17711/39603*87403803^(8/19) 9870002013755943 a001 17711/39603*33385282^(4/9) 9870002013755967 a001 17711/39603*12752043^(8/17) 9870002013756147 a001 17711/39603*4870847^(1/2) 9870002013757459 a001 17711/39603*1860498^(8/15) 9870002013767106 a001 17711/39603*710647^(4/7) 9870002013769787 a001 832040/39603*24476^(8/21) 9870002013775482 a001 313679521/317811 9870002013783636 a001 416020/930249*24476^(16/21) 9870002013788507 a001 2178309/4870847*24476^(16/21) 9870002013789217 a001 5702887/12752043*24476^(16/21) 9870002013789321 a001 7465176/16692641*24476^(16/21) 9870002013789336 a001 39088169/87403803*24476^(16/21) 9870002013789338 a001 102334155/228826127*24476^(16/21) 9870002013789338 a001 133957148/299537289*24476^(16/21) 9870002013789339 a001 701408733/1568397607*24476^(16/21) 9870002013789339 a001 1836311903/4106118243*24476^(16/21) 9870002013789339 a001 2403763488/5374978561*24476^(16/21) 9870002013789339 a001 12586269025/28143753123*24476^(16/21) 9870002013789339 a001 32951280099/73681302247*24476^(16/21) 9870002013789339 a001 43133785636/96450076809*24476^(16/21) 9870002013789339 a001 225851433717/505019158607*24476^(16/21) 9870002013789339 a001 591286729879/1322157322203*24476^(16/21) 9870002013789339 a001 10610209857723/23725150497407*24476^(16/21) 9870002013789339 a001 182717648081/408569081798*24476^(16/21) 9870002013789339 a001 139583862445/312119004989*24476^(16/21) 9870002013789339 a001 53316291173/119218851371*24476^(16/21) 9870002013789339 a001 10182505537/22768774562*24476^(16/21) 9870002013789339 a001 7778742049/17393796001*24476^(16/21) 9870002013789339 a001 2971215073/6643838879*24476^(16/21) 9870002013789339 a001 567451585/1268860318*24476^(16/21) 9870002013789339 a001 433494437/969323029*24476^(16/21) 9870002013789339 a001 165580141/370248451*24476^(16/21) 9870002013789340 a001 31622993/70711162*24476^(16/21) 9870002013789345 a001 24157817/54018521*24476^(16/21) 9870002013789385 a001 9227465/20633239*24476^(16/21) 9870002013789656 a001 1762289/3940598*24476^(16/21) 9870002013791517 a001 1346269/3010349*24476^(16/21) 9870002013804269 a001 514229/1149851*24476^(16/21) 9870002013838373 a001 17711/39603*271443^(8/13) 9870002013891671 a001 98209/219602*24476^(16/21) 9870002014006438 a001 75025/103682*24476^(5/7) 9870002014105613 a001 24157817/39603*9349^(1/19) 9870002014306327 a001 121393/103682*24476^(2/3) 9870002014321325 a001 34111385/90481*9349^(2/19) 9870002014368034 a001 17711/39603*103682^(2/3) 9870002014435737 a001 267914296/710647*9349^(2/19) 9870002014452429 a001 233802911/620166*9349^(2/19) 9870002014454864 a001 1836311903/4870847*9349^(2/19) 9870002014455220 a001 1602508992/4250681*9349^(2/19) 9870002014455272 a001 12586269025/33385282*9349^(2/19) 9870002014455279 a001 10983760033/29134601*9349^(2/19) 9870002014455280 a001 86267571272/228826127*9349^(2/19) 9870002014455280 a001 267913919/710646*9349^(2/19) 9870002014455280 a001 591286729879/1568397607*9349^(2/19) 9870002014455280 a001 516002918640/1368706081*9349^(2/19) 9870002014455280 a001 4052739537881/10749957122*9349^(2/19) 9870002014455280 a001 3536736619241/9381251041*9349^(2/19) 9870002014455280 a001 6557470319842/17393796001*9349^(2/19) 9870002014455280 a001 2504730781961/6643838879*9349^(2/19) 9870002014455280 a001 956722026041/2537720636*9349^(2/19) 9870002014455280 a001 365435296162/969323029*9349^(2/19) 9870002014455280 a001 139583862445/370248451*9349^(2/19) 9870002014455281 a001 53316291173/141422324*9349^(2/19) 9870002014455284 a001 20365011074/54018521*9349^(2/19) 9870002014455304 a001 7778742049/20633239*9349^(2/19) 9870002014455439 a001 2971215073/7881196*9349^(2/19) 9870002014456370 a001 1134903170/3010349*9349^(2/19) 9870002014462746 a001 433494437/1149851*9349^(2/19) 9870002014490382 a001 28657/103682*24476^(17/21) 9870002014490738 a001 75025/167761*24476^(16/21) 9870002014491093 a001 196418/271443*24476^(5/7) 9870002014506447 a001 165580141/439204*9349^(2/19) 9870002014558271 a001 1346269/39603*24476^(1/3) 9870002014561803 a001 514229/710647*24476^(5/7) 9870002014572120 a001 1346269/1860498*24476^(5/7) 9870002014573625 a001 3524578/4870847*24476^(5/7) 9870002014573845 a001 9227465/12752043*24476^(5/7) 9870002014573877 a001 24157817/33385282*24476^(5/7) 9870002014573881 a001 63245986/87403803*24476^(5/7) 9870002014573882 a001 165580141/228826127*24476^(5/7) 9870002014573882 a001 433494437/599074578*24476^(5/7) 9870002014573882 a001 1134903170/1568397607*24476^(5/7) 9870002014573882 a001 2971215073/4106118243*24476^(5/7) 9870002014573882 a001 7778742049/10749957122*24476^(5/7) 9870002014573882 a001 20365011074/28143753123*24476^(5/7) 9870002014573882 a001 53316291173/73681302247*24476^(5/7) 9870002014573882 a001 139583862445/192900153618*24476^(5/7) 9870002014573882 a001 365435296162/505019158607*24476^(5/7) 9870002014573882 a001 10610209857723/14662949395604*24476^(5/7) 9870002014573882 a001 591286729879/817138163596*24476^(5/7) 9870002014573882 a001 225851433717/312119004989*24476^(5/7) 9870002014573882 a001 86267571272/119218851371*24476^(5/7) 9870002014573882 a001 32951280099/45537549124*24476^(5/7) 9870002014573882 a001 12586269025/17393796001*24476^(5/7) 9870002014573882 a001 4807526976/6643838879*24476^(5/7) 9870002014573882 a001 1836311903/2537720636*24476^(5/7) 9870002014573882 a001 701408733/969323029*24476^(5/7) 9870002014573882 a001 267914296/370248451*24476^(5/7) 9870002014573882 a001 102334155/141422324*24476^(5/7) 9870002014573884 a001 39088169/54018521*24476^(5/7) 9870002014573896 a001 14930352/20633239*24476^(5/7) 9870002014573980 a001 5702887/7881196*24476^(5/7) 9870002014574555 a001 2178309/3010349*24476^(5/7) 9870002014578496 a001 832040/1149851*24476^(5/7) 9870002014605505 a001 317811/439204*24476^(5/7) 9870002014790626 a001 121393/167761*24476^(5/7) 9870002014805980 a001 63245986/167761*9349^(2/19) 9870002014974682 a001 28657/167761*24476^(6/7) 9870002015204927 a001 105937/90481*24476^(2/3) 9870002015275992 a001 98209/51841*24476^(13/21) 9870002015336030 a001 832040/710647*24476^(2/3) 9870002015341310 a001 726103/13201*24476^(2/7) 9870002015355158 a001 726103/620166*24476^(2/3) 9870002015357949 a001 5702887/4870847*24476^(2/3) 9870002015358356 a001 4976784/4250681*24476^(2/3) 9870002015358416 a001 39088169/33385282*24476^(2/3) 9870002015358424 a001 34111385/29134601*24476^(2/3) 9870002015358425 a001 267914296/228826127*24476^(2/3) 9870002015358426 a001 233802911/199691526*24476^(2/3) 9870002015358426 a001 1836311903/1568397607*24476^(2/3) 9870002015358426 a001 1602508992/1368706081*24476^(2/3) 9870002015358426 a001 12586269025/10749957122*24476^(2/3) 9870002015358426 a001 10983760033/9381251041*24476^(2/3) 9870002015358426 a001 86267571272/73681302247*24476^(2/3) 9870002015358426 a001 75283811239/64300051206*24476^(2/3) 9870002015358426 a001 2504730781961/2139295485799*24476^(2/3) 9870002015358426 a001 365435296162/312119004989*24476^(2/3) 9870002015358426 a001 139583862445/119218851371*24476^(2/3) 9870002015358426 a001 53316291173/45537549124*24476^(2/3) 9870002015358426 a001 20365011074/17393796001*24476^(2/3) 9870002015358426 a001 7778742049/6643838879*24476^(2/3) 9870002015358426 a001 2971215073/2537720636*24476^(2/3) 9870002015358426 a001 1134903170/969323029*24476^(2/3) 9870002015358426 a001 433494437/370248451*24476^(2/3) 9870002015358426 a001 165580141/141422324*24476^(2/3) 9870002015358430 a001 63245986/54018521*24476^(2/3) 9870002015358452 a001 24157817/20633239*24476^(2/3) 9870002015358608 a001 9227465/7881196*24476^(2/3) 9870002015359674 a001 3524578/3010349*24476^(2/3) 9870002015366980 a001 1346269/1149851*24476^(2/3) 9870002015417057 a001 514229/439204*24476^(2/3) 9870002015735667 a001 2255/13201*15127^(9/10) 9870002015760292 a001 196418/167761*24476^(2/3) 9870002015989826 a001 317811/103682*24476^(4/7) 9870002016016479 a001 514229/271443*24476^(13/21) 9870002016057592 a001 5702887/15127*5778^(1/9) 9870002016059469 a001 46368/64079*24476^(5/7) 9870002016124515 a001 1346269/710647*24476^(13/21) 9870002016126428 a001 3524578/39603*24476^(5/21) 9870002016140277 a001 1762289/930249*24476^(13/21) 9870002016142576 a001 9227465/4870847*24476^(13/21) 9870002016142912 a001 24157817/12752043*24476^(13/21) 9870002016142961 a001 31622993/16692641*24476^(13/21) 9870002016142968 a001 165580141/87403803*24476^(13/21) 9870002016142969 a001 433494437/228826127*24476^(13/21) 9870002016142969 a001 567451585/299537289*24476^(13/21) 9870002016142969 a001 2971215073/1568397607*24476^(13/21) 9870002016142969 a001 7778742049/4106118243*24476^(13/21) 9870002016142969 a001 10182505537/5374978561*24476^(13/21) 9870002016142969 a001 53316291173/28143753123*24476^(13/21) 9870002016142969 a001 139583862445/73681302247*24476^(13/21) 9870002016142969 a001 182717648081/96450076809*24476^(13/21) 9870002016142969 a001 956722026041/505019158607*24476^(13/21) 9870002016142969 a001 10610209857723/5600748293801*24476^(13/21) 9870002016142969 a001 591286729879/312119004989*24476^(13/21) 9870002016142969 a001 225851433717/119218851371*24476^(13/21) 9870002016142969 a001 21566892818/11384387281*24476^(13/21) 9870002016142969 a001 32951280099/17393796001*24476^(13/21) 9870002016142969 a001 12586269025/6643838879*24476^(13/21) 9870002016142969 a001 1201881744/634430159*24476^(13/21) 9870002016142969 a001 1836311903/969323029*24476^(13/21) 9870002016142969 a001 701408733/370248451*24476^(13/21) 9870002016142970 a001 66978574/35355581*24476^(13/21) 9870002016142972 a001 102334155/54018521*24476^(13/21) 9870002016142991 a001 39088169/20633239*24476^(13/21) 9870002016143119 a001 3732588/1970299*24476^(13/21) 9870002016143998 a001 5702887/3010349*24476^(13/21) 9870002016150018 a001 2178309/1149851*24476^(13/21) 9870002016191284 a001 208010/109801*24476^(13/21) 9870002016474125 a001 317811/167761*24476^(13/21) 9870002016790706 a001 832040/271443*24476^(4/7) 9870002016801378 a001 514229/103682*24476^(11/21) 9870002016859014 a001 24157817/64079*9349^(2/19) 9870002016907553 a001 311187/101521*24476^(4/7) 9870002016910752 a001 5702887/39603*24476^(4/21) 9870002016924601 a001 5702887/1860498*24476^(4/7) 9870002016927088 a001 14930352/4870847*24476^(4/7) 9870002016927451 a001 39088169/12752043*24476^(4/7) 9870002016927504 a001 14619165/4769326*24476^(4/7) 9870002016927511 a001 267914296/87403803*24476^(4/7) 9870002016927513 a001 701408733/228826127*24476^(4/7) 9870002016927513 a001 1836311903/599074578*24476^(4/7) 9870002016927513 a001 686789568/224056801*24476^(4/7) 9870002016927513 a001 12586269025/4106118243*24476^(4/7) 9870002016927513 a001 32951280099/10749957122*24476^(4/7) 9870002016927513 a001 86267571272/28143753123*24476^(4/7) 9870002016927513 a001 32264490531/10525900321*24476^(4/7) 9870002016927513 a001 591286729879/192900153618*24476^(4/7) 9870002016927513 a001 1548008755920/505019158607*24476^(4/7) 9870002016927513 a001 1515744265389/494493258286*24476^(4/7) 9870002016927513 a001 2504730781961/817138163596*24476^(4/7) 9870002016927513 a001 956722026041/312119004989*24476^(4/7) 9870002016927513 a001 365435296162/119218851371*24476^(4/7) 9870002016927513 a001 139583862445/45537549124*24476^(4/7) 9870002016927513 a001 53316291173/17393796001*24476^(4/7) 9870002016927513 a001 20365011074/6643838879*24476^(4/7) 9870002016927513 a001 7778742049/2537720636*24476^(4/7) 9870002016927513 a001 2971215073/969323029*24476^(4/7) 9870002016927513 a001 1134903170/370248451*24476^(4/7) 9870002016927513 a001 433494437/141422324*24476^(4/7) 9870002016927516 a001 165580141/54018521*24476^(4/7) 9870002016927536 a001 63245986/20633239*24476^(4/7) 9870002016927675 a001 24157817/7881196*24476^(4/7) 9870002016928625 a001 9227465/3010349*24476^(4/7) 9870002016935137 a001 3524578/1149851*24476^(4/7) 9870002016979768 a001 1346269/439204*24476^(4/7) 9870002017249663 a001 17711/103682*64079^(18/23) 9870002017285677 a001 514229/167761*24476^(4/7) 9870002017575605 a001 416020/51841*24476^(10/21) 9870002017579190 a001 1346269/271443*24476^(11/21) 9870002017645256 a004 Fibonacci(22)*Lucas(23)/(1/2+sqrt(5)/2)^29 9870002017667703 a001 15456/13201*64079^(14/23) 9870002017692671 a001 3524578/710647*24476^(11/21) 9870002017695380 a001 9227465/39603*24476^(1/7) 9870002017709228 a001 9227465/1860498*24476^(11/21) 9870002017711644 a001 24157817/4870847*24476^(11/21) 9870002017711996 a001 63245986/12752043*24476^(11/21) 9870002017712048 a001 165580141/33385282*24476^(11/21) 9870002017712055 a001 433494437/87403803*24476^(11/21) 9870002017712056 a001 1134903170/228826127*24476^(11/21) 9870002017712056 a001 2971215073/599074578*24476^(11/21) 9870002017712056 a001 7778742049/1568397607*24476^(11/21) 9870002017712056 a001 20365011074/4106118243*24476^(11/21) 9870002017712056 a001 53316291173/10749957122*24476^(11/21) 9870002017712056 a001 139583862445/28143753123*24476^(11/21) 9870002017712056 a001 365435296162/73681302247*24476^(11/21) 9870002017712056 a001 956722026041/192900153618*24476^(11/21) 9870002017712056 a001 2504730781961/505019158607*24476^(11/21) 9870002017712056 a001 10610209857723/2139295485799*24476^(11/21) 9870002017712056 a001 4052739537881/817138163596*24476^(11/21) 9870002017712056 a001 140728068720/28374454999*24476^(11/21) 9870002017712056 a001 591286729879/119218851371*24476^(11/21) 9870002017712056 a001 225851433717/45537549124*24476^(11/21) 9870002017712056 a001 86267571272/17393796001*24476^(11/21) 9870002017712056 a001 32951280099/6643838879*24476^(11/21) 9870002017712056 a001 1144206275/230701876*24476^(11/21) 9870002017712056 a001 4807526976/969323029*24476^(11/21) 9870002017712056 a001 1836311903/370248451*24476^(11/21) 9870002017712057 a001 701408733/141422324*24476^(11/21) 9870002017712060 a001 267914296/54018521*24476^(11/21) 9870002017712079 a001 9303105/1875749*24476^(11/21) 9870002017712214 a001 39088169/7881196*24476^(11/21) 9870002017713137 a001 14930352/3010349*24476^(11/21) 9870002017719461 a001 5702887/1149851*24476^(11/21) 9870002017730223 a001 17711/710647*64079^(22/23) 9870002017762807 a001 2178309/439204*24476^(11/21) 9870002017824831 a001 17711/271443*64079^(20/23) 9870002017905443 a001 17711/439204*64079^(21/23) 9870002018059904 a001 75640/15251*24476^(11/21) 9870002018112856 a001 75025/64079*24476^(2/3) 9870002018332701 a001 17711/39603*39603^(8/11) 9870002018362229 a001 726103/90481*24476^(10/21) 9870002018364089 a001 1346269/103682*24476^(3/7) 9870002018412744 a001 121393/64079*24476^(13/21) 9870002018413996 a001 17711/167761*64079^(19/23) 9870002018476995 a001 5702887/710647*24476^(10/21) 9870002018479891 a001 4976784/13201*24476^(2/21) 9870002018493740 a001 829464/103361*24476^(10/21) 9870002018496183 a001 39088169/4870847*24476^(10/21) 9870002018496539 a001 34111385/4250681*24476^(10/21) 9870002018496591 a001 133957148/16692641*24476^(10/21) 9870002018496599 a001 233802911/29134601*24476^(10/21) 9870002018496600 a001 1836311903/228826127*24476^(10/21) 9870002018496600 a001 267084832/33281921*24476^(10/21) 9870002018496600 a001 12586269025/1568397607*24476^(10/21) 9870002018496600 a001 10983760033/1368706081*24476^(10/21) 9870002018496600 a001 43133785636/5374978561*24476^(10/21) 9870002018496600 a001 75283811239/9381251041*24476^(10/21) 9870002018496600 a001 591286729879/73681302247*24476^(10/21) 9870002018496600 a001 86000486440/10716675201*24476^(10/21) 9870002018496600 a001 4052739537881/505019158607*24476^(10/21) 9870002018496600 a001 3536736619241/440719107401*24476^(10/21) 9870002018496600 a001 3278735159921/408569081798*24476^(10/21) 9870002018496600 a001 2504730781961/312119004989*24476^(10/21) 9870002018496600 a001 956722026041/119218851371*24476^(10/21) 9870002018496600 a001 182717648081/22768774562*24476^(10/21) 9870002018496600 a001 139583862445/17393796001*24476^(10/21) 9870002018496600 a001 53316291173/6643838879*24476^(10/21) 9870002018496600 a001 10182505537/1268860318*24476^(10/21) 9870002018496600 a001 7778742049/969323029*24476^(10/21) 9870002018496600 a001 2971215073/370248451*24476^(10/21) 9870002018496600 a001 567451585/70711162*24476^(10/21) 9870002018496603 a001 433494437/54018521*24476^(10/21) 9870002018496623 a001 165580141/20633239*24476^(10/21) 9870002018496759 a001 31622993/3940598*24476^(10/21) 9870002018497692 a001 24157817/3010349*24476^(10/21) 9870002018504088 a001 9227465/1149851*24476^(10/21) 9870002018547925 a001 1762289/219602*24476^(10/21) 9870002018596800 a001 28657/64079*24476^(16/21) 9870002018660911 a001 121393/39603*64079^(12/23) 9870002018848389 a001 1346269/167761*24476^(10/21) 9870002018950543 a001 196418/39603*64079^(11/23) 9870002018984343 a001 105937/13201*64079^(10/23) 9870002019041056 a001 75025/39603*64079^(13/23) 9870002019044099 a001 1762289/12238*9349^(4/19) 9870002019096733 a001 17711/103682*439204^(2/3) 9870002019115862 a001 514229/39603*64079^(9/23) 9870002019130757 a001 17711/103682*7881196^(6/11) 9870002019130834 a001 15456/13201*20633239^(2/5) 9870002019130843 a001 17711/103682*141422324^(6/13) 9870002019130844 a001 17711/103682*2537720636^(2/5) 9870002019130844 a001 17711/103682*45537549124^(6/17) 9870002019130844 a001 17711/103682*14662949395604^(2/7) 9870002019130844 a001 17711/103682*(1/2+1/2*5^(1/2))^18 9870002019130844 a001 17711/103682*192900153618^(1/3) 9870002019130844 a001 17711/103682*10749957122^(3/8) 9870002019130844 a001 17711/103682*4106118243^(9/23) 9870002019130844 a001 17711/103682*1568397607^(9/22) 9870002019130844 a001 15456/13201*17393796001^(2/7) 9870002019130844 a001 15456/13201*14662949395604^(2/9) 9870002019130844 a001 15456/13201*(1/2+1/2*5^(1/2))^14 9870002019130844 a001 15456/13201*505019158607^(1/4) 9870002019130844 a001 15456/13201*10749957122^(7/24) 9870002019130844 a001 15456/13201*4106118243^(7/23) 9870002019130844 a001 15456/13201*1568397607^(7/22) 9870002019130844 a001 17711/103682*599074578^(3/7) 9870002019130844 a001 15456/13201*599074578^(1/3) 9870002019130844 a001 15456/13201*228826127^(7/20) 9870002019130844 a001 17711/103682*228826127^(9/20) 9870002019130844 a001 15456/13201*87403803^(7/19) 9870002019130844 a001 17711/103682*87403803^(9/19) 9870002019130847 a001 15456/13201*33385282^(7/18) 9870002019130848 a001 17711/103682*33385282^(1/2) 9870002019130869 a001 15456/13201*12752043^(7/17) 9870002019130876 a001 17711/103682*12752043^(9/17) 9870002019131026 a001 15456/13201*4870847^(7/16) 9870002019131078 a001 17711/103682*4870847^(9/16) 9870002019132174 a001 15456/13201*1860498^(7/15) 9870002019132554 a001 17711/103682*1860498^(3/5) 9870002019133695 a001 102652956/104005 9870002019140616 a001 15456/13201*710647^(1/2) 9870002019143407 a001 17711/103682*710647^(9/14) 9870002019147128 a001 46347/2206*24476^(8/21) 9870002019147347 a001 3524578/271443*24476^(3/7) 9870002019202973 a001 15456/13201*271443^(7/13) 9870002019210055 a001 832040/39603*64079^(8/23) 9870002019223582 a001 17711/103682*271443^(9/13) 9870002019261623 a001 9227465/710647*24476^(3/7) 9870002019264447 a001 24157817/39603*24476^(1/21) 9870002019278295 a001 24157817/1860498*24476^(3/7) 9870002019280728 a001 63245986/4870847*24476^(3/7) 9870002019281083 a001 165580141/12752043*24476^(3/7) 9870002019281135 a001 433494437/33385282*24476^(3/7) 9870002019281142 a001 1134903170/87403803*24476^(3/7) 9870002019281143 a001 2971215073/228826127*24476^(3/7) 9870002019281143 a001 7778742049/599074578*24476^(3/7) 9870002019281143 a001 20365011074/1568397607*24476^(3/7) 9870002019281143 a001 53316291173/4106118243*24476^(3/7) 9870002019281143 a001 139583862445/10749957122*24476^(3/7) 9870002019281143 a001 365435296162/28143753123*24476^(3/7) 9870002019281143 a001 956722026041/73681302247*24476^(3/7) 9870002019281143 a001 2504730781961/192900153618*24476^(3/7) 9870002019281143 a001 10610209857723/817138163596*24476^(3/7) 9870002019281143 a001 4052739537881/312119004989*24476^(3/7) 9870002019281143 a001 1548008755920/119218851371*24476^(3/7) 9870002019281143 a001 591286729879/45537549124*24476^(3/7) 9870002019281143 a001 7787980473/599786069*24476^(3/7) 9870002019281143 a001 86267571272/6643838879*24476^(3/7) 9870002019281143 a001 32951280099/2537720636*24476^(3/7) 9870002019281143 a001 12586269025/969323029*24476^(3/7) 9870002019281143 a001 4807526976/370248451*24476^(3/7) 9870002019281144 a001 1836311903/141422324*24476^(3/7) 9870002019281147 a001 701408733/54018521*24476^(3/7) 9870002019281167 a001 9238424/711491*24476^(3/7) 9870002019281302 a001 102334155/7881196*24476^(3/7) 9870002019282231 a001 39088169/3010349*24476^(3/7) 9870002019288600 a001 14930352/1149851*24476^(3/7) 9870002019318506 a001 1346269/39603*64079^(7/23) 9870002019332249 a001 5702887/439204*24476^(3/7) 9870002019382410 a001 196418/64079*24476^(4/7) 9870002019421511 a001 726103/13201*64079^(6/23) 9870002019480515 a001 31622993/51841*9349^(1/19) 9870002019526596 a001 3524578/39603*64079^(5/23) 9870002019630886 a001 5702887/39603*64079^(4/23) 9870002019631427 a001 2178309/167761*24476^(3/7) 9870002019634472 a001 17711/271443*167761^(4/5) 9870002019666427 a001 15456/13201*103682^(7/12) 9870002019698287 a004 Fibonacci(22)*Lucas(25)/(1/2+sqrt(5)/2)^31 9870002019735480 a001 9227465/39603*64079^(3/23) 9870002019819451 a001 17711/103682*103682^(3/4) 9870002019839958 a001 4976784/13201*64079^(2/23) 9870002019889163 a001 105937/13201*167761^(2/5) 9870002019892291 a001 121393/39603*439204^(4/9) 9870002019914974 a001 121393/39603*7881196^(4/11) 9870002019915018 a001 17711/271443*20633239^(4/7) 9870002019915032 a001 121393/39603*141422324^(4/13) 9870002019915032 a001 17711/271443*2537720636^(4/9) 9870002019915032 a001 17711/271443*(1/2+1/2*5^(1/2))^20 9870002019915032 a001 17711/271443*23725150497407^(5/16) 9870002019915032 a001 17711/271443*505019158607^(5/14) 9870002019915032 a001 17711/271443*73681302247^(5/13) 9870002019915032 a001 17711/271443*28143753123^(2/5) 9870002019915032 a001 17711/271443*10749957122^(5/12) 9870002019915032 a001 17711/271443*4106118243^(10/23) 9870002019915032 a001 17711/271443*1568397607^(5/11) 9870002019915032 a001 121393/39603*2537720636^(4/15) 9870002019915032 a001 121393/39603*45537549124^(4/17) 9870002019915032 a001 121393/39603*817138163596^(4/19) 9870002019915032 a001 121393/39603*14662949395604^(4/21) 9870002019915032 a001 121393/39603*(1/2+1/2*5^(1/2))^12 9870002019915032 a001 121393/39603*192900153618^(2/9) 9870002019915032 a001 121393/39603*73681302247^(3/13) 9870002019915032 a001 121393/39603*10749957122^(1/4) 9870002019915032 a001 121393/39603*4106118243^(6/23) 9870002019915032 a001 121393/39603*1568397607^(3/11) 9870002019915032 a001 121393/39603*599074578^(2/7) 9870002019915032 a001 17711/271443*599074578^(10/21) 9870002019915032 a001 121393/39603*228826127^(3/10) 9870002019915032 a001 17711/271443*228826127^(1/2) 9870002019915032 a001 121393/39603*87403803^(6/19) 9870002019915032 a001 17711/271443*87403803^(10/19) 9870002019915035 a001 121393/39603*33385282^(1/3) 9870002019915037 a001 17711/271443*33385282^(5/9) 9870002019915053 a001 121393/39603*12752043^(6/17) 9870002019915067 a001 17711/271443*12752043^(10/17) 9870002019915188 a001 121393/39603*4870847^(3/8) 9870002019915292 a001 17711/271443*4870847^(5/8) 9870002019915448 a001 2149991423/2178309 9870002019916172 a001 121393/39603*1860498^(2/5) 9870002019916933 a001 17711/271443*1860498^(2/3) 9870002019923408 a001 121393/39603*710647^(3/7) 9870002019928992 a001 17711/271443*710647^(5/7) 9870002019931671 a001 5702887/271443*24476^(8/21) 9870002019932246 a001 1762289/51841*24476^(1/3) 9870002019944480 a001 24157817/39603*64079^(1/23) 9870002019976857 a001 121393/39603*271443^(6/13) 9870002019979006 a001 3524578/39603*167761^(1/5) 9870002019997821 a004 Fibonacci(22)*Lucas(27)/(1/2+sqrt(5)/2)^33 9870002020000654 a001 17711/1860498*439204^(8/9) 9870002020018074 a001 17711/271443*271443^(10/13) 9870002020029337 a001 17711/710647*7881196^(2/3) 9870002020029437 a001 105937/13201*20633239^(2/7) 9870002020029443 a001 17711/710647*312119004989^(2/5) 9870002020029443 a001 17711/710647*(1/2+1/2*5^(1/2))^22 9870002020029443 a001 17711/710647*10749957122^(11/24) 9870002020029443 a001 17711/710647*4106118243^(11/23) 9870002020029443 a001 17711/710647*1568397607^(1/2) 9870002020029443 a001 105937/13201*2537720636^(2/9) 9870002020029443 a001 105937/13201*312119004989^(2/11) 9870002020029443 a001 105937/13201*(1/2+1/2*5^(1/2))^10 9870002020029443 a001 105937/13201*28143753123^(1/5) 9870002020029443 a001 105937/13201*10749957122^(5/24) 9870002020029443 a001 105937/13201*4106118243^(5/23) 9870002020029443 a001 105937/13201*1568397607^(5/22) 9870002020029443 a001 105937/13201*599074578^(5/21) 9870002020029443 a001 17711/710647*599074578^(11/21) 9870002020029443 a001 105937/13201*228826127^(1/4) 9870002020029443 a001 17711/710647*228826127^(11/20) 9870002020029444 a001 105937/13201*87403803^(5/19) 9870002020029444 a001 17711/710647*87403803^(11/19) 9870002020029446 a001 105937/13201*33385282^(5/18) 9870002020029449 a001 17711/710647*33385282^(11/18) 9870002020029461 a001 105937/13201*12752043^(5/17) 9870002020029482 a001 17711/710647*12752043^(11/17) 9870002020029504 a001 5628750621/5702887 9870002020029573 a001 105937/13201*4870847^(5/16) 9870002020029729 a001 17711/710647*4870847^(11/16) 9870002020030394 a001 105937/13201*1860498^(1/3) 9870002020031534 a001 17711/710647*1860498^(11/15) 9870002020036423 a001 105937/13201*710647^(5/14) 9870002020037201 a001 726103/13201*439204^(2/9) 9870002020039397 a001 514229/39603*439204^(1/3) 9870002020041522 a004 Fibonacci(22)*Lucas(29)/(1/2+sqrt(5)/2)^35 9870002020043325 a001 9227465/39603*439204^(1/9) 9870002020044799 a001 17711/710647*710647^(11/14) 9870002020046020 a001 17711/1860498*7881196^(8/11) 9870002020046134 a001 14930352/710647*24476^(8/21) 9870002020046135 a001 17711/1860498*141422324^(8/13) 9870002020046136 a001 17711/1860498*2537720636^(8/15) 9870002020046136 a001 17711/1860498*45537549124^(8/17) 9870002020046136 a001 17711/1860498*14662949395604^(8/21) 9870002020046136 a001 17711/1860498*(1/2+1/2*5^(1/2))^24 9870002020046136 a001 17711/1860498*192900153618^(4/9) 9870002020046136 a001 17711/1860498*73681302247^(6/13) 9870002020046136 a001 17711/1860498*10749957122^(1/2) 9870002020046136 a001 17711/1860498*4106118243^(12/23) 9870002020046136 a001 17711/1860498*1568397607^(6/11) 9870002020046136 a001 832040/39603*(1/2+1/2*5^(1/2))^8 9870002020046136 a001 832040/39603*23725150497407^(1/8) 9870002020046136 a001 832040/39603*505019158607^(1/7) 9870002020046136 a001 832040/39603*73681302247^(2/13) 9870002020046136 a001 832040/39603*10749957122^(1/6) 9870002020046136 a001 832040/39603*4106118243^(4/23) 9870002020046136 a001 832040/39603*1568397607^(2/11) 9870002020046136 a001 832040/39603*599074578^(4/21) 9870002020046136 a001 17711/1860498*599074578^(4/7) 9870002020046136 a001 832040/39603*228826127^(1/5) 9870002020046136 a001 17711/1860498*228826127^(3/5) 9870002020046136 a001 832040/39603*87403803^(4/19) 9870002020046136 a001 17711/1860498*87403803^(12/19) 9870002020046138 a001 832040/39603*33385282^(2/9) 9870002020046141 a001 17711/1860498*33385282^(2/3) 9870002020046144 a001 1842032555/1866294 9870002020046150 a001 832040/39603*12752043^(4/17) 9870002020046178 a001 17711/1860498*12752043^(12/17) 9870002020046240 a001 832040/39603*4870847^(1/4) 9870002020046448 a001 17711/1860498*4870847^(3/4) 9870002020046896 a001 832040/39603*1860498^(4/15) 9870002020047898 a004 Fibonacci(22)*Lucas(31)/(1/2+sqrt(5)/2)^37 9870002020048417 a001 17711/1860498*1860498^(4/5) 9870002020048542 a001 726103/13201*7881196^(2/11) 9870002020048571 a001 17711/4870847*141422324^(2/3) 9870002020048571 a001 726103/13201*141422324^(2/13) 9870002020048571 a001 17711/4870847*(1/2+1/2*5^(1/2))^26 9870002020048571 a001 17711/4870847*73681302247^(1/2) 9870002020048571 a001 17711/4870847*10749957122^(13/24) 9870002020048571 a001 17711/4870847*4106118243^(13/23) 9870002020048571 a001 17711/4870847*1568397607^(13/22) 9870002020048571 a001 726103/13201*2537720636^(2/15) 9870002020048571 a001 726103/13201*45537549124^(2/17) 9870002020048571 a001 726103/13201*14662949395604^(2/21) 9870002020048571 a001 726103/13201*(1/2+1/2*5^(1/2))^6 9870002020048571 a001 726103/13201*10749957122^(1/8) 9870002020048571 a001 726103/13201*4106118243^(3/23) 9870002020048571 a001 726103/13201*1568397607^(3/22) 9870002020048571 a001 726103/13201*599074578^(1/7) 9870002020048571 a001 17711/4870847*599074578^(13/21) 9870002020048571 a001 726103/13201*228826127^(3/20) 9870002020048571 a001 17711/4870847*228826127^(13/20) 9870002020048571 a001 726103/13201*87403803^(3/19) 9870002020048572 a001 17711/4870847*87403803^(13/19) 9870002020048572 a001 38580030699/39088169 9870002020048572 a001 726103/13201*33385282^(1/6) 9870002020048577 a001 17711/4870847*33385282^(13/18) 9870002020048582 a001 726103/13201*12752043^(3/17) 9870002020048617 a001 17711/4870847*12752043^(13/17) 9870002020048649 a001 726103/13201*4870847^(3/16) 9870002020048828 a004 Fibonacci(22)*Lucas(33)/(1/2+sqrt(5)/2)^39 9870002020048834 a001 17711/33385282*7881196^(10/11) 9870002020048908 a001 17711/12752043*20633239^(4/5) 9870002020048909 a001 17711/4870847*4870847^(13/16) 9870002020048926 a001 17711/12752043*17393796001^(4/7) 9870002020048926 a001 17711/12752043*14662949395604^(4/9) 9870002020048926 a001 17711/12752043*(1/2+1/2*5^(1/2))^28 9870002020048926 a001 17711/12752043*505019158607^(1/2) 9870002020048926 a001 17711/12752043*73681302247^(7/13) 9870002020048926 a001 17711/12752043*10749957122^(7/12) 9870002020048926 a001 17711/12752043*4106118243^(14/23) 9870002020048926 a001 17711/12752043*1568397607^(7/11) 9870002020048926 a001 5702887/39603*(1/2+1/2*5^(1/2))^4 9870002020048926 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^4/Lucas(22) 9870002020048926 a001 5702887/39603*23725150497407^(1/16) 9870002020048926 a001 5702887/39603*73681302247^(1/13) 9870002020048926 a001 5702887/39603*10749957122^(1/12) 9870002020048926 a001 5702887/39603*4106118243^(2/23) 9870002020048926 a001 5702887/39603*1568397607^(1/11) 9870002020048926 a001 5702887/39603*599074578^(2/21) 9870002020048926 a001 17711/12752043*599074578^(2/3) 9870002020048926 a001 5702887/39603*228826127^(1/10) 9870002020048926 a001 17711/12752043*228826127^(7/10) 9870002020048926 a001 5702887/39603*87403803^(2/19) 9870002020048926 a001 101003831657/102334155 9870002020048927 a001 17711/12752043*87403803^(14/19) 9870002020048927 a001 5702887/39603*33385282^(1/9) 9870002020048933 a001 17711/12752043*33385282^(7/9) 9870002020048933 a001 5702887/39603*12752043^(2/17) 9870002020048958 a001 17711/33385282*20633239^(6/7) 9870002020048964 a004 Fibonacci(22)*Lucas(35)/(1/2+sqrt(5)/2)^41 9870002020048976 a001 17711/12752043*12752043^(14/17) 9870002020048978 a001 17711/33385282*141422324^(10/13) 9870002020048978 a001 17711/33385282*2537720636^(2/3) 9870002020048978 a001 17711/33385282*45537549124^(10/17) 9870002020048978 a001 17711/33385282*312119004989^(6/11) 9870002020048978 a001 17711/33385282*14662949395604^(10/21) 9870002020048978 a001 17711/33385282*(1/2+1/2*5^(1/2))^30 9870002020048978 a001 17711/33385282*192900153618^(5/9) 9870002020048978 a001 17711/33385282*28143753123^(3/5) 9870002020048978 a001 17711/33385282*10749957122^(5/8) 9870002020048978 a001 17711/33385282*4106118243^(15/23) 9870002020048978 a001 17711/33385282*1568397607^(15/22) 9870002020048978 a001 4976784/13201*(1/2+1/2*5^(1/2))^2 9870002020048978 a001 4976784/13201*10749957122^(1/24) 9870002020048978 a001 4976784/13201*4106118243^(1/23) 9870002020048978 a001 4976784/13201*1568397607^(1/22) 9870002020048978 a001 4976784/13201*599074578^(1/21) 9870002020048978 a001 4976784/13201*228826127^(1/20) 9870002020048978 a001 17711/33385282*599074578^(5/7) 9870002020048978 a001 33053933034/33489287 9870002020048978 a001 4976784/13201*87403803^(1/19) 9870002020048978 a001 17711/33385282*228826127^(3/4) 9870002020048978 a001 5702887/39603*4870847^(1/8) 9870002020048979 a001 4976784/13201*33385282^(1/18) 9870002020048979 a001 17711/33385282*87403803^(15/19) 9870002020048982 a001 4976784/13201*12752043^(1/17) 9870002020048984 a004 Fibonacci(22)*Lucas(37)/(1/2+sqrt(5)/2)^43 9870002020048985 a001 17711/33385282*33385282^(5/6) 9870002020048986 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^32/Lucas(38) 9870002020048986 a001 17711/87403803*23725150497407^(1/2) 9870002020048986 a001 17711/87403803*505019158607^(4/7) 9870002020048986 a001 17711/87403803*73681302247^(8/13) 9870002020048986 a001 17711/87403803*10749957122^(2/3) 9870002020048986 a001 17711/87403803*4106118243^(16/23) 9870002020048986 a001 17711/87403803*1568397607^(8/11) 9870002020048986 a001 39088169/39603 9870002020048986 a001 17711/87403803*599074578^(16/21) 9870002020048986 a001 17711/87403803*228826127^(4/5) 9870002020048986 a004 Fibonacci(22)*Lucas(39)/(1/2+sqrt(5)/2)^45 9870002020048986 a001 17711/599074578*141422324^(12/13) 9870002020048987 a001 17711/87403803*87403803^(16/19) 9870002020048987 a001 17711/228826127*45537549124^(2/3) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^34/Lucas(40) 9870002020048987 a001 17711/228826127*10749957122^(17/24) 9870002020048987 a001 17711/228826127*4106118243^(17/23) 9870002020048987 a001 1812440219205/1836311903 9870002020048987 a001 17711/228826127*1568397607^(17/22) 9870002020048987 a004 Fibonacci(40)/Lucas(22)/(1/2+sqrt(5)/2)^2 9870002020048987 a001 17711/228826127*599074578^(17/21) 9870002020048987 a004 Fibonacci(22)*Lucas(41)/(1/2+sqrt(5)/2)^47 9870002020048987 a001 17711/599074578*2537720636^(4/5) 9870002020048987 a001 17711/228826127*228826127^(17/20) 9870002020048987 a001 17711/599074578*45537549124^(12/17) 9870002020048987 a001 17711/599074578*14662949395604^(4/7) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^36/Lucas(42) 9870002020048987 a001 17711/599074578*505019158607^(9/14) 9870002020048987 a001 17711/599074578*192900153618^(2/3) 9870002020048987 a001 17711/599074578*73681302247^(9/13) 9870002020048987 a001 17711/599074578*10749957122^(3/4) 9870002020048987 a001 593128762057/600940872 9870002020048987 a001 17711/599074578*4106118243^(18/23) 9870002020048987 a001 17711/599074578*1568397607^(9/11) 9870002020048987 a004 Fibonacci(42)/Lucas(22)/(1/2+sqrt(5)/2)^4 9870002020048987 a004 Fibonacci(22)*Lucas(43)/(1/2+sqrt(5)/2)^49 9870002020048987 a001 17711/1568397607*817138163596^(2/3) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^38/Lucas(44) 9870002020048987 a001 12422650070163/12586269025 9870002020048987 a001 17711/1568397607*10749957122^(19/24) 9870002020048987 a001 17711/599074578*599074578^(6/7) 9870002020048987 a001 17711/1568397607*4106118243^(19/23) 9870002020048987 a001 17711/4106118243*2537720636^(8/9) 9870002020048987 a004 Fibonacci(22)*Lucas(45)/(1/2+sqrt(5)/2)^51 9870002020048987 a001 17711/10749957122*2537720636^(14/15) 9870002020048987 a001 17711/4106118243*312119004989^(8/11) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^40/Lucas(46) 9870002020048987 a001 17711/4106118243*23725150497407^(5/8) 9870002020048987 a001 17711/4106118243*73681302247^(10/13) 9870002020048987 a001 32522920114033/32951280099 9870002020048987 a001 17711/4106118243*28143753123^(4/5) 9870002020048987 a001 17711/1568397607*1568397607^(19/22) 9870002020048987 a001 17711/4106118243*10749957122^(5/6) 9870002020048987 a004 Fibonacci(22)*Lucas(47)/(1/2+sqrt(5)/2)^53 9870002020048987 a001 17711/10749957122*17393796001^(6/7) 9870002020048987 a001 17711/10749957122*45537549124^(14/17) 9870002020048987 a001 17711/10749957122*817138163596^(14/19) 9870002020048987 a001 17711/10749957122*14662949395604^(2/3) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^42/Lucas(48) 9870002020048987 a001 17711/10749957122*505019158607^(3/4) 9870002020048987 a001 17711/10749957122*192900153618^(7/9) 9870002020048987 a001 10643263783992/10783446409 9870002020048987 a001 17711/4106118243*4106118243^(20/23) 9870002020048987 a004 Fibonacci(22)*Lucas(49)/(1/2+sqrt(5)/2)^55 9870002020048987 a001 17711/28143753123*312119004989^(4/5) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^44/Lucas(50) 9870002020048987 a001 17711/28143753123*23725150497407^(11/16) 9870002020048987 a001 222915410701775/225851433717 9870002020048987 a001 17711/28143753123*73681302247^(11/13) 9870002020048987 a001 17711/10749957122*10749957122^(7/8) 9870002020048987 a004 Fibonacci(22)*Lucas(51)/(1/2+sqrt(5)/2)^57 9870002020048987 a001 17711/192900153618*45537549124^(16/17) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^46/Lucas(52) 9870002020048987 a001 583600121833389/591286729879 9870002020048987 a004 Fibonacci(22)*Lucas(53)/(1/2+sqrt(5)/2)^59 9870002020048987 a001 17711/192900153618*14662949395604^(16/21) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^48/Lucas(54) 9870002020048987 a001 190985619349799/193501094490 9870002020048987 a001 17711/505019158607*312119004989^(10/11) 9870002020048987 a004 Fibonacci(22)*Lucas(55)/(1/2+sqrt(5)/2)^61 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^50/Lucas(56) 9870002020048987 a001 17711/505019158607*3461452808002^(5/6) 9870002020048987 a001 17711/192900153618*192900153618^(8/9) 9870002020048987 a004 Fibonacci(22)*Lucas(57)/(1/2+sqrt(5)/2)^63 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^52/Lucas(58) 9870002020048987 a001 17711/1322157322203*23725150497407^(13/16) 9870002020048987 a001 10472279272886969/10610209857723 9870002020048987 a004 Fibonacci(22)*Lucas(59)/(1/2+sqrt(5)/2)^65 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^54/Lucas(60) 9870002020048987 a004 Fibonacci(22)*Lucas(61)/(1/2+sqrt(5)/2)^67 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^56/Lucas(62) 9870002020048987 a004 Fibonacci(22)*Lucas(63)/(1/2+sqrt(5)/2)^69 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^58/Lucas(64) 9870002020048987 a004 Fibonacci(22)*Lucas(65)/(1/2+sqrt(5)/2)^71 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^60/Lucas(66) 9870002020048987 a004 Fibonacci(22)*Lucas(67)/(1/2+sqrt(5)/2)^73 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^62/Lucas(68) 9870002020048987 a004 Fibonacci(22)*Lucas(69)/(1/2+sqrt(5)/2)^75 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^64/Lucas(70) 9870002020048987 a004 Fibonacci(22)*Lucas(71)/(1/2+sqrt(5)/2)^77 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^66/Lucas(72) 9870002020048987 a004 Fibonacci(22)*Lucas(73)/(1/2+sqrt(5)/2)^79 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^68/Lucas(74) 9870002020048987 a004 Fibonacci(22)*Lucas(75)/(1/2+sqrt(5)/2)^81 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^70/Lucas(76) 9870002020048987 a004 Fibonacci(22)*Lucas(77)/(1/2+sqrt(5)/2)^83 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^72/Lucas(78) 9870002020048987 a004 Fibonacci(22)*Lucas(79)/(1/2+sqrt(5)/2)^85 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^74/Lucas(80) 9870002020048987 a004 Fibonacci(22)*Lucas(81)/(1/2+sqrt(5)/2)^87 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^76/Lucas(82) 9870002020048987 a004 Fibonacci(22)*Lucas(83)/(1/2+sqrt(5)/2)^89 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^78/Lucas(84) 9870002020048987 a004 Fibonacci(22)*Lucas(85)/(1/2+sqrt(5)/2)^91 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^80/Lucas(86) 9870002020048987 a004 Fibonacci(22)*Lucas(87)/(1/2+sqrt(5)/2)^93 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^82/Lucas(88) 9870002020048987 a004 Fibonacci(22)*Lucas(89)/(1/2+sqrt(5)/2)^95 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^84/Lucas(90) 9870002020048987 a004 Fibonacci(22)*Lucas(91)/(1/2+sqrt(5)/2)^97 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^86/Lucas(92) 9870002020048987 a004 Fibonacci(22)*Lucas(93)/(1/2+sqrt(5)/2)^99 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^88/Lucas(94) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^90/Lucas(96) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^92/Lucas(98) 9870002020048987 a004 Fibonacci(11)*Lucas(11)/(1/2+sqrt(5)/2)^6 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^93/Lucas(99) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^94/Lucas(100) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^91/Lucas(97) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^89/Lucas(95) 9870002020048987 a004 Fibonacci(22)*Lucas(94)/(1/2+sqrt(5)/2)^100 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^87/Lucas(93) 9870002020048987 a004 Fibonacci(22)*Lucas(92)/(1/2+sqrt(5)/2)^98 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^85/Lucas(91) 9870002020048987 a004 Fibonacci(22)*Lucas(90)/(1/2+sqrt(5)/2)^96 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^83/Lucas(89) 9870002020048987 a004 Fibonacci(22)*Lucas(88)/(1/2+sqrt(5)/2)^94 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^81/Lucas(87) 9870002020048987 a004 Fibonacci(22)*Lucas(86)/(1/2+sqrt(5)/2)^92 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^79/Lucas(85) 9870002020048987 a004 Fibonacci(22)*Lucas(84)/(1/2+sqrt(5)/2)^90 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^77/Lucas(83) 9870002020048987 a004 Fibonacci(22)*Lucas(82)/(1/2+sqrt(5)/2)^88 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^75/Lucas(81) 9870002020048987 a004 Fibonacci(22)*Lucas(80)/(1/2+sqrt(5)/2)^86 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^73/Lucas(79) 9870002020048987 a004 Fibonacci(22)*Lucas(78)/(1/2+sqrt(5)/2)^84 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^71/Lucas(77) 9870002020048987 a004 Fibonacci(22)*Lucas(76)/(1/2+sqrt(5)/2)^82 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^69/Lucas(75) 9870002020048987 a004 Fibonacci(22)*Lucas(74)/(1/2+sqrt(5)/2)^80 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^67/Lucas(73) 9870002020048987 a004 Fibonacci(22)*Lucas(72)/(1/2+sqrt(5)/2)^78 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^65/Lucas(71) 9870002020048987 a004 Fibonacci(22)*Lucas(70)/(1/2+sqrt(5)/2)^76 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^63/Lucas(69) 9870002020048987 a004 Fibonacci(22)*Lucas(68)/(1/2+sqrt(5)/2)^74 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^61/Lucas(67) 9870002020048987 a004 Fibonacci(22)*Lucas(66)/(1/2+sqrt(5)/2)^72 9870002020048987 a001 17711/14662949395604*14662949395604^(19/21) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^59/Lucas(65) 9870002020048987 a004 Fibonacci(22)*Lucas(64)/(1/2+sqrt(5)/2)^70 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^57/Lucas(63) 9870002020048987 a004 Fibonacci(22)*Lucas(62)/(1/2+sqrt(5)/2)^68 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^55/Lucas(61) 9870002020048987 a004 Fibonacci(22)*Lucas(60)/(1/2+sqrt(5)/2)^66 9870002020048987 a001 17711/5600748293801*3461452808002^(11/12) 9870002020048987 a001 17711/817138163596*817138163596^(17/19) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^53/Lucas(59) 9870002020048987 a004 Fibonacci(22)*Lucas(58)/(1/2+sqrt(5)/2)^64 9870002020048987 a001 17711/817138163596*14662949395604^(17/21) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^51/Lucas(57) 9870002020048987 a004 Fibonacci(22)*Lucas(56)/(1/2+sqrt(5)/2)^62 9870002020048987 a001 2472169787763395/2504730781961 9870002020048987 a001 89/1568437211*14662949395604^(7/9) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^49/Lucas(55) 9870002020048987 a001 89/1568437211*505019158607^(7/8) 9870002020048987 a004 Fibonacci(22)*Lucas(54)/(1/2+sqrt(5)/2)^60 9870002020048987 a001 17711/817138163596*192900153618^(17/18) 9870002020048987 a001 17711/45537549124*45537549124^(15/17) 9870002020048987 a001 944284832965003/956722026041 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^47/Lucas(53) 9870002020048987 a001 17711/192900153618*73681302247^(12/13) 9870002020048987 a004 Fibonacci(22)*Lucas(52)/(1/2+sqrt(5)/2)^58 9870002020048987 a001 17711/45537549124*312119004989^(9/11) 9870002020048987 a001 17711/45537549124*14662949395604^(5/7) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^45/Lucas(51) 9870002020048987 a001 17711/45537549124*192900153618^(5/6) 9870002020048987 a004 Fibonacci(22)*Lucas(50)/(1/2+sqrt(5)/2)^56 9870002020048987 a001 17711/45537549124*28143753123^(9/10) 9870002020048987 a001 1547969667751/1568358005 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^43/Lucas(49) 9870002020048987 a001 17711/28143753123*10749957122^(11/12) 9870002020048987 a001 17711/73681302247*10749957122^(23/24) 9870002020048987 a001 17711/45537549124*10749957122^(15/16) 9870002020048987 a004 Fibonacci(22)*Lucas(48)/(1/2+sqrt(5)/2)^54 9870002020048987 a001 17711/2537720636*2537720636^(13/15) 9870002020048987 a001 52623190157903/53316291173 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^41/Lucas(47) 9870002020048987 a001 17711/10749957122*4106118243^(21/23) 9870002020048987 a001 17711/28143753123*4106118243^(22/23) 9870002020048987 a004 Fibonacci(22)*Lucas(46)/(1/2+sqrt(5)/2)^52 9870002020048987 a001 10050135021935/10182505537 9870002020048987 a001 17711/2537720636*45537549124^(13/17) 9870002020048987 a001 17711/2537720636*14662949395604^(13/21) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^39/Lucas(45) 9870002020048987 a001 17711/2537720636*192900153618^(13/18) 9870002020048987 a001 17711/2537720636*73681302247^(3/4) 9870002020048987 a001 17711/2537720636*10749957122^(13/16) 9870002020048987 a001 17711/4106118243*1568397607^(10/11) 9870002020048987 a004 Fibonacci(46)/Lucas(22)/(1/2+sqrt(5)/2)^8 9870002020048987 a001 17711/10749957122*1568397607^(21/22) 9870002020048987 a004 Fibonacci(48)/Lucas(22)/(1/2+sqrt(5)/2)^10 9870002020048987 a004 Fibonacci(50)/Lucas(22)/(1/2+sqrt(5)/2)^12 9870002020048987 a004 Fibonacci(52)/Lucas(22)/(1/2+sqrt(5)/2)^14 9870002020048987 a004 Fibonacci(54)/Lucas(22)/(1/2+sqrt(5)/2)^16 9870002020048987 a004 Fibonacci(56)/Lucas(22)/(1/2+sqrt(5)/2)^18 9870002020048987 a004 Fibonacci(58)/Lucas(22)/(1/2+sqrt(5)/2)^20 9870002020048987 a004 Fibonacci(60)/Lucas(22)/(1/2+sqrt(5)/2)^22 9870002020048987 a004 Fibonacci(62)/Lucas(22)/(1/2+sqrt(5)/2)^24 9870002020048987 a004 Fibonacci(64)/Lucas(22)/(1/2+sqrt(5)/2)^26 9870002020048987 a004 Fibonacci(66)/Lucas(22)/(1/2+sqrt(5)/2)^28 9870002020048987 a004 Fibonacci(68)/Lucas(22)/(1/2+sqrt(5)/2)^30 9870002020048987 a004 Fibonacci(70)/Lucas(22)/(1/2+sqrt(5)/2)^32 9870002020048987 a004 Fibonacci(72)/Lucas(22)/(1/2+sqrt(5)/2)^34 9870002020048987 a004 Fibonacci(74)/Lucas(22)/(1/2+sqrt(5)/2)^36 9870002020048987 a004 Fibonacci(76)/Lucas(22)/(1/2+sqrt(5)/2)^38 9870002020048987 a004 Fibonacci(78)/Lucas(22)/(1/2+sqrt(5)/2)^40 9870002020048987 a004 Fibonacci(80)/Lucas(22)/(1/2+sqrt(5)/2)^42 9870002020048987 a004 Fibonacci(82)/Lucas(22)/(1/2+sqrt(5)/2)^44 9870002020048987 a004 Fibonacci(84)/Lucas(22)/(1/2+sqrt(5)/2)^46 9870002020048987 a004 Fibonacci(86)/Lucas(22)/(1/2+sqrt(5)/2)^48 9870002020048987 a004 Fibonacci(22)*Lucas(44)/(1/2+sqrt(5)/2)^50 9870002020048987 a004 Fibonacci(90)/Lucas(22)/(1/2+sqrt(5)/2)^52 9870002020048987 a004 Fibonacci(92)/Lucas(22)/(1/2+sqrt(5)/2)^54 9870002020048987 a004 Fibonacci(94)/Lucas(22)/(1/2+sqrt(5)/2)^56 9870002020048987 a004 Fibonacci(96)/Lucas(22)/(1/2+sqrt(5)/2)^58 9870002020048987 a004 Fibonacci(98)/Lucas(22)/(1/2+sqrt(5)/2)^60 9870002020048987 a004 Fibonacci(100)/Lucas(22)/(1/2+sqrt(5)/2)^62 9870002020048987 a004 Fibonacci(99)/Lucas(22)/(1/2+sqrt(5)/2)^61 9870002020048987 a004 Fibonacci(97)/Lucas(22)/(1/2+sqrt(5)/2)^59 9870002020048987 a004 Fibonacci(95)/Lucas(22)/(1/2+sqrt(5)/2)^57 9870002020048987 a004 Fibonacci(93)/Lucas(22)/(1/2+sqrt(5)/2)^55 9870002020048987 a004 Fibonacci(91)/Lucas(22)/(1/2+sqrt(5)/2)^53 9870002020048987 a004 Fibonacci(89)/Lucas(22)/(1/2+sqrt(5)/2)^51 9870002020048987 a004 Fibonacci(87)/Lucas(22)/(1/2+sqrt(5)/2)^49 9870002020048987 a004 Fibonacci(85)/Lucas(22)/(1/2+sqrt(5)/2)^47 9870002020048987 a004 Fibonacci(83)/Lucas(22)/(1/2+sqrt(5)/2)^45 9870002020048987 a004 Fibonacci(81)/Lucas(22)/(1/2+sqrt(5)/2)^43 9870002020048987 a004 Fibonacci(79)/Lucas(22)/(1/2+sqrt(5)/2)^41 9870002020048987 a004 Fibonacci(77)/Lucas(22)/(1/2+sqrt(5)/2)^39 9870002020048987 a004 Fibonacci(75)/Lucas(22)/(1/2+sqrt(5)/2)^37 9870002020048987 a004 Fibonacci(73)/Lucas(22)/(1/2+sqrt(5)/2)^35 9870002020048987 a004 Fibonacci(71)/Lucas(22)/(1/2+sqrt(5)/2)^33 9870002020048987 a004 Fibonacci(69)/Lucas(22)/(1/2+sqrt(5)/2)^31 9870002020048987 a004 Fibonacci(67)/Lucas(22)/(1/2+sqrt(5)/2)^29 9870002020048987 a004 Fibonacci(65)/Lucas(22)/(1/2+sqrt(5)/2)^27 9870002020048987 a004 Fibonacci(63)/Lucas(22)/(1/2+sqrt(5)/2)^25 9870002020048987 a004 Fibonacci(61)/Lucas(22)/(1/2+sqrt(5)/2)^23 9870002020048987 a004 Fibonacci(59)/Lucas(22)/(1/2+sqrt(5)/2)^21 9870002020048987 a004 Fibonacci(57)/Lucas(22)/(1/2+sqrt(5)/2)^19 9870002020048987 a004 Fibonacci(55)/Lucas(22)/(1/2+sqrt(5)/2)^17 9870002020048987 a004 Fibonacci(53)/Lucas(22)/(1/2+sqrt(5)/2)^15 9870002020048987 a004 Fibonacci(51)/Lucas(22)/(1/2+sqrt(5)/2)^13 9870002020048987 a004 Fibonacci(49)/Lucas(22)/(1/2+sqrt(5)/2)^11 9870002020048987 a004 Fibonacci(47)/Lucas(22)/(1/2+sqrt(5)/2)^9 9870002020048987 a004 Fibonacci(45)/Lucas(22)/(1/2+sqrt(5)/2)^7 9870002020048987 a001 7677619973707/7778742049 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^37/Lucas(43) 9870002020048987 a004 Fibonacci(43)/Lucas(22)/(1/2+sqrt(5)/2)^5 9870002020048987 a001 17711/1568397607*599074578^(19/21) 9870002020048987 a001 17711/4106118243*599074578^(20/21) 9870002020048987 a001 17711/2537720636*599074578^(13/14) 9870002020048987 a004 Fibonacci(22)*Lucas(42)/(1/2+sqrt(5)/2)^48 9870002020048987 a001 17711/370248451*2537720636^(7/9) 9870002020048987 a001 2932589877251/2971215073 9870002020048987 a001 17711/370248451*17393796001^(5/7) 9870002020048987 a001 17711/370248451*312119004989^(7/11) 9870002020048987 a001 17711/370248451*14662949395604^(5/9) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^35/Lucas(41) 9870002020048987 a001 17711/370248451*505019158607^(5/8) 9870002020048987 a001 17711/370248451*28143753123^(7/10) 9870002020048987 a001 17711/141422324*141422324^(11/13) 9870002020048987 a004 Fibonacci(41)/Lucas(22)/(1/2+sqrt(5)/2)^3 9870002020048987 a001 17711/370248451*599074578^(5/6) 9870002020048987 a001 17711/599074578*228826127^(9/10) 9870002020048987 a001 17711/1568397607*228826127^(19/20) 9870002020048987 a004 Fibonacci(22)*Lucas(40)/(1/2+sqrt(5)/2)^46 9870002020048987 a001 17711/370248451*228826127^(7/8) 9870002020048987 a001 560074829023/567451585 9870002020048987 a001 17711/141422324*2537720636^(11/15) 9870002020048987 a001 17711/141422324*45537549124^(11/17) 9870002020048987 a001 17711/141422324*312119004989^(3/5) 9870002020048987 a001 17711/141422324*817138163596^(11/19) 9870002020048987 a001 17711/141422324*14662949395604^(11/21) 9870002020048987 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^33/Lucas(39) 9870002020048987 a001 17711/141422324*192900153618^(11/18) 9870002020048987 a001 17711/141422324*10749957122^(11/16) 9870002020048987 a001 17711/141422324*1568397607^(3/4) 9870002020048987 a004 Fibonacci(39)/Lucas(22)/(1/2+sqrt(5)/2) 9870002020048987 a001 17711/141422324*599074578^(11/14) 9870002020048988 a001 17711/228826127*87403803^(17/19) 9870002020048988 a001 17711/599074578*87403803^(18/19) 9870002020048988 a004 Fibonacci(22)*Lucas(38)/(1/2+sqrt(5)/2)^44 9870002020048990 a001 427859096887/433494437 9870002020048990 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^31/Lucas(37) 9870002020048990 a001 17711/54018521*9062201101803^(1/2) 9870002020048990 a001 24157817/79206+24157817/79206*5^(1/2) 9870002020048994 a001 17711/87403803*33385282^(8/9) 9870002020048995 a001 17711/228826127*33385282^(17/18) 9870002020048996 a001 17711/141422324*33385282^(11/12) 9870002020048996 a001 9227465/39603*7881196^(1/11) 9870002020048996 a004 Fibonacci(22)*Lucas(36)/(1/2+sqrt(5)/2)^42 9870002020049004 a001 4976784/13201*4870847^(1/16) 9870002020049010 a001 163427632615/165580141 9870002020049010 a001 9227465/39603*141422324^(1/13) 9870002020049010 a001 17711/20633239*(1/2+1/2*5^(1/2))^29 9870002020049010 a001 17711/20633239*1322157322203^(1/2) 9870002020049010 a001 9227465/39603*2537720636^(1/15) 9870002020049010 a001 9227465/39603*45537549124^(1/17) 9870002020049010 a001 9227465/39603*14662949395604^(1/21) 9870002020049010 a001 9227465/39603*(1/2+1/2*5^(1/2))^3 9870002020049010 a001 9227465/39603*192900153618^(1/18) 9870002020049010 a001 9227465/39603*10749957122^(1/16) 9870002020049010 a001 9227465/39603*599074578^(1/14) 9870002020049011 a001 9227465/39603*33385282^(1/12) 9870002020049016 a001 89/39604*7881196^(9/11) 9870002020049032 a001 17711/33385282*12752043^(15/17) 9870002020049043 a001 17711/87403803*12752043^(16/17) 9870002020049048 a004 Fibonacci(22)*Lucas(34)/(1/2+sqrt(5)/2)^40 9870002020049141 a001 726103/13201*1860498^(1/5) 9870002020049143 a001 3524578/39603*20633239^(1/7) 9870002020049145 a001 31211900479/31622993 9870002020049146 a001 89/39604*141422324^(9/13) 9870002020049146 a001 89/39604*2537720636^(3/5) 9870002020049146 a001 89/39604*45537549124^(9/17) 9870002020049146 a001 89/39604*817138163596^(9/19) 9870002020049146 a001 89/39604*14662949395604^(3/7) 9870002020049146 a001 89/39604*(1/2+1/2*5^(1/2))^27 9870002020049146 a001 89/39604*192900153618^(1/2) 9870002020049146 a001 89/39604*10749957122^(9/16) 9870002020049146 a001 3524578/39603*2537720636^(1/9) 9870002020049146 a001 3524578/39603*312119004989^(1/11) 9870002020049146 a001 3524578/39603*(1/2+1/2*5^(1/2))^5 9870002020049146 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^5/Lucas(22) 9870002020049146 a001 3524578/39603*28143753123^(1/10) 9870002020049146 a001 89/39604*599074578^(9/14) 9870002020049146 a001 3524578/39603*228826127^(1/8) 9870002020049153 a001 89/39604*33385282^(3/4) 9870002020049168 a001 4976784/13201*1860498^(1/15) 9870002020049290 a001 17711/12752043*4870847^(7/8) 9870002020049295 a001 9227465/39603*1860498^(1/10) 9870002020049306 a001 5702887/39603*1860498^(2/15) 9870002020049368 a001 17711/33385282*4870847^(15/16) 9870002020049403 a004 Fibonacci(22)*Lucas(32)/(1/2+sqrt(5)/2)^38 9870002020049621 a001 3524578/39603*1860498^(1/6) 9870002020050060 a001 17711/3010349*20633239^(5/7) 9870002020050071 a001 1346269/39603*20633239^(1/5) 9870002020050073 a001 23843770259/24157817 9870002020050076 a001 17711/3010349*2537720636^(5/9) 9870002020050076 a001 17711/3010349*312119004989^(5/11) 9870002020050076 a001 17711/3010349*(1/2+1/2*5^(1/2))^25 9870002020050076 a001 17711/3010349*3461452808002^(5/12) 9870002020050076 a001 17711/3010349*28143753123^(1/2) 9870002020050076 a001 1346269/39603*17393796001^(1/7) 9870002020050076 a001 1346269/39603*14662949395604^(1/9) 9870002020050076 a001 1346269/39603*(1/2+1/2*5^(1/2))^7 9870002020050076 a001 1346269/39603*599074578^(1/6) 9870002020050076 a001 17711/3010349*228826127^(5/8) 9870002020050374 a001 4976784/13201*710647^(1/14) 9870002020051042 a001 17711/4870847*1860498^(13/15) 9870002020051588 a001 17711/12752043*1860498^(14/15) 9870002020051712 a001 89/39604*1860498^(9/10) 9870002020051718 a001 5702887/39603*710647^(1/7) 9870002020051720 a001 832040/39603*710647^(2/7) 9870002020051838 a004 Fibonacci(22)*Lucas(30)/(1/2+sqrt(5)/2)^36 9870002020052452 a001 17711/3010349*1860498^(5/6) 9870002020052759 a001 726103/13201*710647^(3/14) 9870002020054962 a001 1346269/39603*710647^(1/4) 9870002020056409 a001 514229/39603*7881196^(3/11) 9870002020056429 a001 9107509819/9227465 9870002020056452 a001 514229/39603*141422324^(3/13) 9870002020056452 a001 17711/1149851*(1/2+1/2*5^(1/2))^23 9870002020056452 a001 17711/1149851*4106118243^(1/2) 9870002020056452 a001 514229/39603*2537720636^(1/5) 9870002020056452 a001 514229/39603*45537549124^(3/17) 9870002020056452 a001 514229/39603*817138163596^(3/19) 9870002020056452 a001 514229/39603*14662949395604^(1/7) 9870002020056452 a001 514229/39603*(1/2+1/2*5^(1/2))^9 9870002020056452 a001 514229/39603*192900153618^(1/6) 9870002020056452 a001 514229/39603*10749957122^(3/16) 9870002020056452 a001 514229/39603*599074578^(3/14) 9870002020056454 a001 514229/39603*33385282^(1/4) 9870002020057307 a001 514229/39603*1860498^(3/10) 9870002020059282 a001 4976784/13201*271443^(1/13) 9870002020060357 a001 17711/439204*439204^(7/9) 9870002020062834 a001 39088169/1860498*24476^(8/21) 9870002020062887 a001 17711/1860498*710647^(6/7) 9870002020065271 a001 102334155/4870847*24476^(8/21) 9870002020065626 a001 267914296/12752043*24476^(8/21) 9870002020065678 a001 701408733/33385282*24476^(8/21) 9870002020065686 a001 1836311903/87403803*24476^(8/21) 9870002020065687 a001 102287808/4868641*24476^(8/21) 9870002020065687 a001 12586269025/599074578*24476^(8/21) 9870002020065687 a001 32951280099/1568397607*24476^(8/21) 9870002020065687 a001 86267571272/4106118243*24476^(8/21) 9870002020065687 a001 225851433717/10749957122*24476^(8/21) 9870002020065687 a001 591286729879/28143753123*24476^(8/21) 9870002020065687 a001 1548008755920/73681302247*24476^(8/21) 9870002020065687 a001 4052739537881/192900153618*24476^(8/21) 9870002020065687 a001 225749145909/10745088481*24476^(8/21) 9870002020065687 a001 6557470319842/312119004989*24476^(8/21) 9870002020065687 a001 2504730781961/119218851371*24476^(8/21) 9870002020065687 a001 956722026041/45537549124*24476^(8/21) 9870002020065687 a001 365435296162/17393796001*24476^(8/21) 9870002020065687 a001 139583862445/6643838879*24476^(8/21) 9870002020065687 a001 53316291173/2537720636*24476^(8/21) 9870002020065687 a001 20365011074/969323029*24476^(8/21) 9870002020065687 a001 7778742049/370248451*24476^(8/21) 9870002020065687 a001 2971215073/141422324*24476^(8/21) 9870002020065690 a001 1134903170/54018521*24476^(8/21) 9870002020065710 a001 433494437/20633239*24476^(8/21) 9870002020065846 a001 165580141/7881196*24476^(8/21) 9870002020066719 a001 17711/4870847*710647^(13/14) 9870002020066777 a001 63245986/3010349*24476^(8/21) 9870002020068531 a004 Fibonacci(22)*Lucas(28)/(1/2+sqrt(5)/2)^34 9870002020069535 a001 5702887/39603*271443^(2/13) 9870002020073155 a001 24157817/1149851*24476^(8/21) 9870002020079484 a001 726103/13201*271443^(3/13) 9870002020080964 a001 105937/13201*271443^(5/13) 9870002020087246 a001 24157817/39603*103682^(1/24) 9870002020087353 a001 832040/39603*271443^(4/13) 9870002020096243 a001 317811/64079*24476^(11/21) 9870002020099994 a001 19543591/19801 9870002020100052 a001 17711/439204*7881196^(7/11) 9870002020100100 a001 196418/39603*7881196^(1/3) 9870002020100139 a001 17711/439204*20633239^(3/5) 9870002020100153 a001 17711/439204*141422324^(7/13) 9870002020100153 a001 17711/439204*2537720636^(7/15) 9870002020100153 a001 17711/439204*17393796001^(3/7) 9870002020100153 a001 17711/439204*45537549124^(7/17) 9870002020100153 a001 17711/439204*14662949395604^(1/3) 9870002020100153 a001 17711/439204*(1/2+1/2*5^(1/2))^21 9870002020100153 a001 17711/439204*192900153618^(7/18) 9870002020100153 a001 17711/439204*10749957122^(7/16) 9870002020100153 a001 196418/39603*312119004989^(1/5) 9870002020100153 a001 196418/39603*(1/2+1/2*5^(1/2))^11 9870002020100153 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^11/Lucas(22) 9870002020100153 a001 196418/39603*1568397607^(1/4) 9870002020100153 a001 17711/439204*599074578^(1/2) 9870002020100159 a001 17711/439204*33385282^(7/12) 9870002020102149 a001 17711/439204*1860498^(7/10) 9870002020114811 a001 17711/439204*710647^(3/4) 9870002020116877 a001 9227465/439204*24476^(8/21) 9870002020125490 a001 4976784/13201*103682^(1/12) 9870002020142790 a001 17711/710647*271443^(11/13) 9870002020163778 a001 9227465/39603*103682^(1/8) 9870002020169787 a001 17711/1860498*271443^(12/13) 9870002020182942 a004 Fibonacci(22)*Lucas(26)/(1/2+sqrt(5)/2)^32 9870002020201950 a001 5702887/39603*103682^(1/6) 9870002020240426 a001 3524578/39603*103682^(5/24) 9870002020264703 a001 165580141/271443*9349^(1/19) 9870002020278107 a001 726103/13201*103682^(1/4) 9870002020317868 a001 1346269/39603*103682^(7/24) 9870002020335038 a001 24157817/39603*39603^(1/22) 9870002020352183 a001 832040/39603*103682^(1/3) 9870002020374103 a001 121393/39603*103682^(1/2) 9870002020379114 a001 433494437/710647*9349^(1/19) 9870002020395806 a001 567451585/930249*9349^(1/19) 9870002020398242 a001 2971215073/4870847*9349^(1/19) 9870002020398597 a001 7778742049/12752043*9349^(1/19) 9870002020398597 a001 1328767775/1346269 9870002020398649 a001 10182505537/16692641*9349^(1/19) 9870002020398657 a001 53316291173/87403803*9349^(1/19) 9870002020398658 a001 139583862445/228826127*9349^(1/19) 9870002020398658 a001 182717648081/299537289*9349^(1/19) 9870002020398658 a001 956722026041/1568397607*9349^(1/19) 9870002020398658 a001 2504730781961/4106118243*9349^(1/19) 9870002020398658 a001 3278735159921/5374978561*9349^(1/19) 9870002020398658 a001 10610209857723/17393796001*9349^(1/19) 9870002020398658 a001 4052739537881/6643838879*9349^(1/19) 9870002020398658 a001 1134903780/1860499*9349^(1/19) 9870002020398658 a001 591286729879/969323029*9349^(1/19) 9870002020398658 a001 225851433717/370248451*9349^(1/19) 9870002020398658 a001 21566892818/35355581*9349^(1/19) 9870002020398661 a001 32951280099/54018521*9349^(1/19) 9870002020398681 a001 1144206275/1875749*9349^(1/19) 9870002020398817 a001 1201881744/1970299*9349^(1/19) 9870002020399686 a001 75025/39603*141422324^(1/3) 9870002020399687 a001 17711/167761*817138163596^(1/3) 9870002020399687 a001 17711/167761*(1/2+1/2*5^(1/2))^19 9870002020399687 a001 75025/39603*(1/2+1/2*5^(1/2))^13 9870002020399687 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^13/Lucas(22) 9870002020399687 a001 75025/39603*73681302247^(1/4) 9870002020399687 a001 17711/167761*87403803^(1/2) 9870002020399747 a001 1836311903/3010349*9349^(1/19) 9870002020400756 a001 514229/39603*103682^(3/8) 9870002020406123 a001 701408733/1149851*9349^(1/19) 9870002020412003 a001 105937/13201*103682^(5/12) 9870002020416545 a001 3524578/167761*24476^(8/21) 9870002020449824 a001 66978574/109801*9349^(1/19) 9870002020466664 a001 75025/39603*271443^(1/2) 9870002020520969 a001 196418/39603*103682^(11/24) 9870002020621073 a001 4976784/13201*39603^(1/11) 9870002020676047 a001 17711/64079*64079^(17/23) 9870002020680151 a001 17711/271443*103682^(5/6) 9870002020716298 a001 9227465/271443*24476^(1/3) 9870002020716570 a001 5702887/103682*24476^(2/7) 9870002020749357 a001 9303105/15251*9349^(1/19) 9870002020830690 a001 24157817/710647*24476^(1/3) 9870002020847380 a001 31622993/930249*24476^(1/3) 9870002020849815 a001 165580141/4870847*24476^(1/3) 9870002020850170 a001 433494437/12752043*24476^(1/3) 9870002020850222 a001 567451585/16692641*24476^(1/3) 9870002020850229 a001 2971215073/87403803*24476^(1/3) 9870002020850230 a001 7778742049/228826127*24476^(1/3) 9870002020850230 a001 10182505537/299537289*24476^(1/3) 9870002020850230 a001 53316291173/1568397607*24476^(1/3) 9870002020850231 a001 139583862445/4106118243*24476^(1/3) 9870002020850231 a001 182717648081/5374978561*24476^(1/3) 9870002020850231 a001 956722026041/28143753123*24476^(1/3) 9870002020850231 a001 2504730781961/73681302247*24476^(1/3) 9870002020850231 a001 3278735159921/96450076809*24476^(1/3) 9870002020850231 a001 10610209857723/312119004989*24476^(1/3) 9870002020850231 a001 4052739537881/119218851371*24476^(1/3) 9870002020850231 a001 387002188980/11384387281*24476^(1/3) 9870002020850231 a001 591286729879/17393796001*24476^(1/3) 9870002020850231 a001 225851433717/6643838879*24476^(1/3) 9870002020850231 a001 1135099622/33391061*24476^(1/3) 9870002020850231 a001 32951280099/969323029*24476^(1/3) 9870002020850231 a001 12586269025/370248451*24476^(1/3) 9870002020850231 a001 1201881744/35355581*24476^(1/3) 9870002020850234 a001 1836311903/54018521*24476^(1/3) 9870002020850254 a001 701408733/20633239*24476^(1/3) 9870002020850389 a001 66978574/1970299*24476^(1/3) 9870002020851319 a001 102334155/3010349*24476^(1/3) 9870002020857694 a001 39088169/1149851*24476^(1/3) 9870002020871075 a001 17711/710647*103682^(11/12) 9870002020885067 a001 28657/39603*64079^(15/23) 9870002020897014 a001 75025/39603*103682^(13/24) 9870002020901388 a001 196452/5779*24476^(1/3) 9870002020903529 a001 17711/439204*103682^(7/8) 9870002020907153 a001 9227465/39603*39603^(3/22) 9870002020907796 a001 514229/64079*24476^(10/21) 9870002020936339 a001 17711/1149851*103682^(23/24) 9870002020967130 a004 Fibonacci(22)*Lucas(24)/(1/2+sqrt(5)/2)^30 9870002021126550 a001 17711/167761*103682^(19/24) 9870002021193117 a001 5702887/39603*39603^(2/11) 9870002021200869 a001 5702887/167761*24476^(1/3) 9870002021479384 a001 3524578/39603*39603^(5/22) 9870002021500810 a001 4976784/90481*24476^(2/7) 9870002021501197 a001 9227465/103682*24476^(5/21) 9870002021615229 a001 39088169/710647*24476^(2/7) 9870002021631922 a001 831985/15126*24476^(2/7) 9870002021634358 a001 267914296/4870847*24476^(2/7) 9870002021634713 a001 233802911/4250681*24476^(2/7) 9870002021634765 a001 1836311903/33385282*24476^(2/7) 9870002021634773 a001 1602508992/29134601*24476^(2/7) 9870002021634774 a001 12586269025/228826127*24476^(2/7) 9870002021634774 a001 10983760033/199691526*24476^(2/7) 9870002021634774 a001 86267571272/1568397607*24476^(2/7) 9870002021634774 a001 75283811239/1368706081*24476^(2/7) 9870002021634774 a001 591286729879/10749957122*24476^(2/7) 9870002021634774 a001 12585437040/228811001*24476^(2/7) 9870002021634774 a001 4052739537881/73681302247*24476^(2/7) 9870002021634774 a001 3536736619241/64300051206*24476^(2/7) 9870002021634774 a001 6557470319842/119218851371*24476^(2/7) 9870002021634774 a001 2504730781961/45537549124*24476^(2/7) 9870002021634774 a001 956722026041/17393796001*24476^(2/7) 9870002021634774 a001 365435296162/6643838879*24476^(2/7) 9870002021634774 a001 139583862445/2537720636*24476^(2/7) 9870002021634774 a001 53316291173/969323029*24476^(2/7) 9870002021634774 a001 20365011074/370248451*24476^(2/7) 9870002021634775 a001 7778742049/141422324*24476^(2/7) 9870002021634777 a001 2971215073/54018521*24476^(2/7) 9870002021634797 a001 1134903170/20633239*24476^(2/7) 9870002021634933 a001 433494437/7881196*24476^(2/7) 9870002021635863 a001 165580141/3010349*24476^(2/7) 9870002021642240 a001 63245986/1149851*24476^(2/7) 9870002021682023 a001 832040/64079*24476^(3/7) 9870002021685944 a001 24157817/439204*24476^(2/7) 9870002021764857 a001 726103/13201*39603^(3/11) 9870002021985497 a001 9227465/167761*24476^(2/7) 9870002022052410 a001 1346269/39603*39603^(7/22) 9870002022205650 a001 24157817/39603*15127^(1/20) 9870002022242298 a001 28657/39603*167761^(3/5) 9870002022285366 a001 24157817/271443*24476^(5/21) 9870002022285709 a001 7465176/51841*24476^(4/21) 9870002022334517 a001 832040/39603*39603^(4/11) 9870002022399774 a001 63245986/710647*24476^(5/21) 9870002022416466 a001 165580141/1860498*24476^(5/21) 9870002022418902 a001 433494437/4870847*24476^(5/21) 9870002022419257 a001 1134903170/12752043*24476^(5/21) 9870002022419309 a001 2971215073/33385282*24476^(5/21) 9870002022419316 a001 7778742049/87403803*24476^(5/21) 9870002022419317 a001 20365011074/228826127*24476^(5/21) 9870002022419318 a001 53316291173/599074578*24476^(5/21) 9870002022419318 a001 139583862445/1568397607*24476^(5/21) 9870002022419318 a001 365435296162/4106118243*24476^(5/21) 9870002022419318 a001 956722026041/10749957122*24476^(5/21) 9870002022419318 a001 2504730781961/28143753123*24476^(5/21) 9870002022419318 a001 6557470319842/73681302247*24476^(5/21) 9870002022419318 a001 10610209857723/119218851371*24476^(5/21) 9870002022419318 a001 4052739537881/45537549124*24476^(5/21) 9870002022419318 a001 1548008755920/17393796001*24476^(5/21) 9870002022419318 a001 591286729879/6643838879*24476^(5/21) 9870002022419318 a001 225851433717/2537720636*24476^(5/21) 9870002022419318 a001 86267571272/969323029*24476^(5/21) 9870002022419318 a001 32951280099/370248451*24476^(5/21) 9870002022419318 a001 12586269025/141422324*24476^(5/21) 9870002022419321 a001 4807526976/54018521*24476^(5/21) 9870002022419341 a001 1836311903/20633239*24476^(5/21) 9870002022419477 a001 3524667/39604*24476^(5/21) 9870002022420407 a001 267914296/3010349*24476^(5/21) 9870002022424292 a001 28657/39603*439204^(5/9) 9870002022426782 a001 102334155/1149851*24476^(5/21) 9870002022445252 a001 507544127/514229 9870002022452645 a001 28657/39603*7881196^(5/11) 9870002022452708 a001 28657/39603*20633239^(3/7) 9870002022452717 a001 28657/39603*141422324^(5/13) 9870002022452718 a001 17711/64079*45537549124^(1/3) 9870002022452718 a001 17711/64079*(1/2+1/2*5^(1/2))^17 9870002022452718 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^17/Lucas(23) 9870002022452718 a001 28657/39603*2537720636^(1/3) 9870002022452718 a001 28657/39603*45537549124^(5/17) 9870002022452718 a001 28657/39603*312119004989^(3/11) 9870002022452718 a001 28657/39603*14662949395604^(5/21) 9870002022452718 a001 28657/39603*(1/2+1/2*5^(1/2))^15 9870002022452718 a001 28657/39603*192900153618^(5/18) 9870002022452718 a001 28657/39603*28143753123^(3/10) 9870002022452718 a001 28657/39603*10749957122^(5/16) 9870002022452718 a001 28657/39603*599074578^(5/14) 9870002022452718 a001 28657/39603*228826127^(3/8) 9870002022452721 a001 28657/39603*33385282^(5/12) 9870002022452748 a001 17711/64079*12752043^(1/2) 9870002022454143 a001 28657/39603*1860498^(1/2) 9870002022470483 a001 39088169/439204*24476^(5/21) 9870002022470507 a001 1346269/64079*24476^(8/21) 9870002022630881 a001 514229/39603*39603^(9/22) 9870002022770008 a001 14930352/167761*24476^(5/21) 9870002022802387 a001 39088169/64079*9349^(1/19) 9870002022833588 a001 23184/51841*64079^(16/23) 9870002022889920 a001 105937/13201*39603^(5/11) 9870002023020161 a004 Fibonacci(24)*Lucas(23)/(1/2+sqrt(5)/2)^31 9870002023026557 a001 28657/39603*103682^(5/8) 9870002023069905 a001 39088169/271443*24476^(4/21) 9870002023070265 a001 24157817/103682*24476^(1/7) 9870002023103069 a001 17711/64079*103682^(17/24) 9870002023121820 a001 2576/103361*64079^(22/23) 9870002023135511 a001 15456/13201*39603^(7/11) 9870002023184317 a001 14619165/101521*24476^(4/21) 9870002023187161 a001 10946/39603*24476^(17/21) 9870002023201010 a001 133957148/930249*24476^(4/21) 9870002023203445 a001 701408733/4870847*24476^(4/21) 9870002023203800 a001 1836311903/12752043*24476^(4/21) 9870002023203852 a001 14930208/103681*24476^(4/21) 9870002023203860 a001 12586269025/87403803*24476^(4/21) 9870002023203861 a001 32951280099/228826127*24476^(4/21) 9870002023203861 a001 43133785636/299537289*24476^(4/21) 9870002023203861 a001 32264490531/224056801*24476^(4/21) 9870002023203861 a001 591286729879/4106118243*24476^(4/21) 9870002023203861 a001 774004377960/5374978561*24476^(4/21) 9870002023203861 a001 4052739537881/28143753123*24476^(4/21) 9870002023203861 a001 1515744265389/10525900321*24476^(4/21) 9870002023203861 a001 3278735159921/22768774562*24476^(4/21) 9870002023203861 a001 2504730781961/17393796001*24476^(4/21) 9870002023203861 a001 956722026041/6643838879*24476^(4/21) 9870002023203861 a001 182717648081/1268860318*24476^(4/21) 9870002023203861 a001 139583862445/969323029*24476^(4/21) 9870002023203861 a001 53316291173/370248451*24476^(4/21) 9870002023203862 a001 10182505537/70711162*24476^(4/21) 9870002023203865 a001 7778742049/54018521*24476^(4/21) 9870002023203884 a001 2971215073/20633239*24476^(4/21) 9870002023204020 a001 567451585/3940598*24476^(4/21) 9870002023204950 a001 433494437/3010349*24476^(4/21) 9870002023211326 a001 165580141/1149851*24476^(4/21) 9870002023236647 a001 46368/1149851*64079^(21/23) 9870002023246678 a001 196418/39603*39603^(1/2) 9870002023253545 a001 2178309/64079*24476^(1/3) 9870002023255028 a001 31622993/219602*24476^(4/21) 9870002023314148 a001 6624/101521*64079^(20/23) 9870002023347604 a001 121393/39603*39603^(6/11) 9870002023408756 a001 15456/90481*64079^(18/23) 9870002023489368 a001 11592/109801*64079^(19/23) 9870002023554564 a001 24157817/167761*24476^(4/21) 9870002023804349 a004 Fibonacci(26)*Lucas(23)/(1/2+sqrt(5)/2)^33 9870002023826796 a001 121393/103682*64079^(14/23) 9870002023854450 a001 63245986/271443*24476^(1/7) 9870002023854804 a001 39088169/103682*24476^(2/21) 9870002023908443 a001 121393/4870847*64079^(22/23) 9870002023918761 a004 Fibonacci(28)*Lucas(23)/(1/2+sqrt(5)/2)^35 9870002023935453 a004 Fibonacci(30)*Lucas(23)/(1/2+sqrt(5)/2)^37 9870002023937889 a004 Fibonacci(32)*Lucas(23)/(1/2+sqrt(5)/2)^39 9870002023938244 a004 Fibonacci(34)*Lucas(23)/(1/2+sqrt(5)/2)^41 9870002023938296 a004 Fibonacci(36)*Lucas(23)/(1/2+sqrt(5)/2)^43 9870002023938303 a004 Fibonacci(38)*Lucas(23)/(1/2+sqrt(5)/2)^45 9870002023938305 a004 Fibonacci(40)*Lucas(23)/(1/2+sqrt(5)/2)^47 9870002023938305 a004 Fibonacci(42)*Lucas(23)/(1/2+sqrt(5)/2)^49 9870002023938305 a004 Fibonacci(44)*Lucas(23)/(1/2+sqrt(5)/2)^51 9870002023938305 a004 Fibonacci(46)*Lucas(23)/(1/2+sqrt(5)/2)^53 9870002023938305 a004 Fibonacci(48)*Lucas(23)/(1/2+sqrt(5)/2)^55 9870002023938305 a004 Fibonacci(50)*Lucas(23)/(1/2+sqrt(5)/2)^57 9870002023938305 a004 Fibonacci(52)*Lucas(23)/(1/2+sqrt(5)/2)^59 9870002023938305 a004 Fibonacci(54)*Lucas(23)/(1/2+sqrt(5)/2)^61 9870002023938305 a004 Fibonacci(56)*Lucas(23)/(1/2+sqrt(5)/2)^63 9870002023938305 a004 Fibonacci(58)*Lucas(23)/(1/2+sqrt(5)/2)^65 9870002023938305 a004 Fibonacci(60)*Lucas(23)/(1/2+sqrt(5)/2)^67 9870002023938305 a004 Fibonacci(62)*Lucas(23)/(1/2+sqrt(5)/2)^69 9870002023938305 a004 Fibonacci(64)*Lucas(23)/(1/2+sqrt(5)/2)^71 9870002023938305 a004 Fibonacci(66)*Lucas(23)/(1/2+sqrt(5)/2)^73 9870002023938305 a004 Fibonacci(68)*Lucas(23)/(1/2+sqrt(5)/2)^75 9870002023938305 a004 Fibonacci(70)*Lucas(23)/(1/2+sqrt(5)/2)^77 9870002023938305 a004 Fibonacci(72)*Lucas(23)/(1/2+sqrt(5)/2)^79 9870002023938305 a004 Fibonacci(74)*Lucas(23)/(1/2+sqrt(5)/2)^81 9870002023938305 a004 Fibonacci(76)*Lucas(23)/(1/2+sqrt(5)/2)^83 9870002023938305 a004 Fibonacci(78)*Lucas(23)/(1/2+sqrt(5)/2)^85 9870002023938305 a004 Fibonacci(80)*Lucas(23)/(1/2+sqrt(5)/2)^87 9870002023938305 a004 Fibonacci(82)*Lucas(23)/(1/2+sqrt(5)/2)^89 9870002023938305 a004 Fibonacci(84)*Lucas(23)/(1/2+sqrt(5)/2)^91 9870002023938305 a004 Fibonacci(86)*Lucas(23)/(1/2+sqrt(5)/2)^93 9870002023938305 a004 Fibonacci(88)*Lucas(23)/(1/2+sqrt(5)/2)^95 9870002023938305 a004 Fibonacci(90)*Lucas(23)/(1/2+sqrt(5)/2)^97 9870002023938305 a004 Fibonacci(92)*Lucas(23)/(1/2+sqrt(5)/2)^99 9870002023938305 a004 Fibonacci(93)*Lucas(23)/(1/2+sqrt(5)/2)^100 9870002023938305 a004 Fibonacci(91)*Lucas(23)/(1/2+sqrt(5)/2)^98 9870002023938305 a004 Fibonacci(89)*Lucas(23)/(1/2+sqrt(5)/2)^96 9870002023938305 a004 Fibonacci(87)*Lucas(23)/(1/2+sqrt(5)/2)^94 9870002023938305 a004 Fibonacci(85)*Lucas(23)/(1/2+sqrt(5)/2)^92 9870002023938305 a004 Fibonacci(83)*Lucas(23)/(1/2+sqrt(5)/2)^90 9870002023938305 a004 Fibonacci(81)*Lucas(23)/(1/2+sqrt(5)/2)^88 9870002023938305 a004 Fibonacci(79)*Lucas(23)/(1/2+sqrt(5)/2)^86 9870002023938305 a004 Fibonacci(77)*Lucas(23)/(1/2+sqrt(5)/2)^84 9870002023938305 a004 Fibonacci(75)*Lucas(23)/(1/2+sqrt(5)/2)^82 9870002023938305 a004 Fibonacci(73)*Lucas(23)/(1/2+sqrt(5)/2)^80 9870002023938305 a004 Fibonacci(71)*Lucas(23)/(1/2+sqrt(5)/2)^78 9870002023938305 a004 Fibonacci(69)*Lucas(23)/(1/2+sqrt(5)/2)^76 9870002023938305 a004 Fibonacci(67)*Lucas(23)/(1/2+sqrt(5)/2)^74 9870002023938305 a004 Fibonacci(65)*Lucas(23)/(1/2+sqrt(5)/2)^72 9870002023938305 a004 Fibonacci(63)*Lucas(23)/(1/2+sqrt(5)/2)^70 9870002023938305 a004 Fibonacci(61)*Lucas(23)/(1/2+sqrt(5)/2)^68 9870002023938305 a004 Fibonacci(59)*Lucas(23)/(1/2+sqrt(5)/2)^66 9870002023938305 a004 Fibonacci(57)*Lucas(23)/(1/2+sqrt(5)/2)^64 9870002023938305 a004 Fibonacci(55)*Lucas(23)/(1/2+sqrt(5)/2)^62 9870002023938305 a004 Fibonacci(53)*Lucas(23)/(1/2+sqrt(5)/2)^60 9870002023938305 a004 Fibonacci(51)*Lucas(23)/(1/2+sqrt(5)/2)^58 9870002023938305 a004 Fibonacci(49)*Lucas(23)/(1/2+sqrt(5)/2)^56 9870002023938305 a004 Fibonacci(47)*Lucas(23)/(1/2+sqrt(5)/2)^54 9870002023938305 a001 2/28657*(1/2+1/2*5^(1/2))^39 9870002023938305 a004 Fibonacci(45)*Lucas(23)/(1/2+sqrt(5)/2)^52 9870002023938305 a004 Fibonacci(43)*Lucas(23)/(1/2+sqrt(5)/2)^50 9870002023938305 a004 Fibonacci(41)*Lucas(23)/(1/2+sqrt(5)/2)^48 9870002023938305 a004 Fibonacci(39)*Lucas(23)/(1/2+sqrt(5)/2)^46 9870002023938308 a004 Fibonacci(37)*Lucas(23)/(1/2+sqrt(5)/2)^44 9870002023938328 a004 Fibonacci(35)*Lucas(23)/(1/2+sqrt(5)/2)^42 9870002023938464 a004 Fibonacci(33)*Lucas(23)/(1/2+sqrt(5)/2)^40 9870002023939394 a004 Fibonacci(31)*Lucas(23)/(1/2+sqrt(5)/2)^38 9870002023945770 a004 Fibonacci(29)*Lucas(23)/(1/2+sqrt(5)/2)^36 9870002023968861 a001 165580141/710647*24476^(1/7) 9870002023985553 a001 433494437/1860498*24476^(1/7) 9870002023987989 a001 1134903170/4870847*24476^(1/7) 9870002023988344 a001 2971215073/12752043*24476^(1/7) 9870002023988396 a001 7778742049/33385282*24476^(1/7) 9870002023988403 a001 20365011074/87403803*24476^(1/7) 9870002023988405 a001 53316291173/228826127*24476^(1/7) 9870002023988405 a001 139583862445/599074578*24476^(1/7) 9870002023988405 a001 365435296162/1568397607*24476^(1/7) 9870002023988405 a001 956722026041/4106118243*24476^(1/7) 9870002023988405 a001 2504730781961/10749957122*24476^(1/7) 9870002023988405 a001 6557470319842/28143753123*24476^(1/7) 9870002023988405 a001 10610209857723/45537549124*24476^(1/7) 9870002023988405 a001 4052739537881/17393796001*24476^(1/7) 9870002023988405 a001 1548008755920/6643838879*24476^(1/7) 9870002023988405 a001 591286729879/2537720636*24476^(1/7) 9870002023988405 a001 225851433717/969323029*24476^(1/7) 9870002023988405 a001 86267571272/370248451*24476^(1/7) 9870002023988405 a001 63246219/271444*24476^(1/7) 9870002023988408 a001 12586269025/54018521*24476^(1/7) 9870002023988428 a001 4807526976/20633239*24476^(1/7) 9870002023988564 a001 1836311903/7881196*24476^(1/7) 9870002023989471 a004 Fibonacci(27)*Lucas(23)/(1/2+sqrt(5)/2)^34 9870002023989494 a001 701408733/3010349*24476^(1/7) 9870002023995870 a001 267914296/1149851*24476^(1/7) 9870002023997921 a001 46368/167761*64079^(17/23) 9870002024014459 a001 121393/3010349*64079^(21/23) 9870002024023210 a001 105937/4250681*64079^(22/23) 9870002024038664 a001 3524578/64079*24476^(2/7) 9870002024039571 a001 102334155/439204*24476^(1/7) 9870002024039955 a001 416020/16692641*64079^(22/23) 9870002024042397 a001 726103/29134601*64079^(22/23) 9870002024042754 a001 5702887/228826127*64079^(22/23) 9870002024042806 a001 829464/33281921*64079^(22/23) 9870002024042813 a001 39088169/1568397607*64079^(22/23) 9870002024042815 a001 34111385/1368706081*64079^(22/23) 9870002024042815 a001 133957148/5374978561*64079^(22/23) 9870002024042815 a001 233802911/9381251041*64079^(22/23) 9870002024042815 a001 1836311903/73681302247*64079^(22/23) 9870002024042815 a001 267084832/10716675201*64079^(22/23) 9870002024042815 a001 12586269025/505019158607*64079^(22/23) 9870002024042815 a001 10983760033/440719107401*64079^(22/23) 9870002024042815 a001 43133785636/1730726404001*64079^(22/23) 9870002024042815 a001 75283811239/3020733700601*64079^(22/23) 9870002024042815 a001 182717648081/7331474697802*64079^(22/23) 9870002024042815 a001 139583862445/5600748293801*64079^(22/23) 9870002024042815 a001 53316291173/2139295485799*64079^(22/23) 9870002024042815 a001 10182505537/408569081798*64079^(22/23) 9870002024042815 a001 7778742049/312119004989*64079^(22/23) 9870002024042815 a001 2971215073/119218851371*64079^(22/23) 9870002024042815 a001 567451585/22768774562*64079^(22/23) 9870002024042815 a001 433494437/17393796001*64079^(22/23) 9870002024042815 a001 165580141/6643838879*64079^(22/23) 9870002024042815 a001 31622993/1268860318*64079^(22/23) 9870002024042818 a001 24157817/969323029*64079^(22/23) 9870002024042838 a001 9227465/370248451*64079^(22/23) 9870002024042974 a001 1762289/70711162*64079^(22/23) 9870002024043907 a001 1346269/54018521*64079^(22/23) 9870002024050303 a001 514229/20633239*64079^(22/23) 9870002024094140 a001 98209/3940598*64079^(22/23) 9870002024115028 a001 121393/1860498*64079^(20/23) 9870002024116428 a001 98209/51841*64079^(13/23) 9870002024118306 a001 75025/39603*39603^(13/22) 9870002024127940 a001 317811/7881196*64079^(21/23) 9870002024144497 a001 75640/1875749*64079^(21/23) 9870002024146912 a001 2178309/54018521*64079^(21/23) 9870002024147265 a001 5702887/141422324*64079^(21/23) 9870002024147316 a001 14930352/370248451*64079^(21/23) 9870002024147324 a001 39088169/969323029*64079^(21/23) 9870002024147325 a001 9303105/230701876*64079^(21/23) 9870002024147325 a001 267914296/6643838879*64079^(21/23) 9870002024147325 a001 701408733/17393796001*64079^(21/23) 9870002024147325 a001 1836311903/45537549124*64079^(21/23) 9870002024147325 a001 4807526976/119218851371*64079^(21/23) 9870002024147325 a001 1144206275/28374454999*64079^(21/23) 9870002024147325 a001 32951280099/817138163596*64079^(21/23) 9870002024147325 a001 86267571272/2139295485799*64079^(21/23) 9870002024147325 a001 225851433717/5600748293801*64079^(21/23) 9870002024147325 a001 591286729879/14662949395604*64079^(21/23) 9870002024147325 a001 365435296162/9062201101803*64079^(21/23) 9870002024147325 a001 139583862445/3461452808002*64079^(21/23) 9870002024147325 a001 53316291173/1322157322203*64079^(21/23) 9870002024147325 a001 20365011074/505019158607*64079^(21/23) 9870002024147325 a001 7778742049/192900153618*64079^(21/23) 9870002024147325 a001 2971215073/73681302247*64079^(21/23) 9870002024147325 a001 1134903170/28143753123*64079^(21/23) 9870002024147325 a001 433494437/10749957122*64079^(21/23) 9870002024147325 a001 165580141/4106118243*64079^(21/23) 9870002024147325 a001 63245986/1568397607*64079^(21/23) 9870002024147328 a001 24157817/599074578*64079^(21/23) 9870002024147348 a001 9227465/228826127*64079^(21/23) 9870002024147482 a001 3524578/87403803*64079^(21/23) 9870002024148405 a001 1346269/33385282*64079^(21/23) 9870002024150228 a001 317811/103682*64079^(12/23) 9870002024154729 a001 514229/12752043*64079^(21/23) 9870002024198075 a001 196418/4870847*64079^(21/23) 9870002024206941 a001 75025/103682*64079^(15/23) 9870002024229855 a001 121393/1149851*64079^(19/23) 9870002024231875 a001 317811/4870847*64079^(20/23) 9870002024248923 a001 832040/12752043*64079^(20/23) 9870002024251410 a001 311187/4769326*64079^(20/23) 9870002024251773 a001 5702887/87403803*64079^(20/23) 9870002024251826 a001 14930352/228826127*64079^(20/23) 9870002024251834 a001 39088169/599074578*64079^(20/23) 9870002024251835 a001 14619165/224056801*64079^(20/23) 9870002024251835 a001 267914296/4106118243*64079^(20/23) 9870002024251835 a001 701408733/10749957122*64079^(20/23) 9870002024251835 a001 1836311903/28143753123*64079^(20/23) 9870002024251835 a001 686789568/10525900321*64079^(20/23) 9870002024251835 a001 12586269025/192900153618*64079^(20/23) 9870002024251835 a001 32951280099/505019158607*64079^(20/23) 9870002024251835 a001 86267571272/1322157322203*64079^(20/23) 9870002024251835 a001 32264490531/494493258286*64079^(20/23) 9870002024251835 a001 591286729879/9062201101803*64079^(20/23) 9870002024251835 a001 1548008755920/23725150497407*64079^(20/23) 9870002024251835 a001 365435296162/5600748293801*64079^(20/23) 9870002024251835 a001 139583862445/2139295485799*64079^(20/23) 9870002024251835 a001 53316291173/817138163596*64079^(20/23) 9870002024251835 a001 20365011074/312119004989*64079^(20/23) 9870002024251835 a001 7778742049/119218851371*64079^(20/23) 9870002024251835 a001 2971215073/45537549124*64079^(20/23) 9870002024251835 a001 1134903170/17393796001*64079^(20/23) 9870002024251835 a001 433494437/6643838879*64079^(20/23) 9870002024251835 a001 165580141/2537720636*64079^(20/23) 9870002024251835 a001 63245986/969323029*64079^(20/23) 9870002024251838 a001 24157817/370248451*64079^(20/23) 9870002024251859 a001 9227465/141422324*64079^(20/23) 9870002024251997 a001 3524578/54018521*64079^(20/23) 9870002024252947 a001 1346269/20633239*64079^(20/23) 9870002024259459 a001 514229/7881196*64079^(20/23) 9870002024279701 a001 17711/103682*39603^(9/11) 9870002024281747 a001 514229/103682*64079^(11/23) 9870002024289004 a004 Fibonacci(25)*Lucas(23)/(1/2+sqrt(5)/2)^32 9870002024304090 a001 196418/3010349*64079^(20/23) 9870002024307356 a001 121393/710647*64079^(18/23) 9870002024337890 a001 317811/3010349*64079^(19/23) 9870002024339103 a001 39088169/167761*24476^(1/7) 9870002024353652 a001 208010/1970299*64079^(19/23) 9870002024355952 a001 2178309/20633239*64079^(19/23) 9870002024356288 a001 5702887/54018521*64079^(19/23) 9870002024356337 a001 3732588/35355581*64079^(19/23) 9870002024356344 a001 39088169/370248451*64079^(19/23) 9870002024356345 a001 102334155/969323029*64079^(19/23) 9870002024356345 a001 66978574/634430159*64079^(19/23) 9870002024356345 a001 701408733/6643838879*64079^(19/23) 9870002024356345 a001 1836311903/17393796001*64079^(19/23) 9870002024356345 a001 1201881744/11384387281*64079^(19/23) 9870002024356345 a001 12586269025/119218851371*64079^(19/23) 9870002024356345 a001 32951280099/312119004989*64079^(19/23) 9870002024356345 a001 21566892818/204284540899*64079^(19/23) 9870002024356345 a001 225851433717/2139295485799*64079^(19/23) 9870002024356345 a001 182717648081/1730726404001*64079^(19/23) 9870002024356345 a001 139583862445/1322157322203*64079^(19/23) 9870002024356345 a001 53316291173/505019158607*64079^(19/23) 9870002024356345 a001 10182505537/96450076809*64079^(19/23) 9870002024356345 a001 7778742049/73681302247*64079^(19/23) 9870002024356345 a001 2971215073/28143753123*64079^(19/23) 9870002024356345 a001 567451585/5374978561*64079^(19/23) 9870002024356345 a001 433494437/4106118243*64079^(19/23) 9870002024356345 a001 165580141/1568397607*64079^(19/23) 9870002024356345 a001 31622993/299537289*64079^(19/23) 9870002024356348 a001 24157817/228826127*64079^(19/23) 9870002024356367 a001 9227465/87403803*64079^(19/23) 9870002024356495 a001 1762289/16692641*64079^(19/23) 9870002024357373 a001 1346269/12752043*64079^(19/23) 9870002024362298 a001 4976784/13201*15127^(1/10) 9870002024363394 a001 514229/4870847*64079^(19/23) 9870002024375940 a001 416020/51841*64079^(10/23) 9870002024394604 a001 75025/3010349*64079^(22/23) 9870002024401964 a001 121393/271443*64079^(16/23) 9870002024404660 a001 98209/930249*64079^(19/23) 9870002024438460 a001 105937/620166*64079^(18/23) 9870002024457587 a001 832040/4870847*64079^(18/23) 9870002024460378 a001 726103/4250681*64079^(18/23) 9870002024460785 a001 5702887/33385282*64079^(18/23) 9870002024460845 a001 4976784/29134601*64079^(18/23) 9870002024460853 a001 39088169/228826127*64079^(18/23) 9870002024460855 a001 34111385/199691526*64079^(18/23) 9870002024460855 a001 267914296/1568397607*64079^(18/23) 9870002024460855 a001 233802911/1368706081*64079^(18/23) 9870002024460855 a001 1836311903/10749957122*64079^(18/23) 9870002024460855 a001 1602508992/9381251041*64079^(18/23) 9870002024460855 a001 12586269025/73681302247*64079^(18/23) 9870002024460855 a001 10983760033/64300051206*64079^(18/23) 9870002024460855 a001 86267571272/505019158607*64079^(18/23) 9870002024460855 a001 75283811239/440719107401*64079^(18/23) 9870002024460855 a001 2504730781961/14662949395604*64079^(18/23) 9870002024460855 a001 139583862445/817138163596*64079^(18/23) 9870002024460855 a001 53316291173/312119004989*64079^(18/23) 9870002024460855 a001 20365011074/119218851371*64079^(18/23) 9870002024460855 a001 7778742049/45537549124*64079^(18/23) 9870002024460855 a001 2971215073/17393796001*64079^(18/23) 9870002024460855 a001 1134903170/6643838879*64079^(18/23) 9870002024460855 a001 433494437/2537720636*64079^(18/23) 9870002024460855 a001 165580141/969323029*64079^(18/23) 9870002024460855 a001 63245986/370248451*64079^(18/23) 9870002024460859 a001 24157817/141422324*64079^(18/23) 9870002024460881 a001 9227465/54018521*64079^(18/23) 9870002024461037 a001 3524578/20633239*64079^(18/23) 9870002024462103 a001 1346269/7881196*64079^(18/23) 9870002024469409 a001 514229/3010349*64079^(18/23) 9870002024482576 a001 121393/439204*64079^(17/23) 9870002024484391 a001 1346269/103682*64079^(9/23) 9870002024495173 a001 75025/1860498*64079^(21/23) 9870002024505749 a001 23184/51841*(1/2+1/2*5^(1/2))^16 9870002024505749 a001 23184/51841*23725150497407^(1/4) 9870002024505749 a001 23184/51841*73681302247^(4/13) 9870002024505749 a001 23184/51841*10749957122^(1/3) 9870002024505749 a001 23184/51841*4106118243^(8/23) 9870002024505749 a001 23184/51841*1568397607^(4/11) 9870002024505749 a001 23184/51841*599074578^(8/21) 9870002024505749 a001 23184/51841*228826127^(2/5) 9870002024505749 a001 23184/51841*87403803^(8/19) 9870002024505753 a001 23184/51841*33385282^(4/9) 9870002024505777 a001 23184/51841*12752043^(8/17) 9870002024505957 a001 23184/51841*4870847^(1/2) 9870002024506165 a001 102380544/103729 9870002024507269 a001 23184/51841*1860498^(8/15) 9870002024516916 a001 23184/51841*710647^(4/7) 9870002024519486 a001 196418/1149851*64079^(18/23) 9870002024553286 a001 317811/1149851*64079^(17/23) 9870002024563603 a001 832040/3010349*64079^(17/23) 9870002024565108 a001 2178309/7881196*64079^(17/23) 9870002024565327 a001 5702887/20633239*64079^(17/23) 9870002024565359 a001 14930352/54018521*64079^(17/23) 9870002024565364 a001 39088169/141422324*64079^(17/23) 9870002024565365 a001 102334155/370248451*64079^(17/23) 9870002024565365 a001 267914296/969323029*64079^(17/23) 9870002024565365 a001 701408733/2537720636*64079^(17/23) 9870002024565365 a001 1836311903/6643838879*64079^(17/23) 9870002024565365 a001 4807526976/17393796001*64079^(17/23) 9870002024565365 a001 12586269025/45537549124*64079^(17/23) 9870002024565365 a001 32951280099/119218851371*64079^(17/23) 9870002024565365 a001 86267571272/312119004989*64079^(17/23) 9870002024565365 a001 225851433717/817138163596*64079^(17/23) 9870002024565365 a001 1548008755920/5600748293801*64079^(17/23) 9870002024565365 a001 139583862445/505019158607*64079^(17/23) 9870002024565365 a001 53316291173/192900153618*64079^(17/23) 9870002024565365 a001 20365011074/73681302247*64079^(17/23) 9870002024565365 a001 7778742049/28143753123*64079^(17/23) 9870002024565365 a001 2971215073/10749957122*64079^(17/23) 9870002024565365 a001 1134903170/4106118243*64079^(17/23) 9870002024565365 a001 433494437/1568397607*64079^(17/23) 9870002024565365 a001 165580141/599074578*64079^(17/23) 9870002024565365 a001 63245986/228826127*64079^(17/23) 9870002024565367 a001 24157817/87403803*64079^(17/23) 9870002024565379 a001 9227465/33385282*64079^(17/23) 9870002024565463 a001 3524578/12752043*64079^(17/23) 9870002024566038 a001 1346269/4870847*64079^(17/23) 9870002024569979 a001 514229/1860498*64079^(17/23) 9870002024587396 a001 46347/2206*64079^(8/23) 9870002024588183 a001 23184/51841*271443^(8/13) 9870002024596987 a001 196418/710647*64079^(17/23) 9870002024609999 a001 75025/1149851*64079^(20/23) 9870002024630787 a001 317811/710647*64079^(16/23) 9870002024638993 a001 34111385/90481*24476^(2/21) 9870002024639349 a001 31622993/51841*24476^(1/21) 9870002024664172 a001 416020/930249*64079^(16/23) 9870002024669043 a001 2178309/4870847*64079^(16/23) 9870002024669754 a001 5702887/12752043*64079^(16/23) 9870002024669857 a001 7465176/16692641*64079^(16/23) 9870002024669872 a001 39088169/87403803*64079^(16/23) 9870002024669875 a001 102334155/228826127*64079^(16/23) 9870002024669875 a001 133957148/299537289*64079^(16/23) 9870002024669875 a001 701408733/1568397607*64079^(16/23) 9870002024669875 a001 1836311903/4106118243*64079^(16/23) 9870002024669875 a001 2403763488/5374978561*64079^(16/23) 9870002024669875 a001 12586269025/28143753123*64079^(16/23) 9870002024669875 a001 32951280099/73681302247*64079^(16/23) 9870002024669875 a001 43133785636/96450076809*64079^(16/23) 9870002024669875 a001 225851433717/505019158607*64079^(16/23) 9870002024669875 a001 591286729879/1322157322203*64079^(16/23) 9870002024669875 a001 10610209857723/23725150497407*64079^(16/23) 9870002024669875 a001 182717648081/408569081798*64079^(16/23) 9870002024669875 a001 139583862445/312119004989*64079^(16/23) 9870002024669875 a001 53316291173/119218851371*64079^(16/23) 9870002024669875 a001 10182505537/22768774562*64079^(16/23) 9870002024669875 a001 7778742049/17393796001*64079^(16/23) 9870002024669875 a001 2971215073/6643838879*64079^(16/23) 9870002024669875 a001 567451585/1268860318*64079^(16/23) 9870002024669875 a001 433494437/969323029*64079^(16/23) 9870002024669875 a001 165580141/370248451*64079^(16/23) 9870002024669876 a001 31622993/70711162*64079^(16/23) 9870002024669882 a001 24157817/54018521*64079^(16/23) 9870002024669921 a001 9227465/20633239*64079^(16/23) 9870002024670193 a001 1762289/3940598*64079^(16/23) 9870002024672053 a001 1346269/3010349*64079^(16/23) 9870002024684805 a001 514229/1149851*64079^(16/23) 9870002024687501 a001 75025/710647*64079^(19/23) 9870002024691596 a001 196418/271443*64079^(15/23) 9870002024692481 a001 1762289/51841*64079^(7/23) 9870002024725396 a001 105937/90481*64079^(14/23) 9870002024753404 a001 267914296/710647*24476^(2/21) 9870002024756248 a001 17711/24476*24476^(5/7) 9870002024762306 a001 514229/710647*64079^(15/23) 9870002024770097 a001 233802911/620166*24476^(2/21) 9870002024772208 a001 98209/219602*64079^(16/23) 9870002024772532 a001 1836311903/4870847*24476^(2/21) 9870002024772623 a001 1346269/1860498*64079^(15/23) 9870002024772888 a001 1602508992/4250681*24476^(2/21) 9870002024772939 a001 12586269025/33385282*24476^(2/21) 9870002024772947 a001 10983760033/29134601*24476^(2/21) 9870002024772948 a001 86267571272/228826127*24476^(2/21) 9870002024772948 a001 267913919/710646*24476^(2/21) 9870002024772948 a001 591286729879/1568397607*24476^(2/21) 9870002024772948 a001 516002918640/1368706081*24476^(2/21) 9870002024772948 a001 4052739537881/10749957122*24476^(2/21) 9870002024772948 a001 3536736619241/9381251041*24476^(2/21) 9870002024772948 a001 6557470319842/17393796001*24476^(2/21) 9870002024772948 a001 2504730781961/6643838879*24476^(2/21) 9870002024772948 a001 956722026041/2537720636*24476^(2/21) 9870002024772948 a001 365435296162/969323029*24476^(2/21) 9870002024772948 a001 139583862445/370248451*24476^(2/21) 9870002024772949 a001 53316291173/141422324*24476^(2/21) 9870002024772952 a001 20365011074/54018521*24476^(2/21) 9870002024772971 a001 7778742049/20633239*24476^(2/21) 9870002024773107 a001 2971215073/7881196*24476^(2/21) 9870002024774037 a001 1134903170/3010349*24476^(2/21) 9870002024774128 a001 3524578/4870847*64079^(15/23) 9870002024774347 a001 9227465/12752043*64079^(15/23) 9870002024774380 a001 24157817/33385282*64079^(15/23) 9870002024774384 a001 63245986/87403803*64079^(15/23) 9870002024774385 a001 165580141/228826127*64079^(15/23) 9870002024774385 a001 433494437/599074578*64079^(15/23) 9870002024774385 a001 1134903170/1568397607*64079^(15/23) 9870002024774385 a001 2971215073/4106118243*64079^(15/23) 9870002024774385 a001 7778742049/10749957122*64079^(15/23) 9870002024774385 a001 20365011074/28143753123*64079^(15/23) 9870002024774385 a001 53316291173/73681302247*64079^(15/23) 9870002024774385 a001 139583862445/192900153618*64079^(15/23) 9870002024774385 a001 365435296162/505019158607*64079^(15/23) 9870002024774385 a001 10610209857723/14662949395604*64079^(15/23) 9870002024774385 a001 591286729879/817138163596*64079^(15/23) 9870002024774385 a001 225851433717/312119004989*64079^(15/23) 9870002024774385 a001 86267571272/119218851371*64079^(15/23) 9870002024774385 a001 32951280099/45537549124*64079^(15/23) 9870002024774385 a001 12586269025/17393796001*64079^(15/23) 9870002024774385 a001 4807526976/6643838879*64079^(15/23) 9870002024774385 a001 1836311903/2537720636*64079^(15/23) 9870002024774385 a001 701408733/969323029*64079^(15/23) 9870002024774385 a001 267914296/370248451*64079^(15/23) 9870002024774385 a001 102334155/141422324*64079^(15/23) 9870002024774387 a001 39088169/54018521*64079^(15/23) 9870002024774399 a001 14930352/20633239*64079^(15/23) 9870002024774483 a001 5702887/7881196*64079^(15/23) 9870002024775058 a001 2178309/3010349*64079^(15/23) 9870002024778999 a001 832040/1149851*64079^(15/23) 9870002024780413 a001 433494437/1149851*24476^(2/21) 9870002024782109 a001 75025/271443*64079^(17/23) 9870002024796771 a001 5702887/103682*64079^(6/23) 9870002024806008 a001 317811/439204*64079^(15/23) 9870002024822987 a001 5702887/64079*24476^(5/21) 9870002024824115 a001 165580141/439204*24476^(2/21) 9870002024856500 a001 832040/710647*64079^(14/23) 9870002024856915 a001 514229/271443*64079^(13/23) 9870002024862721 a001 75025/439204*64079^(18/23) 9870002024875628 a001 726103/620166*64079^(14/23) 9870002024878418 a001 5702887/4870847*64079^(14/23) 9870002024878825 a001 4976784/4250681*64079^(14/23) 9870002024878885 a001 39088169/33385282*64079^(14/23) 9870002024878894 a001 34111385/29134601*64079^(14/23) 9870002024878895 a001 267914296/228826127*64079^(14/23) 9870002024878895 a001 233802911/199691526*64079^(14/23) 9870002024878895 a001 1836311903/1568397607*64079^(14/23) 9870002024878895 a001 1602508992/1368706081*64079^(14/23) 9870002024878895 a001 12586269025/10749957122*64079^(14/23) 9870002024878895 a001 10983760033/9381251041*64079^(14/23) 9870002024878895 a001 86267571272/73681302247*64079^(14/23) 9870002024878895 a001 75283811239/64300051206*64079^(14/23) 9870002024878895 a001 2504730781961/2139295485799*64079^(14/23) 9870002024878895 a001 365435296162/312119004989*64079^(14/23) 9870002024878895 a001 139583862445/119218851371*64079^(14/23) 9870002024878895 a001 53316291173/45537549124*64079^(14/23) 9870002024878895 a001 20365011074/17393796001*64079^(14/23) 9870002024878895 a001 7778742049/6643838879*64079^(14/23) 9870002024878895 a001 2971215073/2537720636*64079^(14/23) 9870002024878895 a001 1134903170/969323029*64079^(14/23) 9870002024878895 a001 433494437/370248451*64079^(14/23) 9870002024878896 a001 165580141/141422324*64079^(14/23) 9870002024878899 a001 63245986/54018521*64079^(14/23) 9870002024878922 a001 24157817/20633239*64079^(14/23) 9870002024879077 a001 9227465/7881196*64079^(14/23) 9870002024880143 a001 3524578/3010349*64079^(14/23) 9870002024887449 a001 1346269/1149851*64079^(14/23) 9870002024901365 a001 9227465/103682*64079^(5/23) 9870002024937526 a001 514229/439204*64079^(14/23) 9870002024951108 a001 832040/271443*64079^(12/23) 9870002024964950 a001 1346269/710647*64079^(13/23) 9870002024980713 a001 1762289/930249*64079^(13/23) 9870002024983012 a001 9227465/4870847*64079^(13/23) 9870002024983348 a001 24157817/12752043*64079^(13/23) 9870002024983397 a001 31622993/16692641*64079^(13/23) 9870002024983404 a001 165580141/87403803*64079^(13/23) 9870002024983405 a001 433494437/228826127*64079^(13/23) 9870002024983405 a001 567451585/299537289*64079^(13/23) 9870002024983405 a001 2971215073/1568397607*64079^(13/23) 9870002024983405 a001 7778742049/4106118243*64079^(13/23) 9870002024983405 a001 10182505537/5374978561*64079^(13/23) 9870002024983405 a001 53316291173/28143753123*64079^(13/23) 9870002024983405 a001 139583862445/73681302247*64079^(13/23) 9870002024983405 a001 182717648081/96450076809*64079^(13/23) 9870002024983405 a001 956722026041/505019158607*64079^(13/23) 9870002024983405 a001 10610209857723/5600748293801*64079^(13/23) 9870002024983405 a001 591286729879/312119004989*64079^(13/23) 9870002024983405 a001 225851433717/119218851371*64079^(13/23) 9870002024983405 a001 21566892818/11384387281*64079^(13/23) 9870002024983405 a001 32951280099/17393796001*64079^(13/23) 9870002024983405 a001 12586269025/6643838879*64079^(13/23) 9870002024983405 a001 1201881744/634430159*64079^(13/23) 9870002024983405 a001 1836311903/969323029*64079^(13/23) 9870002024983405 a001 701408733/370248451*64079^(13/23) 9870002024983405 a001 66978574/35355581*64079^(13/23) 9870002024983408 a001 102334155/54018521*64079^(13/23) 9870002024983427 a001 39088169/20633239*64079^(13/23) 9870002024983555 a001 3732588/1970299*64079^(13/23) 9870002024984433 a001 5702887/3010349*64079^(13/23) 9870002024987257 a001 5702887/24476*9349^(3/19) 9870002024990454 a001 2178309/1149851*64079^(13/23) 9870002024991129 a001 121393/167761*64079^(15/23) 9870002025005843 a001 7465176/51841*64079^(4/23) 9870002025031720 a001 208010/109801*64079^(13/23) 9870002025059559 a001 1346269/271443*64079^(11/23) 9870002025067955 a001 311187/101521*64079^(12/23) 9870002025073192 a004 Fibonacci(24)*Lucas(25)/(1/2+sqrt(5)/2)^33 9870002025085003 a001 5702887/1860498*64079^(12/23) 9870002025087490 a001 14930352/4870847*64079^(12/23) 9870002025087853 a001 39088169/12752043*64079^(12/23) 9870002025087906 a001 14619165/4769326*64079^(12/23) 9870002025087914 a001 267914296/87403803*64079^(12/23) 9870002025087915 a001 701408733/228826127*64079^(12/23) 9870002025087915 a001 1836311903/599074578*64079^(12/23) 9870002025087915 a001 686789568/224056801*64079^(12/23) 9870002025087915 a001 12586269025/4106118243*64079^(12/23) 9870002025087915 a001 32951280099/10749957122*64079^(12/23) 9870002025087915 a001 86267571272/28143753123*64079^(12/23) 9870002025087915 a001 32264490531/10525900321*64079^(12/23) 9870002025087915 a001 591286729879/192900153618*64079^(12/23) 9870002025087915 a001 1548008755920/505019158607*64079^(12/23) 9870002025087915 a001 1515744265389/494493258286*64079^(12/23) 9870002025087915 a001 2504730781961/817138163596*64079^(12/23) 9870002025087915 a001 956722026041/312119004989*64079^(12/23) 9870002025087915 a001 365435296162/119218851371*64079^(12/23) 9870002025087915 a001 139583862445/45537549124*64079^(12/23) 9870002025087915 a001 53316291173/17393796001*64079^(12/23) 9870002025087915 a001 20365011074/6643838879*64079^(12/23) 9870002025087915 a001 7778742049/2537720636*64079^(12/23) 9870002025087915 a001 2971215073/969323029*64079^(12/23) 9870002025087915 a001 1134903170/370248451*64079^(12/23) 9870002025087916 a001 433494437/141422324*64079^(12/23) 9870002025087919 a001 165580141/54018521*64079^(12/23) 9870002025087939 a001 63245986/20633239*64079^(12/23) 9870002025088077 a001 24157817/7881196*64079^(12/23) 9870002025089027 a001 9227465/3010349*64079^(12/23) 9870002025095539 a001 3524578/1149851*64079^(12/23) 9870002025110365 a001 24157817/103682*64079^(3/23) 9870002025117844 a001 23184/51841*103682^(2/3) 9870002025123648 a001 63245986/167761*24476^(2/21) 9870002025123789 a001 6624/101521*167761^(4/5) 9870002025140171 a001 1346269/439204*64079^(12/23) 9870002025162564 a001 726103/90481*64079^(10/23) 9870002025173040 a001 3524578/710647*64079^(11/23) 9870002025189597 a001 9227465/1860498*64079^(11/23) 9870002025192012 a001 24157817/4870847*64079^(11/23) 9870002025192365 a001 63245986/12752043*64079^(11/23) 9870002025192416 a001 165580141/33385282*64079^(11/23) 9870002025192424 a001 433494437/87403803*64079^(11/23) 9870002025192425 a001 1134903170/228826127*64079^(11/23) 9870002025192425 a001 2971215073/599074578*64079^(11/23) 9870002025192425 a001 7778742049/1568397607*64079^(11/23) 9870002025192425 a001 20365011074/4106118243*64079^(11/23) 9870002025192425 a001 53316291173/10749957122*64079^(11/23) 9870002025192425 a001 139583862445/28143753123*64079^(11/23) 9870002025192425 a001 365435296162/73681302247*64079^(11/23) 9870002025192425 a001 956722026041/192900153618*64079^(11/23) 9870002025192425 a001 2504730781961/505019158607*64079^(11/23) 9870002025192425 a001 10610209857723/2139295485799*64079^(11/23) 9870002025192425 a001 4052739537881/817138163596*64079^(11/23) 9870002025192425 a001 140728068720/28374454999*64079^(11/23) 9870002025192425 a001 591286729879/119218851371*64079^(11/23) 9870002025192425 a001 225851433717/45537549124*64079^(11/23) 9870002025192425 a001 86267571272/17393796001*64079^(11/23) 9870002025192425 a001 32951280099/6643838879*64079^(11/23) 9870002025192425 a001 1144206275/230701876*64079^(11/23) 9870002025192425 a001 4807526976/969323029*64079^(11/23) 9870002025192425 a001 1836311903/370248451*64079^(11/23) 9870002025192426 a001 701408733/141422324*64079^(11/23) 9870002025192428 a001 267914296/54018521*64079^(11/23) 9870002025192448 a001 9303105/1875749*64079^(11/23) 9870002025192583 a001 39088169/7881196*64079^(11/23) 9870002025193505 a001 14930352/3010349*64079^(11/23) 9870002025199829 a001 5702887/1149851*64079^(11/23) 9870002025214871 a001 39088169/103682*64079^(2/23) 9870002025243175 a001 2178309/439204*64079^(11/23) 9870002025255826 a001 15456/90481*439204^(2/3) 9870002025267649 a001 3524578/271443*64079^(9/23) 9870002025277331 a001 5702887/710647*64079^(10/23) 9870002025280761 a001 416020/51841*167761^(2/5) 9870002025280761 a001 196418/167761*64079^(14/23) 9870002025289850 a001 15456/90481*7881196^(6/11) 9870002025289927 a001 121393/103682*20633239^(2/5) 9870002025289936 a001 15456/90481*141422324^(6/13) 9870002025289937 a001 15456/90481*2537720636^(2/5) 9870002025289937 a001 15456/90481*45537549124^(6/17) 9870002025289937 a001 15456/90481*14662949395604^(2/7) 9870002025289937 a001 15456/90481*(1/2+1/2*5^(1/2))^18 9870002025289937 a001 15456/90481*192900153618^(1/3) 9870002025289937 a001 15456/90481*10749957122^(3/8) 9870002025289937 a001 121393/103682*17393796001^(2/7) 9870002025289937 a001 121393/103682*14662949395604^(2/9) 9870002025289937 a001 121393/103682*(1/2+1/2*5^(1/2))^14 9870002025289937 a001 121393/103682*505019158607^(1/4) 9870002025289937 a001 121393/103682*10749957122^(7/24) 9870002025289937 a001 15456/90481*4106118243^(9/23) 9870002025289937 a001 121393/103682*4106118243^(7/23) 9870002025289937 a001 121393/103682*1568397607^(7/22) 9870002025289937 a001 15456/90481*1568397607^(9/22) 9870002025289937 a001 121393/103682*599074578^(1/3) 9870002025289937 a001 15456/90481*599074578^(3/7) 9870002025289937 a001 121393/103682*228826127^(7/20) 9870002025289937 a001 15456/90481*228826127^(9/20) 9870002025289937 a001 121393/103682*87403803^(7/19) 9870002025289937 a001 15456/90481*87403803^(9/19) 9870002025289940 a001 121393/103682*33385282^(7/18) 9870002025289941 a001 15456/90481*33385282^(1/2) 9870002025289962 a001 121393/103682*12752043^(7/17) 9870002025289969 a001 15456/90481*12752043^(9/17) 9870002025289997 a001 5628750624/5702887 9870002025290119 a001 121393/103682*4870847^(7/16) 9870002025290171 a001 15456/90481*4870847^(9/16) 9870002025291267 a001 121393/103682*1860498^(7/15) 9870002025291648 a001 15456/90481*1860498^(3/5) 9870002025294075 a001 829464/103361*64079^(10/23) 9870002025296518 a001 39088169/4870847*64079^(10/23) 9870002025296874 a001 34111385/4250681*64079^(10/23) 9870002025296926 a001 133957148/16692641*64079^(10/23) 9870002025296934 a001 233802911/29134601*64079^(10/23) 9870002025296935 a001 1836311903/228826127*64079^(10/23) 9870002025296935 a001 267084832/33281921*64079^(10/23) 9870002025296935 a001 12586269025/1568397607*64079^(10/23) 9870002025296935 a001 10983760033/1368706081*64079^(10/23) 9870002025296935 a001 43133785636/5374978561*64079^(10/23) 9870002025296935 a001 75283811239/9381251041*64079^(10/23) 9870002025296935 a001 591286729879/73681302247*64079^(10/23) 9870002025296935 a001 86000486440/10716675201*64079^(10/23) 9870002025296935 a001 4052739537881/505019158607*64079^(10/23) 9870002025296935 a001 3536736619241/440719107401*64079^(10/23) 9870002025296935 a001 3278735159921/408569081798*64079^(10/23) 9870002025296935 a001 2504730781961/312119004989*64079^(10/23) 9870002025296935 a001 956722026041/119218851371*64079^(10/23) 9870002025296935 a001 182717648081/22768774562*64079^(10/23) 9870002025296935 a001 139583862445/17393796001*64079^(10/23) 9870002025296935 a001 53316291173/6643838879*64079^(10/23) 9870002025296935 a001 10182505537/1268860318*64079^(10/23) 9870002025296935 a001 7778742049/969323029*64079^(10/23) 9870002025296935 a001 2971215073/370248451*64079^(10/23) 9870002025296936 a001 567451585/70711162*64079^(10/23) 9870002025296938 a001 433494437/54018521*64079^(10/23) 9870002025296958 a001 165580141/20633239*64079^(10/23) 9870002025297095 a001 31622993/3940598*64079^(10/23) 9870002025298028 a001 24157817/3010349*64079^(10/23) 9870002025299709 a001 121393/103682*710647^(1/2) 9870002025302501 a001 15456/90481*710647^(9/14) 9870002025304423 a001 9227465/1149851*64079^(10/23) 9870002025314561 a001 317811/167761*64079^(13/23) 9870002025319382 a001 31622993/51841*64079^(1/23) 9870002025348260 a001 1762289/219602*64079^(10/23) 9870002025353775 a001 9227465/103682*167761^(1/5) 9870002025362066 a001 121393/103682*271443^(7/13) 9870002025371274 a001 75025/167761*64079^(16/23) 9870002025371939 a001 5702887/271443*64079^(8/23) 9870002025372726 a004 Fibonacci(24)*Lucas(27)/(1/2+sqrt(5)/2)^35 9870002025377995 a001 46368/4870847*439204^(8/9) 9870002025381608 a001 317811/103682*439204^(4/9) 9870002025381924 a001 9227465/710647*64079^(9/23) 9870002025382675 a001 15456/90481*271443^(9/13) 9870002025391561 a001 46368/1149851*439204^(7/9) 9870002025398597 a001 24157817/1860498*64079^(9/23) 9870002025401030 a001 63245986/4870847*64079^(9/23) 9870002025401385 a001 165580141/12752043*64079^(9/23) 9870002025401436 a001 433494437/33385282*64079^(9/23) 9870002025401444 a001 1134903170/87403803*64079^(9/23) 9870002025401445 a001 2971215073/228826127*64079^(9/23) 9870002025401445 a001 7778742049/599074578*64079^(9/23) 9870002025401445 a001 20365011074/1568397607*64079^(9/23) 9870002025401445 a001 53316291173/4106118243*64079^(9/23) 9870002025401445 a001 139583862445/10749957122*64079^(9/23) 9870002025401445 a001 365435296162/28143753123*64079^(9/23) 9870002025401445 a001 956722026041/73681302247*64079^(9/23) 9870002025401445 a001 2504730781961/192900153618*64079^(9/23) 9870002025401445 a001 10610209857723/817138163596*64079^(9/23) 9870002025401445 a001 4052739537881/312119004989*64079^(9/23) 9870002025401445 a001 1548008755920/119218851371*64079^(9/23) 9870002025401445 a001 591286729879/45537549124*64079^(9/23) 9870002025401445 a001 7787980473/599786069*64079^(9/23) 9870002025401445 a001 86267571272/6643838879*64079^(9/23) 9870002025401445 a001 32951280099/2537720636*64079^(9/23) 9870002025401445 a001 12586269025/969323029*64079^(9/23) 9870002025401445 a001 4807526976/370248451*64079^(9/23) 9870002025401446 a001 1836311903/141422324*64079^(9/23) 9870002025401449 a001 701408733/54018521*64079^(9/23) 9870002025401468 a001 9238424/711491*64079^(9/23) 9870002025401604 a001 102334155/7881196*64079^(9/23) 9870002025402533 a001 39088169/3010349*64079^(9/23) 9870002025404290 a001 317811/103682*7881196^(4/11) 9870002025404335 a001 6624/101521*20633239^(4/7) 9870002025404348 a001 317811/103682*141422324^(4/13) 9870002025404348 a001 6624/101521*2537720636^(4/9) 9870002025404348 a001 317811/103682*2537720636^(4/15) 9870002025404348 a001 6624/101521*(1/2+1/2*5^(1/2))^20 9870002025404348 a001 6624/101521*23725150497407^(5/16) 9870002025404348 a001 6624/101521*505019158607^(5/14) 9870002025404348 a001 6624/101521*73681302247^(5/13) 9870002025404348 a001 6624/101521*28143753123^(2/5) 9870002025404348 a001 6624/101521*10749957122^(5/12) 9870002025404348 a001 317811/103682*45537549124^(4/17) 9870002025404348 a001 317811/103682*817138163596^(4/19) 9870002025404348 a001 317811/103682*14662949395604^(4/21) 9870002025404348 a001 317811/103682*(1/2+1/2*5^(1/2))^12 9870002025404348 a001 317811/103682*192900153618^(2/9) 9870002025404348 a001 317811/103682*73681302247^(3/13) 9870002025404348 a001 317811/103682*10749957122^(1/4) 9870002025404348 a001 317811/103682*4106118243^(6/23) 9870002025404348 a001 6624/101521*4106118243^(10/23) 9870002025404348 a001 317811/103682*1568397607^(3/11) 9870002025404348 a001 6624/101521*1568397607^(5/11) 9870002025404348 a001 317811/103682*599074578^(2/7) 9870002025404348 a001 6624/101521*599074578^(10/21) 9870002025404348 a001 317811/103682*228826127^(3/10) 9870002025404348 a001 6624/101521*228826127^(1/2) 9870002025404349 a001 317811/103682*87403803^(6/19) 9870002025404349 a001 6624/101521*87403803^(10/19) 9870002025404351 a001 317811/103682*33385282^(1/3) 9870002025404353 a001 6624/101521*33385282^(5/9) 9870002025404357 a001 34111714/34561 9870002025404370 a001 317811/103682*12752043^(6/17) 9870002025404384 a001 6624/101521*12752043^(10/17) 9870002025404504 a001 317811/103682*4870847^(3/8) 9870002025404608 a001 6624/101521*4870847^(5/8) 9870002025405489 a001 317811/103682*1860498^(2/5) 9870002025406249 a001 6624/101521*1860498^(2/3) 9870002025407926 a001 1346269/103682*439204^(1/3) 9870002025408901 a001 14930352/1149851*64079^(9/23) 9870002025412461 a001 5702887/103682*439204^(2/9) 9870002025412724 a001 317811/103682*710647^(3/7) 9870002025416427 a004 Fibonacci(24)*Lucas(29)/(1/2+sqrt(5)/2)^37 9870002025418210 a001 24157817/103682*439204^(1/9) 9870002025418308 a001 6624/101521*710647^(5/7) 9870002025420935 a001 2576/103361*7881196^(2/3) 9870002025421034 a001 416020/51841*20633239^(2/7) 9870002025421041 a001 416020/51841*2537720636^(2/9) 9870002025421041 a001 2576/103361*312119004989^(2/5) 9870002025421041 a001 2576/103361*(1/2+1/2*5^(1/2))^22 9870002025421041 a001 2576/103361*10749957122^(11/24) 9870002025421041 a001 416020/51841*312119004989^(2/11) 9870002025421041 a001 416020/51841*(1/2+1/2*5^(1/2))^10 9870002025421041 a001 416020/51841*28143753123^(1/5) 9870002025421041 a001 416020/51841*10749957122^(5/24) 9870002025421041 a001 416020/51841*4106118243^(5/23) 9870002025421041 a001 2576/103361*4106118243^(11/23) 9870002025421041 a001 416020/51841*1568397607^(5/22) 9870002025421041 a001 2576/103361*1568397607^(1/2) 9870002025421041 a001 416020/51841*599074578^(5/21) 9870002025421041 a001 2576/103361*599074578^(11/21) 9870002025421041 a001 416020/51841*228826127^(1/4) 9870002025421041 a001 2576/103361*228826127^(11/20) 9870002025421041 a001 416020/51841*87403803^(5/19) 9870002025421041 a001 2576/103361*87403803^(11/19) 9870002025421042 a001 38580030720/39088169 9870002025421043 a001 416020/51841*33385282^(5/18) 9870002025421046 a001 2576/103361*33385282^(11/18) 9870002025421058 a001 416020/51841*12752043^(5/17) 9870002025421080 a001 2576/103361*12752043^(11/17) 9870002025421171 a001 416020/51841*4870847^(5/16) 9870002025421327 a001 2576/103361*4870847^(11/16) 9870002025421991 a001 416020/51841*1860498^(1/3) 9870002025422803 a004 Fibonacci(24)*Lucas(31)/(1/2+sqrt(5)/2)^39 9870002025423132 a001 2576/103361*1860498^(11/15) 9870002025423360 a001 46368/4870847*7881196^(8/11) 9870002025423476 a001 46368/4870847*141422324^(8/13) 9870002025423476 a001 46368/4870847*2537720636^(8/15) 9870002025423476 a001 46368/4870847*45537549124^(8/17) 9870002025423476 a001 46368/4870847*14662949395604^(8/21) 9870002025423476 a001 46368/4870847*(1/2+1/2*5^(1/2))^24 9870002025423476 a001 46368/4870847*192900153618^(4/9) 9870002025423476 a001 46368/4870847*73681302247^(6/13) 9870002025423476 a001 46368/4870847*10749957122^(1/2) 9870002025423476 a001 46347/2206*(1/2+1/2*5^(1/2))^8 9870002025423476 a001 46347/2206*23725150497407^(1/8) 9870002025423476 a001 46347/2206*505019158607^(1/7) 9870002025423476 a001 46347/2206*73681302247^(2/13) 9870002025423476 a001 46347/2206*10749957122^(1/6) 9870002025423476 a001 46347/2206*4106118243^(4/23) 9870002025423476 a001 46368/4870847*4106118243^(12/23) 9870002025423476 a001 46347/2206*1568397607^(2/11) 9870002025423476 a001 46368/4870847*1568397607^(6/11) 9870002025423476 a001 46347/2206*599074578^(4/21) 9870002025423476 a001 46368/4870847*599074578^(4/7) 9870002025423476 a001 46347/2206*228826127^(1/5) 9870002025423476 a001 46368/4870847*228826127^(3/5) 9870002025423476 a001 4809706272/4873055 9870002025423476 a001 46347/2206*87403803^(4/19) 9870002025423477 a001 46368/4870847*87403803^(12/19) 9870002025423478 a001 46347/2206*33385282^(2/9) 9870002025423482 a001 46368/4870847*33385282^(2/3) 9870002025423490 a001 46347/2206*12752043^(4/17) 9870002025423519 a001 46368/4870847*12752043^(12/17) 9870002025423537 a001 165580141/271443*24476^(1/21) 9870002025423580 a001 46347/2206*4870847^(1/4) 9870002025423733 a004 Fibonacci(24)*Lucas(33)/(1/2+sqrt(5)/2)^41 9870002025423746 a001 15456/29134601*7881196^(10/11) 9870002025423785 a001 46368/20633239*7881196^(9/11) 9870002025423788 a001 46368/4870847*4870847^(3/4) 9870002025423802 a001 5702887/103682*7881196^(2/11) 9870002025423831 a001 15456/4250681*141422324^(2/3) 9870002025423831 a001 5702887/103682*141422324^(2/13) 9870002025423831 a001 5702887/103682*2537720636^(2/15) 9870002025423831 a001 15456/4250681*(1/2+1/2*5^(1/2))^26 9870002025423831 a001 15456/4250681*73681302247^(1/2) 9870002025423831 a001 15456/4250681*10749957122^(13/24) 9870002025423831 a001 5702887/103682*45537549124^(2/17) 9870002025423831 a001 5702887/103682*14662949395604^(2/21) 9870002025423831 a001 5702887/103682*(1/2+1/2*5^(1/2))^6 9870002025423831 a001 5702887/103682*10749957122^(1/8) 9870002025423831 a001 5702887/103682*4106118243^(3/23) 9870002025423831 a001 15456/4250681*4106118243^(13/23) 9870002025423831 a001 5702887/103682*1568397607^(3/22) 9870002025423831 a001 15456/4250681*1568397607^(13/22) 9870002025423831 a001 5702887/103682*599074578^(1/7) 9870002025423831 a001 15456/4250681*599074578^(13/21) 9870002025423831 a001 33053933052/33489287 9870002025423831 a001 5702887/103682*228826127^(3/20) 9870002025423831 a001 15456/4250681*228826127^(13/20) 9870002025423831 a001 5702887/103682*87403803^(3/19) 9870002025423832 a001 15456/4250681*87403803^(13/19) 9870002025423833 a001 5702887/103682*33385282^(1/6) 9870002025423838 a001 15456/4250681*33385282^(13/18) 9870002025423842 a001 5702887/103682*12752043^(3/17) 9870002025423865 a001 144/103681*20633239^(4/5) 9870002025423869 a004 Fibonacci(24)*Lucas(35)/(1/2+sqrt(5)/2)^43 9870002025423871 a001 15456/29134601*20633239^(6/7) 9870002025423878 a001 15456/4250681*12752043^(13/17) 9870002025423881 a001 24157817/103682*7881196^(1/11) 9870002025423883 a001 144/103681*17393796001^(4/7) 9870002025423883 a001 144/103681*14662949395604^(4/9) 9870002025423883 a001 144/103681*(1/2+1/2*5^(1/2))^28 9870002025423883 a001 144/103681*505019158607^(1/2) 9870002025423883 a001 144/103681*73681302247^(7/13) 9870002025423883 a001 144/103681*10749957122^(7/12) 9870002025423883 a001 7465176/51841*(1/2+1/2*5^(1/2))^4 9870002025423883 a001 7465176/51841*23725150497407^(1/16) 9870002025423883 a001 7465176/51841*73681302247^(1/13) 9870002025423883 a001 7465176/51841*10749957122^(1/12) 9870002025423883 a001 7465176/51841*4106118243^(2/23) 9870002025423883 a001 144/103681*4106118243^(14/23) 9870002025423883 a001 7465176/51841*1568397607^(1/11) 9870002025423883 a001 144/103681*1568397607^(7/11) 9870002025423883 a001 7465176/51841*599074578^(2/21) 9870002025423883 a001 230763520512/233802911 9870002025423883 a001 144/103681*599074578^(2/3) 9870002025423883 a001 7465176/51841*228826127^(1/10) 9870002025423883 a001 144/103681*228826127^(7/10) 9870002025423883 a001 7465176/51841*87403803^(2/19) 9870002025423884 a001 144/103681*87403803^(14/19) 9870002025423884 a001 7465176/51841*33385282^(1/9) 9870002025423889 a004 Fibonacci(24)*Lucas(37)/(1/2+sqrt(5)/2)^45 9870002025423890 a001 144/103681*33385282^(7/9) 9870002025423890 a001 7465176/51841*12752043^(2/17) 9870002025423890 a001 15456/29134601*141422324^(10/13) 9870002025423891 a001 15456/29134601*2537720636^(2/3) 9870002025423891 a001 15456/29134601*45537549124^(10/17) 9870002025423891 a001 15456/29134601*312119004989^(6/11) 9870002025423891 a001 15456/29134601*14662949395604^(10/21) 9870002025423891 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^30/Lucas(38) 9870002025423891 a001 15456/29134601*192900153618^(5/9) 9870002025423891 a001 15456/29134601*28143753123^(3/5) 9870002025423891 a001 15456/29134601*10749957122^(5/8) 9870002025423891 a001 39088169/103682*(1/2+1/2*5^(1/2))^2 9870002025423891 a001 39088169/103682*10749957122^(1/24) 9870002025423891 a001 39088169/103682*4106118243^(1/23) 9870002025423891 a001 39088169/103682*1568397607^(1/22) 9870002025423891 a001 15456/29134601*4106118243^(15/23) 9870002025423891 a001 1812440220192/1836311903 9870002025423891 a001 39088169/103682*599074578^(1/21) 9870002025423891 a001 15456/29134601*1568397607^(15/22) 9870002025423891 a001 39088169/103682*228826127^(1/20) 9870002025423891 a001 15456/29134601*599074578^(5/7) 9870002025423891 a001 39088169/103682*87403803^(1/19) 9870002025423891 a001 15456/29134601*228826127^(3/4) 9870002025423891 a001 39088169/103682*33385282^(1/18) 9870002025423891 a004 Fibonacci(24)*Lucas(39)/(1/2+sqrt(5)/2)^47 9870002025423892 a001 6624/224056801*141422324^(12/13) 9870002025423892 a001 46368/370248451*141422324^(11/13) 9870002025423892 a001 15456/29134601*87403803^(15/19) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^32/Lucas(40) 9870002025423892 a001 46368/228826127*23725150497407^(1/2) 9870002025423892 a001 46368/228826127*505019158607^(4/7) 9870002025423892 a001 46368/228826127*73681302247^(8/13) 9870002025423892 a001 46368/228826127*10749957122^(2/3) 9870002025423892 a001 102334155/103682 9870002025423892 a001 46368/228826127*4106118243^(16/23) 9870002025423892 a001 46368/228826127*1568397607^(8/11) 9870002025423892 a001 46368/228826127*599074578^(16/21) 9870002025423892 a004 Fibonacci(24)*Lucas(41)/(1/2+sqrt(5)/2)^49 9870002025423892 a001 46368/228826127*228826127^(4/5) 9870002025423892 a001 2576/33281921*45537549124^(2/3) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^34/Lucas(42) 9870002025423892 a001 12422650076928/12586269025 9870002025423892 a001 2576/33281921*10749957122^(17/24) 9870002025423892 a004 Fibonacci(42)/Lucas(24)/(1/2+sqrt(5)/2)^2 9870002025423892 a001 2576/33281921*4106118243^(17/23) 9870002025423892 a001 2576/33281921*1568397607^(17/22) 9870002025423892 a004 Fibonacci(24)*Lucas(43)/(1/2+sqrt(5)/2)^51 9870002025423892 a001 6624/224056801*2537720636^(4/5) 9870002025423892 a001 2576/33281921*599074578^(17/21) 9870002025423892 a001 6624/224056801*45537549124^(12/17) 9870002025423892 a001 6624/224056801*14662949395604^(4/7) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^36/Lucas(44) 9870002025423892 a001 6624/224056801*505019158607^(9/14) 9870002025423892 a001 6624/224056801*192900153618^(2/3) 9870002025423892 a001 6624/224056801*73681302247^(9/13) 9870002025423892 a001 10840973377248/10983760033 9870002025423892 a001 6624/224056801*10749957122^(3/4) 9870002025423892 a004 Fibonacci(44)/Lucas(24)/(1/2+sqrt(5)/2)^4 9870002025423892 a001 6624/224056801*4106118243^(18/23) 9870002025423892 a004 Fibonacci(24)*Lucas(45)/(1/2+sqrt(5)/2)^53 9870002025423892 a001 23184/5374978561*2537720636^(8/9) 9870002025423892 a001 15456/9381251041*2537720636^(14/15) 9870002025423892 a001 46368/6643838879*2537720636^(13/15) 9870002025423892 a001 6624/224056801*1568397607^(9/11) 9870002025423892 a001 15456/1368706081*817138163596^(2/3) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^38/Lucas(46) 9870002025423892 a001 10643263789788/10783446409 9870002025423892 a001 15456/1368706081*10749957122^(19/24) 9870002025423892 a004 Fibonacci(46)/Lucas(24)/(1/2+sqrt(5)/2)^6 9870002025423892 a004 Fibonacci(24)*Lucas(47)/(1/2+sqrt(5)/2)^55 9870002025423892 a001 15456/1368706081*4106118243^(19/23) 9870002025423892 a001 23184/5374978561*312119004989^(8/11) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^40/Lucas(48) 9870002025423892 a001 23184/5374978561*23725150497407^(5/8) 9870002025423892 a001 1516431366144/1536404311 9870002025423892 a001 23184/5374978561*73681302247^(10/13) 9870002025423892 a001 23184/5374978561*28143753123^(4/5) 9870002025423892 a001 15456/9381251041*17393796001^(6/7) 9870002025423892 a004 Fibonacci(24)*Lucas(49)/(1/2+sqrt(5)/2)^57 9870002025423892 a001 15456/9381251041*45537549124^(14/17) 9870002025423892 a001 23184/5374978561*10749957122^(5/6) 9870002025423892 a001 15456/9381251041*817138163596^(14/19) 9870002025423892 a001 15456/9381251041*14662949395604^(2/3) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^42/Lucas(50) 9870002025423892 a001 15456/9381251041*505019158607^(3/4) 9870002025423892 a001 15456/9381251041*192900153618^(7/9) 9870002025423892 a004 Fibonacci(24)*Lucas(51)/(1/2+sqrt(5)/2)^59 9870002025423892 a001 46368/505019158607*45537549124^(16/17) 9870002025423892 a001 46368/119218851371*45537549124^(15/17) 9870002025423892 a001 6624/10525900321*312119004989^(4/5) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^44/Lucas(52) 9870002025423892 a001 6624/10525900321*23725150497407^(11/16) 9870002025423892 a001 10610312191878/10750060805 9870002025423892 a004 Fibonacci(24)*Lucas(53)/(1/2+sqrt(5)/2)^61 9870002025423892 a001 6624/10525900321*73681302247^(11/13) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^46/Lucas(54) 9870002025423892 a001 4000054744740096/4052739537881 9870002025423892 a004 Fibonacci(24)*Lucas(55)/(1/2+sqrt(5)/2)^63 9870002025423892 a001 15456/440719107401*312119004989^(10/11) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^48/Lucas(56) 9870002025423892 a001 498679965647136/505248088463 9870002025423892 a004 Fibonacci(24)*Lucas(57)/(1/2+sqrt(5)/2)^65 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^50/Lucas(58) 9870002025423892 a004 Fibonacci(24)*Lucas(59)/(1/2+sqrt(5)/2)^67 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^52/Lucas(60) 9870002025423892 a001 144/10749853441*23725150497407^(13/16) 9870002025423892 a004 Fibonacci(24)*Lucas(61)/(1/2+sqrt(5)/2)^69 9870002025423892 a001 15456/3020733700601*14662949395604^(6/7) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^54/Lucas(62) 9870002025423892 a004 Fibonacci(24)*Lucas(63)/(1/2+sqrt(5)/2)^71 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^56/Lucas(64) 9870002025423892 a004 Fibonacci(24)*Lucas(65)/(1/2+sqrt(5)/2)^73 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^58/Lucas(66) 9870002025423892 a004 Fibonacci(24)*Lucas(67)/(1/2+sqrt(5)/2)^75 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^60/Lucas(68) 9870002025423892 a004 Fibonacci(24)*Lucas(69)/(1/2+sqrt(5)/2)^77 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^62/Lucas(70) 9870002025423892 a004 Fibonacci(24)*Lucas(71)/(1/2+sqrt(5)/2)^79 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^64/Lucas(72) 9870002025423892 a004 Fibonacci(24)*Lucas(73)/(1/2+sqrt(5)/2)^81 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^66/Lucas(74) 9870002025423892 a004 Fibonacci(24)*Lucas(75)/(1/2+sqrt(5)/2)^83 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^68/Lucas(76) 9870002025423892 a004 Fibonacci(24)*Lucas(77)/(1/2+sqrt(5)/2)^85 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^70/Lucas(78) 9870002025423892 a004 Fibonacci(24)*Lucas(79)/(1/2+sqrt(5)/2)^87 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^72/Lucas(80) 9870002025423892 a004 Fibonacci(24)*Lucas(81)/(1/2+sqrt(5)/2)^89 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^74/Lucas(82) 9870002025423892 a004 Fibonacci(24)*Lucas(83)/(1/2+sqrt(5)/2)^91 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^76/Lucas(84) 9870002025423892 a004 Fibonacci(24)*Lucas(85)/(1/2+sqrt(5)/2)^93 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^78/Lucas(86) 9870002025423892 a004 Fibonacci(24)*Lucas(87)/(1/2+sqrt(5)/2)^95 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^80/Lucas(88) 9870002025423892 a004 Fibonacci(24)*Lucas(89)/(1/2+sqrt(5)/2)^97 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^82/Lucas(90) 9870002025423892 a004 Fibonacci(24)*Lucas(91)/(1/2+sqrt(5)/2)^99 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^84/Lucas(92) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^86/Lucas(94) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^88/Lucas(96) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^90/Lucas(98) 9870002025423892 a004 Fibonacci(12)*Lucas(12)/(1/2+sqrt(5)/2)^8 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^91/Lucas(99) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^92/Lucas(100) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^89/Lucas(97) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^87/Lucas(95) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^85/Lucas(93) 9870002025423892 a004 Fibonacci(24)*Lucas(92)/(1/2+sqrt(5)/2)^100 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^83/Lucas(91) 9870002025423892 a004 Fibonacci(24)*Lucas(90)/(1/2+sqrt(5)/2)^98 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^81/Lucas(89) 9870002025423892 a004 Fibonacci(24)*Lucas(88)/(1/2+sqrt(5)/2)^96 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^79/Lucas(87) 9870002025423892 a004 Fibonacci(24)*Lucas(86)/(1/2+sqrt(5)/2)^94 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^77/Lucas(85) 9870002025423892 a004 Fibonacci(24)*Lucas(84)/(1/2+sqrt(5)/2)^92 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^75/Lucas(83) 9870002025423892 a004 Fibonacci(24)*Lucas(82)/(1/2+sqrt(5)/2)^90 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^73/Lucas(81) 9870002025423892 a004 Fibonacci(24)*Lucas(80)/(1/2+sqrt(5)/2)^88 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^71/Lucas(79) 9870002025423892 a004 Fibonacci(24)*Lucas(78)/(1/2+sqrt(5)/2)^86 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^69/Lucas(77) 9870002025423892 a004 Fibonacci(24)*Lucas(76)/(1/2+sqrt(5)/2)^84 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^67/Lucas(75) 9870002025423892 a004 Fibonacci(24)*Lucas(74)/(1/2+sqrt(5)/2)^82 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^65/Lucas(73) 9870002025423892 a004 Fibonacci(24)*Lucas(72)/(1/2+sqrt(5)/2)^80 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^63/Lucas(71) 9870002025423892 a004 Fibonacci(24)*Lucas(70)/(1/2+sqrt(5)/2)^78 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^61/Lucas(69) 9870002025423892 a004 Fibonacci(24)*Lucas(68)/(1/2+sqrt(5)/2)^76 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^59/Lucas(67) 9870002025423892 a004 Fibonacci(24)*Lucas(66)/(1/2+sqrt(5)/2)^74 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^57/Lucas(65) 9870002025423892 a004 Fibonacci(24)*Lucas(64)/(1/2+sqrt(5)/2)^72 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^55/Lucas(63) 9870002025423892 a004 Fibonacci(24)*Lucas(62)/(1/2+sqrt(5)/2)^70 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^53/Lucas(61) 9870002025423892 a001 11592/3665737348901*3461452808002^(11/12) 9870002025423892 a004 Fibonacci(24)*Lucas(60)/(1/2+sqrt(5)/2)^68 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^51/Lucas(59) 9870002025423892 a004 Fibonacci(24)*Lucas(58)/(1/2+sqrt(5)/2)^66 9870002025423892 a001 11592/204284540899*14662949395604^(7/9) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^49/Lucas(57) 9870002025423892 a001 144/10749853441*505019158607^(13/14) 9870002025423892 a004 Fibonacci(24)*Lucas(56)/(1/2+sqrt(5)/2)^64 9870002025423892 a001 11592/204284540899*505019158607^(7/8) 9870002025423892 a001 3236112266924880/3278735159921 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^47/Lucas(55) 9870002025423892 a001 46368/505019158607*192900153618^(8/9) 9870002025423892 a001 46368/2139295485799*192900153618^(17/18) 9870002025423892 a004 Fibonacci(24)*Lucas(54)/(1/2+sqrt(5)/2)^62 9870002025423892 a001 46368/119218851371*312119004989^(9/11) 9870002025423892 a001 2472169789109664/2504730781961 9870002025423892 a001 46368/119218851371*14662949395604^(5/7) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^45/Lucas(53) 9870002025423892 a001 46368/119218851371*192900153618^(5/6) 9870002025423892 a001 46368/505019158607*73681302247^(12/13) 9870002025423892 a004 Fibonacci(24)*Lucas(52)/(1/2+sqrt(5)/2)^60 9870002025423892 a001 944284833479232/956722026041 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^43/Lucas(51) 9870002025423892 a001 46368/119218851371*28143753123^(9/10) 9870002025423892 a004 Fibonacci(24)*Lucas(50)/(1/2+sqrt(5)/2)^58 9870002025423892 a001 180342355664016/182717648081 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^41/Lucas(49) 9870002025423892 a001 15456/9381251041*10749957122^(7/8) 9870002025423892 a004 Fibonacci(50)/Lucas(24)/(1/2+sqrt(5)/2)^10 9870002025423892 a001 6624/10525900321*10749957122^(11/12) 9870002025423892 a001 46368/119218851371*10749957122^(15/16) 9870002025423892 a001 2576/10716675201*10749957122^(23/24) 9870002025423892 a004 Fibonacci(52)/Lucas(24)/(1/2+sqrt(5)/2)^12 9870002025423892 a004 Fibonacci(54)/Lucas(24)/(1/2+sqrt(5)/2)^14 9870002025423892 a004 Fibonacci(56)/Lucas(24)/(1/2+sqrt(5)/2)^16 9870002025423892 a004 Fibonacci(58)/Lucas(24)/(1/2+sqrt(5)/2)^18 9870002025423892 a004 Fibonacci(60)/Lucas(24)/(1/2+sqrt(5)/2)^20 9870002025423892 a004 Fibonacci(62)/Lucas(24)/(1/2+sqrt(5)/2)^22 9870002025423892 a004 Fibonacci(64)/Lucas(24)/(1/2+sqrt(5)/2)^24 9870002025423892 a004 Fibonacci(66)/Lucas(24)/(1/2+sqrt(5)/2)^26 9870002025423892 a004 Fibonacci(68)/Lucas(24)/(1/2+sqrt(5)/2)^28 9870002025423892 a004 Fibonacci(70)/Lucas(24)/(1/2+sqrt(5)/2)^30 9870002025423892 a004 Fibonacci(72)/Lucas(24)/(1/2+sqrt(5)/2)^32 9870002025423892 a004 Fibonacci(74)/Lucas(24)/(1/2+sqrt(5)/2)^34 9870002025423892 a004 Fibonacci(76)/Lucas(24)/(1/2+sqrt(5)/2)^36 9870002025423892 a004 Fibonacci(78)/Lucas(24)/(1/2+sqrt(5)/2)^38 9870002025423892 a004 Fibonacci(80)/Lucas(24)/(1/2+sqrt(5)/2)^40 9870002025423892 a004 Fibonacci(82)/Lucas(24)/(1/2+sqrt(5)/2)^42 9870002025423892 a004 Fibonacci(84)/Lucas(24)/(1/2+sqrt(5)/2)^44 9870002025423892 a004 Fibonacci(86)/Lucas(24)/(1/2+sqrt(5)/2)^46 9870002025423892 a004 Fibonacci(88)/Lucas(24)/(1/2+sqrt(5)/2)^48 9870002025423892 a004 Fibonacci(90)/Lucas(24)/(1/2+sqrt(5)/2)^50 9870002025423892 a004 Fibonacci(92)/Lucas(24)/(1/2+sqrt(5)/2)^52 9870002025423892 a004 Fibonacci(94)/Lucas(24)/(1/2+sqrt(5)/2)^54 9870002025423892 a004 Fibonacci(24)*Lucas(48)/(1/2+sqrt(5)/2)^56 9870002025423892 a004 Fibonacci(98)/Lucas(24)/(1/2+sqrt(5)/2)^58 9870002025423892 a004 Fibonacci(100)/Lucas(24)/(1/2+sqrt(5)/2)^60 9870002025423892 a004 Fibonacci(99)/Lucas(24)/(1/2+sqrt(5)/2)^59 9870002025423892 a004 Fibonacci(97)/Lucas(24)/(1/2+sqrt(5)/2)^57 9870002025423892 a004 Fibonacci(95)/Lucas(24)/(1/2+sqrt(5)/2)^55 9870002025423892 a004 Fibonacci(93)/Lucas(24)/(1/2+sqrt(5)/2)^53 9870002025423892 a004 Fibonacci(91)/Lucas(24)/(1/2+sqrt(5)/2)^51 9870002025423892 a004 Fibonacci(89)/Lucas(24)/(1/2+sqrt(5)/2)^49 9870002025423892 a004 Fibonacci(87)/Lucas(24)/(1/2+sqrt(5)/2)^47 9870002025423892 a004 Fibonacci(85)/Lucas(24)/(1/2+sqrt(5)/2)^45 9870002025423892 a004 Fibonacci(83)/Lucas(24)/(1/2+sqrt(5)/2)^43 9870002025423892 a004 Fibonacci(81)/Lucas(24)/(1/2+sqrt(5)/2)^41 9870002025423892 a004 Fibonacci(79)/Lucas(24)/(1/2+sqrt(5)/2)^39 9870002025423892 a004 Fibonacci(77)/Lucas(24)/(1/2+sqrt(5)/2)^37 9870002025423892 a004 Fibonacci(75)/Lucas(24)/(1/2+sqrt(5)/2)^35 9870002025423892 a004 Fibonacci(73)/Lucas(24)/(1/2+sqrt(5)/2)^33 9870002025423892 a004 Fibonacci(71)/Lucas(24)/(1/2+sqrt(5)/2)^31 9870002025423892 a004 Fibonacci(69)/Lucas(24)/(1/2+sqrt(5)/2)^29 9870002025423892 a004 Fibonacci(67)/Lucas(24)/(1/2+sqrt(5)/2)^27 9870002025423892 a004 Fibonacci(65)/Lucas(24)/(1/2+sqrt(5)/2)^25 9870002025423892 a004 Fibonacci(63)/Lucas(24)/(1/2+sqrt(5)/2)^23 9870002025423892 a004 Fibonacci(61)/Lucas(24)/(1/2+sqrt(5)/2)^21 9870002025423892 a004 Fibonacci(59)/Lucas(24)/(1/2+sqrt(5)/2)^19 9870002025423892 a004 Fibonacci(57)/Lucas(24)/(1/2+sqrt(5)/2)^17 9870002025423892 a004 Fibonacci(55)/Lucas(24)/(1/2+sqrt(5)/2)^15 9870002025423892 a004 Fibonacci(53)/Lucas(24)/(1/2+sqrt(5)/2)^13 9870002025423892 a004 Fibonacci(51)/Lucas(24)/(1/2+sqrt(5)/2)^11 9870002025423892 a004 Fibonacci(49)/Lucas(24)/(1/2+sqrt(5)/2)^9 9870002025423892 a001 46368/6643838879*45537549124^(13/17) 9870002025423892 a001 137769300504864/139583862445 9870002025423892 a001 46368/6643838879*14662949395604^(13/21) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^39/Lucas(47) 9870002025423892 a001 46368/6643838879*192900153618^(13/18) 9870002025423892 a001 46368/6643838879*73681302247^(3/4) 9870002025423892 a001 46368/6643838879*10749957122^(13/16) 9870002025423892 a004 Fibonacci(47)/Lucas(24)/(1/2+sqrt(5)/2)^7 9870002025423892 a001 23184/5374978561*4106118243^(20/23) 9870002025423892 a001 15456/9381251041*4106118243^(21/23) 9870002025423892 a001 6624/10525900321*4106118243^(22/23) 9870002025423892 a004 Fibonacci(24)*Lucas(46)/(1/2+sqrt(5)/2)^54 9870002025423892 a001 52623190186560/53316291173 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^37/Lucas(45) 9870002025423892 a004 Fibonacci(45)/Lucas(24)/(1/2+sqrt(5)/2)^5 9870002025423892 a001 15456/1368706081*1568397607^(19/22) 9870002025423892 a001 23184/5374978561*1568397607^(10/11) 9870002025423892 a001 15456/9381251041*1568397607^(21/22) 9870002025423892 a004 Fibonacci(24)*Lucas(44)/(1/2+sqrt(5)/2)^52 9870002025423892 a001 46368/969323029*2537720636^(7/9) 9870002025423892 a001 46368/969323029*17393796001^(5/7) 9870002025423892 a001 10050135027408/10182505537 9870002025423892 a001 46368/969323029*312119004989^(7/11) 9870002025423892 a001 46368/969323029*14662949395604^(5/9) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^35/Lucas(43) 9870002025423892 a001 46368/969323029*505019158607^(5/8) 9870002025423892 a001 46368/969323029*28143753123^(7/10) 9870002025423892 a004 Fibonacci(43)/Lucas(24)/(1/2+sqrt(5)/2)^3 9870002025423892 a001 6624/224056801*599074578^(6/7) 9870002025423892 a001 15456/1368706081*599074578^(19/21) 9870002025423892 a001 46368/6643838879*599074578^(13/14) 9870002025423892 a001 23184/5374978561*599074578^(20/21) 9870002025423892 a004 Fibonacci(24)*Lucas(42)/(1/2+sqrt(5)/2)^50 9870002025423892 a001 46368/969323029*599074578^(5/6) 9870002025423892 a001 46368/370248451*2537720636^(11/15) 9870002025423892 a001 7677619977888/7778742049 9870002025423892 a001 46368/370248451*45537549124^(11/17) 9870002025423892 a001 46368/370248451*312119004989^(3/5) 9870002025423892 a001 46368/370248451*817138163596^(11/19) 9870002025423892 a001 46368/370248451*14662949395604^(11/21) 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^33/Lucas(41) 9870002025423892 a001 46368/370248451*192900153618^(11/18) 9870002025423892 a001 46368/370248451*10749957122^(11/16) 9870002025423892 a004 Fibonacci(41)/Lucas(24)/(1/2+sqrt(5)/2) 9870002025423892 a001 46368/370248451*1568397607^(3/4) 9870002025423892 a001 46368/370248451*599074578^(11/14) 9870002025423892 a001 2576/33281921*228826127^(17/20) 9870002025423892 a001 6624/224056801*228826127^(9/10) 9870002025423892 a001 46368/969323029*228826127^(7/8) 9870002025423892 a001 15456/1368706081*228826127^(19/20) 9870002025423892 a004 Fibonacci(24)*Lucas(40)/(1/2+sqrt(5)/2)^48 9870002025423892 a001 2932589878848/2971215073 9870002025423892 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^31/Lucas(39) 9870002025423892 a001 11592/35355581*9062201101803^(1/2) 9870002025423892 a001 31622993/103682+31622993/103682*5^(1/2) 9870002025423893 a001 46368/228826127*87403803^(16/19) 9870002025423893 a001 2576/33281921*87403803^(17/19) 9870002025423893 a001 6624/224056801*87403803^(18/19) 9870002025423893 a004 Fibonacci(24)*Lucas(38)/(1/2+sqrt(5)/2)^46 9870002025423894 a001 39088169/103682*12752043^(1/17) 9870002025423895 a001 24157817/103682*141422324^(1/13) 9870002025423895 a001 560074829328/567451585 9870002025423895 a001 24157817/103682*2537720636^(1/15) 9870002025423895 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^29/Lucas(37) 9870002025423895 a001 46368/54018521*1322157322203^(1/2) 9870002025423895 a001 24157817/103682*45537549124^(1/17) 9870002025423895 a001 24157817/103682*14662949395604^(1/21) 9870002025423895 a001 24157817/103682*(1/2+1/2*5^(1/2))^3 9870002025423895 a001 24157817/103682*192900153618^(1/18) 9870002025423895 a001 24157817/103682*10749957122^(1/16) 9870002025423895 a001 24157817/103682*599074578^(1/14) 9870002025423896 a001 24157817/103682*33385282^(1/12) 9870002025423898 a001 15456/29134601*33385282^(5/6) 9870002025423900 a001 46368/228826127*33385282^(8/9) 9870002025423900 a001 46368/370248451*33385282^(11/12) 9870002025423900 a001 2576/33281921*33385282^(17/18) 9870002025423901 a004 Fibonacci(24)*Lucas(36)/(1/2+sqrt(5)/2)^44 9870002025423909 a001 5702887/103682*4870847^(3/16) 9870002025423912 a001 9227465/103682*20633239^(1/7) 9870002025423915 a001 46368/20633239*141422324^(9/13) 9870002025423915 a001 427859097120/433494437 9870002025423915 a001 46368/20633239*2537720636^(3/5) 9870002025423915 a001 9227465/103682*2537720636^(1/9) 9870002025423915 a001 46368/20633239*45537549124^(9/17) 9870002025423915 a001 46368/20633239*817138163596^(9/19) 9870002025423915 a001 46368/20633239*14662949395604^(3/7) 9870002025423915 a001 46368/20633239*(1/2+1/2*5^(1/2))^27 9870002025423915 a001 46368/20633239*192900153618^(1/2) 9870002025423915 a001 46368/20633239*10749957122^(9/16) 9870002025423915 a001 9227465/103682*312119004989^(1/11) 9870002025423915 a001 9227465/103682*(1/2+1/2*5^(1/2))^5 9870002025423915 a001 9227465/103682*28143753123^(1/10) 9870002025423915 a001 46368/20633239*599074578^(9/14) 9870002025423915 a001 9227465/103682*228826127^(1/8) 9870002025423917 a001 39088169/103682*4870847^(1/16) 9870002025423922 a001 46368/20633239*33385282^(3/4) 9870002025423933 a001 144/103681*12752043^(14/17) 9870002025423935 a001 7465176/51841*4870847^(1/8) 9870002025423944 a001 15456/29134601*12752043^(15/17) 9870002025423949 a001 46368/228826127*12752043^(16/17) 9870002025423953 a004 Fibonacci(24)*Lucas(34)/(1/2+sqrt(5)/2)^42 9870002025424034 a001 11592/1970299*20633239^(5/7) 9870002025424046 a001 1762289/51841*20633239^(1/5) 9870002025424051 a001 163427632704/165580141 9870002025424051 a001 11592/1970299*2537720636^(5/9) 9870002025424051 a001 11592/1970299*312119004989^(5/11) 9870002025424051 a001 11592/1970299*(1/2+1/2*5^(1/2))^25 9870002025424051 a001 11592/1970299*3461452808002^(5/12) 9870002025424051 a001 11592/1970299*28143753123^(1/2) 9870002025424051 a001 1762289/51841*17393796001^(1/7) 9870002025424051 a001 1762289/51841*14662949395604^(1/9) 9870002025424051 a001 1762289/51841*(1/2+1/2*5^(1/2))^7 9870002025424051 a001 1762289/51841*599074578^(1/6) 9870002025424051 a001 11592/1970299*228826127^(5/8) 9870002025424081 a001 39088169/103682*1860498^(1/15) 9870002025424169 a001 15456/4250681*4870847^(13/16) 9870002025424180 a001 24157817/103682*1860498^(1/10) 9870002025424236 a001 46347/2206*1860498^(4/15) 9870002025424247 a001 144/103681*4870847^(7/8) 9870002025424263 a001 7465176/51841*1860498^(2/15) 9870002025424281 a001 15456/29134601*4870847^(15/16) 9870002025424308 a004 Fibonacci(24)*Lucas(32)/(1/2+sqrt(5)/2)^40 9870002025424390 a001 9227465/103682*1860498^(1/6) 9870002025424402 a001 5702887/103682*1860498^(1/5) 9870002025424938 a001 1346269/103682*7881196^(3/11) 9870002025424981 a001 31211900496/31622993 9870002025424981 a001 1346269/103682*141422324^(3/13) 9870002025424981 a001 1346269/103682*2537720636^(1/5) 9870002025424981 a001 46368/3010349*(1/2+1/2*5^(1/2))^23 9870002025424981 a001 1346269/103682*45537549124^(3/17) 9870002025424981 a001 1346269/103682*817138163596^(3/19) 9870002025424981 a001 1346269/103682*14662949395604^(1/7) 9870002025424981 a001 1346269/103682*(1/2+1/2*5^(1/2))^9 9870002025424981 a001 1346269/103682*192900153618^(1/6) 9870002025424981 a001 1346269/103682*10749957122^(3/16) 9870002025424981 a001 46368/3010349*4106118243^(1/2) 9870002025424981 a001 1346269/103682*599074578^(3/14) 9870002025424983 a001 1346269/103682*33385282^(1/4) 9870002025425287 a001 39088169/103682*710647^(1/14) 9870002025425757 a001 46368/4870847*1860498^(4/5) 9870002025425837 a001 1346269/103682*1860498^(3/10) 9870002025426302 a001 15456/4250681*1860498^(13/15) 9870002025426427 a001 11592/1970299*1860498^(5/6) 9870002025426481 a001 46368/20633239*1860498^(9/10) 9870002025426544 a001 144/103681*1860498^(14/15) 9870002025426675 a001 7465176/51841*710647^(1/7) 9870002025426743 a004 Fibonacci(24)*Lucas(30)/(1/2+sqrt(5)/2)^38 9870002025428019 a001 5702887/103682*710647^(3/14) 9870002025428021 a001 416020/51841*710647^(5/14) 9870002025428937 a001 1762289/51841*710647^(1/4) 9870002025429060 a001 46347/2206*710647^(2/7) 9870002025431256 a001 46368/1149851*7881196^(7/11) 9870002025431304 a001 514229/103682*7881196^(1/3) 9870002025431343 a001 46368/1149851*20633239^(3/5) 9870002025431354 a001 23843770272/24157817 9870002025431357 a001 46368/1149851*141422324^(7/13) 9870002025431357 a001 46368/1149851*2537720636^(7/15) 9870002025431357 a001 46368/1149851*17393796001^(3/7) 9870002025431357 a001 46368/1149851*45537549124^(7/17) 9870002025431357 a001 46368/1149851*14662949395604^(1/3) 9870002025431357 a001 46368/1149851*(1/2+1/2*5^(1/2))^21 9870002025431357 a001 46368/1149851*192900153618^(7/18) 9870002025431357 a001 46368/1149851*10749957122^(7/16) 9870002025431357 a001 514229/103682*312119004989^(1/5) 9870002025431357 a001 514229/103682*(1/2+1/2*5^(1/2))^11 9870002025431357 a001 514229/103682*1568397607^(1/4) 9870002025431357 a001 46368/1149851*599074578^(1/2) 9870002025431362 a001 46368/1149851*33385282^(7/12) 9870002025433353 a001 46368/1149851*1860498^(7/10) 9870002025434195 a001 39088169/103682*271443^(1/13) 9870002025436396 a001 2576/103361*710647^(11/14) 9870002025440228 a001 46368/4870847*710647^(6/7) 9870002025441979 a001 15456/4250681*710647^(13/14) 9870002025443436 a004 Fibonacci(24)*Lucas(28)/(1/2+sqrt(5)/2)^36 9870002025444492 a001 7465176/51841*271443^(2/13) 9870002025446015 a001 46368/1149851*710647^(3/4) 9870002025446080 a001 514229/167761*64079^(12/23) 9870002025452551 a001 5702887/439204*64079^(9/23) 9870002025454744 a001 5702887/103682*271443^(3/13) 9870002025462148 a001 31622993/51841*103682^(1/24) 9870002025464693 a001 46347/2206*271443^(4/13) 9870002025466174 a001 317811/103682*271443^(6/13) 9870002025472562 a001 416020/51841*271443^(5/13) 9870002025475035 a001 9107509824/9227465 9870002025475058 a001 98209/51841*141422324^(1/3) 9870002025475058 a001 11592/109801*817138163596^(1/3) 9870002025475058 a001 11592/109801*(1/2+1/2*5^(1/2))^19 9870002025475058 a001 98209/51841*(1/2+1/2*5^(1/2))^13 9870002025475058 a001 98209/51841*73681302247^(1/4) 9870002025475059 a001 11592/109801*87403803^(1/2) 9870002025476533 a001 9227465/271443*64079^(7/23) 9870002025486402 a001 14930352/710647*64079^(8/23) 9870002025500403 a001 39088169/103682*103682^(1/12) 9870002025503102 a001 39088169/1860498*64079^(8/23) 9870002025505539 a001 102334155/4870847*64079^(8/23) 9870002025505894 a001 267914296/12752043*64079^(8/23) 9870002025505946 a001 701408733/33385282*64079^(8/23) 9870002025505954 a001 1836311903/87403803*64079^(8/23) 9870002025505955 a001 102287808/4868641*64079^(8/23) 9870002025505955 a001 12586269025/599074578*64079^(8/23) 9870002025505955 a001 32951280099/1568397607*64079^(8/23) 9870002025505955 a001 86267571272/4106118243*64079^(8/23) 9870002025505955 a001 225851433717/10749957122*64079^(8/23) 9870002025505955 a001 591286729879/28143753123*64079^(8/23) 9870002025505955 a001 1548008755920/73681302247*64079^(8/23) 9870002025505955 a001 4052739537881/192900153618*64079^(8/23) 9870002025505955 a001 225749145909/10745088481*64079^(8/23) 9870002025505955 a001 6557470319842/312119004989*64079^(8/23) 9870002025505955 a001 2504730781961/119218851371*64079^(8/23) 9870002025505955 a001 956722026041/45537549124*64079^(8/23) 9870002025505955 a001 365435296162/17393796001*64079^(8/23) 9870002025505955 a001 139583862445/6643838879*64079^(8/23) 9870002025505955 a001 53316291173/2537720636*64079^(8/23) 9870002025505955 a001 20365011074/969323029*64079^(8/23) 9870002025505955 a001 7778742049/370248451*64079^(8/23) 9870002025505956 a001 2971215073/141422324*64079^(8/23) 9870002025505959 a001 1134903170/54018521*64079^(8/23) 9870002025505978 a001 433494437/20633239*64079^(8/23) 9870002025506114 a001 165580141/7881196*64079^(8/23) 9870002025507045 a001 63245986/3010349*64079^(8/23) 9870002025507391 a001 6624/101521*271443^(10/13) 9870002025513424 a001 24157817/1149851*64079^(8/23) 9870002025534387 a001 2576/103361*271443^(11/13) 9870002025537948 a001 433494437/710647*24476^(1/21) 9870002025538663 a001 24157817/103682*103682^(1/8) 9870002025540273 a001 75640/15251*64079^(11/23) 9870002025542036 a001 98209/51841*271443^(1/2) 9870002025547127 a001 46368/4870847*271443^(12/13) 9870002025554640 a001 567451585/930249*24476^(1/21) 9870002025557076 a001 2971215073/4870847*24476^(1/21) 9870002025557145 a001 9227465/439204*64079^(8/23) 9870002025557431 a001 7778742049/12752043*24476^(1/21) 9870002025557483 a001 10182505537/16692641*24476^(1/21) 9870002025557491 a001 53316291173/87403803*24476^(1/21) 9870002025557492 a001 139583862445/228826127*24476^(1/21) 9870002025557492 a001 182717648081/299537289*24476^(1/21) 9870002025557492 a001 956722026041/1568397607*24476^(1/21) 9870002025557492 a001 2504730781961/4106118243*24476^(1/21) 9870002025557492 a001 3278735159921/5374978561*24476^(1/21) 9870002025557492 a001 10610209857723/17393796001*24476^(1/21) 9870002025557492 a001 4052739537881/6643838879*24476^(1/21) 9870002025557492 a001 1134903780/1860499*24476^(1/21) 9870002025557492 a001 591286729879/969323029*24476^(1/21) 9870002025557492 a001 225851433717/370248451*24476^(1/21) 9870002025557492 a001 21566892818/35355581*24476^(1/21) 9870002025557495 a001 32951280099/54018521*24476^(1/21) 9870002025557515 a001 1144206275/1875749*24476^(1/21) 9870002025557651 a001 1201881744/1970299*24476^(1/21) 9870002025557847 a004 Fibonacci(24)*Lucas(26)/(1/2+sqrt(5)/2)^34 9870002025558581 a001 1836311903/3010349*24476^(1/21) 9870002025564172 a001 75025/103682*167761^(3/5) 9870002025564957 a001 701408733/1149851*24476^(1/21) 9870002025576907 a001 7465176/51841*103682^(1/6) 9870002025581011 a001 4976784/90481*64079^(6/23) 9870002025590925 a001 24157817/710647*64079^(7/23) 9870002025607614 a001 31622993/930249*64079^(7/23) 9870002025607615 a001 9227465/64079*24476^(4/21) 9870002025608658 a001 66978574/109801*24476^(1/21) 9870002025610049 a001 165580141/4870847*64079^(7/23) 9870002025610404 a001 433494437/12752043*64079^(7/23) 9870002025610456 a001 567451585/16692641*64079^(7/23) 9870002025610464 a001 2971215073/87403803*64079^(7/23) 9870002025610465 a001 7778742049/228826127*64079^(7/23) 9870002025610465 a001 10182505537/299537289*64079^(7/23) 9870002025610465 a001 53316291173/1568397607*64079^(7/23) 9870002025610465 a001 139583862445/4106118243*64079^(7/23) 9870002025610465 a001 182717648081/5374978561*64079^(7/23) 9870002025610465 a001 956722026041/28143753123*64079^(7/23) 9870002025610465 a001 2504730781961/73681302247*64079^(7/23) 9870002025610465 a001 3278735159921/96450076809*64079^(7/23) 9870002025610465 a001 10610209857723/312119004989*64079^(7/23) 9870002025610465 a001 4052739537881/119218851371*64079^(7/23) 9870002025610465 a001 387002188980/11384387281*64079^(7/23) 9870002025610465 a001 591286729879/17393796001*64079^(7/23) 9870002025610465 a001 225851433717/6643838879*64079^(7/23) 9870002025610465 a001 1135099622/33391061*64079^(7/23) 9870002025610465 a001 32951280099/969323029*64079^(7/23) 9870002025610465 a001 12586269025/370248451*64079^(7/23) 9870002025610466 a001 1201881744/35355581*64079^(7/23) 9870002025610469 a001 1836311903/54018521*64079^(7/23) 9870002025610488 a001 701408733/20633239*64079^(7/23) 9870002025610624 a001 66978574/1970299*64079^(7/23) 9870002025611554 a001 102334155/3010349*64079^(7/23) 9870002025615195 a001 9227465/103682*103682^(5/24) 9870002025617929 a001 39088169/1149851*64079^(7/23) 9870002025635985 a001 17711/271443*39603^(10/11) 9870002025648724 a001 1346269/167761*64079^(10/23) 9870002025653367 a001 5702887/103682*103682^(1/4) 9870002025661623 a001 196452/5779*64079^(7/23) 9870002025685533 a001 24157817/271443*64079^(5/23) 9870002025691843 a001 1762289/51841*103682^(7/24) 9870002025695430 a001 39088169/710647*64079^(6/23) 9870002025709940 a001 31622993/51841*39603^(1/22) 9870002025712124 a001 831985/15126*64079^(6/23) 9870002025714559 a001 267914296/4870847*64079^(6/23) 9870002025714915 a001 233802911/4250681*64079^(6/23) 9870002025714966 a001 1836311903/33385282*64079^(6/23) 9870002025714974 a001 1602508992/29134601*64079^(6/23) 9870002025714975 a001 12586269025/228826127*64079^(6/23) 9870002025714975 a001 10983760033/199691526*64079^(6/23) 9870002025714975 a001 86267571272/1568397607*64079^(6/23) 9870002025714975 a001 75283811239/1368706081*64079^(6/23) 9870002025714975 a001 591286729879/10749957122*64079^(6/23) 9870002025714975 a001 12585437040/228811001*64079^(6/23) 9870002025714975 a001 4052739537881/73681302247*64079^(6/23) 9870002025714975 a001 3536736619241/64300051206*64079^(6/23) 9870002025714975 a001 6557470319842/119218851371*64079^(6/23) 9870002025714975 a001 2504730781961/45537549124*64079^(6/23) 9870002025714975 a001 956722026041/17393796001*64079^(6/23) 9870002025714975 a001 365435296162/6643838879*64079^(6/23) 9870002025714975 a001 139583862445/2537720636*64079^(6/23) 9870002025714975 a001 53316291173/969323029*64079^(6/23) 9870002025714975 a001 20365011074/370248451*64079^(6/23) 9870002025714976 a001 7778742049/141422324*64079^(6/23) 9870002025714979 a001 2971215073/54018521*64079^(6/23) 9870002025714998 a001 1134903170/20633239*64079^(6/23) 9870002025715134 a001 433494437/7881196*64079^(6/23) 9870002025716064 a001 165580141/3010349*64079^(6/23) 9870002025722441 a001 63245986/1149851*64079^(6/23) 9870002025729524 a001 46347/2206*103682^(1/3) 9870002025746166 a001 75025/103682*439204^(5/9) 9870002025751729 a001 2178309/167761*64079^(9/23) 9870002025766145 a001 24157817/439204*64079^(6/23) 9870002025769285 a001 1346269/103682*103682^(3/8) 9870002025774433 a001 1739379600/1762289 9870002025774519 a001 75025/103682*7881196^(5/11) 9870002025774582 a001 75025/103682*20633239^(3/7) 9870002025774591 a001 75025/103682*141422324^(5/13) 9870002025774592 a001 75025/103682*2537720636^(1/3) 9870002025774592 a001 46368/167761*45537549124^(1/3) 9870002025774592 a001 46368/167761*(1/2+1/2*5^(1/2))^17 9870002025774592 a001 75025/103682*45537549124^(5/17) 9870002025774592 a001 75025/103682*312119004989^(3/11) 9870002025774592 a001 75025/103682*14662949395604^(5/21) 9870002025774592 a001 75025/103682*(1/2+1/2*5^(1/2))^15 9870002025774592 a001 75025/103682*192900153618^(5/18) 9870002025774592 a001 75025/103682*28143753123^(3/10) 9870002025774592 a001 75025/103682*10749957122^(5/16) 9870002025774592 a001 75025/103682*599074578^(5/14) 9870002025774592 a001 75025/103682*228826127^(3/8) 9870002025774595 a001 75025/103682*33385282^(5/12) 9870002025774622 a001 46368/167761*12752043^(1/2) 9870002025776017 a001 75025/103682*1860498^(1/2) 9870002025790039 a001 39088169/271443*64079^(4/23) 9870002025799942 a001 63245986/710647*64079^(5/23) 9870002025803600 a001 416020/51841*103682^(5/12) 9870002025816634 a001 165580141/1860498*64079^(5/23) 9870002025819069 a001 433494437/4870847*64079^(5/23) 9870002025819425 a001 1134903170/12752043*64079^(5/23) 9870002025819476 a001 2971215073/33385282*64079^(5/23) 9870002025819484 a001 7778742049/87403803*64079^(5/23) 9870002025819485 a001 20365011074/228826127*64079^(5/23) 9870002025819485 a001 53316291173/599074578*64079^(5/23) 9870002025819485 a001 139583862445/1568397607*64079^(5/23) 9870002025819485 a001 365435296162/4106118243*64079^(5/23) 9870002025819485 a001 956722026041/10749957122*64079^(5/23) 9870002025819485 a001 2504730781961/28143753123*64079^(5/23) 9870002025819485 a001 6557470319842/73681302247*64079^(5/23) 9870002025819485 a001 10610209857723/119218851371*64079^(5/23) 9870002025819485 a001 4052739537881/45537549124*64079^(5/23) 9870002025819485 a001 1548008755920/17393796001*64079^(5/23) 9870002025819485 a001 591286729879/6643838879*64079^(5/23) 9870002025819485 a001 225851433717/2537720636*64079^(5/23) 9870002025819485 a001 86267571272/969323029*64079^(5/23) 9870002025819485 a001 32951280099/370248451*64079^(5/23) 9870002025819486 a001 12586269025/141422324*64079^(5/23) 9870002025819489 a001 4807526976/54018521*64079^(5/23) 9870002025819508 a001 1836311903/20633239*64079^(5/23) 9870002025819644 a001 3524667/39604*64079^(5/23) 9870002025820574 a001 267914296/3010349*64079^(5/23) 9870002025825520 a001 121393/103682*103682^(7/12) 9870002025826950 a001 102334155/1149851*64079^(5/23) 9870002025834592 a001 17711/167761*39603^(19/22) 9870002025852173 a001 514229/103682*103682^(11/24) 9870002025856814 a001 3524578/167761*64079^(8/23) 9870002025857380 a004 Fibonacci(26)*Lucas(25)/(1/2+sqrt(5)/2)^35 9870002025863420 a001 317811/103682*103682^(1/2) 9870002025870650 a001 39088169/439204*64079^(5/23) 9870002025894550 a001 63245986/271443*64079^(3/23) 9870002025904451 a001 14619165/101521*64079^(4/23) 9870002025908191 a001 9303105/15251*24476^(1/21) 9870002025921144 a001 133957148/930249*64079^(4/23) 9870002025923579 a001 701408733/4870847*64079^(4/23) 9870002025923935 a001 1836311903/12752043*64079^(4/23) 9870002025923986 a001 14930208/103681*64079^(4/23) 9870002025923994 a001 12586269025/87403803*64079^(4/23) 9870002025923995 a001 32951280099/228826127*64079^(4/23) 9870002025923995 a001 43133785636/299537289*64079^(4/23) 9870002025923995 a001 32264490531/224056801*64079^(4/23) 9870002025923995 a001 591286729879/4106118243*64079^(4/23) 9870002025923995 a001 774004377960/5374978561*64079^(4/23) 9870002025923995 a001 4052739537881/28143753123*64079^(4/23) 9870002025923995 a001 1515744265389/10525900321*64079^(4/23) 9870002025923995 a001 3278735159921/22768774562*64079^(4/23) 9870002025923995 a001 2504730781961/17393796001*64079^(4/23) 9870002025923995 a001 956722026041/6643838879*64079^(4/23) 9870002025923995 a001 182717648081/1268860318*64079^(4/23) 9870002025923995 a001 139583862445/969323029*64079^(4/23) 9870002025923995 a001 53316291173/370248451*64079^(4/23) 9870002025923996 a001 10182505537/70711162*64079^(4/23) 9870002025923999 a001 7778742049/54018521*64079^(4/23) 9870002025924018 a001 2971215073/20633239*64079^(4/23) 9870002025924154 a001 567451585/3940598*64079^(4/23) 9870002025924669 a001 121393/1860498*167761^(4/5) 9870002025925084 a001 433494437/3010349*64079^(4/23) 9870002025931460 a001 165580141/1149851*64079^(4/23) 9870002025961104 a001 5702887/167761*64079^(7/23) 9870002025971792 a004 Fibonacci(28)*Lucas(25)/(1/2+sqrt(5)/2)^37 9870002025972386 a001 98209/51841*103682^(13/24) 9870002025975162 a001 31622993/219602*64079^(4/23) 9870002025978544 a001 15456/90481*103682^(3/4) 9870002025988484 a004 Fibonacci(30)*Lucas(25)/(1/2+sqrt(5)/2)^39 9870002025990920 a004 Fibonacci(32)*Lucas(25)/(1/2+sqrt(5)/2)^41 9870002025991275 a004 Fibonacci(34)*Lucas(25)/(1/2+sqrt(5)/2)^43 9870002025991327 a004 Fibonacci(36)*Lucas(25)/(1/2+sqrt(5)/2)^45 9870002025991335 a004 Fibonacci(38)*Lucas(25)/(1/2+sqrt(5)/2)^47 9870002025991336 a004 Fibonacci(40)*Lucas(25)/(1/2+sqrt(5)/2)^49 9870002025991336 a001 370248451/75025*8^(1/3) 9870002025991336 a004 Fibonacci(42)*Lucas(25)/(1/2+sqrt(5)/2)^51 9870002025991336 a004 Fibonacci(44)*Lucas(25)/(1/2+sqrt(5)/2)^53 9870002025991336 a004 Fibonacci(46)*Lucas(25)/(1/2+sqrt(5)/2)^55 9870002025991336 a004 Fibonacci(48)*Lucas(25)/(1/2+sqrt(5)/2)^57 9870002025991336 a004 Fibonacci(50)*Lucas(25)/(1/2+sqrt(5)/2)^59 9870002025991336 a004 Fibonacci(52)*Lucas(25)/(1/2+sqrt(5)/2)^61 9870002025991336 a004 Fibonacci(54)*Lucas(25)/(1/2+sqrt(5)/2)^63 9870002025991336 a004 Fibonacci(56)*Lucas(25)/(1/2+sqrt(5)/2)^65 9870002025991336 a004 Fibonacci(58)*Lucas(25)/(1/2+sqrt(5)/2)^67 9870002025991336 a004 Fibonacci(60)*Lucas(25)/(1/2+sqrt(5)/2)^69 9870002025991336 a004 Fibonacci(62)*Lucas(25)/(1/2+sqrt(5)/2)^71 9870002025991336 a004 Fibonacci(64)*Lucas(25)/(1/2+sqrt(5)/2)^73 9870002025991336 a004 Fibonacci(66)*Lucas(25)/(1/2+sqrt(5)/2)^75 9870002025991336 a004 Fibonacci(68)*Lucas(25)/(1/2+sqrt(5)/2)^77 9870002025991336 a004 Fibonacci(70)*Lucas(25)/(1/2+sqrt(5)/2)^79 9870002025991336 a004 Fibonacci(72)*Lucas(25)/(1/2+sqrt(5)/2)^81 9870002025991336 a004 Fibonacci(74)*Lucas(25)/(1/2+sqrt(5)/2)^83 9870002025991336 a004 Fibonacci(76)*Lucas(25)/(1/2+sqrt(5)/2)^85 9870002025991336 a004 Fibonacci(78)*Lucas(25)/(1/2+sqrt(5)/2)^87 9870002025991336 a004 Fibonacci(80)*Lucas(25)/(1/2+sqrt(5)/2)^89 9870002025991336 a004 Fibonacci(82)*Lucas(25)/(1/2+sqrt(5)/2)^91 9870002025991336 a004 Fibonacci(84)*Lucas(25)/(1/2+sqrt(5)/2)^93 9870002025991336 a004 Fibonacci(86)*Lucas(25)/(1/2+sqrt(5)/2)^95 9870002025991336 a004 Fibonacci(88)*Lucas(25)/(1/2+sqrt(5)/2)^97 9870002025991336 a004 Fibonacci(90)*Lucas(25)/(1/2+sqrt(5)/2)^99 9870002025991336 a004 Fibonacci(91)*Lucas(25)/(1/2+sqrt(5)/2)^100 9870002025991336 a004 Fibonacci(89)*Lucas(25)/(1/2+sqrt(5)/2)^98 9870002025991336 a004 Fibonacci(87)*Lucas(25)/(1/2+sqrt(5)/2)^96 9870002025991336 a004 Fibonacci(85)*Lucas(25)/(1/2+sqrt(5)/2)^94 9870002025991336 a004 Fibonacci(83)*Lucas(25)/(1/2+sqrt(5)/2)^92 9870002025991336 a004 Fibonacci(81)*Lucas(25)/(1/2+sqrt(5)/2)^90 9870002025991336 a004 Fibonacci(79)*Lucas(25)/(1/2+sqrt(5)/2)^88 9870002025991336 a004 Fibonacci(77)*Lucas(25)/(1/2+sqrt(5)/2)^86 9870002025991336 a004 Fibonacci(75)*Lucas(25)/(1/2+sqrt(5)/2)^84 9870002025991336 a004 Fibonacci(73)*Lucas(25)/(1/2+sqrt(5)/2)^82 9870002025991336 a004 Fibonacci(71)*Lucas(25)/(1/2+sqrt(5)/2)^80 9870002025991336 a004 Fibonacci(69)*Lucas(25)/(1/2+sqrt(5)/2)^78 9870002025991336 a004 Fibonacci(67)*Lucas(25)/(1/2+sqrt(5)/2)^76 9870002025991336 a004 Fibonacci(65)*Lucas(25)/(1/2+sqrt(5)/2)^74 9870002025991336 a004 Fibonacci(63)*Lucas(25)/(1/2+sqrt(5)/2)^72 9870002025991336 a004 Fibonacci(61)*Lucas(25)/(1/2+sqrt(5)/2)^70 9870002025991336 a004 Fibonacci(59)*Lucas(25)/(1/2+sqrt(5)/2)^68 9870002025991336 a004 Fibonacci(57)*Lucas(25)/(1/2+sqrt(5)/2)^66 9870002025991336 a004 Fibonacci(55)*Lucas(25)/(1/2+sqrt(5)/2)^64 9870002025991336 a004 Fibonacci(53)*Lucas(25)/(1/2+sqrt(5)/2)^62 9870002025991336 a004 Fibonacci(51)*Lucas(25)/(1/2+sqrt(5)/2)^60 9870002025991336 a001 2/75025*(1/2+1/2*5^(1/2))^41 9870002025991336 a004 Fibonacci(49)*Lucas(25)/(1/2+sqrt(5)/2)^58 9870002025991336 a004 Fibonacci(47)*Lucas(25)/(1/2+sqrt(5)/2)^56 9870002025991336 a004 Fibonacci(45)*Lucas(25)/(1/2+sqrt(5)/2)^54 9870002025991336 a004 Fibonacci(43)*Lucas(25)/(1/2+sqrt(5)/2)^52 9870002025991336 a004 Fibonacci(41)*Lucas(25)/(1/2+sqrt(5)/2)^50 9870002025991336 a004 Fibonacci(39)*Lucas(25)/(1/2+sqrt(5)/2)^48 9870002025991339 a004 Fibonacci(37)*Lucas(25)/(1/2+sqrt(5)/2)^46 9870002025991359 a004 Fibonacci(35)*Lucas(25)/(1/2+sqrt(5)/2)^44 9870002025991495 a004 Fibonacci(33)*Lucas(25)/(1/2+sqrt(5)/2)^42 9870002025992425 a004 Fibonacci(31)*Lucas(25)/(1/2+sqrt(5)/2)^40 9870002025995986 a001 39088169/103682*39603^(1/11) 9870002025998801 a004 Fibonacci(29)*Lucas(25)/(1/2+sqrt(5)/2)^38 9870002025999060 a001 34111385/90481*64079^(2/23) 9870002026008962 a001 165580141/710647*64079^(3/23) 9870002026025654 a001 433494437/1860498*64079^(3/23) 9870002026028089 a001 1134903170/4870847*64079^(3/23) 9870002026028445 a001 2971215073/12752043*64079^(3/23) 9870002026028496 a001 7778742049/33385282*64079^(3/23) 9870002026028504 a001 20365011074/87403803*64079^(3/23) 9870002026028505 a001 53316291173/228826127*64079^(3/23) 9870002026028505 a001 139583862445/599074578*64079^(3/23) 9870002026028505 a001 365435296162/1568397607*64079^(3/23) 9870002026028505 a001 956722026041/4106118243*64079^(3/23) 9870002026028505 a001 2504730781961/10749957122*64079^(3/23) 9870002026028505 a001 6557470319842/28143753123*64079^(3/23) 9870002026028505 a001 10610209857723/45537549124*64079^(3/23) 9870002026028505 a001 4052739537881/17393796001*64079^(3/23) 9870002026028505 a001 1548008755920/6643838879*64079^(3/23) 9870002026028505 a001 591286729879/2537720636*64079^(3/23) 9870002026028505 a001 225851433717/969323029*64079^(3/23) 9870002026028505 a001 86267571272/370248451*64079^(3/23) 9870002026028506 a001 63246219/271444*64079^(3/23) 9870002026028509 a001 12586269025/54018521*64079^(3/23) 9870002026028528 a001 4807526976/20633239*64079^(3/23) 9870002026028664 a001 1836311903/7881196*64079^(3/23) 9870002026029594 a001 701408733/3010349*64079^(3/23) 9870002026035970 a001 267914296/1149851*64079^(3/23) 9870002026041516 a001 317811/4870847*167761^(4/5) 9870002026042502 a004 Fibonacci(27)*Lucas(25)/(1/2+sqrt(5)/2)^36 9870002026048827 a001 196418/271443*167761^(3/5) 9870002026050952 a001 28657/103682*64079^(17/23) 9870002026058564 a001 832040/12752043*167761^(4/5) 9870002026061051 a001 311187/4769326*167761^(4/5) 9870002026061414 a001 5702887/87403803*167761^(4/5) 9870002026061467 a001 14930352/228826127*167761^(4/5) 9870002026061474 a001 39088169/599074578*167761^(4/5) 9870002026061476 a001 14619165/224056801*167761^(4/5) 9870002026061476 a001 267914296/4106118243*167761^(4/5) 9870002026061476 a001 701408733/10749957122*167761^(4/5) 9870002026061476 a001 1836311903/28143753123*167761^(4/5) 9870002026061476 a001 686789568/10525900321*167761^(4/5) 9870002026061476 a001 12586269025/192900153618*167761^(4/5) 9870002026061476 a001 32951280099/505019158607*167761^(4/5) 9870002026061476 a001 86267571272/1322157322203*167761^(4/5) 9870002026061476 a001 32264490531/494493258286*167761^(4/5) 9870002026061476 a001 591286729879/9062201101803*167761^(4/5) 9870002026061476 a001 1548008755920/23725150497407*167761^(4/5) 9870002026061476 a001 365435296162/5600748293801*167761^(4/5) 9870002026061476 a001 139583862445/2139295485799*167761^(4/5) 9870002026061476 a001 53316291173/817138163596*167761^(4/5) 9870002026061476 a001 20365011074/312119004989*167761^(4/5) 9870002026061476 a001 7778742049/119218851371*167761^(4/5) 9870002026061476 a001 2971215073/45537549124*167761^(4/5) 9870002026061476 a001 1134903170/17393796001*167761^(4/5) 9870002026061476 a001 433494437/6643838879*167761^(4/5) 9870002026061476 a001 165580141/2537720636*167761^(4/5) 9870002026061476 a001 63245986/969323029*167761^(4/5) 9870002026061479 a001 24157817/370248451*167761^(4/5) 9870002026061499 a001 9227465/141422324*167761^(4/5) 9870002026061638 a001 3524578/54018521*167761^(4/5) 9870002026062588 a001 1346269/20633239*167761^(4/5) 9870002026065698 a001 9227465/167761*64079^(6/23) 9870002026067384 a001 726103/90481*167761^(2/5) 9870002026069100 a001 514229/7881196*167761^(4/5) 9870002026074125 a001 121393/271443*(1/2+1/2*5^(1/2))^16 9870002026074125 a001 121393/271443*23725150497407^(1/4) 9870002026074125 a001 121393/271443*73681302247^(4/13) 9870002026074125 a001 121393/271443*10749957122^(1/3) 9870002026074125 a001 121393/271443*4106118243^(8/23) 9870002026074125 a001 121393/271443*1568397607^(4/11) 9870002026074125 a001 121393/271443*599074578^(8/21) 9870002026074125 a001 121393/271443*228826127^(2/5) 9870002026074125 a001 121393/271443*87403803^(8/19) 9870002026074129 a001 121393/271443*33385282^(4/9) 9870002026074134 a001 14736260449/14930352 9870002026074153 a001 121393/271443*12752043^(8/17) 9870002026074333 a001 121393/271443*4870847^(1/2) 9870002026075645 a001 121393/271443*1860498^(8/15) 9870002026079671 a001 102334155/439204*64079^(3/23) 9870002026085293 a001 121393/271443*710647^(4/7) 9870002026103570 a001 165580141/271443*64079^(1/23) 9870002026107154 a001 17711/439204*39603^(21/22) 9870002026113471 a001 267914296/710647*64079^(2/23) 9870002026113731 a001 196418/3010349*167761^(4/5) 9870002026119537 a001 514229/710647*167761^(3/5) 9870002026129853 a001 1346269/1860498*167761^(3/5) 9870002026130164 a001 233802911/620166*64079^(2/23) 9870002026131359 a001 3524578/4870847*167761^(3/5) 9870002026131578 a001 9227465/12752043*167761^(3/5) 9870002026131610 a001 24157817/33385282*167761^(3/5) 9870002026131615 a001 63245986/87403803*167761^(3/5) 9870002026131616 a001 165580141/228826127*167761^(3/5) 9870002026131616 a001 433494437/599074578*167761^(3/5) 9870002026131616 a001 1134903170/1568397607*167761^(3/5) 9870002026131616 a001 2971215073/4106118243*167761^(3/5) 9870002026131616 a001 7778742049/10749957122*167761^(3/5) 9870002026131616 a001 20365011074/28143753123*167761^(3/5) 9870002026131616 a001 53316291173/73681302247*167761^(3/5) 9870002026131616 a001 139583862445/192900153618*167761^(3/5) 9870002026131616 a001 365435296162/505019158607*167761^(3/5) 9870002026131616 a001 10610209857723/14662949395604*167761^(3/5) 9870002026131616 a001 591286729879/817138163596*167761^(3/5) 9870002026131616 a001 225851433717/312119004989*167761^(3/5) 9870002026131616 a001 86267571272/119218851371*167761^(3/5) 9870002026131616 a001 32951280099/45537549124*167761^(3/5) 9870002026131616 a001 12586269025/17393796001*167761^(3/5) 9870002026131616 a001 4807526976/6643838879*167761^(3/5) 9870002026131616 a001 1836311903/2537720636*167761^(3/5) 9870002026131616 a001 701408733/969323029*167761^(3/5) 9870002026131616 a001 267914296/370248451*167761^(3/5) 9870002026131616 a001 102334155/141422324*167761^(3/5) 9870002026131618 a001 39088169/54018521*167761^(3/5) 9870002026131630 a001 14930352/20633239*167761^(3/5) 9870002026131714 a001 5702887/7881196*167761^(3/5) 9870002026132289 a001 2178309/3010349*167761^(3/5) 9870002026132599 a001 1836311903/4870847*64079^(2/23) 9870002026132955 a001 1602508992/4250681*64079^(2/23) 9870002026133006 a001 12586269025/33385282*64079^(2/23) 9870002026133014 a001 10983760033/29134601*64079^(2/23) 9870002026133015 a001 86267571272/228826127*64079^(2/23) 9870002026133015 a001 267913919/710646*64079^(2/23) 9870002026133015 a001 591286729879/1568397607*64079^(2/23) 9870002026133015 a001 516002918640/1368706081*64079^(2/23) 9870002026133015 a001 4052739537881/10749957122*64079^(2/23) 9870002026133015 a001 3536736619241/9381251041*64079^(2/23) 9870002026133015 a001 6557470319842/17393796001*64079^(2/23) 9870002026133015 a001 2504730781961/6643838879*64079^(2/23) 9870002026133015 a001 956722026041/2537720636*64079^(2/23) 9870002026133015 a001 365435296162/969323029*64079^(2/23) 9870002026133015 a001 139583862445/370248451*64079^(2/23) 9870002026133016 a001 53316291173/141422324*64079^(2/23) 9870002026133019 a001 20365011074/54018521*64079^(2/23) 9870002026133038 a001 7778742049/20633239*64079^(2/23) 9870002026133174 a001 2971215073/7881196*64079^(2/23) 9870002026134104 a001 1134903170/3010349*64079^(2/23) 9870002026136229 a001 832040/1149851*167761^(3/5) 9870002026137944 a001 24157817/271443*167761^(1/5) 9870002026140480 a001 433494437/1149851*64079^(2/23) 9870002026154425 a001 121393/710647*439204^(2/3) 9870002026156559 a001 121393/271443*271443^(8/13) 9870002026156914 a004 Fibonacci(26)*Lucas(27)/(1/2+sqrt(5)/2)^37 9870002026162538 a001 121393/12752043*439204^(8/9) 9870002026163238 a001 317811/439204*167761^(3/5) 9870002026169373 a001 121393/3010349*439204^(7/9) 9870002026169468 a001 6624/101521*103682^(5/6) 9870002026170176 a001 14930352/167761*64079^(5/23) 9870002026182151 a001 5702887/710647*167761^(2/5) 9870002026182488 a001 832040/271443*439204^(4/9) 9870002026184182 a001 165580141/439204*64079^(2/23) 9870002026188450 a001 121393/710647*7881196^(6/11) 9870002026188527 a001 105937/90481*20633239^(2/5) 9870002026188536 a001 121393/710647*141422324^(6/13) 9870002026188536 a001 121393/710647*2537720636^(2/5) 9870002026188536 a001 105937/90481*17393796001^(2/7) 9870002026188536 a001 121393/710647*45537549124^(6/17) 9870002026188536 a001 121393/710647*14662949395604^(2/7) 9870002026188536 a001 121393/710647*(1/2+1/2*5^(1/2))^18 9870002026188536 a001 121393/710647*192900153618^(1/3) 9870002026188536 a001 105937/90481*14662949395604^(2/9) 9870002026188536 a001 105937/90481*(1/2+1/2*5^(1/2))^14 9870002026188536 a001 105937/90481*505019158607^(1/4) 9870002026188536 a001 105937/90481*10749957122^(7/24) 9870002026188536 a001 121393/710647*10749957122^(3/8) 9870002026188536 a001 105937/90481*4106118243^(7/23) 9870002026188536 a001 121393/710647*4106118243^(9/23) 9870002026188536 a001 105937/90481*1568397607^(7/22) 9870002026188536 a001 121393/710647*1568397607^(9/22) 9870002026188536 a001 105937/90481*599074578^(1/3) 9870002026188536 a001 121393/710647*599074578^(3/7) 9870002026188536 a001 105937/90481*228826127^(7/20) 9870002026188536 a001 121393/710647*228826127^(9/20) 9870002026188537 a001 105937/90481*87403803^(7/19) 9870002026188537 a001 121393/710647*87403803^(9/19) 9870002026188538 a001 38580030723/39088169 9870002026188540 a001 105937/90481*33385282^(7/18) 9870002026188541 a001 121393/710647*33385282^(1/2) 9870002026188561 a001 105937/90481*12752043^(7/17) 9870002026188568 a001 121393/710647*12752043^(9/17) 9870002026188718 a001 105937/90481*4870847^(7/16) 9870002026188770 a001 121393/710647*4870847^(9/16) 9870002026189867 a001 105937/90481*1860498^(7/15) 9870002026190247 a001 121393/710647*1860498^(3/5) 9870002026191183 a001 3524578/271443*439204^(1/3) 9870002026196701 a001 4976784/90481*439204^(2/9) 9870002026198308 a001 105937/90481*710647^(1/2) 9870002026198895 a001 829464/103361*167761^(2/5) 9870002026200615 a004 Fibonacci(26)*Lucas(29)/(1/2+sqrt(5)/2)^39 9870002026201100 a001 121393/710647*710647^(9/14) 9870002026201338 a001 39088169/4870847*167761^(2/5) 9870002026201695 a001 34111385/4250681*167761^(2/5) 9870002026201747 a001 133957148/16692641*167761^(2/5) 9870002026201754 a001 233802911/29134601*167761^(2/5) 9870002026201755 a001 1836311903/228826127*167761^(2/5) 9870002026201756 a001 267084832/33281921*167761^(2/5) 9870002026201756 a001 12586269025/1568397607*167761^(2/5) 9870002026201756 a001 10983760033/1368706081*167761^(2/5) 9870002026201756 a001 43133785636/5374978561*167761^(2/5) 9870002026201756 a001 75283811239/9381251041*167761^(2/5) 9870002026201756 a001 591286729879/73681302247*167761^(2/5) 9870002026201756 a001 86000486440/10716675201*167761^(2/5) 9870002026201756 a001 4052739537881/505019158607*167761^(2/5) 9870002026201756 a001 3536736619241/440719107401*167761^(2/5) 9870002026201756 a001 3278735159921/408569081798*167761^(2/5) 9870002026201756 a001 2504730781961/312119004989*167761^(2/5) 9870002026201756 a001 956722026041/119218851371*167761^(2/5) 9870002026201756 a001 182717648081/22768774562*167761^(2/5) 9870002026201756 a001 139583862445/17393796001*167761^(2/5) 9870002026201756 a001 53316291173/6643838879*167761^(2/5) 9870002026201756 a001 10182505537/1268860318*167761^(2/5) 9870002026201756 a001 7778742049/969323029*167761^(2/5) 9870002026201756 a001 2971215073/370248451*167761^(2/5) 9870002026201756 a001 567451585/70711162*167761^(2/5) 9870002026201759 a001 433494437/54018521*167761^(2/5) 9870002026201779 a001 165580141/20633239*167761^(2/5) 9870002026201915 a001 31622993/3940598*167761^(2/5) 9870002026201922 a001 11592/109801*103682^(19/24) 9870002026202395 a001 63245986/271443*439204^(1/9) 9870002026202848 a001 24157817/3010349*167761^(2/5) 9870002026205171 a001 832040/271443*7881196^(4/11) 9870002026205215 a001 121393/1860498*20633239^(4/7) 9870002026205228 a001 832040/271443*141422324^(4/13) 9870002026205229 a001 121393/1860498*2537720636^(4/9) 9870002026205229 a001 832040/271443*2537720636^(4/15) 9870002026205229 a001 121393/1860498*(1/2+1/2*5^(1/2))^20 9870002026205229 a001 121393/1860498*23725150497407^(5/16) 9870002026205229 a001 121393/1860498*505019158607^(5/14) 9870002026205229 a001 832040/271443*45537549124^(4/17) 9870002026205229 a001 121393/1860498*73681302247^(5/13) 9870002026205229 a001 832040/271443*817138163596^(4/19) 9870002026205229 a001 832040/271443*14662949395604^(4/21) 9870002026205229 a001 832040/271443*(1/2+1/2*5^(1/2))^12 9870002026205229 a001 832040/271443*192900153618^(2/9) 9870002026205229 a001 832040/271443*73681302247^(3/13) 9870002026205229 a001 121393/1860498*28143753123^(2/5) 9870002026205229 a001 832040/271443*10749957122^(1/4) 9870002026205229 a001 121393/1860498*10749957122^(5/12) 9870002026205229 a001 832040/271443*4106118243^(6/23) 9870002026205229 a001 121393/1860498*4106118243^(10/23) 9870002026205229 a001 832040/271443*1568397607^(3/11) 9870002026205229 a001 121393/1860498*1568397607^(5/11) 9870002026205229 a001 832040/271443*599074578^(2/7) 9870002026205229 a001 121393/1860498*599074578^(10/21) 9870002026205229 a001 832040/271443*228826127^(3/10) 9870002026205229 a001 121393/1860498*228826127^(1/2) 9870002026205229 a001 1836433304/1860621 9870002026205229 a001 832040/271443*87403803^(6/19) 9870002026205229 a001 121393/1860498*87403803^(10/19) 9870002026205232 a001 832040/271443*33385282^(1/3) 9870002026205234 a001 121393/1860498*33385282^(5/9) 9870002026205250 a001 832040/271443*12752043^(6/17) 9870002026205264 a001 121393/1860498*12752043^(10/17) 9870002026205385 a001 832040/271443*4870847^(3/8) 9870002026205489 a001 121393/1860498*4870847^(5/8) 9870002026206369 a001 832040/271443*1860498^(2/5) 9870002026206991 a004 Fibonacci(26)*Lucas(31)/(1/2+sqrt(5)/2)^41 9870002026207130 a001 121393/1860498*1860498^(2/3) 9870002026207558 a001 121393/4870847*7881196^(2/3) 9870002026207657 a001 726103/90481*20633239^(2/7) 9870002026207664 a001 726103/90481*2537720636^(2/9) 9870002026207664 a001 121393/4870847*312119004989^(2/5) 9870002026207664 a001 121393/4870847*(1/2+1/2*5^(1/2))^22 9870002026207664 a001 726103/90481*312119004989^(2/11) 9870002026207664 a001 726103/90481*(1/2+1/2*5^(1/2))^10 9870002026207664 a001 726103/90481*28143753123^(1/5) 9870002026207664 a001 726103/90481*10749957122^(5/24) 9870002026207664 a001 121393/4870847*10749957122^(11/24) 9870002026207664 a001 726103/90481*4106118243^(5/23) 9870002026207664 a001 121393/4870847*4106118243^(11/23) 9870002026207664 a001 726103/90481*1568397607^(5/22) 9870002026207664 a001 121393/4870847*1568397607^(1/2) 9870002026207664 a001 726103/90481*599074578^(5/21) 9870002026207664 a001 121393/4870847*599074578^(11/21) 9870002026207664 a001 264431464437/267914296 9870002026207664 a001 726103/90481*228826127^(1/4) 9870002026207664 a001 121393/4870847*228826127^(11/20) 9870002026207664 a001 726103/90481*87403803^(5/19) 9870002026207665 a001 121393/4870847*87403803^(11/19) 9870002026207666 a001 726103/90481*33385282^(5/18) 9870002026207669 a001 121393/4870847*33385282^(11/18) 9870002026207682 a001 726103/90481*12752043^(5/17) 9870002026207703 a001 121393/4870847*12752043^(11/17) 9870002026207794 a001 726103/90481*4870847^(5/16) 9870002026207904 a001 121393/12752043*7881196^(8/11) 9870002026207921 a004 Fibonacci(26)*Lucas(33)/(1/2+sqrt(5)/2)^43 9870002026207935 a001 121393/228826127*7881196^(10/11) 9870002026207950 a001 121393/4870847*4870847^(11/16) 9870002026207953 a001 121393/54018521*7881196^(9/11) 9870002026208019 a001 121393/12752043*141422324^(8/13) 9870002026208019 a001 121393/12752043*2537720636^(8/15) 9870002026208019 a001 121393/12752043*45537549124^(8/17) 9870002026208019 a001 121393/12752043*14662949395604^(8/21) 9870002026208019 a001 121393/12752043*(1/2+1/2*5^(1/2))^24 9870002026208019 a001 121393/12752043*192900153618^(4/9) 9870002026208019 a001 121393/12752043*73681302247^(6/13) 9870002026208019 a001 5702887/271443*(1/2+1/2*5^(1/2))^8 9870002026208019 a001 5702887/271443*23725150497407^(1/8) 9870002026208019 a001 5702887/271443*505019158607^(1/7) 9870002026208019 a001 5702887/271443*73681302247^(2/13) 9870002026208019 a001 5702887/271443*10749957122^(1/6) 9870002026208019 a001 121393/12752043*10749957122^(1/2) 9870002026208019 a001 5702887/271443*4106118243^(4/23) 9870002026208019 a001 121393/12752043*4106118243^(12/23) 9870002026208019 a001 5702887/271443*1568397607^(2/11) 9870002026208019 a001 121393/12752043*1568397607^(6/11) 9870002026208019 a001 692290561591/701408733 9870002026208019 a001 5702887/271443*599074578^(4/21) 9870002026208019 a001 121393/12752043*599074578^(4/7) 9870002026208019 a001 5702887/271443*228826127^(1/5) 9870002026208019 a001 121393/12752043*228826127^(3/5) 9870002026208020 a001 5702887/271443*87403803^(4/19) 9870002026208020 a001 121393/12752043*87403803^(12/19) 9870002026208021 a001 5702887/271443*33385282^(2/9) 9870002026208025 a001 121393/12752043*33385282^(2/3) 9870002026208034 a001 5702887/271443*12752043^(4/17) 9870002026208042 a001 4976784/90481*7881196^(2/11) 9870002026208057 a004 Fibonacci(26)*Lucas(35)/(1/2+sqrt(5)/2)^45 9870002026208060 a001 121393/228826127*20633239^(6/7) 9870002026208060 a001 121393/87403803*20633239^(4/5) 9870002026208062 a001 121393/12752043*12752043^(12/17) 9870002026208066 a001 63245986/271443*7881196^(1/11) 9870002026208071 a001 121393/33385282*141422324^(2/3) 9870002026208071 a001 4976784/90481*141422324^(2/13) 9870002026208071 a001 4976784/90481*2537720636^(2/15) 9870002026208071 a001 121393/33385282*(1/2+1/2*5^(1/2))^26 9870002026208071 a001 121393/33385282*73681302247^(1/2) 9870002026208071 a001 4976784/90481*45537549124^(2/17) 9870002026208071 a001 4976784/90481*14662949395604^(2/21) 9870002026208071 a001 4976784/90481*(1/2+1/2*5^(1/2))^6 9870002026208071 a001 4976784/90481*10749957122^(1/8) 9870002026208071 a001 121393/33385282*10749957122^(13/24) 9870002026208071 a001 4976784/90481*4106118243^(3/23) 9870002026208071 a001 121393/33385282*4106118243^(13/23) 9870002026208071 a001 4976784/90481*1568397607^(3/22) 9870002026208071 a001 1812440220336/1836311903 9870002026208071 a001 121393/33385282*1568397607^(13/22) 9870002026208071 a001 4976784/90481*599074578^(1/7) 9870002026208071 a001 121393/33385282*599074578^(13/21) 9870002026208071 a001 4976784/90481*228826127^(3/20) 9870002026208071 a001 121393/33385282*228826127^(13/20) 9870002026208071 a001 4976784/90481*87403803^(3/19) 9870002026208072 a001 121393/33385282*87403803^(13/19) 9870002026208073 a001 4976784/90481*33385282^(1/6) 9870002026208077 a004 Fibonacci(26)*Lucas(37)/(1/2+sqrt(5)/2)^47 9870002026208078 a001 121393/33385282*33385282^(13/18) 9870002026208079 a001 121393/87403803*17393796001^(4/7) 9870002026208079 a001 121393/87403803*14662949395604^(4/9) 9870002026208079 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^28/Lucas(38) 9870002026208079 a001 121393/87403803*505019158607^(1/2) 9870002026208079 a001 121393/87403803*73681302247^(7/13) 9870002026208079 a001 39088169/271443*(1/2+1/2*5^(1/2))^4 9870002026208079 a001 39088169/271443*23725150497407^(1/16) 9870002026208079 a001 39088169/271443*73681302247^(1/13) 9870002026208079 a001 39088169/271443*10749957122^(1/12) 9870002026208079 a001 121393/87403803*10749957122^(7/12) 9870002026208079 a001 39088169/271443*4106118243^(2/23) 9870002026208079 a001 4745030099417/4807526976 9870002026208079 a001 121393/87403803*4106118243^(14/23) 9870002026208079 a001 39088169/271443*1568397607^(1/11) 9870002026208079 a001 121393/87403803*1568397607^(7/11) 9870002026208079 a001 39088169/271443*599074578^(2/21) 9870002026208079 a001 121393/87403803*599074578^(2/3) 9870002026208079 a001 39088169/271443*228826127^(1/10) 9870002026208079 a001 121393/87403803*228826127^(7/10) 9870002026208079 a001 39088169/271443*87403803^(2/19) 9870002026208079 a001 121393/228826127*141422324^(10/13) 9870002026208080 a004 Fibonacci(26)*Lucas(39)/(1/2+sqrt(5)/2)^49 9870002026208080 a001 121393/4106118243*141422324^(12/13) 9870002026208080 a001 121393/969323029*141422324^(11/13) 9870002026208080 a001 121393/87403803*87403803^(14/19) 9870002026208080 a001 39088169/271443*33385282^(1/9) 9870002026208080 a001 121393/228826127*2537720636^(2/3) 9870002026208080 a001 121393/228826127*45537549124^(10/17) 9870002026208080 a001 121393/228826127*312119004989^(6/11) 9870002026208080 a001 121393/228826127*14662949395604^(10/21) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^30/Lucas(40) 9870002026208080 a001 121393/228826127*192900153618^(5/9) 9870002026208080 a001 34111385/90481*(1/2+1/2*5^(1/2))^2 9870002026208080 a001 34111385/90481*10749957122^(1/24) 9870002026208080 a001 121393/228826127*28143753123^(3/5) 9870002026208080 a001 225866365053/228841255 9870002026208080 a001 34111385/90481*4106118243^(1/23) 9870002026208080 a001 121393/228826127*10749957122^(5/8) 9870002026208080 a001 34111385/90481*1568397607^(1/22) 9870002026208080 a001 121393/228826127*4106118243^(15/23) 9870002026208080 a001 34111385/90481*599074578^(1/21) 9870002026208080 a001 121393/228826127*1568397607^(15/22) 9870002026208080 a001 34111385/90481*228826127^(1/20) 9870002026208080 a001 121393/228826127*599074578^(5/7) 9870002026208080 a001 34111385/90481*87403803^(1/19) 9870002026208080 a004 Fibonacci(26)*Lucas(41)/(1/2+sqrt(5)/2)^51 9870002026208080 a001 121393/228826127*228826127^(3/4) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^32/Lucas(42) 9870002026208080 a001 121393/599074578*23725150497407^(1/2) 9870002026208080 a001 121393/599074578*505019158607^(4/7) 9870002026208080 a001 121393/599074578*73681302247^(8/13) 9870002026208080 a001 267914296/271443 9870002026208080 a001 121393/599074578*10749957122^(2/3) 9870002026208080 a001 121393/599074578*4106118243^(16/23) 9870002026208080 a001 121393/599074578*1568397607^(8/11) 9870002026208080 a004 Fibonacci(26)*Lucas(43)/(1/2+sqrt(5)/2)^53 9870002026208080 a001 121393/599074578*599074578^(16/21) 9870002026208080 a001 121393/1568397607*45537549124^(2/3) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^34/Lucas(44) 9870002026208080 a001 85146110325069/86267571272 9870002026208080 a004 Fibonacci(44)/Lucas(26)/(1/2+sqrt(5)/2)^2 9870002026208080 a001 121393/1568397607*10749957122^(17/24) 9870002026208080 a001 121393/1568397607*4106118243^(17/23) 9870002026208080 a001 121393/4106118243*2537720636^(4/5) 9870002026208080 a004 Fibonacci(26)*Lucas(45)/(1/2+sqrt(5)/2)^55 9870002026208080 a001 121393/73681302247*2537720636^(14/15) 9870002026208080 a001 121393/28143753123*2537720636^(8/9) 9870002026208080 a001 121393/17393796001*2537720636^(13/15) 9870002026208080 a001 121393/1568397607*1568397607^(17/22) 9870002026208080 a001 121393/4106118243*45537549124^(12/17) 9870002026208080 a001 121393/4106118243*14662949395604^(4/7) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^36/Lucas(46) 9870002026208080 a001 121393/4106118243*505019158607^(9/14) 9870002026208080 a001 222915410840879/225851433717 9870002026208080 a001 121393/4106118243*192900153618^(2/3) 9870002026208080 a001 121393/4106118243*73681302247^(9/13) 9870002026208080 a004 Fibonacci(46)/Lucas(26)/(1/2+sqrt(5)/2)^4 9870002026208080 a001 121393/4106118243*10749957122^(3/4) 9870002026208080 a004 Fibonacci(26)*Lucas(47)/(1/2+sqrt(5)/2)^57 9870002026208080 a001 121393/4106118243*4106118243^(18/23) 9870002026208080 a001 121393/10749957122*817138163596^(2/3) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^38/Lucas(48) 9870002026208080 a001 583600122197568/591286729879 9870002026208080 a004 Fibonacci(48)/Lucas(26)/(1/2+sqrt(5)/2)^6 9870002026208080 a004 Fibonacci(26)*Lucas(49)/(1/2+sqrt(5)/2)^59 9870002026208080 a001 121393/73681302247*17393796001^(6/7) 9870002026208080 a001 121393/10749957122*10749957122^(19/24) 9870002026208080 a001 121393/28143753123*312119004989^(8/11) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^40/Lucas(50) 9870002026208080 a001 121393/28143753123*23725150497407^(5/8) 9870002026208080 a001 27779726468215/28145613744 9870002026208080 a001 121393/28143753123*73681302247^(10/13) 9870002026208080 a004 Fibonacci(50)/Lucas(26)/(1/2+sqrt(5)/2)^8 9870002026208080 a001 121393/73681302247*45537549124^(14/17) 9870002026208080 a004 Fibonacci(26)*Lucas(51)/(1/2+sqrt(5)/2)^61 9870002026208080 a001 121393/1322157322203*45537549124^(16/17) 9870002026208080 a001 121393/312119004989*45537549124^(15/17) 9870002026208080 a001 121393/28143753123*28143753123^(4/5) 9870002026208080 a001 121393/73681302247*817138163596^(14/19) 9870002026208080 a001 121393/73681302247*14662949395604^(2/3) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^42/Lucas(52) 9870002026208080 a001 4000054745057907/4052739537881 9870002026208080 a001 121393/73681302247*505019158607^(3/4) 9870002026208080 a001 121393/73681302247*192900153618^(7/9) 9870002026208080 a004 Fibonacci(26)*Lucas(53)/(1/2+sqrt(5)/2)^63 9870002026208080 a001 121393/192900153618*312119004989^(4/5) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^44/Lucas(54) 9870002026208080 a001 121393/192900153618*23725150497407^(11/16) 9870002026208080 a001 10472279279421896/10610209857723 9870002026208080 a004 Fibonacci(26)*Lucas(55)/(1/2+sqrt(5)/2)^65 9870002026208080 a001 121393/3461452808002*312119004989^(10/11) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^46/Lucas(56) 9870002026208080 a004 Fibonacci(26)*Lucas(57)/(1/2+sqrt(5)/2)^67 9870002026208080 a001 121393/1322157322203*14662949395604^(16/21) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^48/Lucas(58) 9870002026208080 a004 Fibonacci(26)*Lucas(59)/(1/2+sqrt(5)/2)^69 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^50/Lucas(60) 9870002026208080 a004 Fibonacci(26)*Lucas(61)/(1/2+sqrt(5)/2)^71 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^52/Lucas(62) 9870002026208080 a004 Fibonacci(26)*Lucas(63)/(1/2+sqrt(5)/2)^73 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^54/Lucas(64) 9870002026208080 a004 Fibonacci(26)*Lucas(65)/(1/2+sqrt(5)/2)^75 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^56/Lucas(66) 9870002026208080 a004 Fibonacci(26)*Lucas(67)/(1/2+sqrt(5)/2)^77 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^58/Lucas(68) 9870002026208080 a004 Fibonacci(26)*Lucas(69)/(1/2+sqrt(5)/2)^79 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^60/Lucas(70) 9870002026208080 a004 Fibonacci(26)*Lucas(71)/(1/2+sqrt(5)/2)^81 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^62/Lucas(72) 9870002026208080 a004 Fibonacci(26)*Lucas(73)/(1/2+sqrt(5)/2)^83 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^64/Lucas(74) 9870002026208080 a004 Fibonacci(26)*Lucas(75)/(1/2+sqrt(5)/2)^85 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^66/Lucas(76) 9870002026208080 a004 Fibonacci(26)*Lucas(77)/(1/2+sqrt(5)/2)^87 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^68/Lucas(78) 9870002026208080 a004 Fibonacci(26)*Lucas(79)/(1/2+sqrt(5)/2)^89 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^70/Lucas(80) 9870002026208080 a004 Fibonacci(26)*Lucas(81)/(1/2+sqrt(5)/2)^91 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^72/Lucas(82) 9870002026208080 a004 Fibonacci(26)*Lucas(83)/(1/2+sqrt(5)/2)^93 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^74/Lucas(84) 9870002026208080 a004 Fibonacci(26)*Lucas(85)/(1/2+sqrt(5)/2)^95 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^76/Lucas(86) 9870002026208080 a004 Fibonacci(26)*Lucas(87)/(1/2+sqrt(5)/2)^97 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^78/Lucas(88) 9870002026208080 a004 Fibonacci(26)*Lucas(89)/(1/2+sqrt(5)/2)^99 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^80/Lucas(90) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^82/Lucas(92) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^84/Lucas(94) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^86/Lucas(96) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^88/Lucas(98) 9870002026208080 a004 Fibonacci(13)*Lucas(13)/(1/2+sqrt(5)/2)^10 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^89/Lucas(99) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^90/Lucas(100) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^87/Lucas(97) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^85/Lucas(95) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^83/Lucas(93) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^81/Lucas(91) 9870002026208080 a004 Fibonacci(26)*Lucas(90)/(1/2+sqrt(5)/2)^100 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^79/Lucas(89) 9870002026208080 a004 Fibonacci(26)*Lucas(88)/(1/2+sqrt(5)/2)^98 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^77/Lucas(87) 9870002026208080 a004 Fibonacci(26)*Lucas(86)/(1/2+sqrt(5)/2)^96 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^75/Lucas(85) 9870002026208080 a004 Fibonacci(26)*Lucas(84)/(1/2+sqrt(5)/2)^94 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^73/Lucas(83) 9870002026208080 a004 Fibonacci(26)*Lucas(82)/(1/2+sqrt(5)/2)^92 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^71/Lucas(81) 9870002026208080 a004 Fibonacci(26)*Lucas(80)/(1/2+sqrt(5)/2)^90 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^69/Lucas(79) 9870002026208080 a004 Fibonacci(26)*Lucas(78)/(1/2+sqrt(5)/2)^88 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^67/Lucas(77) 9870002026208080 a004 Fibonacci(26)*Lucas(76)/(1/2+sqrt(5)/2)^86 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^65/Lucas(75) 9870002026208080 a004 Fibonacci(26)*Lucas(74)/(1/2+sqrt(5)/2)^84 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^63/Lucas(73) 9870002026208080 a004 Fibonacci(26)*Lucas(72)/(1/2+sqrt(5)/2)^82 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^61/Lucas(71) 9870002026208080 a004 Fibonacci(26)*Lucas(70)/(1/2+sqrt(5)/2)^80 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^59/Lucas(69) 9870002026208080 a004 Fibonacci(26)*Lucas(68)/(1/2+sqrt(5)/2)^78 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^57/Lucas(67) 9870002026208080 a004 Fibonacci(26)*Lucas(66)/(1/2+sqrt(5)/2)^76 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^55/Lucas(65) 9870002026208080 a004 Fibonacci(26)*Lucas(64)/(1/2+sqrt(5)/2)^74 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^53/Lucas(63) 9870002026208080 a004 Fibonacci(26)*Lucas(62)/(1/2+sqrt(5)/2)^72 9870002026208080 a001 121393/5600748293801*14662949395604^(17/21) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^51/Lucas(61) 9870002026208080 a004 Fibonacci(26)*Lucas(60)/(1/2+sqrt(5)/2)^70 9870002026208080 a001 121393/2139295485799*14662949395604^(7/9) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^49/Lucas(59) 9870002026208080 a004 Fibonacci(26)*Lucas(58)/(1/2+sqrt(5)/2)^68 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^47/Lucas(57) 9870002026208080 a001 121393/9062201101803*505019158607^(13/14) 9870002026208080 a001 121393/2139295485799*505019158607^(7/8) 9870002026208080 a004 Fibonacci(26)*Lucas(56)/(1/2+sqrt(5)/2)^66 9870002026208080 a001 121393/312119004989*14662949395604^(5/7) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^45/Lucas(55) 9870002026208080 a001 121393/1322157322203*192900153618^(8/9) 9870002026208080 a001 121393/5600748293801*192900153618^(17/18) 9870002026208080 a004 Fibonacci(26)*Lucas(54)/(1/2+sqrt(5)/2)^64 9870002026208080 a001 121393/312119004989*192900153618^(5/6) 9870002026208080 a001 6472224534363989/6557470319842 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^43/Lucas(53) 9870002026208080 a001 121393/192900153618*73681302247^(11/13) 9870002026208080 a004 Fibonacci(54)/Lucas(26)/(1/2+sqrt(5)/2)^12 9870002026208080 a001 121393/1322157322203*73681302247^(12/13) 9870002026208080 a004 Fibonacci(56)/Lucas(26)/(1/2+sqrt(5)/2)^14 9870002026208080 a004 Fibonacci(58)/Lucas(26)/(1/2+sqrt(5)/2)^16 9870002026208080 a004 Fibonacci(60)/Lucas(26)/(1/2+sqrt(5)/2)^18 9870002026208080 a004 Fibonacci(62)/Lucas(26)/(1/2+sqrt(5)/2)^20 9870002026208080 a004 Fibonacci(64)/Lucas(26)/(1/2+sqrt(5)/2)^22 9870002026208080 a004 Fibonacci(66)/Lucas(26)/(1/2+sqrt(5)/2)^24 9870002026208080 a004 Fibonacci(68)/Lucas(26)/(1/2+sqrt(5)/2)^26 9870002026208080 a004 Fibonacci(70)/Lucas(26)/(1/2+sqrt(5)/2)^28 9870002026208080 a004 Fibonacci(72)/Lucas(26)/(1/2+sqrt(5)/2)^30 9870002026208080 a004 Fibonacci(74)/Lucas(26)/(1/2+sqrt(5)/2)^32 9870002026208080 a004 Fibonacci(76)/Lucas(26)/(1/2+sqrt(5)/2)^34 9870002026208080 a004 Fibonacci(78)/Lucas(26)/(1/2+sqrt(5)/2)^36 9870002026208080 a004 Fibonacci(80)/Lucas(26)/(1/2+sqrt(5)/2)^38 9870002026208080 a004 Fibonacci(82)/Lucas(26)/(1/2+sqrt(5)/2)^40 9870002026208080 a004 Fibonacci(84)/Lucas(26)/(1/2+sqrt(5)/2)^42 9870002026208080 a004 Fibonacci(86)/Lucas(26)/(1/2+sqrt(5)/2)^44 9870002026208080 a004 Fibonacci(88)/Lucas(26)/(1/2+sqrt(5)/2)^46 9870002026208080 a004 Fibonacci(90)/Lucas(26)/(1/2+sqrt(5)/2)^48 9870002026208080 a004 Fibonacci(92)/Lucas(26)/(1/2+sqrt(5)/2)^50 9870002026208080 a004 Fibonacci(94)/Lucas(26)/(1/2+sqrt(5)/2)^52 9870002026208080 a004 Fibonacci(96)/Lucas(26)/(1/2+sqrt(5)/2)^54 9870002026208080 a004 Fibonacci(98)/Lucas(26)/(1/2+sqrt(5)/2)^56 9870002026208080 a004 Fibonacci(100)/Lucas(26)/(1/2+sqrt(5)/2)^58 9870002026208080 a004 Fibonacci(26)*Lucas(52)/(1/2+sqrt(5)/2)^62 9870002026208080 a004 Fibonacci(99)/Lucas(26)/(1/2+sqrt(5)/2)^57 9870002026208080 a004 Fibonacci(97)/Lucas(26)/(1/2+sqrt(5)/2)^55 9870002026208080 a004 Fibonacci(95)/Lucas(26)/(1/2+sqrt(5)/2)^53 9870002026208080 a004 Fibonacci(93)/Lucas(26)/(1/2+sqrt(5)/2)^51 9870002026208080 a004 Fibonacci(91)/Lucas(26)/(1/2+sqrt(5)/2)^49 9870002026208080 a004 Fibonacci(89)/Lucas(26)/(1/2+sqrt(5)/2)^47 9870002026208080 a004 Fibonacci(87)/Lucas(26)/(1/2+sqrt(5)/2)^45 9870002026208080 a004 Fibonacci(85)/Lucas(26)/(1/2+sqrt(5)/2)^43 9870002026208080 a004 Fibonacci(83)/Lucas(26)/(1/2+sqrt(5)/2)^41 9870002026208080 a004 Fibonacci(81)/Lucas(26)/(1/2+sqrt(5)/2)^39 9870002026208080 a004 Fibonacci(79)/Lucas(26)/(1/2+sqrt(5)/2)^37 9870002026208080 a004 Fibonacci(77)/Lucas(26)/(1/2+sqrt(5)/2)^35 9870002026208080 a004 Fibonacci(75)/Lucas(26)/(1/2+sqrt(5)/2)^33 9870002026208080 a004 Fibonacci(73)/Lucas(26)/(1/2+sqrt(5)/2)^31 9870002026208080 a004 Fibonacci(71)/Lucas(26)/(1/2+sqrt(5)/2)^29 9870002026208080 a004 Fibonacci(69)/Lucas(26)/(1/2+sqrt(5)/2)^27 9870002026208080 a004 Fibonacci(67)/Lucas(26)/(1/2+sqrt(5)/2)^25 9870002026208080 a004 Fibonacci(65)/Lucas(26)/(1/2+sqrt(5)/2)^23 9870002026208080 a004 Fibonacci(63)/Lucas(26)/(1/2+sqrt(5)/2)^21 9870002026208080 a004 Fibonacci(61)/Lucas(26)/(1/2+sqrt(5)/2)^19 9870002026208080 a004 Fibonacci(59)/Lucas(26)/(1/2+sqrt(5)/2)^17 9870002026208080 a004 Fibonacci(57)/Lucas(26)/(1/2+sqrt(5)/2)^15 9870002026208080 a004 Fibonacci(55)/Lucas(26)/(1/2+sqrt(5)/2)^13 9870002026208080 a004 Fibonacci(53)/Lucas(26)/(1/2+sqrt(5)/2)^11 9870002026208080 a001 2472169789306082/2504730781961 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^41/Lucas(51) 9870002026208080 a004 Fibonacci(51)/Lucas(26)/(1/2+sqrt(5)/2)^9 9870002026208080 a001 121393/312119004989*28143753123^(9/10) 9870002026208080 a004 Fibonacci(26)*Lucas(50)/(1/2+sqrt(5)/2)^60 9870002026208080 a001 121393/17393796001*45537549124^(13/17) 9870002026208080 a001 944284833554257/956722026041 9870002026208080 a001 121393/17393796001*14662949395604^(13/21) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^39/Lucas(49) 9870002026208080 a001 121393/17393796001*192900153618^(13/18) 9870002026208080 a001 121393/17393796001*73681302247^(3/4) 9870002026208080 a004 Fibonacci(49)/Lucas(26)/(1/2+sqrt(5)/2)^7 9870002026208080 a001 121393/28143753123*10749957122^(5/6) 9870002026208080 a001 121393/73681302247*10749957122^(7/8) 9870002026208080 a001 121393/192900153618*10749957122^(11/12) 9870002026208080 a001 121393/312119004989*10749957122^(15/16) 9870002026208080 a001 121393/505019158607*10749957122^(23/24) 9870002026208080 a004 Fibonacci(26)*Lucas(48)/(1/2+sqrt(5)/2)^58 9870002026208080 a001 121393/17393796001*10749957122^(13/16) 9870002026208080 a001 360684711356689/365435296162 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^37/Lucas(47) 9870002026208080 a004 Fibonacci(47)/Lucas(26)/(1/2+sqrt(5)/2)^5 9870002026208080 a001 121393/2537720636*2537720636^(7/9) 9870002026208080 a001 121393/10749957122*4106118243^(19/23) 9870002026208080 a001 121393/28143753123*4106118243^(20/23) 9870002026208080 a001 121393/73681302247*4106118243^(21/23) 9870002026208080 a001 121393/192900153618*4106118243^(22/23) 9870002026208080 a004 Fibonacci(26)*Lucas(46)/(1/2+sqrt(5)/2)^56 9870002026208080 a001 121393/2537720636*17393796001^(5/7) 9870002026208080 a001 27553860103162/27916772489 9870002026208080 a001 121393/2537720636*312119004989^(7/11) 9870002026208080 a001 121393/2537720636*14662949395604^(5/9) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^35/Lucas(45) 9870002026208080 a001 121393/2537720636*505019158607^(5/8) 9870002026208080 a004 Fibonacci(45)/Lucas(26)/(1/2+sqrt(5)/2)^3 9870002026208080 a001 121393/2537720636*28143753123^(7/10) 9870002026208080 a001 121393/4106118243*1568397607^(9/11) 9870002026208080 a001 121393/10749957122*1568397607^(19/22) 9870002026208080 a001 121393/28143753123*1568397607^(10/11) 9870002026208080 a001 121393/73681302247*1568397607^(21/22) 9870002026208080 a004 Fibonacci(26)*Lucas(44)/(1/2+sqrt(5)/2)^54 9870002026208080 a001 121393/969323029*2537720636^(11/15) 9870002026208080 a001 121393/969323029*45537549124^(11/17) 9870002026208080 a001 52623190190741/53316291173 9870002026208080 a001 121393/969323029*312119004989^(3/5) 9870002026208080 a001 121393/969323029*817138163596^(11/19) 9870002026208080 a001 121393/969323029*14662949395604^(11/21) 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^33/Lucas(43) 9870002026208080 a001 121393/969323029*192900153618^(11/18) 9870002026208080 a004 Fibonacci(43)/Lucas(26)/(1/2+sqrt(5)/2) 9870002026208080 a001 121393/969323029*10749957122^(11/16) 9870002026208080 a001 121393/969323029*1568397607^(3/4) 9870002026208080 a001 121393/1568397607*599074578^(17/21) 9870002026208080 a001 121393/4106118243*599074578^(6/7) 9870002026208080 a001 121393/2537720636*599074578^(5/6) 9870002026208080 a001 121393/10749957122*599074578^(19/21) 9870002026208080 a001 121393/17393796001*599074578^(13/14) 9870002026208080 a001 121393/28143753123*599074578^(20/21) 9870002026208080 a004 Fibonacci(26)*Lucas(42)/(1/2+sqrt(5)/2)^52 9870002026208080 a001 121393/969323029*599074578^(11/14) 9870002026208080 a001 24157817/271443*20633239^(1/7) 9870002026208080 a001 20100270056413/20365011074 9870002026208080 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^31/Lucas(41) 9870002026208080 a001 121393/370248451*9062201101803^(1/2) 9870002026208080 a001 165580141/542886+165580141/542886*5^(1/2) 9870002026208080 a001 121393/599074578*228826127^(4/5) 9870002026208080 a001 121393/1568397607*228826127^(17/20) 9870002026208080 a001 121393/2537720636*228826127^(7/8) 9870002026208080 a001 121393/4106118243*228826127^(9/10) 9870002026208080 a001 121393/10749957122*228826127^(19/20) 9870002026208080 a004 Fibonacci(26)*Lucas(40)/(1/2+sqrt(5)/2)^50 9870002026208080 a001 34111385/90481*33385282^(1/18) 9870002026208081 a001 63245986/271443*141422324^(1/13) 9870002026208081 a001 63245986/271443*2537720636^(1/15) 9870002026208081 a001 7677619978498/7778742049 9870002026208081 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^29/Lucas(39) 9870002026208081 a001 233/271444*1322157322203^(1/2) 9870002026208081 a001 63245986/271443*45537549124^(1/17) 9870002026208081 a001 63245986/271443*14662949395604^(1/21) 9870002026208081 a001 63245986/271443*(1/2+1/2*5^(1/2))^3 9870002026208081 a001 63245986/271443*192900153618^(1/18) 9870002026208081 a001 63245986/271443*10749957122^(1/16) 9870002026208081 a001 63245986/271443*599074578^(1/14) 9870002026208081 a001 121393/228826127*87403803^(15/19) 9870002026208081 a001 121393/599074578*87403803^(16/19) 9870002026208081 a001 121393/1568397607*87403803^(17/19) 9870002026208081 a001 121393/4106118243*87403803^(18/19) 9870002026208081 a001 63245986/271443*33385282^(1/12) 9870002026208081 a004 Fibonacci(26)*Lucas(38)/(1/2+sqrt(5)/2)^48 9870002026208082 a001 4976784/90481*12752043^(3/17) 9870002026208083 a001 121393/54018521*141422324^(9/13) 9870002026208083 a001 121393/54018521*2537720636^(3/5) 9870002026208083 a001 34111385/90481*12752043^(1/17) 9870002026208083 a001 2932589879081/2971215073 9870002026208083 a001 24157817/271443*2537720636^(1/9) 9870002026208083 a001 121393/54018521*45537549124^(9/17) 9870002026208083 a001 121393/54018521*817138163596^(9/19) 9870002026208083 a001 121393/54018521*14662949395604^(3/7) 9870002026208083 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^27/Lucas(37) 9870002026208083 a001 121393/54018521*192900153618^(1/2) 9870002026208083 a001 24157817/271443*312119004989^(1/11) 9870002026208083 a001 24157817/271443*(1/2+1/2*5^(1/2))^5 9870002026208083 a001 24157817/271443*28143753123^(1/10) 9870002026208083 a001 121393/54018521*10749957122^(9/16) 9870002026208083 a001 121393/54018521*599074578^(9/14) 9870002026208083 a001 24157817/271443*228826127^(1/8) 9870002026208086 a001 121393/87403803*33385282^(7/9) 9870002026208086 a001 39088169/271443*12752043^(2/17) 9870002026208087 a001 121393/20633239*20633239^(5/7) 9870002026208087 a001 121393/228826127*33385282^(5/6) 9870002026208088 a001 121393/599074578*33385282^(8/9) 9870002026208088 a001 121393/969323029*33385282^(11/12) 9870002026208088 a001 121393/1568397607*33385282^(17/18) 9870002026208089 a004 Fibonacci(26)*Lucas(36)/(1/2+sqrt(5)/2)^46 9870002026208090 a001 121393/54018521*33385282^(3/4) 9870002026208099 a001 9227465/271443*20633239^(1/5) 9870002026208103 a001 224029931749/226980634 9870002026208103 a001 121393/20633239*2537720636^(5/9) 9870002026208103 a001 9227465/271443*17393796001^(1/7) 9870002026208103 a001 121393/20633239*312119004989^(5/11) 9870002026208103 a001 121393/20633239*(1/2+1/2*5^(1/2))^25 9870002026208103 a001 121393/20633239*3461452808002^(5/12) 9870002026208103 a001 9227465/271443*14662949395604^(1/9) 9870002026208103 a001 9227465/271443*(1/2+1/2*5^(1/2))^7 9870002026208103 a001 121393/20633239*28143753123^(1/2) 9870002026208103 a001 9227465/271443*599074578^(1/6) 9870002026208103 a001 121393/20633239*228826127^(5/8) 9870002026208106 a001 34111385/90481*4870847^(1/16) 9870002026208118 a001 121393/33385282*12752043^(13/17) 9870002026208123 a001 5702887/271443*4870847^(1/4) 9870002026208129 a001 121393/87403803*12752043^(14/17) 9870002026208131 a001 39088169/271443*4870847^(1/8) 9870002026208133 a001 121393/228826127*12752043^(15/17) 9870002026208137 a001 121393/599074578*12752043^(16/17) 9870002026208141 a004 Fibonacci(26)*Lucas(34)/(1/2+sqrt(5)/2)^44 9870002026208149 a001 4976784/90481*4870847^(3/16) 9870002026208196 a001 3524578/271443*7881196^(3/11) 9870002026208239 a001 3524578/271443*141422324^(3/13) 9870002026208239 a001 427859097154/433494437 9870002026208239 a001 3524578/271443*2537720636^(1/5) 9870002026208239 a001 121393/7881196*(1/2+1/2*5^(1/2))^23 9870002026208239 a001 3524578/271443*45537549124^(3/17) 9870002026208239 a001 3524578/271443*817138163596^(3/19) 9870002026208239 a001 3524578/271443*14662949395604^(1/7) 9870002026208239 a001 3524578/271443*(1/2+1/2*5^(1/2))^9 9870002026208239 a001 3524578/271443*192900153618^(1/6) 9870002026208239 a001 3524578/271443*10749957122^(3/16) 9870002026208239 a001 121393/7881196*4106118243^(1/2) 9870002026208239 a001 3524578/271443*599074578^(3/14) 9870002026208241 a001 3524578/271443*33385282^(1/4) 9870002026208270 a001 34111385/90481*1860498^(1/15) 9870002026208331 a001 121393/12752043*4870847^(3/4) 9870002026208366 a001 63245986/271443*1860498^(1/10) 9870002026208409 a001 121393/33385282*4870847^(13/16) 9870002026208443 a001 121393/87403803*4870847^(7/8) 9870002026208459 a001 39088169/271443*1860498^(2/15) 9870002026208470 a001 121393/228826127*4870847^(15/16) 9870002026208496 a004 Fibonacci(26)*Lucas(32)/(1/2+sqrt(5)/2)^42 9870002026208559 a001 24157817/271443*1860498^(1/6) 9870002026208614 a001 726103/90481*1860498^(1/3) 9870002026208641 a001 4976784/90481*1860498^(1/5) 9870002026208780 a001 5702887/271443*1860498^(4/15) 9870002026209068 a001 121393/3010349*7881196^(7/11) 9870002026209094 a001 3524578/271443*1860498^(3/10) 9870002026209116 a001 1346269/271443*7881196^(1/3) 9870002026209155 a001 121393/3010349*20633239^(3/5) 9870002026209169 a001 121393/3010349*141422324^(7/13) 9870002026209169 a001 163427632717/165580141 9870002026209169 a001 121393/3010349*2537720636^(7/15) 9870002026209169 a001 121393/3010349*17393796001^(3/7) 9870002026209169 a001 121393/3010349*45537549124^(7/17) 9870002026209169 a001 121393/3010349*14662949395604^(1/3) 9870002026209169 a001 121393/3010349*(1/2+1/2*5^(1/2))^21 9870002026209169 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^21/Lucas(31) 9870002026209169 a001 121393/3010349*192900153618^(7/18) 9870002026209169 a001 1346269/271443*312119004989^(1/5) 9870002026209169 a001 1346269/271443*(1/2+1/2*5^(1/2))^11 9870002026209169 a001 121393/3010349*10749957122^(7/16) 9870002026209169 a001 1346269/271443*1568397607^(1/4) 9870002026209169 a001 121393/3010349*599074578^(1/2) 9870002026209174 a001 121393/3010349*33385282^(7/12) 9870002026209244 a001 9227465/1149851*167761^(2/5) 9870002026209476 a001 34111385/90481*710647^(1/14) 9870002026209755 a001 121393/4870847*1860498^(11/15) 9870002026210300 a001 121393/12752043*1860498^(4/5) 9870002026210479 a001 121393/20633239*1860498^(5/6) 9870002026210542 a001 121393/33385282*1860498^(13/15) 9870002026210650 a001 121393/54018521*1860498^(9/10) 9870002026210740 a001 121393/87403803*1860498^(14/15) 9870002026210871 a001 39088169/271443*710647^(1/7) 9870002026210931 a004 Fibonacci(26)*Lucas(30)/(1/2+sqrt(5)/2)^40 9870002026211165 a001 121393/3010349*1860498^(7/10) 9870002026212259 a001 4976784/90481*710647^(3/14) 9870002026212989 a001 9227465/271443*710647^(1/4) 9870002026213603 a001 5702887/271443*710647^(2/7) 9870002026213605 a001 832040/271443*710647^(3/7) 9870002026214644 a001 726103/90481*710647^(5/14) 9870002026215545 a001 267913309/271442 9870002026215545 a001 514229/271443*141422324^(1/3) 9870002026215545 a001 121393/1149851*817138163596^(1/3) 9870002026215545 a001 121393/1149851*(1/2+1/2*5^(1/2))^19 9870002026215545 a001 514229/271443*(1/2+1/2*5^(1/2))^13 9870002026215545 a001 514229/271443*73681302247^(1/4) 9870002026215546 a001 121393/1149851*87403803^(1/2) 9870002026217982 a001 433494437/710647*64079^(1/23) 9870002026218384 a001 34111385/90481*271443^(1/13) 9870002026219189 a001 121393/1860498*710647^(5/7) 9870002026223020 a001 121393/4870847*710647^(11/14) 9870002026223827 a001 121393/3010349*710647^(3/4) 9870002026224771 a001 121393/12752043*710647^(6/7) 9870002026226219 a001 121393/33385282*710647^(13/14) 9870002026227624 a004 Fibonacci(26)*Lucas(28)/(1/2+sqrt(5)/2)^38 9870002026228687 a001 39088169/271443*271443^(2/13) 9870002026230821 a001 196418/271443*439204^(5/9) 9870002026234674 a001 567451585/930249*64079^(1/23) 9870002026234733 a001 46368/1149851*103682^(7/8) 9870002026237109 a001 2971215073/4870847*64079^(1/23) 9870002026237465 a001 7778742049/12752043*64079^(1/23) 9870002026237516 a001 10182505537/16692641*64079^(1/23) 9870002026237524 a001 53316291173/87403803*64079^(1/23) 9870002026237525 a001 139583862445/228826127*64079^(1/23) 9870002026237525 a001 182717648081/299537289*64079^(1/23) 9870002026237525 a001 956722026041/1568397607*64079^(1/23) 9870002026237525 a001 2504730781961/4106118243*64079^(1/23) 9870002026237525 a001 3278735159921/5374978561*64079^(1/23) 9870002026237525 a001 10610209857723/17393796001*64079^(1/23) 9870002026237525 a001 4052739537881/6643838879*64079^(1/23) 9870002026237525 a001 1134903780/1860499*64079^(1/23) 9870002026237525 a001 591286729879/969323029*64079^(1/23) 9870002026237525 a001 225851433717/370248451*64079^(1/23) 9870002026237526 a001 21566892818/35355581*64079^(1/23) 9870002026237529 a001 32951280099/54018521*64079^(1/23) 9870002026237549 a001 1144206275/1875749*64079^(1/23) 9870002026237684 a001 1201881744/1970299*64079^(1/23) 9870002026238614 a001 1836311903/3010349*64079^(1/23) 9870002026238984 a001 4976784/90481*271443^(3/13) 9870002026244990 a001 701408733/1149851*64079^(1/23) 9870002026246336 a001 165580141/271443*103682^(1/24) 9870002026249236 a001 5702887/271443*271443^(4/13) 9870002026252352 a001 63245986/710647*167761^(1/5) 9870002026253081 a001 1762289/219602*167761^(2/5) 9870002026259174 a001 196418/271443*7881196^(5/11) 9870002026259185 a001 726103/90481*271443^(5/13) 9870002026259236 a001 196418/271443*20633239^(3/7) 9870002026259243 a001 23843770274/24157817 9870002026259246 a001 196418/271443*141422324^(5/13) 9870002026259246 a001 196418/271443*2537720636^(1/3) 9870002026259246 a001 121393/439204*45537549124^(1/3) 9870002026259246 a001 121393/439204*(1/2+1/2*5^(1/2))^17 9870002026259246 a001 196418/271443*45537549124^(5/17) 9870002026259246 a001 196418/271443*312119004989^(3/11) 9870002026259246 a001 196418/271443*14662949395604^(5/21) 9870002026259246 a001 196418/271443*(1/2+1/2*5^(1/2))^15 9870002026259246 a001 196418/271443*192900153618^(5/18) 9870002026259246 a001 196418/271443*28143753123^(3/10) 9870002026259246 a001 196418/271443*10749957122^(5/16) 9870002026259246 a001 196418/271443*599074578^(5/14) 9870002026259246 a001 196418/271443*228826127^(3/8) 9870002026259250 a001 196418/271443*33385282^(5/12) 9870002026259277 a001 121393/439204*12752043^(1/2) 9870002026259972 a001 46368/64079*64079^(15/23) 9870002026260666 a001 105937/90481*271443^(7/13) 9870002026260672 a001 196418/271443*1860498^(1/2) 9870002026262672 a001 2576/103361*103682^(11/12) 9870002026267054 a001 832040/271443*271443^(6/13) 9870002026269044 a001 165580141/1860498*167761^(1/5) 9870002026271325 a004 Fibonacci(28)*Lucas(27)/(1/2+sqrt(5)/2)^39 9870002026271479 a001 433494437/4870847*167761^(1/5) 9870002026271835 a001 1134903170/12752043*167761^(1/5) 9870002026271887 a001 2971215073/33385282*167761^(1/5) 9870002026271894 a001 7778742049/87403803*167761^(1/5) 9870002026271895 a001 20365011074/228826127*167761^(1/5) 9870002026271895 a001 53316291173/599074578*167761^(1/5) 9870002026271895 a001 139583862445/1568397607*167761^(1/5) 9870002026271895 a001 365435296162/4106118243*167761^(1/5) 9870002026271895 a001 956722026041/10749957122*167761^(1/5) 9870002026271895 a001 2504730781961/28143753123*167761^(1/5) 9870002026271895 a001 6557470319842/73681302247*167761^(1/5) 9870002026271895 a001 10610209857723/119218851371*167761^(1/5) 9870002026271895 a001 4052739537881/45537549124*167761^(1/5) 9870002026271895 a001 1548008755920/17393796001*167761^(1/5) 9870002026271895 a001 591286729879/6643838879*167761^(1/5) 9870002026271895 a001 225851433717/2537720636*167761^(1/5) 9870002026271895 a001 86267571272/969323029*167761^(1/5) 9870002026271896 a001 32951280099/370248451*167761^(1/5) 9870002026271896 a001 12586269025/141422324*167761^(1/5) 9870002026271899 a001 4807526976/54018521*167761^(1/5) 9870002026271919 a001 1836311903/20633239*167761^(1/5) 9870002026272054 a001 3524667/39604*167761^(1/5) 9870002026272985 a001 267914296/3010349*167761^(1/5) 9870002026274698 a001 24157817/167761*64079^(4/23) 9870002026277001 a001 317811/33385282*439204^(8/9) 9870002026279360 a001 102334155/1149851*167761^(1/5) 9870002026281275 a001 121393/710647*271443^(9/13) 9870002026282038 a001 24157817/103682*39603^(3/22) 9870002026282523 a001 514229/271443*271443^(1/2) 9870002026282854 a001 317811/7881196*439204^(7/9) 9870002026284592 a001 34111385/90481*103682^(1/12) 9870002026285529 a001 105937/620166*439204^(2/3) 9870002026288018 a004 Fibonacci(30)*Lucas(27)/(1/2+sqrt(5)/2)^41 9870002026288692 a001 66978574/109801*64079^(1/23) 9870002026290453 a004 Fibonacci(32)*Lucas(27)/(1/2+sqrt(5)/2)^43 9870002026290808 a004 Fibonacci(34)*Lucas(27)/(1/2+sqrt(5)/2)^45 9870002026290860 a004 Fibonacci(36)*Lucas(27)/(1/2+sqrt(5)/2)^47 9870002026290868 a004 Fibonacci(38)*Lucas(27)/(1/2+sqrt(5)/2)^49 9870002026290869 a004 Fibonacci(40)*Lucas(27)/(1/2+sqrt(5)/2)^51 9870002026290869 a004 Fibonacci(42)*Lucas(27)/(1/2+sqrt(5)/2)^53 9870002026290869 a004 Fibonacci(44)*Lucas(27)/(1/2+sqrt(5)/2)^55 9870002026290869 a004 Fibonacci(46)*Lucas(27)/(1/2+sqrt(5)/2)^57 9870002026290869 a004 Fibonacci(48)*Lucas(27)/(1/2+sqrt(5)/2)^59 9870002026290869 a004 Fibonacci(50)*Lucas(27)/(1/2+sqrt(5)/2)^61 9870002026290869 a004 Fibonacci(52)*Lucas(27)/(1/2+sqrt(5)/2)^63 9870002026290869 a004 Fibonacci(54)*Lucas(27)/(1/2+sqrt(5)/2)^65 9870002026290869 a004 Fibonacci(56)*Lucas(27)/(1/2+sqrt(5)/2)^67 9870002026290869 a004 Fibonacci(58)*Lucas(27)/(1/2+sqrt(5)/2)^69 9870002026290869 a004 Fibonacci(60)*Lucas(27)/(1/2+sqrt(5)/2)^71 9870002026290869 a004 Fibonacci(62)*Lucas(27)/(1/2+sqrt(5)/2)^73 9870002026290869 a004 Fibonacci(64)*Lucas(27)/(1/2+sqrt(5)/2)^75 9870002026290869 a004 Fibonacci(66)*Lucas(27)/(1/2+sqrt(5)/2)^77 9870002026290869 a004 Fibonacci(68)*Lucas(27)/(1/2+sqrt(5)/2)^79 9870002026290869 a004 Fibonacci(70)*Lucas(27)/(1/2+sqrt(5)/2)^81 9870002026290869 a004 Fibonacci(72)*Lucas(27)/(1/2+sqrt(5)/2)^83 9870002026290869 a004 Fibonacci(74)*Lucas(27)/(1/2+sqrt(5)/2)^85 9870002026290869 a004 Fibonacci(76)*Lucas(27)/(1/2+sqrt(5)/2)^87 9870002026290869 a004 Fibonacci(78)*Lucas(27)/(1/2+sqrt(5)/2)^89 9870002026290869 a004 Fibonacci(80)*Lucas(27)/(1/2+sqrt(5)/2)^91 9870002026290869 a004 Fibonacci(82)*Lucas(27)/(1/2+sqrt(5)/2)^93 9870002026290869 a004 Fibonacci(84)*Lucas(27)/(1/2+sqrt(5)/2)^95 9870002026290869 a004 Fibonacci(86)*Lucas(27)/(1/2+sqrt(5)/2)^97 9870002026290869 a004 Fibonacci(88)*Lucas(27)/(1/2+sqrt(5)/2)^99 9870002026290869 a004 Fibonacci(89)*Lucas(27)/(1/2+sqrt(5)/2)^100 9870002026290869 a004 Fibonacci(87)*Lucas(27)/(1/2+sqrt(5)/2)^98 9870002026290869 a004 Fibonacci(85)*Lucas(27)/(1/2+sqrt(5)/2)^96 9870002026290869 a004 Fibonacci(83)*Lucas(27)/(1/2+sqrt(5)/2)^94 9870002026290869 a004 Fibonacci(81)*Lucas(27)/(1/2+sqrt(5)/2)^92 9870002026290869 a004 Fibonacci(79)*Lucas(27)/(1/2+sqrt(5)/2)^90 9870002026290869 a004 Fibonacci(77)*Lucas(27)/(1/2+sqrt(5)/2)^88 9870002026290869 a004 Fibonacci(75)*Lucas(27)/(1/2+sqrt(5)/2)^86 9870002026290869 a004 Fibonacci(73)*Lucas(27)/(1/2+sqrt(5)/2)^84 9870002026290869 a004 Fibonacci(71)*Lucas(27)/(1/2+sqrt(5)/2)^82 9870002026290869 a004 Fibonacci(69)*Lucas(27)/(1/2+sqrt(5)/2)^80 9870002026290869 a004 Fibonacci(67)*Lucas(27)/(1/2+sqrt(5)/2)^78 9870002026290869 a004 Fibonacci(65)*Lucas(27)/(1/2+sqrt(5)/2)^76 9870002026290869 a004 Fibonacci(63)*Lucas(27)/(1/2+sqrt(5)/2)^74 9870002026290869 a004 Fibonacci(61)*Lucas(27)/(1/2+sqrt(5)/2)^72 9870002026290869 a004 Fibonacci(59)*Lucas(27)/(1/2+sqrt(5)/2)^70 9870002026290869 a004 Fibonacci(57)*Lucas(27)/(1/2+sqrt(5)/2)^68 9870002026290869 a004 Fibonacci(55)*Lucas(27)/(1/2+sqrt(5)/2)^66 9870002026290869 a001 1/98209*(1/2+1/2*5^(1/2))^43 9870002026290869 a004 Fibonacci(53)*Lucas(27)/(1/2+sqrt(5)/2)^64 9870002026290869 a004 Fibonacci(51)*Lucas(27)/(1/2+sqrt(5)/2)^62 9870002026290869 a004 Fibonacci(49)*Lucas(27)/(1/2+sqrt(5)/2)^60 9870002026290869 a004 Fibonacci(47)*Lucas(27)/(1/2+sqrt(5)/2)^58 9870002026290869 a004 Fibonacci(45)*Lucas(27)/(1/2+sqrt(5)/2)^56 9870002026290869 a004 Fibonacci(43)*Lucas(27)/(1/2+sqrt(5)/2)^54 9870002026290869 a004 Fibonacci(41)*Lucas(27)/(1/2+sqrt(5)/2)^52 9870002026290869 a004 Fibonacci(39)*Lucas(27)/(1/2+sqrt(5)/2)^50 9870002026290872 a004 Fibonacci(37)*Lucas(27)/(1/2+sqrt(5)/2)^48 9870002026290892 a004 Fibonacci(35)*Lucas(27)/(1/2+sqrt(5)/2)^46 9870002026291028 a004 Fibonacci(33)*Lucas(27)/(1/2+sqrt(5)/2)^44 9870002026291958 a004 Fibonacci(31)*Lucas(27)/(1/2+sqrt(5)/2)^42 9870002026293701 a001 832040/87403803*439204^(8/9) 9870002026296138 a001 46347/4868641*439204^(8/9) 9870002026296493 a001 5702887/599074578*439204^(8/9) 9870002026296545 a001 14930352/1568397607*439204^(8/9) 9870002026296553 a001 39088169/4106118243*439204^(8/9) 9870002026296554 a001 102334155/10749957122*439204^(8/9) 9870002026296554 a001 267914296/28143753123*439204^(8/9) 9870002026296554 a001 701408733/73681302247*439204^(8/9) 9870002026296554 a001 1836311903/192900153618*439204^(8/9) 9870002026296554 a001 102287808/10745088481*439204^(8/9) 9870002026296554 a001 12586269025/1322157322203*439204^(8/9) 9870002026296554 a001 32951280099/3461452808002*439204^(8/9) 9870002026296554 a001 86267571272/9062201101803*439204^(8/9) 9870002026296554 a001 225851433717/23725150497407*439204^(8/9) 9870002026296554 a001 139583862445/14662949395604*439204^(8/9) 9870002026296554 a001 53316291173/5600748293801*439204^(8/9) 9870002026296554 a001 20365011074/2139295485799*439204^(8/9) 9870002026296554 a001 7778742049/817138163596*439204^(8/9) 9870002026296554 a001 2971215073/312119004989*439204^(8/9) 9870002026296554 a001 1134903170/119218851371*439204^(8/9) 9870002026296554 a001 433494437/45537549124*439204^(8/9) 9870002026296554 a001 165580141/17393796001*439204^(8/9) 9870002026296555 a001 63245986/6643838879*439204^(8/9) 9870002026296558 a001 24157817/2537720636*439204^(8/9) 9870002026296577 a001 9227465/969323029*439204^(8/9) 9870002026296713 a001 3524578/370248451*439204^(8/9) 9870002026297644 a001 1346269/141422324*439204^(8/9) 9870002026298334 a004 Fibonacci(29)*Lucas(27)/(1/2+sqrt(5)/2)^40 9870002026299335 a001 311187/101521*439204^(4/9) 9870002026299411 a001 75640/1875749*439204^(7/9) 9870002026301531 a001 514229/710647*439204^(5/9) 9870002026301827 a001 2178309/54018521*439204^(7/9) 9870002026302179 a001 5702887/141422324*439204^(7/9) 9870002026302231 a001 14930352/370248451*439204^(7/9) 9870002026302238 a001 39088169/969323029*439204^(7/9) 9870002026302239 a001 9303105/230701876*439204^(7/9) 9870002026302239 a001 267914296/6643838879*439204^(7/9) 9870002026302239 a001 701408733/17393796001*439204^(7/9) 9870002026302239 a001 1836311903/45537549124*439204^(7/9) 9870002026302239 a001 4807526976/119218851371*439204^(7/9) 9870002026302239 a001 1144206275/28374454999*439204^(7/9) 9870002026302239 a001 32951280099/817138163596*439204^(7/9) 9870002026302239 a001 86267571272/2139295485799*439204^(7/9) 9870002026302239 a001 225851433717/5600748293801*439204^(7/9) 9870002026302239 a001 591286729879/14662949395604*439204^(7/9) 9870002026302239 a001 365435296162/9062201101803*439204^(7/9) 9870002026302239 a001 139583862445/3461452808002*439204^(7/9) 9870002026302239 a001 53316291173/1322157322203*439204^(7/9) 9870002026302239 a001 20365011074/505019158607*439204^(7/9) 9870002026302239 a001 7778742049/192900153618*439204^(7/9) 9870002026302239 a001 2971215073/73681302247*439204^(7/9) 9870002026302239 a001 1134903170/28143753123*439204^(7/9) 9870002026302239 a001 433494437/10749957122*439204^(7/9) 9870002026302239 a001 165580141/4106118243*439204^(7/9) 9870002026302240 a001 63245986/1568397607*439204^(7/9) 9870002026302243 a001 24157817/599074578*439204^(7/9) 9870002026302262 a001 9227465/228826127*439204^(7/9) 9870002026302397 a001 3524578/87403803*439204^(7/9) 9870002026302948 a001 317811/710647*(1/2+1/2*5^(1/2))^16 9870002026302948 a001 317811/710647*23725150497407^(1/4) 9870002026302948 a001 317811/710647*73681302247^(4/13) 9870002026302948 a001 317811/710647*10749957122^(1/3) 9870002026302948 a001 317811/710647*4106118243^(8/23) 9870002026302948 a001 317811/710647*1568397607^(4/11) 9870002026302948 a001 317811/710647*599074578^(8/21) 9870002026302948 a001 317811/710647*228826127^(2/5) 9870002026302948 a001 33667943907/34111385 9870002026302948 a001 317811/710647*87403803^(8/19) 9870002026302952 a001 317811/710647*33385282^(4/9) 9870002026302976 a001 317811/710647*12752043^(8/17) 9870002026303156 a001 317811/710647*4870847^(1/2) 9870002026303320 a001 1346269/33385282*439204^(7/9) 9870002026304023 a001 514229/54018521*439204^(8/9) 9870002026304468 a001 317811/710647*1860498^(8/15) 9870002026304657 a001 832040/4870847*439204^(2/3) 9870002026304869 a001 46368/3010349*103682^(23/24) 9870002026305459 a001 9227465/710647*439204^(1/3) 9870002026307448 a001 726103/4250681*439204^(2/3) 9870002026307855 a001 5702887/33385282*439204^(2/3) 9870002026307914 a001 4976784/29134601*439204^(2/3) 9870002026307923 a001 39088169/228826127*439204^(2/3) 9870002026307924 a001 34111385/199691526*439204^(2/3) 9870002026307924 a001 267914296/1568397607*439204^(2/3) 9870002026307924 a001 233802911/1368706081*439204^(2/3) 9870002026307924 a001 1836311903/10749957122*439204^(2/3) 9870002026307924 a001 1602508992/9381251041*439204^(2/3) 9870002026307924 a001 12586269025/73681302247*439204^(2/3) 9870002026307924 a001 10983760033/64300051206*439204^(2/3) 9870002026307924 a001 86267571272/505019158607*439204^(2/3) 9870002026307924 a001 75283811239/440719107401*439204^(2/3) 9870002026307924 a001 2504730781961/14662949395604*439204^(2/3) 9870002026307924 a001 139583862445/817138163596*439204^(2/3) 9870002026307924 a001 53316291173/312119004989*439204^(2/3) 9870002026307924 a001 20365011074/119218851371*439204^(2/3) 9870002026307924 a001 7778742049/45537549124*439204^(2/3) 9870002026307924 a001 2971215073/17393796001*439204^(2/3) 9870002026307924 a001 1134903170/6643838879*439204^(2/3) 9870002026307924 a001 433494437/2537720636*439204^(2/3) 9870002026307925 a001 165580141/969323029*439204^(2/3) 9870002026307925 a001 63245986/370248451*439204^(2/3) 9870002026307928 a001 24157817/141422324*439204^(2/3) 9870002026307951 a001 9227465/54018521*439204^(2/3) 9870002026308107 a001 3524578/20633239*439204^(2/3) 9870002026308271 a001 121393/1860498*271443^(10/13) 9870002026309172 a001 1346269/7881196*439204^(2/3) 9870002026309644 a001 514229/12752043*439204^(7/9) 9870002026311120 a001 39088169/710647*439204^(2/9) 9870002026311847 a001 1346269/1860498*439204^(5/9) 9870002026313352 a001 3524578/4870847*439204^(5/9) 9870002026313572 a001 9227465/12752043*439204^(5/9) 9870002026313604 a001 24157817/33385282*439204^(5/9) 9870002026313609 a001 63245986/87403803*439204^(5/9) 9870002026313609 a001 165580141/228826127*439204^(5/9) 9870002026313610 a001 433494437/599074578*439204^(5/9) 9870002026313610 a001 1134903170/1568397607*439204^(5/9) 9870002026313610 a001 2971215073/4106118243*439204^(5/9) 9870002026313610 a001 7778742049/10749957122*439204^(5/9) 9870002026313610 a001 20365011074/28143753123*439204^(5/9) 9870002026313610 a001 53316291173/73681302247*439204^(5/9) 9870002026313610 a001 139583862445/192900153618*439204^(5/9) 9870002026313610 a001 365435296162/505019158607*439204^(5/9) 9870002026313610 a001 10610209857723/14662949395604*439204^(5/9) 9870002026313610 a001 591286729879/817138163596*439204^(5/9) 9870002026313610 a001 225851433717/312119004989*439204^(5/9) 9870002026313610 a001 86267571272/119218851371*439204^(5/9) 9870002026313610 a001 32951280099/45537549124*439204^(5/9) 9870002026313610 a001 12586269025/17393796001*439204^(5/9) 9870002026313610 a001 4807526976/6643838879*439204^(5/9) 9870002026313610 a001 1836311903/2537720636*439204^(5/9) 9870002026313610 a001 701408733/969323029*439204^(5/9) 9870002026313610 a001 267914296/370248451*439204^(5/9) 9870002026313610 a001 102334155/141422324*439204^(5/9) 9870002026313612 a001 39088169/54018521*439204^(5/9) 9870002026313624 a001 14930352/20633239*439204^(5/9) 9870002026313708 a001 5702887/7881196*439204^(5/9) 9870002026314116 a001 317811/710647*710647^(4/7) 9870002026314283 a001 2178309/3010349*439204^(5/9) 9870002026315026 a004 Fibonacci(28)*Lucas(29)/(1/2+sqrt(5)/2)^41 9870002026316383 a001 5702887/1860498*439204^(4/9) 9870002026316479 a001 514229/3010349*439204^(2/3) 9870002026316806 a001 165580141/710647*439204^(1/9) 9870002026318223 a001 832040/1149851*439204^(5/9) 9870002026318870 a001 14930352/4870847*439204^(4/9) 9870002026319233 a001 39088169/12752043*439204^(4/9) 9870002026319286 a001 14619165/4769326*439204^(4/9) 9870002026319293 a001 267914296/87403803*439204^(4/9) 9870002026319295 a001 701408733/228826127*439204^(4/9) 9870002026319295 a001 1836311903/599074578*439204^(4/9) 9870002026319295 a001 686789568/224056801*439204^(4/9) 9870002026319295 a001 12586269025/4106118243*439204^(4/9) 9870002026319295 a001 32951280099/10749957122*439204^(4/9) 9870002026319295 a001 86267571272/28143753123*439204^(4/9) 9870002026319295 a001 32264490531/10525900321*439204^(4/9) 9870002026319295 a001 591286729879/192900153618*439204^(4/9) 9870002026319295 a001 1548008755920/505019158607*439204^(4/9) 9870002026319295 a001 1515744265389/494493258286*439204^(4/9) 9870002026319295 a001 2504730781961/817138163596*439204^(4/9) 9870002026319295 a001 956722026041/312119004989*439204^(4/9) 9870002026319295 a001 365435296162/119218851371*439204^(4/9) 9870002026319295 a001 139583862445/45537549124*439204^(4/9) 9870002026319295 a001 53316291173/17393796001*439204^(4/9) 9870002026319295 a001 20365011074/6643838879*439204^(4/9) 9870002026319295 a001 7778742049/2537720636*439204^(4/9) 9870002026319295 a001 2971215073/969323029*439204^(4/9) 9870002026319295 a001 1134903170/370248451*439204^(4/9) 9870002026319295 a001 433494437/141422324*439204^(4/9) 9870002026319298 a001 165580141/54018521*439204^(4/9) 9870002026319318 a001 63245986/20633239*439204^(4/9) 9870002026319457 a001 24157817/7881196*439204^(4/9) 9870002026319553 a001 105937/620166*7881196^(6/11) 9870002026319631 a001 832040/710647*20633239^(2/5) 9870002026319640 a001 105937/620166*141422324^(6/13) 9870002026319640 a001 105937/620166*2537720636^(2/5) 9870002026319640 a001 832040/710647*17393796001^(2/7) 9870002026319640 a001 105937/620166*45537549124^(6/17) 9870002026319640 a001 105937/620166*14662949395604^(2/7) 9870002026319640 a001 105937/620166*(1/2+1/2*5^(1/2))^18 9870002026319640 a001 832040/710647*(1/2+1/2*5^(1/2))^14 9870002026319640 a001 832040/710647*505019158607^(1/4) 9870002026319640 a001 105937/620166*192900153618^(1/3) 9870002026319640 a001 832040/710647*10749957122^(7/24) 9870002026319640 a001 105937/620166*10749957122^(3/8) 9870002026319640 a001 832040/710647*4106118243^(7/23) 9870002026319640 a001 105937/620166*4106118243^(9/23) 9870002026319640 a001 832040/710647*1568397607^(7/22) 9870002026319640 a001 105937/620166*1568397607^(9/22) 9870002026319640 a001 832040/710647*599074578^(1/3) 9870002026319640 a001 105937/620166*599074578^(3/7) 9870002026319640 a001 87676215/88831 9870002026319640 a001 832040/710647*228826127^(7/20) 9870002026319640 a001 105937/620166*228826127^(9/20) 9870002026319641 a001 832040/710647*87403803^(7/19) 9870002026319641 a001 105937/620166*87403803^(9/19) 9870002026319644 a001 832040/710647*33385282^(7/18) 9870002026319645 a001 105937/620166*33385282^(1/2) 9870002026319665 a001 832040/710647*12752043^(7/17) 9870002026319672 a001 105937/620166*12752043^(9/17) 9870002026319822 a001 832040/710647*4870847^(7/16) 9870002026319874 a001 105937/620166*4870847^(9/16) 9870002026320407 a001 9227465/3010349*439204^(4/9) 9870002026320971 a001 832040/710647*1860498^(7/15) 9870002026321011 a001 121393/4870847*271443^(11/13) 9870002026321351 a001 105937/620166*1860498^(3/5) 9870002026321402 a004 Fibonacci(28)*Lucas(31)/(1/2+sqrt(5)/2)^43 9870002026322018 a001 311187/101521*7881196^(4/11) 9870002026322062 a001 317811/4870847*20633239^(4/7) 9870002026322075 a001 311187/101521*141422324^(4/13) 9870002026322076 a001 317811/4870847*2537720636^(4/9) 9870002026322076 a001 311187/101521*2537720636^(4/15) 9870002026322076 a001 311187/101521*45537549124^(4/17) 9870002026322076 a001 317811/4870847*(1/2+1/2*5^(1/2))^20 9870002026322076 a001 317811/4870847*23725150497407^(5/16) 9870002026322076 a001 317811/4870847*505019158607^(5/14) 9870002026322076 a001 311187/101521*817138163596^(4/19) 9870002026322076 a001 311187/101521*14662949395604^(4/21) 9870002026322076 a001 311187/101521*(1/2+1/2*5^(1/2))^12 9870002026322076 a001 311187/101521*192900153618^(2/9) 9870002026322076 a001 311187/101521*73681302247^(3/13) 9870002026322076 a001 317811/4870847*73681302247^(5/13) 9870002026322076 a001 317811/4870847*28143753123^(2/5) 9870002026322076 a001 311187/101521*10749957122^(1/4) 9870002026322076 a001 317811/4870847*10749957122^(5/12) 9870002026322076 a001 311187/101521*4106118243^(6/23) 9870002026322076 a001 317811/4870847*4106118243^(10/23) 9870002026322076 a001 311187/101521*1568397607^(3/11) 9870002026322076 a001 317811/4870847*1568397607^(5/11) 9870002026322076 a001 230763520533/233802911 9870002026322076 a001 311187/101521*599074578^(2/7) 9870002026322076 a001 317811/4870847*599074578^(10/21) 9870002026322076 a001 311187/101521*228826127^(3/10) 9870002026322076 a001 317811/4870847*228826127^(1/2) 9870002026322076 a001 311187/101521*87403803^(6/19) 9870002026322076 a001 317811/4870847*87403803^(10/19) 9870002026322078 a001 311187/101521*33385282^(1/3) 9870002026322080 a001 317811/4870847*33385282^(5/9) 9870002026322097 a001 311187/101521*12752043^(6/17) 9870002026322111 a001 317811/4870847*12752043^(10/17) 9870002026322132 a001 24157817/1860498*439204^(1/3) 9870002026322232 a001 311187/101521*4870847^(3/8) 9870002026322325 a001 105937/4250681*7881196^(2/3) 9870002026322333 a004 Fibonacci(28)*Lucas(33)/(1/2+sqrt(5)/2)^45 9870002026322336 a001 317811/4870847*4870847^(5/8) 9870002026322347 a001 377/710646*7881196^(10/11) 9870002026322362 a001 317811/141422324*7881196^(9/11) 9870002026322367 a001 317811/33385282*7881196^(8/11) 9870002026322424 a001 5702887/710647*20633239^(2/7) 9870002026322431 a001 5702887/710647*2537720636^(2/9) 9870002026322431 a001 105937/4250681*312119004989^(2/5) 9870002026322431 a001 105937/4250681*(1/2+1/2*5^(1/2))^22 9870002026322431 a001 5702887/710647*312119004989^(2/11) 9870002026322431 a001 5702887/710647*(1/2+1/2*5^(1/2))^10 9870002026322431 a001 5702887/710647*28143753123^(1/5) 9870002026322431 a001 5702887/710647*10749957122^(5/24) 9870002026322431 a001 105937/4250681*10749957122^(11/24) 9870002026322431 a001 5702887/710647*4106118243^(5/23) 9870002026322431 a001 105937/4250681*4106118243^(11/23) 9870002026322431 a001 1812440220357/1836311903 9870002026322431 a001 5702887/710647*1568397607^(5/22) 9870002026322431 a001 105937/4250681*1568397607^(1/2) 9870002026322431 a001 5702887/710647*599074578^(5/21) 9870002026322431 a001 105937/4250681*599074578^(11/21) 9870002026322431 a001 5702887/710647*228826127^(1/4) 9870002026322431 a001 105937/4250681*228826127^(11/20) 9870002026322431 a001 5702887/710647*87403803^(5/19) 9870002026322432 a001 105937/4250681*87403803^(11/19) 9870002026322433 a001 5702887/710647*33385282^(5/18) 9870002026322436 a001 105937/4250681*33385282^(11/18) 9870002026322449 a001 5702887/710647*12752043^(5/17) 9870002026322461 a001 39088169/710647*7881196^(2/11) 9870002026322468 a004 Fibonacci(28)*Lucas(35)/(1/2+sqrt(5)/2)^47 9870002026322470 a001 105937/4250681*12752043^(11/17) 9870002026322471 a001 9227465/710647*7881196^(3/11) 9870002026322472 a001 377/710646*20633239^(6/7) 9870002026322473 a001 317811/228826127*20633239^(4/5) 9870002026322477 a001 165580141/710647*7881196^(1/11) 9870002026322478 a001 317811/54018521*20633239^(5/7) 9870002026322482 a001 317811/33385282*141422324^(8/13) 9870002026322483 a001 317811/33385282*2537720636^(8/15) 9870002026322483 a001 317811/33385282*45537549124^(8/17) 9870002026322483 a001 317811/33385282*14662949395604^(8/21) 9870002026322483 a001 317811/33385282*(1/2+1/2*5^(1/2))^24 9870002026322483 a001 14930352/710647*(1/2+1/2*5^(1/2))^8 9870002026322483 a001 14930352/710647*23725150497407^(1/8) 9870002026322483 a001 14930352/710647*505019158607^(1/7) 9870002026322483 a001 317811/33385282*192900153618^(4/9) 9870002026322483 a001 14930352/710647*73681302247^(2/13) 9870002026322483 a001 317811/33385282*73681302247^(6/13) 9870002026322483 a001 14930352/710647*10749957122^(1/6) 9870002026322483 a001 317811/33385282*10749957122^(1/2) 9870002026322483 a001 32951597913/33385604 9870002026322483 a001 14930352/710647*4106118243^(4/23) 9870002026322483 a001 317811/33385282*4106118243^(12/23) 9870002026322483 a001 14930352/710647*1568397607^(2/11) 9870002026322483 a001 317811/33385282*1568397607^(6/11) 9870002026322483 a001 14930352/710647*599074578^(4/21) 9870002026322483 a001 317811/33385282*599074578^(4/7) 9870002026322483 a001 14930352/710647*228826127^(1/5) 9870002026322483 a001 317811/33385282*228826127^(3/5) 9870002026322483 a001 14930352/710647*87403803^(4/19) 9870002026322484 a001 317811/33385282*87403803^(12/19) 9870002026322485 a001 14930352/710647*33385282^(2/9) 9870002026322488 a004 Fibonacci(28)*Lucas(37)/(1/2+sqrt(5)/2)^49 9870002026322489 a001 317811/33385282*33385282^(2/3) 9870002026322489 a001 63245986/710647*20633239^(1/7) 9870002026322490 a001 105937/29134601*141422324^(2/3) 9870002026322490 a001 39088169/710647*141422324^(2/13) 9870002026322490 a001 39088169/710647*2537720636^(2/15) 9870002026322490 a001 39088169/710647*45537549124^(2/17) 9870002026322490 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^26/Lucas(38) 9870002026322490 a001 39088169/710647*14662949395604^(2/21) 9870002026322490 a001 39088169/710647*(1/2+1/2*5^(1/2))^6 9870002026322490 a001 105937/29134601*73681302247^(1/2) 9870002026322490 a001 39088169/710647*10749957122^(1/8) 9870002026322490 a001 12422650078059/12586269025 9870002026322490 a001 105937/29134601*10749957122^(13/24) 9870002026322490 a001 39088169/710647*4106118243^(3/23) 9870002026322490 a001 105937/29134601*4106118243^(13/23) 9870002026322490 a001 39088169/710647*1568397607^(3/22) 9870002026322490 a001 105937/29134601*1568397607^(13/22) 9870002026322490 a001 39088169/710647*599074578^(1/7) 9870002026322490 a001 105937/29134601*599074578^(13/21) 9870002026322490 a001 39088169/710647*228826127^(3/20) 9870002026322490 a001 24157817/710647*20633239^(1/5) 9870002026322490 a001 105937/29134601*228826127^(13/20) 9870002026322490 a001 39088169/710647*87403803^(3/19) 9870002026322491 a004 Fibonacci(28)*Lucas(39)/(1/2+sqrt(5)/2)^51 9870002026322491 a001 317811/10749957122*141422324^(12/13) 9870002026322491 a001 317811/2537720636*141422324^(11/13) 9870002026322491 a001 105937/29134601*87403803^(13/19) 9870002026322491 a001 377/710646*141422324^(10/13) 9870002026322491 a001 317811/228826127*17393796001^(4/7) 9870002026322491 a001 317811/228826127*14662949395604^(4/9) 9870002026322491 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^28/Lucas(40) 9870002026322491 a001 317811/228826127*505019158607^(1/2) 9870002026322491 a001 14619165/101521*(1/2+1/2*5^(1/2))^4 9870002026322491 a001 14619165/101521*23725150497407^(1/16) 9870002026322491 a001 14619165/101521*73681302247^(1/13) 9870002026322491 a001 317811/228826127*73681302247^(7/13) 9870002026322491 a001 10840973378235/10983760033 9870002026322491 a001 14619165/101521*10749957122^(1/12) 9870002026322491 a001 317811/228826127*10749957122^(7/12) 9870002026322491 a001 14619165/101521*4106118243^(2/23) 9870002026322491 a001 317811/228826127*4106118243^(14/23) 9870002026322491 a001 14619165/101521*1568397607^(1/11) 9870002026322491 a001 317811/228826127*1568397607^(7/11) 9870002026322491 a001 14619165/101521*599074578^(2/21) 9870002026322491 a001 317811/228826127*599074578^(2/3) 9870002026322491 a001 14619165/101521*228826127^(1/10) 9870002026322491 a004 Fibonacci(28)*Lucas(41)/(1/2+sqrt(5)/2)^53 9870002026322491 a001 317811/228826127*228826127^(7/10) 9870002026322491 a001 14619165/101521*87403803^(2/19) 9870002026322492 a001 377/710646*2537720636^(2/3) 9870002026322492 a001 377/710646*45537549124^(10/17) 9870002026322492 a001 377/710646*312119004989^(6/11) 9870002026322492 a001 377/710646*14662949395604^(10/21) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^30/Lucas(42) 9870002026322492 a001 267914296/710647*(1/2+1/2*5^(1/2))^2 9870002026322492 a001 377/710646*192900153618^(5/9) 9870002026322492 a001 10643263790757/10783446409 9870002026322492 a001 267914296/710647*10749957122^(1/24) 9870002026322492 a001 377/710646*28143753123^(3/5) 9870002026322492 a001 267914296/710647*4106118243^(1/23) 9870002026322492 a001 377/710646*10749957122^(5/8) 9870002026322492 a001 267914296/710647*1568397607^(1/22) 9870002026322492 a001 377/710646*4106118243^(15/23) 9870002026322492 a001 267914296/710647*599074578^(1/21) 9870002026322492 a001 377/710646*1568397607^(15/22) 9870002026322492 a001 267914296/710647*228826127^(1/20) 9870002026322492 a004 Fibonacci(28)*Lucas(43)/(1/2+sqrt(5)/2)^55 9870002026322492 a001 377/710646*599074578^(5/7) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^32/Lucas(44) 9870002026322492 a001 317811/1568397607*23725150497407^(1/2) 9870002026322492 a001 317811/1568397607*505019158607^(4/7) 9870002026322492 a006 5^(1/2)*Fibonacci(44)/Lucas(28)/sqrt(5) 9870002026322492 a001 317811/1568397607*73681302247^(8/13) 9870002026322492 a001 317811/1568397607*10749957122^(2/3) 9870002026322492 a001 317811/1568397607*4106118243^(16/23) 9870002026322492 a004 Fibonacci(28)*Lucas(45)/(1/2+sqrt(5)/2)^57 9870002026322492 a001 105937/64300051206*2537720636^(14/15) 9870002026322492 a001 317811/73681302247*2537720636^(8/9) 9870002026322492 a001 317811/45537549124*2537720636^(13/15) 9870002026322492 a001 317811/10749957122*2537720636^(4/5) 9870002026322492 a001 317811/1568397607*1568397607^(8/11) 9870002026322492 a001 317811/6643838879*2537720636^(7/9) 9870002026322492 a001 105937/1368706081*45537549124^(2/3) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^34/Lucas(46) 9870002026322492 a001 583600122204333/591286729879 9870002026322492 a004 Fibonacci(46)/Lucas(28)/(1/2+sqrt(5)/2)^2 9870002026322492 a001 105937/1368706081*10749957122^(17/24) 9870002026322492 a004 Fibonacci(28)*Lucas(47)/(1/2+sqrt(5)/2)^59 9870002026322492 a001 105937/1368706081*4106118243^(17/23) 9870002026322492 a001 317811/10749957122*45537549124^(12/17) 9870002026322492 a001 317811/10749957122*14662949395604^(4/7) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^36/Lucas(48) 9870002026322492 a001 10610312192844/10750060805 9870002026322492 a001 317811/10749957122*505019158607^(9/14) 9870002026322492 a004 Fibonacci(48)/Lucas(28)/(1/2+sqrt(5)/2)^4 9870002026322492 a001 317811/10749957122*192900153618^(2/3) 9870002026322492 a001 317811/10749957122*73681302247^(9/13) 9870002026322492 a004 Fibonacci(28)*Lucas(49)/(1/2+sqrt(5)/2)^61 9870002026322492 a001 105937/64300051206*17393796001^(6/7) 9870002026322492 a001 317811/10749957122*10749957122^(3/4) 9870002026322492 a001 105937/9381251041*817138163596^(2/3) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^38/Lucas(50) 9870002026322492 a001 4000054745104275/4052739537881 9870002026322492 a004 Fibonacci(50)/Lucas(28)/(1/2+sqrt(5)/2)^6 9870002026322492 a004 Fibonacci(28)*Lucas(51)/(1/2+sqrt(5)/2)^63 9870002026322492 a001 317811/3461452808002*45537549124^(16/17) 9870002026322492 a001 105937/64300051206*45537549124^(14/17) 9870002026322492 a001 317811/817138163596*45537549124^(15/17) 9870002026322492 a001 317811/73681302247*312119004989^(8/11) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^40/Lucas(52) 9870002026322492 a001 317811/73681302247*23725150497407^(5/8) 9870002026322492 a001 3490759759847763/3536736619241 9870002026322492 a004 Fibonacci(52)/Lucas(28)/(1/2+sqrt(5)/2)^8 9870002026322492 a004 Fibonacci(28)*Lucas(53)/(1/2+sqrt(5)/2)^65 9870002026322492 a001 317811/73681302247*73681302247^(10/13) 9870002026322492 a001 105937/64300051206*817138163596^(14/19) 9870002026322492 a001 105937/64300051206*14662949395604^(2/3) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^42/Lucas(54) 9870002026322492 a001 105937/64300051206*505019158607^(3/4) 9870002026322492 a004 Fibonacci(54)/Lucas(28)/(1/2+sqrt(5)/2)^10 9870002026322492 a001 317811/505019158607*312119004989^(4/5) 9870002026322492 a004 Fibonacci(28)*Lucas(55)/(1/2+sqrt(5)/2)^67 9870002026322492 a001 105937/3020733700601*312119004989^(10/11) 9870002026322492 a001 317811/817138163596*312119004989^(9/11) 9870002026322492 a001 105937/64300051206*192900153618^(7/9) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^44/Lucas(56) 9870002026322492 a004 Fibonacci(28)*Lucas(57)/(1/2+sqrt(5)/2)^69 9870002026322492 a001 10959/505618944676*817138163596^(17/19) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^46/Lucas(58) 9870002026322492 a004 Fibonacci(28)*Lucas(59)/(1/2+sqrt(5)/2)^71 9870002026322492 a001 317811/3461452808002*14662949395604^(16/21) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^48/Lucas(60) 9870002026322492 a004 Fibonacci(28)*Lucas(61)/(1/2+sqrt(5)/2)^73 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^50/Lucas(62) 9870002026322492 a004 Fibonacci(28)*Lucas(63)/(1/2+sqrt(5)/2)^75 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^52/Lucas(64) 9870002026322492 a004 Fibonacci(28)*Lucas(65)/(1/2+sqrt(5)/2)^77 9870002026322492 a001 317811/23725150497407*23725150497407^(13/16) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^54/Lucas(66) 9870002026322492 a004 Fibonacci(28)*Lucas(67)/(1/2+sqrt(5)/2)^79 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^56/Lucas(68) 9870002026322492 a004 Fibonacci(28)*Lucas(69)/(1/2+sqrt(5)/2)^81 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^58/Lucas(70) 9870002026322492 a004 Fibonacci(28)*Lucas(71)/(1/2+sqrt(5)/2)^83 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^60/Lucas(72) 9870002026322492 a004 Fibonacci(28)*Lucas(73)/(1/2+sqrt(5)/2)^85 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^62/Lucas(74) 9870002026322492 a004 Fibonacci(28)*Lucas(75)/(1/2+sqrt(5)/2)^87 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^64/Lucas(76) 9870002026322492 a004 Fibonacci(28)*Lucas(77)/(1/2+sqrt(5)/2)^89 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^66/Lucas(78) 9870002026322492 a004 Fibonacci(28)*Lucas(79)/(1/2+sqrt(5)/2)^91 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^68/Lucas(80) 9870002026322492 a004 Fibonacci(28)*Lucas(81)/(1/2+sqrt(5)/2)^93 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^70/Lucas(82) 9870002026322492 a004 Fibonacci(28)*Lucas(83)/(1/2+sqrt(5)/2)^95 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^72/Lucas(84) 9870002026322492 a004 Fibonacci(28)*Lucas(85)/(1/2+sqrt(5)/2)^97 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^74/Lucas(86) 9870002026322492 a004 Fibonacci(28)*Lucas(87)/(1/2+sqrt(5)/2)^99 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^76/Lucas(88) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^78/Lucas(90) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^80/Lucas(92) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^82/Lucas(94) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^84/Lucas(96) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^86/Lucas(98) 9870002026322492 a004 Fibonacci(14)*Lucas(14)/(1/2+sqrt(5)/2)^12 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^87/Lucas(99) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^88/Lucas(100) 9870002026322492 a004 Fibonacci(56)/Lucas(28)/(1/2+sqrt(5)/2)^12 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^85/Lucas(97) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^83/Lucas(95) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^81/Lucas(93) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^79/Lucas(91) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^77/Lucas(89) 9870002026322492 a004 Fibonacci(28)*Lucas(88)/(1/2+sqrt(5)/2)^100 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^75/Lucas(87) 9870002026322492 a004 Fibonacci(28)*Lucas(86)/(1/2+sqrt(5)/2)^98 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^73/Lucas(85) 9870002026322492 a004 Fibonacci(28)*Lucas(84)/(1/2+sqrt(5)/2)^96 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^71/Lucas(83) 9870002026322492 a004 Fibonacci(28)*Lucas(82)/(1/2+sqrt(5)/2)^94 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^69/Lucas(81) 9870002026322492 a004 Fibonacci(28)*Lucas(80)/(1/2+sqrt(5)/2)^92 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^67/Lucas(79) 9870002026322492 a004 Fibonacci(28)*Lucas(78)/(1/2+sqrt(5)/2)^90 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^65/Lucas(77) 9870002026322492 a004 Fibonacci(28)*Lucas(76)/(1/2+sqrt(5)/2)^88 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^63/Lucas(75) 9870002026322492 a004 Fibonacci(28)*Lucas(74)/(1/2+sqrt(5)/2)^86 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^61/Lucas(73) 9870002026322492 a004 Fibonacci(28)*Lucas(72)/(1/2+sqrt(5)/2)^84 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^59/Lucas(71) 9870002026322492 a004 Fibonacci(28)*Lucas(70)/(1/2+sqrt(5)/2)^82 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^57/Lucas(69) 9870002026322492 a004 Fibonacci(28)*Lucas(68)/(1/2+sqrt(5)/2)^80 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^55/Lucas(67) 9870002026322492 a004 Fibonacci(28)*Lucas(66)/(1/2+sqrt(5)/2)^78 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^53/Lucas(65) 9870002026322492 a004 Fibonacci(28)*Lucas(64)/(1/2+sqrt(5)/2)^76 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^51/Lucas(63) 9870002026322492 a004 Fibonacci(28)*Lucas(62)/(1/2+sqrt(5)/2)^74 9870002026322492 a001 317811/5600748293801*14662949395604^(7/9) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^49/Lucas(61) 9870002026322492 a001 105937/3020733700601*3461452808002^(5/6) 9870002026322492 a004 Fibonacci(28)*Lucas(60)/(1/2+sqrt(5)/2)^72 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^47/Lucas(59) 9870002026322492 a004 Fibonacci(28)*Lucas(58)/(1/2+sqrt(5)/2)^70 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^45/Lucas(57) 9870002026322492 a004 Fibonacci(58)/Lucas(28)/(1/2+sqrt(5)/2)^14 9870002026322492 a001 317811/5600748293801*505019158607^(7/8) 9870002026322492 a001 317811/23725150497407*505019158607^(13/14) 9870002026322492 a004 Fibonacci(60)/Lucas(28)/(1/2+sqrt(5)/2)^16 9870002026322492 a004 Fibonacci(62)/Lucas(28)/(1/2+sqrt(5)/2)^18 9870002026322492 a004 Fibonacci(64)/Lucas(28)/(1/2+sqrt(5)/2)^20 9870002026322492 a004 Fibonacci(66)/Lucas(28)/(1/2+sqrt(5)/2)^22 9870002026322492 a004 Fibonacci(68)/Lucas(28)/(1/2+sqrt(5)/2)^24 9870002026322492 a004 Fibonacci(70)/Lucas(28)/(1/2+sqrt(5)/2)^26 9870002026322492 a004 Fibonacci(72)/Lucas(28)/(1/2+sqrt(5)/2)^28 9870002026322492 a004 Fibonacci(74)/Lucas(28)/(1/2+sqrt(5)/2)^30 9870002026322492 a004 Fibonacci(76)/Lucas(28)/(1/2+sqrt(5)/2)^32 9870002026322492 a004 Fibonacci(78)/Lucas(28)/(1/2+sqrt(5)/2)^34 9870002026322492 a004 Fibonacci(80)/Lucas(28)/(1/2+sqrt(5)/2)^36 9870002026322492 a004 Fibonacci(82)/Lucas(28)/(1/2+sqrt(5)/2)^38 9870002026322492 a004 Fibonacci(84)/Lucas(28)/(1/2+sqrt(5)/2)^40 9870002026322492 a004 Fibonacci(86)/Lucas(28)/(1/2+sqrt(5)/2)^42 9870002026322492 a004 Fibonacci(88)/Lucas(28)/(1/2+sqrt(5)/2)^44 9870002026322492 a004 Fibonacci(90)/Lucas(28)/(1/2+sqrt(5)/2)^46 9870002026322492 a004 Fibonacci(92)/Lucas(28)/(1/2+sqrt(5)/2)^48 9870002026322492 a004 Fibonacci(94)/Lucas(28)/(1/2+sqrt(5)/2)^50 9870002026322492 a004 Fibonacci(96)/Lucas(28)/(1/2+sqrt(5)/2)^52 9870002026322492 a004 Fibonacci(98)/Lucas(28)/(1/2+sqrt(5)/2)^54 9870002026322492 a004 Fibonacci(100)/Lucas(28)/(1/2+sqrt(5)/2)^56 9870002026322492 a004 Fibonacci(28)*Lucas(56)/(1/2+sqrt(5)/2)^68 9870002026322492 a004 Fibonacci(99)/Lucas(28)/(1/2+sqrt(5)/2)^55 9870002026322492 a004 Fibonacci(97)/Lucas(28)/(1/2+sqrt(5)/2)^53 9870002026322492 a004 Fibonacci(95)/Lucas(28)/(1/2+sqrt(5)/2)^51 9870002026322492 a004 Fibonacci(93)/Lucas(28)/(1/2+sqrt(5)/2)^49 9870002026322492 a004 Fibonacci(91)/Lucas(28)/(1/2+sqrt(5)/2)^47 9870002026322492 a004 Fibonacci(89)/Lucas(28)/(1/2+sqrt(5)/2)^45 9870002026322492 a004 Fibonacci(87)/Lucas(28)/(1/2+sqrt(5)/2)^43 9870002026322492 a004 Fibonacci(85)/Lucas(28)/(1/2+sqrt(5)/2)^41 9870002026322492 a004 Fibonacci(83)/Lucas(28)/(1/2+sqrt(5)/2)^39 9870002026322492 a004 Fibonacci(81)/Lucas(28)/(1/2+sqrt(5)/2)^37 9870002026322492 a004 Fibonacci(79)/Lucas(28)/(1/2+sqrt(5)/2)^35 9870002026322492 a004 Fibonacci(77)/Lucas(28)/(1/2+sqrt(5)/2)^33 9870002026322492 a004 Fibonacci(75)/Lucas(28)/(1/2+sqrt(5)/2)^31 9870002026322492 a004 Fibonacci(73)/Lucas(28)/(1/2+sqrt(5)/2)^29 9870002026322492 a004 Fibonacci(71)/Lucas(28)/(1/2+sqrt(5)/2)^27 9870002026322492 a004 Fibonacci(69)/Lucas(28)/(1/2+sqrt(5)/2)^25 9870002026322492 a004 Fibonacci(67)/Lucas(28)/(1/2+sqrt(5)/2)^23 9870002026322492 a004 Fibonacci(65)/Lucas(28)/(1/2+sqrt(5)/2)^21 9870002026322492 a004 Fibonacci(63)/Lucas(28)/(1/2+sqrt(5)/2)^19 9870002026322492 a004 Fibonacci(61)/Lucas(28)/(1/2+sqrt(5)/2)^17 9870002026322492 a004 Fibonacci(59)/Lucas(28)/(1/2+sqrt(5)/2)^15 9870002026322492 a004 Fibonacci(57)/Lucas(28)/(1/2+sqrt(5)/2)^13 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^43/Lucas(55) 9870002026322492 a004 Fibonacci(55)/Lucas(28)/(1/2+sqrt(5)/2)^11 9870002026322492 a001 317811/3461452808002*192900153618^(8/9) 9870002026322492 a001 10959/505618944676*192900153618^(17/18) 9870002026322492 a004 Fibonacci(28)*Lucas(54)/(1/2+sqrt(5)/2)^66 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^41/Lucas(53) 9870002026322492 a004 Fibonacci(53)/Lucas(28)/(1/2+sqrt(5)/2)^9 9870002026322492 a001 317811/45537549124*45537549124^(13/17) 9870002026322492 a001 317811/505019158607*73681302247^(11/13) 9870002026322492 a001 317811/3461452808002*73681302247^(12/13) 9870002026322492 a004 Fibonacci(28)*Lucas(52)/(1/2+sqrt(5)/2)^64 9870002026322492 a001 248931712863039/252210396917 9870002026322492 a001 317811/45537549124*14662949395604^(13/21) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^39/Lucas(51) 9870002026322492 a004 Fibonacci(51)/Lucas(28)/(1/2+sqrt(5)/2)^7 9870002026322492 a001 317811/45537549124*192900153618^(13/18) 9870002026322492 a001 317811/45537549124*73681302247^(3/4) 9870002026322492 a001 317811/73681302247*28143753123^(4/5) 9870002026322492 a001 317811/817138163596*28143753123^(9/10) 9870002026322492 a004 Fibonacci(28)*Lucas(50)/(1/2+sqrt(5)/2)^62 9870002026322492 a001 2472169789334739/2504730781961 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^37/Lucas(49) 9870002026322492 a004 Fibonacci(49)/Lucas(28)/(1/2+sqrt(5)/2)^5 9870002026322492 a001 105937/9381251041*10749957122^(19/24) 9870002026322492 a001 317811/73681302247*10749957122^(5/6) 9870002026322492 a001 317811/45537549124*10749957122^(13/16) 9870002026322492 a001 105937/64300051206*10749957122^(7/8) 9870002026322492 a001 317811/505019158607*10749957122^(11/12) 9870002026322492 a001 317811/817138163596*10749957122^(15/16) 9870002026322492 a001 105937/440719107401*10749957122^(23/24) 9870002026322492 a004 Fibonacci(28)*Lucas(48)/(1/2+sqrt(5)/2)^60 9870002026322492 a001 317811/6643838879*17393796001^(5/7) 9870002026322492 a001 317811/6643838879*312119004989^(7/11) 9870002026322492 a001 944284833565203/956722026041 9870002026322492 a001 317811/6643838879*14662949395604^(5/9) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^35/Lucas(47) 9870002026322492 a001 317811/6643838879*505019158607^(5/8) 9870002026322492 a004 Fibonacci(47)/Lucas(28)/(1/2+sqrt(5)/2)^3 9870002026322492 a001 317811/6643838879*28143753123^(7/10) 9870002026322492 a001 317811/10749957122*4106118243^(18/23) 9870002026322492 a001 317811/2537720636*2537720636^(11/15) 9870002026322492 a001 105937/9381251041*4106118243^(19/23) 9870002026322492 a001 317811/73681302247*4106118243^(20/23) 9870002026322492 a001 105937/64300051206*4106118243^(21/23) 9870002026322492 a001 317811/505019158607*4106118243^(22/23) 9870002026322492 a004 Fibonacci(28)*Lucas(46)/(1/2+sqrt(5)/2)^58 9870002026322492 a001 317811/2537720636*45537549124^(11/17) 9870002026322492 a001 317811/2537720636*312119004989^(3/5) 9870002026322492 a001 180342355680435/182717648081 9870002026322492 a001 317811/2537720636*817138163596^(11/19) 9870002026322492 a001 317811/2537720636*14662949395604^(11/21) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^33/Lucas(45) 9870002026322492 a004 Fibonacci(45)/Lucas(28)/(1/2+sqrt(5)/2) 9870002026322492 a001 317811/2537720636*192900153618^(11/18) 9870002026322492 a001 317811/2537720636*10749957122^(11/16) 9870002026322492 a001 105937/1368706081*1568397607^(17/22) 9870002026322492 a001 317811/10749957122*1568397607^(9/11) 9870002026322492 a001 105937/9381251041*1568397607^(19/22) 9870002026322492 a001 317811/73681302247*1568397607^(10/11) 9870002026322492 a001 105937/64300051206*1568397607^(21/22) 9870002026322492 a004 Fibonacci(28)*Lucas(44)/(1/2+sqrt(5)/2)^56 9870002026322492 a001 317811/2537720636*1568397607^(3/4) 9870002026322492 a001 137769300517407/139583862445 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^31/Lucas(43) 9870002026322492 a001 317811/969323029*9062201101803^(1/2) 9870002026322492 a001 433494437/1421294+433494437/1421294*5^(1/2) 9870002026322492 a001 317811/1568397607*599074578^(16/21) 9870002026322492 a001 105937/1368706081*599074578^(17/21) 9870002026322492 a001 317811/2537720636*599074578^(11/14) 9870002026322492 a001 317811/6643838879*599074578^(5/6) 9870002026322492 a001 317811/10749957122*599074578^(6/7) 9870002026322492 a001 105937/9381251041*599074578^(19/21) 9870002026322492 a001 317811/45537549124*599074578^(13/14) 9870002026322492 a001 317811/73681302247*599074578^(20/21) 9870002026322492 a004 Fibonacci(28)*Lucas(42)/(1/2+sqrt(5)/2)^54 9870002026322492 a001 165580141/710647*141422324^(1/13) 9870002026322492 a001 267914296/710647*87403803^(1/19) 9870002026322492 a001 165580141/710647*2537720636^(1/15) 9870002026322492 a001 52623190191351/53316291173 9870002026322492 a001 165580141/710647*45537549124^(1/17) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^29/Lucas(41) 9870002026322492 a001 317811/370248451*1322157322203^(1/2) 9870002026322492 a001 165580141/710647*14662949395604^(1/21) 9870002026322492 a001 165580141/710647*(1/2+1/2*5^(1/2))^3 9870002026322492 a001 165580141/710647*192900153618^(1/18) 9870002026322492 a001 165580141/710647*10749957122^(1/16) 9870002026322492 a001 165580141/710647*599074578^(1/14) 9870002026322492 a001 377/710646*228826127^(3/4) 9870002026322492 a001 317811/1568397607*228826127^(4/5) 9870002026322492 a001 317811/141422324*141422324^(9/13) 9870002026322492 a001 105937/1368706081*228826127^(17/20) 9870002026322492 a001 317811/6643838879*228826127^(7/8) 9870002026322492 a001 317811/10749957122*228826127^(9/10) 9870002026322492 a001 105937/9381251041*228826127^(19/20) 9870002026322492 a001 39088169/710647*33385282^(1/6) 9870002026322492 a004 Fibonacci(28)*Lucas(40)/(1/2+sqrt(5)/2)^52 9870002026322492 a001 267914296/710647*33385282^(1/18) 9870002026322492 a001 317811/141422324*2537720636^(3/5) 9870002026322492 a001 63245986/710647*2537720636^(1/9) 9870002026322492 a001 10050135028323/10182505537 9870002026322492 a001 317811/141422324*45537549124^(9/17) 9870002026322492 a001 317811/141422324*817138163596^(9/19) 9870002026322492 a001 317811/141422324*14662949395604^(3/7) 9870002026322492 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^27/Lucas(39) 9870002026322492 a001 63245986/710647*312119004989^(1/11) 9870002026322492 a001 63245986/710647*(1/2+1/2*5^(1/2))^5 9870002026322492 a001 317811/141422324*192900153618^(1/2) 9870002026322492 a001 63245986/710647*28143753123^(1/10) 9870002026322492 a001 317811/141422324*10749957122^(9/16) 9870002026322492 a001 317811/141422324*599074578^(9/14) 9870002026322492 a001 63245986/710647*228826127^(1/8) 9870002026322492 a001 317811/228826127*87403803^(14/19) 9870002026322492 a001 14619165/101521*33385282^(1/9) 9870002026322492 a001 165580141/710647*33385282^(1/12) 9870002026322493 a001 377/710646*87403803^(15/19) 9870002026322493 a001 317811/1568397607*87403803^(16/19) 9870002026322493 a001 105937/1368706081*87403803^(17/19) 9870002026322493 a001 317811/10749957122*87403803^(18/19) 9870002026322493 a004 Fibonacci(28)*Lucas(38)/(1/2+sqrt(5)/2)^50 9870002026322495 a001 317811/54018521*2537720636^(5/9) 9870002026322495 a001 590586152199/598364773 9870002026322495 a001 24157817/710647*17393796001^(1/7) 9870002026322495 a001 317811/54018521*312119004989^(5/11) 9870002026322495 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^25/Lucas(37) 9870002026322495 a001 317811/54018521*3461452808002^(5/12) 9870002026322495 a001 24157817/710647*14662949395604^(1/9) 9870002026322495 a001 24157817/710647*(1/2+1/2*5^(1/2))^7 9870002026322495 a001 317811/54018521*28143753123^(1/2) 9870002026322495 a001 24157817/710647*599074578^(1/6) 9870002026322495 a001 317811/54018521*228826127^(5/8) 9870002026322495 a001 267914296/710647*12752043^(1/17) 9870002026322497 a001 105937/29134601*33385282^(13/18) 9870002026322497 a001 14930352/710647*12752043^(4/17) 9870002026322498 a001 317811/228826127*33385282^(7/9) 9870002026322498 a001 14619165/101521*12752043^(2/17) 9870002026322499 a001 317811/141422324*33385282^(3/4) 9870002026322499 a001 377/710646*33385282^(5/6) 9870002026322499 a001 317811/1568397607*33385282^(8/9) 9870002026322500 a001 317811/2537720636*33385282^(11/12) 9870002026322500 a001 105937/1368706081*33385282^(17/18) 9870002026322500 a004 Fibonacci(28)*Lucas(36)/(1/2+sqrt(5)/2)^48 9870002026322501 a001 39088169/710647*12752043^(3/17) 9870002026322515 a001 9227465/710647*141422324^(3/13) 9870002026322515 a001 9227465/710647*2537720636^(1/5) 9870002026322515 a001 2932589879115/2971215073 9870002026322515 a001 9227465/710647*45537549124^(3/17) 9870002026322515 a001 10959/711491*(1/2+1/2*5^(1/2))^23 9870002026322515 a001 9227465/710647*817138163596^(3/19) 9870002026322515 a001 9227465/710647*14662949395604^(1/7) 9870002026322515 a001 9227465/710647*(1/2+1/2*5^(1/2))^9 9870002026322515 a001 9227465/710647*192900153618^(1/6) 9870002026322515 a001 9227465/710647*10749957122^(3/16) 9870002026322515 a001 10959/711491*4106118243^(1/2) 9870002026322515 a001 9227465/710647*599074578^(3/14) 9870002026322517 a001 9227465/710647*33385282^(1/4) 9870002026322518 a001 267914296/710647*4870847^(1/16) 9870002026322526 a001 317811/33385282*12752043^(12/17) 9870002026322537 a001 105937/29134601*12752043^(13/17) 9870002026322541 a001 317811/228826127*12752043^(14/17) 9870002026322543 a001 14619165/101521*4870847^(1/8) 9870002026322545 a001 377/710646*12752043^(15/17) 9870002026322549 a001 317811/1568397607*12752043^(16/17) 9870002026322549 a001 317811/7881196*7881196^(7/11) 9870002026322552 a004 Fibonacci(28)*Lucas(34)/(1/2+sqrt(5)/2)^46 9870002026322561 a001 5702887/710647*4870847^(5/16) 9870002026322568 a001 39088169/710647*4870847^(3/16) 9870002026322587 a001 14930352/710647*4870847^(1/4) 9870002026322597 a001 3524578/710647*7881196^(1/3) 9870002026322637 a001 317811/7881196*20633239^(3/5) 9870002026322650 a001 317811/7881196*141422324^(7/13) 9870002026322650 a001 560074829379/567451585 9870002026322650 a001 317811/7881196*2537720636^(7/15) 9870002026322650 a001 317811/7881196*17393796001^(3/7) 9870002026322650 a001 317811/7881196*45537549124^(7/17) 9870002026322650 a001 317811/7881196*14662949395604^(1/3) 9870002026322650 a001 317811/7881196*(1/2+1/2*5^(1/2))^21 9870002026322650 a001 3524578/710647*312119004989^(1/5) 9870002026322650 a001 3524578/710647*(1/2+1/2*5^(1/2))^11 9870002026322650 a001 317811/7881196*192900153618^(7/18) 9870002026322650 a001 317811/7881196*10749957122^(7/16) 9870002026322650 a001 3524578/710647*1568397607^(1/4) 9870002026322650 a001 317811/7881196*599074578^(1/2) 9870002026322656 a001 317811/7881196*33385282^(7/12) 9870002026322682 a001 267914296/710647*1860498^(1/15) 9870002026322717 a001 105937/4250681*4870847^(11/16) 9870002026322777 a001 165580141/710647*1860498^(1/10) 9870002026322795 a001 317811/33385282*4870847^(3/4) 9870002026322828 a001 105937/29134601*4870847^(13/16) 9870002026322848 a001 63245986/271443*103682^(1/8) 9870002026322855 a001 317811/228826127*4870847^(7/8) 9870002026322872 a001 14619165/101521*1860498^(2/15) 9870002026322882 a001 377/710646*4870847^(15/16) 9870002026322908 a004 Fibonacci(28)*Lucas(32)/(1/2+sqrt(5)/2)^44 9870002026322967 a001 63245986/710647*1860498^(1/6) 9870002026323061 a001 39088169/439204*167761^(1/5) 9870002026323061 a001 39088169/710647*1860498^(1/5) 9870002026323216 a001 311187/101521*1860498^(2/5) 9870002026323243 a001 14930352/710647*1860498^(4/15) 9870002026323370 a001 9227465/710647*1860498^(3/10) 9870002026323381 a001 5702887/710647*1860498^(1/3) 9870002026323581 a001 1346269/710647*141422324^(1/3) 9870002026323581 a001 427859097159/433494437 9870002026323581 a001 317811/3010349*817138163596^(1/3) 9870002026323581 a001 317811/3010349*(1/2+1/2*5^(1/2))^19 9870002026323581 a001 1346269/710647*(1/2+1/2*5^(1/2))^13 9870002026323581 a001 1346269/710647*73681302247^(1/4) 9870002026323581 a001 317811/3010349*87403803^(1/2) 9870002026323888 a001 267914296/710647*710647^(1/14) 9870002026323976 a001 317811/4870847*1860498^(2/3) 9870002026324522 a001 105937/4250681*1860498^(11/15) 9870002026324564 a001 63245986/4870847*439204^(1/3) 9870002026324646 a001 317811/7881196*1860498^(7/10) 9870002026324764 a001 317811/33385282*1860498^(4/5) 9870002026324871 a001 317811/54018521*1860498^(5/6) 9870002026324919 a001 165580141/12752043*439204^(1/3) 9870002026324961 a001 105937/29134601*1860498^(13/15) 9870002026324971 a001 433494437/33385282*439204^(1/3) 9870002026324979 a001 1134903170/87403803*439204^(1/3) 9870002026324980 a001 2971215073/228826127*439204^(1/3) 9870002026324980 a001 7778742049/599074578*439204^(1/3) 9870002026324980 a001 20365011074/1568397607*439204^(1/3) 9870002026324980 a001 53316291173/4106118243*439204^(1/3) 9870002026324980 a001 139583862445/10749957122*439204^(1/3) 9870002026324980 a001 365435296162/28143753123*439204^(1/3) 9870002026324980 a001 956722026041/73681302247*439204^(1/3) 9870002026324980 a001 2504730781961/192900153618*439204^(1/3) 9870002026324980 a001 10610209857723/817138163596*439204^(1/3) 9870002026324980 a001 4052739537881/312119004989*439204^(1/3) 9870002026324980 a001 1548008755920/119218851371*439204^(1/3) 9870002026324980 a001 591286729879/45537549124*439204^(1/3) 9870002026324980 a001 7787980473/599786069*439204^(1/3) 9870002026324980 a001 86267571272/6643838879*439204^(1/3) 9870002026324980 a001 32951280099/2537720636*439204^(1/3) 9870002026324980 a001 12586269025/969323029*439204^(1/3) 9870002026324980 a001 4807526976/370248451*439204^(1/3) 9870002026324980 a001 1836311903/141422324*439204^(1/3) 9870002026324983 a001 701408733/54018521*439204^(1/3) 9870002026325003 a001 9238424/711491*439204^(1/3) 9870002026325058 a001 317811/141422324*1860498^(9/10) 9870002026325139 a001 102334155/7881196*439204^(1/3) 9870002026325153 a001 317811/228826127*1860498^(14/15) 9870002026325283 a001 14619165/101521*710647^(1/7) 9870002026325343 a004 Fibonacci(28)*Lucas(30)/(1/2+sqrt(5)/2)^42 9870002026326068 a001 39088169/3010349*439204^(1/3) 9870002026326678 a001 39088169/710647*710647^(3/14) 9870002026326919 a001 3524578/1149851*439204^(4/9) 9870002026327381 a001 24157817/710647*710647^(1/4) 9870002026327813 a001 831985/15126*439204^(2/9) 9870002026328067 a001 14930352/710647*710647^(2/7) 9870002026329411 a001 5702887/710647*710647^(5/14) 9870002026329412 a001 832040/710647*710647^(1/2) 9870002026329884 a001 514229/710647*7881196^(5/11) 9870002026329947 a001 514229/710647*20633239^(3/7) 9870002026329956 a001 514229/710647*141422324^(5/13) 9870002026329957 a001 163427632719/165580141 9870002026329957 a001 514229/710647*2537720636^(1/3) 9870002026329957 a001 317811/1149851*45537549124^(1/3) 9870002026329957 a001 514229/710647*45537549124^(5/17) 9870002026329957 a001 317811/1149851*(1/2+1/2*5^(1/2))^17 9870002026329957 a001 514229/710647*312119004989^(3/11) 9870002026329957 a001 514229/710647*14662949395604^(5/21) 9870002026329957 a001 514229/710647*(1/2+1/2*5^(1/2))^15 9870002026329957 a001 514229/710647*192900153618^(5/18) 9870002026329957 a001 514229/710647*28143753123^(3/10) 9870002026329957 a001 514229/710647*10749957122^(5/16) 9870002026329957 a001 514229/710647*599074578^(5/14) 9870002026329957 a001 514229/710647*228826127^(3/8) 9870002026329960 a001 514229/710647*33385282^(5/12) 9870002026329987 a001 317811/1149851*12752043^(1/2) 9870002026330249 a001 267914296/4870847*439204^(2/9) 9870002026330451 a001 311187/101521*710647^(3/7) 9870002026330604 a001 233802911/4250681*439204^(2/9) 9870002026330656 a001 1836311903/33385282*439204^(2/9) 9870002026330664 a001 1602508992/29134601*439204^(2/9) 9870002026330665 a001 12586269025/228826127*439204^(2/9) 9870002026330665 a001 10983760033/199691526*439204^(2/9) 9870002026330665 a001 86267571272/1568397607*439204^(2/9) 9870002026330665 a001 75283811239/1368706081*439204^(2/9) 9870002026330665 a001 591286729879/10749957122*439204^(2/9) 9870002026330665 a001 12585437040/228811001*439204^(2/9) 9870002026330665 a001 4052739537881/73681302247*439204^(2/9) 9870002026330665 a001 3536736619241/64300051206*439204^(2/9) 9870002026330665 a001 6557470319842/119218851371*439204^(2/9) 9870002026330665 a001 2504730781961/45537549124*439204^(2/9) 9870002026330665 a001 956722026041/17393796001*439204^(2/9) 9870002026330665 a001 365435296162/6643838879*439204^(2/9) 9870002026330665 a001 139583862445/2537720636*439204^(2/9) 9870002026330665 a001 53316291173/969323029*439204^(2/9) 9870002026330665 a001 20365011074/370248451*439204^(2/9) 9870002026330666 a001 7778742049/141422324*439204^(2/9) 9870002026330668 a001 2971215073/54018521*439204^(2/9) 9870002026330688 a001 1134903170/20633239*439204^(2/9) 9870002026330824 a001 433494437/7881196*439204^(2/9) 9870002026331382 a001 514229/710647*1860498^(1/2) 9870002026331670 a001 121393/12752043*271443^(12/13) 9870002026331719 a004 Fibonacci(30)*Lucas(29)/(1/2+sqrt(5)/2)^43 9870002026331754 a001 165580141/3010349*439204^(2/9) 9870002026332204 a001 105937/620166*710647^(9/14) 9870002026332436 a001 14930352/1149851*439204^(1/3) 9870002026332796 a001 267914296/710647*271443^(1/13) 9870002026333499 a001 433494437/1860498*439204^(1/9) 9870002026334154 a004 Fibonacci(32)*Lucas(29)/(1/2+sqrt(5)/2)^45 9870002026334510 a004 Fibonacci(34)*Lucas(29)/(1/2+sqrt(5)/2)^47 9870002026334561 a004 Fibonacci(36)*Lucas(29)/(1/2+sqrt(5)/2)^49 9870002026334569 a004 Fibonacci(38)*Lucas(29)/(1/2+sqrt(5)/2)^51 9870002026334570 a004 Fibonacci(40)*Lucas(29)/(1/2+sqrt(5)/2)^53 9870002026334570 a004 Fibonacci(42)*Lucas(29)/(1/2+sqrt(5)/2)^55 9870002026334570 a004 Fibonacci(44)*Lucas(29)/(1/2+sqrt(5)/2)^57 9870002026334570 a004 Fibonacci(46)*Lucas(29)/(1/2+sqrt(5)/2)^59 9870002026334570 a004 Fibonacci(48)*Lucas(29)/(1/2+sqrt(5)/2)^61 9870002026334570 a004 Fibonacci(50)*Lucas(29)/(1/2+sqrt(5)/2)^63 9870002026334570 a004 Fibonacci(52)*Lucas(29)/(1/2+sqrt(5)/2)^65 9870002026334570 a004 Fibonacci(54)*Lucas(29)/(1/2+sqrt(5)/2)^67 9870002026334570 a004 Fibonacci(56)*Lucas(29)/(1/2+sqrt(5)/2)^69 9870002026334570 a004 Fibonacci(58)*Lucas(29)/(1/2+sqrt(5)/2)^71 9870002026334570 a004 Fibonacci(60)*Lucas(29)/(1/2+sqrt(5)/2)^73 9870002026334570 a004 Fibonacci(62)*Lucas(29)/(1/2+sqrt(5)/2)^75 9870002026334570 a004 Fibonacci(64)*Lucas(29)/(1/2+sqrt(5)/2)^77 9870002026334570 a004 Fibonacci(66)*Lucas(29)/(1/2+sqrt(5)/2)^79 9870002026334570 a004 Fibonacci(68)*Lucas(29)/(1/2+sqrt(5)/2)^81 9870002026334570 a004 Fibonacci(70)*Lucas(29)/(1/2+sqrt(5)/2)^83 9870002026334570 a004 Fibonacci(72)*Lucas(29)/(1/2+sqrt(5)/2)^85 9870002026334570 a004 Fibonacci(74)*Lucas(29)/(1/2+sqrt(5)/2)^87 9870002026334570 a004 Fibonacci(76)*Lucas(29)/(1/2+sqrt(5)/2)^89 9870002026334570 a004 Fibonacci(78)*Lucas(29)/(1/2+sqrt(5)/2)^91 9870002026334570 a004 Fibonacci(80)*Lucas(29)/(1/2+sqrt(5)/2)^93 9870002026334570 a004 Fibonacci(82)*Lucas(29)/(1/2+sqrt(5)/2)^95 9870002026334570 a004 Fibonacci(84)*Lucas(29)/(1/2+sqrt(5)/2)^97 9870002026334570 a004 Fibonacci(86)*Lucas(29)/(1/2+sqrt(5)/2)^99 9870002026334570 a004 Fibonacci(87)*Lucas(29)/(1/2+sqrt(5)/2)^100 9870002026334570 a004 Fibonacci(85)*Lucas(29)/(1/2+sqrt(5)/2)^98 9870002026334570 a004 Fibonacci(83)*Lucas(29)/(1/2+sqrt(5)/2)^96 9870002026334570 a004 Fibonacci(81)*Lucas(29)/(1/2+sqrt(5)/2)^94 9870002026334570 a004 Fibonacci(79)*Lucas(29)/(1/2+sqrt(5)/2)^92 9870002026334570 a004 Fibonacci(77)*Lucas(29)/(1/2+sqrt(5)/2)^90 9870002026334570 a004 Fibonacci(75)*Lucas(29)/(1/2+sqrt(5)/2)^88 9870002026334570 a004 Fibonacci(73)*Lucas(29)/(1/2+sqrt(5)/2)^86 9870002026334570 a004 Fibonacci(71)*Lucas(29)/(1/2+sqrt(5)/2)^84 9870002026334570 a004 Fibonacci(69)*Lucas(29)/(1/2+sqrt(5)/2)^82 9870002026334570 a004 Fibonacci(67)*Lucas(29)/(1/2+sqrt(5)/2)^80 9870002026334570 a004 Fibonacci(65)*Lucas(29)/(1/2+sqrt(5)/2)^78 9870002026334570 a004 Fibonacci(63)*Lucas(29)/(1/2+sqrt(5)/2)^76 9870002026334570 a004 Fibonacci(61)*Lucas(29)/(1/2+sqrt(5)/2)^74 9870002026334570 a004 Fibonacci(59)*Lucas(29)/(1/2+sqrt(5)/2)^72 9870002026334570 a001 2/514229*(1/2+1/2*5^(1/2))^45 9870002026334570 a004 Fibonacci(57)*Lucas(29)/(1/2+sqrt(5)/2)^70 9870002026334570 a004 Fibonacci(55)*Lucas(29)/(1/2+sqrt(5)/2)^68 9870002026334570 a004 Fibonacci(53)*Lucas(29)/(1/2+sqrt(5)/2)^66 9870002026334570 a004 Fibonacci(51)*Lucas(29)/(1/2+sqrt(5)/2)^64 9870002026334570 a004 Fibonacci(49)*Lucas(29)/(1/2+sqrt(5)/2)^62 9870002026334570 a004 Fibonacci(47)*Lucas(29)/(1/2+sqrt(5)/2)^60 9870002026334570 a004 Fibonacci(45)*Lucas(29)/(1/2+sqrt(5)/2)^58 9870002026334570 a004 Fibonacci(43)*Lucas(29)/(1/2+sqrt(5)/2)^56 9870002026334570 a004 Fibonacci(41)*Lucas(29)/(1/2+sqrt(5)/2)^54 9870002026334571 a004 Fibonacci(39)*Lucas(29)/(1/2+sqrt(5)/2)^52 9870002026334574 a004 Fibonacci(37)*Lucas(29)/(1/2+sqrt(5)/2)^50 9870002026334593 a004 Fibonacci(35)*Lucas(29)/(1/2+sqrt(5)/2)^48 9870002026334729 a004 Fibonacci(33)*Lucas(29)/(1/2+sqrt(5)/2)^46 9870002026335659 a004 Fibonacci(31)*Lucas(29)/(1/2+sqrt(5)/2)^44 9870002026335934 a001 1134903170/4870847*439204^(1/9) 9870002026336035 a001 317811/4870847*710647^(5/7) 9870002026336290 a001 2971215073/12752043*439204^(1/9) 9870002026336333 a001 416020/930249*(1/2+1/2*5^(1/2))^16 9870002026336333 a001 416020/930249*23725150497407^(1/4) 9870002026336333 a001 416020/930249*73681302247^(4/13) 9870002026336333 a001 416020/930249*10749957122^(1/3) 9870002026336333 a001 416020/930249*4106118243^(8/23) 9870002026336333 a001 416020/930249*1568397607^(4/11) 9870002026336333 a001 692290561600/701408733 9870002026336333 a001 416020/930249*599074578^(8/21) 9870002026336333 a001 416020/930249*228826127^(2/5) 9870002026336333 a001 416020/930249*87403803^(8/19) 9870002026336336 a001 416020/930249*33385282^(4/9) 9870002026336341 a001 7778742049/33385282*439204^(1/9) 9870002026336349 a001 20365011074/87403803*439204^(1/9) 9870002026336350 a001 53316291173/228826127*439204^(1/9) 9870002026336350 a001 139583862445/599074578*439204^(1/9) 9870002026336350 a001 365435296162/1568397607*439204^(1/9) 9870002026336350 a001 956722026041/4106118243*439204^(1/9) 9870002026336350 a001 2504730781961/10749957122*439204^(1/9) 9870002026336350 a001 6557470319842/28143753123*439204^(1/9) 9870002026336350 a001 10610209857723/45537549124*439204^(1/9) 9870002026336350 a001 4052739537881/17393796001*439204^(1/9) 9870002026336350 a001 1548008755920/6643838879*439204^(1/9) 9870002026336350 a001 591286729879/2537720636*439204^(1/9) 9870002026336350 a001 225851433717/969323029*439204^(1/9) 9870002026336350 a001 86267571272/370248451*439204^(1/9) 9870002026336351 a001 63246219/271444*439204^(1/9) 9870002026336354 a001 12586269025/54018521*439204^(1/9) 9870002026336361 a001 416020/930249*12752043^(8/17) 9870002026336373 a001 4807526976/20633239*439204^(1/9) 9870002026336509 a001 1836311903/7881196*439204^(1/9) 9870002026336541 a001 416020/930249*4870847^(1/2) 9870002026337308 a001 317811/7881196*710647^(3/4) 9870002026337439 a001 701408733/3010349*439204^(1/9) 9870002026337787 a001 105937/4250681*710647^(11/14) 9870002026337853 a001 416020/930249*1860498^(8/15) 9870002026338095 a004 Fibonacci(30)*Lucas(31)/(1/2+sqrt(5)/2)^45 9870002026338131 a001 63245986/1149851*439204^(2/9) 9870002026338681 a001 832040/4870847*7881196^(6/11) 9870002026338759 a001 726103/620166*20633239^(2/5) 9870002026338768 a001 832040/4870847*141422324^(6/13) 9870002026338768 a001 832040/4870847*2537720636^(2/5) 9870002026338768 a001 726103/620166*17393796001^(2/7) 9870002026338768 a001 832040/4870847*45537549124^(6/17) 9870002026338768 a001 832040/4870847*(1/2+1/2*5^(1/2))^18 9870002026338768 a001 726103/620166*14662949395604^(2/9) 9870002026338768 a001 726103/620166*(1/2+1/2*5^(1/2))^14 9870002026338768 a001 726103/620166*505019158607^(1/4) 9870002026338768 a001 832040/4870847*192900153618^(1/3) 9870002026338768 a001 726103/620166*10749957122^(7/24) 9870002026338768 a001 832040/4870847*10749957122^(3/8) 9870002026338768 a001 726103/620166*4106118243^(7/23) 9870002026338768 a001 832040/4870847*4106118243^(9/23) 9870002026338768 a001 1812440220360/1836311903 9870002026338768 a001 726103/620166*1568397607^(7/22) 9870002026338768 a001 832040/4870847*1568397607^(9/22) 9870002026338768 a001 726103/620166*599074578^(1/3) 9870002026338768 a001 832040/4870847*599074578^(3/7) 9870002026338768 a001 726103/620166*228826127^(7/20) 9870002026338768 a001 832040/4870847*228826127^(9/20) 9870002026338768 a001 726103/620166*87403803^(7/19) 9870002026338769 a001 832040/4870847*87403803^(9/19) 9870002026338771 a001 726103/620166*33385282^(7/18) 9870002026338772 a001 832040/4870847*33385282^(1/2) 9870002026338793 a001 726103/620166*12752043^(7/17) 9870002026338800 a001 832040/4870847*12752043^(9/17) 9870002026338950 a001 726103/620166*4870847^(7/16) 9870002026339002 a001 832040/4870847*4870847^(9/16) 9870002026339025 a004 Fibonacci(30)*Lucas(33)/(1/2+sqrt(5)/2)^47 9870002026339039 a001 832040/1568397607*7881196^(10/11) 9870002026339054 a001 832040/370248451*7881196^(9/11) 9870002026339065 a001 5702887/1860498*7881196^(4/11) 9870002026339067 a001 832040/87403803*7881196^(8/11) 9870002026339069 a001 416020/16692641*7881196^(2/3) 9870002026339106 a001 75640/1875749*7881196^(7/11) 9870002026339110 a001 832040/12752043*20633239^(4/7) 9870002026339123 a001 5702887/1860498*141422324^(4/13) 9870002026339123 a001 832040/12752043*2537720636^(4/9) 9870002026339123 a001 5702887/1860498*2537720636^(4/15) 9870002026339123 a001 5702887/1860498*45537549124^(4/17) 9870002026339123 a001 5702887/1860498*817138163596^(4/19) 9870002026339123 a001 832040/12752043*(1/2+1/2*5^(1/2))^20 9870002026339123 a001 832040/12752043*23725150497407^(5/16) 9870002026339123 a001 5702887/1860498*14662949395604^(4/21) 9870002026339123 a001 5702887/1860498*(1/2+1/2*5^(1/2))^12 9870002026339123 a001 5702887/1860498*192900153618^(2/9) 9870002026339123 a001 5702887/1860498*73681302247^(3/13) 9870002026339123 a001 832040/12752043*73681302247^(5/13) 9870002026339123 a001 832040/12752043*28143753123^(2/5) 9870002026339123 a001 5702887/1860498*10749957122^(1/4) 9870002026339123 a001 832040/12752043*10749957122^(5/12) 9870002026339123 a001 593128762435/600940872 9870002026339123 a001 5702887/1860498*4106118243^(6/23) 9870002026339123 a001 832040/12752043*4106118243^(10/23) 9870002026339123 a001 5702887/1860498*1568397607^(3/11) 9870002026339123 a001 832040/12752043*1568397607^(5/11) 9870002026339123 a001 5702887/1860498*599074578^(2/7) 9870002026339123 a001 832040/12752043*599074578^(10/21) 9870002026339123 a001 5702887/1860498*228826127^(3/10) 9870002026339123 a001 832040/12752043*228826127^(1/2) 9870002026339124 a001 5702887/1860498*87403803^(6/19) 9870002026339124 a001 832040/12752043*87403803^(10/19) 9870002026339126 a001 5702887/1860498*33385282^(1/3) 9870002026339128 a001 832040/12752043*33385282^(5/9) 9870002026339144 a001 24157817/1860498*7881196^(3/11) 9870002026339145 a001 5702887/1860498*12752043^(6/17) 9870002026339154 a001 9227465/1860498*7881196^(1/3) 9870002026339155 a001 831985/15126*7881196^(2/11) 9870002026339159 a001 832040/12752043*12752043^(10/17) 9870002026339161 a004 Fibonacci(30)*Lucas(35)/(1/2+sqrt(5)/2)^49 9870002026339164 a001 832040/1568397607*20633239^(6/7) 9870002026339165 a001 416020/299537289*20633239^(4/5) 9870002026339168 a001 208010/35355581*20633239^(5/7) 9870002026339168 a001 829464/103361*20633239^(2/7) 9870002026339170 a001 433494437/1860498*7881196^(1/11) 9870002026339175 a001 829464/103361*2537720636^(2/9) 9870002026339175 a001 416020/16692641*312119004989^(2/5) 9870002026339175 a001 829464/103361*312119004989^(2/11) 9870002026339175 a001 416020/16692641*(1/2+1/2*5^(1/2))^22 9870002026339175 a001 829464/103361*(1/2+1/2*5^(1/2))^10 9870002026339175 a001 829464/103361*28143753123^(1/5) 9870002026339175 a001 225866365056/228841255 9870002026339175 a001 829464/103361*10749957122^(5/24) 9870002026339175 a001 416020/16692641*10749957122^(11/24) 9870002026339175 a001 829464/103361*4106118243^(5/23) 9870002026339175 a001 416020/16692641*4106118243^(11/23) 9870002026339175 a001 829464/103361*1568397607^(5/22) 9870002026339175 a001 416020/16692641*1568397607^(1/2) 9870002026339175 a001 829464/103361*599074578^(5/21) 9870002026339175 a001 416020/16692641*599074578^(11/21) 9870002026339175 a001 829464/103361*228826127^(1/4) 9870002026339175 a001 416020/16692641*228826127^(11/20) 9870002026339175 a001 829464/103361*87403803^(5/19) 9870002026339176 a001 416020/16692641*87403803^(11/19) 9870002026339178 a001 829464/103361*33385282^(5/18) 9870002026339180 a001 31622993/930249*20633239^(1/5) 9870002026339181 a001 416020/16692641*33385282^(11/18) 9870002026339181 a004 Fibonacci(30)*Lucas(37)/(1/2+sqrt(5)/2)^51 9870002026339181 a001 165580141/1860498*20633239^(1/7) 9870002026339182 a001 832040/87403803*141422324^(8/13) 9870002026339183 a001 832040/87403803*2537720636^(8/15) 9870002026339183 a001 832040/87403803*45537549124^(8/17) 9870002026339183 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^24/Lucas(38) 9870002026339183 a001 39088169/1860498*(1/2+1/2*5^(1/2))^8 9870002026339183 a001 39088169/1860498*23725150497407^(1/8) 9870002026339183 a001 39088169/1860498*505019158607^(1/7) 9870002026339183 a001 832040/87403803*192900153618^(4/9) 9870002026339183 a001 39088169/1860498*73681302247^(2/13) 9870002026339183 a001 832040/87403803*73681302247^(6/13) 9870002026339183 a001 32522920134760/32951280099 9870002026339183 a001 39088169/1860498*10749957122^(1/6) 9870002026339183 a001 832040/87403803*10749957122^(1/2) 9870002026339183 a001 39088169/1860498*4106118243^(4/23) 9870002026339183 a001 832040/87403803*4106118243^(12/23) 9870002026339183 a001 39088169/1860498*1568397607^(2/11) 9870002026339183 a001 832040/87403803*1568397607^(6/11) 9870002026339183 a001 39088169/1860498*599074578^(4/21) 9870002026339183 a001 832040/87403803*599074578^(4/7) 9870002026339183 a001 39088169/1860498*228826127^(1/5) 9870002026339183 a001 832040/87403803*228826127^(3/5) 9870002026339183 a001 39088169/1860498*87403803^(4/19) 9870002026339183 a001 832040/228826127*141422324^(2/3) 9870002026339183 a004 Fibonacci(30)*Lucas(39)/(1/2+sqrt(5)/2)^53 9870002026339183 a001 832040/87403803*87403803^(12/19) 9870002026339183 a001 832040/28143753123*141422324^(12/13) 9870002026339184 a001 832040/6643838879*141422324^(11/13) 9870002026339184 a001 832040/1568397607*141422324^(10/13) 9870002026339184 a001 832040/370248451*141422324^(9/13) 9870002026339184 a001 831985/15126*141422324^(2/13) 9870002026339184 a001 831985/15126*2537720636^(2/15) 9870002026339184 a001 831985/15126*45537549124^(2/17) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^26/Lucas(40) 9870002026339184 a001 831985/15126*14662949395604^(2/21) 9870002026339184 a001 831985/15126*(1/2+1/2*5^(1/2))^6 9870002026339184 a001 10643263790775/10783446409 9870002026339184 a001 832040/228826127*73681302247^(1/2) 9870002026339184 a001 831985/15126*10749957122^(1/8) 9870002026339184 a001 832040/228826127*10749957122^(13/24) 9870002026339184 a001 831985/15126*4106118243^(3/23) 9870002026339184 a001 832040/228826127*4106118243^(13/23) 9870002026339184 a001 831985/15126*1568397607^(3/22) 9870002026339184 a001 832040/228826127*1568397607^(13/22) 9870002026339184 a001 831985/15126*599074578^(1/7) 9870002026339184 a001 832040/228826127*599074578^(13/21) 9870002026339184 a001 831985/15126*228826127^(3/20) 9870002026339184 a004 Fibonacci(30)*Lucas(41)/(1/2+sqrt(5)/2)^55 9870002026339184 a001 832040/228826127*228826127^(13/20) 9870002026339184 a001 416020/299537289*17393796001^(4/7) 9870002026339184 a001 416020/299537289*14662949395604^(4/9) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^28/Lucas(42) 9870002026339184 a001 133957148/930249*(1/2+1/2*5^(1/2))^4 9870002026339184 a001 133957148/930249*23725150497407^(1/16) 9870002026339184 a001 416020/299537289*505019158607^(1/2) 9870002026339184 a001 591287561920/599075421 9870002026339184 a001 133957148/930249*73681302247^(1/13) 9870002026339184 a001 416020/299537289*73681302247^(7/13) 9870002026339184 a001 133957148/930249*10749957122^(1/12) 9870002026339184 a001 433494437/1860498*141422324^(1/13) 9870002026339184 a001 416020/299537289*10749957122^(7/12) 9870002026339184 a001 133957148/930249*4106118243^(2/23) 9870002026339184 a001 416020/299537289*4106118243^(14/23) 9870002026339184 a001 133957148/930249*1568397607^(1/11) 9870002026339184 a001 416020/299537289*1568397607^(7/11) 9870002026339184 a001 133957148/930249*599074578^(2/21) 9870002026339184 a004 Fibonacci(30)*Lucas(43)/(1/2+sqrt(5)/2)^57 9870002026339184 a001 416020/299537289*599074578^(2/3) 9870002026339184 a001 133957148/930249*228826127^(1/10) 9870002026339184 a001 832040/1568397607*2537720636^(2/3) 9870002026339184 a001 832040/1568397607*45537549124^(10/17) 9870002026339184 a001 832040/1568397607*14662949395604^(10/21) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^30/Lucas(44) 9870002026339184 a001 233802911/620166*(1/2+1/2*5^(1/2))^2 9870002026339184 a001 583600122205320/591286729879 9870002026339184 a001 832040/1568397607*192900153618^(5/9) 9870002026339184 a001 233802911/620166*10749957122^(1/24) 9870002026339184 a001 832040/1568397607*28143753123^(3/5) 9870002026339184 a001 233802911/620166*4106118243^(1/23) 9870002026339184 a001 832040/1568397607*10749957122^(5/8) 9870002026339184 a001 233802911/620166*1568397607^(1/22) 9870002026339184 a001 832040/1568397607*4106118243^(15/23) 9870002026339184 a001 233802911/620166*599074578^(1/21) 9870002026339184 a004 Fibonacci(30)*Lucas(45)/(1/2+sqrt(5)/2)^59 9870002026339184 a001 832040/505019158607*2537720636^(14/15) 9870002026339184 a001 416020/96450076809*2537720636^(8/9) 9870002026339184 a001 832040/119218851371*2537720636^(13/15) 9870002026339184 a001 832040/1568397607*1568397607^(15/22) 9870002026339184 a001 832040/28143753123*2537720636^(4/5) 9870002026339184 a001 832040/17393796001*2537720636^(7/9) 9870002026339184 a001 832040/6643838879*2537720636^(11/15) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^32/Lucas(46) 9870002026339184 a001 832040/4106118243*23725150497407^(1/2) 9870002026339184 a001 1836311903/1860498 9870002026339184 a001 832040/4106118243*505019158607^(4/7) 9870002026339184 a001 832040/4106118243*73681302247^(8/13) 9870002026339184 a001 832040/4106118243*10749957122^(2/3) 9870002026339184 a004 Fibonacci(30)*Lucas(47)/(1/2+sqrt(5)/2)^61 9870002026339184 a001 832040/4106118243*4106118243^(16/23) 9870002026339184 a001 416020/5374978561*45537549124^(2/3) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^34/Lucas(48) 9870002026339184 a001 4000054745111040/4052739537881 9870002026339184 a004 Fibonacci(48)/Lucas(30)/(1/2+sqrt(5)/2)^2 9870002026339184 a004 Fibonacci(30)*Lucas(49)/(1/2+sqrt(5)/2)^63 9870002026339184 a001 832040/505019158607*17393796001^(6/7) 9870002026339184 a001 416020/5374978561*10749957122^(17/24) 9870002026339184 a001 832040/28143753123*45537549124^(12/17) 9870002026339184 a001 832040/28143753123*14662949395604^(4/7) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^36/Lucas(50) 9870002026339184 a001 10472279279561000/10610209857723 9870002026339184 a004 Fibonacci(50)/Lucas(30)/(1/2+sqrt(5)/2)^4 9870002026339184 a001 832040/28143753123*192900153618^(2/3) 9870002026339184 a001 832040/28143753123*73681302247^(9/13) 9870002026339184 a004 Fibonacci(30)*Lucas(51)/(1/2+sqrt(5)/2)^65 9870002026339184 a001 832040/9062201101803*45537549124^(16/17) 9870002026339184 a001 832040/2139295485799*45537549124^(15/17) 9870002026339184 a001 832040/505019158607*45537549124^(14/17) 9870002026339184 a001 832040/119218851371*45537549124^(13/17) 9870002026339184 a001 832040/73681302247*817138163596^(2/3) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^38/Lucas(52) 9870002026339184 a004 Fibonacci(52)/Lucas(30)/(1/2+sqrt(5)/2)^6 9870002026339184 a004 Fibonacci(30)*Lucas(53)/(1/2+sqrt(5)/2)^67 9870002026339184 a001 416020/96450076809*312119004989^(8/11) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^40/Lucas(54) 9870002026339184 a001 416020/96450076809*23725150497407^(5/8) 9870002026339184 a004 Fibonacci(54)/Lucas(30)/(1/2+sqrt(5)/2)^8 9870002026339184 a004 Fibonacci(30)*Lucas(55)/(1/2+sqrt(5)/2)^69 9870002026339184 a001 832040/23725150497407*312119004989^(10/11) 9870002026339184 a001 832040/1322157322203*312119004989^(4/5) 9870002026339184 a001 832040/2139295485799*312119004989^(9/11) 9870002026339184 a001 832040/505019158607*817138163596^(14/19) 9870002026339184 a001 832040/505019158607*14662949395604^(2/3) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^42/Lucas(56) 9870002026339184 a004 Fibonacci(56)/Lucas(30)/(1/2+sqrt(5)/2)^10 9870002026339184 a004 Fibonacci(30)*Lucas(57)/(1/2+sqrt(5)/2)^71 9870002026339184 a001 832040/505019158607*505019158607^(3/4) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^44/Lucas(58) 9870002026339184 a001 832040/1322157322203*23725150497407^(11/16) 9870002026339184 a004 Fibonacci(58)/Lucas(30)/(1/2+sqrt(5)/2)^12 9870002026339184 a004 Fibonacci(30)*Lucas(59)/(1/2+sqrt(5)/2)^73 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^46/Lucas(60) 9870002026339184 a004 Fibonacci(30)*Lucas(61)/(1/2+sqrt(5)/2)^75 9870002026339184 a001 832040/9062201101803*14662949395604^(16/21) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^48/Lucas(62) 9870002026339184 a004 Fibonacci(30)*Lucas(63)/(1/2+sqrt(5)/2)^77 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^50/Lucas(64) 9870002026339184 a004 Fibonacci(30)*Lucas(65)/(1/2+sqrt(5)/2)^79 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^52/Lucas(66) 9870002026339184 a004 Fibonacci(30)*Lucas(67)/(1/2+sqrt(5)/2)^81 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^54/Lucas(68) 9870002026339184 a004 Fibonacci(30)*Lucas(69)/(1/2+sqrt(5)/2)^83 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^56/Lucas(70) 9870002026339184 a004 Fibonacci(30)*Lucas(71)/(1/2+sqrt(5)/2)^85 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^58/Lucas(72) 9870002026339184 a004 Fibonacci(30)*Lucas(73)/(1/2+sqrt(5)/2)^87 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^60/Lucas(74) 9870002026339184 a004 Fibonacci(30)*Lucas(75)/(1/2+sqrt(5)/2)^89 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^62/Lucas(76) 9870002026339184 a004 Fibonacci(30)*Lucas(77)/(1/2+sqrt(5)/2)^91 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^64/Lucas(78) 9870002026339184 a004 Fibonacci(30)*Lucas(79)/(1/2+sqrt(5)/2)^93 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^66/Lucas(80) 9870002026339184 a004 Fibonacci(30)*Lucas(81)/(1/2+sqrt(5)/2)^95 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^68/Lucas(82) 9870002026339184 a004 Fibonacci(30)*Lucas(83)/(1/2+sqrt(5)/2)^97 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^70/Lucas(84) 9870002026339184 a004 Fibonacci(30)*Lucas(85)/(1/2+sqrt(5)/2)^99 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^72/Lucas(86) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^74/Lucas(88) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^76/Lucas(90) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^78/Lucas(92) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^80/Lucas(94) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^82/Lucas(96) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^84/Lucas(98) 9870002026339184 a004 Fibonacci(15)*Lucas(15)/(1/2+sqrt(5)/2)^14 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^85/Lucas(99) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^86/Lucas(100) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^83/Lucas(97) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^81/Lucas(95) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^79/Lucas(93) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^77/Lucas(91) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^75/Lucas(89) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^73/Lucas(87) 9870002026339184 a004 Fibonacci(30)*Lucas(86)/(1/2+sqrt(5)/2)^100 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^71/Lucas(85) 9870002026339184 a004 Fibonacci(30)*Lucas(84)/(1/2+sqrt(5)/2)^98 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^69/Lucas(83) 9870002026339184 a004 Fibonacci(30)*Lucas(82)/(1/2+sqrt(5)/2)^96 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^67/Lucas(81) 9870002026339184 a004 Fibonacci(30)*Lucas(80)/(1/2+sqrt(5)/2)^94 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^65/Lucas(79) 9870002026339184 a004 Fibonacci(30)*Lucas(78)/(1/2+sqrt(5)/2)^92 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^63/Lucas(77) 9870002026339184 a004 Fibonacci(30)*Lucas(76)/(1/2+sqrt(5)/2)^90 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^61/Lucas(75) 9870002026339184 a004 Fibonacci(30)*Lucas(74)/(1/2+sqrt(5)/2)^88 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^59/Lucas(73) 9870002026339184 a004 Fibonacci(30)*Lucas(72)/(1/2+sqrt(5)/2)^86 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^57/Lucas(71) 9870002026339184 a004 Fibonacci(30)*Lucas(70)/(1/2+sqrt(5)/2)^84 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^55/Lucas(69) 9870002026339184 a004 Fibonacci(30)*Lucas(68)/(1/2+sqrt(5)/2)^82 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^53/Lucas(67) 9870002026339184 a004 Fibonacci(30)*Lucas(66)/(1/2+sqrt(5)/2)^80 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^51/Lucas(65) 9870002026339184 a001 208010/3665737348901*14662949395604^(7/9) 9870002026339184 a004 Fibonacci(30)*Lucas(64)/(1/2+sqrt(5)/2)^78 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^49/Lucas(63) 9870002026339184 a004 Fibonacci(30)*Lucas(62)/(1/2+sqrt(5)/2)^76 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^47/Lucas(61) 9870002026339184 a004 Fibonacci(62)/Lucas(30)/(1/2+sqrt(5)/2)^16 9870002026339184 a004 Fibonacci(64)/Lucas(30)/(1/2+sqrt(5)/2)^18 9870002026339184 a004 Fibonacci(66)/Lucas(30)/(1/2+sqrt(5)/2)^20 9870002026339184 a004 Fibonacci(68)/Lucas(30)/(1/2+sqrt(5)/2)^22 9870002026339184 a004 Fibonacci(70)/Lucas(30)/(1/2+sqrt(5)/2)^24 9870002026339184 a004 Fibonacci(72)/Lucas(30)/(1/2+sqrt(5)/2)^26 9870002026339184 a004 Fibonacci(74)/Lucas(30)/(1/2+sqrt(5)/2)^28 9870002026339184 a004 Fibonacci(76)/Lucas(30)/(1/2+sqrt(5)/2)^30 9870002026339184 a004 Fibonacci(78)/Lucas(30)/(1/2+sqrt(5)/2)^32 9870002026339184 a004 Fibonacci(80)/Lucas(30)/(1/2+sqrt(5)/2)^34 9870002026339184 a004 Fibonacci(82)/Lucas(30)/(1/2+sqrt(5)/2)^36 9870002026339184 a004 Fibonacci(84)/Lucas(30)/(1/2+sqrt(5)/2)^38 9870002026339184 a004 Fibonacci(86)/Lucas(30)/(1/2+sqrt(5)/2)^40 9870002026339184 a004 Fibonacci(88)/Lucas(30)/(1/2+sqrt(5)/2)^42 9870002026339184 a004 Fibonacci(90)/Lucas(30)/(1/2+sqrt(5)/2)^44 9870002026339184 a004 Fibonacci(92)/Lucas(30)/(1/2+sqrt(5)/2)^46 9870002026339184 a004 Fibonacci(94)/Lucas(30)/(1/2+sqrt(5)/2)^48 9870002026339184 a004 Fibonacci(96)/Lucas(30)/(1/2+sqrt(5)/2)^50 9870002026339184 a004 Fibonacci(100)/Lucas(30)/(1/2+sqrt(5)/2)^54 9870002026339184 a004 Fibonacci(98)/Lucas(30)/(1/2+sqrt(5)/2)^52 9870002026339184 a004 Fibonacci(30)*Lucas(60)/(1/2+sqrt(5)/2)^74 9870002026339184 a004 Fibonacci(99)/Lucas(30)/(1/2+sqrt(5)/2)^53 9870002026339184 a004 Fibonacci(97)/Lucas(30)/(1/2+sqrt(5)/2)^51 9870002026339184 a004 Fibonacci(95)/Lucas(30)/(1/2+sqrt(5)/2)^49 9870002026339184 a004 Fibonacci(93)/Lucas(30)/(1/2+sqrt(5)/2)^47 9870002026339184 a004 Fibonacci(91)/Lucas(30)/(1/2+sqrt(5)/2)^45 9870002026339184 a004 Fibonacci(89)/Lucas(30)/(1/2+sqrt(5)/2)^43 9870002026339184 a004 Fibonacci(87)/Lucas(30)/(1/2+sqrt(5)/2)^41 9870002026339184 a004 Fibonacci(85)/Lucas(30)/(1/2+sqrt(5)/2)^39 9870002026339184 a004 Fibonacci(83)/Lucas(30)/(1/2+sqrt(5)/2)^37 9870002026339184 a004 Fibonacci(81)/Lucas(30)/(1/2+sqrt(5)/2)^35 9870002026339184 a004 Fibonacci(79)/Lucas(30)/(1/2+sqrt(5)/2)^33 9870002026339184 a004 Fibonacci(77)/Lucas(30)/(1/2+sqrt(5)/2)^31 9870002026339184 a004 Fibonacci(75)/Lucas(30)/(1/2+sqrt(5)/2)^29 9870002026339184 a004 Fibonacci(73)/Lucas(30)/(1/2+sqrt(5)/2)^27 9870002026339184 a004 Fibonacci(71)/Lucas(30)/(1/2+sqrt(5)/2)^25 9870002026339184 a004 Fibonacci(69)/Lucas(30)/(1/2+sqrt(5)/2)^23 9870002026339184 a004 Fibonacci(67)/Lucas(30)/(1/2+sqrt(5)/2)^21 9870002026339184 a004 Fibonacci(65)/Lucas(30)/(1/2+sqrt(5)/2)^19 9870002026339184 a004 Fibonacci(63)/Lucas(30)/(1/2+sqrt(5)/2)^17 9870002026339184 a004 Fibonacci(61)/Lucas(30)/(1/2+sqrt(5)/2)^15 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^45/Lucas(59) 9870002026339184 a004 Fibonacci(59)/Lucas(30)/(1/2+sqrt(5)/2)^13 9870002026339184 a004 Fibonacci(30)*Lucas(58)/(1/2+sqrt(5)/2)^72 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^43/Lucas(57) 9870002026339184 a004 Fibonacci(57)/Lucas(30)/(1/2+sqrt(5)/2)^11 9870002026339184 a001 208010/3665737348901*505019158607^(7/8) 9870002026339184 a004 Fibonacci(30)*Lucas(56)/(1/2+sqrt(5)/2)^70 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^41/Lucas(55) 9870002026339184 a004 Fibonacci(55)/Lucas(30)/(1/2+sqrt(5)/2)^9 9870002026339184 a001 832040/505019158607*192900153618^(7/9) 9870002026339184 a001 832040/2139295485799*192900153618^(5/6) 9870002026339184 a001 832040/9062201101803*192900153618^(8/9) 9870002026339184 a004 Fibonacci(30)*Lucas(54)/(1/2+sqrt(5)/2)^68 9870002026339184 a001 832040/119218851371*14662949395604^(13/21) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^39/Lucas(53) 9870002026339184 a004 Fibonacci(53)/Lucas(30)/(1/2+sqrt(5)/2)^7 9870002026339184 a001 832040/119218851371*192900153618^(13/18) 9870002026339184 a001 416020/96450076809*73681302247^(10/13) 9870002026339184 a001 832040/1322157322203*73681302247^(11/13) 9870002026339184 a001 832040/9062201101803*73681302247^(12/13) 9870002026339184 a004 Fibonacci(30)*Lucas(52)/(1/2+sqrt(5)/2)^66 9870002026339184 a001 832040/119218851371*73681302247^(3/4) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^37/Lucas(51) 9870002026339184 a004 Fibonacci(51)/Lucas(30)/(1/2+sqrt(5)/2)^5 9870002026339184 a001 832040/17393796001*17393796001^(5/7) 9870002026339184 a001 416020/96450076809*28143753123^(4/5) 9870002026339184 a001 832040/2139295485799*28143753123^(9/10) 9870002026339184 a004 Fibonacci(30)*Lucas(50)/(1/2+sqrt(5)/2)^64 9870002026339184 a001 832040/17393796001*312119004989^(7/11) 9870002026339184 a001 248931712863460/252210396917 9870002026339184 a001 832040/17393796001*14662949395604^(5/9) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^35/Lucas(49) 9870002026339184 a004 Fibonacci(49)/Lucas(30)/(1/2+sqrt(5)/2)^3 9870002026339184 a001 832040/17393796001*505019158607^(5/8) 9870002026339184 a001 832040/17393796001*28143753123^(7/10) 9870002026339184 a001 832040/28143753123*10749957122^(3/4) 9870002026339184 a001 832040/73681302247*10749957122^(19/24) 9870002026339184 a001 832040/119218851371*10749957122^(13/16) 9870002026339184 a001 416020/96450076809*10749957122^(5/6) 9870002026339184 a001 832040/505019158607*10749957122^(7/8) 9870002026339184 a001 832040/1322157322203*10749957122^(11/12) 9870002026339184 a001 832040/2139295485799*10749957122^(15/16) 9870002026339184 a001 416020/1730726404001*10749957122^(23/24) 9870002026339184 a004 Fibonacci(30)*Lucas(48)/(1/2+sqrt(5)/2)^62 9870002026339184 a001 832040/6643838879*45537549124^(11/17) 9870002026339184 a001 832040/6643838879*312119004989^(3/5) 9870002026339184 a001 832040/6643838879*817138163596^(11/19) 9870002026339184 a001 2472169789338920/2504730781961 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^33/Lucas(47) 9870002026339184 a004 Fibonacci(47)/Lucas(30)/(1/2+sqrt(5)/2) 9870002026339184 a001 832040/6643838879*192900153618^(11/18) 9870002026339184 a001 832040/6643838879*10749957122^(11/16) 9870002026339184 a001 416020/5374978561*4106118243^(17/23) 9870002026339184 a001 832040/28143753123*4106118243^(18/23) 9870002026339184 a001 832040/73681302247*4106118243^(19/23) 9870002026339184 a001 416020/96450076809*4106118243^(20/23) 9870002026339184 a001 832040/505019158607*4106118243^(21/23) 9870002026339184 a001 832040/1322157322203*4106118243^(22/23) 9870002026339184 a004 Fibonacci(30)*Lucas(46)/(1/2+sqrt(5)/2)^60 9870002026339184 a001 944284833566800/956722026041 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^31/Lucas(45) 9870002026339184 a001 610/1860499*9062201101803^(1/2) 9870002026339184 a001 567451585/1860498+567451585/1860498*5^(1/2) 9870002026339184 a001 832040/4106118243*1568397607^(8/11) 9870002026339184 a001 416020/5374978561*1568397607^(17/22) 9870002026339184 a001 832040/6643838879*1568397607^(3/4) 9870002026339184 a001 832040/28143753123*1568397607^(9/11) 9870002026339184 a001 832040/73681302247*1568397607^(19/22) 9870002026339184 a001 416020/96450076809*1568397607^(10/11) 9870002026339184 a001 832040/505019158607*1568397607^(21/22) 9870002026339184 a004 Fibonacci(30)*Lucas(44)/(1/2+sqrt(5)/2)^58 9870002026339184 a001 233802911/620166*228826127^(1/20) 9870002026339184 a001 433494437/1860498*2537720636^(1/15) 9870002026339184 a001 433494437/1860498*45537549124^(1/17) 9870002026339184 a001 180342355680740/182717648081 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^29/Lucas(43) 9870002026339184 a001 433494437/1860498*(1/2+1/2*5^(1/2))^3 9870002026339184 a001 832040/969323029*1322157322203^(1/2) 9870002026339184 a001 433494437/1860498*192900153618^(1/18) 9870002026339184 a001 433494437/1860498*10749957122^(1/16) 9870002026339184 a001 433494437/1860498*599074578^(1/14) 9870002026339184 a001 831985/15126*87403803^(3/19) 9870002026339184 a001 832040/1568397607*599074578^(5/7) 9870002026339184 a001 832040/4106118243*599074578^(16/21) 9870002026339184 a001 832040/6643838879*599074578^(11/14) 9870002026339184 a001 416020/5374978561*599074578^(17/21) 9870002026339184 a001 832040/17393796001*599074578^(5/6) 9870002026339184 a001 832040/28143753123*599074578^(6/7) 9870002026339184 a001 832040/73681302247*599074578^(19/21) 9870002026339184 a001 832040/119218851371*599074578^(13/14) 9870002026339184 a001 416020/96450076809*599074578^(20/21) 9870002026339184 a004 Fibonacci(30)*Lucas(42)/(1/2+sqrt(5)/2)^56 9870002026339184 a001 233802911/620166*87403803^(1/19) 9870002026339184 a001 832040/370248451*2537720636^(3/5) 9870002026339184 a001 165580141/1860498*2537720636^(1/9) 9870002026339184 a001 832040/370248451*45537549124^(9/17) 9870002026339184 a001 27553860103528/27916772489 9870002026339184 a001 165580141/1860498*312119004989^(1/11) 9870002026339184 a001 832040/370248451*817138163596^(9/19) 9870002026339184 a001 832040/370248451*14662949395604^(3/7) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^27/Lucas(41) 9870002026339184 a001 165580141/1860498*(1/2+1/2*5^(1/2))^5 9870002026339184 a001 832040/370248451*192900153618^(1/2) 9870002026339184 a001 165580141/1860498*28143753123^(1/10) 9870002026339184 a001 832040/370248451*10749957122^(9/16) 9870002026339184 a001 832040/370248451*599074578^(9/14) 9870002026339184 a001 165580141/1860498*228826127^(1/8) 9870002026339184 a001 416020/299537289*228826127^(7/10) 9870002026339184 a001 133957148/930249*87403803^(2/19) 9870002026339184 a001 832040/1568397607*228826127^(3/4) 9870002026339184 a001 832040/4106118243*228826127^(4/5) 9870002026339184 a001 416020/5374978561*228826127^(17/20) 9870002026339184 a001 832040/17393796001*228826127^(7/8) 9870002026339184 a001 832040/28143753123*228826127^(9/10) 9870002026339184 a001 832040/73681302247*228826127^(19/20) 9870002026339184 a004 Fibonacci(30)*Lucas(40)/(1/2+sqrt(5)/2)^54 9870002026339184 a001 233802911/620166*33385282^(1/18) 9870002026339184 a001 208010/35355581*2537720636^(5/9) 9870002026339184 a001 31622993/930249*17393796001^(1/7) 9870002026339184 a001 52623190191440/53316291173 9870002026339184 a001 208010/35355581*312119004989^(5/11) 9870002026339184 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^25/Lucas(39) 9870002026339184 a001 208010/35355581*3461452808002^(5/12) 9870002026339184 a001 31622993/930249*14662949395604^(1/9) 9870002026339184 a001 31622993/930249*(1/2+1/2*5^(1/2))^7 9870002026339184 a001 208010/35355581*28143753123^(1/2) 9870002026339184 a001 31622993/930249*599074578^(1/6) 9870002026339185 a001 208010/35355581*228826127^(5/8) 9870002026339185 a001 39088169/1860498*33385282^(2/9) 9870002026339185 a001 832040/228826127*87403803^(13/19) 9870002026339185 a001 433494437/1860498*33385282^(1/12) 9870002026339185 a001 416020/299537289*87403803^(14/19) 9870002026339185 a001 133957148/930249*33385282^(1/9) 9870002026339185 a001 832040/1568397607*87403803^(15/19) 9870002026339185 a001 832040/4106118243*87403803^(16/19) 9870002026339185 a001 416020/5374978561*87403803^(17/19) 9870002026339185 a001 832040/28143753123*87403803^(18/19) 9870002026339185 a001 831985/15126*33385282^(1/6) 9870002026339185 a004 Fibonacci(30)*Lucas(38)/(1/2+sqrt(5)/2)^52 9870002026339187 a001 24157817/1860498*141422324^(3/13) 9870002026339187 a001 24157817/1860498*2537720636^(1/5) 9870002026339187 a001 10050135028340/10182505537 9870002026339187 a001 24157817/1860498*45537549124^(3/17) 9870002026339187 a001 24157817/1860498*817138163596^(3/19) 9870002026339187 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^23/Lucas(37) 9870002026339187 a001 24157817/1860498*14662949395604^(1/7) 9870002026339187 a001 24157817/1860498*(1/2+1/2*5^(1/2))^9 9870002026339187 a001 24157817/1860498*192900153618^(1/6) 9870002026339187 a001 24157817/1860498*10749957122^(3/16) 9870002026339187 a001 832040/54018521*4106118243^(1/2) 9870002026339187 a001 24157817/1860498*599074578^(3/14) 9870002026339188 a001 233802911/620166*12752043^(1/17) 9870002026339189 a001 832040/87403803*33385282^(2/3) 9870002026339190 a001 24157817/1860498*33385282^(1/4) 9870002026339190 a001 832040/228826127*33385282^(13/18) 9870002026339191 a001 832040/370248451*33385282^(3/4) 9870002026339191 a001 416020/299537289*33385282^(7/9) 9870002026339191 a001 133957148/930249*12752043^(2/17) 9870002026339191 a001 832040/1568397607*33385282^(5/6) 9870002026339192 a001 832040/4106118243*33385282^(8/9) 9870002026339192 a001 832040/6643838879*33385282^(11/12) 9870002026339192 a001 416020/5374978561*33385282^(17/18) 9870002026339193 a004 Fibonacci(30)*Lucas(36)/(1/2+sqrt(5)/2)^50 9870002026339193 a001 829464/103361*12752043^(5/17) 9870002026339193 a001 75640/1875749*20633239^(3/5) 9870002026339194 a001 831985/15126*12752043^(3/17) 9870002026339197 a001 39088169/1860498*12752043^(4/17) 9870002026339207 a001 75640/1875749*141422324^(7/13) 9870002026339207 a001 75640/1875749*2537720636^(7/15) 9870002026339207 a001 590586152200/598364773 9870002026339207 a001 75640/1875749*17393796001^(3/7) 9870002026339207 a001 75640/1875749*45537549124^(7/17) 9870002026339207 a001 75640/1875749*14662949395604^(1/3) 9870002026339207 a001 75640/1875749*(1/2+1/2*5^(1/2))^21 9870002026339207 a001 9227465/1860498*(1/2+1/2*5^(1/2))^11 9870002026339207 a001 75640/1875749*192900153618^(7/18) 9870002026339207 a001 75640/1875749*10749957122^(7/16) 9870002026339207 a001 9227465/1860498*1568397607^(1/4) 9870002026339207 a001 75640/1875749*599074578^(1/2) 9870002026339210 a001 233802911/620166*4870847^(1/16) 9870002026339212 a001 75640/1875749*33385282^(7/12) 9870002026339214 a001 416020/16692641*12752043^(11/17) 9870002026339226 a001 832040/87403803*12752043^(12/17) 9870002026339230 a001 832040/228826127*12752043^(13/17) 9870002026339234 a001 416020/299537289*12752043^(14/17) 9870002026339235 a001 317811/33385282*710647^(6/7) 9870002026339236 a001 133957148/930249*4870847^(1/8) 9870002026339238 a001 832040/1568397607*12752043^(15/17) 9870002026339241 a001 832040/4106118243*12752043^(16/17) 9870002026339245 a004 Fibonacci(30)*Lucas(34)/(1/2+sqrt(5)/2)^48 9870002026339262 a001 831985/15126*4870847^(3/16) 9870002026339279 a001 5702887/1860498*4870847^(3/8) 9870002026339287 a001 39088169/1860498*4870847^(1/4) 9870002026339305 a001 829464/103361*4870847^(5/16) 9870002026339343 a001 1762289/930249*141422324^(1/3) 9870002026339343 a001 2932589879120/2971215073 9870002026339343 a001 208010/1970299*817138163596^(1/3) 9870002026339343 a001 208010/1970299*(1/2+1/2*5^(1/2))^19 9870002026339343 a001 1762289/930249*(1/2+1/2*5^(1/2))^13 9870002026339343 a001 1762289/930249*73681302247^(1/4) 9870002026339344 a001 208010/1970299*87403803^(1/2) 9870002026339374 a001 233802911/620166*1860498^(1/15) 9870002026339383 a001 832040/12752043*4870847^(5/8) 9870002026339461 a001 416020/16692641*4870847^(11/16) 9870002026339469 a001 433494437/1860498*1860498^(1/10) 9870002026339495 a001 832040/87403803*4870847^(3/4) 9870002026339522 a001 832040/228826127*4870847^(13/16) 9870002026339548 a001 416020/299537289*4870847^(7/8) 9870002026339564 a001 133957148/930249*1860498^(2/15) 9870002026339574 a001 832040/1568397607*4870847^(15/16) 9870002026339600 a004 Fibonacci(30)*Lucas(32)/(1/2+sqrt(5)/2)^46 9870002026339659 a001 165580141/1860498*1860498^(1/6) 9870002026339754 a001 831985/15126*1860498^(1/5) 9870002026339943 a001 39088169/1860498*1860498^(4/15) 9870002026340043 a001 24157817/1860498*1860498^(3/10) 9870002026340099 a001 726103/620166*1860498^(7/15) 9870002026340126 a001 829464/103361*1860498^(1/3) 9870002026340201 a001 1346269/1860498*7881196^(5/11) 9870002026340263 a001 1346269/1860498*20633239^(3/7) 9870002026340264 a001 5702887/1860498*1860498^(2/5) 9870002026340273 a001 1346269/1860498*141422324^(5/13) 9870002026340273 a001 1836310916/1860497 9870002026340273 a001 1346269/1860498*2537720636^(1/3) 9870002026340273 a001 832040/3010349*45537549124^(1/3) 9870002026340273 a001 1346269/1860498*45537549124^(5/17) 9870002026340273 a001 1346269/1860498*312119004989^(3/11) 9870002026340273 a001 832040/3010349*(1/2+1/2*5^(1/2))^17 9870002026340273 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^17/Lucas(31) 9870002026340273 a001 1346269/1860498*14662949395604^(5/21) 9870002026340273 a001 1346269/1860498*(1/2+1/2*5^(1/2))^15 9870002026340273 a001 1346269/1860498*192900153618^(5/18) 9870002026340273 a001 1346269/1860498*28143753123^(3/10) 9870002026340273 a001 1346269/1860498*10749957122^(5/16) 9870002026340273 a001 1346269/1860498*599074578^(5/14) 9870002026340273 a001 1346269/1860498*228826127^(3/8) 9870002026340277 a001 1346269/1860498*33385282^(5/12) 9870002026340303 a001 832040/3010349*12752043^(1/2) 9870002026340479 a001 832040/4870847*1860498^(3/5) 9870002026340530 a004 Fibonacci(32)*Lucas(31)/(1/2+sqrt(5)/2)^47 9870002026340580 a001 233802911/620166*710647^(1/14) 9870002026340638 a001 105937/29134601*710647^(13/14) 9870002026340886 a004 Fibonacci(34)*Lucas(31)/(1/2+sqrt(5)/2)^49 9870002026340937 a004 Fibonacci(36)*Lucas(31)/(1/2+sqrt(5)/2)^51 9870002026340945 a004 Fibonacci(38)*Lucas(31)/(1/2+sqrt(5)/2)^53 9870002026340946 a004 Fibonacci(40)*Lucas(31)/(1/2+sqrt(5)/2)^55 9870002026340946 a004 Fibonacci(42)*Lucas(31)/(1/2+sqrt(5)/2)^57 9870002026340946 a004 Fibonacci(44)*Lucas(31)/(1/2+sqrt(5)/2)^59 9870002026340946 a004 Fibonacci(46)*Lucas(31)/(1/2+sqrt(5)/2)^61 9870002026340946 a004 Fibonacci(48)*Lucas(31)/(1/2+sqrt(5)/2)^63 9870002026340946 a004 Fibonacci(50)*Lucas(31)/(1/2+sqrt(5)/2)^65 9870002026340946 a004 Fibonacci(52)*Lucas(31)/(1/2+sqrt(5)/2)^67 9870002026340946 a004 Fibonacci(54)*Lucas(31)/(1/2+sqrt(5)/2)^69 9870002026340946 a004 Fibonacci(56)*Lucas(31)/(1/2+sqrt(5)/2)^71 9870002026340946 a004 Fibonacci(58)*Lucas(31)/(1/2+sqrt(5)/2)^73 9870002026340946 a004 Fibonacci(60)*Lucas(31)/(1/2+sqrt(5)/2)^75 9870002026340946 a004 Fibonacci(62)*Lucas(31)/(1/2+sqrt(5)/2)^77 9870002026340946 a004 Fibonacci(64)*Lucas(31)/(1/2+sqrt(5)/2)^79 9870002026340946 a004 Fibonacci(66)*Lucas(31)/(1/2+sqrt(5)/2)^81 9870002026340946 a004 Fibonacci(68)*Lucas(31)/(1/2+sqrt(5)/2)^83 9870002026340946 a004 Fibonacci(70)*Lucas(31)/(1/2+sqrt(5)/2)^85 9870002026340946 a004 Fibonacci(72)*Lucas(31)/(1/2+sqrt(5)/2)^87 9870002026340946 a004 Fibonacci(74)*Lucas(31)/(1/2+sqrt(5)/2)^89 9870002026340946 a004 Fibonacci(76)*Lucas(31)/(1/2+sqrt(5)/2)^91 9870002026340946 a004 Fibonacci(78)*Lucas(31)/(1/2+sqrt(5)/2)^93 9870002026340946 a004 Fibonacci(80)*Lucas(31)/(1/2+sqrt(5)/2)^95 9870002026340946 a004 Fibonacci(82)*Lucas(31)/(1/2+sqrt(5)/2)^97 9870002026340946 a004 Fibonacci(84)*Lucas(31)/(1/2+sqrt(5)/2)^99 9870002026340946 a004 Fibonacci(85)*Lucas(31)/(1/2+sqrt(5)/2)^100 9870002026340946 a004 Fibonacci(83)*Lucas(31)/(1/2+sqrt(5)/2)^98 9870002026340946 a004 Fibonacci(81)*Lucas(31)/(1/2+sqrt(5)/2)^96 9870002026340946 a004 Fibonacci(79)*Lucas(31)/(1/2+sqrt(5)/2)^94 9870002026340946 a004 Fibonacci(77)*Lucas(31)/(1/2+sqrt(5)/2)^92 9870002026340946 a004 Fibonacci(75)*Lucas(31)/(1/2+sqrt(5)/2)^90 9870002026340946 a004 Fibonacci(73)*Lucas(31)/(1/2+sqrt(5)/2)^88 9870002026340946 a004 Fibonacci(71)*Lucas(31)/(1/2+sqrt(5)/2)^86 9870002026340946 a004 Fibonacci(69)*Lucas(31)/(1/2+sqrt(5)/2)^84 9870002026340946 a004 Fibonacci(67)*Lucas(31)/(1/2+sqrt(5)/2)^82 9870002026340946 a004 Fibonacci(65)*Lucas(31)/(1/2+sqrt(5)/2)^80 9870002026340946 a004 Fibonacci(63)*Lucas(31)/(1/2+sqrt(5)/2)^78 9870002026340946 a001 2/1346269*(1/2+1/2*5^(1/2))^47 9870002026340946 a004 Fibonacci(61)*Lucas(31)/(1/2+sqrt(5)/2)^76 9870002026340946 a004 Fibonacci(59)*Lucas(31)/(1/2+sqrt(5)/2)^74 9870002026340946 a004 Fibonacci(57)*Lucas(31)/(1/2+sqrt(5)/2)^72 9870002026340946 a004 Fibonacci(55)*Lucas(31)/(1/2+sqrt(5)/2)^70 9870002026340946 a004 Fibonacci(53)*Lucas(31)/(1/2+sqrt(5)/2)^68 9870002026340946 a004 Fibonacci(51)*Lucas(31)/(1/2+sqrt(5)/2)^66 9870002026340946 a004 Fibonacci(49)*Lucas(31)/(1/2+sqrt(5)/2)^64 9870002026340946 a004 Fibonacci(47)*Lucas(31)/(1/2+sqrt(5)/2)^62 9870002026340946 a004 Fibonacci(45)*Lucas(31)/(1/2+sqrt(5)/2)^60 9870002026340946 a004 Fibonacci(43)*Lucas(31)/(1/2+sqrt(5)/2)^58 9870002026340946 a004 Fibonacci(41)*Lucas(31)/(1/2+sqrt(5)/2)^56 9870002026340947 a004 Fibonacci(39)*Lucas(31)/(1/2+sqrt(5)/2)^54 9870002026340950 a004 Fibonacci(37)*Lucas(31)/(1/2+sqrt(5)/2)^52 9870002026340969 a004 Fibonacci(35)*Lucas(31)/(1/2+sqrt(5)/2)^50 9870002026341024 a001 832040/12752043*1860498^(2/3) 9870002026341105 a004 Fibonacci(33)*Lucas(31)/(1/2+sqrt(5)/2)^48 9870002026341203 a001 75640/1875749*1860498^(7/10) 9870002026341203 a001 2178309/4870847*(1/2+1/2*5^(1/2))^16 9870002026341203 a001 2178309/4870847*23725150497407^(1/4) 9870002026341203 a001 2178309/4870847*73681302247^(4/13) 9870002026341203 a001 2178309/4870847*10749957122^(1/3) 9870002026341203 a001 1602509321/1623616 9870002026341203 a001 2178309/4870847*4106118243^(8/23) 9870002026341203 a001 2178309/4870847*1568397607^(4/11) 9870002026341203 a001 2178309/4870847*599074578^(8/21) 9870002026341203 a001 2178309/4870847*228826127^(2/5) 9870002026341204 a001 2178309/4870847*87403803^(8/19) 9870002026341207 a001 2178309/4870847*33385282^(4/9) 9870002026341232 a001 2178309/4870847*12752043^(8/17) 9870002026341266 a001 416020/16692641*1860498^(11/15) 9870002026341411 a001 2178309/4870847*4870847^(1/2) 9870002026341460 a004 Fibonacci(32)*Lucas(33)/(1/2+sqrt(5)/2)^49 9870002026341464 a001 832040/87403803*1860498^(4/5) 9870002026341472 a001 726103/4250681*7881196^(6/11) 9870002026341475 a001 726103/1368706081*7881196^(10/11) 9870002026341489 a001 2178309/969323029*7881196^(9/11) 9870002026341504 a001 46347/4868641*7881196^(8/11) 9870002026341512 a001 726103/29134601*7881196^(2/3) 9870002026341522 a001 2178309/54018521*7881196^(7/11) 9870002026341549 a001 5702887/4870847*20633239^(2/5) 9870002026341553 a001 14930352/4870847*7881196^(4/11) 9870002026341558 a001 726103/4250681*141422324^(6/13) 9870002026341559 a001 726103/4250681*2537720636^(2/5) 9870002026341559 a001 5702887/4870847*17393796001^(2/7) 9870002026341559 a001 726103/4250681*45537549124^(6/17) 9870002026341559 a001 726103/4250681*14662949395604^(2/7) 9870002026341559 a001 726103/4250681*(1/2+1/2*5^(1/2))^18 9870002026341559 a001 5702887/4870847*14662949395604^(2/9) 9870002026341559 a001 5702887/4870847*(1/2+1/2*5^(1/2))^14 9870002026341559 a001 5702887/4870847*505019158607^(1/4) 9870002026341559 a001 726103/4250681*192900153618^(1/3) 9870002026341559 a001 12422650078083/12586269025 9870002026341559 a001 5702887/4870847*10749957122^(7/24) 9870002026341559 a001 726103/4250681*10749957122^(3/8) 9870002026341559 a001 5702887/4870847*4106118243^(7/23) 9870002026341559 a001 726103/4250681*4106118243^(9/23) 9870002026341559 a001 5702887/4870847*1568397607^(7/22) 9870002026341559 a001 726103/4250681*1568397607^(9/22) 9870002026341559 a001 5702887/4870847*599074578^(1/3) 9870002026341559 a001 726103/4250681*599074578^(3/7) 9870002026341559 a001 5702887/4870847*228826127^(7/20) 9870002026341559 a001 726103/4250681*228826127^(9/20) 9870002026341559 a001 5702887/4870847*87403803^(7/19) 9870002026341559 a001 726103/4250681*87403803^(9/19) 9870002026341561 a001 208010/35355581*1860498^(5/6) 9870002026341562 a001 5702887/4870847*33385282^(7/18) 9870002026341563 a001 726103/4250681*33385282^(1/2) 9870002026341570 a001 24157817/4870847*7881196^(1/3) 9870002026341577 a001 63245986/4870847*7881196^(3/11) 9870002026341584 a001 5702887/4870847*12752043^(7/17) 9870002026341590 a001 267914296/4870847*7881196^(2/11) 9870002026341591 a001 726103/4250681*12752043^(9/17) 9870002026341596 a004 Fibonacci(32)*Lucas(35)/(1/2+sqrt(5)/2)^51 9870002026341597 a001 311187/4769326*20633239^(4/7) 9870002026341599 a001 726103/1368706081*20633239^(6/7) 9870002026341601 a001 311187/224056801*20633239^(4/5) 9870002026341603 a001 2178309/370248451*20633239^(5/7) 9870002026341605 a001 1134903170/4870847*7881196^(1/11) 9870002026341609 a001 2178309/54018521*20633239^(3/5) 9870002026341610 a001 14930352/4870847*141422324^(4/13) 9870002026341610 a001 311187/4769326*2537720636^(4/9) 9870002026341610 a001 14930352/4870847*2537720636^(4/15) 9870002026341610 a001 14930352/4870847*45537549124^(4/17) 9870002026341610 a001 14930352/4870847*817138163596^(4/19) 9870002026341610 a001 311187/4769326*(1/2+1/2*5^(1/2))^20 9870002026341610 a001 311187/4769326*23725150497407^(5/16) 9870002026341610 a001 14930352/4870847*14662949395604^(4/21) 9870002026341610 a001 14930352/4870847*(1/2+1/2*5^(1/2))^12 9870002026341610 a001 311187/4769326*505019158607^(5/14) 9870002026341610 a001 14930352/4870847*192900153618^(2/9) 9870002026341610 a001 14930352/4870847*73681302247^(3/13) 9870002026341610 a001 311187/4769326*73681302247^(5/13) 9870002026341610 a001 10840973378256/10983760033 9870002026341610 a001 311187/4769326*28143753123^(2/5) 9870002026341610 a001 14930352/4870847*10749957122^(1/4) 9870002026341610 a001 311187/4769326*10749957122^(5/12) 9870002026341610 a001 14930352/4870847*4106118243^(6/23) 9870002026341610 a001 311187/4769326*4106118243^(10/23) 9870002026341610 a001 14930352/4870847*1568397607^(3/11) 9870002026341610 a001 311187/4769326*1568397607^(5/11) 9870002026341610 a001 14930352/4870847*599074578^(2/7) 9870002026341611 a001 311187/4769326*599074578^(10/21) 9870002026341611 a001 14930352/4870847*228826127^(3/10) 9870002026341611 a001 311187/4769326*228826127^(1/2) 9870002026341611 a001 14930352/4870847*87403803^(6/19) 9870002026341611 a001 311187/4769326*87403803^(10/19) 9870002026341611 a001 39088169/4870847*20633239^(2/7) 9870002026341613 a001 14930352/4870847*33385282^(1/3) 9870002026341615 a001 165580141/4870847*20633239^(1/5) 9870002026341615 a001 311187/4769326*33385282^(5/9) 9870002026341616 a004 Fibonacci(32)*Lucas(37)/(1/2+sqrt(5)/2)^53 9870002026341616 a001 433494437/4870847*20633239^(1/7) 9870002026341618 a001 39088169/4870847*2537720636^(2/9) 9870002026341618 a001 726103/29134601*312119004989^(2/5) 9870002026341618 a001 39088169/4870847*312119004989^(2/11) 9870002026341618 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^22/Lucas(38) 9870002026341618 a001 39088169/4870847*(1/2+1/2*5^(1/2))^10 9870002026341618 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^10/Lucas(32) 9870002026341618 a001 85146110326221/86267571272 9870002026341618 a001 39088169/4870847*28143753123^(1/5) 9870002026341618 a001 39088169/4870847*10749957122^(5/24) 9870002026341618 a001 726103/29134601*10749957122^(11/24) 9870002026341618 a001 39088169/4870847*4106118243^(5/23) 9870002026341618 a001 726103/29134601*4106118243^(11/23) 9870002026341618 a001 39088169/4870847*1568397607^(5/22) 9870002026341618 a001 726103/29134601*1568397607^(1/2) 9870002026341618 a001 39088169/4870847*599074578^(5/21) 9870002026341618 a001 726103/29134601*599074578^(11/21) 9870002026341618 a001 39088169/4870847*228826127^(1/4) 9870002026341618 a001 726103/29134601*228826127^(11/20) 9870002026341618 a001 39088169/4870847*87403803^(5/19) 9870002026341619 a001 726103/29134601*87403803^(11/19) 9870002026341619 a004 Fibonacci(32)*Lucas(39)/(1/2+sqrt(5)/2)^55 9870002026341619 a001 46347/4868641*141422324^(8/13) 9870002026341619 a001 311187/10525900321*141422324^(12/13) 9870002026341619 a001 2178309/17393796001*141422324^(11/13) 9870002026341619 a001 726103/1368706081*141422324^(10/13) 9870002026341619 a001 726103/199691526*141422324^(2/3) 9870002026341619 a001 2178309/969323029*141422324^(9/13) 9870002026341619 a001 46347/4868641*2537720636^(8/15) 9870002026341619 a001 46347/4868641*45537549124^(8/17) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^24/Lucas(40) 9870002026341619 a001 102334155/4870847*(1/2+1/2*5^(1/2))^8 9870002026341619 a001 102334155/4870847*23725150497407^(1/8) 9870002026341619 a001 102334155/4870847*505019158607^(1/7) 9870002026341619 a001 1516431366285/1536404311 9870002026341619 a001 46347/4868641*192900153618^(4/9) 9870002026341619 a001 102334155/4870847*73681302247^(2/13) 9870002026341619 a001 46347/4868641*73681302247^(6/13) 9870002026341619 a001 102334155/4870847*10749957122^(1/6) 9870002026341619 a001 46347/4868641*10749957122^(1/2) 9870002026341619 a001 102334155/4870847*4106118243^(4/23) 9870002026341619 a001 46347/4868641*4106118243^(12/23) 9870002026341619 a001 102334155/4870847*1568397607^(2/11) 9870002026341619 a001 46347/4868641*1568397607^(6/11) 9870002026341619 a001 102334155/4870847*599074578^(4/21) 9870002026341619 a001 46347/4868641*599074578^(4/7) 9870002026341619 a001 102334155/4870847*228826127^(1/5) 9870002026341619 a001 267914296/4870847*141422324^(2/13) 9870002026341619 a001 46347/4868641*228826127^(3/5) 9870002026341619 a004 Fibonacci(32)*Lucas(41)/(1/2+sqrt(5)/2)^57 9870002026341619 a001 1134903170/4870847*141422324^(1/13) 9870002026341619 a001 267914296/4870847*2537720636^(2/15) 9870002026341619 a001 267914296/4870847*45537549124^(2/17) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^26/Lucas(42) 9870002026341619 a001 267914296/4870847*14662949395604^(2/21) 9870002026341619 a001 267914296/4870847*(1/2+1/2*5^(1/2))^6 9870002026341619 a001 726103/199691526*73681302247^(1/2) 9870002026341619 a001 267914296/4870847*10749957122^(1/8) 9870002026341619 a001 726103/199691526*10749957122^(13/24) 9870002026341619 a001 267914296/4870847*4106118243^(3/23) 9870002026341619 a001 726103/199691526*4106118243^(13/23) 9870002026341619 a001 267914296/4870847*1568397607^(3/22) 9870002026341619 a001 726103/199691526*1568397607^(13/22) 9870002026341619 a001 267914296/4870847*599074578^(1/7) 9870002026341619 a004 Fibonacci(32)*Lucas(43)/(1/2+sqrt(5)/2)^59 9870002026341619 a001 726103/199691526*599074578^(13/21) 9870002026341619 a001 311187/224056801*17393796001^(4/7) 9870002026341619 a001 311187/224056801*14662949395604^(4/9) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^28/Lucas(44) 9870002026341619 a001 701408733/4870847*(1/2+1/2*5^(1/2))^4 9870002026341619 a001 701408733/4870847*23725150497407^(1/16) 9870002026341619 a001 169764995085833/172000972880 9870002026341619 a001 311187/224056801*505019158607^(1/2) 9870002026341619 a001 701408733/4870847*73681302247^(1/13) 9870002026341619 a001 311187/224056801*73681302247^(7/13) 9870002026341619 a001 701408733/4870847*10749957122^(1/12) 9870002026341619 a001 311187/224056801*10749957122^(7/12) 9870002026341619 a001 701408733/4870847*4106118243^(2/23) 9870002026341619 a001 311187/224056801*4106118243^(14/23) 9870002026341619 a001 701408733/4870847*1568397607^(1/11) 9870002026341619 a001 726103/1368706081*2537720636^(2/3) 9870002026341619 a004 Fibonacci(32)*Lucas(45)/(1/2+sqrt(5)/2)^61 9870002026341619 a001 311187/224056801*1568397607^(7/11) 9870002026341619 a001 726103/440719107401*2537720636^(14/15) 9870002026341619 a001 701408733/4870847*599074578^(2/21) 9870002026341619 a001 46347/10745088481*2537720636^(8/9) 9870002026341619 a001 2178309/312119004989*2537720636^(13/15) 9870002026341619 a001 311187/10525900321*2537720636^(4/5) 9870002026341619 a001 2178309/45537549124*2537720636^(7/9) 9870002026341619 a001 2178309/17393796001*2537720636^(11/15) 9870002026341619 a001 726103/1368706081*45537549124^(10/17) 9870002026341619 a001 726103/1368706081*312119004989^(6/11) 9870002026341619 a001 726103/1368706081*14662949395604^(10/21) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^30/Lucas(46) 9870002026341619 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^2 9870002026341619 a001 4000054745112027/4052739537881 9870002026341619 a001 726103/1368706081*192900153618^(5/9) 9870002026341619 a001 1836311903/4870847*10749957122^(1/24) 9870002026341619 a001 726103/1368706081*28143753123^(3/5) 9870002026341619 a001 1836311903/4870847*4106118243^(1/23) 9870002026341619 a001 726103/1368706081*10749957122^(5/8) 9870002026341619 a001 1836311903/4870847*1568397607^(1/22) 9870002026341619 a004 Fibonacci(32)*Lucas(47)/(1/2+sqrt(5)/2)^63 9870002026341619 a001 726103/1368706081*4106118243^(15/23) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^32/Lucas(48) 9870002026341619 a001 4807526976/4870847 9870002026341619 a001 987/4870846*505019158607^(4/7) 9870002026341619 a001 987/4870846*73681302247^(8/13) 9870002026341619 a004 Fibonacci(32)*Lucas(49)/(1/2+sqrt(5)/2)^65 9870002026341619 a001 987/4870846*10749957122^(2/3) 9870002026341619 a001 726103/440719107401*17393796001^(6/7) 9870002026341619 a001 2178309/45537549124*17393796001^(5/7) 9870002026341619 a001 726103/9381251041*45537549124^(2/3) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^34/Lucas(50) 9870002026341619 a004 Fibonacci(50)/Lucas(32)/(1/2+sqrt(5)/2)^2 9870002026341619 a001 311187/10525900321*45537549124^(12/17) 9870002026341619 a004 Fibonacci(32)*Lucas(51)/(1/2+sqrt(5)/2)^67 9870002026341619 a001 2178309/23725150497407*45537549124^(16/17) 9870002026341619 a001 2178309/5600748293801*45537549124^(15/17) 9870002026341619 a001 726103/440719107401*45537549124^(14/17) 9870002026341619 a001 2178309/312119004989*45537549124^(13/17) 9870002026341619 a001 311187/10525900321*14662949395604^(4/7) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^36/Lucas(52) 9870002026341619 a004 Fibonacci(52)/Lucas(32)/(1/2+sqrt(5)/2)^4 9870002026341619 a001 311187/10525900321*505019158607^(9/14) 9870002026341619 a001 311187/10525900321*192900153618^(2/3) 9870002026341619 a004 Fibonacci(32)*Lucas(53)/(1/2+sqrt(5)/2)^69 9870002026341619 a001 311187/10525900321*73681302247^(9/13) 9870002026341619 a001 726103/64300051206*817138163596^(2/3) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^38/Lucas(54) 9870002026341619 a004 Fibonacci(54)/Lucas(32)/(1/2+sqrt(5)/2)^6 9870002026341619 a001 46347/10745088481*312119004989^(8/11) 9870002026341619 a004 Fibonacci(32)*Lucas(55)/(1/2+sqrt(5)/2)^71 9870002026341619 a001 2178309/5600748293801*312119004989^(9/11) 9870002026341619 a001 311187/494493258286*312119004989^(4/5) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^40/Lucas(56) 9870002026341619 a004 Fibonacci(56)/Lucas(32)/(1/2+sqrt(5)/2)^8 9870002026341619 a001 726103/440719107401*817138163596^(14/19) 9870002026341619 a004 Fibonacci(32)*Lucas(57)/(1/2+sqrt(5)/2)^73 9870002026341619 a001 726103/440719107401*14662949395604^(2/3) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^42/Lucas(58) 9870002026341619 a004 Fibonacci(58)/Lucas(32)/(1/2+sqrt(5)/2)^10 9870002026341619 a004 Fibonacci(32)*Lucas(59)/(1/2+sqrt(5)/2)^75 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^44/Lucas(60) 9870002026341619 a001 311187/494493258286*23725150497407^(11/16) 9870002026341619 a004 Fibonacci(60)/Lucas(32)/(1/2+sqrt(5)/2)^12 9870002026341619 a004 Fibonacci(32)*Lucas(61)/(1/2+sqrt(5)/2)^77 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^46/Lucas(62) 9870002026341619 a004 Fibonacci(62)/Lucas(32)/(1/2+sqrt(5)/2)^14 9870002026341619 a001 2178309/23725150497407*14662949395604^(16/21) 9870002026341619 a004 Fibonacci(32)*Lucas(63)/(1/2+sqrt(5)/2)^79 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^48/Lucas(64) 9870002026341619 a004 Fibonacci(32)*Lucas(65)/(1/2+sqrt(5)/2)^81 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^50/Lucas(66) 9870002026341619 a004 Fibonacci(32)*Lucas(67)/(1/2+sqrt(5)/2)^83 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^52/Lucas(68) 9870002026341619 a004 Fibonacci(32)*Lucas(69)/(1/2+sqrt(5)/2)^85 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^54/Lucas(70) 9870002026341619 a004 Fibonacci(32)*Lucas(71)/(1/2+sqrt(5)/2)^87 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^56/Lucas(72) 9870002026341619 a004 Fibonacci(32)*Lucas(73)/(1/2+sqrt(5)/2)^89 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^58/Lucas(74) 9870002026341619 a004 Fibonacci(32)*Lucas(75)/(1/2+sqrt(5)/2)^91 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^60/Lucas(76) 9870002026341619 a004 Fibonacci(32)*Lucas(77)/(1/2+sqrt(5)/2)^93 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^62/Lucas(78) 9870002026341619 a004 Fibonacci(32)*Lucas(79)/(1/2+sqrt(5)/2)^95 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^64/Lucas(80) 9870002026341619 a004 Fibonacci(32)*Lucas(81)/(1/2+sqrt(5)/2)^97 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^66/Lucas(82) 9870002026341619 a004 Fibonacci(32)*Lucas(83)/(1/2+sqrt(5)/2)^99 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^68/Lucas(84) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^70/Lucas(86) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^72/Lucas(88) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^74/Lucas(90) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^76/Lucas(92) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^78/Lucas(94) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^80/Lucas(96) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^82/Lucas(98) 9870002026341619 a004 Fibonacci(16)*Lucas(16)/(1/2+sqrt(5)/2)^16 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^83/Lucas(99) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^84/Lucas(100) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^81/Lucas(97) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^79/Lucas(95) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^77/Lucas(93) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^75/Lucas(91) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^73/Lucas(89) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^71/Lucas(87) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^69/Lucas(85) 9870002026341619 a004 Fibonacci(32)*Lucas(84)/(1/2+sqrt(5)/2)^100 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^67/Lucas(83) 9870002026341619 a004 Fibonacci(32)*Lucas(82)/(1/2+sqrt(5)/2)^98 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^65/Lucas(81) 9870002026341619 a004 Fibonacci(32)*Lucas(80)/(1/2+sqrt(5)/2)^96 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^63/Lucas(79) 9870002026341619 a004 Fibonacci(32)*Lucas(78)/(1/2+sqrt(5)/2)^94 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^61/Lucas(77) 9870002026341619 a004 Fibonacci(32)*Lucas(76)/(1/2+sqrt(5)/2)^92 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^59/Lucas(75) 9870002026341619 a004 Fibonacci(32)*Lucas(74)/(1/2+sqrt(5)/2)^90 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^57/Lucas(73) 9870002026341619 a004 Fibonacci(32)*Lucas(72)/(1/2+sqrt(5)/2)^88 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^55/Lucas(71) 9870002026341619 a004 Fibonacci(32)*Lucas(70)/(1/2+sqrt(5)/2)^86 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^53/Lucas(69) 9870002026341619 a004 Fibonacci(32)*Lucas(68)/(1/2+sqrt(5)/2)^84 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^51/Lucas(67) 9870002026341619 a004 Fibonacci(32)*Lucas(66)/(1/2+sqrt(5)/2)^82 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^49/Lucas(65) 9870002026341619 a004 Fibonacci(66)/Lucas(32)/(1/2+sqrt(5)/2)^18 9870002026341619 a004 Fibonacci(68)/Lucas(32)/(1/2+sqrt(5)/2)^20 9870002026341619 a004 Fibonacci(70)/Lucas(32)/(1/2+sqrt(5)/2)^22 9870002026341619 a004 Fibonacci(72)/Lucas(32)/(1/2+sqrt(5)/2)^24 9870002026341619 a004 Fibonacci(74)/Lucas(32)/(1/2+sqrt(5)/2)^26 9870002026341619 a004 Fibonacci(76)/Lucas(32)/(1/2+sqrt(5)/2)^28 9870002026341619 a004 Fibonacci(78)/Lucas(32)/(1/2+sqrt(5)/2)^30 9870002026341619 a004 Fibonacci(80)/Lucas(32)/(1/2+sqrt(5)/2)^32 9870002026341619 a004 Fibonacci(82)/Lucas(32)/(1/2+sqrt(5)/2)^34 9870002026341619 a004 Fibonacci(84)/Lucas(32)/(1/2+sqrt(5)/2)^36 9870002026341619 a004 Fibonacci(86)/Lucas(32)/(1/2+sqrt(5)/2)^38 9870002026341619 a004 Fibonacci(88)/Lucas(32)/(1/2+sqrt(5)/2)^40 9870002026341619 a004 Fibonacci(90)/Lucas(32)/(1/2+sqrt(5)/2)^42 9870002026341619 a004 Fibonacci(92)/Lucas(32)/(1/2+sqrt(5)/2)^44 9870002026341619 a004 Fibonacci(94)/Lucas(32)/(1/2+sqrt(5)/2)^46 9870002026341619 a004 Fibonacci(96)/Lucas(32)/(1/2+sqrt(5)/2)^48 9870002026341619 a004 Fibonacci(98)/Lucas(32)/(1/2+sqrt(5)/2)^50 9870002026341619 a004 Fibonacci(100)/Lucas(32)/(1/2+sqrt(5)/2)^52 9870002026341619 a004 Fibonacci(32)*Lucas(64)/(1/2+sqrt(5)/2)^80 9870002026341619 a004 Fibonacci(99)/Lucas(32)/(1/2+sqrt(5)/2)^51 9870002026341619 a004 Fibonacci(97)/Lucas(32)/(1/2+sqrt(5)/2)^49 9870002026341619 a004 Fibonacci(95)/Lucas(32)/(1/2+sqrt(5)/2)^47 9870002026341619 a004 Fibonacci(93)/Lucas(32)/(1/2+sqrt(5)/2)^45 9870002026341619 a004 Fibonacci(91)/Lucas(32)/(1/2+sqrt(5)/2)^43 9870002026341619 a004 Fibonacci(89)/Lucas(32)/(1/2+sqrt(5)/2)^41 9870002026341619 a004 Fibonacci(87)/Lucas(32)/(1/2+sqrt(5)/2)^39 9870002026341619 a004 Fibonacci(85)/Lucas(32)/(1/2+sqrt(5)/2)^37 9870002026341619 a004 Fibonacci(83)/Lucas(32)/(1/2+sqrt(5)/2)^35 9870002026341619 a004 Fibonacci(81)/Lucas(32)/(1/2+sqrt(5)/2)^33 9870002026341619 a004 Fibonacci(79)/Lucas(32)/(1/2+sqrt(5)/2)^31 9870002026341619 a004 Fibonacci(77)/Lucas(32)/(1/2+sqrt(5)/2)^29 9870002026341619 a004 Fibonacci(75)/Lucas(32)/(1/2+sqrt(5)/2)^27 9870002026341619 a004 Fibonacci(73)/Lucas(32)/(1/2+sqrt(5)/2)^25 9870002026341619 a004 Fibonacci(71)/Lucas(32)/(1/2+sqrt(5)/2)^23 9870002026341619 a004 Fibonacci(69)/Lucas(32)/(1/2+sqrt(5)/2)^21 9870002026341619 a004 Fibonacci(67)/Lucas(32)/(1/2+sqrt(5)/2)^19 9870002026341619 a004 Fibonacci(65)/Lucas(32)/(1/2+sqrt(5)/2)^17 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^47/Lucas(63) 9870002026341619 a004 Fibonacci(63)/Lucas(32)/(1/2+sqrt(5)/2)^15 9870002026341619 a004 Fibonacci(32)*Lucas(62)/(1/2+sqrt(5)/2)^78 9870002026341619 a001 2178309/5600748293801*14662949395604^(5/7) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^45/Lucas(61) 9870002026341619 a004 Fibonacci(61)/Lucas(32)/(1/2+sqrt(5)/2)^13 9870002026341619 a004 Fibonacci(32)*Lucas(60)/(1/2+sqrt(5)/2)^76 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^43/Lucas(59) 9870002026341619 a004 Fibonacci(59)/Lucas(32)/(1/2+sqrt(5)/2)^11 9870002026341619 a004 Fibonacci(32)*Lucas(58)/(1/2+sqrt(5)/2)^74 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^41/Lucas(57) 9870002026341619 a004 Fibonacci(57)/Lucas(32)/(1/2+sqrt(5)/2)^9 9870002026341619 a004 Fibonacci(32)*Lucas(56)/(1/2+sqrt(5)/2)^72 9870002026341619 a001 2178309/312119004989*14662949395604^(13/21) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^39/Lucas(55) 9870002026341619 a004 Fibonacci(55)/Lucas(32)/(1/2+sqrt(5)/2)^7 9870002026341619 a001 726103/440719107401*192900153618^(7/9) 9870002026341619 a001 2178309/5600748293801*192900153618^(5/6) 9870002026341619 a001 2178309/23725150497407*192900153618^(8/9) 9870002026341619 a004 Fibonacci(32)*Lucas(54)/(1/2+sqrt(5)/2)^70 9870002026341619 a001 2178309/312119004989*192900153618^(13/18) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^37/Lucas(53) 9870002026341619 a004 Fibonacci(53)/Lucas(32)/(1/2+sqrt(5)/2)^5 9870002026341619 a001 46347/10745088481*73681302247^(10/13) 9870002026341619 a001 2178309/312119004989*73681302247^(3/4) 9870002026341619 a001 311187/494493258286*73681302247^(11/13) 9870002026341619 a001 2178309/23725150497407*73681302247^(12/13) 9870002026341619 a004 Fibonacci(32)*Lucas(52)/(1/2+sqrt(5)/2)^68 9870002026341619 a001 2178309/45537549124*312119004989^(7/11) 9870002026341619 a001 2178309/45537549124*14662949395604^(5/9) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^35/Lucas(51) 9870002026341619 a004 Fibonacci(51)/Lucas(32)/(1/2+sqrt(5)/2)^3 9870002026341619 a001 2178309/45537549124*505019158607^(5/8) 9870002026341619 a001 46347/10745088481*28143753123^(4/5) 9870002026341619 a001 2178309/5600748293801*28143753123^(9/10) 9870002026341619 a004 Fibonacci(32)*Lucas(50)/(1/2+sqrt(5)/2)^66 9870002026341619 a001 2178309/45537549124*28143753123^(7/10) 9870002026341619 a001 2178309/17393796001*45537549124^(11/17) 9870002026341619 a001 2178309/17393796001*312119004989^(3/5) 9870002026341619 a001 2178309/17393796001*817138163596^(11/19) 9870002026341619 a001 2178309/17393796001*14662949395604^(11/21) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^33/Lucas(49) 9870002026341619 a004 Fibonacci(49)/Lucas(32)/(1/2+sqrt(5)/2) 9870002026341619 a001 2178309/17393796001*192900153618^(11/18) 9870002026341619 a001 726103/9381251041*10749957122^(17/24) 9870002026341619 a001 311187/10525900321*10749957122^(3/4) 9870002026341619 a001 726103/64300051206*10749957122^(19/24) 9870002026341619 a001 2178309/312119004989*10749957122^(13/16) 9870002026341619 a001 46347/10745088481*10749957122^(5/6) 9870002026341619 a001 726103/440719107401*10749957122^(7/8) 9870002026341619 a001 311187/494493258286*10749957122^(11/12) 9870002026341619 a001 2178309/5600748293801*10749957122^(15/16) 9870002026341619 a001 726103/3020733700601*10749957122^(23/24) 9870002026341619 a004 Fibonacci(32)*Lucas(48)/(1/2+sqrt(5)/2)^64 9870002026341619 a001 2178309/17393796001*10749957122^(11/16) 9870002026341619 a001 6472224534451557/6557470319842 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^31/Lucas(47) 9870002026341619 a001 2971215073/9741694+2971215073/9741694*5^(1/2) 9870002026341619 a001 2178309/6643838879*9062201101803^(1/2) 9870002026341619 a001 987/4870846*4106118243^(16/23) 9870002026341619 a001 726103/9381251041*4106118243^(17/23) 9870002026341619 a001 311187/10525900321*4106118243^(18/23) 9870002026341619 a001 726103/64300051206*4106118243^(19/23) 9870002026341619 a001 46347/10745088481*4106118243^(20/23) 9870002026341619 a001 726103/440719107401*4106118243^(21/23) 9870002026341619 a001 311187/494493258286*4106118243^(22/23) 9870002026341619 a004 Fibonacci(32)*Lucas(46)/(1/2+sqrt(5)/2)^62 9870002026341619 a001 1836311903/4870847*599074578^(1/21) 9870002026341619 a001 267914296/4870847*228826127^(3/20) 9870002026341619 a001 1134903170/4870847*2537720636^(1/15) 9870002026341619 a001 1134903170/4870847*45537549124^(1/17) 9870002026341619 a001 2472169789339530/2504730781961 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^29/Lucas(45) 9870002026341619 a001 1134903170/4870847*14662949395604^(1/21) 9870002026341619 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^3 9870002026341619 a001 1134903170/4870847*192900153618^(1/18) 9870002026341619 a001 1134903170/4870847*10749957122^(1/16) 9870002026341619 a001 726103/1368706081*1568397607^(15/22) 9870002026341619 a001 987/4870846*1568397607^(8/11) 9870002026341619 a001 2178309/17393796001*1568397607^(3/4) 9870002026341619 a001 726103/9381251041*1568397607^(17/22) 9870002026341619 a001 311187/10525900321*1568397607^(9/11) 9870002026341619 a001 726103/64300051206*1568397607^(19/22) 9870002026341619 a001 1134903170/4870847*599074578^(1/14) 9870002026341619 a001 46347/10745088481*1568397607^(10/11) 9870002026341619 a001 726103/440719107401*1568397607^(21/22) 9870002026341619 a004 Fibonacci(32)*Lucas(44)/(1/2+sqrt(5)/2)^60 9870002026341619 a001 1836311903/4870847*228826127^(1/20) 9870002026341619 a001 2178309/969323029*2537720636^(3/5) 9870002026341619 a001 433494437/4870847*2537720636^(1/9) 9870002026341619 a001 2178309/969323029*45537549124^(9/17) 9870002026341619 a001 433494437/4870847*312119004989^(1/11) 9870002026341619 a001 2178309/969323029*817138163596^(9/19) 9870002026341619 a001 2178309/969323029*14662949395604^(3/7) 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^27/Lucas(43) 9870002026341619 a001 433494437/4870847*(1/2+1/2*5^(1/2))^5 9870002026341619 a001 2178309/969323029*192900153618^(1/2) 9870002026341619 a001 433494437/4870847*28143753123^(1/10) 9870002026341619 a001 2178309/969323029*10749957122^(9/16) 9870002026341619 a001 311187/224056801*599074578^(2/3) 9870002026341619 a001 701408733/4870847*228826127^(1/10) 9870002026341619 a001 726103/1368706081*599074578^(5/7) 9870002026341619 a001 987/4870846*599074578^(16/21) 9870002026341619 a001 2178309/17393796001*599074578^(11/14) 9870002026341619 a001 726103/9381251041*599074578^(17/21) 9870002026341619 a001 2178309/45537549124*599074578^(5/6) 9870002026341619 a001 311187/10525900321*599074578^(6/7) 9870002026341619 a001 726103/64300051206*599074578^(19/21) 9870002026341619 a001 2178309/312119004989*599074578^(13/14) 9870002026341619 a001 46347/10745088481*599074578^(20/21) 9870002026341619 a004 Fibonacci(32)*Lucas(42)/(1/2+sqrt(5)/2)^58 9870002026341619 a001 2178309/969323029*599074578^(9/14) 9870002026341619 a001 433494437/4870847*228826127^(1/8) 9870002026341619 a001 1836311903/4870847*87403803^(1/19) 9870002026341619 a001 2178309/370248451*2537720636^(5/9) 9870002026341619 a001 165580141/4870847*17393796001^(1/7) 9870002026341619 a001 2178309/370248451*312119004989^(5/11) 9870002026341619 a001 360684711361569/365435296162 9870002026341619 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^25/Lucas(41) 9870002026341619 a001 165580141/4870847*14662949395604^(1/9) 9870002026341619 a001 165580141/4870847*(1/2+1/2*5^(1/2))^7 9870002026341619 a001 2178309/370248451*3461452808002^(5/12) 9870002026341619 a001 2178309/370248451*28143753123^(1/2) 9870002026341619 a001 165580141/4870847*599074578^(1/6) 9870002026341619 a001 102334155/4870847*87403803^(4/19) 9870002026341619 a001 726103/199691526*228826127^(13/20) 9870002026341619 a001 311187/224056801*228826127^(7/10) 9870002026341619 a001 701408733/4870847*87403803^(2/19) 9870002026341619 a001 726103/1368706081*228826127^(3/4) 9870002026341619 a001 987/4870846*228826127^(4/5) 9870002026341620 a001 726103/9381251041*228826127^(17/20) 9870002026341620 a001 2178309/45537549124*228826127^(7/8) 9870002026341620 a001 311187/10525900321*228826127^(9/10) 9870002026341620 a001 267914296/4870847*87403803^(3/19) 9870002026341620 a001 726103/64300051206*228826127^(19/20) 9870002026341620 a004 Fibonacci(32)*Lucas(40)/(1/2+sqrt(5)/2)^56 9870002026341620 a001 2178309/370248451*228826127^(5/8) 9870002026341620 a001 63245986/4870847*141422324^(3/13) 9870002026341620 a001 1836311903/4870847*33385282^(1/18) 9870002026341620 a001 63245986/4870847*2537720636^(1/5) 9870002026341620 a001 63245986/4870847*45537549124^(3/17) 9870002026341620 a001 137769300517674/139583862445 9870002026341620 a001 63245986/4870847*817138163596^(3/19) 9870002026341620 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^23/Lucas(39) 9870002026341620 a001 63245986/4870847*14662949395604^(1/7) 9870002026341620 a001 63245986/4870847*(1/2+1/2*5^(1/2))^9 9870002026341620 a001 63245986/4870847*192900153618^(1/6) 9870002026341620 a001 63245986/4870847*10749957122^(3/16) 9870002026341620 a001 2178309/141422324*4106118243^(1/2) 9870002026341620 a001 63245986/4870847*599074578^(3/14) 9870002026341620 a001 46347/4868641*87403803^(12/19) 9870002026341620 a001 1134903170/4870847*33385282^(1/12) 9870002026341620 a001 726103/199691526*87403803^(13/19) 9870002026341620 a001 311187/224056801*87403803^(14/19) 9870002026341620 a001 701408733/4870847*33385282^(1/9) 9870002026341620 a001 726103/1368706081*87403803^(15/19) 9870002026341620 a001 987/4870846*87403803^(16/19) 9870002026341621 a001 726103/9381251041*87403803^(17/19) 9870002026341621 a001 39088169/4870847*33385282^(5/18) 9870002026341621 a001 311187/10525900321*87403803^(18/19) 9870002026341621 a004 Fibonacci(32)*Lucas(38)/(1/2+sqrt(5)/2)^54 9870002026341621 a001 267914296/4870847*33385282^(1/6) 9870002026341621 a001 102334155/4870847*33385282^(2/9) 9870002026341622 a001 63245986/4870847*33385282^(1/4) 9870002026341622 a001 2178309/54018521*141422324^(7/13) 9870002026341623 a001 2178309/54018521*2537720636^(7/15) 9870002026341623 a001 2178309/54018521*17393796001^(3/7) 9870002026341623 a001 2178309/54018521*45537549124^(7/17) 9870002026341623 a001 52623190191453/53316291173 9870002026341623 a001 2178309/54018521*14662949395604^(1/3) 9870002026341623 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^21/Lucas(37) 9870002026341623 a001 24157817/4870847*(1/2+1/2*5^(1/2))^11 9870002026341623 a001 2178309/54018521*192900153618^(7/18) 9870002026341623 a001 2178309/54018521*10749957122^(7/16) 9870002026341623 a001 24157817/4870847*1568397607^(1/4) 9870002026341623 a001 2178309/54018521*599074578^(1/2) 9870002026341623 a001 1836311903/4870847*12752043^(1/17) 9870002026341623 a001 726103/29134601*33385282^(11/18) 9870002026341625 a001 46347/4868641*33385282^(2/3) 9870002026341626 a001 726103/199691526*33385282^(13/18) 9870002026341626 a001 2178309/969323029*33385282^(3/4) 9870002026341626 a001 311187/224056801*33385282^(7/9) 9870002026341626 a001 701408733/4870847*12752043^(2/17) 9870002026341627 a001 726103/1368706081*33385282^(5/6) 9870002026341627 a001 987/4870846*33385282^(8/9) 9870002026341627 a001 2178309/17393796001*33385282^(11/12) 9870002026341628 a001 726103/9381251041*33385282^(17/18) 9870002026341628 a001 2178309/54018521*33385282^(7/12) 9870002026341628 a004 Fibonacci(32)*Lucas(36)/(1/2+sqrt(5)/2)^52 9870002026341630 a001 267914296/4870847*12752043^(3/17) 9870002026341632 a001 14930352/4870847*12752043^(6/17) 9870002026341633 a001 102334155/4870847*12752043^(4/17) 9870002026341636 a001 39088169/4870847*12752043^(5/17) 9870002026341642 a001 9227465/4870847*141422324^(1/3) 9870002026341643 a001 20100270056685/20365011074 9870002026341643 a001 2178309/20633239*817138163596^(1/3) 9870002026341643 a001 2178309/20633239*(1/2+1/2*5^(1/2))^19 9870002026341643 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^19/Lucas(35) 9870002026341643 a001 9227465/4870847*(1/2+1/2*5^(1/2))^13 9870002026341643 a001 9227465/4870847*73681302247^(1/4) 9870002026341643 a001 2178309/20633239*87403803^(1/2) 9870002026341645 a001 1836311903/4870847*4870847^(1/16) 9870002026341646 a001 311187/4769326*12752043^(10/17) 9870002026341655 a001 832040/228826127*1860498^(13/15) 9870002026341657 a001 726103/29134601*12752043^(11/17) 9870002026341662 a001 46347/4868641*12752043^(12/17) 9870002026341666 a001 726103/199691526*12752043^(13/17) 9870002026341669 a001 311187/224056801*12752043^(14/17) 9870002026341671 a001 701408733/4870847*4870847^(1/8) 9870002026341673 a001 726103/1368706081*12752043^(15/17) 9870002026341676 a001 987/4870846*12752043^(16/17) 9870002026341680 a004 Fibonacci(32)*Lucas(34)/(1/2+sqrt(5)/2)^50 9870002026341697 a001 267914296/4870847*4870847^(3/16) 9870002026341699 a001 1346269/1860498*1860498^(1/2) 9870002026341706 a001 3524578/4870847*7881196^(5/11) 9870002026341723 a001 102334155/4870847*4870847^(1/4) 9870002026341741 a001 5702887/4870847*4870847^(7/16) 9870002026341748 a001 39088169/4870847*4870847^(5/16) 9870002026341750 a001 832040/370248451*1860498^(9/10) 9870002026341766 a001 14930352/4870847*4870847^(3/8) 9870002026341768 a001 3524578/4870847*20633239^(3/7) 9870002026341778 a001 3524578/4870847*141422324^(5/13) 9870002026341778 a001 3524578/4870847*2537720636^(1/3) 9870002026341778 a001 7677619978602/7778742049 9870002026341778 a001 2178309/7881196*45537549124^(1/3) 9870002026341778 a001 3524578/4870847*45537549124^(5/17) 9870002026341778 a001 3524578/4870847*312119004989^(3/11) 9870002026341778 a001 2178309/7881196*(1/2+1/2*5^(1/2))^17 9870002026341778 a001 3524578/4870847*14662949395604^(5/21) 9870002026341778 a001 3524578/4870847*(1/2+1/2*5^(1/2))^15 9870002026341778 a001 3524578/4870847*192900153618^(5/18) 9870002026341778 a001 3524578/4870847*28143753123^(3/10) 9870002026341778 a001 3524578/4870847*10749957122^(5/16) 9870002026341778 a001 3524578/4870847*599074578^(5/14) 9870002026341778 a001 3524578/4870847*228826127^(3/8) 9870002026341782 a001 3524578/4870847*33385282^(5/12) 9870002026341793 a001 726103/4250681*4870847^(9/16) 9870002026341809 a001 2178309/7881196*12752043^(1/2) 9870002026341809 a001 1836311903/4870847*1860498^(1/15) 9870002026341816 a004 Fibonacci(34)*Lucas(33)/(1/2+sqrt(5)/2)^51 9870002026341830 a001 5702887/10749957122*7881196^(10/11) 9870002026341845 a001 5702887/2537720636*7881196^(9/11) 9870002026341845 a001 416020/299537289*1860498^(14/15) 9870002026341859 a001 5702887/599074578*7881196^(8/11) 9870002026341868 a004 Fibonacci(36)*Lucas(33)/(1/2+sqrt(5)/2)^53 9870002026341869 a001 5702887/228826127*7881196^(2/3) 9870002026341870 a001 311187/4769326*4870847^(5/8) 9870002026341874 a001 5702887/141422324*7881196^(7/11) 9870002026341875 a004 Fibonacci(38)*Lucas(33)/(1/2+sqrt(5)/2)^55 9870002026341876 a004 Fibonacci(40)*Lucas(33)/(1/2+sqrt(5)/2)^57 9870002026341876 a004 Fibonacci(42)*Lucas(33)/(1/2+sqrt(5)/2)^59 9870002026341876 a004 Fibonacci(44)*Lucas(33)/(1/2+sqrt(5)/2)^61 9870002026341876 a004 Fibonacci(46)*Lucas(33)/(1/2+sqrt(5)/2)^63 9870002026341876 a004 Fibonacci(48)*Lucas(33)/(1/2+sqrt(5)/2)^65 9870002026341876 a004 Fibonacci(50)*Lucas(33)/(1/2+sqrt(5)/2)^67 9870002026341876 a004 Fibonacci(52)*Lucas(33)/(1/2+sqrt(5)/2)^69 9870002026341876 a004 Fibonacci(54)*Lucas(33)/(1/2+sqrt(5)/2)^71 9870002026341876 a004 Fibonacci(56)*Lucas(33)/(1/2+sqrt(5)/2)^73 9870002026341876 a004 Fibonacci(58)*Lucas(33)/(1/2+sqrt(5)/2)^75 9870002026341876 a004 Fibonacci(60)*Lucas(33)/(1/2+sqrt(5)/2)^77 9870002026341876 a004 Fibonacci(62)*Lucas(33)/(1/2+sqrt(5)/2)^79 9870002026341876 a004 Fibonacci(64)*Lucas(33)/(1/2+sqrt(5)/2)^81 9870002026341876 a004 Fibonacci(66)*Lucas(33)/(1/2+sqrt(5)/2)^83 9870002026341876 a004 Fibonacci(68)*Lucas(33)/(1/2+sqrt(5)/2)^85 9870002026341876 a004 Fibonacci(70)*Lucas(33)/(1/2+sqrt(5)/2)^87 9870002026341876 a004 Fibonacci(72)*Lucas(33)/(1/2+sqrt(5)/2)^89 9870002026341876 a004 Fibonacci(74)*Lucas(33)/(1/2+sqrt(5)/2)^91 9870002026341876 a004 Fibonacci(76)*Lucas(33)/(1/2+sqrt(5)/2)^93 9870002026341876 a004 Fibonacci(78)*Lucas(33)/(1/2+sqrt(5)/2)^95 9870002026341876 a004 Fibonacci(80)*Lucas(33)/(1/2+sqrt(5)/2)^97 9870002026341876 a004 Fibonacci(82)*Lucas(33)/(1/2+sqrt(5)/2)^99 9870002026341876 a004 Fibonacci(83)*Lucas(33)/(1/2+sqrt(5)/2)^100 9870002026341876 a004 Fibonacci(81)*Lucas(33)/(1/2+sqrt(5)/2)^98 9870002026341876 a004 Fibonacci(79)*Lucas(33)/(1/2+sqrt(5)/2)^96 9870002026341876 a004 Fibonacci(77)*Lucas(33)/(1/2+sqrt(5)/2)^94 9870002026341876 a004 Fibonacci(75)*Lucas(33)/(1/2+sqrt(5)/2)^92 9870002026341876 a004 Fibonacci(73)*Lucas(33)/(1/2+sqrt(5)/2)^90 9870002026341876 a004 Fibonacci(71)*Lucas(33)/(1/2+sqrt(5)/2)^88 9870002026341876 a004 Fibonacci(69)*Lucas(33)/(1/2+sqrt(5)/2)^86 9870002026341876 a004 Fibonacci(67)*Lucas(33)/(1/2+sqrt(5)/2)^84 9870002026341876 a001 1/1762289*(1/2+1/2*5^(1/2))^49 9870002026341876 a004 Fibonacci(65)*Lucas(33)/(1/2+sqrt(5)/2)^82 9870002026341876 a004 Fibonacci(63)*Lucas(33)/(1/2+sqrt(5)/2)^80 9870002026341876 a004 Fibonacci(61)*Lucas(33)/(1/2+sqrt(5)/2)^78 9870002026341876 a004 Fibonacci(59)*Lucas(33)/(1/2+sqrt(5)/2)^76 9870002026341876 a004 Fibonacci(57)*Lucas(33)/(1/2+sqrt(5)/2)^74 9870002026341876 a004 Fibonacci(55)*Lucas(33)/(1/2+sqrt(5)/2)^72 9870002026341876 a004 Fibonacci(53)*Lucas(33)/(1/2+sqrt(5)/2)^70 9870002026341876 a004 Fibonacci(51)*Lucas(33)/(1/2+sqrt(5)/2)^68 9870002026341876 a004 Fibonacci(49)*Lucas(33)/(1/2+sqrt(5)/2)^66 9870002026341876 a004 Fibonacci(47)*Lucas(33)/(1/2+sqrt(5)/2)^64 9870002026341876 a004 Fibonacci(45)*Lucas(33)/(1/2+sqrt(5)/2)^62 9870002026341876 a004 Fibonacci(43)*Lucas(33)/(1/2+sqrt(5)/2)^60 9870002026341877 a004 Fibonacci(41)*Lucas(33)/(1/2+sqrt(5)/2)^58 9870002026341877 a004 Fibonacci(39)*Lucas(33)/(1/2+sqrt(5)/2)^56 9870002026341879 a001 5702887/33385282*7881196^(6/11) 9870002026341880 a004 Fibonacci(37)*Lucas(33)/(1/2+sqrt(5)/2)^54 9870002026341882 a001 4976784/9381251041*7881196^(10/11) 9870002026341890 a001 39088169/73681302247*7881196^(10/11) 9870002026341891 a001 34111385/64300051206*7881196^(10/11) 9870002026341891 a001 267914296/505019158607*7881196^(10/11) 9870002026341891 a001 233802911/440719107401*7881196^(10/11) 9870002026341891 a001 1836311903/3461452808002*7881196^(10/11) 9870002026341891 a001 1602508992/3020733700601*7881196^(10/11) 9870002026341891 a001 12586269025/23725150497407*7881196^(10/11) 9870002026341891 a001 7778742049/14662949395604*7881196^(10/11) 9870002026341891 a001 2971215073/5600748293801*7881196^(10/11) 9870002026341891 a001 1134903170/2139295485799*7881196^(10/11) 9870002026341891 a001 433494437/817138163596*7881196^(10/11) 9870002026341891 a001 165580141/312119004989*7881196^(10/11) 9870002026341891 a001 63245986/119218851371*7881196^(10/11) 9870002026341894 a001 24157817/45537549124*7881196^(10/11) 9870002026341896 a001 14930352/6643838879*7881196^(9/11) 9870002026341900 a004 Fibonacci(35)*Lucas(33)/(1/2+sqrt(5)/2)^52 9870002026341904 a001 39088169/17393796001*7881196^(9/11) 9870002026341904 a001 726103/29134601*4870847^(11/16) 9870002026341904 a001 1134903170/4870847*1860498^(1/10) 9870002026341905 a001 102334155/45537549124*7881196^(9/11) 9870002026341905 a001 267914296/119218851371*7881196^(9/11) 9870002026341905 a001 3524667/1568437211*7881196^(9/11) 9870002026341905 a001 1836311903/817138163596*7881196^(9/11) 9870002026341905 a001 4807526976/2139295485799*7881196^(9/11) 9870002026341905 a001 12586269025/5600748293801*7881196^(9/11) 9870002026341905 a001 32951280099/14662949395604*7881196^(9/11) 9870002026341905 a001 53316291173/23725150497407*7881196^(9/11) 9870002026341905 a001 20365011074/9062201101803*7881196^(9/11) 9870002026341905 a001 7778742049/3461452808002*7881196^(9/11) 9870002026341905 a001 2971215073/1322157322203*7881196^(9/11) 9870002026341905 a001 1134903170/505019158607*7881196^(9/11) 9870002026341905 a001 433494437/192900153618*7881196^(9/11) 9870002026341905 a001 165580141/73681302247*7881196^(9/11) 9870002026341906 a001 63245986/28143753123*7881196^(9/11) 9870002026341909 a001 24157817/10749957122*7881196^(9/11) 9870002026341911 a001 14930352/1568397607*7881196^(8/11) 9870002026341914 a001 5702887/12752043*(1/2+1/2*5^(1/2))^16 9870002026341914 a001 5702887/12752043*23725150497407^(1/4) 9870002026341914 a001 5702887/12752043*73681302247^(4/13) 9870002026341914 a001 32522920134769/32951280099 9870002026341914 a001 5702887/12752043*10749957122^(1/3) 9870002026341914 a001 5702887/12752043*4106118243^(8/23) 9870002026341914 a001 5702887/12752043*1568397607^(4/11) 9870002026341914 a001 5702887/12752043*599074578^(8/21) 9870002026341914 a001 5702887/12752043*228826127^(2/5) 9870002026341914 a001 9227465/17393796001*7881196^(10/11) 9870002026341915 a001 5702887/12752043*87403803^(8/19) 9870002026341916 a001 39088169/12752043*7881196^(4/11) 9870002026341918 a001 5702887/12752043*33385282^(4/9) 9870002026341919 a001 39088169/4106118243*7881196^(8/11) 9870002026341920 a001 102334155/10749957122*7881196^(8/11) 9870002026341920 a001 267914296/28143753123*7881196^(8/11) 9870002026341920 a001 701408733/73681302247*7881196^(8/11) 9870002026341920 a001 1836311903/192900153618*7881196^(8/11) 9870002026341920 a001 102287808/10745088481*7881196^(8/11) 9870002026341920 a001 12586269025/1322157322203*7881196^(8/11) 9870002026341920 a001 32951280099/3461452808002*7881196^(8/11) 9870002026341920 a001 86267571272/9062201101803*7881196^(8/11) 9870002026341920 a001 225851433717/23725150497407*7881196^(8/11) 9870002026341920 a001 139583862445/14662949395604*7881196^(8/11) 9870002026341920 a001 53316291173/5600748293801*7881196^(8/11) 9870002026341920 a001 20365011074/2139295485799*7881196^(8/11) 9870002026341920 a001 7778742049/817138163596*7881196^(8/11) 9870002026341920 a001 2971215073/312119004989*7881196^(8/11) 9870002026341920 a001 1134903170/119218851371*7881196^(8/11) 9870002026341920 a001 433494437/45537549124*7881196^(8/11) 9870002026341920 a001 165580141/17393796001*7881196^(8/11) 9870002026341920 a001 63245986/6643838879*7881196^(8/11) 9870002026341921 a001 829464/33281921*7881196^(2/3) 9870002026341922 a001 63245986/12752043*7881196^(1/3) 9870002026341923 a001 24157817/2537720636*7881196^(8/11) 9870002026341925 a001 14930352/370248451*7881196^(7/11) 9870002026341926 a001 9227465/12752043*7881196^(5/11) 9870002026341928 a001 39088169/1568397607*7881196^(2/3) 9870002026341929 a001 9227465/4106118243*7881196^(9/11) 9870002026341929 a001 34111385/1368706081*7881196^(2/3) 9870002026341929 a001 133957148/5374978561*7881196^(2/3) 9870002026341929 a001 233802911/9381251041*7881196^(2/3) 9870002026341929 a001 1836311903/73681302247*7881196^(2/3) 9870002026341929 a001 267084832/10716675201*7881196^(2/3) 9870002026341929 a001 12586269025/505019158607*7881196^(2/3) 9870002026341929 a001 10983760033/440719107401*7881196^(2/3) 9870002026341929 a001 43133785636/1730726404001*7881196^(2/3) 9870002026341929 a001 75283811239/3020733700601*7881196^(2/3) 9870002026341929 a001 182717648081/7331474697802*7881196^(2/3) 9870002026341929 a001 139583862445/5600748293801*7881196^(2/3) 9870002026341929 a001 53316291173/2139295485799*7881196^(2/3) 9870002026341929 a001 10182505537/408569081798*7881196^(2/3) 9870002026341929 a001 7778742049/312119004989*7881196^(2/3) 9870002026341929 a001 2971215073/119218851371*7881196^(2/3) 9870002026341929 a001 567451585/22768774562*7881196^(2/3) 9870002026341929 a001 433494437/17393796001*7881196^(2/3) 9870002026341929 a001 165580141/6643838879*7881196^(2/3) 9870002026341930 a001 31622993/1268860318*7881196^(2/3) 9870002026341931 a001 46347/4868641*4870847^(3/4) 9870002026341931 a001 165580141/12752043*7881196^(3/11) 9870002026341933 a001 24157817/969323029*7881196^(2/3) 9870002026341933 a001 39088169/969323029*7881196^(7/11) 9870002026341934 a001 9303105/230701876*7881196^(7/11) 9870002026341934 a001 267914296/6643838879*7881196^(7/11) 9870002026341934 a001 701408733/17393796001*7881196^(7/11) 9870002026341934 a001 1836311903/45537549124*7881196^(7/11) 9870002026341934 a001 4807526976/119218851371*7881196^(7/11) 9870002026341934 a001 1144206275/28374454999*7881196^(7/11) 9870002026341934 a001 32951280099/817138163596*7881196^(7/11) 9870002026341934 a001 86267571272/2139295485799*7881196^(7/11) 9870002026341934 a001 225851433717/5600748293801*7881196^(7/11) 9870002026341934 a001 591286729879/14662949395604*7881196^(7/11) 9870002026341934 a001 365435296162/9062201101803*7881196^(7/11) 9870002026341934 a001 139583862445/3461452808002*7881196^(7/11) 9870002026341934 a001 53316291173/1322157322203*7881196^(7/11) 9870002026341934 a001 20365011074/505019158607*7881196^(7/11) 9870002026341934 a001 7778742049/192900153618*7881196^(7/11) 9870002026341934 a001 2971215073/73681302247*7881196^(7/11) 9870002026341934 a001 1134903170/28143753123*7881196^(7/11) 9870002026341934 a001 433494437/10749957122*7881196^(7/11) 9870002026341934 a001 165580141/4106118243*7881196^(7/11) 9870002026341935 a001 63245986/1568397607*7881196^(7/11) 9870002026341938 a001 24157817/599074578*7881196^(7/11) 9870002026341939 a001 4976784/29134601*7881196^(6/11) 9870002026341943 a001 5702887/12752043*12752043^(8/17) 9870002026341943 a001 9227465/969323029*7881196^(8/11) 9870002026341946 a001 233802911/4250681*7881196^(2/11) 9870002026341947 a001 39088169/228826127*7881196^(6/11) 9870002026341948 a001 34111385/199691526*7881196^(6/11) 9870002026341949 a001 267914296/1568397607*7881196^(6/11) 9870002026341949 a001 233802911/1368706081*7881196^(6/11) 9870002026341949 a001 1836311903/10749957122*7881196^(6/11) 9870002026341949 a001 1602508992/9381251041*7881196^(6/11) 9870002026341949 a001 12586269025/73681302247*7881196^(6/11) 9870002026341949 a001 10983760033/64300051206*7881196^(6/11) 9870002026341949 a001 86267571272/505019158607*7881196^(6/11) 9870002026341949 a001 75283811239/440719107401*7881196^(6/11) 9870002026341949 a001 2504730781961/14662949395604*7881196^(6/11) 9870002026341949 a001 139583862445/817138163596*7881196^(6/11) 9870002026341949 a001 53316291173/312119004989*7881196^(6/11) 9870002026341949 a001 20365011074/119218851371*7881196^(6/11) 9870002026341949 a001 7778742049/45537549124*7881196^(6/11) 9870002026341949 a001 2971215073/17393796001*7881196^(6/11) 9870002026341949 a001 1134903170/6643838879*7881196^(6/11) 9870002026341949 a001 433494437/2537720636*7881196^(6/11) 9870002026341949 a001 165580141/969323029*7881196^(6/11) 9870002026341949 a001 63245986/370248451*7881196^(6/11) 9870002026341951 a004 Fibonacci(34)*Lucas(35)/(1/2+sqrt(5)/2)^53 9870002026341953 a001 24157817/141422324*7881196^(6/11) 9870002026341953 a001 9227465/370248451*7881196^(2/3) 9870002026341955 a001 5702887/10749957122*20633239^(6/7) 9870002026341956 a001 5702887/4106118243*20633239^(4/5) 9870002026341957 a001 4976784/4250681*20633239^(2/5) 9870002026341957 a001 9227465/228826127*7881196^(7/11) 9870002026341957 a001 726103/199691526*4870847^(13/16) 9870002026341958 a001 24157817/33385282*7881196^(5/11) 9870002026341958 a001 5702887/969323029*20633239^(5/7) 9870002026341960 a001 5702887/87403803*20633239^(4/7) 9870002026341960 a001 2971215073/12752043*7881196^(1/11) 9870002026341961 a001 5702887/141422324*20633239^(3/5) 9870002026341962 a001 63245986/87403803*7881196^(5/11) 9870002026341963 a001 165580141/228826127*7881196^(5/11) 9870002026341963 a001 433494437/599074578*7881196^(5/11) 9870002026341963 a001 1134903170/1568397607*7881196^(5/11) 9870002026341963 a001 2971215073/4106118243*7881196^(5/11) 9870002026341963 a001 7778742049/10749957122*7881196^(5/11) 9870002026341963 a001 20365011074/28143753123*7881196^(5/11) 9870002026341963 a001 53316291173/73681302247*7881196^(5/11) 9870002026341963 a001 139583862445/192900153618*7881196^(5/11) 9870002026341963 a001 365435296162/505019158607*7881196^(5/11) 9870002026341963 a001 10610209857723/14662949395604*7881196^(5/11) 9870002026341963 a001 591286729879/817138163596*7881196^(5/11) 9870002026341963 a001 225851433717/312119004989*7881196^(5/11) 9870002026341963 a001 86267571272/119218851371*7881196^(5/11) 9870002026341963 a001 32951280099/45537549124*7881196^(5/11) 9870002026341963 a001 12586269025/17393796001*7881196^(5/11) 9870002026341963 a001 4807526976/6643838879*7881196^(5/11) 9870002026341963 a001 1836311903/2537720636*7881196^(5/11) 9870002026341963 a001 701408733/969323029*7881196^(5/11) 9870002026341963 a001 267914296/370248451*7881196^(5/11) 9870002026341963 a001 102334155/141422324*7881196^(5/11) 9870002026341965 a001 39088169/54018521*7881196^(5/11) 9870002026341966 a001 5702887/33385282*141422324^(6/13) 9870002026341966 a001 5702887/33385282*2537720636^(2/5) 9870002026341966 a001 4976784/4250681*17393796001^(2/7) 9870002026341966 a001 5702887/33385282*45537549124^(6/17) 9870002026341966 a001 5702887/33385282*14662949395604^(2/7) 9870002026341966 a001 4976784/4250681*14662949395604^(2/9) 9870002026341966 a001 5702887/33385282*(1/2+1/2*5^(1/2))^18 9870002026341966 a001 4976784/4250681*(1/2+1/2*5^(1/2))^14 9870002026341966 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^14/Lucas(34) 9870002026341966 a001 4976784/4250681*505019158607^(1/4) 9870002026341966 a001 5702887/33385282*192900153618^(1/3) 9870002026341966 a001 32951281086/33385283 9870002026341966 a001 4976784/4250681*10749957122^(7/24) 9870002026341966 a001 5702887/33385282*10749957122^(3/8) 9870002026341966 a001 4976784/4250681*4106118243^(7/23) 9870002026341966 a001 5702887/33385282*4106118243^(9/23) 9870002026341966 a001 4976784/4250681*1568397607^(7/22) 9870002026341966 a001 5702887/33385282*1568397607^(9/22) 9870002026341966 a001 4976784/4250681*599074578^(1/3) 9870002026341966 a001 5702887/33385282*599074578^(3/7) 9870002026341966 a001 4976784/4250681*228826127^(7/20) 9870002026341966 a001 5702887/33385282*228826127^(9/20) 9870002026341966 a001 4976784/4250681*87403803^(7/19) 9870002026341966 a001 5702887/33385282*87403803^(9/19) 9870002026341968 a001 34111385/4250681*20633239^(2/7) 9870002026341969 a001 14619165/4769326*7881196^(4/11) 9870002026341969 a001 4976784/4250681*33385282^(7/18) 9870002026341970 a001 433494437/12752043*20633239^(1/5) 9870002026341970 a001 5702887/33385282*33385282^(1/2) 9870002026341971 a004 Fibonacci(34)*Lucas(37)/(1/2+sqrt(5)/2)^55 9870002026341971 a001 1134903170/12752043*20633239^(1/7) 9870002026341973 a001 39088169/12752043*141422324^(4/13) 9870002026341973 a001 5702887/87403803*2537720636^(4/9) 9870002026341973 a001 39088169/12752043*2537720636^(4/15) 9870002026341973 a001 39088169/12752043*45537549124^(4/17) 9870002026341973 a001 39088169/12752043*817138163596^(4/19) 9870002026341973 a001 39088169/12752043*14662949395604^(4/21) 9870002026341973 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^20/Lucas(38) 9870002026341973 a001 39088169/12752043*(1/2+1/2*5^(1/2))^12 9870002026341973 a001 5702887/87403803*23725150497407^(5/16) 9870002026341973 a001 222915410843903/225851433717 9870002026341973 a001 39088169/12752043*192900153618^(2/9) 9870002026341973 a001 39088169/12752043*73681302247^(3/13) 9870002026341973 a001 5702887/87403803*73681302247^(5/13) 9870002026341973 a001 5702887/87403803*28143753123^(2/5) 9870002026341973 a001 39088169/12752043*10749957122^(1/4) 9870002026341973 a001 5702887/87403803*10749957122^(5/12) 9870002026341973 a001 39088169/12752043*4106118243^(6/23) 9870002026341973 a001 5702887/87403803*4106118243^(10/23) 9870002026341973 a001 39088169/12752043*1568397607^(3/11) 9870002026341973 a001 5702887/87403803*1568397607^(5/11) 9870002026341973 a001 39088169/12752043*599074578^(2/7) 9870002026341973 a001 5702887/87403803*599074578^(10/21) 9870002026341973 a001 39088169/12752043*228826127^(3/10) 9870002026341973 a001 5702887/87403803*228826127^(1/2) 9870002026341974 a001 165580141/33385282*7881196^(1/3) 9870002026341974 a001 39088169/12752043*87403803^(6/19) 9870002026341974 a001 5702887/87403803*87403803^(10/19) 9870002026341974 a004 Fibonacci(34)*Lucas(39)/(1/2+sqrt(5)/2)^57 9870002026341974 a001 5702887/192900153618*141422324^(12/13) 9870002026341974 a001 1597/12752044*141422324^(11/13) 9870002026341974 a001 5702887/10749957122*141422324^(10/13) 9870002026341974 a001 5702887/2537720636*141422324^(9/13) 9870002026341974 a001 5702887/1568397607*141422324^(2/3) 9870002026341974 a001 5702887/599074578*141422324^(8/13) 9870002026341974 a001 34111385/4250681*2537720636^(2/9) 9870002026341974 a001 34111385/4250681*312119004989^(2/11) 9870002026341974 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^22/Lucas(40) 9870002026341974 a001 34111385/4250681*(1/2+1/2*5^(1/2))^10 9870002026341974 a001 583600122205485/591286729879 9870002026341974 a001 34111385/4250681*28143753123^(1/5) 9870002026341974 a001 34111385/4250681*10749957122^(5/24) 9870002026341974 a001 5702887/228826127*10749957122^(11/24) 9870002026341974 a001 34111385/4250681*4106118243^(5/23) 9870002026341974 a001 5702887/228826127*4106118243^(11/23) 9870002026341974 a001 34111385/4250681*1568397607^(5/22) 9870002026341974 a001 5702887/228826127*1568397607^(1/2) 9870002026341974 a001 34111385/4250681*599074578^(5/21) 9870002026341974 a001 5702887/228826127*599074578^(11/21) 9870002026341975 a001 34111385/4250681*228826127^(1/4) 9870002026341975 a001 5702887/228826127*228826127^(11/20) 9870002026341975 a001 233802911/4250681*141422324^(2/13) 9870002026341975 a004 Fibonacci(34)*Lucas(41)/(1/2+sqrt(5)/2)^59 9870002026341975 a001 165580141/12752043*141422324^(3/13) 9870002026341975 a001 2971215073/12752043*141422324^(1/13) 9870002026341975 a001 5702887/599074578*2537720636^(8/15) 9870002026341975 a001 5702887/599074578*45537549124^(8/17) 9870002026341975 a001 5702887/599074578*14662949395604^(8/21) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^24/Lucas(42) 9870002026341975 a001 267914296/12752043*(1/2+1/2*5^(1/2))^8 9870002026341975 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^8/Lucas(34) 9870002026341975 a001 267914296/12752043*23725150497407^(1/8) 9870002026341975 a001 190985619471569/193501094490 9870002026341975 a001 267914296/12752043*505019158607^(1/7) 9870002026341975 a001 5702887/599074578*192900153618^(4/9) 9870002026341975 a001 267914296/12752043*73681302247^(2/13) 9870002026341975 a001 5702887/599074578*73681302247^(6/13) 9870002026341975 a001 267914296/12752043*10749957122^(1/6) 9870002026341975 a001 5702887/599074578*10749957122^(1/2) 9870002026341975 a001 267914296/12752043*4106118243^(4/23) 9870002026341975 a001 5702887/599074578*4106118243^(12/23) 9870002026341975 a001 267914296/12752043*1568397607^(2/11) 9870002026341975 a001 5702887/599074578*1568397607^(6/11) 9870002026341975 a001 267914296/12752043*599074578^(4/21) 9870002026341975 a001 5702887/599074578*599074578^(4/7) 9870002026341975 a004 Fibonacci(34)*Lucas(43)/(1/2+sqrt(5)/2)^61 9870002026341975 a001 233802911/4250681*2537720636^(2/15) 9870002026341975 a001 233802911/4250681*45537549124^(2/17) 9870002026341975 a001 233802911/4250681*14662949395604^(2/21) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^26/Lucas(44) 9870002026341975 a001 233802911/4250681*(1/2+1/2*5^(1/2))^6 9870002026341975 a001 5702887/1568397607*73681302247^(1/2) 9870002026341975 a001 233802911/4250681*10749957122^(1/8) 9870002026341975 a001 5702887/1568397607*10749957122^(13/24) 9870002026341975 a001 233802911/4250681*4106118243^(3/23) 9870002026341975 a001 5702887/1568397607*4106118243^(13/23) 9870002026341975 a001 233802911/4250681*1568397607^(3/22) 9870002026341975 a001 5702887/1568397607*1568397607^(13/22) 9870002026341975 a004 Fibonacci(34)*Lucas(45)/(1/2+sqrt(5)/2)^63 9870002026341975 a001 5702887/3461452808002*2537720636^(14/15) 9870002026341975 a001 5702887/1322157322203*2537720636^(8/9) 9870002026341975 a001 5702887/817138163596*2537720636^(13/15) 9870002026341975 a001 5702887/192900153618*2537720636^(4/5) 9870002026341975 a001 5702887/119218851371*2537720636^(7/9) 9870002026341975 a001 1597/12752044*2537720636^(11/15) 9870002026341975 a001 5702887/10749957122*2537720636^(2/3) 9870002026341975 a001 5702887/4106118243*17393796001^(4/7) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^28/Lucas(46) 9870002026341975 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^4 9870002026341975 a001 1836311903/12752043*23725150497407^(1/16) 9870002026341975 a001 10472279279563961/10610209857723 9870002026341975 a001 5702887/4106118243*505019158607^(1/2) 9870002026341975 a001 1836311903/12752043*73681302247^(1/13) 9870002026341975 a001 5702887/4106118243*73681302247^(7/13) 9870002026341975 a001 1836311903/12752043*10749957122^(1/12) 9870002026341975 a001 5702887/4106118243*10749957122^(7/12) 9870002026341975 a001 1836311903/12752043*4106118243^(2/23) 9870002026341975 a001 5702887/4106118243*4106118243^(14/23) 9870002026341975 a004 Fibonacci(34)*Lucas(47)/(1/2+sqrt(5)/2)^65 9870002026341975 a001 1836311903/12752043*1568397607^(1/11) 9870002026341975 a001 5702887/10749957122*45537549124^(10/17) 9870002026341975 a001 5702887/10749957122*312119004989^(6/11) 9870002026341975 a001 5702887/10749957122*14662949395604^(10/21) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^30/Lucas(48) 9870002026341975 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^2 9870002026341975 a001 5702887/10749957122*192900153618^(5/9) 9870002026341975 a001 233802911/4250681*599074578^(1/7) 9870002026341975 a001 1602508992/4250681*10749957122^(1/24) 9870002026341975 a001 5702887/10749957122*28143753123^(3/5) 9870002026341975 a001 1602508992/4250681*4106118243^(1/23) 9870002026341975 a004 Fibonacci(34)*Lucas(49)/(1/2+sqrt(5)/2)^67 9870002026341975 a001 5702887/10749957122*10749957122^(5/8) 9870002026341975 a001 5702887/3461452808002*17393796001^(6/7) 9870002026341975 a001 5702887/119218851371*17393796001^(5/7) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^32/Lucas(50) 9870002026341975 a006 5^(1/2)*Fibonacci(50)/Lucas(34)/sqrt(5) 9870002026341975 a001 5702887/28143753123*23725150497407^(1/2) 9870002026341975 a001 5702887/28143753123*505019158607^(4/7) 9870002026341975 a001 5702887/28143753123*73681302247^(8/13) 9870002026341975 a001 5702887/73681302247*45537549124^(2/3) 9870002026341975 a004 Fibonacci(34)*Lucas(51)/(1/2+sqrt(5)/2)^69 9870002026341975 a001 5702887/14662949395604*45537549124^(15/17) 9870002026341975 a001 5702887/3461452808002*45537549124^(14/17) 9870002026341975 a001 5702887/192900153618*45537549124^(12/17) 9870002026341975 a001 5702887/817138163596*45537549124^(13/17) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^34/Lucas(52) 9870002026341975 a004 Fibonacci(52)/Lucas(34)/(1/2+sqrt(5)/2)^2 9870002026341975 a004 Fibonacci(34)*Lucas(53)/(1/2+sqrt(5)/2)^71 9870002026341975 a001 5702887/192900153618*14662949395604^(4/7) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^36/Lucas(54) 9870002026341975 a004 Fibonacci(54)/Lucas(34)/(1/2+sqrt(5)/2)^4 9870002026341975 a001 5702887/192900153618*505019158607^(9/14) 9870002026341975 a004 Fibonacci(34)*Lucas(55)/(1/2+sqrt(5)/2)^73 9870002026341975 a001 5702887/192900153618*192900153618^(2/3) 9870002026341975 a001 5702887/14662949395604*312119004989^(9/11) 9870002026341975 a001 5702887/1322157322203*312119004989^(8/11) 9870002026341975 a001 5702887/505019158607*817138163596^(2/3) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^38/Lucas(56) 9870002026341975 a004 Fibonacci(56)/Lucas(34)/(1/2+sqrt(5)/2)^6 9870002026341975 a004 Fibonacci(34)*Lucas(57)/(1/2+sqrt(5)/2)^75 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^40/Lucas(58) 9870002026341975 a004 Fibonacci(58)/Lucas(34)/(1/2+sqrt(5)/2)^8 9870002026341975 a001 5702887/1322157322203*23725150497407^(5/8) 9870002026341975 a004 Fibonacci(34)*Lucas(59)/(1/2+sqrt(5)/2)^77 9870002026341975 a001 5702887/3461452808002*14662949395604^(2/3) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^42/Lucas(60) 9870002026341975 a004 Fibonacci(60)/Lucas(34)/(1/2+sqrt(5)/2)^10 9870002026341975 a004 Fibonacci(34)*Lucas(61)/(1/2+sqrt(5)/2)^79 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^44/Lucas(62) 9870002026341975 a004 Fibonacci(62)/Lucas(34)/(1/2+sqrt(5)/2)^12 9870002026341975 a004 Fibonacci(34)*Lucas(63)/(1/2+sqrt(5)/2)^81 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^46/Lucas(64) 9870002026341975 a004 Fibonacci(64)/Lucas(34)/(1/2+sqrt(5)/2)^14 9870002026341975 a004 Fibonacci(34)*Lucas(65)/(1/2+sqrt(5)/2)^83 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^48/Lucas(66) 9870002026341975 a004 Fibonacci(66)/Lucas(34)/(1/2+sqrt(5)/2)^16 9870002026341975 a004 Fibonacci(34)*Lucas(67)/(1/2+sqrt(5)/2)^85 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^50/Lucas(68) 9870002026341975 a004 Fibonacci(34)*Lucas(69)/(1/2+sqrt(5)/2)^87 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^52/Lucas(70) 9870002026341975 a004 Fibonacci(34)*Lucas(71)/(1/2+sqrt(5)/2)^89 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^54/Lucas(72) 9870002026341975 a004 Fibonacci(34)*Lucas(73)/(1/2+sqrt(5)/2)^91 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^56/Lucas(74) 9870002026341975 a004 Fibonacci(34)*Lucas(75)/(1/2+sqrt(5)/2)^93 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^58/Lucas(76) 9870002026341975 a004 Fibonacci(34)*Lucas(77)/(1/2+sqrt(5)/2)^95 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^60/Lucas(78) 9870002026341975 a004 Fibonacci(34)*Lucas(79)/(1/2+sqrt(5)/2)^97 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^62/Lucas(80) 9870002026341975 a004 Fibonacci(34)*Lucas(81)/(1/2+sqrt(5)/2)^99 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^64/Lucas(82) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^66/Lucas(84) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^68/Lucas(86) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^70/Lucas(88) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^72/Lucas(90) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^74/Lucas(92) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^76/Lucas(94) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^78/Lucas(96) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^80/Lucas(98) 9870002026341975 a004 Fibonacci(17)*Lucas(17)/(1/2+sqrt(5)/2)^18 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^81/Lucas(99) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^82/Lucas(100) 9870002026341975 a004 Fibonacci(68)/Lucas(34)/(1/2+sqrt(5)/2)^18 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^79/Lucas(97) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^77/Lucas(95) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^75/Lucas(93) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^73/Lucas(91) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^71/Lucas(89) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^69/Lucas(87) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^67/Lucas(85) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^65/Lucas(83) 9870002026341975 a004 Fibonacci(34)*Lucas(82)/(1/2+sqrt(5)/2)^100 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^63/Lucas(81) 9870002026341975 a004 Fibonacci(34)*Lucas(80)/(1/2+sqrt(5)/2)^98 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^61/Lucas(79) 9870002026341975 a004 Fibonacci(34)*Lucas(78)/(1/2+sqrt(5)/2)^96 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^59/Lucas(77) 9870002026341975 a004 Fibonacci(34)*Lucas(76)/(1/2+sqrt(5)/2)^94 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^57/Lucas(75) 9870002026341975 a004 Fibonacci(34)*Lucas(74)/(1/2+sqrt(5)/2)^92 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^55/Lucas(73) 9870002026341975 a004 Fibonacci(34)*Lucas(72)/(1/2+sqrt(5)/2)^90 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^53/Lucas(71) 9870002026341975 a004 Fibonacci(34)*Lucas(70)/(1/2+sqrt(5)/2)^88 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^51/Lucas(69) 9870002026341975 a004 Fibonacci(70)/Lucas(34)/(1/2+sqrt(5)/2)^20 9870002026341975 a004 Fibonacci(72)/Lucas(34)/(1/2+sqrt(5)/2)^22 9870002026341975 a004 Fibonacci(74)/Lucas(34)/(1/2+sqrt(5)/2)^24 9870002026341975 a004 Fibonacci(76)/Lucas(34)/(1/2+sqrt(5)/2)^26 9870002026341975 a004 Fibonacci(78)/Lucas(34)/(1/2+sqrt(5)/2)^28 9870002026341975 a004 Fibonacci(80)/Lucas(34)/(1/2+sqrt(5)/2)^30 9870002026341975 a004 Fibonacci(82)/Lucas(34)/(1/2+sqrt(5)/2)^32 9870002026341975 a004 Fibonacci(84)/Lucas(34)/(1/2+sqrt(5)/2)^34 9870002026341975 a004 Fibonacci(86)/Lucas(34)/(1/2+sqrt(5)/2)^36 9870002026341975 a004 Fibonacci(88)/Lucas(34)/(1/2+sqrt(5)/2)^38 9870002026341975 a004 Fibonacci(90)/Lucas(34)/(1/2+sqrt(5)/2)^40 9870002026341975 a004 Fibonacci(92)/Lucas(34)/(1/2+sqrt(5)/2)^42 9870002026341975 a004 Fibonacci(94)/Lucas(34)/(1/2+sqrt(5)/2)^44 9870002026341975 a004 Fibonacci(96)/Lucas(34)/(1/2+sqrt(5)/2)^46 9870002026341975 a004 Fibonacci(98)/Lucas(34)/(1/2+sqrt(5)/2)^48 9870002026341975 a004 Fibonacci(100)/Lucas(34)/(1/2+sqrt(5)/2)^50 9870002026341975 a004 Fibonacci(34)*Lucas(68)/(1/2+sqrt(5)/2)^86 9870002026341975 a004 Fibonacci(99)/Lucas(34)/(1/2+sqrt(5)/2)^49 9870002026341975 a004 Fibonacci(97)/Lucas(34)/(1/2+sqrt(5)/2)^47 9870002026341975 a004 Fibonacci(95)/Lucas(34)/(1/2+sqrt(5)/2)^45 9870002026341975 a004 Fibonacci(93)/Lucas(34)/(1/2+sqrt(5)/2)^43 9870002026341975 a004 Fibonacci(91)/Lucas(34)/(1/2+sqrt(5)/2)^41 9870002026341975 a004 Fibonacci(89)/Lucas(34)/(1/2+sqrt(5)/2)^39 9870002026341975 a004 Fibonacci(87)/Lucas(34)/(1/2+sqrt(5)/2)^37 9870002026341975 a004 Fibonacci(85)/Lucas(34)/(1/2+sqrt(5)/2)^35 9870002026341975 a004 Fibonacci(83)/Lucas(34)/(1/2+sqrt(5)/2)^33 9870002026341975 a004 Fibonacci(81)/Lucas(34)/(1/2+sqrt(5)/2)^31 9870002026341975 a004 Fibonacci(79)/Lucas(34)/(1/2+sqrt(5)/2)^29 9870002026341975 a004 Fibonacci(77)/Lucas(34)/(1/2+sqrt(5)/2)^27 9870002026341975 a004 Fibonacci(75)/Lucas(34)/(1/2+sqrt(5)/2)^25 9870002026341975 a004 Fibonacci(73)/Lucas(34)/(1/2+sqrt(5)/2)^23 9870002026341975 a004 Fibonacci(71)/Lucas(34)/(1/2+sqrt(5)/2)^21 9870002026341975 a004 Fibonacci(69)/Lucas(34)/(1/2+sqrt(5)/2)^19 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^49/Lucas(67) 9870002026341975 a004 Fibonacci(67)/Lucas(34)/(1/2+sqrt(5)/2)^17 9870002026341975 a004 Fibonacci(34)*Lucas(66)/(1/2+sqrt(5)/2)^84 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^47/Lucas(65) 9870002026341975 a004 Fibonacci(65)/Lucas(34)/(1/2+sqrt(5)/2)^15 9870002026341975 a001 5702887/14662949395604*14662949395604^(5/7) 9870002026341975 a004 Fibonacci(34)*Lucas(64)/(1/2+sqrt(5)/2)^82 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^45/Lucas(63) 9870002026341975 a004 Fibonacci(63)/Lucas(34)/(1/2+sqrt(5)/2)^13 9870002026341975 a004 Fibonacci(34)*Lucas(62)/(1/2+sqrt(5)/2)^80 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^43/Lucas(61) 9870002026341975 a004 Fibonacci(61)/Lucas(34)/(1/2+sqrt(5)/2)^11 9870002026341975 a004 Fibonacci(34)*Lucas(60)/(1/2+sqrt(5)/2)^78 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^41/Lucas(59) 9870002026341975 a004 Fibonacci(59)/Lucas(34)/(1/2+sqrt(5)/2)^9 9870002026341975 a004 Fibonacci(34)*Lucas(58)/(1/2+sqrt(5)/2)^76 9870002026341975 a001 5702887/817138163596*14662949395604^(13/21) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^39/Lucas(57) 9870002026341975 a004 Fibonacci(57)/Lucas(34)/(1/2+sqrt(5)/2)^7 9870002026341975 a001 5702887/3461452808002*505019158607^(3/4) 9870002026341975 a004 Fibonacci(34)*Lucas(56)/(1/2+sqrt(5)/2)^74 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^37/Lucas(55) 9870002026341975 a004 Fibonacci(55)/Lucas(34)/(1/2+sqrt(5)/2)^5 9870002026341975 a001 5702887/3461452808002*192900153618^(7/9) 9870002026341975 a001 5702887/817138163596*192900153618^(13/18) 9870002026341975 a001 5702887/14662949395604*192900153618^(5/6) 9870002026341975 a004 Fibonacci(34)*Lucas(54)/(1/2+sqrt(5)/2)^72 9870002026341975 a001 5702887/119218851371*312119004989^(7/11) 9870002026341975 a001 5702887/119218851371*14662949395604^(5/9) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^35/Lucas(53) 9870002026341975 a004 Fibonacci(53)/Lucas(34)/(1/2+sqrt(5)/2)^3 9870002026341975 a001 5702887/119218851371*505019158607^(5/8) 9870002026341975 a001 5702887/192900153618*73681302247^(9/13) 9870002026341975 a001 5702887/817138163596*73681302247^(3/4) 9870002026341975 a001 5702887/1322157322203*73681302247^(10/13) 9870002026341975 a001 5702887/9062201101803*73681302247^(11/13) 9870002026341975 a001 1597/12752044*45537549124^(11/17) 9870002026341975 a004 Fibonacci(34)*Lucas(52)/(1/2+sqrt(5)/2)^70 9870002026341975 a001 1597/12752044*312119004989^(3/5) 9870002026341975 a001 1597/12752044*817138163596^(11/19) 9870002026341975 a001 1597/12752044*14662949395604^(11/21) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^33/Lucas(51) 9870002026341975 a004 Fibonacci(51)/Lucas(34)/(1/2+sqrt(5)/2) 9870002026341975 a001 1597/12752044*192900153618^(11/18) 9870002026341975 a001 5702887/119218851371*28143753123^(7/10) 9870002026341975 a001 5702887/1322157322203*28143753123^(4/5) 9870002026341975 a001 5702887/14662949395604*28143753123^(9/10) 9870002026341975 a004 Fibonacci(34)*Lucas(50)/(1/2+sqrt(5)/2)^68 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^31/Lucas(49) 9870002026341975 a001 5702887/17393796001*9062201101803^(1/2) 9870002026341975 a001 5702887/28143753123*10749957122^(2/3) 9870002026341975 a001 5702887/73681302247*10749957122^(17/24) 9870002026341975 a001 1597/12752044*10749957122^(11/16) 9870002026341975 a001 5702887/192900153618*10749957122^(3/4) 9870002026341975 a001 5702887/505019158607*10749957122^(19/24) 9870002026341975 a001 5702887/817138163596*10749957122^(13/16) 9870002026341975 a001 5702887/1322157322203*10749957122^(5/6) 9870002026341975 a001 5702887/3461452808002*10749957122^(7/8) 9870002026341975 a001 5702887/9062201101803*10749957122^(11/12) 9870002026341975 a001 5702887/14662949395604*10749957122^(15/16) 9870002026341975 a001 5702887/23725150497407*10749957122^(23/24) 9870002026341975 a004 Fibonacci(34)*Lucas(48)/(1/2+sqrt(5)/2)^66 9870002026341975 a001 1602508992/4250681*1568397607^(1/22) 9870002026341975 a001 2971215073/12752043*2537720636^(1/15) 9870002026341975 a001 2971215073/12752043*45537549124^(1/17) 9870002026341975 a001 2971215073/12752043*14662949395604^(1/21) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^29/Lucas(47) 9870002026341975 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^3 9870002026341975 a001 5702887/6643838879*1322157322203^(1/2) 9870002026341975 a001 2971215073/12752043*192900153618^(1/18) 9870002026341975 a001 2971215073/12752043*10749957122^(1/16) 9870002026341975 a001 5702887/10749957122*4106118243^(15/23) 9870002026341975 a001 5702887/28143753123*4106118243^(16/23) 9870002026341975 a001 5702887/73681302247*4106118243^(17/23) 9870002026341975 a001 5702887/192900153618*4106118243^(18/23) 9870002026341975 a001 5702887/505019158607*4106118243^(19/23) 9870002026341975 a001 5702887/1322157322203*4106118243^(20/23) 9870002026341975 a001 5702887/3461452808002*4106118243^(21/23) 9870002026341975 a001 5702887/9062201101803*4106118243^(22/23) 9870002026341975 a004 Fibonacci(34)*Lucas(46)/(1/2+sqrt(5)/2)^64 9870002026341975 a001 5702887/2537720636*2537720636^(3/5) 9870002026341975 a001 1602508992/4250681*599074578^(1/21) 9870002026341975 a001 1134903170/12752043*2537720636^(1/9) 9870002026341975 a001 5702887/2537720636*45537549124^(9/17) 9870002026341975 a001 1134903170/12752043*312119004989^(1/11) 9870002026341975 a001 190359545130935/192866774113 9870002026341975 a001 5702887/2537720636*14662949395604^(3/7) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^27/Lucas(45) 9870002026341975 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^5 9870002026341975 a001 5702887/2537720636*192900153618^(1/2) 9870002026341975 a001 1134903170/12752043*28143753123^(1/10) 9870002026341975 a001 5702887/2537720636*10749957122^(9/16) 9870002026341975 a001 5702887/4106118243*1568397607^(7/11) 9870002026341975 a001 1836311903/12752043*599074578^(2/21) 9870002026341975 a001 2971215073/12752043*599074578^(1/14) 9870002026341975 a001 5702887/10749957122*1568397607^(15/22) 9870002026341975 a001 5702887/28143753123*1568397607^(8/11) 9870002026341975 a001 1597/12752044*1568397607^(3/4) 9870002026341975 a001 5702887/73681302247*1568397607^(17/22) 9870002026341975 a001 5702887/192900153618*1568397607^(9/11) 9870002026341975 a001 5702887/505019158607*1568397607^(19/22) 9870002026341975 a001 5702887/1322157322203*1568397607^(10/11) 9870002026341975 a001 5702887/3461452808002*1568397607^(21/22) 9870002026341975 a004 Fibonacci(34)*Lucas(44)/(1/2+sqrt(5)/2)^62 9870002026341975 a001 1602508992/4250681*228826127^(1/20) 9870002026341975 a001 5702887/969323029*2537720636^(5/9) 9870002026341975 a001 267914296/12752043*228826127^(1/5) 9870002026341975 a001 433494437/12752043*17393796001^(1/7) 9870002026341975 a001 5702887/969323029*312119004989^(5/11) 9870002026341975 a001 2472169789339619/2504730781961 9870002026341975 a001 433494437/12752043*14662949395604^(1/9) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^25/Lucas(43) 9870002026341975 a001 433494437/12752043*(1/2+1/2*5^(1/2))^7 9870002026341975 a001 5702887/969323029*3461452808002^(5/12) 9870002026341975 a001 5702887/969323029*28143753123^(1/2) 9870002026341975 a001 5702887/1568397607*599074578^(13/21) 9870002026341975 a001 433494437/12752043*599074578^(1/6) 9870002026341975 a001 5702887/4106118243*599074578^(2/3) 9870002026341975 a001 1836311903/12752043*228826127^(1/10) 9870002026341975 a001 5702887/2537720636*599074578^(9/14) 9870002026341975 a001 5702887/10749957122*599074578^(5/7) 9870002026341975 a001 5702887/28143753123*599074578^(16/21) 9870002026341975 a001 1597/12752044*599074578^(11/14) 9870002026341975 a001 5702887/73681302247*599074578^(17/21) 9870002026341975 a001 5702887/119218851371*599074578^(5/6) 9870002026341975 a001 5702887/192900153618*599074578^(6/7) 9870002026341975 a001 233802911/4250681*228826127^(3/20) 9870002026341975 a001 5702887/505019158607*599074578^(19/21) 9870002026341975 a001 1134903170/12752043*228826127^(1/8) 9870002026341975 a001 5702887/817138163596*599074578^(13/14) 9870002026341975 a001 5702887/1322157322203*599074578^(20/21) 9870002026341975 a004 Fibonacci(34)*Lucas(42)/(1/2+sqrt(5)/2)^60 9870002026341975 a001 1602508992/4250681*87403803^(1/19) 9870002026341975 a001 165580141/12752043*2537720636^(1/5) 9870002026341975 a001 165580141/12752043*45537549124^(3/17) 9870002026341975 a001 165580141/12752043*817138163596^(3/19) 9870002026341975 a001 944284833567067/956722026041 9870002026341975 a001 165580141/12752043*14662949395604^(1/7) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^23/Lucas(41) 9870002026341975 a001 165580141/12752043*(1/2+1/2*5^(1/2))^9 9870002026341975 a001 165580141/12752043*192900153618^(1/6) 9870002026341975 a001 165580141/12752043*10749957122^(3/16) 9870002026341975 a001 5702887/370248451*4106118243^(1/2) 9870002026341975 a001 165580141/12752043*599074578^(3/14) 9870002026341975 a001 5702887/599074578*228826127^(3/5) 9870002026341975 a001 5702887/1568397607*228826127^(13/20) 9870002026341975 a001 5702887/969323029*228826127^(5/8) 9870002026341975 a001 5702887/4106118243*228826127^(7/10) 9870002026341975 a001 1836311903/12752043*87403803^(2/19) 9870002026341975 a001 5702887/10749957122*228826127^(3/4) 9870002026341975 a001 5702887/28143753123*228826127^(4/5) 9870002026341975 a001 34111385/4250681*87403803^(5/19) 9870002026341975 a001 5702887/73681302247*228826127^(17/20) 9870002026341975 a001 5702887/119218851371*228826127^(7/8) 9870002026341975 a001 5702887/192900153618*228826127^(9/10) 9870002026341975 a001 5702887/505019158607*228826127^(19/20) 9870002026341975 a004 Fibonacci(34)*Lucas(40)/(1/2+sqrt(5)/2)^58 9870002026341975 a001 233802911/4250681*87403803^(3/19) 9870002026341975 a001 5702887/141422324*141422324^(7/13) 9870002026341975 a001 267914296/12752043*87403803^(4/19) 9870002026341975 a001 1602508992/4250681*33385282^(1/18) 9870002026341975 a001 5702887/141422324*2537720636^(7/15) 9870002026341975 a001 5702887/141422324*17393796001^(3/7) 9870002026341975 a001 5702887/141422324*45537549124^(7/17) 9870002026341975 a001 63245986/12752043*312119004989^(1/5) 9870002026341975 a001 180342355680791/182717648081 9870002026341975 a001 5702887/141422324*14662949395604^(1/3) 9870002026341975 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^21/Lucas(39) 9870002026341975 a001 63245986/12752043*(1/2+1/2*5^(1/2))^11 9870002026341975 a001 5702887/141422324*192900153618^(7/18) 9870002026341975 a001 5702887/141422324*10749957122^(7/16) 9870002026341975 a001 63245986/12752043*1568397607^(1/4) 9870002026341975 a001 5702887/141422324*599074578^(1/2) 9870002026341975 a001 5702887/228826127*87403803^(11/19) 9870002026341975 a001 9227465/54018521*7881196^(6/11) 9870002026341975 a001 2971215073/12752043*33385282^(1/12) 9870002026341975 a001 5702887/599074578*87403803^(12/19) 9870002026341976 a001 5702887/1568397607*87403803^(13/19) 9870002026341976 a001 5702887/4106118243*87403803^(14/19) 9870002026341976 a001 1836311903/12752043*33385282^(1/9) 9870002026341976 a001 5702887/10749957122*87403803^(15/19) 9870002026341976 a001 5702887/28143753123*87403803^(16/19) 9870002026341976 a001 5702887/73681302247*87403803^(17/19) 9870002026341976 a001 5702887/192900153618*87403803^(18/19) 9870002026341976 a001 133957148/930249*710647^(1/7) 9870002026341976 a004 Fibonacci(34)*Lucas(38)/(1/2+sqrt(5)/2)^56 9870002026341976 a001 233802911/4250681*33385282^(1/6) 9870002026341976 a001 267914296/87403803*7881196^(4/11) 9870002026341976 a001 39088169/12752043*33385282^(1/3) 9870002026341977 a001 267914296/12752043*33385282^(2/9) 9870002026341977 a001 34111385/4250681*33385282^(5/18) 9870002026341977 a001 165580141/12752043*33385282^(1/4) 9870002026341977 a001 701408733/228826127*7881196^(4/11) 9870002026341977 a001 14930352/20633239*7881196^(5/11) 9870002026341978 a001 1836311903/599074578*7881196^(4/11) 9870002026341978 a001 686789568/224056801*7881196^(4/11) 9870002026341978 a001 12586269025/4106118243*7881196^(4/11) 9870002026341978 a001 32951280099/10749957122*7881196^(4/11) 9870002026341978 a001 86267571272/28143753123*7881196^(4/11) 9870002026341978 a001 32264490531/10525900321*7881196^(4/11) 9870002026341978 a001 591286729879/192900153618*7881196^(4/11) 9870002026341978 a001 1548008755920/505019158607*7881196^(4/11) 9870002026341978 a001 1515744265389/494493258286*7881196^(4/11) 9870002026341978 a001 2504730781961/817138163596*7881196^(4/11) 9870002026341978 a001 956722026041/312119004989*7881196^(4/11) 9870002026341978 a001 365435296162/119218851371*7881196^(4/11) 9870002026341978 a001 139583862445/45537549124*7881196^(4/11) 9870002026341978 a001 53316291173/17393796001*7881196^(4/11) 9870002026341978 a001 20365011074/6643838879*7881196^(4/11) 9870002026341978 a001 7778742049/2537720636*7881196^(4/11) 9870002026341978 a001 2971215073/969323029*7881196^(4/11) 9870002026341978 a001 1134903170/370248451*7881196^(4/11) 9870002026341978 a001 24157817/12752043*141422324^(1/3) 9870002026341978 a001 137769300517679/139583862445 9870002026341978 a001 5702887/54018521*817138163596^(1/3) 9870002026341978 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^19/Lucas(37) 9870002026341978 a001 24157817/12752043*(1/2+1/2*5^(1/2))^13 9870002026341978 a001 24157817/12752043*73681302247^(1/4) 9870002026341978 a001 433494437/141422324*7881196^(4/11) 9870002026341978 a001 1602508992/4250681*12752043^(1/17) 9870002026341978 a001 5702887/87403803*33385282^(5/9) 9870002026341979 a001 5702887/54018521*87403803^(1/2) 9870002026341980 a001 5702887/228826127*33385282^(11/18) 9870002026341980 a001 5702887/141422324*33385282^(7/12) 9870002026341981 a001 5702887/599074578*33385282^(2/3) 9870002026341981 a001 165580141/54018521*7881196^(4/11) 9870002026341981 a001 5702887/1568397607*33385282^(13/18) 9870002026341981 a001 433494437/87403803*7881196^(1/3) 9870002026341981 a001 5702887/2537720636*33385282^(3/4) 9870002026341982 a001 5702887/4106118243*33385282^(7/9) 9870002026341982 a001 1836311903/12752043*12752043^(2/17) 9870002026341982 a001 5702887/10749957122*33385282^(5/6) 9870002026341982 a001 1134903170/228826127*7881196^(1/3) 9870002026341982 a001 2971215073/599074578*7881196^(1/3) 9870002026341982 a001 7778742049/1568397607*7881196^(1/3) 9870002026341982 a001 20365011074/4106118243*7881196^(1/3) 9870002026341982 a001 53316291173/10749957122*7881196^(1/3) 9870002026341982 a001 139583862445/28143753123*7881196^(1/3) 9870002026341982 a001 365435296162/73681302247*7881196^(1/3) 9870002026341982 a001 956722026041/192900153618*7881196^(1/3) 9870002026341982 a001 2504730781961/505019158607*7881196^(1/3) 9870002026341982 a001 10610209857723/2139295485799*7881196^(1/3) 9870002026341982 a001 4052739537881/817138163596*7881196^(1/3) 9870002026341982 a001 140728068720/28374454999*7881196^(1/3) 9870002026341982 a001 591286729879/119218851371*7881196^(1/3) 9870002026341982 a001 225851433717/45537549124*7881196^(1/3) 9870002026341982 a001 86267571272/17393796001*7881196^(1/3) 9870002026341982 a001 32951280099/6643838879*7881196^(1/3) 9870002026341982 a001 1144206275/230701876*7881196^(1/3) 9870002026341982 a001 4807526976/969323029*7881196^(1/3) 9870002026341982 a001 1836311903/370248451*7881196^(1/3) 9870002026341983 a001 5702887/28143753123*33385282^(8/9) 9870002026341983 a001 1597/12752044*33385282^(11/12) 9870002026341983 a001 701408733/141422324*7881196^(1/3) 9870002026341983 a001 5702887/73681302247*33385282^(17/18) 9870002026341983 a001 433494437/33385282*7881196^(3/11) 9870002026341983 a001 311187/224056801*4870847^(7/8) 9870002026341984 a004 Fibonacci(34)*Lucas(36)/(1/2+sqrt(5)/2)^54 9870002026341985 a001 233802911/4250681*12752043^(3/17) 9870002026341986 a001 267914296/54018521*7881196^(1/3) 9870002026341988 a001 9227465/12752043*20633239^(3/7) 9870002026341989 a001 267914296/12752043*12752043^(4/17) 9870002026341991 a001 1134903170/87403803*7881196^(3/11) 9870002026341991 a001 4976784/4250681*12752043^(7/17) 9870002026341992 a001 2971215073/228826127*7881196^(3/11) 9870002026341992 a001 7778742049/599074578*7881196^(3/11) 9870002026341992 a001 20365011074/1568397607*7881196^(3/11) 9870002026341992 a001 53316291173/4106118243*7881196^(3/11) 9870002026341992 a001 139583862445/10749957122*7881196^(3/11) 9870002026341992 a001 365435296162/28143753123*7881196^(3/11) 9870002026341992 a001 956722026041/73681302247*7881196^(3/11) 9870002026341992 a001 2504730781961/192900153618*7881196^(3/11) 9870002026341992 a001 10610209857723/817138163596*7881196^(3/11) 9870002026341992 a001 4052739537881/312119004989*7881196^(3/11) 9870002026341992 a001 1548008755920/119218851371*7881196^(3/11) 9870002026341992 a001 591286729879/45537549124*7881196^(3/11) 9870002026341992 a001 7787980473/599786069*7881196^(3/11) 9870002026341992 a001 86267571272/6643838879*7881196^(3/11) 9870002026341992 a001 32951280099/2537720636*7881196^(3/11) 9870002026341992 a001 12586269025/969323029*7881196^(3/11) 9870002026341992 a001 4807526976/370248451*7881196^(3/11) 9870002026341992 a001 34111385/4250681*12752043^(5/17) 9870002026341993 a001 1836311903/141422324*7881196^(3/11) 9870002026341995 a001 39088169/12752043*12752043^(6/17) 9870002026341995 a001 701408733/54018521*7881196^(3/11) 9870002026341998 a001 1836311903/33385282*7881196^(2/11) 9870002026341998 a001 9227465/12752043*141422324^(5/13) 9870002026341998 a001 9227465/12752043*2537720636^(1/3) 9870002026341998 a001 5702887/20633239*45537549124^(1/3) 9870002026341998 a001 9227465/12752043*45537549124^(5/17) 9870002026341998 a001 52623190191455/53316291173 9870002026341998 a001 9227465/12752043*312119004989^(3/11) 9870002026341998 a001 9227465/12752043*14662949395604^(5/21) 9870002026341998 a001 5702887/20633239*(1/2+1/2*5^(1/2))^17 9870002026341998 a001 9227465/12752043*(1/2+1/2*5^(1/2))^15 9870002026341998 a001 9227465/12752043*192900153618^(5/18) 9870002026341998 a001 9227465/12752043*28143753123^(3/10) 9870002026341998 a001 9227465/12752043*10749957122^(5/16) 9870002026341998 a001 9227465/12752043*599074578^(5/14) 9870002026341998 a001 9227465/12752043*228826127^(3/8) 9870002026341998 a001 5702887/33385282*12752043^(9/17) 9870002026342000 a001 701408733/4870847*1860498^(2/15) 9870002026342001 a001 1602508992/4250681*4870847^(1/16) 9870002026342001 a001 63245986/20633239*7881196^(4/11) 9870002026342002 a001 9227465/12752043*33385282^(5/12) 9870002026342003 a004 Fibonacci(36)*Lucas(35)/(1/2+sqrt(5)/2)^55 9870002026342005 a001 1602508992/29134601*7881196^(2/11) 9870002026342005 a001 9303105/1875749*7881196^(1/3) 9870002026342006 a001 12586269025/228826127*7881196^(2/11) 9870002026342006 a001 10983760033/199691526*7881196^(2/11) 9870002026342006 a001 86267571272/1568397607*7881196^(2/11) 9870002026342006 a001 75283811239/1368706081*7881196^(2/11) 9870002026342006 a001 591286729879/10749957122*7881196^(2/11) 9870002026342006 a001 12585437040/228811001*7881196^(2/11) 9870002026342006 a001 4052739537881/73681302247*7881196^(2/11) 9870002026342006 a001 3536736619241/64300051206*7881196^(2/11) 9870002026342006 a001 6557470319842/119218851371*7881196^(2/11) 9870002026342006 a001 2504730781961/45537549124*7881196^(2/11) 9870002026342006 a001 956722026041/17393796001*7881196^(2/11) 9870002026342006 a001 365435296162/6643838879*7881196^(2/11) 9870002026342006 a001 139583862445/2537720636*7881196^(2/11) 9870002026342006 a001 53316291173/969323029*7881196^(2/11) 9870002026342007 a001 20365011074/370248451*7881196^(2/11) 9870002026342007 a001 4976784/9381251041*20633239^(6/7) 9870002026342007 a001 7778742049/141422324*7881196^(2/11) 9870002026342008 a001 7465176/5374978561*20633239^(4/5) 9870002026342009 a001 5702887/87403803*12752043^(10/17) 9870002026342009 a001 726103/1368706081*4870847^(15/16) 9870002026342010 a001 2971215073/54018521*7881196^(2/11) 9870002026342010 a001 196452/33391061*20633239^(5/7) 9870002026342011 a004 Fibonacci(38)*Lucas(35)/(1/2+sqrt(5)/2)^57 9870002026342012 a004 Fibonacci(40)*Lucas(35)/(1/2+sqrt(5)/2)^59 9870002026342012 a001 7778742049/33385282*7881196^(1/11) 9870002026342012 a004 Fibonacci(42)*Lucas(35)/(1/2+sqrt(5)/2)^61 9870002026342012 a004 Fibonacci(44)*Lucas(35)/(1/2+sqrt(5)/2)^63 9870002026342012 a004 Fibonacci(46)*Lucas(35)/(1/2+sqrt(5)/2)^65 9870002026342012 a004 Fibonacci(48)*Lucas(35)/(1/2+sqrt(5)/2)^67 9870002026342012 a004 Fibonacci(50)*Lucas(35)/(1/2+sqrt(5)/2)^69 9870002026342012 a001 45537549124/9227465*8^(1/3) 9870002026342012 a004 Fibonacci(52)*Lucas(35)/(1/2+sqrt(5)/2)^71 9870002026342012 a004 Fibonacci(54)*Lucas(35)/(1/2+sqrt(5)/2)^73 9870002026342012 a004 Fibonacci(56)*Lucas(35)/(1/2+sqrt(5)/2)^75 9870002026342012 a004 Fibonacci(58)*Lucas(35)/(1/2+sqrt(5)/2)^77 9870002026342012 a004 Fibonacci(60)*Lucas(35)/(1/2+sqrt(5)/2)^79 9870002026342012 a004 Fibonacci(62)*Lucas(35)/(1/2+sqrt(5)/2)^81 9870002026342012 a004 Fibonacci(64)*Lucas(35)/(1/2+sqrt(5)/2)^83 9870002026342012 a004 Fibonacci(66)*Lucas(35)/(1/2+sqrt(5)/2)^85 9870002026342012 a004 Fibonacci(68)*Lucas(35)/(1/2+sqrt(5)/2)^87 9870002026342012 a004 Fibonacci(70)*Lucas(35)/(1/2+sqrt(5)/2)^89 9870002026342012 a004 Fibonacci(72)*Lucas(35)/(1/2+sqrt(5)/2)^91 9870002026342012 a004 Fibonacci(74)*Lucas(35)/(1/2+sqrt(5)/2)^93 9870002026342012 a004 Fibonacci(76)*Lucas(35)/(1/2+sqrt(5)/2)^95 9870002026342012 a004 Fibonacci(78)*Lucas(35)/(1/2+sqrt(5)/2)^97 9870002026342012 a004 Fibonacci(80)*Lucas(35)/(1/2+sqrt(5)/2)^99 9870002026342012 a004 Fibonacci(81)*Lucas(35)/(1/2+sqrt(5)/2)^100 9870002026342012 a004 Fibonacci(79)*Lucas(35)/(1/2+sqrt(5)/2)^98 9870002026342012 a004 Fibonacci(77)*Lucas(35)/(1/2+sqrt(5)/2)^96 9870002026342012 a004 Fibonacci(75)*Lucas(35)/(1/2+sqrt(5)/2)^94 9870002026342012 a004 Fibonacci(73)*Lucas(35)/(1/2+sqrt(5)/2)^92 9870002026342012 a004 Fibonacci(71)*Lucas(35)/(1/2+sqrt(5)/2)^90 9870002026342012 a001 2/9227465*(1/2+1/2*5^(1/2))^51 9870002026342012 a004 Fibonacci(69)*Lucas(35)/(1/2+sqrt(5)/2)^88 9870002026342012 a004 Fibonacci(67)*Lucas(35)/(1/2+sqrt(5)/2)^86 9870002026342012 a004 Fibonacci(65)*Lucas(35)/(1/2+sqrt(5)/2)^84 9870002026342012 a004 Fibonacci(63)*Lucas(35)/(1/2+sqrt(5)/2)^82 9870002026342012 a004 Fibonacci(61)*Lucas(35)/(1/2+sqrt(5)/2)^80 9870002026342012 a004 Fibonacci(59)*Lucas(35)/(1/2+sqrt(5)/2)^78 9870002026342012 a004 Fibonacci(57)*Lucas(35)/(1/2+sqrt(5)/2)^76 9870002026342012 a004 Fibonacci(55)*Lucas(35)/(1/2+sqrt(5)/2)^74 9870002026342012 a004 Fibonacci(53)*Lucas(35)/(1/2+sqrt(5)/2)^72 9870002026342012 a004 Fibonacci(51)*Lucas(35)/(1/2+sqrt(5)/2)^70 9870002026342012 a004 Fibonacci(49)*Lucas(35)/(1/2+sqrt(5)/2)^68 9870002026342012 a004 Fibonacci(47)*Lucas(35)/(1/2+sqrt(5)/2)^66 9870002026342012 a004 Fibonacci(45)*Lucas(35)/(1/2+sqrt(5)/2)^64 9870002026342012 a004 Fibonacci(43)*Lucas(35)/(1/2+sqrt(5)/2)^62 9870002026342012 a004 Fibonacci(41)*Lucas(35)/(1/2+sqrt(5)/2)^60 9870002026342013 a001 14930352/370248451*20633239^(3/5) 9870002026342013 a004 Fibonacci(39)*Lucas(35)/(1/2+sqrt(5)/2)^58 9870002026342013 a001 14930352/228826127*20633239^(4/7) 9870002026342014 a001 5702887/228826127*12752043^(11/17) 9870002026342014 a001 39088169/73681302247*20633239^(6/7) 9870002026342015 a001 9238424/711491*7881196^(3/11) 9870002026342015 a001 34111385/64300051206*20633239^(6/7) 9870002026342015 a001 267914296/505019158607*20633239^(6/7) 9870002026342015 a001 233802911/440719107401*20633239^(6/7) 9870002026342015 a001 1836311903/3461452808002*20633239^(6/7) 9870002026342015 a001 1602508992/3020733700601*20633239^(6/7) 9870002026342015 a001 12586269025/23725150497407*20633239^(6/7) 9870002026342015 a001 7778742049/14662949395604*20633239^(6/7) 9870002026342015 a001 2971215073/5600748293801*20633239^(6/7) 9870002026342015 a001 1134903170/2139295485799*20633239^(6/7) 9870002026342015 a001 433494437/817138163596*20633239^(6/7) 9870002026342016 a001 39088169/28143753123*20633239^(4/5) 9870002026342016 a004 Fibonacci(37)*Lucas(35)/(1/2+sqrt(5)/2)^56 9870002026342016 a001 165580141/312119004989*20633239^(6/7) 9870002026342016 a001 39088169/33385282*20633239^(2/5) 9870002026342016 a001 63245986/119218851371*20633239^(6/7) 9870002026342017 a001 14619165/10525900321*20633239^(4/5) 9870002026342017 a001 133957148/96450076809*20633239^(4/5) 9870002026342017 a001 701408733/505019158607*20633239^(4/5) 9870002026342017 a001 1836311903/1322157322203*20633239^(4/5) 9870002026342017 a001 14930208/10749853441*20633239^(4/5) 9870002026342017 a001 12586269025/9062201101803*20633239^(4/5) 9870002026342017 a001 32951280099/23725150497407*20633239^(4/5) 9870002026342017 a001 10182505537/7331474697802*20633239^(4/5) 9870002026342017 a001 7778742049/5600748293801*20633239^(4/5) 9870002026342017 a001 2971215073/2139295485799*20633239^(4/5) 9870002026342017 a001 567451585/408569081798*20633239^(4/5) 9870002026342017 a001 433494437/312119004989*20633239^(4/5) 9870002026342017 a001 165580141/119218851371*20633239^(4/5) 9870002026342017 a001 31622993/22768774562*20633239^(4/5) 9870002026342017 a001 5702887/599074578*12752043^(12/17) 9870002026342018 a001 39088169/6643838879*20633239^(5/7) 9870002026342018 a001 7465176/16692641*(1/2+1/2*5^(1/2))^16 9870002026342018 a001 7465176/16692641*23725150497407^(1/4) 9870002026342018 a001 74305136947968/75283811239 9870002026342018 a001 7465176/16692641*73681302247^(4/13) 9870002026342018 a001 7465176/16692641*10749957122^(1/3) 9870002026342018 a001 7465176/16692641*4106118243^(8/23) 9870002026342018 a001 7465176/16692641*1568397607^(4/11) 9870002026342018 a001 7465176/16692641*599074578^(8/21) 9870002026342018 a001 7465176/16692641*228826127^(2/5) 9870002026342018 a001 7465176/16692641*87403803^(8/19) 9870002026342019 a001 102334155/17393796001*20633239^(5/7) 9870002026342019 a001 66978574/11384387281*20633239^(5/7) 9870002026342019 a001 701408733/119218851371*20633239^(5/7) 9870002026342019 a001 1836311903/312119004989*20633239^(5/7) 9870002026342019 a001 1201881744/204284540899*20633239^(5/7) 9870002026342019 a001 12586269025/2139295485799*20633239^(5/7) 9870002026342019 a001 32951280099/5600748293801*20633239^(5/7) 9870002026342019 a001 1135099622/192933544679*20633239^(5/7) 9870002026342019 a001 139583862445/23725150497407*20633239^(5/7) 9870002026342019 a001 53316291173/9062201101803*20633239^(5/7) 9870002026342019 a001 10182505537/1730726404001*20633239^(5/7) 9870002026342019 a001 7778742049/1322157322203*20633239^(5/7) 9870002026342019 a001 2971215073/505019158607*20633239^(5/7) 9870002026342019 a001 567451585/96450076809*20633239^(5/7) 9870002026342019 a001 433494437/73681302247*20633239^(5/7) 9870002026342019 a001 24157817/45537549124*20633239^(6/7) 9870002026342019 a001 165580141/28143753123*20633239^(5/7) 9870002026342019 a001 31622993/5374978561*20633239^(5/7) 9870002026342020 a001 20365011074/87403803*7881196^(1/11) 9870002026342020 a001 133957148/16692641*20633239^(2/7) 9870002026342020 a001 24157817/33385282*20633239^(3/7) 9870002026342020 a001 39088169/969323029*20633239^(3/5) 9870002026342020 a001 24157817/17393796001*20633239^(4/5) 9870002026342021 a001 53316291173/228826127*7881196^(1/11) 9870002026342021 a001 39088169/599074578*20633239^(4/7) 9870002026342021 a001 139583862445/599074578*7881196^(1/11) 9870002026342021 a001 365435296162/1568397607*7881196^(1/11) 9870002026342021 a001 956722026041/4106118243*7881196^(1/11) 9870002026342021 a001 2504730781961/10749957122*7881196^(1/11) 9870002026342021 a001 6557470319842/28143753123*7881196^(1/11) 9870002026342021 a001 10610209857723/45537549124*7881196^(1/11) 9870002026342021 a001 4052739537881/17393796001*7881196^(1/11) 9870002026342021 a001 1548008755920/6643838879*7881196^(1/11) 9870002026342021 a001 591286729879/2537720636*7881196^(1/11) 9870002026342021 a001 225851433717/969323029*7881196^(1/11) 9870002026342021 a001 86267571272/370248451*7881196^(1/11) 9870002026342021 a001 5702887/1568397607*12752043^(13/17) 9870002026342021 a001 9303105/230701876*20633239^(3/5) 9870002026342021 a001 63246219/271444*7881196^(1/11) 9870002026342021 a001 267914296/6643838879*20633239^(3/5) 9870002026342021 a001 701408733/17393796001*20633239^(3/5) 9870002026342021 a001 1836311903/45537549124*20633239^(3/5) 9870002026342021 a001 4807526976/119218851371*20633239^(3/5) 9870002026342021 a001 1144206275/28374454999*20633239^(3/5) 9870002026342021 a001 32951280099/817138163596*20633239^(3/5) 9870002026342021 a001 86267571272/2139295485799*20633239^(3/5) 9870002026342021 a001 225851433717/5600748293801*20633239^(3/5) 9870002026342021 a001 591286729879/14662949395604*20633239^(3/5) 9870002026342021 a001 365435296162/9062201101803*20633239^(3/5) 9870002026342021 a001 139583862445/3461452808002*20633239^(3/5) 9870002026342021 a001 53316291173/1322157322203*20633239^(3/5) 9870002026342021 a001 20365011074/505019158607*20633239^(3/5) 9870002026342021 a001 7778742049/192900153618*20633239^(3/5) 9870002026342021 a001 2971215073/73681302247*20633239^(3/5) 9870002026342021 a001 1134903170/28143753123*20633239^(3/5) 9870002026342021 a001 433494437/10749957122*20633239^(3/5) 9870002026342022 a001 165580141/4106118243*20633239^(3/5) 9870002026342022 a001 7465176/16692641*33385282^(4/9) 9870002026342022 a001 567451585/16692641*20633239^(1/5) 9870002026342022 a001 14619165/224056801*20633239^(4/7) 9870002026342022 a001 63245986/1568397607*20633239^(3/5) 9870002026342022 a001 267914296/4106118243*20633239^(4/7) 9870002026342022 a001 701408733/10749957122*20633239^(4/7) 9870002026342022 a001 1836311903/28143753123*20633239^(4/7) 9870002026342022 a001 686789568/10525900321*20633239^(4/7) 9870002026342022 a001 12586269025/192900153618*20633239^(4/7) 9870002026342022 a001 32951280099/505019158607*20633239^(4/7) 9870002026342022 a001 86267571272/1322157322203*20633239^(4/7) 9870002026342022 a001 32264490531/494493258286*20633239^(4/7) 9870002026342022 a001 591286729879/9062201101803*20633239^(4/7) 9870002026342022 a001 1548008755920/23725150497407*20633239^(4/7) 9870002026342022 a001 365435296162/5600748293801*20633239^(4/7) 9870002026342022 a001 139583862445/2139295485799*20633239^(4/7) 9870002026342022 a001 53316291173/817138163596*20633239^(4/7) 9870002026342022 a001 20365011074/312119004989*20633239^(4/7) 9870002026342022 a001 7778742049/119218851371*20633239^(4/7) 9870002026342022 a001 2971215073/45537549124*20633239^(4/7) 9870002026342022 a001 1134903170/17393796001*20633239^(4/7) 9870002026342022 a001 433494437/6643838879*20633239^(4/7) 9870002026342022 a001 24157817/4106118243*20633239^(5/7) 9870002026342022 a001 165580141/2537720636*20633239^(4/7) 9870002026342023 a001 63245986/969323029*20633239^(4/7) 9870002026342023 a004 Fibonacci(36)*Lucas(37)/(1/2+sqrt(5)/2)^57 9870002026342023 a001 2971215073/33385282*20633239^(1/7) 9870002026342024 a001 12586269025/54018521*7881196^(1/11) 9870002026342025 a001 34111385/29134601*20633239^(2/5) 9870002026342025 a001 63245986/87403803*20633239^(3/7) 9870002026342025 a001 5702887/4106118243*12752043^(14/17) 9870002026342025 a001 24157817/599074578*20633239^(3/5) 9870002026342025 a001 4976784/29134601*141422324^(6/13) 9870002026342025 a001 4976784/29134601*2537720636^(2/5) 9870002026342025 a001 39088169/33385282*17393796001^(2/7) 9870002026342025 a001 4976784/29134601*45537549124^(6/17) 9870002026342025 a001 4976784/29134601*14662949395604^(2/7) 9870002026342025 a001 39088169/33385282*14662949395604^(2/9) 9870002026342025 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^18/Lucas(38) 9870002026342025 a001 39088169/33385282*(1/2+1/2*5^(1/2))^14 9870002026342025 a001 39088169/33385282*505019158607^(1/4) 9870002026342025 a001 4976784/29134601*192900153618^(1/3) 9870002026342025 a001 39088169/33385282*10749957122^(7/24) 9870002026342025 a001 4976784/29134601*10749957122^(3/8) 9870002026342025 a001 39088169/33385282*4106118243^(7/23) 9870002026342025 a001 4976784/29134601*4106118243^(9/23) 9870002026342025 a001 39088169/33385282*1568397607^(7/22) 9870002026342025 a001 4976784/29134601*1568397607^(9/22) 9870002026342025 a001 39088169/33385282*599074578^(1/3) 9870002026342025 a001 4976784/29134601*599074578^(3/7) 9870002026342025 a001 39088169/33385282*228826127^(7/20) 9870002026342025 a001 4976784/29134601*228826127^(9/20) 9870002026342025 a001 165580141/228826127*20633239^(3/7) 9870002026342025 a001 433494437/599074578*20633239^(3/7) 9870002026342025 a001 1134903170/1568397607*20633239^(3/7) 9870002026342025 a001 2971215073/4106118243*20633239^(3/7) 9870002026342025 a001 7778742049/10749957122*20633239^(3/7) 9870002026342025 a001 20365011074/28143753123*20633239^(3/7) 9870002026342025 a001 53316291173/73681302247*20633239^(3/7) 9870002026342025 a001 139583862445/192900153618*20633239^(3/7) 9870002026342025 a001 365435296162/505019158607*20633239^(3/7) 9870002026342025 a001 10610209857723/14662949395604*20633239^(3/7) 9870002026342025 a001 591286729879/817138163596*20633239^(3/7) 9870002026342025 a001 225851433717/312119004989*20633239^(3/7) 9870002026342025 a001 86267571272/119218851371*20633239^(3/7) 9870002026342025 a001 32951280099/45537549124*20633239^(3/7) 9870002026342025 a001 12586269025/17393796001*20633239^(3/7) 9870002026342025 a001 4807526976/6643838879*20633239^(3/7) 9870002026342025 a001 1836311903/2537720636*20633239^(3/7) 9870002026342025 a001 701408733/969323029*20633239^(3/7) 9870002026342025 a001 267914296/370248451*20633239^(3/7) 9870002026342026 a001 24157817/370248451*20633239^(4/7) 9870002026342026 a001 39088169/33385282*87403803^(7/19) 9870002026342026 a001 102334155/141422324*20633239^(3/7) 9870002026342026 a001 4976784/29134601*87403803^(9/19) 9870002026342026 a001 267914296/228826127*20633239^(2/5) 9870002026342026 a004 Fibonacci(36)*Lucas(39)/(1/2+sqrt(5)/2)^59 9870002026342026 a001 14930352/505019158607*141422324^(12/13) 9870002026342026 a001 233802911/199691526*20633239^(2/5) 9870002026342026 a001 1836311903/1568397607*20633239^(2/5) 9870002026342026 a001 1602508992/1368706081*20633239^(2/5) 9870002026342026 a001 12586269025/10749957122*20633239^(2/5) 9870002026342026 a001 10983760033/9381251041*20633239^(2/5) 9870002026342026 a001 86267571272/73681302247*20633239^(2/5) 9870002026342026 a001 75283811239/64300051206*20633239^(2/5) 9870002026342026 a001 2504730781961/2139295485799*20633239^(2/5) 9870002026342026 a001 365435296162/312119004989*20633239^(2/5) 9870002026342026 a001 139583862445/119218851371*20633239^(2/5) 9870002026342026 a001 53316291173/45537549124*20633239^(2/5) 9870002026342026 a001 20365011074/17393796001*20633239^(2/5) 9870002026342026 a001 7778742049/6643838879*20633239^(2/5) 9870002026342026 a001 14930352/119218851371*141422324^(11/13) 9870002026342026 a001 2971215073/2537720636*20633239^(2/5) 9870002026342026 a001 1134903170/969323029*20633239^(2/5) 9870002026342026 a001 4976784/9381251041*141422324^(10/13) 9870002026342026 a001 14930352/6643838879*141422324^(9/13) 9870002026342026 a001 14619165/4769326*141422324^(4/13) 9870002026342026 a001 433494437/370248451*20633239^(2/5) 9870002026342026 a001 4976784/1368706081*141422324^(2/3) 9870002026342026 a001 14930352/1568397607*141422324^(8/13) 9870002026342026 a001 14930352/370248451*141422324^(7/13) 9870002026342026 a001 14930352/228826127*2537720636^(4/9) 9870002026342026 a001 14619165/4769326*2537720636^(4/15) 9870002026342026 a001 14619165/4769326*45537549124^(4/17) 9870002026342026 a001 14619165/4769326*817138163596^(4/19) 9870002026342026 a001 14619165/4769326*14662949395604^(4/21) 9870002026342026 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^20/Lucas(40) 9870002026342026 a001 14619165/4769326*(1/2+1/2*5^(1/2))^12 9870002026342026 a001 14930352/228826127*23725150497407^(5/16) 9870002026342026 a001 14930352/228826127*505019158607^(5/14) 9870002026342026 a001 14619165/4769326*192900153618^(2/9) 9870002026342026 a001 14619165/4769326*73681302247^(3/13) 9870002026342026 a001 14930352/228826127*73681302247^(5/13) 9870002026342026 a001 14930352/228826127*28143753123^(2/5) 9870002026342026 a001 14619165/4769326*10749957122^(1/4) 9870002026342026 a001 14930352/228826127*10749957122^(5/12) 9870002026342026 a001 14619165/4769326*4106118243^(6/23) 9870002026342026 a001 14930352/228826127*4106118243^(10/23) 9870002026342026 a001 14619165/4769326*1568397607^(3/11) 9870002026342026 a001 14930352/228826127*1568397607^(5/11) 9870002026342026 a001 14619165/4769326*599074578^(2/7) 9870002026342026 a001 14930352/228826127*599074578^(10/21) 9870002026342026 a001 14619165/4769326*228826127^(3/10) 9870002026342026 a001 433494437/33385282*141422324^(3/13) 9870002026342026 a001 14930352/228826127*228826127^(1/2) 9870002026342026 a001 1836311903/33385282*141422324^(2/13) 9870002026342026 a004 Fibonacci(36)*Lucas(41)/(1/2+sqrt(5)/2)^61 9870002026342026 a001 7778742049/33385282*141422324^(1/13) 9870002026342026 a001 133957148/16692641*2537720636^(2/9) 9870002026342026 a001 829464/33281921*312119004989^(2/5) 9870002026342026 a001 133957148/16692641*312119004989^(2/11) 9870002026342026 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^22/Lucas(42) 9870002026342026 a001 133957148/16692641*(1/2+1/2*5^(1/2))^10 9870002026342026 a001 4000054745112192/4052739537881 9870002026342026 a001 133957148/16692641*28143753123^(1/5) 9870002026342026 a001 133957148/16692641*10749957122^(5/24) 9870002026342026 a001 829464/33281921*10749957122^(11/24) 9870002026342026 a001 133957148/16692641*4106118243^(5/23) 9870002026342026 a001 829464/33281921*4106118243^(11/23) 9870002026342026 a001 133957148/16692641*1568397607^(5/22) 9870002026342026 a001 829464/33281921*1568397607^(1/2) 9870002026342026 a001 133957148/16692641*599074578^(5/21) 9870002026342026 a001 829464/33281921*599074578^(11/21) 9870002026342026 a004 Fibonacci(36)*Lucas(43)/(1/2+sqrt(5)/2)^63 9870002026342026 a001 14930352/1568397607*2537720636^(8/15) 9870002026342027 a001 14930352/1568397607*45537549124^(8/17) 9870002026342027 a001 14930352/1568397607*14662949395604^(8/21) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^24/Lucas(44) 9870002026342027 a001 701408733/33385282*(1/2+1/2*5^(1/2))^8 9870002026342027 a001 701408733/33385282*23725150497407^(1/8) 9870002026342027 a001 3490759759854672/3536736619241 9870002026342027 a001 701408733/33385282*505019158607^(1/7) 9870002026342027 a001 14930352/1568397607*192900153618^(4/9) 9870002026342027 a001 701408733/33385282*73681302247^(2/13) 9870002026342027 a001 14930352/1568397607*73681302247^(6/13) 9870002026342027 a001 701408733/33385282*10749957122^(1/6) 9870002026342027 a001 14930352/1568397607*10749957122^(1/2) 9870002026342027 a001 701408733/33385282*4106118243^(4/23) 9870002026342027 a001 14930352/1568397607*4106118243^(12/23) 9870002026342027 a001 701408733/33385282*1568397607^(2/11) 9870002026342027 a001 14930352/1568397607*1568397607^(6/11) 9870002026342027 a004 Fibonacci(36)*Lucas(45)/(1/2+sqrt(5)/2)^65 9870002026342027 a001 4976784/3020733700601*2537720636^(14/15) 9870002026342027 a001 7465176/1730726404001*2537720636^(8/9) 9870002026342027 a001 14930352/2139295485799*2537720636^(13/15) 9870002026342027 a001 14930352/505019158607*2537720636^(4/5) 9870002026342027 a001 14930352/312119004989*2537720636^(7/9) 9870002026342027 a001 14930352/119218851371*2537720636^(11/15) 9870002026342027 a001 4976784/9381251041*2537720636^(2/3) 9870002026342027 a001 1836311903/33385282*2537720636^(2/15) 9870002026342027 a001 14930352/6643838879*2537720636^(3/5) 9870002026342027 a001 1836311903/33385282*45537549124^(2/17) 9870002026342027 a001 1836311903/33385282*14662949395604^(2/21) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^26/Lucas(46) 9870002026342027 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^6 9870002026342027 a001 4976784/1368706081*73681302247^(1/2) 9870002026342027 a001 1836311903/33385282*10749957122^(1/8) 9870002026342027 a001 4976784/1368706081*10749957122^(13/24) 9870002026342027 a001 1836311903/33385282*4106118243^(3/23) 9870002026342027 a001 4976784/1368706081*4106118243^(13/23) 9870002026342027 a004 Fibonacci(36)*Lucas(47)/(1/2+sqrt(5)/2)^67 9870002026342027 a001 7465176/5374978561*17393796001^(4/7) 9870002026342027 a001 7465176/5374978561*14662949395604^(4/9) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^28/Lucas(48) 9870002026342027 a001 14930208/103681*(1/2+1/2*5^(1/2))^4 9870002026342027 a001 14930208/103681*23725150497407^(1/16) 9870002026342027 a001 7465176/5374978561*505019158607^(1/2) 9870002026342027 a001 14930208/103681*73681302247^(1/13) 9870002026342027 a001 7465176/5374978561*73681302247^(7/13) 9870002026342027 a001 14930208/103681*10749957122^(1/12) 9870002026342027 a001 7778742049/33385282*2537720636^(1/15) 9870002026342027 a001 1836311903/33385282*1568397607^(3/22) 9870002026342027 a001 7465176/5374978561*10749957122^(7/12) 9870002026342027 a001 14930208/103681*4106118243^(2/23) 9870002026342027 a004 Fibonacci(36)*Lucas(49)/(1/2+sqrt(5)/2)^69 9870002026342027 a001 4976784/3020733700601*17393796001^(6/7) 9870002026342027 a001 14930352/312119004989*17393796001^(5/7) 9870002026342027 a001 4976784/9381251041*45537549124^(10/17) 9870002026342027 a001 4976784/9381251041*312119004989^(6/11) 9870002026342027 a001 4976784/9381251041*14662949395604^(10/21) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^30/Lucas(50) 9870002026342027 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^2 9870002026342027 a001 4976784/9381251041*192900153618^(5/9) 9870002026342027 a001 12586269025/33385282*10749957122^(1/24) 9870002026342027 a001 4976784/9381251041*28143753123^(3/5) 9870002026342027 a004 Fibonacci(36)*Lucas(51)/(1/2+sqrt(5)/2)^71 9870002026342027 a001 4976784/3020733700601*45537549124^(14/17) 9870002026342027 a001 14930352/2139295485799*45537549124^(13/17) 9870002026342027 a001 2584/33385281*45537549124^(2/3) 9870002026342027 a001 14930352/505019158607*45537549124^(12/17) 9870002026342027 a001 14930352/119218851371*45537549124^(11/17) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^32/Lucas(52) 9870002026342027 a006 5^(1/2)*Fibonacci(52)/Lucas(36)/sqrt(5) 9870002026342027 a001 14930352/73681302247*23725150497407^(1/2) 9870002026342027 a001 14930352/73681302247*505019158607^(4/7) 9870002026342027 a001 14930352/73681302247*73681302247^(8/13) 9870002026342027 a004 Fibonacci(36)*Lucas(53)/(1/2+sqrt(5)/2)^73 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^34/Lucas(54) 9870002026342027 a004 Fibonacci(54)/Lucas(36)/(1/2+sqrt(5)/2)^2 9870002026342027 a004 Fibonacci(36)*Lucas(55)/(1/2+sqrt(5)/2)^75 9870002026342027 a001 14930352/23725150497407*312119004989^(4/5) 9870002026342027 a001 7465176/1730726404001*312119004989^(8/11) 9870002026342027 a001 14930352/505019158607*14662949395604^(4/7) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^36/Lucas(56) 9870002026342027 a004 Fibonacci(56)/Lucas(36)/(1/2+sqrt(5)/2)^4 9870002026342027 a004 Fibonacci(36)*Lucas(57)/(1/2+sqrt(5)/2)^77 9870002026342027 a001 4976784/3020733700601*817138163596^(14/19) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^38/Lucas(58) 9870002026342027 a004 Fibonacci(58)/Lucas(36)/(1/2+sqrt(5)/2)^6 9870002026342027 a004 Fibonacci(36)*Lucas(59)/(1/2+sqrt(5)/2)^79 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^40/Lucas(60) 9870002026342027 a004 Fibonacci(60)/Lucas(36)/(1/2+sqrt(5)/2)^8 9870002026342027 a004 Fibonacci(36)*Lucas(61)/(1/2+sqrt(5)/2)^81 9870002026342027 a001 4976784/3020733700601*14662949395604^(2/3) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^42/Lucas(62) 9870002026342027 a004 Fibonacci(62)/Lucas(36)/(1/2+sqrt(5)/2)^10 9870002026342027 a004 Fibonacci(36)*Lucas(63)/(1/2+sqrt(5)/2)^83 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^44/Lucas(64) 9870002026342027 a004 Fibonacci(64)/Lucas(36)/(1/2+sqrt(5)/2)^12 9870002026342027 a004 Fibonacci(36)*Lucas(65)/(1/2+sqrt(5)/2)^85 9870002026342027 a001 14930352/23725150497407*23725150497407^(11/16) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^46/Lucas(66) 9870002026342027 a004 Fibonacci(66)/Lucas(36)/(1/2+sqrt(5)/2)^14 9870002026342027 a004 Fibonacci(36)*Lucas(67)/(1/2+sqrt(5)/2)^87 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^48/Lucas(68) 9870002026342027 a004 Fibonacci(68)/Lucas(36)/(1/2+sqrt(5)/2)^16 9870002026342027 a004 Fibonacci(36)*Lucas(69)/(1/2+sqrt(5)/2)^89 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^50/Lucas(70) 9870002026342027 a004 Fibonacci(70)/Lucas(36)/(1/2+sqrt(5)/2)^18 9870002026342027 a004 Fibonacci(36)*Lucas(71)/(1/2+sqrt(5)/2)^91 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^52/Lucas(72) 9870002026342027 a004 Fibonacci(36)*Lucas(73)/(1/2+sqrt(5)/2)^93 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^54/Lucas(74) 9870002026342027 a004 Fibonacci(36)*Lucas(75)/(1/2+sqrt(5)/2)^95 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^56/Lucas(76) 9870002026342027 a004 Fibonacci(36)*Lucas(77)/(1/2+sqrt(5)/2)^97 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^58/Lucas(78) 9870002026342027 a004 Fibonacci(36)*Lucas(79)/(1/2+sqrt(5)/2)^99 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^60/Lucas(80) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^62/Lucas(82) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^64/Lucas(84) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^66/Lucas(86) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^68/Lucas(88) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^70/Lucas(90) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^72/Lucas(92) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^74/Lucas(94) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^76/Lucas(96) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^78/Lucas(98) 9870002026342027 a004 Fibonacci(18)*Lucas(18)/(1/2+sqrt(5)/2)^20 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^79/Lucas(99) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^80/Lucas(100) 9870002026342027 a004 Fibonacci(72)/Lucas(36)/(1/2+sqrt(5)/2)^20 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^77/Lucas(97) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^75/Lucas(95) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^73/Lucas(93) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^71/Lucas(91) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^69/Lucas(89) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^67/Lucas(87) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^65/Lucas(85) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^63/Lucas(83) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^61/Lucas(81) 9870002026342027 a004 Fibonacci(36)*Lucas(80)/(1/2+sqrt(5)/2)^100 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^59/Lucas(79) 9870002026342027 a004 Fibonacci(36)*Lucas(78)/(1/2+sqrt(5)/2)^98 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^57/Lucas(77) 9870002026342027 a004 Fibonacci(36)*Lucas(76)/(1/2+sqrt(5)/2)^96 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^55/Lucas(75) 9870002026342027 a004 Fibonacci(36)*Lucas(74)/(1/2+sqrt(5)/2)^94 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^53/Lucas(73) 9870002026342027 a004 Fibonacci(74)/Lucas(36)/(1/2+sqrt(5)/2)^22 9870002026342027 a004 Fibonacci(76)/Lucas(36)/(1/2+sqrt(5)/2)^24 9870002026342027 a004 Fibonacci(78)/Lucas(36)/(1/2+sqrt(5)/2)^26 9870002026342027 a004 Fibonacci(80)/Lucas(36)/(1/2+sqrt(5)/2)^28 9870002026342027 a004 Fibonacci(82)/Lucas(36)/(1/2+sqrt(5)/2)^30 9870002026342027 a004 Fibonacci(84)/Lucas(36)/(1/2+sqrt(5)/2)^32 9870002026342027 a004 Fibonacci(86)/Lucas(36)/(1/2+sqrt(5)/2)^34 9870002026342027 a004 Fibonacci(88)/Lucas(36)/(1/2+sqrt(5)/2)^36 9870002026342027 a004 Fibonacci(90)/Lucas(36)/(1/2+sqrt(5)/2)^38 9870002026342027 a004 Fibonacci(92)/Lucas(36)/(1/2+sqrt(5)/2)^40 9870002026342027 a004 Fibonacci(94)/Lucas(36)/(1/2+sqrt(5)/2)^42 9870002026342027 a004 Fibonacci(96)/Lucas(36)/(1/2+sqrt(5)/2)^44 9870002026342027 a004 Fibonacci(98)/Lucas(36)/(1/2+sqrt(5)/2)^46 9870002026342027 a004 Fibonacci(100)/Lucas(36)/(1/2+sqrt(5)/2)^48 9870002026342027 a004 Fibonacci(36)*Lucas(72)/(1/2+sqrt(5)/2)^92 9870002026342027 a004 Fibonacci(99)/Lucas(36)/(1/2+sqrt(5)/2)^47 9870002026342027 a004 Fibonacci(97)/Lucas(36)/(1/2+sqrt(5)/2)^45 9870002026342027 a004 Fibonacci(95)/Lucas(36)/(1/2+sqrt(5)/2)^43 9870002026342027 a004 Fibonacci(93)/Lucas(36)/(1/2+sqrt(5)/2)^41 9870002026342027 a004 Fibonacci(91)/Lucas(36)/(1/2+sqrt(5)/2)^39 9870002026342027 a004 Fibonacci(89)/Lucas(36)/(1/2+sqrt(5)/2)^37 9870002026342027 a004 Fibonacci(87)/Lucas(36)/(1/2+sqrt(5)/2)^35 9870002026342027 a004 Fibonacci(85)/Lucas(36)/(1/2+sqrt(5)/2)^33 9870002026342027 a004 Fibonacci(83)/Lucas(36)/(1/2+sqrt(5)/2)^31 9870002026342027 a004 Fibonacci(81)/Lucas(36)/(1/2+sqrt(5)/2)^29 9870002026342027 a004 Fibonacci(79)/Lucas(36)/(1/2+sqrt(5)/2)^27 9870002026342027 a004 Fibonacci(77)/Lucas(36)/(1/2+sqrt(5)/2)^25 9870002026342027 a004 Fibonacci(75)/Lucas(36)/(1/2+sqrt(5)/2)^23 9870002026342027 a004 Fibonacci(73)/Lucas(36)/(1/2+sqrt(5)/2)^21 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^51/Lucas(71) 9870002026342027 a004 Fibonacci(71)/Lucas(36)/(1/2+sqrt(5)/2)^19 9870002026342027 a004 Fibonacci(36)*Lucas(70)/(1/2+sqrt(5)/2)^90 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^49/Lucas(69) 9870002026342027 a004 Fibonacci(69)/Lucas(36)/(1/2+sqrt(5)/2)^17 9870002026342027 a004 Fibonacci(36)*Lucas(68)/(1/2+sqrt(5)/2)^88 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^47/Lucas(67) 9870002026342027 a004 Fibonacci(67)/Lucas(36)/(1/2+sqrt(5)/2)^15 9870002026342027 a004 Fibonacci(36)*Lucas(66)/(1/2+sqrt(5)/2)^86 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^45/Lucas(65) 9870002026342027 a004 Fibonacci(65)/Lucas(36)/(1/2+sqrt(5)/2)^13 9870002026342027 a004 Fibonacci(36)*Lucas(64)/(1/2+sqrt(5)/2)^84 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^43/Lucas(63) 9870002026342027 a004 Fibonacci(63)/Lucas(36)/(1/2+sqrt(5)/2)^11 9870002026342027 a004 Fibonacci(36)*Lucas(62)/(1/2+sqrt(5)/2)^82 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^41/Lucas(61) 9870002026342027 a004 Fibonacci(61)/Lucas(36)/(1/2+sqrt(5)/2)^9 9870002026342027 a004 Fibonacci(36)*Lucas(60)/(1/2+sqrt(5)/2)^80 9870002026342027 a001 14930352/2139295485799*14662949395604^(13/21) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^39/Lucas(59) 9870002026342027 a004 Fibonacci(59)/Lucas(36)/(1/2+sqrt(5)/2)^7 9870002026342027 a004 Fibonacci(36)*Lucas(58)/(1/2+sqrt(5)/2)^78 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^37/Lucas(57) 9870002026342027 a004 Fibonacci(57)/Lucas(36)/(1/2+sqrt(5)/2)^5 9870002026342027 a001 14930352/312119004989*312119004989^(7/11) 9870002026342027 a004 Fibonacci(36)*Lucas(56)/(1/2+sqrt(5)/2)^76 9870002026342027 a001 14930352/312119004989*14662949395604^(5/9) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^35/Lucas(55) 9870002026342027 a004 Fibonacci(55)/Lucas(36)/(1/2+sqrt(5)/2)^3 9870002026342027 a001 14930352/312119004989*505019158607^(5/8) 9870002026342027 a001 14930352/505019158607*192900153618^(2/3) 9870002026342027 a001 14930352/2139295485799*192900153618^(13/18) 9870002026342027 a001 4976784/3020733700601*192900153618^(7/9) 9870002026342027 a004 Fibonacci(36)*Lucas(54)/(1/2+sqrt(5)/2)^74 9870002026342027 a001 14930352/119218851371*312119004989^(3/5) 9870002026342027 a001 14930352/119218851371*817138163596^(11/19) 9870002026342027 a001 14930352/119218851371*14662949395604^(11/21) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^33/Lucas(53) 9870002026342027 a004 Fibonacci(53)/Lucas(36)/(1/2+sqrt(5)/2) 9870002026342027 a001 14930352/119218851371*192900153618^(11/18) 9870002026342027 a001 14930352/505019158607*73681302247^(9/13) 9870002026342027 a001 14930352/2139295485799*73681302247^(3/4) 9870002026342027 a001 7465176/1730726404001*73681302247^(10/13) 9870002026342027 a001 14930352/23725150497407*73681302247^(11/13) 9870002026342027 a004 Fibonacci(36)*Lucas(52)/(1/2+sqrt(5)/2)^72 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^31/Lucas(51) 9870002026342027 a001 3732588/11384387281*9062201101803^(1/2) 9870002026342027 a001 14930352/312119004989*28143753123^(7/10) 9870002026342027 a001 7465176/1730726404001*28143753123^(4/5) 9870002026342027 a004 Fibonacci(36)*Lucas(50)/(1/2+sqrt(5)/2)^70 9870002026342027 a001 12586269025/33385282*4106118243^(1/23) 9870002026342027 a001 7778742049/33385282*45537549124^(1/17) 9870002026342027 a001 7778742049/33385282*14662949395604^(1/21) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^29/Lucas(49) 9870002026342027 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^3 9870002026342027 a001 14930352/17393796001*1322157322203^(1/2) 9870002026342027 a001 7778742049/33385282*10749957122^(1/16) 9870002026342027 a001 4976784/9381251041*10749957122^(5/8) 9870002026342027 a001 2971215073/33385282*2537720636^(1/9) 9870002026342027 a001 14930352/73681302247*10749957122^(2/3) 9870002026342027 a001 14930352/119218851371*10749957122^(11/16) 9870002026342027 a001 2584/33385281*10749957122^(17/24) 9870002026342027 a001 14930352/505019158607*10749957122^(3/4) 9870002026342027 a001 4976784/440719107401*10749957122^(19/24) 9870002026342027 a001 14930352/2139295485799*10749957122^(13/16) 9870002026342027 a001 7465176/1730726404001*10749957122^(5/6) 9870002026342027 a001 4976784/3020733700601*10749957122^(7/8) 9870002026342027 a001 14930352/23725150497407*10749957122^(11/12) 9870002026342027 a004 Fibonacci(36)*Lucas(48)/(1/2+sqrt(5)/2)^68 9870002026342027 a001 12586269025/33385282*1568397607^(1/22) 9870002026342027 a001 14930352/6643838879*45537549124^(9/17) 9870002026342027 a001 2971215073/33385282*312119004989^(1/11) 9870002026342027 a001 14930352/6643838879*817138163596^(9/19) 9870002026342027 a001 14930352/6643838879*14662949395604^(3/7) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^27/Lucas(47) 9870002026342027 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^5 9870002026342027 a001 14930352/6643838879*192900153618^(1/2) 9870002026342027 a001 2971215073/33385282*28143753123^(1/10) 9870002026342027 a001 7465176/5374978561*4106118243^(14/23) 9870002026342027 a001 14930352/6643838879*10749957122^(9/16) 9870002026342027 a001 14930208/103681*1568397607^(1/11) 9870002026342027 a001 4976784/9381251041*4106118243^(15/23) 9870002026342027 a001 14930352/73681302247*4106118243^(16/23) 9870002026342027 a001 2584/33385281*4106118243^(17/23) 9870002026342027 a001 14930352/505019158607*4106118243^(18/23) 9870002026342027 a001 4976784/440719107401*4106118243^(19/23) 9870002026342027 a001 7465176/1730726404001*4106118243^(20/23) 9870002026342027 a001 4976784/3020733700601*4106118243^(21/23) 9870002026342027 a001 14930352/23725150497407*4106118243^(22/23) 9870002026342027 a004 Fibonacci(36)*Lucas(46)/(1/2+sqrt(5)/2)^66 9870002026342027 a001 196452/33391061*2537720636^(5/9) 9870002026342027 a001 701408733/33385282*599074578^(4/21) 9870002026342027 a001 12586269025/33385282*599074578^(1/21) 9870002026342027 a001 567451585/16692641*17393796001^(1/7) 9870002026342027 a001 196452/33391061*312119004989^(5/11) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^25/Lucas(45) 9870002026342027 a001 567451585/16692641*(1/2+1/2*5^(1/2))^7 9870002026342027 a001 196452/33391061*3461452808002^(5/12) 9870002026342027 a001 196452/33391061*28143753123^(1/2) 9870002026342027 a001 4976784/1368706081*1568397607^(13/22) 9870002026342027 a001 7778742049/33385282*599074578^(1/14) 9870002026342027 a001 7465176/5374978561*1568397607^(7/11) 9870002026342027 a001 14930208/103681*599074578^(2/21) 9870002026342027 a001 4976784/9381251041*1568397607^(15/22) 9870002026342027 a001 14930352/73681302247*1568397607^(8/11) 9870002026342027 a001 14930352/119218851371*1568397607^(3/4) 9870002026342027 a001 2584/33385281*1568397607^(17/22) 9870002026342027 a001 14930352/505019158607*1568397607^(9/11) 9870002026342027 a001 1836311903/33385282*599074578^(1/7) 9870002026342027 a001 4976784/440719107401*1568397607^(19/22) 9870002026342027 a001 7465176/1730726404001*1568397607^(10/11) 9870002026342027 a001 4976784/3020733700601*1568397607^(21/22) 9870002026342027 a004 Fibonacci(36)*Lucas(44)/(1/2+sqrt(5)/2)^64 9870002026342027 a001 567451585/16692641*599074578^(1/6) 9870002026342027 a001 12586269025/33385282*228826127^(1/20) 9870002026342027 a001 433494437/33385282*2537720636^(1/5) 9870002026342027 a001 433494437/33385282*45537549124^(3/17) 9870002026342027 a001 433494437/33385282*817138163596^(3/19) 9870002026342027 a001 190359545130936/192866774113 9870002026342027 a001 433494437/33385282*14662949395604^(1/7) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^23/Lucas(43) 9870002026342027 a001 433494437/33385282*(1/2+1/2*5^(1/2))^9 9870002026342027 a001 433494437/33385282*192900153618^(1/6) 9870002026342027 a001 433494437/33385282*10749957122^(3/16) 9870002026342027 a001 14930352/969323029*4106118243^(1/2) 9870002026342027 a001 14930352/1568397607*599074578^(4/7) 9870002026342027 a001 433494437/33385282*599074578^(3/14) 9870002026342027 a001 4976784/1368706081*599074578^(13/21) 9870002026342027 a001 14930352/6643838879*599074578^(9/14) 9870002026342027 a001 7465176/5374978561*599074578^(2/3) 9870002026342027 a001 14930208/103681*228826127^(1/10) 9870002026342027 a001 133957148/16692641*228826127^(1/4) 9870002026342027 a001 4976784/9381251041*599074578^(5/7) 9870002026342027 a001 14930352/73681302247*599074578^(16/21) 9870002026342027 a001 14930352/119218851371*599074578^(11/14) 9870002026342027 a001 2584/33385281*599074578^(17/21) 9870002026342027 a001 14930352/312119004989*599074578^(5/6) 9870002026342027 a001 14930352/505019158607*599074578^(6/7) 9870002026342027 a001 2971215073/33385282*228826127^(1/8) 9870002026342027 a001 4976784/440719107401*599074578^(19/21) 9870002026342027 a001 14930352/2139295485799*599074578^(13/14) 9870002026342027 a001 7465176/1730726404001*599074578^(20/21) 9870002026342027 a004 Fibonacci(36)*Lucas(42)/(1/2+sqrt(5)/2)^62 9870002026342027 a001 1836311903/33385282*228826127^(3/20) 9870002026342027 a001 701408733/33385282*228826127^(1/5) 9870002026342027 a001 12586269025/33385282*87403803^(1/19) 9870002026342027 a001 14930352/370248451*2537720636^(7/15) 9870002026342027 a001 14930352/370248451*17393796001^(3/7) 9870002026342027 a001 14930352/370248451*45537549124^(7/17) 9870002026342027 a001 165580141/33385282*312119004989^(1/5) 9870002026342027 a001 14930352/370248451*14662949395604^(1/3) 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^21/Lucas(41) 9870002026342027 a001 165580141/33385282*(1/2+1/2*5^(1/2))^11 9870002026342027 a001 14930352/370248451*192900153618^(7/18) 9870002026342027 a001 14930352/370248451*10749957122^(7/16) 9870002026342027 a001 165580141/33385282*1568397607^(1/4) 9870002026342027 a001 829464/33281921*228826127^(11/20) 9870002026342027 a001 14930352/370248451*599074578^(1/2) 9870002026342027 a001 14930352/1568397607*228826127^(3/5) 9870002026342027 a001 196452/33391061*228826127^(5/8) 9870002026342027 a001 4976784/1368706081*228826127^(13/20) 9870002026342027 a001 7465176/5374978561*228826127^(7/10) 9870002026342027 a001 14930208/103681*87403803^(2/19) 9870002026342027 a001 4976784/9381251041*228826127^(3/4) 9870002026342027 a001 165580141/141422324*20633239^(2/5) 9870002026342027 a001 14930352/73681302247*228826127^(4/5) 9870002026342027 a001 2584/33385281*228826127^(17/20) 9870002026342027 a001 1836311903/12752043*4870847^(1/8) 9870002026342027 a001 14930352/312119004989*228826127^(7/8) 9870002026342027 a001 14930352/505019158607*228826127^(9/10) 9870002026342027 a001 4976784/440719107401*228826127^(19/20) 9870002026342027 a004 Fibonacci(36)*Lucas(40)/(1/2+sqrt(5)/2)^60 9870002026342027 a001 1836311903/33385282*87403803^(3/19) 9870002026342027 a001 14619165/4769326*87403803^(6/19) 9870002026342027 a001 701408733/33385282*87403803^(4/19) 9870002026342027 a001 133957148/16692641*87403803^(5/19) 9870002026342027 a001 31622993/16692641*141422324^(1/3) 9870002026342027 a001 14930352/228826127*87403803^(10/19) 9870002026342027 a001 12586269025/33385282*33385282^(1/18) 9870002026342027 a001 3732588/35355581*817138163596^(1/3) 9870002026342027 a001 944284833567072/956722026041 9870002026342027 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^19/Lucas(39) 9870002026342027 a001 31622993/16692641*(1/2+1/2*5^(1/2))^13 9870002026342027 a001 31622993/16692641*73681302247^(1/4) 9870002026342027 a001 829464/33281921*87403803^(11/19) 9870002026342027 a001 7778742049/33385282*33385282^(1/12) 9870002026342027 a001 14930352/1568397607*87403803^(12/19) 9870002026342027 a001 4976784/1368706081*87403803^(13/19) 9870002026342027 a001 233802911/29134601*20633239^(2/7) 9870002026342027 a001 7465176/5374978561*87403803^(14/19) 9870002026342027 a001 14930208/103681*33385282^(1/9) 9870002026342028 a001 39088169/54018521*20633239^(3/7) 9870002026342028 a001 4976784/9381251041*87403803^(15/19) 9870002026342028 a001 14930352/73681302247*87403803^(16/19) 9870002026342028 a001 3732588/35355581*87403803^(1/2) 9870002026342028 a001 2584/33385281*87403803^(17/19) 9870002026342028 a001 14930352/505019158607*87403803^(18/19) 9870002026342028 a004 Fibonacci(36)*Lucas(38)/(1/2+sqrt(5)/2)^58 9870002026342028 a001 1836311903/33385282*33385282^(1/6) 9870002026342028 a001 5702887/20633239*12752043^(1/2) 9870002026342028 a001 5702887/10749957122*12752043^(15/17) 9870002026342028 a001 701408733/33385282*33385282^(2/9) 9870002026342029 a001 1836311903/228826127*20633239^(2/7) 9870002026342029 a001 39088169/33385282*33385282^(7/18) 9870002026342029 a001 267084832/33281921*20633239^(2/7) 9870002026342029 a001 433494437/33385282*33385282^(1/4) 9870002026342029 a001 12586269025/1568397607*20633239^(2/7) 9870002026342029 a001 10983760033/1368706081*20633239^(2/7) 9870002026342029 a001 43133785636/5374978561*20633239^(2/7) 9870002026342029 a001 75283811239/9381251041*20633239^(2/7) 9870002026342029 a001 591286729879/73681302247*20633239^(2/7) 9870002026342029 a001 86000486440/10716675201*20633239^(2/7) 9870002026342029 a001 4052739537881/505019158607*20633239^(2/7) 9870002026342029 a001 3536736619241/440719107401*20633239^(2/7) 9870002026342029 a001 3278735159921/408569081798*20633239^(2/7) 9870002026342029 a001 2504730781961/312119004989*20633239^(2/7) 9870002026342029 a001 956722026041/119218851371*20633239^(2/7) 9870002026342029 a001 182717648081/22768774562*20633239^(2/7) 9870002026342029 a001 139583862445/17393796001*20633239^(2/7) 9870002026342029 a001 53316291173/6643838879*20633239^(2/7) 9870002026342029 a001 10182505537/1268860318*20633239^(2/7) 9870002026342029 a001 7778742049/969323029*20633239^(2/7) 9870002026342029 a001 2971215073/370248451*20633239^(2/7) 9870002026342029 a001 133957148/16692641*33385282^(5/18) 9870002026342029 a001 567451585/70711162*20633239^(2/7) 9870002026342029 a001 14619165/4769326*33385282^(1/3) 9870002026342029 a001 2971215073/87403803*20633239^(1/5) 9870002026342030 a001 4976784/29134601*33385282^(1/2) 9870002026342030 a001 1134903170/20633239*7881196^(2/11) 9870002026342030 a001 24157817/33385282*141422324^(5/13) 9870002026342030 a001 24157817/33385282*2537720636^(1/3) 9870002026342030 a001 14930352/54018521*45537549124^(1/3) 9870002026342030 a001 24157817/33385282*45537549124^(5/17) 9870002026342030 a001 24157817/33385282*312119004989^(3/11) 9870002026342030 a001 180342355680792/182717648081 9870002026342030 a001 24157817/33385282*14662949395604^(5/21) 9870002026342030 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^17/Lucas(37) 9870002026342030 a001 24157817/33385282*(1/2+1/2*5^(1/2))^15 9870002026342030 a001 24157817/33385282*192900153618^(5/18) 9870002026342030 a001 24157817/33385282*28143753123^(3/10) 9870002026342030 a001 24157817/33385282*10749957122^(5/16) 9870002026342030 a001 24157817/33385282*599074578^(5/14) 9870002026342030 a001 24157817/33385282*228826127^(3/8) 9870002026342030 a001 63245986/54018521*20633239^(2/5) 9870002026342030 a001 12586269025/33385282*12752043^(1/17) 9870002026342031 a001 7778742049/228826127*20633239^(1/5) 9870002026342031 a004 Fibonacci(38)*Lucas(37)/(1/2+sqrt(5)/2)^59 9870002026342031 a001 10182505537/299537289*20633239^(1/5) 9870002026342031 a001 53316291173/1568397607*20633239^(1/5) 9870002026342031 a001 139583862445/4106118243*20633239^(1/5) 9870002026342031 a001 182717648081/5374978561*20633239^(1/5) 9870002026342031 a001 956722026041/28143753123*20633239^(1/5) 9870002026342031 a001 2504730781961/73681302247*20633239^(1/5) 9870002026342031 a001 3278735159921/96450076809*20633239^(1/5) 9870002026342031 a001 10610209857723/312119004989*20633239^(1/5) 9870002026342031 a001 4052739537881/119218851371*20633239^(1/5) 9870002026342031 a001 387002188980/11384387281*20633239^(1/5) 9870002026342031 a001 591286729879/17393796001*20633239^(1/5) 9870002026342031 a001 225851433717/6643838879*20633239^(1/5) 9870002026342031 a001 1135099622/33391061*20633239^(1/5) 9870002026342031 a001 32951280099/969323029*20633239^(1/5) 9870002026342031 a001 7778742049/87403803*20633239^(1/7) 9870002026342031 a001 12586269025/370248451*20633239^(1/5) 9870002026342031 a001 1201881744/35355581*20633239^(1/5) 9870002026342031 a001 14930352/228826127*33385282^(5/9) 9870002026342032 a001 14930352/370248451*33385282^(7/12) 9870002026342032 a004 Fibonacci(40)*Lucas(37)/(1/2+sqrt(5)/2)^61 9870002026342032 a001 5702887/28143753123*12752043^(16/17) 9870002026342032 a001 20365011074/228826127*20633239^(1/7) 9870002026342032 a001 829464/33281921*33385282^(11/18) 9870002026342032 a004 Fibonacci(42)*Lucas(37)/(1/2+sqrt(5)/2)^63 9870002026342032 a004 Fibonacci(44)*Lucas(37)/(1/2+sqrt(5)/2)^65 9870002026342032 a004 Fibonacci(46)*Lucas(37)/(1/2+sqrt(5)/2)^67 9870002026342032 a004 Fibonacci(48)*Lucas(37)/(1/2+sqrt(5)/2)^69 9870002026342032 a004 Fibonacci(50)*Lucas(37)/(1/2+sqrt(5)/2)^71 9870002026342032 a004 Fibonacci(52)*Lucas(37)/(1/2+sqrt(5)/2)^73 9870002026342032 a001 119218851371/24157817*8^(1/3) 9870002026342032 a004 Fibonacci(54)*Lucas(37)/(1/2+sqrt(5)/2)^75 9870002026342032 a004 Fibonacci(56)*Lucas(37)/(1/2+sqrt(5)/2)^77 9870002026342032 a004 Fibonacci(58)*Lucas(37)/(1/2+sqrt(5)/2)^79 9870002026342032 a004 Fibonacci(60)*Lucas(37)/(1/2+sqrt(5)/2)^81 9870002026342032 a004 Fibonacci(62)*Lucas(37)/(1/2+sqrt(5)/2)^83 9870002026342032 a004 Fibonacci(64)*Lucas(37)/(1/2+sqrt(5)/2)^85 9870002026342032 a004 Fibonacci(66)*Lucas(37)/(1/2+sqrt(5)/2)^87 9870002026342032 a004 Fibonacci(68)*Lucas(37)/(1/2+sqrt(5)/2)^89 9870002026342032 a004 Fibonacci(70)*Lucas(37)/(1/2+sqrt(5)/2)^91 9870002026342032 a004 Fibonacci(72)*Lucas(37)/(1/2+sqrt(5)/2)^93 9870002026342032 a004 Fibonacci(74)*Lucas(37)/(1/2+sqrt(5)/2)^95 9870002026342032 a004 Fibonacci(76)*Lucas(37)/(1/2+sqrt(5)/2)^97 9870002026342032 a004 Fibonacci(78)*Lucas(37)/(1/2+sqrt(5)/2)^99 9870002026342032 a004 Fibonacci(79)*Lucas(37)/(1/2+sqrt(5)/2)^100 9870002026342032 a004 Fibonacci(77)*Lucas(37)/(1/2+sqrt(5)/2)^98 9870002026342032 a004 Fibonacci(75)*Lucas(37)/(1/2+sqrt(5)/2)^96 9870002026342032 a001 2/24157817*(1/2+1/2*5^(1/2))^53 9870002026342032 a004 Fibonacci(73)*Lucas(37)/(1/2+sqrt(5)/2)^94 9870002026342032 a004 Fibonacci(71)*Lucas(37)/(1/2+sqrt(5)/2)^92 9870002026342032 a004 Fibonacci(69)*Lucas(37)/(1/2+sqrt(5)/2)^90 9870002026342032 a004 Fibonacci(67)*Lucas(37)/(1/2+sqrt(5)/2)^88 9870002026342032 a004 Fibonacci(65)*Lucas(37)/(1/2+sqrt(5)/2)^86 9870002026342032 a004 Fibonacci(63)*Lucas(37)/(1/2+sqrt(5)/2)^84 9870002026342032 a004 Fibonacci(61)*Lucas(37)/(1/2+sqrt(5)/2)^82 9870002026342032 a004 Fibonacci(59)*Lucas(37)/(1/2+sqrt(5)/2)^80 9870002026342032 a004 Fibonacci(57)*Lucas(37)/(1/2+sqrt(5)/2)^78 9870002026342032 a004 Fibonacci(55)*Lucas(37)/(1/2+sqrt(5)/2)^76 9870002026342032 a004 Fibonacci(53)*Lucas(37)/(1/2+sqrt(5)/2)^74 9870002026342032 a004 Fibonacci(51)*Lucas(37)/(1/2+sqrt(5)/2)^72 9870002026342032 a004 Fibonacci(49)*Lucas(37)/(1/2+sqrt(5)/2)^70 9870002026342032 a004 Fibonacci(47)*Lucas(37)/(1/2+sqrt(5)/2)^68 9870002026342032 a004 Fibonacci(45)*Lucas(37)/(1/2+sqrt(5)/2)^66 9870002026342032 a004 Fibonacci(43)*Lucas(37)/(1/2+sqrt(5)/2)^64 9870002026342032 a001 53316291173/599074578*20633239^(1/7) 9870002026342032 a001 139583862445/1568397607*20633239^(1/7) 9870002026342032 a001 365435296162/4106118243*20633239^(1/7) 9870002026342032 a001 956722026041/10749957122*20633239^(1/7) 9870002026342032 a001 2504730781961/28143753123*20633239^(1/7) 9870002026342032 a001 6557470319842/73681302247*20633239^(1/7) 9870002026342032 a001 10610209857723/119218851371*20633239^(1/7) 9870002026342032 a001 4052739537881/45537549124*20633239^(1/7) 9870002026342032 a001 1548008755920/17393796001*20633239^(1/7) 9870002026342032 a001 591286729879/6643838879*20633239^(1/7) 9870002026342032 a004 Fibonacci(41)*Lucas(37)/(1/2+sqrt(5)/2)^62 9870002026342032 a001 225851433717/2537720636*20633239^(1/7) 9870002026342032 a001 86267571272/969323029*20633239^(1/7) 9870002026342032 a001 32951280099/370248451*20633239^(1/7) 9870002026342032 a001 433494437/54018521*20633239^(2/7) 9870002026342032 a001 14930352/1568397607*33385282^(2/3) 9870002026342032 a004 Fibonacci(39)*Lucas(37)/(1/2+sqrt(5)/2)^60 9870002026342033 a001 12586269025/141422324*20633239^(1/7) 9870002026342033 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^16/Lucas(38) 9870002026342033 a001 39088169/87403803*23725150497407^(1/4) 9870002026342033 a001 1527884955772561/1548008755920 9870002026342033 a001 39088169/87403803*73681302247^(4/13) 9870002026342033 a001 39088169/87403803*10749957122^(1/3) 9870002026342033 a001 39088169/87403803*4106118243^(8/23) 9870002026342033 a001 39088169/87403803*1568397607^(4/11) 9870002026342033 a001 39088169/87403803*599074578^(8/21) 9870002026342033 a001 39088169/87403803*228826127^(2/5) 9870002026342033 a001 4976784/1368706081*33385282^(13/18) 9870002026342033 a001 14930352/6643838879*33385282^(3/4) 9870002026342033 a001 39088169/87403803*87403803^(8/19) 9870002026342033 a001 7465176/5374978561*33385282^(7/9) 9870002026342034 a004 Fibonacci(38)*Lucas(39)/(1/2+sqrt(5)/2)^61 9870002026342034 a001 24157817/33385282*33385282^(5/12) 9870002026342034 a001 39088169/1322157322203*141422324^(12/13) 9870002026342034 a001 14930208/103681*12752043^(2/17) 9870002026342034 a001 39088169/312119004989*141422324^(11/13) 9870002026342034 a001 39088169/228826127*141422324^(6/13) 9870002026342034 a001 39088169/73681302247*141422324^(10/13) 9870002026342034 a001 39088169/17393796001*141422324^(9/13) 9870002026342034 a001 39088169/10749957122*141422324^(2/3) 9870002026342034 a001 39088169/4106118243*141422324^(8/13) 9870002026342034 a001 39088169/969323029*141422324^(7/13) 9870002026342034 a001 39088169/228826127*2537720636^(2/5) 9870002026342034 a001 34111385/29134601*17393796001^(2/7) 9870002026342034 a001 39088169/228826127*45537549124^(6/17) 9870002026342034 a001 39088169/228826127*14662949395604^(2/7) 9870002026342034 a001 34111385/29134601*14662949395604^(2/9) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^18/Lucas(40) 9870002026342034 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^14/Lucas(38) 9870002026342034 a001 4000054745112195/4052739537881 9870002026342034 a001 34111385/29134601*505019158607^(1/4) 9870002026342034 a001 39088169/228826127*192900153618^(1/3) 9870002026342034 a001 34111385/29134601*10749957122^(7/24) 9870002026342034 a001 39088169/228826127*10749957122^(3/8) 9870002026342034 a001 34111385/29134601*4106118243^(7/23) 9870002026342034 a001 39088169/228826127*4106118243^(9/23) 9870002026342034 a001 34111385/29134601*1568397607^(7/22) 9870002026342034 a001 39088169/228826127*1568397607^(9/22) 9870002026342034 a001 4976784/9381251041*33385282^(5/6) 9870002026342034 a001 267914296/87403803*141422324^(4/13) 9870002026342034 a001 34111385/29134601*599074578^(1/3) 9870002026342034 a001 39088169/228826127*599074578^(3/7) 9870002026342034 a001 34111385/29134601*228826127^(7/20) 9870002026342034 a001 1134903170/87403803*141422324^(3/13) 9870002026342034 a001 39088169/228826127*228826127^(9/20) 9870002026342034 a001 165580141/87403803*141422324^(1/3) 9870002026342034 a001 1602508992/29134601*141422324^(2/13) 9870002026342034 a004 Fibonacci(38)*Lucas(41)/(1/2+sqrt(5)/2)^63 9870002026342034 a001 20365011074/87403803*141422324^(1/13) 9870002026342034 a001 39088169/599074578*2537720636^(4/9) 9870002026342034 a001 267914296/87403803*2537720636^(4/15) 9870002026342034 a001 267914296/87403803*45537549124^(4/17) 9870002026342034 a001 267914296/87403803*817138163596^(4/19) 9870002026342034 a001 267914296/87403803*14662949395604^(4/21) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^20/Lucas(42) 9870002026342034 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^12/Lucas(38) 9870002026342034 a001 10472279279564024/10610209857723 9870002026342034 a001 267914296/87403803*192900153618^(2/9) 9870002026342034 a001 267914296/87403803*73681302247^(3/13) 9870002026342034 a001 39088169/599074578*73681302247^(5/13) 9870002026342034 a001 39088169/599074578*28143753123^(2/5) 9870002026342034 a001 267914296/87403803*10749957122^(1/4) 9870002026342034 a001 39088169/599074578*10749957122^(5/12) 9870002026342034 a001 267914296/87403803*4106118243^(6/23) 9870002026342034 a001 39088169/599074578*4106118243^(10/23) 9870002026342034 a001 267914296/87403803*1568397607^(3/11) 9870002026342034 a001 39088169/599074578*1568397607^(5/11) 9870002026342034 a001 267914296/87403803*599074578^(2/7) 9870002026342034 a001 39088169/599074578*599074578^(10/21) 9870002026342034 a004 Fibonacci(38)*Lucas(43)/(1/2+sqrt(5)/2)^65 9870002026342034 a001 233802911/29134601*2537720636^(2/9) 9870002026342034 a001 233802911/29134601*312119004989^(2/11) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^22/Lucas(44) 9870002026342034 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^10/Lucas(38) 9870002026342034 a001 233802911/29134601*28143753123^(1/5) 9870002026342034 a001 233802911/29134601*10749957122^(5/24) 9870002026342034 a001 39088169/1568397607*10749957122^(11/24) 9870002026342034 a001 233802911/29134601*4106118243^(5/23) 9870002026342034 a001 39088169/1568397607*4106118243^(11/23) 9870002026342034 a001 233802911/29134601*1568397607^(5/22) 9870002026342034 a001 39088169/1568397607*1568397607^(1/2) 9870002026342034 a004 Fibonacci(38)*Lucas(45)/(1/2+sqrt(5)/2)^67 9870002026342034 a001 39088169/23725150497407*2537720636^(14/15) 9870002026342034 a001 39088169/4106118243*2537720636^(8/15) 9870002026342034 a001 39088169/9062201101803*2537720636^(8/9) 9870002026342034 a001 39088169/5600748293801*2537720636^(13/15) 9870002026342034 a001 39088169/1322157322203*2537720636^(4/5) 9870002026342034 a001 4181/87403804*2537720636^(7/9) 9870002026342034 a001 39088169/312119004989*2537720636^(11/15) 9870002026342034 a001 39088169/73681302247*2537720636^(2/3) 9870002026342034 a001 39088169/17393796001*2537720636^(3/5) 9870002026342034 a001 39088169/6643838879*2537720636^(5/9) 9870002026342034 a001 39088169/4106118243*45537549124^(8/17) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^24/Lucas(46) 9870002026342034 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^8/Lucas(38) 9870002026342034 a001 1836311903/87403803*23725150497407^(1/8) 9870002026342034 a001 1836311903/87403803*505019158607^(1/7) 9870002026342034 a001 39088169/4106118243*192900153618^(4/9) 9870002026342034 a001 1836311903/87403803*73681302247^(2/13) 9870002026342034 a001 39088169/4106118243*73681302247^(6/13) 9870002026342034 a001 1836311903/87403803*10749957122^(1/6) 9870002026342034 a001 39088169/4106118243*10749957122^(1/2) 9870002026342034 a001 1836311903/87403803*4106118243^(4/23) 9870002026342034 a001 1602508992/29134601*2537720636^(2/15) 9870002026342034 a001 39088169/4106118243*4106118243^(12/23) 9870002026342034 a004 Fibonacci(38)*Lucas(47)/(1/2+sqrt(5)/2)^69 9870002026342034 a001 7778742049/87403803*2537720636^(1/9) 9870002026342034 a001 20365011074/87403803*2537720636^(1/15) 9870002026342034 a001 1602508992/29134601*45537549124^(2/17) 9870002026342034 a001 1602508992/29134601*14662949395604^(2/21) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^26/Lucas(48) 9870002026342034 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^6/Lucas(38) 9870002026342034 a001 39088169/10749957122*73681302247^(1/2) 9870002026342034 a001 1602508992/29134601*10749957122^(1/8) 9870002026342034 a001 39088169/10749957122*10749957122^(13/24) 9870002026342034 a004 Fibonacci(38)*Lucas(49)/(1/2+sqrt(5)/2)^71 9870002026342034 a001 39088169/28143753123*17393796001^(4/7) 9870002026342034 a001 39088169/23725150497407*17393796001^(6/7) 9870002026342034 a001 4181/87403804*17393796001^(5/7) 9870002026342034 a001 39088169/28143753123*14662949395604^(4/9) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^28/Lucas(50) 9870002026342034 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^4/Lucas(38) 9870002026342034 a001 12586269025/87403803*23725150497407^(1/16) 9870002026342034 a001 39088169/28143753123*505019158607^(1/2) 9870002026342034 a001 12586269025/87403803*73681302247^(1/13) 9870002026342034 a001 39088169/28143753123*73681302247^(7/13) 9870002026342034 a001 1602508992/29134601*4106118243^(3/23) 9870002026342034 a001 12586269025/87403803*10749957122^(1/12) 9870002026342034 a004 Fibonacci(38)*Lucas(51)/(1/2+sqrt(5)/2)^73 9870002026342034 a001 39088169/73681302247*45537549124^(10/17) 9870002026342034 a001 39088169/23725150497407*45537549124^(14/17) 9870002026342034 a001 39088169/5600748293801*45537549124^(13/17) 9870002026342034 a001 39088169/1322157322203*45537549124^(12/17) 9870002026342034 a001 39088169/505019158607*45537549124^(2/3) 9870002026342034 a001 39088169/312119004989*45537549124^(11/17) 9870002026342034 a001 39088169/73681302247*312119004989^(6/11) 9870002026342034 a001 39088169/73681302247*14662949395604^(10/21) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^30/Lucas(52) 9870002026342034 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^2/Lucas(38) 9870002026342034 a001 39088169/73681302247*192900153618^(5/9) 9870002026342034 a004 Fibonacci(38)*Lucas(53)/(1/2+sqrt(5)/2)^75 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^32/Lucas(54) 9870002026342034 a006 5^(1/2)*Fibonacci(54)/Lucas(38)/sqrt(5) 9870002026342034 a001 39088169/192900153618*23725150497407^(1/2) 9870002026342034 a001 39088169/192900153618*505019158607^(4/7) 9870002026342034 a004 Fibonacci(38)*Lucas(55)/(1/2+sqrt(5)/2)^77 9870002026342034 a001 39088169/9062201101803*312119004989^(8/11) 9870002026342034 a001 4181/87403804*312119004989^(7/11) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^34/Lucas(56) 9870002026342034 a004 Fibonacci(56)/Lucas(38)/(1/2+sqrt(5)/2)^2 9870002026342034 a004 Fibonacci(38)*Lucas(57)/(1/2+sqrt(5)/2)^79 9870002026342034 a001 39088169/23725150497407*817138163596^(14/19) 9870002026342034 a001 39088169/3461452808002*817138163596^(2/3) 9870002026342034 a001 39088169/1322157322203*14662949395604^(4/7) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^36/Lucas(58) 9870002026342034 a004 Fibonacci(58)/Lucas(38)/(1/2+sqrt(5)/2)^4 9870002026342034 a004 Fibonacci(38)*Lucas(59)/(1/2+sqrt(5)/2)^81 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^38/Lucas(60) 9870002026342034 a004 Fibonacci(60)/Lucas(38)/(1/2+sqrt(5)/2)^6 9870002026342034 a004 Fibonacci(38)*Lucas(61)/(1/2+sqrt(5)/2)^83 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^40/Lucas(62) 9870002026342034 a004 Fibonacci(62)/Lucas(38)/(1/2+sqrt(5)/2)^8 9870002026342034 a001 39088169/23725150497407*14662949395604^(2/3) 9870002026342034 a004 Fibonacci(38)*Lucas(63)/(1/2+sqrt(5)/2)^85 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^42/Lucas(64) 9870002026342034 a004 Fibonacci(64)/Lucas(38)/(1/2+sqrt(5)/2)^10 9870002026342034 a004 Fibonacci(38)*Lucas(65)/(1/2+sqrt(5)/2)^87 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^44/Lucas(66) 9870002026342034 a004 Fibonacci(66)/Lucas(38)/(1/2+sqrt(5)/2)^12 9870002026342034 a004 Fibonacci(38)*Lucas(67)/(1/2+sqrt(5)/2)^89 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^46/Lucas(68) 9870002026342034 a004 Fibonacci(68)/Lucas(38)/(1/2+sqrt(5)/2)^14 9870002026342034 a004 Fibonacci(38)*Lucas(69)/(1/2+sqrt(5)/2)^91 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^48/Lucas(70) 9870002026342034 a004 Fibonacci(70)/Lucas(38)/(1/2+sqrt(5)/2)^16 9870002026342034 a004 Fibonacci(38)*Lucas(71)/(1/2+sqrt(5)/2)^93 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^50/Lucas(72) 9870002026342034 a004 Fibonacci(72)/Lucas(38)/(1/2+sqrt(5)/2)^18 9870002026342034 a004 Fibonacci(38)*Lucas(73)/(1/2+sqrt(5)/2)^95 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^52/Lucas(74) 9870002026342034 a004 Fibonacci(74)/Lucas(38)/(1/2+sqrt(5)/2)^20 9870002026342034 a004 Fibonacci(38)*Lucas(75)/(1/2+sqrt(5)/2)^97 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^54/Lucas(76) 9870002026342034 a004 Fibonacci(38)*Lucas(77)/(1/2+sqrt(5)/2)^99 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^56/Lucas(78) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^58/Lucas(80) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^60/Lucas(82) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^62/Lucas(84) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^64/Lucas(86) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^66/Lucas(88) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^68/Lucas(90) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^70/Lucas(92) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^72/Lucas(94) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^74/Lucas(96) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^76/Lucas(98) 9870002026342034 a004 Fibonacci(19)*Lucas(19)/(1/2+sqrt(5)/2)^22 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^78/Lucas(100) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^77/Lucas(99) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^75/Lucas(97) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^73/Lucas(95) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^71/Lucas(93) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^69/Lucas(91) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^67/Lucas(89) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^65/Lucas(87) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^63/Lucas(85) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^61/Lucas(83) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^59/Lucas(81) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^57/Lucas(79) 9870002026342034 a004 Fibonacci(38)*Lucas(78)/(1/2+sqrt(5)/2)^100 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^55/Lucas(77) 9870002026342034 a004 Fibonacci(78)/Lucas(38)/(1/2+sqrt(5)/2)^24 9870002026342034 a004 Fibonacci(80)/Lucas(38)/(1/2+sqrt(5)/2)^26 9870002026342034 a004 Fibonacci(82)/Lucas(38)/(1/2+sqrt(5)/2)^28 9870002026342034 a004 Fibonacci(84)/Lucas(38)/(1/2+sqrt(5)/2)^30 9870002026342034 a004 Fibonacci(86)/Lucas(38)/(1/2+sqrt(5)/2)^32 9870002026342034 a004 Fibonacci(88)/Lucas(38)/(1/2+sqrt(5)/2)^34 9870002026342034 a004 Fibonacci(90)/Lucas(38)/(1/2+sqrt(5)/2)^36 9870002026342034 a004 Fibonacci(92)/Lucas(38)/(1/2+sqrt(5)/2)^38 9870002026342034 a004 Fibonacci(94)/Lucas(38)/(1/2+sqrt(5)/2)^40 9870002026342034 a004 Fibonacci(96)/Lucas(38)/(1/2+sqrt(5)/2)^42 9870002026342034 a004 Fibonacci(98)/Lucas(38)/(1/2+sqrt(5)/2)^44 9870002026342034 a004 Fibonacci(100)/Lucas(38)/(1/2+sqrt(5)/2)^46 9870002026342034 a004 Fibonacci(99)/Lucas(38)/(1/2+sqrt(5)/2)^45 9870002026342034 a004 Fibonacci(97)/Lucas(38)/(1/2+sqrt(5)/2)^43 9870002026342034 a004 Fibonacci(95)/Lucas(38)/(1/2+sqrt(5)/2)^41 9870002026342034 a004 Fibonacci(93)/Lucas(38)/(1/2+sqrt(5)/2)^39 9870002026342034 a004 Fibonacci(91)/Lucas(38)/(1/2+sqrt(5)/2)^37 9870002026342034 a004 Fibonacci(89)/Lucas(38)/(1/2+sqrt(5)/2)^35 9870002026342034 a004 Fibonacci(87)/Lucas(38)/(1/2+sqrt(5)/2)^33 9870002026342034 a004 Fibonacci(85)/Lucas(38)/(1/2+sqrt(5)/2)^31 9870002026342034 a004 Fibonacci(83)/Lucas(38)/(1/2+sqrt(5)/2)^29 9870002026342034 a004 Fibonacci(81)/Lucas(38)/(1/2+sqrt(5)/2)^27 9870002026342034 a004 Fibonacci(79)/Lucas(38)/(1/2+sqrt(5)/2)^25 9870002026342034 a004 Fibonacci(77)/Lucas(38)/(1/2+sqrt(5)/2)^23 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^53/Lucas(75) 9870002026342034 a004 Fibonacci(75)/Lucas(38)/(1/2+sqrt(5)/2)^21 9870002026342034 a004 Fibonacci(38)*Lucas(74)/(1/2+sqrt(5)/2)^96 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^51/Lucas(73) 9870002026342034 a004 Fibonacci(73)/Lucas(38)/(1/2+sqrt(5)/2)^19 9870002026342034 a004 Fibonacci(38)*Lucas(72)/(1/2+sqrt(5)/2)^94 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^49/Lucas(71) 9870002026342034 a004 Fibonacci(71)/Lucas(38)/(1/2+sqrt(5)/2)^17 9870002026342034 a004 Fibonacci(38)*Lucas(70)/(1/2+sqrt(5)/2)^92 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^47/Lucas(69) 9870002026342034 a004 Fibonacci(69)/Lucas(38)/(1/2+sqrt(5)/2)^15 9870002026342034 a004 Fibonacci(38)*Lucas(68)/(1/2+sqrt(5)/2)^90 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^45/Lucas(67) 9870002026342034 a004 Fibonacci(67)/Lucas(38)/(1/2+sqrt(5)/2)^13 9870002026342034 a004 Fibonacci(38)*Lucas(66)/(1/2+sqrt(5)/2)^88 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^43/Lucas(65) 9870002026342034 a004 Fibonacci(65)/Lucas(38)/(1/2+sqrt(5)/2)^11 9870002026342034 a004 Fibonacci(38)*Lucas(64)/(1/2+sqrt(5)/2)^86 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^41/Lucas(63) 9870002026342034 a004 Fibonacci(63)/Lucas(38)/(1/2+sqrt(5)/2)^9 9870002026342034 a004 Fibonacci(38)*Lucas(62)/(1/2+sqrt(5)/2)^84 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^39/Lucas(61) 9870002026342034 a004 Fibonacci(61)/Lucas(38)/(1/2+sqrt(5)/2)^7 9870002026342034 a004 Fibonacci(38)*Lucas(60)/(1/2+sqrt(5)/2)^82 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^37/Lucas(59) 9870002026342034 a004 Fibonacci(59)/Lucas(38)/(1/2+sqrt(5)/2)^5 9870002026342034 a004 Fibonacci(38)*Lucas(58)/(1/2+sqrt(5)/2)^80 9870002026342034 a001 4181/87403804*14662949395604^(5/9) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^35/Lucas(57) 9870002026342034 a004 Fibonacci(57)/Lucas(38)/(1/2+sqrt(5)/2)^3 9870002026342034 a001 39088169/1322157322203*505019158607^(9/14) 9870002026342034 a001 39088169/23725150497407*505019158607^(3/4) 9870002026342034 a004 Fibonacci(38)*Lucas(56)/(1/2+sqrt(5)/2)^78 9870002026342034 a001 4181/87403804*505019158607^(5/8) 9870002026342034 a001 39088169/312119004989*817138163596^(11/19) 9870002026342034 a001 39088169/312119004989*14662949395604^(11/21) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^33/Lucas(55) 9870002026342034 a004 Fibonacci(55)/Lucas(38)/(1/2+sqrt(5)/2) 9870002026342034 a001 39088169/1322157322203*192900153618^(2/3) 9870002026342034 a001 39088169/5600748293801*192900153618^(13/18) 9870002026342034 a001 39088169/23725150497407*192900153618^(7/9) 9870002026342034 a001 39088169/312119004989*192900153618^(11/18) 9870002026342034 a004 Fibonacci(38)*Lucas(54)/(1/2+sqrt(5)/2)^76 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^31/Lucas(53) 9870002026342034 a004 Fibonacci(53)*(1/2+sqrt(5)/2)/Lucas(38) 9870002026342034 a001 39088169/119218851371*9062201101803^(1/2) 9870002026342034 a001 39088169/192900153618*73681302247^(8/13) 9870002026342034 a001 39088169/1322157322203*73681302247^(9/13) 9870002026342034 a001 39088169/5600748293801*73681302247^(3/4) 9870002026342034 a001 39088169/9062201101803*73681302247^(10/13) 9870002026342034 a001 10983760033/29134601*10749957122^(1/24) 9870002026342034 a004 Fibonacci(38)*Lucas(52)/(1/2+sqrt(5)/2)^74 9870002026342034 a001 20365011074/87403803*45537549124^(1/17) 9870002026342034 a001 20365011074/87403803*14662949395604^(1/21) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^29/Lucas(51) 9870002026342034 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^3/Lucas(38) 9870002026342034 a001 39088169/45537549124*1322157322203^(1/2) 9870002026342034 a001 20365011074/87403803*192900153618^(1/18) 9870002026342034 a001 39088169/73681302247*28143753123^(3/5) 9870002026342034 a001 4181/87403804*28143753123^(7/10) 9870002026342034 a001 39088169/9062201101803*28143753123^(4/5) 9870002026342034 a001 20365011074/87403803*10749957122^(1/16) 9870002026342034 a004 Fibonacci(38)*Lucas(50)/(1/2+sqrt(5)/2)^72 9870002026342034 a001 10983760033/29134601*4106118243^(1/23) 9870002026342034 a001 39088169/17393796001*45537549124^(9/17) 9870002026342034 a001 7778742049/87403803*312119004989^(1/11) 9870002026342034 a001 39088169/17393796001*817138163596^(9/19) 9870002026342034 a001 39088169/17393796001*14662949395604^(3/7) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^27/Lucas(49) 9870002026342034 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^5/Lucas(38) 9870002026342034 a001 39088169/17393796001*192900153618^(1/2) 9870002026342034 a001 7778742049/87403803*28143753123^(1/10) 9870002026342034 a001 39088169/28143753123*10749957122^(7/12) 9870002026342034 a001 12586269025/87403803*4106118243^(2/23) 9870002026342034 a001 39088169/73681302247*10749957122^(5/8) 9870002026342034 a001 39088169/192900153618*10749957122^(2/3) 9870002026342034 a001 39088169/312119004989*10749957122^(11/16) 9870002026342034 a001 39088169/505019158607*10749957122^(17/24) 9870002026342034 a001 39088169/1322157322203*10749957122^(3/4) 9870002026342034 a001 39088169/3461452808002*10749957122^(19/24) 9870002026342034 a001 39088169/5600748293801*10749957122^(13/16) 9870002026342034 a001 39088169/9062201101803*10749957122^(5/6) 9870002026342034 a001 39088169/23725150497407*10749957122^(7/8) 9870002026342034 a001 39088169/17393796001*10749957122^(9/16) 9870002026342034 a004 Fibonacci(38)*Lucas(48)/(1/2+sqrt(5)/2)^70 9870002026342034 a001 1836311903/87403803*1568397607^(2/11) 9870002026342034 a001 10983760033/29134601*1568397607^(1/22) 9870002026342034 a001 2971215073/87403803*17393796001^(1/7) 9870002026342034 a001 39088169/6643838879*312119004989^(5/11) 9870002026342034 a001 2971215073/87403803*14662949395604^(1/9) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^25/Lucas(47) 9870002026342034 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^7/Lucas(38) 9870002026342034 a001 39088169/6643838879*28143753123^(1/2) 9870002026342034 a001 39088169/10749957122*4106118243^(13/23) 9870002026342034 a001 39088169/28143753123*4106118243^(14/23) 9870002026342034 a001 12586269025/87403803*1568397607^(1/11) 9870002026342034 a001 39088169/73681302247*4106118243^(15/23) 9870002026342034 a001 39088169/192900153618*4106118243^(16/23) 9870002026342034 a001 39088169/505019158607*4106118243^(17/23) 9870002026342034 a001 39088169/1322157322203*4106118243^(18/23) 9870002026342034 a001 1602508992/29134601*1568397607^(3/22) 9870002026342034 a001 39088169/3461452808002*4106118243^(19/23) 9870002026342034 a001 39088169/9062201101803*4106118243^(20/23) 9870002026342034 a001 39088169/23725150497407*4106118243^(21/23) 9870002026342034 a004 Fibonacci(38)*Lucas(46)/(1/2+sqrt(5)/2)^68 9870002026342034 a001 1134903170/87403803*2537720636^(1/5) 9870002026342034 a001 10983760033/29134601*599074578^(1/21) 9870002026342034 a001 1134903170/87403803*45537549124^(3/17) 9870002026342034 a001 1134903170/87403803*817138163596^(3/19) 9870002026342034 a001 1134903170/87403803*14662949395604^(1/7) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^23/Lucas(45) 9870002026342034 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^9/Lucas(38) 9870002026342034 a001 1134903170/87403803*192900153618^(1/6) 9870002026342034 a001 1134903170/87403803*10749957122^(3/16) 9870002026342034 a001 39088169/4106118243*1568397607^(6/11) 9870002026342034 a001 39088169/2537720636*4106118243^(1/2) 9870002026342034 a001 20365011074/87403803*599074578^(1/14) 9870002026342034 a001 39088169/10749957122*1568397607^(13/22) 9870002026342034 a001 233802911/29134601*599074578^(5/21) 9870002026342034 a001 39088169/28143753123*1568397607^(7/11) 9870002026342034 a001 12586269025/87403803*599074578^(2/21) 9870002026342034 a001 39088169/73681302247*1568397607^(15/22) 9870002026342034 a001 39088169/192900153618*1568397607^(8/11) 9870002026342034 a001 39088169/312119004989*1568397607^(3/4) 9870002026342034 a001 39088169/505019158607*1568397607^(17/22) 9870002026342034 a001 39088169/1322157322203*1568397607^(9/11) 9870002026342034 a001 39088169/3461452808002*1568397607^(19/22) 9870002026342034 a001 39088169/9062201101803*1568397607^(10/11) 9870002026342034 a001 39088169/23725150497407*1568397607^(21/22) 9870002026342034 a001 1602508992/29134601*599074578^(1/7) 9870002026342034 a004 Fibonacci(38)*Lucas(44)/(1/2+sqrt(5)/2)^66 9870002026342034 a001 1836311903/87403803*599074578^(4/21) 9870002026342034 a001 2971215073/87403803*599074578^(1/6) 9870002026342034 a001 1134903170/87403803*599074578^(3/14) 9870002026342034 a001 10983760033/29134601*228826127^(1/20) 9870002026342034 a001 39088169/969323029*2537720636^(7/15) 9870002026342034 a001 39088169/1568397607*599074578^(11/21) 9870002026342034 a001 39088169/969323029*17393796001^(3/7) 9870002026342034 a001 39088169/969323029*45537549124^(7/17) 9870002026342034 a001 433494437/87403803*312119004989^(1/5) 9870002026342034 a001 39088169/969323029*14662949395604^(1/3) 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^21/Lucas(43) 9870002026342034 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^11/Lucas(38) 9870002026342034 a001 39088169/969323029*192900153618^(7/18) 9870002026342034 a001 39088169/969323029*10749957122^(7/16) 9870002026342034 a001 433494437/87403803*1568397607^(1/4) 9870002026342034 a001 39088169/4106118243*599074578^(4/7) 9870002026342034 a001 39088169/10749957122*599074578^(13/21) 9870002026342034 a001 39088169/17393796001*599074578^(9/14) 9870002026342034 a001 39088169/28143753123*599074578^(2/3) 9870002026342034 a001 12586269025/87403803*228826127^(1/10) 9870002026342034 a001 39088169/73681302247*599074578^(5/7) 9870002026342034 a001 39088169/192900153618*599074578^(16/21) 9870002026342034 a001 39088169/312119004989*599074578^(11/14) 9870002026342034 a001 39088169/505019158607*599074578^(17/21) 9870002026342034 a001 4181/87403804*599074578^(5/6) 9870002026342034 a001 39088169/1322157322203*599074578^(6/7) 9870002026342034 a001 7778742049/87403803*228826127^(1/8) 9870002026342034 a001 39088169/969323029*599074578^(1/2) 9870002026342034 a001 39088169/3461452808002*599074578^(19/21) 9870002026342034 a001 39088169/5600748293801*599074578^(13/14) 9870002026342034 a001 39088169/9062201101803*599074578^(20/21) 9870002026342034 a004 Fibonacci(38)*Lucas(42)/(1/2+sqrt(5)/2)^64 9870002026342034 a001 1602508992/29134601*228826127^(3/20) 9870002026342034 a001 267914296/87403803*228826127^(3/10) 9870002026342034 a001 1836311903/54018521*20633239^(1/5) 9870002026342034 a001 1836311903/87403803*228826127^(1/5) 9870002026342034 a001 233802911/29134601*228826127^(1/4) 9870002026342034 a001 39088169/599074578*228826127^(1/2) 9870002026342034 a001 10983760033/29134601*87403803^(1/19) 9870002026342034 a001 39088169/370248451*817138163596^(1/3) 9870002026342034 a001 6472224534451829/6557470319842 9870002026342034 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^19/Lucas(41) 9870002026342034 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^13/Lucas(38) 9870002026342034 a001 165580141/87403803*73681302247^(1/4) 9870002026342034 a001 39088169/1568397607*228826127^(11/20) 9870002026342034 a001 39088169/4106118243*228826127^(3/5) 9870002026342034 a001 39088169/6643838879*228826127^(5/8) 9870002026342034 a001 39088169/10749957122*228826127^(13/20) 9870002026342034 a001 39088169/28143753123*228826127^(7/10) 9870002026342034 a001 12586269025/87403803*87403803^(2/19) 9870002026342034 a001 39088169/73681302247*228826127^(3/4) 9870002026342034 a001 39088169/192900153618*228826127^(4/5) 9870002026342034 a001 39088169/505019158607*228826127^(17/20) 9870002026342034 a001 4181/87403804*228826127^(7/8) 9870002026342034 a001 39088169/1322157322203*228826127^(9/10) 9870002026342034 a001 39088169/3461452808002*228826127^(19/20) 9870002026342034 a004 Fibonacci(38)*Lucas(40)/(1/2+sqrt(5)/2)^62 9870002026342034 a001 1602508992/29134601*87403803^(3/19) 9870002026342034 a001 1836311903/87403803*87403803^(4/19) 9870002026342034 a001 34111385/29134601*87403803^(7/19) 9870002026342034 a001 63245986/87403803*141422324^(5/13) 9870002026342034 a001 14930352/73681302247*33385282^(8/9) 9870002026342034 a001 233802911/29134601*87403803^(5/19) 9870002026342034 a001 267914296/87403803*87403803^(6/19) 9870002026342034 a001 39088169/228826127*87403803^(9/19) 9870002026342035 a001 10983760033/29134601*33385282^(1/18) 9870002026342035 a001 63245986/87403803*2537720636^(1/3) 9870002026342035 a001 39088169/141422324*45537549124^(1/3) 9870002026342035 a001 63245986/87403803*45537549124^(5/17) 9870002026342035 a001 63245986/87403803*312119004989^(3/11) 9870002026342035 a001 2472169789339634/2504730781961 9870002026342035 a001 63245986/87403803*14662949395604^(5/21) 9870002026342035 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^17/Lucas(39) 9870002026342035 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^15/Lucas(38) 9870002026342035 a001 63245986/87403803*192900153618^(5/18) 9870002026342035 a001 63245986/87403803*28143753123^(3/10) 9870002026342035 a001 63245986/87403803*10749957122^(5/16) 9870002026342035 a001 63245986/87403803*599074578^(5/14) 9870002026342035 a001 14930352/119218851371*33385282^(11/12) 9870002026342035 a001 63245986/87403803*228826127^(3/8) 9870002026342035 a004 Fibonacci(40)*Lucas(39)/(1/2+sqrt(5)/2)^63 9870002026342035 a001 6765/228826126*141422324^(12/13) 9870002026342035 a001 39088169/599074578*87403803^(10/19) 9870002026342035 a001 102334155/817138163596*141422324^(11/13) 9870002026342035 a001 39088169/370248451*87403803^(1/2) 9870002026342035 a001 34111385/64300051206*141422324^(10/13) 9870002026342035 a001 20365011074/87403803*33385282^(1/12) 9870002026342035 a001 39088169/1568397607*87403803^(11/19) 9870002026342035 a001 102334155/45537549124*141422324^(9/13) 9870002026342035 a004 Fibonacci(42)*Lucas(39)/(1/2+sqrt(5)/2)^65 9870002026342035 a001 831985/228811001*141422324^(2/3) 9870002026342035 a004 Fibonacci(44)*Lucas(39)/(1/2+sqrt(5)/2)^67 9870002026342035 a004 Fibonacci(46)*Lucas(39)/(1/2+sqrt(5)/2)^69 9870002026342035 a004 Fibonacci(48)*Lucas(39)/(1/2+sqrt(5)/2)^71 9870002026342035 a004 Fibonacci(50)*Lucas(39)/(1/2+sqrt(5)/2)^73 9870002026342035 a004 Fibonacci(52)*Lucas(39)/(1/2+sqrt(5)/2)^75 9870002026342035 a004 Fibonacci(54)*Lucas(39)/(1/2+sqrt(5)/2)^77 9870002026342035 a004 Fibonacci(56)*Lucas(39)/(1/2+sqrt(5)/2)^79 9870002026342035 a004 Fibonacci(58)*Lucas(39)/(1/2+sqrt(5)/2)^81 9870002026342035 a004 Fibonacci(60)*Lucas(39)/(1/2+sqrt(5)/2)^83 9870002026342035 a004 Fibonacci(62)*Lucas(39)/(1/2+sqrt(5)/2)^85 9870002026342035 a004 Fibonacci(64)*Lucas(39)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(66)*Lucas(39)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(68)*Lucas(39)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(70)*Lucas(39)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(72)*Lucas(39)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(74)*Lucas(39)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(76)*Lucas(39)/(1/2+sqrt(5)/2)^99 9870002026342035 a001 1/31622993*(1/2+1/2*5^(1/2))^55 9870002026342035 a004 Fibonacci(77)*Lucas(39)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(75)*Lucas(39)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(73)*Lucas(39)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(71)*Lucas(39)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(69)*Lucas(39)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(67)*Lucas(39)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(65)*Lucas(39)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(63)*Lucas(39)/(1/2+sqrt(5)/2)^86 9870002026342035 a004 Fibonacci(61)*Lucas(39)/(1/2+sqrt(5)/2)^84 9870002026342035 a004 Fibonacci(59)*Lucas(39)/(1/2+sqrt(5)/2)^82 9870002026342035 a004 Fibonacci(57)*Lucas(39)/(1/2+sqrt(5)/2)^80 9870002026342035 a004 Fibonacci(55)*Lucas(39)/(1/2+sqrt(5)/2)^78 9870002026342035 a004 Fibonacci(53)*Lucas(39)/(1/2+sqrt(5)/2)^76 9870002026342035 a004 Fibonacci(51)*Lucas(39)/(1/2+sqrt(5)/2)^74 9870002026342035 a004 Fibonacci(49)*Lucas(39)/(1/2+sqrt(5)/2)^72 9870002026342035 a004 Fibonacci(47)*Lucas(39)/(1/2+sqrt(5)/2)^70 9870002026342035 a001 102334155/10749957122*141422324^(8/13) 9870002026342035 a001 2584/33385281*33385282^(17/18) 9870002026342035 a004 Fibonacci(45)*Lucas(39)/(1/2+sqrt(5)/2)^68 9870002026342035 a001 267914296/9062201101803*141422324^(12/13) 9870002026342035 a004 Fibonacci(43)*Lucas(39)/(1/2+sqrt(5)/2)^66 9870002026342035 a001 39088169/4106118243*87403803^(12/19) 9870002026342035 a001 701408733/23725150497407*141422324^(12/13) 9870002026342035 a001 9303105/230701876*141422324^(7/13) 9870002026342035 a001 267914296/2139295485799*141422324^(11/13) 9870002026342035 a001 433494437/14662949395604*141422324^(12/13) 9870002026342035 a001 34111385/199691526*141422324^(6/13) 9870002026342035 a001 701408733/5600748293801*141422324^(11/13) 9870002026342035 a004 Fibonacci(41)*Lucas(39)/(1/2+sqrt(5)/2)^64 9870002026342035 a001 1836311903/14662949395604*141422324^(11/13) 9870002026342035 a001 2971215073/23725150497407*141422324^(11/13) 9870002026342035 a001 1134903170/9062201101803*141422324^(11/13) 9870002026342035 a001 39088169/10749957122*87403803^(13/19) 9870002026342035 a001 267914296/505019158607*141422324^(10/13) 9870002026342035 a001 433494437/3461452808002*141422324^(11/13) 9870002026342035 a001 233802911/440719107401*141422324^(10/13) 9870002026342035 a001 165580141/5600748293801*141422324^(12/13) 9870002026342035 a001 1836311903/3461452808002*141422324^(10/13) 9870002026342035 a001 1602508992/3020733700601*141422324^(10/13) 9870002026342035 a001 12586269025/23725150497407*141422324^(10/13) 9870002026342035 a001 7778742049/14662949395604*141422324^(10/13) 9870002026342035 a001 2971215073/5600748293801*141422324^(10/13) 9870002026342035 a001 1134903170/2139295485799*141422324^(10/13) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^16/Lucas(40) 9870002026342035 a001 102334155/228826127*23725150497407^(1/4) 9870002026342035 a001 102334155/228826127*73681302247^(4/13) 9870002026342035 a001 102334155/228826127*10749957122^(1/3) 9870002026342035 a001 102334155/228826127*4106118243^(8/23) 9870002026342035 a001 102334155/228826127*1568397607^(4/11) 9870002026342035 a001 267914296/119218851371*141422324^(9/13) 9870002026342035 a001 433494437/817138163596*141422324^(10/13) 9870002026342035 a001 102334155/228826127*599074578^(8/21) 9870002026342035 a001 267914296/73681302247*141422324^(2/3) 9870002026342035 a001 3524667/1568437211*141422324^(9/13) 9870002026342035 a001 165580141/1322157322203*141422324^(11/13) 9870002026342035 a001 701408733/228826127*141422324^(4/13) 9870002026342035 a001 433494437/228826127*141422324^(1/3) 9870002026342035 a001 1836311903/817138163596*141422324^(9/13) 9870002026342035 a001 4807526976/2139295485799*141422324^(9/13) 9870002026342035 a001 12586269025/5600748293801*141422324^(9/13) 9870002026342035 a001 32951280099/14662949395604*141422324^(9/13) 9870002026342035 a001 53316291173/23725150497407*141422324^(9/13) 9870002026342035 a001 20365011074/9062201101803*141422324^(9/13) 9870002026342035 a001 7778742049/3461452808002*141422324^(9/13) 9870002026342035 a001 2971215073/1322157322203*141422324^(9/13) 9870002026342035 a001 1134903170/505019158607*141422324^(9/13) 9870002026342035 a001 39088169/28143753123*87403803^(14/19) 9870002026342035 a001 233802911/64300051206*141422324^(2/3) 9870002026342035 a001 267914296/28143753123*141422324^(8/13) 9870002026342035 a001 433494437/192900153618*141422324^(9/13) 9870002026342035 a001 1836311903/505019158607*141422324^(2/3) 9870002026342035 a001 1602508992/440719107401*141422324^(2/3) 9870002026342035 a001 12586269025/3461452808002*141422324^(2/3) 9870002026342035 a001 10983760033/3020733700601*141422324^(2/3) 9870002026342035 a001 86267571272/23725150497407*141422324^(2/3) 9870002026342035 a001 53316291173/14662949395604*141422324^(2/3) 9870002026342035 a001 20365011074/5600748293801*141422324^(2/3) 9870002026342035 a001 7778742049/2139295485799*141422324^(2/3) 9870002026342035 a001 2971215073/817138163596*141422324^(2/3) 9870002026342035 a001 1134903170/312119004989*141422324^(2/3) 9870002026342035 a001 433494437/119218851371*141422324^(2/3) 9870002026342035 a001 12586269025/87403803*33385282^(1/9) 9870002026342035 a001 701408733/73681302247*141422324^(8/13) 9870002026342035 a001 165580141/312119004989*141422324^(10/13) 9870002026342035 a001 165580141/228826127*141422324^(5/13) 9870002026342035 a001 1836311903/192900153618*141422324^(8/13) 9870002026342035 a001 102287808/10745088481*141422324^(8/13) 9870002026342035 a001 12586269025/1322157322203*141422324^(8/13) 9870002026342035 a001 32951280099/3461452808002*141422324^(8/13) 9870002026342035 a001 86267571272/9062201101803*141422324^(8/13) 9870002026342035 a001 225851433717/23725150497407*141422324^(8/13) 9870002026342035 a001 139583862445/14662949395604*141422324^(8/13) 9870002026342035 a001 53316291173/5600748293801*141422324^(8/13) 9870002026342035 a001 20365011074/2139295485799*141422324^(8/13) 9870002026342035 a001 7778742049/817138163596*141422324^(8/13) 9870002026342035 a001 2971215073/312119004989*141422324^(8/13) 9870002026342035 a001 2971215073/228826127*141422324^(3/13) 9870002026342035 a001 1134903170/119218851371*141422324^(8/13) 9870002026342035 a001 102334155/228826127*228826127^(2/5) 9870002026342035 a001 433494437/45537549124*141422324^(8/13) 9870002026342035 a001 267914296/6643838879*141422324^(7/13) 9870002026342035 a001 39088169/73681302247*87403803^(15/19) 9870002026342035 a001 701408733/17393796001*141422324^(7/13) 9870002026342035 a001 165580141/73681302247*141422324^(9/13) 9870002026342035 a001 1836311903/45537549124*141422324^(7/13) 9870002026342035 a001 4807526976/119218851371*141422324^(7/13) 9870002026342035 a001 1144206275/28374454999*141422324^(7/13) 9870002026342035 a001 32951280099/817138163596*141422324^(7/13) 9870002026342035 a001 86267571272/2139295485799*141422324^(7/13) 9870002026342035 a001 225851433717/5600748293801*141422324^(7/13) 9870002026342035 a001 591286729879/14662949395604*141422324^(7/13) 9870002026342035 a001 365435296162/9062201101803*141422324^(7/13) 9870002026342035 a001 139583862445/3461452808002*141422324^(7/13) 9870002026342035 a001 53316291173/1322157322203*141422324^(7/13) 9870002026342035 a001 20365011074/505019158607*141422324^(7/13) 9870002026342035 a001 7778742049/192900153618*141422324^(7/13) 9870002026342035 a001 2971215073/73681302247*141422324^(7/13) 9870002026342035 a001 12586269025/228826127*141422324^(2/13) 9870002026342035 a001 1134903170/28143753123*141422324^(7/13) 9870002026342035 a004 Fibonacci(40)*Lucas(41)/(1/2+sqrt(5)/2)^65 9870002026342035 a001 267914296/1568397607*141422324^(6/13) 9870002026342035 a001 165580141/45537549124*141422324^(2/3) 9870002026342035 a001 433494437/10749957122*141422324^(7/13) 9870002026342035 a001 233802911/1368706081*141422324^(6/13) 9870002026342035 a001 165580141/17393796001*141422324^(8/13) 9870002026342035 a001 1836311903/10749957122*141422324^(6/13) 9870002026342035 a001 1602508992/9381251041*141422324^(6/13) 9870002026342035 a001 12586269025/73681302247*141422324^(6/13) 9870002026342035 a001 10983760033/64300051206*141422324^(6/13) 9870002026342035 a001 86267571272/505019158607*141422324^(6/13) 9870002026342035 a001 75283811239/440719107401*141422324^(6/13) 9870002026342035 a001 2504730781961/14662949395604*141422324^(6/13) 9870002026342035 a001 139583862445/817138163596*141422324^(6/13) 9870002026342035 a001 53316291173/312119004989*141422324^(6/13) 9870002026342035 a001 20365011074/119218851371*141422324^(6/13) 9870002026342035 a001 7778742049/45537549124*141422324^(6/13) 9870002026342035 a001 2971215073/17393796001*141422324^(6/13) 9870002026342035 a001 53316291173/228826127*141422324^(1/13) 9870002026342035 a001 1134903170/6643838879*141422324^(6/13) 9870002026342035 a001 34111385/199691526*2537720636^(2/5) 9870002026342035 a001 267914296/228826127*17393796001^(2/7) 9870002026342035 a001 34111385/199691526*45537549124^(6/17) 9870002026342035 a001 267914296/228826127*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^18/Lucas(42) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^14/Lucas(40) 9870002026342035 a001 267914296/228826127*505019158607^(1/4) 9870002026342035 a001 34111385/199691526*192900153618^(1/3) 9870002026342035 a001 267914296/228826127*10749957122^(7/24) 9870002026342035 a001 34111385/199691526*10749957122^(3/8) 9870002026342035 a001 267914296/228826127*4106118243^(7/23) 9870002026342035 a001 34111385/199691526*4106118243^(9/23) 9870002026342035 a001 433494437/2537720636*141422324^(6/13) 9870002026342035 a001 267914296/228826127*1568397607^(7/22) 9870002026342035 a001 34111385/199691526*1568397607^(9/22) 9870002026342035 a001 267914296/228826127*599074578^(1/3) 9870002026342035 a001 433494437/599074578*141422324^(5/13) 9870002026342035 a001 34111385/199691526*599074578^(3/7) 9870002026342035 a001 39088169/192900153618*87403803^(16/19) 9870002026342035 a004 Fibonacci(40)*Lucas(43)/(1/2+sqrt(5)/2)^67 9870002026342035 a001 165580141/4106118243*141422324^(7/13) 9870002026342035 a001 14619165/224056801*2537720636^(4/9) 9870002026342035 a001 701408733/228826127*2537720636^(4/15) 9870002026342035 a001 701408733/228826127*45537549124^(4/17) 9870002026342035 a001 701408733/228826127*14662949395604^(4/21) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^20/Lucas(44) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^12/Lucas(40) 9870002026342035 a001 14619165/224056801*23725150497407^(5/16) 9870002026342035 a001 14619165/224056801*505019158607^(5/14) 9870002026342035 a001 701408733/228826127*73681302247^(3/13) 9870002026342035 a001 14619165/224056801*73681302247^(5/13) 9870002026342035 a001 14619165/224056801*28143753123^(2/5) 9870002026342035 a001 701408733/228826127*10749957122^(1/4) 9870002026342035 a001 14619165/224056801*10749957122^(5/12) 9870002026342035 a001 701408733/228826127*4106118243^(6/23) 9870002026342035 a001 1134903170/1568397607*141422324^(5/13) 9870002026342035 a001 14619165/224056801*4106118243^(10/23) 9870002026342035 a001 701408733/228826127*1568397607^(3/11) 9870002026342035 a001 14619165/224056801*1568397607^(5/11) 9870002026342035 a001 567451585/299537289*141422324^(1/3) 9870002026342035 a001 2971215073/4106118243*141422324^(5/13) 9870002026342035 a004 Fibonacci(40)*Lucas(45)/(1/2+sqrt(5)/2)^69 9870002026342035 a001 102334155/23725150497407*2537720636^(8/9) 9870002026342035 a001 7778742049/10749957122*141422324^(5/13) 9870002026342035 a001 102334155/14662949395604*2537720636^(13/15) 9870002026342035 a001 20365011074/28143753123*141422324^(5/13) 9870002026342035 a001 53316291173/73681302247*141422324^(5/13) 9870002026342035 a001 139583862445/192900153618*141422324^(5/13) 9870002026342035 a001 365435296162/505019158607*141422324^(5/13) 9870002026342035 a001 10610209857723/14662949395604*141422324^(5/13) 9870002026342035 a001 591286729879/817138163596*141422324^(5/13) 9870002026342035 a001 225851433717/312119004989*141422324^(5/13) 9870002026342035 a001 86267571272/119218851371*141422324^(5/13) 9870002026342035 a001 32951280099/45537549124*141422324^(5/13) 9870002026342035 a001 12586269025/17393796001*141422324^(5/13) 9870002026342035 a001 6765/228826126*2537720636^(4/5) 9870002026342035 a001 102334155/2139295485799*2537720636^(7/9) 9870002026342035 a001 4807526976/6643838879*141422324^(5/13) 9870002026342035 a001 102334155/817138163596*2537720636^(11/15) 9870002026342035 a001 34111385/64300051206*2537720636^(2/3) 9870002026342035 a001 1836311903/228826127*2537720636^(2/9) 9870002026342035 a001 102334155/45537549124*2537720636^(3/5) 9870002026342035 a001 102334155/10749957122*2537720636^(8/15) 9870002026342035 a001 102334155/17393796001*2537720636^(5/9) 9870002026342035 a001 34111385/1368706081*312119004989^(2/5) 9870002026342035 a001 1836311903/228826127*312119004989^(2/11) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^22/Lucas(46) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^10/Lucas(40) 9870002026342035 a001 1836311903/228826127*28143753123^(1/5) 9870002026342035 a001 1836311903/228826127*10749957122^(5/24) 9870002026342035 a001 34111385/1368706081*10749957122^(11/24) 9870002026342035 a001 1836311903/228826127*4106118243^(5/23) 9870002026342035 a001 1836311903/2537720636*141422324^(5/13) 9870002026342035 a001 34111385/1368706081*4106118243^(11/23) 9870002026342035 a004 Fibonacci(40)*Lucas(47)/(1/2+sqrt(5)/2)^71 9870002026342035 a001 12586269025/228826127*2537720636^(2/15) 9870002026342035 a001 20365011074/228826127*2537720636^(1/9) 9870002026342035 a001 53316291173/228826127*2537720636^(1/15) 9870002026342035 a001 102334155/10749957122*45537549124^(8/17) 9870002026342035 a001 102334155/10749957122*14662949395604^(8/21) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^24/Lucas(48) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^8/Lucas(40) 9870002026342035 a001 102287808/4868641*23725150497407^(1/8) 9870002026342035 a001 102287808/4868641*505019158607^(1/7) 9870002026342035 a001 102334155/10749957122*192900153618^(4/9) 9870002026342035 a001 102287808/4868641*73681302247^(2/13) 9870002026342035 a001 102334155/10749957122*73681302247^(6/13) 9870002026342035 a001 2971215073/228826127*2537720636^(1/5) 9870002026342035 a001 102287808/4868641*10749957122^(1/6) 9870002026342035 a001 102334155/10749957122*10749957122^(1/2) 9870002026342035 a004 Fibonacci(40)*Lucas(49)/(1/2+sqrt(5)/2)^73 9870002026342035 a001 102334155/2139295485799*17393796001^(5/7) 9870002026342035 a001 14619165/10525900321*17393796001^(4/7) 9870002026342035 a001 12586269025/228826127*45537549124^(2/17) 9870002026342035 a001 12586269025/228826127*14662949395604^(2/21) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^26/Lucas(50) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^6/Lucas(40) 9870002026342035 a001 831985/228811001*73681302247^(1/2) 9870002026342035 a004 Fibonacci(40)*Lucas(51)/(1/2+sqrt(5)/2)^75 9870002026342035 a001 102334155/14662949395604*45537549124^(13/17) 9870002026342035 a001 6765/228826126*45537549124^(12/17) 9870002026342035 a001 34111385/440719107401*45537549124^(2/3) 9870002026342035 a001 34111385/64300051206*45537549124^(10/17) 9870002026342035 a001 102334155/817138163596*45537549124^(11/17) 9870002026342035 a001 14619165/10525900321*14662949395604^(4/9) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^28/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^4/Lucas(40) 9870002026342035 a001 32951280099/228826127*23725150497407^(1/16) 9870002026342035 a001 12586269025/228826127*10749957122^(1/8) 9870002026342035 a001 32951280099/228826127*73681302247^(1/13) 9870002026342035 a001 14619165/10525900321*73681302247^(7/13) 9870002026342035 a004 Fibonacci(40)*Lucas(53)/(1/2+sqrt(5)/2)^77 9870002026342035 a001 34111385/64300051206*312119004989^(6/11) 9870002026342035 a001 34111385/64300051206*14662949395604^(10/21) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^30/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^2/Lucas(40) 9870002026342035 a001 34111385/64300051206*192900153618^(5/9) 9870002026342035 a004 Fibonacci(40)*Lucas(55)/(1/2+sqrt(5)/2)^79 9870002026342035 a001 102334155/23725150497407*312119004989^(8/11) 9870002026342035 a001 102334155/2139295485799*312119004989^(7/11) 9870002026342035 a001 102334155/817138163596*312119004989^(3/5) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^32/Lucas(56) 9870002026342035 a006 5^(1/2)*Fibonacci(56)/Lucas(40)/sqrt(5) 9870002026342035 a001 102334155/505019158607*23725150497407^(1/2) 9870002026342035 a004 Fibonacci(40)*Lucas(57)/(1/2+sqrt(5)/2)^81 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^34/Lucas(58) 9870002026342035 a004 Fibonacci(58)/Lucas(40)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(40)*Lucas(59)/(1/2+sqrt(5)/2)^83 9870002026342035 a001 6765/228826126*14662949395604^(4/7) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^36/Lucas(60) 9870002026342035 a004 Fibonacci(60)/Lucas(40)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(40)*Lucas(61)/(1/2+sqrt(5)/2)^85 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^38/Lucas(62) 9870002026342035 a004 Fibonacci(62)/Lucas(40)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(40)*Lucas(63)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^40/Lucas(64) 9870002026342035 a004 Fibonacci(64)/Lucas(40)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(40)*Lucas(65)/(1/2+sqrt(5)/2)^89 9870002026342035 a001 102334155/23725150497407*23725150497407^(5/8) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^42/Lucas(66) 9870002026342035 a004 Fibonacci(66)/Lucas(40)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(40)*Lucas(67)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^44/Lucas(68) 9870002026342035 a004 Fibonacci(68)/Lucas(40)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(40)*Lucas(69)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^46/Lucas(70) 9870002026342035 a004 Fibonacci(70)/Lucas(40)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(40)*Lucas(71)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^48/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(40)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(40)*Lucas(73)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^50/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(40)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(40)*Lucas(75)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^52/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(40)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^54/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(40)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^56/Lucas(80) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^58/Lucas(82) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^60/Lucas(84) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^62/Lucas(86) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^64/Lucas(88) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^66/Lucas(90) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^68/Lucas(92) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^70/Lucas(94) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^72/Lucas(96) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^74/Lucas(98) 9870002026342035 a004 Fibonacci(20)*Lucas(20)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^76/Lucas(100) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^75/Lucas(99) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^73/Lucas(97) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^71/Lucas(95) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^69/Lucas(93) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^67/Lucas(91) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^65/Lucas(89) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^63/Lucas(87) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^61/Lucas(85) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^59/Lucas(83) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^57/Lucas(81) 9870002026342035 a004 Fibonacci(82)/Lucas(40)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(84)/Lucas(40)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(86)/Lucas(40)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(88)/Lucas(40)/(1/2+sqrt(5)/2)^32 9870002026342035 a004 Fibonacci(90)/Lucas(40)/(1/2+sqrt(5)/2)^34 9870002026342035 a004 Fibonacci(92)/Lucas(40)/(1/2+sqrt(5)/2)^36 9870002026342035 a004 Fibonacci(94)/Lucas(40)/(1/2+sqrt(5)/2)^38 9870002026342035 a004 Fibonacci(96)/Lucas(40)/(1/2+sqrt(5)/2)^40 9870002026342035 a004 Fibonacci(98)/Lucas(40)/(1/2+sqrt(5)/2)^42 9870002026342035 a004 Fibonacci(100)/Lucas(40)/(1/2+sqrt(5)/2)^44 9870002026342035 a004 Fibonacci(99)/Lucas(40)/(1/2+sqrt(5)/2)^43 9870002026342035 a004 Fibonacci(97)/Lucas(40)/(1/2+sqrt(5)/2)^41 9870002026342035 a004 Fibonacci(95)/Lucas(40)/(1/2+sqrt(5)/2)^39 9870002026342035 a004 Fibonacci(93)/Lucas(40)/(1/2+sqrt(5)/2)^37 9870002026342035 a004 Fibonacci(91)/Lucas(40)/(1/2+sqrt(5)/2)^35 9870002026342035 a004 Fibonacci(89)/Lucas(40)/(1/2+sqrt(5)/2)^33 9870002026342035 a004 Fibonacci(87)/Lucas(40)/(1/2+sqrt(5)/2)^31 9870002026342035 a004 Fibonacci(85)/Lucas(40)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(83)/Lucas(40)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(81)/Lucas(40)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^55/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(40)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^53/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(40)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(40)*Lucas(76)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^51/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(40)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(40)*Lucas(74)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^49/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(40)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(40)*Lucas(72)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^47/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(40)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(40)*Lucas(70)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^45/Lucas(69) 9870002026342035 a004 Fibonacci(69)/Lucas(40)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(40)*Lucas(68)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^43/Lucas(67) 9870002026342035 a004 Fibonacci(67)/Lucas(40)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(40)*Lucas(66)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^41/Lucas(65) 9870002026342035 a004 Fibonacci(65)/Lucas(40)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(40)*Lucas(64)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^39/Lucas(63) 9870002026342035 a004 Fibonacci(63)/Lucas(40)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(40)*Lucas(62)/(1/2+sqrt(5)/2)^86 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^37/Lucas(61) 9870002026342035 a004 Fibonacci(61)/Lucas(40)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(40)*Lucas(60)/(1/2+sqrt(5)/2)^84 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^35/Lucas(59) 9870002026342035 a004 Fibonacci(59)/Lucas(40)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(40)*Lucas(58)/(1/2+sqrt(5)/2)^82 9870002026342035 a001 102334155/817138163596*817138163596^(11/19) 9870002026342035 a001 102334155/817138163596*14662949395604^(11/21) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^33/Lucas(57) 9870002026342035 a004 Fibonacci(57)/Lucas(40)/(1/2+sqrt(5)/2) 9870002026342035 a001 102334155/2139295485799*505019158607^(5/8) 9870002026342035 a004 Fibonacci(40)*Lucas(56)/(1/2+sqrt(5)/2)^80 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^31/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)/Lucas(40) 9870002026342035 a001 9303105/28374454999*9062201101803^(1/2) 9870002026342035 a001 6765/228826126*192900153618^(2/3) 9870002026342035 a001 102334155/817138163596*192900153618^(11/18) 9870002026342035 a001 102334155/14662949395604*192900153618^(13/18) 9870002026342035 a004 Fibonacci(40)*Lucas(54)/(1/2+sqrt(5)/2)^78 9870002026342035 a001 53316291173/228826127*45537549124^(1/17) 9870002026342035 a001 53316291173/228826127*14662949395604^(1/21) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^29/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^3/Lucas(40) 9870002026342035 a001 102334155/119218851371*1322157322203^(1/2) 9870002026342035 a001 53316291173/228826127*192900153618^(1/18) 9870002026342035 a001 102334155/505019158607*73681302247^(8/13) 9870002026342035 a001 6765/228826126*73681302247^(9/13) 9870002026342035 a001 102334155/14662949395604*73681302247^(3/4) 9870002026342035 a001 102334155/23725150497407*73681302247^(10/13) 9870002026342035 a004 Fibonacci(40)*Lucas(52)/(1/2+sqrt(5)/2)^76 9870002026342035 a001 102334155/45537549124*45537549124^(9/17) 9870002026342035 a001 86267571272/228826127*10749957122^(1/24) 9870002026342035 a001 20365011074/228826127*312119004989^(1/11) 9870002026342035 a001 102334155/45537549124*817138163596^(9/19) 9870002026342035 a001 102334155/45537549124*14662949395604^(3/7) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^27/Lucas(51) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^5/Lucas(40) 9870002026342035 a001 102334155/45537549124*192900153618^(1/2) 9870002026342035 a001 32951280099/228826127*10749957122^(1/12) 9870002026342035 a001 20365011074/228826127*28143753123^(1/10) 9870002026342035 a001 53316291173/228826127*10749957122^(1/16) 9870002026342035 a001 34111385/64300051206*28143753123^(3/5) 9870002026342035 a001 102334155/2139295485799*28143753123^(7/10) 9870002026342035 a001 102334155/23725150497407*28143753123^(4/5) 9870002026342035 a004 Fibonacci(40)*Lucas(50)/(1/2+sqrt(5)/2)^74 9870002026342035 a001 102287808/4868641*4106118243^(4/23) 9870002026342035 a001 86267571272/228826127*4106118243^(1/23) 9870002026342035 a001 7778742049/228826127*17393796001^(1/7) 9870002026342035 a001 102334155/17393796001*312119004989^(5/11) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^25/Lucas(49) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^7/Lucas(40) 9870002026342035 a001 102334155/17393796001*3461452808002^(5/12) 9870002026342035 a001 831985/228811001*10749957122^(13/24) 9870002026342035 a001 102334155/17393796001*28143753123^(1/2) 9870002026342035 a001 14619165/10525900321*10749957122^(7/12) 9870002026342035 a001 32951280099/228826127*4106118243^(2/23) 9870002026342035 a001 102334155/45537549124*10749957122^(9/16) 9870002026342035 a001 34111385/64300051206*10749957122^(5/8) 9870002026342035 a001 102334155/505019158607*10749957122^(2/3) 9870002026342035 a001 102334155/817138163596*10749957122^(11/16) 9870002026342035 a001 34111385/440719107401*10749957122^(17/24) 9870002026342035 a001 12586269025/228826127*4106118243^(3/23) 9870002026342035 a001 6765/228826126*10749957122^(3/4) 9870002026342035 a001 34111385/3020733700601*10749957122^(19/24) 9870002026342035 a001 102334155/14662949395604*10749957122^(13/16) 9870002026342035 a001 102334155/23725150497407*10749957122^(5/6) 9870002026342035 a004 Fibonacci(40)*Lucas(48)/(1/2+sqrt(5)/2)^72 9870002026342035 a001 86267571272/228826127*1568397607^(1/22) 9870002026342035 a001 102334155/10749957122*4106118243^(12/23) 9870002026342035 a001 2971215073/228826127*45537549124^(3/17) 9870002026342035 a001 2971215073/228826127*817138163596^(3/19) 9870002026342035 a001 2971215073/228826127*14662949395604^(1/7) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^23/Lucas(47) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^9/Lucas(40) 9870002026342035 a001 2971215073/228826127*192900153618^(1/6) 9870002026342035 a001 2971215073/228826127*10749957122^(3/16) 9870002026342035 a001 831985/228811001*4106118243^(13/23) 9870002026342035 a001 1836311903/228826127*1568397607^(5/22) 9870002026342035 a001 14619165/10525900321*4106118243^(14/23) 9870002026342035 a001 32951280099/228826127*1568397607^(1/11) 9870002026342035 a001 34111385/64300051206*4106118243^(15/23) 9870002026342035 a001 102334155/505019158607*4106118243^(16/23) 9870002026342035 a001 34111385/440719107401*4106118243^(17/23) 9870002026342035 a001 6765/228826126*4106118243^(18/23) 9870002026342035 a001 34111385/3020733700601*4106118243^(19/23) 9870002026342035 a001 102334155/23725150497407*4106118243^(20/23) 9870002026342035 a001 102334155/6643838879*4106118243^(1/2) 9870002026342035 a001 12586269025/228826127*1568397607^(3/22) 9870002026342035 a004 Fibonacci(40)*Lucas(46)/(1/2+sqrt(5)/2)^70 9870002026342035 a001 102287808/4868641*1568397607^(2/11) 9870002026342035 a001 9303105/230701876*2537720636^(7/15) 9870002026342035 a001 86267571272/228826127*599074578^(1/21) 9870002026342035 a001 34111385/1368706081*1568397607^(1/2) 9870002026342035 a001 9303105/230701876*17393796001^(3/7) 9870002026342035 a001 9303105/230701876*45537549124^(7/17) 9870002026342035 a001 1134903170/228826127*312119004989^(1/5) 9870002026342035 a001 9303105/230701876*14662949395604^(1/3) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^21/Lucas(45) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^11/Lucas(40) 9870002026342035 a001 9303105/230701876*192900153618^(7/18) 9870002026342035 a001 9303105/230701876*10749957122^(7/16) 9870002026342035 a001 53316291173/228826127*599074578^(1/14) 9870002026342035 a001 102334155/10749957122*1568397607^(6/11) 9870002026342035 a001 831985/228811001*1568397607^(13/22) 9870002026342035 a001 1134903170/228826127*1568397607^(1/4) 9870002026342035 a001 14619165/10525900321*1568397607^(7/11) 9870002026342035 a001 32951280099/228826127*599074578^(2/21) 9870002026342035 a001 34111385/64300051206*1568397607^(15/22) 9870002026342035 a001 102334155/505019158607*1568397607^(8/11) 9870002026342035 a001 102334155/817138163596*1568397607^(3/4) 9870002026342035 a001 34111385/440719107401*1568397607^(17/22) 9870002026342035 a001 6765/228826126*1568397607^(9/11) 9870002026342035 a001 34111385/3020733700601*1568397607^(19/22) 9870002026342035 a001 102334155/23725150497407*1568397607^(10/11) 9870002026342035 a001 701408733/228826127*599074578^(2/7) 9870002026342035 a001 12586269025/228826127*599074578^(1/7) 9870002026342035 a004 Fibonacci(40)*Lucas(44)/(1/2+sqrt(5)/2)^68 9870002026342035 a001 7778742049/228826127*599074578^(1/6) 9870002026342035 a001 102287808/4868641*599074578^(4/21) 9870002026342035 a001 701408733/969323029*141422324^(5/13) 9870002026342035 a001 1836311903/228826127*599074578^(5/21) 9870002026342035 a001 2971215073/228826127*599074578^(3/14) 9870002026342035 a001 1836311903/599074578*141422324^(4/13) 9870002026342035 a001 14619165/224056801*599074578^(10/21) 9870002026342035 a001 86267571272/228826127*228826127^(1/20) 9870002026342035 a001 102334155/969323029*817138163596^(1/3) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^19/Lucas(43) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^13/Lucas(40) 9870002026342035 a001 433494437/228826127*73681302247^(1/4) 9870002026342035 a001 34111385/1368706081*599074578^(11/21) 9870002026342035 a001 9303105/230701876*599074578^(1/2) 9870002026342035 a001 102334155/10749957122*599074578^(4/7) 9870002026342035 a001 831985/228811001*599074578^(13/21) 9870002026342035 a001 102334155/45537549124*599074578^(9/14) 9870002026342035 a001 14619165/10525900321*599074578^(2/3) 9870002026342035 a001 32951280099/228826127*228826127^(1/10) 9870002026342035 a001 34111385/64300051206*599074578^(5/7) 9870002026342035 a001 2971215073/1568397607*141422324^(1/3) 9870002026342035 a001 102334155/505019158607*599074578^(16/21) 9870002026342035 a001 102334155/817138163596*599074578^(11/14) 9870002026342035 a001 34111385/440719107401*599074578^(17/21) 9870002026342035 a001 102334155/2139295485799*599074578^(5/6) 9870002026342035 a001 7778742049/4106118243*141422324^(1/3) 9870002026342035 a001 20365011074/228826127*228826127^(1/8) 9870002026342035 a001 6765/228826126*599074578^(6/7) 9870002026342035 a001 10182505537/5374978561*141422324^(1/3) 9870002026342035 a001 53316291173/28143753123*141422324^(1/3) 9870002026342035 a001 139583862445/73681302247*141422324^(1/3) 9870002026342035 a001 182717648081/96450076809*141422324^(1/3) 9870002026342035 a001 956722026041/505019158607*141422324^(1/3) 9870002026342035 a001 10610209857723/5600748293801*141422324^(1/3) 9870002026342035 a001 591286729879/312119004989*141422324^(1/3) 9870002026342035 a001 225851433717/119218851371*141422324^(1/3) 9870002026342035 a001 21566892818/11384387281*141422324^(1/3) 9870002026342035 a001 32951280099/17393796001*141422324^(1/3) 9870002026342035 a001 12586269025/6643838879*141422324^(1/3) 9870002026342035 a001 34111385/3020733700601*599074578^(19/21) 9870002026342035 a001 1201881744/634430159*141422324^(1/3) 9870002026342035 a001 102334155/14662949395604*599074578^(13/14) 9870002026342035 a001 102334155/23725150497407*599074578^(20/21) 9870002026342035 a004 Fibonacci(40)*Lucas(42)/(1/2+sqrt(5)/2)^66 9870002026342035 a001 12586269025/228826127*228826127^(3/20) 9870002026342035 a001 686789568/224056801*141422324^(4/13) 9870002026342035 a001 1836311903/969323029*141422324^(1/3) 9870002026342035 a001 12586269025/4106118243*141422324^(4/13) 9870002026342035 a001 32951280099/10749957122*141422324^(4/13) 9870002026342035 a001 86267571272/28143753123*141422324^(4/13) 9870002026342035 a001 32264490531/10525900321*141422324^(4/13) 9870002026342035 a001 591286729879/192900153618*141422324^(4/13) 9870002026342035 a001 1548008755920/505019158607*141422324^(4/13) 9870002026342035 a001 1515744265389/494493258286*141422324^(4/13) 9870002026342035 a001 2504730781961/817138163596*141422324^(4/13) 9870002026342035 a001 956722026041/312119004989*141422324^(4/13) 9870002026342035 a001 365435296162/119218851371*141422324^(4/13) 9870002026342035 a001 139583862445/45537549124*141422324^(4/13) 9870002026342035 a001 53316291173/17393796001*141422324^(4/13) 9870002026342035 a001 20365011074/6643838879*141422324^(4/13) 9870002026342035 a001 102287808/4868641*228826127^(1/5) 9870002026342035 a001 7778742049/2537720636*141422324^(4/13) 9870002026342035 a001 267914296/228826127*228826127^(7/20) 9870002026342035 a001 267914296/370248451*141422324^(5/13) 9870002026342035 a001 165580141/969323029*141422324^(6/13) 9870002026342035 a001 1836311903/228826127*228826127^(1/4) 9870002026342035 a001 7778742049/599074578*141422324^(3/13) 9870002026342035 a001 2971215073/969323029*141422324^(4/13) 9870002026342035 a001 39088169/505019158607*87403803^(17/19) 9870002026342035 a001 701408733/228826127*228826127^(3/10) 9870002026342035 a001 34111385/199691526*228826127^(9/20) 9870002026342035 a001 86267571272/228826127*87403803^(1/19) 9870002026342035 a001 20365011074/1568397607*141422324^(3/13) 9870002026342035 a001 165580141/228826127*2537720636^(1/3) 9870002026342035 a001 102334155/370248451*45537549124^(1/3) 9870002026342035 a001 165580141/228826127*45537549124^(5/17) 9870002026342035 a001 165580141/228826127*312119004989^(3/11) 9870002026342035 a001 165580141/228826127*14662949395604^(5/21) 9870002026342035 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^17/Lucas(41) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^15/Lucas(40) 9870002026342035 a001 165580141/228826127*192900153618^(5/18) 9870002026342035 a001 165580141/228826127*28143753123^(3/10) 9870002026342035 a001 165580141/228826127*10749957122^(5/16) 9870002026342035 a001 53316291173/4106118243*141422324^(3/13) 9870002026342035 a001 139583862445/10749957122*141422324^(3/13) 9870002026342035 a001 365435296162/28143753123*141422324^(3/13) 9870002026342035 a001 956722026041/73681302247*141422324^(3/13) 9870002026342035 a001 2504730781961/192900153618*141422324^(3/13) 9870002026342035 a001 10610209857723/817138163596*141422324^(3/13) 9870002026342035 a001 4052739537881/312119004989*141422324^(3/13) 9870002026342035 a001 1548008755920/119218851371*141422324^(3/13) 9870002026342035 a001 591286729879/45537549124*141422324^(3/13) 9870002026342035 a001 7787980473/599786069*141422324^(3/13) 9870002026342035 a001 86267571272/6643838879*141422324^(3/13) 9870002026342035 a001 32951280099/2537720636*141422324^(3/13) 9870002026342035 a001 165580141/228826127*599074578^(5/14) 9870002026342035 a001 10983760033/199691526*141422324^(2/13) 9870002026342035 a001 12586269025/969323029*141422324^(3/13) 9870002026342035 a004 Fibonacci(42)*Lucas(41)/(1/2+sqrt(5)/2)^67 9870002026342035 a001 14619165/224056801*228826127^(1/2) 9870002026342035 a001 701408733/370248451*141422324^(1/3) 9870002026342035 a001 34111385/1368706081*228826127^(11/20) 9870002026342035 a001 86267571272/1568397607*141422324^(2/13) 9870002026342035 a001 1134903170/370248451*141422324^(4/13) 9870002026342035 a001 75283811239/1368706081*141422324^(2/13) 9870002026342035 a004 Fibonacci(44)*Lucas(41)/(1/2+sqrt(5)/2)^69 9870002026342035 a001 591286729879/10749957122*141422324^(2/13) 9870002026342035 a001 12585437040/228811001*141422324^(2/13) 9870002026342035 a001 4052739537881/73681302247*141422324^(2/13) 9870002026342035 a001 3536736619241/64300051206*141422324^(2/13) 9870002026342035 a001 6557470319842/119218851371*141422324^(2/13) 9870002026342035 a001 2504730781961/45537549124*141422324^(2/13) 9870002026342035 a001 956722026041/17393796001*141422324^(2/13) 9870002026342035 a001 365435296162/6643838879*141422324^(2/13) 9870002026342035 a001 102334155/10749957122*228826127^(3/5) 9870002026342035 a001 139583862445/2537720636*141422324^(2/13) 9870002026342035 a004 Fibonacci(46)*Lucas(41)/(1/2+sqrt(5)/2)^71 9870002026342035 a004 Fibonacci(48)*Lucas(41)/(1/2+sqrt(5)/2)^73 9870002026342035 a004 Fibonacci(50)*Lucas(41)/(1/2+sqrt(5)/2)^75 9870002026342035 a004 Fibonacci(52)*Lucas(41)/(1/2+sqrt(5)/2)^77 9870002026342035 a004 Fibonacci(54)*Lucas(41)/(1/2+sqrt(5)/2)^79 9870002026342035 a004 Fibonacci(56)*Lucas(41)/(1/2+sqrt(5)/2)^81 9870002026342035 a004 Fibonacci(58)*Lucas(41)/(1/2+sqrt(5)/2)^83 9870002026342035 a004 Fibonacci(60)*Lucas(41)/(1/2+sqrt(5)/2)^85 9870002026342035 a004 Fibonacci(62)*Lucas(41)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(64)*Lucas(41)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(66)*Lucas(41)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(68)*Lucas(41)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(70)*Lucas(41)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(72)*Lucas(41)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(74)*Lucas(41)/(1/2+sqrt(5)/2)^99 9870002026342035 a001 2/165580141*(1/2+1/2*5^(1/2))^57 9870002026342035 a004 Fibonacci(75)*Lucas(41)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(73)*Lucas(41)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(71)*Lucas(41)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(69)*Lucas(41)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(67)*Lucas(41)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(65)*Lucas(41)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(63)*Lucas(41)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(61)*Lucas(41)/(1/2+sqrt(5)/2)^86 9870002026342035 a004 Fibonacci(59)*Lucas(41)/(1/2+sqrt(5)/2)^84 9870002026342035 a004 Fibonacci(57)*Lucas(41)/(1/2+sqrt(5)/2)^82 9870002026342035 a004 Fibonacci(55)*Lucas(41)/(1/2+sqrt(5)/2)^80 9870002026342035 a004 Fibonacci(53)*Lucas(41)/(1/2+sqrt(5)/2)^78 9870002026342035 a004 Fibonacci(51)*Lucas(41)/(1/2+sqrt(5)/2)^76 9870002026342035 a004 Fibonacci(49)*Lucas(41)/(1/2+sqrt(5)/2)^74 9870002026342035 a004 Fibonacci(47)*Lucas(41)/(1/2+sqrt(5)/2)^72 9870002026342035 a001 102334155/17393796001*228826127^(5/8) 9870002026342035 a004 Fibonacci(45)*Lucas(41)/(1/2+sqrt(5)/2)^70 9870002026342035 a001 39088169/1322157322203*87403803^(18/19) 9870002026342035 a001 831985/228811001*228826127^(13/20) 9870002026342035 a001 139583862445/599074578*141422324^(1/13) 9870002026342035 a001 53316291173/969323029*141422324^(2/13) 9870002026342035 a004 Fibonacci(43)*Lucas(41)/(1/2+sqrt(5)/2)^68 9870002026342035 a001 14619165/10525900321*228826127^(7/10) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^16/Lucas(42) 9870002026342035 a001 133957148/299537289*23725150497407^(1/4) 9870002026342035 a001 133957148/299537289*73681302247^(4/13) 9870002026342035 a001 133957148/299537289*10749957122^(1/3) 9870002026342035 a001 133957148/299537289*4106118243^(8/23) 9870002026342035 a001 133957148/299537289*1568397607^(4/11) 9870002026342035 a001 32951280099/228826127*87403803^(2/19) 9870002026342035 a001 34111385/64300051206*228826127^(3/4) 9870002026342035 a001 165580141/228826127*228826127^(3/8) 9870002026342035 a001 133957148/299537289*599074578^(8/21) 9870002026342035 a001 365435296162/1568397607*141422324^(1/13) 9870002026342035 a001 4807526976/370248451*141422324^(3/13) 9870002026342035 a001 956722026041/4106118243*141422324^(1/13) 9870002026342035 a001 2504730781961/10749957122*141422324^(1/13) 9870002026342035 a004 Fibonacci(42)*Lucas(43)/(1/2+sqrt(5)/2)^69 9870002026342035 a001 6557470319842/28143753123*141422324^(1/13) 9870002026342035 a001 10610209857723/45537549124*141422324^(1/13) 9870002026342035 a001 4052739537881/17393796001*141422324^(1/13) 9870002026342035 a001 1548008755920/6643838879*141422324^(1/13) 9870002026342035 a001 102334155/505019158607*228826127^(4/5) 9870002026342035 a001 591286729879/2537720636*141422324^(1/13) 9870002026342035 a001 267914296/1568397607*2537720636^(2/5) 9870002026342035 a001 233802911/199691526*17393796001^(2/7) 9870002026342035 a001 267914296/1568397607*45537549124^(6/17) 9870002026342035 a001 267914296/1568397607*14662949395604^(2/7) 9870002026342035 a001 233802911/199691526*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^18/Lucas(44) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^14/Lucas(42) 9870002026342035 a001 233802911/199691526*505019158607^(1/4) 9870002026342035 a001 267914296/1568397607*192900153618^(1/3) 9870002026342035 a001 233802911/199691526*10749957122^(7/24) 9870002026342035 a001 267914296/1568397607*10749957122^(3/8) 9870002026342035 a001 233802911/199691526*4106118243^(7/23) 9870002026342035 a001 267914296/1568397607*4106118243^(9/23) 9870002026342035 a001 233802911/199691526*1568397607^(7/22) 9870002026342035 a001 267914296/1568397607*1568397607^(9/22) 9870002026342035 a004 Fibonacci(42)*Lucas(45)/(1/2+sqrt(5)/2)^71 9870002026342035 a001 267914296/4106118243*2537720636^(4/9) 9870002026342035 a001 267914296/9062201101803*2537720636^(4/5) 9870002026342035 a001 267914296/5600748293801*2537720636^(7/9) 9870002026342035 a001 267914296/2139295485799*2537720636^(11/15) 9870002026342035 a001 267914296/505019158607*2537720636^(2/3) 9870002026342035 a001 1836311903/599074578*2537720636^(4/15) 9870002026342035 a001 267914296/119218851371*2537720636^(3/5) 9870002026342035 a001 66978574/11384387281*2537720636^(5/9) 9870002026342035 a001 267914296/28143753123*2537720636^(8/15) 9870002026342035 a001 34111385/440719107401*228826127^(17/20) 9870002026342035 a001 1836311903/599074578*45537549124^(4/17) 9870002026342035 a001 1836311903/599074578*817138163596^(4/19) 9870002026342035 a001 1836311903/599074578*14662949395604^(4/21) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^20/Lucas(46) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^12/Lucas(42) 9870002026342035 a001 267914296/4106118243*23725150497407^(5/16) 9870002026342035 a001 267914296/4106118243*505019158607^(5/14) 9870002026342035 a001 1836311903/599074578*192900153618^(2/9) 9870002026342035 a001 1836311903/599074578*73681302247^(3/13) 9870002026342035 a001 267914296/4106118243*73681302247^(5/13) 9870002026342035 a001 267914296/4106118243*28143753123^(2/5) 9870002026342035 a001 1836311903/599074578*10749957122^(1/4) 9870002026342035 a001 267914296/4106118243*10749957122^(5/12) 9870002026342035 a001 267914296/6643838879*2537720636^(7/15) 9870002026342035 a001 1836311903/599074578*4106118243^(6/23) 9870002026342035 a001 267084832/33281921*2537720636^(2/9) 9870002026342035 a001 267914296/4106118243*4106118243^(10/23) 9870002026342035 a001 7778742049/599074578*2537720636^(1/5) 9870002026342035 a004 Fibonacci(42)*Lucas(47)/(1/2+sqrt(5)/2)^73 9870002026342035 a001 10983760033/199691526*2537720636^(2/15) 9870002026342035 a001 53316291173/599074578*2537720636^(1/9) 9870002026342035 a001 139583862445/599074578*2537720636^(1/15) 9870002026342035 a001 133957148/5374978561*312119004989^(2/5) 9870002026342035 a001 267084832/33281921*312119004989^(2/11) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^22/Lucas(48) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^10/Lucas(42) 9870002026342035 a001 267084832/33281921*28143753123^(1/5) 9870002026342035 a001 267084832/33281921*10749957122^(5/24) 9870002026342035 a001 133957148/5374978561*10749957122^(11/24) 9870002026342035 a004 Fibonacci(42)*Lucas(49)/(1/2+sqrt(5)/2)^75 9870002026342035 a001 267914296/5600748293801*17393796001^(5/7) 9870002026342035 a001 133957148/96450076809*17393796001^(4/7) 9870002026342035 a001 267914296/28143753123*45537549124^(8/17) 9870002026342035 a001 267914296/28143753123*14662949395604^(8/21) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^24/Lucas(50) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^8/Lucas(42) 9870002026342035 a001 12586269025/599074578*23725150497407^(1/8) 9870002026342035 a001 12586269025/599074578*505019158607^(1/7) 9870002026342035 a001 267914296/28143753123*192900153618^(4/9) 9870002026342035 a001 12586269025/599074578*73681302247^(2/13) 9870002026342035 a001 267914296/28143753123*73681302247^(6/13) 9870002026342035 a004 Fibonacci(42)*Lucas(51)/(1/2+sqrt(5)/2)^77 9870002026342035 a001 267914296/9062201101803*45537549124^(12/17) 9870002026342035 a001 133957148/1730726404001*45537549124^(2/3) 9870002026342035 a001 267914296/2139295485799*45537549124^(11/17) 9870002026342035 a001 267914296/505019158607*45537549124^(10/17) 9870002026342035 a001 10983760033/199691526*45537549124^(2/17) 9870002026342035 a001 267914296/119218851371*45537549124^(9/17) 9870002026342035 a001 10983760033/199691526*14662949395604^(2/21) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^26/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^6/Lucas(42) 9870002026342035 a001 267914296/73681302247*73681302247^(1/2) 9870002026342035 a004 Fibonacci(42)*Lucas(53)/(1/2+sqrt(5)/2)^79 9870002026342035 a001 133957148/96450076809*14662949395604^(4/9) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^28/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^4/Lucas(42) 9870002026342035 a001 133957148/96450076809*505019158607^(1/2) 9870002026342035 a001 139583862445/599074578*45537549124^(1/17) 9870002026342035 a001 43133785636/299537289*73681302247^(1/13) 9870002026342035 a004 Fibonacci(42)*Lucas(55)/(1/2+sqrt(5)/2)^81 9870002026342035 a001 267914296/505019158607*312119004989^(6/11) 9870002026342035 a001 267914296/2139295485799*312119004989^(3/5) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^30/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^2/Lucas(42) 9870002026342035 a004 Fibonacci(42)*Lucas(57)/(1/2+sqrt(5)/2)^83 9870002026342035 a001 267914296/2139295485799*817138163596^(11/19) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^32/Lucas(58) 9870002026342035 a006 5^(1/2)*Fibonacci(58)/Lucas(42)/sqrt(5) 9870002026342035 a001 267914296/1322157322203*23725150497407^(1/2) 9870002026342035 a004 Fibonacci(42)*Lucas(59)/(1/2+sqrt(5)/2)^85 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^34/Lucas(60) 9870002026342035 a004 Fibonacci(60)/Lucas(42)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(42)*Lucas(61)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^36/Lucas(62) 9870002026342035 a004 Fibonacci(62)/Lucas(42)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(42)*Lucas(63)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^38/Lucas(64) 9870002026342035 a004 Fibonacci(64)/Lucas(42)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(42)*Lucas(65)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^40/Lucas(66) 9870002026342035 a004 Fibonacci(66)/Lucas(42)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(42)*Lucas(67)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^42/Lucas(68) 9870002026342035 a004 Fibonacci(68)/Lucas(42)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(42)*Lucas(69)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^44/Lucas(70) 9870002026342035 a004 Fibonacci(70)/Lucas(42)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(42)*Lucas(71)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^46/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(42)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(42)*Lucas(73)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^48/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(42)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^50/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(42)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^52/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(42)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^54/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(42)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^56/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(42)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^58/Lucas(84) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^60/Lucas(86) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^62/Lucas(88) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^64/Lucas(90) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^66/Lucas(92) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^68/Lucas(94) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^70/Lucas(96) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^72/Lucas(98) 9870002026342035 a004 Fibonacci(21)*Lucas(21)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^74/Lucas(100) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^73/Lucas(99) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^71/Lucas(97) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^69/Lucas(95) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^67/Lucas(93) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^65/Lucas(91) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^63/Lucas(89) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^61/Lucas(87) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^59/Lucas(85) 9870002026342035 a004 Fibonacci(86)/Lucas(42)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(88)/Lucas(42)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(90)/Lucas(42)/(1/2+sqrt(5)/2)^32 9870002026342035 a004 Fibonacci(92)/Lucas(42)/(1/2+sqrt(5)/2)^34 9870002026342035 a004 Fibonacci(94)/Lucas(42)/(1/2+sqrt(5)/2)^36 9870002026342035 a004 Fibonacci(96)/Lucas(42)/(1/2+sqrt(5)/2)^38 9870002026342035 a004 Fibonacci(98)/Lucas(42)/(1/2+sqrt(5)/2)^40 9870002026342035 a004 Fibonacci(100)/Lucas(42)/(1/2+sqrt(5)/2)^42 9870002026342035 a004 Fibonacci(99)/Lucas(42)/(1/2+sqrt(5)/2)^41 9870002026342035 a004 Fibonacci(97)/Lucas(42)/(1/2+sqrt(5)/2)^39 9870002026342035 a004 Fibonacci(95)/Lucas(42)/(1/2+sqrt(5)/2)^37 9870002026342035 a004 Fibonacci(93)/Lucas(42)/(1/2+sqrt(5)/2)^35 9870002026342035 a004 Fibonacci(91)/Lucas(42)/(1/2+sqrt(5)/2)^33 9870002026342035 a004 Fibonacci(89)/Lucas(42)/(1/2+sqrt(5)/2)^31 9870002026342035 a004 Fibonacci(87)/Lucas(42)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(85)/Lucas(42)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^57/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(42)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^55/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(42)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^53/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(42)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^51/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(42)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^49/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(42)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(42)*Lucas(74)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^47/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(42)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(42)*Lucas(72)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^45/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(42)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(42)*Lucas(70)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^43/Lucas(69) 9870002026342035 a004 Fibonacci(69)/Lucas(42)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(42)*Lucas(68)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^41/Lucas(67) 9870002026342035 a004 Fibonacci(67)/Lucas(42)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(42)*Lucas(66)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^39/Lucas(65) 9870002026342035 a004 Fibonacci(65)/Lucas(42)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(42)*Lucas(64)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^37/Lucas(63) 9870002026342035 a004 Fibonacci(63)/Lucas(42)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(42)*Lucas(62)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^35/Lucas(61) 9870002026342035 a004 Fibonacci(61)/Lucas(42)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(42)*Lucas(60)/(1/2+sqrt(5)/2)^86 9870002026342035 a001 267914296/2139295485799*14662949395604^(11/21) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^33/Lucas(59) 9870002026342035 a004 Fibonacci(59)/Lucas(42)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(42)*Lucas(58)/(1/2+sqrt(5)/2)^84 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^31/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)/Lucas(42) 9870002026342035 a001 267914296/1322157322203*505019158607^(4/7) 9870002026342035 a001 267914296/9062201101803*505019158607^(9/14) 9870002026342035 a004 Fibonacci(42)*Lucas(56)/(1/2+sqrt(5)/2)^82 9870002026342035 a001 10182505537/299537289*17393796001^(1/7) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^29/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^3/Lucas(42) 9870002026342035 a001 267914296/312119004989*1322157322203^(1/2) 9870002026342035 a001 139583862445/599074578*192900153618^(1/18) 9870002026342035 a001 267914296/2139295485799*192900153618^(11/18) 9870002026342035 a004 Fibonacci(42)*Lucas(54)/(1/2+sqrt(5)/2)^80 9870002026342035 a001 267914296/119218851371*817138163596^(9/19) 9870002026342035 a001 267914296/119218851371*14662949395604^(3/7) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^27/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^5/Lucas(42) 9870002026342035 a001 133957148/96450076809*73681302247^(7/13) 9870002026342035 a001 267914296/119218851371*192900153618^(1/2) 9870002026342035 a001 267914296/1322157322203*73681302247^(8/13) 9870002026342035 a001 267914296/9062201101803*73681302247^(9/13) 9870002026342035 a001 12586269025/599074578*10749957122^(1/6) 9870002026342035 a004 Fibonacci(42)*Lucas(52)/(1/2+sqrt(5)/2)^78 9870002026342035 a001 53316291173/599074578*28143753123^(1/10) 9870002026342035 a001 267913919/710646*10749957122^(1/24) 9870002026342035 a001 66978574/11384387281*312119004989^(5/11) 9870002026342035 a001 10182505537/299537289*14662949395604^(1/9) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^25/Lucas(51) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^7/Lucas(42) 9870002026342035 a001 66978574/11384387281*3461452808002^(5/12) 9870002026342035 a001 139583862445/599074578*10749957122^(1/16) 9870002026342035 a001 43133785636/299537289*10749957122^(1/12) 9870002026342035 a001 267914296/505019158607*28143753123^(3/5) 9870002026342035 a001 267914296/5600748293801*28143753123^(7/10) 9870002026342035 a001 10983760033/199691526*10749957122^(1/8) 9870002026342035 a001 66978574/11384387281*28143753123^(1/2) 9870002026342035 a004 Fibonacci(42)*Lucas(50)/(1/2+sqrt(5)/2)^76 9870002026342035 a001 267913919/710646*4106118243^(1/23) 9870002026342035 a001 267914296/28143753123*10749957122^(1/2) 9870002026342035 a001 7778742049/599074578*45537549124^(3/17) 9870002026342035 a001 7778742049/599074578*817138163596^(3/19) 9870002026342035 a001 7778742049/599074578*14662949395604^(1/7) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^23/Lucas(49) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^9/Lucas(42) 9870002026342035 a001 7778742049/599074578*192900153618^(1/6) 9870002026342035 a001 267084832/33281921*4106118243^(5/23) 9870002026342035 a001 267914296/73681302247*10749957122^(13/24) 9870002026342035 a001 225851433717/969323029*141422324^(1/13) 9870002026342035 a001 7778742049/599074578*10749957122^(3/16) 9870002026342035 a001 267914296/119218851371*10749957122^(9/16) 9870002026342035 a001 133957148/96450076809*10749957122^(7/12) 9870002026342035 a001 43133785636/299537289*4106118243^(2/23) 9870002026342035 a001 267914296/505019158607*10749957122^(5/8) 9870002026342035 a001 267914296/1322157322203*10749957122^(2/3) 9870002026342035 a001 267914296/2139295485799*10749957122^(11/16) 9870002026342035 a001 133957148/1730726404001*10749957122^(17/24) 9870002026342035 a001 267914296/9062201101803*10749957122^(3/4) 9870002026342035 a001 267914296/23725150497407*10749957122^(19/24) 9870002026342035 a001 10983760033/199691526*4106118243^(3/23) 9870002026342035 a004 Fibonacci(42)*Lucas(48)/(1/2+sqrt(5)/2)^74 9870002026342035 a001 12586269025/599074578*4106118243^(4/23) 9870002026342035 a001 267913919/710646*1568397607^(1/22) 9870002026342035 a001 133957148/5374978561*4106118243^(11/23) 9870002026342035 a001 267914296/6643838879*17393796001^(3/7) 9870002026342035 a001 267914296/6643838879*45537549124^(7/17) 9870002026342035 a001 2971215073/599074578*312119004989^(1/5) 9870002026342035 a001 267914296/6643838879*14662949395604^(1/3) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^21/Lucas(47) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^11/Lucas(42) 9870002026342035 a001 267914296/6643838879*192900153618^(7/18) 9870002026342035 a001 267914296/6643838879*10749957122^(7/16) 9870002026342035 a001 267914296/28143753123*4106118243^(12/23) 9870002026342035 a001 9238424/599786069*4106118243^(1/2) 9870002026342035 a001 267914296/73681302247*4106118243^(13/23) 9870002026342035 a001 133957148/96450076809*4106118243^(14/23) 9870002026342035 a001 43133785636/299537289*1568397607^(1/11) 9870002026342035 a001 267914296/505019158607*4106118243^(15/23) 9870002026342035 a001 267914296/1322157322203*4106118243^(16/23) 9870002026342035 a001 133957148/1730726404001*4106118243^(17/23) 9870002026342035 a001 267914296/9062201101803*4106118243^(18/23) 9870002026342035 a001 267914296/23725150497407*4106118243^(19/23) 9870002026342035 a001 1836311903/599074578*1568397607^(3/11) 9870002026342035 a001 10983760033/199691526*1568397607^(3/22) 9870002026342035 a004 Fibonacci(42)*Lucas(46)/(1/2+sqrt(5)/2)^72 9870002026342035 a001 12586269025/599074578*1568397607^(2/11) 9870002026342035 a001 267084832/33281921*1568397607^(5/22) 9870002026342035 a001 2971215073/599074578*1568397607^(1/4) 9870002026342035 a001 267914296/4106118243*1568397607^(5/11) 9870002026342035 a001 267913919/710646*599074578^(1/21) 9870002026342035 a001 66978574/634430159*817138163596^(1/3) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^19/Lucas(45) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^13/Lucas(42) 9870002026342035 a001 567451585/299537289*73681302247^(1/4) 9870002026342035 a001 133957148/5374978561*1568397607^(1/2) 9870002026342035 a001 139583862445/599074578*599074578^(1/14) 9870002026342035 a001 267914296/28143753123*1568397607^(6/11) 9870002026342035 a001 267914296/73681302247*1568397607^(13/22) 9870002026342035 a001 133957148/96450076809*1568397607^(7/11) 9870002026342035 a001 43133785636/299537289*599074578^(2/21) 9870002026342035 a001 267914296/505019158607*1568397607^(15/22) 9870002026342035 a001 267914296/1322157322203*1568397607^(8/11) 9870002026342035 a001 267914296/2139295485799*1568397607^(3/4) 9870002026342035 a001 133957148/1730726404001*1568397607^(17/22) 9870002026342035 a001 267914296/9062201101803*1568397607^(9/11) 9870002026342035 a001 267914296/23725150497407*1568397607^(19/22) 9870002026342035 a001 10983760033/199691526*599074578^(1/7) 9870002026342035 a001 102334155/2139295485799*228826127^(7/8) 9870002026342035 a004 Fibonacci(42)*Lucas(44)/(1/2+sqrt(5)/2)^70 9870002026342035 a001 10182505537/299537289*599074578^(1/6) 9870002026342035 a001 233802911/199691526*599074578^(1/3) 9870002026342035 a001 12586269025/599074578*599074578^(4/21) 9870002026342035 a001 7778742049/599074578*599074578^(3/14) 9870002026342035 a001 267084832/33281921*599074578^(5/21) 9870002026342035 a001 1836311903/599074578*599074578^(2/7) 9870002026342035 a001 267914296/1568397607*599074578^(3/7) 9870002026342035 a001 6765/228826126*228826127^(9/10) 9870002026342035 a001 267913919/710646*228826127^(1/20) 9870002026342035 a001 433494437/599074578*2537720636^(1/3) 9870002026342035 a001 267914296/969323029*45537549124^(1/3) 9870002026342035 a001 433494437/599074578*45537549124^(5/17) 9870002026342035 a001 433494437/599074578*312119004989^(3/11) 9870002026342035 a001 433494437/599074578*14662949395604^(5/21) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^17/Lucas(43) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^15/Lucas(42) 9870002026342035 a001 433494437/599074578*192900153618^(5/18) 9870002026342035 a001 433494437/599074578*28143753123^(3/10) 9870002026342035 a001 433494437/599074578*10749957122^(5/16) 9870002026342035 a001 267914296/4106118243*599074578^(10/21) 9870002026342035 a004 Fibonacci(44)*Lucas(43)/(1/2+sqrt(5)/2)^71 9870002026342035 a001 267914296/6643838879*599074578^(1/2) 9870002026342035 a001 133957148/5374978561*599074578^(11/21) 9870002026342035 a001 267914296/28143753123*599074578^(4/7) 9870002026342035 a004 Fibonacci(46)*Lucas(43)/(1/2+sqrt(5)/2)^73 9870002026342035 a004 Fibonacci(48)*Lucas(43)/(1/2+sqrt(5)/2)^75 9870002026342035 a004 Fibonacci(50)*Lucas(43)/(1/2+sqrt(5)/2)^77 9870002026342035 a004 Fibonacci(52)*Lucas(43)/(1/2+sqrt(5)/2)^79 9870002026342035 a004 Fibonacci(54)*Lucas(43)/(1/2+sqrt(5)/2)^81 9870002026342035 a004 Fibonacci(56)*Lucas(43)/(1/2+sqrt(5)/2)^83 9870002026342035 a004 Fibonacci(58)*Lucas(43)/(1/2+sqrt(5)/2)^85 9870002026342035 a004 Fibonacci(60)*Lucas(43)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(62)*Lucas(43)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(64)*Lucas(43)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(66)*Lucas(43)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(68)*Lucas(43)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(70)*Lucas(43)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(72)*Lucas(43)/(1/2+sqrt(5)/2)^99 9870002026342035 a001 2/433494437*(1/2+1/2*5^(1/2))^59 9870002026342035 a004 Fibonacci(73)*Lucas(43)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(71)*Lucas(43)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(69)*Lucas(43)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(67)*Lucas(43)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(65)*Lucas(43)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(63)*Lucas(43)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(61)*Lucas(43)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(59)*Lucas(43)/(1/2+sqrt(5)/2)^86 9870002026342035 a004 Fibonacci(57)*Lucas(43)/(1/2+sqrt(5)/2)^84 9870002026342035 a004 Fibonacci(55)*Lucas(43)/(1/2+sqrt(5)/2)^82 9870002026342035 a004 Fibonacci(53)*Lucas(43)/(1/2+sqrt(5)/2)^80 9870002026342035 a004 Fibonacci(51)*Lucas(43)/(1/2+sqrt(5)/2)^78 9870002026342035 a001 267914296/73681302247*599074578^(13/21) 9870002026342035 a004 Fibonacci(49)*Lucas(43)/(1/2+sqrt(5)/2)^76 9870002026342035 a004 Fibonacci(47)*Lucas(43)/(1/2+sqrt(5)/2)^74 9870002026342035 a001 267914296/119218851371*599074578^(9/14) 9870002026342035 a001 34111385/3020733700601*228826127^(19/20) 9870002026342035 a001 133957148/96450076809*599074578^(2/3) 9870002026342035 a004 Fibonacci(45)*Lucas(43)/(1/2+sqrt(5)/2)^72 9870002026342035 a001 43133785636/299537289*228826127^(1/10) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^16/Lucas(44) 9870002026342035 a001 701408733/1568397607*23725150497407^(1/4) 9870002026342035 a001 701408733/1568397607*73681302247^(4/13) 9870002026342035 a001 701408733/1568397607*10749957122^(1/3) 9870002026342035 a001 267914296/505019158607*599074578^(5/7) 9870002026342035 a001 701408733/1568397607*4106118243^(8/23) 9870002026342035 a001 433494437/599074578*599074578^(5/14) 9870002026342035 a001 701408733/1568397607*1568397607^(4/11) 9870002026342035 a001 267914296/1322157322203*599074578^(16/21) 9870002026342035 a001 267914296/2139295485799*599074578^(11/14) 9870002026342035 a004 Fibonacci(44)*Lucas(45)/(1/2+sqrt(5)/2)^73 9870002026342035 a001 701408733/23725150497407*2537720636^(4/5) 9870002026342035 a001 133957148/1730726404001*599074578^(17/21) 9870002026342035 a001 233802911/1368706081*2537720636^(2/5) 9870002026342035 a001 701408733/14662949395604*2537720636^(7/9) 9870002026342035 a001 701408733/5600748293801*2537720636^(11/15) 9870002026342035 a001 233802911/440719107401*2537720636^(2/3) 9870002026342035 a001 3524667/1568437211*2537720636^(3/5) 9870002026342035 a001 701408733/119218851371*2537720636^(5/9) 9870002026342035 a001 701408733/73681302247*2537720636^(8/15) 9870002026342035 a001 701408733/10749957122*2537720636^(4/9) 9870002026342035 a001 701408733/17393796001*2537720636^(7/15) 9870002026342035 a001 1836311903/1568397607*17393796001^(2/7) 9870002026342035 a001 233802911/1368706081*45537549124^(6/17) 9870002026342035 a001 233802911/1368706081*14662949395604^(2/7) 9870002026342035 a001 1836311903/1568397607*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^18/Lucas(46) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^14/Lucas(44) 9870002026342035 a001 1836311903/1568397607*505019158607^(1/4) 9870002026342035 a001 233802911/1368706081*192900153618^(1/3) 9870002026342035 a001 267914296/5600748293801*599074578^(5/6) 9870002026342035 a001 1836311903/1568397607*10749957122^(7/24) 9870002026342035 a001 233802911/1368706081*10749957122^(3/8) 9870002026342035 a001 686789568/224056801*2537720636^(4/15) 9870002026342035 a001 1836311903/1568397607*4106118243^(7/23) 9870002026342035 a001 233802911/1368706081*4106118243^(9/23) 9870002026342035 a001 12586269025/1568397607*2537720636^(2/9) 9870002026342035 a001 20365011074/1568397607*2537720636^(1/5) 9870002026342035 a004 Fibonacci(44)*Lucas(47)/(1/2+sqrt(5)/2)^75 9870002026342035 a001 86267571272/1568397607*2537720636^(2/15) 9870002026342035 a001 139583862445/1568397607*2537720636^(1/9) 9870002026342035 a001 365435296162/1568397607*2537720636^(1/15) 9870002026342035 a001 686789568/224056801*45537549124^(4/17) 9870002026342035 a001 686789568/224056801*817138163596^(4/19) 9870002026342035 a001 686789568/224056801*14662949395604^(4/21) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^20/Lucas(48) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^12/Lucas(44) 9870002026342035 a001 701408733/10749957122*23725150497407^(5/16) 9870002026342035 a001 701408733/10749957122*505019158607^(5/14) 9870002026342035 a001 686789568/224056801*192900153618^(2/9) 9870002026342035 a001 686789568/224056801*73681302247^(3/13) 9870002026342035 a001 701408733/10749957122*73681302247^(5/13) 9870002026342035 a001 701408733/10749957122*28143753123^(2/5) 9870002026342035 a001 686789568/224056801*10749957122^(1/4) 9870002026342035 a001 701408733/10749957122*10749957122^(5/12) 9870002026342035 a004 Fibonacci(44)*Lucas(49)/(1/2+sqrt(5)/2)^77 9870002026342035 a001 701408733/14662949395604*17393796001^(5/7) 9870002026342035 a001 701408733/505019158607*17393796001^(4/7) 9870002026342035 a001 12586269025/1568397607*312119004989^(2/11) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^22/Lucas(50) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^10/Lucas(44) 9870002026342035 a001 12586269025/1568397607*28143753123^(1/5) 9870002026342035 a004 Fibonacci(44)*Lucas(51)/(1/2+sqrt(5)/2)^79 9870002026342035 a001 701408733/73681302247*45537549124^(8/17) 9870002026342035 a001 53316291173/1568397607*17393796001^(1/7) 9870002026342035 a001 701408733/23725150497407*45537549124^(12/17) 9870002026342035 a001 233802911/3020733700601*45537549124^(2/3) 9870002026342035 a001 701408733/5600748293801*45537549124^(11/17) 9870002026342035 a001 233802911/440719107401*45537549124^(10/17) 9870002026342035 a001 3524667/1568437211*45537549124^(9/17) 9870002026342035 a001 701408733/73681302247*14662949395604^(8/21) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^24/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^8/Lucas(44) 9870002026342035 a001 32951280099/1568397607*23725150497407^(1/8) 9870002026342035 a001 32951280099/1568397607*505019158607^(1/7) 9870002026342035 a001 701408733/73681302247*192900153618^(4/9) 9870002026342035 a001 32951280099/1568397607*73681302247^(2/13) 9870002026342035 a001 701408733/73681302247*73681302247^(6/13) 9870002026342035 a001 86267571272/1568397607*45537549124^(2/17) 9870002026342035 a004 Fibonacci(44)*Lucas(53)/(1/2+sqrt(5)/2)^81 9870002026342035 a001 86267571272/1568397607*14662949395604^(2/21) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^26/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^6/Lucas(44) 9870002026342035 a001 365435296162/1568397607*45537549124^(1/17) 9870002026342035 a004 Fibonacci(44)*Lucas(55)/(1/2+sqrt(5)/2)^83 9870002026342035 a001 701408733/14662949395604*312119004989^(7/11) 9870002026342035 a001 233802911/440719107401*312119004989^(6/11) 9870002026342035 a001 701408733/5600748293801*312119004989^(3/5) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^28/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^4/Lucas(44) 9870002026342035 a001 32264490531/224056801*23725150497407^(1/16) 9870002026342035 a001 701408733/505019158607*505019158607^(1/2) 9870002026342035 a004 Fibonacci(44)*Lucas(57)/(1/2+sqrt(5)/2)^85 9870002026342035 a001 233802911/440719107401*14662949395604^(10/21) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^30/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^2/Lucas(44) 9870002026342035 a004 Fibonacci(44)*Lucas(59)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^32/Lucas(60) 9870002026342035 a006 5^(1/2)*Fibonacci(60)/Lucas(44)/sqrt(5) 9870002026342035 a004 Fibonacci(44)*Lucas(61)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^34/Lucas(62) 9870002026342035 a004 Fibonacci(62)/Lucas(44)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(44)*Lucas(63)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^36/Lucas(64) 9870002026342035 a004 Fibonacci(64)/Lucas(44)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(44)*Lucas(65)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^38/Lucas(66) 9870002026342035 a004 Fibonacci(66)/Lucas(44)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(44)*Lucas(67)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^40/Lucas(68) 9870002026342035 a004 Fibonacci(68)/Lucas(44)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(44)*Lucas(69)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^42/Lucas(70) 9870002026342035 a004 Fibonacci(70)/Lucas(44)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(44)*Lucas(71)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^44/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(44)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^46/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(44)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^48/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(44)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^50/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(44)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^52/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(44)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^54/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(44)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^56/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(44)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^58/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(44)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^60/Lucas(88) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^62/Lucas(90) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^64/Lucas(92) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^66/Lucas(94) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^68/Lucas(96) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^70/Lucas(98) 9870002026342035 a004 Fibonacci(22)*Lucas(22)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^72/Lucas(100) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^71/Lucas(99) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^69/Lucas(97) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^67/Lucas(95) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^65/Lucas(93) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^63/Lucas(91) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^61/Lucas(89) 9870002026342035 a004 Fibonacci(90)/Lucas(44)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(92)/Lucas(44)/(1/2+sqrt(5)/2)^32 9870002026342035 a004 Fibonacci(94)/Lucas(44)/(1/2+sqrt(5)/2)^34 9870002026342035 a004 Fibonacci(96)/Lucas(44)/(1/2+sqrt(5)/2)^36 9870002026342035 a004 Fibonacci(98)/Lucas(44)/(1/2+sqrt(5)/2)^38 9870002026342035 a004 Fibonacci(100)/Lucas(44)/(1/2+sqrt(5)/2)^40 9870002026342035 a004 Fibonacci(99)/Lucas(44)/(1/2+sqrt(5)/2)^39 9870002026342035 a004 Fibonacci(97)/Lucas(44)/(1/2+sqrt(5)/2)^37 9870002026342035 a004 Fibonacci(95)/Lucas(44)/(1/2+sqrt(5)/2)^35 9870002026342035 a004 Fibonacci(93)/Lucas(44)/(1/2+sqrt(5)/2)^33 9870002026342035 a004 Fibonacci(91)/Lucas(44)/(1/2+sqrt(5)/2)^31 9870002026342035 a004 Fibonacci(89)/Lucas(44)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^59/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(44)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^57/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(44)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^55/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(44)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^53/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(44)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^51/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(44)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^49/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(44)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^47/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(44)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^45/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(44)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(44)*Lucas(72)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^43/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(44)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(44)*Lucas(70)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^41/Lucas(69) 9870002026342035 a004 Fibonacci(69)/Lucas(44)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(44)*Lucas(68)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^39/Lucas(67) 9870002026342035 a004 Fibonacci(67)/Lucas(44)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(44)*Lucas(66)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^37/Lucas(65) 9870002026342035 a004 Fibonacci(65)/Lucas(44)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(44)*Lucas(64)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^35/Lucas(63) 9870002026342035 a004 Fibonacci(63)/Lucas(44)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(44)*Lucas(62)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^33/Lucas(61) 9870002026342035 a004 Fibonacci(61)/Lucas(44)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(44)*Lucas(60)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^31/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)/Lucas(44) 9870002026342035 a004 Fibonacci(44)*Lucas(58)/(1/2+sqrt(5)/2)^86 9870002026342035 a001 365435296162/1568397607*14662949395604^(1/21) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^29/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^3/Lucas(44) 9870002026342035 a001 701408733/817138163596*1322157322203^(1/2) 9870002026342035 a001 701408733/14662949395604*505019158607^(5/8) 9870002026342035 a001 701408733/23725150497407*505019158607^(9/14) 9870002026342035 a001 365435296162/1568397607*192900153618^(1/18) 9870002026342035 a004 Fibonacci(44)*Lucas(56)/(1/2+sqrt(5)/2)^84 9870002026342035 a001 139583862445/1568397607*312119004989^(1/11) 9870002026342035 a001 3524667/1568437211*817138163596^(9/19) 9870002026342035 a001 32264490531/224056801*73681302247^(1/13) 9870002026342035 a001 3524667/1568437211*14662949395604^(3/7) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^27/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^5/Lucas(44) 9870002026342035 a001 233802911/440719107401*192900153618^(5/9) 9870002026342035 a001 701408733/5600748293801*192900153618^(11/18) 9870002026342035 a001 701408733/23725150497407*192900153618^(2/3) 9870002026342035 a001 3524667/1568437211*192900153618^(1/2) 9870002026342035 a004 Fibonacci(44)*Lucas(54)/(1/2+sqrt(5)/2)^82 9870002026342035 a001 233802911/64300051206*73681302247^(1/2) 9870002026342035 a001 701408733/119218851371*312119004989^(5/11) 9870002026342035 a001 53316291173/1568397607*14662949395604^(1/9) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^25/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^7/Lucas(44) 9870002026342035 a001 701408733/119218851371*3461452808002^(5/12) 9870002026342035 a001 701408733/505019158607*73681302247^(7/13) 9870002026342035 a001 701408733/3461452808002*73681302247^(8/13) 9870002026342035 a001 701408733/23725150497407*73681302247^(9/13) 9870002026342035 a001 139583862445/1568397607*28143753123^(1/10) 9870002026342035 a004 Fibonacci(44)*Lucas(52)/(1/2+sqrt(5)/2)^80 9870002026342035 a001 591286729879/1568397607*10749957122^(1/24) 9870002026342035 a001 20365011074/1568397607*45537549124^(3/17) 9870002026342035 a001 20365011074/1568397607*817138163596^(3/19) 9870002026342035 a001 20365011074/1568397607*14662949395604^(1/7) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^23/Lucas(51) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^9/Lucas(44) 9870002026342035 a001 20365011074/1568397607*192900153618^(1/6) 9870002026342035 a001 12586269025/1568397607*10749957122^(5/24) 9870002026342035 a001 365435296162/1568397607*10749957122^(1/16) 9870002026342035 a001 701408733/119218851371*28143753123^(1/2) 9870002026342035 a001 32264490531/224056801*10749957122^(1/12) 9870002026342035 a001 233802911/440719107401*28143753123^(3/5) 9870002026342035 a001 701408733/14662949395604*28143753123^(7/10) 9870002026342035 a001 86267571272/1568397607*10749957122^(1/8) 9870002026342035 a001 32951280099/1568397607*10749957122^(1/6) 9870002026342035 a004 Fibonacci(44)*Lucas(50)/(1/2+sqrt(5)/2)^78 9870002026342035 a001 701408733/17393796001*17393796001^(3/7) 9870002026342035 a001 20365011074/1568397607*10749957122^(3/16) 9870002026342035 a001 591286729879/1568397607*4106118243^(1/23) 9870002026342035 a001 233802911/9381251041*10749957122^(11/24) 9870002026342035 a001 701408733/17393796001*45537549124^(7/17) 9870002026342035 a001 701408733/17393796001*14662949395604^(1/3) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^21/Lucas(49) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^11/Lucas(44) 9870002026342035 a001 701408733/17393796001*192900153618^(7/18) 9870002026342035 a001 701408733/73681302247*10749957122^(1/2) 9870002026342035 a001 233802911/64300051206*10749957122^(13/24) 9870002026342035 a001 3524667/1568437211*10749957122^(9/16) 9870002026342035 a001 701408733/505019158607*10749957122^(7/12) 9870002026342035 a001 32264490531/224056801*4106118243^(2/23) 9870002026342035 a001 233802911/440719107401*10749957122^(5/8) 9870002026342035 a001 701408733/3461452808002*10749957122^(2/3) 9870002026342035 a001 701408733/5600748293801*10749957122^(11/16) 9870002026342035 a001 233802911/3020733700601*10749957122^(17/24) 9870002026342035 a001 701408733/23725150497407*10749957122^(3/4) 9870002026342035 a001 686789568/224056801*4106118243^(6/23) 9870002026342035 a001 701408733/17393796001*10749957122^(7/16) 9870002026342035 a001 53316291173/599074578*228826127^(1/8) 9870002026342035 a001 86267571272/1568397607*4106118243^(3/23) 9870002026342035 a001 267914296/9062201101803*599074578^(6/7) 9870002026342035 a004 Fibonacci(44)*Lucas(48)/(1/2+sqrt(5)/2)^76 9870002026342035 a001 20365011074/370248451*141422324^(2/13) 9870002026342035 a001 32951280099/1568397607*4106118243^(4/23) 9870002026342035 a001 12586269025/1568397607*4106118243^(5/23) 9870002026342035 a001 701408733/10749957122*4106118243^(10/23) 9870002026342035 a001 591286729879/1568397607*1568397607^(1/22) 9870002026342035 a001 701408733/6643838879*817138163596^(1/3) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^19/Lucas(47) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^13/Lucas(44) 9870002026342035 a001 2971215073/1568397607*73681302247^(1/4) 9870002026342035 a001 233802911/9381251041*4106118243^(11/23) 9870002026342035 a001 701408733/45537549124*4106118243^(1/2) 9870002026342035 a001 701408733/73681302247*4106118243^(12/23) 9870002026342035 a001 233802911/64300051206*4106118243^(13/23) 9870002026342035 a001 701408733/505019158607*4106118243^(14/23) 9870002026342035 a001 32264490531/224056801*1568397607^(1/11) 9870002026342035 a001 233802911/440719107401*4106118243^(15/23) 9870002026342035 a001 701408733/3461452808002*4106118243^(16/23) 9870002026342035 a001 233802911/3020733700601*4106118243^(17/23) 9870002026342035 a001 701408733/23725150497407*4106118243^(18/23) 9870002026342035 a001 86267571272/1568397607*1568397607^(3/22) 9870002026342035 a004 Fibonacci(44)*Lucas(46)/(1/2+sqrt(5)/2)^74 9870002026342035 a001 1836311903/1568397607*1568397607^(7/22) 9870002026342035 a001 32951280099/1568397607*1568397607^(2/11) 9870002026342035 a001 12586269025/1568397607*1568397607^(5/22) 9870002026342035 a001 686789568/224056801*1568397607^(3/11) 9870002026342035 a001 1134903170/1568397607*2537720636^(1/3) 9870002026342035 a001 7778742049/1568397607*1568397607^(1/4) 9870002026342035 a001 233802911/1368706081*1568397607^(9/22) 9870002026342035 a001 591286729879/1568397607*599074578^(1/21) 9870002026342035 a001 267914296/23725150497407*599074578^(19/21) 9870002026342035 a001 701408733/2537720636*45537549124^(1/3) 9870002026342035 a001 1134903170/1568397607*45537549124^(5/17) 9870002026342035 a001 1134903170/1568397607*312119004989^(3/11) 9870002026342035 a001 1134903170/1568397607*14662949395604^(5/21) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^17/Lucas(45) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^15/Lucas(44) 9870002026342035 a001 1134903170/1568397607*192900153618^(5/18) 9870002026342035 a001 1134903170/1568397607*28143753123^(3/10) 9870002026342035 a001 1134903170/1568397607*10749957122^(5/16) 9870002026342035 a001 701408733/10749957122*1568397607^(5/11) 9870002026342035 a004 Fibonacci(46)*Lucas(45)/(1/2+sqrt(5)/2)^75 9870002026342035 a001 365435296162/1568397607*599074578^(1/14) 9870002026342035 a001 233802911/9381251041*1568397607^(1/2) 9870002026342035 a001 701408733/73681302247*1568397607^(6/11) 9870002026342035 a001 1836311903/14662949395604*2537720636^(11/15) 9870002026342035 a001 233802911/64300051206*1568397607^(13/22) 9870002026342035 a004 Fibonacci(48)*Lucas(45)/(1/2+sqrt(5)/2)^77 9870002026342035 a001 1836311903/3461452808002*2537720636^(2/3) 9870002026342035 a004 Fibonacci(50)*Lucas(45)/(1/2+sqrt(5)/2)^79 9870002026342035 a004 Fibonacci(52)*Lucas(45)/(1/2+sqrt(5)/2)^81 9870002026342035 a004 Fibonacci(54)*Lucas(45)/(1/2+sqrt(5)/2)^83 9870002026342035 a004 Fibonacci(56)*Lucas(45)/(1/2+sqrt(5)/2)^85 9870002026342035 a004 Fibonacci(58)*Lucas(45)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(60)*Lucas(45)/(1/2+sqrt(5)/2)^89 9870002026342035 a001 5600748293801/1134903170*8^(1/3) 9870002026342035 a004 Fibonacci(62)*Lucas(45)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(64)*Lucas(45)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(66)*Lucas(45)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(68)*Lucas(45)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(70)*Lucas(45)/(1/2+sqrt(5)/2)^99 9870002026342035 a001 1/567451585*(1/2+1/2*5^(1/2))^61 9870002026342035 a004 Fibonacci(71)*Lucas(45)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(69)*Lucas(45)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(67)*Lucas(45)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(65)*Lucas(45)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(63)*Lucas(45)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(61)*Lucas(45)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(59)*Lucas(45)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(57)*Lucas(45)/(1/2+sqrt(5)/2)^86 9870002026342035 a004 Fibonacci(55)*Lucas(45)/(1/2+sqrt(5)/2)^84 9870002026342035 a004 Fibonacci(53)*Lucas(45)/(1/2+sqrt(5)/2)^82 9870002026342035 a004 Fibonacci(51)*Lucas(45)/(1/2+sqrt(5)/2)^80 9870002026342035 a001 1836311903/817138163596*2537720636^(3/5) 9870002026342035 a004 Fibonacci(49)*Lucas(45)/(1/2+sqrt(5)/2)^78 9870002026342035 a001 701408733/505019158607*1568397607^(7/11) 9870002026342035 a001 1836311903/312119004989*2537720636^(5/9) 9870002026342035 a001 1836311903/192900153618*2537720636^(8/15) 9870002026342035 a001 32264490531/224056801*599074578^(2/21) 9870002026342035 a004 Fibonacci(47)*Lucas(45)/(1/2+sqrt(5)/2)^76 9870002026342035 a001 1836311903/45537549124*2537720636^(7/15) 9870002026342035 a001 1836311903/10749957122*2537720636^(2/5) 9870002026342035 a001 1836311903/28143753123*2537720636^(4/9) 9870002026342035 a001 233802911/440719107401*1568397607^(15/22) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^16/Lucas(46) 9870002026342035 a001 1836311903/4106118243*23725150497407^(1/4) 9870002026342035 a001 1836311903/4106118243*73681302247^(4/13) 9870002026342035 a001 1836311903/4106118243*10749957122^(1/3) 9870002026342035 a001 1602508992/3020733700601*2537720636^(2/3) 9870002026342035 a001 701408733/3461452808002*1568397607^(8/11) 9870002026342035 a001 12586269025/23725150497407*2537720636^(2/3) 9870002026342035 a001 12586269025/4106118243*2537720636^(4/15) 9870002026342035 a001 4807526976/2139295485799*2537720636^(3/5) 9870002026342035 a001 701408733/5600748293801*1568397607^(3/4) 9870002026342035 a001 7778742049/14662949395604*2537720636^(2/3) 9870002026342035 a001 1836311903/4106118243*4106118243^(8/23) 9870002026342035 a001 1201881744/204284540899*2537720636^(5/9) 9870002026342035 a001 12586269025/5600748293801*2537720636^(3/5) 9870002026342035 a001 10983760033/1368706081*2537720636^(2/9) 9870002026342035 a001 32951280099/14662949395604*2537720636^(3/5) 9870002026342035 a001 53316291173/23725150497407*2537720636^(3/5) 9870002026342035 a001 20365011074/9062201101803*2537720636^(3/5) 9870002026342035 a001 233802911/3020733700601*1568397607^(17/22) 9870002026342035 a001 102287808/10745088481*2537720636^(8/15) 9870002026342035 a001 2971215073/23725150497407*2537720636^(11/15) 9870002026342035 a001 53316291173/4106118243*2537720636^(1/5) 9870002026342035 a001 7778742049/3461452808002*2537720636^(3/5) 9870002026342035 a001 2971215073/4106118243*2537720636^(1/3) 9870002026342035 a001 12586269025/2139295485799*2537720636^(5/9) 9870002026342035 a001 32951280099/5600748293801*2537720636^(5/9) 9870002026342035 a001 1135099622/192933544679*2537720636^(5/9) 9870002026342035 a001 139583862445/23725150497407*2537720636^(5/9) 9870002026342035 a001 53316291173/9062201101803*2537720636^(5/9) 9870002026342035 a001 10182505537/1730726404001*2537720636^(5/9) 9870002026342035 a001 12586269025/1322157322203*2537720636^(8/15) 9870002026342035 a001 32951280099/3461452808002*2537720636^(8/15) 9870002026342035 a001 7778742049/1322157322203*2537720636^(5/9) 9870002026342035 a001 86267571272/9062201101803*2537720636^(8/15) 9870002026342035 a001 225851433717/23725150497407*2537720636^(8/15) 9870002026342035 a001 139583862445/14662949395604*2537720636^(8/15) 9870002026342035 a001 53316291173/5600748293801*2537720636^(8/15) 9870002026342035 a001 20365011074/2139295485799*2537720636^(8/15) 9870002026342035 a004 Fibonacci(46)*Lucas(47)/(1/2+sqrt(5)/2)^77 9870002026342035 a001 4807526976/119218851371*2537720636^(7/15) 9870002026342035 a001 2971215073/5600748293801*2537720636^(2/3) 9870002026342035 a001 75283811239/1368706081*2537720636^(2/15) 9870002026342035 a001 7778742049/817138163596*2537720636^(8/15) 9870002026342035 a001 686789568/10525900321*2537720636^(4/9) 9870002026342035 a001 365435296162/4106118243*2537720636^(1/9) 9870002026342035 a001 701408733/23725150497407*1568397607^(9/11) 9870002026342035 a001 1144206275/28374454999*2537720636^(7/15) 9870002026342035 a001 32951280099/817138163596*2537720636^(7/15) 9870002026342035 a001 86267571272/2139295485799*2537720636^(7/15) 9870002026342035 a001 225851433717/5600748293801*2537720636^(7/15) 9870002026342035 a001 591286729879/14662949395604*2537720636^(7/15) 9870002026342035 a001 365435296162/9062201101803*2537720636^(7/15) 9870002026342035 a001 139583862445/3461452808002*2537720636^(7/15) 9870002026342035 a001 53316291173/1322157322203*2537720636^(7/15) 9870002026342035 a001 1602508992/9381251041*2537720636^(2/5) 9870002026342035 a001 20365011074/505019158607*2537720636^(7/15) 9870002026342035 a001 2971215073/1322157322203*2537720636^(3/5) 9870002026342035 a001 12586269025/192900153618*2537720636^(4/9) 9870002026342035 a001 956722026041/4106118243*2537720636^(1/15) 9870002026342035 a001 32951280099/505019158607*2537720636^(4/9) 9870002026342035 a001 7778742049/192900153618*2537720636^(7/15) 9870002026342035 a001 86267571272/1322157322203*2537720636^(4/9) 9870002026342035 a001 32264490531/494493258286*2537720636^(4/9) 9870002026342035 a001 591286729879/9062201101803*2537720636^(4/9) 9870002026342035 a001 1548008755920/23725150497407*2537720636^(4/9) 9870002026342035 a001 365435296162/5600748293801*2537720636^(4/9) 9870002026342035 a001 139583862445/2139295485799*2537720636^(4/9) 9870002026342035 a001 53316291173/817138163596*2537720636^(4/9) 9870002026342035 a001 1602508992/1368706081*17393796001^(2/7) 9870002026342035 a001 20365011074/312119004989*2537720636^(4/9) 9870002026342035 a001 1836311903/10749957122*45537549124^(6/17) 9870002026342035 a001 1836311903/10749957122*14662949395604^(2/7) 9870002026342035 a001 1602508992/1368706081*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^18/Lucas(48) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^14/Lucas(46) 9870002026342035 a001 1602508992/1368706081*505019158607^(1/4) 9870002026342035 a001 1836311903/10749957122*192900153618^(1/3) 9870002026342035 a001 7778742049/119218851371*2537720636^(4/9) 9870002026342035 a001 1602508992/1368706081*10749957122^(7/24) 9870002026342035 a001 1836311903/10749957122*10749957122^(3/8) 9870002026342035 a001 2971215073/505019158607*2537720636^(5/9) 9870002026342035 a001 12586269025/73681302247*2537720636^(2/5) 9870002026342035 a004 Fibonacci(46)*Lucas(49)/(1/2+sqrt(5)/2)^79 9870002026342035 a001 10983760033/64300051206*2537720636^(2/5) 9870002026342035 a001 86267571272/505019158607*2537720636^(2/5) 9870002026342035 a001 75283811239/440719107401*2537720636^(2/5) 9870002026342035 a001 2504730781961/14662949395604*2537720636^(2/5) 9870002026342035 a001 139583862445/817138163596*2537720636^(2/5) 9870002026342035 a001 53316291173/312119004989*2537720636^(2/5) 9870002026342035 a001 20365011074/119218851371*2537720636^(2/5) 9870002026342035 a001 1836311903/1322157322203*17393796001^(4/7) 9870002026342035 a001 12586269025/4106118243*45537549124^(4/17) 9870002026342035 a001 12586269025/4106118243*817138163596^(4/19) 9870002026342035 a001 12586269025/4106118243*14662949395604^(4/21) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^20/Lucas(50) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^12/Lucas(46) 9870002026342035 a001 1836311903/28143753123*505019158607^(5/14) 9870002026342035 a001 12586269025/4106118243*192900153618^(2/9) 9870002026342035 a001 12586269025/4106118243*73681302247^(3/13) 9870002026342035 a001 1836311903/28143753123*73681302247^(5/13) 9870002026342035 a001 1836311903/45537549124*17393796001^(3/7) 9870002026342035 a001 2971215073/312119004989*2537720636^(8/15) 9870002026342035 a001 1836311903/28143753123*28143753123^(2/5) 9870002026342035 a004 Fibonacci(46)*Lucas(51)/(1/2+sqrt(5)/2)^81 9870002026342035 a001 139583862445/4106118243*17393796001^(1/7) 9870002026342035 a001 1836311903/23725150497407*45537549124^(2/3) 9870002026342035 a001 1836311903/14662949395604*45537549124^(11/17) 9870002026342035 a001 1836311903/3461452808002*45537549124^(10/17) 9870002026342035 a001 1836311903/192900153618*45537549124^(8/17) 9870002026342035 a001 1836311903/817138163596*45537549124^(9/17) 9870002026342035 a001 1836311903/73681302247*312119004989^(2/5) 9870002026342035 a001 10983760033/1368706081*312119004989^(2/11) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^22/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^10/Lucas(46) 9870002026342035 a004 Fibonacci(46)*Lucas(53)/(1/2+sqrt(5)/2)^83 9870002026342035 a001 75283811239/1368706081*45537549124^(2/17) 9870002026342035 a001 956722026041/4106118243*45537549124^(1/17) 9870002026342035 a001 1836311903/192900153618*14662949395604^(8/21) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^24/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^8/Lucas(46) 9870002026342035 a001 86267571272/4106118243*23725150497407^(1/8) 9870002026342035 a001 86267571272/4106118243*505019158607^(1/7) 9870002026342035 a001 1836311903/192900153618*192900153618^(4/9) 9870002026342035 a001 53316291173/4106118243*45537549124^(3/17) 9870002026342035 a004 Fibonacci(46)*Lucas(55)/(1/2+sqrt(5)/2)^85 9870002026342035 a001 1836311903/14662949395604*312119004989^(3/5) 9870002026342035 a001 1836311903/3461452808002*312119004989^(6/11) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^26/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^6/Lucas(46) 9870002026342035 a004 Fibonacci(46)*Lucas(57)/(1/2+sqrt(5)/2)^87 9870002026342035 a001 1836311903/14662949395604*817138163596^(11/19) 9870002026342035 a001 1836311903/1322157322203*14662949395604^(4/9) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^28/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^4/Lucas(46) 9870002026342035 a001 591286729879/4106118243*23725150497407^(1/16) 9870002026342035 a004 Fibonacci(46)*Lucas(59)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^30/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^2/Lucas(46) 9870002026342035 a004 Fibonacci(46)*Lucas(61)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^32/Lucas(62) 9870002026342035 a004 Fibonacci(46)*Lucas(63)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^34/Lucas(64) 9870002026342035 a004 Fibonacci(64)/Lucas(46)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(46)*Lucas(65)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^36/Lucas(66) 9870002026342035 a004 Fibonacci(66)/Lucas(46)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(46)*Lucas(67)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^38/Lucas(68) 9870002026342035 a004 Fibonacci(68)/Lucas(46)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(46)*Lucas(69)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^40/Lucas(70) 9870002026342035 a004 Fibonacci(70)/Lucas(46)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^42/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(46)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^44/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(46)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^46/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(46)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^48/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(46)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^50/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(46)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^52/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(46)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^54/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(46)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^56/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(46)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^58/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(46)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^60/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(46)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^62/Lucas(92) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^64/Lucas(94) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^66/Lucas(96) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^68/Lucas(98) 9870002026342035 a004 Fibonacci(23)*Lucas(23)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^70/Lucas(100) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^69/Lucas(99) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^67/Lucas(97) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^65/Lucas(95) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^63/Lucas(93) 9870002026342035 a004 Fibonacci(94)/Lucas(46)/(1/2+sqrt(5)/2)^32 9870002026342035 a004 Fibonacci(96)/Lucas(46)/(1/2+sqrt(5)/2)^34 9870002026342035 a004 Fibonacci(98)/Lucas(46)/(1/2+sqrt(5)/2)^36 9870002026342035 a004 Fibonacci(100)/Lucas(46)/(1/2+sqrt(5)/2)^38 9870002026342035 a004 Fibonacci(99)/Lucas(46)/(1/2+sqrt(5)/2)^37 9870002026342035 a004 Fibonacci(97)/Lucas(46)/(1/2+sqrt(5)/2)^35 9870002026342035 a004 Fibonacci(95)/Lucas(46)/(1/2+sqrt(5)/2)^33 9870002026342035 a004 Fibonacci(93)/Lucas(46)/(1/2+sqrt(5)/2)^31 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^61/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(46)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^59/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(46)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^57/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(46)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^55/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(46)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^53/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(46)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^51/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(46)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^49/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(46)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^47/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(46)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^45/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(46)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^43/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(46)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^41/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(46)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(46)*Lucas(70)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^39/Lucas(69) 9870002026342035 a004 Fibonacci(69)/Lucas(46)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(46)*Lucas(68)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^37/Lucas(67) 9870002026342035 a004 Fibonacci(67)/Lucas(46)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(46)*Lucas(66)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^35/Lucas(65) 9870002026342035 a004 Fibonacci(65)/Lucas(46)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(46)*Lucas(64)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^33/Lucas(63) 9870002026342035 a004 Fibonacci(63)/Lucas(46)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(46)*Lucas(62)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^31/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)/Lucas(46) 9870002026342035 a001 1836311903/5600748293801*9062201101803^(1/2) 9870002026342035 a004 Fibonacci(46)*Lucas(60)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^29/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^3/Lucas(46) 9870002026342035 a001 1836311903/2139295485799*1322157322203^(1/2) 9870002026342035 a004 Fibonacci(46)*Lucas(58)/(1/2+sqrt(5)/2)^88 9870002026342035 a001 1836311903/1322157322203*505019158607^(1/2) 9870002026342035 a001 86267571272/4106118243*73681302247^(2/13) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^27/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^5/Lucas(46) 9870002026342035 a004 Fibonacci(46)*Lucas(56)/(1/2+sqrt(5)/2)^86 9870002026342035 a001 139583862445/4106118243*14662949395604^(1/9) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^25/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^7/Lucas(46) 9870002026342035 a001 1836311903/312119004989*3461452808002^(5/12) 9870002026342035 a001 591286729879/4106118243*73681302247^(1/13) 9870002026342035 a001 1836311903/3461452808002*192900153618^(5/9) 9870002026342035 a001 1836311903/14662949395604*192900153618^(11/18) 9870002026342035 a004 Fibonacci(46)*Lucas(54)/(1/2+sqrt(5)/2)^84 9870002026342035 a001 1836311903/192900153618*73681302247^(6/13) 9870002026342035 a001 10983760033/1368706081*28143753123^(1/5) 9870002026342035 a001 53316291173/4106118243*817138163596^(3/19) 9870002026342035 a001 53316291173/4106118243*14662949395604^(1/7) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^23/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^9/Lucas(46) 9870002026342035 a001 53316291173/4106118243*192900153618^(1/6) 9870002026342035 a001 1836311903/505019158607*73681302247^(1/2) 9870002026342035 a001 1836311903/1322157322203*73681302247^(7/13) 9870002026342035 a001 1836311903/9062201101803*73681302247^(8/13) 9870002026342035 a001 365435296162/4106118243*28143753123^(1/10) 9870002026342035 a004 Fibonacci(46)*Lucas(52)/(1/2+sqrt(5)/2)^82 9870002026342035 a001 1836311903/45537549124*45537549124^(7/17) 9870002026342035 a001 516002918640/1368706081*10749957122^(1/24) 9870002026342035 a001 20365011074/4106118243*312119004989^(1/5) 9870002026342035 a001 1836311903/45537549124*14662949395604^(1/3) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^21/Lucas(51) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^11/Lucas(46) 9870002026342035 a001 1836311903/45537549124*192900153618^(7/18) 9870002026342035 a001 956722026041/4106118243*10749957122^(1/16) 9870002026342035 a001 1836311903/312119004989*28143753123^(1/2) 9870002026342035 a001 591286729879/4106118243*10749957122^(1/12) 9870002026342035 a001 1836311903/3461452808002*28143753123^(3/5) 9870002026342035 a001 12586269025/4106118243*10749957122^(1/4) 9870002026342035 a001 7778742049/45537549124*2537720636^(2/5) 9870002026342035 a001 75283811239/1368706081*10749957122^(1/8) 9870002026342035 a004 Fibonacci(46)*Lucas(50)/(1/2+sqrt(5)/2)^80 9870002026342035 a001 86267571272/4106118243*10749957122^(1/6) 9870002026342035 a001 10983760033/1368706081*10749957122^(5/24) 9870002026342035 a001 53316291173/4106118243*10749957122^(3/16) 9870002026342035 a001 7778742049/10749957122*2537720636^(1/3) 9870002026342035 a001 1836311903/28143753123*10749957122^(5/12) 9870002026342035 a001 516002918640/1368706081*4106118243^(1/23) 9870002026342035 a001 1836311903/17393796001*817138163596^(1/3) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^19/Lucas(49) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^13/Lucas(46) 9870002026342035 a001 7778742049/4106118243*73681302247^(1/4) 9870002026342035 a001 1836311903/73681302247*10749957122^(11/24) 9870002026342035 a001 1836311903/45537549124*10749957122^(7/16) 9870002026342035 a001 1836311903/192900153618*10749957122^(1/2) 9870002026342035 a001 1836311903/505019158607*10749957122^(13/24) 9870002026342035 a001 1836311903/817138163596*10749957122^(9/16) 9870002026342035 a001 1836311903/1322157322203*10749957122^(7/12) 9870002026342035 a001 591286729879/4106118243*4106118243^(2/23) 9870002026342035 a001 1836311903/3461452808002*10749957122^(5/8) 9870002026342035 a001 1836311903/9062201101803*10749957122^(2/3) 9870002026342035 a001 1836311903/14662949395604*10749957122^(11/16) 9870002026342035 a001 1836311903/23725150497407*10749957122^(17/24) 9870002026342035 a001 20365011074/28143753123*2537720636^(1/3) 9870002026342035 a001 53316291173/73681302247*2537720636^(1/3) 9870002026342035 a001 139583862445/192900153618*2537720636^(1/3) 9870002026342035 a001 365435296162/505019158607*2537720636^(1/3) 9870002026342035 a001 10610209857723/14662949395604*2537720636^(1/3) 9870002026342035 a001 591286729879/817138163596*2537720636^(1/3) 9870002026342035 a001 225851433717/312119004989*2537720636^(1/3) 9870002026342035 a001 86267571272/119218851371*2537720636^(1/3) 9870002026342035 a001 75283811239/1368706081*4106118243^(3/23) 9870002026342035 a001 32951280099/45537549124*2537720636^(1/3) 9870002026342035 a004 Fibonacci(46)*Lucas(48)/(1/2+sqrt(5)/2)^78 9870002026342035 a001 32951280099/10749957122*2537720636^(4/15) 9870002026342035 a001 2971215073/73681302247*2537720636^(7/15) 9870002026342035 a001 1602508992/1368706081*4106118243^(7/23) 9870002026342035 a001 12586269025/17393796001*2537720636^(1/3) 9870002026342035 a001 86267571272/4106118243*4106118243^(4/23) 9870002026342035 a001 10983760033/1368706081*4106118243^(5/23) 9870002026342035 a001 2971215073/45537549124*2537720636^(4/9) 9870002026342035 a001 12586269025/4106118243*4106118243^(6/23) 9870002026342035 a001 1836311903/10749957122*4106118243^(9/23) 9870002026342035 a001 43133785636/5374978561*2537720636^(2/9) 9870002026342035 a001 86267571272/28143753123*2537720636^(4/15) 9870002026342035 a001 32264490531/10525900321*2537720636^(4/15) 9870002026342035 a001 591286729879/192900153618*2537720636^(4/15) 9870002026342035 a001 1548008755920/505019158607*2537720636^(4/15) 9870002026342035 a001 1515744265389/494493258286*2537720636^(4/15) 9870002026342035 a001 2504730781961/817138163596*2537720636^(4/15) 9870002026342035 a001 956722026041/312119004989*2537720636^(4/15) 9870002026342035 a001 365435296162/119218851371*2537720636^(4/15) 9870002026342035 a001 139583862445/45537549124*2537720636^(4/15) 9870002026342035 a001 516002918640/1368706081*1568397607^(1/22) 9870002026342035 a001 139583862445/10749957122*2537720636^(1/5) 9870002026342035 a001 53316291173/17393796001*2537720636^(4/15) 9870002026342035 a001 4807526976/6643838879*2537720636^(1/3) 9870002026342035 a001 1836311903/6643838879*45537549124^(1/3) 9870002026342035 a001 2971215073/4106118243*45537549124^(5/17) 9870002026342035 a001 2971215073/4106118243*312119004989^(3/11) 9870002026342035 a001 2971215073/4106118243*14662949395604^(5/21) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^17/Lucas(47) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^15/Lucas(46) 9870002026342035 a001 2971215073/4106118243*192900153618^(5/18) 9870002026342035 a001 2971215073/4106118243*28143753123^(3/10) 9870002026342035 a001 2971215073/17393796001*2537720636^(2/5) 9870002026342035 a001 75283811239/9381251041*2537720636^(2/9) 9870002026342035 a001 1836311903/28143753123*4106118243^(10/23) 9870002026342035 a001 591286729879/73681302247*2537720636^(2/9) 9870002026342035 a001 86000486440/10716675201*2537720636^(2/9) 9870002026342035 a001 4052739537881/505019158607*2537720636^(2/9) 9870002026342035 a001 3536736619241/440719107401*2537720636^(2/9) 9870002026342035 a001 3278735159921/408569081798*2537720636^(2/9) 9870002026342035 a001 2504730781961/312119004989*2537720636^(2/9) 9870002026342035 a001 956722026041/119218851371*2537720636^(2/9) 9870002026342035 a001 182717648081/22768774562*2537720636^(2/9) 9870002026342035 a001 2971215073/4106118243*10749957122^(5/16) 9870002026342035 a001 365435296162/28143753123*2537720636^(1/5) 9870002026342035 a004 Fibonacci(48)*Lucas(47)/(1/2+sqrt(5)/2)^79 9870002026342035 a001 956722026041/73681302247*2537720636^(1/5) 9870002026342035 a001 139583862445/17393796001*2537720636^(2/9) 9870002026342035 a001 1836311903/73681302247*4106118243^(11/23) 9870002026342035 a001 2504730781961/192900153618*2537720636^(1/5) 9870002026342035 a001 10610209857723/817138163596*2537720636^(1/5) 9870002026342035 a001 4052739537881/312119004989*2537720636^(1/5) 9870002026342035 a001 1548008755920/119218851371*2537720636^(1/5) 9870002026342035 a001 591286729879/45537549124*2537720636^(1/5) 9870002026342035 a001 1836311903/119218851371*4106118243^(1/2) 9870002026342035 a001 591286729879/10749957122*2537720636^(2/15) 9870002026342035 a001 1836311903/192900153618*4106118243^(12/23) 9870002026342035 a001 7787980473/599786069*2537720636^(1/5) 9870002026342035 a001 956722026041/10749957122*2537720636^(1/9) 9870002026342035 a001 1836311903/505019158607*4106118243^(13/23) 9870002026342035 a004 Fibonacci(50)*Lucas(47)/(1/2+sqrt(5)/2)^81 9870002026342035 a001 1836311903/1322157322203*4106118243^(14/23) 9870002026342035 a004 Fibonacci(52)*Lucas(47)/(1/2+sqrt(5)/2)^83 9870002026342035 a004 Fibonacci(54)*Lucas(47)/(1/2+sqrt(5)/2)^85 9870002026342035 a004 Fibonacci(56)*Lucas(47)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(58)*Lucas(47)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(60)*Lucas(47)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(62)*Lucas(47)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(64)*Lucas(47)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(66)*Lucas(47)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(68)*Lucas(47)/(1/2+sqrt(5)/2)^99 9870002026342035 a001 2/2971215073*(1/2+1/2*5^(1/2))^63 9870002026342035 a004 Fibonacci(69)*Lucas(47)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(67)*Lucas(47)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(65)*Lucas(47)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(63)*Lucas(47)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(61)*Lucas(47)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(59)*Lucas(47)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(57)*Lucas(47)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(55)*Lucas(47)/(1/2+sqrt(5)/2)^86 9870002026342035 a004 Fibonacci(53)*Lucas(47)/(1/2+sqrt(5)/2)^84 9870002026342035 a001 591286729879/4106118243*1568397607^(1/11) 9870002026342035 a004 Fibonacci(51)*Lucas(47)/(1/2+sqrt(5)/2)^82 9870002026342035 a001 12585437040/228811001*2537720636^(2/15) 9870002026342035 a001 4052739537881/73681302247*2537720636^(2/15) 9870002026342035 a001 3536736619241/64300051206*2537720636^(2/15) 9870002026342035 a001 6557470319842/119218851371*2537720636^(2/15) 9870002026342035 a001 1836311903/3461452808002*4106118243^(15/23) 9870002026342035 a001 2504730781961/45537549124*2537720636^(2/15) 9870002026342035 a004 Fibonacci(49)*Lucas(47)/(1/2+sqrt(5)/2)^80 9870002026342035 a001 2504730781961/10749957122*2537720636^(1/15) 9870002026342035 a001 2504730781961/28143753123*2537720636^(1/9) 9870002026342035 a001 20365011074/6643838879*2537720636^(4/15) 9870002026342035 a001 1836311903/9062201101803*4106118243^(16/23) 9870002026342035 a001 6557470319842/73681302247*2537720636^(1/9) 9870002026342035 a001 956722026041/17393796001*2537720636^(2/15) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^16/Lucas(48) 9870002026342035 a001 2403763488/5374978561*23725150497407^(1/4) 9870002026342035 a001 2403763488/5374978561*73681302247^(4/13) 9870002026342035 a001 10610209857723/119218851371*2537720636^(1/9) 9870002026342035 a001 4052739537881/45537549124*2537720636^(1/9) 9870002026342035 a001 1836311903/23725150497407*4106118243^(17/23) 9870002026342035 a001 2403763488/5374978561*10749957122^(1/3) 9870002026342035 a001 1548008755920/17393796001*2537720636^(1/9) 9870002026342035 a004 Fibonacci(48)*Lucas(49)/(1/2+sqrt(5)/2)^81 9870002026342035 a001 53316291173/6643838879*2537720636^(2/9) 9870002026342035 a001 6557470319842/28143753123*2537720636^(1/15) 9870002026342035 a001 12586269025/10749957122*17393796001^(2/7) 9870002026342035 a001 14930208/10749853441*17393796001^(4/7) 9870002026342035 a001 1602508992/9381251041*45537549124^(6/17) 9870002026342035 a001 4807526976/119218851371*17393796001^(3/7) 9870002026342035 a001 1602508992/9381251041*14662949395604^(2/7) 9870002026342035 a001 12586269025/10749957122*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^18/Lucas(50) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^14/Lucas(48) 9870002026342035 a001 12586269025/10749957122*505019158607^(1/4) 9870002026342035 a001 1602508992/9381251041*192900153618^(1/3) 9870002026342035 a001 10610209857723/45537549124*2537720636^(1/15) 9870002026342035 a004 Fibonacci(48)*Lucas(51)/(1/2+sqrt(5)/2)^83 9870002026342035 a001 182717648081/5374978561*17393796001^(1/7) 9870002026342035 a001 32951280099/10749957122*45537549124^(4/17) 9870002026342035 a001 1602508992/3020733700601*45537549124^(10/17) 9870002026342035 a001 4807526976/2139295485799*45537549124^(9/17) 9870002026342035 a001 102287808/10745088481*45537549124^(8/17) 9870002026342035 a001 32951280099/10749957122*817138163596^(4/19) 9870002026342035 a001 32951280099/10749957122*14662949395604^(4/21) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^20/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^12/Lucas(48) 9870002026342035 a001 686789568/10525900321*23725150497407^(5/16) 9870002026342035 a001 32951280099/10749957122*192900153618^(2/9) 9870002026342035 a001 32951280099/10749957122*73681302247^(3/13) 9870002026342035 a001 4807526976/119218851371*45537549124^(7/17) 9870002026342035 a001 686789568/10525900321*73681302247^(5/13) 9870002026342035 a001 139583862445/10749957122*45537549124^(3/17) 9870002026342035 a004 Fibonacci(48)*Lucas(53)/(1/2+sqrt(5)/2)^85 9870002026342035 a001 591286729879/10749957122*45537549124^(2/17) 9870002026342035 a001 267084832/10716675201*312119004989^(2/5) 9870002026342035 a001 43133785636/5374978561*312119004989^(2/11) 9870002026342035 a001 2504730781961/10749957122*45537549124^(1/17) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^22/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^10/Lucas(48) 9870002026342035 a004 Fibonacci(48)*Lucas(55)/(1/2+sqrt(5)/2)^87 9870002026342035 a001 1602508992/3020733700601*312119004989^(6/11) 9870002026342035 a001 102287808/10745088481*14662949395604^(8/21) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^24/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^8/Lucas(48) 9870002026342035 a001 225851433717/10749957122*23725150497407^(1/8) 9870002026342035 a001 1201881744/204284540899*312119004989^(5/11) 9870002026342035 a004 Fibonacci(48)*Lucas(57)/(1/2+sqrt(5)/2)^89 9870002026342035 a001 591286729879/10749957122*14662949395604^(2/21) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^26/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^6/Lucas(48) 9870002026342035 a004 Fibonacci(48)*Lucas(59)/(1/2+sqrt(5)/2)^91 9870002026342035 a001 14930208/10749853441*14662949395604^(4/9) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^28/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^4/Lucas(48) 9870002026342035 a004 Fibonacci(48)*Lucas(61)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^30/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^2/Lucas(48) 9870002026342035 a004 Fibonacci(48)*Lucas(63)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^32/Lucas(64) 9870002026342035 a006 5^(1/2)*Fibonacci(64)/Lucas(48)/sqrt(5) 9870002026342035 a004 Fibonacci(48)*Lucas(65)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^34/Lucas(66) 9870002026342035 a004 Fibonacci(66)/Lucas(48)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(48)*Lucas(67)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^36/Lucas(68) 9870002026342035 a004 Fibonacci(68)/Lucas(48)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^38/Lucas(70) 9870002026342035 a004 Fibonacci(70)/Lucas(48)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^40/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(48)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^42/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(48)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^44/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(48)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^46/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(48)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^48/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(48)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^50/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(48)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^52/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(48)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^54/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(48)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^56/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(48)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^58/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(48)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^60/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(48)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^62/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(48)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^64/Lucas(96) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^66/Lucas(98) 9870002026342035 a004 Fibonacci(24)*Lucas(24)/(1/2+sqrt(5)/2)^32 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^67/Lucas(99) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^68/Lucas(100) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^65/Lucas(97) 9870002026342035 a004 Fibonacci(98)/Lucas(48)/(1/2+sqrt(5)/2)^34 9870002026342035 a004 Fibonacci(100)/Lucas(48)/(1/2+sqrt(5)/2)^36 9870002026342035 a004 Fibonacci(99)/Lucas(48)/(1/2+sqrt(5)/2)^35 9870002026342035 a004 Fibonacci(97)/Lucas(48)/(1/2+sqrt(5)/2)^33 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^63/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(48)/(1/2+sqrt(5)/2)^31 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^61/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(48)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^59/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(48)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^57/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(48)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^55/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(48)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^53/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(48)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^51/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(48)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^49/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(48)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^47/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(48)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^45/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(48)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^43/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(48)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^41/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(48)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^39/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(48)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^37/Lucas(69) 9870002026342035 a004 Fibonacci(69)/Lucas(48)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(48)*Lucas(68)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^35/Lucas(67) 9870002026342035 a004 Fibonacci(67)/Lucas(48)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(48)*Lucas(66)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^33/Lucas(65) 9870002026342035 a004 Fibonacci(65)/Lucas(48)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(48)*Lucas(64)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^31/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)/Lucas(48) 9870002026342035 a001 1201881744/3665737348901*9062201101803^(1/2) 9870002026342035 a004 Fibonacci(48)*Lucas(62)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^29/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^3/Lucas(48) 9870002026342035 a004 Fibonacci(48)*Lucas(60)/(1/2+sqrt(5)/2)^92 9870002026342035 a001 4807526976/2139295485799*14662949395604^(3/7) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^27/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^5/Lucas(48) 9870002026342035 a004 Fibonacci(48)*Lucas(58)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^25/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^7/Lucas(48) 9870002026342035 a001 2504730781961/10749957122*192900153618^(1/18) 9870002026342035 a001 1201881744/204284540899*3461452808002^(5/12) 9870002026342035 a001 14930208/10749853441*505019158607^(1/2) 9870002026342035 a001 4807526976/23725150497407*505019158607^(4/7) 9870002026342035 a004 Fibonacci(48)*Lucas(56)/(1/2+sqrt(5)/2)^88 9870002026342035 a001 102287808/10745088481*192900153618^(4/9) 9870002026342035 a001 139583862445/10749957122*817138163596^(3/19) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^23/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^9/Lucas(48) 9870002026342035 a001 4807526976/2139295485799*192900153618^(1/2) 9870002026342035 a001 139583862445/10749957122*192900153618^(1/6) 9870002026342035 a001 1602508992/3020733700601*192900153618^(5/9) 9870002026342035 a001 225851433717/10749957122*73681302247^(2/13) 9870002026342035 a004 Fibonacci(48)*Lucas(54)/(1/2+sqrt(5)/2)^86 9870002026342035 a001 53316291173/10749957122*312119004989^(1/5) 9870002026342035 a001 4807526976/119218851371*14662949395604^(1/3) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^21/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^11/Lucas(48) 9870002026342035 a001 4807526976/119218851371*192900153618^(7/18) 9870002026342035 a001 102287808/10745088481*73681302247^(6/13) 9870002026342035 a001 1602508992/440719107401*73681302247^(1/2) 9870002026342035 a001 14930208/10749853441*73681302247^(7/13) 9870002026342035 a001 4807526976/23725150497407*73681302247^(8/13) 9870002026342035 a001 956722026041/10749957122*28143753123^(1/10) 9870002026342035 a001 86267571272/1568397607*599074578^(1/7) 9870002026342035 a004 Fibonacci(48)*Lucas(52)/(1/2+sqrt(5)/2)^84 9870002026342035 a001 86267571272/6643838879*2537720636^(1/5) 9870002026342035 a001 43133785636/5374978561*28143753123^(1/5) 9870002026342035 a001 686789568/10525900321*28143753123^(2/5) 9870002026342035 a001 4052739537881/10749957122*10749957122^(1/24) 9870002026342035 a001 1201881744/11384387281*817138163596^(1/3) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^19/Lucas(51) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^13/Lucas(48) 9870002026342035 a001 10182505537/5374978561*73681302247^(1/4) 9870002026342035 a001 2504730781961/10749957122*10749957122^(1/16) 9870002026342035 a001 1201881744/204284540899*28143753123^(1/2) 9870002026342035 a001 774004377960/5374978561*10749957122^(1/12) 9870002026342035 a001 1602508992/3020733700601*28143753123^(3/5) 9870002026342035 a001 591286729879/10749957122*10749957122^(1/8) 9870002026342035 a001 12586269025/10749957122*10749957122^(7/24) 9870002026342035 a004 Fibonacci(48)*Lucas(50)/(1/2+sqrt(5)/2)^82 9870002026342035 a001 225851433717/10749957122*10749957122^(1/6) 9870002026342035 a001 4052739537881/17393796001*2537720636^(1/15) 9870002026342035 a001 139583862445/10749957122*10749957122^(3/16) 9870002026342035 a001 43133785636/5374978561*10749957122^(5/24) 9870002026342035 a001 32951280099/10749957122*10749957122^(1/4) 9870002026342035 a001 1602508992/9381251041*10749957122^(3/8) 9870002026342035 a001 4052739537881/10749957122*4106118243^(1/23) 9870002026342035 a001 4807526976/17393796001*45537549124^(1/3) 9870002026342035 a001 7778742049/10749957122*45537549124^(5/17) 9870002026342035 a001 7778742049/10749957122*312119004989^(3/11) 9870002026342035 a001 7778742049/10749957122*14662949395604^(5/21) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^17/Lucas(49) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^15/Lucas(48) 9870002026342035 a001 7778742049/10749957122*192900153618^(5/18) 9870002026342035 a001 686789568/10525900321*10749957122^(5/12) 9870002026342035 a001 7778742049/10749957122*28143753123^(3/10) 9870002026342035 a001 4807526976/119218851371*10749957122^(7/16) 9870002026342035 a001 267084832/10716675201*10749957122^(11/24) 9870002026342035 a004 Fibonacci(50)*Lucas(49)/(1/2+sqrt(5)/2)^83 9870002026342035 a001 102287808/10745088481*10749957122^(1/2) 9870002026342035 a001 1602508992/440719107401*10749957122^(13/24) 9870002026342035 a001 75283811239/1368706081*1568397607^(3/22) 9870002026342035 a001 4807526976/2139295485799*10749957122^(9/16) 9870002026342035 a001 14930208/10749853441*10749957122^(7/12) 9870002026342035 a001 774004377960/5374978561*4106118243^(2/23) 9870002026342035 a004 Fibonacci(52)*Lucas(49)/(1/2+sqrt(5)/2)^85 9870002026342035 a004 Fibonacci(54)*Lucas(49)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(56)*Lucas(49)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(58)*Lucas(49)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(60)*Lucas(49)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(62)*Lucas(49)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(64)*Lucas(49)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(66)*Lucas(49)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(67)*Lucas(49)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(65)*Lucas(49)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(63)*Lucas(49)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(61)*Lucas(49)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(59)*Lucas(49)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(57)*Lucas(49)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(55)*Lucas(49)/(1/2+sqrt(5)/2)^88 9870002026342035 a001 1602508992/3020733700601*10749957122^(5/8) 9870002026342035 a004 Fibonacci(53)*Lucas(49)/(1/2+sqrt(5)/2)^86 9870002026342035 a001 12586269025/9062201101803*17393796001^(4/7) 9870002026342035 a001 4807526976/23725150497407*10749957122^(2/3) 9870002026342035 a004 Fibonacci(51)*Lucas(49)/(1/2+sqrt(5)/2)^84 9870002026342035 a001 1144206275/28374454999*17393796001^(3/7) 9870002026342035 a001 7778742049/10749957122*10749957122^(5/16) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^16/Lucas(50) 9870002026342035 a001 12586269025/28143753123*23725150497407^(1/4) 9870002026342035 a001 12586269025/28143753123*73681302247^(4/13) 9870002026342035 a001 10983760033/9381251041*17393796001^(2/7) 9870002026342035 a001 32951280099/23725150497407*17393796001^(4/7) 9870002026342035 a004 Fibonacci(50)*Lucas(51)/(1/2+sqrt(5)/2)^85 9870002026342035 a001 956722026041/28143753123*17393796001^(1/7) 9870002026342035 a001 12586269025/73681302247*45537549124^(6/17) 9870002026342035 a001 32951280099/817138163596*17393796001^(3/7) 9870002026342035 a001 12586269025/23725150497407*45537549124^(10/17) 9870002026342035 a001 12586269025/5600748293801*45537549124^(9/17) 9870002026342035 a001 12586269025/1322157322203*45537549124^(8/17) 9870002026342035 a001 1144206275/28374454999*45537549124^(7/17) 9870002026342035 a001 12586269025/73681302247*14662949395604^(2/7) 9870002026342035 a001 10983760033/9381251041*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^18/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^14/Lucas(50) 9870002026342035 a001 10983760033/9381251041*505019158607^(1/4) 9870002026342035 a001 12586269025/73681302247*192900153618^(1/3) 9870002026342035 a001 225851433717/5600748293801*17393796001^(3/7) 9870002026342035 a001 591286729879/14662949395604*17393796001^(3/7) 9870002026342035 a001 365435296162/9062201101803*17393796001^(3/7) 9870002026342035 a001 10182505537/7331474697802*17393796001^(4/7) 9870002026342035 a001 139583862445/3461452808002*17393796001^(3/7) 9870002026342035 a001 86267571272/28143753123*45537549124^(4/17) 9870002026342035 a001 365435296162/28143753123*45537549124^(3/17) 9870002026342035 a004 Fibonacci(50)*Lucas(53)/(1/2+sqrt(5)/2)^87 9870002026342035 a001 12585437040/228811001*45537549124^(2/17) 9870002026342035 a001 6557470319842/28143753123*45537549124^(1/17) 9870002026342035 a001 86267571272/28143753123*14662949395604^(4/21) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^20/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^12/Lucas(50) 9870002026342035 a001 12586269025/192900153618*23725150497407^(5/16) 9870002026342035 a001 12586269025/192900153618*505019158607^(5/14) 9870002026342035 a001 86267571272/28143753123*192900153618^(2/9) 9870002026342035 a004 Fibonacci(50)*Lucas(55)/(1/2+sqrt(5)/2)^89 9870002026342035 a001 12586269025/23725150497407*312119004989^(6/11) 9870002026342035 a001 12586269025/2139295485799*312119004989^(5/11) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^22/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^10/Lucas(50) 9870002026342035 a004 Fibonacci(50)*Lucas(57)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^24/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^8/Lucas(50) 9870002026342035 a004 Fibonacci(50)*Lucas(59)/(1/2+sqrt(5)/2)^93 9870002026342035 a001 12585437040/228811001*14662949395604^(2/21) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^26/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^6/Lucas(50) 9870002026342035 a004 Fibonacci(50)*Lucas(61)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^28/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^4/Lucas(50) 9870002026342035 a004 Fibonacci(50)*Lucas(63)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^30/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^2/Lucas(50) 9870002026342035 a004 Fibonacci(50)*Lucas(65)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^32/Lucas(66) 9870002026342035 a006 5^(1/2)*Fibonacci(66)/Lucas(50)/sqrt(5) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^34/Lucas(68) 9870002026342035 a004 Fibonacci(68)/Lucas(50)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^36/Lucas(70) 9870002026342035 a004 Fibonacci(70)/Lucas(50)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^38/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(50)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^40/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(50)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^42/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(50)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^44/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(50)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^46/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(50)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^48/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(50)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^50/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(50)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^52/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(50)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^54/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(50)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^56/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(50)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^58/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(50)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^60/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(50)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^62/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(50)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^64/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(50)/(1/2+sqrt(5)/2)^32 9870002026342035 a004 Fibonacci(25)*Lucas(25)/(1/2+sqrt(5)/2)^34 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^66/Lucas(100) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^65/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(50)/(1/2+sqrt(5)/2)^33 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^63/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(50)/(1/2+sqrt(5)/2)^31 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^61/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(50)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^59/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(50)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^57/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(50)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^55/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(50)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^53/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(50)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^51/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(50)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^49/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(50)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^47/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(50)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^45/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(50)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^43/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(50)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^41/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(50)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^39/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(50)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^37/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(50)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^35/Lucas(69) 9870002026342035 a004 Fibonacci(69)/Lucas(50)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^33/Lucas(67) 9870002026342035 a004 Fibonacci(67)/Lucas(50)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(50)*Lucas(66)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^31/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)/Lucas(50) 9870002026342035 a004 Fibonacci(50)*Lucas(64)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^29/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^3/Lucas(50) 9870002026342035 a004 Fibonacci(50)*Lucas(62)/(1/2+sqrt(5)/2)^96 9870002026342035 a001 12586269025/5600748293801*14662949395604^(3/7) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^27/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^5/Lucas(50) 9870002026342035 a004 Fibonacci(50)*Lucas(60)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^25/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^7/Lucas(50) 9870002026342035 a001 12586269025/2139295485799*3461452808002^(5/12) 9870002026342035 a001 12586269025/14662949395604*1322157322203^(1/2) 9870002026342035 a004 Fibonacci(50)*Lucas(58)/(1/2+sqrt(5)/2)^92 9870002026342035 a001 365435296162/28143753123*817138163596^(3/19) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^23/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^9/Lucas(50) 9870002026342035 a001 12586269025/9062201101803*505019158607^(1/2) 9870002026342035 a004 Fibonacci(50)*Lucas(56)/(1/2+sqrt(5)/2)^90 9870002026342035 a001 139583862445/28143753123*312119004989^(1/5) 9870002026342035 a001 1144206275/28374454999*14662949395604^(1/3) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^21/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^11/Lucas(50) 9870002026342035 a001 12586269025/1322157322203*192900153618^(4/9) 9870002026342035 a001 12586269025/5600748293801*192900153618^(1/2) 9870002026342035 a001 4052739537881/28143753123*73681302247^(1/13) 9870002026342035 a001 12586269025/23725150497407*192900153618^(5/9) 9870002026342035 a001 1144206275/28374454999*192900153618^(7/18) 9870002026342035 a004 Fibonacci(50)*Lucas(54)/(1/2+sqrt(5)/2)^88 9870002026342035 a001 591286729879/28143753123*73681302247^(2/13) 9870002026342035 a001 12586269025/192900153618*73681302247^(5/13) 9870002026342035 a001 12586269025/119218851371*817138163596^(1/3) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^19/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^13/Lucas(50) 9870002026342035 a001 12586269025/1322157322203*73681302247^(6/13) 9870002026342035 a001 12586269025/3461452808002*73681302247^(1/2) 9870002026342035 a001 12586269025/9062201101803*73681302247^(7/13) 9870002026342035 a001 86267571272/73681302247*17393796001^(2/7) 9870002026342035 a001 53316291173/28143753123*73681302247^(1/4) 9870002026342035 a001 2504730781961/28143753123*28143753123^(1/10) 9870002026342035 a004 Fibonacci(50)*Lucas(52)/(1/2+sqrt(5)/2)^86 9870002026342035 a001 75283811239/9381251041*28143753123^(1/5) 9870002026342035 a001 75283811239/64300051206*17393796001^(2/7) 9870002026342035 a001 2504730781961/2139295485799*17393796001^(2/7) 9870002026342035 a001 12586269025/45537549124*45537549124^(1/3) 9870002026342035 a001 20365011074/505019158607*17393796001^(3/7) 9870002026342035 a001 365435296162/312119004989*17393796001^(2/7) 9870002026342035 a001 20365011074/28143753123*45537549124^(5/17) 9870002026342035 a001 591286729879/10749957122*4106118243^(3/23) 9870002026342035 a001 3536736619241/9381251041*10749957122^(1/24) 9870002026342035 a001 139583862445/119218851371*17393796001^(2/7) 9870002026342035 a001 12586269025/192900153618*28143753123^(2/5) 9870002026342035 a001 20365011074/28143753123*312119004989^(3/11) 9870002026342035 a001 20365011074/28143753123*14662949395604^(5/21) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^17/Lucas(51) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^15/Lucas(50) 9870002026342035 a001 20365011074/28143753123*192900153618^(5/18) 9870002026342035 a001 6557470319842/28143753123*10749957122^(1/16) 9870002026342035 a004 Fibonacci(52)*Lucas(51)/(1/2+sqrt(5)/2)^87 9870002026342035 a001 2504730781961/73681302247*17393796001^(1/7) 9870002026342035 a001 12586269025/2139295485799*28143753123^(1/2) 9870002026342035 a001 4052739537881/28143753123*10749957122^(1/12) 9870002026342035 a004 Fibonacci(54)*Lucas(51)/(1/2+sqrt(5)/2)^89 9870002026342035 a001 12586269025/23725150497407*28143753123^(3/5) 9870002026342035 a001 3278735159921/96450076809*17393796001^(1/7) 9870002026342035 a004 Fibonacci(56)*Lucas(51)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(58)*Lucas(51)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(60)*Lucas(51)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(62)*Lucas(51)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(64)*Lucas(51)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(65)*Lucas(51)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(63)*Lucas(51)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(61)*Lucas(51)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(59)*Lucas(51)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(57)*Lucas(51)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(55)*Lucas(51)/(1/2+sqrt(5)/2)^90 9870002026342035 a001 10610209857723/312119004989*17393796001^(1/7) 9870002026342035 a001 32951280099/14662949395604*45537549124^(9/17) 9870002026342035 a004 Fibonacci(53)*Lucas(51)/(1/2+sqrt(5)/2)^88 9870002026342035 a001 32951280099/3461452808002*45537549124^(8/17) 9870002026342035 a001 4052739537881/119218851371*17393796001^(1/7) 9870002026342035 a001 20365011074/28143753123*28143753123^(3/10) 9870002026342035 a001 53316291173/45537549124*17393796001^(2/7) 9870002026342035 a001 10983760033/64300051206*45537549124^(6/17) 9870002026342035 a001 32951280099/817138163596*45537549124^(7/17) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^16/Lucas(52) 9870002026342035 a001 32951280099/73681302247*23725150497407^(1/4) 9870002026342035 a001 32951280099/73681302247*73681302247^(4/13) 9870002026342035 a001 32264490531/10525900321*45537549124^(4/17) 9870002026342035 a001 32951280099/119218851371*45537549124^(1/3) 9870002026342035 a001 956722026041/73681302247*45537549124^(3/17) 9870002026342035 a001 53316291173/73681302247*45537549124^(5/17) 9870002026342035 a004 Fibonacci(52)*Lucas(53)/(1/2+sqrt(5)/2)^89 9870002026342035 a001 86267571272/9062201101803*45537549124^(8/17) 9870002026342035 a001 4052739537881/73681302247*45537549124^(2/17) 9870002026342035 a001 225851433717/23725150497407*45537549124^(8/17) 9870002026342035 a001 86267571272/2139295485799*45537549124^(7/17) 9870002026342035 a001 139583862445/14662949395604*45537549124^(8/17) 9870002026342035 a001 10983760033/64300051206*14662949395604^(2/7) 9870002026342035 a001 86267571272/73681302247*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^18/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^14/Lucas(52) 9870002026342035 a001 225851433717/5600748293801*45537549124^(7/17) 9870002026342035 a001 10983760033/64300051206*192900153618^(1/3) 9870002026342035 a001 86267571272/505019158607*45537549124^(6/17) 9870002026342035 a001 591286729879/14662949395604*45537549124^(7/17) 9870002026342035 a001 365435296162/9062201101803*45537549124^(7/17) 9870002026342035 a004 Fibonacci(52)*Lucas(55)/(1/2+sqrt(5)/2)^91 9870002026342035 a001 10983760033/440719107401*312119004989^(2/5) 9870002026342035 a001 32264490531/10525900321*817138163596^(4/19) 9870002026342035 a001 139583862445/3461452808002*45537549124^(7/17) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^20/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^12/Lucas(52) 9870002026342035 a004 Fibonacci(52)*Lucas(57)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^22/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^10/Lucas(52) 9870002026342035 a004 Fibonacci(52)*Lucas(59)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^24/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^8/Lucas(52) 9870002026342035 a001 1548008755920/73681302247*23725150497407^(1/8) 9870002026342035 a004 Fibonacci(52)*Lucas(61)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^26/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^6/Lucas(52) 9870002026342035 a004 Fibonacci(52)*Lucas(63)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^28/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^4/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^30/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^2/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^32/Lucas(68) 9870002026342035 a006 5^(1/2)*Fibonacci(68)/Lucas(52)/sqrt(5) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^34/Lucas(70) 9870002026342035 a004 Fibonacci(70)/Lucas(52)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^36/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(52)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^38/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(52)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^40/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(52)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^42/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(52)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^44/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(52)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^46/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(52)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^48/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(52)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^50/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(52)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^52/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(52)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^54/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(52)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^56/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(52)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^58/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(52)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^60/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(52)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^62/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(52)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(100)/Lucas(52)/(1/2+sqrt(5)/2)^32 9870002026342035 a004 Fibonacci(26)*Lucas(26)/(1/2+sqrt(5)/2)^36 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^64/Lucas(100) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^63/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(52)/(1/2+sqrt(5)/2)^31 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^61/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(52)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^59/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(52)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^57/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(52)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^55/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(52)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^53/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(52)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^51/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(52)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^49/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(52)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^47/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(52)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^45/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(52)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^43/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(52)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^41/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(52)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^39/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(52)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^37/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(52)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^35/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(52)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^33/Lucas(69) 9870002026342035 a004 Fibonacci(69)/Lucas(52)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^31/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^29/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^3/Lucas(52) 9870002026342035 a004 Fibonacci(52)*Lucas(64)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^27/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^5/Lucas(52) 9870002026342035 a004 Fibonacci(52)*Lucas(62)/(1/2+sqrt(5)/2)^98 9870002026342035 a001 2504730781961/73681302247*14662949395604^(1/9) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^25/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^7/Lucas(52) 9870002026342035 a001 32951280099/5600748293801*3461452808002^(5/12) 9870002026342035 a004 Fibonacci(52)*Lucas(60)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^23/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^9/Lucas(52) 9870002026342035 a001 1548008755920/73681302247*505019158607^(1/7) 9870002026342035 a004 Fibonacci(52)*Lucas(58)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^21/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^11/Lucas(52) 9870002026342035 a001 12585437040/228811001*10749957122^(1/8) 9870002026342035 a004 Fibonacci(52)*Lucas(56)/(1/2+sqrt(5)/2)^92 9870002026342035 a001 86267571272/312119004989*45537549124^(1/3) 9870002026342035 a001 75283811239/440719107401*45537549124^(6/17) 9870002026342035 a001 32951280099/312119004989*817138163596^(1/3) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^19/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^13/Lucas(52) 9870002026342035 a001 32951280099/3461452808002*192900153618^(4/9) 9870002026342035 a001 1515744265389/10525900321*73681302247^(1/13) 9870002026342035 a001 225851433717/817138163596*45537549124^(1/3) 9870002026342035 a001 1548008755920/5600748293801*45537549124^(1/3) 9870002026342035 a001 139583862445/192900153618*45537549124^(5/17) 9870002026342035 a001 139583862445/817138163596*45537549124^(6/17) 9870002026342035 a004 Fibonacci(52)*Lucas(54)/(1/2+sqrt(5)/2)^90 9870002026342035 a001 53316291173/5600748293801*45537549124^(8/17) 9870002026342035 a001 1548008755920/73681302247*73681302247^(2/13) 9870002026342035 a001 139583862445/505019158607*45537549124^(1/3) 9870002026342035 a001 32264490531/10525900321*73681302247^(3/13) 9870002026342035 a001 365435296162/505019158607*45537549124^(5/17) 9870002026342035 a001 591286729879/192900153618*45537549124^(4/17) 9870002026342035 a001 591286729879/817138163596*45537549124^(5/17) 9870002026342035 a001 225851433717/312119004989*45537549124^(5/17) 9870002026342035 a001 53316291173/1322157322203*45537549124^(7/17) 9870002026342035 a001 139583862445/73681302247*73681302247^(1/4) 9870002026342035 a001 1548008755920/505019158607*45537549124^(4/17) 9870002026342035 a001 53316291173/192900153618*45537549124^(1/3) 9870002026342035 a001 53316291173/73681302247*312119004989^(3/11) 9870002026342035 a001 53316291173/73681302247*14662949395604^(5/21) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^17/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^15/Lucas(52) 9870002026342035 a001 1515744265389/494493258286*45537549124^(4/17) 9870002026342035 a001 2504730781961/192900153618*45537549124^(3/17) 9870002026342035 a001 2504730781961/817138163596*45537549124^(4/17) 9870002026342035 a001 53316291173/73681302247*192900153618^(5/18) 9870002026342035 a001 956722026041/312119004989*45537549124^(4/17) 9870002026342035 a001 32951280099/3461452808002*73681302247^(6/13) 9870002026342035 a001 86267571272/119218851371*45537549124^(5/17) 9870002026342035 a004 Fibonacci(54)*Lucas(53)/(1/2+sqrt(5)/2)^91 9870002026342035 a001 10983760033/3020733700601*73681302247^(1/2) 9870002026342035 a001 53316291173/312119004989*45537549124^(6/17) 9870002026342035 a001 32951280099/23725150497407*73681302247^(7/13) 9870002026342035 a001 3536736619241/64300051206*45537549124^(2/17) 9870002026342035 a001 10610209857723/817138163596*45537549124^(3/17) 9870002026342035 a001 4052739537881/312119004989*45537549124^(3/17) 9870002026342035 a004 Fibonacci(56)*Lucas(53)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(58)*Lucas(53)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(60)*Lucas(53)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(62)*Lucas(53)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(63)*Lucas(53)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(61)*Lucas(53)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(59)*Lucas(53)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(57)*Lucas(53)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(55)*Lucas(53)/(1/2+sqrt(5)/2)^92 9870002026342035 a001 6557470319842/73681302247*28143753123^(1/10) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^16/Lucas(54) 9870002026342035 a001 43133785636/96450076809*23725150497407^(1/4) 9870002026342035 a001 365435296162/119218851371*45537549124^(4/17) 9870002026342035 a004 Fibonacci(54)*Lucas(55)/(1/2+sqrt(5)/2)^93 9870002026342035 a001 1135099622/192933544679*312119004989^(5/11) 9870002026342035 a001 43133785636/1730726404001*312119004989^(2/5) 9870002026342035 a001 86267571272/505019158607*14662949395604^(2/7) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^18/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^14/Lucas(54) 9870002026342035 a001 75283811239/64300051206*505019158607^(1/4) 9870002026342035 a001 86000486440/10716675201*312119004989^(2/11) 9870002026342035 a004 Fibonacci(54)*Lucas(57)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^20/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^12/Lucas(54) 9870002026342035 a004 Fibonacci(54)*Lucas(59)/(1/2+sqrt(5)/2)^97 9870002026342035 a001 2504730781961/192900153618*817138163596^(3/19) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^22/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^10/Lucas(54) 9870002026342035 a004 Fibonacci(54)*Lucas(61)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^24/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^8/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^26/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^6/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^28/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^4/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^30/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^2/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^32/Lucas(70) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^34/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(54)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^36/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(54)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^38/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(54)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^40/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(54)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^42/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(54)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^44/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(54)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^46/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(54)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^48/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(54)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^50/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(54)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^52/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(54)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^54/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(54)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^56/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(54)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^58/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(54)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^60/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(54)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(100)/Lucas(54)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(27)*Lucas(27)/(1/2+sqrt(5)/2)^38 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^61/Lucas(99) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^62/Lucas(100) 9870002026342035 a004 Fibonacci(99)/Lucas(54)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^59/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(54)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^57/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(54)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^55/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(54)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^53/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(54)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^51/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(54)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^49/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(54)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^47/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(54)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^45/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(54)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^43/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(54)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^41/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(54)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^39/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(54)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^37/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(54)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^35/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(54)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^33/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(54)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^31/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^29/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^3/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^27/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^5/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^25/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^7/Lucas(54) 9870002026342035 a004 Fibonacci(54)*Lucas(62)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^23/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^9/Lucas(54) 9870002026342035 a001 1135099622/192933544679*3461452808002^(5/12) 9870002026342035 a004 Fibonacci(54)*Lucas(60)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^21/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^11/Lucas(54) 9870002026342035 a004 Fibonacci(54)*Lucas(58)/(1/2+sqrt(5)/2)^96 9870002026342035 a001 21566892818/204284540899*817138163596^(1/3) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^19/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^13/Lucas(54) 9870002026342035 a004 Fibonacci(54)*Lucas(56)/(1/2+sqrt(5)/2)^94 9870002026342035 a001 2504730781961/192900153618*192900153618^(1/6) 9870002026342035 a001 591286729879/192900153618*192900153618^(2/9) 9870002026342035 a001 139583862445/192900153618*312119004989^(3/11) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^17/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^15/Lucas(54) 9870002026342035 a001 86267571272/2139295485799*192900153618^(7/18) 9870002026342035 a001 86267571272/9062201101803*192900153618^(4/9) 9870002026342035 a004 Fibonacci(56)*Lucas(55)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(58)*Lucas(55)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(60)*Lucas(55)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(61)*Lucas(55)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(59)*Lucas(55)/(1/2+sqrt(5)/2)^98 9870002026342035 a001 139583862445/192900153618*192900153618^(5/18) 9870002026342035 a004 Fibonacci(57)*Lucas(55)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^16/Lucas(56) 9870002026342035 a004 Fibonacci(56)*Lucas(57)/(1/2+sqrt(5)/2)^97 9870002026342035 a001 365435296162/505019158607*312119004989^(3/11) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^18/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^14/Lucas(56) 9870002026342035 a001 1548008755920/505019158607*817138163596^(4/19) 9870002026342035 a004 Fibonacci(56)*Lucas(59)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^20/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^12/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^22/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^10/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^24/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^8/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^26/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^6/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^28/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^4/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^30/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^2/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^32/Lucas(72) 9870002026342035 a006 5^(1/2)*Fibonacci(72)/Lucas(56)/sqrt(5) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^34/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(56)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^36/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(56)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^38/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(56)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^40/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(56)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^42/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(56)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^44/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(56)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^46/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(56)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^48/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(56)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^50/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(56)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^52/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(56)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^54/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(56)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^56/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(56)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(100)/Lucas(56)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^58/Lucas(98) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^60/Lucas(100) 9870002026342035 a004 Fibonacci(98)/Lucas(56)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(28)*Lucas(28)/(1/2+sqrt(5)/2)^40 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^59/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(56)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^57/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(56)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^55/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(56)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^53/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(56)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^51/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(56)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^49/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(56)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^47/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(56)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^45/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(56)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^43/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(56)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^41/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(56)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^39/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(56)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^37/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(56)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^35/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(56)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^33/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(56)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^31/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^29/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^3/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^27/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^5/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^25/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^7/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^23/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^9/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^21/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^11/Lucas(56) 9870002026342035 a004 Fibonacci(56)*Lucas(60)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^19/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^13/Lucas(56) 9870002026342035 a004 Fibonacci(56)*Lucas(58)/(1/2+sqrt(5)/2)^98 9870002026342035 a001 182717648081/7331474697802*312119004989^(2/5) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^17/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^15/Lucas(56) 9870002026342035 a004 Fibonacci(58)*Lucas(57)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(59)*Lucas(57)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^16/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^18/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^14/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^20/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^12/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^22/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^10/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^24/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^8/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^26/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^6/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^28/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^4/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^30/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^2/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^32/Lucas(74) 9870002026342035 a006 5^(1/2)*Fibonacci(74)/Lucas(58)/sqrt(5) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^34/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(58)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^36/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(58)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^38/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(58)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^40/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(58)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^42/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(58)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^44/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(58)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^46/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(58)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^48/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(58)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^50/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(58)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^52/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(58)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^54/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(58)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^56/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(58)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(100)/Lucas(58)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(29)*Lucas(29)/(1/2+sqrt(5)/2)^42 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^58/Lucas(100) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^57/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(58)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^55/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(58)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^53/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(58)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^51/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(58)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^49/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(58)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^47/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(58)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^45/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(58)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^43/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(58)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^41/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(58)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^39/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(58)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^37/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(58)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^35/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(58)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^33/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(58)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^31/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^29/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^3/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^27/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^5/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^25/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^7/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^23/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^9/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^21/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^11/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^19/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^13/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^17/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^15/Lucas(58) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^16/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^18/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^14/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^20/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^12/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^22/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^10/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^24/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^8/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^26/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^6/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^28/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^4/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^30/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^2/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^32/Lucas(76) 9870002026342035 a006 5^(1/2)*Fibonacci(76)/Lucas(60)/sqrt(5) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^34/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(60)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^36/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(60)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^38/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(60)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^40/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(60)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^42/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(60)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^44/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(60)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^46/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(60)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^48/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(60)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^50/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(60)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^52/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(60)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^54/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(60)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(100)/Lucas(60)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(30)*Lucas(30)/(1/2+sqrt(5)/2)^44 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^56/Lucas(100) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^55/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(60)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^53/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(60)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^51/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(60)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^49/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(60)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^47/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(60)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^45/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(60)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^43/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(60)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^41/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(60)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^39/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(60)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^37/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(60)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^35/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(60)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^33/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(60)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^31/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^29/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^3/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^27/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^5/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^25/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^7/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^23/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^9/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^21/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^11/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^19/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^13/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^17/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^15/Lucas(60) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^16/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^18/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^14/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^20/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^12/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^22/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^10/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^24/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^8/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^26/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^6/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^28/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^4/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^30/Lucas(76) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^2/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^32/Lucas(78) 9870002026342035 a006 5^(1/2)*Fibonacci(78)/Lucas(62)/sqrt(5) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^34/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(62)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^36/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(62)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^38/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(62)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^40/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(62)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^42/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(62)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^44/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(62)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^46/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(62)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^48/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(62)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^50/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(62)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^52/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(62)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(100)/Lucas(62)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(31)*Lucas(31)/(1/2+sqrt(5)/2)^46 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^54/Lucas(100) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^53/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(62)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^51/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(62)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^49/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(62)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^47/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(62)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^45/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(62)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^43/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(62)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^41/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(62)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^39/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(62)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^37/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(62)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^35/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(62)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^33/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(62)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^31/Lucas(77) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^29/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^3/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^27/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^5/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^25/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^7/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^23/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^9/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^21/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^11/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^19/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^13/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^17/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^15/Lucas(62) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^16/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^18/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^14/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^20/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^12/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^22/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^10/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^24/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^8/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^26/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^6/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^28/Lucas(76) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^4/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^30/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^2/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^32/Lucas(80) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^34/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(64)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^36/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(64)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^38/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(64)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^40/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(64)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^42/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(64)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^44/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(64)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^46/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(64)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^48/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(64)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^50/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(64)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(100)/Lucas(64)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(32)*Lucas(32)/(1/2+sqrt(5)/2)^48 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^51/Lucas(99) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^52/Lucas(100) 9870002026342035 a004 Fibonacci(99)/Lucas(64)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^49/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(64)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^47/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(64)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^45/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(64)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^43/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(64)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^41/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(64)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^39/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(64)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^37/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(64)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^35/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(64)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^33/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(64)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^31/Lucas(79) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^29/Lucas(77) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^3/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^27/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^5/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^25/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^7/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^23/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^9/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^21/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^11/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^19/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^13/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^17/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^15/Lucas(64) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^16/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^18/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^14/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^20/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^12/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^22/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^10/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^24/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^8/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^26/Lucas(76) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^6/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^28/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^4/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^30/Lucas(80) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^2/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^32/Lucas(82) 9870002026342035 a006 5^(1/2)*Fibonacci(82)/Lucas(66)/sqrt(5) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^34/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(66)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^36/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(66)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^38/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(66)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^40/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(66)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^42/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(66)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^44/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(66)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^46/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(66)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^48/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(66)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(100)/Lucas(66)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(33)*Lucas(33)/(1/2+sqrt(5)/2)^50 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^50/Lucas(100) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^49/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(66)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^47/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(66)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^45/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(66)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^43/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(66)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^41/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(66)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^39/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(66)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^37/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(66)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^35/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(66)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^33/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(66)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^31/Lucas(81) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^29/Lucas(79) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^3/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^27/Lucas(77) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^5/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^25/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^7/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^23/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^9/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^21/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^11/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^19/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^13/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^17/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^15/Lucas(66) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^16/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^18/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^14/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^20/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^12/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^22/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^10/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^24/Lucas(76) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^8/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^26/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^6/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^28/Lucas(80) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^4/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^30/Lucas(82) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^2/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^32/Lucas(84) 9870002026342035 a006 5^(1/2)*Fibonacci(84)/Lucas(68)/sqrt(5) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^34/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(68)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^36/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(68)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^38/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(68)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^40/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(68)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^42/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(68)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^44/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(68)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^46/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(68)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(100)/Lucas(68)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(34)*Lucas(34)/(1/2+sqrt(5)/2)^52 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^47/Lucas(99) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^48/Lucas(100) 9870002026342035 a004 Fibonacci(99)/Lucas(68)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^45/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(68)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^43/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(68)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^41/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(68)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^39/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(68)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^37/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(68)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^35/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(68)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^33/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(68)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^31/Lucas(83) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^29/Lucas(81) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^3/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^27/Lucas(79) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^5/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^25/Lucas(77) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^7/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^23/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^9/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^21/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^11/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^19/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^13/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^17/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^15/Lucas(68) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^16/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^18/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^14/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^20/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^12/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^22/Lucas(76) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^10/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^24/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^8/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^26/Lucas(80) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^6/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^28/Lucas(82) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^4/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^30/Lucas(84) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^2/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^32/Lucas(86) 9870002026342035 a006 5^(1/2)*Fibonacci(86)/Lucas(70)/sqrt(5) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^34/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(70)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^36/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(70)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^38/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(70)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^40/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(70)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^42/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(70)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^44/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(70)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(100)/Lucas(70)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(35)*Lucas(35)/(1/2+sqrt(5)/2)^54 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^46/Lucas(100) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^45/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(70)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^43/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(70)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^41/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(70)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^39/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(70)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^37/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(70)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^35/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(70)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^33/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(70)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^31/Lucas(85) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^29/Lucas(83) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^3/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^27/Lucas(81) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^5/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^25/Lucas(79) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^7/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^23/Lucas(77) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^9/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^21/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^11/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^19/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^13/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^17/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^15/Lucas(70) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^16/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^18/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^14/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^20/Lucas(76) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^12/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^22/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^10/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^24/Lucas(80) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^8/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^26/Lucas(82) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^6/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^28/Lucas(84) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^4/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^30/Lucas(86) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^2/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^32/Lucas(88) 9870002026342035 a006 5^(1/2)*Fibonacci(88)/Lucas(72)/sqrt(5) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^34/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(72)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^36/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(72)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^38/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(72)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^40/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(72)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^42/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(72)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(100)/Lucas(72)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(36)*Lucas(36)/(1/2+sqrt(5)/2)^56 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^43/Lucas(99) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^44/Lucas(100) 9870002026342035 a004 Fibonacci(99)/Lucas(72)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^41/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(72)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^39/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(72)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^37/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(72)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^35/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(72)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^33/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(72)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^31/Lucas(87) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^29/Lucas(85) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^3/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^27/Lucas(83) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^5/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^25/Lucas(81) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^7/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^23/Lucas(79) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^9/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^21/Lucas(77) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^11/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^19/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^13/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^17/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^15/Lucas(72) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^16/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^18/Lucas(76) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^20/Lucas(78) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^22/Lucas(80) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^10/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^24/Lucas(82) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^26/Lucas(84) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^6/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^28/Lucas(86) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^30/Lucas(88) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^32/Lucas(90) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^34/Lucas(92) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^36/Lucas(94) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^38/Lucas(96) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^40/Lucas(98) 9870002026342035 a004 Fibonacci(37)*Lucas(37)/(1/2+sqrt(5)/2)^58 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^41/Lucas(99) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^42/Lucas(100) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^39/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(74)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^37/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(74)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^35/Lucas(93) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^33/Lucas(91) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^31/Lucas(89) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^29/Lucas(87) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^27/Lucas(85) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^25/Lucas(83) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^23/Lucas(81) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^9/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^21/Lucas(79) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^19/Lucas(77) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^17/Lucas(75) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^16/Lucas(76) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^18/Lucas(78) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^20/Lucas(80) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^22/Lucas(82) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^24/Lucas(84) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^26/Lucas(86) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^28/Lucas(88) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^30/Lucas(90) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^32/Lucas(92) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^34/Lucas(94) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^36/Lucas(96) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^38/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(76)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(38)*Lucas(38)/(1/2+sqrt(5)/2)^60 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^40/Lucas(100) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^39/Lucas(99) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^37/Lucas(97) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^35/Lucas(95) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^33/Lucas(93) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^31/Lucas(91) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^29/Lucas(89) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^27/Lucas(87) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^25/Lucas(85) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^23/Lucas(83) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^21/Lucas(81) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^19/Lucas(79) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^17/Lucas(77) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^16/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^18/Lucas(80) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^20/Lucas(82) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^22/Lucas(84) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^24/Lucas(86) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^26/Lucas(88) 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^6/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^28/Lucas(90) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^30/Lucas(92) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^32/Lucas(94) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^34/Lucas(96) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^36/Lucas(98) 9870002026342035 a004 Fibonacci(39)*Lucas(39)/(1/2+sqrt(5)/2)^62 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^38/Lucas(100) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^37/Lucas(99) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^35/Lucas(97) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^33/Lucas(95) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^31/Lucas(93) 9870002026342035 a004 Fibonacci(93)*(1/2+sqrt(5)/2)/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^29/Lucas(91) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^27/Lucas(89) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^25/Lucas(87) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^7/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^23/Lucas(85) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^21/Lucas(83) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^19/Lucas(81) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^17/Lucas(79) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^16/Lucas(80) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^14/Lucas(80) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^20/Lucas(84) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^22/Lucas(86) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^24/Lucas(88) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^26/Lucas(90) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^28/Lucas(92) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^30/Lucas(94) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^32/Lucas(96) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^34/Lucas(98) 9870002026342035 a004 Fibonacci(40)*Lucas(40)/(1/2+sqrt(5)/2)^64 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^36/Lucas(100) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^35/Lucas(99) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^33/Lucas(97) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^31/Lucas(95) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^29/Lucas(93) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^27/Lucas(91) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^25/Lucas(89) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^23/Lucas(87) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^21/Lucas(85) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^19/Lucas(83) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^15/Lucas(80) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^16/Lucas(82) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^18/Lucas(84) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^20/Lucas(86) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^22/Lucas(88) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^24/Lucas(90) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^26/Lucas(92) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^28/Lucas(94) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^30/Lucas(96) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^32/Lucas(98) 9870002026342035 a004 Fibonacci(41)*Lucas(41)/(1/2+sqrt(5)/2)^66 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^33/Lucas(99) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^34/Lucas(100) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^31/Lucas(97) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^29/Lucas(95) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^27/Lucas(93) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^25/Lucas(91) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^23/Lucas(89) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^21/Lucas(87) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^19/Lucas(85) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^17/Lucas(83) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^16/Lucas(84) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^18/Lucas(86) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^20/Lucas(88) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^22/Lucas(90) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^24/Lucas(92) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^26/Lucas(94) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^28/Lucas(96) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^30/Lucas(98) 9870002026342035 a004 Fibonacci(42)*Lucas(42)/(1/2+sqrt(5)/2)^68 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^31/Lucas(99) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^32/Lucas(100) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^29/Lucas(97) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^27/Lucas(95) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^25/Lucas(93) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^23/Lucas(91) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^21/Lucas(89) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^19/Lucas(87) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^17/Lucas(85) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^16/Lucas(86) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^18/Lucas(88) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^20/Lucas(90) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^22/Lucas(92) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^24/Lucas(94) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^26/Lucas(96) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^28/Lucas(98) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^30/Lucas(100) 9870002026342035 a004 Fibonacci(43)*Lucas(43)/(1/2+sqrt(5)/2)^70 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^29/Lucas(99) 9870002026342035 a006 5^(1/2)*Fibonacci(102)/Lucas(86)/sqrt(5) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^27/Lucas(97) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^25/Lucas(95) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^23/Lucas(93) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^21/Lucas(91) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^19/Lucas(89) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^17/Lucas(87) 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^16/Lucas(88) 9870002026342035 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^14/Lucas(88) 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^20/Lucas(92) 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^22/Lucas(94) 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^24/Lucas(96) 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^26/Lucas(98) 9870002026342035 a004 Fibonacci(44)*Lucas(44)/(1/2+sqrt(5)/2)^72 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^28/Lucas(100) 9870002026342035 a006 5^(1/2)*Fibonacci(104)/Lucas(88)/sqrt(5) 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^27/Lucas(99) 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^25/Lucas(97) 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^23/Lucas(95) 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^21/Lucas(93) 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^19/Lucas(91) 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^17/Lucas(89) 9870002026342035 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^16/Lucas(90) 9870002026342035 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^18/Lucas(92) 9870002026342035 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^20/Lucas(94) 9870002026342035 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^22/Lucas(96) 9870002026342035 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^24/Lucas(98) 9870002026342035 a004 Fibonacci(45)*Lucas(45)/(1/2+sqrt(5)/2)^74 9870002026342035 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^26/Lucas(100) 9870002026342035 a006 5^(1/2)*Fibonacci(106)/Lucas(90)/sqrt(5) 9870002026342035 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^25/Lucas(99) 9870002026342035 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^23/Lucas(97) 9870002026342035 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^21/Lucas(95) 9870002026342035 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^19/Lucas(93) 9870002026342035 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^17/Lucas(91) 9870002026342035 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^16/Lucas(92) 9870002026342035 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^14/Lucas(92) 9870002026342035 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^20/Lucas(96) 9870002026342035 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^22/Lucas(98) 9870002026342035 a004 Fibonacci(46)*Lucas(46)/(1/2+sqrt(5)/2)^76 9870002026342035 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^23/Lucas(99) 9870002026342035 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^24/Lucas(100) 9870002026342035 a006 5^(1/2)*Fibonacci(108)/Lucas(92)/sqrt(5) 9870002026342035 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^21/Lucas(97) 9870002026342035 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^19/Lucas(95) 9870002026342035 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^15/Lucas(92) 9870002026342035 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^16/Lucas(94) 9870002026342035 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^18/Lucas(96) 9870002026342035 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^20/Lucas(98) 9870002026342035 a004 Fibonacci(47)*Lucas(47)/(1/2+sqrt(5)/2)^78 9870002026342035 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^22/Lucas(100) 9870002026342035 a006 5^(1/2)*Fibonacci(110)/Lucas(94)/sqrt(5) 9870002026342035 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^21/Lucas(99) 9870002026342035 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^19/Lucas(97) 9870002026342035 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^17/Lucas(95) 9870002026342035 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^16/Lucas(96) 9870002026342035 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^14/Lucas(96) 9870002026342035 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^20/Lucas(100) 9870002026342035 a004 Fibonacci(48)*Lucas(48)/(1/2+sqrt(5)/2)^80 9870002026342035 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^19/Lucas(99) 9870002026342035 a006 5^(1/2)*Fibonacci(112)/Lucas(96)/sqrt(5) 9870002026342035 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^17/Lucas(97) 9870002026342035 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^16/Lucas(98) 9870002026342035 a004 Fibonacci(49)*Lucas(49)/(1/2+sqrt(5)/2)^82 9870002026342035 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^17/Lucas(99) 9870002026342035 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^18/Lucas(100) 9870002026342035 a004 Fibonacci(98)*Lucas(1)/(1/2+sqrt(5)/2)^82 9870002026342035 a006 5^(1/2)*Fibonacci(114)/Lucas(98)/sqrt(5) 9870002026342035 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^15/Lucas(99) 9870002026342035 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^16/Lucas(100) 9870002026342035 a004 Fibonacci(50)*Lucas(50)/(1/2+sqrt(5)/2)^84 9870002026342035 a004 Fibonacci(51)*Lucas(51)/(1/2+sqrt(5)/2)^86 9870002026342035 a004 Fibonacci(52)*Lucas(52)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(53)*Lucas(53)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(54)*Lucas(54)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(55)*Lucas(55)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(56)*Lucas(56)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(57)*Lucas(57)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(58)*Lucas(58)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(99)*Lucas(1)/(1/2+sqrt(5)/2)^83 9870002026342035 a006 5^(1/2)*Fibonacci(115)/Lucas(99)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(116)/Lucas(100)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(117)/Lucas(101)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(118)/Lucas(102)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(119)/Lucas(103)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(120)/Lucas(104)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(121)/Lucas(105)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(122)/Lucas(106)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(123)/Lucas(107)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(124)/Lucas(108)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(125)/Lucas(109)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(126)/Lucas(110)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(127)/Lucas(111)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(128)/Lucas(112)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(129)/Lucas(113)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(130)/Lucas(114)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(131)/Lucas(115)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(132)/Lucas(116)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(133)/Lucas(117)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(134)/Lucas(118)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(135)/Lucas(119)/sqrt(5) 9870002026342035 a006 5^(1/2)*Fibonacci(136)/Lucas(120)/sqrt(5) 9870002026342035 a004 Fibonacci(99)*(1/2+sqrt(5)/2)^16/Lucas(99) 9870002026342035 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^17/Lucas(98) 9870002026342035 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^18/Lucas(99) 9870002026342035 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^19/Lucas(100) 9870002026342035 a004 Fibonacci(97)*Lucas(1)/(1/2+sqrt(5)/2)^81 9870002026342035 a006 5^(1/2)*Fibonacci(113)/Lucas(97)/sqrt(5) 9870002026342035 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^16/Lucas(97) 9870002026342035 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^17/Lucas(96) 9870002026342035 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^19/Lucas(98) 9870002026342035 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^21/Lucas(100) 9870002026342035 a004 Fibonacci(95)*Lucas(1)/(1/2+sqrt(5)/2)^79 9870002026342035 a006 5^(1/2)*Fibonacci(111)/Lucas(95)/sqrt(5) 9870002026342035 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^20/Lucas(99) 9870002026342035 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^18/Lucas(97) 9870002026342035 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^16/Lucas(95) 9870002026342035 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^17/Lucas(94) 9870002026342035 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^19/Lucas(96) 9870002026342035 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^21/Lucas(98) 9870002026342035 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^23/Lucas(100) 9870002026342035 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^22/Lucas(99) 9870002026342035 a004 Fibonacci(93)*Lucas(1)/(1/2+sqrt(5)/2)^77 9870002026342035 a006 5^(1/2)*Fibonacci(109)/Lucas(93)/sqrt(5) 9870002026342035 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^20/Lucas(97) 9870002026342035 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^18/Lucas(95) 9870002026342035 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^16/Lucas(93) 9870002026342035 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^17/Lucas(92) 9870002026342035 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^13/Lucas(91) 9870002026342035 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^21/Lucas(96) 9870002026342035 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^23/Lucas(98) 9870002026342035 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^24/Lucas(99) 9870002026342035 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^25/Lucas(100) 9870002026342035 a004 Fibonacci(91)*Lucas(1)/(1/2+sqrt(5)/2)^75 9870002026342035 a006 5^(1/2)*Fibonacci(107)/Lucas(91)/sqrt(5) 9870002026342035 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^22/Lucas(97) 9870002026342035 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^20/Lucas(95) 9870002026342035 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^18/Lucas(93) 9870002026342035 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^16/Lucas(91) 9870002026342035 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^17/Lucas(90) 9870002026342035 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^19/Lucas(92) 9870002026342035 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^21/Lucas(94) 9870002026342035 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^23/Lucas(96) 9870002026342035 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^25/Lucas(98) 9870002026342035 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^27/Lucas(100) 9870002026342035 a004 Fibonacci(89)*Lucas(1)/(1/2+sqrt(5)/2)^73 9870002026342035 a006 5^(1/2)*Fibonacci(105)/Lucas(89)/sqrt(5) 9870002026342035 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^26/Lucas(99) 9870002026342035 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^24/Lucas(97) 9870002026342035 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^22/Lucas(95) 9870002026342035 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^20/Lucas(93) 9870002026342035 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^18/Lucas(91) 9870002026342035 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^16/Lucas(89) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^17/Lucas(88) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^19/Lucas(90) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^21/Lucas(92) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^23/Lucas(94) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^25/Lucas(96) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^27/Lucas(98) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^28/Lucas(99) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^29/Lucas(100) 9870002026342035 a004 Fibonacci(87)*Lucas(1)/(1/2+sqrt(5)/2)^71 9870002026342035 a006 5^(1/2)*Fibonacci(103)/Lucas(87)/sqrt(5) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^26/Lucas(97) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^24/Lucas(95) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^22/Lucas(93) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^20/Lucas(91) 9870002026342035 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^12/Lucas(87) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^18/Lucas(89) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^16/Lucas(87) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^17/Lucas(86) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^19/Lucas(88) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^21/Lucas(90) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^23/Lucas(92) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^25/Lucas(94) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^27/Lucas(96) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^29/Lucas(98) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^30/Lucas(99) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^31/Lucas(100) 9870002026342035 a004 Fibonacci(85)*Lucas(1)/(1/2+sqrt(5)/2)^69 9870002026342035 a006 5^(1/2)*Fibonacci(101)/Lucas(85)/sqrt(5) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^28/Lucas(97) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^26/Lucas(95) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^24/Lucas(93) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^22/Lucas(91) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^20/Lucas(89) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^18/Lucas(87) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^16/Lucas(85) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^17/Lucas(84) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^19/Lucas(86) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^21/Lucas(88) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^23/Lucas(90) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^25/Lucas(92) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^27/Lucas(94) 9870002026342035 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^5/Lucas(83) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^29/Lucas(96) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^31/Lucas(98) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^33/Lucas(100) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^32/Lucas(99) 9870002026342035 a004 Fibonacci(83)*Lucas(1)/(1/2+sqrt(5)/2)^67 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^30/Lucas(97) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^28/Lucas(95) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^26/Lucas(93) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^24/Lucas(91) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^22/Lucas(89) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^20/Lucas(87) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^18/Lucas(85) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^16/Lucas(83) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^17/Lucas(82) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^19/Lucas(84) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^21/Lucas(86) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^23/Lucas(88) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^25/Lucas(90) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^27/Lucas(92) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^29/Lucas(94) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^31/Lucas(96) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^33/Lucas(98) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^35/Lucas(100) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^34/Lucas(99) 9870002026342035 a004 Fibonacci(81)*Lucas(1)/(1/2+sqrt(5)/2)^65 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^32/Lucas(97) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^30/Lucas(95) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^28/Lucas(93) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^26/Lucas(91) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^24/Lucas(89) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^22/Lucas(87) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^20/Lucas(85) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^18/Lucas(83) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^16/Lucas(81) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^17/Lucas(80) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^19/Lucas(82) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^21/Lucas(84) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^23/Lucas(86) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^25/Lucas(88) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^27/Lucas(90) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^29/Lucas(92) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^31/Lucas(94) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^33/Lucas(96) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^35/Lucas(98) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^36/Lucas(99) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^37/Lucas(100) 9870002026342035 a004 Fibonacci(99)/Lucas(79)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^34/Lucas(97) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^32/Lucas(95) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^30/Lucas(93) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^28/Lucas(91) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^26/Lucas(89) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^24/Lucas(87) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^22/Lucas(85) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^20/Lucas(83) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^18/Lucas(81) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^16/Lucas(79) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^15/Lucas(77) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^19/Lucas(80) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^21/Lucas(82) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^23/Lucas(84) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^25/Lucas(86) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^27/Lucas(88) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^29/Lucas(90) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^31/Lucas(92) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^33/Lucas(94) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^35/Lucas(96) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^37/Lucas(98) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^38/Lucas(99) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^39/Lucas(100) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^36/Lucas(97) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^34/Lucas(95) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^32/Lucas(93) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^30/Lucas(91) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^28/Lucas(89) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^26/Lucas(87) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^24/Lucas(85) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^22/Lucas(83) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^20/Lucas(81) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^14/Lucas(77) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^16/Lucas(77) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^17/Lucas(76) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^19/Lucas(78) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^21/Lucas(80) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^23/Lucas(82) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^25/Lucas(84) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^27/Lucas(86) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^29/Lucas(88) 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^3/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^31/Lucas(90) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^33/Lucas(92) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^35/Lucas(94) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^37/Lucas(96) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^39/Lucas(98) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^41/Lucas(100) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^40/Lucas(99) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^38/Lucas(97) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^36/Lucas(95) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^34/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(75)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^32/Lucas(91) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^30/Lucas(89) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^28/Lucas(87) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^4/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^26/Lucas(85) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^24/Lucas(83) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^22/Lucas(81) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^20/Lucas(79) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^18/Lucas(77) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^16/Lucas(75) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^17/Lucas(74) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^19/Lucas(76) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^21/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^11/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^23/Lucas(80) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^9/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^25/Lucas(82) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^7/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^27/Lucas(84) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^5/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^29/Lucas(86) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^3/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^31/Lucas(88) 9870002026342035 a004 Fibonacci(88)*(1/2+sqrt(5)/2)/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^33/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(73)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^35/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(73)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^37/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(73)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^39/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(73)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^41/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(73)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(100)/Lucas(73)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^43/Lucas(100) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^42/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(73)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^40/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(73)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^38/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(73)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^36/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(73)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^34/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(73)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^32/Lucas(89) 9870002026342035 a006 5^(1/2)*Fibonacci(89)/Lucas(73)/sqrt(5) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^30/Lucas(87) 9870002026342035 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^2/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^28/Lucas(85) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^4/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^26/Lucas(83) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^6/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^24/Lucas(81) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^8/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^22/Lucas(79) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^10/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^20/Lucas(77) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^12/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^18/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^14/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^16/Lucas(73) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^17/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^15/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^19/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^13/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^21/Lucas(76) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^11/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^23/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^9/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^25/Lucas(80) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^7/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^27/Lucas(82) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^5/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^29/Lucas(84) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^3/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^31/Lucas(86) 9870002026342035 a004 Fibonacci(86)*(1/2+sqrt(5)/2)/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^33/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(71)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^35/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(71)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^37/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(71)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^39/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(71)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^41/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(71)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^43/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(71)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(100)/Lucas(71)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^45/Lucas(100) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^44/Lucas(99) 9870002026342035 a004 Fibonacci(71)*Lucas(1)/(1/2+sqrt(5)/2)^55 9870002026342035 a004 Fibonacci(99)/Lucas(71)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^42/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(71)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^40/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(71)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^38/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(71)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^36/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(71)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^34/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(71)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^32/Lucas(87) 9870002026342035 a006 5^(1/2)*Fibonacci(87)/Lucas(71)/sqrt(5) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^30/Lucas(85) 9870002026342035 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^2/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^28/Lucas(83) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^4/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^26/Lucas(81) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^6/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^24/Lucas(79) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^8/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^22/Lucas(77) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^10/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^20/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^12/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^18/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^14/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^16/Lucas(71) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^17/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^15/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^19/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^13/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^21/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^11/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^23/Lucas(76) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^9/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^25/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^7/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^27/Lucas(80) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^5/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^29/Lucas(82) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^3/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^31/Lucas(84) 9870002026342035 a004 Fibonacci(84)*(1/2+sqrt(5)/2)/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^33/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(69)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^35/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(69)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^37/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(69)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^39/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(69)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^41/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(69)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^43/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(69)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^45/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(69)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(100)/Lucas(69)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^47/Lucas(100) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^46/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(69)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^44/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(69)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^42/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(69)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^40/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(69)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^38/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(69)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^36/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(69)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^34/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(69)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^32/Lucas(85) 9870002026342035 a006 5^(1/2)*Fibonacci(85)/Lucas(69)/sqrt(5) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^30/Lucas(83) 9870002026342035 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^2/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^28/Lucas(81) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^4/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^26/Lucas(79) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^6/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^24/Lucas(77) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^8/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^22/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^10/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^20/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^12/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^18/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^14/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^16/Lucas(69) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^17/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^15/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^19/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^13/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^21/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^11/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^23/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^9/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^25/Lucas(76) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^7/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^27/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^5/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^29/Lucas(80) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^3/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^31/Lucas(82) 9870002026342035 a004 Fibonacci(82)*(1/2+sqrt(5)/2)/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^33/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(67)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^35/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(67)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^37/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(67)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^39/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(67)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^41/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(67)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^43/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(67)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^45/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(67)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^47/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(67)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(100)/Lucas(67)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^49/Lucas(100) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^48/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(67)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^46/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(67)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^44/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(67)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^42/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(67)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^40/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(67)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^38/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(67)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^36/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(67)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^34/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(67)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^32/Lucas(83) 9870002026342035 a006 5^(1/2)*Fibonacci(83)/Lucas(67)/sqrt(5) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^30/Lucas(81) 9870002026342035 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^2/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^28/Lucas(79) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^4/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^26/Lucas(77) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^6/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^24/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^8/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^22/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^10/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^20/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^12/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^18/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^14/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^16/Lucas(67) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^17/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^15/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^19/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^13/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^21/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^11/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^23/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^9/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^25/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^7/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^27/Lucas(76) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^5/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^29/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^3/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^31/Lucas(80) 9870002026342035 a004 Fibonacci(80)*(1/2+sqrt(5)/2)/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^33/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(65)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^35/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(65)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^37/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(65)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^39/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(65)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^41/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(65)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^43/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(65)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^45/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(65)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^47/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(65)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^49/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(65)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(100)/Lucas(65)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^51/Lucas(100) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^50/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(65)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^48/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(65)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^46/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(65)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^44/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(65)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^42/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(65)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^40/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(65)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^38/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(65)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^36/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(65)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^34/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(65)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^32/Lucas(81) 9870002026342035 a006 5^(1/2)*Fibonacci(81)/Lucas(65)/sqrt(5) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^30/Lucas(79) 9870002026342035 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^2/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^28/Lucas(77) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^4/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^26/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^6/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^24/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^8/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^22/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^10/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^20/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^12/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^18/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^14/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^16/Lucas(65) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^17/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^15/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^19/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^13/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^21/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^11/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^23/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^9/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^25/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^7/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^27/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^5/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^29/Lucas(76) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^3/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^31/Lucas(78) 9870002026342035 a004 Fibonacci(78)*(1/2+sqrt(5)/2)/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^33/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(63)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^35/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(63)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^37/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(63)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^39/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(63)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^41/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(63)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^43/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(63)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^45/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(63)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^47/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(63)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^49/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(63)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^51/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(63)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(100)/Lucas(63)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^53/Lucas(100) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^52/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(63)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^50/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(63)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^48/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(63)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^46/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(63)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^44/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(63)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^42/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(63)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^40/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(63)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^38/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(63)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^36/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(63)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^34/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(63)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^32/Lucas(79) 9870002026342035 a006 5^(1/2)*Fibonacci(79)/Lucas(63)/sqrt(5) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^30/Lucas(77) 9870002026342035 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^2/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^28/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^4/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^26/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^6/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^24/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^8/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^22/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^10/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^20/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^12/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^18/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^14/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^16/Lucas(63) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^17/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^15/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^19/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^13/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^21/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^11/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^23/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^9/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^25/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^7/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^27/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^5/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^29/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^3/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^31/Lucas(76) 9870002026342035 a004 Fibonacci(76)*(1/2+sqrt(5)/2)/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^33/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(61)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^35/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(61)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^37/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(61)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^39/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(61)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^41/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(61)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^43/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(61)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^45/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(61)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^47/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(61)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^49/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(61)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^51/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(61)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^53/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(61)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(100)/Lucas(61)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^54/Lucas(99) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^55/Lucas(100) 9870002026342035 a004 Fibonacci(99)/Lucas(61)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^52/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(61)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^50/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(61)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^48/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(61)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^46/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(61)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^44/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(61)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^42/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(61)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^40/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(61)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^38/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(61)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^36/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(61)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^34/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(61)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^32/Lucas(77) 9870002026342035 a006 5^(1/2)*Fibonacci(77)/Lucas(61)/sqrt(5) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^30/Lucas(75) 9870002026342035 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^2/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^28/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^4/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^26/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^6/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^24/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^8/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^22/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^10/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^20/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^12/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^18/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^14/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^16/Lucas(61) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^17/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^15/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^19/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^13/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^21/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^11/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^23/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^9/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^25/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^7/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^27/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^5/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^29/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^3/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^31/Lucas(74) 9870002026342035 a004 Fibonacci(74)*(1/2+sqrt(5)/2)/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^33/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(59)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^35/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(59)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^37/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(59)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^39/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(59)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^41/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(59)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^43/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(59)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^45/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(59)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^47/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(59)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^49/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(59)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^51/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(59)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^53/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(59)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^55/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(59)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(100)/Lucas(59)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^57/Lucas(100) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^56/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(59)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^54/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(59)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^52/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(59)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^50/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(59)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^48/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(59)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^46/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(59)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^44/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(59)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^42/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(59)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^40/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(59)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^38/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(59)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^36/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(59)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^34/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(59)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^32/Lucas(75) 9870002026342035 a006 5^(1/2)*Fibonacci(75)/Lucas(59)/sqrt(5) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^30/Lucas(73) 9870002026342035 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^2/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^28/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^4/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^26/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^6/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^24/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^8/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^22/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^10/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^20/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^12/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^18/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^14/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^16/Lucas(59) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^17/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^15/Lucas(57) 9870002026342035 a004 Fibonacci(57)*Lucas(59)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^19/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^13/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^21/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^11/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^23/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^9/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^25/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^7/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^27/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^5/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^29/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^3/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^31/Lucas(72) 9870002026342035 a004 Fibonacci(72)*(1/2+sqrt(5)/2)/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^33/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(57)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^35/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(57)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^37/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(57)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^39/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(57)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^41/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(57)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^43/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(57)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^45/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(57)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^47/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(57)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^49/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(57)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^51/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(57)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^53/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(57)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^55/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(57)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^57/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(57)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(100)/Lucas(57)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^59/Lucas(100) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^58/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(57)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^56/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(57)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^54/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(57)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^52/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(57)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^50/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(57)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^48/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(57)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^46/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(57)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^44/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(57)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^42/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(57)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^40/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(57)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^38/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(57)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^36/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(57)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^34/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(57)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^32/Lucas(73) 9870002026342035 a006 5^(1/2)*Fibonacci(73)/Lucas(57)/sqrt(5) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^30/Lucas(71) 9870002026342035 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^2/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^28/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^4/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^26/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^6/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^24/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^8/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^22/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^10/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^20/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^12/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^18/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^14/Lucas(57) 9870002026342035 a004 Fibonacci(57)*Lucas(58)/(1/2+sqrt(5)/2)^99 9870002026342035 a001 43133785636/96450076809*73681302247^(4/13) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^16/Lucas(57) 9870002026342035 a004 Fibonacci(58)*Lucas(56)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(60)*Lucas(56)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(59)*Lucas(56)/(1/2+sqrt(5)/2)^99 9870002026342035 a001 365435296162/505019158607*192900153618^(5/18) 9870002026342035 a004 Fibonacci(57)*Lucas(56)/(1/2+sqrt(5)/2)^97 9870002026342035 a001 10610209857723/817138163596*192900153618^(1/6) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^17/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^15/Lucas(55) 9870002026342035 a004 Fibonacci(55)*Lucas(57)/(1/2+sqrt(5)/2)^96 9870002026342035 a001 139583862445/1322157322203*817138163596^(1/3) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^19/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^13/Lucas(55) 9870002026342035 a004 Fibonacci(55)*Lucas(59)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^21/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^11/Lucas(55) 9870002026342035 a004 Fibonacci(55)*Lucas(61)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^23/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^9/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^25/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^7/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^27/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^5/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^29/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^3/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^31/Lucas(70) 9870002026342035 a004 Fibonacci(70)*(1/2+sqrt(5)/2)/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^33/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(55)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^35/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(55)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^37/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(55)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^39/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(55)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^41/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(55)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^43/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(55)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^45/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(55)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^47/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(55)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^49/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(55)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^51/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(55)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^53/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(55)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^55/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(55)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^57/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(55)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^59/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(55)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(100)/Lucas(55)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^61/Lucas(100) 9870002026342035 a004 Fibonacci(55)*Lucas(1)/(1/2+sqrt(5)/2)^39 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^60/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(55)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^58/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(55)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^56/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(55)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^54/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(55)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^52/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(55)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^50/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(55)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^48/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(55)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^46/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(55)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^44/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(55)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^42/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(55)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^40/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(55)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^38/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(55)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^36/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(55)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^34/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(55)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^32/Lucas(71) 9870002026342035 a006 5^(1/2)*Fibonacci(71)/Lucas(55)/sqrt(5) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^30/Lucas(69) 9870002026342035 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^2/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^28/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^4/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^26/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^6/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^24/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^8/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^22/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^10/Lucas(55) 9870002026342035 a004 Fibonacci(55)*Lucas(60)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^20/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^12/Lucas(55) 9870002026342035 a004 Fibonacci(55)*Lucas(58)/(1/2+sqrt(5)/2)^97 9870002026342035 a001 365435296162/312119004989*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^18/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^14/Lucas(55) 9870002026342035 a001 139583862445/2139295485799*505019158607^(5/14) 9870002026342035 a001 365435296162/9062201101803*192900153618^(7/18) 9870002026342035 a001 365435296162/312119004989*505019158607^(1/4) 9870002026342035 a004 Fibonacci(55)*Lucas(56)/(1/2+sqrt(5)/2)^95 9870002026342035 a001 4052739537881/312119004989*192900153618^(1/6) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^16/Lucas(55) 9870002026342035 a001 139583862445/312119004989*23725150497407^(1/4) 9870002026342035 a001 139583862445/3461452808002*192900153618^(7/18) 9870002026342035 a001 182717648081/96450076809*73681302247^(1/4) 9870002026342035 a001 139583862445/817138163596*192900153618^(1/3) 9870002026342035 a001 139583862445/14662949395604*192900153618^(4/9) 9870002026342035 a004 Fibonacci(56)*Lucas(54)/(1/2+sqrt(5)/2)^94 9870002026342035 a001 225749145909/10745088481*73681302247^(2/13) 9870002026342035 a004 Fibonacci(58)*Lucas(54)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(60)*Lucas(54)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(62)*Lucas(54)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(61)*Lucas(54)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(59)*Lucas(54)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(57)*Lucas(54)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(55)*Lucas(54)/(1/2+sqrt(5)/2)^93 9870002026342035 a001 1548008755920/505019158607*73681302247^(3/13) 9870002026342035 a001 956722026041/505019158607*73681302247^(1/4) 9870002026342035 a001 1515744265389/494493258286*73681302247^(3/13) 9870002026342035 a001 86267571272/1322157322203*73681302247^(5/13) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^17/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^15/Lucas(53) 9870002026342035 a001 2504730781961/817138163596*73681302247^(3/13) 9870002026342035 a001 10610209857723/5600748293801*73681302247^(1/4) 9870002026342035 a001 86267571272/119218851371*192900153618^(5/18) 9870002026342035 a001 956722026041/312119004989*73681302247^(3/13) 9870002026342035 a001 591286729879/1322157322203*73681302247^(4/13) 9870002026342035 a001 591286729879/312119004989*73681302247^(1/4) 9870002026342035 a001 182717648081/408569081798*73681302247^(4/13) 9870002026342035 a004 Fibonacci(53)*Lucas(55)/(1/2+sqrt(5)/2)^92 9870002026342035 a001 86267571272/23725150497407*73681302247^(1/2) 9870002026342035 a001 53316291173/9062201101803*312119004989^(5/11) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^19/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^13/Lucas(53) 9870002026342035 a001 32264490531/494493258286*73681302247^(5/13) 9870002026342035 a001 591286729879/73681302247*28143753123^(1/5) 9870002026342035 a004 Fibonacci(53)*Lucas(57)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^21/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^11/Lucas(53) 9870002026342035 a001 1548008755920/119218851371*817138163596^(3/19) 9870002026342035 a004 Fibonacci(53)*Lucas(59)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^23/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^9/Lucas(53) 9870002026342035 a004 Fibonacci(53)*Lucas(61)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^25/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^7/Lucas(53) 9870002026342035 a004 Fibonacci(53)*Lucas(63)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^27/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^5/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^29/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^3/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^31/Lucas(68) 9870002026342035 a004 Fibonacci(68)*(1/2+sqrt(5)/2)/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^33/Lucas(70) 9870002026342035 a004 Fibonacci(70)/Lucas(53)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^35/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(53)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^37/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(53)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^39/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(53)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^41/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(53)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^43/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(53)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^45/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(53)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^47/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(53)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^49/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(53)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^51/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(53)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^53/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(53)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^55/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(53)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^57/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(53)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^59/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(53)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^61/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(53)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(100)/Lucas(53)/(1/2+sqrt(5)/2)^31 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^63/Lucas(100) 9870002026342035 a004 Fibonacci(53)*Lucas(1)/(1/2+sqrt(5)/2)^37 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^62/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(53)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^60/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(53)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^58/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(53)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^56/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(53)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^54/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(53)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^52/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(53)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^50/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(53)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^48/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(53)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^46/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(53)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^44/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(53)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^42/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(53)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^40/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(53)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^38/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(53)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^36/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(53)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^34/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(53)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^32/Lucas(69) 9870002026342035 a006 5^(1/2)*Fibonacci(69)/Lucas(53)/sqrt(5) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^30/Lucas(67) 9870002026342035 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^2/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^28/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^4/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^26/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^6/Lucas(53) 9870002026342035 a004 Fibonacci(53)*Lucas(62)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^24/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^8/Lucas(53) 9870002026342035 a004 Fibonacci(53)*Lucas(60)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^22/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^10/Lucas(53) 9870002026342035 a004 Fibonacci(53)*Lucas(58)/(1/2+sqrt(5)/2)^95 9870002026342035 a001 2504730781961/119218851371*505019158607^(1/7) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^20/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^12/Lucas(53) 9870002026342035 a001 53316291173/817138163596*505019158607^(5/14) 9870002026342035 a004 Fibonacci(53)*Lucas(56)/(1/2+sqrt(5)/2)^93 9870002026342035 a001 1548008755920/119218851371*192900153618^(1/6) 9870002026342035 a001 139583862445/312119004989*73681302247^(4/13) 9870002026342035 a001 53316291173/312119004989*14662949395604^(2/7) 9870002026342035 a001 139583862445/119218851371*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^18/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^14/Lucas(53) 9870002026342035 a001 225851433717/23725150497407*73681302247^(6/13) 9870002026342035 a001 139583862445/2139295485799*73681302247^(5/13) 9870002026342035 a001 139583862445/119218851371*505019158607^(1/4) 9870002026342035 a001 53316291173/5600748293801*192900153618^(4/9) 9870002026342035 a001 53316291173/312119004989*192900153618^(1/3) 9870002026342035 a001 139583862445/14662949395604*73681302247^(6/13) 9870002026342035 a004 Fibonacci(53)*Lucas(54)/(1/2+sqrt(5)/2)^91 9870002026342035 a001 2504730781961/119218851371*73681302247^(2/13) 9870002026342035 a001 225851433717/119218851371*73681302247^(1/4) 9870002026342035 a001 365435296162/119218851371*73681302247^(3/13) 9870002026342035 a001 20365011074/73681302247*45537549124^(1/3) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^16/Lucas(53) 9870002026342035 a001 53316291173/119218851371*23725150497407^(1/4) 9870002026342035 a001 53316291173/5600748293801*73681302247^(6/13) 9870002026342035 a001 32951280099/45537549124*45537549124^(5/17) 9870002026342035 a004 Fibonacci(54)*Lucas(52)/(1/2+sqrt(5)/2)^90 9870002026342035 a001 53316291173/14662949395604*73681302247^(1/2) 9870002026342035 a001 591286729879/28143753123*10749957122^(1/6) 9870002026342035 a004 Fibonacci(56)*Lucas(52)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(58)*Lucas(52)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(60)*Lucas(52)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(62)*Lucas(52)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(64)*Lucas(52)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(63)*Lucas(52)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(61)*Lucas(52)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(59)*Lucas(52)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(57)*Lucas(52)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(55)*Lucas(52)/(1/2+sqrt(5)/2)^91 9870002026342035 a001 10610209857723/119218851371*28143753123^(1/10) 9870002026342035 a001 53316291173/119218851371*73681302247^(4/13) 9870002026342035 a001 86000486440/10716675201*28143753123^(1/5) 9870002026342035 a001 20365011074/9062201101803*45537549124^(9/17) 9870002026342035 a001 4052739537881/505019158607*28143753123^(1/5) 9870002026342035 a001 3536736619241/440719107401*28143753123^(1/5) 9870002026342035 a001 3278735159921/408569081798*28143753123^(1/5) 9870002026342035 a004 Fibonacci(53)*Lucas(52)/(1/2+sqrt(5)/2)^89 9870002026342035 a001 20365011074/2139295485799*45537549124^(8/17) 9870002026342035 a001 2504730781961/312119004989*28143753123^(1/5) 9870002026342035 a001 53316291173/73681302247*28143753123^(3/10) 9870002026342035 a001 20365011074/505019158607*45537549124^(7/17) 9870002026342035 a001 32951280099/45537549124*312119004989^(3/11) 9870002026342035 a001 32951280099/45537549124*14662949395604^(5/21) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^17/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^15/Lucas(51) 9870002026342035 a001 32951280099/45537549124*192900153618^(5/18) 9870002026342035 a001 32951280099/505019158607*28143753123^(2/5) 9870002026342035 a001 956722026041/119218851371*28143753123^(1/5) 9870002026342035 a001 12586269025/28143753123*10749957122^(1/3) 9870002026342035 a001 139583862445/192900153618*28143753123^(3/10) 9870002026342035 a001 365435296162/505019158607*28143753123^(3/10) 9870002026342035 a001 139583862445/45537549124*45537549124^(4/17) 9870002026342035 a001 591286729879/817138163596*28143753123^(3/10) 9870002026342035 a001 20365011074/119218851371*45537549124^(6/17) 9870002026342035 a001 225851433717/312119004989*28143753123^(3/10) 9870002026342035 a001 591286729879/45537549124*45537549124^(3/17) 9870002026342035 a004 Fibonacci(51)*Lucas(53)/(1/2+sqrt(5)/2)^88 9870002026342035 a001 86267571272/119218851371*28143753123^(3/10) 9870002026342035 a001 2504730781961/45537549124*45537549124^(2/17) 9870002026342035 a001 32951280099/5600748293801*28143753123^(1/2) 9870002026342035 a001 10610209857723/45537549124*45537549124^(1/17) 9870002026342035 a001 10182505537/96450076809*817138163596^(1/3) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^19/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^13/Lucas(51) 9870002026342035 a004 Fibonacci(51)*Lucas(55)/(1/2+sqrt(5)/2)^90 9870002026342035 a001 225851433717/45537549124*312119004989^(1/5) 9870002026342035 a001 10182505537/1730726404001*312119004989^(5/11) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^21/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^11/Lucas(51) 9870002026342035 a001 10182505537/408569081798*312119004989^(2/5) 9870002026342035 a004 Fibonacci(51)*Lucas(57)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^23/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^9/Lucas(51) 9870002026342035 a004 Fibonacci(51)*Lucas(59)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^25/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^7/Lucas(51) 9870002026342035 a001 10182505537/1730726404001*3461452808002^(5/12) 9870002026342035 a004 Fibonacci(51)*Lucas(61)/(1/2+sqrt(5)/2)^96 9870002026342035 a001 20365011074/9062201101803*14662949395604^(3/7) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^27/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^5/Lucas(51) 9870002026342035 a004 Fibonacci(51)*Lucas(63)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^29/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^3/Lucas(51) 9870002026342035 a004 Fibonacci(51)*Lucas(65)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^31/Lucas(66) 9870002026342035 a004 Fibonacci(66)*(1/2+sqrt(5)/2)/Lucas(51) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^33/Lucas(68) 9870002026342035 a004 Fibonacci(68)/Lucas(51)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^35/Lucas(70) 9870002026342035 a004 Fibonacci(70)/Lucas(51)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^37/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(51)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^39/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(51)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^41/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(51)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^43/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(51)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^45/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(51)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^47/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(51)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^49/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(51)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^51/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(51)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^53/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(51)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^55/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(51)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^57/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(51)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^59/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(51)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^61/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(51)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^63/Lucas(98) 9870002026342035 a004 Fibonacci(98)/Lucas(51)/(1/2+sqrt(5)/2)^31 9870002026342035 a004 Fibonacci(100)/Lucas(51)/(1/2+sqrt(5)/2)^33 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^64/Lucas(99) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^65/Lucas(100) 9870002026342035 a004 Fibonacci(99)/Lucas(51)/(1/2+sqrt(5)/2)^32 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^62/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(51)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^60/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(51)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^58/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(51)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^56/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(51)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^54/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(51)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^52/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(51)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^50/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(51)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^48/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(51)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^46/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(51)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^44/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(51)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^42/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(51)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^40/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(51)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^38/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(51)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^36/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(51)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^34/Lucas(69) 9870002026342035 a004 Fibonacci(69)/Lucas(51)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^32/Lucas(67) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^30/Lucas(65) 9870002026342035 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^2/Lucas(51) 9870002026342035 a004 Fibonacci(51)*Lucas(64)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^28/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^4/Lucas(51) 9870002026342035 a004 Fibonacci(51)*Lucas(62)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^26/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^6/Lucas(51) 9870002026342035 a004 Fibonacci(51)*Lucas(60)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^24/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^8/Lucas(51) 9870002026342035 a001 20365011074/23725150497407*1322157322203^(1/2) 9870002026342035 a004 Fibonacci(51)*Lucas(58)/(1/2+sqrt(5)/2)^93 9870002026342035 a001 956722026041/45537549124*505019158607^(1/7) 9870002026342035 a001 10610209857723/45537549124*192900153618^(1/18) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^22/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^10/Lucas(51) 9870002026342035 a001 591286729879/45537549124*192900153618^(1/6) 9870002026342035 a004 Fibonacci(51)*Lucas(56)/(1/2+sqrt(5)/2)^91 9870002026342035 a001 20365011074/505019158607*192900153618^(7/18) 9870002026342035 a001 139583862445/45537549124*817138163596^(4/19) 9870002026342035 a001 139583862445/45537549124*14662949395604^(4/21) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^20/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^12/Lucas(51) 9870002026342035 a001 20365011074/2139295485799*192900153618^(4/9) 9870002026342035 a001 3278735159921/22768774562*73681302247^(1/13) 9870002026342035 a001 139583862445/45537549124*192900153618^(2/9) 9870002026342035 a001 32264490531/494493258286*28143753123^(2/5) 9870002026342035 a001 21566892818/11384387281*73681302247^(1/4) 9870002026342035 a001 591286729879/9062201101803*28143753123^(2/5) 9870002026342035 a001 1548008755920/23725150497407*28143753123^(2/5) 9870002026342035 a001 365435296162/5600748293801*28143753123^(2/5) 9870002026342035 a004 Fibonacci(51)*Lucas(54)/(1/2+sqrt(5)/2)^89 9870002026342035 a001 956722026041/45537549124*73681302247^(2/13) 9870002026342035 a001 139583862445/2139295485799*28143753123^(2/5) 9870002026342035 a001 139583862445/45537549124*73681302247^(3/13) 9870002026342035 a001 75283811239/9381251041*10749957122^(5/24) 9870002026342035 a001 1515744265389/10525900321*10749957122^(1/12) 9870002026342035 a001 20365011074/119218851371*14662949395604^(2/7) 9870002026342035 a001 53316291173/45537549124*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^18/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^14/Lucas(51) 9870002026342035 a001 53316291173/45537549124*505019158607^(1/4) 9870002026342035 a001 20365011074/119218851371*192900153618^(1/3) 9870002026342035 a001 20365011074/312119004989*73681302247^(5/13) 9870002026342035 a001 20365011074/2139295485799*73681302247^(6/13) 9870002026342035 a001 20365011074/5600748293801*73681302247^(1/2) 9870002026342035 a001 53316291173/817138163596*28143753123^(2/5) 9870002026342035 a001 10182505537/7331474697802*73681302247^(7/13) 9870002026342035 a001 1135099622/192933544679*28143753123^(1/2) 9870002026342035 a001 4052739537881/45537549124*28143753123^(1/10) 9870002026342035 a001 139583862445/23725150497407*28143753123^(1/2) 9870002026342035 a004 Fibonacci(51)*Lucas(52)/(1/2+sqrt(5)/2)^87 9870002026342035 a001 32951280099/45537549124*28143753123^(3/10) 9870002026342035 a001 53316291173/9062201101803*28143753123^(1/2) 9870002026342035 a001 182717648081/22768774562*28143753123^(1/5) 9870002026342035 a001 86267571272/28143753123*10749957122^(1/4) 9870002026342035 a001 4052739537881/73681302247*10749957122^(1/8) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^16/Lucas(51) 9870002026342035 a001 10182505537/22768774562*23725150497407^(1/4) 9870002026342035 a001 20365011074/312119004989*28143753123^(2/5) 9870002026342035 a001 10182505537/22768774562*73681302247^(4/13) 9870002026342035 a001 10610209857723/45537549124*10749957122^(1/16) 9870002026342035 a001 3536736619241/64300051206*10749957122^(1/8) 9870002026342035 a001 10983760033/9381251041*10749957122^(7/24) 9870002026342035 a004 Fibonacci(52)*Lucas(50)/(1/2+sqrt(5)/2)^86 9870002026342035 a001 10182505537/1730726404001*28143753123^(1/2) 9870002026342035 a001 6557470319842/119218851371*10749957122^(1/8) 9870002026342035 a001 3278735159921/22768774562*10749957122^(1/12) 9870002026342035 a004 Fibonacci(54)*Lucas(50)/(1/2+sqrt(5)/2)^88 9870002026342035 a001 1548008755920/73681302247*10749957122^(1/6) 9870002026342035 a004 Fibonacci(56)*Lucas(50)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(58)*Lucas(50)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(60)*Lucas(50)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(62)*Lucas(50)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(64)*Lucas(50)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(66)*Lucas(50)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(65)*Lucas(50)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(63)*Lucas(50)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(61)*Lucas(50)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(59)*Lucas(50)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(57)*Lucas(50)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(55)*Lucas(50)/(1/2+sqrt(5)/2)^89 9870002026342035 a001 3536736619241/9381251041*4106118243^(1/23) 9870002026342035 a004 Fibonacci(53)*Lucas(50)/(1/2+sqrt(5)/2)^87 9870002026342035 a001 4052739537881/192900153618*10749957122^(1/6) 9870002026342035 a001 7778742049/5600748293801*17393796001^(4/7) 9870002026342035 a001 225749145909/10745088481*10749957122^(1/6) 9870002026342035 a001 956722026041/73681302247*10749957122^(3/16) 9870002026342035 a001 6557470319842/312119004989*10749957122^(1/6) 9870002026342035 a001 2504730781961/119218851371*10749957122^(1/6) 9870002026342035 a001 2504730781961/45537549124*10749957122^(1/8) 9870002026342035 a001 2504730781961/192900153618*10749957122^(3/16) 9870002026342035 a001 591286729879/73681302247*10749957122^(5/24) 9870002026342035 a001 10610209857723/817138163596*10749957122^(3/16) 9870002026342035 a001 4052739537881/312119004989*10749957122^(3/16) 9870002026342035 a001 225851433717/10749957122*4106118243^(4/23) 9870002026342035 a001 1548008755920/119218851371*10749957122^(3/16) 9870002026342035 a004 Fibonacci(51)*Lucas(50)/(1/2+sqrt(5)/2)^85 9870002026342035 a001 86000486440/10716675201*10749957122^(5/24) 9870002026342035 a001 12586269025/73681302247*10749957122^(3/8) 9870002026342035 a001 4052739537881/505019158607*10749957122^(5/24) 9870002026342035 a001 3536736619241/440719107401*10749957122^(5/24) 9870002026342035 a001 3278735159921/408569081798*10749957122^(5/24) 9870002026342035 a001 2504730781961/312119004989*10749957122^(5/24) 9870002026342035 a001 7778742049/192900153618*17393796001^(3/7) 9870002026342035 a001 956722026041/119218851371*10749957122^(5/24) 9870002026342035 a001 7778742049/28143753123*45537549124^(1/3) 9870002026342035 a001 12586269025/17393796001*45537549124^(5/17) 9870002026342035 a001 20365011074/28143753123*10749957122^(5/16) 9870002026342035 a001 956722026041/45537549124*10749957122^(1/6) 9870002026342035 a001 365435296162/6643838879*2537720636^(2/15) 9870002026342035 a001 32264490531/10525900321*10749957122^(1/4) 9870002026342035 a001 12586269025/17393796001*312119004989^(3/11) 9870002026342035 a001 12586269025/17393796001*14662949395604^(5/21) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^17/Lucas(50) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^15/Lucas(49) 9870002026342035 a001 12586269025/17393796001*192900153618^(5/18) 9870002026342035 a001 591286729879/45537549124*10749957122^(3/16) 9870002026342035 a001 591286729879/192900153618*10749957122^(1/4) 9870002026342035 a001 1548008755920/505019158607*10749957122^(1/4) 9870002026342035 a001 1515744265389/494493258286*10749957122^(1/4) 9870002026342035 a001 2504730781961/817138163596*10749957122^(1/4) 9870002026342035 a001 956722026041/312119004989*10749957122^(1/4) 9870002026342035 a001 365435296162/119218851371*10749957122^(1/4) 9870002026342035 a001 182717648081/22768774562*10749957122^(5/24) 9870002026342035 a001 86267571272/73681302247*10749957122^(7/24) 9870002026342035 a001 12586269025/192900153618*10749957122^(5/12) 9870002026342035 a001 12586269025/17393796001*28143753123^(3/10) 9870002026342035 a001 75283811239/64300051206*10749957122^(7/24) 9870002026342035 a001 32951280099/73681302247*10749957122^(1/3) 9870002026342035 a001 2504730781961/2139295485799*10749957122^(7/24) 9870002026342035 a001 1144206275/28374454999*10749957122^(7/16) 9870002026342035 a001 365435296162/312119004989*10749957122^(7/24) 9870002026342035 a001 53316291173/73681302247*10749957122^(5/16) 9870002026342035 a001 139583862445/119218851371*10749957122^(7/24) 9870002026342035 a001 139583862445/45537549124*10749957122^(1/4) 9870002026342035 a001 139583862445/192900153618*10749957122^(5/16) 9870002026342035 a001 12586269025/505019158607*10749957122^(11/24) 9870002026342035 a001 365435296162/505019158607*10749957122^(5/16) 9870002026342035 a001 591286729879/817138163596*10749957122^(5/16) 9870002026342035 a001 225851433717/312119004989*10749957122^(5/16) 9870002026342035 a001 86267571272/119218851371*10749957122^(5/16) 9870002026342035 a004 Fibonacci(49)*Lucas(51)/(1/2+sqrt(5)/2)^84 9870002026342035 a001 43133785636/96450076809*10749957122^(1/3) 9870002026342035 a001 591286729879/17393796001*17393796001^(1/7) 9870002026342035 a001 20365011074/17393796001*17393796001^(2/7) 9870002026342035 a001 225851433717/505019158607*10749957122^(1/3) 9870002026342035 a001 591286729879/1322157322203*10749957122^(1/3) 9870002026342035 a001 182717648081/408569081798*10749957122^(1/3) 9870002026342035 a001 139583862445/312119004989*10749957122^(1/3) 9870002026342035 a001 32951280099/45537549124*10749957122^(5/16) 9870002026342035 a001 53316291173/119218851371*10749957122^(1/3) 9870002026342035 a001 10983760033/64300051206*10749957122^(3/8) 9870002026342035 a001 7778742049/3461452808002*45537549124^(9/17) 9870002026342035 a001 12586269025/1322157322203*10749957122^(1/2) 9870002026342035 a001 53316291173/45537549124*10749957122^(7/24) 9870002026342035 a001 7778742049/192900153618*45537549124^(7/17) 9870002026342035 a001 7778742049/817138163596*45537549124^(8/17) 9870002026342035 a001 7778742049/73681302247*817138163596^(1/3) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^19/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^13/Lucas(49) 9870002026342035 a001 32951280099/17393796001*73681302247^(1/4) 9870002026342035 a001 86267571272/505019158607*10749957122^(3/8) 9870002026342035 a001 7787980473/599786069*45537549124^(3/17) 9870002026342035 a004 Fibonacci(49)*Lucas(53)/(1/2+sqrt(5)/2)^86 9870002026342035 a001 75283811239/440719107401*10749957122^(3/8) 9870002026342035 a001 2504730781961/14662949395604*10749957122^(3/8) 9870002026342035 a001 956722026041/17393796001*45537549124^(2/17) 9870002026342035 a001 139583862445/817138163596*10749957122^(3/8) 9870002026342035 a001 53316291173/17393796001*45537549124^(4/17) 9870002026342035 a001 86267571272/17393796001*312119004989^(1/5) 9870002026342035 a001 4052739537881/17393796001*45537549124^(1/17) 9870002026342035 a001 7778742049/192900153618*14662949395604^(1/3) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^21/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^11/Lucas(49) 9870002026342035 a001 7778742049/192900153618*192900153618^(7/18) 9870002026342035 a004 Fibonacci(49)*Lucas(55)/(1/2+sqrt(5)/2)^88 9870002026342035 a001 7778742049/1322157322203*312119004989^(5/11) 9870002026342035 a001 7787980473/599786069*817138163596^(3/19) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^23/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^9/Lucas(49) 9870002026342035 a004 Fibonacci(49)*Lucas(57)/(1/2+sqrt(5)/2)^90 9870002026342035 a001 1548008755920/17393796001*312119004989^(1/11) 9870002026342035 a001 591286729879/17393796001*14662949395604^(1/9) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^25/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^7/Lucas(49) 9870002026342035 a004 Fibonacci(49)*Lucas(59)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^27/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^5/Lucas(49) 9870002026342035 a004 Fibonacci(49)*Lucas(61)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^29/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^3/Lucas(49) 9870002026342035 a004 Fibonacci(49)*Lucas(63)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^31/Lucas(64) 9870002026342035 a004 Fibonacci(64)*(1/2+sqrt(5)/2)/Lucas(49) 9870002026342035 a004 Fibonacci(49)*Lucas(65)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^33/Lucas(66) 9870002026342035 a004 Fibonacci(66)/Lucas(49)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(49)*Lucas(67)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^35/Lucas(68) 9870002026342035 a004 Fibonacci(68)/Lucas(49)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^37/Lucas(70) 9870002026342035 a004 Fibonacci(70)/Lucas(49)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^39/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(49)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^41/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(49)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^43/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(49)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^45/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(49)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^47/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(49)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^49/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(49)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^51/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(49)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^53/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(49)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^55/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(49)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^57/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(49)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^59/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(49)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^61/Lucas(94) 9870002026342035 a004 Fibonacci(94)/Lucas(49)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^63/Lucas(96) 9870002026342035 a004 Fibonacci(96)/Lucas(49)/(1/2+sqrt(5)/2)^31 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^65/Lucas(98) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^67/Lucas(100) 9870002026342035 a004 Fibonacci(49)*Lucas(1)/(1/2+sqrt(5)/2)^33 9870002026342035 a004 Fibonacci(100)/Lucas(49)/(1/2+sqrt(5)/2)^35 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^66/Lucas(99) 9870002026342035 a004 Fibonacci(99)/Lucas(49)/(1/2+sqrt(5)/2)^34 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^64/Lucas(97) 9870002026342035 a004 Fibonacci(97)/Lucas(49)/(1/2+sqrt(5)/2)^32 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^62/Lucas(95) 9870002026342035 a004 Fibonacci(95)/Lucas(49)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^60/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(49)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^58/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(49)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^56/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(49)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^54/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(49)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^52/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(49)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^50/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(49)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^48/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(49)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^46/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(49)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^44/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(49)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^42/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(49)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^40/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(49)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^38/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(49)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^36/Lucas(69) 9870002026342035 a004 Fibonacci(69)/Lucas(49)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^34/Lucas(67) 9870002026342035 a004 Fibonacci(67)/Lucas(49)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(49)*Lucas(66)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^32/Lucas(65) 9870002026342035 a004 Fibonacci(49)*Lucas(64)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^30/Lucas(63) 9870002026342035 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^2/Lucas(49) 9870002026342035 a004 Fibonacci(49)*Lucas(62)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^28/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^4/Lucas(49) 9870002026342035 a004 Fibonacci(49)*Lucas(60)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^26/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^6/Lucas(49) 9870002026342035 a004 Fibonacci(49)*Lucas(58)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^24/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^8/Lucas(49) 9870002026342035 a001 365435296162/17393796001*23725150497407^(1/8) 9870002026342035 a001 365435296162/17393796001*505019158607^(1/7) 9870002026342035 a004 Fibonacci(49)*Lucas(56)/(1/2+sqrt(5)/2)^89 9870002026342035 a001 7778742049/312119004989*312119004989^(2/5) 9870002026342035 a001 139583862445/17393796001*312119004989^(2/11) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^22/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^10/Lucas(49) 9870002026342035 a001 7778742049/817138163596*192900153618^(4/9) 9870002026342035 a001 2504730781961/17393796001*73681302247^(1/13) 9870002026342035 a001 7778742049/14662949395604*192900153618^(5/9) 9870002026342035 a001 2403763488/5374978561*4106118243^(8/23) 9870002026342035 a001 53316291173/312119004989*10749957122^(3/8) 9870002026342035 a004 Fibonacci(49)*Lucas(54)/(1/2+sqrt(5)/2)^87 9870002026342035 a001 365435296162/17393796001*73681302247^(2/13) 9870002026342035 a001 53316291173/17393796001*817138163596^(4/19) 9870002026342035 a001 53316291173/17393796001*14662949395604^(4/21) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^20/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^12/Lucas(49) 9870002026342035 a001 7778742049/119218851371*23725150497407^(5/16) 9870002026342035 a001 53316291173/17393796001*192900153618^(2/9) 9870002026342035 a001 7778742049/817138163596*73681302247^(6/13) 9870002026342035 a001 7778742049/2139295485799*73681302247^(1/2) 9870002026342035 a001 7778742049/5600748293801*73681302247^(7/13) 9870002026342035 a001 32951280099/505019158607*10749957122^(5/12) 9870002026342035 a001 53316291173/17393796001*73681302247^(3/13) 9870002026342035 a001 12586269025/3461452808002*10749957122^(13/24) 9870002026342035 a001 1548008755920/17393796001*28143753123^(1/10) 9870002026342035 a001 7778742049/119218851371*73681302247^(5/13) 9870002026342035 a004 Fibonacci(49)*Lucas(52)/(1/2+sqrt(5)/2)^85 9870002026342035 a001 139583862445/17393796001*28143753123^(1/5) 9870002026342035 a001 86267571272/1322157322203*10749957122^(5/12) 9870002026342035 a001 32264490531/494493258286*10749957122^(5/12) 9870002026342035 a001 32951280099/817138163596*10749957122^(7/16) 9870002026342035 a001 12586269025/5600748293801*10749957122^(9/16) 9870002026342035 a001 365435296162/5600748293801*10749957122^(5/12) 9870002026342035 a001 139583862445/2139295485799*10749957122^(5/12) 9870002026342035 a001 7778742049/45537549124*45537549124^(6/17) 9870002026342035 a001 6557470319842/17393796001*10749957122^(1/24) 9870002026342035 a001 53316291173/817138163596*10749957122^(5/12) 9870002026342035 a001 86267571272/2139295485799*10749957122^(7/16) 9870002026342035 a001 10983760033/440719107401*10749957122^(11/24) 9870002026342035 a001 225851433717/5600748293801*10749957122^(7/16) 9870002026342035 a001 12586269025/9062201101803*10749957122^(7/12) 9870002026342035 a001 365435296162/9062201101803*10749957122^(7/16) 9870002026342035 a001 7778742049/45537549124*14662949395604^(2/7) 9870002026342035 a001 20365011074/17393796001*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^18/Lucas(51) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^14/Lucas(49) 9870002026342035 a001 20365011074/17393796001*505019158607^(1/4) 9870002026342035 a001 139583862445/3461452808002*10749957122^(7/16) 9870002026342035 a001 7778742049/45537549124*192900153618^(1/3) 9870002026342035 a001 20365011074/119218851371*10749957122^(3/8) 9870002026342035 a001 4052739537881/17393796001*10749957122^(1/16) 9870002026342035 a001 10182505537/22768774562*10749957122^(1/3) 9870002026342035 a001 53316291173/1322157322203*10749957122^(7/16) 9870002026342035 a001 7778742049/119218851371*28143753123^(2/5) 9870002026342035 a001 4052739537881/28143753123*4106118243^(2/23) 9870002026342035 a001 7778742049/1322157322203*28143753123^(1/2) 9870002026342035 a001 43133785636/1730726404001*10749957122^(11/24) 9870002026342035 a001 75283811239/3020733700601*10749957122^(11/24) 9870002026342035 a001 182717648081/7331474697802*10749957122^(11/24) 9870002026342035 a001 139583862445/5600748293801*10749957122^(11/24) 9870002026342035 a001 2504730781961/17393796001*10749957122^(1/12) 9870002026342035 a001 53316291173/2139295485799*10749957122^(11/24) 9870002026342035 a001 7778742049/14662949395604*28143753123^(3/5) 9870002026342035 a001 20365011074/312119004989*10749957122^(5/12) 9870002026342035 a001 32951280099/3461452808002*10749957122^(1/2) 9870002026342035 a001 12586269025/23725150497407*10749957122^(5/8) 9870002026342035 a001 43133785636/5374978561*4106118243^(5/23) 9870002026342035 a001 20365011074/505019158607*10749957122^(7/16) 9870002026342035 a001 86267571272/9062201101803*10749957122^(1/2) 9870002026342035 a001 225851433717/23725150497407*10749957122^(1/2) 9870002026342035 a001 139583862445/14662949395604*10749957122^(1/2) 9870002026342035 a001 956722026041/17393796001*10749957122^(1/8) 9870002026342035 a001 53316291173/5600748293801*10749957122^(1/2) 9870002026342035 a001 10182505537/408569081798*10749957122^(11/24) 9870002026342035 a001 10983760033/3020733700601*10749957122^(13/24) 9870002026342035 a004 Fibonacci(49)*Lucas(50)/(1/2+sqrt(5)/2)^83 9870002026342035 a001 86267571272/23725150497407*10749957122^(13/24) 9870002026342035 a001 32951280099/14662949395604*10749957122^(9/16) 9870002026342035 a001 12586269025/17393796001*10749957122^(5/16) 9870002026342035 a001 53316291173/14662949395604*10749957122^(13/24) 9870002026342035 a001 20365011074/2139295485799*10749957122^(1/2) 9870002026342035 a001 32951280099/23725150497407*10749957122^(7/12) 9870002026342035 a001 7787980473/599786069*10749957122^(3/16) 9870002026342035 a001 53316291173/23725150497407*10749957122^(9/16) 9870002026342035 a001 1515744265389/10525900321*4106118243^(2/23) 9870002026342035 a001 139583862445/17393796001*10749957122^(5/24) 9870002026342035 a001 20365011074/5600748293801*10749957122^(13/24) 9870002026342035 a001 20365011074/9062201101803*10749957122^(9/16) 9870002026342035 a001 591286729879/6643838879*2537720636^(1/9) 9870002026342035 a001 10182505537/7331474697802*10749957122^(7/12) 9870002026342035 a001 53316291173/17393796001*10749957122^(1/4) 9870002026342035 a001 3278735159921/22768774562*4106118243^(2/23) 9870002026342035 a001 6557470319842/17393796001*4106118243^(1/23) 9870002026342035 a001 20365011074/17393796001*10749957122^(7/24) 9870002026342035 a001 12585437040/228811001*4106118243^(3/23) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^16/Lucas(49) 9870002026342035 a001 7778742049/17393796001*23725150497407^(1/4) 9870002026342035 a001 32951280099/10749957122*4106118243^(6/23) 9870002026342035 a001 7778742049/17393796001*73681302247^(4/13) 9870002026342035 a001 7778742049/119218851371*10749957122^(5/12) 9870002026342035 a001 7778742049/45537549124*10749957122^(3/8) 9870002026342035 a001 7778742049/192900153618*10749957122^(7/16) 9870002026342035 a001 7778742049/312119004989*10749957122^(11/24) 9870002026342035 a004 Fibonacci(50)*Lucas(48)/(1/2+sqrt(5)/2)^82 9870002026342035 a001 4052739537881/73681302247*4106118243^(3/23) 9870002026342035 a001 7778742049/817138163596*10749957122^(1/2) 9870002026342035 a001 3536736619241/64300051206*4106118243^(3/23) 9870002026342035 a001 6557470319842/119218851371*4106118243^(3/23) 9870002026342035 a001 7778742049/2139295485799*10749957122^(13/24) 9870002026342035 a001 12586269025/10749957122*4106118243^(7/23) 9870002026342035 a001 7778742049/3461452808002*10749957122^(9/16) 9870002026342035 a001 2504730781961/45537549124*4106118243^(3/23) 9870002026342035 a001 7778742049/5600748293801*10749957122^(7/12) 9870002026342035 a001 2504730781961/17393796001*4106118243^(2/23) 9870002026342035 a004 Fibonacci(52)*Lucas(48)/(1/2+sqrt(5)/2)^84 9870002026342035 a004 Fibonacci(54)*Lucas(48)/(1/2+sqrt(5)/2)^86 9870002026342035 a004 Fibonacci(56)*Lucas(48)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(58)*Lucas(48)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(60)*Lucas(48)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(62)*Lucas(48)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(64)*Lucas(48)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(66)*Lucas(48)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(68)*Lucas(48)/(1/2+sqrt(5)/2)^100 9870002026342035 a001 1/2403763488*(1/2+1/2*5^(1/2))^64 9870002026342035 a004 Fibonacci(67)*Lucas(48)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(65)*Lucas(48)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(63)*Lucas(48)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(61)*Lucas(48)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(59)*Lucas(48)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(57)*Lucas(48)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(55)*Lucas(48)/(1/2+sqrt(5)/2)^87 9870002026342035 a001 7778742049/14662949395604*10749957122^(5/8) 9870002026342035 a004 Fibonacci(53)*Lucas(48)/(1/2+sqrt(5)/2)^85 9870002026342035 a001 591286729879/28143753123*4106118243^(4/23) 9870002026342035 a004 Fibonacci(51)*Lucas(48)/(1/2+sqrt(5)/2)^83 9870002026342035 a001 7778742049/17393796001*10749957122^(1/3) 9870002026342035 a001 4052739537881/10749957122*1568397607^(1/22) 9870002026342035 a001 1548008755920/73681302247*4106118243^(4/23) 9870002026342035 a001 4052739537881/192900153618*4106118243^(4/23) 9870002026342035 a001 225749145909/10745088481*4106118243^(4/23) 9870002026342035 a001 6557470319842/312119004989*4106118243^(4/23) 9870002026342035 a001 2504730781961/119218851371*4106118243^(4/23) 9870002026342035 a001 956722026041/45537549124*4106118243^(4/23) 9870002026342035 a001 956722026041/17393796001*4106118243^(3/23) 9870002026342035 a001 75283811239/9381251041*4106118243^(5/23) 9870002026342035 a004 Fibonacci(49)*Lucas(48)/(1/2+sqrt(5)/2)^81 9870002026342035 a001 1548008755920/6643838879*2537720636^(1/15) 9870002026342035 a001 591286729879/73681302247*4106118243^(5/23) 9870002026342035 a001 86000486440/10716675201*4106118243^(5/23) 9870002026342035 a001 4052739537881/505019158607*4106118243^(5/23) 9870002026342035 a001 3536736619241/440719107401*4106118243^(5/23) 9870002026342035 a001 3278735159921/408569081798*4106118243^(5/23) 9870002026342035 a001 2504730781961/312119004989*4106118243^(5/23) 9870002026342035 a001 956722026041/119218851371*4106118243^(5/23) 9870002026342035 a001 1602508992/9381251041*4106118243^(9/23) 9870002026342035 a001 182717648081/22768774562*4106118243^(5/23) 9870002026342035 a001 365435296162/17393796001*4106118243^(4/23) 9870002026342035 a001 2971215073/10749957122*45537549124^(1/3) 9870002026342035 a001 4807526976/6643838879*45537549124^(5/17) 9870002026342035 a001 4807526976/6643838879*312119004989^(3/11) 9870002026342035 a001 4807526976/6643838879*14662949395604^(5/21) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^17/Lucas(48) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^15/Lucas(47) 9870002026342035 a001 4807526976/6643838879*192900153618^(5/18) 9870002026342035 a001 86267571272/28143753123*4106118243^(6/23) 9870002026342035 a001 4807526976/6643838879*28143753123^(3/10) 9870002026342035 a001 86267571272/4106118243*1568397607^(2/11) 9870002026342035 a001 32264490531/10525900321*4106118243^(6/23) 9870002026342035 a001 591286729879/192900153618*4106118243^(6/23) 9870002026342035 a001 1548008755920/505019158607*4106118243^(6/23) 9870002026342035 a001 1515744265389/494493258286*4106118243^(6/23) 9870002026342035 a001 2504730781961/817138163596*4106118243^(6/23) 9870002026342035 a001 956722026041/312119004989*4106118243^(6/23) 9870002026342035 a001 365435296162/119218851371*4106118243^(6/23) 9870002026342035 a001 139583862445/45537549124*4106118243^(6/23) 9870002026342035 a001 139583862445/17393796001*4106118243^(5/23) 9870002026342035 a001 10983760033/9381251041*4106118243^(7/23) 9870002026342035 a001 4807526976/6643838879*10749957122^(5/16) 9870002026342035 a001 686789568/10525900321*4106118243^(10/23) 9870002026342035 a001 3536736619241/9381251041*1568397607^(1/22) 9870002026342035 a001 86267571272/73681302247*4106118243^(7/23) 9870002026342035 a001 75283811239/64300051206*4106118243^(7/23) 9870002026342035 a001 2504730781961/2139295485799*4106118243^(7/23) 9870002026342035 a001 365435296162/312119004989*4106118243^(7/23) 9870002026342035 a001 12586269025/28143753123*4106118243^(8/23) 9870002026342035 a001 139583862445/119218851371*4106118243^(7/23) 9870002026342035 a001 53316291173/45537549124*4106118243^(7/23) 9870002026342035 a001 53316291173/17393796001*4106118243^(6/23) 9870002026342035 a004 Fibonacci(47)*Lucas(49)/(1/2+sqrt(5)/2)^80 9870002026342035 a001 267084832/10716675201*4106118243^(11/23) 9870002026342035 a001 32951280099/73681302247*4106118243^(8/23) 9870002026342035 a001 43133785636/96450076809*4106118243^(8/23) 9870002026342035 a001 225851433717/505019158607*4106118243^(8/23) 9870002026342035 a001 591286729879/1322157322203*4106118243^(8/23) 9870002026342035 a001 182717648081/408569081798*4106118243^(8/23) 9870002026342035 a001 139583862445/312119004989*4106118243^(8/23) 9870002026342035 a001 2971215073/2139295485799*17393796001^(4/7) 9870002026342035 a001 53316291173/119218851371*4106118243^(8/23) 9870002026342035 a001 4807526976/312119004989*4106118243^(1/2) 9870002026342035 a001 2971215073/73681302247*17393796001^(3/7) 9870002026342035 a001 2971215073/28143753123*817138163596^(1/3) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^19/Lucas(50) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^13/Lucas(47) 9870002026342035 a001 12586269025/6643838879*73681302247^(1/4) 9870002026342035 a001 10182505537/22768774562*4106118243^(8/23) 9870002026342035 a001 12586269025/73681302247*4106118243^(9/23) 9870002026342035 a001 6557470319842/17393796001*1568397607^(1/22) 9870002026342035 a001 20365011074/17393796001*4106118243^(7/23) 9870002026342035 a004 Fibonacci(47)*Lucas(51)/(1/2+sqrt(5)/2)^82 9870002026342035 a001 225851433717/6643838879*17393796001^(1/7) 9870002026342035 a001 2971215073/73681302247*45537549124^(7/17) 9870002026342035 a001 102287808/10745088481*4106118243^(12/23) 9870002026342035 a001 2971215073/23725150497407*45537549124^(11/17) 9870002026342035 a001 2971215073/5600748293801*45537549124^(10/17) 9870002026342035 a001 2971215073/1322157322203*45537549124^(9/17) 9870002026342035 a001 2971215073/312119004989*45537549124^(8/17) 9870002026342035 a001 32951280099/6643838879*312119004989^(1/5) 9870002026342035 a001 2971215073/73681302247*14662949395604^(1/3) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^21/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^11/Lucas(47) 9870002026342035 a001 2971215073/73681302247*192900153618^(7/18) 9870002026342035 a001 86267571272/6643838879*45537549124^(3/17) 9870002026342035 a004 Fibonacci(47)*Lucas(53)/(1/2+sqrt(5)/2)^84 9870002026342035 a001 365435296162/6643838879*45537549124^(2/17) 9870002026342035 a001 1548008755920/6643838879*45537549124^(1/17) 9870002026342035 a001 86267571272/6643838879*817138163596^(3/19) 9870002026342035 a001 86267571272/6643838879*14662949395604^(1/7) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^23/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^9/Lucas(47) 9870002026342035 a001 86267571272/6643838879*192900153618^(1/6) 9870002026342035 a004 Fibonacci(47)*Lucas(55)/(1/2+sqrt(5)/2)^86 9870002026342035 a001 2971215073/505019158607*312119004989^(5/11) 9870002026342035 a001 2971215073/23725150497407*312119004989^(3/5) 9870002026342035 a001 2971215073/5600748293801*312119004989^(6/11) 9870002026342035 a001 225851433717/6643838879*14662949395604^(1/9) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^25/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^7/Lucas(47) 9870002026342035 a001 591286729879/6643838879*312119004989^(1/11) 9870002026342035 a004 Fibonacci(47)*Lucas(57)/(1/2+sqrt(5)/2)^88 9870002026342035 a001 2971215073/1322157322203*14662949395604^(3/7) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^27/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^5/Lucas(47) 9870002026342035 a004 Fibonacci(47)*Lucas(59)/(1/2+sqrt(5)/2)^90 9870002026342035 a001 1548008755920/6643838879*14662949395604^(1/21) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^29/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^3/Lucas(47) 9870002026342035 a004 Fibonacci(47)*Lucas(61)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^31/Lucas(62) 9870002026342035 a004 Fibonacci(62)*(1/2+sqrt(5)/2)/Lucas(47) 9870002026342035 a004 Fibonacci(47)*Lucas(63)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^33/Lucas(64) 9870002026342035 a004 Fibonacci(64)/Lucas(47)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(47)*Lucas(65)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^35/Lucas(66) 9870002026342035 a004 Fibonacci(66)/Lucas(47)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(47)*Lucas(67)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^37/Lucas(68) 9870002026342035 a004 Fibonacci(68)/Lucas(47)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(47)*Lucas(69)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^39/Lucas(70) 9870002026342035 a004 Fibonacci(70)/Lucas(47)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^41/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(47)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^43/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(47)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^45/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(47)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^47/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(47)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^49/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(47)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^51/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(47)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^53/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(47)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^55/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(47)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^57/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(47)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^59/Lucas(90) 9870002026342035 a004 Fibonacci(90)/Lucas(47)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^61/Lucas(92) 9870002026342035 a004 Fibonacci(92)/Lucas(47)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^63/Lucas(94) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^65/Lucas(96) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^67/Lucas(98) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^69/Lucas(100) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^68/Lucas(99) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^66/Lucas(97) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^64/Lucas(95) 9870002026342035 a004 Fibonacci(96)/Lucas(47)/(1/2+sqrt(5)/2)^33 9870002026342035 a004 Fibonacci(98)/Lucas(47)/(1/2+sqrt(5)/2)^35 9870002026342035 a004 Fibonacci(100)/Lucas(47)/(1/2+sqrt(5)/2)^37 9870002026342035 a004 Fibonacci(99)/Lucas(47)/(1/2+sqrt(5)/2)^36 9870002026342035 a004 Fibonacci(97)/Lucas(47)/(1/2+sqrt(5)/2)^34 9870002026342035 a004 Fibonacci(95)/Lucas(47)/(1/2+sqrt(5)/2)^32 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^62/Lucas(93) 9870002026342035 a004 Fibonacci(93)/Lucas(47)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^60/Lucas(91) 9870002026342035 a004 Fibonacci(91)/Lucas(47)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^58/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(47)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^56/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(47)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^54/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(47)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^52/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(47)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^50/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(47)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^48/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(47)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^46/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(47)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^44/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(47)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^42/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(47)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^40/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(47)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^38/Lucas(69) 9870002026342035 a004 Fibonacci(69)/Lucas(47)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(47)*Lucas(68)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^36/Lucas(67) 9870002026342035 a004 Fibonacci(67)/Lucas(47)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(47)*Lucas(66)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^34/Lucas(65) 9870002026342035 a004 Fibonacci(65)/Lucas(47)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(47)*Lucas(64)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^32/Lucas(63) 9870002026342035 a006 5^(1/2)*Fibonacci(63)/Lucas(47)/sqrt(5) 9870002026342035 a001 2971215073/14662949395604*23725150497407^(1/2) 9870002026342035 a004 Fibonacci(47)*Lucas(62)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^30/Lucas(61) 9870002026342035 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^2/Lucas(47) 9870002026342035 a004 Fibonacci(47)*Lucas(60)/(1/2+sqrt(5)/2)^91 9870002026342035 a001 2971215073/2139295485799*14662949395604^(4/9) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^28/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^4/Lucas(47) 9870002026342035 a004 Fibonacci(47)*Lucas(58)/(1/2+sqrt(5)/2)^89 9870002026342035 a001 1548008755920/6643838879*192900153618^(1/18) 9870002026342035 a001 365435296162/6643838879*14662949395604^(2/21) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^26/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^6/Lucas(47) 9870002026342035 a001 2971215073/14662949395604*505019158607^(4/7) 9870002026342035 a004 Fibonacci(47)*Lucas(56)/(1/2+sqrt(5)/2)^87 9870002026342035 a001 2971215073/312119004989*14662949395604^(8/21) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^24/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^8/Lucas(47) 9870002026342035 a001 139583862445/6643838879*23725150497407^(1/8) 9870002026342035 a001 139583862445/6643838879*505019158607^(1/7) 9870002026342035 a001 2971215073/1322157322203*192900153618^(1/2) 9870002026342035 a001 956722026041/6643838879*73681302247^(1/13) 9870002026342035 a001 2971215073/5600748293801*192900153618^(5/9) 9870002026342035 a001 2971215073/23725150497407*192900153618^(11/18) 9870002026342035 a001 2971215073/312119004989*192900153618^(4/9) 9870002026342035 a004 Fibonacci(47)*Lucas(54)/(1/2+sqrt(5)/2)^85 9870002026342035 a001 139583862445/6643838879*73681302247^(2/13) 9870002026342035 a001 2971215073/119218851371*312119004989^(2/5) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^22/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^10/Lucas(47) 9870002026342035 a001 2971215073/817138163596*73681302247^(1/2) 9870002026342035 a001 2971215073/312119004989*73681302247^(6/13) 9870002026342035 a001 2971215073/2139295485799*73681302247^(7/13) 9870002026342035 a001 2971215073/14662949395604*73681302247^(8/13) 9870002026342035 a001 591286729879/6643838879*28143753123^(1/10) 9870002026342035 a004 Fibonacci(47)*Lucas(52)/(1/2+sqrt(5)/2)^83 9870002026342035 a001 53316291173/6643838879*28143753123^(1/5) 9870002026342035 a001 10983760033/64300051206*4106118243^(9/23) 9870002026342035 a001 2504730781961/6643838879*10749957122^(1/24) 9870002026342035 a001 20365011074/6643838879*45537549124^(4/17) 9870002026342035 a001 20365011074/6643838879*817138163596^(4/19) 9870002026342035 a001 20365011074/6643838879*14662949395604^(4/21) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^20/Lucas(51) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^12/Lucas(47) 9870002026342035 a001 20365011074/6643838879*192900153618^(2/9) 9870002026342035 a001 20365011074/6643838879*73681302247^(3/13) 9870002026342035 a001 1548008755920/6643838879*10749957122^(1/16) 9870002026342035 a001 75283811239/440719107401*4106118243^(9/23) 9870002026342035 a001 2504730781961/14662949395604*4106118243^(9/23) 9870002026342035 a001 139583862445/817138163596*4106118243^(9/23) 9870002026342035 a001 2971215073/505019158607*28143753123^(1/2) 9870002026342035 a001 53316291173/312119004989*4106118243^(9/23) 9870002026342035 a001 956722026041/6643838879*10749957122^(1/12) 9870002026342035 a001 2971215073/5600748293801*28143753123^(3/5) 9870002026342035 a001 2971215073/45537549124*28143753123^(2/5) 9870002026342035 a001 365435296162/6643838879*10749957122^(1/8) 9870002026342035 a001 20365011074/119218851371*4106118243^(9/23) 9870002026342035 a004 Fibonacci(47)*Lucas(50)/(1/2+sqrt(5)/2)^81 9870002026342035 a001 139583862445/6643838879*10749957122^(1/6) 9870002026342035 a001 86267571272/6643838879*10749957122^(3/16) 9870002026342035 a001 12586269025/192900153618*4106118243^(10/23) 9870002026342035 a001 53316291173/6643838879*10749957122^(5/24) 9870002026342035 a001 1602508992/440719107401*4106118243^(13/23) 9870002026342035 a001 7778742049/6643838879*17393796001^(2/7) 9870002026342035 a001 2504730781961/6643838879*4106118243^(1/23) 9870002026342035 a001 20365011074/6643838879*10749957122^(1/4) 9870002026342035 a001 32951280099/505019158607*4106118243^(10/23) 9870002026342035 a001 86267571272/1322157322203*4106118243^(10/23) 9870002026342035 a001 32264490531/494493258286*4106118243^(10/23) 9870002026342035 a001 591286729879/9062201101803*4106118243^(10/23) 9870002026342035 a001 365435296162/5600748293801*4106118243^(10/23) 9870002026342035 a001 2971215073/17393796001*45537549124^(6/17) 9870002026342035 a001 139583862445/2139295485799*4106118243^(10/23) 9870002026342035 a001 53316291173/817138163596*4106118243^(10/23) 9870002026342035 a001 2971215073/17393796001*14662949395604^(2/7) 9870002026342035 a001 7778742049/6643838879*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^18/Lucas(49) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^14/Lucas(47) 9870002026342035 a001 7778742049/6643838879*505019158607^(1/4) 9870002026342035 a001 2971215073/17393796001*192900153618^(1/3) 9870002026342035 a001 2971215073/73681302247*10749957122^(7/16) 9870002026342035 a001 20365011074/312119004989*4106118243^(10/23) 9870002026342035 a001 2971215073/119218851371*10749957122^(11/24) 9870002026342035 a001 2971215073/45537549124*10749957122^(5/12) 9870002026342035 a001 2971215073/312119004989*10749957122^(1/2) 9870002026342035 a001 7778742049/45537549124*4106118243^(9/23) 9870002026342035 a001 12586269025/505019158607*4106118243^(11/23) 9870002026342035 a001 7778742049/17393796001*4106118243^(8/23) 9870002026342035 a001 2971215073/817138163596*10749957122^(13/24) 9870002026342035 a001 14930208/10749853441*4106118243^(14/23) 9870002026342035 a001 2971215073/1322157322203*10749957122^(9/16) 9870002026342035 a001 2971215073/2139295485799*10749957122^(7/12) 9870002026342035 a001 956722026041/6643838879*4106118243^(2/23) 9870002026342035 a001 2971215073/5600748293801*10749957122^(5/8) 9870002026342035 a001 10983760033/440719107401*4106118243^(11/23) 9870002026342035 a001 774004377960/5374978561*1568397607^(1/11) 9870002026342035 a001 43133785636/1730726404001*4106118243^(11/23) 9870002026342035 a001 75283811239/3020733700601*4106118243^(11/23) 9870002026342035 a001 182717648081/7331474697802*4106118243^(11/23) 9870002026342035 a001 139583862445/5600748293801*4106118243^(11/23) 9870002026342035 a001 12586269025/817138163596*4106118243^(1/2) 9870002026342035 a001 2971215073/14662949395604*10749957122^(2/3) 9870002026342035 a001 53316291173/2139295485799*4106118243^(11/23) 9870002026342035 a001 7778742049/6643838879*10749957122^(7/24) 9870002026342035 a001 2971215073/23725150497407*10749957122^(11/16) 9870002026342035 a001 10182505537/408569081798*4106118243^(11/23) 9870002026342035 a001 7778742049/119218851371*4106118243^(10/23) 9870002026342035 a001 1836311903/4106118243*1568397607^(4/11) 9870002026342035 a001 2971215073/17393796001*10749957122^(3/8) 9870002026342035 a001 32951280099/2139295485799*4106118243^(1/2) 9870002026342035 a001 86267571272/5600748293801*4106118243^(1/2) 9870002026342035 a001 7787980473/505618944676*4106118243^(1/2) 9870002026342035 a001 365435296162/23725150497407*4106118243^(1/2) 9870002026342035 a001 139583862445/9062201101803*4106118243^(1/2) 9870002026342035 a001 12586269025/1322157322203*4106118243^(12/23) 9870002026342035 a001 53316291173/3461452808002*4106118243^(1/2) 9870002026342035 a001 1602508992/3020733700601*4106118243^(15/23) 9870002026342035 a001 20365011074/1322157322203*4106118243^(1/2) 9870002026342035 a001 365435296162/6643838879*4106118243^(3/23) 9870002026342035 a001 32951280099/3461452808002*4106118243^(12/23) 9870002026342035 a001 86267571272/9062201101803*4106118243^(12/23) 9870002026342035 a001 225851433717/23725150497407*4106118243^(12/23) 9870002026342035 a001 139583862445/14662949395604*4106118243^(12/23) 9870002026342035 a001 53316291173/5600748293801*4106118243^(12/23) 9870002026342035 a004 Fibonacci(47)*Lucas(48)/(1/2+sqrt(5)/2)^79 9870002026342035 a001 20365011074/2139295485799*4106118243^(12/23) 9870002026342035 a001 7778742049/312119004989*4106118243^(11/23) 9870002026342035 a001 12586269025/3461452808002*4106118243^(13/23) 9870002026342035 a001 4807526976/23725150497407*4106118243^(16/23) 9870002026342035 a001 10983760033/1368706081*1568397607^(5/22) 9870002026342035 a001 7778742049/505019158607*4106118243^(1/2) 9870002026342035 a001 139583862445/6643838879*4106118243^(4/23) 9870002026342035 a001 10983760033/3020733700601*4106118243^(13/23) 9870002026342035 a001 86267571272/23725150497407*4106118243^(13/23) 9870002026342035 a001 53316291173/14662949395604*4106118243^(13/23) 9870002026342035 a001 20365011074/5600748293801*4106118243^(13/23) 9870002026342035 a001 7778742049/817138163596*4106118243^(12/23) 9870002026342035 a001 1134903170/23725150497407*2537720636^(7/9) 9870002026342035 a001 12586269025/9062201101803*4106118243^(14/23) 9870002026342035 a001 53316291173/6643838879*4106118243^(5/23) 9870002026342035 a001 4052739537881/28143753123*1568397607^(1/11) 9870002026342035 a001 32951280099/23725150497407*4106118243^(14/23) 9870002026342035 a001 10182505537/7331474697802*4106118243^(14/23) 9870002026342035 a001 1515744265389/10525900321*1568397607^(1/11) 9870002026342035 a001 7778742049/2139295485799*4106118243^(13/23) 9870002026342035 a001 12586269025/23725150497407*4106118243^(15/23) 9870002026342035 a001 3278735159921/22768774562*1568397607^(1/11) 9870002026342035 a001 20365011074/6643838879*4106118243^(6/23) 9870002026342035 a001 7778742049/5600748293801*4106118243^(14/23) 9870002026342035 a001 2504730781961/17393796001*1568397607^(1/11) 9870002026342035 a001 2504730781961/6643838879*1568397607^(1/22) 9870002026342035 a001 1134903170/9062201101803*2537720636^(11/15) 9870002026342035 a001 7778742049/14662949395604*4106118243^(15/23) 9870002026342035 a001 20365011074/4106118243*1568397607^(1/4) 9870002026342035 a001 7778742049/6643838879*4106118243^(7/23) 9870002026342035 a001 1836311903/2537720636*2537720636^(1/3) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^16/Lucas(47) 9870002026342035 a001 2971215073/6643838879*23725150497407^(1/4) 9870002026342035 a001 2971215073/6643838879*73681302247^(4/13) 9870002026342035 a001 591286729879/10749957122*1568397607^(3/22) 9870002026342035 a001 2971215073/6643838879*10749957122^(1/3) 9870002026342035 a001 2971215073/45537549124*4106118243^(10/23) 9870002026342035 a001 2971215073/17393796001*4106118243^(9/23) 9870002026342035 a001 12586269025/4106118243*1568397607^(3/11) 9870002026342035 a004 Fibonacci(48)*Lucas(46)/(1/2+sqrt(5)/2)^78 9870002026342035 a001 2971215073/119218851371*4106118243^(11/23) 9870002026342035 a001 1134903170/2139295485799*2537720636^(2/3) 9870002026342035 a001 2971215073/192900153618*4106118243^(1/2) 9870002026342035 a001 2971215073/312119004989*4106118243^(12/23) 9870002026342035 a001 12585437040/228811001*1568397607^(3/22) 9870002026342035 a001 4052739537881/73681302247*1568397607^(3/22) 9870002026342035 a001 3536736619241/64300051206*1568397607^(3/22) 9870002026342035 a001 6557470319842/119218851371*1568397607^(3/22) 9870002026342035 a001 2504730781961/45537549124*1568397607^(3/22) 9870002026342035 a001 2971215073/817138163596*4106118243^(13/23) 9870002026342035 a001 53316291173/1568397607*599074578^(1/6) 9870002026342035 a004 Fibonacci(50)*Lucas(46)/(1/2+sqrt(5)/2)^80 9870002026342035 a001 956722026041/17393796001*1568397607^(3/22) 9870002026342035 a001 2971215073/2139295485799*4106118243^(14/23) 9870002026342035 a004 Fibonacci(52)*Lucas(46)/(1/2+sqrt(5)/2)^82 9870002026342035 a004 Fibonacci(54)*Lucas(46)/(1/2+sqrt(5)/2)^84 9870002026342035 a004 Fibonacci(56)*Lucas(46)/(1/2+sqrt(5)/2)^86 9870002026342035 a004 Fibonacci(58)*Lucas(46)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(60)*Lucas(46)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(62)*Lucas(46)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(64)*Lucas(46)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(66)*Lucas(46)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(68)*Lucas(46)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(70)*Lucas(46)/(1/2+sqrt(5)/2)^100 9870002026342035 a001 2/1836311903*(1/2+1/2*5^(1/2))^62 9870002026342035 a004 Fibonacci(69)*Lucas(46)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(67)*Lucas(46)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(65)*Lucas(46)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(63)*Lucas(46)/(1/2+sqrt(5)/2)^93 9870002026342035 a001 9062201101803/1836311903*8^(1/3) 9870002026342035 a004 Fibonacci(61)*Lucas(46)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(59)*Lucas(46)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(57)*Lucas(46)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(55)*Lucas(46)/(1/2+sqrt(5)/2)^85 9870002026342035 a004 Fibonacci(53)*Lucas(46)/(1/2+sqrt(5)/2)^83 9870002026342035 a001 956722026041/6643838879*1568397607^(1/11) 9870002026342035 a004 Fibonacci(51)*Lucas(46)/(1/2+sqrt(5)/2)^81 9870002026342035 a001 2971215073/5600748293801*4106118243^(15/23) 9870002026342035 a001 1602508992/1368706081*1568397607^(7/22) 9870002026342035 a001 1134903170/505019158607*2537720636^(3/5) 9870002026342035 a004 Fibonacci(49)*Lucas(46)/(1/2+sqrt(5)/2)^79 9870002026342035 a001 2971215073/14662949395604*4106118243^(16/23) 9870002026342035 a001 225851433717/10749957122*1568397607^(2/11) 9870002026342035 a001 2971215073/6643838879*4106118243^(8/23) 9870002026342035 a001 567451585/96450076809*2537720636^(5/9) 9870002026342035 a001 1134903170/119218851371*2537720636^(8/15) 9870002026342035 a001 591286729879/28143753123*1568397607^(2/11) 9870002026342035 a001 516002918640/1368706081*599074578^(1/21) 9870002026342035 a001 1548008755920/73681302247*1568397607^(2/11) 9870002026342035 a001 4052739537881/192900153618*1568397607^(2/11) 9870002026342035 a001 225749145909/10745088481*1568397607^(2/11) 9870002026342035 a001 6557470319842/312119004989*1568397607^(2/11) 9870002026342035 a001 2504730781961/119218851371*1568397607^(2/11) 9870002026342035 a001 956722026041/45537549124*1568397607^(2/11) 9870002026342035 a001 365435296162/17393796001*1568397607^(2/11) 9870002026342035 a001 365435296162/6643838879*1568397607^(3/22) 9870002026342035 a001 10983760033/199691526*228826127^(3/20) 9870002026342035 a001 1134903170/28143753123*2537720636^(7/15) 9870002026342035 a004 Fibonacci(47)*Lucas(46)/(1/2+sqrt(5)/2)^77 9870002026342035 a001 43133785636/5374978561*1568397607^(5/22) 9870002026342035 a001 1134903170/17393796001*2537720636^(4/9) 9870002026342035 a001 75283811239/9381251041*1568397607^(5/22) 9870002026342035 a001 591286729879/73681302247*1568397607^(5/22) 9870002026342035 a001 86000486440/10716675201*1568397607^(5/22) 9870002026342035 a001 4052739537881/505019158607*1568397607^(5/22) 9870002026342035 a001 3536736619241/440719107401*1568397607^(5/22) 9870002026342035 a001 3278735159921/408569081798*1568397607^(5/22) 9870002026342035 a001 2504730781961/312119004989*1568397607^(5/22) 9870002026342035 a001 956722026041/119218851371*1568397607^(5/22) 9870002026342035 a001 182717648081/22768774562*1568397607^(5/22) 9870002026342035 a001 53316291173/10749957122*1568397607^(1/4) 9870002026342035 a001 139583862445/17393796001*1568397607^(5/22) 9870002026342035 a001 1134903170/4106118243*45537549124^(1/3) 9870002026342035 a001 1836311903/2537720636*45537549124^(5/17) 9870002026342035 a001 1836311903/2537720636*312119004989^(3/11) 9870002026342035 a001 1836311903/2537720636*14662949395604^(5/21) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^17/Lucas(46) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^15/Lucas(45) 9870002026342035 a001 1836311903/2537720636*192900153618^(5/18) 9870002026342035 a001 1836311903/2537720636*28143753123^(3/10) 9870002026342035 a001 139583862445/6643838879*1568397607^(2/11) 9870002026342035 a001 1836311903/10749957122*1568397607^(9/22) 9870002026342035 a001 1836311903/2537720636*10749957122^(5/16) 9870002026342035 a001 139583862445/28143753123*1568397607^(1/4) 9870002026342035 a001 365435296162/73681302247*1568397607^(1/4) 9870002026342035 a001 956722026041/192900153618*1568397607^(1/4) 9870002026342035 a001 2504730781961/505019158607*1568397607^(1/4) 9870002026342035 a001 10610209857723/2139295485799*1568397607^(1/4) 9870002026342035 a001 4052739537881/817138163596*1568397607^(1/4) 9870002026342035 a001 140728068720/28374454999*1568397607^(1/4) 9870002026342035 a001 591286729879/119218851371*1568397607^(1/4) 9870002026342035 a001 32951280099/10749957122*1568397607^(3/11) 9870002026342035 a001 225851433717/45537549124*1568397607^(1/4) 9870002026342035 a001 86267571272/17393796001*1568397607^(1/4) 9870002026342035 a001 86267571272/28143753123*1568397607^(3/11) 9870002026342035 a001 32264490531/10525900321*1568397607^(3/11) 9870002026342035 a001 591286729879/192900153618*1568397607^(3/11) 9870002026342035 a001 1548008755920/505019158607*1568397607^(3/11) 9870002026342035 a001 1515744265389/494493258286*1568397607^(3/11) 9870002026342035 a001 2504730781961/817138163596*1568397607^(3/11) 9870002026342035 a001 956722026041/312119004989*1568397607^(3/11) 9870002026342035 a001 365435296162/119218851371*1568397607^(3/11) 9870002026342035 a001 139583862445/45537549124*1568397607^(3/11) 9870002026342035 a001 53316291173/17393796001*1568397607^(3/11) 9870002026342035 a001 53316291173/6643838879*1568397607^(5/22) 9870002026342035 a001 1134903170/6643838879*2537720636^(2/5) 9870002026342035 a001 7778742049/2537720636*2537720636^(4/15) 9870002026342035 a001 12586269025/10749957122*1568397607^(7/22) 9870002026342035 a001 10182505537/1268860318*2537720636^(2/9) 9870002026342035 a001 32951280099/1568397607*599074578^(4/21) 9870002026342035 a001 4052739537881/10749957122*599074578^(1/21) 9870002026342035 a001 32951280099/2537720636*2537720636^(1/5) 9870002026342035 a001 32951280099/6643838879*1568397607^(1/4) 9870002026342035 a001 1836311903/28143753123*1568397607^(5/11) 9870002026342035 a001 10983760033/9381251041*1568397607^(7/22) 9870002026342035 a001 86267571272/73681302247*1568397607^(7/22) 9870002026342035 a001 75283811239/64300051206*1568397607^(7/22) 9870002026342035 a001 2504730781961/2139295485799*1568397607^(7/22) 9870002026342035 a001 365435296162/312119004989*1568397607^(7/22) 9870002026342035 a001 139583862445/119218851371*1568397607^(7/22) 9870002026342035 a001 53316291173/45537549124*1568397607^(7/22) 9870002026342035 a001 2403763488/5374978561*1568397607^(4/11) 9870002026342035 a001 3536736619241/9381251041*599074578^(1/21) 9870002026342035 a004 Fibonacci(45)*Lucas(47)/(1/2+sqrt(5)/2)^76 9870002026342035 a001 20365011074/17393796001*1568397607^(7/22) 9870002026342035 a001 20365011074/6643838879*1568397607^(3/11) 9870002026342035 a001 139583862445/2537720636*2537720636^(2/15) 9870002026342035 a001 6557470319842/17393796001*599074578^(1/21) 9870002026342035 a001 225851433717/2537720636*2537720636^(1/9) 9870002026342035 a001 956722026041/4106118243*599074578^(1/14) 9870002026342035 a001 1836311903/73681302247*1568397607^(1/2) 9870002026342035 a001 591286729879/2537720636*2537720636^(1/15) 9870002026342035 a001 12586269025/28143753123*1568397607^(4/11) 9870002026342035 a001 567451585/5374978561*817138163596^(1/3) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^19/Lucas(48) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^13/Lucas(45) 9870002026342035 a001 1201881744/634430159*73681302247^(1/4) 9870002026342035 a001 32951280099/73681302247*1568397607^(4/11) 9870002026342035 a001 43133785636/96450076809*1568397607^(4/11) 9870002026342035 a001 225851433717/505019158607*1568397607^(4/11) 9870002026342035 a001 591286729879/1322157322203*1568397607^(4/11) 9870002026342035 a001 182717648081/408569081798*1568397607^(4/11) 9870002026342035 a001 139583862445/312119004989*1568397607^(4/11) 9870002026342035 a001 53316291173/119218851371*1568397607^(4/11) 9870002026342035 a001 10182505537/22768774562*1568397607^(4/11) 9870002026342035 a004 Fibonacci(45)*Lucas(49)/(1/2+sqrt(5)/2)^78 9870002026342035 a001 1134903170/28143753123*17393796001^(3/7) 9870002026342035 a001 1134903170/23725150497407*17393796001^(5/7) 9870002026342035 a001 567451585/408569081798*17393796001^(4/7) 9870002026342035 a001 1134903170/28143753123*45537549124^(7/17) 9870002026342035 a001 1144206275/230701876*312119004989^(1/5) 9870002026342035 a001 1134903170/28143753123*14662949395604^(1/3) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^21/Lucas(50) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^11/Lucas(45) 9870002026342035 a001 1134903170/28143753123*192900153618^(7/18) 9870002026342035 a001 7778742049/17393796001*1568397607^(4/11) 9870002026342035 a001 1135099622/33391061*17393796001^(1/7) 9870002026342035 a004 Fibonacci(45)*Lucas(51)/(1/2+sqrt(5)/2)^80 9870002026342035 a001 567451585/7331474697802*45537549124^(2/3) 9870002026342035 a001 1134903170/9062201101803*45537549124^(11/17) 9870002026342035 a001 1134903170/2139295485799*45537549124^(10/17) 9870002026342035 a001 32951280099/2537720636*45537549124^(3/17) 9870002026342035 a001 1134903170/505019158607*45537549124^(9/17) 9870002026342035 a001 32951280099/2537720636*817138163596^(3/19) 9870002026342035 a001 32951280099/2537720636*14662949395604^(1/7) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^23/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^9/Lucas(45) 9870002026342035 a001 32951280099/2537720636*192900153618^(1/6) 9870002026342035 a001 1134903170/119218851371*45537549124^(8/17) 9870002026342035 a004 Fibonacci(45)*Lucas(53)/(1/2+sqrt(5)/2)^82 9870002026342035 a001 139583862445/2537720636*45537549124^(2/17) 9870002026342035 a001 567451585/96450076809*312119004989^(5/11) 9870002026342035 a001 1135099622/33391061*14662949395604^(1/9) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^25/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^7/Lucas(45) 9870002026342035 a001 567451585/96450076809*3461452808002^(5/12) 9870002026342035 a004 Fibonacci(45)*Lucas(55)/(1/2+sqrt(5)/2)^84 9870002026342035 a001 1134903170/23725150497407*312119004989^(7/11) 9870002026342035 a001 1134903170/9062201101803*312119004989^(3/5) 9870002026342035 a001 1134903170/2139295485799*312119004989^(6/11) 9870002026342035 a001 1134903170/505019158607*817138163596^(9/19) 9870002026342035 a001 1134903170/505019158607*14662949395604^(3/7) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^27/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^5/Lucas(45) 9870002026342035 a004 Fibonacci(45)*Lucas(57)/(1/2+sqrt(5)/2)^86 9870002026342035 a001 591286729879/2537720636*14662949395604^(1/21) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^29/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^3/Lucas(45) 9870002026342035 a001 1134903170/1322157322203*1322157322203^(1/2) 9870002026342035 a004 Fibonacci(45)*Lucas(59)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^31/Lucas(60) 9870002026342035 a004 Fibonacci(60)*(1/2+sqrt(5)/2)/Lucas(45) 9870002026342035 a004 Fibonacci(45)*Lucas(61)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^33/Lucas(62) 9870002026342035 a004 Fibonacci(62)/Lucas(45)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(45)*Lucas(63)/(1/2+sqrt(5)/2)^92 9870002026342035 a001 1134903170/23725150497407*14662949395604^(5/9) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^35/Lucas(64) 9870002026342035 a004 Fibonacci(64)/Lucas(45)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(45)*Lucas(65)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^37/Lucas(66) 9870002026342035 a004 Fibonacci(66)/Lucas(45)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(45)*Lucas(67)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^39/Lucas(68) 9870002026342035 a004 Fibonacci(68)/Lucas(45)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(45)*Lucas(69)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^41/Lucas(70) 9870002026342035 a004 Fibonacci(70)/Lucas(45)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(45)*Lucas(71)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^43/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(45)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^45/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(45)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^47/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(45)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^49/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(45)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^51/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(45)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^53/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(45)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^55/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(45)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^57/Lucas(86) 9870002026342035 a004 Fibonacci(86)/Lucas(45)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^59/Lucas(88) 9870002026342035 a004 Fibonacci(88)/Lucas(45)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^61/Lucas(90) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^63/Lucas(92) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^65/Lucas(94) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^67/Lucas(96) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^69/Lucas(98) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^70/Lucas(99) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^71/Lucas(100) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^68/Lucas(97) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^66/Lucas(95) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^64/Lucas(93) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^62/Lucas(91) 9870002026342035 a004 Fibonacci(92)/Lucas(45)/(1/2+sqrt(5)/2)^31 9870002026342035 a004 Fibonacci(94)/Lucas(45)/(1/2+sqrt(5)/2)^33 9870002026342035 a004 Fibonacci(96)/Lucas(45)/(1/2+sqrt(5)/2)^35 9870002026342035 a004 Fibonacci(98)/Lucas(45)/(1/2+sqrt(5)/2)^37 9870002026342035 a004 Fibonacci(100)/Lucas(45)/(1/2+sqrt(5)/2)^39 9870002026342035 a004 Fibonacci(99)/Lucas(45)/(1/2+sqrt(5)/2)^38 9870002026342035 a004 Fibonacci(97)/Lucas(45)/(1/2+sqrt(5)/2)^36 9870002026342035 a004 Fibonacci(95)/Lucas(45)/(1/2+sqrt(5)/2)^34 9870002026342035 a004 Fibonacci(93)/Lucas(45)/(1/2+sqrt(5)/2)^32 9870002026342035 a004 Fibonacci(91)/Lucas(45)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^60/Lucas(89) 9870002026342035 a004 Fibonacci(89)/Lucas(45)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^58/Lucas(87) 9870002026342035 a004 Fibonacci(87)/Lucas(45)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^56/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(45)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^54/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(45)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^52/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(45)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^50/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(45)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^48/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(45)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^46/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(45)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^44/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(45)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^42/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(45)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(45)*Lucas(70)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^40/Lucas(69) 9870002026342035 a004 Fibonacci(69)/Lucas(45)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(45)*Lucas(68)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^38/Lucas(67) 9870002026342035 a004 Fibonacci(67)/Lucas(45)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(45)*Lucas(66)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^36/Lucas(65) 9870002026342035 a004 Fibonacci(65)/Lucas(45)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(45)*Lucas(64)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^34/Lucas(63) 9870002026342035 a004 Fibonacci(63)/Lucas(45)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(45)*Lucas(62)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^32/Lucas(61) 9870002026342035 a001 1134903170/5600748293801*23725150497407^(1/2) 9870002026342035 a004 Fibonacci(45)*Lucas(60)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^30/Lucas(59) 9870002026342035 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^2/Lucas(45) 9870002026342035 a004 Fibonacci(45)*Lucas(58)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^28/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^4/Lucas(45) 9870002026342035 a001 182717648081/1268860318*23725150497407^(1/16) 9870002026342035 a001 1134903170/23725150497407*505019158607^(5/8) 9870002026342035 a004 Fibonacci(45)*Lucas(56)/(1/2+sqrt(5)/2)^85 9870002026342035 a001 1134903170/505019158607*192900153618^(1/2) 9870002026342035 a001 139583862445/2537720636*14662949395604^(2/21) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^26/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^6/Lucas(45) 9870002026342035 a001 1134903170/2139295485799*192900153618^(5/9) 9870002026342035 a001 182717648081/1268860318*73681302247^(1/13) 9870002026342035 a001 1134903170/9062201101803*192900153618^(11/18) 9870002026342035 a004 Fibonacci(45)*Lucas(54)/(1/2+sqrt(5)/2)^83 9870002026342035 a001 7778742049/6643838879*1568397607^(7/22) 9870002026342035 a001 2504730781961/6643838879*599074578^(1/21) 9870002026342035 a001 1134903170/119218851371*14662949395604^(8/21) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^24/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^8/Lucas(45) 9870002026342035 a001 53316291173/2537720636*505019158607^(1/7) 9870002026342035 a001 1134903170/119218851371*192900153618^(4/9) 9870002026342035 a001 53316291173/2537720636*73681302247^(2/13) 9870002026342035 a001 567451585/408569081798*73681302247^(7/13) 9870002026342035 a001 1134903170/312119004989*73681302247^(1/2) 9870002026342035 a001 1134903170/5600748293801*73681302247^(8/13) 9870002026342035 a001 225851433717/2537720636*28143753123^(1/10) 9870002026342035 a001 1134903170/119218851371*73681302247^(6/13) 9870002026342035 a004 Fibonacci(45)*Lucas(52)/(1/2+sqrt(5)/2)^81 9870002026342035 a001 956722026041/2537720636*10749957122^(1/24) 9870002026342035 a001 567451585/22768774562*312119004989^(2/5) 9870002026342035 a001 10182505537/1268860318*312119004989^(2/11) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^22/Lucas(51) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^10/Lucas(45) 9870002026342035 a001 591286729879/2537720636*10749957122^(1/16) 9870002026342035 a001 567451585/96450076809*28143753123^(1/2) 9870002026342035 a001 182717648081/1268860318*10749957122^(1/12) 9870002026342035 a001 10182505537/1268860318*28143753123^(1/5) 9870002026342035 a001 1134903170/2139295485799*28143753123^(3/5) 9870002026342035 a001 1134903170/23725150497407*28143753123^(7/10) 9870002026342035 a001 139583862445/2537720636*10749957122^(1/8) 9870002026342035 a001 1602508992/9381251041*1568397607^(9/22) 9870002026342035 a004 Fibonacci(45)*Lucas(50)/(1/2+sqrt(5)/2)^79 9870002026342035 a001 32951280099/2537720636*10749957122^(3/16) 9870002026342035 a001 53316291173/2537720636*10749957122^(1/6) 9870002026342035 a001 10182505537/1268860318*10749957122^(5/24) 9870002026342035 a001 1134903170/28143753123*10749957122^(7/16) 9870002026342035 a001 956722026041/2537720636*4106118243^(1/23) 9870002026342035 a001 7778742049/2537720636*45537549124^(4/17) 9870002026342035 a001 7778742049/2537720636*14662949395604^(4/21) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^20/Lucas(49) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^12/Lucas(45) 9870002026342035 a001 1134903170/17393796001*23725150497407^(5/16) 9870002026342035 a001 1134903170/17393796001*505019158607^(5/14) 9870002026342035 a001 7778742049/2537720636*192900153618^(2/9) 9870002026342035 a001 7778742049/2537720636*73681302247^(3/13) 9870002026342035 a001 1134903170/17393796001*73681302247^(5/13) 9870002026342035 a001 1134903170/17393796001*28143753123^(2/5) 9870002026342035 a001 1134903170/119218851371*10749957122^(1/2) 9870002026342035 a001 567451585/22768774562*10749957122^(11/24) 9870002026342035 a001 1134903170/312119004989*10749957122^(13/24) 9870002026342035 a001 1134903170/505019158607*10749957122^(9/16) 9870002026342035 a001 567451585/408569081798*10749957122^(7/12) 9870002026342035 a001 182717648081/1268860318*4106118243^(2/23) 9870002026342035 a001 1134903170/2139295485799*10749957122^(5/8) 9870002026342035 a001 7778742049/2537720636*10749957122^(1/4) 9870002026342035 a001 1134903170/5600748293801*10749957122^(2/3) 9870002026342035 a001 1134903170/9062201101803*10749957122^(11/16) 9870002026342035 a001 567451585/7331474697802*10749957122^(17/24) 9870002026342035 a001 1134903170/17393796001*10749957122^(5/12) 9870002026342035 a001 1836311903/192900153618*1568397607^(6/11) 9870002026342035 a001 139583862445/2537720636*4106118243^(3/23) 9870002026342035 a004 Fibonacci(45)*Lucas(48)/(1/2+sqrt(5)/2)^77 9870002026342035 a001 12586269025/73681302247*1568397607^(9/22) 9870002026342035 a001 53316291173/2537720636*4106118243^(4/23) 9870002026342035 a001 10983760033/64300051206*1568397607^(9/22) 9870002026342035 a001 86267571272/505019158607*1568397607^(9/22) 9870002026342035 a001 75283811239/440719107401*1568397607^(9/22) 9870002026342035 a001 2504730781961/14662949395604*1568397607^(9/22) 9870002026342035 a001 139583862445/817138163596*1568397607^(9/22) 9870002026342035 a001 53316291173/312119004989*1568397607^(9/22) 9870002026342035 a001 20365011074/119218851371*1568397607^(9/22) 9870002026342035 a001 10182505537/1268860318*4106118243^(5/23) 9870002026342035 a001 7778742049/45537549124*1568397607^(9/22) 9870002026342035 a001 956722026041/2537720636*1568397607^(1/22) 9870002026342035 a001 7778742049/2537720636*4106118243^(6/23) 9870002026342035 a001 686789568/10525900321*1568397607^(5/11) 9870002026342035 a001 2971215073/2537720636*17393796001^(2/7) 9870002026342035 a001 1134903170/6643838879*45537549124^(6/17) 9870002026342035 a001 1134903170/6643838879*14662949395604^(2/7) 9870002026342035 a001 2971215073/2537720636*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^18/Lucas(47) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^14/Lucas(45) 9870002026342035 a001 1134903170/6643838879*192900153618^(1/3) 9870002026342035 a001 2971215073/2537720636*10749957122^(7/24) 9870002026342035 a001 1836311903/505019158607*1568397607^(13/22) 9870002026342035 a001 1134903170/6643838879*10749957122^(3/8) 9870002026342035 a001 12586269025/192900153618*1568397607^(5/11) 9870002026342035 a001 567451585/22768774562*4106118243^(11/23) 9870002026342035 a001 1134903170/17393796001*4106118243^(10/23) 9870002026342035 a001 32951280099/505019158607*1568397607^(5/11) 9870002026342035 a001 1134903170/73681302247*4106118243^(1/2) 9870002026342035 a001 86267571272/1322157322203*1568397607^(5/11) 9870002026342035 a001 32264490531/494493258286*1568397607^(5/11) 9870002026342035 a001 591286729879/9062201101803*1568397607^(5/11) 9870002026342035 a001 1548008755920/23725150497407*1568397607^(5/11) 9870002026342035 a001 365435296162/5600748293801*1568397607^(5/11) 9870002026342035 a001 139583862445/2139295485799*1568397607^(5/11) 9870002026342035 a001 53316291173/817138163596*1568397607^(5/11) 9870002026342035 a001 20365011074/312119004989*1568397607^(5/11) 9870002026342035 a001 1134903170/119218851371*4106118243^(12/23) 9870002026342035 a001 7778742049/119218851371*1568397607^(5/11) 9870002026342035 a001 1134903170/312119004989*4106118243^(13/23) 9870002026342035 a001 2504730781961/10749957122*599074578^(1/14) 9870002026342035 a001 20365011074/1568397607*599074578^(3/14) 9870002026342035 a001 567451585/408569081798*4106118243^(14/23) 9870002026342035 a001 182717648081/1268860318*1568397607^(1/11) 9870002026342035 a001 2971215073/17393796001*1568397607^(9/22) 9870002026342035 a001 2971215073/6643838879*1568397607^(4/11) 9870002026342035 a001 1134903170/2139295485799*4106118243^(15/23) 9870002026342035 a001 267084832/10716675201*1568397607^(1/2) 9870002026342035 a001 2971215073/2537720636*4106118243^(7/23) 9870002026342035 a001 1134903170/5600748293801*4106118243^(16/23) 9870002026342035 a001 6557470319842/28143753123*599074578^(1/14) 9870002026342035 a001 567451585/7331474697802*4106118243^(17/23) 9870002026342035 a001 1836311903/1322157322203*1568397607^(7/11) 9870002026342035 a001 10610209857723/45537549124*599074578^(1/14) 9870002026342035 a001 1134903170/6643838879*4106118243^(9/23) 9870002026342035 a001 12586269025/505019158607*1568397607^(1/2) 9870002026342035 a001 4052739537881/17393796001*599074578^(1/14) 9870002026342035 a001 10983760033/440719107401*1568397607^(1/2) 9870002026342035 a001 43133785636/1730726404001*1568397607^(1/2) 9870002026342035 a001 75283811239/3020733700601*1568397607^(1/2) 9870002026342035 a001 182717648081/7331474697802*1568397607^(1/2) 9870002026342035 a001 139583862445/5600748293801*1568397607^(1/2) 9870002026342035 a001 53316291173/2139295485799*1568397607^(1/2) 9870002026342035 a001 10182505537/408569081798*1568397607^(1/2) 9870002026342035 a001 591286729879/4106118243*599074578^(2/21) 9870002026342035 a001 7778742049/312119004989*1568397607^(1/2) 9870002026342035 a001 2971215073/45537549124*1568397607^(5/11) 9870002026342035 a001 139583862445/2537720636*1568397607^(3/22) 9870002026342035 a001 102287808/10745088481*1568397607^(6/11) 9870002026342035 a004 Fibonacci(45)*Lucas(46)/(1/2+sqrt(5)/2)^75 9870002026342035 a001 1836311903/3461452808002*1568397607^(15/22) 9870002026342035 a001 12586269025/1322157322203*1568397607^(6/11) 9870002026342035 a001 32951280099/3461452808002*1568397607^(6/11) 9870002026342035 a001 1548008755920/6643838879*599074578^(1/14) 9870002026342035 a001 86267571272/9062201101803*1568397607^(6/11) 9870002026342035 a001 225851433717/23725150497407*1568397607^(6/11) 9870002026342035 a001 139583862445/14662949395604*1568397607^(6/11) 9870002026342035 a001 53316291173/5600748293801*1568397607^(6/11) 9870002026342035 a001 20365011074/2139295485799*1568397607^(6/11) 9870002026342035 a001 7778742049/817138163596*1568397607^(6/11) 9870002026342035 a001 2971215073/119218851371*1568397607^(1/2) 9870002026342035 a001 53316291173/2537720636*1568397607^(2/11) 9870002026342035 a001 1602508992/440719107401*1568397607^(13/22) 9870002026342035 a001 1836311903/9062201101803*1568397607^(8/11) 9870002026342035 a001 12586269025/3461452808002*1568397607^(13/22) 9870002026342035 a001 10983760033/3020733700601*1568397607^(13/22) 9870002026342035 a001 86267571272/23725150497407*1568397607^(13/22) 9870002026342035 a001 53316291173/14662949395604*1568397607^(13/22) 9870002026342035 a001 20365011074/5600748293801*1568397607^(13/22) 9870002026342035 a001 7778742049/2139295485799*1568397607^(13/22) 9870002026342035 a001 2971215073/312119004989*1568397607^(6/11) 9870002026342035 a001 1836311903/14662949395604*1568397607^(3/4) 9870002026342035 a001 10182505537/1268860318*1568397607^(5/22) 9870002026342035 a001 701408733/1568397607*599074578^(8/21) 9870002026342035 a001 14930208/10749853441*1568397607^(7/11) 9870002026342035 a001 1836311903/23725150497407*1568397607^(17/22) 9870002026342035 a001 12586269025/1568397607*599074578^(5/21) 9870002026342035 a001 1144206275/230701876*1568397607^(1/4) 9870002026342035 a001 774004377960/5374978561*599074578^(2/21) 9870002026342035 a001 12586269025/9062201101803*1568397607^(7/11) 9870002026342035 a001 32951280099/23725150497407*1568397607^(7/11) 9870002026342035 a001 10182505537/7331474697802*1568397607^(7/11) 9870002026342035 a001 7778742049/5600748293801*1568397607^(7/11) 9870002026342035 a001 2971215073/817138163596*1568397607^(13/22) 9870002026342035 a001 4052739537881/28143753123*599074578^(2/21) 9870002026342035 a001 1515744265389/10525900321*599074578^(2/21) 9870002026342035 a001 3278735159921/22768774562*599074578^(2/21) 9870002026342035 a001 1602508992/3020733700601*1568397607^(15/22) 9870002026342035 a001 2504730781961/17393796001*599074578^(2/21) 9870002026342035 a001 7778742049/2537720636*1568397607^(3/11) 9870002026342035 a001 12586269025/23725150497407*1568397607^(15/22) 9870002026342035 a001 7778742049/14662949395604*1568397607^(15/22) 9870002026342035 a001 2971215073/2139295485799*1568397607^(7/11) 9870002026342035 a001 4807526976/23725150497407*1568397607^(8/11) 9870002026342035 a001 956722026041/2537720636*599074578^(1/21) 9870002026342035 a001 956722026041/6643838879*599074578^(2/21) 9870002026342035 a001 2971215073/5600748293801*1568397607^(15/22) 9870002026342035 a001 2971215073/2537720636*1568397607^(7/22) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^16/Lucas(45) 9870002026342035 a001 567451585/1268860318*23725150497407^(1/4) 9870002026342035 a001 567451585/1268860318*73681302247^(4/13) 9870002026342035 a001 567451585/1268860318*10749957122^(1/3) 9870002026342035 a001 2971215073/14662949395604*1568397607^(8/11) 9870002026342035 a001 2971215073/23725150497407*1568397607^(3/4) 9870002026342035 a001 567451585/1268860318*4106118243^(8/23) 9870002026342035 a001 75283811239/1368706081*599074578^(1/7) 9870002026342035 a001 1134903170/17393796001*1568397607^(5/11) 9870002026342035 a001 1134903170/6643838879*1568397607^(9/22) 9870002026342035 a004 Fibonacci(46)*Lucas(44)/(1/2+sqrt(5)/2)^74 9870002026342035 a001 591286729879/2537720636*599074578^(1/14) 9870002026342035 a001 567451585/22768774562*1568397607^(1/2) 9870002026342035 a001 1134903170/119218851371*1568397607^(6/11) 9870002026342035 a001 686789568/224056801*599074578^(2/7) 9870002026342035 a001 591286729879/10749957122*599074578^(1/7) 9870002026342035 a001 1134903170/312119004989*1568397607^(13/22) 9870002026342035 a001 12585437040/228811001*599074578^(1/7) 9870002026342035 a001 4052739537881/73681302247*599074578^(1/7) 9870002026342035 a004 Fibonacci(48)*Lucas(44)/(1/2+sqrt(5)/2)^76 9870002026342035 a001 3536736619241/64300051206*599074578^(1/7) 9870002026342035 a001 6557470319842/119218851371*599074578^(1/7) 9870002026342035 a001 2504730781961/45537549124*599074578^(1/7) 9870002026342035 a001 956722026041/17393796001*599074578^(1/7) 9870002026342035 a001 139583862445/4106118243*599074578^(1/6) 9870002026342035 a004 Fibonacci(50)*Lucas(44)/(1/2+sqrt(5)/2)^78 9870002026342035 a004 Fibonacci(52)*Lucas(44)/(1/2+sqrt(5)/2)^80 9870002026342035 a004 Fibonacci(54)*Lucas(44)/(1/2+sqrt(5)/2)^82 9870002026342035 a004 Fibonacci(56)*Lucas(44)/(1/2+sqrt(5)/2)^84 9870002026342035 a004 Fibonacci(58)*Lucas(44)/(1/2+sqrt(5)/2)^86 9870002026342035 a004 Fibonacci(60)*Lucas(44)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(62)*Lucas(44)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(64)*Lucas(44)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(66)*Lucas(44)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(68)*Lucas(44)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(70)*Lucas(44)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(72)*Lucas(44)/(1/2+sqrt(5)/2)^100 9870002026342035 a001 2/701408733*(1/2+1/2*5^(1/2))^60 9870002026342035 a004 Fibonacci(71)*Lucas(44)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(69)*Lucas(44)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(67)*Lucas(44)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(65)*Lucas(44)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(63)*Lucas(44)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(61)*Lucas(44)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(59)*Lucas(44)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(57)*Lucas(44)/(1/2+sqrt(5)/2)^85 9870002026342035 a004 Fibonacci(55)*Lucas(44)/(1/2+sqrt(5)/2)^83 9870002026342035 a004 Fibonacci(53)*Lucas(44)/(1/2+sqrt(5)/2)^81 9870002026342035 a004 Fibonacci(51)*Lucas(44)/(1/2+sqrt(5)/2)^79 9870002026342035 a004 Fibonacci(49)*Lucas(44)/(1/2+sqrt(5)/2)^77 9870002026342035 a001 567451585/408569081798*1568397607^(7/11) 9870002026342035 a001 182717648081/1268860318*599074578^(2/21) 9870002026342035 a001 365435296162/6643838879*599074578^(1/7) 9870002026342035 a004 Fibonacci(47)*Lucas(44)/(1/2+sqrt(5)/2)^75 9870002026342035 a001 1134903170/2139295485799*1568397607^(15/22) 9870002026342035 a001 1134903170/5600748293801*1568397607^(8/11) 9870002026342035 a001 182717648081/5374978561*599074578^(1/6) 9870002026342035 a001 567451585/1268860318*1568397607^(4/11) 9870002026342035 a001 1134903170/9062201101803*1568397607^(3/4) 9870002026342035 a001 1836311903/1568397607*599074578^(1/3) 9870002026342035 a001 956722026041/28143753123*599074578^(1/6) 9870002026342035 a001 2504730781961/73681302247*599074578^(1/6) 9870002026342035 a001 3278735159921/96450076809*599074578^(1/6) 9870002026342035 a001 10610209857723/312119004989*599074578^(1/6) 9870002026342035 a001 4052739537881/119218851371*599074578^(1/6) 9870002026342035 a001 387002188980/11384387281*599074578^(1/6) 9870002026342035 a001 591286729879/17393796001*599074578^(1/6) 9870002026342035 a001 567451585/7331474697802*1568397607^(17/22) 9870002026342035 a001 86267571272/4106118243*599074578^(4/21) 9870002026342035 a001 225851433717/6643838879*599074578^(1/6) 9870002026342035 a001 225851433717/10749957122*599074578^(4/21) 9870002026342035 a001 591286729879/28143753123*599074578^(4/21) 9870002026342035 a001 1548008755920/73681302247*599074578^(4/21) 9870002026342035 a001 4052739537881/192900153618*599074578^(4/21) 9870002026342035 a001 225749145909/10745088481*599074578^(4/21) 9870002026342035 a001 6557470319842/312119004989*599074578^(4/21) 9870002026342035 a001 2504730781961/119218851371*599074578^(4/21) 9870002026342035 a001 956722026041/45537549124*599074578^(4/21) 9870002026342035 a001 365435296162/17393796001*599074578^(4/21) 9870002026342035 a001 53316291173/4106118243*599074578^(3/14) 9870002026342035 a001 591286729879/1568397607*228826127^(1/20) 9870002026342035 a001 139583862445/2537720636*599074578^(1/7) 9870002026342035 a001 139583862445/6643838879*599074578^(4/21) 9870002026342035 a004 Fibonacci(45)*Lucas(44)/(1/2+sqrt(5)/2)^73 9870002026342035 a001 139583862445/10749957122*599074578^(3/14) 9870002026342035 a001 365435296162/28143753123*599074578^(3/14) 9870002026342035 a001 956722026041/73681302247*599074578^(3/14) 9870002026342035 a001 2504730781961/192900153618*599074578^(3/14) 9870002026342035 a001 10610209857723/817138163596*599074578^(3/14) 9870002026342035 a001 4052739537881/312119004989*599074578^(3/14) 9870002026342035 a001 1548008755920/119218851371*599074578^(3/14) 9870002026342035 a001 591286729879/45537549124*599074578^(3/14) 9870002026342035 a001 7787980473/599786069*599074578^(3/14) 9870002026342035 a001 10983760033/1368706081*599074578^(5/21) 9870002026342035 a001 701408733/969323029*2537720636^(1/3) 9870002026342035 a001 1135099622/33391061*599074578^(1/6) 9870002026342035 a001 86267571272/6643838879*599074578^(3/14) 9870002026342035 a001 43133785636/5374978561*599074578^(5/21) 9870002026342035 a001 433494437/1568397607*45537549124^(1/3) 9870002026342035 a001 701408733/969323029*45537549124^(5/17) 9870002026342035 a001 701408733/969323029*312119004989^(3/11) 9870002026342035 a001 701408733/969323029*14662949395604^(5/21) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^17/Lucas(44) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^15/Lucas(43) 9870002026342035 a001 701408733/969323029*192900153618^(5/18) 9870002026342035 a001 701408733/969323029*28143753123^(3/10) 9870002026342035 a001 701408733/969323029*10749957122^(5/16) 9870002026342035 a001 75283811239/9381251041*599074578^(5/21) 9870002026342035 a001 591286729879/73681302247*599074578^(5/21) 9870002026342035 a001 86000486440/10716675201*599074578^(5/21) 9870002026342035 a001 4052739537881/505019158607*599074578^(5/21) 9870002026342035 a001 3536736619241/440719107401*599074578^(5/21) 9870002026342035 a001 3278735159921/408569081798*599074578^(5/21) 9870002026342035 a001 2504730781961/312119004989*599074578^(5/21) 9870002026342035 a001 956722026041/119218851371*599074578^(5/21) 9870002026342035 a001 182717648081/22768774562*599074578^(5/21) 9870002026342035 a001 139583862445/17393796001*599074578^(5/21) 9870002026342035 a001 53316291173/2537720636*599074578^(4/21) 9870002026342035 a001 53316291173/6643838879*599074578^(5/21) 9870002026342035 a001 233802911/1368706081*599074578^(3/7) 9870002026342035 a001 12586269025/4106118243*599074578^(2/7) 9870002026342035 a001 1134903170/1568397607*599074578^(5/14) 9870002026342035 a001 32951280099/2537720636*599074578^(3/14) 9870002026342035 a001 32951280099/10749957122*599074578^(2/7) 9870002026342035 a001 86267571272/28143753123*599074578^(2/7) 9870002026342035 a001 32264490531/10525900321*599074578^(2/7) 9870002026342035 a001 591286729879/192900153618*599074578^(2/7) 9870002026342035 a001 1548008755920/505019158607*599074578^(2/7) 9870002026342035 a001 1515744265389/494493258286*599074578^(2/7) 9870002026342035 a001 2504730781961/817138163596*599074578^(2/7) 9870002026342035 a001 956722026041/312119004989*599074578^(2/7) 9870002026342035 a001 365435296162/119218851371*599074578^(2/7) 9870002026342035 a001 139583862445/45537549124*599074578^(2/7) 9870002026342035 a001 53316291173/17393796001*599074578^(2/7) 9870002026342035 a001 10182505537/1268860318*599074578^(5/21) 9870002026342035 a001 20365011074/6643838879*599074578^(2/7) 9870002026342035 a001 1602508992/1368706081*599074578^(1/3) 9870002026342035 a001 516002918640/1368706081*228826127^(1/20) 9870002026342035 a004 Fibonacci(43)*Lucas(45)/(1/2+sqrt(5)/2)^72 9870002026342035 a001 701408733/10749957122*599074578^(10/21) 9870002026342035 a001 12586269025/10749957122*599074578^(1/3) 9870002026342035 a001 10983760033/9381251041*599074578^(1/3) 9870002026342035 a001 86267571272/73681302247*599074578^(1/3) 9870002026342035 a001 75283811239/64300051206*599074578^(1/3) 9870002026342035 a001 2504730781961/2139295485799*599074578^(1/3) 9870002026342035 a001 365435296162/312119004989*599074578^(1/3) 9870002026342035 a001 139583862445/119218851371*599074578^(1/3) 9870002026342035 a001 53316291173/45537549124*599074578^(1/3) 9870002026342035 a001 20365011074/17393796001*599074578^(1/3) 9870002026342035 a001 433494437/14662949395604*2537720636^(4/5) 9870002026342035 a001 1836311903/4106118243*599074578^(8/21) 9870002026342035 a001 433494437/9062201101803*2537720636^(7/9) 9870002026342035 a001 4052739537881/10749957122*228826127^(1/20) 9870002026342035 a001 433494437/3461452808002*2537720636^(11/15) 9870002026342035 a001 3536736619241/9381251041*228826127^(1/20) 9870002026342035 a001 7778742049/2537720636*599074578^(2/7) 9870002026342035 a001 7778742049/6643838879*599074578^(1/3) 9870002026342035 a001 6557470319842/17393796001*228826127^(1/20) 9870002026342035 a001 2971215073/4106118243*599074578^(5/14) 9870002026342035 a001 433494437/817138163596*2537720636^(2/3) 9870002026342035 a001 433494437/192900153618*2537720636^(3/5) 9870002026342035 a001 2504730781961/6643838879*228826127^(1/20) 9870002026342035 a001 433494437/73681302247*2537720636^(5/9) 9870002026342035 a001 433494437/45537549124*2537720636^(8/15) 9870002026342035 a001 433494437/10749957122*2537720636^(7/15) 9870002026342035 a001 7778742049/10749957122*599074578^(5/14) 9870002026342035 a001 701408733/17393796001*599074578^(1/2) 9870002026342035 a001 20365011074/28143753123*599074578^(5/14) 9870002026342035 a001 53316291173/73681302247*599074578^(5/14) 9870002026342035 a001 139583862445/192900153618*599074578^(5/14) 9870002026342035 a001 365435296162/505019158607*599074578^(5/14) 9870002026342035 a001 10610209857723/14662949395604*599074578^(5/14) 9870002026342035 a001 591286729879/817138163596*599074578^(5/14) 9870002026342035 a001 225851433717/312119004989*599074578^(5/14) 9870002026342035 a001 86267571272/119218851371*599074578^(5/14) 9870002026342035 a001 32951280099/45537549124*599074578^(5/14) 9870002026342035 a001 12586269025/17393796001*599074578^(5/14) 9870002026342035 a001 433494437/4106118243*817138163596^(1/3) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^19/Lucas(46) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^13/Lucas(43) 9870002026342035 a001 1836311903/969323029*73681302247^(1/4) 9870002026342035 a001 4807526976/6643838879*599074578^(5/14) 9870002026342035 a001 433494437/6643838879*2537720636^(4/9) 9870002026342035 a001 12586269025/599074578*228826127^(1/5) 9870002026342035 a001 12586269025/969323029*2537720636^(1/5) 9870002026342035 a001 7778742049/969323029*2537720636^(2/9) 9870002026342035 a004 Fibonacci(43)*Lucas(47)/(1/2+sqrt(5)/2)^74 9870002026342035 a001 53316291173/969323029*2537720636^(2/15) 9870002026342035 a001 2403763488/5374978561*599074578^(8/21) 9870002026342035 a001 2971215073/969323029*2537720636^(4/15) 9870002026342035 a001 86267571272/969323029*2537720636^(1/9) 9870002026342035 a001 233802911/9381251041*599074578^(11/21) 9870002026342035 a001 225851433717/969323029*2537720636^(1/15) 9870002026342035 a001 433494437/10749957122*17393796001^(3/7) 9870002026342035 a001 433494437/10749957122*45537549124^(7/17) 9870002026342035 a001 433494437/10749957122*14662949395604^(1/3) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^21/Lucas(48) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^11/Lucas(43) 9870002026342035 a001 433494437/10749957122*192900153618^(7/18) 9870002026342035 a001 12586269025/28143753123*599074578^(8/21) 9870002026342035 a001 433494437/10749957122*10749957122^(7/16) 9870002026342035 a004 Fibonacci(43)*Lucas(49)/(1/2+sqrt(5)/2)^76 9870002026342035 a001 32951280099/73681302247*599074578^(8/21) 9870002026342035 a001 43133785636/96450076809*599074578^(8/21) 9870002026342035 a001 225851433717/505019158607*599074578^(8/21) 9870002026342035 a001 591286729879/1322157322203*599074578^(8/21) 9870002026342035 a001 10610209857723/23725150497407*599074578^(8/21) 9870002026342035 a001 182717648081/408569081798*599074578^(8/21) 9870002026342035 a001 139583862445/312119004989*599074578^(8/21) 9870002026342035 a001 53316291173/119218851371*599074578^(8/21) 9870002026342035 a001 433494437/9062201101803*17393796001^(5/7) 9870002026342035 a001 433494437/312119004989*17393796001^(4/7) 9870002026342035 a001 10182505537/22768774562*599074578^(8/21) 9870002026342035 a001 12586269025/969323029*45537549124^(3/17) 9870002026342035 a001 12586269025/969323029*817138163596^(3/19) 9870002026342035 a001 12586269025/969323029*14662949395604^(1/7) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^23/Lucas(50) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^9/Lucas(43) 9870002026342035 a001 12586269025/969323029*192900153618^(1/6) 9870002026342035 a001 32951280099/969323029*17393796001^(1/7) 9870002026342035 a004 Fibonacci(43)*Lucas(51)/(1/2+sqrt(5)/2)^78 9870002026342035 a001 433494437/14662949395604*45537549124^(12/17) 9870002026342035 a001 433494437/5600748293801*45537549124^(2/3) 9870002026342035 a001 433494437/3461452808002*45537549124^(11/17) 9870002026342035 a001 433494437/192900153618*45537549124^(9/17) 9870002026342035 a001 433494437/817138163596*45537549124^(10/17) 9870002026342035 a001 433494437/73681302247*312119004989^(5/11) 9870002026342035 a001 32951280099/969323029*14662949395604^(1/9) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^25/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^7/Lucas(43) 9870002026342035 a001 433494437/73681302247*3461452808002^(5/12) 9870002026342035 a004 Fibonacci(43)*Lucas(53)/(1/2+sqrt(5)/2)^80 9870002026342035 a001 225851433717/969323029*45537549124^(1/17) 9870002026342035 a001 86267571272/969323029*312119004989^(1/11) 9870002026342035 a001 433494437/192900153618*817138163596^(9/19) 9870002026342035 a001 433494437/192900153618*14662949395604^(3/7) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^27/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^5/Lucas(43) 9870002026342035 a001 433494437/192900153618*192900153618^(1/2) 9870002026342035 a004 Fibonacci(43)*Lucas(55)/(1/2+sqrt(5)/2)^82 9870002026342035 a001 433494437/3461452808002*312119004989^(3/5) 9870002026342035 a001 225851433717/969323029*14662949395604^(1/21) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^29/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^3/Lucas(43) 9870002026342035 a001 225851433717/969323029*192900153618^(1/18) 9870002026342035 a004 Fibonacci(43)*Lucas(57)/(1/2+sqrt(5)/2)^84 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^31/Lucas(58) 9870002026342035 a004 Fibonacci(58)*(1/2+sqrt(5)/2)/Lucas(43) 9870002026342035 a001 433494437/1322157322203*9062201101803^(1/2) 9870002026342035 a004 Fibonacci(43)*Lucas(59)/(1/2+sqrt(5)/2)^86 9870002026342035 a001 433494437/3461452808002*14662949395604^(11/21) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^33/Lucas(60) 9870002026342035 a004 Fibonacci(60)/Lucas(43)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(43)*Lucas(61)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^35/Lucas(62) 9870002026342035 a004 Fibonacci(62)/Lucas(43)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(43)*Lucas(63)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^37/Lucas(64) 9870002026342035 a004 Fibonacci(64)/Lucas(43)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(43)*Lucas(65)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^39/Lucas(66) 9870002026342035 a004 Fibonacci(66)/Lucas(43)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(43)*Lucas(67)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^41/Lucas(68) 9870002026342035 a004 Fibonacci(68)/Lucas(43)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(43)*Lucas(69)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^43/Lucas(70) 9870002026342035 a004 Fibonacci(70)/Lucas(43)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(43)*Lucas(71)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^45/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(43)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(43)*Lucas(73)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^47/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(43)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^49/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(43)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^51/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(43)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^53/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(43)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^55/Lucas(82) 9870002026342035 a004 Fibonacci(82)/Lucas(43)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^57/Lucas(84) 9870002026342035 a004 Fibonacci(84)/Lucas(43)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^59/Lucas(86) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^61/Lucas(88) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^63/Lucas(90) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^65/Lucas(92) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^67/Lucas(94) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^69/Lucas(96) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^71/Lucas(98) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^72/Lucas(99) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^73/Lucas(100) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^70/Lucas(97) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^68/Lucas(95) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^66/Lucas(93) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^64/Lucas(91) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^62/Lucas(89) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^60/Lucas(87) 9870002026342035 a004 Fibonacci(88)/Lucas(43)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(90)/Lucas(43)/(1/2+sqrt(5)/2)^31 9870002026342035 a004 Fibonacci(92)/Lucas(43)/(1/2+sqrt(5)/2)^33 9870002026342035 a004 Fibonacci(94)/Lucas(43)/(1/2+sqrt(5)/2)^35 9870002026342035 a004 Fibonacci(96)/Lucas(43)/(1/2+sqrt(5)/2)^37 9870002026342035 a004 Fibonacci(98)/Lucas(43)/(1/2+sqrt(5)/2)^39 9870002026342035 a004 Fibonacci(100)/Lucas(43)/(1/2+sqrt(5)/2)^41 9870002026342035 a004 Fibonacci(99)/Lucas(43)/(1/2+sqrt(5)/2)^40 9870002026342035 a004 Fibonacci(97)/Lucas(43)/(1/2+sqrt(5)/2)^38 9870002026342035 a004 Fibonacci(95)/Lucas(43)/(1/2+sqrt(5)/2)^36 9870002026342035 a004 Fibonacci(93)/Lucas(43)/(1/2+sqrt(5)/2)^34 9870002026342035 a004 Fibonacci(91)/Lucas(43)/(1/2+sqrt(5)/2)^32 9870002026342035 a004 Fibonacci(89)/Lucas(43)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(87)/Lucas(43)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^58/Lucas(85) 9870002026342035 a004 Fibonacci(85)/Lucas(43)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^56/Lucas(83) 9870002026342035 a004 Fibonacci(83)/Lucas(43)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^54/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(43)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^52/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(43)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^50/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(43)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^48/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(43)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^46/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(43)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(43)*Lucas(72)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^44/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(43)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(43)*Lucas(70)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^42/Lucas(69) 9870002026342035 a004 Fibonacci(69)/Lucas(43)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(43)*Lucas(68)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^40/Lucas(67) 9870002026342035 a004 Fibonacci(67)/Lucas(43)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(43)*Lucas(66)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^38/Lucas(65) 9870002026342035 a004 Fibonacci(65)/Lucas(43)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(43)*Lucas(64)/(1/2+sqrt(5)/2)^91 9870002026342035 a001 433494437/14662949395604*14662949395604^(4/7) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^36/Lucas(63) 9870002026342035 a004 Fibonacci(63)/Lucas(43)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(43)*Lucas(62)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^34/Lucas(61) 9870002026342035 a004 Fibonacci(61)/Lucas(43)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(43)*Lucas(60)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^32/Lucas(59) 9870002026342035 a006 5^(1/2)*Fibonacci(59)/Lucas(43)/sqrt(5) 9870002026342035 a004 Fibonacci(43)*Lucas(58)/(1/2+sqrt(5)/2)^85 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^30/Lucas(57) 9870002026342035 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^2/Lucas(43) 9870002026342035 a001 433494437/9062201101803*505019158607^(5/8) 9870002026342035 a001 433494437/2139295485799*505019158607^(4/7) 9870002026342035 a001 433494437/14662949395604*505019158607^(9/14) 9870002026342035 a004 Fibonacci(43)*Lucas(56)/(1/2+sqrt(5)/2)^83 9870002026342035 a001 433494437/312119004989*14662949395604^(4/9) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^28/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^4/Lucas(43) 9870002026342035 a001 139583862445/969323029*23725150497407^(1/16) 9870002026342035 a001 433494437/817138163596*192900153618^(5/9) 9870002026342035 a001 433494437/14662949395604*192900153618^(2/3) 9870002026342035 a001 139583862445/969323029*73681302247^(1/13) 9870002026342035 a004 Fibonacci(43)*Lucas(54)/(1/2+sqrt(5)/2)^81 9870002026342035 a001 53316291173/969323029*14662949395604^(2/21) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^26/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^6/Lucas(43) 9870002026342035 a001 86267571272/969323029*28143753123^(1/10) 9870002026342035 a001 433494437/312119004989*73681302247^(7/13) 9870002026342035 a001 433494437/2139295485799*73681302247^(8/13) 9870002026342035 a001 433494437/14662949395604*73681302247^(9/13) 9870002026342035 a001 433494437/119218851371*73681302247^(1/2) 9870002026342035 a004 Fibonacci(43)*Lucas(52)/(1/2+sqrt(5)/2)^79 9870002026342035 a001 433494437/45537549124*45537549124^(8/17) 9870002026342035 a001 12586269025/969323029*10749957122^(3/16) 9870002026342035 a001 365435296162/969323029*10749957122^(1/24) 9870002026342035 a001 433494437/73681302247*28143753123^(1/2) 9870002026342035 a001 433494437/45537549124*14662949395604^(8/21) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^24/Lucas(51) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^8/Lucas(43) 9870002026342035 a001 20365011074/969323029*23725150497407^(1/8) 9870002026342035 a001 20365011074/969323029*505019158607^(1/7) 9870002026342035 a001 433494437/45537549124*192900153618^(4/9) 9870002026342035 a001 20365011074/969323029*73681302247^(2/13) 9870002026342035 a001 225851433717/969323029*10749957122^(1/16) 9870002026342035 a001 433494437/45537549124*73681302247^(6/13) 9870002026342035 a001 139583862445/969323029*10749957122^(1/12) 9870002026342035 a001 433494437/817138163596*28143753123^(3/5) 9870002026342035 a001 433494437/9062201101803*28143753123^(7/10) 9870002026342035 a001 53316291173/969323029*10749957122^(1/8) 9870002026342035 a004 Fibonacci(43)*Lucas(50)/(1/2+sqrt(5)/2)^77 9870002026342035 a001 20365011074/969323029*10749957122^(1/6) 9870002026342035 a001 365435296162/969323029*4106118243^(1/23) 9870002026342035 a001 433494437/17393796001*312119004989^(2/5) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^22/Lucas(49) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^10/Lucas(43) 9870002026342035 a001 7778742049/969323029*28143753123^(1/5) 9870002026342035 a001 7778742049/17393796001*599074578^(8/21) 9870002026342035 a001 433494437/119218851371*10749957122^(13/24) 9870002026342035 a001 433494437/45537549124*10749957122^(1/2) 9870002026342035 a001 433494437/192900153618*10749957122^(9/16) 9870002026342035 a001 433494437/312119004989*10749957122^(7/12) 9870002026342035 a001 7778742049/969323029*10749957122^(5/24) 9870002026342035 a001 139583862445/969323029*4106118243^(2/23) 9870002026342035 a001 433494437/817138163596*10749957122^(5/8) 9870002026342035 a001 433494437/2139295485799*10749957122^(2/3) 9870002026342035 a001 433494437/3461452808002*10749957122^(11/16) 9870002026342035 a001 433494437/5600748293801*10749957122^(17/24) 9870002026342035 a001 433494437/14662949395604*10749957122^(3/4) 9870002026342035 a001 433494437/17393796001*10749957122^(11/24) 9870002026342035 a001 53316291173/969323029*4106118243^(3/23) 9870002026342035 a004 Fibonacci(43)*Lucas(48)/(1/2+sqrt(5)/2)^75 9870002026342035 a001 20365011074/969323029*4106118243^(4/23) 9870002026342035 a001 7778742049/969323029*4106118243^(5/23) 9870002026342035 a001 365435296162/969323029*1568397607^(1/22) 9870002026342035 a001 2971215073/969323029*45537549124^(4/17) 9870002026342035 a001 2971215073/969323029*817138163596^(4/19) 9870002026342035 a001 2971215073/969323029*14662949395604^(4/21) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^20/Lucas(47) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^12/Lucas(43) 9870002026342035 a001 2971215073/969323029*192900153618^(2/9) 9870002026342035 a001 2971215073/969323029*73681302247^(3/13) 9870002026342035 a001 433494437/6643838879*73681302247^(5/13) 9870002026342035 a001 433494437/6643838879*28143753123^(2/5) 9870002026342035 a001 2971215073/969323029*10749957122^(1/4) 9870002026342035 a001 433494437/6643838879*10749957122^(5/12) 9870002026342035 a001 1836311903/2537720636*599074578^(5/14) 9870002026342035 a001 433494437/28143753123*4106118243^(1/2) 9870002026342035 a001 433494437/45537549124*4106118243^(12/23) 9870002026342035 a001 433494437/17393796001*4106118243^(11/23) 9870002026342035 a001 433494437/119218851371*4106118243^(13/23) 9870002026342035 a001 433494437/312119004989*4106118243^(14/23) 9870002026342035 a001 139583862445/969323029*1568397607^(1/11) 9870002026342035 a001 2971215073/969323029*4106118243^(6/23) 9870002026342035 a001 433494437/817138163596*4106118243^(15/23) 9870002026342035 a001 433494437/2139295485799*4106118243^(16/23) 9870002026342035 a001 2971215073/2537720636*599074578^(1/3) 9870002026342035 a001 2971215073/6643838879*599074578^(8/21) 9870002026342035 a001 433494437/5600748293801*4106118243^(17/23) 9870002026342035 a001 956722026041/2537720636*228826127^(1/20) 9870002026342035 a001 433494437/14662949395604*4106118243^(18/23) 9870002026342035 a001 433494437/6643838879*4106118243^(10/23) 9870002026342035 a001 53316291173/969323029*1568397607^(3/22) 9870002026342035 a004 Fibonacci(43)*Lucas(46)/(1/2+sqrt(5)/2)^73 9870002026342035 a001 1836311903/10749957122*599074578^(3/7) 9870002026342035 a001 20365011074/969323029*1568397607^(2/11) 9870002026342035 a001 4807526976/969323029*1568397607^(1/4) 9870002026342035 a001 433494437/2537720636*2537720636^(2/5) 9870002026342035 a001 7778742049/969323029*1568397607^(5/22) 9870002026342035 a001 1602508992/9381251041*599074578^(3/7) 9870002026342035 a001 701408733/73681302247*599074578^(4/7) 9870002026342035 a001 12586269025/73681302247*599074578^(3/7) 9870002026342035 a001 10983760033/64300051206*599074578^(3/7) 9870002026342035 a001 86267571272/505019158607*599074578^(3/7) 9870002026342035 a001 75283811239/440719107401*599074578^(3/7) 9870002026342035 a001 2504730781961/14662949395604*599074578^(3/7) 9870002026342035 a001 139583862445/817138163596*599074578^(3/7) 9870002026342035 a001 53316291173/312119004989*599074578^(3/7) 9870002026342035 a001 20365011074/119218851371*599074578^(3/7) 9870002026342035 a001 365435296162/969323029*599074578^(1/21) 9870002026342035 a001 2971215073/969323029*1568397607^(3/11) 9870002026342035 a001 7778742049/45537549124*599074578^(3/7) 9870002026342035 a001 1134903170/969323029*17393796001^(2/7) 9870002026342035 a001 433494437/2537720636*45537549124^(6/17) 9870002026342035 a001 1134903170/969323029*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^18/Lucas(45) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^14/Lucas(43) 9870002026342035 a001 1134903170/969323029*505019158607^(1/4) 9870002026342035 a001 433494437/2537720636*192900153618^(1/3) 9870002026342035 a001 2971215073/17393796001*599074578^(3/7) 9870002026342035 a001 1134903170/969323029*10749957122^(7/24) 9870002026342035 a001 433494437/2537720636*10749957122^(3/8) 9870002026342035 a001 1134903170/969323029*4106118243^(7/23) 9870002026342035 a001 433494437/2537720636*4106118243^(9/23) 9870002026342035 a001 225851433717/969323029*599074578^(1/14) 9870002026342035 a001 1836311903/28143753123*599074578^(10/21) 9870002026342035 a001 433494437/17393796001*1568397607^(1/2) 9870002026342035 a001 433494437/6643838879*1568397607^(5/11) 9870002026342035 a001 433494437/45537549124*1568397607^(6/11) 9870002026342035 a001 433494437/119218851371*1568397607^(13/22) 9870002026342035 a001 686789568/10525900321*599074578^(10/21) 9870002026342035 a001 233802911/64300051206*599074578^(13/21) 9870002026342035 a001 433494437/312119004989*1568397607^(7/11) 9870002026342035 a001 12586269025/192900153618*599074578^(10/21) 9870002026342035 a001 32951280099/505019158607*599074578^(10/21) 9870002026342035 a001 86267571272/1322157322203*599074578^(10/21) 9870002026342035 a001 32264490531/494493258286*599074578^(10/21) 9870002026342035 a001 591286729879/9062201101803*599074578^(10/21) 9870002026342035 a001 1548008755920/23725150497407*599074578^(10/21) 9870002026342035 a001 365435296162/5600748293801*599074578^(10/21) 9870002026342035 a001 139583862445/2139295485799*599074578^(10/21) 9870002026342035 a001 53316291173/817138163596*599074578^(10/21) 9870002026342035 a001 20365011074/312119004989*599074578^(10/21) 9870002026342035 a001 139583862445/969323029*599074578^(2/21) 9870002026342035 a001 7778742049/119218851371*599074578^(10/21) 9870002026342035 a001 1836311903/45537549124*599074578^(1/2) 9870002026342035 a001 433494437/817138163596*1568397607^(15/22) 9870002026342035 a001 1134903170/969323029*1568397607^(7/22) 9870002026342035 a001 2971215073/45537549124*599074578^(10/21) 9870002026342035 a001 433494437/2139295485799*1568397607^(8/11) 9870002026342035 a001 433494437/3461452808002*1568397607^(3/4) 9870002026342035 a001 567451585/1268860318*599074578^(8/21) 9870002026342035 a001 1134903170/6643838879*599074578^(3/7) 9870002026342035 a001 433494437/5600748293801*1568397607^(17/22) 9870002026342035 a001 4807526976/119218851371*599074578^(1/2) 9870002026342035 a001 3524667/1568437211*599074578^(9/14) 9870002026342035 a001 433494437/2537720636*1568397607^(9/22) 9870002026342035 a001 1144206275/28374454999*599074578^(1/2) 9870002026342035 a001 32951280099/817138163596*599074578^(1/2) 9870002026342035 a001 86267571272/2139295485799*599074578^(1/2) 9870002026342035 a001 225851433717/5600748293801*599074578^(1/2) 9870002026342035 a001 591286729879/14662949395604*599074578^(1/2) 9870002026342035 a001 365435296162/9062201101803*599074578^(1/2) 9870002026342035 a001 139583862445/3461452808002*599074578^(1/2) 9870002026342035 a001 53316291173/1322157322203*599074578^(1/2) 9870002026342035 a001 20365011074/505019158607*599074578^(1/2) 9870002026342035 a001 7778742049/192900153618*599074578^(1/2) 9870002026342035 a001 433494437/14662949395604*1568397607^(9/11) 9870002026342035 a001 1836311903/73681302247*599074578^(11/21) 9870002026342035 a001 2971215073/73681302247*599074578^(1/2) 9870002026342035 a001 267084832/10716675201*599074578^(11/21) 9870002026342035 a001 701408733/505019158607*599074578^(2/3) 9870002026342035 a001 12586269025/505019158607*599074578^(11/21) 9870002026342035 a001 10983760033/440719107401*599074578^(11/21) 9870002026342035 a001 43133785636/1730726404001*599074578^(11/21) 9870002026342035 a001 75283811239/3020733700601*599074578^(11/21) 9870002026342035 a001 182717648081/7331474697802*599074578^(11/21) 9870002026342035 a001 139583862445/5600748293801*599074578^(11/21) 9870002026342035 a001 53316291173/2139295485799*599074578^(11/21) 9870002026342035 a001 10182505537/408569081798*599074578^(11/21) 9870002026342035 a001 53316291173/969323029*599074578^(1/7) 9870002026342035 a001 7778742049/312119004989*599074578^(11/21) 9870002026342035 a004 Fibonacci(43)*Lucas(44)/(1/2+sqrt(5)/2)^71 9870002026342035 a001 2971215073/119218851371*599074578^(11/21) 9870002026342035 a001 1134903170/17393796001*599074578^(10/21) 9870002026342035 a001 32264490531/224056801*228826127^(1/10) 9870002026342035 a001 32951280099/969323029*599074578^(1/6) 9870002026342035 a001 1836311903/192900153618*599074578^(4/7) 9870002026342035 a001 1134903170/28143753123*599074578^(1/2) 9870002026342035 a001 12586269025/228826127*87403803^(3/19) 9870002026342035 a001 102287808/10745088481*599074578^(4/7) 9870002026342035 a001 233802911/440719107401*599074578^(5/7) 9870002026342035 a001 12586269025/1322157322203*599074578^(4/7) 9870002026342035 a001 32951280099/3461452808002*599074578^(4/7) 9870002026342035 a001 86267571272/9062201101803*599074578^(4/7) 9870002026342035 a001 225851433717/23725150497407*599074578^(4/7) 9870002026342035 a001 139583862445/14662949395604*599074578^(4/7) 9870002026342035 a001 53316291173/5600748293801*599074578^(4/7) 9870002026342035 a001 20365011074/2139295485799*599074578^(4/7) 9870002026342035 a001 20365011074/969323029*599074578^(4/21) 9870002026342035 a001 7778742049/817138163596*599074578^(4/7) 9870002026342035 a001 2971215073/312119004989*599074578^(4/7) 9870002026342035 a001 567451585/22768774562*599074578^(11/21) 9870002026342035 a001 701408733/969323029*599074578^(5/14) 9870002026342035 a001 12586269025/969323029*599074578^(3/14) 9870002026342035 a001 1836311903/505019158607*599074578^(13/21) 9870002026342035 a001 1602508992/440719107401*599074578^(13/21) 9870002026342035 a001 701408733/3461452808002*599074578^(16/21) 9870002026342035 a001 12586269025/3461452808002*599074578^(13/21) 9870002026342035 a001 10983760033/3020733700601*599074578^(13/21) 9870002026342035 a001 86267571272/23725150497407*599074578^(13/21) 9870002026342035 a001 53316291173/14662949395604*599074578^(13/21) 9870002026342035 a001 20365011074/5600748293801*599074578^(13/21) 9870002026342035 a001 7778742049/2139295485799*599074578^(13/21) 9870002026342035 a001 7778742049/969323029*599074578^(5/21) 9870002026342035 a001 1836311903/817138163596*599074578^(9/14) 9870002026342035 a001 2971215073/817138163596*599074578^(13/21) 9870002026342035 a001 1134903170/119218851371*599074578^(4/7) 9870002026342035 a001 4807526976/2139295485799*599074578^(9/14) 9870002026342035 a001 701408733/5600748293801*599074578^(11/14) 9870002026342035 a001 12586269025/5600748293801*599074578^(9/14) 9870002026342035 a001 32951280099/14662949395604*599074578^(9/14) 9870002026342035 a001 53316291173/23725150497407*599074578^(9/14) 9870002026342035 a001 20365011074/9062201101803*599074578^(9/14) 9870002026342035 a001 7778742049/3461452808002*599074578^(9/14) 9870002026342035 a001 1836311903/1322157322203*599074578^(2/3) 9870002026342035 a001 2971215073/1322157322203*599074578^(9/14) 9870002026342035 a001 14930208/10749853441*599074578^(2/3) 9870002026342035 a001 233802911/3020733700601*599074578^(17/21) 9870002026342035 a001 591286729879/4106118243*228826127^(1/10) 9870002026342035 a001 12586269025/9062201101803*599074578^(2/3) 9870002026342035 a001 32951280099/23725150497407*599074578^(2/3) 9870002026342035 a001 10182505537/7331474697802*599074578^(2/3) 9870002026342035 a001 7778742049/5600748293801*599074578^(2/3) 9870002026342035 a001 1134903170/312119004989*599074578^(13/21) 9870002026342035 a001 2971215073/2139295485799*599074578^(2/3) 9870002026342035 a001 2971215073/969323029*599074578^(2/7) 9870002026342035 a001 774004377960/5374978561*228826127^(1/10) 9870002026342035 a001 4052739537881/28143753123*228826127^(1/10) 9870002026342035 a001 1515744265389/10525900321*228826127^(1/10) 9870002026342035 a001 3278735159921/22768774562*228826127^(1/10) 9870002026342035 a001 2504730781961/17393796001*228826127^(1/10) 9870002026342035 a001 701408733/14662949395604*599074578^(5/6) 9870002026342035 a001 1836311903/3461452808002*599074578^(5/7) 9870002026342035 a001 956722026041/6643838879*228826127^(1/10) 9870002026342035 a001 1134903170/505019158607*599074578^(9/14) 9870002026342035 a001 267084832/33281921*228826127^(1/4) 9870002026342035 a001 139583862445/1568397607*228826127^(1/8) 9870002026342035 a001 1602508992/3020733700601*599074578^(5/7) 9870002026342035 a001 701408733/23725150497407*599074578^(6/7) 9870002026342035 a001 12586269025/23725150497407*599074578^(5/7) 9870002026342035 a001 7778742049/14662949395604*599074578^(5/7) 9870002026342035 a001 567451585/408569081798*599074578^(2/3) 9870002026342035 a001 2971215073/5600748293801*599074578^(5/7) 9870002026342035 a001 365435296162/969323029*228826127^(1/20) 9870002026342035 a001 1836311903/9062201101803*599074578^(16/21) 9870002026342035 a001 182717648081/1268860318*228826127^(1/10) 9870002026342035 a001 133957148/299537289*228826127^(2/5) 9870002026342035 a001 4807526976/23725150497407*599074578^(16/21) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^16/Lucas(43) 9870002026342035 a001 433494437/969323029*23725150497407^(1/4) 9870002026342035 a001 433494437/969323029*73681302247^(4/13) 9870002026342035 a001 1836311903/14662949395604*599074578^(11/14) 9870002026342035 a001 433494437/969323029*10749957122^(1/3) 9870002026342035 a001 1134903170/2139295485799*599074578^(5/7) 9870002026342035 a001 2971215073/14662949395604*599074578^(16/21) 9870002026342035 a001 1134903170/969323029*599074578^(1/3) 9870002026342035 a001 433494437/969323029*4106118243^(8/23) 9870002026342035 a001 1836311903/23725150497407*599074578^(17/21) 9870002026342035 a001 2971215073/23725150497407*599074578^(11/14) 9870002026342035 a001 433494437/969323029*1568397607^(4/11) 9870002026342035 a001 1134903170/5600748293801*599074578^(16/21) 9870002026342035 a001 365435296162/4106118243*228826127^(1/8) 9870002026342035 a001 1134903170/9062201101803*599074578^(11/14) 9870002026342035 a001 956722026041/10749957122*228826127^(1/8) 9870002026342035 a004 Fibonacci(44)*Lucas(42)/(1/2+sqrt(5)/2)^70 9870002026342035 a001 2504730781961/28143753123*228826127^(1/8) 9870002026342035 a001 6557470319842/73681302247*228826127^(1/8) 9870002026342035 a001 10610209857723/119218851371*228826127^(1/8) 9870002026342035 a001 4052739537881/45537549124*228826127^(1/8) 9870002026342035 a001 1548008755920/17393796001*228826127^(1/8) 9870002026342035 a001 591286729879/6643838879*228826127^(1/8) 9870002026342035 a001 567451585/7331474697802*599074578^(17/21) 9870002026342035 a001 433494437/2537720636*599074578^(3/7) 9870002026342035 a001 433494437/6643838879*599074578^(10/21) 9870002026342035 a001 433494437/10749957122*599074578^(1/2) 9870002026342035 a001 86267571272/1568397607*228826127^(3/20) 9870002026342035 a001 1134903170/23725150497407*599074578^(5/6) 9870002026342035 a001 433494437/17393796001*599074578^(11/21) 9870002026342035 a001 225851433717/2537720636*228826127^(1/8) 9870002026342035 a001 433494437/45537549124*599074578^(4/7) 9870002026342035 a004 Fibonacci(46)*Lucas(42)/(1/2+sqrt(5)/2)^72 9870002026342035 a004 Fibonacci(48)*Lucas(42)/(1/2+sqrt(5)/2)^74 9870002026342035 a004 Fibonacci(50)*Lucas(42)/(1/2+sqrt(5)/2)^76 9870002026342035 a004 Fibonacci(52)*Lucas(42)/(1/2+sqrt(5)/2)^78 9870002026342035 a004 Fibonacci(54)*Lucas(42)/(1/2+sqrt(5)/2)^80 9870002026342035 a004 Fibonacci(56)*Lucas(42)/(1/2+sqrt(5)/2)^82 9870002026342035 a004 Fibonacci(58)*Lucas(42)/(1/2+sqrt(5)/2)^84 9870002026342035 a004 Fibonacci(60)*Lucas(42)/(1/2+sqrt(5)/2)^86 9870002026342035 a004 Fibonacci(62)*Lucas(42)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(64)*Lucas(42)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(66)*Lucas(42)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(68)*Lucas(42)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(70)*Lucas(42)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(72)*Lucas(42)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(74)*Lucas(42)/(1/2+sqrt(5)/2)^100 9870002026342035 a001 1/133957148*(1/2+1/2*5^(1/2))^58 9870002026342035 a004 Fibonacci(73)*Lucas(42)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(71)*Lucas(42)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(69)*Lucas(42)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(67)*Lucas(42)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(65)*Lucas(42)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(63)*Lucas(42)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(61)*Lucas(42)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(59)*Lucas(42)/(1/2+sqrt(5)/2)^85 9870002026342035 a001 1322157322203/267914296*8^(1/3) 9870002026342035 a004 Fibonacci(57)*Lucas(42)/(1/2+sqrt(5)/2)^83 9870002026342035 a004 Fibonacci(55)*Lucas(42)/(1/2+sqrt(5)/2)^81 9870002026342035 a004 Fibonacci(53)*Lucas(42)/(1/2+sqrt(5)/2)^79 9870002026342035 a004 Fibonacci(51)*Lucas(42)/(1/2+sqrt(5)/2)^77 9870002026342035 a001 433494437/119218851371*599074578^(13/21) 9870002026342035 a004 Fibonacci(49)*Lucas(42)/(1/2+sqrt(5)/2)^75 9870002026342035 a001 75283811239/1368706081*228826127^(3/20) 9870002026342035 a004 Fibonacci(47)*Lucas(42)/(1/2+sqrt(5)/2)^73 9870002026342035 a001 433494437/192900153618*599074578^(9/14) 9870002026342035 a001 591286729879/10749957122*228826127^(3/20) 9870002026342035 a001 12585437040/228811001*228826127^(3/20) 9870002026342035 a001 4052739537881/73681302247*228826127^(3/20) 9870002026342035 a001 3536736619241/64300051206*228826127^(3/20) 9870002026342035 a001 6557470319842/119218851371*228826127^(3/20) 9870002026342035 a001 2504730781961/45537549124*228826127^(3/20) 9870002026342035 a001 956722026041/17393796001*228826127^(3/20) 9870002026342035 a001 1836311903/599074578*228826127^(3/10) 9870002026342035 a001 365435296162/6643838879*228826127^(3/20) 9870002026342035 a001 433494437/312119004989*599074578^(2/3) 9870002026342035 a004 Fibonacci(45)*Lucas(42)/(1/2+sqrt(5)/2)^71 9870002026342035 a001 139583862445/969323029*228826127^(1/10) 9870002026342035 a001 139583862445/2537720636*228826127^(3/20) 9870002026342035 a001 433494437/817138163596*599074578^(5/7) 9870002026342035 a001 433494437/2139295485799*599074578^(16/21) 9870002026342035 a001 433494437/969323029*599074578^(8/21) 9870002026342035 a001 433494437/3461452808002*599074578^(11/14) 9870002026342035 a001 433494437/5600748293801*599074578^(17/21) 9870002026342035 a001 433494437/9062201101803*599074578^(5/6) 9870002026342035 a001 32951280099/1568397607*228826127^(1/5) 9870002026342035 a001 86267571272/370248451*141422324^(1/13) 9870002026342035 a001 86267571272/969323029*228826127^(1/8) 9870002026342035 a001 433494437/14662949395604*599074578^(6/7) 9870002026342035 a001 233802911/199691526*228826127^(7/20) 9870002026342035 a001 86267571272/4106118243*228826127^(1/5) 9870002026342035 a001 225851433717/10749957122*228826127^(1/5) 9870002026342035 a001 591286729879/28143753123*228826127^(1/5) 9870002026342035 a001 1548008755920/73681302247*228826127^(1/5) 9870002026342035 a001 4052739537881/192900153618*228826127^(1/5) 9870002026342035 a001 225749145909/10745088481*228826127^(1/5) 9870002026342035 a001 6557470319842/312119004989*228826127^(1/5) 9870002026342035 a001 2504730781961/119218851371*228826127^(1/5) 9870002026342035 a001 956722026041/45537549124*228826127^(1/5) 9870002026342035 a001 365435296162/17393796001*228826127^(1/5) 9870002026342035 a001 139583862445/6643838879*228826127^(1/5) 9870002026342035 a001 63245986/2139295485799*141422324^(12/13) 9870002026342035 a004 Fibonacci(43)*Lucas(42)/(1/2+sqrt(5)/2)^69 9870002026342035 a001 53316291173/969323029*228826127^(3/20) 9870002026342035 a001 53316291173/2537720636*228826127^(1/5) 9870002026342035 a001 267913919/710646*87403803^(1/19) 9870002026342035 a001 12586269025/1568397607*228826127^(1/4) 9870002026342035 a001 267914296/370248451*2537720636^(1/3) 9870002026342035 a001 165580141/599074578*45537549124^(1/3) 9870002026342035 a001 267914296/370248451*45537549124^(5/17) 9870002026342035 a001 267914296/370248451*312119004989^(3/11) 9870002026342035 a001 267914296/370248451*14662949395604^(5/21) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^17/Lucas(42) 9870002026342035 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^15/Lucas(41) 9870002026342035 a001 267914296/370248451*192900153618^(5/18) 9870002026342035 a001 267914296/370248451*28143753123^(3/10) 9870002026342035 a001 267914296/370248451*10749957122^(5/16) 9870002026342035 a001 10983760033/1368706081*228826127^(1/4) 9870002026342035 a001 43133785636/5374978561*228826127^(1/4) 9870002026342035 a001 75283811239/9381251041*228826127^(1/4) 9870002026342035 a001 591286729879/73681302247*228826127^(1/4) 9870002026342035 a001 86000486440/10716675201*228826127^(1/4) 9870002026342035 a001 4052739537881/505019158607*228826127^(1/4) 9870002026342035 a001 3536736619241/440719107401*228826127^(1/4) 9870002026342035 a001 3278735159921/408569081798*228826127^(1/4) 9870002026342035 a001 2504730781961/312119004989*228826127^(1/4) 9870002026342035 a001 956722026041/119218851371*228826127^(1/4) 9870002026342035 a001 182717648081/22768774562*228826127^(1/4) 9870002026342035 a001 139583862445/17393796001*228826127^(1/4) 9870002026342035 a001 53316291173/6643838879*228826127^(1/4) 9870002026342035 a001 20365011074/969323029*228826127^(1/5) 9870002026342035 a001 10182505537/1268860318*228826127^(1/4) 9870002026342035 a001 686789568/224056801*228826127^(3/10) 9870002026342035 a001 267914296/1568397607*228826127^(9/20) 9870002026342035 a001 433494437/599074578*228826127^(3/8) 9870002026342035 a001 267914296/370248451*599074578^(5/14) 9870002026342035 a001 12586269025/4106118243*228826127^(3/10) 9870002026342035 a001 32951280099/10749957122*228826127^(3/10) 9870002026342035 a001 86267571272/28143753123*228826127^(3/10) 9870002026342035 a001 32264490531/10525900321*228826127^(3/10) 9870002026342035 a001 591286729879/192900153618*228826127^(3/10) 9870002026342035 a001 1548008755920/505019158607*228826127^(3/10) 9870002026342035 a001 1515744265389/494493258286*228826127^(3/10) 9870002026342035 a001 2504730781961/817138163596*228826127^(3/10) 9870002026342035 a001 956722026041/312119004989*228826127^(3/10) 9870002026342035 a001 365435296162/119218851371*228826127^(3/10) 9870002026342035 a001 139583862445/45537549124*228826127^(3/10) 9870002026342035 a001 53316291173/17393796001*228826127^(3/10) 9870002026342035 a001 20365011074/6643838879*228826127^(3/10) 9870002026342035 a001 7778742049/969323029*228826127^(1/4) 9870002026342035 a001 7778742049/2537720636*228826127^(3/10) 9870002026342035 a001 1836311903/1568397607*228826127^(7/20) 9870002026342035 a004 Fibonacci(41)*Lucas(43)/(1/2+sqrt(5)/2)^68 9870002026342035 a001 591286729879/1568397607*87403803^(1/19) 9870002026342035 a001 1602508992/1368706081*228826127^(7/20) 9870002026342035 a001 12586269025/10749957122*228826127^(7/20) 9870002026342035 a001 10983760033/9381251041*228826127^(7/20) 9870002026342035 a001 86267571272/73681302247*228826127^(7/20) 9870002026342035 a001 75283811239/64300051206*228826127^(7/20) 9870002026342035 a001 2504730781961/2139295485799*228826127^(7/20) 9870002026342035 a001 365435296162/312119004989*228826127^(7/20) 9870002026342035 a001 139583862445/119218851371*228826127^(7/20) 9870002026342035 a001 53316291173/45537549124*228826127^(7/20) 9870002026342035 a001 20365011074/17393796001*228826127^(7/20) 9870002026342035 a001 267914296/4106118243*228826127^(1/2) 9870002026342035 a001 7778742049/6643838879*228826127^(7/20) 9870002026342035 a001 2971215073/969323029*228826127^(3/10) 9870002026342035 a001 701408733/1568397607*228826127^(2/5) 9870002026342035 a001 516002918640/1368706081*87403803^(1/19) 9870002026342035 a001 2971215073/2537720636*228826127^(7/20) 9870002026342035 a001 4052739537881/10749957122*87403803^(1/19) 9870002026342035 a001 3536736619241/9381251041*87403803^(1/19) 9870002026342035 a001 165580141/1568397607*817138163596^(1/3) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^19/Lucas(44) 9870002026342035 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^13/Lucas(41) 9870002026342035 a001 701408733/370248451*73681302247^(1/4) 9870002026342035 a001 6557470319842/17393796001*87403803^(1/19) 9870002026342035 a001 1134903170/1568397607*228826127^(3/8) 9870002026342035 a001 2504730781961/6643838879*87403803^(1/19) 9870002026342035 a001 956722026041/2537720636*87403803^(1/19) 9870002026342035 a001 2971215073/4106118243*228826127^(3/8) 9870002026342035 a001 4807526976/54018521*20633239^(1/7) 9870002026342035 a004 Fibonacci(41)*Lucas(45)/(1/2+sqrt(5)/2)^70 9870002026342035 a001 7778742049/10749957122*228826127^(3/8) 9870002026342035 a001 165580141/23725150497407*2537720636^(13/15) 9870002026342035 a001 20365011074/28143753123*228826127^(3/8) 9870002026342035 a001 53316291173/73681302247*228826127^(3/8) 9870002026342035 a001 139583862445/192900153618*228826127^(3/8) 9870002026342035 a001 365435296162/505019158607*228826127^(3/8) 9870002026342035 a001 10610209857723/14662949395604*228826127^(3/8) 9870002026342035 a001 591286729879/817138163596*228826127^(3/8) 9870002026342035 a001 225851433717/312119004989*228826127^(3/8) 9870002026342035 a001 86267571272/119218851371*228826127^(3/8) 9870002026342035 a001 32951280099/45537549124*228826127^(3/8) 9870002026342035 a001 165580141/4106118243*2537720636^(7/15) 9870002026342035 a001 12586269025/17393796001*228826127^(3/8) 9870002026342035 a001 165580141/5600748293801*2537720636^(4/5) 9870002026342035 a001 165580141/3461452808002*2537720636^(7/9) 9870002026342035 a001 4807526976/6643838879*228826127^(3/8) 9870002026342035 a001 165580141/1322157322203*2537720636^(11/15) 9870002026342035 a001 165580141/312119004989*2537720636^(2/3) 9870002026342035 a001 165580141/73681302247*2537720636^(3/5) 9870002026342035 a001 165580141/28143753123*2537720636^(5/9) 9870002026342035 a001 165580141/17393796001*2537720636^(8/15) 9870002026342035 a001 165580141/4106118243*17393796001^(3/7) 9870002026342035 a001 165580141/4106118243*45537549124^(7/17) 9870002026342035 a001 165580141/4106118243*14662949395604^(1/3) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^21/Lucas(46) 9870002026342035 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^11/Lucas(41) 9870002026342035 a001 165580141/4106118243*192900153618^(7/18) 9870002026342035 a001 165580141/4106118243*10749957122^(7/16) 9870002026342035 a001 4807526976/370248451*2537720636^(1/5) 9870002026342035 a001 1836311903/2537720636*228826127^(3/8) 9870002026342035 a004 Fibonacci(41)*Lucas(47)/(1/2+sqrt(5)/2)^72 9870002026342035 a001 20365011074/370248451*2537720636^(2/15) 9870002026342035 a001 32951280099/370248451*2537720636^(1/9) 9870002026342035 a001 2971215073/370248451*2537720636^(2/9) 9870002026342035 a001 86267571272/370248451*2537720636^(1/15) 9870002026342035 a001 4807526976/370248451*45537549124^(3/17) 9870002026342035 a001 4807526976/370248451*817138163596^(3/19) 9870002026342035 a001 4807526976/370248451*14662949395604^(1/7) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^23/Lucas(48) 9870002026342035 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^9/Lucas(41) 9870002026342035 a001 4807526976/370248451*192900153618^(1/6) 9870002026342035 a001 4807526976/370248451*10749957122^(3/16) 9870002026342035 a004 Fibonacci(41)*Lucas(49)/(1/2+sqrt(5)/2)^74 9870002026342035 a001 165580141/3461452808002*17393796001^(5/7) 9870002026342035 a001 165580141/119218851371*17393796001^(4/7) 9870002026342035 a001 12586269025/370248451*17393796001^(1/7) 9870002026342035 a001 165580141/28143753123*312119004989^(5/11) 9870002026342035 a001 12586269025/370248451*14662949395604^(1/9) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^25/Lucas(50) 9870002026342035 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^7/Lucas(41) 9870002026342035 a001 165580141/28143753123*3461452808002^(5/12) 9870002026342035 a001 165580141/28143753123*28143753123^(1/2) 9870002026342035 a004 Fibonacci(41)*Lucas(51)/(1/2+sqrt(5)/2)^76 9870002026342035 a001 165580141/73681302247*45537549124^(9/17) 9870002026342035 a001 165580141/23725150497407*45537549124^(13/17) 9870002026342035 a001 165580141/5600748293801*45537549124^(12/17) 9870002026342035 a001 165580141/2139295485799*45537549124^(2/3) 9870002026342035 a001 165580141/1322157322203*45537549124^(11/17) 9870002026342035 a001 165580141/312119004989*45537549124^(10/17) 9870002026342035 a001 32951280099/370248451*312119004989^(1/11) 9870002026342035 a001 165580141/73681302247*817138163596^(9/19) 9870002026342035 a001 165580141/73681302247*14662949395604^(3/7) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^27/Lucas(52) 9870002026342035 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^5/Lucas(41) 9870002026342035 a001 165580141/73681302247*192900153618^(1/2) 9870002026342035 a004 Fibonacci(41)*Lucas(53)/(1/2+sqrt(5)/2)^78 9870002026342035 a001 32951280099/370248451*28143753123^(1/10) 9870002026342035 a001 86267571272/370248451*45537549124^(1/17) 9870002026342035 a001 86267571272/370248451*14662949395604^(1/21) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^29/Lucas(54) 9870002026342035 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^3/Lucas(41) 9870002026342035 a001 165580141/192900153618*1322157322203^(1/2) 9870002026342035 a001 86267571272/370248451*192900153618^(1/18) 9870002026342035 a004 Fibonacci(41)*Lucas(55)/(1/2+sqrt(5)/2)^80 9870002026342035 a001 165580141/1322157322203*312119004989^(3/5) 9870002026342035 a001 165580141/3461452808002*312119004989^(7/11) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^31/Lucas(56) 9870002026342035 a004 Fibonacci(56)*(1/2+sqrt(5)/2)/Lucas(41) 9870002026342035 a001 165580141/505019158607*9062201101803^(1/2) 9870002026342035 a004 Fibonacci(41)*Lucas(57)/(1/2+sqrt(5)/2)^82 9870002026342035 a001 165580141/1322157322203*817138163596^(11/19) 9870002026342035 a001 165580141/1322157322203*14662949395604^(11/21) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^33/Lucas(58) 9870002026342035 a004 Fibonacci(58)/Lucas(41)/(1/2+sqrt(5)/2) 9870002026342035 a004 Fibonacci(41)*Lucas(59)/(1/2+sqrt(5)/2)^84 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^35/Lucas(60) 9870002026342035 a004 Fibonacci(60)/Lucas(41)/(1/2+sqrt(5)/2)^3 9870002026342035 a004 Fibonacci(41)*Lucas(61)/(1/2+sqrt(5)/2)^86 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^37/Lucas(62) 9870002026342035 a004 Fibonacci(62)/Lucas(41)/(1/2+sqrt(5)/2)^5 9870002026342035 a004 Fibonacci(41)*Lucas(63)/(1/2+sqrt(5)/2)^88 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^39/Lucas(64) 9870002026342035 a004 Fibonacci(64)/Lucas(41)/(1/2+sqrt(5)/2)^7 9870002026342035 a004 Fibonacci(41)*Lucas(65)/(1/2+sqrt(5)/2)^90 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^41/Lucas(66) 9870002026342035 a004 Fibonacci(66)/Lucas(41)/(1/2+sqrt(5)/2)^9 9870002026342035 a004 Fibonacci(41)*Lucas(67)/(1/2+sqrt(5)/2)^92 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^43/Lucas(68) 9870002026342035 a004 Fibonacci(68)/Lucas(41)/(1/2+sqrt(5)/2)^11 9870002026342035 a004 Fibonacci(41)*Lucas(69)/(1/2+sqrt(5)/2)^94 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^45/Lucas(70) 9870002026342035 a004 Fibonacci(70)/Lucas(41)/(1/2+sqrt(5)/2)^13 9870002026342035 a004 Fibonacci(41)*Lucas(71)/(1/2+sqrt(5)/2)^96 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^47/Lucas(72) 9870002026342035 a004 Fibonacci(72)/Lucas(41)/(1/2+sqrt(5)/2)^15 9870002026342035 a004 Fibonacci(41)*Lucas(73)/(1/2+sqrt(5)/2)^98 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^49/Lucas(74) 9870002026342035 a004 Fibonacci(74)/Lucas(41)/(1/2+sqrt(5)/2)^17 9870002026342035 a004 Fibonacci(41)*Lucas(75)/(1/2+sqrt(5)/2)^100 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^51/Lucas(76) 9870002026342035 a004 Fibonacci(76)/Lucas(41)/(1/2+sqrt(5)/2)^19 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^53/Lucas(78) 9870002026342035 a004 Fibonacci(78)/Lucas(41)/(1/2+sqrt(5)/2)^21 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^55/Lucas(80) 9870002026342035 a004 Fibonacci(80)/Lucas(41)/(1/2+sqrt(5)/2)^23 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^57/Lucas(82) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^59/Lucas(84) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^61/Lucas(86) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^63/Lucas(88) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^65/Lucas(90) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^67/Lucas(92) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^69/Lucas(94) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^71/Lucas(96) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^73/Lucas(98) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^75/Lucas(100) 9870002026342035 a004 Fibonacci(41)*Lucas(1)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(82)/Lucas(41)/(1/2+sqrt(5)/2)^25 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^74/Lucas(99) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^72/Lucas(97) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^70/Lucas(95) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^68/Lucas(93) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^66/Lucas(91) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^64/Lucas(89) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^62/Lucas(87) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^60/Lucas(85) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^58/Lucas(83) 9870002026342035 a004 Fibonacci(84)/Lucas(41)/(1/2+sqrt(5)/2)^27 9870002026342035 a004 Fibonacci(86)/Lucas(41)/(1/2+sqrt(5)/2)^29 9870002026342035 a004 Fibonacci(88)/Lucas(41)/(1/2+sqrt(5)/2)^31 9870002026342035 a004 Fibonacci(90)/Lucas(41)/(1/2+sqrt(5)/2)^33 9870002026342035 a004 Fibonacci(92)/Lucas(41)/(1/2+sqrt(5)/2)^35 9870002026342035 a004 Fibonacci(94)/Lucas(41)/(1/2+sqrt(5)/2)^37 9870002026342035 a004 Fibonacci(96)/Lucas(41)/(1/2+sqrt(5)/2)^39 9870002026342035 a004 Fibonacci(98)/Lucas(41)/(1/2+sqrt(5)/2)^41 9870002026342035 a004 Fibonacci(100)/Lucas(41)/(1/2+sqrt(5)/2)^43 9870002026342035 a004 Fibonacci(99)/Lucas(41)/(1/2+sqrt(5)/2)^42 9870002026342035 a004 Fibonacci(97)/Lucas(41)/(1/2+sqrt(5)/2)^40 9870002026342035 a004 Fibonacci(95)/Lucas(41)/(1/2+sqrt(5)/2)^38 9870002026342035 a004 Fibonacci(93)/Lucas(41)/(1/2+sqrt(5)/2)^36 9870002026342035 a004 Fibonacci(91)/Lucas(41)/(1/2+sqrt(5)/2)^34 9870002026342035 a004 Fibonacci(89)/Lucas(41)/(1/2+sqrt(5)/2)^32 9870002026342035 a004 Fibonacci(87)/Lucas(41)/(1/2+sqrt(5)/2)^30 9870002026342035 a004 Fibonacci(85)/Lucas(41)/(1/2+sqrt(5)/2)^28 9870002026342035 a004 Fibonacci(83)/Lucas(41)/(1/2+sqrt(5)/2)^26 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^56/Lucas(81) 9870002026342035 a004 Fibonacci(81)/Lucas(41)/(1/2+sqrt(5)/2)^24 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^54/Lucas(79) 9870002026342035 a004 Fibonacci(79)/Lucas(41)/(1/2+sqrt(5)/2)^22 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^52/Lucas(77) 9870002026342035 a004 Fibonacci(77)/Lucas(41)/(1/2+sqrt(5)/2)^20 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^50/Lucas(75) 9870002026342035 a004 Fibonacci(75)/Lucas(41)/(1/2+sqrt(5)/2)^18 9870002026342035 a004 Fibonacci(41)*Lucas(74)/(1/2+sqrt(5)/2)^99 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^48/Lucas(73) 9870002026342035 a004 Fibonacci(73)/Lucas(41)/(1/2+sqrt(5)/2)^16 9870002026342035 a004 Fibonacci(41)*Lucas(72)/(1/2+sqrt(5)/2)^97 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^46/Lucas(71) 9870002026342035 a004 Fibonacci(71)/Lucas(41)/(1/2+sqrt(5)/2)^14 9870002026342035 a004 Fibonacci(41)*Lucas(70)/(1/2+sqrt(5)/2)^95 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^44/Lucas(69) 9870002026342035 a004 Fibonacci(69)/Lucas(41)/(1/2+sqrt(5)/2)^12 9870002026342035 a004 Fibonacci(41)*Lucas(68)/(1/2+sqrt(5)/2)^93 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^42/Lucas(67) 9870002026342035 a004 Fibonacci(67)/Lucas(41)/(1/2+sqrt(5)/2)^10 9870002026342035 a004 Fibonacci(41)*Lucas(66)/(1/2+sqrt(5)/2)^91 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^40/Lucas(65) 9870002026342035 a004 Fibonacci(65)/Lucas(41)/(1/2+sqrt(5)/2)^8 9870002026342035 a004 Fibonacci(41)*Lucas(64)/(1/2+sqrt(5)/2)^89 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^38/Lucas(63) 9870002026342035 a004 Fibonacci(63)/Lucas(41)/(1/2+sqrt(5)/2)^6 9870002026342035 a004 Fibonacci(41)*Lucas(62)/(1/2+sqrt(5)/2)^87 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^36/Lucas(61) 9870002026342035 a004 Fibonacci(61)/Lucas(41)/(1/2+sqrt(5)/2)^4 9870002026342035 a004 Fibonacci(41)*Lucas(60)/(1/2+sqrt(5)/2)^85 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^34/Lucas(59) 9870002026342035 a004 Fibonacci(59)/Lucas(41)/(1/2+sqrt(5)/2)^2 9870002026342035 a004 Fibonacci(41)*Lucas(58)/(1/2+sqrt(5)/2)^83 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^32/Lucas(57) 9870002026342035 a001 165580141/817138163596*23725150497407^(1/2) 9870002026342035 a001 165580141/3461452808002*505019158607^(5/8) 9870002026342035 a001 165580141/5600748293801*505019158607^(9/14) 9870002026342035 a004 Fibonacci(41)*Lucas(56)/(1/2+sqrt(5)/2)^81 9870002026342035 a001 165580141/312119004989*312119004989^(6/11) 9870002026342035 a001 165580141/312119004989*14662949395604^(10/21) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^30/Lucas(55) 9870002026342035 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^2/Lucas(41) 9870002026342035 a001 165580141/1322157322203*192900153618^(11/18) 9870002026342035 a001 165580141/5600748293801*192900153618^(2/3) 9870002026342035 a001 165580141/23725150497407*192900153618^(13/18) 9870002026342035 a001 165580141/312119004989*192900153618^(5/9) 9870002026342035 a004 Fibonacci(41)*Lucas(54)/(1/2+sqrt(5)/2)^79 9870002026342035 a001 165580141/119218851371*14662949395604^(4/9) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^28/Lucas(53) 9870002026342035 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^4/Lucas(41) 9870002026342035 a001 53316291173/370248451*23725150497407^(1/16) 9870002026342035 a001 165580141/119218851371*505019158607^(1/2) 9870002026342035 a001 53316291173/370248451*73681302247^(1/13) 9870002026342035 a001 165580141/817138163596*73681302247^(8/13) 9870002026342035 a001 165580141/5600748293801*73681302247^(9/13) 9870002026342035 a001 165580141/23725150497407*73681302247^(3/4) 9870002026342035 a001 165580141/119218851371*73681302247^(7/13) 9870002026342035 a004 Fibonacci(41)*Lucas(52)/(1/2+sqrt(5)/2)^77 9870002026342035 a001 139583862445/370248451*10749957122^(1/24) 9870002026342035 a001 20365011074/370248451*45537549124^(2/17) 9870002026342035 a001 20365011074/370248451*14662949395604^(2/21) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^26/Lucas(51) 9870002026342035 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^6/Lucas(41) 9870002026342035 a001 86267571272/370248451*10749957122^(1/16) 9870002026342035 a001 165580141/45537549124*73681302247^(1/2) 9870002026342035 a001 165580141/312119004989*28143753123^(3/5) 9870002026342035 a001 53316291173/370248451*10749957122^(1/12) 9870002026342035 a001 165580141/3461452808002*28143753123^(7/10) 9870002026342035 a004 Fibonacci(41)*Lucas(50)/(1/2+sqrt(5)/2)^75 9870002026342035 a001 20365011074/370248451*10749957122^(1/8) 9870002026342035 a001 139583862445/370248451*4106118243^(1/23) 9870002026342035 a001 165580141/17393796001*45537549124^(8/17) 9870002026342035 a001 165580141/17393796001*14662949395604^(8/21) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^24/Lucas(49) 9870002026342035 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^8/Lucas(41) 9870002026342035 a001 7778742049/370248451*505019158607^(1/7) 9870002026342035 a001 165580141/17393796001*192900153618^(4/9) 9870002026342035 a001 7778742049/370248451*73681302247^(2/13) 9870002026342035 a001 165580141/17393796001*73681302247^(6/13) 9870002026342035 a001 165580141/73681302247*10749957122^(9/16) 9870002026342035 a001 7778742049/370248451*10749957122^(1/6) 9870002026342035 a001 165580141/119218851371*10749957122^(7/12) 9870002026342035 a001 165580141/45537549124*10749957122^(13/24) 9870002026342035 a001 53316291173/370248451*4106118243^(2/23) 9870002026342035 a001 165580141/312119004989*10749957122^(5/8) 9870002026342035 a001 165580141/817138163596*10749957122^(2/3) 9870002026342035 a001 165580141/1322157322203*10749957122^(11/16) 9870002026342035 a001 165580141/2139295485799*10749957122^(17/24) 9870002026342035 a001 165580141/5600748293801*10749957122^(3/4) 9870002026342035 a001 165580141/14662949395604*10749957122^(19/24) 9870002026342035 a001 165580141/23725150497407*10749957122^(13/16) 9870002026342035 a001 165580141/17393796001*10749957122^(1/2) 9870002026342035 a001 20365011074/370248451*4106118243^(3/23) 9870002026342035 a004 Fibonacci(41)*Lucas(48)/(1/2+sqrt(5)/2)^73 9870002026342035 a001 7778742049/370248451*4106118243^(4/23) 9870002026342035 a001 139583862445/370248451*1568397607^(1/22) 9870002026342035 a001 165580141/10749957122*4106118243^(1/2) 9870002026342035 a001 165580141/6643838879*312119004989^(2/5) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^22/Lucas(47) 9870002026342035 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^10/Lucas(41) 9870002026342035 a001 2971215073/370248451*28143753123^(1/5) 9870002026342035 a001 2971215073/370248451*10749957122^(5/24) 9870002026342035 a001 165580141/6643838879*10749957122^(11/24) 9870002026342035 a001 165580141/45537549124*4106118243^(13/23) 9870002026342035 a001 165580141/17393796001*4106118243^(12/23) 9870002026342035 a001 2971215073/370248451*4106118243^(5/23) 9870002026342035 a001 165580141/119218851371*4106118243^(14/23) 9870002026342035 a001 53316291173/370248451*1568397607^(1/11) 9870002026342035 a001 165580141/312119004989*4106118243^(15/23) 9870002026342035 a001 165580141/817138163596*4106118243^(16/23) 9870002026342035 a001 1836311903/370248451*1568397607^(1/4) 9870002026342035 a001 165580141/2139295485799*4106118243^(17/23) 9870002026342035 a001 165580141/5600748293801*4106118243^(18/23) 9870002026342035 a001 165580141/14662949395604*4106118243^(19/23) 9870002026342035 a001 165580141/6643838879*4106118243^(11/23) 9870002026342035 a001 20365011074/370248451*1568397607^(3/22) 9870002026342035 a004 Fibonacci(41)*Lucas(46)/(1/2+sqrt(5)/2)^71 9870002026342035 a001 7778742049/370248451*1568397607^(2/11) 9870002026342035 a001 165580141/2537720636*2537720636^(4/9) 9870002026342035 a001 1134903170/370248451*2537720636^(4/15) 9870002026342035 a001 2971215073/370248451*1568397607^(5/22) 9870002026342035 a001 139583862445/370248451*599074578^(1/21) 9870002026342035 a001 1134903170/370248451*45537549124^(4/17) 9870002026342035 a001 1134903170/370248451*817138163596^(4/19) 9870002026342035 a001 1134903170/370248451*14662949395604^(4/21) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^20/Lucas(45) 9870002026342035 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^12/Lucas(41) 9870002026342035 a001 165580141/2537720636*505019158607^(5/14) 9870002026342035 a001 1134903170/370248451*192900153618^(2/9) 9870002026342035 a001 1134903170/370248451*73681302247^(3/13) 9870002026342035 a001 165580141/2537720636*73681302247^(5/13) 9870002026342035 a001 165580141/2537720636*28143753123^(2/5) 9870002026342035 a001 1134903170/370248451*10749957122^(1/4) 9870002026342035 a001 165580141/2537720636*10749957122^(5/12) 9870002026342035 a001 1134903170/370248451*4106118243^(6/23) 9870002026342035 a001 165580141/2537720636*4106118243^(10/23) 9870002026342035 a001 86267571272/370248451*599074578^(1/14) 9870002026342035 a001 165580141/17393796001*1568397607^(6/11) 9870002026342035 a001 1836311903/4106118243*228826127^(2/5) 9870002026342035 a001 165580141/6643838879*1568397607^(1/2) 9870002026342035 a001 165580141/45537549124*1568397607^(13/22) 9870002026342035 a001 165580141/119218851371*1568397607^(7/11) 9870002026342035 a001 53316291173/370248451*599074578^(2/21) 9870002026342035 a001 1134903170/370248451*1568397607^(3/11) 9870002026342035 a001 165580141/312119004989*1568397607^(15/22) 9870002026342035 a001 165580141/817138163596*1568397607^(8/11) 9870002026342035 a001 165580141/1322157322203*1568397607^(3/4) 9870002026342035 a001 165580141/2139295485799*1568397607^(17/22) 9870002026342035 a001 2403763488/5374978561*228826127^(2/5) 9870002026342035 a001 165580141/5600748293801*1568397607^(9/11) 9870002026342035 a001 165580141/2537720636*1568397607^(5/11) 9870002026342035 a001 12586269025/28143753123*228826127^(2/5) 9870002026342035 a001 32951280099/73681302247*228826127^(2/5) 9870002026342035 a001 43133785636/96450076809*228826127^(2/5) 9870002026342035 a001 225851433717/505019158607*228826127^(2/5) 9870002026342035 a001 591286729879/1322157322203*228826127^(2/5) 9870002026342035 a001 10610209857723/23725150497407*228826127^(2/5) 9870002026342035 a001 182717648081/408569081798*228826127^(2/5) 9870002026342035 a001 139583862445/312119004989*228826127^(2/5) 9870002026342035 a001 53316291173/119218851371*228826127^(2/5) 9870002026342035 a001 10182505537/22768774562*228826127^(2/5) 9870002026342035 a001 7778742049/17393796001*228826127^(2/5) 9870002026342035 a001 165580141/14662949395604*1568397607^(19/22) 9870002026342035 a001 2971215073/6643838879*228826127^(2/5) 9870002026342035 a001 63245986/505019158607*141422324^(11/13) 9870002026342035 a001 20365011074/370248451*599074578^(1/7) 9870002026342035 a004 Fibonacci(41)*Lucas(44)/(1/2+sqrt(5)/2)^69 9870002026342035 a001 133957148/5374978561*228826127^(11/20) 9870002026342035 a001 12586269025/370248451*599074578^(1/6) 9870002026342035 a001 701408733/969323029*228826127^(3/8) 9870002026342035 a001 7778742049/370248451*599074578^(4/21) 9870002026342035 a001 4807526976/370248451*599074578^(3/14) 9870002026342035 a001 1134903170/969323029*228826127^(7/20) 9870002026342035 a001 567451585/1268860318*228826127^(2/5) 9870002026342035 a001 365435296162/969323029*87403803^(1/19) 9870002026342035 a001 2971215073/370248451*599074578^(5/21) 9870002026342035 a001 233802911/1368706081*228826127^(9/20) 9870002026342035 a001 1134903170/370248451*599074578^(2/7) 9870002026342035 a001 139583862445/370248451*228826127^(1/20) 9870002026342035 a001 165580141/969323029*2537720636^(2/5) 9870002026342035 a001 433494437/370248451*17393796001^(2/7) 9870002026342035 a001 165580141/969323029*45537549124^(6/17) 9870002026342035 a001 165580141/969323029*14662949395604^(2/7) 9870002026342035 a001 433494437/370248451*14662949395604^(2/9) 9870002026342035 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^18/Lucas(43) 9870002026342035 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^14/Lucas(41) 9870002026342035 a001 433494437/370248451*505019158607^(1/4) 9870002026342035 a001 165580141/969323029*192900153618^(1/3) 9870002026342035 a001 433494437/370248451*10749957122^(7/24) 9870002026342035 a001 165580141/969323029*10749957122^(3/8) 9870002026342035 a001 433494437/370248451*4106118243^(7/23) 9870002026342035 a001 165580141/969323029*4106118243^(9/23) 9870002026342035 a001 102287808/4868641*87403803^(4/19) 9870002026342035 a001 433494437/370248451*1568397607^(7/22) 9870002026342035 a001 165580141/969323029*1568397607^(9/22) 9870002026342035 a001 1836311903/10749957122*228826127^(9/20) 9870002026342035 a001 1602508992/9381251041*228826127^(9/20) 9870002026342035 a001 12586269025/73681302247*228826127^(9/20) 9870002026342035 a001 10983760033/64300051206*228826127^(9/20) 9870002026342035 a001 86267571272/505019158607*228826127^(9/20) 9870002026342035 a001 75283811239/440719107401*228826127^(9/20) 9870002026342035 a001 2504730781961/14662949395604*228826127^(9/20) 9870002026342035 a001 139583862445/817138163596*228826127^(9/20) 9870002026342035 a001 53316291173/312119004989*228826127^(9/20) 9870002026342035 a001 20365011074/119218851371*228826127^(9/20) 9870002026342035 a001 7778742049/45537549124*228826127^(9/20) 9870002026342035 a001 2971215073/17393796001*228826127^(9/20) 9870002026342035 a001 165580141/4106118243*599074578^(1/2) 9870002026342035 a001 267914296/28143753123*228826127^(3/5) 9870002026342035 a001 1134903170/6643838879*228826127^(9/20) 9870002026342035 a001 165580141/2537720636*599074578^(10/21) 9870002026342035 a001 165580141/6643838879*599074578^(11/21) 9870002026342035 a001 165580141/17393796001*599074578^(4/7) 9870002026342035 a001 165580141/45537549124*599074578^(13/21) 9870002026342035 a001 165580141/73681302247*599074578^(9/14) 9870002026342035 a001 701408733/10749957122*228826127^(1/2) 9870002026342035 a001 66978574/11384387281*228826127^(5/8) 9870002026342035 a001 165580141/119218851371*599074578^(2/3) 9870002026342035 a001 53316291173/370248451*228826127^(1/10) 9870002026342035 a001 165580141/312119004989*599074578^(5/7) 9870002026342035 a001 433494437/370248451*599074578^(1/3) 9870002026342035 a001 165580141/817138163596*599074578^(16/21) 9870002026342035 a001 165580141/1322157322203*599074578^(11/14) 9870002026342035 a001 1836311903/28143753123*228826127^(1/2) 9870002026342035 a001 686789568/10525900321*228826127^(1/2) 9870002026342035 a001 12586269025/192900153618*228826127^(1/2) 9870002026342035 a001 32951280099/505019158607*228826127^(1/2) 9870002026342035 a001 86267571272/1322157322203*228826127^(1/2) 9870002026342035 a001 32264490531/494493258286*228826127^(1/2) 9870002026342035 a001 591286729879/9062201101803*228826127^(1/2) 9870002026342035 a001 1548008755920/23725150497407*228826127^(1/2) 9870002026342035 a001 365435296162/5600748293801*228826127^(1/2) 9870002026342035 a001 139583862445/2139295485799*228826127^(1/2) 9870002026342035 a001 53316291173/817138163596*228826127^(1/2) 9870002026342035 a001 20365011074/312119004989*228826127^(1/2) 9870002026342035 a001 165580141/2139295485799*599074578^(17/21) 9870002026342035 a001 7778742049/119218851371*228826127^(1/2) 9870002026342035 a001 165580141/969323029*599074578^(3/7) 9870002026342035 a001 2971215073/45537549124*228826127^(1/2) 9870002026342035 a001 165580141/3461452808002*599074578^(5/6) 9870002026342035 a001 267914296/73681302247*228826127^(13/20) 9870002026342035 a001 32951280099/370248451*228826127^(1/8) 9870002026342035 a001 165580141/5600748293801*599074578^(6/7) 9870002026342035 a001 1134903170/17393796001*228826127^(1/2) 9870002026342035 a001 433494437/969323029*228826127^(2/5) 9870002026342035 a001 433494437/2537720636*228826127^(9/20) 9870002026342035 a001 165580141/14662949395604*599074578^(19/21) 9870002026342035 a001 165580141/23725150497407*599074578^(13/14) 9870002026342035 a004 Fibonacci(41)*Lucas(42)/(1/2+sqrt(5)/2)^67 9870002026342035 a001 233802911/9381251041*228826127^(11/20) 9870002026342035 a001 20365011074/370248451*228826127^(3/20) 9870002026342035 a001 1836311903/73681302247*228826127^(11/20) 9870002026342035 a001 267084832/10716675201*228826127^(11/20) 9870002026342035 a001 12586269025/505019158607*228826127^(11/20) 9870002026342035 a001 10983760033/440719107401*228826127^(11/20) 9870002026342035 a001 43133785636/1730726404001*228826127^(11/20) 9870002026342035 a001 75283811239/3020733700601*228826127^(11/20) 9870002026342035 a001 182717648081/7331474697802*228826127^(11/20) 9870002026342035 a001 139583862445/5600748293801*228826127^(11/20) 9870002026342035 a001 53316291173/2139295485799*228826127^(11/20) 9870002026342035 a001 10182505537/408569081798*228826127^(11/20) 9870002026342035 a001 7778742049/312119004989*228826127^(11/20) 9870002026342035 a001 2971215073/119218851371*228826127^(11/20) 9870002026342035 a001 133957148/96450076809*228826127^(7/10) 9870002026342035 a001 433494437/6643838879*228826127^(1/2) 9870002026342035 a001 567451585/22768774562*228826127^(11/20) 9870002026342035 a001 43133785636/299537289*87403803^(2/19) 9870002026342035 a001 701408733/73681302247*228826127^(3/5) 9870002026342035 a001 7778742049/370248451*228826127^(1/5) 9870002026342035 a001 1836311903/192900153618*228826127^(3/5) 9870002026342035 a001 102287808/10745088481*228826127^(3/5) 9870002026342035 a001 12586269025/1322157322203*228826127^(3/5) 9870002026342035 a001 32951280099/3461452808002*228826127^(3/5) 9870002026342035 a001 86267571272/9062201101803*228826127^(3/5) 9870002026342035 a001 225851433717/23725150497407*228826127^(3/5) 9870002026342035 a001 139583862445/14662949395604*228826127^(3/5) 9870002026342035 a001 53316291173/5600748293801*228826127^(3/5) 9870002026342035 a001 20365011074/2139295485799*228826127^(3/5) 9870002026342035 a001 7778742049/817138163596*228826127^(3/5) 9870002026342035 a001 2971215073/312119004989*228826127^(3/5) 9870002026342035 a001 701408733/119218851371*228826127^(5/8) 9870002026342035 a001 267914296/505019158607*228826127^(3/4) 9870002026342035 a001 63245986/119218851371*141422324^(10/13) 9870002026342035 a001 433494437/17393796001*228826127^(11/20) 9870002026342035 a001 1134903170/119218851371*228826127^(3/5) 9870002026342035 a001 267914296/370248451*228826127^(3/8) 9870002026342035 a001 102334155/141422324*141422324^(5/13) 9870002026342035 a001 1836311903/312119004989*228826127^(5/8) 9870002026342035 a001 1201881744/204284540899*228826127^(5/8) 9870002026342035 a001 12586269025/2139295485799*228826127^(5/8) 9870002026342035 a001 32951280099/5600748293801*228826127^(5/8) 9870002026342035 a001 1135099622/192933544679*228826127^(5/8) 9870002026342035 a001 139583862445/23725150497407*228826127^(5/8) 9870002026342035 a001 53316291173/9062201101803*228826127^(5/8) 9870002026342035 a001 10182505537/1730726404001*228826127^(5/8) 9870002026342035 a001 7778742049/1322157322203*228826127^(5/8) 9870002026342035 a001 2971215073/505019158607*228826127^(5/8) 9870002026342035 a001 233802911/64300051206*228826127^(13/20) 9870002026342035 a001 567451585/96450076809*228826127^(5/8) 9870002026342035 a001 2971215073/370248451*228826127^(1/4) 9870002026342035 a001 1836311903/505019158607*228826127^(13/20) 9870002026342035 a001 1602508992/440719107401*228826127^(13/20) 9870002026342035 a001 12586269025/3461452808002*228826127^(13/20) 9870002026342035 a001 10983760033/3020733700601*228826127^(13/20) 9870002026342035 a001 86267571272/23725150497407*228826127^(13/20) 9870002026342035 a001 53316291173/14662949395604*228826127^(13/20) 9870002026342035 a001 20365011074/5600748293801*228826127^(13/20) 9870002026342035 a001 7778742049/2139295485799*228826127^(13/20) 9870002026342035 a001 2971215073/817138163596*228826127^(13/20) 9870002026342035 a001 267914296/1322157322203*228826127^(4/5) 9870002026342035 a001 433494437/45537549124*228826127^(3/5) 9870002026342035 a001 1134903170/312119004989*228826127^(13/20) 9870002026342035 a001 701408733/505019158607*228826127^(7/10) 9870002026342035 a001 433494437/73681302247*228826127^(5/8) 9870002026342035 a001 1134903170/370248451*228826127^(3/10) 9870002026342035 a001 1836311903/1322157322203*228826127^(7/10) 9870002026342035 a001 14930208/10749853441*228826127^(7/10) 9870002026342035 a001 12586269025/9062201101803*228826127^(7/10) 9870002026342035 a001 32951280099/23725150497407*228826127^(7/10) 9870002026342035 a001 10182505537/7331474697802*228826127^(7/10) 9870002026342035 a001 7778742049/5600748293801*228826127^(7/10) 9870002026342035 a001 32264490531/224056801*87403803^(2/19) 9870002026342035 a001 2971215073/2139295485799*228826127^(7/10) 9870002026342035 a001 133957148/1730726404001*228826127^(17/20) 9870002026342035 a001 433494437/119218851371*228826127^(13/20) 9870002026342035 a001 567451585/408569081798*228826127^(7/10) 9870002026342035 a001 591286729879/4106118243*87403803^(2/19) 9870002026342035 a001 774004377960/5374978561*87403803^(2/19) 9870002026342035 a001 4052739537881/28143753123*87403803^(2/19) 9870002026342035 a001 1515744265389/10525900321*87403803^(2/19) 9870002026342035 a001 3278735159921/22768774562*87403803^(2/19) 9870002026342035 a001 2504730781961/17393796001*87403803^(2/19) 9870002026342035 a001 956722026041/6643838879*87403803^(2/19) 9870002026342035 a001 233802911/440719107401*228826127^(3/4) 9870002026342035 a001 267914296/5600748293801*228826127^(7/8) 9870002026342035 a001 182717648081/1268860318*87403803^(2/19) 9870002026342035 a001 139583862445/370248451*87403803^(1/19) 9870002026342036 a001 1836311903/3461452808002*228826127^(3/4) 9870002026342036 a001 1602508992/3020733700601*228826127^(3/4) 9870002026342036 a001 12586269025/23725150497407*228826127^(3/4) 9870002026342036 a001 7778742049/14662949395604*228826127^(3/4) 9870002026342036 a001 2971215073/5600748293801*228826127^(3/4) 9870002026342036 a001 267914296/9062201101803*228826127^(9/10) 9870002026342036 a001 433494437/312119004989*228826127^(7/10) 9870002026342036 a001 1134903170/2139295485799*228826127^(3/4) 9870002026342036 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^16/Lucas(41) 9870002026342036 a001 165580141/370248451*23725150497407^(1/4) 9870002026342036 a001 165580141/370248451*73681302247^(4/13) 9870002026342036 a001 165580141/370248451*10749957122^(1/3) 9870002026342036 a001 165580141/370248451*4106118243^(8/23) 9870002026342036 a001 165580141/370248451*1568397607^(4/11) 9870002026342036 a001 139583862445/969323029*87403803^(2/19) 9870002026342036 a001 701408733/3461452808002*228826127^(4/5) 9870002026342036 a001 433494437/370248451*228826127^(7/20) 9870002026342036 a001 1836311903/9062201101803*228826127^(4/5) 9870002026342036 a001 4807526976/23725150497407*228826127^(4/5) 9870002026342036 a001 1836311903/228826127*87403803^(5/19) 9870002026342036 a001 2971215073/14662949395604*228826127^(4/5) 9870002026342036 a001 267914296/23725150497407*228826127^(19/20) 9870002026342036 a001 63245986/28143753123*141422324^(9/13) 9870002026342036 a001 433494437/817138163596*228826127^(3/4) 9870002026342036 a001 1134903170/5600748293801*228826127^(4/5) 9870002026342036 a001 165580141/370248451*599074578^(8/21) 9870002026342036 a001 233802911/3020733700601*228826127^(17/20) 9870002026342036 a001 1836311903/23725150497407*228826127^(17/20) 9870002026342036 a001 701408733/14662949395604*228826127^(7/8) 9870002026342036 a004 Fibonacci(42)*Lucas(40)/(1/2+sqrt(5)/2)^66 9870002026342036 a001 433494437/2139295485799*228826127^(4/5) 9870002026342036 a001 567451585/7331474697802*228826127^(17/20) 9870002026342036 a001 63245986/17393796001*141422324^(2/3) 9870002026342036 a001 701408733/23725150497407*228826127^(9/10) 9870002026342036 a001 1134903170/23725150497407*228826127^(7/8) 9870002026342036 a001 102334155/228826127*87403803^(8/19) 9870002026342036 a001 165580141/969323029*228826127^(9/20) 9870002026342036 a001 165580141/2537720636*228826127^(1/2) 9870002026342036 a001 433494437/5600748293801*228826127^(17/20) 9870002026342036 a001 433494437/9062201101803*228826127^(7/8) 9870002026342036 a001 165580141/6643838879*228826127^(11/20) 9870002026342036 a001 10983760033/199691526*87403803^(3/19) 9870002026342036 a001 433494437/14662949395604*228826127^(9/10) 9870002026342036 a001 1602508992/29134601*33385282^(1/6) 9870002026342036 a004 Fibonacci(44)*Lucas(40)/(1/2+sqrt(5)/2)^68 9870002026342036 a001 165580141/17393796001*228826127^(3/5) 9870002026342036 a004 Fibonacci(46)*Lucas(40)/(1/2+sqrt(5)/2)^70 9870002026342036 a004 Fibonacci(48)*Lucas(40)/(1/2+sqrt(5)/2)^72 9870002026342036 a004 Fibonacci(50)*Lucas(40)/(1/2+sqrt(5)/2)^74 9870002026342036 a004 Fibonacci(52)*Lucas(40)/(1/2+sqrt(5)/2)^76 9870002026342036 a004 Fibonacci(54)*Lucas(40)/(1/2+sqrt(5)/2)^78 9870002026342036 a004 Fibonacci(56)*Lucas(40)/(1/2+sqrt(5)/2)^80 9870002026342036 a004 Fibonacci(58)*Lucas(40)/(1/2+sqrt(5)/2)^82 9870002026342036 a004 Fibonacci(60)*Lucas(40)/(1/2+sqrt(5)/2)^84 9870002026342036 a004 Fibonacci(62)*Lucas(40)/(1/2+sqrt(5)/2)^86 9870002026342036 a004 Fibonacci(64)*Lucas(40)/(1/2+sqrt(5)/2)^88 9870002026342036 a004 Fibonacci(66)*Lucas(40)/(1/2+sqrt(5)/2)^90 9870002026342036 a004 Fibonacci(68)*Lucas(40)/(1/2+sqrt(5)/2)^92 9870002026342036 a004 Fibonacci(70)*Lucas(40)/(1/2+sqrt(5)/2)^94 9870002026342036 a004 Fibonacci(72)*Lucas(40)/(1/2+sqrt(5)/2)^96 9870002026342036 a004 Fibonacci(74)*Lucas(40)/(1/2+sqrt(5)/2)^98 9870002026342036 a004 Fibonacci(76)*Lucas(40)/(1/2+sqrt(5)/2)^100 9870002026342036 a001 2/102334155*(1/2+1/2*5^(1/2))^56 9870002026342036 a004 Fibonacci(75)*Lucas(40)/(1/2+sqrt(5)/2)^99 9870002026342036 a004 Fibonacci(73)*Lucas(40)/(1/2+sqrt(5)/2)^97 9870002026342036 a004 Fibonacci(71)*Lucas(40)/(1/2+sqrt(5)/2)^95 9870002026342036 a004 Fibonacci(69)*Lucas(40)/(1/2+sqrt(5)/2)^93 9870002026342036 a004 Fibonacci(67)*Lucas(40)/(1/2+sqrt(5)/2)^91 9870002026342036 a004 Fibonacci(65)*Lucas(40)/(1/2+sqrt(5)/2)^89 9870002026342036 a004 Fibonacci(63)*Lucas(40)/(1/2+sqrt(5)/2)^87 9870002026342036 a004 Fibonacci(61)*Lucas(40)/(1/2+sqrt(5)/2)^85 9870002026342036 a004 Fibonacci(59)*Lucas(40)/(1/2+sqrt(5)/2)^83 9870002026342036 a004 Fibonacci(57)*Lucas(40)/(1/2+sqrt(5)/2)^81 9870002026342036 a004 Fibonacci(55)*Lucas(40)/(1/2+sqrt(5)/2)^79 9870002026342036 a004 Fibonacci(53)*Lucas(40)/(1/2+sqrt(5)/2)^77 9870002026342036 a004 Fibonacci(51)*Lucas(40)/(1/2+sqrt(5)/2)^75 9870002026342036 a004 Fibonacci(49)*Lucas(40)/(1/2+sqrt(5)/2)^73 9870002026342036 a004 Fibonacci(47)*Lucas(40)/(1/2+sqrt(5)/2)^71 9870002026342036 a001 165580141/28143753123*228826127^(5/8) 9870002026342036 a001 63245986/6643838879*141422324^(8/13) 9870002026342036 a004 Fibonacci(45)*Lucas(40)/(1/2+sqrt(5)/2)^69 9870002026342036 a001 165580141/45537549124*228826127^(13/20) 9870002026342036 a004 Fibonacci(43)*Lucas(40)/(1/2+sqrt(5)/2)^67 9870002026342036 a001 86267571272/1568397607*87403803^(3/19) 9870002026342036 a001 75283811239/1368706081*87403803^(3/19) 9870002026342036 a001 591286729879/10749957122*87403803^(3/19) 9870002026342036 a001 165580141/119218851371*228826127^(7/10) 9870002026342036 a001 12585437040/228811001*87403803^(3/19) 9870002026342036 a001 4052739537881/73681302247*87403803^(3/19) 9870002026342036 a001 3536736619241/64300051206*87403803^(3/19) 9870002026342036 a001 6557470319842/119218851371*87403803^(3/19) 9870002026342036 a001 2504730781961/45537549124*87403803^(3/19) 9870002026342036 a001 956722026041/17393796001*87403803^(3/19) 9870002026342036 a001 365435296162/6643838879*87403803^(3/19) 9870002026342036 a001 139583862445/2537720636*87403803^(3/19) 9870002026342036 a001 53316291173/370248451*87403803^(2/19) 9870002026342036 a001 165580141/312119004989*228826127^(3/4) 9870002026342036 a001 53316291173/969323029*87403803^(3/19) 9870002026342036 a001 701408733/228826127*87403803^(6/19) 9870002026342036 a001 165580141/370248451*228826127^(2/5) 9870002026342036 a001 165580141/817138163596*228826127^(4/5) 9870002026342036 a001 63245986/1568397607*141422324^(7/13) 9870002026342036 a001 165580141/2139295485799*228826127^(17/20) 9870002026342036 a001 165580141/3461452808002*228826127^(7/8) 9870002026342036 a001 165580141/5600748293801*228826127^(9/10) 9870002026342036 a001 12586269025/599074578*87403803^(4/19) 9870002026342036 a001 165580141/14662949395604*228826127^(19/20) 9870002026342036 a001 267914296/228826127*87403803^(7/19) 9870002026342036 a004 Fibonacci(41)*Lucas(40)/(1/2+sqrt(5)/2)^65 9870002026342036 a001 32951280099/1568397607*87403803^(4/19) 9870002026342036 a001 86267571272/4106118243*87403803^(4/19) 9870002026342036 a001 225851433717/10749957122*87403803^(4/19) 9870002026342036 a001 591286729879/28143753123*87403803^(4/19) 9870002026342036 a001 1548008755920/73681302247*87403803^(4/19) 9870002026342036 a001 4052739537881/192900153618*87403803^(4/19) 9870002026342036 a001 225749145909/10745088481*87403803^(4/19) 9870002026342036 a001 6557470319842/312119004989*87403803^(4/19) 9870002026342036 a001 2504730781961/119218851371*87403803^(4/19) 9870002026342036 a001 956722026041/45537549124*87403803^(4/19) 9870002026342036 a001 365435296162/17393796001*87403803^(4/19) 9870002026342036 a001 139583862445/6643838879*87403803^(4/19) 9870002026342036 a001 53316291173/2537720636*87403803^(4/19) 9870002026342036 a001 20365011074/370248451*87403803^(3/19) 9870002026342036 a001 20365011074/969323029*87403803^(4/19) 9870002026342036 a001 66978574/35355581*141422324^(1/3) 9870002026342036 a001 86267571272/228826127*33385282^(1/18) 9870002026342036 a001 102334155/141422324*2537720636^(1/3) 9870002026342036 a001 63245986/228826127*45537549124^(1/3) 9870002026342036 a001 102334155/141422324*45537549124^(5/17) 9870002026342036 a001 102334155/141422324*312119004989^(3/11) 9870002026342036 a001 3236112267225915/3278735159921 9870002026342036 a001 102334155/141422324*14662949395604^(5/21) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^17/Lucas(40) 9870002026342036 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^15/Lucas(39) 9870002026342036 a001 102334155/141422324*192900153618^(5/18) 9870002026342036 a001 102334155/141422324*28143753123^(3/10) 9870002026342036 a001 102334155/141422324*10749957122^(5/16) 9870002026342036 a001 267084832/33281921*87403803^(5/19) 9870002026342036 a001 102334155/141422324*599074578^(5/14) 9870002026342036 a001 12586269025/1568397607*87403803^(5/19) 9870002026342036 a001 63245986/370248451*141422324^(6/13) 9870002026342036 a001 10983760033/1368706081*87403803^(5/19) 9870002026342036 a001 43133785636/5374978561*87403803^(5/19) 9870002026342036 a001 75283811239/9381251041*87403803^(5/19) 9870002026342036 a001 591286729879/73681302247*87403803^(5/19) 9870002026342036 a001 86000486440/10716675201*87403803^(5/19) 9870002026342036 a001 4052739537881/505019158607*87403803^(5/19) 9870002026342036 a001 3536736619241/440719107401*87403803^(5/19) 9870002026342036 a001 3278735159921/408569081798*87403803^(5/19) 9870002026342036 a001 2504730781961/312119004989*87403803^(5/19) 9870002026342036 a001 956722026041/119218851371*87403803^(5/19) 9870002026342036 a001 182717648081/22768774562*87403803^(5/19) 9870002026342036 a001 139583862445/17393796001*87403803^(5/19) 9870002026342036 a001 53316291173/6643838879*87403803^(5/19) 9870002026342036 a001 10182505537/1268860318*87403803^(5/19) 9870002026342036 a001 7778742049/370248451*87403803^(4/19) 9870002026342036 a001 7778742049/969323029*87403803^(5/19) 9870002026342036 a001 433494437/141422324*141422324^(4/13) 9870002026342036 a001 102334155/141422324*228826127^(3/8) 9870002026342036 a001 1836311903/141422324*141422324^(3/13) 9870002026342036 a001 1836311903/599074578*87403803^(6/19) 9870002026342036 a001 34111385/199691526*87403803^(9/19) 9870002026342036 a001 686789568/224056801*87403803^(6/19) 9870002026342036 a001 12586269025/4106118243*87403803^(6/19) 9870002026342036 a001 32951280099/10749957122*87403803^(6/19) 9870002026342036 a001 86267571272/28143753123*87403803^(6/19) 9870002026342036 a001 32264490531/10525900321*87403803^(6/19) 9870002026342036 a001 591286729879/192900153618*87403803^(6/19) 9870002026342036 a001 1548008755920/505019158607*87403803^(6/19) 9870002026342036 a001 1515744265389/494493258286*87403803^(6/19) 9870002026342036 a001 2504730781961/817138163596*87403803^(6/19) 9870002026342036 a001 956722026041/312119004989*87403803^(6/19) 9870002026342036 a001 365435296162/119218851371*87403803^(6/19) 9870002026342036 a001 139583862445/45537549124*87403803^(6/19) 9870002026342036 a001 53316291173/17393796001*87403803^(6/19) 9870002026342036 a001 20365011074/6643838879*87403803^(6/19) 9870002026342036 a001 7778742049/2537720636*87403803^(6/19) 9870002026342036 a001 2971215073/370248451*87403803^(5/19) 9870002026342036 a001 7778742049/141422324*141422324^(2/13) 9870002026342036 a001 2971215073/969323029*87403803^(6/19) 9870002026342036 a004 Fibonacci(39)*Lucas(41)/(1/2+sqrt(5)/2)^64 9870002026342036 a001 233802911/199691526*87403803^(7/19) 9870002026342036 a001 63246219/271444*141422324^(1/13) 9870002026342036 a001 267913919/710646*33385282^(1/18) 9870002026342036 a001 31622993/299537289*817138163596^(1/3) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^19/Lucas(42) 9870002026342036 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^13/Lucas(39) 9870002026342036 a001 66978574/35355581*73681302247^(1/4) 9870002026342036 a001 102334155/969323029*87403803^(1/2) 9870002026342036 a001 1836311903/1568397607*87403803^(7/19) 9870002026342036 a001 1602508992/1368706081*87403803^(7/19) 9870002026342036 a001 12586269025/10749957122*87403803^(7/19) 9870002026342036 a001 10983760033/9381251041*87403803^(7/19) 9870002026342036 a001 86267571272/73681302247*87403803^(7/19) 9870002026342036 a001 75283811239/64300051206*87403803^(7/19) 9870002026342036 a001 2504730781961/2139295485799*87403803^(7/19) 9870002026342036 a001 365435296162/312119004989*87403803^(7/19) 9870002026342036 a001 139583862445/119218851371*87403803^(7/19) 9870002026342036 a001 53316291173/45537549124*87403803^(7/19) 9870002026342036 a001 20365011074/17393796001*87403803^(7/19) 9870002026342036 a001 7778742049/6643838879*87403803^(7/19) 9870002026342036 a001 2971215073/2537720636*87403803^(7/19) 9870002026342036 a001 1134903170/370248451*87403803^(6/19) 9870002026342036 a004 Fibonacci(39)*Lucas(43)/(1/2+sqrt(5)/2)^66 9870002026342036 a001 14619165/224056801*87403803^(10/19) 9870002026342036 a001 591286729879/1568397607*33385282^(1/18) 9870002026342036 a001 1134903170/969323029*87403803^(7/19) 9870002026342036 a001 63245986/1568397607*2537720636^(7/15) 9870002026342036 a001 133957148/299537289*87403803^(8/19) 9870002026342036 a001 63245986/1568397607*17393796001^(3/7) 9870002026342036 a001 63245986/1568397607*45537549124^(7/17) 9870002026342036 a001 701408733/141422324*312119004989^(1/5) 9870002026342036 a001 63245986/1568397607*14662949395604^(1/3) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^21/Lucas(44) 9870002026342036 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^11/Lucas(39) 9870002026342036 a001 63245986/1568397607*192900153618^(7/18) 9870002026342036 a001 63245986/1568397607*10749957122^(7/16) 9870002026342036 a001 701408733/141422324*1568397607^(1/4) 9870002026342036 a001 516002918640/1368706081*33385282^(1/18) 9870002026342036 a001 4052739537881/10749957122*33385282^(1/18) 9870002026342036 a001 3536736619241/9381251041*33385282^(1/18) 9870002026342036 a004 Fibonacci(39)*Lucas(45)/(1/2+sqrt(5)/2)^68 9870002026342036 a001 6557470319842/17393796001*33385282^(1/18) 9870002026342036 a001 31622993/7331474697802*2537720636^(8/9) 9870002026342036 a001 63245986/9062201101803*2537720636^(13/15) 9870002026342036 a001 2504730781961/6643838879*33385282^(1/18) 9870002026342036 a001 63245986/2139295485799*2537720636^(4/5) 9870002026342036 a001 63245986/1322157322203*2537720636^(7/9) 9870002026342036 a001 63245986/505019158607*2537720636^(11/15) 9870002026342036 a001 63245986/119218851371*2537720636^(2/3) 9870002026342036 a001 31622993/5374978561*2537720636^(5/9) 9870002026342036 a001 63245986/28143753123*2537720636^(3/5) 9870002026342036 a001 1836311903/141422324*2537720636^(1/5) 9870002026342036 a001 63245986/6643838879*2537720636^(8/15) 9870002026342036 a001 1836311903/141422324*45537549124^(3/17) 9870002026342036 a001 1836311903/141422324*817138163596^(3/19) 9870002026342036 a001 1836311903/141422324*14662949395604^(1/7) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^23/Lucas(46) 9870002026342036 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^9/Lucas(39) 9870002026342036 a001 1836311903/141422324*192900153618^(1/6) 9870002026342036 a001 1836311903/141422324*10749957122^(3/16) 9870002026342036 a001 63245986/4106118243*4106118243^(1/2) 9870002026342036 a004 Fibonacci(39)*Lucas(47)/(1/2+sqrt(5)/2)^70 9870002026342036 a001 12586269025/141422324*2537720636^(1/9) 9870002026342036 a001 7778742049/141422324*2537720636^(2/15) 9870002026342036 a001 63246219/271444*2537720636^(1/15) 9870002026342036 a001 1201881744/35355581*17393796001^(1/7) 9870002026342036 a001 31622993/5374978561*312119004989^(5/11) 9870002026342036 a001 1201881744/35355581*14662949395604^(1/9) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^25/Lucas(48) 9870002026342036 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^7/Lucas(39) 9870002026342036 a001 31622993/5374978561*3461452808002^(5/12) 9870002026342036 a001 31622993/5374978561*28143753123^(1/2) 9870002026342036 a004 Fibonacci(39)*Lucas(49)/(1/2+sqrt(5)/2)^72 9870002026342036 a001 63245986/1322157322203*17393796001^(5/7) 9870002026342036 a001 63245986/28143753123*45537549124^(9/17) 9870002026342036 a001 31622993/22768774562*17393796001^(4/7) 9870002026342036 a001 12586269025/141422324*312119004989^(1/11) 9870002026342036 a001 63245986/28143753123*14662949395604^(3/7) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^27/Lucas(50) 9870002026342036 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^5/Lucas(39) 9870002026342036 a001 63245986/28143753123*192900153618^(1/2) 9870002026342036 a001 12586269025/141422324*28143753123^(1/10) 9870002026342036 a004 Fibonacci(39)*Lucas(51)/(1/2+sqrt(5)/2)^74 9870002026342036 a001 63245986/9062201101803*45537549124^(13/17) 9870002026342036 a001 63245986/2139295485799*45537549124^(12/17) 9870002026342036 a001 31622993/408569081798*45537549124^(2/3) 9870002026342036 a001 63245986/505019158607*45537549124^(11/17) 9870002026342036 a001 63245986/119218851371*45537549124^(10/17) 9870002026342036 a001 63246219/271444*45537549124^(1/17) 9870002026342036 a001 63246219/271444*14662949395604^(1/21) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^29/Lucas(52) 9870002026342036 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^3/Lucas(39) 9870002026342036 a001 63245986/73681302247*1322157322203^(1/2) 9870002026342036 a001 63246219/271444*192900153618^(1/18) 9870002026342036 a004 Fibonacci(39)*Lucas(53)/(1/2+sqrt(5)/2)^76 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^31/Lucas(54) 9870002026342036 a004 Fibonacci(54)*(1/2+sqrt(5)/2)/Lucas(39) 9870002026342036 a001 31622993/96450076809*9062201101803^(1/2) 9870002026342036 a004 Fibonacci(39)*Lucas(55)/(1/2+sqrt(5)/2)^78 9870002026342036 a001 63245986/505019158607*312119004989^(3/5) 9870002026342036 a001 31622993/7331474697802*312119004989^(8/11) 9870002026342036 a001 63245986/1322157322203*312119004989^(7/11) 9870002026342036 a001 63245986/505019158607*817138163596^(11/19) 9870002026342036 a001 63245986/505019158607*14662949395604^(11/21) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^33/Lucas(56) 9870002026342036 a004 Fibonacci(56)/Lucas(39)/(1/2+sqrt(5)/2) 9870002026342036 a004 Fibonacci(39)*Lucas(57)/(1/2+sqrt(5)/2)^80 9870002026342036 a001 63245986/5600748293801*817138163596^(2/3) 9870002026342036 a001 63245986/1322157322203*14662949395604^(5/9) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^35/Lucas(58) 9870002026342036 a004 Fibonacci(58)/Lucas(39)/(1/2+sqrt(5)/2)^3 9870002026342036 a004 Fibonacci(39)*Lucas(59)/(1/2+sqrt(5)/2)^82 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^37/Lucas(60) 9870002026342036 a004 Fibonacci(60)/Lucas(39)/(1/2+sqrt(5)/2)^5 9870002026342036 a004 Fibonacci(39)*Lucas(61)/(1/2+sqrt(5)/2)^84 9870002026342036 a001 63245986/9062201101803*14662949395604^(13/21) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^39/Lucas(62) 9870002026342036 a004 Fibonacci(62)/Lucas(39)/(1/2+sqrt(5)/2)^7 9870002026342036 a004 Fibonacci(39)*Lucas(63)/(1/2+sqrt(5)/2)^86 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^41/Lucas(64) 9870002026342036 a004 Fibonacci(64)/Lucas(39)/(1/2+sqrt(5)/2)^9 9870002026342036 a004 Fibonacci(39)*Lucas(65)/(1/2+sqrt(5)/2)^88 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^43/Lucas(66) 9870002026342036 a004 Fibonacci(66)/Lucas(39)/(1/2+sqrt(5)/2)^11 9870002026342036 a004 Fibonacci(39)*Lucas(67)/(1/2+sqrt(5)/2)^90 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^45/Lucas(68) 9870002026342036 a004 Fibonacci(68)/Lucas(39)/(1/2+sqrt(5)/2)^13 9870002026342036 a004 Fibonacci(39)*Lucas(69)/(1/2+sqrt(5)/2)^92 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^47/Lucas(70) 9870002026342036 a004 Fibonacci(70)/Lucas(39)/(1/2+sqrt(5)/2)^15 9870002026342036 a004 Fibonacci(39)*Lucas(71)/(1/2+sqrt(5)/2)^94 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^49/Lucas(72) 9870002026342036 a004 Fibonacci(72)/Lucas(39)/(1/2+sqrt(5)/2)^17 9870002026342036 a004 Fibonacci(39)*Lucas(73)/(1/2+sqrt(5)/2)^96 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^51/Lucas(74) 9870002026342036 a004 Fibonacci(74)/Lucas(39)/(1/2+sqrt(5)/2)^19 9870002026342036 a004 Fibonacci(39)*Lucas(75)/(1/2+sqrt(5)/2)^98 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^53/Lucas(76) 9870002026342036 a004 Fibonacci(76)/Lucas(39)/(1/2+sqrt(5)/2)^21 9870002026342036 a004 Fibonacci(39)*Lucas(77)/(1/2+sqrt(5)/2)^100 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^55/Lucas(78) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^57/Lucas(80) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^59/Lucas(82) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^61/Lucas(84) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^63/Lucas(86) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^65/Lucas(88) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^67/Lucas(90) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^69/Lucas(92) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^71/Lucas(94) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^73/Lucas(96) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^75/Lucas(98) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^76/Lucas(99) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^77/Lucas(100) 9870002026342036 a004 Fibonacci(39)*Lucas(1)/(1/2+sqrt(5)/2)^23 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^74/Lucas(97) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^72/Lucas(95) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^70/Lucas(93) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^68/Lucas(91) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^66/Lucas(89) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^64/Lucas(87) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^62/Lucas(85) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^60/Lucas(83) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^58/Lucas(81) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^56/Lucas(79) 9870002026342036 a004 Fibonacci(80)/Lucas(39)/(1/2+sqrt(5)/2)^25 9870002026342036 a004 Fibonacci(82)/Lucas(39)/(1/2+sqrt(5)/2)^27 9870002026342036 a004 Fibonacci(84)/Lucas(39)/(1/2+sqrt(5)/2)^29 9870002026342036 a004 Fibonacci(86)/Lucas(39)/(1/2+sqrt(5)/2)^31 9870002026342036 a004 Fibonacci(88)/Lucas(39)/(1/2+sqrt(5)/2)^33 9870002026342036 a004 Fibonacci(90)/Lucas(39)/(1/2+sqrt(5)/2)^35 9870002026342036 a004 Fibonacci(92)/Lucas(39)/(1/2+sqrt(5)/2)^37 9870002026342036 a004 Fibonacci(94)/Lucas(39)/(1/2+sqrt(5)/2)^39 9870002026342036 a004 Fibonacci(96)/Lucas(39)/(1/2+sqrt(5)/2)^41 9870002026342036 a004 Fibonacci(98)/Lucas(39)/(1/2+sqrt(5)/2)^43 9870002026342036 a004 Fibonacci(100)/Lucas(39)/(1/2+sqrt(5)/2)^45 9870002026342036 a004 Fibonacci(99)/Lucas(39)/(1/2+sqrt(5)/2)^44 9870002026342036 a004 Fibonacci(97)/Lucas(39)/(1/2+sqrt(5)/2)^42 9870002026342036 a004 Fibonacci(95)/Lucas(39)/(1/2+sqrt(5)/2)^40 9870002026342036 a004 Fibonacci(93)/Lucas(39)/(1/2+sqrt(5)/2)^38 9870002026342036 a004 Fibonacci(91)/Lucas(39)/(1/2+sqrt(5)/2)^36 9870002026342036 a004 Fibonacci(89)/Lucas(39)/(1/2+sqrt(5)/2)^34 9870002026342036 a004 Fibonacci(87)/Lucas(39)/(1/2+sqrt(5)/2)^32 9870002026342036 a004 Fibonacci(85)/Lucas(39)/(1/2+sqrt(5)/2)^30 9870002026342036 a004 Fibonacci(83)/Lucas(39)/(1/2+sqrt(5)/2)^28 9870002026342036 a004 Fibonacci(81)/Lucas(39)/(1/2+sqrt(5)/2)^26 9870002026342036 a004 Fibonacci(79)/Lucas(39)/(1/2+sqrt(5)/2)^24 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^54/Lucas(77) 9870002026342036 a004 Fibonacci(77)/Lucas(39)/(1/2+sqrt(5)/2)^22 9870002026342036 a004 Fibonacci(39)*Lucas(76)/(1/2+sqrt(5)/2)^99 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^52/Lucas(75) 9870002026342036 a004 Fibonacci(75)/Lucas(39)/(1/2+sqrt(5)/2)^20 9870002026342036 a004 Fibonacci(39)*Lucas(74)/(1/2+sqrt(5)/2)^97 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^50/Lucas(73) 9870002026342036 a004 Fibonacci(73)/Lucas(39)/(1/2+sqrt(5)/2)^18 9870002026342036 a004 Fibonacci(39)*Lucas(72)/(1/2+sqrt(5)/2)^95 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^48/Lucas(71) 9870002026342036 a004 Fibonacci(71)/Lucas(39)/(1/2+sqrt(5)/2)^16 9870002026342036 a004 Fibonacci(39)*Lucas(70)/(1/2+sqrt(5)/2)^93 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^46/Lucas(69) 9870002026342036 a004 Fibonacci(69)/Lucas(39)/(1/2+sqrt(5)/2)^14 9870002026342036 a004 Fibonacci(39)*Lucas(68)/(1/2+sqrt(5)/2)^91 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^44/Lucas(67) 9870002026342036 a004 Fibonacci(67)/Lucas(39)/(1/2+sqrt(5)/2)^12 9870002026342036 a004 Fibonacci(39)*Lucas(66)/(1/2+sqrt(5)/2)^89 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^42/Lucas(65) 9870002026342036 a004 Fibonacci(65)/Lucas(39)/(1/2+sqrt(5)/2)^10 9870002026342036 a004 Fibonacci(39)*Lucas(64)/(1/2+sqrt(5)/2)^87 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^40/Lucas(63) 9870002026342036 a004 Fibonacci(63)/Lucas(39)/(1/2+sqrt(5)/2)^8 9870002026342036 a001 31622993/7331474697802*23725150497407^(5/8) 9870002026342036 a004 Fibonacci(39)*Lucas(62)/(1/2+sqrt(5)/2)^85 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^38/Lucas(61) 9870002026342036 a004 Fibonacci(61)/Lucas(39)/(1/2+sqrt(5)/2)^6 9870002026342036 a004 Fibonacci(39)*Lucas(60)/(1/2+sqrt(5)/2)^83 9870002026342036 a001 63245986/2139295485799*14662949395604^(4/7) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^36/Lucas(59) 9870002026342036 a004 Fibonacci(59)/Lucas(39)/(1/2+sqrt(5)/2)^4 9870002026342036 a004 Fibonacci(39)*Lucas(58)/(1/2+sqrt(5)/2)^81 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^34/Lucas(57) 9870002026342036 a004 Fibonacci(57)/Lucas(39)/(1/2+sqrt(5)/2)^2 9870002026342036 a001 63245986/1322157322203*505019158607^(5/8) 9870002026342036 a004 Fibonacci(39)*Lucas(56)/(1/2+sqrt(5)/2)^79 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^32/Lucas(55) 9870002026342036 a001 63245986/312119004989*23725150497407^(1/2) 9870002026342036 a001 63245986/505019158607*192900153618^(11/18) 9870002026342036 a001 63245986/312119004989*505019158607^(4/7) 9870002026342036 a001 63245986/2139295485799*192900153618^(2/3) 9870002026342036 a004 Fibonacci(39)*Lucas(54)/(1/2+sqrt(5)/2)^77 9870002026342036 a001 63245986/119218851371*312119004989^(6/11) 9870002026342036 a001 63245986/119218851371*14662949395604^(10/21) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^30/Lucas(53) 9870002026342036 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^2/Lucas(39) 9870002026342036 a001 63245986/119218851371*192900153618^(5/9) 9870002026342036 a001 63245986/312119004989*73681302247^(8/13) 9870002026342036 a001 63245986/2139295485799*73681302247^(9/13) 9870002026342036 a001 63245986/9062201101803*73681302247^(3/4) 9870002026342036 a001 31622993/7331474697802*73681302247^(10/13) 9870002026342036 a004 Fibonacci(39)*Lucas(52)/(1/2+sqrt(5)/2)^75 9870002026342036 a001 63246219/271444*10749957122^(1/16) 9870002026342036 a001 53316291173/141422324*10749957122^(1/24) 9870002026342036 a001 956722026041/2537720636*33385282^(1/18) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^28/Lucas(51) 9870002026342036 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^4/Lucas(39) 9870002026342036 a001 10182505537/70711162*23725150497407^(1/16) 9870002026342036 a001 31622993/22768774562*505019158607^(1/2) 9870002026342036 a001 10182505537/70711162*73681302247^(1/13) 9870002026342036 a001 31622993/22768774562*73681302247^(7/13) 9870002026342036 a001 63245986/119218851371*28143753123^(3/5) 9870002026342036 a001 63245986/1322157322203*28143753123^(7/10) 9870002026342036 a001 31622993/7331474697802*28143753123^(4/5) 9870002026342036 a001 10182505537/70711162*10749957122^(1/12) 9870002026342036 a004 Fibonacci(39)*Lucas(50)/(1/2+sqrt(5)/2)^73 9870002026342036 a001 53316291173/141422324*4106118243^(1/23) 9870002026342036 a001 7778742049/141422324*45537549124^(2/17) 9870002026342036 a001 7778742049/141422324*14662949395604^(2/21) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^26/Lucas(49) 9870002026342036 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^6/Lucas(39) 9870002026342036 a001 63245986/17393796001*73681302247^(1/2) 9870002026342036 a001 63245986/28143753123*10749957122^(9/16) 9870002026342036 a001 7778742049/141422324*10749957122^(1/8) 9870002026342036 a001 63245986/119218851371*10749957122^(5/8) 9870002026342036 a001 31622993/22768774562*10749957122^(7/12) 9870002026342036 a001 10182505537/70711162*4106118243^(2/23) 9870002026342036 a001 63245986/312119004989*10749957122^(2/3) 9870002026342036 a001 63245986/505019158607*10749957122^(11/16) 9870002026342036 a001 31622993/408569081798*10749957122^(17/24) 9870002026342036 a001 63245986/2139295485799*10749957122^(3/4) 9870002026342036 a001 63245986/5600748293801*10749957122^(19/24) 9870002026342036 a001 63245986/9062201101803*10749957122^(13/16) 9870002026342036 a001 31622993/7331474697802*10749957122^(5/6) 9870002026342036 a001 63245986/17393796001*10749957122^(13/24) 9870002026342036 a004 Fibonacci(39)*Lucas(48)/(1/2+sqrt(5)/2)^71 9870002026342036 a001 7778742049/141422324*4106118243^(3/23) 9870002026342036 a001 53316291173/141422324*1568397607^(1/22) 9870002026342036 a001 63245986/6643838879*45537549124^(8/17) 9870002026342036 a001 63245986/6643838879*14662949395604^(8/21) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^24/Lucas(47) 9870002026342036 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^8/Lucas(39) 9870002026342036 a001 2971215073/141422324*23725150497407^(1/8) 9870002026342036 a001 2971215073/141422324*505019158607^(1/7) 9870002026342036 a001 63245986/6643838879*192900153618^(4/9) 9870002026342036 a001 2971215073/141422324*73681302247^(2/13) 9870002026342036 a001 63245986/6643838879*73681302247^(6/13) 9870002026342036 a001 2971215073/141422324*10749957122^(1/6) 9870002026342036 a001 63245986/6643838879*10749957122^(1/2) 9870002026342036 a001 2971215073/141422324*4106118243^(4/23) 9870002026342036 a001 31622993/22768774562*4106118243^(14/23) 9870002026342036 a001 63245986/17393796001*4106118243^(13/23) 9870002026342036 a001 10182505537/70711162*1568397607^(1/11) 9870002026342036 a001 63245986/119218851371*4106118243^(15/23) 9870002026342036 a001 63245986/312119004989*4106118243^(16/23) 9870002026342036 a001 31622993/408569081798*4106118243^(17/23) 9870002026342036 a001 63245986/2139295485799*4106118243^(18/23) 9870002026342036 a001 63245986/5600748293801*4106118243^(19/23) 9870002026342036 a001 31622993/7331474697802*4106118243^(20/23) 9870002026342036 a001 63245986/6643838879*4106118243^(12/23) 9870002026342036 a001 7778742049/141422324*1568397607^(3/22) 9870002026342036 a004 Fibonacci(39)*Lucas(46)/(1/2+sqrt(5)/2)^69 9870002026342036 a001 2971215073/141422324*1568397607^(2/11) 9870002026342036 a001 567451585/70711162*2537720636^(2/9) 9870002026342036 a001 53316291173/141422324*599074578^(1/21) 9870002026342036 a001 31622993/1268860318*312119004989^(2/5) 9870002026342036 a001 567451585/70711162*312119004989^(2/11) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^22/Lucas(45) 9870002026342036 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^10/Lucas(39) 9870002026342036 a001 567451585/70711162*28143753123^(1/5) 9870002026342036 a001 567451585/70711162*10749957122^(5/24) 9870002026342036 a001 31622993/1268860318*10749957122^(11/24) 9870002026342036 a001 567451585/70711162*4106118243^(5/23) 9870002026342036 a001 31622993/1268860318*4106118243^(11/23) 9870002026342036 a001 63246219/271444*599074578^(1/14) 9870002026342036 a001 63245986/17393796001*1568397607^(13/22) 9870002026342036 a001 63245986/6643838879*1568397607^(6/11) 9870002026342036 a001 567451585/70711162*1568397607^(5/22) 9870002026342036 a001 31622993/22768774562*1568397607^(7/11) 9870002026342036 a001 10182505537/70711162*599074578^(2/21) 9870002026342036 a001 63245986/119218851371*1568397607^(15/22) 9870002026342036 a001 63245986/312119004989*1568397607^(8/11) 9870002026342036 a001 63245986/505019158607*1568397607^(3/4) 9870002026342036 a001 31622993/408569081798*1568397607^(17/22) 9870002026342036 a001 63245986/2139295485799*1568397607^(9/11) 9870002026342036 a001 63245986/5600748293801*1568397607^(19/22) 9870002026342036 a001 31622993/1268860318*1568397607^(1/2) 9870002026342036 a001 31622993/7331474697802*1568397607^(10/11) 9870002026342036 a001 7778742049/141422324*599074578^(1/7) 9870002026342036 a004 Fibonacci(39)*Lucas(44)/(1/2+sqrt(5)/2)^67 9870002026342036 a001 1201881744/35355581*599074578^(1/6) 9870002026342036 a001 1836311903/141422324*599074578^(3/14) 9870002026342036 a001 2971215073/141422324*599074578^(4/21) 9870002026342036 a001 567451585/70711162*599074578^(5/21) 9870002026342036 a001 365435296162/969323029*33385282^(1/18) 9870002026342036 a001 53316291173/141422324*228826127^(1/20) 9870002026342036 a001 63245986/1568397607*599074578^(1/2) 9870002026342036 a001 63245986/969323029*2537720636^(4/9) 9870002026342036 a001 433494437/141422324*2537720636^(4/15) 9870002026342036 a001 433494437/141422324*45537549124^(4/17) 9870002026342036 a001 433494437/141422324*817138163596^(4/19) 9870002026342036 a001 433494437/141422324*14662949395604^(4/21) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^20/Lucas(43) 9870002026342036 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^12/Lucas(39) 9870002026342036 a001 433494437/141422324*192900153618^(2/9) 9870002026342036 a001 433494437/141422324*73681302247^(3/13) 9870002026342036 a001 63245986/969323029*73681302247^(5/13) 9870002026342036 a001 63245986/969323029*28143753123^(2/5) 9870002026342036 a001 433494437/141422324*10749957122^(1/4) 9870002026342036 a001 63245986/969323029*10749957122^(5/12) 9870002026342036 a001 433494437/141422324*4106118243^(6/23) 9870002026342036 a001 63245986/969323029*4106118243^(10/23) 9870002026342036 a001 433494437/141422324*1568397607^(3/11) 9870002026342036 a001 63245986/969323029*1568397607^(5/11) 9870002026342036 a001 31622993/1268860318*599074578^(11/21) 9870002026342036 a001 63245986/6643838879*599074578^(4/7) 9870002026342036 a001 63245986/17393796001*599074578^(13/21) 9870002026342036 a001 63245986/28143753123*599074578^(9/14) 9870002026342036 a001 31622993/22768774562*599074578^(2/3) 9870002026342036 a001 433494437/141422324*599074578^(2/7) 9870002026342036 a001 10182505537/70711162*228826127^(1/10) 9870002026342036 a001 63245986/119218851371*599074578^(5/7) 9870002026342036 a001 63245986/312119004989*599074578^(16/21) 9870002026342036 a001 63245986/505019158607*599074578^(11/14) 9870002026342036 a001 31622993/408569081798*599074578^(17/21) 9870002026342036 a001 63245986/1322157322203*599074578^(5/6) 9870002026342036 a001 12586269025/141422324*228826127^(1/8) 9870002026342036 a001 63245986/2139295485799*599074578^(6/7) 9870002026342036 a001 63245986/969323029*599074578^(10/21) 9870002026342036 a001 63245986/5600748293801*599074578^(19/21) 9870002026342036 a001 63245986/9062201101803*599074578^(13/14) 9870002026342036 a001 31622993/7331474697802*599074578^(20/21) 9870002026342036 a004 Fibonacci(39)*Lucas(42)/(1/2+sqrt(5)/2)^65 9870002026342036 a001 7778742049/141422324*228826127^(3/20) 9870002026342036 a001 2971215073/141422324*228826127^(1/5) 9870002026342036 a001 701408733/1568397607*87403803^(8/19) 9870002026342036 a001 567451585/70711162*228826127^(1/4) 9870002026342036 a001 1836311903/4106118243*87403803^(8/19) 9870002026342036 a001 2403763488/5374978561*87403803^(8/19) 9870002026342036 a001 12586269025/28143753123*87403803^(8/19) 9870002026342036 a001 32951280099/73681302247*87403803^(8/19) 9870002026342036 a001 43133785636/96450076809*87403803^(8/19) 9870002026342036 a001 225851433717/505019158607*87403803^(8/19) 9870002026342036 a001 591286729879/1322157322203*87403803^(8/19) 9870002026342036 a001 10610209857723/23725150497407*87403803^(8/19) 9870002026342036 a001 182717648081/408569081798*87403803^(8/19) 9870002026342036 a001 139583862445/312119004989*87403803^(8/19) 9870002026342036 a001 53316291173/119218851371*87403803^(8/19) 9870002026342036 a001 10182505537/22768774562*87403803^(8/19) 9870002026342036 a001 7778742049/17393796001*87403803^(8/19) 9870002026342036 a001 2971215073/6643838879*87403803^(8/19) 9870002026342036 a001 567451585/1268860318*87403803^(8/19) 9870002026342036 a001 53316291173/228826127*33385282^(1/12) 9870002026342036 a001 433494437/370248451*87403803^(7/19) 9870002026342036 a001 34111385/1368706081*87403803^(11/19) 9870002026342036 a001 433494437/141422324*228826127^(3/10) 9870002026342036 a001 53316291173/141422324*87403803^(1/19) 9870002026342036 a001 139583862445/370248451*33385282^(1/18) 9870002026342036 a001 63245986/370248451*2537720636^(2/5) 9870002026342036 a001 433494437/969323029*87403803^(8/19) 9870002026342036 a001 165580141/141422324*17393796001^(2/7) 9870002026342036 a001 63245986/370248451*45537549124^(6/17) 9870002026342036 a001 63245986/370248451*14662949395604^(2/7) 9870002026342036 a001 165580141/141422324*14662949395604^(2/9) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^18/Lucas(41) 9870002026342036 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^14/Lucas(39) 9870002026342036 a001 10472279279564026/10610209857723 9870002026342036 a001 165580141/141422324*505019158607^(1/4) 9870002026342036 a001 63245986/370248451*192900153618^(1/3) 9870002026342036 a001 165580141/141422324*10749957122^(7/24) 9870002026342036 a001 63245986/370248451*10749957122^(3/8) 9870002026342036 a001 165580141/141422324*4106118243^(7/23) 9870002026342036 a001 63245986/370248451*4106118243^(9/23) 9870002026342036 a001 165580141/141422324*1568397607^(7/22) 9870002026342036 a001 63245986/370248451*1568397607^(9/22) 9870002026342036 a001 165580141/141422324*599074578^(1/3) 9870002026342036 a001 63245986/370248451*599074578^(3/7) 9870002026342036 a001 267914296/1568397607*87403803^(9/19) 9870002026342036 a001 63245986/969323029*228826127^(1/2) 9870002026342036 a001 31622993/1268860318*228826127^(11/20) 9870002026342036 a001 63245986/6643838879*228826127^(3/5) 9870002026342036 a001 233802911/1368706081*87403803^(9/19) 9870002026342036 a001 31622993/5374978561*228826127^(5/8) 9870002026342036 a001 1836311903/10749957122*87403803^(9/19) 9870002026342036 a001 1602508992/9381251041*87403803^(9/19) 9870002026342036 a001 12586269025/73681302247*87403803^(9/19) 9870002026342036 a001 10983760033/64300051206*87403803^(9/19) 9870002026342036 a001 86267571272/505019158607*87403803^(9/19) 9870002026342036 a001 75283811239/440719107401*87403803^(9/19) 9870002026342036 a001 2504730781961/14662949395604*87403803^(9/19) 9870002026342036 a001 139583862445/817138163596*87403803^(9/19) 9870002026342036 a001 53316291173/312119004989*87403803^(9/19) 9870002026342036 a001 20365011074/119218851371*87403803^(9/19) 9870002026342036 a001 7778742049/45537549124*87403803^(9/19) 9870002026342036 a001 2971215073/17393796001*87403803^(9/19) 9870002026342036 a001 1134903170/6643838879*87403803^(9/19) 9870002026342036 a001 63245986/17393796001*228826127^(13/20) 9870002026342036 a001 66978574/634430159*87403803^(1/2) 9870002026342036 a001 433494437/2537720636*87403803^(9/19) 9870002026342036 a001 31622993/22768774562*228826127^(7/10) 9870002026342036 a001 102334155/10749957122*87403803^(12/19) 9870002026342036 a001 10182505537/70711162*87403803^(2/19) 9870002026342036 a001 165580141/141422324*228826127^(7/20) 9870002026342036 a001 63245986/119218851371*228826127^(3/4) 9870002026342036 a001 701408733/6643838879*87403803^(1/2) 9870002026342036 a001 63245986/312119004989*228826127^(4/5) 9870002026342036 a001 1836311903/17393796001*87403803^(1/2) 9870002026342036 a001 1201881744/11384387281*87403803^(1/2) 9870002026342036 a001 12586269025/119218851371*87403803^(1/2) 9870002026342036 a001 32951280099/312119004989*87403803^(1/2) 9870002026342036 a001 21566892818/204284540899*87403803^(1/2) 9870002026342036 a001 225851433717/2139295485799*87403803^(1/2) 9870002026342036 a001 182717648081/1730726404001*87403803^(1/2) 9870002026342036 a001 139583862445/1322157322203*87403803^(1/2) 9870002026342036 a001 53316291173/505019158607*87403803^(1/2) 9870002026342036 a001 10182505537/96450076809*87403803^(1/2) 9870002026342036 a001 7778742049/73681302247*87403803^(1/2) 9870002026342036 a001 2971215073/28143753123*87403803^(1/2) 9870002026342036 a001 567451585/5374978561*87403803^(1/2) 9870002026342036 a001 63245986/370248451*228826127^(9/20) 9870002026342036 a001 267914296/4106118243*87403803^(10/19) 9870002026342036 a001 31622993/408569081798*228826127^(17/20) 9870002026342036 a001 433494437/4106118243*87403803^(1/2) 9870002026342036 a001 63245986/1322157322203*228826127^(7/8) 9870002026342036 a001 63245986/2139295485799*228826127^(9/10) 9870002026342036 a001 63245986/5600748293801*228826127^(19/20) 9870002026342036 a001 1836311903/87403803*33385282^(2/9) 9870002026342036 a001 701408733/10749957122*87403803^(10/19) 9870002026342036 a001 1836311903/28143753123*87403803^(10/19) 9870002026342036 a001 686789568/10525900321*87403803^(10/19) 9870002026342036 a001 12586269025/192900153618*87403803^(10/19) 9870002026342036 a001 32951280099/505019158607*87403803^(10/19) 9870002026342036 a001 86267571272/1322157322203*87403803^(10/19) 9870002026342036 a001 32264490531/494493258286*87403803^(10/19) 9870002026342036 a001 591286729879/9062201101803*87403803^(10/19) 9870002026342036 a001 1548008755920/23725150497407*87403803^(10/19) 9870002026342036 a001 365435296162/5600748293801*87403803^(10/19) 9870002026342036 a001 139583862445/2139295485799*87403803^(10/19) 9870002026342036 a001 53316291173/817138163596*87403803^(10/19) 9870002026342036 a001 20365011074/312119004989*87403803^(10/19) 9870002026342036 a001 7778742049/119218851371*87403803^(10/19) 9870002026342036 a001 2971215073/45537549124*87403803^(10/19) 9870002026342036 a001 1134903170/17393796001*87403803^(10/19) 9870002026342036 a004 Fibonacci(39)*Lucas(40)/(1/2+sqrt(5)/2)^63 9870002026342036 a001 165580141/370248451*87403803^(8/19) 9870002026342036 a001 433494437/6643838879*87403803^(10/19) 9870002026342036 a001 165580141/969323029*87403803^(9/19) 9870002026342036 a001 831985/228811001*87403803^(13/19) 9870002026342036 a001 7778742049/141422324*87403803^(3/19) 9870002026342036 a001 139583862445/599074578*33385282^(1/12) 9870002026342036 a001 165580141/1568397607*87403803^(1/2) 9870002026342036 a001 133957148/5374978561*87403803^(11/19) 9870002026342036 a001 365435296162/1568397607*33385282^(1/12) 9870002026342036 a001 956722026041/4106118243*33385282^(1/12) 9870002026342036 a001 2504730781961/10749957122*33385282^(1/12) 9870002026342036 a001 6557470319842/28143753123*33385282^(1/12) 9870002026342036 a001 10610209857723/45537549124*33385282^(1/12) 9870002026342036 a001 4052739537881/17393796001*33385282^(1/12) 9870002026342036 a001 1548008755920/6643838879*33385282^(1/12) 9870002026342036 a001 591286729879/2537720636*33385282^(1/12) 9870002026342036 a001 233802911/9381251041*87403803^(11/19) 9870002026342036 a001 1836311903/73681302247*87403803^(11/19) 9870002026342036 a001 267084832/10716675201*87403803^(11/19) 9870002026342036 a001 12586269025/505019158607*87403803^(11/19) 9870002026342036 a001 10983760033/440719107401*87403803^(11/19) 9870002026342036 a001 43133785636/1730726404001*87403803^(11/19) 9870002026342036 a001 75283811239/3020733700601*87403803^(11/19) 9870002026342036 a001 182717648081/7331474697802*87403803^(11/19) 9870002026342036 a001 139583862445/5600748293801*87403803^(11/19) 9870002026342036 a001 53316291173/2139295485799*87403803^(11/19) 9870002026342036 a001 10182505537/408569081798*87403803^(11/19) 9870002026342036 a001 7778742049/312119004989*87403803^(11/19) 9870002026342036 a001 2971215073/119218851371*87403803^(11/19) 9870002026342036 a001 225851433717/969323029*33385282^(1/12) 9870002026342036 a001 567451585/22768774562*87403803^(11/19) 9870002026342036 a001 165580141/2537720636*87403803^(10/19) 9870002026342036 a001 433494437/17393796001*87403803^(11/19) 9870002026342036 a001 14619165/10525900321*87403803^(14/19) 9870002026342036 a001 2971215073/141422324*87403803^(4/19) 9870002026342036 a001 267914296/28143753123*87403803^(12/19) 9870002026342036 a001 32951280099/228826127*33385282^(1/9) 9870002026342036 a001 86267571272/370248451*33385282^(1/12) 9870002026342036 a001 701408733/73681302247*87403803^(12/19) 9870002026342036 a001 1836311903/192900153618*87403803^(12/19) 9870002026342036 a001 102287808/10745088481*87403803^(12/19) 9870002026342036 a001 12586269025/1322157322203*87403803^(12/19) 9870002026342036 a001 32951280099/3461452808002*87403803^(12/19) 9870002026342036 a001 86267571272/9062201101803*87403803^(12/19) 9870002026342036 a001 225851433717/23725150497407*87403803^(12/19) 9870002026342036 a001 139583862445/14662949395604*87403803^(12/19) 9870002026342036 a001 53316291173/5600748293801*87403803^(12/19) 9870002026342036 a001 20365011074/2139295485799*87403803^(12/19) 9870002026342036 a001 7778742049/817138163596*87403803^(12/19) 9870002026342036 a001 2971215073/312119004989*87403803^(12/19) 9870002026342036 a001 1134903170/119218851371*87403803^(12/19) 9870002026342036 a001 165580141/6643838879*87403803^(11/19) 9870002026342036 a001 433494437/45537549124*87403803^(12/19) 9870002026342036 a001 34111385/64300051206*87403803^(15/19) 9870002026342036 a001 567451585/70711162*87403803^(5/19) 9870002026342036 a001 267914296/73681302247*87403803^(13/19) 9870002026342036 a001 233802911/64300051206*87403803^(13/19) 9870002026342036 a001 1836311903/505019158607*87403803^(13/19) 9870002026342036 a001 1602508992/440719107401*87403803^(13/19) 9870002026342036 a001 12586269025/3461452808002*87403803^(13/19) 9870002026342036 a001 10983760033/3020733700601*87403803^(13/19) 9870002026342036 a001 86267571272/23725150497407*87403803^(13/19) 9870002026342036 a001 53316291173/14662949395604*87403803^(13/19) 9870002026342036 a001 20365011074/5600748293801*87403803^(13/19) 9870002026342036 a001 7778742049/2139295485799*87403803^(13/19) 9870002026342036 a001 2971215073/817138163596*87403803^(13/19) 9870002026342036 a001 1134903170/312119004989*87403803^(13/19) 9870002026342036 a001 165580141/17393796001*87403803^(12/19) 9870002026342036 a001 433494437/119218851371*87403803^(13/19) 9870002026342036 a001 102334155/505019158607*87403803^(16/19) 9870002026342036 a001 433494437/141422324*87403803^(6/19) 9870002026342036 a001 1134903170/87403803*33385282^(1/4) 9870002026342036 a001 133957148/96450076809*87403803^(14/19) 9870002026342036 a001 701408733/505019158607*87403803^(14/19) 9870002026342036 a001 1836311903/1322157322203*87403803^(14/19) 9870002026342036 a001 14930208/10749853441*87403803^(14/19) 9870002026342036 a001 12586269025/9062201101803*87403803^(14/19) 9870002026342036 a001 32951280099/23725150497407*87403803^(14/19) 9870002026342036 a001 10182505537/7331474697802*87403803^(14/19) 9870002026342036 a001 7778742049/5600748293801*87403803^(14/19) 9870002026342036 a001 2971215073/2139295485799*87403803^(14/19) 9870002026342036 a001 567451585/408569081798*87403803^(14/19) 9870002026342036 a001 165580141/45537549124*87403803^(13/19) 9870002026342036 a001 43133785636/299537289*33385282^(1/9) 9870002026342036 a001 433494437/312119004989*87403803^(14/19) 9870002026342036 a001 34111385/440719107401*87403803^(17/19) 9870002026342036 a001 32264490531/224056801*33385282^(1/9) 9870002026342036 a001 591286729879/4106118243*33385282^(1/9) 9870002026342036 a001 774004377960/5374978561*33385282^(1/9) 9870002026342036 a001 4052739537881/28143753123*33385282^(1/9) 9870002026342036 a001 1515744265389/10525900321*33385282^(1/9) 9870002026342036 a001 3278735159921/22768774562*33385282^(1/9) 9870002026342036 a001 2504730781961/17393796001*33385282^(1/9) 9870002026342036 a001 956722026041/6643838879*33385282^(1/9) 9870002026342036 a001 53316291173/141422324*33385282^(1/18) 9870002026342036 a001 182717648081/1268860318*33385282^(1/9) 9870002026342036 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^16/Lucas(39) 9870002026342036 a001 31622993/70711162*23725150497407^(1/4) 9870002026342036 a001 4000054745112196/4052739537881 9870002026342036 a001 31622993/70711162*73681302247^(4/13) 9870002026342036 a001 31622993/70711162*10749957122^(1/3) 9870002026342036 a001 31622993/70711162*4106118243^(8/23) 9870002026342036 a001 31622993/70711162*1568397607^(4/11) 9870002026342036 a001 267914296/505019158607*87403803^(15/19) 9870002026342036 a001 139583862445/969323029*33385282^(1/9) 9870002026342036 a001 31622993/70711162*599074578^(8/21) 9870002026342036 a001 233802911/440719107401*87403803^(15/19) 9870002026342036 a001 1836311903/3461452808002*87403803^(15/19) 9870002026342036 a001 1602508992/3020733700601*87403803^(15/19) 9870002026342036 a001 12586269025/23725150497407*87403803^(15/19) 9870002026342036 a001 7778742049/14662949395604*87403803^(15/19) 9870002026342036 a001 2971215073/5600748293801*87403803^(15/19) 9870002026342036 a001 1134903170/2139295485799*87403803^(15/19) 9870002026342036 a001 165580141/119218851371*87403803^(14/19) 9870002026342036 a001 433494437/817138163596*87403803^(15/19) 9870002026342036 a001 6765/228826126*87403803^(18/19) 9870002026342036 a001 165580141/141422324*87403803^(7/19) 9870002026342036 a001 53316291173/370248451*33385282^(1/9) 9870002026342036 a001 267914296/1322157322203*87403803^(16/19) 9870002026342036 a001 31622993/70711162*228826127^(2/5) 9870002026342036 a001 701408733/3461452808002*87403803^(16/19) 9870002026342036 a001 1836311903/9062201101803*87403803^(16/19) 9870002026342036 a001 4807526976/23725150497407*87403803^(16/19) 9870002026342036 a001 2971215073/14662949395604*87403803^(16/19) 9870002026342036 a001 1134903170/5600748293801*87403803^(16/19) 9870002026342036 a001 165580141/312119004989*87403803^(15/19) 9870002026342036 a001 433494437/2139295485799*87403803^(16/19) 9870002026342036 a004 Fibonacci(40)*Lucas(38)/(1/2+sqrt(5)/2)^62 9870002026342036 a001 31622993/299537289*87403803^(1/2) 9870002026342036 a001 133957148/1730726404001*87403803^(17/19) 9870002026342037 a001 233802911/3020733700601*87403803^(17/19) 9870002026342037 a001 1836311903/23725150497407*87403803^(17/19) 9870002026342037 a001 567451585/7331474697802*87403803^(17/19) 9870002026342037 a001 165580141/817138163596*87403803^(16/19) 9870002026342037 a001 233802911/29134601*33385282^(5/18) 9870002026342037 a001 433494437/5600748293801*87403803^(17/19) 9870002026342037 a001 63245986/370248451*87403803^(9/19) 9870002026342037 a001 63245986/969323029*87403803^(10/19) 9870002026342037 a001 267914296/9062201101803*87403803^(18/19) 9870002026342037 a001 701408733/23725150497407*87403803^(18/19) 9870002026342037 a001 165580141/2139295485799*87403803^(17/19) 9870002026342037 a001 63246219/271444*33385282^(1/12) 9870002026342037 a001 433494437/14662949395604*87403803^(18/19) 9870002026342037 a001 31622993/1268860318*87403803^(11/19) 9870002026342037 a004 Fibonacci(42)*Lucas(38)/(1/2+sqrt(5)/2)^64 9870002026342037 a001 12586269025/228826127*33385282^(1/6) 9870002026342037 a004 Fibonacci(44)*Lucas(38)/(1/2+sqrt(5)/2)^66 9870002026342037 a004 Fibonacci(46)*Lucas(38)/(1/2+sqrt(5)/2)^68 9870002026342037 a004 Fibonacci(48)*Lucas(38)/(1/2+sqrt(5)/2)^70 9870002026342037 a004 Fibonacci(50)*Lucas(38)/(1/2+sqrt(5)/2)^72 9870002026342037 a004 Fibonacci(52)*Lucas(38)/(1/2+sqrt(5)/2)^74 9870002026342037 a004 Fibonacci(54)*Lucas(38)/(1/2+sqrt(5)/2)^76 9870002026342037 a004 Fibonacci(56)*Lucas(38)/(1/2+sqrt(5)/2)^78 9870002026342037 a004 Fibonacci(58)*Lucas(38)/(1/2+sqrt(5)/2)^80 9870002026342037 a004 Fibonacci(60)*Lucas(38)/(1/2+sqrt(5)/2)^82 9870002026342037 a004 Fibonacci(62)*Lucas(38)/(1/2+sqrt(5)/2)^84 9870002026342037 a004 Fibonacci(64)*Lucas(38)/(1/2+sqrt(5)/2)^86 9870002026342037 a004 Fibonacci(66)*Lucas(38)/(1/2+sqrt(5)/2)^88 9870002026342037 a004 Fibonacci(68)*Lucas(38)/(1/2+sqrt(5)/2)^90 9870002026342037 a004 Fibonacci(70)*Lucas(38)/(1/2+sqrt(5)/2)^92 9870002026342037 a004 Fibonacci(72)*Lucas(38)/(1/2+sqrt(5)/2)^94 9870002026342037 a004 Fibonacci(74)*Lucas(38)/(1/2+sqrt(5)/2)^96 9870002026342037 a004 Fibonacci(76)*Lucas(38)/(1/2+sqrt(5)/2)^98 9870002026342037 a004 Fibonacci(78)*Lucas(38)/(1/2+sqrt(5)/2)^100 9870002026342037 a004 Fibonacci(77)*Lucas(38)/(1/2+sqrt(5)/2)^99 9870002026342037 a001 2/39088169*(1/2+1/2*5^(1/2))^54 9870002026342037 a004 Fibonacci(75)*Lucas(38)/(1/2+sqrt(5)/2)^97 9870002026342037 a004 Fibonacci(73)*Lucas(38)/(1/2+sqrt(5)/2)^95 9870002026342037 a004 Fibonacci(71)*Lucas(38)/(1/2+sqrt(5)/2)^93 9870002026342037 a004 Fibonacci(69)*Lucas(38)/(1/2+sqrt(5)/2)^91 9870002026342037 a004 Fibonacci(67)*Lucas(38)/(1/2+sqrt(5)/2)^89 9870002026342037 a004 Fibonacci(65)*Lucas(38)/(1/2+sqrt(5)/2)^87 9870002026342037 a004 Fibonacci(63)*Lucas(38)/(1/2+sqrt(5)/2)^85 9870002026342037 a004 Fibonacci(61)*Lucas(38)/(1/2+sqrt(5)/2)^83 9870002026342037 a004 Fibonacci(59)*Lucas(38)/(1/2+sqrt(5)/2)^81 9870002026342037 a004 Fibonacci(57)*Lucas(38)/(1/2+sqrt(5)/2)^79 9870002026342037 a004 Fibonacci(55)*Lucas(38)/(1/2+sqrt(5)/2)^77 9870002026342037 a004 Fibonacci(53)*Lucas(38)/(1/2+sqrt(5)/2)^75 9870002026342037 a004 Fibonacci(51)*Lucas(38)/(1/2+sqrt(5)/2)^73 9870002026342037 a004 Fibonacci(49)*Lucas(38)/(1/2+sqrt(5)/2)^71 9870002026342037 a004 Fibonacci(47)*Lucas(38)/(1/2+sqrt(5)/2)^69 9870002026342037 a004 Fibonacci(45)*Lucas(38)/(1/2+sqrt(5)/2)^67 9870002026342037 a001 165580141/5600748293801*87403803^(18/19) 9870002026342037 a004 Fibonacci(43)*Lucas(38)/(1/2+sqrt(5)/2)^65 9870002026342037 a001 63245986/6643838879*87403803^(12/19) 9870002026342037 a001 39088169/87403803*33385282^(4/9) 9870002026342037 a004 Fibonacci(41)*Lucas(38)/(1/2+sqrt(5)/2)^63 9870002026342037 a001 63245986/17393796001*87403803^(13/19) 9870002026342037 a001 31622993/22768774562*87403803^(14/19) 9870002026342037 a001 10983760033/199691526*33385282^(1/6) 9870002026342037 a001 86267571272/1568397607*33385282^(1/6) 9870002026342037 a001 75283811239/1368706081*33385282^(1/6) 9870002026342037 a001 591286729879/10749957122*33385282^(1/6) 9870002026342037 a001 12585437040/228811001*33385282^(1/6) 9870002026342037 a001 4052739537881/73681302247*33385282^(1/6) 9870002026342037 a001 3536736619241/64300051206*33385282^(1/6) 9870002026342037 a001 6557470319842/119218851371*33385282^(1/6) 9870002026342037 a001 2504730781961/45537549124*33385282^(1/6) 9870002026342037 a001 956722026041/17393796001*33385282^(1/6) 9870002026342037 a001 365435296162/6643838879*33385282^(1/6) 9870002026342037 a001 10182505537/70711162*33385282^(1/9) 9870002026342037 a001 139583862445/2537720636*33385282^(1/6) 9870002026342037 a001 53316291173/969323029*33385282^(1/6) 9870002026342037 a001 63245986/119218851371*87403803^(15/19) 9870002026342037 a001 31622993/70711162*87403803^(8/19) 9870002026342037 a001 20365011074/370248451*33385282^(1/6) 9870002026342037 a001 63245986/312119004989*87403803^(16/19) 9870002026342037 a001 267914296/87403803*33385282^(1/3) 9870002026342037 a001 31622993/408569081798*87403803^(17/19) 9870002026342037 a001 63245986/2139295485799*87403803^(18/19) 9870002026342037 a001 102287808/4868641*33385282^(2/9) 9870002026342037 a004 Fibonacci(39)*Lucas(38)/(1/2+sqrt(5)/2)^61 9870002026342037 a001 1836311903/33385282*12752043^(3/17) 9870002026342037 a001 39088169/54018521*141422324^(5/13) 9870002026342037 a001 12586269025/599074578*33385282^(2/9) 9870002026342037 a001 34111385/29134601*33385282^(7/18) 9870002026342037 a001 32951280099/1568397607*33385282^(2/9) 9870002026342037 a001 86267571272/4106118243*33385282^(2/9) 9870002026342037 a001 225851433717/10749957122*33385282^(2/9) 9870002026342037 a001 591286729879/28143753123*33385282^(2/9) 9870002026342037 a001 1548008755920/73681302247*33385282^(2/9) 9870002026342037 a001 4052739537881/192900153618*33385282^(2/9) 9870002026342037 a001 225749145909/10745088481*33385282^(2/9) 9870002026342037 a001 6557470319842/312119004989*33385282^(2/9) 9870002026342037 a001 2504730781961/119218851371*33385282^(2/9) 9870002026342037 a001 956722026041/45537549124*33385282^(2/9) 9870002026342037 a001 365435296162/17393796001*33385282^(2/9) 9870002026342037 a001 139583862445/6643838879*33385282^(2/9) 9870002026342037 a001 53316291173/2537720636*33385282^(2/9) 9870002026342037 a001 7778742049/141422324*33385282^(1/6) 9870002026342037 a001 20365011074/969323029*33385282^(2/9) 9870002026342037 a001 2971215073/228826127*33385282^(1/4) 9870002026342037 a001 7778742049/370248451*33385282^(2/9) 9870002026342037 a001 39088169/54018521*2537720636^(1/3) 9870002026342037 a001 24157817/87403803*45537549124^(1/3) 9870002026342037 a001 39088169/54018521*45537549124^(5/17) 9870002026342037 a001 39088169/54018521*312119004989^(3/11) 9870002026342037 a001 944284833567073/956722026041 9870002026342037 a001 39088169/54018521*14662949395604^(5/21) 9870002026342037 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^17/Lucas(38) 9870002026342037 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^15/Lucas(37) 9870002026342037 a001 39088169/54018521*192900153618^(5/18) 9870002026342037 a001 39088169/54018521*28143753123^(3/10) 9870002026342037 a001 39088169/54018521*10749957122^(5/16) 9870002026342037 a001 39088169/54018521*599074578^(5/14) 9870002026342038 a001 39088169/54018521*228826127^(3/8) 9870002026342038 a001 7778742049/599074578*33385282^(1/4) 9870002026342038 a001 20365011074/1568397607*33385282^(1/4) 9870002026342038 a001 53316291173/4106118243*33385282^(1/4) 9870002026342038 a001 139583862445/10749957122*33385282^(1/4) 9870002026342038 a001 365435296162/28143753123*33385282^(1/4) 9870002026342038 a001 956722026041/73681302247*33385282^(1/4) 9870002026342038 a001 2504730781961/192900153618*33385282^(1/4) 9870002026342038 a001 10610209857723/817138163596*33385282^(1/4) 9870002026342038 a001 4052739537881/312119004989*33385282^(1/4) 9870002026342038 a001 1548008755920/119218851371*33385282^(1/4) 9870002026342038 a001 591286729879/45537549124*33385282^(1/4) 9870002026342038 a001 7787980473/599786069*33385282^(1/4) 9870002026342038 a001 86267571272/6643838879*33385282^(1/4) 9870002026342038 a001 32951280099/2537720636*33385282^(1/4) 9870002026342038 a001 12586269025/969323029*33385282^(1/4) 9870002026342038 a001 1836311903/228826127*33385282^(5/18) 9870002026342038 a001 10983760033/29134601*12752043^(1/17) 9870002026342038 a001 4807526976/370248451*33385282^(1/4) 9870002026342038 a001 267084832/33281921*33385282^(5/18) 9870002026342038 a001 12586269025/1568397607*33385282^(5/18) 9870002026342038 a001 10983760033/1368706081*33385282^(5/18) 9870002026342038 a001 43133785636/5374978561*33385282^(5/18) 9870002026342038 a001 75283811239/9381251041*33385282^(5/18) 9870002026342038 a001 591286729879/73681302247*33385282^(5/18) 9870002026342038 a001 86000486440/10716675201*33385282^(5/18) 9870002026342038 a001 4052739537881/505019158607*33385282^(5/18) 9870002026342038 a001 3536736619241/440719107401*33385282^(5/18) 9870002026342038 a001 3278735159921/408569081798*33385282^(5/18) 9870002026342038 a001 2504730781961/312119004989*33385282^(5/18) 9870002026342038 a001 956722026041/119218851371*33385282^(5/18) 9870002026342038 a001 182717648081/22768774562*33385282^(5/18) 9870002026342038 a001 139583862445/17393796001*33385282^(5/18) 9870002026342038 a001 53316291173/6643838879*33385282^(5/18) 9870002026342038 a001 10182505537/1268860318*33385282^(5/18) 9870002026342038 a001 2971215073/141422324*33385282^(2/9) 9870002026342038 a001 7778742049/969323029*33385282^(5/18) 9870002026342038 a001 2971215073/370248451*33385282^(5/18) 9870002026342038 a001 1836311903/141422324*33385282^(1/4) 9870002026342038 a001 701408733/228826127*33385282^(1/3) 9870002026342038 a004 Fibonacci(37)*Lucas(39)/(1/2+sqrt(5)/2)^60 9870002026342038 a001 63245986/87403803*33385282^(5/12) 9870002026342038 a001 1836311903/599074578*33385282^(1/3) 9870002026342038 a001 24157817/817138163596*141422324^(12/13) 9870002026342038 a001 39088169/228826127*33385282^(1/2) 9870002026342038 a001 686789568/224056801*33385282^(1/3) 9870002026342038 a001 12586269025/4106118243*33385282^(1/3) 9870002026342038 a001 32951280099/10749957122*33385282^(1/3) 9870002026342038 a001 86267571272/28143753123*33385282^(1/3) 9870002026342038 a001 32264490531/10525900321*33385282^(1/3) 9870002026342038 a001 591286729879/192900153618*33385282^(1/3) 9870002026342038 a001 1548008755920/505019158607*33385282^(1/3) 9870002026342038 a001 1515744265389/494493258286*33385282^(1/3) 9870002026342038 a001 2504730781961/817138163596*33385282^(1/3) 9870002026342038 a001 956722026041/312119004989*33385282^(1/3) 9870002026342038 a001 365435296162/119218851371*33385282^(1/3) 9870002026342038 a001 139583862445/45537549124*33385282^(1/3) 9870002026342038 a001 53316291173/17393796001*33385282^(1/3) 9870002026342038 a001 20365011074/6643838879*33385282^(1/3) 9870002026342038 a001 7778742049/2537720636*33385282^(1/3) 9870002026342038 a001 567451585/70711162*33385282^(5/18) 9870002026342038 a001 2971215073/969323029*33385282^(1/3) 9870002026342038 a001 24157817/192900153618*141422324^(11/13) 9870002026342038 a001 24157817/45537549124*141422324^(10/13) 9870002026342038 a001 1134903170/370248451*33385282^(1/3) 9870002026342038 a001 102334155/54018521*141422324^(1/3) 9870002026342038 a001 24157817/10749957122*141422324^(9/13) 9870002026342038 a001 24157817/6643838879*141422324^(2/3) 9870002026342038 a001 24157817/2537720636*141422324^(8/13) 9870002026342038 a001 24157817/599074578*141422324^(7/13) 9870002026342039 a001 24157817/228826127*817138163596^(1/3) 9870002026342039 a001 2472169789339635/2504730781961 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^19/Lucas(40) 9870002026342039 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^13/Lucas(37) 9870002026342039 a001 102334155/54018521*73681302247^(1/4) 9870002026342039 a001 267914296/228826127*33385282^(7/18) 9870002026342039 a001 701408733/54018521*141422324^(3/13) 9870002026342039 a001 165580141/54018521*141422324^(4/13) 9870002026342039 a001 2971215073/54018521*141422324^(2/13) 9870002026342039 a004 Fibonacci(37)*Lucas(41)/(1/2+sqrt(5)/2)^62 9870002026342039 a001 9227465/17393796001*20633239^(6/7) 9870002026342039 a001 12586269025/54018521*141422324^(1/13) 9870002026342039 a001 24157817/599074578*2537720636^(7/15) 9870002026342039 a001 24157817/599074578*17393796001^(3/7) 9870002026342039 a001 24157817/599074578*45537549124^(7/17) 9870002026342039 a001 267914296/54018521*312119004989^(1/5) 9870002026342039 a001 24157817/599074578*14662949395604^(1/3) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^21/Lucas(42) 9870002026342039 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^11/Lucas(37) 9870002026342039 a001 24157817/599074578*192900153618^(7/18) 9870002026342039 a001 24157817/599074578*10749957122^(7/16) 9870002026342039 a001 267914296/54018521*1568397607^(1/4) 9870002026342039 a001 24157817/599074578*599074578^(1/2) 9870002026342039 a004 Fibonacci(37)*Lucas(43)/(1/2+sqrt(5)/2)^64 9870002026342039 a001 701408733/54018521*2537720636^(1/5) 9870002026342039 a001 701408733/54018521*45537549124^(3/17) 9870002026342039 a001 701408733/54018521*817138163596^(3/19) 9870002026342039 a001 701408733/54018521*14662949395604^(1/7) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^23/Lucas(44) 9870002026342039 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^9/Lucas(37) 9870002026342039 a001 701408733/54018521*192900153618^(1/6) 9870002026342039 a001 701408733/54018521*10749957122^(3/16) 9870002026342039 a001 24157817/1568397607*4106118243^(1/2) 9870002026342039 a004 Fibonacci(37)*Lucas(45)/(1/2+sqrt(5)/2)^66 9870002026342039 a001 24157817/4106118243*2537720636^(5/9) 9870002026342039 a001 24157817/14662949395604*2537720636^(14/15) 9870002026342039 a001 24157817/5600748293801*2537720636^(8/9) 9870002026342039 a001 24157817/3461452808002*2537720636^(13/15) 9870002026342039 a001 24157817/817138163596*2537720636^(4/5) 9870002026342039 a001 24157817/505019158607*2537720636^(7/9) 9870002026342039 a001 24157817/192900153618*2537720636^(11/15) 9870002026342039 a001 24157817/45537549124*2537720636^(2/3) 9870002026342039 a001 24157817/10749957122*2537720636^(3/5) 9870002026342039 a001 86267571272/228826127*12752043^(1/17) 9870002026342039 a001 1836311903/54018521*17393796001^(1/7) 9870002026342039 a001 24157817/4106118243*312119004989^(5/11) 9870002026342039 a001 1836311903/54018521*14662949395604^(1/9) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^25/Lucas(46) 9870002026342039 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^7/Lucas(37) 9870002026342039 a001 24157817/4106118243*3461452808002^(5/12) 9870002026342039 a001 24157817/4106118243*28143753123^(1/2) 9870002026342039 a001 4807526976/54018521*2537720636^(1/9) 9870002026342039 a004 Fibonacci(37)*Lucas(47)/(1/2+sqrt(5)/2)^68 9870002026342039 a001 12586269025/54018521*2537720636^(1/15) 9870002026342039 a001 24157817/10749957122*45537549124^(9/17) 9870002026342039 a001 4807526976/54018521*312119004989^(1/11) 9870002026342039 a001 24157817/10749957122*817138163596^(9/19) 9870002026342039 a001 24157817/10749957122*14662949395604^(3/7) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^27/Lucas(48) 9870002026342039 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^5/Lucas(37) 9870002026342039 a001 24157817/10749957122*192900153618^(1/2) 9870002026342039 a001 4807526976/54018521*28143753123^(1/10) 9870002026342039 a001 24157817/10749957122*10749957122^(9/16) 9870002026342039 a004 Fibonacci(37)*Lucas(49)/(1/2+sqrt(5)/2)^70 9870002026342039 a001 24157817/14662949395604*17393796001^(6/7) 9870002026342039 a001 24157817/505019158607*17393796001^(5/7) 9870002026342039 a001 12586269025/54018521*45537549124^(1/17) 9870002026342039 a001 12586269025/54018521*14662949395604^(1/21) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^29/Lucas(50) 9870002026342039 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^3/Lucas(37) 9870002026342039 a001 12586269025/54018521*192900153618^(1/18) 9870002026342039 a001 12586269025/54018521*10749957122^(1/16) 9870002026342039 a004 Fibonacci(37)*Lucas(51)/(1/2+sqrt(5)/2)^72 9870002026342039 a001 24157817/14662949395604*45537549124^(14/17) 9870002026342039 a001 24157817/3461452808002*45537549124^(13/17) 9870002026342039 a001 24157817/192900153618*45537549124^(11/17) 9870002026342039 a001 24157817/817138163596*45537549124^(12/17) 9870002026342039 a001 24157817/312119004989*45537549124^(2/3) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^31/Lucas(52) 9870002026342039 a004 Fibonacci(52)*(1/2+sqrt(5)/2)/Lucas(37) 9870002026342039 a001 24157817/73681302247*9062201101803^(1/2) 9870002026342039 a004 Fibonacci(37)*Lucas(53)/(1/2+sqrt(5)/2)^74 9870002026342039 a001 24157817/192900153618*312119004989^(3/5) 9870002026342039 a001 24157817/192900153618*817138163596^(11/19) 9870002026342039 a001 24157817/192900153618*14662949395604^(11/21) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^33/Lucas(54) 9870002026342039 a004 Fibonacci(54)/Lucas(37)/(1/2+sqrt(5)/2) 9870002026342039 a001 24157817/505019158607*312119004989^(7/11) 9870002026342039 a001 24157817/192900153618*192900153618^(11/18) 9870002026342039 a004 Fibonacci(37)*Lucas(55)/(1/2+sqrt(5)/2)^76 9870002026342039 a001 24157817/5600748293801*312119004989^(8/11) 9870002026342039 a001 24157817/505019158607*14662949395604^(5/9) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^35/Lucas(56) 9870002026342039 a004 Fibonacci(56)/Lucas(37)/(1/2+sqrt(5)/2)^3 9870002026342039 a004 Fibonacci(37)*Lucas(57)/(1/2+sqrt(5)/2)^78 9870002026342039 a001 24157817/505019158607*505019158607^(5/8) 9870002026342039 a001 24157817/14662949395604*817138163596^(14/19) 9870002026342039 a001 24157817/2139295485799*817138163596^(2/3) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^37/Lucas(58) 9870002026342039 a004 Fibonacci(58)/Lucas(37)/(1/2+sqrt(5)/2)^5 9870002026342039 a004 Fibonacci(37)*Lucas(59)/(1/2+sqrt(5)/2)^80 9870002026342039 a001 24157817/3461452808002*14662949395604^(13/21) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^39/Lucas(60) 9870002026342039 a004 Fibonacci(60)/Lucas(37)/(1/2+sqrt(5)/2)^7 9870002026342039 a004 Fibonacci(37)*Lucas(61)/(1/2+sqrt(5)/2)^82 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^41/Lucas(62) 9870002026342039 a004 Fibonacci(62)/Lucas(37)/(1/2+sqrt(5)/2)^9 9870002026342039 a004 Fibonacci(37)*Lucas(63)/(1/2+sqrt(5)/2)^84 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^43/Lucas(64) 9870002026342039 a004 Fibonacci(64)/Lucas(37)/(1/2+sqrt(5)/2)^11 9870002026342039 a004 Fibonacci(37)*Lucas(65)/(1/2+sqrt(5)/2)^86 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^45/Lucas(66) 9870002026342039 a004 Fibonacci(66)/Lucas(37)/(1/2+sqrt(5)/2)^13 9870002026342039 a004 Fibonacci(37)*Lucas(67)/(1/2+sqrt(5)/2)^88 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^47/Lucas(68) 9870002026342039 a004 Fibonacci(68)/Lucas(37)/(1/2+sqrt(5)/2)^15 9870002026342039 a004 Fibonacci(37)*Lucas(69)/(1/2+sqrt(5)/2)^90 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^49/Lucas(70) 9870002026342039 a004 Fibonacci(70)/Lucas(37)/(1/2+sqrt(5)/2)^17 9870002026342039 a004 Fibonacci(37)*Lucas(71)/(1/2+sqrt(5)/2)^92 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^51/Lucas(72) 9870002026342039 a004 Fibonacci(72)/Lucas(37)/(1/2+sqrt(5)/2)^19 9870002026342039 a004 Fibonacci(37)*Lucas(73)/(1/2+sqrt(5)/2)^94 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^53/Lucas(74) 9870002026342039 a004 Fibonacci(37)*Lucas(75)/(1/2+sqrt(5)/2)^96 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^55/Lucas(76) 9870002026342039 a004 Fibonacci(37)*Lucas(77)/(1/2+sqrt(5)/2)^98 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^57/Lucas(78) 9870002026342039 a004 Fibonacci(37)*Lucas(79)/(1/2+sqrt(5)/2)^100 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^59/Lucas(80) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^61/Lucas(82) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^63/Lucas(84) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^65/Lucas(86) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^67/Lucas(88) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^69/Lucas(90) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^71/Lucas(92) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^73/Lucas(94) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^75/Lucas(96) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^77/Lucas(98) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^79/Lucas(100) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^78/Lucas(99) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^76/Lucas(97) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^74/Lucas(95) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^72/Lucas(93) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^70/Lucas(91) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^68/Lucas(89) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^66/Lucas(87) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^64/Lucas(85) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^62/Lucas(83) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^60/Lucas(81) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^58/Lucas(79) 9870002026342039 a004 Fibonacci(37)*Lucas(78)/(1/2+sqrt(5)/2)^99 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^56/Lucas(77) 9870002026342039 a004 Fibonacci(37)*Lucas(76)/(1/2+sqrt(5)/2)^97 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^54/Lucas(75) 9870002026342039 a004 Fibonacci(76)/Lucas(37)/(1/2+sqrt(5)/2)^23 9870002026342039 a004 Fibonacci(78)/Lucas(37)/(1/2+sqrt(5)/2)^25 9870002026342039 a004 Fibonacci(80)/Lucas(37)/(1/2+sqrt(5)/2)^27 9870002026342039 a004 Fibonacci(82)/Lucas(37)/(1/2+sqrt(5)/2)^29 9870002026342039 a004 Fibonacci(84)/Lucas(37)/(1/2+sqrt(5)/2)^31 9870002026342039 a004 Fibonacci(86)/Lucas(37)/(1/2+sqrt(5)/2)^33 9870002026342039 a004 Fibonacci(88)/Lucas(37)/(1/2+sqrt(5)/2)^35 9870002026342039 a004 Fibonacci(90)/Lucas(37)/(1/2+sqrt(5)/2)^37 9870002026342039 a004 Fibonacci(92)/Lucas(37)/(1/2+sqrt(5)/2)^39 9870002026342039 a004 Fibonacci(94)/Lucas(37)/(1/2+sqrt(5)/2)^41 9870002026342039 a004 Fibonacci(96)/Lucas(37)/(1/2+sqrt(5)/2)^43 9870002026342039 a004 Fibonacci(98)/Lucas(37)/(1/2+sqrt(5)/2)^45 9870002026342039 a004 Fibonacci(100)/Lucas(37)/(1/2+sqrt(5)/2)^47 9870002026342039 a004 Fibonacci(37)*Lucas(74)/(1/2+sqrt(5)/2)^95 9870002026342039 a004 Fibonacci(99)/Lucas(37)/(1/2+sqrt(5)/2)^46 9870002026342039 a004 Fibonacci(97)/Lucas(37)/(1/2+sqrt(5)/2)^44 9870002026342039 a004 Fibonacci(95)/Lucas(37)/(1/2+sqrt(5)/2)^42 9870002026342039 a004 Fibonacci(93)/Lucas(37)/(1/2+sqrt(5)/2)^40 9870002026342039 a004 Fibonacci(91)/Lucas(37)/(1/2+sqrt(5)/2)^38 9870002026342039 a004 Fibonacci(89)/Lucas(37)/(1/2+sqrt(5)/2)^36 9870002026342039 a004 Fibonacci(87)/Lucas(37)/(1/2+sqrt(5)/2)^34 9870002026342039 a004 Fibonacci(85)/Lucas(37)/(1/2+sqrt(5)/2)^32 9870002026342039 a004 Fibonacci(83)/Lucas(37)/(1/2+sqrt(5)/2)^30 9870002026342039 a004 Fibonacci(81)/Lucas(37)/(1/2+sqrt(5)/2)^28 9870002026342039 a004 Fibonacci(79)/Lucas(37)/(1/2+sqrt(5)/2)^26 9870002026342039 a004 Fibonacci(77)/Lucas(37)/(1/2+sqrt(5)/2)^24 9870002026342039 a004 Fibonacci(75)/Lucas(37)/(1/2+sqrt(5)/2)^22 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^52/Lucas(73) 9870002026342039 a004 Fibonacci(73)/Lucas(37)/(1/2+sqrt(5)/2)^20 9870002026342039 a004 Fibonacci(37)*Lucas(72)/(1/2+sqrt(5)/2)^93 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^50/Lucas(71) 9870002026342039 a004 Fibonacci(71)/Lucas(37)/(1/2+sqrt(5)/2)^18 9870002026342039 a004 Fibonacci(37)*Lucas(70)/(1/2+sqrt(5)/2)^91 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^48/Lucas(69) 9870002026342039 a004 Fibonacci(69)/Lucas(37)/(1/2+sqrt(5)/2)^16 9870002026342039 a004 Fibonacci(37)*Lucas(68)/(1/2+sqrt(5)/2)^89 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^46/Lucas(67) 9870002026342039 a004 Fibonacci(67)/Lucas(37)/(1/2+sqrt(5)/2)^14 9870002026342039 a004 Fibonacci(37)*Lucas(66)/(1/2+sqrt(5)/2)^87 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^44/Lucas(65) 9870002026342039 a004 Fibonacci(65)/Lucas(37)/(1/2+sqrt(5)/2)^12 9870002026342039 a001 24157817/14662949395604*14662949395604^(2/3) 9870002026342039 a004 Fibonacci(37)*Lucas(64)/(1/2+sqrt(5)/2)^85 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^42/Lucas(63) 9870002026342039 a004 Fibonacci(63)/Lucas(37)/(1/2+sqrt(5)/2)^10 9870002026342039 a004 Fibonacci(37)*Lucas(62)/(1/2+sqrt(5)/2)^83 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^40/Lucas(61) 9870002026342039 a004 Fibonacci(61)/Lucas(37)/(1/2+sqrt(5)/2)^8 9870002026342039 a001 24157817/5600748293801*23725150497407^(5/8) 9870002026342039 a004 Fibonacci(37)*Lucas(60)/(1/2+sqrt(5)/2)^81 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^38/Lucas(59) 9870002026342039 a004 Fibonacci(59)/Lucas(37)/(1/2+sqrt(5)/2)^6 9870002026342039 a004 Fibonacci(37)*Lucas(58)/(1/2+sqrt(5)/2)^79 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^36/Lucas(57) 9870002026342039 a004 Fibonacci(57)/Lucas(37)/(1/2+sqrt(5)/2)^4 9870002026342039 a001 24157817/14662949395604*505019158607^(3/4) 9870002026342039 a004 Fibonacci(37)*Lucas(56)/(1/2+sqrt(5)/2)^77 9870002026342039 a001 24157817/817138163596*505019158607^(9/14) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^34/Lucas(55) 9870002026342039 a004 Fibonacci(55)/Lucas(37)/(1/2+sqrt(5)/2)^2 9870002026342039 a001 24157817/3461452808002*192900153618^(13/18) 9870002026342039 a001 24157817/14662949395604*192900153618^(7/9) 9870002026342039 a004 Fibonacci(37)*Lucas(54)/(1/2+sqrt(5)/2)^75 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^32/Lucas(53) 9870002026342039 a006 5^(1/2)*Fibonacci(53)/Lucas(37)/sqrt(5) 9870002026342039 a001 24157817/119218851371*23725150497407^(1/2) 9870002026342039 a001 24157817/119218851371*505019158607^(4/7) 9870002026342039 a001 24157817/817138163596*73681302247^(9/13) 9870002026342039 a001 24157817/3461452808002*73681302247^(3/4) 9870002026342039 a001 24157817/5600748293801*73681302247^(10/13) 9870002026342039 a001 24157817/119218851371*73681302247^(8/13) 9870002026342039 a004 Fibonacci(37)*Lucas(52)/(1/2+sqrt(5)/2)^73 9870002026342039 a001 24157817/45537549124*45537549124^(10/17) 9870002026342039 a001 24157817/45537549124*312119004989^(6/11) 9870002026342039 a001 24157817/45537549124*14662949395604^(10/21) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^30/Lucas(51) 9870002026342039 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^2/Lucas(37) 9870002026342039 a001 24157817/45537549124*192900153618^(5/9) 9870002026342039 a001 20365011074/54018521*10749957122^(1/24) 9870002026342039 a001 24157817/505019158607*28143753123^(7/10) 9870002026342039 a001 24157817/5600748293801*28143753123^(4/5) 9870002026342039 a001 24157817/45537549124*28143753123^(3/5) 9870002026342039 a004 Fibonacci(37)*Lucas(50)/(1/2+sqrt(5)/2)^71 9870002026342039 a001 24157817/17393796001*17393796001^(4/7) 9870002026342039 a001 2971215073/54018521*2537720636^(2/15) 9870002026342039 a001 20365011074/54018521*4106118243^(1/23) 9870002026342039 a001 24157817/17393796001*14662949395604^(4/9) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^28/Lucas(49) 9870002026342039 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^4/Lucas(37) 9870002026342039 a001 24157817/17393796001*505019158607^(1/2) 9870002026342039 a001 7778742049/54018521*73681302247^(1/13) 9870002026342039 a001 24157817/17393796001*73681302247^(7/13) 9870002026342039 a001 7778742049/54018521*10749957122^(1/12) 9870002026342039 a001 24157817/119218851371*10749957122^(2/3) 9870002026342039 a001 24157817/45537549124*10749957122^(5/8) 9870002026342039 a001 24157817/192900153618*10749957122^(11/16) 9870002026342039 a001 24157817/312119004989*10749957122^(17/24) 9870002026342039 a001 24157817/817138163596*10749957122^(3/4) 9870002026342039 a001 24157817/2139295485799*10749957122^(19/24) 9870002026342039 a001 24157817/3461452808002*10749957122^(13/16) 9870002026342039 a001 24157817/5600748293801*10749957122^(5/6) 9870002026342039 a001 24157817/14662949395604*10749957122^(7/8) 9870002026342039 a001 24157817/17393796001*10749957122^(7/12) 9870002026342039 a001 7778742049/54018521*4106118243^(2/23) 9870002026342039 a004 Fibonacci(37)*Lucas(48)/(1/2+sqrt(5)/2)^69 9870002026342039 a001 20365011074/54018521*1568397607^(1/22) 9870002026342039 a001 2971215073/54018521*45537549124^(2/17) 9870002026342039 a001 2971215073/54018521*14662949395604^(2/21) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^26/Lucas(47) 9870002026342039 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^6/Lucas(37) 9870002026342039 a001 24157817/6643838879*73681302247^(1/2) 9870002026342039 a001 2971215073/54018521*10749957122^(1/8) 9870002026342039 a001 24157817/6643838879*10749957122^(13/24) 9870002026342039 a001 2971215073/54018521*4106118243^(3/23) 9870002026342039 a001 24157817/45537549124*4106118243^(15/23) 9870002026342039 a001 24157817/17393796001*4106118243^(14/23) 9870002026342039 a001 7778742049/54018521*1568397607^(1/11) 9870002026342039 a001 24157817/119218851371*4106118243^(16/23) 9870002026342039 a001 24157817/312119004989*4106118243^(17/23) 9870002026342039 a001 24157817/817138163596*4106118243^(18/23) 9870002026342039 a001 24157817/2139295485799*4106118243^(19/23) 9870002026342039 a001 24157817/5600748293801*4106118243^(20/23) 9870002026342039 a001 24157817/14662949395604*4106118243^(21/23) 9870002026342039 a001 24157817/6643838879*4106118243^(13/23) 9870002026342039 a004 Fibonacci(37)*Lucas(46)/(1/2+sqrt(5)/2)^67 9870002026342039 a001 24157817/2537720636*2537720636^(8/15) 9870002026342039 a001 2971215073/54018521*1568397607^(3/22) 9870002026342039 a001 20365011074/54018521*599074578^(1/21) 9870002026342039 a001 24157817/2537720636*45537549124^(8/17) 9870002026342039 a001 24157817/2537720636*14662949395604^(8/21) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^24/Lucas(45) 9870002026342039 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^8/Lucas(37) 9870002026342039 a001 1134903170/54018521*23725150497407^(1/8) 9870002026342039 a001 1134903170/54018521*505019158607^(1/7) 9870002026342039 a001 24157817/2537720636*192900153618^(4/9) 9870002026342039 a001 1134903170/54018521*73681302247^(2/13) 9870002026342039 a001 24157817/2537720636*73681302247^(6/13) 9870002026342039 a001 1134903170/54018521*10749957122^(1/6) 9870002026342039 a001 24157817/2537720636*10749957122^(1/2) 9870002026342039 a001 1134903170/54018521*4106118243^(4/23) 9870002026342039 a001 24157817/2537720636*4106118243^(12/23) 9870002026342039 a001 701408733/54018521*599074578^(3/14) 9870002026342039 a001 12586269025/54018521*599074578^(1/14) 9870002026342039 a001 1134903170/54018521*1568397607^(2/11) 9870002026342039 a001 24157817/17393796001*1568397607^(7/11) 9870002026342039 a001 24157817/6643838879*1568397607^(13/22) 9870002026342039 a001 7778742049/54018521*599074578^(2/21) 9870002026342039 a001 24157817/45537549124*1568397607^(15/22) 9870002026342039 a001 24157817/119218851371*1568397607^(8/11) 9870002026342039 a001 24157817/192900153618*1568397607^(3/4) 9870002026342039 a001 24157817/312119004989*1568397607^(17/22) 9870002026342039 a001 24157817/817138163596*1568397607^(9/11) 9870002026342039 a001 24157817/2139295485799*1568397607^(19/22) 9870002026342039 a001 24157817/5600748293801*1568397607^(10/11) 9870002026342039 a001 24157817/2537720636*1568397607^(6/11) 9870002026342039 a001 24157817/14662949395604*1568397607^(21/22) 9870002026342039 a001 1836311903/54018521*599074578^(1/6) 9870002026342039 a004 Fibonacci(37)*Lucas(44)/(1/2+sqrt(5)/2)^65 9870002026342039 a001 2971215073/54018521*599074578^(1/7) 9870002026342039 a001 1134903170/54018521*599074578^(4/21) 9870002026342039 a001 20365011074/54018521*228826127^(1/20) 9870002026342039 a001 433494437/54018521*2537720636^(2/9) 9870002026342039 a001 24157817/969323029*312119004989^(2/5) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^22/Lucas(43) 9870002026342039 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^10/Lucas(37) 9870002026342039 a001 10472279279564029/10610209857723 9870002026342039 a001 433494437/54018521*28143753123^(1/5) 9870002026342039 a001 433494437/54018521*10749957122^(5/24) 9870002026342039 a001 24157817/969323029*10749957122^(11/24) 9870002026342039 a001 433494437/54018521*4106118243^(5/23) 9870002026342039 a001 24157817/969323029*4106118243^(11/23) 9870002026342039 a001 433494437/54018521*1568397607^(5/22) 9870002026342039 a001 24157817/969323029*1568397607^(1/2) 9870002026342039 a001 433494437/54018521*599074578^(5/21) 9870002026342039 a001 24157817/2537720636*599074578^(4/7) 9870002026342039 a001 24157817/6643838879*599074578^(13/21) 9870002026342039 a001 24157817/10749957122*599074578^(9/14) 9870002026342039 a001 24157817/17393796001*599074578^(2/3) 9870002026342039 a001 7778742049/54018521*228826127^(1/10) 9870002026342039 a001 24157817/45537549124*599074578^(5/7) 9870002026342039 a001 24157817/119218851371*599074578^(16/21) 9870002026342039 a001 24157817/192900153618*599074578^(11/14) 9870002026342039 a001 24157817/312119004989*599074578^(17/21) 9870002026342039 a001 24157817/505019158607*599074578^(5/6) 9870002026342039 a001 4807526976/54018521*228826127^(1/8) 9870002026342039 a001 24157817/817138163596*599074578^(6/7) 9870002026342039 a001 24157817/2139295485799*599074578^(19/21) 9870002026342039 a001 24157817/969323029*599074578^(11/21) 9870002026342039 a001 24157817/3461452808002*599074578^(13/14) 9870002026342039 a001 24157817/5600748293801*599074578^(20/21) 9870002026342039 a004 Fibonacci(37)*Lucas(42)/(1/2+sqrt(5)/2)^63 9870002026342039 a001 2971215073/54018521*228826127^(3/20) 9870002026342039 a001 233802911/199691526*33385282^(7/18) 9870002026342039 a001 1134903170/54018521*228826127^(1/5) 9870002026342039 a001 1836311903/1568397607*33385282^(7/18) 9870002026342039 a001 433494437/54018521*228826127^(1/4) 9870002026342039 a001 1602508992/1368706081*33385282^(7/18) 9870002026342039 a001 12586269025/10749957122*33385282^(7/18) 9870002026342039 a001 10983760033/9381251041*33385282^(7/18) 9870002026342039 a001 86267571272/73681302247*33385282^(7/18) 9870002026342039 a001 75283811239/64300051206*33385282^(7/18) 9870002026342039 a001 2504730781961/2139295485799*33385282^(7/18) 9870002026342039 a001 365435296162/312119004989*33385282^(7/18) 9870002026342039 a001 139583862445/119218851371*33385282^(7/18) 9870002026342039 a001 53316291173/45537549124*33385282^(7/18) 9870002026342039 a001 20365011074/17393796001*33385282^(7/18) 9870002026342039 a001 7778742049/6643838879*33385282^(7/18) 9870002026342039 a001 2971215073/2537720636*33385282^(7/18) 9870002026342039 a001 20365011074/54018521*87403803^(1/19) 9870002026342039 a001 24157817/370248451*2537720636^(4/9) 9870002026342039 a001 165580141/54018521*2537720636^(4/15) 9870002026342039 a001 165580141/54018521*45537549124^(4/17) 9870002026342039 a001 165580141/54018521*817138163596^(4/19) 9870002026342039 a001 165580141/54018521*14662949395604^(4/21) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^20/Lucas(41) 9870002026342039 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^12/Lucas(37) 9870002026342039 a001 24157817/370248451*23725150497407^(5/16) 9870002026342039 a001 24157817/370248451*505019158607^(5/14) 9870002026342039 a001 165580141/54018521*192900153618^(2/9) 9870002026342039 a001 165580141/54018521*73681302247^(3/13) 9870002026342039 a001 24157817/370248451*73681302247^(5/13) 9870002026342039 a001 24157817/370248451*28143753123^(2/5) 9870002026342039 a001 165580141/54018521*10749957122^(1/4) 9870002026342039 a001 24157817/370248451*10749957122^(5/12) 9870002026342039 a001 165580141/54018521*4106118243^(6/23) 9870002026342039 a001 24157817/370248451*4106118243^(10/23) 9870002026342039 a001 165580141/54018521*1568397607^(3/11) 9870002026342039 a001 433494437/141422324*33385282^(1/3) 9870002026342039 a001 1134903170/969323029*33385282^(7/18) 9870002026342039 a001 24157817/370248451*1568397607^(5/11) 9870002026342039 a001 165580141/54018521*599074578^(2/7) 9870002026342039 a001 24157817/370248451*599074578^(10/21) 9870002026342039 a001 24157817/969323029*228826127^(11/20) 9870002026342039 a001 24157817/2537720636*228826127^(3/5) 9870002026342039 a001 24157817/4106118243*228826127^(5/8) 9870002026342039 a001 24157817/6643838879*228826127^(13/20) 9870002026342039 a001 165580141/54018521*228826127^(3/10) 9870002026342039 a001 24157817/17393796001*228826127^(7/10) 9870002026342039 a001 7778742049/54018521*87403803^(2/19) 9870002026342039 a001 24157817/45537549124*228826127^(3/4) 9870002026342039 a001 433494437/370248451*33385282^(7/18) 9870002026342039 a001 24157817/119218851371*228826127^(4/5) 9870002026342039 a001 24157817/312119004989*228826127^(17/20) 9870002026342039 a001 267913919/710646*12752043^(1/17) 9870002026342039 a001 24157817/505019158607*228826127^(7/8) 9870002026342039 a001 24157817/370248451*228826127^(1/2) 9870002026342039 a001 24157817/817138163596*228826127^(9/10) 9870002026342039 a001 102334155/228826127*33385282^(4/9) 9870002026342039 a001 24157817/2139295485799*228826127^(19/20) 9870002026342039 a001 591286729879/1568397607*12752043^(1/17) 9870002026342039 a001 516002918640/1368706081*12752043^(1/17) 9870002026342039 a001 4052739537881/10749957122*12752043^(1/17) 9870002026342039 a001 3536736619241/9381251041*12752043^(1/17) 9870002026342039 a001 6557470319842/17393796001*12752043^(1/17) 9870002026342039 a001 2504730781961/6643838879*12752043^(1/17) 9870002026342039 a004 Fibonacci(37)*Lucas(40)/(1/2+sqrt(5)/2)^61 9870002026342039 a001 956722026041/2537720636*12752043^(1/17) 9870002026342039 a001 165580141/228826127*33385282^(5/12) 9870002026342039 a001 365435296162/969323029*12752043^(1/17) 9870002026342039 a001 2971215073/54018521*87403803^(3/19) 9870002026342039 a001 39088169/599074578*33385282^(5/9) 9870002026342039 a001 139583862445/370248451*12752043^(1/17) 9870002026342039 a001 24157817/141422324*141422324^(6/13) 9870002026342039 a001 1134903170/54018521*87403803^(4/19) 9870002026342039 a001 433494437/599074578*33385282^(5/12) 9870002026342039 a001 1134903170/1568397607*33385282^(5/12) 9870002026342039 a001 2971215073/4106118243*33385282^(5/12) 9870002026342039 a001 7778742049/10749957122*33385282^(5/12) 9870002026342039 a001 20365011074/28143753123*33385282^(5/12) 9870002026342039 a001 53316291173/73681302247*33385282^(5/12) 9870002026342039 a001 139583862445/192900153618*33385282^(5/12) 9870002026342039 a001 365435296162/505019158607*33385282^(5/12) 9870002026342039 a001 10610209857723/14662949395604*33385282^(5/12) 9870002026342039 a001 591286729879/817138163596*33385282^(5/12) 9870002026342039 a001 225851433717/312119004989*33385282^(5/12) 9870002026342039 a001 86267571272/119218851371*33385282^(5/12) 9870002026342039 a001 32951280099/45537549124*33385282^(5/12) 9870002026342039 a001 12586269025/17393796001*33385282^(5/12) 9870002026342039 a001 4807526976/6643838879*33385282^(5/12) 9870002026342039 a001 1836311903/2537720636*33385282^(5/12) 9870002026342039 a001 701408733/969323029*33385282^(5/12) 9870002026342039 a001 433494437/54018521*87403803^(5/19) 9870002026342039 a001 267914296/370248451*33385282^(5/12) 9870002026342039 a001 24157817/228826127*87403803^(1/2) 9870002026342039 a001 165580141/54018521*87403803^(6/19) 9870002026342039 a001 20365011074/54018521*33385282^(1/18) 9870002026342039 a001 24157817/141422324*2537720636^(2/5) 9870002026342039 a001 63245986/54018521*17393796001^(2/7) 9870002026342039 a001 24157817/141422324*45537549124^(6/17) 9870002026342039 a001 24157817/141422324*14662949395604^(2/7) 9870002026342039 a001 63245986/54018521*14662949395604^(2/9) 9870002026342039 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^18/Lucas(39) 9870002026342039 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^14/Lucas(37) 9870002026342039 a001 763942477886281/774004377960 9870002026342039 a001 63245986/54018521*505019158607^(1/4) 9870002026342039 a001 24157817/141422324*192900153618^(1/3) 9870002026342039 a001 63245986/54018521*10749957122^(7/24) 9870002026342039 a001 24157817/141422324*10749957122^(3/8) 9870002026342039 a001 63245986/54018521*4106118243^(7/23) 9870002026342039 a001 24157817/141422324*4106118243^(9/23) 9870002026342039 a001 63245986/54018521*1568397607^(7/22) 9870002026342039 a001 24157817/141422324*1568397607^(9/22) 9870002026342039 a001 133957148/299537289*33385282^(4/9) 9870002026342039 a001 39088169/969323029*33385282^(7/12) 9870002026342039 a001 63245986/54018521*599074578^(1/3) 9870002026342039 a001 24157817/141422324*599074578^(3/7) 9870002026342039 a001 701408733/1568397607*33385282^(4/9) 9870002026342039 a001 1836311903/4106118243*33385282^(4/9) 9870002026342039 a001 2403763488/5374978561*33385282^(4/9) 9870002026342039 a001 12586269025/28143753123*33385282^(4/9) 9870002026342039 a001 32951280099/73681302247*33385282^(4/9) 9870002026342039 a001 43133785636/96450076809*33385282^(4/9) 9870002026342039 a001 225851433717/505019158607*33385282^(4/9) 9870002026342039 a001 591286729879/1322157322203*33385282^(4/9) 9870002026342039 a001 10610209857723/23725150497407*33385282^(4/9) 9870002026342039 a001 182717648081/408569081798*33385282^(4/9) 9870002026342039 a001 139583862445/312119004989*33385282^(4/9) 9870002026342039 a001 53316291173/119218851371*33385282^(4/9) 9870002026342039 a001 10182505537/22768774562*33385282^(4/9) 9870002026342039 a001 7778742049/17393796001*33385282^(4/9) 9870002026342039 a001 2971215073/6643838879*33385282^(4/9) 9870002026342039 a001 567451585/1268860318*33385282^(4/9) 9870002026342039 a001 63245986/54018521*228826127^(7/20) 9870002026342039 a001 433494437/969323029*33385282^(4/9) 9870002026342039 a001 24157817/141422324*228826127^(9/20) 9870002026342039 a001 102334155/141422324*33385282^(5/12) 9870002026342039 a001 165580141/141422324*33385282^(7/18) 9870002026342039 a001 53316291173/141422324*12752043^(1/17) 9870002026342039 a001 165580141/370248451*33385282^(4/9) 9870002026342039 a001 39088169/1568397607*33385282^(11/18) 9870002026342039 a001 12586269025/54018521*33385282^(1/12) 9870002026342039 a001 24157817/370248451*87403803^(10/19) 9870002026342040 a001 24157817/969323029*87403803^(11/19) 9870002026342040 a001 24157817/2537720636*87403803^(12/19) 9870002026342040 a001 34111385/199691526*33385282^(1/2) 9870002026342040 a001 24157817/6643838879*87403803^(13/19) 9870002026342040 a001 24157817/17393796001*87403803^(14/19) 9870002026342040 a001 63245986/54018521*87403803^(7/19) 9870002026342040 a001 7778742049/54018521*33385282^(1/9) 9870002026342040 a001 14930352/20633239*20633239^(3/7) 9870002026342040 a001 267914296/1568397607*33385282^(1/2) 9870002026342040 a001 24157817/45537549124*87403803^(15/19) 9870002026342040 a001 233802911/1368706081*33385282^(1/2) 9870002026342040 a001 1836311903/10749957122*33385282^(1/2) 9870002026342040 a001 1602508992/9381251041*33385282^(1/2) 9870002026342040 a001 12586269025/73681302247*33385282^(1/2) 9870002026342040 a001 10983760033/64300051206*33385282^(1/2) 9870002026342040 a001 86267571272/505019158607*33385282^(1/2) 9870002026342040 a001 75283811239/440719107401*33385282^(1/2) 9870002026342040 a001 2504730781961/14662949395604*33385282^(1/2) 9870002026342040 a001 139583862445/817138163596*33385282^(1/2) 9870002026342040 a001 53316291173/312119004989*33385282^(1/2) 9870002026342040 a001 20365011074/119218851371*33385282^(1/2) 9870002026342040 a001 7778742049/45537549124*33385282^(1/2) 9870002026342040 a001 2971215073/17393796001*33385282^(1/2) 9870002026342040 a001 1134903170/6643838879*33385282^(1/2) 9870002026342040 a001 433494437/2537720636*33385282^(1/2) 9870002026342040 a001 24157817/119218851371*87403803^(16/19) 9870002026342040 a001 24157817/141422324*87403803^(9/19) 9870002026342040 a001 165580141/969323029*33385282^(1/2) 9870002026342040 a001 24157817/312119004989*87403803^(17/19) 9870002026342040 a001 24157817/817138163596*87403803^(18/19) 9870002026342040 a001 39088169/4106118243*33385282^(2/3) 9870002026342040 a001 9227465/6643838879*20633239^(4/5) 9870002026342040 a004 Fibonacci(37)*Lucas(38)/(1/2+sqrt(5)/2)^59 9870002026342040 a001 14619165/224056801*33385282^(5/9) 9870002026342040 a001 2971215073/54018521*33385282^(1/6) 9870002026342040 a001 267914296/4106118243*33385282^(5/9) 9870002026342040 a001 701408733/10749957122*33385282^(5/9) 9870002026342040 a001 1836311903/28143753123*33385282^(5/9) 9870002026342040 a001 686789568/10525900321*33385282^(5/9) 9870002026342040 a001 12586269025/192900153618*33385282^(5/9) 9870002026342040 a001 32951280099/505019158607*33385282^(5/9) 9870002026342040 a001 86267571272/1322157322203*33385282^(5/9) 9870002026342040 a001 32264490531/494493258286*33385282^(5/9) 9870002026342040 a001 591286729879/9062201101803*33385282^(5/9) 9870002026342040 a001 1548008755920/23725150497407*33385282^(5/9) 9870002026342040 a001 365435296162/5600748293801*33385282^(5/9) 9870002026342040 a001 139583862445/2139295485799*33385282^(5/9) 9870002026342040 a001 53316291173/817138163596*33385282^(5/9) 9870002026342040 a001 20365011074/312119004989*33385282^(5/9) 9870002026342040 a001 7778742049/119218851371*33385282^(5/9) 9870002026342040 a001 2971215073/45537549124*33385282^(5/9) 9870002026342040 a001 1134903170/17393796001*33385282^(5/9) 9870002026342040 a001 31622993/70711162*33385282^(4/9) 9870002026342040 a001 433494437/6643838879*33385282^(5/9) 9870002026342040 a001 9303105/230701876*33385282^(7/12) 9870002026342040 a001 63245986/370248451*33385282^(1/2) 9870002026342040 a001 165580141/2537720636*33385282^(5/9) 9870002026342040 a001 39088169/10749957122*33385282^(13/18) 9870002026342040 a001 267914296/6643838879*33385282^(7/12) 9870002026342041 a001 701408733/17393796001*33385282^(7/12) 9870002026342041 a001 1836311903/45537549124*33385282^(7/12) 9870002026342041 a001 4807526976/119218851371*33385282^(7/12) 9870002026342041 a001 1144206275/28374454999*33385282^(7/12) 9870002026342041 a001 32951280099/817138163596*33385282^(7/12) 9870002026342041 a001 86267571272/2139295485799*33385282^(7/12) 9870002026342041 a001 225851433717/5600748293801*33385282^(7/12) 9870002026342041 a001 591286729879/14662949395604*33385282^(7/12) 9870002026342041 a001 365435296162/9062201101803*33385282^(7/12) 9870002026342041 a001 139583862445/3461452808002*33385282^(7/12) 9870002026342041 a001 53316291173/1322157322203*33385282^(7/12) 9870002026342041 a001 20365011074/505019158607*33385282^(7/12) 9870002026342041 a001 7778742049/192900153618*33385282^(7/12) 9870002026342041 a001 2971215073/73681302247*33385282^(7/12) 9870002026342041 a001 1134903170/28143753123*33385282^(7/12) 9870002026342041 a001 433494437/10749957122*33385282^(7/12) 9870002026342041 a001 34111385/1368706081*33385282^(11/18) 9870002026342041 a001 165580141/4106118243*33385282^(7/12) 9870002026342041 a001 39088169/17393796001*33385282^(3/4) 9870002026342041 a001 1134903170/54018521*33385282^(2/9) 9870002026342041 a001 133957148/5374978561*33385282^(11/18) 9870002026342041 a001 233802911/9381251041*33385282^(11/18) 9870002026342041 a001 1836311903/73681302247*33385282^(11/18) 9870002026342041 a001 267084832/10716675201*33385282^(11/18) 9870002026342041 a001 12586269025/505019158607*33385282^(11/18) 9870002026342041 a001 10983760033/440719107401*33385282^(11/18) 9870002026342041 a001 43133785636/1730726404001*33385282^(11/18) 9870002026342041 a001 75283811239/3020733700601*33385282^(11/18) 9870002026342041 a001 182717648081/7331474697802*33385282^(11/18) 9870002026342041 a001 139583862445/5600748293801*33385282^(11/18) 9870002026342041 a001 53316291173/2139295485799*33385282^(11/18) 9870002026342041 a001 10182505537/408569081798*33385282^(11/18) 9870002026342041 a001 7778742049/312119004989*33385282^(11/18) 9870002026342041 a001 2971215073/119218851371*33385282^(11/18) 9870002026342041 a001 567451585/22768774562*33385282^(11/18) 9870002026342041 a001 701408733/33385282*12752043^(4/17) 9870002026342041 a001 433494437/17393796001*33385282^(11/18) 9870002026342041 a001 63245986/969323029*33385282^(5/9) 9870002026342041 a001 165580141/6643838879*33385282^(11/18) 9870002026342041 a001 701408733/54018521*33385282^(1/4) 9870002026342041 a001 39088169/28143753123*33385282^(7/9) 9870002026342041 a001 63245986/1568397607*33385282^(7/12) 9870002026342041 a001 102334155/10749957122*33385282^(2/3) 9870002026342041 a001 39088169/54018521*33385282^(5/12) 9870002026342041 a001 12586269025/87403803*12752043^(2/17) 9870002026342041 a001 433494437/54018521*33385282^(5/18) 9870002026342041 a001 267914296/28143753123*33385282^(2/3) 9870002026342041 a001 701408733/73681302247*33385282^(2/3) 9870002026342041 a001 1836311903/192900153618*33385282^(2/3) 9870002026342041 a001 102287808/10745088481*33385282^(2/3) 9870002026342041 a001 12586269025/1322157322203*33385282^(2/3) 9870002026342041 a001 32951280099/3461452808002*33385282^(2/3) 9870002026342041 a001 86267571272/9062201101803*33385282^(2/3) 9870002026342041 a001 225851433717/23725150497407*33385282^(2/3) 9870002026342041 a001 139583862445/14662949395604*33385282^(2/3) 9870002026342041 a001 53316291173/5600748293801*33385282^(2/3) 9870002026342041 a001 20365011074/2139295485799*33385282^(2/3) 9870002026342041 a001 7778742049/817138163596*33385282^(2/3) 9870002026342041 a001 2971215073/312119004989*33385282^(2/3) 9870002026342041 a001 1134903170/119218851371*33385282^(2/3) 9870002026342041 a001 31622993/1268860318*33385282^(11/18) 9870002026342041 a001 433494437/45537549124*33385282^(2/3) 9870002026342041 a001 165580141/17393796001*33385282^(2/3) 9870002026342041 a001 39088169/73681302247*33385282^(5/6) 9870002026342042 a001 831985/228811001*33385282^(13/18) 9870002026342042 a001 267914296/73681302247*33385282^(13/18) 9870002026342042 a001 233802911/64300051206*33385282^(13/18) 9870002026342042 a001 1836311903/505019158607*33385282^(13/18) 9870002026342042 a001 1602508992/440719107401*33385282^(13/18) 9870002026342042 a001 12586269025/3461452808002*33385282^(13/18) 9870002026342042 a001 10983760033/3020733700601*33385282^(13/18) 9870002026342042 a001 86267571272/23725150497407*33385282^(13/18) 9870002026342042 a001 53316291173/14662949395604*33385282^(13/18) 9870002026342042 a001 20365011074/5600748293801*33385282^(13/18) 9870002026342042 a001 7778742049/2139295485799*33385282^(13/18) 9870002026342042 a001 2971215073/817138163596*33385282^(13/18) 9870002026342042 a001 1134903170/312119004989*33385282^(13/18) 9870002026342042 a001 63245986/6643838879*33385282^(2/3) 9870002026342042 a001 433494437/119218851371*33385282^(13/18) 9870002026342042 a001 165580141/54018521*33385282^(1/3) 9870002026342042 a001 102334155/45537549124*33385282^(3/4) 9870002026342042 a001 165580141/45537549124*33385282^(13/18) 9870002026342042 a001 39088169/192900153618*33385282^(8/9) 9870002026342042 a001 267914296/119218851371*33385282^(3/4) 9870002026342042 a001 9227465/1568397607*20633239^(5/7) 9870002026342042 a001 3524667/1568437211*33385282^(3/4) 9870002026342042 a001 1836311903/817138163596*33385282^(3/4) 9870002026342042 a001 4807526976/2139295485799*33385282^(3/4) 9870002026342042 a001 12586269025/5600748293801*33385282^(3/4) 9870002026342042 a001 32951280099/14662949395604*33385282^(3/4) 9870002026342042 a001 53316291173/23725150497407*33385282^(3/4) 9870002026342042 a001 20365011074/9062201101803*33385282^(3/4) 9870002026342042 a001 7778742049/3461452808002*33385282^(3/4) 9870002026342042 a001 2971215073/1322157322203*33385282^(3/4) 9870002026342042 a001 1134903170/505019158607*33385282^(3/4) 9870002026342042 a001 433494437/192900153618*33385282^(3/4) 9870002026342042 a001 14619165/10525900321*33385282^(7/9) 9870002026342042 a001 165580141/73681302247*33385282^(3/4) 9870002026342042 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^16/Lucas(37) 9870002026342042 a001 24157817/54018521*23725150497407^(1/4) 9870002026342042 a001 24157817/54018521*73681302247^(4/13) 9870002026342042 a001 24157817/54018521*10749957122^(1/3) 9870002026342042 a001 24157817/54018521*4106118243^(8/23) 9870002026342042 a001 24157817/54018521*1568397607^(4/11) 9870002026342042 a001 24157817/54018521*599074578^(8/21) 9870002026342042 a001 39088169/312119004989*33385282^(11/12) 9870002026342042 a001 24157817/54018521*228826127^(2/5) 9870002026342042 a001 133957148/96450076809*33385282^(7/9) 9870002026342042 a001 701408733/505019158607*33385282^(7/9) 9870002026342042 a001 1836311903/1322157322203*33385282^(7/9) 9870002026342042 a001 14930208/10749853441*33385282^(7/9) 9870002026342042 a001 12586269025/9062201101803*33385282^(7/9) 9870002026342042 a001 32951280099/23725150497407*33385282^(7/9) 9870002026342042 a001 10182505537/7331474697802*33385282^(7/9) 9870002026342042 a001 7778742049/5600748293801*33385282^(7/9) 9870002026342042 a001 2971215073/2139295485799*33385282^(7/9) 9870002026342042 a001 567451585/408569081798*33385282^(7/9) 9870002026342042 a001 63245986/17393796001*33385282^(13/18) 9870002026342042 a001 433494437/312119004989*33385282^(7/9) 9870002026342042 a001 32951280099/228826127*12752043^(2/17) 9870002026342042 a001 20365011074/54018521*12752043^(1/17) 9870002026342042 a001 165580141/119218851371*33385282^(7/9) 9870002026342042 a001 39088169/505019158607*33385282^(17/18) 9870002026342042 a001 43133785636/299537289*12752043^(2/17) 9870002026342042 a001 63245986/28143753123*33385282^(3/4) 9870002026342042 a001 32264490531/224056801*12752043^(2/17) 9870002026342043 a001 591286729879/4106118243*12752043^(2/17) 9870002026342043 a001 774004377960/5374978561*12752043^(2/17) 9870002026342043 a001 4052739537881/28143753123*12752043^(2/17) 9870002026342043 a001 1515744265389/10525900321*12752043^(2/17) 9870002026342043 a001 3278735159921/22768774562*12752043^(2/17) 9870002026342043 a001 2504730781961/17393796001*12752043^(2/17) 9870002026342043 a001 956722026041/6643838879*12752043^(2/17) 9870002026342043 a001 182717648081/1268860318*12752043^(2/17) 9870002026342043 a001 139583862445/969323029*12752043^(2/17) 9870002026342043 a001 34111385/64300051206*33385282^(5/6) 9870002026342043 a001 53316291173/370248451*12752043^(2/17) 9870002026342043 a001 24157817/54018521*87403803^(8/19) 9870002026342043 a001 63245986/54018521*33385282^(7/18) 9870002026342043 a001 267914296/505019158607*33385282^(5/6) 9870002026342043 a001 233802911/440719107401*33385282^(5/6) 9870002026342043 a001 1836311903/3461452808002*33385282^(5/6) 9870002026342043 a001 1602508992/3020733700601*33385282^(5/6) 9870002026342043 a001 12586269025/23725150497407*33385282^(5/6) 9870002026342043 a001 7778742049/14662949395604*33385282^(5/6) 9870002026342043 a001 2971215073/5600748293801*33385282^(5/6) 9870002026342043 a001 1134903170/2139295485799*33385282^(5/6) 9870002026342043 a001 31622993/22768774562*33385282^(7/9) 9870002026342043 a001 433494437/817138163596*33385282^(5/6) 9870002026342043 a001 165580141/312119004989*33385282^(5/6) 9870002026342043 a004 Fibonacci(38)*Lucas(36)/(1/2+sqrt(5)/2)^58 9870002026342043 a001 10182505537/70711162*12752043^(2/17) 9870002026342043 a001 102334155/505019158607*33385282^(8/9) 9870002026342043 a001 267914296/1322157322203*33385282^(8/9) 9870002026342043 a001 701408733/3461452808002*33385282^(8/9) 9870002026342043 a001 1836311903/9062201101803*33385282^(8/9) 9870002026342043 a001 4807526976/23725150497407*33385282^(8/9) 9870002026342043 a001 2971215073/14662949395604*33385282^(8/9) 9870002026342043 a001 63245986/119218851371*33385282^(5/6) 9870002026342043 a001 1134903170/5600748293801*33385282^(8/9) 9870002026342043 a001 433494437/2139295485799*33385282^(8/9) 9870002026342043 a001 102334155/817138163596*33385282^(11/12) 9870002026342043 a001 165580141/817138163596*33385282^(8/9) 9870002026342043 a001 267914296/2139295485799*33385282^(11/12) 9870002026342043 a001 701408733/5600748293801*33385282^(11/12) 9870002026342043 a001 1836311903/14662949395604*33385282^(11/12) 9870002026342043 a001 2971215073/23725150497407*33385282^(11/12) 9870002026342043 a001 1134903170/9062201101803*33385282^(11/12) 9870002026342043 a001 433494437/3461452808002*33385282^(11/12) 9870002026342044 a001 34111385/440719107401*33385282^(17/18) 9870002026342044 a001 165580141/1322157322203*33385282^(11/12) 9870002026342044 a001 24157817/141422324*33385282^(1/2) 9870002026342044 a001 133957148/1730726404001*33385282^(17/18) 9870002026342044 a001 233802911/3020733700601*33385282^(17/18) 9870002026342044 a001 1836311903/23725150497407*33385282^(17/18) 9870002026342044 a001 63245986/312119004989*33385282^(8/9) 9870002026342044 a001 567451585/7331474697802*33385282^(17/18) 9870002026342044 a001 433494437/5600748293801*33385282^(17/18) 9870002026342044 a001 24157817/370248451*33385282^(5/9) 9870002026342044 a001 165580141/2139295485799*33385282^(17/18) 9870002026342044 a001 24157817/599074578*33385282^(7/12) 9870002026342044 a001 63245986/505019158607*33385282^(11/12) 9870002026342044 a004 Fibonacci(40)*Lucas(36)/(1/2+sqrt(5)/2)^60 9870002026342044 a001 4807526976/20633239*7881196^(1/11) 9870002026342044 a001 24157817/969323029*33385282^(11/18) 9870002026342044 a004 Fibonacci(42)*Lucas(36)/(1/2+sqrt(5)/2)^62 9870002026342044 a004 Fibonacci(44)*Lucas(36)/(1/2+sqrt(5)/2)^64 9870002026342044 a004 Fibonacci(46)*Lucas(36)/(1/2+sqrt(5)/2)^66 9870002026342044 a004 Fibonacci(48)*Lucas(36)/(1/2+sqrt(5)/2)^68 9870002026342044 a004 Fibonacci(50)*Lucas(36)/(1/2+sqrt(5)/2)^70 9870002026342044 a004 Fibonacci(52)*Lucas(36)/(1/2+sqrt(5)/2)^72 9870002026342044 a004 Fibonacci(54)*Lucas(36)/(1/2+sqrt(5)/2)^74 9870002026342044 a004 Fibonacci(56)*Lucas(36)/(1/2+sqrt(5)/2)^76 9870002026342044 a004 Fibonacci(58)*Lucas(36)/(1/2+sqrt(5)/2)^78 9870002026342044 a004 Fibonacci(60)*Lucas(36)/(1/2+sqrt(5)/2)^80 9870002026342044 a004 Fibonacci(62)*Lucas(36)/(1/2+sqrt(5)/2)^82 9870002026342044 a004 Fibonacci(64)*Lucas(36)/(1/2+sqrt(5)/2)^84 9870002026342044 a004 Fibonacci(66)*Lucas(36)/(1/2+sqrt(5)/2)^86 9870002026342044 a004 Fibonacci(68)*Lucas(36)/(1/2+sqrt(5)/2)^88 9870002026342044 a004 Fibonacci(70)*Lucas(36)/(1/2+sqrt(5)/2)^90 9870002026342044 a004 Fibonacci(72)*Lucas(36)/(1/2+sqrt(5)/2)^92 9870002026342044 a004 Fibonacci(74)*Lucas(36)/(1/2+sqrt(5)/2)^94 9870002026342044 a004 Fibonacci(76)*Lucas(36)/(1/2+sqrt(5)/2)^96 9870002026342044 a004 Fibonacci(78)*Lucas(36)/(1/2+sqrt(5)/2)^98 9870002026342044 a004 Fibonacci(80)*Lucas(36)/(1/2+sqrt(5)/2)^100 9870002026342044 a004 Fibonacci(79)*Lucas(36)/(1/2+sqrt(5)/2)^99 9870002026342044 a004 Fibonacci(77)*Lucas(36)/(1/2+sqrt(5)/2)^97 9870002026342044 a004 Fibonacci(75)*Lucas(36)/(1/2+sqrt(5)/2)^95 9870002026342044 a004 Fibonacci(73)*Lucas(36)/(1/2+sqrt(5)/2)^93 9870002026342044 a001 1/7465176*(1/2+1/2*5^(1/2))^52 9870002026342044 a004 Fibonacci(71)*Lucas(36)/(1/2+sqrt(5)/2)^91 9870002026342044 a004 Fibonacci(69)*Lucas(36)/(1/2+sqrt(5)/2)^89 9870002026342044 a004 Fibonacci(67)*Lucas(36)/(1/2+sqrt(5)/2)^87 9870002026342044 a004 Fibonacci(65)*Lucas(36)/(1/2+sqrt(5)/2)^85 9870002026342044 a004 Fibonacci(63)*Lucas(36)/(1/2+sqrt(5)/2)^83 9870002026342044 a004 Fibonacci(61)*Lucas(36)/(1/2+sqrt(5)/2)^81 9870002026342044 a004 Fibonacci(59)*Lucas(36)/(1/2+sqrt(5)/2)^79 9870002026342044 a004 Fibonacci(57)*Lucas(36)/(1/2+sqrt(5)/2)^77 9870002026342044 a004 Fibonacci(55)*Lucas(36)/(1/2+sqrt(5)/2)^75 9870002026342044 a004 Fibonacci(53)*Lucas(36)/(1/2+sqrt(5)/2)^73 9870002026342044 a004 Fibonacci(51)*Lucas(36)/(1/2+sqrt(5)/2)^71 9870002026342044 a004 Fibonacci(49)*Lucas(36)/(1/2+sqrt(5)/2)^69 9870002026342044 a004 Fibonacci(47)*Lucas(36)/(1/2+sqrt(5)/2)^67 9870002026342044 a001 31622993/408569081798*33385282^(17/18) 9870002026342044 a004 Fibonacci(45)*Lucas(36)/(1/2+sqrt(5)/2)^65 9870002026342044 a004 Fibonacci(43)*Lucas(36)/(1/2+sqrt(5)/2)^63 9870002026342044 a004 Fibonacci(41)*Lucas(36)/(1/2+sqrt(5)/2)^61 9870002026342044 a001 133957148/16692641*12752043^(5/17) 9870002026342044 a001 9227465/228826127*20633239^(3/5) 9870002026342045 a001 24157817/2537720636*33385282^(2/3) 9870002026342045 a004 Fibonacci(39)*Lucas(36)/(1/2+sqrt(5)/2)^59 9870002026342045 a001 1602508992/29134601*12752043^(3/17) 9870002026342045 a001 24157817/6643838879*33385282^(13/18) 9870002026342045 a001 24157817/10749957122*33385282^(3/4) 9870002026342046 a001 24157817/17393796001*33385282^(7/9) 9870002026342046 a001 9227465/141422324*20633239^(4/7) 9870002026342046 a001 12586269025/228826127*12752043^(3/17) 9870002026342046 a001 7778742049/54018521*12752043^(2/17) 9870002026342046 a001 10983760033/199691526*12752043^(3/17) 9870002026342046 a001 24157817/54018521*33385282^(4/9) 9870002026342046 a001 86267571272/1568397607*12752043^(3/17) 9870002026342046 a001 75283811239/1368706081*12752043^(3/17) 9870002026342046 a001 591286729879/10749957122*12752043^(3/17) 9870002026342046 a001 12585437040/228811001*12752043^(3/17) 9870002026342046 a001 4052739537881/73681302247*12752043^(3/17) 9870002026342046 a001 3536736619241/64300051206*12752043^(3/17) 9870002026342046 a001 6557470319842/119218851371*12752043^(3/17) 9870002026342046 a001 2504730781961/45537549124*12752043^(3/17) 9870002026342046 a001 956722026041/17393796001*12752043^(3/17) 9870002026342046 a001 365435296162/6643838879*12752043^(3/17) 9870002026342046 a001 139583862445/2537720636*12752043^(3/17) 9870002026342046 a001 53316291173/969323029*12752043^(3/17) 9870002026342046 a001 24157817/45537549124*33385282^(5/6) 9870002026342046 a001 20365011074/370248451*12752043^(3/17) 9870002026342046 a001 7465176/16692641*12752043^(8/17) 9870002026342047 a001 7778742049/141422324*12752043^(3/17) 9870002026342047 a001 24157817/119218851371*33385282^(8/9) 9870002026342047 a001 24157817/192900153618*33385282^(11/12) 9870002026342047 a001 24157817/312119004989*33385282^(17/18) 9870002026342048 a004 Fibonacci(37)*Lucas(36)/(1/2+sqrt(5)/2)^57 9870002026342048 a001 14619165/4769326*12752043^(6/17) 9870002026342048 a001 1836311903/87403803*12752043^(4/17) 9870002026342049 a001 102287808/4868641*12752043^(4/17) 9870002026342049 a001 2971215073/54018521*12752043^(3/17) 9870002026342049 a001 14930352/20633239*141422324^(5/13) 9870002026342050 a001 12586269025/599074578*12752043^(4/17) 9870002026342050 a001 32951280099/1568397607*12752043^(4/17) 9870002026342050 a001 86267571272/4106118243*12752043^(4/17) 9870002026342050 a001 225851433717/10749957122*12752043^(4/17) 9870002026342050 a001 591286729879/28143753123*12752043^(4/17) 9870002026342050 a001 1548008755920/73681302247*12752043^(4/17) 9870002026342050 a001 4052739537881/192900153618*12752043^(4/17) 9870002026342050 a001 225749145909/10745088481*12752043^(4/17) 9870002026342050 a001 6557470319842/312119004989*12752043^(4/17) 9870002026342050 a001 2504730781961/119218851371*12752043^(4/17) 9870002026342050 a001 956722026041/45537549124*12752043^(4/17) 9870002026342050 a001 365435296162/17393796001*12752043^(4/17) 9870002026342050 a001 139583862445/6643838879*12752043^(4/17) 9870002026342050 a001 53316291173/2537720636*12752043^(4/17) 9870002026342050 a001 20365011074/969323029*12752043^(4/17) 9870002026342050 a001 14930352/20633239*2537720636^(1/3) 9870002026342050 a001 9227465/33385282*45537549124^(1/3) 9870002026342050 a001 14930352/20633239*45537549124^(5/17) 9870002026342050 a001 27553860103536/27916772489 9870002026342050 a001 14930352/20633239*312119004989^(3/11) 9870002026342050 a001 14930352/20633239*14662949395604^(5/21) 9870002026342050 a001 9227465/33385282*(1/2+1/2*5^(1/2))^17 9870002026342050 a001 14930352/20633239*(1/2+1/2*5^(1/2))^15 9870002026342050 a001 14930352/20633239*192900153618^(5/18) 9870002026342050 a001 14930352/20633239*28143753123^(3/10) 9870002026342050 a001 14930352/20633239*10749957122^(5/16) 9870002026342050 a001 14930352/20633239*599074578^(5/14) 9870002026342050 a001 7778742049/370248451*12752043^(4/17) 9870002026342050 a001 14930352/20633239*228826127^(3/8) 9870002026342050 a001 3524578/6643838879*7881196^(10/11) 9870002026342050 a001 2971215073/141422324*12752043^(4/17) 9870002026342050 a001 39088169/33385282*12752043^(7/17) 9870002026342052 a001 233802911/29134601*12752043^(5/17) 9870002026342052 a001 165580141/20633239*20633239^(2/7) 9870002026342053 a001 12586269025/33385282*4870847^(1/16) 9870002026342053 a001 24157817/20633239*20633239^(2/5) 9870002026342053 a001 233802911/4250681*4870847^(3/16) 9870002026342053 a001 1836311903/228826127*12752043^(5/17) 9870002026342053 a001 1134903170/54018521*12752043^(4/17) 9870002026342053 a001 267084832/33281921*12752043^(5/17) 9870002026342053 a001 12586269025/1568397607*12752043^(5/17) 9870002026342053 a001 10983760033/1368706081*12752043^(5/17) 9870002026342053 a001 43133785636/5374978561*12752043^(5/17) 9870002026342053 a001 75283811239/9381251041*12752043^(5/17) 9870002026342053 a001 591286729879/73681302247*12752043^(5/17) 9870002026342053 a001 86000486440/10716675201*12752043^(5/17) 9870002026342053 a001 4052739537881/505019158607*12752043^(5/17) 9870002026342053 a001 3536736619241/440719107401*12752043^(5/17) 9870002026342053 a001 3278735159921/408569081798*12752043^(5/17) 9870002026342053 a001 2504730781961/312119004989*12752043^(5/17) 9870002026342053 a001 956722026041/119218851371*12752043^(5/17) 9870002026342053 a001 182717648081/22768774562*12752043^(5/17) 9870002026342053 a001 139583862445/17393796001*12752043^(5/17) 9870002026342053 a001 53316291173/6643838879*12752043^(5/17) 9870002026342053 a001 10182505537/1268860318*12752043^(5/17) 9870002026342053 a001 7778742049/969323029*12752043^(5/17) 9870002026342053 a001 2971215073/370248451*12752043^(5/17) 9870002026342053 a001 14930352/20633239*33385282^(5/12) 9870002026342054 a001 567451585/70711162*12752043^(5/17) 9870002026342054 a001 701408733/20633239*20633239^(1/5) 9870002026342055 a004 Fibonacci(35)*Lucas(37)/(1/2+sqrt(5)/2)^56 9870002026342055 a001 1836311903/20633239*20633239^(1/7) 9870002026342055 a001 267914296/87403803*12752043^(6/17) 9870002026342057 a001 701408733/228826127*12752043^(6/17) 9870002026342057 a001 433494437/54018521*12752043^(5/17) 9870002026342057 a001 1836311903/599074578*12752043^(6/17) 9870002026342057 a001 686789568/224056801*12752043^(6/17) 9870002026342057 a001 12586269025/4106118243*12752043^(6/17) 9870002026342057 a001 32951280099/10749957122*12752043^(6/17) 9870002026342057 a001 86267571272/28143753123*12752043^(6/17) 9870002026342057 a001 32264490531/10525900321*12752043^(6/17) 9870002026342057 a001 591286729879/192900153618*12752043^(6/17) 9870002026342057 a001 1548008755920/505019158607*12752043^(6/17) 9870002026342057 a001 1515744265389/494493258286*12752043^(6/17) 9870002026342057 a001 2504730781961/817138163596*12752043^(6/17) 9870002026342057 a001 956722026041/312119004989*12752043^(6/17) 9870002026342057 a001 365435296162/119218851371*12752043^(6/17) 9870002026342057 a001 139583862445/45537549124*12752043^(6/17) 9870002026342057 a001 53316291173/17393796001*12752043^(6/17) 9870002026342057 a001 20365011074/6643838879*12752043^(6/17) 9870002026342057 a001 7778742049/2537720636*12752043^(6/17) 9870002026342057 a001 2971215073/969323029*12752043^(6/17) 9870002026342057 a001 1134903170/370248451*12752043^(6/17) 9870002026342057 a001 39088169/20633239*141422324^(1/3) 9870002026342057 a001 86267570285/87403802 9870002026342057 a001 9227465/87403803*817138163596^(1/3) 9870002026342057 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^19/Lucas(38) 9870002026342057 a001 39088169/20633239*(1/2+1/2*5^(1/2))^13 9870002026342057 a001 39088169/20633239*73681302247^(1/4) 9870002026342057 a001 433494437/141422324*12752043^(6/17) 9870002026342057 a001 4976784/29134601*12752043^(9/17) 9870002026342058 a001 9227465/87403803*87403803^(1/2) 9870002026342058 a004 Fibonacci(35)*Lucas(39)/(1/2+sqrt(5)/2)^58 9870002026342058 a001 9227465/312119004989*141422324^(12/13) 9870002026342058 a001 9227465/228826127*141422324^(7/13) 9870002026342058 a001 9227465/73681302247*141422324^(11/13) 9870002026342058 a001 9227465/17393796001*141422324^(10/13) 9870002026342058 a001 9227465/4106118243*141422324^(9/13) 9870002026342058 a001 9227465/2537720636*141422324^(2/3) 9870002026342058 a001 9227465/969323029*141422324^(8/13) 9870002026342058 a001 9227465/228826127*2537720636^(7/15) 9870002026342058 a001 9227465/228826127*17393796001^(3/7) 9870002026342058 a001 9227465/228826127*45537549124^(7/17) 9870002026342058 a001 9227465/228826127*14662949395604^(1/3) 9870002026342058 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^21/Lucas(40) 9870002026342058 a001 9303105/1875749*(1/2+1/2*5^(1/2))^11 9870002026342058 a001 9227465/228826127*192900153618^(7/18) 9870002026342058 a001 9227465/228826127*10749957122^(7/16) 9870002026342058 a001 9303105/1875749*1568397607^(1/4) 9870002026342058 a001 9227465/228826127*599074578^(1/2) 9870002026342058 a001 9238424/711491*141422324^(3/13) 9870002026342058 a001 1134903170/20633239*141422324^(2/13) 9870002026342058 a004 Fibonacci(35)*Lucas(41)/(1/2+sqrt(5)/2)^60 9870002026342059 a001 4807526976/20633239*141422324^(1/13) 9870002026342059 a001 9238424/711491*2537720636^(1/5) 9870002026342059 a001 9238424/711491*45537549124^(3/17) 9870002026342059 a001 9238424/711491*817138163596^(3/19) 9870002026342059 a001 2472169789339640/2504730781961 9870002026342059 a001 9238424/711491*14662949395604^(1/7) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^23/Lucas(42) 9870002026342059 a001 9238424/711491*(1/2+1/2*5^(1/2))^9 9870002026342059 a001 9238424/711491*192900153618^(1/6) 9870002026342059 a001 9238424/711491*10749957122^(3/16) 9870002026342059 a001 9227465/599074578*4106118243^(1/2) 9870002026342059 a001 9238424/711491*599074578^(3/14) 9870002026342059 a004 Fibonacci(35)*Lucas(43)/(1/2+sqrt(5)/2)^62 9870002026342059 a001 9227465/1568397607*2537720636^(5/9) 9870002026342059 a001 701408733/20633239*17393796001^(1/7) 9870002026342059 a001 9227465/1568397607*312119004989^(5/11) 9870002026342059 a001 497863425727065/504420793834 9870002026342059 a001 701408733/20633239*14662949395604^(1/9) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^25/Lucas(44) 9870002026342059 a001 701408733/20633239*(1/2+1/2*5^(1/2))^7 9870002026342059 a001 9227465/1568397607*3461452808002^(5/12) 9870002026342059 a001 9227465/1568397607*28143753123^(1/2) 9870002026342059 a004 Fibonacci(35)*Lucas(45)/(1/2+sqrt(5)/2)^64 9870002026342059 a001 9227465/4106118243*2537720636^(3/5) 9870002026342059 a001 9227465/5600748293801*2537720636^(14/15) 9870002026342059 a001 9227465/2139295485799*2537720636^(8/9) 9870002026342059 a001 9227465/1322157322203*2537720636^(13/15) 9870002026342059 a001 9227465/312119004989*2537720636^(4/5) 9870002026342059 a001 9227465/192900153618*2537720636^(7/9) 9870002026342059 a001 9227465/73681302247*2537720636^(11/15) 9870002026342059 a001 9227465/17393796001*2537720636^(2/3) 9870002026342059 a001 1836311903/20633239*2537720636^(1/9) 9870002026342059 a001 9227465/4106118243*45537549124^(9/17) 9870002026342059 a001 1836311903/20633239*312119004989^(1/11) 9870002026342059 a001 9227465/4106118243*817138163596^(9/19) 9870002026342059 a001 9227465/4106118243*14662949395604^(3/7) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^27/Lucas(46) 9870002026342059 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^5 9870002026342059 a001 9227465/4106118243*192900153618^(1/2) 9870002026342059 a001 1836311903/20633239*28143753123^(1/10) 9870002026342059 a001 9227465/4106118243*10749957122^(9/16) 9870002026342059 a004 Fibonacci(35)*Lucas(47)/(1/2+sqrt(5)/2)^66 9870002026342059 a001 4807526976/20633239*2537720636^(1/15) 9870002026342059 a001 4807526976/20633239*45537549124^(1/17) 9870002026342059 a001 4807526976/20633239*14662949395604^(1/21) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^29/Lucas(48) 9870002026342059 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^3 9870002026342059 a001 9227465/10749957122*1322157322203^(1/2) 9870002026342059 a001 4807526976/20633239*192900153618^(1/18) 9870002026342059 a001 4807526976/20633239*10749957122^(1/16) 9870002026342059 a004 Fibonacci(35)*Lucas(49)/(1/2+sqrt(5)/2)^68 9870002026342059 a001 9227465/5600748293801*17393796001^(6/7) 9870002026342059 a001 9227465/192900153618*17393796001^(5/7) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^31/Lucas(50) 9870002026342059 a001 1144206275/3751498+1144206275/3751498*5^(1/2) 9870002026342059 a001 9227465/28143753123*9062201101803^(1/2) 9870002026342059 a001 9227465/73681302247*45537549124^(11/17) 9870002026342059 a004 Fibonacci(35)*Lucas(51)/(1/2+sqrt(5)/2)^70 9870002026342059 a001 9227465/23725150497407*45537549124^(15/17) 9870002026342059 a001 9227465/5600748293801*45537549124^(14/17) 9870002026342059 a001 9227465/1322157322203*45537549124^(13/17) 9870002026342059 a001 9227465/312119004989*45537549124^(12/17) 9870002026342059 a001 9227465/119218851371*45537549124^(2/3) 9870002026342059 a001 9227465/73681302247*312119004989^(3/5) 9870002026342059 a001 9227465/73681302247*817138163596^(11/19) 9870002026342059 a001 9227465/73681302247*14662949395604^(11/21) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^33/Lucas(52) 9870002026342059 a004 Fibonacci(52)/Lucas(35)/(1/2+sqrt(5)/2) 9870002026342059 a001 9227465/73681302247*192900153618^(11/18) 9870002026342059 a004 Fibonacci(35)*Lucas(53)/(1/2+sqrt(5)/2)^72 9870002026342059 a001 9227465/192900153618*312119004989^(7/11) 9870002026342059 a001 9227465/192900153618*14662949395604^(5/9) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^35/Lucas(54) 9870002026342059 a004 Fibonacci(54)/Lucas(35)/(1/2+sqrt(5)/2)^3 9870002026342059 a001 9227465/192900153618*505019158607^(5/8) 9870002026342059 a004 Fibonacci(35)*Lucas(55)/(1/2+sqrt(5)/2)^74 9870002026342059 a001 9227465/23725150497407*312119004989^(9/11) 9870002026342059 a001 9227465/14662949395604*312119004989^(4/5) 9870002026342059 a001 9227465/2139295485799*312119004989^(8/11) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^37/Lucas(56) 9870002026342059 a004 Fibonacci(56)/Lucas(35)/(1/2+sqrt(5)/2)^5 9870002026342059 a004 Fibonacci(35)*Lucas(57)/(1/2+sqrt(5)/2)^76 9870002026342059 a001 9227465/5600748293801*817138163596^(14/19) 9870002026342059 a001 9227465/1322157322203*14662949395604^(13/21) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^39/Lucas(58) 9870002026342059 a004 Fibonacci(58)/Lucas(35)/(1/2+sqrt(5)/2)^7 9870002026342059 a004 Fibonacci(35)*Lucas(59)/(1/2+sqrt(5)/2)^78 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^41/Lucas(60) 9870002026342059 a004 Fibonacci(60)/Lucas(35)/(1/2+sqrt(5)/2)^9 9870002026342059 a004 Fibonacci(35)*Lucas(61)/(1/2+sqrt(5)/2)^80 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^43/Lucas(62) 9870002026342059 a004 Fibonacci(62)/Lucas(35)/(1/2+sqrt(5)/2)^11 9870002026342059 a001 9227465/23725150497407*14662949395604^(5/7) 9870002026342059 a004 Fibonacci(35)*Lucas(63)/(1/2+sqrt(5)/2)^82 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^45/Lucas(64) 9870002026342059 a004 Fibonacci(64)/Lucas(35)/(1/2+sqrt(5)/2)^13 9870002026342059 a004 Fibonacci(35)*Lucas(65)/(1/2+sqrt(5)/2)^84 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^47/Lucas(66) 9870002026342059 a004 Fibonacci(66)/Lucas(35)/(1/2+sqrt(5)/2)^15 9870002026342059 a004 Fibonacci(35)*Lucas(67)/(1/2+sqrt(5)/2)^86 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^49/Lucas(68) 9870002026342059 a004 Fibonacci(68)/Lucas(35)/(1/2+sqrt(5)/2)^17 9870002026342059 a004 Fibonacci(35)*Lucas(69)/(1/2+sqrt(5)/2)^88 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^51/Lucas(70) 9870002026342059 a004 Fibonacci(35)*Lucas(71)/(1/2+sqrt(5)/2)^90 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^53/Lucas(72) 9870002026342059 a004 Fibonacci(35)*Lucas(73)/(1/2+sqrt(5)/2)^92 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^55/Lucas(74) 9870002026342059 a004 Fibonacci(35)*Lucas(75)/(1/2+sqrt(5)/2)^94 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^57/Lucas(76) 9870002026342059 a004 Fibonacci(35)*Lucas(77)/(1/2+sqrt(5)/2)^96 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^59/Lucas(78) 9870002026342059 a004 Fibonacci(35)*Lucas(79)/(1/2+sqrt(5)/2)^98 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^61/Lucas(80) 9870002026342059 a004 Fibonacci(35)*Lucas(81)/(1/2+sqrt(5)/2)^100 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^63/Lucas(82) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^65/Lucas(84) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^67/Lucas(86) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^69/Lucas(88) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^71/Lucas(90) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^73/Lucas(92) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^75/Lucas(94) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^77/Lucas(96) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^79/Lucas(98) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^80/Lucas(99) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^81/Lucas(100) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^78/Lucas(97) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^76/Lucas(95) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^74/Lucas(93) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^72/Lucas(91) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^70/Lucas(89) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^68/Lucas(87) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^66/Lucas(85) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^64/Lucas(83) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^62/Lucas(81) 9870002026342059 a004 Fibonacci(35)*Lucas(80)/(1/2+sqrt(5)/2)^99 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^60/Lucas(79) 9870002026342059 a004 Fibonacci(35)*Lucas(78)/(1/2+sqrt(5)/2)^97 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^58/Lucas(77) 9870002026342059 a004 Fibonacci(35)*Lucas(76)/(1/2+sqrt(5)/2)^95 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^56/Lucas(75) 9870002026342059 a004 Fibonacci(35)*Lucas(74)/(1/2+sqrt(5)/2)^93 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^54/Lucas(73) 9870002026342059 a004 Fibonacci(35)*Lucas(72)/(1/2+sqrt(5)/2)^91 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^52/Lucas(71) 9870002026342059 a004 Fibonacci(72)/Lucas(35)/(1/2+sqrt(5)/2)^21 9870002026342059 a004 Fibonacci(74)/Lucas(35)/(1/2+sqrt(5)/2)^23 9870002026342059 a004 Fibonacci(76)/Lucas(35)/(1/2+sqrt(5)/2)^25 9870002026342059 a004 Fibonacci(78)/Lucas(35)/(1/2+sqrt(5)/2)^27 9870002026342059 a004 Fibonacci(80)/Lucas(35)/(1/2+sqrt(5)/2)^29 9870002026342059 a004 Fibonacci(82)/Lucas(35)/(1/2+sqrt(5)/2)^31 9870002026342059 a004 Fibonacci(84)/Lucas(35)/(1/2+sqrt(5)/2)^33 9870002026342059 a004 Fibonacci(86)/Lucas(35)/(1/2+sqrt(5)/2)^35 9870002026342059 a004 Fibonacci(88)/Lucas(35)/(1/2+sqrt(5)/2)^37 9870002026342059 a004 Fibonacci(90)/Lucas(35)/(1/2+sqrt(5)/2)^39 9870002026342059 a004 Fibonacci(92)/Lucas(35)/(1/2+sqrt(5)/2)^41 9870002026342059 a004 Fibonacci(94)/Lucas(35)/(1/2+sqrt(5)/2)^43 9870002026342059 a004 Fibonacci(96)/Lucas(35)/(1/2+sqrt(5)/2)^45 9870002026342059 a004 Fibonacci(98)/Lucas(35)/(1/2+sqrt(5)/2)^47 9870002026342059 a004 Fibonacci(100)/Lucas(35)/(1/2+sqrt(5)/2)^49 9870002026342059 a004 Fibonacci(35)*Lucas(70)/(1/2+sqrt(5)/2)^89 9870002026342059 a004 Fibonacci(99)/Lucas(35)/(1/2+sqrt(5)/2)^48 9870002026342059 a004 Fibonacci(97)/Lucas(35)/(1/2+sqrt(5)/2)^46 9870002026342059 a004 Fibonacci(95)/Lucas(35)/(1/2+sqrt(5)/2)^44 9870002026342059 a004 Fibonacci(93)/Lucas(35)/(1/2+sqrt(5)/2)^42 9870002026342059 a004 Fibonacci(91)/Lucas(35)/(1/2+sqrt(5)/2)^40 9870002026342059 a004 Fibonacci(89)/Lucas(35)/(1/2+sqrt(5)/2)^38 9870002026342059 a004 Fibonacci(87)/Lucas(35)/(1/2+sqrt(5)/2)^36 9870002026342059 a004 Fibonacci(85)/Lucas(35)/(1/2+sqrt(5)/2)^34 9870002026342059 a004 Fibonacci(83)/Lucas(35)/(1/2+sqrt(5)/2)^32 9870002026342059 a004 Fibonacci(81)/Lucas(35)/(1/2+sqrt(5)/2)^30 9870002026342059 a004 Fibonacci(79)/Lucas(35)/(1/2+sqrt(5)/2)^28 9870002026342059 a004 Fibonacci(77)/Lucas(35)/(1/2+sqrt(5)/2)^26 9870002026342059 a004 Fibonacci(75)/Lucas(35)/(1/2+sqrt(5)/2)^24 9870002026342059 a004 Fibonacci(73)/Lucas(35)/(1/2+sqrt(5)/2)^22 9870002026342059 a004 Fibonacci(71)/Lucas(35)/(1/2+sqrt(5)/2)^20 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^50/Lucas(69) 9870002026342059 a004 Fibonacci(69)/Lucas(35)/(1/2+sqrt(5)/2)^18 9870002026342059 a004 Fibonacci(35)*Lucas(68)/(1/2+sqrt(5)/2)^87 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^48/Lucas(67) 9870002026342059 a004 Fibonacci(67)/Lucas(35)/(1/2+sqrt(5)/2)^16 9870002026342059 a004 Fibonacci(35)*Lucas(66)/(1/2+sqrt(5)/2)^85 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^46/Lucas(65) 9870002026342059 a004 Fibonacci(65)/Lucas(35)/(1/2+sqrt(5)/2)^14 9870002026342059 a004 Fibonacci(35)*Lucas(64)/(1/2+sqrt(5)/2)^83 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^44/Lucas(63) 9870002026342059 a004 Fibonacci(63)/Lucas(35)/(1/2+sqrt(5)/2)^12 9870002026342059 a001 9227465/14662949395604*23725150497407^(11/16) 9870002026342059 a004 Fibonacci(35)*Lucas(62)/(1/2+sqrt(5)/2)^81 9870002026342059 a001 9227465/5600748293801*14662949395604^(2/3) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^42/Lucas(61) 9870002026342059 a004 Fibonacci(61)/Lucas(35)/(1/2+sqrt(5)/2)^10 9870002026342059 a004 Fibonacci(35)*Lucas(60)/(1/2+sqrt(5)/2)^79 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^40/Lucas(59) 9870002026342059 a004 Fibonacci(59)/Lucas(35)/(1/2+sqrt(5)/2)^8 9870002026342059 a001 9227465/2139295485799*23725150497407^(5/8) 9870002026342059 a004 Fibonacci(35)*Lucas(58)/(1/2+sqrt(5)/2)^77 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^38/Lucas(57) 9870002026342059 a004 Fibonacci(57)/Lucas(35)/(1/2+sqrt(5)/2)^6 9870002026342059 a004 Fibonacci(35)*Lucas(56)/(1/2+sqrt(5)/2)^75 9870002026342059 a001 9227465/312119004989*14662949395604^(4/7) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^36/Lucas(55) 9870002026342059 a004 Fibonacci(55)/Lucas(35)/(1/2+sqrt(5)/2)^4 9870002026342059 a001 9227465/312119004989*505019158607^(9/14) 9870002026342059 a001 9227465/1322157322203*192900153618^(13/18) 9870002026342059 a001 9227465/5600748293801*192900153618^(7/9) 9870002026342059 a001 9227465/23725150497407*192900153618^(5/6) 9870002026342059 a004 Fibonacci(35)*Lucas(54)/(1/2+sqrt(5)/2)^73 9870002026342059 a001 9227465/312119004989*192900153618^(2/3) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^34/Lucas(53) 9870002026342059 a004 Fibonacci(53)/Lucas(35)/(1/2+sqrt(5)/2)^2 9870002026342059 a001 9227465/1322157322203*73681302247^(3/4) 9870002026342059 a001 9227465/312119004989*73681302247^(9/13) 9870002026342059 a001 9227465/2139295485799*73681302247^(10/13) 9870002026342059 a001 9227465/14662949395604*73681302247^(11/13) 9870002026342059 a004 Fibonacci(35)*Lucas(52)/(1/2+sqrt(5)/2)^71 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^32/Lucas(51) 9870002026342059 a006 5^(1/2)*Fibonacci(51)/Lucas(35)/sqrt(5) 9870002026342059 a001 9227465/45537549124*23725150497407^(1/2) 9870002026342059 a001 9227465/45537549124*505019158607^(4/7) 9870002026342059 a001 9227465/45537549124*73681302247^(8/13) 9870002026342059 a001 9227465/192900153618*28143753123^(7/10) 9870002026342059 a001 9227465/2139295485799*28143753123^(4/5) 9870002026342059 a001 9227465/23725150497407*28143753123^(9/10) 9870002026342059 a004 Fibonacci(35)*Lucas(50)/(1/2+sqrt(5)/2)^69 9870002026342059 a001 9227465/17393796001*45537549124^(10/17) 9870002026342059 a001 9227465/17393796001*312119004989^(6/11) 9870002026342059 a001 9227465/17393796001*14662949395604^(10/21) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^30/Lucas(49) 9870002026342059 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^2 9870002026342059 a001 9227465/17393796001*192900153618^(5/9) 9870002026342059 a001 7778742049/20633239*10749957122^(1/24) 9870002026342059 a001 9227465/17393796001*28143753123^(3/5) 9870002026342059 a001 9227465/73681302247*10749957122^(11/16) 9870002026342059 a001 7778742049/20633239*4106118243^(1/23) 9870002026342059 a001 9227465/119218851371*10749957122^(17/24) 9870002026342059 a001 9227465/45537549124*10749957122^(2/3) 9870002026342059 a001 9227465/312119004989*10749957122^(3/4) 9870002026342059 a001 9227465/817138163596*10749957122^(19/24) 9870002026342059 a001 9227465/1322157322203*10749957122^(13/16) 9870002026342059 a001 9227465/2139295485799*10749957122^(5/6) 9870002026342059 a001 9227465/5600748293801*10749957122^(7/8) 9870002026342059 a001 9227465/14662949395604*10749957122^(11/12) 9870002026342059 a001 9227465/23725150497407*10749957122^(15/16) 9870002026342059 a004 Fibonacci(35)*Lucas(48)/(1/2+sqrt(5)/2)^67 9870002026342059 a001 9227465/17393796001*10749957122^(5/8) 9870002026342059 a001 9227465/6643838879*17393796001^(4/7) 9870002026342059 a001 7778742049/20633239*1568397607^(1/22) 9870002026342059 a001 9227465/6643838879*14662949395604^(4/9) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^28/Lucas(47) 9870002026342059 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^4 9870002026342059 a001 2971215073/20633239*23725150497407^(1/16) 9870002026342059 a001 2971215073/20633239*73681302247^(1/13) 9870002026342059 a001 9227465/6643838879*73681302247^(7/13) 9870002026342059 a001 2971215073/20633239*10749957122^(1/12) 9870002026342059 a001 9227465/6643838879*10749957122^(7/12) 9870002026342059 a001 2971215073/20633239*4106118243^(2/23) 9870002026342059 a001 9227465/45537549124*4106118243^(16/23) 9870002026342059 a001 9227465/17393796001*4106118243^(15/23) 9870002026342059 a001 9227465/119218851371*4106118243^(17/23) 9870002026342059 a001 9227465/312119004989*4106118243^(18/23) 9870002026342059 a001 9227465/817138163596*4106118243^(19/23) 9870002026342059 a001 9227465/2139295485799*4106118243^(20/23) 9870002026342059 a001 9227465/5600748293801*4106118243^(21/23) 9870002026342059 a001 9227465/14662949395604*4106118243^(22/23) 9870002026342059 a001 701408733/20633239*599074578^(1/6) 9870002026342059 a001 9227465/6643838879*4106118243^(14/23) 9870002026342059 a004 Fibonacci(35)*Lucas(46)/(1/2+sqrt(5)/2)^65 9870002026342059 a001 2971215073/20633239*1568397607^(1/11) 9870002026342059 a001 1134903170/20633239*2537720636^(2/15) 9870002026342059 a001 7778742049/20633239*599074578^(1/21) 9870002026342059 a001 1134903170/20633239*45537549124^(2/17) 9870002026342059 a001 1134903170/20633239*14662949395604^(2/21) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^26/Lucas(45) 9870002026342059 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^6 9870002026342059 a001 10472279279564050/10610209857723 9870002026342059 a001 9227465/2537720636*73681302247^(1/2) 9870002026342059 a001 1134903170/20633239*10749957122^(1/8) 9870002026342059 a001 9227465/2537720636*10749957122^(13/24) 9870002026342059 a001 1134903170/20633239*4106118243^(3/23) 9870002026342059 a001 9227465/2537720636*4106118243^(13/23) 9870002026342059 a001 4807526976/20633239*599074578^(1/14) 9870002026342059 a001 1134903170/20633239*1568397607^(3/22) 9870002026342059 a001 9227465/17393796001*1568397607^(15/22) 9870002026342059 a001 9227465/6643838879*1568397607^(7/11) 9870002026342059 a001 2971215073/20633239*599074578^(2/21) 9870002026342059 a001 9227465/45537549124*1568397607^(8/11) 9870002026342059 a001 9227465/73681302247*1568397607^(3/4) 9870002026342059 a001 9227465/119218851371*1568397607^(17/22) 9870002026342059 a001 9227465/312119004989*1568397607^(9/11) 9870002026342059 a001 9227465/817138163596*1568397607^(19/22) 9870002026342059 a001 9227465/2139295485799*1568397607^(10/11) 9870002026342059 a001 9227465/5600748293801*1568397607^(21/22) 9870002026342059 a001 9227465/2537720636*1568397607^(13/22) 9870002026342059 a004 Fibonacci(35)*Lucas(44)/(1/2+sqrt(5)/2)^63 9870002026342059 a001 1134903170/20633239*599074578^(1/7) 9870002026342059 a001 7778742049/20633239*228826127^(1/20) 9870002026342059 a001 9227465/969323029*2537720636^(8/15) 9870002026342059 a001 9227465/969323029*45537549124^(8/17) 9870002026342059 a001 9227465/969323029*14662949395604^(8/21) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^24/Lucas(43) 9870002026342059 a001 433494437/20633239*(1/2+1/2*5^(1/2))^8 9870002026342059 a001 433494437/20633239*23725150497407^(1/8) 9870002026342059 a001 4000054745112205/4052739537881 9870002026342059 a001 433494437/20633239*505019158607^(1/7) 9870002026342059 a001 9227465/969323029*192900153618^(4/9) 9870002026342059 a001 433494437/20633239*73681302247^(2/13) 9870002026342059 a001 9227465/969323029*73681302247^(6/13) 9870002026342059 a001 433494437/20633239*10749957122^(1/6) 9870002026342059 a001 9227465/969323029*10749957122^(1/2) 9870002026342059 a001 433494437/20633239*4106118243^(4/23) 9870002026342059 a001 9227465/969323029*4106118243^(12/23) 9870002026342059 a001 433494437/20633239*1568397607^(2/11) 9870002026342059 a001 9227465/969323029*1568397607^(6/11) 9870002026342059 a001 433494437/20633239*599074578^(4/21) 9870002026342059 a001 9227465/4106118243*599074578^(9/14) 9870002026342059 a001 9227465/2537720636*599074578^(13/21) 9870002026342059 a001 9227465/6643838879*599074578^(2/3) 9870002026342059 a001 2971215073/20633239*228826127^(1/10) 9870002026342059 a001 9227465/17393796001*599074578^(5/7) 9870002026342059 a001 9227465/45537549124*599074578^(16/21) 9870002026342059 a001 9227465/73681302247*599074578^(11/14) 9870002026342059 a001 9227465/119218851371*599074578^(17/21) 9870002026342059 a001 9227465/192900153618*599074578^(5/6) 9870002026342059 a001 1836311903/20633239*228826127^(1/8) 9870002026342059 a001 9227465/312119004989*599074578^(6/7) 9870002026342059 a001 9227465/817138163596*599074578^(19/21) 9870002026342059 a001 9227465/1322157322203*599074578^(13/14) 9870002026342059 a001 9227465/2139295485799*599074578^(20/21) 9870002026342059 a001 9227465/969323029*599074578^(4/7) 9870002026342059 a004 Fibonacci(35)*Lucas(42)/(1/2+sqrt(5)/2)^61 9870002026342059 a001 1134903170/20633239*228826127^(3/20) 9870002026342059 a001 433494437/20633239*228826127^(1/5) 9870002026342059 a001 7778742049/20633239*87403803^(1/19) 9870002026342059 a001 165580141/20633239*2537720636^(2/9) 9870002026342059 a001 9227465/370248451*312119004989^(2/5) 9870002026342059 a001 165580141/20633239*312119004989^(2/11) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^22/Lucas(41) 9870002026342059 a001 165580141/20633239*(1/2+1/2*5^(1/2))^10 9870002026342059 a001 305576991154513/309601751184 9870002026342059 a001 165580141/20633239*28143753123^(1/5) 9870002026342059 a001 165580141/20633239*10749957122^(5/24) 9870002026342059 a001 9227465/370248451*10749957122^(11/24) 9870002026342059 a001 165580141/20633239*4106118243^(5/23) 9870002026342059 a001 9227465/370248451*4106118243^(11/23) 9870002026342059 a001 165580141/20633239*1568397607^(5/22) 9870002026342059 a001 9227465/370248451*1568397607^(1/2) 9870002026342059 a001 165580141/20633239*599074578^(5/21) 9870002026342059 a001 9227465/370248451*599074578^(11/21) 9870002026342059 a001 9227465/1568397607*228826127^(5/8) 9870002026342059 a001 165580141/20633239*228826127^(1/4) 9870002026342059 a001 9227465/969323029*228826127^(3/5) 9870002026342059 a001 9227465/2537720636*228826127^(13/20) 9870002026342059 a001 9227465/6643838879*228826127^(7/10) 9870002026342059 a001 2971215073/20633239*87403803^(2/19) 9870002026342059 a001 9227465/17393796001*228826127^(3/4) 9870002026342059 a001 9227465/45537549124*228826127^(4/5) 9870002026342059 a001 9227465/119218851371*228826127^(17/20) 9870002026342059 a001 9227465/192900153618*228826127^(7/8) 9870002026342059 a001 9227465/312119004989*228826127^(9/10) 9870002026342059 a001 9227465/370248451*228826127^(11/20) 9870002026342059 a001 9227465/817138163596*228826127^(19/20) 9870002026342059 a004 Fibonacci(35)*Lucas(40)/(1/2+sqrt(5)/2)^59 9870002026342059 a001 1134903170/20633239*87403803^(3/19) 9870002026342059 a001 433494437/20633239*87403803^(4/19) 9870002026342059 a001 34111385/29134601*12752043^(7/17) 9870002026342059 a001 63245986/20633239*141422324^(4/13) 9870002026342059 a001 165580141/20633239*87403803^(5/19) 9870002026342059 a001 7778742049/20633239*33385282^(1/18) 9870002026342059 a001 9227465/141422324*2537720636^(4/9) 9870002026342059 a001 63245986/20633239*2537720636^(4/15) 9870002026342059 a001 63245986/20633239*45537549124^(4/17) 9870002026342059 a001 63245986/20633239*817138163596^(4/19) 9870002026342059 a001 63245986/20633239*14662949395604^(4/21) 9870002026342059 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^20/Lucas(39) 9870002026342059 a001 63245986/20633239*(1/2+1/2*5^(1/2))^12 9870002026342059 a001 9227465/141422324*23725150497407^(5/16) 9870002026342059 a001 583600122205490/591286729879 9870002026342059 a001 9227465/141422324*505019158607^(5/14) 9870002026342059 a001 63245986/20633239*192900153618^(2/9) 9870002026342059 a001 63245986/20633239*73681302247^(3/13) 9870002026342059 a001 9227465/141422324*73681302247^(5/13) 9870002026342059 a001 9227465/141422324*28143753123^(2/5) 9870002026342059 a001 63245986/20633239*10749957122^(1/4) 9870002026342059 a001 9227465/141422324*10749957122^(5/12) 9870002026342059 a001 63245986/20633239*4106118243^(6/23) 9870002026342059 a001 9227465/141422324*4106118243^(10/23) 9870002026342059 a001 63245986/20633239*1568397607^(3/11) 9870002026342059 a001 9227465/141422324*1568397607^(5/11) 9870002026342059 a001 63245986/20633239*599074578^(2/7) 9870002026342059 a001 9227465/141422324*599074578^(10/21) 9870002026342059 a001 63245986/20633239*228826127^(3/10) 9870002026342059 a001 9227465/141422324*228826127^(1/2) 9870002026342059 a001 4807526976/20633239*33385282^(1/12) 9870002026342059 a001 9227465/370248451*87403803^(11/19) 9870002026342059 a001 9227465/969323029*87403803^(12/19) 9870002026342059 a001 9227465/2537720636*87403803^(13/19) 9870002026342059 a001 63245986/20633239*87403803^(6/19) 9870002026342059 a001 9227465/6643838879*87403803^(14/19) 9870002026342060 a001 2971215073/20633239*33385282^(1/9) 9870002026342060 a001 9227465/17393796001*87403803^(15/19) 9870002026342060 a001 9227465/45537549124*87403803^(16/19) 9870002026342060 a001 9227465/119218851371*87403803^(17/19) 9870002026342060 a001 9227465/141422324*87403803^(10/19) 9870002026342060 a001 9227465/312119004989*87403803^(18/19) 9870002026342060 a004 Fibonacci(35)*Lucas(38)/(1/2+sqrt(5)/2)^57 9870002026342060 a001 1134903170/20633239*33385282^(1/6) 9870002026342060 a001 10983760033/29134601*4870847^(1/16) 9870002026342060 a001 267914296/228826127*12752043^(7/17) 9870002026342060 a001 14930352/54018521*12752043^(1/2) 9870002026342060 a001 165580141/54018521*12752043^(6/17) 9870002026342060 a001 233802911/199691526*12752043^(7/17) 9870002026342060 a001 1836311903/1568397607*12752043^(7/17) 9870002026342060 a001 1602508992/1368706081*12752043^(7/17) 9870002026342060 a001 12586269025/10749957122*12752043^(7/17) 9870002026342060 a001 10983760033/9381251041*12752043^(7/17) 9870002026342060 a001 86267571272/73681302247*12752043^(7/17) 9870002026342060 a001 75283811239/64300051206*12752043^(7/17) 9870002026342060 a001 2504730781961/2139295485799*12752043^(7/17) 9870002026342060 a001 365435296162/312119004989*12752043^(7/17) 9870002026342060 a001 139583862445/119218851371*12752043^(7/17) 9870002026342060 a001 53316291173/45537549124*12752043^(7/17) 9870002026342060 a001 20365011074/17393796001*12752043^(7/17) 9870002026342060 a001 7778742049/6643838879*12752043^(7/17) 9870002026342060 a001 2971215073/2537720636*12752043^(7/17) 9870002026342060 a001 1134903170/969323029*12752043^(7/17) 9870002026342060 a001 433494437/370248451*12752043^(7/17) 9870002026342061 a001 433494437/20633239*33385282^(2/9) 9870002026342061 a001 9238424/711491*33385282^(1/4) 9870002026342061 a001 165580141/141422324*12752043^(7/17) 9870002026342061 a001 165580141/20633239*33385282^(5/18) 9870002026342061 a001 86267571272/228826127*4870847^(1/16) 9870002026342061 a001 267913919/710646*4870847^(1/16) 9870002026342061 a001 39088169/87403803*12752043^(8/17) 9870002026342061 a001 5702887/7881196*7881196^(5/11) 9870002026342061 a001 591286729879/1568397607*4870847^(1/16) 9870002026342061 a001 516002918640/1368706081*4870847^(1/16) 9870002026342061 a001 4052739537881/10749957122*4870847^(1/16) 9870002026342061 a001 3536736619241/9381251041*4870847^(1/16) 9870002026342061 a001 6557470319842/17393796001*4870847^(1/16) 9870002026342061 a001 2504730781961/6643838879*4870847^(1/16) 9870002026342061 a001 956722026041/2537720636*4870847^(1/16) 9870002026342061 a001 365435296162/969323029*4870847^(1/16) 9870002026342061 a001 139583862445/370248451*4870847^(1/16) 9870002026342062 a001 9227465/54018521*141422324^(6/13) 9870002026342062 a001 53316291173/141422324*4870847^(1/16) 9870002026342062 a001 9227465/54018521*2537720636^(2/5) 9870002026342062 a001 24157817/20633239*17393796001^(2/7) 9870002026342062 a001 9227465/54018521*45537549124^(6/17) 9870002026342062 a001 9227465/54018521*14662949395604^(2/7) 9870002026342062 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^18/Lucas(37) 9870002026342062 a001 24157817/20633239*(1/2+1/2*5^(1/2))^14 9870002026342062 a001 24157817/20633239*505019158607^(1/4) 9870002026342062 a001 17147339295685/17373187209 9870002026342062 a001 9227465/54018521*192900153618^(1/3) 9870002026342062 a001 24157817/20633239*10749957122^(7/24) 9870002026342062 a001 9227465/54018521*10749957122^(3/8) 9870002026342062 a001 24157817/20633239*4106118243^(7/23) 9870002026342062 a001 9227465/54018521*4106118243^(9/23) 9870002026342062 a001 24157817/20633239*1568397607^(7/22) 9870002026342062 a001 9227465/54018521*1568397607^(9/22) 9870002026342062 a001 24157817/20633239*599074578^(1/3) 9870002026342062 a001 9227465/54018521*599074578^(3/7) 9870002026342062 a001 63245986/20633239*33385282^(1/3) 9870002026342062 a001 24157817/20633239*228826127^(7/20) 9870002026342062 a001 9227465/54018521*228826127^(9/20) 9870002026342062 a001 14930352/228826127*12752043^(10/17) 9870002026342062 a001 7778742049/20633239*12752043^(1/17) 9870002026342062 a001 24157817/20633239*87403803^(7/19) 9870002026342063 a001 9227465/54018521*87403803^(9/19) 9870002026342064 a001 9227465/228826127*33385282^(7/12) 9870002026342064 a001 102334155/228826127*12752043^(8/17) 9870002026342064 a001 133957148/299537289*12752043^(8/17) 9870002026342064 a001 701408733/1568397607*12752043^(8/17) 9870002026342064 a001 1836311903/4106118243*12752043^(8/17) 9870002026342064 a001 2403763488/5374978561*12752043^(8/17) 9870002026342064 a001 12586269025/28143753123*12752043^(8/17) 9870002026342064 a001 32951280099/73681302247*12752043^(8/17) 9870002026342064 a001 43133785636/96450076809*12752043^(8/17) 9870002026342064 a001 225851433717/505019158607*12752043^(8/17) 9870002026342064 a001 591286729879/1322157322203*12752043^(8/17) 9870002026342064 a001 10610209857723/23725150497407*12752043^(8/17) 9870002026342064 a001 182717648081/408569081798*12752043^(8/17) 9870002026342064 a001 139583862445/312119004989*12752043^(8/17) 9870002026342064 a001 53316291173/119218851371*12752043^(8/17) 9870002026342064 a001 10182505537/22768774562*12752043^(8/17) 9870002026342064 a001 7778742049/17393796001*12752043^(8/17) 9870002026342064 a001 2971215073/6643838879*12752043^(8/17) 9870002026342064 a001 567451585/1268860318*12752043^(8/17) 9870002026342064 a001 433494437/969323029*12752043^(8/17) 9870002026342064 a001 9227465/141422324*33385282^(5/9) 9870002026342064 a001 9227465/370248451*33385282^(11/18) 9870002026342064 a001 165580141/370248451*12752043^(8/17) 9870002026342064 a001 63245986/54018521*12752043^(7/17) 9870002026342064 a001 3524578/1568397607*7881196^(9/11) 9870002026342064 a001 9227465/969323029*33385282^(2/3) 9870002026342065 a001 20365011074/54018521*4870847^(1/16) 9870002026342065 a001 39088169/141422324*12752043^(1/2) 9870002026342065 a001 31622993/70711162*12752043^(8/17) 9870002026342065 a001 9227465/2537720636*33385282^(13/18) 9870002026342065 a001 9227465/4106118243*33385282^(3/4) 9870002026342065 a001 24157817/20633239*33385282^(7/18) 9870002026342065 a001 9227465/6643838879*33385282^(7/9) 9870002026342066 a001 102334155/370248451*12752043^(1/2) 9870002026342066 a001 2971215073/20633239*12752043^(2/17) 9870002026342066 a001 267914296/969323029*12752043^(1/2) 9870002026342066 a001 701408733/2537720636*12752043^(1/2) 9870002026342066 a001 1836311903/6643838879*12752043^(1/2) 9870002026342066 a001 4807526976/17393796001*12752043^(1/2) 9870002026342066 a001 12586269025/45537549124*12752043^(1/2) 9870002026342066 a001 32951280099/119218851371*12752043^(1/2) 9870002026342066 a001 86267571272/312119004989*12752043^(1/2) 9870002026342066 a001 225851433717/817138163596*12752043^(1/2) 9870002026342066 a001 1548008755920/5600748293801*12752043^(1/2) 9870002026342066 a001 139583862445/505019158607*12752043^(1/2) 9870002026342066 a001 53316291173/192900153618*12752043^(1/2) 9870002026342066 a001 20365011074/73681302247*12752043^(1/2) 9870002026342066 a001 7778742049/28143753123*12752043^(1/2) 9870002026342066 a001 2971215073/10749957122*12752043^(1/2) 9870002026342066 a001 1134903170/4106118243*12752043^(1/2) 9870002026342066 a001 433494437/1568397607*12752043^(1/2) 9870002026342066 a001 829464/33281921*12752043^(11/17) 9870002026342066 a001 165580141/599074578*12752043^(1/2) 9870002026342066 a001 9227465/17393796001*33385282^(5/6) 9870002026342066 a001 39088169/228826127*12752043^(9/17) 9870002026342066 a001 63245986/228826127*12752043^(1/2) 9870002026342066 a001 9227465/54018521*33385282^(1/2) 9870002026342066 a001 9227465/45537549124*33385282^(8/9) 9870002026342067 a001 9227465/73681302247*33385282^(11/12) 9870002026342067 a001 9227465/119218851371*33385282^(17/18) 9870002026342067 a001 34111385/199691526*12752043^(9/17) 9870002026342067 a004 Fibonacci(35)*Lucas(36)/(1/2+sqrt(5)/2)^55 9870002026342067 a001 267914296/1568397607*12752043^(9/17) 9870002026342067 a001 233802911/1368706081*12752043^(9/17) 9870002026342067 a001 1836311903/10749957122*12752043^(9/17) 9870002026342067 a001 1602508992/9381251041*12752043^(9/17) 9870002026342067 a001 12586269025/73681302247*12752043^(9/17) 9870002026342067 a001 10983760033/64300051206*12752043^(9/17) 9870002026342067 a001 86267571272/505019158607*12752043^(9/17) 9870002026342067 a001 75283811239/440719107401*12752043^(9/17) 9870002026342067 a001 2504730781961/14662949395604*12752043^(9/17) 9870002026342067 a001 139583862445/817138163596*12752043^(9/17) 9870002026342067 a001 53316291173/312119004989*12752043^(9/17) 9870002026342067 a001 20365011074/119218851371*12752043^(9/17) 9870002026342067 a001 7778742049/45537549124*12752043^(9/17) 9870002026342067 a001 2971215073/17393796001*12752043^(9/17) 9870002026342067 a001 1134903170/6643838879*12752043^(9/17) 9870002026342068 a001 433494437/2537720636*12752043^(9/17) 9870002026342068 a001 165580141/969323029*12752043^(9/17) 9870002026342068 a001 24157817/87403803*12752043^(1/2) 9870002026342068 a001 63245986/370248451*12752043^(9/17) 9870002026342069 a001 1134903170/20633239*12752043^(3/17) 9870002026342069 a001 14930352/1568397607*12752043^(12/17) 9870002026342070 a001 39088169/599074578*12752043^(10/17) 9870002026342071 a001 24157817/54018521*12752043^(8/17) 9870002026342071 a001 14619165/224056801*12752043^(10/17) 9870002026342071 a001 267914296/4106118243*12752043^(10/17) 9870002026342071 a001 701408733/10749957122*12752043^(10/17) 9870002026342071 a001 1836311903/28143753123*12752043^(10/17) 9870002026342071 a001 686789568/10525900321*12752043^(10/17) 9870002026342071 a001 12586269025/192900153618*12752043^(10/17) 9870002026342071 a001 32951280099/505019158607*12752043^(10/17) 9870002026342071 a001 86267571272/1322157322203*12752043^(10/17) 9870002026342071 a001 32264490531/494493258286*12752043^(10/17) 9870002026342071 a001 591286729879/9062201101803*12752043^(10/17) 9870002026342071 a001 1548008755920/23725150497407*12752043^(10/17) 9870002026342071 a001 365435296162/5600748293801*12752043^(10/17) 9870002026342071 a001 139583862445/2139295485799*12752043^(10/17) 9870002026342071 a001 53316291173/817138163596*12752043^(10/17) 9870002026342071 a001 20365011074/312119004989*12752043^(10/17) 9870002026342071 a001 7778742049/119218851371*12752043^(10/17) 9870002026342071 a001 2971215073/45537549124*12752043^(10/17) 9870002026342071 a001 1134903170/17393796001*12752043^(10/17) 9870002026342071 a001 433494437/6643838879*12752043^(10/17) 9870002026342071 a001 165580141/2537720636*12752043^(10/17) 9870002026342071 a001 24157817/141422324*12752043^(9/17) 9870002026342072 a001 63245986/969323029*12752043^(10/17) 9870002026342073 a001 433494437/20633239*12752043^(4/17) 9870002026342073 a001 4976784/1368706081*12752043^(13/17) 9870002026342073 a001 39088169/1568397607*12752043^(11/17) 9870002026342074 a001 34111385/1368706081*12752043^(11/17) 9870002026342075 a001 24157817/370248451*12752043^(10/17) 9870002026342075 a001 133957148/5374978561*12752043^(11/17) 9870002026342075 a001 233802911/9381251041*12752043^(11/17) 9870002026342075 a001 1836311903/73681302247*12752043^(11/17) 9870002026342075 a001 267084832/10716675201*12752043^(11/17) 9870002026342075 a001 12586269025/505019158607*12752043^(11/17) 9870002026342075 a001 10983760033/440719107401*12752043^(11/17) 9870002026342075 a001 43133785636/1730726404001*12752043^(11/17) 9870002026342075 a001 75283811239/3020733700601*12752043^(11/17) 9870002026342075 a001 182717648081/7331474697802*12752043^(11/17) 9870002026342075 a001 139583862445/5600748293801*12752043^(11/17) 9870002026342075 a001 53316291173/2139295485799*12752043^(11/17) 9870002026342075 a001 10182505537/408569081798*12752043^(11/17) 9870002026342075 a001 7778742049/312119004989*12752043^(11/17) 9870002026342075 a001 2971215073/119218851371*12752043^(11/17) 9870002026342075 a001 567451585/22768774562*12752043^(11/17) 9870002026342075 a001 433494437/17393796001*12752043^(11/17) 9870002026342075 a001 165580141/6643838879*12752043^(11/17) 9870002026342075 a001 31622993/1268860318*12752043^(11/17) 9870002026342076 a001 165580141/20633239*12752043^(5/17) 9870002026342076 a001 7465176/5374978561*12752043^(14/17) 9870002026342077 a001 39088169/4106118243*12752043^(12/17) 9870002026342078 a001 102334155/10749957122*12752043^(12/17) 9870002026342078 a001 24157817/969323029*12752043^(11/17) 9870002026342078 a001 267914296/28143753123*12752043^(12/17) 9870002026342078 a001 701408733/73681302247*12752043^(12/17) 9870002026342078 a001 1836311903/192900153618*12752043^(12/17) 9870002026342078 a001 102287808/10745088481*12752043^(12/17) 9870002026342078 a001 12586269025/1322157322203*12752043^(12/17) 9870002026342078 a001 32951280099/3461452808002*12752043^(12/17) 9870002026342078 a001 86267571272/9062201101803*12752043^(12/17) 9870002026342078 a001 225851433717/23725150497407*12752043^(12/17) 9870002026342078 a001 139583862445/14662949395604*12752043^(12/17) 9870002026342078 a001 53316291173/5600748293801*12752043^(12/17) 9870002026342078 a001 20365011074/2139295485799*12752043^(12/17) 9870002026342078 a001 7778742049/817138163596*12752043^(12/17) 9870002026342078 a001 2971215073/312119004989*12752043^(12/17) 9870002026342078 a001 1134903170/119218851371*12752043^(12/17) 9870002026342078 a001 433494437/45537549124*12752043^(12/17) 9870002026342078 a001 165580141/17393796001*12752043^(12/17) 9870002026342079 a001 14930208/103681*4870847^(1/8) 9870002026342079 a001 267914296/12752043*4870847^(1/4) 9870002026342079 a001 63245986/6643838879*12752043^(12/17) 9870002026342079 a001 3524578/370248451*7881196^(8/11) 9870002026342080 a001 9227465/33385282*12752043^(1/2) 9870002026342080 a001 4976784/9381251041*12752043^(15/17) 9870002026342080 a001 63245986/20633239*12752043^(6/17) 9870002026342080 a001 39088169/10749957122*12752043^(13/17) 9870002026342082 a001 831985/228811001*12752043^(13/17) 9870002026342082 a001 24157817/2537720636*12752043^(12/17) 9870002026342082 a001 9227465/20633239*(1/2+1/2*5^(1/2))^16 9870002026342082 a001 9227465/20633239*23725150497407^(1/4) 9870002026342082 a001 85146110326225/86267571272 9870002026342082 a001 9227465/20633239*73681302247^(4/13) 9870002026342082 a001 9227465/20633239*10749957122^(1/3) 9870002026342082 a001 9227465/20633239*4106118243^(8/23) 9870002026342082 a001 9227465/20633239*1568397607^(4/11) 9870002026342082 a001 9227465/20633239*599074578^(8/21) 9870002026342082 a001 267914296/73681302247*12752043^(13/17) 9870002026342082 a001 233802911/64300051206*12752043^(13/17) 9870002026342082 a001 1836311903/505019158607*12752043^(13/17) 9870002026342082 a001 1602508992/440719107401*12752043^(13/17) 9870002026342082 a001 12586269025/3461452808002*12752043^(13/17) 9870002026342082 a001 10983760033/3020733700601*12752043^(13/17) 9870002026342082 a001 86267571272/23725150497407*12752043^(13/17) 9870002026342082 a001 53316291173/14662949395604*12752043^(13/17) 9870002026342082 a001 20365011074/5600748293801*12752043^(13/17) 9870002026342082 a001 7778742049/2139295485799*12752043^(13/17) 9870002026342082 a001 2971215073/817138163596*12752043^(13/17) 9870002026342082 a001 1134903170/312119004989*12752043^(13/17) 9870002026342082 a001 433494437/119218851371*12752043^(13/17) 9870002026342082 a001 9227465/20633239*228826127^(2/5) 9870002026342082 a001 165580141/45537549124*12752043^(13/17) 9870002026342082 a001 63245986/17393796001*12752043^(13/17) 9870002026342082 a001 9227465/20633239*87403803^(8/19) 9870002026342084 a001 14930352/73681302247*12752043^(16/17) 9870002026342084 a001 39088169/28143753123*12752043^(14/17) 9870002026342085 a001 7778742049/20633239*4870847^(1/16) 9870002026342085 a001 14619165/10525900321*12752043^(14/17) 9870002026342085 a001 24157817/6643838879*12752043^(13/17) 9870002026342085 a001 133957148/96450076809*12752043^(14/17) 9870002026342085 a001 701408733/505019158607*12752043^(14/17) 9870002026342085 a001 1836311903/1322157322203*12752043^(14/17) 9870002026342085 a001 14930208/10749853441*12752043^(14/17) 9870002026342085 a001 12586269025/9062201101803*12752043^(14/17) 9870002026342085 a001 32951280099/23725150497407*12752043^(14/17) 9870002026342085 a001 10182505537/7331474697802*12752043^(14/17) 9870002026342085 a001 7778742049/5600748293801*12752043^(14/17) 9870002026342085 a001 2971215073/2139295485799*12752043^(14/17) 9870002026342085 a001 567451585/408569081798*12752043^(14/17) 9870002026342085 a001 433494437/312119004989*12752043^(14/17) 9870002026342085 a001 165580141/119218851371*12752043^(14/17) 9870002026342086 a001 9227465/20633239*33385282^(4/9) 9870002026342086 a001 31622993/22768774562*12752043^(14/17) 9870002026342086 a001 12586269025/87403803*4870847^(1/8) 9870002026342087 a001 24157817/20633239*12752043^(7/17) 9870002026342087 a001 32951280099/228826127*4870847^(1/8) 9870002026342087 a004 Fibonacci(36)*Lucas(34)/(1/2+sqrt(5)/2)^54 9870002026342087 a001 43133785636/299537289*4870847^(1/8) 9870002026342087 a001 32264490531/224056801*4870847^(1/8) 9870002026342087 a001 591286729879/4106118243*4870847^(1/8) 9870002026342087 a001 774004377960/5374978561*4870847^(1/8) 9870002026342087 a001 4052739537881/28143753123*4870847^(1/8) 9870002026342087 a001 1515744265389/10525900321*4870847^(1/8) 9870002026342087 a001 3278735159921/22768774562*4870847^(1/8) 9870002026342087 a001 2504730781961/17393796001*4870847^(1/8) 9870002026342087 a001 956722026041/6643838879*4870847^(1/8) 9870002026342087 a001 182717648081/1268860318*4870847^(1/8) 9870002026342087 a001 139583862445/969323029*4870847^(1/8) 9870002026342087 a001 53316291173/370248451*4870847^(1/8) 9870002026342088 a001 39088169/73681302247*12752043^(15/17) 9870002026342088 a001 10182505537/70711162*4870847^(1/8) 9870002026342089 a001 34111385/64300051206*12752043^(15/17) 9870002026342089 a001 24157817/17393796001*12752043^(14/17) 9870002026342089 a001 1762289/70711162*7881196^(2/3) 9870002026342089 a001 267914296/505019158607*12752043^(15/17) 9870002026342089 a001 233802911/440719107401*12752043^(15/17) 9870002026342089 a001 1836311903/3461452808002*12752043^(15/17) 9870002026342089 a001 1602508992/3020733700601*12752043^(15/17) 9870002026342089 a001 12586269025/23725150497407*12752043^(15/17) 9870002026342089 a001 7778742049/14662949395604*12752043^(15/17) 9870002026342089 a001 2971215073/5600748293801*12752043^(15/17) 9870002026342089 a001 1134903170/2139295485799*12752043^(15/17) 9870002026342089 a001 433494437/817138163596*12752043^(15/17) 9870002026342089 a001 165580141/312119004989*12752043^(15/17) 9870002026342089 a001 63245986/119218851371*12752043^(15/17) 9870002026342091 a001 7778742049/54018521*4870847^(1/8) 9870002026342091 a001 39088169/192900153618*12752043^(16/17) 9870002026342092 a001 3524578/87403803*7881196^(7/11) 9870002026342092 a001 102334155/505019158607*12752043^(16/17) 9870002026342092 a001 24157817/45537549124*12752043^(15/17) 9870002026342092 a001 267914296/1322157322203*12752043^(16/17) 9870002026342092 a001 701408733/3461452808002*12752043^(16/17) 9870002026342092 a001 1836311903/9062201101803*12752043^(16/17) 9870002026342092 a001 4807526976/23725150497407*12752043^(16/17) 9870002026342092 a001 2971215073/14662949395604*12752043^(16/17) 9870002026342092 a001 1134903170/5600748293801*12752043^(16/17) 9870002026342092 a001 433494437/2139295485799*12752043^(16/17) 9870002026342093 a001 165580141/817138163596*12752043^(16/17) 9870002026342093 a001 63245986/312119004989*12752043^(16/17) 9870002026342094 a001 9227465/54018521*12752043^(9/17) 9870002026342095 a001 433494437/4870847*1860498^(1/6) 9870002026342095 a001 9227465/141422324*12752043^(10/17) 9870002026342095 a004 Fibonacci(38)*Lucas(34)/(1/2+sqrt(5)/2)^56 9870002026342096 a004 Fibonacci(40)*Lucas(34)/(1/2+sqrt(5)/2)^58 9870002026342096 a001 24157817/119218851371*12752043^(16/17) 9870002026342096 a004 Fibonacci(42)*Lucas(34)/(1/2+sqrt(5)/2)^60 9870002026342096 a004 Fibonacci(44)*Lucas(34)/(1/2+sqrt(5)/2)^62 9870002026342096 a004 Fibonacci(46)*Lucas(34)/(1/2+sqrt(5)/2)^64 9870002026342096 a004 Fibonacci(48)*Lucas(34)/(1/2+sqrt(5)/2)^66 9870002026342096 a004 Fibonacci(50)*Lucas(34)/(1/2+sqrt(5)/2)^68 9870002026342096 a004 Fibonacci(52)*Lucas(34)/(1/2+sqrt(5)/2)^70 9870002026342096 a004 Fibonacci(54)*Lucas(34)/(1/2+sqrt(5)/2)^72 9870002026342096 a004 Fibonacci(56)*Lucas(34)/(1/2+sqrt(5)/2)^74 9870002026342096 a004 Fibonacci(58)*Lucas(34)/(1/2+sqrt(5)/2)^76 9870002026342096 a004 Fibonacci(60)*Lucas(34)/(1/2+sqrt(5)/2)^78 9870002026342096 a004 Fibonacci(62)*Lucas(34)/(1/2+sqrt(5)/2)^80 9870002026342096 a004 Fibonacci(64)*Lucas(34)/(1/2+sqrt(5)/2)^82 9870002026342096 a004 Fibonacci(66)*Lucas(34)/(1/2+sqrt(5)/2)^84 9870002026342096 a004 Fibonacci(68)*Lucas(34)/(1/2+sqrt(5)/2)^86 9870002026342096 a004 Fibonacci(70)*Lucas(34)/(1/2+sqrt(5)/2)^88 9870002026342096 a004 Fibonacci(72)*Lucas(34)/(1/2+sqrt(5)/2)^90 9870002026342096 a004 Fibonacci(74)*Lucas(34)/(1/2+sqrt(5)/2)^92 9870002026342096 a004 Fibonacci(76)*Lucas(34)/(1/2+sqrt(5)/2)^94 9870002026342096 a004 Fibonacci(78)*Lucas(34)/(1/2+sqrt(5)/2)^96 9870002026342096 a004 Fibonacci(80)*Lucas(34)/(1/2+sqrt(5)/2)^98 9870002026342096 a004 Fibonacci(82)*Lucas(34)/(1/2+sqrt(5)/2)^100 9870002026342096 a004 Fibonacci(81)*Lucas(34)/(1/2+sqrt(5)/2)^99 9870002026342096 a004 Fibonacci(79)*Lucas(34)/(1/2+sqrt(5)/2)^97 9870002026342096 a004 Fibonacci(77)*Lucas(34)/(1/2+sqrt(5)/2)^95 9870002026342096 a004 Fibonacci(75)*Lucas(34)/(1/2+sqrt(5)/2)^93 9870002026342096 a004 Fibonacci(73)*Lucas(34)/(1/2+sqrt(5)/2)^91 9870002026342096 a004 Fibonacci(71)*Lucas(34)/(1/2+sqrt(5)/2)^89 9870002026342096 a004 Fibonacci(69)*Lucas(34)/(1/2+sqrt(5)/2)^87 9870002026342096 a001 2/5702887*(1/2+1/2*5^(1/2))^50 9870002026342096 a004 Fibonacci(67)*Lucas(34)/(1/2+sqrt(5)/2)^85 9870002026342096 a004 Fibonacci(65)*Lucas(34)/(1/2+sqrt(5)/2)^83 9870002026342096 a004 Fibonacci(63)*Lucas(34)/(1/2+sqrt(5)/2)^81 9870002026342096 a004 Fibonacci(61)*Lucas(34)/(1/2+sqrt(5)/2)^79 9870002026342096 a004 Fibonacci(59)*Lucas(34)/(1/2+sqrt(5)/2)^77 9870002026342096 a004 Fibonacci(57)*Lucas(34)/(1/2+sqrt(5)/2)^75 9870002026342096 a004 Fibonacci(55)*Lucas(34)/(1/2+sqrt(5)/2)^73 9870002026342096 a004 Fibonacci(53)*Lucas(34)/(1/2+sqrt(5)/2)^71 9870002026342096 a004 Fibonacci(51)*Lucas(34)/(1/2+sqrt(5)/2)^69 9870002026342096 a004 Fibonacci(49)*Lucas(34)/(1/2+sqrt(5)/2)^67 9870002026342096 a004 Fibonacci(47)*Lucas(34)/(1/2+sqrt(5)/2)^65 9870002026342096 a004 Fibonacci(45)*Lucas(34)/(1/2+sqrt(5)/2)^63 9870002026342096 a004 Fibonacci(43)*Lucas(34)/(1/2+sqrt(5)/2)^61 9870002026342096 a004 Fibonacci(41)*Lucas(34)/(1/2+sqrt(5)/2)^59 9870002026342097 a004 Fibonacci(39)*Lucas(34)/(1/2+sqrt(5)/2)^57 9870002026342098 a001 9227465/370248451*12752043^(11/17) 9870002026342099 a004 Fibonacci(37)*Lucas(34)/(1/2+sqrt(5)/2)^55 9870002026342101 a001 9227465/969323029*12752043^(12/17) 9870002026342104 a001 34111385/4250681*4870847^(5/16) 9870002026342105 a001 1836311903/33385282*4870847^(3/16) 9870002026342105 a001 9227465/2537720636*12752043^(13/17) 9870002026342109 a001 9227465/6643838879*12752043^(14/17) 9870002026342110 a001 9227465/20633239*12752043^(8/17) 9870002026342111 a001 2971215073/20633239*4870847^(1/8) 9870002026342112 a001 1602508992/29134601*4870847^(3/16) 9870002026342112 a001 9227465/17393796001*12752043^(15/17) 9870002026342113 a001 12586269025/228826127*4870847^(3/16) 9870002026342113 a001 10983760033/199691526*4870847^(3/16) 9870002026342113 a001 86267571272/1568397607*4870847^(3/16) 9870002026342113 a001 75283811239/1368706081*4870847^(3/16) 9870002026342113 a001 591286729879/10749957122*4870847^(3/16) 9870002026342113 a001 12585437040/228811001*4870847^(3/16) 9870002026342113 a001 4052739537881/73681302247*4870847^(3/16) 9870002026342113 a001 3536736619241/64300051206*4870847^(3/16) 9870002026342113 a001 6557470319842/119218851371*4870847^(3/16) 9870002026342113 a001 2504730781961/45537549124*4870847^(3/16) 9870002026342113 a001 956722026041/17393796001*4870847^(3/16) 9870002026342113 a001 365435296162/6643838879*4870847^(3/16) 9870002026342113 a001 139583862445/2537720636*4870847^(3/16) 9870002026342113 a001 53316291173/969323029*4870847^(3/16) 9870002026342113 a001 20365011074/370248451*4870847^(3/16) 9870002026342114 a001 7778742049/141422324*4870847^(3/16) 9870002026342116 a001 9227465/45537549124*12752043^(16/17) 9870002026342117 a001 2971215073/54018521*4870847^(3/16) 9870002026342119 a004 Fibonacci(35)*Lucas(34)/(1/2+sqrt(5)/2)^53 9870002026342122 a001 5702887/12752043*4870847^(1/2) 9870002026342124 a001 5702887/7881196*20633239^(3/7) 9870002026342129 a001 39088169/12752043*4870847^(3/8) 9870002026342131 a001 701408733/33385282*4870847^(1/4) 9870002026342131 a001 3524578/20633239*7881196^(6/11) 9870002026342133 a001 5702887/7881196*141422324^(5/13) 9870002026342134 a001 5702887/7881196*2537720636^(1/3) 9870002026342134 a001 6293134019/6376021 9870002026342134 a001 3524578/12752043*45537549124^(1/3) 9870002026342134 a001 5702887/7881196*45537549124^(5/17) 9870002026342134 a001 5702887/7881196*312119004989^(3/11) 9870002026342134 a001 5702887/7881196*14662949395604^(5/21) 9870002026342134 a001 3524578/12752043*(1/2+1/2*5^(1/2))^17 9870002026342134 a001 5702887/7881196*(1/2+1/2*5^(1/2))^15 9870002026342134 a001 5702887/7881196*192900153618^(5/18) 9870002026342134 a001 5702887/7881196*28143753123^(3/10) 9870002026342134 a001 5702887/7881196*10749957122^(5/16) 9870002026342134 a001 5702887/7881196*599074578^(5/14) 9870002026342134 a001 5702887/7881196*228826127^(3/8) 9870002026342137 a001 1134903170/20633239*4870847^(3/16) 9870002026342137 a001 5702887/7881196*33385282^(5/12) 9870002026342138 a001 1836311903/87403803*4870847^(1/4) 9870002026342139 a001 102287808/4868641*4870847^(1/4) 9870002026342139 a001 12586269025/599074578*4870847^(1/4) 9870002026342139 a001 32951280099/1568397607*4870847^(1/4) 9870002026342139 a001 86267571272/4106118243*4870847^(1/4) 9870002026342139 a001 225851433717/10749957122*4870847^(1/4) 9870002026342139 a001 591286729879/28143753123*4870847^(1/4) 9870002026342139 a001 1548008755920/73681302247*4870847^(1/4) 9870002026342139 a001 4052739537881/192900153618*4870847^(1/4) 9870002026342139 a001 225749145909/10745088481*4870847^(1/4) 9870002026342139 a001 6557470319842/312119004989*4870847^(1/4) 9870002026342139 a001 2504730781961/119218851371*4870847^(1/4) 9870002026342139 a001 956722026041/45537549124*4870847^(1/4) 9870002026342139 a001 365435296162/17393796001*4870847^(1/4) 9870002026342139 a001 139583862445/6643838879*4870847^(1/4) 9870002026342139 a001 53316291173/2537720636*4870847^(1/4) 9870002026342139 a001 20365011074/969323029*4870847^(1/4) 9870002026342139 a001 7778742049/370248451*4870847^(1/4) 9870002026342140 a001 2971215073/141422324*4870847^(1/4) 9870002026342140 a001 24157817/7881196*7881196^(4/11) 9870002026342140 a001 39088169/7881196*7881196^(1/3) 9870002026342143 a001 1134903170/54018521*4870847^(1/4) 9870002026342148 a001 4976784/4250681*4870847^(7/16) 9870002026342151 a001 102334155/7881196*7881196^(3/11) 9870002026342156 a001 133957148/16692641*4870847^(5/16) 9870002026342163 a001 433494437/20633239*4870847^(1/4) 9870002026342164 a001 3524578/12752043*12752043^(1/2) 9870002026342164 a001 233802911/29134601*4870847^(5/16) 9870002026342165 a001 1602508992/4250681*1860498^(1/15) 9870002026342165 a001 1836311903/228826127*4870847^(5/16) 9870002026342165 a001 267084832/33281921*4870847^(5/16) 9870002026342165 a001 12586269025/1568397607*4870847^(5/16) 9870002026342165 a001 10983760033/1368706081*4870847^(5/16) 9870002026342165 a001 43133785636/5374978561*4870847^(5/16) 9870002026342165 a001 75283811239/9381251041*4870847^(5/16) 9870002026342165 a001 591286729879/73681302247*4870847^(5/16) 9870002026342165 a001 86000486440/10716675201*4870847^(5/16) 9870002026342165 a001 4052739537881/505019158607*4870847^(5/16) 9870002026342165 a001 3536736619241/440719107401*4870847^(5/16) 9870002026342165 a001 3278735159921/408569081798*4870847^(5/16) 9870002026342165 a001 2504730781961/312119004989*4870847^(5/16) 9870002026342165 a001 956722026041/119218851371*4870847^(5/16) 9870002026342165 a001 182717648081/22768774562*4870847^(5/16) 9870002026342165 a001 139583862445/17393796001*4870847^(5/16) 9870002026342165 a001 53316291173/6643838879*4870847^(5/16) 9870002026342165 a001 10182505537/1268860318*4870847^(5/16) 9870002026342165 a001 7778742049/969323029*4870847^(5/16) 9870002026342165 a001 433494437/7881196*7881196^(2/11) 9870002026342165 a001 2971215073/370248451*4870847^(5/16) 9870002026342166 a001 567451585/70711162*4870847^(5/16) 9870002026342169 a001 433494437/54018521*4870847^(5/16) 9870002026342171 a004 Fibonacci(33)*Lucas(35)/(1/2+sqrt(5)/2)^52 9870002026342174 a001 3524578/6643838879*20633239^(6/7) 9870002026342176 a001 1762289/1268860318*20633239^(4/5) 9870002026342178 a001 1762289/299537289*20633239^(5/7) 9870002026342179 a001 3524578/87403803*20633239^(3/5) 9870002026342180 a001 1836311903/7881196*7881196^(1/11) 9870002026342182 a001 14619165/4769326*4870847^(3/8) 9870002026342184 a001 3524578/54018521*20633239^(4/7) 9870002026342185 a001 3732588/1970299*141422324^(1/3) 9870002026342185 a001 52623190191456/53316291173 9870002026342185 a001 1762289/16692641*817138163596^(1/3) 9870002026342185 a001 1762289/16692641*(1/2+1/2*5^(1/2))^19 9870002026342185 a001 3732588/1970299*(1/2+1/2*5^(1/2))^13 9870002026342185 a001 3732588/1970299*73681302247^(1/4) 9870002026342186 a001 1762289/16692641*87403803^(1/2) 9870002026342188 a001 31622993/3940598*20633239^(2/7) 9870002026342189 a001 165580141/20633239*4870847^(5/16) 9870002026342190 a001 267914296/4870847*1860498^(1/5) 9870002026342190 a001 66978574/1970299*20633239^(1/5) 9870002026342190 a001 267914296/87403803*4870847^(3/8) 9870002026342191 a004 Fibonacci(33)*Lucas(37)/(1/2+sqrt(5)/2)^54 9870002026342191 a001 3524667/39604*20633239^(1/7) 9870002026342191 a001 701408733/228826127*4870847^(3/8) 9870002026342191 a001 1836311903/599074578*4870847^(3/8) 9870002026342191 a001 686789568/224056801*4870847^(3/8) 9870002026342191 a001 12586269025/4106118243*4870847^(3/8) 9870002026342191 a001 32951280099/10749957122*4870847^(3/8) 9870002026342191 a001 86267571272/28143753123*4870847^(3/8) 9870002026342191 a001 32264490531/10525900321*4870847^(3/8) 9870002026342191 a001 591286729879/192900153618*4870847^(3/8) 9870002026342191 a001 1548008755920/505019158607*4870847^(3/8) 9870002026342191 a001 1515744265389/494493258286*4870847^(3/8) 9870002026342191 a001 2504730781961/817138163596*4870847^(3/8) 9870002026342191 a001 956722026041/312119004989*4870847^(3/8) 9870002026342191 a001 365435296162/119218851371*4870847^(3/8) 9870002026342191 a001 139583862445/45537549124*4870847^(3/8) 9870002026342191 a001 53316291173/17393796001*4870847^(3/8) 9870002026342191 a001 20365011074/6643838879*4870847^(3/8) 9870002026342191 a001 7778742049/2537720636*4870847^(3/8) 9870002026342191 a001 2971215073/969323029*4870847^(3/8) 9870002026342191 a001 1134903170/370248451*4870847^(3/8) 9870002026342192 a001 433494437/141422324*4870847^(3/8) 9870002026342193 a001 3524578/87403803*141422324^(7/13) 9870002026342193 a001 3524578/87403803*2537720636^(7/15) 9870002026342193 a001 3524578/87403803*17393796001^(3/7) 9870002026342193 a001 3524578/87403803*45537549124^(7/17) 9870002026342193 a001 1547969668738/1568358005 9870002026342193 a001 39088169/7881196*312119004989^(1/5) 9870002026342193 a001 3524578/87403803*14662949395604^(1/3) 9870002026342193 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^21/Lucas(38) 9870002026342193 a001 39088169/7881196*(1/2+1/2*5^(1/2))^11 9870002026342193 a001 3524578/87403803*192900153618^(7/18) 9870002026342193 a001 3524578/87403803*10749957122^(7/16) 9870002026342193 a001 39088169/7881196*1568397607^(1/4) 9870002026342193 a001 3524578/87403803*599074578^(1/2) 9870002026342194 a004 Fibonacci(33)*Lucas(39)/(1/2+sqrt(5)/2)^56 9870002026342194 a001 3524578/119218851371*141422324^(12/13) 9870002026342194 a001 3524578/28143753123*141422324^(11/13) 9870002026342194 a001 3524578/6643838879*141422324^(10/13) 9870002026342194 a001 3524578/1568397607*141422324^(9/13) 9870002026342194 a001 3524578/969323029*141422324^(2/3) 9870002026342194 a001 102334155/7881196*141422324^(3/13) 9870002026342194 a001 3524578/370248451*141422324^(8/13) 9870002026342194 a001 102334155/7881196*2537720636^(1/5) 9870002026342194 a001 102334155/7881196*45537549124^(3/17) 9870002026342194 a001 180342355680795/182717648081 9870002026342194 a001 102334155/7881196*817138163596^(3/19) 9870002026342194 a001 102334155/7881196*14662949395604^(1/7) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^23/Lucas(40) 9870002026342194 a001 102334155/7881196*(1/2+1/2*5^(1/2))^9 9870002026342194 a001 102334155/7881196*192900153618^(1/6) 9870002026342194 a001 102334155/7881196*10749957122^(3/16) 9870002026342194 a001 3524578/228826127*4106118243^(1/2) 9870002026342194 a001 102334155/7881196*599074578^(3/14) 9870002026342194 a004 Fibonacci(33)*Lucas(41)/(1/2+sqrt(5)/2)^58 9870002026342194 a001 433494437/7881196*141422324^(2/13) 9870002026342194 a001 1836311903/7881196*141422324^(1/13) 9870002026342194 a001 1762289/299537289*2537720636^(5/9) 9870002026342194 a001 66978574/1970299*17393796001^(1/7) 9870002026342194 a001 1762289/299537289*312119004989^(5/11) 9870002026342194 a001 66978574/1970299*14662949395604^(1/9) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^25/Lucas(42) 9870002026342194 a001 66978574/1970299*(1/2+1/2*5^(1/2))^7 9870002026342194 a001 1762289/299537289*3461452808002^(5/12) 9870002026342194 a001 1762289/299537289*28143753123^(1/2) 9870002026342194 a001 66978574/1970299*599074578^(1/6) 9870002026342194 a004 Fibonacci(33)*Lucas(43)/(1/2+sqrt(5)/2)^60 9870002026342194 a001 3524578/1568397607*2537720636^(3/5) 9870002026342194 a001 3524667/39604*2537720636^(1/9) 9870002026342194 a001 3524578/1568397607*45537549124^(9/17) 9870002026342194 a001 3524667/39604*312119004989^(1/11) 9870002026342194 a001 2472169789339674/2504730781961 9870002026342194 a001 3524578/1568397607*14662949395604^(3/7) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^27/Lucas(44) 9870002026342194 a001 3524667/39604*(1/2+1/2*5^(1/2))^5 9870002026342194 a001 3524578/1568397607*192900153618^(1/2) 9870002026342194 a001 3524667/39604*28143753123^(1/10) 9870002026342194 a001 3524578/1568397607*10749957122^(9/16) 9870002026342194 a004 Fibonacci(33)*Lucas(45)/(1/2+sqrt(5)/2)^62 9870002026342194 a001 3524578/2139295485799*2537720636^(14/15) 9870002026342194 a001 1762289/408569081798*2537720636^(8/9) 9870002026342194 a001 3524578/505019158607*2537720636^(13/15) 9870002026342194 a001 3524578/119218851371*2537720636^(4/5) 9870002026342194 a001 3524578/73681302247*2537720636^(7/9) 9870002026342194 a001 3524578/28143753123*2537720636^(11/15) 9870002026342194 a001 3524578/6643838879*2537720636^(2/3) 9870002026342194 a001 1836311903/7881196*2537720636^(1/15) 9870002026342194 a001 1836311903/7881196*45537549124^(1/17) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^29/Lucas(46) 9870002026342194 a001 1836311903/7881196*14662949395604^(1/21) 9870002026342194 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^3 9870002026342194 a001 3524578/4106118243*1322157322203^(1/2) 9870002026342194 a001 1836311903/7881196*192900153618^(1/18) 9870002026342194 a001 1836311903/7881196*10749957122^(1/16) 9870002026342194 a004 Fibonacci(33)*Lucas(47)/(1/2+sqrt(5)/2)^64 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^31/Lucas(48) 9870002026342194 a001 600940872/1970299+600940872/1970299*5^(1/2) 9870002026342194 a001 1762289/5374978561*9062201101803^(1/2) 9870002026342194 a004 Fibonacci(33)*Lucas(49)/(1/2+sqrt(5)/2)^66 9870002026342194 a001 3524578/2139295485799*17393796001^(6/7) 9870002026342194 a001 3524578/73681302247*17393796001^(5/7) 9870002026342194 a001 3524578/28143753123*45537549124^(11/17) 9870002026342194 a001 3524578/28143753123*312119004989^(3/5) 9870002026342194 a001 3524578/28143753123*817138163596^(11/19) 9870002026342194 a001 3524578/28143753123*14662949395604^(11/21) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^33/Lucas(50) 9870002026342194 a004 Fibonacci(50)/Lucas(33)/(1/2+sqrt(5)/2) 9870002026342194 a001 3524578/28143753123*192900153618^(11/18) 9870002026342194 a004 Fibonacci(33)*Lucas(51)/(1/2+sqrt(5)/2)^68 9870002026342194 a001 3524578/9062201101803*45537549124^(15/17) 9870002026342194 a001 3524578/2139295485799*45537549124^(14/17) 9870002026342194 a001 3524578/505019158607*45537549124^(13/17) 9870002026342194 a001 3524578/119218851371*45537549124^(12/17) 9870002026342194 a001 3524578/73681302247*312119004989^(7/11) 9870002026342194 a001 3524578/73681302247*14662949395604^(5/9) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^35/Lucas(52) 9870002026342194 a004 Fibonacci(52)/Lucas(33)/(1/2+sqrt(5)/2)^3 9870002026342194 a001 3524578/73681302247*505019158607^(5/8) 9870002026342194 a004 Fibonacci(33)*Lucas(53)/(1/2+sqrt(5)/2)^70 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^37/Lucas(54) 9870002026342194 a004 Fibonacci(54)/Lucas(33)/(1/2+sqrt(5)/2)^5 9870002026342194 a004 Fibonacci(33)*Lucas(55)/(1/2+sqrt(5)/2)^72 9870002026342194 a001 3524578/5600748293801*312119004989^(4/5) 9870002026342194 a001 1762289/408569081798*312119004989^(8/11) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^39/Lucas(56) 9870002026342194 a004 Fibonacci(56)/Lucas(33)/(1/2+sqrt(5)/2)^7 9870002026342194 a004 Fibonacci(33)*Lucas(57)/(1/2+sqrt(5)/2)^74 9870002026342194 a001 3524578/2139295485799*817138163596^(14/19) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^41/Lucas(58) 9870002026342194 a004 Fibonacci(58)/Lucas(33)/(1/2+sqrt(5)/2)^9 9870002026342194 a004 Fibonacci(33)*Lucas(59)/(1/2+sqrt(5)/2)^76 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^43/Lucas(60) 9870002026342194 a004 Fibonacci(60)/Lucas(33)/(1/2+sqrt(5)/2)^11 9870002026342194 a004 Fibonacci(33)*Lucas(61)/(1/2+sqrt(5)/2)^78 9870002026342194 a001 3524578/9062201101803*14662949395604^(5/7) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^45/Lucas(62) 9870002026342194 a004 Fibonacci(62)/Lucas(33)/(1/2+sqrt(5)/2)^13 9870002026342194 a004 Fibonacci(33)*Lucas(63)/(1/2+sqrt(5)/2)^80 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^47/Lucas(64) 9870002026342194 a004 Fibonacci(64)/Lucas(33)/(1/2+sqrt(5)/2)^15 9870002026342194 a004 Fibonacci(33)*Lucas(65)/(1/2+sqrt(5)/2)^82 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^49/Lucas(66) 9870002026342194 a004 Fibonacci(33)*Lucas(67)/(1/2+sqrt(5)/2)^84 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^51/Lucas(68) 9870002026342194 a004 Fibonacci(33)*Lucas(69)/(1/2+sqrt(5)/2)^86 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^53/Lucas(70) 9870002026342194 a004 Fibonacci(33)*Lucas(71)/(1/2+sqrt(5)/2)^88 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^55/Lucas(72) 9870002026342194 a004 Fibonacci(33)*Lucas(73)/(1/2+sqrt(5)/2)^90 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^57/Lucas(74) 9870002026342194 a004 Fibonacci(33)*Lucas(75)/(1/2+sqrt(5)/2)^92 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^59/Lucas(76) 9870002026342194 a004 Fibonacci(33)*Lucas(77)/(1/2+sqrt(5)/2)^94 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^61/Lucas(78) 9870002026342194 a004 Fibonacci(33)*Lucas(79)/(1/2+sqrt(5)/2)^96 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^63/Lucas(80) 9870002026342194 a004 Fibonacci(33)*Lucas(81)/(1/2+sqrt(5)/2)^98 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^65/Lucas(82) 9870002026342194 a004 Fibonacci(33)*Lucas(83)/(1/2+sqrt(5)/2)^100 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^67/Lucas(84) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^69/Lucas(86) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^71/Lucas(88) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^73/Lucas(90) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^75/Lucas(92) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^77/Lucas(94) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^79/Lucas(96) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^81/Lucas(98) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^83/Lucas(100) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^82/Lucas(99) 9870002026342194 a004 Fibonacci(33)*Lucas(1)/(1/2+sqrt(5)/2)^17 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^80/Lucas(97) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^78/Lucas(95) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^76/Lucas(93) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^74/Lucas(91) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^72/Lucas(89) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^70/Lucas(87) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^68/Lucas(85) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^66/Lucas(83) 9870002026342194 a004 Fibonacci(33)*Lucas(82)/(1/2+sqrt(5)/2)^99 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^64/Lucas(81) 9870002026342194 a004 Fibonacci(33)*Lucas(80)/(1/2+sqrt(5)/2)^97 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^62/Lucas(79) 9870002026342194 a004 Fibonacci(33)*Lucas(78)/(1/2+sqrt(5)/2)^95 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^60/Lucas(77) 9870002026342194 a004 Fibonacci(33)*Lucas(76)/(1/2+sqrt(5)/2)^93 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^58/Lucas(75) 9870002026342194 a004 Fibonacci(33)*Lucas(74)/(1/2+sqrt(5)/2)^91 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^56/Lucas(73) 9870002026342194 a004 Fibonacci(33)*Lucas(72)/(1/2+sqrt(5)/2)^89 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^54/Lucas(71) 9870002026342194 a004 Fibonacci(33)*Lucas(70)/(1/2+sqrt(5)/2)^87 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^52/Lucas(69) 9870002026342194 a004 Fibonacci(33)*Lucas(68)/(1/2+sqrt(5)/2)^85 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^50/Lucas(67) 9870002026342194 a004 Fibonacci(68)/Lucas(33)/(1/2+sqrt(5)/2)^19 9870002026342194 a004 Fibonacci(70)/Lucas(33)/(1/2+sqrt(5)/2)^21 9870002026342194 a004 Fibonacci(72)/Lucas(33)/(1/2+sqrt(5)/2)^23 9870002026342194 a004 Fibonacci(74)/Lucas(33)/(1/2+sqrt(5)/2)^25 9870002026342194 a004 Fibonacci(76)/Lucas(33)/(1/2+sqrt(5)/2)^27 9870002026342194 a004 Fibonacci(78)/Lucas(33)/(1/2+sqrt(5)/2)^29 9870002026342194 a004 Fibonacci(80)/Lucas(33)/(1/2+sqrt(5)/2)^31 9870002026342194 a004 Fibonacci(82)/Lucas(33)/(1/2+sqrt(5)/2)^33 9870002026342194 a004 Fibonacci(84)/Lucas(33)/(1/2+sqrt(5)/2)^35 9870002026342194 a004 Fibonacci(86)/Lucas(33)/(1/2+sqrt(5)/2)^37 9870002026342194 a004 Fibonacci(88)/Lucas(33)/(1/2+sqrt(5)/2)^39 9870002026342194 a004 Fibonacci(90)/Lucas(33)/(1/2+sqrt(5)/2)^41 9870002026342194 a004 Fibonacci(92)/Lucas(33)/(1/2+sqrt(5)/2)^43 9870002026342194 a004 Fibonacci(94)/Lucas(33)/(1/2+sqrt(5)/2)^45 9870002026342194 a004 Fibonacci(96)/Lucas(33)/(1/2+sqrt(5)/2)^47 9870002026342194 a004 Fibonacci(100)/Lucas(33)/(1/2+sqrt(5)/2)^51 9870002026342194 a004 Fibonacci(98)/Lucas(33)/(1/2+sqrt(5)/2)^49 9870002026342194 a004 Fibonacci(33)*Lucas(66)/(1/2+sqrt(5)/2)^83 9870002026342194 a004 Fibonacci(99)/Lucas(33)/(1/2+sqrt(5)/2)^50 9870002026342194 a004 Fibonacci(97)/Lucas(33)/(1/2+sqrt(5)/2)^48 9870002026342194 a004 Fibonacci(95)/Lucas(33)/(1/2+sqrt(5)/2)^46 9870002026342194 a004 Fibonacci(93)/Lucas(33)/(1/2+sqrt(5)/2)^44 9870002026342194 a004 Fibonacci(91)/Lucas(33)/(1/2+sqrt(5)/2)^42 9870002026342194 a004 Fibonacci(89)/Lucas(33)/(1/2+sqrt(5)/2)^40 9870002026342194 a004 Fibonacci(87)/Lucas(33)/(1/2+sqrt(5)/2)^38 9870002026342194 a004 Fibonacci(85)/Lucas(33)/(1/2+sqrt(5)/2)^36 9870002026342194 a004 Fibonacci(83)/Lucas(33)/(1/2+sqrt(5)/2)^34 9870002026342194 a004 Fibonacci(81)/Lucas(33)/(1/2+sqrt(5)/2)^32 9870002026342194 a004 Fibonacci(79)/Lucas(33)/(1/2+sqrt(5)/2)^30 9870002026342194 a004 Fibonacci(77)/Lucas(33)/(1/2+sqrt(5)/2)^28 9870002026342194 a004 Fibonacci(75)/Lucas(33)/(1/2+sqrt(5)/2)^26 9870002026342194 a004 Fibonacci(73)/Lucas(33)/(1/2+sqrt(5)/2)^24 9870002026342194 a004 Fibonacci(71)/Lucas(33)/(1/2+sqrt(5)/2)^22 9870002026342194 a004 Fibonacci(69)/Lucas(33)/(1/2+sqrt(5)/2)^20 9870002026342194 a004 Fibonacci(67)/Lucas(33)/(1/2+sqrt(5)/2)^18 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^48/Lucas(65) 9870002026342194 a004 Fibonacci(65)/Lucas(33)/(1/2+sqrt(5)/2)^16 9870002026342194 a004 Fibonacci(33)*Lucas(64)/(1/2+sqrt(5)/2)^81 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^46/Lucas(63) 9870002026342194 a004 Fibonacci(63)/Lucas(33)/(1/2+sqrt(5)/2)^14 9870002026342194 a004 Fibonacci(33)*Lucas(62)/(1/2+sqrt(5)/2)^79 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^44/Lucas(61) 9870002026342194 a004 Fibonacci(61)/Lucas(33)/(1/2+sqrt(5)/2)^12 9870002026342194 a001 3524578/5600748293801*23725150497407^(11/16) 9870002026342194 a004 Fibonacci(33)*Lucas(60)/(1/2+sqrt(5)/2)^77 9870002026342194 a001 3524578/2139295485799*14662949395604^(2/3) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^42/Lucas(59) 9870002026342194 a004 Fibonacci(59)/Lucas(33)/(1/2+sqrt(5)/2)^10 9870002026342194 a004 Fibonacci(33)*Lucas(58)/(1/2+sqrt(5)/2)^75 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^40/Lucas(57) 9870002026342194 a004 Fibonacci(57)/Lucas(33)/(1/2+sqrt(5)/2)^8 9870002026342194 a001 1762289/408569081798*23725150497407^(5/8) 9870002026342194 a001 3524578/2139295485799*505019158607^(3/4) 9870002026342194 a004 Fibonacci(33)*Lucas(56)/(1/2+sqrt(5)/2)^73 9870002026342194 a001 3524578/312119004989*817138163596^(2/3) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^38/Lucas(55) 9870002026342194 a004 Fibonacci(55)/Lucas(33)/(1/2+sqrt(5)/2)^6 9870002026342194 a001 3524578/505019158607*192900153618^(13/18) 9870002026342194 a001 3524578/2139295485799*192900153618^(7/9) 9870002026342194 a004 Fibonacci(33)*Lucas(54)/(1/2+sqrt(5)/2)^71 9870002026342194 a001 3524578/119218851371*14662949395604^(4/7) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^36/Lucas(53) 9870002026342194 a004 Fibonacci(53)/Lucas(33)/(1/2+sqrt(5)/2)^4 9870002026342194 a001 3524578/119218851371*505019158607^(9/14) 9870002026342194 a001 3524578/119218851371*192900153618^(2/3) 9870002026342194 a001 3524578/505019158607*73681302247^(3/4) 9870002026342194 a001 1762289/408569081798*73681302247^(10/13) 9870002026342194 a001 3524578/5600748293801*73681302247^(11/13) 9870002026342194 a001 1762289/22768774562*45537549124^(2/3) 9870002026342194 a004 Fibonacci(33)*Lucas(52)/(1/2+sqrt(5)/2)^69 9870002026342194 a001 3524578/119218851371*73681302247^(9/13) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^34/Lucas(51) 9870002026342194 a004 Fibonacci(51)/Lucas(33)/(1/2+sqrt(5)/2)^2 9870002026342194 a001 3524578/73681302247*28143753123^(7/10) 9870002026342194 a001 1762289/408569081798*28143753123^(4/5) 9870002026342194 a001 3524578/9062201101803*28143753123^(9/10) 9870002026342194 a004 Fibonacci(33)*Lucas(50)/(1/2+sqrt(5)/2)^67 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^32/Lucas(49) 9870002026342194 a006 5^(1/2)*Fibonacci(49)/Lucas(33)/sqrt(5) 9870002026342194 a001 3524578/17393796001*23725150497407^(1/2) 9870002026342194 a001 3524578/17393796001*505019158607^(4/7) 9870002026342194 a001 3524578/17393796001*73681302247^(8/13) 9870002026342194 a001 3524578/28143753123*10749957122^(11/16) 9870002026342194 a001 3524578/119218851371*10749957122^(3/4) 9870002026342194 a001 1762289/22768774562*10749957122^(17/24) 9870002026342194 a001 3524578/312119004989*10749957122^(19/24) 9870002026342194 a001 3524578/505019158607*10749957122^(13/16) 9870002026342194 a001 1762289/408569081798*10749957122^(5/6) 9870002026342194 a001 3524578/2139295485799*10749957122^(7/8) 9870002026342194 a001 3524578/5600748293801*10749957122^(11/12) 9870002026342194 a001 3524578/9062201101803*10749957122^(15/16) 9870002026342194 a001 1762289/7331474697802*10749957122^(23/24) 9870002026342194 a004 Fibonacci(33)*Lucas(48)/(1/2+sqrt(5)/2)^65 9870002026342194 a001 3524578/17393796001*10749957122^(2/3) 9870002026342194 a001 3524578/6643838879*45537549124^(10/17) 9870002026342194 a001 3524578/6643838879*312119004989^(6/11) 9870002026342194 a001 3524578/6643838879*14662949395604^(10/21) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^30/Lucas(47) 9870002026342194 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^2 9870002026342194 a001 10472279279564194/10610209857723 9870002026342194 a001 3524578/6643838879*192900153618^(5/9) 9870002026342194 a001 2971215073/7881196*10749957122^(1/24) 9870002026342194 a001 3524578/6643838879*28143753123^(3/5) 9870002026342194 a001 2971215073/7881196*4106118243^(1/23) 9870002026342194 a001 3524578/6643838879*10749957122^(5/8) 9870002026342194 a001 2971215073/7881196*1568397607^(1/22) 9870002026342194 a001 1762289/22768774562*4106118243^(17/23) 9870002026342194 a001 3524578/17393796001*4106118243^(16/23) 9870002026342194 a001 3524578/119218851371*4106118243^(18/23) 9870002026342194 a001 3524578/312119004989*4106118243^(19/23) 9870002026342194 a001 1762289/408569081798*4106118243^(20/23) 9870002026342194 a001 3524578/2139295485799*4106118243^(21/23) 9870002026342194 a001 3524578/5600748293801*4106118243^(22/23) 9870002026342194 a004 Fibonacci(33)*Lucas(46)/(1/2+sqrt(5)/2)^63 9870002026342194 a001 3524578/6643838879*4106118243^(15/23) 9870002026342194 a001 1836311903/7881196*599074578^(1/14) 9870002026342194 a001 1762289/1268860318*17393796001^(4/7) 9870002026342194 a001 1762289/1268860318*14662949395604^(4/9) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^28/Lucas(45) 9870002026342194 a001 567451585/3940598*(1/2+1/2*5^(1/2))^4 9870002026342194 a001 567451585/3940598*23725150497407^(1/16) 9870002026342194 a001 1762289/1268860318*505019158607^(1/2) 9870002026342194 a001 567451585/3940598*73681302247^(1/13) 9870002026342194 a001 2971215073/7881196*599074578^(1/21) 9870002026342194 a001 1762289/1268860318*73681302247^(7/13) 9870002026342194 a001 567451585/3940598*10749957122^(1/12) 9870002026342194 a001 1762289/1268860318*10749957122^(7/12) 9870002026342194 a001 567451585/3940598*4106118243^(2/23) 9870002026342194 a001 1762289/1268860318*4106118243^(14/23) 9870002026342194 a001 567451585/3940598*1568397607^(1/11) 9870002026342194 a001 3524578/17393796001*1568397607^(8/11) 9870002026342194 a001 3524578/6643838879*1568397607^(15/22) 9870002026342194 a001 3524578/28143753123*1568397607^(3/4) 9870002026342194 a001 1762289/22768774562*1568397607^(17/22) 9870002026342194 a001 3524578/119218851371*1568397607^(9/11) 9870002026342194 a001 3524578/312119004989*1568397607^(19/22) 9870002026342194 a001 1762289/408569081798*1568397607^(10/11) 9870002026342194 a001 3524578/2139295485799*1568397607^(21/22) 9870002026342194 a004 Fibonacci(33)*Lucas(44)/(1/2+sqrt(5)/2)^61 9870002026342194 a001 1762289/1268860318*1568397607^(7/11) 9870002026342194 a001 567451585/3940598*599074578^(2/21) 9870002026342194 a001 2971215073/7881196*228826127^(1/20) 9870002026342194 a001 433494437/7881196*2537720636^(2/15) 9870002026342194 a001 433494437/7881196*45537549124^(2/17) 9870002026342194 a001 433494437/7881196*14662949395604^(2/21) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^26/Lucas(43) 9870002026342194 a001 433494437/7881196*(1/2+1/2*5^(1/2))^6 9870002026342194 a001 3524578/969323029*73681302247^(1/2) 9870002026342194 a001 433494437/7881196*10749957122^(1/8) 9870002026342194 a001 3524578/969323029*10749957122^(13/24) 9870002026342194 a001 433494437/7881196*4106118243^(3/23) 9870002026342194 a001 3524578/969323029*4106118243^(13/23) 9870002026342194 a001 433494437/7881196*1568397607^(3/22) 9870002026342194 a001 3524578/969323029*1568397607^(13/22) 9870002026342194 a001 3524578/1568397607*599074578^(9/14) 9870002026342194 a001 433494437/7881196*599074578^(1/7) 9870002026342194 a001 3524667/39604*228826127^(1/8) 9870002026342194 a001 1762289/1268860318*599074578^(2/3) 9870002026342194 a001 3524578/6643838879*599074578^(5/7) 9870002026342194 a001 567451585/3940598*228826127^(1/10) 9870002026342194 a001 3524578/17393796001*599074578^(16/21) 9870002026342194 a001 3524578/28143753123*599074578^(11/14) 9870002026342194 a001 1762289/22768774562*599074578^(17/21) 9870002026342194 a001 3524578/73681302247*599074578^(5/6) 9870002026342194 a001 3524578/119218851371*599074578^(6/7) 9870002026342194 a001 3524578/312119004989*599074578^(19/21) 9870002026342194 a001 3524578/505019158607*599074578^(13/14) 9870002026342194 a001 1762289/408569081798*599074578^(20/21) 9870002026342194 a004 Fibonacci(33)*Lucas(42)/(1/2+sqrt(5)/2)^59 9870002026342194 a001 3524578/969323029*599074578^(13/21) 9870002026342194 a001 433494437/7881196*228826127^(3/20) 9870002026342194 a001 2971215073/7881196*87403803^(1/19) 9870002026342194 a001 3524578/370248451*2537720636^(8/15) 9870002026342194 a001 3524578/370248451*45537549124^(8/17) 9870002026342194 a001 3524578/370248451*14662949395604^(8/21) 9870002026342194 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^24/Lucas(41) 9870002026342194 a001 165580141/7881196*(1/2+1/2*5^(1/2))^8 9870002026342194 a001 165580141/7881196*23725150497407^(1/8) 9870002026342194 a001 165580141/7881196*505019158607^(1/7) 9870002026342194 a001 583600122205498/591286729879 9870002026342194 a001 3524578/370248451*192900153618^(4/9) 9870002026342194 a001 165580141/7881196*73681302247^(2/13) 9870002026342194 a001 3524578/370248451*73681302247^(6/13) 9870002026342194 a001 165580141/7881196*10749957122^(1/6) 9870002026342194 a001 3524578/370248451*10749957122^(1/2) 9870002026342194 a001 165580141/7881196*4106118243^(4/23) 9870002026342194 a001 3524578/370248451*4106118243^(12/23) 9870002026342194 a001 165580141/7881196*1568397607^(2/11) 9870002026342194 a001 3524578/370248451*1568397607^(6/11) 9870002026342194 a001 165580141/7881196*599074578^(4/21) 9870002026342194 a001 3524578/370248451*599074578^(4/7) 9870002026342194 a001 1762289/299537289*228826127^(5/8) 9870002026342194 a001 165580141/7881196*228826127^(1/5) 9870002026342194 a001 3524578/969323029*228826127^(13/20) 9870002026342194 a001 1762289/1268860318*228826127^(7/10) 9870002026342194 a001 567451585/3940598*87403803^(2/19) 9870002026342194 a001 3524578/6643838879*228826127^(3/4) 9870002026342194 a001 3524578/17393796001*228826127^(4/5) 9870002026342194 a001 1762289/22768774562*228826127^(17/20) 9870002026342194 a001 3524578/73681302247*228826127^(7/8) 9870002026342194 a001 3524578/119218851371*228826127^(9/10) 9870002026342194 a001 3524578/312119004989*228826127^(19/20) 9870002026342194 a001 3524578/370248451*228826127^(3/5) 9870002026342194 a004 Fibonacci(33)*Lucas(40)/(1/2+sqrt(5)/2)^57 9870002026342194 a001 433494437/7881196*87403803^(3/19) 9870002026342195 a001 165580141/7881196*87403803^(4/19) 9870002026342195 a001 2971215073/7881196*33385282^(1/18) 9870002026342195 a001 31622993/3940598*2537720636^(2/9) 9870002026342195 a001 1762289/70711162*312119004989^(2/5) 9870002026342195 a001 31622993/3940598*312119004989^(2/11) 9870002026342195 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^22/Lucas(39) 9870002026342195 a001 31622993/3940598*(1/2+1/2*5^(1/2))^10 9870002026342195 a001 222915410843908/225851433717 9870002026342195 a001 31622993/3940598*28143753123^(1/5) 9870002026342195 a001 31622993/3940598*10749957122^(5/24) 9870002026342195 a001 1762289/70711162*10749957122^(11/24) 9870002026342195 a001 31622993/3940598*4106118243^(5/23) 9870002026342195 a001 1762289/70711162*4106118243^(11/23) 9870002026342195 a001 31622993/3940598*1568397607^(5/22) 9870002026342195 a001 1762289/70711162*1568397607^(1/2) 9870002026342195 a001 31622993/3940598*599074578^(5/21) 9870002026342195 a001 1762289/70711162*599074578^(11/21) 9870002026342195 a001 31622993/3940598*228826127^(1/4) 9870002026342195 a001 165580141/54018521*4870847^(3/8) 9870002026342195 a001 1762289/70711162*228826127^(11/20) 9870002026342195 a001 1836311903/7881196*33385282^(1/12) 9870002026342195 a001 31622993/3940598*87403803^(5/19) 9870002026342195 a001 3524578/370248451*87403803^(12/19) 9870002026342195 a001 3524578/969323029*87403803^(13/19) 9870002026342195 a001 1762289/1268860318*87403803^(14/19) 9870002026342195 a001 567451585/3940598*33385282^(1/9) 9870002026342195 a001 3524578/6643838879*87403803^(15/19) 9870002026342195 a001 3524578/17393796001*87403803^(16/19) 9870002026342195 a001 1762289/22768774562*87403803^(17/19) 9870002026342195 a001 3524578/119218851371*87403803^(18/19) 9870002026342196 a001 1762289/70711162*87403803^(11/19) 9870002026342196 a004 Fibonacci(33)*Lucas(38)/(1/2+sqrt(5)/2)^55 9870002026342196 a001 433494437/7881196*33385282^(1/6) 9870002026342196 a001 102334155/7881196*33385282^(1/4) 9870002026342196 a001 165580141/7881196*33385282^(2/9) 9870002026342197 a001 31622993/3940598*33385282^(5/18) 9870002026342197 a001 24157817/7881196*141422324^(4/13) 9870002026342198 a001 3524578/54018521*2537720636^(4/9) 9870002026342198 a001 24157817/7881196*2537720636^(4/15) 9870002026342198 a001 24157817/7881196*45537549124^(4/17) 9870002026342198 a001 24157817/7881196*817138163596^(4/19) 9870002026342198 a001 24157817/7881196*14662949395604^(4/21) 9870002026342198 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^20/Lucas(37) 9870002026342198 a001 24157817/7881196*(1/2+1/2*5^(1/2))^12 9870002026342198 a001 3524578/54018521*505019158607^(5/14) 9870002026342198 a001 24157817/7881196*192900153618^(2/9) 9870002026342198 a001 42573055163113/43133785636 9870002026342198 a001 24157817/7881196*73681302247^(3/13) 9870002026342198 a001 3524578/54018521*73681302247^(5/13) 9870002026342198 a001 3524578/54018521*28143753123^(2/5) 9870002026342198 a001 24157817/7881196*10749957122^(1/4) 9870002026342198 a001 3524578/54018521*10749957122^(5/12) 9870002026342198 a001 24157817/7881196*4106118243^(6/23) 9870002026342198 a001 3524578/54018521*4106118243^(10/23) 9870002026342198 a001 24157817/7881196*1568397607^(3/11) 9870002026342198 a001 3524578/54018521*1568397607^(5/11) 9870002026342198 a001 24157817/7881196*599074578^(2/7) 9870002026342198 a001 3524578/54018521*599074578^(10/21) 9870002026342198 a001 24157817/7881196*228826127^(3/10) 9870002026342198 a001 3524578/54018521*228826127^(1/2) 9870002026342198 a001 2971215073/7881196*12752043^(1/17) 9870002026342198 a001 24157817/7881196*87403803^(6/19) 9870002026342198 a001 3524578/87403803*33385282^(7/12) 9870002026342198 a001 3524578/54018521*87403803^(10/19) 9870002026342200 a001 5702887/33385282*4870847^(9/16) 9870002026342200 a001 1762289/70711162*33385282^(11/18) 9870002026342200 a001 3524578/370248451*33385282^(2/3) 9870002026342201 a001 24157817/7881196*33385282^(1/3) 9870002026342201 a001 3524578/969323029*33385282^(13/18) 9870002026342201 a001 3524578/1568397607*33385282^(3/4) 9870002026342201 a001 1762289/1268860318*33385282^(7/9) 9870002026342201 a001 567451585/3940598*12752043^(2/17) 9870002026342202 a001 3524578/6643838879*33385282^(5/6) 9870002026342202 a001 3524578/17393796001*33385282^(8/9) 9870002026342202 a001 3524578/28143753123*33385282^(11/12) 9870002026342203 a001 3524578/54018521*33385282^(5/9) 9870002026342203 a001 1762289/22768774562*33385282^(17/18) 9870002026342203 a004 Fibonacci(33)*Lucas(36)/(1/2+sqrt(5)/2)^53 9870002026342205 a001 433494437/7881196*12752043^(3/17) 9870002026342207 a001 39088169/33385282*4870847^(7/16) 9870002026342208 a001 9227465/7881196*20633239^(2/5) 9870002026342209 a001 165580141/7881196*12752043^(4/17) 9870002026342213 a001 31622993/3940598*12752043^(5/17) 9870002026342215 a001 63245986/20633239*4870847^(3/8) 9870002026342216 a001 34111385/29134601*4870847^(7/16) 9870002026342217 a001 12586269025/33385282*1860498^(1/15) 9870002026342217 a001 267914296/228826127*4870847^(7/16) 9870002026342217 a001 3524578/20633239*141422324^(6/13) 9870002026342217 a001 233802911/199691526*4870847^(7/16) 9870002026342217 a001 1836311903/1568397607*4870847^(7/16) 9870002026342217 a001 1602508992/1368706081*4870847^(7/16) 9870002026342217 a001 12586269025/10749957122*4870847^(7/16) 9870002026342217 a001 10983760033/9381251041*4870847^(7/16) 9870002026342217 a001 86267571272/73681302247*4870847^(7/16) 9870002026342217 a001 75283811239/64300051206*4870847^(7/16) 9870002026342217 a001 2504730781961/2139295485799*4870847^(7/16) 9870002026342217 a001 365435296162/312119004989*4870847^(7/16) 9870002026342217 a001 139583862445/119218851371*4870847^(7/16) 9870002026342217 a001 53316291173/45537549124*4870847^(7/16) 9870002026342217 a001 20365011074/17393796001*4870847^(7/16) 9870002026342217 a001 7778742049/6643838879*4870847^(7/16) 9870002026342217 a001 2971215073/2537720636*4870847^(7/16) 9870002026342217 a001 1134903170/969323029*4870847^(7/16) 9870002026342217 a001 3524578/20633239*2537720636^(2/5) 9870002026342217 a001 9227465/7881196*17393796001^(2/7) 9870002026342217 a001 3524578/20633239*45537549124^(6/17) 9870002026342217 a001 3524578/20633239*14662949395604^(2/7) 9870002026342217 a001 9227465/7881196*14662949395604^(2/9) 9870002026342217 a001 3524578/20633239*(1/2+1/2*5^(1/2))^18 9870002026342217 a001 9227465/7881196*(1/2+1/2*5^(1/2))^14 9870002026342217 a001 9227465/7881196*505019158607^(1/4) 9870002026342217 a001 3524578/20633239*192900153618^(1/3) 9870002026342217 a001 32522920134770/32951280099 9870002026342217 a001 9227465/7881196*10749957122^(7/24) 9870002026342217 a001 3524578/20633239*10749957122^(3/8) 9870002026342217 a001 9227465/7881196*4106118243^(7/23) 9870002026342217 a001 3524578/20633239*4106118243^(9/23) 9870002026342217 a001 9227465/7881196*1568397607^(7/22) 9870002026342217 a001 3524578/20633239*1568397607^(9/22) 9870002026342217 a001 433494437/370248451*4870847^(7/16) 9870002026342217 a001 9227465/7881196*599074578^(1/3) 9870002026342217 a001 3524578/20633239*599074578^(3/7) 9870002026342218 a001 9227465/7881196*228826127^(7/20) 9870002026342218 a001 3524578/20633239*228826127^(9/20) 9870002026342218 a001 9227465/7881196*87403803^(7/19) 9870002026342218 a001 165580141/141422324*4870847^(7/16) 9870002026342218 a001 3524578/20633239*87403803^(9/19) 9870002026342219 a001 24157817/7881196*12752043^(6/17) 9870002026342220 a001 2971215073/7881196*4870847^(1/16) 9870002026342221 a001 9227465/7881196*33385282^(7/18) 9870002026342221 a001 63245986/54018521*4870847^(7/16) 9870002026342222 a001 3524578/20633239*33385282^(1/2) 9870002026342224 a001 10983760033/29134601*1860498^(1/15) 9870002026342225 a001 86267571272/228826127*1860498^(1/15) 9870002026342225 a001 267913919/710646*1860498^(1/15) 9870002026342225 a001 591286729879/1568397607*1860498^(1/15) 9870002026342225 a001 516002918640/1368706081*1860498^(1/15) 9870002026342225 a001 4052739537881/10749957122*1860498^(1/15) 9870002026342225 a001 3536736619241/9381251041*1860498^(1/15) 9870002026342225 a001 6557470319842/17393796001*1860498^(1/15) 9870002026342225 a001 2504730781961/6643838879*1860498^(1/15) 9870002026342225 a001 956722026041/2537720636*1860498^(1/15) 9870002026342225 a001 365435296162/969323029*1860498^(1/15) 9870002026342226 a001 139583862445/370248451*1860498^(1/15) 9870002026342226 a001 7465176/16692641*4870847^(1/2) 9870002026342226 a001 53316291173/141422324*1860498^(1/15) 9870002026342229 a001 20365011074/54018521*1860498^(1/15) 9870002026342233 a001 3524578/54018521*12752043^(10/17) 9870002026342233 a001 5702887/87403803*4870847^(5/8) 9870002026342234 a001 1762289/70711162*12752043^(11/17) 9870002026342237 a001 3524578/370248451*12752043^(12/17) 9870002026342241 a001 3524578/969323029*12752043^(13/17) 9870002026342241 a001 39088169/87403803*4870847^(1/2) 9870002026342242 a001 9227465/7881196*12752043^(7/17) 9870002026342243 a001 102334155/228826127*4870847^(1/2) 9870002026342243 a001 133957148/299537289*4870847^(1/2) 9870002026342243 a001 701408733/1568397607*4870847^(1/2) 9870002026342243 a001 1836311903/4106118243*4870847^(1/2) 9870002026342243 a001 2403763488/5374978561*4870847^(1/2) 9870002026342243 a001 12586269025/28143753123*4870847^(1/2) 9870002026342243 a001 32951280099/73681302247*4870847^(1/2) 9870002026342243 a001 43133785636/96450076809*4870847^(1/2) 9870002026342243 a001 225851433717/505019158607*4870847^(1/2) 9870002026342243 a001 591286729879/1322157322203*4870847^(1/2) 9870002026342243 a001 10610209857723/23725150497407*4870847^(1/2) 9870002026342243 a001 182717648081/408569081798*4870847^(1/2) 9870002026342243 a001 139583862445/312119004989*4870847^(1/2) 9870002026342243 a001 53316291173/119218851371*4870847^(1/2) 9870002026342243 a001 10182505537/22768774562*4870847^(1/2) 9870002026342243 a001 7778742049/17393796001*4870847^(1/2) 9870002026342243 a001 2971215073/6643838879*4870847^(1/2) 9870002026342243 a001 567451585/1268860318*4870847^(1/2) 9870002026342243 a001 433494437/969323029*4870847^(1/2) 9870002026342244 a001 165580141/370248451*4870847^(1/2) 9870002026342244 a001 24157817/20633239*4870847^(7/16) 9870002026342244 a001 1762289/1268860318*12752043^(14/17) 9870002026342244 a001 31622993/70711162*4870847^(1/2) 9870002026342246 a001 567451585/3940598*4870847^(1/8) 9870002026342248 a001 3524578/6643838879*12752043^(15/17) 9870002026342249 a001 7778742049/20633239*1860498^(1/15) 9870002026342250 a001 3524578/20633239*12752043^(9/17) 9870002026342250 a001 24157817/54018521*4870847^(1/2) 9870002026342251 a001 3524578/17393796001*12752043^(16/17) 9870002026342255 a004 Fibonacci(33)*Lucas(34)/(1/2+sqrt(5)/2)^51 9870002026342259 a001 4976784/29134601*4870847^(9/16) 9870002026342260 a001 2971215073/12752043*1860498^(1/10) 9870002026342260 a001 5702887/228826127*4870847^(11/16) 9870002026342268 a001 39088169/228826127*4870847^(9/16) 9870002026342269 a001 34111385/199691526*4870847^(9/16) 9870002026342269 a001 267914296/1568397607*4870847^(9/16) 9870002026342269 a001 233802911/1368706081*4870847^(9/16) 9870002026342269 a001 1836311903/10749957122*4870847^(9/16) 9870002026342269 a001 1602508992/9381251041*4870847^(9/16) 9870002026342269 a001 12586269025/73681302247*4870847^(9/16) 9870002026342269 a001 10983760033/64300051206*4870847^(9/16) 9870002026342269 a001 86267571272/505019158607*4870847^(9/16) 9870002026342269 a001 75283811239/440719107401*4870847^(9/16) 9870002026342269 a001 2504730781961/14662949395604*4870847^(9/16) 9870002026342269 a001 139583862445/817138163596*4870847^(9/16) 9870002026342269 a001 53316291173/312119004989*4870847^(9/16) 9870002026342269 a001 20365011074/119218851371*4870847^(9/16) 9870002026342269 a001 7778742049/45537549124*4870847^(9/16) 9870002026342269 a001 2971215073/17393796001*4870847^(9/16) 9870002026342269 a001 1134903170/6643838879*4870847^(9/16) 9870002026342269 a001 433494437/2537720636*4870847^(9/16) 9870002026342269 a001 165580141/969323029*4870847^(9/16) 9870002026342270 a001 63245986/370248451*4870847^(9/16) 9870002026342272 a001 433494437/7881196*4870847^(3/16) 9870002026342273 a001 24157817/141422324*4870847^(9/16) 9870002026342286 a001 14930352/228826127*4870847^(5/8) 9870002026342287 a001 5702887/599074578*4870847^(3/4) 9870002026342290 a001 9227465/20633239*4870847^(1/2) 9870002026342294 a001 39088169/599074578*4870847^(5/8) 9870002026342295 a001 14619165/224056801*4870847^(5/8) 9870002026342295 a001 267914296/4106118243*4870847^(5/8) 9870002026342295 a001 701408733/10749957122*4870847^(5/8) 9870002026342295 a001 1836311903/28143753123*4870847^(5/8) 9870002026342295 a001 686789568/10525900321*4870847^(5/8) 9870002026342295 a001 12586269025/192900153618*4870847^(5/8) 9870002026342295 a001 32951280099/505019158607*4870847^(5/8) 9870002026342295 a001 86267571272/1322157322203*4870847^(5/8) 9870002026342295 a001 32264490531/494493258286*4870847^(5/8) 9870002026342295 a001 591286729879/9062201101803*4870847^(5/8) 9870002026342295 a001 1548008755920/23725150497407*4870847^(5/8) 9870002026342295 a001 365435296162/5600748293801*4870847^(5/8) 9870002026342295 a001 139583862445/2139295485799*4870847^(5/8) 9870002026342295 a001 53316291173/817138163596*4870847^(5/8) 9870002026342295 a001 20365011074/312119004989*4870847^(5/8) 9870002026342295 a001 7778742049/119218851371*4870847^(5/8) 9870002026342295 a001 2971215073/45537549124*4870847^(5/8) 9870002026342295 a001 1134903170/17393796001*4870847^(5/8) 9870002026342295 a001 433494437/6643838879*4870847^(5/8) 9870002026342295 a001 165580141/2537720636*4870847^(5/8) 9870002026342296 a001 63245986/969323029*4870847^(5/8) 9870002026342296 a001 9227465/54018521*4870847^(9/16) 9870002026342298 a001 165580141/7881196*4870847^(1/4) 9870002026342299 a001 24157817/370248451*4870847^(5/8) 9870002026342312 a001 7778742049/33385282*1860498^(1/10) 9870002026342312 a001 829464/33281921*4870847^(11/16) 9870002026342313 a001 5702887/1568397607*4870847^(13/16) 9870002026342319 a001 9227465/141422324*4870847^(5/8) 9870002026342319 a001 20365011074/87403803*1860498^(1/10) 9870002026342320 a001 39088169/1568397607*4870847^(11/16) 9870002026342320 a001 53316291173/228826127*1860498^(1/10) 9870002026342320 a001 139583862445/599074578*1860498^(1/10) 9870002026342320 a001 365435296162/1568397607*1860498^(1/10) 9870002026342320 a001 956722026041/4106118243*1860498^(1/10) 9870002026342321 a001 2504730781961/10749957122*1860498^(1/10) 9870002026342321 a001 6557470319842/28143753123*1860498^(1/10) 9870002026342321 a001 10610209857723/45537549124*1860498^(1/10) 9870002026342321 a001 4052739537881/17393796001*1860498^(1/10) 9870002026342321 a001 1548008755920/6643838879*1860498^(1/10) 9870002026342321 a001 591286729879/2537720636*1860498^(1/10) 9870002026342321 a001 225851433717/969323029*1860498^(1/10) 9870002026342321 a001 86267571272/370248451*1860498^(1/10) 9870002026342321 a001 63246219/271444*1860498^(1/10) 9870002026342321 a001 34111385/1368706081*4870847^(11/16) 9870002026342321 a001 133957148/5374978561*4870847^(11/16) 9870002026342321 a001 233802911/9381251041*4870847^(11/16) 9870002026342321 a001 1836311903/73681302247*4870847^(11/16) 9870002026342321 a001 267084832/10716675201*4870847^(11/16) 9870002026342321 a001 12586269025/505019158607*4870847^(11/16) 9870002026342321 a001 10983760033/440719107401*4870847^(11/16) 9870002026342321 a001 43133785636/1730726404001*4870847^(11/16) 9870002026342321 a001 75283811239/3020733700601*4870847^(11/16) 9870002026342321 a001 182717648081/7331474697802*4870847^(11/16) 9870002026342321 a001 139583862445/5600748293801*4870847^(11/16) 9870002026342321 a001 53316291173/2139295485799*4870847^(11/16) 9870002026342321 a001 10182505537/408569081798*4870847^(11/16) 9870002026342321 a001 7778742049/312119004989*4870847^(11/16) 9870002026342321 a001 2971215073/119218851371*4870847^(11/16) 9870002026342321 a001 567451585/22768774562*4870847^(11/16) 9870002026342321 a001 433494437/17393796001*4870847^(11/16) 9870002026342321 a001 165580141/6643838879*4870847^(11/16) 9870002026342322 a001 31622993/1268860318*4870847^(11/16) 9870002026342324 a001 12586269025/54018521*1860498^(1/10) 9870002026342325 a001 31622993/3940598*4870847^(5/16) 9870002026342325 a001 24157817/969323029*4870847^(11/16) 9870002026342339 a001 14930352/1568397607*4870847^(3/4) 9870002026342339 a001 5702887/4106118243*4870847^(7/8) 9870002026342344 a001 4807526976/20633239*1860498^(1/10) 9870002026342345 a001 9227465/370248451*4870847^(11/16) 9870002026342346 a001 39088169/4106118243*4870847^(3/4) 9870002026342347 a001 102334155/10749957122*4870847^(3/4) 9870002026342347 a001 267914296/28143753123*4870847^(3/4) 9870002026342347 a001 701408733/73681302247*4870847^(3/4) 9870002026342347 a001 1836311903/192900153618*4870847^(3/4) 9870002026342347 a001 102287808/10745088481*4870847^(3/4) 9870002026342347 a001 12586269025/1322157322203*4870847^(3/4) 9870002026342347 a001 32951280099/3461452808002*4870847^(3/4) 9870002026342347 a001 86267571272/9062201101803*4870847^(3/4) 9870002026342347 a001 225851433717/23725150497407*4870847^(3/4) 9870002026342347 a001 139583862445/14662949395604*4870847^(3/4) 9870002026342347 a001 53316291173/5600748293801*4870847^(3/4) 9870002026342347 a001 20365011074/2139295485799*4870847^(3/4) 9870002026342347 a001 7778742049/817138163596*4870847^(3/4) 9870002026342347 a001 2971215073/312119004989*4870847^(3/4) 9870002026342347 a001 1134903170/119218851371*4870847^(3/4) 9870002026342347 a001 433494437/45537549124*4870847^(3/4) 9870002026342347 a001 165580141/17393796001*4870847^(3/4) 9870002026342348 a001 63245986/6643838879*4870847^(3/4) 9870002026342351 a001 24157817/2537720636*4870847^(3/4) 9870002026342353 a001 1762289/3940598*(1/2+1/2*5^(1/2))^16 9870002026342353 a001 1762289/3940598*23725150497407^(1/4) 9870002026342353 a001 1762289/3940598*73681302247^(4/13) 9870002026342353 a001 12422650078084/12586269025 9870002026342353 a001 1762289/3940598*10749957122^(1/3) 9870002026342353 a001 1762289/3940598*4106118243^(8/23) 9870002026342353 a001 1762289/3940598*1568397607^(4/11) 9870002026342353 a001 1762289/3940598*599074578^(8/21) 9870002026342353 a001 1762289/3940598*228826127^(2/5) 9870002026342354 a001 24157817/7881196*4870847^(3/8) 9870002026342354 a001 1762289/3940598*87403803^(8/19) 9870002026342355 a001 1836311903/12752043*1860498^(2/15) 9870002026342357 a001 1762289/3940598*33385282^(4/9) 9870002026342365 a001 4976784/1368706081*4870847^(13/16) 9870002026342365 a001 5702887/10749957122*4870847^(15/16) 9870002026342371 a001 9227465/969323029*4870847^(3/4) 9870002026342372 a001 39088169/10749957122*4870847^(13/16) 9870002026342373 a001 831985/228811001*4870847^(13/16) 9870002026342373 a001 267914296/73681302247*4870847^(13/16) 9870002026342373 a001 233802911/64300051206*4870847^(13/16) 9870002026342373 a001 1836311903/505019158607*4870847^(13/16) 9870002026342373 a001 1602508992/440719107401*4870847^(13/16) 9870002026342373 a001 12586269025/3461452808002*4870847^(13/16) 9870002026342373 a001 10983760033/3020733700601*4870847^(13/16) 9870002026342373 a001 86267571272/23725150497407*4870847^(13/16) 9870002026342373 a001 53316291173/14662949395604*4870847^(13/16) 9870002026342373 a001 20365011074/5600748293801*4870847^(13/16) 9870002026342373 a001 7778742049/2139295485799*4870847^(13/16) 9870002026342373 a001 2971215073/817138163596*4870847^(13/16) 9870002026342373 a001 1134903170/312119004989*4870847^(13/16) 9870002026342373 a001 433494437/119218851371*4870847^(13/16) 9870002026342373 a001 165580141/45537549124*4870847^(13/16) 9870002026342374 a001 63245986/17393796001*4870847^(13/16) 9870002026342377 a001 24157817/6643838879*4870847^(13/16) 9870002026342380 a001 102334155/4870847*1860498^(4/15) 9870002026342382 a001 1762289/3940598*12752043^(8/17) 9870002026342384 a001 2971215073/7881196*1860498^(1/15) 9870002026342391 a001 7465176/5374978561*4870847^(7/8) 9870002026342391 a004 Fibonacci(34)*Lucas(32)/(1/2+sqrt(5)/2)^50 9870002026342397 a001 9227465/2537720636*4870847^(13/16) 9870002026342398 a001 39088169/28143753123*4870847^(7/8) 9870002026342399 a001 14619165/10525900321*4870847^(7/8) 9870002026342399 a001 133957148/96450076809*4870847^(7/8) 9870002026342399 a001 701408733/505019158607*4870847^(7/8) 9870002026342399 a001 1836311903/1322157322203*4870847^(7/8) 9870002026342399 a001 14930208/10749853441*4870847^(7/8) 9870002026342399 a001 12586269025/9062201101803*4870847^(7/8) 9870002026342399 a001 32951280099/23725150497407*4870847^(7/8) 9870002026342399 a001 10182505537/7331474697802*4870847^(7/8) 9870002026342399 a001 7778742049/5600748293801*4870847^(7/8) 9870002026342399 a001 2971215073/2139295485799*4870847^(7/8) 9870002026342399 a001 567451585/408569081798*4870847^(7/8) 9870002026342399 a001 433494437/312119004989*4870847^(7/8) 9870002026342399 a001 165580141/119218851371*4870847^(7/8) 9870002026342399 a001 9227465/7881196*4870847^(7/16) 9870002026342400 a001 31622993/22768774562*4870847^(7/8) 9870002026342403 a001 24157817/17393796001*4870847^(7/8) 9870002026342407 a001 14930208/103681*1860498^(2/15) 9870002026342414 a001 12586269025/87403803*1860498^(2/15) 9870002026342415 a001 32951280099/228826127*1860498^(2/15) 9870002026342416 a001 43133785636/299537289*1860498^(2/15) 9870002026342416 a001 32264490531/224056801*1860498^(2/15) 9870002026342416 a001 591286729879/4106118243*1860498^(2/15) 9870002026342416 a001 774004377960/5374978561*1860498^(2/15) 9870002026342416 a001 4052739537881/28143753123*1860498^(2/15) 9870002026342416 a001 1515744265389/10525900321*1860498^(2/15) 9870002026342416 a001 3278735159921/22768774562*1860498^(2/15) 9870002026342416 a001 2504730781961/17393796001*1860498^(2/15) 9870002026342416 a001 956722026041/6643838879*1860498^(2/15) 9870002026342416 a001 182717648081/1268860318*1860498^(2/15) 9870002026342416 a001 139583862445/969323029*1860498^(2/15) 9870002026342416 a001 53316291173/370248451*1860498^(2/15) 9870002026342416 a001 10182505537/70711162*1860498^(2/15) 9870002026342417 a001 4976784/9381251041*4870847^(15/16) 9870002026342419 a001 7778742049/54018521*1860498^(2/15) 9870002026342423 a001 9227465/6643838879*4870847^(7/8) 9870002026342424 a001 39088169/73681302247*4870847^(15/16) 9870002026342425 a001 34111385/64300051206*4870847^(15/16) 9870002026342425 a001 267914296/505019158607*4870847^(15/16) 9870002026342425 a001 233802911/440719107401*4870847^(15/16) 9870002026342425 a001 1836311903/3461452808002*4870847^(15/16) 9870002026342425 a001 1602508992/3020733700601*4870847^(15/16) 9870002026342425 a001 12586269025/23725150497407*4870847^(15/16) 9870002026342425 a001 7778742049/14662949395604*4870847^(15/16) 9870002026342425 a001 2971215073/5600748293801*4870847^(15/16) 9870002026342425 a001 1134903170/2139295485799*4870847^(15/16) 9870002026342425 a001 433494437/817138163596*4870847^(15/16) 9870002026342425 a001 165580141/312119004989*4870847^(15/16) 9870002026342426 a001 63245986/119218851371*4870847^(15/16) 9870002026342429 a001 24157817/45537549124*4870847^(15/16) 9870002026342439 a001 2971215073/20633239*1860498^(2/15) 9870002026342443 a004 Fibonacci(36)*Lucas(32)/(1/2+sqrt(5)/2)^52 9870002026342449 a001 9227465/17393796001*4870847^(15/16) 9870002026342450 a001 1134903170/12752043*1860498^(1/6) 9870002026342450 a004 Fibonacci(38)*Lucas(32)/(1/2+sqrt(5)/2)^54 9870002026342451 a004 Fibonacci(40)*Lucas(32)/(1/2+sqrt(5)/2)^56 9870002026342451 a004 Fibonacci(42)*Lucas(32)/(1/2+sqrt(5)/2)^58 9870002026342451 a004 Fibonacci(44)*Lucas(32)/(1/2+sqrt(5)/2)^60 9870002026342451 a004 Fibonacci(46)*Lucas(32)/(1/2+sqrt(5)/2)^62 9870002026342451 a004 Fibonacci(48)*Lucas(32)/(1/2+sqrt(5)/2)^64 9870002026342451 a004 Fibonacci(50)*Lucas(32)/(1/2+sqrt(5)/2)^66 9870002026342451 a004 Fibonacci(52)*Lucas(32)/(1/2+sqrt(5)/2)^68 9870002026342451 a004 Fibonacci(54)*Lucas(32)/(1/2+sqrt(5)/2)^70 9870002026342451 a004 Fibonacci(56)*Lucas(32)/(1/2+sqrt(5)/2)^72 9870002026342451 a004 Fibonacci(58)*Lucas(32)/(1/2+sqrt(5)/2)^74 9870002026342451 a004 Fibonacci(60)*Lucas(32)/(1/2+sqrt(5)/2)^76 9870002026342451 a004 Fibonacci(62)*Lucas(32)/(1/2+sqrt(5)/2)^78 9870002026342451 a004 Fibonacci(64)*Lucas(32)/(1/2+sqrt(5)/2)^80 9870002026342451 a004 Fibonacci(66)*Lucas(32)/(1/2+sqrt(5)/2)^82 9870002026342451 a004 Fibonacci(68)*Lucas(32)/(1/2+sqrt(5)/2)^84 9870002026342451 a004 Fibonacci(70)*Lucas(32)/(1/2+sqrt(5)/2)^86 9870002026342451 a004 Fibonacci(72)*Lucas(32)/(1/2+sqrt(5)/2)^88 9870002026342451 a004 Fibonacci(74)*Lucas(32)/(1/2+sqrt(5)/2)^90 9870002026342451 a004 Fibonacci(76)*Lucas(32)/(1/2+sqrt(5)/2)^92 9870002026342451 a004 Fibonacci(78)*Lucas(32)/(1/2+sqrt(5)/2)^94 9870002026342451 a004 Fibonacci(80)*Lucas(32)/(1/2+sqrt(5)/2)^96 9870002026342451 a004 Fibonacci(82)*Lucas(32)/(1/2+sqrt(5)/2)^98 9870002026342451 a004 Fibonacci(84)*Lucas(32)/(1/2+sqrt(5)/2)^100 9870002026342451 a004 Fibonacci(83)*Lucas(32)/(1/2+sqrt(5)/2)^99 9870002026342451 a004 Fibonacci(81)*Lucas(32)/(1/2+sqrt(5)/2)^97 9870002026342451 a004 Fibonacci(79)*Lucas(32)/(1/2+sqrt(5)/2)^95 9870002026342451 a004 Fibonacci(77)*Lucas(32)/(1/2+sqrt(5)/2)^93 9870002026342451 a004 Fibonacci(75)*Lucas(32)/(1/2+sqrt(5)/2)^91 9870002026342451 a004 Fibonacci(73)*Lucas(32)/(1/2+sqrt(5)/2)^89 9870002026342451 a004 Fibonacci(71)*Lucas(32)/(1/2+sqrt(5)/2)^87 9870002026342451 a004 Fibonacci(69)*Lucas(32)/(1/2+sqrt(5)/2)^85 9870002026342451 a004 Fibonacci(67)*Lucas(32)/(1/2+sqrt(5)/2)^83 9870002026342451 a004 Fibonacci(65)*Lucas(32)/(1/2+sqrt(5)/2)^81 9870002026342451 a001 2/2178309*(1/2+1/2*5^(1/2))^48 9870002026342451 a004 Fibonacci(63)*Lucas(32)/(1/2+sqrt(5)/2)^79 9870002026342451 a004 Fibonacci(61)*Lucas(32)/(1/2+sqrt(5)/2)^77 9870002026342451 a004 Fibonacci(59)*Lucas(32)/(1/2+sqrt(5)/2)^75 9870002026342451 a004 Fibonacci(57)*Lucas(32)/(1/2+sqrt(5)/2)^73 9870002026342451 a004 Fibonacci(55)*Lucas(32)/(1/2+sqrt(5)/2)^71 9870002026342451 a004 Fibonacci(53)*Lucas(32)/(1/2+sqrt(5)/2)^69 9870002026342451 a004 Fibonacci(51)*Lucas(32)/(1/2+sqrt(5)/2)^67 9870002026342451 a004 Fibonacci(49)*Lucas(32)/(1/2+sqrt(5)/2)^65 9870002026342451 a004 Fibonacci(47)*Lucas(32)/(1/2+sqrt(5)/2)^63 9870002026342451 a004 Fibonacci(45)*Lucas(32)/(1/2+sqrt(5)/2)^61 9870002026342451 a004 Fibonacci(43)*Lucas(32)/(1/2+sqrt(5)/2)^59 9870002026342451 a004 Fibonacci(41)*Lucas(32)/(1/2+sqrt(5)/2)^57 9870002026342451 a001 3524578/20633239*4870847^(9/16) 9870002026342452 a004 Fibonacci(39)*Lucas(32)/(1/2+sqrt(5)/2)^55 9870002026342455 a004 Fibonacci(37)*Lucas(32)/(1/2+sqrt(5)/2)^53 9870002026342458 a001 3524578/54018521*4870847^(5/8) 9870002026342475 a004 Fibonacci(35)*Lucas(32)/(1/2+sqrt(5)/2)^51 9870002026342475 a001 63245986/4870847*1860498^(3/10) 9870002026342479 a001 1836311903/7881196*1860498^(1/10) 9870002026342481 a001 1762289/70711162*4870847^(11/16) 9870002026342502 a001 2971215073/33385282*1860498^(1/6) 9870002026342506 a001 3524578/370248451*4870847^(3/4) 9870002026342509 a001 7778742049/87403803*1860498^(1/6) 9870002026342510 a001 20365011074/228826127*1860498^(1/6) 9870002026342511 a001 53316291173/599074578*1860498^(1/6) 9870002026342511 a001 139583862445/1568397607*1860498^(1/6) 9870002026342511 a001 365435296162/4106118243*1860498^(1/6) 9870002026342511 a001 956722026041/10749957122*1860498^(1/6) 9870002026342511 a001 2504730781961/28143753123*1860498^(1/6) 9870002026342511 a001 6557470319842/73681302247*1860498^(1/6) 9870002026342511 a001 10610209857723/119218851371*1860498^(1/6) 9870002026342511 a001 4052739537881/45537549124*1860498^(1/6) 9870002026342511 a001 1548008755920/17393796001*1860498^(1/6) 9870002026342511 a001 591286729879/6643838879*1860498^(1/6) 9870002026342511 a001 225851433717/2537720636*1860498^(1/6) 9870002026342511 a001 86267571272/969323029*1860498^(1/6) 9870002026342511 a001 32951280099/370248451*1860498^(1/6) 9870002026342511 a001 12586269025/141422324*1860498^(1/6) 9870002026342514 a001 4807526976/54018521*1860498^(1/6) 9870002026342532 a001 3524578/969323029*4870847^(13/16) 9870002026342534 a001 1836311903/20633239*1860498^(1/6) 9870002026342545 a001 233802911/4250681*1860498^(1/5) 9870002026342558 a001 1762289/1268860318*4870847^(7/8) 9870002026342561 a001 1762289/3940598*4870847^(1/2) 9870002026342569 a001 39088169/4870847*1860498^(1/3) 9870002026342574 a001 567451585/3940598*1860498^(2/15) 9870002026342584 a001 3524578/6643838879*4870847^(15/16) 9870002026342597 a001 1836311903/33385282*1860498^(1/5) 9870002026342604 a001 1602508992/29134601*1860498^(1/5) 9870002026342605 a001 12586269025/228826127*1860498^(1/5) 9870002026342606 a001 10983760033/199691526*1860498^(1/5) 9870002026342606 a001 86267571272/1568397607*1860498^(1/5) 9870002026342606 a001 75283811239/1368706081*1860498^(1/5) 9870002026342606 a001 591286729879/10749957122*1860498^(1/5) 9870002026342606 a001 12585437040/228811001*1860498^(1/5) 9870002026342606 a001 4052739537881/73681302247*1860498^(1/5) 9870002026342606 a001 3536736619241/64300051206*1860498^(1/5) 9870002026342606 a001 6557470319842/119218851371*1860498^(1/5) 9870002026342606 a001 2504730781961/45537549124*1860498^(1/5) 9870002026342606 a001 956722026041/17393796001*1860498^(1/5) 9870002026342606 a001 365435296162/6643838879*1860498^(1/5) 9870002026342606 a001 139583862445/2537720636*1860498^(1/5) 9870002026342606 a001 53316291173/969323029*1860498^(1/5) 9870002026342606 a001 20365011074/370248451*1860498^(1/5) 9870002026342606 a001 7778742049/141422324*1860498^(1/5) 9870002026342609 a001 2971215073/54018521*1860498^(1/5) 9870002026342610 a004 Fibonacci(33)*Lucas(32)/(1/2+sqrt(5)/2)^49 9870002026342629 a001 1134903170/20633239*1860498^(1/5) 9870002026342636 a001 2178309/3010349*7881196^(5/11) 9870002026342669 a001 3524667/39604*1860498^(1/6) 9870002026342699 a001 2178309/3010349*20633239^(3/7) 9870002026342708 a001 2178309/3010349*141422324^(5/13) 9870002026342708 a001 2178309/3010349*2537720636^(1/3) 9870002026342708 a001 2932589879121/2971215073 9870002026342708 a001 1346269/4870847*45537549124^(1/3) 9870002026342708 a001 2178309/3010349*45537549124^(5/17) 9870002026342708 a001 2178309/3010349*312119004989^(3/11) 9870002026342708 a001 1346269/4870847*(1/2+1/2*5^(1/2))^17 9870002026342708 a001 2178309/3010349*14662949395604^(5/21) 9870002026342708 a001 2178309/3010349*(1/2+1/2*5^(1/2))^15 9870002026342708 a001 2178309/3010349*192900153618^(5/18) 9870002026342708 a001 2178309/3010349*28143753123^(3/10) 9870002026342708 a001 2178309/3010349*10749957122^(5/16) 9870002026342708 a001 2178309/3010349*599074578^(5/14) 9870002026342709 a001 2178309/3010349*228826127^(3/8) 9870002026342712 a001 2178309/3010349*33385282^(5/12) 9870002026342724 a001 2178309/4870847*1860498^(8/15) 9870002026342735 a001 267914296/12752043*1860498^(4/15) 9870002026342739 a001 1346269/4870847*12752043^(1/2) 9870002026342751 a001 14930352/4870847*1860498^(2/5) 9870002026342765 a001 433494437/7881196*1860498^(1/5) 9870002026342787 a001 701408733/33385282*1860498^(4/15) 9870002026342794 a001 1836311903/87403803*1860498^(4/15) 9870002026342796 a001 102287808/4868641*1860498^(4/15) 9870002026342796 a001 12586269025/599074578*1860498^(4/15) 9870002026342796 a001 32951280099/1568397607*1860498^(4/15) 9870002026342796 a001 86267571272/4106118243*1860498^(4/15) 9870002026342796 a001 225851433717/10749957122*1860498^(4/15) 9870002026342796 a001 591286729879/28143753123*1860498^(4/15) 9870002026342796 a001 1548008755920/73681302247*1860498^(4/15) 9870002026342796 a001 4052739537881/192900153618*1860498^(4/15) 9870002026342796 a001 225749145909/10745088481*1860498^(4/15) 9870002026342796 a001 6557470319842/312119004989*1860498^(4/15) 9870002026342796 a001 2504730781961/119218851371*1860498^(4/15) 9870002026342796 a001 956722026041/45537549124*1860498^(4/15) 9870002026342796 a001 365435296162/17393796001*1860498^(4/15) 9870002026342796 a001 139583862445/6643838879*1860498^(4/15) 9870002026342796 a001 53316291173/2537720636*1860498^(4/15) 9870002026342796 a001 20365011074/969323029*1860498^(4/15) 9870002026342796 a001 7778742049/370248451*1860498^(4/15) 9870002026342796 a001 2971215073/141422324*1860498^(4/15) 9870002026342799 a001 1134903170/54018521*1860498^(4/15) 9870002026342819 a001 433494437/20633239*1860498^(4/15) 9870002026342830 a001 165580141/12752043*1860498^(3/10) 9870002026342882 a001 433494437/33385282*1860498^(3/10) 9870002026342889 a001 5702887/4870847*1860498^(7/15) 9870002026342889 a001 1134903170/87403803*1860498^(3/10) 9870002026342891 a001 2971215073/228826127*1860498^(3/10) 9870002026342891 a001 7778742049/599074578*1860498^(3/10) 9870002026342891 a001 20365011074/1568397607*1860498^(3/10) 9870002026342891 a001 53316291173/4106118243*1860498^(3/10) 9870002026342891 a001 139583862445/10749957122*1860498^(3/10) 9870002026342891 a001 365435296162/28143753123*1860498^(3/10) 9870002026342891 a001 956722026041/73681302247*1860498^(3/10) 9870002026342891 a001 2504730781961/192900153618*1860498^(3/10) 9870002026342891 a001 10610209857723/817138163596*1860498^(3/10) 9870002026342891 a001 4052739537881/312119004989*1860498^(3/10) 9870002026342891 a001 1548008755920/119218851371*1860498^(3/10) 9870002026342891 a001 591286729879/45537549124*1860498^(3/10) 9870002026342891 a001 7787980473/599786069*1860498^(3/10) 9870002026342891 a001 86267571272/6643838879*1860498^(3/10) 9870002026342891 a001 32951280099/2537720636*1860498^(3/10) 9870002026342891 a001 12586269025/969323029*1860498^(3/10) 9870002026342891 a001 4807526976/370248451*1860498^(3/10) 9870002026342891 a001 1836311903/141422324*1860498^(3/10) 9870002026342894 a001 701408733/54018521*1860498^(3/10) 9870002026342914 a001 9238424/711491*1860498^(3/10) 9870002026342925 a001 34111385/4250681*1860498^(1/3) 9870002026342955 a001 165580141/7881196*1860498^(4/15) 9870002026342966 a004 Fibonacci(31)*Lucas(33)/(1/2+sqrt(5)/2)^48 9870002026342977 a001 133957148/16692641*1860498^(1/3) 9870002026342980 a001 1346269/2537720636*7881196^(10/11) 9870002026342985 a001 233802911/29134601*1860498^(1/3) 9870002026342986 a001 1836311903/228826127*1860498^(1/3) 9870002026342986 a001 267084832/33281921*1860498^(1/3) 9870002026342986 a001 12586269025/1568397607*1860498^(1/3) 9870002026342986 a001 10983760033/1368706081*1860498^(1/3) 9870002026342986 a001 43133785636/5374978561*1860498^(1/3) 9870002026342986 a001 75283811239/9381251041*1860498^(1/3) 9870002026342986 a001 591286729879/73681302247*1860498^(1/3) 9870002026342986 a001 86000486440/10716675201*1860498^(1/3) 9870002026342986 a001 4052739537881/505019158607*1860498^(1/3) 9870002026342986 a001 3536736619241/440719107401*1860498^(1/3) 9870002026342986 a001 3278735159921/408569081798*1860498^(1/3) 9870002026342986 a001 2504730781961/312119004989*1860498^(1/3) 9870002026342986 a001 956722026041/119218851371*1860498^(1/3) 9870002026342986 a001 182717648081/22768774562*1860498^(1/3) 9870002026342986 a001 139583862445/17393796001*1860498^(1/3) 9870002026342986 a001 53316291173/6643838879*1860498^(1/3) 9870002026342986 a001 10182505537/1268860318*1860498^(1/3) 9870002026342986 a001 7778742049/969323029*1860498^(1/3) 9870002026342986 a001 2971215073/370248451*1860498^(1/3) 9870002026342986 a001 567451585/70711162*1860498^(1/3) 9870002026342989 a001 433494437/54018521*1860498^(1/3) 9870002026342994 a001 1346269/599074578*7881196^(9/11) 9870002026343009 a001 165580141/20633239*1860498^(1/3) 9870002026343009 a001 1346269/141422324*7881196^(8/11) 9870002026343015 a001 1346269/33385282*7881196^(7/11) 9870002026343015 a001 1836311903/4870847*710647^(1/14) 9870002026343022 a001 1346269/54018521*7881196^(2/3) 9870002026343049 a001 102334155/7881196*1860498^(3/10) 9870002026343063 a001 14930352/3010349*7881196^(1/3) 9870002026343064 a001 5702887/3010349*141422324^(1/3) 9870002026343064 a001 7677619978603/7778742049 9870002026343064 a001 1346269/12752043*817138163596^(1/3) 9870002026343064 a001 1346269/12752043*(1/2+1/2*5^(1/2))^19 9870002026343064 a001 5702887/3010349*(1/2+1/2*5^(1/2))^13 9870002026343064 a001 5702887/3010349*73681302247^(1/4) 9870002026343064 a001 1346269/12752043*87403803^(1/2) 9870002026343080 a001 39088169/3010349*7881196^(3/11) 9870002026343090 a001 9227465/3010349*7881196^(4/11) 9870002026343096 a001 165580141/3010349*7881196^(2/11) 9870002026343100 a001 14619165/101521*271443^(2/13) 9870002026343101 a004 Fibonacci(31)*Lucas(35)/(1/2+sqrt(5)/2)^50 9870002026343102 a001 1346269/33385282*20633239^(3/5) 9870002026343105 a001 1346269/2537720636*20633239^(6/7) 9870002026343106 a001 1346269/969323029*20633239^(4/5) 9870002026343108 a001 1346269/228826127*20633239^(5/7) 9870002026343110 a001 701408733/3010349*7881196^(1/11) 9870002026343114 a001 39088169/12752043*1860498^(2/5) 9870002026343115 a001 1346269/33385282*141422324^(7/13) 9870002026343116 a001 1346269/33385282*2537720636^(7/15) 9870002026343116 a001 1346269/33385282*17393796001^(3/7) 9870002026343116 a001 10050135028344/10182505537 9870002026343116 a001 1346269/33385282*45537549124^(7/17) 9870002026343116 a001 14930352/3010349*312119004989^(1/5) 9870002026343116 a001 1346269/33385282*14662949395604^(1/3) 9870002026343116 a001 1346269/33385282*(1/2+1/2*5^(1/2))^21 9870002026343116 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^21/Lucas(36) 9870002026343116 a001 14930352/3010349*(1/2+1/2*5^(1/2))^11 9870002026343116 a001 1346269/33385282*192900153618^(7/18) 9870002026343116 a001 1346269/33385282*10749957122^(7/16) 9870002026343116 a001 14930352/3010349*1568397607^(1/4) 9870002026343116 a001 1346269/33385282*599074578^(1/2) 9870002026343120 a001 102334155/3010349*20633239^(1/5) 9870002026343121 a001 1346269/33385282*33385282^(7/12) 9870002026343121 a004 Fibonacci(31)*Lucas(37)/(1/2+sqrt(5)/2)^52 9870002026343121 a001 267914296/3010349*20633239^(1/7) 9870002026343121 a001 24157817/3010349*20633239^(2/7) 9870002026343123 a001 39088169/3010349*141422324^(3/13) 9870002026343123 a001 39088169/3010349*2537720636^(1/5) 9870002026343123 a001 39088169/3010349*45537549124^(3/17) 9870002026343123 a001 52623190191461/53316291173 9870002026343123 a001 39088169/3010349*817138163596^(3/19) 9870002026343123 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^23/Lucas(38) 9870002026343123 a001 39088169/3010349*14662949395604^(1/7) 9870002026343123 a001 39088169/3010349*(1/2+1/2*5^(1/2))^9 9870002026343123 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^9/Lucas(31) 9870002026343123 a001 39088169/3010349*192900153618^(1/6) 9870002026343123 a001 39088169/3010349*10749957122^(3/16) 9870002026343123 a001 1346269/87403803*4106118243^(1/2) 9870002026343123 a001 39088169/3010349*599074578^(3/14) 9870002026343124 a004 Fibonacci(31)*Lucas(39)/(1/2+sqrt(5)/2)^54 9870002026343124 a001 1346269/45537549124*141422324^(12/13) 9870002026343124 a001 1346269/10749957122*141422324^(11/13) 9870002026343124 a001 1346269/2537720636*141422324^(10/13) 9870002026343124 a001 1346269/599074578*141422324^(9/13) 9870002026343124 a001 1346269/370248451*141422324^(2/3) 9870002026343124 a001 1346269/228826127*2537720636^(5/9) 9870002026343124 a001 102334155/3010349*17393796001^(1/7) 9870002026343124 a001 27553860103539/27916772489 9870002026343124 a001 1346269/228826127*312119004989^(5/11) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^25/Lucas(40) 9870002026343124 a001 102334155/3010349*14662949395604^(1/9) 9870002026343124 a001 102334155/3010349*(1/2+1/2*5^(1/2))^7 9870002026343124 a001 1346269/228826127*28143753123^(1/2) 9870002026343124 a001 102334155/3010349*599074578^(1/6) 9870002026343124 a004 Fibonacci(31)*Lucas(41)/(1/2+sqrt(5)/2)^56 9870002026343124 a001 1346269/228826127*228826127^(5/8) 9870002026343124 a001 701408733/3010349*141422324^(1/13) 9870002026343124 a001 1346269/599074578*2537720636^(3/5) 9870002026343124 a001 267914296/3010349*2537720636^(1/9) 9870002026343124 a001 1346269/599074578*45537549124^(9/17) 9870002026343124 a001 267914296/3010349*312119004989^(1/11) 9870002026343124 a001 1346269/599074578*817138163596^(9/19) 9870002026343124 a001 1346269/599074578*14662949395604^(3/7) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^27/Lucas(42) 9870002026343124 a001 267914296/3010349*(1/2+1/2*5^(1/2))^5 9870002026343124 a001 1346269/599074578*192900153618^(1/2) 9870002026343124 a001 267914296/3010349*28143753123^(1/10) 9870002026343124 a001 1346269/599074578*10749957122^(9/16) 9870002026343124 a004 Fibonacci(31)*Lucas(43)/(1/2+sqrt(5)/2)^58 9870002026343124 a001 1346269/599074578*599074578^(9/14) 9870002026343124 a001 701408733/3010349*2537720636^(1/15) 9870002026343124 a001 701408733/3010349*45537549124^(1/17) 9870002026343124 a001 944284833567177/956722026041 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^29/Lucas(44) 9870002026343124 a001 701408733/3010349*14662949395604^(1/21) 9870002026343124 a001 701408733/3010349*(1/2+1/2*5^(1/2))^3 9870002026343124 a001 1346269/1568397607*1322157322203^(1/2) 9870002026343124 a001 701408733/3010349*10749957122^(1/16) 9870002026343124 a001 267914296/3010349*228826127^(1/8) 9870002026343124 a001 165580141/3010349*141422324^(2/13) 9870002026343124 a001 701408733/3010349*599074578^(1/14) 9870002026343124 a004 Fibonacci(31)*Lucas(45)/(1/2+sqrt(5)/2)^60 9870002026343124 a001 1346269/817138163596*2537720636^(14/15) 9870002026343124 a001 1346269/312119004989*2537720636^(8/9) 9870002026343124 a001 1346269/192900153618*2537720636^(13/15) 9870002026343124 a001 1346269/45537549124*2537720636^(4/5) 9870002026343124 a001 1346269/10749957122*2537720636^(11/15) 9870002026343124 a001 1346269/28143753123*2537720636^(7/9) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^31/Lucas(46) 9870002026343124 a001 1346269/4106118243*9062201101803^(1/2) 9870002026343124 a001 1836311903/6020698+1836311903/6020698*5^(1/2) 9870002026343124 a004 Fibonacci(31)*Lucas(47)/(1/2+sqrt(5)/2)^62 9870002026343124 a001 1346269/10749957122*45537549124^(11/17) 9870002026343124 a001 1346269/10749957122*312119004989^(3/5) 9870002026343124 a001 1346269/10749957122*817138163596^(11/19) 9870002026343124 a001 3236112267226272/3278735159921 9870002026343124 a001 1346269/10749957122*14662949395604^(11/21) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^33/Lucas(48) 9870002026343124 a004 Fibonacci(48)/Lucas(31)/(1/2+sqrt(5)/2) 9870002026343124 a001 1346269/10749957122*192900153618^(11/18) 9870002026343124 a001 1346269/28143753123*17393796001^(5/7) 9870002026343124 a004 Fibonacci(31)*Lucas(49)/(1/2+sqrt(5)/2)^64 9870002026343124 a001 1346269/817138163596*17393796001^(6/7) 9870002026343124 a001 1346269/10749957122*10749957122^(11/16) 9870002026343124 a001 1346269/28143753123*312119004989^(7/11) 9870002026343124 a001 1346269/28143753123*14662949395604^(5/9) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^35/Lucas(50) 9870002026343124 a004 Fibonacci(50)/Lucas(31)/(1/2+sqrt(5)/2)^3 9870002026343124 a001 1346269/28143753123*505019158607^(5/8) 9870002026343124 a004 Fibonacci(31)*Lucas(51)/(1/2+sqrt(5)/2)^66 9870002026343124 a001 1346269/14662949395604*45537549124^(16/17) 9870002026343124 a001 1346269/3461452808002*45537549124^(15/17) 9870002026343124 a001 1346269/192900153618*45537549124^(13/17) 9870002026343124 a001 1346269/817138163596*45537549124^(14/17) 9870002026343124 a001 1346269/28143753123*28143753123^(7/10) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^37/Lucas(52) 9870002026343124 a004 Fibonacci(52)/Lucas(31)/(1/2+sqrt(5)/2)^5 9870002026343124 a004 Fibonacci(31)*Lucas(53)/(1/2+sqrt(5)/2)^68 9870002026343124 a001 1346269/192900153618*14662949395604^(13/21) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^39/Lucas(54) 9870002026343124 a004 Fibonacci(54)/Lucas(31)/(1/2+sqrt(5)/2)^7 9870002026343124 a004 Fibonacci(31)*Lucas(55)/(1/2+sqrt(5)/2)^70 9870002026343124 a001 1346269/3461452808002*312119004989^(9/11) 9870002026343124 a001 1346269/2139295485799*312119004989^(4/5) 9870002026343124 a001 1346269/192900153618*192900153618^(13/18) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^41/Lucas(56) 9870002026343124 a004 Fibonacci(56)/Lucas(31)/(1/2+sqrt(5)/2)^9 9870002026343124 a004 Fibonacci(31)*Lucas(57)/(1/2+sqrt(5)/2)^72 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^43/Lucas(58) 9870002026343124 a004 Fibonacci(58)/Lucas(31)/(1/2+sqrt(5)/2)^11 9870002026343124 a004 Fibonacci(31)*Lucas(59)/(1/2+sqrt(5)/2)^74 9870002026343124 a001 1346269/3461452808002*14662949395604^(5/7) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^45/Lucas(60) 9870002026343124 a004 Fibonacci(60)/Lucas(31)/(1/2+sqrt(5)/2)^13 9870002026343124 a004 Fibonacci(31)*Lucas(61)/(1/2+sqrt(5)/2)^76 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^47/Lucas(62) 9870002026343124 a001 1346269/23725150497407*14662949395604^(7/9) 9870002026343124 a004 Fibonacci(31)*Lucas(63)/(1/2+sqrt(5)/2)^78 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^49/Lucas(64) 9870002026343124 a004 Fibonacci(31)*Lucas(65)/(1/2+sqrt(5)/2)^80 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^51/Lucas(66) 9870002026343124 a004 Fibonacci(31)*Lucas(67)/(1/2+sqrt(5)/2)^82 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^53/Lucas(68) 9870002026343124 a004 Fibonacci(31)*Lucas(69)/(1/2+sqrt(5)/2)^84 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^55/Lucas(70) 9870002026343124 a004 Fibonacci(31)*Lucas(71)/(1/2+sqrt(5)/2)^86 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^57/Lucas(72) 9870002026343124 a004 Fibonacci(31)*Lucas(73)/(1/2+sqrt(5)/2)^88 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^59/Lucas(74) 9870002026343124 a004 Fibonacci(31)*Lucas(75)/(1/2+sqrt(5)/2)^90 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^61/Lucas(76) 9870002026343124 a004 Fibonacci(31)*Lucas(77)/(1/2+sqrt(5)/2)^92 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^63/Lucas(78) 9870002026343124 a004 Fibonacci(31)*Lucas(79)/(1/2+sqrt(5)/2)^94 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^65/Lucas(80) 9870002026343124 a004 Fibonacci(31)*Lucas(81)/(1/2+sqrt(5)/2)^96 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^67/Lucas(82) 9870002026343124 a004 Fibonacci(31)*Lucas(83)/(1/2+sqrt(5)/2)^98 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^69/Lucas(84) 9870002026343124 a004 Fibonacci(31)*Lucas(85)/(1/2+sqrt(5)/2)^100 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^71/Lucas(86) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^73/Lucas(88) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^75/Lucas(90) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^77/Lucas(92) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^79/Lucas(94) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^81/Lucas(96) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^83/Lucas(98) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^84/Lucas(99) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^85/Lucas(100) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^82/Lucas(97) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^80/Lucas(95) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^78/Lucas(93) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^76/Lucas(91) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^74/Lucas(89) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^72/Lucas(87) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^70/Lucas(85) 9870002026343124 a004 Fibonacci(31)*Lucas(84)/(1/2+sqrt(5)/2)^99 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^68/Lucas(83) 9870002026343124 a004 Fibonacci(31)*Lucas(82)/(1/2+sqrt(5)/2)^97 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^66/Lucas(81) 9870002026343124 a004 Fibonacci(31)*Lucas(80)/(1/2+sqrt(5)/2)^95 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^64/Lucas(79) 9870002026343124 a004 Fibonacci(31)*Lucas(78)/(1/2+sqrt(5)/2)^93 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^62/Lucas(77) 9870002026343124 a004 Fibonacci(31)*Lucas(76)/(1/2+sqrt(5)/2)^91 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^60/Lucas(75) 9870002026343124 a004 Fibonacci(31)*Lucas(74)/(1/2+sqrt(5)/2)^89 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^58/Lucas(73) 9870002026343124 a004 Fibonacci(31)*Lucas(72)/(1/2+sqrt(5)/2)^87 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^56/Lucas(71) 9870002026343124 a004 Fibonacci(31)*Lucas(70)/(1/2+sqrt(5)/2)^85 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^54/Lucas(69) 9870002026343124 a004 Fibonacci(31)*Lucas(68)/(1/2+sqrt(5)/2)^83 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^52/Lucas(67) 9870002026343124 a004 Fibonacci(31)*Lucas(66)/(1/2+sqrt(5)/2)^81 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^50/Lucas(65) 9870002026343124 a001 1346269/14662949395604*14662949395604^(16/21) 9870002026343124 a004 Fibonacci(31)*Lucas(64)/(1/2+sqrt(5)/2)^79 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^48/Lucas(63) 9870002026343124 a004 Fibonacci(64)/Lucas(31)/(1/2+sqrt(5)/2)^17 9870002026343124 a004 Fibonacci(66)/Lucas(31)/(1/2+sqrt(5)/2)^19 9870002026343124 a004 Fibonacci(68)/Lucas(31)/(1/2+sqrt(5)/2)^21 9870002026343124 a004 Fibonacci(70)/Lucas(31)/(1/2+sqrt(5)/2)^23 9870002026343124 a004 Fibonacci(72)/Lucas(31)/(1/2+sqrt(5)/2)^25 9870002026343124 a004 Fibonacci(74)/Lucas(31)/(1/2+sqrt(5)/2)^27 9870002026343124 a004 Fibonacci(76)/Lucas(31)/(1/2+sqrt(5)/2)^29 9870002026343124 a004 Fibonacci(78)/Lucas(31)/(1/2+sqrt(5)/2)^31 9870002026343124 a004 Fibonacci(80)/Lucas(31)/(1/2+sqrt(5)/2)^33 9870002026343124 a004 Fibonacci(82)/Lucas(31)/(1/2+sqrt(5)/2)^35 9870002026343124 a004 Fibonacci(84)/Lucas(31)/(1/2+sqrt(5)/2)^37 9870002026343124 a004 Fibonacci(86)/Lucas(31)/(1/2+sqrt(5)/2)^39 9870002026343124 a004 Fibonacci(88)/Lucas(31)/(1/2+sqrt(5)/2)^41 9870002026343124 a004 Fibonacci(90)/Lucas(31)/(1/2+sqrt(5)/2)^43 9870002026343124 a004 Fibonacci(92)/Lucas(31)/(1/2+sqrt(5)/2)^45 9870002026343124 a004 Fibonacci(94)/Lucas(31)/(1/2+sqrt(5)/2)^47 9870002026343124 a004 Fibonacci(96)/Lucas(31)/(1/2+sqrt(5)/2)^49 9870002026343124 a004 Fibonacci(98)/Lucas(31)/(1/2+sqrt(5)/2)^51 9870002026343124 a004 Fibonacci(100)/Lucas(31)/(1/2+sqrt(5)/2)^53 9870002026343124 a004 Fibonacci(31)*Lucas(62)/(1/2+sqrt(5)/2)^77 9870002026343124 a004 Fibonacci(99)/Lucas(31)/(1/2+sqrt(5)/2)^52 9870002026343124 a004 Fibonacci(97)/Lucas(31)/(1/2+sqrt(5)/2)^50 9870002026343124 a004 Fibonacci(95)/Lucas(31)/(1/2+sqrt(5)/2)^48 9870002026343124 a004 Fibonacci(93)/Lucas(31)/(1/2+sqrt(5)/2)^46 9870002026343124 a004 Fibonacci(91)/Lucas(31)/(1/2+sqrt(5)/2)^44 9870002026343124 a004 Fibonacci(89)/Lucas(31)/(1/2+sqrt(5)/2)^42 9870002026343124 a004 Fibonacci(87)/Lucas(31)/(1/2+sqrt(5)/2)^40 9870002026343124 a004 Fibonacci(85)/Lucas(31)/(1/2+sqrt(5)/2)^38 9870002026343124 a004 Fibonacci(83)/Lucas(31)/(1/2+sqrt(5)/2)^36 9870002026343124 a004 Fibonacci(81)/Lucas(31)/(1/2+sqrt(5)/2)^34 9870002026343124 a004 Fibonacci(79)/Lucas(31)/(1/2+sqrt(5)/2)^32 9870002026343124 a004 Fibonacci(77)/Lucas(31)/(1/2+sqrt(5)/2)^30 9870002026343124 a004 Fibonacci(75)/Lucas(31)/(1/2+sqrt(5)/2)^28 9870002026343124 a004 Fibonacci(73)/Lucas(31)/(1/2+sqrt(5)/2)^26 9870002026343124 a004 Fibonacci(71)/Lucas(31)/(1/2+sqrt(5)/2)^24 9870002026343124 a004 Fibonacci(69)/Lucas(31)/(1/2+sqrt(5)/2)^22 9870002026343124 a004 Fibonacci(67)/Lucas(31)/(1/2+sqrt(5)/2)^20 9870002026343124 a004 Fibonacci(65)/Lucas(31)/(1/2+sqrt(5)/2)^18 9870002026343124 a004 Fibonacci(63)/Lucas(31)/(1/2+sqrt(5)/2)^16 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^46/Lucas(61) 9870002026343124 a004 Fibonacci(61)/Lucas(31)/(1/2+sqrt(5)/2)^14 9870002026343124 a004 Fibonacci(31)*Lucas(60)/(1/2+sqrt(5)/2)^75 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^44/Lucas(59) 9870002026343124 a001 1346269/2139295485799*23725150497407^(11/16) 9870002026343124 a004 Fibonacci(59)/Lucas(31)/(1/2+sqrt(5)/2)^12 9870002026343124 a001 1346269/817138163596*817138163596^(14/19) 9870002026343124 a004 Fibonacci(31)*Lucas(58)/(1/2+sqrt(5)/2)^73 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^42/Lucas(57) 9870002026343124 a004 Fibonacci(57)/Lucas(31)/(1/2+sqrt(5)/2)^10 9870002026343124 a001 1346269/23725150497407*505019158607^(7/8) 9870002026343124 a004 Fibonacci(31)*Lucas(56)/(1/2+sqrt(5)/2)^71 9870002026343124 a001 1346269/817138163596*505019158607^(3/4) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^40/Lucas(55) 9870002026343124 a001 1346269/312119004989*23725150497407^(5/8) 9870002026343124 a004 Fibonacci(55)/Lucas(31)/(1/2+sqrt(5)/2)^8 9870002026343124 a001 1346269/3461452808002*192900153618^(5/6) 9870002026343124 a001 1346269/14662949395604*192900153618^(8/9) 9870002026343124 a004 Fibonacci(31)*Lucas(54)/(1/2+sqrt(5)/2)^69 9870002026343124 a001 1346269/119218851371*817138163596^(2/3) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^38/Lucas(53) 9870002026343124 a004 Fibonacci(53)/Lucas(31)/(1/2+sqrt(5)/2)^6 9870002026343124 a001 1346269/192900153618*73681302247^(3/4) 9870002026343124 a001 1346269/45537549124*45537549124^(12/17) 9870002026343124 a001 1346269/312119004989*73681302247^(10/13) 9870002026343124 a001 1346269/2139295485799*73681302247^(11/13) 9870002026343124 a001 1346269/14662949395604*73681302247^(12/13) 9870002026343124 a004 Fibonacci(31)*Lucas(52)/(1/2+sqrt(5)/2)^67 9870002026343124 a001 1346269/45537549124*14662949395604^(4/7) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^36/Lucas(51) 9870002026343124 a004 Fibonacci(51)/Lucas(31)/(1/2+sqrt(5)/2)^4 9870002026343124 a001 1346269/45537549124*505019158607^(9/14) 9870002026343124 a001 1346269/45537549124*192900153618^(2/3) 9870002026343124 a001 1346269/45537549124*73681302247^(9/13) 9870002026343124 a001 1346269/312119004989*28143753123^(4/5) 9870002026343124 a001 1346269/3461452808002*28143753123^(9/10) 9870002026343124 a004 Fibonacci(31)*Lucas(50)/(1/2+sqrt(5)/2)^65 9870002026343124 a001 1346269/17393796001*45537549124^(2/3) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^34/Lucas(49) 9870002026343124 a001 10472279279565181/10610209857723 9870002026343124 a004 Fibonacci(49)/Lucas(31)/(1/2+sqrt(5)/2)^2 9870002026343124 a001 1346269/119218851371*10749957122^(19/24) 9870002026343124 a001 1346269/45537549124*10749957122^(3/4) 9870002026343124 a001 1346269/192900153618*10749957122^(13/16) 9870002026343124 a001 1346269/312119004989*10749957122^(5/6) 9870002026343124 a001 1346269/817138163596*10749957122^(7/8) 9870002026343124 a001 1346269/2139295485799*10749957122^(11/12) 9870002026343124 a001 1346269/3461452808002*10749957122^(15/16) 9870002026343124 a001 1346269/5600748293801*10749957122^(23/24) 9870002026343124 a004 Fibonacci(31)*Lucas(48)/(1/2+sqrt(5)/2)^63 9870002026343124 a001 1346269/17393796001*10749957122^(17/24) 9870002026343124 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^32/Lucas(47) 9870002026343124 a001 1346269/6643838879*23725150497407^(1/2) 9870002026343124 a006 5^(1/2)*Fibonacci(47)/Lucas(31)/sqrt(5) 9870002026343124 a001 1346269/6643838879*505019158607^(4/7) 9870002026343124 a001 1346269/6643838879*73681302247^(8/13) 9870002026343124 a001 1346269/6643838879*10749957122^(2/3) 9870002026343125 a001 1346269/45537549124*4106118243^(18/23) 9870002026343125 a001 1346269/17393796001*4106118243^(17/23) 9870002026343125 a001 1346269/119218851371*4106118243^(19/23) 9870002026343125 a001 1346269/312119004989*4106118243^(20/23) 9870002026343125 a001 1346269/2537720636*2537720636^(2/3) 9870002026343125 a001 1346269/817138163596*4106118243^(21/23) 9870002026343125 a001 1346269/2139295485799*4106118243^(22/23) 9870002026343125 a004 Fibonacci(31)*Lucas(46)/(1/2+sqrt(5)/2)^61 9870002026343125 a001 1346269/6643838879*4106118243^(16/23) 9870002026343125 a001 1346269/2537720636*45537549124^(10/17) 9870002026343125 a001 1346269/2537720636*312119004989^(6/11) 9870002026343125 a001 1346269/2537720636*14662949395604^(10/21) 9870002026343125 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^30/Lucas(45) 9870002026343125 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^2 9870002026343125 a001 2504729435693/2537719272 9870002026343125 a001 1346269/2537720636*192900153618^(5/9) 9870002026343125 a001 1134903170/3010349*10749957122^(1/24) 9870002026343125 a001 1346269/2537720636*28143753123^(3/5) 9870002026343125 a001 1134903170/3010349*4106118243^(1/23) 9870002026343125 a001 1346269/2537720636*10749957122^(5/8) 9870002026343125 a001 1134903170/3010349*1568397607^(1/22) 9870002026343125 a001 1346269/2537720636*4106118243^(15/23) 9870002026343125 a001 1134903170/3010349*599074578^(1/21) 9870002026343125 a001 1346269/10749957122*1568397607^(3/4) 9870002026343125 a001 1346269/17393796001*1568397607^(17/22) 9870002026343125 a001 1346269/6643838879*1568397607^(8/11) 9870002026343125 a001 1346269/45537549124*1568397607^(9/11) 9870002026343125 a001 1346269/119218851371*1568397607^(19/22) 9870002026343125 a001 1346269/312119004989*1568397607^(10/11) 9870002026343125 a001 1346269/817138163596*1568397607^(21/22) 9870002026343125 a004 Fibonacci(31)*Lucas(44)/(1/2+sqrt(5)/2)^59 9870002026343125 a001 1346269/2537720636*1568397607^(15/22) 9870002026343125 a001 1346269/969323029*17393796001^(4/7) 9870002026343125 a001 1346269/969323029*14662949395604^(4/9) 9870002026343125 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^28/Lucas(43) 9870002026343125 a001 433494437/3010349*(1/2+1/2*5^(1/2))^4 9870002026343125 a001 433494437/3010349*23725150497407^(1/16) 9870002026343125 a001 1346269/969323029*505019158607^(1/2) 9870002026343125 a001 433494437/3010349*73681302247^(1/13) 9870002026343125 a001 1346269/969323029*73681302247^(7/13) 9870002026343125 a001 433494437/3010349*10749957122^(1/12) 9870002026343125 a001 1346269/969323029*10749957122^(7/12) 9870002026343125 a001 433494437/3010349*4106118243^(2/23) 9870002026343125 a001 1346269/969323029*4106118243^(14/23) 9870002026343125 a001 433494437/3010349*1568397607^(1/11) 9870002026343125 a001 1134903170/3010349*228826127^(1/20) 9870002026343125 a001 1346269/969323029*1568397607^(7/11) 9870002026343125 a001 433494437/3010349*599074578^(2/21) 9870002026343125 a001 1346269/2537720636*599074578^(5/7) 9870002026343125 a001 1346269/6643838879*599074578^(16/21) 9870002026343125 a001 1346269/10749957122*599074578^(11/14) 9870002026343125 a001 1346269/17393796001*599074578^(17/21) 9870002026343125 a001 1346269/28143753123*599074578^(5/6) 9870002026343125 a001 1346269/45537549124*599074578^(6/7) 9870002026343125 a001 1346269/119218851371*599074578^(19/21) 9870002026343125 a001 1346269/192900153618*599074578^(13/14) 9870002026343125 a001 1346269/312119004989*599074578^(20/21) 9870002026343125 a004 Fibonacci(31)*Lucas(42)/(1/2+sqrt(5)/2)^57 9870002026343125 a001 1346269/969323029*599074578^(2/3) 9870002026343125 a001 433494437/3010349*228826127^(1/10) 9870002026343125 a001 1134903170/3010349*87403803^(1/19) 9870002026343125 a001 165580141/3010349*2537720636^(2/15) 9870002026343125 a001 165580141/3010349*45537549124^(2/17) 9870002026343125 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^26/Lucas(41) 9870002026343125 a001 165580141/3010349*14662949395604^(2/21) 9870002026343125 a001 165580141/3010349*(1/2+1/2*5^(1/2))^6 9870002026343125 a001 222915410843929/225851433717 9870002026343125 a001 1346269/370248451*73681302247^(1/2) 9870002026343125 a001 165580141/3010349*10749957122^(1/8) 9870002026343125 a001 1346269/370248451*10749957122^(13/24) 9870002026343125 a001 165580141/3010349*4106118243^(3/23) 9870002026343125 a001 1346269/370248451*4106118243^(13/23) 9870002026343125 a001 165580141/3010349*1568397607^(3/22) 9870002026343125 a001 1346269/370248451*1568397607^(13/22) 9870002026343125 a001 165580141/3010349*599074578^(1/7) 9870002026343125 a001 1346269/370248451*599074578^(13/21) 9870002026343125 a001 165580141/3010349*228826127^(3/20) 9870002026343125 a001 1346269/969323029*228826127^(7/10) 9870002026343125 a001 1346269/2537720636*228826127^(3/4) 9870002026343125 a001 433494437/3010349*87403803^(2/19) 9870002026343125 a001 1346269/6643838879*228826127^(4/5) 9870002026343125 a001 1346269/17393796001*228826127^(17/20) 9870002026343125 a001 1346269/28143753123*228826127^(7/8) 9870002026343125 a001 1346269/45537549124*228826127^(9/10) 9870002026343125 a001 1346269/119218851371*228826127^(19/20) 9870002026343125 a004 Fibonacci(31)*Lucas(40)/(1/2+sqrt(5)/2)^55 9870002026343125 a001 1346269/141422324*141422324^(8/13) 9870002026343125 a001 1346269/370248451*228826127^(13/20) 9870002026343125 a001 165580141/3010349*87403803^(3/19) 9870002026343125 a001 1346269/141422324*2537720636^(8/15) 9870002026343125 a001 1346269/141422324*45537549124^(8/17) 9870002026343125 a001 1346269/141422324*14662949395604^(8/21) 9870002026343125 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^24/Lucas(39) 9870002026343125 a001 63245986/3010349*(1/2+1/2*5^(1/2))^8 9870002026343125 a001 63245986/3010349*23725150497407^(1/8) 9870002026343125 a001 63245986/3010349*505019158607^(1/7) 9870002026343125 a001 1346269/141422324*192900153618^(4/9) 9870002026343125 a001 42573055163117/43133785636 9870002026343125 a001 63245986/3010349*73681302247^(2/13) 9870002026343125 a001 1346269/141422324*73681302247^(6/13) 9870002026343125 a001 1134903170/3010349*33385282^(1/18) 9870002026343125 a001 63245986/3010349*10749957122^(1/6) 9870002026343125 a001 1346269/141422324*10749957122^(1/2) 9870002026343125 a001 63245986/3010349*4106118243^(4/23) 9870002026343125 a001 1346269/141422324*4106118243^(12/23) 9870002026343125 a001 63245986/3010349*1568397607^(2/11) 9870002026343125 a001 1346269/141422324*1568397607^(6/11) 9870002026343125 a001 63245986/3010349*599074578^(4/21) 9870002026343125 a001 1346269/141422324*599074578^(4/7) 9870002026343125 a001 63245986/3010349*228826127^(1/5) 9870002026343125 a001 1346269/141422324*228826127^(3/5) 9870002026343125 a001 701408733/3010349*33385282^(1/12) 9870002026343125 a001 63245986/3010349*87403803^(4/19) 9870002026343125 a001 39088169/3010349*33385282^(1/4) 9870002026343125 a001 1346269/370248451*87403803^(13/19) 9870002026343125 a001 1346269/969323029*87403803^(14/19) 9870002026343125 a001 433494437/3010349*33385282^(1/9) 9870002026343126 a001 1346269/2537720636*87403803^(15/19) 9870002026343126 a001 1346269/6643838879*87403803^(16/19) 9870002026343126 a001 1346269/17393796001*87403803^(17/19) 9870002026343126 a001 1346269/45537549124*87403803^(18/19) 9870002026343126 a004 Fibonacci(31)*Lucas(38)/(1/2+sqrt(5)/2)^53 9870002026343126 a001 1346269/141422324*87403803^(12/19) 9870002026343126 a001 165580141/3010349*33385282^(1/6) 9870002026343127 a001 63245986/3010349*33385282^(2/9) 9870002026343128 a001 24157817/3010349*2537720636^(2/9) 9870002026343128 a001 1346269/54018521*312119004989^(2/5) 9870002026343128 a001 24157817/3010349*312119004989^(2/11) 9870002026343128 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^22/Lucas(37) 9870002026343128 a001 24157817/3010349*(1/2+1/2*5^(1/2))^10 9870002026343128 a001 32522920134773/32951280099 9870002026343128 a001 24157817/3010349*28143753123^(1/5) 9870002026343128 a001 24157817/3010349*10749957122^(5/24) 9870002026343128 a001 1346269/54018521*10749957122^(11/24) 9870002026343128 a001 24157817/3010349*4106118243^(5/23) 9870002026343128 a001 1346269/54018521*4106118243^(11/23) 9870002026343128 a001 24157817/3010349*1568397607^(5/22) 9870002026343128 a001 1346269/54018521*1568397607^(1/2) 9870002026343128 a001 24157817/3010349*599074578^(5/21) 9870002026343128 a001 1346269/54018521*599074578^(11/21) 9870002026343128 a001 24157817/3010349*228826127^(1/4) 9870002026343128 a001 1346269/54018521*228826127^(11/20) 9870002026343128 a001 1134903170/3010349*12752043^(1/17) 9870002026343128 a001 24157817/3010349*87403803^(5/19) 9870002026343129 a001 1346269/54018521*87403803^(11/19) 9870002026343130 a001 24157817/3010349*33385282^(5/18) 9870002026343131 a001 1346269/141422324*33385282^(2/3) 9870002026343131 a001 1346269/370248451*33385282^(13/18) 9870002026343131 a001 1346269/599074578*33385282^(3/4) 9870002026343131 a001 1346269/969323029*33385282^(7/9) 9870002026343132 a001 433494437/3010349*12752043^(2/17) 9870002026343132 a001 1346269/2537720636*33385282^(5/6) 9870002026343132 a001 1346269/6643838879*33385282^(8/9) 9870002026343133 a001 1346269/10749957122*33385282^(11/12) 9870002026343133 a001 1346269/17393796001*33385282^(17/18) 9870002026343133 a001 1346269/54018521*33385282^(11/18) 9870002026343133 a004 Fibonacci(31)*Lucas(36)/(1/2+sqrt(5)/2)^51 9870002026343134 a001 1346269/20633239*20633239^(4/7) 9870002026343135 a001 165580141/3010349*12752043^(3/17) 9870002026343139 a001 63245986/3010349*12752043^(4/17) 9870002026343145 a001 31622993/3940598*1860498^(1/3) 9870002026343146 a001 24157817/3010349*12752043^(5/17) 9870002026343148 a001 9227465/3010349*141422324^(4/13) 9870002026343148 a001 1346269/20633239*2537720636^(4/9) 9870002026343148 a001 9227465/3010349*2537720636^(4/15) 9870002026343148 a001 9227465/3010349*45537549124^(4/17) 9870002026343148 a001 9227465/3010349*817138163596^(4/19) 9870002026343148 a001 1346269/20633239*(1/2+1/2*5^(1/2))^20 9870002026343148 a001 1346269/20633239*23725150497407^(5/16) 9870002026343148 a001 9227465/3010349*14662949395604^(4/21) 9870002026343148 a001 9227465/3010349*(1/2+1/2*5^(1/2))^12 9870002026343148 a001 1346269/20633239*505019158607^(5/14) 9870002026343148 a001 9227465/3010349*192900153618^(2/9) 9870002026343148 a001 9227465/3010349*73681302247^(3/13) 9870002026343148 a001 1346269/20633239*73681302247^(5/13) 9870002026343148 a001 1346269/20633239*28143753123^(2/5) 9870002026343148 a001 2484530015617/2517253805 9870002026343148 a001 9227465/3010349*10749957122^(1/4) 9870002026343148 a001 1346269/20633239*10749957122^(5/12) 9870002026343148 a001 9227465/3010349*4106118243^(6/23) 9870002026343148 a001 1346269/20633239*4106118243^(10/23) 9870002026343148 a001 9227465/3010349*1568397607^(3/11) 9870002026343148 a001 1346269/20633239*1568397607^(5/11) 9870002026343148 a001 9227465/3010349*599074578^(2/7) 9870002026343148 a001 1346269/20633239*599074578^(10/21) 9870002026343148 a001 9227465/3010349*228826127^(3/10) 9870002026343148 a001 1346269/20633239*228826127^(1/2) 9870002026343148 a001 9227465/3010349*87403803^(6/19) 9870002026343148 a001 1346269/20633239*87403803^(10/19) 9870002026343151 a001 1134903170/3010349*4870847^(1/16) 9870002026343151 a001 9227465/3010349*33385282^(1/3) 9870002026343153 a001 1346269/20633239*33385282^(5/9) 9870002026343167 a001 14619165/4769326*1860498^(2/5) 9870002026343167 a001 1346269/54018521*12752043^(11/17) 9870002026343168 a001 1346269/141422324*12752043^(12/17) 9870002026343169 a001 9227465/3010349*12752043^(6/17) 9870002026343171 a001 1346269/370248451*12752043^(13/17) 9870002026343174 a001 1346269/969323029*12752043^(14/17) 9870002026343175 a001 267914296/87403803*1860498^(2/5) 9870002026343176 a001 701408733/228826127*1860498^(2/5) 9870002026343176 a001 1836311903/599074578*1860498^(2/5) 9870002026343176 a001 686789568/224056801*1860498^(2/5) 9870002026343176 a001 12586269025/4106118243*1860498^(2/5) 9870002026343176 a001 32951280099/10749957122*1860498^(2/5) 9870002026343176 a001 86267571272/28143753123*1860498^(2/5) 9870002026343176 a001 32264490531/10525900321*1860498^(2/5) 9870002026343176 a001 591286729879/192900153618*1860498^(2/5) 9870002026343176 a001 1548008755920/505019158607*1860498^(2/5) 9870002026343176 a001 1515744265389/494493258286*1860498^(2/5) 9870002026343176 a001 2504730781961/817138163596*1860498^(2/5) 9870002026343176 a001 956722026041/312119004989*1860498^(2/5) 9870002026343176 a001 365435296162/119218851371*1860498^(2/5) 9870002026343176 a001 139583862445/45537549124*1860498^(2/5) 9870002026343176 a001 53316291173/17393796001*1860498^(2/5) 9870002026343176 a001 20365011074/6643838879*1860498^(2/5) 9870002026343176 a001 7778742049/2537720636*1860498^(2/5) 9870002026343176 a001 2971215073/969323029*1860498^(2/5) 9870002026343176 a001 1134903170/370248451*1860498^(2/5) 9870002026343176 a001 433494437/141422324*1860498^(2/5) 9870002026343177 a001 433494437/3010349*4870847^(1/8) 9870002026343178 a001 1346269/2537720636*12752043^(15/17) 9870002026343179 a001 165580141/54018521*1860498^(2/5) 9870002026343182 a001 1346269/6643838879*12752043^(16/17) 9870002026343183 a001 1346269/20633239*12752043^(10/17) 9870002026343185 a004 Fibonacci(31)*Lucas(34)/(1/2+sqrt(5)/2)^49 9870002026343197 a001 1346269/7881196*7881196^(6/11) 9870002026343200 a001 63245986/20633239*1860498^(2/5) 9870002026343203 a001 165580141/3010349*4870847^(3/16) 9870002026343204 a001 3524578/4870847*1860498^(1/2) 9870002026343229 a001 63245986/3010349*4870847^(1/4) 9870002026343258 a001 24157817/3010349*4870847^(5/16) 9870002026343269 a001 726103/4250681*1860498^(3/5) 9870002026343274 a001 3524578/3010349*20633239^(2/5) 9870002026343283 a001 1346269/7881196*141422324^(6/13) 9870002026343283 a001 1346269/7881196*2537720636^(2/5) 9870002026343283 a001 3524578/3010349*17393796001^(2/7) 9870002026343283 a001 1346269/7881196*45537549124^(6/17) 9870002026343283 a001 1346269/7881196*14662949395604^(2/7) 9870002026343283 a001 1346269/7881196*(1/2+1/2*5^(1/2))^18 9870002026343283 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^18/Lucas(33) 9870002026343283 a001 3524578/3010349*14662949395604^(2/9) 9870002026343283 a001 3524578/3010349*(1/2+1/2*5^(1/2))^14 9870002026343283 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^14/Lucas(31) 9870002026343283 a001 1346269/7881196*192900153618^(1/3) 9870002026343283 a001 3524578/3010349*10749957122^(7/24) 9870002026343283 a001 1346269/7881196*10749957122^(3/8) 9870002026343283 a001 2372515049741/2403763488 9870002026343283 a001 3524578/3010349*4106118243^(7/23) 9870002026343283 a001 1346269/7881196*4106118243^(9/23) 9870002026343283 a001 3524578/3010349*1568397607^(7/22) 9870002026343283 a001 1346269/7881196*1568397607^(9/22) 9870002026343283 a001 3524578/3010349*599074578^(1/3) 9870002026343283 a001 1346269/7881196*599074578^(3/7) 9870002026343283 a001 3524578/3010349*228826127^(7/20) 9870002026343283 a001 1346269/7881196*228826127^(9/20) 9870002026343284 a001 3524578/3010349*87403803^(7/19) 9870002026343284 a001 1346269/7881196*87403803^(9/19) 9870002026343287 a001 3524578/3010349*33385282^(7/18) 9870002026343288 a001 1346269/7881196*33385282^(1/2) 9870002026343296 a001 4976784/4250681*1860498^(7/15) 9870002026343304 a001 9227465/3010349*4870847^(3/8) 9870002026343308 a001 3524578/3010349*12752043^(7/17) 9870002026343315 a001 1134903170/3010349*1860498^(1/15) 9870002026343316 a001 1346269/7881196*12752043^(9/17) 9870002026343338 a001 24157817/7881196*1860498^(2/5) 9870002026343356 a001 39088169/33385282*1860498^(7/15) 9870002026343365 a001 34111385/29134601*1860498^(7/15) 9870002026343366 a001 267914296/228826127*1860498^(7/15) 9870002026343366 a001 233802911/199691526*1860498^(7/15) 9870002026343366 a001 1836311903/1568397607*1860498^(7/15) 9870002026343366 a001 1602508992/1368706081*1860498^(7/15) 9870002026343366 a001 12586269025/10749957122*1860498^(7/15) 9870002026343366 a001 10983760033/9381251041*1860498^(7/15) 9870002026343366 a001 86267571272/73681302247*1860498^(7/15) 9870002026343366 a001 75283811239/64300051206*1860498^(7/15) 9870002026343366 a001 2504730781961/2139295485799*1860498^(7/15) 9870002026343366 a001 365435296162/312119004989*1860498^(7/15) 9870002026343366 a001 139583862445/119218851371*1860498^(7/15) 9870002026343366 a001 53316291173/45537549124*1860498^(7/15) 9870002026343366 a001 20365011074/17393796001*1860498^(7/15) 9870002026343366 a001 7778742049/6643838879*1860498^(7/15) 9870002026343366 a001 2971215073/2537720636*1860498^(7/15) 9870002026343366 a001 1134903170/969323029*1860498^(7/15) 9870002026343366 a001 433494437/370248451*1860498^(7/15) 9870002026343367 a001 165580141/141422324*1860498^(7/15) 9870002026343370 a001 63245986/54018521*1860498^(7/15) 9870002026343371 a001 1602508992/4250681*710647^(1/14) 9870002026343372 a001 831985/15126*710647^(3/14) 9870002026343393 a001 24157817/20633239*1860498^(7/15) 9870002026343408 a001 1346269/20633239*4870847^(5/8) 9870002026343410 a001 701408733/3010349*1860498^(1/10) 9870002026343414 a001 1346269/54018521*4870847^(11/16) 9870002026343422 a001 12586269025/33385282*710647^(1/14) 9870002026343424 a001 9227465/12752043*1860498^(1/2) 9870002026343430 a001 10983760033/29134601*710647^(1/14) 9870002026343431 a001 86267571272/228826127*710647^(1/14) 9870002026343431 a001 267913919/710646*710647^(1/14) 9870002026343431 a001 591286729879/1568397607*710647^(1/14) 9870002026343431 a001 516002918640/1368706081*710647^(1/14) 9870002026343431 a001 4052739537881/10749957122*710647^(1/14) 9870002026343431 a001 3536736619241/9381251041*710647^(1/14) 9870002026343431 a001 6557470319842/17393796001*710647^(1/14) 9870002026343431 a001 2504730781961/6643838879*710647^(1/14) 9870002026343431 a001 956722026041/2537720636*710647^(1/14) 9870002026343431 a001 365435296162/969323029*710647^(1/14) 9870002026343431 a001 139583862445/370248451*710647^(1/14) 9870002026343432 a001 53316291173/141422324*710647^(1/14) 9870002026343435 a001 5702887/12752043*1860498^(8/15) 9870002026343435 a001 20365011074/54018521*710647^(1/14) 9870002026343437 a001 1346269/141422324*4870847^(3/4) 9870002026343455 a001 7778742049/20633239*710647^(1/14) 9870002026343456 a001 24157817/33385282*1860498^(1/2) 9870002026343460 a001 63245986/87403803*1860498^(1/2) 9870002026343461 a001 165580141/228826127*1860498^(1/2) 9870002026343461 a001 433494437/599074578*1860498^(1/2) 9870002026343461 a001 1134903170/1568397607*1860498^(1/2) 9870002026343461 a001 2971215073/4106118243*1860498^(1/2) 9870002026343461 a001 7778742049/10749957122*1860498^(1/2) 9870002026343461 a001 20365011074/28143753123*1860498^(1/2) 9870002026343461 a001 53316291173/73681302247*1860498^(1/2) 9870002026343461 a001 139583862445/192900153618*1860498^(1/2) 9870002026343461 a001 365435296162/505019158607*1860498^(1/2) 9870002026343461 a001 10610209857723/14662949395604*1860498^(1/2) 9870002026343461 a001 591286729879/817138163596*1860498^(1/2) 9870002026343461 a001 225851433717/312119004989*1860498^(1/2) 9870002026343461 a001 86267571272/119218851371*1860498^(1/2) 9870002026343461 a001 32951280099/45537549124*1860498^(1/2) 9870002026343461 a001 12586269025/17393796001*1860498^(1/2) 9870002026343461 a001 4807526976/6643838879*1860498^(1/2) 9870002026343461 a001 1836311903/2537720636*1860498^(1/2) 9870002026343461 a001 701408733/969323029*1860498^(1/2) 9870002026343461 a001 267914296/370248451*1860498^(1/2) 9870002026343461 a001 102334155/141422324*1860498^(1/2) 9870002026343463 a001 1346269/370248451*4870847^(13/16) 9870002026343463 a001 39088169/54018521*1860498^(1/2) 9870002026343465 a001 3524578/3010349*4870847^(7/16) 9870002026343475 a001 14930352/20633239*1860498^(1/2) 9870002026343489 a001 1346269/969323029*4870847^(7/8) 9870002026343505 a001 433494437/3010349*1860498^(2/15) 9870002026343511 a001 311187/4769326*1860498^(2/3) 9870002026343515 a001 1346269/2537720636*4870847^(15/16) 9870002026343517 a001 1346269/7881196*4870847^(9/16) 9870002026343538 a001 7465176/16692641*1860498^(8/15) 9870002026343541 a004 Fibonacci(31)*Lucas(32)/(1/2+sqrt(5)/2)^47 9870002026343548 a001 9227465/7881196*1860498^(7/15) 9870002026343554 a001 39088169/87403803*1860498^(8/15) 9870002026343556 a001 102334155/228826127*1860498^(8/15) 9870002026343556 a001 133957148/299537289*1860498^(8/15) 9870002026343556 a001 701408733/1568397607*1860498^(8/15) 9870002026343556 a001 1836311903/4106118243*1860498^(8/15) 9870002026343556 a001 2403763488/5374978561*1860498^(8/15) 9870002026343556 a001 12586269025/28143753123*1860498^(8/15) 9870002026343556 a001 32951280099/73681302247*1860498^(8/15) 9870002026343556 a001 43133785636/96450076809*1860498^(8/15) 9870002026343556 a001 225851433717/505019158607*1860498^(8/15) 9870002026343556 a001 591286729879/1322157322203*1860498^(8/15) 9870002026343556 a001 10610209857723/23725150497407*1860498^(8/15) 9870002026343556 a001 182717648081/408569081798*1860498^(8/15) 9870002026343556 a001 139583862445/312119004989*1860498^(8/15) 9870002026343556 a001 53316291173/119218851371*1860498^(8/15) 9870002026343556 a001 10182505537/22768774562*1860498^(8/15) 9870002026343556 a001 7778742049/17393796001*1860498^(8/15) 9870002026343556 a001 2971215073/6643838879*1860498^(8/15) 9870002026343556 a001 567451585/1268860318*1860498^(8/15) 9870002026343556 a001 433494437/969323029*1860498^(8/15) 9870002026343556 a001 165580141/370248451*1860498^(8/15) 9870002026343557 a001 31622993/70711162*1860498^(8/15) 9870002026343559 a001 5702887/7881196*1860498^(1/2) 9870002026343563 a001 24157817/54018521*1860498^(8/15) 9870002026343590 a001 2971215073/7881196*710647^(1/14) 9870002026343600 a001 267914296/3010349*1860498^(1/6) 9870002026343602 a001 9227465/20633239*1860498^(8/15) 9870002026343619 a001 2178309/54018521*1860498^(7/10) 9870002026343677 a001 5702887/33385282*1860498^(3/5) 9870002026343695 a001 165580141/3010349*1860498^(1/5) 9870002026343709 a001 726103/29134601*1860498^(11/15) 9870002026343736 a001 4976784/29134601*1860498^(3/5) 9870002026343745 a001 39088169/228826127*1860498^(3/5) 9870002026343746 a001 34111385/199691526*1860498^(3/5) 9870002026343746 a001 267914296/1568397607*1860498^(3/5) 9870002026343746 a001 233802911/1368706081*1860498^(3/5) 9870002026343746 a001 1836311903/10749957122*1860498^(3/5) 9870002026343746 a001 1602508992/9381251041*1860498^(3/5) 9870002026343746 a001 12586269025/73681302247*1860498^(3/5) 9870002026343746 a001 10983760033/64300051206*1860498^(3/5) 9870002026343746 a001 86267571272/505019158607*1860498^(3/5) 9870002026343746 a001 75283811239/440719107401*1860498^(3/5) 9870002026343746 a001 2504730781961/14662949395604*1860498^(3/5) 9870002026343746 a001 139583862445/817138163596*1860498^(3/5) 9870002026343746 a001 53316291173/312119004989*1860498^(3/5) 9870002026343746 a001 20365011074/119218851371*1860498^(3/5) 9870002026343746 a001 7778742049/45537549124*1860498^(3/5) 9870002026343746 a001 2971215073/17393796001*1860498^(3/5) 9870002026343746 a001 1134903170/6643838879*1860498^(3/5) 9870002026343746 a001 433494437/2537720636*1860498^(3/5) 9870002026343746 a001 165580141/969323029*1860498^(3/5) 9870002026343747 a001 63245986/370248451*1860498^(3/5) 9870002026343750 a001 24157817/141422324*1860498^(3/5) 9870002026343773 a001 9227465/54018521*1860498^(3/5) 9870002026343815 a001 267914296/1149851*439204^(1/9) 9870002026343874 a001 1762289/3940598*1860498^(8/15) 9870002026343874 a001 5702887/87403803*1860498^(2/3) 9870002026343885 a001 63245986/3010349*1860498^(4/15) 9870002026343900 a001 46347/4868641*1860498^(4/5) 9870002026343927 a001 14930352/228826127*1860498^(2/3) 9870002026343928 a001 3524578/20633239*1860498^(3/5) 9870002026343935 a001 39088169/599074578*1860498^(2/3) 9870002026343936 a001 14619165/224056801*1860498^(2/3) 9870002026343936 a001 267914296/4106118243*1860498^(2/3) 9870002026343936 a001 701408733/10749957122*1860498^(2/3) 9870002026343936 a001 1836311903/28143753123*1860498^(2/3) 9870002026343936 a001 686789568/10525900321*1860498^(2/3) 9870002026343936 a001 12586269025/192900153618*1860498^(2/3) 9870002026343936 a001 32951280099/505019158607*1860498^(2/3) 9870002026343936 a001 86267571272/1322157322203*1860498^(2/3) 9870002026343936 a001 32264490531/494493258286*1860498^(2/3) 9870002026343936 a001 591286729879/9062201101803*1860498^(2/3) 9870002026343936 a001 1548008755920/23725150497407*1860498^(2/3) 9870002026343936 a001 365435296162/5600748293801*1860498^(2/3) 9870002026343936 a001 139583862445/2139295485799*1860498^(2/3) 9870002026343936 a001 53316291173/817138163596*1860498^(2/3) 9870002026343936 a001 20365011074/312119004989*1860498^(2/3) 9870002026343936 a001 7778742049/119218851371*1860498^(2/3) 9870002026343936 a001 2971215073/45537549124*1860498^(2/3) 9870002026343936 a001 1134903170/17393796001*1860498^(2/3) 9870002026343936 a001 433494437/6643838879*1860498^(2/3) 9870002026343936 a001 165580141/2537720636*1860498^(2/3) 9870002026343937 a001 63245986/969323029*1860498^(2/3) 9870002026343940 a001 24157817/370248451*1860498^(2/3) 9870002026343960 a001 9227465/141422324*1860498^(2/3) 9870002026343971 a001 5702887/141422324*1860498^(7/10) 9870002026343979 a001 39088169/3010349*1860498^(3/10) 9870002026343996 a001 2178309/370248451*1860498^(5/6) 9870002026344023 a001 14930352/370248451*1860498^(7/10) 9870002026344030 a001 39088169/969323029*1860498^(7/10) 9870002026344031 a001 9303105/230701876*1860498^(7/10) 9870002026344031 a001 267914296/6643838879*1860498^(7/10) 9870002026344031 a001 701408733/17393796001*1860498^(7/10) 9870002026344031 a001 1836311903/45537549124*1860498^(7/10) 9870002026344031 a001 4807526976/119218851371*1860498^(7/10) 9870002026344031 a001 1144206275/28374454999*1860498^(7/10) 9870002026344031 a001 32951280099/817138163596*1860498^(7/10) 9870002026344031 a001 86267571272/2139295485799*1860498^(7/10) 9870002026344031 a001 225851433717/5600748293801*1860498^(7/10) 9870002026344031 a001 591286729879/14662949395604*1860498^(7/10) 9870002026344031 a001 365435296162/9062201101803*1860498^(7/10) 9870002026344031 a001 139583862445/3461452808002*1860498^(7/10) 9870002026344031 a001 53316291173/1322157322203*1860498^(7/10) 9870002026344031 a001 20365011074/505019158607*1860498^(7/10) 9870002026344031 a001 7778742049/192900153618*1860498^(7/10) 9870002026344031 a001 2971215073/73681302247*1860498^(7/10) 9870002026344031 a001 1134903170/28143753123*1860498^(7/10) 9870002026344031 a001 433494437/10749957122*1860498^(7/10) 9870002026344031 a001 165580141/4106118243*1860498^(7/10) 9870002026344032 a001 63245986/1568397607*1860498^(7/10) 9870002026344035 a001 24157817/599074578*1860498^(7/10) 9870002026344054 a001 9227465/228826127*1860498^(7/10) 9870002026344066 a001 5702887/228826127*1860498^(11/15) 9870002026344070 a001 31622993/930249*710647^(1/4) 9870002026344078 a001 24157817/3010349*1860498^(1/3) 9870002026344091 a001 726103/199691526*1860498^(13/15) 9870002026344099 a001 3524578/54018521*1860498^(2/3) 9870002026344118 a001 829464/33281921*1860498^(11/15) 9870002026344125 a001 39088169/1568397607*1860498^(11/15) 9870002026344126 a001 34111385/1368706081*1860498^(11/15) 9870002026344126 a001 133957148/5374978561*1860498^(11/15) 9870002026344126 a001 233802911/9381251041*1860498^(11/15) 9870002026344126 a001 1836311903/73681302247*1860498^(11/15) 9870002026344126 a001 267084832/10716675201*1860498^(11/15) 9870002026344126 a001 12586269025/505019158607*1860498^(11/15) 9870002026344126 a001 10983760033/440719107401*1860498^(11/15) 9870002026344126 a001 43133785636/1730726404001*1860498^(11/15) 9870002026344126 a001 75283811239/3020733700601*1860498^(11/15) 9870002026344126 a001 182717648081/7331474697802*1860498^(11/15) 9870002026344126 a001 139583862445/5600748293801*1860498^(11/15) 9870002026344126 a001 53316291173/2139295485799*1860498^(11/15) 9870002026344126 a001 10182505537/408569081798*1860498^(11/15) 9870002026344126 a001 7778742049/312119004989*1860498^(11/15) 9870002026344126 a001 2971215073/119218851371*1860498^(11/15) 9870002026344126 a001 567451585/22768774562*1860498^(11/15) 9870002026344126 a001 433494437/17393796001*1860498^(11/15) 9870002026344126 a001 165580141/6643838879*1860498^(11/15) 9870002026344127 a001 31622993/1268860318*1860498^(11/15) 9870002026344130 a001 24157817/969323029*1860498^(11/15) 9870002026344134 a001 2178309/3010349*1860498^(1/2) 9870002026344150 a001 9227465/370248451*1860498^(11/15) 9870002026344186 a001 2178309/969323029*1860498^(9/10) 9870002026344189 a001 3524578/87403803*1860498^(7/10) 9870002026344214 a001 1346269/3010349*(1/2+1/2*5^(1/2))^16 9870002026344214 a001 1346269/3010349*23725150497407^(1/4) 9870002026344214 a001 1346269/3010349*73681302247^(4/13) 9870002026344214 a001 1346269/3010349*10749957122^(1/3) 9870002026344214 a001 1346269/3010349*4106118243^(8/23) 9870002026344214 a001 1812440220361/1836311903 9870002026344214 a001 1346269/3010349*1568397607^(4/11) 9870002026344214 a001 1346269/3010349*599074578^(8/21) 9870002026344214 a001 1346269/3010349*228826127^(2/5) 9870002026344214 a001 1346269/3010349*87403803^(8/19) 9870002026344218 a001 1346269/3010349*33385282^(4/9) 9870002026344242 a001 1346269/3010349*12752043^(8/17) 9870002026344256 a001 5702887/599074578*1860498^(4/5) 9870002026344281 a001 311187/224056801*1860498^(14/15) 9870002026344286 a001 1762289/70711162*1860498^(11/15) 9870002026344288 a001 9227465/3010349*1860498^(2/5) 9870002026344308 a001 14930352/1568397607*1860498^(4/5) 9870002026344315 a001 39088169/4106118243*1860498^(4/5) 9870002026344316 a001 102334155/10749957122*1860498^(4/5) 9870002026344316 a001 267914296/28143753123*1860498^(4/5) 9870002026344316 a001 701408733/73681302247*1860498^(4/5) 9870002026344316 a001 1836311903/192900153618*1860498^(4/5) 9870002026344316 a001 102287808/10745088481*1860498^(4/5) 9870002026344316 a001 12586269025/1322157322203*1860498^(4/5) 9870002026344316 a001 32951280099/3461452808002*1860498^(4/5) 9870002026344316 a001 86267571272/9062201101803*1860498^(4/5) 9870002026344316 a001 225851433717/23725150497407*1860498^(4/5) 9870002026344316 a001 139583862445/14662949395604*1860498^(4/5) 9870002026344316 a001 53316291173/5600748293801*1860498^(4/5) 9870002026344316 a001 20365011074/2139295485799*1860498^(4/5) 9870002026344316 a001 7778742049/817138163596*1860498^(4/5) 9870002026344316 a001 2971215073/312119004989*1860498^(4/5) 9870002026344316 a001 1134903170/119218851371*1860498^(4/5) 9870002026344316 a001 433494437/45537549124*1860498^(4/5) 9870002026344317 a001 165580141/17393796001*1860498^(4/5) 9870002026344317 a001 63245986/6643838879*1860498^(4/5) 9870002026344320 a001 24157817/2537720636*1860498^(4/5) 9870002026344340 a001 9227465/969323029*1860498^(4/5) 9870002026344351 a001 5702887/969323029*1860498^(5/6) 9870002026344403 a001 196452/33391061*1860498^(5/6) 9870002026344410 a001 39088169/6643838879*1860498^(5/6) 9870002026344411 a001 701408733/4870847*710647^(1/7) 9870002026344411 a001 102334155/17393796001*1860498^(5/6) 9870002026344412 a001 66978574/11384387281*1860498^(5/6) 9870002026344412 a001 701408733/119218851371*1860498^(5/6) 9870002026344412 a001 1836311903/312119004989*1860498^(5/6) 9870002026344412 a001 1201881744/204284540899*1860498^(5/6) 9870002026344412 a001 12586269025/2139295485799*1860498^(5/6) 9870002026344412 a001 32951280099/5600748293801*1860498^(5/6) 9870002026344412 a001 1135099622/192933544679*1860498^(5/6) 9870002026344412 a001 139583862445/23725150497407*1860498^(5/6) 9870002026344412 a001 53316291173/9062201101803*1860498^(5/6) 9870002026344412 a001 10182505537/1730726404001*1860498^(5/6) 9870002026344412 a001 7778742049/1322157322203*1860498^(5/6) 9870002026344412 a001 2971215073/505019158607*1860498^(5/6) 9870002026344412 a001 567451585/96450076809*1860498^(5/6) 9870002026344412 a001 433494437/73681302247*1860498^(5/6) 9870002026344412 a001 165580141/28143753123*1860498^(5/6) 9870002026344412 a001 31622993/5374978561*1860498^(5/6) 9870002026344415 a001 24157817/4106118243*1860498^(5/6) 9870002026344422 a001 1346269/3010349*4870847^(1/2) 9870002026344435 a001 9227465/1568397607*1860498^(5/6) 9870002026344446 a001 5702887/1568397607*1860498^(13/15) 9870002026344471 a004 Fibonacci(32)*Lucas(30)/(1/2+sqrt(5)/2)^46 9870002026344475 a001 3524578/370248451*1860498^(4/5) 9870002026344498 a001 4976784/1368706081*1860498^(13/15) 9870002026344505 a001 39088169/10749957122*1860498^(13/15) 9870002026344506 a001 831985/228811001*1860498^(13/15) 9870002026344507 a001 267914296/73681302247*1860498^(13/15) 9870002026344507 a001 233802911/64300051206*1860498^(13/15) 9870002026344507 a001 1836311903/505019158607*1860498^(13/15) 9870002026344507 a001 1602508992/440719107401*1860498^(13/15) 9870002026344507 a001 12586269025/3461452808002*1860498^(13/15) 9870002026344507 a001 10983760033/3020733700601*1860498^(13/15) 9870002026344507 a001 86267571272/23725150497407*1860498^(13/15) 9870002026344507 a001 53316291173/14662949395604*1860498^(13/15) 9870002026344507 a001 20365011074/5600748293801*1860498^(13/15) 9870002026344507 a001 7778742049/2139295485799*1860498^(13/15) 9870002026344507 a001 2971215073/817138163596*1860498^(13/15) 9870002026344507 a001 1134903170/312119004989*1860498^(13/15) 9870002026344507 a001 433494437/119218851371*1860498^(13/15) 9870002026344507 a001 165580141/45537549124*1860498^(13/15) 9870002026344507 a001 63245986/17393796001*1860498^(13/15) 9870002026344510 a001 24157817/6643838879*1860498^(13/15) 9870002026344520 a001 1134903170/3010349*710647^(1/14) 9870002026344530 a001 9227465/2537720636*1860498^(13/15) 9870002026344541 a001 5702887/2537720636*1860498^(9/10) 9870002026344570 a001 1762289/299537289*1860498^(5/6) 9870002026344593 a001 14930352/6643838879*1860498^(9/10) 9870002026344600 a001 39088169/17393796001*1860498^(9/10) 9870002026344601 a001 102334155/45537549124*1860498^(9/10) 9870002026344602 a001 267914296/119218851371*1860498^(9/10) 9870002026344602 a001 3524667/1568437211*1860498^(9/10) 9870002026344602 a001 1836311903/817138163596*1860498^(9/10) 9870002026344602 a001 4807526976/2139295485799*1860498^(9/10) 9870002026344602 a001 12586269025/5600748293801*1860498^(9/10) 9870002026344602 a001 32951280099/14662949395604*1860498^(9/10) 9870002026344602 a001 53316291173/23725150497407*1860498^(9/10) 9870002026344602 a001 20365011074/9062201101803*1860498^(9/10) 9870002026344602 a001 7778742049/3461452808002*1860498^(9/10) 9870002026344602 a001 2971215073/1322157322203*1860498^(9/10) 9870002026344602 a001 1134903170/505019158607*1860498^(9/10) 9870002026344602 a001 433494437/192900153618*1860498^(9/10) 9870002026344602 a001 165580141/73681302247*1860498^(9/10) 9870002026344602 a001 63245986/28143753123*1860498^(9/10) 9870002026344605 a001 24157817/10749957122*1860498^(9/10) 9870002026344614 a001 3524578/3010349*1860498^(7/15) 9870002026344625 a001 9227465/4106118243*1860498^(9/10) 9870002026344636 a001 5702887/4106118243*1860498^(14/15) 9870002026344665 a001 3524578/969323029*1860498^(13/15) 9870002026344688 a001 7465176/5374978561*1860498^(14/15) 9870002026344695 a001 39088169/28143753123*1860498^(14/15) 9870002026344696 a001 14619165/10525900321*1860498^(14/15) 9870002026344697 a001 133957148/96450076809*1860498^(14/15) 9870002026344697 a001 701408733/505019158607*1860498^(14/15) 9870002026344697 a001 1836311903/1322157322203*1860498^(14/15) 9870002026344697 a001 14930208/10749853441*1860498^(14/15) 9870002026344697 a001 12586269025/9062201101803*1860498^(14/15) 9870002026344697 a001 32951280099/23725150497407*1860498^(14/15) 9870002026344697 a001 10182505537/7331474697802*1860498^(14/15) 9870002026344697 a001 7778742049/5600748293801*1860498^(14/15) 9870002026344697 a001 2971215073/2139295485799*1860498^(14/15) 9870002026344697 a001 567451585/408569081798*1860498^(14/15) 9870002026344697 a001 433494437/312119004989*1860498^(14/15) 9870002026344697 a001 165580141/119218851371*1860498^(14/15) 9870002026344697 a001 31622993/22768774562*1860498^(14/15) 9870002026344700 a001 24157817/17393796001*1860498^(14/15) 9870002026344720 a001 9227465/6643838879*1860498^(14/15) 9870002026344761 a001 3524578/1568397607*1860498^(9/10) 9870002026344767 a001 39088169/1860498*710647^(2/7) 9870002026344767 a001 1836311903/12752043*710647^(1/7) 9870002026344818 a001 14930208/103681*710647^(1/7) 9870002026344826 a001 12586269025/87403803*710647^(1/7) 9870002026344826 a004 Fibonacci(34)*Lucas(30)/(1/2+sqrt(5)/2)^48 9870002026344827 a001 32951280099/228826127*710647^(1/7) 9870002026344827 a001 43133785636/299537289*710647^(1/7) 9870002026344827 a001 32264490531/224056801*710647^(1/7) 9870002026344827 a001 591286729879/4106118243*710647^(1/7) 9870002026344827 a001 774004377960/5374978561*710647^(1/7) 9870002026344827 a001 4052739537881/28143753123*710647^(1/7) 9870002026344827 a001 1515744265389/10525900321*710647^(1/7) 9870002026344827 a001 3278735159921/22768774562*710647^(1/7) 9870002026344827 a001 2504730781961/17393796001*710647^(1/7) 9870002026344827 a001 956722026041/6643838879*710647^(1/7) 9870002026344827 a001 182717648081/1268860318*710647^(1/7) 9870002026344827 a001 139583862445/969323029*710647^(1/7) 9870002026344827 a001 53316291173/370248451*710647^(1/7) 9870002026344828 a001 10182505537/70711162*710647^(1/7) 9870002026344831 a001 7778742049/54018521*710647^(1/7) 9870002026344851 a001 2971215073/20633239*710647^(1/7) 9870002026344856 a001 1762289/1268860318*1860498^(14/15) 9870002026344878 a004 Fibonacci(36)*Lucas(30)/(1/2+sqrt(5)/2)^50 9870002026344885 a004 Fibonacci(38)*Lucas(30)/(1/2+sqrt(5)/2)^52 9870002026344887 a004 Fibonacci(40)*Lucas(30)/(1/2+sqrt(5)/2)^54 9870002026344887 a004 Fibonacci(42)*Lucas(30)/(1/2+sqrt(5)/2)^56 9870002026344887 a004 Fibonacci(44)*Lucas(30)/(1/2+sqrt(5)/2)^58 9870002026344887 a004 Fibonacci(46)*Lucas(30)/(1/2+sqrt(5)/2)^60 9870002026344887 a004 Fibonacci(48)*Lucas(30)/(1/2+sqrt(5)/2)^62 9870002026344887 a004 Fibonacci(50)*Lucas(30)/(1/2+sqrt(5)/2)^64 9870002026344887 a004 Fibonacci(52)*Lucas(30)/(1/2+sqrt(5)/2)^66 9870002026344887 a004 Fibonacci(54)*Lucas(30)/(1/2+sqrt(5)/2)^68 9870002026344887 a004 Fibonacci(56)*Lucas(30)/(1/2+sqrt(5)/2)^70 9870002026344887 a004 Fibonacci(58)*Lucas(30)/(1/2+sqrt(5)/2)^72 9870002026344887 a004 Fibonacci(60)*Lucas(30)/(1/2+sqrt(5)/2)^74 9870002026344887 a004 Fibonacci(62)*Lucas(30)/(1/2+sqrt(5)/2)^76 9870002026344887 a004 Fibonacci(64)*Lucas(30)/(1/2+sqrt(5)/2)^78 9870002026344887 a004 Fibonacci(66)*Lucas(30)/(1/2+sqrt(5)/2)^80 9870002026344887 a004 Fibonacci(68)*Lucas(30)/(1/2+sqrt(5)/2)^82 9870002026344887 a004 Fibonacci(70)*Lucas(30)/(1/2+sqrt(5)/2)^84 9870002026344887 a004 Fibonacci(72)*Lucas(30)/(1/2+sqrt(5)/2)^86 9870002026344887 a004 Fibonacci(74)*Lucas(30)/(1/2+sqrt(5)/2)^88 9870002026344887 a004 Fibonacci(76)*Lucas(30)/(1/2+sqrt(5)/2)^90 9870002026344887 a004 Fibonacci(78)*Lucas(30)/(1/2+sqrt(5)/2)^92 9870002026344887 a004 Fibonacci(80)*Lucas(30)/(1/2+sqrt(5)/2)^94 9870002026344887 a004 Fibonacci(82)*Lucas(30)/(1/2+sqrt(5)/2)^96 9870002026344887 a004 Fibonacci(84)*Lucas(30)/(1/2+sqrt(5)/2)^98 9870002026344887 a004 Fibonacci(86)*Lucas(30)/(1/2+sqrt(5)/2)^100 9870002026344887 a004 Fibonacci(85)*Lucas(30)/(1/2+sqrt(5)/2)^99 9870002026344887 a004 Fibonacci(83)*Lucas(30)/(1/2+sqrt(5)/2)^97 9870002026344887 a004 Fibonacci(81)*Lucas(30)/(1/2+sqrt(5)/2)^95 9870002026344887 a004 Fibonacci(79)*Lucas(30)/(1/2+sqrt(5)/2)^93 9870002026344887 a004 Fibonacci(77)*Lucas(30)/(1/2+sqrt(5)/2)^91 9870002026344887 a004 Fibonacci(75)*Lucas(30)/(1/2+sqrt(5)/2)^89 9870002026344887 a004 Fibonacci(73)*Lucas(30)/(1/2+sqrt(5)/2)^87 9870002026344887 a004 Fibonacci(71)*Lucas(30)/(1/2+sqrt(5)/2)^85 9870002026344887 a004 Fibonacci(69)*Lucas(30)/(1/2+sqrt(5)/2)^83 9870002026344887 a004 Fibonacci(67)*Lucas(30)/(1/2+sqrt(5)/2)^81 9870002026344887 a004 Fibonacci(65)*Lucas(30)/(1/2+sqrt(5)/2)^79 9870002026344887 a004 Fibonacci(63)*Lucas(30)/(1/2+sqrt(5)/2)^77 9870002026344887 a004 Fibonacci(61)*Lucas(30)/(1/2+sqrt(5)/2)^75 9870002026344887 a001 1/416020*(1/2+1/2*5^(1/2))^46 9870002026344887 a004 Fibonacci(59)*Lucas(30)/(1/2+sqrt(5)/2)^73 9870002026344887 a004 Fibonacci(57)*Lucas(30)/(1/2+sqrt(5)/2)^71 9870002026344887 a004 Fibonacci(55)*Lucas(30)/(1/2+sqrt(5)/2)^69 9870002026344887 a004 Fibonacci(53)*Lucas(30)/(1/2+sqrt(5)/2)^67 9870002026344887 a004 Fibonacci(51)*Lucas(30)/(1/2+sqrt(5)/2)^65 9870002026344887 a004 Fibonacci(49)*Lucas(30)/(1/2+sqrt(5)/2)^63 9870002026344887 a004 Fibonacci(47)*Lucas(30)/(1/2+sqrt(5)/2)^61 9870002026344887 a004 Fibonacci(45)*Lucas(30)/(1/2+sqrt(5)/2)^59 9870002026344887 a004 Fibonacci(43)*Lucas(30)/(1/2+sqrt(5)/2)^57 9870002026344887 a004 Fibonacci(41)*Lucas(30)/(1/2+sqrt(5)/2)^55 9870002026344887 a004 Fibonacci(39)*Lucas(30)/(1/2+sqrt(5)/2)^53 9870002026344890 a004 Fibonacci(37)*Lucas(30)/(1/2+sqrt(5)/2)^51 9870002026344910 a004 Fibonacci(35)*Lucas(30)/(1/2+sqrt(5)/2)^49 9870002026344986 a001 567451585/3940598*710647^(1/7) 9870002026344994 a001 1346269/7881196*1860498^(3/5) 9870002026345046 a004 Fibonacci(33)*Lucas(30)/(1/2+sqrt(5)/2)^47 9870002026345049 a001 1346269/20633239*1860498^(2/3) 9870002026345112 a001 1346269/33385282*1860498^(7/10) 9870002026345219 a001 1346269/54018521*1860498^(11/15) 9870002026345232 a001 317811/439204*439204^(5/9) 9870002026345406 a001 1346269/141422324*1860498^(4/5) 9870002026345500 a001 1346269/228826127*1860498^(5/6) 9870002026345596 a001 1346269/370248451*1860498^(13/15) 9870002026345691 a001 1346269/599074578*1860498^(9/10) 9870002026345734 a001 1346269/3010349*1860498^(8/15) 9870002026345786 a001 1346269/969323029*1860498^(14/15) 9870002026345807 a001 267914296/4870847*710647^(3/14) 9870002026345916 a001 433494437/3010349*710647^(1/7) 9870002026345976 a004 Fibonacci(31)*Lucas(30)/(1/2+sqrt(5)/2)^45 9870002026346155 a001 829464/103361*710647^(5/14) 9870002026346163 a001 233802911/4250681*710647^(3/14) 9870002026346214 a001 1836311903/33385282*710647^(3/14) 9870002026346222 a001 1602508992/29134601*710647^(3/14) 9870002026346223 a001 12586269025/228826127*710647^(3/14) 9870002026346223 a001 10983760033/199691526*710647^(3/14) 9870002026346223 a001 86267571272/1568397607*710647^(3/14) 9870002026346223 a001 75283811239/1368706081*710647^(3/14) 9870002026346223 a001 591286729879/10749957122*710647^(3/14) 9870002026346223 a001 12585437040/228811001*710647^(3/14) 9870002026346223 a001 4052739537881/73681302247*710647^(3/14) 9870002026346223 a001 3536736619241/64300051206*710647^(3/14) 9870002026346223 a001 6557470319842/119218851371*710647^(3/14) 9870002026346223 a001 2504730781961/45537549124*710647^(3/14) 9870002026346223 a001 956722026041/17393796001*710647^(3/14) 9870002026346223 a001 365435296162/6643838879*710647^(3/14) 9870002026346223 a001 139583862445/2537720636*710647^(3/14) 9870002026346223 a001 53316291173/969323029*710647^(3/14) 9870002026346223 a001 20365011074/370248451*710647^(3/14) 9870002026346224 a001 7778742049/141422324*710647^(3/14) 9870002026346227 a001 2971215073/54018521*710647^(3/14) 9870002026346247 a001 1134903170/20633239*710647^(3/14) 9870002026346382 a001 433494437/7881196*710647^(3/14) 9870002026346505 a001 165580141/4870847*710647^(1/4) 9870002026346577 a001 832040/1149851*7881196^(5/11) 9870002026346639 a001 832040/1149851*20633239^(3/7) 9870002026346649 a001 832040/1149851*141422324^(5/13) 9870002026346649 a001 427859097160/433494437 9870002026346649 a001 832040/1149851*2537720636^(1/3) 9870002026346649 a001 514229/1860498*45537549124^(1/3) 9870002026346649 a001 832040/1149851*45537549124^(5/17) 9870002026346649 a001 832040/1149851*312119004989^(3/11) 9870002026346649 a001 514229/1860498*(1/2+1/2*5^(1/2))^17 9870002026346649 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^17/Lucas(30) 9870002026346649 a001 832040/1149851*14662949395604^(5/21) 9870002026346649 a001 832040/1149851*(1/2+1/2*5^(1/2))^15 9870002026346649 a001 832040/1149851*192900153618^(5/18) 9870002026346649 a001 832040/1149851*28143753123^(3/10) 9870002026346649 a001 832040/1149851*10749957122^(5/16) 9870002026346649 a001 832040/1149851*599074578^(5/14) 9870002026346649 a001 832040/1149851*228826127^(3/8) 9870002026346653 a001 832040/1149851*33385282^(5/12) 9870002026346679 a001 514229/1860498*12752043^(1/2) 9870002026346861 a001 433494437/12752043*710647^(1/4) 9870002026346912 a001 567451585/16692641*710647^(1/4) 9870002026346920 a001 2971215073/87403803*710647^(1/4) 9870002026346921 a001 7778742049/228826127*710647^(1/4) 9870002026346921 a001 10182505537/299537289*710647^(1/4) 9870002026346921 a001 53316291173/1568397607*710647^(1/4) 9870002026346921 a001 139583862445/4106118243*710647^(1/4) 9870002026346921 a001 182717648081/5374978561*710647^(1/4) 9870002026346921 a001 956722026041/28143753123*710647^(1/4) 9870002026346921 a001 2504730781961/73681302247*710647^(1/4) 9870002026346921 a001 3278735159921/96450076809*710647^(1/4) 9870002026346921 a001 10610209857723/312119004989*710647^(1/4) 9870002026346921 a001 4052739537881/119218851371*710647^(1/4) 9870002026346921 a001 387002188980/11384387281*710647^(1/4) 9870002026346921 a001 591286729879/17393796001*710647^(1/4) 9870002026346921 a001 225851433717/6643838879*710647^(1/4) 9870002026346921 a001 1135099622/33391061*710647^(1/4) 9870002026346921 a001 32951280099/969323029*710647^(1/4) 9870002026346921 a001 12586269025/370248451*710647^(1/4) 9870002026346922 a001 1201881744/35355581*710647^(1/4) 9870002026346925 a001 1836311903/54018521*710647^(1/4) 9870002026346944 a001 701408733/20633239*710647^(1/4) 9870002026347080 a001 66978574/1970299*710647^(1/4) 9870002026347203 a001 102334155/4870847*710647^(2/7) 9870002026347313 a001 165580141/3010349*710647^(3/14) 9870002026347499 a001 5702887/1860498*710647^(3/7) 9870002026347500 a001 416020/930249*710647^(4/7) 9870002026347559 a001 267914296/12752043*710647^(2/7) 9870002026347610 a001 701408733/33385282*710647^(2/7) 9870002026347618 a001 1836311903/87403803*710647^(2/7) 9870002026347619 a001 102287808/4868641*710647^(2/7) 9870002026347619 a001 12586269025/599074578*710647^(2/7) 9870002026347619 a001 32951280099/1568397607*710647^(2/7) 9870002026347619 a001 86267571272/4106118243*710647^(2/7) 9870002026347619 a001 225851433717/10749957122*710647^(2/7) 9870002026347619 a001 591286729879/28143753123*710647^(2/7) 9870002026347619 a001 1548008755920/73681302247*710647^(2/7) 9870002026347619 a001 4052739537881/192900153618*710647^(2/7) 9870002026347619 a001 225749145909/10745088481*710647^(2/7) 9870002026347619 a001 6557470319842/312119004989*710647^(2/7) 9870002026347619 a001 2504730781961/119218851371*710647^(2/7) 9870002026347619 a001 956722026041/45537549124*710647^(2/7) 9870002026347619 a001 365435296162/17393796001*710647^(2/7) 9870002026347619 a001 139583862445/6643838879*710647^(2/7) 9870002026347619 a001 53316291173/2537720636*710647^(2/7) 9870002026347619 a001 20365011074/969323029*710647^(2/7) 9870002026347619 a001 7778742049/370248451*710647^(2/7) 9870002026347620 a001 2971215073/141422324*710647^(2/7) 9870002026347623 a001 1134903170/54018521*710647^(2/7) 9870002026347643 a001 433494437/20633239*710647^(2/7) 9870002026347744 a001 196418/20633239*439204^(8/9) 9870002026347778 a001 165580141/7881196*710647^(2/7) 9870002026348010 a001 102334155/3010349*710647^(1/4) 9870002026348075 a001 832040/1149851*1860498^(1/2) 9870002026348360 a001 121393/167761*167761^(3/5) 9870002026348411 a004 Fibonacci(29)*Lucas(31)/(1/2+sqrt(5)/2)^44 9870002026348431 a001 75025/103682*103682^(5/8) 9870002026348540 a001 726103/620166*710647^(1/2) 9870002026348598 a001 39088169/4870847*710647^(5/14) 9870002026348709 a001 63245986/3010349*710647^(2/7) 9870002026348954 a001 34111385/4250681*710647^(5/14) 9870002026349006 a001 133957148/16692641*710647^(5/14) 9870002026349014 a001 233802911/29134601*710647^(5/14) 9870002026349015 a001 1836311903/228826127*710647^(5/14) 9870002026349015 a001 267084832/33281921*710647^(5/14) 9870002026349015 a001 12586269025/1568397607*710647^(5/14) 9870002026349015 a001 10983760033/1368706081*710647^(5/14) 9870002026349015 a001 43133785636/5374978561*710647^(5/14) 9870002026349015 a001 75283811239/9381251041*710647^(5/14) 9870002026349015 a001 591286729879/73681302247*710647^(5/14) 9870002026349015 a001 86000486440/10716675201*710647^(5/14) 9870002026349015 a001 4052739537881/505019158607*710647^(5/14) 9870002026349015 a001 3536736619241/440719107401*710647^(5/14) 9870002026349015 a001 3278735159921/408569081798*710647^(5/14) 9870002026349015 a001 2504730781961/312119004989*710647^(5/14) 9870002026349015 a001 956722026041/119218851371*710647^(5/14) 9870002026349015 a001 182717648081/22768774562*710647^(5/14) 9870002026349015 a001 139583862445/17393796001*710647^(5/14) 9870002026349015 a001 53316291173/6643838879*710647^(5/14) 9870002026349015 a001 10182505537/1268860318*710647^(5/14) 9870002026349015 a001 7778742049/969323029*710647^(5/14) 9870002026349015 a001 2971215073/370248451*710647^(5/14) 9870002026349016 a001 567451585/70711162*710647^(5/14) 9870002026349019 a001 433494437/54018521*710647^(5/14) 9870002026349039 a001 165580141/20633239*710647^(5/14) 9870002026349084 a001 2178309/1149851*141422324^(1/3) 9870002026349084 a001 1120149658761/1134903170 9870002026349084 a001 514229/4870847*817138163596^(1/3) 9870002026349084 a001 514229/4870847*(1/2+1/2*5^(1/2))^19 9870002026349084 a001 2178309/1149851*(1/2+1/2*5^(1/2))^13 9870002026349084 a001 2178309/1149851*73681302247^(1/4) 9870002026349085 a001 514229/4870847*87403803^(1/2) 9870002026349175 a001 31622993/3940598*710647^(5/14) 9870002026349339 a001 514229/12752043*7881196^(7/11) 9870002026349342 a004 Fibonacci(29)*Lucas(33)/(1/2+sqrt(5)/2)^46 9870002026349356 a001 514229/969323029*7881196^(10/11) 9870002026349370 a001 514229/228826127*7881196^(9/11) 9870002026349387 a001 5702887/1149851*7881196^(1/3) 9870002026349388 a001 514229/54018521*7881196^(8/11) 9870002026349418 a001 514229/20633239*7881196^(2/3) 9870002026349426 a001 514229/12752043*20633239^(3/5) 9870002026349439 a001 514229/12752043*141422324^(7/13) 9870002026349440 a001 514229/12752043*2537720636^(7/15) 9870002026349440 a001 2932589879123/2971215073 9870002026349440 a001 514229/12752043*17393796001^(3/7) 9870002026349440 a001 514229/12752043*45537549124^(7/17) 9870002026349440 a001 514229/12752043*14662949395604^(1/3) 9870002026349440 a001 514229/12752043*(1/2+1/2*5^(1/2))^21 9870002026349440 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^21/Lucas(34) 9870002026349440 a001 5702887/1149851*(1/2+1/2*5^(1/2))^11 9870002026349440 a001 514229/12752043*192900153618^(7/18) 9870002026349440 a001 514229/12752043*10749957122^(7/16) 9870002026349440 a001 5702887/1149851*1568397607^(1/4) 9870002026349440 a001 514229/12752043*599074578^(1/2) 9870002026349445 a001 514229/12752043*33385282^(7/12) 9870002026349448 a001 14930352/1149851*7881196^(3/11) 9870002026349472 a001 63245986/1149851*7881196^(2/11) 9870002026349477 a004 Fibonacci(29)*Lucas(35)/(1/2+sqrt(5)/2)^48 9870002026349481 a001 514229/969323029*20633239^(6/7) 9870002026349482 a001 514229/370248451*20633239^(4/5) 9870002026349483 a001 514229/87403803*20633239^(5/7) 9870002026349486 a001 267914296/1149851*7881196^(1/11) 9870002026349488 a001 233802911/620166*271443^(1/13) 9870002026349491 a001 14930352/1149851*141422324^(3/13) 9870002026349492 a001 14930352/1149851*2537720636^(1/5) 9870002026349492 a001 7677619978608/7778742049 9870002026349492 a001 14930352/1149851*45537549124^(3/17) 9870002026349492 a001 514229/33385282*(1/2+1/2*5^(1/2))^23 9870002026349492 a001 14930352/1149851*817138163596^(3/19) 9870002026349492 a001 14930352/1149851*14662949395604^(1/7) 9870002026349492 a001 14930352/1149851*(1/2+1/2*5^(1/2))^9 9870002026349492 a001 14930352/1149851*192900153618^(1/6) 9870002026349492 a001 14930352/1149851*10749957122^(3/16) 9870002026349492 a001 514229/33385282*4106118243^(1/2) 9870002026349492 a001 14930352/1149851*599074578^(3/14) 9870002026349494 a001 14930352/1149851*33385282^(1/4) 9870002026349495 a001 39088169/1149851*20633239^(1/5) 9870002026349497 a001 102334155/1149851*20633239^(1/7) 9870002026349497 a004 Fibonacci(29)*Lucas(37)/(1/2+sqrt(5)/2)^50 9870002026349499 a001 514229/87403803*2537720636^(5/9) 9870002026349499 a001 20100270056701/20365011074 9870002026349499 a001 39088169/1149851*17393796001^(1/7) 9870002026349499 a001 514229/87403803*312119004989^(5/11) 9870002026349499 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^25/Lucas(38) 9870002026349499 a001 39088169/1149851*14662949395604^(1/9) 9870002026349499 a001 39088169/1149851*(1/2+1/2*5^(1/2))^7 9870002026349499 a001 514229/87403803*28143753123^(1/2) 9870002026349499 a001 39088169/1149851*599074578^(1/6) 9870002026349499 a001 514229/87403803*228826127^(5/8) 9870002026349500 a001 514229/228826127*141422324^(9/13) 9870002026349500 a004 Fibonacci(29)*Lucas(39)/(1/2+sqrt(5)/2)^52 9870002026349500 a001 514229/17393796001*141422324^(12/13) 9870002026349500 a001 514229/4106118243*141422324^(11/13) 9870002026349500 a001 514229/969323029*141422324^(10/13) 9870002026349500 a001 514229/228826127*2537720636^(3/5) 9870002026349500 a001 102334155/1149851*2537720636^(1/9) 9870002026349500 a001 514229/228826127*45537549124^(9/17) 9870002026349500 a001 52623190191495/53316291173 9870002026349500 a001 514229/228826127*817138163596^(9/19) 9870002026349500 a001 102334155/1149851*312119004989^(1/11) 9870002026349500 a001 514229/228826127*14662949395604^(3/7) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^27/Lucas(40) 9870002026349500 a001 102334155/1149851*(1/2+1/2*5^(1/2))^5 9870002026349500 a001 514229/228826127*192900153618^(1/2) 9870002026349500 a001 102334155/1149851*28143753123^(1/10) 9870002026349500 a001 514229/228826127*10749957122^(9/16) 9870002026349500 a001 514229/228826127*599074578^(9/14) 9870002026349500 a001 102334155/1149851*228826127^(1/8) 9870002026349500 a004 Fibonacci(29)*Lucas(41)/(1/2+sqrt(5)/2)^54 9870002026349500 a001 267914296/1149851*141422324^(1/13) 9870002026349500 a001 267914296/1149851*2537720636^(1/15) 9870002026349500 a001 267914296/1149851*45537549124^(1/17) 9870002026349500 a001 137769300517784/139583862445 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^29/Lucas(42) 9870002026349500 a001 514229/599074578*1322157322203^(1/2) 9870002026349500 a001 267914296/1149851*14662949395604^(1/21) 9870002026349500 a001 267914296/1149851*(1/2+1/2*5^(1/2))^3 9870002026349500 a001 267914296/1149851*192900153618^(1/18) 9870002026349500 a001 267914296/1149851*10749957122^(1/16) 9870002026349500 a001 267914296/1149851*599074578^(1/14) 9870002026349500 a004 Fibonacci(29)*Lucas(43)/(1/2+sqrt(5)/2)^56 9870002026349500 a001 360684711361857/365435296162 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^31/Lucas(44) 9870002026349500 a001 514229/1568397607*9062201101803^(1/2) 9870002026349500 a001 701408733/2299702+701408733/2299702*5^(1/2) 9870002026349500 a001 514229/4106118243*2537720636^(11/15) 9870002026349500 a004 Fibonacci(29)*Lucas(45)/(1/2+sqrt(5)/2)^58 9870002026349500 a001 514229/312119004989*2537720636^(14/15) 9870002026349500 a001 514229/119218851371*2537720636^(8/9) 9870002026349500 a001 514229/73681302247*2537720636^(13/15) 9870002026349500 a001 514229/10749957122*2537720636^(7/9) 9870002026349500 a001 514229/17393796001*2537720636^(4/5) 9870002026349500 a001 514229/4106118243*45537549124^(11/17) 9870002026349500 a001 514229/4106118243*312119004989^(3/5) 9870002026349500 a001 514229/4106118243*817138163596^(11/19) 9870002026349500 a001 944284833567787/956722026041 9870002026349500 a001 514229/4106118243*14662949395604^(11/21) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^33/Lucas(46) 9870002026349500 a004 Fibonacci(46)/Lucas(29)/(1/2+sqrt(5)/2) 9870002026349500 a001 514229/4106118243*192900153618^(11/18) 9870002026349500 a001 514229/4106118243*10749957122^(11/16) 9870002026349500 a004 Fibonacci(29)*Lucas(47)/(1/2+sqrt(5)/2)^60 9870002026349500 a001 514229/10749957122*17393796001^(5/7) 9870002026349500 a001 514229/10749957122*312119004989^(7/11) 9870002026349500 a001 2472169789341504/2504730781961 9870002026349500 a001 514229/10749957122*14662949395604^(5/9) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^35/Lucas(48) 9870002026349500 a004 Fibonacci(48)/Lucas(29)/(1/2+sqrt(5)/2)^3 9870002026349500 a001 514229/10749957122*505019158607^(5/8) 9870002026349500 a001 514229/10749957122*28143753123^(7/10) 9870002026349500 a004 Fibonacci(29)*Lucas(49)/(1/2+sqrt(5)/2)^62 9870002026349500 a001 514229/312119004989*17393796001^(6/7) 9870002026349500 a001 6472224534456725/6557470319842 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^37/Lucas(50) 9870002026349500 a004 Fibonacci(50)/Lucas(29)/(1/2+sqrt(5)/2)^5 9870002026349500 a001 514229/73681302247*45537549124^(13/17) 9870002026349500 a004 Fibonacci(29)*Lucas(51)/(1/2+sqrt(5)/2)^64 9870002026349500 a001 514229/5600748293801*45537549124^(16/17) 9870002026349500 a001 514229/1322157322203*45537549124^(15/17) 9870002026349500 a001 514229/312119004989*45537549124^(14/17) 9870002026349500 a001 514229/73681302247*14662949395604^(13/21) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^39/Lucas(52) 9870002026349500 a004 Fibonacci(52)/Lucas(29)/(1/2+sqrt(5)/2)^7 9870002026349500 a001 514229/73681302247*192900153618^(13/18) 9870002026349500 a004 Fibonacci(29)*Lucas(53)/(1/2+sqrt(5)/2)^66 9870002026349500 a001 514229/73681302247*73681302247^(3/4) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^41/Lucas(54) 9870002026349500 a004 Fibonacci(54)/Lucas(29)/(1/2+sqrt(5)/2)^9 9870002026349500 a004 Fibonacci(29)*Lucas(55)/(1/2+sqrt(5)/2)^68 9870002026349500 a001 514229/1322157322203*312119004989^(9/11) 9870002026349500 a001 514229/817138163596*312119004989^(4/5) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^43/Lucas(56) 9870002026349500 a004 Fibonacci(56)/Lucas(29)/(1/2+sqrt(5)/2)^11 9870002026349500 a004 Fibonacci(29)*Lucas(57)/(1/2+sqrt(5)/2)^70 9870002026349500 a001 514229/23725150497407*817138163596^(17/19) 9870002026349500 a001 514229/1322157322203*14662949395604^(5/7) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^45/Lucas(58) 9870002026349500 a004 Fibonacci(29)*Lucas(59)/(1/2+sqrt(5)/2)^72 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^47/Lucas(60) 9870002026349500 a004 Fibonacci(29)*Lucas(61)/(1/2+sqrt(5)/2)^74 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^49/Lucas(62) 9870002026349500 a004 Fibonacci(29)*Lucas(63)/(1/2+sqrt(5)/2)^76 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^51/Lucas(64) 9870002026349500 a004 Fibonacci(29)*Lucas(65)/(1/2+sqrt(5)/2)^78 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^53/Lucas(66) 9870002026349500 a004 Fibonacci(29)*Lucas(67)/(1/2+sqrt(5)/2)^80 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^55/Lucas(68) 9870002026349500 a004 Fibonacci(29)*Lucas(69)/(1/2+sqrt(5)/2)^82 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^57/Lucas(70) 9870002026349500 a004 Fibonacci(29)*Lucas(71)/(1/2+sqrt(5)/2)^84 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^59/Lucas(72) 9870002026349500 a004 Fibonacci(29)*Lucas(73)/(1/2+sqrt(5)/2)^86 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^61/Lucas(74) 9870002026349500 a004 Fibonacci(29)*Lucas(75)/(1/2+sqrt(5)/2)^88 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^63/Lucas(76) 9870002026349500 a004 Fibonacci(29)*Lucas(77)/(1/2+sqrt(5)/2)^90 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^65/Lucas(78) 9870002026349500 a004 Fibonacci(29)*Lucas(79)/(1/2+sqrt(5)/2)^92 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^67/Lucas(80) 9870002026349500 a004 Fibonacci(29)*Lucas(81)/(1/2+sqrt(5)/2)^94 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^69/Lucas(82) 9870002026349500 a004 Fibonacci(29)*Lucas(83)/(1/2+sqrt(5)/2)^96 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^71/Lucas(84) 9870002026349500 a004 Fibonacci(29)*Lucas(85)/(1/2+sqrt(5)/2)^98 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^73/Lucas(86) 9870002026349500 a004 Fibonacci(29)*Lucas(87)/(1/2+sqrt(5)/2)^100 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^75/Lucas(88) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^77/Lucas(90) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^79/Lucas(92) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^81/Lucas(94) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^83/Lucas(96) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^85/Lucas(98) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^87/Lucas(100) 9870002026349500 a004 Fibonacci(58)/Lucas(29)/(1/2+sqrt(5)/2)^13 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^86/Lucas(99) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^84/Lucas(97) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^82/Lucas(95) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^80/Lucas(93) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^78/Lucas(91) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^76/Lucas(89) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^74/Lucas(87) 9870002026349500 a004 Fibonacci(29)*Lucas(86)/(1/2+sqrt(5)/2)^99 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^72/Lucas(85) 9870002026349500 a004 Fibonacci(29)*Lucas(84)/(1/2+sqrt(5)/2)^97 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^70/Lucas(83) 9870002026349500 a004 Fibonacci(29)*Lucas(82)/(1/2+sqrt(5)/2)^95 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^68/Lucas(81) 9870002026349500 a004 Fibonacci(29)*Lucas(80)/(1/2+sqrt(5)/2)^93 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^66/Lucas(79) 9870002026349500 a004 Fibonacci(29)*Lucas(78)/(1/2+sqrt(5)/2)^91 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^64/Lucas(77) 9870002026349500 a004 Fibonacci(29)*Lucas(76)/(1/2+sqrt(5)/2)^89 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^62/Lucas(75) 9870002026349500 a004 Fibonacci(29)*Lucas(74)/(1/2+sqrt(5)/2)^87 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^60/Lucas(73) 9870002026349500 a004 Fibonacci(29)*Lucas(72)/(1/2+sqrt(5)/2)^85 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^58/Lucas(71) 9870002026349500 a004 Fibonacci(29)*Lucas(70)/(1/2+sqrt(5)/2)^83 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^56/Lucas(69) 9870002026349500 a004 Fibonacci(29)*Lucas(68)/(1/2+sqrt(5)/2)^81 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^54/Lucas(67) 9870002026349500 a004 Fibonacci(29)*Lucas(66)/(1/2+sqrt(5)/2)^79 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^52/Lucas(65) 9870002026349500 a004 Fibonacci(29)*Lucas(64)/(1/2+sqrt(5)/2)^77 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^50/Lucas(63) 9870002026349500 a004 Fibonacci(29)*Lucas(62)/(1/2+sqrt(5)/2)^75 9870002026349500 a001 514229/5600748293801*14662949395604^(16/21) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^48/Lucas(61) 9870002026349500 a001 514229/14662949395604*3461452808002^(5/6) 9870002026349500 a004 Fibonacci(29)*Lucas(60)/(1/2+sqrt(5)/2)^73 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^46/Lucas(59) 9870002026349500 a004 Fibonacci(60)/Lucas(29)/(1/2+sqrt(5)/2)^15 9870002026349500 a004 Fibonacci(62)/Lucas(29)/(1/2+sqrt(5)/2)^17 9870002026349500 a004 Fibonacci(64)/Lucas(29)/(1/2+sqrt(5)/2)^19 9870002026349500 a004 Fibonacci(66)/Lucas(29)/(1/2+sqrt(5)/2)^21 9870002026349500 a004 Fibonacci(68)/Lucas(29)/(1/2+sqrt(5)/2)^23 9870002026349500 a004 Fibonacci(70)/Lucas(29)/(1/2+sqrt(5)/2)^25 9870002026349500 a004 Fibonacci(72)/Lucas(29)/(1/2+sqrt(5)/2)^27 9870002026349500 a004 Fibonacci(74)/Lucas(29)/(1/2+sqrt(5)/2)^29 9870002026349500 a004 Fibonacci(76)/Lucas(29)/(1/2+sqrt(5)/2)^31 9870002026349500 a004 Fibonacci(78)/Lucas(29)/(1/2+sqrt(5)/2)^33 9870002026349500 a004 Fibonacci(80)/Lucas(29)/(1/2+sqrt(5)/2)^35 9870002026349500 a004 Fibonacci(82)/Lucas(29)/(1/2+sqrt(5)/2)^37 9870002026349500 a004 Fibonacci(84)/Lucas(29)/(1/2+sqrt(5)/2)^39 9870002026349500 a004 Fibonacci(86)/Lucas(29)/(1/2+sqrt(5)/2)^41 9870002026349500 a004 Fibonacci(88)/Lucas(29)/(1/2+sqrt(5)/2)^43 9870002026349500 a004 Fibonacci(90)/Lucas(29)/(1/2+sqrt(5)/2)^45 9870002026349500 a004 Fibonacci(92)/Lucas(29)/(1/2+sqrt(5)/2)^47 9870002026349500 a004 Fibonacci(94)/Lucas(29)/(1/2+sqrt(5)/2)^49 9870002026349500 a004 Fibonacci(96)/Lucas(29)/(1/2+sqrt(5)/2)^51 9870002026349500 a004 Fibonacci(98)/Lucas(29)/(1/2+sqrt(5)/2)^53 9870002026349500 a004 Fibonacci(100)/Lucas(29)/(1/2+sqrt(5)/2)^55 9870002026349500 a004 Fibonacci(29)*Lucas(58)/(1/2+sqrt(5)/2)^71 9870002026349500 a004 Fibonacci(99)/Lucas(29)/(1/2+sqrt(5)/2)^54 9870002026349500 a004 Fibonacci(97)/Lucas(29)/(1/2+sqrt(5)/2)^52 9870002026349500 a004 Fibonacci(95)/Lucas(29)/(1/2+sqrt(5)/2)^50 9870002026349500 a004 Fibonacci(93)/Lucas(29)/(1/2+sqrt(5)/2)^48 9870002026349500 a004 Fibonacci(91)/Lucas(29)/(1/2+sqrt(5)/2)^46 9870002026349500 a004 Fibonacci(89)/Lucas(29)/(1/2+sqrt(5)/2)^44 9870002026349500 a004 Fibonacci(87)/Lucas(29)/(1/2+sqrt(5)/2)^42 9870002026349500 a004 Fibonacci(85)/Lucas(29)/(1/2+sqrt(5)/2)^40 9870002026349500 a004 Fibonacci(83)/Lucas(29)/(1/2+sqrt(5)/2)^38 9870002026349500 a004 Fibonacci(81)/Lucas(29)/(1/2+sqrt(5)/2)^36 9870002026349500 a004 Fibonacci(79)/Lucas(29)/(1/2+sqrt(5)/2)^34 9870002026349500 a004 Fibonacci(77)/Lucas(29)/(1/2+sqrt(5)/2)^32 9870002026349500 a004 Fibonacci(75)/Lucas(29)/(1/2+sqrt(5)/2)^30 9870002026349500 a004 Fibonacci(73)/Lucas(29)/(1/2+sqrt(5)/2)^28 9870002026349500 a004 Fibonacci(71)/Lucas(29)/(1/2+sqrt(5)/2)^26 9870002026349500 a004 Fibonacci(69)/Lucas(29)/(1/2+sqrt(5)/2)^24 9870002026349500 a004 Fibonacci(67)/Lucas(29)/(1/2+sqrt(5)/2)^22 9870002026349500 a004 Fibonacci(65)/Lucas(29)/(1/2+sqrt(5)/2)^20 9870002026349500 a004 Fibonacci(63)/Lucas(29)/(1/2+sqrt(5)/2)^18 9870002026349500 a004 Fibonacci(61)/Lucas(29)/(1/2+sqrt(5)/2)^16 9870002026349500 a004 Fibonacci(59)/Lucas(29)/(1/2+sqrt(5)/2)^14 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^44/Lucas(57) 9870002026349500 a001 514229/817138163596*23725150497407^(11/16) 9870002026349500 a004 Fibonacci(57)/Lucas(29)/(1/2+sqrt(5)/2)^12 9870002026349500 a001 514229/9062201101803*505019158607^(7/8) 9870002026349500 a004 Fibonacci(29)*Lucas(56)/(1/2+sqrt(5)/2)^69 9870002026349500 a001 514229/312119004989*817138163596^(14/19) 9870002026349500 a001 514229/312119004989*14662949395604^(2/3) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^42/Lucas(55) 9870002026349500 a004 Fibonacci(55)/Lucas(29)/(1/2+sqrt(5)/2)^10 9870002026349500 a001 514229/312119004989*505019158607^(3/4) 9870002026349500 a001 514229/1322157322203*192900153618^(5/6) 9870002026349500 a001 514229/23725150497407*192900153618^(17/18) 9870002026349500 a004 Fibonacci(29)*Lucas(54)/(1/2+sqrt(5)/2)^67 9870002026349500 a001 514229/312119004989*192900153618^(7/9) 9870002026349500 a001 514229/119218851371*312119004989^(8/11) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^40/Lucas(53) 9870002026349500 a001 514229/119218851371*23725150497407^(5/8) 9870002026349500 a004 Fibonacci(53)/Lucas(29)/(1/2+sqrt(5)/2)^8 9870002026349500 a001 514229/817138163596*73681302247^(11/13) 9870002026349500 a001 514229/5600748293801*73681302247^(12/13) 9870002026349500 a004 Fibonacci(29)*Lucas(52)/(1/2+sqrt(5)/2)^65 9870002026349500 a001 514229/119218851371*73681302247^(10/13) 9870002026349500 a001 514229/45537549124*817138163596^(2/3) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^38/Lucas(51) 9870002026349500 a001 10472279279571946/10610209857723 9870002026349500 a004 Fibonacci(51)/Lucas(29)/(1/2+sqrt(5)/2)^6 9870002026349500 a001 514229/119218851371*28143753123^(4/5) 9870002026349500 a001 514229/1322157322203*28143753123^(9/10) 9870002026349500 a004 Fibonacci(29)*Lucas(50)/(1/2+sqrt(5)/2)^63 9870002026349500 a001 514229/17393796001*45537549124^(12/17) 9870002026349500 a001 514229/17393796001*14662949395604^(4/7) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^36/Lucas(49) 9870002026349500 a001 4000054745115221/4052739537881 9870002026349500 a004 Fibonacci(49)/Lucas(29)/(1/2+sqrt(5)/2)^4 9870002026349500 a001 514229/17393796001*505019158607^(9/14) 9870002026349500 a001 514229/17393796001*192900153618^(2/3) 9870002026349500 a001 514229/17393796001*73681302247^(9/13) 9870002026349500 a001 514229/73681302247*10749957122^(13/16) 9870002026349500 a001 514229/119218851371*10749957122^(5/6) 9870002026349500 a001 514229/45537549124*10749957122^(19/24) 9870002026349500 a001 514229/312119004989*10749957122^(7/8) 9870002026349500 a001 514229/817138163596*10749957122^(11/12) 9870002026349500 a001 514229/1322157322203*10749957122^(15/16) 9870002026349500 a001 514229/2139295485799*10749957122^(23/24) 9870002026349500 a004 Fibonacci(29)*Lucas(48)/(1/2+sqrt(5)/2)^61 9870002026349500 a001 514229/17393796001*10749957122^(3/4) 9870002026349500 a001 514229/6643838879*45537549124^(2/3) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^34/Lucas(47) 9870002026349500 a001 1527884955773717/1548008755920 9870002026349500 a004 Fibonacci(47)/Lucas(29)/(1/2+sqrt(5)/2)^2 9870002026349500 a001 514229/6643838879*10749957122^(17/24) 9870002026349500 a001 514229/45537549124*4106118243^(19/23) 9870002026349500 a001 514229/17393796001*4106118243^(18/23) 9870002026349500 a001 514229/119218851371*4106118243^(20/23) 9870002026349500 a001 514229/312119004989*4106118243^(21/23) 9870002026349500 a001 514229/817138163596*4106118243^(22/23) 9870002026349500 a004 Fibonacci(29)*Lucas(46)/(1/2+sqrt(5)/2)^59 9870002026349500 a001 514229/6643838879*4106118243^(17/23) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^32/Lucas(45) 9870002026349500 a001 514229/2537720636*23725150497407^(1/2) 9870002026349500 a001 1134903170/1149851 9870002026349500 a001 514229/2537720636*73681302247^(8/13) 9870002026349500 a001 514229/2537720636*10749957122^(2/3) 9870002026349500 a001 514229/2537720636*4106118243^(16/23) 9870002026349500 a001 514229/4106118243*1568397607^(3/4) 9870002026349500 a001 514229/17393796001*1568397607^(9/11) 9870002026349500 a001 514229/6643838879*1568397607^(17/22) 9870002026349500 a001 514229/45537549124*1568397607^(19/22) 9870002026349500 a001 514229/119218851371*1568397607^(10/11) 9870002026349500 a001 514229/312119004989*1568397607^(21/22) 9870002026349500 a004 Fibonacci(29)*Lucas(44)/(1/2+sqrt(5)/2)^57 9870002026349500 a001 514229/2537720636*1568397607^(8/11) 9870002026349500 a001 514229/969323029*2537720636^(2/3) 9870002026349500 a001 514229/969323029*45537549124^(10/17) 9870002026349500 a001 514229/969323029*312119004989^(6/11) 9870002026349500 a001 514229/969323029*14662949395604^(10/21) 9870002026349500 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^30/Lucas(43) 9870002026349500 a001 433494437/1149851*(1/2+1/2*5^(1/2))^2 9870002026349500 a001 222915410844073/225851433717 9870002026349500 a001 514229/969323029*192900153618^(5/9) 9870002026349500 a001 433494437/1149851*10749957122^(1/24) 9870002026349500 a001 514229/969323029*28143753123^(3/5) 9870002026349500 a001 433494437/1149851*4106118243^(1/23) 9870002026349500 a001 514229/969323029*10749957122^(5/8) 9870002026349500 a001 433494437/1149851*1568397607^(1/22) 9870002026349500 a001 514229/969323029*4106118243^(15/23) 9870002026349500 a001 433494437/1149851*599074578^(1/21) 9870002026349500 a001 514229/969323029*1568397607^(15/22) 9870002026349500 a001 433494437/1149851*228826127^(1/20) 9870002026349500 a001 514229/4106118243*599074578^(11/14) 9870002026349500 a001 514229/2537720636*599074578^(16/21) 9870002026349500 a001 514229/6643838879*599074578^(17/21) 9870002026349500 a001 514229/10749957122*599074578^(5/6) 9870002026349500 a001 514229/17393796001*599074578^(6/7) 9870002026349500 a001 514229/45537549124*599074578^(19/21) 9870002026349500 a001 514229/73681302247*599074578^(13/14) 9870002026349500 a001 514229/119218851371*599074578^(20/21) 9870002026349500 a004 Fibonacci(29)*Lucas(42)/(1/2+sqrt(5)/2)^55 9870002026349500 a001 514229/969323029*599074578^(5/7) 9870002026349501 a001 514229/370248451*17393796001^(4/7) 9870002026349501 a001 514229/370248451*14662949395604^(4/9) 9870002026349501 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^28/Lucas(41) 9870002026349501 a001 165580141/1149851*(1/2+1/2*5^(1/2))^4 9870002026349501 a001 165580141/1149851*23725150497407^(1/16) 9870002026349501 a001 514229/370248451*505019158607^(1/2) 9870002026349501 a001 165580141/1149851*73681302247^(1/13) 9870002026349501 a001 85146110326289/86267571272 9870002026349501 a001 514229/370248451*73681302247^(7/13) 9870002026349501 a001 165580141/1149851*10749957122^(1/12) 9870002026349501 a001 514229/370248451*10749957122^(7/12) 9870002026349501 a001 165580141/1149851*4106118243^(2/23) 9870002026349501 a001 514229/370248451*4106118243^(14/23) 9870002026349501 a001 165580141/1149851*1568397607^(1/11) 9870002026349501 a001 514229/370248451*1568397607^(7/11) 9870002026349501 a001 165580141/1149851*599074578^(2/21) 9870002026349501 a001 433494437/1149851*87403803^(1/19) 9870002026349501 a001 514229/370248451*599074578^(2/3) 9870002026349501 a001 165580141/1149851*228826127^(1/10) 9870002026349501 a001 514229/969323029*228826127^(3/4) 9870002026349501 a001 514229/2537720636*228826127^(4/5) 9870002026349501 a001 514229/6643838879*228826127^(17/20) 9870002026349501 a001 514229/141422324*141422324^(2/3) 9870002026349501 a001 514229/10749957122*228826127^(7/8) 9870002026349501 a001 514229/17393796001*228826127^(9/10) 9870002026349501 a001 514229/45537549124*228826127^(19/20) 9870002026349501 a004 Fibonacci(29)*Lucas(40)/(1/2+sqrt(5)/2)^53 9870002026349501 a001 514229/370248451*228826127^(7/10) 9870002026349501 a001 165580141/1149851*87403803^(2/19) 9870002026349501 a001 63245986/1149851*141422324^(2/13) 9870002026349501 a001 63245986/1149851*2537720636^(2/15) 9870002026349501 a001 63245986/1149851*45537549124^(2/17) 9870002026349501 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^26/Lucas(39) 9870002026349501 a001 63245986/1149851*14662949395604^(2/21) 9870002026349501 a001 63245986/1149851*(1/2+1/2*5^(1/2))^6 9870002026349501 a001 514229/141422324*73681302247^(1/2) 9870002026349501 a001 139583348218/141421803 9870002026349501 a001 63245986/1149851*10749957122^(1/8) 9870002026349501 a001 514229/141422324*10749957122^(13/24) 9870002026349501 a001 63245986/1149851*4106118243^(3/23) 9870002026349501 a001 514229/141422324*4106118243^(13/23) 9870002026349501 a001 63245986/1149851*1568397607^(3/22) 9870002026349501 a001 514229/141422324*1568397607^(13/22) 9870002026349501 a001 63245986/1149851*599074578^(1/7) 9870002026349501 a001 433494437/1149851*33385282^(1/18) 9870002026349501 a001 514229/141422324*599074578^(13/21) 9870002026349501 a001 63245986/1149851*228826127^(3/20) 9870002026349501 a001 514229/141422324*228826127^(13/20) 9870002026349501 a001 63245986/1149851*87403803^(3/19) 9870002026349501 a001 267914296/1149851*33385282^(1/12) 9870002026349501 a001 514229/370248451*87403803^(14/19) 9870002026349501 a001 514229/969323029*87403803^(15/19) 9870002026349501 a001 165580141/1149851*33385282^(1/9) 9870002026349502 a001 514229/2537720636*87403803^(16/19) 9870002026349502 a001 514229/6643838879*87403803^(17/19) 9870002026349502 a001 514229/17393796001*87403803^(18/19) 9870002026349502 a004 Fibonacci(29)*Lucas(38)/(1/2+sqrt(5)/2)^51 9870002026349502 a001 514229/141422324*87403803^(13/19) 9870002026349502 a001 63245986/1149851*33385282^(1/6) 9870002026349504 a001 514229/54018521*141422324^(8/13) 9870002026349504 a001 514229/54018521*2537720636^(8/15) 9870002026349504 a001 514229/54018521*45537549124^(8/17) 9870002026349504 a001 514229/54018521*14662949395604^(8/21) 9870002026349504 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^24/Lucas(37) 9870002026349504 a001 24157817/1149851*(1/2+1/2*5^(1/2))^8 9870002026349504 a001 24157817/1149851*23725150497407^(1/8) 9870002026349504 a001 24157817/1149851*505019158607^(1/7) 9870002026349504 a001 514229/54018521*192900153618^(4/9) 9870002026349504 a001 24157817/1149851*73681302247^(2/13) 9870002026349504 a001 514229/54018521*73681302247^(6/13) 9870002026349504 a001 12422650078093/12586269025 9870002026349504 a001 24157817/1149851*10749957122^(1/6) 9870002026349504 a001 514229/54018521*10749957122^(1/2) 9870002026349504 a001 24157817/1149851*4106118243^(4/23) 9870002026349504 a001 514229/54018521*4106118243^(12/23) 9870002026349504 a001 24157817/1149851*1568397607^(2/11) 9870002026349504 a001 514229/54018521*1568397607^(6/11) 9870002026349504 a001 24157817/1149851*599074578^(4/21) 9870002026349504 a001 514229/54018521*599074578^(4/7) 9870002026349504 a001 24157817/1149851*228826127^(1/5) 9870002026349504 a001 514229/54018521*228826127^(3/5) 9870002026349504 a001 433494437/1149851*12752043^(1/17) 9870002026349504 a001 24157817/1149851*87403803^(4/19) 9870002026349505 a001 514229/54018521*87403803^(12/19) 9870002026349506 a001 24157817/1149851*33385282^(2/9) 9870002026349507 a001 514229/228826127*33385282^(3/4) 9870002026349507 a001 514229/141422324*33385282^(13/18) 9870002026349507 a001 514229/370248451*33385282^(7/9) 9870002026349508 a001 165580141/1149851*12752043^(2/17) 9870002026349508 a001 514229/969323029*33385282^(5/6) 9870002026349508 a001 514229/2537720636*33385282^(8/9) 9870002026349509 a001 514229/4106118243*33385282^(11/12) 9870002026349509 a001 514229/6643838879*33385282^(17/18) 9870002026349509 a004 Fibonacci(29)*Lucas(36)/(1/2+sqrt(5)/2)^49 9870002026349510 a001 514229/54018521*33385282^(2/3) 9870002026349512 a001 63245986/1149851*12752043^(3/17) 9870002026349517 a001 9227465/1149851*20633239^(2/7) 9870002026349518 a001 24157817/1149851*12752043^(4/17) 9870002026349524 a001 9227465/1149851*2537720636^(2/9) 9870002026349524 a001 514229/20633239*312119004989^(2/5) 9870002026349524 a001 514229/20633239*(1/2+1/2*5^(1/2))^22 9870002026349524 a001 9227465/1149851*(1/2+1/2*5^(1/2))^10 9870002026349524 a001 9227465/1149851*28143753123^(1/5) 9870002026349524 a001 9227465/1149851*10749957122^(5/24) 9870002026349524 a001 514229/20633239*10749957122^(11/24) 9870002026349524 a001 4745030099485/4807526976 9870002026349524 a001 9227465/1149851*4106118243^(5/23) 9870002026349524 a001 514229/20633239*4106118243^(11/23) 9870002026349524 a001 9227465/1149851*1568397607^(5/22) 9870002026349524 a001 514229/20633239*1568397607^(1/2) 9870002026349524 a001 9227465/1149851*599074578^(5/21) 9870002026349524 a001 514229/20633239*599074578^(11/21) 9870002026349524 a001 9227465/1149851*228826127^(1/4) 9870002026349524 a001 514229/20633239*228826127^(11/20) 9870002026349524 a001 9227465/1149851*87403803^(5/19) 9870002026349524 a001 514229/20633239*87403803^(11/19) 9870002026349526 a001 9227465/1149851*33385282^(5/18) 9870002026349526 a001 433494437/1149851*4870847^(1/16) 9870002026349529 a001 514229/20633239*33385282^(11/18) 9870002026349541 a001 9227465/1149851*12752043^(5/17) 9870002026349547 a001 514229/54018521*12752043^(12/17) 9870002026349547 a001 514229/141422324*12752043^(13/17) 9870002026349550 a001 514229/370248451*12752043^(14/17) 9870002026349553 a001 165580141/1149851*4870847^(1/8) 9870002026349554 a001 514229/969323029*12752043^(15/17) 9870002026349558 a001 514229/2537720636*12752043^(16/17) 9870002026349561 a004 Fibonacci(29)*Lucas(34)/(1/2+sqrt(5)/2)^47 9870002026349563 a001 514229/20633239*12752043^(11/17) 9870002026349579 a001 63245986/1149851*4870847^(3/16) 9870002026349602 a001 3524578/1149851*7881196^(4/11) 9870002026349608 a001 24157817/1149851*4870847^(1/4) 9870002026349646 a001 514229/7881196*20633239^(4/7) 9870002026349654 a001 9227465/1149851*4870847^(5/16) 9870002026349659 a001 3524578/1149851*141422324^(4/13) 9870002026349659 a001 514229/7881196*2537720636^(4/9) 9870002026349659 a001 3524578/1149851*2537720636^(4/15) 9870002026349659 a001 3524578/1149851*45537549124^(4/17) 9870002026349659 a001 514229/7881196*(1/2+1/2*5^(1/2))^20 9870002026349659 a001 514229/7881196*23725150497407^(5/16) 9870002026349659 a001 3524578/1149851*817138163596^(4/19) 9870002026349659 a001 3524578/1149851*14662949395604^(4/21) 9870002026349659 a001 3524578/1149851*(1/2+1/2*5^(1/2))^12 9870002026349659 a001 3524578/1149851*192900153618^(2/9) 9870002026349659 a001 3524578/1149851*73681302247^(3/13) 9870002026349659 a001 514229/7881196*73681302247^(5/13) 9870002026349659 a001 514229/7881196*28143753123^(2/5) 9870002026349659 a001 3524578/1149851*10749957122^(1/4) 9870002026349659 a001 514229/7881196*10749957122^(5/12) 9870002026349659 a001 3524578/1149851*4106118243^(6/23) 9870002026349659 a001 514229/7881196*4106118243^(10/23) 9870002026349659 a001 1812440220362/1836311903 9870002026349659 a001 3524578/1149851*1568397607^(3/11) 9870002026349659 a001 514229/7881196*1568397607^(5/11) 9870002026349659 a001 3524578/1149851*599074578^(2/7) 9870002026349659 a001 514229/7881196*599074578^(10/21) 9870002026349659 a001 3524578/1149851*228826127^(3/10) 9870002026349659 a001 514229/7881196*228826127^(1/2) 9870002026349660 a001 3524578/1149851*87403803^(6/19) 9870002026349660 a001 514229/7881196*87403803^(10/19) 9870002026349662 a001 3524578/1149851*33385282^(1/3) 9870002026349664 a001 514229/7881196*33385282^(5/9) 9870002026349681 a001 3524578/1149851*12752043^(6/17) 9870002026349691 a001 433494437/1149851*1860498^(1/15) 9870002026349695 a001 514229/7881196*12752043^(10/17) 9870002026349786 a001 267914296/1149851*1860498^(1/10) 9870002026349810 a001 514229/20633239*4870847^(11/16) 9870002026349815 a001 3524578/1149851*4870847^(3/8) 9870002026349816 a001 514229/54018521*4870847^(3/4) 9870002026349839 a001 514229/141422324*4870847^(13/16) 9870002026349865 a001 514229/370248451*4870847^(7/8) 9870002026349881 a001 165580141/1149851*1860498^(2/15) 9870002026349890 a001 514229/969323029*4870847^(15/16) 9870002026349916 a004 Fibonacci(29)*Lucas(32)/(1/2+sqrt(5)/2)^45 9870002026349919 a001 514229/7881196*4870847^(5/8) 9870002026349975 a001 102334155/1149851*1860498^(1/6) 9870002026349986 a001 14930352/4870847*710647^(3/7) 9870002026350071 a001 63245986/1149851*1860498^(1/5) 9870002026350108 a001 24157817/3010349*710647^(5/14) 9870002026350264 a001 24157817/1149851*1860498^(4/15) 9870002026350347 a001 14930352/1149851*1860498^(3/10) 9870002026350349 a001 39088169/12752043*710647^(3/7) 9870002026350402 a001 14619165/4769326*710647^(3/7) 9870002026350410 a001 267914296/87403803*710647^(3/7) 9870002026350411 a001 701408733/228826127*710647^(3/7) 9870002026350411 a001 1836311903/599074578*710647^(3/7) 9870002026350411 a001 686789568/224056801*710647^(3/7) 9870002026350411 a001 12586269025/4106118243*710647^(3/7) 9870002026350411 a001 32951280099/10749957122*710647^(3/7) 9870002026350411 a001 86267571272/28143753123*710647^(3/7) 9870002026350411 a001 32264490531/10525900321*710647^(3/7) 9870002026350411 a001 591286729879/192900153618*710647^(3/7) 9870002026350411 a001 1548008755920/505019158607*710647^(3/7) 9870002026350411 a001 1515744265389/494493258286*710647^(3/7) 9870002026350411 a001 2504730781961/817138163596*710647^(3/7) 9870002026350411 a001 956722026041/312119004989*710647^(3/7) 9870002026350411 a001 365435296162/119218851371*710647^(3/7) 9870002026350411 a001 139583862445/45537549124*710647^(3/7) 9870002026350411 a001 53316291173/17393796001*710647^(3/7) 9870002026350411 a001 20365011074/6643838879*710647^(3/7) 9870002026350411 a001 7778742049/2537720636*710647^(3/7) 9870002026350411 a001 2971215073/969323029*710647^(3/7) 9870002026350411 a001 1134903170/370248451*710647^(3/7) 9870002026350412 a001 433494437/141422324*710647^(3/7) 9870002026350415 a001 165580141/54018521*710647^(3/7) 9870002026350435 a001 63245986/20633239*710647^(3/7) 9870002026350474 a001 9227465/1149851*1860498^(1/3) 9870002026350503 a001 514229/3010349*7881196^(6/11) 9870002026350574 a001 24157817/7881196*710647^(3/7) 9870002026350580 a001 1346269/1149851*20633239^(2/5) 9870002026350589 a001 514229/3010349*141422324^(6/13) 9870002026350590 a001 514229/3010349*2537720636^(2/5) 9870002026350590 a001 1346269/1149851*17393796001^(2/7) 9870002026350590 a001 514229/3010349*45537549124^(6/17) 9870002026350590 a001 514229/3010349*14662949395604^(2/7) 9870002026350590 a001 514229/3010349*(1/2+1/2*5^(1/2))^18 9870002026350590 a001 1346269/1149851*14662949395604^(2/9) 9870002026350590 a001 1346269/1149851*(1/2+1/2*5^(1/2))^14 9870002026350590 a001 1346269/1149851*505019158607^(1/4) 9870002026350590 a001 514229/3010349*192900153618^(1/3) 9870002026350590 a001 1346269/1149851*10749957122^(7/24) 9870002026350590 a001 514229/3010349*10749957122^(3/8) 9870002026350590 a001 1346269/1149851*4106118243^(7/23) 9870002026350590 a001 514229/3010349*4106118243^(9/23) 9870002026350590 a001 1346269/1149851*1568397607^(7/22) 9870002026350590 a001 514229/3010349*1568397607^(9/22) 9870002026350590 a001 692290561601/701408733 9870002026350590 a001 1346269/1149851*599074578^(1/3) 9870002026350590 a001 514229/3010349*599074578^(3/7) 9870002026350590 a001 1346269/1149851*228826127^(7/20) 9870002026350590 a001 514229/3010349*228826127^(9/20) 9870002026350590 a001 1346269/1149851*87403803^(7/19) 9870002026350590 a001 514229/3010349*87403803^(9/19) 9870002026350593 a001 1346269/1149851*33385282^(7/18) 9870002026350594 a001 514229/3010349*33385282^(1/2) 9870002026350615 a001 1346269/1149851*12752043^(7/17) 9870002026350622 a001 514229/3010349*12752043^(9/17) 9870002026350772 a001 1346269/1149851*4870847^(7/16) 9870002026350800 a001 3524578/1149851*1860498^(2/5) 9870002026350824 a001 514229/3010349*4870847^(9/16) 9870002026350896 a001 433494437/1149851*710647^(1/14) 9870002026351331 a001 5702887/4870847*710647^(1/2) 9870002026351332 a001 832040/4870847*710647^(9/14) 9870002026351436 a001 514229/12752043*1860498^(7/10) 9870002026351524 a001 9227465/3010349*710647^(3/7) 9870002026351560 a001 514229/7881196*1860498^(2/3) 9870002026351615 a001 514229/20633239*1860498^(11/15) 9870002026351738 a001 4976784/4250681*710647^(1/2) 9870002026351785 a001 514229/54018521*1860498^(4/5) 9870002026351797 a001 39088169/33385282*710647^(1/2) 9870002026351806 a001 34111385/29134601*710647^(1/2) 9870002026351807 a001 267914296/228826127*710647^(1/2) 9870002026351807 a001 233802911/199691526*710647^(1/2) 9870002026351807 a001 1836311903/1568397607*710647^(1/2) 9870002026351807 a001 1602508992/1368706081*710647^(1/2) 9870002026351807 a001 12586269025/10749957122*710647^(1/2) 9870002026351807 a001 10983760033/9381251041*710647^(1/2) 9870002026351807 a001 86267571272/73681302247*710647^(1/2) 9870002026351807 a001 75283811239/64300051206*710647^(1/2) 9870002026351807 a001 2504730781961/2139295485799*710647^(1/2) 9870002026351807 a001 365435296162/312119004989*710647^(1/2) 9870002026351807 a001 139583862445/119218851371*710647^(1/2) 9870002026351807 a001 53316291173/45537549124*710647^(1/2) 9870002026351807 a001 20365011074/17393796001*710647^(1/2) 9870002026351807 a001 7778742049/6643838879*710647^(1/2) 9870002026351807 a001 2971215073/2537720636*710647^(1/2) 9870002026351807 a001 1134903170/969323029*710647^(1/2) 9870002026351807 a001 433494437/370248451*710647^(1/2) 9870002026351808 a001 165580141/141422324*710647^(1/2) 9870002026351811 a001 63245986/54018521*710647^(1/2) 9870002026351834 a001 24157817/20633239*710647^(1/2) 9870002026351875 a001 514229/87403803*1860498^(5/6) 9870002026351920 a001 1346269/1149851*1860498^(7/15) 9870002026351924 a001 1836311903/4870847*271443^(1/13) 9870002026351972 a001 514229/141422324*1860498^(13/15) 9870002026351989 a001 9227465/7881196*710647^(1/2) 9870002026352067 a001 514229/228826127*1860498^(9/10) 9870002026352162 a001 514229/370248451*1860498^(14/15) 9870002026352279 a001 1602508992/4250681*271443^(1/13) 9870002026352292 a001 165580141/1149851*710647^(1/7) 9870002026352300 a001 514229/3010349*1860498^(3/5) 9870002026352331 a001 12586269025/33385282*271443^(1/13) 9870002026352338 a001 10983760033/29134601*271443^(1/13) 9870002026352339 a001 86267571272/228826127*271443^(1/13) 9870002026352340 a001 267913919/710646*271443^(1/13) 9870002026352340 a001 591286729879/1568397607*271443^(1/13) 9870002026352340 a001 516002918640/1368706081*271443^(1/13) 9870002026352340 a001 4052739537881/10749957122*271443^(1/13) 9870002026352340 a001 3536736619241/9381251041*271443^(1/13) 9870002026352340 a001 6557470319842/17393796001*271443^(1/13) 9870002026352340 a001 2504730781961/6643838879*271443^(1/13) 9870002026352340 a001 956722026041/2537720636*271443^(1/13) 9870002026352340 a001 365435296162/969323029*271443^(1/13) 9870002026352340 a001 139583862445/370248451*271443^(1/13) 9870002026352340 a001 53316291173/141422324*271443^(1/13) 9870002026352343 a001 20365011074/54018521*271443^(1/13) 9870002026352352 a004 Fibonacci(29)*Lucas(30)/(1/2+sqrt(5)/2)^43 9870002026352363 a001 7778742049/20633239*271443^(1/13) 9870002026352371 a001 2178309/4870847*710647^(4/7) 9870002026352499 a001 2971215073/7881196*271443^(1/13) 9870002026352990 a001 196418/4870847*439204^(7/9) 9870002026353055 a001 3524578/3010349*710647^(1/2) 9870002026353082 a001 5702887/12752043*710647^(4/7) 9870002026353083 a001 832040/12752043*710647^(5/7) 9870002026353186 a001 7465176/16692641*710647^(4/7) 9870002026353201 a001 39088169/87403803*710647^(4/7) 9870002026353203 a001 102334155/228826127*710647^(4/7) 9870002026353203 a001 133957148/299537289*710647^(4/7) 9870002026353203 a001 701408733/1568397607*710647^(4/7) 9870002026353203 a001 1836311903/4106118243*710647^(4/7) 9870002026353203 a001 2403763488/5374978561*710647^(4/7) 9870002026353203 a001 12586269025/28143753123*710647^(4/7) 9870002026353203 a001 32951280099/73681302247*710647^(4/7) 9870002026353203 a001 43133785636/96450076809*710647^(4/7) 9870002026353203 a001 225851433717/505019158607*710647^(4/7) 9870002026353203 a001 591286729879/1322157322203*710647^(4/7) 9870002026353203 a001 10610209857723/23725150497407*710647^(4/7) 9870002026353203 a001 182717648081/408569081798*710647^(4/7) 9870002026353203 a001 139583862445/312119004989*710647^(4/7) 9870002026353203 a001 53316291173/119218851371*710647^(4/7) 9870002026353203 a001 10182505537/22768774562*710647^(4/7) 9870002026353203 a001 7778742049/17393796001*710647^(4/7) 9870002026353203 a001 2971215073/6643838879*710647^(4/7) 9870002026353203 a001 567451585/1268860318*710647^(4/7) 9870002026353203 a001 433494437/969323029*710647^(4/7) 9870002026353203 a001 165580141/370248451*710647^(4/7) 9870002026353204 a001 31622993/70711162*710647^(4/7) 9870002026353210 a001 24157817/54018521*710647^(4/7) 9870002026353250 a001 9227465/20633239*710647^(4/7) 9870002026353403 a001 39088169/710647*271443^(3/13) 9870002026353429 a001 1134903170/3010349*271443^(1/13) 9870002026353521 a001 1762289/3940598*710647^(4/7) 9870002026353689 a001 63245986/1149851*710647^(3/14) 9870002026353865 a001 75640/1875749*710647^(3/4) 9870002026354123 a001 726103/4250681*710647^(9/14) 9870002026354385 a001 39088169/1149851*710647^(1/4) 9870002026354530 a001 5702887/33385282*710647^(9/14) 9870002026354531 a001 416020/16692641*710647^(11/14) 9870002026354589 a001 4976784/29134601*710647^(9/14) 9870002026354598 a001 39088169/228826127*710647^(9/14) 9870002026354599 a001 34111385/199691526*710647^(9/14) 9870002026354599 a001 267914296/1568397607*710647^(9/14) 9870002026354599 a001 233802911/1368706081*710647^(9/14) 9870002026354599 a001 1836311903/10749957122*710647^(9/14) 9870002026354599 a001 1602508992/9381251041*710647^(9/14) 9870002026354599 a001 12586269025/73681302247*710647^(9/14) 9870002026354599 a001 10983760033/64300051206*710647^(9/14) 9870002026354599 a001 86267571272/505019158607*710647^(9/14) 9870002026354599 a001 75283811239/440719107401*710647^(9/14) 9870002026354599 a001 2504730781961/14662949395604*710647^(9/14) 9870002026354599 a001 139583862445/817138163596*710647^(9/14) 9870002026354599 a001 53316291173/312119004989*710647^(9/14) 9870002026354599 a001 20365011074/119218851371*710647^(9/14) 9870002026354599 a001 7778742049/45537549124*710647^(9/14) 9870002026354599 a001 2971215073/17393796001*710647^(9/14) 9870002026354599 a001 1134903170/6643838879*710647^(9/14) 9870002026354599 a001 433494437/2537720636*710647^(9/14) 9870002026354599 a001 165580141/969323029*710647^(9/14) 9870002026354600 a001 63245986/370248451*710647^(9/14) 9870002026354603 a001 24157817/141422324*710647^(9/14) 9870002026354626 a001 9227465/54018521*710647^(9/14) 9870002026354781 a001 3524578/20633239*710647^(9/14) 9870002026355088 a001 24157817/1149851*710647^(2/7) 9870002026355382 a001 1346269/3010349*710647^(4/7) 9870002026355570 a001 311187/4769326*710647^(5/7) 9870002026355847 a001 1346269/7881196*710647^(9/14) 9870002026355933 a001 5702887/87403803*710647^(5/7) 9870002026355935 a001 832040/87403803*710647^(6/7) 9870002026355986 a001 14930352/228826127*710647^(5/7) 9870002026355994 a001 39088169/599074578*710647^(5/7) 9870002026355995 a001 14619165/224056801*710647^(5/7) 9870002026355995 a001 267914296/4106118243*710647^(5/7) 9870002026355995 a001 701408733/10749957122*710647^(5/7) 9870002026355995 a001 1836311903/28143753123*710647^(5/7) 9870002026355995 a001 686789568/10525900321*710647^(5/7) 9870002026355995 a001 12586269025/192900153618*710647^(5/7) 9870002026355995 a001 32951280099/505019158607*710647^(5/7) 9870002026355995 a001 86267571272/1322157322203*710647^(5/7) 9870002026355995 a001 32264490531/494493258286*710647^(5/7) 9870002026355995 a001 591286729879/9062201101803*710647^(5/7) 9870002026355995 a001 1548008755920/23725150497407*710647^(5/7) 9870002026355995 a001 365435296162/5600748293801*710647^(5/7) 9870002026355995 a001 139583862445/2139295485799*710647^(5/7) 9870002026355995 a001 53316291173/817138163596*710647^(5/7) 9870002026355995 a001 20365011074/312119004989*710647^(5/7) 9870002026355995 a001 7778742049/119218851371*710647^(5/7) 9870002026355995 a001 2971215073/45537549124*710647^(5/7) 9870002026355995 a001 1134903170/17393796001*710647^(5/7) 9870002026355995 a001 433494437/6643838879*710647^(5/7) 9870002026355995 a001 165580141/2537720636*710647^(5/7) 9870002026355996 a001 63245986/969323029*710647^(5/7) 9870002026355999 a001 24157817/370248451*710647^(5/7) 9870002026356019 a001 9227465/141422324*710647^(5/7) 9870002026356158 a001 3524578/54018521*710647^(5/7) 9870002026356281 a001 2178309/54018521*710647^(3/4) 9870002026356504 a001 9227465/1149851*710647^(5/14) 9870002026356633 a001 5702887/141422324*710647^(3/4) 9870002026356684 a001 14930352/370248451*710647^(3/4) 9870002026356692 a001 39088169/969323029*710647^(3/4) 9870002026356693 a001 9303105/230701876*710647^(3/4) 9870002026356693 a001 267914296/6643838879*710647^(3/4) 9870002026356693 a001 701408733/17393796001*710647^(3/4) 9870002026356693 a001 1836311903/45537549124*710647^(3/4) 9870002026356693 a001 4807526976/119218851371*710647^(3/4) 9870002026356693 a001 1144206275/28374454999*710647^(3/4) 9870002026356693 a001 32951280099/817138163596*710647^(3/4) 9870002026356693 a001 86267571272/2139295485799*710647^(3/4) 9870002026356693 a001 225851433717/5600748293801*710647^(3/4) 9870002026356693 a001 591286729879/14662949395604*710647^(3/4) 9870002026356693 a001 365435296162/9062201101803*710647^(3/4) 9870002026356693 a001 139583862445/3461452808002*710647^(3/4) 9870002026356693 a001 53316291173/1322157322203*710647^(3/4) 9870002026356693 a001 20365011074/505019158607*710647^(3/4) 9870002026356693 a001 7778742049/192900153618*710647^(3/4) 9870002026356693 a001 2971215073/73681302247*710647^(3/4) 9870002026356693 a001 1134903170/28143753123*710647^(3/4) 9870002026356693 a001 433494437/10749957122*710647^(3/4) 9870002026356693 a001 165580141/4106118243*710647^(3/4) 9870002026356694 a001 63245986/1568397607*710647^(3/4) 9870002026356697 a001 24157817/599074578*710647^(3/4) 9870002026356716 a001 9227465/228826127*710647^(3/4) 9870002026356851 a001 3524578/87403803*710647^(3/4) 9870002026356966 a001 514229/1149851*(1/2+1/2*5^(1/2))^16 9870002026356966 a001 514229/1149851*23725150497407^(1/4) 9870002026356966 a001 514229/1149851*73681302247^(4/13) 9870002026356966 a001 514229/1149851*10749957122^(1/3) 9870002026356966 a001 514229/1149851*4106118243^(8/23) 9870002026356966 a001 514229/1149851*1568397607^(4/11) 9870002026356966 a001 514229/1149851*599074578^(8/21) 9870002026356966 a001 264431464441/267914296 9870002026356966 a001 514229/1149851*228826127^(2/5) 9870002026356966 a001 514229/1149851*87403803^(8/19) 9870002026356969 a001 514229/1149851*33385282^(4/9) 9870002026356974 a001 726103/29134601*710647^(11/14) 9870002026356994 a001 514229/1149851*12752043^(8/17) 9870002026357108 a001 1346269/20633239*710647^(5/7) 9870002026357174 a001 514229/1149851*4870847^(1/2) 9870002026357330 a001 5702887/228826127*710647^(11/14) 9870002026357332 a001 832040/228826127*710647^(13/14) 9870002026357382 a001 829464/33281921*710647^(11/14) 9870002026357390 a001 39088169/1568397607*710647^(11/14) 9870002026357391 a001 34111385/1368706081*710647^(11/14) 9870002026357391 a001 133957148/5374978561*710647^(11/14) 9870002026357391 a001 233802911/9381251041*710647^(11/14) 9870002026357391 a001 1836311903/73681302247*710647^(11/14) 9870002026357391 a001 267084832/10716675201*710647^(11/14) 9870002026357391 a001 12586269025/505019158607*710647^(11/14) 9870002026357391 a001 10983760033/440719107401*710647^(11/14) 9870002026357391 a001 43133785636/1730726404001*710647^(11/14) 9870002026357391 a001 75283811239/3020733700601*710647^(11/14) 9870002026357391 a001 182717648081/7331474697802*710647^(11/14) 9870002026357391 a001 139583862445/5600748293801*710647^(11/14) 9870002026357391 a001 53316291173/2139295485799*710647^(11/14) 9870002026357391 a001 10182505537/408569081798*710647^(11/14) 9870002026357391 a001 7778742049/312119004989*710647^(11/14) 9870002026357391 a001 2971215073/119218851371*710647^(11/14) 9870002026357391 a001 567451585/22768774562*710647^(11/14) 9870002026357391 a001 433494437/17393796001*710647^(11/14) 9870002026357391 a001 165580141/6643838879*710647^(11/14) 9870002026357392 a001 31622993/1268860318*710647^(11/14) 9870002026357395 a001 24157817/969323029*710647^(11/14) 9870002026357414 a001 9227465/370248451*710647^(11/14) 9870002026357551 a001 1762289/70711162*710647^(11/14) 9870002026357774 a001 1346269/33385282*710647^(3/4) 9870002026358035 a001 3524578/1149851*710647^(3/7) 9870002026358371 a001 46347/4868641*710647^(6/7) 9870002026358484 a001 1346269/54018521*710647^(11/14) 9870002026358486 a001 514229/1149851*1860498^(8/15) 9870002026358726 a001 5702887/599074578*710647^(6/7) 9870002026358728 a004 Fibonacci(30)*Lucas(28)/(1/2+sqrt(5)/2)^42 9870002026358778 a001 14930352/1568397607*710647^(6/7) 9870002026358786 a001 39088169/4106118243*710647^(6/7) 9870002026358787 a001 102334155/10749957122*710647^(6/7) 9870002026358787 a001 267914296/28143753123*710647^(6/7) 9870002026358787 a001 701408733/73681302247*710647^(6/7) 9870002026358787 a001 1836311903/192900153618*710647^(6/7) 9870002026358787 a001 102287808/10745088481*710647^(6/7) 9870002026358787 a001 12586269025/1322157322203*710647^(6/7) 9870002026358787 a001 32951280099/3461452808002*710647^(6/7) 9870002026358787 a001 86267571272/9062201101803*710647^(6/7) 9870002026358787 a001 225851433717/23725150497407*710647^(6/7) 9870002026358787 a001 139583862445/14662949395604*710647^(6/7) 9870002026358787 a001 53316291173/5600748293801*710647^(6/7) 9870002026358787 a001 20365011074/2139295485799*710647^(6/7) 9870002026358787 a001 7778742049/817138163596*710647^(6/7) 9870002026358787 a001 2971215073/312119004989*710647^(6/7) 9870002026358787 a001 1134903170/119218851371*710647^(6/7) 9870002026358787 a001 433494437/45537549124*710647^(6/7) 9870002026358787 a001 165580141/17393796001*710647^(6/7) 9870002026358788 a001 63245986/6643838879*710647^(6/7) 9870002026358791 a001 24157817/2537720636*710647^(6/7) 9870002026358810 a001 9227465/969323029*710647^(6/7) 9870002026358946 a001 3524578/370248451*710647^(6/7) 9870002026359767 a001 726103/199691526*710647^(13/14) 9870002026359792 a001 133957148/930249*271443^(2/13) 9870002026359805 a001 433494437/1149851*271443^(1/13) 9870002026359877 a001 1346269/141422324*710647^(6/7) 9870002026360122 a001 5702887/1568397607*710647^(13/14) 9870002026360174 a001 4976784/1368706081*710647^(13/14) 9870002026360182 a001 39088169/10749957122*710647^(13/14) 9870002026360183 a001 831985/228811001*710647^(13/14) 9870002026360183 a001 267914296/73681302247*710647^(13/14) 9870002026360183 a001 233802911/64300051206*710647^(13/14) 9870002026360183 a001 1836311903/505019158607*710647^(13/14) 9870002026360183 a001 1602508992/440719107401*710647^(13/14) 9870002026360183 a001 12586269025/3461452808002*710647^(13/14) 9870002026360183 a001 10983760033/3020733700601*710647^(13/14) 9870002026360183 a001 86267571272/23725150497407*710647^(13/14) 9870002026360183 a001 53316291173/14662949395604*710647^(13/14) 9870002026360183 a001 20365011074/5600748293801*710647^(13/14) 9870002026360183 a001 7778742049/2139295485799*710647^(13/14) 9870002026360183 a001 2971215073/817138163596*710647^(13/14) 9870002026360183 a001 1134903170/312119004989*710647^(13/14) 9870002026360183 a001 433494437/119218851371*710647^(13/14) 9870002026360183 a001 165580141/45537549124*710647^(13/14) 9870002026360184 a001 63245986/17393796001*710647^(13/14) 9870002026360187 a001 24157817/6643838879*710647^(13/14) 9870002026360206 a001 9227465/2537720636*710647^(13/14) 9870002026360342 a001 3524578/969323029*710647^(13/14) 9870002026360361 a001 1346269/1149851*710647^(1/2) 9870002026360748 a001 433494437/710647*103682^(1/24) 9870002026361103 a001 39088169/271443*103682^(1/6) 9870002026361163 a004 Fibonacci(32)*Lucas(28)/(1/2+sqrt(5)/2)^44 9870002026361272 a001 1346269/370248451*710647^(13/14) 9870002026361518 a004 Fibonacci(34)*Lucas(28)/(1/2+sqrt(5)/2)^46 9870002026361570 a004 Fibonacci(36)*Lucas(28)/(1/2+sqrt(5)/2)^48 9870002026361578 a004 Fibonacci(38)*Lucas(28)/(1/2+sqrt(5)/2)^50 9870002026361579 a004 Fibonacci(40)*Lucas(28)/(1/2+sqrt(5)/2)^52 9870002026361579 a004 Fibonacci(42)*Lucas(28)/(1/2+sqrt(5)/2)^54 9870002026361579 a004 Fibonacci(44)*Lucas(28)/(1/2+sqrt(5)/2)^56 9870002026361579 a004 Fibonacci(46)*Lucas(28)/(1/2+sqrt(5)/2)^58 9870002026361579 a004 Fibonacci(48)*Lucas(28)/(1/2+sqrt(5)/2)^60 9870002026361579 a004 Fibonacci(50)*Lucas(28)/(1/2+sqrt(5)/2)^62 9870002026361579 a004 Fibonacci(52)*Lucas(28)/(1/2+sqrt(5)/2)^64 9870002026361579 a004 Fibonacci(54)*Lucas(28)/(1/2+sqrt(5)/2)^66 9870002026361579 a004 Fibonacci(56)*Lucas(28)/(1/2+sqrt(5)/2)^68 9870002026361579 a004 Fibonacci(58)*Lucas(28)/(1/2+sqrt(5)/2)^70 9870002026361579 a004 Fibonacci(60)*Lucas(28)/(1/2+sqrt(5)/2)^72 9870002026361579 a004 Fibonacci(62)*Lucas(28)/(1/2+sqrt(5)/2)^74 9870002026361579 a004 Fibonacci(64)*Lucas(28)/(1/2+sqrt(5)/2)^76 9870002026361579 a004 Fibonacci(66)*Lucas(28)/(1/2+sqrt(5)/2)^78 9870002026361579 a004 Fibonacci(68)*Lucas(28)/(1/2+sqrt(5)/2)^80 9870002026361579 a004 Fibonacci(70)*Lucas(28)/(1/2+sqrt(5)/2)^82 9870002026361579 a004 Fibonacci(72)*Lucas(28)/(1/2+sqrt(5)/2)^84 9870002026361579 a004 Fibonacci(74)*Lucas(28)/(1/2+sqrt(5)/2)^86 9870002026361579 a004 Fibonacci(76)*Lucas(28)/(1/2+sqrt(5)/2)^88 9870002026361579 a004 Fibonacci(78)*Lucas(28)/(1/2+sqrt(5)/2)^90 9870002026361579 a004 Fibonacci(80)*Lucas(28)/(1/2+sqrt(5)/2)^92 9870002026361579 a004 Fibonacci(82)*Lucas(28)/(1/2+sqrt(5)/2)^94 9870002026361579 a004 Fibonacci(84)*Lucas(28)/(1/2+sqrt(5)/2)^96 9870002026361579 a004 Fibonacci(86)*Lucas(28)/(1/2+sqrt(5)/2)^98 9870002026361579 a004 Fibonacci(88)*Lucas(28)/(1/2+sqrt(5)/2)^100 9870002026361579 a004 Fibonacci(87)*Lucas(28)/(1/2+sqrt(5)/2)^99 9870002026361579 a004 Fibonacci(85)*Lucas(28)/(1/2+sqrt(5)/2)^97 9870002026361579 a004 Fibonacci(83)*Lucas(28)/(1/2+sqrt(5)/2)^95 9870002026361579 a004 Fibonacci(81)*Lucas(28)/(1/2+sqrt(5)/2)^93 9870002026361579 a004 Fibonacci(79)*Lucas(28)/(1/2+sqrt(5)/2)^91 9870002026361579 a004 Fibonacci(77)*Lucas(28)/(1/2+sqrt(5)/2)^89 9870002026361579 a004 Fibonacci(75)*Lucas(28)/(1/2+sqrt(5)/2)^87 9870002026361579 a004 Fibonacci(73)*Lucas(28)/(1/2+sqrt(5)/2)^85 9870002026361579 a004 Fibonacci(71)*Lucas(28)/(1/2+sqrt(5)/2)^83 9870002026361579 a004 Fibonacci(69)*Lucas(28)/(1/2+sqrt(5)/2)^81 9870002026361579 a004 Fibonacci(67)*Lucas(28)/(1/2+sqrt(5)/2)^79 9870002026361579 a004 Fibonacci(65)*Lucas(28)/(1/2+sqrt(5)/2)^77 9870002026361579 a004 Fibonacci(63)*Lucas(28)/(1/2+sqrt(5)/2)^75 9870002026361579 a004 Fibonacci(61)*Lucas(28)/(1/2+sqrt(5)/2)^73 9870002026361579 a004 Fibonacci(59)*Lucas(28)/(1/2+sqrt(5)/2)^71 9870002026361579 a004 Fibonacci(57)*Lucas(28)/(1/2+sqrt(5)/2)^69 9870002026361579 a001 2/317811*(1/2+1/2*5^(1/2))^44 9870002026361579 a004 Fibonacci(55)*Lucas(28)/(1/2+sqrt(5)/2)^67 9870002026361579 a004 Fibonacci(53)*Lucas(28)/(1/2+sqrt(5)/2)^65 9870002026361579 a004 Fibonacci(51)*Lucas(28)/(1/2+sqrt(5)/2)^63 9870002026361579 a004 Fibonacci(49)*Lucas(28)/(1/2+sqrt(5)/2)^61 9870002026361579 a004 Fibonacci(47)*Lucas(28)/(1/2+sqrt(5)/2)^59 9870002026361579 a004 Fibonacci(45)*Lucas(28)/(1/2+sqrt(5)/2)^57 9870002026361579 a004 Fibonacci(43)*Lucas(28)/(1/2+sqrt(5)/2)^55 9870002026361579 a004 Fibonacci(41)*Lucas(28)/(1/2+sqrt(5)/2)^53 9870002026361580 a004 Fibonacci(39)*Lucas(28)/(1/2+sqrt(5)/2)^51 9870002026361583 a004 Fibonacci(37)*Lucas(28)/(1/2+sqrt(5)/2)^49 9870002026361602 a004 Fibonacci(35)*Lucas(28)/(1/2+sqrt(5)/2)^47 9870002026361738 a004 Fibonacci(33)*Lucas(28)/(1/2+sqrt(5)/2)^45 9870002026362228 a001 701408733/4870847*271443^(2/13) 9870002026362583 a001 1836311903/12752043*271443^(2/13) 9870002026362635 a001 14930208/103681*271443^(2/13) 9870002026362643 a001 12586269025/87403803*271443^(2/13) 9870002026362644 a001 32951280099/228826127*271443^(2/13) 9870002026362644 a001 43133785636/299537289*271443^(2/13) 9870002026362644 a001 32264490531/224056801*271443^(2/13) 9870002026362644 a001 591286729879/4106118243*271443^(2/13) 9870002026362644 a001 774004377960/5374978561*271443^(2/13) 9870002026362644 a001 4052739537881/28143753123*271443^(2/13) 9870002026362644 a001 1515744265389/10525900321*271443^(2/13) 9870002026362644 a001 3278735159921/22768774562*271443^(2/13) 9870002026362644 a001 2504730781961/17393796001*271443^(2/13) 9870002026362644 a001 956722026041/6643838879*271443^(2/13) 9870002026362644 a001 182717648081/1268860318*271443^(2/13) 9870002026362644 a001 139583862445/969323029*271443^(2/13) 9870002026362644 a001 53316291173/370248451*271443^(2/13) 9870002026362644 a001 10182505537/70711162*271443^(2/13) 9870002026362647 a001 7778742049/54018521*271443^(2/13) 9870002026362667 a001 2971215073/20633239*271443^(2/13) 9870002026362668 a004 Fibonacci(31)*Lucas(28)/(1/2+sqrt(5)/2)^43 9870002026362803 a001 567451585/3940598*271443^(2/13) 9870002026363153 a001 514229/3010349*710647^(9/14) 9870002026363619 a001 514229/7881196*710647^(5/7) 9870002026363700 a001 14930352/710647*271443^(4/13) 9870002026363733 a001 433494437/3010349*271443^(2/13) 9870002026364098 a001 514229/12752043*710647^(3/4) 9870002026364879 a001 514229/20633239*710647^(11/14) 9870002026366256 a001 514229/54018521*710647^(6/7) 9870002026366556 a001 196418/1149851*439204^(2/3) 9870002026367649 a001 514229/141422324*710647^(13/14) 9870002026368133 a001 514229/1149851*710647^(4/7) 9870002026369044 a004 Fibonacci(29)*Lucas(28)/(1/2+sqrt(5)/2)^41 9870002026370097 a001 831985/15126*271443^(3/13) 9870002026370109 a001 165580141/1149851*271443^(2/13) 9870002026371550 a001 1346269/439204*439204^(4/9) 9870002026372532 a001 267914296/4870847*271443^(3/13) 9870002026372887 a001 233802911/4250681*271443^(3/13) 9870002026372939 a001 1836311903/33385282*271443^(3/13) 9870002026372947 a001 1602508992/29134601*271443^(3/13) 9870002026372948 a001 12586269025/228826127*271443^(3/13) 9870002026372948 a001 10983760033/199691526*271443^(3/13) 9870002026372948 a001 86267571272/1568397607*271443^(3/13) 9870002026372948 a001 75283811239/1368706081*271443^(3/13) 9870002026372948 a001 591286729879/10749957122*271443^(3/13) 9870002026372948 a001 12585437040/228811001*271443^(3/13) 9870002026372948 a001 4052739537881/73681302247*271443^(3/13) 9870002026372948 a001 3536736619241/64300051206*271443^(3/13) 9870002026372948 a001 6557470319842/119218851371*271443^(3/13) 9870002026372948 a001 2504730781961/45537549124*271443^(3/13) 9870002026372948 a001 956722026041/17393796001*271443^(3/13) 9870002026372948 a001 365435296162/6643838879*271443^(3/13) 9870002026372948 a001 139583862445/2537720636*271443^(3/13) 9870002026372948 a001 53316291173/969323029*271443^(3/13) 9870002026372948 a001 20365011074/370248451*271443^(3/13) 9870002026372949 a001 7778742049/141422324*271443^(3/13) 9870002026372952 a001 2971215073/54018521*271443^(3/13) 9870002026372971 a001 1134903170/20633239*271443^(3/13) 9870002026373107 a001 433494437/7881196*271443^(3/13) 9870002026373586 a001 317811/439204*7881196^(5/11) 9870002026373648 a001 317811/439204*20633239^(3/7) 9870002026373657 a001 31211900499/31622993 9870002026373658 a001 317811/439204*141422324^(5/13) 9870002026373658 a001 317811/439204*2537720636^(1/3) 9870002026373658 a001 196418/710647*45537549124^(1/3) 9870002026373658 a001 317811/439204*45537549124^(5/17) 9870002026373658 a001 196418/710647*(1/2+1/2*5^(1/2))^17 9870002026373658 a001 317811/439204*312119004989^(3/11) 9870002026373658 a001 317811/439204*14662949395604^(5/21) 9870002026373658 a001 317811/439204*(1/2+1/2*5^(1/2))^15 9870002026373658 a001 317811/439204*192900153618^(5/18) 9870002026373658 a001 317811/439204*28143753123^(3/10) 9870002026373658 a001 317811/439204*10749957122^(5/16) 9870002026373658 a001 317811/439204*599074578^(5/14) 9870002026373658 a001 317811/439204*228826127^(3/8) 9870002026373662 a001 317811/439204*33385282^(5/12) 9870002026373688 a001 196418/710647*12752043^(1/2) 9870002026373952 a001 5702887/710647*271443^(5/13) 9870002026374037 a001 165580141/3010349*271443^(3/13) 9870002026375084 a001 317811/439204*1860498^(1/2) 9870002026376086 a001 5702887/439204*439204^(1/3) 9870002026377440 a001 567451585/930249*103682^(1/24) 9870002026379204 a001 39088169/167761*64079^(3/23) 9870002026379875 a001 2971215073/4870847*103682^(1/24) 9870002026380231 a001 7778742049/12752043*103682^(1/24) 9870002026380282 a001 10182505537/16692641*103682^(1/24) 9870002026380290 a001 53316291173/87403803*103682^(1/24) 9870002026380291 a001 139583862445/228826127*103682^(1/24) 9870002026380291 a001 182717648081/299537289*103682^(1/24) 9870002026380291 a001 956722026041/1568397607*103682^(1/24) 9870002026380291 a001 2504730781961/4106118243*103682^(1/24) 9870002026380291 a001 3278735159921/5374978561*103682^(1/24) 9870002026380291 a001 10610209857723/17393796001*103682^(1/24) 9870002026380291 a001 4052739537881/6643838879*103682^(1/24) 9870002026380291 a001 1134903780/1860499*103682^(1/24) 9870002026380291 a001 591286729879/969323029*103682^(1/24) 9870002026380291 a001 225851433717/370248451*103682^(1/24) 9870002026380292 a001 21566892818/35355581*103682^(1/24) 9870002026380295 a001 32951280099/54018521*103682^(1/24) 9870002026380315 a001 1144206275/1875749*103682^(1/24) 9870002026380400 a001 39088169/1860498*271443^(4/13) 9870002026380414 a001 63245986/1149851*271443^(3/13) 9870002026380450 a001 1201881744/1970299*103682^(1/24) 9870002026381380 a001 1836311903/3010349*103682^(1/24) 9870002026381835 a001 24157817/439204*439204^(2/9) 9870002026382836 a001 102334155/4870847*271443^(4/13) 9870002026383192 a001 267914296/12752043*271443^(4/13) 9870002026383244 a001 701408733/33385282*271443^(4/13) 9870002026383251 a001 1836311903/87403803*271443^(4/13) 9870002026383252 a001 102287808/4868641*271443^(4/13) 9870002026383252 a001 12586269025/599074578*271443^(4/13) 9870002026383252 a001 32951280099/1568397607*271443^(4/13) 9870002026383252 a001 86267571272/4106118243*271443^(4/13) 9870002026383252 a001 225851433717/10749957122*271443^(4/13) 9870002026383252 a001 591286729879/28143753123*271443^(4/13) 9870002026383252 a001 1548008755920/73681302247*271443^(4/13) 9870002026383252 a001 4052739537881/192900153618*271443^(4/13) 9870002026383252 a001 225749145909/10745088481*271443^(4/13) 9870002026383252 a001 6557470319842/312119004989*271443^(4/13) 9870002026383252 a001 2504730781961/119218851371*271443^(4/13) 9870002026383252 a001 956722026041/45537549124*271443^(4/13) 9870002026383252 a001 365435296162/17393796001*271443^(4/13) 9870002026383252 a001 139583862445/6643838879*271443^(4/13) 9870002026383252 a001 53316291173/2537720636*271443^(4/13) 9870002026383252 a001 20365011074/969323029*271443^(4/13) 9870002026383252 a001 7778742049/370248451*271443^(4/13) 9870002026383253 a001 2971215073/141422324*271443^(4/13) 9870002026383256 a001 1134903170/54018521*271443^(4/13) 9870002026383276 a001 433494437/20633239*271443^(4/13) 9870002026383411 a001 165580141/7881196*271443^(4/13) 9870002026383901 a001 311187/101521*271443^(6/13) 9870002026384342 a001 63245986/3010349*271443^(4/13) 9870002026385382 a001 317811/710647*271443^(8/13) 9870002026385737 a004 Fibonacci(27)*Lucas(29)/(1/2+sqrt(5)/2)^40 9870002026387516 a001 102334155/439204*439204^(1/9) 9870002026387756 a001 701408733/1149851*103682^(1/24) 9870002026390350 a001 208010/109801*141422324^(1/3) 9870002026390350 a001 163427632720/165580141 9870002026390350 a001 98209/930249*817138163596^(1/3) 9870002026390350 a001 98209/930249*(1/2+1/2*5^(1/2))^19 9870002026390350 a001 208010/109801*(1/2+1/2*5^(1/2))^13 9870002026390350 a001 208010/109801*73681302247^(1/4) 9870002026390351 a001 98209/930249*87403803^(1/2) 9870002026390558 a001 1346269/710647*271443^(1/2) 9870002026390696 a001 829464/103361*271443^(5/13) 9870002026390721 a001 24157817/1149851*271443^(4/13) 9870002026391770 a001 832040/710647*271443^(7/13) 9870002026392113 a004 Fibonacci(27)*Lucas(31)/(1/2+sqrt(5)/2)^42 9870002026392126 a001 14930352/64079*24476^(1/7) 9870002026392685 a001 196418/4870847*7881196^(7/11) 9870002026392733 a001 2178309/439204*7881196^(1/3) 9870002026392772 a001 196418/4870847*20633239^(3/5) 9870002026392785 a001 196418/4870847*141422324^(7/13) 9870002026392786 a001 427859097162/433494437 9870002026392786 a001 196418/4870847*2537720636^(7/15) 9870002026392786 a001 196418/4870847*17393796001^(3/7) 9870002026392786 a001 196418/4870847*45537549124^(7/17) 9870002026392786 a001 196418/4870847*14662949395604^(1/3) 9870002026392786 a001 196418/4870847*(1/2+1/2*5^(1/2))^21 9870002026392786 a001 196418/4870847*192900153618^(7/18) 9870002026392786 a001 2178309/439204*312119004989^(1/5) 9870002026392786 a001 2178309/439204*(1/2+1/2*5^(1/2))^11 9870002026392786 a001 196418/4870847*10749957122^(7/16) 9870002026392786 a001 2178309/439204*1568397607^(1/4) 9870002026392786 a001 196418/4870847*599074578^(1/2) 9870002026392791 a001 196418/4870847*33385282^(7/12) 9870002026393043 a004 Fibonacci(27)*Lucas(33)/(1/2+sqrt(5)/2)^44 9870002026393057 a001 196418/370248451*7881196^(10/11) 9870002026393070 a001 196418/87403803*7881196^(9/11) 9870002026393098 a001 5702887/439204*7881196^(3/11) 9870002026393109 a001 196418/20633239*7881196^(8/11) 9870002026393139 a001 39088169/4870847*271443^(5/13) 9870002026393141 a001 5702887/439204*141422324^(3/13) 9870002026393141 a001 32945578199/33379505 9870002026393141 a001 5702887/439204*2537720636^(1/5) 9870002026393141 a001 5702887/439204*45537549124^(3/17) 9870002026393141 a001 196418/12752043*(1/2+1/2*5^(1/2))^23 9870002026393141 a001 5702887/439204*817138163596^(3/19) 9870002026393141 a001 5702887/439204*14662949395604^(1/7) 9870002026393141 a001 5702887/439204*(1/2+1/2*5^(1/2))^9 9870002026393141 a001 5702887/439204*192900153618^(1/6) 9870002026393141 a001 5702887/439204*10749957122^(3/16) 9870002026393141 a001 196418/12752043*4106118243^(1/2) 9870002026393141 a001 5702887/439204*599074578^(3/14) 9870002026393143 a001 5702887/439204*33385282^(1/4) 9870002026393176 a001 24157817/439204*7881196^(2/11) 9870002026393176 a001 98209/16692641*20633239^(5/7) 9870002026393179 a004 Fibonacci(27)*Lucas(35)/(1/2+sqrt(5)/2)^46 9870002026393182 a001 196418/370248451*20633239^(6/7) 9870002026393184 a001 98209/70711162*20633239^(4/5) 9870002026393187 a001 102334155/439204*7881196^(1/11) 9870002026393188 a001 196452/5779*20633239^(1/5) 9870002026393193 a001 98209/16692641*2537720636^(5/9) 9870002026393193 a001 2932589879136/2971215073 9870002026393193 a001 196452/5779*17393796001^(1/7) 9870002026393193 a001 98209/16692641*312119004989^(5/11) 9870002026393193 a001 98209/16692641*(1/2+1/2*5^(1/2))^25 9870002026393193 a001 98209/16692641*3461452808002^(5/12) 9870002026393193 a001 196452/5779*14662949395604^(1/9) 9870002026393193 a001 196452/5779*(1/2+1/2*5^(1/2))^7 9870002026393193 a001 98209/16692641*28143753123^(1/2) 9870002026393193 a001 196452/5779*599074578^(1/6) 9870002026393193 a001 98209/16692641*228826127^(5/8) 9870002026393197 a001 39088169/439204*20633239^(1/7) 9870002026393198 a004 Fibonacci(27)*Lucas(37)/(1/2+sqrt(5)/2)^48 9870002026393200 a001 196418/87403803*141422324^(9/13) 9870002026393200 a001 196418/87403803*2537720636^(3/5) 9870002026393200 a001 39088169/439204*2537720636^(1/9) 9870002026393200 a001 7677619978642/7778742049 9870002026393200 a001 196418/87403803*45537549124^(9/17) 9870002026393200 a001 196418/87403803*817138163596^(9/19) 9870002026393200 a001 196418/87403803*14662949395604^(3/7) 9870002026393200 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^27/Lucas(38) 9870002026393200 a001 196418/87403803*192900153618^(1/2) 9870002026393200 a001 39088169/439204*312119004989^(1/11) 9870002026393200 a001 39088169/439204*(1/2+1/2*5^(1/2))^5 9870002026393200 a001 39088169/439204*28143753123^(1/10) 9870002026393200 a001 196418/87403803*10749957122^(9/16) 9870002026393200 a001 196418/87403803*599074578^(9/14) 9870002026393200 a001 39088169/439204*228826127^(1/8) 9870002026393201 a004 Fibonacci(27)*Lucas(39)/(1/2+sqrt(5)/2)^50 9870002026393201 a001 196418/6643838879*141422324^(12/13) 9870002026393201 a001 196418/1568397607*141422324^(11/13) 9870002026393201 a001 196418/370248451*141422324^(10/13) 9870002026393202 a001 102334155/439204*141422324^(1/13) 9870002026393202 a001 102334155/439204*2537720636^(1/15) 9870002026393202 a001 10050135028395/10182505537 9870002026393202 a001 102334155/439204*45537549124^(1/17) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^29/Lucas(40) 9870002026393202 a001 196418/228826127*1322157322203^(1/2) 9870002026393202 a001 102334155/439204*14662949395604^(1/21) 9870002026393202 a001 102334155/439204*(1/2+1/2*5^(1/2))^3 9870002026393202 a001 102334155/439204*192900153618^(1/18) 9870002026393202 a001 102334155/439204*10749957122^(1/16) 9870002026393202 a001 102334155/439204*599074578^(1/14) 9870002026393202 a004 Fibonacci(27)*Lucas(41)/(1/2+sqrt(5)/2)^52 9870002026393202 a001 52623190191728/53316291173 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^31/Lucas(42) 9870002026393202 a001 98209/299537289*9062201101803^(1/2) 9870002026393202 a001 33489287/109801+33489287/109801*5^(1/2) 9870002026393202 a004 Fibonacci(27)*Lucas(43)/(1/2+sqrt(5)/2)^54 9870002026393202 a001 196418/1568397607*2537720636^(11/15) 9870002026393202 a001 196418/1568397607*45537549124^(11/17) 9870002026393202 a001 1547969668746/1568358005 9870002026393202 a001 196418/1568397607*312119004989^(3/5) 9870002026393202 a001 196418/1568397607*817138163596^(11/19) 9870002026393202 a001 196418/1568397607*14662949395604^(11/21) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^33/Lucas(44) 9870002026393202 a001 196418/1568397607*192900153618^(11/18) 9870002026393202 a004 Fibonacci(44)/Lucas(27)/(1/2+sqrt(5)/2) 9870002026393202 a001 196418/1568397607*10749957122^(11/16) 9870002026393202 a001 196418/4106118243*2537720636^(7/9) 9870002026393202 a004 Fibonacci(27)*Lucas(45)/(1/2+sqrt(5)/2)^56 9870002026393202 a001 196418/119218851371*2537720636^(14/15) 9870002026393202 a001 98209/22768774562*2537720636^(8/9) 9870002026393202 a001 196418/28143753123*2537720636^(13/15) 9870002026393202 a001 196418/1568397607*1568397607^(3/4) 9870002026393202 a001 196418/6643838879*2537720636^(4/5) 9870002026393202 a001 196418/4106118243*17393796001^(5/7) 9870002026393202 a001 196418/4106118243*312119004989^(7/11) 9870002026393202 a001 180342355681727/182717648081 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^35/Lucas(46) 9870002026393202 a001 196418/4106118243*505019158607^(5/8) 9870002026393202 a004 Fibonacci(46)/Lucas(27)/(1/2+sqrt(5)/2)^3 9870002026393202 a001 196418/4106118243*28143753123^(7/10) 9870002026393202 a004 Fibonacci(27)*Lucas(47)/(1/2+sqrt(5)/2)^58 9870002026393202 a001 944284833571968/956722026041 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^37/Lucas(48) 9870002026393202 a004 Fibonacci(48)/Lucas(27)/(1/2+sqrt(5)/2)^5 9870002026393202 a004 Fibonacci(27)*Lucas(49)/(1/2+sqrt(5)/2)^60 9870002026393202 a001 196418/119218851371*17393796001^(6/7) 9870002026393202 a001 196418/28143753123*45537549124^(13/17) 9870002026393202 a001 2472169789352450/2504730781961 9870002026393202 a001 196418/28143753123*14662949395604^(13/21) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^39/Lucas(50) 9870002026393202 a001 196418/28143753123*192900153618^(13/18) 9870002026393202 a004 Fibonacci(50)/Lucas(27)/(1/2+sqrt(5)/2)^7 9870002026393202 a001 196418/28143753123*73681302247^(3/4) 9870002026393202 a004 Fibonacci(27)*Lucas(51)/(1/2+sqrt(5)/2)^62 9870002026393202 a001 196418/2139295485799*45537549124^(16/17) 9870002026393202 a001 196418/505019158607*45537549124^(15/17) 9870002026393202 a001 196418/119218851371*45537549124^(14/17) 9870002026393202 a001 190359545131923/192866774113 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^41/Lucas(52) 9870002026393202 a004 Fibonacci(52)/Lucas(27)/(1/2+sqrt(5)/2)^9 9870002026393202 a004 Fibonacci(27)*Lucas(53)/(1/2+sqrt(5)/2)^64 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^43/Lucas(54) 9870002026393202 a001 196418/505019158607*312119004989^(9/11) 9870002026393202 a004 Fibonacci(27)*Lucas(55)/(1/2+sqrt(5)/2)^66 9870002026393202 a001 196418/5600748293801*312119004989^(10/11) 9870002026393202 a001 196418/505019158607*14662949395604^(5/7) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^45/Lucas(56) 9870002026393202 a004 Fibonacci(27)*Lucas(57)/(1/2+sqrt(5)/2)^68 9870002026393202 a001 196418/9062201101803*817138163596^(17/19) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^47/Lucas(58) 9870002026393202 a004 Fibonacci(27)*Lucas(59)/(1/2+sqrt(5)/2)^70 9870002026393202 a001 98209/1730726404001*14662949395604^(7/9) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^49/Lucas(60) 9870002026393202 a004 Fibonacci(27)*Lucas(61)/(1/2+sqrt(5)/2)^72 9870002026393202 a001 196418/9062201101803*14662949395604^(17/21) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^51/Lucas(62) 9870002026393202 a004 Fibonacci(27)*Lucas(63)/(1/2+sqrt(5)/2)^74 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^53/Lucas(64) 9870002026393202 a004 Fibonacci(27)*Lucas(65)/(1/2+sqrt(5)/2)^76 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^55/Lucas(66) 9870002026393202 a004 Fibonacci(27)*Lucas(67)/(1/2+sqrt(5)/2)^78 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^57/Lucas(68) 9870002026393202 a004 Fibonacci(27)*Lucas(69)/(1/2+sqrt(5)/2)^80 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^59/Lucas(70) 9870002026393202 a004 Fibonacci(27)*Lucas(71)/(1/2+sqrt(5)/2)^82 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^61/Lucas(72) 9870002026393202 a004 Fibonacci(27)*Lucas(73)/(1/2+sqrt(5)/2)^84 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^63/Lucas(74) 9870002026393202 a004 Fibonacci(27)*Lucas(75)/(1/2+sqrt(5)/2)^86 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^65/Lucas(76) 9870002026393202 a004 Fibonacci(27)*Lucas(77)/(1/2+sqrt(5)/2)^88 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^67/Lucas(78) 9870002026393202 a004 Fibonacci(27)*Lucas(79)/(1/2+sqrt(5)/2)^90 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^69/Lucas(80) 9870002026393202 a004 Fibonacci(27)*Lucas(81)/(1/2+sqrt(5)/2)^92 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^71/Lucas(82) 9870002026393202 a004 Fibonacci(27)*Lucas(83)/(1/2+sqrt(5)/2)^94 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^73/Lucas(84) 9870002026393202 a004 Fibonacci(27)*Lucas(85)/(1/2+sqrt(5)/2)^96 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^75/Lucas(86) 9870002026393202 a004 Fibonacci(27)*Lucas(87)/(1/2+sqrt(5)/2)^98 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^77/Lucas(88) 9870002026393202 a004 Fibonacci(27)*Lucas(89)/(1/2+sqrt(5)/2)^100 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^79/Lucas(90) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^81/Lucas(92) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^83/Lucas(94) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^85/Lucas(96) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^87/Lucas(98) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^88/Lucas(99) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^89/Lucas(100) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^86/Lucas(97) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^84/Lucas(95) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^82/Lucas(93) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^80/Lucas(91) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^78/Lucas(89) 9870002026393202 a004 Fibonacci(27)*Lucas(88)/(1/2+sqrt(5)/2)^99 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^76/Lucas(87) 9870002026393202 a004 Fibonacci(27)*Lucas(86)/(1/2+sqrt(5)/2)^97 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^74/Lucas(85) 9870002026393202 a004 Fibonacci(27)*Lucas(84)/(1/2+sqrt(5)/2)^95 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^72/Lucas(83) 9870002026393202 a004 Fibonacci(27)*Lucas(82)/(1/2+sqrt(5)/2)^93 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^70/Lucas(81) 9870002026393202 a004 Fibonacci(27)*Lucas(80)/(1/2+sqrt(5)/2)^91 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^68/Lucas(79) 9870002026393202 a004 Fibonacci(27)*Lucas(78)/(1/2+sqrt(5)/2)^89 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^66/Lucas(77) 9870002026393202 a004 Fibonacci(27)*Lucas(76)/(1/2+sqrt(5)/2)^87 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^64/Lucas(75) 9870002026393202 a004 Fibonacci(27)*Lucas(74)/(1/2+sqrt(5)/2)^85 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^62/Lucas(73) 9870002026393202 a004 Fibonacci(27)*Lucas(72)/(1/2+sqrt(5)/2)^83 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^60/Lucas(71) 9870002026393202 a004 Fibonacci(27)*Lucas(70)/(1/2+sqrt(5)/2)^81 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^58/Lucas(69) 9870002026393202 a004 Fibonacci(27)*Lucas(68)/(1/2+sqrt(5)/2)^79 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^56/Lucas(67) 9870002026393202 a004 Fibonacci(27)*Lucas(66)/(1/2+sqrt(5)/2)^77 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^54/Lucas(65) 9870002026393202 a004 Fibonacci(27)*Lucas(64)/(1/2+sqrt(5)/2)^75 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^52/Lucas(63) 9870002026393202 a001 98209/7331474697802*23725150497407^(13/16) 9870002026393202 a004 Fibonacci(27)*Lucas(62)/(1/2+sqrt(5)/2)^73 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^50/Lucas(61) 9870002026393202 a004 Fibonacci(27)*Lucas(60)/(1/2+sqrt(5)/2)^71 9870002026393202 a001 196418/2139295485799*14662949395604^(16/21) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^48/Lucas(59) 9870002026393202 a004 Fibonacci(27)*Lucas(58)/(1/2+sqrt(5)/2)^69 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^46/Lucas(57) 9870002026393202 a001 196418/312119004989*312119004989^(4/5) 9870002026393202 a001 98209/1730726404001*505019158607^(7/8) 9870002026393202 a001 98209/7331474697802*505019158607^(13/14) 9870002026393202 a004 Fibonacci(27)*Lucas(56)/(1/2+sqrt(5)/2)^67 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^44/Lucas(55) 9870002026393202 a001 196418/312119004989*23725150497407^(11/16) 9870002026393202 a001 196418/505019158607*192900153618^(5/6) 9870002026393202 a004 Fibonacci(56)/Lucas(27)/(1/2+sqrt(5)/2)^13 9870002026393202 a001 196418/2139295485799*192900153618^(8/9) 9870002026393202 a001 196418/9062201101803*192900153618^(17/18) 9870002026393202 a004 Fibonacci(58)/Lucas(27)/(1/2+sqrt(5)/2)^15 9870002026393202 a004 Fibonacci(60)/Lucas(27)/(1/2+sqrt(5)/2)^17 9870002026393202 a004 Fibonacci(62)/Lucas(27)/(1/2+sqrt(5)/2)^19 9870002026393202 a004 Fibonacci(64)/Lucas(27)/(1/2+sqrt(5)/2)^21 9870002026393202 a004 Fibonacci(66)/Lucas(27)/(1/2+sqrt(5)/2)^23 9870002026393202 a004 Fibonacci(68)/Lucas(27)/(1/2+sqrt(5)/2)^25 9870002026393202 a004 Fibonacci(70)/Lucas(27)/(1/2+sqrt(5)/2)^27 9870002026393202 a004 Fibonacci(72)/Lucas(27)/(1/2+sqrt(5)/2)^29 9870002026393202 a004 Fibonacci(74)/Lucas(27)/(1/2+sqrt(5)/2)^31 9870002026393202 a004 Fibonacci(76)/Lucas(27)/(1/2+sqrt(5)/2)^33 9870002026393202 a004 Fibonacci(78)/Lucas(27)/(1/2+sqrt(5)/2)^35 9870002026393202 a004 Fibonacci(80)/Lucas(27)/(1/2+sqrt(5)/2)^37 9870002026393202 a004 Fibonacci(82)/Lucas(27)/(1/2+sqrt(5)/2)^39 9870002026393202 a004 Fibonacci(84)/Lucas(27)/(1/2+sqrt(5)/2)^41 9870002026393202 a004 Fibonacci(86)/Lucas(27)/(1/2+sqrt(5)/2)^43 9870002026393202 a004 Fibonacci(88)/Lucas(27)/(1/2+sqrt(5)/2)^45 9870002026393202 a004 Fibonacci(90)/Lucas(27)/(1/2+sqrt(5)/2)^47 9870002026393202 a004 Fibonacci(92)/Lucas(27)/(1/2+sqrt(5)/2)^49 9870002026393202 a004 Fibonacci(94)/Lucas(27)/(1/2+sqrt(5)/2)^51 9870002026393202 a004 Fibonacci(96)/Lucas(27)/(1/2+sqrt(5)/2)^53 9870002026393202 a004 Fibonacci(98)/Lucas(27)/(1/2+sqrt(5)/2)^55 9870002026393202 a004 Fibonacci(100)/Lucas(27)/(1/2+sqrt(5)/2)^57 9870002026393202 a004 Fibonacci(27)*Lucas(54)/(1/2+sqrt(5)/2)^65 9870002026393202 a004 Fibonacci(99)/Lucas(27)/(1/2+sqrt(5)/2)^56 9870002026393202 a004 Fibonacci(97)/Lucas(27)/(1/2+sqrt(5)/2)^54 9870002026393202 a004 Fibonacci(95)/Lucas(27)/(1/2+sqrt(5)/2)^52 9870002026393202 a004 Fibonacci(93)/Lucas(27)/(1/2+sqrt(5)/2)^50 9870002026393202 a004 Fibonacci(91)/Lucas(27)/(1/2+sqrt(5)/2)^48 9870002026393202 a004 Fibonacci(89)/Lucas(27)/(1/2+sqrt(5)/2)^46 9870002026393202 a004 Fibonacci(87)/Lucas(27)/(1/2+sqrt(5)/2)^44 9870002026393202 a004 Fibonacci(85)/Lucas(27)/(1/2+sqrt(5)/2)^42 9870002026393202 a004 Fibonacci(83)/Lucas(27)/(1/2+sqrt(5)/2)^40 9870002026393202 a004 Fibonacci(81)/Lucas(27)/(1/2+sqrt(5)/2)^38 9870002026393202 a004 Fibonacci(79)/Lucas(27)/(1/2+sqrt(5)/2)^36 9870002026393202 a004 Fibonacci(77)/Lucas(27)/(1/2+sqrt(5)/2)^34 9870002026393202 a004 Fibonacci(75)/Lucas(27)/(1/2+sqrt(5)/2)^32 9870002026393202 a004 Fibonacci(73)/Lucas(27)/(1/2+sqrt(5)/2)^30 9870002026393202 a004 Fibonacci(71)/Lucas(27)/(1/2+sqrt(5)/2)^28 9870002026393202 a004 Fibonacci(69)/Lucas(27)/(1/2+sqrt(5)/2)^26 9870002026393202 a004 Fibonacci(67)/Lucas(27)/(1/2+sqrt(5)/2)^24 9870002026393202 a004 Fibonacci(65)/Lucas(27)/(1/2+sqrt(5)/2)^22 9870002026393202 a004 Fibonacci(63)/Lucas(27)/(1/2+sqrt(5)/2)^20 9870002026393202 a004 Fibonacci(61)/Lucas(27)/(1/2+sqrt(5)/2)^18 9870002026393202 a004 Fibonacci(59)/Lucas(27)/(1/2+sqrt(5)/2)^16 9870002026393202 a004 Fibonacci(57)/Lucas(27)/(1/2+sqrt(5)/2)^14 9870002026393202 a004 Fibonacci(55)/Lucas(27)/(1/2+sqrt(5)/2)^12 9870002026393202 a001 196418/119218851371*817138163596^(14/19) 9870002026393202 a001 196418/119218851371*14662949395604^(2/3) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^42/Lucas(53) 9870002026393202 a001 10472279279618314/10610209857723 9870002026393202 a001 196418/119218851371*505019158607^(3/4) 9870002026393202 a001 196418/119218851371*192900153618^(7/9) 9870002026393202 a004 Fibonacci(53)/Lucas(27)/(1/2+sqrt(5)/2)^10 9870002026393202 a001 196418/312119004989*73681302247^(11/13) 9870002026393202 a001 196418/2139295485799*73681302247^(12/13) 9870002026393202 a004 Fibonacci(27)*Lucas(52)/(1/2+sqrt(5)/2)^63 9870002026393202 a001 98209/22768774562*312119004989^(8/11) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^40/Lucas(51) 9870002026393202 a001 98209/22768774562*23725150497407^(5/8) 9870002026393202 a001 4000054745132932/4052739537881 9870002026393202 a004 Fibonacci(51)/Lucas(27)/(1/2+sqrt(5)/2)^8 9870002026393202 a001 98209/22768774562*73681302247^(10/13) 9870002026393202 a001 196418/505019158607*28143753123^(9/10) 9870002026393202 a004 Fibonacci(27)*Lucas(50)/(1/2+sqrt(5)/2)^61 9870002026393202 a001 98209/22768774562*28143753123^(4/5) 9870002026393202 a001 196418/17393796001*817138163596^(2/3) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^38/Lucas(49) 9870002026393202 a004 Fibonacci(49)/Lucas(27)/(1/2+sqrt(5)/2)^6 9870002026393202 a001 196418/28143753123*10749957122^(13/16) 9870002026393202 a001 196418/119218851371*10749957122^(7/8) 9870002026393202 a001 98209/22768774562*10749957122^(5/6) 9870002026393202 a001 196418/312119004989*10749957122^(11/12) 9870002026393202 a001 196418/505019158607*10749957122^(15/16) 9870002026393202 a001 98209/408569081798*10749957122^(23/24) 9870002026393202 a004 Fibonacci(27)*Lucas(48)/(1/2+sqrt(5)/2)^59 9870002026393202 a001 196418/17393796001*10749957122^(19/24) 9870002026393202 a001 196418/6643838879*45537549124^(12/17) 9870002026393202 a001 196418/6643838879*14662949395604^(4/7) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^36/Lucas(47) 9870002026393202 a001 196418/6643838879*505019158607^(9/14) 9870002026393202 a001 196418/6643838879*192900153618^(2/3) 9870002026393202 a004 Fibonacci(47)/Lucas(27)/(1/2+sqrt(5)/2)^4 9870002026393202 a001 196418/6643838879*73681302247^(9/13) 9870002026393202 a001 196418/6643838879*10749957122^(3/4) 9870002026393202 a001 98209/22768774562*4106118243^(20/23) 9870002026393202 a001 196418/17393796001*4106118243^(19/23) 9870002026393202 a001 196418/119218851371*4106118243^(21/23) 9870002026393202 a001 196418/312119004989*4106118243^(22/23) 9870002026393202 a004 Fibonacci(27)*Lucas(46)/(1/2+sqrt(5)/2)^57 9870002026393202 a001 196418/6643838879*4106118243^(18/23) 9870002026393202 a001 98209/1268860318*45537549124^(2/3) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^34/Lucas(45) 9870002026393202 a001 222915410845060/225851433717 9870002026393202 a004 Fibonacci(45)/Lucas(27)/(1/2+sqrt(5)/2)^2 9870002026393202 a001 98209/1268860318*10749957122^(17/24) 9870002026393202 a001 98209/1268860318*4106118243^(17/23) 9870002026393202 a001 196418/17393796001*1568397607^(19/22) 9870002026393202 a001 196418/6643838879*1568397607^(9/11) 9870002026393202 a001 98209/22768774562*1568397607^(10/11) 9870002026393202 a001 196418/119218851371*1568397607^(21/22) 9870002026393202 a004 Fibonacci(27)*Lucas(44)/(1/2+sqrt(5)/2)^55 9870002026393202 a001 98209/1268860318*1568397607^(17/22) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^32/Lucas(43) 9870002026393202 a001 196418/969323029*23725150497407^(1/2) 9870002026393202 a001 196418/969323029*505019158607^(4/7) 9870002026393202 a001 433494437/439204 9870002026393202 a001 196418/969323029*73681302247^(8/13) 9870002026393202 a001 196418/969323029*10749957122^(2/3) 9870002026393202 a001 196418/969323029*4106118243^(16/23) 9870002026393202 a001 196418/969323029*1568397607^(8/11) 9870002026393202 a001 196418/1568397607*599074578^(11/14) 9870002026393202 a001 196418/4106118243*599074578^(5/6) 9870002026393202 a001 98209/1268860318*599074578^(17/21) 9870002026393202 a001 196418/6643838879*599074578^(6/7) 9870002026393202 a001 196418/17393796001*599074578^(19/21) 9870002026393202 a001 196418/28143753123*599074578^(13/14) 9870002026393202 a001 98209/22768774562*599074578^(20/21) 9870002026393202 a004 Fibonacci(27)*Lucas(42)/(1/2+sqrt(5)/2)^53 9870002026393202 a001 196418/969323029*599074578^(16/21) 9870002026393202 a001 196418/370248451*2537720636^(2/3) 9870002026393202 a001 196418/370248451*45537549124^(10/17) 9870002026393202 a001 196418/370248451*312119004989^(6/11) 9870002026393202 a001 196418/370248451*14662949395604^(10/21) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^30/Lucas(41) 9870002026393202 a001 196418/370248451*192900153618^(5/9) 9870002026393202 a001 165580141/439204*(1/2+1/2*5^(1/2))^2 9870002026393202 a001 32522920134938/32951280099 9870002026393202 a001 165580141/439204*10749957122^(1/24) 9870002026393202 a001 196418/370248451*28143753123^(3/5) 9870002026393202 a001 165580141/439204*4106118243^(1/23) 9870002026393202 a001 196418/370248451*10749957122^(5/8) 9870002026393202 a001 165580141/439204*1568397607^(1/22) 9870002026393202 a001 196418/370248451*4106118243^(15/23) 9870002026393202 a001 165580141/439204*599074578^(1/21) 9870002026393202 a001 196418/370248451*1568397607^(15/22) 9870002026393202 a001 165580141/439204*228826127^(1/20) 9870002026393202 a001 196418/370248451*599074578^(5/7) 9870002026393202 a001 165580141/439204*87403803^(1/19) 9870002026393202 a001 196418/969323029*228826127^(4/5) 9870002026393202 a001 98209/1268860318*228826127^(17/20) 9870002026393202 a001 196418/4106118243*228826127^(7/8) 9870002026393202 a001 196418/6643838879*228826127^(9/10) 9870002026393202 a001 196418/17393796001*228826127^(19/20) 9870002026393202 a004 Fibonacci(27)*Lucas(40)/(1/2+sqrt(5)/2)^51 9870002026393202 a001 196418/370248451*228826127^(3/4) 9870002026393202 a001 98209/70711162*17393796001^(4/7) 9870002026393202 a001 98209/70711162*14662949395604^(4/9) 9870002026393202 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^28/Lucas(39) 9870002026393202 a001 98209/70711162*505019158607^(1/2) 9870002026393202 a001 31622993/219602*(1/2+1/2*5^(1/2))^4 9870002026393202 a001 31622993/219602*23725150497407^(1/16) 9870002026393202 a001 31622993/219602*73681302247^(1/13) 9870002026393202 a001 98209/70711162*73681302247^(7/13) 9870002026393202 a001 31622993/219602*10749957122^(1/12) 9870002026393202 a001 12422650078148/12586269025 9870002026393202 a001 98209/70711162*10749957122^(7/12) 9870002026393202 a001 31622993/219602*4106118243^(2/23) 9870002026393202 a001 98209/70711162*4106118243^(14/23) 9870002026393202 a001 31622993/219602*1568397607^(1/11) 9870002026393202 a001 98209/70711162*1568397607^(7/11) 9870002026393202 a001 31622993/219602*599074578^(2/21) 9870002026393202 a001 98209/70711162*599074578^(2/3) 9870002026393202 a001 31622993/219602*228826127^(1/10) 9870002026393202 a001 102334155/439204*33385282^(1/12) 9870002026393202 a001 165580141/439204*33385282^(1/18) 9870002026393202 a001 98209/70711162*228826127^(7/10) 9870002026393202 a001 31622993/219602*87403803^(2/19) 9870002026393203 a001 196418/370248451*87403803^(15/19) 9870002026393203 a001 196418/969323029*87403803^(16/19) 9870002026393203 a001 98209/1268860318*87403803^(17/19) 9870002026393203 a001 196418/6643838879*87403803^(18/19) 9870002026393203 a004 Fibonacci(27)*Lucas(38)/(1/2+sqrt(5)/2)^49 9870002026393203 a001 98209/70711162*87403803^(14/19) 9870002026393203 a001 31622993/219602*33385282^(1/9) 9870002026393205 a001 196418/54018521*141422324^(2/3) 9870002026393205 a001 24157817/439204*141422324^(2/13) 9870002026393205 a001 24157817/439204*2537720636^(2/15) 9870002026393205 a001 24157817/439204*45537549124^(2/17) 9870002026393205 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^26/Lucas(37) 9870002026393205 a001 24157817/439204*14662949395604^(2/21) 9870002026393205 a001 24157817/439204*(1/2+1/2*5^(1/2))^6 9870002026393205 a001 196418/54018521*73681302247^(1/2) 9870002026393205 a001 24157817/439204*10749957122^(1/8) 9870002026393205 a001 196418/54018521*10749957122^(13/24) 9870002026393205 a001 24157817/439204*4106118243^(3/23) 9870002026393205 a001 2372515049753/2403763488 9870002026393205 a001 196418/54018521*4106118243^(13/23) 9870002026393205 a001 24157817/439204*1568397607^(3/22) 9870002026393205 a001 196418/54018521*1568397607^(13/22) 9870002026393205 a001 24157817/439204*599074578^(1/7) 9870002026393205 a001 196418/54018521*599074578^(13/21) 9870002026393205 a001 24157817/439204*228826127^(3/20) 9870002026393205 a001 196418/54018521*228826127^(13/20) 9870002026393205 a001 24157817/439204*87403803^(3/19) 9870002026393205 a001 165580141/439204*12752043^(1/17) 9870002026393206 a001 196418/54018521*87403803^(13/19) 9870002026393207 a001 24157817/439204*33385282^(1/6) 9870002026393207 a001 196418/87403803*33385282^(3/4) 9870002026393209 a001 98209/70711162*33385282^(7/9) 9870002026393209 a001 196418/370248451*33385282^(5/6) 9870002026393209 a001 31622993/219602*12752043^(2/17) 9870002026393210 a001 196418/969323029*33385282^(8/9) 9870002026393210 a001 196418/1568397607*33385282^(11/12) 9870002026393210 a001 98209/1268860318*33385282^(17/18) 9870002026393211 a004 Fibonacci(27)*Lucas(36)/(1/2+sqrt(5)/2)^47 9870002026393212 a001 196418/54018521*33385282^(13/18) 9870002026393216 a001 24157817/439204*12752043^(3/17) 9870002026393225 a001 196418/20633239*141422324^(8/13) 9870002026393225 a001 196418/20633239*2537720636^(8/15) 9870002026393225 a001 196418/20633239*45537549124^(8/17) 9870002026393225 a001 196418/20633239*14662949395604^(8/21) 9870002026393225 a001 196418/20633239*(1/2+1/2*5^(1/2))^24 9870002026393225 a001 196418/20633239*192900153618^(4/9) 9870002026393225 a001 9227465/439204*(1/2+1/2*5^(1/2))^8 9870002026393225 a001 9227465/439204*23725150497407^(1/8) 9870002026393225 a001 9227465/439204*505019158607^(1/7) 9870002026393225 a001 9227465/439204*73681302247^(2/13) 9870002026393225 a001 196418/20633239*73681302247^(6/13) 9870002026393225 a001 9227465/439204*10749957122^(1/6) 9870002026393225 a001 196418/20633239*10749957122^(1/2) 9870002026393225 a001 9227465/439204*4106118243^(4/23) 9870002026393225 a001 196418/20633239*4106118243^(12/23) 9870002026393225 a001 1812440220370/1836311903 9870002026393225 a001 9227465/439204*1568397607^(2/11) 9870002026393225 a001 196418/20633239*1568397607^(6/11) 9870002026393225 a001 9227465/439204*599074578^(4/21) 9870002026393225 a001 196418/20633239*599074578^(4/7) 9870002026393225 a001 9227465/439204*228826127^(1/5) 9870002026393225 a001 196418/20633239*228826127^(3/5) 9870002026393225 a001 9227465/439204*87403803^(4/19) 9870002026393226 a001 196418/20633239*87403803^(12/19) 9870002026393227 a001 9227465/439204*33385282^(2/9) 9870002026393228 a001 165580141/439204*4870847^(1/16) 9870002026393231 a001 196418/20633239*33385282^(2/3) 9870002026393239 a001 9227465/439204*12752043^(4/17) 9870002026393252 a001 196418/54018521*12752043^(13/17) 9870002026393252 a001 98209/70711162*12752043^(14/17) 9870002026393254 a001 31622993/219602*4870847^(1/8) 9870002026393255 a001 98209/3940598*7881196^(2/3) 9870002026393255 a001 196418/370248451*12752043^(15/17) 9870002026393259 a001 196418/969323029*12752043^(16/17) 9870002026393262 a004 Fibonacci(27)*Lucas(34)/(1/2+sqrt(5)/2)^45 9870002026393268 a001 196418/20633239*12752043^(12/17) 9870002026393283 a001 24157817/439204*4870847^(3/16) 9870002026393329 a001 9227465/439204*4870847^(1/4) 9870002026393354 a001 1762289/219602*20633239^(2/7) 9870002026393361 a001 1762289/219602*2537720636^(2/9) 9870002026393361 a001 98209/3940598*312119004989^(2/5) 9870002026393361 a001 98209/3940598*(1/2+1/2*5^(1/2))^22 9870002026393361 a001 1762289/219602*312119004989^(2/11) 9870002026393361 a001 1762289/219602*(1/2+1/2*5^(1/2))^10 9870002026393361 a001 1762289/219602*28143753123^(1/5) 9870002026393361 a001 1762289/219602*10749957122^(5/24) 9870002026393361 a001 98209/3940598*10749957122^(11/24) 9870002026393361 a001 1762289/219602*4106118243^(5/23) 9870002026393361 a001 98209/3940598*4106118243^(11/23) 9870002026393361 a001 1762289/219602*1568397607^(5/22) 9870002026393361 a001 98209/3940598*1568397607^(1/2) 9870002026393361 a001 7778545636/7880997 9870002026393361 a001 1762289/219602*599074578^(5/21) 9870002026393361 a001 98209/3940598*599074578^(11/21) 9870002026393361 a001 1762289/219602*228826127^(1/4) 9870002026393361 a001 98209/3940598*228826127^(11/20) 9870002026393361 a001 1762289/219602*87403803^(5/19) 9870002026393361 a001 98209/3940598*87403803^(11/19) 9870002026393363 a001 1762289/219602*33385282^(5/18) 9870002026393366 a001 98209/3940598*33385282^(11/18) 9870002026393378 a001 1762289/219602*12752043^(5/17) 9870002026393392 a001 165580141/439204*1860498^(1/15) 9870002026393400 a001 98209/3940598*12752043^(11/17) 9870002026393487 a001 102334155/439204*1860498^(1/10) 9870002026393491 a001 1762289/219602*4870847^(5/16) 9870002026393496 a001 34111385/4250681*271443^(5/13) 9870002026393537 a001 196418/20633239*4870847^(3/4) 9870002026393543 a001 196418/54018521*4870847^(13/16) 9870002026393548 a001 133957148/16692641*271443^(5/13) 9870002026393555 a001 233802911/29134601*271443^(5/13) 9870002026393556 a001 1836311903/228826127*271443^(5/13) 9870002026393557 a001 267084832/33281921*271443^(5/13) 9870002026393557 a001 12586269025/1568397607*271443^(5/13) 9870002026393557 a001 10983760033/1368706081*271443^(5/13) 9870002026393557 a001 43133785636/5374978561*271443^(5/13) 9870002026393557 a001 75283811239/9381251041*271443^(5/13) 9870002026393557 a001 591286729879/73681302247*271443^(5/13) 9870002026393557 a001 86000486440/10716675201*271443^(5/13) 9870002026393557 a001 4052739537881/505019158607*271443^(5/13) 9870002026393557 a001 3536736619241/440719107401*271443^(5/13) 9870002026393557 a001 3278735159921/408569081798*271443^(5/13) 9870002026393557 a001 2504730781961/312119004989*271443^(5/13) 9870002026393557 a001 956722026041/119218851371*271443^(5/13) 9870002026393557 a001 182717648081/22768774562*271443^(5/13) 9870002026393557 a001 139583862445/17393796001*271443^(5/13) 9870002026393557 a001 53316291173/6643838879*271443^(5/13) 9870002026393557 a001 10182505537/1268860318*271443^(5/13) 9870002026393557 a001 7778742049/969323029*271443^(5/13) 9870002026393557 a001 2971215073/370248451*271443^(5/13) 9870002026393557 a001 567451585/70711162*271443^(5/13) 9870002026393560 a001 433494437/54018521*271443^(5/13) 9870002026393566 a001 98209/70711162*4870847^(7/8) 9870002026393580 a001 165580141/20633239*271443^(5/13) 9870002026393582 a001 31622993/219602*1860498^(2/15) 9870002026393592 a001 196418/370248451*4870847^(15/16) 9870002026393618 a004 Fibonacci(27)*Lucas(32)/(1/2+sqrt(5)/2)^43 9870002026393647 a001 98209/3940598*4870847^(11/16) 9870002026393676 a001 39088169/439204*1860498^(1/6) 9870002026393716 a001 31622993/3940598*271443^(5/13) 9870002026393775 a001 24157817/439204*1860498^(1/5) 9870002026393985 a001 9227465/439204*1860498^(4/15) 9870002026393996 a001 5702887/439204*1860498^(3/10) 9870002026394233 a001 1346269/439204*7881196^(4/11) 9870002026394278 a001 196418/3010349*20633239^(4/7) 9870002026394291 a001 1346269/439204*141422324^(4/13) 9870002026394291 a001 196418/3010349*2537720636^(4/9) 9870002026394291 a001 1346269/439204*2537720636^(4/15) 9870002026394291 a001 1346269/439204*45537549124^(4/17) 9870002026394291 a001 196418/3010349*(1/2+1/2*5^(1/2))^20 9870002026394291 a001 196418/3010349*23725150497407^(5/16) 9870002026394291 a001 196418/3010349*505019158607^(5/14) 9870002026394291 a001 1346269/439204*817138163596^(4/19) 9870002026394291 a001 1346269/439204*14662949395604^(4/21) 9870002026394291 a001 1346269/439204*(1/2+1/2*5^(1/2))^12 9870002026394291 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^12/Lucas(27) 9870002026394291 a001 1346269/439204*192900153618^(2/9) 9870002026394291 a001 1346269/439204*73681302247^(3/13) 9870002026394291 a001 196418/3010349*73681302247^(5/13) 9870002026394291 a001 196418/3010349*28143753123^(2/5) 9870002026394291 a001 1346269/439204*10749957122^(1/4) 9870002026394291 a001 196418/3010349*10749957122^(5/12) 9870002026394291 a001 1346269/439204*4106118243^(6/23) 9870002026394291 a001 196418/3010349*4106118243^(10/23) 9870002026394291 a001 1346269/439204*1568397607^(3/11) 9870002026394291 a001 196418/3010349*1568397607^(5/11) 9870002026394291 a001 1346269/439204*599074578^(2/7) 9870002026394291 a001 196418/3010349*599074578^(10/21) 9870002026394291 a001 132215732221/133957148 9870002026394291 a001 1346269/439204*228826127^(3/10) 9870002026394291 a001 196418/3010349*228826127^(1/2) 9870002026394291 a001 1346269/439204*87403803^(6/19) 9870002026394292 a001 196418/3010349*87403803^(10/19) 9870002026394294 a001 1346269/439204*33385282^(1/3) 9870002026394296 a001 196418/3010349*33385282^(5/9) 9870002026394311 a001 1762289/219602*1860498^(1/3) 9870002026394312 a001 1346269/439204*12752043^(6/17) 9870002026394327 a001 196418/3010349*12752043^(10/17) 9870002026394447 a001 1346269/439204*4870847^(3/8) 9870002026394551 a001 196418/3010349*4870847^(5/8) 9870002026394598 a001 165580141/439204*710647^(1/14) 9870002026394649 a001 24157817/3010349*271443^(5/13) 9870002026394782 a001 196418/4870847*1860498^(7/10) 9870002026395431 a001 1346269/439204*1860498^(2/5) 9870002026395452 a001 98209/3940598*1860498^(11/15) 9870002026395506 a001 196418/20633239*1860498^(4/5) 9870002026395569 a001 98209/16692641*1860498^(5/6) 9870002026395676 a001 196418/54018521*1860498^(13/15) 9870002026395767 a001 196418/87403803*1860498^(9/10) 9870002026395864 a001 98209/70711162*1860498^(14/15) 9870002026395994 a001 31622993/219602*710647^(1/7) 9870002026396053 a004 Fibonacci(27)*Lucas(30)/(1/2+sqrt(5)/2)^41 9870002026396192 a001 196418/3010349*1860498^(2/3) 9870002026397393 a001 24157817/439204*710647^(3/14) 9870002026398079 a001 196452/5779*710647^(1/4) 9870002026398809 a001 9227465/439204*710647^(2/7) 9870002026399003 a001 267914296/710647*103682^(1/12) 9870002026399363 a001 24157817/271443*103682^(5/24) 9870002026400341 a001 1762289/219602*710647^(5/14) 9870002026400580 a001 196418/1149851*7881196^(6/11) 9870002026400658 a001 514229/439204*20633239^(2/5) 9870002026400667 a001 196418/1149851*141422324^(6/13) 9870002026400667 a001 196418/1149851*2537720636^(2/5) 9870002026400667 a001 514229/439204*17393796001^(2/7) 9870002026400667 a001 196418/1149851*45537549124^(6/17) 9870002026400667 a001 196418/1149851*14662949395604^(2/7) 9870002026400667 a001 196418/1149851*(1/2+1/2*5^(1/2))^18 9870002026400667 a001 196418/1149851*192900153618^(1/3) 9870002026400667 a001 514229/439204*14662949395604^(2/9) 9870002026400667 a001 514229/439204*(1/2+1/2*5^(1/2))^14 9870002026400667 a001 514229/439204*505019158607^(1/4) 9870002026400667 a001 514229/439204*10749957122^(7/24) 9870002026400667 a001 196418/1149851*10749957122^(3/8) 9870002026400667 a001 514229/439204*4106118243^(7/23) 9870002026400667 a001 196418/1149851*4106118243^(9/23) 9870002026400667 a001 514229/439204*1568397607^(7/22) 9870002026400667 a001 196418/1149851*1568397607^(9/22) 9870002026400667 a001 514229/439204*599074578^(1/3) 9870002026400667 a001 196418/1149851*599074578^(3/7) 9870002026400667 a001 514229/439204*228826127^(7/20) 9870002026400667 a001 196418/1149851*228826127^(9/20) 9870002026400667 a001 101003831722/102334155 9870002026400667 a001 514229/439204*87403803^(7/19) 9870002026400667 a001 196418/1149851*87403803^(9/19) 9870002026400670 a001 514229/439204*33385282^(7/18) 9870002026400671 a001 196418/1149851*33385282^(1/2) 9870002026400692 a001 514229/439204*12752043^(7/17) 9870002026400699 a001 196418/1149851*12752043^(9/17) 9870002026400849 a001 514229/439204*4870847^(7/16) 9870002026400901 a001 196418/1149851*4870847^(9/16) 9870002026400949 a001 5702887/1860498*271443^(6/13) 9870002026401045 a001 9227465/1149851*271443^(5/13) 9870002026401997 a001 514229/439204*1860498^(7/15) 9870002026402378 a001 196418/1149851*1860498^(3/5) 9870002026402667 a001 1346269/439204*710647^(3/7) 9870002026403436 a001 14930352/4870847*271443^(6/13) 9870002026403506 a001 165580141/439204*271443^(1/13) 9870002026403799 a001 39088169/12752043*271443^(6/13) 9870002026403852 a001 14619165/4769326*271443^(6/13) 9870002026403860 a001 267914296/87403803*271443^(6/13) 9870002026403861 a001 701408733/228826127*271443^(6/13) 9870002026403861 a001 1836311903/599074578*271443^(6/13) 9870002026403861 a001 686789568/224056801*271443^(6/13) 9870002026403861 a001 12586269025/4106118243*271443^(6/13) 9870002026403861 a001 32951280099/10749957122*271443^(6/13) 9870002026403861 a001 86267571272/28143753123*271443^(6/13) 9870002026403861 a001 32264490531/10525900321*271443^(6/13) 9870002026403861 a001 591286729879/192900153618*271443^(6/13) 9870002026403861 a001 1548008755920/505019158607*271443^(6/13) 9870002026403861 a001 1515744265389/494493258286*271443^(6/13) 9870002026403861 a001 2504730781961/817138163596*271443^(6/13) 9870002026403861 a001 956722026041/312119004989*271443^(6/13) 9870002026403861 a001 365435296162/119218851371*271443^(6/13) 9870002026403861 a001 139583862445/45537549124*271443^(6/13) 9870002026403861 a001 53316291173/17393796001*271443^(6/13) 9870002026403861 a001 20365011074/6643838879*271443^(6/13) 9870002026403861 a001 7778742049/2537720636*271443^(6/13) 9870002026403861 a001 2971215073/969323029*271443^(6/13) 9870002026403861 a001 1134903170/370248451*271443^(6/13) 9870002026403861 a001 433494437/141422324*271443^(6/13) 9870002026403864 a001 165580141/54018521*271443^(6/13) 9870002026403885 a001 63245986/20633239*271443^(6/13) 9870002026404023 a001 24157817/7881196*271443^(6/13) 9870002026404973 a001 9227465/3010349*271443^(6/13) 9870002026406321 a001 1762289/930249*271443^(1/2) 9870002026407444 a001 196418/4870847*710647^(3/4) 9870002026408251 a001 196418/3010349*710647^(5/7) 9870002026408620 a001 9227465/4870847*271443^(1/2) 9870002026408716 a001 98209/3940598*710647^(11/14) 9870002026408956 a001 24157817/12752043*271443^(1/2) 9870002026409005 a001 31622993/16692641*271443^(1/2) 9870002026409012 a001 165580141/87403803*271443^(1/2) 9870002026409013 a001 433494437/228826127*271443^(1/2) 9870002026409013 a001 567451585/299537289*271443^(1/2) 9870002026409013 a001 2971215073/1568397607*271443^(1/2) 9870002026409013 a001 7778742049/4106118243*271443^(1/2) 9870002026409013 a001 10182505537/5374978561*271443^(1/2) 9870002026409013 a001 53316291173/28143753123*271443^(1/2) 9870002026409013 a001 139583862445/73681302247*271443^(1/2) 9870002026409013 a001 182717648081/96450076809*271443^(1/2) 9870002026409013 a001 956722026041/505019158607*271443^(1/2) 9870002026409013 a001 10610209857723/5600748293801*271443^(1/2) 9870002026409013 a001 591286729879/312119004989*271443^(1/2) 9870002026409013 a001 225851433717/119218851371*271443^(1/2) 9870002026409013 a001 21566892818/11384387281*271443^(1/2) 9870002026409013 a001 32951280099/17393796001*271443^(1/2) 9870002026409013 a001 12586269025/6643838879*271443^(1/2) 9870002026409013 a001 1201881744/634430159*271443^(1/2) 9870002026409013 a001 1836311903/969323029*271443^(1/2) 9870002026409013 a001 701408733/370248451*271443^(1/2) 9870002026409013 a001 66978574/35355581*271443^(1/2) 9870002026409016 a001 102334155/54018521*271443^(1/2) 9870002026409035 a001 39088169/20633239*271443^(1/2) 9870002026409163 a001 3732588/1970299*271443^(1/2) 9870002026409977 a001 196418/20633239*710647^(6/7) 9870002026410041 a001 5702887/3010349*271443^(1/2) 9870002026410439 a001 514229/439204*710647^(1/2) 9870002026410898 a001 726103/620166*271443^(7/13) 9870002026411353 a001 196418/54018521*710647^(13/14) 9870002026411485 a001 3524578/1149851*271443^(6/13) 9870002026412378 a001 105937/620166*271443^(9/13) 9870002026412746 a004 Fibonacci(27)*Lucas(28)/(1/2+sqrt(5)/2)^39 9870002026413231 a001 196418/1149851*710647^(9/14) 9870002026413688 a001 5702887/4870847*271443^(7/13) 9870002026413811 a001 31622993/219602*271443^(2/13) 9870002026414096 a001 4976784/4250681*271443^(7/13) 9870002026414155 a001 39088169/33385282*271443^(7/13) 9870002026414164 a001 34111385/29134601*271443^(7/13) 9870002026414165 a001 267914296/228826127*271443^(7/13) 9870002026414165 a001 233802911/199691526*271443^(7/13) 9870002026414165 a001 1836311903/1568397607*271443^(7/13) 9870002026414165 a001 1602508992/1368706081*271443^(7/13) 9870002026414165 a001 12586269025/10749957122*271443^(7/13) 9870002026414165 a001 10983760033/9381251041*271443^(7/13) 9870002026414165 a001 86267571272/73681302247*271443^(7/13) 9870002026414165 a001 75283811239/64300051206*271443^(7/13) 9870002026414165 a001 2504730781961/2139295485799*271443^(7/13) 9870002026414165 a001 365435296162/312119004989*271443^(7/13) 9870002026414165 a001 139583862445/119218851371*271443^(7/13) 9870002026414165 a001 53316291173/45537549124*271443^(7/13) 9870002026414165 a001 20365011074/17393796001*271443^(7/13) 9870002026414165 a001 7778742049/6643838879*271443^(7/13) 9870002026414165 a001 2971215073/2537720636*271443^(7/13) 9870002026414165 a001 1134903170/969323029*271443^(7/13) 9870002026414165 a001 433494437/370248451*271443^(7/13) 9870002026414166 a001 165580141/141422324*271443^(7/13) 9870002026414169 a001 63245986/54018521*271443^(7/13) 9870002026414192 a001 24157817/20633239*271443^(7/13) 9870002026414347 a001 9227465/7881196*271443^(7/13) 9870002026415413 a001 3524578/3010349*271443^(7/13) 9870002026415696 a001 233802911/620166*103682^(1/12) 9870002026416062 a001 2178309/1149851*271443^(1/2) 9870002026418131 a001 1836311903/4870847*103682^(1/12) 9870002026418487 a001 1602508992/4250681*103682^(1/12) 9870002026418538 a001 12586269025/33385282*103682^(1/12) 9870002026418546 a001 10983760033/29134601*103682^(1/12) 9870002026418547 a001 86267571272/228826127*103682^(1/12) 9870002026418547 a001 267913919/710646*103682^(1/12) 9870002026418547 a001 591286729879/1568397607*103682^(1/12) 9870002026418547 a001 516002918640/1368706081*103682^(1/12) 9870002026418547 a001 4052739537881/10749957122*103682^(1/12) 9870002026418547 a001 3536736619241/9381251041*103682^(1/12) 9870002026418547 a001 6557470319842/17393796001*103682^(1/12) 9870002026418547 a001 2504730781961/6643838879*103682^(1/12) 9870002026418547 a001 956722026041/2537720636*103682^(1/12) 9870002026418547 a001 365435296162/969323029*103682^(1/12) 9870002026418547 a001 139583862445/370248451*103682^(1/12) 9870002026418548 a001 53316291173/141422324*103682^(1/12) 9870002026418551 a001 20365011074/54018521*103682^(1/12) 9870002026418570 a001 7778742049/20633239*103682^(1/12) 9870002026418706 a001 2971215073/7881196*103682^(1/12) 9870002026418767 a001 416020/930249*271443^(8/13) 9870002026419636 a001 1134903170/3010349*103682^(1/12) 9870002026419640 a001 75025/1149851*167761^(4/5) 9870002026422719 a001 1346269/1149851*271443^(7/13) 9870002026423637 a001 2178309/4870847*271443^(8/13) 9870002026424118 a001 24157817/439204*271443^(3/13) 9870002026424348 a001 5702887/12752043*271443^(8/13) 9870002026424452 a001 7465176/16692641*271443^(8/13) 9870002026424467 a001 39088169/87403803*271443^(8/13) 9870002026424469 a001 102334155/228826127*271443^(8/13) 9870002026424469 a001 133957148/299537289*271443^(8/13) 9870002026424469 a001 701408733/1568397607*271443^(8/13) 9870002026424469 a001 1836311903/4106118243*271443^(8/13) 9870002026424469 a001 2403763488/5374978561*271443^(8/13) 9870002026424469 a001 12586269025/28143753123*271443^(8/13) 9870002026424469 a001 32951280099/73681302247*271443^(8/13) 9870002026424469 a001 43133785636/96450076809*271443^(8/13) 9870002026424469 a001 225851433717/505019158607*271443^(8/13) 9870002026424469 a001 591286729879/1322157322203*271443^(8/13) 9870002026424469 a001 10610209857723/23725150497407*271443^(8/13) 9870002026424469 a001 182717648081/408569081798*271443^(8/13) 9870002026424469 a001 139583862445/312119004989*271443^(8/13) 9870002026424469 a001 53316291173/119218851371*271443^(8/13) 9870002026424469 a001 10182505537/22768774562*271443^(8/13) 9870002026424469 a001 7778742049/17393796001*271443^(8/13) 9870002026424469 a001 2971215073/6643838879*271443^(8/13) 9870002026424469 a001 567451585/1268860318*271443^(8/13) 9870002026424469 a001 433494437/969323029*271443^(8/13) 9870002026424470 a001 165580141/370248451*271443^(8/13) 9870002026424470 a001 31622993/70711162*271443^(8/13) 9870002026424476 a001 24157817/54018521*271443^(8/13) 9870002026424516 a001 9227465/20633239*271443^(8/13) 9870002026424787 a001 1762289/3940598*271443^(8/13) 9870002026424943 a001 46368/167761*103682^(17/24) 9870002026425118 a001 317811/4870847*271443^(10/13) 9870002026426012 a001 433494437/1149851*103682^(1/12) 9870002026426648 a001 1346269/3010349*271443^(8/13) 9870002026431458 a001 66978574/109801*103682^(1/24) 9870002026431506 a001 832040/4870847*271443^(9/13) 9870002026434297 a001 726103/4250681*271443^(9/13) 9870002026434442 a001 9227465/439204*271443^(4/13) 9870002026434704 a001 5702887/33385282*271443^(9/13) 9870002026434764 a001 4976784/29134601*271443^(9/13) 9870002026434772 a001 39088169/228826127*271443^(9/13) 9870002026434773 a001 34111385/199691526*271443^(9/13) 9870002026434774 a001 267914296/1568397607*271443^(9/13) 9870002026434774 a001 233802911/1368706081*271443^(9/13) 9870002026434774 a001 1836311903/10749957122*271443^(9/13) 9870002026434774 a001 1602508992/9381251041*271443^(9/13) 9870002026434774 a001 12586269025/73681302247*271443^(9/13) 9870002026434774 a001 10983760033/64300051206*271443^(9/13) 9870002026434774 a001 86267571272/505019158607*271443^(9/13) 9870002026434774 a001 75283811239/440719107401*271443^(9/13) 9870002026434774 a001 2504730781961/14662949395604*271443^(9/13) 9870002026434774 a001 139583862445/817138163596*271443^(9/13) 9870002026434774 a001 53316291173/312119004989*271443^(9/13) 9870002026434774 a001 20365011074/119218851371*271443^(9/13) 9870002026434774 a001 7778742049/45537549124*271443^(9/13) 9870002026434774 a001 2971215073/17393796001*271443^(9/13) 9870002026434774 a001 1134903170/6643838879*271443^(9/13) 9870002026434774 a001 433494437/2537720636*271443^(9/13) 9870002026434774 a001 165580141/969323029*271443^(9/13) 9870002026434774 a001 63245986/370248451*271443^(9/13) 9870002026434778 a001 24157817/141422324*271443^(9/13) 9870002026434800 a001 9227465/54018521*271443^(9/13) 9870002026434956 a001 3524578/20633239*271443^(9/13) 9870002026435778 a001 105937/4250681*271443^(11/13) 9870002026436022 a001 1346269/7881196*271443^(9/13) 9870002026437260 a001 165580141/710647*103682^(1/8) 9870002026437607 a001 4976784/90481*103682^(1/4) 9870002026439400 a001 514229/1149851*271443^(8/13) 9870002026442166 a001 832040/12752043*271443^(10/13) 9870002026443328 a001 514229/3010349*271443^(9/13) 9870002026444368 a001 98209/219602*(1/2+1/2*5^(1/2))^16 9870002026444368 a001 98209/219602*23725150497407^(1/4) 9870002026444368 a001 98209/219602*73681302247^(4/13) 9870002026444368 a001 98209/219602*10749957122^(1/3) 9870002026444368 a001 98209/219602*4106118243^(8/23) 9870002026444368 a001 98209/219602*1568397607^(4/11) 9870002026444368 a001 98209/219602*599074578^(8/21) 9870002026444368 a001 98209/219602*228826127^(2/5) 9870002026444369 a001 98209/219602*87403803^(8/19) 9870002026444369 a001 38580030724/39088169 9870002026444372 a001 98209/219602*33385282^(4/9) 9870002026444397 a001 98209/219602*12752043^(8/17) 9870002026444576 a001 98209/219602*4870847^(1/2) 9870002026444653 a001 311187/4769326*271443^(10/13) 9870002026444882 a001 1762289/219602*271443^(5/13) 9870002026445016 a001 5702887/87403803*271443^(10/13) 9870002026445069 a001 14930352/228826127*271443^(10/13) 9870002026445077 a001 39088169/599074578*271443^(10/13) 9870002026445078 a001 14619165/224056801*271443^(10/13) 9870002026445078 a001 267914296/4106118243*271443^(10/13) 9870002026445078 a001 701408733/10749957122*271443^(10/13) 9870002026445078 a001 1836311903/28143753123*271443^(10/13) 9870002026445078 a001 686789568/10525900321*271443^(10/13) 9870002026445078 a001 12586269025/192900153618*271443^(10/13) 9870002026445078 a001 32951280099/505019158607*271443^(10/13) 9870002026445078 a001 86267571272/1322157322203*271443^(10/13) 9870002026445078 a001 32264490531/494493258286*271443^(10/13) 9870002026445078 a001 591286729879/9062201101803*271443^(10/13) 9870002026445078 a001 1548008755920/23725150497407*271443^(10/13) 9870002026445078 a001 365435296162/5600748293801*271443^(10/13) 9870002026445078 a001 139583862445/2139295485799*271443^(10/13) 9870002026445078 a001 53316291173/817138163596*271443^(10/13) 9870002026445078 a001 20365011074/312119004989*271443^(10/13) 9870002026445078 a001 7778742049/119218851371*271443^(10/13) 9870002026445078 a001 2971215073/45537549124*271443^(10/13) 9870002026445078 a001 1134903170/17393796001*271443^(10/13) 9870002026445078 a001 433494437/6643838879*271443^(10/13) 9870002026445078 a001 165580141/2537720636*271443^(10/13) 9870002026445078 a001 63245986/969323029*271443^(10/13) 9870002026445081 a001 24157817/370248451*271443^(10/13) 9870002026445102 a001 9227465/141422324*271443^(10/13) 9870002026445240 a001 3524578/54018521*271443^(10/13) 9870002026445889 a001 98209/219602*1860498^(8/15) 9870002026446134 a001 317811/33385282*271443^(12/13) 9870002026446190 a001 1346269/20633239*271443^(10/13) 9870002026452522 a001 416020/16692641*271443^(11/13) 9870002026452702 a001 514229/7881196*271443^(10/13) 9870002026453952 a001 433494437/1860498*103682^(1/8) 9870002026454010 a001 28657/1149851*64079^(22/23) 9870002026454965 a001 726103/29134601*271443^(11/13) 9870002026455321 a001 5702887/228826127*271443^(11/13) 9870002026455373 a001 829464/33281921*271443^(11/13) 9870002026455381 a001 39088169/1568397607*271443^(11/13) 9870002026455382 a001 34111385/1368706081*271443^(11/13) 9870002026455382 a001 133957148/5374978561*271443^(11/13) 9870002026455382 a001 233802911/9381251041*271443^(11/13) 9870002026455382 a001 1836311903/73681302247*271443^(11/13) 9870002026455382 a001 267084832/10716675201*271443^(11/13) 9870002026455382 a001 12586269025/505019158607*271443^(11/13) 9870002026455382 a001 10983760033/440719107401*271443^(11/13) 9870002026455382 a001 43133785636/1730726404001*271443^(11/13) 9870002026455382 a001 75283811239/3020733700601*271443^(11/13) 9870002026455382 a001 182717648081/7331474697802*271443^(11/13) 9870002026455382 a001 139583862445/5600748293801*271443^(11/13) 9870002026455382 a001 53316291173/2139295485799*271443^(11/13) 9870002026455382 a001 10182505537/408569081798*271443^(11/13) 9870002026455382 a001 7778742049/312119004989*271443^(11/13) 9870002026455382 a001 2971215073/119218851371*271443^(11/13) 9870002026455382 a001 567451585/22768774562*271443^(11/13) 9870002026455382 a001 433494437/17393796001*271443^(11/13) 9870002026455382 a001 165580141/6643838879*271443^(11/13) 9870002026455383 a001 31622993/1268860318*271443^(11/13) 9870002026455386 a001 24157817/969323029*271443^(11/13) 9870002026455405 a001 9227465/370248451*271443^(11/13) 9870002026455536 a001 98209/219602*710647^(4/7) 9870002026455542 a001 1762289/70711162*271443^(11/13) 9870002026456116 a001 1346269/439204*271443^(6/13) 9870002026456387 a001 1134903170/4870847*103682^(1/8) 9870002026456447 a004 Fibonacci(28)*Lucas(26)/(1/2+sqrt(5)/2)^38 9870002026456475 a001 1346269/54018521*271443^(11/13) 9870002026456743 a001 2971215073/12752043*103682^(1/8) 9870002026456794 a001 7778742049/33385282*103682^(1/8) 9870002026456802 a001 20365011074/87403803*103682^(1/8) 9870002026456803 a001 53316291173/228826127*103682^(1/8) 9870002026456803 a001 139583862445/599074578*103682^(1/8) 9870002026456803 a001 365435296162/1568397607*103682^(1/8) 9870002026456803 a001 956722026041/4106118243*103682^(1/8) 9870002026456803 a001 2504730781961/10749957122*103682^(1/8) 9870002026456803 a001 6557470319842/28143753123*103682^(1/8) 9870002026456803 a001 10610209857723/45537549124*103682^(1/8) 9870002026456803 a001 4052739537881/17393796001*103682^(1/8) 9870002026456803 a001 1548008755920/6643838879*103682^(1/8) 9870002026456803 a001 591286729879/2537720636*103682^(1/8) 9870002026456803 a001 225851433717/969323029*103682^(1/8) 9870002026456803 a001 86267571272/370248451*103682^(1/8) 9870002026456804 a001 63246219/271444*103682^(1/8) 9870002026456807 a001 12586269025/54018521*103682^(1/8) 9870002026456826 a001 4807526976/20633239*103682^(1/8) 9870002026456962 a001 1836311903/7881196*103682^(1/8) 9870002026457328 a001 208010/109801*271443^(1/2) 9870002026457892 a001 701408733/3010349*103682^(1/8) 9870002026462834 a001 832040/87403803*271443^(12/13) 9870002026462870 a001 514229/20633239*271443^(11/13) 9870002026464268 a001 267914296/1149851*103682^(1/8) 9870002026465270 a001 46347/4868641*271443^(12/13) 9870002026465626 a001 5702887/599074578*271443^(12/13) 9870002026465678 a001 14930352/1568397607*271443^(12/13) 9870002026465685 a001 39088169/4106118243*271443^(12/13) 9870002026465686 a001 102334155/10749957122*271443^(12/13) 9870002026465686 a001 267914296/28143753123*271443^(12/13) 9870002026465686 a001 701408733/73681302247*271443^(12/13) 9870002026465686 a001 1836311903/192900153618*271443^(12/13) 9870002026465686 a001 102287808/10745088481*271443^(12/13) 9870002026465686 a001 12586269025/1322157322203*271443^(12/13) 9870002026465686 a001 32951280099/3461452808002*271443^(12/13) 9870002026465686 a001 86267571272/9062201101803*271443^(12/13) 9870002026465686 a001 225851433717/23725150497407*271443^(12/13) 9870002026465686 a001 139583862445/14662949395604*271443^(12/13) 9870002026465686 a001 53316291173/5600748293801*271443^(12/13) 9870002026465686 a001 20365011074/2139295485799*271443^(12/13) 9870002026465686 a001 7778742049/817138163596*271443^(12/13) 9870002026465686 a001 2971215073/312119004989*271443^(12/13) 9870002026465686 a001 1134903170/119218851371*271443^(12/13) 9870002026465686 a001 433494437/45537549124*271443^(12/13) 9870002026465686 a001 165580141/17393796001*271443^(12/13) 9870002026465687 a001 63245986/6643838879*271443^(12/13) 9870002026465690 a001 24157817/2537720636*271443^(12/13) 9870002026465710 a001 9227465/969323029*271443^(12/13) 9870002026465845 a001 3524578/370248451*271443^(12/13) 9870002026466776 a001 1346269/141422324*271443^(12/13) 9870002026469714 a001 165580141/439204*103682^(1/12) 9870002026472797 a001 514229/439204*271443^(7/13) 9870002026473139 a004 Fibonacci(30)*Lucas(26)/(1/2+sqrt(5)/2)^40 9870002026473155 a001 514229/54018521*271443^(12/13) 9870002026475515 a001 14619165/101521*103682^(1/6) 9870002026475575 a004 Fibonacci(32)*Lucas(26)/(1/2+sqrt(5)/2)^42 9870002026475895 a001 9227465/271443*103682^(7/24) 9870002026475930 a004 Fibonacci(34)*Lucas(26)/(1/2+sqrt(5)/2)^44 9870002026475982 a004 Fibonacci(36)*Lucas(26)/(1/2+sqrt(5)/2)^46 9870002026475989 a004 Fibonacci(38)*Lucas(26)/(1/2+sqrt(5)/2)^48 9870002026475990 a004 Fibonacci(40)*Lucas(26)/(1/2+sqrt(5)/2)^50 9870002026475991 a004 Fibonacci(42)*Lucas(26)/(1/2+sqrt(5)/2)^52 9870002026475991 a004 Fibonacci(44)*Lucas(26)/(1/2+sqrt(5)/2)^54 9870002026475991 a004 Fibonacci(46)*Lucas(26)/(1/2+sqrt(5)/2)^56 9870002026475991 a004 Fibonacci(48)*Lucas(26)/(1/2+sqrt(5)/2)^58 9870002026475991 a004 Fibonacci(50)*Lucas(26)/(1/2+sqrt(5)/2)^60 9870002026475991 a004 Fibonacci(52)*Lucas(26)/(1/2+sqrt(5)/2)^62 9870002026475991 a004 Fibonacci(54)*Lucas(26)/(1/2+sqrt(5)/2)^64 9870002026475991 a004 Fibonacci(56)*Lucas(26)/(1/2+sqrt(5)/2)^66 9870002026475991 a004 Fibonacci(58)*Lucas(26)/(1/2+sqrt(5)/2)^68 9870002026475991 a004 Fibonacci(60)*Lucas(26)/(1/2+sqrt(5)/2)^70 9870002026475991 a004 Fibonacci(62)*Lucas(26)/(1/2+sqrt(5)/2)^72 9870002026475991 a004 Fibonacci(64)*Lucas(26)/(1/2+sqrt(5)/2)^74 9870002026475991 a004 Fibonacci(66)*Lucas(26)/(1/2+sqrt(5)/2)^76 9870002026475991 a004 Fibonacci(68)*Lucas(26)/(1/2+sqrt(5)/2)^78 9870002026475991 a004 Fibonacci(70)*Lucas(26)/(1/2+sqrt(5)/2)^80 9870002026475991 a004 Fibonacci(72)*Lucas(26)/(1/2+sqrt(5)/2)^82 9870002026475991 a004 Fibonacci(74)*Lucas(26)/(1/2+sqrt(5)/2)^84 9870002026475991 a004 Fibonacci(76)*Lucas(26)/(1/2+sqrt(5)/2)^86 9870002026475991 a004 Fibonacci(78)*Lucas(26)/(1/2+sqrt(5)/2)^88 9870002026475991 a004 Fibonacci(80)*Lucas(26)/(1/2+sqrt(5)/2)^90 9870002026475991 a004 Fibonacci(82)*Lucas(26)/(1/2+sqrt(5)/2)^92 9870002026475991 a004 Fibonacci(84)*Lucas(26)/(1/2+sqrt(5)/2)^94 9870002026475991 a004 Fibonacci(86)*Lucas(26)/(1/2+sqrt(5)/2)^96 9870002026475991 a004 Fibonacci(88)*Lucas(26)/(1/2+sqrt(5)/2)^98 9870002026475991 a004 Fibonacci(90)*Lucas(26)/(1/2+sqrt(5)/2)^100 9870002026475991 a004 Fibonacci(89)*Lucas(26)/(1/2+sqrt(5)/2)^99 9870002026475991 a004 Fibonacci(87)*Lucas(26)/(1/2+sqrt(5)/2)^97 9870002026475991 a004 Fibonacci(85)*Lucas(26)/(1/2+sqrt(5)/2)^95 9870002026475991 a004 Fibonacci(83)*Lucas(26)/(1/2+sqrt(5)/2)^93 9870002026475991 a004 Fibonacci(81)*Lucas(26)/(1/2+sqrt(5)/2)^91 9870002026475991 a004 Fibonacci(79)*Lucas(26)/(1/2+sqrt(5)/2)^89 9870002026475991 a004 Fibonacci(77)*Lucas(26)/(1/2+sqrt(5)/2)^87 9870002026475991 a004 Fibonacci(75)*Lucas(26)/(1/2+sqrt(5)/2)^85 9870002026475991 a004 Fibonacci(73)*Lucas(26)/(1/2+sqrt(5)/2)^83 9870002026475991 a004 Fibonacci(71)*Lucas(26)/(1/2+sqrt(5)/2)^81 9870002026475991 a004 Fibonacci(69)*Lucas(26)/(1/2+sqrt(5)/2)^79 9870002026475991 a004 Fibonacci(67)*Lucas(26)/(1/2+sqrt(5)/2)^77 9870002026475991 a004 Fibonacci(65)*Lucas(26)/(1/2+sqrt(5)/2)^75 9870002026475991 a004 Fibonacci(63)*Lucas(26)/(1/2+sqrt(5)/2)^73 9870002026475991 a004 Fibonacci(61)*Lucas(26)/(1/2+sqrt(5)/2)^71 9870002026475991 a004 Fibonacci(59)*Lucas(26)/(1/2+sqrt(5)/2)^69 9870002026475991 a004 Fibonacci(57)*Lucas(26)/(1/2+sqrt(5)/2)^67 9870002026475991 a004 Fibonacci(55)*Lucas(26)/(1/2+sqrt(5)/2)^65 9870002026475991 a004 Fibonacci(53)*Lucas(26)/(1/2+sqrt(5)/2)^63 9870002026475991 a001 2/121393*(1/2+1/2*5^(1/2))^42 9870002026475991 a004 Fibonacci(51)*Lucas(26)/(1/2+sqrt(5)/2)^61 9870002026475991 a004 Fibonacci(49)*Lucas(26)/(1/2+sqrt(5)/2)^59 9870002026475991 a004 Fibonacci(47)*Lucas(26)/(1/2+sqrt(5)/2)^57 9870002026475991 a004 Fibonacci(45)*Lucas(26)/(1/2+sqrt(5)/2)^55 9870002026475991 a004 Fibonacci(43)*Lucas(26)/(1/2+sqrt(5)/2)^53 9870002026475991 a004 Fibonacci(41)*Lucas(26)/(1/2+sqrt(5)/2)^51 9870002026475991 a004 Fibonacci(39)*Lucas(26)/(1/2+sqrt(5)/2)^49 9870002026475994 a004 Fibonacci(37)*Lucas(26)/(1/2+sqrt(5)/2)^47 9870002026476014 a004 Fibonacci(35)*Lucas(26)/(1/2+sqrt(5)/2)^45 9870002026476150 a004 Fibonacci(33)*Lucas(26)/(1/2+sqrt(5)/2)^43 9870002026477080 a004 Fibonacci(31)*Lucas(26)/(1/2+sqrt(5)/2)^41 9870002026483456 a004 Fibonacci(29)*Lucas(26)/(1/2+sqrt(5)/2)^39 9870002026483715 a001 63245986/167761*64079^(2/23) 9870002026492208 a001 133957148/930249*103682^(1/6) 9870002026493405 a001 196418/1149851*271443^(9/13) 9870002026494128 a001 165580141/271443*39603^(1/22) 9870002026494643 a001 701408733/4870847*103682^(1/6) 9870002026494999 a001 1836311903/12752043*103682^(1/6) 9870002026495050 a001 14930208/103681*103682^(1/6) 9870002026495058 a001 12586269025/87403803*103682^(1/6) 9870002026495059 a001 32951280099/228826127*103682^(1/6) 9870002026495059 a001 43133785636/299537289*103682^(1/6) 9870002026495059 a001 32264490531/224056801*103682^(1/6) 9870002026495059 a001 591286729879/4106118243*103682^(1/6) 9870002026495059 a001 774004377960/5374978561*103682^(1/6) 9870002026495059 a001 4052739537881/28143753123*103682^(1/6) 9870002026495059 a001 1515744265389/10525900321*103682^(1/6) 9870002026495059 a001 3278735159921/22768774562*103682^(1/6) 9870002026495059 a001 2504730781961/17393796001*103682^(1/6) 9870002026495059 a001 956722026041/6643838879*103682^(1/6) 9870002026495059 a001 182717648081/1268860318*103682^(1/6) 9870002026495059 a001 139583862445/969323029*103682^(1/6) 9870002026495059 a001 53316291173/370248451*103682^(1/6) 9870002026495060 a001 10182505537/70711162*103682^(1/6) 9870002026495063 a001 7778742049/54018521*103682^(1/6) 9870002026495082 a001 2971215073/20633239*103682^(1/6) 9870002026495218 a001 567451585/3940598*103682^(1/6) 9870002026496148 a001 433494437/3010349*103682^(1/6) 9870002026497333 a001 196418/3010349*271443^(10/13) 9870002026502524 a001 165580141/1149851*103682^(1/6) 9870002026506707 a001 98209/3940598*271443^(11/13) 9870002026507969 a001 102334155/439204*103682^(1/8) 9870002026513772 a001 63245986/710647*103682^(5/24) 9870002026514067 a001 5702887/271443*103682^(1/3) 9870002026516876 a001 196418/20633239*271443^(12/13) 9870002026518989 a001 9227465/39603*15127^(3/20) 9870002026526802 a001 98209/219602*271443^(8/13) 9870002026527157 a004 Fibonacci(27)*Lucas(26)/(1/2+sqrt(5)/2)^37 9870002026530354 a001 121393/167761*439204^(5/9) 9870002026530464 a001 165580141/1860498*103682^(5/24) 9870002026531512 a001 28657/710647*64079^(21/23) 9870002026532899 a001 433494437/4870847*103682^(5/24) 9870002026533255 a001 1134903170/12752043*103682^(5/24) 9870002026533306 a001 2971215073/33385282*103682^(5/24) 9870002026533314 a001 7778742049/87403803*103682^(5/24) 9870002026533315 a001 20365011074/228826127*103682^(5/24) 9870002026533315 a001 53316291173/599074578*103682^(5/24) 9870002026533315 a001 139583862445/1568397607*103682^(5/24) 9870002026533315 a001 365435296162/4106118243*103682^(5/24) 9870002026533315 a001 956722026041/10749957122*103682^(5/24) 9870002026533315 a001 2504730781961/28143753123*103682^(5/24) 9870002026533315 a001 6557470319842/73681302247*103682^(5/24) 9870002026533315 a001 10610209857723/119218851371*103682^(5/24) 9870002026533315 a001 4052739537881/45537549124*103682^(5/24) 9870002026533315 a001 1548008755920/17393796001*103682^(5/24) 9870002026533315 a001 591286729879/6643838879*103682^(5/24) 9870002026533315 a001 225851433717/2537720636*103682^(5/24) 9870002026533315 a001 86267571272/969323029*103682^(5/24) 9870002026533315 a001 32951280099/370248451*103682^(5/24) 9870002026533316 a001 12586269025/141422324*103682^(5/24) 9870002026533319 a001 4807526976/54018521*103682^(5/24) 9870002026533338 a001 1836311903/20633239*103682^(5/24) 9870002026533474 a001 3524667/39604*103682^(5/24) 9870002026534404 a001 267914296/3010349*103682^(5/24) 9870002026540780 a001 102334155/1149851*103682^(5/24) 9870002026546226 a001 31622993/219602*103682^(1/6) 9870002026552026 a001 39088169/710647*103682^(1/4) 9870002026552543 a001 3524578/271443*103682^(3/8) 9870002026553544 a001 1346269/167761*167761^(2/5) 9870002026558707 a001 121393/167761*7881196^(5/11) 9870002026558756 a001 1821501965/1845493 9870002026558770 a001 121393/167761*20633239^(3/7) 9870002026558779 a001 121393/167761*141422324^(5/13) 9870002026558780 a001 121393/167761*2537720636^(1/3) 9870002026558780 a001 75025/271443*45537549124^(1/3) 9870002026558780 a001 75025/271443*(1/2+1/2*5^(1/2))^17 9870002026558780 a001 121393/167761*45537549124^(5/17) 9870002026558780 a001 121393/167761*312119004989^(3/11) 9870002026558780 a001 121393/167761*14662949395604^(5/21) 9870002026558780 a001 121393/167761*(1/2+1/2*5^(1/2))^15 9870002026558780 a001 121393/167761*192900153618^(5/18) 9870002026558780 a001 121393/167761*28143753123^(3/10) 9870002026558780 a001 121393/167761*10749957122^(5/16) 9870002026558780 a001 121393/167761*599074578^(5/14) 9870002026558780 a001 121393/167761*228826127^(3/8) 9870002026558783 a001 121393/167761*33385282^(5/12) 9870002026558810 a001 75025/271443*12752043^(1/2) 9870002026560205 a001 121393/167761*1860498^(1/2) 9870002026568074 a001 7465176/51841*39603^(2/11) 9870002026568720 a001 831985/15126*103682^(1/4) 9870002026571155 a001 267914296/4870847*103682^(1/4) 9870002026571511 a001 233802911/4250681*103682^(1/4) 9870002026571562 a001 1836311903/33385282*103682^(1/4) 9870002026571570 a001 1602508992/29134601*103682^(1/4) 9870002026571571 a001 12586269025/228826127*103682^(1/4) 9870002026571571 a001 10983760033/199691526*103682^(1/4) 9870002026571571 a001 86267571272/1568397607*103682^(1/4) 9870002026571571 a001 75283811239/1368706081*103682^(1/4) 9870002026571571 a001 591286729879/10749957122*103682^(1/4) 9870002026571571 a001 12585437040/228811001*103682^(1/4) 9870002026571571 a001 4052739537881/73681302247*103682^(1/4) 9870002026571571 a001 3536736619241/64300051206*103682^(1/4) 9870002026571571 a001 6557470319842/119218851371*103682^(1/4) 9870002026571571 a001 2504730781961/45537549124*103682^(1/4) 9870002026571571 a001 956722026041/17393796001*103682^(1/4) 9870002026571571 a001 365435296162/6643838879*103682^(1/4) 9870002026571571 a001 139583862445/2537720636*103682^(1/4) 9870002026571571 a001 53316291173/969323029*103682^(1/4) 9870002026571571 a001 20365011074/370248451*103682^(1/4) 9870002026571572 a001 7778742049/141422324*103682^(1/4) 9870002026571575 a001 2971215073/54018521*103682^(1/4) 9870002026571594 a001 1134903170/20633239*103682^(1/4) 9870002026571730 a001 433494437/7881196*103682^(1/4) 9870002026572660 a001 165580141/3010349*103682^(1/4) 9870002026579037 a001 63245986/1149851*103682^(1/4) 9870002026584480 a001 39088169/439204*103682^(5/24) 9870002026588225 a001 9303105/15251*64079^(1/23) 9870002026589106 a001 6765/64079*15127^(19/20) 9870002026590224 a001 726103/90481*103682^(5/12) 9870002026590287 a001 24157817/710647*103682^(7/24) 9870002026606976 a001 31622993/930249*103682^(7/24) 9870002026608539 a001 433494437/710647*39603^(1/22) 9870002026609411 a001 165580141/4870847*103682^(7/24) 9870002026609766 a001 433494437/12752043*103682^(7/24) 9870002026609818 a001 567451585/16692641*103682^(7/24) 9870002026609826 a001 2971215073/87403803*103682^(7/24) 9870002026609827 a001 7778742049/228826127*103682^(7/24) 9870002026609827 a001 10182505537/299537289*103682^(7/24) 9870002026609827 a001 53316291173/1568397607*103682^(7/24) 9870002026609827 a001 139583862445/4106118243*103682^(7/24) 9870002026609827 a001 182717648081/5374978561*103682^(7/24) 9870002026609827 a001 956722026041/28143753123*103682^(7/24) 9870002026609827 a001 2504730781961/73681302247*103682^(7/24) 9870002026609827 a001 3278735159921/96450076809*103682^(7/24) 9870002026609827 a001 10610209857723/312119004989*103682^(7/24) 9870002026609827 a001 4052739537881/119218851371*103682^(7/24) 9870002026609827 a001 387002188980/11384387281*103682^(7/24) 9870002026609827 a001 591286729879/17393796001*103682^(7/24) 9870002026609827 a001 225851433717/6643838879*103682^(7/24) 9870002026609827 a001 1135099622/33391061*103682^(7/24) 9870002026609827 a001 32951280099/969323029*103682^(7/24) 9870002026609827 a001 12586269025/370248451*103682^(7/24) 9870002026609828 a001 1201881744/35355581*103682^(7/24) 9870002026609831 a001 1836311903/54018521*103682^(7/24) 9870002026609850 a001 701408733/20633239*103682^(7/24) 9870002026609986 a001 66978574/1970299*103682^(7/24) 9870002026610916 a001 102334155/3010349*103682^(7/24) 9870002026617291 a001 39088169/1149851*103682^(7/24) 9870002026622586 a001 14930352/167761*167761^(1/5) 9870002026622741 a001 24157817/439204*103682^(1/4) 9870002026625232 a001 567451585/930249*39603^(1/22) 9870002026626120 a001 28657/271443*64079^(19/23) 9870002026627667 a001 2971215073/4870847*39603^(1/22) 9870002026628022 a001 7778742049/12752043*39603^(1/22) 9870002026628074 a001 10182505537/16692641*39603^(1/22) 9870002026628082 a001 53316291173/87403803*39603^(1/22) 9870002026628083 a001 139583862445/228826127*39603^(1/22) 9870002026628083 a001 182717648081/299537289*39603^(1/22) 9870002026628083 a001 956722026041/1568397607*39603^(1/22) 9870002026628083 a001 2504730781961/4106118243*39603^(1/22) 9870002026628083 a001 3278735159921/5374978561*39603^(1/22) 9870002026628083 a001 10610209857723/17393796001*39603^(1/22) 9870002026628083 a001 4052739537881/6643838879*39603^(1/22) 9870002026628083 a001 1134903780/1860499*39603^(1/22) 9870002026628083 a001 591286729879/969323029*39603^(1/22) 9870002026628083 a001 225851433717/370248451*39603^(1/22) 9870002026628084 a001 21566892818/35355581*39603^(1/22) 9870002026628086 a001 32951280099/54018521*39603^(1/22) 9870002026628106 a001 1144206275/1875749*39603^(1/22) 9870002026628242 a001 1201881744/1970299*39603^(1/22) 9870002026628530 a001 14930352/710647*103682^(1/3) 9870002026629172 a001 1836311903/3010349*39603^(1/22) 9870002026629985 a001 1346269/271443*103682^(11/24) 9870002026635548 a001 701408733/1149851*39603^(1/22) 9870002026641569 a004 Fibonacci(25)*Lucas(27)/(1/2+sqrt(5)/2)^36 9870002026645230 a001 39088169/1860498*103682^(1/3) 9870002026647413 a001 75025/7881196*439204^(8/9) 9870002026647667 a001 102334155/4870847*103682^(1/3) 9870002026648022 a001 267914296/12752043*103682^(1/3) 9870002026648074 a001 701408733/33385282*103682^(1/3) 9870002026648082 a001 1836311903/87403803*103682^(1/3) 9870002026648083 a001 102287808/4868641*103682^(1/3) 9870002026648083 a001 12586269025/599074578*103682^(1/3) 9870002026648083 a001 32951280099/1568397607*103682^(1/3) 9870002026648083 a001 86267571272/4106118243*103682^(1/3) 9870002026648083 a001 225851433717/10749957122*103682^(1/3) 9870002026648083 a001 591286729879/28143753123*103682^(1/3) 9870002026648083 a001 1548008755920/73681302247*103682^(1/3) 9870002026648083 a001 4052739537881/192900153618*103682^(1/3) 9870002026648083 a001 225749145909/10745088481*103682^(1/3) 9870002026648083 a001 6557470319842/312119004989*103682^(1/3) 9870002026648083 a001 2504730781961/119218851371*103682^(1/3) 9870002026648083 a001 956722026041/45537549124*103682^(1/3) 9870002026648083 a001 365435296162/17393796001*103682^(1/3) 9870002026648083 a001 139583862445/6643838879*103682^(1/3) 9870002026648083 a001 53316291173/2537720636*103682^(1/3) 9870002026648083 a001 20365011074/969323029*103682^(1/3) 9870002026648083 a001 7778742049/370248451*103682^(1/3) 9870002026648084 a001 2971215073/141422324*103682^(1/3) 9870002026648087 a001 1134903170/54018521*103682^(1/3) 9870002026648106 a001 433494437/20633239*103682^(1/3) 9870002026648242 a001 165580141/7881196*103682^(1/3) 9870002026649173 a001 63245986/3010349*103682^(1/3) 9870002026650087 a001 75025/1860498*439204^(7/9) 9870002026655552 a001 24157817/1149851*103682^(1/3) 9870002026660985 a001 196452/5779*103682^(7/24) 9870002026664300 a001 832040/271443*103682^(1/2) 9870002026666818 a001 9227465/710647*103682^(3/8) 9870002026673188 a001 23843770275/24157817 9870002026673191 a001 317811/167761*141422324^(1/3) 9870002026673191 a001 75025/710647*817138163596^(1/3) 9870002026673191 a001 75025/710647*(1/2+1/2*5^(1/2))^19 9870002026673191 a001 317811/167761*(1/2+1/2*5^(1/2))^13 9870002026673191 a001 317811/167761*73681302247^(1/4) 9870002026673192 a001 75025/710647*87403803^(1/2) 9870002026675263 a001 2178309/167761*439204^(1/3) 9870002026677459 a001 514229/167761*439204^(4/9) 9870002026679249 a001 66978574/109801*39603^(1/22) 9870002026681388 a001 9227465/167761*439204^(2/9) 9870002026683491 a001 24157817/1860498*103682^(3/8) 9870002026685270 a004 Fibonacci(25)*Lucas(29)/(1/2+sqrt(5)/2)^38 9870002026685924 a001 63245986/4870847*103682^(3/8) 9870002026686220 a001 121393/271443*103682^(2/3) 9870002026686279 a001 165580141/12752043*103682^(3/8) 9870002026686330 a001 433494437/33385282*103682^(3/8) 9870002026686338 a001 1134903170/87403803*103682^(3/8) 9870002026686339 a001 2971215073/228826127*103682^(3/8) 9870002026686339 a001 7778742049/599074578*103682^(3/8) 9870002026686339 a001 20365011074/1568397607*103682^(3/8) 9870002026686339 a001 53316291173/4106118243*103682^(3/8) 9870002026686339 a001 139583862445/10749957122*103682^(3/8) 9870002026686339 a001 365435296162/28143753123*103682^(3/8) 9870002026686339 a001 956722026041/73681302247*103682^(3/8) 9870002026686339 a001 2504730781961/192900153618*103682^(3/8) 9870002026686339 a001 10610209857723/817138163596*103682^(3/8) 9870002026686339 a001 4052739537881/312119004989*103682^(3/8) 9870002026686339 a001 1548008755920/119218851371*103682^(3/8) 9870002026686339 a001 591286729879/45537549124*103682^(3/8) 9870002026686339 a001 7787980473/599786069*103682^(3/8) 9870002026686339 a001 86267571272/6643838879*103682^(3/8) 9870002026686339 a001 32951280099/2537720636*103682^(3/8) 9870002026686339 a001 12586269025/969323029*103682^(3/8) 9870002026686339 a001 4807526976/370248451*103682^(3/8) 9870002026686340 a001 1836311903/141422324*103682^(3/8) 9870002026686343 a001 701408733/54018521*103682^(3/8) 9870002026686362 a001 9238424/711491*103682^(3/8) 9870002026686498 a001 102334155/7881196*103682^(3/8) 9870002026687048 a001 39088169/167761*439204^(1/9) 9870002026687427 a001 39088169/3010349*103682^(3/8) 9870002026689782 a001 75025/1860498*7881196^(7/11) 9870002026689831 a001 75640/15251*7881196^(1/3) 9870002026689870 a001 75025/1860498*20633239^(3/5) 9870002026689883 a001 31211900500/31622993 9870002026689883 a001 75025/1860498*141422324^(7/13) 9870002026689884 a001 75025/1860498*2537720636^(7/15) 9870002026689884 a001 75025/1860498*17393796001^(3/7) 9870002026689884 a001 75025/1860498*45537549124^(7/17) 9870002026689884 a001 75025/1860498*14662949395604^(1/3) 9870002026689884 a001 75025/1860498*(1/2+1/2*5^(1/2))^21 9870002026689884 a001 75025/1860498*192900153618^(7/18) 9870002026689884 a001 75640/15251*312119004989^(1/5) 9870002026689884 a001 75640/15251*(1/2+1/2*5^(1/2))^11 9870002026689884 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^11/Lucas(25) 9870002026689884 a001 75025/1860498*10749957122^(7/16) 9870002026689884 a001 75640/15251*1568397607^(1/4) 9870002026689884 a001 75025/1860498*599074578^(1/2) 9870002026689889 a001 75025/1860498*33385282^(7/12) 9870002026691646 a004 Fibonacci(25)*Lucas(31)/(1/2+sqrt(5)/2)^40 9870002026691880 a001 75025/1860498*1860498^(7/10) 9870002026692276 a001 2178309/167761*7881196^(3/11) 9870002026692319 a001 2178309/167761*141422324^(3/13) 9870002026692319 a001 163427632725/165580141 9870002026692319 a001 2178309/167761*2537720636^(1/5) 9870002026692319 a001 75025/4870847*(1/2+1/2*5^(1/2))^23 9870002026692319 a001 2178309/167761*45537549124^(3/17) 9870002026692319 a001 2178309/167761*817138163596^(3/19) 9870002026692319 a001 2178309/167761*14662949395604^(1/7) 9870002026692319 a001 2178309/167761*(1/2+1/2*5^(1/2))^9 9870002026692319 a001 2178309/167761*192900153618^(1/6) 9870002026692319 a001 2178309/167761*10749957122^(3/16) 9870002026692319 a001 75025/4870847*4106118243^(1/2) 9870002026692319 a001 2178309/167761*599074578^(3/14) 9870002026692321 a001 2178309/167761*33385282^(1/4) 9870002026692576 a004 Fibonacci(25)*Lucas(33)/(1/2+sqrt(5)/2)^42 9870002026692591 a001 75025/141422324*7881196^(10/11) 9870002026692596 a001 75025/33385282*7881196^(9/11) 9870002026692658 a001 75025/12752043*20633239^(5/7) 9870002026692670 a001 5702887/167761*20633239^(1/5) 9870002026692674 a001 427859097175/433494437 9870002026692674 a001 75025/12752043*2537720636^(5/9) 9870002026692674 a001 75025/12752043*312119004989^(5/11) 9870002026692674 a001 75025/12752043*(1/2+1/2*5^(1/2))^25 9870002026692674 a001 75025/12752043*3461452808002^(5/12) 9870002026692674 a001 75025/12752043*28143753123^(1/2) 9870002026692674 a001 5702887/167761*17393796001^(1/7) 9870002026692674 a001 5702887/167761*14662949395604^(1/9) 9870002026692674 a001 5702887/167761*(1/2+1/2*5^(1/2))^7 9870002026692674 a001 5702887/167761*599074578^(1/6) 9870002026692674 a001 75025/12752043*228826127^(5/8) 9870002026692712 a004 Fibonacci(25)*Lucas(35)/(1/2+sqrt(5)/2)^44 9870002026692716 a001 75025/141422324*20633239^(6/7) 9870002026692719 a001 39088169/167761*7881196^(1/11) 9870002026692720 a001 75025/54018521*20633239^(4/5) 9870002026692723 a001 14930352/167761*20633239^(1/7) 9870002026692726 a001 75025/33385282*141422324^(9/13) 9870002026692726 a001 6589115640/6675901 9870002026692726 a001 75025/33385282*2537720636^(3/5) 9870002026692726 a001 14930352/167761*2537720636^(1/9) 9870002026692726 a001 75025/33385282*45537549124^(9/17) 9870002026692726 a001 75025/33385282*817138163596^(9/19) 9870002026692726 a001 75025/33385282*14662949395604^(3/7) 9870002026692726 a001 75025/33385282*(1/2+1/2*5^(1/2))^27 9870002026692726 a001 75025/33385282*192900153618^(1/2) 9870002026692726 a001 14930352/167761*312119004989^(1/11) 9870002026692726 a001 14930352/167761*(1/2+1/2*5^(1/2))^5 9870002026692726 a001 14930352/167761*28143753123^(1/10) 9870002026692726 a001 75025/33385282*10749957122^(9/16) 9870002026692726 a001 75025/33385282*599074578^(9/14) 9870002026692726 a001 14930352/167761*228826127^(1/8) 9870002026692729 a001 9227465/167761*7881196^(2/11) 9870002026692732 a004 Fibonacci(25)*Lucas(37)/(1/2+sqrt(5)/2)^46 9870002026692733 a001 75025/33385282*33385282^(3/4) 9870002026692734 a001 39088169/167761*141422324^(1/13) 9870002026692734 a001 2932589879225/2971215073 9870002026692734 a001 39088169/167761*2537720636^(1/15) 9870002026692734 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^29/Lucas(38) 9870002026692734 a001 75025/87403803*1322157322203^(1/2) 9870002026692734 a001 39088169/167761*45537549124^(1/17) 9870002026692734 a001 39088169/167761*14662949395604^(1/21) 9870002026692734 a001 39088169/167761*(1/2+1/2*5^(1/2))^3 9870002026692734 a001 39088169/167761*192900153618^(1/18) 9870002026692734 a001 39088169/167761*10749957122^(1/16) 9870002026692734 a001 39088169/167761*599074578^(1/14) 9870002026692734 a001 39088169/167761*33385282^(1/12) 9870002026692734 a004 Fibonacci(25)*Lucas(39)/(1/2+sqrt(5)/2)^48 9870002026692734 a001 75025/2537720636*141422324^(12/13) 9870002026692734 a001 75025/599074578*141422324^(11/13) 9870002026692735 a001 7677619978875/7778742049 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^31/Lucas(40) 9870002026692735 a001 75025/228826127*9062201101803^(1/2) 9870002026692735 a001 9303105/30502+9303105/30502*5^(1/2) 9870002026692735 a004 Fibonacci(25)*Lucas(41)/(1/2+sqrt(5)/2)^50 9870002026692735 a001 75025/599074578*2537720636^(11/15) 9870002026692735 a001 10050135028700/10182505537 9870002026692735 a001 75025/599074578*45537549124^(11/17) 9870002026692735 a001 75025/599074578*312119004989^(3/5) 9870002026692735 a001 75025/599074578*817138163596^(11/19) 9870002026692735 a001 75025/599074578*14662949395604^(11/21) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^33/Lucas(42) 9870002026692735 a001 75025/599074578*192900153618^(11/18) 9870002026692735 a004 Fibonacci(42)/Lucas(25)/(1/2+sqrt(5)/2) 9870002026692735 a001 75025/599074578*10749957122^(11/16) 9870002026692735 a001 75025/599074578*1568397607^(3/4) 9870002026692735 a004 Fibonacci(25)*Lucas(43)/(1/2+sqrt(5)/2)^52 9870002026692735 a001 75025/599074578*599074578^(11/14) 9870002026692735 a001 75025/1568397607*2537720636^(7/9) 9870002026692735 a001 75025/1568397607*17393796001^(5/7) 9870002026692735 a001 52623190193325/53316291173 9870002026692735 a001 75025/1568397607*312119004989^(7/11) 9870002026692735 a001 75025/1568397607*14662949395604^(5/9) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^35/Lucas(44) 9870002026692735 a001 75025/1568397607*505019158607^(5/8) 9870002026692735 a001 75025/1568397607*28143753123^(7/10) 9870002026692735 a004 Fibonacci(44)/Lucas(25)/(1/2+sqrt(5)/2)^3 9870002026692735 a004 Fibonacci(25)*Lucas(45)/(1/2+sqrt(5)/2)^54 9870002026692735 a001 75025/45537549124*2537720636^(14/15) 9870002026692735 a001 75025/10749957122*2537720636^(13/15) 9870002026692735 a001 75025/17393796001*2537720636^(8/9) 9870002026692735 a001 27553860104515/27916772489 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^37/Lucas(46) 9870002026692735 a004 Fibonacci(46)/Lucas(25)/(1/2+sqrt(5)/2)^5 9870002026692735 a004 Fibonacci(25)*Lucas(47)/(1/2+sqrt(5)/2)^56 9870002026692735 a001 75025/10749957122*45537549124^(13/17) 9870002026692735 a001 180342355687200/182717648081 9870002026692735 a001 75025/10749957122*14662949395604^(13/21) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^39/Lucas(48) 9870002026692735 a001 75025/10749957122*192900153618^(13/18) 9870002026692735 a001 75025/10749957122*73681302247^(3/4) 9870002026692735 a004 Fibonacci(48)/Lucas(25)/(1/2+sqrt(5)/2)^7 9870002026692735 a004 Fibonacci(25)*Lucas(49)/(1/2+sqrt(5)/2)^58 9870002026692735 a001 75025/45537549124*17393796001^(6/7) 9870002026692735 a001 75025/10749957122*10749957122^(13/16) 9870002026692735 a001 944284833600625/956722026041 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^41/Lucas(50) 9870002026692735 a004 Fibonacci(25)*Lucas(51)/(1/2+sqrt(5)/2)^60 9870002026692735 a001 75025/192900153618*45537549124^(15/17) 9870002026692735 a001 75025/817138163596*45537549124^(16/17) 9870002026692735 a001 2472169789427475/2504730781961 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^43/Lucas(52) 9870002026692735 a004 Fibonacci(25)*Lucas(53)/(1/2+sqrt(5)/2)^62 9870002026692735 a001 75025/192900153618*312119004989^(9/11) 9870002026692735 a001 190359545137700/192866774113 9870002026692735 a001 75025/192900153618*14662949395604^(5/7) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^45/Lucas(54) 9870002026692735 a004 Fibonacci(25)*Lucas(55)/(1/2+sqrt(5)/2)^64 9870002026692735 a001 75025/2139295485799*312119004989^(10/11) 9870002026692735 a001 75025/192900153618*192900153618^(5/6) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^47/Lucas(56) 9870002026692735 a004 Fibonacci(25)*Lucas(57)/(1/2+sqrt(5)/2)^66 9870002026692735 a001 75025/3461452808002*817138163596^(17/19) 9870002026692735 a001 75025/1322157322203*14662949395604^(7/9) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^49/Lucas(58) 9870002026692735 a004 Fibonacci(25)*Lucas(59)/(1/2+sqrt(5)/2)^68 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^51/Lucas(60) 9870002026692735 a004 Fibonacci(25)*Lucas(61)/(1/2+sqrt(5)/2)^70 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^53/Lucas(62) 9870002026692735 a004 Fibonacci(25)*Lucas(63)/(1/2+sqrt(5)/2)^72 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^55/Lucas(64) 9870002026692735 a004 Fibonacci(25)*Lucas(65)/(1/2+sqrt(5)/2)^74 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^57/Lucas(66) 9870002026692735 a004 Fibonacci(25)*Lucas(67)/(1/2+sqrt(5)/2)^76 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^59/Lucas(68) 9870002026692735 a004 Fibonacci(25)*Lucas(69)/(1/2+sqrt(5)/2)^78 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^61/Lucas(70) 9870002026692735 a004 Fibonacci(25)*Lucas(71)/(1/2+sqrt(5)/2)^80 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^63/Lucas(72) 9870002026692735 a004 Fibonacci(25)*Lucas(73)/(1/2+sqrt(5)/2)^82 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^65/Lucas(74) 9870002026692735 a004 Fibonacci(25)*Lucas(75)/(1/2+sqrt(5)/2)^84 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^67/Lucas(76) 9870002026692735 a004 Fibonacci(25)*Lucas(77)/(1/2+sqrt(5)/2)^86 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^69/Lucas(78) 9870002026692735 a004 Fibonacci(25)*Lucas(79)/(1/2+sqrt(5)/2)^88 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^71/Lucas(80) 9870002026692735 a004 Fibonacci(25)*Lucas(81)/(1/2+sqrt(5)/2)^90 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^73/Lucas(82) 9870002026692735 a004 Fibonacci(25)*Lucas(83)/(1/2+sqrt(5)/2)^92 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^75/Lucas(84) 9870002026692735 a004 Fibonacci(25)*Lucas(85)/(1/2+sqrt(5)/2)^94 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^77/Lucas(86) 9870002026692735 a004 Fibonacci(25)*Lucas(87)/(1/2+sqrt(5)/2)^96 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^79/Lucas(88) 9870002026692735 a004 Fibonacci(25)*Lucas(89)/(1/2+sqrt(5)/2)^98 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^81/Lucas(90) 9870002026692735 a004 Fibonacci(25)*Lucas(91)/(1/2+sqrt(5)/2)^100 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^83/Lucas(92) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^85/Lucas(94) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^87/Lucas(96) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^89/Lucas(98) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^91/Lucas(100) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^90/Lucas(99) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^88/Lucas(97) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^86/Lucas(95) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^84/Lucas(93) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^82/Lucas(91) 9870002026692735 a004 Fibonacci(25)*Lucas(90)/(1/2+sqrt(5)/2)^99 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^80/Lucas(89) 9870002026692735 a004 Fibonacci(25)*Lucas(88)/(1/2+sqrt(5)/2)^97 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^78/Lucas(87) 9870002026692735 a004 Fibonacci(25)*Lucas(86)/(1/2+sqrt(5)/2)^95 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^76/Lucas(85) 9870002026692735 a004 Fibonacci(25)*Lucas(84)/(1/2+sqrt(5)/2)^93 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^74/Lucas(83) 9870002026692735 a004 Fibonacci(25)*Lucas(82)/(1/2+sqrt(5)/2)^91 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^72/Lucas(81) 9870002026692735 a004 Fibonacci(25)*Lucas(80)/(1/2+sqrt(5)/2)^89 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^70/Lucas(79) 9870002026692735 a004 Fibonacci(25)*Lucas(78)/(1/2+sqrt(5)/2)^87 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^68/Lucas(77) 9870002026692735 a004 Fibonacci(25)*Lucas(76)/(1/2+sqrt(5)/2)^85 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^66/Lucas(75) 9870002026692735 a004 Fibonacci(25)*Lucas(74)/(1/2+sqrt(5)/2)^83 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^64/Lucas(73) 9870002026692735 a004 Fibonacci(25)*Lucas(72)/(1/2+sqrt(5)/2)^81 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^62/Lucas(71) 9870002026692735 a004 Fibonacci(25)*Lucas(70)/(1/2+sqrt(5)/2)^79 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^60/Lucas(69) 9870002026692735 a004 Fibonacci(25)*Lucas(68)/(1/2+sqrt(5)/2)^77 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^58/Lucas(67) 9870002026692735 a004 Fibonacci(25)*Lucas(66)/(1/2+sqrt(5)/2)^75 9870002026692735 a001 75025/14662949395604*14662949395604^(6/7) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^56/Lucas(65) 9870002026692735 a004 Fibonacci(25)*Lucas(64)/(1/2+sqrt(5)/2)^73 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^54/Lucas(63) 9870002026692735 a004 Fibonacci(25)*Lucas(62)/(1/2+sqrt(5)/2)^71 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^52/Lucas(61) 9870002026692735 a004 Fibonacci(25)*Lucas(60)/(1/2+sqrt(5)/2)^69 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^50/Lucas(59) 9870002026692735 a004 Fibonacci(25)*Lucas(58)/(1/2+sqrt(5)/2)^67 9870002026692735 a001 75025/817138163596*14662949395604^(16/21) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^48/Lucas(57) 9870002026692735 a001 75025/1322157322203*505019158607^(7/8) 9870002026692735 a001 75025/5600748293801*505019158607^(13/14) 9870002026692735 a004 Fibonacci(25)*Lucas(56)/(1/2+sqrt(5)/2)^65 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^46/Lucas(55) 9870002026692735 a001 10472279279936125/10610209857723 9870002026692735 a001 75025/3461452808002*192900153618^(17/18) 9870002026692735 a001 75025/817138163596*192900153618^(8/9) 9870002026692735 a004 Fibonacci(25)*Lucas(54)/(1/2+sqrt(5)/2)^63 9870002026692735 a001 75025/119218851371*312119004989^(4/5) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^44/Lucas(53) 9870002026692735 a001 75025/119218851371*23725150497407^(11/16) 9870002026692735 a001 4000054745254325/4052739537881 9870002026692735 a001 75025/45537549124*45537549124^(14/17) 9870002026692735 a001 75025/817138163596*73681302247^(12/13) 9870002026692735 a004 Fibonacci(25)*Lucas(52)/(1/2+sqrt(5)/2)^61 9870002026692735 a001 75025/119218851371*73681302247^(11/13) 9870002026692735 a001 75025/45537549124*817138163596^(14/19) 9870002026692735 a001 75025/45537549124*14662949395604^(2/3) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^42/Lucas(51) 9870002026692735 a001 152788495582685/154800875592 9870002026692735 a001 75025/45537549124*505019158607^(3/4) 9870002026692735 a001 75025/45537549124*192900153618^(7/9) 9870002026692735 a004 Fibonacci(52)/Lucas(25)/(1/2+sqrt(5)/2)^11 9870002026692735 a001 75025/192900153618*28143753123^(9/10) 9870002026692735 a004 Fibonacci(54)/Lucas(25)/(1/2+sqrt(5)/2)^13 9870002026692735 a004 Fibonacci(56)/Lucas(25)/(1/2+sqrt(5)/2)^15 9870002026692735 a004 Fibonacci(58)/Lucas(25)/(1/2+sqrt(5)/2)^17 9870002026692735 a004 Fibonacci(60)/Lucas(25)/(1/2+sqrt(5)/2)^19 9870002026692735 a004 Fibonacci(62)/Lucas(25)/(1/2+sqrt(5)/2)^21 9870002026692735 a004 Fibonacci(64)/Lucas(25)/(1/2+sqrt(5)/2)^23 9870002026692735 a004 Fibonacci(66)/Lucas(25)/(1/2+sqrt(5)/2)^25 9870002026692735 a004 Fibonacci(68)/Lucas(25)/(1/2+sqrt(5)/2)^27 9870002026692735 a004 Fibonacci(70)/Lucas(25)/(1/2+sqrt(5)/2)^29 9870002026692735 a004 Fibonacci(72)/Lucas(25)/(1/2+sqrt(5)/2)^31 9870002026692735 a004 Fibonacci(74)/Lucas(25)/(1/2+sqrt(5)/2)^33 9870002026692735 a004 Fibonacci(76)/Lucas(25)/(1/2+sqrt(5)/2)^35 9870002026692735 a004 Fibonacci(78)/Lucas(25)/(1/2+sqrt(5)/2)^37 9870002026692735 a004 Fibonacci(80)/Lucas(25)/(1/2+sqrt(5)/2)^39 9870002026692735 a004 Fibonacci(82)/Lucas(25)/(1/2+sqrt(5)/2)^41 9870002026692735 a004 Fibonacci(84)/Lucas(25)/(1/2+sqrt(5)/2)^43 9870002026692735 a004 Fibonacci(86)/Lucas(25)/(1/2+sqrt(5)/2)^45 9870002026692735 a004 Fibonacci(88)/Lucas(25)/(1/2+sqrt(5)/2)^47 9870002026692735 a004 Fibonacci(90)/Lucas(25)/(1/2+sqrt(5)/2)^49 9870002026692735 a004 Fibonacci(92)/Lucas(25)/(1/2+sqrt(5)/2)^51 9870002026692735 a004 Fibonacci(94)/Lucas(25)/(1/2+sqrt(5)/2)^53 9870002026692735 a004 Fibonacci(96)/Lucas(25)/(1/2+sqrt(5)/2)^55 9870002026692735 a004 Fibonacci(98)/Lucas(25)/(1/2+sqrt(5)/2)^57 9870002026692735 a004 Fibonacci(25)*Lucas(50)/(1/2+sqrt(5)/2)^59 9870002026692735 a004 Fibonacci(99)/Lucas(25)/(1/2+sqrt(5)/2)^58 9870002026692735 a004 Fibonacci(97)/Lucas(25)/(1/2+sqrt(5)/2)^56 9870002026692735 a004 Fibonacci(95)/Lucas(25)/(1/2+sqrt(5)/2)^54 9870002026692735 a004 Fibonacci(93)/Lucas(25)/(1/2+sqrt(5)/2)^52 9870002026692735 a004 Fibonacci(91)/Lucas(25)/(1/2+sqrt(5)/2)^50 9870002026692735 a004 Fibonacci(89)/Lucas(25)/(1/2+sqrt(5)/2)^48 9870002026692735 a004 Fibonacci(87)/Lucas(25)/(1/2+sqrt(5)/2)^46 9870002026692735 a004 Fibonacci(85)/Lucas(25)/(1/2+sqrt(5)/2)^44 9870002026692735 a004 Fibonacci(83)/Lucas(25)/(1/2+sqrt(5)/2)^42 9870002026692735 a004 Fibonacci(81)/Lucas(25)/(1/2+sqrt(5)/2)^40 9870002026692735 a004 Fibonacci(79)/Lucas(25)/(1/2+sqrt(5)/2)^38 9870002026692735 a004 Fibonacci(77)/Lucas(25)/(1/2+sqrt(5)/2)^36 9870002026692735 a004 Fibonacci(75)/Lucas(25)/(1/2+sqrt(5)/2)^34 9870002026692735 a004 Fibonacci(73)/Lucas(25)/(1/2+sqrt(5)/2)^32 9870002026692735 a004 Fibonacci(71)/Lucas(25)/(1/2+sqrt(5)/2)^30 9870002026692735 a004 Fibonacci(69)/Lucas(25)/(1/2+sqrt(5)/2)^28 9870002026692735 a004 Fibonacci(67)/Lucas(25)/(1/2+sqrt(5)/2)^26 9870002026692735 a004 Fibonacci(65)/Lucas(25)/(1/2+sqrt(5)/2)^24 9870002026692735 a004 Fibonacci(63)/Lucas(25)/(1/2+sqrt(5)/2)^22 9870002026692735 a004 Fibonacci(61)/Lucas(25)/(1/2+sqrt(5)/2)^20 9870002026692735 a004 Fibonacci(59)/Lucas(25)/(1/2+sqrt(5)/2)^18 9870002026692735 a004 Fibonacci(57)/Lucas(25)/(1/2+sqrt(5)/2)^16 9870002026692735 a004 Fibonacci(55)/Lucas(25)/(1/2+sqrt(5)/2)^14 9870002026692735 a004 Fibonacci(53)/Lucas(25)/(1/2+sqrt(5)/2)^12 9870002026692735 a004 Fibonacci(51)/Lucas(25)/(1/2+sqrt(5)/2)^10 9870002026692735 a001 75025/17393796001*312119004989^(8/11) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^40/Lucas(49) 9870002026692735 a001 75025/17393796001*23725150497407^(5/8) 9870002026692735 a001 583600122226225/591286729879 9870002026692735 a001 75025/17393796001*73681302247^(10/13) 9870002026692735 a001 75025/17393796001*28143753123^(4/5) 9870002026692735 a004 Fibonacci(49)/Lucas(25)/(1/2+sqrt(5)/2)^8 9870002026692735 a001 75025/119218851371*10749957122^(11/12) 9870002026692735 a001 75025/45537549124*10749957122^(7/8) 9870002026692735 a001 75025/192900153618*10749957122^(15/16) 9870002026692735 a001 75025/312119004989*10749957122^(23/24) 9870002026692735 a004 Fibonacci(25)*Lucas(48)/(1/2+sqrt(5)/2)^57 9870002026692735 a001 75025/17393796001*10749957122^(5/6) 9870002026692735 a001 75025/6643838879*817138163596^(2/3) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^38/Lucas(47) 9870002026692735 a001 222915410851825/225851433717 9870002026692735 a004 Fibonacci(47)/Lucas(25)/(1/2+sqrt(5)/2)^6 9870002026692735 a001 75025/6643838879*10749957122^(19/24) 9870002026692735 a001 75025/2537720636*2537720636^(4/5) 9870002026692735 a001 75025/45537549124*4106118243^(21/23) 9870002026692735 a001 75025/17393796001*4106118243^(20/23) 9870002026692735 a001 75025/119218851371*4106118243^(22/23) 9870002026692735 a004 Fibonacci(25)*Lucas(46)/(1/2+sqrt(5)/2)^55 9870002026692735 a001 75025/6643838879*4106118243^(19/23) 9870002026692735 a001 75025/2537720636*45537549124^(12/17) 9870002026692735 a001 75025/2537720636*14662949395604^(4/7) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^36/Lucas(45) 9870002026692735 a001 75025/2537720636*505019158607^(9/14) 9870002026692735 a001 75025/2537720636*192900153618^(2/3) 9870002026692735 a001 2504297362625/2537281508 9870002026692735 a001 75025/2537720636*73681302247^(9/13) 9870002026692735 a004 Fibonacci(45)/Lucas(25)/(1/2+sqrt(5)/2)^4 9870002026692735 a001 75025/2537720636*10749957122^(3/4) 9870002026692735 a001 75025/2537720636*4106118243^(18/23) 9870002026692735 a001 75025/17393796001*1568397607^(10/11) 9870002026692735 a001 75025/6643838879*1568397607^(19/22) 9870002026692735 a001 75025/45537549124*1568397607^(21/22) 9870002026692735 a004 Fibonacci(25)*Lucas(44)/(1/2+sqrt(5)/2)^53 9870002026692735 a001 75025/2537720636*1568397607^(9/11) 9870002026692735 a001 75025/969323029*45537549124^(2/3) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^34/Lucas(43) 9870002026692735 a001 32522920135925/32951280099 9870002026692735 a004 Fibonacci(43)/Lucas(25)/(1/2+sqrt(5)/2)^2 9870002026692735 a001 75025/969323029*10749957122^(17/24) 9870002026692735 a001 75025/969323029*4106118243^(17/23) 9870002026692735 a001 75025/969323029*1568397607^(17/22) 9870002026692735 a001 75025/1568397607*599074578^(5/6) 9870002026692735 a001 75025/2537720636*599074578^(6/7) 9870002026692735 a001 75025/6643838879*599074578^(19/21) 9870002026692735 a001 75025/10749957122*599074578^(13/14) 9870002026692735 a001 75025/17393796001*599074578^(20/21) 9870002026692735 a004 Fibonacci(25)*Lucas(42)/(1/2+sqrt(5)/2)^51 9870002026692735 a001 75025/969323029*599074578^(17/21) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^32/Lucas(41) 9870002026692735 a001 75025/370248451*23725150497407^(1/2) 9870002026692735 a001 75025/370248451*505019158607^(4/7) 9870002026692735 a001 75025/370248451*73681302247^(8/13) 9870002026692735 a001 165580141/167761 9870002026692735 a001 75025/370248451*10749957122^(2/3) 9870002026692735 a001 75025/370248451*4106118243^(16/23) 9870002026692735 a001 75025/370248451*1568397607^(8/11) 9870002026692735 a001 75025/370248451*599074578^(16/21) 9870002026692735 a001 75025/141422324*141422324^(10/13) 9870002026692735 a001 75025/1568397607*228826127^(7/8) 9870002026692735 a001 75025/969323029*228826127^(17/20) 9870002026692735 a001 75025/2537720636*228826127^(9/10) 9870002026692735 a001 75025/6643838879*228826127^(19/20) 9870002026692735 a004 Fibonacci(25)*Lucas(40)/(1/2+sqrt(5)/2)^49 9870002026692735 a001 75025/370248451*228826127^(4/5) 9870002026692735 a001 75025/141422324*2537720636^(2/3) 9870002026692735 a001 75025/141422324*45537549124^(10/17) 9870002026692735 a001 75025/141422324*312119004989^(6/11) 9870002026692735 a001 75025/141422324*14662949395604^(10/21) 9870002026692735 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^30/Lucas(39) 9870002026692735 a001 75025/141422324*192900153618^(5/9) 9870002026692735 a001 75025/141422324*28143753123^(3/5) 9870002026692735 a001 63245986/167761*(1/2+1/2*5^(1/2))^2 9870002026692735 a001 63245986/167761*10749957122^(1/24) 9870002026692735 a001 63245986/167761*4106118243^(1/23) 9870002026692735 a001 75025/141422324*10749957122^(5/8) 9870002026692735 a001 2372515049825/2403763488 9870002026692735 a001 63245986/167761*1568397607^(1/22) 9870002026692735 a001 75025/141422324*4106118243^(15/23) 9870002026692735 a001 63245986/167761*599074578^(1/21) 9870002026692735 a001 75025/141422324*1568397607^(15/22) 9870002026692735 a001 63245986/167761*228826127^(1/20) 9870002026692735 a001 75025/141422324*599074578^(5/7) 9870002026692735 a001 63245986/167761*87403803^(1/19) 9870002026692736 a001 75025/141422324*228826127^(3/4) 9870002026692736 a001 63245986/167761*33385282^(1/18) 9870002026692736 a001 75025/370248451*87403803^(16/19) 9870002026692736 a001 75025/969323029*87403803^(17/19) 9870002026692736 a001 75025/2537720636*87403803^(18/19) 9870002026692736 a004 Fibonacci(25)*Lucas(38)/(1/2+sqrt(5)/2)^47 9870002026692736 a001 75025/141422324*87403803^(15/19) 9870002026692738 a001 75025/54018521*17393796001^(4/7) 9870002026692738 a001 75025/54018521*14662949395604^(4/9) 9870002026692738 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^28/Lucas(37) 9870002026692738 a001 75025/54018521*505019158607^(1/2) 9870002026692738 a001 75025/54018521*73681302247^(7/13) 9870002026692738 a001 24157817/167761*(1/2+1/2*5^(1/2))^4 9870002026692738 a001 24157817/167761*23725150497407^(1/16) 9870002026692738 a001 24157817/167761*73681302247^(1/13) 9870002026692738 a001 24157817/167761*10749957122^(1/12) 9870002026692738 a001 75025/54018521*10749957122^(7/12) 9870002026692738 a001 24157817/167761*4106118243^(2/23) 9870002026692738 a001 75025/54018521*4106118243^(14/23) 9870002026692738 a001 24157817/167761*1568397607^(1/11) 9870002026692738 a001 1812440220425/1836311903 9870002026692738 a001 75025/54018521*1568397607^(7/11) 9870002026692738 a001 24157817/167761*599074578^(2/21) 9870002026692738 a001 75025/54018521*599074578^(2/3) 9870002026692738 a001 24157817/167761*228826127^(1/10) 9870002026692738 a001 75025/54018521*228826127^(7/10) 9870002026692738 a001 24157817/167761*87403803^(2/19) 9870002026692739 a001 63245986/167761*12752043^(1/17) 9870002026692739 a001 75025/54018521*87403803^(14/19) 9870002026692739 a001 24157817/167761*33385282^(1/9) 9870002026692743 a001 75025/141422324*33385282^(5/6) 9870002026692743 a001 75025/370248451*33385282^(8/9) 9870002026692743 a001 75025/599074578*33385282^(11/12) 9870002026692743 a001 75025/969323029*33385282^(17/18) 9870002026692744 a004 Fibonacci(25)*Lucas(36)/(1/2+sqrt(5)/2)^45 9870002026692745 a001 75025/54018521*33385282^(7/9) 9870002026692745 a001 24157817/167761*12752043^(2/17) 9870002026692758 a001 75025/20633239*141422324^(2/3) 9870002026692758 a001 9227465/167761*141422324^(2/13) 9870002026692758 a001 9227465/167761*2537720636^(2/15) 9870002026692758 a001 75025/20633239*(1/2+1/2*5^(1/2))^26 9870002026692758 a001 75025/20633239*73681302247^(1/2) 9870002026692758 a001 9227465/167761*45537549124^(2/17) 9870002026692758 a001 9227465/167761*14662949395604^(2/21) 9870002026692758 a001 9227465/167761*(1/2+1/2*5^(1/2))^6 9870002026692758 a001 9227465/167761*10749957122^(1/8) 9870002026692758 a001 75025/20633239*10749957122^(13/24) 9870002026692758 a001 9227465/167761*4106118243^(3/23) 9870002026692758 a001 75025/20633239*4106118243^(13/23) 9870002026692758 a001 9227465/167761*1568397607^(3/22) 9870002026692758 a001 75025/20633239*1568397607^(13/22) 9870002026692758 a001 9227465/167761*599074578^(1/7) 9870002026692758 a001 692290561625/701408733 9870002026692758 a001 75025/20633239*599074578^(13/21) 9870002026692758 a001 9227465/167761*228826127^(3/20) 9870002026692758 a001 75025/20633239*228826127^(13/20) 9870002026692758 a001 9227465/167761*87403803^(3/19) 9870002026692759 a001 75025/20633239*87403803^(13/19) 9870002026692760 a001 9227465/167761*33385282^(1/6) 9870002026692761 a001 63245986/167761*4870847^(1/16) 9870002026692765 a001 75025/20633239*33385282^(13/18) 9870002026692769 a001 9227465/167761*12752043^(3/17) 9870002026692778 a001 75025/7881196*7881196^(8/11) 9870002026692788 a001 75025/54018521*12752043^(14/17) 9870002026692789 a001 75025/141422324*12752043^(15/17) 9870002026692790 a001 24157817/167761*4870847^(1/8) 9870002026692792 a001 75025/370248451*12752043^(16/17) 9870002026692796 a004 Fibonacci(25)*Lucas(34)/(1/2+sqrt(5)/2)^43 9870002026692805 a001 75025/20633239*12752043^(13/17) 9870002026692836 a001 9227465/167761*4870847^(3/16) 9870002026692894 a001 75025/7881196*141422324^(8/13) 9870002026692894 a001 75025/7881196*2537720636^(8/15) 9870002026692894 a001 75025/7881196*45537549124^(8/17) 9870002026692894 a001 75025/7881196*14662949395604^(8/21) 9870002026692894 a001 75025/7881196*(1/2+1/2*5^(1/2))^24 9870002026692894 a001 75025/7881196*192900153618^(4/9) 9870002026692894 a001 75025/7881196*73681302247^(6/13) 9870002026692894 a001 3524578/167761*(1/2+1/2*5^(1/2))^8 9870002026692894 a001 3524578/167761*23725150497407^(1/8) 9870002026692894 a001 3524578/167761*505019158607^(1/7) 9870002026692894 a001 3524578/167761*73681302247^(2/13) 9870002026692894 a001 3524578/167761*10749957122^(1/6) 9870002026692894 a001 75025/7881196*10749957122^(1/2) 9870002026692894 a001 3524578/167761*4106118243^(4/23) 9870002026692894 a001 75025/7881196*4106118243^(12/23) 9870002026692894 a001 3524578/167761*1568397607^(2/11) 9870002026692894 a001 75025/7881196*1568397607^(6/11) 9870002026692894 a001 3524578/167761*599074578^(4/21) 9870002026692894 a001 75025/7881196*599074578^(4/7) 9870002026692894 a001 132215732225/133957148 9870002026692894 a001 3524578/167761*228826127^(1/5) 9870002026692894 a001 75025/7881196*228826127^(3/5) 9870002026692894 a001 3524578/167761*87403803^(4/19) 9870002026692895 a001 75025/7881196*87403803^(12/19) 9870002026692896 a001 3524578/167761*33385282^(2/9) 9870002026692900 a001 75025/7881196*33385282^(2/3) 9870002026692908 a001 3524578/167761*12752043^(4/17) 9870002026692926 a001 63245986/167761*1860498^(1/15) 9870002026692937 a001 75025/7881196*12752043^(12/17) 9870002026692998 a001 3524578/167761*4870847^(1/4) 9870002026693019 a001 39088169/167761*1860498^(1/10) 9870002026693096 a001 75025/20633239*4870847^(13/16) 9870002026693102 a001 75025/54018521*4870847^(7/8) 9870002026693118 a001 24157817/167761*1860498^(2/15) 9870002026693125 a001 75025/141422324*4870847^(15/16) 9870002026693151 a004 Fibonacci(25)*Lucas(32)/(1/2+sqrt(5)/2)^41 9870002026693174 a001 2178309/167761*1860498^(3/10) 9870002026693201 a001 14930352/167761*1860498^(1/6) 9870002026693206 a001 75025/7881196*4870847^(3/4) 9870002026693328 a001 9227465/167761*1860498^(1/5) 9870002026693654 a001 3524578/167761*1860498^(4/15) 9870002026693718 a001 75025/3010349*7881196^(2/3) 9870002026693795 a001 14930352/1149851*103682^(3/8) 9870002026693817 a001 1346269/167761*20633239^(2/7) 9870002026693824 a001 1346269/167761*2537720636^(2/9) 9870002026693824 a001 75025/3010349*312119004989^(2/5) 9870002026693824 a001 75025/3010349*(1/2+1/2*5^(1/2))^22 9870002026693824 a001 1346269/167761*312119004989^(2/11) 9870002026693824 a001 1346269/167761*(1/2+1/2*5^(1/2))^10 9870002026693824 a001 1346269/167761*28143753123^(1/5) 9870002026693824 a001 1346269/167761*10749957122^(5/24) 9870002026693824 a001 75025/3010349*10749957122^(11/24) 9870002026693824 a001 1346269/167761*4106118243^(5/23) 9870002026693824 a001 75025/3010349*4106118243^(11/23) 9870002026693824 a001 1346269/167761*1568397607^(5/22) 9870002026693824 a001 75025/3010349*1568397607^(1/2) 9870002026693824 a001 1346269/167761*599074578^(5/21) 9870002026693824 a001 75025/3010349*599074578^(11/21) 9870002026693824 a001 1346269/167761*228826127^(1/4) 9870002026693824 a001 75025/3010349*228826127^(11/20) 9870002026693824 a001 20200766345/20466831 9870002026693824 a001 1346269/167761*87403803^(5/19) 9870002026693825 a001 75025/3010349*87403803^(11/19) 9870002026693827 a001 1346269/167761*33385282^(5/18) 9870002026693829 a001 75025/3010349*33385282^(11/18) 9870002026693842 a001 1346269/167761*12752043^(5/17) 9870002026693863 a001 75025/3010349*12752043^(11/17) 9870002026693954 a001 1346269/167761*4870847^(5/16) 9870002026694110 a001 75025/3010349*4870847^(11/16) 9870002026694131 a001 63245986/167761*710647^(1/14) 9870002026694775 a001 1346269/167761*1860498^(1/3) 9870002026695050 a001 75025/12752043*1860498^(5/6) 9870002026695175 a001 75025/7881196*1860498^(4/5) 9870002026695229 a001 75025/20633239*1860498^(13/15) 9870002026695292 a001 75025/33385282*1860498^(9/10) 9870002026695400 a001 75025/54018521*1860498^(14/15) 9870002026695530 a001 24157817/167761*710647^(1/7) 9870002026695586 a004 Fibonacci(25)*Lucas(30)/(1/2+sqrt(5)/2)^39 9870002026695915 a001 75025/3010349*1860498^(11/15) 9870002026696946 a001 9227465/167761*710647^(3/14) 9870002026697560 a001 5702887/167761*710647^(1/4) 9870002026698478 a001 3524578/167761*710647^(2/7) 9870002026699273 a001 9227465/439204*103682^(1/3) 9870002026700142 a001 514229/167761*7881196^(4/11) 9870002026700187 a001 75025/1149851*20633239^(4/7) 9870002026700200 a001 514229/167761*141422324^(4/13) 9870002026700200 a001 75025/1149851*2537720636^(4/9) 9870002026700200 a001 514229/167761*2537720636^(4/15) 9870002026700200 a001 75025/1149851*(1/2+1/2*5^(1/2))^20 9870002026700200 a001 75025/1149851*23725150497407^(5/16) 9870002026700200 a001 75025/1149851*505019158607^(5/14) 9870002026700200 a001 75025/1149851*73681302247^(5/13) 9870002026700200 a001 75025/1149851*28143753123^(2/5) 9870002026700200 a001 514229/167761*45537549124^(4/17) 9870002026700200 a001 514229/167761*817138163596^(4/19) 9870002026700200 a001 514229/167761*14662949395604^(4/21) 9870002026700200 a001 514229/167761*(1/2+1/2*5^(1/2))^12 9870002026700200 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^12/Lucas(25) 9870002026700200 a001 514229/167761*192900153618^(2/9) 9870002026700200 a001 514229/167761*73681302247^(3/13) 9870002026700200 a001 514229/167761*10749957122^(1/4) 9870002026700200 a001 75025/1149851*10749957122^(5/12) 9870002026700200 a001 514229/167761*4106118243^(6/23) 9870002026700200 a001 75025/1149851*4106118243^(10/23) 9870002026700200 a001 514229/167761*1568397607^(3/11) 9870002026700200 a001 75025/1149851*1568397607^(5/11) 9870002026700200 a001 514229/167761*599074578^(2/7) 9870002026700200 a001 75025/1149851*599074578^(10/21) 9870002026700200 a001 514229/167761*228826127^(3/10) 9870002026700200 a001 75025/1149851*228826127^(1/2) 9870002026700200 a001 514229/167761*87403803^(6/19) 9870002026700201 a001 75025/1149851*87403803^(10/19) 9870002026700201 a001 38580030725/39088169 9870002026700203 a001 514229/167761*33385282^(1/3) 9870002026700205 a001 75025/1149851*33385282^(5/9) 9870002026700221 a001 514229/167761*12752043^(6/17) 9870002026700236 a001 75025/1149851*12752043^(10/17) 9870002026700356 a001 514229/167761*4870847^(3/8) 9870002026700460 a001 75025/1149851*4870847^(5/8) 9870002026700804 a001 1346269/167761*710647^(5/14) 9870002026701341 a001 514229/167761*1860498^(2/5) 9870002026702101 a001 75025/1149851*1860498^(2/3) 9870002026703040 a001 63245986/167761*271443^(1/13) 9870002026704541 a001 75025/1860498*710647^(3/4) 9870002026704991 a001 5702887/710647*103682^(5/12) 9870002026706732 a001 28657/439204*64079^(20/23) 9870002026708576 a001 514229/167761*710647^(3/7) 9870002026709180 a001 75025/3010349*710647^(11/14) 9870002026709646 a001 75025/7881196*710647^(6/7) 9870002026709790 a001 75025/439204*439204^(2/3) 9870002026710906 a001 75025/20633239*710647^(13/14) 9870002026712279 a004 Fibonacci(25)*Lucas(28)/(1/2+sqrt(5)/2)^37 9870002026712873 a001 514229/271443*103682^(13/24) 9870002026713347 a001 24157817/167761*271443^(2/13) 9870002026714160 a001 75025/1149851*710647^(5/7) 9870002026721735 a001 829464/103361*103682^(5/12) 9870002026723671 a001 9227465/167761*271443^(3/13) 9870002026724120 a001 105937/90481*103682^(7/12) 9870002026724178 a001 39088169/4870847*103682^(5/12) 9870002026724534 a001 34111385/4250681*103682^(5/12) 9870002026724586 a001 133957148/16692641*103682^(5/12) 9870002026724594 a001 233802911/29134601*103682^(5/12) 9870002026724595 a001 1836311903/228826127*103682^(5/12) 9870002026724595 a001 267084832/33281921*103682^(5/12) 9870002026724595 a001 12586269025/1568397607*103682^(5/12) 9870002026724595 a001 10983760033/1368706081*103682^(5/12) 9870002026724595 a001 43133785636/5374978561*103682^(5/12) 9870002026724595 a001 75283811239/9381251041*103682^(5/12) 9870002026724595 a001 591286729879/73681302247*103682^(5/12) 9870002026724595 a001 86000486440/10716675201*103682^(5/12) 9870002026724595 a001 4052739537881/505019158607*103682^(5/12) 9870002026724595 a001 3536736619241/440719107401*103682^(5/12) 9870002026724595 a001 3278735159921/408569081798*103682^(5/12) 9870002026724595 a001 2504730781961/312119004989*103682^(5/12) 9870002026724595 a001 956722026041/119218851371*103682^(5/12) 9870002026724595 a001 182717648081/22768774562*103682^(5/12) 9870002026724595 a001 139583862445/17393796001*103682^(5/12) 9870002026724595 a001 53316291173/6643838879*103682^(5/12) 9870002026724595 a001 10182505537/1268860318*103682^(5/12) 9870002026724595 a001 7778742049/969323029*103682^(5/12) 9870002026724595 a001 2971215073/370248451*103682^(5/12) 9870002026724596 a001 567451585/70711162*103682^(5/12) 9870002026724598 a001 433494437/54018521*103682^(5/12) 9870002026724618 a001 165580141/20633239*103682^(5/12) 9870002026724755 a001 31622993/3940598*103682^(5/12) 9870002026725688 a001 24157817/3010349*103682^(5/12) 9870002026730991 a001 9303105/15251*103682^(1/24) 9870002026732083 a001 9227465/1149851*103682^(5/12) 9870002026734111 a001 3524578/167761*271443^(4/13) 9870002026737445 a001 5702887/439204*103682^(3/8) 9870002026740169 a001 317811/167761*271443^(1/2) 9870002026743432 a001 28657/39603*39603^(15/22) 9870002026743466 a001 3524578/710647*103682^(11/24) 9870002026743815 a001 75025/439204*7881196^(6/11) 9870002026743892 a001 196418/167761*20633239^(2/5) 9870002026743901 a001 75025/439204*141422324^(6/13) 9870002026743901 a001 75025/439204*2537720636^(2/5) 9870002026743901 a001 75025/439204*45537549124^(6/17) 9870002026743901 a001 75025/439204*14662949395604^(2/7) 9870002026743901 a001 75025/439204*(1/2+1/2*5^(1/2))^18 9870002026743901 a001 75025/439204*192900153618^(1/3) 9870002026743901 a001 196418/167761*17393796001^(2/7) 9870002026743901 a001 196418/167761*14662949395604^(2/9) 9870002026743901 a001 196418/167761*(1/2+1/2*5^(1/2))^14 9870002026743901 a001 196418/167761*505019158607^(1/4) 9870002026743901 a001 75025/439204*10749957122^(3/8) 9870002026743901 a001 196418/167761*10749957122^(7/24) 9870002026743901 a001 196418/167761*4106118243^(7/23) 9870002026743901 a001 75025/439204*4106118243^(9/23) 9870002026743901 a001 196418/167761*1568397607^(7/22) 9870002026743901 a001 75025/439204*1568397607^(9/22) 9870002026743901 a001 196418/167761*599074578^(1/3) 9870002026743901 a001 75025/439204*599074578^(3/7) 9870002026743901 a001 196418/167761*228826127^(7/20) 9870002026743901 a001 75025/439204*228826127^(9/20) 9870002026743902 a001 196418/167761*87403803^(7/19) 9870002026743902 a001 75025/439204*87403803^(9/19) 9870002026743905 a001 196418/167761*33385282^(7/18) 9870002026743906 a001 75025/439204*33385282^(1/2) 9870002026743910 a001 433419425/439128 9870002026743926 a001 196418/167761*12752043^(7/17) 9870002026743933 a001 75025/439204*12752043^(9/17) 9870002026744083 a001 196418/167761*4870847^(7/16) 9870002026744135 a001 75025/439204*4870847^(9/16) 9870002026745232 a001 196418/167761*1860498^(7/15) 9870002026745345 a001 1346269/167761*271443^(5/13) 9870002026745612 a001 75025/439204*1860498^(3/5) 9870002026753673 a001 196418/167761*710647^(1/2) 9870002026756465 a001 75025/439204*710647^(9/14) 9870002026760023 a001 9227465/1860498*103682^(11/24) 9870002026762026 a001 514229/167761*271443^(6/13) 9870002026762438 a001 24157817/4870847*103682^(11/24) 9870002026762791 a001 63245986/12752043*103682^(11/24) 9870002026762842 a001 165580141/33385282*103682^(11/24) 9870002026762850 a001 433494437/87403803*103682^(11/24) 9870002026762851 a001 1134903170/228826127*103682^(11/24) 9870002026762851 a001 2971215073/599074578*103682^(11/24) 9870002026762851 a001 7778742049/1568397607*103682^(11/24) 9870002026762851 a001 20365011074/4106118243*103682^(11/24) 9870002026762851 a001 53316291173/10749957122*103682^(11/24) 9870002026762851 a001 139583862445/28143753123*103682^(11/24) 9870002026762851 a001 365435296162/73681302247*103682^(11/24) 9870002026762851 a001 956722026041/192900153618*103682^(11/24) 9870002026762851 a001 2504730781961/505019158607*103682^(11/24) 9870002026762851 a001 10610209857723/2139295485799*103682^(11/24) 9870002026762851 a001 4052739537881/817138163596*103682^(11/24) 9870002026762851 a001 140728068720/28374454999*103682^(11/24) 9870002026762851 a001 591286729879/119218851371*103682^(11/24) 9870002026762851 a001 225851433717/45537549124*103682^(11/24) 9870002026762851 a001 86267571272/17393796001*103682^(11/24) 9870002026762851 a001 32951280099/6643838879*103682^(11/24) 9870002026762851 a001 1144206275/230701876*103682^(11/24) 9870002026762851 a001 4807526976/969323029*103682^(11/24) 9870002026762851 a001 1836311903/370248451*103682^(11/24) 9870002026762852 a001 701408733/141422324*103682^(11/24) 9870002026762854 a001 267914296/54018521*103682^(11/24) 9870002026762874 a001 9303105/1875749*103682^(11/24) 9870002026763009 a001 39088169/7881196*103682^(11/24) 9870002026763931 a001 14930352/3010349*103682^(11/24) 9870002026769247 a001 63245986/167761*103682^(1/12) 9870002026770255 a001 5702887/1149851*103682^(11/24) 9870002026775920 a001 1762289/219602*103682^(5/12) 9870002026780175 a001 34111385/90481*39603^(1/11) 9870002026781147 a001 311187/101521*103682^(1/2) 9870002026798195 a001 5702887/1860498*103682^(1/2) 9870002026800682 a001 14930352/4870847*103682^(1/2) 9870002026801045 a001 39088169/12752043*103682^(1/2) 9870002026801098 a001 14619165/4769326*103682^(1/2) 9870002026801106 a001 267914296/87403803*103682^(1/2) 9870002026801107 a001 701408733/228826127*103682^(1/2) 9870002026801107 a001 1836311903/599074578*103682^(1/2) 9870002026801107 a001 686789568/224056801*103682^(1/2) 9870002026801107 a001 12586269025/4106118243*103682^(1/2) 9870002026801107 a001 32951280099/10749957122*103682^(1/2) 9870002026801107 a001 86267571272/28143753123*103682^(1/2) 9870002026801107 a001 32264490531/10525900321*103682^(1/2) 9870002026801107 a001 591286729879/192900153618*103682^(1/2) 9870002026801107 a001 1548008755920/505019158607*103682^(1/2) 9870002026801107 a001 1515744265389/494493258286*103682^(1/2) 9870002026801107 a001 2504730781961/817138163596*103682^(1/2) 9870002026801107 a001 956722026041/312119004989*103682^(1/2) 9870002026801107 a001 365435296162/119218851371*103682^(1/2) 9870002026801107 a001 139583862445/45537549124*103682^(1/2) 9870002026801107 a001 53316291173/17393796001*103682^(1/2) 9870002026801107 a001 20365011074/6643838879*103682^(1/2) 9870002026801107 a001 7778742049/2537720636*103682^(1/2) 9870002026801107 a001 2971215073/969323029*103682^(1/2) 9870002026801107 a001 1134903170/370248451*103682^(1/2) 9870002026801108 a001 433494437/141422324*103682^(1/2) 9870002026801111 a001 165580141/54018521*103682^(1/2) 9870002026801131 a001 63245986/20633239*103682^(1/2) 9870002026801269 a001 24157817/7881196*103682^(1/2) 9870002026802219 a001 9227465/3010349*103682^(1/2) 9870002026803243 a001 75025/1149851*271443^(10/13) 9870002026807171 a001 75025/3010349*271443^(11/13) 9870002026807502 a001 39088169/167761*103682^(1/8) 9870002026808731 a001 3524578/1149851*103682^(1/2) 9870002026813601 a001 2178309/439204*103682^(11/24) 9870002026816031 a001 196418/167761*271443^(7/13) 9870002026816545 a001 75025/7881196*271443^(12/13) 9870002026820908 a001 1346269/710647*103682^(13/24) 9870002026826690 a004 Fibonacci(25)*Lucas(26)/(1/2+sqrt(5)/2)^35 9870002026833086 a001 196418/271443*103682^(5/8) 9870002026836640 a001 75025/439204*271443^(9/13) 9870002026836671 a001 1762289/930249*103682^(13/24) 9870002026838970 a001 9227465/4870847*103682^(13/24) 9870002026839306 a001 24157817/12752043*103682^(13/24) 9870002026839355 a001 31622993/16692641*103682^(13/24) 9870002026839362 a001 165580141/87403803*103682^(13/24) 9870002026839363 a001 433494437/228826127*103682^(13/24) 9870002026839363 a001 567451585/299537289*103682^(13/24) 9870002026839363 a001 2971215073/1568397607*103682^(13/24) 9870002026839363 a001 7778742049/4106118243*103682^(13/24) 9870002026839363 a001 10182505537/5374978561*103682^(13/24) 9870002026839363 a001 53316291173/28143753123*103682^(13/24) 9870002026839363 a001 139583862445/73681302247*103682^(13/24) 9870002026839363 a001 182717648081/96450076809*103682^(13/24) 9870002026839363 a001 956722026041/505019158607*103682^(13/24) 9870002026839363 a001 10610209857723/5600748293801*103682^(13/24) 9870002026839363 a001 591286729879/312119004989*103682^(13/24) 9870002026839363 a001 225851433717/119218851371*103682^(13/24) 9870002026839363 a001 21566892818/11384387281*103682^(13/24) 9870002026839363 a001 32951280099/17393796001*103682^(13/24) 9870002026839363 a001 12586269025/6643838879*103682^(13/24) 9870002026839363 a001 1201881744/634430159*103682^(13/24) 9870002026839363 a001 1836311903/969323029*103682^(13/24) 9870002026839363 a001 701408733/370248451*103682^(13/24) 9870002026839363 a001 66978574/35355581*103682^(13/24) 9870002026839366 a001 102334155/54018521*103682^(13/24) 9870002026839385 a001 39088169/20633239*103682^(13/24) 9870002026839513 a001 3732588/1970299*103682^(13/24) 9870002026840391 a001 5702887/3010349*103682^(13/24) 9870002026845762 a001 24157817/167761*103682^(1/6) 9870002026846412 a001 2178309/1149851*103682^(13/24) 9870002026853363 a001 1346269/439204*103682^(1/2) 9870002026854153 a001 9227465/103682*39603^(5/22) 9870002026855224 a001 832040/710647*103682^(7/12) 9870002026874352 a001 726103/620166*103682^(7/12) 9870002026877142 a001 5702887/4870847*103682^(7/12) 9870002026877144 a001 121393/710647*103682^(3/4) 9870002026877549 a001 4976784/4250681*103682^(7/12) 9870002026877609 a001 39088169/33385282*103682^(7/12) 9870002026877618 a001 34111385/29134601*103682^(7/12) 9870002026877619 a001 267914296/228826127*103682^(7/12) 9870002026877619 a001 233802911/199691526*103682^(7/12) 9870002026877619 a001 1836311903/1568397607*103682^(7/12) 9870002026877619 a001 1602508992/1368706081*103682^(7/12) 9870002026877619 a001 12586269025/10749957122*103682^(7/12) 9870002026877619 a001 10983760033/9381251041*103682^(7/12) 9870002026877619 a001 86267571272/73681302247*103682^(7/12) 9870002026877619 a001 75283811239/64300051206*103682^(7/12) 9870002026877619 a001 2504730781961/2139295485799*103682^(7/12) 9870002026877619 a001 365435296162/312119004989*103682^(7/12) 9870002026877619 a001 139583862445/119218851371*103682^(7/12) 9870002026877619 a001 53316291173/45537549124*103682^(7/12) 9870002026877619 a001 20365011074/17393796001*103682^(7/12) 9870002026877619 a001 7778742049/6643838879*103682^(7/12) 9870002026877619 a001 2971215073/2537720636*103682^(7/12) 9870002026877619 a001 1134903170/969323029*103682^(7/12) 9870002026877619 a001 433494437/370248451*103682^(7/12) 9870002026877620 a001 165580141/141422324*103682^(7/12) 9870002026877623 a001 63245986/54018521*103682^(7/12) 9870002026877646 a001 24157817/20633239*103682^(7/12) 9870002026877801 a001 9227465/7881196*103682^(7/12) 9870002026878867 a001 3524578/3010349*103682^(7/12) 9870002026884006 a001 14930352/167761*103682^(5/24) 9870002026886173 a001 1346269/1149851*103682^(7/12) 9870002026887678 a001 208010/109801*103682^(13/24) 9870002026894587 a001 267914296/710647*39603^(1/11) 9870002026903796 a001 514229/710647*103682^(5/8) 9870002026909598 a001 121393/439204*103682^(17/24) 9870002026911279 a001 233802911/620166*39603^(1/11) 9870002026913715 a001 1836311903/4870847*39603^(1/11) 9870002026914070 a001 1602508992/4250681*39603^(1/11) 9870002026914113 a001 1346269/1860498*103682^(5/8) 9870002026914122 a001 12586269025/33385282*39603^(1/11) 9870002026914129 a001 10983760033/29134601*39603^(1/11) 9870002026914130 a001 86267571272/228826127*39603^(1/11) 9870002026914131 a001 267913919/710646*39603^(1/11) 9870002026914131 a001 591286729879/1568397607*39603^(1/11) 9870002026914131 a001 516002918640/1368706081*39603^(1/11) 9870002026914131 a001 4052739537881/10749957122*39603^(1/11) 9870002026914131 a001 3536736619241/9381251041*39603^(1/11) 9870002026914131 a001 6557470319842/17393796001*39603^(1/11) 9870002026914131 a001 2504730781961/6643838879*39603^(1/11) 9870002026914131 a001 956722026041/2537720636*39603^(1/11) 9870002026914131 a001 365435296162/969323029*39603^(1/11) 9870002026914131 a001 139583862445/370248451*39603^(1/11) 9870002026914131 a001 53316291173/141422324*39603^(1/11) 9870002026914134 a001 20365011074/54018521*39603^(1/11) 9870002026914154 a001 7778742049/20633239*39603^(1/11) 9870002026914290 a001 2971215073/7881196*39603^(1/11) 9870002026915043 a001 317811/710647*103682^(2/3) 9870002026915220 a001 1134903170/3010349*39603^(1/11) 9870002026915618 a001 3524578/4870847*103682^(5/8) 9870002026915837 a001 9227465/12752043*103682^(5/8) 9870002026915870 a001 24157817/33385282*103682^(5/8) 9870002026915874 a001 63245986/87403803*103682^(5/8) 9870002026915875 a001 165580141/228826127*103682^(5/8) 9870002026915875 a001 433494437/599074578*103682^(5/8) 9870002026915875 a001 1134903170/1568397607*103682^(5/8) 9870002026915875 a001 2971215073/4106118243*103682^(5/8) 9870002026915875 a001 7778742049/10749957122*103682^(5/8) 9870002026915875 a001 20365011074/28143753123*103682^(5/8) 9870002026915875 a001 53316291173/73681302247*103682^(5/8) 9870002026915875 a001 139583862445/192900153618*103682^(5/8) 9870002026915875 a001 365435296162/505019158607*103682^(5/8) 9870002026915875 a001 10610209857723/14662949395604*103682^(5/8) 9870002026915875 a001 591286729879/817138163596*103682^(5/8) 9870002026915875 a001 225851433717/312119004989*103682^(5/8) 9870002026915875 a001 86267571272/119218851371*103682^(5/8) 9870002026915875 a001 32951280099/45537549124*103682^(5/8) 9870002026915875 a001 12586269025/17393796001*103682^(5/8) 9870002026915875 a001 4807526976/6643838879*103682^(5/8) 9870002026915875 a001 1836311903/2537720636*103682^(5/8) 9870002026915875 a001 701408733/969323029*103682^(5/8) 9870002026915875 a001 267914296/370248451*103682^(5/8) 9870002026915875 a001 102334155/141422324*103682^(5/8) 9870002026915877 a001 39088169/54018521*103682^(5/8) 9870002026915889 a001 14930352/20633239*103682^(5/8) 9870002026915973 a001 5702887/7881196*103682^(5/8) 9870002026916548 a001 2178309/3010349*103682^(5/8) 9870002026920489 a001 832040/1149851*103682^(5/8) 9870002026921596 a001 433494437/1149851*39603^(1/11) 9870002026922294 a001 9227465/167761*103682^(1/4) 9870002026936250 a001 514229/439204*103682^(7/12) 9870002026942409 a001 121393/1149851*103682^(19/24) 9870002026947498 a001 317811/439204*103682^(5/8) 9870002026948428 a001 416020/930249*103682^(2/3) 9870002026953299 a001 2178309/4870847*103682^(2/3) 9870002026954010 a001 5702887/12752043*103682^(2/3) 9870002026954113 a001 7465176/16692641*103682^(2/3) 9870002026954128 a001 39088169/87403803*103682^(2/3) 9870002026954131 a001 102334155/228826127*103682^(2/3) 9870002026954131 a001 133957148/299537289*103682^(2/3) 9870002026954131 a001 701408733/1568397607*103682^(2/3) 9870002026954131 a001 1836311903/4106118243*103682^(2/3) 9870002026954131 a001 2403763488/5374978561*103682^(2/3) 9870002026954131 a001 12586269025/28143753123*103682^(2/3) 9870002026954131 a001 32951280099/73681302247*103682^(2/3) 9870002026954131 a001 43133785636/96450076809*103682^(2/3) 9870002026954131 a001 225851433717/505019158607*103682^(2/3) 9870002026954131 a001 591286729879/1322157322203*103682^(2/3) 9870002026954131 a001 10610209857723/23725150497407*103682^(2/3) 9870002026954131 a001 182717648081/408569081798*103682^(2/3) 9870002026954131 a001 139583862445/312119004989*103682^(2/3) 9870002026954131 a001 53316291173/119218851371*103682^(2/3) 9870002026954131 a001 10182505537/22768774562*103682^(2/3) 9870002026954131 a001 7778742049/17393796001*103682^(2/3) 9870002026954131 a001 2971215073/6643838879*103682^(2/3) 9870002026954131 a001 567451585/1268860318*103682^(2/3) 9870002026954131 a001 433494437/969323029*103682^(2/3) 9870002026954131 a001 165580141/370248451*103682^(2/3) 9870002026954132 a001 31622993/70711162*103682^(2/3) 9870002026954138 a001 24157817/54018521*103682^(2/3) 9870002026954177 a001 9227465/20633239*103682^(2/3) 9870002026954449 a001 1762289/3940598*103682^(2/3) 9870002026956309 a001 1346269/3010349*103682^(2/3) 9870002026960466 a001 5702887/167761*103682^(7/24) 9870002026965297 a001 165580141/439204*39603^(1/11) 9870002026969061 a001 514229/1149851*103682^(2/3) 9870002026970348 a001 121393/1860498*103682^(5/6) 9870002026978782 a001 9303105/15251*39603^(1/22) 9870002026980308 a001 317811/1149851*103682^(17/24) 9870002026990625 a001 832040/3010349*103682^(17/24) 9870002026992130 a001 2178309/7881196*103682^(17/24) 9870002026992349 a001 5702887/20633239*103682^(17/24) 9870002026992381 a001 14930352/54018521*103682^(17/24) 9870002026992386 a001 39088169/141422324*103682^(17/24) 9870002026992387 a001 102334155/370248451*103682^(17/24) 9870002026992387 a001 267914296/969323029*103682^(17/24) 9870002026992387 a001 701408733/2537720636*103682^(17/24) 9870002026992387 a001 1836311903/6643838879*103682^(17/24) 9870002026992387 a001 4807526976/17393796001*103682^(17/24) 9870002026992387 a001 12586269025/45537549124*103682^(17/24) 9870002026992387 a001 32951280099/119218851371*103682^(17/24) 9870002026992387 a001 86267571272/312119004989*103682^(17/24) 9870002026992387 a001 225851433717/817138163596*103682^(17/24) 9870002026992387 a001 1548008755920/5600748293801*103682^(17/24) 9870002026992387 a001 139583862445/505019158607*103682^(17/24) 9870002026992387 a001 53316291173/192900153618*103682^(17/24) 9870002026992387 a001 20365011074/73681302247*103682^(17/24) 9870002026992387 a001 7778742049/28143753123*103682^(17/24) 9870002026992387 a001 2971215073/10749957122*103682^(17/24) 9870002026992387 a001 1134903170/4106118243*103682^(17/24) 9870002026992387 a001 433494437/1568397607*103682^(17/24) 9870002026992387 a001 165580141/599074578*103682^(17/24) 9870002026992387 a001 63245986/228826127*103682^(17/24) 9870002026992389 a001 24157817/87403803*103682^(17/24) 9870002026992401 a001 9227465/33385282*103682^(17/24) 9870002026992485 a001 3524578/12752043*103682^(17/24) 9870002026992979 a001 5473/51841*24476^(19/21) 9870002026993060 a001 1346269/4870847*103682^(17/24) 9870002026997001 a001 514229/1860498*103682^(17/24) 9870002026998942 a001 3524578/167761*103682^(1/3) 9870002027008248 a001 105937/620166*103682^(3/4) 9870002027012545 a001 121393/3010349*103682^(7/8) 9870002027024009 a001 196418/710647*103682^(17/24) 9870002027027375 a001 832040/4870847*103682^(3/4) 9870002027030166 a001 726103/4250681*103682^(3/4) 9870002027030573 a001 5702887/33385282*103682^(3/4) 9870002027030633 a001 4976784/29134601*103682^(3/4) 9870002027030641 a001 39088169/228826127*103682^(3/4) 9870002027030643 a001 34111385/199691526*103682^(3/4) 9870002027030643 a001 267914296/1568397607*103682^(3/4) 9870002027030643 a001 233802911/1368706081*103682^(3/4) 9870002027030643 a001 1836311903/10749957122*103682^(3/4) 9870002027030643 a001 1602508992/9381251041*103682^(3/4) 9870002027030643 a001 12586269025/73681302247*103682^(3/4) 9870002027030643 a001 10983760033/64300051206*103682^(3/4) 9870002027030643 a001 86267571272/505019158607*103682^(3/4) 9870002027030643 a001 75283811239/440719107401*103682^(3/4) 9870002027030643 a001 2504730781961/14662949395604*103682^(3/4) 9870002027030643 a001 139583862445/817138163596*103682^(3/4) 9870002027030643 a001 53316291173/312119004989*103682^(3/4) 9870002027030643 a001 20365011074/119218851371*103682^(3/4) 9870002027030643 a001 7778742049/45537549124*103682^(3/4) 9870002027030643 a001 2971215073/17393796001*103682^(3/4) 9870002027030643 a001 1134903170/6643838879*103682^(3/4) 9870002027030643 a001 433494437/2537720636*103682^(3/4) 9870002027030643 a001 165580141/969323029*103682^(3/4) 9870002027030643 a001 63245986/370248451*103682^(3/4) 9870002027030647 a001 24157817/141422324*103682^(3/4) 9870002027030669 a001 9227465/54018521*103682^(3/4) 9870002027030825 a001 3524578/20633239*103682^(3/4) 9870002027031891 a001 1346269/7881196*103682^(3/4) 9870002027036623 a001 2178309/167761*103682^(3/8) 9870002027039197 a001 514229/3010349*103682^(3/4) 9870002027043434 a001 75025/167761*(1/2+1/2*5^(1/2))^16 9870002027043434 a001 75025/167761*23725150497407^(1/4) 9870002027043434 a001 75025/167761*73681302247^(4/13) 9870002027043434 a001 75025/167761*10749957122^(1/3) 9870002027043434 a001 75025/167761*4106118243^(8/23) 9870002027043434 a001 75025/167761*1568397607^(4/11) 9870002027043435 a001 75025/167761*599074578^(8/21) 9870002027043435 a001 75025/167761*228826127^(2/5) 9870002027043435 a001 75025/167761*87403803^(8/19) 9870002027043438 a001 75025/167761*33385282^(4/9) 9870002027043463 a001 75025/167761*12752043^(8/17) 9870002027043495 a001 5628750625/5702887 9870002027043643 a001 75025/167761*4870847^(1/2) 9870002027044955 a001 75025/167761*1860498^(8/15) 9870002027049295 a001 121393/4870847*103682^(11/12) 9870002027050444 a001 317811/3010349*103682^(19/24) 9870002027054602 a001 75025/167761*710647^(4/7) 9870002027056464 a001 98209/219602*103682^(2/3) 9870002027066206 a001 208010/1970299*103682^(19/24) 9870002027066224 a001 63245986/271443*39603^(3/22) 9870002027068506 a001 2178309/20633239*103682^(19/24) 9870002027068842 a001 5702887/54018521*103682^(19/24) 9870002027068891 a001 3732588/35355581*103682^(19/24) 9870002027068898 a001 39088169/370248451*103682^(19/24) 9870002027068899 a001 102334155/969323029*103682^(19/24) 9870002027068899 a001 66978574/634430159*103682^(19/24) 9870002027068899 a001 701408733/6643838879*103682^(19/24) 9870002027068899 a001 1836311903/17393796001*103682^(19/24) 9870002027068899 a001 1201881744/11384387281*103682^(19/24) 9870002027068899 a001 12586269025/119218851371*103682^(19/24) 9870002027068899 a001 32951280099/312119004989*103682^(19/24) 9870002027068899 a001 21566892818/204284540899*103682^(19/24) 9870002027068899 a001 225851433717/2139295485799*103682^(19/24) 9870002027068899 a001 182717648081/1730726404001*103682^(19/24) 9870002027068899 a001 139583862445/1322157322203*103682^(19/24) 9870002027068899 a001 53316291173/505019158607*103682^(19/24) 9870002027068899 a001 10182505537/96450076809*103682^(19/24) 9870002027068899 a001 7778742049/73681302247*103682^(19/24) 9870002027068899 a001 2971215073/28143753123*103682^(19/24) 9870002027068899 a001 567451585/5374978561*103682^(19/24) 9870002027068899 a001 433494437/4106118243*103682^(19/24) 9870002027068899 a001 165580141/1568397607*103682^(19/24) 9870002027068899 a001 31622993/299537289*103682^(19/24) 9870002027068902 a001 24157817/228826127*103682^(19/24) 9870002027068921 a001 9227465/87403803*103682^(19/24) 9870002027069049 a001 1762289/16692641*103682^(19/24) 9870002027069927 a001 1346269/12752043*103682^(19/24) 9870002027075948 a001 514229/4870847*103682^(19/24) 9870002027076384 a001 1346269/167761*103682^(5/12) 9870002027087195 a001 317811/4870847*103682^(5/6) 9870002027088126 a001 121393/7881196*103682^(23/24) 9870002027089274 a001 196418/1149851*103682^(3/4) 9870002027104243 a001 832040/12752043*103682^(5/6) 9870002027106730 a001 311187/4769326*103682^(5/6) 9870002027107093 a001 5702887/87403803*103682^(5/6) 9870002027107146 a001 14930352/228826127*103682^(5/6) 9870002027107154 a001 39088169/599074578*103682^(5/6) 9870002027107155 a001 14619165/224056801*103682^(5/6) 9870002027107155 a001 267914296/4106118243*103682^(5/6) 9870002027107155 a001 701408733/10749957122*103682^(5/6) 9870002027107155 a001 1836311903/28143753123*103682^(5/6) 9870002027107155 a001 686789568/10525900321*103682^(5/6) 9870002027107155 a001 12586269025/192900153618*103682^(5/6) 9870002027107155 a001 32951280099/505019158607*103682^(5/6) 9870002027107155 a001 86267571272/1322157322203*103682^(5/6) 9870002027107155 a001 32264490531/494493258286*103682^(5/6) 9870002027107155 a001 591286729879/9062201101803*103682^(5/6) 9870002027107155 a001 1548008755920/23725150497407*103682^(5/6) 9870002027107155 a001 365435296162/5600748293801*103682^(5/6) 9870002027107155 a001 139583862445/2139295485799*103682^(5/6) 9870002027107155 a001 53316291173/817138163596*103682^(5/6) 9870002027107155 a001 20365011074/312119004989*103682^(5/6) 9870002027107155 a001 7778742049/119218851371*103682^(5/6) 9870002027107155 a001 2971215073/45537549124*103682^(5/6) 9870002027107155 a001 1134903170/17393796001*103682^(5/6) 9870002027107155 a001 433494437/6643838879*103682^(5/6) 9870002027107155 a001 165580141/2537720636*103682^(5/6) 9870002027107155 a001 63245986/969323029*103682^(5/6) 9870002027107158 a001 24157817/370248451*103682^(5/6) 9870002027107179 a001 9227465/141422324*103682^(5/6) 9870002027107317 a001 3524578/54018521*103682^(5/6) 9870002027108267 a001 1346269/20633239*103682^(5/6) 9870002027110699 a001 75640/15251*103682^(11/24) 9870002027114779 a001 514229/7881196*103682^(5/6) 9870002027117214 a001 98209/930249*103682^(19/24) 9870002027125869 a001 75025/167761*271443^(8/13) 9870002027126026 a001 317811/7881196*103682^(7/8) 9870002027126223 a004 Fibonacci(26)*Lucas(24)/(1/2+sqrt(5)/2)^34 9870002027132619 a001 121393/167761*103682^(5/8) 9870002027140117 a001 5702887/103682*39603^(3/11) 9870002027142583 a001 75640/1875749*103682^(7/8) 9870002027144998 a001 2178309/54018521*103682^(7/8) 9870002027145351 a001 5702887/141422324*103682^(7/8) 9870002027145402 a001 14930352/370248451*103682^(7/8) 9870002027145410 a001 39088169/969323029*103682^(7/8) 9870002027145411 a001 9303105/230701876*103682^(7/8) 9870002027145411 a001 267914296/6643838879*103682^(7/8) 9870002027145411 a001 701408733/17393796001*103682^(7/8) 9870002027145411 a001 1836311903/45537549124*103682^(7/8) 9870002027145411 a001 4807526976/119218851371*103682^(7/8) 9870002027145411 a001 1144206275/28374454999*103682^(7/8) 9870002027145411 a001 32951280099/817138163596*103682^(7/8) 9870002027145411 a001 86267571272/2139295485799*103682^(7/8) 9870002027145411 a001 225851433717/5600748293801*103682^(7/8) 9870002027145411 a001 591286729879/14662949395604*103682^(7/8) 9870002027145411 a001 365435296162/9062201101803*103682^(7/8) 9870002027145411 a001 139583862445/3461452808002*103682^(7/8) 9870002027145411 a001 53316291173/1322157322203*103682^(7/8) 9870002027145411 a001 20365011074/505019158607*103682^(7/8) 9870002027145411 a001 7778742049/192900153618*103682^(7/8) 9870002027145411 a001 2971215073/73681302247*103682^(7/8) 9870002027145411 a001 1134903170/28143753123*103682^(7/8) 9870002027145411 a001 433494437/10749957122*103682^(7/8) 9870002027145411 a001 165580141/4106118243*103682^(7/8) 9870002027145411 a001 63245986/1568397607*103682^(7/8) 9870002027145414 a001 24157817/599074578*103682^(7/8) 9870002027145434 a001 9227465/228826127*103682^(7/8) 9870002027145568 a001 3524578/87403803*103682^(7/8) 9870002027146491 a001 1346269/33385282*103682^(7/8) 9870002027152815 a001 514229/12752043*103682^(7/8) 9870002027159272 a001 514229/167761*103682^(1/2) 9870002027159410 a001 196418/3010349*103682^(5/6) 9870002027164062 a001 105937/4250681*103682^(11/12) 9870002027170519 a001 317811/167761*103682^(13/24) 9870002027176682 a001 24157817/64079*24476^(2/21) 9870002027180635 a001 165580141/710647*39603^(3/22) 9870002027180807 a001 416020/16692641*103682^(11/12) 9870002027183249 a001 726103/29134601*103682^(11/12) 9870002027183606 a001 5702887/228826127*103682^(11/12) 9870002027183658 a001 829464/33281921*103682^(11/12) 9870002027183666 a001 39088169/1568397607*103682^(11/12) 9870002027183667 a001 34111385/1368706081*103682^(11/12) 9870002027183667 a001 133957148/5374978561*103682^(11/12) 9870002027183667 a001 233802911/9381251041*103682^(11/12) 9870002027183667 a001 1836311903/73681302247*103682^(11/12) 9870002027183667 a001 267084832/10716675201*103682^(11/12) 9870002027183667 a001 12586269025/505019158607*103682^(11/12) 9870002027183667 a001 10983760033/440719107401*103682^(11/12) 9870002027183667 a001 43133785636/1730726404001*103682^(11/12) 9870002027183667 a001 75283811239/3020733700601*103682^(11/12) 9870002027183667 a001 182717648081/7331474697802*103682^(11/12) 9870002027183667 a001 139583862445/5600748293801*103682^(11/12) 9870002027183667 a001 53316291173/2139295485799*103682^(11/12) 9870002027183667 a001 10182505537/408569081798*103682^(11/12) 9870002027183667 a001 7778742049/312119004989*103682^(11/12) 9870002027183667 a001 2971215073/119218851371*103682^(11/12) 9870002027183667 a001 567451585/22768774562*103682^(11/12) 9870002027183667 a001 433494437/17393796001*103682^(11/12) 9870002027183667 a001 165580141/6643838879*103682^(11/12) 9870002027183667 a001 31622993/1268860318*103682^(11/12) 9870002027183670 a001 24157817/969323029*103682^(11/12) 9870002027183690 a001 9227465/370248451*103682^(11/12) 9870002027183826 a001 1762289/70711162*103682^(11/12) 9870002027184759 a001 1346269/54018521*103682^(11/12) 9870002027191155 a001 514229/20633239*103682^(11/12) 9870002027196161 a001 196418/4870847*103682^(7/8) 9870002027197327 a001 433494437/1860498*39603^(3/22) 9870002027199762 a001 1134903170/4870847*39603^(3/22) 9870002027200118 a001 2971215073/12752043*39603^(3/22) 9870002027200169 a001 7778742049/33385282*39603^(3/22) 9870002027200177 a001 20365011074/87403803*39603^(3/22) 9870002027200178 a001 53316291173/228826127*39603^(3/22) 9870002027200178 a001 139583862445/599074578*39603^(3/22) 9870002027200178 a001 365435296162/1568397607*39603^(3/22) 9870002027200178 a001 956722026041/4106118243*39603^(3/22) 9870002027200178 a001 2504730781961/10749957122*39603^(3/22) 9870002027200178 a001 6557470319842/28143753123*39603^(3/22) 9870002027200178 a001 10610209857723/45537549124*39603^(3/22) 9870002027200178 a001 4052739537881/17393796001*39603^(3/22) 9870002027200178 a001 1548008755920/6643838879*39603^(3/22) 9870002027200178 a001 591286729879/2537720636*39603^(3/22) 9870002027200178 a001 225851433717/969323029*39603^(3/22) 9870002027200178 a001 86267571272/370248451*39603^(3/22) 9870002027200179 a001 63246219/271444*39603^(3/22) 9870002027200182 a001 12586269025/54018521*39603^(3/22) 9870002027200202 a001 4807526976/20633239*39603^(3/22) 9870002027200337 a001 1836311903/7881196*39603^(3/22) 9870002027201267 a001 701408733/3010349*39603^(3/22) 9870002027202402 a001 10959/711491*103682^(23/24) 9870002027207643 a001 267914296/1149851*39603^(3/22) 9870002027209131 a001 75025/271443*103682^(17/24) 9870002027215285 a001 28657/167761*64079^(18/23) 9870002027219075 a001 832040/54018521*103682^(23/24) 9870002027221507 a001 2178309/141422324*103682^(23/24) 9870002027221862 a001 5702887/370248451*103682^(23/24) 9870002027221914 a001 14930352/969323029*103682^(23/24) 9870002027221921 a001 39088169/2537720636*103682^(23/24) 9870002027221923 a001 102334155/6643838879*103682^(23/24) 9870002027221923 a001 9238424/599786069*103682^(23/24) 9870002027221923 a001 701408733/45537549124*103682^(23/24) 9870002027221923 a001 1836311903/119218851371*103682^(23/24) 9870002027221923 a001 4807526976/312119004989*103682^(23/24) 9870002027221923 a001 12586269025/817138163596*103682^(23/24) 9870002027221923 a001 32951280099/2139295485799*103682^(23/24) 9870002027221923 a001 86267571272/5600748293801*103682^(23/24) 9870002027221923 a001 7787980473/505618944676*103682^(23/24) 9870002027221923 a001 365435296162/23725150497407*103682^(23/24) 9870002027221923 a001 139583862445/9062201101803*103682^(23/24) 9870002027221923 a001 53316291173/3461452808002*103682^(23/24) 9870002027221923 a001 20365011074/1322157322203*103682^(23/24) 9870002027221923 a001 7778742049/505019158607*103682^(23/24) 9870002027221923 a001 2971215073/192900153618*103682^(23/24) 9870002027221923 a001 1134903170/73681302247*103682^(23/24) 9870002027221923 a001 433494437/28143753123*103682^(23/24) 9870002027221923 a001 165580141/10749957122*103682^(23/24) 9870002027221923 a001 63245986/4106118243*103682^(23/24) 9870002027221926 a001 24157817/1568397607*103682^(23/24) 9870002027221946 a001 9227465/599074578*103682^(23/24) 9870002027222081 a001 3524578/228826127*103682^(23/24) 9870002027223011 a001 1346269/87403803*103682^(23/24) 9870002027229379 a001 514229/33385282*103682^(23/24) 9870002027234992 a001 98209/3940598*103682^(11/12) 9870002027240635 a004 Fibonacci(28)*Lucas(24)/(1/2+sqrt(5)/2)^36 9870002027251345 a001 102334155/439204*39603^(3/22) 9870002027253180 a001 121393/64079*64079^(13/23) 9870002027257327 a004 Fibonacci(30)*Lucas(24)/(1/2+sqrt(5)/2)^38 9870002027259763 a004 Fibonacci(32)*Lucas(24)/(1/2+sqrt(5)/2)^40 9870002027260118 a004 Fibonacci(34)*Lucas(24)/(1/2+sqrt(5)/2)^42 9870002027260170 a004 Fibonacci(36)*Lucas(24)/(1/2+sqrt(5)/2)^44 9870002027260177 a004 Fibonacci(38)*Lucas(24)/(1/2+sqrt(5)/2)^46 9870002027260179 a004 Fibonacci(40)*Lucas(24)/(1/2+sqrt(5)/2)^48 9870002027260179 a004 Fibonacci(42)*Lucas(24)/(1/2+sqrt(5)/2)^50 9870002027260179 a004 Fibonacci(44)*Lucas(24)/(1/2+sqrt(5)/2)^52 9870002027260179 a004 Fibonacci(46)*Lucas(24)/(1/2+sqrt(5)/2)^54 9870002027260179 a004 Fibonacci(48)*Lucas(24)/(1/2+sqrt(5)/2)^56 9870002027260179 a004 Fibonacci(50)*Lucas(24)/(1/2+sqrt(5)/2)^58 9870002027260179 a004 Fibonacci(52)*Lucas(24)/(1/2+sqrt(5)/2)^60 9870002027260179 a004 Fibonacci(54)*Lucas(24)/(1/2+sqrt(5)/2)^62 9870002027260179 a004 Fibonacci(56)*Lucas(24)/(1/2+sqrt(5)/2)^64 9870002027260179 a004 Fibonacci(58)*Lucas(24)/(1/2+sqrt(5)/2)^66 9870002027260179 a004 Fibonacci(60)*Lucas(24)/(1/2+sqrt(5)/2)^68 9870002027260179 a004 Fibonacci(62)*Lucas(24)/(1/2+sqrt(5)/2)^70 9870002027260179 a004 Fibonacci(64)*Lucas(24)/(1/2+sqrt(5)/2)^72 9870002027260179 a004 Fibonacci(66)*Lucas(24)/(1/2+sqrt(5)/2)^74 9870002027260179 a004 Fibonacci(68)*Lucas(24)/(1/2+sqrt(5)/2)^76 9870002027260179 a004 Fibonacci(70)*Lucas(24)/(1/2+sqrt(5)/2)^78 9870002027260179 a004 Fibonacci(72)*Lucas(24)/(1/2+sqrt(5)/2)^80 9870002027260179 a004 Fibonacci(74)*Lucas(24)/(1/2+sqrt(5)/2)^82 9870002027260179 a004 Fibonacci(76)*Lucas(24)/(1/2+sqrt(5)/2)^84 9870002027260179 a004 Fibonacci(78)*Lucas(24)/(1/2+sqrt(5)/2)^86 9870002027260179 a004 Fibonacci(80)*Lucas(24)/(1/2+sqrt(5)/2)^88 9870002027260179 a004 Fibonacci(82)*Lucas(24)/(1/2+sqrt(5)/2)^90 9870002027260179 a004 Fibonacci(84)*Lucas(24)/(1/2+sqrt(5)/2)^92 9870002027260179 a004 Fibonacci(86)*Lucas(24)/(1/2+sqrt(5)/2)^94 9870002027260179 a004 Fibonacci(88)*Lucas(24)/(1/2+sqrt(5)/2)^96 9870002027260179 a004 Fibonacci(90)*Lucas(24)/(1/2+sqrt(5)/2)^98 9870002027260179 a004 Fibonacci(92)*Lucas(24)/(1/2+sqrt(5)/2)^100 9870002027260179 a004 Fibonacci(91)*Lucas(24)/(1/2+sqrt(5)/2)^99 9870002027260179 a004 Fibonacci(89)*Lucas(24)/(1/2+sqrt(5)/2)^97 9870002027260179 a004 Fibonacci(87)*Lucas(24)/(1/2+sqrt(5)/2)^95 9870002027260179 a004 Fibonacci(85)*Lucas(24)/(1/2+sqrt(5)/2)^93 9870002027260179 a004 Fibonacci(83)*Lucas(24)/(1/2+sqrt(5)/2)^91 9870002027260179 a004 Fibonacci(81)*Lucas(24)/(1/2+sqrt(5)/2)^89 9870002027260179 a004 Fibonacci(79)*Lucas(24)/(1/2+sqrt(5)/2)^87 9870002027260179 a004 Fibonacci(77)*Lucas(24)/(1/2+sqrt(5)/2)^85 9870002027260179 a004 Fibonacci(75)*Lucas(24)/(1/2+sqrt(5)/2)^83 9870002027260179 a004 Fibonacci(73)*Lucas(24)/(1/2+sqrt(5)/2)^81 9870002027260179 a004 Fibonacci(71)*Lucas(24)/(1/2+sqrt(5)/2)^79 9870002027260179 a004 Fibonacci(69)*Lucas(24)/(1/2+sqrt(5)/2)^77 9870002027260179 a004 Fibonacci(67)*Lucas(24)/(1/2+sqrt(5)/2)^75 9870002027260179 a004 Fibonacci(65)*Lucas(24)/(1/2+sqrt(5)/2)^73 9870002027260179 a004 Fibonacci(63)*Lucas(24)/(1/2+sqrt(5)/2)^71 9870002027260179 a004 Fibonacci(61)*Lucas(24)/(1/2+sqrt(5)/2)^69 9870002027260179 a004 Fibonacci(59)*Lucas(24)/(1/2+sqrt(5)/2)^67 9870002027260179 a004 Fibonacci(57)*Lucas(24)/(1/2+sqrt(5)/2)^65 9870002027260179 a004 Fibonacci(55)*Lucas(24)/(1/2+sqrt(5)/2)^63 9870002027260179 a004 Fibonacci(53)*Lucas(24)/(1/2+sqrt(5)/2)^61 9870002027260179 a004 Fibonacci(51)*Lucas(24)/(1/2+sqrt(5)/2)^59 9870002027260179 a004 Fibonacci(49)*Lucas(24)/(1/2+sqrt(5)/2)^57 9870002027260179 a001 1/23184*(1/2+1/2*5^(1/2))^40 9870002027260179 a004 Fibonacci(47)*Lucas(24)/(1/2+sqrt(5)/2)^55 9870002027260179 a004 Fibonacci(45)*Lucas(24)/(1/2+sqrt(5)/2)^53 9870002027260179 a004 Fibonacci(43)*Lucas(24)/(1/2+sqrt(5)/2)^51 9870002027260179 a004 Fibonacci(41)*Lucas(24)/(1/2+sqrt(5)/2)^49 9870002027260179 a004 Fibonacci(39)*Lucas(24)/(1/2+sqrt(5)/2)^47 9870002027260182 a004 Fibonacci(37)*Lucas(24)/(1/2+sqrt(5)/2)^45 9870002027260202 a004 Fibonacci(35)*Lucas(24)/(1/2+sqrt(5)/2)^43 9870002027260338 a004 Fibonacci(33)*Lucas(24)/(1/2+sqrt(5)/2)^41 9870002027261268 a004 Fibonacci(31)*Lucas(24)/(1/2+sqrt(5)/2)^39 9870002027264831 a001 63245986/167761*39603^(1/11) 9870002027267644 a004 Fibonacci(29)*Lucas(24)/(1/2+sqrt(5)/2)^37 9870002027273028 a001 196418/12752043*103682^(23/24) 9870002027279485 a001 196418/167761*103682^(7/12) 9870002027311345 a004 Fibonacci(27)*Lucas(24)/(1/2+sqrt(5)/2)^35 9870002027315528 a001 17711/64079*39603^(17/22) 9870002027352269 a001 39088169/271443*39603^(2/11) 9870002027400055 a001 75025/710647*103682^(19/24) 9870002027426384 a001 1762289/51841*39603^(7/22) 9870002027432509 a001 75025/439204*103682^(3/4) 9870002027465319 a001 75025/1149851*103682^(5/6) 9870002027466682 a001 14619165/101521*39603^(2/11) 9870002027477278 a001 10946/167761*24476^(20/21) 9870002027483375 a001 133957148/930249*39603^(2/11) 9870002027485810 a001 701408733/4870847*39603^(2/11) 9870002027486165 a001 1836311903/12752043*39603^(2/11) 9870002027486217 a001 14930208/103681*39603^(2/11) 9870002027486225 a001 12586269025/87403803*39603^(2/11) 9870002027486226 a001 32951280099/228826127*39603^(2/11) 9870002027486226 a001 43133785636/299537289*39603^(2/11) 9870002027486226 a001 32264490531/224056801*39603^(2/11) 9870002027486226 a001 591286729879/4106118243*39603^(2/11) 9870002027486226 a001 774004377960/5374978561*39603^(2/11) 9870002027486226 a001 4052739537881/28143753123*39603^(2/11) 9870002027486226 a001 1515744265389/10525900321*39603^(2/11) 9870002027486226 a001 3278735159921/22768774562*39603^(2/11) 9870002027486226 a001 2504730781961/17393796001*39603^(2/11) 9870002027486226 a001 956722026041/6643838879*39603^(2/11) 9870002027486226 a001 182717648081/1268860318*39603^(2/11) 9870002027486226 a001 139583862445/969323029*39603^(2/11) 9870002027486226 a001 53316291173/370248451*39603^(2/11) 9870002027486226 a001 10182505537/70711162*39603^(2/11) 9870002027486229 a001 7778742049/54018521*39603^(2/11) 9870002027486249 a001 2971215073/20633239*39603^(2/11) 9870002027486385 a001 567451585/3940598*39603^(2/11) 9870002027487315 a001 433494437/3010349*39603^(2/11) 9870002027493259 a001 75025/1860498*103682^(7/8) 9870002027493691 a001 165580141/1149851*39603^(2/11) 9870002027535456 a001 75025/3010349*103682^(11/12) 9870002027537393 a001 31622993/219602*39603^(2/11) 9870002027542812 a001 196418/64079*64079^(12/23) 9870002027550877 a001 39088169/167761*39603^(3/22) 9870002027572206 a001 75025/4870847*103682^(23/24) 9870002027576612 a001 317811/64079*64079^(11/23) 9870002027580552 a001 31622993/51841*15127^(1/20) 9870002027610878 a004 Fibonacci(25)*Lucas(24)/(1/2+sqrt(5)/2)^33 9870002027617203 a001 46368/64079*167761^(3/5) 9870002027633325 a001 75025/64079*64079^(14/23) 9870002027638322 a001 24157817/271443*39603^(5/22) 9870002027655530 a001 75025/167761*103682^(2/3) 9870002027708131 a001 514229/64079*64079^(10/23) 9870002027711857 a001 46347/2206*39603^(4/11) 9870002027752730 a001 63245986/710647*39603^(5/22) 9870002027769422 a001 165580141/1860498*39603^(5/22) 9870002027771858 a001 433494437/4870847*39603^(5/22) 9870002027772213 a001 1134903170/12752043*39603^(5/22) 9870002027772265 a001 2971215073/33385282*39603^(5/22) 9870002027772272 a001 7778742049/87403803*39603^(5/22) 9870002027772273 a001 20365011074/228826127*39603^(5/22) 9870002027772274 a001 53316291173/599074578*39603^(5/22) 9870002027772274 a001 139583862445/1568397607*39603^(5/22) 9870002027772274 a001 365435296162/4106118243*39603^(5/22) 9870002027772274 a001 956722026041/10749957122*39603^(5/22) 9870002027772274 a001 2504730781961/28143753123*39603^(5/22) 9870002027772274 a001 6557470319842/73681302247*39603^(5/22) 9870002027772274 a001 10610209857723/119218851371*39603^(5/22) 9870002027772274 a001 4052739537881/45537549124*39603^(5/22) 9870002027772274 a001 1548008755920/17393796001*39603^(5/22) 9870002027772274 a001 591286729879/6643838879*39603^(5/22) 9870002027772274 a001 225851433717/2537720636*39603^(5/22) 9870002027772274 a001 86267571272/969323029*39603^(5/22) 9870002027772274 a001 32951280099/370248451*39603^(5/22) 9870002027772274 a001 12586269025/141422324*39603^(5/22) 9870002027772277 a001 4807526976/54018521*39603^(5/22) 9870002027772297 a001 1836311903/20633239*39603^(5/22) 9870002027772433 a001 3524667/39604*39603^(5/22) 9870002027773363 a001 267914296/3010349*39603^(5/22) 9870002027779739 a001 102334155/1149851*39603^(5/22) 9870002027799197 a001 46368/64079*439204^(5/9) 9870002027802324 a001 832040/64079*64079^(9/23) 9870002027823439 a001 39088169/439204*39603^(5/22) 9870002027826533 a001 1328767776/1346269 9870002027827550 a001 46368/64079*7881196^(5/11) 9870002027827613 a001 46368/64079*20633239^(3/7) 9870002027827622 a001 46368/64079*141422324^(5/13) 9870002027827623 a001 46368/64079*2537720636^(1/3) 9870002027827623 a001 28657/103682*45537549124^(1/3) 9870002027827623 a001 28657/103682*(1/2+1/2*5^(1/2))^17 9870002027827623 a001 46368/64079*45537549124^(5/17) 9870002027827623 a001 46368/64079*312119004989^(3/11) 9870002027827623 a001 46368/64079*14662949395604^(5/21) 9870002027827623 a001 46368/64079*(1/2+1/2*5^(1/2))^15 9870002027827623 a001 46368/64079*192900153618^(5/18) 9870002027827623 a001 46368/64079*28143753123^(3/10) 9870002027827623 a001 46368/64079*10749957122^(5/16) 9870002027827623 a001 46368/64079*599074578^(5/14) 9870002027827623 a001 46368/64079*228826127^(3/8) 9870002027827626 a001 46368/64079*33385282^(5/12) 9870002027827653 a001 28657/103682*12752043^(1/2) 9870002027829048 a001 46368/64079*1860498^(1/2) 9870002027836929 a001 24157817/167761*39603^(2/11) 9870002027910775 a001 1346269/64079*64079^(8/23) 9870002027924357 a001 4976784/90481*39603^(3/11) 9870002027961221 a001 39088169/64079*24476^(1/21) 9870002027999410 a001 1346269/103682*39603^(9/22) 9870002028013780 a001 2178309/64079*64079^(7/23) 9870002028038776 a001 39088169/710647*39603^(3/11) 9870002028055470 a001 831985/15126*39603^(3/11) 9870002028057905 a001 267914296/4870847*39603^(3/11) 9870002028058261 a001 233802911/4250681*39603^(3/11) 9870002028058312 a001 1836311903/33385282*39603^(3/11) 9870002028058320 a001 1602508992/29134601*39603^(3/11) 9870002028058321 a001 12586269025/228826127*39603^(3/11) 9870002028058321 a001 10983760033/199691526*39603^(3/11) 9870002028058321 a001 86267571272/1568397607*39603^(3/11) 9870002028058321 a001 75283811239/1368706081*39603^(3/11) 9870002028058321 a001 591286729879/10749957122*39603^(3/11) 9870002028058321 a001 12585437040/228811001*39603^(3/11) 9870002028058321 a001 4052739537881/73681302247*39603^(3/11) 9870002028058321 a001 3536736619241/64300051206*39603^(3/11) 9870002028058321 a001 6557470319842/119218851371*39603^(3/11) 9870002028058321 a001 2504730781961/45537549124*39603^(3/11) 9870002028058321 a001 956722026041/17393796001*39603^(3/11) 9870002028058321 a001 365435296162/6643838879*39603^(3/11) 9870002028058321 a001 139583862445/2537720636*39603^(3/11) 9870002028058321 a001 53316291173/969323029*39603^(3/11) 9870002028058321 a001 20365011074/370248451*39603^(3/11) 9870002028058322 a001 7778742049/141422324*39603^(3/11) 9870002028058325 a001 2971215073/54018521*39603^(3/11) 9870002028058344 a001 1134903170/20633239*39603^(3/11) 9870002028058480 a001 433494437/7881196*39603^(3/11) 9870002028059410 a001 165580141/3010349*39603^(3/11) 9870002028065787 a001 63245986/1149851*39603^(3/11) 9870002028109491 a001 24157817/439204*39603^(3/11) 9870002028118865 a001 3524578/64079*64079^(6/23) 9870002028122964 a001 14930352/167761*39603^(5/22) 9870002028210437 a001 9227465/271443*39603^(7/22) 9870002028223155 a001 5702887/64079*64079^(5/23) 9870002028281517 a001 416020/51841*39603^(5/11) 9870002028324829 a001 24157817/710647*39603^(7/22) 9870002028327749 a001 9227465/64079*64079^(4/23) 9870002028341518 a001 31622993/930249*39603^(7/22) 9870002028343953 a001 165580141/4870847*39603^(7/22) 9870002028344308 a001 433494437/12752043*39603^(7/22) 9870002028344360 a001 567451585/16692641*39603^(7/22) 9870002028344368 a001 2971215073/87403803*39603^(7/22) 9870002028344369 a001 7778742049/228826127*39603^(7/22) 9870002028344369 a001 10182505537/299537289*39603^(7/22) 9870002028344369 a001 53316291173/1568397607*39603^(7/22) 9870002028344369 a001 139583862445/4106118243*39603^(7/22) 9870002028344369 a001 182717648081/5374978561*39603^(7/22) 9870002028344369 a001 956722026041/28143753123*39603^(7/22) 9870002028344369 a001 2504730781961/73681302247*39603^(7/22) 9870002028344369 a001 3278735159921/96450076809*39603^(7/22) 9870002028344369 a001 10610209857723/312119004989*39603^(7/22) 9870002028344369 a001 4052739537881/119218851371*39603^(7/22) 9870002028344369 a001 387002188980/11384387281*39603^(7/22) 9870002028344369 a001 591286729879/17393796001*39603^(7/22) 9870002028344369 a001 225851433717/6643838879*39603^(7/22) 9870002028344369 a001 1135099622/33391061*39603^(7/22) 9870002028344369 a001 32951280099/969323029*39603^(7/22) 9870002028344369 a001 12586269025/370248451*39603^(7/22) 9870002028344369 a001 1201881744/35355581*39603^(7/22) 9870002028344372 a001 1836311903/54018521*39603^(7/22) 9870002028344392 a001 701408733/20633239*39603^(7/22) 9870002028344528 a001 66978574/1970299*39603^(7/22) 9870002028345458 a001 102334155/3010349*39603^(7/22) 9870002028351833 a001 39088169/1149851*39603^(7/22) 9870002028364740 a001 165580141/271443*15127^(1/20) 9870002028395066 a004 Fibonacci(23)*Lucas(25)/(1/2+sqrt(5)/2)^32 9870002028395526 a001 196452/5779*39603^(7/22) 9870002028401462 a001 46368/64079*103682^(5/8) 9870002028409044 a001 9227465/167761*39603^(3/11) 9870002028432227 a001 14930352/64079*64079^(3/23) 9870002028477974 a001 28657/103682*103682^(17/24) 9870002028479151 a001 433494437/710647*15127^(1/20) 9870002028495844 a001 567451585/930249*15127^(1/20) 9870002028496401 a001 5702887/271443*39603^(4/11) 9870002028498279 a001 2971215073/4870847*15127^(1/20) 9870002028498634 a001 7778742049/12752043*15127^(1/20) 9870002028498686 a001 10182505537/16692641*15127^(1/20) 9870002028498694 a001 53316291173/87403803*15127^(1/20) 9870002028498695 a001 139583862445/228826127*15127^(1/20) 9870002028498695 a001 182717648081/299537289*15127^(1/20) 9870002028498695 a001 956722026041/1568397607*15127^(1/20) 9870002028498695 a001 2504730781961/4106118243*15127^(1/20) 9870002028498695 a001 3278735159921/5374978561*15127^(1/20) 9870002028498695 a001 10610209857723/17393796001*15127^(1/20) 9870002028498695 a001 4052739537881/6643838879*15127^(1/20) 9870002028498695 a001 1134903780/1860499*15127^(1/20) 9870002028498695 a001 591286729879/969323029*15127^(1/20) 9870002028498695 a001 225851433717/370248451*15127^(1/20) 9870002028498696 a001 21566892818/35355581*15127^(1/20) 9870002028498699 a001 32951280099/54018521*15127^(1/20) 9870002028498718 a001 1144206275/1875749*15127^(1/20) 9870002028498854 a001 1201881744/1970299*15127^(1/20) 9870002028499784 a001 1836311903/3010349*15127^(1/20) 9870002028506160 a001 701408733/1149851*15127^(1/20) 9870002028516373 a001 28657/439204*167761^(4/5) 9870002028536749 a001 24157817/64079*64079^(2/23) 9870002028549861 a001 66978574/109801*15127^(1/20) 9870002028577881 a001 514229/103682*39603^(1/2) 9870002028610864 a001 14930352/710647*39603^(4/11) 9870002028611652 a001 3478759201/3524578 9870002028611810 a001 121393/64079*141422324^(1/3) 9870002028611811 a001 28657/271443*817138163596^(1/3) 9870002028611811 a001 28657/271443*(1/2+1/2*5^(1/2))^19 9870002028611811 a001 121393/64079*(1/2+1/2*5^(1/2))^13 9870002028611811 a001 121393/64079*73681302247^(1/4) 9870002028611811 a001 28657/271443*87403803^(1/2) 9870002028612951 a001 514229/64079*167761^(2/5) 9870002028627564 a001 39088169/1860498*39603^(4/11) 9870002028630000 a001 102334155/4870847*39603^(4/11) 9870002028630356 a001 267914296/12752043*39603^(4/11) 9870002028630408 a001 701408733/33385282*39603^(4/11) 9870002028630415 a001 1836311903/87403803*39603^(4/11) 9870002028630416 a001 102287808/4868641*39603^(4/11) 9870002028630417 a001 12586269025/599074578*39603^(4/11) 9870002028630417 a001 32951280099/1568397607*39603^(4/11) 9870002028630417 a001 86267571272/4106118243*39603^(4/11) 9870002028630417 a001 225851433717/10749957122*39603^(4/11) 9870002028630417 a001 591286729879/28143753123*39603^(4/11) 9870002028630417 a001 1548008755920/73681302247*39603^(4/11) 9870002028630417 a001 4052739537881/192900153618*39603^(4/11) 9870002028630417 a001 225749145909/10745088481*39603^(4/11) 9870002028630417 a001 6557470319842/312119004989*39603^(4/11) 9870002028630417 a001 2504730781961/119218851371*39603^(4/11) 9870002028630417 a001 956722026041/45537549124*39603^(4/11) 9870002028630417 a001 365435296162/17393796001*39603^(4/11) 9870002028630417 a001 139583862445/6643838879*39603^(4/11) 9870002028630417 a001 53316291173/2537720636*39603^(4/11) 9870002028630417 a001 20365011074/969323029*39603^(4/11) 9870002028630417 a001 7778742049/370248451*39603^(4/11) 9870002028630417 a001 2971215073/141422324*39603^(4/11) 9870002028630420 a001 1134903170/54018521*39603^(4/11) 9870002028630440 a001 433494437/20633239*39603^(4/11) 9870002028630576 a001 165580141/7881196*39603^(4/11) 9870002028631506 a001 63245986/3010349*39603^(4/11) 9870002028637885 a001 24157817/1149851*39603^(4/11) 9870002028641255 a001 39088169/64079*64079^(1/23) 9870002028675565 a001 5702887/39603*15127^(1/5) 9870002028675565 a001 5702887/64079*167761^(1/5) 9870002028678788 a001 121393/64079*271443^(1/2) 9870002028681606 a001 9227465/439204*39603^(4/11) 9870002028686426 a001 28657/710647*439204^(7/9) 9870002028694600 a004 Fibonacci(23)*Lucas(27)/(1/2+sqrt(5)/2)^34 9870002028695008 a001 5702887/167761*39603^(7/22) 9870002028701374 a001 28657/3010349*439204^(8/9) 9870002028725859 a001 832040/64079*439204^(1/3) 9870002028726121 a001 28657/710647*7881196^(7/11) 9870002028726169 a001 317811/64079*7881196^(1/3) 9870002028726199 a001 700577679/709805 9870002028726208 a001 28657/710647*20633239^(3/5) 9870002028726222 a001 28657/710647*141422324^(7/13) 9870002028726222 a001 28657/710647*2537720636^(7/15) 9870002028726222 a001 28657/710647*17393796001^(3/7) 9870002028726222 a001 28657/710647*45537549124^(7/17) 9870002028726222 a001 28657/710647*14662949395604^(1/3) 9870002028726222 a001 28657/710647*(1/2+1/2*5^(1/2))^21 9870002028726222 a001 28657/710647*192900153618^(7/18) 9870002028726222 a001 28657/710647*10749957122^(7/16) 9870002028726222 a001 317811/64079*312119004989^(1/5) 9870002028726222 a001 317811/64079*(1/2+1/2*5^(1/2))^11 9870002028726222 a001 317811/64079*1568397607^(1/4) 9870002028726222 a001 28657/710647*599074578^(1/2) 9870002028726227 a001 28657/710647*33385282^(7/12) 9870002028728218 a001 28657/710647*1860498^(7/10) 9870002028734555 a001 3524578/64079*439204^(2/9) 9870002028738301 a004 Fibonacci(23)*Lucas(29)/(1/2+sqrt(5)/2)^36 9870002028740072 a001 14930352/64079*439204^(1/9) 9870002028740880 a001 28657/710647*710647^(3/4) 9870002028742871 a001 832040/64079*7881196^(3/11) 9870002028742911 a001 23843770280/24157817 9870002028742914 a001 832040/64079*141422324^(3/13) 9870002028742915 a001 28657/1860498*(1/2+1/2*5^(1/2))^23 9870002028742915 a001 832040/64079*2537720636^(1/5) 9870002028742915 a001 28657/1860498*4106118243^(1/2) 9870002028742915 a001 832040/64079*45537549124^(3/17) 9870002028742915 a001 832040/64079*817138163596^(3/19) 9870002028742915 a001 832040/64079*14662949395604^(1/7) 9870002028742915 a001 832040/64079*(1/2+1/2*5^(1/2))^9 9870002028742915 a001 832040/64079*192900153618^(1/6) 9870002028742915 a001 832040/64079*10749957122^(3/16) 9870002028742915 a001 832040/64079*599074578^(3/14) 9870002028742917 a001 832040/64079*33385282^(1/4) 9870002028743770 a001 832040/64079*1860498^(3/10) 9870002028744677 a004 Fibonacci(23)*Lucas(31)/(1/2+sqrt(5)/2)^38 9870002028745333 a001 28657/4870847*20633239^(5/7) 9870002028745345 a001 2178309/64079*20633239^(1/5) 9870002028745349 a001 62423801013/63245986 9870002028745350 a001 28657/4870847*2537720636^(5/9) 9870002028745350 a001 28657/4870847*312119004989^(5/11) 9870002028745350 a001 28657/4870847*(1/2+1/2*5^(1/2))^25 9870002028745350 a001 28657/4870847*3461452808002^(5/12) 9870002028745350 a001 28657/4870847*28143753123^(1/2) 9870002028745350 a001 2178309/64079*17393796001^(1/7) 9870002028745350 a001 2178309/64079*14662949395604^(1/9) 9870002028745350 a001 2178309/64079*(1/2+1/2*5^(1/2))^7 9870002028745350 a001 2178309/64079*599074578^(1/6) 9870002028745350 a001 28657/4870847*228826127^(5/8) 9870002028745575 a001 28657/12752043*7881196^(9/11) 9870002028745607 a004 Fibonacci(23)*Lucas(33)/(1/2+sqrt(5)/2)^40 9870002028745625 a001 28657/54018521*7881196^(10/11) 9870002028745702 a001 5702887/64079*20633239^(1/7) 9870002028745705 a001 28657/12752043*141422324^(9/13) 9870002028745705 a001 163427632759/165580141 9870002028745705 a001 28657/12752043*2537720636^(3/5) 9870002028745705 a001 28657/12752043*45537549124^(9/17) 9870002028745705 a001 28657/12752043*817138163596^(9/19) 9870002028745705 a001 28657/12752043*14662949395604^(3/7) 9870002028745705 a001 28657/12752043*(1/2+1/2*5^(1/2))^27 9870002028745705 a001 28657/12752043*192900153618^(1/2) 9870002028745705 a001 28657/12752043*10749957122^(9/16) 9870002028745705 a001 5702887/64079*2537720636^(1/9) 9870002028745705 a001 5702887/64079*312119004989^(1/11) 9870002028745705 a001 5702887/64079*(1/2+1/2*5^(1/2))^5 9870002028745705 a001 5702887/64079*28143753123^(1/10) 9870002028745705 a001 28657/12752043*599074578^(9/14) 9870002028745705 a001 5702887/64079*228826127^(1/8) 9870002028745712 a001 28657/12752043*33385282^(3/4) 9870002028745743 a001 14930352/64079*7881196^(1/11) 9870002028745743 a004 Fibonacci(23)*Lucas(35)/(1/2+sqrt(5)/2)^42 9870002028745749 a001 28657/54018521*20633239^(6/7) 9870002028745757 a001 14930352/64079*141422324^(1/13) 9870002028745757 a001 427859097264/433494437 9870002028745757 a001 28657/33385282*(1/2+1/2*5^(1/2))^29 9870002028745757 a001 28657/33385282*1322157322203^(1/2) 9870002028745757 a001 14930352/64079*2537720636^(1/15) 9870002028745757 a001 14930352/64079*45537549124^(1/17) 9870002028745757 a001 14930352/64079*14662949395604^(1/21) 9870002028745757 a001 14930352/64079*(1/2+1/2*5^(1/2))^3 9870002028745757 a001 14930352/64079*192900153618^(1/18) 9870002028745757 a001 14930352/64079*10749957122^(1/16) 9870002028745757 a001 14930352/64079*599074578^(1/14) 9870002028745758 a001 14930352/64079*33385282^(1/12) 9870002028745763 a004 Fibonacci(23)*Lucas(37)/(1/2+sqrt(5)/2)^44 9870002028745765 a001 1120149659033/1134903170 9870002028745765 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^31/Lucas(38) 9870002028745765 a001 28657/87403803*9062201101803^(1/2) 9870002028745765 a001 39088169/128158+39088169/128158*5^(1/2) 9870002028745765 a001 28657/228826127*141422324^(11/13) 9870002028745765 a004 Fibonacci(23)*Lucas(39)/(1/2+sqrt(5)/2)^46 9870002028745766 a001 28657/969323029*141422324^(12/13) 9870002028745766 a001 28657/228826127*2537720636^(11/15) 9870002028745766 a001 2932589879835/2971215073 9870002028745766 a001 28657/228826127*45537549124^(11/17) 9870002028745766 a001 28657/228826127*312119004989^(3/5) 9870002028745766 a001 28657/228826127*817138163596^(11/19) 9870002028745766 a001 28657/228826127*14662949395604^(11/21) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^33/Lucas(40) 9870002028745766 a001 28657/228826127*192900153618^(11/18) 9870002028745766 a001 28657/228826127*10749957122^(11/16) 9870002028745766 a004 Fibonacci(40)/Lucas(23)/(1/2+sqrt(5)/2) 9870002028745766 a001 28657/228826127*1568397607^(3/4) 9870002028745766 a001 28657/228826127*599074578^(11/14) 9870002028745766 a004 Fibonacci(23)*Lucas(41)/(1/2+sqrt(5)/2)^48 9870002028745766 a001 28657/599074578*2537720636^(7/9) 9870002028745766 a001 590586152344/598364773 9870002028745766 a001 28657/599074578*17393796001^(5/7) 9870002028745766 a001 28657/599074578*312119004989^(7/11) 9870002028745766 a001 28657/599074578*14662949395604^(5/9) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^35/Lucas(42) 9870002028745766 a001 28657/599074578*505019158607^(5/8) 9870002028745766 a001 28657/599074578*28143753123^(7/10) 9870002028745766 a004 Fibonacci(42)/Lucas(23)/(1/2+sqrt(5)/2)^3 9870002028745766 a004 Fibonacci(23)*Lucas(43)/(1/2+sqrt(5)/2)^50 9870002028745766 a001 28657/599074578*599074578^(5/6) 9870002028745766 a001 20100270061581/20365011074 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^37/Lucas(44) 9870002028745766 a004 Fibonacci(44)/Lucas(23)/(1/2+sqrt(5)/2)^5 9870002028745766 a001 28657/4106118243*2537720636^(13/15) 9870002028745766 a004 Fibonacci(23)*Lucas(45)/(1/2+sqrt(5)/2)^52 9870002028745766 a001 28657/17393796001*2537720636^(14/15) 9870002028745766 a001 28657/6643838879*2537720636^(8/9) 9870002028745766 a001 28657/4106118243*45537549124^(13/17) 9870002028745766 a001 52623190204271/53316291173 9870002028745766 a001 28657/4106118243*14662949395604^(13/21) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^39/Lucas(46) 9870002028745766 a001 28657/4106118243*192900153618^(13/18) 9870002028745766 a001 28657/4106118243*73681302247^(3/4) 9870002028745766 a001 28657/4106118243*10749957122^(13/16) 9870002028745766 a004 Fibonacci(23)*Lucas(47)/(1/2+sqrt(5)/2)^54 9870002028745766 a001 137769300551232/139583862445 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^41/Lucas(48) 9870002028745766 a004 Fibonacci(23)*Lucas(49)/(1/2+sqrt(5)/2)^56 9870002028745766 a001 360684711449425/365435296162 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^43/Lucas(50) 9870002028745766 a001 28657/73681302247*45537549124^(15/17) 9870002028745766 a004 Fibonacci(23)*Lucas(51)/(1/2+sqrt(5)/2)^58 9870002028745766 a001 28657/312119004989*45537549124^(16/17) 9870002028745766 a001 28657/73681302247*312119004989^(9/11) 9870002028745766 a001 28657/73681302247*14662949395604^(5/7) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^45/Lucas(52) 9870002028745766 a001 28657/73681302247*192900153618^(5/6) 9870002028745766 a004 Fibonacci(23)*Lucas(53)/(1/2+sqrt(5)/2)^60 9870002028745766 a001 2472169789941704/2504730781961 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^47/Lucas(54) 9870002028745766 a004 Fibonacci(23)*Lucas(55)/(1/2+sqrt(5)/2)^62 9870002028745766 a001 28657/817138163596*312119004989^(10/11) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^49/Lucas(56) 9870002028745766 a001 28657/1322157322203*817138163596^(17/19) 9870002028745766 a004 Fibonacci(23)*Lucas(57)/(1/2+sqrt(5)/2)^64 9870002028745766 a001 28657/1322157322203*14662949395604^(17/21) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^51/Lucas(58) 9870002028745766 a004 Fibonacci(23)*Lucas(59)/(1/2+sqrt(5)/2)^66 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^53/Lucas(60) 9870002028745766 a004 Fibonacci(23)*Lucas(61)/(1/2+sqrt(5)/2)^68 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^55/Lucas(62) 9870002028745766 a004 Fibonacci(23)*Lucas(63)/(1/2+sqrt(5)/2)^70 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^57/Lucas(64) 9870002028745766 a004 Fibonacci(23)*Lucas(65)/(1/2+sqrt(5)/2)^72 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^59/Lucas(66) 9870002028745766 a004 Fibonacci(23)*Lucas(67)/(1/2+sqrt(5)/2)^74 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^61/Lucas(68) 9870002028745766 a004 Fibonacci(23)*Lucas(69)/(1/2+sqrt(5)/2)^76 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^63/Lucas(70) 9870002028745766 a004 Fibonacci(23)*Lucas(71)/(1/2+sqrt(5)/2)^78 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^65/Lucas(72) 9870002028745766 a004 Fibonacci(23)*Lucas(73)/(1/2+sqrt(5)/2)^80 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^67/Lucas(74) 9870002028745766 a004 Fibonacci(23)*Lucas(75)/(1/2+sqrt(5)/2)^82 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^69/Lucas(76) 9870002028745766 a004 Fibonacci(23)*Lucas(77)/(1/2+sqrt(5)/2)^84 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^71/Lucas(78) 9870002028745766 a004 Fibonacci(23)*Lucas(79)/(1/2+sqrt(5)/2)^86 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^73/Lucas(80) 9870002028745766 a004 Fibonacci(23)*Lucas(81)/(1/2+sqrt(5)/2)^88 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^75/Lucas(82) 9870002028745766 a004 Fibonacci(23)*Lucas(83)/(1/2+sqrt(5)/2)^90 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^77/Lucas(84) 9870002028745766 a004 Fibonacci(23)*Lucas(85)/(1/2+sqrt(5)/2)^92 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^79/Lucas(86) 9870002028745766 a004 Fibonacci(23)*Lucas(87)/(1/2+sqrt(5)/2)^94 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^81/Lucas(88) 9870002028745766 a004 Fibonacci(23)*Lucas(89)/(1/2+sqrt(5)/2)^96 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^83/Lucas(90) 9870002028745766 a004 Fibonacci(23)*Lucas(91)/(1/2+sqrt(5)/2)^98 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^85/Lucas(92) 9870002028745766 a004 Fibonacci(23)*Lucas(93)/(1/2+sqrt(5)/2)^100 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^87/Lucas(94) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^89/Lucas(96) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^91/Lucas(98) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^92/Lucas(99) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^93/Lucas(100) 9870002028745766 a004 Fibonacci(23)*Lucas(1)/(1/2+sqrt(5)/2)^7 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^90/Lucas(97) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^88/Lucas(95) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^86/Lucas(93) 9870002028745766 a004 Fibonacci(23)*Lucas(92)/(1/2+sqrt(5)/2)^99 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^84/Lucas(91) 9870002028745766 a004 Fibonacci(23)*Lucas(90)/(1/2+sqrt(5)/2)^97 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^82/Lucas(89) 9870002028745766 a004 Fibonacci(23)*Lucas(88)/(1/2+sqrt(5)/2)^95 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^80/Lucas(87) 9870002028745766 a004 Fibonacci(23)*Lucas(86)/(1/2+sqrt(5)/2)^93 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^78/Lucas(85) 9870002028745766 a004 Fibonacci(23)*Lucas(84)/(1/2+sqrt(5)/2)^91 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^76/Lucas(83) 9870002028745766 a004 Fibonacci(23)*Lucas(82)/(1/2+sqrt(5)/2)^89 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^74/Lucas(81) 9870002028745766 a004 Fibonacci(23)*Lucas(80)/(1/2+sqrt(5)/2)^87 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^72/Lucas(79) 9870002028745766 a004 Fibonacci(23)*Lucas(78)/(1/2+sqrt(5)/2)^85 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^70/Lucas(77) 9870002028745766 a004 Fibonacci(23)*Lucas(76)/(1/2+sqrt(5)/2)^83 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^68/Lucas(75) 9870002028745766 a004 Fibonacci(23)*Lucas(74)/(1/2+sqrt(5)/2)^81 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^66/Lucas(73) 9870002028745766 a004 Fibonacci(23)*Lucas(72)/(1/2+sqrt(5)/2)^79 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^64/Lucas(71) 9870002028745766 a004 Fibonacci(23)*Lucas(70)/(1/2+sqrt(5)/2)^77 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^62/Lucas(69) 9870002028745766 a004 Fibonacci(23)*Lucas(68)/(1/2+sqrt(5)/2)^75 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^60/Lucas(67) 9870002028745766 a004 Fibonacci(23)*Lucas(66)/(1/2+sqrt(5)/2)^73 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^58/Lucas(65) 9870002028745766 a004 Fibonacci(23)*Lucas(64)/(1/2+sqrt(5)/2)^71 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^56/Lucas(63) 9870002028745766 a004 Fibonacci(23)*Lucas(62)/(1/2+sqrt(5)/2)^69 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^54/Lucas(61) 9870002028745766 a004 Fibonacci(23)*Lucas(60)/(1/2+sqrt(5)/2)^67 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^52/Lucas(59) 9870002028745766 a004 Fibonacci(23)*Lucas(58)/(1/2+sqrt(5)/2)^65 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^50/Lucas(57) 9870002028745766 a001 10472279282114434/10610209857723 9870002028745766 a001 28657/2139295485799*505019158607^(13/14) 9870002028745766 a004 Fibonacci(23)*Lucas(56)/(1/2+sqrt(5)/2)^63 9870002028745766 a001 28657/312119004989*14662949395604^(16/21) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^48/Lucas(55) 9870002028745766 a001 4000054746086365/4052739537881 9870002028745766 a001 28657/1322157322203*192900153618^(17/18) 9870002028745766 a004 Fibonacci(23)*Lucas(54)/(1/2+sqrt(5)/2)^61 9870002028745766 a001 28657/312119004989*192900153618^(8/9) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^46/Lucas(53) 9870002028745766 a001 1527884956144661/1548008755920 9870002028745766 a001 28657/312119004989*73681302247^(12/13) 9870002028745766 a004 Fibonacci(23)*Lucas(52)/(1/2+sqrt(5)/2)^59 9870002028745766 a001 28657/17393796001*17393796001^(6/7) 9870002028745766 a001 28657/45537549124*312119004989^(4/5) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^44/Lucas(51) 9870002028745766 a001 28657/45537549124*23725150497407^(11/16) 9870002028745766 a001 583600122347618/591286729879 9870002028745766 a001 28657/45537549124*73681302247^(11/13) 9870002028745766 a001 28657/73681302247*28143753123^(9/10) 9870002028745766 a004 Fibonacci(23)*Lucas(50)/(1/2+sqrt(5)/2)^57 9870002028745766 a001 28657/17393796001*45537549124^(14/17) 9870002028745766 a001 28657/17393796001*817138163596^(14/19) 9870002028745766 a001 28657/17393796001*14662949395604^(2/3) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^42/Lucas(49) 9870002028745766 a001 17147339299861/17373187209 9870002028745766 a001 28657/17393796001*192900153618^(7/9) 9870002028745766 a001 28657/73681302247*10749957122^(15/16) 9870002028745766 a001 28657/119218851371*10749957122^(23/24) 9870002028745766 a001 28657/45537549124*10749957122^(11/12) 9870002028745766 a004 Fibonacci(23)*Lucas(48)/(1/2+sqrt(5)/2)^55 9870002028745766 a001 28657/17393796001*10749957122^(7/8) 9870002028745766 a001 28657/6643838879*312119004989^(8/11) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^40/Lucas(47) 9870002028745766 a001 28657/6643838879*23725150497407^(5/8) 9870002028745766 a001 85146110346961/86267571272 9870002028745766 a001 28657/6643838879*73681302247^(10/13) 9870002028745766 a001 28657/6643838879*28143753123^(4/5) 9870002028745766 a001 28657/6643838879*10749957122^(5/6) 9870002028745766 a004 Fibonacci(48)/Lucas(23)/(1/2+sqrt(5)/2)^9 9870002028745766 a001 28657/45537549124*4106118243^(22/23) 9870002028745766 a001 28657/17393796001*4106118243^(21/23) 9870002028745766 a004 Fibonacci(50)/Lucas(23)/(1/2+sqrt(5)/2)^11 9870002028745766 a004 Fibonacci(52)/Lucas(23)/(1/2+sqrt(5)/2)^13 9870002028745766 a004 Fibonacci(54)/Lucas(23)/(1/2+sqrt(5)/2)^15 9870002028745766 a004 Fibonacci(56)/Lucas(23)/(1/2+sqrt(5)/2)^17 9870002028745766 a004 Fibonacci(58)/Lucas(23)/(1/2+sqrt(5)/2)^19 9870002028745766 a004 Fibonacci(60)/Lucas(23)/(1/2+sqrt(5)/2)^21 9870002028745766 a004 Fibonacci(62)/Lucas(23)/(1/2+sqrt(5)/2)^23 9870002028745766 a004 Fibonacci(64)/Lucas(23)/(1/2+sqrt(5)/2)^25 9870002028745766 a004 Fibonacci(66)/Lucas(23)/(1/2+sqrt(5)/2)^27 9870002028745766 a004 Fibonacci(68)/Lucas(23)/(1/2+sqrt(5)/2)^29 9870002028745766 a004 Fibonacci(70)/Lucas(23)/(1/2+sqrt(5)/2)^31 9870002028745766 a004 Fibonacci(72)/Lucas(23)/(1/2+sqrt(5)/2)^33 9870002028745766 a004 Fibonacci(74)/Lucas(23)/(1/2+sqrt(5)/2)^35 9870002028745766 a004 Fibonacci(76)/Lucas(23)/(1/2+sqrt(5)/2)^37 9870002028745766 a004 Fibonacci(78)/Lucas(23)/(1/2+sqrt(5)/2)^39 9870002028745766 a004 Fibonacci(80)/Lucas(23)/(1/2+sqrt(5)/2)^41 9870002028745766 a004 Fibonacci(82)/Lucas(23)/(1/2+sqrt(5)/2)^43 9870002028745766 a004 Fibonacci(84)/Lucas(23)/(1/2+sqrt(5)/2)^45 9870002028745766 a004 Fibonacci(86)/Lucas(23)/(1/2+sqrt(5)/2)^47 9870002028745766 a004 Fibonacci(88)/Lucas(23)/(1/2+sqrt(5)/2)^49 9870002028745766 a004 Fibonacci(90)/Lucas(23)/(1/2+sqrt(5)/2)^51 9870002028745766 a004 Fibonacci(23)*Lucas(46)/(1/2+sqrt(5)/2)^53 9870002028745766 a004 Fibonacci(94)/Lucas(23)/(1/2+sqrt(5)/2)^55 9870002028745766 a004 Fibonacci(96)/Lucas(23)/(1/2+sqrt(5)/2)^57 9870002028745766 a004 Fibonacci(98)/Lucas(23)/(1/2+sqrt(5)/2)^59 9870002028745766 a004 Fibonacci(100)/Lucas(23)/(1/2+sqrt(5)/2)^61 9870002028745766 a004 Fibonacci(99)/Lucas(23)/(1/2+sqrt(5)/2)^60 9870002028745766 a004 Fibonacci(97)/Lucas(23)/(1/2+sqrt(5)/2)^58 9870002028745766 a004 Fibonacci(95)/Lucas(23)/(1/2+sqrt(5)/2)^56 9870002028745766 a004 Fibonacci(93)/Lucas(23)/(1/2+sqrt(5)/2)^54 9870002028745766 a004 Fibonacci(91)/Lucas(23)/(1/2+sqrt(5)/2)^52 9870002028745766 a004 Fibonacci(89)/Lucas(23)/(1/2+sqrt(5)/2)^50 9870002028745766 a004 Fibonacci(87)/Lucas(23)/(1/2+sqrt(5)/2)^48 9870002028745766 a004 Fibonacci(85)/Lucas(23)/(1/2+sqrt(5)/2)^46 9870002028745766 a004 Fibonacci(83)/Lucas(23)/(1/2+sqrt(5)/2)^44 9870002028745766 a004 Fibonacci(81)/Lucas(23)/(1/2+sqrt(5)/2)^42 9870002028745766 a004 Fibonacci(79)/Lucas(23)/(1/2+sqrt(5)/2)^40 9870002028745766 a004 Fibonacci(77)/Lucas(23)/(1/2+sqrt(5)/2)^38 9870002028745766 a004 Fibonacci(75)/Lucas(23)/(1/2+sqrt(5)/2)^36 9870002028745766 a004 Fibonacci(73)/Lucas(23)/(1/2+sqrt(5)/2)^34 9870002028745766 a004 Fibonacci(71)/Lucas(23)/(1/2+sqrt(5)/2)^32 9870002028745766 a004 Fibonacci(69)/Lucas(23)/(1/2+sqrt(5)/2)^30 9870002028745766 a004 Fibonacci(67)/Lucas(23)/(1/2+sqrt(5)/2)^28 9870002028745766 a004 Fibonacci(65)/Lucas(23)/(1/2+sqrt(5)/2)^26 9870002028745766 a004 Fibonacci(63)/Lucas(23)/(1/2+sqrt(5)/2)^24 9870002028745766 a004 Fibonacci(61)/Lucas(23)/(1/2+sqrt(5)/2)^22 9870002028745766 a004 Fibonacci(59)/Lucas(23)/(1/2+sqrt(5)/2)^20 9870002028745766 a004 Fibonacci(57)/Lucas(23)/(1/2+sqrt(5)/2)^18 9870002028745766 a004 Fibonacci(55)/Lucas(23)/(1/2+sqrt(5)/2)^16 9870002028745766 a004 Fibonacci(53)/Lucas(23)/(1/2+sqrt(5)/2)^14 9870002028745766 a004 Fibonacci(51)/Lucas(23)/(1/2+sqrt(5)/2)^12 9870002028745766 a004 Fibonacci(49)/Lucas(23)/(1/2+sqrt(5)/2)^10 9870002028745766 a001 28657/6643838879*4106118243^(20/23) 9870002028745766 a004 Fibonacci(47)/Lucas(23)/(1/2+sqrt(5)/2)^8 9870002028745766 a001 28657/2537720636*817138163596^(2/3) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^38/Lucas(45) 9870002028745766 a001 32522920142690/32951280099 9870002028745766 a001 28657/2537720636*10749957122^(19/24) 9870002028745766 a001 28657/2537720636*4106118243^(19/23) 9870002028745766 a004 Fibonacci(45)/Lucas(23)/(1/2+sqrt(5)/2)^6 9870002028745766 a001 28657/17393796001*1568397607^(21/22) 9870002028745766 a001 28657/6643838879*1568397607^(10/11) 9870002028745766 a004 Fibonacci(23)*Lucas(44)/(1/2+sqrt(5)/2)^51 9870002028745766 a001 28657/2537720636*1568397607^(19/22) 9870002028745766 a001 28657/969323029*2537720636^(4/5) 9870002028745766 a001 28657/969323029*45537549124^(12/17) 9870002028745766 a001 28657/969323029*14662949395604^(4/7) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^36/Lucas(43) 9870002028745766 a001 28657/969323029*505019158607^(9/14) 9870002028745766 a001 28657/969323029*192900153618^(2/3) 9870002028745766 a001 28657/969323029*73681302247^(9/13) 9870002028745766 a001 12422650081109/12586269025 9870002028745766 a001 28657/969323029*10749957122^(3/4) 9870002028745766 a001 28657/969323029*4106118243^(18/23) 9870002028745766 a004 Fibonacci(43)/Lucas(23)/(1/2+sqrt(5)/2)^4 9870002028745766 a001 28657/969323029*1568397607^(9/11) 9870002028745766 a001 28657/4106118243*599074578^(13/14) 9870002028745766 a001 28657/2537720636*599074578^(19/21) 9870002028745766 a001 28657/6643838879*599074578^(20/21) 9870002028745766 a004 Fibonacci(23)*Lucas(42)/(1/2+sqrt(5)/2)^49 9870002028745766 a001 28657/969323029*599074578^(6/7) 9870002028745766 a001 28657/370248451*45537549124^(2/3) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^34/Lucas(41) 9870002028745766 a001 28657/370248451*10749957122^(17/24) 9870002028745766 a001 4745030100637/4807526976 9870002028745766 a001 28657/370248451*4106118243^(17/23) 9870002028745766 a004 Fibonacci(41)/Lucas(23)/(1/2+sqrt(5)/2)^2 9870002028745766 a001 28657/370248451*1568397607^(17/22) 9870002028745766 a001 28657/370248451*599074578^(17/21) 9870002028745766 a001 28657/599074578*228826127^(7/8) 9870002028745766 a001 28657/969323029*228826127^(9/10) 9870002028745766 a001 28657/2537720636*228826127^(19/20) 9870002028745766 a004 Fibonacci(23)*Lucas(40)/(1/2+sqrt(5)/2)^47 9870002028745766 a001 28657/370248451*228826127^(17/20) 9870002028745766 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^32/Lucas(39) 9870002028745766 a001 28657/141422324*23725150497407^(1/2) 9870002028745766 a001 28657/141422324*505019158607^(4/7) 9870002028745766 a001 28657/141422324*73681302247^(8/13) 9870002028745766 a001 28657/141422324*10749957122^(2/3) 9870002028745766 a001 28657/141422324*4106118243^(16/23) 9870002028745766 a001 63245986/64079 9870002028745766 a001 28657/141422324*1568397607^(8/11) 9870002028745766 a001 28657/141422324*599074578^(16/21) 9870002028745767 a001 28657/141422324*228826127^(4/5) 9870002028745767 a001 28657/370248451*87403803^(17/19) 9870002028745767 a001 28657/969323029*87403803^(18/19) 9870002028745767 a004 Fibonacci(23)*Lucas(38)/(1/2+sqrt(5)/2)^45 9870002028745768 a001 28657/141422324*87403803^(16/19) 9870002028745769 a001 28657/54018521*141422324^(10/13) 9870002028745769 a001 28657/54018521*2537720636^(2/3) 9870002028745769 a001 28657/54018521*45537549124^(10/17) 9870002028745769 a001 28657/54018521*312119004989^(6/11) 9870002028745769 a001 28657/54018521*14662949395604^(10/21) 9870002028745769 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^30/Lucas(37) 9870002028745769 a001 28657/54018521*192900153618^(5/9) 9870002028745769 a001 28657/54018521*28143753123^(3/5) 9870002028745769 a001 28657/54018521*10749957122^(5/8) 9870002028745769 a001 28657/54018521*4106118243^(15/23) 9870002028745769 a001 24157817/64079*(1/2+1/2*5^(1/2))^2 9870002028745769 a001 24157817/64079*10749957122^(1/24) 9870002028745769 a001 24157817/64079*4106118243^(1/23) 9870002028745769 a001 24157817/64079*1568397607^(1/22) 9870002028745769 a001 24157817/64079*599074578^(1/21) 9870002028745769 a001 28657/54018521*1568397607^(15/22) 9870002028745769 a001 692290561769/701408733 9870002028745769 a001 24157817/64079*228826127^(1/20) 9870002028745769 a001 28657/54018521*599074578^(5/7) 9870002028745769 a001 24157817/64079*87403803^(1/19) 9870002028745769 a001 28657/54018521*228826127^(3/4) 9870002028745770 a001 24157817/64079*33385282^(1/18) 9870002028745770 a001 28657/54018521*87403803^(15/19) 9870002028745771 a001 28657/20633239*20633239^(4/5) 9870002028745773 a001 24157817/64079*12752043^(1/17) 9870002028745774 a001 28657/228826127*33385282^(11/12) 9870002028745774 a001 28657/141422324*33385282^(8/9) 9870002028745774 a001 28657/370248451*33385282^(17/18) 9870002028745775 a004 Fibonacci(23)*Lucas(36)/(1/2+sqrt(5)/2)^43 9870002028745777 a001 28657/54018521*33385282^(5/6) 9870002028745789 a001 28657/20633239*17393796001^(4/7) 9870002028745789 a001 28657/20633239*14662949395604^(4/9) 9870002028745789 a001 28657/20633239*(1/2+1/2*5^(1/2))^28 9870002028745789 a001 28657/20633239*505019158607^(1/2) 9870002028745789 a001 28657/20633239*73681302247^(7/13) 9870002028745789 a001 28657/20633239*10749957122^(7/12) 9870002028745789 a001 28657/20633239*4106118243^(14/23) 9870002028745789 a001 9227465/64079*(1/2+1/2*5^(1/2))^4 9870002028745789 a001 9227465/64079*23725150497407^(1/16) 9870002028745789 a001 9227465/64079*73681302247^(1/13) 9870002028745789 a001 9227465/64079*10749957122^(1/12) 9870002028745789 a001 9227465/64079*4106118243^(2/23) 9870002028745789 a001 9227465/64079*1568397607^(1/11) 9870002028745789 a001 28657/20633239*1568397607^(7/11) 9870002028745789 a001 9227465/64079*599074578^(2/21) 9870002028745789 a001 28657/20633239*599074578^(2/3) 9870002028745789 a001 9227465/64079*228826127^(1/10) 9870002028745789 a001 20340881885/20608792 9870002028745789 a001 28657/20633239*228826127^(7/10) 9870002028745789 a001 9227465/64079*87403803^(2/19) 9870002028745790 a001 28657/20633239*87403803^(14/19) 9870002028745790 a001 9227465/64079*33385282^(1/9) 9870002028745795 a001 24157817/64079*4870847^(1/16) 9870002028745796 a001 28657/20633239*33385282^(7/9) 9870002028745796 a001 9227465/64079*12752043^(2/17) 9870002028745823 a001 28657/54018521*12752043^(15/17) 9870002028745824 a001 28657/141422324*12752043^(16/17) 9870002028745827 a004 Fibonacci(23)*Lucas(34)/(1/2+sqrt(5)/2)^41 9870002028745839 a001 28657/20633239*12752043^(14/17) 9870002028745841 a001 9227465/64079*4870847^(1/8) 9870002028745896 a001 3524578/64079*7881196^(2/11) 9870002028745925 a001 28657/7881196*141422324^(2/3) 9870002028745925 a001 3524578/64079*141422324^(2/13) 9870002028745925 a001 28657/7881196*(1/2+1/2*5^(1/2))^26 9870002028745925 a001 28657/7881196*73681302247^(1/2) 9870002028745925 a001 28657/7881196*10749957122^(13/24) 9870002028745925 a001 28657/7881196*4106118243^(13/23) 9870002028745925 a001 3524578/64079*2537720636^(2/15) 9870002028745925 a001 3524578/64079*45537549124^(2/17) 9870002028745925 a001 3524578/64079*14662949395604^(2/21) 9870002028745925 a001 3524578/64079*(1/2+1/2*5^(1/2))^6 9870002028745925 a001 3524578/64079*10749957122^(1/8) 9870002028745925 a001 3524578/64079*4106118243^(3/23) 9870002028745925 a001 3524578/64079*1568397607^(3/22) 9870002028745925 a001 28657/7881196*1568397607^(13/22) 9870002028745925 a001 3524578/64079*599074578^(1/7) 9870002028745925 a001 28657/7881196*599074578^(13/21) 9870002028745925 a001 3524578/64079*228826127^(3/20) 9870002028745925 a001 28657/7881196*228826127^(13/20) 9870002028745925 a001 101003831746/102334155 9870002028745925 a001 3524578/64079*87403803^(3/19) 9870002028745926 a001 28657/7881196*87403803^(13/19) 9870002028745926 a001 3524578/64079*33385282^(1/6) 9870002028745931 a001 28657/7881196*33385282^(13/18) 9870002028745936 a001 3524578/64079*12752043^(3/17) 9870002028745959 a001 24157817/64079*1860498^(1/15) 9870002028745971 a001 28657/7881196*12752043^(13/17) 9870002028746003 a001 3524578/64079*4870847^(3/16) 9870002028746042 a001 14930352/64079*1860498^(1/10) 9870002028746153 a001 28657/20633239*4870847^(7/8) 9870002028746159 a001 28657/54018521*4870847^(15/16) 9870002028746169 a001 9227465/64079*1860498^(2/15) 9870002028746180 a001 5702887/64079*1860498^(1/6) 9870002028746182 a004 Fibonacci(23)*Lucas(32)/(1/2+sqrt(5)/2)^39 9870002028746263 a001 28657/7881196*4870847^(13/16) 9870002028746495 a001 3524578/64079*1860498^(1/5) 9870002028746740 a001 28657/3010349*7881196^(8/11) 9870002028746855 a001 28657/3010349*141422324^(8/13) 9870002028746855 a001 28657/3010349*2537720636^(8/15) 9870002028746855 a001 28657/3010349*45537549124^(8/17) 9870002028746855 a001 28657/3010349*14662949395604^(8/21) 9870002028746855 a001 28657/3010349*(1/2+1/2*5^(1/2))^24 9870002028746855 a001 28657/3010349*192900153618^(4/9) 9870002028746855 a001 28657/3010349*73681302247^(6/13) 9870002028746855 a001 28657/3010349*10749957122^(1/2) 9870002028746855 a001 28657/3010349*4106118243^(12/23) 9870002028746855 a001 1346269/64079*(1/2+1/2*5^(1/2))^8 9870002028746855 a001 1346269/64079*23725150497407^(1/8) 9870002028746855 a001 1346269/64079*505019158607^(1/7) 9870002028746855 a001 1346269/64079*73681302247^(2/13) 9870002028746855 a001 1346269/64079*10749957122^(1/6) 9870002028746855 a001 1346269/64079*4106118243^(4/23) 9870002028746855 a001 1346269/64079*1568397607^(2/11) 9870002028746855 a001 28657/3010349*1568397607^(6/11) 9870002028746855 a001 1346269/64079*599074578^(4/21) 9870002028746855 a001 28657/3010349*599074578^(4/7) 9870002028746855 a001 1346269/64079*228826127^(1/5) 9870002028746855 a001 28657/3010349*228826127^(3/5) 9870002028746855 a001 1346269/64079*87403803^(4/19) 9870002028746856 a001 28657/3010349*87403803^(12/19) 9870002028746856 a001 38580030733/39088169 9870002028746857 a001 1346269/64079*33385282^(2/9) 9870002028746861 a001 28657/3010349*33385282^(2/3) 9870002028746869 a001 1346269/64079*12752043^(4/17) 9870002028746898 a001 28657/3010349*12752043^(12/17) 9870002028746959 a001 1346269/64079*4870847^(1/4) 9870002028747165 a001 24157817/64079*710647^(1/14) 9870002028747167 a001 28657/3010349*4870847^(3/4) 9870002028747615 a001 1346269/64079*1860498^(4/15) 9870002028747726 a001 28657/4870847*1860498^(5/6) 9870002028748272 a001 28657/12752043*1860498^(9/10) 9870002028748396 a001 28657/7881196*1860498^(13/15) 9870002028748450 a001 28657/20633239*1860498^(14/15) 9870002028748581 a001 9227465/64079*710647^(1/7) 9870002028748617 a004 Fibonacci(23)*Lucas(30)/(1/2+sqrt(5)/2)^37 9870002028749136 a001 28657/3010349*1860498^(4/5) 9870002028750113 a001 3524578/64079*710647^(3/14) 9870002028750236 a001 2178309/64079*710647^(1/4) 9870002028752439 a001 1346269/64079*710647^(2/7) 9870002028753125 a001 28657/1149851*7881196^(2/3) 9870002028753224 a001 514229/64079*20633239^(2/7) 9870002028753231 a001 28657/1149851*312119004989^(2/5) 9870002028753231 a001 28657/1149851*(1/2+1/2*5^(1/2))^22 9870002028753231 a001 28657/1149851*10749957122^(11/24) 9870002028753231 a001 514229/64079*2537720636^(2/9) 9870002028753231 a001 28657/1149851*4106118243^(11/23) 9870002028753231 a001 514229/64079*312119004989^(2/11) 9870002028753231 a001 514229/64079*(1/2+1/2*5^(1/2))^10 9870002028753231 a001 514229/64079*28143753123^(1/5) 9870002028753231 a001 514229/64079*10749957122^(5/24) 9870002028753231 a001 514229/64079*4106118243^(5/23) 9870002028753231 a001 514229/64079*1568397607^(5/22) 9870002028753231 a001 28657/1149851*1568397607^(1/2) 9870002028753231 a001 514229/64079*599074578^(5/21) 9870002028753231 a001 28657/1149851*599074578^(11/21) 9870002028753231 a001 514229/64079*228826127^(1/4) 9870002028753231 a001 28657/1149851*228826127^(11/20) 9870002028753231 a001 514229/64079*87403803^(5/19) 9870002028753232 a001 28657/1149851*87403803^(11/19) 9870002028753233 a001 514229/64079*33385282^(5/18) 9870002028753236 a001 28657/1149851*33385282^(11/18) 9870002028753240 a001 14736260453/14930352 9870002028753249 a001 514229/64079*12752043^(5/17) 9870002028753270 a001 28657/1149851*12752043^(11/17) 9870002028753361 a001 514229/64079*4870847^(5/16) 9870002028753517 a001 28657/1149851*4870847^(11/16) 9870002028754181 a001 514229/64079*1860498^(1/3) 9870002028755322 a001 28657/1149851*1860498^(11/15) 9870002028756074 a001 24157817/64079*271443^(1/13) 9870002028760211 a001 514229/64079*710647^(5/14) 9870002028763607 a001 28657/3010349*710647^(6/7) 9870002028764073 a001 28657/7881196*710647^(13/14) 9870002028765310 a004 Fibonacci(23)*Lucas(28)/(1/2+sqrt(5)/2)^35 9870002028766398 a001 9227465/64079*271443^(2/13) 9870002028768587 a001 28657/1149851*710647^(11/14) 9870002028774192 a001 196418/64079*439204^(4/9) 9870002028776838 a001 3524578/64079*271443^(3/13) 9870002028782668 a001 3524578/271443*39603^(9/22) 9870002028784021 a001 39088169/64079*103682^(1/24) 9870002028788072 a001 1346269/64079*271443^(4/13) 9870002028796875 a001 196418/64079*7881196^(4/11) 9870002028796919 a001 28657/439204*20633239^(4/7) 9870002028796932 a001 196418/64079*141422324^(4/13) 9870002028796932 a001 28657/439204*2537720636^(4/9) 9870002028796932 a001 28657/439204*(1/2+1/2*5^(1/2))^20 9870002028796932 a001 28657/439204*23725150497407^(5/16) 9870002028796932 a001 28657/439204*505019158607^(5/14) 9870002028796932 a001 28657/439204*73681302247^(5/13) 9870002028796932 a001 28657/439204*28143753123^(2/5) 9870002028796932 a001 28657/439204*10749957122^(5/12) 9870002028796932 a001 196418/64079*2537720636^(4/15) 9870002028796932 a001 28657/439204*4106118243^(10/23) 9870002028796932 a001 196418/64079*45537549124^(4/17) 9870002028796932 a001 196418/64079*817138163596^(4/19) 9870002028796932 a001 196418/64079*14662949395604^(4/21) 9870002028796932 a001 196418/64079*(1/2+1/2*5^(1/2))^12 9870002028796932 a001 196418/64079*192900153618^(2/9) 9870002028796932 a001 196418/64079*73681302247^(3/13) 9870002028796932 a001 196418/64079*10749957122^(1/4) 9870002028796932 a001 196418/64079*4106118243^(6/23) 9870002028796932 a001 196418/64079*1568397607^(3/11) 9870002028796932 a001 28657/439204*1568397607^(5/11) 9870002028796932 a001 196418/64079*599074578^(2/7) 9870002028796932 a001 28657/439204*599074578^(10/21) 9870002028796932 a001 196418/64079*228826127^(3/10) 9870002028796932 a001 28657/439204*228826127^(1/2) 9870002028796933 a001 196418/64079*87403803^(6/19) 9870002028796933 a001 28657/439204*87403803^(10/19) 9870002028796935 a001 196418/64079*33385282^(1/3) 9870002028796937 a001 28657/439204*33385282^(5/9) 9870002028796954 a001 196418/64079*12752043^(6/17) 9870002028796968 a001 28657/439204*12752043^(10/17) 9870002028796993 a001 5628750626/5702887 9870002028797088 a001 196418/64079*4870847^(3/8) 9870002028797192 a001 28657/439204*4870847^(5/8) 9870002028798073 a001 196418/64079*1860498^(2/5) 9870002028798833 a001 28657/439204*1860498^(2/3) 9870002028804752 a001 514229/64079*271443^(5/13) 9870002028805308 a001 196418/64079*710647^(3/7) 9870002028810892 a001 28657/439204*710647^(5/7) 9870002028822281 a001 24157817/64079*103682^(1/12) 9870002028836920 a001 317811/103682*39603^(6/11) 9870002028849394 a001 9303105/15251*15127^(1/20) 9870002028858758 a001 196418/64079*271443^(6/13) 9870002028860525 a001 14930352/64079*103682^(1/8) 9870002028866578 a001 28657/1149851*271443^(11/13) 9870002028870506 a001 28657/3010349*271443^(12/13) 9870002028879721 a004 Fibonacci(23)*Lucas(26)/(1/2+sqrt(5)/2)^33 9870002028896944 a001 9227465/710647*39603^(9/22) 9870002028898813 a001 9227465/64079*103682^(1/6) 9870002028899975 a001 28657/439204*271443^(10/13) 9870002028913616 a001 24157817/1860498*39603^(9/22) 9870002028916049 a001 63245986/4870847*39603^(9/22) 9870002028916404 a001 165580141/12752043*39603^(9/22) 9870002028916455 a001 433494437/33385282*39603^(9/22) 9870002028916463 a001 1134903170/87403803*39603^(9/22) 9870002028916464 a001 2971215073/228826127*39603^(9/22) 9870002028916464 a001 7778742049/599074578*39603^(9/22) 9870002028916464 a001 20365011074/1568397607*39603^(9/22) 9870002028916464 a001 53316291173/4106118243*39603^(9/22) 9870002028916464 a001 139583862445/10749957122*39603^(9/22) 9870002028916464 a001 365435296162/28143753123*39603^(9/22) 9870002028916464 a001 956722026041/73681302247*39603^(9/22) 9870002028916464 a001 2504730781961/192900153618*39603^(9/22) 9870002028916464 a001 10610209857723/817138163596*39603^(9/22) 9870002028916464 a001 4052739537881/312119004989*39603^(9/22) 9870002028916464 a001 1548008755920/119218851371*39603^(9/22) 9870002028916464 a001 591286729879/45537549124*39603^(9/22) 9870002028916464 a001 7787980473/599786069*39603^(9/22) 9870002028916464 a001 86267571272/6643838879*39603^(9/22) 9870002028916464 a001 32951280099/2537720636*39603^(9/22) 9870002028916464 a001 12586269025/969323029*39603^(9/22) 9870002028916464 a001 4807526976/370248451*39603^(9/22) 9870002028916465 a001 1836311903/141422324*39603^(9/22) 9870002028916468 a001 701408733/54018521*39603^(9/22) 9870002028916487 a001 9238424/711491*39603^(9/22) 9870002028916623 a001 102334155/7881196*39603^(9/22) 9870002028917552 a001 39088169/3010349*39603^(9/22) 9870002028923920 a001 14930352/1149851*39603^(9/22) 9870002028936985 a001 5702887/64079*103682^(5/24) 9870002028967570 a001 5702887/439204*39603^(9/22) 9870002028975461 a001 3524578/64079*103682^(1/4) 9870002028981275 a001 3524578/167761*39603^(4/11) 9870002029013142 a001 2178309/64079*103682^(7/24) 9870002029031812 a001 39088169/64079*39603^(1/22) 9870002029052903 a001 1346269/64079*103682^(1/3) 9870002029062355 a001 28657/167761*439204^(2/3) 9870002029068141 a001 726103/90481*39603^(5/11) 9870002029082511 a001 23184/51841*39603^(8/11) 9870002029087218 a001 832040/64079*103682^(3/8) 9870002029096379 a001 28657/167761*7881196^(6/11) 9870002029096456 a001 75025/64079*20633239^(2/5) 9870002029096465 a001 28657/167761*141422324^(6/13) 9870002029096466 a001 28657/167761*2537720636^(2/5) 9870002029096466 a001 28657/167761*45537549124^(6/17) 9870002029096466 a001 28657/167761*14662949395604^(2/7) 9870002029096466 a001 28657/167761*(1/2+1/2*5^(1/2))^18 9870002029096466 a001 28657/167761*192900153618^(1/3) 9870002029096466 a001 28657/167761*10749957122^(3/8) 9870002029096466 a001 28657/167761*4106118243^(9/23) 9870002029096466 a001 75025/64079*17393796001^(2/7) 9870002029096466 a001 75025/64079*14662949395604^(2/9) 9870002029096466 a001 75025/64079*(1/2+1/2*5^(1/2))^14 9870002029096466 a001 75025/64079*505019158607^(1/4) 9870002029096466 a001 75025/64079*10749957122^(7/24) 9870002029096466 a001 75025/64079*4106118243^(7/23) 9870002029096466 a001 28657/167761*1568397607^(9/22) 9870002029096466 a001 75025/64079*1568397607^(7/22) 9870002029096466 a001 75025/64079*599074578^(1/3) 9870002029096466 a001 28657/167761*599074578^(3/7) 9870002029096466 a001 75025/64079*228826127^(7/20) 9870002029096466 a001 28657/167761*228826127^(9/20) 9870002029096466 a001 75025/64079*87403803^(7/19) 9870002029096466 a001 28657/167761*87403803^(9/19) 9870002029096469 a001 75025/64079*33385282^(7/18) 9870002029096470 a001 28657/167761*33385282^(1/2) 9870002029096491 a001 75025/64079*12752043^(7/17) 9870002029096498 a001 28657/167761*12752043^(9/17) 9870002029096648 a001 75025/64079*4870847^(7/16) 9870002029096700 a001 28657/167761*4870847^(9/16) 9870002029096882 a001 2149991425/2178309 9870002029097796 a001 75025/64079*1860498^(7/15) 9870002029098176 a001 28657/167761*1860498^(3/5) 9870002029106237 a001 75025/64079*710647^(1/2) 9870002029109029 a001 28657/167761*710647^(9/14) 9870002029109138 a001 121393/64079*103682^(13/24) 9870002029135791 a001 514229/64079*103682^(5/12) 9870002029147038 a001 317811/64079*103682^(11/24) 9870002029168595 a001 75025/64079*271443^(7/13) 9870002029182907 a001 5702887/710647*39603^(5/11) 9870002029189204 a001 28657/167761*271443^(9/13) 9870002029193678 a001 98209/51841*39603^(13/22) 9870002029199652 a001 829464/103361*39603^(5/11) 9870002029202095 a001 39088169/4870847*39603^(5/11) 9870002029202451 a001 34111385/4250681*39603^(5/11) 9870002029202503 a001 133957148/16692641*39603^(5/11) 9870002029202511 a001 233802911/29134601*39603^(5/11) 9870002029202512 a001 1836311903/228826127*39603^(5/11) 9870002029202512 a001 267084832/33281921*39603^(5/11) 9870002029202512 a001 12586269025/1568397607*39603^(5/11) 9870002029202512 a001 10983760033/1368706081*39603^(5/11) 9870002029202512 a001 43133785636/5374978561*39603^(5/11) 9870002029202512 a001 75283811239/9381251041*39603^(5/11) 9870002029202512 a001 591286729879/73681302247*39603^(5/11) 9870002029202512 a001 86000486440/10716675201*39603^(5/11) 9870002029202512 a001 4052739537881/505019158607*39603^(5/11) 9870002029202512 a001 3536736619241/440719107401*39603^(5/11) 9870002029202512 a001 3278735159921/408569081798*39603^(5/11) 9870002029202512 a001 2504730781961/312119004989*39603^(5/11) 9870002029202512 a001 956722026041/119218851371*39603^(5/11) 9870002029202512 a001 182717648081/22768774562*39603^(5/11) 9870002029202512 a001 139583862445/17393796001*39603^(5/11) 9870002029202512 a001 53316291173/6643838879*39603^(5/11) 9870002029202512 a001 10182505537/1268860318*39603^(5/11) 9870002029202512 a001 7778742049/969323029*39603^(5/11) 9870002029202512 a001 2971215073/370248451*39603^(5/11) 9870002029202512 a001 567451585/70711162*39603^(5/11) 9870002029202515 a001 433494437/54018521*39603^(5/11) 9870002029202535 a001 165580141/20633239*39603^(5/11) 9870002029202671 a001 31622993/3940598*39603^(5/11) 9870002029203604 a001 24157817/3010349*39603^(5/11) 9870002029210000 a001 9227465/1149851*39603^(5/11) 9870002029253837 a001 1762289/219602*39603^(5/11) 9870002029256004 a001 196418/64079*103682^(1/2) 9870002029266748 a001 2178309/167761*39603^(9/22) 9870002029294604 a001 121393/103682*39603^(7/11) 9870002029317865 a001 24157817/64079*39603^(1/11) 9870002029338674 a001 28657/271443*103682^(19/24) 9870002029355693 a001 1346269/271443*39603^(1/2) 9870002029469175 a001 3524578/710647*39603^(1/2) 9870002029477336 a001 28657/64079*64079^(16/23) 9870002029485731 a001 9227465/1860498*39603^(1/2) 9870002029488147 a001 24157817/4870847*39603^(1/2) 9870002029488499 a001 63245986/12752043*39603^(1/2) 9870002029488551 a001 165580141/33385282*39603^(1/2) 9870002029488558 a001 433494437/87403803*39603^(1/2) 9870002029488559 a001 1134903170/228826127*39603^(1/2) 9870002029488560 a001 2971215073/599074578*39603^(1/2) 9870002029488560 a001 7778742049/1568397607*39603^(1/2) 9870002029488560 a001 20365011074/4106118243*39603^(1/2) 9870002029488560 a001 53316291173/10749957122*39603^(1/2) 9870002029488560 a001 139583862445/28143753123*39603^(1/2) 9870002029488560 a001 365435296162/73681302247*39603^(1/2) 9870002029488560 a001 956722026041/192900153618*39603^(1/2) 9870002029488560 a001 2504730781961/505019158607*39603^(1/2) 9870002029488560 a001 10610209857723/2139295485799*39603^(1/2) 9870002029488560 a001 4052739537881/817138163596*39603^(1/2) 9870002029488560 a001 140728068720/28374454999*39603^(1/2) 9870002029488560 a001 591286729879/119218851371*39603^(1/2) 9870002029488560 a001 225851433717/45537549124*39603^(1/2) 9870002029488560 a001 86267571272/17393796001*39603^(1/2) 9870002029488560 a001 32951280099/6643838879*39603^(1/2) 9870002029488560 a001 1144206275/230701876*39603^(1/2) 9870002029488560 a001 4807526976/969323029*39603^(1/2) 9870002029488560 a001 1836311903/370248451*39603^(1/2) 9870002029488560 a001 701408733/141422324*39603^(1/2) 9870002029488563 a001 267914296/54018521*39603^(1/2) 9870002029488583 a001 9303105/1875749*39603^(1/2) 9870002029488717 a001 39088169/7881196*39603^(1/2) 9870002029489640 a001 14930352/3010349*39603^(1/2) 9870002029495964 a001 5702887/1149851*39603^(1/2) 9870002029529598 a001 28657/710647*103682^(7/8) 9870002029539310 a001 2178309/439204*39603^(1/2) 9870002029554301 a001 1346269/167761*39603^(5/11) 9870002029562052 a001 28657/439204*103682^(5/6) 9870002029594862 a001 28657/1149851*103682^(11/12) 9870002029603900 a001 14930352/64079*39603^(3/22) 9870002029622802 a001 28657/1860498*103682^(23/24) 9870002029632049 a001 75025/64079*103682^(7/12) 9870002029637800 a001 832040/271443*39603^(6/11) 9870002029663909 a004 Fibonacci(23)*Lucas(24)/(1/2+sqrt(5)/2)^31 9870002029737210 a001 39088169/103682*15127^(1/10) 9870002029754647 a001 311187/101521*39603^(6/11) 9870002029771695 a001 5702887/1860498*39603^(6/11) 9870002029774182 a001 14930352/4870847*39603^(6/11) 9870002029774545 a001 39088169/12752043*39603^(6/11) 9870002029774598 a001 14619165/4769326*39603^(6/11) 9870002029774606 a001 267914296/87403803*39603^(6/11) 9870002029774607 a001 701408733/228826127*39603^(6/11) 9870002029774607 a001 1836311903/599074578*39603^(6/11) 9870002029774607 a001 686789568/224056801*39603^(6/11) 9870002029774607 a001 12586269025/4106118243*39603^(6/11) 9870002029774607 a001 32951280099/10749957122*39603^(6/11) 9870002029774607 a001 86267571272/28143753123*39603^(6/11) 9870002029774607 a001 32264490531/10525900321*39603^(6/11) 9870002029774607 a001 591286729879/192900153618*39603^(6/11) 9870002029774607 a001 1548008755920/505019158607*39603^(6/11) 9870002029774607 a001 1515744265389/494493258286*39603^(6/11) 9870002029774607 a001 2504730781961/817138163596*39603^(6/11) 9870002029774607 a001 956722026041/312119004989*39603^(6/11) 9870002029774607 a001 365435296162/119218851371*39603^(6/11) 9870002029774607 a001 139583862445/45537549124*39603^(6/11) 9870002029774607 a001 53316291173/17393796001*39603^(6/11) 9870002029774607 a001 20365011074/6643838879*39603^(6/11) 9870002029774607 a001 7778742049/2537720636*39603^(6/11) 9870002029774607 a001 2971215073/969323029*39603^(6/11) 9870002029774607 a001 1134903170/370248451*39603^(6/11) 9870002029774608 a001 433494437/141422324*39603^(6/11) 9870002029774611 a001 165580141/54018521*39603^(6/11) 9870002029774631 a001 63245986/20633239*39603^(6/11) 9870002029774769 a001 24157817/7881196*39603^(6/11) 9870002029775720 a001 9227465/3010349*39603^(6/11) 9870002029782231 a001 3524578/1149851*39603^(6/11) 9870002029785073 a001 28657/167761*103682^(3/4) 9870002029826863 a001 1346269/439204*39603^(6/11) 9870002029836408 a001 75640/15251*39603^(1/2) 9870002029889980 a001 9227465/64079*39603^(2/11) 9870002029934165 a001 514229/271443*39603^(13/22) 9870002030042200 a001 1346269/710647*39603^(13/22) 9870002030057962 a001 1762289/930249*39603^(13/22) 9870002030060262 a001 9227465/4870847*39603^(13/22) 9870002030060598 a001 24157817/12752043*39603^(13/22) 9870002030060646 a001 31622993/16692641*39603^(13/22) 9870002030060654 a001 165580141/87403803*39603^(13/22) 9870002030060655 a001 433494437/228826127*39603^(13/22) 9870002030060655 a001 567451585/299537289*39603^(13/22) 9870002030060655 a001 2971215073/1568397607*39603^(13/22) 9870002030060655 a001 7778742049/4106118243*39603^(13/22) 9870002030060655 a001 10182505537/5374978561*39603^(13/22) 9870002030060655 a001 53316291173/28143753123*39603^(13/22) 9870002030060655 a001 139583862445/73681302247*39603^(13/22) 9870002030060655 a001 182717648081/96450076809*39603^(13/22) 9870002030060655 a001 956722026041/505019158607*39603^(13/22) 9870002030060655 a001 10610209857723/5600748293801*39603^(13/22) 9870002030060655 a001 591286729879/312119004989*39603^(13/22) 9870002030060655 a001 225851433717/119218851371*39603^(13/22) 9870002030060655 a001 21566892818/11384387281*39603^(13/22) 9870002030060655 a001 32951280099/17393796001*39603^(13/22) 9870002030060655 a001 12586269025/6643838879*39603^(13/22) 9870002030060655 a001 1201881744/634430159*39603^(13/22) 9870002030060655 a001 1836311903/969323029*39603^(13/22) 9870002030060655 a001 701408733/370248451*39603^(13/22) 9870002030060655 a001 66978574/35355581*39603^(13/22) 9870002030060658 a001 102334155/54018521*39603^(13/22) 9870002030060677 a001 39088169/20633239*39603^(13/22) 9870002030060805 a001 3732588/1970299*39603^(13/22) 9870002030061683 a001 5702887/3010349*39603^(13/22) 9870002030065306 a001 75025/103682*39603^(15/22) 9870002030067704 a001 2178309/1149851*39603^(13/22) 9870002030108970 a001 208010/109801*39603^(13/22) 9870002030132772 a001 514229/167761*39603^(6/11) 9870002030175944 a001 5702887/64079*39603^(5/22) 9870002030193203 a001 105937/90481*39603^(7/11) 9870002030324307 a001 832040/710647*39603^(7/11) 9870002030343435 a001 726103/620166*39603^(7/11) 9870002030346226 a001 5702887/4870847*39603^(7/11) 9870002030346633 a001 4976784/4250681*39603^(7/11) 9870002030346692 a001 39088169/33385282*39603^(7/11) 9870002030346701 a001 34111385/29134601*39603^(7/11) 9870002030346702 a001 267914296/228826127*39603^(7/11) 9870002030346702 a001 233802911/199691526*39603^(7/11) 9870002030346703 a001 1836311903/1568397607*39603^(7/11) 9870002030346703 a001 1602508992/1368706081*39603^(7/11) 9870002030346703 a001 12586269025/10749957122*39603^(7/11) 9870002030346703 a001 10983760033/9381251041*39603^(7/11) 9870002030346703 a001 86267571272/73681302247*39603^(7/11) 9870002030346703 a001 75283811239/64300051206*39603^(7/11) 9870002030346703 a001 2504730781961/2139295485799*39603^(7/11) 9870002030346703 a001 365435296162/312119004989*39603^(7/11) 9870002030346703 a001 139583862445/119218851371*39603^(7/11) 9870002030346703 a001 53316291173/45537549124*39603^(7/11) 9870002030346703 a001 20365011074/17393796001*39603^(7/11) 9870002030346703 a001 7778742049/6643838879*39603^(7/11) 9870002030346703 a001 2971215073/2537720636*39603^(7/11) 9870002030346703 a001 1134903170/969323029*39603^(7/11) 9870002030346703 a001 433494437/370248451*39603^(7/11) 9870002030346703 a001 165580141/141422324*39603^(7/11) 9870002030346706 a001 63245986/54018521*39603^(7/11) 9870002030346729 a001 24157817/20633239*39603^(7/11) 9870002030346885 a001 9227465/7881196*39603^(7/11) 9870002030347951 a001 3524578/3010349*39603^(7/11) 9870002030355257 a001 1346269/1149851*39603^(7/11) 9870002030391811 a001 317811/167761*39603^(13/22) 9870002030405334 a001 514229/439204*39603^(7/11) 9870002030438794 a001 15456/90481*39603^(9/11) 9870002030462211 a001 3524578/64079*39603^(3/11) 9870002030521399 a001 34111385/90481*15127^(1/10) 9870002030549961 a001 196418/271443*39603^(15/22) 9870002030620671 a001 514229/710647*39603^(15/22) 9870002030630988 a001 1346269/1860498*39603^(15/22) 9870002030632493 a001 3524578/4870847*39603^(15/22) 9870002030632713 a001 9227465/12752043*39603^(15/22) 9870002030632745 a001 24157817/33385282*39603^(15/22) 9870002030632749 a001 63245986/87403803*39603^(15/22) 9870002030632750 a001 165580141/228826127*39603^(15/22) 9870002030632750 a001 433494437/599074578*39603^(15/22) 9870002030632750 a001 1134903170/1568397607*39603^(15/22) 9870002030632750 a001 2971215073/4106118243*39603^(15/22) 9870002030632750 a001 7778742049/10749957122*39603^(15/22) 9870002030632750 a001 20365011074/28143753123*39603^(15/22) 9870002030632750 a001 53316291173/73681302247*39603^(15/22) 9870002030632750 a001 139583862445/192900153618*39603^(15/22) 9870002030632750 a001 365435296162/505019158607*39603^(15/22) 9870002030632750 a001 10610209857723/14662949395604*39603^(15/22) 9870002030632750 a001 591286729879/817138163596*39603^(15/22) 9870002030632750 a001 225851433717/312119004989*39603^(15/22) 9870002030632750 a001 86267571272/119218851371*39603^(15/22) 9870002030632750 a001 32951280099/45537549124*39603^(15/22) 9870002030632750 a001 12586269025/17393796001*39603^(15/22) 9870002030632750 a001 4807526976/6643838879*39603^(15/22) 9870002030632750 a001 1836311903/2537720636*39603^(15/22) 9870002030632750 a001 701408733/969323029*39603^(15/22) 9870002030632750 a001 267914296/370248451*39603^(15/22) 9870002030632750 a001 102334155/141422324*39603^(15/22) 9870002030632752 a001 39088169/54018521*39603^(15/22) 9870002030632764 a001 14930352/20633239*39603^(15/22) 9870002030632848 a001 5702887/7881196*39603^(15/22) 9870002030633423 a001 2178309/3010349*39603^(15/22) 9870002030635811 a001 267914296/710647*15127^(1/10) 9870002030637364 a001 832040/1149851*39603^(15/22) 9870002030637402 a001 46368/167761*39603^(17/22) 9870002030650887 a001 121393/271443*39603^(8/11) 9870002030652503 a001 233802911/620166*15127^(1/10) 9870002030654939 a001 1836311903/4870847*15127^(1/10) 9870002030655294 a001 1602508992/4250681*15127^(1/10) 9870002030655346 a001 12586269025/33385282*15127^(1/10) 9870002030655354 a001 10983760033/29134601*15127^(1/10) 9870002030655355 a001 86267571272/228826127*15127^(1/10) 9870002030655355 a001 267913919/710646*15127^(1/10) 9870002030655355 a001 591286729879/1568397607*15127^(1/10) 9870002030655355 a001 516002918640/1368706081*15127^(1/10) 9870002030655355 a001 4052739537881/10749957122*15127^(1/10) 9870002030655355 a001 3536736619241/9381251041*15127^(1/10) 9870002030655355 a001 6557470319842/17393796001*15127^(1/10) 9870002030655355 a001 2504730781961/6643838879*15127^(1/10) 9870002030655355 a001 956722026041/2537720636*15127^(1/10) 9870002030655355 a001 365435296162/969323029*15127^(1/10) 9870002030655355 a001 139583862445/370248451*15127^(1/10) 9870002030655355 a001 53316291173/141422324*15127^(1/10) 9870002030655358 a001 20365011074/54018521*15127^(1/10) 9870002030655378 a001 7778742049/20633239*15127^(1/10) 9870002030655514 a001 2971215073/7881196*15127^(1/10) 9870002030656444 a001 1134903170/3010349*15127^(1/10) 9870002030662820 a001 433494437/1149851*15127^(1/10) 9870002030664373 a001 317811/439204*39603^(15/22) 9870002030706521 a001 165580141/439204*15127^(1/10) 9870002030747684 a001 2178309/64079*39603^(7/22) 9870002030748568 a001 196418/167761*39603^(7/11) 9870002030832445 a001 3524578/39603*15127^(1/4) 9870002030849494 a001 121393/167761*39603^(15/22) 9870002030879710 a001 317811/710647*39603^(8/11) 9870002030902424 a001 39088169/64079*15127^(1/20) 9870002030909964 a001 11592/109801*39603^(19/22) 9870002030913095 a001 416020/930249*39603^(8/11) 9870002030917966 a001 2178309/4870847*39603^(8/11) 9870002030918676 a001 5702887/12752043*39603^(8/11) 9870002030918780 a001 7465176/16692641*39603^(8/11) 9870002030918795 a001 39088169/87403803*39603^(8/11) 9870002030918797 a001 102334155/228826127*39603^(8/11) 9870002030918798 a001 133957148/299537289*39603^(8/11) 9870002030918798 a001 701408733/1568397607*39603^(8/11) 9870002030918798 a001 1836311903/4106118243*39603^(8/11) 9870002030918798 a001 2403763488/5374978561*39603^(8/11) 9870002030918798 a001 12586269025/28143753123*39603^(8/11) 9870002030918798 a001 32951280099/73681302247*39603^(8/11) 9870002030918798 a001 43133785636/96450076809*39603^(8/11) 9870002030918798 a001 225851433717/505019158607*39603^(8/11) 9870002030918798 a001 591286729879/1322157322203*39603^(8/11) 9870002030918798 a001 10610209857723/23725150497407*39603^(8/11) 9870002030918798 a001 182717648081/408569081798*39603^(8/11) 9870002030918798 a001 139583862445/312119004989*39603^(8/11) 9870002030918798 a001 53316291173/119218851371*39603^(8/11) 9870002030918798 a001 10182505537/22768774562*39603^(8/11) 9870002030918798 a001 7778742049/17393796001*39603^(8/11) 9870002030918798 a001 2971215073/6643838879*39603^(8/11) 9870002030918798 a001 567451585/1268860318*39603^(8/11) 9870002030918798 a001 433494437/969323029*39603^(8/11) 9870002030918798 a001 165580141/370248451*39603^(8/11) 9870002030918799 a001 31622993/70711162*39603^(8/11) 9870002030918805 a001 24157817/54018521*39603^(8/11) 9870002030918844 a001 9227465/20633239*39603^(8/11) 9870002030919116 a001 1762289/3940598*39603^(8/11) 9870002030920976 a001 1346269/3010349*39603^(8/11) 9870002030930718 a001 9227465/24476*9349^(2/19) 9870002030933728 a001 514229/1149851*39603^(8/11) 9870002031006055 a001 63245986/167761*15127^(1/10) 9870002031021131 a001 98209/219602*39603^(8/11) 9870002031035236 a001 1346269/64079*39603^(4/11) 9870002031099397 a001 10946/64079*24476^(6/7) 9870002031122057 a001 121393/439204*39603^(17/22) 9870002031125301 a001 6624/101521*39603^(10/11) 9870002031149497 a001 28657/64079*(1/2+1/2*5^(1/2))^16 9870002031149497 a001 28657/64079*23725150497407^(1/4) 9870002031149497 a001 28657/64079*73681302247^(4/13) 9870002031149497 a001 28657/64079*10749957122^(1/3) 9870002031149497 a001 28657/64079*4106118243^(8/23) 9870002031149497 a001 28657/64079*1568397607^(4/11) 9870002031149497 a001 28657/64079*599074578^(8/21) 9870002031149497 a001 28657/64079*228826127^(2/5) 9870002031149497 a001 28657/64079*87403803^(8/19) 9870002031149500 a001 28657/64079*33385282^(4/9) 9870002031149525 a001 28657/64079*12752043^(8/17) 9870002031149705 a001 28657/64079*4870847^(1/2) 9870002031151017 a001 28657/64079*1860498^(8/15) 9870002031152348 a001 821223649/832040 9870002031160664 a001 28657/64079*710647^(4/7) 9870002031192767 a001 317811/1149851*39603^(17/22) 9870002031203083 a001 832040/3010349*39603^(17/22) 9870002031204588 a001 2178309/7881196*39603^(17/22) 9870002031204808 a001 5702887/20633239*39603^(17/22) 9870002031204840 a001 14930352/54018521*39603^(17/22) 9870002031204845 a001 39088169/141422324*39603^(17/22) 9870002031204845 a001 102334155/370248451*39603^(17/22) 9870002031204845 a001 267914296/969323029*39603^(17/22) 9870002031204845 a001 701408733/2537720636*39603^(17/22) 9870002031204845 a001 1836311903/6643838879*39603^(17/22) 9870002031204845 a001 4807526976/17393796001*39603^(17/22) 9870002031204845 a001 12586269025/45537549124*39603^(17/22) 9870002031204845 a001 32951280099/119218851371*39603^(17/22) 9870002031204845 a001 86267571272/312119004989*39603^(17/22) 9870002031204845 a001 225851433717/817138163596*39603^(17/22) 9870002031204845 a001 1548008755920/5600748293801*39603^(17/22) 9870002031204845 a001 139583862445/505019158607*39603^(17/22) 9870002031204845 a001 53316291173/192900153618*39603^(17/22) 9870002031204845 a001 20365011074/73681302247*39603^(17/22) 9870002031204845 a001 7778742049/28143753123*39603^(17/22) 9870002031204845 a001 2971215073/10749957122*39603^(17/22) 9870002031204845 a001 1134903170/4106118243*39603^(17/22) 9870002031204845 a001 433494437/1568397607*39603^(17/22) 9870002031204846 a001 165580141/599074578*39603^(17/22) 9870002031204846 a001 63245986/228826127*39603^(17/22) 9870002031204848 a001 24157817/87403803*39603^(17/22) 9870002031204860 a001 9227465/33385282*39603^(17/22) 9870002031204944 a001 3524578/12752043*39603^(17/22) 9870002031205519 a001 1346269/4870847*39603^(17/22) 9870002031209459 a001 514229/1860498*39603^(17/22) 9870002031231931 a001 28657/64079*271443^(8/13) 9870002031236468 a001 196418/710647*39603^(17/22) 9870002031317343 a001 832040/64079*39603^(9/22) 9870002031337394 a001 121393/710647*39603^(9/11) 9870002031421590 a001 75025/271443*39603^(17/22) 9870002031438358 a001 46368/1149851*39603^(21/22) 9870002031468498 a001 105937/620166*39603^(9/11) 9870002031487626 a001 832040/4870847*39603^(9/11) 9870002031490416 a001 726103/4250681*39603^(9/11) 9870002031490824 a001 5702887/33385282*39603^(9/11) 9870002031490883 a001 4976784/29134601*39603^(9/11) 9870002031490892 a001 39088169/228826127*39603^(9/11) 9870002031490893 a001 34111385/199691526*39603^(9/11) 9870002031490893 a001 267914296/1568397607*39603^(9/11) 9870002031490893 a001 233802911/1368706081*39603^(9/11) 9870002031490893 a001 1836311903/10749957122*39603^(9/11) 9870002031490893 a001 1602508992/9381251041*39603^(9/11) 9870002031490893 a001 12586269025/73681302247*39603^(9/11) 9870002031490893 a001 10983760033/64300051206*39603^(9/11) 9870002031490893 a001 86267571272/505019158607*39603^(9/11) 9870002031490893 a001 75283811239/440719107401*39603^(9/11) 9870002031490893 a001 2504730781961/14662949395604*39603^(9/11) 9870002031490893 a001 139583862445/817138163596*39603^(9/11) 9870002031490893 a001 53316291173/312119004989*39603^(9/11) 9870002031490893 a001 20365011074/119218851371*39603^(9/11) 9870002031490893 a001 7778742049/45537549124*39603^(9/11) 9870002031490893 a001 2971215073/17393796001*39603^(9/11) 9870002031490893 a001 1134903170/6643838879*39603^(9/11) 9870002031490893 a001 433494437/2537720636*39603^(9/11) 9870002031490893 a001 165580141/969323029*39603^(9/11) 9870002031490894 a001 63245986/370248451*39603^(9/11) 9870002031490897 a001 24157817/141422324*39603^(9/11) 9870002031490920 a001 9227465/54018521*39603^(9/11) 9870002031491075 a001 3524578/20633239*39603^(9/11) 9870002031492141 a001 1346269/7881196*39603^(9/11) 9870002031499447 a001 514229/3010349*39603^(9/11) 9870002031549525 a001 196418/1149851*39603^(9/11) 9870002031613708 a001 514229/64079*39603^(5/11) 9870002031620197 a001 75025/167761*39603^(8/11) 9870002031650451 a001 121393/1149851*39603^(19/22) 9870002031700240 a001 11592/6119*24476^(13/21) 9870002031716940 a004 Fibonacci(24)*Lucas(22)/(1/2+sqrt(5)/2)^30 9870002031758486 a001 317811/3010349*39603^(19/22) 9870002031761592 a001 28657/64079*103682^(2/3) 9870002031774248 a001 208010/1970299*39603^(19/22) 9870002031776548 a001 2178309/20633239*39603^(19/22) 9870002031776883 a001 5702887/54018521*39603^(19/22) 9870002031776932 a001 3732588/35355581*39603^(19/22) 9870002031776940 a001 39088169/370248451*39603^(19/22) 9870002031776941 a001 102334155/969323029*39603^(19/22) 9870002031776941 a001 66978574/634430159*39603^(19/22) 9870002031776941 a001 701408733/6643838879*39603^(19/22) 9870002031776941 a001 1836311903/17393796001*39603^(19/22) 9870002031776941 a001 1201881744/11384387281*39603^(19/22) 9870002031776941 a001 12586269025/119218851371*39603^(19/22) 9870002031776941 a001 32951280099/312119004989*39603^(19/22) 9870002031776941 a001 21566892818/204284540899*39603^(19/22) 9870002031776941 a001 225851433717/2139295485799*39603^(19/22) 9870002031776941 a001 182717648081/1730726404001*39603^(19/22) 9870002031776941 a001 139583862445/1322157322203*39603^(19/22) 9870002031776941 a001 53316291173/505019158607*39603^(19/22) 9870002031776941 a001 10182505537/96450076809*39603^(19/22) 9870002031776941 a001 7778742049/73681302247*39603^(19/22) 9870002031776941 a001 2971215073/28143753123*39603^(19/22) 9870002031776941 a001 567451585/5374978561*39603^(19/22) 9870002031776941 a001 433494437/4106118243*39603^(19/22) 9870002031776941 a001 165580141/1568397607*39603^(19/22) 9870002031776941 a001 31622993/299537289*39603^(19/22) 9870002031776944 a001 24157817/228826127*39603^(19/22) 9870002031776963 a001 9227465/87403803*39603^(19/22) 9870002031777091 a001 1762289/16692641*39603^(19/22) 9870002031777969 a001 1346269/12752043*39603^(19/22) 9870002031783990 a001 514229/4870847*39603^(19/22) 9870002031825256 a001 98209/930249*39603^(19/22) 9870002031872746 a001 317811/64079*39603^(1/2) 9870002031892759 a001 75025/439204*39603^(9/11) 9870002031893875 a001 24157817/103682*15127^(3/20) 9870002031926182 a001 121393/1860498*39603^(10/11) 9870002032034151 a001 10946/15127*15127^(3/4) 9870002032043029 a001 317811/4870847*39603^(10/11) 9870002032060076 a001 832040/12752043*39603^(10/11) 9870002032062564 a001 311187/4769326*39603^(10/11) 9870002032062926 a001 5702887/87403803*39603^(10/11) 9870002032062979 a001 14930352/228826127*39603^(10/11) 9870002032062987 a001 39088169/599074578*39603^(10/11) 9870002032062988 a001 14619165/224056801*39603^(10/11) 9870002032062988 a001 267914296/4106118243*39603^(10/11) 9870002032062988 a001 701408733/10749957122*39603^(10/11) 9870002032062988 a001 1836311903/28143753123*39603^(10/11) 9870002032062988 a001 686789568/10525900321*39603^(10/11) 9870002032062988 a001 12586269025/192900153618*39603^(10/11) 9870002032062988 a001 32951280099/505019158607*39603^(10/11) 9870002032062988 a001 86267571272/1322157322203*39603^(10/11) 9870002032062988 a001 32264490531/494493258286*39603^(10/11) 9870002032062988 a001 591286729879/9062201101803*39603^(10/11) 9870002032062988 a001 1548008755920/23725150497407*39603^(10/11) 9870002032062988 a001 365435296162/5600748293801*39603^(10/11) 9870002032062988 a001 139583862445/2139295485799*39603^(10/11) 9870002032062988 a001 53316291173/817138163596*39603^(10/11) 9870002032062988 a001 20365011074/312119004989*39603^(10/11) 9870002032062988 a001 7778742049/119218851371*39603^(10/11) 9870002032062988 a001 2971215073/45537549124*39603^(10/11) 9870002032062988 a001 1134903170/17393796001*39603^(10/11) 9870002032062988 a001 433494437/6643838879*39603^(10/11) 9870002032062989 a001 165580141/2537720636*39603^(10/11) 9870002032062989 a001 63245986/969323029*39603^(10/11) 9870002032062992 a001 24157817/370248451*39603^(10/11) 9870002032063012 a001 9227465/141422324*39603^(10/11) 9870002032063151 a001 3524578/54018521*39603^(10/11) 9870002032064101 a001 1346269/20633239*39603^(10/11) 9870002032070612 a001 514229/7881196*39603^(10/11) 9870002032108097 a001 75025/710647*39603^(19/22) 9870002032115244 a001 196418/3010349*39603^(10/11) 9870002032118337 a001 46368/64079*39603^(15/22) 9870002032216170 a001 121393/3010349*39603^(21/22) 9870002032229504 a001 196418/64079*39603^(6/11) 9870002032329651 a001 317811/7881196*39603^(21/22) 9870002032330430 a001 121393/64079*39603^(13/22) 9870002032346208 a001 75640/1875749*39603^(21/22) 9870002032348623 a001 2178309/54018521*39603^(21/22) 9870002032348976 a001 5702887/141422324*39603^(21/22) 9870002032349027 a001 14930352/370248451*39603^(21/22) 9870002032349035 a001 39088169/969323029*39603^(21/22) 9870002032349036 a001 9303105/230701876*39603^(21/22) 9870002032349036 a001 267914296/6643838879*39603^(21/22) 9870002032349036 a001 701408733/17393796001*39603^(21/22) 9870002032349036 a001 1836311903/45537549124*39603^(21/22) 9870002032349036 a001 4807526976/119218851371*39603^(21/22) 9870002032349036 a001 1144206275/28374454999*39603^(21/22) 9870002032349036 a001 32951280099/817138163596*39603^(21/22) 9870002032349036 a001 86267571272/2139295485799*39603^(21/22) 9870002032349036 a001 225851433717/5600748293801*39603^(21/22) 9870002032349036 a001 591286729879/14662949395604*39603^(21/22) 9870002032349036 a001 365435296162/9062201101803*39603^(21/22) 9870002032349036 a001 139583862445/3461452808002*39603^(21/22) 9870002032349036 a001 53316291173/1322157322203*39603^(21/22) 9870002032349036 a001 20365011074/505019158607*39603^(21/22) 9870002032349036 a001 7778742049/192900153618*39603^(21/22) 9870002032349036 a001 2971215073/73681302247*39603^(21/22) 9870002032349036 a001 1134903170/28143753123*39603^(21/22) 9870002032349036 a001 433494437/10749957122*39603^(21/22) 9870002032349036 a001 165580141/4106118243*39603^(21/22) 9870002032349037 a001 63245986/1568397607*39603^(21/22) 9870002032349039 a001 24157817/599074578*39603^(21/22) 9870002032349059 a001 9227465/228826127*39603^(21/22) 9870002032349194 a001 3524578/87403803*39603^(21/22) 9870002032350116 a001 1346269/33385282*39603^(21/22) 9870002032356440 a001 514229/12752043*39603^(21/22) 9870002032399786 a001 196418/4870847*39603^(21/22) 9870002032421153 a001 75025/1149851*39603^(10/11) 9870002032482218 a001 3524578/15127*5778^(1/6) 9870002032501128 a004 Fibonacci(26)*Lucas(22)/(1/2+sqrt(5)/2)^32 9870002032615540 a004 Fibonacci(28)*Lucas(22)/(1/2+sqrt(5)/2)^34 9870002032632232 a004 Fibonacci(30)*Lucas(22)/(1/2+sqrt(5)/2)^36 9870002032634668 a004 Fibonacci(32)*Lucas(22)/(1/2+sqrt(5)/2)^38 9870002032635023 a004 Fibonacci(34)*Lucas(22)/(1/2+sqrt(5)/2)^40 9870002032635075 a004 Fibonacci(36)*Lucas(22)/(1/2+sqrt(5)/2)^42 9870002032635082 a004 Fibonacci(38)*Lucas(22)/(1/2+sqrt(5)/2)^44 9870002032635084 a004 Fibonacci(40)*Lucas(22)/(1/2+sqrt(5)/2)^46 9870002032635084 a004 Fibonacci(42)*Lucas(22)/(1/2+sqrt(5)/2)^48 9870002032635084 a004 Fibonacci(44)*Lucas(22)/(1/2+sqrt(5)/2)^50 9870002032635084 a004 Fibonacci(46)*Lucas(22)/(1/2+sqrt(5)/2)^52 9870002032635084 a004 Fibonacci(48)*Lucas(22)/(1/2+sqrt(5)/2)^54 9870002032635084 a004 Fibonacci(50)*Lucas(22)/(1/2+sqrt(5)/2)^56 9870002032635084 a004 Fibonacci(52)*Lucas(22)/(1/2+sqrt(5)/2)^58 9870002032635084 a004 Fibonacci(54)*Lucas(22)/(1/2+sqrt(5)/2)^60 9870002032635084 a004 Fibonacci(56)*Lucas(22)/(1/2+sqrt(5)/2)^62 9870002032635084 a004 Fibonacci(58)*Lucas(22)/(1/2+sqrt(5)/2)^64 9870002032635084 a004 Fibonacci(60)*Lucas(22)/(1/2+sqrt(5)/2)^66 9870002032635084 a004 Fibonacci(62)*Lucas(22)/(1/2+sqrt(5)/2)^68 9870002032635084 a004 Fibonacci(64)*Lucas(22)/(1/2+sqrt(5)/2)^70 9870002032635084 a004 Fibonacci(66)*Lucas(22)/(1/2+sqrt(5)/2)^72 9870002032635084 a004 Fibonacci(68)*Lucas(22)/(1/2+sqrt(5)/2)^74 9870002032635084 a004 Fibonacci(70)*Lucas(22)/(1/2+sqrt(5)/2)^76 9870002032635084 a004 Fibonacci(72)*Lucas(22)/(1/2+sqrt(5)/2)^78 9870002032635084 a004 Fibonacci(74)*Lucas(22)/(1/2+sqrt(5)/2)^80 9870002032635084 a004 Fibonacci(76)*Lucas(22)/(1/2+sqrt(5)/2)^82 9870002032635084 a004 Fibonacci(78)*Lucas(22)/(1/2+sqrt(5)/2)^84 9870002032635084 a004 Fibonacci(80)*Lucas(22)/(1/2+sqrt(5)/2)^86 9870002032635084 a004 Fibonacci(82)*Lucas(22)/(1/2+sqrt(5)/2)^88 9870002032635084 a004 Fibonacci(84)*Lucas(22)/(1/2+sqrt(5)/2)^90 9870002032635084 a004 Fibonacci(86)*Lucas(22)/(1/2+sqrt(5)/2)^92 9870002032635084 a004 Fibonacci(88)*Lucas(22)/(1/2+sqrt(5)/2)^94 9870002032635084 a004 Fibonacci(90)*Lucas(22)/(1/2+sqrt(5)/2)^96 9870002032635084 a004 Fibonacci(92)*Lucas(22)/(1/2+sqrt(5)/2)^98 9870002032635084 a004 Fibonacci(94)*Lucas(22)/(1/2+sqrt(5)/2)^100 9870002032635084 a004 Fibonacci(93)*Lucas(22)/(1/2+sqrt(5)/2)^99 9870002032635084 a004 Fibonacci(91)*Lucas(22)/(1/2+sqrt(5)/2)^97 9870002032635084 a004 Fibonacci(89)*Lucas(22)/(1/2+sqrt(5)/2)^95 9870002032635084 a004 Fibonacci(87)*Lucas(22)/(1/2+sqrt(5)/2)^93 9870002032635084 a004 Fibonacci(85)*Lucas(22)/(1/2+sqrt(5)/2)^91 9870002032635084 a004 Fibonacci(83)*Lucas(22)/(1/2+sqrt(5)/2)^89 9870002032635084 a004 Fibonacci(81)*Lucas(22)/(1/2+sqrt(5)/2)^87 9870002032635084 a004 Fibonacci(79)*Lucas(22)/(1/2+sqrt(5)/2)^85 9870002032635084 a004 Fibonacci(77)*Lucas(22)/(1/2+sqrt(5)/2)^83 9870002032635084 a004 Fibonacci(75)*Lucas(22)/(1/2+sqrt(5)/2)^81 9870002032635084 a004 Fibonacci(73)*Lucas(22)/(1/2+sqrt(5)/2)^79 9870002032635084 a004 Fibonacci(71)*Lucas(22)/(1/2+sqrt(5)/2)^77 9870002032635084 a004 Fibonacci(69)*Lucas(22)/(1/2+sqrt(5)/2)^75 9870002032635084 a004 Fibonacci(67)*Lucas(22)/(1/2+sqrt(5)/2)^73 9870002032635084 a004 Fibonacci(65)*Lucas(22)/(1/2+sqrt(5)/2)^71 9870002032635084 a004 Fibonacci(63)*Lucas(22)/(1/2+sqrt(5)/2)^69 9870002032635084 a004 Fibonacci(61)*Lucas(22)/(1/2+sqrt(5)/2)^67 9870002032635084 a004 Fibonacci(59)*Lucas(22)/(1/2+sqrt(5)/2)^65 9870002032635084 a004 Fibonacci(57)*Lucas(22)/(1/2+sqrt(5)/2)^63 9870002032635084 a004 Fibonacci(55)*Lucas(22)/(1/2+sqrt(5)/2)^61 9870002032635084 a004 Fibonacci(53)*Lucas(22)/(1/2+sqrt(5)/2)^59 9870002032635084 a004 Fibonacci(51)*Lucas(22)/(1/2+sqrt(5)/2)^57 9870002032635084 a004 Fibonacci(49)*Lucas(22)/(1/2+sqrt(5)/2)^55 9870002032635084 a004 Fibonacci(47)*Lucas(22)/(1/2+sqrt(5)/2)^53 9870002032635084 a004 Fibonacci(45)*Lucas(22)/(1/2+sqrt(5)/2)^51 9870002032635084 a001 2/17711*(1/2+1/2*5^(1/2))^38 9870002032635084 a004 Fibonacci(43)*Lucas(22)/(1/2+sqrt(5)/2)^49 9870002032635084 a004 Fibonacci(41)*Lucas(22)/(1/2+sqrt(5)/2)^47 9870002032635084 a004 Fibonacci(39)*Lucas(22)/(1/2+sqrt(5)/2)^45 9870002032635087 a004 Fibonacci(37)*Lucas(22)/(1/2+sqrt(5)/2)^43 9870002032635107 a004 Fibonacci(35)*Lucas(22)/(1/2+sqrt(5)/2)^41 9870002032635243 a004 Fibonacci(33)*Lucas(22)/(1/2+sqrt(5)/2)^39 9870002032636173 a004 Fibonacci(31)*Lucas(22)/(1/2+sqrt(5)/2)^37 9870002032642549 a004 Fibonacci(29)*Lucas(22)/(1/2+sqrt(5)/2)^35 9870002032678060 a001 63245986/271443*15127^(3/20) 9870002032686250 a004 Fibonacci(27)*Lucas(22)/(1/2+sqrt(5)/2)^33 9870002032690433 a001 28657/103682*39603^(17/22) 9870002032696884 a001 75025/1860498*39603^(21/22) 9870002032792471 a001 165580141/710647*15127^(3/20) 9870002032809163 a001 433494437/1860498*15127^(3/20) 9870002032811599 a001 1134903170/4870847*15127^(3/20) 9870002032811954 a001 2971215073/12752043*15127^(3/20) 9870002032812006 a001 7778742049/33385282*15127^(3/20) 9870002032812013 a001 20365011074/87403803*15127^(3/20) 9870002032812014 a001 53316291173/228826127*15127^(3/20) 9870002032812015 a001 139583862445/599074578*15127^(3/20) 9870002032812015 a001 365435296162/1568397607*15127^(3/20) 9870002032812015 a001 956722026041/4106118243*15127^(3/20) 9870002032812015 a001 2504730781961/10749957122*15127^(3/20) 9870002032812015 a001 6557470319842/28143753123*15127^(3/20) 9870002032812015 a001 10610209857723/45537549124*15127^(3/20) 9870002032812015 a001 4052739537881/17393796001*15127^(3/20) 9870002032812015 a001 1548008755920/6643838879*15127^(3/20) 9870002032812015 a001 591286729879/2537720636*15127^(3/20) 9870002032812015 a001 225851433717/969323029*15127^(3/20) 9870002032812015 a001 86267571272/370248451*15127^(3/20) 9870002032812015 a001 63246219/271444*15127^(3/20) 9870002032812018 a001 12586269025/54018521*15127^(3/20) 9870002032812038 a001 4807526976/20633239*15127^(3/20) 9870002032812174 a001 1836311903/7881196*15127^(3/20) 9870002032813104 a001 701408733/3010349*15127^(3/20) 9870002032819480 a001 267914296/1149851*15127^(3/20) 9870002032863181 a001 102334155/439204*15127^(3/20) 9870002032985783 a004 Fibonacci(25)*Lucas(22)/(1/2+sqrt(5)/2)^31 9870002032988530 a001 726103/13201*15127^(3/10) 9870002033059089 a001 24157817/64079*15127^(1/10) 9870002033101133 a001 75025/64079*39603^(7/11) 9870002033162713 a001 39088169/167761*15127^(3/20) 9870002033713660 a007 Real Root Of -690*x^4+864*x^3+565*x^2-527*x+415 9870002033753627 a001 75025/24476*24476^(4/7) 9870002034046716 a001 28657/271443*39603^(19/22) 9870002034050522 a001 7465176/51841*15127^(1/5) 9870002034053516 a001 121393/24476*24476^(11/21) 9870002034237571 a001 28657/24476*24476^(2/3) 9870002034245323 a001 28657/167761*39603^(9/11) 9870002034517885 a001 28657/439204*39603^(10/11) 9870002034733223 a001 28657/710647*39603^(21/22) 9870002034747731 a001 10946/39603*64079^(17/23) 9870002034834718 a001 39088169/271443*15127^(1/5) 9870002034949130 a001 14619165/101521*15127^(1/5) 9870002034956751 a001 17711/24476*64079^(15/23) 9870002034965823 a001 133957148/930249*15127^(1/5) 9870002034968258 a001 701408733/4870847*15127^(1/5) 9870002034968614 a001 1836311903/12752043*15127^(1/5) 9870002034968666 a001 14930208/103681*15127^(1/5) 9870002034968673 a001 12586269025/87403803*15127^(1/5) 9870002034968674 a001 32951280099/228826127*15127^(1/5) 9870002034968674 a001 43133785636/299537289*15127^(1/5) 9870002034968674 a001 32264490531/224056801*15127^(1/5) 9870002034968674 a001 591286729879/4106118243*15127^(1/5) 9870002034968674 a001 774004377960/5374978561*15127^(1/5) 9870002034968674 a001 4052739537881/28143753123*15127^(1/5) 9870002034968674 a001 1515744265389/10525900321*15127^(1/5) 9870002034968674 a001 3278735159921/22768774562*15127^(1/5) 9870002034968674 a001 2504730781961/17393796001*15127^(1/5) 9870002034968674 a001 956722026041/6643838879*15127^(1/5) 9870002034968674 a001 182717648081/1268860318*15127^(1/5) 9870002034968674 a001 139583862445/969323029*15127^(1/5) 9870002034968674 a001 53316291173/370248451*15127^(1/5) 9870002034968675 a001 10182505537/70711162*15127^(1/5) 9870002034968678 a001 7778742049/54018521*15127^(1/5) 9870002034968698 a001 2971215073/20633239*15127^(1/5) 9870002034968833 a001 567451585/3940598*15127^(1/5) 9870002034969764 a001 433494437/3010349*15127^(1/5) 9870002034976140 a001 165580141/1149851*15127^(1/5) 9870002035019841 a001 31622993/219602*15127^(1/5) 9870002035023181 a001 98209/12238*24476^(10/21) 9870002035038814 a004 Fibonacci(23)*Lucas(22)/(1/2+sqrt(5)/2)^29 9870002035146694 a001 1346269/39603*15127^(7/20) 9870002035215736 a001 14930352/64079*15127^(3/20) 9870002035319377 a001 24157817/167761*15127^(1/5) 9870002035726259 a001 28657/64079*39603^(8/11) 9870002035737014 a001 10959/844*24476^(3/7) 9870002036207214 a001 9227465/103682*15127^(1/4) 9870002036313982 a001 17711/24476*167761^(3/5) 9870002036347470 a001 6765/24476*15127^(17/20) 9870002036473235 a001 96932303/98209 9870002036473397 a001 24157817/39603*5778^(1/18) 9870002036495976 a001 17711/24476*439204^(5/9) 9870002036524329 a001 17711/24476*7881196^(5/11) 9870002036524392 a001 17711/24476*20633239^(3/7) 9870002036524401 a001 17711/24476*141422324^(5/13) 9870002036524402 a001 10946/39603*45537549124^(1/3) 9870002036524402 a001 10946/39603*(1/2+1/2*5^(1/2))^17 9870002036524402 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^17/Lucas(22) 9870002036524402 a001 17711/24476*2537720636^(1/3) 9870002036524402 a001 17711/24476*45537549124^(5/17) 9870002036524402 a001 17711/24476*312119004989^(3/11) 9870002036524402 a001 17711/24476*14662949395604^(5/21) 9870002036524402 a001 17711/24476*(1/2+1/2*5^(1/2))^15 9870002036524402 a001 17711/24476*192900153618^(5/18) 9870002036524402 a001 17711/24476*28143753123^(3/10) 9870002036524402 a001 17711/24476*10749957122^(5/16) 9870002036524402 a001 17711/24476*599074578^(5/14) 9870002036524402 a001 17711/24476*228826127^(3/8) 9870002036524405 a001 17711/24476*33385282^(5/12) 9870002036524432 a001 10946/39603*12752043^(1/2) 9870002036525827 a001 17711/24476*1860498^(1/2) 9870002036548567 a001 514229/24476*24476^(8/21) 9870002036874064 a001 3732588/6119*9349^(1/19) 9870002036991382 a001 24157817/271443*15127^(1/4) 9870002037098241 a001 17711/24476*103682^(5/8) 9870002037105791 a001 63245986/710647*15127^(1/4) 9870002037122483 a001 165580141/1860498*15127^(1/4) 9870002037124918 a001 433494437/4870847*15127^(1/4) 9870002037125273 a001 1134903170/12752043*15127^(1/4) 9870002037125325 a001 2971215073/33385282*15127^(1/4) 9870002037125333 a001 7778742049/87403803*15127^(1/4) 9870002037125334 a001 20365011074/228826127*15127^(1/4) 9870002037125334 a001 53316291173/599074578*15127^(1/4) 9870002037125334 a001 139583862445/1568397607*15127^(1/4) 9870002037125334 a001 365435296162/4106118243*15127^(1/4) 9870002037125334 a001 956722026041/10749957122*15127^(1/4) 9870002037125334 a001 2504730781961/28143753123*15127^(1/4) 9870002037125334 a001 6557470319842/73681302247*15127^(1/4) 9870002037125334 a001 10610209857723/119218851371*15127^(1/4) 9870002037125334 a001 4052739537881/45537549124*15127^(1/4) 9870002037125334 a001 1548008755920/17393796001*15127^(1/4) 9870002037125334 a001 591286729879/6643838879*15127^(1/4) 9870002037125334 a001 225851433717/2537720636*15127^(1/4) 9870002037125334 a001 86267571272/969323029*15127^(1/4) 9870002037125334 a001 32951280099/370248451*15127^(1/4) 9870002037125335 a001 12586269025/141422324*15127^(1/4) 9870002037125338 a001 4807526976/54018521*15127^(1/4) 9870002037125357 a001 1836311903/20633239*15127^(1/4) 9870002037125493 a001 3524667/39604*15127^(1/4) 9870002037126423 a001 267914296/3010349*15127^(1/4) 9870002037132799 a001 102334155/1149851*15127^(1/4) 9870002037174753 a001 10946/39603*103682^(17/24) 9870002037176499 a001 39088169/439204*15127^(1/4) 9870002037299414 a001 832040/39603*15127^(2/5) 9870002037322794 a001 208010/6119*24476^(1/3) 9870002037372428 a001 9227465/64079*15127^(1/5) 9870002037476025 a001 14930352/167761*15127^(1/4) 9870002038111278 a001 1346269/24476*24476^(2/7) 9870002038363790 a001 5702887/103682*15127^(3/10) 9870002038894316 a001 2178309/24476*24476^(5/21) 9870002039148030 a001 4976784/90481*15127^(3/10) 9870002039262449 a001 39088169/710647*15127^(3/10) 9870002039279142 a001 831985/15126*15127^(3/10) 9870002039281578 a001 267914296/4870847*15127^(3/10) 9870002039281933 a001 233802911/4250681*15127^(3/10) 9870002039281985 a001 1836311903/33385282*15127^(3/10) 9870002039281993 a001 1602508992/29134601*15127^(3/10) 9870002039281994 a001 12586269025/228826127*15127^(3/10) 9870002039281994 a001 10983760033/199691526*15127^(3/10) 9870002039281994 a001 86267571272/1568397607*15127^(3/10) 9870002039281994 a001 75283811239/1368706081*15127^(3/10) 9870002039281994 a001 591286729879/10749957122*15127^(3/10) 9870002039281994 a001 12585437040/228811001*15127^(3/10) 9870002039281994 a001 4052739537881/73681302247*15127^(3/10) 9870002039281994 a001 3536736619241/64300051206*15127^(3/10) 9870002039281994 a001 6557470319842/119218851371*15127^(3/10) 9870002039281994 a001 2504730781961/45537549124*15127^(3/10) 9870002039281994 a001 956722026041/17393796001*15127^(3/10) 9870002039281994 a001 365435296162/6643838879*15127^(3/10) 9870002039281994 a001 139583862445/2537720636*15127^(3/10) 9870002039281994 a001 53316291173/969323029*15127^(3/10) 9870002039281994 a001 20365011074/370248451*15127^(3/10) 9870002039281994 a001 7778742049/141422324*15127^(3/10) 9870002039281997 a001 2971215073/54018521*15127^(3/10) 9870002039282017 a001 1134903170/20633239*15127^(3/10) 9870002039282153 a001 433494437/7881196*15127^(3/10) 9870002039283083 a001 165580141/3010349*15127^(3/10) 9870002039289459 a001 63245986/1149851*15127^(3/10) 9870002039333164 a001 24157817/439204*15127^(3/10) 9870002039466390 a001 514229/39603*15127^(9/20) 9870002039529004 a001 5702887/64079*15127^(1/4) 9870002039632717 a001 9227465/167761*15127^(3/10) 9870002039679435 a001 1762289/12238*24476^(4/21) 9870002039913616 a001 5473/51841*64079^(19/23) 9870002040413719 a004 Fibonacci(21)*Lucas(23)/(1/2+sqrt(5)/2)^28 9870002040463759 a001 5702887/24476*24476^(1/7) 9870002040488784 a001 10946/271443*64079^(21/23) 9870002040520669 a001 1762289/51841*15127^(7/20) 9870002040540676 a001 11592/6119*64079^(13/23) 9870002040569396 a001 5473/219602*64079^(22/23) 9870002040815116 a001 17711/24476*39603^(15/22) 9870002041077949 a001 10946/167761*64079^(20/23) 9870002041248386 a001 9227465/24476*24476^(2/21) 9870002041304722 a001 9227465/271443*15127^(7/20) 9870002041387212 a001 10946/39603*39603^(17/22) 9870002041419113 a001 24157817/710647*15127^(7/20) 9870002041435803 a001 31622993/930249*15127^(7/20) 9870002041438238 a001 165580141/4870847*15127^(7/20) 9870002041438593 a001 433494437/12752043*15127^(7/20) 9870002041438645 a001 567451585/16692641*15127^(7/20) 9870002041438652 a001 2971215073/87403803*15127^(7/20) 9870002041438654 a001 7778742049/228826127*15127^(7/20) 9870002041438654 a001 10182505537/299537289*15127^(7/20) 9870002041438654 a001 53316291173/1568397607*15127^(7/20) 9870002041438654 a001 139583862445/4106118243*15127^(7/20) 9870002041438654 a001 182717648081/5374978561*15127^(7/20) 9870002041438654 a001 956722026041/28143753123*15127^(7/20) 9870002041438654 a001 2504730781961/73681302247*15127^(7/20) 9870002041438654 a001 3278735159921/96450076809*15127^(7/20) 9870002041438654 a001 10610209857723/312119004989*15127^(7/20) 9870002041438654 a001 4052739537881/119218851371*15127^(7/20) 9870002041438654 a001 387002188980/11384387281*15127^(7/20) 9870002041438654 a001 591286729879/17393796001*15127^(7/20) 9870002041438654 a001 225851433717/6643838879*15127^(7/20) 9870002041438654 a001 1135099622/33391061*15127^(7/20) 9870002041438654 a001 32951280099/969323029*15127^(7/20) 9870002041438654 a001 12586269025/370248451*15127^(7/20) 9870002041438654 a001 1201881744/35355581*15127^(7/20) 9870002041438657 a001 1836311903/54018521*15127^(7/20) 9870002041438677 a001 701408733/20633239*15127^(7/20) 9870002041438813 a001 66978574/1970299*15127^(7/20) 9870002041439743 a001 102334155/3010349*15127^(7/20) 9870002041446117 a001 39088169/1149851*15127^(7/20) 9870002041489811 a001 196452/5779*15127^(7/20) 9870002041533884 a001 121393/24476*64079^(11/23) 9870002041596041 a001 105937/13201*15127^(1/2) 9870002041685883 a001 3524578/64079*15127^(3/10) 9870002041789293 a001 5702887/167761*15127^(7/20) 9870002041823516 a001 98209/12238*64079^(10/23) 9870002041848299 a001 31622993/51841*5778^(1/18) 9870002041857316 a001 10959/844*64079^(9/23) 9870002041891841 a001 507544128/514229 9870002041899306 a001 11592/6119*141422324^(1/3) 9870002041899307 a001 5473/51841*817138163596^(1/3) 9870002041899307 a001 5473/51841*(1/2+1/2*5^(1/2))^19 9870002041899307 a001 11592/6119*(1/2+1/2*5^(1/2))^13 9870002041899307 a001 11592/6119*73681302247^(1/4) 9870002041899307 a001 5473/51841*87403803^(1/2) 9870002041914029 a001 75025/24476*64079^(12/23) 9870002041966284 a001 11592/6119*271443^(1/2) 9870002041988835 a001 514229/24476*64079^(8/23) 9870002042032898 a001 3732588/6119*24476^(1/21) 9870002042083028 a001 208010/6119*64079^(7/23) 9870002042191479 a001 1346269/24476*64079^(6/23) 9870002042294484 a001 2178309/24476*64079^(5/23) 9870002042396634 a001 11592/6119*103682^(13/24) 9870002042399569 a001 1762289/12238*64079^(4/23) 9870002042466750 a004 Fibonacci(21)*Lucas(25)/(1/2+sqrt(5)/2)^30 9870002042503859 a001 5702887/24476*64079^(3/23) 9870002042608453 a001 9227465/24476*64079^(2/23) 9870002042626170 a001 5473/51841*103682^(19/24) 9870002042632486 a001 165580141/271443*5778^(1/18) 9870002042643699 a001 10946/271443*439204^(7/9) 9870002042676754 a001 46347/2206*15127^(2/5) 9870002042682405 a001 1328767778/1346269 9870002042683393 a001 10946/271443*7881196^(7/11) 9870002042683442 a001 121393/24476*7881196^(1/3) 9870002042683481 a001 10946/271443*20633239^(3/5) 9870002042683494 a001 10946/271443*141422324^(7/13) 9870002042683495 a001 10946/271443*2537720636^(7/15) 9870002042683495 a001 10946/271443*17393796001^(3/7) 9870002042683495 a001 10946/271443*45537549124^(7/17) 9870002042683495 a001 10946/271443*14662949395604^(1/3) 9870002042683495 a001 10946/271443*(1/2+1/2*5^(1/2))^21 9870002042683495 a001 10946/271443*192900153618^(7/18) 9870002042683495 a001 10946/271443*10749957122^(7/16) 9870002042683495 a001 10946/271443*599074578^(1/2) 9870002042683495 a001 121393/24476*312119004989^(1/5) 9870002042683495 a001 121393/24476*(1/2+1/2*5^(1/2))^11 9870002042683495 a001 121393/24476*1568397607^(1/4) 9870002042683500 a001 10946/271443*33385282^(7/12) 9870002042685491 a001 10946/271443*1860498^(7/10) 9870002042698152 a001 10946/271443*710647^(3/4) 9870002042712931 a001 3732588/6119*64079^(1/23) 9870002042728337 a001 98209/12238*167761^(2/5) 9870002042746894 a001 2178309/24476*167761^(1/5) 9870002042746898 a001 433494437/710647*5778^(1/18) 9870002042763590 a001 567451585/930249*5778^(1/18) 9870002042766026 a001 2971215073/4870847*5778^(1/18) 9870002042766284 a004 Fibonacci(21)*Lucas(27)/(1/2+sqrt(5)/2)^32 9870002042766381 a001 7778742049/12752043*5778^(1/18) 9870002042766433 a001 10182505537/16692641*5778^(1/18) 9870002042766440 a001 53316291173/87403803*5778^(1/18) 9870002042766442 a001 139583862445/228826127*5778^(1/18) 9870002042766442 a001 182717648081/299537289*5778^(1/18) 9870002042766442 a001 956722026041/1568397607*5778^(1/18) 9870002042766442 a001 2504730781961/4106118243*5778^(1/18) 9870002042766442 a001 3278735159921/5374978561*5778^(1/18) 9870002042766442 a001 10610209857723/17393796001*5778^(1/18) 9870002042766442 a001 4052739537881/6643838879*5778^(1/18) 9870002042766442 a001 1134903780/1860499*5778^(1/18) 9870002042766442 a001 591286729879/969323029*5778^(1/18) 9870002042766442 a001 225851433717/370248451*5778^(1/18) 9870002042766442 a001 21566892818/35355581*5778^(1/18) 9870002042766445 a001 32951280099/54018521*5778^(1/18) 9870002042766465 a001 1144206275/1875749*5778^(1/18) 9870002042766601 a001 1201881744/1970299*5778^(1/18) 9870002042767531 a001 1836311903/3010349*5778^(1/18) 9870002042773907 a001 701408733/1149851*5778^(1/18) 9870002042779434 a001 10946/1149851*439204^(8/9) 9870002042780851 a001 10959/844*439204^(1/3) 9870002042797747 a001 1739379603/1762289 9870002042797863 a001 10959/844*7881196^(3/11) 9870002042797906 a001 10959/844*141422324^(3/13) 9870002042797906 a001 10946/710647*(1/2+1/2*5^(1/2))^23 9870002042797906 a001 10946/710647*4106118243^(1/2) 9870002042797906 a001 10959/844*2537720636^(1/5) 9870002042797906 a001 10959/844*45537549124^(3/17) 9870002042797906 a001 10959/844*817138163596^(3/19) 9870002042797906 a001 10959/844*14662949395604^(1/7) 9870002042797906 a001 10959/844*(1/2+1/2*5^(1/2))^9 9870002042797906 a001 10959/844*192900153618^(1/6) 9870002042797906 a001 10959/844*10749957122^(3/16) 9870002042797906 a001 10959/844*599074578^(3/14) 9870002042797908 a001 10959/844*33385282^(1/4) 9870002042798762 a001 10959/844*1860498^(3/10) 9870002042807169 a001 1346269/24476*439204^(2/9) 9870002042809985 a004 Fibonacci(21)*Lucas(29)/(1/2+sqrt(5)/2)^34 9870002042811704 a001 5702887/24476*439204^(1/9) 9870002042814575 a001 140115536/141961 9870002042814582 a001 5473/930249*20633239^(5/7) 9870002042814594 a001 208010/6119*20633239^(1/5) 9870002042814599 a001 5473/930249*2537720636^(5/9) 9870002042814599 a001 5473/930249*312119004989^(5/11) 9870002042814599 a001 5473/930249*(1/2+1/2*5^(1/2))^25 9870002042814599 a001 5473/930249*3461452808002^(5/12) 9870002042814599 a001 5473/930249*28143753123^(1/2) 9870002042814599 a001 208010/6119*17393796001^(1/7) 9870002042814599 a001 208010/6119*14662949395604^(1/9) 9870002042814599 a001 208010/6119*(1/2+1/2*5^(1/2))^7 9870002042814599 a001 208010/6119*599074578^(1/6) 9870002042814599 a001 5473/930249*228826127^(5/8) 9870002042816361 a004 Fibonacci(21)*Lucas(31)/(1/2+sqrt(5)/2)^36 9870002042816904 a001 10946/4870847*7881196^(9/11) 9870002042816975 a001 5473/930249*1860498^(5/6) 9870002042817031 a001 23843770314/24157817 9870002042817031 a001 2178309/24476*20633239^(1/7) 9870002042817034 a001 10946/4870847*141422324^(9/13) 9870002042817034 a001 10946/4870847*2537720636^(3/5) 9870002042817034 a001 10946/4870847*45537549124^(9/17) 9870002042817034 a001 10946/4870847*817138163596^(9/19) 9870002042817034 a001 10946/4870847*14662949395604^(3/7) 9870002042817034 a001 10946/4870847*(1/2+1/2*5^(1/2))^27 9870002042817034 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^27/Lucas(32) 9870002042817034 a001 10946/4870847*192900153618^(1/2) 9870002042817034 a001 10946/4870847*10749957122^(9/16) 9870002042817034 a001 10946/4870847*599074578^(9/14) 9870002042817034 a001 2178309/24476*2537720636^(1/9) 9870002042817034 a001 2178309/24476*312119004989^(1/11) 9870002042817034 a001 2178309/24476*(1/2+1/2*5^(1/2))^5 9870002042817034 a001 2178309/24476*28143753123^(1/10) 9870002042817034 a001 2178309/24476*228826127^(1/8) 9870002042817041 a001 10946/4870847*33385282^(3/4) 9870002042817291 a004 Fibonacci(21)*Lucas(33)/(1/2+sqrt(5)/2)^38 9870002042817329 a001 10946/20633239*7881196^(10/11) 9870002042817375 a001 5702887/24476*7881196^(1/11) 9870002042817389 a001 31211900551/31622993 9870002042817389 a001 5702887/24476*141422324^(1/13) 9870002042817389 a001 10946/12752043*(1/2+1/2*5^(1/2))^29 9870002042817389 a001 10946/12752043*1322157322203^(1/2) 9870002042817389 a001 5702887/24476*2537720636^(1/15) 9870002042817389 a001 5702887/24476*45537549124^(1/17) 9870002042817389 a001 5702887/24476*14662949395604^(1/21) 9870002042817389 a001 5702887/24476*(1/2+1/2*5^(1/2))^3 9870002042817389 a001 5702887/24476*192900153618^(1/18) 9870002042817389 a001 5702887/24476*10749957122^(1/16) 9870002042817389 a001 5702887/24476*599074578^(1/14) 9870002042817390 a001 5702887/24476*33385282^(1/12) 9870002042817427 a004 Fibonacci(21)*Lucas(35)/(1/2+sqrt(5)/2)^40 9870002042817441 a001 163427632992/165580141 9870002042817441 a001 5473/16692641*(1/2+1/2*5^(1/2))^31 9870002042817441 a001 5473/16692641*9062201101803^(1/2) 9870002042817441 a001 1866294/6119+1866294/6119*5^(1/2) 9870002042817447 a004 Fibonacci(21)*Lucas(37)/(1/2+sqrt(5)/2)^42 9870002042817448 a001 10946/87403803*141422324^(11/13) 9870002042817449 a001 427859097874/433494437 9870002042817449 a001 10946/87403803*2537720636^(11/15) 9870002042817449 a001 10946/87403803*45537549124^(11/17) 9870002042817449 a001 10946/87403803*312119004989^(3/5) 9870002042817449 a001 10946/87403803*817138163596^(11/19) 9870002042817449 a001 10946/87403803*14662949395604^(11/21) 9870002042817449 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^33/Lucas(38) 9870002042817449 a001 10946/87403803*192900153618^(11/18) 9870002042817449 a001 10946/87403803*10749957122^(11/16) 9870002042817449 a001 10946/87403803*1568397607^(3/4) 9870002042817449 a001 10946/87403803*599074578^(11/14) 9870002042817449 a004 Fibonacci(38)/Lucas(21)/(1/2+sqrt(5)/2) 9870002042817449 a004 Fibonacci(21)*Lucas(39)/(1/2+sqrt(5)/2)^44 9870002042817450 a001 10946/370248451*141422324^(12/13) 9870002042817450 a001 112014966063/113490317 9870002042817450 a001 10946/228826127*2537720636^(7/9) 9870002042817450 a001 10946/228826127*17393796001^(5/7) 9870002042817450 a001 10946/228826127*312119004989^(7/11) 9870002042817450 a001 10946/228826127*14662949395604^(5/9) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^35/Lucas(40) 9870002042817450 a001 10946/228826127*505019158607^(5/8) 9870002042817450 a001 10946/228826127*28143753123^(7/10) 9870002042817450 a001 10946/228826127*599074578^(5/6) 9870002042817450 a004 Fibonacci(40)/Lucas(21)/(1/2+sqrt(5)/2)^3 9870002042817450 a004 Fibonacci(21)*Lucas(41)/(1/2+sqrt(5)/2)^46 9870002042817450 a001 2932589884016/2971215073 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^37/Lucas(42) 9870002042817450 a001 10946/228826127*228826127^(7/8) 9870002042817450 a004 Fibonacci(21)*Lucas(43)/(1/2+sqrt(5)/2)^48 9870002042817450 a001 10946/1568397607*2537720636^(13/15) 9870002042817450 a001 590586153186/598364773 9870002042817450 a001 10946/1568397607*45537549124^(13/17) 9870002042817450 a001 10946/1568397607*14662949395604^(13/21) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^39/Lucas(44) 9870002042817450 a001 10946/1568397607*192900153618^(13/18) 9870002042817450 a001 10946/1568397607*73681302247^(3/4) 9870002042817450 a001 10946/1568397607*10749957122^(13/16) 9870002042817450 a004 Fibonacci(21)*Lucas(45)/(1/2+sqrt(5)/2)^50 9870002042817450 a001 10946/6643838879*2537720636^(14/15) 9870002042817450 a001 10050135045119/10182505537 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^41/Lucas(46) 9870002042817450 a004 Fibonacci(21)*Lucas(47)/(1/2+sqrt(5)/2)^52 9870002042817450 a001 52623190279296/53316291173 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^43/Lucas(48) 9870002042817450 a004 Fibonacci(21)*Lucas(49)/(1/2+sqrt(5)/2)^54 9870002042817450 a001 10946/28143753123*45537549124^(15/17) 9870002042817450 a001 27553860149530/27916772489 9870002042817450 a001 10946/28143753123*312119004989^(9/11) 9870002042817450 a001 10946/28143753123*14662949395604^(5/7) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^45/Lucas(50) 9870002042817450 a001 10946/28143753123*192900153618^(5/6) 9870002042817450 a004 Fibonacci(21)*Lucas(51)/(1/2+sqrt(5)/2)^56 9870002042817450 a001 10946/119218851371*45537549124^(16/17) 9870002042817450 a001 180342355981827/182717648081 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^47/Lucas(52) 9870002042817450 a001 10946/28143753123*28143753123^(9/10) 9870002042817450 a004 Fibonacci(21)*Lucas(53)/(1/2+sqrt(5)/2)^58 9870002042817450 a001 5473/96450076809*14662949395604^(7/9) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^49/Lucas(54) 9870002042817450 a001 5473/96450076809*505019158607^(7/8) 9870002042817450 a004 Fibonacci(21)*Lucas(55)/(1/2+sqrt(5)/2)^60 9870002042817450 a001 10946/505019158607*817138163596^(17/19) 9870002042817450 a001 10946/505019158607*14662949395604^(17/21) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^51/Lucas(56) 9870002042817450 a004 Fibonacci(21)*Lucas(57)/(1/2+sqrt(5)/2)^62 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^53/Lucas(58) 9870002042817450 a004 Fibonacci(21)*Lucas(59)/(1/2+sqrt(5)/2)^64 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^55/Lucas(60) 9870002042817450 a004 Fibonacci(21)*Lucas(61)/(1/2+sqrt(5)/2)^66 9870002042817450 a001 10946/9062201101803*14662949395604^(19/21) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^57/Lucas(62) 9870002042817450 a004 Fibonacci(21)*Lucas(63)/(1/2+sqrt(5)/2)^68 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^59/Lucas(64) 9870002042817450 a004 Fibonacci(21)*Lucas(65)/(1/2+sqrt(5)/2)^70 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^61/Lucas(66) 9870002042817450 a004 Fibonacci(21)*Lucas(67)/(1/2+sqrt(5)/2)^72 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^63/Lucas(68) 9870002042817450 a004 Fibonacci(21)*Lucas(69)/(1/2+sqrt(5)/2)^74 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^65/Lucas(70) 9870002042817450 a004 Fibonacci(21)*Lucas(71)/(1/2+sqrt(5)/2)^76 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^67/Lucas(72) 9870002042817450 a004 Fibonacci(21)*Lucas(73)/(1/2+sqrt(5)/2)^78 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^69/Lucas(74) 9870002042817450 a004 Fibonacci(21)*Lucas(75)/(1/2+sqrt(5)/2)^80 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^71/Lucas(76) 9870002042817450 a004 Fibonacci(21)*Lucas(77)/(1/2+sqrt(5)/2)^82 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^73/Lucas(78) 9870002042817450 a004 Fibonacci(21)*Lucas(79)/(1/2+sqrt(5)/2)^84 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^75/Lucas(80) 9870002042817450 a004 Fibonacci(21)*Lucas(81)/(1/2+sqrt(5)/2)^86 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^77/Lucas(82) 9870002042817450 a004 Fibonacci(21)*Lucas(83)/(1/2+sqrt(5)/2)^88 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^79/Lucas(84) 9870002042817450 a004 Fibonacci(21)*Lucas(85)/(1/2+sqrt(5)/2)^90 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^81/Lucas(86) 9870002042817450 a004 Fibonacci(21)*Lucas(87)/(1/2+sqrt(5)/2)^92 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^83/Lucas(88) 9870002042817450 a004 Fibonacci(21)*Lucas(89)/(1/2+sqrt(5)/2)^94 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^85/Lucas(90) 9870002042817450 a004 Fibonacci(21)*Lucas(91)/(1/2+sqrt(5)/2)^96 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^87/Lucas(92) 9870002042817450 a004 Fibonacci(21)*Lucas(93)/(1/2+sqrt(5)/2)^98 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^89/Lucas(94) 9870002042817450 a004 Fibonacci(21)*Lucas(95)/(1/2+sqrt(5)/2)^100 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^91/Lucas(96) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^93/Lucas(98) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^95/Lucas(100) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^94/Lucas(99) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^92/Lucas(97) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^90/Lucas(95) 9870002042817450 a004 Fibonacci(21)*Lucas(94)/(1/2+sqrt(5)/2)^99 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^88/Lucas(93) 9870002042817450 a004 Fibonacci(21)*Lucas(92)/(1/2+sqrt(5)/2)^97 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^86/Lucas(91) 9870002042817450 a004 Fibonacci(21)*Lucas(90)/(1/2+sqrt(5)/2)^95 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^84/Lucas(89) 9870002042817450 a004 Fibonacci(21)*Lucas(88)/(1/2+sqrt(5)/2)^93 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^82/Lucas(87) 9870002042817450 a004 Fibonacci(21)*Lucas(86)/(1/2+sqrt(5)/2)^91 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^80/Lucas(85) 9870002042817450 a004 Fibonacci(21)*Lucas(84)/(1/2+sqrt(5)/2)^89 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^78/Lucas(83) 9870002042817450 a004 Fibonacci(21)*Lucas(82)/(1/2+sqrt(5)/2)^87 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^76/Lucas(81) 9870002042817450 a004 Fibonacci(21)*Lucas(80)/(1/2+sqrt(5)/2)^85 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^74/Lucas(79) 9870002042817450 a004 Fibonacci(21)*Lucas(78)/(1/2+sqrt(5)/2)^83 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^72/Lucas(77) 9870002042817450 a004 Fibonacci(21)*Lucas(76)/(1/2+sqrt(5)/2)^81 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^70/Lucas(75) 9870002042817450 a004 Fibonacci(21)*Lucas(74)/(1/2+sqrt(5)/2)^79 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^68/Lucas(73) 9870002042817450 a004 Fibonacci(21)*Lucas(72)/(1/2+sqrt(5)/2)^77 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^66/Lucas(71) 9870002042817450 a004 Fibonacci(21)*Lucas(70)/(1/2+sqrt(5)/2)^75 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^64/Lucas(69) 9870002042817450 a004 Fibonacci(21)*Lucas(68)/(1/2+sqrt(5)/2)^73 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^62/Lucas(67) 9870002042817450 a004 Fibonacci(21)*Lucas(66)/(1/2+sqrt(5)/2)^71 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^60/Lucas(65) 9870002042817450 a004 Fibonacci(21)*Lucas(64)/(1/2+sqrt(5)/2)^69 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^58/Lucas(63) 9870002042817450 a004 Fibonacci(21)*Lucas(62)/(1/2+sqrt(5)/2)^67 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^56/Lucas(61) 9870002042817450 a004 Fibonacci(21)*Lucas(60)/(1/2+sqrt(5)/2)^65 9870002042817450 a001 10946/2139295485799*14662949395604^(6/7) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^54/Lucas(59) 9870002042817450 a001 10472279297044786/10610209857723 9870002042817450 a004 Fibonacci(21)*Lucas(58)/(1/2+sqrt(5)/2)^63 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^52/Lucas(57) 9870002042817450 a001 5473/408569081798*23725150497407^(13/16) 9870002042817450 a004 Fibonacci(21)*Lucas(56)/(1/2+sqrt(5)/2)^61 9870002042817450 a001 5473/408569081798*505019158607^(13/14) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^50/Lucas(55) 9870002042817450 a001 10946/312119004989*3461452808002^(5/6) 9870002042817450 a001 152788495832297/154800875592 9870002042817450 a001 10946/505019158607*192900153618^(17/18) 9870002042817450 a004 Fibonacci(21)*Lucas(54)/(1/2+sqrt(5)/2)^59 9870002042817450 a001 10946/119218851371*14662949395604^(16/21) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^48/Lucas(53) 9870002042817450 a001 583600123179658/591286729879 9870002042817450 a001 10946/119218851371*192900153618^(8/9) 9870002042817450 a004 Fibonacci(21)*Lucas(52)/(1/2+sqrt(5)/2)^57 9870002042817450 a001 10946/119218851371*73681302247^(12/13) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^46/Lucas(51) 9870002042817450 a001 17147339324308/17373187209 9870002042817450 a004 Fibonacci(21)*Lucas(50)/(1/2+sqrt(5)/2)^55 9870002042817450 a001 10946/17393796001*312119004989^(4/5) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^44/Lucas(49) 9870002042817450 a001 10946/17393796001*23725150497407^(11/16) 9870002042817450 a001 42573055234177/43133785636 9870002042817450 a001 10946/17393796001*73681302247^(11/13) 9870002042817450 a001 10946/28143753123*10749957122^(15/16) 9870002042817450 a004 Fibonacci(21)*Lucas(48)/(1/2+sqrt(5)/2)^53 9870002042817450 a001 5473/22768774562*10749957122^(23/24) 9870002042817450 a001 10946/17393796001*10749957122^(11/12) 9870002042817450 a001 5473/1268860318*2537720636^(8/9) 9870002042817450 a001 10946/6643838879*17393796001^(6/7) 9870002042817450 a001 10946/6643838879*45537549124^(14/17) 9870002042817450 a001 10946/6643838879*817138163596^(14/19) 9870002042817450 a001 10946/6643838879*14662949395604^(2/3) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^42/Lucas(47) 9870002042817450 a001 10946/6643838879*505019158607^(3/4) 9870002042817450 a001 10946/6643838879*192900153618^(7/9) 9870002042817450 a001 32522920189058/32951280099 9870002042817450 a001 10946/6643838879*10749957122^(7/8) 9870002042817450 a004 Fibonacci(21)*Lucas(46)/(1/2+sqrt(5)/2)^51 9870002042817450 a001 10946/17393796001*4106118243^(22/23) 9870002042817450 a001 10946/6643838879*4106118243^(21/23) 9870002042817450 a001 5473/1268860318*312119004989^(8/11) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^40/Lucas(45) 9870002042817450 a001 5473/1268860318*23725150497407^(5/8) 9870002042817450 a001 5473/1268860318*73681302247^(10/13) 9870002042817450 a001 5473/1268860318*28143753123^(4/5) 9870002042817450 a001 2484530019764/2517253805 9870002042817450 a001 5473/1268860318*10749957122^(5/6) 9870002042817450 a001 5473/1268860318*4106118243^(20/23) 9870002042817450 a004 Fibonacci(21)*Lucas(44)/(1/2+sqrt(5)/2)^49 9870002042817450 a001 10946/6643838879*1568397607^(21/22) 9870002042817450 a001 5473/1268860318*1568397607^(10/11) 9870002042817450 a001 10946/969323029*817138163596^(2/3) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^38/Lucas(43) 9870002042817450 a001 10946/969323029*10749957122^(19/24) 9870002042817450 a001 2372515053701/2403763488 9870002042817450 a001 10946/969323029*4106118243^(19/23) 9870002042817450 a001 10946/969323029*1568397607^(19/22) 9870002042817450 a001 10946/1568397607*599074578^(13/14) 9870002042817450 a004 Fibonacci(44)/Lucas(21)/(1/2+sqrt(5)/2)^7 9870002042817450 a004 Fibonacci(46)/Lucas(21)/(1/2+sqrt(5)/2)^9 9870002042817450 a004 Fibonacci(48)/Lucas(21)/(1/2+sqrt(5)/2)^11 9870002042817450 a004 Fibonacci(50)/Lucas(21)/(1/2+sqrt(5)/2)^13 9870002042817450 a004 Fibonacci(52)/Lucas(21)/(1/2+sqrt(5)/2)^15 9870002042817450 a004 Fibonacci(54)/Lucas(21)/(1/2+sqrt(5)/2)^17 9870002042817450 a004 Fibonacci(56)/Lucas(21)/(1/2+sqrt(5)/2)^19 9870002042817450 a004 Fibonacci(58)/Lucas(21)/(1/2+sqrt(5)/2)^21 9870002042817450 a004 Fibonacci(60)/Lucas(21)/(1/2+sqrt(5)/2)^23 9870002042817450 a004 Fibonacci(62)/Lucas(21)/(1/2+sqrt(5)/2)^25 9870002042817450 a004 Fibonacci(64)/Lucas(21)/(1/2+sqrt(5)/2)^27 9870002042817450 a004 Fibonacci(66)/Lucas(21)/(1/2+sqrt(5)/2)^29 9870002042817450 a004 Fibonacci(68)/Lucas(21)/(1/2+sqrt(5)/2)^31 9870002042817450 a004 Fibonacci(70)/Lucas(21)/(1/2+sqrt(5)/2)^33 9870002042817450 a004 Fibonacci(72)/Lucas(21)/(1/2+sqrt(5)/2)^35 9870002042817450 a004 Fibonacci(74)/Lucas(21)/(1/2+sqrt(5)/2)^37 9870002042817450 a004 Fibonacci(76)/Lucas(21)/(1/2+sqrt(5)/2)^39 9870002042817450 a004 Fibonacci(78)/Lucas(21)/(1/2+sqrt(5)/2)^41 9870002042817450 a004 Fibonacci(80)/Lucas(21)/(1/2+sqrt(5)/2)^43 9870002042817450 a004 Fibonacci(82)/Lucas(21)/(1/2+sqrt(5)/2)^45 9870002042817450 a004 Fibonacci(21)*Lucas(42)/(1/2+sqrt(5)/2)^47 9870002042817450 a004 Fibonacci(86)/Lucas(21)/(1/2+sqrt(5)/2)^49 9870002042817450 a004 Fibonacci(88)/Lucas(21)/(1/2+sqrt(5)/2)^51 9870002042817450 a004 Fibonacci(90)/Lucas(21)/(1/2+sqrt(5)/2)^53 9870002042817450 a004 Fibonacci(92)/Lucas(21)/(1/2+sqrt(5)/2)^55 9870002042817450 a004 Fibonacci(94)/Lucas(21)/(1/2+sqrt(5)/2)^57 9870002042817450 a004 Fibonacci(96)/Lucas(21)/(1/2+sqrt(5)/2)^59 9870002042817450 a004 Fibonacci(98)/Lucas(21)/(1/2+sqrt(5)/2)^61 9870002042817450 a004 Fibonacci(100)/Lucas(21)/(1/2+sqrt(5)/2)^63 9870002042817450 a004 Fibonacci(99)/Lucas(21)/(1/2+sqrt(5)/2)^62 9870002042817450 a004 Fibonacci(97)/Lucas(21)/(1/2+sqrt(5)/2)^60 9870002042817450 a004 Fibonacci(95)/Lucas(21)/(1/2+sqrt(5)/2)^58 9870002042817450 a004 Fibonacci(93)/Lucas(21)/(1/2+sqrt(5)/2)^56 9870002042817450 a004 Fibonacci(91)/Lucas(21)/(1/2+sqrt(5)/2)^54 9870002042817450 a004 Fibonacci(89)/Lucas(21)/(1/2+sqrt(5)/2)^52 9870002042817450 a004 Fibonacci(87)/Lucas(21)/(1/2+sqrt(5)/2)^50 9870002042817450 a004 Fibonacci(85)/Lucas(21)/(1/2+sqrt(5)/2)^48 9870002042817450 a004 Fibonacci(83)/Lucas(21)/(1/2+sqrt(5)/2)^46 9870002042817450 a004 Fibonacci(81)/Lucas(21)/(1/2+sqrt(5)/2)^44 9870002042817450 a004 Fibonacci(79)/Lucas(21)/(1/2+sqrt(5)/2)^42 9870002042817450 a004 Fibonacci(77)/Lucas(21)/(1/2+sqrt(5)/2)^40 9870002042817450 a004 Fibonacci(75)/Lucas(21)/(1/2+sqrt(5)/2)^38 9870002042817450 a004 Fibonacci(73)/Lucas(21)/(1/2+sqrt(5)/2)^36 9870002042817450 a004 Fibonacci(71)/Lucas(21)/(1/2+sqrt(5)/2)^34 9870002042817450 a004 Fibonacci(69)/Lucas(21)/(1/2+sqrt(5)/2)^32 9870002042817450 a004 Fibonacci(67)/Lucas(21)/(1/2+sqrt(5)/2)^30 9870002042817450 a004 Fibonacci(65)/Lucas(21)/(1/2+sqrt(5)/2)^28 9870002042817450 a004 Fibonacci(63)/Lucas(21)/(1/2+sqrt(5)/2)^26 9870002042817450 a004 Fibonacci(61)/Lucas(21)/(1/2+sqrt(5)/2)^24 9870002042817450 a004 Fibonacci(59)/Lucas(21)/(1/2+sqrt(5)/2)^22 9870002042817450 a004 Fibonacci(57)/Lucas(21)/(1/2+sqrt(5)/2)^20 9870002042817450 a004 Fibonacci(55)/Lucas(21)/(1/2+sqrt(5)/2)^18 9870002042817450 a004 Fibonacci(53)/Lucas(21)/(1/2+sqrt(5)/2)^16 9870002042817450 a004 Fibonacci(51)/Lucas(21)/(1/2+sqrt(5)/2)^14 9870002042817450 a004 Fibonacci(49)/Lucas(21)/(1/2+sqrt(5)/2)^12 9870002042817450 a001 5473/1268860318*599074578^(20/21) 9870002042817450 a004 Fibonacci(47)/Lucas(21)/(1/2+sqrt(5)/2)^10 9870002042817450 a004 Fibonacci(45)/Lucas(21)/(1/2+sqrt(5)/2)^8 9870002042817450 a001 10946/969323029*599074578^(19/21) 9870002042817450 a004 Fibonacci(43)/Lucas(21)/(1/2+sqrt(5)/2)^6 9870002042817450 a001 10946/370248451*2537720636^(4/5) 9870002042817450 a001 10946/370248451*45537549124^(12/17) 9870002042817450 a001 10946/370248451*14662949395604^(4/7) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^36/Lucas(41) 9870002042817450 a001 10946/370248451*505019158607^(9/14) 9870002042817450 a001 10946/370248451*192900153618^(2/3) 9870002042817450 a001 10946/370248451*73681302247^(9/13) 9870002042817450 a001 10946/370248451*10749957122^(3/4) 9870002042817450 a001 10946/370248451*4106118243^(18/23) 9870002042817450 a001 1812440223386/1836311903 9870002042817450 a001 10946/370248451*1568397607^(9/11) 9870002042817450 a001 10946/370248451*599074578^(6/7) 9870002042817450 a004 Fibonacci(41)/Lucas(21)/(1/2+sqrt(5)/2)^4 9870002042817450 a004 Fibonacci(21)*Lucas(40)/(1/2+sqrt(5)/2)^45 9870002042817450 a001 10946/969323029*228826127^(19/20) 9870002042817450 a001 10946/370248451*228826127^(9/10) 9870002042817450 a001 5473/70711162*45537549124^(2/3) 9870002042817450 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^34/Lucas(39) 9870002042817450 a001 5473/70711162*10749957122^(17/24) 9870002042817450 a001 5473/70711162*4106118243^(17/23) 9870002042817450 a001 5473/70711162*1568397607^(17/22) 9870002042817450 a001 692290562756/701408733 9870002042817450 a001 5473/70711162*599074578^(17/21) 9870002042817450 a004 Fibonacci(39)/Lucas(21)/(1/2+sqrt(5)/2)^2 9870002042817451 a001 5473/70711162*228826127^(17/20) 9870002042817451 a004 Fibonacci(21)*Lucas(38)/(1/2+sqrt(5)/2)^43 9870002042817451 a001 10946/370248451*87403803^(18/19) 9870002042817452 a001 5473/70711162*87403803^(17/19) 9870002042817453 a001 10946/20633239*20633239^(6/7) 9870002042817453 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^32/Lucas(37) 9870002042817453 a001 10946/54018521*23725150497407^(1/2) 9870002042817453 a001 10946/54018521*505019158607^(4/7) 9870002042817453 a001 10946/54018521*73681302247^(8/13) 9870002042817453 a001 10946/54018521*10749957122^(2/3) 9870002042817453 a001 10946/54018521*4106118243^(16/23) 9870002042817453 a001 10946/54018521*1568397607^(8/11) 9870002042817453 a001 10946/54018521*599074578^(16/21) 9870002042817453 a001 24157817/24476 9870002042817453 a001 10946/54018521*228826127^(4/5) 9870002042817454 a001 10946/54018521*87403803^(16/19) 9870002042817457 a001 10946/87403803*33385282^(11/12) 9870002042817459 a004 Fibonacci(21)*Lucas(36)/(1/2+sqrt(5)/2)^41 9870002042817459 a001 5473/70711162*33385282^(17/18) 9870002042817461 a001 10946/54018521*33385282^(8/9) 9870002042817473 a001 10946/20633239*141422324^(10/13) 9870002042817473 a001 10946/20633239*2537720636^(2/3) 9870002042817473 a001 10946/20633239*45537549124^(10/17) 9870002042817473 a001 10946/20633239*312119004989^(6/11) 9870002042817473 a001 10946/20633239*14662949395604^(10/21) 9870002042817473 a001 10946/20633239*(1/2+1/2*5^(1/2))^30 9870002042817473 a001 10946/20633239*192900153618^(5/9) 9870002042817473 a001 10946/20633239*28143753123^(3/5) 9870002042817473 a001 10946/20633239*10749957122^(5/8) 9870002042817473 a001 10946/20633239*4106118243^(15/23) 9870002042817473 a001 10946/20633239*1568397607^(15/22) 9870002042817473 a001 10946/20633239*599074578^(5/7) 9870002042817473 a001 9227465/24476*(1/2+1/2*5^(1/2))^2 9870002042817473 a001 9227465/24476*10749957122^(1/24) 9870002042817473 a001 9227465/24476*4106118243^(1/23) 9870002042817473 a001 9227465/24476*1568397607^(1/22) 9870002042817473 a001 9227465/24476*599074578^(1/21) 9870002042817473 a001 9227465/24476*228826127^(1/20) 9870002042817473 a001 9227465/24476*87403803^(1/19) 9870002042817473 a001 10946/20633239*228826127^(3/4) 9870002042817473 a001 20200766378/20466831 9870002042817474 a001 9227465/24476*33385282^(1/18) 9870002042817474 a001 10946/20633239*87403803^(15/19) 9870002042817477 a001 9227465/24476*12752043^(1/17) 9870002042817480 a001 10946/20633239*33385282^(5/6) 9870002042817499 a001 9227465/24476*4870847^(1/16) 9870002042817509 a001 2178309/24476*1860498^(1/6) 9870002042817510 a001 10946/54018521*12752043^(16/17) 9870002042817511 a004 Fibonacci(21)*Lucas(34)/(1/2+sqrt(5)/2)^39 9870002042817527 a001 10946/20633239*12752043^(15/17) 9870002042817590 a001 5473/3940598*20633239^(4/5) 9870002042817608 a001 66978574/109801*5778^(1/18) 9870002042817609 a001 5473/3940598*17393796001^(4/7) 9870002042817609 a001 5473/3940598*14662949395604^(4/9) 9870002042817609 a001 5473/3940598*(1/2+1/2*5^(1/2))^28 9870002042817609 a001 5473/3940598*505019158607^(1/2) 9870002042817609 a001 5473/3940598*73681302247^(7/13) 9870002042817609 a001 5473/3940598*10749957122^(7/12) 9870002042817609 a001 5473/3940598*4106118243^(14/23) 9870002042817609 a001 5473/3940598*1568397607^(7/11) 9870002042817609 a001 5473/3940598*599074578^(2/3) 9870002042817609 a001 1762289/12238*(1/2+1/2*5^(1/2))^4 9870002042817609 a001 1762289/12238*23725150497407^(1/16) 9870002042817609 a001 1762289/12238*73681302247^(1/13) 9870002042817609 a001 1762289/12238*10749957122^(1/12) 9870002042817609 a001 1762289/12238*4106118243^(2/23) 9870002042817609 a001 1762289/12238*1568397607^(1/11) 9870002042817609 a001 1762289/12238*599074578^(2/21) 9870002042817609 a001 1762289/12238*228826127^(1/10) 9870002042817609 a001 5473/3940598*228826127^(7/10) 9870002042817609 a001 1762289/12238*87403803^(2/19) 9870002042817610 a001 5473/3940598*87403803^(14/19) 9870002042817610 a001 1762289/12238*33385282^(1/9) 9870002042817610 a001 38580030788/39088169 9870002042817616 a001 5473/3940598*33385282^(7/9) 9870002042817616 a001 1762289/12238*12752043^(2/17) 9870002042817659 a001 5473/3940598*12752043^(14/17) 9870002042817661 a001 1762289/12238*4870847^(1/8) 9870002042817663 a001 9227465/24476*1860498^(1/15) 9870002042817674 a001 5702887/24476*1860498^(1/10) 9870002042817863 a001 10946/20633239*4870847^(15/16) 9870002042817866 a004 Fibonacci(21)*Lucas(32)/(1/2+sqrt(5)/2)^37 9870002042817973 a001 5473/3940598*4870847^(7/8) 9870002042817989 a001 1762289/12238*1860498^(2/15) 9870002042818510 a001 1346269/24476*7881196^(2/11) 9870002042818539 a001 10946/3010349*141422324^(2/3) 9870002042818539 a001 1346269/24476*141422324^(2/13) 9870002042818539 a001 10946/3010349*(1/2+1/2*5^(1/2))^26 9870002042818539 a001 10946/3010349*73681302247^(1/2) 9870002042818539 a001 10946/3010349*10749957122^(13/24) 9870002042818539 a001 10946/3010349*4106118243^(13/23) 9870002042818539 a001 10946/3010349*1568397607^(13/22) 9870002042818539 a001 10946/3010349*599074578^(13/21) 9870002042818539 a001 1346269/24476*2537720636^(2/15) 9870002042818539 a001 1346269/24476*45537549124^(2/17) 9870002042818539 a001 1346269/24476*14662949395604^(2/21) 9870002042818539 a001 1346269/24476*(1/2+1/2*5^(1/2))^6 9870002042818539 a001 1346269/24476*10749957122^(1/8) 9870002042818539 a001 1346269/24476*4106118243^(3/23) 9870002042818539 a001 1346269/24476*1568397607^(3/22) 9870002042818539 a001 1346269/24476*599074578^(1/7) 9870002042818539 a001 1346269/24476*228826127^(3/20) 9870002042818539 a001 10946/3010349*228826127^(13/20) 9870002042818539 a001 1346269/24476*87403803^(3/19) 9870002042818540 a001 10946/3010349*87403803^(13/19) 9870002042818541 a001 1346269/24476*33385282^(1/6) 9870002042818545 a001 10946/3010349*33385282^(13/18) 9870002042818548 a001 7368130237/7465176 9870002042818550 a001 1346269/24476*12752043^(3/17) 9870002042818585 a001 10946/3010349*12752043^(13/17) 9870002042818617 a001 1346269/24476*4870847^(3/16) 9870002042818869 a001 9227465/24476*710647^(1/14) 9870002042818877 a001 10946/3010349*4870847^(13/16) 9870002042819109 a001 1346269/24476*1860498^(1/5) 9870002042819484 a001 208010/6119*710647^(1/4) 9870002042819600 a001 10946/4870847*1860498^(9/10) 9870002042820270 a001 5473/3940598*1860498^(14/15) 9870002042820301 a004 Fibonacci(21)*Lucas(30)/(1/2+sqrt(5)/2)^35 9870002042820401 a001 1762289/12238*710647^(1/7) 9870002042821010 a001 10946/3010349*1860498^(13/15) 9870002042822727 a001 1346269/24476*710647^(3/14) 9870002042824799 a001 10946/1149851*7881196^(8/11) 9870002042824915 a001 10946/1149851*141422324^(8/13) 9870002042824915 a001 10946/1149851*2537720636^(8/15) 9870002042824915 a001 10946/1149851*45537549124^(8/17) 9870002042824915 a001 10946/1149851*14662949395604^(8/21) 9870002042824915 a001 10946/1149851*(1/2+1/2*5^(1/2))^24 9870002042824915 a001 10946/1149851*192900153618^(4/9) 9870002042824915 a001 10946/1149851*73681302247^(6/13) 9870002042824915 a001 10946/1149851*10749957122^(1/2) 9870002042824915 a001 10946/1149851*4106118243^(12/23) 9870002042824915 a001 10946/1149851*1568397607^(6/11) 9870002042824915 a001 10946/1149851*599074578^(4/7) 9870002042824915 a001 514229/24476*(1/2+1/2*5^(1/2))^8 9870002042824915 a001 514229/24476*23725150497407^(1/8) 9870002042824915 a001 514229/24476*505019158607^(1/7) 9870002042824915 a001 514229/24476*73681302247^(2/13) 9870002042824915 a001 514229/24476*10749957122^(1/6) 9870002042824915 a001 514229/24476*4106118243^(4/23) 9870002042824915 a001 514229/24476*1568397607^(2/11) 9870002042824915 a001 514229/24476*599074578^(4/21) 9870002042824915 a001 514229/24476*228826127^(1/5) 9870002042824915 a001 10946/1149851*228826127^(3/5) 9870002042824915 a001 514229/24476*87403803^(4/19) 9870002042824916 a001 10946/1149851*87403803^(12/19) 9870002042824917 a001 514229/24476*33385282^(2/9) 9870002042824921 a001 10946/1149851*33385282^(2/3) 9870002042824929 a001 514229/24476*12752043^(4/17) 9870002042824958 a001 10946/1149851*12752043^(12/17) 9870002042824976 a001 5628750634/5702887 9870002042825019 a001 514229/24476*4870847^(1/4) 9870002042825227 a001 10946/1149851*4870847^(3/4) 9870002042825675 a001 514229/24476*1860498^(4/15) 9870002042827196 a001 10946/1149851*1860498^(4/5) 9870002042827777 a001 9227465/24476*271443^(1/13) 9870002042830499 a001 514229/24476*710647^(2/7) 9870002042836687 a001 10946/3010349*710647^(13/14) 9870002042836994 a004 Fibonacci(21)*Lucas(28)/(1/2+sqrt(5)/2)^33 9870002042838217 a001 1762289/12238*271443^(2/13) 9870002042841667 a001 10946/1149851*710647^(6/7) 9870002042849452 a001 1346269/24476*271443^(3/13) 9870002042855697 a001 3732588/6119*103682^(1/24) 9870002042866132 a001 514229/24476*271443^(4/13) 9870002042868510 a001 5473/219602*7881196^(2/3) 9870002042868610 a001 98209/12238*20633239^(2/7) 9870002042868616 a001 5473/219602*312119004989^(2/5) 9870002042868616 a001 5473/219602*(1/2+1/2*5^(1/2))^22 9870002042868616 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^22/Lucas(27) 9870002042868616 a001 5473/219602*10749957122^(11/24) 9870002042868616 a001 5473/219602*4106118243^(11/23) 9870002042868616 a001 5473/219602*1568397607^(1/2) 9870002042868616 a001 5473/219602*599074578^(11/21) 9870002042868616 a001 98209/12238*2537720636^(2/9) 9870002042868616 a001 98209/12238*312119004989^(2/11) 9870002042868616 a001 98209/12238*(1/2+1/2*5^(1/2))^10 9870002042868616 a001 98209/12238*28143753123^(1/5) 9870002042868616 a001 98209/12238*10749957122^(5/24) 9870002042868616 a001 98209/12238*4106118243^(5/23) 9870002042868616 a001 98209/12238*1568397607^(5/22) 9870002042868616 a001 98209/12238*599074578^(5/21) 9870002042868616 a001 98209/12238*228826127^(1/4) 9870002042868616 a001 5473/219602*228826127^(11/20) 9870002042868617 a001 98209/12238*87403803^(5/19) 9870002042868617 a001 5473/219602*87403803^(11/19) 9870002042868619 a001 98209/12238*33385282^(5/18) 9870002042868622 a001 5473/219602*33385282^(11/18) 9870002042868634 a001 98209/12238*12752043^(5/17) 9870002042868656 a001 5473/219602*12752043^(11/17) 9870002042868746 a001 98209/12238*4870847^(5/16) 9870002042868902 a001 5473/219602*4870847^(11/16) 9870002042869032 a001 2149991428/2178309 9870002042869567 a001 98209/12238*1860498^(1/3) 9870002042870707 a001 5473/219602*1860498^(11/15) 9870002042875596 a001 98209/12238*710647^(5/14) 9870002042883972 a001 5473/219602*710647^(11/14) 9870002042887590 a001 10946/167761*167761^(4/5) 9870002042893985 a001 9227465/24476*103682^(1/12) 9870002042920138 a001 98209/12238*271443^(5/13) 9870002042932157 a001 5702887/24476*103682^(1/8) 9870002042948566 a001 10946/1149851*271443^(12/13) 9870002042951405 a004 Fibonacci(21)*Lucas(26)/(1/2+sqrt(5)/2)^31 9870002042970633 a001 1762289/12238*103682^(1/6) 9870002042981963 a001 5473/219602*271443^(11/13) 9870002043008314 a001 2178309/24476*103682^(5/24) 9870002043048075 a001 1346269/24476*103682^(1/4) 9870002043082390 a001 208010/6119*103682^(7/24) 9870002043103489 a001 3732588/6119*39603^(1/22) 9870002043104310 a001 121393/24476*103682^(11/24) 9870002043117141 a001 9303105/15251*5778^(1/18) 9870002043130963 a001 514229/24476*103682^(1/3) 9870002043142210 a001 10959/844*103682^(3/8) 9870002043145409 a001 75025/24476*439204^(4/9) 9870002043168092 a001 75025/24476*7881196^(4/11) 9870002043168136 a001 10946/167761*20633239^(4/7) 9870002043168149 a001 75025/24476*141422324^(4/13) 9870002043168149 a001 10946/167761*2537720636^(4/9) 9870002043168149 a001 10946/167761*(1/2+1/2*5^(1/2))^20 9870002043168149 a001 10946/167761*23725150497407^(5/16) 9870002043168149 a001 10946/167761*505019158607^(5/14) 9870002043168149 a001 10946/167761*73681302247^(5/13) 9870002043168149 a001 10946/167761*28143753123^(2/5) 9870002043168149 a001 10946/167761*10749957122^(5/12) 9870002043168149 a001 10946/167761*4106118243^(10/23) 9870002043168149 a001 10946/167761*1568397607^(5/11) 9870002043168150 a001 10946/167761*599074578^(10/21) 9870002043168150 a001 75025/24476*2537720636^(4/15) 9870002043168150 a001 75025/24476*45537549124^(4/17) 9870002043168150 a001 75025/24476*817138163596^(4/19) 9870002043168150 a001 75025/24476*14662949395604^(4/21) 9870002043168150 a001 75025/24476*(1/2+1/2*5^(1/2))^12 9870002043168150 a001 75025/24476*192900153618^(2/9) 9870002043168150 a001 75025/24476*73681302247^(3/13) 9870002043168150 a001 75025/24476*10749957122^(1/4) 9870002043168150 a001 75025/24476*4106118243^(6/23) 9870002043168150 a001 75025/24476*1568397607^(3/11) 9870002043168150 a001 75025/24476*599074578^(2/7) 9870002043168150 a001 75025/24476*228826127^(3/10) 9870002043168150 a001 10946/167761*228826127^(1/2) 9870002043168150 a001 75025/24476*87403803^(6/19) 9870002043168150 a001 10946/167761*87403803^(10/19) 9870002043168152 a001 75025/24476*33385282^(1/3) 9870002043168154 a001 10946/167761*33385282^(5/9) 9870002043168171 a001 75025/24476*12752043^(6/17) 9870002043168185 a001 10946/167761*12752043^(10/17) 9870002043168306 a001 75025/24476*4870847^(3/8) 9870002043168409 a001 10946/167761*4870847^(5/8) 9870002043169290 a001 75025/24476*1860498^(2/5) 9870002043170050 a001 10946/167761*1860498^(2/3) 9870002043171001 a001 82122365/83204 9870002043176525 a001 75025/24476*710647^(3/7) 9870002043182109 a001 10946/167761*710647^(5/7) 9870002043229975 a001 75025/24476*271443^(6/13) 9870002043251176 a001 98209/12238*103682^(5/12) 9870002043271192 a001 10946/167761*271443^(10/13) 9870002043340000 a001 10946/64079*64079^(18/23) 9870002043389568 a001 9227465/24476*39603^(1/11) 9870002043461297 a001 5702887/271443*15127^(2/5) 9870002043486870 a001 10946/271443*103682^(7/8) 9870002043575761 a001 14930352/710647*15127^(2/5) 9870002043592461 a001 39088169/1860498*15127^(2/5) 9870002043594897 a001 102334155/4870847*15127^(2/5) 9870002043595253 a001 267914296/12752043*15127^(2/5) 9870002043595305 a001 701408733/33385282*15127^(2/5) 9870002043595312 a001 1836311903/87403803*15127^(2/5) 9870002043595313 a001 102287808/4868641*15127^(2/5) 9870002043595313 a001 12586269025/599074578*15127^(2/5) 9870002043595313 a001 32951280099/1568397607*15127^(2/5) 9870002043595313 a001 86267571272/4106118243*15127^(2/5) 9870002043595313 a001 225851433717/10749957122*15127^(2/5) 9870002043595313 a001 591286729879/28143753123*15127^(2/5) 9870002043595313 a001 1548008755920/73681302247*15127^(2/5) 9870002043595313 a001 4052739537881/192900153618*15127^(2/5) 9870002043595313 a001 225749145909/10745088481*15127^(2/5) 9870002043595313 a001 6557470319842/312119004989*15127^(2/5) 9870002043595313 a001 2504730781961/119218851371*15127^(2/5) 9870002043595313 a001 956722026041/45537549124*15127^(2/5) 9870002043595313 a001 365435296162/17393796001*15127^(2/5) 9870002043595313 a001 139583862445/6643838879*15127^(2/5) 9870002043595313 a001 53316291173/2537720636*15127^(2/5) 9870002043595313 a001 20365011074/969323029*15127^(2/5) 9870002043595314 a001 7778742049/370248451*15127^(2/5) 9870002043595314 a001 2971215073/141422324*15127^(2/5) 9870002043595317 a001 1134903170/54018521*15127^(2/5) 9870002043595337 a001 433494437/20633239*15127^(2/5) 9870002043595472 a001 165580141/7881196*15127^(2/5) 9870002043596403 a001 63245986/3010349*15127^(2/5) 9870002043602782 a001 24157817/1149851*15127^(2/5) 9870002043627221 a001 75025/24476*103682^(1/2) 9870002043646503 a001 9227465/439204*15127^(2/5) 9870002043675532 a001 5702887/24476*39603^(3/22) 9870002043677794 a001 10946/710647*103682^(23/24) 9870002043710248 a001 5473/219602*103682^(11/12) 9870002043735593 a004 Fibonacci(21)*Lucas(24)/(1/2+sqrt(5)/2)^29 9870002043758040 a001 28657/24476*64079^(14/23) 9870002043823411 a001 196418/39603*15127^(11/20) 9870002043841968 a001 2178309/64079*15127^(7/20) 9870002043933269 a001 10946/167761*103682^(5/6) 9870002043946172 a001 3524578/167761*15127^(2/5) 9870002043961799 a001 1762289/12238*39603^(2/11) 9870002044247272 a001 2178309/24476*39603^(5/22) 9870002044534825 a001 1346269/24476*39603^(3/11) 9870002044816932 a001 208010/6119*39603^(7/22) 9870002044834919 a001 1346269/103682*15127^(9/20) 9870002044974101 a001 3732588/6119*15127^(1/20) 9870002045113296 a001 514229/24476*39603^(4/11) 9870002045170171 a001 39088169/64079*5778^(1/18) 9870002045187070 a001 10946/64079*439204^(2/3) 9870002045221094 a001 10946/64079*7881196^(6/11) 9870002045221171 a001 28657/24476*20633239^(2/5) 9870002045221180 a001 10946/64079*141422324^(6/13) 9870002045221181 a001 10946/64079*2537720636^(2/5) 9870002045221181 a001 10946/64079*45537549124^(6/17) 9870002045221181 a001 10946/64079*14662949395604^(2/7) 9870002045221181 a001 10946/64079*(1/2+1/2*5^(1/2))^18 9870002045221181 a001 10946/64079*192900153618^(1/3) 9870002045221181 a001 10946/64079*10749957122^(3/8) 9870002045221181 a001 10946/64079*4106118243^(9/23) 9870002045221181 a001 10946/64079*1568397607^(9/22) 9870002045221181 a001 10946/64079*599074578^(3/7) 9870002045221181 a001 28657/24476*17393796001^(2/7) 9870002045221181 a001 28657/24476*14662949395604^(2/9) 9870002045221181 a001 28657/24476*(1/2+1/2*5^(1/2))^14 9870002045221181 a001 28657/24476*505019158607^(1/4) 9870002045221181 a001 28657/24476*10749957122^(7/24) 9870002045221181 a001 28657/24476*4106118243^(7/23) 9870002045221181 a001 28657/24476*1568397607^(7/22) 9870002045221181 a001 28657/24476*599074578^(1/3) 9870002045221181 a001 10946/64079*228826127^(9/20) 9870002045221181 a001 28657/24476*228826127^(7/20) 9870002045221181 a001 28657/24476*87403803^(7/19) 9870002045221181 a001 10946/64079*87403803^(9/19) 9870002045221184 a001 28657/24476*33385282^(7/18) 9870002045221185 a001 10946/64079*33385282^(1/2) 9870002045221206 a001 28657/24476*12752043^(7/17) 9870002045221213 a001 10946/64079*12752043^(9/17) 9870002045221363 a001 28657/24476*4870847^(7/16) 9870002045221415 a001 10946/64079*4870847^(9/16) 9870002045222511 a001 28657/24476*1860498^(7/15) 9870002045222891 a001 10946/64079*1860498^(3/5) 9870002045230952 a001 28657/24476*710647^(1/2) 9870002045233744 a001 10946/64079*710647^(9/14) 9870002045240724 a001 24129194/24447 9870002045293310 a001 28657/24476*271443^(7/13) 9870002045313919 a001 10946/64079*271443^(9/13) 9870002045372335 a001 10959/844*39603^(9/22) 9870002045617926 a001 11592/6119*39603^(13/22) 9870002045618177 a001 3524578/271443*15127^(9/20) 9870002045729093 a001 98209/12238*39603^(5/11) 9870002045732453 a001 9227465/710647*15127^(9/20) 9870002045749125 a001 24157817/1860498*15127^(9/20) 9870002045751558 a001 63245986/4870847*15127^(9/20) 9870002045751913 a001 165580141/12752043*15127^(9/20) 9870002045751964 a001 433494437/33385282*15127^(9/20) 9870002045751972 a001 1134903170/87403803*15127^(9/20) 9870002045751973 a001 2971215073/228826127*15127^(9/20) 9870002045751973 a001 7778742049/599074578*15127^(9/20) 9870002045751973 a001 20365011074/1568397607*15127^(9/20) 9870002045751973 a001 53316291173/4106118243*15127^(9/20) 9870002045751973 a001 139583862445/10749957122*15127^(9/20) 9870002045751973 a001 365435296162/28143753123*15127^(9/20) 9870002045751973 a001 956722026041/73681302247*15127^(9/20) 9870002045751973 a001 2504730781961/192900153618*15127^(9/20) 9870002045751973 a001 10610209857723/817138163596*15127^(9/20) 9870002045751973 a001 4052739537881/312119004989*15127^(9/20) 9870002045751973 a001 1548008755920/119218851371*15127^(9/20) 9870002045751973 a001 591286729879/45537549124*15127^(9/20) 9870002045751973 a001 7787980473/599786069*15127^(9/20) 9870002045751973 a001 86267571272/6643838879*15127^(9/20) 9870002045751973 a001 32951280099/2537720636*15127^(9/20) 9870002045751973 a001 12586269025/969323029*15127^(9/20) 9870002045751973 a001 4807526976/370248451*15127^(9/20) 9870002045751974 a001 1836311903/141422324*15127^(9/20) 9870002045751977 a001 701408733/54018521*15127^(9/20) 9870002045751996 a001 9238424/711491*15127^(9/20) 9870002045752132 a001 102334155/7881196*15127^(9/20) 9870002045753061 a001 39088169/3010349*15127^(9/20) 9870002045756764 a001 28657/24476*103682^(7/12) 9870002045759429 a001 14930352/1149851*15127^(9/20) 9870002045794949 a001 121393/39603*15127^(3/5) 9870002045803079 a001 5702887/439204*15127^(9/20) 9870002045830019 a001 121393/24476*39603^(1/2) 9870002045909788 a001 10946/64079*103682^(3/4) 9870002046000133 a001 1346269/64079*15127^(2/5) 9870002046102257 a001 2178309/167761*15127^(9/20) 9870002046600721 a001 75025/24476*39603^(6/11) 9870002046740168 a001 5473/12238*24476^(16/21) 9870002046987638 a001 416020/51841*15127^(1/2) 9870002047130793 a001 9227465/24476*15127^(1/10) 9870002047334212 a001 5473/51841*39603^(19/22) 9870002047774262 a001 726103/90481*15127^(1/2) 9870002047889028 a001 5702887/710647*15127^(1/2) 9870002047905773 a001 829464/103361*15127^(1/2) 9870002047908216 a001 39088169/4870847*15127^(1/2) 9870002047908572 a001 34111385/4250681*15127^(1/2) 9870002047908624 a001 133957148/16692641*15127^(1/2) 9870002047908632 a001 233802911/29134601*15127^(1/2) 9870002047908633 a001 1836311903/228826127*15127^(1/2) 9870002047908633 a001 267084832/33281921*15127^(1/2) 9870002047908633 a001 12586269025/1568397607*15127^(1/2) 9870002047908633 a001 10983760033/1368706081*15127^(1/2) 9870002047908633 a001 43133785636/5374978561*15127^(1/2) 9870002047908633 a001 75283811239/9381251041*15127^(1/2) 9870002047908633 a001 591286729879/73681302247*15127^(1/2) 9870002047908633 a001 86000486440/10716675201*15127^(1/2) 9870002047908633 a001 4052739537881/505019158607*15127^(1/2) 9870002047908633 a001 3536736619241/440719107401*15127^(1/2) 9870002047908633 a001 3278735159921/408569081798*15127^(1/2) 9870002047908633 a001 2504730781961/312119004989*15127^(1/2) 9870002047908633 a001 956722026041/119218851371*15127^(1/2) 9870002047908633 a001 182717648081/22768774562*15127^(1/2) 9870002047908633 a001 139583862445/17393796001*15127^(1/2) 9870002047908633 a001 53316291173/6643838879*15127^(1/2) 9870002047908633 a001 10182505537/1268860318*15127^(1/2) 9870002047908633 a001 7778742049/969323029*15127^(1/2) 9870002047908633 a001 2971215073/370248451*15127^(1/2) 9870002047908633 a001 567451585/70711162*15127^(1/2) 9870002047908636 a001 433494437/54018521*15127^(1/2) 9870002047908656 a001 165580141/20633239*15127^(1/2) 9870002047908792 a001 31622993/3940598*15127^(1/2) 9870002047909726 a001 24157817/3010349*15127^(1/2) 9870002047916121 a001 9227465/1149851*15127^(1/2) 9870002047959958 a001 1762289/219602*15127^(1/2) 9870002048152852 a001 832040/64079*15127^(9/20) 9870002048208270 a001 3524578/9349*3571^(2/17) 9870002048260422 a001 1346269/167761*15127^(1/2) 9870002048262495 a001 17711/39603*15127^(4/5) 9870002048436263 a001 75025/39603*15127^(13/20) 9870002048674417 a007 Real Root Of 628*x^4-135*x^3+254*x^2+214*x-762 9870002048690495 a001 10946/271443*39603^(21/22) 9870002048760826 a001 4181/24476*9349^(18/19) 9870002048889103 a001 10946/167761*39603^(10/11) 9870002048906050 a001 311187/2161*5778^(2/9) 9870002049110498 a004 Fibonacci(21)*Lucas(22)/(1/2+sqrt(5)/2)^27 9870002049154614 a001 514229/103682*15127^(11/20) 9870002049225848 a001 28657/24476*39603^(7/11) 9870002049287369 a001 5702887/24476*15127^(3/20) 9870002049324080 a001 15456/13201*15127^(7/10) 9870002049932427 a001 1346269/271443*15127^(11/20) 9870002050045908 a001 3524578/710647*15127^(11/20) 9870002050062465 a001 9227465/1860498*15127^(11/20) 9870002050064880 a001 24157817/4870847*15127^(11/20) 9870002050065233 a001 63245986/12752043*15127^(11/20) 9870002050065284 a001 165580141/33385282*15127^(11/20) 9870002050065291 a001 433494437/87403803*15127^(11/20) 9870002050065293 a001 1134903170/228826127*15127^(11/20) 9870002050065293 a001 2971215073/599074578*15127^(11/20) 9870002050065293 a001 7778742049/1568397607*15127^(11/20) 9870002050065293 a001 20365011074/4106118243*15127^(11/20) 9870002050065293 a001 53316291173/10749957122*15127^(11/20) 9870002050065293 a001 139583862445/28143753123*15127^(11/20) 9870002050065293 a001 365435296162/73681302247*15127^(11/20) 9870002050065293 a001 956722026041/192900153618*15127^(11/20) 9870002050065293 a001 2504730781961/505019158607*15127^(11/20) 9870002050065293 a001 10610209857723/2139295485799*15127^(11/20) 9870002050065293 a001 4052739537881/817138163596*15127^(11/20) 9870002050065293 a001 140728068720/28374454999*15127^(11/20) 9870002050065293 a001 591286729879/119218851371*15127^(11/20) 9870002050065293 a001 225851433717/45537549124*15127^(11/20) 9870002050065293 a001 86267571272/17393796001*15127^(11/20) 9870002050065293 a001 32951280099/6643838879*15127^(11/20) 9870002050065293 a001 1144206275/230701876*15127^(11/20) 9870002050065293 a001 4807526976/969323029*15127^(11/20) 9870002050065293 a001 1836311903/370248451*15127^(11/20) 9870002050065293 a001 701408733/141422324*15127^(11/20) 9870002050065296 a001 267914296/54018521*15127^(11/20) 9870002050065316 a001 9303105/1875749*15127^(11/20) 9870002050065450 a001 39088169/7881196*15127^(11/20) 9870002050066373 a001 14930352/3010349*15127^(11/20) 9870002050072697 a001 5702887/1149851*15127^(11/20) 9870002050116043 a001 2178309/439204*15127^(11/20) 9870002050319829 a001 514229/64079*15127^(1/2) 9870002050370038 a001 10946/64079*39603^(9/11) 9870002050413141 a001 75640/15251*15127^(11/20) 9870002051284265 a001 317811/103682*15127^(3/5) 9870002051444248 a001 1762289/12238*15127^(1/5) 9870002052085146 a001 832040/271443*15127^(3/5) 9870002052201993 a001 311187/101521*15127^(3/5) 9870002052219040 a001 5702887/1860498*15127^(3/5) 9870002052221528 a001 14930352/4870847*15127^(3/5) 9870002052221891 a001 39088169/12752043*15127^(3/5) 9870002052221943 a001 14619165/4769326*15127^(3/5) 9870002052221951 a001 267914296/87403803*15127^(3/5) 9870002052221952 a001 701408733/228826127*15127^(3/5) 9870002052221952 a001 1836311903/599074578*15127^(3/5) 9870002052221953 a001 686789568/224056801*15127^(3/5) 9870002052221953 a001 12586269025/4106118243*15127^(3/5) 9870002052221953 a001 32951280099/10749957122*15127^(3/5) 9870002052221953 a001 86267571272/28143753123*15127^(3/5) 9870002052221953 a001 32264490531/10525900321*15127^(3/5) 9870002052221953 a001 591286729879/192900153618*15127^(3/5) 9870002052221953 a001 1548008755920/505019158607*15127^(3/5) 9870002052221953 a001 1515744265389/494493258286*15127^(3/5) 9870002052221953 a001 2504730781961/817138163596*15127^(3/5) 9870002052221953 a001 956722026041/312119004989*15127^(3/5) 9870002052221953 a001 365435296162/119218851371*15127^(3/5) 9870002052221953 a001 139583862445/45537549124*15127^(3/5) 9870002052221953 a001 53316291173/17393796001*15127^(3/5) 9870002052221953 a001 20365011074/6643838879*15127^(3/5) 9870002052221953 a001 7778742049/2537720636*15127^(3/5) 9870002052221953 a001 2971215073/969323029*15127^(3/5) 9870002052221953 a001 1134903170/370248451*15127^(3/5) 9870002052221953 a001 433494437/141422324*15127^(3/5) 9870002052221956 a001 165580141/54018521*15127^(3/5) 9870002052221976 a001 63245986/20633239*15127^(3/5) 9870002052222115 a001 24157817/7881196*15127^(3/5) 9870002052223065 a001 9227465/3010349*15127^(3/5) 9870002052229576 a001 3524578/1149851*15127^(3/5) 9870002052274208 a001 1346269/439204*15127^(3/5) 9870002052449480 a001 317811/64079*15127^(11/20) 9870002052580117 a001 514229/167761*15127^(3/5) 9870002052897791 a001 4976784/13201*5778^(1/9) 9870002053511635 a001 98209/51841*15127^(13/20) 9870002053600333 a001 2178309/24476*15127^(1/4) 9870002054252122 a001 514229/271443*15127^(13/20) 9870002054360158 a001 1346269/710647*15127^(13/20) 9870002054375920 a001 1762289/930249*15127^(13/20) 9870002054378219 a001 9227465/4870847*15127^(13/20) 9870002054378555 a001 24157817/12752043*15127^(13/20) 9870002054378604 a001 31622993/16692641*15127^(13/20) 9870002054378611 a001 165580141/87403803*15127^(13/20) 9870002054378612 a001 433494437/228826127*15127^(13/20) 9870002054378612 a001 567451585/299537289*15127^(13/20) 9870002054378612 a001 2971215073/1568397607*15127^(13/20) 9870002054378612 a001 7778742049/4106118243*15127^(13/20) 9870002054378612 a001 10182505537/5374978561*15127^(13/20) 9870002054378612 a001 53316291173/28143753123*15127^(13/20) 9870002054378612 a001 139583862445/73681302247*15127^(13/20) 9870002054378612 a001 182717648081/96450076809*15127^(13/20) 9870002054378612 a001 956722026041/505019158607*15127^(13/20) 9870002054378612 a001 10610209857723/5600748293801*15127^(13/20) 9870002054378612 a001 591286729879/312119004989*15127^(13/20) 9870002054378612 a001 225851433717/119218851371*15127^(13/20) 9870002054378612 a001 21566892818/11384387281*15127^(13/20) 9870002054378612 a001 32951280099/17393796001*15127^(13/20) 9870002054378612 a001 12586269025/6643838879*15127^(13/20) 9870002054378612 a001 1201881744/634430159*15127^(13/20) 9870002054378612 a001 1836311903/969323029*15127^(13/20) 9870002054378612 a001 701408733/370248451*15127^(13/20) 9870002054378613 a001 66978574/35355581*15127^(13/20) 9870002054378615 a001 102334155/54018521*15127^(13/20) 9870002054378634 a001 39088169/20633239*15127^(13/20) 9870002054378762 a001 3732588/1970299*15127^(13/20) 9870002054379641 a001 5702887/3010349*15127^(13/20) 9870002054385661 a001 2178309/1149851*15127^(13/20) 9870002054426927 a001 208010/109801*15127^(13/20) 9870002054676849 a001 196418/64079*15127^(3/5) 9870002054709768 a001 317811/167761*15127^(13/20) 9870002054802614 a001 28657/39603*15127^(3/4) 9870002055483173 a001 121393/103682*15127^(7/10) 9870002055709252 a001 17711/9349*9349^(13/19) 9870002055758498 a001 1346269/24476*15127^(3/10) 9870002056381773 a001 105937/90481*15127^(7/10) 9870002056512877 a001 832040/710647*15127^(7/10) 9870002056532005 a001 726103/620166*15127^(7/10) 9870002056534795 a001 5702887/4870847*15127^(7/10) 9870002056535203 a001 4976784/4250681*15127^(7/10) 9870002056535262 a001 39088169/33385282*15127^(7/10) 9870002056535271 a001 34111385/29134601*15127^(7/10) 9870002056535272 a001 267914296/228826127*15127^(7/10) 9870002056535272 a001 233802911/199691526*15127^(7/10) 9870002056535272 a001 1836311903/1568397607*15127^(7/10) 9870002056535272 a001 1602508992/1368706081*15127^(7/10) 9870002056535272 a001 12586269025/10749957122*15127^(7/10) 9870002056535272 a001 10983760033/9381251041*15127^(7/10) 9870002056535272 a001 86267571272/73681302247*15127^(7/10) 9870002056535272 a001 75283811239/64300051206*15127^(7/10) 9870002056535272 a001 2504730781961/2139295485799*15127^(7/10) 9870002056535272 a001 365435296162/312119004989*15127^(7/10) 9870002056535272 a001 139583862445/119218851371*15127^(7/10) 9870002056535272 a001 53316291173/45537549124*15127^(7/10) 9870002056535272 a001 20365011074/17393796001*15127^(7/10) 9870002056535272 a001 7778742049/6643838879*15127^(7/10) 9870002056535272 a001 2971215073/2537720636*15127^(7/10) 9870002056535272 a001 1134903170/969323029*15127^(7/10) 9870002056535272 a001 433494437/370248451*15127^(7/10) 9870002056535273 a001 165580141/141422324*15127^(7/10) 9870002056535276 a001 63245986/54018521*15127^(7/10) 9870002056535299 a001 24157817/20633239*15127^(7/10) 9870002056535454 a001 9227465/7881196*15127^(7/10) 9870002056536520 a001 3524578/3010349*15127^(7/10) 9870002056543826 a001 1346269/1149851*15127^(7/10) 9870002056593904 a001 514229/439204*15127^(7/10) 9870002056648388 a001 121393/64079*15127^(13/20) 9870002056937138 a001 196418/167761*15127^(7/10) 9870002057620704 a001 5473/12238*64079^(16/23) 9870002057911217 a001 208010/6119*15127^(7/20) 9870002057950719 a001 17711/103682*15127^(9/10) 9870002058124488 a001 75025/103682*15127^(3/4) 9870002058272703 a001 39088169/103682*5778^(1/9) 9870002058609143 a001 196418/271443*15127^(3/4) 9870002058679853 a001 514229/710647*15127^(3/4) 9870002058690170 a001 1346269/1860498*15127^(3/4) 9870002058691675 a001 3524578/4870847*15127^(3/4) 9870002058691894 a001 9227465/12752043*15127^(3/4) 9870002058691926 a001 24157817/33385282*15127^(3/4) 9870002058691931 a001 63245986/87403803*15127^(3/4) 9870002058691932 a001 165580141/228826127*15127^(3/4) 9870002058691932 a001 433494437/599074578*15127^(3/4) 9870002058691932 a001 1134903170/1568397607*15127^(3/4) 9870002058691932 a001 2971215073/4106118243*15127^(3/4) 9870002058691932 a001 7778742049/10749957122*15127^(3/4) 9870002058691932 a001 20365011074/28143753123*15127^(3/4) 9870002058691932 a001 53316291173/73681302247*15127^(3/4) 9870002058691932 a001 139583862445/192900153618*15127^(3/4) 9870002058691932 a001 365435296162/505019158607*15127^(3/4) 9870002058691932 a001 10610209857723/14662949395604*15127^(3/4) 9870002058691932 a001 591286729879/817138163596*15127^(3/4) 9870002058691932 a001 225851433717/312119004989*15127^(3/4) 9870002058691932 a001 86267571272/119218851371*15127^(3/4) 9870002058691932 a001 32951280099/45537549124*15127^(3/4) 9870002058691932 a001 12586269025/17393796001*15127^(3/4) 9870002058691932 a001 4807526976/6643838879*15127^(3/4) 9870002058691932 a001 1836311903/2537720636*15127^(3/4) 9870002058691932 a001 701408733/969323029*15127^(3/4) 9870002058691932 a001 267914296/370248451*15127^(3/4) 9870002058691932 a001 102334155/141422324*15127^(3/4) 9870002058691934 a001 39088169/54018521*15127^(3/4) 9870002058691946 a001 14930352/20633239*15127^(3/4) 9870002058692030 a001 5702887/7881196*15127^(3/4) 9870002058692605 a001 2178309/3010349*15127^(3/4) 9870002058696545 a001 832040/1149851*15127^(3/4) 9870002058723554 a001 317811/439204*15127^(3/4) 9870002058908676 a001 121393/167761*15127^(3/4) 9870002059012305 a001 23184/51841*15127^(4/5) 9870002059056893 a001 34111385/90481*5778^(1/9) 9870002059115934 a001 17711/64079*15127^(17/20) 9870002059171304 a001 267914296/710647*5778^(1/9) 9870002059187997 a001 233802911/620166*5778^(1/9) 9870002059190432 a001 1836311903/4870847*5778^(1/9) 9870002059190787 a001 1602508992/4250681*5778^(1/9) 9870002059190839 a001 12586269025/33385282*5778^(1/9) 9870002059190847 a001 10983760033/29134601*5778^(1/9) 9870002059190848 a001 86267571272/228826127*5778^(1/9) 9870002059190848 a001 267913919/710646*5778^(1/9) 9870002059190848 a001 591286729879/1568397607*5778^(1/9) 9870002059190848 a001 516002918640/1368706081*5778^(1/9) 9870002059190848 a001 4052739537881/10749957122*5778^(1/9) 9870002059190848 a001 3536736619241/9381251041*5778^(1/9) 9870002059190848 a001 6557470319842/17393796001*5778^(1/9) 9870002059190848 a001 2504730781961/6643838879*5778^(1/9) 9870002059190848 a001 956722026041/2537720636*5778^(1/9) 9870002059190848 a001 365435296162/969323029*5778^(1/9) 9870002059190848 a001 139583862445/370248451*5778^(1/9) 9870002059190849 a001 53316291173/141422324*5778^(1/9) 9870002059190851 a001 20365011074/54018521*5778^(1/9) 9870002059190871 a001 7778742049/20633239*5778^(1/9) 9870002059191007 a001 2971215073/7881196*5778^(1/9) 9870002059191937 a001 1134903170/3010349*5778^(1/9) 9870002059198313 a001 433494437/1149851*5778^(1/9) 9870002059241847 a001 3732588/6119*5778^(1/18) 9870002059242015 a001 165580141/439204*5778^(1/9) 9870002059289702 a001 75025/64079*15127^(7/10) 9870002059292865 a001 5473/12238*(1/2+1/2*5^(1/2))^16 9870002059292865 a001 5473/12238*23725150497407^(1/4) 9870002059292865 a001 5473/12238*73681302247^(4/13) 9870002059292865 a001 5473/12238*10749957122^(1/3) 9870002059292865 a001 5473/12238*4106118243^(8/23) 9870002059292865 a001 5473/12238*1568397607^(4/11) 9870002059292865 a001 5473/12238*599074578^(8/21) 9870002059292865 a001 5473/12238*228826127^(2/5) 9870002059292865 a001 5473/12238*87403803^(8/19) 9870002059292868 a001 5473/12238*33385282^(4/9) 9870002059292893 a001 5473/12238*12752043^(8/17) 9870002059293073 a001 5473/12238*4870847^(1/2) 9870002059294385 a001 5473/12238*1860498^(8/15) 9870002059304032 a001 5473/12238*710647^(4/7) 9870002059375299 a001 5473/12238*271443^(8/13) 9870002059426820 a001 119814916/121393 9870002059541548 a001 63245986/167761*5778^(1/9) 9870002059904960 a001 5473/12238*103682^(2/3) 9870002060078193 a001 514229/24476*15127^(2/5) 9870002060177519 a001 46368/64079*15127^(3/4) 9870002060580681 a001 121393/271443*15127^(4/5) 9870002060809504 a001 317811/710647*15127^(4/5) 9870002060842889 a001 416020/930249*15127^(4/5) 9870002060847760 a001 2178309/4870847*15127^(4/5) 9870002060848470 a001 5702887/12752043*15127^(4/5) 9870002060848574 a001 7465176/16692641*15127^(4/5) 9870002060848589 a001 39088169/87403803*15127^(4/5) 9870002060848591 a001 102334155/228826127*15127^(4/5) 9870002060848592 a001 133957148/299537289*15127^(4/5) 9870002060848592 a001 701408733/1568397607*15127^(4/5) 9870002060848592 a001 1836311903/4106118243*15127^(4/5) 9870002060848592 a001 2403763488/5374978561*15127^(4/5) 9870002060848592 a001 12586269025/28143753123*15127^(4/5) 9870002060848592 a001 32951280099/73681302247*15127^(4/5) 9870002060848592 a001 43133785636/96450076809*15127^(4/5) 9870002060848592 a001 225851433717/505019158607*15127^(4/5) 9870002060848592 a001 591286729879/1322157322203*15127^(4/5) 9870002060848592 a001 10610209857723/23725150497407*15127^(4/5) 9870002060848592 a001 182717648081/408569081798*15127^(4/5) 9870002060848592 a001 139583862445/312119004989*15127^(4/5) 9870002060848592 a001 53316291173/119218851371*15127^(4/5) 9870002060848592 a001 10182505537/22768774562*15127^(4/5) 9870002060848592 a001 7778742049/17393796001*15127^(4/5) 9870002060848592 a001 2971215073/6643838879*15127^(4/5) 9870002060848592 a001 567451585/1268860318*15127^(4/5) 9870002060848592 a001 433494437/969323029*15127^(4/5) 9870002060848592 a001 165580141/370248451*15127^(4/5) 9870002060848593 a001 31622993/70711162*15127^(4/5) 9870002060848598 a001 24157817/54018521*15127^(4/5) 9870002060848638 a001 9227465/20633239*15127^(4/5) 9870002060848909 a001 1762289/3940598*15127^(4/5) 9870002060850770 a001 1346269/3010349*15127^(4/5) 9870002060863522 a001 514229/1149851*15127^(4/5) 9870002060950924 a001 98209/219602*15127^(4/5) 9870002061376222 a001 17711/167761*15127^(19/20) 9870002061549991 a001 75025/167761*15127^(4/5) 9870002061594582 a001 24157817/64079*5778^(1/9) 9870002062207844 a001 10959/844*15127^(9/20) 9870002062437808 a001 46368/167761*15127^(17/20) 9870002062922462 a001 121393/439204*15127^(17/20) 9870002062993173 a001 317811/1149851*15127^(17/20) 9870002063003489 a001 832040/3010349*15127^(17/20) 9870002063004994 a001 2178309/7881196*15127^(17/20) 9870002063005214 a001 5702887/20633239*15127^(17/20) 9870002063005246 a001 14930352/54018521*15127^(17/20) 9870002063005251 a001 39088169/141422324*15127^(17/20) 9870002063005251 a001 102334155/370248451*15127^(17/20) 9870002063005251 a001 267914296/969323029*15127^(17/20) 9870002063005251 a001 701408733/2537720636*15127^(17/20) 9870002063005251 a001 1836311903/6643838879*15127^(17/20) 9870002063005251 a001 4807526976/17393796001*15127^(17/20) 9870002063005251 a001 12586269025/45537549124*15127^(17/20) 9870002063005251 a001 32951280099/119218851371*15127^(17/20) 9870002063005251 a001 86267571272/312119004989*15127^(17/20) 9870002063005251 a001 225851433717/817138163596*15127^(17/20) 9870002063005251 a001 1548008755920/5600748293801*15127^(17/20) 9870002063005251 a001 139583862445/505019158607*15127^(17/20) 9870002063005251 a001 53316291173/192900153618*15127^(17/20) 9870002063005251 a001 20365011074/73681302247*15127^(17/20) 9870002063005251 a001 7778742049/28143753123*15127^(17/20) 9870002063005251 a001 2971215073/10749957122*15127^(17/20) 9870002063005251 a001 1134903170/4106118243*15127^(17/20) 9870002063005251 a001 433494437/1568397607*15127^(17/20) 9870002063005251 a001 165580141/599074578*15127^(17/20) 9870002063005252 a001 63245986/228826127*15127^(17/20) 9870002063005253 a001 24157817/87403803*15127^(17/20) 9870002063005266 a001 9227465/33385282*15127^(17/20) 9870002063005350 a001 3524578/12752043*15127^(17/20) 9870002063005924 a001 1346269/4870847*15127^(17/20) 9870002063009865 a001 514229/1860498*15127^(17/20) 9870002063036874 a001 196418/710647*15127^(17/20) 9870002063182182 a004 Fibonacci(22)*Lucas(20)/(1/2+sqrt(5)/2)^26 9870002063221996 a001 75025/271443*15127^(17/20) 9870002063869627 a001 5473/12238*39603^(8/11) 9870002064109812 a001 15456/90481*15127^(9/10) 9870002064435214 a001 98209/12238*15127^(1/2) 9870002064490839 a001 28657/103682*15127^(17/20) 9870002065008412 a001 121393/710647*15127^(9/10) 9870002065139516 a001 105937/620166*15127^(9/10) 9870002065158644 a001 832040/4870847*15127^(9/10) 9870002065161434 a001 726103/4250681*15127^(9/10) 9870002065161842 a001 5702887/33385282*15127^(9/10) 9870002065161901 a001 4976784/29134601*15127^(9/10) 9870002065161910 a001 39088169/228826127*15127^(9/10) 9870002065161911 a001 34111385/199691526*15127^(9/10) 9870002065161911 a001 267914296/1568397607*15127^(9/10) 9870002065161911 a001 233802911/1368706081*15127^(9/10) 9870002065161911 a001 1836311903/10749957122*15127^(9/10) 9870002065161911 a001 1602508992/9381251041*15127^(9/10) 9870002065161911 a001 12586269025/73681302247*15127^(9/10) 9870002065161911 a001 10983760033/64300051206*15127^(9/10) 9870002065161911 a001 86267571272/505019158607*15127^(9/10) 9870002065161911 a001 75283811239/440719107401*15127^(9/10) 9870002065161911 a001 2504730781961/14662949395604*15127^(9/10) 9870002065161911 a001 139583862445/817138163596*15127^(9/10) 9870002065161911 a001 53316291173/312119004989*15127^(9/10) 9870002065161911 a001 20365011074/119218851371*15127^(9/10) 9870002065161911 a001 7778742049/45537549124*15127^(9/10) 9870002065161911 a001 2971215073/17393796001*15127^(9/10) 9870002065161911 a001 1134903170/6643838879*15127^(9/10) 9870002065161911 a001 433494437/2537720636*15127^(9/10) 9870002065161911 a001 165580141/969323029*15127^(9/10) 9870002065161912 a001 63245986/370248451*15127^(9/10) 9870002065161915 a001 24157817/141422324*15127^(9/10) 9870002065161938 a001 9227465/54018521*15127^(9/10) 9870002065162093 a001 3524578/20633239*15127^(9/10) 9870002065163159 a001 1346269/7881196*15127^(9/10) 9870002065170465 a001 514229/3010349*15127^(9/10) 9870002065220543 a001 196418/1149851*15127^(9/10) 9870002065331961 a001 1346269/15127*5778^(5/18) 9870002065563777 a001 75025/439204*15127^(9/10) 9870002065656053 a001 28657/64079*15127^(4/5) 9870002066406752 a001 121393/24476*15127^(11/20) 9870002066451594 a001 11592/109801*15127^(19/20) 9870002067192081 a001 121393/1149851*15127^(19/20) 9870002067300116 a001 317811/3010349*15127^(19/20) 9870002067315878 a001 208010/1970299*15127^(19/20) 9870002067318178 a001 2178309/20633239*15127^(19/20) 9870002067318514 a001 5702887/54018521*15127^(19/20) 9870002067318563 a001 3732588/35355581*15127^(19/20) 9870002067318570 a001 39088169/370248451*15127^(19/20) 9870002067318571 a001 102334155/969323029*15127^(19/20) 9870002067318571 a001 66978574/634430159*15127^(19/20) 9870002067318571 a001 701408733/6643838879*15127^(19/20) 9870002067318571 a001 1836311903/17393796001*15127^(19/20) 9870002067318571 a001 1201881744/11384387281*15127^(19/20) 9870002067318571 a001 12586269025/119218851371*15127^(19/20) 9870002067318571 a001 32951280099/312119004989*15127^(19/20) 9870002067318571 a001 21566892818/204284540899*15127^(19/20) 9870002067318571 a001 225851433717/2139295485799*15127^(19/20) 9870002067318571 a001 182717648081/1730726404001*15127^(19/20) 9870002067318571 a001 139583862445/1322157322203*15127^(19/20) 9870002067318571 a001 53316291173/505019158607*15127^(19/20) 9870002067318571 a001 10182505537/96450076809*15127^(19/20) 9870002067318571 a001 7778742049/73681302247*15127^(19/20) 9870002067318571 a001 2971215073/28143753123*15127^(19/20) 9870002067318571 a001 567451585/5374978561*15127^(19/20) 9870002067318571 a001 433494437/4106118243*15127^(19/20) 9870002067318571 a001 165580141/1568397607*15127^(19/20) 9870002067318571 a001 31622993/299537289*15127^(19/20) 9870002067318574 a001 24157817/228826127*15127^(19/20) 9870002067318593 a001 9227465/87403803*15127^(19/20) 9870002067318721 a001 1762289/16692641*15127^(19/20) 9870002067319599 a001 1346269/12752043*15127^(19/20) 9870002067325620 a001 514229/4870847*15127^(19/20) 9870002067366886 a001 98209/930249*15127^(19/20) 9870002067649727 a001 75025/710647*15127^(19/20) 9870002067916341 a001 28657/167761*15127^(9/10) 9870002068557087 a004 Fibonacci(24)*Lucas(20)/(1/2+sqrt(5)/2)^28 9870002068874298 a001 17711/24476*15127^(3/4) 9870002069048067 a001 75025/24476*15127^(3/5) 9870002069322229 a001 9227465/39603*5778^(1/6) 9870002069341275 a004 Fibonacci(26)*Lucas(20)/(1/2+sqrt(5)/2)^30 9870002069455687 a004 Fibonacci(28)*Lucas(20)/(1/2+sqrt(5)/2)^32 9870002069472379 a004 Fibonacci(30)*Lucas(20)/(1/2+sqrt(5)/2)^34 9870002069474815 a004 Fibonacci(32)*Lucas(20)/(1/2+sqrt(5)/2)^36 9870002069475170 a004 Fibonacci(34)*Lucas(20)/(1/2+sqrt(5)/2)^38 9870002069475222 a004 Fibonacci(36)*Lucas(20)/(1/2+sqrt(5)/2)^40 9870002069475229 a004 Fibonacci(38)*Lucas(20)/(1/2+sqrt(5)/2)^42 9870002069475230 a004 Fibonacci(40)*Lucas(20)/(1/2+sqrt(5)/2)^44 9870002069475231 a004 Fibonacci(42)*Lucas(20)/(1/2+sqrt(5)/2)^46 9870002069475231 a004 Fibonacci(44)*Lucas(20)/(1/2+sqrt(5)/2)^48 9870002069475231 a004 Fibonacci(46)*Lucas(20)/(1/2+sqrt(5)/2)^50 9870002069475231 a004 Fibonacci(48)*Lucas(20)/(1/2+sqrt(5)/2)^52 9870002069475231 a004 Fibonacci(50)*Lucas(20)/(1/2+sqrt(5)/2)^54 9870002069475231 a004 Fibonacci(52)*Lucas(20)/(1/2+sqrt(5)/2)^56 9870002069475231 a004 Fibonacci(54)*Lucas(20)/(1/2+sqrt(5)/2)^58 9870002069475231 a004 Fibonacci(56)*Lucas(20)/(1/2+sqrt(5)/2)^60 9870002069475231 a004 Fibonacci(58)*Lucas(20)/(1/2+sqrt(5)/2)^62 9870002069475231 a004 Fibonacci(60)*Lucas(20)/(1/2+sqrt(5)/2)^64 9870002069475231 a004 Fibonacci(62)*Lucas(20)/(1/2+sqrt(5)/2)^66 9870002069475231 a004 Fibonacci(64)*Lucas(20)/(1/2+sqrt(5)/2)^68 9870002069475231 a004 Fibonacci(66)*Lucas(20)/(1/2+sqrt(5)/2)^70 9870002069475231 a004 Fibonacci(68)*Lucas(20)/(1/2+sqrt(5)/2)^72 9870002069475231 a004 Fibonacci(70)*Lucas(20)/(1/2+sqrt(5)/2)^74 9870002069475231 a004 Fibonacci(72)*Lucas(20)/(1/2+sqrt(5)/2)^76 9870002069475231 a004 Fibonacci(74)*Lucas(20)/(1/2+sqrt(5)/2)^78 9870002069475231 a004 Fibonacci(76)*Lucas(20)/(1/2+sqrt(5)/2)^80 9870002069475231 a004 Fibonacci(78)*Lucas(20)/(1/2+sqrt(5)/2)^82 9870002069475231 a004 Fibonacci(80)*Lucas(20)/(1/2+sqrt(5)/2)^84 9870002069475231 a004 Fibonacci(82)*Lucas(20)/(1/2+sqrt(5)/2)^86 9870002069475231 a004 Fibonacci(84)*Lucas(20)/(1/2+sqrt(5)/2)^88 9870002069475231 a004 Fibonacci(86)*Lucas(20)/(1/2+sqrt(5)/2)^90 9870002069475231 a004 Fibonacci(88)*Lucas(20)/(1/2+sqrt(5)/2)^92 9870002069475231 a004 Fibonacci(90)*Lucas(20)/(1/2+sqrt(5)/2)^94 9870002069475231 a004 Fibonacci(92)*Lucas(20)/(1/2+sqrt(5)/2)^96 9870002069475231 a004 Fibonacci(94)*Lucas(20)/(1/2+sqrt(5)/2)^98 9870002069475231 a004 Fibonacci(96)*Lucas(20)/(1/2+sqrt(5)/2)^100 9870002069475231 a004 Fibonacci(95)*Lucas(20)/(1/2+sqrt(5)/2)^99 9870002069475231 a004 Fibonacci(93)*Lucas(20)/(1/2+sqrt(5)/2)^97 9870002069475231 a004 Fibonacci(91)*Lucas(20)/(1/2+sqrt(5)/2)^95 9870002069475231 a004 Fibonacci(89)*Lucas(20)/(1/2+sqrt(5)/2)^93 9870002069475231 a004 Fibonacci(87)*Lucas(20)/(1/2+sqrt(5)/2)^91 9870002069475231 a004 Fibonacci(85)*Lucas(20)/(1/2+sqrt(5)/2)^89 9870002069475231 a004 Fibonacci(83)*Lucas(20)/(1/2+sqrt(5)/2)^87 9870002069475231 a004 Fibonacci(81)*Lucas(20)/(1/2+sqrt(5)/2)^85 9870002069475231 a004 Fibonacci(79)*Lucas(20)/(1/2+sqrt(5)/2)^83 9870002069475231 a004 Fibonacci(77)*Lucas(20)/(1/2+sqrt(5)/2)^81 9870002069475231 a004 Fibonacci(75)*Lucas(20)/(1/2+sqrt(5)/2)^79 9870002069475231 a004 Fibonacci(73)*Lucas(20)/(1/2+sqrt(5)/2)^77 9870002069475231 a004 Fibonacci(71)*Lucas(20)/(1/2+sqrt(5)/2)^75 9870002069475231 a004 Fibonacci(69)*Lucas(20)/(1/2+sqrt(5)/2)^73 9870002069475231 a004 Fibonacci(67)*Lucas(20)/(1/2+sqrt(5)/2)^71 9870002069475231 a004 Fibonacci(65)*Lucas(20)/(1/2+sqrt(5)/2)^69 9870002069475231 a004 Fibonacci(63)*Lucas(20)/(1/2+sqrt(5)/2)^67 9870002069475231 a004 Fibonacci(61)*Lucas(20)/(1/2+sqrt(5)/2)^65 9870002069475231 a004 Fibonacci(59)*Lucas(20)/(1/2+sqrt(5)/2)^63 9870002069475231 a004 Fibonacci(57)*Lucas(20)/(1/2+sqrt(5)/2)^61 9870002069475231 a004 Fibonacci(55)*Lucas(20)/(1/2+sqrt(5)/2)^59 9870002069475231 a004 Fibonacci(53)*Lucas(20)/(1/2+sqrt(5)/2)^57 9870002069475231 a004 Fibonacci(51)*Lucas(20)/(1/2+sqrt(5)/2)^55 9870002069475231 a004 Fibonacci(49)*Lucas(20)/(1/2+sqrt(5)/2)^53 9870002069475231 a004 Fibonacci(47)*Lucas(20)/(1/2+sqrt(5)/2)^51 9870002069475231 a004 Fibonacci(45)*Lucas(20)/(1/2+sqrt(5)/2)^49 9870002069475231 a004 Fibonacci(43)*Lucas(20)/(1/2+sqrt(5)/2)^47 9870002069475231 a004 Fibonacci(41)*Lucas(20)/(1/2+sqrt(5)/2)^45 9870002069475231 a001 2/6765*(1/2+1/2*5^(1/2))^36 9870002069475231 a004 Fibonacci(39)*Lucas(20)/(1/2+sqrt(5)/2)^43 9870002069475234 a004 Fibonacci(37)*Lucas(20)/(1/2+sqrt(5)/2)^41 9870002069475254 a004 Fibonacci(35)*Lucas(20)/(1/2+sqrt(5)/2)^39 9870002069475390 a004 Fibonacci(33)*Lucas(20)/(1/2+sqrt(5)/2)^37 9870002069476320 a004 Fibonacci(31)*Lucas(20)/(1/2+sqrt(5)/2)^35 9870002069482696 a004 Fibonacci(29)*Lucas(20)/(1/2+sqrt(5)/2)^33 9870002069526397 a004 Fibonacci(27)*Lucas(20)/(1/2+sqrt(5)/2)^31 9870002069588346 a001 28657/271443*15127^(19/20) 9870002069825930 a004 Fibonacci(25)*Lucas(20)/(1/2+sqrt(5)/2)^29 9870002069935884 a001 11592/6119*15127^(13/20) 9870002070349408 a001 28657/9349*9349^(12/19) 9870002070377454 a007 Real Root Of -923*x^4-468*x^3+562*x^2+805*x+673 9870002071878961 a004 Fibonacci(23)*Lucas(20)/(1/2+sqrt(5)/2)^27 9870002072534337 a001 10946/9349*9349^(14/19) 9870002072970912 a001 46368/9349*9349^(11/19) 9870002073187618 a001 10946/39603*15127^(17/20) 9870002074697115 a001 24157817/103682*5778^(1/6) 9870002075414417 a001 28657/24476*15127^(7/10) 9870002075481300 a001 63245986/271443*5778^(1/6) 9870002075595711 a001 165580141/710647*5778^(1/6) 9870002075612403 a001 433494437/1860498*5778^(1/6) 9870002075614839 a001 1134903170/4870847*5778^(1/6) 9870002075615194 a001 2971215073/12752043*5778^(1/6) 9870002075615246 a001 7778742049/33385282*5778^(1/6) 9870002075615253 a001 20365011074/87403803*5778^(1/6) 9870002075615254 a001 53316291173/228826127*5778^(1/6) 9870002075615255 a001 139583862445/599074578*5778^(1/6) 9870002075615255 a001 365435296162/1568397607*5778^(1/6) 9870002075615255 a001 956722026041/4106118243*5778^(1/6) 9870002075615255 a001 2504730781961/10749957122*5778^(1/6) 9870002075615255 a001 6557470319842/28143753123*5778^(1/6) 9870002075615255 a001 10610209857723/45537549124*5778^(1/6) 9870002075615255 a001 4052739537881/17393796001*5778^(1/6) 9870002075615255 a001 1548008755920/6643838879*5778^(1/6) 9870002075615255 a001 591286729879/2537720636*5778^(1/6) 9870002075615255 a001 225851433717/969323029*5778^(1/6) 9870002075615255 a001 86267571272/370248451*5778^(1/6) 9870002075615255 a001 63246219/271444*5778^(1/6) 9870002075615258 a001 12586269025/54018521*5778^(1/6) 9870002075615278 a001 4807526976/20633239*5778^(1/6) 9870002075615413 a001 1836311903/7881196*5778^(1/6) 9870002075616344 a001 701408733/3010349*5778^(1/6) 9870002075622720 a001 267914296/1149851*5778^(1/6) 9870002075666286 a001 9227465/24476*5778^(1/9) 9870002075666421 a001 102334155/439204*5778^(1/6) 9870002075965953 a001 39088169/167761*5778^(1/6) 9870002078018976 a001 14930352/64079*5778^(1/6) 9870002078430844 r009 Im(z^3+c),c=-3/23+31/39*I,n=11 9870002080183132 a001 75025/9349*9349^(10/19) 9870002081752427 a001 832040/15127*5778^(1/3) 9870002082795771 a001 4181/15127*24476^(17/21) 9870002082875842 a001 5473/51841*15127^(19/20) 9870002084041056 a001 10946/64079*15127^(9/10) 9870002084364859 a001 6765/9349*24476^(5/7) 9870002085641855 a001 121393/9349*9349^(9/19) 9870002085746552 a001 5702887/39603*5778^(2/9) 9870002085812793 m001 1/ln((2^(1/3)))^2*Porter*Ei(1)^2 9870002085950645 a004 Fibonacci(21)*Lucas(20)/(1/2+sqrt(5)/2)^25 9870002089992987 a001 4181/5778*5778^(5/6) 9870002091121509 a001 7465176/51841*5778^(2/9) 9870002091770354 a001 196418/9349*9349^(8/19) 9870002091905704 a001 39088169/271443*5778^(2/9) 9870002092020117 a001 14619165/101521*5778^(2/9) 9870002092036810 a001 133957148/930249*5778^(2/9) 9870002092039245 a001 701408733/4870847*5778^(2/9) 9870002092039600 a001 1836311903/12752043*5778^(2/9) 9870002092039652 a001 14930208/103681*5778^(2/9) 9870002092039660 a001 12586269025/87403803*5778^(2/9) 9870002092039661 a001 32951280099/228826127*5778^(2/9) 9870002092039661 a001 43133785636/299537289*5778^(2/9) 9870002092039661 a001 32264490531/224056801*5778^(2/9) 9870002092039661 a001 591286729879/4106118243*5778^(2/9) 9870002092039661 a001 774004377960/5374978561*5778^(2/9) 9870002092039661 a001 4052739537881/28143753123*5778^(2/9) 9870002092039661 a001 1515744265389/10525900321*5778^(2/9) 9870002092039661 a001 3278735159921/22768774562*5778^(2/9) 9870002092039661 a001 2504730781961/17393796001*5778^(2/9) 9870002092039661 a001 956722026041/6643838879*5778^(2/9) 9870002092039661 a001 182717648081/1268860318*5778^(2/9) 9870002092039661 a001 139583862445/969323029*5778^(2/9) 9870002092039661 a001 53316291173/370248451*5778^(2/9) 9870002092039661 a001 10182505537/70711162*5778^(2/9) 9870002092039664 a001 7778742049/54018521*5778^(2/9) 9870002092039684 a001 2971215073/20633239*5778^(2/9) 9870002092039820 a001 567451585/3940598*5778^(2/9) 9870002092040750 a001 433494437/3010349*5778^(2/9) 9870002092047126 a001 165580141/1149851*5778^(2/9) 9870002092090609 a001 5702887/24476*5778^(1/6) 9870002092090828 a001 31622993/219602*5778^(2/9) 9870002092390364 a001 24157817/167761*5778^(2/9) 9870002092999107 a001 1346269/3571*1364^(2/15) 9870002093729280 a001 28284465/28657 9870002093737099 a001 5702887/9349*3571^(1/17) 9870002093799421 a001 5473/12238*15127^(4/5) 9870002094356341 a001 4181/15127*64079^(17/23) 9870002094443415 a001 9227465/64079*5778^(2/9) 9870002094565362 a001 6765/9349*64079^(15/23) 9870002095922592 a001 6765/9349*167761^(3/5) 9870002096104586 a001 6765/9349*439204^(5/9) 9870002096132940 a001 6765/9349*7881196^(5/11) 9870002096133002 a001 6765/9349*20633239^(3/7) 9870002096133011 a001 4181/15127*45537549124^(1/3) 9870002096133011 a001 4181/15127*(1/2+1/2*5^(1/2))^17 9870002096133012 a001 6765/9349*141422324^(5/13) 9870002096133012 a001 6765/9349*2537720636^(1/3) 9870002096133012 a001 6765/9349*45537549124^(5/17) 9870002096133012 a001 6765/9349*312119004989^(3/11) 9870002096133012 a001 6765/9349*14662949395604^(5/21) 9870002096133012 a001 6765/9349*(1/2+1/2*5^(1/2))^15 9870002096133012 a001 6765/9349*192900153618^(5/18) 9870002096133012 a001 6765/9349*28143753123^(3/10) 9870002096133012 a001 6765/9349*10749957122^(5/16) 9870002096133012 a001 6765/9349*599074578^(5/14) 9870002096133012 a001 6765/9349*228826127^(3/8) 9870002096133016 a001 6765/9349*33385282^(5/12) 9870002096133041 a001 4181/15127*12752043^(1/2) 9870002096134438 a001 6765/9349*1860498^(1/2) 9870002096706852 a001 6765/9349*103682^(5/8) 9870002096783363 a001 4181/15127*103682^(17/24) 9870002097643021 a001 317811/9349*9349^(7/19) 9870002098187150 a001 514229/15127*5778^(7/18) 9870002100423727 a001 6765/9349*39603^(15/22) 9870002100995821 a001 4181/15127*39603^(17/22) 9870002102171178 a001 3524578/39603*5778^(5/18) 9870002103613408 a001 514229/9349*9349^(6/19) 9870002107545947 a001 9227465/103682*5778^(5/18) 9870002108330116 a001 24157817/271443*5778^(5/18) 9870002108444524 a001 63245986/710647*5778^(5/18) 9870002108461216 a001 165580141/1860498*5778^(5/18) 9870002108463651 a001 433494437/4870847*5778^(5/18) 9870002108464007 a001 1134903170/12752043*5778^(5/18) 9870002108464059 a001 2971215073/33385282*5778^(5/18) 9870002108464066 a001 7778742049/87403803*5778^(5/18) 9870002108464067 a001 20365011074/228826127*5778^(5/18) 9870002108464067 a001 53316291173/599074578*5778^(5/18) 9870002108464067 a001 139583862445/1568397607*5778^(5/18) 9870002108464067 a001 365435296162/4106118243*5778^(5/18) 9870002108464067 a001 956722026041/10749957122*5778^(5/18) 9870002108464067 a001 2504730781961/28143753123*5778^(5/18) 9870002108464067 a001 6557470319842/73681302247*5778^(5/18) 9870002108464067 a001 10610209857723/119218851371*5778^(5/18) 9870002108464067 a001 4052739537881/45537549124*5778^(5/18) 9870002108464067 a001 1548008755920/17393796001*5778^(5/18) 9870002108464067 a001 591286729879/6643838879*5778^(5/18) 9870002108464067 a001 225851433717/2537720636*5778^(5/18) 9870002108464067 a001 86267571272/969323029*5778^(5/18) 9870002108464068 a001 32951280099/370248451*5778^(5/18) 9870002108464068 a001 12586269025/141422324*5778^(5/18) 9870002108464071 a001 4807526976/54018521*5778^(5/18) 9870002108464091 a001 1836311903/20633239*5778^(5/18) 9870002108464226 a001 3524667/39604*5778^(5/18) 9870002108465157 a001 267914296/3010349*5778^(5/18) 9870002108471532 a001 102334155/1149851*5778^(5/18) 9870002108515233 a001 39088169/439204*5778^(5/18) 9870002108515235 a001 1762289/12238*5778^(2/9) 9870002108814758 a001 14930352/167761*5778^(5/18) 9870002109546469 a001 832040/9349*9349^(5/19) 9870002109855228 a001 9227465/15127*2207^(1/16) 9870002110642903 a001 1346269/5778*2207^(3/16) 9870002110867737 a001 5702887/64079*5778^(5/18) 9870002112053574 r008 a(0)=1,K{-n^6,-48+92*n^3+46*n^2-13*n} 9870002114584548 a001 317811/15127*5778^(4/9) 9870002115493787 a001 1346269/9349*9349^(4/19) 9870002118066831 a001 4181/39603*24476^(19/21) 9870002118595009 a001 726103/13201*5778^(1/3) 9870002121435659 a001 2178309/9349*9349^(3/19) 9870002122774093 a001 17711/9349*24476^(13/21) 9870002122790792 a004 Fibonacci(19)*Lucas(21)/(1/2+sqrt(5)/2)^24 9870002122841793 a001 2584/9349*5778^(17/18) 9870002123970270 a001 5702887/103682*5778^(1/3) 9870002124754510 a001 4976784/90481*5778^(1/3) 9870002124868929 a001 39088169/710647*5778^(1/3) 9870002124885622 a001 831985/15126*5778^(1/3) 9870002124888058 a001 267914296/4870847*5778^(1/3) 9870002124888413 a001 233802911/4250681*5778^(1/3) 9870002124888465 a001 1836311903/33385282*5778^(1/3) 9870002124888473 a001 1602508992/29134601*5778^(1/3) 9870002124888474 a001 12586269025/228826127*5778^(1/3) 9870002124888474 a001 10983760033/199691526*5778^(1/3) 9870002124888474 a001 86267571272/1568397607*5778^(1/3) 9870002124888474 a001 75283811239/1368706081*5778^(1/3) 9870002124888474 a001 591286729879/10749957122*5778^(1/3) 9870002124888474 a001 12585437040/228811001*5778^(1/3) 9870002124888474 a001 4052739537881/73681302247*5778^(1/3) 9870002124888474 a001 3536736619241/64300051206*5778^(1/3) 9870002124888474 a001 6557470319842/119218851371*5778^(1/3) 9870002124888474 a001 2504730781961/45537549124*5778^(1/3) 9870002124888474 a001 956722026041/17393796001*5778^(1/3) 9870002124888474 a001 365435296162/6643838879*5778^(1/3) 9870002124888474 a001 139583862445/2537720636*5778^(1/3) 9870002124888474 a001 53316291173/969323029*5778^(1/3) 9870002124888474 a001 20365011074/370248451*5778^(1/3) 9870002124888474 a001 7778742049/141422324*5778^(1/3) 9870002124888477 a001 2971215073/54018521*5778^(1/3) 9870002124888497 a001 1134903170/20633239*5778^(1/3) 9870002124888633 a001 433494437/7881196*5778^(1/3) 9870002124889563 a001 165580141/3010349*5778^(1/3) 9870002124895940 a001 63245986/1149851*5778^(1/3) 9870002124939066 a001 2178309/24476*5778^(5/18) 9870002124939644 a001 24157817/439204*5778^(1/3) 9870002125239197 a001 9227465/167761*5778^(1/3) 9870002125979066 a001 4181/64079*24476^(20/21) 9870002127292363 a001 3524578/64079*5778^(1/3) 9870002127379612 a001 3524578/9349*9349^(2/19) 9870002128482909 a001 6765/9349*15127^(3/4) 9870002129718085 a001 46368/9349*24476^(11/21) 9870002130987468 a001 4181/39603*64079^(19/23) 9870002131079664 a001 196418/15127*5778^(1/2) 9870002131614529 a001 17711/9349*64079^(13/23) 9870002131771472 a001 75025/9349*24476^(10/21) 9870002132071361 a001 121393/9349*24476^(3/7) 9870002132255416 a001 28657/9349*24476^(4/7) 9870002132622459 a001 74049691/75025 9870002132796227 a001 4181/15127*15127^(17/20) 9870002132973158 a001 4181/39603*817138163596^(1/3) 9870002132973158 a001 4181/39603*(1/2+1/2*5^(1/2))^19 9870002132973159 a001 4181/39603*87403803^(1/2) 9870002132973159 a001 17711/9349*141422324^(1/3) 9870002132973160 a001 17711/9349*(1/2+1/2*5^(1/2))^13 9870002132973160 a001 17711/9349*73681302247^(1/4) 9870002133040137 a001 17711/9349*271443^(1/2) 9870002133041026 a001 196418/9349*24476^(8/21) 9870002133322770 a001 5702887/9349*9349^(1/19) 9870002133470487 a001 17711/9349*103682^(13/24) 9870002133700022 a001 4181/39603*103682^(19/24) 9870002133754859 a001 317811/9349*24476^(1/3) 9870002134566412 a001 514229/9349*24476^(2/7) 9870002135020921 a001 1346269/39603*5778^(7/18) 9870002135340639 a001 832040/9349*24476^(5/21) 9870002136129123 a001 1346269/9349*24476^(4/21) 9870002136153353 a001 4181/103682*64079^(21/23) 9870002136691779 a001 17711/9349*39603^(13/22) 9870002136862476 a004 Fibonacci(19)*Lucas(23)/(1/2+sqrt(5)/2)^26 9870002136912161 a001 2178309/9349*24476^(1/7) 9870002137198454 a001 46368/9349*64079^(11/23) 9870002137317686 a001 4181/167761*64079^(22/23) 9870002137697280 a001 3524578/9349*24476^(2/21) 9870002138191662 a001 121393/9349*64079^(9/23) 9870002138296897 a001 96932304/98209 9870002138308267 a001 4181/103682*439204^(7/9) 9870002138347962 a001 4181/103682*7881196^(7/11) 9870002138348012 a001 46368/9349*7881196^(1/3) 9870002138348049 a001 4181/103682*20633239^(3/5) 9870002138348063 a001 4181/103682*141422324^(7/13) 9870002138348063 a001 4181/103682*2537720636^(7/15) 9870002138348063 a001 4181/103682*17393796001^(3/7) 9870002138348063 a001 4181/103682*45537549124^(7/17) 9870002138348063 a001 4181/103682*14662949395604^(1/3) 9870002138348063 a001 4181/103682*(1/2+1/2*5^(1/2))^21 9870002138348063 a001 4181/103682*192900153618^(7/18) 9870002138348063 a001 4181/103682*10749957122^(7/16) 9870002138348063 a001 4181/103682*599074578^(1/2) 9870002138348065 a001 46368/9349*312119004989^(1/5) 9870002138348065 a001 46368/9349*(1/2+1/2*5^(1/2))^11 9870002138348065 a001 46368/9349*1568397607^(1/4) 9870002138348068 a001 4181/103682*33385282^(7/12) 9870002138350059 a001 4181/103682*1860498^(7/10) 9870002138362721 a001 4181/103682*710647^(3/4) 9870002138408064 a001 4181/39603*39603^(19/22) 9870002138481294 a001 196418/9349*64079^(8/23) 9870002138481604 a001 5702887/9349*24476^(1/21) 9870002138515094 a001 317811/9349*64079^(7/23) 9870002138571807 a001 75025/9349*64079^(10/23) 9870002138646613 a001 514229/9349*64079^(6/23) 9870002138740806 a001 832040/9349*64079^(5/23) 9870002138768880 a001 46368/9349*103682^(11/24) 9870002138849257 a001 1346269/9349*64079^(4/23) 9870002138915507 a004 Fibonacci(19)*Lucas(25)/(1/2+sqrt(5)/2)^28 9870002138952262 a001 2178309/9349*64079^(3/23) 9870002139057347 a001 3524578/9349*64079^(2/23) 9870002139115197 a001 121393/9349*439204^(1/3) 9870002139124786 a001 507544133/514229 9870002139132209 a001 121393/9349*7881196^(3/11) 9870002139132251 a001 4181/271443*(1/2+1/2*5^(1/2))^23 9870002139132251 a001 4181/271443*4106118243^(1/2) 9870002139132253 a001 121393/9349*141422324^(3/13) 9870002139132253 a001 121393/9349*2537720636^(1/5) 9870002139132253 a001 121393/9349*45537549124^(3/17) 9870002139132253 a001 121393/9349*817138163596^(3/19) 9870002139132253 a001 121393/9349*14662949395604^(1/7) 9870002139132253 a001 121393/9349*(1/2+1/2*5^(1/2))^9 9870002139132253 a001 121393/9349*192900153618^(1/6) 9870002139132253 a001 121393/9349*10749957122^(3/16) 9870002139132253 a001 121393/9349*599074578^(3/14) 9870002139132255 a001 121393/9349*33385282^(1/4) 9870002139133108 a001 121393/9349*1860498^(3/10) 9870002139151439 a001 4181/103682*103682^(7/8) 9870002139161637 a001 5702887/9349*64079^(1/23) 9870002139193217 a001 832040/9349*167761^(1/5) 9870002139215040 a004 Fibonacci(19)*Lucas(27)/(1/2+sqrt(5)/2)^30 9870002139245574 a001 1328767791/1346269 9870002139246646 a001 4181/710647*20633239^(5/7) 9870002139246660 a001 317811/9349*20633239^(1/5) 9870002139246663 a001 4181/710647*2537720636^(5/9) 9870002139246663 a001 4181/710647*312119004989^(5/11) 9870002139246663 a001 4181/710647*(1/2+1/2*5^(1/2))^25 9870002139246663 a001 4181/710647*3461452808002^(5/12) 9870002139246663 a001 4181/710647*28143753123^(1/2) 9870002139246663 a001 4181/710647*228826127^(5/8) 9870002139246664 a001 317811/9349*17393796001^(1/7) 9870002139246664 a001 317811/9349*14662949395604^(1/9) 9870002139246664 a001 317811/9349*(1/2+1/2*5^(1/2))^7 9870002139246664 a001 317811/9349*599074578^(1/6) 9870002139249039 a001 4181/710647*1860498^(5/6) 9870002139251550 a001 317811/9349*710647^(1/4) 9870002139258742 a004 Fibonacci(19)*Lucas(29)/(1/2+sqrt(5)/2)^32 9870002139260107 a001 2178309/9349*439204^(1/9) 9870002139262303 a001 514229/9349*439204^(2/9) 9870002139263196 a001 1739379620/1762289 9870002139263225 a001 4181/1860498*7881196^(9/11) 9870002139263353 a001 832040/9349*20633239^(1/7) 9870002139263355 a001 4181/1860498*141422324^(9/13) 9870002139263355 a001 4181/1860498*2537720636^(3/5) 9870002139263355 a001 4181/1860498*45537549124^(9/17) 9870002139263355 a001 4181/1860498*817138163596^(9/19) 9870002139263355 a001 4181/1860498*14662949395604^(3/7) 9870002139263355 a001 4181/1860498*(1/2+1/2*5^(1/2))^27 9870002139263355 a001 4181/1860498*192900153618^(1/2) 9870002139263355 a001 4181/1860498*10749957122^(9/16) 9870002139263355 a001 4181/1860498*599074578^(9/14) 9870002139263357 a001 832040/9349*2537720636^(1/9) 9870002139263357 a001 832040/9349*312119004989^(1/11) 9870002139263357 a001 832040/9349*(1/2+1/2*5^(1/2))^5 9870002139263357 a001 832040/9349*28143753123^(1/10) 9870002139263357 a001 832040/9349*228826127^(1/8) 9870002139263362 a001 4181/1860498*33385282^(3/4) 9870002139263832 a001 832040/9349*1860498^(1/6) 9870002139265118 a004 Fibonacci(19)*Lucas(31)/(1/2+sqrt(5)/2)^34 9870002139265768 a001 9107509929/9227465 9870002139265778 a001 2178309/9349*7881196^(1/11) 9870002139265791 a001 4181/4870847*(1/2+1/2*5^(1/2))^29 9870002139265791 a001 4181/4870847*1322157322203^(1/2) 9870002139265792 a001 2178309/9349*141422324^(1/13) 9870002139265792 a001 2178309/9349*2537720636^(1/15) 9870002139265792 a001 2178309/9349*45537549124^(1/17) 9870002139265792 a001 2178309/9349*14662949395604^(1/21) 9870002139265792 a001 2178309/9349*(1/2+1/2*5^(1/2))^3 9870002139265792 a001 2178309/9349*192900153618^(1/18) 9870002139265792 a001 2178309/9349*10749957122^(1/16) 9870002139265792 a001 2178309/9349*599074578^(1/14) 9870002139265793 a001 2178309/9349*33385282^(1/12) 9870002139265922 a001 4181/1860498*1860498^(9/10) 9870002139266048 a004 Fibonacci(19)*Lucas(33)/(1/2+sqrt(5)/2)^36 9870002139266077 a001 2178309/9349*1860498^(1/10) 9870002139266143 a001 23843770547/24157817 9870002139266146 a001 4181/12752043*(1/2+1/2*5^(1/2))^31 9870002139266146 a001 4181/12752043*9062201101803^(1/2) 9870002139266147 a001 5702887/18698+5702887/18698*5^(1/2) 9870002139266184 a004 Fibonacci(19)*Lucas(35)/(1/2+sqrt(5)/2)^38 9870002139266197 a001 31211900856/31622993 9870002139266197 a001 4181/33385282*141422324^(11/13) 9870002139266198 a001 4181/33385282*2537720636^(11/15) 9870002139266198 a001 4181/33385282*45537549124^(11/17) 9870002139266198 a001 4181/33385282*312119004989^(3/5) 9870002139266198 a001 4181/33385282*817138163596^(11/19) 9870002139266198 a001 4181/33385282*14662949395604^(11/21) 9870002139266198 a001 4181/33385282*(1/2+1/2*5^(1/2))^33 9870002139266198 a001 4181/33385282*192900153618^(11/18) 9870002139266198 a001 4181/33385282*10749957122^(11/16) 9870002139266198 a001 4181/33385282*1568397607^(3/4) 9870002139266198 a001 4181/33385282*599074578^(11/14) 9870002139266199 a004 Fibonacci(36)/Lucas(19)/(1/2+sqrt(5)/2) 9870002139266203 a004 Fibonacci(19)*Lucas(37)/(1/2+sqrt(5)/2)^40 9870002139266205 a001 163427634589/165580141 9870002139266205 a001 4181/87403803*2537720636^(7/9) 9870002139266205 a001 4181/87403803*17393796001^(5/7) 9870002139266205 a001 4181/87403803*312119004989^(7/11) 9870002139266205 a001 4181/87403803*14662949395604^(5/9) 9870002139266205 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^35/Lucas(38) 9870002139266205 a001 4181/87403803*505019158607^(5/8) 9870002139266205 a001 4181/87403803*28143753123^(7/10) 9870002139266205 a001 4181/87403803*599074578^(5/6) 9870002139266206 a001 4181/87403803*228826127^(7/8) 9870002139266206 a001 4181/33385282*33385282^(11/12) 9870002139266206 a004 Fibonacci(19)*Lucas(39)/(1/2+sqrt(5)/2)^42 9870002139266207 a001 427859102055/433494437 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^37/Lucas(40) 9870002139266207 a004 Fibonacci(19)*Lucas(41)/(1/2+sqrt(5)/2)^44 9870002139266207 a001 560074835788/567451585 9870002139266207 a001 4181/599074578*2537720636^(13/15) 9870002139266207 a001 4181/599074578*45537549124^(13/17) 9870002139266207 a001 4181/599074578*14662949395604^(13/21) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^39/Lucas(42) 9870002139266207 a001 4181/599074578*192900153618^(13/18) 9870002139266207 a001 4181/599074578*73681302247^(3/4) 9870002139266207 a001 4181/599074578*10749957122^(13/16) 9870002139266207 a004 Fibonacci(19)*Lucas(43)/(1/2+sqrt(5)/2)^46 9870002139266207 a001 2932589912673/2971215073 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^41/Lucas(44) 9870002139266207 a001 4181/599074578*599074578^(13/14) 9870002139266207 a004 Fibonacci(19)*Lucas(45)/(1/2+sqrt(5)/2)^48 9870002139266207 a001 7677620066443/7778742049 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^43/Lucas(46) 9870002139266207 a004 Fibonacci(19)*Lucas(47)/(1/2+sqrt(5)/2)^50 9870002139266207 a001 10050135143328/10182505537 9870002139266207 a001 4181/10749957122*45537549124^(15/17) 9870002139266207 a001 4181/10749957122*312119004989^(9/11) 9870002139266207 a001 4181/10749957122*14662949395604^(5/7) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^45/Lucas(48) 9870002139266207 a001 4181/10749957122*192900153618^(5/6) 9870002139266207 a001 4181/10749957122*28143753123^(9/10) 9870002139266207 a004 Fibonacci(19)*Lucas(49)/(1/2+sqrt(5)/2)^52 9870002139266207 a001 52623190793525/53316291173 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^47/Lucas(50) 9870002139266207 a001 4181/10749957122*10749957122^(15/16) 9870002139266207 a004 Fibonacci(19)*Lucas(51)/(1/2+sqrt(5)/2)^54 9870002139266207 a001 137769302093919/139583862445 9870002139266207 a001 4181/73681302247*14662949395604^(7/9) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^49/Lucas(52) 9870002139266207 a001 4181/73681302247*505019158607^(7/8) 9870002139266207 a004 Fibonacci(19)*Lucas(53)/(1/2+sqrt(5)/2)^56 9870002139266207 a001 4181/192900153618*817138163596^(17/19) 9870002139266207 a001 4181/192900153618*14662949395604^(17/21) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^51/Lucas(54) 9870002139266207 a004 Fibonacci(19)*Lucas(55)/(1/2+sqrt(5)/2)^58 9870002139266207 a001 944284844370777/956722026041 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^53/Lucas(56) 9870002139266207 a004 Fibonacci(19)*Lucas(57)/(1/2+sqrt(5)/2)^60 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^55/Lucas(58) 9870002139266207 a001 4181/1322157322203*3461452808002^(11/12) 9870002139266207 a004 Fibonacci(19)*Lucas(59)/(1/2+sqrt(5)/2)^62 9870002139266207 a001 4181/3461452808002*14662949395604^(19/21) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^57/Lucas(60) 9870002139266207 a004 Fibonacci(19)*Lucas(61)/(1/2+sqrt(5)/2)^64 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^59/Lucas(62) 9870002139266207 a004 Fibonacci(19)*Lucas(63)/(1/2+sqrt(5)/2)^66 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^61/Lucas(64) 9870002139266207 a004 Fibonacci(19)*Lucas(65)/(1/2+sqrt(5)/2)^68 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^63/Lucas(66) 9870002139266207 a004 Fibonacci(19)*Lucas(67)/(1/2+sqrt(5)/2)^70 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^65/Lucas(68) 9870002139266207 a004 Fibonacci(19)*Lucas(69)/(1/2+sqrt(5)/2)^72 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^67/Lucas(70) 9870002139266207 a004 Fibonacci(19)*Lucas(71)/(1/2+sqrt(5)/2)^74 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^69/Lucas(72) 9870002139266207 a004 Fibonacci(19)*Lucas(73)/(1/2+sqrt(5)/2)^76 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^71/Lucas(74) 9870002139266207 a004 Fibonacci(19)*Lucas(75)/(1/2+sqrt(5)/2)^78 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^73/Lucas(76) 9870002139266207 a004 Fibonacci(19)*Lucas(77)/(1/2+sqrt(5)/2)^80 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^75/Lucas(78) 9870002139266207 a004 Fibonacci(19)*Lucas(79)/(1/2+sqrt(5)/2)^82 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^77/Lucas(80) 9870002139266207 a004 Fibonacci(19)*Lucas(81)/(1/2+sqrt(5)/2)^84 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^79/Lucas(82) 9870002139266207 a004 Fibonacci(19)*Lucas(83)/(1/2+sqrt(5)/2)^86 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^81/Lucas(84) 9870002139266207 a004 Fibonacci(19)*Lucas(85)/(1/2+sqrt(5)/2)^88 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^83/Lucas(86) 9870002139266207 a004 Fibonacci(19)*Lucas(87)/(1/2+sqrt(5)/2)^90 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^85/Lucas(88) 9870002139266207 a004 Fibonacci(19)*Lucas(89)/(1/2+sqrt(5)/2)^92 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^87/Lucas(90) 9870002139266207 a004 Fibonacci(19)*Lucas(91)/(1/2+sqrt(5)/2)^94 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^89/Lucas(92) 9870002139266207 a004 Fibonacci(19)*Lucas(93)/(1/2+sqrt(5)/2)^96 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^91/Lucas(94) 9870002139266207 a004 Fibonacci(19)*Lucas(95)/(1/2+sqrt(5)/2)^98 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^93/Lucas(96) 9870002139266207 a004 Fibonacci(19)*Lucas(97)/(1/2+sqrt(5)/2)^100 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^95/Lucas(98) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^96/Lucas(99) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^97/Lucas(100) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^94/Lucas(97) 9870002139266207 a004 Fibonacci(19)*Lucas(96)/(1/2+sqrt(5)/2)^99 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^92/Lucas(95) 9870002139266207 a004 Fibonacci(19)*Lucas(94)/(1/2+sqrt(5)/2)^97 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^90/Lucas(93) 9870002139266207 a004 Fibonacci(19)*Lucas(92)/(1/2+sqrt(5)/2)^95 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^88/Lucas(91) 9870002139266207 a004 Fibonacci(19)*Lucas(90)/(1/2+sqrt(5)/2)^93 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^86/Lucas(89) 9870002139266207 a004 Fibonacci(19)*Lucas(88)/(1/2+sqrt(5)/2)^91 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^84/Lucas(87) 9870002139266207 a004 Fibonacci(19)*Lucas(86)/(1/2+sqrt(5)/2)^89 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^82/Lucas(85) 9870002139266207 a004 Fibonacci(19)*Lucas(84)/(1/2+sqrt(5)/2)^87 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^80/Lucas(83) 9870002139266207 a004 Fibonacci(19)*Lucas(82)/(1/2+sqrt(5)/2)^85 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^78/Lucas(81) 9870002139266207 a004 Fibonacci(19)*Lucas(80)/(1/2+sqrt(5)/2)^83 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^76/Lucas(79) 9870002139266207 a004 Fibonacci(19)*Lucas(78)/(1/2+sqrt(5)/2)^81 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^74/Lucas(77) 9870002139266207 a004 Fibonacci(19)*Lucas(76)/(1/2+sqrt(5)/2)^79 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^72/Lucas(75) 9870002139266207 a004 Fibonacci(19)*Lucas(74)/(1/2+sqrt(5)/2)^77 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^70/Lucas(73) 9870002139266207 a004 Fibonacci(19)*Lucas(72)/(1/2+sqrt(5)/2)^75 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^68/Lucas(71) 9870002139266207 a004 Fibonacci(19)*Lucas(70)/(1/2+sqrt(5)/2)^73 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^66/Lucas(69) 9870002139266207 a004 Fibonacci(19)*Lucas(68)/(1/2+sqrt(5)/2)^71 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^64/Lucas(67) 9870002139266207 a001 4181/14662949395604*14662949395604^(20/21) 9870002139266207 a004 Fibonacci(19)*Lucas(66)/(1/2+sqrt(5)/2)^69 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^62/Lucas(65) 9870002139266207 a004 Fibonacci(19)*Lucas(64)/(1/2+sqrt(5)/2)^67 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^60/Lucas(63) 9870002139266207 a004 Fibonacci(19)*Lucas(62)/(1/2+sqrt(5)/2)^65 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^58/Lucas(61) 9870002139266207 a001 10472279399378941/10610209857723 9870002139266207 a004 Fibonacci(19)*Lucas(60)/(1/2+sqrt(5)/2)^63 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^56/Lucas(59) 9870002139266207 a004 Fibonacci(19)*Lucas(58)/(1/2+sqrt(5)/2)^61 9870002139266207 a001 4181/817138163596*14662949395604^(6/7) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^54/Lucas(57) 9870002139266207 a004 Fibonacci(19)*Lucas(56)/(1/2+sqrt(5)/2)^59 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^52/Lucas(55) 9870002139266207 a001 4181/312119004989*23725150497407^(13/16) 9870002139266207 a001 583600128882545/591286729879 9870002139266207 a001 4181/312119004989*505019158607^(13/14) 9870002139266207 a004 Fibonacci(19)*Lucas(54)/(1/2+sqrt(5)/2)^57 9870002139266207 a001 4181/45537549124*45537549124^(16/17) 9870002139266207 a001 4181/119218851371*312119004989^(10/11) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^50/Lucas(53) 9870002139266207 a001 4181/119218851371*3461452808002^(5/6) 9870002139266207 a001 222915413394313/225851433717 9870002139266207 a004 Fibonacci(19)*Lucas(52)/(1/2+sqrt(5)/2)^55 9870002139266207 a001 4181/45537549124*14662949395604^(16/21) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^48/Lucas(51) 9870002139266207 a001 4181/45537549124*192900153618^(8/9) 9870002139266207 a001 42573055650197/43133785636 9870002139266207 a001 4181/45537549124*73681302247^(12/13) 9870002139266207 a004 Fibonacci(19)*Lucas(50)/(1/2+sqrt(5)/2)^53 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^46/Lucas(49) 9870002139266207 a001 32522920506869/32951280099 9870002139266207 a004 Fibonacci(19)*Lucas(48)/(1/2+sqrt(5)/2)^51 9870002139266207 a001 4181/2537720636*2537720636^(14/15) 9870002139266207 a001 4181/17393796001*10749957122^(23/24) 9870002139266207 a001 4181/6643838879*312119004989^(4/5) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^44/Lucas(47) 9870002139266207 a001 4181/6643838879*23725150497407^(11/16) 9870002139266207 a001 4181/6643838879*73681302247^(11/13) 9870002139266207 a001 12422650220213/12586269025 9870002139266207 a001 4181/6643838879*10749957122^(11/12) 9870002139266207 a004 Fibonacci(19)*Lucas(46)/(1/2+sqrt(5)/2)^49 9870002139266207 a001 4181/6643838879*4106118243^(22/23) 9870002139266207 a001 4181/2537720636*17393796001^(6/7) 9870002139266207 a001 4181/2537720636*45537549124^(14/17) 9870002139266207 a001 4181/2537720636*817138163596^(14/19) 9870002139266207 a001 4181/2537720636*14662949395604^(2/3) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^42/Lucas(45) 9870002139266207 a001 4181/2537720636*505019158607^(3/4) 9870002139266207 a001 4181/2537720636*192900153618^(7/9) 9870002139266207 a001 4181/2537720636*10749957122^(7/8) 9870002139266207 a001 2372515076885/2403763488 9870002139266207 a001 4181/2537720636*4106118243^(21/23) 9870002139266207 a004 Fibonacci(19)*Lucas(44)/(1/2+sqrt(5)/2)^47 9870002139266207 a001 4181/2537720636*1568397607^(21/22) 9870002139266207 a001 4181/969323029*2537720636^(8/9) 9870002139266207 a001 4181/969323029*312119004989^(8/11) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^40/Lucas(43) 9870002139266207 a001 4181/969323029*23725150497407^(5/8) 9870002139266207 a001 4181/969323029*73681302247^(10/13) 9870002139266207 a001 4181/969323029*28143753123^(4/5) 9870002139266207 a001 4181/969323029*10749957122^(5/6) 9870002139266207 a001 4181/969323029*4106118243^(20/23) 9870002139266207 a001 1812440241097/1836311903 9870002139266207 a001 4181/969323029*1568397607^(10/11) 9870002139266207 a004 Fibonacci(19)*Lucas(42)/(1/2+sqrt(5)/2)^45 9870002139266207 a001 4181/969323029*599074578^(20/21) 9870002139266207 a001 4181/141422324*141422324^(12/13) 9870002139266207 a001 4181/370248451*817138163596^(2/3) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^38/Lucas(41) 9870002139266207 a001 4181/370248451*10749957122^(19/24) 9870002139266207 a001 4181/370248451*4106118243^(19/23) 9870002139266207 a001 4181/370248451*1568397607^(19/22) 9870002139266207 a001 692290569521/701408733 9870002139266207 a001 4181/370248451*599074578^(19/21) 9870002139266207 a004 Fibonacci(19)*Lucas(40)/(1/2+sqrt(5)/2)^43 9870002139266207 a001 4181/370248451*228826127^(19/20) 9870002139266207 a001 4181/141422324*2537720636^(4/5) 9870002139266207 a001 4181/141422324*45537549124^(12/17) 9870002139266207 a001 4181/141422324*14662949395604^(4/7) 9870002139266207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^36/Lucas(39) 9870002139266207 a001 4181/141422324*505019158607^(9/14) 9870002139266207 a001 4181/141422324*192900153618^(2/3) 9870002139266207 a001 4181/141422324*73681302247^(9/13) 9870002139266207 a001 4181/141422324*10749957122^(3/4) 9870002139266207 a001 4181/141422324*4106118243^(18/23) 9870002139266207 a001 4181/141422324*1568397607^(9/11) 9870002139266207 a001 4181/141422324*599074578^(6/7) 9870002139266207 a001 132215733733/133957148 9870002139266207 a001 4181/141422324*228826127^(9/10) 9870002139266208 a004 Fibonacci(40)/Lucas(19)/(1/2+sqrt(5)/2)^5 9870002139266208 a004 Fibonacci(42)/Lucas(19)/(1/2+sqrt(5)/2)^7 9870002139266208 a004 Fibonacci(44)/Lucas(19)/(1/2+sqrt(5)/2)^9 9870002139266208 a004 Fibonacci(46)/Lucas(19)/(1/2+sqrt(5)/2)^11 9870002139266208 a004 Fibonacci(48)/Lucas(19)/(1/2+sqrt(5)/2)^13 9870002139266208 a004 Fibonacci(50)/Lucas(19)/(1/2+sqrt(5)/2)^15 9870002139266208 a004 Fibonacci(52)/Lucas(19)/(1/2+sqrt(5)/2)^17 9870002139266208 a004 Fibonacci(54)/Lucas(19)/(1/2+sqrt(5)/2)^19 9870002139266208 a004 Fibonacci(56)/Lucas(19)/(1/2+sqrt(5)/2)^21 9870002139266208 a004 Fibonacci(58)/Lucas(19)/(1/2+sqrt(5)/2)^23 9870002139266208 a004 Fibonacci(60)/Lucas(19)/(1/2+sqrt(5)/2)^25 9870002139266208 a004 Fibonacci(62)/Lucas(19)/(1/2+sqrt(5)/2)^27 9870002139266208 a004 Fibonacci(64)/Lucas(19)/(1/2+sqrt(5)/2)^29 9870002139266208 a004 Fibonacci(66)/Lucas(19)/(1/2+sqrt(5)/2)^31 9870002139266208 a004 Fibonacci(68)/Lucas(19)/(1/2+sqrt(5)/2)^33 9870002139266208 a004 Fibonacci(70)/Lucas(19)/(1/2+sqrt(5)/2)^35 9870002139266208 a004 Fibonacci(72)/Lucas(19)/(1/2+sqrt(5)/2)^37 9870002139266208 a004 Fibonacci(74)/Lucas(19)/(1/2+sqrt(5)/2)^39 9870002139266208 a004 Fibonacci(19)*Lucas(38)/(1/2+sqrt(5)/2)^41 9870002139266208 a004 Fibonacci(78)/Lucas(19)/(1/2+sqrt(5)/2)^43 9870002139266208 a004 Fibonacci(80)/Lucas(19)/(1/2+sqrt(5)/2)^45 9870002139266208 a004 Fibonacci(82)/Lucas(19)/(1/2+sqrt(5)/2)^47 9870002139266208 a004 Fibonacci(84)/Lucas(19)/(1/2+sqrt(5)/2)^49 9870002139266208 a004 Fibonacci(86)/Lucas(19)/(1/2+sqrt(5)/2)^51 9870002139266208 a004 Fibonacci(88)/Lucas(19)/(1/2+sqrt(5)/2)^53 9870002139266208 a004 Fibonacci(90)/Lucas(19)/(1/2+sqrt(5)/2)^55 9870002139266208 a004 Fibonacci(92)/Lucas(19)/(1/2+sqrt(5)/2)^57 9870002139266208 a004 Fibonacci(94)/Lucas(19)/(1/2+sqrt(5)/2)^59 9870002139266208 a004 Fibonacci(96)/Lucas(19)/(1/2+sqrt(5)/2)^61 9870002139266208 a004 Fibonacci(98)/Lucas(19)/(1/2+sqrt(5)/2)^63 9870002139266208 a004 Fibonacci(100)/Lucas(19)/(1/2+sqrt(5)/2)^65 9870002139266208 a004 Fibonacci(99)/Lucas(19)/(1/2+sqrt(5)/2)^64 9870002139266208 a004 Fibonacci(97)/Lucas(19)/(1/2+sqrt(5)/2)^62 9870002139266208 a004 Fibonacci(95)/Lucas(19)/(1/2+sqrt(5)/2)^60 9870002139266208 a004 Fibonacci(93)/Lucas(19)/(1/2+sqrt(5)/2)^58 9870002139266208 a004 Fibonacci(91)/Lucas(19)/(1/2+sqrt(5)/2)^56 9870002139266208 a004 Fibonacci(89)/Lucas(19)/(1/2+sqrt(5)/2)^54 9870002139266208 a004 Fibonacci(87)/Lucas(19)/(1/2+sqrt(5)/2)^52 9870002139266208 a004 Fibonacci(85)/Lucas(19)/(1/2+sqrt(5)/2)^50 9870002139266208 a004 Fibonacci(83)/Lucas(19)/(1/2+sqrt(5)/2)^48 9870002139266208 a004 Fibonacci(81)/Lucas(19)/(1/2+sqrt(5)/2)^46 9870002139266208 a004 Fibonacci(79)/Lucas(19)/(1/2+sqrt(5)/2)^44 9870002139266208 a004 Fibonacci(77)/Lucas(19)/(1/2+sqrt(5)/2)^42 9870002139266208 a004 Fibonacci(75)/Lucas(19)/(1/2+sqrt(5)/2)^40 9870002139266208 a004 Fibonacci(73)/Lucas(19)/(1/2+sqrt(5)/2)^38 9870002139266208 a004 Fibonacci(71)/Lucas(19)/(1/2+sqrt(5)/2)^36 9870002139266208 a004 Fibonacci(69)/Lucas(19)/(1/2+sqrt(5)/2)^34 9870002139266208 a004 Fibonacci(67)/Lucas(19)/(1/2+sqrt(5)/2)^32 9870002139266208 a004 Fibonacci(65)/Lucas(19)/(1/2+sqrt(5)/2)^30 9870002139266208 a004 Fibonacci(63)/Lucas(19)/(1/2+sqrt(5)/2)^28 9870002139266208 a004 Fibonacci(61)/Lucas(19)/(1/2+sqrt(5)/2)^26 9870002139266208 a004 Fibonacci(59)/Lucas(19)/(1/2+sqrt(5)/2)^24 9870002139266208 a004 Fibonacci(57)/Lucas(19)/(1/2+sqrt(5)/2)^22 9870002139266208 a004 Fibonacci(55)/Lucas(19)/(1/2+sqrt(5)/2)^20 9870002139266208 a004 Fibonacci(53)/Lucas(19)/(1/2+sqrt(5)/2)^18 9870002139266208 a004 Fibonacci(51)/Lucas(19)/(1/2+sqrt(5)/2)^16 9870002139266208 a004 Fibonacci(49)/Lucas(19)/(1/2+sqrt(5)/2)^14 9870002139266208 a004 Fibonacci(47)/Lucas(19)/(1/2+sqrt(5)/2)^12 9870002139266208 a004 Fibonacci(45)/Lucas(19)/(1/2+sqrt(5)/2)^10 9870002139266208 a004 Fibonacci(43)/Lucas(19)/(1/2+sqrt(5)/2)^8 9870002139266208 a004 Fibonacci(41)/Lucas(19)/(1/2+sqrt(5)/2)^6 9870002139266208 a001 4181/141422324*87403803^(18/19) 9870002139266208 a004 Fibonacci(39)/Lucas(19)/(1/2+sqrt(5)/2)^4 9870002139266210 a001 4181/54018521*45537549124^(2/3) 9870002139266210 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^34/Lucas(37) 9870002139266210 a001 4181/54018521*10749957122^(17/24) 9870002139266210 a001 4181/54018521*4106118243^(17/23) 9870002139266210 a001 4181/54018521*1568397607^(17/22) 9870002139266210 a001 4181/54018521*599074578^(17/21) 9870002139266210 a001 4181/54018521*228826127^(17/20) 9870002139266210 a001 101003832877/102334155 9870002139266211 a001 4181/54018521*87403803^(17/19) 9870002139266211 a004 Fibonacci(37)/Lucas(19)/(1/2+sqrt(5)/2)^2 9870002139266216 a004 Fibonacci(19)*Lucas(36)/(1/2+sqrt(5)/2)^39 9870002139266218 a001 4181/54018521*33385282^(17/18) 9870002139266221 a001 4181/7881196*7881196^(10/11) 9870002139266230 a001 4181/20633239*(1/2+1/2*5^(1/2))^32 9870002139266230 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^32/Lucas(35) 9870002139266230 a001 4181/20633239*23725150497407^(1/2) 9870002139266230 a001 4181/20633239*505019158607^(4/7) 9870002139266230 a001 4181/20633239*73681302247^(8/13) 9870002139266230 a001 4181/20633239*10749957122^(2/3) 9870002139266230 a001 4181/20633239*4106118243^(16/23) 9870002139266230 a001 4181/20633239*1568397607^(8/11) 9870002139266230 a001 4181/20633239*599074578^(16/21) 9870002139266230 a001 4181/20633239*228826127^(4/5) 9870002139266231 a001 4181/20633239*87403803^(16/19) 9870002139266231 a001 9227465/9349 9870002139266238 a001 4181/20633239*33385282^(8/9) 9870002139266267 a004 Fibonacci(19)*Lucas(34)/(1/2+sqrt(5)/2)^37 9870002139266287 a001 4181/20633239*12752043^(16/17) 9870002139266346 a001 4181/7881196*20633239^(6/7) 9870002139266365 a001 4181/7881196*141422324^(10/13) 9870002139266366 a001 4181/7881196*2537720636^(2/3) 9870002139266366 a001 4181/7881196*45537549124^(10/17) 9870002139266366 a001 4181/7881196*312119004989^(6/11) 9870002139266366 a001 4181/7881196*14662949395604^(10/21) 9870002139266366 a001 4181/7881196*(1/2+1/2*5^(1/2))^30 9870002139266366 a001 4181/7881196*192900153618^(5/9) 9870002139266366 a001 4181/7881196*28143753123^(3/5) 9870002139266366 a001 4181/7881196*10749957122^(5/8) 9870002139266366 a001 4181/7881196*4106118243^(15/23) 9870002139266366 a001 4181/7881196*1568397607^(15/22) 9870002139266366 a001 4181/7881196*599074578^(5/7) 9870002139266366 a001 4181/7881196*228826127^(3/4) 9870002139266367 a001 4181/7881196*87403803^(15/19) 9870002139266367 a001 3524578/9349*(1/2+1/2*5^(1/2))^2 9870002139266367 a001 3524578/9349*10749957122^(1/24) 9870002139266367 a001 3524578/9349*4106118243^(1/23) 9870002139266367 a001 3524578/9349*1568397607^(1/22) 9870002139266367 a001 3524578/9349*599074578^(1/21) 9870002139266367 a001 3524578/9349*228826127^(1/20) 9870002139266367 a001 3524578/9349*87403803^(1/19) 9870002139266367 a001 3524578/9349*33385282^(1/18) 9870002139266370 a001 3524578/9349*12752043^(1/17) 9870002139266373 a001 4181/7881196*33385282^(5/6) 9870002139266374 a001 7368130309/7465176 9870002139266393 a001 3524578/9349*4870847^(1/16) 9870002139266419 a001 4181/7881196*12752043^(15/17) 9870002139266557 a001 3524578/9349*1860498^(1/15) 9870002139266623 a004 Fibonacci(19)*Lucas(32)/(1/2+sqrt(5)/2)^35 9870002139266756 a001 4181/7881196*4870847^(15/16) 9870002139267277 a001 4181/3010349*20633239^(4/5) 9870002139267296 a001 4181/3010349*17393796001^(4/7) 9870002139267296 a001 4181/3010349*14662949395604^(4/9) 9870002139267296 a001 4181/3010349*(1/2+1/2*5^(1/2))^28 9870002139267296 a001 4181/3010349*505019158607^(1/2) 9870002139267296 a001 4181/3010349*73681302247^(7/13) 9870002139267296 a001 4181/3010349*10749957122^(7/12) 9870002139267296 a001 4181/3010349*4106118243^(14/23) 9870002139267296 a001 4181/3010349*1568397607^(7/11) 9870002139267296 a001 4181/3010349*599074578^(2/3) 9870002139267296 a001 4181/3010349*228826127^(7/10) 9870002139267297 a001 4181/3010349*87403803^(14/19) 9870002139267297 a001 1346269/9349*(1/2+1/2*5^(1/2))^4 9870002139267297 a001 1346269/9349*23725150497407^(1/16) 9870002139267297 a001 1346269/9349*73681302247^(1/13) 9870002139267297 a001 1346269/9349*10749957122^(1/12) 9870002139267297 a001 1346269/9349*4106118243^(2/23) 9870002139267297 a001 1346269/9349*1568397607^(1/11) 9870002139267297 a001 1346269/9349*599074578^(2/21) 9870002139267297 a001 1346269/9349*228826127^(1/10) 9870002139267297 a001 1346269/9349*87403803^(2/19) 9870002139267298 a001 1346269/9349*33385282^(1/9) 9870002139267303 a001 4181/3010349*33385282^(7/9) 9870002139267304 a001 1346269/9349*12752043^(2/17) 9870002139267346 a001 4181/3010349*12752043^(14/17) 9870002139267349 a001 1346269/9349*4870847^(1/8) 9870002139267357 a001 5628750689/5702887 9870002139267660 a001 4181/3010349*4870847^(7/8) 9870002139267677 a001 1346269/9349*1860498^(2/15) 9870002139267763 a001 3524578/9349*710647^(1/14) 9870002139269058 a004 Fibonacci(19)*Lucas(30)/(1/2+sqrt(5)/2)^33 9870002139269957 a001 4181/3010349*1860498^(14/15) 9870002139270089 a001 1346269/9349*710647^(1/7) 9870002139271892 a001 4181/439204*439204^(8/9) 9870002139273644 a001 514229/9349*7881196^(2/11) 9870002139273671 a001 4181/1149851*141422324^(2/3) 9870002139273672 a001 4181/1149851*(1/2+1/2*5^(1/2))^26 9870002139273672 a001 4181/1149851*73681302247^(1/2) 9870002139273672 a001 4181/1149851*10749957122^(13/24) 9870002139273672 a001 4181/1149851*4106118243^(13/23) 9870002139273672 a001 4181/1149851*1568397607^(13/22) 9870002139273672 a001 4181/1149851*599074578^(13/21) 9870002139273672 a001 4181/1149851*228826127^(13/20) 9870002139273673 a001 4181/1149851*87403803^(13/19) 9870002139273673 a001 514229/9349*141422324^(2/13) 9870002139273673 a001 514229/9349*2537720636^(2/15) 9870002139273673 a001 514229/9349*45537549124^(2/17) 9870002139273673 a001 514229/9349*14662949395604^(2/21) 9870002139273673 a001 514229/9349*(1/2+1/2*5^(1/2))^6 9870002139273673 a001 514229/9349*10749957122^(1/8) 9870002139273673 a001 514229/9349*4106118243^(3/23) 9870002139273673 a001 514229/9349*1568397607^(3/22) 9870002139273673 a001 514229/9349*599074578^(1/7) 9870002139273673 a001 514229/9349*228826127^(3/20) 9870002139273673 a001 514229/9349*87403803^(3/19) 9870002139273675 a001 514229/9349*33385282^(1/6) 9870002139273678 a001 4181/1149851*33385282^(13/18) 9870002139273684 a001 514229/9349*12752043^(3/17) 9870002139273718 a001 4181/1149851*12752043^(13/17) 9870002139273751 a001 514229/9349*4870847^(3/16) 9870002139274010 a001 4181/1149851*4870847^(13/16) 9870002139274088 a001 2149991449/2178309 9870002139274243 a001 514229/9349*1860498^(1/5) 9870002139276143 a001 4181/1149851*1860498^(13/15) 9870002139276671 a001 3524578/9349*271443^(1/13) 9870002139277861 a001 514229/9349*710647^(3/14) 9870002139285751 a004 Fibonacci(19)*Lucas(28)/(1/2+sqrt(5)/2)^31 9870002139287906 a001 1346269/9349*271443^(2/13) 9870002139291820 a001 4181/1149851*710647^(13/14) 9870002139304403 a001 5702887/9349*103682^(1/24) 9870002139304586 a001 514229/9349*271443^(3/13) 9870002139317258 a001 4181/439204*7881196^(8/11) 9870002139317373 a001 4181/439204*141422324^(8/13) 9870002139317373 a001 4181/439204*2537720636^(8/15) 9870002139317373 a001 4181/439204*45537549124^(8/17) 9870002139317373 a001 4181/439204*14662949395604^(8/21) 9870002139317373 a001 4181/439204*(1/2+1/2*5^(1/2))^24 9870002139317373 a001 4181/439204*192900153618^(4/9) 9870002139317373 a001 4181/439204*73681302247^(6/13) 9870002139317373 a001 4181/439204*10749957122^(1/2) 9870002139317373 a001 4181/439204*4106118243^(12/23) 9870002139317373 a001 4181/439204*1568397607^(6/11) 9870002139317373 a001 4181/439204*599074578^(4/7) 9870002139317373 a001 4181/439204*228826127^(3/5) 9870002139317374 a001 4181/439204*87403803^(12/19) 9870002139317374 a001 196418/9349*(1/2+1/2*5^(1/2))^8 9870002139317374 a001 196418/9349*23725150497407^(1/8) 9870002139317374 a001 196418/9349*505019158607^(1/7) 9870002139317374 a001 196418/9349*73681302247^(2/13) 9870002139317374 a001 196418/9349*10749957122^(1/6) 9870002139317374 a001 196418/9349*4106118243^(4/23) 9870002139317374 a001 196418/9349*1568397607^(2/11) 9870002139317374 a001 196418/9349*599074578^(4/21) 9870002139317374 a001 196418/9349*228826127^(1/5) 9870002139317375 a001 196418/9349*87403803^(4/19) 9870002139317376 a001 196418/9349*33385282^(2/9) 9870002139317379 a001 4181/439204*33385282^(2/3) 9870002139317389 a001 196418/9349*12752043^(4/17) 9870002139317416 a001 4181/439204*12752043^(12/17) 9870002139317478 a001 196418/9349*4870847^(1/4) 9870002139317685 a001 4181/439204*4870847^(3/4) 9870002139318135 a001 196418/9349*1860498^(4/15) 9870002139319654 a001 4181/439204*1860498^(4/5) 9870002139320224 a001 410611829/416020 9870002139322958 a001 196418/9349*710647^(2/7) 9870002139334125 a001 4181/439204*710647^(6/7) 9870002139342879 a001 3524578/9349*103682^(1/12) 9870002139358591 a001 196418/9349*271443^(4/13) 9870002139380560 a001 2178309/9349*103682^(1/8) 9870002139400162 a004 Fibonacci(19)*Lucas(26)/(1/2+sqrt(5)/2)^29 9870002139420321 a001 1346269/9349*103682^(1/6) 9870002139441024 a001 4181/439204*271443^(12/13) 9870002139454636 a001 832040/9349*103682^(5/24) 9870002139476556 a001 121393/9349*103682^(3/8) 9870002139476628 a001 75025/9349*167761^(2/5) 9870002139503209 a001 514229/9349*103682^(1/4) 9870002139514456 a001 317811/9349*103682^(7/24) 9870002139552195 a001 5702887/9349*39603^(1/22) 9870002139579737 a001 4181/64079*64079^(20/23) 9870002139616800 a001 4181/167761*7881196^(2/3) 9870002139616901 a001 75025/9349*20633239^(2/7) 9870002139616906 a001 4181/167761*312119004989^(2/5) 9870002139616906 a001 4181/167761*(1/2+1/2*5^(1/2))^22 9870002139616906 a001 4181/167761*10749957122^(11/24) 9870002139616906 a001 4181/167761*4106118243^(11/23) 9870002139616906 a001 4181/167761*1568397607^(1/2) 9870002139616906 a001 4181/167761*599074578^(11/21) 9870002139616906 a001 4181/167761*228826127^(11/20) 9870002139616907 a001 4181/167761*87403803^(11/19) 9870002139616908 a001 75025/9349*2537720636^(2/9) 9870002139616908 a001 75025/9349*312119004989^(2/11) 9870002139616908 a001 75025/9349*(1/2+1/2*5^(1/2))^10 9870002139616908 a001 75025/9349*28143753123^(1/5) 9870002139616908 a001 75025/9349*10749957122^(5/24) 9870002139616908 a001 75025/9349*4106118243^(5/23) 9870002139616908 a001 75025/9349*1568397607^(5/22) 9870002139616908 a001 75025/9349*599074578^(5/21) 9870002139616908 a001 75025/9349*228826127^(1/4) 9870002139616908 a001 75025/9349*87403803^(5/19) 9870002139616910 a001 75025/9349*33385282^(5/18) 9870002139616912 a001 4181/167761*33385282^(11/18) 9870002139616925 a001 75025/9349*12752043^(5/17) 9870002139616946 a001 4181/167761*12752043^(11/17) 9870002139617038 a001 75025/9349*4870847^(5/16) 9870002139617192 a001 4181/167761*4870847^(11/16) 9870002139617858 a001 75025/9349*1860498^(1/3) 9870002139618997 a001 4181/167761*1860498^(11/15) 9870002139623422 a001 196418/9349*103682^(1/3) 9870002139623888 a001 75025/9349*710647^(5/14) 9870002139632262 a001 4181/167761*710647^(11/14) 9870002139636450 a001 313679525/317811 9870002139668429 a001 75025/9349*271443^(5/13) 9870002139730253 a001 4181/167761*271443^(11/13) 9870002139838462 a001 3524578/9349*39603^(1/11) 9870002139999467 a001 75025/9349*103682^(5/12) 9870002140012139 a001 4181/271443*103682^(23/24) 9870002140123935 a001 2178309/9349*39603^(3/22) 9870002140184350 a004 Fibonacci(19)*Lucas(24)/(1/2+sqrt(5)/2)^27 9870002140394896 a001 1762289/51841*5778^(7/18) 9870002140411488 a001 1346269/9349*39603^(2/11) 9870002140415818 a001 28657/9349*64079^(12/23) 9870002140458538 a001 4181/167761*103682^(11/12) 9870002140693595 a001 832040/9349*39603^(5/22) 9870002140989959 a001 514229/9349*39603^(3/11) 9870002141178948 a001 9227465/271443*5778^(7/18) 9870002141248998 a001 317811/9349*39603^(7/22) 9870002141293340 a001 24157817/710647*5778^(7/18) 9870002141310030 a001 31622993/930249*5778^(7/18) 9870002141312465 a001 165580141/4870847*5778^(7/18) 9870002141312820 a001 433494437/12752043*5778^(7/18) 9870002141312872 a001 567451585/16692641*5778^(7/18) 9870002141312879 a001 2971215073/87403803*5778^(7/18) 9870002141312880 a001 7778742049/228826127*5778^(7/18) 9870002141312880 a001 10182505537/299537289*5778^(7/18) 9870002141312880 a001 53316291173/1568397607*5778^(7/18) 9870002141312880 a001 139583862445/4106118243*5778^(7/18) 9870002141312880 a001 182717648081/5374978561*5778^(7/18) 9870002141312880 a001 956722026041/28143753123*5778^(7/18) 9870002141312880 a001 2504730781961/73681302247*5778^(7/18) 9870002141312880 a001 3278735159921/96450076809*5778^(7/18) 9870002141312880 a001 10610209857723/312119004989*5778^(7/18) 9870002141312880 a001 4052739537881/119218851371*5778^(7/18) 9870002141312880 a001 387002188980/11384387281*5778^(7/18) 9870002141312880 a001 591286729879/17393796001*5778^(7/18) 9870002141312880 a001 225851433717/6643838879*5778^(7/18) 9870002141312880 a001 1135099622/33391061*5778^(7/18) 9870002141312880 a001 32951280099/969323029*5778^(7/18) 9870002141312881 a001 12586269025/370248451*5778^(7/18) 9870002141312881 a001 1201881744/35355581*5778^(7/18) 9870002141312884 a001 1836311903/54018521*5778^(7/18) 9870002141312904 a001 701408733/20633239*5778^(7/18) 9870002141313039 a001 66978574/1970299*5778^(7/18) 9870002141313969 a001 102334155/3010349*5778^(7/18) 9870002141320344 a001 39088169/1149851*5778^(7/18) 9870002141364038 a001 196452/5779*5778^(7/18) 9870002141364978 a001 1346269/24476*5778^(1/3) 9870002141389378 a001 4181/64079*167761^(4/5) 9870002141422807 a001 5702887/9349*15127^(1/20) 9870002141494589 a001 46368/9349*39603^(1/2) 9870002141605756 a001 196418/9349*39603^(4/11) 9870002141619837 a001 4181/24476*24476^(6/7) 9870002141647198 a001 28657/9349*439204^(4/9) 9870002141663519 a001 5702887/167761*5778^(7/18) 9870002141669881 a001 28657/9349*7881196^(4/11) 9870002141669924 a001 4181/64079*20633239^(4/7) 9870002141669937 a001 4181/64079*2537720636^(4/9) 9870002141669937 a001 4181/64079*(1/2+1/2*5^(1/2))^20 9870002141669937 a001 4181/64079*23725150497407^(5/16) 9870002141669937 a001 4181/64079*505019158607^(5/14) 9870002141669937 a001 4181/64079*73681302247^(5/13) 9870002141669937 a001 4181/64079*28143753123^(2/5) 9870002141669937 a001 4181/64079*10749957122^(5/12) 9870002141669937 a001 4181/64079*4106118243^(10/23) 9870002141669937 a001 4181/64079*1568397607^(5/11) 9870002141669937 a001 4181/64079*599074578^(10/21) 9870002141669937 a001 4181/64079*228826127^(1/2) 9870002141669938 a001 4181/64079*87403803^(10/19) 9870002141669938 a001 28657/9349*141422324^(4/13) 9870002141669939 a001 28657/9349*2537720636^(4/15) 9870002141669939 a001 28657/9349*45537549124^(4/17) 9870002141669939 a001 28657/9349*817138163596^(4/19) 9870002141669939 a001 28657/9349*14662949395604^(4/21) 9870002141669939 a001 28657/9349*(1/2+1/2*5^(1/2))^12 9870002141669939 a001 28657/9349*192900153618^(2/9) 9870002141669939 a001 28657/9349*73681302247^(3/13) 9870002141669939 a001 28657/9349*10749957122^(1/4) 9870002141669939 a001 28657/9349*4106118243^(6/23) 9870002141669939 a001 28657/9349*1568397607^(3/11) 9870002141669939 a001 28657/9349*599074578^(2/7) 9870002141669939 a001 28657/9349*228826127^(3/10) 9870002141669939 a001 28657/9349*87403803^(6/19) 9870002141669942 a001 28657/9349*33385282^(1/3) 9870002141669942 a001 4181/64079*33385282^(5/9) 9870002141669960 a001 28657/9349*12752043^(6/17) 9870002141669973 a001 4181/64079*12752043^(10/17) 9870002141670095 a001 28657/9349*4870847^(3/8) 9870002141670197 a001 4181/64079*4870847^(5/8) 9870002141671079 a001 28657/9349*1860498^(2/5) 9870002141671838 a001 4181/64079*1860498^(2/3) 9870002141678315 a001 28657/9349*710647^(3/7) 9870002141683897 a001 4181/64079*710647^(5/7) 9870002141706682 a001 121393/9349*39603^(9/22) 9870002141731764 a001 28657/9349*271443^(6/13) 9870002141772980 a001 4181/64079*271443^(10/13) 9870002141803893 a001 119814917/121393 9870002142129010 a001 28657/9349*103682^(1/2) 9870002142435057 a001 4181/64079*103682^(5/6) 9870002142477384 a001 75025/9349*39603^(5/11) 9870002143579686 a001 3524578/9349*15127^(1/10) 9870002143716195 a001 2178309/64079*5778^(7/18) 9870002144355064 a001 4181/103682*39603^(21/22) 9870002144758013 a001 10946/9349*24476^(2/3) 9870002145102511 a001 28657/9349*39603^(6/11) 9870002145559255 a004 Fibonacci(19)*Lucas(22)/(1/2+sqrt(5)/2)^25 9870002145735771 a001 2178309/9349*15127^(3/20) 9870002146695355 a001 24157817/39603*2207^(1/16) 9870002147318949 a001 121393/15127*5778^(5/9) 9870002147390890 a001 4181/64079*39603^(10/11) 9870002147893936 a001 1346269/9349*15127^(1/5) 9870002150046656 a001 832040/9349*15127^(1/4) 9870002151441387 a001 832040/39603*5778^(4/9) 9870002152070258 a001 31622993/51841*2207^(1/16) 9870002152213632 a001 514229/9349*15127^(3/10) 9870002152854445 a001 165580141/271443*2207^(1/16) 9870002152968857 a001 433494437/710647*2207^(1/16) 9870002152985549 a001 567451585/930249*2207^(1/16) 9870002152987984 a001 2971215073/4870847*2207^(1/16) 9870002152988340 a001 7778742049/12752043*2207^(1/16) 9870002152988392 a001 10182505537/16692641*2207^(1/16) 9870002152988399 a001 53316291173/87403803*2207^(1/16) 9870002152988400 a001 139583862445/228826127*2207^(1/16) 9870002152988400 a001 182717648081/299537289*2207^(1/16) 9870002152988400 a001 956722026041/1568397607*2207^(1/16) 9870002152988400 a001 2504730781961/4106118243*2207^(1/16) 9870002152988400 a001 3278735159921/5374978561*2207^(1/16) 9870002152988400 a001 10610209857723/17393796001*2207^(1/16) 9870002152988400 a001 4052739537881/6643838879*2207^(1/16) 9870002152988400 a001 1134903780/1860499*2207^(1/16) 9870002152988400 a001 591286729879/969323029*2207^(1/16) 9870002152988400 a001 225851433717/370248451*2207^(1/16) 9870002152988401 a001 21566892818/35355581*2207^(1/16) 9870002152988404 a001 32951280099/54018521*2207^(1/16) 9870002152988424 a001 1144206275/1875749*2207^(1/16) 9870002152988559 a001 1201881744/1970299*2207^(1/16) 9870002152989490 a001 1836311903/3010349*2207^(1/16) 9870002152995865 a001 701408733/1149851*2207^(1/16) 9870002153039567 a001 66978574/109801*2207^(1/16) 9870002153339100 a001 9303105/15251*2207^(1/16) 9870002153860441 a001 4181/24476*64079^(18/23) 9870002154278482 a001 10946/9349*64079^(14/23) 9870002154343283 a001 317811/9349*15127^(7/20) 9870002155392130 a001 39088169/64079*2207^(1/16) 9870002155690554 a001 5702887/9349*5778^(1/18) 9870002155707511 a001 4181/24476*439204^(2/3) 9870002155741535 a001 4181/24476*7881196^(6/11) 9870002155741613 a001 10946/9349*20633239^(2/5) 9870002155741621 a001 4181/24476*141422324^(6/13) 9870002155741621 a001 4181/24476*2537720636^(2/5) 9870002155741621 a001 4181/24476*45537549124^(6/17) 9870002155741621 a001 4181/24476*14662949395604^(2/7) 9870002155741621 a001 4181/24476*(1/2+1/2*5^(1/2))^18 9870002155741621 a001 4181/24476*192900153618^(1/3) 9870002155741621 a001 4181/24476*10749957122^(3/8) 9870002155741621 a001 4181/24476*4106118243^(9/23) 9870002155741621 a001 4181/24476*1568397607^(9/22) 9870002155741621 a001 4181/24476*599074578^(3/7) 9870002155741622 a001 4181/24476*228826127^(9/20) 9870002155741622 a001 4181/24476*87403803^(9/19) 9870002155741623 a001 10946/9349*17393796001^(2/7) 9870002155741623 a001 10946/9349*14662949395604^(2/9) 9870002155741623 a001 10946/9349*(1/2+1/2*5^(1/2))^14 9870002155741623 a001 10946/9349*505019158607^(1/4) 9870002155741623 a001 10946/9349*10749957122^(7/24) 9870002155741623 a001 10946/9349*4106118243^(7/23) 9870002155741623 a001 10946/9349*1568397607^(7/22) 9870002155741623 a001 10946/9349*599074578^(1/3) 9870002155741623 a001 10946/9349*228826127^(7/20) 9870002155741623 a001 10946/9349*87403803^(7/19) 9870002155741626 a001 4181/24476*33385282^(1/2) 9870002155741626 a001 10946/9349*33385282^(7/18) 9870002155741648 a001 10946/9349*12752043^(7/17) 9870002155741654 a001 4181/24476*12752043^(9/17) 9870002155741805 a001 10946/9349*4870847^(7/16) 9870002155741855 a001 4181/24476*4870847^(9/16) 9870002155742953 a001 10946/9349*1860498^(7/15) 9870002155743332 a001 4181/24476*1860498^(3/5) 9870002155751395 a001 10946/9349*710647^(1/2) 9870002155754185 a001 4181/24476*710647^(9/14) 9870002155813753 a001 10946/9349*271443^(7/13) 9870002155834360 a001 4181/24476*271443^(9/13) 9870002156277206 a001 10946/9349*103682^(7/12) 9870002156430229 a001 4181/24476*103682^(3/4) 9870002156570653 a001 196418/9349*15127^(2/5) 9870002156659765 a001 22882613/23184 9870002156818728 a001 46347/2206*5778^(4/9) 9870002157096339 a001 4181/9349*9349^(16/19) 9870002157603271 a001 5702887/271443*5778^(4/9) 9870002157717734 a001 14930352/710647*5778^(4/9) 9870002157734434 a001 39088169/1860498*5778^(4/9) 9870002157736871 a001 102334155/4870847*5778^(4/9) 9870002157737226 a001 267914296/12752043*5778^(4/9) 9870002157737278 a001 701408733/33385282*5778^(4/9) 9870002157737286 a001 1836311903/87403803*5778^(4/9) 9870002157737287 a001 102287808/4868641*5778^(4/9) 9870002157737287 a001 12586269025/599074578*5778^(4/9) 9870002157737287 a001 32951280099/1568397607*5778^(4/9) 9870002157737287 a001 86267571272/4106118243*5778^(4/9) 9870002157737287 a001 225851433717/10749957122*5778^(4/9) 9870002157737287 a001 591286729879/28143753123*5778^(4/9) 9870002157737287 a001 1548008755920/73681302247*5778^(4/9) 9870002157737287 a001 4052739537881/192900153618*5778^(4/9) 9870002157737287 a001 225749145909/10745088481*5778^(4/9) 9870002157737287 a001 6557470319842/312119004989*5778^(4/9) 9870002157737287 a001 2504730781961/119218851371*5778^(4/9) 9870002157737287 a001 956722026041/45537549124*5778^(4/9) 9870002157737287 a001 365435296162/17393796001*5778^(4/9) 9870002157737287 a001 139583862445/6643838879*5778^(4/9) 9870002157737287 a001 53316291173/2537720636*5778^(4/9) 9870002157737287 a001 20365011074/969323029*5778^(4/9) 9870002157737287 a001 7778742049/370248451*5778^(4/9) 9870002157737288 a001 2971215073/141422324*5778^(4/9) 9870002157737290 a001 1134903170/54018521*5778^(4/9) 9870002157737310 a001 433494437/20633239*5778^(4/9) 9870002157737446 a001 165580141/7881196*5778^(4/9) 9870002157738377 a001 63245986/3010349*5778^(4/9) 9870002157744755 a001 24157817/1149851*5778^(4/9) 9870002157785444 a001 208010/6119*5778^(7/18) 9870002157788477 a001 9227465/439204*5778^(4/9) 9870002158088146 a001 3524578/167761*5778^(4/9) 9870002158542191 a001 121393/9349*15127^(9/20) 9870002159746290 a001 10946/9349*39603^(7/11) 9870002160142107 a001 1346269/64079*5778^(4/9) 9870002160890479 a001 4181/24476*39603^(9/11) 9870002161009737 a001 17711/9349*15127^(13/20) 9870002161183505 a001 75025/9349*15127^(1/2) 9870002162071322 a001 46368/9349*15127^(11/20) 9870002164228011 a001 75025/15127*5778^(11/18) 9870002165325033 a001 6765/3571*3571^(13/17) 9870002167549856 a001 28657/9349*15127^(3/5) 9870002167876110 a001 514229/39603*5778^(1/2) 9870002169463806 a001 3732588/6119*2207^(1/16) 9870002172115180 a001 3524578/9349*5778^(1/9) 9870002172453906 m001 (ln(2)/ln(10)-sin(1/5*Pi))/(BesselI(0,2)+Kac) 9870002173244639 a001 1346269/103682*5778^(1/2) 9870002173949694 a001 4181/39603*15127^(19/20) 9870002174027897 a001 3524578/271443*5778^(1/2) 9870002174142173 a001 9227465/710647*5778^(1/2) 9870002174158846 a001 24157817/1860498*5778^(1/2) 9870002174161278 a001 63245986/4870847*5778^(1/2) 9870002174161633 a001 165580141/12752043*5778^(1/2) 9870002174161685 a001 433494437/33385282*5778^(1/2) 9870002174161692 a001 1134903170/87403803*5778^(1/2) 9870002174161693 a001 2971215073/228826127*5778^(1/2) 9870002174161694 a001 7778742049/599074578*5778^(1/2) 9870002174161694 a001 20365011074/1568397607*5778^(1/2) 9870002174161694 a001 53316291173/4106118243*5778^(1/2) 9870002174161694 a001 139583862445/10749957122*5778^(1/2) 9870002174161694 a001 365435296162/28143753123*5778^(1/2) 9870002174161694 a001 956722026041/73681302247*5778^(1/2) 9870002174161694 a001 2504730781961/192900153618*5778^(1/2) 9870002174161694 a001 10610209857723/817138163596*5778^(1/2) 9870002174161694 a001 4052739537881/312119004989*5778^(1/2) 9870002174161694 a001 1548008755920/119218851371*5778^(1/2) 9870002174161694 a001 591286729879/45537549124*5778^(1/2) 9870002174161694 a001 7787980473/599786069*5778^(1/2) 9870002174161694 a001 86267571272/6643838879*5778^(1/2) 9870002174161694 a001 32951280099/2537720636*5778^(1/2) 9870002174161694 a001 12586269025/969323029*5778^(1/2) 9870002174161694 a001 4807526976/370248451*5778^(1/2) 9870002174161694 a001 1836311903/141422324*5778^(1/2) 9870002174161697 a001 701408733/54018521*5778^(1/2) 9870002174161717 a001 9238424/711491*5778^(1/2) 9870002174161852 a001 102334155/7881196*5778^(1/2) 9870002174162781 a001 39088169/3010349*5778^(1/2) 9870002174169150 a001 14930352/1149851*5778^(1/2) 9870002174212799 a001 5702887/439204*5778^(1/2) 9870002174220167 a001 514229/24476*5778^(4/9) 9870002174511977 a001 2178309/167761*5778^(1/2) 9870002175511897 r002 58th iterates of z^2 + 9870002176150384 a007 Real Root Of 25*x^4+199*x^3-485*x^2-144*x-86 9870002176562573 a001 832040/64079*5778^(1/2) 9870002179383574 a001 6624/2161*5778^(2/3) 9870002182399403 a004 Fibonacci(19)*Lucas(20)/(1/2+sqrt(5)/2)^23 9870002183535714 r005 Re(z^2+c),c=-101/106+11/61*I,n=45 9870002184273508 a001 105937/13201*5778^(5/9) 9870002185934860 a001 10946/9349*15127^(7/10) 9870002188539012 a001 2178309/9349*5778^(1/6) 9870002189665105 a001 416020/51841*5778^(5/9) 9870002190451729 a001 726103/90481*5778^(5/9) 9870002190566496 a001 5702887/710647*5778^(5/9) 9870002190583240 a001 829464/103361*5778^(5/9) 9870002190585683 a001 39088169/4870847*5778^(5/9) 9870002190586039 a001 34111385/4250681*5778^(5/9) 9870002190586091 a001 133957148/16692641*5778^(5/9) 9870002190586099 a001 233802911/29134601*5778^(5/9) 9870002190586100 a001 1836311903/228826127*5778^(5/9) 9870002190586100 a001 267084832/33281921*5778^(5/9) 9870002190586100 a001 12586269025/1568397607*5778^(5/9) 9870002190586100 a001 10983760033/1368706081*5778^(5/9) 9870002190586100 a001 43133785636/5374978561*5778^(5/9) 9870002190586100 a001 75283811239/9381251041*5778^(5/9) 9870002190586100 a001 591286729879/73681302247*5778^(5/9) 9870002190586100 a001 86000486440/10716675201*5778^(5/9) 9870002190586100 a001 4052739537881/505019158607*5778^(5/9) 9870002190586100 a001 3536736619241/440719107401*5778^(5/9) 9870002190586100 a001 3278735159921/408569081798*5778^(5/9) 9870002190586100 a001 2504730781961/312119004989*5778^(5/9) 9870002190586100 a001 956722026041/119218851371*5778^(5/9) 9870002190586100 a001 182717648081/22768774562*5778^(5/9) 9870002190586100 a001 139583862445/17393796001*5778^(5/9) 9870002190586100 a001 53316291173/6643838879*5778^(5/9) 9870002190586100 a001 10182505537/1268860318*5778^(5/9) 9870002190586100 a001 7778742049/969323029*5778^(5/9) 9870002190586100 a001 2971215073/370248451*5778^(5/9) 9870002190586101 a001 567451585/70711162*5778^(5/9) 9870002190586104 a001 433494437/54018521*5778^(5/9) 9870002190586123 a001 165580141/20633239*5778^(5/9) 9870002190586260 a001 31622993/3940598*5778^(5/9) 9870002190587193 a001 24157817/3010349*5778^(5/9) 9870002190593588 a001 9227465/1149851*5778^(5/9) 9870002190617565 a001 10959/844*5778^(1/2) 9870002190637426 a001 1762289/219602*5778^(5/9) 9870002190937889 a001 1346269/167761*5778^(5/9) 9870002191130891 h001 (1/8*exp(1)+1/8)/(5/8*exp(2)+1/11) 9870002192997296 a001 514229/64079*5778^(5/9) 9870002194561498 a001 4181/24476*15127^(9/10) 9870002199129855 a001 28657/15127*5778^(13/18) 9870002200768625 a001 196418/39603*5778^(11/18) 9870002202866148 a001 6765/15127*5778^(8/9) 9870002204964924 a001 1346269/9349*5778^(2/9) 9870002206099829 a001 514229/103682*5778^(11/18) 9870002206857482 a001 17711/15127*5778^(7/9) 9870002206877641 a001 1346269/271443*5778^(11/18) 9870002206991122 a001 3524578/710647*5778^(11/18) 9870002207007679 a001 9227465/1860498*5778^(11/18) 9870002207010094 a001 24157817/4870847*5778^(11/18) 9870002207010447 a001 63245986/12752043*5778^(11/18) 9870002207010498 a001 165580141/33385282*5778^(11/18) 9870002207010506 a001 433494437/87403803*5778^(11/18) 9870002207010507 a001 1134903170/228826127*5778^(11/18) 9870002207010507 a001 2971215073/599074578*5778^(11/18) 9870002207010507 a001 7778742049/1568397607*5778^(11/18) 9870002207010507 a001 20365011074/4106118243*5778^(11/18) 9870002207010507 a001 53316291173/10749957122*5778^(11/18) 9870002207010507 a001 139583862445/28143753123*5778^(11/18) 9870002207010507 a001 365435296162/73681302247*5778^(11/18) 9870002207010507 a001 956722026041/192900153618*5778^(11/18) 9870002207010507 a001 2504730781961/505019158607*5778^(11/18) 9870002207010507 a001 10610209857723/2139295485799*5778^(11/18) 9870002207010507 a001 4052739537881/817138163596*5778^(11/18) 9870002207010507 a001 140728068720/28374454999*5778^(11/18) 9870002207010507 a001 591286729879/119218851371*5778^(11/18) 9870002207010507 a001 225851433717/45537549124*5778^(11/18) 9870002207010507 a001 86267571272/17393796001*5778^(11/18) 9870002207010507 a001 32951280099/6643838879*5778^(11/18) 9870002207010507 a001 1144206275/230701876*5778^(11/18) 9870002207010507 a001 4807526976/969323029*5778^(11/18) 9870002207010507 a001 1836311903/370248451*5778^(11/18) 9870002207010507 a001 701408733/141422324*5778^(11/18) 9870002207010510 a001 267914296/54018521*5778^(11/18) 9870002207010530 a001 9303105/1875749*5778^(11/18) 9870002207010664 a001 39088169/7881196*5778^(11/18) 9870002207011587 a001 14930352/3010349*5778^(11/18) 9870002207017911 a001 5702887/1149851*5778^(11/18) 9870002207061257 a001 2178309/439204*5778^(11/18) 9870002207112681 a001 98209/12238*5778^(5/9) 9870002207358355 a001 75640/15251*5778^(11/18) 9870002207566910 a003 sin(Pi*4/87)*sin(Pi*19/79) 9870002207618078 r001 44i'th iterates of 2*x^2-1 of 9870002209394694 a001 317811/64079*5778^(11/18) 9870002213285135 r005 Re(z^2+c),c=-85/62+2/61*I,n=26 9870002217007910 a001 121393/39603*5778^(2/3) 9870002221385390 a001 832040/9349*5778^(5/18) 9870002222497226 a001 317811/103682*5778^(2/3) 9870002223298107 a001 832040/271443*5778^(2/3) 9870002223351966 a001 121393/24476*5778^(11/18) 9870002223414954 a001 311187/101521*5778^(2/3) 9870002223432001 a001 5702887/1860498*5778^(2/3) 9870002223434489 a001 14930352/4870847*5778^(2/3) 9870002223434852 a001 39088169/12752043*5778^(2/3) 9870002223434904 a001 14619165/4769326*5778^(2/3) 9870002223434912 a001 267914296/87403803*5778^(2/3) 9870002223434913 a001 701408733/228826127*5778^(2/3) 9870002223434914 a001 1836311903/599074578*5778^(2/3) 9870002223434914 a001 686789568/224056801*5778^(2/3) 9870002223434914 a001 12586269025/4106118243*5778^(2/3) 9870002223434914 a001 32951280099/10749957122*5778^(2/3) 9870002223434914 a001 86267571272/28143753123*5778^(2/3) 9870002223434914 a001 32264490531/10525900321*5778^(2/3) 9870002223434914 a001 591286729879/192900153618*5778^(2/3) 9870002223434914 a001 1548008755920/505019158607*5778^(2/3) 9870002223434914 a001 1515744265389/494493258286*5778^(2/3) 9870002223434914 a001 2504730781961/817138163596*5778^(2/3) 9870002223434914 a001 956722026041/312119004989*5778^(2/3) 9870002223434914 a001 365435296162/119218851371*5778^(2/3) 9870002223434914 a001 139583862445/45537549124*5778^(2/3) 9870002223434914 a001 53316291173/17393796001*5778^(2/3) 9870002223434914 a001 20365011074/6643838879*5778^(2/3) 9870002223434914 a001 7778742049/2537720636*5778^(2/3) 9870002223434914 a001 2971215073/969323029*5778^(2/3) 9870002223434914 a001 1134903170/370248451*5778^(2/3) 9870002223434914 a001 433494437/141422324*5778^(2/3) 9870002223434917 a001 165580141/54018521*5778^(2/3) 9870002223434937 a001 63245986/20633239*5778^(2/3) 9870002223435076 a001 24157817/7881196*5778^(2/3) 9870002223436026 a001 9227465/3010349*5778^(2/3) 9870002223442538 a001 3524578/1149851*5778^(2/3) 9870002223487169 a001 1346269/439204*5778^(2/3) 9870002223793078 a001 514229/167761*5778^(2/3) 9870002224850028 m001 (Tribonacci+Trott)/(ln(3)+StronglyCareFree) 9870002225889811 a001 196418/64079*5778^(2/3) 9870002233916971 a001 75025/39603*5778^(13/18) 9870002236501510 a001 5702887/15127*2207^(1/8) 9870002237285329 a001 416020/2889*2207^(1/4) 9870002237775369 a007 Real Root Of -809*x^4+608*x^3+378*x^2-915*x+81 9870002237820113 a001 514229/9349*5778^(1/3) 9870002238992343 a001 98209/51841*5778^(13/18) 9870002239637684 a001 4181/9349*24476^(16/21) 9870002239732830 a001 514229/271443*5778^(13/18) 9870002239840866 a001 1346269/710647*5778^(13/18) 9870002239856628 a001 1762289/930249*5778^(13/18) 9870002239858927 a001 9227465/4870847*5778^(13/18) 9870002239859263 a001 24157817/12752043*5778^(13/18) 9870002239859312 a001 31622993/16692641*5778^(13/18) 9870002239859319 a001 165580141/87403803*5778^(13/18) 9870002239859320 a001 433494437/228826127*5778^(13/18) 9870002239859320 a001 567451585/299537289*5778^(13/18) 9870002239859320 a001 2971215073/1568397607*5778^(13/18) 9870002239859320 a001 7778742049/4106118243*5778^(13/18) 9870002239859320 a001 10182505537/5374978561*5778^(13/18) 9870002239859320 a001 53316291173/28143753123*5778^(13/18) 9870002239859320 a001 139583862445/73681302247*5778^(13/18) 9870002239859320 a001 182717648081/96450076809*5778^(13/18) 9870002239859320 a001 956722026041/505019158607*5778^(13/18) 9870002239859320 a001 10610209857723/5600748293801*5778^(13/18) 9870002239859320 a001 591286729879/312119004989*5778^(13/18) 9870002239859320 a001 225851433717/119218851371*5778^(13/18) 9870002239859320 a001 21566892818/11384387281*5778^(13/18) 9870002239859320 a001 32951280099/17393796001*5778^(13/18) 9870002239859320 a001 12586269025/6643838879*5778^(13/18) 9870002239859320 a001 1201881744/634430159*5778^(13/18) 9870002239859320 a001 1836311903/969323029*5778^(13/18) 9870002239859320 a001 701408733/370248451*5778^(13/18) 9870002239859321 a001 66978574/35355581*5778^(13/18) 9870002239859323 a001 102334155/54018521*5778^(13/18) 9870002239859342 a001 39088169/20633239*5778^(13/18) 9870002239859470 a001 3732588/1970299*5778^(13/18) 9870002239860349 a001 5702887/3010349*5778^(13/18) 9870002239866369 a001 2178309/1149851*5778^(13/18) 9870002239907635 a001 208010/109801*5778^(13/18) 9870002240190476 a001 317811/167761*5778^(13/18) 9870002240261028 a001 75025/24476*5778^(2/3) 9870002242129096 a001 121393/64079*5778^(13/18) 9870002246050352 a001 10946/15127*5778^(5/6) 9870002249072535 a001 15456/13201*5778^(7/9) 9870002250518220 a001 4181/9349*64079^(16/23) 9870002252190381 a001 4181/9349*(1/2+1/2*5^(1/2))^16 9870002252190381 a001 4181/9349*23725150497407^(1/4) 9870002252190381 a001 4181/9349*73681302247^(4/13) 9870002252190381 a001 4181/9349*10749957122^(1/3) 9870002252190381 a001 4181/9349*4106118243^(8/23) 9870002252190381 a001 4181/9349*1568397607^(4/11) 9870002252190381 a001 4181/9349*599074578^(8/21) 9870002252190381 a001 4181/9349*228826127^(2/5) 9870002252190381 a001 4181/9349*87403803^(8/19) 9870002252190385 a001 4181/9349*33385282^(4/9) 9870002252190409 a001 4181/9349*12752043^(8/17) 9870002252190589 a001 4181/9349*4870847^(1/2) 9870002252191901 a001 4181/9349*1860498^(8/15) 9870002252201549 a001 4181/9349*710647^(4/7) 9870002252272815 a001 4181/9349*271443^(8/13) 9870002252802476 a001 4181/9349*103682^(2/3) 9870002254217511 a001 317811/9349*5778^(7/18) 9870002255231628 a001 121393/103682*5778^(7/9) 9870002255416592 a001 11592/6119*5778^(13/18) 9870002256130228 a001 105937/90481*5778^(7/9) 9870002256261332 a001 832040/710647*5778^(7/9) 9870002256280460 a001 726103/620166*5778^(7/9) 9870002256283250 a001 5702887/4870847*5778^(7/9) 9870002256283657 a001 4976784/4250681*5778^(7/9) 9870002256283717 a001 39088169/33385282*5778^(7/9) 9870002256283725 a001 34111385/29134601*5778^(7/9) 9870002256283727 a001 267914296/228826127*5778^(7/9) 9870002256283727 a001 233802911/199691526*5778^(7/9) 9870002256283727 a001 1836311903/1568397607*5778^(7/9) 9870002256283727 a001 1602508992/1368706081*5778^(7/9) 9870002256283727 a001 12586269025/10749957122*5778^(7/9) 9870002256283727 a001 10983760033/9381251041*5778^(7/9) 9870002256283727 a001 86267571272/73681302247*5778^(7/9) 9870002256283727 a001 75283811239/64300051206*5778^(7/9) 9870002256283727 a001 2504730781961/2139295485799*5778^(7/9) 9870002256283727 a001 365435296162/312119004989*5778^(7/9) 9870002256283727 a001 139583862445/119218851371*5778^(7/9) 9870002256283727 a001 53316291173/45537549124*5778^(7/9) 9870002256283727 a001 20365011074/17393796001*5778^(7/9) 9870002256283727 a001 7778742049/6643838879*5778^(7/9) 9870002256283727 a001 2971215073/2537720636*5778^(7/9) 9870002256283727 a001 1134903170/969323029*5778^(7/9) 9870002256283727 a001 433494437/370248451*5778^(7/9) 9870002256283728 a001 165580141/141422324*5778^(7/9) 9870002256283731 a001 63245986/54018521*5778^(7/9) 9870002256283754 a001 24157817/20633239*5778^(7/9) 9870002256283909 a001 9227465/7881196*5778^(7/9) 9870002256284975 a001 3524578/3010349*5778^(7/9) 9870002256292281 a001 1346269/1149851*5778^(7/9) 9870002256342358 a001 514229/439204*5778^(7/9) 9870002256685593 a001 196418/167761*5778^(7/9) 9870002256767143 a001 4181/9349*39603^(8/11) 9870002258483428 a001 17480761/17711 9870002259038157 a001 75025/64079*5778^(7/9) 9870002265912514 a001 5702887/9349*2207^(1/16) 9870002268818816 a001 28657/39603*5778^(5/6) 9870002270462693 a001 10946/3571*3571^(12/17) 9870002270712628 a001 196418/9349*5778^(4/9) 9870002272140690 a001 75025/103682*5778^(5/6) 9870002272625345 a001 196418/271443*5778^(5/6) 9870002272696055 a001 514229/710647*5778^(5/6) 9870002272706371 a001 1346269/1860498*5778^(5/6) 9870002272707877 a001 3524578/4870847*5778^(5/6) 9870002272708096 a001 9227465/12752043*5778^(5/6) 9870002272708128 a001 24157817/33385282*5778^(5/6) 9870002272708133 a001 63245986/87403803*5778^(5/6) 9870002272708134 a001 165580141/228826127*5778^(5/6) 9870002272708134 a001 433494437/599074578*5778^(5/6) 9870002272708134 a001 1134903170/1568397607*5778^(5/6) 9870002272708134 a001 2971215073/4106118243*5778^(5/6) 9870002272708134 a001 7778742049/10749957122*5778^(5/6) 9870002272708134 a001 20365011074/28143753123*5778^(5/6) 9870002272708134 a001 53316291173/73681302247*5778^(5/6) 9870002272708134 a001 139583862445/192900153618*5778^(5/6) 9870002272708134 a001 365435296162/505019158607*5778^(5/6) 9870002272708134 a001 10610209857723/14662949395604*5778^(5/6) 9870002272708134 a001 591286729879/817138163596*5778^(5/6) 9870002272708134 a001 225851433717/312119004989*5778^(5/6) 9870002272708134 a001 86267571272/119218851371*5778^(5/6) 9870002272708134 a001 32951280099/45537549124*5778^(5/6) 9870002272708134 a001 12586269025/17393796001*5778^(5/6) 9870002272708134 a001 4807526976/6643838879*5778^(5/6) 9870002272708134 a001 1836311903/2537720636*5778^(5/6) 9870002272708134 a001 701408733/969323029*5778^(5/6) 9870002272708134 a001 267914296/370248451*5778^(5/6) 9870002272708134 a001 102334155/141422324*5778^(5/6) 9870002272708136 a001 39088169/54018521*5778^(5/6) 9870002272708148 a001 14930352/20633239*5778^(5/6) 9870002272708232 a001 5702887/7881196*5778^(5/6) 9870002272708807 a001 2178309/3010349*5778^(5/6) 9870002272712747 a001 832040/1149851*5778^(5/6) 9870002272739756 a001 317811/439204*5778^(5/6) 9870002272924878 a001 121393/167761*5778^(5/6) 9870002273341710 a001 4976784/13201*2207^(1/8) 9870002274193721 a001 46368/64079*5778^(5/6) 9870002275162873 a001 28657/24476*5778^(7/9) 9870002275853353 a001 4181/3571*3571^(14/17) 9870002276546443 a001 17711/39603*5778^(8/9) 9870002278716622 a001 39088169/103682*2207^(1/8) 9870002278848158 a004 Fibonacci(20)*Lucas(18)/(1/2+sqrt(5)/2)^22 9870002278899166 a001 6765/24476*5778^(17/18) 9870002279500812 a001 34111385/90481*2207^(1/8) 9870002279615223 a001 267914296/710647*2207^(1/8) 9870002279631916 a001 233802911/620166*2207^(1/8) 9870002279634351 a001 1836311903/4870847*2207^(1/8) 9870002279634706 a001 1602508992/4250681*2207^(1/8) 9870002279634758 a001 12586269025/33385282*2207^(1/8) 9870002279634766 a001 10983760033/29134601*2207^(1/8) 9870002279634767 a001 86267571272/228826127*2207^(1/8) 9870002279634767 a001 267913919/710646*2207^(1/8) 9870002279634767 a001 591286729879/1568397607*2207^(1/8) 9870002279634767 a001 516002918640/1368706081*2207^(1/8) 9870002279634767 a001 4052739537881/10749957122*2207^(1/8) 9870002279634767 a001 3536736619241/9381251041*2207^(1/8) 9870002279634767 a001 6557470319842/17393796001*2207^(1/8) 9870002279634767 a001 2504730781961/6643838879*2207^(1/8) 9870002279634767 a001 956722026041/2537720636*2207^(1/8) 9870002279634767 a001 365435296162/969323029*2207^(1/8) 9870002279634767 a001 139583862445/370248451*2207^(1/8) 9870002279634768 a001 53316291173/141422324*2207^(1/8) 9870002279634770 a001 20365011074/54018521*2207^(1/8) 9870002279634790 a001 7778742049/20633239*2207^(1/8) 9870002279634926 a001 2971215073/7881196*2207^(1/8) 9870002279635856 a001 1134903170/3010349*2207^(1/8) 9870002279642232 a001 433494437/1149851*2207^(1/8) 9870002279685934 a001 165580141/439204*2207^(1/8) 9870002279985467 a001 63245986/167761*2207^(1/8) 9870002281772735 m001 Catalan^(Paris/Robbin) 9870002282038501 a001 24157817/64079*2207^(1/8) 9870002282890500 a001 17711/24476*5778^(5/6) 9870002286696938 a001 4181/9349*15127^(4/5) 9870002286951913 a001 121393/9349*5778^(1/2) 9870002287296254 a001 23184/51841*5778^(8/9) 9870002288864630 a001 121393/271443*5778^(8/9) 9870002289093453 a001 317811/710647*5778^(8/9) 9870002289126838 a001 416020/930249*5778^(8/9) 9870002289131708 a001 2178309/4870847*5778^(8/9) 9870002289132419 a001 5702887/12752043*5778^(8/9) 9870002289132523 a001 7465176/16692641*5778^(8/9) 9870002289132538 a001 39088169/87403803*5778^(8/9) 9870002289132540 a001 102334155/228826127*5778^(8/9) 9870002289132540 a001 133957148/299537289*5778^(8/9) 9870002289132540 a001 701408733/1568397607*5778^(8/9) 9870002289132540 a001 1836311903/4106118243*5778^(8/9) 9870002289132540 a001 2403763488/5374978561*5778^(8/9) 9870002289132540 a001 12586269025/28143753123*5778^(8/9) 9870002289132540 a001 32951280099/73681302247*5778^(8/9) 9870002289132540 a001 43133785636/96450076809*5778^(8/9) 9870002289132540 a001 225851433717/505019158607*5778^(8/9) 9870002289132540 a001 591286729879/1322157322203*5778^(8/9) 9870002289132540 a001 10610209857723/23725150497407*5778^(8/9) 9870002289132540 a001 182717648081/408569081798*5778^(8/9) 9870002289132540 a001 139583862445/312119004989*5778^(8/9) 9870002289132540 a001 53316291173/119218851371*5778^(8/9) 9870002289132540 a001 10182505537/22768774562*5778^(8/9) 9870002289132540 a001 7778742049/17393796001*5778^(8/9) 9870002289132540 a001 2971215073/6643838879*5778^(8/9) 9870002289132540 a001 567451585/1268860318*5778^(8/9) 9870002289132540 a001 433494437/969323029*5778^(8/9) 9870002289132541 a001 165580141/370248451*5778^(8/9) 9870002289132541 a001 31622993/70711162*5778^(8/9) 9870002289132547 a001 24157817/54018521*5778^(8/9) 9870002289132587 a001 9227465/20633239*5778^(8/9) 9870002289132858 a001 1762289/3940598*5778^(8/9) 9870002289134719 a001 1346269/3010349*5778^(8/9) 9870002289147471 a001 514229/1149851*5778^(8/9) 9870002289234873 a001 98209/219602*5778^(8/9) 9870002289833940 a001 75025/167761*5778^(8/9) 9870002293223278 a001 17711/3571*3571^(11/17) 9870002293940002 a001 28657/64079*5778^(8/9) 9870002296110205 a001 9227465/24476*2207^(1/8) 9870002301667629 a001 17711/64079*5778^(17/18) 9870002303860974 a001 75025/9349*5778^(5/9) 9870002304989503 a001 46368/167761*5778^(17/18) 9870002305474158 a001 121393/439204*5778^(17/18) 9870002305544869 a001 317811/1149851*5778^(17/18) 9870002305555185 a001 832040/3010349*5778^(17/18) 9870002305556690 a001 2178309/7881196*5778^(17/18) 9870002305556910 a001 5702887/20633239*5778^(17/18) 9870002305556942 a001 14930352/54018521*5778^(17/18) 9870002305556946 a001 39088169/141422324*5778^(17/18) 9870002305556947 a001 102334155/370248451*5778^(17/18) 9870002305556947 a001 267914296/969323029*5778^(17/18) 9870002305556947 a001 701408733/2537720636*5778^(17/18) 9870002305556947 a001 1836311903/6643838879*5778^(17/18) 9870002305556947 a001 4807526976/17393796001*5778^(17/18) 9870002305556947 a001 12586269025/45537549124*5778^(17/18) 9870002305556947 a001 32951280099/119218851371*5778^(17/18) 9870002305556947 a001 86267571272/312119004989*5778^(17/18) 9870002305556947 a001 225851433717/817138163596*5778^(17/18) 9870002305556947 a001 1548008755920/5600748293801*5778^(17/18) 9870002305556947 a001 139583862445/505019158607*5778^(17/18) 9870002305556947 a001 53316291173/192900153618*5778^(17/18) 9870002305556947 a001 20365011074/73681302247*5778^(17/18) 9870002305556947 a001 7778742049/28143753123*5778^(17/18) 9870002305556947 a001 2971215073/10749957122*5778^(17/18) 9870002305556947 a001 1134903170/4106118243*5778^(17/18) 9870002305556947 a001 433494437/1568397607*5778^(17/18) 9870002305556947 a001 165580141/599074578*5778^(17/18) 9870002305556948 a001 63245986/228826127*5778^(17/18) 9870002305556949 a001 24157817/87403803*5778^(17/18) 9870002305556962 a001 9227465/33385282*5778^(17/18) 9870002305557045 a001 3524578/12752043*5778^(17/18) 9870002305557620 a001 1346269/4870847*5778^(17/18) 9870002305561561 a001 514229/1860498*5778^(17/18) 9870002305588570 a001 196418/710647*5778^(17/18) 9870002305773692 a001 75025/271443*5778^(17/18) 9870002307042535 a001 28657/103682*5778^(17/18) 9870002309348943 h003 exp(Pi*(3^(3/4)*(3+11^(1/4)))) 9870002315688306 a004 Fibonacci(22)*Lucas(18)/(1/2+sqrt(5)/2)^24 9870002315739314 a001 10946/39603*5778^(17/18) 9870002319016538 a001 46368/9349*5778^(11/18) 9870002321049452 a003 sin(Pi*43/101)/sin(Pi*29/65) 9870002321063211 a004 Fibonacci(24)*Lucas(18)/(1/2+sqrt(5)/2)^26 9870002321847399 a004 Fibonacci(26)*Lucas(18)/(1/2+sqrt(5)/2)^28 9870002321961810 a004 Fibonacci(28)*Lucas(18)/(1/2+sqrt(5)/2)^30 9870002321978503 a004 Fibonacci(30)*Lucas(18)/(1/2+sqrt(5)/2)^32 9870002321980938 a004 Fibonacci(32)*Lucas(18)/(1/2+sqrt(5)/2)^34 9870002321981293 a004 Fibonacci(34)*Lucas(18)/(1/2+sqrt(5)/2)^36 9870002321981345 a004 Fibonacci(36)*Lucas(18)/(1/2+sqrt(5)/2)^38 9870002321981353 a004 Fibonacci(38)*Lucas(18)/(1/2+sqrt(5)/2)^40 9870002321981354 a004 Fibonacci(40)*Lucas(18)/(1/2+sqrt(5)/2)^42 9870002321981354 a004 Fibonacci(42)*Lucas(18)/(1/2+sqrt(5)/2)^44 9870002321981354 a004 Fibonacci(44)*Lucas(18)/(1/2+sqrt(5)/2)^46 9870002321981354 a004 Fibonacci(46)*Lucas(18)/(1/2+sqrt(5)/2)^48 9870002321981354 a004 Fibonacci(48)*Lucas(18)/(1/2+sqrt(5)/2)^50 9870002321981354 a004 Fibonacci(50)*Lucas(18)/(1/2+sqrt(5)/2)^52 9870002321981354 a004 Fibonacci(52)*Lucas(18)/(1/2+sqrt(5)/2)^54 9870002321981354 a004 Fibonacci(54)*Lucas(18)/(1/2+sqrt(5)/2)^56 9870002321981354 a004 Fibonacci(56)*Lucas(18)/(1/2+sqrt(5)/2)^58 9870002321981354 a004 Fibonacci(58)*Lucas(18)/(1/2+sqrt(5)/2)^60 9870002321981354 a004 Fibonacci(60)*Lucas(18)/(1/2+sqrt(5)/2)^62 9870002321981354 a004 Fibonacci(62)*Lucas(18)/(1/2+sqrt(5)/2)^64 9870002321981354 a004 Fibonacci(64)*Lucas(18)/(1/2+sqrt(5)/2)^66 9870002321981354 a004 Fibonacci(66)*Lucas(18)/(1/2+sqrt(5)/2)^68 9870002321981354 a004 Fibonacci(68)*Lucas(18)/(1/2+sqrt(5)/2)^70 9870002321981354 a004 Fibonacci(70)*Lucas(18)/(1/2+sqrt(5)/2)^72 9870002321981354 a004 Fibonacci(72)*Lucas(18)/(1/2+sqrt(5)/2)^74 9870002321981354 a004 Fibonacci(74)*Lucas(18)/(1/2+sqrt(5)/2)^76 9870002321981354 a004 Fibonacci(76)*Lucas(18)/(1/2+sqrt(5)/2)^78 9870002321981354 a004 Fibonacci(78)*Lucas(18)/(1/2+sqrt(5)/2)^80 9870002321981354 a004 Fibonacci(80)*Lucas(18)/(1/2+sqrt(5)/2)^82 9870002321981354 a004 Fibonacci(82)*Lucas(18)/(1/2+sqrt(5)/2)^84 9870002321981354 a004 Fibonacci(84)*Lucas(18)/(1/2+sqrt(5)/2)^86 9870002321981354 a004 Fibonacci(86)*Lucas(18)/(1/2+sqrt(5)/2)^88 9870002321981354 a004 Fibonacci(88)*Lucas(18)/(1/2+sqrt(5)/2)^90 9870002321981354 a004 Fibonacci(90)*Lucas(18)/(1/2+sqrt(5)/2)^92 9870002321981354 a004 Fibonacci(92)*Lucas(18)/(1/2+sqrt(5)/2)^94 9870002321981354 a004 Fibonacci(94)*Lucas(18)/(1/2+sqrt(5)/2)^96 9870002321981354 a004 Fibonacci(96)*Lucas(18)/(1/2+sqrt(5)/2)^98 9870002321981354 a004 Fibonacci(98)*Lucas(18)/(1/2+sqrt(5)/2)^100 9870002321981354 a004 Fibonacci(97)*Lucas(18)/(1/2+sqrt(5)/2)^99 9870002321981354 a004 Fibonacci(95)*Lucas(18)/(1/2+sqrt(5)/2)^97 9870002321981354 a004 Fibonacci(93)*Lucas(18)/(1/2+sqrt(5)/2)^95 9870002321981354 a004 Fibonacci(91)*Lucas(18)/(1/2+sqrt(5)/2)^93 9870002321981354 a004 Fibonacci(89)*Lucas(18)/(1/2+sqrt(5)/2)^91 9870002321981354 a004 Fibonacci(87)*Lucas(18)/(1/2+sqrt(5)/2)^89 9870002321981354 a004 Fibonacci(85)*Lucas(18)/(1/2+sqrt(5)/2)^87 9870002321981354 a004 Fibonacci(83)*Lucas(18)/(1/2+sqrt(5)/2)^85 9870002321981354 a004 Fibonacci(81)*Lucas(18)/(1/2+sqrt(5)/2)^83 9870002321981354 a004 Fibonacci(79)*Lucas(18)/(1/2+sqrt(5)/2)^81 9870002321981354 a004 Fibonacci(77)*Lucas(18)/(1/2+sqrt(5)/2)^79 9870002321981354 a004 Fibonacci(75)*Lucas(18)/(1/2+sqrt(5)/2)^77 9870002321981354 a004 Fibonacci(73)*Lucas(18)/(1/2+sqrt(5)/2)^75 9870002321981354 a004 Fibonacci(71)*Lucas(18)/(1/2+sqrt(5)/2)^73 9870002321981354 a004 Fibonacci(69)*Lucas(18)/(1/2+sqrt(5)/2)^71 9870002321981354 a004 Fibonacci(67)*Lucas(18)/(1/2+sqrt(5)/2)^69 9870002321981354 a004 Fibonacci(65)*Lucas(18)/(1/2+sqrt(5)/2)^67 9870002321981354 a004 Fibonacci(63)*Lucas(18)/(1/2+sqrt(5)/2)^65 9870002321981354 a004 Fibonacci(61)*Lucas(18)/(1/2+sqrt(5)/2)^63 9870002321981354 a004 Fibonacci(59)*Lucas(18)/(1/2+sqrt(5)/2)^61 9870002321981354 a004 Fibonacci(57)*Lucas(18)/(1/2+sqrt(5)/2)^59 9870002321981354 a004 Fibonacci(55)*Lucas(18)/(1/2+sqrt(5)/2)^57 9870002321981354 a004 Fibonacci(53)*Lucas(18)/(1/2+sqrt(5)/2)^55 9870002321981354 a004 Fibonacci(51)*Lucas(18)/(1/2+sqrt(5)/2)^53 9870002321981354 a004 Fibonacci(49)*Lucas(18)/(1/2+sqrt(5)/2)^51 9870002321981354 a004 Fibonacci(47)*Lucas(18)/(1/2+sqrt(5)/2)^49 9870002321981354 a004 Fibonacci(45)*Lucas(18)/(1/2+sqrt(5)/2)^47 9870002321981354 a004 Fibonacci(43)*Lucas(18)/(1/2+sqrt(5)/2)^45 9870002321981354 a004 Fibonacci(41)*Lucas(18)/(1/2+sqrt(5)/2)^43 9870002321981355 a004 Fibonacci(39)*Lucas(18)/(1/2+sqrt(5)/2)^41 9870002321981357 a004 Fibonacci(37)*Lucas(18)/(1/2+sqrt(5)/2)^39 9870002321981363 a001 1/1292*(1/2+1/2*5^(1/2))^34 9870002321981377 a004 Fibonacci(35)*Lucas(18)/(1/2+sqrt(5)/2)^37 9870002321981513 a004 Fibonacci(33)*Lucas(18)/(1/2+sqrt(5)/2)^35 9870002321982443 a004 Fibonacci(31)*Lucas(18)/(1/2+sqrt(5)/2)^33 9870002321988819 a004 Fibonacci(29)*Lucas(18)/(1/2+sqrt(5)/2)^31 9870002322032520 a004 Fibonacci(27)*Lucas(18)/(1/2+sqrt(5)/2)^29 9870002322083371 a001 5473/12238*5778^(8/9) 9870002322332054 a004 Fibonacci(25)*Lucas(18)/(1/2+sqrt(5)/2)^27 9870002324385085 a004 Fibonacci(23)*Lucas(18)/(1/2+sqrt(5)/2)^25 9870002332132092 r005 Re(z^2+c),c=-49/52+17/60*I,n=3 9870002338456769 a004 Fibonacci(21)*Lucas(18)/(1/2+sqrt(5)/2)^23 9870002338762819 a001 28657/9349*5778^(2/3) 9870002342499112 a001 6765/9349*5778^(5/6) 9870002346490447 a001 17711/9349*5778^(13/18) 9870002347449107 a001 28657/3571*3571^(10/17) 9870002363148098 a001 3524578/15127*2207^(3/16) 9870002363942013 a001 514229/5778*2207^(5/16) 9870002366056029 m001 TreeGrowth2nd^2/exp(Kolakoski)*GAMMA(5/6) 9870002375347925 a001 4181/15127*5778^(17/18) 9870002377518949 a007 Real Root Of 218*x^4+40*x^3+702*x^2-93*x-16 9870002385683317 a001 10946/9349*5778^(7/9) 9870002385767164 a003 cos(Pi*7/110)*cos(Pi*51/109) 9870002389656282 a001 46368/3571*3571^(9/17) 9870002391772303 a001 4126648/4181 9870002392559102 a001 3524578/9349*2207^(1/8) 9870002399988110 a001 9227465/39603*2207^(3/16) 9870002403659066 a001 1597/5778*9349^(17/19) 9870002405362995 a001 24157817/103682*2207^(3/16) 9870002406147181 a001 63245986/271443*2207^(3/16) 9870002406261592 a001 165580141/710647*2207^(3/16) 9870002406278284 a001 433494437/1860498*2207^(3/16) 9870002406280719 a001 1134903170/4870847*2207^(3/16) 9870002406281075 a001 2971215073/12752043*2207^(3/16) 9870002406281127 a001 7778742049/33385282*2207^(3/16) 9870002406281134 a001 20365011074/87403803*2207^(3/16) 9870002406281135 a001 53316291173/228826127*2207^(3/16) 9870002406281135 a001 139583862445/599074578*2207^(3/16) 9870002406281135 a001 365435296162/1568397607*2207^(3/16) 9870002406281135 a001 956722026041/4106118243*2207^(3/16) 9870002406281135 a001 2504730781961/10749957122*2207^(3/16) 9870002406281135 a001 6557470319842/28143753123*2207^(3/16) 9870002406281135 a001 10610209857723/45537549124*2207^(3/16) 9870002406281135 a001 4052739537881/17393796001*2207^(3/16) 9870002406281135 a001 1548008755920/6643838879*2207^(3/16) 9870002406281135 a001 591286729879/2537720636*2207^(3/16) 9870002406281135 a001 225851433717/969323029*2207^(3/16) 9870002406281135 a001 86267571272/370248451*2207^(3/16) 9870002406281136 a001 63246219/271444*2207^(3/16) 9870002406281139 a001 12586269025/54018521*2207^(3/16) 9870002406281159 a001 4807526976/20633239*2207^(3/16) 9870002406281294 a001 1836311903/7881196*2207^(3/16) 9870002406282225 a001 701408733/3010349*2207^(3/16) 9870002406288600 a001 267914296/1149851*2207^(3/16) 9870002406332302 a001 102334155/439204*2207^(3/16) 9870002406631834 a001 39088169/167761*2207^(3/16) 9870002408684857 a001 14930352/64079*2207^(3/16) 9870002412992643 r008 a(0)=1,K{-n^6,-30+79*n^3+95*n^2-67*n} 9870002413840979 r008 a(0)=1,K{-n^6,-48+92*n^3+47*n^2-14*n} 9870002415545873 a001 2584/3571*9349^(15/19) 9870002422756490 a001 5702887/24476*2207^(3/16) 9870002434905529 a004 Fibonacci(19)*Lucas(18)/(1/2+sqrt(5)/2)^21 9870002436454175 a001 75025/3571*3571^(8/17) 9870002438040554 a001 646/341*1364^(13/15) 9870002446666527 a001 2178309/3571*1364^(1/15) 9870002452783909 q001 4024/4077 9870002467477974 m005 (1/2*5^(1/2)+5/7)/(6/11*Pi+1/7) 9870002471582981 r002 19th iterates of z^2 + 9870002481498570 a001 121393/3571*3571^(7/17) 9870002489793892 a001 311187/2161*2207^(1/4) 9870002490561374 a001 105937/1926*2207^(3/8) 9870002491359246 a001 1597/5778*24476^(17/21) 9870002492928385 a001 2584/3571*24476^(5/7) 9870002502072927 a005 (1/sin(11/74*Pi))^75 9870002502919817 a001 1597/5778*64079^(17/23) 9870002503128889 a001 2584/3571*64079^(15/23) 9870002504486119 a001 2584/3571*167761^(3/5) 9870002504668113 a001 2584/3571*439204^(5/9) 9870002504696467 a001 2584/3571*7881196^(5/11) 9870002504696487 a001 1597/5778*45537549124^(1/3) 9870002504696487 a001 1597/5778*(1/2+1/2*5^(1/2))^17 9870002504696518 a001 1597/5778*12752043^(1/2) 9870002504696529 a001 2584/3571*20633239^(3/7) 9870002504696539 a001 2584/3571*141422324^(5/13) 9870002504696539 a001 2584/3571*2537720636^(1/3) 9870002504696539 a001 2584/3571*45537549124^(5/17) 9870002504696539 a001 2584/3571*312119004989^(3/11) 9870002504696539 a001 2584/3571*14662949395604^(5/21) 9870002504696539 a001 2584/3571*(1/2+1/2*5^(1/2))^15 9870002504696539 a001 2584/3571*192900153618^(5/18) 9870002504696539 a001 2584/3571*28143753123^(3/10) 9870002504696539 a001 2584/3571*10749957122^(5/16) 9870002504696539 a001 2584/3571*599074578^(5/14) 9870002504696539 a001 2584/3571*228826127^(3/8) 9870002504696543 a001 2584/3571*33385282^(5/12) 9870002504697965 a001 2584/3571*1860498^(1/2) 9870002505270379 a001 2584/3571*103682^(5/8) 9870002505346839 a001 1597/5778*103682^(17/24) 9870002508987254 a001 2584/3571*39603^(15/22) 9870002509559298 a001 1597/5778*39603^(17/22) 9870002511991027 a001 9349/377*4181^(28/39) 9870002514980892 a001 4181/9349*5778^(8/9) 9870002519204896 a001 2178309/9349*2207^(3/16) 9870002521514902 r005 Im(z^2+c),c=-107/94+4/11*I,n=6 9870002526634396 a001 5702887/39603*2207^(1/4) 9870002527212742 a001 196418/3571*3571^(6/17) 9870002532009353 a001 7465176/51841*2207^(1/4) 9870002532793549 a001 39088169/271443*2207^(1/4) 9870002532907961 a001 14619165/101521*2207^(1/4) 9870002532924654 a001 133957148/930249*2207^(1/4) 9870002532927089 a001 701408733/4870847*2207^(1/4) 9870002532927445 a001 1836311903/12752043*2207^(1/4) 9870002532927496 a001 14930208/103681*2207^(1/4) 9870002532927504 a001 12586269025/87403803*2207^(1/4) 9870002532927505 a001 32951280099/228826127*2207^(1/4) 9870002532927505 a001 43133785636/299537289*2207^(1/4) 9870002532927505 a001 32264490531/224056801*2207^(1/4) 9870002532927505 a001 591286729879/4106118243*2207^(1/4) 9870002532927505 a001 774004377960/5374978561*2207^(1/4) 9870002532927505 a001 4052739537881/28143753123*2207^(1/4) 9870002532927505 a001 1515744265389/10525900321*2207^(1/4) 9870002532927505 a001 3278735159921/22768774562*2207^(1/4) 9870002532927505 a001 2504730781961/17393796001*2207^(1/4) 9870002532927505 a001 956722026041/6643838879*2207^(1/4) 9870002532927505 a001 182717648081/1268860318*2207^(1/4) 9870002532927505 a001 139583862445/969323029*2207^(1/4) 9870002532927505 a001 53316291173/370248451*2207^(1/4) 9870002532927506 a001 10182505537/70711162*2207^(1/4) 9870002532927509 a001 7778742049/54018521*2207^(1/4) 9870002532927529 a001 2971215073/20633239*2207^(1/4) 9870002532927664 a001 567451585/3940598*2207^(1/4) 9870002532928594 a001 433494437/3010349*2207^(1/4) 9870002532934970 a001 165580141/1149851*2207^(1/4) 9870002532978672 a001 31622993/219602*2207^(1/4) 9870002533278208 a001 24157817/167761*2207^(1/4) 9870002535331259 a001 9227465/64079*2207^(1/4) 9870002537046437 a001 2584/3571*15127^(3/4) 9870002541359705 a001 1597/5778*15127^(17/20) 9870002549403080 a001 1762289/12238*2207^(1/4) 9870002558431963 a001 12752043*144^(7/17) 9870002563599002 r008 a(0)=1,K{-n^6,-37+83*n^3+80*n^2-49*n} 9870002567374848 r005 Re(z^2+c),c=7/32+30/37*I,n=3 9870002572671082 a001 317811/3571*3571^(5/17) 9870002582594972 r009 Im(z^3+c),c=-9/52+31/32*I,n=61 9870002606621603 r005 Im(z^2+c),c=-121/98+3/35*I,n=23 9870002612576558 a007 Real Root Of 76*x^4-780*x^3-733*x^2+468*x+930 9870002616441768 a001 1346269/15127*2207^(5/16) 9870002617278455 a001 98209/2889*2207^(7/16) 9870002618227142 a001 514229/3571*3571^(4/17) 9870002631164316 a008 Real Root of (-8+4*x-2*x^2+8*x^4+7*x^8) 9870002645852773 a001 1346269/9349*2207^(1/4) 9870002653280987 a001 3524578/39603*2207^(5/16) 9870002655802422 a007 Real Root Of 225*x^4+525*x^3+478*x^2+47*x-128 9870002658655757 a001 9227465/103682*2207^(5/16) 9870002659439925 a001 24157817/271443*2207^(5/16) 9870002659554334 a001 63245986/710647*2207^(5/16) 9870002659571026 a001 165580141/1860498*2207^(5/16) 9870002659573461 a001 433494437/4870847*2207^(5/16) 9870002659573816 a001 1134903170/12752043*2207^(5/16) 9870002659573868 a001 2971215073/33385282*2207^(5/16) 9870002659573876 a001 7778742049/87403803*2207^(5/16) 9870002659573877 a001 20365011074/228826127*2207^(5/16) 9870002659573877 a001 53316291173/599074578*2207^(5/16) 9870002659573877 a001 139583862445/1568397607*2207^(5/16) 9870002659573877 a001 365435296162/4106118243*2207^(5/16) 9870002659573877 a001 956722026041/10749957122*2207^(5/16) 9870002659573877 a001 2504730781961/28143753123*2207^(5/16) 9870002659573877 a001 6557470319842/73681302247*2207^(5/16) 9870002659573877 a001 10610209857723/119218851371*2207^(5/16) 9870002659573877 a001 4052739537881/45537549124*2207^(5/16) 9870002659573877 a001 1548008755920/17393796001*2207^(5/16) 9870002659573877 a001 591286729879/6643838879*2207^(5/16) 9870002659573877 a001 225851433717/2537720636*2207^(5/16) 9870002659573877 a001 86267571272/969323029*2207^(5/16) 9870002659573877 a001 32951280099/370248451*2207^(5/16) 9870002659573877 a001 12586269025/141422324*2207^(5/16) 9870002659573880 a001 4807526976/54018521*2207^(5/16) 9870002659573900 a001 1836311903/20633239*2207^(5/16) 9870002659574036 a001 3524667/39604*2207^(5/16) 9870002659574966 a001 267914296/3010349*2207^(5/16) 9870002659581342 a001 102334155/1149851*2207^(5/16) 9870002659625042 a001 39088169/439204*2207^(5/16) 9870002659924568 a001 14930352/167761*2207^(5/16) 9870002661977547 a001 5702887/64079*2207^(5/16) 9870002663745876 a001 832040/3571*3571^(3/17) 9870002673689447 a001 1597/2207*2207^(15/16) 9870002676048877 a001 2178309/24476*2207^(5/16) 9870002679938770 a001 6765/3571*9349^(13/19) 9870002682684273 a007 Real Root Of -556*x^4-218*x^3-412*x^2-431*x+294 9870002687411640 a004 Fibonacci(17)*Lucas(19)/(1/2+sqrt(5)/2)^20 9870002689123898 l006 ln(1878/5039) 9870002709278867 a001 1346269/3571*3571^(2/17) 9870002722756130 a001 1762289/2889*843^(1/14) 9870002728665675 a001 17711/3571*9349^(11/19) 9870002740727206 a001 10803705/10946 9870002742296293 a001 1597/15127*24476^(19/21) 9870002743084200 a001 832040/15127*2207^(3/8) 9870002743305832 a001 28657/3571*9349^(10/19) 9870002743739706 a001 121393/5778*2207^(1/2) 9870002745490762 a001 10946/3571*9349^(12/19) 9870002745927336 a001 46368/3571*9349^(9/19) 9870002747003615 a001 6765/3571*24476^(13/21) 9870002748477166 m001 BesselJ(0,1)/(Cahen^gamma) 9870002748768059 r009 Re(z^3+c),c=-57/94+14/55*I,n=36 9870002751062649 a001 2584/3571*5778^(5/6) 9870002753139557 a001 75025/3571*9349^(8/19) 9870002754806413 a001 2178309/3571*3571^(1/17) 9870002755216931 a001 1597/15127*64079^(19/23) 9870002755844052 a001 6765/3571*64079^(13/23) 9870002757202622 a001 1597/15127*817138163596^(1/3) 9870002757202622 a001 1597/15127*(1/2+1/2*5^(1/2))^19 9870002757202622 a001 1597/15127*87403803^(1/2) 9870002757202682 a001 6765/3571*141422324^(1/3) 9870002757202682 a001 6765/3571*(1/2+1/2*5^(1/2))^13 9870002757202682 a001 6765/3571*73681302247^(1/4) 9870002757269660 a001 6765/3571*271443^(1/2) 9870002757700010 a001 6765/3571*103682^(13/24) 9870002757929485 a001 1597/15127*103682^(19/24) 9870002758598280 a001 121393/3571*9349^(7/19) 9870002760921302 a001 6765/3571*39603^(13/22) 9870002762637528 a001 1597/15127*39603^(19/22) 9870002764726780 a001 196418/3571*9349^(6/19) 9870002770599447 a001 317811/3571*9349^(5/19) 9870002772270588 r002 23th iterates of z^2 + 9870002772495205 a001 832040/9349*2207^(5/16) 9870002776569834 a001 514229/3571*9349^(4/19) 9870002778339731 a007 Real Root Of -839*x^4-352*x^3-554*x^2-888*x+121 9870002779926785 a001 726103/13201*2207^(3/8) 9870002782502896 a001 832040/3571*9349^(3/19) 9870002783860404 a004 Fibonacci(17)*Lucas(21)/(1/2+sqrt(5)/2)^22 9870002783911413 a001 1597/5778*5778^(17/18) 9870002785239261 a001 6765/3571*15127^(13/20) 9870002785302046 a001 5702887/103682*2207^(3/8) 9870002785412852 a001 17711/3571*24476^(11/21) 9870002786086286 a001 4976784/90481*2207^(3/8) 9870002786200705 a001 39088169/710647*2207^(3/8) 9870002786217398 a001 831985/15126*2207^(3/8) 9870002786219834 a001 267914296/4870847*2207^(3/8) 9870002786220189 a001 233802911/4250681*2207^(3/8) 9870002786220241 a001 1836311903/33385282*2207^(3/8) 9870002786220249 a001 1602508992/29134601*2207^(3/8) 9870002786220250 a001 12586269025/228826127*2207^(3/8) 9870002786220250 a001 10983760033/199691526*2207^(3/8) 9870002786220250 a001 86267571272/1568397607*2207^(3/8) 9870002786220250 a001 75283811239/1368706081*2207^(3/8) 9870002786220250 a001 591286729879/10749957122*2207^(3/8) 9870002786220250 a001 12585437040/228811001*2207^(3/8) 9870002786220250 a001 4052739537881/73681302247*2207^(3/8) 9870002786220250 a001 3536736619241/64300051206*2207^(3/8) 9870002786220250 a001 6557470319842/119218851371*2207^(3/8) 9870002786220250 a001 2504730781961/45537549124*2207^(3/8) 9870002786220250 a001 956722026041/17393796001*2207^(3/8) 9870002786220250 a001 365435296162/6643838879*2207^(3/8) 9870002786220250 a001 139583862445/2537720636*2207^(3/8) 9870002786220250 a001 53316291173/969323029*2207^(3/8) 9870002786220250 a001 20365011074/370248451*2207^(3/8) 9870002786220251 a001 7778742049/141422324*2207^(3/8) 9870002786220253 a001 2971215073/54018521*2207^(3/8) 9870002786220273 a001 1134903170/20633239*2207^(3/8) 9870002786220409 a001 433494437/7881196*2207^(3/8) 9870002786221339 a001 165580141/3010349*2207^(3/8) 9870002786227716 a001 63245986/1149851*2207^(3/8) 9870002786271420 a001 24157817/439204*2207^(3/8) 9870002786570973 a001 9227465/167761*2207^(3/8) 9870002787551922 m002 Pi^2+(Coth[Pi]*Log[Pi])/(3*Pi^6) 9870002788450214 a001 1346269/3571*9349^(2/19) 9870002788624140 a001 3524578/64079*2207^(3/8) 9870002791639041 a001 28284467/28657 9870002791848061 a001 1597/39603*64079^(21/23) 9870002792356845 a001 46368/3571*24476^(3/7) 9870002792893222 a001 17711/3571*64079^(11/23) 9870002794002975 a001 1597/39603*439204^(7/9) 9870002794042670 a001 1597/39603*7881196^(7/11) 9870002794042757 a001 1597/39603*20633239^(3/5) 9870002794042771 a001 1597/39603*141422324^(7/13) 9870002794042771 a001 1597/39603*2537720636^(7/15) 9870002794042771 a001 1597/39603*17393796001^(3/7) 9870002794042771 a001 1597/39603*45537549124^(7/17) 9870002794042771 a001 1597/39603*14662949395604^(1/3) 9870002794042771 a001 1597/39603*(1/2+1/2*5^(1/2))^21 9870002794042771 a001 1597/39603*192900153618^(7/18) 9870002794042771 a001 1597/39603*10749957122^(7/16) 9870002794042771 a001 1597/39603*599074578^(1/2) 9870002794042777 a001 1597/39603*33385282^(7/12) 9870002794042779 a001 17711/3571*7881196^(1/3) 9870002794042832 a001 17711/3571*312119004989^(1/5) 9870002794042832 a001 17711/3571*(1/2+1/2*5^(1/2))^11 9870002794042832 a001 17711/3571*1568397607^(1/4) 9870002794044767 a001 1597/39603*1860498^(7/10) 9870002794057429 a001 1597/39603*710647^(3/4) 9870002794392087 a001 2178309/3571*9349^(1/19) 9870002794410232 a001 75025/3571*24476^(8/21) 9870002794463648 a001 17711/3571*103682^(11/24) 9870002794710120 a001 121393/3571*24476^(1/3) 9870002794846147 a001 1597/39603*103682^(7/8) 9870002794894176 a001 28657/3571*24476^(10/21) 9870002795679786 a001 196418/3571*24476^(2/7) 9870002795878646 m001 (GAMMA(7/12)-GolombDickman)/(ln(2)-ln(5)) 9870002796393619 a001 317811/3571*24476^(5/21) 9870002797189356 a001 17711/3571*39603^(1/2) 9870002797205172 a001 514229/3571*24476^(4/21) 9870002797932089 a004 Fibonacci(17)*Lucas(23)/(1/2+sqrt(5)/2)^24 9870002797979399 a001 832040/3571*24476^(1/7) 9870002798179160 a001 1597/15127*15127^(19/20) 9870002798477147 a001 46368/3571*64079^(9/23) 9870002798767883 a001 1346269/3571*24476^(2/21) 9870002799066977 a001 74049696/75025 9870002799400682 a001 46368/3571*439204^(1/3) 9870002799417677 a001 1597/103682*(1/2+1/2*5^(1/2))^23 9870002799417677 a001 1597/103682*4106118243^(1/2) 9870002799417694 a001 46368/3571*7881196^(3/11) 9870002799417737 a001 46368/3571*141422324^(3/13) 9870002799417737 a001 46368/3571*2537720636^(1/5) 9870002799417737 a001 46368/3571*45537549124^(3/17) 9870002799417737 a001 46368/3571*817138163596^(3/19) 9870002799417737 a001 46368/3571*14662949395604^(1/7) 9870002799417737 a001 46368/3571*(1/2+1/2*5^(1/2))^9 9870002799417737 a001 46368/3571*192900153618^(1/6) 9870002799417737 a001 46368/3571*10749957122^(3/16) 9870002799417737 a001 46368/3571*599074578^(3/14) 9870002799417740 a001 46368/3571*33385282^(1/4) 9870002799418593 a001 46368/3571*1860498^(3/10) 9870002799470355 a001 121393/3571*64079^(7/23) 9870002799550921 a001 2178309/3571*24476^(1/21) 9870002799759987 a001 196418/3571*64079^(6/23) 9870002799762041 a001 46368/3571*103682^(3/8) 9870002799793787 a001 317811/3571*64079^(5/23) 9870002799850500 a001 75025/3571*64079^(8/23) 9870002799925306 a001 514229/3571*64079^(4/23) 9870002799985121 a004 Fibonacci(17)*Lucas(25)/(1/2+sqrt(5)/2)^26 9870002800019499 a001 832040/3571*64079^(3/23) 9870002800049773 a001 1597/39603*39603^(21/22) 9870002800127950 a001 1346269/3571*64079^(2/23) 9870002800150699 a001 193864621/196418 9870002800201848 a001 1597/271443*20633239^(5/7) 9870002800201865 a001 1597/271443*2537720636^(5/9) 9870002800201865 a001 1597/271443*312119004989^(5/11) 9870002800201865 a001 1597/271443*(1/2+1/2*5^(1/2))^25 9870002800201865 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^25/Lucas(26) 9870002800201865 a001 1597/271443*3461452808002^(5/12) 9870002800201865 a001 1597/271443*28143753123^(1/2) 9870002800201865 a001 1597/271443*228826127^(5/8) 9870002800201921 a001 121393/3571*20633239^(1/5) 9870002800201926 a001 121393/3571*17393796001^(1/7) 9870002800201926 a001 121393/3571*14662949395604^(1/9) 9870002800201926 a001 121393/3571*(1/2+1/2*5^(1/2))^7 9870002800201926 a001 121393/3571*599074578^(1/6) 9870002800204241 a001 1597/271443*1860498^(5/6) 9870002800206812 a001 121393/3571*710647^(1/4) 9870002800230955 a001 2178309/3571*64079^(1/23) 9870002800246197 a001 317811/3571*167761^(1/5) 9870002800284654 a004 Fibonacci(17)*Lucas(27)/(1/2+sqrt(5)/2)^28 9870002800297564 a001 1597/103682*103682^(23/24) 9870002800308811 a001 507544167/514229 9870002800316146 a001 1597/710647*7881196^(9/11) 9870002800316276 a001 1597/710647*141422324^(9/13) 9870002800316276 a001 1597/710647*2537720636^(3/5) 9870002800316276 a001 1597/710647*45537549124^(9/17) 9870002800316276 a001 1597/710647*817138163596^(9/19) 9870002800316276 a001 1597/710647*14662949395604^(3/7) 9870002800316276 a001 1597/710647*(1/2+1/2*5^(1/2))^27 9870002800316276 a001 1597/710647*192900153618^(1/2) 9870002800316276 a001 1597/710647*10749957122^(9/16) 9870002800316276 a001 1597/710647*599074578^(9/14) 9870002800316283 a001 1597/710647*33385282^(3/4) 9870002800316334 a001 317811/3571*20633239^(1/7) 9870002800316337 a001 317811/3571*2537720636^(1/9) 9870002800316337 a001 317811/3571*312119004989^(1/11) 9870002800316337 a001 317811/3571*(1/2+1/2*5^(1/2))^5 9870002800316337 a001 317811/3571*28143753123^(1/10) 9870002800316337 a001 317811/3571*228826127^(1/8) 9870002800316812 a001 317811/3571*1860498^(1/6) 9870002800318843 a001 1597/710647*1860498^(9/10) 9870002800327344 a001 832040/3571*439204^(1/9) 9870002800328355 a004 Fibonacci(17)*Lucas(29)/(1/2+sqrt(5)/2)^30 9870002800331880 a001 1328767880/1346269 9870002800332969 a001 1597/1860498*(1/2+1/2*5^(1/2))^29 9870002800332969 a001 1597/1860498*1322157322203^(1/2) 9870002800333015 a001 832040/3571*7881196^(1/11) 9870002800333029 a001 832040/3571*141422324^(1/13) 9870002800333030 a001 832040/3571*2537720636^(1/15) 9870002800333030 a001 832040/3571*45537549124^(1/17) 9870002800333030 a001 832040/3571*14662949395604^(1/21) 9870002800333030 a001 832040/3571*(1/2+1/2*5^(1/2))^3 9870002800333030 a001 832040/3571*192900153618^(1/18) 9870002800333030 a001 832040/3571*10749957122^(1/16) 9870002800333030 a001 832040/3571*599074578^(1/14) 9870002800333030 a001 832040/3571*33385282^(1/12) 9870002800333315 a001 832040/3571*1860498^(1/10) 9870002800334731 a004 Fibonacci(17)*Lucas(31)/(1/2+sqrt(5)/2)^32 9870002800335245 a001 3478759473/3524578 9870002800335404 a001 1597/4870847*(1/2+1/2*5^(1/2))^31 9870002800335404 a001 1597/4870847*9062201101803^(1/2) 9870002800335465 a001 2178309/7142+2178309/7142*5^(1/2) 9870002800335661 a004 Fibonacci(17)*Lucas(33)/(1/2+sqrt(5)/2)^34 9870002800335736 a001 9107510539/9227465 9870002800335759 a001 1597/12752043*141422324^(11/13) 9870002800335760 a001 1597/12752043*2537720636^(11/15) 9870002800335760 a001 1597/12752043*45537549124^(11/17) 9870002800335760 a001 1597/12752043*312119004989^(3/5) 9870002800335760 a001 1597/12752043*817138163596^(11/19) 9870002800335760 a001 1597/12752043*14662949395604^(11/21) 9870002800335760 a001 1597/12752043*(1/2+1/2*5^(1/2))^33 9870002800335760 a001 1597/12752043*192900153618^(11/18) 9870002800335760 a001 1597/12752043*10749957122^(11/16) 9870002800335760 a001 1597/12752043*1568397607^(3/4) 9870002800335760 a001 1597/12752043*599074578^(11/14) 9870002800335768 a001 1597/12752043*33385282^(11/12) 9870002800335797 a004 Fibonacci(17)*Lucas(35)/(1/2+sqrt(5)/2)^36 9870002800335808 a001 23843772144/24157817 9870002800335811 a001 1597/33385282*2537720636^(7/9) 9870002800335811 a001 1597/33385282*17393796001^(5/7) 9870002800335811 a001 1597/33385282*312119004989^(7/11) 9870002800335811 a001 1597/33385282*14662949395604^(5/9) 9870002800335811 a001 1597/33385282*(1/2+1/2*5^(1/2))^35 9870002800335811 a001 1597/33385282*505019158607^(5/8) 9870002800335811 a001 1597/33385282*28143753123^(7/10) 9870002800335811 a001 1597/33385282*599074578^(5/6) 9870002800335812 a001 1597/33385282*228826127^(7/8) 9870002800335817 a004 Fibonacci(17)*Lucas(37)/(1/2+sqrt(5)/2)^38 9870002800335818 a001 62423805893/63245986 9870002800335819 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^37/Lucas(38) 9870002800335820 a004 Fibonacci(17)*Lucas(39)/(1/2+sqrt(5)/2)^40 9870002800335820 a001 163427645535/165580141 9870002800335820 a001 1597/228826127*2537720636^(13/15) 9870002800335820 a001 1597/228826127*45537549124^(13/17) 9870002800335820 a001 1597/228826127*14662949395604^(13/21) 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^39/Lucas(40) 9870002800335820 a001 1597/228826127*192900153618^(13/18) 9870002800335820 a001 1597/228826127*73681302247^(3/4) 9870002800335820 a001 1597/228826127*10749957122^(13/16) 9870002800335820 a001 1597/228826127*599074578^(13/14) 9870002800335820 a004 Fibonacci(17)*Lucas(41)/(1/2+sqrt(5)/2)^42 9870002800335820 a001 427859130712/433494437 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^41/Lucas(42) 9870002800335820 a004 Fibonacci(17)*Lucas(43)/(1/2+sqrt(5)/2)^44 9870002800335820 a001 1120149746601/1134903170 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^43/Lucas(44) 9870002800335820 a004 Fibonacci(17)*Lucas(45)/(1/2+sqrt(5)/2)^46 9870002800335820 a001 2932590109091/2971215073 9870002800335820 a001 1597/4106118243*45537549124^(15/17) 9870002800335820 a001 1597/4106118243*312119004989^(9/11) 9870002800335820 a001 1597/4106118243*14662949395604^(5/7) 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^45/Lucas(46) 9870002800335820 a001 1597/4106118243*192900153618^(5/6) 9870002800335820 a001 1597/4106118243*28143753123^(9/10) 9870002800335820 a001 1597/4106118243*10749957122^(15/16) 9870002800335820 a004 Fibonacci(17)*Lucas(47)/(1/2+sqrt(5)/2)^48 9870002800335820 a001 7677620580672/7778742049 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^47/Lucas(48) 9870002800335820 a004 Fibonacci(17)*Lucas(49)/(1/2+sqrt(5)/2)^50 9870002800335820 a001 12586269025/12752042 9870002800335820 a001 1597/28143753123*14662949395604^(7/9) 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^49/Lucas(50) 9870002800335820 a001 1597/28143753123*505019158607^(7/8) 9870002800335820 a004 Fibonacci(17)*Lucas(51)/(1/2+sqrt(5)/2)^52 9870002800335820 a001 52623194318103/53316291173 9870002800335820 a001 1597/73681302247*817138163596^(17/19) 9870002800335820 a001 1597/73681302247*14662949395604^(17/21) 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^51/Lucas(52) 9870002800335820 a001 1597/73681302247*192900153618^(17/18) 9870002800335820 a004 Fibonacci(17)*Lucas(53)/(1/2+sqrt(5)/2)^54 9870002800335820 a001 137769311321384/139583862445 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^53/Lucas(54) 9870002800335820 a004 Fibonacci(17)*Lucas(55)/(1/2+sqrt(5)/2)^56 9870002800335820 a001 360684739646049/365435296162 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^55/Lucas(56) 9870002800335820 a001 1597/505019158607*3461452808002^(11/12) 9870002800335820 a004 Fibonacci(17)*Lucas(57)/(1/2+sqrt(5)/2)^58 9870002800335820 a001 944284907616763/956722026041 9870002800335820 a001 1597/1322157322203*14662949395604^(19/21) 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^57/Lucas(58) 9870002800335820 a004 Fibonacci(17)*Lucas(59)/(1/2+sqrt(5)/2)^60 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^59/Lucas(60) 9870002800335820 a004 Fibonacci(17)*Lucas(61)/(1/2+sqrt(5)/2)^62 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^61/Lucas(62) 9870002800335820 a004 Fibonacci(17)*Lucas(63)/(1/2+sqrt(5)/2)^64 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^63/Lucas(64) 9870002800335820 a004 Fibonacci(17)*Lucas(65)/(1/2+sqrt(5)/2)^66 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^65/Lucas(66) 9870002800335820 a004 Fibonacci(17)*Lucas(67)/(1/2+sqrt(5)/2)^68 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^67/Lucas(68) 9870002800335820 a004 Fibonacci(17)*Lucas(69)/(1/2+sqrt(5)/2)^70 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^69/Lucas(70) 9870002800335820 a004 Fibonacci(17)*Lucas(71)/(1/2+sqrt(5)/2)^72 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^71/Lucas(72) 9870002800335820 a004 Fibonacci(17)*Lucas(73)/(1/2+sqrt(5)/2)^74 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^73/Lucas(74) 9870002800335820 a004 Fibonacci(17)*Lucas(75)/(1/2+sqrt(5)/2)^76 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^75/Lucas(76) 9870002800335820 a004 Fibonacci(17)*Lucas(77)/(1/2+sqrt(5)/2)^78 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^77/Lucas(78) 9870002800335820 a004 Fibonacci(17)*Lucas(79)/(1/2+sqrt(5)/2)^80 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^79/Lucas(80) 9870002800335820 a004 Fibonacci(17)*Lucas(81)/(1/2+sqrt(5)/2)^82 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^81/Lucas(82) 9870002800335820 a004 Fibonacci(17)*Lucas(83)/(1/2+sqrt(5)/2)^84 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^83/Lucas(84) 9870002800335820 a004 Fibonacci(17)*Lucas(85)/(1/2+sqrt(5)/2)^86 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^85/Lucas(86) 9870002800335820 a004 Fibonacci(17)*Lucas(87)/(1/2+sqrt(5)/2)^88 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^87/Lucas(88) 9870002800335820 a004 Fibonacci(17)*Lucas(89)/(1/2+sqrt(5)/2)^90 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^89/Lucas(90) 9870002800335820 a004 Fibonacci(17)*Lucas(91)/(1/2+sqrt(5)/2)^92 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^91/Lucas(92) 9870002800335820 a004 Fibonacci(17)*Lucas(93)/(1/2+sqrt(5)/2)^94 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^93/Lucas(94) 9870002800335820 a004 Fibonacci(17)*Lucas(95)/(1/2+sqrt(5)/2)^96 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^95/Lucas(96) 9870002800335820 a004 Fibonacci(17)*Lucas(97)/(1/2+sqrt(5)/2)^98 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^97/Lucas(98) 9870002800335820 a004 Fibonacci(17)*Lucas(99)/(1/2+sqrt(5)/2)^100 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^98/Lucas(99) 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^99/Lucas(100) 9870002800335820 a004 Fibonacci(17)*Lucas(1)/(1/2+sqrt(5)/2) 9870002800335820 a004 Fibonacci(17)*Lucas(98)/(1/2+sqrt(5)/2)^99 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^96/Lucas(97) 9870002800335820 a004 Fibonacci(17)*Lucas(96)/(1/2+sqrt(5)/2)^97 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^94/Lucas(95) 9870002800335820 a004 Fibonacci(17)*Lucas(94)/(1/2+sqrt(5)/2)^95 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^92/Lucas(93) 9870002800335820 a004 Fibonacci(17)*Lucas(92)/(1/2+sqrt(5)/2)^93 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^90/Lucas(91) 9870002800335820 a004 Fibonacci(17)*Lucas(90)/(1/2+sqrt(5)/2)^91 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^88/Lucas(89) 9870002800335820 a004 Fibonacci(17)*Lucas(88)/(1/2+sqrt(5)/2)^89 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^86/Lucas(87) 9870002800335820 a004 Fibonacci(17)*Lucas(86)/(1/2+sqrt(5)/2)^87 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^84/Lucas(85) 9870002800335820 a004 Fibonacci(17)*Lucas(84)/(1/2+sqrt(5)/2)^85 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^82/Lucas(83) 9870002800335820 a004 Fibonacci(17)*Lucas(82)/(1/2+sqrt(5)/2)^83 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^80/Lucas(81) 9870002800335820 a004 Fibonacci(17)*Lucas(80)/(1/2+sqrt(5)/2)^81 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^78/Lucas(79) 9870002800335820 a004 Fibonacci(17)*Lucas(78)/(1/2+sqrt(5)/2)^79 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^76/Lucas(77) 9870002800335820 a004 Fibonacci(17)*Lucas(76)/(1/2+sqrt(5)/2)^77 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^74/Lucas(75) 9870002800335820 a004 Fibonacci(17)*Lucas(74)/(1/2+sqrt(5)/2)^75 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^72/Lucas(73) 9870002800335820 a004 Fibonacci(17)*Lucas(72)/(1/2+sqrt(5)/2)^73 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^70/Lucas(71) 9870002800335820 a004 Fibonacci(17)*Lucas(70)/(1/2+sqrt(5)/2)^71 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^68/Lucas(69) 9870002800335820 a004 Fibonacci(17)*Lucas(68)/(1/2+sqrt(5)/2)^69 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^66/Lucas(67) 9870002800335820 a004 Fibonacci(17)*Lucas(66)/(1/2+sqrt(5)/2)^67 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^64/Lucas(65) 9870002800335820 a004 Fibonacci(17)*Lucas(64)/(1/2+sqrt(5)/2)^65 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^62/Lucas(63) 9870002800335820 a001 10472280100787674/10610209857723 9870002800335820 a004 Fibonacci(17)*Lucas(62)/(1/2+sqrt(5)/2)^63 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^60/Lucas(61) 9870002800335820 a004 Fibonacci(17)*Lucas(60)/(1/2+sqrt(5)/2)^61 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^58/Lucas(59) 9870002800335820 a004 Fibonacci(17)*Lucas(58)/(1/2+sqrt(5)/2)^59 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^56/Lucas(57) 9870002800335820 a001 583600167970714/591286729879 9870002800335820 a004 Fibonacci(17)*Lucas(56)/(1/2+sqrt(5)/2)^57 9870002800335820 a001 1597/312119004989*14662949395604^(6/7) 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^54/Lucas(55) 9870002800335820 a001 222915428324665/225851433717 9870002800335820 a004 Fibonacci(17)*Lucas(54)/(1/2+sqrt(5)/2)^55 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^52/Lucas(53) 9870002800335820 a001 1597/119218851371*23725150497407^(13/16) 9870002800335820 a001 1597/119218851371*505019158607^(13/14) 9870002800335820 a001 85146117003281/86267571272 9870002800335820 a004 Fibonacci(17)*Lucas(52)/(1/2+sqrt(5)/2)^53 9870002800335820 a001 1597/45537549124*312119004989^(10/11) 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^50/Lucas(51) 9870002800335820 a001 1597/45537549124*3461452808002^(5/6) 9870002800335820 a001 32522922685178/32951280099 9870002800335820 a004 Fibonacci(17)*Lucas(50)/(1/2+sqrt(5)/2)^51 9870002800335820 a001 1597/17393796001*45537549124^(16/17) 9870002800335820 a001 1597/17393796001*14662949395604^(16/21) 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^48/Lucas(49) 9870002800335820 a001 1597/17393796001*192900153618^(8/9) 9870002800335820 a001 1597/17393796001*73681302247^(12/13) 9870002800335820 a001 12422651052253/12586269025 9870002800335820 a004 Fibonacci(17)*Lucas(48)/(1/2+sqrt(5)/2)^49 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^46/Lucas(47) 9870002800335820 a001 1597/6643838879*10749957122^(23/24) 9870002800335820 a001 4745030471581/4807526976 9870002800335820 a004 Fibonacci(17)*Lucas(46)/(1/2+sqrt(5)/2)^47 9870002800335820 a001 1597/2537720636*312119004989^(4/5) 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^44/Lucas(45) 9870002800335820 a001 1597/2537720636*23725150497407^(11/16) 9870002800335820 a001 1597/2537720636*73681302247^(11/13) 9870002800335820 a001 1597/2537720636*10749957122^(11/12) 9870002800335820 a001 1597/2537720636*4106118243^(22/23) 9870002800335820 a001 1812440362490/1836311903 9870002800335820 a004 Fibonacci(17)*Lucas(44)/(1/2+sqrt(5)/2)^45 9870002800335820 a001 1597/969323029*2537720636^(14/15) 9870002800335820 a001 1597/969323029*17393796001^(6/7) 9870002800335820 a001 1597/969323029*45537549124^(14/17) 9870002800335820 a001 1597/969323029*817138163596^(14/19) 9870002800335820 a001 1597/969323029*14662949395604^(2/3) 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^42/Lucas(43) 9870002800335820 a001 1597/969323029*505019158607^(3/4) 9870002800335820 a001 1597/969323029*192900153618^(7/9) 9870002800335820 a001 1597/969323029*10749957122^(7/8) 9870002800335820 a001 1597/969323029*4106118243^(21/23) 9870002800335820 a001 1597/969323029*1568397607^(21/22) 9870002800335820 a001 692290615889/701408733 9870002800335820 a004 Fibonacci(17)*Lucas(42)/(1/2+sqrt(5)/2)^43 9870002800335820 a001 1597/370248451*2537720636^(8/9) 9870002800335820 a001 1597/370248451*312119004989^(8/11) 9870002800335820 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^40/Lucas(41) 9870002800335820 a001 1597/370248451*23725150497407^(5/8) 9870002800335820 a001 1597/370248451*73681302247^(10/13) 9870002800335820 a001 1597/370248451*28143753123^(4/5) 9870002800335820 a001 1597/370248451*10749957122^(5/6) 9870002800335820 a001 1597/370248451*4106118243^(20/23) 9870002800335820 a001 1597/370248451*1568397607^(10/11) 9870002800335820 a001 1597/370248451*599074578^(20/21) 9870002800335820 a001 264431485177/267914296 9870002800335820 a004 Fibonacci(17)*Lucas(40)/(1/2+sqrt(5)/2)^41 9870002800335821 a001 1597/141422324*817138163596^(2/3) 9870002800335821 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^38/Lucas(39) 9870002800335821 a001 1597/141422324*10749957122^(19/24) 9870002800335821 a001 1597/141422324*4106118243^(19/23) 9870002800335821 a001 1597/141422324*1568397607^(19/22) 9870002800335821 a001 1597/141422324*599074578^(19/21) 9870002800335821 a001 1597/141422324*228826127^(19/20) 9870002800335821 a001 101003839642/102334155 9870002800335822 a004 Fibonacci(17)*Lucas(38)/(1/2+sqrt(5)/2)^39 9870002800335823 a001 1597/54018521*141422324^(12/13) 9870002800335824 a001 1597/54018521*2537720636^(4/5) 9870002800335824 a001 1597/54018521*45537549124^(12/17) 9870002800335824 a001 1597/54018521*14662949395604^(4/7) 9870002800335824 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^36/Lucas(37) 9870002800335824 a001 1597/54018521*505019158607^(9/14) 9870002800335824 a001 1597/54018521*192900153618^(2/3) 9870002800335824 a001 1597/54018521*73681302247^(9/13) 9870002800335824 a001 1597/54018521*10749957122^(3/4) 9870002800335824 a001 1597/54018521*4106118243^(18/23) 9870002800335824 a001 1597/54018521*1568397607^(9/11) 9870002800335824 a001 1597/54018521*599074578^(6/7) 9870002800335824 a001 1597/54018521*228826127^(9/10) 9870002800335825 a001 1597/54018521*87403803^(18/19) 9870002800335825 a001 38580033749/39088169 9870002800335829 a004 Fibonacci(17)*Lucas(36)/(1/2+sqrt(5)/2)^37 9870002800335843 a001 1597/20633239*45537549124^(2/3) 9870002800335843 a001 1597/20633239*(1/2+1/2*5^(1/2))^34 9870002800335843 a001 1597/20633239*10749957122^(17/24) 9870002800335843 a001 1597/20633239*4106118243^(17/23) 9870002800335843 a001 1597/20633239*1568397607^(17/22) 9870002800335843 a001 1597/20633239*599074578^(17/21) 9870002800335844 a001 1597/20633239*228826127^(17/20) 9870002800335845 a001 1597/20633239*87403803^(17/19) 9870002800335852 a001 1597/20633239*33385282^(17/18) 9870002800335852 a001 14736261605/14930352 9870002800335872 a004 Fibonacci(36)/Lucas(17)/(1/2+sqrt(5)/2)^3 9870002800335880 a004 Fibonacci(38)/Lucas(17)/(1/2+sqrt(5)/2)^5 9870002800335881 a004 Fibonacci(40)/Lucas(17)/(1/2+sqrt(5)/2)^7 9870002800335881 a004 Fibonacci(42)/Lucas(17)/(1/2+sqrt(5)/2)^9 9870002800335881 a004 Fibonacci(44)/Lucas(17)/(1/2+sqrt(5)/2)^11 9870002800335881 a004 Fibonacci(46)/Lucas(17)/(1/2+sqrt(5)/2)^13 9870002800335881 a004 Fibonacci(48)/Lucas(17)/(1/2+sqrt(5)/2)^15 9870002800335881 a004 Fibonacci(50)/Lucas(17)/(1/2+sqrt(5)/2)^17 9870002800335881 a004 Fibonacci(52)/Lucas(17)/(1/2+sqrt(5)/2)^19 9870002800335881 a004 Fibonacci(54)/Lucas(17)/(1/2+sqrt(5)/2)^21 9870002800335881 a004 Fibonacci(56)/Lucas(17)/(1/2+sqrt(5)/2)^23 9870002800335881 a004 Fibonacci(58)/Lucas(17)/(1/2+sqrt(5)/2)^25 9870002800335881 a004 Fibonacci(60)/Lucas(17)/(1/2+sqrt(5)/2)^27 9870002800335881 a004 Fibonacci(62)/Lucas(17)/(1/2+sqrt(5)/2)^29 9870002800335881 a004 Fibonacci(64)/Lucas(17)/(1/2+sqrt(5)/2)^31 9870002800335881 a004 Fibonacci(66)/Lucas(17)/(1/2+sqrt(5)/2)^33 9870002800335881 a004 Fibonacci(17)*Lucas(34)/(1/2+sqrt(5)/2)^35 9870002800335881 a004 Fibonacci(70)/Lucas(17)/(1/2+sqrt(5)/2)^37 9870002800335881 a004 Fibonacci(72)/Lucas(17)/(1/2+sqrt(5)/2)^39 9870002800335881 a004 Fibonacci(74)/Lucas(17)/(1/2+sqrt(5)/2)^41 9870002800335881 a004 Fibonacci(76)/Lucas(17)/(1/2+sqrt(5)/2)^43 9870002800335881 a004 Fibonacci(78)/Lucas(17)/(1/2+sqrt(5)/2)^45 9870002800335881 a004 Fibonacci(80)/Lucas(17)/(1/2+sqrt(5)/2)^47 9870002800335881 a004 Fibonacci(82)/Lucas(17)/(1/2+sqrt(5)/2)^49 9870002800335881 a004 Fibonacci(84)/Lucas(17)/(1/2+sqrt(5)/2)^51 9870002800335881 a004 Fibonacci(86)/Lucas(17)/(1/2+sqrt(5)/2)^53 9870002800335881 a004 Fibonacci(88)/Lucas(17)/(1/2+sqrt(5)/2)^55 9870002800335881 a004 Fibonacci(90)/Lucas(17)/(1/2+sqrt(5)/2)^57 9870002800335881 a004 Fibonacci(92)/Lucas(17)/(1/2+sqrt(5)/2)^59 9870002800335881 a004 Fibonacci(94)/Lucas(17)/(1/2+sqrt(5)/2)^61 9870002800335881 a004 Fibonacci(96)/Lucas(17)/(1/2+sqrt(5)/2)^63 9870002800335881 a004 Fibonacci(98)/Lucas(17)/(1/2+sqrt(5)/2)^65 9870002800335881 a004 Fibonacci(100)/Lucas(17)/(1/2+sqrt(5)/2)^67 9870002800335881 a004 Fibonacci(99)/Lucas(17)/(1/2+sqrt(5)/2)^66 9870002800335881 a004 Fibonacci(97)/Lucas(17)/(1/2+sqrt(5)/2)^64 9870002800335881 a004 Fibonacci(95)/Lucas(17)/(1/2+sqrt(5)/2)^62 9870002800335881 a004 Fibonacci(93)/Lucas(17)/(1/2+sqrt(5)/2)^60 9870002800335881 a004 Fibonacci(91)/Lucas(17)/(1/2+sqrt(5)/2)^58 9870002800335881 a004 Fibonacci(89)/Lucas(17)/(1/2+sqrt(5)/2)^56 9870002800335881 a004 Fibonacci(87)/Lucas(17)/(1/2+sqrt(5)/2)^54 9870002800335881 a004 Fibonacci(85)/Lucas(17)/(1/2+sqrt(5)/2)^52 9870002800335881 a004 Fibonacci(83)/Lucas(17)/(1/2+sqrt(5)/2)^50 9870002800335881 a004 Fibonacci(81)/Lucas(17)/(1/2+sqrt(5)/2)^48 9870002800335881 a004 Fibonacci(79)/Lucas(17)/(1/2+sqrt(5)/2)^46 9870002800335881 a004 Fibonacci(77)/Lucas(17)/(1/2+sqrt(5)/2)^44 9870002800335881 a004 Fibonacci(75)/Lucas(17)/(1/2+sqrt(5)/2)^42 9870002800335881 a004 Fibonacci(73)/Lucas(17)/(1/2+sqrt(5)/2)^40 9870002800335881 a004 Fibonacci(71)/Lucas(17)/(1/2+sqrt(5)/2)^38 9870002800335881 a004 Fibonacci(69)/Lucas(17)/(1/2+sqrt(5)/2)^36 9870002800335881 a004 Fibonacci(67)/Lucas(17)/(1/2+sqrt(5)/2)^34 9870002800335881 a004 Fibonacci(65)/Lucas(17)/(1/2+sqrt(5)/2)^32 9870002800335881 a004 Fibonacci(63)/Lucas(17)/(1/2+sqrt(5)/2)^30 9870002800335881 a004 Fibonacci(61)/Lucas(17)/(1/2+sqrt(5)/2)^28 9870002800335881 a004 Fibonacci(59)/Lucas(17)/(1/2+sqrt(5)/2)^26 9870002800335881 a004 Fibonacci(57)/Lucas(17)/(1/2+sqrt(5)/2)^24 9870002800335881 a004 Fibonacci(55)/Lucas(17)/(1/2+sqrt(5)/2)^22 9870002800335881 a004 Fibonacci(53)/Lucas(17)/(1/2+sqrt(5)/2)^20 9870002800335881 a004 Fibonacci(51)/Lucas(17)/(1/2+sqrt(5)/2)^18 9870002800335881 a004 Fibonacci(49)/Lucas(17)/(1/2+sqrt(5)/2)^16 9870002800335881 a004 Fibonacci(47)/Lucas(17)/(1/2+sqrt(5)/2)^14 9870002800335881 a004 Fibonacci(45)/Lucas(17)/(1/2+sqrt(5)/2)^12 9870002800335881 a004 Fibonacci(43)/Lucas(17)/(1/2+sqrt(5)/2)^10 9870002800335881 a004 Fibonacci(41)/Lucas(17)/(1/2+sqrt(5)/2)^8 9870002800335881 a004 Fibonacci(39)/Lucas(17)/(1/2+sqrt(5)/2)^6 9870002800335884 a004 Fibonacci(37)/Lucas(17)/(1/2+sqrt(5)/2)^4 9870002800335904 a004 Fibonacci(35)/Lucas(17)/(1/2+sqrt(5)/2)^2 9870002800335979 a001 1597/7881196*(1/2+1/2*5^(1/2))^32 9870002800335979 a001 1597/7881196*23725150497407^(1/2) 9870002800335979 a001 1597/7881196*505019158607^(4/7) 9870002800335979 a001 1597/7881196*73681302247^(8/13) 9870002800335979 a001 1597/7881196*10749957122^(2/3) 9870002800335979 a001 1597/7881196*4106118243^(16/23) 9870002800335979 a001 1597/7881196*1568397607^(8/11) 9870002800335979 a001 1597/7881196*599074578^(16/21) 9870002800335979 a001 1597/7881196*228826127^(4/5) 9870002800335980 a001 1597/7881196*87403803^(16/19) 9870002800335987 a001 1597/7881196*33385282^(8/9) 9870002800336036 a001 1597/7881196*12752043^(16/17) 9870002800336040 a001 3524578/3571 9870002800336236 a004 Fibonacci(17)*Lucas(32)/(1/2+sqrt(5)/2)^33 9870002800336765 a001 1597/3010349*7881196^(10/11) 9870002800336889 a001 1597/3010349*20633239^(6/7) 9870002800336909 a001 1597/3010349*141422324^(10/13) 9870002800336909 a001 1597/3010349*2537720636^(2/3) 9870002800336909 a001 1597/3010349*45537549124^(10/17) 9870002800336909 a001 1597/3010349*312119004989^(6/11) 9870002800336909 a001 1597/3010349*14662949395604^(10/21) 9870002800336909 a001 1597/3010349*(1/2+1/2*5^(1/2))^30 9870002800336909 a001 1597/3010349*192900153618^(5/9) 9870002800336909 a001 1597/3010349*28143753123^(3/5) 9870002800336909 a001 1597/3010349*10749957122^(5/8) 9870002800336909 a001 1597/3010349*4106118243^(15/23) 9870002800336909 a001 1597/3010349*1568397607^(15/22) 9870002800336909 a001 1597/3010349*599074578^(5/7) 9870002800336910 a001 1597/3010349*228826127^(3/4) 9870002800336910 a001 1597/3010349*87403803^(15/19) 9870002800336917 a001 1597/3010349*33385282^(5/6) 9870002800336963 a001 1597/3010349*12752043^(15/17) 9870002800336970 a001 1346269/3571*(1/2+1/2*5^(1/2))^2 9870002800336970 a001 1346269/3571*10749957122^(1/24) 9870002800336970 a001 1346269/3571*4106118243^(1/23) 9870002800336970 a001 1346269/3571*1568397607^(1/22) 9870002800336970 a001 1346269/3571*599074578^(1/21) 9870002800336970 a001 1346269/3571*228826127^(1/20) 9870002800336970 a001 1346269/3571*87403803^(1/19) 9870002800336971 a001 1346269/3571*33385282^(1/18) 9870002800336974 a001 1346269/3571*12752043^(1/17) 9870002800336996 a001 1346269/3571*4870847^(1/16) 9870002800337160 a001 1346269/3571*1860498^(1/15) 9870002800337299 a001 1597/3010349*4870847^(15/16) 9870002800337325 a001 2149991593/2178309 9870002800338366 a001 1346269/3571*710647^(1/14) 9870002800338672 a004 Fibonacci(17)*Lucas(30)/(1/2+sqrt(5)/2)^31 9870002800343267 a001 1597/1149851*20633239^(4/5) 9870002800343285 a001 1597/1149851*17393796001^(4/7) 9870002800343285 a001 1597/1149851*14662949395604^(4/9) 9870002800343285 a001 1597/1149851*(1/2+1/2*5^(1/2))^28 9870002800343285 a001 1597/1149851*505019158607^(1/2) 9870002800343285 a001 1597/1149851*73681302247^(7/13) 9870002800343285 a001 1597/1149851*10749957122^(7/12) 9870002800343285 a001 1597/1149851*4106118243^(14/23) 9870002800343285 a001 1597/1149851*1568397607^(7/11) 9870002800343285 a001 1597/1149851*599074578^(2/3) 9870002800343285 a001 1597/1149851*228826127^(7/10) 9870002800343286 a001 1597/1149851*87403803^(14/19) 9870002800343292 a001 1597/1149851*33385282^(7/9) 9870002800343335 a001 1597/1149851*12752043^(14/17) 9870002800343346 a001 514229/3571*(1/2+1/2*5^(1/2))^4 9870002800343346 a001 514229/3571*23725150497407^(1/16) 9870002800343346 a001 514229/3571*73681302247^(1/13) 9870002800343346 a001 514229/3571*10749957122^(1/12) 9870002800343346 a001 514229/3571*4106118243^(2/23) 9870002800343346 a001 514229/3571*1568397607^(1/11) 9870002800343346 a001 514229/3571*599074578^(2/21) 9870002800343346 a001 514229/3571*228826127^(1/10) 9870002800343346 a001 514229/3571*87403803^(2/19) 9870002800343347 a001 514229/3571*33385282^(1/9) 9870002800343353 a001 514229/3571*12752043^(2/17) 9870002800343398 a001 514229/3571*4870847^(1/8) 9870002800343649 a001 1597/1149851*4870847^(7/8) 9870002800343726 a001 514229/3571*1860498^(2/15) 9870002800345947 a001 1597/1149851*1860498^(14/15) 9870002800346137 a001 821223713/832040 9870002800346138 a001 514229/3571*710647^(1/7) 9870002800347274 a001 1346269/3571*271443^(1/13) 9870002800355364 a004 Fibonacci(17)*Lucas(28)/(1/2+sqrt(5)/2)^29 9870002800363955 a001 514229/3571*271443^(2/13) 9870002800373721 a001 2178309/3571*103682^(1/24) 9870002800375677 a001 196418/3571*439204^(2/9) 9870002800386986 a001 1597/439204*141422324^(2/3) 9870002800386987 a001 1597/439204*(1/2+1/2*5^(1/2))^26 9870002800386987 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^26/Lucas(27) 9870002800386987 a001 1597/439204*73681302247^(1/2) 9870002800386987 a001 1597/439204*10749957122^(13/24) 9870002800386987 a001 1597/439204*4106118243^(13/23) 9870002800386987 a001 1597/439204*1568397607^(13/22) 9870002800386987 a001 1597/439204*599074578^(13/21) 9870002800386987 a001 1597/439204*228826127^(13/20) 9870002800386987 a001 1597/439204*87403803^(13/19) 9870002800386993 a001 1597/439204*33385282^(13/18) 9870002800387018 a001 196418/3571*7881196^(2/11) 9870002800387033 a001 1597/439204*12752043^(13/17) 9870002800387047 a001 196418/3571*141422324^(2/13) 9870002800387047 a001 196418/3571*2537720636^(2/15) 9870002800387047 a001 196418/3571*45537549124^(2/17) 9870002800387047 a001 196418/3571*14662949395604^(2/21) 9870002800387047 a001 196418/3571*(1/2+1/2*5^(1/2))^6 9870002800387047 a001 196418/3571*10749957122^(1/8) 9870002800387047 a001 196418/3571*4106118243^(3/23) 9870002800387047 a001 196418/3571*1568397607^(3/22) 9870002800387047 a001 196418/3571*599074578^(1/7) 9870002800387047 a001 196418/3571*228826127^(3/20) 9870002800387048 a001 196418/3571*87403803^(3/19) 9870002800387049 a001 196418/3571*33385282^(1/6) 9870002800387058 a001 196418/3571*12752043^(3/17) 9870002800387125 a001 196418/3571*4870847^(3/16) 9870002800387325 a001 1597/439204*4870847^(13/16) 9870002800387618 a001 196418/3571*1860498^(1/5) 9870002800389458 a001 1597/439204*1860498^(13/15) 9870002800391235 a001 196418/3571*710647^(3/14) 9870002800405134 a001 1597/439204*710647^(13/14) 9870002800406530 a001 313679546/317811 9870002800413482 a001 1346269/3571*103682^(1/12) 9870002800417960 a001 196418/3571*271443^(3/13) 9870002800440330 a001 1597/64079*64079^(22/23) 9870002800447797 a001 832040/3571*103682^(1/8) 9870002800469717 a001 121393/3571*103682^(7/24) 9870002800469776 a004 Fibonacci(17)*Lucas(26)/(1/2+sqrt(5)/2)^27 9870002800496370 a001 514229/3571*103682^(1/6) 9870002800507617 a001 317811/3571*103682^(5/24) 9870002800616583 a001 196418/3571*103682^(1/4) 9870002800621513 a001 2178309/3571*39603^(1/22) 9870002800641039 a001 1597/167761*439204^(8/9) 9870002800686404 a001 1597/167761*7881196^(8/11) 9870002800686520 a001 1597/167761*141422324^(8/13) 9870002800686520 a001 1597/167761*2537720636^(8/15) 9870002800686520 a001 1597/167761*45537549124^(8/17) 9870002800686520 a001 1597/167761*14662949395604^(8/21) 9870002800686520 a001 1597/167761*(1/2+1/2*5^(1/2))^24 9870002800686520 a001 1597/167761*192900153618^(4/9) 9870002800686520 a001 1597/167761*73681302247^(6/13) 9870002800686520 a001 1597/167761*10749957122^(1/2) 9870002800686520 a001 1597/167761*4106118243^(12/23) 9870002800686520 a001 1597/167761*1568397607^(6/11) 9870002800686520 a001 1597/167761*599074578^(4/7) 9870002800686520 a001 1597/167761*228826127^(3/5) 9870002800686521 a001 1597/167761*87403803^(12/19) 9870002800686526 a001 1597/167761*33385282^(2/3) 9870002800686563 a001 1597/167761*12752043^(12/17) 9870002800686581 a001 75025/3571*(1/2+1/2*5^(1/2))^8 9870002800686581 a001 75025/3571*23725150497407^(1/8) 9870002800686581 a001 75025/3571*505019158607^(1/7) 9870002800686581 a001 75025/3571*73681302247^(2/13) 9870002800686581 a001 75025/3571*10749957122^(1/6) 9870002800686581 a001 75025/3571*4106118243^(4/23) 9870002800686581 a001 75025/3571*1568397607^(2/11) 9870002800686581 a001 75025/3571*599074578^(4/21) 9870002800686581 a001 75025/3571*228826127^(1/5) 9870002800686581 a001 75025/3571*87403803^(4/19) 9870002800686582 a001 75025/3571*33385282^(2/9) 9870002800686595 a001 75025/3571*12752043^(4/17) 9870002800686685 a001 75025/3571*4870847^(1/4) 9870002800686832 a001 1597/167761*4870847^(3/4) 9870002800687341 a001 75025/3571*1860498^(4/15) 9870002800688801 a001 1597/167761*1860498^(4/5) 9870002800692164 a001 75025/3571*710647^(2/7) 9870002800703272 a001 1597/167761*710647^(6/7) 9870002800727798 a001 75025/3571*271443^(4/13) 9870002800810171 a001 1597/167761*271443^(12/13) 9870002800820475 a001 119814925/121393 9870002800909065 a001 1346269/3571*39603^(1/11) 9870002800992628 a001 75025/3571*103682^(1/3) 9870002801120364 a001 1597/24476*24476^(20/21) 9870002801191173 a001 832040/3571*39603^(3/22) 9870002801253964 a004 Fibonacci(17)*Lucas(24)/(1/2+sqrt(5)/2)^25 9870002801487537 a001 514229/3571*39603^(2/11) 9870002801694511 a001 28657/3571*64079^(10/23) 9870002801746575 a001 317811/3571*39603^(5/22) 9870002801992167 a001 46368/3571*39603^(9/22) 9870002802103333 a001 196418/3571*39603^(3/11) 9870002802204259 a001 121393/3571*39603^(7/22) 9870002802492125 a001 2178309/3571*15127^(1/20) 9870002802599332 a001 28657/3571*167761^(2/5) 9870002802696755 a001 1346269/24476*2207^(3/8) 9870002802739445 a001 1597/64079*7881196^(2/3) 9870002802739551 a001 1597/64079*312119004989^(2/5) 9870002802739551 a001 1597/64079*(1/2+1/2*5^(1/2))^22 9870002802739551 a001 1597/64079*10749957122^(11/24) 9870002802739551 a001 1597/64079*4106118243^(11/23) 9870002802739551 a001 1597/64079*1568397607^(1/2) 9870002802739551 a001 1597/64079*599074578^(11/21) 9870002802739551 a001 1597/64079*228826127^(11/20) 9870002802739552 a001 1597/64079*87403803^(11/19) 9870002802739556 a001 1597/64079*33385282^(11/18) 9870002802739590 a001 1597/64079*12752043^(11/17) 9870002802739605 a001 28657/3571*20633239^(2/7) 9870002802739612 a001 28657/3571*2537720636^(2/9) 9870002802739612 a001 28657/3571*312119004989^(2/11) 9870002802739612 a001 28657/3571*(1/2+1/2*5^(1/2))^10 9870002802739612 a001 28657/3571*28143753123^(1/5) 9870002802739612 a001 28657/3571*10749957122^(5/24) 9870002802739612 a001 28657/3571*4106118243^(5/23) 9870002802739612 a001 28657/3571*1568397607^(5/22) 9870002802739612 a001 28657/3571*599074578^(5/21) 9870002802739612 a001 28657/3571*228826127^(1/4) 9870002802739612 a001 28657/3571*87403803^(5/19) 9870002802739614 a001 28657/3571*33385282^(5/18) 9870002802739630 a001 28657/3571*12752043^(5/17) 9870002802739742 a001 28657/3571*4870847^(5/16) 9870002802739837 a001 1597/64079*4870847^(11/16) 9870002802740562 a001 28657/3571*1860498^(1/3) 9870002802741642 a001 1597/64079*1860498^(11/15) 9870002802746592 a001 28657/3571*710647^(5/14) 9870002802754907 a001 1597/64079*710647^(11/14) 9870002802791133 a001 28657/3571*271443^(5/13) 9870002802852898 a001 1597/64079*271443^(11/13) 9870002802974962 a001 75025/3571*39603^(4/11) 9870002803122171 a001 28657/3571*103682^(5/12) 9870002803581183 a001 1597/64079*103682^(11/12) 9870002803657694 a001 45765229/46368 9870002804247350 a007 Real Root Of 935*x^4+611*x^3+343*x^2+463*x-177 9870002804650290 a001 1346269/3571*15127^(1/10) 9870002805600088 a001 28657/3571*39603^(5/11) 9870002806279198 a001 1597/9349*9349^(18/19) 9870002806628869 a004 Fibonacci(17)*Lucas(22)/(1/2+sqrt(5)/2)^23 9870002806803009 a001 832040/3571*15127^(3/20) 9870002807396773 a001 10946/3571*24476^(4/7) 9870002808969986 a001 514229/3571*15127^(1/5) 9870002811099637 a001 317811/3571*15127^(1/4) 9870002813327007 a001 196418/3571*15127^(3/10) 9870002814721035 a001 1597/24476*64079^(20/23) 9870002815298545 a001 121393/3571*15127^(7/20) 9870002815557176 a001 10946/3571*64079^(12/23) 9870002815910583 r005 Im(z^2+c),c=-31/54+9/37*I,n=15 9870002816530676 a001 1597/24476*167761^(4/5) 9870002816759873 a001 2178309/3571*5778^(1/18) 9870002816788556 a001 10946/3571*439204^(4/9) 9870002816811223 a001 1597/24476*20633239^(4/7) 9870002816811236 a001 1597/24476*2537720636^(4/9) 9870002816811236 a001 1597/24476*(1/2+1/2*5^(1/2))^20 9870002816811236 a001 1597/24476*23725150497407^(5/16) 9870002816811236 a001 1597/24476*505019158607^(5/14) 9870002816811236 a001 1597/24476*73681302247^(5/13) 9870002816811236 a001 1597/24476*28143753123^(2/5) 9870002816811236 a001 1597/24476*10749957122^(5/12) 9870002816811236 a001 1597/24476*4106118243^(10/23) 9870002816811236 a001 1597/24476*1568397607^(5/11) 9870002816811236 a001 1597/24476*599074578^(10/21) 9870002816811236 a001 1597/24476*228826127^(1/2) 9870002816811237 a001 1597/24476*87403803^(10/19) 9870002816811239 a001 10946/3571*7881196^(4/11) 9870002816811241 a001 1597/24476*33385282^(5/9) 9870002816811272 a001 1597/24476*12752043^(10/17) 9870002816811297 a001 10946/3571*141422324^(4/13) 9870002816811297 a001 10946/3571*2537720636^(4/15) 9870002816811297 a001 10946/3571*45537549124^(4/17) 9870002816811297 a001 10946/3571*817138163596^(4/19) 9870002816811297 a001 10946/3571*14662949395604^(4/21) 9870002816811297 a001 10946/3571*(1/2+1/2*5^(1/2))^12 9870002816811297 a001 10946/3571*192900153618^(2/9) 9870002816811297 a001 10946/3571*73681302247^(3/13) 9870002816811297 a001 10946/3571*10749957122^(1/4) 9870002816811297 a001 10946/3571*4106118243^(6/23) 9870002816811297 a001 10946/3571*1568397607^(3/11) 9870002816811297 a001 10946/3571*599074578^(2/7) 9870002816811297 a001 10946/3571*228826127^(3/10) 9870002816811297 a001 10946/3571*87403803^(6/19) 9870002816811300 a001 10946/3571*33385282^(1/3) 9870002816811318 a001 10946/3571*12752043^(6/17) 9870002816811453 a001 10946/3571*4870847^(3/8) 9870002816811496 a001 1597/24476*4870847^(5/8) 9870002816812437 a001 10946/3571*1860498^(2/5) 9870002816813137 a001 1597/24476*1860498^(2/3) 9870002816819673 a001 10946/3571*710647^(3/7) 9870002816825196 a001 1597/24476*710647^(5/7) 9870002816873122 a001 10946/3571*271443^(6/13) 9870002816914279 a001 1597/24476*271443^(10/13) 9870002817270369 a001 10946/3571*103682^(1/2) 9870002817576356 a001 1597/24476*103682^(5/6) 9870002817766091 a001 17711/3571*15127^(11/20) 9870002817939860 a001 75025/3571*15127^(2/5) 9870002818827677 a001 46368/3571*15127^(9/20) 9870002820243869 a001 10946/3571*39603^(6/11) 9870002822532190 a001 1597/24476*39603^(10/11) 9870002823104285 a001 17480762/17711 9870002824306211 a001 28657/3571*15127^(1/2) 9870002830052769 a001 4181/3571*9349^(14/19) 9870002832052108 a001 1/322*(1/2*5^(1/2)+1/2)^2*3^(3/17) 9870002833185785 a001 1346269/3571*5778^(1/9) 9870002842691216 a001 10946/3571*15127^(3/5) 9870002843469019 a004 Fibonacci(17)*Lucas(20)/(1/2+sqrt(5)/2)^21 9870002843761712 m001 1/Catalan/BesselK(0,1)/exp(cos(Pi/12)) 9870002845864872 a001 1597/3571*3571^(16/17) 9870002849606253 a001 832040/3571*5778^(1/6) 9870002866040977 a001 514229/3571*5778^(2/9) 9870002867924675 m001 1/Conway*ErdosBorwein^2/ln(Zeta(9)) 9870002869740891 a001 514229/15127*2207^(7/16) 9870002870870735 a001 75025/5778*2207^(9/16) 9870002882438376 a001 317811/3571*5778^(5/18) 9870002898933494 a001 196418/3571*5778^(1/3) 9870002899138217 a001 1597/9349*24476^(6/7) 9870002899151896 a001 514229/9349*2207^(3/8) 9870002902276450 a001 4181/3571*24476^(2/3) 9870002906574665 a001 1346269/39603*2207^(7/16) 9870002911378821 a001 1597/9349*64079^(18/23) 9870002911796921 a001 4181/3571*64079^(14/23) 9870002911948640 a001 1762289/51841*2207^(7/16) 9870002912419185 m001 Catalan^(1/3/sqrt(5)) 9870002912732693 a001 9227465/271443*2207^(7/16) 9870002912847084 a001 24157817/710647*2207^(7/16) 9870002912863774 a001 31622993/930249*2207^(7/16) 9870002912866209 a001 165580141/4870847*2207^(7/16) 9870002912866564 a001 433494437/12752043*2207^(7/16) 9870002912866616 a001 567451585/16692641*2207^(7/16) 9870002912866624 a001 2971215073/87403803*2207^(7/16) 9870002912866625 a001 7778742049/228826127*2207^(7/16) 9870002912866625 a001 10182505537/299537289*2207^(7/16) 9870002912866625 a001 53316291173/1568397607*2207^(7/16) 9870002912866625 a001 139583862445/4106118243*2207^(7/16) 9870002912866625 a001 182717648081/5374978561*2207^(7/16) 9870002912866625 a001 956722026041/28143753123*2207^(7/16) 9870002912866625 a001 2504730781961/73681302247*2207^(7/16) 9870002912866625 a001 3278735159921/96450076809*2207^(7/16) 9870002912866625 a001 10610209857723/312119004989*2207^(7/16) 9870002912866625 a001 4052739537881/119218851371*2207^(7/16) 9870002912866625 a001 387002188980/11384387281*2207^(7/16) 9870002912866625 a001 591286729879/17393796001*2207^(7/16) 9870002912866625 a001 225851433717/6643838879*2207^(7/16) 9870002912866625 a001 1135099622/33391061*2207^(7/16) 9870002912866625 a001 32951280099/969323029*2207^(7/16) 9870002912866625 a001 12586269025/370248451*2207^(7/16) 9870002912866625 a001 1201881744/35355581*2207^(7/16) 9870002912866628 a001 1836311903/54018521*2207^(7/16) 9870002912866648 a001 701408733/20633239*2207^(7/16) 9870002912866784 a001 66978574/1970299*2207^(7/16) 9870002912867714 a001 102334155/3010349*2207^(7/16) 9870002912874089 a001 39088169/1149851*2207^(7/16) 9870002912917782 a001 196452/5779*2207^(7/16) 9870002913217264 a001 5702887/167761*2207^(7/16) 9870002913225891 a001 1597/9349*439204^(2/3) 9870002913259915 a001 1597/9349*7881196^(6/11) 9870002913260001 a001 1597/9349*141422324^(6/13) 9870002913260002 a001 1597/9349*2537720636^(2/5) 9870002913260002 a001 1597/9349*45537549124^(6/17) 9870002913260002 a001 1597/9349*14662949395604^(2/7) 9870002913260002 a001 1597/9349*(1/2+1/2*5^(1/2))^18 9870002913260002 a001 1597/9349*192900153618^(1/3) 9870002913260002 a001 1597/9349*10749957122^(3/8) 9870002913260002 a001 1597/9349*4106118243^(9/23) 9870002913260002 a001 1597/9349*1568397607^(9/22) 9870002913260002 a001 1597/9349*599074578^(3/7) 9870002913260002 a001 1597/9349*228826127^(9/20) 9870002913260002 a001 1597/9349*87403803^(9/19) 9870002913260006 a001 1597/9349*33385282^(1/2) 9870002913260034 a001 1597/9349*12752043^(9/17) 9870002913260052 a001 4181/3571*20633239^(2/5) 9870002913260061 a001 4181/3571*17393796001^(2/7) 9870002913260061 a001 4181/3571*14662949395604^(2/9) 9870002913260061 a001 4181/3571*(1/2+1/2*5^(1/2))^14 9870002913260061 a001 4181/3571*505019158607^(1/4) 9870002913260061 a001 4181/3571*10749957122^(7/24) 9870002913260061 a001 4181/3571*4106118243^(7/23) 9870002913260061 a001 4181/3571*1568397607^(7/22) 9870002913260061 a001 4181/3571*599074578^(1/3) 9870002913260061 a001 4181/3571*228826127^(7/20) 9870002913260062 a001 4181/3571*87403803^(7/19) 9870002913260065 a001 4181/3571*33385282^(7/18) 9870002913260086 a001 4181/3571*12752043^(7/17) 9870002913260236 a001 1597/9349*4870847^(9/16) 9870002913260243 a001 4181/3571*4870847^(7/16) 9870002913261392 a001 4181/3571*1860498^(7/15) 9870002913261713 a001 1597/9349*1860498^(3/5) 9870002913269833 a001 4181/3571*710647^(1/2) 9870002913272566 a001 1597/9349*710647^(9/14) 9870002913332191 a001 4181/3571*271443^(7/13) 9870002913352740 a001 1597/9349*271443^(9/13) 9870002913795645 a001 4181/3571*103682^(7/12) 9870002913948609 a001 1597/9349*103682^(3/4) 9870002915172780 a001 121393/3571*5778^(7/18) 9870002915269940 a001 2178309/64079*2207^(7/16) 9870002917264729 a001 4181/3571*39603^(7/11) 9870002918408860 a001 1597/9349*39603^(9/11) 9870002926981840 a001 2178309/3571*2207^(1/16) 9870002929339190 a001 208010/6119*2207^(7/16) 9870002932081843 a001 75025/3571*5778^(4/9) 9870002936774205 a001 4181/322*18^(40/57) 9870002943453301 a001 4181/3571*15127^(7/10) 9870002943671760 a007 Real Root Of -706*x^4+195*x^3+739*x^2+737*x+865 9870002947237407 a001 46368/3571*5778^(1/2) 9870002952079881 a001 1597/9349*15127^(9/10) 9870002956393200 a001 6677057/6765 9870002966983689 a001 28657/3571*5778^(5/9) 9870002970719983 a001 6765/3571*5778^(13/18) 9870002974711318 a001 17711/3571*5778^(11/18) 9870002975262135 a001 9227465/15127*843^(1/14) 9870002976167396 a001 514229/2207*843^(3/14) 9870002979736044 m002 -5*Pi+Pi^2*Cosh[Pi] 9870002984185390 r005 Re(z^2+c),c=-5/118+19/60*I,n=7 9870002996248268 a001 2576/321*2207^(5/8) 9870002996360258 a001 317811/15127*2207^(1/2) 9870003012102265 a001 24157817/39603*843^(1/14) 9870003013238970 r008 a(0)=1,K{-n^6,-48+93*n^3+46*n^2-14*n} 9870003013904191 a001 10946/3571*5778^(2/3) 9870003017477168 a001 31622993/51841*843^(1/14) 9870003018261356 a001 165580141/271443*843^(1/14) 9870003018375767 a001 433494437/710647*843^(1/14) 9870003018392460 a001 567451585/930249*843^(1/14) 9870003018394895 a001 2971215073/4870847*843^(1/14) 9870003018395250 a001 7778742049/12752043*843^(1/14) 9870003018395302 a001 10182505537/16692641*843^(1/14) 9870003018395310 a001 53316291173/87403803*843^(1/14) 9870003018395311 a001 139583862445/228826127*843^(1/14) 9870003018395311 a001 182717648081/299537289*843^(1/14) 9870003018395311 a001 956722026041/1568397607*843^(1/14) 9870003018395311 a001 2504730781961/4106118243*843^(1/14) 9870003018395311 a001 3278735159921/5374978561*843^(1/14) 9870003018395311 a001 10610209857723/17393796001*843^(1/14) 9870003018395311 a001 4052739537881/6643838879*843^(1/14) 9870003018395311 a001 1134903780/1860499*843^(1/14) 9870003018395311 a001 591286729879/969323029*843^(1/14) 9870003018395311 a001 225851433717/370248451*843^(1/14) 9870003018395311 a001 21566892818/35355581*843^(1/14) 9870003018395314 a001 32951280099/54018521*843^(1/14) 9870003018395334 a001 1144206275/1875749*843^(1/14) 9870003018395470 a001 1201881744/1970299*843^(1/14) 9870003018396400 a001 1836311903/3010349*843^(1/14) 9870003018402776 a001 701408733/1149851*843^(1/14) 9870003018446477 a001 66978574/109801*843^(1/14) 9870003018746010 a001 9303105/15251*843^(1/14) 9870003020799040 a001 39088169/64079*843^(1/14) 9870003025771264 a001 317811/9349*2207^(7/16) 9870003033217101 a001 832040/39603*2207^(1/2) 9870003034870718 a001 3732588/6119*843^(1/14) 9870003038594442 a001 46347/2206*2207^(1/2) 9870003039378985 a001 5702887/271443*2207^(1/2) 9870003039493449 a001 14930352/710647*2207^(1/2) 9870003039510149 a001 39088169/1860498*2207^(1/2) 9870003039512585 a001 102334155/4870847*2207^(1/2) 9870003039512941 a001 267914296/12752043*2207^(1/2) 9870003039512992 a001 701408733/33385282*2207^(1/2) 9870003039513000 a001 1836311903/87403803*2207^(1/2) 9870003039513001 a001 102287808/4868641*2207^(1/2) 9870003039513001 a001 12586269025/599074578*2207^(1/2) 9870003039513001 a001 32951280099/1568397607*2207^(1/2) 9870003039513001 a001 86267571272/4106118243*2207^(1/2) 9870003039513001 a001 225851433717/10749957122*2207^(1/2) 9870003039513001 a001 591286729879/28143753123*2207^(1/2) 9870003039513001 a001 1548008755920/73681302247*2207^(1/2) 9870003039513001 a001 4052739537881/192900153618*2207^(1/2) 9870003039513001 a001 225749145909/10745088481*2207^(1/2) 9870003039513001 a001 6557470319842/312119004989*2207^(1/2) 9870003039513001 a001 2504730781961/119218851371*2207^(1/2) 9870003039513001 a001 956722026041/45537549124*2207^(1/2) 9870003039513001 a001 365435296162/17393796001*2207^(1/2) 9870003039513001 a001 139583862445/6643838879*2207^(1/2) 9870003039513001 a001 53316291173/2537720636*2207^(1/2) 9870003039513001 a001 20365011074/969323029*2207^(1/2) 9870003039513001 a001 7778742049/370248451*2207^(1/2) 9870003039513002 a001 2971215073/141422324*2207^(1/2) 9870003039513005 a001 1134903170/54018521*2207^(1/2) 9870003039513024 a001 433494437/20633239*2207^(1/2) 9870003039513160 a001 165580141/7881196*2207^(1/2) 9870003039514091 a001 63245986/3010349*2207^(1/2) 9870003039520470 a001 24157817/1149851*2207^(1/2) 9870003039564191 a001 9227465/439204*2207^(1/2) 9870003039863860 a001 3524578/167761*2207^(1/2) 9870003041917821 a001 1346269/64079*2207^(1/2) 9870003050419900 a007 Real Root Of -624*x^4+179*x^3+373*x^2-852*x-440 9870003053629722 a001 1346269/3571*2207^(1/8) 9870003055995883 a001 514229/24476*2207^(1/2) 9870003062240248 m001 CopelandErdos*ln(Cahen)*GAMMA(7/24)^2 9870003095975162 a004 Fibonacci(17)*Lucas(18)/(1/2+sqrt(5)/2)^19 9870003110233828 a007 Real Root Of 60*x^4-585*x^3-858*x^2-968*x-739 9870003121193348 m001 ln(Pi)/(Pi*csc(1/12*Pi)/GAMMA(11/12)+Paris) 9870003123044756 m004 -1-2*Sqrt[5]*Pi+25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870003123077346 a001 196418/15127*2207^(9/16) 9870003126216520 a001 28657/5778*2207^(11/16) 9870003131319434 a001 5702887/9349*843^(1/14) 9870003136313137 r002 21th iterates of z^2 + 9870003143201773 a001 4181/3571*5778^(7/9) 9870003152488352 a001 196418/9349*2207^(1/2) 9870003152578908 a007 Real Root Of -171*x^4+282*x^3+923*x^2-229*x-782 9870003154004771 a001 1597/1364*1364^(14/15) 9870003159873795 a001 514229/39603*2207^(9/16) 9870003162836849 r008 a(0)=1,K{-n^6,-11+95*n^3+59*n^2-66*n} 9870003165242325 a001 1346269/103682*2207^(9/16) 9870003166025583 a001 3524578/271443*2207^(9/16) 9870003166139859 a001 9227465/710647*2207^(9/16) 9870003166156531 a001 24157817/1860498*2207^(9/16) 9870003166158964 a001 63245986/4870847*2207^(9/16) 9870003166159319 a001 165580141/12752043*2207^(9/16) 9870003166159370 a001 433494437/33385282*2207^(9/16) 9870003166159378 a001 1134903170/87403803*2207^(9/16) 9870003166159379 a001 2971215073/228826127*2207^(9/16) 9870003166159379 a001 7778742049/599074578*2207^(9/16) 9870003166159379 a001 20365011074/1568397607*2207^(9/16) 9870003166159379 a001 53316291173/4106118243*2207^(9/16) 9870003166159379 a001 139583862445/10749957122*2207^(9/16) 9870003166159379 a001 365435296162/28143753123*2207^(9/16) 9870003166159379 a001 956722026041/73681302247*2207^(9/16) 9870003166159379 a001 2504730781961/192900153618*2207^(9/16) 9870003166159379 a001 10610209857723/817138163596*2207^(9/16) 9870003166159379 a001 4052739537881/312119004989*2207^(9/16) 9870003166159379 a001 1548008755920/119218851371*2207^(9/16) 9870003166159379 a001 591286729879/45537549124*2207^(9/16) 9870003166159379 a001 7787980473/599786069*2207^(9/16) 9870003166159379 a001 86267571272/6643838879*2207^(9/16) 9870003166159379 a001 32951280099/2537720636*2207^(9/16) 9870003166159379 a001 12586269025/969323029*2207^(9/16) 9870003166159379 a001 4807526976/370248451*2207^(9/16) 9870003166159380 a001 1836311903/141422324*2207^(9/16) 9870003166159383 a001 701408733/54018521*2207^(9/16) 9870003166159402 a001 9238424/711491*2207^(9/16) 9870003166159538 a001 102334155/7881196*2207^(9/16) 9870003166160467 a001 39088169/3010349*2207^(9/16) 9870003166166836 a001 14930352/1149851*2207^(9/16) 9870003166210485 a001 5702887/439204*2207^(9/16) 9870003166509663 a001 2178309/167761*2207^(9/16) 9870003168560259 a001 832040/64079*2207^(9/16) 9870003180272159 a001 832040/3571*2207^(3/16) 9870003182615252 a001 10959/844*2207^(9/16) 9870003183086298 m001 Zeta(5)^gamma(3)*ZetaQ(4)^gamma(3) 9870003183473137 a001 843/3524578*89^(6/19) 9870003188510536 r001 14i'th iterates of 2*x^2-1 of 9870003200273026 a001 4181/1364*1364^(4/5) 9870003200801221 a007 Real Root Of 866*x^4-500*x^3-804*x^2+280*x-243 9870003205073595 m001 (1+arctan(1/3))/(-QuadraticClass+RenyiParking) 9870003214336143 m001 (2^(1/3)-LambertW(1))/(ln(2)+ZetaQ(3)) 9870003232084414 l006 ln(3655/9807) 9870003244166119 a001 17711/5778*2207^(3/4) 9870003245115431 m005 (1/2*5^(1/2)+6/11)/(1/4*Pi+9/10) 9870003248548836 a007 Real Root Of 823*x^4-659*x^3-504*x^2+409*x-520 9870003249538603 a001 121393/15127*2207^(5/8) 9870003249918752 q001 3037/3077 9870003257942047 m002 Pi^2+Log[Pi]/(4*E^Pi*Pi^3) 9870003266852439 m004 -2-(125*Pi)/4+2*Cos[Sqrt[5]*Pi] 9870003278949610 a001 121393/9349*2207^(9/16) 9870003285045589 m001 (5^(1/2)-ln(2))/(-BesselI(1,2)+Trott2nd) 9870003286493166 a001 105937/13201*2207^(5/8) 9870003288165128 m001 Mills/(KomornikLoreti-arctan(1/2)) 9870003290223999 m001 (exp(Pi)+FeigenbaumDelta)/(-Landau+MertensB1) 9870003291884764 a001 416020/51841*2207^(5/8) 9870003292671388 a001 726103/90481*2207^(5/8) 9870003292786155 a001 5702887/710647*2207^(5/8) 9870003292802899 a001 829464/103361*2207^(5/8) 9870003292805342 a001 39088169/4870847*2207^(5/8) 9870003292805698 a001 34111385/4250681*2207^(5/8) 9870003292805750 a001 133957148/16692641*2207^(5/8) 9870003292805758 a001 233802911/29134601*2207^(5/8) 9870003292805759 a001 1836311903/228826127*2207^(5/8) 9870003292805759 a001 267084832/33281921*2207^(5/8) 9870003292805759 a001 12586269025/1568397607*2207^(5/8) 9870003292805759 a001 10983760033/1368706081*2207^(5/8) 9870003292805759 a001 43133785636/5374978561*2207^(5/8) 9870003292805759 a001 75283811239/9381251041*2207^(5/8) 9870003292805759 a001 591286729879/73681302247*2207^(5/8) 9870003292805759 a001 86000486440/10716675201*2207^(5/8) 9870003292805759 a001 4052739537881/505019158607*2207^(5/8) 9870003292805759 a001 3536736619241/440719107401*2207^(5/8) 9870003292805759 a001 3278735159921/408569081798*2207^(5/8) 9870003292805759 a001 2504730781961/312119004989*2207^(5/8) 9870003292805759 a001 956722026041/119218851371*2207^(5/8) 9870003292805759 a001 182717648081/22768774562*2207^(5/8) 9870003292805759 a001 139583862445/17393796001*2207^(5/8) 9870003292805759 a001 53316291173/6643838879*2207^(5/8) 9870003292805759 a001 10182505537/1268860318*2207^(5/8) 9870003292805759 a001 7778742049/969323029*2207^(5/8) 9870003292805759 a001 2971215073/370248451*2207^(5/8) 9870003292805760 a001 567451585/70711162*2207^(5/8) 9870003292805762 a001 433494437/54018521*2207^(5/8) 9870003292805782 a001 165580141/20633239*2207^(5/8) 9870003292805918 a001 31622993/3940598*2207^(5/8) 9870003292806852 a001 24157817/3010349*2207^(5/8) 9870003292813247 a001 9227465/1149851*2207^(5/8) 9870003292857084 a001 1762289/219602*2207^(5/8) 9870003293157548 a001 1346269/167761*2207^(5/8) 9870003295216955 a001 514229/64079*2207^(5/8) 9870003306928856 a001 514229/3571*2207^(1/4) 9870003308361931 r008 a(0)=1,K{-n^6,-98+73*n^3+82*n^2+20*n} 9870003309332342 a001 98209/12238*2207^(5/8) 9870003343467615 m002 -(Pi^5/E^Pi)+Pi^4*Coth[Pi]*Log[Pi] 9870003376669639 a001 75025/15127*2207^(11/16) 9870003384400671 a001 47/832040*2584^(23/35) 9870003393580965 a001 5473/2889*2207^(13/16) 9870003397884602 a001 615/124*1364^(11/15) 9870003406080646 a001 75025/9349*2207^(5/8) 9870003413210257 a001 196418/39603*2207^(11/16) 9870003418541462 a001 514229/103682*2207^(11/16) 9870003419319274 a001 1346269/271443*2207^(11/16) 9870003419432755 a001 3524578/710647*2207^(11/16) 9870003419449312 a001 9227465/1860498*2207^(11/16) 9870003419451728 a001 24157817/4870847*2207^(11/16) 9870003419452080 a001 63245986/12752043*2207^(11/16) 9870003419452132 a001 165580141/33385282*2207^(11/16) 9870003419452139 a001 433494437/87403803*2207^(11/16) 9870003419452140 a001 1134903170/228826127*2207^(11/16) 9870003419452140 a001 2971215073/599074578*2207^(11/16) 9870003419452140 a001 7778742049/1568397607*2207^(11/16) 9870003419452140 a001 20365011074/4106118243*2207^(11/16) 9870003419452140 a001 53316291173/10749957122*2207^(11/16) 9870003419452140 a001 139583862445/28143753123*2207^(11/16) 9870003419452140 a001 365435296162/73681302247*2207^(11/16) 9870003419452140 a001 956722026041/192900153618*2207^(11/16) 9870003419452140 a001 2504730781961/505019158607*2207^(11/16) 9870003419452140 a001 10610209857723/2139295485799*2207^(11/16) 9870003419452140 a001 4052739537881/817138163596*2207^(11/16) 9870003419452140 a001 140728068720/28374454999*2207^(11/16) 9870003419452140 a001 591286729879/119218851371*2207^(11/16) 9870003419452140 a001 225851433717/45537549124*2207^(11/16) 9870003419452140 a001 86267571272/17393796001*2207^(11/16) 9870003419452140 a001 32951280099/6643838879*2207^(11/16) 9870003419452140 a001 1144206275/230701876*2207^(11/16) 9870003419452140 a001 4807526976/969323029*2207^(11/16) 9870003419452140 a001 1836311903/370248451*2207^(11/16) 9870003419452141 a001 701408733/141422324*2207^(11/16) 9870003419452144 a001 267914296/54018521*2207^(11/16) 9870003419452163 a001 9303105/1875749*2207^(11/16) 9870003419452298 a001 39088169/7881196*2207^(11/16) 9870003419453221 a001 14930352/3010349*2207^(11/16) 9870003419459545 a001 5702887/1149851*2207^(11/16) 9870003419502891 a001 2178309/439204*2207^(11/16) 9870003419799989 a001 75640/15251*2207^(11/16) 9870003420688440 r002 9th iterates of z^2 + 9870003421836327 a001 317811/64079*2207^(11/16) 9870003433548228 a001 317811/3571*2207^(5/16) 9870003435793602 a001 121393/24476*2207^(11/16) 9870003460618729 a001 2255/1926*2207^(7/8) 9870003461405434 a001 6765-2584*5^(1/2) 9870003465252037 a007 Real Root Of 180*x^4-680*x^3+171*x^2+444*x-553 9870003479235672 a001 1597/3571*9349^(16/19) 9870003490180740 m005 (1/2*Zeta(3)-1/11)/(1/12*Zeta(3)+5/12) 9870003502047178 a001 6624/2161*2207^(3/4) 9870003531458185 a001 46368/9349*2207^(11/16) 9870003539671519 a001 121393/39603*2207^(3/4) 9870003544980247 a007 Real Root Of 220*x^4-794*x^3-642*x^2+400*x+48 9870003545160836 a001 317811/103682*2207^(3/4) 9870003545961717 a001 832040/271443*2207^(3/4) 9870003546078563 a001 311187/101521*2207^(3/4) 9870003546095611 a001 5702887/1860498*2207^(3/4) 9870003546098098 a001 14930352/4870847*2207^(3/4) 9870003546098461 a001 39088169/12752043*2207^(3/4) 9870003546098514 a001 14619165/4769326*2207^(3/4) 9870003546098522 a001 267914296/87403803*2207^(3/4) 9870003546098523 a001 701408733/228826127*2207^(3/4) 9870003546098523 a001 1836311903/599074578*2207^(3/4) 9870003546098523 a001 686789568/224056801*2207^(3/4) 9870003546098523 a001 12586269025/4106118243*2207^(3/4) 9870003546098523 a001 32951280099/10749957122*2207^(3/4) 9870003546098523 a001 86267571272/28143753123*2207^(3/4) 9870003546098523 a001 32264490531/10525900321*2207^(3/4) 9870003546098523 a001 591286729879/192900153618*2207^(3/4) 9870003546098523 a001 1548008755920/505019158607*2207^(3/4) 9870003546098523 a001 1515744265389/494493258286*2207^(3/4) 9870003546098523 a001 2504730781961/817138163596*2207^(3/4) 9870003546098523 a001 956722026041/312119004989*2207^(3/4) 9870003546098523 a001 365435296162/119218851371*2207^(3/4) 9870003546098523 a001 139583862445/45537549124*2207^(3/4) 9870003546098523 a001 53316291173/17393796001*2207^(3/4) 9870003546098523 a001 20365011074/6643838879*2207^(3/4) 9870003546098523 a001 7778742049/2537720636*2207^(3/4) 9870003546098523 a001 2971215073/969323029*2207^(3/4) 9870003546098523 a001 1134903170/370248451*2207^(3/4) 9870003546098524 a001 433494437/141422324*2207^(3/4) 9870003546098527 a001 165580141/54018521*2207^(3/4) 9870003546098547 a001 63245986/20633239*2207^(3/4) 9870003546098686 a001 24157817/7881196*2207^(3/4) 9870003546099636 a001 9227465/3010349*2207^(3/4) 9870003546106147 a001 3524578/1149851*2207^(3/4) 9870003546150779 a001 1346269/439204*2207^(3/4) 9870003546456688 a001 514229/167761*2207^(3/4) 9870003548553421 a001 196418/64079*2207^(3/4) 9870003560265322 a001 196418/3571*2207^(3/8) 9870003561777028 a001 1597/3571*24476^(16/21) 9870003562924640 a001 75025/24476*2207^(3/4) 9870003572657566 a001 1597/3571*64079^(16/23) 9870003574329726 a001 1597/3571*(1/2+1/2*5^(1/2))^16 9870003574329726 a001 1597/3571*23725150497407^(1/4) 9870003574329726 a001 1597/3571*73681302247^(4/13) 9870003574329726 a001 1597/3571*10749957122^(1/3) 9870003574329726 a001 1597/3571*4106118243^(8/23) 9870003574329726 a001 1597/3571*1568397607^(4/11) 9870003574329726 a001 1597/3571*599074578^(8/21) 9870003574329727 a001 1597/3571*228826127^(2/5) 9870003574329727 a001 1597/3571*87403803^(8/19) 9870003574329730 a001 1597/3571*33385282^(4/9) 9870003574329755 a001 1597/3571*12752043^(8/17) 9870003574329934 a001 1597/3571*4870847^(1/2) 9870003574331247 a001 1597/3571*1860498^(8/15) 9870003574340894 a001 1597/3571*710647^(4/7) 9870003574412161 a001 1597/3571*271443^(8/13) 9870003574941822 a001 1597/3571*103682^(2/3) 9870003578906490 a001 1597/3571*39603^(8/11) 9870003583676649 m005 (1/2*2^(1/2)+1/4)/(3/7*Zeta(3)+5/11) 9870003595448099 a007 Real Root Of 86*x^4+823*x^3-196*x^2+595*x+140 9870003595708944 m001 (PrimesInBinary-Sierpinski)/(Totient+Thue) 9870003597505063 r005 Im(z^2+c),c=-23/19+7/31*I,n=9 9870003608836288 a001 1597/3571*15127^(4/5) 9870003618782661 m001 GAMMA(1/3)^2*exp(Sierpinski)*Zeta(5) 9870003631910850 m001 (5^(1/2)*gamma(1)+QuadraticClass)/gamma(1) 9870003632015436 a001 28657/15127*2207^(13/16) 9870003635658716 m001 sqrt(3)+GAMMA(1/3)^GAMMA(5/12) 9870003642708233 s002 sum(A190267[n]/(n^3*pi^n-1),n=1..infinity) 9870003643372458 a001 7778742049/3*123^(5/18) 9870003655088146 r005 Re(z^2+c),c=-23/86+34/39*I,n=7 9870003661426444 a001 28657/9349*2207^(3/4) 9870003666802558 a001 75025/39603*2207^(13/16) 9870003671877931 a001 98209/51841*2207^(13/16) 9870003672618418 a001 514229/271443*2207^(13/16) 9870003672726453 a001 1346269/710647*2207^(13/16) 9870003672742215 a001 1762289/930249*2207^(13/16) 9870003672744515 a001 9227465/4870847*2207^(13/16) 9870003672744850 a001 24157817/12752043*2207^(13/16) 9870003672744899 a001 31622993/16692641*2207^(13/16) 9870003672744907 a001 165580141/87403803*2207^(13/16) 9870003672744908 a001 433494437/228826127*2207^(13/16) 9870003672744908 a001 567451585/299537289*2207^(13/16) 9870003672744908 a001 2971215073/1568397607*2207^(13/16) 9870003672744908 a001 7778742049/4106118243*2207^(13/16) 9870003672744908 a001 10182505537/5374978561*2207^(13/16) 9870003672744908 a001 53316291173/28143753123*2207^(13/16) 9870003672744908 a001 139583862445/73681302247*2207^(13/16) 9870003672744908 a001 182717648081/96450076809*2207^(13/16) 9870003672744908 a001 956722026041/505019158607*2207^(13/16) 9870003672744908 a001 10610209857723/5600748293801*2207^(13/16) 9870003672744908 a001 591286729879/312119004989*2207^(13/16) 9870003672744908 a001 225851433717/119218851371*2207^(13/16) 9870003672744908 a001 21566892818/11384387281*2207^(13/16) 9870003672744908 a001 32951280099/17393796001*2207^(13/16) 9870003672744908 a001 12586269025/6643838879*2207^(13/16) 9870003672744908 a001 1201881744/634430159*2207^(13/16) 9870003672744908 a001 1836311903/969323029*2207^(13/16) 9870003672744908 a001 701408733/370248451*2207^(13/16) 9870003672744908 a001 66978574/35355581*2207^(13/16) 9870003672744911 a001 102334155/54018521*2207^(13/16) 9870003672744930 a001 39088169/20633239*2207^(13/16) 9870003672745058 a001 3732588/1970299*2207^(13/16) 9870003672745936 a001 5702887/3010349*2207^(13/16) 9870003672751957 a001 2178309/1149851*2207^(13/16) 9870003672793223 a001 208010/109801*2207^(13/16) 9870003673076064 a001 317811/167761*2207^(13/16) 9870003675014683 a001 121393/64079*2207^(13/16) 9870003676168642 a001 18*514229^(39/47) 9870003686726585 a001 121393/3571*2207^(7/16) 9870003688302182 a001 11592/6119*2207^(13/16) 9870003695929793 r009 Im(z^3+c),c=-15/118+46/47*I,n=15 9870003705988971 p001 sum(1/(439*n+103)/(12^n),n=0..infinity) 9870003713252136 m001 (2^(1/3)+gamma)/(-Sarnak+Sierpinski) 9870003714808901 a001 726103/1926*843^(1/7) 9870003735518907 b008 5^(-1/123) 9870003743322505 a001 4181/5778*2207^(15/16) 9870003749965042 a001 17711/15127*2207^(7/8) 9870003757044692 a004 Fibonacci(18)*Lucas(16)/(1/2+sqrt(5)/2)^18 9870003767904328 a007 Real Root Of -425*x^4+770*x^3+762*x^2-127*x-954 9870003779376050 a001 17711/9349*2207^(13/16) 9870003792180101 a001 15456/13201*2207^(7/8) 9870003792388818 a001 2178309/3571*843^(1/14) 9870003798339195 a001 121393/103682*2207^(7/8) 9870003799237795 a001 105937/90481*2207^(7/8) 9870003799368899 a001 832040/710647*2207^(7/8) 9870003799388027 a001 726103/620166*2207^(7/8) 9870003799390817 a001 5702887/4870847*2207^(7/8) 9870003799391224 a001 4976784/4250681*2207^(7/8) 9870003799391284 a001 39088169/33385282*2207^(7/8) 9870003799391293 a001 34111385/29134601*2207^(7/8) 9870003799391294 a001 267914296/228826127*2207^(7/8) 9870003799391294 a001 233802911/199691526*2207^(7/8) 9870003799391294 a001 1836311903/1568397607*2207^(7/8) 9870003799391294 a001 1602508992/1368706081*2207^(7/8) 9870003799391294 a001 12586269025/10749957122*2207^(7/8) 9870003799391294 a001 10983760033/9381251041*2207^(7/8) 9870003799391294 a001 86267571272/73681302247*2207^(7/8) 9870003799391294 a001 75283811239/64300051206*2207^(7/8) 9870003799391294 a001 2504730781961/2139295485799*2207^(7/8) 9870003799391294 a001 365435296162/312119004989*2207^(7/8) 9870003799391294 a001 139583862445/119218851371*2207^(7/8) 9870003799391294 a001 53316291173/45537549124*2207^(7/8) 9870003799391294 a001 20365011074/17393796001*2207^(7/8) 9870003799391294 a001 7778742049/6643838879*2207^(7/8) 9870003799391294 a001 2971215073/2537720636*2207^(7/8) 9870003799391294 a001 1134903170/969323029*2207^(7/8) 9870003799391294 a001 433494437/370248451*2207^(7/8) 9870003799391295 a001 165580141/141422324*2207^(7/8) 9870003799391298 a001 63245986/54018521*2207^(7/8) 9870003799391321 a001 24157817/20633239*2207^(7/8) 9870003799391476 a001 9227465/7881196*2207^(7/8) 9870003799392542 a001 3524578/3010349*2207^(7/8) 9870003799399848 a001 1346269/1149851*2207^(7/8) 9870003799449925 a001 514229/439204*2207^(7/8) 9870003799793160 a001 196418/167761*2207^(7/8) 9870003802145725 a001 75025/64079*2207^(7/8) 9870003805905343 l006 ln(1777/4768) 9870003808453613 m001 (FellerTornier-Gompertz)^KomornikLoreti 9870003811162194 a001 5473/682*1364^(2/3) 9870003813857626 a001 75025/3571*2207^(1/2) 9870003818270443 a001 28657/24476*2207^(7/8) 9870003835536072 a001 377/3*64079^(47/58) 9870003837120273 a001 1597/3571*5778^(8/9) 9870003850378229 a001 521/2178309*2178309^(13/51) 9870003860864380 m008 (3/5*Pi^3+4)/(3/4*Pi^5-1/2) 9870003869969040 a001 2550409/2584 9870003894183724 r001 58i'th iterates of 2*x^2-1 of 9870003899379896 a001 10946/15127*2207^(15/16) 9870003910760873 m001 1/OneNinth/Robbin^2/exp(BesselJ(0,1)) 9870003922148363 a001 28657/39603*2207^(15/16) 9870003925470238 a001 75025/103682*2207^(15/16) 9870003925581512 a007 Real Root Of -946*x^4+105*x^3-800*x^2-842*x+947 9870003925954893 a001 196418/271443*2207^(15/16) 9870003926025603 a001 514229/710647*2207^(15/16) 9870003926035920 a001 1346269/1860498*2207^(15/16) 9870003926037425 a001 3524578/4870847*2207^(15/16) 9870003926037644 a001 9227465/12752043*2207^(15/16) 9870003926037676 a001 24157817/33385282*2207^(15/16) 9870003926037681 a001 63245986/87403803*2207^(15/16) 9870003926037682 a001 165580141/228826127*2207^(15/16) 9870003926037682 a001 433494437/599074578*2207^(15/16) 9870003926037682 a001 1134903170/1568397607*2207^(15/16) 9870003926037682 a001 2971215073/4106118243*2207^(15/16) 9870003926037682 a001 7778742049/10749957122*2207^(15/16) 9870003926037682 a001 20365011074/28143753123*2207^(15/16) 9870003926037682 a001 53316291173/73681302247*2207^(15/16) 9870003926037682 a001 139583862445/192900153618*2207^(15/16) 9870003926037682 a001 365435296162/505019158607*2207^(15/16) 9870003926037682 a001 10610209857723/14662949395604*2207^(15/16) 9870003926037682 a001 591286729879/817138163596*2207^(15/16) 9870003926037682 a001 225851433717/312119004989*2207^(15/16) 9870003926037682 a001 86267571272/119218851371*2207^(15/16) 9870003926037682 a001 32951280099/45537549124*2207^(15/16) 9870003926037682 a001 12586269025/17393796001*2207^(15/16) 9870003926037682 a001 4807526976/6643838879*2207^(15/16) 9870003926037682 a001 1836311903/2537720636*2207^(15/16) 9870003926037682 a001 701408733/969323029*2207^(15/16) 9870003926037682 a001 267914296/370248451*2207^(15/16) 9870003926037682 a001 102334155/141422324*2207^(15/16) 9870003926037684 a001 39088169/54018521*2207^(15/16) 9870003926037696 a001 14930352/20633239*2207^(15/16) 9870003926037780 a001 5702887/7881196*2207^(15/16) 9870003926038355 a001 2178309/3010349*2207^(15/16) 9870003926042295 a001 832040/1149851*2207^(15/16) 9870003926069304 a001 317811/439204*2207^(15/16) 9870003926254426 a001 121393/167761*2207^(15/16) 9870003927523269 a001 46368/64079*2207^(15/16) 9870003928790905 a001 10946/9349*2207^(7/8) 9870003936220050 a001 17711/24476*2207^(15/16) 9870003939235171 a001 46368/3571*2207^(9/16) 9870003941029864 r005 Re(z^2+c),c=-26/27+5/33*I,n=33 9870003941463593 m001 (cos(1/12*Pi)-BesselI(0,2))/(Bloch+Thue) 9870003955018100 a007 Real Root Of 236*x^4-960*x^3-207*x^2+434*x-517 9870003956330835 m004 -2/3+5*Pi-25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870003959982664 r008 a(0)=1,K{-n^6,95-9*n^3-37*n^2+27*n} 9870003962392938 r009 Re(z^3+c),c=-11/102+29/55*I,n=3 9870003967294959 a007 Real Root Of 90*x^4+831*x^3-659*x^2-945*x-224 9870003967315422 a001 5702887/15127*843^(1/7) 9870003968193758 a001 317811/2207*843^(2/7) 9870003973799087 m001 5^(1/2)-cos(1/5*Pi)-BesselJ(1,1) 9870003973799087 m001 cos(Pi/5)-sqrt(5)+BesselJ(1,1) 9870003995828672 a001 6765/9349*2207^(15/16) 9870004003324766 a001 377*322^(1/6) 9870004004155628 a001 4976784/13201*843^(1/7) 9870004009530541 a001 39088169/103682*843^(1/7) 9870004009550867 a004 Fibonacci(20)*Lucas(16)/(1/2+sqrt(5)/2)^20 9870004010314731 a001 34111385/90481*843^(1/7) 9870004010429142 a001 267914296/710647*843^(1/7) 9870004010445835 a001 233802911/620166*843^(1/7) 9870004010448270 a001 1836311903/4870847*843^(1/7) 9870004010448626 a001 1602508992/4250681*843^(1/7) 9870004010448677 a001 12586269025/33385282*843^(1/7) 9870004010448685 a001 10983760033/29134601*843^(1/7) 9870004010448686 a001 86267571272/228826127*843^(1/7) 9870004010448686 a001 267913919/710646*843^(1/7) 9870004010448686 a001 591286729879/1568397607*843^(1/7) 9870004010448686 a001 516002918640/1368706081*843^(1/7) 9870004010448686 a001 4052739537881/10749957122*843^(1/7) 9870004010448686 a001 3536736619241/9381251041*843^(1/7) 9870004010448686 a001 6557470319842/17393796001*843^(1/7) 9870004010448686 a001 2504730781961/6643838879*843^(1/7) 9870004010448686 a001 956722026041/2537720636*843^(1/7) 9870004010448686 a001 365435296162/969323029*843^(1/7) 9870004010448686 a001 139583862445/370248451*843^(1/7) 9870004010448687 a001 53316291173/141422324*843^(1/7) 9870004010448690 a001 20365011074/54018521*843^(1/7) 9870004010448709 a001 7778742049/20633239*843^(1/7) 9870004010448845 a001 2971215073/7881196*843^(1/7) 9870004010449775 a001 1134903170/3010349*843^(1/7) 9870004010456151 a001 433494437/1149851*843^(1/7) 9870004010499853 a001 165580141/439204*843^(1/7) 9870004010799386 a001 63245986/167761*843^(1/7) 9870004012852421 a001 24157817/64079*843^(1/7) 9870004026924127 a001 9227465/24476*843^(1/7) 9870004046391022 a004 Fibonacci(22)*Lucas(16)/(1/2+sqrt(5)/2)^22 9870004051765928 a004 Fibonacci(24)*Lucas(16)/(1/2+sqrt(5)/2)^24 9870004052550116 a004 Fibonacci(26)*Lucas(16)/(1/2+sqrt(5)/2)^26 9870004052664527 a004 Fibonacci(28)*Lucas(16)/(1/2+sqrt(5)/2)^28 9870004052681220 a004 Fibonacci(30)*Lucas(16)/(1/2+sqrt(5)/2)^30 9870004052683655 a004 Fibonacci(32)*Lucas(16)/(1/2+sqrt(5)/2)^32 9870004052684011 a004 Fibonacci(34)*Lucas(16)/(1/2+sqrt(5)/2)^34 9870004052684062 a004 Fibonacci(36)*Lucas(16)/(1/2+sqrt(5)/2)^36 9870004052684070 a004 Fibonacci(38)*Lucas(16)/(1/2+sqrt(5)/2)^38 9870004052684071 a004 Fibonacci(40)*Lucas(16)/(1/2+sqrt(5)/2)^40 9870004052684071 a004 Fibonacci(42)*Lucas(16)/(1/2+sqrt(5)/2)^42 9870004052684071 a004 Fibonacci(44)*Lucas(16)/(1/2+sqrt(5)/2)^44 9870004052684071 a004 Fibonacci(46)*Lucas(16)/(1/2+sqrt(5)/2)^46 9870004052684071 a004 Fibonacci(48)*Lucas(16)/(1/2+sqrt(5)/2)^48 9870004052684071 a004 Fibonacci(50)*Lucas(16)/(1/2+sqrt(5)/2)^50 9870004052684071 a004 Fibonacci(52)*Lucas(16)/(1/2+sqrt(5)/2)^52 9870004052684071 a004 Fibonacci(54)*Lucas(16)/(1/2+sqrt(5)/2)^54 9870004052684071 a004 Fibonacci(56)*Lucas(16)/(1/2+sqrt(5)/2)^56 9870004052684071 a004 Fibonacci(58)*Lucas(16)/(1/2+sqrt(5)/2)^58 9870004052684071 a004 Fibonacci(60)*Lucas(16)/(1/2+sqrt(5)/2)^60 9870004052684071 a004 Fibonacci(62)*Lucas(16)/(1/2+sqrt(5)/2)^62 9870004052684071 a004 Fibonacci(64)*Lucas(16)/(1/2+sqrt(5)/2)^64 9870004052684071 a004 Fibonacci(66)*Lucas(16)/(1/2+sqrt(5)/2)^66 9870004052684071 a004 Fibonacci(68)*Lucas(16)/(1/2+sqrt(5)/2)^68 9870004052684071 a004 Fibonacci(70)*Lucas(16)/(1/2+sqrt(5)/2)^70 9870004052684071 a004 Fibonacci(72)*Lucas(16)/(1/2+sqrt(5)/2)^72 9870004052684071 a004 Fibonacci(74)*Lucas(16)/(1/2+sqrt(5)/2)^74 9870004052684071 a004 Fibonacci(76)*Lucas(16)/(1/2+sqrt(5)/2)^76 9870004052684071 a004 Fibonacci(78)*Lucas(16)/(1/2+sqrt(5)/2)^78 9870004052684071 a004 Fibonacci(80)*Lucas(16)/(1/2+sqrt(5)/2)^80 9870004052684071 a004 Fibonacci(82)*Lucas(16)/(1/2+sqrt(5)/2)^82 9870004052684071 a004 Fibonacci(84)*Lucas(16)/(1/2+sqrt(5)/2)^84 9870004052684071 a004 Fibonacci(86)*Lucas(16)/(1/2+sqrt(5)/2)^86 9870004052684071 a004 Fibonacci(88)*Lucas(16)/(1/2+sqrt(5)/2)^88 9870004052684071 a004 Fibonacci(90)*Lucas(16)/(1/2+sqrt(5)/2)^90 9870004052684071 a004 Fibonacci(92)*Lucas(16)/(1/2+sqrt(5)/2)^92 9870004052684071 a004 Fibonacci(94)*Lucas(16)/(1/2+sqrt(5)/2)^94 9870004052684071 a004 Fibonacci(96)*Lucas(16)/(1/2+sqrt(5)/2)^96 9870004052684071 a004 Fibonacci(98)*Lucas(16)/(1/2+sqrt(5)/2)^98 9870004052684071 a004 Fibonacci(100)*Lucas(16)/(1/2+sqrt(5)/2)^100 9870004052684071 a004 Fibonacci(99)*Lucas(16)/(1/2+sqrt(5)/2)^99 9870004052684071 a004 Fibonacci(97)*Lucas(16)/(1/2+sqrt(5)/2)^97 9870004052684071 a004 Fibonacci(95)*Lucas(16)/(1/2+sqrt(5)/2)^95 9870004052684071 a004 Fibonacci(93)*Lucas(16)/(1/2+sqrt(5)/2)^93 9870004052684071 a004 Fibonacci(91)*Lucas(16)/(1/2+sqrt(5)/2)^91 9870004052684071 a004 Fibonacci(89)*Lucas(16)/(1/2+sqrt(5)/2)^89 9870004052684071 a004 Fibonacci(87)*Lucas(16)/(1/2+sqrt(5)/2)^87 9870004052684071 a004 Fibonacci(85)*Lucas(16)/(1/2+sqrt(5)/2)^85 9870004052684071 a004 Fibonacci(83)*Lucas(16)/(1/2+sqrt(5)/2)^83 9870004052684071 a004 Fibonacci(81)*Lucas(16)/(1/2+sqrt(5)/2)^81 9870004052684071 a004 Fibonacci(79)*Lucas(16)/(1/2+sqrt(5)/2)^79 9870004052684071 a004 Fibonacci(77)*Lucas(16)/(1/2+sqrt(5)/2)^77 9870004052684071 a004 Fibonacci(75)*Lucas(16)/(1/2+sqrt(5)/2)^75 9870004052684071 a004 Fibonacci(73)*Lucas(16)/(1/2+sqrt(5)/2)^73 9870004052684071 a004 Fibonacci(71)*Lucas(16)/(1/2+sqrt(5)/2)^71 9870004052684071 a004 Fibonacci(69)*Lucas(16)/(1/2+sqrt(5)/2)^69 9870004052684071 a004 Fibonacci(67)*Lucas(16)/(1/2+sqrt(5)/2)^67 9870004052684071 a004 Fibonacci(65)*Lucas(16)/(1/2+sqrt(5)/2)^65 9870004052684071 a004 Fibonacci(63)*Lucas(16)/(1/2+sqrt(5)/2)^63 9870004052684071 a004 Fibonacci(61)*Lucas(16)/(1/2+sqrt(5)/2)^61 9870004052684071 a004 Fibonacci(59)*Lucas(16)/(1/2+sqrt(5)/2)^59 9870004052684071 a004 Fibonacci(57)*Lucas(16)/(1/2+sqrt(5)/2)^57 9870004052684071 a004 Fibonacci(55)*Lucas(16)/(1/2+sqrt(5)/2)^55 9870004052684071 a004 Fibonacci(53)*Lucas(16)/(1/2+sqrt(5)/2)^53 9870004052684071 a004 Fibonacci(51)*Lucas(16)/(1/2+sqrt(5)/2)^51 9870004052684071 a004 Fibonacci(49)*Lucas(16)/(1/2+sqrt(5)/2)^49 9870004052684071 a004 Fibonacci(47)*Lucas(16)/(1/2+sqrt(5)/2)^47 9870004052684071 a004 Fibonacci(45)*Lucas(16)/(1/2+sqrt(5)/2)^45 9870004052684071 a004 Fibonacci(43)*Lucas(16)/(1/2+sqrt(5)/2)^43 9870004052684071 a004 Fibonacci(41)*Lucas(16)/(1/2+sqrt(5)/2)^41 9870004052684072 a004 Fibonacci(39)*Lucas(16)/(1/2+sqrt(5)/2)^39 9870004052684075 a004 Fibonacci(37)*Lucas(16)/(1/2+sqrt(5)/2)^37 9870004052684094 a004 Fibonacci(35)*Lucas(16)/(1/2+sqrt(5)/2)^35 9870004052684230 a004 Fibonacci(33)*Lucas(16)/(1/2+sqrt(5)/2)^33 9870004052684487 a001 2/987*(1/2+1/2*5^(1/2))^32 9870004052685160 a004 Fibonacci(31)*Lucas(16)/(1/2+sqrt(5)/2)^31 9870004052691536 a004 Fibonacci(29)*Lucas(16)/(1/2+sqrt(5)/2)^29 9870004052735238 a004 Fibonacci(27)*Lucas(16)/(1/2+sqrt(5)/2)^27 9870004053034771 a004 Fibonacci(25)*Lucas(16)/(1/2+sqrt(5)/2)^25 9870004055087802 a004 Fibonacci(23)*Lucas(16)/(1/2+sqrt(5)/2)^23 9870004059133552 a007 Real Root Of 53*x^4+531*x^3+9*x^2-636*x+432 9870004069159489 a004 Fibonacci(21)*Lucas(16)/(1/2+sqrt(5)/2)^21 9870004069203435 a001 28657/3571*2207^(5/8) 9870004078456379 r005 Re(z^2+c),c=13/110+22/41*I,n=9 9870004078887472 l006 ln(5649/6235) 9870004080333711 m002 Pi^2+ProductLog[Pi]^2/(3*Pi^6) 9870004086817468 r005 Re(z^2+c),c=11/74+10/51*I,n=11 9870004087636514 m001 (Zeta(1/2)+Niven)/(Otter-Weierstrass) 9870004096455066 r005 Re(z^2+c),c=-31/34+9/73*I,n=4 9870004123373041 a001 3524578/9349*843^(1/7) 9870004142062713 a001 17711/1364*1364^(3/5) 9870004165608266 a004 Fibonacci(19)*Lucas(16)/(1/2+sqrt(5)/2)^19 9870004176970089 a003 cos(Pi*7/106)/sin(Pi*11/24) 9870004187153045 a001 17711/3571*2207^(11/16) 9870004189753281 m001 1/exp(Porter)^2*MertensB1*Rabbit 9870004194665036 r008 a(0)=1,K{-n^6,-52+88*n^3+63*n^2-22*n} 9870004195870634 a007 Real Root Of 977*x^4+117*x^3+440*x^2+514*x-736 9870004207324292 a003 sin(Pi*41/93)/sin(Pi*8/17) 9870004220705666 b008 97+ArcSinh[Sqrt[7]] 9870004231636585 m001 (MertensB2-PisotVijayaraghavan)/(Gompertz-Kac) 9870004254998873 a007 Real Root Of 99*x^4+987*x^3+70*x^2-181*x+884 9870004257588985 r002 44th iterates of z^2 + 9870004258576336 m001 ln(2)^(Trott/GaussKuzminWirsing) 9870004258959614 r002 4i'th iterates of 2*x/(1-x^2) of 9870004282781699 r002 8th iterates of z^2 + 9870004286352994 p003 LerchPhi(1/100,5,519/206) 9870004294329837 r005 Re(z^2+c),c=13/64+16/59*I,n=38 9870004327667068 m005 (1/2*3^(1/2)-1/3)/(1/7*Pi+1/11) 9870004336567906 a001 10946/3571*2207^(3/4) 9870004344054301 a007 Real Root Of 818*x^4-454*x^3-474*x^2-235*x-983 9870004344392736 r008 a(0)=1,K{-n^6,19-40*n^3+59*n^2+42*n} 9870004353643404 r002 21th iterates of z^2 + 9870004382476030 m005 (1/2*5^(1/2)-3/8)/(4*3^(1/2)+3/5) 9870004403605677 a001 6765/3571*2207^(13/16) 9870004404392278 a001 2584/3571*2207^(15/16) 9870004404530544 a007 Real Root Of -82*x^4+863*x^3-12*x^2-824*x+106 9870004413294678 l006 ln(3453/9265) 9870004424552639 a003 cos(Pi*1/114)*cos(Pi*4/79) 9870004428789608 m001 BesselI(1,1)^(1/3)/sin(Pi/5)^(1/3) 9870004438382721 h001 (1/10*exp(1)+6/11)/(1/6*exp(1)+3/8) 9870004451445802 a007 Real Root Of -624*x^4-94*x^3-262*x^2-613*x+152 9870004454472212 r005 Re(z^2+c),c=-15/122+55/61*I,n=14 9870004460838288 a007 Real Root Of 723*x^4+523*x^3+151*x^2-28*x-358 9870004462615964 m001 Catalan^(sin(1/12*Pi)*Stephens) 9870004465576460 r005 Im(z^2+c),c=3/26+3/40*I,n=8 9870004473305423 a008 Real Root of x^4-x^3-31*x^2-205*x-9455 9870004494665551 m001 GAMMA(3/4)/Catalan/FeigenbaumKappa 9870004504428493 a001 28657/1364*1364^(8/15) 9870004531038537 a001 4181/2-987/2*5^(1/2) 9870004534350216 a001 610*521^(1/13) 9870004559112946 a007 Real Root Of 943*x^4+912*x^3+275*x^2-609*x-887 9870004587822927 a007 Real Root Of -844*x^4+299*x^3+531*x^2-64*x+508 9870004606832314 m001 (gamma(3)-ErdosBorwein)/(Zeta(1/2)+Zeta(1,-1)) 9870004618418562 r005 Re(z^2+c),c=-13/12+18/95*I,n=28 9870004622098162 a001 987/1364*3571^(15/17) 9870004625707598 m001 (MertensB3-cos(1/5*Pi)*TwinPrimes)/cos(1/5*Pi) 9870004686309479 a001 4181/3571*2207^(7/8) 9870004687674461 r009 Re(z^3+c),c=-9/110+34/45*I,n=63 9870004689285601 a007 Real Root Of 581*x^4-427*x^3-939*x^2-707*x-745 9870004695572554 a007 Real Root Of 46*x^4+355*x^3-945*x^2+227*x-909 9870004706863851 a001 1346269/5778*843^(3/14) 9870004707407929 m001 (Robbin-TwinPrimes)/(Paris+Porter) 9870004748451997 m005 (1/2*exp(1)+1/4)/(6/7*Zeta(3)+3/5) 9870004755889514 a007 Real Root Of 994*x^4+971*x^3-616*x^2-354*x+241 9870004759738274 m008 (1/5*Pi^6+3/5)/(2*Pi^4+3/5) 9870004784443777 a001 1346269/3571*843^(1/7) 9870004789215910 a007 Real Root Of -335*x^4+832*x^3+244*x^2-139*x+743 9870004814636494 q001 205/2077 9870004819547510 m002 Pi^2+Sinh[Pi]/(30*Pi^6) 9870004826678015 a004 Fibonacci(17)*Lucas(16)/(1/2+sqrt(5)/2)^17 9870004835333114 a007 Real Root Of -360*x^4+417*x^3-881*x^2-782*x+829 9870004835395340 a007 Real Root Of 868*x^4-383*x^3-304*x^2+781*x-125 9870004837660808 m001 (ArtinRank2+Cahen)/(BesselK(0,1)-Zeta(1,2)) 9870004848696094 a007 Real Root Of 802*x^4-324*x^3+487*x^2+996*x-564 9870004854775630 a001 11592/341*1364^(7/15) 9870004856676217 a007 Real Root Of -348*x^4+792*x^3-8*x^2-195*x-231 9870004859658253 m001 (-gamma(1)+BesselI(0,2))/(exp(Pi)+ln(2)) 9870004872182946 a007 Real Root Of 744*x^4+787*x^3-49*x^2-894*x-784 9870004875177990 h001 (1/3*exp(2)+1/7)/(3/11*exp(2)+5/8) 9870004887022552 r005 Im(z^2+c),c=-24/29+3/52*I,n=23 9870004891463571 m001 1/5*(3^(1/2)+Weierstrass)*5^(1/2) 9870004894962427 m005 (1/2*Zeta(3)-5/7)/(2/5*Zeta(3)+2/3) 9870004900168059 m001 MadelungNaCl/DuboisRaymond^2/exp(cosh(1)) 9870004925415435 m001 (Pi-MadelungNaCl)/(Riemann1stZero-Trott) 9870004954006882 r002 2th iterates of z^2 + 9870004959369112 a001 3524578/15127*843^(3/14) 9870004960317939 a001 196418/2207*843^(5/14) 9870004974744371 m006 (3/4*Pi^2-1/4)/(2/3*Pi^2+2/3) 9870004974744371 m008 (3/4*Pi^2-1/4)/(2/3*Pi^2+2/3) 9870004991601777 a007 Real Root Of 605*x^4-665*x^3-917*x^2+418*x+546 9870004995445234 m005 (1/2*3^(1/2)+1/12)/(4/7*Pi-5/6) 9870004996209134 a001 9227465/39603*843^(3/14) 9870004996494083 a007 Real Root Of -747*x^4+994*x^3+837*x^2-595*x+262 9870005000998366 m004 -5/6+5*Pi-25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870005001584021 a001 24157817/103682*843^(3/14) 9870005002368206 a001 63245986/271443*843^(3/14) 9870005002482618 a001 165580141/710647*843^(3/14) 9870005002499310 a001 433494437/1860498*843^(3/14) 9870005002501745 a001 1134903170/4870847*843^(3/14) 9870005002502101 a001 2971215073/12752043*843^(3/14) 9870005002502152 a001 7778742049/33385282*843^(3/14) 9870005002502160 a001 20365011074/87403803*843^(3/14) 9870005002502161 a001 53316291173/228826127*843^(3/14) 9870005002502161 a001 139583862445/599074578*843^(3/14) 9870005002502161 a001 365435296162/1568397607*843^(3/14) 9870005002502161 a001 956722026041/4106118243*843^(3/14) 9870005002502161 a001 2504730781961/10749957122*843^(3/14) 9870005002502161 a001 6557470319842/28143753123*843^(3/14) 9870005002502161 a001 10610209857723/45537549124*843^(3/14) 9870005002502161 a001 4052739537881/17393796001*843^(3/14) 9870005002502161 a001 1548008755920/6643838879*843^(3/14) 9870005002502161 a001 591286729879/2537720636*843^(3/14) 9870005002502161 a001 225851433717/969323029*843^(3/14) 9870005002502161 a001 86267571272/370248451*843^(3/14) 9870005002502162 a001 63246219/271444*843^(3/14) 9870005002502165 a001 12586269025/54018521*843^(3/14) 9870005002502184 a001 4807526976/20633239*843^(3/14) 9870005002502320 a001 1836311903/7881196*843^(3/14) 9870005002503250 a001 701408733/3010349*843^(3/14) 9870005002509626 a001 267914296/1149851*843^(3/14) 9870005002553327 a001 102334155/439204*843^(3/14) 9870005002852860 a001 39088169/167761*843^(3/14) 9870005004905884 a001 14930352/64079*843^(3/14) 9870005018977520 a001 5702887/24476*843^(3/14) 9870005051121879 m001 (Porter+ZetaP(3))/(Artin-cos(1)) 9870005056063455 r005 Re(z^2+c),c=7/58+20/53*I,n=3 9870005057286790 l006 ln(1676/4497) 9870005087000737 a007 Real Root Of 957*x^4-122*x^3-379*x^2+439*x-223 9870005091648374 a008 Real Root of x^2-x-9643 9870005115425952 a001 2178309/9349*843^(3/14) 9870005122506969 s002 sum(A132492[n]/(pi^n),n=1..infinity) 9870005203994199 a001 610/2207*9349^(17/19) 9870005209713497 a001 75025/1364*1364^(2/5) 9870005210065546 a007 Real Root Of -107*x^4-994*x^3+639*x^2+200*x-575 9870005215883393 a001 987/1364*9349^(15/19) 9870005234273582 p004 log(30643/27763) 9870005235736810 m005 (1/2*Catalan+9/11)/(3/5*2^(1/2)+4/9) 9870005240463043 r001 12i'th iterates of 2*x^2-1 of 9870005240831703 m005 (1/2*Zeta(3)+7/12)/(6/11*2^(1/2)+3/7) 9870005247896086 r005 Im(z^2+c),c=-39/50+7/62*I,n=30 9870005253375507 a007 Real Root Of 618*x^4-763*x^3+215*x^2+726*x-813 9870005255872655 a007 Real Root Of -489*x^4+881*x^3+777*x^2-983*x-416 9870005275026764 a007 Real Root Of 434*x^4-999*x^3-854*x^2-421*x-956 9870005278267908 a007 Real Root Of -268*x^4+708*x^3+698*x^2+470*x+719 9870005280883316 r009 Re(z^3+c),c=-5/24+41/62*I,n=20 9870005288114744 m001 (PlouffeB+ZetaP(4))/(Chi(1)-Psi(2,1/3)) 9870005289563022 a003 sin(Pi*47/108)/sin(Pi*29/63) 9870005291694404 a001 610/2207*24476^(17/21) 9870005293265927 a001 987/1364*24476^(5/7) 9870005303254978 a001 610/2207*64079^(17/23) 9870005303466434 a001 987/1364*64079^(15/23) 9870005304823665 a001 987/1364*167761^(3/5) 9870005305005659 a001 987/1364*439204^(5/9) 9870005305031649 a001 610/2207*45537549124^(1/3) 9870005305031649 a001 610/2207*(1/2+1/2*5^(1/2))^17 9870005305031679 a001 610/2207*12752043^(1/2) 9870005305034012 a001 987/1364*7881196^(5/11) 9870005305034075 a001 987/1364*20633239^(3/7) 9870005305034084 a001 987/1364*141422324^(5/13) 9870005305034084 a001 987/1364*2537720636^(1/3) 9870005305034084 a001 987/1364*45537549124^(5/17) 9870005305034084 a001 987/1364*312119004989^(3/11) 9870005305034084 a001 987/1364*14662949395604^(5/21) 9870005305034084 a001 987/1364*(1/2+1/2*5^(1/2))^15 9870005305034084 a001 987/1364*192900153618^(5/18) 9870005305034084 a001 987/1364*28143753123^(3/10) 9870005305034084 a001 987/1364*10749957122^(5/16) 9870005305034084 a001 987/1364*599074578^(5/14) 9870005305034085 a001 987/1364*228826127^(3/8) 9870005305034088 a001 987/1364*33385282^(5/12) 9870005305035510 a001 987/1364*1860498^(1/2) 9870005305607924 a001 987/1364*103682^(5/8) 9870005305682001 a001 610/2207*103682^(17/24) 9870005309324801 a001 987/1364*39603^(15/22) 9870005309894461 a001 610/2207*39603^(17/22) 9870005337383992 a001 987/1364*15127^(3/4) 9870005341694877 a001 610/2207*15127^(17/20) 9870005346743897 m001 (-Zeta(1,2)+StolarskyHarborth)/(gamma-ln(5)) 9870005355079526 r005 Im(z^2+c),c=-13/16+6/113*I,n=53 9870005355144885 a001 3/521*18^(11/59) 9870005395239537 a001 521*6557470319842^(7/17) 9870005400127800 m002 Pi^2+ProductLog[Pi]/(5*E^(2*Pi)) 9870005405529056 a007 Real Root Of 169*x^4-426*x^3-429*x^2-5*x-157 9870005406807449 m001 1/GAMMA(5/6)^2/GAMMA(5/24)^2/exp(sqrt(2)) 9870005422328583 m002 -6+Log[Pi]/Pi^2+Pi^4*ProductLog[Pi] 9870005425027672 m001 (gamma+3)/(GolombDickman+3) 9870005457060893 a007 Real Root Of 776*x^4+235*x^3-125*x^2+792*x+393 9870005467224947 a007 Real Root Of 618*x^4-338*x^3-951*x^2-80*x-64 9870005476490920 a007 Real Root Of 919*x^4+152*x^3+149*x^2+220*x-654 9870005477748732 a007 Real Root Of 908*x^4-456*x^3-915*x^2-60*x-468 9870005482434818 a007 Real Root Of -42*x^4+233*x^3-34*x^2-153*x+146 9870005513078818 r008 a(0)=1,K{-n^6,37+29*n+34*n^2-22*n^3} 9870005526754463 m001 (LambertW(1)-Shi(1))/(-exp(-1/2*Pi)+CareFree) 9870005530149646 m001 (Catalan-FransenRobinson)/(-Tetranacci+Trott) 9870005551400265 a001 987/1364*5778^(5/6) 9870005559930674 a007 Real Root Of 823*x^4-892*x^3-137*x^2+905*x-612 9870005562897879 a001 121393/1364*1364^(1/3) 9870005568685826 a007 Real Root Of 356*x^4+920*x^3+807*x^2-32*x-271 9870005583769631 a007 Real Root Of -26*x^4-296*x^3-413*x^2-252*x-118 9870005584246654 a001 610/2207*5778^(17/18) 9870005592763739 a007 Real Root Of -386*x^4-107*x^3+259*x^2+702*x+704 9870005597359471 a001 1597/521*521^(12/13) 9870005600671641 a001 -2584+1597*5^(1/2) 9870005603698539 r002 5th iterates of z^2 + 9870005604517860 m004 -8-Sqrt[5]*Pi+25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870005650232950 m001 GAMMA(1/4)^2*Si(Pi)^2*exp(cosh(1))^2 9870005692909808 a007 Real Root Of -398*x^4+797*x^3-310*x^2-614*x+840 9870005693268171 a003 sin(Pi*2/63)*sin(Pi*49/107) 9870005698913456 a001 416020/2889*843^(2/7) 9870005703055024 m001 FeigenbaumC^Champernowne*Catalan 9870005732743481 r005 Re(z^2+c),c=-14/19+14/55*I,n=10 9870005741293131 l006 ln(3251/8723) 9870005752661128 m005 (1/2*2^(1/2)+2/7)/(6*3^(1/2)-1/3) 9870005767142162 r005 Im(z^2+c),c=-137/126+5/43*I,n=29 9870005775786894 s002 sum(A199321[n]/(n*pi^n-1),n=1..infinity) 9870005776493389 a001 832040/3571*843^(3/14) 9870005788017031 a001 322/24157817*832040^(6/19) 9870005788017935 a001 322/433494437*7778742049^(6/19) 9870005813362478 a007 Real Root Of -888*x^4+225*x^3+377*x^2-785*x-83 9870005890980981 r005 Re(z^2+c),c=-21/22+19/108*I,n=61 9870005892556989 m001 Tribonacci^(ln(2+3^(1/2))/ZetaP(3)) 9870005909090657 m001 (Pi-exp(1/Pi))/(GAMMA(23/24)+LandauRamanujan) 9870005916752051 a001 98209/682*1364^(4/15) 9870005938539459 a007 Real Root Of 738*x^4-307*x^3-75*x^2+501*x-428 9870005950673363 a007 Real Root Of 343*x^4+161*x^3+565*x^2+299*x-426 9870005951422108 a001 311187/2161*843^(2/7) 9870005952186387 a001 121393/2207*843^(3/7) 9870005955467755 m001 (2^(1/2)+GAMMA(3/4))/(-FeigenbaumD+ZetaQ(3)) 9870005966097685 m001 ln(5)^ArtinRank2/(GAMMA(13/24)^ArtinRank2) 9870005973125041 m005 (1/2*Catalan-3/5)/(2/7*5^(1/2)+4/5) 9870005984727330 r005 Re(z^2+c),c=-15/16+5/24*I,n=37 9870005988262624 a001 5702887/39603*843^(2/7) 9870005993637583 a001 7465176/51841*843^(2/7) 9870005994421779 a001 39088169/271443*843^(2/7) 9870005994536192 a001 14619165/101521*843^(2/7) 9870005994552885 a001 133957148/930249*843^(2/7) 9870005994555320 a001 701408733/4870847*843^(2/7) 9870005994555675 a001 1836311903/12752043*843^(2/7) 9870005994555727 a001 14930208/103681*843^(2/7) 9870005994555735 a001 12586269025/87403803*843^(2/7) 9870005994555736 a001 32951280099/228826127*843^(2/7) 9870005994555736 a001 43133785636/299537289*843^(2/7) 9870005994555736 a001 32264490531/224056801*843^(2/7) 9870005994555736 a001 591286729879/4106118243*843^(2/7) 9870005994555736 a001 774004377960/5374978561*843^(2/7) 9870005994555736 a001 4052739537881/28143753123*843^(2/7) 9870005994555736 a001 1515744265389/10525900321*843^(2/7) 9870005994555736 a001 3278735159921/22768774562*843^(2/7) 9870005994555736 a001 2504730781961/17393796001*843^(2/7) 9870005994555736 a001 956722026041/6643838879*843^(2/7) 9870005994555736 a001 182717648081/1268860318*843^(2/7) 9870005994555736 a001 139583862445/969323029*843^(2/7) 9870005994555736 a001 53316291173/370248451*843^(2/7) 9870005994555737 a001 10182505537/70711162*843^(2/7) 9870005994555739 a001 7778742049/54018521*843^(2/7) 9870005994555759 a001 2971215073/20633239*843^(2/7) 9870005994555895 a001 567451585/3940598*843^(2/7) 9870005994556825 a001 433494437/3010349*843^(2/7) 9870005994563201 a001 165580141/1149851*843^(2/7) 9870005994606903 a001 31622993/219602*843^(2/7) 9870005994906439 a001 24157817/167761*843^(2/7) 9870005996959491 a001 9227465/64079*843^(2/7) 9870006006116883 a007 Real Root Of -319*x^4-165*x^3-774*x^2-916*x-6 9870006011031316 a001 1762289/12238*843^(2/7) 9870006016820216 a007 Real Root Of -691*x^4+649*x^3+990*x^2-819*x-493 9870006035081566 r009 Re(z^3+c),c=-5/32+35/64*I,n=10 9870006041054910 a007 Real Root Of 23*x^4-699*x^3+630*x^2-503*x+533 9870006048293384 m001 (BesselI(1,2)-ln(5)*HeathBrownMoroz)/ln(5) 9870006069196613 r008 a(0)=1,K{-n^6,-33+88*n^3+79*n^2-57*n} 9870006069833192 r008 a(0)=1,K{-n^6,-17+94*n^3+69*n^2-69*n} 9870006093006237 a007 Real Root Of 797*x^4-186*x^3+387*x^2-564*x+52 9870006099677210 a003 cos(Pi*1/109)*sin(Pi*40/89) 9870006107481043 a001 1346269/9349*843^(2/7) 9870006123743564 r002 23th iterates of z^2 + 9870006166975633 a007 Real Root Of -49*x^4+192*x^3+165*x^2+721*x+782 9870006170993067 m001 Chi(1)^(ZetaP(4)/Zeta(5)) 9870006171978778 m001 Salem/FibonacciFactorial^2*ln(log(1+sqrt(2))) 9870006179223580 a001 3/55*196418^(37/46) 9870006201861932 r005 Re(z^2+c),c=-13/14+55/177*I,n=31 9870006211046040 r008 a(0)=1,K{-n^6,-34+88*n^3+79*n^2-56*n} 9870006229867388 r005 Re(z^2+c),c=3/58+23/48*I,n=48 9870006239575471 s001 sum(exp(-2*Pi)^(n-1)*A110683[n],n=1..infinity) 9870006261740763 a001 1576240/1597 9870006261741254 a001 9959/2-3571/2*5^(1/2) 9870006268886942 m001 (Porter-TwinPrimes)/(Zeta(5)-Ei(1,1)) 9870006270350403 a001 317811/1364*1364^(1/5) 9870006297191258 m001 ZetaP(4)^(Trott/Pi/csc(5/12*Pi)*GAMMA(7/12)) 9870006317862606 m002 Pi^2+Cosh[Pi]/(30*Pi^6) 9870006318828334 m005 (1/3*2^(1/2)+1/6)/(1/7*2^(1/2)+4/9) 9870006341154090 q001 3113/3154 9870006352632202 a007 Real Root Of 112*x^4-939*x^3-681*x^2-518*x-857 9870006382701565 a007 Real Root Of 75*x^4+716*x^3-322*x^2-844*x-279 9870006443411854 m001 LambertW(1)*exp(1/2)*GAMMA(11/12) 9870006443859826 a001 646/341*3571^(13/17) 9870006454765277 m005 (1/2*exp(1)-7/12)/(5*3^(1/2)-4/5) 9870006469162685 l006 ln(1575/4226) 9870006481255793 h001 (5/6*exp(1)+4/5)/(3/10*exp(2)+8/9) 9870006493796479 r008 a(0)=1,K{-n^6,-34+88*n^3+80*n^2-57*n} 9870006545975261 r008 a(0)=1,K{-n^6,-8-53*n^3+44*n^2+93*n} 9870006547817757 r008 a(0)=1,K{-n^6,29+28*n+37*n^2-17*n^3} 9870006547820871 m001 BesselJ(0,1)*TravellingSalesman+BesselJ(1,1) 9870006557380157 a004 Fibonacci(15)*Lucas(17)/(1/2+sqrt(5)/2)^16 9870006559445601 r005 Re(z^2+c),c=-9/16+68/79*I,n=2 9870006586547617 a007 Real Root Of -623*x^4+935*x^3-411*x^2-952*x+951 9870006590690399 r002 3th iterates of z^2 + 9870006622330670 a007 Real Root Of -422*x^4+252*x^3+355*x^2+662*x-69 9870006622700837 r002 3th iterates of z^2 + 9870006624046487 a001 514229/1364*1364^(2/15) 9870006636879259 a003 cos(Pi*4/77)/sin(Pi*32/65) 9870006640462338 m001 (GAMMA(7/12)+GAMMA(23/24))/sin(1/12*Pi) 9870006640462338 m001 (GAMMA(7/12)+GAMMA(23/24))/sin(Pi/12) 9870006646077915 b008 3*Pi+Tan[(2*Pi)/15] 9870006677317567 m001 1/exp(GAMMA(7/24))/HardHexagonsEntropy/gamma^2 9870006690977417 a001 514229/5778*843^(5/14) 9870006698523733 a007 Real Root Of -730*x^4-456*x^3-650*x^2-497*x+397 9870006704513935 r005 Im(z^2+c),c=-11/18+6/37*I,n=18 9870006716675851 a007 Real Root Of -331*x^4+714*x^3+522*x^2-760*x-258 9870006749168857 a007 Real Root Of 646*x^4+307*x^3+517*x^2+806*x-26 9870006762722360 m001 Chi(1)*ThueMorse-MertensB3 9870006767520462 a007 Real Root Of -507*x^4+703*x^3-319*x^2-858*x+621 9870006768557358 a001 514229/3571*843^(2/7) 9870006787424209 a001 615/124*3571^(11/17) 9870006804079343 r005 Re(z^2+c),c=-25/26+12/77*I,n=27 9870006845748470 m002 1+Pi^4+Pi*ProductLog[Pi]*Sech[Pi] 9870006850886155 p004 log(16633/6199) 9870006854362091 p003 LerchPhi(1/10,4,396/221) 9870006855008161 r009 Re(z^3+c),c=-1/12+27/31*I,n=3 9870006887052341 r005 Re(z^2+c),c=-1/24+8/33*I,n=2 9870006887052341 r009 Re(z^3+c),c=-1/4+23/33*I,n=2 9870006892561918 a001 5473/682*3571^(10/17) 9870006897952581 a001 4181/1364*3571^(12/17) 9870006914108945 a003 sin(Pi*4/93)+sin(Pi*38/117) 9870006915322515 a001 17711/1364*3571^(9/17) 9870006916280580 a007 Real Root Of 834*x^4+134*x^3+240*x^2+813*x-94 9870006943477283 a001 1346269/15127*843^(5/14) 9870006944724713 a001 75025/2207*843^(1/2) 9870006954549570 a007 Real Root Of -214*x^4+872*x^3+628*x^2-375*x-877 9870006958473786 a001 646/341*9349^(13/19) 9870006969548369 a001 28657/1364*3571^(8/17) 9870006977705258 a001 610*1364^(1/15) 9870006980316518 a001 3524578/39603*843^(5/14) 9870006982045289 a003 sin(Pi*44/111)/sin(Pi*34/83) 9870006984590901 m002 4/Pi^8-Csch[Pi]*Log[Pi] 9870006985691290 a001 9227465/103682*843^(5/14) 9870006986475458 a001 24157817/271443*843^(5/14) 9870006986589867 a001 63245986/710647*843^(5/14) 9870006986606559 a001 165580141/1860498*843^(5/14) 9870006986608994 a001 433494437/4870847*843^(5/14) 9870006986609350 a001 1134903170/12752043*843^(5/14) 9870006986609402 a001 2971215073/33385282*843^(5/14) 9870006986609409 a001 7778742049/87403803*843^(5/14) 9870006986609410 a001 20365011074/228826127*843^(5/14) 9870006986609410 a001 53316291173/599074578*843^(5/14) 9870006986609410 a001 139583862445/1568397607*843^(5/14) 9870006986609410 a001 365435296162/4106118243*843^(5/14) 9870006986609410 a001 956722026041/10749957122*843^(5/14) 9870006986609410 a001 2504730781961/28143753123*843^(5/14) 9870006986609410 a001 6557470319842/73681302247*843^(5/14) 9870006986609410 a001 10610209857723/119218851371*843^(5/14) 9870006986609410 a001 4052739537881/45537549124*843^(5/14) 9870006986609410 a001 1548008755920/17393796001*843^(5/14) 9870006986609410 a001 591286729879/6643838879*843^(5/14) 9870006986609410 a001 225851433717/2537720636*843^(5/14) 9870006986609410 a001 86267571272/969323029*843^(5/14) 9870006986609411 a001 32951280099/370248451*843^(5/14) 9870006986609411 a001 12586269025/141422324*843^(5/14) 9870006986609414 a001 4807526976/54018521*843^(5/14) 9870006986609434 a001 1836311903/20633239*843^(5/14) 9870006986609569 a001 3524667/39604*843^(5/14) 9870006986610500 a001 267914296/3010349*843^(5/14) 9870006986616875 a001 102334155/1149851*843^(5/14) 9870006986660576 a001 39088169/439204*843^(5/14) 9870006986960101 a001 14930352/167761*843^(5/14) 9870006989013082 a001 5702887/64079*843^(5/14) 9870006998687258 a007 Real Root Of 947*x^4-796*x^3-554*x^2+817*x-318 9870007001752452 a007 Real Root Of -922*x^4+122*x^3-724*x^2-724*x+983 9870007003084417 a001 2178309/24476*843^(5/14) 9870007011755564 a001 11592/341*3571^(7/17) 9870007020828554 a001 305/2889*24476^(19/21) 9870007025538661 a001 646/341*24476^(13/21) 9870007029288929 m001 Catalan^2*exp(TwinPrimes)^2*Pi 9870007033749198 a001 305/2889*64079^(19/23) 9870007034379101 a001 646/341*64079^(13/23) 9870007035734889 a001 305/2889*817138163596^(1/3) 9870007035734889 a001 305/2889*(1/2+1/2*5^(1/2))^19 9870007035734890 a001 305/2889*87403803^(1/2) 9870007035737732 a001 646/341*141422324^(1/3) 9870007035737732 a001 646/341*(1/2+1/2*5^(1/2))^13 9870007035737732 a001 646/341*73681302247^(1/4) 9870007035804710 a001 646/341*271443^(1/2) 9870007036235060 a001 646/341*103682^(13/24) 9870007036461753 a001 305/2889*103682^(19/24) 9870007039456353 a001 646/341*39603^(13/22) 9870007041169797 a001 305/2889*39603^(19/22) 9870007044584984 l006 ln(5408/5969) 9870007055043625 r008 a(0)=1,K{-n^6,-78+90*n^3+54*n^2+11*n} 9870007055507432 r008 a(0)=1,K{-n^6,-34+89*n^3+79*n^2-57*n} 9870007058553478 a001 75025/1364*3571^(6/17) 9870007063774323 a001 646/341*15127^(13/20) 9870007068877298 r005 Re(z^2+c),c=-115/122+9/44*I,n=47 9870007074189230 a007 Real Root Of 727*x^4-756*x^3+582*x^2-512*x-57 9870007076711446 a001 305/2889*15127^(19/20) 9870007084897457 m001 Zeta(1/2)*LandauRamanujan2nd^Sarnak 9870007090691197 m008 (1/5*Pi^4-1/2)/(1/5*Pi^4-1/4) 9870007099530788 a001 832040/9349*843^(5/14) 9870007100242625 a007 Real Root Of 658*x^4+712*x^3+792*x^2+431*x-286 9870007103597895 a001 121393/1364*3571^(5/17) 9870007111535141 a003 cos(Pi*17/91)/sin(Pi*31/97) 9870007120248749 a007 Real Root Of -58*x^4+363*x^3+202*x^2+59*x-549 9870007149312088 a001 98209/682*3571^(4/17) 9870007150832316 m001 ZetaQ(2)^MertensB1/Bloch 9870007154348027 a007 Real Root Of 282*x^4+316*x^3+405*x^2+129*x-231 9870007175316909 a001 4126650/4181 9870007194644385 r008 a(0)=1,K{-n^6,-79+90*n^3+54*n^2+12*n} 9870007194770449 a001 317811/1364*3571^(3/17) 9870007204730362 a001 987/1364*2207^(15/16) 9870007206476663 r009 Re(z^3+c),c=-5/36+35/48*I,n=24 9870007211308650 a007 Real Root Of -480*x^4-35*x^3-269*x^2+71*x+754 9870007218450126 a004 Fibonacci(15)*Lucas(19)/(1/2+sqrt(5)/2)^18 9870007222866804 a001 615/124*9349^(11/19) 9870007240326530 a001 514229/1364*3571^(2/17) 9870007240857352 r005 Im(z^2+c),c=-23/26+3/40*I,n=31 9870007245254434 l006 ln(3049/8181) 9870007249255125 a001 646/341*5778^(13/18) 9870007253626119 r009 Im(z^3+c),c=-31/64+31/52*I,n=20 9870007256079361 r005 Im(z^2+c),c=3/10+17/30*I,n=36 9870007270712887 m006 (1/4*exp(2*Pi)-1)/(1/4*exp(2*Pi)+3/4) 9870007271593732 a001 17711/1364*9349^(9/19) 9870007277166895 a007 Real Root Of 196*x^4-264*x^3-360*x^2+66*x-24 9870007279614007 a001 615/124*24476^(11/21) 9870007285845286 a001 610*3571^(1/17) 9870007286046428 a001 610/15127*64079^(21/23) 9870007286233896 a001 28657/1364*9349^(8/19) 9870007287094380 a001 615/124*64079^(11/23) 9870007288201344 a001 610/15127*439204^(7/9) 9870007288241039 a001 610/15127*7881196^(7/11) 9870007288241126 a001 610/15127*20633239^(3/5) 9870007288241140 a001 610/15127*141422324^(7/13) 9870007288241140 a001 610/15127*2537720636^(7/15) 9870007288241140 a001 610/15127*17393796001^(3/7) 9870007288241140 a001 610/15127*45537549124^(7/17) 9870007288241140 a001 610/15127*14662949395604^(1/3) 9870007288241140 a001 610/15127*(1/2+1/2*5^(1/2))^21 9870007288241140 a001 610/15127*192900153618^(7/18) 9870007288241140 a001 610/15127*10749957122^(7/16) 9870007288241140 a001 610/15127*599074578^(1/2) 9870007288241145 a001 610/15127*33385282^(7/12) 9870007288243136 a001 610/15127*1860498^(7/10) 9870007288243938 a001 615/124*7881196^(1/3) 9870007288243991 a001 615/124*312119004989^(1/5) 9870007288243991 a001 615/124*(1/2+1/2*5^(1/2))^11 9870007288243991 a001 615/124*1568397607^(1/4) 9870007288255798 a001 610/15127*710647^(3/4) 9870007288418826 a001 5473/682*9349^(10/19) 9870007288664807 a001 615/124*103682^(11/24) 9870007288855401 a001 11592/341*9349^(7/19) 9870007289044516 a001 610/15127*103682^(7/8) 9870007291390517 a001 615/124*39603^(1/2) 9870007294248144 a001 610/15127*39603^(21/22) 9870007296067625 a001 75025/1364*9349^(6/19) 9870007301526351 a001 121393/1364*9349^(5/19) 9870007307654853 a001 98209/682*9349^(4/19) 9870007308605883 a001 5401855/5473 9870007310592529 a007 Real Root Of 340*x^4-44*x^3-614*x^2-833*x-589 9870007311967261 a001 615/124*15127^(11/20) 9870007313527524 a001 317811/1364*9349^(3/19) 9870007314898935 a004 Fibonacci(15)*Lucas(21)/(1/2+sqrt(5)/2)^20 9870007318023262 a001 17711/1364*24476^(3/7) 9870007319497913 a001 514229/1364*9349^(2/19) 9870007324143567 a001 17711/1364*64079^(9/23) 9870007324401871 r002 12th iterates of z^2 + 9870007324750204 a001 2584/521*521^(11/13) 9870007324967258 a001 11592/341*24476^(1/3) 9870007325067102 a001 17711/1364*439204^(1/3) 9870007325081306 a001 610/39603*(1/2+1/2*5^(1/2))^23 9870007325081306 a001 610/39603*4106118243^(1/2) 9870007325084114 a001 17711/1364*7881196^(3/11) 9870007325084158 a001 17711/1364*141422324^(3/13) 9870007325084158 a001 17711/1364*2537720636^(1/5) 9870007325084158 a001 17711/1364*45537549124^(3/17) 9870007325084158 a001 17711/1364*817138163596^(3/19) 9870007325084158 a001 17711/1364*14662949395604^(1/7) 9870007325084158 a001 17711/1364*(1/2+1/2*5^(1/2))^9 9870007325084158 a001 17711/1364*192900153618^(1/6) 9870007325084158 a001 17711/1364*10749957122^(3/16) 9870007325084158 a001 17711/1364*599074578^(3/14) 9870007325084160 a001 17711/1364*33385282^(1/4) 9870007325085013 a001 17711/1364*1860498^(3/10) 9870007325428462 a001 17711/1364*103682^(3/8) 9870007325430977 a001 610*9349^(1/19) 9870007325961194 a001 610/39603*103682^(23/24) 9870007327020645 a001 75025/1364*24476^(2/7) 9870007327320534 a001 121393/1364*24476^(5/21) 9870007327504590 a001 28657/1364*24476^(8/21) 9870007327658588 a001 17711/1364*39603^(9/22) 9870007328052482 a001 28284480/28657 9870007328290200 a001 98209/682*24476^(4/21) 9870007328970626 a004 Fibonacci(15)*Lucas(23)/(1/2+sqrt(5)/2)^22 9870007329004034 a001 317811/1364*24476^(1/7) 9870007329727495 a001 11592/341*64079^(7/23) 9870007329815587 a001 514229/1364*24476^(2/21) 9870007330456198 a001 305/51841*20633239^(5/7) 9870007330456214 a001 305/51841*2537720636^(5/9) 9870007330456214 a001 305/51841*312119004989^(5/11) 9870007330456214 a001 305/51841*(1/2+1/2*5^(1/2))^25 9870007330456214 a001 305/51841*3461452808002^(5/12) 9870007330456214 a001 305/51841*28143753123^(1/2) 9870007330456214 a001 305/51841*228826127^(5/8) 9870007330458590 a001 305/51841*1860498^(5/6) 9870007330459061 a001 11592/341*20633239^(1/5) 9870007330459066 a001 11592/341*17393796001^(1/7) 9870007330459066 a001 11592/341*14662949395604^(1/9) 9870007330459066 a001 11592/341*(1/2+1/2*5^(1/2))^7 9870007330459066 a001 11592/341*599074578^(1/6) 9870007330463952 a001 11592/341*710647^(1/4) 9870007330589814 a001 610*24476^(1/21) 9870007330720704 a001 121393/1364*64079^(5/23) 9870007330726858 a001 11592/341*103682^(7/24) 9870007330889703 a001 14809946/15005 9870007331010336 a001 98209/682*64079^(4/23) 9870007331023658 a004 Fibonacci(15)*Lucas(25)/(1/2+sqrt(5)/2)^24 9870007331044135 a001 317811/1364*64079^(3/23) 9870007331100849 a001 75025/1364*64079^(6/23) 9870007331173114 a001 121393/1364*167761^(1/5) 9870007331175654 a001 514229/1364*64079^(2/23) 9870007331240273 a001 610/271443*7881196^(9/11) 9870007331240402 a001 610/271443*141422324^(9/13) 9870007331240403 a001 610/271443*2537720636^(3/5) 9870007331240403 a001 610/271443*45537549124^(9/17) 9870007331240403 a001 610/271443*817138163596^(9/19) 9870007331240403 a001 610/271443*14662949395604^(3/7) 9870007331240403 a001 610/271443*(1/2+1/2*5^(1/2))^27 9870007331240403 a001 610/271443*192900153618^(1/2) 9870007331240403 a001 610/271443*10749957122^(9/16) 9870007331240403 a001 610/271443*599074578^(9/14) 9870007331240409 a001 610/271443*33385282^(3/4) 9870007331242969 a001 610/271443*1860498^(9/10) 9870007331243251 a001 121393/1364*20633239^(1/7) 9870007331243254 a001 121393/1364*2537720636^(1/9) 9870007331243254 a001 121393/1364*312119004989^(1/11) 9870007331243254 a001 121393/1364*(1/2+1/2*5^(1/2))^5 9870007331243254 a001 121393/1364*28143753123^(1/10) 9870007331243254 a001 121393/1364*228826127^(1/8) 9870007331243729 a001 121393/1364*1860498^(1/6) 9870007331269848 a001 610*64079^(1/23) 9870007331303648 a001 96932355/98209 9870007331323192 a004 Fibonacci(15)*Lucas(27)/(1/2+sqrt(5)/2)^26 9870007331351980 a001 317811/1364*439204^(1/9) 9870007331354814 a001 610/710647*(1/2+1/2*5^(1/2))^29 9870007331354814 a001 610/710647*1322157322203^(1/2) 9870007331357651 a001 317811/1364*7881196^(1/11) 9870007331357666 a001 317811/1364*141422324^(1/13) 9870007331357666 a001 317811/1364*2537720636^(1/15) 9870007331357666 a001 317811/1364*45537549124^(1/17) 9870007331357666 a001 317811/1364*14662949395604^(1/21) 9870007331357666 a001 317811/1364*(1/2+1/2*5^(1/2))^3 9870007331357666 a001 317811/1364*192900153618^(1/18) 9870007331357666 a001 317811/1364*10749957122^(1/16) 9870007331357666 a001 317811/1364*599074578^(1/14) 9870007331357666 a001 317811/1364*33385282^(1/12) 9870007331357951 a001 317811/1364*1860498^(1/10) 9870007331364042 a001 507544400/514229 9870007331366893 a004 Fibonacci(15)*Lucas(29)/(1/2+sqrt(5)/2)^28 9870007331371507 a001 305/930249*(1/2+1/2*5^(1/2))^31 9870007331371507 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^31/Lucas(30) 9870007331371507 a001 305/930249*9062201101803^(1/2) 9870007331372853 a001 1328768490/1346269 9870007331373269 a004 Fibonacci(15)*Lucas(31)/(1/2+sqrt(5)/2)^30 9870007331373942 a001 610/4870847*141422324^(11/13) 9870007331373942 a001 610/4870847*2537720636^(11/15) 9870007331373942 a001 610/4870847*45537549124^(11/17) 9870007331373942 a001 610/4870847*312119004989^(3/5) 9870007331373942 a001 610/4870847*817138163596^(11/19) 9870007331373942 a001 610/4870847*14662949395604^(11/21) 9870007331373942 a001 610/4870847*(1/2+1/2*5^(1/2))^33 9870007331373942 a001 610/4870847*192900153618^(11/18) 9870007331373942 a001 610/4870847*10749957122^(11/16) 9870007331373942 a001 610/4870847*1568397607^(3/4) 9870007331373942 a001 610/4870847*599074578^(11/14) 9870007331373950 a001 610/4870847*33385282^(11/12) 9870007331374138 a001 1739380535/1762289 9870007331374199 a004 Fibonacci(15)*Lucas(33)/(1/2+sqrt(5)/2)^32 9870007331374297 a001 610/12752043*2537720636^(7/9) 9870007331374297 a001 610/12752043*17393796001^(5/7) 9870007331374297 a001 610/12752043*312119004989^(7/11) 9870007331374297 a001 610/12752043*14662949395604^(5/9) 9870007331374297 a001 610/12752043*(1/2+1/2*5^(1/2))^35 9870007331374297 a001 610/12752043*505019158607^(5/8) 9870007331374297 a001 610/12752043*28143753123^(7/10) 9870007331374297 a001 610/12752043*599074578^(5/6) 9870007331374298 a001 610/12752043*228826127^(7/8) 9870007331374326 a001 1821502944/1845493 9870007331374335 a004 Fibonacci(15)*Lucas(35)/(1/2+sqrt(5)/2)^34 9870007331374349 a001 305/16692641*(1/2+1/2*5^(1/2))^37 9870007331374353 a001 23843783090/24157817 9870007331374355 a004 Fibonacci(15)*Lucas(37)/(1/2+sqrt(5)/2)^36 9870007331374357 a001 610/87403803*2537720636^(13/15) 9870007331374357 a001 610/87403803*45537549124^(13/17) 9870007331374357 a001 610/87403803*14662949395604^(13/21) 9870007331374357 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^39/Lucas(38) 9870007331374357 a001 610/87403803*192900153618^(13/18) 9870007331374357 a001 610/87403803*73681302247^(3/4) 9870007331374357 a001 610/87403803*10749957122^(13/16) 9870007331374357 a001 610/87403803*599074578^(13/14) 9870007331374357 a001 31211917275/31622993 9870007331374358 a004 Fibonacci(15)*Lucas(39)/(1/2+sqrt(5)/2)^38 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^41/Lucas(40) 9870007331374358 a001 163427720560/165580141 9870007331374358 a004 Fibonacci(15)*Lucas(41)/(1/2+sqrt(5)/2)^40 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^43/Lucas(42) 9870007331374358 a001 427859327130/433494437 9870007331374358 a004 Fibonacci(15)*Lucas(43)/(1/2+sqrt(5)/2)^42 9870007331374358 a001 610/1568397607*45537549124^(15/17) 9870007331374358 a001 610/1568397607*312119004989^(9/11) 9870007331374358 a001 610/1568397607*14662949395604^(5/7) 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^45/Lucas(44) 9870007331374358 a001 610/1568397607*192900153618^(5/6) 9870007331374358 a001 610/1568397607*28143753123^(9/10) 9870007331374358 a001 610/1568397607*10749957122^(15/16) 9870007331374358 a001 1836311903/1860497 9870007331374358 a004 Fibonacci(15)*Lucas(45)/(1/2+sqrt(5)/2)^44 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^47/Lucas(46) 9870007331374358 a001 2932591455360/2971215073 9870007331374358 a004 Fibonacci(15)*Lucas(47)/(1/2+sqrt(5)/2)^46 9870007331374358 a001 305/5374978561*14662949395604^(7/9) 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^49/Lucas(48) 9870007331374358 a001 305/5374978561*505019158607^(7/8) 9870007331374358 a001 7677624105250/7778742049 9870007331374358 a004 Fibonacci(15)*Lucas(49)/(1/2+sqrt(5)/2)^48 9870007331374358 a001 610/28143753123*817138163596^(17/19) 9870007331374358 a001 610/28143753123*14662949395604^(17/21) 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^51/Lucas(50) 9870007331374358 a001 610/28143753123*192900153618^(17/18) 9870007331374358 a001 10050140430195/10182505537 9870007331374358 a004 Fibonacci(15)*Lucas(51)/(1/2+sqrt(5)/2)^50 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^53/Lucas(52) 9870007331374358 a001 52623218475920/53316291173 9870007331374358 a004 Fibonacci(15)*Lucas(53)/(1/2+sqrt(5)/2)^52 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^55/Lucas(54) 9870007331374358 a001 305/96450076809*3461452808002^(11/12) 9870007331374358 a001 27553874913474/27916772489 9870007331374358 a004 Fibonacci(15)*Lucas(55)/(1/2+sqrt(5)/2)^54 9870007331374358 a001 610/505019158607*14662949395604^(19/21) 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^57/Lucas(56) 9870007331374358 a001 180342452613095/182717648081 9870007331374358 a004 Fibonacci(15)*Lucas(57)/(1/2+sqrt(5)/2)^56 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^59/Lucas(58) 9870007331374358 a004 Fibonacci(15)*Lucas(59)/(1/2+sqrt(5)/2)^58 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^61/Lucas(60) 9870007331374358 a001 2472171118107410/2504730781961 9870007331374358 a004 Fibonacci(15)*Lucas(61)/(1/2+sqrt(5)/2)^60 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^63/Lucas(62) 9870007331374358 a004 Fibonacci(15)*Lucas(63)/(1/2+sqrt(5)/2)^62 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^65/Lucas(64) 9870007331374358 a004 Fibonacci(15)*Lucas(65)/(1/2+sqrt(5)/2)^64 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^67/Lucas(66) 9870007331374358 a004 Fibonacci(15)*Lucas(67)/(1/2+sqrt(5)/2)^66 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^69/Lucas(68) 9870007331374358 a004 Fibonacci(15)*Lucas(69)/(1/2+sqrt(5)/2)^68 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^71/Lucas(70) 9870007331374358 a004 Fibonacci(15)*Lucas(71)/(1/2+sqrt(5)/2)^70 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^73/Lucas(72) 9870007331374358 a004 Fibonacci(15)*Lucas(73)/(1/2+sqrt(5)/2)^72 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^75/Lucas(74) 9870007331374358 a004 Fibonacci(15)*Lucas(75)/(1/2+sqrt(5)/2)^74 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^77/Lucas(76) 9870007331374358 a004 Fibonacci(15)*Lucas(77)/(1/2+sqrt(5)/2)^76 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^79/Lucas(78) 9870007331374358 a004 Fibonacci(15)*Lucas(79)/(1/2+sqrt(5)/2)^78 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^81/Lucas(80) 9870007331374358 a004 Fibonacci(15)*Lucas(81)/(1/2+sqrt(5)/2)^80 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^83/Lucas(82) 9870007331374358 a004 Fibonacci(15)*Lucas(83)/(1/2+sqrt(5)/2)^82 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^85/Lucas(84) 9870007331374358 a004 Fibonacci(15)*Lucas(85)/(1/2+sqrt(5)/2)^84 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^87/Lucas(86) 9870007331374358 a004 Fibonacci(15)*Lucas(87)/(1/2+sqrt(5)/2)^86 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^89/Lucas(88) 9870007331374358 a004 Fibonacci(15)*Lucas(89)/(1/2+sqrt(5)/2)^88 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^91/Lucas(90) 9870007331374358 a004 Fibonacci(15)*Lucas(91)/(1/2+sqrt(5)/2)^90 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^93/Lucas(92) 9870007331374358 a004 Fibonacci(15)*Lucas(93)/(1/2+sqrt(5)/2)^92 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^95/Lucas(94) 9870007331374358 a004 Fibonacci(15)*Lucas(95)/(1/2+sqrt(5)/2)^94 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^97/Lucas(96) 9870007331374358 a004 Fibonacci(15)*Lucas(97)/(1/2+sqrt(5)/2)^96 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^99/Lucas(98) 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)/Lucas(1) 9870007331374358 a004 Fibonacci(15)*Lucas(99)/(1/2+sqrt(5)/2)^98 9870007331374358 b008 61*E^ArcCsch[2] 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^100/Lucas(99) 9870007331374358 a004 Fibonacci(15)*Lucas(100)/(1/2+sqrt(5)/2)^99 9870007331374358 a004 Fibonacci(15)*Lucas(98)/(1/2+sqrt(5)/2)^97 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^98/Lucas(97) 9870007331374358 a004 Fibonacci(15)*Lucas(96)/(1/2+sqrt(5)/2)^95 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^96/Lucas(95) 9870007331374358 a004 Fibonacci(15)*Lucas(94)/(1/2+sqrt(5)/2)^93 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^94/Lucas(93) 9870007331374358 a004 Fibonacci(15)*Lucas(92)/(1/2+sqrt(5)/2)^91 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^92/Lucas(91) 9870007331374358 a004 Fibonacci(15)*Lucas(90)/(1/2+sqrt(5)/2)^89 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^90/Lucas(89) 9870007331374358 a004 Fibonacci(15)*Lucas(88)/(1/2+sqrt(5)/2)^87 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^88/Lucas(87) 9870007331374358 a004 Fibonacci(15)*Lucas(86)/(1/2+sqrt(5)/2)^85 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^86/Lucas(85) 9870007331374358 a004 Fibonacci(15)*Lucas(84)/(1/2+sqrt(5)/2)^83 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^84/Lucas(83) 9870007331374358 a004 Fibonacci(15)*Lucas(82)/(1/2+sqrt(5)/2)^81 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^82/Lucas(81) 9870007331374358 a004 Fibonacci(15)*Lucas(80)/(1/2+sqrt(5)/2)^79 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^80/Lucas(79) 9870007331374358 a004 Fibonacci(15)*Lucas(78)/(1/2+sqrt(5)/2)^77 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^78/Lucas(77) 9870007331374358 a004 Fibonacci(15)*Lucas(76)/(1/2+sqrt(5)/2)^75 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^76/Lucas(75) 9870007331374358 a004 Fibonacci(15)*Lucas(74)/(1/2+sqrt(5)/2)^73 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^74/Lucas(73) 9870007331374358 a004 Fibonacci(15)*Lucas(72)/(1/2+sqrt(5)/2)^71 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^72/Lucas(71) 9870007331374358 a004 Fibonacci(15)*Lucas(70)/(1/2+sqrt(5)/2)^69 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^70/Lucas(69) 9870007331374358 a004 Fibonacci(15)*Lucas(68)/(1/2+sqrt(5)/2)^67 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^68/Lucas(67) 9870007331374358 a004 Fibonacci(15)*Lucas(66)/(1/2+sqrt(5)/2)^65 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^66/Lucas(65) 9870007331374358 a004 Fibonacci(15)*Lucas(64)/(1/2+sqrt(5)/2)^63 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^64/Lucas(63) 9870007331374358 a004 Fibonacci(15)*Lucas(62)/(1/2+sqrt(5)/2)^61 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^62/Lucas(61) 9870007331374358 a004 Fibonacci(15)*Lucas(60)/(1/2+sqrt(5)/2)^59 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^60/Lucas(59) 9870007331374358 a004 Fibonacci(15)*Lucas(58)/(1/2+sqrt(5)/2)^57 9870007331374358 a001 583600435885010/591286729879 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^58/Lucas(57) 9870007331374358 a004 Fibonacci(15)*Lucas(56)/(1/2+sqrt(5)/2)^55 9870007331374358 a001 222915530658820/225851433717 9870007331374358 a001 610/312119004989*14662949395604^(8/9) 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^56/Lucas(55) 9870007331374358 a004 Fibonacci(15)*Lucas(54)/(1/2+sqrt(5)/2)^53 9870007331374358 a001 42573078045725/43133785636 9870007331374358 a001 610/119218851371*14662949395604^(6/7) 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^54/Lucas(53) 9870007331374358 a004 Fibonacci(15)*Lucas(52)/(1/2+sqrt(5)/2)^51 9870007331374358 a001 32522937615530/32951280099 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^52/Lucas(51) 9870007331374358 a001 305/22768774562*23725150497407^(13/16) 9870007331374358 a001 305/22768774562*505019158607^(13/14) 9870007331374358 a004 Fibonacci(15)*Lucas(50)/(1/2+sqrt(5)/2)^49 9870007331374358 a001 2484531351028/2517253805 9870007331374358 a001 610/17393796001*312119004989^(10/11) 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^50/Lucas(49) 9870007331374358 a001 610/17393796001*3461452808002^(5/6) 9870007331374358 a004 Fibonacci(15)*Lucas(48)/(1/2+sqrt(5)/2)^47 9870007331374358 a001 2372516324945/2403763488 9870007331374358 a001 610/6643838879*45537549124^(16/17) 9870007331374358 a001 610/6643838879*14662949395604^(16/21) 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^48/Lucas(47) 9870007331374358 a001 610/6643838879*192900153618^(8/9) 9870007331374358 a001 610/6643838879*73681302247^(12/13) 9870007331374358 a004 Fibonacci(15)*Lucas(46)/(1/2+sqrt(5)/2)^45 9870007331374358 a001 1812441194530/1836311903 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^46/Lucas(45) 9870007331374358 a001 305/1268860318*10749957122^(23/24) 9870007331374358 a004 Fibonacci(15)*Lucas(44)/(1/2+sqrt(5)/2)^43 9870007331374358 a001 692290933700/701408733 9870007331374358 a001 610/969323029*312119004989^(4/5) 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^44/Lucas(43) 9870007331374358 a001 610/969323029*23725150497407^(11/16) 9870007331374358 a001 610/969323029*73681302247^(11/13) 9870007331374358 a001 610/969323029*10749957122^(11/12) 9870007331374358 a001 610/969323029*4106118243^(22/23) 9870007331374358 a004 Fibonacci(15)*Lucas(42)/(1/2+sqrt(5)/2)^41 9870007331374358 a001 132215803285/133957148 9870007331374358 a001 610/370248451*2537720636^(14/15) 9870007331374358 a001 610/370248451*17393796001^(6/7) 9870007331374358 a001 610/370248451*45537549124^(14/17) 9870007331374358 a001 610/370248451*817138163596^(14/19) 9870007331374358 a001 610/370248451*14662949395604^(2/3) 9870007331374358 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^42/Lucas(41) 9870007331374358 a001 610/370248451*505019158607^(3/4) 9870007331374358 a001 610/370248451*192900153618^(7/9) 9870007331374358 a001 610/370248451*10749957122^(7/8) 9870007331374358 a001 610/370248451*4106118243^(21/23) 9870007331374358 a001 610/370248451*1568397607^(21/22) 9870007331374358 a004 Fibonacci(15)*Lucas(40)/(1/2+sqrt(5)/2)^39 9870007331374358 a001 20200777202/20466831 9870007331374359 a001 305/70711162*2537720636^(8/9) 9870007331374359 a001 305/70711162*312119004989^(8/11) 9870007331374359 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^40/Lucas(39) 9870007331374359 a001 305/70711162*23725150497407^(5/8) 9870007331374359 a001 305/70711162*73681302247^(10/13) 9870007331374359 a001 305/70711162*28143753123^(4/5) 9870007331374359 a001 305/70711162*10749957122^(5/6) 9870007331374359 a001 305/70711162*4106118243^(20/23) 9870007331374359 a001 305/70711162*1568397607^(10/11) 9870007331374359 a001 305/70711162*599074578^(20/21) 9870007331374359 a004 Fibonacci(15)*Lucas(38)/(1/2+sqrt(5)/2)^37 9870007331374360 a001 38580051460/39088169 9870007331374361 a001 610/54018521*817138163596^(2/3) 9870007331374361 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^38/Lucas(37) 9870007331374361 a001 610/54018521*10749957122^(19/24) 9870007331374361 a001 610/54018521*4106118243^(19/23) 9870007331374361 a001 610/54018521*1568397607^(19/22) 9870007331374361 a001 610/54018521*599074578^(19/21) 9870007331374362 a001 610/54018521*228826127^(19/20) 9870007331374367 a004 Fibonacci(15)*Lucas(36)/(1/2+sqrt(5)/2)^35 9870007331374370 a001 7368134185/7465176 9870007331374381 a001 610/20633239*141422324^(12/13) 9870007331374381 a001 610/20633239*2537720636^(4/5) 9870007331374381 a001 610/20633239*45537549124^(12/17) 9870007331374381 a001 610/20633239*14662949395604^(4/7) 9870007331374381 a001 610/20633239*(1/2+1/2*5^(1/2))^36 9870007331374381 a001 610/20633239*505019158607^(9/14) 9870007331374381 a001 610/20633239*192900153618^(2/3) 9870007331374381 a001 610/20633239*73681302247^(9/13) 9870007331374381 a001 610/20633239*10749957122^(3/4) 9870007331374381 a001 610/20633239*4106118243^(18/23) 9870007331374381 a001 610/20633239*1568397607^(9/11) 9870007331374381 a001 610/20633239*599074578^(6/7) 9870007331374381 a001 610/20633239*228826127^(9/10) 9870007331374382 a001 610/20633239*87403803^(18/19) 9870007331374419 a004 Fibonacci(15)*Lucas(34)/(1/2+sqrt(5)/2)^33 9870007331374442 a001 5628753650/5702887 9870007331374517 a001 305/3940598*45537549124^(2/3) 9870007331374517 a001 305/3940598*(1/2+1/2*5^(1/2))^34 9870007331374517 a001 305/3940598*10749957122^(17/24) 9870007331374517 a001 305/3940598*4106118243^(17/23) 9870007331374517 a001 305/3940598*1568397607^(17/22) 9870007331374517 a001 305/3940598*599074578^(17/21) 9870007331374517 a001 305/3940598*228826127^(17/20) 9870007331374518 a001 305/3940598*87403803^(17/19) 9870007331374525 a001 305/3940598*33385282^(17/18) 9870007331374774 a004 Fibonacci(15)*Lucas(32)/(1/2+sqrt(5)/2)^31 9870007331374933 a001 2149992580/2178309 9870007331375447 a001 610/3010349*(1/2+1/2*5^(1/2))^32 9870007331375447 a001 610/3010349*23725150497407^(1/2) 9870007331375447 a001 610/3010349*505019158607^(4/7) 9870007331375447 a001 610/3010349*73681302247^(8/13) 9870007331375447 a001 610/3010349*10749957122^(2/3) 9870007331375447 a001 610/3010349*4106118243^(16/23) 9870007331375447 a001 610/3010349*1568397607^(8/11) 9870007331375447 a001 610/3010349*599074578^(16/21) 9870007331375447 a001 610/3010349*228826127^(4/5) 9870007331375448 a001 610/3010349*87403803^(16/19) 9870007331375455 a001 610/3010349*33385282^(8/9) 9870007331375504 a001 610/3010349*12752043^(16/17) 9870007331376793 a004 Fibonacci(32)/Lucas(15)/(1/2+sqrt(5)/2) 9870007331377149 a004 Fibonacci(34)/Lucas(15)/(1/2+sqrt(5)/2)^3 9870007331377201 a004 Fibonacci(36)/Lucas(15)/(1/2+sqrt(5)/2)^5 9870007331377208 a004 Fibonacci(38)/Lucas(15)/(1/2+sqrt(5)/2)^7 9870007331377209 a004 Fibonacci(40)/Lucas(15)/(1/2+sqrt(5)/2)^9 9870007331377209 a004 Fibonacci(42)/Lucas(15)/(1/2+sqrt(5)/2)^11 9870007331377209 a004 Fibonacci(44)/Lucas(15)/(1/2+sqrt(5)/2)^13 9870007331377209 a004 Fibonacci(46)/Lucas(15)/(1/2+sqrt(5)/2)^15 9870007331377209 a004 Fibonacci(48)/Lucas(15)/(1/2+sqrt(5)/2)^17 9870007331377209 a004 Fibonacci(50)/Lucas(15)/(1/2+sqrt(5)/2)^19 9870007331377209 a004 Fibonacci(52)/Lucas(15)/(1/2+sqrt(5)/2)^21 9870007331377209 a004 Fibonacci(54)/Lucas(15)/(1/2+sqrt(5)/2)^23 9870007331377209 a004 Fibonacci(56)/Lucas(15)/(1/2+sqrt(5)/2)^25 9870007331377209 a004 Fibonacci(58)/Lucas(15)/(1/2+sqrt(5)/2)^27 9870007331377209 a004 Fibonacci(15)*Lucas(30)/(1/2+sqrt(5)/2)^29 9870007331377209 a004 Fibonacci(62)/Lucas(15)/(1/2+sqrt(5)/2)^31 9870007331377209 a004 Fibonacci(64)/Lucas(15)/(1/2+sqrt(5)/2)^33 9870007331377209 a004 Fibonacci(66)/Lucas(15)/(1/2+sqrt(5)/2)^35 9870007331377209 a004 Fibonacci(68)/Lucas(15)/(1/2+sqrt(5)/2)^37 9870007331377209 a004 Fibonacci(70)/Lucas(15)/(1/2+sqrt(5)/2)^39 9870007331377209 a004 Fibonacci(72)/Lucas(15)/(1/2+sqrt(5)/2)^41 9870007331377209 a004 Fibonacci(74)/Lucas(15)/(1/2+sqrt(5)/2)^43 9870007331377209 a004 Fibonacci(76)/Lucas(15)/(1/2+sqrt(5)/2)^45 9870007331377209 a004 Fibonacci(78)/Lucas(15)/(1/2+sqrt(5)/2)^47 9870007331377209 a004 Fibonacci(80)/Lucas(15)/(1/2+sqrt(5)/2)^49 9870007331377209 a004 Fibonacci(82)/Lucas(15)/(1/2+sqrt(5)/2)^51 9870007331377209 a004 Fibonacci(84)/Lucas(15)/(1/2+sqrt(5)/2)^53 9870007331377209 a004 Fibonacci(86)/Lucas(15)/(1/2+sqrt(5)/2)^55 9870007331377209 a004 Fibonacci(88)/Lucas(15)/(1/2+sqrt(5)/2)^57 9870007331377209 a004 Fibonacci(90)/Lucas(15)/(1/2+sqrt(5)/2)^59 9870007331377209 a004 Fibonacci(92)/Lucas(15)/(1/2+sqrt(5)/2)^61 9870007331377209 a004 Fibonacci(94)/Lucas(15)/(1/2+sqrt(5)/2)^63 9870007331377209 a004 Fibonacci(96)/Lucas(15)/(1/2+sqrt(5)/2)^65 9870007331377209 a004 Fibonacci(98)/Lucas(15)/(1/2+sqrt(5)/2)^67 9870007331377209 a004 Fibonacci(100)/Lucas(15)/(1/2+sqrt(5)/2)^69 9870007331377209 a004 Fibonacci(99)/Lucas(15)/(1/2+sqrt(5)/2)^68 9870007331377209 a004 Fibonacci(97)/Lucas(15)/(1/2+sqrt(5)/2)^66 9870007331377209 a004 Fibonacci(95)/Lucas(15)/(1/2+sqrt(5)/2)^64 9870007331377209 a004 Fibonacci(93)/Lucas(15)/(1/2+sqrt(5)/2)^62 9870007331377209 a004 Fibonacci(91)/Lucas(15)/(1/2+sqrt(5)/2)^60 9870007331377209 a004 Fibonacci(89)/Lucas(15)/(1/2+sqrt(5)/2)^58 9870007331377209 a004 Fibonacci(87)/Lucas(15)/(1/2+sqrt(5)/2)^56 9870007331377209 a004 Fibonacci(85)/Lucas(15)/(1/2+sqrt(5)/2)^54 9870007331377209 a004 Fibonacci(83)/Lucas(15)/(1/2+sqrt(5)/2)^52 9870007331377209 a004 Fibonacci(81)/Lucas(15)/(1/2+sqrt(5)/2)^50 9870007331377209 a004 Fibonacci(79)/Lucas(15)/(1/2+sqrt(5)/2)^48 9870007331377209 a004 Fibonacci(77)/Lucas(15)/(1/2+sqrt(5)/2)^46 9870007331377209 a004 Fibonacci(75)/Lucas(15)/(1/2+sqrt(5)/2)^44 9870007331377209 a004 Fibonacci(73)/Lucas(15)/(1/2+sqrt(5)/2)^42 9870007331377209 a004 Fibonacci(71)/Lucas(15)/(1/2+sqrt(5)/2)^40 9870007331377209 a004 Fibonacci(69)/Lucas(15)/(1/2+sqrt(5)/2)^38 9870007331377209 a004 Fibonacci(67)/Lucas(15)/(1/2+sqrt(5)/2)^36 9870007331377209 a004 Fibonacci(65)/Lucas(15)/(1/2+sqrt(5)/2)^34 9870007331377209 a004 Fibonacci(63)/Lucas(15)/(1/2+sqrt(5)/2)^32 9870007331377209 a004 Fibonacci(61)/Lucas(15)/(1/2+sqrt(5)/2)^30 9870007331377209 a004 Fibonacci(59)/Lucas(15)/(1/2+sqrt(5)/2)^28 9870007331377209 a004 Fibonacci(57)/Lucas(15)/(1/2+sqrt(5)/2)^26 9870007331377209 a004 Fibonacci(55)/Lucas(15)/(1/2+sqrt(5)/2)^24 9870007331377209 a004 Fibonacci(53)/Lucas(15)/(1/2+sqrt(5)/2)^22 9870007331377209 a004 Fibonacci(51)/Lucas(15)/(1/2+sqrt(5)/2)^20 9870007331377209 a004 Fibonacci(49)/Lucas(15)/(1/2+sqrt(5)/2)^18 9870007331377209 a004 Fibonacci(47)/Lucas(15)/(1/2+sqrt(5)/2)^16 9870007331377209 a004 Fibonacci(45)/Lucas(15)/(1/2+sqrt(5)/2)^14 9870007331377209 a004 Fibonacci(43)/Lucas(15)/(1/2+sqrt(5)/2)^12 9870007331377210 a004 Fibonacci(41)/Lucas(15)/(1/2+sqrt(5)/2)^10 9870007331377210 a004 Fibonacci(39)/Lucas(15)/(1/2+sqrt(5)/2)^8 9870007331377213 a004 Fibonacci(37)/Lucas(15)/(1/2+sqrt(5)/2)^6 9870007331377233 a004 Fibonacci(35)/Lucas(15)/(1/2+sqrt(5)/2)^4 9870007331377368 a004 Fibonacci(33)/Lucas(15)/(1/2+sqrt(5)/2)^2 9870007331378299 a001 1346269/1364 9870007331381679 a001 610/1149851*7881196^(10/11) 9870007331381803 a001 610/1149851*20633239^(6/7) 9870007331381823 a001 610/1149851*141422324^(10/13) 9870007331381823 a001 610/1149851*2537720636^(2/3) 9870007331381823 a001 610/1149851*45537549124^(10/17) 9870007331381823 a001 610/1149851*312119004989^(6/11) 9870007331381823 a001 610/1149851*14662949395604^(10/21) 9870007331381823 a001 610/1149851*(1/2+1/2*5^(1/2))^30 9870007331381823 a001 610/1149851*192900153618^(5/9) 9870007331381823 a001 610/1149851*28143753123^(3/5) 9870007331381823 a001 610/1149851*10749957122^(5/8) 9870007331381823 a001 610/1149851*4106118243^(15/23) 9870007331381823 a001 610/1149851*1568397607^(15/22) 9870007331381823 a001 610/1149851*599074578^(5/7) 9870007331381823 a001 610/1149851*228826127^(3/4) 9870007331381824 a001 610/1149851*87403803^(15/19) 9870007331381831 a001 610/1149851*33385282^(5/6) 9870007331381877 a001 610/1149851*12752043^(15/17) 9870007331382213 a001 610/1149851*4870847^(15/16) 9870007331384675 a001 514229/1364*(1/2+1/2*5^(1/2))^2 9870007331384675 a001 514229/1364*10749957122^(1/24) 9870007331384675 a001 514229/1364*4106118243^(1/23) 9870007331384675 a001 514229/1364*1568397607^(1/22) 9870007331384675 a001 514229/1364*599074578^(1/21) 9870007331384675 a001 514229/1364*228826127^(1/20) 9870007331384675 a001 514229/1364*87403803^(1/19) 9870007331384675 a001 514229/1364*33385282^(1/18) 9870007331384678 a001 514229/1364*12752043^(1/17) 9870007331384701 a001 514229/1364*4870847^(1/16) 9870007331384865 a001 514229/1364*1860498^(1/15) 9870007331386071 a001 514229/1364*710647^(1/14) 9870007331393902 a004 Fibonacci(15)*Lucas(28)/(1/2+sqrt(5)/2)^27 9870007331394979 a001 514229/1364*271443^(1/13) 9870007331401367 a001 313679690/317811 9870007331412614 a001 610*103682^(1/24) 9870007331425506 a001 305/219602*20633239^(4/5) 9870007331425524 a001 305/219602*17393796001^(4/7) 9870007331425524 a001 305/219602*14662949395604^(4/9) 9870007331425524 a001 305/219602*(1/2+1/2*5^(1/2))^28 9870007331425524 a001 305/219602*505019158607^(1/2) 9870007331425524 a001 305/219602*73681302247^(7/13) 9870007331425524 a001 305/219602*10749957122^(7/12) 9870007331425524 a001 305/219602*4106118243^(14/23) 9870007331425524 a001 305/219602*1568397607^(7/11) 9870007331425524 a001 305/219602*599074578^(2/3) 9870007331425525 a001 305/219602*228826127^(7/10) 9870007331425525 a001 305/219602*87403803^(14/19) 9870007331425531 a001 305/219602*33385282^(7/9) 9870007331425574 a001 305/219602*12752043^(14/17) 9870007331425888 a001 305/219602*4870847^(7/8) 9870007331428186 a001 305/219602*1860498^(14/15) 9870007331428376 a001 98209/682*(1/2+1/2*5^(1/2))^4 9870007331428376 a001 98209/682*23725150497407^(1/16) 9870007331428376 a001 98209/682*73681302247^(1/13) 9870007331428376 a001 98209/682*10749957122^(1/12) 9870007331428376 a001 98209/682*4106118243^(2/23) 9870007331428376 a001 98209/682*1568397607^(1/11) 9870007331428376 a001 98209/682*599074578^(2/21) 9870007331428376 a001 98209/682*228826127^(1/10) 9870007331428376 a001 98209/682*87403803^(2/19) 9870007331428377 a001 98209/682*33385282^(1/9) 9870007331428383 a001 98209/682*12752043^(2/17) 9870007331428428 a001 98209/682*4870847^(1/8) 9870007331428756 a001 98209/682*1860498^(2/15) 9870007331431168 a001 98209/682*710647^(1/7) 9870007331434534 a001 121393/1364*103682^(5/24) 9870007331448984 a001 98209/682*271443^(2/13) 9870007331461187 a001 514229/1364*103682^(1/12) 9870007331472434 a001 317811/1364*103682^(1/8) 9870007331508313 a004 Fibonacci(15)*Lucas(26)/(1/2+sqrt(5)/2)^25 9870007331559480 a001 119814980/121393 9870007331581400 a001 98209/682*103682^(1/6) 9870007331660406 a001 610*39603^(1/22) 9870007331716539 a001 75025/1364*439204^(2/9) 9870007331725058 a001 610/167761*141422324^(2/3) 9870007331725058 a001 610/167761*(1/2+1/2*5^(1/2))^26 9870007331725058 a001 610/167761*73681302247^(1/2) 9870007331725058 a001 610/167761*10749957122^(13/24) 9870007331725058 a001 610/167761*4106118243^(13/23) 9870007331725058 a001 610/167761*1568397607^(13/22) 9870007331725058 a001 610/167761*599074578^(13/21) 9870007331725058 a001 610/167761*228826127^(13/20) 9870007331725059 a001 610/167761*87403803^(13/19) 9870007331725064 a001 610/167761*33385282^(13/18) 9870007331725104 a001 610/167761*12752043^(13/17) 9870007331725396 a001 610/167761*4870847^(13/16) 9870007331727529 a001 610/167761*1860498^(13/15) 9870007331727880 a001 75025/1364*7881196^(2/11) 9870007331727909 a001 75025/1364*141422324^(2/13) 9870007331727909 a001 75025/1364*2537720636^(2/15) 9870007331727909 a001 75025/1364*45537549124^(2/17) 9870007331727909 a001 75025/1364*14662949395604^(2/21) 9870007331727909 a001 75025/1364*(1/2+1/2*5^(1/2))^6 9870007331727909 a001 75025/1364*10749957122^(1/8) 9870007331727909 a001 75025/1364*4106118243^(3/23) 9870007331727909 a001 75025/1364*1568397607^(3/22) 9870007331727909 a001 75025/1364*599074578^(1/7) 9870007331727909 a001 75025/1364*228826127^(3/20) 9870007331727909 a001 75025/1364*87403803^(3/19) 9870007331727911 a001 75025/1364*33385282^(1/6) 9870007331727920 a001 75025/1364*12752043^(3/17) 9870007331727987 a001 75025/1364*4870847^(3/16) 9870007331728480 a001 75025/1364*1860498^(1/5) 9870007331732097 a001 75025/1364*710647^(3/14) 9870007331743206 a001 610/167761*710647^(13/14) 9870007331758822 a001 75025/1364*271443^(3/13) 9870007331956770 a001 514229/1364*39603^(1/11) 9870007331957445 a001 75025/1364*103682^(1/4) 9870007332215809 a001 317811/1364*39603^(3/22) 9870007332292502 a004 Fibonacci(15)*Lucas(24)/(1/2+sqrt(5)/2)^23 9870007332461400 a001 11592/341*39603^(7/22) 9870007332572567 a001 98209/682*39603^(2/11) 9870007332643202 a001 22882625/23184 9870007332673493 a001 121393/1364*39603^(5/22) 9870007332944861 a001 28657/1364*64079^(8/23) 9870007333444196 a001 75025/1364*39603^(3/11) 9870007333531019 a001 610*15127^(1/20) 9870007333732609 a001 610/64079*439204^(8/9) 9870007333777974 a001 610/64079*7881196^(8/11) 9870007333778090 a001 610/64079*141422324^(8/13) 9870007333778090 a001 610/64079*2537720636^(8/15) 9870007333778090 a001 610/64079*45537549124^(8/17) 9870007333778090 a001 610/64079*14662949395604^(8/21) 9870007333778090 a001 610/64079*(1/2+1/2*5^(1/2))^24 9870007333778090 a001 610/64079*192900153618^(4/9) 9870007333778090 a001 610/64079*73681302247^(6/13) 9870007333778090 a001 610/64079*10749957122^(1/2) 9870007333778090 a001 610/64079*4106118243^(12/23) 9870007333778090 a001 610/64079*1568397607^(6/11) 9870007333778090 a001 610/64079*599074578^(4/7) 9870007333778090 a001 610/64079*228826127^(3/5) 9870007333778091 a001 610/64079*87403803^(12/19) 9870007333778096 a001 610/64079*33385282^(2/3) 9870007333778133 a001 610/64079*12752043^(12/17) 9870007333778402 a001 610/64079*4870847^(3/4) 9870007333780371 a001 610/64079*1860498^(4/5) 9870007333780941 a001 28657/1364*(1/2+1/2*5^(1/2))^8 9870007333780941 a001 28657/1364*23725150497407^(1/8) 9870007333780941 a001 28657/1364*505019158607^(1/7) 9870007333780941 a001 28657/1364*73681302247^(2/13) 9870007333780941 a001 28657/1364*10749957122^(1/6) 9870007333780941 a001 28657/1364*4106118243^(4/23) 9870007333780941 a001 28657/1364*1568397607^(2/11) 9870007333780941 a001 28657/1364*599074578^(4/21) 9870007333780941 a001 28657/1364*228826127^(1/5) 9870007333780942 a001 28657/1364*87403803^(4/19) 9870007333780943 a001 28657/1364*33385282^(2/9) 9870007333780956 a001 28657/1364*12752043^(4/17) 9870007333781045 a001 28657/1364*4870847^(1/4) 9870007333781702 a001 28657/1364*1860498^(4/15) 9870007333786525 a001 28657/1364*710647^(2/7) 9870007333794842 a001 610/64079*710647^(6/7) 9870007333822158 a001 28657/1364*271443^(4/13) 9870007333901741 a001 610/64079*271443^(12/13) 9870007334086989 a001 28657/1364*103682^(1/3) 9870007335697996 a001 514229/1364*15127^(1/10) 9870007336069324 a001 28657/1364*39603^(4/11) 9870007337667410 a004 Fibonacci(15)*Lucas(22)/(1/2+sqrt(5)/2)^21 9870007337827648 a001 317811/1364*15127^(3/20) 9870007340007193 a001 5473/682*24476^(10/21) 9870007340055020 a001 98209/682*15127^(1/5) 9870007340071142 a001 17480770/17711 9870007342026559 a001 121393/1364*15127^(1/4) 9870007342372193 a005 (1/cos(11/130*Pi))^708 9870007344494106 a001 17711/1364*15127^(9/20) 9870007344667875 a001 75025/1364*15127^(3/10) 9870007345550560 a001 305/12238*64079^(22/23) 9870007345555692 a001 11592/341*15127^(7/20) 9870007346807532 a001 5473/682*64079^(10/23) 9870007347712353 a001 5473/682*167761^(2/5) 9870007347798773 a001 610*5778^(1/18) 9870007347849676 a001 305/12238*7881196^(2/3) 9870007347849782 a001 305/12238*312119004989^(2/5) 9870007347849782 a001 305/12238*(1/2+1/2*5^(1/2))^22 9870007347849782 a001 305/12238*10749957122^(11/24) 9870007347849782 a001 305/12238*4106118243^(11/23) 9870007347849782 a001 305/12238*1568397607^(1/2) 9870007347849782 a001 305/12238*599074578^(11/21) 9870007347849782 a001 305/12238*228826127^(11/20) 9870007347849782 a001 305/12238*87403803^(11/19) 9870007347849787 a001 305/12238*33385282^(11/18) 9870007347849821 a001 305/12238*12752043^(11/17) 9870007347850068 a001 305/12238*4870847^(11/16) 9870007347851873 a001 305/12238*1860498^(11/15) 9870007347852626 a001 5473/682*20633239^(2/7) 9870007347852633 a001 5473/682*2537720636^(2/9) 9870007347852633 a001 5473/682*312119004989^(2/11) 9870007347852633 a001 5473/682*(1/2+1/2*5^(1/2))^10 9870007347852633 a001 5473/682*28143753123^(1/5) 9870007347852633 a001 5473/682*10749957122^(5/24) 9870007347852633 a001 5473/682*4106118243^(5/23) 9870007347852633 a001 5473/682*1568397607^(5/22) 9870007347852633 a001 5473/682*599074578^(5/21) 9870007347852633 a001 5473/682*228826127^(1/4) 9870007347852633 a001 5473/682*87403803^(5/19) 9870007347852635 a001 5473/682*33385282^(5/18) 9870007347852651 a001 5473/682*12752043^(5/17) 9870007347852763 a001 5473/682*4870847^(5/16) 9870007347853583 a001 5473/682*1860498^(1/3) 9870007347859613 a001 5473/682*710647^(5/14) 9870007347865137 a001 305/12238*710647^(11/14) 9870007347904154 a001 5473/682*271443^(5/13) 9870007347963128 a001 305/12238*271443^(11/13) 9870007348235193 a001 5473/682*103682^(5/12) 9870007348691413 a001 305/12238*103682^(11/12) 9870007350713111 a001 5473/682*39603^(5/11) 9870007351034229 a001 28657/1364*15127^(2/5) 9870007364233505 a001 514229/1364*5778^(1/9) 9870007366862896 r002 39th iterates of z^2 + 9870007369419242 a001 5473/682*15127^(1/2) 9870007372980873 a001 4181/1364*9349^(12/19) 9870007374507577 a004 Fibonacci(15)*Lucas(20)/(1/2+sqrt(5)/2)^19 9870007376663854 a007 Real Root Of 28*x^4-817*x^3-203*x^2-259*x-870 9870007380630911 a001 317811/1364*5778^(1/6) 9870007390983000 a001 1335412/1353 9870007397126037 a001 98209/682*5778^(2/9) 9870007413365330 a001 121393/1364*5778^(5/18) 9870007421809594 r002 26th iterates of z^2 + 9870007428607712 a001 610/9349*24476^(20/21) 9870007430274401 a001 75025/1364*5778^(1/3) 9870007434886914 a001 4181/1364*24476^(4/7) 9870007442208390 a001 610/9349*64079^(20/23) 9870007443047321 a001 4181/1364*64079^(12/23) 9870007444018032 a001 610/9349*167761^(4/5) 9870007444278701 a001 4181/1364*439204^(4/9) 9870007444298578 a001 610/9349*20633239^(4/7) 9870007444298591 a001 610/9349*2537720636^(4/9) 9870007444298591 a001 610/9349*(1/2+1/2*5^(1/2))^20 9870007444298591 a001 610/9349*23725150497407^(5/16) 9870007444298591 a001 610/9349*505019158607^(5/14) 9870007444298591 a001 610/9349*73681302247^(5/13) 9870007444298591 a001 610/9349*28143753123^(2/5) 9870007444298591 a001 610/9349*10749957122^(5/12) 9870007444298591 a001 610/9349*4106118243^(10/23) 9870007444298591 a001 610/9349*1568397607^(5/11) 9870007444298591 a001 610/9349*599074578^(10/21) 9870007444298592 a001 610/9349*228826127^(1/2) 9870007444298592 a001 610/9349*87403803^(10/19) 9870007444298596 a001 610/9349*33385282^(5/9) 9870007444298627 a001 610/9349*12752043^(10/17) 9870007444298851 a001 610/9349*4870847^(5/8) 9870007444300492 a001 610/9349*1860498^(2/3) 9870007444301384 a001 4181/1364*7881196^(4/11) 9870007444301441 a001 4181/1364*141422324^(4/13) 9870007444301442 a001 4181/1364*2537720636^(4/15) 9870007444301442 a001 4181/1364*45537549124^(4/17) 9870007444301442 a001 4181/1364*817138163596^(4/19) 9870007444301442 a001 4181/1364*14662949395604^(4/21) 9870007444301442 a001 4181/1364*(1/2+1/2*5^(1/2))^12 9870007444301442 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^12/Lucas(15) 9870007444301442 a001 4181/1364*192900153618^(2/9) 9870007444301442 a001 4181/1364*73681302247^(3/13) 9870007444301442 a001 4181/1364*10749957122^(1/4) 9870007444301442 a001 4181/1364*4106118243^(6/23) 9870007444301442 a001 4181/1364*1568397607^(3/11) 9870007444301442 a001 4181/1364*599074578^(2/7) 9870007444301442 a001 4181/1364*228826127^(3/10) 9870007444301442 a001 4181/1364*87403803^(6/19) 9870007444301444 a001 4181/1364*33385282^(1/3) 9870007444301463 a001 4181/1364*12752043^(6/17) 9870007444301598 a001 4181/1364*4870847^(3/8) 9870007444302582 a001 4181/1364*1860498^(2/5) 9870007444309817 a001 4181/1364*710647^(3/7) 9870007444312551 a001 610/9349*710647^(5/7) 9870007444363267 a001 4181/1364*271443^(6/13) 9870007444401634 a001 610/9349*271443^(10/13) 9870007444760513 a001 4181/1364*103682^(1/2) 9870007445063711 a001 610/9349*103682^(5/6) 9870007445429973 a001 11592/341*5778^(7/18) 9870007447734015 a001 4181/1364*39603^(6/11) 9870007450019548 a001 610/9349*39603^(10/11) 9870007458020791 a001 610*2207^(1/16) 9870007465176264 a001 28657/1364*5778^(4/9) 9870007467964367 a001 1597/1364*3571^(14/17) 9870007468912559 a001 615/124*5778^(11/18) 9870007470181373 a001 4181/1364*15127^(3/5) 9870007472903895 a001 17711/1364*5778^(1/2) 9870007472920326 r008 a(0)=1,K{-n^6,-79+90*n^3+55*n^2+11*n} 9870007502966642 m001 1/exp(MertensB1)/Si(Pi)^2*GAMMA(5/24) 9870007508176980 a001 89/123*123^(2/31) 9870007512096786 a001 5473/682*5778^(5/9) 9870007554758761 a003 cos(Pi*11/112)/sin(Pi*47/113) 9870007560033144 a007 Real Root Of -329*x^4+786*x^3+901*x^2+557*x+740 9870007579836586 m001 (Paris+Totient)/(ln(2)+LandauRamanujan) 9870007584677542 a001 514229/1364*2207^(1/8) 9870007593373020 a007 Real Root Of 927*x^4-397*x^3-306*x^2+896*x-79 9870007614034709 r005 Re(z^2+c),c=13/70+3/13*I,n=5 9870007627013836 a004 Fibonacci(15)*Lucas(18)/(1/2+sqrt(5)/2)^17 9870007641394428 a001 4181/1364*5778^(2/3) 9870007642528654 r009 Re(z^3+c),c=-19/118+23/42*I,n=26 9870007683004153 a001 105937/1926*843^(3/7) 9870007687459811 a005 (1/sin(47/139*Pi))^85 9870007690453299 r005 Im(z^2+c),c=-9/10+107/251*I,n=5 9870007691830007 a003 -1+cos(1/7*Pi)+2*cos(1/9*Pi)-cos(5/24*Pi) 9870007711296970 a001 317811/1364*2207^(3/16) 9870007723840113 a003 cos(Pi*5/87)/sin(Pi*55/116) 9870007739938080 a001 1275205/1292 9870007750295900 r008 a(0)=1,K{-n^6,-67+93*n^3+53*n^2-2*n} 9870007755178672 a001 3/47*47^(6/53) 9870007760584101 a001 317811/3571*843^(5/14) 9870007765692225 h001 (4/9*exp(2)+3/11)/(4/11*exp(2)+11/12) 9870007778268225 a007 Real Root Of -788*x^4-38*x^3-677*x^2-862*x+520 9870007793925093 m001 Artin^(Psi(1,1/3)*HeathBrownMoroz) 9870007838014118 a001 98209/682*2207^(1/4) 9870007844892437 a007 Real Root Of 312*x^4-882*x^3+420*x^2+593*x-968 9870007848117012 a007 Real Root Of 768*x^4+770*x^3+668*x^2-248*x-884 9870007858584972 a007 Real Root Of 97*x^4-423*x^3+332*x^2-92*x-913 9870007885475418 m005 (1/2*Catalan+6/7)/(17/48+7/16*5^(1/2)) 9870007888320740 r008 a(0)=1,K{-n^6,-68+93*n^3+53*n^2-n} 9870007888839980 a001 29/17711*55^(13/29) 9870007898677210 m002 5/E^(3*Pi)+Pi^2 9870007903926724 m005 (1/2*2^(1/2)+2/5)/(5/12*3^(1/2)+2/5) 9870007910063525 r002 32th iterates of z^2 + 9870007922000702 a001 9/305*8^(18/31) 9870007932876682 a001 1346269/2207*322^(1/12) 9870007935509639 a001 46368/2207*843^(4/7) 9870007935527112 a001 832040/15127*843^(3/7) 9870007964475436 a001 121393/1364*2207^(5/16) 9870007972369716 a001 726103/13201*843^(3/7) 9870007977744980 a001 5702887/103682*843^(3/7) 9870007978529220 a001 4976784/90481*843^(3/7) 9870007978643640 a001 39088169/710647*843^(3/7) 9870007978660333 a001 831985/15126*843^(3/7) 9870007978662769 a001 267914296/4870847*843^(3/7) 9870007978663124 a001 233802911/4250681*843^(3/7) 9870007978663176 a001 1836311903/33385282*843^(3/7) 9870007978663183 a001 1602508992/29134601*843^(3/7) 9870007978663184 a001 12586269025/228826127*843^(3/7) 9870007978663185 a001 10983760033/199691526*843^(3/7) 9870007978663185 a001 86267571272/1568397607*843^(3/7) 9870007978663185 a001 75283811239/1368706081*843^(3/7) 9870007978663185 a001 591286729879/10749957122*843^(3/7) 9870007978663185 a001 12585437040/228811001*843^(3/7) 9870007978663185 a001 4052739537881/73681302247*843^(3/7) 9870007978663185 a001 3536736619241/64300051206*843^(3/7) 9870007978663185 a001 6557470319842/119218851371*843^(3/7) 9870007978663185 a001 2504730781961/45537549124*843^(3/7) 9870007978663185 a001 956722026041/17393796001*843^(3/7) 9870007978663185 a001 365435296162/6643838879*843^(3/7) 9870007978663185 a001 139583862445/2537720636*843^(3/7) 9870007978663185 a001 53316291173/969323029*843^(3/7) 9870007978663185 a001 20365011074/370248451*843^(3/7) 9870007978663185 a001 7778742049/141422324*843^(3/7) 9870007978663188 a001 2971215073/54018521*843^(3/7) 9870007978663208 a001 1134903170/20633239*843^(3/7) 9870007978663344 a001 433494437/7881196*843^(3/7) 9870007978664274 a001 165580141/3010349*843^(3/7) 9870007978670650 a001 63245986/1149851*843^(3/7) 9870007978714354 a001 24157817/439204*843^(3/7) 9870007979013908 a001 9227465/167761*843^(3/7) 9870007981067076 a001 3524578/64079*843^(3/7) 9870007995139698 a001 1346269/24476*843^(3/7) 9870007998387760 a001 610/3571*9349^(18/19) 9870008019380037 a007 Real Root Of 405*x^4-266*x^3-570*x^2-955*x-89 9870008022164075 a001 1597/1364*9349^(14/19) 9870008025772861 r008 a(0)=1,K{-n^6,-79+91*n^3+54*n^2+11*n} 9870008040365814 m001 1/OneNinth^2/ln(Trott)/GAMMA(11/24) 9870008050341053 m001 ln(Pi)^2/GAMMA(2/3)^2*sinh(1)^2 9870008074524723 l006 ln(1474/3955) 9870008085990964 m004 -3/2+(5*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi])/2 9870008091246827 a001 610/3571*24476^(6/7) 9870008091594890 a001 514229/9349*843^(3/7) 9870008091606532 a001 75025/1364*2207^(3/8) 9870008094387794 a001 1597/1364*24476^(2/3) 9870008103487438 a001 610/3571*64079^(18/23) 9870008103908269 a001 1597/1364*64079^(14/23) 9870008105334509 a001 610/3571*439204^(2/3) 9870008105368533 a001 610/3571*7881196^(6/11) 9870008105368619 a001 610/3571*141422324^(6/13) 9870008105368620 a001 610/3571*2537720636^(2/5) 9870008105368620 a001 610/3571*45537549124^(6/17) 9870008105368620 a001 610/3571*14662949395604^(2/7) 9870008105368620 a001 610/3571*(1/2+1/2*5^(1/2))^18 9870008105368620 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^18/Lucas(17) 9870008105368620 a001 610/3571*192900153618^(1/3) 9870008105368620 a001 610/3571*10749957122^(3/8) 9870008105368620 a001 610/3571*4106118243^(9/23) 9870008105368620 a001 610/3571*1568397607^(9/22) 9870008105368620 a001 610/3571*599074578^(3/7) 9870008105368620 a001 610/3571*228826127^(9/20) 9870008105368620 a001 610/3571*87403803^(9/19) 9870008105368624 a001 610/3571*33385282^(1/2) 9870008105368652 a001 610/3571*12752043^(9/17) 9870008105368854 a001 610/3571*4870847^(9/16) 9870008105370330 a001 610/3571*1860498^(3/5) 9870008105371401 a001 1597/1364*20633239^(2/5) 9870008105371410 a001 1597/1364*17393796001^(2/7) 9870008105371410 a001 1597/1364*14662949395604^(2/9) 9870008105371410 a001 1597/1364*(1/2+1/2*5^(1/2))^14 9870008105371410 a001 1597/1364*505019158607^(1/4) 9870008105371410 a001 1597/1364*10749957122^(7/24) 9870008105371410 a001 1597/1364*4106118243^(7/23) 9870008105371410 a001 1597/1364*1568397607^(7/22) 9870008105371410 a001 1597/1364*599074578^(1/3) 9870008105371410 a001 1597/1364*228826127^(7/20) 9870008105371411 a001 1597/1364*87403803^(7/19) 9870008105371414 a001 1597/1364*33385282^(7/18) 9870008105371435 a001 1597/1364*12752043^(7/17) 9870008105371592 a001 1597/1364*4870847^(7/16) 9870008105372741 a001 1597/1364*1860498^(7/15) 9870008105381182 a001 1597/1364*710647^(1/2) 9870008105381184 a001 610/3571*710647^(9/14) 9870008105443540 a001 1597/1364*271443^(7/13) 9870008105461358 a001 610/3571*271443^(9/13) 9870008105906994 a001 1597/1364*103682^(7/12) 9870008106057228 a001 610/3571*103682^(3/4) 9870008109376080 a001 1597/1364*39603^(7/11) 9870008110517481 a001 610/3571*39603^(9/11) 9870008130159732 m001 (Robbin+TravellingSalesman)/(BesselJ(0,1)-Kac) 9870008135000939 r002 12th iterates of z^2 + 9870008135564666 a001 1597/1364*15127^(7/10) 9870008144188519 a001 610/3571*15127^(9/10) 9870008163459877 r008 a(0)=1,K{-n^6,-68+93*n^3+54*n^2-2*n} 9870008209324489 r005 Im(z^2+c),c=-13/118+62/63*I,n=9 9870008216984132 a001 11592/341*2207^(7/16) 9870008229155678 a007 Real Root Of -477*x^4+376*x^3+330*x^2+947*x-97 9870008248347209 r001 5i'th iterates of 2*x^2-1 of 9870008302181150 m005 (1/2*5^(1/2)-9/11)/(2/11*Pi-7/8) 9870008323428167 a001 610*843^(1/14) 9870008335313244 a001 1597/1364*5778^(7/9) 9870008346952452 a001 28657/1364*2207^(1/2) 9870008350024731 g006 Psi(1,1/12)+Psi(1,5/11)-Psi(1,9/11)-Psi(1,1/7) 9870008359253140 a007 Real Root Of 781*x^4+288*x^3+90*x^2-149*x-699 9870008365418328 r005 Re(z^2+c),c=-27/58+10/17*I,n=48 9870008372006064 a007 Real Root Of -949*x^4+489*x^3+251*x^2-287*x+843 9870008383226927 r005 Re(z^2+c),c=3/32+1/18*I,n=7 9870008436232058 r008 a(0)=1,K{-n^6,-72+78*n^3+98*n^2-27*n} 9870008450003549 a007 Real Root Of -125*x^4+306*x^3+844*x^2+896*x+475 9870008464902114 a001 17711/1364*2207^(9/16) 9870008468108273 r005 Re(z^2+c),c=55/114+2/55*I,n=3 9870008479002461 a007 Real Root Of -96*x^4+488*x^3-247*x^2-620*x+189 9870008489881413 a007 Real Root Of -824*x^4-600*x^3-590*x^2-397*x+388 9870008502459597 r009 Re(z^3+c),c=-1/74+27/38*I,n=35 9870008507122560 m005 (1/2*5^(1/2)+7/12)/(3/11*3^(1/2)-3/10) 9870008531015247 a007 Real Root Of 880*x^4-171*x^3-672*x^2-531*x-869 9870008550620004 a007 Real Root Of -621*x^4+39*x^3-576*x^2-465*x+729 9870008567830524 r005 Im(z^2+c),c=-73/122+11/59*I,n=28 9870008572712912 r008 a(0)=1,K{-n^6,-73+78*n^3+98*n^2-26*n} 9870008575689834 m001 (arctan(1/3)-cos(1/12*Pi))/(Stephens+ZetaP(4)) 9870008589054421 a007 Real Root Of 714*x^4+480*x^3-288*x^2-828*x+84 9870008595534995 r005 Im(z^2+c),c=-4/17+5/36*I,n=16 9870008595610890 r002 16th iterates of z^2 + 9870008598729476 m001 Si(Pi)^Chi(1)/(Si(Pi)^Thue) 9870008603020515 m001 ZetaP(2)^(BesselK(1,1)*Trott2nd) 9870008614317039 a001 5473/682*2207^(5/8) 9870008625038073 s001 sum(exp(-Pi/4)^n*A080964[n],n=1..infinity) 9870008625638247 s001 sum(exp(-2*Pi)^(n-1)*A022602[n],n=1..infinity) 9870008649583918 a007 Real Root Of 422*x^4-99*x^3+437*x^2+509*x-419 9870008649782559 a003 sin(Pi*21/52)/sin(Pi*41/98) 9870008651207826 a007 Real Root Of 356*x^4+459*x^3+710*x^2+448*x-146 9870008662913184 m001 (FeigenbaumAlpha+FeigenbaumKappa)^gamma(2) 9870008669323533 r005 Re(z^2+c),c=-9/8+68/139*I,n=2 9870008675128707 a001 98209/2889*843^(1/2) 9870008681354839 a001 615/124*2207^(11/16) 9870008682141440 a001 646/341*2207^(13/16) 9870008710099399 r008 a(0)=1,K{-n^6,-68+94*n^3+53*n^2-2*n} 9870008752708663 a001 196418/3571*843^(3/7) 9870008760512172 a007 Real Root Of 680*x^4-287*x^3-434*x^2+424*x-80 9870008763895519 p001 sum((-1)^n/(399*n+101)/(64^n),n=0..infinity) 9870008784510428 a007 Real Root Of -839*x^4+54*x^3+343*x^2-77*x+438 9870008794949038 m005 (1/3*Pi-2/11)/(1/8*2^(1/2)+7/10) 9870008798299712 a007 Real Root Of 813*x^4-656*x^3-794*x^2+323*x-310 9870008844780740 r008 a(0)=1,K{-n^6,-73+78*n^3+99*n^2-27*n} 9870008857466920 m001 (exp(-1/2*Pi)-exp(Pi))/(-MertensB1+Sierpinski) 9870008872953209 r005 Re(z^2+c),c=31/114+31/42*I,n=3 9870008903849553 m001 GAMMA(7/12)*(FeigenbaumDelta+KomornikLoreti) 9870008915025790 a007 Real Root Of 665*x^4-660*x^3-860*x^2-223*x-648 9870008927591298 a001 514229/15127*843^(1/2) 9870008930885385 a001 28657/2207*843^(9/14) 9870008943527688 m001 (-Rabbit+Tribonacci)/(gamma+LambertW(1)) 9870008946165351 m002 9/(E^Pi*Pi^6)+Pi^2 9870008962633221 l006 ln(2847/7639) 9870008964058764 a001 4181/1364*2207^(3/4) 9870008964425095 a001 1346269/39603*843^(1/2) 9870008966360590 m001 Robbin*Conway^2*ln(Catalan) 9870008969799073 a001 1762289/51841*843^(1/2) 9870008970583126 a001 9227465/271443*843^(1/2) 9870008970697518 a001 24157817/710647*843^(1/2) 9870008970714208 a001 31622993/930249*843^(1/2) 9870008970716643 a001 165580141/4870847*843^(1/2) 9870008970716998 a001 433494437/12752043*843^(1/2) 9870008970717050 a001 567451585/16692641*843^(1/2) 9870008970717057 a001 2971215073/87403803*843^(1/2) 9870008970717058 a001 7778742049/228826127*843^(1/2) 9870008970717058 a001 10182505537/299537289*843^(1/2) 9870008970717059 a001 53316291173/1568397607*843^(1/2) 9870008970717059 a001 139583862445/4106118243*843^(1/2) 9870008970717059 a001 182717648081/5374978561*843^(1/2) 9870008970717059 a001 956722026041/28143753123*843^(1/2) 9870008970717059 a001 2504730781961/73681302247*843^(1/2) 9870008970717059 a001 3278735159921/96450076809*843^(1/2) 9870008970717059 a001 10610209857723/312119004989*843^(1/2) 9870008970717059 a001 4052739537881/119218851371*843^(1/2) 9870008970717059 a001 387002188980/11384387281*843^(1/2) 9870008970717059 a001 591286729879/17393796001*843^(1/2) 9870008970717059 a001 225851433717/6643838879*843^(1/2) 9870008970717059 a001 1135099622/33391061*843^(1/2) 9870008970717059 a001 32951280099/969323029*843^(1/2) 9870008970717059 a001 12586269025/370248451*843^(1/2) 9870008970717059 a001 1201881744/35355581*843^(1/2) 9870008970717062 a001 1836311903/54018521*843^(1/2) 9870008970717082 a001 701408733/20633239*843^(1/2) 9870008970717217 a001 66978574/1970299*843^(1/2) 9870008970718147 a001 102334155/3010349*843^(1/2) 9870008970724522 a001 39088169/1149851*843^(1/2) 9870008970768216 a001 196452/5779*843^(1/2) 9870008971067698 a001 5702887/167761*843^(1/2) 9870008973120375 a001 2178309/64079*843^(1/2) 9870008979665908 r002 44th iterates of z^2 + 9870008981884560 r008 a(0)=1,K{-n^6,-32+93*n^3+75*n^2-59*n} 9870008987189633 a001 208010/6119*843^(1/2) 9870008990819133 s001 sum(exp(-Pi/4)^(n-1)*A058755[n],n=1..infinity) 9870009010201416 a007 Real Root Of 914*x^4+573*x^3+369*x^2+237*x-442 9870009073247850 s002 sum(A239359[n]/(exp(n)+1),n=1..infinity) 9870009074740957 s001 sum(exp(-2*Pi)^(n-1)*A001485[n],n=1..infinity) 9870009075582775 s001 sum(exp(-2*Pi)^(n-1)*A230210[n],n=1..infinity) 9870009083621767 a001 317811/9349*843^(1/2) 9870009117140041 r008 a(0)=1,K{-n^6,-33+93*n^3+75*n^2-58*n} 9870009117192631 a007 Real Root Of -x^4-988*x^3-986*x^2+99*x-721 9870009162391479 m005 (1/2*Catalan-5/6)/(7/8*2^(1/2)-6/7) 9870009164050724 a007 Real Root Of -934*x^4+435*x^3+640*x^2-680*x+10 9870009173928130 a007 Real Root Of -531*x^4+922*x^3+912*x^2-847*x-334 9870009187359209 r009 Re(z^3+c),c=-29/78+25/39*I,n=5 9870009216615144 m001 ln(Pi)^Gompertz/(ln(Pi)^ln(2)) 9870009216798826 r005 Im(z^2+c),c=-49/118+6/37*I,n=21 9870009265626113 a007 Real Root Of 888*x^4-63*x^3-228*x^2+909*x+216 9870009268658082 a007 Real Root Of -628*x^4+516*x^3+31*x^2+722*x-72 9870009275967457 a007 Real Root Of -457*x^4+438*x^3-166*x^2-727*x+299 9870009285051067 q001 1063/1077 9870009315492392 a001 514229/1364*843^(1/7) 9870009339900857 a007 Real Root Of 221*x^4-622*x^3-357*x^2-273*x+31 9870009357717483 a004 Fibonacci(15)*Lucas(16)/(1/2+sqrt(5)/2)^15 9870009383699910 m005 (1/2*5^(1/2)-1/3)/(1/10*5^(1/2)+4/7) 9870009385342444 r008 a(0)=1,K{-n^6,-73+79*n^3+98*n^2-27*n} 9870009386766995 r008 a(0)=1,K{-n^6,-33+93*n^3+76*n^2-59*n} 9870009395552319 m001 (PlouffeB-ZetaP(4))/(Bloch+FeigenbaumMu) 9870009398597455 m001 Rabbit^(exp(Pi)*ZetaQ(4)) 9870009430131649 r005 Re(z^2+c),c=-83/90+5/8*I,n=3 9870009448278955 a007 Real Root Of -612*x^4+755*x^3+797*x^2+43*x-964 9870009449906378 m005 (1/2*Catalan-7/10)/(7/10*gamma-3/7) 9870009494084141 a007 Real Root Of 49*x^4-306*x^3+267*x^2+398*x-208 9870009520724762 r002 24i'th iterates of 2*x/(1-x^2) of 9870009538597742 m001 exp(TreeGrowth2nd)/Champernowne/GAMMA(5/6)^2 9870009562213523 a001 521/13*5^(14/25) 9870009575799188 b008 EulerGamma^(1/42) 9870009623765337 a007 Real Root Of 392*x^4+319*x^3+341*x^2+886*x+477 9870009657205810 m005 (1/2*Catalan+1/6)/(2/9*Zeta(3)-9/10) 9870009663579453 a001 1762289/2889*322^(1/12) 9870009666997529 a001 121393/5778*843^(4/7) 9870009677568709 a007 Real Root Of 276*x^4-491*x^3-669*x^2-639*x-713 9870009687977540 r002 58i'th iterates of 2*x/(1-x^2) of 9870009716226646 a007 Real Root Of -716*x^4-448*x^3+102*x^2-587*x-430 9870009734462593 m005 (1/2*gamma-7/8)/(5/7*gamma+2/11) 9870009744577493 a001 121393/3571*843^(1/2) 9870009752266428 a003 sin(Pi*7/27)/sin(Pi*24/91) 9870009761521055 r005 Im(z^2+c),c=-7/9+5/67*I,n=10 9870009765441022 r008 a(0)=1,K{-n^6,36+45*n+39*n^2-44*n^3} 9870009769385252 m001 Chi(1)*MasserGramain*MasserGramainDelta 9870009783119101 r008 a(0)=1,K{-n^6,56+4*n^3-33*n^2+50*n} 9870009816442636 a007 Real Root Of -954*x^4+184*x^3-17*x^2-936*x+175 9870009838932908 r002 3th iterates of z^2 + 9870009853025104 a007 Real Root Of -197*x^4-633*x^3-587*x^2+243*x+390 9870009870894463 a007 Real Root Of 964*x^4+347*x^3-632*x^2-502*x-461 9870009878421761 a001 1597/1364*2207^(7/8) 9870009891706087 a007 Real Root Of -878*x^4+124*x^3+621*x^2+269*x+613 9870009914242568 a001 17711/2207*843^(5/7) 9870009914343401 r009 Re(z^3+c),c=-5/56+39/50*I,n=4 9870009916072264 l006 ln(1373/3684) 9870009916085635 a001 9227465/15127*322^(1/12) 9870009919618258 a001 317811/15127*843^(4/7) 9870009921511206 r008 a(0)=1,K{-n^6,-55+83*n^3+97*n^2-48*n} 9870009922488731 r008 a(0)=1,K{-n^6,-33+94*n^3+75*n^2-59*n} 9870009940739430 m002 Pi^2+(ProductLog[Pi]*Sech[Pi])/(E^Pi*Pi^2) 9870009952925792 a001 24157817/39603*322^(1/12) 9870009956475127 a001 832040/39603*843^(4/7) 9870009958300698 a001 31622993/51841*322^(1/12) 9870009959084886 a001 165580141/271443*322^(1/12) 9870009959199298 a001 433494437/710647*322^(1/12) 9870009959215990 a001 567451585/930249*322^(1/12) 9870009959218426 a001 2971215073/4870847*322^(1/12) 9870009959218781 a001 7778742049/12752043*322^(1/12) 9870009959218833 a001 10182505537/16692641*322^(1/12) 9870009959218840 a001 53316291173/87403803*322^(1/12) 9870009959218842 a001 139583862445/228826127*322^(1/12) 9870009959218842 a001 182717648081/299537289*322^(1/12) 9870009959218842 a001 956722026041/1568397607*322^(1/12) 9870009959218842 a001 2504730781961/4106118243*322^(1/12) 9870009959218842 a001 3278735159921/5374978561*322^(1/12) 9870009959218842 a001 10610209857723/17393796001*322^(1/12) 9870009959218842 a001 4052739537881/6643838879*322^(1/12) 9870009959218842 a001 1134903780/1860499*322^(1/12) 9870009959218842 a001 591286729879/969323029*322^(1/12) 9870009959218842 a001 225851433717/370248451*322^(1/12) 9870009959218842 a001 21566892818/35355581*322^(1/12) 9870009959218845 a001 32951280099/54018521*322^(1/12) 9870009959218865 a001 1144206275/1875749*322^(1/12) 9870009959219001 a001 1201881744/1970299*322^(1/12) 9870009959219931 a001 1836311903/3010349*322^(1/12) 9870009959226307 a001 701408733/1149851*322^(1/12) 9870009959270008 a001 66978574/109801*322^(1/12) 9870009959569541 a001 9303105/15251*322^(1/12) 9870009960415663 r005 Re(z^2+c),c=-11/10+19/170*I,n=22 9870009961622573 a001 39088169/64079*322^(1/12) 9870009961852472 a001 46347/2206*843^(4/7) 9870009962637016 a001 5702887/271443*843^(4/7) 9870009962751479 a001 14930352/710647*843^(4/7) 9870009962768179 a001 39088169/1860498*843^(4/7) 9870009962770616 a001 102334155/4870847*843^(4/7) 9870009962770971 a001 267914296/12752043*843^(4/7) 9870009962771023 a001 701408733/33385282*843^(4/7) 9870009962771031 a001 1836311903/87403803*843^(4/7) 9870009962771032 a001 102287808/4868641*843^(4/7) 9870009962771032 a001 12586269025/599074578*843^(4/7) 9870009962771032 a001 32951280099/1568397607*843^(4/7) 9870009962771032 a001 86267571272/4106118243*843^(4/7) 9870009962771032 a001 225851433717/10749957122*843^(4/7) 9870009962771032 a001 591286729879/28143753123*843^(4/7) 9870009962771032 a001 1548008755920/73681302247*843^(4/7) 9870009962771032 a001 4052739537881/192900153618*843^(4/7) 9870009962771032 a001 225749145909/10745088481*843^(4/7) 9870009962771032 a001 6557470319842/312119004989*843^(4/7) 9870009962771032 a001 2504730781961/119218851371*843^(4/7) 9870009962771032 a001 956722026041/45537549124*843^(4/7) 9870009962771032 a001 365435296162/17393796001*843^(4/7) 9870009962771032 a001 139583862445/6643838879*843^(4/7) 9870009962771032 a001 53316291173/2537720636*843^(4/7) 9870009962771032 a001 20365011074/969323029*843^(4/7) 9870009962771032 a001 7778742049/370248451*843^(4/7) 9870009962771033 a001 2971215073/141422324*843^(4/7) 9870009962771036 a001 1134903170/54018521*843^(4/7) 9870009962771055 a001 433494437/20633239*843^(4/7) 9870009962771191 a001 165580141/7881196*843^(4/7) 9870009962772122 a001 63245986/3010349*843^(4/7) 9870009962778501 a001 24157817/1149851*843^(4/7) 9870009962822222 a001 9227465/439204*843^(4/7) 9870009963121891 a001 3524578/167761*843^(4/7) 9870009965175854 a001 1346269/64079*843^(4/7) 9870009970786651 m001 CareFree*PisotVijayaraghavan+ZetaQ(2) 9870009975694261 a001 3732588/6119*322^(1/12) 9870009977291679 m005 (1/2*exp(1)+5/12)/(7/11*Pi-1/5) 9870009979253925 a001 514229/24476*843^(4/7) 9870010042932406 m001 (2^(1/3))*FeigenbaumD^2/ln(GAMMA(2/3))^2 9870010066850439 m001 (Si(Pi)+exp(1/Pi))/(Mills+ReciprocalLucas) 9870010072143044 a001 5702887/9349*322^(1/12) 9870010075746462 a001 196418/9349*843^(4/7) 9870010097904897 b008 -11+ArcSinh[Log[4]] 9870010109810680 m002 Pi^2+Sinh[Pi]/(3*Pi^8) 9870010127773452 a007 Real Root Of -944*x^4+607*x^3+534*x^2-516*x+450 9870010131710179 a001 -2961/2+2207/2*5^(1/2) 9870010131712259 a001 974170/987 9870010132431922 h001 (1/2*exp(1)+3/4)/(1/2*exp(1)+7/9) 9870010132431922 m005 (1/2*exp(1)+3/4)/(1/2*exp(1)+7/9) 9870010148958253 m001 Lehmer^OneNinth-Pi*csc(11/24*Pi)/GAMMA(13/24) 9870010165492533 p004 log(29201/10883) 9870010170752208 a007 Real Root Of 132*x^4-702*x^3+208*x^2-314*x+657 9870010194929760 r009 Im(z^3+c),c=-25/122+61/62*I,n=17 9870010207031553 m001 (GAMMA(7/12)+LaplaceLimit)/(exp(Pi)+Zeta(1,2)) 9870010220568138 a007 Real Root Of 895*x^4+396*x^3-433*x^2-907*x-942 9870010223034587 a007 Real Root Of -94*x^4-858*x^3+714*x^2+301*x+510 9870010243664718 m005 (1/2*3^(1/2)+2/5)/(6/11*exp(1)-1/5) 9870010251905661 r005 Im(z^2+c),c=-127/106+3/35*I,n=8 9870010254116452 a007 Real Root Of -604*x^4-72*x^3+504*x^2-770*x-747 9870010278420966 m005 (1/2*Pi-5/7)/(11/12*2^(1/2)-3/7) 9870010286935424 l006 ln(5167/5703) 9870010307519391 a001 317811/1364*843^(3/14) 9870010308110543 h001 (8/11*exp(1)+7/10)/(2/3*exp(1)+9/10) 9870010335231736 r005 Im(z^2+c),c=-5/6+5/83*I,n=43 9870010338940768 a001 2584/11*199^(16/59) 9870010341337543 m001 (MertensB3-Riemann1stZero)/(CareFree+Lehmer) 9870010394304214 a007 Real Root Of -456*x^4+211*x^3+772*x^2+659*x+534 9870010409490952 r009 Re(z^3+c),c=-37/70+20/37*I,n=18 9870010431831706 m005 (1/2*Catalan+7/8)/(1/3*exp(1)+4/9) 9870010434540665 a007 Real Root Of -769*x^4+910*x^3+26*x^2+501*x-665 9870010443002881 r009 Re(z^3+c),c=-47/110+39/61*I,n=7 9870010454282166 a007 Real Root Of -962*x^4-48*x^3+168*x^2-759*x-46 9870010458532014 a007 Real Root Of 70*x^4+775*x^3+904*x^2+685*x-442 9870010475943039 m009 (4/5*Psi(1,1/3)+2/3)/(3*Psi(1,2/3)-1/3) 9870010490272795 r005 Im(z^2+c),c=-61/114+15/28*I,n=35 9870010530338974 a001 4181/521*521^(10/13) 9870010565396622 r001 17i'th iterates of 2*x^2-1 of 9870010621676432 m002 -Pi^2+Pi^4+Cosh[Pi]-5*Sech[Pi] 9870010659536228 a001 75025/5778*843^(9/14) 9870010710356085 m005 (35/44+1/4*5^(1/2))/(3/7*Zeta(3)+6/7) 9870010733212893 a001 2178309/3571*322^(1/12) 9870010737116200 a001 75025/3571*843^(4/7) 9870010741317786 h001 (5/12*exp(1)+1/8)/(4/11*exp(1)+2/7) 9870010763345333 m001 (LaplaceLimit+Niven)/(GAMMA(3/4)+GAMMA(19/24)) 9870010823655652 m001 Cahen^(ZetaP(4)/Sierpinski) 9870010868865975 m002 E^Pi/(6*Pi^8)+Pi^2 9870010874517461 a007 Real Root Of 888*x^4-732*x^3-395*x^2+558*x-611 9870010911743038 a001 196418/15127*843^(9/14) 9870010921996413 m008 (Pi^4-1/3)/(1/3*Pi^3-1/2) 9870010929065120 a001 10946/2207*843^(11/14) 9870010942325831 l006 ln(2645/7097) 9870010948539516 a001 514229/39603*843^(9/14) 9870010953908050 a001 1346269/103682*843^(9/14) 9870010954691309 a001 3524578/271443*843^(9/14) 9870010954805585 a001 9227465/710647*843^(9/14) 9870010954822257 a001 24157817/1860498*843^(9/14) 9870010954824690 a001 63245986/4870847*843^(9/14) 9870010954825045 a001 165580141/12752043*843^(9/14) 9870010954825097 a001 433494437/33385282*843^(9/14) 9870010954825104 a001 1134903170/87403803*843^(9/14) 9870010954825105 a001 2971215073/228826127*843^(9/14) 9870010954825105 a001 7778742049/599074578*843^(9/14) 9870010954825105 a001 20365011074/1568397607*843^(9/14) 9870010954825105 a001 53316291173/4106118243*843^(9/14) 9870010954825105 a001 139583862445/10749957122*843^(9/14) 9870010954825105 a001 365435296162/28143753123*843^(9/14) 9870010954825105 a001 956722026041/73681302247*843^(9/14) 9870010954825105 a001 2504730781961/192900153618*843^(9/14) 9870010954825105 a001 10610209857723/817138163596*843^(9/14) 9870010954825105 a001 4052739537881/312119004989*843^(9/14) 9870010954825105 a001 1548008755920/119218851371*843^(9/14) 9870010954825105 a001 591286729879/45537549124*843^(9/14) 9870010954825105 a001 7787980473/599786069*843^(9/14) 9870010954825105 a001 86267571272/6643838879*843^(9/14) 9870010954825105 a001 32951280099/2537720636*843^(9/14) 9870010954825105 a001 12586269025/969323029*843^(9/14) 9870010954825105 a001 4807526976/370248451*843^(9/14) 9870010954825106 a001 1836311903/141422324*843^(9/14) 9870010954825109 a001 701408733/54018521*843^(9/14) 9870010954825129 a001 9238424/711491*843^(9/14) 9870010954825264 a001 102334155/7881196*843^(9/14) 9870010954826193 a001 39088169/3010349*843^(9/14) 9870010954832562 a001 14930352/1149851*843^(9/14) 9870010954876211 a001 5702887/439204*843^(9/14) 9870010955175389 a001 2178309/167761*843^(9/14) 9870010957225987 a001 832040/64079*843^(9/14) 9870010959012559 a007 Real Root Of -723*x^4+543*x^3+14*x^2-262*x+936 9870010971280991 a001 10959/844*843^(9/14) 9870010979124820 m001 ln(2)^gamma(2)*(2*Pi/GAMMA(5/6))^gamma(2) 9870010989971708 m001 ln(FeigenbaumDelta)^2*Cahen^2*Zeta(9)^2 9870011003165529 r005 Re(z^2+c),c=-13/14+81/221*I,n=3 9870011025702634 m001 (5^(1/2)+sin(1/5*Pi))/(Ei(1)+cos(1/12*Pi)) 9870011056215287 m001 (-BesselJ(1,1)+Robbin)/(5^(1/2)-gamma(2)) 9870011057280051 m001 1/GAMMA(13/24)/exp(GolombDickman)^2/sqrt(Pi) 9870011067615425 a001 121393/9349*843^(9/14) 9870011087431938 a007 Real Root Of -354*x^4+169*x^3+255*x^2+387*x+632 9870011121788696 r005 Re(z^2+c),c=-17/18+25/128*I,n=27 9870011196131567 r009 Re(z^3+c),c=-25/94+37/56*I,n=19 9870011211501519 a007 Real Root Of -773*x^4-142*x^3-850*x^2-685*x+749 9870011233845070 r009 Im(z^3+c),c=-5/48+57/58*I,n=5 9870011294478544 r008 a(0)=1,K{-n^6,13+55*n+50*n^2-38*n^3} 9870011299644209 a001 98209/682*843^(2/7) 9870011330733390 a007 Real Root Of -709*x^4+875*x^3+127*x^2-581*x+817 9870011331320988 m002 Pi^2+(Log[Pi]*ProductLog[Pi])/Pi^7 9870011335088841 h001 (-exp(1)+8)/(-exp(1/2)+7) 9870011345441685 a007 Real Root Of 349*x^4+63*x^3+593*x^2-101*x-948 9870011348798016 m002 Pi^2+Tanh[Pi]/(8*Pi^5) 9870011353106803 b008 Pi^2+Erfc[5/2] 9870011364221183 r002 26th iterates of z^2 + 9870011366134088 a007 Real Root Of 343*x^4-882*x^3-9*x^2+361*x+175 9870011381910805 r002 32th iterates of z^2 + 9870011431820398 r008 a(0)=1,K{-n^6,97-18*n^3+50*n^2-51*n} 9870011458217377 m002 Pi^2+(Csch[Pi]*ProductLog[Pi])/(E^Pi*Pi^2) 9870011500900961 a007 Real Root Of -367*x^4-252*x^3-30*x^2+324*x+455 9870011504440797 r005 Re(z^2+c),c=-7/8+62/227*I,n=16 9870011525750620 a007 Real Root Of -678*x^4-508*x^3+406*x^2+113*x-129 9870011545388135 s002 sum(A258139[n]/(n^3*2^n+1),n=1..infinity) 9870011586398705 r002 7th iterates of z^2 + 9870011590284735 r002 17th iterates of z^2 + 9870011591437918 m001 (5^(1/2)+GAMMA(23/24))/(-Artin+CareFree) 9870011618504802 r009 Im(z^3+c),c=-67/118+22/35*I,n=38 9870011627622389 m001 BesselJ(1,1)-GAMMA(7/12)^Chi(1) 9870011627921270 m002 Pi^2+Cosh[Pi]/(3*Pi^8) 9870011639043471 r008 a(0)=1,K{-n^6,34+64*n+14*n^2-36*n^3} 9870011639136628 a003 sin(Pi*54/119)*sin(Pi*53/111) 9870011650321527 a001 2576/321*843^(5/7) 9870011671296673 a007 Real Root Of 768*x^4-763*x^3-182*x^2+910*x-387 9870011687908400 r002 36th iterates of z^2 + 9870011691033931 r005 Re(z^2+c),c=-115/118+7/64*I,n=13 9870011698876190 m001 (3^(1/2)+OneNinth)/(-Trott2nd+ZetaQ(3)) 9870011715945461 r002 17th iterates of z^2 + 9870011727901507 a001 46368/3571*843^(9/14) 9870011729885394 a007 Real Root Of 866*x^4+303*x^3+202*x^2+901*x+162 9870011735785202 a007 Real Root Of 377*x^4+327*x^3-412*x^2-895*x+92 9870011762870952 m001 (AlladiGrinstead+ZetaR(2))^GaussKuzminWirsing 9870011772700970 m001 RenyiParking^(ZetaP(4)/Niven) 9870011787182167 m001 (-MadelungNaCl+1/3)/(-LambertW(1)+2) 9870011788701102 a007 Real Root Of -619*x^4-228*x^3-907*x^2-478*x+780 9870011790144548 a007 Real Root Of 837*x^4-114*x^3-345*x^2+12*x-556 9870011796794668 a001 521/17711*6765^(7/51) 9870011821357431 m001 (1+polylog(4,1/2))/(GAMMA(7/12)+ZetaQ(3)) 9870011861510621 a001 6765/2207*843^(6/7) 9870011862412896 a001 2817/2-377/2*5^(1/2) 9870011893792992 m001 (gamma(3)-Paris)/(3^(1/3)-arctan(1/2)) 9870011903612085 a001 121393/15127*843^(5/7) 9870011907946860 a001 305/682*3571^(16/17) 9870011922043713 a003 cos(Pi*23/102)-sin(Pi*22/67) 9870011924181946 m001 (3^(1/3)+Artin)/(ArtinRank2-QuadraticClass) 9870011926725322 m001 (Stephens+Tribonacci)/(Riemann3rdZero-cos(1)) 9870011936273872 a001 196418/843*322^(1/4) 9870011940566680 a001 105937/13201*843^(5/7) 9870011945958283 a001 416020/51841*843^(5/7) 9870011946744907 a001 726103/90481*843^(5/7) 9870011946859674 a001 5702887/710647*843^(5/7) 9870011946876418 a001 829464/103361*843^(5/7) 9870011946878861 a001 39088169/4870847*843^(5/7) 9870011946879218 a001 34111385/4250681*843^(5/7) 9870011946879270 a001 133957148/16692641*843^(5/7) 9870011946879277 a001 233802911/29134601*843^(5/7) 9870011946879278 a001 1836311903/228826127*843^(5/7) 9870011946879278 a001 267084832/33281921*843^(5/7) 9870011946879278 a001 12586269025/1568397607*843^(5/7) 9870011946879278 a001 10983760033/1368706081*843^(5/7) 9870011946879278 a001 43133785636/5374978561*843^(5/7) 9870011946879278 a001 75283811239/9381251041*843^(5/7) 9870011946879278 a001 591286729879/73681302247*843^(5/7) 9870011946879278 a001 86000486440/10716675201*843^(5/7) 9870011946879278 a001 4052739537881/505019158607*843^(5/7) 9870011946879278 a001 3536736619241/440719107401*843^(5/7) 9870011946879278 a001 3278735159921/408569081798*843^(5/7) 9870011946879278 a001 2504730781961/312119004989*843^(5/7) 9870011946879278 a001 956722026041/119218851371*843^(5/7) 9870011946879278 a001 182717648081/22768774562*843^(5/7) 9870011946879278 a001 139583862445/17393796001*843^(5/7) 9870011946879278 a001 53316291173/6643838879*843^(5/7) 9870011946879278 a001 10182505537/1268860318*843^(5/7) 9870011946879278 a001 7778742049/969323029*843^(5/7) 9870011946879279 a001 2971215073/370248451*843^(5/7) 9870011946879279 a001 567451585/70711162*843^(5/7) 9870011946879282 a001 433494437/54018521*843^(5/7) 9870011946879302 a001 165580141/20633239*843^(5/7) 9870011946879438 a001 31622993/3940598*843^(5/7) 9870011946880371 a001 24157817/3010349*843^(5/7) 9870011946886767 a001 9227465/1149851*843^(5/7) 9870011946930604 a001 1762289/219602*843^(5/7) 9870011947231067 a001 1346269/167761*843^(5/7) 9870011949290477 a001 514229/64079*843^(5/7) 9870011963405876 a001 98209/12238*843^(5/7) 9870011989249392 s001 sum(1/10^(n-1)*A128737[n]/n!,n=1..infinity) 9870011989540657 a001 599074578/55*55^(11/20) 9870012050066395 l006 ln(1272/3413) 9870012060154265 a001 75025/9349*843^(5/7) 9870012062116518 m001 (exp(1)+KhinchinHarmonic)/ZetaP(2) 9870012071370536 a003 sin(Pi*38/85)/sin(Pi*19/39) 9870012091898428 q001 3265/3308 9870012099690569 a007 Real Root Of -769*x^4+638*x^3+588*x^2+899*x-95 9870012108644239 r005 Im(z^2+c),c=-10/9+1/54*I,n=4 9870012108749557 m002 Pi^2+Sinh[Pi]/(4*E^Pi*Pi^5) 9870012144964930 m002 -2/Pi^2+Log[Pi]/Pi^2+ProductLog[Pi] 9870012154579337 h001 (3/5*exp(1)+7/12)/(2/11*exp(2)+9/10) 9870012161962767 a007 Real Root Of -757*x^4+381*x^3-517*x^2-663*x+934 9870012177411978 m001 BesselI(1,2)*Landau/ZetaQ(3) 9870012238707036 m001 sin(1/5*Pi)^CopelandErdos*ln(5)^CopelandErdos 9870012244985924 r009 Re(z^3+c),c=-15/82+27/43*I,n=18 9870012248943913 g007 Psi(2,3/10)+Psi(2,3/8)-Psi(2,10/11)-Psi(2,5/9) 9870012273525443 a007 Real Root Of 912*x^4+307*x^3-182*x^2-155*x-546 9870012282686631 a003 cos(Pi*11/118)/sin(Pi*27/64) 9870012287087500 r002 46th iterates of z^2 + 9870012287087500 r002 46th iterates of z^2 + 9870012289664169 m004 -3/4+5*Pi-25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870012291513295 a001 121393/1364*843^(5/14) 9870012333392220 a007 Real Root Of -307*x^4+608*x^3+43*x^2+158*x+990 9870012334764681 a007 Real Root Of -409*x^4+229*x^3-570*x^2-184*x+982 9870012428623075 a007 Real Root Of 48*x^4-819*x^3+653*x^2-830*x+925 9870012451252262 m005 (1/2*exp(1)-10/11)/(3/4*gamma-8/9) 9870012460236584 m001 FeigenbaumDelta*HardHexagonsEntropy/TwinPrimes 9870012461072233 a003 cos(Pi*5/62)+cos(Pi*41/83) 9870012477268624 m001 (Conway+OneNinth)/(ln(2)/ln(10)+GAMMA(5/6)) 9870012500963840 a007 Real Root Of 499*x^4-892*x^3-883*x^2+921*x+438 9870012541318242 a001 305/682*9349^(16/19) 9870012543808345 r008 a(0)=1,K{-n^6,72-39*n^3+42*n^2+n} 9870012554690223 a007 Real Root Of -85*x^4-780*x^3+538*x^2-396*x+363 9870012561766455 m005 (-19/36+1/4*5^(1/2))/(1/8*3^(1/2)+1/10) 9870012583552479 m001 GAMMA(13/24)/(Porter^PisotVijayaraghavan) 9870012585121486 b008 90*E^7+Pi 9870012596863278 m001 (-ln(5)+Totient)/(1+3^(1/2)) 9870012599227414 r005 Re(z^2+c),c=-11/10+16/161*I,n=14 9870012623859673 a001 305/682*24476^(16/21) 9870012634740221 a001 305/682*64079^(16/23) 9870012636412384 a001 305/682*(1/2+1/2*5^(1/2))^16 9870012636412384 a001 305/682*23725150497407^(1/4) 9870012636412384 a001 305/682*73681302247^(4/13) 9870012636412384 a001 305/682*10749957122^(1/3) 9870012636412384 a001 305/682*4106118243^(8/23) 9870012636412384 a001 305/682*1568397607^(4/11) 9870012636412384 a001 305/682*599074578^(8/21) 9870012636412384 a001 305/682*228826127^(2/5) 9870012636412384 a001 305/682*87403803^(8/19) 9870012636412388 a001 305/682*33385282^(4/9) 9870012636412412 a001 305/682*12752043^(8/17) 9870012636412592 a001 305/682*4870847^(1/2) 9870012636413904 a001 305/682*1860498^(8/15) 9870012636423552 a001 305/682*710647^(4/7) 9870012636494818 a001 305/682*271443^(8/13) 9870012637024480 a001 305/682*103682^(2/3) 9870012637588662 p004 log(13381/4987) 9870012640989151 a001 305/682*39603^(8/11) 9870012644132533 a001 47/10946*610^(39/46) 9870012645697648 a001 28657/5778*843^(11/14) 9870012654514683 m001 (2^(1/3))^Si(Pi)*Cahen 9870012669847975 a008 Real Root of x^3-x^2-107*x+192 9870012670396275 a007 Real Root Of 354*x^4+333*x^3-42*x^2-311*x-30 9870012670918977 a001 305/682*15127^(4/5) 9870012723277635 a001 28657/3571*843^(5/7) 9870012780551283 a007 Real Root Of -28*x^4-253*x^3+170*x^2-598*x-2 9870012792264955 l004 Shi(190/27) 9870012818701547 a007 Real Root Of -936*x^4-780*x^3-238*x^2-527*x-150 9870012821837240 a007 Real Root Of 441*x^4+432*x^3+116*x^2-242*x-355 9870012838753748 l006 ln(3715/9968) 9870012869550100 a007 Real Root Of 468*x^4-556*x^3-876*x^2+203*x+75 9870012896151008 a001 75025/15127*843^(11/14) 9870012899203171 a001 305/682*5778^(8/9) 9870012932691662 a001 196418/39603*843^(11/14) 9870012938022872 a001 514229/103682*843^(11/14) 9870012938800685 a001 1346269/271443*843^(11/14) 9870012938914166 a001 3524578/710647*843^(11/14) 9870012938930723 a001 9227465/1860498*843^(11/14) 9870012938933139 a001 24157817/4870847*843^(11/14) 9870012938933491 a001 63245986/12752043*843^(11/14) 9870012938933542 a001 165580141/33385282*843^(11/14) 9870012938933550 a001 433494437/87403803*843^(11/14) 9870012938933551 a001 1134903170/228826127*843^(11/14) 9870012938933551 a001 2971215073/599074578*843^(11/14) 9870012938933551 a001 7778742049/1568397607*843^(11/14) 9870012938933551 a001 20365011074/4106118243*843^(11/14) 9870012938933551 a001 53316291173/10749957122*843^(11/14) 9870012938933551 a001 139583862445/28143753123*843^(11/14) 9870012938933551 a001 365435296162/73681302247*843^(11/14) 9870012938933551 a001 956722026041/192900153618*843^(11/14) 9870012938933551 a001 2504730781961/505019158607*843^(11/14) 9870012938933551 a001 10610209857723/2139295485799*843^(11/14) 9870012938933551 a001 4052739537881/817138163596*843^(11/14) 9870012938933551 a001 140728068720/28374454999*843^(11/14) 9870012938933551 a001 591286729879/119218851371*843^(11/14) 9870012938933551 a001 225851433717/45537549124*843^(11/14) 9870012938933551 a001 86267571272/17393796001*843^(11/14) 9870012938933551 a001 32951280099/6643838879*843^(11/14) 9870012938933551 a001 1144206275/230701876*843^(11/14) 9870012938933551 a001 4807526976/969323029*843^(11/14) 9870012938933551 a001 1836311903/370248451*843^(11/14) 9870012938933552 a001 701408733/141422324*843^(11/14) 9870012938933555 a001 267914296/54018521*843^(11/14) 9870012938933574 a001 9303105/1875749*843^(11/14) 9870012938933709 a001 39088169/7881196*843^(11/14) 9870012938934631 a001 14930352/3010349*843^(11/14) 9870012938940956 a001 5702887/1149851*843^(11/14) 9870012938984302 a001 2178309/439204*843^(11/14) 9870012939281400 a001 75640/15251*843^(11/14) 9870012941317741 a001 317811/64079*843^(11/14) 9870012941405946 m001 (Mills+ReciprocalLucas)/(Si(Pi)-Zeta(1/2)) 9870012946899996 m001 FibonacciFactorial^ZetaR(2)/(Totient^ZetaR(2)) 9870012949853292 a007 Real Root Of 964*x^4+81*x^3-427*x^2-461*x-876 9870012952160415 a003 sin(Pi*4/67)+sin(Pi*13/44) 9870012955275029 a001 121393/24476*843^(11/14) 9870012962120874 a003 sin(Pi*13/106)+sin(Pi*9/43) 9870012988834277 a007 Real Root Of 237*x^4-120*x^3-110*x^2+451*x+212 9870012998121817 r005 Im(z^2+c),c=-43/30+7/92*I,n=3 9870013000133580 h001 (1/10*exp(1)+5/7)/(1/10*exp(1)+8/11) 9870013006319556 m001 exp(arctan(1/2))^2*GAMMA(13/24)*cosh(1)^2 9870013009622424 a001 4181/2207*843^(13/14) 9870013017800007 m001 (-Tetranacci+ZetaP(3))/(1+StronglyCareFree) 9870013050939704 a001 46368/9349*843^(11/14) 9870013079984311 a001 123/5*89^(13/42) 9870013096412112 m005 (1/2*gamma+6/7)/(11/12*5^(1/2)-8/9) 9870013156025996 r005 Re(z^2+c),c=-17/18+37/182*I,n=49 9870013171307271 a001 6765/521*521^(9/13) 9870013187234511 a003 sin(Pi*22/91)/cos(Pi*15/59) 9870013192717626 r005 Re(z^2+c),c=5/86+10/21*I,n=20 9870013210525482 a001 11/514229*13^(31/52) 9870013249338206 r005 Im(z^2+c),c=5/126+41/55*I,n=5 9870013249400597 l006 ln(2443/6555) 9870013276459992 m001 LaplaceLimit^(PrimesInBinary*ZetaP(4)) 9870013284052258 a001 75025/1364*843^(3/7) 9870013299404759 r002 14th iterates of z^2 + 9870013308551419 a007 Real Root Of 144*x^4-437*x^3-517*x^2-707*x-751 9870013313781119 m004 1+(125*Pi)/3-(25*Sqrt[5]*Sinh[Sqrt[5]*Pi])/Pi 9870013314836677 r005 Re(z^2+c),c=-26/27+5/33*I,n=35 9870013355004349 a001 144/3571*7^(23/50) 9870013384046679 a001 47/8*6765^(1/17) 9870013409392755 r009 Im(z^3+c),c=-3/17+29/30*I,n=31 9870013416584585 a007 Real Root Of -189*x^4+926*x^3-617*x^2-709*x+971 9870013424230544 a007 Real Root Of -965*x^4-26*x^3-532*x^2-842*x+578 9870013446884805 q001 2202/2231 9870013475676172 r002 7th iterates of z^2 + 9870013508262705 a007 Real Root Of 360*x^4-819*x^3+36*x^2+447*x-723 9870013509547571 m002 Pi^2+Tanh[Pi]/(25*Pi^4) 9870013516341168 a007 Real Root Of 209*x^4-482*x^3-948*x^2-252*x+13 9870013524870394 a005 (1/cos(5/152*Pi))^428 9870013532592271 a007 Real Root Of 340*x^4-622*x^3-140*x^2-26*x-810 9870013548044119 m005 (1/2*Zeta(3)-7/10)/(2/5*Catalan+7/11) 9870013551908008 m001 Zeta(1,2)^(MertensB1*StronglyCareFree) 9870013606001196 r002 10th iterates of z^2 + 9870013620982275 a003 cos(Pi*2/45)*sin(Pi*55/116) 9870013626756233 a001 10946/3*1364^(45/58) 9870013629055201 a001 17711/5778*843^(6/7) 9870013634339923 m002 Pi^2+Cosh[Pi]/(4*E^Pi*Pi^5) 9870013671523724 l006 ln(3614/9697) 9870013694261882 a007 Real Root Of 259*x^4-546*x^3-204*x^2+83*x+396 9870013706635197 a001 17711/3571*843^(11/14) 9870013718536574 a001 1/7*(1/2*5^(1/2)+1/2)^32*3^(7/22) 9870013763347712 m006 (3*exp(2*Pi)+1/2)/(1/5*exp(Pi)-3) 9870013821284778 r005 Re(z^2+c),c=-5/6+198/215*I,n=2 9870013823860198 m001 (cos(1/12*Pi)-2*Pi/GAMMA(5/6))/(Niven+Otter) 9870013846543744 l006 ln(4926/5437) 9870013863642563 a007 Real Root Of 947*x^4+200*x^3-964*x^2-947*x-702 9870013882918954 a001 682/305*34^(8/19) 9870013886936532 a001 6624/2161*843^(6/7) 9870013888752080 a004 Fibonacci(16)*Lucas(14)/(1/2+sqrt(5)/2)^14 9870013895591280 r002 6th iterates of z^2 + 9870013904413649 a007 Real Root Of -274*x^4+456*x^3-305*x^2-954*x+54 9870013909632044 m001 (3^(1/3)+arctan(1/3))/KomornikLoreti 9870013915660786 h001 (2/3*exp(1)+5/9)/(5/8*exp(1)+7/10) 9870013917614668 r004 Im(z^2+c),c=-3/14+3/8*I,z(0)=exp(5/8*I*Pi),n=2 9870013924560912 a001 121393/39603*843^(6/7) 9870013928371701 a007 Real Root Of -412*x^4+75*x^3+651*x^2+917*x+734 9870013930050235 a001 317811/103682*843^(6/7) 9870013930851117 a001 832040/271443*843^(6/7) 9870013930967964 a001 311187/101521*843^(6/7) 9870013930985012 a001 5702887/1860498*843^(6/7) 9870013930987499 a001 14930352/4870847*843^(6/7) 9870013930987862 a001 39088169/12752043*843^(6/7) 9870013930987915 a001 14619165/4769326*843^(6/7) 9870013930987922 a001 267914296/87403803*843^(6/7) 9870013930987923 a001 701408733/228826127*843^(6/7) 9870013930987924 a001 1836311903/599074578*843^(6/7) 9870013930987924 a001 686789568/224056801*843^(6/7) 9870013930987924 a001 12586269025/4106118243*843^(6/7) 9870013930987924 a001 32951280099/10749957122*843^(6/7) 9870013930987924 a001 86267571272/28143753123*843^(6/7) 9870013930987924 a001 32264490531/10525900321*843^(6/7) 9870013930987924 a001 591286729879/192900153618*843^(6/7) 9870013930987924 a001 1548008755920/505019158607*843^(6/7) 9870013930987924 a001 1515744265389/494493258286*843^(6/7) 9870013930987924 a001 2504730781961/817138163596*843^(6/7) 9870013930987924 a001 956722026041/312119004989*843^(6/7) 9870013930987924 a001 365435296162/119218851371*843^(6/7) 9870013930987924 a001 139583862445/45537549124*843^(6/7) 9870013930987924 a001 53316291173/17393796001*843^(6/7) 9870013930987924 a001 20365011074/6643838879*843^(6/7) 9870013930987924 a001 7778742049/2537720636*843^(6/7) 9870013930987924 a001 2971215073/969323029*843^(6/7) 9870013930987924 a001 1134903170/370248451*843^(6/7) 9870013930987924 a001 433494437/141422324*843^(6/7) 9870013930987927 a001 165580141/54018521*843^(6/7) 9870013930987947 a001 63245986/20633239*843^(6/7) 9870013930988086 a001 24157817/7881196*843^(6/7) 9870013930989036 a001 9227465/3010349*843^(6/7) 9870013930995548 a001 3524578/1149851*843^(6/7) 9870013931040179 a001 1346269/439204*843^(6/7) 9870013931346089 a001 514229/167761*843^(6/7) 9870013933442824 a001 196418/64079*843^(6/7) 9870013947814058 a001 75025/24476*843^(6/7) 9870013965362928 r005 Im(z^2+c),c=-25/42+11/60*I,n=45 9870013972882961 h001 (9/11*exp(2)+2/3)/(10/11*exp(2)+1/12) 9870014045452639 a007 Real Root Of -93*x^4-953*x^3-276*x^2+762*x+670 9870014046284107 h001 (-12*exp(3)-6)/(-7*exp(1)-6) 9870014046315966 a001 28657/9349*843^(6/7) 9870014061521970 a007 Real Root Of -x^4-986*x^3+989*x^2+603*x+216 9870014064629420 m001 (Bloch-FeigenbaumAlpha)/(QuadraticClass+Salem) 9870014101022000 r005 Re(z^2+c),c=-61/56+15/41*I,n=7 9870014101599860 a007 Real Root Of -972*x^4-688*x^3-160*x+103 9870014116252725 m001 Ei(1)^Porter/sin(1/12*Pi) 9870014121281103 a007 Real Root Of 97*x^4-344*x^3+66*x^2-393*x-875 9870014130076749 a007 Real Root Of -141*x^4+314*x^3+354*x^2-80*x-434 9870014163896631 a007 Real Root Of 266*x^4-524*x^3-734*x^2-402*x-438 9870014190636595 m001 GlaisherKinkelin^Kolakoski/Champernowne 9870014207815941 a007 Real Root Of 473*x^4-233*x^3-194*x^2+929*x+433 9870014223496800 m001 sin(1/5*Pi)+Rabbit^(2/3*Pi*3^(1/2)/GAMMA(2/3)) 9870014247761602 a007 Real Root Of 574*x^4+674*x^3+243*x^2-800*x-923 9870014247856050 a007 Real Root Of 187*x^4-851*x^3-949*x^2+60*x-12 9870014249026870 m001 Porter/(exp(Pi)^Thue) 9870014265611858 m001 (1+ln(2)/ln(10))/(-arctan(1/3)+GAMMA(13/24)) 9870014274837821 a001 11592/341*843^(1/2) 9870014280886649 m001 (2^(1/3)+sin(1/12*Pi))/(-Bloch+Kac) 9870014302073659 b008 98+ExpIntegralEi[EulerGamma] 9870014313794154 a007 Real Root Of 478*x^4-999*x^3-169*x^2+265*x+410 9870014324090281 a007 Real Root Of 688*x^4-45*x^3-551*x^2-263*x-419 9870014332378129 r005 Im(z^2+c),c=-7/10+29/212*I,n=49 9870014350640752 r005 Im(z^2+c),c=-11/16+8/105*I,n=21 9870014358562326 m001 (gamma(3)+FeigenbaumD)/(Pi-BesselK(0,1)) 9870014407951128 r005 Re(z^2+c),c=-143/122+22/49*I,n=4 9870014441127718 a007 Real Root Of 89*x^4-954*x^3-233*x^2+477*x+589 9870014452609576 a001 521/610*1597^(1/51) 9870014472136562 a007 Real Root Of 341*x^4-751*x^3+268*x^2+709*x-607 9870014507138445 r005 Re(z^2+c),c=-8/9+8/67*I,n=32 9870014532894854 r002 56th iterates of z^2 + 9870014545301611 m001 (GaussAGM+Gompertz)/(Pi^(1/2)-FellerTornier) 9870014552178491 l006 ln(1171/3142) 9870014562459590 r002 5th iterates of z^2 + 9870014575681293 a007 Real Root Of 978*x^4+147*x^3-846*x^2-434*x-391 9870014587842066 a001 1/8*1346269^(26/55) 9870014622163027 a001 7/4*(1/2*5^(1/2)+1/2)^6*4^(19/23) 9870014633221901 m001 (2^(1/3))^ZetaQ(2)/(ErdosBorwein^ZetaQ(2)) 9870014643878135 a001 5473/2889*843^(13/14) 9870014662748717 a001 -377+610*5^(1/2) 9870014671407823 r005 Im(z^2+c),c=-95/78+25/52*I,n=4 9870014680157593 a007 Real Root Of 269*x^4-224*x^3-87*x^2+7*x-379 9870014721458138 a001 10946/3571*843^(6/7) 9870014761746975 r005 Im(z^2+c),c=-25/52+15/28*I,n=40 9870014763721153 r005 Re(z^2+c),c=-69/74+17/50*I,n=3 9870014771048744 q001 3341/3385 9870014773686063 m001 1/exp(GAMMA(1/3))/FeigenbaumD^2/cos(Pi/12) 9870014793208351 a007 Real Root Of 676*x^4+883*x^3+921*x^2+790*x+90 9870014816588667 a007 Real Root Of 863*x^4+406*x^3+176*x^2-6*x-606 9870014819791891 m005 (1/2*Zeta(3)+8/11)/(9/10*5^(1/2)-2/3) 9870014830502326 a007 Real Root Of 49*x^4+466*x^3-166*x^2+55*x-238 9870014833551810 r001 38i'th iterates of 2*x^2-1 of 9870014834660417 a007 Real Root Of -239*x^4+191*x^3-571*x^2-22*x+945 9870014873115926 m001 (Conway-Shi(1))/(-Riemann3rdZero+ZetaQ(2)) 9870014882312878 a001 28657/15127*843^(13/14) 9870014917100039 a001 75025/39603*843^(13/14) 9870014922175418 a001 98209/51841*843^(13/14) 9870014922915905 a001 514229/271443*843^(13/14) 9870014923023941 a001 1346269/710647*843^(13/14) 9870014923039703 a001 1762289/930249*843^(13/14) 9870014923042003 a001 9227465/4870847*843^(13/14) 9870014923042338 a001 24157817/12752043*843^(13/14) 9870014923042387 a001 31622993/16692641*843^(13/14) 9870014923042395 a001 165580141/87403803*843^(13/14) 9870014923042396 a001 433494437/228826127*843^(13/14) 9870014923042396 a001 567451585/299537289*843^(13/14) 9870014923042396 a001 2971215073/1568397607*843^(13/14) 9870014923042396 a001 7778742049/4106118243*843^(13/14) 9870014923042396 a001 10182505537/5374978561*843^(13/14) 9870014923042396 a001 53316291173/28143753123*843^(13/14) 9870014923042396 a001 139583862445/73681302247*843^(13/14) 9870014923042396 a001 182717648081/96450076809*843^(13/14) 9870014923042396 a001 956722026041/505019158607*843^(13/14) 9870014923042396 a001 10610209857723/5600748293801*843^(13/14) 9870014923042396 a001 591286729879/312119004989*843^(13/14) 9870014923042396 a001 225851433717/119218851371*843^(13/14) 9870014923042396 a001 21566892818/11384387281*843^(13/14) 9870014923042396 a001 32951280099/17393796001*843^(13/14) 9870014923042396 a001 12586269025/6643838879*843^(13/14) 9870014923042396 a001 1201881744/634430159*843^(13/14) 9870014923042396 a001 1836311903/969323029*843^(13/14) 9870014923042396 a001 701408733/370248451*843^(13/14) 9870014923042396 a001 66978574/35355581*843^(13/14) 9870014923042399 a001 102334155/54018521*843^(13/14) 9870014923042418 a001 39088169/20633239*843^(13/14) 9870014923042546 a001 3732588/1970299*843^(13/14) 9870014923043424 a001 5702887/3010349*843^(13/14) 9870014923049445 a001 2178309/1149851*843^(13/14) 9870014923090711 a001 208010/109801*843^(13/14) 9870014923373552 a001 317811/167761*843^(13/14) 9870014925312174 a001 121393/64079*843^(13/14) 9870014938599687 a001 11592/6119*843^(13/14) 9870014955582272 m001 LambertW(1)*GaussAGM+Zeta(1/2) 9870014964425977 a007 Real Root Of 653*x^4+136*x^3-163*x^2+604*x+266 9870014999567686 a007 Real Root Of 484*x^4-373*x^3-596*x^2+511*x+267 9870015004634591 m001 ln(2)/ln(10)+3^(1/3)*PlouffeB 9870015013333015 m001 MertensB3^gamma(3)*Paris 9870015019554748 a007 Real Root Of -74*x^4+822*x^3+39*x^2-298*x-464 9870015029673659 a001 17711/9349*843^(13/14) 9870015040379545 m002 1/(25*Pi^4)+Pi^2 9870015042742355 r009 Re(z^3+c),c=-1/56+25/38*I,n=44 9870015094088395 a007 Real Root Of -764*x^4+47*x^3+260*x^2+227*x+741 9870015161546517 r001 8i'th iterates of 2*x^2-1 of 9870015170189508 r005 Im(z^2+c),c=-17/29+10/53*I,n=13 9870015187393638 m002 5/3+Cosh[Pi]/Pi^6-Sinh[Pi] 9870015196686963 a007 Real Root Of 83*x^4+914*x^3+923*x^2-191*x-661 9870015205938815 a007 Real Root Of 435*x^4-585*x^3-274*x^2-260*x-965 9870015210821797 a007 Real Root Of 685*x^4-165*x^3-384*x^2-280*x-711 9870015218782528 a007 Real Root Of -830*x^4+22*x^3+183*x^2+43*x+673 9870015260473928 r005 Re(z^2+c),c=-7/90+13/62*I,n=14 9870015264255428 a001 610*322^(1/12) 9870015270214206 a001 28657/1364*843^(4/7) 9870015273664942 m002 Pi^2+(4*Log[Pi]*Sech[Pi])/Pi^6 9870015277005904 m005 (1/3*2^(1/2)+3/5)/(3/5*exp(1)-6/11) 9870015277447103 m001 (Psi(2,1/3)-OneNinth)^ln(Pi) 9870015374705839 a007 Real Root Of -435*x^4+930*x^3+602*x^2+44*x+764 9870015378502978 m001 Rabbit/exp(Niven)^2*BesselK(0,1) 9870015393025215 a007 Real Root Of 702*x^4+379*x^3+601*x^2+133*x-756 9870015405093982 m001 (1+3^(1/2))^(1/2)/cos(1)*FellerTornier 9870015427651176 m001 (exp(Pi)+3^(1/2))/(Zeta(1,-1)+Khinchin) 9870015440858363 a007 Real Root Of -723*x^4+767*x^3-271*x^2-876*x+823 9870015453027861 p001 sum((-1)^n/(347*n+54)/n/(25^n),n=1..infinity) 9870015459484681 r005 Re(z^2+c),c=-9/14+208/239*I,n=2 9870015484970413 l006 ln(3412/9155) 9870015506252359 r009 Im(z^3+c),c=-19/98+40/53*I,n=36 9870015507397252 a007 Real Root Of 81*x^4-18*x^3+574*x^2-104*x-756 9870015582825500 r005 Im(z^2+c),c=17/66+1/20*I,n=3 9870015619457233 a004 Fibonacci(18)*Lucas(14)/(1/2+sqrt(5)/2)^16 9870015624773038 m001 ln(3)^ln(2+3^(1/2))/(ln(3)^Backhouse) 9870015624773038 m001 ln(3)^ln(2+sqrt(3))/(ln(3)^Backhouse) 9870015653903998 a001 6765/3571*843^(13/14) 9870015694298085 m001 Pi^2*Bloch*ln(cos(Pi/5)) 9870015709940856 r005 Im(z^2+c),c=-13/40+8/53*I,n=16 9870015729041881 r005 Re(z^2+c),c=-59/62+9/38*I,n=55 9870015729657524 m001 (cos(1/5*Pi)-gamma)/(-Rabbit+Weierstrass) 9870015730654951 a001 317811/521*199^(1/11) 9870015731781160 a007 Real Root Of -102*x^4+567*x^3+509*x^2+394*x+535 9870015741234592 a007 Real Root Of -581*x^4-316*x^3-634*x^2-449*x+422 9870015756179201 m005 (1/36+1/4*5^(1/2))/(2/5*gamma+4/11) 9870015763809486 p001 sum((-1)^n/(156*n+101)/(125^n),n=0..infinity) 9870015767314022 s001 sum(exp(-Pi/4)^n*A187451[n],n=1..infinity) 9870015798347959 a007 Real Root Of 449*x^4-13*x^3-360*x^2+469*x+375 9870015801390502 r002 19th iterates of z^2 + 9870015850572536 a007 Real Root Of 677*x^4+480*x^3+805*x^2-573*x-64 9870015865754296 a001 832040/2207*322^(1/6) 9870015871963712 a004 Fibonacci(20)*Lucas(14)/(1/2+sqrt(5)/2)^18 9870015908803910 a004 Fibonacci(22)*Lucas(14)/(1/2+sqrt(5)/2)^20 9870015914178823 a004 Fibonacci(24)*Lucas(14)/(1/2+sqrt(5)/2)^22 9870015914963012 a004 Fibonacci(26)*Lucas(14)/(1/2+sqrt(5)/2)^24 9870015915077424 a004 Fibonacci(28)*Lucas(14)/(1/2+sqrt(5)/2)^26 9870015915094116 a004 Fibonacci(30)*Lucas(14)/(1/2+sqrt(5)/2)^28 9870015915096552 a004 Fibonacci(32)*Lucas(14)/(1/2+sqrt(5)/2)^30 9870015915096907 a004 Fibonacci(34)*Lucas(14)/(1/2+sqrt(5)/2)^32 9870015915096959 a004 Fibonacci(36)*Lucas(14)/(1/2+sqrt(5)/2)^34 9870015915096966 a004 Fibonacci(38)*Lucas(14)/(1/2+sqrt(5)/2)^36 9870015915096967 a004 Fibonacci(40)*Lucas(14)/(1/2+sqrt(5)/2)^38 9870015915096968 a004 Fibonacci(42)*Lucas(14)/(1/2+sqrt(5)/2)^40 9870015915096968 a004 Fibonacci(44)*Lucas(14)/(1/2+sqrt(5)/2)^42 9870015915096968 a004 Fibonacci(46)*Lucas(14)/(1/2+sqrt(5)/2)^44 9870015915096968 a004 Fibonacci(48)*Lucas(14)/(1/2+sqrt(5)/2)^46 9870015915096968 a004 Fibonacci(50)*Lucas(14)/(1/2+sqrt(5)/2)^48 9870015915096968 a004 Fibonacci(52)*Lucas(14)/(1/2+sqrt(5)/2)^50 9870015915096968 a004 Fibonacci(54)*Lucas(14)/(1/2+sqrt(5)/2)^52 9870015915096968 a004 Fibonacci(56)*Lucas(14)/(1/2+sqrt(5)/2)^54 9870015915096968 a004 Fibonacci(58)*Lucas(14)/(1/2+sqrt(5)/2)^56 9870015915096968 a004 Fibonacci(60)*Lucas(14)/(1/2+sqrt(5)/2)^58 9870015915096968 a004 Fibonacci(62)*Lucas(14)/(1/2+sqrt(5)/2)^60 9870015915096968 a004 Fibonacci(64)*Lucas(14)/(1/2+sqrt(5)/2)^62 9870015915096968 a004 Fibonacci(66)*Lucas(14)/(1/2+sqrt(5)/2)^64 9870015915096968 a004 Fibonacci(68)*Lucas(14)/(1/2+sqrt(5)/2)^66 9870015915096968 a004 Fibonacci(70)*Lucas(14)/(1/2+sqrt(5)/2)^68 9870015915096968 a004 Fibonacci(72)*Lucas(14)/(1/2+sqrt(5)/2)^70 9870015915096968 a004 Fibonacci(74)*Lucas(14)/(1/2+sqrt(5)/2)^72 9870015915096968 a004 Fibonacci(76)*Lucas(14)/(1/2+sqrt(5)/2)^74 9870015915096968 a004 Fibonacci(78)*Lucas(14)/(1/2+sqrt(5)/2)^76 9870015915096968 a004 Fibonacci(80)*Lucas(14)/(1/2+sqrt(5)/2)^78 9870015915096968 a004 Fibonacci(82)*Lucas(14)/(1/2+sqrt(5)/2)^80 9870015915096968 a004 Fibonacci(84)*Lucas(14)/(1/2+sqrt(5)/2)^82 9870015915096968 a004 Fibonacci(86)*Lucas(14)/(1/2+sqrt(5)/2)^84 9870015915096968 a004 Fibonacci(88)*Lucas(14)/(1/2+sqrt(5)/2)^86 9870015915096968 a004 Fibonacci(90)*Lucas(14)/(1/2+sqrt(5)/2)^88 9870015915096968 a004 Fibonacci(92)*Lucas(14)/(1/2+sqrt(5)/2)^90 9870015915096968 a004 Fibonacci(94)*Lucas(14)/(1/2+sqrt(5)/2)^92 9870015915096968 a004 Fibonacci(96)*Lucas(14)/(1/2+sqrt(5)/2)^94 9870015915096968 a004 Fibonacci(98)*Lucas(14)/(1/2+sqrt(5)/2)^96 9870015915096968 a004 Fibonacci(100)*Lucas(14)/(1/2+sqrt(5)/2)^98 9870015915096968 a004 Fibonacci(99)*Lucas(14)/(1/2+sqrt(5)/2)^97 9870015915096968 a004 Fibonacci(97)*Lucas(14)/(1/2+sqrt(5)/2)^95 9870015915096968 a004 Fibonacci(95)*Lucas(14)/(1/2+sqrt(5)/2)^93 9870015915096968 a004 Fibonacci(93)*Lucas(14)/(1/2+sqrt(5)/2)^91 9870015915096968 a004 Fibonacci(91)*Lucas(14)/(1/2+sqrt(5)/2)^89 9870015915096968 a004 Fibonacci(89)*Lucas(14)/(1/2+sqrt(5)/2)^87 9870015915096968 a004 Fibonacci(87)*Lucas(14)/(1/2+sqrt(5)/2)^85 9870015915096968 a004 Fibonacci(85)*Lucas(14)/(1/2+sqrt(5)/2)^83 9870015915096968 a004 Fibonacci(83)*Lucas(14)/(1/2+sqrt(5)/2)^81 9870015915096968 a004 Fibonacci(81)*Lucas(14)/(1/2+sqrt(5)/2)^79 9870015915096968 a004 Fibonacci(79)*Lucas(14)/(1/2+sqrt(5)/2)^77 9870015915096968 a004 Fibonacci(77)*Lucas(14)/(1/2+sqrt(5)/2)^75 9870015915096968 a004 Fibonacci(75)*Lucas(14)/(1/2+sqrt(5)/2)^73 9870015915096968 a004 Fibonacci(73)*Lucas(14)/(1/2+sqrt(5)/2)^71 9870015915096968 a004 Fibonacci(71)*Lucas(14)/(1/2+sqrt(5)/2)^69 9870015915096968 a004 Fibonacci(69)*Lucas(14)/(1/2+sqrt(5)/2)^67 9870015915096968 a004 Fibonacci(67)*Lucas(14)/(1/2+sqrt(5)/2)^65 9870015915096968 a004 Fibonacci(65)*Lucas(14)/(1/2+sqrt(5)/2)^63 9870015915096968 a004 Fibonacci(63)*Lucas(14)/(1/2+sqrt(5)/2)^61 9870015915096968 a004 Fibonacci(61)*Lucas(14)/(1/2+sqrt(5)/2)^59 9870015915096968 a004 Fibonacci(59)*Lucas(14)/(1/2+sqrt(5)/2)^57 9870015915096968 a004 Fibonacci(57)*Lucas(14)/(1/2+sqrt(5)/2)^55 9870015915096968 a004 Fibonacci(55)*Lucas(14)/(1/2+sqrt(5)/2)^53 9870015915096968 a004 Fibonacci(53)*Lucas(14)/(1/2+sqrt(5)/2)^51 9870015915096968 a004 Fibonacci(51)*Lucas(14)/(1/2+sqrt(5)/2)^49 9870015915096968 a004 Fibonacci(49)*Lucas(14)/(1/2+sqrt(5)/2)^47 9870015915096968 a004 Fibonacci(47)*Lucas(14)/(1/2+sqrt(5)/2)^45 9870015915096968 a004 Fibonacci(45)*Lucas(14)/(1/2+sqrt(5)/2)^43 9870015915096968 a004 Fibonacci(43)*Lucas(14)/(1/2+sqrt(5)/2)^41 9870015915096968 a004 Fibonacci(41)*Lucas(14)/(1/2+sqrt(5)/2)^39 9870015915096968 a004 Fibonacci(39)*Lucas(14)/(1/2+sqrt(5)/2)^37 9870015915096971 a004 Fibonacci(37)*Lucas(14)/(1/2+sqrt(5)/2)^35 9870015915096991 a004 Fibonacci(35)*Lucas(14)/(1/2+sqrt(5)/2)^33 9870015915097127 a004 Fibonacci(33)*Lucas(14)/(1/2+sqrt(5)/2)^31 9870015915098057 a004 Fibonacci(31)*Lucas(14)/(1/2+sqrt(5)/2)^29 9870015915104433 a004 Fibonacci(29)*Lucas(14)/(1/2+sqrt(5)/2)^27 9870015915116511 a001 2/377*(1/2+1/2*5^(1/2))^30 9870015915148134 a004 Fibonacci(27)*Lucas(14)/(1/2+sqrt(5)/2)^25 9870015915447668 a004 Fibonacci(25)*Lucas(14)/(1/2+sqrt(5)/2)^23 9870015917500702 a004 Fibonacci(23)*Lucas(14)/(1/2+sqrt(5)/2)^21 9870015919529568 r008 a(0)=1,K{-n^6,64-27*n^3+2*n^2+37*n} 9870015929370056 m001 PrimesInBinary^2*ln(MertensB1)/GAMMA(7/12)^2 9870015931418233 r002 4th iterates of z^2 + 9870015931572405 a004 Fibonacci(21)*Lucas(14)/(1/2+sqrt(5)/2)^19 9870015942222134 r001 53i'th iterates of 2*x^2-1 of 9870015948251213 p001 sum((-1)^n/(150*n+101)/(128^n),n=0..infinity) 9870015972386416 l006 ln(2241/6013) 9870016007062260 a007 Real Root Of 647*x^4-40*x^3-633*x^2-140*x-174 9870016027942555 a001 10946/521*521^(8/13) 9870016028021298 a004 Fibonacci(19)*Lucas(14)/(1/2+sqrt(5)/2)^17 9870016052090082 r005 Re(z^2+c),c=-137/110+4/31*I,n=18 9870016058625246 m002 Pi^2+Tanh[Pi]/(E^Pi*Pi^4*ProductLog[Pi]) 9870016069841872 m001 GAMMA(19/24)^Zeta(3)/(KhinchinLevy^Zeta(3)) 9870016075387303 a007 Real Root Of 705*x^4-343*x^3+596*x^2+888*x-703 9870016093422095 m001 (Ei(1,1)+ErdosBorwein)/(Tribonacci+Trott) 9870016113223944 r005 Im(z^2+c),c=-53/82+13/48*I,n=19 9870016140923671 b008 4^(1/6+Pi)+EulerGamma 9870016166171979 a007 Real Root Of 828*x^4+662*x^3+305*x^2+432*x-20 9870016186338883 m001 Zeta(1/2)^2*MadelungNaCl^2*exp(exp(1)) 9870016199338813 m001 ThueMorse^(ZetaQ(3)/Lehmer) 9870016203261685 r005 Im(z^2+c),c=-17/26+37/90*I,n=46 9870016231299811 m001 Chi(1)^(StolarskyHarborth/ln(3)) 9870016231605339 a007 Real Root Of 223*x^4-266*x^3-407*x^2-608*x-671 9870016234861969 r005 Im(z^2+c),c=-35/26+5/111*I,n=28 9870016253572021 a001 17711/1364*843^(9/14) 9870016276660196 a007 Real Root Of 452*x^4-637*x^3+870*x^2-688*x+60 9870016278718115 a008 Real Root of x^3+27*x-1228 9870016287421140 a007 Real Root Of -700*x^4+959*x^3+9*x^2-721*x+866 9870016287738144 m005 (1/2*Zeta(3)+9/10)/(5*Pi-1/2) 9870016295297729 m001 MinimumGamma/CareFree/Riemann2ndZero 9870016300656118 r002 29th iterates of z^2 + 9870016357701440 r002 7th iterates of z^2 + 9870016359440248 m001 (GAMMA(17/24)+GlaisherKinkelin)/(Pi-cos(1)) 9870016359474614 a007 Real Root Of -118*x^4+954*x^3-184*x^2-730*x+488 9870016401491290 a003 cos(Pi*4/29)/sin(Pi*13/35) 9870016415462480 r005 Im(z^2+c),c=-79/94+1/16*I,n=37 9870016441724897 r008 a(0)=1,K{-n^6,-3-37*n^3+45*n^2+74*n} 9870016444502585 a007 Real Root Of -967*x^4-355*x^3+490*x^2+78*x+176 9870016447387529 a005 (1/cos(20/199*Pi))^136 9870016455799606 a007 Real Root Of -164*x^4+546*x^3+400*x^2+458*x+743 9870016466063063 m001 (2^(1/3)+GAMMA(3/4))/(gamma(2)+MertensB1) 9870016474670717 l006 ln(3311/8884) 9870016484101771 a007 Real Root Of 732*x^4+185*x^3-328*x^2-790*x-977 9870016505650101 a007 Real Root Of 766*x^4+426*x^3+92*x^2-228*x-632 9870016513466005 a007 Real Root Of -310*x^4+580*x^3+317*x^2-362*x-215 9870016514924017 g001 Psi(7/11,61/111) 9870016536560045 m004 -1+50/Pi-25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870016540541596 a007 Real Root Of -382*x^4-131*x^3-787*x^2-751*x+262 9870016546410664 m001 (Khinchin-ZetaP(2))/(sin(1/5*Pi)-BesselI(1,1)) 9870016594338546 s002 sum(A121850[n]/(n^2*2^n+1),n=1..infinity) 9870016598759410 a007 Real Root Of 397*x^4-715*x^3-634*x^2-124*x-569 9870016601225830 a003 sin(Pi*10/73)+sin(Pi*11/57) 9870016632437041 m001 1/Rabbit^2/FransenRobinson^2/ln(GAMMA(23/24)) 9870016634640652 m001 ln(2)*(3^(1/2))^Cahen 9870016634640652 m001 ln(2)*sqrt(3)^Cahen 9870016645033841 a007 Real Root Of 607*x^4-42*x^3+204*x^2+372*x-448 9870016650147242 a007 Real Root Of -72*x^4+843*x^3-181*x^2+223*x-786 9870016663851391 m001 GaussAGM^TwinPrimes/(GaussAGM^sin(1/5*Pi)) 9870016673850519 m001 (FeigenbaumD+Gompertz)/(3^(1/2)+BesselI(1,2)) 9870016689091842 a004 Fibonacci(17)*Lucas(14)/(1/2+sqrt(5)/2)^15 9870016703634625 r005 Re(z^2+c),c=-101/110+11/48*I,n=9 9870016744380476 r005 Re(z^2+c),c=-9/13+29/37*I,n=3 9870016781937550 r005 Re(z^2+c),c=-4/27+31/44*I,n=18 9870016784068997 m001 arctan(1/2)^Landau/(Weierstrass^Landau) 9870016797229435 r002 19th iterates of z^2 + 9870016811098020 m002 Pi^2+(4*Csch[Pi]*Log[Pi])/Pi^6 9870016817231651 m001 (BesselI(0,1)+ln(3)*Zeta(1,-1))/ln(3) 9870016837460477 h001 (4/5*exp(2)+9/11)/(8/9*exp(2)+1/4) 9870016871840505 a007 Real Root Of 500*x^4+105*x^3-75*x^2-345*x-641 9870016872355835 m005 (1/3*3^(1/2)-2/5)/(23/24+3/8*5^(1/2)) 9870016881775851 a007 Real Root Of 866*x^4-364*x^3+297*x^2+526*x-942 9870016910069414 a007 Real Root Of 870*x^4-15*x^3+423*x^2+451*x-807 9870016917503314 a003 sin(Pi*29/95)/sin(Pi*33/106) 9870016941626338 r009 Im(z^3+c),c=-5/24+39/40*I,n=7 9870016967951596 m001 Psi(2,1/3)^BesselI(1,2)/Gompertz 9870016992514175 p004 log(17497/6521) 9870016995810806 r002 47th iterates of z^2 + 9870017037494435 r005 Re(z^2+c),c=-107/126+11/57*I,n=11 9870017044448451 m001 (ln(5)-gamma(3))/(MertensB1-Paris) 9870017095521315 m001 Pi*(exp(Pi)+Psi(2,1/3))+Pi^(1/2) 9870017121775710 r005 Re(z^2+c),c=-17/18+23/112*I,n=41 9870017127361914 r001 18i'th iterates of 2*x^2-1 of 9870017167853126 a007 Real Root Of 917*x^4+740*x^3-418*x^2-271*x-19 9870017181410693 r002 7th iterates of z^2 + 9870017188503721 r005 Re(z^2+c),c=-63/64+15/62*I,n=9 9870017193514209 m005 (1/2*2^(1/2)+6)/(3/10*Zeta(3)-3/7) 9870017215277593 m001 Tribonacci/ln(ArtinRank2)*GAMMA(5/24)^2 9870017225897414 b008 LogGamma[6*3^(1/3)] 9870017268395225 a001 5473/682*843^(5/7) 9870017289664169 m004 -4/5+5*Pi-25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870017301875133 p001 sum(1/(316*n+305)/n/(2^n),n=1..infinity) 9870017305591815 a007 Real Root Of -867*x^4+814*x^3+926*x^2+183*x+884 9870017319515412 b008 Zeta[6*Sqrt[6],3] 9870017331022530 q001 1139/1154 9870017332870083 a007 Real Root Of 133*x^4+111*x^3+597*x^2+533*x-75 9870017347023517 m002 -3+3*Pi^2+Pi^6-Tanh[Pi] 9870017356472518 a007 Real Root Of 983*x^4-81*x^3+599*x^2+747*x-857 9870017361647676 a007 Real Root Of 950*x^4+496*x^3+457*x^2+704*x-175 9870017398419562 a003 sin(Pi*45/113)/sin(Pi*7/17) 9870017407348823 r005 Re(z^2+c),c=-15/26+59/122*I,n=11 9870017508866761 m001 GAMMA(17/24)^2/exp(MertensB1)^2*Zeta(7) 9870017510570744 m001 (-GAMMA(11/12)+Robbin)/(ln(2^(1/2)+1)-sin(1)) 9870017526651120 l006 ln(1070/2871) 9870017538012394 r008 a(0)=1,K{-n^6,-96+96*n^3+68*n^2+9*n} 9870017596461823 a001 726103/1926*322^(1/6) 9870017598995546 m002 Pi^2+1/(E^Pi*Pi^4*ProductLog[Pi]) 9870017606155418 a001 832040/3*3571^(9/58) 9870017630838694 r005 Im(z^2+c),c=53/122+13/43*I,n=7 9870017631071838 r005 Im(z^2+c),c=-45/32+2/61*I,n=18 9870017699647220 m001 GAMMA(23/24)^Trott2nd/(GAMMA(23/24)^cos(1)) 9870017716527179 a001 1346269/3*9349^(5/58) 9870017726139284 m001 (Sarnak-Stephens)/(GaussAGM+Robbin) 9870017761608951 a003 cos(Pi*14/101)/sin(Pi*43/116) 9870017772369891 l006 ln(4685/5171) 9870017797235566 m005 (1/2*Zeta(3)-11/12)/(1/2*Catalan-7/9) 9870017804648223 a007 Real Root Of -347*x^4+470*x^3-660*x^2-987*x+450 9870017821347465 r002 20th iterates of z^2 + 9870017828833473 a007 Real Root Of 326*x^4-232*x^3-176*x^2-615*x-968 9870017848968699 a001 5702887/15127*322^(1/6) 9870017879359386 a001 21/76*4^(45/49) 9870017885808957 a001 4976784/13201*322^(1/6) 9870017888616061 m006 (1/4*Pi^2-1)/(4/5*Pi-4) 9870017888616061 m008 (1/4*Pi^2-1)/(4/5*Pi-4) 9870017891183878 a001 39088169/103682*322^(1/6) 9870017891968068 a001 34111385/90481*322^(1/6) 9870017892082480 a001 267914296/710647*322^(1/6) 9870017892099173 a001 233802911/620166*322^(1/6) 9870017892101608 a001 1836311903/4870847*322^(1/6) 9870017892101963 a001 1602508992/4250681*322^(1/6) 9870017892102015 a001 12586269025/33385282*322^(1/6) 9870017892102023 a001 10983760033/29134601*322^(1/6) 9870017892102024 a001 86267571272/228826127*322^(1/6) 9870017892102024 a001 267913919/710646*322^(1/6) 9870017892102024 a001 591286729879/1568397607*322^(1/6) 9870017892102024 a001 516002918640/1368706081*322^(1/6) 9870017892102024 a001 4052739537881/10749957122*322^(1/6) 9870017892102024 a001 3536736619241/9381251041*322^(1/6) 9870017892102024 a001 6557470319842/17393796001*322^(1/6) 9870017892102024 a001 2504730781961/6643838879*322^(1/6) 9870017892102024 a001 956722026041/2537720636*322^(1/6) 9870017892102024 a001 365435296162/969323029*322^(1/6) 9870017892102024 a001 139583862445/370248451*322^(1/6) 9870017892102025 a001 53316291173/141422324*322^(1/6) 9870017892102028 a001 20365011074/54018521*322^(1/6) 9870017892102047 a001 7778742049/20633239*322^(1/6) 9870017892102183 a001 2971215073/7881196*322^(1/6) 9870017892103113 a001 1134903170/3010349*322^(1/6) 9870017892109489 a001 433494437/1149851*322^(1/6) 9870017892153191 a001 165580141/439204*322^(1/6) 9870017892452725 a001 63245986/167761*322^(1/6) 9870017894505762 a001 24157817/64079*322^(1/6) 9870017903996373 a007 Real Root Of -12*x^4+871*x^3-59*x^2+47*x-815 9870017908577488 a001 9227465/24476*322^(1/6) 9870017915010155 a007 Real Root Of -218*x^4+752*x^3-442*x^2+199*x-282 9870018005026537 a001 3524578/9349*322^(1/6) 9870018021566704 a007 Real Root Of -581*x^4+491*x^3+72*x^2-51*x+903 9870018022606028 m001 1/Ei(1)/PrimesInBinary^2*ln(LambertW(1))^2 9870018037053218 a007 Real Root Of 49*x^4+103*x^3+380*x^2-204*x-519 9870018076714374 a007 Real Root Of -815*x^4+162*x^3-238*x^2+886*x+90 9870018119369444 a008 Real Root of x^4-x^3-37*x^2-191*x-3039 9870018121253896 a007 Real Root Of 278*x^4-163*x^3+167*x^2+751*x+158 9870018121318423 m001 exp(gamma)/(FeigenbaumAlpha^Cahen) 9870018140703310 r005 Re(z^2+c),c=-59/62+13/55*I,n=57 9870018168226486 a007 Real Root Of -714*x^4-90*x^3-88*x^2-555*x+129 9870018185821425 r009 Im(z^3+c),c=-25/31+15/43*I,n=2 9870018200841325 a001 615/124*843^(11/14) 9870018209028434 a005 (1/cos(17/180*Pi))^412 9870018212260863 r005 Re(z^2+c),c=-103/106+8/57*I,n=3 9870018247362578 a001 5/271443*1364^(10/43) 9870018256884270 s002 sum(A208441[n]/((10^n+1)/n),n=1..infinity) 9870018268408503 r009 Re(z^3+c),c=-67/118+23/45*I,n=24 9870018275131288 a007 Real Root Of -648*x^4-464*x^3-792*x^2+28*x+968 9870018299699688 a003 sin(Pi*27/86)/sin(Pi*33/103) 9870018340499845 a007 Real Root Of 993*x^4-525*x^3-589*x^2+202*x-674 9870018348177756 s002 sum(A208441[n]/((10^n-1)/n),n=1..infinity) 9870018349119149 r005 Re(z^2+c),c=-21/22+16/91*I,n=23 9870018355420727 m001 1/HardHexagonsEntropy*Cahen*exp(FeigenbaumD)^2 9870018374953519 h001 (-10*exp(3)-11)/(-9*exp(1)+3) 9870018383575931 a003 cos(Pi*25/117)*cos(Pi*40/87) 9870018392121676 m001 1/Zeta(1/2)^2/ErdosBorwein^2/ln(Zeta(3)) 9870018392270409 r005 Re(z^2+c),c=-2/3+89/183*I,n=8 9870018407913715 m006 (3*exp(2*Pi)+3/4)/(5/6*exp(Pi)-3) 9870018422485117 m001 (Ei(1)+ReciprocalLucas)^gamma(2) 9870018435781823 a007 Real Root Of -77*x^4+470*x^3+735*x^2-396*x-704 9870018463766235 r002 27th iterates of z^2 + 9870018466767396 m001 1/ln(BesselJ(1,1))^2/Cahen/GAMMA(7/12)^2 9870018470237922 a007 Real Root Of 706*x^4+681*x^3+306*x^2+53*x-261 9870018489216754 a007 Real Root Of 666*x^4-872*x^3-35*x^2+586*x-858 9870018520033972 a003 sin(Pi*44/107)/sin(Pi*47/110) 9870018521153801 r009 Re(z^3+c),c=-13/110+3/11*I,n=5 9870018527496581 r005 Re(z^2+c),c=-49/46+9/41*I,n=58 9870018533826860 m001 log(2+sqrt(3))/Champernowne^2/exp(sqrt(5))^2 9870018548351505 b008 Gamma[-3/4+E] 9870018558437810 r001 59i'th iterates of 2*x^2-1 of 9870018616675338 r005 Re(z^2+c),c=-13/62+29/32*I,n=2 9870018646981367 l006 ln(3109/8342) 9870018664894134 a007 Real Root Of -963*x^4+75*x^3+282*x^2-285*x+430 9870018666098203 a001 1346269/3571*322^(1/6) 9870018718217742 a007 Real Root Of 61*x^4+684*x^3+872*x^2+543*x-813 9870018723161738 r005 Re(z^2+c),c=-59/62+9/49*I,n=47 9870018727095100 a007 Real Root Of -953*x^4+663*x^3+11*x^2-679*x+861 9870018748824249 r002 18th iterates of z^2 + 9870018750868401 r005 Im(z^2+c),c=-7/16+28/51*I,n=33 9870018763313685 r005 Re(z^2+c),c=-17/18-51/254*I,n=53 9870018773870593 m002 -2+Cosh[Pi]+1/(Pi*Log[Pi]) 9870018793051251 m001 StronglyCareFree^exp(1/Pi)/TravellingSalesman 9870018802201452 a001 17711/521*521^(7/13) 9870018802716179 a003 cos(Pi*1/67)*cos(Pi*3/61) 9870018829041535 m001 (PisotVijayaraghavan-CareFree)^Trott2nd 9870018851103134 m001 BesselJ(1,1)^(Artin/GAMMA(1/24)) 9870018876228112 m001 (exp(-1/2*Pi)-Tribonacci)/(1+3^(1/2))^(1/2) 9870018891843847 s002 sum(A095131[n]/(n^2*10^n+1),n=1..infinity) 9870018893858554 a007 Real Root Of 827*x^4+257*x^3+677*x^2+597*x-608 9870018912371419 r002 4th iterates of z^2 + 9870018914621600 m002 Pi^2+(2*Tanh[Pi])/(5*Pi^6) 9870018959263231 m001 ((1+3^(1/2))^(1/2)+Weierstrass)/(Shi(1)+ln(3)) 9870018975213526 h001 (-2*exp(5)+3)/(-exp(8)+4) 9870018975304045 m009 (1/10*Pi^2+3)/(8/5*Catalan+1/5*Pi^2+3/5) 9870019011186117 m006 (5/6/Pi+3)/(Pi+1/6) 9870019048027594 m001 LandauRamanujan2nd^FeigenbaumKappa-Porter 9870019049229699 a001 5/4870847*3571^(24/43) 9870019060238980 r005 Re(z^2+c),c=-123/98+11/31*I,n=4 9870019102993579 a007 Real Root Of -168*x^4+23*x^3-356*x^2+335*x+859 9870019182345538 a007 Real Root Of -20*x^4-130*x^3+734*x^2+630*x-480 9870019193398704 a007 Real Root Of 748*x^4-x^3-434*x^2-541*x-822 9870019193787254 a001 1453/2+233/2*5^(1/2) 9870019234893707 l006 ln(2039/5471) 9870019234893707 p004 log(5471/2039) 9870019241798411 r009 Im(z^3+c),c=-19/106+59/61*I,n=51 9870019265226886 m005 (1/2*3^(1/2)+4/7)/(3/5*Pi-3/7) 9870019279893814 m001 (1-exp(Pi))/(-FeigenbaumD+TreeGrowth2nd) 9870019295361237 r001 24i'th iterates of 2*x^2-1 of 9870019323514913 m001 ZetaP(4)^(LandauRamanujan2nd*ZetaQ(3)) 9870019348953865 a001 4181/1364*843^(6/7) 9870019394626428 a007 Real Root Of 731*x^4-717*x^3-647*x^2+243*x-513 9870019475243970 a007 Real Root Of -827*x^4-321*x^3-330*x^2-872*x-63 9870019480441954 a001 5/1860498*64079^(14/43) 9870019483248002 a001 5/64079*24476^(1/43) 9870019487952626 r002 26th iterates of z^2 + 9870019522072124 a007 Real Root Of 632*x^4-730*x^3-589*x^2+470*x-264 9870019556254622 a007 Real Root Of 987*x^4+312*x^3-297*x^2-846*x+86 9870019575868931 r005 Im(z^2+c),c=-45/64+6/43*I,n=8 9870019579221327 a007 Real Root Of 576*x^4+601*x^3+137*x^2-402*x-499 9870019639996979 m001 (GAMMA(2/3)-Zeta(1,-1))/(GAMMA(7/12)+Trott) 9870019665962764 m005 (1/3*exp(1)+2/5)/(6/7*2^(1/2)+1/9) 9870019668806521 a001 5/103682*2207^(4/43) 9870019681606735 m005 (1/2*exp(1)-3/7)/(5/11*2^(1/2)+3/10) 9870019690150138 m002 Pi^2+(E^Pi*Sech[Pi])/(5*Pi^6) 9870019702660403 a007 Real Root Of -977*x^4-840*x^3-491*x^2-782*x-174 9870019709553902 m005 (1/3*2^(1/2)+1/6)/(5/8*gamma+2/7) 9870019720263350 m001 cos(1/12*Pi)^(GAMMA(23/24)/exp(1)) 9870019720263350 m001 cos(Pi/12)^(GAMMA(23/24)/exp(1)) 9870019731937590 r005 Re(z^2+c),c=-57/58+4/63*I,n=5 9870019763159433 a007 Real Root Of 728*x^4+788*x^3-13*x^2-119*x-38 9870019779598756 q001 3493/3539 9870019806351287 b008 -2/3+Sqrt[2-Sqrt[2]] 9870019808769998 m005 (1/2*gamma-7/12)/(5^(1/2)+3/4) 9870019822035452 m001 (Artin+Bloch)/(MertensB3-PlouffeB) 9870019836127183 r004 Im(z^2+c),c=-1-14/23*I,z(0)=exp(1/12*I*Pi),n=4 9870019842546418 l006 ln(3008/8071) 9870019868410986 r009 Im(z^3+c),c=-15/98+43/57*I,n=11 9870019868973521 a001 121393/843*322^(1/3) 9870019878161611 a001 7/6557470319842*20365011074^(17/22) 9870019878167380 a001 7/1836311903*514229^(17/22) 9870019878719097 m001 2^(1/2)-Zeta(1,-1)-Lehmer 9870019879333547 m001 1/Pi/Tribonacci^2*exp(sinh(1))^2 9870019890742004 l006 ln(9129/10076) 9870019916957360 a007 Real Root Of 973*x^4-764*x^3-813*x^2+540*x-333 9870019932444638 a001 646/341*843^(13/14) 9870019945931954 m005 (1/2*3^(1/2)-2/3)/(1/2*2^(1/2)-10/11) 9870020002519482 a007 Real Root Of 491*x^4-13*x^3+596*x^2+533*x-533 9870020035167369 m002 Pi^2+Log[Pi]/(9*Pi^5) 9870020043058388 h001 (4/5*exp(2)+5/12)/(4/5*exp(2)+1/2) 9870020053166032 m005 (19/28+1/4*5^(1/2))/(8/9*3^(1/2)-2/7) 9870020077177557 r001 25i'th iterates of 2*x^2-1 of 9870020087765867 a007 Real Root Of -x^4-93*x^3+563*x^2+44*x+553 9870020097916212 m001 exp(Niven)^2*Kolakoski^2/BesselJ(1,1)^2 9870020172082878 m001 (ZetaP(3)-ZetaQ(2))/GAMMA(3/4) 9870020180621301 r002 7th iterates of z^2 + 9870020185542955 m001 (Catalan-exp(Pi))/(Tribonacci+ThueMorse) 9870020233194671 a007 Real Root Of 583*x^4-859*x^3-811*x^2+988*x+386 9870020319225587 r009 Re(z^3+c),c=-1/58+27/43*I,n=29 9870020361280298 m002 Pi^2+(ProductLog[Pi]*Sinh[Pi])/Pi^9 9870020368384239 a007 Real Root Of 194*x^4-266*x^3-253*x^2-185*x-376 9870020382486307 r001 62i'th iterates of 2*x^2-1 of 9870020403225783 m001 (Cahen+Salem)/(GAMMA(23/24)-sin(1)) 9870020417580357 a007 Real Root Of 83*x^4-884*x^3-118*x^2+93*x-722 9870020423802742 a001 1346269/18*521^(32/41) 9870020425830496 m001 (KhinchinLevy+Lehmer)/(gamma+GAMMA(3/4)) 9870020446752330 m001 BesselK(0,1)*Riemann3rdZero-TwinPrimes 9870020462404401 m001 (2/3-cos(Pi/5))/(3^(1/3)) 9870020462404401 m001 -1/3*(-cos(Pi/5)+2/3)*3^(2/3) 9870020465678676 m002 -2/(5*Pi^6)-Pi^2 9870020467377045 m001 (Ei(1)+CareFree)/(Kolakoski+Tribonacci) 9870020479632643 a001 2/47*24476^(14/45) 9870020484758337 a001 2/47*17393796001^(2/15) 9870020490992573 m002 Pi^2+ProductLog[Pi]/(E^Pi*Pi^4*Log[Pi]) 9870020518628039 a003 cos(Pi*1/58)/cos(Pi*29/62) 9870020561972203 m001 GAMMA(1/4)/(2^(1/3))^2/exp(Pi) 9870020564660410 r005 Im(z^2+c),c=19/56+7/12*I,n=18 9870020573467829 a007 Real Root Of 218*x^4+446*x^3+527*x^2+120*x-173 9870020593073957 a007 Real Root Of -777*x^4-695*x^3-877*x^2-963*x-27 9870020622997502 m004 -5/6+5*Pi-25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870020630122641 a007 Real Root Of -354*x^4+828*x^3+404*x^2-345*x+398 9870020643117911 a007 Real Root Of -858*x^4+19*x^3+355*x^2+207*x+691 9870020663967052 r005 Im(z^2+c),c=-13/18+2/39*I,n=21 9870020676656553 m001 1/Pi^2*exp(FransenRobinson)*sin(Pi/5) 9870020678711479 a007 Real Root Of -912*x^4-578*x^3-258*x^2-686*x-116 9870020696383077 a007 Real Root Of 784*x^4-28*x^3-617*x^2-68*x-237 9870020739018676 a001 843/13*1346269^(27/52) 9870020766324629 m001 (GAMMA(17/24)+Thue)/(ln(3)-ln(2^(1/2)+1)) 9870020819087542 a007 Real Root Of -272*x^4+790*x^3+704*x^2-161*x+173 9870020841712452 r009 Im(z^3+c),c=-23/114+57/59*I,n=63 9870020845631583 m005 (1/2*exp(1)+4/7)/(10/11*Pi-9/10) 9870020883000915 s002 sum(A067635[n]/(n*pi^n+1),n=1..infinity) 9870020889414933 m001 1/LambertW(1)^2*ln(Ei(1))^2*log(1+sqrt(2))^2 9870020905779151 h001 (4/11*exp(2)+5/8)/(9/10*exp(1)+10/11) 9870020918520252 m004 -Log[Sqrt[5]*Pi]/150+Tanh[Sqrt[5]*Pi] 9870020931907395 p001 sum((-1)^n/(549*n+74)/n/(16^n),n=1..infinity) 9870020955233028 m001 (BesselK(0,1)+Zeta(3))/(-3^(1/3)+ErdosBorwein) 9870020964360587 q001 2354/2385 9870020964360587 r002 2th iterates of z^2 + 9870020964360587 r002 2th iterates of z^2 + 9870020989969038 p001 sum((-1)^n/(220*n+101)/(100^n),n=0..infinity) 9870021018864727 m002 5*Sech[Pi]^2+Pi^2*Tanh[Pi] 9870021033311603 a007 Real Root Of -733*x^4+998*x^3+422*x^2-299*x+949 9870021037120166 a002 14^(7/4)-5^(3/5) 9870021058633658 m005 (1/2*Pi+3/8)/(5/8*3^(1/2)+8/9) 9870021089377937 a007 Real Root Of 594*x^4+464*x^3+791*x^2-88*x-975 9870021092973266 a001 76/89*233^(22/49) 9870021121188071 l006 ln(969/2600) 9870021137979229 s002 sum(A208722[n]/(pi^n+1),n=1..infinity) 9870021152215206 a007 Real Root Of -362*x^4+818*x^3+301*x^2+141*x+976 9870021166090286 r005 Re(z^2+c),c=-22/25+5/24*I,n=21 9870021188917234 m001 exp(TwinPrimes)*FransenRobinson/GAMMA(1/24)^2 9870021220136755 a004 Fibonacci(15)*Lucas(14)/(1/2+sqrt(5)/2)^13 9870021222200238 r005 Im(z^2+c),c=-15/22+17/52*I,n=24 9870021233076890 m001 Psi(2,1/3)^gamma+MinimumGamma 9870021244109144 m002 Pi^2+(E^Pi*Csch[Pi])/(5*Pi^6) 9870021257670988 r005 Re(z^2+c),c=-89/122+14/57*I,n=40 9870021272969694 m001 1/cosh(1)*exp(GAMMA(3/4))/sqrt(5) 9870021278783556 r005 Re(z^2+c),c=-17/18+34/181*I,n=15 9870021287765955 m001 Zeta(5)*Zeta(1,2)^BesselJ(0,1) 9870021334517952 r002 29th iterates of z^2 + 9870021341506448 r005 Im(z^2+c),c=23/106+2/49*I,n=18 9870021372069512 r005 Re(z^2+c),c=-111/118+11/50*I,n=59 9870021401123659 h001 (6/11*exp(1)+8/9)/(1/4*exp(2)+5/9) 9870021495498886 a007 Real Root Of -266*x^4-31*x^3-282*x^2-281*x+220 9870021505627254 m001 (-CopelandErdos+HeathBrownMoroz)/(1+exp(1/Pi)) 9870021540070927 m001 (gamma+ThueMorse)^(2^(1/3)) 9870021541162857 m001 (5^(1/2)-exp(Pi))/(-BesselI(1,1)+FeigenbaumD) 9870021544161949 a007 Real Root Of -290*x^4+353*x^3+427*x^2+244*x-721 9870021559917680 a007 Real Root Of -516*x^4+184*x^3-671*x^2-594*x+734 9870021607926434 a001 28657/521*521^(6/13) 9870021634370553 m001 (ZetaQ(3)+ZetaQ(4))/(GAMMA(3/4)-BesselI(0,2)) 9870021644391386 a007 Real Root Of 101*x^4-373*x^3+679*x^2+311*x-809 9870021650239628 m005 (1/3*Zeta(3)-1/10)/(9/10*exp(1)+3/5) 9870021667665033 m004 -1+5*Pi-25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870021694909766 m008 (2*Pi^3-5)/(3/5*Pi^6+4/5) 9870021703949787 a001 228826127*144^(5/17) 9870021712620774 a003 sin(Pi*11/105)/sin(Pi*12/113) 9870021722059283 a007 Real Root Of 843*x^4-333*x^3-952*x^2+324*x+127 9870021747268866 r005 Re(z^2+c),c=-17/18+43/206*I,n=39 9870021754859164 m001 PrimesInBinary*(2^(1/2)+cos(1/12*Pi)) 9870021773598448 b008 InverseJacobiSD[29,3] 9870021792948652 r004 Im(z^2+c),c=-13/22+2/11*I,z(0)=-1,n=56 9870021813315035 r009 Im(z^3+c),c=-69/118+7/45*I,n=5 9870021825950638 m001 exp(gamma)^log(gamma)+sin(Pi/12) 9870021873799118 a007 Real Root Of -703*x^4+799*x^3+398*x^2-486*x+568 9870021910683509 a007 Real Root Of 561*x^4-259*x^3-198*x^2+343*x-250 9870021917750588 m002 Pi^2+(Cosh[Pi]*ProductLog[Pi])/Pi^9 9870021948078437 a007 Real Root Of 765*x^4+512*x^3-76*x^2-205*x-362 9870021956515836 m005 (1/2*2^(1/2)-5/9)/(113/110+5/22*5^(1/2)) 9870021998112814 r005 Im(z^2+c),c=-45/74+17/40*I,n=39 9870022021267466 a007 Real Root Of 185*x^4-56*x^3-459*x^2-636*x-410 9870022022539612 m002 Pi^2+(2*Coth[Pi])/(5*Pi^6) 9870022030558239 m005 (1/3*Catalan-1/4)/(3/10*Catalan+2/7) 9870022036370448 a003 cos(Pi*20/93)+cos(Pi*36/83) 9870022046298525 r005 Re(z^2+c),c=-14/15+7/34*I,n=27 9870022047031029 r009 Re(z^3+c),c=-1/31+27/40*I,n=10 9870022062302419 m005 (1/2*Zeta(3)+7/11)/(2/9*Pi+5/9) 9870022067170375 m001 Riemann3rdZero/ln(Rabbit)^2*arctan(1/2) 9870022079666419 r008 a(0)=1,K{-n^6,44-3*n-8*n^2} 9870022079764817 a007 Real Root Of 7*x^4-772*x^3+247*x^2+727*x-272 9870022120138353 m008 (1/6*Pi^3+2/3)/(3/5*Pi^4+2/3) 9870022123405793 a007 Real Root Of -789*x^4+597*x^3-204*x^2-652*x+878 9870022123893805 q001 3569/3616 9870022123994284 l006 ln(4444/4905) 9870022148742621 r005 Re(z^2+c),c=-71/102+9/17*I,n=4 9870022172374564 r002 61i'th iterates of 2*x/(1-x^2) of 9870022194316814 m001 (Conway+MertensB2)/(exp(Pi)-ln(gamma)) 9870022219857183 a007 Real Root Of -277*x^4+337*x^3-937*x^2-715*x+794 9870022242424686 r005 Im(z^2+c),c=-3/4+17/181*I,n=32 9870022255221157 b008 Pi+15*AiryBi[5] 9870022260932332 a003 cos(Pi*11/103)*cos(Pi*7/15) 9870022271111223 m001 (GAMMA(3/4)-BesselK(1,1))/(PlouffeB-ThueMorse) 9870022277737983 m002 Pi^2+(5*Sech[Pi])/(Pi^6*ProductLog[Pi]) 9870022286616627 r005 Im(z^2+c),c=-25/62+5/31*I,n=15 9870022328824895 m001 Ei(1)^2*ln(Lehmer)^2*Zeta(9)^2 9870022351103442 a007 Real Root Of -643*x^4-77*x^3-751*x^2-786*x+492 9870022356595392 h001 (1/2*exp(2)+8/11)/(5/9*exp(2)+3/8) 9870022361800392 a007 Real Root Of 443*x^4-426*x^3+790*x^2+876*x-735 9870022376214617 r005 Im(z^2+c),c=-23/26+3/40*I,n=33 9870022380987081 a003 sin(Pi*43/113)/sin(Pi*47/120) 9870022382821108 m005 (1/2*2^(1/2)-4/7)/(1/2*Catalan+11/12) 9870022390093457 m001 1/Si(Pi)*FransenRobinson^2/exp(MinimumGamma) 9870022421474512 a001 7/1597*196418^(4/9) 9870022443994717 m005 (1/2*gamma-1/6)/(8/11+5/22*5^(1/2)) 9870022462086911 a007 Real Root Of 456*x^4+351*x^3+940*x^2+386*x-630 9870022485121077 m002 -(Pi/ProductLog[Pi])+(Pi^5*Tanh[Pi])/3 9870022491877160 l006 ln(2806/7529) 9870022500883307 r005 Im(z^2+c),c=-127/118+23/53*I,n=4 9870022509906244 a003 sin(Pi*31/114)/sin(Pi*31/112) 9870022548987270 m002 6-Cosh[Pi]/3-Coth[Pi]*Log[Pi] 9870022549296399 m001 Pi*KhintchineHarmonic*exp(sin(Pi/5)) 9870022583390601 m001 GAMMA(7/12)^2/GAMMA(5/6)^2*exp(sin(1))^2 9870022601203022 r005 Re(z^2+c),c=-6/5+25/86*I,n=19 9870022612372141 m001 1/Riemann1stZero^2/CareFree^2/exp(Trott)^2 9870022613172861 r005 Im(z^2+c),c=-21/34+15/82*I,n=46 9870022630331574 a007 Real Root Of 760*x^4-958*x^3-222*x^2+453*x-979 9870022640170933 a007 Real Root Of -978*x^4+27*x^3-781*x^2-852*x+874 9870022657842492 r002 5th iterates of z^2 + 9870022658626095 m001 arctan(1/2)^(Trott2nd/ln(5)) 9870022666848227 r005 Re(z^2+c),c=-113/114+10/39*I,n=25 9870022694262998 r005 Im(z^2+c),c=-11/18+12/67*I,n=37 9870022708770435 r009 Re(z^3+c),c=-1/23+52/63*I,n=24 9870022710908698 a007 Real Root Of 638*x^4-688*x^3-495*x^2+402*x-388 9870022763975271 r002 5th iterates of z^2 + 9870022774524294 m002 -3+E^Pi-6*Pi+Pi^4 9870022788427118 a007 Real Root Of 89*x^4+956*x^3+744*x^2-254*x-403 9870022792342066 a007 Real Root Of 725*x^4-514*x^3-2*x^2+746*x-444 9870022810999969 r005 Re(z^2+c),c=-79/74+13/50*I,n=10 9870022811604455 a007 Real Root Of 701*x^4+522*x^3+440*x^2+78*x-515 9870022820186618 m001 1/exp(GAMMA(5/24))^2/(3^(1/3))^2/exp(1)^2 9870022843244991 r005 Re(z^2+c),c=13/64+16/59*I,n=39 9870022854033782 m005 (1/2*3^(1/2)-2)/(19/36+5/18*5^(1/2)) 9870022870372414 m001 (Zeta(5)+exp(1/Pi))/(Riemann3rdZero-Stephens) 9870022871381761 m001 (TreeGrowth2nd+Tribonacci)/(Pi-FeigenbaumB) 9870022922996310 a007 Real Root Of -605*x^4+130*x^3+702*x^2-517*x-495 9870022945011076 a001 3571/1597*34^(8/19) 9870022958628786 a007 Real Root Of 505*x^4+785*x^3+683*x^2+475*x+79 9870022965602289 a007 Real Root Of -934*x^4-696*x^3-194*x^2+89*x+494 9870023013403283 r009 Im(z^3+c),c=-13/110+39/41*I,n=24 9870023025111638 r009 Im(z^3+c),c=-25/46+33/53*I,n=29 9870023041866120 a007 Real Root Of 698*x^4+173*x^3+16*x^2+488*x-30 9870023058746070 m001 (3^(1/3)-Sarnak)/(ln(5)-ln(2^(1/2)+1)) 9870023068420120 a007 Real Root Of -722*x^4+819*x^3+179*x^2-901*x+409 9870023070522215 r005 Re(z^2+c),c=-17/18+37/152*I,n=55 9870023114690222 a007 Real Root Of -694*x^4-503*x^3-704*x^2+138*x+997 9870023119603496 m001 1/Porter^2*ln(LaplaceLimit)/BesselJ(1,1)^2 9870023121870221 a007 Real Root Of 894*x^4-88*x^3+433*x^2+781*x-584 9870023155201924 a007 Real Root Of 528*x^4-214*x^3+21*x^2-177*x-902 9870023155303287 r009 Im(z^3+c),c=-53/110+2/37*I,n=7 9870023178971702 a001 7/10946*14930352^(4/9) 9870023182481576 m001 (ErdosBorwein-FellerTornier)/(Mills-Salem) 9870023195096455 a001 7/75025*1134903170^(4/9) 9870023195439690 a001 7/514229*86267571272^(4/9) 9870023195446997 a001 7/3524578*6557470319842^(4/9) 9870023197153191 a001 514229/1364*322^(1/6) 9870023199016144 a007 Real Root Of -76*x^4-668*x^3+724*x^2-832*x+219 9870023202776217 a007 Real Root Of -621*x^4-243*x^3-751*x^2-362*x+730 9870023214902521 l006 ln(1837/4929) 9870023237517166 m001 exp(1)^2*exp(FeigenbaumDelta)^2*sinh(1) 9870023240604515 a003 sin(Pi*31/69)*sin(Pi*30/61) 9870023240892573 r001 5i'th iterates of 2*x^2-1 of 9870023276995099 m001 (Cahen+Riemann3rdZero)/(1-2^(1/3)) 9870023286550301 a007 Real Root Of 432*x^4-252*x^3-879*x^2-229*x-22 9870023300864013 a003 cos(Pi*33/116)+cos(Pi*44/115) 9870023310426910 a007 Real Root Of -808*x^4-429*x^3+61*x^2+684*x+970 9870023318027582 r008 a(0)=1,K{-n^6,21-12*n^3+14*n^2+54*n} 9870023331618019 a007 Real Root Of 388*x^4-143*x^3+118*x^2-359*x-975 9870023350132831 a007 Real Root Of -510*x^4+693*x^3+115*x^2-362*x+681 9870023371276651 m001 (ln(2)-Zeta(1/2))/(Porter+TravellingSalesman) 9870023395965397 a003 sin(Pi*37/95)/sin(Pi*47/117) 9870023402763643 m005 (1/2*Zeta(3)-3/10)/(1/7*exp(1)-1/12) 9870023444955896 m001 (-Niven+Riemann3rdZero)/(exp(Pi)+Bloch) 9870023480785546 a001 2/305*55^(5/49) 9870023491490645 a001 8/1149851*11^(7/48) 9870023494546375 a003 cos(Pi*8/69)/sin(Pi*36/91) 9870023567365355 a007 Real Root Of -502*x^4+391*x^3+46*x^2-112*x+697 9870023594939689 m008 (2/5*Pi^5+2/5)/(4*Pi^3+2/5) 9870023624336830 r005 Re(z^2+c),c=-53/48+4/51*I,n=26 9870023675878767 m001 (RenyiParking-Salem)/(ln(2)-sin(1/12*Pi)) 9870023683261167 m001 (ErdosBorwein-Porter)/(Riemann1stZero+Trott) 9870023726820536 m001 ln(2^(1/2)+1)+ReciprocalLucas*ZetaQ(2) 9870023745316642 m001 (Zeta(1/2)-polylog(4,1/2))/(ArtinRank2+Mills) 9870023766482823 a007 Real Root Of -961*x^4-528*x^3-45*x^2-603*x-147 9870023798652542 a001 514229/2207*322^(1/4) 9870023815965116 a001 377/521*3571^(15/17) 9870023841379414 m002 Pi^2+(5*Csch[Pi])/(Pi^6*ProductLog[Pi]) 9870023880248093 a007 Real Root Of 638*x^4-746*x^3-531*x^2+733*x-82 9870023887987126 m001 (exp(1/Pi)-BesselI(1,2))/(Artin-Lehmer) 9870023893255101 b008 9+Tanh[1+EulerGamma^2] 9870023905036744 p001 sum((-1)^n/(197*n+111)/n/(3^n),n=1..infinity) 9870023905584852 a007 Real Root Of 720*x^4+594*x^3-556*x^2-501*x-65 9870023910594059 s002 sum(A114272[n]/(n^3*2^n+1),n=1..infinity) 9870023957050100 r005 Im(z^2+c),c=-25/34+3/52*I,n=36 9870023964924337 l006 ln(2705/7258) 9870024024309168 a007 Real Root Of 5*x^4-976*x^3+234*x^2+528*x-650 9870024029168734 a007 Real Root Of 31*x^4-964*x^3+168*x^2+848*x-283 9870024044604250 m001 1/GAMMA(13/24)^2/Ei(1)^2/exp(sinh(1))^2 9870024055186417 p003 LerchPhi(1/2,3,287/124) 9870024076002046 a007 Real Root Of 283*x^4-700*x^3-759*x^2+213*x+8 9870024131154197 r005 Im(z^2+c),c=-19/16+18/127*I,n=59 9870024133369172 a007 Real Root Of 325*x^4-500*x^3-344*x^2-467*x-915 9870024143630522 a007 Real Root Of -632*x^4+781*x^3+254*x^2-748*x+365 9870024192629412 r005 Re(z^2+c),c=-1+33/122*I,n=64 9870024207782611 r009 Im(z^3+c),c=-17/94+25/26*I,n=21 9870024214540784 m005 (1/2*Catalan+4)/(5/8*gamma+1/11) 9870024267153193 a001 9349/4181*34^(8/19) 9870024275729156 r005 Re(z^2+c),c=-21/22+19/108*I,n=63 9870024282993340 r005 Im(z^2+c),c=-9/8+124/201*I,n=3 9870024291501059 a007 Real Root Of 305*x^4+461*x^3-115*x^2-628*x-354 9870024332940919 r002 56i'th iterates of 2*x/(1-x^2) of 9870024340280446 m002 4/Pi^6+Pi^2-Log[Pi]/Pi^5 9870024344271106 r005 Im(z^2+c),c=-53/40+1/24*I,n=43 9870024350535867 l006 ln(3573/9587) 9870024370430544 q001 1215/1231 9870024373473212 r001 8i'th iterates of 2*x^2-1 of 9870024389732955 p001 sum(1/(363*n+64)/n/(24^n),n=1..infinity) 9870024391106583 m002 Pi^2+(4*Tanh[Pi])/Pi^8 9870024391818298 r002 7th iterates of z^2 + 9870024397750308 a001 233/843*9349^(17/19) 9870024398036349 a007 Real Root Of -881*x^4+764*x^3+651*x^2-347*x+594 9870024401633532 a001 46368/521*521^(5/13) 9870024405359201 a007 Real Root Of -768*x^4-807*x^3-588*x^2-945*x-407 9870024409751502 a001 377/521*9349^(15/19) 9870024414992020 r005 Re(z^2+c),c=-1/40+6/11*I,n=10 9870024418373548 m001 1/GAMMA(1/3)^2*exp(Niven)/log(1+sqrt(2))^2 9870024460051144 a001 12238/5473*34^(8/19) 9870024464639668 a007 Real Root Of -851*x^4+104*x^3+867*x^2+63 9870024470696558 r005 Im(z^2+c),c=-55/52+1/9*I,n=16 9870024481732181 l006 ln(8647/9544) 9870024485450684 a001 233/843*24476^(17/21) 9870024487134186 a001 377/521*24476^(5/7) 9870024488194576 a001 64079/28657*34^(8/19) 9870024490751306 r005 Re(z^2+c),c=29/126+19/63*I,n=47 9870024492300647 a001 167761/75025*34^(8/19) 9870024492899715 a001 219602/98209*34^(8/19) 9870024492987117 a001 1149851/514229*34^(8/19) 9870024492999869 a001 3010349/1346269*34^(8/19) 9870024493001730 a001 3940598/1762289*34^(8/19) 9870024493002001 a001 20633239/9227465*34^(8/19) 9870024493002041 a001 54018521/24157817*34^(8/19) 9870024493002047 a001 70711162/31622993*34^(8/19) 9870024493002048 a001 370248451/165580141*34^(8/19) 9870024493002048 a001 969323029/433494437*34^(8/19) 9870024493002048 a001 1268860318/567451585*34^(8/19) 9870024493002048 a001 6643838879/2971215073*34^(8/19) 9870024493002048 a001 17393796001/7778742049*34^(8/19) 9870024493002048 a001 22768774562/10182505537*34^(8/19) 9870024493002048 a001 119218851371/53316291173*34^(8/19) 9870024493002048 a001 312119004989/139583862445*34^(8/19) 9870024493002048 a001 1730726404001/774004377960*34^(8/19) 9870024493002048 a001 1322157322203/591286729879*34^(8/19) 9870024493002048 a001 505019158607/225851433717*34^(8/19) 9870024493002048 a001 96450076809/43133785636*34^(8/19) 9870024493002048 a001 73681302247/32951280099*34^(8/19) 9870024493002048 a001 28143753123/12586269025*34^(8/19) 9870024493002048 a001 5374978561/2403763488*34^(8/19) 9870024493002048 a001 4106118243/1836311903*34^(8/19) 9870024493002048 a001 1568397607/701408733*34^(8/19) 9870024493002048 a001 299537289/133957148*34^(8/19) 9870024493002048 a001 228826127/102334155*34^(8/19) 9870024493002050 a001 87403803/39088169*34^(8/19) 9870024493002065 a001 16692641/7465176*34^(8/19) 9870024493002169 a001 12752043/5702887*34^(8/19) 9870024493002880 a001 4870847/2178309*34^(8/19) 9870024493007750 a001 930249/416020*34^(8/19) 9870024493041135 a001 710647/317811*34^(8/19) 9870024493269959 a001 271443/121393*34^(8/19) 9870024494838339 a001 51841/23184*34^(8/19) 9870024497011280 a001 233/843*64079^(17/23) 9870024497334712 a001 377/521*64079^(15/23) 9870024498691946 a001 377/521*167761^(3/5) 9870024498787955 a001 233/843*45537549124^(1/3) 9870024498787955 a001 233/843*(1/2+1/2*5^(1/2))^17 9870024498787985 a001 233/843*12752043^(1/2) 9870024498873941 a001 377/521*439204^(5/9) 9870024498902294 a001 377/521*7881196^(5/11) 9870024498902357 a001 377/521*20633239^(3/7) 9870024498902366 a001 377/521*141422324^(5/13) 9870024498902366 a001 377/521*2537720636^(1/3) 9870024498902366 a001 377/521*45537549124^(5/17) 9870024498902366 a001 377/521*312119004989^(3/11) 9870024498902366 a001 377/521*14662949395604^(5/21) 9870024498902366 a001 377/521*(1/2+1/2*5^(1/2))^15 9870024498902366 a001 377/521*192900153618^(5/18) 9870024498902366 a001 377/521*28143753123^(3/10) 9870024498902366 a001 377/521*10749957122^(5/16) 9870024498902366 a001 377/521*599074578^(5/14) 9870024498902367 a001 377/521*228826127^(3/8) 9870024498902370 a001 377/521*33385282^(5/12) 9870024498903792 a001 377/521*1860498^(1/2) 9870024499438308 a001 233/843*103682^(17/24) 9870024499476207 a001 377/521*103682^(5/8) 9870024503193091 a001 377/521*39603^(15/22) 9870024503650776 a001 233/843*39603^(17/22) 9870024505588173 a001 39603/17711*34^(8/19) 9870024531252337 a001 377/521*15127^(3/4) 9870024533666446 a007 Real Root Of 997*x^4+624*x^3+838*x^2+343*x-824 9870024535451254 a001 233/843*15127^(17/20) 9870024535807127 m001 ZetaP(3)^(2*Pi/GAMMA(5/6)/BesselK(1,1)) 9870024539847849 a001 18/39088169*5^(9/19) 9870024556334649 a007 Real Root Of 302*x^4-931*x^3+5*x^2+797*x-400 9870024579268635 a001 15127/6765*34^(8/19) 9870024587249232 r005 Im(z^2+c),c=-37/60+9/49*I,n=52 9870024608689295 r005 Re(z^2+c),c=-59/62+9/49*I,n=61 9870024611420050 a003 cos(Pi*4/113)*sin(Pi*31/67) 9870024621070658 m005 (-23/4+1/4*5^(1/2))/(1/9*Pi-7/8) 9870024642982216 h001 (4/11*exp(1)+3/11)/(1/7*exp(2)+2/9) 9870024644470230 a007 Real Root Of 973*x^4-275*x^3-195*x^2+89*x-910 9870024660492229 a007 Real Root Of 169*x^4-712*x^3+546*x^2+394*x-988 9870024664224052 m001 (CopelandErdos+Mills)/(sin(1/12*Pi)+Conway) 9870024668669587 a001 199/2584*514229^(1/53) 9870024688319294 m001 MinimumGamma^Zeta(1,2)/Rabbit 9870024702927502 m001 (MertensB3+Trott2nd)/(GaussAGM+Landau) 9870024703453306 a007 Real Root Of -376*x^4+78*x^3+652*x^2+359*x+151 9870024712020629 m008 (2*Pi^4-5)/(2*Pi^6+2/5) 9870024745269026 a001 377/521*5778^(5/6) 9870024774977808 r002 4th iterates of z^2 + 9870024778003502 a001 233/843*5778^(17/18) 9870024818956444 m001 (-GAMMA(7/24)+1)/(3^(1/3)+2/3) 9870024826336212 r005 Im(z^2+c),c=-23/40+11/61*I,n=55 9870024918020360 m001 ln(3)*GaussAGM^Lehmer 9870024920745963 a001 7/144*701408733^(3/5) 9870024943825698 a007 Real Root Of 618*x^4+123*x^3-198*x^2-103*x-377 9870024946992635 a007 Real Root Of -139*x^4+970*x^3-494*x^2+501*x-814 9870024963285070 a007 Real Root Of -70*x^4-592*x^3+976*x^2-55*x-527 9870024967051648 a003 sin(Pi*1/36)+sin(Pi*31/87) 9870024975650609 m001 (PlouffeB+ZetaP(2))^ZetaP(3) 9870025030642880 a007 Real Root Of -199*x^4+600*x^3-115*x^2-93*x+786 9870025056520478 g002 Psi(7/12)+Psi(5/9)-Psi(1/12)-Psi(10/11) 9870025066568447 m001 (MertensB2*Niven-StolarskyHarborth)/Niven 9870025077676724 a007 Real Root Of 550*x^4+324*x^3+768*x^2+339*x-624 9870025084282049 a001 2889/1292*34^(8/19) 9870025100370622 m001 (ErdosBorwein-HardyLittlewoodC5)^gamma(1) 9870025121215991 a007 Real Root Of 992*x^4+221*x^3+134*x^2-36*x-895 9870025129203727 m001 ArtinRank2^2/Champernowne^2/exp(GAMMA(19/24)) 9870025166915916 r008 a(0)=1,K{-n^6,-94+99*n^3+95*n^2-23*n} 9870025171375508 a007 Real Root Of -857*x^4+425*x^3-190*x^2-997*x+423 9870025175422906 a007 Real Root Of -689*x^4-487*x^3+682*x^2+710*x+222 9870025177045530 a007 Real Root Of 493*x^4-314*x^3-933*x^2-452*x-307 9870025254173526 m001 GAMMA(17/24)^ZetaQ(4)/(GAMMA(17/24)^ZetaQ(2)) 9870025313664877 a007 Real Root Of -973*x^4-701*x^3-815*x^2-129*x+916 9870025330930629 r005 Im(z^2+c),c=-17/60+61/63*I,n=4 9870025343519818 p003 LerchPhi(1/16,5,95/238) 9870025347613388 a001 11/3*1597^(25/56) 9870025357806373 a007 Real Root Of 275*x^4-604*x^3+116*x^2-367*x+569 9870025363294856 r005 Re(z^2+c),c=-1/50+7/22*I,n=3 9870025379578315 m001 GAMMA(2/3)^CareFree/(GAMMA(2/3)^RenyiParking) 9870025388342554 a007 Real Root Of 788*x^4-177*x^3-678*x^2-194*x-449 9870025404291660 r005 Im(z^2+c),c=-11/24+37/63*I,n=5 9870025415196478 m001 ln(GAMMA(7/24))/GAMMA(3/4)^2*log(2+sqrt(3)) 9870025416316262 m001 (gamma(1)+CareFree)/(OneNinth-RenyiParking) 9870025418628177 a005 (1/cos(11/147*Pi))^1403 9870025447173692 s001 sum(exp(-Pi/3)^(n-1)*A249734[n],n=1..infinity) 9870025457340109 a001 1597/199*199^(10/11) 9870025474351142 m001 1/exp(TwinPrimes)^2*Lehmer^2*GAMMA(23/24)^2 9870025484977284 a008 Real Root of (-9+2*x-3*x^2+8*x^4+7*x^8) 9870025504330630 r005 Im(z^2+c),c=47/122+1/5*I,n=12 9870025505928816 h001 (-5*exp(-2)-8)/(-4*exp(2/3)-1) 9870025510204081 r002 2th iterates of z^2 + 9870025518831978 a007 Real Root Of 981*x^4-255*x^3-526*x^2-58*x-721 9870025529352649 a001 1346269/5778*322^(1/4) 9870025550069461 m001 (Psi(1,1/3)+Riemann3rdZero)^Cahen 9870025552239908 l006 ln(868/2329) 9870025610950457 a007 Real Root Of -54*x^4+900*x^3+266*x^2-212*x-864 9870025620712605 r005 Im(z^2+c),c=-19/74+45/62*I,n=11 9870025629672489 a003 cos(Pi*9/76)+cos(Pi*41/85) 9870025668419223 m005 (1/2*3^(1/2)-7/8)/(1/11*Zeta(3)+4/5) 9870025762160224 a007 Real Root Of -436*x^4+31*x^3-702*x^2-658*x+478 9870025768336283 h001 (9/10*exp(2)+10/11)/(1/5*exp(1)+2/9) 9870025772340171 r005 Im(z^2+c),c=-13/22+92/121*I,n=3 9870025776293210 a007 Real Root Of -68*x^4-744*x^3-804*x^2-910*x-693 9870025779332016 r005 Re(z^2+c),c=-103/106+4/33*I,n=21 9870025781858442 a001 3524578/15127*322^(1/4) 9870025797447461 r005 Re(z^2+c),c=-13/114+52/57*I,n=43 9870025802128298 a003 cos(Pi*3/74)*sin(Pi*37/79) 9870025805842596 a007 Real Root Of 95*x^4+891*x^3-548*x^2-863*x+10 9870025818698542 a001 9227465/39603*322^(1/4) 9870025822962727 a007 Real Root Of 973*x^4-897*x^3-820*x^2+612*x-383 9870025824073440 a001 24157817/103682*322^(1/4) 9870025824857627 a001 63245986/271443*322^(1/4) 9870025824972039 a001 165580141/710647*322^(1/4) 9870025824988731 a001 433494437/1860498*322^(1/4) 9870025824991166 a001 1134903170/4870847*322^(1/4) 9870025824991522 a001 2971215073/12752043*322^(1/4) 9870025824991574 a001 7778742049/33385282*322^(1/4) 9870025824991581 a001 20365011074/87403803*322^(1/4) 9870025824991582 a001 53316291173/228826127*322^(1/4) 9870025824991582 a001 139583862445/599074578*322^(1/4) 9870025824991582 a001 365435296162/1568397607*322^(1/4) 9870025824991582 a001 956722026041/4106118243*322^(1/4) 9870025824991582 a001 2504730781961/10749957122*322^(1/4) 9870025824991582 a001 6557470319842/28143753123*322^(1/4) 9870025824991582 a001 10610209857723/45537549124*322^(1/4) 9870025824991582 a001 4052739537881/17393796001*322^(1/4) 9870025824991582 a001 1548008755920/6643838879*322^(1/4) 9870025824991582 a001 591286729879/2537720636*322^(1/4) 9870025824991582 a001 225851433717/969323029*322^(1/4) 9870025824991583 a001 86267571272/370248451*322^(1/4) 9870025824991583 a001 63246219/271444*322^(1/4) 9870025824991586 a001 12586269025/54018521*322^(1/4) 9870025824991606 a001 4807526976/20633239*322^(1/4) 9870025824991741 a001 1836311903/7881196*322^(1/4) 9870025824992672 a001 701408733/3010349*322^(1/4) 9870025824999047 a001 267914296/1149851*322^(1/4) 9870025825042749 a001 102334155/439204*322^(1/4) 9870025825342282 a001 39088169/167761*322^(1/4) 9870025827395310 a001 14930352/64079*322^(1/4) 9870025841466976 a001 5702887/24476*322^(1/4) 9870025841821890 a007 Real Root Of -664*x^4-508*x^3-571*x^2+304*x+998 9870025864488650 a001 1836311903^(11/17) 9870025930618929 a003 cos(Pi*1/103)*sin(Pi*49/109) 9870025937915611 a001 2178309/9349*322^(1/4) 9870025950479052 r005 Im(z^2+c),c=-23/34+13/77*I,n=60 9870025955663268 a007 Real Root Of -816*x^4-467*x^3-722*x^2-329*x+704 9870025962655972 m002 -4/Pi^8-Pi^2 9870025972383974 m008 (1/6*Pi^4+4)/(2/3*Pi^5+1) 9870025981766454 a003 sin(Pi*42/97)/sin(Pi*37/81) 9870025999761215 a007 Real Root Of 926*x^4-122*x^3+807*x^2+827*x-966 9870026004747279 m001 ZetaQ(4)^(Artin/exp(-1/2*Pi)) 9870026009663942 m001 (FibonacciFactorial-Khinchin)/(Porter+Trott) 9870026044757472 a007 Real Root Of 524*x^4-101*x^3+104*x^2+330*x-370 9870026056150011 m001 1/exp(GolombDickman)/Backhouse*FeigenbaumD 9870026058613988 a007 Real Root Of 266*x^4+316*x^3+395*x^2+354*x+16 9870026090977746 r002 52th iterates of z^2 + 9870026110185093 r002 4th iterates of z^2 + 9870026133957802 m001 1/exp(GAMMA(1/12))^2*Champernowne/GAMMA(17/24) 9870026144091953 m001 (ln(3)+Kac)/(KhinchinHarmonic+ZetaQ(4)) 9870026148058487 a001 89/11*9349^(1/46) 9870026164957249 m001 (Magata+Thue)/(FibonacciFactorial-Kolakoski) 9870026182906599 a007 Real Root Of -227*x^4+790*x^3+957*x^2+903*x+934 9870026220923117 a007 Real Root Of 733*x^4+766*x^3+494*x^2-104*x-543 9870026226889986 a007 Real Root Of 766*x^4+352*x^3-372*x^2-931*x-945 9870026242914189 h001 (3/10*exp(1)+3/11)/(1/10*exp(2)+4/11) 9870026263249839 m001 1/FeigenbaumB/Lehmer^2/ln(sqrt(2)) 9870026299925833 r009 Im(z^3+c),c=-75/118+23/45*I,n=19 9870026316761062 m001 1/MinimumGamma^2/ln(CareFree)^2*sin(Pi/12) 9870026330510255 g002 -gamma-2*ln(2)+Psi(1/9)+Psi(3/7)-Psi(3/11) 9870026331670279 r005 Im(z^2+c),c=15/58+3/5*I,n=11 9870026335738422 m001 GAMMA(3/4)^2*ln(Si(Pi))/Zeta(1,2) 9870026394937317 a007 Real Root Of -859*x^4-413*x^3-535*x^2-286*x+657 9870026398602338 a001 377/521*2207^(15/16) 9870026410043101 m001 FransenRobinson/(BesselI(1,1)+BesselI(0,2)) 9870026413403671 m001 LaplaceLimit^FeigenbaumD/ReciprocalFibonacci 9870026441949328 r002 2th iterates of z^2 + 9870026453098454 r005 Re(z^2+c),c=-25/26+17/104*I,n=9 9870026460212160 m005 (1/3*gamma+1/2)/(8/9*2^(1/2)-5/9) 9870026460409828 m002 Pi^2+(3*Tanh[Pi])/(E^Pi*Pi^5) 9870026507636192 m001 (GAMMA(3/4)+OneNinth)/(Totient+Trott) 9870026525161613 a001 89/2+843/2*5^(1/2) 9870026525198938 s004 Continued Fraction of A072316 9870026525198938 s004 Continued fraction of A072316 9870026525198938 a001 372100/377 9870026525198938 q001 3721/3770 9870026534188703 m001 1/ln(BesselJ(1,1))^2/Artin^2/Zeta(5)^2 9870026598984443 a001 832040/3571*322^(1/4) 9870026615823296 m001 (Grothendieck-Kac)/(Lehmer-Rabbit) 9870026679401223 g002 -ln(2)-1/2*Pi+Psi(2/5)-Psi(2/11) 9870026693826337 a007 Real Root Of -96*x^4+959*x^3-320*x^2+250*x-766 9870026708990124 m001 sin(1)^(BesselJ(0,1)/Psi(1,1/3)) 9870026711026790 m001 cos(1)+Ei(1)*CopelandErdos 9870026727265317 h001 (5/11*exp(2)+2/9)/(3/8*exp(2)+6/7) 9870026752579335 m005 (1/2*Pi+2/9)/(5/7*exp(1)-1/8) 9870026790139653 a007 Real Root Of 812*x^4+147*x^3+999*x^2+888*x-726 9870026825953347 l006 ln(3371/9045) 9870026861100591 m006 (3/5*exp(Pi)+3/4)/(2/3*exp(Pi)-3/5) 9870026862315683 m008 (1/6*Pi+2)/(5/6*Pi^5+2/3) 9870026862958902 a007 Real Root Of 649*x^4-309*x^3+261*x^2+748*x-429 9870026864344368 a007 Real Root Of 575*x^4-90*x^3+250*x^2+249*x-630 9870026864843804 m001 (Zeta(1/2)-Ei(1,1))/(Magata-Niven) 9870026875968154 r005 Re(z^2+c),c=-77/82+6/29*I,n=37 9870026877384911 m005 (1/2*exp(1)-4/7)/(3/4*Catalan+1/9) 9870026910104190 a001 5/1860498*843^(23/43) 9870026937280527 a007 Real Root Of -4*x^4-390*x^3+468*x^2-587*x-776 9870026947579841 a003 cos(Pi*5/97)/sin(Pi*59/119) 9870026966186995 a001 2/47*843^(7/15) 9870026974662698 l006 ln(4203/4639) 9870026985400265 m005 (1/2*gamma-5/6)/(1/12*gamma-3/5) 9870027012955974 m001 Thue-exp(Pi)*arctan(1/2) 9870027055772978 m001 (FeigenbaumD-GolombDickman)/(Trott-ZetaQ(3)) 9870027056480878 a007 Real Root Of -305*x^4+493*x^3+351*x^2-497*x-69 9870027066316025 r008 a(0)=1,K{-n^6,36+26*n+40*n^2-24*n^3} 9870027102029362 r005 Im(z^2+c),c=-17/30+29/88*I,n=4 9870027114158278 a007 Real Root Of 428*x^4-623*x^3-347*x^2+603*x-72 9870027122397088 h001 (-exp(1/2)+9)/(-9*exp(-3)-7) 9870027155540565 m001 (exp(Pi)+Backhouse)/(-FeigenbaumAlpha+Trott) 9870027160390679 m001 Sierpinski*exp(1)^Totient 9870027163451064 r005 Re(z^2+c),c=-1/18+49/59*I,n=29 9870027173934157 h001 (9/11*exp(2)+2/5)/(1/6*exp(1)+1/5) 9870027177539252 m001 (ln(2)-ln(3))/(ThueMorse-ZetaQ(4)) 9870027181996894 r002 29th iterates of z^2 + 9870027191751234 r005 Re(z^2+c),c=-107/114+8/37*I,n=33 9870027199932151 a001 75025/521*521^(4/13) 9870027245672730 a007 Real Root Of 468*x^4-390*x^3-619*x^2+145*x-73 9870027250056057 m002 Pi^2+(3*Sech[Pi])/(2*Pi^5) 9870027262431002 m002 6+Pi^2/5+Pi^4/ProductLog[Pi] 9870027267656572 l006 ln(2503/6716) 9870027267796642 m001 1/GAMMA(3/4)^2/ln(GAMMA(23/24))^2/Zeta(5) 9870027272062526 m001 1/ln(Porter)/Champernowne^2/log(2+sqrt(3))^2 9870027282886167 a007 Real Root Of 121*x^4-574*x^3-450*x^2+280*x+48 9870027291821772 r005 Re(z^2+c),c=-5/6+28/129*I,n=59 9870027339511549 a007 Real Root Of -397*x^4-125*x^3+139*x^2+397*x+513 9870027352522437 m001 (Bloch+ZetaR(2))^Trott2nd 9870027381624885 m001 (Porter+Salem)/(sin(1/12*Pi)-MertensB1) 9870027382664244 a007 Real Root Of -246*x^4+804*x^3+146*x^2-321*x-365 9870027392055368 m009 (1/2*Psi(1,1/3)-1)/(3/8*Pi^2+2/5) 9870027410340759 a003 cos(Pi*4/111)*cos(Pi*4/109) 9870027411193512 r005 Re(z^2+c),c=3/32+1/18*I,n=9 9870027441489889 m001 (ZetaQ(2)-ZetaQ(3))/(ln(5)+Otter) 9870027469253327 a007 Real Root Of 472*x^4-713*x^3-836*x^2-622*x-933 9870027483957105 m001 (ln(Pi)+FeigenbaumB)/(Magata-OrthogonalArrays) 9870027492576148 m001 1/GAMMA(5/12)^2*Artin^2*exp(sqrt(3))^2 9870027514142904 r005 Re(z^2+c),c=5/54+3/62*I,n=7 9870027540085899 m002 Pi^2+(4*Coth[Pi])/Pi^8 9870027545974259 r005 Re(z^2+c),c=-17/18-50/247*I,n=51 9870027548167791 a007 Real Root Of -699*x^4+999*x^3+465*x^2-140*x-612 9870027555932906 m001 BesselK(1,1)^(Gompertz/exp(Pi)) 9870027557286414 r009 Im(z^3+c),c=-19/110+31/32*I,n=41 9870027567676265 a001 18/17711*225851433717^(2/23) 9870027569909413 q001 2506/2539 9870027573317884 m005 (31/28+1/4*5^(1/2))/(5/7*5^(1/2)+1/11) 9870027604516521 a001 6/2255*3524578^(2/23) 9870027622370272 r008 a(0)=0,K{-n^6,-58-11*n-54*n^2+21*n^3} 9870027639196907 m008 (Pi^6-1/2)/(1/3*Pi^3-3/5) 9870027640980737 r005 Im(z^2+c),c=-37/50+1/11*I,n=10 9870027666922309 a001 55/64079*76^(1/31) 9870027687707410 m001 (GAMMA(11/12)+Paris)/(ln(5)-BesselJ(1,1)) 9870027687876089 m005 (1/3*Pi-2/11)/(1/5*Zeta(3)+7/11) 9870027720779116 m005 (1/2*Zeta(3)+7/12)/(7/12*2^(1/2)+3/8) 9870027733928997 m005 (13/4+5/2*5^(1/2))/(1/4*Catalan+2/3) 9870027743376245 a005 (1/cos(2/127*Pi))^1870 9870027743971766 m005 (1/2*Pi+2/9)/(6/7*5^(1/2)-1/10) 9870027771786871 b008 Tanh[Sqrt[7]!!] 9870027774744488 m005 (1/2*exp(1)+1/3)/(3/8*3^(1/2)-2/3) 9870027778964178 a007 Real Root Of -642*x^4+683*x^3+949*x^2-347*x-1 9870027788872159 g005 GAMMA(7/10)*GAMMA(3/4)/GAMMA(7/9)/GAMMA(2/3) 9870027802349324 a001 75025/843*322^(5/12) 9870027823611812 a007 Real Root Of -705*x^4-658*x^3-467*x^2-437*x+60 9870027834849116 m001 (Mills-Riemann2ndZero)/(GAMMA(2/3)+Cahen) 9870027861504263 a007 Real Root Of 302*x^4-290*x^3+197*x^2-636*x-65 9870027872964490 m001 Landau*OneNinth^BesselJ(0,1) 9870027899913934 m001 (Stephens+TwinPrimes)/(MertensB3-Sierpinski) 9870027911422162 a007 Real Root Of -941*x^4+525*x^3+498*x^2-871*x+53 9870027912591096 r001 31i'th iterates of 2*x^2-1 of 9870027914737282 b008 Sin[Coth[Sqrt[Pi]/2]] 9870027924605558 h001 (6/7*exp(2)+2/3)/(10/11*exp(2)+3/8) 9870027929292402 m001 (3^(1/3))^Zeta(1,-1)/(MertensB3^Zeta(1,-1)) 9870027955699752 r004 Im(z^2+c),c=-11/46-2/15*I,z(0)=-1,n=8 9870027955946723 r005 Re(z^2+c),c=-97/126+7/32*I,n=12 9870027965509117 r005 Re(z^2+c),c=-67/62+11/56*I,n=62 9870027966938680 a007 Real Root Of 138*x^4+133*x^3+905*x^2+330*x-559 9870027983160028 a007 Real Root Of 588*x^4-752*x^3-212*x^2+419*x-661 9870028007967568 r005 Re(z^2+c),c=-119/118+10/37*I,n=7 9870028022246767 m001 (Zeta(3)+Zeta(5))/(FeigenbaumD-PrimesInBinary) 9870028039702287 m002 -3/(E^Pi*Pi^5)-Pi^2 9870028046154414 a007 Real Root Of 278*x^4-656*x^3-704*x^2-674*x-874 9870028052101220 a007 Real Root Of -291*x^4+731*x^3-32*x^2+648*x+65 9870028054294584 m002 1+Pi^4+1/(3*Log[Pi]) 9870028095198562 m009 (3/10*Pi^2+1)/(1/10*Pi^2-5) 9870028121244186 m001 (BesselI(1,1)-BesselI(1,2))/(Zeta(5)+gamma(3)) 9870028123910503 a001 6643838879/34*2504730781961^(18/23) 9870028178348602 l006 ln(1635/4387) 9870028189479335 m001 (Shi(1)+FibonacciFactorial)/exp(Pi) 9870028250790823 r002 39th iterates of z^2 + 9870028254878356 m009 (5*Psi(1,1/3)+1/4)/(1/3*Psi(1,3/4)-1/3) 9870028319582051 r009 Im(z^3+c),c=-29/62+33/47*I,n=4 9870028323854875 m001 (sin(1)+Niven)/(OrthogonalArrays+Salem) 9870028409891450 m001 (gamma-ln(2))/(LandauRamanujan2nd+Lehmer) 9870028484796334 r005 Im(z^2+c),c=-15/31+8/47*I,n=33 9870028487668866 r005 Im(z^2+c),c=-21/44+1/56*I,n=14 9870028520736109 r009 Im(z^3+c),c=-23/122+61/63*I,n=29 9870028545696176 a001 2207/987*34^(8/19) 9870028549413618 h001 (7/11*exp(1)+8/11)/(3/10*exp(2)+3/11) 9870028553629577 m001 (exp(-1/2*Pi)+Cahen)^StolarskyHarborth 9870028589231003 m001 (Salem+TravellingSalesman)/(1+Catalan) 9870028593709383 q001 3797/3847 9870028615850632 r002 14th iterates of z^2 + 9870028636079380 a001 41/7*3^(19/40) 9870028728276393 a007 Real Root Of 411*x^4-78*x^3-345*x^2-535*x-657 9870028739353522 m001 Porter*ln(Si(Pi))/Catalan 9870028746084807 m005 (1/2*3^(1/2)+7/11)/(-47/176+3/16*5^(1/2)) 9870028750545044 a001 1/15456*34^(17/22) 9870028772595215 m001 Champernowne^2*ln(sqrt(5))^2 9870028776774474 a007 Real Root Of -423*x^4+74*x^3-628*x^2-895*x+201 9870028788450023 m001 TravellingSalesman+Weierstrass^MadelungNaCl 9870028789450348 r005 Re(z^2+c),c=13/64+16/59*I,n=43 9870028808637293 a007 Real Root Of 736*x^4-483*x^3-732*x^2-695*x-62 9870028821615518 m002 -3/Pi^5+Pi^2+Tanh[Pi]/Pi^4 9870028832303272 m002 Pi^2+(3*Csch[Pi])/(2*Pi^5) 9870028837524182 r002 3th iterates of z^2 + 9870028842150156 m001 (Conway+PlouffeB)/(gamma+GAMMA(3/4)) 9870028854378351 a003 sin(Pi*7/50)/cos(Pi*29/81) 9870028885009694 m005 (1/2*Catalan+2/11)/(1/9*Catalan-3/4) 9870028898202334 m001 exp(1/2)^(3^(1/3)/Psi(2,1/3)) 9870028968583334 m004 -5+(25*Pi)/4-25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870028986262605 a007 Real Root Of -676*x^4-233*x^3+694*x^2+956*x+685 9870028991483499 r009 Im(z^3+c),c=-4/23+30/31*I,n=31 9870029045408559 m001 (DuboisRaymond+Kolakoski)^KhinchinLevy 9870029070469948 a007 Real Root Of -352*x^4+993*x^3-171*x^2-814*x+652 9870029087413185 h003 exp(Pi*(5^(5/7)-14^(1/5))) 9870029087413185 h008 exp(Pi*(5^(5/7)-14^(1/5))) 9870029096685672 a007 Real Root Of 749*x^4-856*x^3-355*x^2+228*x-963 9870029108255865 a003 sin(Pi*12/115)+sin(Pi*22/95) 9870029123420420 m001 Pi/(2^(1/3)-Pi*2^(1/2)) 9870029127140404 m001 (ln(3)+KomornikLoreti)/(MadelungNaCl+Salem) 9870029127333589 l006 ln(2402/6445) 9870029142175552 m004 1+(125*Pi)/3-(25*Sqrt[5]*Cosh[Sqrt[5]*Pi])/Pi 9870029154512606 a003 sin(Pi*5/109)+sin(Pi*23/72) 9870029184928513 m001 Bloch^(ErdosBorwein*Trott) 9870029189083504 m001 MinimumGamma^2*exp(BesselJ(0,1))^2 9870029192941743 m001 1/Robbin^2*exp(MinimumGamma)*Zeta(9) 9870029196831227 b008 Pi^2+BesselK[0,7] 9870029225509634 m001 (-3^(1/3)+DuboisRaymond)/(Si(Pi)-sin(1/5*Pi)) 9870029257799784 a007 Real Root Of 810*x^4+414*x^3+526*x^2-81*x-963 9870029299940766 a007 Real Root Of 88*x^4+975*x^3+972*x^2-837*x-610 9870029321079943 m001 (Thue-ZetaQ(4))/(DuboisRaymond-OneNinth) 9870029382031735 a007 Real Root Of 476*x^4-690*x^3-482*x^2-48*x-693 9870029426039556 r005 Re(z^2+c),c=-61/70+7/33*I,n=59 9870029441628825 b008 55*(1/16+Sqrt[3]) 9870029478664601 m004 -1+5*Pi-(25*Sqrt[5]*E^(Sqrt[5]*Pi)*Pi)/2 9870029487477388 a003 cos(Pi*13/109)/sin(Pi*29/74) 9870029514737048 a007 Real Root Of -955*x^4-233*x^3-598*x^2-936*x+341 9870029518115396 r005 Re(z^2+c),c=-25/26+19/91*I,n=18 9870029553410606 a001 2/3*11^(9/55) 9870029553681925 m001 1/Riemann1stZero^2/Porter^2*ln(GAMMA(7/12)) 9870029566026571 a007 Real Root Of 706*x^4-386*x^3-966*x^2+685*x+576 9870029601047427 h001 (10/11*exp(1)+2/9)/(2/3*exp(1)+11/12) 9870029614756956 l006 ln(8165/9012) 9870029616948717 l006 ln(3169/8503) 9870029624904258 m002 Pi^2+(3*Coth[Pi])/(E^Pi*Pi^5) 9870029641969876 m001 1/KhintchineHarmonic/Conway*exp(cos(Pi/5)) 9870029649723999 b008 Pi^2+Erfc[2]/11 9870029652499721 a001 33385282/89*46368^(7/23) 9870029652771683 a001 1149851/89*2971215073^(7/23) 9870029655293091 a007 Real Root Of -761*x^4-673*x^3-789*x^2-21*x+823 9870029663813587 m008 (4*Pi^4-3/5)/(Pi+4/5) 9870029673238823 m001 1/exp(cos(Pi/12))^2/LambertW(1)/sin(Pi/12) 9870029679530328 a001 322/9227465*8^(1/2) 9870029704681447 m006 (1/4*Pi+4/5)/(3*exp(2*Pi)-1/5) 9870029720250771 m002 3*Pi^3*ProductLog[Pi]-Sinh[Pi]/Pi^2 9870029734877550 a007 Real Root Of -158*x^4+337*x^3-843*x^2-369*x+931 9870029767980161 a007 Real Root Of 908*x^4+641*x^3+36*x^2-573*x-846 9870029790435629 r005 Im(z^2+c),c=-23/34+31/106*I,n=26 9870029820533126 r009 Re(z^3+c),c=-15/122+24/59*I,n=3 9870029859543459 r008 a(0)=1,K{-n^6,11+60*n+60*n^2-55*n^3} 9870029873583943 r005 Re(z^2+c),c=-13/14+41/187*I,n=35 9870029886460007 r005 Im(z^2+c),c=-19/34+21/109*I,n=19 9870029967016933 r005 Im(z^2+c),c=-11/10+15/112*I,n=6 9870029996478059 a001 233*521^(3/13) 9870030009908526 a005 (1/sin(89/201*Pi))^1984 9870030015097001 p003 LerchPhi(1/8,5,43/27) 9870030051076961 r009 Im(z^3+c),c=-7/44+35/36*I,n=31 9870030078096408 r001 16i'th iterates of 2*x^2-1 of 9870030117078626 p004 log(12619/4703) 9870030121776842 r002 6th iterates of z^2 + 9870030134824394 r005 Re(z^2+c),c=-18/19+7/30*I,n=49 9870030216972608 a007 Real Root Of 827*x^4+512*x^3+924*x^2+871*x-333 9870030224857528 m001 (Pi+2^(1/3))/Psi(2,1/3)/cos(1/5*Pi) 9870030232747027 a007 Real Root Of 529*x^4+324*x^3+329*x^2-308*x-815 9870030272675747 a007 Real Root Of 225*x^4-272*x^3-55*x^2-37*x-458 9870030280231602 a007 Real Root Of -904*x^4+739*x^3-29*x^2-637*x+968 9870030302410905 a007 Real Root Of 464*x^4+518*x^3+512*x^2-543*x-977 9870030306446811 m001 (exp(Pi)+BesselJZeros(0,1))/sin(Pi/12) 9870030342409284 m006 (4*Pi+2/3)/(1/4*exp(2*Pi)+1/5) 9870030368269768 m001 (exp(Pi)+gamma)/(FibonacciFactorial+Salem) 9870030395025770 a007 Real Root Of 599*x^4-91*x^3+343*x^2+300*x-694 9870030408747012 m001 (MasserGramain+OneNinth)/(Salem-ThueMorse) 9870030424179015 r009 Re(z^3+c),c=-29/82+31/48*I,n=33 9870030427404794 m001 (Porter+TreeGrowth2nd)/(Kac+Mills) 9870030462375864 m001 1/ln(sqrt(3))^2/GAMMA(3/4)^2/sqrt(5) 9870030502795019 m005 (1/2*Zeta(3)-4/7)/(9/11*Pi+3/7) 9870030506577419 a007 Real Root Of 108*x^4-502*x^3+438*x^2+780*x-242 9870030511619404 a007 Real Root Of 10*x^4-869*x^3+74*x^2-229*x+980 9870030514849638 a007 Real Root Of 59*x^4+566*x^3-227*x^2-750*x-992 9870030529837549 a007 Real Root Of -18*x^4+263*x^3-158*x^2+606*x-680 9870030530392381 a007 Real Root Of 717*x^4+278*x^3-393*x^2+516*x+479 9870030537431429 m002 Pi^2+(Log[Pi]*ProductLog[Pi])/(3*Pi^6) 9870030550046895 m005 (1/3*gamma+3/7)/(3*5^(1/2)-5/12) 9870030552093126 a001 41/105937*225851433717^(10/21) 9870030554795075 r005 Im(z^2+c),c=-21/46+35/46*I,n=5 9870030555733330 m002 Pi^2+Tanh[Pi]/(24*Pi^4) 9870030581039755 q001 1291/1308 9870030596891243 r005 Im(z^2+c),c=-5/6+37/98*I,n=6 9870030674755741 r008 a(0)=1,K{-n^6,63+41*n-13*n^2-16*n^3} 9870030694862309 m001 (2^(1/2)+Zeta(5))/(DuboisRaymond+ZetaQ(2)) 9870030702061193 r005 Im(z^2+c),c=33/118+23/39*I,n=4 9870030757550456 p004 log(33199/12373) 9870030788400255 a007 Real Root Of 74*x^4-672*x^3-605*x^2-410*x+47 9870030824895382 r005 Re(z^2+c),c=-19/15+7/32*I,n=9 9870030832132032 a003 cos(Pi*1/55)*sin(Pi*47/104) 9870030843436563 a007 Real Root Of 584*x^4-364*x^3+417*x^2+658*x-661 9870030847713775 a001 123/2584*9227465^(10/21) 9870030872697136 a001 521/2178309*13^(21/38) 9870030893219775 r002 3th iterates of z^2 + 9870030929066856 m001 GAMMA(13/24)/Porter^2*exp(sin(Pi/12)) 9870030935904098 r008 a(0)=1,K{-n^6,47-9*n^3-2*n^2+42*n} 9870030948920033 r005 Re(z^2+c),c=-13/12+19/100*I,n=28 9870030956485910 m001 arctan(1/3)^ZetaQ(3)*ArtinRank2^ZetaQ(3) 9870030956747018 a008 Real Root of x^4-2*x^3-57*x^2-182*x-218 9870030970082007 m001 (2^(1/2)-2^(1/3))/(-BesselI(1,2)+Trott2nd) 9870030975316903 a007 Real Root Of 40*x^4-537*x^3+692*x^2+583*x-653 9870030987118196 m001 (arctan(1/3)+GaussAGM)/(MadelungNaCl-Stephens) 9870031009224870 r002 34th iterates of z^2 + 9870031045296106 r005 Re(z^2+c),c=-73/74+13/48*I,n=25 9870031068643282 b008 Sqrt[EulerGamma/6]!! 9870031075553212 m005 (1/2*gamma+2/9)/(3/7*Catalan+1/8) 9870031089470523 m001 (Kac+MertensB2)/(ln(5)-gamma(1)) 9870031094507315 m002 -3-Pi^4+(5*ProductLog[Pi])/Pi 9870031129663270 m005 (1/2*Pi-1/2)/(4/11*gamma+7/8) 9870031130020004 a001 317811/1364*322^(1/4) 9870031150267387 l006 ln(767/2058) 9870031154843486 m002 -Pi/4+Pi^6+Pi^5*Sech[Pi] 9870031168988035 m001 cos(1/12*Pi)^(Kolakoski*Weierstrass) 9870031170479936 a007 Real Root Of 845*x^4+202*x^3+532*x^2+619*x-515 9870031210748963 r009 Re(z^3+c),c=-3/17+7/11*I,n=38 9870031217357020 r002 6th iterates of z^2 + 9870031219305698 m001 QuadraticClass*TreeGrowth2nd-exp(1/Pi) 9870031224120903 a007 Real Root Of -705*x^4+348*x^3-111*x^2-785*x+337 9870031241711961 r005 Re(z^2+c),c=-25/26+13/92*I,n=5 9870031267014941 a007 Real Root Of -41*x^4-414*x^3-48*x^2+372*x-622 9870031292035755 m005 (1/2*5^(1/2)-4/9)/(1/7*gamma+3/5) 9870031306207093 m001 BesselK(0,1)/ln(Champernowne)^2*GAMMA(23/24) 9870031370264782 r005 Im(z^2+c),c=-2/3+30/187*I,n=43 9870031376777990 m001 (LaplaceLimit-Otter)/(GAMMA(7/12)+Kolakoski) 9870031390360241 m001 Lehmer+PlouffeB-StolarskyHarborth 9870031429652668 a007 Real Root Of 179*x^4-924*x^3-933*x^2+815*x+655 9870031457616414 m001 3*ln(1+sqrt(2))/GAMMA(1/3) 9870031470877892 p001 sum((-1)^n/(491*n+490)/n/(10^n),n=1..infinity) 9870031504783945 r009 Im(z^3+c),c=-11/78+41/42*I,n=33 9870031508667984 a007 Real Root Of 635*x^4+107*x^3-512*x^2-536*x-530 9870031518732896 b008 3*Pi^2*ArcSinh[14] 9870031534817441 a007 Real Root Of -646*x^4-709*x^3-777*x^2+22*x+710 9870031547801622 a007 Real Root Of -99*x^4-925*x^3+532*x^2+97*x-742 9870031564818363 r005 Im(z^2+c),c=-33/118+5/41*I,n=3 9870031567676846 b008 Pi^2*Zeta[29/2] 9870031573382349 m001 GAMMA(7/24)*ln(BesselJ(0,1))^2/sqrt(5) 9870031613144761 a007 Real Root Of -610*x^4+124*x^3-150*x^2-519*x+332 9870031617195357 r005 Re(z^2+c),c=-53/56+12/61*I,n=61 9870031619931067 m001 1/Catalan*ArtinRank2^2/exp(sin(1))^2 9870031655792351 m001 ln(log(1+sqrt(2)))^2/GAMMA(7/24)^2*sin(Pi/5) 9870031667855099 a007 Real Root Of -860*x^4-475*x^3+380*x^2+250*x+236 9870031678676005 m001 (exp(1/Pi)+PlouffeB)/(Chi(1)+Zeta(5)) 9870031683220478 a007 Real Root Of -771*x^4+172*x^3+553*x^2+335*x+689 9870031689714324 r005 Re(z^2+c),c=-109/114+6/35*I,n=33 9870031697878329 m001 (gamma+Zeta(3))/(FibonacciFactorial+Stephens) 9870031705635997 a007 Real Root Of -103*x^4-927*x^3+778*x^2-965*x+849 9870031728190091 m005 (1/2*Zeta(3)+1/9)/(13/8+5/2*5^(1/2)) 9870031731519838 a001 317811/2207*322^(1/3) 9870031759189460 b008 1/3+9*E^7 9870031763648126 a001 987/521*1364^(13/15) 9870031785534747 m001 (exp(Pi)+Artin)/(-KhinchinLevy+Riemann3rdZero) 9870031786704666 m002 Pi^4+ProductLog[Pi]+(2*ProductLog[Pi])/Pi^2 9870031814913966 a007 Real Root Of -866*x^4+253*x^3+148*x^2-82*x+840 9870031826430444 a003 sin(Pi*16/101)+sin(Pi*8/47) 9870031831097732 a007 Real Root Of -378*x^4-298*x^3-881*x^2-889*x+53 9870031832048651 a007 Real Root Of 608*x^4-737*x^3-213*x^2+374*x-709 9870031832915735 h001 (-9*exp(1/3)+3)/(-6*exp(2/3)+2) 9870031842733339 a007 Real Root Of -17*x^4-35*x^3-270*x^2+116*x+360 9870031853343717 a001 1/47*(1/2*5^(1/2)+1/2)^31*7^(2/9) 9870031854644458 r005 Im(z^2+c),c=2/19+34/53*I,n=12 9870031874410300 a001 521/610*6557470319842^(16/17) 9870031892315255 a007 Real Root Of 85*x^4+889*x^3+528*x^2+321*x-147 9870031897198995 a007 Real Root Of -213*x^4+689*x^3+575*x^2+575*x+872 9870031927011750 m006 (2/3/Pi+3/5)/(4/5*Pi^2+1/3) 9870031944590378 m002 Pi^2+Log[Pi]/(5*E^(2*Pi)) 9870031950716566 a003 sin(Pi*5/77)+sin(Pi*31/108) 9870031974096105 r008 a(0)=1,K{-n^6,51-51*n^3+68*n^2+8*n} 9870031996176427 r001 51i'th iterates of 2*x^2-1 of 9870031996178836 r009 Re(z^3+c),c=-9/29+19/30*I,n=17 9870031998757107 m001 (ln(2^(1/2)+1)+CareFree)/(RenyiParking+Thue) 9870032018281279 m001 (Chi(1)+Lehmer)/(MertensB2+PrimesInBinary) 9870032070157267 b008 Cos[Tanh[(3+Pi)^(-1)]] 9870032122859648 b008 Sech[Sin[(3+Pi)^(-1)]] 9870032144422868 m005 (1/3*3^(1/2)-3/8)/(1/5*Pi-5/6) 9870032150349970 m002 1/(24*Pi^4)+Pi^2 9870032179997207 a007 Real Root Of 283*x^4-326*x^3-476*x^2+668*x+541 9870032194046129 r005 Im(z^2+c),c=-15/13+5/43*I,n=11 9870032196779815 r005 Im(z^2+c),c=-11/10+7/55*I,n=10 9870032210453121 m001 (Zeta(5)+BesselI(1,1))/(MertensB3-Otter) 9870032216980194 a007 Real Root Of -956*x^4+668*x^3+598*x^2-462*x+511 9870032223580094 m008 (5*Pi^4+1/4)/(1/2*Pi^4+2/3) 9870032235117203 r005 Re(z^2+c),c=-59/110+24/43*I,n=20 9870032239281154 r009 Im(z^3+c),c=-7/44+41/42*I,n=11 9870032240565563 m006 (3/5*exp(Pi)-2/5)/(2/Pi-1/2) 9870032242590968 a007 Real Root Of -471*x^4+291*x^3-409*x^2-829*x+307 9870032282130430 a001 36/6119*199^(30/31) 9870032335629416 a007 Real Root Of 349*x^4-725*x^3+69*x^2+960*x-148 9870032352605086 m005 (1/2*Pi-7/12)/(9/11*3^(1/2)-5/12) 9870032408984273 m001 (3^(1/2))^Porter/(MadelungNaCl^Porter) 9870032412713132 r005 Re(z^2+c),c=-15/56+34/39*I,n=7 9870032415442435 l006 ln(3962/4373) 9870032433225028 m001 KhinchinLevy*Tribonacci*ZetaP(2) 9870032451575950 l006 ln(3734/10019) 9870032489552240 s002 sum(A020281[n]/(n^2*pi^n-1),n=1..infinity) 9870032491877030 q001 3949/4001 9870032513559515 a007 Real Root Of 301*x^4-618*x^3+153*x^2+314*x-719 9870032544160720 a003 cos(Pi*3/91)*cos(Pi*3/76) 9870032545798649 r005 Re(z^2+c),c=-25/26+17/109*I,n=39 9870032546081471 m001 (-GAMMA(13/24)+Khinchin)/(Shi(1)+gamma(3)) 9870032548680699 a007 Real Root Of -8*x^4-798*x^3-838*x^2-906*x-49 9870032617468428 p003 LerchPhi(1/2,1,346/231) 9870032644172252 m005 (1/2*exp(1)-5/8)/(4/9*5^(1/2)-1/4) 9870032645419619 r005 Re(z^2+c),c=13/64+16/59*I,n=44 9870032658724585 m005 (5/36+1/4*5^(1/2))/(4/9*Catalan+3/10) 9870032660601256 a007 Real Root Of 194*x^4-953*x^3-460*x^2-24*x-676 9870032680747589 m001 ln(Salem)^2*Si(Pi)^2/Catalan 9870032709097707 m001 PlouffeB^ln(gamma)*PlouffeB^LambertW(1) 9870032721128515 m002 Pi^4+ProductLog[Pi]+Tanh[Pi]/(4*Log[Pi]) 9870032724525170 a003 cos(Pi*3/58)/sin(Pi*41/83) 9870032776044013 a007 Real Root Of 743*x^4+68*x^3-883*x^2-811*x-580 9870032781164529 r005 Re(z^2+c),c=13/64+16/59*I,n=42 9870032786885245 a001 301036/305 9870032787977563 l006 ln(2967/7961) 9870032793694539 a001 196418/521*521^(2/13) 9870032815889809 r009 Im(z^3+c),c=-15/118+46/47*I,n=27 9870032818121296 m001 (MertensB1-Thue)/(Zeta(1,-1)-BesselJ(1,1)) 9870032819107860 m001 Rabbit^(gamma(3)/ZetaQ(2)) 9870032845575859 m005 (1/2*2^(1/2)-5/11)/(3/7*exp(1)-10/11) 9870032857997896 r009 Im(z^3+c),c=-67/122+38/59*I,n=11 9870032875048633 r005 Re(z^2+c),c=-89/94+11/57*I,n=35 9870032882282587 a007 Real Root Of -622*x^4+910*x^3+114*x^2-984*x+383 9870032924921130 m005 (1/2*gamma-1/7)/(9/11*Catalan+8/11) 9870032931600116 m002 (Pi^2*Sinh[Pi])/Log[Pi]-Tanh[Pi]/Log[Pi] 9870032953894307 r008 a(0)=1,K{-n^6,35+46*n+39*n^2-44*n^3} 9870032957093471 a007 Real Root Of 788*x^4+434*x^3-735*x^2-347*x+43 9870032967562404 h001 (-11*exp(1)-3)/(-6*exp(2)+11) 9870033006297623 r005 Im(z^2+c),c=-9/14+41/213*I,n=53 9870033010450929 m001 1/FibonacciFactorial*Cahen/ln(sin(Pi/5)) 9870033040992013 a001 322/1597*4181^(4/21) 9870033046441179 r005 Re(z^2+c),c=13/64+16/59*I,n=37 9870033046668978 a007 Real Root Of -787*x^4+380*x^3-428*x^2-831*x+709 9870033049580335 r009 Re(z^3+c),c=-29/56+11/21*I,n=18 9870033073768196 m001 GAMMA(11/12)^Lehmer/(GAMMA(11/12)^GaussAGM) 9870033082522643 a004 Fibonacci(13)*Lucas(15)/(1/2+sqrt(5)/2)^12 9870033086076875 a007 Real Root Of 520*x^4-991*x^3-229*x^2+903*x-332 9870033109719507 a007 Real Root Of 664*x^4-259*x^3-757*x^2-210*x-349 9870033115121485 m002 -3+Pi-Tanh[Pi]^2/E^Pi 9870033167633666 r009 Re(z^3+c),c=-61/110+23/52*I,n=11 9870033167919907 r005 Re(z^2+c),c=13/64+16/59*I,n=48 9870033173497145 a003 cos(Pi*8/37)+cos(Pi*42/97) 9870033180886016 a005 (1/sin(59/178*Pi))^125 9870033182490802 m001 (-Riemann2ndZero+Trott)/(1+GAMMA(5/6)) 9870033198442556 r009 Re(z^3+c),c=-13/82+29/52*I,n=8 9870033216729060 a007 Real Root Of 203*x^4-667*x^3+850*x^2+921*x-753 9870033238992861 r005 Re(z^2+c),c=1/94+25/61*I,n=10 9870033245770741 m001 CareFree^ArtinRank2/(CareFree^TwinPrimes) 9870033251343660 a003 cos(Pi*1/101)*cos(Pi*6/119) 9870033270154461 r008 a(0)=1,K{-n^6,61+n+61*n^2-47*n^3} 9870033271514060 r005 Re(z^2+c),c=3/94+7/20*I,n=3 9870033291394315 a003 cos(Pi*37/103)*cos(Pi*23/54) 9870033321341281 m001 1/2*MasserGramain/Pi*GAMMA(5/6)/Salem 9870033347873045 r002 42th iterates of z^2 + 9870033352230849 r008 a(0)=1,K{-n^6,27+64*n+26*n^2-41*n^3} 9870033358942821 l006 ln(2200/5903) 9870033358967423 m001 GAMMA(2/3)^(gamma(1)*Lehmer) 9870033372573703 m001 (BesselI(1,1)-exp(Pi))/(-Cahen+PrimesInBinary) 9870033419977720 q001 2658/2693 9870033448608684 m005 (1/2*gamma+2/3)/(4/7*Catalan+4/9) 9870033448949672 m005 (1/2*Catalan-7/12)/(7/10*Zeta(3)+3/7) 9870033457438472 m001 GAMMA(1/3)-exp(1/2)-exp(-Pi) 9870033462244405 a001 416020/2889*322^(1/3) 9870033470035601 a007 Real Root Of 701*x^4+695*x^3+641*x^2-112*x-732 9870033486349705 m008 (4/5*Pi-2)/(1/6*Pi^5+1) 9870033491766892 a007 Real Root Of -413*x^4-398*x^3+26*x^2+709*x-7 9870033511797761 m005 (1/2*5^(1/2)+5/9)/(7/12*5^(1/2)-3) 9870033513738601 a007 Real Root Of 984*x^4+683*x^3+432*x^2-228*x-923 9870033516042151 a007 Real Root Of -88*x^4-938*x^3-642*x^2+395*x-324 9870033534151368 a003 cos(Pi*16/81)/sin(Pi*33/107) 9870033567757614 a007 Real Root Of 438*x^4-128*x^3-275*x^2-142*x-411 9870033591389409 m006 (3/4/Pi+5/6)/(1/4*ln(Pi)+4/5) 9870033609241430 a007 Real Root Of 523*x^4-654*x^3-791*x^2+339*x-20 9870033642807812 r002 18th iterates of z^2 + 9870033657278305 a003 sin(Pi*12/41)/sin(Pi*17/57) 9870033673189172 r005 Re(z^2+c),c=13/64+16/59*I,n=47 9870033680354408 a007 Real Root Of -515*x^4+828*x^3+617*x^2-630*x+62 9870033690638423 a007 Real Root Of 557*x^4-177*x^3+506*x^2+329*x-867 9870033691508107 a005 (1/cos(19/215*Pi))^1474 9870033697629733 a001 9349*514229^(9/17) 9870033714753767 a001 311187/2161*322^(1/3) 9870033743173234 m001 Si(Pi)^gamma(1)*MasserGramain^gamma(1) 9870033751526660 m001 (Rabbit-ThueMorse)/(GAMMA(3/4)+KomornikLoreti) 9870033751594387 a001 5702887/39603*322^(1/3) 9870033756969361 a001 7465176/51841*322^(1/3) 9870033757753560 a001 39088169/271443*322^(1/3) 9870033757867973 a001 14619165/101521*322^(1/3) 9870033757884665 a001 133957148/930249*322^(1/3) 9870033757887101 a001 701408733/4870847*322^(1/3) 9870033757887456 a001 1836311903/12752043*322^(1/3) 9870033757887508 a001 14930208/103681*322^(1/3) 9870033757887515 a001 12586269025/87403803*322^(1/3) 9870033757887516 a001 32951280099/228826127*322^(1/3) 9870033757887517 a001 43133785636/299537289*322^(1/3) 9870033757887517 a001 32264490531/224056801*322^(1/3) 9870033757887517 a001 591286729879/4106118243*322^(1/3) 9870033757887517 a001 774004377960/5374978561*322^(1/3) 9870033757887517 a001 4052739537881/28143753123*322^(1/3) 9870033757887517 a001 1515744265389/10525900321*322^(1/3) 9870033757887517 a001 3278735159921/22768774562*322^(1/3) 9870033757887517 a001 2504730781961/17393796001*322^(1/3) 9870033757887517 a001 956722026041/6643838879*322^(1/3) 9870033757887517 a001 182717648081/1268860318*322^(1/3) 9870033757887517 a001 139583862445/969323029*322^(1/3) 9870033757887517 a001 53316291173/370248451*322^(1/3) 9870033757887517 a001 10182505537/70711162*322^(1/3) 9870033757887520 a001 7778742049/54018521*322^(1/3) 9870033757887540 a001 2971215073/20633239*322^(1/3) 9870033757887676 a001 567451585/3940598*322^(1/3) 9870033757888606 a001 433494437/3010349*322^(1/3) 9870033757894982 a001 165580141/1149851*322^(1/3) 9870033757938684 a001 31622993/219602*322^(1/3) 9870033758238221 a001 24157817/167761*322^(1/3) 9870033760291278 a001 9227465/64079*322^(1/3) 9870033765486845 r002 35th iterates of z^2 + 9870033772577025 m005 (1/2*exp(1)-7/10)/(4*3^(1/2)-1/4) 9870033774363143 a001 1762289/12238*322^(1/3) 9870033777003327 a001 161/5473*102334155^(4/21) 9870033777662351 a001 208010/19*9349^(32/43) 9870033793128094 a001 322/75025*2504730781961^(4/21) 9870033825238949 l006 ln(3633/9748) 9870033843823929 m001 (Magata-ZetaP(2))/(ln(3)+Ei(1)) 9870033849831869 a001 514229/76*24476^(31/43) 9870033865271914 m005 (1/2*Catalan-6)/(8/7+2*5^(1/2)) 9870033870813142 a001 1346269/9349*322^(1/3) 9870033874938278 a007 Real Root Of -712*x^4-134*x^3+131*x^2-597*x-170 9870033876896652 m001 Psi(2,1/3)*(GAMMA(3/4)+BesselI(1,1)) 9870033887566970 a007 Real Root Of -248*x^4+624*x^3-538*x^2-658*x+710 9870033900689042 a001 121393/76*15127^(39/43) 9870033914881018 a007 Real Root Of 687*x^4+138*x^3-641*x^2-911*x-794 9870033916640226 a007 Real Root Of -561*x^4+181*x^3-371*x^2-473*x+601 9870033929372500 m009 (40*Catalan+5*Pi^2-1/5)/(3*Psi(1,2/3)-1/2) 9870033931928296 r005 Re(z^2+c),c=13/64+16/59*I,n=49 9870033932785153 r005 Re(z^2+c),c=13/64+16/59*I,n=53 9870033940716170 a007 Real Root Of -777*x^4-432*x^3+564*x^2+660*x+424 9870033956442612 a007 Real Root Of 355*x^4-699*x^3-487*x^2+802*x+257 9870033986205386 r005 Re(z^2+c),c=13/64+16/59*I,n=52 9870034008453107 a007 Real Root Of -701*x^4-305*x^3-223*x^2-597*x 9870034009870506 r001 62i'th iterates of 2*x^2-1 of 9870034024093152 m001 1/GAMMA(23/24)/GAMMA(1/4)^2/exp(Zeta(7))^2 9870034061086950 a001 2178309/76*5778^(29/43) 9870034063422721 r005 Re(z^2+c),c=13/64+16/59*I,n=58 9870034066581022 r005 Re(z^2+c),c=13/64+16/59*I,n=57 9870034078757051 r005 Re(z^2+c),c=13/64+16/59*I,n=54 9870034084708442 r005 Re(z^2+c),c=13/64+16/59*I,n=62 9870034085226006 r005 Re(z^2+c),c=13/64+16/59*I,n=63 9870034090119571 r005 Re(z^2+c),c=13/64+16/59*I,n=64 9870034090496147 r005 Re(z^2+c),c=13/64+16/59*I,n=59 9870034094169544 r005 Re(z^2+c),c=13/64+16/59*I,n=61 9870034102750130 r005 Re(z^2+c),c=13/64+16/59*I,n=60 9870034111247757 a007 Real Root Of -102*x^4+629*x^3+222*x^2+20*x-744 9870034123720771 r005 Re(z^2+c),c=13/64+16/59*I,n=56 9870034136229929 m001 Bloch^ZetaQ(3)*PlouffeB^ZetaQ(3) 9870034158073431 a003 cos(Pi*6/53)+cos(Pi*46/95) 9870034162863768 r005 Re(z^2+c),c=13/64+16/59*I,n=55 9870034183486875 a007 Real Root Of -451*x^4-36*x^3-831*x^2-236*x+970 9870034199647455 a007 Real Root Of 863*x^4-127*x^3-649*x^2-529*x-831 9870034201696526 a001 2584/521*1364^(11/15) 9870034223738256 a007 Real Root Of 142*x^4-383*x^3-656*x^2-43*x+915 9870034225428552 a007 Real Root Of -456*x^4+500*x^3+103*x^2+90*x+902 9870034250074609 m005 (1/3*exp(1)+2/11)/(9/11*5^(1/2)-8/11) 9870034260784561 m008 (2/3*Pi^6+3/4)/(2*Pi^3+3) 9870034274868538 a007 Real Root Of -799*x^4-679*x^3+514*x^2+676*x-71 9870034278304660 a007 Real Root Of 624*x^4-994*x^3-47*x^2-203*x-2 9870034323274105 r005 Re(z^2+c),c=13/64+16/59*I,n=51 9870034330554193 q001 4025/4078 9870034353554354 a007 Real Root Of -739*x^4+628*x^3-196*x^2-993*x+516 9870034373551972 r005 Im(z^2+c),c=-13/14+19/222*I,n=12 9870034393981792 m001 1/exp(MinimumGamma)^2/Magata*Riemann3rdZero^2 9870034444411128 m001 (2^(1/2)-3^(1/2))/(FransenRobinson+ThueMorse) 9870034465554240 r005 Re(z^2+c),c=-35/32+9/62*I,n=54 9870034474951042 m005 (1/2*exp(1)-9/11)/(2/5*Zeta(3)+5) 9870034483987793 r005 Re(z^2+c),c=13/64+16/59*I,n=50 9870034531891316 a001 514229/3571*322^(1/3) 9870034538730308 a007 Real Root Of -829*x^4+843*x^3+619*x^2-748*x+256 9870034541115724 l006 ln(1433/3845) 9870034548649663 m001 1/GAMMA(23/24)/ln(KhintchineLevy)*sqrt(3) 9870034561739733 r005 Re(z^2+c),c=-41/42+5/49*I,n=17 9870034566558833 a007 Real Root Of 272*x^4+265*x^3+769*x^2+810*x+47 9870034569857036 a007 Real Root Of -716*x^4+579*x^3+938*x^2-428*x-100 9870034570132333 r002 8th iterates of z^2 + 9870034592636750 r001 60i'th iterates of 2*x^2-1 of 9870034620162191 h001 (1/3*exp(2)+2/3)/(3/8*exp(2)+2/5) 9870034638145980 m005 (1/2*Pi-5)/(1/7*3^(1/2)+1/10) 9870034681236887 r005 Im(z^2+c),c=-29/118+8/57*I,n=13 9870034685816993 a007 Real Root Of 822*x^4-21*x^3-317*x^2+964*x+460 9870034692709010 m001 (GAMMA(11/24)+GAMMA(5/12))/exp(sqrt(2)) 9870034711433754 a007 Real Root Of -296*x^4+798*x^3+64*x^2-627*x+367 9870034730713960 m001 1/ln(CareFree)*MertensB1*GAMMA(1/12)^2 9870034741716808 r005 Re(z^2+c),c=15/86+22/41*I,n=47 9870034743302692 r009 Im(z^3+c),c=-5/28+27/28*I,n=21 9870034754016008 m001 GAMMA(17/24)-polylog(4,1/2)*Stephens 9870034776537388 m001 1/CareFree^2*FeigenbaumDelta*exp(sinh(1))^2 9870034816199084 m001 HardyLittlewoodC3^arctan(1/3)/ZetaQ(3) 9870034866048694 a007 Real Root Of 812*x^4-329*x^3-741*x^2+71*x-295 9870034893111418 m001 RenyiParking/Khintchine/exp(Zeta(5)) 9870034911176726 a007 Real Root Of -56*x^4-614*x^3-504*x^2+998*x+29 9870034917663047 a001 1597/521*1364^(4/5) 9870034923458360 r005 Re(z^2+c),c=-49/50+3/37*I,n=7 9870034932957492 a007 Real Root Of 229*x^4-979*x^3-810*x^2+572*x+195 9870034942348434 r005 Re(z^2+c),c=-17/18+29/147*I,n=35 9870034963931451 a001 4181/521*1364^(2/3) 9870034971066423 r005 Im(z^2+c),c=-7/12+2/111*I,n=61 9870034997580428 m001 ln(gamma)^Trott2nd*GAMMA(5/6)^Trott2nd 9870035007326364 l003 tanh(2+52/101) 9870035007326364 l004 tanh(254/101) 9870035013721994 a007 Real Root Of 580*x^4-779*x^3-376*x^2+834*x-110 9870035031971648 a003 sin(Pi*7/114)+sin(Pi*12/41) 9870035032548668 m005 (1/2*gamma+5/8)/(8/9*Zeta(3)-1/7) 9870035064420040 a001 2584/3*1364^(1/53) 9870035075472043 a007 Real Root Of 790*x^4-820*x^3-546*x^2+595*x-419 9870035088607560 a007 Real Root Of -303*x^4-326*x^3-540*x^2-219*x+284 9870035101780546 a007 Real Root Of -700*x^4+37*x^3-293*x^2-206*x+782 9870035103880113 r005 Re(z^2+c),c=-3/34+8/47*I,n=12 9870035150841555 a007 Real Root Of -734*x^4+706*x^3+578*x^2-205*x+610 9870035161543663 a001 6765/521*1364^(3/5) 9870035186698589 m001 BesselJ(1,1)-FeigenbaumC^sin(1/5*Pi) 9870035218123145 r002 2th iterates of z^2 + 9870035236945678 r001 28i'th iterates of 2*x^2-1 of 9870035277463442 l006 ln(3532/9477) 9870035345830082 a007 Real Root Of -896*x^4+250*x^3+950*x^2-136*x+31 9870035391831382 l006 ln(7683/8480) 9870035417874303 p001 sum(1/(133*n+65)/n/(512^n),n=0..infinity) 9870035437842559 b008 ArcSinh[(5*Log[2])/3] 9870035468328400 m005 (1/3*exp(1)+1/6)/(9/70+3/7*5^(1/2)) 9870035476042650 h001 (-7*exp(-3)+3)/(-6*exp(2/3)+9) 9870035476163569 a001 11/121393*13^(27/29) 9870035516139730 a007 Real Root Of 115*x^4-807*x^3+399*x^2+325*x-953 9870035520926351 a001 7/47*(1/2*5^(1/2)+1/2)^3*47^(5/7) 9870035534798910 m008 (5/6*Pi^4-5)/(4/5*Pi^4-3/4) 9870035535046608 r004 Im(z^2+c),c=-7/34-5/22*I,z(0)=I,n=4 9870035574822585 a001 10946/521*1364^(8/15) 9870035575292227 a007 Real Root Of -17*x^4+852*x^3+192*x^2-977*x-316 9870035576315398 a007 Real Root Of -55*x^4-586*x^3-375*x^2+524*x+216 9870035578855346 a007 Real Root Of 497*x^4+51*x^3+993*x^2+540*x-857 9870035590655979 a001 317811/521*521^(1/13) 9870035592571695 r002 23th iterates of z^2 + 9870035609727154 a007 Real Root Of -709*x^4+254*x^3+928*x^2+339*x-810 9870035617147547 r005 Re(z^2+c),c=13/64+16/59*I,n=46 9870035634155015 r002 42th iterates of z^2 + 9870035634875637 m001 Magata/Cahen/ln(Paris)^2 9870035652425839 a001 208010/19*2207^(38/43) 9870035681667233 m005 (5*2^(1/2)+3/4)/(1/3*gamma+3/5) 9870035692027456 r005 Re(z^2+c),c=-83/86+9/62*I,n=19 9870035717976996 r005 Re(z^2+c),c=-37/38+6/53*I,n=13 9870035733978001 a001 15456/281*322^(1/2) 9870035747408430 m001 TwinPrimes/exp(Trott)^2/cos(Pi/5)^2 9870035768890372 r008 a(0)=1,K{-n^6,37-30*n^3+59*n^2+12*n} 9870035769479300 a001 987/521*3571^(13/17) 9870035780172453 l006 ln(2099/5632) 9870035804340744 r005 Re(z^2+c),c=-9/10+58/215*I,n=17 9870035831174892 a005 (1/sin(92/209*Pi))^1685 9870035875728597 m001 (KhinchinHarmonic-Zeta(1,2))/exp(1) 9870035903238918 m001 (FransenRobinson-Mills)/(Ei(1)-Artin) 9870035905724169 a001 17711/521*1364^(7/15) 9870035926954742 a007 Real Root Of -197*x^4+705*x^3-449*x^2+516*x+56 9870035939259288 p004 log(29947/11161) 9870035944696456 m001 1/GAMMA(1/4)/ln(LaplaceLimit)^2/GAMMA(17/24)^2 9870036009657797 p004 log(21067/19087) 9870036031773261 a007 Real Root Of -215*x^4+827*x^3+154*x^2-601*x+256 9870036036605311 a007 Real Root Of -980*x^4+304*x^3+868*x^2+135*x+510 9870036053798124 m001 1/RenyiParking^2/MinimumGamma/exp(OneNinth)^2 9870036055007142 a007 Real Root Of 79*x^4-362*x^3+381*x^2+600*x-202 9870036069735378 a003 sin(Pi*3/8)/sin(Pi*32/83) 9870036100918828 r009 Im(z^3+c),c=-5/28+59/61*I,n=49 9870036101083032 q001 1367/1385 9870036128703408 m001 CareFree^2/Champernowne^2*ln(GAMMA(2/3)) 9870036146184974 r005 Re(z^2+c),c=13/64+16/59*I,n=45 9870036146578352 r008 a(0)=1,K{-n^6,23+40*n+61*n^2-42*n^3} 9870036148654722 a007 Real Root Of -228*x^4+245*x^3-387*x^2-773*x+66 9870036175737249 a001 1597/3*3571^(4/53) 9870036212801030 m001 1/Trott^2*Porter^2*exp(Zeta(1/2))^2 9870036215388535 a007 Real Root Of -105*x^4-985*x^3+466*x^2-355*x+477 9870036259770365 r009 Im(z^3+c),c=-29/52+30/47*I,n=11 9870036268091115 a001 28657/521*1364^(2/5) 9870036281982708 m001 (1+FeigenbaumD)/(Otter+StronglyCareFree) 9870036284094789 a001 987/521*9349^(13/19) 9870036302734278 r005 Re(z^2+c),c=-17/18+49/243*I,n=61 9870036346319045 a001 233/2207*24476^(19/21) 9870036351159863 a001 987/521*24476^(13/21) 9870036356013212 m001 (ln(2^(1/2)+1)-gamma(1))/(OneNinth+Thue) 9870036359239727 a001 233/2207*64079^(19/23) 9870036360000329 a001 987/521*64079^(13/23) 9870036361225425 a001 233/2207*817138163596^(1/3) 9870036361225425 a001 233/2207*(1/2+1/2*5^(1/2))^19 9870036361225425 a001 233/2207*87403803^(1/2) 9870036361358964 a001 987/521*141422324^(1/3) 9870036361358964 a001 987/521*(1/2+1/2*5^(1/2))^13 9870036361358964 a001 987/521*73681302247^(1/4) 9870036361425942 a001 987/521*271443^(1/2) 9870036361856294 a001 987/521*103682^(13/24) 9870036361952291 a001 233/2207*103682^(19/24) 9870036365077597 a001 987/521*39603^(13/22) 9870036366660349 a001 233/2207*39603^(19/22) 9870036366909556 r005 Im(z^2+c),c=-13/42+7/47*I,n=19 9870036386807300 m001 FeigenbaumB^2/Khintchine^2/exp(GAMMA(1/12))^2 9870036389395639 a001 987/521*15127^(13/20) 9870036400542337 a007 Real Root Of -371*x^4+247*x^3-43*x^2+267*x+895 9870036402202103 a001 233/2207*15127^(19/20) 9870036421833097 m001 1/ln(Bloch)^2*ErdosBorwein^2/arctan(1/2) 9870036422330907 l006 ln(2765/7419) 9870036464443596 a007 Real Root Of -464*x^4+844*x^3-506*x^2-862*x+894 9870036558833203 r002 31th iterates of z^2 + 9870036565202471 m005 (1/2*Pi+7/11)/(5/8*Pi+3/11) 9870036574876992 a001 987/521*5778^(13/18) 9870036576154728 a007 Real Root Of -807*x^4-220*x^3+638*x^2-477*x-538 9870036590020770 m001 (MertensB3-Trott)/(Zeta(1,-1)-GAMMA(19/24)) 9870036590908587 m001 BesselK(0,1)*exp(Si(Pi))^2/sqrt(3) 9870036618439380 a001 46368/521*1364^(1/3) 9870036625484572 p001 sum(1/(127*n+32)/n/(64^n),n=0..infinity) 9870036697395179 r002 46th iterates of z^2 + 9870036705605892 m001 (BesselK(0,1)-GAMMA(17/24))/(Trott+ZetaP(4)) 9870036722022884 m001 (Pi-exp(Pi))/(ln(Pi)+QuadraticClass) 9870036733112810 a007 Real Root Of -724*x^4+416*x^3-874*x^2-961*x+990 9870036739037016 a003 cos(Pi*21/113)+cos(Pi*37/82) 9870036743862236 m004 1-Log[Sqrt[5]*Pi]/150 9870036756249781 m001 1/Pi/ln(Artin)^2*sqrt(3)^2 9870036762761572 m001 exp(1)^(1/2*gamma(1)/Pi*GAMMA(5/6)) 9870036762761572 m001 exp(1/2*gamma(1)/Pi*GAMMA(5/6)) 9870036778772574 r009 Re(z^3+c),c=-1/48+31/55*I,n=2 9870036783853356 a001 11592/19*29^(1/7) 9870036785771545 m002 Pi^2+(Log[Pi]*Sech[Pi])/(E^Pi*Pi^2) 9870036809858243 r001 12i'th iterates of 2*x^2-1 of 9870036815187370 l006 ln(3431/9206) 9870036837183000 m001 (ErdosBorwein+Trott)/(Zeta(5)+BesselK(1,1)) 9870036846254899 m001 (Bloch-FeigenbaumC)/(arctan(1/3)+GAMMA(11/12)) 9870036847586916 a007 Real Root Of -949*x^4+561*x^3+756*x^2-650*x+62 9870036891985365 a001 5/64079*47^(29/44) 9870036897197368 m001 (Zeta(1,2)+FeigenbaumB)/(Kac+TreeGrowth2nd) 9870036920525193 m002 5*Pi+Pi^6+Pi^2*Coth[Pi] 9870036943334696 a003 cos(Pi*11/83)+cos(Pi*31/65) 9870036973378390 a001 75025/521*1364^(4/15) 9870036982685185 m001 (MertensB1-Otter)/(Ei(1)+GaussAGM) 9870037018427332 m001 (FeigenbaumC+Kac)/(arctan(1/3)+gamma(1)) 9870037044913593 a007 Real Root Of -538*x^4+473*x^3+79*x^2-661*x+236 9870037049113074 r002 20th iterates of z^2 + 9870037077035785 r001 50i'th iterates of 2*x^2-1 of 9870037111254017 h001 (1/10*exp(1)+5/6)/(1/6*exp(1)+2/3) 9870037111254017 m005 (3/5*exp(1)+5)/(exp(1)+4) 9870037116211746 h001 (3/11*exp(2)+4/11)/(5/9*exp(1)+9/10) 9870037123203291 m002 -1+4/Pi^6+Pi^2+Tanh[Pi] 9870037146012772 h001 (1/10*exp(2)+7/8)/(5/9*exp(1)+1/8) 9870037167130272 m001 Riemann2ndZero^2/Kolakoski^2*exp(GAMMA(1/4))^2 9870037170628519 a007 Real Root Of 939*x^4-459*x^3-696*x^2+351*x-308 9870037178812154 r009 Re(z^3+c),c=-9/94+43/46*I,n=9 9870037179541455 a001 439204/233*1836311903^(16/17) 9870037179599648 a001 969323029/233*514229^(16/17) 9870037194335976 r005 Re(z^2+c),c=-13/14+19/91*I,n=27 9870037213120026 a007 Real Root Of 856*x^4+496*x^3+522*x^2+541*x-310 9870037241025435 r005 Re(z^2+c),c=-17/18+47/234*I,n=47 9870037268097705 r005 Re(z^2+c),c=-103/118+7/45*I,n=38 9870037278977330 r009 Im(z^3+c),c=-7/78+60/61*I,n=11 9870037289664169 m004 -1+5*Pi-25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870037322643141 a001 121393/322*123^(1/5) 9870037326563908 a001 233*1364^(1/5) 9870037350238708 r009 Im(z^3+c),c=-15/118+46/47*I,n=33 9870037353708496 a007 Real Root Of -906*x^4+179*x^3-720*x^2-821*x+923 9870037366414143 m002 -Log[Pi]+Sinh[Pi]/ProductLog[Pi]^2+Tanh[Pi] 9870037376820256 a007 Real Root Of 188*x^4-262*x^3-324*x^2+177*x+60 9870037387863703 r009 Im(z^3+c),c=-15/118+46/47*I,n=31 9870037395584121 a005 (1/sin(55/237*Pi))^102 9870037415805415 a007 Real Root Of -761*x^4+189*x^3+212*x^2+262*x+956 9870037421576432 m001 (GAMMA(7/12)-Conway)/(GAMMA(3/4)+GAMMA(11/12)) 9870037425633821 b008 JacobiCS[3/2,1/13] 9870037478666316 r008 a(0)=1,K{-n^6,79-35*n^3+34*n^2-2*n} 9870037512511487 r009 Im(z^3+c),c=-15/118+46/47*I,n=37 9870037534333276 m004 -5-30/Pi+25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870037535053775 r009 Re(z^3+c),c=-3/86+37/60*I,n=4 9870037543227452 m005 (1/3*5^(1/2)+3/4)/(7/10*gamma-5/9) 9870037551401521 h001 (-4*exp(8)-2)/(-3*exp(6)+2) 9870037570444583 a001 1576245/1597 9870037575614210 m001 1/ln(GAMMA(1/3))/(2^(1/3))*GAMMA(3/4) 9870037581265671 a007 Real Root Of 49*x^4-525*x^3-245*x^2-125*x-436 9870037587344860 r009 Im(z^3+c),c=-15/118+46/47*I,n=43 9870037591246713 a001 2584/521*3571^(11/17) 9870037595440307 r009 Im(z^3+c),c=-15/118+46/47*I,n=47 9870037595745504 r009 Im(z^3+c),c=-15/118+46/47*I,n=49 9870037595930703 r009 Im(z^3+c),c=-15/118+46/47*I,n=53 9870037596085212 r009 Im(z^3+c),c=-15/118+46/47*I,n=59 9870037596099155 r009 Im(z^3+c),c=-15/118+46/47*I,n=63 9870037596108495 r009 Im(z^3+c),c=-15/118+46/47*I,n=61 9870037596113819 r009 Im(z^3+c),c=-15/118+46/47*I,n=57 9870037596135239 r009 Im(z^3+c),c=-15/118+46/47*I,n=55 9870037596472476 r009 Im(z^3+c),c=-15/118+46/47*I,n=51 9870037598266199 m001 (arctan(1/2)+Kolakoski)/(Si(Pi)-gamma) 9870037599884628 r009 Im(z^3+c),c=-15/118+46/47*I,n=45 9870037605559671 r009 Im(z^3+c),c=-15/118+46/47*I,n=41 9870037608249379 r009 Im(z^3+c),c=-15/118+46/47*I,n=39 9870037613577873 a004 Fibonacci(13)*Lucas(17)/(1/2+sqrt(5)/2)^14 9870037614707703 a007 Real Root Of -729*x^4+150*x^3+580*x^2+157*x+426 9870037621521288 a007 Real Root Of -773*x^4-165*x^3-761*x^2-901*x+427 9870037632606324 a007 Real Root Of -133*x^4+483*x^3+713*x^2+542*x+431 9870037649149665 r005 Im(z^2+c),c=-3/23+9/11*I,n=18 9870037652440374 r002 2th iterates of z^2 + 9870037653877715 a007 Real Root Of -733*x^4-880*x^3-349*x^2+499*x+682 9870037680419218 a001 196418/521*1364^(2/15) 9870037689009217 m001 (ThueMorse+TwinPrimes)/(BesselJ(0,1)-Si(Pi)) 9870037694912882 a007 Real Root Of -765*x^4+386*x^3+517*x^2+269*x+859 9870037699129294 a007 Real Root Of -284*x^4-566*x^3-936*x^2+318*x+951 9870037767812907 b008 2-(17*ArcSinh[4])/3 9870037801249495 r009 Im(z^3+c),c=-15/118+46/47*I,n=35 9870037841092325 a007 Real Root Of 339*x^4+873*x^3+991*x^2-113*x-20 9870037872688536 p001 sum((-1)^n/(411*n+41)/n/(2^n),n=1..infinity) 9870037886549523 m001 1/exp(sqrt(2))^2*GAMMA(1/6)*sqrt(3)^2 9870037918241681 a007 Real Root Of 937*x^4-87*x^3-57*x^2+896*x-33 9870037928686937 a007 Real Root Of 661*x^4-466*x^3-142*x^2+382*x-560 9870037934812180 a001 6765/521*3571^(9/17) 9870038007767564 a001 987/521*2207^(13/16) 9870038026690667 a001 2584/521*9349^(11/19) 9870038029234050 p004 log(36011/13421) 9870038034018708 a001 317811/521*1364^(1/15) 9870038039950221 a001 10946/521*3571^(8/17) 9870038045340901 a001 4181/521*3571^(10/17) 9870038046057707 r009 Re(z^3+c),c=-7/50+46/63*I,n=4 9870038062710889 a001 17711/521*3571^(7/17) 9870038078851424 m001 (Pi^(1/2)*Tribonacci-exp(1/exp(1)))/Tribonacci 9870038083438047 a001 2584/521*24476^(11/21) 9870038089739392 a001 233/5778*64079^(21/23) 9870038090880800 a007 Real Root Of 782*x^4+335*x^3+189*x^2-242*x-843 9870038090918443 a001 2584/521*64079^(11/23) 9870038091894314 a001 233/5778*439204^(7/9) 9870038091934009 a001 233/5778*7881196^(7/11) 9870038091934097 a001 233/5778*20633239^(3/5) 9870038091934110 a001 233/5778*141422324^(7/13) 9870038091934110 a001 233/5778*2537720636^(7/15) 9870038091934110 a001 233/5778*17393796001^(3/7) 9870038091934110 a001 233/5778*45537549124^(7/17) 9870038091934110 a001 233/5778*14662949395604^(1/3) 9870038091934110 a001 233/5778*(1/2+1/2*5^(1/2))^21 9870038091934110 a001 233/5778*192900153618^(7/18) 9870038091934110 a001 233/5778*10749957122^(7/16) 9870038091934110 a001 233/5778*599074578^(1/2) 9870038091934116 a001 233/5778*33385282^(7/12) 9870038091936106 a001 233/5778*1860498^(7/10) 9870038091948768 a001 233/5778*710647^(3/4) 9870038092068004 a001 2584/521*7881196^(1/3) 9870038092068057 a001 2584/521*312119004989^(1/5) 9870038092068057 a001 2584/521*(1/2+1/2*5^(1/2))^11 9870038092068057 a001 2584/521*1568397607^(1/4) 9870038092488875 a001 2584/521*103682^(11/24) 9870038092737489 a001 233/5778*103682^(7/8) 9870038095214593 a001 2584/521*39603^(1/2) 9870038097941133 a001 233/5778*39603^(21/22) 9870038110022283 a001 11/28657*3^(49/57) 9870038115791401 a001 2584/521*15127^(11/20) 9870038116936914 a001 28657/521*3571^(6/17) 9870038129217366 a007 Real Root Of -495*x^4+284*x^3+213*x^2-205*x+333 9870038144702083 a007 Real Root Of -718*x^4+363*x^3+413*x^2+84*x+711 9870038157494886 a007 Real Root Of -246*x^4+157*x^3+262*x^2+91*x+219 9870038159144243 a001 46368/521*3571^(5/17) 9870038162674407 r009 Im(z^3+c),c=-15/17+7/23*I,n=2 9870038184473451 a007 Real Root Of -796*x^4+179*x^3-902*x^2-905*x+913 9870038187796006 a007 Real Root Of 816*x^4-585*x^3-585*x^2-801*x-74 9870038205942305 a001 75025/521*3571^(4/17) 9870038213434768 a003 cos(Pi*2/29)-sin(Pi*47/105) 9870038221130565 a005 (1/cos(2/105*Pi))^1278 9870038222837224 m001 GAMMA(3/4)^2/BesselK(1,1)/exp(arctan(1/2))^2 9870038234966825 m004 6+5*Pi+150*Sqrt[5]*Pi*Tan[Sqrt[5]*Pi] 9870038250986863 a001 233*3571^(3/17) 9870038268356852 a001 4126663/4181 9870038268403798 m002 Pi^2+Log[Pi]^2/Pi^7 9870038270060146 a007 Real Root Of -34*x^4-406*x^3-764*x^2-628*x+520 9870038272737189 a001 2584/521*5778^(11/18) 9870038274649922 a004 Fibonacci(13)*Lucas(19)/(1/2+sqrt(5)/2)^16 9870038279311020 m002 -(Cosh[Pi]/Pi^6)+(3*Log[Pi])/Pi^3 9870038291084517 a001 6765/521*9349^(9/19) 9870038296701201 a001 196418/521*3571^(2/17) 9870038299204276 m001 (KhinchinLevy-exp(1/exp(1)))/MertensB1 9870038337514193 a001 6765/521*24476^(3/7) 9870038339811598 a001 17711/521*9349^(7/19) 9870038342159706 a001 317811/521*3571^(1/17) 9870038343633239 a007 Real Root Of 972*x^4+462*x^3-425*x^2-785*x-839 9870038343634517 a001 6765/521*64079^(9/23) 9870038344441155 a001 233/15127*(1/2+1/2*5^(1/2))^23 9870038344441155 a001 233/15127*4106118243^(1/2) 9870038344558056 a001 6765/521*439204^(1/3) 9870038344575068 a001 6765/521*7881196^(3/11) 9870038344575111 a001 6765/521*141422324^(3/13) 9870038344575111 a001 6765/521*2537720636^(1/5) 9870038344575111 a001 6765/521*45537549124^(3/17) 9870038344575111 a001 6765/521*817138163596^(3/19) 9870038344575111 a001 6765/521*14662949395604^(1/7) 9870038344575111 a001 6765/521*(1/2+1/2*5^(1/2))^9 9870038344575111 a001 6765/521*192900153618^(1/6) 9870038344575111 a001 6765/521*10749957122^(3/16) 9870038344575111 a001 6765/521*599074578^(3/14) 9870038344575113 a001 6765/521*33385282^(1/4) 9870038344575967 a001 6765/521*1860498^(3/10) 9870038344919416 a001 6765/521*103682^(3/8) 9870038345321046 a001 233/15127*103682^(23/24) 9870038347149549 a001 6765/521*39603^(9/22) 9870038351856204 r005 Re(z^2+c),c=1/14+32/63*I,n=56 9870038354451809 a001 28657/521*9349^(6/19) 9870038356636746 a001 10946/521*9349^(8/19) 9870038357073322 a001 46368/521*9349^(5/19) 9870038363985120 a001 6765/521*15127^(9/20) 9870038364285569 a001 75025/521*9349^(4/19) 9870038369744311 a001 233*9349^(3/19) 9870038370180887 a001 5401872/5473 9870038371099034 a004 Fibonacci(13)*Lucas(21)/(1/2+sqrt(5)/2)^18 9870038375872833 a001 196418/521*9349^(2/19) 9870038375923569 a001 17711/521*24476^(1/3) 9870038380683821 a001 17711/521*64079^(7/23) 9870038381281421 a001 233/39603*20633239^(5/7) 9870038381281438 a001 233/39603*2537720636^(5/9) 9870038381281438 a001 233/39603*312119004989^(5/11) 9870038381281438 a001 233/39603*(1/2+1/2*5^(1/2))^25 9870038381281438 a001 233/39603*3461452808002^(5/12) 9870038381281438 a001 233/39603*28143753123^(1/2) 9870038381281438 a001 233/39603*228826127^(5/8) 9870038381283814 a001 233/39603*1860498^(5/6) 9870038381415389 a001 17711/521*20633239^(1/5) 9870038381415394 a001 17711/521*17393796001^(1/7) 9870038381415394 a001 17711/521*14662949395604^(1/9) 9870038381415394 a001 17711/521*(1/2+1/2*5^(1/2))^7 9870038381415394 a001 17711/521*599074578^(1/6) 9870038381420280 a001 17711/521*710647^(1/4) 9870038381683187 a001 17711/521*103682^(7/24) 9870038381745522 a001 317811/521*9349^(1/19) 9870038382867586 a001 46368/521*24476^(5/21) 9870038383417735 a001 17711/521*39603^(7/22) 9870038384920980 a001 75025/521*24476^(4/21) 9870038385036814 a001 28284569/28657 9870038385170770 a004 Fibonacci(13)*Lucas(23)/(1/2+sqrt(5)/2)^20 9870038385220870 a001 233*24476^(1/7) 9870038385404926 a001 28657/521*24476^(2/7) 9870038386190539 a001 196418/521*24476^(2/21) 9870038386267766 a001 46368/521*64079^(5/23) 9870038386656233 a001 233/103682*7881196^(9/11) 9870038386656362 a001 233/103682*141422324^(9/13) 9870038386656363 a001 233/103682*2537720636^(3/5) 9870038386656363 a001 233/103682*45537549124^(9/17) 9870038386656363 a001 233/103682*817138163596^(9/19) 9870038386656363 a001 233/103682*14662949395604^(3/7) 9870038386656363 a001 233/103682*(1/2+1/2*5^(1/2))^27 9870038386656363 a001 233/103682*192900153618^(1/2) 9870038386656363 a001 233/103682*10749957122^(9/16) 9870038386656363 a001 233/103682*599074578^(9/14) 9870038386656369 a001 233/103682*33385282^(3/4) 9870038386658929 a001 233/103682*1860498^(9/10) 9870038386720178 a001 46368/521*167761^(1/5) 9870038386790315 a001 46368/521*20633239^(1/7) 9870038386790319 a001 46368/521*2537720636^(1/9) 9870038386790319 a001 46368/521*312119004989^(1/11) 9870038386790319 a001 46368/521*(1/2+1/2*5^(1/2))^5 9870038386790319 a001 46368/521*28143753123^(1/10) 9870038386790319 a001 46368/521*228826127^(1/8) 9870038386790794 a001 46368/521*1860498^(1/6) 9870038386904375 a001 317811/521*24476^(1/21) 9870038386981599 a001 46368/521*103682^(5/24) 9870038387204265 a001 74049963/75025 9870038387223809 a004 Fibonacci(13)*Lucas(25)/(1/2+sqrt(5)/2)^22 9870038387260978 a001 233*64079^(3/23) 9870038387440554 a001 233/271443*(1/2+1/2*5^(1/2))^29 9870038387440554 a001 233/271443*1322157322203^(1/2) 9870038387520492 a001 96932660/98209 9870038387523343 a004 Fibonacci(13)*Lucas(27)/(1/2+sqrt(5)/2)^24 9870038387550611 a001 196418/521*64079^(2/23) 9870038387554966 a001 233/710647*(1/2+1/2*5^(1/2))^31 9870038387554966 a001 233/710647*9062201101803^(1/2) 9870038387566628 a001 507545997/514229 9870038387567044 a004 Fibonacci(13)*Lucas(29)/(1/2+sqrt(5)/2)^26 9870038387568824 a001 233*439204^(1/9) 9870038387571658 a001 233/1860498*141422324^(11/13) 9870038387571658 a001 233/1860498*2537720636^(11/15) 9870038387571658 a001 233/1860498*45537549124^(11/17) 9870038387571658 a001 233/1860498*312119004989^(3/5) 9870038387571658 a001 233/1860498*817138163596^(11/19) 9870038387571658 a001 233/1860498*14662949395604^(11/21) 9870038387571658 a001 233/1860498*(1/2+1/2*5^(1/2))^33 9870038387571658 a001 233/1860498*192900153618^(11/18) 9870038387571658 a001 233/1860498*10749957122^(11/16) 9870038387571658 a001 233/1860498*1568397607^(3/4) 9870038387571658 a001 233/1860498*599074578^(11/14) 9870038387571666 a001 233/1860498*33385282^(11/12) 9870038387573360 a001 1328772671/1346269 9870038387573420 a004 Fibonacci(13)*Lucas(31)/(1/2+sqrt(5)/2)^28 9870038387574093 a001 233/4870847*2537720636^(7/9) 9870038387574093 a001 233/4870847*17393796001^(5/7) 9870038387574093 a001 233/4870847*312119004989^(7/11) 9870038387574093 a001 233/4870847*14662949395604^(5/9) 9870038387574093 a001 233/4870847*(1/2+1/2*5^(1/2))^35 9870038387574093 a001 233/4870847*505019158607^(5/8) 9870038387574093 a001 233/4870847*28143753123^(7/10) 9870038387574093 a001 233/4870847*599074578^(5/6) 9870038387574094 a001 233/4870847*228826127^(7/8) 9870038387574342 a001 1739386008/1762289 9870038387574351 a004 Fibonacci(13)*Lucas(33)/(1/2+sqrt(5)/2)^30 9870038387574449 a001 233/12752043*(1/2+1/2*5^(1/2))^37 9870038387574485 a001 9107543377/9227465 9870038387574486 a004 Fibonacci(13)*Lucas(35)/(1/2+sqrt(5)/2)^32 9870038387574495 a001 233*7881196^(1/11) 9870038387574501 a001 233/33385282*2537720636^(13/15) 9870038387574501 a001 233/33385282*45537549124^(13/17) 9870038387574501 a001 233/33385282*14662949395604^(13/21) 9870038387574501 a001 233/33385282*(1/2+1/2*5^(1/2))^39 9870038387574501 a001 233/33385282*192900153618^(13/18) 9870038387574501 a001 233/33385282*73681302247^(3/4) 9870038387574501 a001 233/33385282*10749957122^(13/16) 9870038387574501 a001 233/33385282*599074578^(13/14) 9870038387574506 a001 23843858115/24157817 9870038387574506 a004 Fibonacci(13)*Lucas(37)/(1/2+sqrt(5)/2)^34 9870038387574508 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^41/Lucas(38) 9870038387574509 a001 133957148/135721 9870038387574509 a004 Fibonacci(13)*Lucas(39)/(1/2+sqrt(5)/2)^36 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^43/Lucas(40) 9870038387574509 a001 163428234789/165580141 9870038387574509 a004 Fibonacci(13)*Lucas(41)/(1/2+sqrt(5)/2)^38 9870038387574509 a001 233*141422324^(1/13) 9870038387574509 a001 233/599074578*45537549124^(15/17) 9870038387574509 a001 233/599074578*312119004989^(9/11) 9870038387574509 a001 233/599074578*14662949395604^(5/7) 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^45/Lucas(42) 9870038387574509 a001 233/599074578*192900153618^(5/6) 9870038387574509 a001 233/599074578*28143753123^(9/10) 9870038387574509 a001 233/599074578*10749957122^(15/16) 9870038387574509 a001 427860673399/433494437 9870038387574509 a004 Fibonacci(13)*Lucas(43)/(1/2+sqrt(5)/2)^40 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^47/Lucas(44) 9870038387574509 a001 560076892704/567451585 9870038387574509 a004 Fibonacci(13)*Lucas(45)/(1/2+sqrt(5)/2)^42 9870038387574509 a001 233/4106118243*14662949395604^(7/9) 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^49/Lucas(46) 9870038387574509 a001 233/4106118243*505019158607^(7/8) 9870038387574509 a001 2932600682825/2971215073 9870038387574509 a004 Fibonacci(13)*Lucas(47)/(1/2+sqrt(5)/2)^44 9870038387574509 a001 233*2537720636^(1/15) 9870038387574509 a001 233/10749957122*817138163596^(17/19) 9870038387574509 a001 233/10749957122*14662949395604^(17/21) 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^51/Lucas(48) 9870038387574509 a001 233/10749957122*192900153618^(17/18) 9870038387574509 a001 7677648263067/7778742049 9870038387574509 a004 Fibonacci(13)*Lucas(49)/(1/2+sqrt(5)/2)^46 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^53/Lucas(50) 9870038387574509 a001 10050172053188/10182505537 9870038387574509 a004 Fibonacci(13)*Lucas(51)/(1/2+sqrt(5)/2)^48 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^55/Lucas(52) 9870038387574509 a001 233/73681302247*3461452808002^(11/12) 9870038387574509 a001 52623384056061/53316291173 9870038387574509 a004 Fibonacci(13)*Lucas(53)/(1/2+sqrt(5)/2)^50 9870038387574509 a001 233*45537549124^(1/17) 9870038387574509 a001 233/192900153618*14662949395604^(19/21) 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^57/Lucas(54) 9870038387574509 a001 137769808061807/139583862445 9870038387574509 a004 Fibonacci(13)*Lucas(55)/(1/2+sqrt(5)/2)^52 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^59/Lucas(56) 9870038387574509 a001 180343020064680/182717648081 9870038387574509 a004 Fibonacci(13)*Lucas(57)/(1/2+sqrt(5)/2)^54 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^61/Lucas(58) 9870038387574509 a004 Fibonacci(13)*Lucas(59)/(1/2+sqrt(5)/2)^56 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^63/Lucas(60) 9870038387574509 a004 Fibonacci(13)*Lucas(61)/(1/2+sqrt(5)/2)^58 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^65/Lucas(62) 9870038387574509 a004 Fibonacci(13)*Lucas(63)/(1/2+sqrt(5)/2)^60 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^67/Lucas(64) 9870038387574509 a004 Fibonacci(13)*Lucas(65)/(1/2+sqrt(5)/2)^62 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^69/Lucas(66) 9870038387574509 a001 233*14662949395604^(1/21) 9870038387574509 a004 Fibonacci(13)*Lucas(67)/(1/2+sqrt(5)/2)^64 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^71/Lucas(68) 9870038387574509 a004 Fibonacci(13)*Lucas(69)/(1/2+sqrt(5)/2)^66 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^73/Lucas(70) 9870038387574509 a004 Fibonacci(13)*Lucas(71)/(1/2+sqrt(5)/2)^68 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^75/Lucas(72) 9870038387574509 a004 Fibonacci(13)*Lucas(73)/(1/2+sqrt(5)/2)^70 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^77/Lucas(74) 9870038387574509 a004 Fibonacci(13)*Lucas(75)/(1/2+sqrt(5)/2)^72 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^79/Lucas(76) 9870038387574509 a004 Fibonacci(13)*Lucas(77)/(1/2+sqrt(5)/2)^74 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^81/Lucas(78) 9870038387574509 a004 Fibonacci(13)*Lucas(79)/(1/2+sqrt(5)/2)^76 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^83/Lucas(80) 9870038387574509 a004 Fibonacci(13)*Lucas(81)/(1/2+sqrt(5)/2)^78 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^85/Lucas(82) 9870038387574509 a004 Fibonacci(13)*Lucas(83)/(1/2+sqrt(5)/2)^80 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^87/Lucas(84) 9870038387574509 a004 Fibonacci(13)*Lucas(85)/(1/2+sqrt(5)/2)^82 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^89/Lucas(86) 9870038387574509 a004 Fibonacci(13)*Lucas(87)/(1/2+sqrt(5)/2)^84 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^91/Lucas(88) 9870038387574509 a004 Fibonacci(13)*Lucas(89)/(1/2+sqrt(5)/2)^86 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^93/Lucas(90) 9870038387574509 a004 Fibonacci(13)*Lucas(91)/(1/2+sqrt(5)/2)^88 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^95/Lucas(92) 9870038387574509 a004 Fibonacci(13)*Lucas(93)/(1/2+sqrt(5)/2)^90 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^97/Lucas(94) 9870038387574509 a004 Fibonacci(13)*Lucas(95)/(1/2+sqrt(5)/2)^92 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^99/Lucas(96) 9870038387574509 a004 Fibonacci(13)*Lucas(97)/(1/2+sqrt(5)/2)^94 9870038387574509 a004 Fibonacci(13)*Lucas(99)/(1/2+sqrt(5)/2)^96 9870038387574509 a004 Fibonacci(13)*Lucas(100)/(1/2+sqrt(5)/2)^97 9870038387574509 a004 Fibonacci(13)*Lucas(98)/(1/2+sqrt(5)/2)^95 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^100/Lucas(97) 9870038387574509 a004 Fibonacci(13)*Lucas(96)/(1/2+sqrt(5)/2)^93 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^98/Lucas(95) 9870038387574509 a004 Fibonacci(13)*Lucas(94)/(1/2+sqrt(5)/2)^91 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^96/Lucas(93) 9870038387574509 a004 Fibonacci(13)*Lucas(92)/(1/2+sqrt(5)/2)^89 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^94/Lucas(91) 9870038387574509 a004 Fibonacci(13)*Lucas(90)/(1/2+sqrt(5)/2)^87 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^92/Lucas(89) 9870038387574509 a004 Fibonacci(13)*Lucas(88)/(1/2+sqrt(5)/2)^85 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^90/Lucas(87) 9870038387574509 a004 Fibonacci(13)*Lucas(86)/(1/2+sqrt(5)/2)^83 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^88/Lucas(85) 9870038387574509 a004 Fibonacci(13)*Lucas(84)/(1/2+sqrt(5)/2)^81 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^86/Lucas(83) 9870038387574509 a004 Fibonacci(13)*Lucas(82)/(1/2+sqrt(5)/2)^79 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^84/Lucas(81) 9870038387574509 a004 Fibonacci(13)*Lucas(80)/(1/2+sqrt(5)/2)^77 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^82/Lucas(79) 9870038387574509 a004 Fibonacci(13)*Lucas(78)/(1/2+sqrt(5)/2)^75 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^80/Lucas(77) 9870038387574509 a004 Fibonacci(13)*Lucas(76)/(1/2+sqrt(5)/2)^73 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^78/Lucas(75) 9870038387574509 a004 Fibonacci(13)*Lucas(74)/(1/2+sqrt(5)/2)^71 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^76/Lucas(73) 9870038387574509 a004 Fibonacci(13)*Lucas(72)/(1/2+sqrt(5)/2)^69 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^74/Lucas(71) 9870038387574509 a004 Fibonacci(13)*Lucas(70)/(1/2+sqrt(5)/2)^67 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^72/Lucas(69) 9870038387574509 a004 Fibonacci(13)*Lucas(68)/(1/2+sqrt(5)/2)^65 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^70/Lucas(67) 9870038387574509 a004 Fibonacci(13)*Lucas(66)/(1/2+sqrt(5)/2)^63 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^68/Lucas(65) 9870038387574509 a004 Fibonacci(13)*Lucas(64)/(1/2+sqrt(5)/2)^61 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^66/Lucas(63) 9870038387574509 a004 Fibonacci(13)*Lucas(62)/(1/2+sqrt(5)/2)^59 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^64/Lucas(61) 9870038387574509 a004 Fibonacci(13)*Lucas(60)/(1/2+sqrt(5)/2)^57 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^62/Lucas(59) 9870038387574509 a004 Fibonacci(13)*Lucas(58)/(1/2+sqrt(5)/2)^55 9870038387574509 a001 583602272196913/591286729879 9870038387574509 a001 233*192900153618^(1/18) 9870038387574509 a001 233/817138163596*14662949395604^(20/21) 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^60/Lucas(57) 9870038387574509 a004 Fibonacci(13)*Lucas(56)/(1/2+sqrt(5)/2)^53 9870038387574509 a001 222916232067553/225851433717 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^58/Lucas(55) 9870038387574509 a004 Fibonacci(13)*Lucas(54)/(1/2+sqrt(5)/2)^51 9870038387574509 a001 42573212002873/43133785636 9870038387574509 a001 233/119218851371*14662949395604^(8/9) 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^56/Lucas(53) 9870038387574509 a004 Fibonacci(13)*Lucas(52)/(1/2+sqrt(5)/2)^49 9870038387574509 a001 139583862445/141421803 9870038387574509 a001 233/45537549124*14662949395604^(6/7) 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^54/Lucas(51) 9870038387574509 a001 233*10749957122^(1/16) 9870038387574509 a004 Fibonacci(13)*Lucas(50)/(1/2+sqrt(5)/2)^47 9870038387574509 a001 12422695843309/12586269025 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^52/Lucas(49) 9870038387574509 a001 233/17393796001*23725150497407^(13/16) 9870038387574509 a001 233/17393796001*505019158607^(13/14) 9870038387574509 a004 Fibonacci(13)*Lucas(48)/(1/2+sqrt(5)/2)^45 9870038387574509 a001 2372523790121/2403763488 9870038387574509 a001 233/6643838879*312119004989^(10/11) 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^50/Lucas(47) 9870038387574509 a001 233/6643838879*3461452808002^(5/6) 9870038387574509 a004 Fibonacci(13)*Lucas(46)/(1/2+sqrt(5)/2)^43 9870038387574509 a001 1812446897417/1836311903 9870038387574509 a001 233/2537720636*45537549124^(16/17) 9870038387574509 a001 233/2537720636*14662949395604^(16/21) 9870038387574509 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^48/Lucas(45) 9870038387574509 a001 233/2537720636*192900153618^(8/9) 9870038387574509 a001 233/2537720636*73681302247^(12/13) 9870038387574509 a001 233*599074578^(1/14) 9870038387574509 a004 Fibonacci(13)*Lucas(44)/(1/2+sqrt(5)/2)^41 9870038387574509 a001 692293112009/701408733 9870038387574510 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^46/Lucas(43) 9870038387574510 a001 233/969323029*10749957122^(23/24) 9870038387574510 a004 Fibonacci(13)*Lucas(42)/(1/2+sqrt(5)/2)^39 9870038387574510 a001 132216219305/133957148 9870038387574510 a001 233/370248451*312119004989^(4/5) 9870038387574510 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^44/Lucas(41) 9870038387574510 a001 233/370248451*23725150497407^(11/16) 9870038387574510 a001 233/370248451*73681302247^(11/13) 9870038387574510 a001 233/370248451*10749957122^(11/12) 9870038387574510 a001 233/370248451*4106118243^(22/23) 9870038387574510 a004 Fibonacci(13)*Lucas(40)/(1/2+sqrt(5)/2)^37 9870038387574510 a001 101004203821/102334155 9870038387574510 a001 233/141422324*2537720636^(14/15) 9870038387574510 a001 233/141422324*17393796001^(6/7) 9870038387574510 a001 233/141422324*45537549124^(14/17) 9870038387574510 a001 233/141422324*817138163596^(14/19) 9870038387574510 a001 233/141422324*14662949395604^(2/3) 9870038387574510 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^42/Lucas(39) 9870038387574510 a001 233/141422324*505019158607^(3/4) 9870038387574510 a001 233/141422324*192900153618^(7/9) 9870038387574510 a001 233/141422324*10749957122^(7/8) 9870038387574510 a001 233/141422324*4106118243^(21/23) 9870038387574510 a001 233/141422324*1568397607^(21/22) 9870038387574510 a001 233*33385282^(1/12) 9870038387574511 a004 Fibonacci(13)*Lucas(38)/(1/2+sqrt(5)/2)^35 9870038387574511 a001 38580172853/39088169 9870038387574513 a001 233/54018521*2537720636^(8/9) 9870038387574513 a001 233/54018521*312119004989^(8/11) 9870038387574513 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^40/Lucas(37) 9870038387574513 a001 233/54018521*23725150497407^(5/8) 9870038387574513 a001 233/54018521*73681302247^(10/13) 9870038387574513 a001 233/54018521*28143753123^(4/5) 9870038387574513 a001 233/54018521*10749957122^(5/6) 9870038387574513 a001 233/54018521*4106118243^(20/23) 9870038387574513 a001 233/54018521*1568397607^(10/11) 9870038387574513 a001 233/54018521*599074578^(20/21) 9870038387574518 a004 Fibonacci(13)*Lucas(36)/(1/2+sqrt(5)/2)^33 9870038387574519 a001 7368157369/7465176 9870038387574533 a001 233/20633239*817138163596^(2/3) 9870038387574533 a001 233/20633239*(1/2+1/2*5^(1/2))^38 9870038387574533 a001 233/20633239*10749957122^(19/24) 9870038387574533 a001 233/20633239*4106118243^(19/23) 9870038387574533 a001 233/20633239*1568397607^(19/22) 9870038387574533 a001 233/20633239*599074578^(19/21) 9870038387574533 a001 233/20633239*228826127^(19/20) 9870038387574570 a004 Fibonacci(13)*Lucas(34)/(1/2+sqrt(5)/2)^31 9870038387574574 a001 5628771361/5702887 9870038387574668 a001 233/7881196*141422324^(12/13) 9870038387574668 a001 233/7881196*2537720636^(4/5) 9870038387574668 a001 233/7881196*45537549124^(12/17) 9870038387574668 a001 233/7881196*14662949395604^(4/7) 9870038387574668 a001 233/7881196*(1/2+1/2*5^(1/2))^36 9870038387574668 a001 233/7881196*505019158607^(9/14) 9870038387574668 a001 233/7881196*192900153618^(2/3) 9870038387574668 a001 233/7881196*73681302247^(9/13) 9870038387574668 a001 233/7881196*10749957122^(3/4) 9870038387574668 a001 233/7881196*4106118243^(18/23) 9870038387574668 a001 233/7881196*1568397607^(9/11) 9870038387574668 a001 233/7881196*599074578^(6/7) 9870038387574669 a001 233/7881196*228826127^(9/10) 9870038387574670 a001 233/7881196*87403803^(18/19) 9870038387574795 a001 233*1860498^(1/10) 9870038387574926 a004 Fibonacci(13)*Lucas(32)/(1/2+sqrt(5)/2)^29 9870038387574949 a001 2149999345/2178309 9870038387575599 a001 233/3010349*45537549124^(2/3) 9870038387575599 a001 233/3010349*(1/2+1/2*5^(1/2))^34 9870038387575599 a001 233/3010349*10749957122^(17/24) 9870038387575599 a001 233/3010349*4106118243^(17/23) 9870038387575599 a001 233/3010349*1568397607^(17/22) 9870038387575599 a001 233/3010349*599074578^(17/21) 9870038387575599 a001 233/3010349*228826127^(17/20) 9870038387575600 a001 233/3010349*87403803^(17/19) 9870038387575607 a001 233/3010349*33385282^(17/18) 9870038387577361 a004 Fibonacci(13)*Lucas(30)/(1/2+sqrt(5)/2)^27 9870038387577520 a001 410613337/416020 9870038387581975 a001 233/1149851*(1/2+1/2*5^(1/2))^32 9870038387581975 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^32/Lucas(29) 9870038387581975 a001 233/1149851*23725150497407^(1/2) 9870038387581975 a001 233/1149851*505019158607^(4/7) 9870038387581975 a001 233/1149851*73681302247^(8/13) 9870038387581975 a001 233/1149851*10749957122^(2/3) 9870038387581975 a001 233/1149851*4106118243^(16/23) 9870038387581975 a001 233/1149851*1568397607^(8/11) 9870038387581975 a001 233/1149851*599074578^(16/21) 9870038387581975 a001 233/1149851*228826127^(4/5) 9870038387581976 a001 233/1149851*87403803^(16/19) 9870038387581982 a001 233/1149851*33385282^(8/9) 9870038387582032 a001 233/1149851*12752043^(16/17) 9870038387584411 a001 317811/521*64079^(1/23) 9870038387594053 a004 Fibonacci(13)*Lucas(28)/(1/2+sqrt(5)/2)^25 9870038387595143 a001 313680677/317811 9870038387625532 a001 233/439204*7881196^(10/11) 9870038387625656 a001 233/439204*20633239^(6/7) 9870038387625676 a001 233/439204*141422324^(10/13) 9870038387625676 a001 233/439204*2537720636^(2/3) 9870038387625676 a001 233/439204*45537549124^(10/17) 9870038387625676 a001 233/439204*312119004989^(6/11) 9870038387625676 a001 233/439204*14662949395604^(10/21) 9870038387625676 a001 233/439204*(1/2+1/2*5^(1/2))^30 9870038387625676 a001 233/439204*192900153618^(5/9) 9870038387625676 a001 233/439204*28143753123^(3/5) 9870038387625676 a001 233/439204*10749957122^(5/8) 9870038387625676 a001 233/439204*4106118243^(15/23) 9870038387625676 a001 233/439204*1568397607^(15/22) 9870038387625676 a001 233/439204*599074578^(5/7) 9870038387625676 a001 233/439204*228826127^(3/4) 9870038387625677 a001 233/439204*87403803^(15/19) 9870038387625683 a001 233/439204*33385282^(5/6) 9870038387625730 a001 233/439204*12752043^(15/17) 9870038387626066 a001 233/439204*4870847^(15/16) 9870038387641125 a001 75025/521*64079^(4/23) 9870038387688921 a001 317811/1042+317811/1042*5^(1/2) 9870038387689278 a001 233*103682^(1/8) 9870038387705614 a004 Fibonacci(30)/Lucas(13)/(1/2+sqrt(5)/2) 9870038387708049 a004 Fibonacci(32)/Lucas(13)/(1/2+sqrt(5)/2)^3 9870038387708405 a004 Fibonacci(34)/Lucas(13)/(1/2+sqrt(5)/2)^5 9870038387708456 a004 Fibonacci(36)/Lucas(13)/(1/2+sqrt(5)/2)^7 9870038387708464 a004 Fibonacci(38)/Lucas(13)/(1/2+sqrt(5)/2)^9 9870038387708465 a004 Fibonacci(40)/Lucas(13)/(1/2+sqrt(5)/2)^11 9870038387708465 a004 Fibonacci(42)/Lucas(13)/(1/2+sqrt(5)/2)^13 9870038387708465 a004 Fibonacci(44)/Lucas(13)/(1/2+sqrt(5)/2)^15 9870038387708465 a004 Fibonacci(46)/Lucas(13)/(1/2+sqrt(5)/2)^17 9870038387708465 a004 Fibonacci(48)/Lucas(13)/(1/2+sqrt(5)/2)^19 9870038387708465 a004 Fibonacci(50)/Lucas(13)/(1/2+sqrt(5)/2)^21 9870038387708465 a004 Fibonacci(13)*Lucas(26)/(1/2+sqrt(5)/2)^23 9870038387708465 a004 Fibonacci(54)/Lucas(13)/(1/2+sqrt(5)/2)^25 9870038387708465 a004 Fibonacci(56)/Lucas(13)/(1/2+sqrt(5)/2)^27 9870038387708465 a004 Fibonacci(58)/Lucas(13)/(1/2+sqrt(5)/2)^29 9870038387708465 a004 Fibonacci(60)/Lucas(13)/(1/2+sqrt(5)/2)^31 9870038387708465 a004 Fibonacci(62)/Lucas(13)/(1/2+sqrt(5)/2)^33 9870038387708465 a004 Fibonacci(64)/Lucas(13)/(1/2+sqrt(5)/2)^35 9870038387708465 a004 Fibonacci(66)/Lucas(13)/(1/2+sqrt(5)/2)^37 9870038387708465 a004 Fibonacci(68)/Lucas(13)/(1/2+sqrt(5)/2)^39 9870038387708465 a004 Fibonacci(70)/Lucas(13)/(1/2+sqrt(5)/2)^41 9870038387708465 a004 Fibonacci(72)/Lucas(13)/(1/2+sqrt(5)/2)^43 9870038387708465 a004 Fibonacci(74)/Lucas(13)/(1/2+sqrt(5)/2)^45 9870038387708465 a004 Fibonacci(76)/Lucas(13)/(1/2+sqrt(5)/2)^47 9870038387708465 a004 Fibonacci(78)/Lucas(13)/(1/2+sqrt(5)/2)^49 9870038387708465 a004 Fibonacci(80)/Lucas(13)/(1/2+sqrt(5)/2)^51 9870038387708465 a004 Fibonacci(82)/Lucas(13)/(1/2+sqrt(5)/2)^53 9870038387708465 a004 Fibonacci(84)/Lucas(13)/(1/2+sqrt(5)/2)^55 9870038387708465 a004 Fibonacci(86)/Lucas(13)/(1/2+sqrt(5)/2)^57 9870038387708465 a004 Fibonacci(88)/Lucas(13)/(1/2+sqrt(5)/2)^59 9870038387708465 a004 Fibonacci(90)/Lucas(13)/(1/2+sqrt(5)/2)^61 9870038387708465 a004 Fibonacci(92)/Lucas(13)/(1/2+sqrt(5)/2)^63 9870038387708465 a004 Fibonacci(94)/Lucas(13)/(1/2+sqrt(5)/2)^65 9870038387708465 a004 Fibonacci(96)/Lucas(13)/(1/2+sqrt(5)/2)^67 9870038387708465 a004 Fibonacci(98)/Lucas(13)/(1/2+sqrt(5)/2)^69 9870038387708465 a004 Fibonacci(100)/Lucas(13)/(1/2+sqrt(5)/2)^71 9870038387708465 a004 Fibonacci(99)/Lucas(13)/(1/2+sqrt(5)/2)^70 9870038387708465 a004 Fibonacci(97)/Lucas(13)/(1/2+sqrt(5)/2)^68 9870038387708465 a004 Fibonacci(95)/Lucas(13)/(1/2+sqrt(5)/2)^66 9870038387708465 a004 Fibonacci(93)/Lucas(13)/(1/2+sqrt(5)/2)^64 9870038387708465 a004 Fibonacci(91)/Lucas(13)/(1/2+sqrt(5)/2)^62 9870038387708465 a004 Fibonacci(89)/Lucas(13)/(1/2+sqrt(5)/2)^60 9870038387708465 a004 Fibonacci(87)/Lucas(13)/(1/2+sqrt(5)/2)^58 9870038387708465 a004 Fibonacci(85)/Lucas(13)/(1/2+sqrt(5)/2)^56 9870038387708465 a004 Fibonacci(83)/Lucas(13)/(1/2+sqrt(5)/2)^54 9870038387708465 a004 Fibonacci(81)/Lucas(13)/(1/2+sqrt(5)/2)^52 9870038387708465 a004 Fibonacci(79)/Lucas(13)/(1/2+sqrt(5)/2)^50 9870038387708465 a004 Fibonacci(77)/Lucas(13)/(1/2+sqrt(5)/2)^48 9870038387708465 a004 Fibonacci(75)/Lucas(13)/(1/2+sqrt(5)/2)^46 9870038387708465 a004 Fibonacci(73)/Lucas(13)/(1/2+sqrt(5)/2)^44 9870038387708465 a004 Fibonacci(71)/Lucas(13)/(1/2+sqrt(5)/2)^42 9870038387708465 a004 Fibonacci(69)/Lucas(13)/(1/2+sqrt(5)/2)^40 9870038387708465 a004 Fibonacci(67)/Lucas(13)/(1/2+sqrt(5)/2)^38 9870038387708465 a004 Fibonacci(65)/Lucas(13)/(1/2+sqrt(5)/2)^36 9870038387708465 a004 Fibonacci(63)/Lucas(13)/(1/2+sqrt(5)/2)^34 9870038387708465 a004 Fibonacci(61)/Lucas(13)/(1/2+sqrt(5)/2)^32 9870038387708465 a004 Fibonacci(59)/Lucas(13)/(1/2+sqrt(5)/2)^30 9870038387708465 a004 Fibonacci(57)/Lucas(13)/(1/2+sqrt(5)/2)^28 9870038387708465 a004 Fibonacci(55)/Lucas(13)/(1/2+sqrt(5)/2)^26 9870038387708465 a004 Fibonacci(53)/Lucas(13)/(1/2+sqrt(5)/2)^24 9870038387708465 a004 Fibonacci(51)/Lucas(13)/(1/2+sqrt(5)/2)^22 9870038387708465 a004 Fibonacci(49)/Lucas(13)/(1/2+sqrt(5)/2)^20 9870038387708465 a004 Fibonacci(47)/Lucas(13)/(1/2+sqrt(5)/2)^18 9870038387708465 a004 Fibonacci(45)/Lucas(13)/(1/2+sqrt(5)/2)^16 9870038387708465 a004 Fibonacci(43)/Lucas(13)/(1/2+sqrt(5)/2)^14 9870038387708465 a004 Fibonacci(41)/Lucas(13)/(1/2+sqrt(5)/2)^12 9870038387708466 a004 Fibonacci(39)/Lucas(13)/(1/2+sqrt(5)/2)^10 9870038387708469 a004 Fibonacci(37)/Lucas(13)/(1/2+sqrt(5)/2)^8 9870038387708488 a004 Fibonacci(35)/Lucas(13)/(1/2+sqrt(5)/2)^6 9870038387708624 a004 Fibonacci(33)/Lucas(13)/(1/2+sqrt(5)/2)^4 9870038387709554 a004 Fibonacci(31)/Lucas(13)/(1/2+sqrt(5)/2)^2 9870038387715930 a001 514229/521 9870038387727178 a001 317811/521*103682^(1/24) 9870038387759632 a001 196418/521*(1/2+1/2*5^(1/2))^2 9870038387759632 a001 196418/521*10749957122^(1/24) 9870038387759632 a001 196418/521*4106118243^(1/23) 9870038387759632 a001 196418/521*1568397607^(1/22) 9870038387759632 a001 196418/521*599074578^(1/21) 9870038387759632 a001 196418/521*228826127^(1/20) 9870038387759632 a001 196418/521*87403803^(1/19) 9870038387759632 a001 196418/521*33385282^(1/18) 9870038387759635 a001 196418/521*12752043^(1/17) 9870038387759658 a001 196418/521*4870847^(1/16) 9870038387759822 a001 196418/521*1860498^(1/15) 9870038387761028 a001 196418/521*710647^(1/14) 9870038387769936 a001 196418/521*271443^(1/13) 9870038387836144 a001 196418/521*103682^(1/12) 9870038387925192 a001 233/167761*20633239^(4/5) 9870038387925210 a001 233/167761*17393796001^(4/7) 9870038387925210 a001 233/167761*14662949395604^(4/9) 9870038387925210 a001 233/167761*(1/2+1/2*5^(1/2))^28 9870038387925210 a001 233/167761*505019158607^(1/2) 9870038387925210 a001 233/167761*73681302247^(7/13) 9870038387925210 a001 233/167761*10749957122^(7/12) 9870038387925210 a001 233/167761*4106118243^(14/23) 9870038387925210 a001 233/167761*1568397607^(7/11) 9870038387925210 a001 233/167761*599074578^(2/3) 9870038387925210 a001 233/167761*228826127^(7/10) 9870038387925211 a001 233/167761*87403803^(14/19) 9870038387925217 a001 233/167761*33385282^(7/9) 9870038387925260 a001 233/167761*12752043^(14/17) 9870038387925574 a001 233/167761*4870847^(7/8) 9870038387927872 a001 233/167761*1860498^(14/15) 9870038387974970 a001 317811/521*39603^(1/22) 9870038388059166 a001 75025/521*(1/2+1/2*5^(1/2))^4 9870038388059166 a001 75025/521*23725150497407^(1/16) 9870038388059166 a001 75025/521*73681302247^(1/13) 9870038388059166 a001 75025/521*10749957122^(1/12) 9870038388059166 a001 75025/521*4106118243^(2/23) 9870038388059166 a001 75025/521*1568397607^(1/11) 9870038388059166 a001 75025/521*599074578^(2/21) 9870038388059166 a001 75025/521*228826127^(1/10) 9870038388059166 a001 75025/521*87403803^(2/19) 9870038388059167 a001 75025/521*33385282^(1/9) 9870038388059173 a001 75025/521*12752043^(2/17) 9870038388059218 a001 75025/521*4870847^(1/8) 9870038388059546 a001 75025/521*1860498^(2/15) 9870038388061958 a001 75025/521*710647^(1/7) 9870038388079775 a001 75025/521*271443^(2/13) 9870038388212191 a001 75025/521*103682^(1/6) 9870038388220562 a001 46368/521*39603^(5/22) 9870038388331729 a001 196418/521*39603^(1/11) 9870038388432656 a001 233*39603^(3/22) 9870038388492656 a004 Fibonacci(13)*Lucas(24)/(1/2+sqrt(5)/2)^21 9870038388543823 a001 22882697/23184 9870038389203361 a001 75025/521*39603^(2/11) 9870038389485142 a001 28657/521*64079^(6/23) 9870038389845589 a001 317811/521*15127^(1/20) 9870038389978249 a001 233/64079*141422324^(2/3) 9870038389978249 a001 233/64079*(1/2+1/2*5^(1/2))^26 9870038389978249 a001 233/64079*73681302247^(1/2) 9870038389978249 a001 233/64079*10749957122^(13/24) 9870038389978249 a001 233/64079*4106118243^(13/23) 9870038389978249 a001 233/64079*1568397607^(13/22) 9870038389978249 a001 233/64079*599074578^(13/21) 9870038389978249 a001 233/64079*228826127^(13/20) 9870038389978250 a001 233/64079*87403803^(13/19) 9870038389978255 a001 233/64079*33385282^(13/18) 9870038389978295 a001 233/64079*12752043^(13/17) 9870038389978587 a001 233/64079*4870847^(13/16) 9870038389980720 a001 233/64079*1860498^(13/15) 9870038389996397 a001 233/64079*710647^(13/14) 9870038390100834 a001 28657/521*439204^(2/9) 9870038390112176 a001 28657/521*7881196^(2/11) 9870038390112205 a001 28657/521*141422324^(2/13) 9870038390112205 a001 28657/521*2537720636^(2/15) 9870038390112205 a001 28657/521*45537549124^(2/17) 9870038390112205 a001 28657/521*14662949395604^(2/21) 9870038390112205 a001 28657/521*(1/2+1/2*5^(1/2))^6 9870038390112205 a001 28657/521*10749957122^(1/8) 9870038390112205 a001 28657/521*4106118243^(3/23) 9870038390112205 a001 28657/521*1568397607^(3/22) 9870038390112205 a001 28657/521*599074578^(1/7) 9870038390112205 a001 28657/521*228826127^(3/20) 9870038390112205 a001 28657/521*87403803^(3/19) 9870038390112206 a001 28657/521*33385282^(1/6) 9870038390112215 a001 28657/521*12752043^(3/17) 9870038390112283 a001 28657/521*4870847^(3/16) 9870038390112775 a001 28657/521*1860498^(1/5) 9870038390116393 a001 28657/521*710647^(3/14) 9870038390143118 a001 28657/521*271443^(3/13) 9870038390341741 a001 28657/521*103682^(1/4) 9870038391828497 a001 28657/521*39603^(3/11) 9870038392072967 a001 196418/521*15127^(1/10) 9870038393867581 a004 Fibonacci(13)*Lucas(22)/(1/2+sqrt(5)/2)^19 9870038394044513 a001 233*15127^(3/20) 9870038394218282 a001 17480825/17711 9870038396512068 a001 17711/521*15127^(7/20) 9870038396685837 a001 75025/521*15127^(1/5) 9870038397573657 a001 46368/521*15127^(1/4) 9870038397907569 a001 10946/521*24476^(8/21) 9870038403052211 a001 28657/521*15127^(3/10) 9870038403347857 a001 10946/521*64079^(8/23) 9870038403700198 m002 Pi^2+(Csch[Pi]*Log[Pi])/(E^Pi*Pi^2) 9870038404004503 a001 233/24476*439204^(8/9) 9870038404049869 a001 233/24476*7881196^(8/11) 9870038404049984 a001 233/24476*141422324^(8/13) 9870038404049985 a001 233/24476*2537720636^(8/15) 9870038404049985 a001 233/24476*45537549124^(8/17) 9870038404049985 a001 233/24476*14662949395604^(8/21) 9870038404049985 a001 233/24476*(1/2+1/2*5^(1/2))^24 9870038404049985 a001 233/24476*192900153618^(4/9) 9870038404049985 a001 233/24476*73681302247^(6/13) 9870038404049985 a001 233/24476*10749957122^(1/2) 9870038404049985 a001 233/24476*4106118243^(12/23) 9870038404049985 a001 233/24476*1568397607^(6/11) 9870038404049985 a001 233/24476*599074578^(4/7) 9870038404049985 a001 233/24476*228826127^(3/5) 9870038404049986 a001 233/24476*87403803^(12/19) 9870038404049991 a001 233/24476*33385282^(2/3) 9870038404050028 a001 233/24476*12752043^(12/17) 9870038404050297 a001 233/24476*4870847^(3/4) 9870038404052266 a001 233/24476*1860498^(4/5) 9870038404066737 a001 233/24476*710647^(6/7) 9870038404113388 a001 317811/521*5778^(1/18) 9870038404173636 a001 233/24476*271443^(12/13) 9870038404183941 a001 10946/521*(1/2+1/2*5^(1/2))^8 9870038404183941 a001 10946/521*23725150497407^(1/8) 9870038404183941 a001 10946/521*505019158607^(1/7) 9870038404183941 a001 10946/521*73681302247^(2/13) 9870038404183941 a001 10946/521*10749957122^(1/6) 9870038404183941 a001 10946/521*4106118243^(4/23) 9870038404183941 a001 10946/521*1568397607^(2/11) 9870038404183941 a001 10946/521*599074578^(4/21) 9870038404183941 a001 10946/521*228826127^(1/5) 9870038404183941 a001 10946/521*87403803^(4/19) 9870038404183943 a001 10946/521*33385282^(2/9) 9870038404183955 a001 10946/521*12752043^(4/17) 9870038404184045 a001 10946/521*4870847^(1/4) 9870038404184701 a001 10946/521*1860498^(4/15) 9870038404189525 a001 10946/521*710647^(2/7) 9870038404225158 a001 10946/521*271443^(4/13) 9870038404489989 a001 10946/521*103682^(1/3) 9870038406472330 a001 10946/521*39603^(4/11) 9870038420608566 a001 196418/521*5778^(1/9) 9870038421437282 a001 10946/521*15127^(2/5) 9870038422667113 a007 Real Root Of -743*x^4-595*x^3+288*x^2+266*x+115 9870038430707864 a004 Fibonacci(13)*Lucas(20)/(1/2+sqrt(5)/2)^17 9870038433111603 a001 6677081/6765 9870038436847910 a001 233*5778^(1/6) 9870038441199058 a001 4181/521*9349^(10/19) 9870038446190389 l006 ln(666/1787) 9870038453757034 a001 75025/521*5778^(2/9) 9870038468912653 a001 46368/521*5778^(5/18) 9870038479790548 a007 Real Root Of 177*x^4-15*x^3+431*x^2+364*x-243 9870038488659006 a001 28657/521*5778^(1/3) 9870038492395313 a001 6765/521*5778^(1/2) 9870038492787588 a001 4181/521*24476^(10/21) 9870038496386662 a001 17711/521*5778^(7/18) 9870038498199869 a001 233/9349*64079^(22/23) 9870038499587949 a001 4181/521*64079^(10/23) 9870038500492772 a001 4181/521*167761^(2/5) 9870038500498992 a001 233/9349*7881196^(2/3) 9870038500499098 a001 233/9349*312119004989^(2/5) 9870038500499098 a001 233/9349*(1/2+1/2*5^(1/2))^22 9870038500499098 a001 233/9349*10749957122^(11/24) 9870038500499098 a001 233/9349*4106118243^(11/23) 9870038500499098 a001 233/9349*1568397607^(1/2) 9870038500499098 a001 233/9349*599074578^(11/21) 9870038500499098 a001 233/9349*228826127^(11/20) 9870038500499099 a001 233/9349*87403803^(11/19) 9870038500499104 a001 233/9349*33385282^(11/18) 9870038500499137 a001 233/9349*12752043^(11/17) 9870038500499384 a001 233/9349*4870847^(11/16) 9870038500501189 a001 233/9349*1860498^(11/15) 9870038500514454 a001 233/9349*710647^(11/14) 9870038500612445 a001 233/9349*271443^(11/13) 9870038500633046 a001 4181/521*20633239^(2/7) 9870038500633053 a001 4181/521*2537720636^(2/9) 9870038500633053 a001 4181/521*312119004989^(2/11) 9870038500633053 a001 4181/521*(1/2+1/2*5^(1/2))^10 9870038500633053 a001 4181/521*28143753123^(1/5) 9870038500633053 a001 4181/521*10749957122^(5/24) 9870038500633053 a001 4181/521*4106118243^(5/23) 9870038500633053 a001 4181/521*1568397607^(5/22) 9870038500633053 a001 4181/521*599074578^(5/21) 9870038500633053 a001 4181/521*228826127^(1/4) 9870038500633053 a001 4181/521*87403803^(5/19) 9870038500633055 a001 4181/521*33385282^(5/18) 9870038500633071 a001 4181/521*12752043^(5/17) 9870038500633183 a001 4181/521*4870847^(5/16) 9870038500634003 a001 4181/521*1860498^(1/3) 9870038500640033 a001 4181/521*710647^(5/14) 9870038500684574 a001 4181/521*271443^(5/13) 9870038501015614 a001 4181/521*103682^(5/12) 9870038501340733 a001 233/9349*103682^(11/12) 9870038503493540 a001 4181/521*39603^(5/11) 9870038503580139 m005 (1/2*gamma-8/9)/(9/10*Zeta(3)+5) 9870038514335753 a001 317811/521*2207^(1/16) 9870038522199730 a001 4181/521*15127^(1/2) 9870038535579677 a001 10946/521*5778^(4/9) 9870038560993608 l006 ln(3721/4107) 9870038615354486 a001 1597/521*3571^(12/17) 9870038637161924 q001 281/2847 9870038639597286 a007 Real Root Of -239*x^4+312*x^3+615*x^2+207*x+132 9870038641053297 a001 196418/521*2207^(1/8) 9870038658082829 s002 sum(A041771[n]/(n^3*10^n+1),n=1..infinity) 9870038663960635 a007 Real Root Of -695*x^4-523*x^3-976*x^2-116*x+993 9870038664877724 a001 4181/521*5778^(5/9) 9870038683214917 a004 Fibonacci(13)*Lucas(18)/(1/2+sqrt(5)/2)^15 9870038699690402 a001 1275209/1292 9870038723029802 m001 Catalan/GlaisherKinkelin/Sarnak 9870038725752544 r009 Im(z^3+c),c=-11/78+41/42*I,n=37 9870038741375840 a001 610/521*1364^(14/15) 9870038767515009 a001 233*2207^(3/16) 9870038776354176 a005 (1/cos(7/221*Pi))^926 9870038838361715 m001 1/exp(PrimesInBinary)^2/GolombDickman/sin(1)^2 9870038847881694 r009 Im(z^3+c),c=-7/66+46/47*I,n=3 9870038866788124 h001 (-11*exp(1)+7)/(-12*exp(3)+9) 9870038868827001 a007 Real Root Of -444*x^4-241*x^3-279*x^2-736*x-265 9870038874780947 r002 44th iterates of z^2 + 9870038894646502 a001 75025/521*2207^(1/4) 9870038912519838 m001 (Catalan-Ei(1))/(-MertensB3+PolyaRandomWalk3D) 9870038940763699 a007 Real Root Of 268*x^4-724*x^3-130*x^2-188*x+754 9870038948548095 a003 cos(Pi*4/51)/sin(Pi*37/84) 9870038951386884 m003 1/2+(257*Sqrt[5])/2048+Csch[1/2+Sqrt[5]/2]/2 9870038959250615 a007 Real Root Of 486*x^4-601*x^3-390*x^2+295*x-368 9870038993623315 r005 Re(z^2+c),c=-57/64+1/5*I,n=9 9870039013919404 m005 (1/2*exp(1)+1/5)/(1/8*exp(1)-2/11) 9870039020024493 a001 46368/521*2207^(5/16) 9870039022673931 a007 Real Root Of -387*x^4+295*x^3+936*x^2-215*x-616 9870039053995789 r002 59th iterates of z^2 + 9870039062990913 a001 98209/682*322^(1/3) 9870039080009218 s002 sum(A242804[n]/(2^n+1),n=1..infinity) 9870039080263227 a007 Real Root Of -698*x^4+885*x^3+992*x^2+75*x+621 9870039090384304 a001 1597/521*9349^(12/19) 9870039109993175 a007 Real Root Of 568*x^4-861*x^3-301*x^2+717*x-366 9870039114185920 m001 (Khinchin-PrimesInBinary)/(Zeta(3)+ln(3)) 9870039136809201 b008 3*Pi+FresnelC[3/2] 9870039145880276 a001 233/3571*24476^(20/21) 9870039149993219 a001 28657/521*2207^(3/8) 9870039152290544 a001 1597/521*24476^(4/7) 9870039158014993 r005 Re(z^2+c),c=-32/27+14/33*I,n=4 9870039159480998 a001 233/3571*64079^(20/23) 9870039160450977 a001 1597/521*64079^(12/23) 9870039161290646 a001 233/3571*167761^(4/5) 9870039161571193 a001 233/3571*20633239^(4/7) 9870039161571206 a001 233/3571*2537720636^(4/9) 9870039161571206 a001 233/3571*(1/2+1/2*5^(1/2))^20 9870039161571206 a001 233/3571*23725150497407^(5/16) 9870039161571206 a001 233/3571*505019158607^(5/14) 9870039161571206 a001 233/3571*73681302247^(5/13) 9870039161571206 a001 233/3571*28143753123^(2/5) 9870039161571206 a001 233/3571*10749957122^(5/12) 9870039161571206 a001 233/3571*4106118243^(10/23) 9870039161571206 a001 233/3571*1568397607^(5/11) 9870039161571206 a001 233/3571*599074578^(10/21) 9870039161571207 a001 233/3571*228826127^(1/2) 9870039161571207 a001 233/3571*87403803^(10/19) 9870039161571211 a001 233/3571*33385282^(5/9) 9870039161571242 a001 233/3571*12752043^(10/17) 9870039161571466 a001 233/3571*4870847^(5/8) 9870039161573107 a001 233/3571*1860498^(2/3) 9870039161585166 a001 233/3571*710647^(5/7) 9870039161674249 a001 233/3571*271443^(10/13) 9870039161682361 a001 1597/521*439204^(4/9) 9870039161705044 a001 1597/521*7881196^(4/11) 9870039161705101 a001 1597/521*141422324^(4/13) 9870039161705102 a001 1597/521*2537720636^(4/15) 9870039161705102 a001 1597/521*45537549124^(4/17) 9870039161705102 a001 1597/521*817138163596^(4/19) 9870039161705102 a001 1597/521*14662949395604^(4/21) 9870039161705102 a001 1597/521*(1/2+1/2*5^(1/2))^12 9870039161705102 a001 1597/521*192900153618^(2/9) 9870039161705102 a001 1597/521*73681302247^(3/13) 9870039161705102 a001 1597/521*10749957122^(1/4) 9870039161705102 a001 1597/521*4106118243^(6/23) 9870039161705102 a001 1597/521*1568397607^(3/11) 9870039161705102 a001 1597/521*599074578^(2/7) 9870039161705102 a001 1597/521*228826127^(3/10) 9870039161705102 a001 1597/521*87403803^(6/19) 9870039161705105 a001 1597/521*33385282^(1/3) 9870039161705123 a001 1597/521*12752043^(6/17) 9870039161705258 a001 1597/521*4870847^(3/8) 9870039161706242 a001 1597/521*1860498^(2/5) 9870039161713478 a001 1597/521*710647^(3/7) 9870039161766927 a001 1597/521*271443^(6/13) 9870039162164175 a001 1597/521*103682^(1/2) 9870039162336329 a001 233/3571*103682^(5/6) 9870039165137686 a001 1597/521*39603^(6/11) 9870039167292181 a001 233/3571*39603^(10/11) 9870039167408183 m001 ln(2^(1/2)+1)+QuadraticClass-StronglyCareFree 9870039178287429 r009 Im(z^3+c),c=-21/110+31/32*I,n=27 9870039186462439 m001 LandauRamanujan^GAMMA(5/24)-exp(-1/2*Pi) 9870039187585116 a001 1597/521*15127^(3/5) 9870039194934429 r008 a(0)=1,K{-n^6,55-42*n^3+51*n^2+39*n} 9870039204163476 m001 (KhinchinLevy+Mills)/(GAMMA(2/3)-ErdosBorwein) 9870039217325392 m009 (1/3*Psi(1,2/3)+1)/(3/4*Psi(1,2/3)-1/4) 9870039244931878 r001 18i'th iterates of 2*x^2-1 of 9870039257318785 r005 Re(z^2+c),c=3/32+1/18*I,n=10 9870039267943249 a001 17711/521*2207^(7/16) 9870039302947191 m001 Artin^(FibonacciFactorial*Trott) 9870039328267551 a007 Real Root Of -379*x^4+562*x^3+326*x^2+190*x+770 9870039345507174 r005 Im(z^2+c),c=-7/10+25/119*I,n=43 9870039351399262 m005 (1/3*Pi-2/5)/(3/8*exp(1)-4/11) 9870039358798721 a001 1597/521*5778^(2/3) 9870039372606357 m001 (GAMMA(2/3)+KhinchinLevy)/(Sierpinski-Trott) 9870039374027148 a007 Real Root Of -819*x^4+755*x^3+189*x^2-533*x+793 9870039379745852 a001 317811/521*843^(1/14) 9870039385515898 a007 Real Root Of 664*x^4-312*x^3-108*x^2+390*x-440 9870039414668930 p001 sum(1/(299*n+103)/(16^n),n=0..infinity) 9870039417358641 a001 10946/521*2207^(1/2) 9870039430032667 r009 Im(z^3+c),c=-15/118+46/47*I,n=29 9870039451281409 m001 (cos(1/12*Pi)+KhinchinLevy)/(Niven+PlouffeB) 9870039469449382 r005 Re(z^2+c),c=25/52+31/52*I,n=4 9870039484396649 a001 6765/521*2207^(9/16) 9870039485183253 a001 2584/521*2207^(11/16) 9870039508112297 m001 Thue^(HardyLittlewoodC4/FeigenbaumMu) 9870039518163308 a007 Real Root Of 440*x^4-709*x^3-367*x^2+557*x-192 9870039536553905 m005 (1/2*3^(1/2)+7/10)/(4/5*Zeta(3)+5/8) 9870039538701518 r005 Re(z^2+c),c=15/118+17/31*I,n=27 9870039553157182 a007 Real Root Of 16*x^4+206*x^3+979*x^2+13*x-758 9870039596129998 m001 Kolakoski*exp(FeigenbaumAlpha)*Zeta(7)^2 9870039632345514 a007 Real Root Of -919*x^4-850*x^3-322*x^2+42*x+410 9870039664491230 a001 196418/2207*322^(5/12) 9870039675053217 r005 Re(z^2+c),c=-7/8+49/213*I,n=55 9870039677479124 a003 cos(Pi*7/47)+cos(Pi*39/83) 9870039689173291 r001 16i'th iterates of 2*x^2-1 of 9870039691984968 r009 Im(z^3+c),c=-11/78+41/42*I,n=39 9870039703140516 r009 Im(z^3+c),c=-11/78+41/42*I,n=43 9870039707182415 a007 Real Root Of 920*x^4-280*x^3-89*x^2+183*x-875 9870039715966618 m001 Magata^2*exp(ErdosBorwein)*Niven 9870039736476746 a005 (1/cos(7/113*Pi))^1570 9870039751935456 m001 QuadraticClass^(BesselJ(1,1)*CopelandErdos) 9870039767101457 a001 4181/521*2207^(5/8) 9870039771091723 b008 94+ArcCosh[55] 9870039782259537 m005 (5/6+1/4*5^(1/2))/(1/3*3^(1/2)+5/6) 9870039785946724 m001 1/LambertW(1)/ln(GAMMA(7/12))^2*Zeta(7) 9870039809249640 r002 20th iterates of z^2 + 9870039832924875 m005 (1/2*Zeta(3)+5)/(3/10*Pi-3/8) 9870039841743349 g005 GAMMA(2/11)/GAMMA(7/12)/GAMMA(9/10)/GAMMA(2/7) 9870039857051883 m001 (ln(5)+exp(1/exp(1)))/(FeigenbaumMu-PlouffeB) 9870039865291912 a007 Real Root Of 538*x^4+672*x^3+699*x^2+663*x+109 9870039869435474 m001 (Robbin+Totient)/(FellerTornier+Niven) 9870039877146199 a001 161/305*75025^(6/23) 9870039878898032 r002 5th iterates of z^2 + 9870039880709582 m001 (Psi(1,1/3)+Grothendieck)/(Landau+TwinPrimes) 9870039884440362 r002 12th iterates of z^2 + 9870039887057467 r005 Re(z^2+c),c=-5/8+58/127*I,n=13 9870039893170991 a007 Real Root Of 683*x^4-391*x^3-543*x^2-12*x-507 9870039923023092 a007 Real Root Of -932*x^4-512*x^3+202*x^2+493*x+682 9870039924064142 h001 (1/5*exp(2)+7/11)/(2/9*exp(2)+1/2) 9870039941417244 r004 Im(z^2+c),c=-6/7+1/14*I,z(0)=-1,n=7 9870039951015118 r005 Im(z^2+c),c=-4/17+5/36*I,n=18 9870039988261603 m001 GaussAGM^Ei(1,1)*GAMMA(5/6)^Ei(1,1) 9870039993046038 r002 7th iterates of z^2 + 9870040001761365 g001 Psi(3/8,32/43) 9870040087496323 r009 Im(z^3+c),c=-11/78+41/42*I,n=49 9870040127838775 r005 Re(z^2+c),c=-9/14+109/226*I,n=6 9870040147363248 a007 Real Root Of 665*x^4+80*x^3-6*x^2+590*x+34 9870040148091034 r009 Im(z^3+c),c=-11/78+41/42*I,n=53 9870040152623270 r009 Im(z^3+c),c=-11/78+41/42*I,n=55 9870040153881519 r009 Im(z^3+c),c=-11/78+41/42*I,n=59 9870040157708750 r009 Im(z^3+c),c=-11/78+41/42*I,n=63 9870040157977761 r009 Im(z^3+c),c=-11/78+41/42*I,n=61 9870040163497584 r009 Im(z^3+c),c=-11/78+41/42*I,n=57 9870040173663381 b008 ArcTan[3]^(-1/17) 9870040179225513 l006 ln(3229/8664) 9870040196456129 r009 Im(z^3+c),c=-11/78+41/42*I,n=51 9870040204126929 r009 Im(z^3+c),c=-11/78+41/42*I,n=47 9870040207176451 m001 Si(Pi)^((1+3^(1/2))^(1/2))-Grothendieck 9870040208437488 m001 GaussAGM(1,1/sqrt(2))*(gamma+sin(Pi/5)) 9870040224166722 a007 Real Root Of 731*x^4-35*x^3-702*x^2+499*x+449 9870040237423868 m005 (1/2*5^(1/2)+4/5)/(6*Pi+7/12) 9870040258029442 b008 Sec[2/5]/11 9870040259905302 r005 Re(z^2+c),c=-115/122+9/43*I,n=23 9870040269064934 m005 (1/2*gamma-7/9)/(4/11*gamma+2/7) 9870040272404272 r009 Im(z^3+c),c=-11/78+41/42*I,n=45 9870040275773910 m005 (1/2*exp(1)-5/11)/(1/8*3^(1/2)+7/10) 9870040284516990 m005 (1/2*5^(1/2)+8/11)/(9/10*5^(1/2)-1/7) 9870040299335375 r005 Re(z^2+c),c=-117/122+9/55*I,n=31 9870040316848961 b008 1-(2*ArcCoth[22])/7 9870040325924502 a007 Real Root Of -947*x^4-150*x^3-300*x^2-558*x+496 9870040327002761 a007 Real Root Of 998*x^4-593*x^3-805*x^2+147*x-588 9870040356528259 a007 Real Root Of 923*x^4+145*x^3-38*x^2-116*x-814 9870040365567008 m001 (Pi-ln(3))/(Ei(1)+ZetaP(3)) 9870040371873592 a001 196418/521*843^(1/7) 9870040381546128 s002 sum(A090246[n]/(exp(pi*n)-1),n=1..infinity) 9870040391190479 m001 BesselI(0,1)^(gamma(2)/ZetaP(3)) 9870040401032382 m001 ln(Ei(1))*(2^(1/3))*GAMMA(3/4) 9870040409288106 a003 sin(Pi*4/59)*sin(Pi*15/97) 9870040413924010 a004 Fibonacci(13)*Lucas(16)/(1/2+sqrt(5)/2)^13 9870040425541515 m001 (GAMMA(3/4)+Kac)/(Pi-BesselI(0,1)) 9870040428977664 a007 Real Root Of 285*x^4-340*x^3-591*x^2-168*x+798 9870040496423928 r009 Re(z^3+c),c=-1/6+18/31*I,n=23 9870040516861779 r005 Re(z^2+c),c=-29/118+17/24*I,n=12 9870040526849037 a001 974173/987 9870040543908090 a007 Real Root Of -669*x^4-393*x^3-816*x^2-81*x+972 9870040558212582 m001 (Chi(1)-ln(2+3^(1/2)))/(-TwinPrimes+ZetaP(3)) 9870040575497128 r002 21th iterates of z^2 + 9870040584369849 m001 1/Pi^2/ln(Backhouse)/sqrt(1+sqrt(3))^2 9870040611868787 a007 Real Root Of 150*x^4-618*x^3-85*x^2+95*x-560 9870040629557650 l006 ln(2563/6877) 9870040678647108 r002 14th iterates of z^2 + 9870040681467307 a001 1597/521*2207^(3/4) 9870040701801411 m005 (1/3*5^(1/2)+1/12)/(8/9*3^(1/2)-7/10) 9870040708089842 r002 10th iterates of z^2 + 9870040730353814 r009 Im(z^3+c),c=-15/118+46/47*I,n=23 9870040756202128 a001 2/55*317811^(23/52) 9870040777165928 r009 Re(z^3+c),c=-67/118+23/45*I,n=30 9870040795772257 m005 (1/2*2^(1/2)+1/9)/(1/4*Catalan+3/5) 9870040823390967 a007 Real Root Of -396*x^4+751*x^3+820*x^2-532*x-226 9870040843772151 a007 Real Root Of 595*x^4-365*x^3-628*x^2+705*x+392 9870040849504809 a001 4106118243*144^(3/17) 9870040852678151 m001 Catalan^2/(2^(1/3))^2/exp(Pi)^2 9870040880822846 a007 Real Root Of 668*x^4-809*x^3-902*x^2-162*x-693 9870040881398329 m001 1/exp(Kolakoski)^2*MertensB1^2/sqrt(2) 9870040903887838 r005 Im(z^2+c),c=-5/8+10/57*I,n=35 9870040928861740 a007 Real Root Of -890*x^4+82*x^3+614*x^2+410*x+730 9870040934657886 r005 Im(z^2+c),c=-29/118+8/57*I,n=14 9870040935189224 r009 Im(z^3+c),c=-11/78+41/42*I,n=41 9870040935788613 m001 (cos(1)-gamma)/(-Zeta(1/2)+BesselI(0,2)) 9870040956784621 m001 DuboisRaymond^HeathBrownMoroz-Trott 9870040989282243 a007 Real Root Of -250*x^4+503*x^3+98*x^2-11*x-331 9870041000146126 a001 1/281*4^(39/53) 9870041001987375 a001 11/34*610^(4/23) 9870041014062976 r005 Re(z^2+c),c=1/70+13/31*I,n=26 9870041023619576 m001 AlladiGrinstead+Artin*Weierstrass 9870041039671682 q001 1443/1462 9870041039671682 r002 2th iterates of z^2 + 9870041078619918 a007 Real Root Of 669*x^4+266*x^3-601*x^2-204*x+5 9870041112429920 p003 LerchPhi(1/25,5,396/157) 9870041119030252 a001 47/832040*1346269^(15/41) 9870041173227500 m001 (GAMMA(13/24)+GolombDickman)/(Otter-Robbin) 9870041179010245 m005 (1/2*5^(1/2)+1/9)/(5/9*Pi-1/2) 9870041194990769 a007 Real Root Of 20*x^4-944*x^3+309*x^2+256*x-975 9870041198655103 m001 (exp(Pi)+GAMMA(13/24))/(-Khinchin+ZetaP(3)) 9870041202172868 m005 (21/4+1/4*5^(1/2))/(1/8*Catalan-6) 9870041322314049 r002 2th iterates of z^2 + 9870041322314049 r002 2th iterates of z^2 + 9870041341717687 h001 (8/9*exp(2)+4/7)/(9/10*exp(2)+7/12) 9870041349815547 a005 (1/sin(32/215*Pi))^78 9870041356021976 m009 (48*Catalan+6*Pi^2-1/4)/(Psi(1,1/3)+1/3) 9870041356756212 a001 34/64079*47^(41/54) 9870041363745600 a001 233*843^(3/14) 9870041395156794 a001 514229/5778*322^(5/12) 9870041396095542 l006 ln(1897/5090) 9870041396619532 a005 (1/cos(50/149*Pi))^62 9870041409387445 a007 Real Root Of -722*x^4-388*x^3-448*x^2-265*x+487 9870041410506889 m005 (1/2*gamma+1/7)/(4/9*2^(1/2)-5) 9870041416615948 h001 (4/5*exp(1)+3/5)/(2/7*exp(2)+7/10) 9870041486043965 m005 (1/3*exp(1)+2/3)/(6*exp(1)-3/8) 9870041499334024 a007 Real Root Of 684*x^4+211*x^3+874*x^2+794*x-514 9870041546069793 m001 (-GaussAGM+Porter)/(sin(1)+2*Pi/GAMMA(5/6)) 9870041549316208 m005 (1/2*3^(1/2)+4/9)/(4/5*Catalan-3/5) 9870041555386285 r009 Im(z^3+c),c=-3/22+44/45*I,n=11 9870041581233001 m001 (polylog(4,1/2)+5)/(-OneNinth+2/3) 9870041592752064 m001 (GAMMA(19/24)-Shi(1))/(CareFree+PlouffeB) 9870041611563329 m001 Kolakoski^Catalan/(Kolakoski^Thue) 9870041613693537 a007 Real Root Of -270*x^4+255*x^3-758*x^2-935*x+317 9870041617369993 m001 cos(1/12*Pi)^(Cahen/Niven) 9870041618868704 p004 log(23663/8819) 9870041638299701 r009 Im(z^3+c),c=-5/44+51/52*I,n=13 9870041639686170 m001 1/log(1+sqrt(2))^2*exp(Ei(1))^2*sqrt(3) 9870041647657548 a001 1346269/15127*322^(5/12) 9870041663663083 m001 1/GAMMA(1/12)*RenyiParking/ln(GAMMA(11/24)) 9870041667665033 m004 -6/5+5*Pi-25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870041681842739 r005 Re(z^2+c),c=-95/102+17/49*I,n=3 9870041683177638 m001 (3^(1/2)-cos(1/5*Pi))/(ln(2^(1/2)+1)+ZetaQ(2)) 9870041684496912 a001 3524578/39603*322^(5/12) 9870041689871703 a001 9227465/103682*322^(5/12) 9870041690655874 a001 24157817/271443*322^(5/12) 9870041690770283 a001 63245986/710647*322^(5/12) 9870041690786976 a001 165580141/1860498*322^(5/12) 9870041690789411 a001 433494437/4870847*322^(5/12) 9870041690789766 a001 1134903170/12752043*322^(5/12) 9870041690789818 a001 2971215073/33385282*322^(5/12) 9870041690789826 a001 7778742049/87403803*322^(5/12) 9870041690789827 a001 20365011074/228826127*322^(5/12) 9870041690789827 a001 53316291173/599074578*322^(5/12) 9870041690789827 a001 139583862445/1568397607*322^(5/12) 9870041690789827 a001 365435296162/4106118243*322^(5/12) 9870041690789827 a001 956722026041/10749957122*322^(5/12) 9870041690789827 a001 2504730781961/28143753123*322^(5/12) 9870041690789827 a001 6557470319842/73681302247*322^(5/12) 9870041690789827 a001 10610209857723/119218851371*322^(5/12) 9870041690789827 a001 4052739537881/45537549124*322^(5/12) 9870041690789827 a001 1548008755920/17393796001*322^(5/12) 9870041690789827 a001 591286729879/6643838879*322^(5/12) 9870041690789827 a001 225851433717/2537720636*322^(5/12) 9870041690789827 a001 86267571272/969323029*322^(5/12) 9870041690789827 a001 32951280099/370248451*322^(5/12) 9870041690789827 a001 12586269025/141422324*322^(5/12) 9870041690789830 a001 4807526976/54018521*322^(5/12) 9870041690789850 a001 1836311903/20633239*322^(5/12) 9870041690789986 a001 3524667/39604*322^(5/12) 9870041690790916 a001 267914296/3010349*322^(5/12) 9870041690797292 a001 102334155/1149851*322^(5/12) 9870041690840992 a001 39088169/439204*322^(5/12) 9870041691140519 a001 14930352/167761*322^(5/12) 9870041693193506 a001 5702887/64079*322^(5/12) 9870041702464961 r005 Im(z^2+c),c=-61/90+15/46*I,n=9 9870041707264892 a001 2178309/24476*322^(5/12) 9870041714667875 r005 Re(z^2+c),c=-8/9+17/79*I,n=62 9870041734174578 m001 (BesselI(0,2)-MertensB3*Sarnak)/MertensB3 9870041741643887 b008 BesselJ[2,4/45] 9870041741643887 l003 BesselJ(2,4/45) 9870041756570286 a001 439204*514229^(7/17) 9870041772943953 a007 Real Root Of 187*x^4-734*x^3-645*x^2-683*x-929 9870041788283147 m001 (Sierpinski-Weierstrass)/(ln(2)+exp(1/exp(1))) 9870041799751747 a001 15127*1836311903^(7/17) 9870041803711602 a001 832040/9349*322^(5/12) 9870041841258320 r002 7th iterates of z^2 + 9870041850038559 m001 ReciprocalLucas^Artin*ZetaP(4) 9870041861229387 a007 Real Root Of -821*x^4-322*x^3-382*x^2-179*x+665 9870041864641610 a007 Real Root Of -131*x^4+161*x^3-238*x^2-771*x-250 9870041883628463 m001 (RenyiParking-MasserGramain)^exp(Pi) 9870041902976424 a003 sin(Pi*7/38)/cos(Pi*36/115) 9870041905168086 r009 Im(z^3+c),c=-3/17+57/59*I,n=21 9870041919120810 r005 Im(z^2+c),c=-55/102+13/59*I,n=8 9870041935190444 a007 Real Root Of 324*x^4-179*x^3-555*x^2-456*x-389 9870041942284065 l006 ln(7201/7948) 9870041946580298 a007 Real Root Of -826*x^4-465*x^3+343*x^2+397*x-42 9870041963975716 a007 Real Root Of 957*x^4+455*x^3+205*x^2-110*x-779 9870041967130847 a007 Real Root Of 500*x^4+625*x^3+358*x^2-717*x-930 9870041978228064 m001 (DuboisRaymond+Niven)/(Si(Pi)-gamma(1)) 9870041979897379 a007 Real Root Of 768*x^4-955*x^3-328*x^2+495*x-839 9870041981445478 m001 (GAMMA(2/3)+FeigenbaumAlpha)^gamma(2) 9870041994609506 a007 Real Root Of -788*x^4-642*x^3+304*x^2+953*x+775 9870042023666959 r005 Re(z^2+c),c=-17/18+16/75*I,n=39 9870042024176258 l006 ln(3128/8393) 9870042046584770 a007 Real Root Of 913*x^4+487*x^3+785*x^2+929*x-246 9870042064740858 r005 Im(z^2+c),c=-23/26+3/40*I,n=36 9870042096913300 a007 Real Root Of -985*x^4-144*x^3+522*x^2+216*x+501 9870042172955241 a007 Real Root Of 882*x^4+878*x^3+813*x^2+13*x-772 9870042183314641 p004 log(20089/7487) 9870042184480739 m005 (1/2*gamma+8/9)/(4*Pi-7/11) 9870042200332532 r009 Re(z^3+c),c=-67/118+23/45*I,n=39 9870042212160394 r009 Re(z^3+c),c=-67/118+23/45*I,n=45 9870042213063508 r009 Re(z^3+c),c=-67/118+23/45*I,n=54 9870042213069498 r009 Re(z^3+c),c=-67/118+23/45*I,n=60 9870042213070152 r009 Re(z^3+c),c=-67/118+23/45*I,n=63 9870042213070557 r009 Re(z^3+c),c=-67/118+23/45*I,n=51 9870042213072487 r009 Re(z^3+c),c=-67/118+23/45*I,n=57 9870042213194048 r009 Re(z^3+c),c=-67/118+23/45*I,n=48 9870042217262190 r009 Re(z^3+c),c=-67/118+23/45*I,n=42 9870042223989071 r009 Re(z^3+c),c=-67/118+23/45*I,n=36 9870042241594304 a007 Real Root Of 256*x^4-437*x^3-31*x^2+236*x-400 9870042242317071 m001 exp(cos(1))/GAMMA(17/24)*exp(1)^2 9870042267919456 a007 Real Root Of -88*x^4-830*x^3+353*x^2-183*x+885 9870042271783309 r005 Re(z^2+c),c=3/32+1/18*I,n=11 9870042303660833 m001 (ln(Pi)-LaplaceLimit)/(Otter+Tetranacci) 9870042305988458 m001 1/(2^(1/3))/GolombDickman/ln(GAMMA(1/4)) 9870042316345901 m001 (ln(Pi)-HardyLittlewoodC4)/(Trott-Thue) 9870042345952579 m001 (exp(1/exp(1))+Khinchin)/(2^(1/3)-sin(1)) 9870042354537639 b008 Pi^2+3*Erfc[Khinchin] 9870042356287486 a001 75025/521*843^(2/7) 9870042375210772 m001 5^(1/2)-FeigenbaumMu^ZetaP(3) 9870042381596666 r009 Re(z^3+c),c=-67/118+23/45*I,n=33 9870042385027871 m001 exp(Catalan)^2*BesselJ(1,1)^2/GAMMA(3/4) 9870042403202624 r005 Re(z^2+c),c=-55/56+8/47*I,n=38 9870042408722171 r005 Re(z^2+c),c=5/66+47/58*I,n=5 9870042463084510 a001 1/4*521^(9/41) 9870042464767239 a001 317811/3571*322^(5/12) 9870042469086698 m001 1/exp(BesselJ(0,1))^2/Kolakoski*BesselK(1,1)^2 9870042492874158 m001 ((1+3^(1/2))^(1/2)-exp(Pi))/(Bloch+Niven) 9870042496741855 r005 Im(z^2+c),c=-7/8+18/79*I,n=59 9870042522869033 s002 sum(A110922[n]/(pi^n+1),n=1..infinity) 9870042547468029 a001 38/305*987^(26/41) 9870042548906280 r005 Re(z^2+c),c=-19/102+45/64*I,n=60 9870042549930784 r005 Re(z^2+c),c=-91/94+7/51*I,n=9 9870042567713183 a007 Real Root Of -306*x^4+207*x^3+703*x^2-40*x-554 9870042576843432 a007 Real Root Of -813*x^4+495*x^3+676*x^2+74*x+662 9870042578413547 m001 (2^(1/3))^Backhouse/(MertensB1^Backhouse) 9870042580271233 m001 (Bloch+ErdosBorwein)/(gamma+GAMMA(7/12)) 9870042586778916 a007 Real Root Of 635*x^4+530*x^3+137*x^2-730*x-947 9870042589430656 m005 (1/2*gamma+2/3)/(5/7*gamma+5/9) 9870042592836810 r005 Im(z^2+c),c=-67/58+5/32*I,n=20 9870042625690042 m001 (Pi+Shi(1))/(Chi(1)-ThueMorse) 9870042632242264 r002 26th iterates of z^2 + 9870042646257112 a003 cos(Pi*11/102)/sin(Pi*17/42) 9870042647748005 m001 (2^(1/2)+Shi(1))/(Zeta(5)+Porter) 9870042666814870 r005 Re(z^2+c),c=-29/32+1/18*I,n=42 9870042675748156 m001 1/exp(GAMMA(23/24))^2*GAMMA(2/3)*LambertW(1) 9870042680068303 r002 50th iterates of z^2 + 9870042681360437 a007 Real Root Of 934*x^4+148*x^3-506*x^2+912*x+649 9870042697694718 r005 Re(z^2+c),c=-29/32+1/18*I,n=40 9870042700989125 r005 Re(z^2+c),c=1/14+32/63*I,n=47 9870042703530871 r005 Re(z^2+c),c=-29/32+1/18*I,n=44 9870042712177764 r005 Im(z^2+c),c=-23/26+3/40*I,n=32 9870042714165281 r002 60th iterates of z^2 + 9870042719089682 a007 Real Root Of -907*x^4+623*x^3-873*x^2+69*x+16 9870042722001830 r002 62th iterates of z^2 + 9870042735070154 m001 cos(1)^(MertensB1*StolarskyHarborth) 9870042736935281 r005 Re(z^2+c),c=-29/32+1/18*I,n=46 9870042741791557 r002 64th iterates of z^2 + 9870042755012265 r005 Re(z^2+c),c=-29/32+1/18*I,n=48 9870042762222907 r005 Re(z^2+c),c=-29/32+1/18*I,n=50 9870042763570206 r005 Re(z^2+c),c=3/32+1/18*I,n=18 9870042763583980 r005 Re(z^2+c),c=3/32+1/18*I,n=19 9870042763588505 r005 Re(z^2+c),c=-29/32+1/18*I,n=64 9870042763591195 r005 Re(z^2+c),c=3/32+1/18*I,n=20 9870042763593243 r005 Re(z^2+c),c=3/32+1/18*I,n=21 9870042763593632 r005 Re(z^2+c),c=3/32+1/18*I,n=22 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=28 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=29 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=30 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=31 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=32 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=38 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=39 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=40 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=41 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=42 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=49 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=48 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=50 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=51 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=52 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=53 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=59 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=60 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=61 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=62 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=63 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=64 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=58 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=57 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=56 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=55 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=54 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=47 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=46 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=45 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=43 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=44 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=37 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=36 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=35 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=34 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=33 9870042763593650 r005 Re(z^2+c),c=3/32+1/18*I,n=27 9870042763593651 r005 Re(z^2+c),c=3/32+1/18*I,n=26 9870042763593652 r005 Re(z^2+c),c=3/32+1/18*I,n=25 9870042763593658 r005 Re(z^2+c),c=3/32+1/18*I,n=24 9870042763593667 r005 Re(z^2+c),c=3/32+1/18*I,n=23 9870042763600685 r005 Re(z^2+c),c=-29/32+1/18*I,n=62 9870042763600789 r005 Re(z^2+c),c=3/32+1/18*I,n=17 9870042763648498 r005 Re(z^2+c),c=-29/32+1/18*I,n=60 9870042763773123 r005 Re(z^2+c),c=-29/32+1/18*I,n=58 9870042764013405 r005 Re(z^2+c),c=-29/32+1/18*I,n=56 9870042764045418 r005 Re(z^2+c),c=3/32+1/18*I,n=16 9870042764196122 r005 Re(z^2+c),c=-29/32+1/18*I,n=52 9870042764305956 r005 Re(z^2+c),c=-29/32+1/18*I,n=54 9870042766538988 r005 Re(z^2+c),c=3/32+1/18*I,n=15 9870042773254519 r005 Re(z^2+c),c=3/32+1/18*I,n=12 9870042775825307 r005 Re(z^2+c),c=3/32+1/18*I,n=14 9870042777439810 a007 Real Root Of -835*x^4+492*x^3+838*x^2-451*x+4 9870042787385019 r002 58th iterates of z^2 + 9870042795997934 r005 Re(z^2+c),c=3/32+1/18*I,n=13 9870042815778868 r005 Im(z^2+c),c=-13/22+19/68*I,n=15 9870042843668648 r005 Re(z^2+c),c=-71/74+6/37*I,n=41 9870042847765047 a001 341/11592*6765^(7/51) 9870042869974215 a007 Real Root Of -419*x^4+590*x^3-302*x^2-682*x+586 9870042870022293 a007 Real Root Of -824*x^4-89*x^3+320*x^2-717*x-323 9870042904517396 a007 Real Root Of -977*x^4+176*x^3-21*x^2-471*x+652 9870042917398458 h001 (8/9*exp(1)+4/11)/(3/4*exp(1)+7/9) 9870042921102099 r002 57th iterates of z^2 + 9870042928908609 r009 Im(z^3+c),c=-17/94+29/30*I,n=61 9870042958741111 m002 Pi^2+ProductLog[Pi]/(8*Pi^5) 9870042964960380 a007 Real Root Of -607*x^4-675*x^3-442*x^2-568*x-203 9870042990098895 r005 Re(z^2+c),c=17/126+32/51*I,n=50 9870042992063361 l006 ln(1231/3303) 9870043012818164 r005 Re(z^2+c),c=-29/32+1/18*I,n=38 9870043023839641 a005 (1/cos(14/181*Pi))^154 9870043041867916 a007 Real Root Of -630*x^4-708*x^3-690*x^2+24*x+613 9870043055267267 m001 (ln(2)+gamma(1))^Trott2nd 9870043055350990 a001 610/521*3571^(14/17) 9870043059598871 m008 (1/6*Pi^5+1/3)/(1/5*Pi^3-1) 9870043079180832 a007 Real Root Of 867*x^4-200*x^3+623*x^2+922*x-712 9870043084817856 a007 Real Root Of -99*x^4+954*x^3+226*x^2-148*x+645 9870043090771080 m006 (2/5*exp(Pi)-1/4)/(1/6*exp(2*Pi)+2) 9870043114076843 a007 Real Root Of 757*x^4+218*x^3-221*x^2+115*x-180 9870043117641872 r002 56th iterates of z^2 + 9870043146998288 m001 (MadelungNaCl+Stephens)/(1+GAMMA(2/3)) 9870043160646253 a001 521/3*89^(12/31) 9870043200163257 r002 19th iterates of z^2 + 9870043200594316 a007 Real Root Of -428*x^4-348*x^3-820*x^2-431*x+445 9870043200920366 r002 6th iterates of z^2 + 9870043207232030 m001 (GAMMA(2/3)+MasserGramain)/(2^(1/3)-Shi(1)) 9870043248730662 r002 50th iterates of z^2 + 9870043268684260 a005 (1/cos(35/218*Pi))^502 9870043271196699 a007 Real Root Of 289*x^4-147*x^3+253*x^2+71*x-592 9870043280774284 a001 47/9227465*591286729879^(13/21) 9870043287067384 a001 47/17711*24157817^(13/21) 9870043313266760 m008 (1/2*Pi^4+1/6)/(5*Pi^2+1/6) 9870043317332205 r002 19th iterates of z^2 + 9870043318893702 q001 2962/3001 9870043319156705 m001 (Landau-Salem)/(gamma(3)-Cahen) 9870043347075967 a001 46368/521*843^(5/14) 9870043365914913 a007 Real Root Of 719*x^4+34*x^3+781*x^2+655*x-764 9870043382812839 a007 Real Root Of -84*x^4-880*x^3-515*x^2-191*x-672 9870043382977616 a007 Real Root Of 890*x^4-434*x^3+333*x^2+975*x-624 9870043390907702 r005 Re(z^2+c),c=-57/62+11/48*I,n=15 9870043426111507 a007 Real Root Of -106*x^4+145*x^3-566*x^2-200*x+594 9870043447214457 m001 (FellerTornier-Tribonacci)/(ln(5)+gamma(1)) 9870043449485371 m001 GAMMA(5/6)^Paris*StronglyCareFree^Paris 9870043460061608 m001 2^(1/3)*ln(2^(1/2)+1)-Champernowne 9870043490499784 r005 Im(z^2+c),c=-5/4+13/178*I,n=25 9870043500278537 r008 a(0)=1,K{-n^6,50-7*n^3-29*n^2+67*n} 9870043507837419 m005 (1/2*5^(1/2)+5/8)/(3/4*exp(1)-3/11) 9870043513961687 m001 (CareFree+Kolakoski)/(ln(Pi)+Artin) 9870043524353448 r009 Im(z^3+c),c=-7/40+61/63*I,n=35 9870043539169295 r002 3th iterates of z^2 + 9870043560201567 s001 sum(exp(-2*Pi)^(n-1)*A275642[n],n=1..infinity) 9870043565708982 r009 Re(z^3+c),c=-19/31+7/12*I,n=9 9870043582360602 a007 Real Root Of 273*x^4-158*x^3+889*x^2+612*x-673 9870043583262903 a007 Real Root Of -517*x^4-190*x^3+448*x^2+579*x+443 9870043585647982 a001 233/1364*9349^(18/19) 9870043601825016 s002 sum(A240770[n]/(n^3*10^n+1),n=1..infinity) 9870043609552696 a001 610/521*9349^(14/19) 9870043662647924 s002 sum(A032225[n]/(exp(n)+1),n=1..infinity) 9870043668348508 a007 Real Root Of 896*x^4+811*x^3+719*x^2+849*x+67 9870043670203787 a001 28657/843*322^(7/12) 9870043677198878 a007 Real Root Of 501*x^4-998*x^3-482*x^2+24*x+930 9870043678507384 a001 233/1364*24476^(6/7) 9870043681776676 a001 610/521*24476^(2/3) 9870043690748039 a001 233/1364*64079^(18/23) 9870043691297185 a001 610/521*64079^(14/23) 9870043692595116 a001 233/1364*439204^(2/3) 9870043692629141 a001 233/1364*7881196^(6/11) 9870043692629227 a001 233/1364*141422324^(6/13) 9870043692629227 a001 233/1364*2537720636^(2/5) 9870043692629227 a001 233/1364*45537549124^(6/17) 9870043692629227 a001 233/1364*14662949395604^(2/7) 9870043692629227 a001 233/1364*(1/2+1/2*5^(1/2))^18 9870043692629227 a001 233/1364*192900153618^(1/3) 9870043692629227 a001 233/1364*10749957122^(3/8) 9870043692629227 a001 233/1364*4106118243^(9/23) 9870043692629227 a001 233/1364*1568397607^(9/22) 9870043692629227 a001 233/1364*599074578^(3/7) 9870043692629228 a001 233/1364*228826127^(9/20) 9870043692629228 a001 233/1364*87403803^(9/19) 9870043692629232 a001 233/1364*33385282^(1/2) 9870043692629260 a001 233/1364*12752043^(9/17) 9870043692629461 a001 233/1364*4870847^(9/16) 9870043692630938 a001 233/1364*1860498^(3/5) 9870043692641791 a001 233/1364*710647^(9/14) 9870043692721966 a001 233/1364*271443^(9/13) 9870043692760323 a001 610/521*20633239^(2/5) 9870043692760332 a001 610/521*17393796001^(2/7) 9870043692760332 a001 610/521*14662949395604^(2/9) 9870043692760332 a001 610/521*(1/2+1/2*5^(1/2))^14 9870043692760332 a001 610/521*505019158607^(1/4) 9870043692760332 a001 610/521*10749957122^(7/24) 9870043692760332 a001 610/521*4106118243^(7/23) 9870043692760332 a001 610/521*1568397607^(7/22) 9870043692760332 a001 610/521*599074578^(1/3) 9870043692760332 a001 610/521*228826127^(7/20) 9870043692760332 a001 610/521*87403803^(7/19) 9870043692760335 a001 610/521*33385282^(7/18) 9870043692760357 a001 610/521*12752043^(7/17) 9870043692760514 a001 610/521*4870847^(7/16) 9870043692761663 a001 610/521*1860498^(7/15) 9870043692770104 a001 610/521*710647^(1/2) 9870043692832462 a001 610/521*271443^(7/13) 9870043693295918 a001 610/521*103682^(7/12) 9870043693317838 a001 233/1364*103682^(3/4) 9870043696765016 a001 610/521*39603^(7/11) 9870043697778107 a001 233/1364*39603^(9/11) 9870043703841209 a003 cos(Pi*3/107)*cos(Pi*5/116) 9870043714127679 m001 MinimumGamma/((3^(1/2))^TravellingSalesman) 9870043714263894 a007 Real Root Of -199*x^4+534*x^3+431*x^2-736*x-444 9870043722953696 a001 610/521*15127^(7/10) 9870043731449267 a001 233/1364*15127^(9/10) 9870043740695075 r005 Re(z^2+c),c=13/64+16/59*I,n=41 9870043766246843 m001 (Artin+Sarnak)/(GAMMA(13/24)-GAMMA(7/12)) 9870043824392287 m001 1/GAMMA(2/3)^2/exp(Porter)/GAMMA(5/6)^2 9870043831047347 m001 sin(1/5*Pi)^(polylog(4,1/2)/Riemann2ndZero) 9870043837360327 m001 1/exp(Zeta(5))^2/CopelandErdos/cos(1) 9870043859755782 a007 Real Root Of -406*x^4-2*x^3-321*x^2+7*x+703 9870043870312857 r009 Im(z^3+c),c=-15/118+46/47*I,n=25 9870043880601705 s002 sum(A032225[n]/(exp(n)),n=1..infinity) 9870043881418093 r009 Im(z^3+c),c=-47/82+1/45*I,n=3 9870043908069931 a001 9/17*39088169^(9/16) 9870043913310155 r002 15th iterates of z^2 + 9870043922702994 a001 610/521*5778^(7/9) 9870043942927924 m001 Catalan^(1/2*cos(1)/Pi*2^(1/2)*GAMMA(3/4)) 9870043942927924 m001 Catalan^(cos(1)/GAMMA(1/4)) 9870043992245244 l006 ln(3027/8122) 9870043995362991 m008 (2*Pi^6-1/4)/(2/5*Pi^2-2) 9870044018543238 a003 sin(Pi*11/76)/sin(Pi*16/109) 9870044027701714 m001 1/ln(GAMMA(5/24))*MinimumGamma 9870044035882937 r002 54th iterates of z^2 + 9870044046833558 m001 (exp(-1/2*Pi)+ThueMorse)^Trott2nd 9870044071584998 m001 1/exp(Ei(1))^2*BesselK(1,1)/GAMMA(19/24)^2 9870044094156946 r005 Re(z^2+c),c=-29/32+1/18*I,n=36 9870044099901340 s002 sum(A032225[n]/(exp(n)-1),n=1..infinity) 9870044103665920 r005 Re(z^2+c),c=-5/6+121/221*I,n=4 9870044111209707 r009 Re(z^3+c),c=-65/94+62/63*I,n=2 9870044120728864 a007 Real Root Of 398*x^4-662*x^3+795*x^2+869*x-931 9870044123596547 m005 (1/3*gamma-2/3)/(9/10*gamma-1) 9870044148279138 m001 (Paris-ZetaQ(3))/(Kolakoski-Niven) 9870044180750374 r001 28i'th iterates of 2*x^2-1 of 9870044227114869 a007 Real Root Of -756*x^4+783*x^3+504*x^2-820*x+170 9870044244884167 a007 Real Root Of -265*x^4+566*x^3-575*x^2-934*x+434 9870044275031025 s002 sum(A058149[n]/(n^3*exp(n)+1),n=1..infinity) 9870044288813401 m005 (1/2*Zeta(3)-1/2)/(1/8*Catalan+10/11) 9870044299177551 h001 (8/9*exp(2)+9/11)/(9/10*exp(2)+5/6) 9870044310990550 a007 Real Root Of 590*x^4-184*x^3-830*x^2-252*x-177 9870044342455284 a001 28657/521*843^(3/7) 9870044381188975 a007 Real Root Of -636*x^4-194*x^3+409*x^2+893*x+900 9870044415199868 q001 3/30395 9870044416855150 r005 Re(z^2+c),c=13/64+16/59*I,n=40 9870044439678290 m001 (-Landau+TreeGrowth2nd)/(Psi(1,1/3)+Artin) 9870044444444444 r005 Re(z^2+c),c=-4/3+147/250*I,n=2 9870044448300826 a007 Real Root Of 868*x^4-194*x^3-285*x^2+489*x-250 9870044449677416 m001 (Sierpinski-TreeGrowth2nd)/(Ei(1,1)-gamma(3)) 9870044487402242 m005 (3*gamma+4/5)/(3*gamma+5/6) 9870044487402242 m007 (-3*gamma-4/5)/(-3*gamma-5/6) 9870044508707453 a007 Real Root Of -830*x^4-74*x^3-457*x^2-559*x+610 9870044528749408 m001 (Zeta(1,2)-Artin)/(CareFree+GolombDickman) 9870044546747098 a007 Real Root Of -579*x^4+982*x^3-289*x^2+861*x-963 9870044590582470 m004 -5+(25*Pi)/4-25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870044591195909 b008 ArcCsc[101+Pi^(-1)] 9870044598650044 a007 Real Root Of 465*x^4+33*x^3+242*x^2+976*x+318 9870044606806287 m002 -4+Pi-Pi^4-5*Csch[Pi] 9870044614188818 a007 Real Root Of -871*x^4-188*x^3-534*x^2-920*x+258 9870044640725656 a007 Real Root Of 548*x^4-142*x^3-120*x^2+331*x-213 9870044658797299 a007 Real Root Of -835*x^4-514*x^3+41*x^2-56*x+203 9870044663204666 r009 Im(z^3+c),c=-11/78+41/42*I,n=31 9870044665617172 a007 Real Root Of 701*x^4+485*x^3-847*x^2-908*x-270 9870044677781878 l006 ln(1796/4819) 9870044708274424 r005 Re(z^2+c),c=-6/13+8/13*I,n=14 9870044732910375 m002 Pi^2+Tanh[Pi]^2/(E^Pi*Pi^4) 9870044732970661 m001 (Backhouse+FeigenbaumAlpha)/(ln(3)-ArtinRank2) 9870044742346521 a007 Real Root Of 961*x^4+416*x^3-48*x^2+134*x-333 9870044798622626 b008 Gamma[1+ExpIntegralEi[2/3]] 9870044829406451 a007 Real Root Of -911*x^4+923*x^3-110*x^2-908*x+963 9870044852922477 a007 Real Root Of -433*x^4+198*x^3+146*x^2-71*x+389 9870044855309839 a007 Real Root Of -585*x^4+351*x^3+607*x^2-666*x-356 9870044873670980 a007 Real Root Of -206*x^4+566*x^3+272*x^2+134*x+607 9870044904163052 a007 Real Root Of 845*x^4-826*x^3-278*x^2+976*x-362 9870044904486156 m001 (-GAMMA(23/24)+FeigenbaumDelta)/(cos(1)-gamma) 9870044907717443 r002 44th iterates of z^2 + 9870044909995115 r002 39th iterates of z^2 + 9870044933659789 a007 Real Root Of 56*x^4-933*x^3+772*x^2-299*x+387 9870044963622064 r009 Re(z^3+c),c=-17/94+29/44*I,n=33 9870044976494691 m005 (1/2*Zeta(3)-3/11)/(-9/20+7/20*5^(1/2)) 9870044988836821 a007 Real Root Of 183*x^4-760*x^3-639*x^2+263*x+920 9870045026365665 p004 log(15973/5953) 9870045038715663 r005 Re(z^2+c),c=-17/18+61/224*I,n=3 9870045071544796 m001 (gamma(1)+Trott2nd)/(Pi-Zeta(1/2)) 9870045109493650 g006 -Psi(1,3/11)-Psi(1,3/10)-Psi(1,2/9)-Psi(1,1/7) 9870045123259656 a001 64079/233*6557470319842^(14/17) 9870045125663394 a001 54018521/233*1836311903^(14/17) 9870045125669545 a001 45537549124/233*514229^(14/17) 9870045148455200 m001 (3^(1/3)+gamma(2))/(GAMMA(5/6)+FellerTornier) 9870045149892741 a007 Real Root Of -214*x^4+880*x^3-355*x^2+478*x-769 9870045165631892 a001 161/5473*4807526976^(6/23) 9870045175743921 a007 Real Root Of 34*x^4-644*x^3-452*x^2-12*x-223 9870045179115682 m001 1/GAMMA(17/24)*exp(CopelandErdos)*Zeta(9) 9870045216464805 l006 ln(3038/3041) 9870045267525506 a003 cos(Pi*21/101)/sin(Pi*25/84) 9870045286081418 a003 cos(Pi*3/83)*sin(Pi*19/41) 9870045287328373 m002 Pi^2+ProductLog[Pi]/(25*Pi^4) 9870045295814827 r005 Im(z^2+c),c=-4/17+5/36*I,n=21 9870045325815996 a001 17711/521*843^(1/2) 9870045333135643 r005 Im(z^2+c),c=-10/27+45/59*I,n=4 9870045398666266 m001 (cos(1)-exp(-1/2*Pi))/(GAMMA(7/12)+Tribonacci) 9870045406328095 r009 Im(z^3+c),c=-11/78+41/42*I,n=35 9870045427488990 a007 Real Root Of -57*x^4+419*x^3-768*x^2-451*x+760 9870045451201009 m001 (gamma(2)+Backhouse)/(Porter-ZetaQ(4)) 9870045460456661 b008 Haversine[2+E^(-1/11)] 9870045464169976 a007 Real Root Of 288*x^4-866*x^3+335*x^2-770*x+993 9870045465817075 a001 610/521*2207^(7/8) 9870045470084839 r009 Im(z^3+c),c=-37/60+27/50*I,n=59 9870045483627684 a007 Real Root Of 723*x^4+89*x^3+590*x^2+513*x-669 9870045484080571 q001 1519/1539 9870045484080571 r005 Im(z^2+c),c=-38/27+31/57*I,n=2 9870045490026192 r009 Re(z^3+c),c=-5/23+43/55*I,n=7 9870045505659562 r005 Im(z^2+c),c=-4/17+5/36*I,n=23 9870045509626765 m005 (1/2*Pi+1/9)/(129/140+7/20*5^(1/2)) 9870045510326154 r005 Im(z^2+c),c=-3/5+7/43*I,n=22 9870045522384789 a007 Real Root Of 826*x^4+708*x^3+445*x^2+258*x-282 9870045546613190 m001 (Kolakoski-Rabbit)/(Zeta(5)-Ei(1)) 9870045556697265 l006 ln(2361/6335) 9870045556743294 m002 Pi^2+(Sech[Pi]*Tanh[Pi])/(2*Pi^4) 9870045557738477 l006 ln(3480/3841) 9870045568654252 a001 726103/6*1364^(25/41) 9870045585347853 m001 Salem/ln(GaussKuzminWirsing)^2/Catalan^2 9870045628255003 r005 Im(z^2+c),c=-4/17+5/36*I,n=25 9870045634477643 a007 Real Root Of -849*x^4+880*x^3+765*x^2-30*x+877 9870045639125360 a007 Real Root Of 213*x^4+69*x^3+478*x^2+42*x-560 9870045639183888 m001 (Pi*csc(5/24*Pi)/GAMMA(19/24))^Ei(1)*Gompertz 9870045644856094 m005 (1/2*Zeta(3)+8/9)/(-107/220+3/20*5^(1/2)) 9870045648602104 r005 Im(z^2+c),c=-4/17+5/36*I,n=28 9870045649459661 r005 Im(z^2+c),c=-4/17+5/36*I,n=30 9870045649938812 r005 Im(z^2+c),c=-4/17+5/36*I,n=32 9870045650016213 r005 Im(z^2+c),c=-4/17+5/36*I,n=35 9870045650019708 r005 Im(z^2+c),c=-4/17+5/36*I,n=37 9870045650021580 r005 Im(z^2+c),c=-4/17+5/36*I,n=39 9870045650021874 r005 Im(z^2+c),c=-4/17+5/36*I,n=42 9870045650021888 r005 Im(z^2+c),c=-4/17+5/36*I,n=44 9870045650021895 r005 Im(z^2+c),c=-4/17+5/36*I,n=46 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=49 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=51 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=53 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=56 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=58 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=60 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=63 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=62 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=64 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=61 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=59 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=55 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=57 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=54 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=52 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=48 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=50 9870045650021897 r005 Im(z^2+c),c=-4/17+5/36*I,n=47 9870045650021900 r005 Im(z^2+c),c=-4/17+5/36*I,n=45 9870045650021908 r005 Im(z^2+c),c=-4/17+5/36*I,n=41 9870045650021913 r005 Im(z^2+c),c=-4/17+5/36*I,n=43 9870045650021962 r005 Im(z^2+c),c=-4/17+5/36*I,n=40 9870045650022836 r005 Im(z^2+c),c=-4/17+5/36*I,n=38 9870045650024395 r005 Im(z^2+c),c=-4/17+5/36*I,n=34 9870045650026014 r005 Im(z^2+c),c=-4/17+5/36*I,n=36 9870045650039719 r005 Im(z^2+c),c=-4/17+5/36*I,n=33 9870045650265289 r005 Im(z^2+c),c=-4/17+5/36*I,n=31 9870045650553309 r005 Im(z^2+c),c=-4/17+5/36*I,n=27 9870045651069295 r005 Im(z^2+c),c=-4/17+5/36*I,n=29 9870045654842370 r005 Im(z^2+c),c=-4/17+5/36*I,n=26 9870045679679585 m001 (MertensB1+TwinPrimes)/(Champernowne-Shi(1)) 9870045687305392 r005 Re(z^2+c),c=-31/32+7/52*I,n=9 9870045704994377 r005 Im(z^2+c),c=-14/25+17/37*I,n=62 9870045713049240 r005 Im(z^2+c),c=-4/17+5/36*I,n=24 9870045721189470 m001 (GAMMA(19/24)+FeigenbaumD)^gamma(2) 9870045748082100 m005 (1/2*Catalan+6/7)/(4/11*2^(1/2)+9/11) 9870045758027085 r005 Im(z^2+c),c=-4/17+5/36*I,n=20 9870045758065217 m001 LandauRamanujan^ZetaR(2)/(GaussAGM^ZetaR(2)) 9870045842203152 m006 (exp(Pi)-3)/(2*Pi^2+2/3) 9870045870233885 a007 Real Root Of -194*x^4+615*x^3+125*x^2-410*x+249 9870045875084094 a007 Real Root Of 634*x^4-836*x^3-840*x^2+908*x+309 9870045916355897 r005 Im(z^2+c),c=-4/17+5/36*I,n=22 9870045922248111 r002 52th iterates of z^2 + 9870045957258999 m005 (1/2*Zeta(3)+5/7)/(Catalan+5/12) 9870045966373679 r005 Re(z^2+c),c=-95/98+7/54*I,n=17 9870045977881250 r005 Re(z^2+c),c=27/118+13/33*I,n=10 9870045995633257 r005 Im(z^2+c),c=-73/106+3/44*I,n=17 9870046016975670 s002 sum(A162095[n]/(exp(pi*n)-1),n=1..infinity) 9870046039611494 m001 (ln(2)-Zeta(1,2))/(GAMMA(7/12)+Champernowne) 9870046042808509 a007 Real Root Of -839*x^4-248*x^3-101*x^2-372*x+289 9870046059827699 r005 Im(z^2+c),c=-31/56+20/51*I,n=16 9870046082983862 m009 (3*Pi^2+1/6)/(2/5*Psi(1,3/4)+2) 9870046084885730 r005 Im(z^2+c),c=-3/11+6/49*I,n=3 9870046096181859 l006 ln(2926/7851) 9870046159201185 m001 (Psi(2,1/3)-GAMMA(7/12))^LambertW(1) 9870046164602958 a007 Real Root Of 174*x^4-655*x^3-732*x^2+403*x+780 9870046311344706 a007 Real Root Of 92*x^4-536*x^3+554*x^2-644*x+524 9870046313979870 r005 Im(z^2+c),c=-2/3+2/91*I,n=6 9870046316701368 a007 Real Root Of 761*x^4+673*x^3+276*x^2-460*x-798 9870046320594953 a001 317811/521*322^(1/12) 9870046340642189 a001 10946/521*843^(4/7) 9870046350004116 a007 Real Root Of 401*x^4-700*x^3-941*x^2+314*x+173 9870046363399729 a005 (1/cos(43/115*Pi))^29 9870046377406133 r005 Im(z^2+c),c=13/118+7/11*I,n=59 9870046380576214 m002 -Pi^2-Tanh[Pi]/(E^Pi*Pi^4) 9870046395438745 p004 log(34303/31079) 9870046425319638 a007 Real Root Of -559*x^4+923*x^3+682*x^2-185*x+571 9870046427834958 a007 Real Root Of 967*x^4+317*x^3+272*x^2+317*x-565 9870046433997310 r005 Im(z^2+c),c=-9/23+34/45*I,n=4 9870046461040945 l006 ln(3491/9367) 9870046470353735 m001 (ln(2)-Artin)/(Mills+Tetranacci) 9870046491304140 m001 3^(1/2)+BesselI(0,2)*FeigenbaumMu 9870046555387945 a007 Real Root Of 55*x^4-435*x^3-515*x^2-212*x-178 9870046589610033 m001 (2^(1/3)+ArtinRank2)/(Cahen+Totient) 9870046612281873 m006 (1/3*Pi+3/5)/(3/4*exp(Pi)-2/3) 9870046625373363 m002 -5+(3*Pi^5*Sinh[Pi])/ProductLog[Pi] 9870046628483390 a007 Real Root Of 887*x^4-9*x^3-591*x^2+408*x+128 9870046633107066 r005 Re(z^2+c),c=5/86+33/47*I,n=8 9870046654825094 a007 Real Root Of 509*x^4-462*x^3+307*x^2+435*x-797 9870046655378487 r005 Im(z^2+c),c=-7/10+99/179*I,n=5 9870046667665033 m004 -5/4+5*Pi-25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870046680803374 r005 Im(z^2+c),c=-69/94+26/63*I,n=7 9870046684812106 m001 (2^(1/3)+5^(1/2))/(-FeigenbaumB+KhinchinLevy) 9870046689189363 m005 (1/2*Catalan+2/5)/(6/7*Pi+6) 9870046703948651 r005 Re(z^2+c),c=-29/32+1/18*I,n=34 9870046718390376 m001 Psi(1,1/3)*sinh(1)/Zeta(3) 9870046725914905 s001 sum(exp(-4*Pi)^n*A205201[n],n=1..infinity) 9870046726420453 m001 1/GAMMA(5/24)*ln(Champernowne)^2/Zeta(7) 9870046778432776 m001 Zeta(3)^ln(2)/(Zeta(3)^LandauRamanujan) 9870046784749728 a007 Real Root Of -294*x^4-152*x^3-889*x^2-315*x+688 9870046796946648 m001 1/BesselJ(1,1)*ln(ErdosBorwein)*Catalan 9870046833243522 a007 Real Root Of -57*x^4-507*x^3+626*x^2+822*x+583 9870046839313092 a003 sin(Pi*10/63)/sin(Pi*19/118) 9870046861163460 r005 Re(z^2+c),c=-9/14+77/157*I,n=6 9870046938977473 r009 Im(z^3+c),c=-37/94+19/29*I,n=9 9870046943940251 m001 (Pi+GAMMA(7/12))/(Bloch+HeathBrownMoroz) 9870046944270127 r005 Re(z^2+c),c=-95/98+7/46*I,n=3 9870046950344005 r005 Im(z^2+c),c=-4/17+5/36*I,n=19 9870046964417119 r002 25th iterates of z^2 + 9870046972576334 m001 GAMMA(13/24)-KhinchinHarmonic-QuadraticClass 9870046978445438 b008 5*ArcCsch[45/2]^2 9870046989011618 a007 Real Root Of 693*x^4-766*x^3+534*x^2+969*x-958 9870046991784238 a007 Real Root Of -122*x^4-317*x^3-978*x^2-175*x+591 9870046995712364 a001 121393/1364*322^(5/12) 9870047007177767 m002 -(Pi^6*ProductLog[Pi])+4*Sinh[Pi]-Tanh[Pi] 9870047011280571 m001 ln(2^(1/2)+1)-ln(Pi)-Sarnak 9870047044758393 a001 2584/199*199^(9/11) 9870047049069170 a007 Real Root Of 256*x^4-707*x^3-10*x^2-122*x+567 9870047064873603 m001 (Zeta(1,-1)-CareFree)/(GAMMA(2/3)-3^(1/3)) 9870047103072715 m005 (1/3*Zeta(3)-2/9)/(7/10*2^(1/2)+9/11) 9870047106144044 r009 Re(z^3+c),c=-19/28+2/45*I,n=2 9870047139553209 a008 Real Root of (-7+8*x+2*x^2+7*x^4+7*x^8) 9870047168896041 a007 Real Root Of 85*x^4-936*x^3+580*x^2-638*x+884 9870047196391236 m001 FeigenbaumMu^Backhouse/MasserGramain 9870047207491812 m002 Pi^2+Sech[Pi]/(2*Pi^4) 9870047225879503 p004 log(12829/12703) 9870047273091035 a001 6765/521*843^(9/14) 9870047301635927 a007 Real Root Of 763*x^4-258*x^3-641*x^2-133*x-479 9870047310936573 a001 1/7*(1/2*5^(1/2)+1/2)^2*4^(7/10) 9870047337674092 m005 (1/2*2^(1/2)-2/9)/(2/5*exp(1)-6) 9870047342763558 m001 HardHexagonsEntropy/cos(1/5*Pi)/ZetaP(3) 9870047343379656 r005 Im(z^2+c),c=-91/82+3/25*I,n=42 9870047348489957 a007 Real Root Of -578*x^4-816*x^3-287*x^2+733*x+767 9870047355600544 a007 Real Root Of -92*x^4-828*x^3+820*x^2+281*x-145 9870047372957312 m001 cos(1/5*Pi)/ln(2+3^(1/2))*ErdosBorwein 9870047378040569 a001 3571/121393*6765^(7/51) 9870047395091581 h001 (7/8*exp(1)+1/9)/(8/11*exp(1)+6/11) 9870047397970548 a003 sin(Pi*29/63)*sin(Pi*50/107) 9870047401681081 m008 (1/3*Pi^6-4)/(1/3*Pi^6+1/6) 9870047405291093 a007 Real Root Of -979*x^4+139*x^3+37*x^2-100*x+928 9870047407522082 r005 Re(z^2+c),c=-15/94+50/63*I,n=39 9870047430826355 a007 Real Root Of 142*x^4-382*x^3-49*x^2-98*x+377 9870047456061612 m001 (Zeta(1,2)-Lehmer)/(MertensB2-Sierpinski) 9870047509380860 r005 Im(z^2+c),c=-28/25+6/49*I,n=26 9870047535396121 m001 (Zeta(5)-exp(Pi))/(KomornikLoreti+ZetaP(2)) 9870047543581616 q001 3114/3155 9870047553055345 r005 Im(z^2+c),c=-25/38+7/15*I,n=54 9870047560096314 r002 21th iterates of z^2 + 9870047583042251 m001 BesselJ(1,1)*GAMMA(17/24)*KhinchinHarmonic 9870047597213165 a001 121393/2207*322^(1/2) 9870047620504552 m005 (1/3*Catalan-1/12)/(61/48+7/16*5^(1/2)) 9870047631141861 r009 Im(z^3+c),c=-2/21+58/59*I,n=15 9870047653017085 m001 (exp(Pi)+BesselI(0,2))/(-FeigenbaumD+OneNinth) 9870047663770756 m001 sin(1/5*Pi)/Pi^(1/2)/ReciprocalFibonacci 9870047679566862 h001 (1/9*exp(2)+1/2)/(1/11*exp(2)+2/3) 9870047709174826 a007 Real Root Of -937*x^4-800*x^3-153*x^2+544*x+806 9870047713548905 a007 Real Root Of -826*x^4-414*x^3+278*x^2+717*x-73 9870047723161427 m002 (6*Pi^3)/5+Pi^6-Cosh[Pi] 9870047731828057 a007 Real Root Of 643*x^4-637*x^3-587*x^2+395*x-261 9870047733985625 r009 Re(z^3+c),c=-103/114+28/57*I,n=2 9870047740095480 r005 Re(z^2+c),c=-11/10+27/254*I,n=2 9870047742295819 m005 (1/6*2^(1/2)-2/3)/(2/5*Catalan+4) 9870047748292062 m001 (FeigenbaumB+Trott)^ZetaP(4) 9870047750101273 r005 Im(z^2+c),c=35/86+9/53*I,n=5 9870047753830613 m001 (ln(2^(1/2)+1)+CareFree)/ErdosBorwein 9870047779258555 a007 Real Root Of 812*x^4-873*x^3-460*x^2+624*x-546 9870047786199693 r002 35th iterates of z^2 + 9870047786199693 r002 35th iterates of z^2 + 9870047875567906 m005 (1/3*Pi+1/7)/(9/11*Zeta(3)+2/9) 9870047876795432 a007 Real Root Of 490*x^4+307*x^3+577*x^2-149*x-879 9870047896108723 m002 Pi^2+(Log[Pi]*Sinh[Pi])/Pi^9 9870047903256278 p001 sum((-1)^n/(281*n+136)/n/(24^n),n=1..infinity) 9870047916038999 a003 cos(Pi*29/119)+cos(Pi*29/70) 9870047934926436 m001 (ln(2)/ln(10)+Pi^(1/2))/(MertensB1+Tribonacci) 9870047939825274 a001 1346269/11*123^(52/57) 9870047961708848 a008 Real Root of x^3-x^2-139*x-313 9870047979263104 r005 Im(z^2+c),c=-39/74+22/39*I,n=40 9870047989080850 r005 Im(z^2+c),c=-5/7+11/108*I,n=52 9870048006516208 b008 Cos[(1+3*Sqrt[3])^(-1)] 9870048007663823 h001 (8/9*exp(2)+3/10)/(6/7*exp(2)+5/8) 9870048034407409 m002 -(1/(E^Pi*Pi^4))-Pi^2 9870048038998860 a001 9349/317811*6765^(7/51) 9870048039735830 m005 (1/3*exp(1)+1/11)/(2/5*2^(1/2)+4/9) 9870048041352250 m005 (1/2*3^(1/2)-5/12)/(4*Catalan+8/9) 9870048045007130 a007 Real Root Of -141*x^4+369*x^3-333*x^2+276*x-169 9870048048763608 m003 1+(2*Cos[1/2+Sqrt[5]/2]*Csch[1/2+Sqrt[5]/2])/3 9870048080485105 a007 Real Root Of -493*x^4+483*x^3-406*x^2-785*x+553 9870048108145074 r002 40th iterates of z^2 + 9870048119051476 r005 Re(z^2+c),c=31/98+6/19*I,n=24 9870048121950068 m002 -2/3+E^Pi+Pi+Pi^6 9870048135431375 a001 6119/208010*6765^(7/51) 9870048158196004 a001 39603/1346269*6765^(7/51) 9870048162983117 r005 Im(z^2+c),c=-27/40+1/47*I,n=64 9870048164466112 a007 Real Root Of 713*x^4-743*x^3-998*x^2-141*x-558 9870048165304480 p001 sum((-1)^n/(443*n+179)/n/(16^n),n=1..infinity) 9870048173972856 m001 (Zeta(1/2)+Cahen)/(QuadraticClass-ZetaQ(2)) 9870048179212403 m001 (-MadelungNaCl+Magata)/(Zeta(5)-exp(1)) 9870048195029947 a001 15127/514229*6765^(7/51) 9870048208195167 m001 TwinPrimes/exp(-1/2*Pi)/arctan(1/3) 9870048222567651 m001 (Artin-Psi(1,1/3))/(-FeigenbaumMu+Sierpinski) 9870048223628902 m001 Riemann3rdZero^2/Riemann1stZero^2/exp(gamma)^2 9870048237142503 r009 Im(z^3+c),c=-15/86+47/48*I,n=11 9870048270200124 a007 Real Root Of 88*x^4+789*x^3-748*x^2+308*x-594 9870048280473294 m005 (1/3*3^(1/2)+1/9)/(1/11*gamma-3/4) 9870048342671555 m001 sin(1/5*Pi)-Robbin^(3^(1/2)) 9870048350558760 l006 ln(565/1516) 9870048350761001 r005 Im(z^2+c),c=-15/34+4/5*I,n=5 9870048418373969 m002 -Pi^5/3+Pi^5/(4*E^Pi) 9870048421206957 a001 4181/521*843^(5/7) 9870048435680267 a007 Real Root Of 564*x^4-994*x^3-625*x^2+203*x+829 9870048447493549 a001 2889/98209*6765^(7/51) 9870048490788935 m001 FeigenbaumKappa-exp(-1/2*Pi)*Pi^(1/2) 9870048504867133 a007 Real Root Of 758*x^4-21*x^3+80*x^2+886*x+57 9870048535474448 r002 50th iterates of z^2 + 9870048562931532 a007 Real Root Of -266*x^4+619*x^3+665*x^2-341*x-654 9870048571805073 a007 Real Root Of -117*x^4+523*x^3+711*x^2+683*x+61 9870048581735299 a007 Real Root Of -407*x^4+489*x^3+289*x^2+223*x+795 9870048700620335 a001 2576*9349^(37/41) 9870048718636909 r005 Re(z^2+c),c=-31/24+4/15*I,n=5 9870048720137690 r009 Im(z^3+c),c=-11/18+23/36*I,n=18 9870048752419913 a001 199/1597*75025^(22/37) 9870048768346113 a007 Real Root Of 679*x^4-977*x^3-895*x^2+931*x+207 9870048790402831 m005 (1/2*exp(1)-3)/(5*Pi+11/12) 9870048821263223 a007 Real Root Of -247*x^4+251*x^3+441*x^2+934*x+968 9870048834006301 a001 98209/9*15127^(29/41) 9870048840187221 m009 (32/5*Catalan+4/5*Pi^2-1)/(2/3*Psi(1,2/3)-3/4) 9870048850971022 m006 (1/6*exp(Pi)-1)/(2/3*Pi+4/5) 9870048861815493 a007 Real Root Of -628*x^4+574*x^3-290*x^2-584*x+854 9870048864417221 m002 Pi^2+Csch[Pi]/(2*Pi^4) 9870048887271956 m001 FeigenbaumKappa/GaussKuzminWirsing/ZetaP(2) 9870048922598556 r002 48th iterates of z^2 + 9870048927275546 a007 Real Root Of 715*x^4-868*x^3-87*x^2+662*x-775 9870048941850765 r002 57th iterates of z^2 + 9870048956190864 r001 40i'th iterates of 2*x^2-1 of 9870048985895718 a007 Real Root Of 975*x^4-486*x^3-383*x^2+886*x-145 9870049004699449 a001 2584/521*843^(11/14) 9870049005669084 p004 log(27017/10069) 9870049008115092 m001 exp(Riemann1stZero)*FeigenbaumB^2/cos(Pi/12) 9870049021126279 m001 exp(Si(Pi))^2/FibonacciFactorial/FeigenbaumC^2 9870049024626670 a007 Real Root Of 928*x^4+833*x^3-408*x^2+209*x+524 9870049029107595 a007 Real Root Of 588*x^4-503*x^3+494*x^2+930*x-605 9870049042289233 a003 cos(Pi*1/54)*sin(Pi*33/73) 9870049065280133 m002 -4+(E^Pi*Pi*Log[Pi])/6 9870049069063394 m001 Porter/(MasserGramainDelta^TwinPrimes) 9870049085417164 m001 ln(3)+Zeta(1,-1)+ZetaQ(2) 9870049092326743 m008 (3/5*Pi^6+2)/(3/5*Pi^4+1/5) 9870049097457659 r005 Re(z^2+c),c=27/110+20/63*I,n=41 9870049099351092 a007 Real Root Of -947*x^4+370*x^3-262*x^2-560*x+957 9870049120522791 m001 (3^(1/3))^gamma(2)/(Artin^gamma(2)) 9870049129200496 r005 Re(z^2+c),c=-29/32+1/18*I,n=28 9870049175963802 m001 (-GAMMA(3/4)+Magata)/(Zeta(5)-exp(Pi)) 9870049185341660 r001 64i'th iterates of 2*x^2-1 of 9870049189533987 m001 (-KhinchinHarmonic+Tribonacci)/(gamma+Artin) 9870049212706220 a007 Real Root Of 418*x^4-514*x^3-324*x^2+825*x+239 9870049223964252 b008 9*Sqrt[Sec[(3*Pi)/16]] 9870049229983140 l003 KelvinBer(0,85/89) 9870049258104189 a001 987/521*843^(13/14) 9870049269177225 m001 (AlladiGrinstead*Stephens-MertensB2)/Stephens 9870049284516181 a007 Real Root Of 972*x^4+296*x^3-214*x^2-490*x-913 9870049328038234 a001 105937/1926*322^(1/2) 9870049338177526 p004 log(17921/6679) 9870049359036707 r009 Re(z^3+c),c=-67/118+23/45*I,n=27 9870049359862101 m001 LambertW(1)^2/exp(RenyiParking)/cosh(1) 9870049412020286 a007 Real Root Of 264*x^4+640*x^3+455*x^2-725*x-794 9870049432554111 l006 ln(6719/7416) 9870049445675774 a007 Real Root Of 149*x^4-993*x^3+636*x^2-139*x+331 9870049450022488 a003 sin(Pi*19/96)-sin(Pi*26/109) 9870049504950495 q001 1595/1616 9870049514527626 a001 53316291173/29*7^(19/22) 9870049518855291 h001 (6/7*exp(1)+4/5)/(10/11*exp(1)+7/10) 9870049535391541 a007 Real Root Of 106*x^4-399*x^3+314*x^2+990*x+187 9870049545096462 a007 Real Root Of 52*x^4+519*x^3+28*x^2-268*x+163 9870049555610849 m002 Pi^2+(Cosh[Pi]*Log[Pi])/Pi^9 9870049558522733 a007 Real Root Of 364*x^4+237*x^3+287*x^2+219*x-181 9870049571803711 m005 (1/2*exp(1)-6/11)/(5/7*Pi+6) 9870049580562259 a001 832040/15127*322^(1/2) 9870049586552017 a007 Real Root Of -796*x^4-545*x^3-715*x^2-236*x+695 9870049617405018 a001 726103/13201*322^(1/2) 9870049618126044 r005 Re(z^2+c),c=-43/44+7/64*I,n=3 9870049622780305 a001 5702887/103682*322^(1/2) 9870049623564548 a001 4976784/90481*322^(1/2) 9870049623678968 a001 39088169/710647*322^(1/2) 9870049623695661 a001 831985/15126*322^(1/2) 9870049623698097 a001 267914296/4870847*322^(1/2) 9870049623698452 a001 233802911/4250681*322^(1/2) 9870049623698504 a001 1836311903/33385282*322^(1/2) 9870049623698512 a001 1602508992/29134601*322^(1/2) 9870049623698513 a001 12586269025/228826127*322^(1/2) 9870049623698513 a001 10983760033/199691526*322^(1/2) 9870049623698513 a001 86267571272/1568397607*322^(1/2) 9870049623698513 a001 75283811239/1368706081*322^(1/2) 9870049623698513 a001 591286729879/10749957122*322^(1/2) 9870049623698513 a001 12585437040/228811001*322^(1/2) 9870049623698513 a001 4052739537881/73681302247*322^(1/2) 9870049623698513 a001 3536736619241/64300051206*322^(1/2) 9870049623698513 a001 6557470319842/119218851371*322^(1/2) 9870049623698513 a001 2504730781961/45537549124*322^(1/2) 9870049623698513 a001 956722026041/17393796001*322^(1/2) 9870049623698513 a001 365435296162/6643838879*322^(1/2) 9870049623698513 a001 139583862445/2537720636*322^(1/2) 9870049623698513 a001 53316291173/969323029*322^(1/2) 9870049623698513 a001 20365011074/370248451*322^(1/2) 9870049623698514 a001 7778742049/141422324*322^(1/2) 9870049623698516 a001 2971215073/54018521*322^(1/2) 9870049623698536 a001 1134903170/20633239*322^(1/2) 9870049623698672 a001 433494437/7881196*322^(1/2) 9870049623699602 a001 165580141/3010349*322^(1/2) 9870049623705979 a001 63245986/1149851*322^(1/2) 9870049623749683 a001 24157817/439204*322^(1/2) 9870049624049237 a001 9227465/167761*322^(1/2) 9870049626102414 a001 3524578/64079*322^(1/2) 9870049640175096 a001 1346269/24476*322^(1/2) 9870049694427032 m002 Pi^2+Coth[Pi]/(E^Pi*Pi^4) 9870049702342137 a001 167761*6557470319842^(5/17) 9870049702695011 a001 20633239*514229^(5/17) 9870049702695690 a001 1860498*1836311903^(5/17) 9870049703708719 a007 Real Root Of 147*x^4+156*x^3-141*x^2-935*x-775 9870049722769871 r009 Im(z^3+c),c=-9/98+54/55*I,n=3 9870049735838518 r005 Re(z^2+c),c=-21/22+13/72*I,n=19 9870049736630695 a001 514229/9349*322^(1/2) 9870049787863602 m001 ln(Pi)/PisotVijayaraghavan/ZetaQ(3) 9870049806578890 m006 (3/4*Pi^2-2/5)/(2/3*Pi+5) 9870049806578890 m008 (3/4*Pi^2-2/5)/(2/3*Pi+5) 9870049837074441 r005 Im(z^2+c),c=-1/11+19/24*I,n=21 9870049866750366 r001 61i'th iterates of 2*x^2-1 of 9870049870805908 m001 GAMMA(17/24)^2/GAMMA(1/6)*exp(Zeta(3)) 9870049877706935 r005 Re(z^2+c),c=-93/82+10/37*I,n=48 9870049886628093 a007 Real Root Of 471*x^4-316*x^3-349*x^2+243*x-171 9870049908860194 m001 (GAMMA(2/3)+ln(5))/(PlouffeB-StronglyCareFree) 9870049955048555 r005 Re(z^2+c),c=-29/34+21/104*I,n=25 9870049955297386 a001 2/4106118243*3^(9/14) 9870049995100486 a007 Real Root Of -155*x^4+369*x^3-793*x^2-660*x+623 9870050015361927 a003 sin(Pi*22/49)*sin(Pi*41/83) 9870050040021383 a001 1364/1597*1597^(1/51) 9870050088450664 a001 1346269/18*2207^(26/41) 9870050088630793 a003 sin(Pi*16/77)/sin(Pi*23/109) 9870050092729579 r005 Im(z^2+c),c=-37/50+7/39*I,n=45 9870050110855470 m001 (1+ReciprocalLucas)/(-Weierstrass+ZetaP(3)) 9870050134763228 r005 Im(z^2+c),c=17/60+1/61*I,n=52 9870050177904819 a001 2207/75025*6765^(7/51) 9870050192752487 r009 Im(z^3+c),c=-45/64+19/35*I,n=5 9870050201000067 m001 (ln(3)-GaussAGM)/(Khinchin-Trott) 9870050216977571 m001 (Otter-ZetaP(3))/(Landau-MertensB1) 9870050270320453 r009 Im(z^3+c),c=-11/60+57/59*I,n=27 9870050287742021 a007 Real Root Of -124*x^4+830*x^3+617*x^2-504*x-784 9870050328565215 g002 Psi(11/12)+Psi(3/5)+Psi(2/5)-Psi(2/11) 9870050356124405 l006 ln(3289/8825) 9870050376429820 r005 Im(z^2+c),c=-47/110+9/55*I,n=26 9870050376520026 a007 Real Root Of -898*x^4+539*x^3+643*x^2-609*x+143 9870050381701873 r009 Im(z^3+c),c=-23/56+31/45*I,n=32 9870050397747258 a001 196418/3571*322^(1/2) 9870050403698625 a007 Real Root Of -585*x^4+28*x^3+391*x^2+400*x+596 9870050416353616 r009 Im(z^3+c),c=-2/21+58/59*I,n=17 9870050417088367 m005 (4*Catalan+3/4)/(1/3*Pi-3/5) 9870050419256763 a007 Real Root Of 10*x^4+979*x^3-782*x^2+802*x+233 9870050468467215 m008 (1/5*Pi^4-4/5)/(1/5*Pi^6-3) 9870050473209808 a007 Real Root Of 952*x^4-266*x^3+301*x^2+503*x-956 9870050479179343 a007 Real Root Of -562*x^4+638*x^3+435*x^2-690*x+42 9870050490878970 m001 Niven^2/MertensB1^2*exp(BesselK(0,1))^2 9870050519057222 r005 Re(z^2+c),c=-1/106+14/37*I,n=14 9870050522475975 a007 Real Root Of -103*x^4+496*x^3-27*x^2+528*x-874 9870050525610127 m001 Zeta(1,2)^(FellerTornier/BesselI(1,2)) 9870050528459423 m005 (1/2*gamma-3/4)/(10/11*2^(1/2)-9/11) 9870050541920308 a007 Real Root Of -791*x^4+646*x^3+924*x^2+437*x+903 9870050555941372 a007 Real Root Of -354*x^4+292*x^3+740*x^2+987*x+870 9870050592686526 m001 (MinimumGamma-Salem)/(FeigenbaumB-Landau) 9870050606192591 r005 Im(z^2+c),c=-33/23+6/43*I,n=7 9870050622031179 m006 (3/5*ln(Pi)-3/5)/(4/5/Pi-1/6) 9870050652726699 r005 Im(z^2+c),c=-1/86+26/27*I,n=4 9870050659269539 h001 (2/11*exp(1)+1/8)/(8/11*exp(2)+9/10) 9870050673454170 m001 (ln(3)-exp(1/Pi))/(GolombDickman-Gompertz) 9870050710375745 m003 2-Cos[1/2+Sqrt[5]/2]/6+3*Cosh[1/2+Sqrt[5]/2] 9870050752414641 a007 Real Root Of 769*x^4-734*x^3-935*x^2+408*x-122 9870050767864485 a001 1/3*(1/2*5^(1/2)+1/2)^4*76^(20/23) 9870050772109887 l006 ln(2724/7309) 9870050776402166 r009 Im(z^3+c),c=-2/21+58/59*I,n=21 9870050789580400 r005 Im(z^2+c),c=-17/30+11/119*I,n=3 9870050799860278 m001 ln(2)^Porter/(ReciprocalFibonacci^Porter) 9870050818342834 a005 (1/cos(3/62*Pi))^1190 9870050862557701 s002 sum(A274945[n]/(exp(n)-1),n=1..infinity) 9870050877667328 a007 Real Root Of 83*x^4+751*x^3-770*x^2-966*x-112 9870050918087320 a007 Real Root Of 24*x^4-830*x^3-329*x^2+324*x+776 9870050932185747 r009 Im(z^3+c),c=-2/21+58/59*I,n=27 9870050933856695 r009 Im(z^3+c),c=-2/21+58/59*I,n=25 9870050934080539 r009 Im(z^3+c),c=-2/21+58/59*I,n=31 9870050934300144 r009 Im(z^3+c),c=-2/21+58/59*I,n=37 9870050934304842 r009 Im(z^3+c),c=-2/21+58/59*I,n=41 9870050934305078 r009 Im(z^3+c),c=-2/21+58/59*I,n=43 9870050934305080 r009 Im(z^3+c),c=-2/21+58/59*I,n=47 9870050934305089 r009 Im(z^3+c),c=-2/21+58/59*I,n=51 9870050934305089 r009 Im(z^3+c),c=-2/21+58/59*I,n=53 9870050934305089 r009 Im(z^3+c),c=-2/21+58/59*I,n=57 9870050934305089 r009 Im(z^3+c),c=-2/21+58/59*I,n=63 9870050934305089 r009 Im(z^3+c),c=-2/21+58/59*I,n=61 9870050934305089 r009 Im(z^3+c),c=-2/21+58/59*I,n=59 9870050934305089 r009 Im(z^3+c),c=-2/21+58/59*I,n=55 9870050934305091 r009 Im(z^3+c),c=-2/21+58/59*I,n=49 9870050934305113 r009 Im(z^3+c),c=-2/21+58/59*I,n=45 9870050934306585 r009 Im(z^3+c),c=-2/21+58/59*I,n=39 9870050934312627 r009 Im(z^3+c),c=-2/21+58/59*I,n=35 9870050934328277 r009 Im(z^3+c),c=-2/21+58/59*I,n=33 9870050935228734 r009 Im(z^3+c),c=-2/21+58/59*I,n=29 9870050940401725 a007 Real Root Of 829*x^4-278*x^3-494*x^2+708*x+126 9870050951967414 p004 log(20411/7607) 9870050964313732 r009 Im(z^3+c),c=-2/21+58/59*I,n=23 9870050968187385 a007 Real Root Of -917*x^4-486*x^3-923*x^2-683*x+628 9870051020396937 a007 Real Root Of 558*x^4-82*x^3+193*x^2-186*x-980 9870051021347912 r009 Im(z^3+c),c=-11/64+1/11*I,n=6 9870051056773412 a007 Real Root Of 759*x^4-716*x^3-910*x^2+596*x+66 9870051066395780 a001 1597/521*843^(6/7) 9870051078239498 a005 (1/cos(5/123*Pi))^280 9870051112245244 m002 Pi^2+(2*ProductLog[Pi])/(5*Pi^6) 9870051119884852 h001 (8/9*exp(2)+4/7)/(6/7*exp(2)+9/10) 9870051129866773 a007 Real Root Of 685*x^4+439*x^3+181*x^2-331*x-731 9870051140043573 r005 Re(z^2+c),c=-45/46+11/30*I,n=7 9870051141712073 m001 ln(GAMMA(1/24))/BesselK(0,1)*log(2+sqrt(3)) 9870051156942526 p001 sum(1/(379*n+102)/(32^n),n=0..infinity) 9870051184082031 r002 3th iterates of z^2 + 9870051192533256 r005 Re(z^2+c),c=-7/6+43/169*I,n=23 9870051200151626 a003 sin(Pi*1/63)+sin(Pi*46/119) 9870051235419203 r002 12th iterates of z^2 + 9870051249778135 r002 5th iterates of z^2 + 9870051272577166 a007 Real Root Of 749*x^4-468*x^3+273*x^2+557*x-877 9870051288101892 m001 FeigenbaumB^(PisotVijayaraghavan*ZetaQ(2)) 9870051314315395 r005 Re(z^2+c),c=-29/32+1/18*I,n=32 9870051318253606 a001 5/76*39603^(11/43) 9870051342215355 a007 Real Root Of 65*x^4+138*x^3+958*x^2-97*x-958 9870051349138788 m005 (15/28+1/4*5^(1/2))/(3/10*Pi+1/6) 9870051351303043 m001 (ZetaP(2)+ZetaP(4))/(Champernowne+ThueMorse) 9870051351565754 a007 Real Root Of -582*x^4-652*x^3-814*x^2+108*x+825 9870051367805299 r005 Im(z^2+c),c=5/34+49/62*I,n=4 9870051375037775 q001 3266/3309 9870051378325002 r005 Re(z^2+c),c=-79/82+11/51*I,n=50 9870051385219631 m002 Pi^2+(5*Sech[Pi]*Tanh[Pi])/Pi^6 9870051405598208 r009 Im(z^3+c),c=-2/21+58/59*I,n=19 9870051405818167 l006 ln(2159/5793) 9870051408960618 m002 E^Pi+4*Pi^3+Pi^6/Log[Pi] 9870051410334840 r005 Im(z^2+c),c=-101/90+4/33*I,n=24 9870051424695907 a001 17/299537289*11^(3/13) 9870051453171333 m001 (2^(1/2)-Psi(1,1/3))/(-ln(3)+KhinchinLevy) 9870051453228411 m006 (1/4*Pi-3/5)/(5/6*exp(Pi)-1/2) 9870051526603118 a007 Real Root Of 681*x^4+423*x^3+527*x^2+696*x-66 9870051555866191 m005 (2*Pi+1/5)/(4*2^(1/2)-5) 9870051557556610 m001 1/Catalan^2/exp(Si(Pi))/Ei(1) 9870051588929738 m001 ln(GAMMA(11/12))*GAMMA(1/24)/GAMMA(17/24) 9870051594417242 a001 17711/843*322^(2/3) 9870051609294579 m009 (2*Pi^2-3/5)/(2*Psi(1,1/3)-4/5) 9870051619072724 r001 18i'th iterates of 2*x^2-1 of 9870051644764091 m001 (Artin+FeigenbaumB)/(MasserGramain+Stephens) 9870051658070677 s002 sum(A198839[n]/(exp(n)+1),n=1..infinity) 9870051660931381 m002 6+Log[Pi]+Pi/ProductLog[Pi]^2 9870051661569750 a007 Real Root Of 527*x^4-48*x^3+460*x^2+507*x-494 9870051687712478 r002 9th iterates of z^2 + 9870051707780715 p004 log(32707/29633) 9870051749155055 m001 ln(GAMMA(1/4))^2/ArtinRank2^2/sin(Pi/5)^2 9870051759152266 a007 Real Root Of -623*x^4+136*x^3-424*x^2-457*x+684 9870051816501158 l005 ln(sec(107/90)) 9870051823444524 a007 Real Root Of 835*x^4+668*x^3+24*x^2-194*x-365 9870051826063860 r002 17th iterates of z^2 + 9870051848219423 a007 Real Root Of -349*x^4+35*x^3+696*x^2+990*x+91 9870051865775871 l006 ln(3753/10070) 9870051867992448 r005 Re(z^2+c),c=-93/98+4/21*I,n=59 9870051943037884 p004 log(34487/12853) 9870051951909225 a007 Real Root Of -654*x^4-400*x^3-94*x^2+510*x+831 9870051998963814 s002 sum(A001150[n]/(n*2^n-1),n=1..infinity) 9870052011102854 r005 Re(z^2+c),c=-53/56+11/56*I,n=47 9870052015471566 m002 6-Pi^(-1)+3*Pi^3 9870052040001317 h001 (-exp(3)-4)/(-12*exp(3)-3) 9870052051496584 p004 log(14347/5347) 9870052074070172 a007 Real Root Of -149*x^4+54*x^3-888*x^2-585*x+481 9870052092625012 m002 -1+4*Pi^3-Pi^4+Pi^6 9870052108044220 m001 FeigenbaumB/Bloch/KomornikLoreti 9870052182933125 m001 (BesselK(0,1)+Zeta(3))/(BesselI(1,2)+ZetaQ(2)) 9870052232828406 m001 (Pi*2^(1/2)/GAMMA(3/4)+Artin*ZetaP(3))/Artin 9870052247476498 s002 sum(A137332[n]/(n^3*pi^n-1),n=1..infinity) 9870052258971286 a007 Real Root Of -985*x^4-11*x^3-87*x^2-926*x+95 9870052269733632 m001 (-ln(gamma)+4)/(ln(5)+3) 9870052270614229 a001 843/377*34^(8/19) 9870052276380608 a004 Fibonacci(13)*Lucas(14)/(1/2+sqrt(5)/2)^11 9870052296179594 m001 GaussAGM^ln(2^(1/2)+1)/(GaussAGM^cos(1/5*Pi)) 9870052339396187 m005 (1/2*Zeta(3)+5/12)/(1/3*exp(1)+1/8) 9870052363307709 r002 30i'th iterates of 2*x/(1-x^2) of 9870052386739439 a007 Real Root Of 544*x^4-251*x^3-567*x^2-635*x-832 9870052391317461 a007 Real Root Of 486*x^4-799*x^3-778*x^2+264*x-211 9870052394955198 m001 (Kac-StolarskyHarborth)/(Weierstrass+ZetaP(4)) 9870052415666909 a003 cos(Pi*1/106)*cos(Pi*5/99) 9870052418358013 a007 Real Root Of 795*x^4-557*x^3-42*x^2+452*x-803 9870052424470805 a007 Real Root Of -562*x^4+849*x^3-94*x^2-519*x+929 9870052431368570 a007 Real Root Of 45*x^4+366*x^3-854*x^2-763*x+519 9870052442182994 m005 (-21/44+1/4*5^(1/2))/(2/7*3^(1/2)+1/3) 9870052488767482 l006 ln(1594/4277) 9870052489209429 a007 Real Root Of 780*x^4+749*x^3+757*x^2+576*x-189 9870052509172145 a007 Real Root Of 472*x^4+824*x^3+616*x^2-211*x-464 9870052517104007 r002 3th iterates of z^2 + 9870052519154459 a001 3/75025*5^(32/57) 9870052521548230 a007 Real Root Of -294*x^4+531*x^3-913*x^2-846*x+844 9870052553601367 m001 (Pi-exp(Pi)-1)/Pi/csc(5/12*Pi)*GAMMA(7/12) 9870052583285005 a007 Real Root Of -885*x^4+718*x^3+916*x^2+141*x-882 9870052671079632 m001 Zeta(1/2)^exp(1/Pi)/Niven 9870052676222239 a003 cos(Pi*12/119)/sin(Pi*45/109) 9870052705260367 m001 (LaplaceLimit-Weierstrass)/(GAMMA(7/12)+Artin) 9870052708371830 a007 Real Root Of -616*x^4+441*x^3+850*x^2-879*x-687 9870052778548266 m001 1/Salem*ln(Khintchine)*Trott^2 9870052805189367 a003 cos(Pi*5/96)/sin(Pi*57/116) 9870052823081248 m005 (1/2*Pi+1/10)/(6/7*Pi-1) 9870052835059833 r005 Im(z^2+c),c=27/74+23/48*I,n=6 9870052892884325 a007 Real Root Of -838*x^4-989*x^3-198*x^2+864*x+890 9870052972106517 m005 (1/2*2^(1/2)-1/10)/(2/9*3^(1/2)-1) 9870052984538479 m001 Rabbit^(Paris/Sierpinski) 9870053016004078 a007 Real Root Of -756*x^4+858*x^3+987*x^2-313*x+272 9870053029623883 m005 (1/2*Zeta(3)+1)/(149/198+7/18*5^(1/2)) 9870053050397877 a001 372101/377 9870053057777568 m002 -Pi^2-(5*Sech[Pi])/Pi^6 9870053071740546 a001 20633239/233*6557470319842^(12/17) 9870053071740569 a001 6643838879/233*1836311903^(12/17) 9870053071745839 a001 2139295485799/233*514229^(12/17) 9870053081712204 m001 (BesselK(1,1)+GaussAGM)/(Gompertz+Thue) 9870053099175536 m005 (1/3*Pi-1/6)/(2/9*Zeta(3)+5/8) 9870053123899554 r002 18th iterates of z^2 + 9870053156332412 m004 -5-30/Pi+25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870053160070880 q001 1671/1693 9870053160237402 m008 (1/2*Pi^4-3/5)/(5*Pi^4+1/3) 9870053189078030 r005 Re(z^2+c),c=-25/26+12/77*I,n=23 9870053229997755 p004 log(25391/9463) 9870053257779780 r005 Im(z^2+c),c=-23/34+19/115*I,n=18 9870053269491992 a007 Real Root Of -806*x^4-361*x^3+295*x^2-737*x-597 9870053275060114 m005 (1/2*5^(1/2)-4/9)/(8/9*3^(1/2)-6/7) 9870053319488668 m001 (FeigenbaumB-sin(1))/(RenyiParking+ZetaP(3)) 9870053322229603 a007 Real Root Of -422*x^4+327*x^3+178*x^2-577*x-28 9870053331649287 r005 Re(z^2+c),c=-101/106+9/56*I,n=5 9870053358563329 a007 Real Root Of 583*x^4+237*x^3+479*x^2+690*x-111 9870053367157889 m001 cos(1/5*Pi)^DuboisRaymond+Trott2nd 9870053380146567 l006 ln(2623/7038) 9870053383165638 a001 514229/843*123^(1/10) 9870053395335196 a005 (1/cos(19/159*Pi))^255 9870053411462884 a007 Real Root Of 853*x^4+187*x^3+308*x^2+557*x-380 9870053443171391 m005 (1/3*Pi-1/10)/(2^(1/2)-5/11) 9870053489794092 a007 Real Root Of -109*x^4+383*x^3-293*x^2+953*x-920 9870053520486961 m001 (gamma(2)+Robbin)/(sin(1/5*Pi)-gamma(1)) 9870053523331765 r009 Re(z^3+c),c=-23/110+37/57*I,n=16 9870053529099353 b008 3*(-33+Csch[3]) 9870053551994109 g005 GAMMA(1/11)*GAMMA(5/7)/GAMMA(3/11)/GAMMA(2/9) 9870053565178765 a007 Real Root Of -805*x^4+912*x^3+696*x^2-89*x+875 9870053595677873 l006 ln(3239/3575) 9870053618891287 r009 Re(z^3+c),c=-4/31+22/63*I,n=5 9870053666175145 a007 Real Root Of 858*x^4-490*x^3+179*x^2+632*x-836 9870053689728504 s002 sum(A202737[n]/(n^2*pi^n+1),n=1..infinity) 9870053698091017 r005 Im(z^2+c),c=-5/7+5/38*I,n=16 9870053725166106 a007 Real Root Of 511*x^4-694*x^3-192*x^2+369*x-601 9870053769209593 l006 ln(3652/9799) 9870053771912936 a007 Real Root Of 560*x^4-783*x^3-522*x^2+246*x-533 9870053801570113 m001 Sarnak^(exp(-1/2*Pi)*DuboisRaymond) 9870053831810262 m001 (Chi(1)+ln(Pi))/(GAMMA(17/24)+Sarnak) 9870053855564760 r005 Im(z^2+c),c=-25/44+1/56*I,n=64 9870053864589574 a007 Real Root Of -964*x^4-250*x^3+899*x^2+669*x+459 9870053895618239 m002 10/(E^Pi*Pi^6)+Pi^2 9870053923603586 r009 Re(z^3+c),c=-31/126+43/60*I,n=23 9870053969246569 a003 cos(Pi*1/56)*cos(Pi*4/83) 9870053992126564 m008 (5/6*Pi^6+5)/(1/6*Pi^3+3) 9870054011245295 m006 (3/5*ln(Pi)-4)/(1/6*exp(Pi)-1/2) 9870054012311081 m001 (GAMMA(2/3)+Zeta(1,2))/(2^(1/3)-Chi(1)) 9870054019426019 a007 Real Root Of -830*x^4+407*x^3+701*x^2+87*x+582 9870054026061197 a007 Real Root Of -485*x^4+694*x^3+293*x^2-605*x+245 9870054083232044 b008 Cos[ArcCoth[25/4]] 9870054099287721 m001 (CareFree-Otter)/(GAMMA(3/4)+GAMMA(11/12)) 9870054105742874 m001 ln(3)*(Sarnak+ZetaP(3)) 9870054106467262 a001 11/1836311903*3^(5/11) 9870054124646741 r002 11th iterates of z^2 + 9870054148578836 r002 16th iterates of z^2 + 9870054160633934 r005 Re(z^2+c),c=7/78+30/43*I,n=7 9870054164742151 m002 -Pi^5/3+Sinh[Pi]/5+Tanh[Pi] 9870054167513730 a003 sin(Pi*5/13)/sin(Pi*21/53) 9870054168425246 m001 1/Kolakoski/GolombDickman^2/exp(Lehmer)^2 9870054205942710 a007 Real Root Of -421*x^4+532*x^3-700*x^2-693*x+909 9870054232017644 m001 CopelandErdos+Paris^Champernowne 9870054253578071 a001 196418/521*322^(1/6) 9870054267496930 a001 14662949395604/3*4807526976^(5/21) 9870054309800607 r005 Re(z^2+c),c=-59/62+11/60*I,n=33 9870054312688347 a007 Real Root Of -588*x^4+468*x^3+459*x^2+719*x+67 9870054318374945 m001 (gamma(1)+Zeta(1,2))/(Ei(1,1)-arctan(1/3)) 9870054318653601 m001 (-Artin+FeigenbaumD)/(LambertW(1)+Pi^(1/2)) 9870054321025001 a007 Real Root Of 398*x^4-41*x^3-427*x^2-551*x-545 9870054341943932 a007 Real Root Of -958*x^4+598*x^3+128*x^2-811*x+559 9870054359084834 a007 Real Root Of -764*x^4-363*x^3+973*x^2+727*x+62 9870054385060276 m001 GAMMA(7/12)*GAMMA(1/12)/exp(gamma) 9870054385060276 m001 GAMMA(7/12)/exp(gamma)*GAMMA(1/12) 9870054412456972 a001 11/1346269*17711^(37/51) 9870054468736467 a007 Real Root Of -959*x^4-432*x^3-132*x^2-898*x-263 9870054489007444 a007 Real Root Of 183*x^4-491*x^3+339*x^2+75*x-902 9870054519588996 m001 (GolombDickman+MertensB1)/(ln(2)-BesselI(1,2)) 9870054521196531 a007 Real Root Of -960*x^4-838*x^3-429*x^2+18*x+541 9870054547198135 a007 Real Root Of 330*x^4-259*x^3-869*x^2-127*x+159 9870054547730657 m001 BesselI(1,2)^gamma(2)/(ThueMorse^gamma(2)) 9870054550782968 m001 (FeigenbaumDelta+Robbin)/(Backhouse-Catalan) 9870054565154489 m005 (1/5*gamma-1)/(1/6*gamma+4/5) 9870054565154489 m007 (-1/5*gamma+1)/(-1/6*gamma-4/5) 9870054605001043 m001 ln(Ei(1))^2/CareFree/sin(Pi/5) 9870054610861301 a007 Real Root Of 64*x^4+699*x^3+574*x^2-875*x+172 9870054623939662 m001 (BesselI(0,1)+GAMMA(11/12))^exp(1) 9870054672535242 r009 Im(z^3+c),c=-77/114+15/31*I,n=9 9870054674844716 m002 -Pi^6+Log[Pi]^(-1)-E^Pi*Log[Pi] 9870054682508840 a007 Real Root Of 52*x^4+554*x^3+394*x^2-168*x-852 9870054694020001 a007 Real Root Of -810*x^4+842*x^3+718*x^2-858*x+32 9870054705692638 a007 Real Root Of 235*x^4-325*x^3+337*x^2+553*x-318 9870054710621662 a007 Real Root Of 482*x^4-284*x^3+196*x^2-34*x-955 9870054712846524 r005 Im(z^2+c),c=-7/27+41/55*I,n=11 9870054736594004 m002 -Pi^2-(5*Csch[Pi])/Pi^6 9870054760961048 l006 ln(1029/2761) 9870054785271814 m001 (Pi+Cahen)/(ReciprocalFibonacci+Weierstrass) 9870054798858419 a007 Real Root Of -853*x^4-626*x^3-59*x^2-917*x-640 9870054812687370 a007 Real Root Of -599*x^4+765*x^3+74*x^2+553*x-785 9870054841270478 a007 Real Root Of -106*x^4+397*x^3+611*x^2+27*x-903 9870054865723361 q001 3418/3463 9870054907049641 m001 FeigenbaumB*KhinchinHarmonic-GAMMA(2/3) 9870054929109972 a001 75025/1364*322^(1/2) 9870054967106666 a007 Real Root Of -752*x^4+957*x^3+794*x^2-820*x+51 9870055000998366 m004 -4/3+5*Pi-25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870055013949748 a001 1/7881196*76^(9/19) 9870055028199504 m001 BesselJ(1,1)+GAMMA(7/12)-Otter 9870055053116670 a007 Real Root Of 58*x^4+595*x^3+169*x^2-562*x-341 9870055053436299 m001 (3^(1/2)+gamma(2))/(MertensB3+ThueMorse) 9870055056700391 r005 Re(z^2+c),c=-13/14+92/251*I,n=3 9870055061021421 a007 Real Root Of -99*x^4-920*x^3+649*x^2+790*x-490 9870055062747866 a007 Real Root Of 564*x^4-589*x^3-109*x^2+200*x-798 9870055075894208 m001 (cos(1)-Pi*csc(5/24*Pi)/GAMMA(19/24))^gamma(2) 9870055096916294 r005 Re(z^2+c),c=13/44+25/58*I,n=11 9870055115715028 a001 3/46*18^(47/50) 9870055123370220 m001 1/Backhouse^2/Artin^2*ln(KhintchineLevy)^2 9870055176554562 m001 (FellerTornier+Khinchin)/(ln(5)-GAMMA(13/24)) 9870055223468605 m001 (Chi(1)+LandauRamanujan)/(-MertensB3+Otter) 9870055230517287 a003 sin(Pi*2/55)+sin(Pi*25/74) 9870055232157523 a001 3571/4181*1597^(1/51) 9870055233198856 a007 Real Root Of x^4+986*x^3-993*x^2-535*x+863 9870055241785643 a007 Real Root Of 510*x^4-87*x^3+335*x^2+923*x+17 9870055253434120 m005 (1/2*Pi+9/11)/(2/9*3^(1/2)-1/7) 9870055263947378 a003 cos(Pi*3/115)*sin(Pi*36/79) 9870055265048043 m004 4+5*Cos[Sqrt[5]*Pi]+2*Cot[Sqrt[5]*Pi] 9870055296726628 a007 Real Root Of 132*x^4-965*x^3+832*x^2-83*x+74 9870055301009481 a007 Real Root Of -72*x^4+160*x^3-246*x^2+448*x+904 9870055315563998 m001 (-gamma+FransenRobinson)/(1+2^(1/3)) 9870055330146278 m001 ln(GAMMA(3/4))^2/Ei(1)*GAMMA(5/12)^2 9870055334861372 r005 Im(z^2+c),c=-4/15+1/7*I,n=8 9870055355408612 m008 (5/6*Pi^2+5/6)/(3*Pi^5-1/3) 9870055362770016 r009 Im(z^3+c),c=-19/98+26/27*I,n=47 9870055415240679 r002 50th iterates of z^2 + 9870055421948222 s001 sum(exp(-4*Pi/5)^n*A150249[n],n=1..infinity) 9870055437555480 r002 3th iterates of z^2 + 9870055448965122 r002 34th iterates of z^2 + 9870055524465982 m005 (1/2*Catalan+9/11)/(Zeta(3)+1/11) 9870055530611256 a001 75025/2207*322^(7/12) 9870055547055856 p004 log(31643/28669) 9870055553300763 a007 Real Root Of 465*x^4-106*x^3+593*x^2+238*x-886 9870055567657525 m009 (1/3*Psi(1,1/3)-5/6)/(1/3*Psi(1,1/3)-4/5) 9870055567662960 a007 Real Root Of x^4+986*x^3-993*x^2-504*x-732 9870055576839026 a007 Real Root Of 40*x^4+404*x^3+103*x^2+137*x+162 9870055581117792 a007 Real Root Of 932*x^4+72*x^3+187*x^2+890*x-119 9870055583378221 a003 sin(Pi*1/100)/sin(Pi*10/97) 9870055616394553 a007 Real Root Of -187*x^4+546*x^3+618*x^2-45*x+56 9870055622429504 r009 Re(z^3+c),c=-11/70+32/61*I,n=20 9870055632553352 m005 (5/6*gamma-2/5)/(1/2*Pi-3/4) 9870055639626548 a007 Real Root Of 126*x^4-400*x^3+389*x^2+143*x-742 9870055675086881 a007 Real Root Of -318*x^4+555*x^3-126*x^2-63*x+896 9870055680532628 r005 Im(z^2+c),c=-31/58+1/54*I,n=20 9870055695029045 a007 Real Root Of 930*x^4+497*x^3+176*x^2+987*x+398 9870055750130635 a007 Real Root Of 589*x^4+918*x^3+70*x^2-812*x-80 9870055753266008 m005 (1/2*3^(1/2)+5/12)/(3/5*Catalan+3/4) 9870055763350478 a001 47/233*55^(21/53) 9870055777222893 r005 Re(z^2+c),c=-29/32+1/18*I,n=30 9870055780920481 l006 ln(3551/9528) 9870055838169504 a005 (1/sin(64/161*Pi))^218 9870055870905988 a007 Real Root Of -545*x^4+583*x^3+405*x^2-443*x+246 9870055890621586 h001 (2/5*exp(1)+4/7)/(1/7*exp(2)+5/8) 9870055893825292 h001 (5/7*exp(1)+3/5)/(11/12*exp(1)+1/12) 9870055897458833 a007 Real Root Of 689*x^4-36*x^3-622*x^2+573*x+483 9870055907799102 m001 (exp(1/Pi)+GAMMA(13/24))/(Otter+Paris) 9870055920994927 r005 Im(z^2+c),c=-22/27+3/55*I,n=20 9870055926823745 m001 1/exp(GAMMA(1/4))*Salem^2/GAMMA(11/24)^2 9870055973667445 r009 Im(z^3+c),c=-49/86+5/8*I,n=8 9870055988504560 r001 15i'th iterates of 2*x^2-1 of 9870055989680035 a001 9349/10946*1597^(1/51) 9870055994846017 a007 Real Root Of 571*x^4-805*x^3-691*x^2+788*x+135 9870056008180049 m001 (-Kolakoski+Totient)/(Champernowne-Psi(2,1/3)) 9870056020582250 r009 Re(z^3+c),c=-13/66+25/36*I,n=54 9870056060426869 r005 Re(z^2+c),c=-21/22+19/108*I,n=55 9870056072555985 r002 3th iterates of z^2 + 9870056089388187 a001 55/439204*18^(5/7) 9870056100201081 a001 24476/28657*1597^(1/51) 9870056116325885 a001 64079/75025*1597^(1/51) 9870056123356886 h001 (4/11*exp(1)+5/12)/(1/8*exp(2)+1/2) 9870056126291561 a001 13201/15456*1597^(1/51) 9870056134132821 m006 (3*exp(Pi)+3/5)/(2/3*Pi+5) 9870056136834876 r002 5th iterates of z^2 + 9870056168506844 a001 15127/17711*1597^(1/51) 9870056182286051 a007 Real Root Of 495*x^4+85*x^3+579*x^2+224*x-731 9870056184833348 a007 Real Root Of -826*x^4+14*x^3+257*x^2-924*x-365 9870056197073606 l006 ln(2522/6767) 9870056216779985 m001 1/Sierpinski/Niven^2*exp(Zeta(9))^2 9870056235522466 m005 (1/2*3^(1/2)+3/7)/(6*5^(1/2)-3/10) 9870056246857249 m001 Zeta(3)^Champernowne/(Zeta(3)^DuboisRaymond) 9870056293457587 a007 Real Root Of -8*x^4+889*x^3+29*x^2-427*x-454 9870056295934055 p002 log(1/10*(6^(2/3)+11^(1/4))*10^(1/3)) 9870056300017719 b008 94+ArcSinh[55] 9870056311082875 a001 1364/21*12586269025^(10/11) 9870056311768959 r005 Re(z^2+c),c=-155/126+22/63*I,n=6 9870056338329479 m001 (sin(1/12*Pi)+TravellingSalesman)/Paris 9870056346093305 r005 Re(z^2+c),c=-5/46+39/56*I,n=42 9870056354324770 a007 Real Root Of 158*x^4-437*x^3+395*x^2+390*x-570 9870056398013013 a007 Real Root Of 351*x^4-46*x^3+890*x^2+665*x-588 9870056421692359 m002 Pi^2+(5*Coth[Pi]*Csch[Pi])/Pi^6 9870056442721787 m001 (BesselK(1,1)+Totient)/(BesselJ(0,1)+Zeta(3)) 9870056455892898 b008 (2/3)^(1/31) 9870056457854702 a001 1926/2255*1597^(1/51) 9870056460311498 a007 Real Root Of 72*x^4-98*x^3+333*x^2+3*x-484 9870056475911108 r005 Re(z^2+c),c=-13/36+51/52*I,n=3 9870056497175141 q001 1747/1770 9870056520193930 r009 Re(z^3+c),c=-3/13+9/13*I,n=37 9870056521250955 a007 Real Root Of 225*x^4-339*x^3+49*x^2-207*x+269 9870056523560621 a007 Real Root Of -361*x^4-757*x^3-773*x^2+290*x+654 9870056551934205 a007 Real Root Of 967*x^4+454*x^3+265*x^2+205*x-537 9870056562322473 m001 (Paris-TreeGrowth2nd)/(Ei(1,1)-BesselI(1,1)) 9870056578500077 r005 Re(z^2+c),c=-109/90+7/46*I,n=26 9870056597993803 a003 cos(Pi*5/97)/sin(Pi*58/117) 9870056614665400 r009 Im(z^3+c),c=-11/64+1/11*I,n=7 9870056698088914 a007 Real Root Of 453*x^4-235*x^3+906*x^2+887*x-663 9870056700513472 s002 sum(A198966[n]/(n^2*10^n+1),n=1..infinity) 9870056718267331 r005 Re(z^2+c),c=-77/82+12/55*I,n=61 9870056771317427 a007 Real Root Of 567*x^4-24*x^3-383*x^2+149*x-41 9870056793732884 a007 Real Root Of 593*x^4-38*x^3-255*x^2+162*x-191 9870056828219928 a007 Real Root Of 385*x^4-720*x^3-968*x^2-282*x-393 9870056829208073 m001 1/RenyiParking*GlaisherKinkelin^2/ln(OneNinth) 9870056858544242 m005 (-11/20+1/4*5^(1/2))/(2/9*5^(1/2)+5/12) 9870056890402465 m001 (FeigenbaumC-cos(1))/(MasserGramain+Robbin) 9870056918497015 m005 (1/2*gamma+10/11)/(2/11*Pi-7/12) 9870056927058530 a007 Real Root Of 787*x^4-928*x^3-565*x^2+249*x-843 9870056928093002 a007 Real Root Of 115*x^4-442*x^3+722*x^2+655*x-591 9870056972582930 m002 E^Pi/4+3*Coth[Pi]+ProductLog[Pi] 9870056977882693 a007 Real Root Of 72*x^4-746*x^3-140*x^2+50*x+736 9870056991832227 m005 (1/2*Catalan+3/7)/(1/9*Catalan-1) 9870057001700760 m001 Kolakoski/(Lehmer^PrimesInBinary) 9870057009674606 m001 Shi(1)^GAMMA(3/4)*Shi(1)^Zeta(1/2) 9870057014119964 m002 Pi^2+(4*ProductLog[Pi])/Pi^8 9870057025694429 r002 24th iterates of z^2 + 9870057026476219 m006 (2*Pi^2-3/4)/(2*Pi^2-1/2) 9870057026476219 m008 (2*Pi^2-3/4)/(2*Pi^2-1/2) 9870057026476219 m009 (2*Pi^2-3/4)/(2*Pi^2-1/2) 9870057033558998 m002 Pi^2+Tanh[Pi]/(2*Pi^6*Log[Pi]) 9870057099329027 r002 17th iterates of z^2 + 9870057130164569 r005 Im(z^2+c),c=11/126+5/61*I,n=6 9870057162882283 a007 Real Root Of 978*x^4-49*x^3-598*x^2-285*x-674 9870057186865731 l006 ln(1493/4006) 9870057189275803 r008 a(0)=1,K{-n^6,9-43*n^3+48*n^2+60*n} 9870057202423881 a001 29*377^(57/58) 9870057261023769 a001 98209/2889*322^(7/12) 9870057272271973 r005 Re(z^2+c),c=-91/94+7/48*I,n=34 9870057289664169 m004 -6/5+5*Pi-25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870057317745032 r008 a(0)=1,K{-n^6,-17-16*n+59*n^2-24*n^3} 9870057353240643 m001 (Pi-BesselI(0,1))/(GAMMA(11/12)-Otter) 9870057464375248 a007 Real Root Of -651*x^4+396*x^3+951*x^2+549*x+614 9870057481575606 a007 Real Root Of 402*x^4-755*x^3-31*x^2+211*x-869 9870057513487603 a001 514229/15127*322^(7/12) 9870057517567957 a007 Real Root Of 378*x^4+62*x^3-103*x^2+248*x+46 9870057542514179 s002 sum(A261976[n]/(n*pi^n-1),n=1..infinity) 9870057550321581 a001 1346269/39603*322^(7/12) 9870057555695586 a001 1762289/51841*322^(7/12) 9870057556479642 a001 9227465/271443*322^(7/12) 9870057556594035 a001 24157817/710647*322^(7/12) 9870057556610724 a001 31622993/930249*322^(7/12) 9870057556613159 a001 165580141/4870847*322^(7/12) 9870057556613514 a001 433494437/12752043*322^(7/12) 9870057556613566 a001 567451585/16692641*322^(7/12) 9870057556613574 a001 2971215073/87403803*322^(7/12) 9870057556613575 a001 7778742049/228826127*322^(7/12) 9870057556613575 a001 10182505537/299537289*322^(7/12) 9870057556613575 a001 53316291173/1568397607*322^(7/12) 9870057556613575 a001 139583862445/4106118243*322^(7/12) 9870057556613575 a001 182717648081/5374978561*322^(7/12) 9870057556613575 a001 956722026041/28143753123*322^(7/12) 9870057556613575 a001 2504730781961/73681302247*322^(7/12) 9870057556613575 a001 3278735159921/96450076809*322^(7/12) 9870057556613575 a001 10610209857723/312119004989*322^(7/12) 9870057556613575 a001 4052739537881/119218851371*322^(7/12) 9870057556613575 a001 387002188980/11384387281*322^(7/12) 9870057556613575 a001 591286729879/17393796001*322^(7/12) 9870057556613575 a001 225851433717/6643838879*322^(7/12) 9870057556613575 a001 1135099622/33391061*322^(7/12) 9870057556613575 a001 32951280099/969323029*322^(7/12) 9870057556613575 a001 12586269025/370248451*322^(7/12) 9870057556613576 a001 1201881744/35355581*322^(7/12) 9870057556613579 a001 1836311903/54018521*322^(7/12) 9870057556613598 a001 701408733/20633239*322^(7/12) 9870057556613734 a001 66978574/1970299*322^(7/12) 9870057556614664 a001 102334155/3010349*322^(7/12) 9870057556621039 a001 39088169/1149851*322^(7/12) 9870057556664733 a001 196452/5779*322^(7/12) 9870057556964216 a001 5702887/167761*322^(7/12) 9870057558133711 m001 (exp(-1/2*Pi)-HeathBrownMoroz)/(Kac+Porter) 9870057559016903 a001 2178309/64079*322^(7/12) 9870057573086231 a001 208010/6119*322^(7/12) 9870057579281340 m001 1/exp(Khintchine)/GolombDickman^2/sqrt(Pi) 9870057580197629 b008 9+(2/7)^(1/9) 9870057608109573 a007 Real Root Of -627*x^4+810*x^3+894*x^2-773*x-260 9870057609843529 a007 Real Root Of -893*x^4+160*x^3-635*x^2-775*x+855 9870057645218231 a007 Real Root Of 357*x^4-698*x^3+79*x^2+546*x-548 9870057648773692 a001 54018521*6557470319842^(3/17) 9870057648773696 a001 228826127*1836311903^(3/17) 9870057648775013 a001 969323029*514229^(3/17) 9870057667070639 r008 a(0)=1,K{-n^6,48-43*n^3+43*n^2+28*n} 9870057669518839 a001 317811/9349*322^(7/12) 9870057685088805 b008 2+19*(-1+Sqrt[2]) 9870057701164710 m006 (3/4/Pi-1/4)/(Pi-2) 9870057714670147 a007 Real Root Of -917*x^4-773*x^3+650*x^2+753*x+237 9870057737456619 m002 Pi^2+Sinh[Pi]^2/Pi^11 9870057754937541 r008 a(0)=1,K{-n^6,26-39*n^3+20*n^2+69*n} 9870057762871375 a001 1/98209*610^(17/48) 9870057792064877 r008 a(0)=1,K{-n^6,35+27*n+40*n^2-24*n^3} 9870057797411443 r009 Im(z^3+c),c=-11/78+41/42*I,n=29 9870057814828324 m001 (HardyLittlewoodC5-Niven)/(Totient-Trott2nd) 9870057825293906 a001 38/17*21^(20/41) 9870057871397025 m002 (6*E^Pi)/Pi^2+Pi^6+Sinh[Pi] 9870057878824214 m002 Pi^2+Sinh[Pi]/(E^Pi*Pi^6*Log[Pi]) 9870057905479524 r005 Re(z^2+c),c=-87/98+6/49*I,n=44 9870057906906924 a007 Real Root Of 55*x^4-568*x^3-987*x^2+503*x+959 9870057910418058 l006 ln(3450/9257) 9870057926767190 a007 Real Root Of 221*x^4-525*x^3-194*x^2+343*x-187 9870058002639504 a001 9349/3*34^(17/52) 9870058021744456 a001 7/196418*610^(29/56) 9870058029117830 m005 (-7/12+1/6*5^(1/2))/(5/12*Zeta(3)-5/7) 9870058030031644 a007 Real Root Of 770*x^4-549*x^3-435*x^2-143*x-976 9870058059165053 q001 357/3617 9870058063144647 r005 Im(z^2+c),c=-13/12+29/124*I,n=20 9870058075002750 m001 1/GaussKuzminWirsing/ln(Riemann3rdZero)^3 9870058080530742 l006 ln(6237/6884) 9870058082821298 m001 (FellerTornier-MertensB2)/(Ei(1)-GAMMA(19/24)) 9870058106655659 r001 7i'th iterates of 2*x^2-1 of 9870058112552625 m001 (Pi+TravellingSalesman)^gamma(2) 9870058115166668 a007 Real Root Of -746*x^4-500*x^3-881*x^2-118*x+969 9870058116909235 m001 (GAMMA(19/24)-cos(1))/(-Cahen+ZetaQ(4)) 9870058179989353 r002 4th iterates of z^2 + 9870058216712964 a007 Real Root Of 444*x^4-457*x^3+431*x^2+950*x-343 9870058252451246 a007 Real Root Of 961*x^4+774*x^3-624*x^2+7*x+447 9870058254034175 m001 StronglyCareFree/(Conway-polylog(4,1/2)) 9870058298073967 m001 GAMMA(23/24)^2*GAMMA(11/12)/ln(GAMMA(7/24)) 9870058305167844 r009 Im(z^3+c),c=-23/114+24/25*I,n=59 9870058317609270 a007 Real Root Of 974*x^4-265*x^3-131*x^2+959*x-105 9870058330477819 a001 121393/3571*322^(7/12) 9870058360345578 r009 Im(z^3+c),c=-15/23+9/53*I,n=3 9870058370377325 r005 Re(z^2+c),c=1/58+5/59*I,n=5 9870058385216130 r002 14th iterates of z^2 + 9870058395201407 a007 Real Root Of 642*x^4-809*x^3-50*x^2+505*x-840 9870058441074480 a001 2207/2584*1597^(1/51) 9870058462417830 l006 ln(1957/5251) 9870058462524015 s002 sum(A001590[n]/((2^n+1)/n),n=1..infinity) 9870058529324645 r009 Im(z^3+c),c=-11/64+1/11*I,n=8 9870058536793772 a007 Real Root Of -889*x^4+239*x^3+786*x^2+599*x+899 9870058560216295 r002 11th iterates of z^2 + 9870058583576243 b008 Pi^2+BesselK[1,7] 9870058622826033 r005 Re(z^2+c),c=-7/8+71/223*I,n=5 9870058656527798 m001 (5^(1/2)-Psi(2,1/3))/(-ln(3)+polylog(4,1/2)) 9870058664430140 a003 sin(Pi*7/109)*sin(Pi*10/61) 9870058667075112 r009 Im(z^3+c),c=-11/64+1/11*I,n=12 9870058667088899 r009 Im(z^3+c),c=-11/64+1/11*I,n=13 9870058667094013 r009 Im(z^3+c),c=-11/64+1/11*I,n=14 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=18 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=19 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=20 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=24 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=25 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=26 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=30 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=31 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=32 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=36 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=37 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=38 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=42 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=43 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=44 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=45 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=46 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=47 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=48 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=41 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=40 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=39 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=35 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=34 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=33 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=29 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=28 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=27 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=23 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=22 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=21 9870058667094399 r009 Im(z^3+c),c=-11/64+1/11*I,n=17 9870058667094408 r009 Im(z^3+c),c=-11/64+1/11*I,n=16 9870058667094429 r009 Im(z^3+c),c=-11/64+1/11*I,n=15 9870058667325052 r009 Im(z^3+c),c=-11/64+1/11*I,n=11 9870058670454600 r009 Im(z^3+c),c=-11/64+1/11*I,n=10 9870058677624321 a007 Real Root Of -113*x^4+756*x^3-771*x^2+814*x-672 9870058677818068 a007 Real Root Of -571*x^4-220*x^3+784*x^2+594*x-66 9870058679245064 r009 Im(z^3+c),c=-11/64+1/11*I,n=9 9870058727252304 m002 Pi^2+1/(2*Pi^6*Log[Pi]) 9870058742706107 r008 a(0)=9,K{-n^6,-61-17*n+23*n^2+54*n^3} 9870058745878584 m002 Pi^2+Log[Pi]^2/(3*Pi^6) 9870058772970761 a007 Real Root Of 463*x^4-579*x^3+113*x^2+600*x-514 9870058773377859 a007 Real Root Of 840*x^4+238*x^3+959*x^2+571*x-939 9870058773749901 a007 Real Root Of -545*x^4-378*x^3-444*x^2+331*x+913 9870058775096515 s002 sum(A228008[n]/(n*exp(n)-1),n=1..infinity) 9870058776043616 r009 Im(z^3+c),c=-23/114+33/35*I,n=53 9870058786315020 r008 a(0)=0,K{-n^6,81-34*n^3+85*n^2-30*n} 9870058798442538 a007 Real Root Of -457*x^4+433*x^3+952*x^2+202*x+122 9870058831275762 m001 (BesselI(1,2)-GaussAGM)/(ln(2)-gamma(1)) 9870058844976307 m005 (1/2*3^(1/2)+1/11)/(5/9*5^(1/2)-3/11) 9870058860553644 a007 Real Root Of -335*x^4+172*x^3+107*x^2+544*x+916 9870058877494283 a007 Real Root Of -417*x^4+597*x^3-506*x^2-792*x+681 9870058917201762 a007 Real Root Of 169*x^4-459*x^3+510*x^2-548*x+325 9870058942388814 r005 Re(z^2+c),c=-25/29+13/63*I,n=11 9870058953026319 m001 (-Pi^(1/2)+StronglyCareFree)/(1-gamma(2)) 9870058956616960 m001 (Robbin-StronglyCareFree)/(ln(2)+arctan(1/2)) 9870058979345030 r009 Im(z^3+c),c=-17/106+35/36*I,n=23 9870059063713383 m001 Sarnak^Sierpinski/((Pi^(1/2))^Sierpinski) 9870059075863382 r005 Im(z^2+c),c=7/16+34/59*I,n=4 9870059090575108 m001 (Pi+GAMMA(7/12))/(Magata+PisotVijayaraghavan) 9870059093444521 m001 ln(3)^MertensB2/(ln(3)^GAMMA(19/24)) 9870059101519062 m001 1/exp(FransenRobinson)^2/Artin/Paris 9870059133441746 r005 Re(z^2+c),c=-83/86+7/47*I,n=9 9870059135231225 m005 (1/2*Zeta(3)+5/8)/(4/11*Catalan+10/11) 9870059143085559 m005 (-17/28+1/4*5^(1/2))/(5/7*Catalan-1/6) 9870059159353736 r001 31i'th iterates of 2*x^2-1 of 9870059168723191 a001 2/17711*4181^(13/50) 9870059192877528 m005 (1/2*Zeta(3)+7/12)/(7/11*2^(1/2)+3/10) 9870059195121697 a007 Real Root Of 508*x^4-730*x^3-706*x^2+135*x-363 9870059219470133 m001 (Kolakoski+Riemann2ndZero)/(Zeta(5)-exp(Pi)) 9870059219507351 m002 -1+(Cosh[Pi]*Coth[Pi]*ProductLog[Pi])/Pi^6 9870059242536599 a007 Real Root Of -84*x^4+692*x^3-958*x^2-973*x+718 9870059244157761 m002 Pi^2+(3*ProductLog[Pi])/(E^Pi*Pi^5) 9870059249034553 l006 ln(2421/6496) 9870059256054989 a007 Real Root Of -83*x^4-723*x^3+913*x^2-415*x-526 9870059290201261 a001 199/1346269*4181^(39/50) 9870059291215458 m001 sin(Pi/5)^2/ln(LaplaceLimit)*sinh(1) 9870059319781724 m001 Robbin^Trott*ZetaP(2)^Trott 9870059341241510 a007 Real Root Of -745*x^4-128*x^3+557*x^2-744*x-693 9870059355850838 a007 Real Root Of -231*x^4-15*x^3-821*x^2+466*x+54 9870059360206595 m001 LandauRamanujan/(polylog(4,1/2)-BesselJ(1,1)) 9870059374892561 r005 Im(z^2+c),c=-141/122+9/44*I,n=15 9870059421298941 a007 Real Root Of -851*x^4+687*x^3+88*x^2-965*x+430 9870059433783821 m002 Pi^2+(Cosh[Pi]*Sinh[Pi])/Pi^11 9870059485784271 a007 Real Root Of 684*x^4-677*x^3-338*x^2+784*x-197 9870059527752201 a007 Real Root Of 535*x^4-696*x^3-881*x^2+716*x+388 9870059547604132 m006 (3*ln(Pi)+4/5)/(4/5*exp(2*Pi)+3/5) 9870059550102483 a001 10946/843*322^(3/4) 9870059556036816 q001 1823/1847 9870059575680395 m002 Pi^2+Cosh[Pi]/(E^Pi*Pi^6*Log[Pi]) 9870059581391536 m005 (1/3*Zeta(3)-1/7)/(3/5*Pi+8/11) 9870059584711667 a003 cos(Pi*2/55)*cos(Pi*2/55) 9870059609219920 m005 (1/3*Pi-3)/(5/6*2^(1/2)+4/5) 9870059665792719 m001 1/3*3^(1/2)*gamma(3)*FeigenbaumB 9870059668477573 a007 Real Root Of -907*x^4-954*x^3-520*x^2-227*x+226 9870059679324833 m001 exp(1/exp(1))^gamma(2)/Psi(1,1/3) 9870059708308721 a007 Real Root Of 176*x^4+15*x^3+771*x^2+254*x-653 9870059718712898 a007 Real Root Of -703*x^4+904*x^3+562*x^2-393*x+601 9870059739499950 a007 Real Root Of -957*x^4-835*x^3+367*x^2+910*x+646 9870059750931686 m001 (2^(1/2)+3^(1/2))/(-Ei(1,1)+Magata) 9870059782625134 l006 ln(2885/7741) 9870059790261059 m001 (Totient+ZetaQ(4))/(BesselJ(1,1)-Stephens) 9870059804079274 r002 4th iterates of z^2 + 9870059833055918 a001 322/1597*75025^(16/29) 9870059860483398 r002 52th iterates of z^2 + 9870059867084750 m001 Zeta(7)^2/exp(GAMMA(5/6))/gamma^2 9870059874701997 r002 57th iterates of z^2 + 9870059894529817 r005 Im(z^2+c),c=35/118+37/60*I,n=10 9870059909190209 b008 -4*Pi+Cosh[Sqrt[E]] 9870059914000070 a007 Real Root Of 101*x^4-662*x^3-82*x^2-43*x+663 9870059914009843 a007 Real Root Of 227*x^4-634*x^3-692*x^2-762*x-903 9870059948154035 m001 (-GAMMA(5/6)+ThueMorse)/(BesselI(0,1)-cos(1)) 9870059967302626 m005 (3/28+1/4*5^(1/2))/(1/10*Catalan+7/12) 9870059980863383 s002 sum(A001870[n]/(n^2*exp(n)+1),n=1..infinity) 9870059991219144 a007 Real Root Of -771*x^4+327*x^3+622*x^2-525*x-78 9870059995096969 a001 73681302247*144^(1/17) 9870060023207800 r005 Re(z^2+c),c=-5/82+6/23*I,n=15 9870060031483823 m005 (1/2*5^(1/2)-1/2)/(2/7*Catalan+6) 9870060069504001 m004 -45/Pi+25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870060118759661 m001 Paris/(ArtinRank2^ZetaQ(4)) 9870060121289194 m001 1/(3^(1/3))^2*Riemann3rdZero*ln(BesselJ(1,1)) 9870060136846526 m002 5/3-Sinh[Pi]+Sinh[Pi]/Pi^6 9870060145282991 m001 (Zeta(5)-MertensB2)^Magata 9870060157433791 a007 Real Root Of -575*x^4+124*x^3+386*x^2+453*x+736 9870060166758956 a007 Real Root Of 316*x^4-918*x^3-265*x^2+430*x-500 9870060168359006 l006 ln(3349/8986) 9870060168630880 a007 Real Root Of 808*x^4+719*x^3-379*x^2-867*x-562 9870060176949642 a007 Real Root Of -681*x^4+995*x^3+220*x^2-717*x+681 9870060181481334 m005 (1/3*gamma-3/5)/(4/11*2^(1/2)-5/9) 9870060221610671 a007 Real Root Of -932*x^4+392*x^3+146*x^2-140*x+981 9870060285779962 a005 (1/cos(11/126*Pi))^181 9870060291646555 s002 sum(A248432[n]/(n!^3),n=1..infinity) 9870060308365012 r002 35th iterates of z^2 + 9870060345286496 r001 34i'th iterates of 2*x^2-1 of 9870060349825627 a001 23725150497407/5*3^(2/3) 9870060450813383 s001 sum(exp(-3*Pi/4)^n*A103152[n],n=1..infinity) 9870060460181836 b008 Cos[Coth[Pi/9]] 9870060489389117 r005 Im(z^2+c),c=-69/58+8/59*I,n=8 9870060519757920 r002 2th iterates of z^2 + 9870060519757920 r005 Re(z^2+c),c=37/106+40/53*I,n=2 9870060569988399 b008 75+Pi*Sinh[E] 9870060600399176 r005 Re(z^2+c),c=-17/18+19/91*I,n=39 9870060603416457 r008 a(0)=1,K{-n^6,35-21*n^3+n^2+57*n} 9870060612979111 a007 Real Root Of 73*x^4+21*x^3+436*x^2+167*x-309 9870060673599294 h001 (-4*exp(2/3)-4)/(-3*exp(1/2)-7) 9870060715152838 m001 arctan(1/2)/ErdosBorwein^2*ln(gamma) 9870060723642277 m001 (Niven-Riemann1stZero)/(polylog(4,1/2)-Cahen) 9870060748018734 r008 a(0)=1,K{-n^6,-6-4*n^3+7*n^2+8*n} 9870060753771850 a007 Real Root Of -169*x^4+568*x^3-724*x^2-936*x+488 9870060773491992 m004 6+5*Cos[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/5 9870060804608378 a007 Real Root Of -955*x^4+622*x^3+519*x^2-401*x+603 9870060830283335 m001 1/Magata/Kolakoski^2*exp(GAMMA(1/3))^2 9870060856936268 b008 E*Pi+9*Sinh[3] 9870060899358931 h001 (7/12*exp(1)+7/12)/(7/9*exp(1)+1/12) 9870060902451805 m001 (exp(-1/2*Pi)+MertensB2)/(Chi(1)+BesselK(0,1)) 9870060903923815 a003 cos(Pi*17/78)-sin(Pi*24/71) 9870060911302056 r002 5th iterates of z^2 + 9870060931356954 a007 Real Root Of 803*x^4+764*x^3+493*x^2+328*x-184 9870060949180134 a007 Real Root Of -597*x^4+341*x^3+541*x^2+263*x+627 9870060963437118 r005 Re(z^2+c),c=-27/29+22/63*I,n=3 9870060974440543 m001 (Paris+Stephens)/(FibonacciFactorial-Landau) 9870060975351418 m001 Zeta(3)^Cahen/(FibonacciFactorial^Cahen) 9870060991779368 q001 3722/3771 9870061007857994 a005 (1/cos(8/239*Pi))^829 9870061015765120 m001 (TreeGrowth2nd-ThueMorse)/(ln(5)+GAMMA(19/24)) 9870061017824139 a001 817138163596/233*1836311903^(10/17) 9870061017824139 a001 6643838879/233*6557470319842^(10/17) 9870061020591939 a007 Real Root Of 679*x^4-619*x^3-452*x^2+520*x-286 9870061034803687 m001 (GAMMA(13/24)-Bloch)/(3^(1/3)-sin(1/12*Pi)) 9870061049662049 s002 sum(A056334[n]/(2^n+1),n=1..infinity) 9870061050877011 r005 Re(z^2+c),c=-3/34+8/47*I,n=15 9870061130445199 r004 Re(z^2+c),c=-21/22-3/8*I,z(0)=-1,n=10 9870061136458464 m002 Pi^2+Cosh[Pi]^2/Pi^11 9870061183278560 r005 Re(z^2+c),c=-39/44+8/37*I,n=7 9870061186133627 a007 Real Root Of -772*x^4+277*x^3+477*x^2-592*x-50 9870061195607513 r005 Im(z^2+c),c=-37/106+17/22*I,n=4 9870061215812810 a007 Real Root Of 636*x^4-418*x^3-317*x^2+717*x+11 9870061235181432 a007 Real Root Of 583*x^4-652*x^3-839*x^2-220*x-580 9870061248315870 a007 Real Root Of -628*x^4-60*x^3-293*x^2-944*x-108 9870061256655341 r002 9th iterates of z^2 + 9870061311073335 a007 Real Root Of -589*x^4+275*x^3+950*x^2+379*x+272 9870061318072973 a007 Real Root Of 613*x^4+130*x^3+401*x^2-108*x-954 9870061325079350 a007 Real Root Of 403*x^4+57*x^3+573*x^2-66*x-951 9870061333763185 r005 Re(z^2+c),c=-59/48+22/59*I,n=4 9870061347007990 r002 19th iterates of z^2 + 9870061350007921 a007 Real Root Of -271*x^4-552*x^3-767*x^2-29*x+445 9870061373066919 r005 Re(z^2+c),c=-1/20+11/38*I,n=16 9870061391903424 m001 TwinPrimes/(Magata-Psi(1,1/3)) 9870061436265208 a001 121393/199*76^(1/9) 9870061440167575 m001 (Kac+LandauRamanujan)/(Artin-Grothendieck) 9870061489235282 a007 Real Root Of -745*x^4+695*x^3+524*x^2+208*x-677 9870061495484491 a007 Real Root Of -84*x^4-736*x^3+920*x^2-32*x-437 9870061499571397 a007 Real Root Of 268*x^4-657*x^3-630*x^2+299*x+696 9870061560609679 m006 (3/5*exp(2*Pi)+4)/(1/4/Pi+1/4) 9870061576266034 a007 Real Root Of 860*x^4+264*x^3-115*x^2+978*x+515 9870061579214877 m001 Zeta(1,2)^2*Bloch^2*exp(cos(Pi/5))^2 9870061615796526 a001 167761/21*63245986^(10/11) 9870061616129436 a001 20633239/21*317811^(10/11) 9870061643884534 m005 (1/2*3^(1/2)-5/12)/(1/2*gamma+1/6) 9870061653156919 m001 arctan(1/3)^(BesselK(0,1)*Trott2nd) 9870061661742671 b008 9+Tanh[4/3] 9870061665004601 m001 (KhinchinHarmonic-exp(1))^PlouffeB 9870061802124529 m005 (1/2*exp(1)-3/7)/(2/5*3^(1/2)+1/4) 9870061808732711 m002 Pi^4-Cosh[Pi]/Pi+5*Tanh[Pi] 9870061812307568 a007 Real Root Of -338*x^4+36*x^3+446*x^2+839*x+749 9870061829733685 m005 (1/2*2^(1/2)-5/11)/(4*gamma+1/4) 9870061834690319 a007 Real Root Of 160*x^4-173*x^3+921*x^2+969*x-259 9870061840686147 m001 (-Totient+ZetaQ(4))/(Riemann1stZero-gamma) 9870061849885100 r005 Im(z^2+c),c=-93/70+19/63*I,n=5 9870061851470615 r005 Im(z^2+c),c=-29/48+22/49*I,n=39 9870061859044874 m005 (1/2*exp(1)+1/9)/(7/8*exp(1)-8/9) 9870061861288500 a007 Real Root Of -513*x^4+332*x^3-9*x^2+142*x+955 9870061875227631 m001 (MertensB1+Thue)/(Catalan+Ei(1,1)) 9870061882710363 m001 Zeta(5)^(ln(2)/ln(10))/(Zeta(5)^Robbin) 9870061882786365 m005 (1/2*exp(1)+1/4)/(3/5*Zeta(3)+10/11) 9870061894153097 s002 sum(A056324[n]/(2^n+1),n=1..infinity) 9870061927242060 a007 Real Root Of x^4-250*x^3+208*x^2+234*x-213 9870061943456634 m001 ln(GAMMA(1/6))^2*FeigenbaumD^2/arctan(1/2)^2 9870061944443265 m001 1/ln(FeigenbaumKappa)^2/Rabbit/cosh(1) 9870061953435282 m001 cos(1/12*Pi)^(MertensB1/ln(2)) 9870061965152847 r005 Im(z^2+c),c=-4/17+5/36*I,n=17 9870061966638943 m001 arctan(1/2)*(Porter+Robbin) 9870061971063559 a007 Real Root Of -762*x^4+498*x^3-384*x^2-994*x+595 9870061984718170 m001 Magata/exp(Si(Pi))^2*Salem 9870062011565636 r008 a(0)=9,K{-n^6,-43-36*n+20*n^2+58*n^3} 9870062026916343 a007 Real Root Of -38*x^4+45*x^3+372*x^2+508*x-871 9870062038320108 a001 843/28657*6765^(7/51) 9870062039116092 r005 Im(z^2+c),c=-11/10+2/171*I,n=15 9870062039680426 a007 Real Root Of 748*x^4+474*x^3+190*x^2+215*x-227 9870062040902014 m001 (LaplaceLimit-BesselI(1,2))^ZetaP(3) 9870062098074783 r005 Re(z^2+c),c=-3/34+8/47*I,n=18 9870062098275673 a007 Real Root Of -389*x^4+751*x^3+447*x^2-168*x+490 9870062137608775 r005 Re(z^2+c),c=-3/34+8/47*I,n=21 9870062138275821 r005 Re(z^2+c),c=-3/34+8/47*I,n=20 9870062138557102 a007 Real Root Of 982*x^4-335*x^3+350*x^2+845*x-761 9870062138941832 r005 Re(z^2+c),c=-3/34+8/47*I,n=23 9870062138984979 r005 Re(z^2+c),c=-3/34+8/47*I,n=24 9870062139022976 r005 Re(z^2+c),c=-3/34+8/47*I,n=26 9870062139027589 r005 Re(z^2+c),c=-3/34+8/47*I,n=27 9870062139028351 r005 Re(z^2+c),c=-3/34+8/47*I,n=29 9870062139028643 r005 Re(z^2+c),c=-3/34+8/47*I,n=32 9870062139028647 r005 Re(z^2+c),c=-3/34+8/47*I,n=30 9870062139028657 r005 Re(z^2+c),c=-3/34+8/47*I,n=35 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=38 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=41 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=44 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=47 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=46 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=49 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=50 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=52 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=53 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=55 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=58 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=56 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=61 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=64 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=63 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=62 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=60 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=59 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=57 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=54 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=51 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=48 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=43 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=45 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=42 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=40 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=39 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=37 9870062139028658 r005 Re(z^2+c),c=-3/34+8/47*I,n=36 9870062139028659 r005 Re(z^2+c),c=-3/34+8/47*I,n=33 9870062139028659 r005 Re(z^2+c),c=-3/34+8/47*I,n=34 9870062139028699 r005 Re(z^2+c),c=-3/34+8/47*I,n=31 9870062139029761 r005 Re(z^2+c),c=-3/34+8/47*I,n=28 9870062139056304 r005 Re(z^2+c),c=-3/34+8/47*I,n=25 9870062139679418 r005 Re(z^2+c),c=-3/34+8/47*I,n=22 9870062153362255 r005 Re(z^2+c),c=-3/34+8/47*I,n=19 9870062154347183 r005 Re(z^2+c),c=-3/34+8/47*I,n=17 9870062162677026 a007 Real Root Of -208*x^4-271*x^3+760*x^2+647*x-921 9870062186311731 a001 233*322^(1/4) 9870062196077214 l003 Psi(11/104) 9870062265703876 v002 sum(1/(2^n+(4/3*n^3+20/3*n+13)),n=1..infinity) 9870062268060907 r002 17th iterates of z^2 + 9870062289664169 m004 -5/4+5*Pi-25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870062300632376 a007 Real Root Of 419*x^4+635*x^3+916*x^2+352*x-332 9870062314405274 r005 Re(z^2+c),c=-25/21+5/43*I,n=10 9870062319782186 a001 2537720636/21*1597^(10/11) 9870062350896663 b008 SphericalBesselJ[0,(2/3)^Pi] 9870062357826698 a007 Real Root Of 99*x^4+992*x^3+107*x^2-345*x+463 9870062370062370 q001 1899/1924 9870062394431742 a007 Real Root Of 952*x^4-811*x^3-263*x^2+534*x-900 9870062402192100 a007 Real Root Of 220*x^4-70*x^3+474*x^2+319*x-423 9870062423503708 a007 Real Root Of -778*x^4+642*x^3+952*x^2+171*x+597 9870062430408492 r005 Re(z^2+c),c=-3/34+8/47*I,n=16 9870062437730797 m005 (1/2*Pi-1/8)/(1/2*Zeta(3)-5/11) 9870062437944576 m001 ln(BesselJ(0,1))^2*Salem^2/Zeta(9)^2 9870062438041972 a001 11/17711*4181^(31/51) 9870062439678812 a007 Real Root Of -211*x^4+278*x^3+400*x^2+518*x-968 9870062451427553 m001 (Backhouse+Totient)/(Ei(1)-Zeta(1,2)) 9870062456618510 r001 43i'th iterates of 2*x^2-1 of 9870062458051440 b008 ArcCot[8]/2^(1/3) 9870062478045141 a007 Real Root Of -152*x^4-252*x^3-750*x^2+830*x+89 9870062566725527 l006 ln(464/1245) 9870062604079344 r002 25th iterates of z^2 + 9870062632971975 r005 Im(z^2+c),c=-73/60+7/53*I,n=24 9870062653139805 r002 16th iterates of z^2 + 9870062662725945 m001 exp(ArtinRank2)*FeigenbaumDelta*GAMMA(23/24)^2 9870062677460630 s002 sum(A026465[n]/(exp(n)-1),n=1..infinity) 9870062693483487 a007 Real Root Of 190*x^4-254*x^3-476*x^2-141*x-100 9870062727147419 p001 sum(1/(553*n+103)/(10^n),n=0..infinity) 9870062794657995 m002 Pi^2+(6*Sech[Pi]^2)/Pi^4 9870062809884294 m001 GAMMA(3/4)*Kolakoski/Paris 9870062820568163 a007 Real Root Of -166*x^4-253*x^3-279*x^2+775*x+951 9870062823931618 a007 Real Root Of 597*x^4-470*x^3-292*x^2+75*x-660 9870062831357292 a007 Real Root Of -161*x^4+328*x^3-377*x^2-274*x+565 9870062857649950 r002 4th iterates of z^2 + 9870062860760447 a001 11592/341*322^(7/12) 9870062874324854 m002 -3-E^Pi+Pi/6-Pi^6 9870062874446794 m001 ThueMorse/GAMMA(1/24)/exp(gamma) 9870062896354183 a005 (1/sin(81/235*Pi))^204 9870062899782263 a008 Real Root of x^4-x^3-45*x^2+177*x-4321 9870062925906914 l006 ln(2998/3309) 9870062926156292 m001 LambertW(1)^Trott/(Ei(1)^Trott) 9870062945653153 a007 Real Root Of 752*x^4+723*x^3+32*x^2-51*x-100 9870062945758717 a007 Real Root Of 824*x^4-284*x^3+95*x^2+491*x-663 9870062980093479 r005 Re(z^2+c),c=-11/24+31/54*I,n=24 9870063008664653 m001 (DuboisRaymond+RenyiParking)^Ei(1,1) 9870063019438545 r005 Im(z^2+c),c=-23/26+3/40*I,n=20 9870063024867936 b008 Pi*(Pi+Erfc[Khinchin]) 9870063118275663 h001 (7/8*exp(1)+3/4)/(5/12*exp(2)+1/11) 9870063141720867 m001 BesselK(0,1)-GAMMA(2/3)^GAMMA(5/6) 9870063189670505 a007 Real Root Of 116*x^4-937*x^3-307*x^2+3*x-709 9870063202553770 a007 Real Root Of -324*x^4+749*x^3+127*x^2-389*x+520 9870063225489099 m001 (-FellerTornier+Sierpinski)/(Ei(1,1)-exp(Pi)) 9870063256280587 r005 Im(z^2+c),c=-23/114+18/25*I,n=33 9870063260318623 m004 -30+5*Pi+25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870063292868386 r005 Re(z^2+c),c=-3/34+8/47*I,n=14 9870063315772102 m009 (8/5*Catalan+1/5*Pi^2+1/3)/(1/12*Pi^2+3) 9870063326267146 m001 (TreeGrowth2nd+ZetaP(3))/(MertensB3-Rabbit) 9870063353418263 a007 Real Root Of -398*x^4-180*x^3-158*x^2+274*x+629 9870063364772496 r009 Im(z^3+c),c=-61/98+16/61*I,n=3 9870063367963850 a007 Real Root Of -480*x^4+297*x^3+102*x^2-20*x+622 9870063386821690 a007 Real Root Of -413*x^4+35*x^3+908*x^2+174*x-698 9870063416981422 m001 Trott^(Tribonacci/ln(2)*ln(10)) 9870063425388149 m001 ReciprocalFibonacci/(FransenRobinson+Gompertz) 9870063458274024 a007 Real Root Of -261*x^4+65*x^3-810*x^2-440*x+665 9870063462262215 a001 46368/2207*322^(2/3) 9870063466685029 m001 BesselJ(1,1)/FellerTornier*Sarnak 9870063496388634 a007 Real Root Of -353*x^4+817*x^3+980*x^2+606*x+764 9870063515715921 a008 Real Root of x^3-x^2-2916*x+27917 9870063526092761 m002 2+4*E^Pi+Pi+Tanh[Pi] 9870063532694633 a007 Real Root Of -788*x^4+140*x^3-169*x^2-840*x+218 9870063537454644 a007 Real Root Of 888*x^4+336*x^3-391*x^2+711*x+563 9870063570633561 m001 (Catalan*CareFree+sin(1/12*Pi))/Catalan 9870063572559129 r008 a(0)=1,K{-n^6,64-27*n^3+3*n^2+36*n} 9870063596268452 m001 PlouffeB^BesselJ(0,1)/(PlouffeB^RenyiParking) 9870063657588332 m002 Pi^2+ProductLog[Pi]/(24*Pi^4) 9870063694267515 q001 3874/3925 9870063695731238 a007 Real Root Of -534*x^4+289*x^3+602*x^2-446*x-242 9870063739725723 r009 Im(z^3+c),c=-13/98+44/45*I,n=21 9870063760099085 a007 Real Root Of -95*x^4+593*x^3+257*x^2+383*x+788 9870063762302874 m001 RenyiParking^2/ln(GolombDickman)/Zeta(3) 9870063766763985 a007 Real Root Of 734*x^4+444*x^3+357*x^2+42*x-576 9870063779332443 a007 Real Root Of 602*x^4-430*x^3-637*x^2+522*x+151 9870063796278971 m001 1/exp(LaplaceLimit)^2/Si(Pi)^2*GAMMA(5/6)^2 9870063800971215 r005 Re(z^2+c),c=-63/64+2/39*I,n=7 9870063806956088 a007 Real Root Of 570*x^4+344*x^3+317*x^2+231*x-291 9870063817566249 a007 Real Root Of 780*x^4+888*x^3+136*x^2-454*x-467 9870063845934265 a007 Real Root Of -620*x^4+365*x^3-58*x^2-11*x+985 9870063852170018 s002 sum(A099476[n]/(2^n+1),n=1..infinity) 9870063857182648 r002 3th iterates of z^2 + 9870063909156191 a003 cos(Pi*3/103)*cos(Pi*5/118) 9870063966402382 r009 Im(z^3+c),c=-31/54+13/21*I,n=32 9870064004791316 m001 (MasserGramain+OneNinth)/(Stephens-Totient) 9870064061033869 a007 Real Root Of 605*x^4-809*x^3-87*x^2+594*x-681 9870064081892172 a007 Real Root Of 832*x^4-879*x^3-394*x^2+543*x-715 9870064082286438 a007 Real Root Of -416*x^4+734*x^3+382*x^2+263*x+988 9870064099590956 a007 Real Root Of -442*x^4+261*x^3+845*x^2-212*x-362 9870064108402278 m003 Coth[1/2+Sqrt[5]/2]/6+4*Sinh[1/2+Sqrt[5]/2] 9870064121546968 a007 Real Root Of 78*x^4+781*x^3+73*x^2-423*x-580 9870064165430613 a007 Real Root Of -765*x^4+570*x^3+420*x^2-314*x+555 9870064214160846 a003 sin(Pi*4/83)+sin(Pi*29/92) 9870064218118954 r002 3th iterates of z^2 + 9870064236389456 m001 (-Cahen+1/3)/Pi 9870064236389456 m001 (1/3-Cahen)/Pi 9870064263364542 m001 (BesselK(1,1)+TreeGrowth2nd)/GAMMA(11/12) 9870064265237189 r005 Re(z^2+c),c=5/58+19/34*I,n=43 9870064345370935 a007 Real Root Of -795*x^4+500*x^3-16*x^2-552*x+706 9870064370636633 b008 3^(-1/84) 9870064409804567 m005 (1/6*Pi+1)/(1/5*exp(1)+1) 9870064441974310 a001 13/4870847*4^(50/53) 9870064454302868 r005 Re(z^2+c),c=-35/74+23/32*I,n=6 9870064504827517 r001 47i'th iterates of 2*x^2-1 of 9870064509458129 m001 (gamma+3^(1/3))/(sin(1/12*Pi)+KomornikLoreti) 9870064509908604 m002 Pi^2+(6*Csch[Pi]*Sech[Pi])/Pi^4 9870064522053021 a007 Real Root Of 945*x^4+79*x^3+69*x^2-297*x-30 9870064539596603 m009 (1/10*Pi^2+5)/(8/3*Catalan+1/3*Pi^2+1/3) 9870064561225555 m002 -1+Pi^(-5)-Pi^2+Tanh[Pi] 9870064616871481 a007 Real Root Of 71*x^4+800*x^3+908*x^2-632*x+714 9870064635769915 b008 -1+ProductLog[1/5]/13 9870064651395477 m001 polylog(4,1/2)^(FeigenbaumC*Trott) 9870064699210284 m001 Chi(1)^(OneNinth/Backhouse) 9870064729735252 m002 Pi^2+5/(Pi^8*Log[Pi]) 9870064747639909 a007 Real Root Of -158*x^4+714*x^3-24*x^2-319*x+545 9870064748380437 a007 Real Root Of -977*x^4+868*x^3+287*x^2-907*x+587 9870064762542422 m005 (1/3*3^(1/2)-3/7)/(4/9*Pi+1/9) 9870064776570010 a007 Real Root Of -649*x^4-407*x^3-289*x^2+317*x+819 9870064777279226 a007 Real Root Of 362*x^4-611*x^3+477*x^2+406*x-995 9870064789340020 m006 (4*ln(Pi)-2/5)/(4/5*exp(2*Pi)-5) 9870064791075463 l006 ln(3611/9689) 9870064791136129 r009 Im(z^3+c),c=-3/17+61/63*I,n=39 9870064819001417 r002 21th iterates of z^2 + 9870064856445692 m001 GAMMA(23/24)^(Zeta(1,-1)/FellerTornier) 9870064866337582 a007 Real Root Of 297*x^4-987*x^3-464*x^2+703*x-85 9870064929369021 a003 sin(Pi*3/115)/cos(Pi*10/53) 9870064936113642 a003 sin(Pi*2/103)+sin(Pi*26/69) 9870064943484017 m005 (1/2*3^(1/2)+2/5)/(1/2*3^(1/2)+5/12) 9870064967516241 q001 1975/2001 9870064994597135 m001 GAMMA(19/24)^2/exp(Riemann2ndZero)*cos(Pi/12) 9870065001891739 b008 4+E^Coth[Pi]+Pi 9870065010625845 s002 sum(A171411[n]/((pi^n+1)/n),n=1..infinity) 9870065030245966 r005 Im(z^2+c),c=-7/6+27/214*I,n=28 9870065045072827 r008 a(0)=1,K{-n^6,37+6*n^3-63*n^2+98*n} 9870065059881199 r001 28i'th iterates of 2*x^2-1 of 9870065109049989 h001 (1/3*exp(2)+1/9)/(5/8*exp(1)+10/11) 9870065113323842 a007 Real Root Of 597*x^4+155*x^3+961*x^2+560*x-801 9870065113517133 m001 (2^(1/2))^Trott2nd/(BesselI(0,2)^Trott2nd) 9870065119038043 l006 ln(3147/8444) 9870065122597449 a007 Real Root Of -103*x^4+7*x^3+234*x^2+425*x+296 9870065137457607 a007 Real Root Of -376*x^4+385*x^3-260*x^2-361*x+624 9870065139073326 a007 Real Root Of 324*x^4+222*x^3-15*x^2+122*x+41 9870065143181104 m001 (Robbin-Trott)/(Ei(1,1)+BesselJ(1,1)) 9870065158038756 p003 LerchPhi(1/16,1,156/149) 9870065175763536 a007 Real Root Of 529*x^4+544*x^3+858*x^2+322*x-497 9870065178082366 m005 (1/2*Pi-3)/(4/11*3^(1/2)+9/11) 9870065178639208 a001 55/1149851*521^(15/31) 9870065193759846 a001 121393/5778*322^(2/3) 9870065200104001 m002 E^Pi+Pi^6+(Pi^2*Coth[Pi])/4 9870065217679874 m005 (1/3*3^(1/2)+2/7)/(9/11*Catalan+1/8) 9870065237286231 s002 sum(A005593[n]/((2^n+1)/n),n=1..infinity) 9870065245631447 a001 1346269/2207*123^(1/10) 9870065317996394 m001 Zeta(1,2)^Trott2nd*Robbin^Trott2nd 9870065348825912 a007 Real Root Of -848*x^4-125*x^3+601*x^2+8*x+107 9870065348923464 m001 (OneNinth+ZetaQ(3))/(Cahen-MasserGramainDelta) 9870065349605723 m001 1/ln(GAMMA(3/4))^2/PisotVijayaraghavan*cos(1) 9870065376863372 m002 -2+Log[Pi]/Pi+Sinh[Pi]*Tanh[Pi] 9870065404401339 a007 Real Root Of -793*x^4+920*x^3+536*x^2+91*x-744 9870065411345290 b008 Tanh[(2*(2+Sqrt[Pi]))/3] 9870065446381997 a001 317811/15127*322^(2/3) 9870065448794805 a007 Real Root Of 280*x^4+578*x^3+484*x^2-652*x-825 9870065470583261 h001 (2/5*exp(1)+9/11)/(1/7*exp(2)+7/8) 9870065483239073 a001 832040/39603*322^(2/3) 9870065486437783 a007 Real Root Of -589*x^4+156*x^3-301*x^2-369*x+638 9870065488616448 a001 46347/2206*322^(2/3) 9870065489176823 m001 (2/3)^BesselJ(1,1)*Backhouse^BesselJ(1,1) 9870065489400996 a001 5702887/271443*322^(2/3) 9870065489515460 a001 14930352/710647*322^(2/3) 9870065489532161 a001 39088169/1860498*322^(2/3) 9870065489534597 a001 102334155/4870847*322^(2/3) 9870065489534953 a001 267914296/12752043*322^(2/3) 9870065489535004 a001 701408733/33385282*322^(2/3) 9870065489535012 a001 1836311903/87403803*322^(2/3) 9870065489535013 a001 102287808/4868641*322^(2/3) 9870065489535013 a001 12586269025/599074578*322^(2/3) 9870065489535013 a001 32951280099/1568397607*322^(2/3) 9870065489535013 a001 86267571272/4106118243*322^(2/3) 9870065489535013 a001 225851433717/10749957122*322^(2/3) 9870065489535013 a001 591286729879/28143753123*322^(2/3) 9870065489535013 a001 1548008755920/73681302247*322^(2/3) 9870065489535013 a001 4052739537881/192900153618*322^(2/3) 9870065489535013 a001 225749145909/10745088481*322^(2/3) 9870065489535013 a001 6557470319842/312119004989*322^(2/3) 9870065489535013 a001 2504730781961/119218851371*322^(2/3) 9870065489535013 a001 956722026041/45537549124*322^(2/3) 9870065489535013 a001 365435296162/17393796001*322^(2/3) 9870065489535013 a001 139583862445/6643838879*322^(2/3) 9870065489535013 a001 53316291173/2537720636*322^(2/3) 9870065489535013 a001 20365011074/969323029*322^(2/3) 9870065489535013 a001 7778742049/370248451*322^(2/3) 9870065489535014 a001 2971215073/141422324*322^(2/3) 9870065489535017 a001 1134903170/54018521*322^(2/3) 9870065489535036 a001 433494437/20633239*322^(2/3) 9870065489535172 a001 165580141/7881196*322^(2/3) 9870065489536103 a001 63245986/3010349*322^(2/3) 9870065489542482 a001 24157817/1149851*322^(2/3) 9870065489586203 a001 9227465/439204*322^(2/3) 9870065489885874 a001 3524578/167761*322^(2/3) 9870065491939848 a001 1346269/64079*322^(2/3) 9870065506017999 a001 514229/24476*322^(2/3) 9870065523448922 a007 Real Root Of 226*x^4-367*x^3-147*x^2+65*x-360 9870065530028502 r005 Im(z^2+c),c=-77/74+4/37*I,n=15 9870065536993713 r005 Im(z^2+c),c=-9/14+9/49*I,n=46 9870065542097030 r005 Re(z^2+c),c=5/42+15/41*I,n=18 9870065548496144 r005 Re(z^2+c),c=-1/106+7/8*I,n=5 9870065550579940 a007 Real Root Of 85*x^4-308*x^3+388*x^2-885*x+711 9870065560436787 l006 ln(2683/7199) 9870065581879371 a007 Real Root Of 24*x^4-674*x^3+826*x^2-894*x+703 9870065584867027 r009 Im(z^3+c),c=-7/46+57/58*I,n=5 9870065594860950 a001 17393796001*6557470319842^(1/17) 9870065594860950 a001 28143753123*1836311903^(1/17) 9870065594861389 a001 45537549124*514229^(1/17) 9870065602511079 a001 196418/9349*322^(2/3) 9870065612830561 a007 Real Root Of -356*x^4+651*x^3+431*x^2-82*x+463 9870065617941723 r005 Re(z^2+c),c=-17/18+36/203*I,n=5 9870065627998060 h001 (5/12*exp(1)+3/5)/(6/11*exp(1)+3/11) 9870065644526817 a007 Real Root Of 266*x^4-408*x^3+685*x^2+996*x-329 9870065651219224 a007 Real Root Of -994*x^4-785*x^3+759*x^2+934*x+371 9870065668881277 m001 FellerTornier+HardyLittlewoodC3-Thue 9870065680392755 m001 (Chi(1)+Zeta(1,2))/(-Artin+Weierstrass) 9870065694222358 a007 Real Root Of 67*x^4+689*x^3+313*x^2+421*x+303 9870065705826633 r005 Re(z^2+c),c=-45/46+3/34*I,n=5 9870065709317661 b008 Cos[Tan[4/25]] 9870065742760578 r008 a(0)=1,K{-n^6,36-30*n^3+59*n^2+13*n} 9870065761923662 m003 1/3+Sqrt[5]/8-4*Cosh[1/2+Sqrt[5]/2] 9870065763855958 m001 (Totient-Thue)/(HardyLittlewoodC4-Kolakoski) 9870065768002618 r009 Im(z^3+c),c=-19/32+13/57*I,n=43 9870065769043479 m001 (MertensB3-Totient)/(exp(-1/2*Pi)+Zeta(1,2)) 9870065810591949 m001 (2^(1/2)-GaussAGM)/(ThueMorse+ZetaP(3)) 9870065825729565 m005 (1/2*5^(1/2)+9/11)/(8/9*exp(1)-5/11) 9870065841000235 a001 5778/5*4181^(17/21) 9870065905018750 r005 Re(z^2+c),c=13/64+16/59*I,n=32 9870065912724994 a007 Real Root Of 948*x^4+747*x^3+942*x^2+300*x-803 9870065957333832 m001 cos(Pi/5)^2/GAMMA(7/12)/ln(cosh(1)) 9870065964542342 r005 Im(z^2+c),c=-25/86+21/34*I,n=11 9870065978802430 m001 (Conway-ZetaP(2))^StolarskyHarborth 9870066033007544 r005 Im(z^2+c),c=-4/17+5/36*I,n=13 9870066087036528 a007 Real Root Of -349*x^4+621*x^3-173*x^2-858*x+250 9870066112781647 m001 (Grothendieck+Otter)/(Shi(1)-gamma) 9870066137088808 r008 a(0)=1,K{-n^6,61-7*n^3-41*n^2+62*n} 9870066147617187 m001 Cahen/(Artin-GAMMA(23/24)) 9870066147617187 m001 Cahen/(GAMMA(23/24)-Artin) 9870066150357865 r005 Im(z^2+c),c=-29/118+8/57*I,n=16 9870066186431277 l006 ln(2219/5954) 9870066192694287 q001 4026/4079 9870066208797242 r005 Im(z^2+c),c=1/54+14/19*I,n=7 9870066227109684 a007 Real Root Of 679*x^4-494*x^3-949*x^2-453*x-642 9870066230278097 r009 Im(z^3+c),c=-3/17+30/31*I,n=53 9870066231577462 m002 Pi^2+(6*Csch[Pi]^2)/Pi^4 9870066261069648 a007 Real Root Of -66*x^4+885*x^3-340*x^2+7*x-464 9870066263884537 a001 75025/3571*322^(2/3) 9870066305297298 b008 E^(-1)+9*E^7 9870066309973005 m001 1/ln(GAMMA(1/24))*Zeta(1/2)^3 9870066327730291 r005 Re(z^2+c),c=1/58+23/55*I,n=10 9870066353328593 a007 Real Root Of -868*x^4+352*x^3-22*x^2-335*x+853 9870066358823187 m004 -E^(Sqrt[5]*Pi)-10*Pi+24*Sqrt[5]*Pi 9870066368737363 a007 Real Root Of -896*x^4-916*x^3-569*x^2+299*x+819 9870066369739105 m005 (-17/44+1/4*5^(1/2))/(7/12*Pi-1/12) 9870066376425819 a007 Real Root Of 757*x^4-514*x^3-760*x^2-251*x-720 9870066378209857 m002 Pi^2+(Sech[Pi]*Tanh[Pi])/(6*Pi^3) 9870066378507158 l006 ln(8753/9661) 9870066378507158 p004 log(9661/8753) 9870066383945575 a007 Real Root Of -37*x^4+918*x^3+350*x^2-575*x-621 9870066413845655 a007 Real Root Of 339*x^4+38*x^3+866*x^2+937*x-204 9870066430608903 r005 Re(z^2+c),c=1/102+7/17*I,n=31 9870066433394107 a003 cos(Pi*3/89)*cos(Pi*4/103) 9870066450293130 m005 (1/2*exp(1)+2)/(1/12*Catalan-5/12) 9870066484044823 m008 (1/2*Pi^6-4/5)/(5*Pi^4-5/6) 9870066498827339 a007 Real Root Of -769*x^4+147*x^3-433*x^2-695*x+607 9870066499696391 r005 Im(z^2+c),c=-1+90/203*I,n=4 9870066516404570 r002 34th iterates of z^2 + 9870066520806482 a007 Real Root Of 953*x^4+666*x^3-61*x^2-433*x-632 9870066529560162 m001 GAMMA(3/4)^2*OneNinth^2*ln(LambertW(1)) 9870066530729339 m001 (cos(1/5*Pi)+2*Pi/GAMMA(5/6))/(Kolakoski-Thue) 9870066545669350 m001 sin(1)^(Ei(1)/Riemann3rdZero) 9870066604296404 a007 Real Root Of 59*x^4-933*x^3-828*x^2-729*x-866 9870066610351843 a007 Real Root Of -766*x^4+179*x^3-285*x^2+709*x+73 9870066622182779 m001 (Pi*csc(7/24*Pi)/GAMMA(17/24))^(2^(1/3))-Pi 9870066622182779 m001 GAMMA(7/24)^(2^(1/3))-Pi 9870066661965098 a007 Real Root Of -205*x^4+881*x^3-908*x^2+702*x+79 9870066730535829 a007 Real Root Of 49*x^4-231*x^3-360*x^2+7*x+89 9870066733705846 m001 ln(Cahen)^2/Artin^2*Rabbit 9870066733768543 m001 exp(1/2)^Thue/(exp(1/2)^Psi(1,1/3)) 9870066777757159 m002 -Pi^2+Pi^4*Coth[Pi]+Cosh[Pi]/ProductLog[Pi] 9870066778625425 a007 Real Root Of -709*x^4+210*x^3-604*x^2-909*x+566 9870066797948725 r005 Re(z^2+c),c=-67/70+9/55*I,n=15 9870066799890928 a007 Real Root Of 584*x^4-551*x^3-709*x^2-180*x-571 9870066805487361 a007 Real Root Of -785*x^4+351*x^3+908*x^2+764*x+952 9870066862388414 r002 22th iterates of z^2 + 9870066896598853 a003 cos(Pi*2/75)*cos(Pi*4/91) 9870066896893631 r005 Im(z^2+c),c=-43/66+5/26*I,n=60 9870066907749902 m001 Champernowne+GaussAGM*MertensB2 9870066927371858 a007 Real Root Of -702*x^4+552*x^3+543*x^2+502*x-889 9870066928965881 r008 a(0)=1,K{-n^6,64-9*n+36*n^2-13*n^3} 9870066947244324 r005 Im(z^2+c),c=-33/50+5/21*I,n=54 9870066949832758 m001 exp(1/exp(1))/(gamma(3)+MinimumGamma) 9870066961767467 a007 Real Root Of 507*x^4-351*x^3-53*x^2+614*x-161 9870066966823949 m001 (MinimumGamma+Otter)/(Trott2nd-Weierstrass) 9870066976344267 a001 1762289/2889*123^(1/10) 9870066977117688 m005 (3*gamma+1/6)/(2/5*Pi+2/3) 9870066987437339 a007 Real Root Of -421*x^4+678*x^3+294*x^2+291*x-826 9870066990341847 m001 (Mills-Thue)/(2*Pi/GAMMA(5/6)-MertensB2) 9870067007641060 a001 6/7*514229^(32/45) 9870067058163993 a007 Real Root Of 55*x^4+479*x^3-719*x^2-948*x-710 9870067065338657 m001 1/ln(GAMMA(19/24))/Kolakoski^2/Zeta(9) 9870067092414882 m002 -3/Pi^5+Pi^(-4)+Pi^2 9870067102632883 a007 Real Root Of 719*x^4+682*x^3+269*x^2+104*x-186 9870067105285929 m005 (1/2*3^(1/2)-3/8)/(4*Zeta(3)+1/6) 9870067122995866 r005 Im(z^2+c),c=53/118+1/17*I,n=5 9870067143435883 l006 ln(1755/4709) 9870067179549638 a007 Real Root Of -946*x^4+255*x^3-319*x^2-636*x+826 9870067216181386 r005 Im(z^2+c),c=-33/50+11/51*I,n=49 9870067220175368 a001 34*11^(4/9) 9870067228851916 a001 9227465/15127*123^(1/10) 9870067240925672 m002 Pi^2+Tanh[Pi]/(3*E^Pi*Pi^3) 9870067265692286 a001 24157817/39603*123^(1/10) 9870067271067224 a001 31622993/51841*123^(1/10) 9870067271851417 a001 165580141/271443*123^(1/10) 9870067271965829 a001 433494437/710647*123^(1/10) 9870067271982521 a001 567451585/930249*123^(1/10) 9870067271984957 a001 2971215073/4870847*123^(1/10) 9870067271985312 a001 7778742049/12752043*123^(1/10) 9870067271985364 a001 10182505537/16692641*123^(1/10) 9870067271985371 a001 53316291173/87403803*123^(1/10) 9870067271985372 a001 139583862445/228826127*123^(1/10) 9870067271985373 a001 182717648081/299537289*123^(1/10) 9870067271985373 a001 956722026041/1568397607*123^(1/10) 9870067271985373 a001 2504730781961/4106118243*123^(1/10) 9870067271985373 a001 3278735159921/5374978561*123^(1/10) 9870067271985373 a001 10610209857723/17393796001*123^(1/10) 9870067271985373 a001 4052739537881/6643838879*123^(1/10) 9870067271985373 a001 1134903780/1860499*123^(1/10) 9870067271985373 a001 591286729879/969323029*123^(1/10) 9870067271985373 a001 225851433717/370248451*123^(1/10) 9870067271985373 a001 21566892818/35355581*123^(1/10) 9870067271985376 a001 32951280099/54018521*123^(1/10) 9870067271985396 a001 1144206275/1875749*123^(1/10) 9870067271985532 a001 1201881744/1970299*123^(1/10) 9870067271986462 a001 1836311903/3010349*123^(1/10) 9870067271992838 a001 701408733/1149851*123^(1/10) 9870067272036539 a001 66978574/109801*123^(1/10) 9870067272336074 a001 9303105/15251*123^(1/10) 9870067274389118 a001 39088169/64079*123^(1/10) 9870067288460887 a001 3732588/6119*123^(1/10) 9870067341111918 a007 Real Root Of 189*x^4-435*x^3+293*x^2-82*x-964 9870067372473532 q001 2051/2078 9870067382057605 m005 (1/2*2^(1/2)-9/10)/(3/5*Zeta(3)-11/12) 9870067384910231 a001 5702887/9349*123^(1/10) 9870067419787320 r005 Re(z^2+c),c=-3/34+8/47*I,n=13 9870067420988817 a007 Real Root Of 656*x^4-301*x^3-782*x^2-629*x-771 9870067423416518 a001 2255/281*322^(5/6) 9870067436516558 a007 Real Root Of 879*x^4+20*x^3-209*x^2-28*x-639 9870067446314404 m001 sqrt(1+sqrt(3))/exp(TwinPrimes)^2*sqrt(5) 9870067461640090 a007 Real Root Of -365*x^4+434*x^3+295*x^2+409*x+880 9870067461884924 a001 1364/1597*6557470319842^(16/17) 9870067463716568 a001 1/1353*(1/2*5^(1/2)+1/2)^7*11^(7/11) 9870067500299961 a007 Real Root Of 931*x^4-151*x^3-157*x^2+93*x-784 9870067527956258 a007 Real Root Of 831*x^4-605*x^3-49*x^2+644*x-687 9870067563611090 m002 Pi^4+(30*Tanh[Pi])/E^Pi 9870067563636373 r005 Im(z^2+c),c=-9/16+77/115*I,n=11 9870067572941593 m005 (1/2*2^(1/2)+7/11)/(9/11*gamma+8/9) 9870067600762508 r005 Im(z^2+c),c=-29/44+1/47*I,n=24 9870067619197207 r005 Im(z^2+c),c=-35/58+22/51*I,n=58 9870067649264768 a007 Real Root Of 724*x^4-423*x^3-129*x^2+296*x-676 9870067673852306 r002 2th iterates of z^2 + 9870067732721782 s002 sum(A069532[n]/((10^n+1)/n),n=1..infinity) 9870067742245845 r009 Im(z^3+c),c=-21/110+47/49*I,n=43 9870067758069247 a007 Real Root Of -555*x^4-642*x^3-201*x^2+556*x+654 9870067762396622 m001 (3^(1/3)+Zeta(1,2))/(BesselI(1,1)-ZetaQ(2)) 9870067792917853 m001 (Ei(1)-arctan(1/3))/(MertensB1+MertensB3) 9870067818684337 m005 (1/3*Pi-1/4)/(5*3^(1/2)-7/12) 9870067837472365 m001 gamma^(exp(1)*ZetaQ(3)) 9870067840610225 l006 ln(3046/8173) 9870067875312242 a007 Real Root Of -923*x^4+767*x^3-190*x^2-882*x+928 9870067878229247 m001 1/exp(Lehmer)/CareFree^2/GAMMA(5/6) 9870067919341609 a003 sin(Pi*25/58)/sin(Pi*54/119) 9870067944165136 a007 Real Root Of 462*x^4+26*x^3-245*x^2+171*x-6 9870067957931246 p004 log(27983/10429) 9870067971996336 m001 MadelungNaCl^(arctan(1/3)*gamma(1)) 9870067990208102 m001 (-Tribonacci+ZetaQ(4))/(2^(1/3)+BesselK(1,1)) 9870068027810130 r002 26th iterates of z^2 + 9870068037068279 a001 199/18*(1/2*5^(1/2)+1/2)*18^(13/22) 9870068045983919 a001 2178309/3571*123^(1/10) 9870068062201004 m005 (1/2*Zeta(3)-7/12)/(31/36+5/12*5^(1/2)) 9870068068371932 m005 (1/2*Catalan-1/3)/(1/4*exp(1)+7/12) 9870068070312414 r005 Re(z^2+c),c=-3/4+47/89*I,n=4 9870068081515886 a001 9349/89*514229^(19/55) 9870068086230648 a007 Real Root Of -702*x^4+679*x^3+943*x^2-43*x+358 9870068094581901 a007 Real Root Of 25*x^4+304*x^3+574*x^2+143*x+539 9870068106869662 m002 Pi^2+Sech[Pi]/(6*Pi^3) 9870068121058181 a007 Real Root Of -279*x^4+527*x^3+509*x^2-797*x-511 9870068135552333 m001 exp(Catalan)^2/KhintchineHarmonic/GAMMA(1/4) 9870068144557728 m001 exp(Catalan)^2/FeigenbaumD^2/Zeta(1,2)^2 9870068170278769 a003 sin(Pi*33/76)/sin(Pi*50/109) 9870068177098863 l006 ln(5755/6352) 9870068180219125 m001 (exp(1)-MadelungNaCl)^BesselJ(1,1) 9870068190788975 a001 9/4*28657^(7/19) 9870068206825165 a007 Real Root Of -280*x^4-127*x^3+662*x^2+824*x+312 9870068235879226 a001 1149851/610*1836311903^(16/17) 9870068235893718 a001 1268860318/305*514229^(16/17) 9870068264806985 a007 Real Root Of -502*x^4+619*x^3-143*x^2-546*x+672 9870068319775290 a007 Real Root Of 110*x^4-121*x^3+910*x^2+443*x-670 9870068328511142 a001 9/98209*55^(1/54) 9870068366995808 m001 (GAMMA(3/4)-cos(1))/(-OrthogonalArrays+Rabbit) 9870068377595652 r009 Im(z^3+c),c=-67/118+22/35*I,n=50 9870068377608267 a007 Real Root Of -834*x^4-975*x^3-630*x^2+57*x+524 9870068409706334 r009 Im(z^3+c),c=-7/40+61/63*I,n=55 9870068441518045 h001 (1/3*exp(1)+2/3)/(2/11*exp(2)+1/4) 9870068455545103 m001 cos(1/5*Pi)*BesselI(1,2)*ZetaP(4) 9870068456250857 s002 sum(A107022[n]/((3*n)!),n=1..infinity) 9870068483371174 a007 Real Root Of 621*x^4+315*x^3+22*x^2-685*x-984 9870068494257635 a007 Real Root Of -798*x^4+239*x^3+651*x^2+611*x+956 9870068514394453 m001 Robbin^2*KhintchineLevy^2/exp(Catalan)^2 9870068580495470 a007 Real Root Of 301*x^4+245*x^3-843*x^2-616*x+908 9870068580795594 a007 Real Root Of -844*x^4+603*x^3+456*x^2-573*x+371 9870068613257025 m005 (1/2*exp(1)+4/9)/(5/7*Pi-5/12) 9870068625735023 r009 Im(z^3+c),c=-67/118+22/35*I,n=56 9870068788356832 l006 ln(1291/3464) 9870068796779297 m001 Grothendieck*(Psi(2,1/3)-sin(1/12*Pi)) 9870068804672185 m003 -1/4+Sqrt[5]/2+(3*E^(-1/2-Sqrt[5]/2))/5 9870068819719547 a007 Real Root Of 477*x^4+91*x^3+847*x^2+437*x-759 9870068880785807 a007 Real Root Of 497*x^4+188*x^3+223*x^2-319*x-823 9870068906684183 m001 (-AlladiGrinstead+Lehmer)/(ln(2)/ln(10)+Ei(1)) 9870068936046965 r005 Re(z^2+c),c=-17/18+20/107*I,n=17 9870068936140182 a003 cos(Pi*2/87)*cos(Pi*4/87) 9870068937909734 m001 (2^(1/3))^exp(-Pi)/(Niven^exp(-Pi)) 9870068963914106 a001 2139295485799/233*6557470319842^(8/17) 9870068972813651 m002 1/(3*E^Pi*Pi^3)+Pi^2 9870068980742376 r005 Im(z^2+c),c=-7/12+15/76*I,n=21 9870069000017986 a001 1/2*2^(52/53) 9870069000017986 b008 2^(-1/53) 9870069016722067 r005 Re(z^2+c),c=-73/74+1/39*I,n=5 9870069021079653 m001 (Zeta(1/2)-Backhouse)/(Magata-ZetaP(2)) 9870069054821301 r009 Im(z^3+c),c=-7/62+51/52*I,n=9 9870069074569901 a001 47/17711*6765^(7/47) 9870069075302139 s002 sum(A111225[n]/(n*exp(n)-1),n=1..infinity) 9870069084125541 s002 sum(A056334[n]/(2^n-1),n=1..infinity) 9870069118708234 r002 4th iterates of z^2 + 9870069125092628 p004 log(23003/8573) 9870069202951638 r009 Re(z^3+c),c=-15/106+17/37*I,n=5 9870069204103679 a007 Real Root Of -403*x^4+375*x^3+947*x^2+37*x-143 9870069239157365 r009 Re(z^3+c),c=-4/29+22/43*I,n=5 9870069249974272 a007 Real Root Of -599*x^4-640*x^3+65*x^2+983*x+860 9870069299509007 a007 Real Root Of 934*x^4+619*x^3+753*x^2-792*x-85 9870069336947295 a003 cos(Pi*1/115)*cos(Pi*4/79) 9870069342027405 a007 Real Root Of -868*x^4+630*x^3+681*x^2-300*x+470 9870069379960373 a007 Real Root Of -456*x^4+674*x^3-503*x^2-628*x+951 9870069401177532 a007 Real Root Of -474*x^4-34*x^3+604*x^2+442*x+265 9870069417991313 m004 (-2*Sqrt[5])/Pi+(125*Pi)/4+Log[Sqrt[5]*Pi] 9870069442999836 b008 1/6+Zeta[1/3,-2] 9870069464483602 p004 log(34369/12809) 9870069485411885 a007 Real Root Of -87*x^4-932*x^3-773*x^2-587*x-973 9870069502329126 m001 Zeta(1/2)/(GAMMA(17/24)+DuboisRaymond) 9870069518106787 a007 Real Root Of -7*x^4-695*x^3-408*x^2-369*x+671 9870069521351244 m002 Pi^2+Tanh[Pi]/(4*E^(2*Pi)) 9870069567906976 a001 139583862445/2*2^(1/2) 9870069577994206 m001 (ErdosBorwein+KhinchinHarmonic)/(Magata-Trott) 9870069605568445 q001 2127/2155 9870069634258492 r008 a(0)=1,K{-n^6,37+28*n+35*n^2-22*n^3} 9870069635184613 l006 ln(3409/9147) 9870069650677050 m005 (1/3*2^(1/2)-1/11)/(1/8*Catalan-1/2) 9870069653893808 a003 cos(Pi*33/115)+cos(Pi*43/113) 9870069684638665 m005 (1/2*Pi-2/7)/(11/12*3^(1/2)-2/7) 9870069694838718 p003 LerchPhi(1/2,4,95/168) 9870069703894468 a007 Real Root Of -698*x^4+271*x^3+624*x^2+624*x+931 9870069739011187 m001 ln(2^(1/2)+1)^(Lehmer*ZetaP(3)) 9870069752253883 m001 (Kac-Otter)/(Riemann2ndZero+Sierpinski) 9870069790393388 a007 Real Root Of -197*x^4-705*x^3-813*x^2+623*x+916 9870069801471294 m001 (3^(1/2)+Zeta(3))/(ln(2)+BesselI(0,2)) 9870069810217613 r002 38th iterates of z^2 + 9870069841997892 m002 Pi^2+Csch[Pi]/(6*Pi^3) 9870069847927701 m001 FeigenbaumB^(1/3*3^(1/2)*Champernowne) 9870069855764996 a007 Real Root Of -885*x^4-333*x^3-293*x^2-297*x+512 9870069859717853 a007 Real Root Of 847*x^4+85*x^2+105*x-783 9870069871859063 a007 Real Root Of -932*x^4+521*x^3+520*x^2-933*x-42 9870069871882301 m005 (-9/20+1/4*5^(1/2))/(3/7*gamma+6/7) 9870069887192370 a007 Real Root Of 423*x^4-176*x^3+608*x^2+310*x-857 9870069898520613 m001 (Otter-TreeGrowth2nd)/(Pi-Lehmer) 9870069924003000 a007 Real Root Of -461*x^4+294*x^3+564*x^2-19*x+152 9870069949182608 h001 (-5*exp(3)-3)/(-7*exp(5)-9) 9870069961682505 a008 Real Root of (-8+6*x+x^2+7*x^4+7*x^8) 9870069978170978 a005 (1/sin(59/147*Pi))^330 9870070004159584 m005 (1/2*Catalan+2/9)/(1/10*Pi+3/8) 9870070007146815 h001 (1/2*exp(2)+3/8)/(1/2*exp(2)+3/7) 9870070026614006 l006 ln(8512/9395) 9870070033303707 r009 Im(z^3+c),c=-9/52+31/32*I,n=57 9870070049496960 r002 35th iterates of z^2 + 9870070067573140 r005 Re(z^2+c),c=15/64+27/62*I,n=6 9870070091433867 m001 (Sarnak+TwinPrimes)/(AlladiGrinstead+Lehmer) 9870070102422321 m001 3^(1/3)-CareFree*MasserGramain 9870070110430550 a001 4181/199*199^(8/11) 9870070114350674 s002 sum(A056324[n]/(2^n-1),n=1..infinity) 9870070119721549 a001 75025/521*322^(1/3) 9870070127441313 m001 (Shi(1)-ln(Pi))/(-KhinchinHarmonic+Thue) 9870070151357697 l006 ln(2118/5683) 9870070164888301 m001 arctan(1/2)*(1+GAMMA(5/6)) 9870070184307767 r005 Re(z^2+c),c=-71/74+6/37*I,n=49 9870070184401173 a007 Real Root Of -284*x^4+168*x^3-837*x^2-350*x+901 9870070284760791 m001 BesselI(1,2)-Cahen^ln(Pi) 9870070293390027 r005 Re(z^2+c),c=13/46+18/53*I,n=27 9870070374738660 m005 (1/2*5^(1/2)+5/7)/(5/9*Pi+1/9) 9870070395100757 m001 1/exp(Niven)^2/LandauRamanujan/Robbin^2 9870070405674733 a007 Real Root Of 944*x^4-620*x^3-784*x^2-21*x-749 9870070447886498 m001 (BesselI(0,2)-ZetaQ(3))/(ln(Pi)-exp(1/Pi)) 9870070449249524 m001 (GAMMA(2/3)-ln(5))/(Khinchin-Paris) 9870070474696289 r009 Im(z^3+c),c=-13/66+29/30*I,n=57 9870070494160428 p001 sum(1/(131*n+67)/n/(512^n),n=0..infinity) 9870070503511347 m001 sin(Pi/12)*Artin^2*exp(sqrt(1+sqrt(3)))^2 9870070524451655 r005 Re(z^2+c),c=-9/106+49/61*I,n=28 9870070530107897 m001 (GAMMA(2/3)+ln(Pi))/(FeigenbaumKappa+Salem) 9870070539517180 a007 Real Root Of -157*x^4+954*x^3+860*x^2+423*x+646 9870070543023239 p001 sum((-1)^n/(400*n+101)/(64^n),n=0..infinity) 9870070569984162 m001 exp(exp(1))*OneNinth/sqrt(1+sqrt(3)) 9870070622997502 m004 -4/3+5*Pi-25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870070702305221 r002 5th iterates of z^2 + 9870070712357422 a007 Real Root Of -282*x^4+997*x^3+814*x^2-440*x-1 9870070730281141 m005 (-11/36+1/4*5^(1/2))/(3/11*Pi-3/5) 9870070736707947 m001 (-StolarskyHarborth+ZetaP(4))/(1-MinimumGamma) 9870070748856489 l006 ln(2945/7902) 9870070796925147 a007 Real Root Of 535*x^4-418*x^3-765*x^2+431*x+261 9870070797008046 a001 28657/1364*322^(2/3) 9870070801105822 a007 Real Root Of -442*x^4+392*x^3-557*x^2-461*x+884 9870070810398329 m002 5+3*Pi^5*ProductLog[Pi]*Tanh[Pi] 9870070811671266 m001 ln(2^(1/2)+1)*KhinchinLevy^Robbin 9870070835357743 r002 59th iterates of z^2 + 9870070837100332 a001 832040/7*1364^(30/49) 9870070865176456 r002 41th iterates of z^2 + 9870070881665512 a007 Real Root Of -172*x^4+396*x^3-420*x^2-219*x+737 9870070882859830 m009 (2/5*Psi(1,2/3)+3)/(2/5*Pi^2+1/3) 9870070902232119 a007 Real Root Of -333*x^4+760*x^3+696*x^2+443*x+806 9870070918175125 m002 -Pi^3-Pi^6+5*Coth[Pi]*ProductLog[Pi] 9870070932421541 r005 Re(z^2+c),c=5/44+14/31*I,n=6 9870070969662455 m005 (1/2*5^(1/2)-1/12)/(6*3^(1/2)+1/11) 9870070980602781 a007 Real Root Of 68*x^4-469*x^3-454*x^2-478*x-545 9870071118153946 b008 BesselK[2,9+Sqrt[3]] 9870071120446284 a007 Real Root Of -310*x^4+595*x^3+991*x^2-283*x-964 9870071140363178 r009 Im(z^3+c),c=-67/118+22/35*I,n=62 9870071166312353 m001 (Cahen-Otter)/(ln(2+3^(1/2))+GAMMA(23/24)) 9870071173399977 a007 Real Root Of 9*x^4-869*x^3-268*x^2-2*x-585 9870071188622535 a007 Real Root Of -115*x^4+135*x^3-365*x^2+348*x+938 9870071193494947 m001 1/ln(Champernowne)*ErdosBorwein*GAMMA(17/24) 9870071217058367 m008 (5/6*Pi-1/5)/(4/5*Pi^5+1/6) 9870071217828338 m005 (1/2*3^(1/2)-3/10)/(1/12*exp(1)-4/5) 9870071253040435 a007 Real Root Of -760*x^4+383*x^3-568*x^2-857*x+797 9870071261772285 m002 1/(4*E^(2*Pi))+Pi^2 9870071293000623 r005 Re(z^2+c),c=-11/10+7/62*I,n=16 9870071293896676 a007 Real Root Of 130*x^4-963*x^3+470*x^2+909*x-610 9870071304701112 a007 Real Root Of 589*x^4-978*x^3-41*x^2+815*x-655 9870071307381920 a007 Real Root Of 753*x^4-104*x^3+16*x^2-98*x-10 9870071311364881 r002 6th iterates of z^2 + 9870071322792550 a007 Real Root Of 765*x^4-706*x^3-192*x^2-832*x-81 9870071379646737 a007 Real Root Of -495*x^4-284*x^3-898*x^2-884*x+199 9870071398510297 a001 28657/2207*322^(3/4) 9870071399480695 m001 (GlaisherKinkelin-Trott2nd)/(Thue+ThueMorse) 9870071448360860 r009 Im(z^3+c),c=-39/74+26/37*I,n=3 9870071477873568 a007 Real Root Of -426*x^4-24*x^3+822*x^2+726*x+297 9870071501682671 a007 Real Root Of -927*x^4-827*x^3+310*x^2+583*x+358 9870071544532237 a003 sin(Pi*18/101)/sin(Pi*17/94) 9870071592727856 r002 14th iterates of z^2 + 9870071620469383 r005 Im(z^2+c),c=-37/60+4/25*I,n=24 9870071623538436 r005 Im(z^2+c),c=-7/10+23/160*I,n=10 9870071638144736 s002 sum(A041319[n]/(n^3*10^n+1),n=1..infinity) 9870071648779183 a007 Real Root Of -392*x^4+859*x^3+951*x^2+656*x+919 9870071649045922 a007 Real Root Of 56*x^4+515*x^3-387*x^2-121*x+234 9870071667665033 m004 -3/2+5*Pi-25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870071674508022 a007 Real Root Of 136*x^4-782*x^3+669*x^2+715*x-827 9870071675212778 r008 a(0)=0,K{-n^6,58-79*n^3-50*n^2+71*n} 9870071684587813 q001 2203/2232 9870071699248919 m001 1/ln(FeigenbaumKappa)*CopelandErdos^2*cos(1) 9870071717318683 m005 (1/3*Pi+3/7)/(4/7*Pi-3/10) 9870071752780099 r009 Re(z^3+c),c=-5/28+13/20*I,n=51 9870071796586419 m001 (3^(1/2)-RenyiParking)^GaussAGM 9870071831458047 a007 Real Root Of -261*x^4+4*x^3+248*x^2+981*x-966 9870071832905072 a001 233/3*15127^(14/53) 9870071882248475 m002 Pi^3+Pi^6-E^Pi/(4*ProductLog[Pi]) 9870071885965761 m001 (-ln(2^(1/2)+1)+Magata)/(2^(1/2)+ln(Pi)) 9870071905734838 a007 Real Root Of 453*x^4-811*x^3+87*x^2+734*x-570 9870071959365856 m001 (sin(1)+GAMMA(19/24))/(-Landau+Sierpinski) 9870071961222953 r009 Im(z^3+c),c=-17/94+59/61*I,n=27 9870071962587355 m001 (Totient+ZetaP(4))/(AlladiGrinstead+Kac) 9870071989427120 m002 Pi^2+Log[Pi]/(8*Pi^5) 9870071998975215 a007 Real Root Of -364*x^4-163*x^3-373*x^2-224*x+331 9870071999304591 m005 (1/2*3^(1/2)-9/11)/(1/6*Catalan-5) 9870072024933257 r005 Im(z^2+c),c=-3/82+20/27*I,n=48 9870072034267788 a001 281/329*1597^(1/51) 9870072084141525 m001 ln(Ei(1))^2*FeigenbaumKappa^2*GAMMA(1/4)^2 9870072098030657 a007 Real Root Of -805*x^4+206*x^3-344*x^2-680*x+626 9870072104872598 a007 Real Root Of -843*x^4-405*x^3+47*x^2-167*x+200 9870072124379653 a007 Real Root Of -180*x^4+741*x^3+298*x^2-464*x-374 9870072132456647 a007 Real Root Of 629*x^4+117*x^3-83*x^2-276*x-676 9870072135459526 a007 Real Root Of -704*x^4+944*x^3+469*x^2-238*x+884 9870072146737613 a007 Real Root Of -414*x^4+656*x^3+784*x^2-414*x-593 9870072158071153 m001 (exp(1)+3^(1/2))/(BesselJ(1,1)+Trott) 9870072159969909 b008 3*(-5+5^(1/3)) 9870072166706249 l006 ln(9376/9469) 9870072174587463 b008 10*Pi^2+Erfc[2] 9870072174587463 b008 Pi^2+Erfc[2]/10 9870072187121523 m001 PisotVijayaraghavan^Gompertz*GaussAGM 9870072212704000 a007 Real Root Of 336*x^4+824*x^3+686*x^2-710*x-76 9870072229625289 h001 (-4*exp(2)+9)/(-8*exp(-2)-1) 9870072237499574 b008 -10+ArcCsc[5+E] 9870072259229619 a007 Real Root Of 405*x^4-818*x^3+364*x^2+732*x-803 9870072276376406 a003 cos(Pi*9/106)/sin(Pi*35/81) 9870072279089026 l006 ln(827/2219) 9870072298681366 m001 HeathBrownMoroz-ReciprocalFibonacci^gamma(2) 9870072303455823 m001 (ErdosBorwein+ZetaP(2))/(Pi-GAMMA(11/12)) 9870072335355625 a007 Real Root Of 724*x^4-436*x^3-676*x^2+325*x-127 9870072351283896 a007 Real Root Of -52*x^4+689*x^3+75*x^2-325*x+318 9870072380835416 r009 Im(z^3+c),c=-59/106+57/61*I,n=2 9870072388176389 a007 Real Root Of 302*x^4-715*x^3-292*x^2-203*x-890 9870072421496136 m005 (1/2*Zeta(3)-11/12)/(8/11*gamma-1/10) 9870072456544581 a003 sin(Pi*51/113)*sin(Pi*44/91) 9870072469151995 r005 Re(z^2+c),c=-13/12+5/29*I,n=22 9870072472620521 r005 Im(z^2+c),c=-127/110+9/35*I,n=47 9870072532973489 a007 Real Root Of 971*x^4-696*x^3-309*x^2+638*x-660 9870072577052764 a001 610*123^(1/10) 9870072588328090 a007 Real Root Of -123*x^4+436*x^3-465*x^2+962*x-799 9870072596467474 r009 Re(z^3+c),c=-41/74+23/47*I,n=24 9870072608053309 m001 (exp(1)+Shi(1))/(-Ei(1,1)+BesselK(1,1)) 9870072633763462 h001 (8/9*exp(1)+1/12)/(8/11*exp(1)+5/9) 9870072634552101 r001 32i'th iterates of 2*x^2-1 of 9870072651862569 r008 a(0)=1,K{-n^6,59+11*n^3-67*n^2+75*n} 9870072654030229 a001 3571/4181*6557470319842^(16/17) 9870072657219737 a005 (1/cos(5/201*Pi))^749 9870072697248994 m001 Bloch*Backhouse^2*exp(GAMMA(1/12)) 9870072699006228 a007 Real Root Of 948*x^4+960*x^3+321*x^2-919*x-93 9870072707383723 r005 Re(z^2+c),c=-28/31+9/41*I,n=17 9870072708395551 a007 Real Root Of -254*x^4+784*x^3+414*x^2-956*x-352 9870072726432671 a007 Real Root Of 535*x^4+209*x^3-343*x^2-972*x-932 9870072759693972 m001 1/FransenRobinson^2/Artin^2/ln(GAMMA(2/3))^2 9870072766954180 a001 3010349/1597*1836311903^(16/17) 9870072766962295 a001 6643838879/1597*514229^(16/17) 9870072776809700 a001 3/2161*199^(29/36) 9870072788028488 a001 4181/11*521^(9/59) 9870072799285219 a003 cos(Pi*5/88)/sin(Pi*39/82) 9870072823541967 a007 Real Root Of 466*x^4-639*x^3-910*x^2+487*x+578 9870072878902587 a007 Real Root Of 896*x^4+318*x^3+894*x^2+886*x-541 9870072897975339 a007 Real Root Of -501*x^4+878*x^3+476*x^2-349*x-488 9870072937188112 a007 Real Root Of -961*x^4-251*x^3+268*x^2-108*x+303 9870072945930937 s001 sum(exp(-2*Pi/5)^n*A094320[n],n=1..infinity) 9870072945930937 s002 sum(A094320[n]/(exp(2/5*pi*n)),n=1..infinity) 9870073011030511 a007 Real Root Of -687*x^4-202*x^3-143*x^2+159*x+754 9870073015788040 m002 Pi^4+Tanh[Pi]+Tanh[Pi]/(Pi*ProductLog[Pi]) 9870073023805950 b008 -8*Sqrt[2]+ArcSinh[2] 9870073032814717 a007 Real Root Of -433*x^4-7*x^3-856*x^2-377*x+866 9870073036357533 r005 Re(z^2+c),c=-95/98+7/53*I,n=9 9870073073938822 a007 Real Root Of -150*x^4+818*x^3-465*x^2-779*x+613 9870073099932880 a005 (1/cos(23/185*Pi))^588 9870073119765405 m001 (-Mills+Rabbit)/(cos(1)-ln(Pi)) 9870073127172081 a001 75025/5778*322^(3/4) 9870073133163100 a007 Real Root Of -926*x^4+350*x^3+444*x^2-631*x+160 9870073158073886 a007 Real Root Of -44*x^4+547*x^3+237*x^2+160*x-873 9870073158329621 a007 Real Root Of -668*x^4-654*x^3-238*x^2-387*x-145 9870073180612332 a007 Real Root Of -249*x^4+314*x^3-170*x^2-782*x-68 9870073181741293 m001 (BesselI(0,1)+BesselJ(1,1))/(MertensB1+Porter) 9870073200956459 a003 cos(Pi*5/101)*sin(Pi*53/109) 9870073201939445 r001 7i'th iterates of 2*x^2-1 of 9870073202745480 m005 (1/3*Pi-1/4)/(1/7*3^(1/2)-1/6) 9870073275849327 a001 7/8*55^(26/43) 9870073280791053 a007 Real Root Of 840*x^4-223*x^3-790*x^2-616*x-850 9870073286727385 a007 Real Root Of -203*x^4+731*x^3-340*x^2-250*x+980 9870073311439062 s002 sum(A270279[n]/(n^3*10^n+1),n=1..infinity) 9870073322960236 r009 Im(z^3+c),c=-13/94+42/43*I,n=21 9870073330792822 r002 37th iterates of z^2 + 9870073358343888 r009 Im(z^3+c),c=-5/54+59/60*I,n=11 9870073361191115 m001 (Zeta(5)-exp(1))/(sin(1/12*Pi)+exp(1/exp(1))) 9870073379380487 a001 196418/15127*322^(3/4) 9870073385627527 r002 12i'th iterates of 2*x/(1-x^2) of 9870073411554078 a001 9349/10946*6557470319842^(16/17) 9870073414927048 m001 ((1+3^(1/2))^(1/2)+Sarnak)/(Zeta(1,2)-exp(Pi)) 9870073416177199 a001 514229/39603*322^(3/4) 9870073421545766 a001 1346269/103682*322^(3/4) 9870073422329030 a001 3524578/271443*322^(3/4) 9870073422443307 a001 9227465/710647*322^(3/4) 9870073422459979 a001 24157817/1860498*322^(3/4) 9870073422462412 a001 63245986/4870847*322^(3/4) 9870073422462767 a001 165580141/12752043*322^(3/4) 9870073422462819 a001 433494437/33385282*322^(3/4) 9870073422462826 a001 1134903170/87403803*322^(3/4) 9870073422462827 a001 2971215073/228826127*322^(3/4) 9870073422462827 a001 7778742049/599074578*322^(3/4) 9870073422462827 a001 20365011074/1568397607*322^(3/4) 9870073422462827 a001 53316291173/4106118243*322^(3/4) 9870073422462827 a001 139583862445/10749957122*322^(3/4) 9870073422462827 a001 365435296162/28143753123*322^(3/4) 9870073422462827 a001 956722026041/73681302247*322^(3/4) 9870073422462827 a001 2504730781961/192900153618*322^(3/4) 9870073422462827 a001 10610209857723/817138163596*322^(3/4) 9870073422462827 a001 4052739537881/312119004989*322^(3/4) 9870073422462827 a001 1548008755920/119218851371*322^(3/4) 9870073422462827 a001 591286729879/45537549124*322^(3/4) 9870073422462827 a001 7787980473/599786069*322^(3/4) 9870073422462827 a001 86267571272/6643838879*322^(3/4) 9870073422462827 a001 32951280099/2537720636*322^(3/4) 9870073422462827 a001 12586269025/969323029*322^(3/4) 9870073422462827 a001 4807526976/370248451*322^(3/4) 9870073422462828 a001 1836311903/141422324*322^(3/4) 9870073422462831 a001 701408733/54018521*322^(3/4) 9870073422462851 a001 9238424/711491*322^(3/4) 9870073422462986 a001 102334155/7881196*322^(3/4) 9870073422463915 a001 39088169/3010349*322^(3/4) 9870073422470284 a001 14930352/1149851*322^(3/4) 9870073422513933 a001 5702887/439204*322^(3/4) 9870073422813113 a001 2178309/167761*322^(3/4) 9870073424863724 a001 832040/64079*322^(3/4) 9870073428029454 a001 7881196/4181*1836311903^(16/17) 9870073428036639 a001 17393796001/4181*514229^(16/17) 9870073438918817 a001 10959/844*322^(3/4) 9870073484727785 a001 121393/7*3571^(38/49) 9870073490495071 r005 Im(z^2+c),c=-69/106+11/47*I,n=43 9870073506693002 l006 ln(3671/9850) 9870073512777888 a007 Real Root Of 276*x^4+31*x^3-138*x^2-53*x-150 9870073522075319 a001 24476/28657*6557470319842^(16/17) 9870073524479044 a001 20633239/10946*1836311903^(16/17) 9870073524486093 a001 22768774562/5473*514229^(16/17) 9870073535253861 a001 121393/9349*322^(3/4) 9870073538200151 a001 64079/75025*6557470319842^(16/17) 9870073538550850 a001 54018521/28657*1836311903^(16/17) 9870073538557879 a001 119218851371/28657*514229^(16/17) 9870073540552732 a001 167761/196418*6557470319842^(16/17) 9870073540603899 a001 141422324/75025*1836311903^(16/17) 9870073540610925 a001 312119004989/75025*514229^(16/17) 9870073540895969 a001 439204/514229*6557470319842^(16/17) 9870073540903434 a001 370248451/196418*1836311903^(16/17) 9870073540910460 a001 408569081798/98209*514229^(16/17) 9870073540946047 a001 1149851/1346269*6557470319842^(16/17) 9870073540947136 a001 969323029/514229*1836311903^(16/17) 9870073540953353 a001 3010349/3524578*6557470319842^(16/17) 9870073540953512 a001 2537720636/1346269*1836311903^(16/17) 9870073540954162 a001 2139295485799/514229*514229^(16/17) 9870073540954419 a001 7881196/9227465*6557470319842^(16/17) 9870073540954442 a001 6643838879/3524578*1836311903^(16/17) 9870073540954575 a001 20633239/24157817*6557470319842^(16/17) 9870073540954578 a001 17393796001/9227465*1836311903^(16/17) 9870073540954597 a001 54018521/63245986*6557470319842^(16/17) 9870073540954598 a001 45537549124/24157817*1836311903^(16/17) 9870073540954601 a001 141422324/165580141*6557470319842^(16/17) 9870073540954601 a001 119218851371/63245986*1836311903^(16/17) 9870073540954601 a001 370248451/433494437*6557470319842^(16/17) 9870073540954601 a001 312119004989/165580141*1836311903^(16/17) 9870073540954601 a001 969323029/1134903170*6557470319842^(16/17) 9870073540954601 a001 817138163596/433494437*1836311903^(16/17) 9870073540954601 a001 2139295485799/1134903170*1836311903^(16/17) 9870073540954601 a001 2537720636/2971215073*6557470319842^(16/17) 9870073540954601 a001 5600748293801/2971215073*1836311903^(16/17) 9870073540954601 a001 14662949395604/7778742049*1836311903^(16/17) 9870073540954601 a001 23725150497407/12586269025*1836311903^(16/17) 9870073540954601 a001 3020733700601/1602508992*1836311903^(16/17) 9870073540954601 a001 6643838879/7778742049*6557470319842^(16/17) 9870073540954601 a001 17393796001/20365011074*6557470319842^(16/17) 9870073540954601 a001 45537549124/53316291173*6557470319842^(16/17) 9870073540954601 a001 64300051206/75283811239*6557470319842^(16/17) 9870073540954601 a001 73681302247/86267571272*6557470319842^(16/17) 9870073540954601 a001 9381251041/10983760033*6557470319842^(16/17) 9870073540954601 a001 3461452808002/1836311903*1836311903^(16/17) 9870073540954601 a001 10749957122/12586269025*6557470319842^(16/17) 9870073540954601 a001 1368706081/1602508992*6557470319842^(16/17) 9870073540954601 a001 440719107401/233802911*1836311903^(16/17) 9870073540954601 a001 1568397607/1836311903*6557470319842^(16/17) 9870073540954601 a001 505019158607/267914296*1836311903^(16/17) 9870073540954601 a001 199691526/233802911*6557470319842^(16/17) 9870073540954601 a001 64300051206/34111385*1836311903^(16/17) 9870073540954601 a001 228826127/267914296*6557470319842^(16/17) 9870073540954603 a001 73681302247/39088169*1836311903^(16/17) 9870073540954603 a001 29134601/34111385*6557470319842^(16/17) 9870073540954610 a001 9381251041/4976784*1836311903^(16/17) 9870073540954611 a001 33385282/39088169*6557470319842^(16/17) 9870073540954662 a001 10749957122/5702887*1836311903^(16/17) 9870073540954671 a001 4250681/4976784*6557470319842^(16/17) 9870073540955017 a001 1368706081/726103*1836311903^(16/17) 9870073540955078 a001 4870847/5702887*6557470319842^(16/17) 9870073540957453 a001 1568397607/832040*1836311903^(16/17) 9870073540957869 a001 620166/726103*6557470319842^(16/17) 9870073540960538 a001 5600748293801/1346269*514229^(16/17) 9870073540961468 a001 7331474697802/1762289*514229^(16/17) 9870073540961688 a001 23725150497407/5702887*514229^(16/17) 9870073540962043 a001 3020733700601/726103*514229^(16/17) 9870073540964479 a001 1730726404001/416020*514229^(16/17) 9870073540974145 a001 710646/377*1836311903^(16/17) 9870073540976997 a001 710647/832040*6557470319842^(16/17) 9870073540981171 a001 440719107401/105937*514229^(16/17) 9870073541088558 a001 228826127/121393*1836311903^(16/17) 9870073541095584 a001 505019158607/121393*514229^(16/17) 9870073541108101 a001 90481/105937*6557470319842^(16/17) 9870073541872753 a001 29134601/15456*1836311903^(16/17) 9870073541879777 a001 10716675201/2576*514229^(16/17) 9870073542006708 a001 103682/121393*6557470319842^(16/17) 9870073546884371 a007 Real Root Of 420*x^4-861*x^3+112*x^2-475*x+789 9870073547247704 a001 33385282/17711*1836311903^(16/17) 9870073547254721 a001 73681302247/17711*514229^(16/17) 9870073548165845 a001 13201/15456*6557470319842^(16/17) 9870073584088170 a001 4250681/2255*1836311903^(16/17) 9870073584095135 a001 228811001/55*514229^(16/17) 9870073590381203 a001 15127/17711*6557470319842^(16/17) 9870073591222854 a007 Real Root Of -303*x^4-95*x^3-439*x^2-779*x-145 9870073593658908 a003 cos(Pi*2/71)*cos(Pi*4/93) 9870073599490883 g007 Psi(2,1/3)-Psi(2,5/9)-Psi(2,1/8)-Psi(2,5/6) 9870073617142545 a007 Real Root Of -690*x^4+481*x^3+297*x^2-924*x-84 9870073624945864 q001 2279/2309 9870073627097625 a007 Real Root Of 30*x^4-13*x^3+909*x^2+500*x-433 9870073647714182 a007 Real Root Of 439*x^4-567*x^3+95*x^2+896*x-170 9870073659332118 h001 (3/11*exp(1)+7/10)/(1/5*exp(1)+11/12) 9870073685147658 r005 Re(z^2+c),c=-79/86+13/58*I,n=5 9870073689024788 m001 exp(Khintchine)/ArtinRank2^2/MadelungNaCl^2 9870073689666310 a007 Real Root Of 197*x^4-201*x^3+919*x^2+962*x-326 9870073716865076 m001 (2^(1/2)+ln(2^(1/2)+1))/(-Bloch+CareFree) 9870073719616354 a007 Real Root Of -598*x^4+409*x^3+361*x^2+393*x+997 9870073741802447 m008 (1/5*Pi^6+4/5)/(3/4*Pi-2/5) 9870073765081053 a007 Real Root Of 965*x^4+235*x^3-723*x^2-810*x-785 9870073774051575 m005 (1/5*gamma+2/3)/(1/3*gamma+3/5) 9870073774051575 m007 (-1/5*gamma-2/3)/(-1/3*gamma-3/5) 9870073776920295 a007 Real Root Of 559*x^4-235*x^3-320*x^2-441*x-880 9870073781860100 r004 Im(z^2+c),c=-21/34+1/20*I,z(0)=-1,n=7 9870073802702778 m001 FibonacciFactorial^(Zeta(1,-1)/Sierpinski) 9870073804021277 m009 (Pi^2-3/5)/(3*Psi(1,2/3)+1/5) 9870073836596487 a001 4870847/2584*1836311903^(16/17) 9870073836603097 a001 5374978561/1292*514229^(16/17) 9870073857528540 a007 Real Root Of -844*x^4-217*x^3+442*x^2+673*x+826 9870073863665016 l006 ln(2844/7631) 9870073866232234 a007 Real Root Of -55*x^4+222*x^3-459*x^2+139*x+850 9870073879729571 a001 1926/2255*6557470319842^(16/17) 9870073882759801 m001 GAMMA(3/4)^Sarnak/GAMMA(19/24) 9870073887317433 l006 ln(2757/3043) 9870073932654565 m003 -6+3/Log[1/2+Sqrt[5]/2]-Sin[1/2+Sqrt[5]/2]/3 9870073932657327 a007 Real Root Of -739*x^4-598*x^3+16*x^2+520*x+624 9870073934197623 a007 Real Root Of 194*x^4-530*x^3-690*x^2-426*x-442 9870073989324917 p003 LerchPhi(1/32,2,191/189) 9870073995108185 m001 OneNinth^2*ln(Paris)^2*(2^(1/3))^2 9870074006616131 a001 121393/7*9349^(34/49) 9870074020604787 a001 233/521*3571^(16/17) 9870074035837038 a007 Real Root Of -834*x^4+223*x^3+776*x^2-4*x+246 9870074039380491 r005 Im(z^2+c),c=-43/82+5/27*I,n=13 9870074046853006 r005 Im(z^2+c),c=-99/98+4/39*I,n=21 9870074062211125 m001 Thue^(ArtinRank2*Champernowne) 9870074070669323 a007 Real Root Of -836*x^4+5*x^3+673*x^2+506*x+642 9870074083345656 a001 6765/7*15127^(47/49) 9870074087160679 a001 311187*39603^(16/49) 9870074130218127 a007 Real Root Of 779*x^4-608*x^3-732*x^2+400*x-216 9870074133248276 p004 log(13043/4861) 9870074151245209 m009 (6*Psi(1,1/3)+1/5)/(6*Psi(1,1/3)+1) 9870074163925015 a007 Real Root Of 299*x^4-685*x^3-322*x^2-44*x+732 9870074165154117 m001 polylog(4,1/2)^(sin(1/12*Pi)*ZetaP(4)) 9870074195544122 a001 46368/3571*322^(3/4) 9870074221381341 a005 (1/cos(7/149*Pi))^1052 9870074233274579 m002 Pi^2+(5*Sech[Pi])/(3*Pi^5) 9870074235940843 a001 832040/7*5778^(25/49) 9870074243023145 m005 (1/2*Zeta(3)-1/10)/(-11/40+7/20*5^(1/2)) 9870074252028403 a007 Real Root Of -719*x^4+259*x^3+769*x^2-597*x-407 9870074255448418 m001 GAMMA(17/24)^Kolakoski/(Mills^Kolakoski) 9870074279468093 a007 Real Root Of 302*x^4-580*x^3+503*x^2+669*x-674 9870074306842065 m005 (1/2*Pi+3/11)/(11/12*2^(1/2)+4/7) 9870074335856263 r005 Im(z^2+c),c=-9/56+57/64*I,n=14 9870074338238440 r005 Re(z^2+c),c=-17/18+39/194*I,n=63 9870074407215394 m002 -3+Pi^6+25*Log[Pi] 9870074452675897 r005 Re(z^2+c),c=-29/30+1/7*I,n=9 9870074464168657 a007 Real Root Of -984*x^4-361*x^3-227*x^2-933*x-113 9870074472157140 m002 Pi^2+Log[Pi]/(25*Pi^4) 9870074504651052 m005 (1/2*exp(1)+7/11)/(5/7*Pi-2/9) 9870074507821088 a007 Real Root Of 996*x^4-346*x^3-938*x^2+220*x-147 9870074509313858 a007 Real Root Of -7*x^4-691*x^3-6*x^2+332*x+82 9870074511444030 m006 (2/3/Pi-2/5)/(1/6*Pi-1/3) 9870074513364668 l006 ln(2017/5412) 9870074513438811 m001 1/5*5^(1/2)*(Ei(1,1)+HeathBrownMoroz) 9870074526077768 m005 (1/2*Zeta(3)-8/11)/(2/7*2^(1/2)+7/8) 9870074564178214 a007 Real Root Of -22*x^4-267*x^3-489*x^2+65*x+339 9870074568423721 a007 Real Root Of 927*x^4+738*x^3+376*x^2+120*x-418 9870074590016595 m001 1/exp(Kolakoski)/GaussAGM(1,1/sqrt(2))/cos(1) 9870074601329683 a007 Real Root Of 397*x^4+199*x^3+764*x^2+408*x-527 9870074602731361 r008 a(0)=1,K{-n^6,59+7*n^3-32*n^2+44*n} 9870074653980155 a001 233/521*9349^(16/19) 9870074672988219 r005 Re(z^2+c),c=-89/94+7/26*I,n=13 9870074700388910 b008 (7*Zeta[E])/9 9870074719923965 m002 Pi^2+(6*Sech[Pi])/(Pi^6*Log[Pi]) 9870074725586692 a007 Real Root Of -965*x^4-762*x^3+514*x^2+262*x-59 9870074736522106 a001 233/521*24476^(16/21) 9870074747402723 a001 233/521*64079^(16/23) 9870074749074895 a001 233/521*(1/2+1/2*5^(1/2))^16 9870074749074895 a001 233/521*23725150497407^(1/4) 9870074749074895 a001 233/521*73681302247^(4/13) 9870074749074895 a001 233/521*10749957122^(1/3) 9870074749074895 a001 233/521*4106118243^(8/23) 9870074749074895 a001 233/521*1568397607^(4/11) 9870074749074895 a001 233/521*599074578^(8/21) 9870074749074895 a001 233/521*228826127^(2/5) 9870074749074896 a001 233/521*87403803^(8/19) 9870074749074899 a001 233/521*33385282^(4/9) 9870074749074924 a001 233/521*12752043^(8/17) 9870074749075103 a001 233/521*4870847^(1/2) 9870074749076416 a001 233/521*1860498^(8/15) 9870074749086063 a001 233/521*710647^(4/7) 9870074749157330 a001 233/521*271443^(8/13) 9870074749686995 a001 233/521*103682^(2/3) 9870074753651691 a001 233/521*39603^(8/11) 9870074783581706 a001 233/521*15127^(4/5) 9870074790339085 a007 Real Root Of 16*x^4+151*x^3-40*x^2+268*x-113 9870074831033482 a007 Real Root Of -215*x^4+650*x^3+89*x^2-975*x-220 9870074839005307 a007 Real Root Of -835*x^4-573*x^3-927*x^2-265*x+883 9870074854903123 r001 40i'th iterates of 2*x^2-1 of 9870074868628298 m001 (-GAMMA(3/4)+3)/(-Zeta(3)+3) 9870074886042570 m001 AlladiGrinstead^(GolombDickman/Psi(1,1/3)) 9870074893016600 m001 (Robbin-Thue)/(Pi-exp(Pi)) 9870074897685360 a007 Real Root Of -907*x^4-668*x^3-293*x^2+147*x+649 9870074919034536 s002 sum(A049608[n]/(n*pi^n-1),n=1..infinity) 9870074920166730 m001 FeigenbaumB-FibonacciFactorial-Lehmer 9870074949126934 r009 Im(z^3+c),c=-23/110+29/34*I,n=5 9870074968274899 m001 Artin-Psi(1,1/3)-ZetaR(2) 9870074979151801 m001 (3^(1/2))^LambertW(1)/((Pi^(1/2))^LambertW(1)) 9870074979151801 m001 sqrt(3)^LambertW(1)/(sqrt(Pi)^LambertW(1)) 9870074983036755 m005 (1/3*Catalan+2/5)/(4/9*2^(1/2)-7/10) 9870074994898602 a001 311187*2207^(22/49) 9870075011867337 a001 233/521*5778^(8/9) 9870075018991145 m001 Salem^2*Cahen/ln(Sierpinski)^2 9870075035722576 h001 (8/9*exp(2)+1/6)/(9/11*exp(2)+7/9) 9870075038349748 m001 FeigenbaumC^gamma(2)/(Weierstrass^gamma(2)) 9870075048243165 r005 Im(z^2+c),c=-31/30+3/28*I,n=12 9870075051442402 r005 Im(z^2+c),c=-16/25+11/64*I,n=37 9870075081971135 m001 LandauRamanujan^2*ln(MertensB1)*(2^(1/3)) 9870075082754609 s002 sum(A095796[n]/(exp(pi*n)+1),n=1..infinity) 9870075089524848 l006 ln(3207/8605) 9870075095576013 m002 -(E^Pi/Pi^6)+Pi/(4*E^Pi) 9870075107252389 m005 (1/2*Pi-1/11)/(5*Pi-5/7) 9870075125230417 a007 Real Root Of 212*x^4-385*x^3+929*x^2+508*x-975 9870075127228853 p001 sum(1/(174*n+41)/n/(5^n),n=0..infinity) 9870075127651670 m001 1/GAMMA(1/4)/GlaisherKinkelin^2*exp(sqrt(Pi)) 9870075134092186 m001 1/Riemann1stZero/Bloch^2/ln(Riemann3rdZero) 9870075142855519 m001 1/ln(OneNinth)*Magata^2*Ei(1) 9870075164392071 r009 Im(z^3+c),c=-5/9+19/43*I,n=8 9870075177910603 a007 Real Root Of 931*x^4-626*x^3-23*x^2+842*x-632 9870075198863923 m001 (Ei(1,1)-sin(1))/(-MertensB3+ReciprocalLucas) 9870075207294649 r005 Im(z^2+c),c=-11/102+37/46*I,n=57 9870075234955641 r005 Re(z^2+c),c=-17/18+49/241*I,n=49 9870075289448100 a007 Real Root Of -151*x^4+290*x^3-366*x^2-562*x+224 9870075301759601 m003 -13/6+Sqrt[5]/64+3*Sech[1/2+Sqrt[5]/2] 9870075311392021 m006 (3*Pi^2+2/3)/(1/4*Pi^2+3/5) 9870075311392021 m008 (3*Pi^2+2/3)/(1/4*Pi^2+3/5) 9870075311392021 m009 (3*Pi^2+2/3)/(5/2*Pi^2+6) 9870075378533581 a007 Real Root Of 126*x^4-812*x^3+63*x+599 9870075431029092 a007 Real Root Of 567*x^4-729*x^3+287*x^2+566*x-960 9870075440067057 q001 2355/2386 9870075487037179 m001 (CopelandErdos+FeigenbaumC)/(Shi(1)+Zeta(5)) 9870075488007924 a007 Real Root Of -554*x^4-27*x^3-728*x^2-615*x+602 9870075512404414 a001 4181/843*322^(11/12) 9870075542560767 r005 Re(z^2+c),c=-25/26+17/109*I,n=41 9870075567314587 a001 620166/329*1836311903^(16/17) 9870075567318761 a001 1368706081/329*514229^(16/17) 9870075570477748 m001 Lehmer^2/exp(GlaisherKinkelin)/Pi^2 9870075576358462 a007 Real Root Of -583*x^4+596*x^3+883*x^2+76*x-955 9870075585457379 a007 Real Root Of 103*x^4-191*x^3+227*x^2+651*x+140 9870075602708518 a007 Real Root Of 20*x^4-203*x^3-163*x^2-231*x+563 9870075603311548 m001 exp(GAMMA(19/24))^2*Sierpinski^2/sin(1)^2 9870075651762888 m001 MinimumGamma/(GaussAGM+MasserGramain) 9870075681395550 r002 41th iterates of z^2 + 9870075691503137 m004 -45/Pi+25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870075692200827 r009 Im(z^3+c),c=-2/21+58/59*I,n=13 9870075718195570 a007 Real Root Of -729*x^4+124*x^3+233*x^2-70*x+515 9870075740341392 p001 sum((-1)^n/(301*n+10)/(2^n),n=0..infinity) 9870075746511448 m001 HeathBrownMoroz-MertensB1^ZetaQ(3) 9870075765123620 m001 (Si(Pi)+ln(3))/(BesselI(0,2)+Rabbit) 9870075767018919 m001 Kolakoski^2*Khintchine^2/exp(GAMMA(7/12)) 9870075776307931 m001 (-Paris+Stephens)/(BesselI(0,1)+FeigenbaumMu) 9870075788638637 a007 Real Root Of 187*x^4+492*x^3+603*x^2+13*x-279 9870075795212861 m001 (Grothendieck-Kolakoski)^Shi(1) 9870075808509409 m001 BesselI(0,1)^ThueMorse*BesselJ(0,1)^ThueMorse 9870075848388931 m001 FeigenbaumMu*(ArtinRank2-BesselK(0,1)) 9870075862952850 a001 2207/2584*6557470319842^(16/17) 9870075877608237 a007 Real Root Of -960*x^4-133*x^3-491*x^2-961*x+313 9870075909713800 m001 cos(1/12*Pi)^(Paris/MertensB1) 9870075917726995 m001 ln(PisotVijayaraghavan)^2/Kolakoski/Zeta(7) 9870075924518726 a007 Real Root Of -621*x^4+766*x^3-80*x^2-630*x+782 9870075974204620 m005 (1/2*exp(1)+2/3)/(1/11*gamma+2) 9870075991327041 m002 Pi^2+(5*Csch[Pi])/(3*Pi^5) 9870076010073679 m009 (4*Catalan+1/2*Pi^2-4)/(24*Catalan+3*Pi^2-5) 9870076022501666 a007 Real Root Of -879*x^4+601*x^3-371*x^2-962*x+824 9870076043108339 m001 (CopelandErdos+ZetaQ(2))/(BesselJ(0,1)-Bloch) 9870076047614514 a007 Real Root Of 823*x^4+836*x^3+181*x^2-119*x-271 9870076048604219 m005 (1/3*Zeta(3)+3/5)/(5/7*5^(1/2)-7/12) 9870076063285061 a007 Real Root Of 17*x^4-363*x^3-175*x^2+486*x+285 9870076064227827 m001 (BesselI(1,2)+HardHexagonsEntropy)^exp(Pi) 9870076064300118 r009 Re(z^3+c),c=-13/114+24/49*I,n=3 9870076066092069 l006 ln(1190/3193) 9870076068314505 m005 (1/2*exp(1)-2/11)/(2/5*3^(1/2)+1/2) 9870076071205166 a007 Real Root Of 66*x^4+640*x^3-175*x^2-710*x-945 9870076093294025 m005 (1/2*Zeta(3)+1/11)/(2*Pi+8/11) 9870076166067534 m001 1/exp(FeigenbaumB)^2/CareFree^2*sin(Pi/12) 9870076166104249 m005 (1/3*exp(1)+1/10)/(1/12*3^(1/2)+7/8) 9870076171705482 m001 StolarskyHarborth^HeathBrownMoroz+gamma(2) 9870076181631767 a001 167761/610*6557470319842^(14/17) 9870076181982469 a001 70711162/305*1836311903^(14/17) 9870076181988617 a001 119218851371/610*514229^(14/17) 9870076191516540 a001 987/11*24476^(14/59) 9870076214160446 b008 21*Log[8/5] 9870076224803420 m001 ln(3)/((2^(1/3))^arctan(1/2)) 9870076295844257 m001 GAMMA(1/4)^BesselI(0,1)/polylog(4,1/2) 9870076332631126 m002 (6*E^Pi)/Pi^11+Pi^2 9870076333915566 m005 (1/2*Pi+2/9)/(7/11*2^(1/2)+11/12) 9870076366301980 r009 Im(z^3+c),c=-37/98+20/23*I,n=3 9870076396176560 m001 (Si(Pi)+GolombDickman)/(MertensB3+Salem) 9870076399094272 b008 Sech[E^Zeta[EulerGamma]] 9870076404101945 m001 (Conway+Niven)/(Pi*2^(1/2)/GAMMA(3/4)-gamma) 9870076432806452 r009 Im(z^3+c),c=-9/64+41/42*I,n=19 9870076463046640 a007 Real Root Of -755*x^4-900*x^3-714*x^2-22*x+525 9870076468292580 a007 Real Root Of -819*x^4+92*x^3+349*x^2+441*x+961 9870076479797406 m002 Pi^2+(6*Csch[Pi])/(Pi^6*Log[Pi]) 9870076488102404 m005 (1/2*Pi-2/7)/(5*exp(1)-4/7) 9870076505747762 g002 -gamma-3*ln(2)-1/2*Pi+2*Psi(3/5)+Psi(2/5) 9870076535468396 p003 LerchPhi(1/8,1,191/176) 9870076541313518 m001 Zeta(5)^CopelandErdos/(Zeta(5)^Gompertz) 9870076550013765 a003 sin(Pi*35/109)/sin(Pi*20/61) 9870076553678642 r002 26th iterates of z^2 + 9870076563218058 m001 Ei(1)*BesselK(1,1)^GAMMA(17/24) 9870076593730776 m001 (GaussAGM+RenyiParking)/(gamma+GAMMA(23/24)) 9870076639494261 m001 1/ln(Robbin)^2*Niven*Pi^2 9870076655944215 r005 Re(z^2+c),c=-23/21+3/26*I,n=8 9870076676070369 r009 Re(z^3+c),c=-5/94+43/44*I,n=12 9870076686279034 h001 (-exp(-2)-4)/(-8*exp(1/2)+9) 9870076693087623 r008 a(0)=1,K{-n^6,33-20*n^3-3*n^2+62*n} 9870076723716963 m001 Robbin*Sierpinski^BesselK(0,1) 9870076737074774 a007 Real Root Of -397*x^4+944*x^3+134*x^2-238*x+919 9870076743023141 a007 Real Root Of 121*x^4-838*x^3-312*x^2+335*x-286 9870076743075923 m001 ln(Zeta(5))^2*RenyiParking*Zeta(9)^2 9870076743199345 m002 -1-Pi^2+Tanh[Pi]+Tanh[Pi]/Pi^5 9870076761672091 a007 Real Root Of -688*x^4-82*x^3+256*x^2-331*x-2 9870076766103625 r002 20th iterates of z^2 + 9870076835576666 a007 Real Root Of -344*x^4+696*x^3+475*x^2-193*x-615 9870076848059606 m001 (CareFree-Grothendieck)/(ln(5)-polylog(4,1/2)) 9870076888931395 m001 QuadraticClass^(CopelandErdos*TreeGrowth2nd) 9870076889546186 a007 Real Root Of 402*x^4+449*x^3-18*x^2-789*x-711 9870076900117420 r002 4th iterates of z^2 + 9870076975858725 r005 Im(z^2+c),c=-65/98+9/44*I,n=64 9870076997604825 m001 exp(-1/2*Pi)^(PlouffeB/FellerTornier) 9870077031720362 r009 Re(z^3+c),c=-67/118+23/45*I,n=21 9870077062585680 a001 233/3*843^(20/53) 9870077064463008 m005 (1/3*gamma-1/10)/(1/2*5^(1/2)-2/11) 9870077141697117 q001 2431/2463 9870077155577888 m002 -(Coth[Pi]*Log[Pi])/(4*Pi^3)+Tanh[Pi] 9870077161431361 a007 Real Root Of 886*x^4+376*x^3+334*x^2+24*x-781 9870077177990455 p001 sum((-1)^n/(311*n+99)/(10^n),n=0..infinity) 9870077207853186 l006 ln(2743/7360) 9870077210859203 a007 Real Root Of -201*x^4+688*x^3-160*x^2+646*x+66 9870077212055733 a007 Real Root Of -466*x^4+569*x^3-84*x^2-755*x+326 9870077212376222 r005 Re(z^2+c),c=-19/22+11/59*I,n=42 9870077213465279 m001 Si(Pi)/(MinimumGamma+PrimesInBinary) 9870077230493880 r008 a(0)=1,K{-n^6,5-59*n^3+70*n^2+60*n} 9870077230904651 a005 (1/sin(64/219*Pi))^90 9870077231980607 m001 DuboisRaymond^(ZetaQ(2)*ZetaR(2)) 9870077344148400 m002 -Pi^(-5)+Pi^2+Log[Pi]/Pi^5 9870077401081342 m002 Pi^2+Log[Pi]/(E^Pi*Pi^4*ProductLog[Pi]) 9870077405758131 r008 a(0)=1,K{-n^6,62-3*n^3-31*n^2+38*n} 9870077421841778 a001 1730726404001/4*365435296162^(7/11) 9870077435761753 a008 Real Root of x^3-96*x-14 9870077435818967 m001 (sin(1)+HardyLittlewoodC4)/(OneNinth+ZetaQ(3)) 9870077445623136 a007 Real Root Of -38*x^4-319*x^3+505*x^2-533*x-551 9870077458656783 a003 sin(Pi*5/87)+sin(Pi*35/117) 9870077479789369 a007 Real Root Of -263*x^4+478*x^3-644*x^2-648*x+697 9870077480700138 m001 1/Magata^2/ln(FeigenbaumB)*Riemann2ndZero 9870077484379843 m001 (1-Zeta(3))/(exp(-1/2*Pi)+Tribonacci) 9870077502555037 m009 (5*Psi(1,2/3)-1/5)/(24/5*Catalan+3/5*Pi^2+5) 9870077539821191 m009 (1/12*Pi^2+5)/(8/3*Catalan+1/3*Pi^2+1/6) 9870077546620464 a007 Real Root Of -416*x^4+807*x^3+342*x^2-802*x+46 9870077567563220 m001 (Catalan-Ei(1))/(-DuboisRaymond+KhinchinLevy) 9870077571871958 m001 (Porter+ZetaP(3))/(gamma(1)-BesselI(1,2)) 9870077595741749 r005 Im(z^2+c),c=-31/24+11/30*I,n=4 9870077600667191 m005 (1/3*exp(1)-3/4)/(5/6*Catalan+9/11) 9870077607003390 r005 Re(z^2+c),c=-17/18+47/201*I,n=59 9870077609821780 r005 Re(z^2+c),c=-3/19+22/25*I,n=8 9870077633364729 b008 -12+Log[7+Sqrt[2]] 9870077638269327 m001 CareFree^Kolakoski/ZetaP(4) 9870077659184856 m001 (MertensB1+Trott2nd)/(ln(Pi)+Grothendieck) 9870077665335786 a007 Real Root Of 587*x^4+220*x^3+799*x^2+237*x-890 9870077671403181 m005 (1/3*Zeta(3)-1/9)/(4*gamma+5/8) 9870077679034412 a007 Real Root Of 159*x^4-202*x^3+45*x^2-459*x-842 9870077696605980 a007 Real Root Of 445*x^4-439*x^3+122*x^2-842*x+712 9870077719214725 a007 Real Root Of 686*x^4+525*x^3+157*x^2-245*x-541 9870077727752682 m001 PrimesInBinary^Paris*OneNinth 9870077763136941 m001 (1+GAMMA(7/12))/(-Champernowne+Khinchin) 9870077765425065 m005 (1/2*Pi+1/4)/(3/8*Pi+2/3) 9870077795986030 m001 Rabbit/Kolakoski^2*ln(Catalan) 9870077834388476 a007 Real Root Of -538*x^4+40*x^3-124*x^2-628*x+50 9870077855232327 r002 61th iterates of z^2 + 9870077881008306 m006 (2/5*exp(Pi)-3/4)/(1/4*ln(Pi)-1/5) 9870077883582867 m001 1/ln(GAMMA(5/24))^2*Khintchine^2/gamma^2 9870077887761480 m001 Sarnak^(HardyLittlewoodC5*Paris) 9870077900968001 b008 Erf[1/41+Sqrt[3]] 9870077916225882 m001 LaplaceLimit^(ZetaR(2)/FeigenbaumDelta) 9870077926995369 a001 2584/11*39603^(8/59) 9870077937889276 a007 Real Root Of 900*x^4-242*x^3-596*x^2+61*x-446 9870077943965922 r009 Re(z^3+c),c=-21/118+39/56*I,n=50 9870077946507909 a007 Real Root Of -133*x^4+585*x^3+336*x^2-47*x+315 9870077948251668 s001 sum(exp(-Pi/2)^n*A197114[n],n=1..infinity) 9870077960447073 a007 Real Root Of -97*x^4-994*x^3-421*x^2-501*x+874 9870077979759060 l006 ln(8030/8863) 9870077987988098 r001 12i'th iterates of 2*x^2-1 of 9870078024131688 r005 Im(z^2+c),c=-17/98+59/61*I,n=5 9870078051384231 a001 46368/521*322^(5/12) 9870078061432958 m003 -149/30+Sqrt[5]/16-E^(1/2+Sqrt[5]/2) 9870078082737663 l006 ln(1553/4167) 9870078115073773 a007 Real Root Of -904*x^4+903*x^3+777*x^2-135*x+836 9870078145788440 m001 BesselJ(0,1)^ln(2)*GlaisherKinkelin^ln(2) 9870078147362039 m001 1/(2^(1/3))/ln(TwinPrimes)/BesselJ(1,1)^2 9870078180774544 r002 37th iterates of z^2 + 9870078185156885 m001 BesselK(1,1)/(LandauRamanujan^Tribonacci) 9870078206504785 a007 Real Root Of -400*x^4-515*x^3-517*x^2+545*x+926 9870078212464757 m001 (Pi+ln(2)/ln(10))/BesselJ(0,1)*Ei(1,1) 9870078223351932 r005 Im(z^2+c),c=-5/7+5/78*I,n=33 9870078276088502 m001 (BesselK(1,1)-Artin)/(MasserGramain-Otter) 9870078279543831 a007 Real Root Of 225*x^4-239*x^3+556*x^2+463*x-528 9870078297511717 a007 Real Root Of 714*x^4-920*x^3-412*x^2+858*x-314 9870078303937524 a001 2584/11*2207^(11/59) 9870078350136792 m001 1/ln(GAMMA(1/24))^2*RenyiParking*GAMMA(1/4)^2 9870078353139065 a007 Real Root Of 39*x^4-900*x^3+310*x^2-336*x+858 9870078354460233 m001 sqrt(5)^(exp(gamma)/exp(-1/2*Pi)) 9870078378879610 m001 ln(Riemann1stZero)^2/LandauRamanujan*Zeta(5)^2 9870078384886526 a007 Real Root Of -509*x^4+986*x^3+652*x^2-773*x+33 9870078396703157 m002 Pi^2+Tanh[Pi]/(6*Pi^5*Log[Pi]) 9870078442001188 a001 2/4870847*4^(31/49) 9870078447904993 a001 682/17*28657^(5/57) 9870078468781909 a003 cos(Pi*8/57)-cos(Pi*9/61) 9870078469727497 r009 Im(z^3+c),c=-17/94+49/60*I,n=7 9870078497303015 s002 sum(A068052[n]/(n^2*exp(n)+1),n=1..infinity) 9870078524151914 s002 sum(A068052[n]/(n^2*exp(n)-1),n=1..infinity) 9870078548431028 a003 sin(Pi*28/115)/sin(Pi*25/101) 9870078585245594 m001 1/(3^(1/3))*exp(Salem)^2*GAMMA(2/3) 9870078598664119 r005 Re(z^2+c),c=-24/25+9/56*I,n=31 9870078628515238 r005 Re(z^2+c),c=-89/94+10/49*I,n=31 9870078658479410 r001 20i'th iterates of 2*x^2-1 of 9870078662662012 a007 Real Root Of -878*x^4+655*x^3+928*x^2-461*x+104 9870078663024606 r005 Im(z^2+c),c=-25/27+4/47*I,n=15 9870078681627576 a007 Real Root Of 120*x^4-995*x^3+271*x^2-141*x+718 9870078721243279 a001 17711/1364*322^(3/4) 9870078740157480 q001 2507/2540 9870078774524326 l006 ln(3469/9308) 9870078784374407 m001 Zeta(1,2)^(1/2*GAMMA(5/6)^2/Pi) 9870078784374407 m001 Zeta(1,2)^(1/2*Landau/Pi*3^(1/2)*GAMMA(2/3)) 9870078784374407 m001 Zeta(1,2)^(GAMMA(5/6)/GAMMA(1/6)) 9870078791408665 a007 Real Root Of 950*x^4+52*x^3-896*x^2-132*x-109 9870078797144612 m001 (Lehmer-Sierpinski)/(Ei(1)+Champernowne) 9870078807960103 a007 Real Root Of 52*x^4+152*x^3+175*x^2-899*x-961 9870078808072783 a007 Real Root Of 374*x^4-193*x^3+42*x^2-264*x-842 9870078818043898 m001 ln(gamma)^2*MinimumGamma*sqrt(5) 9870078853570488 m001 (Ei(1,1)-CopelandErdos)/Zeta(1,-1) 9870078882317759 m004 -30+5*Pi+25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870078893016138 m005 (1/2*5^(1/2)-1/11)/(3/8*3^(1/2)-6/11) 9870078918998989 m001 ((1+3^(1/2))^(1/2))^(gamma(2)*Khinchin) 9870078924300396 a001 123/28657*377^(11/12) 9870078926161592 a007 Real Root Of -536*x^4+360*x^3-858*x^2-948*x+755 9870078928350299 m001 exp(1/Pi)-exp(1/exp(1))^LaplaceLimit 9870078931468238 b005 Number DB table 9870078935987352 m002 Pi^2+(ProductLog[Pi]*Tanh[Pi])/(E^Pi*Pi^4) 9870078936457793 s001 sum(exp(-2*Pi)^(n-1)*A157811[n],n=1..infinity) 9870078962130456 r009 Im(z^3+c),c=-53/90+11/19*I,n=23 9870078963877506 m001 BesselJ(1,1)^ZetaQ(2)*Grothendieck^ZetaQ(2) 9870078978279799 a007 Real Root Of -76*x^4+155*x^3+774*x^2+936*x+85 9870078999061178 r001 43i'th iterates of 2*x^2-1 of 9870079002281940 r005 Im(z^2+c),c=-27/110+5/34*I,n=4 9870079014802700 a007 Real Root Of -176*x^4-158*x^3-843*x^2-820*x+27 9870079033088948 m001 1/BesselK(1,1)*BesselJ(0,1)/ln(GAMMA(1/4)) 9870079044626181 a007 Real Root Of -72*x^4-714*x^3-102*x^2-651*x+286 9870079049931130 a007 Real Root Of -668*x^4-23*x^3-573*x^2-689*x+490 9870079094287224 g002 -2*gamma-4*ln(2)-3*ln(3)+Psi(3/11)-Psi(7/10) 9870079099823909 p003 LerchPhi(1/64,4,123/218) 9870079105087400 m008 (1/2*Pi^5-2/3)/(1/6*Pi^4-4/5) 9870079118880975 a007 Real Root Of -633*x^4-311*x^3-312*x^2+127*x+731 9870079138663708 m001 (Rabbit+Tetranacci)/(BesselI(1,1)-FeigenbaumB) 9870079140726267 a001 440719107401/48*144^(16/17) 9870079166315051 b008 Log[-2/57+E] 9870079243278958 m005 (41/36+1/4*5^(1/2))/(3/10*Pi+7/9) 9870079248456118 a007 Real Root Of 274*x^4-183*x^3+165*x^2+867*x+259 9870079264795833 a007 Real Root Of -372*x^4+212*x^3+346*x^2-168*x+54 9870079303525398 a007 Real Root Of 15*x^4+57*x^3-950*x^2-452*x+538 9870079322746013 a001 17711/2207*322^(5/6) 9870079335246988 l006 ln(1916/5141) 9870079343300702 g007 Psi(2,1/4)-Psi(2,6/11)-Psi(2,5/7)-Psi(2,4/7) 9870079355039809 r009 Re(z^3+c),c=-23/126+23/40*I,n=9 9870079400752812 a007 Real Root Of 978*x^4+557*x^3+536*x^2+866*x-60 9870079403052404 m001 (Thue+ZetaQ(4))/(Psi(1,1/3)-exp(1/Pi)) 9870079435819325 r005 Re(z^2+c),c=-21/22+19/108*I,n=53 9870079438296523 r005 Im(z^2+c),c=15/34+6/29*I,n=7 9870079439077900 m001 TreeGrowth2nd*exp(CopelandErdos)*sqrt(Pi) 9870079442810216 m001 (MadelungNaCl+Sarnak)/(Artin-GolombDickman) 9870079450812962 a007 Real Root Of -225*x^4+144*x^3-682*x^2-509*x+514 9870079480712806 r009 Im(z^3+c),c=-11/56+56/57*I,n=27 9870079494272664 m002 4/3+E^Pi+Pi^6+Log[Pi] 9870079501795286 r009 Re(z^3+c),c=-3/17+33/52*I,n=24 9870079510330152 a007 Real Root Of -197*x^4+862*x^3+751*x^2-732*x-651 9870079548277375 m001 GAMMA(1/12)^2*exp(FeigenbaumAlpha)^2*sqrt(5)^2 9870079590660993 a007 Real Root Of -703*x^4+327*x^3-95*x^2-682*x+401 9870079648880541 r009 Im(z^3+c),c=-71/114+13/27*I,n=36 9870079656660517 m002 Pi^4*Csch[Pi]*Log[Pi]+ProductLog[Pi]/5 9870079676048908 r005 Re(z^2+c),c=13/118+19/61*I,n=13 9870079759728476 m001 ln(5)^GAMMA(23/24)-GAMMA(1/12) 9870079767826098 m001 MasserGramain^(GaussKuzminWirsing*Paris) 9870079773757212 a007 Real Root Of 105*x^4-910*x^3-44*x^2+369*x+454 9870079799953604 r009 Re(z^3+c),c=-5/32+7/11*I,n=14 9870079823812060 m002 Pi^2+(ProductLog[Pi]*Sech[Pi])/(2*Pi^4) 9870079839055008 l005 247/68/(exp(247/68)-1) 9870079863054663 s002 sum(A053804[n]/(n^2*10^n-1),n=1..infinity) 9870079887187471 m001 Pi^(1/2)*(GlaisherKinkelin-Tribonacci) 9870079904140214 m002 6/Pi^2+(Pi^4*Cosh[Pi])/Log[Pi] 9870079919173903 a007 Real Root Of -367*x^4+917*x^3+593*x^2+256*x+905 9870079919690574 m009 (5*Psi(1,2/3)-1)/(32/5*Catalan+4/5*Pi^2+3/4) 9870079975528660 a007 Real Root Of 257*x^4-587*x^3-717*x^2+475*x+359 9870079977883132 r005 Re(z^2+c),c=-71/74+6/37*I,n=47 9870079979751264 m001 Lehmer^TwinPrimes/(Lehmer^HardyLittlewoodC3) 9870080008269277 m001 (Zeta(1/2)+TreeGrowth2nd)/(Thue+ZetaP(3)) 9870080047141274 m001 (ln(2)+MasserGramainDelta)/(Rabbit+Tribonacci) 9870080063910269 a007 Real Root Of 344*x^4-740*x^3-977*x^2+628*x+717 9870080066823948 r008 a(0)=1,K{-n^6,58+51*n-24*n^2-11*n^3} 9870080067826113 m005 (1/2*Zeta(3)+1/10)/(2/3*3^(1/2)-4/9) 9870080076115960 m001 MertensB3/(OrthogonalArrays-ZetaQ(2)) 9870080078035265 m005 (1/3*3^(1/2)-3/4)/(8/11*Zeta(3)+7/8) 9870080088980014 a007 Real Root Of -812*x^4-232*x^3+295*x^2+474*x+728 9870080092161132 a007 Real Root Of -46*x^4+956*x^3+33*x^2-176*x-734 9870080107412995 m001 (2^(1/2)+ErdosBorwein)/(FeigenbaumKappa+Niven) 9870080114113277 r005 Re(z^2+c),c=-14/13+12/59*I,n=56 9870080119501372 l006 ln(5273/5820) 9870080121249181 a003 sin(Pi*16/39)/sin(Pi*49/115) 9870080133909442 m005 (1/2*Catalan+8/11)/(5/12*Zeta(3)+7/10) 9870080154250011 m005 (1/2*Zeta(3)-1/3)/(2/3*exp(1)+9/10) 9870080156499233 r002 3th iterates of z^2 + 9870080159465505 a007 Real Root Of -639*x^4-167*x^3-293*x^2-747*x-6 9870080170334640 m002 Pi^2+1/(6*Pi^5*Log[Pi]) 9870080172894016 m001 GAMMA(5/24)-sqrt(5)-GAMMA(19/24) 9870080174417141 m001 Khinchin/(QuadraticClass+Tribonacci) 9870080188755884 l006 ln(2279/6115) 9870080214488760 h001 (3/5*exp(1)+5/8)/(7/12*exp(1)+7/10) 9870080214910906 m001 (Zeta(3)+cos(1/5*Pi))/(exp(1/Pi)+LaplaceLimit) 9870080222374353 m001 (Shi(1)-Catalan*GAMMA(11/12))/Catalan 9870080244554833 q001 2583/2617 9870080258236804 a007 Real Root Of 618*x^4+235*x^3-22*x^2+761*x+412 9870080260617438 m001 FeigenbaumDelta^(MadelungNaCl*Niven) 9870080310309495 g002 ln(2)+Psi(1/11)-1/2*Pi-Psi(5/12) 9870080318445687 a003 cos(Pi*1/110)*sin(Pi*40/89) 9870080323696171 p003 LerchPhi(1/100,6,331/225) 9870080344901814 r005 Re(z^2+c),c=-31/24+3/43*I,n=27 9870080359695579 m005 (1/2*5^(1/2)+1/12)/(1/4*Zeta(3)+11/12) 9870080379280367 m001 (FeigenbaumDelta+Kac)/(arctan(1/2)-gamma(1)) 9870080416487842 a007 Real Root Of -145*x^4+907*x^3-693*x^2-937*x+760 9870080435562574 a001 76/89*2178309^(25/39) 9870080479304102 m005 (1/3*5^(1/2)-3/7)/(3/8*Pi-6/7) 9870080495636665 a007 Real Root Of -204*x^4-302*x^3-886*x^2-204*x+565 9870080504267600 a007 Real Root Of 625*x^4-94*x^3+470*x^2+893*x-260 9870080514448365 r009 Im(z^3+c),c=-39/64+38/63*I,n=7 9870080535346069 a007 Real Root Of 546*x^4-873*x^3-751*x^2-229*x-852 9870080548235097 a001 55/1149851*1364^(13/31) 9870080551489260 r001 27i'th iterates of 2*x^2-1 of 9870080603037102 m004 -E^(Sqrt[5]*Pi)-1245*Sqrt[5]*Pi 9870080613987370 s002 sum(A150993[n]/(n*pi^n-1),n=1..infinity) 9870080623209071 a007 Real Root Of -81*x^4+517*x^3-422*x^2+472*x-475 9870080637868700 a001 2504730781961/29*76^(9/16) 9870080644996471 a007 Real Root Of 321*x^4-142*x^3+25*x^2+36*x-430 9870080647268263 a007 Real Root Of -320*x^4+355*x^3+62*x^2-336*x+253 9870080681059758 a007 Real Root Of 902*x^4-150*x^3+470*x^2+606*x-860 9870080682659194 m002 Pi^2+(2*Log[Pi])/(5*Pi^6) 9870080711636768 m002 -Pi^2-ProductLog[Pi]/(E^Pi*Pi^4) 9870080713003528 a001 439204/1597*6557470319842^(14/17) 9870080713054694 a001 370248451/1597*1836311903^(14/17) 9870080713060842 a001 312119004989/1597*514229^(14/17) 9870080717202657 m001 Thue*(Salem-Trott2nd) 9870080785672683 m005 (1/2*Catalan+3/10)/(3/4*5^(1/2)-10/11) 9870080797181514 a007 Real Root Of -532*x^4+498*x^3+811*x^2+436*x+624 9870080807727469 l006 ln(2642/7089) 9870080820028855 a007 Real Root Of 669*x^4-470*x^3-53*x^2+601*x-442 9870080822608125 m004 -5/Pi+5*Pi-25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870080848744205 a007 Real Root Of -939*x^4+657*x^3+416*x^2-415*x+708 9870080878914653 m001 (cos(1)+3^(1/3))/(FeigenbaumB+Salem) 9870080880681946 r009 Re(z^3+c),c=-5/28+36/55*I,n=35 9870080899527385 r005 Im(z^2+c),c=-11/10+29/245*I,n=29 9870080910542792 m001 (DuboisRaymond+Kolakoski)/(1+gamma(3)) 9870080934142375 a003 cos(Pi*1/69)*sin(Pi*32/71) 9870080936597810 a007 Real Root Of 85*x^4+767*x^3-759*x^2-523*x-410 9870080937382825 a007 Real Root Of -545*x^4+832*x^3-8*x^2-615*x+718 9870080981830831 a003 sin(Pi*24/53)*sin(Pi*47/98) 9870081002220714 a007 Real Root Of -718*x^4+396*x^3+744*x^2+645*x+974 9870081014631557 m001 (Psi(2,1/3)+Shi(1))/(-gamma(1)+Weierstrass) 9870081043178465 a007 Real Root Of -320*x^4+565*x^3-32*x^2-144*x+736 9870081045445527 r002 27th iterates of z^2 + 9870081058837181 a001 2576/321*322^(5/6) 9870081080585320 r002 22th iterates of z^2 + 9870081101535298 m001 MasserGramain^(ln(2)/exp(Pi)) 9870081110824654 a007 Real Root Of 898*x^4+727*x^3+829*x^2+477*x-490 9870081129943207 m005 (5/6*gamma+5/6)/(3*gamma-2/5) 9870081129943207 m007 (-5/6*gamma-5/6)/(-3*gamma+2/5) 9870081138916043 a001 987/11*843^(21/59) 9870081152109681 s002 sum(A195046[n]/(2^n+1),n=1..infinity) 9870081212218504 m001 PrimesInBinary^2/exp(Magata)*sqrt(3) 9870081212997930 m001 1/exp(TwinPrimes)^2*LaplaceLimit^2*sin(1) 9870081222109851 a007 Real Root Of -244*x^4+792*x^3+47*x^2-592*x+363 9870081245753554 r005 Re(z^2+c),c=-21/22+9/50*I,n=13 9870081271536273 r005 Im(z^2+c),c=-19/32+1/55*I,n=50 9870081274397625 a001 281*514229^(39/49) 9870081274939785 r009 Re(z^3+c),c=-5/94+43/44*I,n=18 9870081277157140 l006 ln(3005/8063) 9870081280305593 r009 Re(z^3+c),c=-5/94+43/44*I,n=24 9870081280311809 r009 Re(z^3+c),c=-5/94+43/44*I,n=30 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=36 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=42 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=48 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=54 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=60 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=64 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=62 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=58 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=56 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=52 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=50 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=46 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=44 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=40 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=38 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=34 9870081280311817 r009 Re(z^3+c),c=-5/94+43/44*I,n=32 9870081280311857 r009 Re(z^3+c),c=-5/94+43/44*I,n=28 9870081280312070 r009 Re(z^3+c),c=-5/94+43/44*I,n=26 9870081280350992 r009 Re(z^3+c),c=-5/94+43/44*I,n=22 9870081280489623 r009 Re(z^3+c),c=-5/94+43/44*I,n=20 9870081282177056 a007 Real Root Of 324*x^4-918*x^3-103*x^2+244*x-849 9870081297008288 m001 (Khinchin-MertensB1)/(Riemann3rdZero-ZetaP(2)) 9870081312129519 a001 121393/15127*322^(5/6) 9870081313939222 r005 Re(z^2+c),c=-6/7+29/118*I,n=7 9870081317848257 r009 Re(z^3+c),c=-5/94+43/44*I,n=16 9870081346377311 m005 (1/2*gamma+5/6)/(7/12*gamma+4/5) 9870081349084374 a001 105937/13201*322^(5/6) 9870081354476015 a001 416020/51841*322^(5/6) 9870081355262645 a001 726103/90481*322^(5/6) 9870081355377413 a001 5702887/710647*322^(5/6) 9870081355394157 a001 829464/103361*322^(5/6) 9870081355396600 a001 39088169/4870847*322^(5/6) 9870081355396957 a001 34111385/4250681*322^(5/6) 9870081355397009 a001 133957148/16692641*322^(5/6) 9870081355397016 a001 233802911/29134601*322^(5/6) 9870081355397017 a001 1836311903/228826127*322^(5/6) 9870081355397017 a001 267084832/33281921*322^(5/6) 9870081355397017 a001 12586269025/1568397607*322^(5/6) 9870081355397017 a001 10983760033/1368706081*322^(5/6) 9870081355397017 a001 43133785636/5374978561*322^(5/6) 9870081355397017 a001 75283811239/9381251041*322^(5/6) 9870081355397017 a001 591286729879/73681302247*322^(5/6) 9870081355397017 a001 86000486440/10716675201*322^(5/6) 9870081355397017 a001 4052739537881/505019158607*322^(5/6) 9870081355397017 a001 3536736619241/440719107401*322^(5/6) 9870081355397017 a001 3278735159921/408569081798*322^(5/6) 9870081355397017 a001 2504730781961/312119004989*322^(5/6) 9870081355397017 a001 956722026041/119218851371*322^(5/6) 9870081355397017 a001 182717648081/22768774562*322^(5/6) 9870081355397017 a001 139583862445/17393796001*322^(5/6) 9870081355397017 a001 53316291173/6643838879*322^(5/6) 9870081355397017 a001 10182505537/1268860318*322^(5/6) 9870081355397017 a001 7778742049/969323029*322^(5/6) 9870081355397017 a001 2971215073/370248451*322^(5/6) 9870081355397018 a001 567451585/70711162*322^(5/6) 9870081355397021 a001 433494437/54018521*322^(5/6) 9870081355397041 a001 165580141/20633239*322^(5/6) 9870081355397177 a001 31622993/3940598*322^(5/6) 9870081355398110 a001 24157817/3010349*322^(5/6) 9870081355404506 a001 9227465/1149851*322^(5/6) 9870081355448343 a001 1762289/219602*322^(5/6) 9870081355748809 a001 1346269/167761*322^(5/6) 9870081357808232 a001 514229/64079*322^(5/6) 9870081364423255 m005 (1/2*Zeta(3)-1/12)/(5/12*Catalan+1/7) 9870081371923731 a001 98209/12238*322^(5/6) 9870081374122106 a001 1149851/4181*6557470319842^(14/17) 9870081374129571 a001 969323029/4181*1836311903^(14/17) 9870081374135718 a001 817138163596/4181*514229^(14/17) 9870081382091119 b008 Sech[E]/Pi^(1/4) 9870081382363100 r009 Im(z^3+c),c=-4/21+13/15*I,n=63 9870081385670448 a007 Real Root Of 35*x^4-655*x^3+455*x^2+210*x-899 9870081388688012 m005 (1/2*gamma+10/11)/(7/12*5^(1/2)-1/11) 9870081390625115 m001 (Ei(1)-Magata)/(MertensB1-PrimesInBinary) 9870081396491305 r009 Re(z^3+c),c=-5/94+43/44*I,n=14 9870081402166294 m001 (-KhinchinLevy+Magata)/(Cahen-exp(Pi)) 9870081430806249 a007 Real Root Of -931*x^4+246*x^3+341*x^2-855*x-56 9870081468672800 a001 75025/9349*322^(5/6) 9870081470578014 a001 3010349/10946*6557470319842^(14/17) 9870081470579103 a001 1268860318/5473*1836311903^(14/17) 9870081470585250 a001 2139295485799/10946*514229^(14/17) 9870081484650741 a001 7881196/28657*6557470319842^(14/17) 9870081484650900 a001 6643838879/28657*1836311903^(14/17) 9870081484657048 a001 5600748293801/28657*514229^(14/17) 9870081486703924 a001 20633239/75025*6557470319842^(14/17) 9870081486703947 a001 17393796001/75025*1836311903^(14/17) 9870081486710095 a001 14662949395604/75025*514229^(14/17) 9870081487003480 a001 54018521/196418*6557470319842^(14/17) 9870081487003483 a001 22768774562/98209*1836311903^(14/17) 9870081487047184 a001 141422324/514229*6557470319842^(14/17) 9870081487047185 a001 119218851371/514229*1836311903^(14/17) 9870081487053561 a001 370248451/1346269*6557470319842^(14/17) 9870081487053561 a001 312119004989/1346269*1836311903^(14/17) 9870081487054491 a001 969323029/3524578*6557470319842^(14/17) 9870081487054491 a001 408569081798/1762289*1836311903^(14/17) 9870081487054627 a001 2537720636/9227465*6557470319842^(14/17) 9870081487054627 a001 2139295485799/9227465*1836311903^(14/17) 9870081487054646 a001 5600748293801/24157817*1836311903^(14/17) 9870081487054646 a001 6643838879/24157817*6557470319842^(14/17) 9870081487054649 a001 7331474697802/31622993*1836311903^(14/17) 9870081487054649 a001 17393796001/63245986*6557470319842^(14/17) 9870081487054650 a001 45537549124/165580141*6557470319842^(14/17) 9870081487054650 a001 119218851371/433494437*6557470319842^(14/17) 9870081487054650 a001 312119004989/1134903170*6557470319842^(14/17) 9870081487054650 a001 817138163596/2971215073*6557470319842^(14/17) 9870081487054650 a001 2139295485799/7778742049*6557470319842^(14/17) 9870081487054650 a001 440719107401/1602508992*6557470319842^(14/17) 9870081487054650 a001 505019158607/1836311903*6557470319842^(14/17) 9870081487054650 a001 64300051206/233802911*6557470319842^(14/17) 9870081487054650 a001 73681302247/267914296*6557470319842^(14/17) 9870081487054650 a001 23725150497407/102334155*1836311903^(14/17) 9870081487054650 a001 228811001/831985*6557470319842^(14/17) 9870081487054651 a001 9062201101803/39088169*1836311903^(14/17) 9870081487054651 a001 10749957122/39088169*6557470319842^(14/17) 9870081487054659 a001 1730726404001/7465176*1836311903^(14/17) 9870081487054659 a001 1368706081/4976784*6557470319842^(14/17) 9870081487054711 a001 1322157322203/5702887*1836311903^(14/17) 9870081487054711 a001 1568397607/5702887*6557470319842^(14/17) 9870081487055066 a001 10745088481/46347*1836311903^(14/17) 9870081487055066 a001 199691526/726103*6557470319842^(14/17) 9870081487057501 a001 96450076809/416020*1836311903^(14/17) 9870081487057501 a001 228826127/832040*6557470319842^(14/17) 9870081487074194 a001 73681302247/317811*1836311903^(14/17) 9870081487074195 a001 29134601/105937*6557470319842^(14/17) 9870081487188606 a001 28143753123/121393*1836311903^(14/17) 9870081487188615 a001 33385282/121393*6557470319842^(14/17) 9870081487194754 a001 23725150497407/121393*514229^(14/17) 9870081487972801 a001 5374978561/23184*1836311903^(14/17) 9870081487972861 a001 4250681/15456*6557470319842^(14/17) 9870081487978948 a001 3020733700601/15456*514229^(14/17) 9870081493347749 a001 4106118243/17711*1836311903^(14/17) 9870081493348165 a001 4870847/17711*6557470319842^(14/17) 9870081493353897 a001 3461452808002/17711*514229^(14/17) 9870081508428015 r008 a(0)=1,K{-n^6,35+45*n+40*n^2-44*n^3} 9870081509509307 m001 MinimumGamma-ThueMorse^sin(1) 9870081515408425 a007 Real Root Of 738*x^4-177*x^3+683*x^2-842*x-90 9870081515415775 a007 Real Root Of 78*x^4-319*x^3+732*x^2+242*x-855 9870081522993161 r005 Re(z^2+c),c=13/122+27/53*I,n=21 9870081527269348 a007 Real Root Of 26*x^4-927*x^3+327*x^2+69*x+480 9870081530188193 a001 1568397607/6765*1836311903^(14/17) 9870081530191044 a001 15126/55*6557470319842^(14/17) 9870081530194340 a001 440719107401/2255*514229^(14/17) 9870081573356841 a007 Real Root Of 709*x^4+935*x^3+843*x^2+456*x-145 9870081582187847 a007 Real Root Of 235*x^4-492*x^3+691*x^2+442*x-933 9870081602783604 m002 Pi^2+(Csch[Pi]*ProductLog[Pi])/(2*Pi^4) 9870081612919831 s001 sum(exp(-Pi)^(n-1)*A195911[n],n=1..infinity) 9870081617239550 a007 Real Root Of -833*x^4-783*x^3-122*x^2+348*x+500 9870081645397384 l006 ln(3368/9037) 9870081662827457 r008 a(0)=1,K{-n^6,44+44*n+8*n^2-17*n^3} 9870081662954714 q001 2659/2694 9870081669823073 a007 Real Root Of -536*x^4+762*x^3+723*x^2-128*x-802 9870081679197572 m001 ln(CareFree)*Cahen*Robbin^2 9870081689257532 a007 Real Root Of -306*x^4+681*x^3+769*x^2-266*x-851 9870081705663611 a007 Real Root Of 940*x^4-14*x^3+729*x^2+713*x-912 9870081708808410 r009 Re(z^3+c),c=-31/56+25/61*I,n=6 9870081719003158 r009 Im(z^3+c),c=-5/27+55/57*I,n=59 9870081745878036 r009 Re(z^3+c),c=-7/40+37/55*I,n=32 9870081763786947 r008 a(0)=1,K{-n^6,59+3*n+61*n^2-47*n^3} 9870081766848201 m001 exp(Pi)/(FeigenbaumMu-GAMMA(3/4)) 9870081777779231 r009 Im(z^3+c),c=-7/78+60/61*I,n=15 9870081782696358 a001 299537289/1292*1836311903^(14/17) 9870081782702505 a001 505019158607/2584*514229^(14/17) 9870081782715902 a001 710647/2584*6557470319842^(14/17) 9870081784931353 m001 (GAMMA(17/24)+ArtinRank2)/(FeigenbaumB+Salem) 9870081797731167 a007 Real Root Of 701*x^4+570*x^3+528*x^2-352*x-979 9870081816251255 r009 Im(z^3+c),c=-5/58+57/58*I,n=3 9870081853181291 m001 (BesselK(0,1)-Salem)/BesselJ(0,1) 9870081856241323 a007 Real Root Of -478*x^4+47*x^3-803*x^2-377*x+909 9870081857841022 m001 AlladiGrinstead/(Ei(1)-Psi(1,1/3)) 9870081882261250 a007 Real Root Of -811*x^4-46*x^3+779*x^2+360*x-43 9870081896558851 r005 Re(z^2+c),c=-29/31+9/41*I,n=63 9870081898837439 a003 cos(Pi*5/71)/sin(Pi*14/31) 9870081899025799 a007 Real Root Of 418*x^4+406*x^3+701*x^2+60*x-630 9870081904289478 m001 (Zeta(1/2)-gamma(1))/(Riemann1stZero-ZetaP(4)) 9870081941983258 l006 ln(3731/10011) 9870082007903691 m001 1/exp(FibonacciFactorial)^2/Cahen/GAMMA(2/3) 9870082069974832 r001 36i'th iterates of 2*x^2-1 of 9870082070735716 a001 1/416020*121393^(49/54) 9870082110793711 a007 Real Root Of -966*x^4-122*x^3+801*x^2-451*x-426 9870082125107214 m005 (1/2*gamma+2/5)/(49/176+3/16*5^(1/2)) 9870082131800834 a001 28657/3571*322^(5/6) 9870082154220221 g007 Psi(2,1/8)+Psi(2,4/5)+14*Zeta(3)-Psi(2,3/7) 9870082184741102 m001 (Pi-Chi(1))/(GAMMA(23/24)-ReciprocalFibonacci) 9870082188302329 a007 Real Root Of -240*x^4+485*x^3+748*x^2+879*x+833 9870082209888759 r005 Re(z^2+c),c=-113/126+17/64*I,n=5 9870082219710746 a007 Real Root Of 715*x^4-402*x^3-34*x^2+79*x-954 9870082248401454 m001 Artin-BesselI(0,1)^Mills 9870082293504634 m001 (LaplaceLimit+Porter)/(Zeta(1/2)-ArtinRank2) 9870082313205981 a007 Real Root Of -442*x^4+760*x^3+579*x^2+245*x+828 9870082325449555 l006 ln(7789/8597) 9870082325449555 p004 log(8597/7789) 9870082331418226 r005 Im(z^2+c),c=-15/28+1/55*I,n=22 9870082342884064 a007 Real Root Of 354*x^4-456*x^3+705*x^2+830*x-642 9870082342967403 a007 Real Root Of 130*x^4-833*x^3-781*x^2+809*x+635 9870082363233226 r005 Im(z^2+c),c=-6/7+1/117*I,n=6 9870082368388093 m005 (1/2*Pi+1/9)/(5/12*exp(1)+4/7) 9870082371969379 r002 42th iterates of z^2 + 9870082390222516 p004 log(11959/4457) 9870082394309580 m001 ln(2)^cos(1/5*Pi)/(CareFree^cos(1/5*Pi)) 9870082398562826 a007 Real Root Of 428*x^4+676*x^3+977*x^2+156*x-554 9870082493930439 m002 Pi^2+(Coth[Pi]*ProductLog[Pi])/(E^Pi*Pi^4) 9870082500979473 m005 (7/20+1/4*5^(1/2))/(7/9*5^(1/2)-9/11) 9870082542026183 m001 arctan(1/3)*Riemann3rdZero+MasserGramainDelta 9870082560596257 a007 Real Root Of -544*x^4+365*x^3+386*x^2+671*x-873 9870082596139318 a007 Real Root Of -198*x^4-9*x^3+56*x^2-23*x+102 9870082605835291 r009 Im(z^3+c),c=-9/44+16/17*I,n=11 9870082620036382 a007 Real Root Of 538*x^4-73*x^3+121*x^2-127*x-824 9870082622996718 a001 55/271443*3571^(6/31) 9870082629265710 m001 (-Paris+TreeGrowth2nd)/(DuboisRaymond-cos(1)) 9870082641169895 a007 Real Root Of -160*x^4+675*x^3+620*x^2-9*x+188 9870082687654138 m009 (2/3*Psi(1,2/3)-1/5)/(4/5*Psi(1,3/4)-1/6) 9870082713786772 m001 FeigenbaumDelta/(Landau^FibonacciFactorial) 9870082724023760 r002 39th iterates of z^2 + 9870082726651805 m001 ((1+3^(1/2))^(1/2)+ArtinRank2)/(Niven-Porter) 9870082744419242 a007 Real Root Of 192*x^4-844*x^3-137*x^2+748*x-122 9870082747489105 a001 55/439204*9349^(7/31) 9870082774801812 a001 55/103682*15127^(2/31) 9870082808225229 m001 1/exp(GAMMA(11/12))/Trott^2/sqrt(3)^2 9870082816263913 a007 Real Root Of -288*x^4-170*x^3-608*x^2-295*x+411 9870082819134548 a007 Real Root Of 923*x^4-902*x^3+50*x^2+926*x-878 9870082827715688 a007 Real Root Of 397*x^4-944*x^3+2*x^2+662*x-633 9870082829604349 v002 sum(1/(2^n+(23*n^2-46*n+39)),n=1..infinity) 9870082845623877 m005 (1/2*exp(1)+9/10)/(10/11*3^(1/2)+5/7) 9870082863110628 a007 Real Root Of 238*x^4-722*x^3-675*x^2-40*x-302 9870082883988539 a007 Real Root Of 898*x^4+735*x^3-50*x^2+631*x+526 9870082893924553 a003 cos(Pi*35/117)-cos(Pi*35/104) 9870082897010233 a007 Real Root Of 354*x^4-600*x^3+107*x^2+530*x-494 9870082925526020 a001 55/4870847*5778^(16/31) 9870082926746063 m005 (15/28+1/4*5^(1/2))/(1/2*exp(1)-1/4) 9870083002526163 q001 2735/2771 9870083020553423 b008 E^(1/3-Sqrt[3]/5) 9870083046244538 s001 sum(exp(-4*Pi/5)^n*A173756[n],n=1..infinity) 9870083075001225 m001 (Ei(1,1)+Zeta(1,2))/(Conway-Stephens) 9870083078676424 r009 Im(z^3+c),c=-7/78+60/61*I,n=17 9870083094125170 m001 (Si(Pi)-arctan(1/3))/(-MertensB2+Sierpinski) 9870083097638023 m001 (Conway+PolyaRandomWalk3D)/(LambertW(1)+ln(3)) 9870083099847538 r008 a(0)=1,K{-n^6,41-9*n^3-14*n^2+40*n} 9870083102493074 r004 Re(z^2+c),c=-1/38+1/5*I,z(0)=I,n=2 9870083157147157 m001 1/FeigenbaumKappa*Champernowne^2*ln(Catalan) 9870083157891682 a001 3571/144*4181^(28/39) 9870083169460035 m001 (GAMMA(2/3)+Grothendieck)/(Lehmer+Sierpinski) 9870083187582000 r009 Im(z^3+c),c=-7/78+60/61*I,n=21 9870083194561845 m001 Tribonacci*MinimumGamma/exp(Zeta(9)) 9870083200074923 r005 Im(z^2+c),c=1/19+33/46*I,n=5 9870083211466823 a007 Real Root Of -446*x^4+454*x^3-797*x^2-675*x+970 9870083234454326 r009 Im(z^3+c),c=-7/78+60/61*I,n=27 9870083234553057 r009 Im(z^3+c),c=-7/78+60/61*I,n=25 9870083234828424 r009 Im(z^3+c),c=-7/78+60/61*I,n=31 9870083234869362 r009 Im(z^3+c),c=-7/78+60/61*I,n=37 9870083234869931 r009 Im(z^3+c),c=-7/78+60/61*I,n=41 9870083234869960 r009 Im(z^3+c),c=-7/78+60/61*I,n=47 9870083234869961 r009 Im(z^3+c),c=-7/78+60/61*I,n=51 9870083234869961 r009 Im(z^3+c),c=-7/78+60/61*I,n=53 9870083234869961 r009 Im(z^3+c),c=-7/78+60/61*I,n=57 9870083234869961 r009 Im(z^3+c),c=-7/78+60/61*I,n=63 9870083234869961 r009 Im(z^3+c),c=-7/78+60/61*I,n=61 9870083234869961 r009 Im(z^3+c),c=-7/78+60/61*I,n=59 9870083234869961 r009 Im(z^3+c),c=-7/78+60/61*I,n=55 9870083234869961 r009 Im(z^3+c),c=-7/78+60/61*I,n=49 9870083234869961 r009 Im(z^3+c),c=-7/78+60/61*I,n=43 9870083234869963 r009 Im(z^3+c),c=-7/78+60/61*I,n=45 9870083234870138 r009 Im(z^3+c),c=-7/78+60/61*I,n=39 9870083234870765 r009 Im(z^3+c),c=-7/78+60/61*I,n=35 9870083234874663 r009 Im(z^3+c),c=-7/78+60/61*I,n=33 9870083235047564 r009 Im(z^3+c),c=-7/78+60/61*I,n=29 9870083243467240 r009 Im(z^3+c),c=-7/78+60/61*I,n=23 9870083262270225 m001 Salem^2*DuboisRaymond/exp(sqrt(1+sqrt(3)))^2 9870083282284533 m006 (2/5*ln(Pi)+3/5)/(2*exp(2*Pi)+5/6) 9870083286842252 a001 18/53316291173*987^(14/17) 9870083287052998 r005 Re(z^2+c),c=-19/26+33/128*I,n=10 9870083291861509 m001 1/exp(FeigenbaumC)^2/Porter/BesselK(0,1)^2 9870083300445277 r005 Re(z^2+c),c=-17/18-50/249*I,n=53 9870083321970780 a007 Real Root Of 569*x^4-322*x^3+530*x^2+467*x-905 9870083332395638 a004 Fibonacci(14)*Lucas(12)/(1/2+sqrt(5)/2)^10 9870083335888597 m001 Champernowne^Trott/(ThueMorse^Trott) 9870083353123280 a007 Real Root Of 238*x^4+99*x^3+618*x^2+252*x-484 9870083384360254 r005 Im(z^2+c),c=-29/34+27/115*I,n=32 9870083385027576 r009 Im(z^3+c),c=-7/78+60/61*I,n=19 9870083406441023 m005 (1/2*gamma+5/9)/(7/9*Catalan+1/7) 9870083415800094 m001 exp(1/Pi)^(gamma(1)/Pi^(1/2)) 9870083417598260 r005 Re(z^2+c),c=13/64+16/59*I,n=35 9870083432120096 m001 (Kac+TwinPrimes)/(Zeta(1/2)+BesselI(1,2)) 9870083447469664 a007 Real Root Of 450*x^4-925*x^3-976*x^2-206*x-569 9870083467052832 m004 -1-(25*Pi)/6+25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870083513413415 a001 4868641/21*1836311903^(14/17) 9870083513419563 a001 64300051206/329*514229^(14/17) 9870083513547372 a001 90481/329*6557470319842^(14/17) 9870083523061571 r005 Re(z^2+c),c=10/27+15/37*I,n=3 9870083523287913 r005 Re(z^2+c),c=-19/22+25/121*I,n=61 9870083573914132 a003 cos(Pi*3/67)*sin(Pi*47/99) 9870083634282397 r009 Im(z^3+c),c=-17/94+57/59*I,n=43 9870083656037337 m001 1/MertensB1^2*Cahen*exp(sinh(1))^2 9870083656628459 m005 (1/2*Catalan-11/12)/(21/5+1/5*5^(1/2)) 9870083657600174 a001 1/3*(1/2*5^(1/2)+1/2)^23*29^(5/11) 9870083707748201 a007 Real Root Of 810*x^4-414*x^3-343*x^2+335*x-502 9870083720871129 m001 1/exp(Sierpinski)^2/Lehmer^2/GAMMA(13/24) 9870083734540242 a007 Real Root Of -441*x^4+42*x^3+158*x^2+307*x+608 9870083740587965 r009 Re(z^3+c),c=-71/102+25/47*I,n=3 9870083746376672 r005 Re(z^2+c),c=-61/78+5/37*I,n=19 9870083768214869 r009 Im(z^3+c),c=-13/30+1/47*I,n=46 9870083826648706 a007 Real Root Of 283*x^4-400*x^3+501*x^2+750*x-401 9870083828993924 m005 (1/2*gamma-2/7)/(27/176+1/16*5^(1/2)) 9870083925085193 m001 (-MertensB2+ZetaP(4))/(BesselK(0,1)-ln(gamma)) 9870083937842031 m001 RenyiParking^KhinchinHarmonic*GAMMA(13/24) 9870083949532011 a001 55/4870847*2207^(18/31) 9870083976608284 r002 7th iterates of z^2 + 9870084007794356 a007 Real Root Of 580*x^4+757*x^3-7*x^2-981*x-784 9870084019862388 a007 Real Root Of 885*x^4+110*x^3-577*x^2+229*x+54 9870084034781570 a007 Real Root Of 665*x^4-629*x^3-937*x^2+839*x+505 9870084044466975 m001 BesselJ(1,1)+BesselK(0,1)^ArtinRank2 9870084044528827 a007 Real Root Of 729*x^4-443*x^3-941*x^2+91*x+561 9870084083757310 a007 Real Root Of -91*x^4+82*x^3-740*x^2+767*x+83 9870084105764528 m001 (Robbin-ZetaQ(2))/(2*Pi/GAMMA(5/6)+Lehmer) 9870084113829797 m001 (-FeigenbaumD+ZetaQ(2))/(Shi(1)+ErdosBorwein) 9870084128084641 a001 54018521/610*6557470319842^(12/17) 9870084128084644 a001 17393796001/610*1836311903^(12/17) 9870084128089914 a001 5600748293801/610*514229^(12/17) 9870084133215838 a007 Real Root Of -325*x^4+835*x^3+980*x^2+432*x+583 9870084138131892 a001 1/843*(1/2*5^(1/2)+1/2)^4*3^(3/17) 9870084141351170 a001 13201/7*2178309^(16/59) 9870084144095509 p001 sum((-1)^n/(60*n+41)/n/(100^n),n=0..infinity) 9870084146405292 a001 10946/843*18^(40/57) 9870084183774073 a007 Real Root Of -495*x^4-611*x^3-208*x^2+147*x+230 9870084202321020 a007 Real Root Of -558*x^4-949*x^3-458*x^2+404*x+462 9870084208779919 r008 a(0)=1,K{-n^6,51+35*n+27*n^2-37*n^3} 9870084237044230 m001 1/KhintchineLevy/Lehmer^2*exp(sqrt(2)) 9870084269662921 q001 2811/2848 9870084283140426 m001 Magata/exp(FeigenbaumB)/GAMMA(3/4)^2 9870084286415559 m002 -1-Pi^6*ProductLog[Pi]+4*Sinh[Pi] 9870084304308684 a007 Real Root Of -251*x^4+618*x^3+439*x^2-18*x+387 9870084310458198 m001 (Niven+ZetaP(4))/(ErdosBorwein-KomornikLoreti) 9870084312973708 a007 Real Root Of -175*x^4+809*x^3-169*x^2+551*x-991 9870084342220906 a007 Real Root Of 36*x^4-387*x^3-124*x^2+502*x+210 9870084342564785 m005 (1/2*exp(1)+7/11)/(4/11*5^(1/2)-5/6) 9870084359653144 a007 Real Root Of 351*x^4-193*x^3+402*x^2+361*x-554 9870084429711919 m002 Pi^2+(2*Sech[Pi]^2)/Pi^3 9870084434692832 a007 Real Root Of 599*x^4-303*x^3+164*x^2-882*x-89 9870084460221523 a007 Real Root Of 261*x^4-848*x^3-651*x^2+471*x+36 9870084467304610 a007 Real Root Of -321*x^4+655*x^3-698*x^2-891*x+735 9870084483433401 m006 (5*Pi^2-3/5)/(1/3/Pi-3/5) 9870084489554885 a001 322/1346269*89^(6/19) 9870084494825064 l004 Pi/cosh(78/59*Pi) 9870084544862720 r009 Im(z^3+c),c=-19/118+55/57*I,n=9 9870084580965770 a007 Real Root Of -571*x^4+888*x^3+730*x^2-263*x+425 9870084591261590 m001 OneNinth^(Trott2nd/FeigenbaumDelta) 9870084608546789 a001 2207/8*514229^(28/45) 9870084633944006 a007 Real Root Of 160*x^4-929*x^3-32*x^2-454*x+46 9870084635718436 r002 31th iterates of z^2 + 9870084644694283 m005 (1/2*exp(1)-8/9)/(5/11*exp(1)-6) 9870084658223867 a007 Real Root Of 683*x^4-394*x^3-863*x^2-332*x-514 9870084666447494 a007 Real Root Of -521*x^4-140*x^3+6*x^2+538*x+885 9870084673568848 m001 (Pi-ln(5))/(exp(1/exp(1))+OneNinth) 9870084681270633 a007 Real Root Of 849*x^4-351*x^3-977*x^2+889*x+686 9870084693776843 l006 ln(363/974) 9870084697594017 m001 (ErdosBorwein-MertensB2)/(ln(Pi)-BesselI(1,1)) 9870084721287760 a005 (1/cos(6/181*Pi))^1693 9870084723655967 m001 (FeigenbaumB+ZetaP(2))/(gamma(3)-Conway) 9870084736727851 a007 Real Root Of -473*x^4-76*x^3+423*x^2-482*x-512 9870084742684513 a007 Real Root Of -21*x^4+966*x^3+115*x^2-944*x-95 9870084771428458 a007 Real Root Of 638*x^4+652*x^3+116*x^2-660*x-743 9870084773743542 m001 (-QuadraticClass+TwinPrimes)/(PlouffeB-exp(1)) 9870084823753627 h001 (11/12*exp(1)+3/10)/(7/9*exp(1)+5/7) 9870084847642325 r005 Im(z^2+c),c=-67/106+3/16*I,n=42 9870084903239140 m002 Pi^2+Sinh[Pi]/(25*Pi^6) 9870084928677446 r005 Im(z^2+c),c=-33/56+2/11*I,n=57 9870084941324860 l006 ln(8267/8349) 9870084959388562 a007 Real Root Of -510*x^4+516*x^3-772*x^2-829*x+914 9870084970741002 a001 2889*144^(27/38) 9870085000467424 a007 Real Root Of 94*x^4-695*x^3-443*x^2+161*x-167 9870085006107115 q001 8/81053 9870085024104780 m001 GAMMA(5/12)/exp(-1/2*Pi)/Zeta(5) 9870085026373267 a007 Real Root Of -751*x^4+356*x^3-509*x^2-778*x+783 9870085050068832 r002 29th iterates of z^2 + 9870085053989378 a007 Real Root Of 252*x^4-32*x^3+26*x^2+981*x+673 9870085054749040 a007 Real Root Of 147*x^4-597*x^3+108*x^2-135*x-952 9870085056507207 r005 Im(z^2+c),c=-29/36+1/15*I,n=7 9870085064489631 r002 6th iterates of z^2 + 9870085067726292 r002 8th iterates of z^2 + 9870085067863325 a001 3/76*18^(13/41) 9870085075980263 s002 sum(A014435[n]/(n^3*10^n+1),n=1..infinity) 9870085146253810 m001 GAMMA(1/3)^exp(-Pi)/(GAMMA(1/4)^exp(-Pi)) 9870085185550587 a007 Real Root Of 874*x^4-241*x^3-297*x^2+550*x-229 9870085191712527 m001 (PlouffeB+ZetaP(2))/(Pi^(1/2)-FeigenbaumB) 9870085202026707 a007 Real Root Of -101*x^4-899*x^3+964*x^2-41*x-203 9870085222409745 a007 Real Root Of 632*x^4-575*x^3-939*x^2-455*x-687 9870085226054311 m003 10-(E^(-1/2-Sqrt[5]/2)*Cosh[1/2+Sqrt[5]/2])/4 9870085243009082 s001 sum(exp(-4*Pi/5)^n*A116707[n],n=1..infinity) 9870085308781318 m005 (-3/20+1/4*5^(1/2))/(1/11*Pi-7/10) 9870085310237047 l004 sinh(722/73) 9870085311827939 r009 Im(z^3+c),c=-67/118+22/35*I,n=44 9870085321168704 m001 (LambertW(1)+BesselK(0,1))^ln(3) 9870085326137881 m002 Pi^2+(4*Sech[Pi])/(E^Pi*Pi^3) 9870085360895170 l004 cosh(722/73) 9870085396714785 r005 Re(z^2+c),c=-13/12+15/79*I,n=28 9870085397894911 m005 (4/5*gamma+1)/(5/6*gamma+1) 9870085397894911 m007 (-4/5*gamma-1)/(-5/6*gamma-1) 9870085426312863 p001 sum((-1)^n/(213*n+100)/(24^n),n=0..infinity) 9870085453111341 r005 Re(z^2+c),c=14/29+2/51*I,n=3 9870085464853355 a007 Real Root Of -428*x^4-83*x^3+13*x^2+594*x+900 9870085470085470 q001 2887/2925 9870085472068811 a003 cos(Pi*5/103)*sin(Pi*43/89) 9870085489230867 r005 Re(z^2+c),c=17/122+9/50*I,n=9 9870085495944952 m001 TreeGrowth2nd^2/exp(FeigenbaumD)^2/Catalan 9870085503091966 m001 (OrthogonalArrays-Si(Pi))/(ZetaP(2)+ZetaQ(4)) 9870085509382363 r005 Re(z^2+c),c=-29/31+3/17*I,n=7 9870085518333789 m001 (GAMMA(2/3)+exp(1/Pi)*gamma(3))/exp(1/Pi) 9870085537867619 r002 4th iterates of z^2 + 9870085577235036 a007 Real Root Of -581*x^4+113*x^3+826*x^2+644*x+491 9870085597305525 r004 Re(z^2+c),c=-9/34-7/8*I,z(0)=exp(1/8*I*Pi),n=6 9870085598447050 m001 (Niven-Paris)/(cos(1/5*Pi)-MasserGramain) 9870085635007880 m001 (Grothendieck+Salem)/(Sierpinski+ThueMorse) 9870085645388666 p004 log(28949/10789) 9870085719467859 a007 Real Root Of 239*x^4-641*x^3-290*x^2+566*x-2 9870085752625986 r005 Im(z^2+c),c=-11/50+21/23*I,n=5 9870085759164697 a007 Real Root Of 603*x^4-612*x^3+159*x^2+337*x-983 9870085763766860 m001 (ErdosBorwein-FeigenbaumC)^ZetaQ(3) 9870085776830455 a007 Real Root Of 563*x^4-858*x^3-26*x^2+387*x-952 9870085783770617 a007 Real Root Of -405*x^4+379*x^3+355*x^2-851*x-437 9870085785075514 a007 Real Root Of -432*x^4+334*x^3+756*x^2+358*x+348 9870085792337905 m001 (GAMMA(1/3)+5)/(-exp(1/exp(1))+2/3) 9870085810788363 m001 (5^(1/2)-ln(2)/ln(10))/(-ln(5)+FeigenbaumMu) 9870085814235157 r002 3th iterates of z^2 + 9870085838687588 m004 (-4*Sqrt[5])/Pi-Sqrt[5]*Pi+Csch[Sqrt[5]*Pi] 9870085840095305 m004 -2/E^(Sqrt[5]*Pi)+(4*Sqrt[5])/Pi+Sqrt[5]*Pi 9870085841503020 m004 (-4*Sqrt[5])/Pi-Sqrt[5]*Pi+Sech[Sqrt[5]*Pi] 9870085864811116 r005 Re(z^2+c),c=-43/60+20/33*I,n=5 9870085910455131 r005 Re(z^2+c),c=-25/26+17/109*I,n=49 9870085923243417 r002 8th iterates of z^2 + 9870085923243417 r002 8th iterates of z^2 + 9870085959825596 a007 Real Root Of 994*x^4-682*x^3-282*x^2+586*x-746 9870085983986677 b008 -10+(Sqrt[2]+2*Pi)^(-1) 9870085987644044 a001 28657/521*322^(1/2) 9870085994171486 r005 Im(z^2+c),c=-53/44+5/49*I,n=34 9870085997606206 a007 Real Root Of 498*x^4-114*x^3-256*x^2-967*x+98 9870086028817821 r005 Re(z^2+c),c=-105/106+9/35*I,n=57 9870086074105934 r008 a(0)=1,K{-n^6,23+30*n+56*n^2-31*n^3} 9870086095279928 r005 Re(z^2+c),c=51/106+1/52*I,n=3 9870086105019305 m002 Pi^2+(5*ProductLog[Pi]*Sech[Pi])/Pi^6 9870086176989237 m001 (Tetranacci+ZetaQ(3))/(Khinchin-Sarnak) 9870086184059581 a007 Real Root Of 238*x^4-698*x^3-40*x^2+73*x-786 9870086225918156 m002 Pi^2+(2*Csch[Pi]*Sech[Pi])/Pi^3 9870086276207267 a007 Real Root Of 967*x^4-39*x^3+239*x^2+381*x-812 9870086306768787 m002 15/E^Pi-Cosh[Pi]+ProductLog[Pi] 9870086310718038 m001 (2^(1/3))^Stephens*StronglyCareFree^Stephens 9870086317055364 a008 Real Root of x^3-x^2+76*x-75 9870086335554750 r005 Im(z^2+c),c=-2/3+19/102*I,n=46 9870086341538194 m001 Chi(1)^Robbin/(Chi(1)^sin(1/5*Pi)) 9870086345505500 a007 Real Root Of -377*x^4+501*x^3-507*x^2-506*x+834 9870086418704130 m001 (Pi^(1/2)-exp(Pi))/(FeigenbaumB+MertensB3) 9870086460030764 m005 (1/2*Catalan+9/10)/(5/12*Zeta(3)+7/8) 9870086494984899 r002 4th iterates of z^2 + 9870086503462637 a007 Real Root Of -936*x^4-394*x^3-378*x^2-408*x+475 9870086521547005 r002 2th iterates of z^2 + 9870086545070228 s002 sum(A194809[n]/(n*pi^n+1),n=1..infinity) 9870086596905030 r005 Im(z^2+c),c=-71/64+7/31*I,n=55 9870086598154402 m006 (1/4*exp(Pi)-1/3)/(1/6*Pi+5) 9870086608927381 q001 2963/3002 9870086609258210 r005 Im(z^2+c),c=5/66+27/34*I,n=4 9870086613418778 r008 a(0)=1,K{-n^6,26-4*n^3-13*n^2+69*n} 9870086614749559 a007 Real Root Of -594*x^4+259*x^3+395*x^2+151*x+577 9870086662674096 m005 (1/2*Pi+1/7)/(-15/22+5/22*5^(1/2)) 9870086676950386 a001 5473/682*322^(5/6) 9870086700322830 r005 Re(z^2+c),c=-71/74+6/37*I,n=57 9870086701217256 m002 Pi^2+Cosh[Pi]/(25*Pi^6) 9870086703108946 a007 Real Root Of 576*x^4-584*x^3-947*x^2-510*x-689 9870086754159569 r005 Re(z^2+c),c=-71/74+6/37*I,n=59 9870086759166594 a007 Real Root Of 897*x^4-129*x^3-479*x^2-361*x-865 9870086786875553 r009 Im(z^3+c),c=-19/98+44/47*I,n=23 9870086787627633 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3)+Salem)^gamma(2) 9870086795289791 m005 (1/3*Pi+2/5)/(3/5*Catalan+11/12) 9870086836182406 m001 (-MertensB2+ZetaP(4))/(Si(Pi)-ln(2^(1/2)+1)) 9870086848578141 m005 (1/3*gamma+3/7)/(1/10*gamma+4/7) 9870086850593419 s002 sum(A045086[n]/(exp(pi*n)+1),n=1..infinity) 9870086873179462 r005 Im(z^2+c),c=13/82+44/63*I,n=6 9870086895865052 r002 34th iterates of z^2 + 9870086900972358 b008 10+39*(-3+E) 9870086903368601 m001 (3^(1/3)+PrimesInBinary)/(1+ln(2^(1/2)+1)) 9870086923658352 r002 2th iterates of z^2 + 9870086925207313 r005 Im(z^2+c),c=-39/62+6/59*I,n=13 9870086927180984 a007 Real Root Of 425*x^4-146*x^3+736*x^2+329*x-936 9870086948646840 l006 ln(2516/2777) 9870086950787070 a007 Real Root Of -69*x^4+242*x^3-210*x^2+972*x-922 9870086965539937 r008 a(0)=1,K{-n^6,54+36*n-5*n^2-7*n^3} 9870086975213387 m002 Pi^2+(4*Log[Pi])/Pi^8 9870086994446447 r005 Re(z^2+c),c=-71/74+6/37*I,n=51 9870086995939203 m002 Pi^2+Tanh[Pi]/(2*Pi^6*ProductLog[Pi]) 9870087032812319 m001 FransenRobinson*Backhouse*exp(log(1+sqrt(2))) 9870087095108042 m002 -2/E^Pi-Pi^2+Sech[Pi]*Tanh[Pi] 9870087111894423 r005 Re(z^2+c),c=27/106+17/52*I,n=44 9870087112486537 m001 (Porter-ZetaP(3))/(Ei(1,1)-GAMMA(7/12)) 9870087125698430 m002 Pi^2+(4*Csch[Pi])/(E^Pi*Pi^3) 9870087148580891 m006 (1/Pi+1/3)/(3/4*Pi^2-4/5) 9870087195994085 m001 (Pi-Shi(1))/(GAMMA(13/24)+Bloch) 9870087234405252 r005 Re(z^2+c),c=-21/22+22/125*I,n=49 9870087240813556 m002 -Pi^6-E^Pi*Log[Pi]+Tanh[Pi]/Log[Pi] 9870087249348527 a005 (1/sin(107/234*Pi))^508 9870087250261785 a007 Real Root Of -819*x^4+354*x^3+538*x^2-36*x+558 9870087278453605 a001 10946/2207*322^(11/12) 9870087289664169 m004 -3/2+5*Pi-25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870087331242056 a003 cos(Pi*6/113)/sin(Pi*18/37) 9870087388562202 r005 Im(z^2+c),c=7/114+23/32*I,n=3 9870087400273467 m005 (1/2*exp(1)+5/8)/(4/7*3^(1/2)-3) 9870087405339853 a007 Real Root Of 792*x^4+88*x^3+808*x^2+526*x-935 9870087415748058 g001 GAMMA(1/12,12/47) 9870087429836737 a001 1568397607/377*514229^(16/17) 9870087429849255 a001 710647/377*1836311903^(16/17) 9870087435145662 a007 Real Root Of 847*x^4-966*x^3+872*x^2-542*x-63 9870087445256235 m001 1/exp(Rabbit)^2*ArtinRank2^2*Catalan^2 9870087454510604 a007 Real Root Of 225*x^4-929*x^3+251*x^2+138*x+299 9870087510341131 r008 a(0)=1,K{-n^6,55-28*n^3+2*n^2+47*n} 9870087513983672 a001 21/2207*3^(1/30) 9870087529781348 a007 Real Root Of 362*x^4-102*x^3-35*x^2+190*x-220 9870087548907014 r005 Im(z^2+c),c=-13/42+7/47*I,n=17 9870087603082300 l006 ln(3529/9469) 9870087604783234 a007 Real Root Of -681*x^4-854*x^3-390*x^2+776*x+971 9870087609275754 r009 Im(z^3+c),c=-23/118+22/23*I,n=43 9870087670836498 a007 Real Root Of 691*x^4-52*x^3-665*x^2-843*x-890 9870087685863710 r009 Im(z^3+c),c=-9/74+48/49*I,n=7 9870087690808704 q001 3039/3079 9870087695669828 m002 -6/E^Pi-Pi^2+3*Sech[Pi] 9870087699302178 r005 Re(z^2+c),c=21/106+14/53*I,n=13 9870087709325318 a007 Real Root Of 866*x^4-587*x^3-23*x^2+779*x-595 9870087712492313 m001 HeathBrownMoroz^gamma(3)*Conway^gamma(3) 9870087712549568 b008 93+Sqrt[65/2] 9870087721600994 r005 Im(z^2+c),c=-31/34+9/110*I,n=18 9870087737806024 a001 4/233*46368^(7/43) 9870087748967831 a007 Real Root Of 834*x^4-260*x^3-967*x^2-882*x-970 9870087765068681 r005 Re(z^2+c),c=17/118+9/35*I,n=2 9870087771659915 l003 hypergeom([1,1,3/2],[2/3,1/3],74/103) 9870087789075389 m001 HeathBrownMoroz/(KomornikLoreti-ZetaP(2)) 9870087793119271 m002 Pi^6+Log[Pi]*Sinh[Pi]+ProductLog[Pi]*Sinh[Pi] 9870087808532530 a007 Real Root Of -92*x^4-863*x^3+456*x^2+194*x+807 9870087808960248 a003 cos(Pi*5/97)/sin(Pi*57/115) 9870087809613250 r005 Im(z^2+c),c=-47/42+4/33*I,n=14 9870087812497997 m001 1/exp(sqrt(3))^2*RenyiParking^2/sqrt(Pi) 9870087853829811 s001 sum(exp(-Pi/3)^n*A098809[n],n=1..infinity) 9870087858857101 r002 8th iterates of z^2 + 9870087897157448 m002 Pi^2+Sinh[Pi]/(E^Pi*Pi^6*ProductLog[Pi]) 9870087907494329 m002 Pi^2+(5*Csch[Pi]*ProductLog[Pi])/Pi^6 9870087936650749 l006 ln(3166/8495) 9870088023851741 a007 Real Root Of -528*x^4+903*x^3+991*x^2+226*x+627 9870088028845569 m002 Pi^2+(2*Csch[Pi]^2)/Pi^3 9870088094893412 a007 Real Root Of -935*x^4+71*x^3-320*x^2-896*x+383 9870088101731234 r009 Re(z^3+c),c=-13/62+41/61*I,n=27 9870088107035059 m001 sin(1/5*Pi)^Trott2nd*GAMMA(11/12)^Trott2nd 9870088125249729 b008 Pi^2+4*Erfc[E] 9870088138672311 a007 Real Root Of -87*x^4+457*x^3-78*x^2-387*x+216 9870088160499560 m001 cos(1/5*Pi)^(StolarskyHarborth/ln(2+3^(1/2))) 9870088198319271 a007 Real Root Of -25*x^4+825*x^3-467*x^2-313*x+963 9870088201631098 m001 (5^(1/2))^(gamma(2)/Gompertz) 9870088208012753 m001 GAMMA(7/12)^Paris/(KhinchinHarmonic^Paris) 9870088217029329 a007 Real Root Of 171*x^4-396*x^3+707*x^2+862*x-381 9870088221954420 a007 Real Root Of 348*x^4-149*x^3+219*x^2+625*x-70 9870088235879998 r008 a(0)=1,K{-n^6,44+46*n-11*n^2-n^3} 9870088297152084 r005 Im(z^2+c),c=-4/7+15/83*I,n=36 9870088319996029 m005 (43/44+1/4*5^(1/2))/(5*Pi-1/7) 9870088334011557 r002 3th iterates of z^2 + 9870088334331699 m004 -5/3+5*Pi-25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870088338065646 a007 Real Root Of 624*x^4-955*x^3-379*x^2+289*x-856 9870088340054264 a007 Real Root Of -176*x^4+20*x^3-944*x^2-624*x+490 9870088345584027 a007 Real Root Of -129*x^4+512*x^3+400*x^2+774*x+989 9870088356616148 l006 ln(2803/7521) 9870088376246715 m001 GAMMA(3/4)*Zeta(1,2)*Thue 9870088382105059 r005 Re(z^2+c),c=-23/25+22/37*I,n=3 9870088419700504 r008 a(0)=1,K{-n^6,63-27*n^3+3*n^2+37*n} 9870088437528659 r005 Re(z^2+c),c=-13/12+11/58*I,n=28 9870088446449130 a007 Real Root Of -679*x^4-53*x^3+129*x^2+59*x+526 9870088453222073 a007 Real Root Of 622*x^4-47*x^3-100*x^2+533*x-12 9870088462613272 r005 Im(z^2+c),c=-5/7+22/65*I,n=20 9870088468205677 a007 Real Root Of 313*x^4-62*x^3+871*x^2+294*x-915 9870088477422854 a007 Real Root Of -294*x^4+173*x^3-643*x^2-480*x+598 9870088477847215 a005 (1/cos(1/31*Pi))^1788 9870088480178738 r005 Re(z^2+c),c=-25/26+17/109*I,n=47 9870088505165353 a007 Real Root Of -414*x^4-382*x^3-804*x^2-166*x+645 9870088517872348 a007 Real Root Of -453*x^4-191*x^3-469*x^2+12*x+715 9870088533486050 a007 Real Root Of -132*x^4+472*x^3+62*x^2+440*x+953 9870088542560581 b008 2+3*Pi^2*Sech[2] 9870088564699370 a007 Real Root Of 912*x^4-741*x^3-864*x^2+899*x+151 9870088582613224 m001 FeigenbaumDelta*(Backhouse-FeigenbaumMu) 9870088589067044 a007 Real Root Of -18*x^4-191*x^3-184*x^2-510*x+66 9870088597976734 a007 Real Root Of -70*x^4+656*x^3+680*x^2-248*x-982 9870088598194780 m002 6/E^(3*Pi)+Pi^2 9870088599164068 a007 Real Root Of 248*x^4-721*x^3-268*x^2+497*x-177 9870088623146005 m001 GAMMA(7/12)*KhintchineHarmonic^2*ln(cos(Pi/5)) 9870088659160517 a001 141422324/1597*6557470319842^(12/17) 9870088659160517 a001 45537549124/1597*1836311903^(12/17) 9870088659165787 a001 14662949395604/1597*514229^(12/17) 9870088696908625 a007 Real Root Of -786*x^4+338*x^3+443*x^2+260*x+896 9870088717850121 h001 (3/11*exp(2)+5/6)/(8/11*exp(1)+10/11) 9870088719898605 q001 3115/3156 9870088765302986 m006 (1/6*Pi^2+5)/(4/Pi-3/5) 9870088771629973 m001 Pi*(Psi(2,1/3)/Si(Pi)-(1+3^(1/2))^(1/2)) 9870088801747937 m002 Pi^2+1/(2*Pi^6*ProductLog[Pi]) 9870088825549068 m001 Si(Pi)^DuboisRaymond*ZetaQ(3) 9870088836364745 r005 Re(z^2+c),c=-17/18+30/149*I,n=57 9870088842285618 a007 Real Root Of -895*x^4-297*x^3-730*x^2-541*x+741 9870088856496257 a003 cos(Pi*8/65)-sin(Pi*32/83) 9870088857432452 a007 Real Root Of -388*x^4+658*x^3+528*x^2-343*x+148 9870088858987344 m005 (1/3*3^(1/2)+1/7)/(1/9*exp(1)-3/8) 9870088882374856 r005 Im(z^2+c),c=-111/98+6/49*I,n=28 9870088900630276 m009 (1/5*Psi(1,3/4)-1/4)/(4/5*Psi(1,2/3)+1/6) 9870088901538438 l006 ln(2440/6547) 9870088910131497 m001 GAMMA(11/12)/Riemann2ndZero^2*ln(GAMMA(3/4))^2 9870088923963405 m001 (Niven+RenyiParking)/(ln(2)/ln(10)+ln(gamma)) 9870088925112448 a003 cos(Pi*4/59)/sin(Pi*41/90) 9870088939868609 m001 (Bloch-MasserGramain)/(Pi-exp(1/Pi)) 9870088944835406 m001 (3^(1/2)+Ei(1,1))/(ln(2+3^(1/2))+TwinPrimes) 9870088948014506 m009 (1/12*Pi^2+6)/(32*Catalan+4*Pi^2+1/3) 9870088966431172 r005 Im(z^2+c),c=-83/90+22/63*I,n=6 9870088968110740 m005 (1/2*Pi-2/7)/(4/9*3^(1/2)-9/10) 9870088991285324 r005 Re(z^2+c),c=-25/26+17/109*I,n=37 9870088995099412 a001 28657/5778*322^(11/12) 9870089001179928 m001 (Zeta(1,-1)+Khinchin)/(GAMMA(2/3)-ln(5)) 9870089007271765 m001 (exp(Pi)+FeigenbaumB)/(Niven+Sarnak) 9870089013884381 a007 Real Root Of -538*x^4+617*x^3+977*x^2+621*x+765 9870089037574396 r002 7th iterates of z^2 + 9870089041388542 m002 -2+4*Sech[Pi]-Pi^4*Tanh[Pi] 9870089051594203 m001 (-CopelandErdos+ZetaP(2))/(Zeta(3)-exp(Pi)) 9870089055648341 r005 Re(z^2+c),c=-53/98+14/29*I,n=10 9870089059135267 m001 MinimumGamma^2/exp(Conway)/sin(Pi/5) 9870089097562092 r009 Re(z^3+c),c=-4/9+25/31*I,n=3 9870089101421651 m001 (5^(1/2)-BesselK(0,1))/(-Gompertz+ThueMorse) 9870089162204202 m001 GAMMA(11/12)^(gamma(1)/ln(2)*ln(10)) 9870089196441041 a007 Real Root Of 756*x^4-425*x^3-940*x^2+124*x-88 9870089207776605 m001 ln(2+3^(1/2))^GAMMA(5/6)/(ln(2+3^(1/2))^Salem) 9870089210217522 r009 Im(z^3+c),c=-4/25+43/45*I,n=3 9870089244970354 m005 (1/3*2^(1/2)+1/4)/(5/12*Pi+6) 9870089245554710 a001 75025/15127*322^(11/12) 9870089264202353 a007 Real Root Of 959*x^4-827*x^3-683*x^2+620*x-428 9870089282095646 a001 196418/39603*322^(11/12) 9870089287426897 a001 514229/103682*322^(11/12) 9870089288204716 a001 1346269/271443*322^(11/12) 9870089288225861 a007 Real Root Of 646*x^4-672*x^3+258*x^2+726*x-794 9870089288318198 a001 3524578/710647*322^(11/12) 9870089288334755 a001 9227465/1860498*322^(11/12) 9870089288337171 a001 24157817/4870847*322^(11/12) 9870089288337523 a001 63245986/12752043*322^(11/12) 9870089288337575 a001 165580141/33385282*322^(11/12) 9870089288337582 a001 433494437/87403803*322^(11/12) 9870089288337583 a001 1134903170/228826127*322^(11/12) 9870089288337583 a001 2971215073/599074578*322^(11/12) 9870089288337583 a001 7778742049/1568397607*322^(11/12) 9870089288337583 a001 20365011074/4106118243*322^(11/12) 9870089288337583 a001 53316291173/10749957122*322^(11/12) 9870089288337583 a001 139583862445/28143753123*322^(11/12) 9870089288337583 a001 365435296162/73681302247*322^(11/12) 9870089288337583 a001 956722026041/192900153618*322^(11/12) 9870089288337583 a001 2504730781961/505019158607*322^(11/12) 9870089288337583 a001 10610209857723/2139295485799*322^(11/12) 9870089288337583 a001 4052739537881/817138163596*322^(11/12) 9870089288337583 a001 140728068720/28374454999*322^(11/12) 9870089288337583 a001 591286729879/119218851371*322^(11/12) 9870089288337583 a001 225851433717/45537549124*322^(11/12) 9870089288337583 a001 86267571272/17393796001*322^(11/12) 9870089288337583 a001 32951280099/6643838879*322^(11/12) 9870089288337583 a001 1144206275/230701876*322^(11/12) 9870089288337583 a001 4807526976/969323029*322^(11/12) 9870089288337584 a001 1836311903/370248451*322^(11/12) 9870089288337584 a001 701408733/141422324*322^(11/12) 9870089288337587 a001 267914296/54018521*322^(11/12) 9870089288337606 a001 9303105/1875749*322^(11/12) 9870089288337741 a001 39088169/7881196*322^(11/12) 9870089288338664 a001 14930352/3010349*322^(11/12) 9870089288344988 a001 5702887/1149851*322^(11/12) 9870089288388334 a001 2178309/439204*322^(11/12) 9870089288685435 a001 75640/15251*322^(11/12) 9870089290721791 a001 317811/64079*322^(11/12) 9870089295092604 m001 (sin(1/5*Pi)+gamma(3))/(MertensB1-Thue) 9870089302893745 a007 Real Root Of -502*x^4+128*x^3+894*x^2-110*x-380 9870089304679187 a001 121393/24476*322^(11/12) 9870089319721053 a003 cos(Pi*1/39)*sin(Pi*46/101) 9870089320235925 a001 370248451/4181*6557470319842^(12/17) 9870089320235926 a001 119218851371/4181*1836311903^(12/17) 9870089345209435 m001 ln((3^(1/3)))^2*(2^(1/3))^2*arctan(1/2) 9870089351826965 r002 5th iterates of z^2 + 9870089352870377 m002 Pi^2+(3*Log[Pi])/(E^Pi*Pi^5) 9870089363481151 r005 Re(z^2+c),c=-71/74+6/37*I,n=61 9870089371862805 m002 -4*Pi^3+Pi^4-Pi^6+Tanh[Pi] 9870089400344603 a001 46368/9349*322^(11/12) 9870089409324949 m006 (3/5*exp(Pi)-3/4)/(1/4*exp(2*Pi)-4/5) 9870089416685535 a001 969323029/10946*6557470319842^(12/17) 9870089416685535 a001 312119004989/10946*1836311903^(12/17) 9870089430757344 a001 2537720636/28657*6557470319842^(12/17) 9870089430757344 a001 817138163596/28657*1836311903^(12/17) 9870089432810393 a001 2139295485799/75025*1836311903^(12/17) 9870089432810393 a001 6643838879/75025*6557470319842^(12/17) 9870089433109929 a001 5600748293801/196418*1836311903^(12/17) 9870089433109929 a001 17393796001/196418*6557470319842^(12/17) 9870089433153630 a001 14662949395604/514229*1836311903^(12/17) 9870089433153630 a001 45537549124/514229*6557470319842^(12/17) 9870089433160006 a001 119218851371/1346269*6557470319842^(12/17) 9870089433160937 a001 312119004989/3524578*6557470319842^(12/17) 9870089433161072 a001 817138163596/9227465*6557470319842^(12/17) 9870089433161092 a001 2139295485799/24157817*6557470319842^(12/17) 9870089433161095 a001 5600748293801/63245986*6557470319842^(12/17) 9870089433161096 a001 14662949395604/165580141*6557470319842^(12/17) 9870089433161096 a001 23725150497407/267914296*6557470319842^(12/17) 9870089433161096 a001 3020733700601/34111385*6557470319842^(12/17) 9870089433161097 a001 3461452808002/39088169*6557470319842^(12/17) 9870089433161104 a001 440719107401/4976784*6557470319842^(12/17) 9870089433161156 a001 505019158607/5702887*6557470319842^(12/17) 9870089433161512 a001 64300051206/726103*6557470319842^(12/17) 9870089433163947 a001 23725150497407/832040*1836311903^(12/17) 9870089433163947 a001 73681302247/832040*6557470319842^(12/17) 9870089433180640 a001 3020733700601/105937*1836311903^(12/17) 9870089433180640 a001 9381251041/105937*6557470319842^(12/17) 9870089433295052 a001 3461452808002/121393*1836311903^(12/17) 9870089433295052 a001 10749957122/121393*6557470319842^(12/17) 9870089434079247 a001 440719107401/15456*1836311903^(12/17) 9870089434079247 a001 1368706081/15456*6557470319842^(12/17) 9870089439454200 a001 505019158607/17711*1836311903^(12/17) 9870089439454200 a001 1568397607/17711*6557470319842^(12/17) 9870089440765699 a007 Real Root Of 71*x^4-162*x^3-274*x^2-409*x+759 9870089456170152 a001 281/329*6557470319842^(16/17) 9870089463169189 a003 cos(Pi*17/65)*cos(Pi*49/108) 9870089473178240 a001 123/5*13^(13/24) 9870089476294673 a001 64300051206/2255*1836311903^(12/17) 9870089476294673 a001 199691526/2255*6557470319842^(12/17) 9870089485916961 m001 (PolyaRandomWalk3D+Thue)/(sin(1)+Artin) 9870089491107700 a007 Real Root Of 974*x^4-533*x^3-120*x^2+696*x-633 9870089495763265 a001 39603/233*21^(26/45) 9870089504096865 m002 -6/E^Pi+Pi^2+3*Csch[Pi] 9870089520003127 a007 Real Root Of 765*x^4-121*x^3-940*x^2-433*x-354 9870089526122190 m002 -Pi^2-Log[Pi]/Pi^5+Tanh[Pi]/Pi^5 9870089535674796 r005 Re(z^2+c),c=-43/44+5/54*I,n=5 9870089541986135 a007 Real Root Of -591*x^4+641*x^3-525*x^2-872*x+828 9870089566318098 a007 Real Root Of 526*x^4-618*x^3-48*x^2+565*x-489 9870089567017653 r009 Im(z^3+c),c=-29/122+52/57*I,n=33 9870089577138901 s002 sum(A249861[n]/(n^3*10^n+1),n=1..infinity) 9870089578697538 m001 Rabbit*exp(Paris)*(2^(1/3)) 9870089594620331 a007 Real Root Of 4*x^4-840*x^3+361*x^2-170*x+620 9870089636934240 l006 ln(2077/5573) 9870089652003195 a001 7/610*514229^(9/55) 9870089652215499 r005 Re(z^2+c),c=5/56+29/55*I,n=21 9870089677567267 m001 LambertW(1)^(OneNinth/FeigenbaumDelta) 9870089681930922 a007 Real Root Of 870*x^4-511*x^3+25*x^2+511*x-837 9870089696505262 a007 Real Root Of -128*x^4+577*x^3+993*x^2+994*x+690 9870089699969068 q001 3191/3233 9870089706338426 m002 Pi^2+Cosh[Pi]/(E^Pi*Pi^6*ProductLog[Pi]) 9870089707097359 m005 (1/3*Catalan-3/7)/(23/99+5/11*5^(1/2)) 9870089718101182 r009 Im(z^3+c),c=-5/26+62/63*I,n=21 9870089728803041 a001 73681302247/2584*1836311903^(12/17) 9870089728803042 a001 228826127/2584*6557470319842^(12/17) 9870089728808311 a001 23725150497407/2584*514229^(12/17) 9870089761900037 a005 (1/cos(23/129*Pi))^111 9870089790128308 a007 Real Root Of -942*x^4+195*x^3-73*x^2-184*x+971 9870089816321034 r005 Re(z^2+c),c=-147/118+1/27*I,n=46 9870089849167979 a007 Real Root Of -554*x^4-154*x^3+418*x^2+422*x+387 9870089951417969 a007 Real Root Of -875*x^4+160*x^3-332*x^2-871*x+448 9870089982518724 m004 -7-Sqrt[5]*Pi+25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870089989241308 m001 (1+3^(1/2))/(Mills+MinimumGamma) 9870089991646217 m001 (Psi(1,1/3)+3^(1/2))/(-ln(5)+FransenRobinson) 9870089996903149 r005 Re(z^2+c),c=-5/8+93/232*I,n=14 9870090018470025 g001 Psi(1,27/80) 9870090018470025 l003 Psi(1,27/80) 9870090042981289 a007 Real Root Of 456*x^4-258*x^3-661*x^2-916*x-941 9870090052571466 r002 59th iterates of z^2 + 9870090056045167 a001 17711/3571*322^(11/12) 9870090058301573 a007 Real Root Of 890*x^4-664*x^3-398*x^2+202*x-896 9870090070528578 a007 Real Root Of -884*x^4+830*x^3+803*x^2-789*x+76 9870090078773766 r005 Re(z^2+c),c=-113/114+14/57*I,n=40 9870090088354006 m002 Pi+2/Log[Pi]+5*Tanh[Pi] 9870090106516534 a001 199/144*8^(52/55) 9870090114490680 a007 Real Root Of -720*x^4-496*x^3+298*x^2+930*x+834 9870090185688638 r005 Re(z^2+c),c=-71/74+6/37*I,n=63 9870090246621200 m001 (OrthogonalArrays-ThueMorse)^GAMMA(7/12) 9870090267557025 a007 Real Root Of 606*x^4-821*x^3-120*x^2+875*x-384 9870090268707732 a007 Real Root Of -6*x^4-599*x^3-678*x^2-721*x+619 9870090289944642 p003 LerchPhi(1/16,4,235/234) 9870090312104748 a007 Real Root Of 510*x^4-338*x^3-47*x^2-94*x-856 9870090385854821 a001 7/6*29^(26/41) 9870090402383293 m005 (1/3*Pi+1/10)/(5/7*gamma+3/4) 9870090424091343 a001 1/329*121393^(11/37) 9870090456481345 a007 Real Root Of -427*x^4+721*x^3+558*x^2+992*x-104 9870090505619913 m001 (FeigenbaumC+Rabbit)/(BesselJ(1,1)-ArtinRank2) 9870090567114016 a007 Real Root Of 449*x^4-428*x^3-777*x^2+792*x+701 9870090589670833 m005 (1/2*gamma-7/10)/(1/5*Catalan-3/5) 9870090634441087 q001 3267/3310 9870090642038917 m001 StolarskyHarborth^Psi(1,1/3) 9870090680014440 m001 1/PisotVijayaraghavan*ln(Magata)/Zeta(1,2) 9870090683821987 l006 ln(1714/4599) 9870090690670809 a007 Real Root Of 839*x^4-861*x^3-866*x^2-758*x+84 9870090699454129 a003 sin(Pi*4/57)-sin(Pi*11/107) 9870090733374457 m001 1/cos(1)^2/Zeta(9)/exp(sqrt(Pi))^2 9870090805682574 s002 sum(A193529[n]/(n*pi^n+1),n=1..infinity) 9870090814928995 a003 cos(Pi*4/119)*cos(Pi*37/79) 9870090853997022 r008 a(0)=1,K{-n^6,-28*n^3+20*n^2+69*n} 9870090887436707 a007 Real Root Of -274*x^4+95*x^3-365*x^2-80*x+628 9870090890716364 m001 ln(Pi)^Trott*MertensB1^Trott 9870090895078428 b008 Zeta[1/2,-2]/25 9870090929642434 a007 Real Root Of 237*x^4-556*x^3-715*x^2-846*x-898 9870090971219511 m001 (OneNinth+Paris)/(ln(2+3^(1/2))-Magata) 9870090971820586 a007 Real Root Of -961*x^4+550*x^3+645*x^2-37*x+776 9870090972169627 m001 (Robbin-TwinPrimes)/(3^(1/3)+Champernowne) 9870090978863068 m003 1/2+Sqrt[5]/32+(5*Csc[1/2+Sqrt[5]/2])/12 9870090983198553 m001 1/Porter/FibonacciFactorial^2*exp(GAMMA(7/24)) 9870091053489072 m005 (1/2*5^(1/2)+5/6)/(3/4*5^(1/2)+3/10) 9870091062136516 r009 Re(z^3+c),c=-7/60+13/55*I,n=2 9870091072044729 m001 (Gompertz-Tribonacci)/(arctan(1/3)-Zeta(1,2)) 9870091101333982 m001 (BesselJ(1,1)+BesselI(1,2))/(FeigenbaumD-Kac) 9870091141568127 m001 cos(Pi/12)*Robbin/ln(sqrt(5))^2 9870091148540644 a007 Real Root Of -860*x^4-322*x^3-149*x^2+286*x+934 9870091166385432 a007 Real Root Of 288*x^4-857*x^3-994*x^2-309*x-434 9870091167179941 a007 Real Root Of 269*x^4-496*x^3-499*x^2-315*x-557 9870091209357498 a007 Real Root Of 239*x^4-597*x^3-293*x^2-281*x+910 9870091258740617 m001 CopelandErdos^(GaussAGM*Trott) 9870091264757214 a007 Real Root Of 841*x^4+88*x^3-292*x^2-159*x-586 9870091266098294 a007 Real Root Of 976*x^4-549*x^3-984*x^2+343*x-157 9870091281287685 a007 Real Root Of 625*x^4-852*x^3-564*x^2+390*x-478 9870091301164360 r008 a(0)=1,K{-n^6,59+12*n^3-67*n^2+75*n} 9870091362047468 r005 Im(z^2+c),c=-4/5+4/83*I,n=49 9870091363470077 a007 Real Root Of 405*x^4-403*x^3+861*x^2+721*x-899 9870091393246345 l006 ln(3065/8224) 9870091440338425 r002 28th iterates of z^2 + 9870091441102823 p001 sum(1/(472*n+173)/n/(16^n),n=1..infinity) 9870091459521492 a001 9381251041/329*1836311903^(12/17) 9870091459521494 a001 29134601/329*6557470319842^(12/17) 9870091459526762 a001 3020733700601/329*514229^(12/17) 9870091464384301 m001 Paris/(RenyiParking^gamma(3)) 9870091526424564 q001 3343/3387 9870091543118703 m001 GAMMA(17/24)^ZetaQ(3)*ZetaP(3)^ZetaQ(3) 9870091597980493 a007 Real Root Of 330*x^4-675*x^3+174*x^2+406*x-731 9870091609502679 a007 Real Root Of 942*x^4+183*x^3-620*x^2-234*x-345 9870091615997314 m002 Pi+Log[Pi]+(Pi^4*Sinh[Pi])/Log[Pi] 9870091634674697 r005 Re(z^2+c),c=-17/18+44/219*I,n=33 9870091658056464 a001 123/5702887*121393^(11/12) 9870091658179195 a001 123/1134903170*39088169^(11/12) 9870091658179197 a001 41/75283811239*12586269025^(11/12) 9870091660965134 m005 (-1/2+1/6*5^(1/2))/(3/7*exp(1)+1/8) 9870091662530011 a007 Real Root Of -202*x^4+886*x^3+965*x^2+41*x+144 9870091680441728 m001 (1-Champernowne)/(PlouffeB+ThueMorse) 9870091683711719 m001 1/ln(cos(1))^2/arctan(1/2)*log(2+sqrt(3))^2 9870091697958614 r009 Im(z^3+c),c=-2/23+61/62*I,n=11 9870091734446017 h001 (7/8*exp(1)+1/3)/(2/7*exp(2)+7/11) 9870091737859219 h001 (1/3*exp(1)+1/4)/(1/12*exp(2)+5/9) 9870091744478872 b008 ArcCot[4*ArcCot[6]] 9870091749424971 r005 Re(z^2+c),c=-25/26+17/109*I,n=57 9870091753240168 r002 38th iterates of z^2 + 9870091762068892 a007 Real Root Of 36*x^4+361*x^3+98*x^2+441*x+264 9870091808316062 a007 Real Root Of -828*x^4-180*x^3+336*x^2+108*x+392 9870091831919388 r009 Im(z^3+c),c=-5/42+45/56*I,n=27 9870091834692276 a001 199/4052739537881*514229^(13/14) 9870091835339750 a007 Real Root Of -744*x^4-147*x^3+108*x^2-960*x-488 9870091862278285 a007 Real Root Of 845*x^4+210*x^3+193*x^2+844*x+45 9870091874025772 r002 10th iterates of z^2 + 9870091876809141 l006 ln(7307/8065) 9870091894530729 r005 Re(z^2+c),c=-11/24+17/22*I,n=5 9870091900106216 r005 Re(z^2+c),c=-25/26+17/109*I,n=59 9870091927913321 a007 Real Root Of -129*x^4+602*x^3-569*x^2-956*x+312 9870091993664741 a007 Real Root Of 725*x^4+405*x^3+894*x^2+265*x-908 9870092042171411 m001 (2*Pi/GAMMA(5/6)+MertensB3)/(1-ln(2)/ln(10)) 9870092073941081 a007 Real Root Of 216*x^4-456*x^3+573*x^2+488*x-720 9870092074193216 a001 2139295485799/610*1836311903^(10/17) 9870092074193216 a001 17393796001/610*6557470319842^(10/17) 9870092084828296 a007 Real Root Of -430*x^4+780*x^3-120*x^2-617*x+666 9870092087965616 a007 Real Root Of x^4-490*x^3-592*x^2+468*x+585 9870092099328913 m001 GaussKuzminWirsing^Bloch*3^(1/2) 9870092099714285 a007 Real Root Of -514*x^4+920*x^3+93*x^2-399*x+888 9870092118874480 a007 Real Root Of -933*x^4-126*x^3-770*x^2-660*x+863 9870092121291010 m001 MertensB2^TravellingSalesman/(MertensB2^ln(3)) 9870092129877013 a007 Real Root Of 534*x^4-655*x^3+263*x^2+785*x-618 9870092137582563 a007 Real Root Of 33*x^4-987*x^3-178*x^2+851*x+33 9870092139649851 r005 Re(z^2+c),c=-17/18-52/249*I,n=39 9870092162421298 m002 E^Pi/(5*Pi^8)+Pi^2 9870092174301636 r005 Re(z^2+c),c=-25/26+17/109*I,n=51 9870092192097316 m002 Pi^2+ProductLog[Pi]/(2*Pi^6*Log[Pi]) 9870092200601608 m001 TravellingSalesman^(Sarnak*ZetaQ(2)) 9870092203856544 r005 Im(z^2+c),c=-5/52+36/43*I,n=30 9870092212614245 a007 Real Root Of -798*x^4-218*x^3-207*x^2+183*x+930 9870092229358980 a007 Real Root Of 300*x^4-404*x^3+781*x^2+461*x-979 9870092278672359 a007 Real Root Of 437*x^4-993*x^3-572*x^2+516*x-303 9870092293285762 l006 ln(1351/3625) 9870092314254827 m008 (1/5*Pi^5-5/6)/(2*Pi-1/6) 9870092323300691 r002 9th iterates of z^2 + 9870092344027111 a007 Real Root Of 516*x^4-572*x^3-12*x^2+538*x-497 9870092354983175 m001 cos(1/12*Pi)^(GAMMA(17/24)/Magata) 9870092369346114 r005 Im(z^2+c),c=-69/110+13/28*I,n=23 9870092378752886 q001 3419/3464 9870092410041229 a007 Real Root Of -657*x^4+703*x^3+303*x^2-208*x+799 9870092413413745 a007 Real Root Of 581*x^4-649*x^3-574*x^2+905*x+277 9870092444930610 r005 Im(z^2+c),c=1/27+4/5*I,n=5 9870092462916932 a007 Real Root Of -474*x^4+363*x^3+276*x^2+390*x-553 9870092463991828 m004 -14+25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870092485373364 m001 (-Zeta(1,2)+4)/(FeigenbaumDelta+1/3) 9870092498170440 r005 Re(z^2+c),c=-71/74+6/37*I,n=55 9870092587920035 a007 Real Root Of 998*x^4+109*x^3-332*x^2+931*x+400 9870092599442832 m001 Landau^GAMMA(23/24)+ZetaP(2) 9870092609361015 a007 Real Root Of -219*x^4+990*x^3-163*x^2-440*x-151 9870092611530552 a001 6765/199*199^(7/11) 9870092622054194 r005 Im(z^2+c),c=-9/8+27/202*I,n=9 9870092667560385 r005 Re(z^2+c),c=-25/26+17/109*I,n=61 9870092676025379 m001 1/exp(LambertW(1))*KhintchineLevy^2/cos(Pi/5) 9870092709790698 r002 4th iterates of z^2 + 9870092711108304 a007 Real Root Of -333*x^4-678*x^3-684*x^2+420*x+745 9870092714321395 m001 Ei(1)^2*ln(MinimumGamma)/sinh(1)^2 9870092719757935 m001 (Lehmer+MertensB1)/(2^(1/2)-BesselI(0,2)) 9870092767474631 a008 Real Root of (-9+4*x+7*x^4+7*x^8) 9870092798863180 m001 cos(1/12*Pi)^(TravellingSalesman/Ei(1)) 9870092798927206 a003 sin(Pi*44/97)*sin(Pi*54/113) 9870092821498224 m004 -11+(Csc[Sqrt[5]*Pi]*ProductLog[Sqrt[5]*Pi])/2 9870092841490362 r005 Re(z^2+c),c=-25/26+17/109*I,n=63 9870092858259124 a007 Real Root Of 883*x^4+66*x^3-456*x^2-255*x-582 9870092893577767 a007 Real Root Of -427*x^4-142*x^3-383*x^2-399*x+248 9870092901704011 a001 18/139583862445*317811^(12/17) 9870092905143679 r002 21th iterates of z^2 + 9870092929572163 a007 Real Root Of 793*x^4+446*x^3-282*x^2+152*x+101 9870092930008084 a007 Real Root Of 971*x^4-722*x^3-602*x^2+440*x-595 9870092943081708 m001 (Paris-Sarnak)/(cos(1/5*Pi)-3^(1/3)) 9870092956092102 m005 (1/2*2^(1/2)+2/11)/(1/12*5^(1/2)+5/7) 9870092980426119 r009 Re(z^3+c),c=-9/82+10/49*I,n=4 9870093014223986 a007 Real Root Of 145*x^4-201*x^3+271*x^2-145*x-738 9870093031615807 r005 Im(z^2+c),c=11/42+24/29*I,n=4 9870093032405720 a007 Real Root Of 627*x^4-197*x^3+214*x^2+389*x-609 9870093034081015 a003 sin(Pi*45/104)/sin(Pi*47/103) 9870093039169853 m001 GAMMA(11/12)+MasserGramain-TravellingSalesman 9870093040879417 l006 ln(3690/9901) 9870093045436518 m001 (BesselJ(1,1)+PlouffeB)^ZetaR(2) 9870093106993302 r002 37th iterates of z^2 + 9870093160078948 m005 (1/3*exp(1)+2/11)/(2/9*exp(1)-5/7) 9870093163151577 r005 Re(z^2+c),c=-17/18+45/211*I,n=39 9870093187396811 m004 -(Sqrt[5]/Pi)-5*Pi+6*Cot[Sqrt[5]*Pi] 9870093194012990 q001 3495/3541 9870093194203218 r005 Re(z^2+c),c=-71/74+6/37*I,n=37 9870093237101454 m001 1/Rabbit/ln(Khintchine)/Zeta(3)^2 9870093270525534 m001 (Conway+Mills)/(Zeta(3)+3^(1/3)) 9870093293941195 a003 sin(Pi*38/83)*sin(Pi*8/17) 9870093296556621 r001 45i'th iterates of 2*x^2-1 of 9870093332026560 m004 -1+3125*Pi+5*Sqrt[5]*Pi*ProductLog[Sqrt[5]*Pi] 9870093333564641 a007 Real Root Of -279*x^4-2*x^3+79*x^2+685*x+862 9870093335820975 m008 (Pi^5-3/5)/(2/3*Pi+1) 9870093353833554 a007 Real Root Of -482*x^4+173*x^3-920*x^2-998*x+535 9870093373847092 r005 Re(z^2+c),c=13/64+16/59*I,n=36 9870093405114315 a007 Real Root Of 758*x^4+564*x^3+295*x^2+42*x-423 9870093439654846 r004 Re(z^2+c),c=1/34+4/9*I,z(0)=exp(7/8*I*Pi),n=39 9870093459520661 a001 439204/5*832040^(13/19) 9870093470578041 r009 Re(z^3+c),c=-1/62+5/9*I,n=20 9870093472687441 l006 ln(2339/6276) 9870093495996908 r005 Re(z^2+c),c=-25/26+17/109*I,n=55 9870093506917701 a007 Real Root Of -513*x^4+830*x^3+464*x^2-623*x+218 9870093512974374 a007 Real Root Of 632*x^4-892*x^3+224*x^2+716*x-969 9870093528889611 m005 (1/2*5^(1/2)-1/12)/(5/12*Catalan+2/3) 9870093569187992 m001 ln(FeigenbaumC)/Paris^2*(2^(1/3))^2 9870093620004844 a007 Real Root Of 72*x^4-874*x^3-790*x^2+531*x+385 9870093654007046 r002 13th iterates of z^2 + 9870093697616985 m001 LambertW(1)*GaussKuzminWirsing^Porter 9870093711650829 m001 (BesselI(1,2)-Pi^(1/2))/(FeigenbaumC+Trott) 9870093737780206 a007 Real Root Of 933*x^4+30*x^3-782*x^2-754*x-839 9870093765035532 r001 28i'th iterates of 2*x^2-1 of 9870093789276623 a003 sin(Pi*11/96)/cos(Pi*38/99) 9870093851497621 s002 sum(A150292[n]/(n^3*pi^n-1),n=1..infinity) 9870093852127146 m001 Pi^(exp(Pi)/MertensB1) 9870093873892017 m001 (exp(1/Pi)-GAMMA(5/6))/(Robbin-ThueMorse) 9870093891734768 r008 a(0)=1,K{-n^6,42-22*n^3+26*n^2+12*n} 9870093911891473 a001 17711/521*322^(7/12) 9870093925411864 r005 Im(z^2+c),c=-9/32+44/53*I,n=14 9870093951608853 l006 ln(3327/8927) 9870093959570386 a007 Real Root Of -949*x^4+27*x^3+278*x^2-479*x+183 9870093974571586 q001 3571/3618 9870093994646238 a007 Real Root Of -484*x^4-162*x^3-897*x^2-430*x+753 9870094000993600 a001 377/9349*7^(23/50) 9870094017771848 a001 9349/13*196418^(33/34) 9870094033421744 m005 (7+2*5^(1/2))/(4*exp(1)+3/4) 9870094058451630 m002 Pi^2+Log[Pi]/(24*Pi^4) 9870094075386678 a003 cos(Pi*1/24)*sin(Pi*39/83) 9870094076058906 r005 Im(z^2+c),c=-11/14+133/218*I,n=3 9870094179760720 m001 (GAMMA(19/24)+Magata)/(Trott-Weierstrass) 9870094199564229 s002 sum(A196768[n]/(n^3*10^n+1),n=1..infinity) 9870094229039436 m001 DuboisRaymond^Ei(1)/(TwinPrimes^Ei(1)) 9870094262007708 a007 Real Root Of 777*x^4+266*x^3-483*x^2-316*x-323 9870094292266742 m001 Catalan^(exp(-1/2*Pi)/HardHexagonsEntropy) 9870094316468021 a007 Real Root Of 214*x^4-837*x^3-894*x^2+79*x-59 9870094337651137 a007 Real Root Of -82*x^4-739*x^3+658*x^2-315*x+431 9870094345370538 m001 (exp(Pi)+sin(1))/(ln(Pi)+GAMMA(17/24)) 9870094355112451 a007 Real Root Of -996*x^4-232*x^3-307*x^2-366*x+660 9870094355115511 a007 Real Root Of -438*x^4+131*x^3+432*x^2-93*x+29 9870094361493558 a007 Real Root Of -869*x^4-473*x^3+96*x^2+184*x+458 9870094369792620 m006 (5/6/Pi+1/5)/(1/4*ln(Pi)-5) 9870094397103946 r005 Im(z^2+c),c=-81/64+21/61*I,n=11 9870094413549952 a007 Real Root Of -941*x^4+580*x^3+388*x^2-327*x+750 9870094432333555 a001 7/89*2^(19/58) 9870094439021849 a007 Real Root Of 153*x^4-653*x^3-939*x^2+582*x+823 9870094459862840 a007 Real Root Of -162*x^4+589*x^3+532*x^2+371*x+568 9870094464840008 l006 ln(4791/5288) 9870094477226473 h001 (2/7*exp(2)+7/12)/(6/7*exp(1)+2/5) 9870094482239942 r005 Im(z^2+c),c=-33/28+19/64*I,n=8 9870094514575242 m001 (1-GAMMA(17/24))/(-Bloch+ReciprocalFibonacci) 9870094534624472 r005 Im(z^2+c),c=13/29+9/28*I,n=3 9870094550286060 a001 615/124*322^(11/12) 9870094565810967 a007 Real Root Of 147*x^4-605*x^3-109*x^2+612*x-11 9870094579778796 a007 Real Root Of 935*x^4+497*x^3+56*x^2-233*x-694 9870094607650562 r009 Im(z^3+c),c=-11/19+9/35*I,n=12 9870094608277468 m001 (2^(1/2)+GAMMA(5/6))/(-Niven+ReciprocalLucas) 9870094616052272 r009 Im(z^3+c),c=-7/78+60/61*I,n=13 9870094624068657 m005 (4/5*2^(1/2)-2/3)/(-1/5+3/10*5^(1/2)) 9870094643111771 a007 Real Root Of -18*x^4+181*x^3-809*x^2+686*x-60 9870094679268314 r002 8th iterates of z^2 + 9870094690491244 r005 Im(z^2+c),c=-3/122+2/19*I,n=6 9870094722598105 q001 3647/3695 9870094723381559 r009 Im(z^3+c),c=-23/126+29/30*I,n=35 9870094734998093 a007 Real Root Of 380*x^4-200*x^3-226*x^2+941*x+596 9870094750364731 a007 Real Root Of -187*x^4-60*x^3-650*x^2+379*x-31 9870094751703785 a001 5/4870847*322^(34/43) 9870094792731067 a007 Real Root Of 765*x^4-469*x^3+611*x^2+985*x-800 9870094795033190 a007 Real Root Of -55*x^4+640*x^3+234*x^2+165*x-954 9870094799090554 m001 (GAMMA(5/6)-exp(Pi))/(-FeigenbaumMu+Totient) 9870094867713958 m002 Pi^6+(Pi^4*Log[Pi])/3-Sinh[Pi] 9870094885421543 g007 Psi(2,5/11)-Psi(2,5/12)-Psi(2,2/7)-Psi(2,3/4) 9870094888276706 r004 Im(z^2+c),c=-7/30-5/11*I,z(0)=I,n=3 9870094911348027 r009 Im(z^3+c),c=-9/56+37/38*I,n=7 9870094914205412 a001 123/832040*8^(21/23) 9870094935985786 m001 cos(Pi/12)*Tribonacci/exp(sin(Pi/5)) 9870094948063362 r005 Im(z^2+c),c=-75/62+3/47*I,n=10 9870094950469173 a007 Real Root Of 726*x^4+554*x^3+938*x^2+146*x-926 9870095018133536 a007 Real Root Of 243*x^4-885*x^3-93*x^2+2*x-989 9870095034281945 a007 Real Root Of -435*x^4+886*x^3+954*x^2-202*x+136 9870095078813397 r005 Re(z^2+c),c=-61/48+5/29*I,n=17 9870095085411577 l006 ln(988/2651) 9870095117865460 r002 45th iterates of z^2 + 9870095118282021 m001 1/FeigenbaumC*CareFree*ln(GAMMA(19/24))^2 9870095120893903 m005 (1/2*Pi-2/3)/(10/11*Catalan+1/12) 9870095130940118 a001 47/75025*3^(12/29) 9870095162622655 r005 Re(z^2+c),c=-25/26+17/109*I,n=53 9870095174619116 m001 (-BesselK(0,1)+3)/(BesselI(0,2)+1/3) 9870095194922946 a004 Fibonacci(16)*Lucas(12)/(1/2+sqrt(5)/2)^12 9870095195501215 a007 Real Root Of 565*x^4-379*x^3+436*x^2+356*x-974 9870095201570202 m002 Pi^2+5/(Pi^8*ProductLog[Pi]) 9870095231242317 r005 Re(z^2+c),c=-11/10+24/211*I,n=18 9870095240225900 r001 29i'th iterates of 2*x^2-1 of 9870095244038905 a007 Real Root Of 864*x^4-247*x^3-507*x^2+265*x-302 9870095261426749 m001 (GAMMA(13/24)-Porter)/(Zeta(1,-1)+gamma(2)) 9870095298342423 g007 Psi(2,1/8)-Psi(2,6/11)-Psi(2,5/11)-Psi(2,7/8) 9870095312045187 m004 -(Pi/Sqrt[5])+(5*Sqrt[5]*E^(Sqrt[5]*Pi)*Pi)/4 9870095334235600 m008 (5*Pi^6-3/5)/(Pi^2-5) 9870095362200658 m001 1/Tribonacci^2/Salem^2*exp(BesselJ(0,1))^2 9870095375940942 a001 87403803/377*1836311903^(14/17) 9870095375947088 a001 73681302247/377*514229^(14/17) 9870095376859093 a001 103682/377*6557470319842^(14/17) 9870095380195081 a007 Real Root Of -283*x^4+656*x^3+518*x^2+209*x+601 9870095432161683 m001 (ln(2)+Ei(1,1))/(BesselK(1,1)+FellerTornier) 9870095440084835 q001 3723/3772 9870095477557968 a007 Real Root Of -579*x^4+757*x^3+714*x^2+176*x-25 9870095487815818 m001 (PlouffeB-Thue)/(Zeta(3)+FeigenbaumD) 9870095494588218 a007 Real Root Of -152*x^4+481*x^3-286*x^2+510*x-543 9870095515861102 a001 505019158607/89*21^(2/11) 9870095527755064 r009 Im(z^3+c),c=-29/126+1/12*I,n=3 9870095534961754 a007 Real Root Of -314*x^4+943*x^3+157*x^2-633*x+427 9870095548749456 a007 Real Root Of -667*x^4+355*x^3+670*x^2-27*x+295 9870095584963409 m001 Pi^(1/2)/(HardyLittlewoodC4^Backhouse) 9870095597378519 m001 (BesselI(1,2)-TravellingSalesman)^Paris 9870095668811539 r005 Re(z^2+c),c=-31/34+29/114*I,n=29 9870095682346463 a007 Real Root Of 969*x^4+19*x^3-99*x^2+315*x-494 9870095689845295 m009 (5*Psi(1,3/4)+1/2)/(6*Psi(1,2/3)-5) 9870095713073406 r008 a(0)=1,K{-n^6,38+60*n+2*n^2-25*n^3} 9870095765176404 r009 Re(z^3+c),c=-47/66+27/64*I,n=3 9870095816414154 r005 Re(z^2+c),c=11/29+25/64*I,n=10 9870095864986897 m001 (-arctan(1/2)+GAMMA(13/24))/(3^(1/2)-cos(1)) 9870095869356555 a007 Real Root Of -747*x^4+781*x^3+534*x^2-25*x+915 9870095872118538 a007 Real Root Of -703*x^4-400*x^3+588*x^2+211*x-82 9870095944755228 r005 Re(z^2+c),c=9/46+23/44*I,n=60 9870095949729401 a007 Real Root Of 190*x^4-853*x^3-952*x^2+670*x+906 9870095961942617 h001 (9/11*exp(2)+1/7)/(1/5*exp(1)+1/12) 9870095983026194 m001 GAMMA(19/24)^2*exp(Rabbit)^2/gamma 9870095994842633 a001 28657/2207*18^(40/57) 9870096000641040 a001 1/2207*(1/2*5^(1/2)+1/2)^6*3^(3/17) 9870096015085016 m005 (1/2*gamma-3/8)/(4/7*gamma+6/11) 9870096021947873 r005 Re(z^2+c),c=-7/10+119/135*I,n=2 9870096048015091 a007 Real Root Of 7*x^4-828*x^3-792*x^2-557*x-581 9870096069116580 r005 Re(z^2+c),c=-23/118+20/27*I,n=3 9870096085492016 a007 Real Root Of 679*x^4-724*x^3-745*x^2-60*x-674 9870096086103327 a007 Real Root Of 169*x^4-58*x^3+472*x^2+79*x-598 9870096095933074 a003 cos(Pi*4/45)+cos(Pi*30/61) 9870096128864640 q001 3799/3849 9870096136445639 l006 ln(3589/9630) 9870096164431568 a007 Real Root Of -70*x^4-738*x^3-535*x^2-621*x+708 9870096164560650 m005 (1/2*3^(1/2)-3/4)/(7/10*exp(1)-8/11) 9870096235495704 m001 Ei(1)*(Pi+2^(1/3))+GAMMA(7/12) 9870096257176971 m004 (125*Pi)/4-Log[Sqrt[5]*Pi]/5+Tan[Sqrt[5]*Pi] 9870096278531130 r005 Im(z^2+c),c=-83/74+5/41*I,n=35 9870096286854794 m001 BesselJ(0,1)^ZetaQ(3)/(Magata^ZetaQ(3)) 9870096323660984 m001 (2^(1/2))^GAMMA(23/24)-TreeGrowth2nd 9870096331885608 m001 (Paris-Rabbit)/(2*Pi/GAMMA(5/6)+Kac) 9870096353013907 a007 Real Root Of -628*x^4+625*x^3+773*x^2+70*x+513 9870096382190022 m005 (-19/30+1/6*5^(1/2))/(1/2*exp(1)-4) 9870096384992058 a007 Real Root Of -951*x^4+951*x^3+346*x^2+642*x+61 9870096392694777 r005 Re(z^2+c),c=-12/11+1/46*I,n=2 9870096419791682 a007 Real Root Of -81*x^4-722*x^3+800*x^2+342*x-62 9870096444607261 m004 -5/Pi+5*Pi-25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870096454725536 r002 13th iterates of z^2 + 9870096464870636 a003 cos(Pi*8/105)/sin(Pi*51/115) 9870096467726134 a007 Real Root Of -640*x^4+975*x^3+637*x^2-206*x+721 9870096469448219 a007 Real Root Of 160*x^4-842*x^3-884*x^2+543*x+983 9870096472714298 a007 Real Root Of 277*x^4-895*x^3+464*x^2-513*x+652 9870096535685000 l006 ln(2601/6979) 9870096588544320 m001 (-BesselJ(0,1)+1/3)/(Zeta(1,2)+1/2) 9870096605272737 a001 5600748293801/1597*1836311903^(10/17) 9870096605272737 a001 45537549124/1597*6557470319842^(10/17) 9870096608398158 r002 11th iterates of z^2 + 9870096638575339 h001 (-11*exp(3)-7)/(-11*exp(3)-10) 9870096662074266 m001 MertensB3*(Tribonacci-ln(3)) 9870096684909959 a003 cos(Pi*5/94)/sin(Pi*35/72) 9870096689276368 m004 -6-25/Pi+25*Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 9870096696369599 m001 (sin(1/12*Pi)-Niven)/(Porter-ZetaQ(4)) 9870096720647571 a007 Real Root Of 565*x^4-414*x^3-152*x^2+215*x-574 9870096720929393 r002 12th iterates of z^2 + 9870096760831515 a001 199/7778742049*610^(13/14) 9870096785720564 m001 (ln(gamma)+Ei(1))/(Zeta(1,-1)+GAMMA(7/12)) 9870096790626591 q001 3875/3926 9870096790711195 m001 (2^(1/3)-Chi(1))/(BesselI(1,2)+Khinchin) 9870096824812488 r005 Re(z^2+c),c=-71/74+6/37*I,n=53 9870096855824119 a007 Real Root Of -999*x^4-247*x^3+634*x^2-465*x-366 9870096858505145 a001 76/233*10946^(5/42) 9870096861283849 m001 MinimumGamma/exp(Lehmer)^2/GAMMA(5/12)^2 9870096869215550 r009 Im(z^3+c),c=-19/90+49/53*I,n=3 9870096877882255 a007 Real Root Of -520*x^4-493*x^3-870*x^2-923*x-44 9870096891550808 m005 (1/2*gamma-5)/(1/11*Pi-1/3) 9870096896501956 a007 Real Root Of -716*x^4-405*x^3-934*x^2-540*x+667 9870096906246267 m001 (-Artin+Trott)/(1+2/3*Pi*3^(1/2)/GAMMA(2/3)) 9870096912494018 m001 Magata^2/KhintchineHarmonic/ln(BesselJ(1,1))^2 9870096917550386 m001 BesselI(0,2)*HardyLittlewoodC4^Rabbit 9870096917821240 m002 Pi^2+(2*Sech[Pi])/(Pi^5*Log[Pi]) 9870096925642355 a004 Fibonacci(18)*Lucas(12)/(1/2+sqrt(5)/2)^14 9870096937810102 r001 49i'th iterates of 2*x^2-1 of 9870096976220550 m005 (1/2*gamma-8/11)/(1/7*5^(1/2)+1/8) 9870097001486960 m002 Pi^6+Pi*Cosh[Pi]-Cosh[Pi]/ProductLog[Pi] 9870097019941730 m005 (1/2*Catalan+7/12)/(5/12*3^(1/2)+1/3) 9870097032488961 s001 sum(exp(-Pi/4)^(n-1)*A175269[n],n=1..infinity) 9870097123264769 a001 199/121393*34^(28/55) 9870097141140751 l006 ln(7066/7799) 9870097158749470 a007 Real Root Of -52*x^4+821*x^3+104*x^2-350*x+392 9870097178150914 a004 Fibonacci(20)*Lucas(12)/(1/2+sqrt(5)/2)^16 9870097199808778 r005 Re(z^2+c),c=-31/32+3/22*I,n=11 9870097202178500 a007 Real Root Of -647*x^4-494*x^3-757*x^2+38*x+914 9870097214991416 a004 Fibonacci(22)*Lucas(12)/(1/2+sqrt(5)/2)^18 9870097220366373 a004 Fibonacci(24)*Lucas(12)/(1/2+sqrt(5)/2)^20 9870097221150569 a004 Fibonacci(26)*Lucas(12)/(1/2+sqrt(5)/2)^22 9870097221264981 a004 Fibonacci(28)*Lucas(12)/(1/2+sqrt(5)/2)^24 9870097221281674 a004 Fibonacci(30)*Lucas(12)/(1/2+sqrt(5)/2)^26 9870097221284109 a004 Fibonacci(32)*Lucas(12)/(1/2+sqrt(5)/2)^28 9870097221284465 a004 Fibonacci(34)*Lucas(12)/(1/2+sqrt(5)/2)^30 9870097221284517 a004 Fibonacci(36)*Lucas(12)/(1/2+sqrt(5)/2)^32 9870097221284524 a004 Fibonacci(38)*Lucas(12)/(1/2+sqrt(5)/2)^34 9870097221284525 a004 Fibonacci(40)*Lucas(12)/(1/2+sqrt(5)/2)^36 9870097221284525 a004 Fibonacci(42)*Lucas(12)/(1/2+sqrt(5)/2)^38 9870097221284525 a004 Fibonacci(44)*Lucas(12)/(1/2+sqrt(5)/2)^40 9870097221284525 a004 Fibonacci(46)*Lucas(12)/(1/2+sqrt(5)/2)^42 9870097221284525 a004 Fibonacci(48)*Lucas(12)/(1/2+sqrt(5)/2)^44 9870097221284525 a004 Fibonacci(50)*Lucas(12)/(1/2+sqrt(5)/2)^46 9870097221284525 a004 Fibonacci(52)*Lucas(12)/(1/2+sqrt(5)/2)^48 9870097221284525 a004 Fibonacci(54)*Lucas(12)/(1/2+sqrt(5)/2)^50 9870097221284525 a004 Fibonacci(56)*Lucas(12)/(1/2+sqrt(5)/2)^52 9870097221284525 a004 Fibonacci(58)*Lucas(12)/(1/2+sqrt(5)/2)^54 9870097221284525 a004 Fibonacci(60)*Lucas(12)/(1/2+sqrt(5)/2)^56 9870097221284525 a004 Fibonacci(62)*Lucas(12)/(1/2+sqrt(5)/2)^58 9870097221284525 a004 Fibonacci(64)*Lucas(12)/(1/2+sqrt(5)/2)^60 9870097221284525 a004 Fibonacci(66)*Lucas(12)/(1/2+sqrt(5)/2)^62 9870097221284525 a004 Fibonacci(68)*Lucas(12)/(1/2+sqrt(5)/2)^64 9870097221284525 a004 Fibonacci(70)*Lucas(12)/(1/2+sqrt(5)/2)^66 9870097221284525 a004 Fibonacci(72)*Lucas(12)/(1/2+sqrt(5)/2)^68 9870097221284525 a004 Fibonacci(74)*Lucas(12)/(1/2+sqrt(5)/2)^70 9870097221284525 a004 Fibonacci(76)*Lucas(12)/(1/2+sqrt(5)/2)^72 9870097221284525 a004 Fibonacci(78)*Lucas(12)/(1/2+sqrt(5)/2)^74 9870097221284525 a004 Fibonacci(80)*Lucas(12)/(1/2+sqrt(5)/2)^76 9870097221284525 a004 Fibonacci(82)*Lucas(12)/(1/2+sqrt(5)/2)^78 9870097221284525 a004 Fibonacci(84)*Lucas(12)/(1/2+sqrt(5)/2)^80 9870097221284525 a004 Fibonacci(86)*Lucas(12)/(1/2+sqrt(5)/2)^82 9870097221284525 a004 Fibonacci(88)*Lucas(12)/(1/2+sqrt(5)/2)^84 9870097221284525 a004 Fibonacci(90)*Lucas(12)/(1/2+sqrt(5)/2)^86 9870097221284525 a004 Fibonacci(92)*Lucas(12)/(1/2+sqrt(5)/2)^88 9870097221284525 a004 Fibonacci(94)*Lucas(12)/(1/2+sqrt(5)/2)^90 9870097221284525 a004 Fibonacci(96)*Lucas(12)/(1/2+sqrt(5)/2)^92 9870097221284525 a004 Fibonacci(98)*Lucas(12)/(1/2+sqrt(5)/2)^94 9870097221284525 a004 Fibonacci(100)*Lucas(12)/(1/2+sqrt(5)/2)^96 9870097221284525 a004 Fibonacci(99)*Lucas(12)/(1/2+sqrt(5)/2)^95 9870097221284525 a004 Fibonacci(97)*Lucas(12)/(1/2+sqrt(5)/2)^93 9870097221284525 a004 Fibonacci(95)*Lucas(12)/(1/2+sqrt(5)/2)^91 9870097221284525 a004 Fibonacci(93)*Lucas(12)/(1/2+sqrt(5)/2)^89 9870097221284525 a004 Fibonacci(91)*Lucas(12)/(1/2+sqrt(5)/2)^87 9870097221284525 a004 Fibonacci(89)*Lucas(12)/(1/2+sqrt(5)/2)^85 9870097221284525 a004 Fibonacci(87)*Lucas(12)/(1/2+sqrt(5)/2)^83 9870097221284525 a004 Fibonacci(85)*Lucas(12)/(1/2+sqrt(5)/2)^81 9870097221284525 a004 Fibonacci(83)*Lucas(12)/(1/2+sqrt(5)/2)^79 9870097221284525 a004 Fibonacci(81)*Lucas(12)/(1/2+sqrt(5)/2)^77 9870097221284525 a004 Fibonacci(79)*Lucas(12)/(1/2+sqrt(5)/2)^75 9870097221284525 a004 Fibonacci(77)*Lucas(12)/(1/2+sqrt(5)/2)^73 9870097221284525 a004 Fibonacci(75)*Lucas(12)/(1/2+sqrt(5)/2)^71 9870097221284525 a004 Fibonacci(73)*Lucas(12)/(1/2+sqrt(5)/2)^69 9870097221284525 a004 Fibonacci(71)*Lucas(12)/(1/2+sqrt(5)/2)^67 9870097221284525 a004 Fibonacci(69)*Lucas(12)/(1/2+sqrt(5)/2)^65 9870097221284525 a004 Fibonacci(67)*Lucas(12)/(1/2+sqrt(5)/2)^63 9870097221284525 a004 Fibonacci(65)*Lucas(12)/(1/2+sqrt(5)/2)^61 9870097221284525 a004 Fibonacci(63)*Lucas(12)/(1/2+sqrt(5)/2)^59 9870097221284525 a004 Fibonacci(61)*Lucas(12)/(1/2+sqrt(5)/2)^57 9870097221284525 a004 Fibonacci(59)*Lucas(12)/(1/2+sqrt(5)/2)^55 9870097221284525 a004 Fibonacci(57)*Lucas(12)/(1/2+sqrt(5)/2)^53 9870097221284525 a004 Fibonacci(55)*Lucas(12)/(1/2+sqrt(5)/2)^51 9870097221284525 a004 Fibonacci(53)*Lucas(12)/(1/2+sqrt(5)/2)^49 9870097221284525 a004 Fibonacci(51)*Lucas(12)/(1/2+sqrt(5)/2)^47 9870097221284525 a004 Fibonacci(49)*Lucas(12)/(1/2+sqrt(5)/2)^45 9870097221284525 a004 Fibonacci(47)*Lucas(12)/(1/2+sqrt(5)/2)^43 9870097221284525 a004 Fibonacci(45)*Lucas(12)/(1/2+sqrt(5)/2)^41 9870097221284525 a004 Fibonacci(43)*Lucas(12)/(1/2+sqrt(5)/2)^39 9870097221284526 a004 Fibonacci(41)*Lucas(12)/(1/2+sqrt(5)/2)^37 9870097221284526 a004 Fibonacci(39)*Lucas(12)/(1/2+sqrt(5)/2)^35 9870097221284529 a004 Fibonacci(37)*Lucas(12)/(1/2+sqrt(5)/2)^33 9870097221284549 a004 Fibonacci(35)*Lucas(12)/(1/2+sqrt(5)/2)^31 9870097221284684 a004 Fibonacci(33)*Lucas(12)/(1/2+sqrt(5)/2)^29 9870097221285615 a004 Fibonacci(31)*Lucas(12)/(1/2+sqrt(5)/2)^27 9870097221291991 a004 Fibonacci(29)*Lucas(12)/(1/2+sqrt(5)/2)^25 9870097221335692 a004 Fibonacci(27)*Lucas(12)/(1/2+sqrt(5)/2)^23 9870097221635228 a004 Fibonacci(25)*Lucas(12)/(1/2+sqrt(5)/2)^21 9870097222202678 a001 1/72*(1/2+1/2*5^(1/2))^28 9870097223688279 a004 Fibonacci(23)*Lucas(12)/(1/2+sqrt(5)/2)^19 9870097224559251 r009 Im(z^3+c),c=-11/70+35/36*I,n=19 9870097237760099 a004 Fibonacci(21)*Lucas(12)/(1/2+sqrt(5)/2)^17 9870097243084006 l004 sinh(143/85*Pi) 9870097266348678 a001 14662949395604/4181*1836311903^(10/17) 9870097266348678 a001 119218851371/4181*6557470319842^(10/17) 9870097285612222 a007 Real Root Of -545*x^4-617*x^3-776*x^2-852*x-161 9870097286957482 r002 19th iterates of z^2 + 9870097307542483 r005 Re(z^2+c),c=-81/86+13/62*I,n=59 9870097334209786 a004 Fibonacci(19)*Lucas(12)/(1/2+sqrt(5)/2)^15 9870097337657524 a007 Real Root Of -752*x^4-831*x^3+50*x^2+457*x+317 9870097342978058 a007 Real Root Of 48*x^4-473*x^3+663*x^2+212*x-937 9870097360773037 a007 Real Root Of 149*x^4-185*x^3+197*x^2+523*x+5 9870097362798365 a001 312119004989/10946*6557470319842^(10/17) 9870097364738117 a003 sin(Pi*2/89)/cos(Pi*18/73) 9870097370978922 m001 ln(BesselK(0,1))^2/CareFree^2*cos(Pi/5)^2 9870097376870185 a001 817138163596/28657*6557470319842^(10/17) 9870097378923236 a001 2139295485799/75025*6557470319842^(10/17) 9870097379222772 a001 5600748293801/196418*6557470319842^(10/17) 9870097379266473 a001 14662949395604/514229*6557470319842^(10/17) 9870097379276790 a001 23725150497407/832040*6557470319842^(10/17) 9870097379293483 a001 3020733700601/105937*6557470319842^(10/17) 9870097379407895 a001 3461452808002/121393*6557470319842^(10/17) 9870097380192091 a001 440719107401/15456*6557470319842^(10/17) 9870097385567048 a001 505019158607/17711*6557470319842^(10/17) 9870097422395156 a007 Real Root Of -934*x^4+355*x^3+801*x^2-968*x-508 9870097422407551 a001 23725150497407/6765*1836311903^(10/17) 9870097422407551 a001 64300051206/2255*6557470319842^(10/17) 9870097424011085 l006 ln(1613/4328) 9870097426929802 q001 3951/4003 9870097446275354 a007 Real Root Of 971*x^4-58*x^3+131*x^2+315*x-794 9870097457715691 r005 Re(z^2+c),c=-26/27+5/33*I,n=27 9870097458332622 r005 Re(z^2+c),c=-17/18+29/133*I,n=13 9870097479623407 r005 Re(z^2+c),c=-81/86+2/7*I,n=3 9870097496366130 r005 Im(z^2+c),c=-39/32+1/49*I,n=12 9870097511166289 m001 GAMMA(11/12)*(StolarskyHarborth-ZetaP(3)) 9870097598615612 r005 Im(z^2+c),c=-7/10+9/67*I,n=51 9870097605582339 a007 Real Root Of -542*x^4+226*x^3-792*x^2-597*x+914 9870097648412600 a007 Real Root Of 816*x^4+203*x^3-61*x^2+939*x+407 9870097659381806 m002 E^Pi+Pi^6+(ProductLog[Pi]*Sinh[Pi])/5 9870097669999469 p001 sum((-1)^n/(313*n+97)/(5^n),n=0..infinity) 9870097674916122 a001 9062201101803/2584*1836311903^(10/17) 9870097674916122 a001 73681302247/2584*6557470319842^(10/17) 9870097683743658 m002 Pi^2+(4*Sinh[Pi])/Pi^10 9870097723390518 m001 GAMMA(2/3)-gamma(1)-TreeGrowth2nd 9870097723508724 a001 75025/5778*18^(40/57) 9870097731360184 a001 1/5778*(1/2*5^(1/2)+1/2)^8*3^(3/17) 9870097739335720 m005 (1/3*Zeta(3)-2/9)/(4/7*2^(1/2)+1) 9870097776962274 m001 exp(Riemann2ndZero)^2*Paris*GAMMA(1/24)^2 9870097780178024 m001 (ln(3)-Zeta(1,2))/(OneNinth+Paris) 9870097780799380 r005 Im(z^2+c),c=-41/56+6/61*I,n=36 9870097781527761 r005 Im(z^2+c),c=-37/42+2/27*I,n=26 9870097817665512 m001 (Porter+Trott)/(GaussAGM+LaplaceLimit) 9870097837568031 m002 Pi^2+4/(E^Pi*Pi^5*Log[Pi]) 9870097842865567 b008 Pi^2+BesselJ[8,3] 9870097845643685 m001 ln(BesselK(1,1))*Salem*sqrt(1+sqrt(3)) 9870097849244480 m001 (ln(2)/ln(10)+ln(gamma))/(-Artin+Kac) 9870097852859063 a007 Real Root Of 5*x^4+502*x^3+843*x^2+448*x+140 9870097867286600 h001 (1/4*exp(2)+3/10)/(7/10*exp(1)+3/11) 9870097922359315 a007 Real Root Of 72*x^4-314*x^3-54*x^2-554*x+833 9870097954382150 m005 (1/3*3^(1/2)+2/5)/(7/10*3^(1/2)-2/9) 9870097966465533 r009 Im(z^3+c),c=-19/102+55/57*I,n=55 9870097975717759 a001 196418/15127*18^(40/57) 9870097980471861 m001 1/BesselJ(0,1)^2/Bloch*exp(sqrt(1+sqrt(3)))^2 9870097983868754 a001 1/15127*(1/2*5^(1/2)+1/2)^10*3^(3/17) 9870097987890422 m001 Riemann3rdZero/MertensB1/gamma(2) 9870097995285775 a004 Fibonacci(17)*Lucas(12)/(1/2+sqrt(5)/2)^13 9870098012514562 a001 514229/39603*18^(40/57) 9870098017883144 a001 1346269/103682*18^(40/57) 9870098019150494 a001 2178309/167761*18^(40/57) 9870098020709259 a001 1/39603*(1/2*5^(1/2)+1/2)^12*3^(3/17) 9870098021201109 a001 832040/64079*18^(40/57) 9870098023994460 p004 log(10333/3851) 9870098025445066 a007 Real Root Of -752*x^4-473*x^3-449*x^2-55*x+642 9870098029406123 a001 1/64079*(1/2*5^(1/2)+1/2)^13*3^(3/17) 9870098033018283 a007 Real Root Of -159*x^4+610*x^3+529*x^2+712*x-76 9870098035256238 a001 10959/844*18^(40/57) 9870098039215686 q001 4027/4080 9870098043477944 a001 1/24476*(1/2*5^(1/2)+1/2)^11*3^(3/17) 9870098050317015 r008 a(0)=1,K{-n^6,71+7*n^3-58*n^2+46*n} 9870098075221446 a007 Real Root Of 69*x^4-629*x^3+299*x^2+187*x-777 9870098093537162 m005 (1/2*Pi-7/12)/(7/11*2^(1/2)-1) 9870098105962180 r002 8th iterates of z^2 + 9870098115416061 r005 Im(z^2+c),c=-43/60+5/56*I,n=52 9870098123752208 a007 Real Root Of 726*x^4+461*x^3+482*x^2+516*x-206 9870098131287780 r002 5th iterates of z^2 + 9870098131591521 a001 121393/9349*18^(40/57) 9870098139927640 a001 1/9349*(1/2*5^(1/2)+1/2)^9*3^(3/17) 9870098150896279 a007 Real Root Of -466*x^4-830*x^3-968*x^2+246*x+830 9870098152521488 m009 (2/5*Psi(1,3/4)-5/6)/(6*Psi(1,2/3)+1/5) 9870098161302129 m005 (1/2*Zeta(3)-3/4)/(5/11*3^(1/2)-7/11) 9870098162740230 s002 sum(A196281[n]/(pi^n+1),n=1..infinity) 9870098182096371 a007 Real Root Of 491*x^4-399*x^3+573*x^2+705*x-712 9870098235728811 a007 Real Root Of 817*x^4+725*x^3+899*x^2+73*x-882 9870098278413799 a005 (1/cos(8/127*Pi))^1518 9870098286392704 a001 23725150497407/144*144^(14/17) 9870098287731768 r005 Im(z^2+c),c=-61/50+2/21*I,n=56 9870098293910911 a007 Real Root Of 542*x^4-663*x^3-568*x^2+42*x+635 9870098305609449 h001 (1/11*exp(1)+2/5)/(7/8*exp(2)+1/11) 9870098352252687 m001 (Zeta(3)+BesselI(1,1))/(Kolakoski-Sierpinski) 9870098426571962 r005 Im(z^2+c),c=-77/114+22/53*I,n=12 9870098456422133 l006 ln(2238/6005) 9870098520676066 l003 KelvinHei(1,26/53) 9870098529451590 m001 (-GAMMA(2/3)+1)/(sin(Pi/5)+3) 9870098535676813 m001 KhinchinLevy*ZetaR(2)^Conway 9870098536709541 r005 Im(z^2+c),c=-15/26+55/114*I,n=26 9870098563206157 m001 GAMMA(23/24)^2*exp(Catalan)^2*GAMMA(3/4)^2 9870098574304217 a007 Real Root Of 654*x^4+743*x^3+422*x^2+434*x+111 9870098582657685 a007 Real Root Of -533*x^4+547*x^3+627*x^2-5*x-626 9870098606644230 m002 (2*E^Pi)/Pi^10+Pi^2 9870098611732464 m005 (1/2*Pi-4/9)/(7/10*Catalan+1/2) 9870098626337325 m001 Mills^HardyLittlewoodC4-Paris 9870098628418486 r002 16th iterates of z^2 + 9870098634328045 m001 (Landau*Stephens-ln(2^(1/2)+1))/Stephens 9870098644405986 a007 Real Root Of -977*x^4+504*x^3+313*x^2-623*x+492 9870098648097262 m001 FeigenbaumDelta*Trott2nd+Thue 9870098659528290 m001 MertensB2/((Pi*csc(5/24*Pi)/GAMMA(19/24))^Pi) 9870098691357763 m001 (FeigenbaumMu+MertensB3)/(ln(3)-BesselK(1,1)) 9870098721138721 a007 Real Root Of -194*x^4+118*x^3+666*x^2+89*x-666 9870098726029055 m005 (2*2^(1/2)+1/3)/(3/5*gamma-2/3) 9870098756022542 r005 Im(z^2+c),c=-49/94+19/21*I,n=3 9870098760756398 m002 Pi^2+(2*Csch[Pi])/(Pi^5*Log[Pi]) 9870098762264834 a007 Real Root Of -978*x^4-187*x^3+918*x^2+158*x+10 9870098763013215 a007 Real Root Of -660*x^4+94*x^3+868*x^2+397*x+263 9870098773859750 m005 (3/5*gamma+1/3)/(1/2*gamma+2/5) 9870098773859750 m007 (-3/5*gamma-1/3)/(-1/2*gamma-2/5) 9870098782883397 p004 log(13687/5101) 9870098791883427 a001 46368/3571*18^(40/57) 9870098801003743 a001 1/3571*(1/2*5^(1/2)+1/2)^7*3^(3/17) 9870098862715542 r005 Im(z^2+c),c=-7/6+29/226*I,n=62 9870098870430799 a007 Real Root Of 630*x^4+155*x^3+141*x^2+214*x-375 9870098876334486 m001 (-Mills+ZetaP(2))/(2^(1/2)-BesselI(0,2)) 9870098905296206 a007 Real Root Of -628*x^4-665*x^3-905*x^2-291*x+551 9870098912188024 r005 Re(z^2+c),c=-1/122+11/29*I,n=18 9870098953339873 m001 (BesselI(0,1)+Artin)/(DuboisRaymond+Porter) 9870098954498670 r005 Re(z^2+c),c=-49/52+2/9*I,n=41 9870098955031262 r009 Re(z^3+c),c=-3/20+19/39*I,n=10 9870098959871957 a007 Real Root Of -40*x^4-323*x^3+719*x^2+183*x+804 9870099003398131 a007 Real Root Of -173*x^4+610*x^3-387*x^2+796*x-831 9870099026817463 a007 Real Root Of 877*x^4+615*x^3+362*x^2-202*x-793 9870099032989506 m001 (MertensB3-exp(1))/OrthogonalArrays 9870099038077350 l006 ln(2863/7682) 9870099089051968 m004 -1-(25*Pi)/6+25*Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 9870099094246365 a007 Real Root Of -516*x^4-836*x^3-547*x^2+630*x-56 9870099107641523 a007 Real Root Of -789*x^4+343*x^3+270*x^2-341*x+479 9870099151512469 m005 (29/36+1/4*5^(1/2))/(5/8*3^(1/2)+3/10) 9870099165140147 m001 Si(Pi)-cos(1)^CopelandErdos 9870099220460928 a007 Real Root Of 711*x^4+904*x^3+481*x^2+606*x+324 9870099246557391 m001 1/exp(log(2+sqrt(3)))^2*cosh(1)^2/sqrt(3) 9870099263888371 a007 Real Root Of -160*x^4+859*x^3-668*x^2+643*x-658 9870099264209821 a007 Real Root Of 297*x^4-519*x^3+122*x^2+96*x-805 9870099294236897 a007 Real Root Of -960*x^4-875*x^3+9*x^2-695*x-625 9870099301335023 m001 (BesselJ(0,1)+Ei(1,1))^sin(1) 9870099325834628 a007 Real Root Of -963*x^4+841*x^3+937*x^2-711*x+108 9870099331109012 p004 log(35759/13327) 9870099371795651 a007 Real Root Of -910*x^4+35*x^3+297*x^2+381*x+984 9870099405635967 a001 494493258286/141*1836311903^(10/17) 9870099405635967 a001 9381251041/329*6557470319842^(10/17) 9870099411283862 l006 ln(3488/9359) 9870099417890267 s002 sum(A081447[n]/(10^n-1),n=1..infinity) 9870099458926486 r009 Re(z^3+c),c=-7/52+9/11*I,n=38 9870099488130596 m001 BesselI(0,1)*FellerTornier-HardHexagonsEntropy 9870099490706321 m001 BesselI(1,1)*(BesselJ(1,1)+Mills) 9870099529544801 m002 Pi^2+(4*Cosh[Pi])/Pi^10 9870099566147924 a007 Real Root Of 907*x^4+846*x^3+551*x^2+377*x-212 9870099580349372 m001 (LambertW(1)-cos(1))/(BesselI(1,2)+GAMMA(5/6)) 9870099583636971 a007 Real Root Of -961*x^4+638*x^3-389*x^2+641*x-60 9870099589581707 m005 (1/3*Pi+1/10)/(5/11*3^(1/2)+3/8) 9870099667647721 m005 (1/2*Zeta(3)+1/6)/(4/7*Zeta(3)+1/11) 9870099672566988 a007 Real Root Of 342*x^4-642*x^3-940*x^2+836*x+799 9870099693612970 r002 18th iterates of z^2 + 9870099733607356 m001 (2^(1/3)-PlouffeB)^ZetaQ(2) 9870099754889007 a007 Real Root Of -604*x^4-791*x^3-399*x^2-127*x+76 9870099758830257 a007 Real Root Of -358*x^4+16*x^3+74*x^2+81*x+363 9870099771656806 m002 (ProductLog[Pi]*Sech[Pi])/10-Tanh[Pi] 9870099848657061 r002 29th iterates of z^2 + 9870099859932466 m001 (Cahen+MertensB3)/(2^(1/2)+sin(1/5*Pi)) 9870099904372679 m001 AlladiGrinstead^Ei(1,1)/(Thue^Ei(1,1)) 9870099909713064 r002 3th iterates of z^2 + 9870099934330861 m005 (1/2*Catalan+10/11)/(9/11*5^(1/2)-4/9) 9870099942428909 m001 FeigenbaumB^(gamma*Champernowne)