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I
Prologue

hate airports.
I find airports stressful, crowded, noisy. There are usually too many

people, too many queues, not enough seats, and unhealthy food everywhere
tempting me to eat it. It’s a shame when this is the way travelling starts, as
it makes me dread the journey. Travelling should be an exciting process of
discovery. Airports – along with cramped economy seating – too often mar
what is the almost miraculous and magical process of flying somewhere in
a plane.

Mathematics should also be an exciting process of discovery, an almost
miraculous and magical journey. But it is too often marred by the way it
starts, with too many facts or formulae being thrown at you, and stressful
tests and unpalatable problems to solve.

By contrast, I love boat trips.
I love being out on the open water, feeling the wind in my face,

watching civilisation and the coastline recede into the distance. I like
heading towards the horizon without it ever getting any closer. I like feeling
some of the power of nature without being entirely at its mercy: I’m not a
sailor, so usually someone else is in charge of the boat. Occasionally there
are boats I can manage, and then the exertion is part of the reward: a little
rowing boat that I once rowed around a small moat encircling a tiny chateau
in France; a pedal boat along the canals of Amsterdam; punting on the river
Cam, although after once falling in I was put off for life, just like some
people are put off mathematics for life by bad early experiences. I have
taken boat trips to see magnificent whales off the coast of Sydney and Los
Angeles, or seals and other wildlife off the coast of Wales. Then there are



the ferries crossing the Channel to France that started most of our family
holidays when I was little, before the improbable Eurostar was built. How
quickly we humans can come to take something for granted even though it
previously seemed impossible!

These days I rarely take boats with the purpose of getting anywhere –
rather, the purpose is to have fun, see some sights or some nature, and
possibly exert myself. The one exception is the Thames River Ferry, which
is a very satisfying way to commute into Central London, joyfully
combining the fun of a boat trip and a journey with a destination.

I love abstract mathematics in somewhat the same way that I love boat
trips. It’s not just about getting to a destination for me. It’s about the fun,
the mental exertion, communing with mathematical nature and seeing the
mathematical sights. This book is a journey into the mysterious and
fantastic world of infinity and beyond. The sights we’ll see are mind-
boggling, breathtaking and sometimes unbelievable. We will revel in the
power of mathematics without being at its mercy, and we will head towards
the horizon of human thinking without that horizon ever getting any closer.



part one

THE JOURNEY



I

1

What Is Infinity?

nfinity is a Loch Ness Monster, capturing the imagination with its awe-
inspiring size but elusive nature. Infinity is a dream, a vast fantasy world of
endless time and space. Infinity is a dark forest with unexpected creatures,
tangled thickets and sudden rays of light breaking through. Infinity is a loop
that springs open to reveal an endless spiral.

Our lives are finite, our brains are finite, our world is finite, but still we
get glimpses of infinity around us. I grew up in a house with a fireplace and
chimney in the middle, with all the rooms connected in a circle around it.
This meant that my sister and I could chase each other round and round in
circles forever, and it felt as if we had an infinite house. Loops make
infinitely long journeys possible in a finite space, and they are used for
racetracks and particle colliders, not just children chasing each other.

Later my mother taught me how to program on a Spectrum computer. I
still smile involuntarily when I think about my favourite program:

10 PRINT “HELLO”
20 GOTO 10

This makes an endless loop – an abstract one rather than a physical one. I
would hit RUN and feel delirious excitement at watching HELLO scroll down
the screen, knowing it would keep going forever unless I stopped it. I was



the kind of child who was not easily bored, so I could do this every day
without ever feeling the urge to write more useful programs. Unfortunately
this meant my programming skills never really developed; infinite patience
has strange rewards.

The abstract loop of my tiny but vast program is made by the program
going back on itself, and self-reference gives us other glimpses of infinity.
Fractals are shapes built from copies of themselves, so if you zoom in on
them they keep looking the same. For this to work, the detail has to keep
going on ‘forever’, whatever that means – certainly beyond what we can
draw and beyond what our eye can see. Here are the first few stages of
some fractal trees and the famous Sierpinski triangle.



If you point two mirrors at each other you see not just your reflection, but
the reflection of your reflection, and so on for as long as the angle of the
mirrors permits. The reflections inside the reflections get smaller and
smaller as they go on, and in theory they could go on ‘forever’ like the
fractals.

We get glimpses of infinity from loops and self-reference, but also from
things getting smaller and smaller like the reflections in the mirror. Children
might try to make their piece of cake last forever by only ever eating half of
what’s left. Or perhaps you’re sharing cake, and everyone is too polite to
have the last bite so they just keep taking half of whatever’s left. I’m told
that this has a name in Japanese: enryo no katamari, the last piece of food
that everyone is too polite to eat.

We don’t know if the universe is infinite, but I like staring up at a
church spire, and tricking myself into thinking that the sides are parallel and
it’s actually an infinite tower soaring up into the sky to infinity. Our lives
are finite, but fictional and mythological tales of immortality appear
through the ages and across cultures.

So much for glimpses of infinity, like ripples in the waters of Loch Ness
that may or may not have been caused by a giant, ancient, mysterious
monster. What is this monsterwecall infinity? What do we mean when we
throw around the innocuoussounding word ‘forever’? In our modern
impatient world people are prone to using it rather hyperbolically,
exclaiming ‘I’ve been on hold forever!’ after two minutes, or ‘This
webpage is taking forever to load!’ if it takes more than about three
seconds. I’m told by Basque writer Amaia Gabantxo that in Basque the
word for eleven is hamaika but it also means infinity. This is borne out by
another friend of mine who did an audit of home-made jam in the cupboard
and declared there were ‘four jars from 2013, ten from 2014 and lots from
2015’. Apparently more than ten might as well be infinity. My research
field is higher-dimensional category theory, and there ‘higher’ usually
means three dimensions or more, including infinity – everything from just
three to infinity turns out to be about the same.

The way we think about infinity in our normal lives might be dreamy
and exciting, but it dissipates under close examination, like the end of a
rainbow, which will never be there if you try to go looking for it. It causes



paradoxes and contradictions, impassable ravines and murky traps. It
doesn’t stand up to the tests of rigorous logic, as we’ll see.

One of the roles of mathematics is to explain phenomena in the world
around us, especially phenomena that crop up in many different places. If a
similar idea relates to many different situations, mathematics swoops in and
tries to find an overarching theory that unifies those situations and enables
us to better understand the things they have in common. Infinity is one of
those ideas. It pops up all over the place as an idea that we can dream about,
and seems similar to other ideas that can be unified by mathematics: the
ideas of length, size, quantity. So why is it so difficult to extend those easy
mathematical concepts to include infinity? This is what this book is about:
why it is difficult, how it eventually can be done, and what we see along the
way.

Infinity Instincts

Infinity is easy to think about but hard to pin down. Small children can
quickly latch on to the idea of infinity but it took mathematicians thousands
of years to work out how to explain infinity in full-technicolour logical
glory. Here are some things we might think about infinity. Children come
up with these thoughts about infinity quite often, all by themselves:

Infinity goes on forever.
Infinity is bigger than the biggest number.

Infinity is bigger than anything we can think of.
If you add one to infinity it’s still infinity.

If you add infinity to infinity it’s still infinity.
If you multiply infinity by infinity it’s still infinity.

Children can get very excited when the notion of infinity first dawns on
them. They learn to count up to ten, and then twenty, and then they learn
about a hundred, a thousand, a million, a billion. If you ask a small child
what the biggest possible number is, they may well say ‘a billion’, but then
you can ask them about a billion and one, and watch their eyes widen.

It’s not very hard to convince them that no matter what number they
think of, you could always add one and get a bigger number. This gives the



idea that there is no biggest number. Numbers go on forever! But then, how
many numbers are there in total? The idea of infinity starts to emerge.

Perhaps some children first hear of infinity because they watch the Toy
Story films and they hear Buzz Lightyear saying ‘To infinity … and
beyond!’ which does sound very exciting. When I was a child Toy Story
hadn’t been made yet, but I had inklings of infinity from the loops I
described earlier, the physical loops in our house and the abstract loops in
my favourite computer program.

Once children start thinking about infinity, they can easily come up with
questions about it that are teasingly difficult to answer. What is infinity? Is
it a number? Is it a place? If it’s not a place, how can we go there and
beyond?

If children hear about infinity at school, the questions just start
proliferating. Is one divided by zero infinity? Is one divided by infinity
zero? If infinity plus one is infinity, what happens when you subtract
infinity?

When children ask innocuous maths questions that seem impossible to
answer, this can be intimidating for adults, who feel that they are supposed
to have all the answers. But as maths educator and innovator Christopher
Danielson says, an important aspect of learning is being able to ask new
questions; this is more important than being able to state new facts. In
maths, there are always more questions. Even people who did quite well at
maths, even people who did maths at university, even research
mathematicians have more questions about infinity than can be answered.

Infinity Weirdness

Here are some of my favourite mind-boggling conundrums about infinity
that we are going to explore.

If you have an infinite hotel, and it’s full, you can still fit another guest
in by moving everyone up one room.
If there were a lottery with infinitely many balls, what would be your
chances of winning?
Some infinities are bigger than others!



Infinite pairs of socks are somehow more infinite than infinite pairs of
shoes.
If I were immortal, I could procrastinate forever.
If you are travelling from A to B you first have to cover half the
distance, then half the remaining distance, and then half the remaining
distance, and so on. There will always be half the remaining distance
left, so you’ll never get there. Or will you?
The recurring decimal  is exactly equal to 1.
Does a circle have infinitely many sides?
Why do people who do quite well at maths often get stuck at calculus?
Yes, this is a question about infinity too.

Infinity can appeal to people of all ages, of all levels of expertise, in
different ways. This book is going to be a journey to infinity – and beyond.
Because there really is something beyond infinity, if you think about it hard
enough and in the right way. Just like there are always more questions to
ask and more things to understand. Infinity is not a physical place, so this is
not a physical journey. You can go with me on this journey sitting right
where you are, because the journey is an abstract journey. It’s a journey
into the deep, tangled, mysterious, murky, endless world of ideas.

Why?

Why do we go on this journey? Like with physical journeys, there are many
reasons to go on an abstract journey. Everyone has their own reasons for
travelling. Maybe there’s something particular you want to do at your
destination. Maybe there’s a really good view from the top. Maybe there’s
beautiful scenery along the way. Maybe you enjoy the physical exertion of
walking or climbing, or the exhilaration of riding a bicycle or driving a fast
car, or the serenity of sitting on a train watching the countryside rush past.
(My experience of trains involves more delays and irate commuters than
serenity, but let’s ignore that for a second.) Maybe you like going into the
unknown. Maybe you like wandering around and losing yourself
completely in a city. Maybe you have the travel bug, and want to see as



much of our incredible earth as possible, simply because there is so much to
see.

All of these reasons have their counterparts in the abstract world. A
journey where you have something particular to do (like commuting to
work) corresponds to having a particular problem you want to solve or a
particular application in mind. This type of abstract journey is less about the
sense of discovery and more about getting something done. Going up high
for a good view is like the abstract investigations we do to gain new
perspectives on things we’ve already seen up close. The beautiful scenery
along the way is the weird and wonderful ideas and scenarios that come up
as we investigate. And yes, there is exhilaration in the mental exertion, and
excitement in thinking about ideas that seem incomprehensible and then
slowly clear up, like fog clearing to reveal the ocean glistening to the
horizon. I don’t have the travel bug for the physical world as much as some
people do, but I do have the curiosity bug, the counterpart for the abstract
world. I’m fairly calm and resigned about there being a lot of the world I
haven’t seen, but I am insatiable when it comes to ideas I don’t understand.
I always want to explore them. As soon as I catch a glimpse of something I
don’t understand, I am driven to plunge into it. I like losing myself
completely in a city, and I like losing myself in ideas as well. As much as I
am driven to understand things, I am also happy to acknowledge the things
we humans cannot understand. In fact, I positively revel in it. It means that
there is always more out there, which is a glorious thing. Wouldn’t it be a
bit sad if you could finally say yes, that’s it, I’ve been to every restaurant in
London now. But of course that’s impossible. There will always be another
restaurant you haven’t tried, and there will always be things we don’t
understand.

In a strange way this book isn’t about infinity at all. It’s about the
excitement of a journey into the abstract unknown. Jules Verne’s Journey to
the Centre of the Earth wasn’t really about the centre of the earth, but about
the excitement of an incredible journey. This is a book about how abstract
thinking works and what it does for us. It’s about how it helps us pin down
what we really mean when we start having an interesting idea. It doesn’t
necessarily explain the whole idea: mathematics doesn’t explain everything
about infinity. But it does help us become clear about what we can and can’t
do with infinity.



This first part of the book, then, is a journey towards understanding
what infinity is. If you ask a small child what they think infinity is, they
might say something like, ‘It’s bigger than any number you can think of.’
This is true, but it still doesn’t tell us what infinity is, any more than saying
‘Yao Ming is taller than anyone you’ve ever met’ tells you who Yao Ming
is.

In the second part of the book we’ll take a tour of the world equipped
with our new ideas about infinity, and see where this elusive creature has
been lurking all along. It’s in mirrors that we point at each other, racetracks
that we run around, every journey we take, and in every changing situation
in this continuously changing world of ours. Understanding infinity is the
basis of the field of calculus, which is inextricably embedded in almost
every aspect of modern life.

Of course, it is possible to enjoy all those aspects of modern life without
having the slightest understanding of calculus, which is why I don’t
emphasise these applications as the main reason for writing about infinity.
Mathematics suffers a strange burden of being required to be useful. This is
not a burden placed on poetry or music or football. If you ask me what all
this is useful for I could answer by saying it helps us generate electricity,
make phone calls, build bridges, roads, aeroplanes, provide water to cities,
develop medicines, save lives. But this doesn’t mean it is useful for you to
think about it, only that it’s useful to you that somebody else thought about
it. It is not why I think about it, and not why I most want to tell this story.

You can get by perfectly well in life without understanding anything
more about infinity than you did when you were five years old. But for me
the usefulness of mathematics isn’t about whether you need it to ‘get by’ in
life or not. It’s about how mathematical thinking and mathematical
investigation sheds light on our thought processes. It’s about taking a step
back from something to get a better overview. Flying higher up in the sky
enables us to travel further and faster.

Let’s go.



M

2

Playing with Infinity

athematics can be thought of as many things: a language, a tool, a
game. It might not seem like a game when you’re trying to do your
homework or pass an exam, but for me one of the most exciting parts of
doing research is when you’re just starting something new, and you get to
play around with some ideas for fun. It’s a bit like playing around with
ingredients in the kitchen, which is more fun than trying to write down the
recipe you invented in case you want to repeat it. And that is in turn more
fun than trying to write down the recipe for someone else to be able to
repeat.

I’m going to start by playing around with the idea of infinity a bit, to
free our brains up and start exploring what we think might be true about it,
and what the consequences are. Mathematics is all about using logic to
understand things, and we’ll find that if we’re not careful about exactly
what we mean by ‘infinity’, then logic will take us to some very strange
places that we didn’t intend to go. Mathematicians start by playing around
with ideas to get a feel for what might be possible, good and bad. When
Lego was first made, the designers must have played around with some
prototypes first before settling on the wonderful final design.

A mathematical ‘toy’ should be like Lego: strong enough to be able to
build things, but versatile enough to open up many possibilities. If we come
up with a prototype for infinity that causes something important to collapse



then we have to go back to the drawing board. After our initial games we’ll
be going back to the drawing board several times as we move through
different ways of thinking about infinity that go wrong and cause things to
collapse. When we finally get to something that holds up, it might not look
the way you were expecting. And it causes some things to happen that you
might not have been expecting either, like the weird fact that there are
different sizes of infinity, so that some things are ‘more infinite’ than others.
This is a beautiful aspect of any kind of journey – discovering things you
weren’t expecting.

In the previous chapter I listed some beginning ideas about infinity.

Infinity goes on forever.

Does this mean infinity is a type of time, or space? A length?

Infinity is bigger than the biggest number.
Infinity is bigger than anything we can think of.

Now infinity seems to be a type of size. Or is it something more abstract: a
number, which we can then use to measure time, space, length, size, and
indeed anything we want? Our next thoughts seem to treat infinity as if it is
in fact a number.

If you add one to infinity it’s still infinity.

This is saying

∞ + 1 = ∞

which might seem like a very basic principle about infinity. If infinity is the
biggest thing there is, then adding one can’t make it any bigger. Or can it?
What if we then subtract infinity from both sides? If we use some familiar
rules of cancellation, this will just get rid of the infinity on each side,
leaving

1 = 0



which is a disaster. Something has evidently gone wrong. The next thought
makes more things go wrong:

If you add infinity to infinity it’s still infinity.

This seems to be saying

∞ + ∞ = ∞

that is
2∞ = ∞

and now if we divide both sides by infinity this might look like we can just
cancel out the infinity on each side, leaving

2 = 1

which is another disaster. Maybe you can now guess that something terrible
will happen if we think too hard about the last idea:

If you multiply infinity by infinity it’s still infinity.

If we write this out we get

∞ × ∞ = ∞

and if we divide both sides by infinity, cancelling out one infinity on each
side, we get

∞ = 1

which is possibly the worst, most wrong outcome of them all. Infinity is
supposed to be the biggest thing there is; it is definitely not supposed to be
equal to something as small as 1.

What has gone wrong? The problem is that we have manipulated
equations as if infinity were an ordinary number, without knowing if it is or
not. One of the first things we’re going to see in this book is what infinity
isn’t, and it definitely isn’t an ordinary number. We are gradually going to



work our way towards finding what type of ‘thing’ it makes sense for
infinity to be. This is a journey that took mathematicians thousands of
years, involving some of the most important developments of mathematics:
set theory and calculus, just for starters.

The moral of that story is that although the idea of infinity is quite easy
to come up with, we have to be rather careful what we do with it, because
weird things start happening. And that was just the beginning of the weird
things that can happen. We’re going to look at all sorts of weird things that
happen with infinity, with infinite collections of things, hotels with infinite
rooms, infinite pairs of socks, infinite paths, infinite cookies. Some weird
things are like 1 = 0, not just weird, but undesirable. So we try to build our
mathematical ideas to avoid those. But other weird things don’t contradict
logic, they just contradict normal life. Those weird things don’t cause
problems to our logic, they just cause problems to our imagination. But it
can be very exhilarating to stretch our imagination just like fiction writers
do when they create a person who lives infinitely long (immortality) or who
can travel infinitely fast (teleportation). And it’s not just exhilarating: it can
shed new light on our normal life. When characters are immortal in fiction,
they often end up realising how the finiteness of life is actually what gives
it meaning.

Infinite Hotels

When we start teaching children the idea of numbers we usually give them
some objects to think about, or we talk about numbers while they’re eating
something that comes in distinct pieces like strawberries or beans. Or
maybe we count spoonfuls of something as they eat it.

If we try to count spoonfuls of something until we get to infinity we’ll
be here for a rather long time. Actually later on we are going to do
something a lot like counting up to infinity, but for now instead of counting
all the way there, we’ll play with something that is already infinite: an
infinite hotel.

Imagine a hotel with an infinite number of rooms, with room numbers
1, 2, 3, 4, … going on forever.



Now imagine that you’re the manager of this amazing hotel, and every
room is full. You’re revelling in the amount of money you’re raking in,
when another person arrives and asks for a room. On the one hand, the hotel
is full. On the other hand, if you just ask everyone to move up a room …

This hotel with an infinite number of rooms is known as Hilbert’s Hotel.
It’s named after the mathematician David Hilbert who used it as a vivid way
of illustrating the strange things that can happen when you start thinking
about infinity. A normal hotel only has a finite number of rooms. Once it’s
full that’s it – if another guest turns up there’s nothing you can do about it,
without building an extension. However, with the infinite hotel, you can get
the person in room 1 to move to room 2, and the person in room 2 can move
to room 3, and the person in room 3 can move to room 4, and so on. We can
tell the person in ‘room n’ to move to ‘room n + 1’, and because we have an
infinite number of rooms, every n does have an n + 1, so every hotel guest
has a new room to move into. This leaves room number 1 empty, and the
new guest can be accommodated.

This is sometimes called a paradox, but there’s nothing wrong with the
argument. It’s just that the conclusion is counterintuitive. How can we fit an
extra guest into a hotel that’s already full? The only reason this is counter-
intuitive is that we’re too used to finite hotels. When we start thinking



seriously about infinity, as opposed to just vaguely dreaming about infinity,
we have to be prepared for slightly strange things to happen. Or even very
strange things. This is the fun of infinity.

What we want to do is incorporate ‘infinity’ into normal mathematics
without changing the rest of it, just like when people write a book in which
one person is immortal but the rest of the world is just as usual. Some
strange new things will happen, but we don’t want to ruin the basic facts
about the world. What that means for infinity and mathematics is that we
don’t want the presence of infinity to result in 1 = 0, for example, but
maybe some unexpected new things will start to happen, like with this
infinite hotel.

Hilbert’s Hotel does not cause anything to go wrong, mathematically –
there is no logical contradiction, just a contradiction with our intuition
about normal hotels. It widens our eyes to the kinds of things that become
possible in the presence of infinity.

What If More Guests Arrive

What if a second extra guest arrives at Hilbert’s Hotel? Well, we can just
ask everyone to move up a room, again. Now the person who was originally
in room 1 will be in room 3, and the person who was originally in room 2
will be in room 4, and the person who was originally in ‘room n’ will be in
‘room n + 2’. This being the world of mathematics, we don’t take into
account the hassle of everyone moving room, we just feel pleased that
everyone has a room.

If those two extra guests had arrived at the same time, we could have
immediately asked everyone to move up two rooms. Of course, if three
extra guests arrive, we can ask everyone to move up three rooms. And so
on, for any finite number of extra guests.



What if an infinite number of extra guests arrive? We can’t just ask
everyone to move up an infinite number of rooms. This might sound like it
makes sense, because the rooms go on forever, but let’s think about a
particular person, say the person in room 1. Which room will they end up
in? Room ‘1 + ∞’? That won’t work, because it’s not a room number. We do
have an infinite number of rooms, but each one is still labelled with a finite
number. So there is no room ‘1 + ∞’ for the person in room 1 to move into.
If we can’t tell them which room to go to then we’re stuck.

So we have to be a bit cleverer. (Dealing with mathematics usually
means having to be increasingly clever all the time, which is why it always
seems hard.) We can tell everyone to double their room number. So the
person in room 1 goes to room 2, and the person in room 2 goes to room 4,
and the person in room n goes to room 2n. This will leave an infinite
number of rooms spare. How do we know? We know all the old guests end
up in rooms that are double their previous room number, so they all end up
in even-numbered rooms. This means that all the odd-numbered rooms are
now empty, and there are an infinite number of those.



We can tell that this will work for sure by writing down instructions for what
everyone’s room number is going to be. We could write a very long list, but that
would take too long, so instead we can make a formula. The point of a formula in
maths is to save the effort of writing a long list. Here’s how the instructions would go:

Old guests: if you are in room n please move to room 2n.
New guests: if you are new guest number n please move to room 2n – 1.

Now everyone knows which room they’re in, and we can check that no two people
will get the same room number, unless they did their calculation wrong.

You might notice that this system only works if the new people arrive in an orderly
queue, otherwise there will be the mathematical version of an unruly scrum as
everyone dives for a room. The new guests all had to arrive in a numbered order so
that they could work out their new room number. We’re going to focus more on the
queueing aspect as things become more complicated.

What If the Hotel Has More Floors?

Now let’s imagine we have an infinite hotel with two floors, and each floor
has an infinite number of rooms in it. The first floor has rooms 1, 2, 3, 4, …
and so on, and the second floor also has rooms 1, 2, 3, 4, … and so on.
(More sensibly these would be numbered 11, 12, 13, 14, … on the first floor
and 21, 22, 23, 24, … on the second floor, but never mind for now.)



What if this hotel has a fire, and we need to evacuate all its guests into a
one-floor Hilbert Hotel across the road that happens to be empty? This is no
problem. We can ask everyone on the first floor to double their room
number and subtract one, so they’ll go into rooms 1, 3, 5, 7, …, just like the
evacuated people last time. Then we can ask everyone on the second floor
to double their room number, as if they were the original people in the hotel
in the last example. So they’ll move into room 2, 4, 6, 8, …, and so on.

We have, in a way, fitted ‘infinity times 2’ people into ‘infinity’ rooms.
Mathematically, it’s the same problem as fitting infinite new guests into a
full one-floor hotel.

This general method will also work with a fire in a threefloor Hilbert
Hotel, except this time we have to evacuate ‘infinity times 3’ people, so we
have to work on the basis of multiplying everyone’s room number by 3.

The people on the first floor are told to multiply their room number by
3 and subtract 2. So they will move into rooms 1, 4, 7, 10, …
The people on the second floor multiply their room number by 3 and
subtract 1. They will move into rooms 2, 5, 8, 11, …
The people on the third floor simply multiply their room number by 3,
and they will move into rooms 3, 6, 9, 12, …



You can also imagine them all queuing up in three queues according to their
floor. You would then assign them rooms in order, taking one person from
the front of each queue in turn. Whereas if you took everyone from the first
queue first and assigned them rooms in order, without having the foresight
to leave gaps, you’d run out of rooms.

We can be sure about all this by writing down some instructions again. The right way
to write them is like this:

1st floor people: if your old room number was n, please move into room 3n – 2.
2nd floor people: if your old room number was n, please move into room 3n –
1.
3rd floor people: if your old room number was n, please move into room 3n.

Whereas if we took all the people from the 1st floor and filled up the rooms with them
in order, we would be saying:

1st floor people: if your old room number was n, please move into room n.

But now, are there any empty rooms left for the other people? Impossible, because
every room number n is taken up by the person from room number n from the 1st
floor of the old hotel. That’s why we have to either rotate between the floors as we
assign rooms, or assign the rooms to the 1st floor people, leaving gaps in between
for the 2nd and 3rd floor people, rather than assigning all the rooms in order.

I hope you can imagine this working for any finite number of floors.



But what about an infinite number of floors – an infinite skyscraper Hilbert
Hotel, with floors 1, 2, 3, 4, … and rooms 1, 2, 3, 4, … on each floor. We
can think of this as being ‘infinity times infinity’.

If this skyscraper has a fire, will we finally be in a hopeless situation? Can
we evacuate everyone into a normal, one-floor bungalow Hilbert Hotel?
(Perhaps, by now, the one-floor Hilbert Hotel seems like a rather mundane
concept. This is often a consequence of stretching our brains to think about
more and more extraordinary things – the previously extraordinary things



start seeming quite normal. I take this as a sign that we have become
cleverer.)

You might think it’s hopeless, because we can’t just ask everyone to
‘multiply their room number by infinity’ and then subtract something. We
can’t ‘rotate through the queues’ because this would happen:

Person 1 from floor 1 would go to room 1
Person 1 from floor 2 would go to room 2
Person 1 from floor 3 would go to room 3

Person 1 from floor n would go to room n

and no rooms would be left for any other people, because every room n
would already be taken up with Person 1 from floor n.

However, it’s not hopeless – we just have to be yet more clever. The
trick is to imagine lining everyone up in queues again, but this time look at
the situation diagonally.

If we start in the corner, and work our way along diagonals, we can now fit
everyone in. This is a bit hard to sum up in a neat formula like we did with
the smaller hotels, and is best captured in pictures:



A neat formula for instructing everyone where to go would need to look something
like this: Person n from floor k needs to move to room number… You might be able
to work out a formula from the picture, but I think in this case the picture is much
more illuminating than the formula.

Incidentally, our discussion about Hilbert’s Hotel has actually encoded the
following strange fact: there are just as many even numbers as there are
whole numbers. Because if you fill up the hotel, and then ask everyone to
double their room number, you can accommodate exactly the same guests
but using only the even-numbered rooms. The fact that we can then fit a
whole new floor’s worth of people into the odd-numbered rooms means that
there are also just as many odd numbers as there are whole numbers. This
gives us a hint of how philanthropic we could be if we had an infinite
amount of money – we could give an infinite amount of it to charity and
still have an infinite amount left. All we’d have to do is give away every
evennumbered pound in our bank account and keep every oddnumbered
pound. This doesn’t make sense, because pounds in a bank account aren’t
usually numbered – you usually just have a total. So instead you could
transfer 1 pound into a charity account, and 1 pound into a separate account
of your own, and then 1 into charity, and 1 into your own. This would be a
bit slow, so instead you could transfer a billion pounds into the charity
account, and a billion pounds into your own account, and keep going like
that. You would, of course, have to keep going forever, whatever that
means.



Buoyed up by this success you might feel invincible, and think that
you’ll be able to evacuate any hotel into a Hilbert bungalow. However, this
isn’t true. If we have an even crazier hotel that has a room for every rational
and irrational number (‘Hello, I’m in room number π.’) then we will be
defeated. This is all really about the concept of countability, which we’re
building up to. In Chapter 6 we will see the mind-boggling fact that some
infinities are bigger than others. Some things just won’t fit into Hilbert’s
Hotel no matter what you do.

One of the things that is tantalising about infinity is that it’s so easy to
stumble upon the idea, so easy to stumble upon strange apparently magical
behaviour that surrounds it, yet so difficult to work out what on earth is
really going on. We now know that a hotel with an infinite number of rooms
is very different from a hotel with a ‘normal’ number of rooms. We know
that we can’t manipulate infinity in equations like we can manipulate
‘normal’ numbers. It seems like infinity can’t be a ‘normal’ number, but
what does that mean? Numbers seem to be the most basic building blocks
of mathematics, but what are they? This is one of the most basic examples
of something we take very much for granted without really knowing what it
is. If we’re going to claim that infinity isn’t a number, we’d better think
about what numbers are. You might be surprised to find how long it took for
mathematicians to be really sure what numbers are. You might also think
it’s a bit pointless seeing as humans got by using numbers for thousands of
years without understanding that, and perhaps so have you. Are
mathematicians completely irrelevant?

The point is this. Ordinary whole numbers aren’t so bad to understand.
Even if you extend them to the negative numbers and fractions they aren’t
so bad. It’s when you get to the numbers in between the fractions, the
irrational numbers, that things get really tricky. Not knowing what whole
numbers really are didn’t cause too many problems, but not understanding
what irrational numbers are did. Unblocking that obstruction led to the
massive mathematical development of calculus that in turn led to huge leaps
forward in the precision and understanding of science, medicine and
engineering in the last two centuries. But in order to understand those
irrational numbers better we have to understand all the numbers better,
including the most basic ones. We have to get the foundations right in order



to build a good, sturdy building, and if the foundations turn out to be shaky
there’s nothing for it but to go back to the beginning and sort them out.
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What Infinity Is Not

hen babies first learn to climb up a step, they are enthralled. They do
it again, and again, and again, and they get higher and higher and higher,
possibly all the way to the next floor unless some mean adult removes
them, which they usually do. I like to think that they have worked out how
to construct the whole numbers, by just repeatedly adding one. But will
they ever get to infinity like that?

This is part of the big question of whether infinity is a number or not.
It’s a bit like the infamous lawsuit about whether Jaffa Cakes are cakes or
biscuits (because for some obscure reason cakes and biscuits are taxed
differently in the UK). You can’t start trying to answer this question without
sitting down to decide what the definitions of ‘cake’ and ‘biscuit’ are. Are
Jaffa Cakes biscuits because of their size and shape (small and flat), or are
they cakes because of their texture (fluffy and airy) and their behaviour
(going hard when stale, unlike biscuits which go soft when stale)? The
lawsuit ruled in favour of texture and behaviour, resulting in a ‘cake’
classification and lower taxation.

What about infinity? If we imagine a lawsuit about whether infinity is a
number or not, what would be the defining characteristics of numbers that
we would come up with? That is what we’re going to start thinking about in
this chapter. In fact there are many different types of number, starting from
the simplest – 1, 2, 3, and so on – moving on to negative numbers,



fractions, irrational numbers, and more weird and wonderful things. We are
gradually going to rule out the possibility of infinity being any of these.

You might wonder why we can’t just declare that infinity is a number
and be done with it. To understand this, we have to understand how
mathematics works. This might feel a bit like when you look a word up, and
the definition includes another word you don’t understand, and when you
look that one up there’s another word you don’t understand. To understand
infinity, we need to understand numbers. To understand numbers, we need
to understand mathematics. And, wait for it, to understand mathematics, we
need to understand logic.

Mathematics studies things using logic, and so it can only study things
that obey the rules of logic. When we say what mathematical objects are,
there are various approaches we can take. We can say what they are by
listing them, or we can say what they are by characterising them. We can
say what birds are by writing a great long list of all the birds in the world,
or we can say ‘Birds are animals with feathers, wings and beaks.’ Not only
is the second way quicker, it also means you can leave open the possibility
of birds you haven’t discovered yet. And then, if you find a completely new
creature you have a way of deciding if it’s a bird or not.

Here’s a mathematical example. We can say ‘The platonic solids are the
tetrahedron, cube, octahedron, dodecahedron and icosahedron.’ Or we can
say ‘The platonic solids are the convex solids where all faces, edges and
angles are the same.’ Or, more precisely, ‘regular convex polyhedra with
congruent faces of regular polygons and the same number of faces meeting
at each vertex’. In the first case we have simply listed them, and it’s
actually possible as there are not very many of them. But in the second case
we have described what properties they have in a way that enables us to
look at an object and decide if it is a platonic solid or not, without having to
remember what an icosahedron is.

For some mathematical objects, listing them is too difficult because
there are too many of them, like with the birds. For example, we can’t list
all the numbers in the world because there are infinitely many. Nor can we
list all the prime numbers in the world, but for a different reason – we don’t
know what they are. (But if we did, we still wouldn’t be able to list them as
there are infinitely many.) In the case of prime numbers we can characterise
them as ‘any number divisible only by 1 and itself (and 1 doesn’t count as



prime)’ and then the challenge is to build up a list of all the numbers that
fulfil these characteristics.

Then if we are trying to show that something is not a particular type of
mathematical object, there are also two ways of doing it. We can either stare
at the list and see that it’s not on the list, or we can look at the
characteristics and show that it doesn’t have those characteristics. For
example, we can easily see that a sphere is not a platonic solid, simply
because it’s not on the list of platonic solids. But we can’t test if a number is
prime by seeing if it’s on the list of prime numbers, because that list doesn’t
exist. Instead we have to see if it behaves in the way prime numbers do: we
have to see if it’s only divisible by 1 and itself. For example, 6 is also
divisible by 2, so we know it can’t be prime. If we find a new creature in
the forest and want to decide if it should count as a bird or not, we have to
decide if it fits the characteristics of a bird. At some point biologists had to
decide what the defining characteristics of birds should be, and
mathematicians had to decide what the defining characteristics of numbers
should be.

There are lists of prime numbers up to a certain size, so as long as your number isn’t
too big you can in fact check on a list to see if it’s prime. However, it has become
more efficient for computers to test to see if a number is prime rather than store huge
lists of primes on the off-chance that someone wants to look one up. The largest
known prime number at time of writing has more than 22 million digits. This one
number is so long that it’s pretty impossible to store it even by itself, let alone to store
all the prime numbers up to it. So nobody is keeping a list of all known prime
numbers.

Like birds, there are many different types of number. Some are more
ubiquitous than others, and some are more well known than others. We’ll
also see that the ones that are the most numerous are not the ones we see or
think of the most. We’ll start with the most obvious kind of numbers, the
ones we probably do think of the most: the ones we count with.

Natural Numbers



The most basic kind of numbers are also the first kind that small children
learn to use by counting things: 1, 2, 3, 4, and so on. In mathematics these
are called the natural numbers, because they’re the most natural. The way I
just described them seemed quite obvious – we just count 1, 2, 3, 4 and
keep going. But if we had never learnt to count before, how would we know
how to keep going? How do we know that the next number is 5 and not 4 ?
How do we know that 4  is not one of these numbers?

This is actually a rather profound question. The reason we know that 5
is next is just because we declare it to be so. But what is 5? How can we
characterise the natural numbers other than by learning all their names?

The way mathematicians do it is basically by saying they’re what we
get if we keep counting – we just have to make it more precise. We have to
make it more precise because we have to make sure it obeys the rules of
logic. ‘What we get if we keep counting’ doesn’t obey the rules of logic
because we don’t even really know what ‘keep counting’ means. To make
this into something mathematical we have to make it less ambiguous.

So instead of saying ‘counting’ we say ‘adding 1’. The natural numbers
are what we get if we keep adding 1 to things. But where do we start? We
have to start somewhere otherwise we’ll never get anywhere. And we start
at 1.

The natural numbers are what we get if we start at 1 and keep adding 1.
In fact there is some argument about whether 0 counts as a natural number,
but it doesn’t make much difference – we could just as well start at 0 and
keep adding 1.

Some people get very excited about whether or not 0 is a natural number. However I
think this is just a question of words and names. Mathematically you can start
anywhere you want and keep adding 1. Some mathematicians think that 0 is a good
place to start because 0 is such a useful number. I can’t really imagine anyone
disagreeing about 0 being useful, but people really do disagree about whether 0
should be called one of the ‘natural numbers’ or not. I would say this is a question of
terminology rather than of mathematics, but even that statement is contentious –
some people think that the questions of terminology are part of mathematics.
Personally I can just see that arguments about whether or not 0 counts as a natural
number can easily put people off the entire subject of mathematics altogether. But
some people think it’s so important that I will probably receive hate mail for
suggesting that it isn’t; I have already had people shout at me about it at the end of
talks.



If we decide that the natural numbers are ‘what we get if we start at 1 and
keep adding 1’ then really they are these things:

1
1 + 1
1 + 1 + 1
1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1

It would be rather tedious to refer to them in this way all the time, which is
why we give them new names, a sort of shorthand so that instead of saying
‘one plus one plus one plus one’ we can say ‘four’ which is much quicker.
Mathematical language is just there to give us handy ways to refer to
longwinded things, but it can seem like a bafflingly large amount of jargon.
You might not think of ‘one, two, three, four’ as baffling jargon, but that’s
because jargon becomes familiar if you use it for long enough. If your job is
anything like mine, when you first arrived you were dizzy with acronyms
people were throwing around, and then a few months later you were
throwing them around with everyone else.

When you start a new job someone might give you a handy list of all the
acronyms you need to get used to. Alas, we can’t list shorthand names for
every single possible number, but we can develop a principle for building
up new names from old ones. You might be able to remember this from
learning a foreign language. You usually have to learn the numbers one to
ten by rote, and then somewhere between ten and twenty a logical pattern
starts to develop. In English this happens after fifteen, as we get sixteen,
seventeen, eightteen (aside from the extra ‘t’ there), nineteen. (You could
argue that thirteen, fourteen and fifteen all fit this pattern but with strange
spelling.) In Spanish you also get a pattern from sixteen onwards, but in
French you have to wait until seventeen. In German you only have to wait
until thirteen, and in Cantonese it happens right at eleven, as the numbers
are then said as ‘ten-one, ten-two, tenthree, ten-four, …’

Once you’ve made it to twenty, you usually just have to learn the words
for 20, 30, 40, 50, 60, 70, 80, 90 and 100. These follow a pattern with more



and less strictness in different languages. In English they vaguely make
sense but have some strange spellings. In German they have a pretty good
pattern after 20, and in French there’s that phenomenon that confuses
foreigners, where from 70 upwards you count ‘sixty-ten, sixtyeleven, sixty-
twelve’ (except in Swiss French where there is a bona fide word for
seventy, ‘septante’) and likewise for 90 upwards.

Cantonese is, again, more straightforward, as 20, 30, 40, and so on, are
simply ‘two ten, three ten, four ten’. I learnt from Hindi lecturer Jason
Grunebaum that in Hindi there are actually completely separate words for
all the numbers from 1 up to 100. He offers bonus credit to any student who
can recite them all.

After a hundred, you usually then just have to learn the words for
various orders of magnitude: a thousand, a million, a billion, a trillion.
(Although in Cantonese there’s a specific word for ten thousand, but not for
a million, so to say a million you have to say ‘a hundred ten thousands’
which makes my head spin.)

After that we start running out of words, but we also start running out of
uses for them. How often do you need to refer to specific numbers bigger
than a hundred thousand million billion trillion? I’ve certainly never needed
to, except when engaging in exuberant hyperbole and referring to American
university costing ‘a zillion dollars’ or perhaps ‘a gabillion dollars’.

And yet those numbers still exist, although we have no words for them,
just as animals exist whether or not they have been named by humans.
Perhaps a better analogy is the planet Neptune, whose existence was
deduced using mathematical arguments, before it was actually found and
named. We know that numbers bigger than a trillion exist just because we
can keep adding one forever. In fact we can do a little proof that there must
be bigger numbers than we have names for:

Suppose that such-and-such is the biggest number we have a name for.
But we can always add one to such-and-such, which will make a bigger
number.

This reminds me of a very sweet scene in the film Être et avoir which
follows the extraordinary teacher Georges Lopez and his French village
school consisting of a single class of boys from the ages of four to ten. At



one point a little boy does something a bit naughty and gets ink all over his
hands. Lopez takes the little boy to wash his hands but instead of scolding
him, starts asking him about numbers. He keeps asking the boy what he
thinks is the biggest number, and the little boy keeps answering definitively:
he is sure he knows what the biggest number is. First he thinks a hundred is
certainly the biggest number. The teacher then gently asks him about a
hundred and one. This continues until you see the small boy’s eyes widen
with astonishment as it dawns on him that this conversation could go on
forever.

(It is unfortunate that the film’s enormous success resulted in a lawsuit
as it seemed that the film-makers had made a large amount of money from
M. Lopez’s extraordinary teaching. Public opinion was divided about how
much of this money the teacher deserved. The courts decided in favour of:
not very much. Some people accused M. Lopez of being greedy instead of
being the selfless teacher he was supposed to be. It makes me sad that a
dedicated and life-changing teacher is not considered to be worth a vast
sum of money.)

Infinity Is Not a Natural Number

So far we’ve seen that we can make all the natural numbers by starting with
1 and adding 1 repeatedly. But how do we know we won’t get to infinity
like this? In order to answer this we need a slightly more precise way of
saying what all the natural numbers are.

The natural numbers are all the numbers which are either

1, or
n + 1 where n is itself a natural number.

So, 2 is a natural number, because it’s 1 + 1. Also, 3 is a natural number,
because it’s 2 + 1, and 2 is a natural number. To show that 10 is a natural
number we have to do this 9 times, which is a bit tedious but we will get
there eventually.

Can we show that ∞ is a natural number like this? Well ∞ definitely
isn’t 1, so that rules out the first clause. What about the second clause – is



there a natural number n such that ∞ = n + 1? Well the trouble is this means
that n would have to Be ∞ – 1 but that’s still ∞. So ∞ is a natural number if
∞ is a natural number. This is a circular argument, so no help to us
whatsoever.

Despite all this work, we still haven’t really shown that infinity is not a
natural number; we have only shown that infinity is not obviously a natural
number. But let’s pause for a moment and think about the impossibility of
what we’re trying to do. We don’t know what infinity is. If we don’t know
what it is, we can hardly show that it isn’t something in particular.

Or can we?
We don’t know exactly how to define infinity but we do know some

things it should do once we’ve defined it.

Adding 1 should not make it any bigger.
Adding it to itself should not make it any bigger.
Multiplying it by a natural number should not make it any bigger.

We’re now going to show that there can’t be a natural number that behaves
in the way that we would like infinity to behave.

I often say that mathematical objects exist once you’ve thought of them,
as long as they don’t cause a contradiction. Here we’ve ‘imagined’
something called infinity and we’ve ‘imagined’ that it behaves in these
ways that seem to make sense to us. To see whether that exists we have to
show that it doesn’t cause a contradiction. Unfortunately, it does cause a
contradiction! We are going to do a proof by contradiction that infinity can’t
be a natural number. That is, we assume that it is a natural number, and
show that something goes horribly wrong.

Now, we know certain things are true about natural numbers, such as:

It doesn’t matter what order you add them up, because you always get
the same answer. For example

 3 + 2 = 2 + 3.
You can subtract natural numbers from each other (as long as you’re
careful about not going negative, as we haven’t introduced negative
numbers yet).



If you do the same thing to both sides of an equation, the equation still
holds.

Now let’s try applying these to infinity, using our first desirable property of
infinity. We start with

1 + ∞ = ∞.

Now we subtract 1 from both sides, which gives

1 = 0.

This is simply not true. We only applied one rule here, the idea that we can
subtract from both sides, and we produced a falsehood. The logical
conclusion is that subtracting infinity from both sides of an equation cannot
be valid. Since subtracting a natural number from both sides of an equation
is always valid, we conclude that infinity cannot be a natural number.

Does this feel circular?
Imagine playing with a small child and declaring affectionately ‘You’re

my favourite little bunny rabbit!’ They might well reply ‘I’m not a bunny
rabbit!’ And, in the manner of most adults who are prone to having cute but
silly conversations with children, you might insist ‘Yes you are!’ at which
point they might protest ‘But I don’t have a fluffy tail!’

What they’ve actually done is a little proof by contradiction:

Suppose I were a bunny rabbit.
Then I’d have a fluffy tail.
But I don’t have a fluffy tail.
Therefore I am not a bunny rabbit.

Likewise we have proved that infinity is not a natural number.

Suppose infinity were a natural number.
Then we’d be able to subtract it from both sides of the equation.
But we can’t subtract it from both sides of the equation.
Therefore infinity is not a natural number.



This doesn’t mean that infinity isn’t a number; it just means that infinity
isn’t a natural number. I was recently called in to arbitrate a dispute
between my four-year-old nephew and his best friend. His best friend said
‘Infinity isn’t a number, because my daddy says so and he’s a scientist and
he knows everything.’ My nephew, sensibly, focused on disproving the
more easily refutable claim about the best friend’s daddy knowing
everything, and I focused on convincing my nephew that mathematicians
know some things that scientists don’t …
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Infinity Slips Away from Us Again

re we there yet?’ is the typical refrain of small children on long
journeys. They experience time differently, so ten minutes can already seem
like an awfully long journey, which can be a bit trying for the adults if the
journey is going to take several hours.

I recently swam back along the coast of Lake Michigan, from a walk up
a sand dune. The coastline curved out of my line of sight, so I repeatedly
thought I must have nearly made it back to our beach of departure but when
I arrived it just curved round to reveal more beach. I ended up singing songs
in my head to try and get a sense of how long I had been swimming.

Mathematics can sometimes seem like a process of never getting
anywhere, because every time you work out something new it just reveals
all the other things you don’t know. And it’s hard to keep track of where
we’ve come from, because once we understand something it can be hard to
remember how difficult it used to be. I often feel like I’m making no
progress in maths because everything I already know seems easy and
everything I haven’t done yet is difficult (otherwise I’d already have done
it).

We’re going to keep going with our journey through the numbers, now
that we know we haven’t yet arrived at infinity with the natural numbers.
Children accomplish learning how to count, and then almost immediately
they have to learn how to ‘uncount’, that is, subtract. As children learn



more and more about numbers, they gradually learn about more and more
different types of numbers, somewhat following the historical development
of numbers but with thousands of years of gradual mathematical discovery
compressed into a few years of school. Such is the power of education.

However, we need to cross-examine these types of numbers more
closely in order to see for sure whether infinity is one or not. Like many
things, it’s a level of understanding you don’t need until you start asking
difficult questions. ‘What is infinity?’ is one of those difficult questions. It
can seem futile, dry or pedantic to spend so long thinking about definitions
of things, but I prefer to think of it as revealing. It reveals how the ideas
work. If I eat some delicious food in a restaurant, I immediately want to
know how it was made. If I am taken on a spectacular journey I like to see
on a map where we went. Investigating what all these numbers really are is
the same kind of thing. We are going to see that each new type of number is
built from the types you already had, together with a desire for more
subtlety or expressive power.

New Numbers from Old Numbers

Mathematicians love building things up from previous things, using as little
extra work as possible. This sounds like laziness, but I like to think of it as
conservation of brainpower. Our brains are finite, our brainpower is finite,
and we should save it for the times when we really need it.

There’s a joke about mathematicians that goes like this.

You give a mathematician a saucepan and an egg and ask them to boil
the egg. They fill the pan with water, and boil the egg. Now you give
them a saucepan full of water and ask them to boil the egg. They tip the
water out and say ‘I have reduced the problem to the previous one.’

Building things up from previous things has other advantages besides
saving brainpower. It helps us see the relationships between different
concepts, and helps us understand how things fit together. Imagine a Baked
Alaska recipe that didn’t tell you the goal was to put together cake, ice
cream and meringue: it would be rather unclear if you didn’t already know
what a Baked Alaska was.



We can gradually build up more and more complicated types of
numbers starting with the natural numbers. They get progressively less and
less natural until they’re so unnatural that they get called things like
‘irrational’ and ‘imaginary’. Mathematicians often like to name new
concepts with words that come from ordinary life and give us an idea of the
characteristics of the new concepts. If we give abstract concepts some
character that we can relate to, it can help us feel comfortable with them. I
think there’s something endearing about an ‘imaginary number’, and a
‘prime ideal’ sounds to me a bit like a juicy cut of beef, but perhaps that’s
just me. (And prime ideals have nothing to do with what I’m talking about
here apart from that they sound tasty.)

The next type of number that we build from the natural numbers is the
integers. This includes all the natural numbers, and all their negative
versions (and zero, if we didn’t already have that as a natural number). This
comes from our desire to be able to subtract things (if we have such a
desire). You might remember being frustrated when you were little and
hadn’t learnt about negative numbers yet. Maybe you were frustrated by the
fact that you could add any numbers together, at least in principle, but that
you were told you could only take away smaller numbers from bigger
numbers. (But then I was frustrated about practically everything when I was
little.) Well, mathematicians are frustrated by this too. In order to subtract
anything from anything else, we need to have negative versions of the
natural numbers, and this gives us the integers. The integers are ‘better’
than the natural numbers, in the sense that we can do more things with
them.

Mathematics often develops by mathematicians feeling frustrated about being unable
to do something in the existing world, so they invent a new world in which they can
do it. I like to think of us as inveterate rule-breakers. As soon as we’re presented with
a rule saying we’re not allowed to so something, we want to see if we can make a
world in which we can do it. This is very different from the popular conception of
mathematics as a subject in which you have to follow a whole load of rules.

The first thing we demand in the world of integers is zero (if we didn’t
already have it in the natural numbers). Zero is a special number, which has
the property that ‘if you add it to any other number, nothing happens’.



0 + 1 = 1
0 + 2 = 2
0 + 3 = 3

0 + n = n no matter what n is

Next we demand that addition can be reversed or ‘undone’. This is like
having a return policy when you buy something. It makes me nervous
buying something if I can’t change my mind and return it. It doesn’t mean I
always do change my mind and return things. It’s just comforting to know
that I can.

How do you change your mind and ‘return’ a number once you’ve
added it? You subtract it. Another way to think of it is that you add a
negative number on. It’s just like when you really do return something in a
shop and they give you a receipt with a negative total on it. A negative total
will be charged to your card, which in practice means that an amount is
subtracted from your bill.

It’s important for us to understand subtraction a bit more, because
subtraction is exactly what caused us problems with infinity in the last
chapter, when we discovered that subtracting infinity from both sides of an
equation could not be valid. This is a big clue about what infinity can and
can’t be, if we can decode it.

Mathematically we say ‘every number has an additive inverse’. This is a
number that ‘undoes’ the original number, that is, takes us back to 0. How
do you get from 1 back to 0? You subtract 1, or to put it another way, you
add –1. How do you get from 2 back to 0? You add –2. How do you get
from n back to 0? You add –n.

Demanding that every number has an additive inverse is like demanding
that all your Lego people have helmets. If you’re a spoilt child, then as soon
as you make that demand, your parents will acquire Lego helmets for all
your Lego people. One of the fun things about mathematics, which is not
publicised nearly widely enough, is that you don’t have to be a spoilt child
to get everything you demand. As soon as you demand additive inverses for
numbers poof! you have additive inverses for numbers. This makes
mathematical research great fun: you can have anything that you can think



of. The only caveat is that you have to take all the logical consequences of
your new toy as well. If you’re a spoilt child and ask for a lion, your parents
might give you a lion, but the lion might eat you. If you’re doing
mathematical research and you decide you really want 0 to equal 1, that’s
perfectly fine, it’s just that everything else will have to equal 0 as well, so
your world will collapse, as if eaten by a hungry mathematical lion.

If you decide you want 0 to equal 2 or any other number, that’s fine, you just end up
in a circular world called modular arithmetic. Deciding 0 = 12 is how we tell the time,
and deciding 0 = 360 is how we measure angles around a compass.

Anyway, as spoilt mathematicians we can decide we want everything to
have an additive inverse and poof! just like that, everything gets an additive
inverse. We don’t get any extra things, we just get those additive inverses.
These are called the integers, and from the way we constructed them we
know they must consist of precisely the following things:

0,
any natural number n, and
–n, where n is any natural number.

Written out in a more obvious fashion, these are

… –4 –3 –2 –1 0 1 2 3 4 …

Subtracting 4 is then technically defined as adding the number –4. This
sounds a bit convoluted, but to mathematicians it’s less convoluted, because
you don’t have to define a new operation (subtraction), you just do the old
operation (addition) to new numbers.

Is infinity any of these new numbers? It doesn’t look like it. But do we
know for sure? It turns out that exactly the same proof by contradiction will
work as for the natural numbers. This is because the integers must obey the
same rule we used for the natural numbers, that subtracting from both sides
of an equation is valid. We know this isn’t true of infinity, so infinity can’t
be an integer. The hunt continues.



Technically what we’re doing every time we demand a new type of structure is we’re
making something ‘freely’. When we made the natural numbers we were demanding
the ability to add 1. The technical name for a mathematical world in which we can
add things is a commutative monoid. The natural numbers are the free commutative
monoid on one object, which means we make sure we can add anything we want.
The ‘free’ part is that there are no extra rules or constraints, just addition and more
addition as many times as we want. When we make the integers we’re demanding
the ability to subtract, which is technically making the free commutative group on one
object. A commutative group is the technical name for any mathematical world in
which we can add and subtract things.

Fractions

We have tried to get to infinity using whole numbers without success. So
we need a different approach. What about instead of climbing up to infinity,
dividing something up into infinite pieces? You might remember being told
at school, ‘You can’t divide by zero because it would be infinity.’ So
perhaps we can get our hands on infinity by doing just that: dividing
something by zero? Perhaps we can define it as a fraction ? Unfortunately
that doesn’t quite work either. Eventually we’ll see that there is some sense
to it, but this sense is not in the form of an equation

It’s much more subtle than that.
Imagine dividing a cake up between zero people. How much cake will

each person get? This question makes no sense, because there aren’t any
people. You could say ‘All the people get ten cakes each!’ because there
aren’t any people, so it’s true that all of those zero people get ten cakes
each. But all of those zero people also get twenty cakes each. All of those
zero people get forty cakes and sixty-three elephants each. Evidently one
divided by zero is not exactly a sensible way to define infinity.

In that case why are we told ‘you can’t divide by zero’ if the answer
isn’t infinity? In mathematics, ‘why can’t I …’ is usually the wrong
question to ask. The right question is ‘why can I …?’ The burden of proof
means you have to justify everything you do, logically. This is how all of



mathematics is built up, by logical justification. If you can’t justify
something logically, it doesn’t count as mathematics. Just because you can’t
find a reason not to do something doesn’t mean you have found a reason to
do it. (In practice in my life I need both a reason to do something and the
absence of a reason not to. I do mathematics because I love it, not because
it’s useful; however, if it were useless that would be a reason for me not to
do it.)

In any case, to understand all this we have to see what dividing means,
really. Division is definitely the hardest of the basic operations +, –, ×, ÷.
It’s usually the last one to be introduced at school, and is probably
introduced by the idea of sharing things out. After that it might be pointed
out without much explanation that it’s the ‘opposite’ of multiplication. If
you start with 3, multiplying by 4 gives 12, and then to get back to 3 again
you divide by 4.

This might remind you of when we ‘undid’ addition to produce negative
numbers above. It should, because it’s the same process, just undoing
multiplication instead of addition.

Just like with addition we have to start by finding the number that ‘does
nothing’ when we multiply it by anything else. This number is 1, because

1 × 2 = 2
1 × 3 = 3
1 × 4 = 4

1 × n = n no matter what n is

So 1 is called the ‘multiplicative identity’ just like 0 was called the ‘additive
identity’.

We’re now ready to think about multiplicative inverses. A multiplicative
inverse for a number is the number that ‘undoes’ that number to get us back



to 1. What can you multiply 2 by to get back to 1? The answer is . What
can you multiply 3 by to get back to 1? The answer is . What can you
multiply n by to get back to 1? The answer is .

Now remember how we made the integers from the natural numbers?
We demanded, like a spoilt child, that we wanted every natural number to
have an additive inverse. Perhaps you now think you want every integer to
have a multiplicative inverse. You can do that, but beware: a mathematical
lion will appear and eat everything. This is because demanding a
multiplicative inverse for 0 is a mistake.

Here’s how things go wrong if you demand a multiplicative inverse for
0. Let’s call this number x, because we don’t actually know what it is yet.
We just know that multiplying 0 by it gets us back to 1, that is

0 × x = 1.

But wait. 0 × x is always 0.

This actually takes a little effort to prove. Basically you have to say 0 + 0 = 0 and so
(0 + 0)x = 0x but by the distributive law the lefthand side is 0x + 0x, so we get 0x + 0x
= 0x. Now subtract 0x from both sides. On the left we get 0x and on the right we get
0. So 0x = 0.

So the equation

0 × x = 1

becomes

0 = 1.

Oh dear, that same nonsensical statement has popped up yet again. Are we
ever going to escape it? The moral of that story is that we really must not
ask for a multiplicative inverse for 0, because if we have one, then we’ll
also get 0 = 1 and then everything will equal 0.

Finally, remember how we said that subtracting a number is really
‘adding its additive inverse’? Well, likewise dividing by a number is really



‘multiplying by its multiplicative inverse’. So, dividing by 2 is really
multiplying by , and dividing by 3 is really multiplying by . So can we
divide by 0? To do so we would have to multiply by its multiplicative
inverse, and we have just decided that 0 is definitely not allowed to have a
multiplicative inverse. And because it doesn’t have a multiplicative inverse,
we have no way of dividing by it. And since we have no way of dividing by
0, we definitely can’t define infinity to be  because it doesn’t exist. Worse
than that: it can’t exist, so we can’t just dream it into existence like we did
with the negative numbers.

Constructing the Rational Numbers

The technical name for all the fractions is the rational numbers. Rational
numbers aren’t numbers that sit around having very logical conversations
with one another. Rather, they are numbers formed by taking ratios of the
previous numbers we built up – the integers.

When we constructed the integers from the natural numbers it was quite
easy – we just acquired additive inverses for everything, and that was the
end of that. Constructing the rational numbers from the integers is a bit
more involved. We start by acquiring multiplicative inverses for everything
except 0, but this will only give us things like , ,  and the negative
versions, whereas it won’t give us things like  or anything with a number
other than 1 on top. To get those we have to make another spoilt-child-like
demand: we want to be able to multiply everything by everything else. We
didn’t have to do this for addition in the integers, because demanding all the
negatives already gave us all possible answers to addition. However,
acquiring all possible multiplicative inverses doesn’t automatically give us
all possible answers to multiplication. If we just throw in the multiplicative
inverses we’ll only get  where n is any integer. So in total we’ll have the
numbers:



If you try multiplying two numbers from the top row, you’ll get another
number in the top row. If you try multiplying two numbers from the bottom
row, you’ll get another number from the bottom row. But if you try
multiplying a number from the top row with a number from the bottom row,
you might get an answer that’s in neither row.

So in order to be able to multiply, we have to acquire all the products of
top and bottom row numbers. This gives us all the rational numbers, which
we can summarise like this:

The rational numbers are all the fractions  where
a and b are integers,
b is not 0, and
 =  if ad = bc.

The last point is to make sure we don’t accidentally think that  and  are
different numbers.

That was quite hard work, but hasn’t got us any closer to infinity. We
can use the same argument as before to show that infinity isn’t a rational
number, because rational numbers also have to obey the rule about
subtracting from both sides of the equation being valid. Making the rational
numbers has not enabled us to pin down what infinity is. The mathematical
coastline continues to curve round out of sight.

Irrational Numbers

Irrational people are people who are not rational, and irrational numbers are
numbers that are not rational. You might have been taught that these are
‘decimals that go on for ever’ or ‘the square roots of things’. Both of these
statements have some hint of truth to them, but neither is rigorously true.

Let’s take decimals that go on forever. If we try to expand  as a
decimal, we will get 0.1111111111 … and those 1’s will in fact go on
‘forever’. But  is definitely rational. The reason that the decimal expansion
goes on forever is that we’ve arbitrarily chosen base 10 for decimal
expansions, and 10 and 9 don’t go very well together. Whereas 10 and 5 go



very well together, which is why  is a neat and tidy decimal 0.2. Here ‘go
well together’ actually means ‘have a common factor’.

If we expanded  in base 9 we would get a perfectly tidy 0.1 and if we expanded it in
base 3 we would get a tidy 0.01.

The truth behind the ‘going on forever’ statement is that irrational numbers
have decimal expansions that go on forever without ever repeating. This is
quite fun to prove (at the level of, say, an undergraduate analysis class) and
satisfying to think about, but a hopeless way of actually checking whether
or not something is rational. Even if you could write down a decimal
expansion to a million digits (which would take about a week without
sleep), how do you know it doesn’t start repeating itself after two million
digits? Or after a billion or a trillion digits?

The other statement about ‘square roots of things’ is also problematic,
because the square root of 4 is 2, which is blatantly rational. And then there
are irrational numbers like π and e which aren’t the square root of anything
helpful. I know, π is the square root of π2, but this doesn’t help us see that π
is irrational. This is why the only good definition of an ‘irrational number’
is ‘a number that cannot be written as a ratio of integers’.

You might want to object at the moment and claim that π = . However, this famous
fraction is only an approximation to π and was handy in the days before there were
calculators, let alone calculators on phones with a π button. π and  only agree in
the first two decimal places, 3.14. This is perfectly good enough for whenever I need
π in my daily life (which mostly involves scaling cake recipes up or down), but it’s
very far from being mathematically equal. Actually, when I’m scaling a cake recipe I
use 3 as a good enough approximation to π.

You might now feel that it must surely be impossible ever to prove that a
number really can’t be written as a ratio of two integers, but there are some
fairly short and sneaky proofs of this for numbers like . The proofs for π
and e are much more complicated, it’s true.

In any case, none of this helps us say what irrational numbers are. We
can’t just say that they’re ‘everything that can’t be written as a ratio of



integers’ because that would mean than an elephant is an irrational number.
We can’t say they’re ‘all the numbers that can’t be written as a ratio of
integers’, because what’s a number? I’ve merrily mentioned the number e
above, but what is e? Does that mean f, g and h are numbers? If π is a
number, is α a number?

Constructing the irrational numbers is very hard and we’ll postpone
more of this discussion until later in the book when we’re talking about
infinitesimally small things. But the idea is just like before, we make a
spoilt-child demand for something we want to be able to do, and we acquire
all those things that we need in order to do it. The question is, what is it that
we want to be able to do? The answer is something like ‘fill in all the gaps
between the rational numbers’. Because the fact is that there is always a gap
in between any two rational numbers. We can depict the integers on a
number line

and we know that there are rational numbers in between those integers

but even after that there will still be some gaps. Without yet being able to
explain how we fill them in, here are some amazing things that happen
when we do.

Between any two rational numbers is an irrational number.
Between any two irrational numbers there is a rational number.

This makes it sound a bit like the odd and even numbers, which alternate
neatly along the integer number line. And yet, here’s the really counter-
intuitive part:

There are more irrational numbers than rational numbers.

How can that be possible? If they alternate, how can there be more of one
than another? The answer is: this is yet another mysterious thing that



happens because we are thinking about infinity. In this case we are not only
thinking about an infinite number of things (numbers) but we are also
thinking about things being infinitely close together. With the odd and even
numbers, we can pick any even number, say 6, and know exactly which are
the odd numbers right next to it: 5 and 7. However, with rational and
irrational numbers, they are so close together that we can never say which
are the irrational numbers right next to any given rational numbers.
Whichever ones we name, there’ll be some more that are closer.

Suppose you start with the number 1. What is the first rational number that is bigger
than it? There isn’t such a thing. If you claim it is some number x, I can always make
the number . This is like taking the average of 1 and x, so it will be halfway
between 1 and x, therefore bigger than 1 but smaller than x. And it will still be rational
because if x is rational then 1 + x is rational, and dividing it by 2 still leaves it rational.
You could keep splitting the distance and getting closer and closer to 1 with rational
numbers that were smaller and smaller, but still bigger than 1. Just like dividing the
remains of a chocolate cake in two repeatedly to make it last forever, you would
never actually reach 1, and there would still be rational numbers left between your
latest number and 1.

You can think of this as a process of zooming in repeatedly on the number
line, maybe on your computer screen. If you zoom in on the number 6 on an
integer number line, eventually you’ll be so close up that the only integer
that fits on your screen is 6, because the others will have fallen off the sides.
Whereas if you zoom in on a number line with all the gaps filled in, no
matter how much you zoom, there will still be more rational and irrational
numbers. So we can’t really say they ‘alternate’. It’s much weirder than
that.

The rational and the irrational numbers together are called the real
numbers, and this zooming-in property we’ve been discussing is called the
density of the rationals and the irrationals inside the reals. The rational
numbers aren’t all the real numbers, but they’re so dense in there that no
matter how closely you look you can’t get away from them. Likewise the
irrationals. We’ll look at this again in Chapter 15 once we understand more
about infinitesimally small distances.

Does any of this help us say what infinity is? No. We can still show that,
for the real numbers, subtracting things from both sides of an equation is



valid, so if infinity were a real number, we would still cause that pesky
contradiction 0 = 1. So infinity is not a real number.

You might be starting to realise now that this hunt for infinity is going
to be completely futile unless we somehow come up with a type of number
where subtracting from both sides of an equation is not valid. What kind of
number could that possibly be? So far, every time we have found a new
type of number we have done it by demanding the ability to do more things:
subtract, divide, fill in gaps. Every time we demand to do more things, we
land in a world with more building blocks. It’s like if you demand to be able
to cook more recipes, you need a kitchen with more ingredients.

Oddly enough, what we really need is a world in which we can do fewer
things, because we need a world in which subtracting from both sides of an
equation is not valid. Sometimes when I’m packing for a trip I have so
many different activities planned that I find myself throwing more and more
things in my suitcase for all the different events. I don’t want to be that type
of mathematician who shows up for every event wearing the same clothes
whether it’s a lecture, a hike, a concert or a beach party. However,
eventually I’ll have thrown in so many different pairs of shoes that I can’t
lift the suitcase anymore, which means I can’t go anywhere, let alone do
anything. We have reached this point with our numbers as well. We need to
throw everything out and start again, from the beginning.
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5

Counting Up to Infinity

was once walking home as usual when I saw an interesting new clothes
shop. I was curious as to why I hadn’t seen any building work going on, so I
asked them how long they’d been open. They said ten years.

I don’t know why I suddenly noticed that shop that day when I hadn’t
seen it any of the previous thousand or so times I must have walked past it.
Sometimes going more slowly or having a slight change in perspective can
make us see completely different things in places we thought were familiar.
We’re now going to change our perspective on numbers slightly, and find
that this time infinity will jump out at us.

We have tried counting up to infinity and it didn’t work. But here’s a
surprise: it’s because we were being too fancy. When children first learn to
count they don’t do it by adding one repeatedly: they do it by counting on
their fingers.

It’s just like my favourite way to eat Hula-Hoops, just like most small
children, I dare say. American readers might not know these ring-shaped
potato snacks, but I’m told on good authority that Americans do this with
Bugles, although they’re cone-shaped rather than ring-shaped: you put one
Hula-Hoop (or Bugle) on each finger, waggle them around a bit, and then
eat them off your fingers one by one.

Counting on your fingers is usually thought of as an unsophisticated
counting method, something that small children do before they’ve mastered



the art of counting in their heads. I’d like to present a different point of
view: counting on your fingers is very profound, much more efficient and
gets us to infinity. At least, this idea gets us to infinity, even though our
fingers themselves don’t.

The brilliant thing about counting on your fingers is that you don’t need
to keep track of where you are at any given moment, and you don’t even
have to go in order. You just have to assign one finger to each thing you’re
counting, and stop when all your fingers have been used up – that is, if
you’re trying to count ten things. One reason this is efficient, at least for
me, is that it saves me the brainpower of having to remember what number
I’m on, and frees up that brainpower for doing something else. Instead of
remembering that I’m on four, say, I just have to keep the same fingers held
down, which doesn’t stop my brain doing something else complicated at the
same time. You might think I’m being ridiculous – I’m a mathematician
after all. Am I just making one of those silly jokes about mathematicians
being bad at counting?

Here’s the situation where it arises most often. I have a friend round for
coffee, and I’m trying to count four scoops of coffee to put in the
coffeemaker (I like two scoops per person). I’m also trying to continue a
conversation with my friend, in order to be friendly. Typically I will lose
count somewhere between two and three – I will pause and have no idea
whether I’ve put two or three scoops in so far. The part of my brain that’s
holding the conversation seems to have interfered with the part ofmybrain
doing the counting. However, if instead of counting in my head I count with
my fingers, I can get it right. (I realise that someone less friendly than me
might not mind halting the conversation, and someone less mathematical
than me might not mind a more vague quantity of coffee. But I am both
mathematical and friendly!)

So much for the efficiency aspect. Here’s why I think counting on your
fingers is also profound. First of all, try to define ten, mathematically. What
is ten? Earlier on we said it was defined to be:

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.

But if you didn’t previously know the concept of ‘ten’, how could you
find ten of anything?



Ten is something that matches up with the number of fingers we have. It
also matches up with any other set of things that matches up with the
number of fingers we have. This doesn’t sound very mathematical does it?
Actually when mathematicians finally got round to defining numbers
rigorously, this is pretty much how they did it (though not exactly with
reference to fingers).

Here is how counting ten things works. Suppose you want to count ten
snakes, like in the homework question a friend showed me – her child had
been given some ‘real-life’ maths questions, involving all sorts of ‘real-life’
situations like counting snakes.

First we decide that ten stands for ‘the number of fingers we have’.
Then we make up a name for each finger so that instead of physically using
our fingers we can say their names out loud (or in our heads) to remember
how we’ve matched the snakes up with our fingers. We might call our
fingers Tom, Steve, Pieter, Nick, Richard, Emily, Dominic, John, Neil and
Alissa … or we might call them one, two, three, four, five, six, seven, eight,
nine and ten. Then we give these names to the snakes, and when there’s one
snake with each of those names, we know that we’ve matched up the snakes
to our fingers. We can sum up this elaborate process in this diagram

The diagram shows how we’ve inserted an extra step in the middle. Instead
of matching the snakes with our fingers, we’ve first matched our fingers
with names, and then matched the names with snakes.

One reason to do this, of course, is that we often need to count beyond
ten, in which case we run out of fingers. You can try using your toes, or you



can try using your fingers as ten digits of binary, which means you can use
your fingers to count up to 1023. I will do this in Chapter 7.

However, skipping the step in the middle is sneaky, efficient, and useful
not just for me and my conversationally impaired coffee-making brain.
Suppose you’ve booked a table for sixteen in a restaurant and all your
friends are milling around the table chatting. It can be quite hard to see how
many people there are as everyone is moving around; it’s much easier to get
everyone to sit down and see if there are any chairs left over. You haven’t
directly counted people, you’ve just had a look to see if the people match
the chairs.

This is the mathematical version of counting. You might think this is an
odd statement – isn’t counting inherently mathematical already? What I
mean here is: this is how mathematics makes the notion of counting
rigorous.

On Rigour

I’m going to pause now and take a brief digression on mathematical rigour.
Mathematical rigour is the thing that enables mathematicians to agree with
one another about what is and isn’t correct, rather than just having
arguments about competing theories and never coming to a conclusion.
Mathematics is based on the rules of logic, the idea being that if you only
use objects that behave strictly according to the rules of logic, then as long
as you only strictly apply the rules of logic, no disagreements can ever
arise.

However, if you use objects that don’t behave according to logic (like
human beings, or clouds) then different valid answers can occur. And if you
apply something other than a strict rule of logic, you can also get different
outcomes. The world, in general, does not behave according to strict logic.
If you give a child a cookie and then another cookie, the chances are they
won’t have two cookies, but zero cookies (unless you count the ones in their
stomach).

Mathematics starts with the process of stripping away the ambiguities
and leaving only things that can be unambiguously manipulated according
to logic. It continues by then manipulating those things according to logic to
see what happens. It can be frustrating both in your own life and in the



history of mathematics, because things that feel very ‘obvious’ turn out to
be very difficult to make unambiguous. So what is the point of doing it?

One point of doing it is to gain access to things that aren’t obvious. If
it’s not obvious by our intuition, then we have to find some other way of
getting there. One example is infinity. We seem to be having trouble
working out how to deal with infinity in a way that makes sense. All our
attempts so far have caused us to conclude that 0 = 1, which won’t do at all.
So what we’re going to do is rethink our approach to finite numbers in a
way that will enable us to think about infinity as well. We’re going to
rethink our approach to the numbers we thought were the most obvious and
basic: the counting numbers.

Counting by Bags

Counting is, essentially, a process of matching up one set of things with
another ‘official’ set of things that defines the number in question. We’ve
already seen that we can define ten by our fingers – our fingers are the
official set of things that defines ‘ten’ and whenever another set of things
can be lined up with our fingers, that counts as ten things.

We could designate one official set of things for each number. We could
for example have an official bag of things for ‘23’, and then 23 is defined to
be ‘the number of things in that bag’, and everyone who needed to count 23
things would have to match them up with the things in that bag. This sounds
very silly and made-up, but compare it with the real definition of a
kilogram: a kilogram is technically defined to be the mass of an official
lump of metal that sits in a vault near Paris.

Mathematics doesn’t really define numbers according to official bags of
objects that exist physically, but that’s because mathematics is an abstract
subject, not a physical one. So it defines numbers according to official
‘abstract’ bags of objects. These bags are abstract because they don’t exist
physically, but they exist as ideas. And mathematics doesn’t call them bags:
it calls them sets. But we can think of them as bags.

The first bag we think about is the bag containing zero things: an empty
bag. We define zero to be ‘the number of things in this bag’. Perhaps we
write a big 0 on this bag.



Now we need to make a bag containing one object. Look around you – what
objects do you have to work with? Well, so far all we have is an empty bag.
And that will do. So we make a bag containing one empty bag. This defines
the number one. Perhaps we write a big 1 on this bag.



Now we need to make a bag containing two objects. And we do in fact have
two objects right in front of us: the ‘zero bag’ and the ‘one bag’. So we
make a bag containing these two things, and write a big 2 on it.



It’s very easy to get confused now – you might protest that in total we have
three bags inside the bag number 2. But you’re not supposed to look inside
the inner bags; you’re just supposed to take them as objects, and ignore the
fact that they might contain things. Just like when you open a bag of fun-
size bags of Maltesers, you can count the number of fun-size bags in the big
bag, without counting the number of Maltesers in each small bag.

Here’s bag number 3:



Speaking of Maltesers, perhaps you’re wondering why we don’t fill our
bags with more sensible counting objects like pebbles or counters (after all,
what is a counter except a sensible counting object?). The answer is that
although these objects seem more sensible things to count with, they don’t
exist in the abstract mathematical world. Bags, or rather sets, are the only
starting point that we’re given here, so we need to try and build up our
whole mathematical world from just this notion of set. Or at least, that’s the
approach called set theory. There are other approaches to the foundations of
mathematics, but set theory is the one that came up with this rigorous way
of defining infinity.

Once we’ve got our ‘official’ bags of 0 objects, 1 object, 2 objects, 3
objects, and so on, we can start counting how many things are in other bags,
by matching up the objects in the new bag with one of the official ones. We
have to match up the objects in a careful way:

1. Every object in the new bag has to be paired up with an object in the
official bag.

2. You can’t have two objects in the new bag being paired up with the
same object in the official bag.



3. You have to use up every object in the official bag.

It’s a bit like pairing up the professionals with the competitors on Strictly
Come Dancing:

1. Every celebrity has to be paired up with one pro.
2. You can’t have more than one celebrity with the same pro.
3. You have to use every pro.

As a result, you know that there are the same number of celebrities as
professionals. Whereas if two celebrities could be paired with the same pro,
there might be more celebrities than pros, and if some pros weren’t used
then there might be more pros than celebrities. This wouldn’t necessarily be
the case. You could have the same number of celebrities as pros, but two
celebrities paired with the same pro, and one pro sitting around doing
nothing. This is perhaps a bit clearer to see in diagrams.

From this diagram we can see that every celebrity is paired with exactly one
professional, but there is one professional, Trent Whiddon, who does not
seem to have a partner. We can conclude that there are more professionals
than celebrities listed, even without counting them.

However, if several celebrities were all paired with Karen Hauer, say, as
well as Trent Whiddon having no partner, then it would be harder to tell if



there were more celebrities or pros without counting them.

This business of pairing things is called a function in mathematics. Suppose
you have two sets of objects, let’s call them C for celebrity and P for pro. A
function from C to P is a pairing up of objects in the set C with objects in
the set P, satisfying the first condition above: everything in C has to have
exactly one partner in P.

The other conditions are special properties that are only satisfied by
special functions. The second condition, saying ‘you can’t have two
celebrities with the same pro’, is called injectivity. The third one, saying
‘you have to use every pro’, is called surjectivity. When we have all three
conditions we can think of it as a perfect pairing where everyone on each
side has exactly one partner on the other side: nobody has more than one
partner and nobody is left out. The picture would look like this:



The technical word for this is a bijective function or a bijection.
You might wonder why we don’t need extra conditions saying ‘you

can’t have two pros with the same celebrity’ and ‘you have to use every
celebrity’. It’s because these are inherent in the first condition, which is the
very definition of function. The celebrities and pros play different roles in
Strictly just like they do with functions. Another way of thinking of this is
that it’s more like a vending machine. The things on the left are the buttons
you push (or codes you punch in) to choose products and the things on the
right are the products you can buy. It is possible that several different codes
give you the same product – for example, there are those vending machines
where every position is filled with cans of Coke. But it wouldn’t make
sense if the same code could give you different possible products. Or rather,
it would be frustrating, because you couldn’t be sure which product you
were going to get. That is a possible type of vending machine, but not one
we’re talking about now.

This idea of pairing things up is going to give us our first valid
definition of infinity, so let’s see how this works for some more
mathematical situations. The technical way of talking about functions is
very dry, but we can also draw pictures of the pairings. The pictures help us
to get a feel for what is going on, but the dry technical way is much better
for mathematicians to do unambiguous work and be sure of not making
mistakes. Unfortunately mathematics is often explained with just the dry
part and not the feeling.



Here’s a picture of a pairing much like the Strictly example, but with
numbers instead of people.

More precisely: C is the set containing the numbers 1, 2, 3.
P is the set containing the numbers 4, 8, 12, 16.
The function takes each number in C and pairs it with the number that
is four times it. So 1 is paired with 4, 2 is paired with 8, 3 is paired
with 12. But 16 is sitting around doing nothing. This function does not
satisfy the third condition, that is, it is not surjective. You can see this
because, like Trent Whiddon in the previous example, 16 does not
have a partner.
Here’s an example where two ‘celebrities’ are paired with the same
‘professional’.

C is the set containing the numbers –2, 2, 3.
P is the set containing 4 and 9.
The function takes the numbers in C and pairs them with their squares.
So –2 is paired with 4, 2 is also paired with 4, and 3 is paired with 9.
Here –2 and 2 are both paired with the same object in P, so the
function does not satisfy the second condition, that is it is not injective.
We can see that as there are two arrows pointing to the same place.
Here’s an example where the ‘celebrities’ and ‘pros’ are perfectly
paired up.



C is the set containing the numbers 1, 2, 3.
P is the set containing the numbers 5, 6, 7.
The function takes the numbers in C and pairs them with the numbers
that are 4 bigger. So 1 is paired with 5, 2 is paired with 6, 3 is paired
with 7. We can see that no two arrows are pointing to the same place,
and no number on the right is sitting around doing nothing. This is a
perfect pairing of numbers in C and P. It means we know there must
be the same number of things in each set, just like when we paired up
the snakes with our fingers.
Now let’s be a bit daring and try this with some infinite sets.

C is now the set of all natural numbers.
P is also the set of all natural numbers.
The function takes the numbers in C and pairs them with the numbers
in P that are four bigger, just like in the last example above. It is still
true that no two numbers in C are paired with the same number in P,
but this time several numbers in P are left out: the numbers 1, 2, 3 and
4. So this function is injective but not surjective.



Here’s one where we pair up all the natural numbers with just the even
numbers, a bit like we did when we had everyone in Hilbert’s Hotel
double their room number.

C is the set of all natural numbers.
P is the set of all even natural numbers.
The function takes each number in C and doubles it, pairing the
original number with the doubled version. No two arrows point to the
same place and also every number in P gets used. So this is another
perfect pairing.
Now for an example that’s like evacuating a two-floor Hilbert Hotel
into a one-floor hotel. We start with red numbers and blue numbers on
the ‘celebrity’ side, and purple numbers on the ‘professional’ side.



C is now the set of natural numbers, twice over: all the natural
numbers in red, and also all the natural numbers in blue.
P is just one set of natural numbers, in purple.
This function works just like the formula for evacuating the two-floor
Hilbert Hotel on page 20: the red number n gets paired with the purple
number 2n, while the blue number n gets paired with the purple
number 2n – 1. We can see from the picture (as well as from our hotel
discussions) that this does satisfy both the conditions: no two arrows
point to the same purple number, and all the purple numbers do get
used. So this function is also a perfect pairing.

These last few pictures showed us how we can make pairings with infinite
sets, and they could still fail to be perfect pairings. Earlier we said that if
you have a perfect pairing, that is, a bijective function between two sets, it
shows us that the two sets have the same number of objects in them. If you
can pair up competitors with pros precisely, you know there are the same
number of each without having to count them one by one. The clever part is
that because you don’t have to count them one by one, it still works for
infinite sets and is the key to unlocking infinity. It is the mathematical
notion of countability.



Countability

Learning to count sounds like the first thing children do. Surely everyone
learns to count when they’re very small? This is true but it doesn’t mean
that everything is then easy to count. There are various ways things can be
difficult to count in normal life. They could be moving around a lot like
children in a playground or rabbits in a field. They could all look alike so
you can’t really tell which ones you’ve already counted, like leaves on a
tree. They could be really tiny, like grains of sand. There could simply be
too many of them. What’s the highest number you’ve actually counted up
to? I’m not sure if I’ve ever kept going beyond about two hundred. During
one phase of insomnia I did try counting sheep (nothing else worked, so I
thought: why not?) but I don’t think I got beyond two hundred – I got bored
of counting long before getting sleepy.

In normal life we definitely can’t count anything that is infinite, because
we definitely won’t ever get there, and not just because we’re bored. But in
mathematics, counting doesn’t mean actually saying the words ‘one, two,
three, four …’ out loud. It means matching up the objects you’re counting
with the objects in an official number bag. And here’s the crux of the
matter:

The official number bag for 1 contains 1 object: the 0 bag.
The official number bag for 2 contains 2 objects: the 0 bag and the 1
bag.
The official number bag for 3 contains 3 objects: the 0 bag, the 1 bag,
and the 2 bag.

Now once we know how to make the n bag, we can make the n + 1 bag: we
just take the 0 bag, 1 bag, 2 bag, all the way up to the n bag, and put them in
an official bag.

What we have done here is redefined the way of getting from one
number to the next one, the process of adding one. We have redefined this
to be ‘putting all previous bags into a new giant bag’. A dramatic drumroll
is in order at this point because we now have the key to infinity, and all that
remains is to use it to unlock the secret. Here’s how.



We have defined all the natural number bags and we’ll just keep going
with the giant bag process: we put all those bags into one new giant bag.
How many bags are in this super-giant bag? There is one for every natural
number, so there are infinitely many bags.

We have made the official number bag for infinity: it is the bag
containing all the natural number bags.

Or rather, we have made one official number bag for infinity – it contains
an infinite number of objects where each one is labelled by a natural
number. We are soon going to see that some other infinities are bigger than
this. What could that possibly mean?

Let’s start by ‘counting up to infinity’ a few times. Remember, this
doesn’t mean actually saying all the natural numbers out loud (life isn’t
long enough). It means matching objects up with the objects in our official
infinity bag, by means of a bijective function. We’ve actually already done
this a few times, by means of Hilbert’s Hotel. Matching objects up with the
ones in the infinity bag is the same as evacuating people into a normal one-
floor Hilbert Hotel. We can’t evacuate two people into the same room, and
we don’t want to waste any rooms.

In Chapter 2 we did various evacuations. We saw that we could
evacuate a two-floor hotel, a three-floor hotel and even an infinite-floor
hotel. Instead of actually performing the evacuation, we could have
matched up the people with the objects in our infinity number bag, just to
see if it was possible. This is the mathematical notion of countability. An
infinite set is called ‘countable’ if it is possible to match its objects up with
the objects in our official infinity bag. But the objects in the official bag are
just the natural numbers. So what we’re saying is that an infinite set is
called countable if the objects can be matched up with the natural numbers.
Or, formally, if there is a bijective function to the natural numbers. This
kind of infinite set is called countably infinite. Yes, we are going to see
some infinite sets that are uncountably infinite.

Now that we are starting to get the hint that there are different types of
infinity, we should start being more careful how we write infinity. The
symbol ∞ just means any old nonfinite thing. However, we now have a very
specific notion of infinity, which corresponds to our official infinity bag



containing all the natural numbers. Mathematicians sometimes call this ω,
the Greek letter omega. Omega is the last Greek letter, but ω is just the
beginning of a whole series of bigger and bigger infinities.

Surprisingly Countable Sets

On the one hand, you might think it’s impossible for anything to be bigger
than infinity. On the other hand, if we throw some more things into the
giant bag of natural numbers won’t it have more things in it? This is where
we have to start really rethinking our intuition about ‘more’ and ‘less’
because where infinity is concerned, things don’t quite work like that. If we
start trying to find infinite sets of things that cannot be matched up with our
ω bag, we’ll find it’s rather hard. We can do all sorts of things that seem to
make the bag bigger, and yet find that it’s still countable.

Let’s start by taking the set of all the natural numbers, and making it
‘bigger’ by putting something else in, say an elephant. We now want to see
if this is countable – can we match these objects up precisely with the
natural numbers?

We could try matching all the natural numbers in the first set with
themselves. But then where will the elephant go? That was a bad plan.
Instead, we should match the elephant up with the number 1, and then
match all the actual numbers up with the number one bigger, so that 1 is
paired with 2, 2 with 3, and so on. This way everything, including the
elephant, is paired with a natural number, and all the natural numbers (in the
official bag) get used.

This is just like when a new guest arrives at Hilbert’s Hotel and all the
other guests have to move up one. And what this is saying is that if you put
one extra object into an infinite set, it doesn’t actually get any bigger. This
is one of our basic intuitions about infinity, that ‘infinity plus 1 is infinity’.
We have now made rigorous mathematical sense of it.

The two-floor Hilbert Hotel was two sets of natural numbers, and we’ve
already shown that this has a bijective function to the natural numbers. This
says that if you take two countably infinite sets and throw them all in
together, the giant resulting set is still countably infinite, that is, you still
don’t have ‘more’ things. We have made sense of the fact that ‘two times
infinity is infinity’.



The infinite-skyscraper Hilbert Hotel was a countably infinite number
of sets of natural numbers. And yet, we could still evacuate everyone into a
one-floor hotel. This shows that even if you take a countably infinite
number of countably infinite sets, you still don’t really have ‘more’ things.
In fact we have made sense of the fact that ‘infinity times infinity is
infinity’.

Instead of thinking about impossible hotels, we can think about different
kinds of numbers. What about the integers? That’s basically twice as big as
the natural numbers, because there are the positive numbers and the
negative numbers. Surely there are more integers than natural numbers?
And yet, if we had a Hilbert Hotel with negative room numbers as well as
positive room numbers, we could still evacuate it into a normal Hilbert
Hotel, because it’s really no more difficult than a two-floor Hilbert Hotel,
which we’ve already done. Instead of some rooms being on the second
floor, they’ve been labelled with negative numbers, as if there’s an east
wing and a west wing.

What about the rational numbers? Surely there are more rational
numbers than natural numbers? They get so close together on the number
line. In fact, if we had a Hilbert Hotel with rational-numbered rooms, we
could still evacuate it, although it would be a bit complicated and involve
several stages.

First of all, remember that every rational number can be written as 
where a and b are integers and b is not 0. Now we are going to start by
dealing with the positive rational numbers. We will initially evacuate all
these people into an infiniteskyscraper hotel, by taking the person in room 
and evacuating them to room a on floor b of the skyscraper hotel. Pretty
clever, eh? From there we can evacuate them to a normal hotel. What about
the negative rooms? Well, we could evacuate them to another skyscraper
hotel, and from there into a one-floor hotel. Then we’d be back to having
two one-floor hotels, and we know perfectly well how to fit those into one
hotel. This is a very typical mathematical process of turning new problems
into old ones that we already know how to solve.

You might have noticed that when we go from the rational hotel to the skyscraper
hotel, some rooms in the skyscraper hotel will remain empty. For example,  is the
same as , so once we’ve put the guest from room  into room 1 on floor 2, we have



nobody going into room 2 on floor 4. This means our function isn’t bijective, but in
fact that doesn’t matter, as long as it’s injective. That is, as long as you can evacuate
everyone into their own room it doesn’t matter if some rooms are left empty; you
could always get everyone to move backwards into the empty rooms afterwards.

So the integers and the rational numbers are still no bigger than the
natural numbers, despite it really seeming like there are more of them. But
this doesn’t mean that all infinite sets are the same size. You might notice
that we haven’t yet examined how many real numbers there are. If we throw
the irrational numbers into the bag along with the rational numbers, what
happens? The answer is we now really do have more objects. In the next
chapter we are going to use this to justify that implausible claim, that some
things are more infinite than others.

If you see a churning river with swirling white water do you feel the
urge to find a raft and jump in? I don’t if it’s a real river, but I do if it’s
swirling mathematical waters. I don’t particularly like being physically
tossed around, but I do like feeling my mind spin as I struggle to get my
head around something that seems impossible at first. The fact that some
things are more infinite than others is a piece of mind-spinning white-water
mathematics and we’re now ready for it.
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Some Things Are More Infinite than Others

hildren sometimes have this kind of argument:

‘I’m right.’
‘I’m more right.’
‘I’m right times a hundred.’
‘I’m right times a million.’
‘I’m right times a billion.’
‘I’m right times infinity!’
‘I’m right times two infinity.’
‘I’m right times infinity squared!’

However, we seem to have discovered that ‘two infinity’ is no bigger than
infinity, and even infinity squared, which is infinity times infinity, is also no
bigger than infinity. So in the end, the children are not becoming any more
right than each other. Is there anything they can do to beat each other in this
argument, once one of them has declared that they’re right times infinity?
There is: they just need to find an infinity that’s more infinite than the other
child’s infinity! We’ll now see two ways that things can be ‘more infinite’
than the natural numbers. The first involves trying to count the irrational
numbers.



There Are More Irrational Numbers than Rational
Numbers

There are more irrational people than rational people in the world, probably.
In fact, most people are a bit irrational – that, to me, is an important aspect
of being human and not a computer. It is extremely difficult to be
completely, totally and utterly rational, only using logic ever in your whole
life. Emotions aren’t rational, taste isn’t rational. Surely you like some food
more than others. Occasionally that can be explained rationally: for
example, I don’t like hot chillis because they hurt my mouth. But why don’t
I like cinnamon? I don’t know, I just don’t like it. And when people
discover this they quite often react as if that is completely irrational. I admit
that is my gut reaction to people who don’t like chocolate, before I remind
myself that it’s just a matter of taste, and that I know more people who
dislike chocolate than people who share my dislike of cinnamon. Anyway,
even if you don’t think of yourself as actively irrational, you’re surely not
purely rational. Our everyday use of these words leaves more room for grey
areas than our mathematical use does; in fact one of the whole aims of
mathematics is to eliminate grey areas, not from the whole world, which
would be impossible and undesirable, but from whatever we’re thinking
about right now.

There are also more irrational numbers than rational numbers in the
world. It is in fact quite difficult for a number to be rational. Being a ratio of
two integers is a remarkable coincidence. If this sounds bizarre to you, it’s
probably because I’m distinguishing between things that are mathematically
likely and things that are humanly likely.

If someone stops you in the street and asks you to think of a number,
you are almost certain to think of a rational number. In fact I’d guess that
you’ll probably think of a positive whole number. (Although a certain type
of person will say ‘π’ to make a point.) This doesn’t mean that there are
more positive whole numbers than any kind of number, it just means that
our brains are more familiar with those numbers and will tend to gravitate
towards them. They are called the ‘natural’ numbers after all.

However, if I now ask you to draw a circle with your chosen number as
its radius (say in centimetres), the area of your circle is almost certain to be



irrational. Remember, the area of a circle of radius r is πr2. The number π is
definitely irrational, so if your radius is a whole number, or any rational
number, your area is doomed to be irrational.

If you multiply a rational number by an irrational number the result is irrational.
Likewise, if you add a rational number and an irrational number the result is
irrational. However, if you multiply two irrational numbers, the result could go either
way. For example,  × π is still irrational, but  ×  = 2 which is rational.

Can you try to think of a radius that would make the area of a circle
rational? How are we going to get rid of that pesky π that’s floating around
in the formula? We’re going to have to cancel it out somehow. If we pick
the radius r to be , then πr2 will neatly cancel out to be

I’m guessing that if I stopped you in the street and asked you to think of
a number, then  would not be your answer. (Although now that I’ve
suggested it, perhaps it will be in the future.)

What about other rational areas? Remember that a rational number is one that can
be expressed as  where a and b are both integers and b isn’t 0. So let’s try and
make this fraction the area of a circle. If we put

then we get



The upshot is there are tons more irrational numbers than rational numbers
out there, it’s just that the rational ones are much more prominent in our
thoughts most of the time. However, there was nothing very rigorous about
the argument. I vaguely threw around words like ‘probably’ and ‘almost
certain’ and ‘tons more’. Often in mathematics we start by thinking about
how things feel, using fuzzy language like this, before starting to hone it
into a logical mathematical argument. The honing is what we’re going to do
next.

So Many Irrational Numbers

We’re going to ‘count’ the irrational numbers, except that we don’t have a
way of saying what irrational numbers are. Irrational numbers are defined
by what they’re not: they’re the real numbers that are not rational. We do
have a way of saying what real numbers are (although we will have to be a
bit vague about it until Chapter 15), and what rational numbers are. So it’s
easier to ‘count’ the irrational numbers by a process of exclusion, rather
than by counting them directly. We’re basically going to say, ‘Wow, there
are a lot of real numbers. And not many are rational. So if I throw away the
rational ones there’s still tons left that are irrational.’ We’re just going to be
a bit more precise (or technical) than that.

Instead of showing that the irrational numbers are uncountable, we’re
going to show that the real numbers are uncountable. We already know the
following things:

1. The rational numbers are countable.
2. If you put two countable sets together you get another countable set (as

in the two-floor Hilbert Hotel).

This tells us that if the irrational numbers were countable, the real numbers
would have to be as well. But we’ll show that real numbers are not
countable, so the irrational numbers can’t be countable either.

This is a bit like dominant and recessive genes. Imagine that being
uncountable is like a dominant gene, and being countable is like a recessive
gene. So if you put a countable and an uncountable set together you get an
uncountable one, because that’s the dominant gene. Now if you put a



countable set together with an unknown set (the irrationals), you can deduce
what the unknown one was if you know the outcome.

rationals if reals then irrationals
countable (known) countable

 uncountable
countable

 uncountable

The Real Numbers Are Uncountable

The real numbers are difficult to pin down, but for now let’s say they are all
the possible decimal numbers, where the decimals are allowed to go on
forever, repeating or not repeating. (In fact all decimals go on forever if you
put 0’s on the end; we just don’t usually bother writing all those 0’s.) We
are so used to thinking about decimal expansions that go on forever, it
might be difficult to see why this is not a perfectly good definition of the
real numbers. We can’t really talk about this until we’ve thought about
infinitesimally small things, in Chapter 14.

We’re going to show that these never-ending decimals are uncountable,
using a clever trick that Georg Cantor came up with, which is now known
as the Cantor diagonal argument. In fact, we’re going to show that the real
numbers between 0 and 1 are uncountable all by themselves. (Restricting
our attention to these numbers makes the argument more streamlined.)

Let’s put this question another way. We’re going to think about
evacuating huge hotels again. In Chapter 2 we mentioned the idea of the
real-number hotel, where there is a room for every real number. We’re now
going to do something more modest: a hotel which ‘just’ has a room for
every real number from 0 to 1. I say ‘just’ but this is still a super-giant
hotel, and it’s the first one we will show cannot be evacuated into the
ordinary Hilbert Hotel.

It’s convenient only to think about the numbers between 0 and 1
because it saves us worrying about the part of the number before the
decimal point: every room has a different decimal expansion that starts
0.something and goes on forever. (Let’s not think about how long it would
take you to ask for your key.) Now imagine trying to evacuate this hotel:
this is the question of finding a perfect pairing between the real numbers



(from 0 to 1) and the natural numbers, which is what we mean by
‘countable’.

We could start by trying a few things.
Can we just move people into their new rooms in order of size? So the

smallest decimal-number room moves into room 1, and so on? This won’t
work, because there is no smallest decimal number, just like there’s no
biggest number. Is 0.0000000000001 the smallest possible decimal
number? No, because we could always insert a few more 0’s in there to
make it smaller.

Can we start with the decimals that only have one decimal place, and
then move on to the ones with only two decimal places, and keep going like
that? After all, there’s only a finite number of each of these: there are only
10 rooms with one decimal place, namely 0.0, 0.1, 0.2, 0.3, …, 0.9. How
many are there with two decimal places? Well we have 10 choices for the
first place and 10 choices for the second place, which makes 10 × 10 = 100
rooms. If the second decimal place is 0 it will just be the same as one of the
above numbers, so we have these 100 extra rooms to deal with at this stage:

When we do the rooms with three decimal places there will be more, but it
will still be finite. This seems like a promising approach, but here’s the
problem: we will only ever evacuate the people with decimal expansions
that stop somewhere. We will never get round to the ones that go on forever.
This is even if we keep evacuating ‘forever’. It’s a bit like the fact that if
you keep adding one to a number it will get bigger and bigger forever but it
will never actually be infinite, even if you keep going forever. Likewise, if
we keep evacuating in this way forever we will keep dealing with longer



and longer decimal expansions – we will keep adding one to the length of
the expansion, but the expansion will never actually be infinite.

If you’re not convinced by this argument, that’s excellent, because it’s
not a mathematical argument, so you probably really shouldn’t be
convinced by it. Cantor’s diagonal argument, however, is a watertight
mathematical argument. We have to show that it is impossible to evacuate
everyone to the one-floor hotel, no matter how hard we try. It sounds like
this would be very difficult to prove, because it sounds like we have to try
every single method of evacuation and show that it fails. The thing that’s
clever about Cantor’s argument is that you don’t actually go through every
process of evacuation. You just assume that it has been done, that everyone
is now in the one-floor hotel, and you derive a contradiction. We are going
to show that if some smarty-pants claims to have evacuated every room, we
will always be able to find at least one person who was left out.
Mathematically this means that if we claim to have matched up all the
decimals with natural numbers, there will always be at least one decimal
number that did not get assigned to a natural number.

Here’s how it works. You go to room 1 and knock on that person’s door.
You ask them what their old decimal room number was. Actually, you don’t
ask them for the whole expansion, you just ask them for the first digit, like
when you’re logging on to online banking and they just ask you for the
third and seventh letters of your password. Anyway after they tell you their
digit, you add 1 to it, and write it down. So if their old first digit was 3, you
write down 4. If it was 8, you write down 9. If it was 9, you don’t write
down 10 (because that’s not a digit), but you write down 0. This sounds
mysterious, but bear with me.

Now move on to room 2, and ask that person for the 2nd digit of their
old room number. Again, add 1 and write it down next to the previous thing
you wrote down.

Now move on to room 3, and ask that person for the 3rd digit of their
old room number. Again, add 1 and write it down next to the previous one.

What we’re doing here is building up a new decimal expansion room
number. You will get the nth digit by asking the person in the new room n
for the nth digit of their old room number, and adding 1.

Now if you did this in ‘reality’ you would never get to the end, but the
mathematical argument doesn’t involve physically knocking on doors. The



number that we’re building up here exists regardless of whether or not we
have time to write it down, just like the planet Neptune existed before
humans knew it was there.

The question is: where is the person who used to be in this room, the
one with the decimal expansion we just derived by this business of adding 1
to digits? Which natural number room have they been evacuated into? They
can’t be in room 1, because the new decimal number differs from that
person’s old room number in the 1st digit. They can’t be in room 2, because
the new decimal number differs from that person’s old room number in the
2nd digit. Nor can they be in room 3, 4, 5, or any room number n, because
the decimal number differs from that person’s old room number in the nth
digit. So we have found a person who did not get evacuated anywhere. This
is the contradiction, and shows that the smarty-pants was wrong: they have
not successfully evacuated everyone. This argument works for any
evacuation they claim to have done, which shows that the evacuation is not
possible.

The reason this is called a diagonal argument is because if we write
down the decimals in a grid, we will be looking down the diagonal. Let’s
suppose that the first few evacuated rooms look like this:

new room no. old room no.
1 0.238795317…
2 0.984718573…
3 0.389716438…
4 0.777362889…
5 0.444317895…
6 0.879000001…
7 0.892225673…
8 0.191919234…

Then the digits we ask for when we knock on each person’s door are the
ones in bold here, along the diagonal.

new room no. old room no.



1 0.238795317…
2 0.984718573…
3 0.389716438…
4 0.777362889…
5 0.444317895…
6 0.879000001…
7 0.892225673…
8 0.191919234…

In this case the new number we’ll produce will start like this

0.39042174…

and we can show that this person is not in any room n by looking at their
nth digit, which is different from the person who is actually in room n. So
this person has not been evacuated to any room, and the smarty-pants has
failed.

This shows that the real numbers between 0 and 1 are uncountable: if
you try and make a perfect pairing with the natural numbers, at least one of
the real numbers is doomed to be left out. We can think of this as meaning
that the real numbers are ‘more infinite’ than the natural numbers.

This way of proving something by defeating a smarty-pants who thinks
they can do something is sneaky and useful. The smarty-pants will come
back to try us later, when we’re thinking about infinitesimally small things.

Decision Fatigue

Another way in which something can be ‘more infinite’ than the natural
numbers is more subtle, and perhaps relates more to the word
‘uncountable’. We can’t evacuate the real-number hotel into the natural-
number hotel, because someone is doomed to be left out in the cold.
However, another way in which we can fail to evacuate a hotel is if we get
decision fatigue. Imagine you have a hotel full of double rooms and you
need to evacuate it into a hotel of single rooms. You could evacuate the two
people in room 1 to rooms 1 and 2, and the two people in room 2 to rooms 3



and 4, and so on, with the two people in room n to rooms 2n and 2n – 1. On
the face of it, this sounds much like evacuating a two-floor hotel into a one-
floor hotel, but how would you write out the instructions this time?

‘If you’re currently in room n then one of you go to room 2n and the
other to room 2n – 1.’

What if they say ‘Which of us should go in which room?’ You could say
‘Whoever’s oldest should go in room 2n and the younger person should go
in room 2n – 1.’ But what if all the even-numbered rooms are better and the
younger person of each pair gets upset? Or – bear with me – what if all the
pairs of people are exactly the same age as each other? You might ask them
just to decide for themselves as it doesn’t really matter that much. But what
if they’re very indecisive and need you to decide for them? Evidently this
analogy is breaking down somewhat, but the idea of being able to write
down instructions is supposed to be that the people simply follow the
instructions without having to use any thought. If they have to make a
decision along the way then mathematically this is not an unambiguous set
of instructions. To put it another way, it is not a process that a computer
could follow, also known as an algorithm.

This situation is often explained as the difference between counting
shoes and counting socks. Suppose you had an infinite number of pairs of
shoes. That is, a countably infinite number. So you can line them all up in
shoe boxes labelled 1, 2, 3 and so on. Does this mean that the individual
shoes are countable? What if you had an infinite number of pairs of socks?

I try not to count my shoes too often as I might be shocked by how
many pairs I have. My excuse is that my feet are really big and it’s hard to
find shoes that fit and that aren’t ugly. When I was fat, my feet were even
bigger and I got into the habit of buying every pair of shoes that fitted,
wasn’t ugly, and wasn’t too expensive. In those days not many shoes met
those criteria, so buying them all was quite feasible. I basically had an
algorithm for buying shoes, and it still meant that I only owned about four
pairs of shoes when I graduated. (This is still more than some men I know.)
When I lost weight, I discovered that my feet got smaller as well (I did not
realise that feet could get fat). The difference was only about half a size, but
this critical half size moved my feet from out of the standard range of



women’s shoes into the petite range. But I still had the same shoe-buying
mentality, which meant I ended up buying quite a lot of shoes. I suppose as
vices go that’s better than impulsebuying sports cars. Also maybe I’m
protesting too hard. I now have to make decisions when I buy shoes, rather
than just following an algorithm.

However, no matter how many shoes I buy, I will still only have a finite
number of pairs of shoes. But let’s imagine having an infinite number of
pairs of shoes, all neatly lined up in shoe boxes numbered according to the
natural numbers. (My shoes are never neatly lined up.)

This means that we have a countable number of pairs of shoes. Do we
have a countable number of shoes? That is, can we now line the individual
shoes up in order, matched up with one natural number per shoe instead of
one natural number per pair? Yes we could, just like the two-floor Hilbert
Hotel. We could decide to start with the left foot each time, so we could go:

left shoe 1, right shoe 1, left shoe 2, right shoe 2, left shoe 3, right shoe
3,

and so on. Written mathematically:

The left shoe n will go to position 2n – 1.
The right shoe n will go to position 2n.

This is just like the example of the red and blue natural numbers being
matched with the purple ones, where this time instead of blue we have ‘left
shoe’ and instead of red we have ‘right shoe’.



Now let’s try this for socks. Suppose we have an infinite number of
pairs of socks and they’re lined up like the shoes, with pair number 1, pair
number 2, and so on. (I’m much less interested in socks than shoes, so all
my socks are identical black ones so that I don’t have to think about
matching them in pairs.) Can we now line up the individual socks? At first
sight this seems just the same as the shoes, but there’s a problem: there’s no
such thing as a right sock and a left sock. Left and right socks look exactly
the same. So how can we specify which one is going to go first? We can’t,
but we might think we can just arbitrarily pick one to go first. Of course,
we’ll have to make that decision for each pair of socks separately. For the
shoes, it’s true that I arbitrarily decided the left shoe would go first, but I
only had to make one arbitrary decision. With the socks, every time I get to
a new pair I have to make a new arbitrary decision about which sock should
go first. And so we run into the problem of decision fatigue. Or at least, the
mathematical version of decision fatigue.

The theory of decision fatigue is that making decisions is exhausting,
whether they’re small decisions (‘What shall I have for breakfast?’) or large
decisions (‘Which house shall I buy?’), and as you make more decisions in
a day you get increasingly exhausted from it. Making decisions is hard. You
can weigh up the pros and cons but in the end you have to make a leap –
you can’t just follow logic all the way to a conclusion, because then it
wouldn’t be a decision, it would be a deduction.

There is a mathematical version of this, just as in the example of the
pairs of socks. The idea is that we can make one arbitrary choice, and we
can make two or three, or any finite number of arbitrary choices, but can we
make an infinite number of arbitrary choices? In the sock example this
comes down to whether or not we can write down a formula for how to line
up all the socks in a row. Technically for the socks to be countable we have
to make a function from the set of all socks to the set of natural numbers (as
if we were evacuating individual socks into a Hilbert Hotel). But how are
we going to say what this function is? How are we going to say which sock
of each pair is going to go first, given that there are no distinguishing
features?

You might think that you can just decide that you are going to pick up
each pair of socks with one sock in each hand, and whichever one you have
in your left hand will go first. It’s a bit subtle, but in mathematics this still



doesn’t count as a good enough instruction. ‘Decision’ isn’t really the right
word in the end: it’s really about choice. Even if you pick up the socks
randomly, at some level you had to choose which sock went into which
hand, and you’ll have to make a separate choice infinitely many times.

The question of whether or not this is possible is not exactly resolved in
mathematics, but is a tricky and subtle point that still worries
mathematicians. It is called the Axiom of Choice. An axiom is a basic
assumption that you’ve decided to take as true without justification, a
building block from which everything else is going to proceed. One way of
thinking about axioms is that you’re not saying they are true, you’re just
creating a world in which they are true, and studying it to see what will
happen.

The Axiom of Choice says that it is possible to make an infinite number
of arbitrary choices. In a world where the Axiom of Choice is true, the
socks are countable. However in a world where the Axiom of Choice isn’t
true, the socks are uncountable. Likewise, when we had an infinite number
of double rooms in the hotel, we could use the fact that there’s an older
person and a younger person (if they’re not all the same age), so that we
didn’t have to keep choosing which of each pair of people we’d evacuate
into which room.

Mathematicians don’t exactly care whether or not the Axiom of Choice
holds over all, but they do care whether you have to use it in any given
situation or not. It is sufficiently troubling that we feel the need to point out
every time we use it, a bit like lorries that start beeping when they go into
reverse.

So this gives us another way in which things can fail to be countable –
not because there are too many of them, but because they’re too
indistinguishable. This even happens to me when I’m counting people in a
room, say in a classroom with a new group of students I don’t know yet. I
hope you’ve had this experience as well, so it’s not just me and my apparent
inability to count. If everyone is sitting in neat rows already, it’s fine,
because you just work your way along the rows. If everyone is sitting on
randomly placed chairs it’s much harder, because you keep having to decide
who to count next. I usually find it works for nine or ten people, and then I
get confused about who I’ve already counted and who I should choose next.
Imagine trying to do that for an infinite number of people. That would be



extremely difficult even without the issue of running out of time in our
short finite lives.

There are many jokes about mathematicians being unable to count, but
the truth is that counting is a much deeper topic than we think about when
we say a child has ‘learnt to count’. From me getting confused counting
coffee scoops while talking, to the issue of uncountably infinite sets,
thinking about these issues has been a fertile ground for mathematicians
developing ideas. We have seen that there are more real numbers than
natural numbers, and in the next chapter we’re going to try and count them,
so that we can see how many more there actually are. The insight gained
from doing this will take us, in the following chapter, to the hierarchy of
increasingly infinite infinities, and finally an answer to the children who are
trying to be more right than ‘right times infinity’.
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Counting Beyond Infinity

recently visited Tent Rocks National Monument near Santa Fe, New
Mexico. I went on a dramatic hike up through the conical rock formations
in a narrow canyon, up to a ridge at the top of the mesa with spectacular
views of the Rio Grande Valley. It was satisfying physical exertion, had
breathtaking close-up views of tent rocks all the way up, and culminated in
the dramatic arrival at the ridge with the sweeping views off to the horizon.
I had a few moments of fear on the way up as I’m not terribly brave and the
view of the drop down the rock face was a bit much for me on occasion,
especially when the part we were walking on was particularly steep with
loose rocks making me feel that I didn’t have a good foothold on anything.
When I got to the top I enjoyed a brief sense of achievement and then
realised there was more. It wasn’t a peak but a ridge, so we could keep
walking along it, now with the drop down the rock face on both sides. I
thought about continuing but decided that was enough bravery for me, and I
went down again.

You might have felt like this on our climb to infinity. Perhaps you felt
that you didn’t have a strong foothold on anything any more, and now that
we’ve finally made it to infinity you’d like to leave it at that. I’m much
braver with mathematics than I am with rock faces, so we’re now going to
keep going. We’ve shown that the real numbers are more infinite than the



natural numbers, but how much more infinite are they? How far is it from
the one infinity to the bigger one? We’re going to count.

Of course, we can’t count the real numbers by listing them and seeing
how many there are. Instead, we’re going to count them as we counted
things in the previous chapter: abstractly. We’re going to think about how
they’re constructed and come up with a relationship between them and the
natural numbers, to see how far apart they are. First we’re going to build up
to this by counting some smaller sets to get used to how this abstract
method of counting is done.

Abstract Counting

Imagine a prix fixe menu with choices like this:

Soup of the day
∞

Grilled salmon with lemon beurre blanc
or

Herb-roasted chicken with crushed potatoes
∞

Chocolate cake
or

Lemon tart

How many possible dinners are there? We could count them in the concrete
way, by writing out a list:

1. salmon and cake
2. salmon and tart
3. chicken and cake
4. chicken and tart



This is not too arduous for a menu as short as this, but imagine if it were a
ten-course meal with three choices for every course – it would take a rather
long time to count all the possible combinations in that case. This is where
abstract counting starts to come in handy. We count by reasoning rather
than by lining things up against the numbers 1, 2, 3, 4, and so on. As an
intermediate step we can draw a little tree of possibilities like this:

The top level of this (upside-down) tree says we have two possible choices
for the main course. The bottom level says that no matter which of those we
choose, we proceed to have two possible choices for dessert. Each path
down through the tree gives us one possible menu combination, and there
are four paths. But we can also see this abstractly by seeing that the two
choices on the top level get multiplied by the two choices on the bottom
level, so the total number of choices is 2 × 2 = 4. At this point it’s possible
to get confused about whether we should add or multiply our 2’s, because 2
+ 2 would also give us the same answer. But let’s try it with a choice of
starter as well.

Soup of the day
or

Green salad
∞

Grilled salmon with lemon beurre blanc
or

Herb-roasted chicken with crushed potatoes
∞

Chocolate cake



or
Lemon tart

This time the two choices on the top level get multiplied by the two choices
on the second level and then this gets further multiplied by the two choices
on the bottom level. So the total number of possible combinations is 2 × 2 ×
2 = 8.

We can do something similar to count decimal numbers. We’re going to
build up to counting all the real numbers by first just thinking about the
numbers between 0 and 1, like we did in the previous chapter. We’re
basically going to use the method that didn’t quite work that time, when we
tried to evacuate the decimal-number hotel decimal place by decimal place.
We start by looking at the first decimal place, which is like the first course
in the menu. Except now instead of there being just two choices, there are
ten choices as there are ten possible digits that could be in the first decimal
place. The ten possible numbers with only one decimal place are these:

0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

For numbers with two decimal places, it’s like a two-course menu, where
there are ten choices for each course. So there are 10 × 10 = 100 possible
combinations. In terms of branching trees, the first level here would have
10 possible branches, and then each of those branches would have 10



branches attached, making 100 leaves in the end, or 102. We saw in the
previous chapter that the 100 possible numbers with two decimal places are:

We can now generalise this to any n decimal places, which would be a
menu with n courses or a tree with n levels. For numbers with n decimal
places there are 10 × 10 × … × 10 possibilities, where that 10 appears n
times. That’s 10n.

Now for a slight leap of faith: for numbers with an infinite number of
decimal places there are ‘ten to the power of infinity’ possibilities. I say that
this is a slight leap of faith, but really it’s some more set theory. We are
trying to count the real numbers, which really means we’re trying to find an
official bag of objects that matches up with the real numbers. You might
think we could just say ‘it’s the set of real numbers’ and be done with it,
just like we did with the natural numbers. But it would be more helpful and
illuminating to be able to relate it to the natural numbers. ‘Ten to the power
of infinity’ is not far off, but to interpret this as a set of things, and to get a
more satisfying answer, it’s better to do this in binary.

Digression on Binary

Binary is a system of representing numbers where instead of using the
digits 0, 1, 2, 3, all the way up to 9 as we do in the decimal system, we only
use the digits 0 and 1. It’s amazing how much information you can
encapsulate using only the digits 0 and 1. Computers, basically, run entirely
on this system, as if everything is just an on/off switch, and there are



millions and billions of them. You can get very many different
configurations from a very small number of on/off switches.

With two switches, you can get four configurations:

switch 1 switch 2
off off
off on
on off
on on

With three switches, you get eight configurations:

switch 1 switch 2 switch 3
off off off
off off on
off on off
off on on
on off off
on off on
on on off
on on on

This is just like our two- or three-course menu options. With the switches
the tree now comes out like this:



Each of these eight ending points gives us one of the eight configurations
for three switches; we just have to follow the path down from the top of the
picture to the given ending point and read off whether we passed through
‘off’ branches or ‘on’ branches on the way down.

We’ve been calling these pictures trees because that’s what they’re
called in mathematics. It’s slightly silly because trees in normal life usually
start at the bottom and grow upwards, but trees in mathematics often start at
the top and grow downwards, mostly because this is how we read down the
page. Sometimes people draw them sideways:

I hope you can see that it doesn’t really matter which way up we draw a
mathematical tree, because whichever way up the diagram is the
information we’re encoding is still the same. We might call this a schematic
diagram, as it’s depicting a scheme of how things fit together abstractly,
rather than how they fit together physically. As mathematics gets more
abstract, diagrams become more and more prominent as the ways that
things fit together abstractly become both more subtle and more important.
Moreover, the diagram often sums up the situation more succinctly than the
explanation in words, just like our diagram of how to evacuate the infinite-
skyscraper Hilbert Hotel.

Most of basic mathematics happens in straight lines. For example, a sum like this:

3 + 2 = 5

or an equation



2x + 3 = 7.

The symbols all sit in a row quite happily. Even if we solve that equation we write a
series of rows:

2x = 7 – 3
2x = 4
x = 2

Later on we’ll see that as mathematics gets more advanced it gains dimensions. If
the objects we’re thinking about have shape, then there are more ways we can fit
them together than just juxtaposing them in a straight line, a bit like fitting jigsaw
pieces together or building something complex out of Lego. Imagine trying to explain
to someone in words how to build a car out of Lego, rather than having instructions in
diagrams. Just as a picture supposedly paints a thousand words, a mathematical
diagram can explain a situation a lot more quickly and vividly.

From the tree diagrams perhaps you can now see that every time we add a
new switch we’ll have to split every single ending point into two branches
at the next level. Incidentally the ending points are often called ‘leaves’
seeing as they’re at the ends of ‘branches’, even though the tree is upside
down.

Every time we add a switch we double the number of possible
configurations. This means that for four switches we have 2 × 2 × 2 × 2
possible configurations, that is, 24, and for n switches we have 2n possible
configurations. This is just like when we were counting the decimal
numbers with n decimal places, except now we have only two choices for
each level instead of ten, just like for the menus.

The binary number system works like a series of on/off switches. It’s
just like the decimal number system except that instead of having units,
tens, hundreds, thousands, etc., we have units, twos, fours, eights, and so
on. Thinking about whole numbers in binary is more well-known than
fractions. We can compare, say, four-digit numbers in decimal and in binary
like this.



So in decimal, the number 1101 can be expanded like this:

(1 × 1000) + (1 × 100) + (0 × 10) + 1

whereas the binary number 1101 is expanded into decimal like this:

(1 × 8) + (1 × 4) + (0 × 2) + 1

or 13, in decimal.
In decimal, a four-digit number can express anything up to 9999, which

is 104 – 1. Whereas in binary, a four-digit number can only express things
up to 24 – 1 = 15.

This might make it seem that binary is a bit feeble, especially as I
promised in Chapter 5 that binary would enable us to count up to 1023 on
our fingers. It’s a trade-off. With binary, you can encode everything using
simple on/off switches, whereas with decimal, you need each ‘place’ to be
able to give ten possible different pieces of information, that is, the digits 0,
1, up to 9. In some situations (like computers) you have a big capacity for
the number of digits you can use, but a small capacity for the number of
different positions they can be in. Whereas, for example, in ISBN codes on
books, you have limited space to print the code, but plenty of different
things you can print in each position. HTML colour codes are even more
space-saving, and are written in hexadecimal, that is, base 16, which means
every position has 16 possible digits. The digits used are 0, 1, 2, 3, 4, 5, 6,
7, 8, 9, A, B, C, D, E, F.

One of my favourite uses of binary is for birthday candles. If you have
seven candles it might look like you can only deal with birthday cakes for
children up to the age of seven. But if you use them in binary, with a lit
candle representing ‘on’, or 1, and an unlit candle for ‘off’, or 0, you can
celebrate everyone up to the age of 128. Which is everyone on earth,
currently.

And it is true that we can use binary to count on our fingers up to 1023,
that is, up to 210 – 1. Here’s how. Each finger has two possible positions: up
or down. Up is for 1 and down is for 0. Now we have ten digits (actual
digits!) and we can express all the numbers from 0 to 1023 using ten digits



in binary. Here are pictures of the numbers 0 to 31, which can all be done
on one hand.

Here are the corresponding numbers in five-digit binary.

00000 00001 00010 00011 00100 00101 00110 00111
01000 01001 01010 01011 01100 01101 01110 01111
10000 10001 10010 10011 10100 10101 10110 10111
11000 11001 11010 11011 11100 11101 11110 11111

It’s pretty satisfying, but takes some concentration, unlike the normal way
of counting to 10 on your fingers. So unfortunately this method is unlikely
to help free up your mental space. I’m quite sure I couldn’t get very far with
this while holding a conversation with someone. (I just tried, and only got
up to 10 before making a mistake.)

Actually, if you really concentrate, and have good control over your
fingers, you could use your fingers in base 3, which means each position
needs three possibilities. This requires you to be able to bend each finger
halfway, independently of all other fingers, so that each finger can take
three possible positions and thus represent 0, 1 or 2 in that position. Try
holding up your ring finger by itself, and then getting your middle finger to
distinguish between half-bent, and fully down. It’s a bit tricky.

That was all about whole numbers, but we can use binary for fractions
as well as for whole numbers. We just have to remember what decimal



places really mean, and translate them into ‘binary places’. We also have to
remember not to use the word ‘decimal’ all over the place when we mean
‘fraction’. (I am always tempted to say ‘binary decimal’ but that doesn’t
make sense linguistically.)

When we do ordinary decimal fractions, the places after the decimal
point are tenths, then hundredths, then thousandths, and so on. For example,
this number

0.3526

is really

In binary fractions, the first place is halves, and the next is quarters, then
eighths, then sixteenths. So the binary number

0.1101

translates as

which in normal decimal fractions is 0.8125. We could depict the possible
binary fractions in a tree, just like we did for the on/off switch
configurations.



In this picture instead of ‘off’ and ‘on’ branches we now have 0 and 1
branches, a bit like how we can use unlit and lit candles to represent 0 and 1
on a binary birthday cake. At the moment we’re only doing four digits, so
we have four levels of branching. We could have done this for ordinary
decimals but in that case we would have needed ten branches coming out of
every previous ending point at every level, quickly making the tree
unmanageable to draw.

Now each leaf represents a binary fraction, and we can see which one it
is by following the path down from the top of the tree to that leaf, reading
off the 0’s and 1’s on the branches as we go. So the first leaf is 0.0000, the
second is 0.0001, and so on. Here they all are:



For five digits we’ll have a tree with five levels, for n digits we’ll have a
tree with n levels, and for binary fractions with infinitely long expansions
we’ll have a ‘tree with infinitely many levels’. This is a bit of an odd
concept because the resulting numbers were supposed to be represented by
the ending points of the tree, the leaves. But if the tree goes on forever then
there won’t be any ending points. For this reason it makes more sense to
think of the numbers as paths through the tree. We previously saw that we
could pick any leaf and see what number it represents by following the path
to it from the top of the tree. Even if there aren’t exactly any ending points
(because the tree goes on forever) we can think about paths through the
tree, where the paths also go on forever.

Just as ordinary binary numbers can represent all the numbers that the
normal decimal system can do (just using more digits than usual), binary
fractions can represent all possible decimal fractions, also using more
digits. So the paths through the infinite tree correspond to all the ‘decimal
numbers that go on forever’, that is, all the real numbers. Or at least, the
real numbers from 0 to 1. We now can now make the following leap of
faith:

A tree with n levels has 2n paths through it.



A tree with infinite levels has ‘2 to the power of infinity’ paths through
it.

We still haven’t dealt with the potential whole-number part of the fractions,
but in the next chapter we’ll see why that part doesn’t matter very much.
We’ll also see why it’s more satisfying to do this in binary rather than
decimal numbers, and why it was acceptable to ignore the whole-number
part.

You might think we haven’t achieved much here, because we’re stuck
with the question: how big is 2 to the power of infinity? We are going to
build up to answering this question in the next chapter. But first we’re going
to take in a breathtaking piece of scenery we’re now in a position to admire.
We have seen how to construct real numbers from natural numbers using
trees. We have seen that this makes a bigger infinity. All we have to do is
repeat this process and we have made a hierarchy of infinities. This is the
subject of the next chapter.
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Comparing Infinities

hen children learn to climb up one step, they get very excited and
climb up another, and another. They marvel at how high they can go just by
iterating one new thing that they have learnt. If they manage to climb up a
particularly big step they will be particularly excited.

We have just learnt to climb up a particularly big step: we have learnt
how to climb up from one infinity to a bigger one. And just like a small
baby marvelling at their new step-climbing ability, we too are going to
climb up another step, and another. These are not physical steps, and they
are not even number steps. They are steps up the ladder of infinities.

We are going to combine the following facts:

The real numbers are more infinite than the natural numbers.
If the infinity of natural numbers is written as ω then there are 2ω real
numbers.

We are going to iterate this to show that we can keep getting more and more
infinite infinities in an endless hierarchy. Of course, first we have to be
clear what on earth that means.

The general question is: how should we compare the size of infinities?
So far we have decided that the real numbers are uncountable, that is, that
there is no possible way to match them up precisely with the natural



numbers, because some real numbers are doomed to get omitted. Intuitively
this means that there must be ‘more’ real numbers than natural numbers, but
what could this possibly mean if they’re both infinite? Some infinities are
bigger than others – how is that possible, seeing as infinity is already
infinitely big? Isn’t it the biggest thing that there is? How can anything be
bigger than it?

Just like questions of the soul, everlasting life, and whether or not I’m
fat, this comes down to definitions. What is the definition of ‘fat’? In the
case of infinity the question is: what is the definition of ‘big’? We could just
give up and say it doesn’t make sense, because infinity is infinitely big. But
mathematics tends not to give up unless it comes up against an actual
logical contradiction. If there is a phenomenon that seems to make sense
intuitively, mathematicians are determined to find a framework in which it
makes sense logically as well. We are stubborn like that. If I’m on a hike
and the path leads to a cliff edge, I will nervously back away. But if I see a
mathematical cliff edge, a sudden gap between intuition and logic, I’ll
eagerly go and look over the edge to see what I can do about it.

This usually involves making some careful definitions. Does this sound
circular? If I want to prove that I’m not fat, I can choose my definition to be
about body mass index, in which case according to most ‘official’
definitions, I’m not fat. But if I want to prove that I am fat I can choose my
definition to be about waist-to-hip ratio instead, in which case by most
definitions (involving risk of diabetes) I am fat.

This way of making up definitions to suit your aims might well sound a
bit backwards from the way that mathematics is often thought of, where you
start with some objects, say numbers, and see what is true about them. For
example, what happens when you add 3 and 4? What happens when you
add 4 and 3? Aha, it’s the same both times. We have found something that
is true about adding numbers up.

However, mathematics doesn’t stay like this for long, even though you
might not have noticed it. Solving equations is a first example where this
isn’t quite the case any more. If you’re given an equation, say

3x + 4 = 10



you’re saying: I want this to be true. What values of x make this true? In the
end, a lot of advanced mathematics starts with a dream of something that
you want to be true, and then you set to work building a world in which that
dream is true. (I think this is how we make dreams come true in normal life
too.)

Now what we’re saying about infinity is ‘I want it to be the case that
some infinities are bigger than others. What definition of “bigger” will
make this true?’ Our prototype example is the apparent fact that there are
‘more’ real numbers than natural numbers, although they’re both infinite.
We can use this as a definition of ‘bigger infinity’ and see what happens.
And what turns out to happen is rather interesting: we see how to build a
hierarchy of bigger and bigger infinities.

Comparing Sets of Things

In the previous chapter we showed that the real numbers are uncountable by
showing that any attempted pairing with the natural numbers was doomed
to leave out at least one real number. We can use this to compare any two
sets of things. It works for very small sets like these:

This example we saw before leaves out 16 on the right, but no matter what
we try, we are doomed to leave out something on the right, even if it’s not
16.

If every attempted pairing between sets A and B is doomed to leave
something out on the right, then we say that the set on the right is
‘bigger’.

The technical situation is slightly more complicated than this. The sentence above
says that a surjective function from left to right is impossible, but technically we also



have to say that an injective function from left to right is possible. This is rather subtle
and related to the Axiom of Choice. In all the cases we’ll think about, the injective
function is very obvious, for example, from the natural numbers to the real numbers
there’s an obvious injective function that just pairs every natural number with itself
within the real numbers.

In a way this is just like the very basic way in which small children
compare how many things they have before they know the counting
numbers. To see if they have enough cookies to give their friends, they
might have to give them all out to find out, whereas someone who knows
how to count will just count them. To see if we had the same number of
Strictly celebrities as professionals, we just observed that they’re all paired
up so there must be the same number of each. We don’t even need to count
them because we didn’t need to know how many there were. But even if we
do count them, what we’re really doing is matching the people in each
group with the official number bag for that number. Say there are ten
competitors. Then when you count them you’re really pairing them up with
the set

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

If you start trying to pair them up with this set and discover you haven’t
used 9 and 10, you know that there are fewer than ten competitors.
However, if you try to pair them up and discover that you’d have to use 9
and 10 twice, you know that there are more than ten competitors.

This analysis is a bit over the top for such small numbers, which is a
typical problem with understanding mathematics. You have to start by
understanding it in simple situations, but those are usually so simple that
you don’t need the complicated mathematics at all, so the whole thing
seems pointless. But if you launch straight in trying to understand it in a
really complicated situation, it’s too hard.

Anyway, this way of pairing things up is the sort of thing a small child
might do before they know how to count using numbers. They might have a
train set and want to put a Lego person in each carriage. If they run out of
Lego people and still have empty carriages it’s obvious they don’t have
enough Lego people, even though they don’t know how many Lego people



they have, nor how many they need. This is how we have to deal with
‘more’ and ‘fewer’ when we’re dealing with infinite sets, because, just like
a child who can’t count yet, we don’t know ‘how many’ things we have if
we have infinitely many of them.

Let’s try imagining we have infinite Lego people to put into an infinite
Lego train, and we want to know if we have ‘more infinite’ Lego people
than train carriages. Now, you might think that if we have empty carriages
left at the end then obviously we didn’t have enough Lego people. The first
issue here is that we don’t know what ‘the end’ means; if we have to put all
of our infinite people into carriages (infinite or otherwise), it will take
‘forever’ and there will be no end. We’ll ignore that fact because we only
have to come up with a scheme for doing it, we don’t actually have to do it.

Here’s a way we could put the people in carriages and have an empty
carriage left at the end. We could skip the first carriage, perhaps imagining
that the Lego people are like me and don’t like travelling in the front
carriage in case there’s a crash. We put the first person in the second
carriage, the next person in the third carriage, and so on, and we fill up all
the rest of the carriages. In the end, we have one carriage empty, but this
doesn’t mean we didn’t have enough people. We could move everyone up a
carriage, and then all the carriages would be full.

We could even have left infinitely many carriages empty the first time
round – maybe we only want to put the Lego people in even-numbered
carriages, so we put them into carriages 2, 4, 6, …, and so on, just like in
one of those Hilbert Hotel evacuation scenarios. Then all the odd-numbered
carriages will stay empty, which might make it look like we didn’t have
enough people. And yet, we do have enough people.

This is one of those weird and wonderful things that happens with
infinity, which means we either have to give up, or we have to be more
careful what we mean. Our infinite sets can be rearranged in weird ways, so
that some arrangements will use up all the train carriages and some
arrangements won’t, just like fitting extra people into Hilbert’s Hotel. This
doesn’t happen if you have, say, ten people and ten train carriages. If you
want to put one person in each carriage you can arrange them in plenty of
different ways, but if you use up all the people you’ll always use up all the
carriages as well. If you have some other finite number of people and



carriages, and you use up all the people but still have empty carriages, you
know for sure that there were more carriages than people.

With infinite people and infinite train carriages, you can use up all the
people and have carriages left over, but you still don’t know if you might be
able to rearrange them to use up all the carriages. If you really want to show
you have more carriages than people, you have to be sure there is no
possible way of rearranging the people to use up all the carriages. This
seems hard, but it’s what we’ve already done once with Cantor’s diagonal
argument. We showed then that there is no possible perfect pairing function
between the real numbers and the natural numbers, because if there were, at
least one real number would always get left out.

In mathematics we don’t use the word ‘bigger’ in this case because it’s
too ambiguous, and we’re really talking about a very specific notion of
‘bigness’ that we have defined rather carefully. The mathematical word for
this is cardinality. The cardinality of a set of things is a measure of how
many things there are in it. If the set only contains a finite number of things,
then its cardinality is simply the number of things in it. If it contains an
infinite number of things, it’s more complicated. So far we’re in a state a bit
like a small child who hasn’t learnt to count – we know how to say when
one set has the same cardinality as another, or greater cardinality than
another, even though we don’t know what its cardinality actually is.
However, we can now build up infinite sets with greater and greater
cardinality.

The Smallest Infinity

The smallest possible set is empty. So the smallest possible cardinality is 0.
After that there are all the finite possibilities: a set with 1 object, a set with
2 objects, a set with n objects for any finite n.

It turns out that the natural numbers are the smallest possible infinite set.
Remember, by ‘smallest’ here, we are referring to our precise notion of size
that we have defined using the method of pairing objects up. What would it
mean to have a ‘smaller’ infinite set of things than the natural numbers? It
would mean there is some other infinite set satisfying this condition: if we
try to make a pairing with the natural numbers, we are doomed to leave
some natural numbers out.



Let’s think about this in terms of evacuating people into Hilbert’s Hotel
again. It would mean that you have infinitely many people but when you
evacuate them into the hotel you are doomed to have wasted some rooms.
But this can’t be true: we could always re-evacuate them without wasting
rooms by getting everyone to move into the new hotel in order, without
skipping any rooms. That’s a bit vague, but we could give precise
instructions like this: ‘Count how many people there are with smaller room
numbers than yours. Add one, and move into that room number.’

Whoever has the smallest room number will count zero people with
smaller room numbers. So they move into room number 0 + 1 = 1.
Whoever has the next-smallest room number will count one person
with a smaller room number. So they move into room number 1 + 1 =
2.

This is not quite a proof, but is the idea of a proof that every infinite subset
of natural numbers can be paired up with the natural numbers. This means
that every subset of natural numbers is either finite, or has the same
cardinality as the natural numbers. There is no infinity in between. So we
have found the smallest possible infinity: it’s the size of the natural
numbers.

Remember when we were trying to see if infinity was a number, we kept running up
against the problem of subtracting infinity from both sides of an equation. We kept
finding that subtracting infinity from both sides of an equation led to a contradiction.
We can now start to understand why. If you start with the infinite set of natural
numbers, there are too many different ways in which you can remove an infinite
subset. You could remove everything, and be left with nothing. Or you could remove
all the even numbers, and be left with infinitely many odd numbers. Or you could
remove everything bigger than 10 and be left with 10 numbers, or any other finite n.
Subtracting infinity could produce any answer. We’ll come back to this in the next
chapter.

Now that we are constructing different sizes of infinity, we need to think of
some better notation for infinity. In situations where we are being careful
about different sizes of infinity, we write ℵ0. This symbol is ‘aleph’, the
first letter of the Hebrew alphabet, and the subscript 0 is to indicate that this



is the smallest possible infinity, and only the beginning of a hierarchy of
infinities.

The Next Infinity

We have seen many infinities that turned out to be the same size as the
natural numbers. There are ones that seem to be smaller but aren’t, such as
the even numbers or the odd numbers. We could be even more dramatic and
think about only those numbers that are multiples of 100. Or those numbers
that are multiples of a million. This is only a tiny proportion (one millionth)
of the natural numbers, but it still gives us the same infinity as the
cardinality of the natural numbers. This gives meaning to the idea that
‘infinity divided by a million is still infinity’. We can also think about those
numbers that are bigger than, say, 100. This still gives us the same size of
infinity, and gives meaning to the idea that ‘infinity minus a hundred is
infinity’.

We have seen infinities that seem to be bigger, but aren’t, such as taking
two copies of the natural numbers, one red and one blue. Or three copies, or
a countably infinite number of copies. Or we could take the set of integers,
or even the set of rational numbers. We have seen that all these infinite sets
can still be paired up with the natural numbers, showing that these infinities
are still ℵ0.

So far we have seen only one set that is genuinely bigger: the set of real
numbers. The question is: is this the next infinity up? This is a very difficult
issue addressed by the Continuum Hypothesis. The ‘continuum’ here is the
real numbers, because they are considered to fill up the entire number line
‘continuously’ as opposed to the integers or the rational numbers which still
leave gaps in between them. It’s called a hypothesis because it hasn’t been
proved. It was suggested by Cantor in 1878, and proposes that the
cardinality of the real numbers really is the next infinity up from the
cardinality of the natural numbers. Another way of stating this is that there
is no set whose size is somewhere in between the size of the natural
numbers and the size of the real numbers. It means that as soon as you
manage to break free and become bigger than the natural numbers, you’re
immediately destined to be as big as the set of real numbers. Whether or not



this is true cannot be proved. It is true in some worlds and false in some
other worlds, so it depends what world you want to be in.

It has been proved that the Continuum Hypothesis can’t be proved using a standard
type of logic called Zermelo–Frankel logic. It has also been proved that it can’t be
disproved! This means that we could find a world in which it is true, and we could
also find a world in which it isn’t true. The result is thus independent of those rules of
logic. The proof that it can’t be disproved was by Kurt Gödel in 1940, and the proof
that it can’t be proved was by Paul Cohen in 1963. This was so important that Cohen
was awarded the Fields Medal.

The next infinity up from ℵ0 should be called ℵ1, and so another way of
expressing the Continuum Hypothesis is that the cardinality of the real
numbers is ℵ1. We can take this a bit further because in the previous chapter
we worked out what the cardinality of the real numbers is, in relation to the
cardinality of the natural numbers. The answer is that if the cardinality of
the natural numbers is ℵ0 then the number of real numbers comes out to be
2ℵ0, using binary fractions.

You might notice that if we used decimal fractions the answer would
come out to be 10ℵ0. The binary version is more mathematically satisfying
for several reasons. First of all, because 10 is a strangely arbitrary number
to have floating around in our count of real numbers, and only comes from
the fact that we have ten fingers and so favour base-10 decimal numbers.
However, 2 is not so arbitrary – it’s the smallest base possible.

Another reason that doing it with binary fractions is more satisfying is
that 2ℵ0 sort of looks smaller than 10ℵ0, and part of what we’re trying to do
here is see if this is the next infinity up from ℵ0. So it’s more satisfying to
be able to express it in the way that looks the smallest. It doesn’t make any
formal difference, because 2ℵ0 is the same size of infinity as 10ℵ0. In fact
they’re both the same as 1000000000000ℵ0, but if I told you that this last
thing was the next infinity up from ℵ0 you might wonder whether the
1000000000000 part was important. So calling it 2ℵ0 is more illuminating –
it tells us that to make a bigger infinity we have to raise something to the
power of the previous infinity, even if it’s as small as 2.



You might now remember that we ignored the part of the number before
the decimal point (or binary point). This was a bit cavalier of me but it
doesn’t really make any difference. We can attempt to fix it: the part of the
number before the decimal place is the whole-number part, and we know
how many whole numbers there are: it’s ℵ0. This means we need to
multiply our count of the real numbers by ℵ0 to allow for all the possible
whole numbers at the beginning. However, multiplying the giant 2ℵ0 by that
countable infinity is not going to make the infinity any bigger. Secretly I
knew that all along which is why I wasn’t very worried about the part
before the decimal place.

A geometrical way to see this is that if we ignore the whole number
part, we are only counting the real numbers between 0 and 1. If we look at
this portion of the line of real numbers, how many times do we have to stick
this together to make the whole line? We have to stick one on for every
natural number, so there are ℵ0 copies of this portion. Moreover, we can
restrict our attention to any portion of the real numbers, no matter how tiny,
and still get the same total count of numbers in there. One way to see this is
to make a bijection, that is, a precise pairing between the numbers in the
tiny portion, and the numbers from 0 to 1. For example, suppose we want to
look at just the real numbers from 0 to . We want to pair all these
numbers up with the real numbers from 0 to 1. All we have to do is multiply
them all by 100, and pair them up with the answer. This is like scaling the
small piece of number line up to the bigger piece.

This argument would work for any size of interval, from any real number to any other
real number. To scale the portion from 0 to 1 up to the whole of the reals we have to
do something more sneaky as we can’t just ‘multiply everything by infinity’. We could
get all the positive real numbers like this: start with your x taken from in between 0



and 1. Then calculate , which will give us something between 1 and infinity. Then
subtract 1. This will give us a pairing of the real numbers between 0 and 1 with all the
real numbers between 0 and infinity.

Now we know what the cardinality of the set of real numbers is, we can
restate the Continuum Hypothesis as an equation:

ℵ1 = 2ℵ0.

We have learnt how to climb up one step of the staircase of infinities. If
you’re a mathematician type (just like a small child), you immediately want
do it again, and raise 2 to the power of this new infinity. The more general
form of the Continuum Hypothesis says that, at every stage, this is the most
minimal way to get a new bigger infinity. This would produce a hierarchy
of infinities

ℵ0, ℵ1, ℵ2, ℵ3, …

where in each case ℵn+1 = 2ℵn. As these are even more difficult versions of
the Continuum Hypothesis, we can’t prove that this is the minimal way to
get a series of bigger infinities, but we can at least try to see that these
infinities do get bigger.

Are These Infinities Really Bigger?

If ℵ0 is ‘the size of the natural numbers’, what could it possibly mean to
raise 2 to the power of it? Usually we define 2n to mean ‘2 multiplied by
itself n times’ but this won’t work with infinity, because you can’t ‘multiply
2 by itself an infinite number of times’.

The key here is to stop thinking about 2n as something we do to
numbers, but to remember we’re thinking about cardinal numbers as the
size of certain sets, the official number bags if you like. So n is really the
size of a set of n things. We’re going to rethink 2n as the size of some set
related to a set of n things. The idea is to do this in a way that makes sense
for finite numbers, and then use it for infinite sets as well, because we know
that ℵ0 is nothing but the size of the set of natural numbers.



We’re now going to see it’s the same as choosing what shoes to take on
holiday with you. When you’re deciding this important matter, you could
either just stare at all your shoes and pick the ones you want to take, or you
could look at each pair in turn and decide: yes or no. So how many possible
combinations of pairs of shoes are there that you could take with you? If
you own two pairs of shoes in the world, say a pair of trainers and a pair of
sandals, then you have these choices:

Take no shoes. Go barefoot.
Just take the sandals.
Just take the trainers.
Take both the trainers and the sandals.

That’s four possibilities. Another way of counting this would be to do the
yes/no method, and we could draw a decision tree:

(Yes, if you actually drew this decision tree to help you decide on your two
pairs of shoes, it would be absurd and everyone would laugh at you. This is
sometimes the lot of a mathematician. I’ve been known to draw flow
diagrams to optimise my kitchen time when I’m cooking for a big party, but
I try to throw them away before anyone else sees them.)

You might recognise this tree from before. It’s the same tree as when we
were doing menu options and binary fractions. If we have three pairs of
shoes we get this tree:



So now the total number of possibilities is 2 × 2 × 2 = 23 = 8.
If we have n pairs of shoes, then the total number of possibilities is 2n,

just like the total number of binary fractions with n decimal places.
We now need to get a sensible interpretation of this when n is infinite.

This is called a generalisation and is an important part of mathematical
thinking. You start with something fairly familiar, and then try to expand
the concept to make sense for something less familiar, without ruining the
original concept. Previously we vaguely talked about ‘infinite trees’ and
took a leap of faith about it, but we’re now going to do something more
precise.

We have come up with 2n while trying to pick which shoes to take on
holiday. This means we were picking a subset of our total set of shoes. Our
conclusion is that if our total collection has n pairs of shoes in it, there are
2n possible subsets that we could take on holiday with us.

This is now a concept that works even if n is infinity, that is, if n is the
version of infinity that we have come up with. We start with an infinite set,
say the natural numbers. The natural numbers have cardinality ℵ0, by our
definition. Then we can consider the set of all possible subsets of natural
numbers. Then we define 2ℵ0 to be the cardinality of this set. We haven’t
calculated what size this is, but we have made sense of the notion of raising
2 to the power of infinity, in a way that is consistent with the notion for
finite powers of 2.

We have no hope of ever writing down what all the subsets of the
natural numbers are, but then, we can’t write down all the natural numbers
in the first place either. In fact the situation is now worse, because the



subsets of the natural numbers are uncountable – there’s no way of putting
them in a list, even in principle, without leaving some out.

If you remember that 2ℵ0 is supposed to be the size of the real numbers, you might
think it’s a bit random to try and understand the ‘number of real numbers’ via the
‘number of possible subsets of the natural numbers’. In case it’s bothering you,
here’s a way of seeing that those concepts are directly related. Remember that to
pick a subset of the natural numbers you could either

write a list of all the natural numbers you’re including in your subset, or
go down the list of all natural numbers and write ‘yes’ or ‘no’ next to them, to
show if each one is in the subset or not.

If you use the second method, what you’ve effectively done is written a long string of
‘yes’ and ‘no’ which you could turn into a long string of 1’s and 0’s going on forever:
and this is exactly what a binary fraction is.

It turns out we can use something just like Cantor’s diagonal argument to
prove that the collection of subsets of something is always bigger than the
original collection. For finite numbers this is sort of obvious – no matter
how many pairs of shoes you have, there must be more possible
combinations you could take on holiday than there are pairs of shoes. For
infinite sets this is a little trickier, but possible. And because this is how
we’re defining 2n this tells us that 2n is always bigger than n. This means
that our supposed hierarchy of infinities

ℵ0

ℵ1 = 2ℵ0

ℵ2 = 2ℵ1 = 22ℵ0

ℵ3 = 2ℵ2 = 222ℵ0

really does keep getting bigger. So no matter how big an infinity we’ve
arrived at, we can always think about the collection of subsets of it, and get
a bigger one.

What this tells us is that when the children were arguing about how
right they were and invoking infinity, the first way they could have made



their infinity bigger was to say ‘I’m right times two to the power of
infinity!’ And then:

‘I’m right times two to the power of two to the power of infinity!’
‘I’m right times two to the power of

two to the power of
two to the power of infinity!’
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What Infinity Is

ometimes when you’re hiking in the mountains the path is very
obvious. I’m not exactly a mountaineer so the hiking I’ve done has mostly
been on well-trodden paths, maybe even with signposts. However, there
was one memorable time on a Duke of Edinburgh’s expedition in France
when we were almost at the campsite but confused by the last pathway.
There were more paths than the map indicated. The compass bearing didn’t
seem to match any of them exactly. We were tired – I recall we had walked
42 kilometres that day, with our 20- or 30-pound rucksacks (tents were
heavy in those days). We didn’t want to go the wrong way and have to
come back, so we compared various clues: which path seemed the most
well trodden, which path seemed to match the compass bearing the best,
which path seemed to lead somewhere that opened up. Finally we noticed
an arrow in the dirt made from pebbles by some helpful person before us.

In this first part of the book we have hiked up various dead ends and
retraced our steps, finally finding a promising path to infinity. We now have
various clues about what infinity really is.

Numbers can be measured as the size of an official number bag, or set.
Infinity is no different.
The smallest infinity is the size of the natural numbers.



The infinity of real numbers is bigger than the infinity of natural
numbers.
Whatever infinity you are thinking about, if you take 2 to the power of
that infinity you get a bigger one.

The first point seems to indicate that, unlike what we saw in the first few
chapters, infinity is in fact some kind of number, as long as we think about
numbers in a certain way. The integers, rational numbers and real numbers
are extensions of the natural numbers but in a way that didn’t help us with
infinity. We have seen that the ‘official number bag’ way of thinking about
numbers gives us an extension of the natural numbers that does help us with
infinity. In fact, it gives us two different ways: the ordinal numbers and the
cardinal numbers. We’re now going to see what these are and see how they
avoid the earlier problems we had when trying to define infinity as a
number.

We have talked about cardinality as measuring the ‘size’ of a number.
The cardinal numbers are the official number bags that we use to measure
the sizes of different numbers, especially bigger and bigger sizes of infinity.
(The finite cardinal numbers are not very different in practice from the
finite natural numbers.)

But there’s another aspect of infinity we might care about. Thinking
back to our first discussion of Hilbert’s Hotel, we had a full hotel and just
one new guest arriving. It seemed impossible to fit the extra guest in, but
then we hit on the idea of moving everyone up one room. This is all very
well but we completely neglected to worry about the hassle we were
causing all those guests. If one guest arrives first and then an infinite
coachload of guests afterwards, nobody has to move room in order for
everyone to fit in: a hassle-free solution. But if the infinite coachload
arrives first, and one extra guest afterwards, all the earlier guests have to
move room in order to fit everyone in: a necessarily ‘hassleful’ solution.

This is about the order in which guests arrive. You might imagine that
room 1 is the best, room 2 is the next best, and the rooms gradually get less
good from there. In that case it would be unfair to put the last guest in the
best room; you really want to assign rooms to guests in order of arrival.

This reminds me of the times I have stood in the queue at the Royal
Albert Hall to go to the Proms. When you arrive you’re given a raffle ticket



telling you your place in the queue. I once arrived at 6 a.m. to queue to see
the amazing Simón Bolivar Orchestra conducted by Gustavo Dudamel,
playing Mahler’s 2nd Symphony, one of my favourites. I was very excited
to be number 6 in the queue and after spending all day as number 6 I had
become quite good friends with number 5. (Numbers 7 and 8 were my
parents.) In this case it really matters what order everyone arrives in. I
arrived that early because I really wanted to be at the very front, and after
queueing for thirteen hours I didn’t really want anyone to push in front of
me. Numbers 1, 2 and 3 had camped out overnight to get their places.

This is different from if you’re hosting a party in a bar, and the room
has a maximum capacity of 100 people. You might give a raffle ticket to
each person on the way in, so you would know it was full after you’d
handed out ticket number 100. You don’t care in what order people arrived,
you just need to know when you get to 100.

This is the difference between cardinal numbers and ordinal numbers.
Cardinal numbers only measure the size of things, without really worrying
about where those things all are in relation to one another. Whereas ordinal
numbers take the ordering into account. This is like the question of the
Hilbert’s Hotel manager causing the guests hassle by moving them around
to fit new guests in.

When we’re only thinking about finite numbers, there’s not a very
noticeable difference between these two types of number. But when we’re
thinking about infinite numbers, they become very different. Ordinal
numbers are much more subtle than cardinal numbers.

In the previous chapter we were talking about the sheer size of things,
and we called it ‘cardinality’. We were talking about cardinal numbers. One
big difference between cardinals and ordinals is how many different types
of infinity there are. We saw that the smallest infinity in terms of sheer size
is the size of the set of natural numbers, and that the size of the set of real
numbers might be the next infinity up. However, if we think about the order
in which people arrive, and the hassle of moving rooms in Hilbert’s Hotel,
there are definitely ordinal infinities in between those two infinities. If you
care in what order people arrive, the situation becomes very different, and
more strange.

The example of Hilbert’s Hotel and one extra guest shows us that that
‘one plus infinity’ fits into infinity with no hassle or unfairness, but ‘infinity



plus one’ fits into infinity only with hassle. We could write this fact like
this:

∞ + 1 ≠ 1 + ∞.

Now let’s think about the example of two infinite busloads again. If you put
the first busload into the hotel in order, you have a problem when the
second busload arrives. You can fit them in by asking all the earlier guests
to double their room number, leaving the odd-numbered rooms free. But
then the new guests will be going into rooms ahead of the people who
arrived earlier: unfair. What we have here is that ‘infinity times two fits into
infinity but it’s a hassle’.

Now suppose that instead of two groups of infinity turning up, you have
infinity groups of two. So, perhaps, you have an infinity number of tandem
bicycles arriving, each with two people on. A very realistic possibility, I’m
sure you’ll agree.

The first tandem arrives, and you put the front cyclist in room 1, and the
back cyclist in room 2.

The next tandem arrives, and you put the front cyclist in room 3, and the
back cyclist in room 4.

And so on. Every time another tandem arrives, you fill up the next two
rooms. And the key here is that nobody ever has to move room. Where
previously we had ‘infinity times two’ as we had an infinity bus load, twice
over, this time we have ‘two times infinity’ as we have pairs of people, but
an infinite number of times. In normal arithmetic with finite numbers we
don’t have to make the distinction between, say, ‘two times five’ and ‘five
times two’ because we know they’re the same. But here we find that



‘infinity times two’ fits into the hotel with hassle, but ‘two times infinity’
fits into the hotel with no hassle at all. That is, if we take hassle into
account, we have the following fact:

∞ × 2 ≠ 2 × ∞.

This is another hint that infinity does not behave like an ordinary number if
we care about hassle.

You might be thinking that the notion of ‘hassle’ is not a very
mathematical notion, which is true. That’s why we really think of it in terms
of ordering. You can detect whether ‘hassle’ has occurred by seeing
whether the hotel guests are housed in rooms that match the order in which
they arrived. If you don’t care about the hassle you caused them, you can
disregard the order in which they arrived – you just care about whether they
fit in the hotel or not. This is called ‘cardinal arithmetic’, because
cardinality is just about how many things there are. If you do care about the
order in which they arrived, this is called ‘ordinal arithmetic’, and it’s about
what order things are in, not just how many there are. They’re both the
same when we’re thinking about finite numbers, but get interestingly
different when we think about infinity, giving us two different valid
versions of infinity.

Infinite Queues

Now that we’re thinking about the order in which people arrive, it’s helpful
to think about queues. Imagine you’re in charge of handing out raffle tickets
to mark people’s places in a queue. This is going to be a miraculously big
queue, a sort of ‘Hilbert’s Queue’, because there will be an infinite number
of people in the queue. You have a book of raffle tickets with one ticket for
every natural number: 1, 2, 3, 4, 5, 6, and so on. The people arrive, and you
give each one a number in order of arrival.

Now suppose you’ve used up all those tickets, because an infinite
number of people have arrived (just like in Hilbert’s Hotel). If another
person arrives now, you could just ask everyone to move back one place in
the queue to free up ticket number one, and then you could give the new
person that spare ticket. But then that last person will have jumped the



entire infinite queue, which would not be fair at all. Instead, the only fair
thing to do is start a new book of raffle tickets in a different colour. Say the
first book was red and the second book is blue. Then you have to remember
that all the red tickets come before all the blue tickets.

You might wonder if there’s some way of sorting this situation out so
that you don’t have to use a second book of tickets. The answer is that there
is no way of doing it without some queue jumping happening. This tells us
that according to ordinal numbers, ‘infinity plus 1’ is actually bigger than
infinity. When we are thinking about the infinity of natural numbers in this
ordinal way instead of the cardinal (size) way, we often write it as ω. So
what we have here is that ω + 1 > ω. On the other hand 1 + ω means that
one person arrived first, and then an infinite number of people arrived
afterwards. This way round you could quite happily use just one book of
raffle tickets and never need the second book. This tells us that 1 + ω = ω.

This is the beginning of the weird and wonderful arithmetic of ordinal
numbers, where the rules we’re used to with normal numbers all have to be
reconsidered. The first rule that has changed is about the order of adding
things up. With ordinary finite numbers we know that order doesn’t matter
when we’re doing addition. So

5 + 3 = 3 + 5

and more generally

a + b = b + a

for any real numbers a and b. (Remember the real numbers are all the
decimal numbers, rational and irrational.) We’ve already seen an example
involving infinite ordinal numbers where this fails, because we’ve seen that

1 + ω = ω

but

ω + 1 ≠ ω

so



1 + ω ≠ ω + 1.

The property a + b = b + a, if it is true, is called commutativity of addition,
because the a and the b can ‘commute’ past each other. It is still true for
finite numbers even if we are thinking about this new ordinal way of doing
things. Let’s try it with 5 and 3.

Suppose you’re in charge of that queue again, and five people turn up.
You will give them raffle tickets 1, 2, 3, 4, 5. If three more people turn up
you will give them 6, 7, 8. This shows that 5 + 3 = 8 with ordinal numbers.

Now, if three people arrive first, you give them tickets 1, 2, 3. If five
more people turn up, you give them tickets 4, 5, 6, 7, 8. The answer is still
8. You didn’t have to give them those tickets in that order, but the fact is
that in both cases you can give them tickets 1–8 without disrupting the
order in the queue. So the answer is the same, no matter what order you do
it.

If you were feeling a bit strange you could have handed out the tickets 2, 4, 6, 8, 10,
12, 14, 16 instead, or even 1, 5, 9, 14, 18, 100, 200, 378. This is valid, and would
mean that everyone was still in the order they arrived; you’d just have to remember
not to give out the tickets you skipped when more people arrived.

In the case of 1 and ω, there is no way of handing out raffle tickets so that
one person followed by ω people uses the same tickets as ω people
followed by one person, without disrupting the order of the queue. You
might notice that this is not a mathematical argument – it’s just a plausible
thought. The genuinely mathematical way of showing that 1 + ω is not the
same as ω + 1 is to think about who is the last person to arrive in the queue.
In the first case we can’t tell who it is, because the ω people who arrive go
on forever. Whereas in the second case we know exactly who is the last
person to arrive – it’s the one who arrived after the infinite number of
people who came first. Any queue with an ‘identifiable last person’ isn’t the
same as a queue with no identifiable last person.

In mathematics, the queues with no last person are called ‘limit ordinals’ because
you’ve used up a book of raffle tickets all the way to its limit, and you can’t continue
without getting hold of another book of raffle tickets.



Note that there are plenty of queues of different lengths that all have an
identifiable last person, for example, all finite queues. Soon we’ll see that
there are also plenty of queues of different lengths that don’t have an
identifiable last person.

Multiple Infinite Queues

The next thing to try after addition is usually multiplication. This is because
multiplication is usually built up from doing addition repeatedly. With
ordinary numbers, we know that the order of multiplication doesn’t matter,
so

5 × 3 = 3 × 5

and more generally

a × b = b × a

for any real numbers a and b. This is called commutativity of multiplication.
We have already had a hint that this doesn’t work for infinite numbers,
when we thought about the difference between an infinite number of
tandems arriving at Hilbert’s Hotel, compared with two infinite coachloads
of people.

At this point we have to be careful about what multiplication really
means, because there are different ways of building it from repeated
addition. We don’t have to worry about it with ordinary numbers because
the different ways give us the same answer. You might have entirely
forgotten that these two different ways of thinking about it are even there.
The two different ways are this: is 5 × 3 supposed to be ‘five lots of three’
or ‘three lots of five’? Is it five bags of cookies, where each bag has three
cookies, or is it three bags of cookies where each bag has five cookies? Is it
3 + 3 + 3 + 3 + 3 or 5 + 5 + 5? With ordinary numbers we don’t worry
because we know it’s the same answer. However, if you help small children
with multiplication it will take some time to convince them of this, and
usually involves lining some objects up in a rectangular grid pattern.



In the case of infinite ordinals it is going to make a difference, so we have
to make a decision about what a times b means. The usual decision in
mathematics is that a × b means ‘a added to itself b times’. (This is sort of
consistent with ab meaning ‘a multiplied by itself b times’.)

So for 5 × 3 we have to think about 5 people arriving in the queue,
followed by another 5, and then another 5. You will hand out raffle tickets
1–15. For 3 × 5 we have to think about 3 people arriving in the queue, and
then another 3, and then another 3, and another 3, and another 3. You will
still be able to hand out raffle tickets 1–15.

However, now let’s think about the coachloads and tandems again. If ω
people turn up, followed by another ω people, you will have to use up a
whole book of, say, red tickets, followed by a whole book of blue tickets.

On the other hand, if the infinite tandems turn up, you would start by
handing out tickets 1 and 2 to the first tandem, then 3 and 4, then 5 and 6,
and so on. You could keep going like this and never have to break open a
second book of raffle tickets.

In the first case we have done ‘ω added to itself 2 times’, which we’re
calling ω × 2. The answer is two whole books of raffle tickets, which is the
same as ω + ω. In the second case we have done ‘2 added to itself ω times’,
which in our definition of multiplication is 2 × ω. This time the answer is
just one book of raffle tickets, that is, ω.

ω × 2 = ω + ω
2 × ω = ω

Now ω + ω is even bigger than ω + 1, which was already bigger than ω.
This means that

2 × ω ≠ ω × 2



so infinite ordinals do not have the property of commutativity of
multiplication.

You might now wonder if we can tell these are different using the same
method as last time, by seeing who is last in the queue again. However, this
time it won’t work as neither of these queues has a last person. We have to
use a slightly different approach: we can imagine asking everyone to see
who is directly in front of them in the queue. For the queue with ω people,
the only person who doesn’t know who’s in front of them is the person with
raffle ticket number 1, because there’s nobody in front of them. Whereas for
the queue with ω + ω people there are two people who don’t know who’s in
front of them:

the person with red number 1, because there’s nobody in front of them,
and
the person with blue number 1, because all the people with red tickets
are in front of them, but there is no ‘last’ red person, so there is no
identifiable person directly in front.

We can use this method to show that every time we add another ω we’ll get a new
ordinal number, because each time there will be a new number 1 person with a new
colour of ticket who won’t be able to tell who is directly in front of them.

Infinite Subtraction

We can now think about subtraction, the thing that was causing us problems
right at the beginning when we were trying to see if infinity could be an
ordinary number. When we defined subtraction for integers, we did it using
the notion of additive inverses, that is, the negative numbers. However, with
the ordinal numbers we don’t have negative numbers. Who would be the
minus-first person in a queue? You can imagine a small child trying to
claim this place in an attempt to beat the person who is first in the queue,
but it doesn’t really work like that. Not unless you can then add that person
to another queue to eliminate a person from that queue. (Maybe the small
child would like to do that too, and would at this point get cross with the
entirety of mathematics, like when you try and get them to do arithmetic by



thinking about numbers of cookies, but say they’re not allowed to eat
them.)

Instead we have to go back to the way you do subtraction when you’re
little, and you don’t know how to count backwards yet. Let’s think about 5
– 3. We all know the answer is 2, because we can count backwards from 5,
or because we can put up five fingers and then put three of them down and
count the rest. Or just because we know. However, if you only know how to
count up and not down, you can do this by starting at 3, and seeing how
many steps it takes to count up to 5. When children do this they are
answering the question ‘What do I have to add to 3 to make 5?’ We could
get a bit fancy and write that as an equation:

3 + x = 5.

There’s another related question which is ‘Is there a number such that if I
add 3 to it, I’ll get 5?’ Note the crucially different wording; this is expressed
in the equation

x + 3 = 5.

Now in normal numbers these are the same equation, because 3 + x = x + 3,
but we’ve seen that for infinite ordinals addition is not commutative, so
with other numbers in place of 3 and 5, these could be different equations.
We need to think about these two situations separately when we’re thinking
about infinite ordinals.

For example, what about this: what do I need to add to 1 to get to ω?

1 + x = ω.

This would be solved by putting x = ω because we know that

1 + ω = ω.

If we try it the other way round, things go wrong. Is there a number such
that if I add 1 to it I’ll get ω? This is:

x + 1 = ω.



We can’t put x = ω any more, because

ω + 1 ≠ ω

as we saw earlier. In fact, there are no possible solutions, because no matter
what we put for x, x + 1 is going to have a ‘last person in the queue’ (the 1
at the end) whereas ω will not have a ‘last person in the queue’. This means
that we can’t necessarily solve equations like

x + a = b

which means we can’t necessarily do subtraction. Let’s see why.
We have to remember that adding things on the left and right are

different with infinity, so subtracting on the left and the right will probably
also be different. Subtraction is ‘undoing addition’. If we undo addition on
the left of the number, we are removing people from the front of the queue.
If we undo addition on the right of the number, we are removing people
from the back of the queue, and here’s the problem: if we have no
identifiable last person in the queue, we can’t remove the last people in the
queue because we can’t find them. This is why we can’t solve

x + 1 = ω

because to find x we have to undo the +1 on the right of ω. Whereas we can
solve

1 + x = ω

because this one involves undoing the +1 on the left of ω, the front of the
queue.

This is exactly the problem we kept running up against before when
showing that infinity couldn’t be any of the earlier types of numbers. We
said we wanted

1 + ∞ = ∞

but that would mean we could ‘subtract ∞’ from both sides to give



1 = 0.

We’ve finally found a way of defining infinity that doesn’t cause this
problem. We have

1 + ω = ω

but we can’t subtract ω from the right of both sides, as we can only subtract
from the left. If we try subtracting ω people from the front of the 1 + ω
queue there will be nobody left, just like if we subtract them from the front
of the ω queue. So subtracting ω from the left on both sides of this equation
just gives

0 = 0

as expected. We finally have a logically valid way of defining infinity that
accounts for the strange behaviour with subtraction, so we finally have an
answer to the argument between my little nephew and his friend, about
whether infinity is a number or not.

Infinity isn’t a natural number,
an integer,

a rational number,
or a real number.

Infinity is a cardinal number and an ordinal number.

Cardinal and ordinal numbers do not have to obey all the rules that the
earlier types of number obey. This is why infinity works here.

We also have some new answers to the children arguing about being
right ‘times infinity’. If they are arguing with ordinal numbers, then they
have a lot more scope for subtly different levels of infinity than if they are
arguing with cardinal numbers. With cardinal numbers you have to leap up
to ‘2 to the power of infinity’ to get a bigger infinity with which to be right.
But with ordinal numbers you only have to add 1: you just have to be
careful to add it on after your infinity, not before it.

My favourite example of this is from The Taming of the Shrew:



If this be not that you look for, I have no more to say,
 But bid Bianca farewell for ever and a day.

If forever is ω, then forever and a day is ω + 1. Shakespeare knew that ω +
1 is more than ω. At least, that’s what I like to think.
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Where Is Infinity?

wish I could teleport. I would love to be able to think of a place I’d like to
be, and instantly be there. I would still go on normal journeys if they’re
beautiful, but if I just need to be somewhere to accomplish something or
visit a long-lost friend it would save a lot of time and effort to be able to
teleport.

One of the things I enjoy the most about the abstract world is that
everything does happen as soon as you think of it. If I want to explore a
different abstract world I can just think of it and instantly be there. If I want
to play with a new abstract toy I can do it as soon as I’ve thought of it. As
soon as you have an idea, that’s it – the idea exists. If only I could make my
dinner exist just by getting an idea in my head of what I want to eat.

Of course, we could have long arguments about what it means for an
abstract thing to ‘exist’, but for me it means that I can play with it. This is
how abstract mathematical research often works. You have an idea for a
new mathematical concept, and you can immediately start playing with it in
your head – building things out of it, seeing how it interacts with other
things. It might cause a contradiction and make everything implode, but the
idea still exists and you can still play with it. It’s not like having an idea for
a new type of car or medicine where you then have to work out how to turn
it into ‘reality’, get equipment and materials to manufacture it, get funding
to obtain the equipment and materials, and so on.



For example, the idea of numbers exists because we’ve thought of it.
Does that mean numbers exist? It depends who you ask. Philosophers get
into long arguments about this. Personally I am happy with the thought that
a number is just an idea. I don’t worry about whether or not numbers exist
any more than I worry whether or not I exist. Whether I ‘exist’ or not, I still
get on with my life. Whether numbers ‘exist’ or not I still get on with
mathematics. Then again I might be unusual in my attitude to existence: I’m
the only person I know who thinks Father Christmas exists on the grounds
that Father Christmas is the idea that causes presents to be given at
Christmas. Some people would say that this only means the idea of Father
Christmas exists, but I am quite happy to say that Father Christmas is an
abstract idea, just like numbers are an abstract idea, and be done with it.

In this sense, I am happy to say infinity exists, on the grounds that it
exists as an abstract idea. But we can still ask ourselves whether infinity
exists at any less abstract level than this. Does any infinite number of things
exist in ‘real life’? I always hesitate over the term ‘real life’ for several
reasons. First because abstract things aren’t necessarily less real than ‘real’
things. Tiredness is abstract but feels very real to me, whereas the bottom of
the Pacific Ocean is real but feels very abstract to me as I will never touch,
see or experience it. The other reason I’m wary of the idea of ‘real life’ is
that too many supposedly real-life mathematics questions are completely
implausible, involving things like your wild horses escaping, or going out to
buy seventy-five watermelons.

It is questionable whether an infinite number of ‘real things’ is present
in the universe. There is certainly an extremely large number of molecules
or atoms or electrons, but as we’ve seen there’s a big difference between an
‘extremely large number’ and ‘infinity’. The universe itself seems infinite
to our small finite brains, but might be finite (it is currently unknown).

There certainly are infinite quantities of abstract objects. Take numbers,
for example. We know that the natural numbers definitely have no bound to
them, unlike the universe, where we can’t tell. Each individual natural
number is finite, but they get bigger and bigger forever. In the sense that
numbers exist at all, there is an infinite quantity of them. In the next chapter
we’re going to look at some other things that keep growing so much that we
can’t put any boundaries on them. Like the natural numbers, they are finite
at any given moment, but grow so much that it is useful to think of them as



‘approaching infinity’, and it is possible to make sense of this. I have a
friend who adopted a Great Dane puppy and he grew so implausibly fast
that at one point it seemed as if he might be approaching infinity.

In Chapters 12 and 13 we’ll look at ways in which our brains have an
unbounded capacity even if our brains aren’t themselves infinite. There is
no limit to the gradations of subtlety we are capable of, and this leads us to
abstract higher-dimensional spaces in Chapter 12. These are different from
physical spaces as they are realms of thought rather than realms of physical
existence. We’ll see that we can give meaning to the informal idea of a
book’s storyline being ‘a bit one-dimensional’, and that if we think about
dimensions in that sense, our lives are very multidimensional. The number
of dimensions can’t really be bounded, so it again approaches infinity. In
Chapter 13 we’ll think about a different type of dimension, a type that
comes from category theory, a field of abstract mathematics that studies
relationships between things. Here we think about the nature of
relationships between things, but then we think about the relationships
between those relationships, and the relationships between those
relationships, and so on ‘forever’, leading us to infinite-dimensional
categories. Both of these types of dimension give us more subtle and
expressive ways of thinking about the world around us.

We’ll then move on to a different way in which things can seem to be
infinite. Rather than something being so big as to be unbounded, we might
want to understand something in tiny portions. This is where we realise that
if we think about infinitely small portions of things, everything is divided
into infinitely many of those infinitely small portions. In Chapter 14 we’ll
see how thinking of infinitely small things opens up some strange
paradoxes that took thousands of years to resolve. In Chapter 15 we’ll see
that in resolving those issues, mathematicians realised they didn’t really
know what real numbers were, at least not well enough to make formal
arguments about them as precisely as they needed to. In Chapter 16 we’ll
look at some weird things that arise from this new understanding of infinite
and infinitely small things. Finally, in Chapter 17 we’ll investigate ways in
which infinity implicitly arises in our lives, via loops that we can go round
forever. But what does ‘forever’ mean?



The Abstract Version of Forever

One way in which infinity comes up in life is when we talk about things
‘going on forever’. We have decimal numbers that ‘go on forever’ and the
natural numbers ‘go on forever’. In real real life nothing can go on forever,
but in mathematics we have an abstract version of this which enables us to
gain access to forever in an instant. This is another joy of abstraction for
me.

Right at the beginning of the book I mentioned my favourite computer
program, which prints infinite lines of HELLO on the screen. It only needs
two lines of code though: one line to start us off, and one line to say ‘do this
again’. This is how we produce forever abstractly. It’s just like the way we
saw of constructing the natural numbers where we start with 1 and keep on
adding 1 to it ‘forever’. We do this abstractly rather than actually going
through the motion of adding 1 repeatedly. If we went through with the
physical motion of adding 1, and then another 1, and then another 1, it
would take ‘forever’, a longer time than we’re alive. However, if we do it
abstractly, then we get all the natural numbers all at once. It’s like doing it
in principle rather than in practice. One of the fun things about the abstract
world is that doing things in principle and doing them in practice turns out
to be the same. There really isn’t much difference, unlike in that wry
saying, ‘In theory, theory and practice are the same, but in practice …’

This way of making all the natural numbers is the basis of something
called the principle of mathematical induction. It essentially says that you
can think about all the natural numbers at once, just by thinking about the
number 1 and by thinking about adding 1 to everything (in principle).

What it actually says is that if you want to show something is true for every natural
number, you don’t have to go round proving it for every natural number. You just
have to prove:

a starting point: that it’s true for the number 1, and
a way of going up 1: that if it’s true for n then it’s true for n + 1.

Once you’ve done that then suddenly, just like that, you know it’s true for all the
natural numbers.



This is like a small child who discovers that once they’ve learnt how to
climb up one step, all they need is for some adult to plonk them at the
bottom of the stairs, and they can then climb up stairs as far as they want
(until they are removed). In principle they can climb up forever, although in
practice even if they’re not removed they will get hungry and tired.
Mathematical objects do not get hungry or tired. Whenever we are in a
mathematical situation where we could in principle do something one more
time, that means there is no end to how many times we could do it, and this
is what it means for something to go on ‘forever’ in mathematics. The
numbers go on forever, a sequence of numbers can go on forever, a decimal
number can go on forever.

The fact that we have an infinite quantity of natural numbers gives us
access to all sorts of other abstract infinite things as well, in both directions:
larger and smaller. We have already seen how we can start with the infinite
set of natural numbers and produce infinite sets that are progressively
bigger and bigger. But where, if anywhere, can we find such infinitely large
sets of things in the world around us? One way is if we consider things that
are infinitely small. This is the basis of calculus, the field of mathematics
that is one of the most ubiquitous in its applications. Calculus is the study of
things that are changing. It is difficult to make theories about things that are
always changing, and calculus accomplishes it by looking at infinitely small
portions, and sticking together infinitely many of these infinitely small
portions. These infinitely small things are everywhere around us, making up
infinite sets of things that we actually experience every day without needing
to be aware of it. In this second part of the book we’ll look at the ways
infinity pops up around us whether we’re aware of it or not.

One of the strange features of mathematics is that it is there whether or
not we see or understand it, just like when we’re on a train the scenery is
there whether or not we look out of the window or know what it is that is
going past. Understanding the mathematics that is there can enable people
to build better systems and solve more complicated problems. But it can
also shed light on how we interact with the world around us, and on how
our own minds work. Illumination is a more subtle and less dramatic result
than solving a specific problem or building a specific technology, but to me
it is very fundamental and farreaching in its quiet importance.
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Things That Are Nearly Infinity

am almost certain that I will never go to the top of Mount Everest. I will
optimistically leave open the possibility of teleportation, but apart from
that, I am sure I will never go. I will also almost certainly never go to the
South Pole. I don’t know anyone who’s climbed Mount Everest but I do
know an astrophysicist who works at the South Pole. I know that the South
Pole is difficult to get to, even by plane, but is still only finitely far away. I
know that Mount Everest is only finitely high. But to me they both might as
well be infinitely far away because I will never go there.

Infinity exists, but can we ever get there? Can we ever do infinitely
many things, perhaps if they’re infinitely small enough? Before we really
look at how we can make sense of this, we’re going to think about things
that seem to get so big they might almost be infinite, and times we seem to
be doing something almost infinitely.

There’s an old conundrum about rice on a chessboard. The story is that
a man asks for one grain of rice on the first square of a chessboard, double
that on the second square, double that on the third square, and so on for
every square until the chessboard is full. The question is: how much rice
will he end up getting? The short answer is: rather a lot. But exactly how
much?

It’s not a difficult question in principle, because you just have to keep
multiplying by 2 and adding all the answers together until you’ve done all



64 squares. However, if you try this you will discover that the numbers get
big awfully quickly, much bigger than your calculator or even your
computer can handle in normal settings (unless you have some special
computational tools on there). There is a trick for speeding up the
calculation, but you still end up having to deal with a very, very large
number: 18,446,744,073,709,551,615 grains of rice.

Of course, we don’t usually measure rice in grains, except in absurd-
sounding maths questions. (I first heard about this question in a maths
lesson and tried to work out the answer by hand. I got it wrong.) So how
much rice is this in practical terms? I just tried to weigh 1 g of rice and then
count the grains, and it seemed to be about 50. So we could do this rough
approximation:

1g = 50 grains of rice
1 bowl = 100 g = 5000 grains
1 person = 4 bowls of rice per

day
= 20,000 grains

the world = 7 billion people = 140,000,000,000,000
grains

a year = about 500 days = 70,000,000,000,000,000
grains

This has 16 zeros on the end. The number of grains we had was
18,446,744,073,709,551,615 which is approximately 2 with 19 zeros on the
end: that’s 3 more zeros, a factor of about 1000. So it looks like we could
feed the world’s population for around 1000 years. (Not taking into account
the fact that, the way we’re going at the moment, the world’s population is
growing a lot each year.)

My calculation was extremely crude, but gives the general idea: just by
doing some innocuous doubling of quantities as you move around a
chessboard, you quickly get to an impossible quantity of rice, more rice
than currently exists in the world.

Puff Pastry



Puff pastry relies on the same principle, that repeated multiplication makes
things grow extremely fast. Puff pastry has an apparently miraculous
number of tiny layers in it, and they are created by folding the dough in
three just six times. The dough has a thick layer of butter sandwiched in it
to start, at just the right consistency so that when you roll it, the butter
flattens neatly inside its sandwich. Then you fold it in three, making six
layers, and chill it so that the layers stay firm and don’t start melding into
each other. Then you roll it out, fold it in three and chill it again. You do
this six times. Repeatedly multiplying by three makes the number of layers
grow very fast, and then when you bake the pastry, the thin layers of butter
melt, the liquid part of the butter evaporates and creates steam, and this
pushes the layers apart so you can watch the pastry physically grow in the
oven, not just the numbers abstractly growing.

This is my favourite demonstration of exponential growth. Informally,
people say things are growing exponentially just to mean they’re growing a
lot, which is sort of true, but the formal mathematical meaning is that it’s
growing at the same proportional rate all the time. If I folded the puff pastry
in three the first time, and then four, and then five, and then six, the number
of layers would grow even faster, but it wouldn’t be exponential as the rate
of multiplication is changing.

I love the fact that exponential growth directly translates into
deliciousness in puff pastry. The multiple layers of pastry are not just
dramatic and beautiful, but so thin that they melt away delicately in one’s
mouth. Puff pastry has a reputation of being difficult to make, but I think
the genius of the method is that the use of exponentials actually makes it
rather easy to create those incredibly thin layers of pastry. After all, it would
be very difficult to roll out such thin layers individually. And the whole
point of mathematics should be to make difficult things easier.
Unfortunately it often comes across as a way of creating difficult things out
of nowhere.

The iPod Shuffle

I remember when the iPod Shuffle first came out, I saw this big
advertisement on the Tube with the slogan ‘240 songs. A million different
ways.’ The idea was to impress people with the fact that with a mere 240



songs, you could have a million different ways of playing them if you
played them in randomly different orders instead of just going through the
library from start to finish.

In fact, this is a vast underestimate. I sat on that train calculating, just
for amusement value, how many songs you would really need in order to
achieve a million different ways of playing them.

If you have two songs, there are just two ways of playing them. Either
you start with one and then play the other, or you do it the other way round.
Let’s say you have three songs. For the first song you have a choice of three
you can play. For the second, you only have a choice of two remaining
songs, and for the third there’s no choice any more. (We are assuming that
you don’t want to listen to the same song again, although in reality I often
listen to the same song on repeat for hours.) We can again draw this in a
tree diagram, except this time there will be fewer and fewer branchings at
each level as we gradually run out of songs, assuming you don’t like
replaying them.

So we see that there are 6 possible orders here, each one being read from
the tree by following a path down it. We could have calculated it as 3 × 2 ×
1 using the number of possible choices at each step.

Now if we have four songs we get this tree



or by calculating:

4 possibilities for the first song,
3 possibilities for the second song,
2 possibilities for the third song, and
1 possibility for the last song.

So the total number of ways is 4 × 3 × 2 × 1. (We don’t really need to write
the 1 at the end as multiplying by 1 doesn’t change anything.)

This is called a factorial in mathematics, and ‘four factorial’ is written
as ‘4!’. In general, n factorial is

n × (n – 1) × (n – 2) × … 4 × 3 × 2 × 1.

We can also define it by induction, a loop a bit like my infamous HELLO program:

1! = 1
(n + 1)! = (n + 1) × n!

So if we have n songs the total number of orders we could play them in is
n!, because we have n possibilities for the first song, n – 1 possibilities for
the second song, n – 2 possibilities for the third song, and all the way down
to two possibilities for the second to last song, and only one possibility for
the last song.

Now, the question I was trying to ask is: how many songs do you need
in order to achieve at least a million different ways of playing them? Stated
mathematically, this means we’re looking for the smallest value of n such



that n! is bigger than a million. We can just write out the first few values of
the factorials until we make it, remembering that to get from each row to
the next row, we just have to multiply by the next value of n.

1! = 1
2! = 2
3! = 3 × 2 = 6
4! = 4 × 6 = 24
5! = 5 × 24 = 120
6! = 6 × 120 = 720
7! = 7 × 720 = 5040
8! = 8 × 5040 = 40,320
9! = 9 × 40,320 = 362,880
10! = 10 × 362,880 = 3,628,800

Bingo: we have burst through a million. We only need 10 songs, and we’d
already have over 3 million ways to play them.

The other question we can now ask is: with all 200 songs, how many
ways to play them do we really have? We have to calculate

240 × 239 × 238 × … × 3 × 2 × 1.

This is going to be hopeless without special equipment as the numbers are
much too big. A quick experiment with an ordinary computer spreadsheet
finds that it can only manage up to 17! before resorting to an
approximation, and we have

17! = 355,687,428,096,000.

I’m tickled to find that my phone’s calculator can go further

18! = 6,402,373,705,728,000.

My phone’s calculator then resorts to approximations, but completely gives
up after telling me that



103!  9.9 × 10163

and for any larger attempts it just gives me an error. My computer’s
spreadsheet keeps ploughing on with approximations until 170

170!  7.3 × 10306

and then it, too, gives up. This is because of the way that my (old, feeble)
computer uses its memory to hold large numbers. 171! turns out to be the
first factorial that is too large to hold.

Computational statistician Rick Wicklin has written a program to
compute large factorials, and as it happens he has published the value of
200! on his blog. He gets round the problem by making the computer store
the large numbers as a very long string of individual digits rather than as a
large number. Then he gets the computer to do the multiplication just like
you would by hand, place by place, carrying over the digits to the next
column where necessary. The answer he gets for 200! is this extraordinary
number:

7886578673647905035523632139321850622951359776871732
6329474253324435944996340334292030428401198462390417
7212138919638830257642790242637105061926624952829931
1134628572707633172373969889439224456214516642402540
3329186413122742829485327752424240757390324032125740
5579568660226031904170324062351700858796178922222789
6237038973747200000000000000000000000000000000000000

00000000000.

I believe this is the biggest number I have ever physically looked at. It has
375 digits, making it very, very, very many orders of magnitude bigger than
the ‘1 million ways’ stated in the advert and still not as big as 240!

While playing around with these absurdly large numbers, I thought I
might as well see how many songs you’d need on your iPod to get more
ways of playing them than the number of grains of rice on the chessboard.
The answer is: 21. What this tells us is that while doubling numbers makes
them get big very fast, taking factorials makes them get big even faster.



You might be wondering if it’s a weird fluke that there are so many 0’s on the end of
that number: 49 of them in fact. Large factorials are destined to have a large number
of 0’s on the end, and we can work out how many there will be even without knowing
the answer to the factorial. Each 0 comes from a factor of 10 in the final answer, and
each 10 comes from a factor of 2 and a factor of 5 in the individual components of
the factorial. There are way more factors of 2 hanging around than 5’s, so we just
need to count how many multiples of 5 there are between 1 and the number whose
factorial we’re taking, remembering that some numbers have multiple factors of 5 so
will contribute multiple 0’s.

How Fast Do You Grow?

Children grow very quickly when they’re little, and it seems even quicker
because they’re so small. Even if a child grows at around, say, 10
centimetres a year for the first few years, that amount of growth is much
more dramatic for a baby as it’s a much bigger proportion of the baby’s
total size. Of course, children grow at different rates, and some children
who are shorter when they’re younger can have a growth spurt later on and
start overtaking everyone.

In mathematics we also think about how quickly things grow, and
whether some things grow more quickly than others. In the case of the rice,
for example, we’re thinking about 2n where n is getting steadily bigger. In
the case of the songs, we’re thinking about n! where n is getting steadily
bigger. In both cases the numbers get unimaginably big very quickly,
although they’re always still finite. Mathematically we say that ‘2n tends to
infinity as n tends to infinity’, carefully avoiding ever claiming that
something is infinity. The factorial n! also tends to infinity as n tends to
infinity. But we also sense that n! goes ‘faster’ than 2n. What does that
mean?

One way we can make sense of it is to pit one against the other by
putting them in a fraction

and seeing who ‘wins’ as n gets bigger. If the fraction keeps getting bigger,
that means n! is winning. If the fraction keeps getting smaller, then 2n is



winning. If the fraction stabilises, this will show that it’s a draw. Now we
can do a bit of a clever trick again. We can write out that fraction as

and then we can split it into individual fractions like this

Now we can see that this is a product of a whole load of fractions that are
almost all top-heavy (apart from the one at the very end, ). Moreover, as n
gets bigger, this product of fractions is going to contain progressively more
terms, and the new terms are going to be even more top-heavy than before,
because while the top (numerator) gets bigger, the bottom (denominator)
stays as 2 all the time. The end result is that the top is emphatically winning
over the bottom.

There is a sort of hierarchy of how quickly things tend to infinity. It’s a
bit different from the previous hierarchy of infinities that we had, but has a
similar idea.

We’ve just seen that n! grows faster than 2n. Well 2n in turn grows faster
than n2. In fact 2n grows faster than n3 or n4 or n to the power of anything,
even n10000000000000000000. This last thing seems huge, and it will be bigger than
2n at the beginning (except when n = 1), and yet 2n will eventually overtake.
We can try this for something less absurd, say n100. My computer tells me
that n100 wins until n = 125, and then 2n overtakes.

We are only thinking about positive powers of n because negative powers don’t
actually grow at all – they get smaller as n gets bigger.

Something that grows more slowly than all possible powers of n is log n.
You might remember that logarithms are the ‘opposite’ of exponentials. If
we’re doing it in base 10 then log n is ‘the power you would have to raise
10 to to get n’. So log 100 is 2, because if you raise 10 to the power of 2
you get 100, and log 1000 is 3. Then the logs of any numbers between 100



and 1000 are somewhere between 2 and 3. Logs in base 10 basically count
how many digits a number has in base 10. So as n gets bigger, log n always
keeps getting bigger forever, but slowly. When n reaches a million, log n
has still only made it up to 6.

This is part of what makes logarithms useful – they convert big numbers
into small numbers so that we can manage them a bit better. There’s a
theory that when numbers get big beyond a certain point, our brains can’t
really process that sort of size any more, so we switch to thinking
logarithmically, observing how many digits the number has rather than how
big it is. You might do this even without realising this is called
‘logarithmically’. It’s why I told you above that the giant number 200! had
375 digits, because 375 is a number we can process; I was thinking
logarithmically. By the time a number is that big, it hardly matters whether
you’ve added 1 here or there, compared with the sheer size of the number.
That’s why in the rice example I became a bit cavalier and pretended there
were 500 days in a year – I knew it was not significantly different from 365
in the grand scheme of things, and that all I really needed to do was pick a
number with the same number of digits as 365. I was thinking
logarithmically.

Logarithms grow more slowly than raising n to any fixed power.

Slow Growth

It’s possible to grow so slowly that it looks like you’re not growing at all,
and yet you’re actually still growing. Imagine being on a diet and deciding
that you’ll only have half a slice of cake. And then it’s so delicious you
decide to eat another third of a slice of cake. And then, because you’re like
me and you keep wanting more, but you’re really trying not to get fat, you
decide to eat more but this time only a quarter of a slice. And then a fifth.
And then a sixth. And so on forever. How much cake will you end up
eating? After a while the new pieces you get will be essentially non-
existent, because after a million rounds of this you’ll only be eating a
millionth of a slice of cake, which is basically nothing, right?

Wrong. If you keep going like this forever you will actually end up
eating an infinite amount of cake. In fact, the amount you eat grows
logarithmically. That is slowly, and more and more slowly as it goes along,



but still inexorably heading towards infinity. This is what a graph of log
looks like:

From the amount of graph I’ve drawn here you can’t tell whether it’s going
to tail off completely flat or not, but it really doesn’t. It’s unbounded, which
means that whatever number you think of, it will eventually get above that
number. No matter how big you want it to be, it will always get bigger than
that eventually. We will explain this in Chapter 16.

This example shows that we really have to be careful when thinking
about infinite growth because our intuition can definitely lead us astray.
How can we end up eating infinite cake if every slice is basically nothing?
This is why some more rigorous mathematical precision is needed, to make
sense of these confusing apparent contradictions, and to be able to tell, for
sure, whether we’re eating infinite cake or not.
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Infinite Dimensions

ould you like to be able to travel in time? It sounds exciting but it
also sounds terrifying because of the dire consequences if you even slightly
interfere with your own past. Those loops and potential paradoxes intrigue
me and are the subject of some of my favourite fictional scenarios: the film
Back to the Future, the book The Time Traveler’s Wife and the more recent
film Looper, whose scenario was so mind-warping to me that I had to read
the synopsis on Wikipedia at the same time as watching the film.

Time travel has less potential for dangerous consequences if you just do
it very briefly and don’t interact with anyone while you’re away. This might
sound pointless but it could be very useful for escaping if you’re being
chased by baddies. It consists of escaping into a fourth dimension. In this
chapter we’re going to think about how many dimensions there are in the
world.

Imagine you’re on a train and someone is trying to chase you. In order
for them to catch your train all they have to do is block it in front and
behind. The train is stuck on a track so won’t be able to go round the
blockage – it can only move in one dimension, not two.

However, if you’re in a car, you can drive round a blockage, so the
baddies would have to block you in a whole circle around your car. At this
point to escape you need to be James Bond and press a button that turns



your car into a plane, so that you can fly out of the circular trap. You’ve
escaped into the third dimension.

Now in order for them to catch you they’ll need to cast an entire net
around you in the sky. To escape this you’ll need to use the fourth
dimension …

We’re so used to living in a three-dimensional world that it can be hard
to imagine what more dimensions would be like. You might immediately
think, ‘But there aren’t more dimensions.’ This is true if we’re thinking
about physical dimensions, but that’s only one way to think about
dimensions, a particularly concrete and physical way. Concrete examples
are useful for getting to grips with an idea but can have their limitations,
just like understanding numbers via cookies is fine but that makes it hard to
think about negative numbers, because ‘negative cookies’ are hard to
imagine.

One way to think about four dimensions is as a generalisation of three
dimensions. To understand how this generalisation works, it’s helpful to
take a few more steps back so that we can get a bit of a running start. If we
see how to go from one dimension to two, and then from two to three, it
helps us to see how to go from three to four, and then from four to five, and
then from any n to any n + 1, just like the child climbing up stairs or us
climbing the ladder of infinities. Then maybe if we never stop, we’ll get an
infinite number of dimensions. (Sometimes I think this idea of generalising
forever is a form of mathematical optimism.)

If you’re in a one-dimensional world, that means you’re basically living
on a straight line. Actually the line doesn’t have to be physically straight, it
just means there can be only one direction in which you can go (forwards or
backwards counts as positive and negative of the same direction). Another
way of thinking about it is that you can tell someone where you are by
giving them just one coordinate. Whether a street is straight or curved, the
houses can still be numbered in order. If you’re on a circular path you still
only have to give one coordinate to someone for them to find you – you can
just tell them how far round the circle you are. You could give them two
coordinates, telling them how far north and how far east you are, but that
would be inefficient and unnecessary. For example, instead of saying you’re
50 metres north and 50 metres east, you could say you’re 458 around the
circle, anticlockwise from some agreed starting point.



One-dimensional worlds are thus very straightforward. There’s only one
variable, which is how far along you are. Still, it’s amazing how many
times I’ve managed to get lost in a onedimensional world. When I worked
at the University of Nice, the department was circular and I could somehow
never find my office. And I frequently get lost on a train when I’m trying to
find my way back from the bathroom, because although abstractly forwards
and backwards are part of the same dimension, in practice they’re rather
different. It doesn’t help if I’m thinking about maths at the same time as
trying to find my seat.

A two-dimensional world enables you to escape from the one-
dimensional world. This is what happens when you get off the train (or
jump out of the window if you happen to be James Bond). The problem
with the one-dimensional world is often all too apparent in Sheffield as the
one-dimensional trams share the streets with the two-dimensional cars. (The
trams and cars themselves are both three-dimensional of course; I’m
referring to the number of dimensions in which they move.) If a car breaks
down on the tram track, the other cars can just drive round it but the tram is
completely stuck until the car is towed away. And it can’t just go backwards
because then it would be going the wrong way up the street. To trap
something in a onedimensional world is very simple – you just need a
blockage. That’s why they used to build moats around castles, because then
the way to the castle essentially becomes one-dimensional (the drawbridge)



and easy to block. If you don’t have a moat, you need a rampart all the way
round.

You can tell if a world is two-dimensional because you’ll need two
coordinates to say where you are: you need to specify how far ‘along’ you
are, but also how far ‘across’. This is why theatre seats and plane seats have
a row number and also a seat number. (In theory, because the number of
seats is finite, you could just number them all starting from 1 and going up,
but it would make it much harder to find your seat.)

The surface of the earth is a funny one because it seems to be three-
dimensional but really it’s only two-dimensional, because you only need
two coordinates to specify where you are: longitude and latitude. This is not
taking into account how far off the ground you might happen to be. The
surface of a sphere is two-dimensional even though it only fits inside a
threedimensional universe. This is a hint that the notion of ‘dimension’ is
not as straightforward as it seems, even if we’re talking about physical
dimensions. This is just like the fact that a circle is one-dimensional, even
though you need a two-dimensional piece of paper on which to draw it. A
simple road going through the mountains is also one-dimensional, but it
wiggles left and right as well as up and down so only fits inside
threedimensional space. The two dimensions of two-dimensional space are
often cartesian, that is, X- and Y-coordinates like in the cartesian grid
system of Chicago:



However, I was recently in Amsterdam and it occurred to me that the
concentric canal system made the city into a polar coordinate grid, where
instead of east/west and north/south, there’s how far round you are (an
angle) and how close to the centre you are:

A three-dimensional world enables you to escape from the twodimensional
world. One of the reasons I love swimming underwater is that I get to
experience three-dimensional freedom. I suppose this is one of the fun
things about hang-gliding or skydiving, except I’m much too scared to do
that. Also I wouldn’t feel quite so free about that third dimension as I’d be
at the mercy of gravity. Three dimensions is why you only need a fence to
keep in a cow, but you need an entire cage to keep in a bird. It’s also why
plane fights are more complicated than car chases. A plane needs three
coordinates to specify its position: longitude, latitude and also the height it’s
flying at. It’s why you can catch a cow with a lasso (well, maybe you can’t,
but someone can) whereas for a fish, or for Superman, you need a net. (Or
some kryptonite.)

A four-dimensional world enables you to escape from the three-
dimensional world. If a fish had miraculous access to a fourth dimension, it
could escape your net. If you were James Bond in a plane and surrounded
by baddies, you could hit a button and escape using the fourth dimension.

Possible Fourth Dimensions



If you find this hard to understand you can imagine time as a fourth
dimension. This is a valid and in fact powerful way to think of time, put to
great use in theoretical physics, but it is just one way of thinking of a fourth
dimension, not the only way. What this means is that if you’re captured you
could escape by time travel. This is a common theme in fiction involving
time travel. In Back to the Future Marty escapes from the people who shot
the Doc by time travelling (albeit accidentally). In The Time Traveler’s Wife
Henry is arrested but escapes by time travelling – also accidentally.

Another way of thinking of it is that time is another coordinate that you
need to specify. If you’re meeting up with someone, you need to specify
where but also when. If you both go to the same coordinates but at different
times you won’t meet up; you’ll be at the same place but you won’t be at
the same place in ‘space-time’.

Here’s how you escape using time as the fourth dimension. First let’s
think about how you escape from two dimensions using the third. If you’ve
been fenced in it’s not hard to escape: you climb over the fence. The person
who has fenced you in has mistakenly believed that you can only move in
two dimensions, which is to say that you can’t change your vertical
coordinate. All you have to do is change your vertical coordinate briefly, get
over the fence, and then your vertical coordinate can go back to being zero
again, now that your east and north coordinates are safely outside the fence.

If someone has caught you in a net, you’ll need to change your time
coordinate to get out. You can just briefly time-travel into yesterday, where
you are not caught in a net, and can move sideways a bit. Then you can
time travel back into today, now that your physical coordinates are safely
outside the net.

Another way to think of it is imagining that the fourth dimension is
colours, so that you’re only really in the same place as something if you
have the same east, north and vertical coordinates and you’re the same
colour. You can change your colour coordinate by painting yourself a
different colour. This means that for someone to trap you in a room with
white walls, they’ll have to paint you white. For you to escape you just have
to get hold of some other colour paint, say purple, paint yourself that colour
and then you can walk straight through the white walls. You can then revert
to whatever colour you want when you’re safely through the walls. It’s a bit
like an invisibility cloak, except those have only two states, visible and



invisible, and even if you’re invisible you can’t necessarily walk through
walls.

I recently explained all this to a musician, who immediately said, ‘Does
that mean music is a fourth dimension, because it enables you to escape the
three physical dimensions?’ I would say yes, although it’s a bit tricky
because it doesn’t exactly enable you to escape permanently. If you’re
trapped in a room you can escape the sensation of being trapped by
listening to music, but you can’t use it to get yourself physically outside that
room. If I’m on a train listening to my music and someone else is listening
to some completely different music it does seem like we’re not in the same
place at all, and if I’ve just been to a particularly powerful concert I’ll
emerge into the street and feel like I’m not in the same dimension as all the
people who were not there. It can also be like time travel as I can listen to a
piece of music and immediately feel like I’m in another time (and place)
that I particularly closely associate with that music.

You might wonder why it has to be about escaping. The reason is that if
you’re not escaping the previous dimensions, it’s not really a new
dimension. It’s like the fact that you could use more coordinates to specify
your position. You could say how far east you are, how far north you are,
and also how far north-east you are. ‘I’m 4 miles east, 2 miles north and 

 miles north-east.’



That would be accurate but redundant. In mathematics this is the notion of
‘independence’ of the dimensions. If one of the dimensions can be
expressed in terms of the others it’s not independent. This is linguistically
evident in our example as ‘north-east’ is a word made from ‘north’ and
‘east’.

Does Anything Really Have Four Dimensions?

As my research is in higher-dimensional category theory, I spend a lot of
time talking to people about dimensions, both formally and informally.
When I give non-specialist talks there will typically be someone in the
audience who gets very upset and insists that it’s all pointless because there
simply isn’t a fourth dimension, because we simply do live in a
threedimensional world.

That is correct physically. But once you start thinking of dimensions in
terms of independent coordinates things completely change. I said earlier
that once we can imagine something in mathematics, it exists. As long as
we can imagine more than three independent ideas then we have created an
idea space with more than three dimensions. And I am sure you have had
more than three independent ideas in your life. Just like Molière’s bourgeois
gentilhomme who discovered he had been speaking in prose all his life
without realising it, you have probably been thinking in many more than
three dimensions for much of your life, possibly without realising it.

Coordinates are, after all, just a string of numbers. The numbers can
represent anything that is on some kind of measurable scale. Distance is one
such thing that is on a measurable scale. To take those words rather literally,
weight (or rather mass) is something else you can measure on a scale. The
last time I went to the doctor they recorded my age, height, weight, pulse
and blood pressure. Given that blood pressure is two numbers, that’s six
numbers right there. If you wanted to plot a graph of everyone’s
information, you’d need a six-dimensional graph.

I’ve just spent several days practising making French macarons. It was
very confusing because there were so many variables. Although there aren’t
many ingredients you still have to decide how much icing sugar, caster
sugar and ground almonds to use per 100 g of egg whites. Then you have to
decide how long to whisk the egg whites, how long to fold the batter, how



large to pipe the circles, how long to let them stand, what temperature to
have the oven and how long to bake them. That’s a nine-dimensional space.
And that’s not even taking into account the state of confusion I get into
when I’m trying to buy eggs, which have their own variables: size, colour,
free-range or not, organic or not, vegetarian or not. I want them to be large,
brown, free-range, organic and vegetarian, but I frequently get to the
checkout and discover I forgot to check one of those variables.

Every time you compare things according to a list of criteria you’re
effectively looking at a space with that many dimensions. From this point of
view, it would be quite rare to have as few as three dimensions. Once
you’ve bothered going as far as listing criteria there are probably going to
be more than three. This might be true even if you don’t notice yourself
listing them: every time I buy a plane ticket I weigh up the price, the airline,
the schedule, the number of stops and the airports, but I do it in my head.

Robotic Arms

You might think this is all very well, but is there ever a need to study those
higher-dimensional spaces? Do we even need to know that they’re there?
You’ve been getting along with your life perfectly well without knowing
you’re thinking about higher-dimensional spaces; you also probably spoke
for many years without knowing you were speaking in prose.

One situation in which higher-dimensional spaces are studied is space-
time, which consists of our normal three-dimensional space together with
time as a fourth dimension. Einstein’s theory of relativity involves this four-
dimensional space being curved.

Something a little more concrete than that is the study of robotic arms.
Robotic arms are used all over the place including factories, outer space,
keyhole surgery and arcade games. The arm itself is moving inside three-
dimensional space, but to study its range of movement you have to consider
what each hinge or socket is doing at any given moment. Each hinge is one
variable, so you end up with a space with as many dimensions as there are
hinges, or more if they are more complex sockets.

Look at your own arm for a moment. If you sit still and wave your hand
around, your hand appears to be moving in three-dimensional space. How is



it doing that? There are various hinges and joints giving different specific
types of motion.

If you wave your arm around but keep everything rigid from your
upper arm to your hand you’ll see that your shoulder joint all by itself
gives you two dimensions of motion: to specify where your upper arm
is in relation to your body you’ll need two coordinates, up-down, and
front-back.
Your elbow gives you one coordinate, for the angle your forearm is
making with your upper arm.
Your wrist gives you two coordinates for the position your hand is in
relative to your forearm: one coordinate for updown, and another for
left-right.
There’s also forearm rotation, which you might also think of as hand
position: the hand can rotate from palm up to palm down.
There’s also the rotation of your upper arm: you can keep your upper
arm in the same place relative to your body, and fix the angle your
forearm makes with your upper arm, but still rotate. This is more or
less what happens if you’re waving at someone, the type of wave
where your hand makes an arc in the air, not the type where you flap
your hand.

That’s seven dimensions. Is my hand really moving in sevendimensional
space?

If you’ve ever worn a dress you may have spent some time trying to do
the zip up the back. If you’ve never worn a dress perhaps you’ve met a
similar issue trying to put sun cream on your own back. What happens with
the zip, typically, is that you can do up the bottom portion with your hands
behind your back, but at a certain point you get stuck, and have to switch
configuration so that your hand is going over your shoulder and can then
pull the zip up to the top. If you’re not flexible enough you can’t reach and
need help. It’s similar if you’re putting sun cream on your back. You can do
your lower back with your hands behind your back, but you only get up to a
certain point, perhaps around your shoulder blades. Then you have to
switch to your hands being over your shoulders, to do your shoulders and



upper back. If you’re not flexible enough there’s a gap between the lower
part and upper part where you’ll get sunburnt.

What’s happened here is that there’s a boundary of where your hand can
reach in the lower position. If you’re flexible enough, that will be right next
to where your hand can get from the upper position, maybe even with a
little overlap. In both cases your hand is reaching the same place inside
threedimensional space. However, your arm is in a completely different
configuration, and has to travel a long way to get between those two
configurations. This means that those two places are very far apart in the
full seven-dimensional space of arm configurations. This is the kind of
thing we need to know when we’re designing robotic arms. We do need to
know where the ‘hand’ can go in ordinary three-dimensional space, but it’s
important to know which positions are close together in the full higher-
dimensional space of motion of the arm. If you need to gently move
something a tiny distance during keyhole surgery, it will be no good if the
robotic arm has to do a full reconfiguration in order to get there.

Reducing Dimensions

Thinking about higher-dimensional space is difficult. That’s why there are
whole branches of maths devoted to it. That’s why in life and in maths we
often try to reduce the number of dimensions we’re thinking about, to make
life easier. There are various ways of doing this.

One way is just to ignore some dimensions. For example, if you’re
evaluating something according to a list of criteria you might realise you
have far too many criteria and you should focus on the important ones.
Ignoring some of the least important ones instantly reduces the number of
dimensions you’re thinking about and makes the decision easier.

You can also ignore some dimensions just temporarily, by fixing some
of the variables. When I was trying to perfect my macarons, I eventually
studied them one dimension at a time. I made one batch and baked them at
all sorts of different temperatures. Then I fixed the temperature and made
one batch where I piped the mixture at progressive stages of mixing. Then I
fixed both of those things and changed the amount of ground almonds a
little bit. This is like taking normal twodimensional space and fixing the y-



coordinate to be 2, say. Then the only thing you’ll have left is this straight
line, where x can be anything but y has to be 2:

We have turned the two-dimensional plane into a one-dimensional line.
This is not that different from entirely forgetting a variable: if you entirely
forget a variable it’s like reducing yourself to the x-axis, which is like fixing
y to be 0.

In the case of my macarons, it was complicated by the fact that I didn’t
know if the best temperature for one recipe would be the best temperature
for another recipe. So then after varying the amount of ground almonds I
had to try all the different temperatures again. As you can imagine, this
investigation went on rather a long time.

A slightly more subtle (and I would say sneaky) way we often reduce
the number of dimensions is by conflating two dimensions into one rather
than just forgetting one. This happens all the time in questionnaires when
they ask you questions like ‘I prefer socialising in large groups rather than
one-to-one’ and then you have to say if you agree or disagree on a scale like
this:

This is supposedly more nuanced than just saying yes or no, because instead
of things being black or white we’ve allowed for grey areas in between.
However, these sorts of questions frustrate me because I often find myself
strongly agreeing and strongly disagreeing in equal measure. It seems that



I’m supposed to select ‘neither’ but that doesn’t feel right, because ‘neither’
sounds like I don’t really care either way, whereas actually on some days I
really want to be in a big group and on other days I really want to be in a
one-to-one situation. This is because it’s really a two-dimensional question:
How much do you like socialising in large groups, and how much do you
like socialising one-to-one? This gives us two variables, and we could plot
it on a graph like this:

I would be somewhere up in the far top right as I like doing both. Someone
who hates doing both equally would be down in the bottom left. In fact the
whole diagonal is different ways of liking or disliking both equally.



Mathematically this is the line where x = y. In the original scale, this line
has been squashed to a single point ‘neither’. What the questionnaire has
done is assume that socialising in large groups and small groups are
‘opposites’ of each other, and that the amount you like one automatically
tells us how much you dislike the other. It’s like a zero-sum game.
Mathematically the zero-sum game means x + y = 0 which is this line:

Our situation is more like a ‘four-sum game’ where the total is always 4. To
get 4, I’m considering that you can agree or disagree with the statement on



a scale of 0 to 4. Then the questionnaire seems to be assuming that however
much you agree out of 4, you have to disagree by the difference, like this:

If we plot these points on the graph it gives this:

Sometimes the questionnaire tries to be more nuanced and admits that these
things are on a continuum, and they allow you to mark any place on a line
from ‘agree’ to ‘disagree’

In that case we’re taking the entire line x + y = 4 which is here



You can pick any point on this line, and if you take its x coordinate and y
coordinate you’ll find that they add up to 4. So we’ve reduced two
dimensions to a one-dimensional line in a slightly odd way.

Another way of considering the sliding scale above is that we’re really considering
the ratio of how much we like one type of socialising compared with the other. In that
case we’re taking the x and y coordinates and reducing them to . This is an even
more complicated way of reducing two dimensions to one. There are online tools
where you can get a rendering of a three-dimensional graph. You can try doing z = 
to try and show you what value you get for each position in the two-dimensional
plane. It is very hard to visualise.

This reduction of dimensions also happens with political beliefs, where we
tend to talk about how ‘left-wing’ or ‘right-wing’ people are, which is an
extreme oversimplification. The website politicalcompass.org points out
that there are really two distinct variables, economic views and social
views, making a twodimensional political graph, which we tend to squash
into one dimension. There are always advantages and disadvantages to
simplification. The advantage is that simpler things are easier to grasp, but

http://politicalcompass.org/


the disadvantage is that you lose information. Those things should always
be weighed up, and we should at least be aware that we’re doing it.

Really, political beliefs sit in a much higher-dimensional space than
even two dimensions, because there’s no limit to the number of variables
we can consider when characterising our political beliefs. Perhaps we’ve
even got ourselves into an infinite-dimensional space, but we have to
reduce it so that we can attempt to organise ourselves into groups of people
who broadly agree with one another. The trouble is that we tend to do it by
conflating dimensions rather than by ignoring them. Instead of deciding that
certain criteria are unimportant, we pretend that they’re linked.
Mathematically those are very different ways of reducing dimensions.

A Continuum of Dimensions

Sometimes when I’m doing a ‘pros and cons’ type evaluation of a situation,
I discover that the criteria are too difficult to separate out. For example, you
might be thinking about shortterm benefits and long-term benefits. Then
you start wondering about medium-term benefits. I’ve also started
considering micro-term benefits (instant gratification). Then where does
short term turn into medium term? Where are the boundaries between those
things?

Maybe you’re evaluating different jobs, and you consider job
satisfaction and also self-esteem. But those two overlap because self-esteem
in your job gives you job satisfaction. Maybe self-esteem is just one aspect
of job satisfaction? You start splitting job satisfaction up into more and
more specific criteria, but as you do so the boundaries between them get
more and more blurry.

Eventually you realise that your criteria themselves are on a continuum
as well. What this means is that not only are you evaluating each individual
criterion on a continuum, but there’s an entire continuum’s worth of criteria.
You’re in a space with uncountably many dimensions. No wonder decisions
are difficult.
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Infinite-Dimensional Categories

friend of mine posted something on social media about a delicious
croissant sandwich, and I immediately imagined a croissant inside a
sandwich. I soon realised she meant that the croissant was the outside part
of the sandwich, not the filling.

Have you ever thought about making a ‘sandwich sandwich’? This is a
sandwich in which the filling is itself a sandwich. Perhaps there should be
lettuce in between the extra slices of bread? Some people insist that lettuce
plays a vital – indeed structural – role in a sandwich, protecting the bread
from being made soggy by the filling (although personally I would never
eat lettuce by choice). In that case an x sandwich would consist of

bread
lettuce

x (filling)
lettuce
bread

For example, a chicken sandwich would be

bread
lettuce



chicken
lettuce
bread

in which case a chicken sandwich sandwich would be

bread
lettuce

chicken sandwich
lettuce
bread

which, if we write it all out, becomes

bread
lettuce
bread
lettuce
chicken
lettuce
bread
lettuce
bread

This is a bit like my favourite cake, the ‘iterated Battenberg cake’, where
you make a Battenberg cake

but this time so that each of the individual cakes is itself a Battenberg cake.



Or perhaps there should also be marzipan around the small Battenberg
cakes inside the big one?

Both of these are examples of making something out of, essentially,
itself. Mathematics is particularly good at making things out of itself, like
how higher-dimensional spaces are built up from lower-dimensional spaces.
This is because mathematics deals with abstract ideas like space and
dimensions and infinity, and is itself an abstract idea. Physical objects don’t
behave like that. If you stick a lot of birds together you won’t get a new
bird; that just isn’t how birds work. So when is something abstract enough
to be iterated?

Lego Lego

Imagine making giant Lego blocks out of Lego. This works because there’s
something a bit abstract about Lego. You can’t make a giant bird out of
birds – not a real one anyway. But you could make a giant bird model out of
smaller bird models, because a model of a bird is abstract enough, whereas
a real bird is not. There are artists who build portraits of people in a mosaic-
like fashion, using individual portraits as tiles. You can make a portrait out
of portraits, because a portrait is also abstract enough, whereas the actual
human being is not.

When I was little I learnt to program on a Spectrum, just like a whole
generation of British programmers, mathematicians, and others in that-way-
inclined families. I have already talked about my favourite ‘infinite HELLO’
program. I never tire of describing the concept of a Spectrum to those who
haven’t met one, because it’s so simple and so extraordinary. I’ll describe it
now just in case: it was one of the earliest (or possibly the earliest) version



of a home computer. It consisted of basically just a keyboard – a tiny little
thing with rubbery keys. It had no screen – you plugged it into your
television set. To save things, you used ordinary cassette tapes and an
ordinary cassette recorder – you just had to press record on the machine,
and hit ‘save’ on the Spectrum, and it would record your program as funny
little sounds. I do a very plausible impression of these sounds by singing
them – plausible enough, at least, that anyone who grew up with a Spectrum
will be hit by a wave of nostalgia and possibly a fit of giggles. To load the
program back again, you pressed play on the tape machine, and hit ‘load’
on the Spectrum, and it would play back those funny sounds and
miraculously load the program. There were also some quite exciting games
which you could buy on cassette tapes too (and some I found less exciting,
like the flight simulator which just didn’t seem to do anything, perhaps
because I was no good at it).

The printer was an adorable little thing that plugged in, I forget how.
The really memorable part was that it used rolls of silver paper, like toilet
rolls, but smaller. It was silver on the printing side, and I think it printed
using heat. There was only one font in only one size, and it was all equally
spaced, like Courier.

I liked making signs saying things like EUGENIA’S ROOM, but there
was no way of changing the font size, so to make it big enough the most fun
thing to do was to make each letter out of letters, as in:

EEEEEEEEEEE
EEEEEEEEEEE
EEEE
EEEEEEEE
EEEEEEEE
EEEE
EEEEEEEEEEE
EEEEEEEEEEE

and so on. This works with letters, because they, too, are abstract things.
Everything in mathematics is abstract, so you always build more
mathematical things out of other mathematical things, even if they’re not



exactly the same thing. For example, you could make an E out of A’s, which
is oddly counterintuitive.

AAAAAAAAAA
AAAAAAAAAA
AAA
AAAAAA
AAAAAA
AAA
AAAAAAAAAA
AAAAAAAAAA

You can do this sort of building up with mathematical objects, as they are
abstract. For example, you might remember what matrices are. They look
like this

This is a matrix built from numbers, but we could build matrices from other
things as well. When I took maths Alevel, graphical calculators had just
arrived and, miracle of miracles, they could also do matrices. The people
writing Alevel exams quickly caught on to this though, and made us do
matrices with letters instead of numbers, to foil our attempts to use our
calculators. A matrix made of letters looks like this:

But we could just as well make a matrix out of birds.



Or a matrix out of … matrices.

Matrices are abstract enough that we can make matrices of matrices.
Mathematics is abstract enough that we can always make more mathematics
out of mathematics. Christopher Danielson’s marvellous book Which One
Doesn’t Belong? includes one ‘Which One Doesn’t Belong?’ example
made up of Which One Doesn’t Belong examples: which ‘Which One
Doesn’t Belong’ doesn’t belong?

In my previous book I talked about my field of research, category
theory, as ‘the mathematics of mathematics’. What about the mathematics
of category theory? It’s still category theory, but it gets more and more
dimensions. Here’s how. It stems from the fact that category theory is all
about relationships between things. And what if those ‘things’ are
themselves relationships?

Planes, Trains and Automobiles

At the very beginning of this book I compared journeys by plane with boat
trips. If I’m flying across the Atlantic I’m not doing it for the view – there’s
not much to see for most of the time. Maybe one day I’ll take a boat across
the Atlantic but I usually need to get there more quickly than that.

When you’re going on holiday, do you consider different ways of
getting there, or do you always go by plane? Perhaps you’re determined to
go somewhere sunny, in which case, if you live in the UK, you’re very
likely to need to fly. Or sit on a train for a very long time.

When I was little we used to take the car to France, visit vineyards, buy
wine, and drive back again. Living near Brighton, it was quite convenient to
drive to a ferry crossing point. There were two main options: Newhaven–
Dieppe or Dover–Calais. It was a much shorter drive to Newhaven, but a



much longer crossing. I don’t know which was more expensive; I was too
young at the time to ask such questions.

At some point when I was still quite young, the hovercraft became a
viable option. This apparently miraculous device flew across the water.
Imagine my disappointment the first time I went on one, when I found it
didn’t feel like flying at all. It felt exactly like being on a boat, except if I
remember correctly it was much more susceptible to rough seas, and we
were all horribly seasick.

Taking the car is a practical choice when you have small children –
apart from being cheaper, you can also throw all your paraphernalia in the
car, and still have plenty of space for shopping, especially if your car has a
large boot like our old Saab did. Once you’ve decided to drive somewhere,
you still might compare different routes. If you get directions from Google,
it will offer you that. You can compare the time, the distance, the sorts of
roads you’ll be driving on. If you’re me, you take the simplest route, on
major roads, to avoid getting lost, but many other people would pick the
shortest or the quickest.

All of this is about comparing paths from one place to another. A route
from A to B is a form of relationship between those two places, and there
can be many different routes between the same two places. Now if we’re
looking at relationships between different routes, that is relationships
between relationships.

Category theory is all about relationships between things, and now we
have a notion of dimension in category theory.

If you ignore relationships between things, and just consider
everything as if in a vacuum, that’s zerodimensional.
If you allow relationships between things, or paths between places,
that’s one-dimensional.
If you take into account relationships between those relationships,
that’s two-dimensional.
If you have relationships between the relationships between the
relationships, that’s three-dimensional.

… And so on.



The idea is that if we’ve decided we should take relationships between
things into account, why not relationships between those relationships as
well? Studying relationships between things is about putting things in
context. If we want to study things in context, shouldn’t we also study
relationships in context? We might compare different ways of going on
holiday and find that flying is quicker but driving is more expensive. Next
we have to compare those relationships: is speed more important than cost?
Or perhaps you’re gossiping about other people’s relationships (surely not).
You observe that one couple has a lot of fun together but also argues a lot,
whereas another couple never argues but they don’t seem to have fun either.
Then you can compare whether having fun is more important than not
arguing.

Category theory studies relationships between things and builds on this
in various ways: characterising things by what properties they have, finding
the pond in which things are the biggest fish, putting things in context,
expressing subtle notions of things being ‘more or less the same’. The
higher-dimensional version does this whole thing to the relationships
themselves. It’s another level of abstraction, and it takes us into
higherdimensional category theory.

In category theory we draw relationships between things as arrows, like
this:

Perhaps A is where we live and B is where we’re going on holiday, and F is
how we’re going to get there. Our journey is a ‘relationship’ between our
home and our holiday destination. Now maybe we have two possible ways
of getting there, F and G, and a way of comparing them. In higher-
dimensional category theory we would draw it as arrows like this.

Here the double arrow labelled a is the relationship between route F and
route G, which could encode a comparison of cost, or time, or fun, or the



views along the way.
We can then build these up into big diagrams like the one below, which

is a genuine diagram taken from my research.

Higher-dimensional category theory studies these higherdimensional
structures which just never stop arising until you say stop, enough, this is
enough dimensions. But if you don’t say that, they will keep arising forever
and we have infinitedimensional categories. We’re going to see that in some
ways these turn out to be less complicated than the finite-dimensional ones,
because they’re more ‘naturally’ arising. In mathematics, especially
category theory, things that grow up organically without us imposing
restrictions are often less complicated. It’s the artificial restrictions we
impose that make things more practical but also more complicated. In a way
this is like the fact that the adult world has many more restrictions than a
child’s world of imagination and idealism. The restrictions make it more
practical but also more complicated to navigate. Idealism is easy when
you’re not the one having to turn it into some workable logistics.

In category theory there is always a tension between the idealism and
the logistics. There are many structures that naturally want to have infinite
dimensions, but that is too impractical, so we try and think about them in
the context of just a finite number of dimensions and struggle with the
consequences of making these logistics workable. Just like in the previous
chapter where we saw different ways of reducing dimensions when thinking
about criteria for evaluating a situation, category theory has different ways
of reducing the number of dimensions. Each way causes different problems.
You might wonder why we can’t just forget some like in the last chapter.
We’ll come back to this later, after thinking about how mathematics



propagates. Just as every dimension of relationship we consider creates a
new dimension of relationships to consider, every question we answer
creates more questions.

Climb Every Mountain

The film Alive tells the horrific story of the famous 1972 plane crash of
Uruguayan Air Force flight 571, in the Andes. The plane crashed into a
mountainside in bad weather. In the film, we see survivors picking up a
radio signal and hearing a news report that the search for survivors has been
called off. They determine that a small group of the fittest ones will walk
out of the mountains to get help; a whole Uruguayan rugby team was on the
plane, so some of the survivors were pretty fit.

We see three of them set off with what they think are enough supplies to
get them to safety. They must first cross a mountain ridge that they can see
in the distance, before descending to the valley. But when they get to the
top of that ridge, all they can see are more, higher mountains in front of
them. The higher mountains were previously blocked out by the ridge, but
now they have climbed high enough to see what it is they really have to
cross.

At this point they realise they don’t have enough supplies for three of
them, so one of them hands over his supplies and heads back to the crash
site to wait for rescue. The scenario is unthinkable, but they do make it into
the valley and the remaining survivors are rescued.

Mathematics involves nothing so horrific, but it is like an unending
series of mountain ranges. Every time you conquer one, you have a moment
of elation and then you realise that conquering this peak has just enabled
you to see the higher peaks ahead, a bit like when I reached the top of my
climb in New Mexico and only then saw the extended ridge ahead of me.
Or when I was swimming along the curved beach and each bit of curve just
revealed more beach.

This is inevitable. In fact, it’s part of the power of mathematics. It’s
because the concepts we study can always be built into bigger ones. Those,
in turn, can be built into bigger ones, and so on forever. This is because of
the abstract nature of it. If we are climbing mountains, we don’t build more



mountains out of the ones we’ve already climbed – we just see more that
are there. In maths, we keep building bigger and bigger ones.

It’s not that we do it wilfully, it’s that the methods we develop for
studying things in maths are actually new pieces of maths. To study those,
we create new pieces of maths that then need to be studied. This doesn’t
happen if you’re studying birds: the methods you develop for studying birds
aren’t themselves birds.

This is how category theory arose, as a new piece of maths to study
maths. In a way category theory is an ultimate abstraction. To study the
world abstractly you use science; to study science abstractly you use maths;
to study maths abstractly you use category theory. Each step is a further
level of abstraction. But to study category theory abstractly you use
category theory.

Why Is It Hard?

You might be wondering if we can just add dimensions to our theory and be
done with it. What might that mean? To specify a point in two-dimensional
space we just have to give two coordinates: an x-coordinate and a y-
coordinate. To specify a point in three-dimensional space we just add
another coordinate. We can keep adding as many coordinates as we want to
get as many dimensions as we want, even if we don’t know what those
dimensions look like in space.

Coordinates, and dimensions, don’t have to refer to physical space: any
time we have four independent variables we have four dimensions. They
don’t have to be in space or time, as we’ve seen in the previous chapter with
the idea of dimensions arising from criteria we’re using to evaluate
something, or from the hinges of a robotic arm.

Computers crashing can be studied in this way. An abstract (as opposed
to physical) space can be constructed consisting of various configurations
that the computer can get into, according to different variables, and a path
leading up to a dead end will result in a crash. The space can then be
studied using topology, the branch of maths that studies the general shape of
space. In topology, a ring doughnut has the same general shape as a coffee
cup (with a handle) because they both have one hole, which is basically all
that counts.



So why is all of this hard? Computers do, alas, still crash, despite our
best efforts. The reason is that unfortunately it’s all a bit more subtle than
I’ve described. We don’t just add dimensions to our categories, by adding
relationships between relationships, and so on, we have to add axioms or
laws governing these relationships. And the more dimensions we add, the
harder it is to know what these axioms should be.

One problem that comes up is the question of ‘associativity’.
Remember, in the most common case this means things like

(3 + 5) + 5 = 3 + (5 + 5)

– it doesn’t matter where we put the brackets in a calculation. This makes it
all very convenient, but in situations with objects more complicated than
numbers, it’s not genuinely true any more. I’ve previously written about
examples involving eggs, sugar and milk where it’s not true.

(egg yolks + sugar) + milk

makes custard but

egg yolks + (sugar + milk)

does not.
But here’s a mathematical example. The field of topology studies the

shape of space, and the field of algebraic topology studies it by looking at
journeys through the space. This modern way of doing this is using a
category. A category is a mathematical structure with

objects
some relationships between the objects, expressed as arrows between
them
a way of combining relationships if the arrows point in the same
direction, so if you have arrows like this

you get to combine them into one like this



Now in this case our objects are all the possible places in the space, and our
arrows are journeys from one place to another. We have a way of combining
them because if you have a potential journey from A to B and a journey
from B to C then you can do one followed by the other and get a longer
journey from A to C.

Now usually when we think about getting from A to B, we also think
about how long it’s going to take, in minutes or hours or something. In
abstract mathematical space we don’t really have units of distance, and we
don’t really have units of time, either. They’re both just numbers. If you’re
like me, the kind of person who lost marks by not bothering about units in
tests at school, you’ll be relieved by this absence of units.

To make it easier to compare journeys, all journeys are considered to
take time 1. This is like when we do percentages and we think of everything
as being out of 100, so that we can compare things. We’re just bothered
about what route we take, and how long we spend on each part of the
journey relative to the whole. So we ‘standardise’ the overall time it takes
to 1.

We know that if we have a journey from A to B and another from B to C
we can stick them together to get from A to C. The trouble is that if we just
stick them together the total length of time will be 2, instead of 1. So in
order to ‘standardise’ this journey to get an arrow A→C we have to pretend
we’re doing each journey twice as fast. So we spend half the time going
from A to B and half the time going from B to C.

This is fine, but the trouble comes when we try to do three journeys:

You might think it would be sensible to do each journey three times as fast,
and it would. But this is not how associativity works. We can’t just invent a
new way of sticking three things together – we have to use the original way
of sticking two things together, and do it with the brackets in different
places, to see what happens. That is, if we make the composite journey



first and then stick h on the end, it should be the same as making

first, and sticking f on the beginning. The trouble is, this isn’t quite true.
Because the first way round, when we stick f and g together we do each
twice as fast, so we end up spending the following amounts of time doing
them:

journey time spent
f

g

Now, when we stick h on the end, we have to do everything twice as fast, so
we have to spend half the time doing f and g in total, and half the time
doing h. This means we spend the following amounts of time: journey time
spent

journey time spent
f

g

h

But if we start by sticking the journeys g and h together, we’ll do each of
those twice as fast:

journey time spent
f

g

and then when we stick f on the beginning we’ll spend half the time doing f
and half the time doing g and h put together: journey time spent



journey time spent
f

g

h

If we compare these two tables we see that we do not get the same answer.
In the first way round, we spent only a quarter of the time on f and g and
half the time on h, but the second way round we spent half the time on f and
only a quarter on g and h. So this method of composition is not associative.
It really matters where we put the brackets.

There are various ways that mathematics deals with this, depending on
the balance between practical logistics and ideals of abstraction. The
situation can be approximated to get something more practical, but then
some subtlety is lost. One way of doing it is to impose a stronger notion of
sameness on the journeys, so that those two versions where you spend
different amounts of time on them count as the same. This leads to a field of
research called homotopy theory, because the notion of sameness involved
is called homotopy.

Another way of dealing with it is to keep track of those slight
differences using trees similar to the ones I’ve drawn elsewhere, to take into
account the different possible positions of the brackets. So these two trees
depict some different positions:

This leads to a field of research called operad theory, because the trees
form an algebraic structure called an operad.

Another way of dealing with it is to look at the relationship between
those journeys. This leads to higher-dimensional category theory. And then
something curious happens with the higher dimensions. We can keep
looking at the relationship between these journeys (or ‘paths’ as they’re



formally called in mathematics), and the relationships between those, and
between those, and so on. At any point we can decide we’re tired and want
to stop thinking about more dimensions, at which point we impose a notion
of sameness at that top dimension, so that we don’t have to think about any
more relations. This is a bit like deciding that certain criteria are not very
important, so you’re going to ignore them and consider two situations to be
the same even if they differ according to those criteria. For example, you
might decide that actually when you’re buying eggs you don’t mind if
they’re brown or white.

The trouble with doing this in category theory is that this has
consequences for the axioms that we have to think about. It turns out that in
some ways it is easier never to stop thinking about more dimensions,
because we never have to deal with the consequences of forcing things to
count as ‘the same’ when they’re not really the same.

This might sound counter-intuitive, but think of it like this. Imagine if
we decided there should be a biggest number: that’s it, big numbers are too
complicated, and there are going to be no numbers bigger than 1000. It
would cause dire consequences because it would be so unnatural. We really
need an infinite supply of bigger and bigger numbers, even if we don’t ever
use them.

With the dimensions in category theory I like to think of it like this.
With every dimension we add another layer of subtlety so that we can
postpone the issue of forcing things to be the same and deciding what
axioms to impose. If we have an infinite number of dimensions, we can
postpone this forever. If we were immortal we could procrastinate forever.
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The Infinitesimally Small

still get excited flying into a city and looking at the buildings from the
sky. It hasn’t stopped amazing me that the buildings look so big close up
but so tiny from up in the plane. Manhattan is particularly surreal to me as
the skyscrapers look so squashed and crammed together on the little island.
The old flight path into Kai Tak airport in Hong Kong was terrifyingly
dramatic as the planes had to fly so close to the buildings. One minute the
skyscrapers would be tiny sprouting pins, and the next minute you’d be
looking into someone’s flat seeing them do the laundry.

Most of what we have looked at so far involves things growing, or
infinite things appearing because each one gives rise to another one.
However, we can quickly flip this scale and think about things being very
tiny instead. This gives a whole different way of getting infinitely many
things, by thinking about infinitely many infinitesimally small things. Does
this feel like cheating? Sometimes mathematical advances happen by just
looking at something in a slightly different way, which doesn’t mean
building something new or going somewhere different, it just means
changing your perspective and opening up huge new possibilities as a
result. This particular insight leads to calculus and hence the understanding
of anything curved, anything in motion, anything fluid or continuously
changing.



Few things in our world do not fit these descriptions. Computers are
largely digital, meaning that they are divided into clearly defined bits that
change in clearly defined steps rather than continuously, but they still
involve electricity which does fall into the ‘continuously changing’ realm.
One of the few things I can see in front of me right now that doesn’t
obviously involve calculus is the table I’m working on. It’s true that tables
existed long before calculus, but still, this particular table was made in an
Ikea factory, which definitely involves calculus. My point is that although
the study of infinity might seem abstract and out of this world both literally
and figuratively (‘figerally’ as one of my friends wryly puts it) it led to the
field of calculus which is inextricably part of almost every aspect of modern
life.

The starting point for all this is thinking about things that are ‘infinitely
close together’. When we draw a circle digitally on a computer, or type the
letter o, it looks smooth and joined up, but if we zoom in enough it will
eventually become pixellated. Here’s a close-up of a letter o on my
computer screen.

We see that it’s just a finite number of square dots masquerading as a
joined-up curve. In this picture my computer has faked the curve a bit better
by including some shades of grey. The computer screen has to do this as it
can only understand individual dots, it only has a finite number of them to
work with, and they are all a fixed measurable size.

But what about our brains? The idea of calculus is that our brains can do
better than that, in principle, because we can deal with infinitely many
things, and we can deal with them being infinitely small. This is what we’re
going to investigate now.



Once I was helping with maths at Park Street Primary School in
Cambridge. I was helping two six-year-olds understand symmetry. I got
them to draw the lines of symmetry on some triangles, and then on a square,
and then a pentagon, and then a hexagon. One of my favourite moments
was when one of them said ‘I know an octagon has eight sides because
OCT stands for OCTOPUS.’ Anyway, I eventually gave them a circle. One
of them drew this line

and then the other drew this line

and then the other drew another two lines

Then things got really exciting. The first child exclaimed ‘There’s hundreds
of them!’ and then the second one said ‘There’s millions of them!’ and then
the first one chimed in again ‘You could spend your whole life drawing
them and you’d never finish!’ and then there was a pause, and then the
other child picked up a pencil and coloured in the whole circle and said
‘Look I’ve done it.’



I was quite perplexed by that. I had to concede that they were both right.
You could spend your whole life drawing lines of symmetry on a circle and
you would indeed never finish, because there are infinitely many of them.
In fact, there are uncountably infinitely many. One way to see this is to
imagine that we’re specifying where the line of symmetry goes by saying
what angle it makes with the horizonal.

We could pick any angle from 0 to 180 degrees: or in radians, anything
from 0 to π. Any bigger than that and the lines become ones we’ve already
drawn:

We could pick any real number between 0 and 180, not just integers or
rational numbers. We’ve already seen that there are uncountably many real
numbers just between 0 and 1, so we definitely have uncountably many
between 0 and 180.

So there are uncountably many lines of symmetry on a circle, and yet, if
you colour in the whole circle, you really have drawn them all. You might
think this is cheating, because the genuine lines of symmetry would have to
overlap infinitely many times at the centre of the circle, so really you
should have infinitely many layers of pencil at the centre. But even if we
don’t count the centre, and just tried to mark the places round the edge of



the circle that the line of symmetry would touch, we could do it by simply
drawing all the way around the edge of the circle. Have we drawn infinitely
many dots in that process? Are there infinitely many dots on this line?

________________________________

If there are, how wide are they? And if there are only finitely many, how
many are there?

Dividing by Infinity

If we divide the line into more and more segments, the segments must get
smaller and smaller. So can we divide it into infinitely many little points?
This is a question of whether we can make something infinitely small by
just dividing something by infinity.

Imagine you had a lottery where every natural number was a possible
outcome. So there would be an infinite number of balls in the lottery
machine, but each one would have a finite number written on it. In this case
the chance of winning would be quite strange. In the normal UK lottery, 6
balls are drawn out of 59. There are around 45 million possible
combinations of numbers and all those combinations are equally possible.
So your chance of winning is 1 in 45 million. This is a very small number
(about 0.00000002) but isn’t zero, although in my opinion it’s so close to
zero that it might as well be zero in practice. When you multiply it back by
the total number of possible outcomes (45 million) you get 1, which is as it
should be as it’s the probability of winning if you buy every possible ticket.

In the infinite lottery there are infinitely many combinations, so your
chance of winning should be ‘1 in infinity’. What does that mean as a
fraction? It can’t come out to anything bigger than zero, because if it did
then when we multiplied it back by the total number of possible outcomes
(infinity) we would get something bigger than 1. So does that mean the
probability is zero? And yet someone really could win each time. At this
point you might correctly argue that no such lottery is possible in practice,
but this doesn’t really resolve the paradox any more than Hilbert’s Hotel is
resolved by saying no such hotel is possible.

This brings us back to one of our very first attempts to define infinity,
when we attempted to say



This produced a contradiction if we tried to multiply both sides by 0.
Related to this is an attempt to say that dividing by infinity gives 0, or

Now that we know more about infinity we can immediately see some things
wrong with this equation. The main problem is that the way we’ve defined
infinity, using infinite sets of things, did not involve any notion of division
by infinity. A good mathematical response to this statement would be: well,
let’s try it then. Just because we didn’t do it before, doesn’t mean it’s not
possible.

We have to try to investigate this the same way we did for subtraction,
and go back to thinking about everything as sets of objects. This is like
counting with blocks – you can’t chop the blocks up (which is a source of
great frustration to children sometimes). If we are thinking about the set of
natural numbers, we can’t cut them up into partial natural numbers.

Remember when we thought about trying to define subtraction
involving infinity, we had to go back to thinking about things like 6 – 3 as
‘how far do I have to count up to get from 3 to 6’. That is, we thought about
solving equations like this:

3 + x = 6.

Now let’s think about doing 6 ÷ 3. We can think of this in two ways.

How many times does 3 go into 6? That is: how many times do I have
to add 3 to itself to make 6? This is the same as solving the equation

3 × x = 6.

What number goes into 6 exactly 3 times? That is: what number can I
add to itself 3 times to make 6? This is the same as solving the
equation



x × 3 = 6.

The answer is 2 in both cases, because the different wording of the
questions makes no difference for finite numbers. But we’ve seen that these
are not the same question when infinity is involved.

For example, adding 3 together an infinite number of times is not the
same as adding infinity together 3 times, that is

3 × ω ≠ ω × 3.

We can ask ‘How many times do I have to add 3 to itself to get ω?’ and the
answer is ω. Imagine you’re the person handing out raffle tickets to the
queue again. People arrive in groups of three. How many groups of three
will it take before you use up one infinite book of raffle tickets? The answer
is ω, because you just keep handing out three tickets at a time forever.

However if we turn it round and say ‘What number can I add to itself 3
times to make ω?’ there is is no possible answer. If you add 3 finite
numbers together, the answer will be finite. If you add 3 infinite numbers
together, each one will have to be at least as big as ω (as this is the smallest
infinity), and then adding 3 of them together will be even bigger, like
‘forever and a day’. We can think of this in terms of the raffle tickets again.
If one infinite coachload of people arrives you will use up an entire book of
raffle tickets (at least). Then when the next coachload arrives you’re
doomed to need a different colour of raffle tickets.

Both of these questions were attempting to do ‘infinity divided by 3’,
but gave different answers. This shows that division, like subtraction, is not
a very good concept where infinity is concerned, and that was just dividing
by a small finite number. If instead we try to divide by infinity, it’s even
worse. Suppose we try to do ‘ ’ there are two options. Either we’re saying:
how many times do we have to add ω to itself to make 1? This is clearly
impossible as ω is much too big right from the start. In the other version
we’re saying: what number can we add to itself ω times to make 1? Again
this is impossible.

Despite this, it really seems that 1 divided by infinity should be zero.
Could this be a sensible answer to the above questions? If we add ω to itself
0 times we won’t get anywhere, so that makes no sense. It would be like



zero infinite coachloads of people arriving in your queue – you won’t need
any raffle tickets at all. For the second question, can we add 0 to itself ω
times to make 1? This would be like zero people arriving in the queue, an
infinite number of times. You still won’t need any raffle tickets.

At this point we could give up and say: oh well,  is not zero then. Or
we could do something more mathematical and say: it really seems to make
some sense to think in this way, so can we give it some other mathematical
meaning that isn’t based on our thoughts on infinite sets? One of the things
mathematics sets out to do is take something that seems to be true according
to our intuition, and give a precise logical explanation to it. We shall not
give up so easily.

The Opposite of Infinity

At this point you might wonder if we can just invent an infinitesimally
small thing that isn’t zero, as I’ve said we can make abstract things exist
just by thinking of them. Mathematicians did try this. It vaguely makes
sense, in the same way that the idea of infinity vaguely made sense until we
thought about it too hard. It’s a bit like an opposite of infinity. Infinity is
bigger than all numbers; an infinitesimal is smaller than all numbers. When
you add infinity to itself you get infinity; when you add an infinitesimal to
itself you get the infinitesimal back again. And when you multiply infinity
with the infinitesimal you get 1, solving the problem of the lottery
probabilities.

This approach produces the same problems that just ‘dreaming up’
infinity did in the first place. It can be done with some care (or rather,
technical prowess, just as was required for coming up with a rigorous
definition of infinity) but as is so often the case, it is easier, and more
elegant, to sidestep the problem. If you come up to a big muddy puddle on a
walk, you could step into it and hope your boots protect you, or you could
step round it. (Of course, some people, especially children, enjoy
deliberately stepping straight into it. This is also true in mathematics.)

Here’s how we neatly sidestep the issue of dividing by infinity. Imagine
you’re sharing a whole chocolate cake between some people. If you’re
sharing it between just two people you get quite a lot of cake each. If you’re
sharing it between three people you still get quite a lot, but less than before.



With four people you get a bit less each. The more people there are, the less
cake each person gets. If the numbers get really huge, it becomes silly to try
and share out one paltry cake. Have you ever tried sharing a cake between a
hundred people? (Wedding cakes get round this by having multiple tiers,
which is really multiple cakes.) What about a thousand people? A million
people? At some point when there are too many people everyone will get so
little cake that it will be a negligible amount, essentially none.

With a million people and only one cake, everyone will technically still
get some cake, possibly even several billion molecules. But it will look
almost like zero, and it will become more and more like zero as the number
of people increases. This is how we give mathematical meaning to the
notion that dividing by infinity is zero. We never actually divide by infinity
(because this doesn’t have a sensible meaning). Instead we go back to the
idea of something approaching infinity, as in Chapter 11. We divide by
something that is approaching infinity, and we find that the answer
approaches zero. Some smarty-pants might come along with a microscope
and say they can still see some cake, but we could always then divide it up a
bit more so it had become invisible again. This doesn’t mean that 1 divided
by infinity is zero, but it gives us a way that mathematics can make sense of
that intuitive idea, and is the beginnings of the entirety of modern calculus.

Zeno’s Paradoxes

The ideas of calculus can be traced back a very long way. The conundrum
of something being made up of infinitely many infinitely small parts was
studied as many as 2500 years ago, by the Greek philosopher Zeno. Like
Hilbert thousands of years later, Zeno considered some paradoxes showing
that care is needed when we think about infinite things.

One of Zeno’s paradoxes is basically the situation small children think
of when eating delicious chocolate cake: if you eat half of what’s left, and
then half of what’s left, and keep eating half of what’s left, does it mean
your chocolate cake will last forever?

Zeno put it like this: if you want to travel from A to B, first you have to
travel half the distance. Then you have to travel half the remaining distance.
After that you have to travel half of the new remaining distance. And you
keep having to cover half the remaining distance.



After each of these steps there will still be half of the remaining distance
that you haven’t covered yet. Surely this means you will never get there?

Mathematicians always like building up new ideas from ones they have
already understood, and we can relate this situation back to the infinity of
natural numbers in the following way. What we said is that we had to cover
distances of a half the total, then a quarter, an eighth, a sixteenth, and so on
‘forever’. As we said before, the natural numbers are hiding in the forever.
Suppose in total we’re trying to travel one mile. The stages of our journey
are these:

We have an infinite quantity of n’s, so we also have an infinite quantity of
stages in our journey. We can’t finish writing out that list of how long each
stage is, but we have written them all down in principle: that’s what the
formula with the n is for. But if we can’t write down every stage of the
journey, can we complete every stage of the journey? The answer must be
yes, because we do in fact complete journeys, even short ones, every day. (I
don’t leave my house every day but I manage to make it to the fridge
several times an hour.)

A related paradox, also posed by Zeno, involves Achilles and a tortoise
running a race from A to B. The tortoise is allowed a head start, say at point
A1, but goes very slowly because he is, after all, a tortoise. Now, Achilles
must first reach the point where the tortoise started. By the time he gets
there, the tortoise will have made some progress. Perhaps he will have
made it to point A2. Achilles must now get to this point, but by the time he



gets there, the tortoise will have made a little more progress, perhaps to
point A3. Next, Achilles must now get to this point, but by the time he does,
the tortoise will have got to A4. Each time Achilles gets to the place the
tortoise was when we last we checked on the race, the tortoise will have got
a bit further. Does this mean the tortoise will win the race?

Both of these paradoxes involve an apparently logical argument
producing a nonsensical conclusion. Clearly it is possible to make journeys
and arrive at destinations. Clearly if Usain Bolt ran a race against a tortoise,
Bolt would win. The point of these paradoxes is not to show that reality is
wrong, but to show that something is wrong with the supposed logic in the
argument.

This is a different type of paradox from the one about Hilbert’s Hotel, in
which the hotel could be full and yet still accommodate a new guest. In that
one, the conclusion sounds nonsensical but only because our intuition about
infinite hotels isn’t very good.

The Hilbert type of paradox is called a veridical paradox, which means there is an
entirely valid argument producing a result that seems contradictory, but isn’t really.
The Zeno type of paradox is called a falsidical paradox, in which a contradictory
result is produced by an argument that seems valid, but isn’t really.

In both cases the point of the paradox is to show that strange things happen
when you start thinking about infinity: with Hilbert’s Hotel, it’s when things
are infinitely large, and in Zeno’s paradoxes, it’s when things are infinitely
small. In the Hilbert Hotel case we have trouble getting our heads around
the idea of having an infinite supply of things, because this would never
happen in real life, whether it’s shoes, socks, raffle tickets or hotel rooms.
However, in Zeno’s paradoxes we start to see that we do have an infinite
supply of things if we allow this loophole: the things get infinitely small.
They can’t just be infinitely small, because we don’t know what that means.
But they can become infinitely small. We experience these infinite sets of
things every day without ever needing to be aware of it.

Infinitely Many Infinitely Smaller Things



In the paradox about travelling from A to B, we do succeed in arriving,
which means we really have covered an infinite number of distances. But
this is only possible because those distances keep getting smaller, and so the
time we spend on each distance also keeps getting smaller. This is in real
life, not in the fantasy Hilbert world where we somehow have enough time
to fill an infinite number of hotel rooms or hand out an infinite number of
raffle tickets. In real life we can do an infinite number of things every day
but only if the time we spend on each one becomes infinitely small.

For example, imagine you’re walking a mile to the train station. Let’s
say you’re going at a steady 4 miles per hour. This should take you 15
minutes. But what would Zeno’s paradox say?

First you have to walk the first half mile, which takes you 7.5 minutes.
Then you have to walk the next quarter mile, which takes you 3.75
minutes.
Then you have to walk the next eighth of a mile, which takes you
1.875 minutes.
Then you have to walk the next sixteenth of a mile, which takes you
0.9375 minutes.
…

You have to cover all these increasingly small distances, but you do them in
increasingly small amounts of time. How many of these little distances are
there before you reach the train station? Infinitely many – if we stopped
after finitely many of these distances, there would always be a little bit left
over.

Obviously this is an absurd way of calculating how long it would take to
get to the train station, not least because at some point the tiny bit of
distance left over will be smaller than the length of your foot. However, it is
an important thought experiment that leads us to this realisation: it seems to
be possible to add up infinitely many things and get a finite answer, if the
things we’re adding up are getting smaller and smaller. We can’t hand out
an infinite number of raffle tickets, in reality, because the raffle tickets are
all the same size. Even if they were getting smaller, it would still take
individual, discrete chunks of time to hand each one out, so we wouldn’t be



able to do it. We can’t take infinite mouthfuls of chocolate cake even if the
mouthfuls become infinitely small, because the distance to our mouth stays
the same. (Perhaps we could keep decreasing the distance to our mouth as
well, and eventually end up with our face in the plate.)

There are really two puzzles here. When does it make sense to add up
infinitely many tiny things? And if it does make sense, how do we tell what
the answer is? This taxed mathematicians for thousands of years and was
finally resolved in the nineteenth century with the formulation of calculus.
We’ll come to this in the next chapter.
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When Infinity Nearly Caused Mathematics to
Fall Apart (and Maybe Also Your Brain)

have been snorkelling a few times and have very much enjoyed floating
around with the fish, trying to follow the natural movement of the sea and
admiring the coral formations. Occasionally I’ve been gently swimming
along looking at the scenery and suddenly the coral will drop off like a cliff
edge. I get a strange kind of vertigo from that. It’s not like standing on a
cliff edge, when there’s a real danger that you might fall off. I’m floating in
the sea, so with the coral there’s nothing for me to fall off, it just warps my
perceptions.

Certain parts of maths can be perception-warping like that, and infinity
is one of them. One moment you think you know what’s going on, and the
next moment you look in a slightly different direction and everything falls
away. Mathematicians have these moments where they realise that the
ground beneath their feet might not be there any more, and then they have
to hurry to fix it. Thinking about infinitely small things caused that to
happen, when mathematicians realised they couldn’t properly say what real
numbers were.

In the previous chapter we discovered that we can do infinitely many
infinitely small things in finite time, and we can fit infinitely many



infinitely small things in finite space. In fact, everything is made up of
infinitely many infinitely small things.

Did you feel convinced by the kind of arguments we were making? It
took mathematicians a very long time to put all this in a form that fulfilled
mathematical standards of logic. It’s a satisfying mathematical story of
many different questions leading to the same answer, or many different
clues leading to the same culprit. Zeno’s paradoxes lead us to questions
about adding up infinitely many infinitely small things. We’ll also see how
to arrive at this question through trying to understand curves by chopping
them up into small straight lines, and trying to understand areas of curved
shapes by chopping them up into squares.

But there’s another question we rather glossed over in the first part of
the book, about what irrational numbers really are. We blithely said, as is
common in maths classes, that they are decimals that go on forever without
repeating. In fact, this is also a question of adding up infinitely many
infinitely small things, because as we put more and more decimal places on
a number, we’re adding on tinier and tinier little fractions.

The reason we need irrational numbers in the first place is to fill in the
‘gaps’ that are doomed to be in between all the rational numbers. And it just
turns out that one valid way to do it is by these infinitely long decimals, that
is, by infinite sums of infinitely small things – we just have to work out
what such an infinite sum means. The peculiar part of this story is that
mathematicians didn’t even quite realise they hadn’t fixed this problem, and
were going round using numbers just as blithely as we do. The
mathematicians Cantor and Dedekind both realised that they didn’t know
how to make the definitions of numbers rigorous. Dedekind was apparently
preparing maths classes. I know that feeling, when you’re preparing to
teach something and you suddenly realise there’s something you thought
you understood, but you don’t understand it well enough to explain it to
other people. In the case of Cantor and Dedekind it turned out that nobody
in the world understood it well enough yet. Fortunately they were able to
fix those foundations so the whole of mathematics did not fall apart. Rather,
it accelerated forwards thanks to their work on infinitely small things.

Approximating Circles



When my little nephew was about to start kindergarten there was a list of
children’s maths books recommended for him. I sat down and read The
Greedy Triangle by Marilyn Burns with him. In this book the main
character is a triangle who gets bored of being a triangle. He goes to the
‘shape-shifter’ and asks for another side, so he becomes a square. Inevitably
he gets bored of that and goes back and asks for another side, and he
becomes a pentagon. Then he gets bored and becomes a hexagon, and then
a heptagon, and then an octagon.

I got very excited reading this book because I reckoned I could see
where it was going. In fact my nephew got quite excited too. (Perhaps my
excitement was contagious? I hope so.) I could almost see his little brain
whirring, and then he exclaimed, ‘I know what’s going to happen! He’s
going to turn into a circle!’

In the end this wasn’t the punch line, and I was a bit sad. Instead of him
turning into a circle, which would have been an introduction to calculus,
something much more morally edifying happened: he realised he had been
happier the way he always was and went back to being a triangle.

My nephew’s idea was the same one that was used thousands of years
ago by Babylonian mathematicians to try and work out the area of a circle.
It’s hard to find the area of a circle because it’s curved. In fact, it’s hard
even to say what ‘the area of a circle’ means. It’s somehow ‘the number of
unit squares you can fit into it’ except that you have to be able to melt the
unit squares and pour them into the circular shape. Or you could do it the
other way round: melt the circle, and pour it into a square and see how big a
square it takes up. This is what the ancient question about ‘squaring the
circle’ was. It comes up in my life (not quite daily) when I want to use a
recipe for a round cake but in a square tin. I often do this because I have an
adjustable square cake tin that can make any size of cake from 1 inch to 12
inches, but I only have three circular tins. Obviously I just use the formula
for the area of a circle (and I usually pretend π = 3) but how did they come
up with that formula in the first place?

One way you can do it without melting squares or circles (or wasting
cake batter) is by approximating the circle with straight edges. The more
edges you use, the better your approximation will be.

For example, if you use a square (either on the inside or the outside of
the circle) the straight lines are quite far away from approximating the



circle. If you try to use an 8-inch-square cake tin for a recipe that’s meant
for an 8-inch-round cake tin, you will not have nearly enough batter.

We can work out just how far off we are. Let’s call the radius of the circle r.
We can try this for both the inner square and outer square approximations.

The area of the circle is πr2. The area of the inner square is 2r2. The area of
the outer square is 4r2.

You can work out the area of the inner square using Pythagoras’ theorem to find the
length of the edge. Or you can take the triangle shown with the dotted line, and fit
four of them together to make a square with the dotted line running around the
outside – the length of each side is 2r. Then this new square has area 4r2 and the
square we want is half of that.

So we have this comparison between the ‘real’ area and the two
estimates of the area.

circle = πr2  3.14r2



inner square = 2r2 error  –36%
outer square = 4r2 error  +27%

If you use an octagon, it’ll be closer.

In this case we have:

circle = πr2  3.14r2

inner octagon = 2.83 error  –5%
outer octagon = 3.31 error  +10%

We can find the areas of these octagons by splitting them up into 16 right-angled
triangles as shown. The small angle, by the centre of the circle, is

and we can then use a bit of traditional old trigonometry to find the lengths of the
sides of the triangle. Using trigonometry might be regarded as cheating, but we’re
just demonstrating a point here, not simulating history.

So the idea is that you use polygons with progressively more and more
sides; the more sides there are, the shorter the straight edges will be, and the
less error there will be between the straight edge and the real curved edge of
the circle. The ‘true’ area of the circle is sandwiched in between the inner
and the outer approximations, and you can get it to whatever accuracy you
want by using more sides.



This is also the idea behind finding the area enclosed by a curved line,
or ‘under’ it like this:

You chop it up and approximate it by pieces with straight edges, and try to
make the inaccurate straight edges as small as possible. The more pieces
you chop it into, the more accurate your approximation will be.

But will you ever actually get the right answer? Surely you will get closer
and closer but never actually get there, because the straight edges will never
precisely match the curved edge?

Getting round this conundrum is one of the big motivations behind
modern calculus. The answer might seem a bit annoying at first, but is
typical of how abstract mathematics works. (Admittedly, this is why maths
– and mathematicians – can seem annoying at times.) The answer is that we
decide what ‘the right answer’ means, in a way that suits us. This means at



the very least it should not cause any contradictions, but also, it should pass
basic tests of behaviour so that it matches our intuition as far as our
intuition goes. For example, it should give the right answer if the curve is
actually a straight line!

The key to this is that in all these cases, whether it’s the circle, the curve
or Zeno’s paradoxes, we are doing something more and more times, and
each time we do another step, we get closer to the answer. After any finite
number of steps we are not at the answer, but we keep getting closer
forever. We need to choose a meaning for what happens after we’ve done it
forever. Our intuition has trouble here, because we are not going to live
forever so we can’t imagine what happens when we get there. But what we
will find in this chapter is that if there is only one answer that makes sense,
we might as well choose it and see what happens. Miraculously, what
happens is that this fills in all the annoying gaps between the rational
numbers.

Gaps in the Rational Numbers

We mentioned in Chapter 4 that if we only think about numbers that are
ratios of whole numbers, there will always be gaps in between them,
although they’re very, very tiny. Infinitely tiny, in fact. What does that
mean?

First of all, it’s not hard to bump into at least one gap in the rational
numbers. It happens if you just draw a square whose sides have length 1. (1
something – it doesn’t matter what units you use.)

How long is the diagonal? If we draw a diagonal in this square we have two
right-angled triangles. By Pythagoras’ theorem we know that ‘the square on
the hypotenuse is equal to the sum of the squares on the other two sides’. In
this case we can write d for the length of the diagonal, and this tells us



d2 = 12 + 12 = 2.

So the length of the diagonal is some number such that when you square
it you get 2. It’s trying to be the square root of 2. But we can show that
there is no such number if it has to be a ratio of two whole numbers. Here’s
how we do it.

Proof. We start by assuming the opposite of what we are trying to prove, so
we assume that there are actually two whole numbers a and b where  = .
The trick is also to assume that this fraction is in its lowest terms, which
means you can’t divide the top and bottom by something to make a simpler
fraction.

Now we square both sides to get

so 2b2 = a2.

So far so good. Now we know that a2 is two times something, which means
it is an even number. This means that a has to be an even number as well,
because if a were odd then a2 would also be odd.

What does it mean for a to be even? It means it is divisible by 2, which
means that  is still a whole number. Let’s say

 = c

so a = 2c

and now substitute that into the equation above, so we get
2b2 = (2c)2

= 4c2

so b2 = 2c2.

Now we can do the same reasoning on b that we just did for a. We know b2

is two times something, so it’s even, which means b must be even.



Now we’ve discovered that a and b are both even. But right at the
beginning we assumed that  was a fraction in lowest terms which means
that a and b can’t both be even. This is a contradiction.

So it was wrong to assume  =  in the first place. This means that 
cannot be written as a fraction, so is irrational. 

So just by drawing a square as above, we unavoidably end up with an
irrational number as a length. This means that there must be a little gap in
the rational numbers where the square root of 2 ought to be. If we draw a
circle whose radius is 1, we bump into another gap in the rational numbers,
because the length of the line that we actually draw, the circumference, will
be irrational (although this is much harder to prove than for the diagonal of
the square).

It’s a bit difficult to describe the length of the circumference of a circle,
but the length of the diagonal of a square is not very contentious. If you
imagine a square, the diagonal must have some length or other. If it’s not a
number, that’s a bit of a failure of our number system. Those gaps cause
other problems as well. They could, oddly, mean it is possible to draw two
lines that cross each other without ever intersecting, because there might be
a tiny gap there. It also relates to my favourite application of mathematics:
to baby carrots.

Do Baby Carrots Exist?

I was once at a maths conference munching on some baby carrots I’d
bought for the coffee breaks, in an attempt not to stuff my face with
cookies. I managed to get into an argument with someone about whether
baby carrots are real or not. At the time I had not yet lived in the US, where,
as it turns out, you can buy ‘baby cut’ carrots. These are normal carrots that
have been cut down into the size of baby carrots, just unnervingly
cylindrical, regular and rounded at the ends. I now know that these are
much more widely available in the US than the type of baby carrots you get
in the UK, which are genuinely carrots that haven’t grown very much yet.
Often they come completely intact, with the skin and the green poffley ends
still attached, so they’re visibly a whole carrot. Also, when I was little we



grew carrots in the garden, and when we pulled them up some of them were
evidently smaller than others.

These all seemed like obvious facts about carrots to me, but my
American colleague was very surprised by these revelations. However,
since we were all mathematicians I was able to convince him by invoking
the intermediate value theorem, which basically says that since carrots grow
continuously from nothing, at some point they must be small.

Of course, since we were all mathematicians there was soon a refutation
– how do I know that carrots grow continuously? How do I know they
aren’t made of green jelly until they’re a certain size, and then
spontaneously turn into a carrot at that point, a bit like a butterfly emerging
fully grown from its chrysalis? Mathematical proof can often seem like a
back and forth between the mathematician and the doubter, or the
mathematician and the smarty-pants. We all knew this argument was a
mathematical joke really, but this still remains my favourite application of a
theorem. (From this you can correctly surmise that I am not highly
motivated by grand applications of theorems.)

Anyway, what is this intermediate value theorem all about? Here’s
another, more mathematical way of putting it. If we draw the graph of y = x2

it looks like this.

This shape is called a parabola. And if we draw the graph of y = 2 it looks
like this



Now we can superimpose them, and see where they cross:

If we only have rational numbers, we know there is no rational number x
such that x2 = 2, which means that those two lines won’t meet anywhere.
There will be a tiny gap in the parabola so that the straight line doesn’t
actually touch the parabola anywhere, but spookily gets from one side to the
other without meeting it. This reminds me of the New York Subway where
lines cross over each other in all sorts of places without there being an
interchange, whereas on the London Underground there’s always (or almost
always) a way of changing trains where lines cross over. (I can’t find any
exceptions in Central London, but there are a couple way out west.)

I said the gap is in the parabola, but maybe it’s in the straight line?
Actually it’s in both, and it’s not just at that point. The gaps are everywhere,
so there are all sorts of places where a straight line would cross the parabola
without meeting it. Moving the line from 2 to 3 will give another place.
This is one of the things that really lead us to want to fill those gaps in. We
want to be able to know that if we draw two lines and they cross, they really



actually intersect somewhere. This is the intermediate value theorem. It’s
called that because in its most basic form it says that if you grow
continuously from height A to height B, then you have to achieve every
intermediate height at some point. Anyone who is currently six feet tall
must at some point in the past have been five feet tall. Carrots must at one
point have been baby carrots.

Gaps Everywhere

We now know that there’s at least one ‘gap’ in the rational numbers, where 
 should be. We already mentioned in Chapter 4 that there’s an irrational

number in between any two rational numbers. This means that the irrational
numbers are inescapably everywhere, forcing this kind of ‘gap’ in between
all the rational numbers. The real numbers are sort of stripy, between
rational and irrational numbers. Of course, we have to be careful what that
really means.

We are going to show that if some smarty-pants throws any two rational
numbers at us, we can find an irrational number between them, no matter
how close together they are. Suppose the smarty-pants has thrown us two
rational numbers a and b. All we need to do is add on a tiny irrational
number to a, because a rational number plus an irrational number is
irrational.

How tiny does the extra bit need to be to fall into the gap? It just needs to
be smaller than b – a. This is easy: we can find irrational numbers as small
as we want just by dividing  by something enormous, perhaps 

 The number we divide by can be as big as anything,
so the irrational number we get out can be as small as anything, no matter
how close together our evil opponent smarty-pants makes their a and b.



An irrational number divided by a rational number is still irrational. This can be
proved by contradiction, as can the analogous fact for adding an irrational number to
a rational number.

The idea here is that we can find an irrational number that’s infinitesimally
close to a. If an ‘infinitesimal’ were a valid quantity, we might call it ε (the
Greek letter epsilon) and declare that we’re trying to find an irrational
number that is within ε of a. However, this ε is only valid as an idea, not as
a quantity, so the way we make it logically valid is to turn ε into a smarty-
pants or evil opponent who can pick any real value for ε, as small as they
want. The more they want to challenge you, the smaller they can pick it.
Then your task is to show that no matter how small they make ε, you can
still get within ε of a. This is a bit like finding a winning strategy, or
building a machine so that no matter what a and b some smarty-pants
challenges us with, we know how to find an irrational number in between
them. We make a watertight strategy, so we know we will never be outdone.
This is the main idea behind how modern calculus is made rigorous, both
when dealing with infinitely large things and infinitely small things.
Infinitely large really means ‘so big that we can never be outdone by a
smartypants’, and similarly infinitely small really means ‘so small that we
can never be caught out by a smarty-pants’.

The tiny distance the smarty-pants is using to challenge us is usually called ε by
mathematical tradition. So much so that ‘ε proof’ is the nickname given to proofs of
this kind. The idea of the ε is that it represents an arbitrarily small number that our
smarty-pants is going to throw at us. It would be bad strategy for them to throw a
large number at us after all, because it would make it easy for us to win. It harks
back to the time when mathematicians tried to make this sort of argument precise by
using actually ‘infinitesimally small’ quantities. However, ε is just potentially small, not
a fixed small number. So ε is sometimes used informally as synonymous for ‘very
tiny amount’. Mathematicians will say things like ‘I feel like I’ve been ε away from
finishing this paper for months.’ In fact, there’s a mathematical joke which simply
goes like this: let ε be a large negative number. If you’ve spent years slaving away
over ε proofs, this can be enough to cause a fit of nervous hysterics.

This type of justification is quite different from the kind where you solve
equations or do geometrical constructions. It feels like you’re skirting



around an issue, or never quite getting there. This is a valid feeling, and
often leaves students of calculus feeling very disconcerted when they first
see it: it’s not how they’re expecting mathematics to be. The first time you
see something called calculus, it’s usually a quite well-organised set of rules
and procedures for calculating things like slopes of graphs and areas under
curves. The question of why these give the right answer gets pushed under
the carpet because it’s too mind-boggling. The reason it’s mind-boggling is
because you have to get your head around the notion of things being
infinitely small. We’ve already seen how infinitely large things make our
minds boggle, and now it’s time for some infinitely small things.

Imagine that someone is trying to challenge you to shoot a target from
some distance away. You’re allowed a few misses at the beginning, but in
order to pass the test you have to be able to keep hitting the target
indefinitely after a certain point. If you pass this test, the opponent makes
the target smaller and you have to try again. And if you pass that test,
they’re going to make it even smaller. And they’re going to keep making it
smaller to try to catch you out. You only count as being able to hit a target if
you can pass this strenuous test no matter how small they make the target.

Target Practice

Let’s try this ‘target challenge’ for an example of something that is
supposed to get infinitesimally small: , as n gets bigger and bigger. We’ve
seen that this is supposed to be like ‘dividing by infinity, giving zero’ and
now we can make some sense of it. The idea is that  will never actually
equal zero, but if 0 is the bullseye of our target, we will always be able to
keep hitting the target no matter how small our evil opponent makes it. It’s
not enough just to hit the target once. What we have to do is allow ourselves
a few misses at the beginning and then be able to keep hitting it indefinitely.
You might be wondering how many misses is ‘a few’. The answer is: any
finite number. Because when we’re talking about ‘forever’, a finite number
of misses at the beginning isn’t going to count for much by comparison.

For example, suppose the evil opponent makes the target only 0.01 wide
(as a radius). So the range we’re trying to hit is this



Our target should only be a portion of the real line, but I’ve drawn it to look
like a circular target so that it looks more like target practice.

Our attempts at hitting the target consist of making n get progressively
bigger, so they go like this:

Our tenth attempt is  which is 0.01. This one will sort of ricochet off the
side of the target. Our first one that will definitely hit the target is the next
one, . From this point on we’re fine – all subsequent attempts will be
smaller than that, so they will all hit the target.

We have passed this stage of the test. But the evil opponent is
undaunted. They replace the old target with a new, smaller one that’s only
0.001 wide. This time it will take us much longer to hit the target, but that is
allowed – remember we’re allowed any finite number of misses. Now the
one that will ricochet off the edge of the target is  as that is exactly 0.001.
But the next one is  which is smaller, so will hit the target. All
subsequent attempts will be even smaller so will all hit the target, and so we
pass the test.

Now it might seem that this process could go on forever, but we can
come up with a clever mechanism to show that no matter how small the evil
opponent makes the target, we can still win. It’s a bit like how we showed



that there would definitely be an irrational number between a and b, no
matter how small the gap between them was. This time, we want to show
that we can pass the test on a target of size ε no matter how small ε is.
Again, ε isn’t a fixed infinitesimally small size, because that can’t be made
rigorous. Instead it’s a potentially small size, as small as the evil opponent
smarty-pants wants.

It’s just a matter of finding a time beyond which all of our  will hit the
target. Now, because the  keep getting smaller as we go on, we just have to
find any old one that hits the target, and we know that from there on we will
be fine. It doesn’t matter if we find the first one or not, we just have to find
one.

What this means is we have to find n such that  < ε, which we can
definitely do by making n really huge, as huge as necessary. This is just like
when we made a tiny irrational number by dividing  by something as
huge as necessary.

If we want to be very precise we can work out how huge a number we have to divide
by, to make something small enough. In this case we are trying to get  < ε, and if we
rearrange this it becomes  < n. So we just have to find an n that’s bigger than ,
whatever that number happens to be. And we know we can always do this, because
the n’s get bigger and bigger and never run out.



This means that in principle we know we will always be able to pass the
target test, no matter how small a target the evil opponent chooses.

Mathematically we say that 0 is the limit of this sequence

This doesn’t mean the sequence of numbers will ever get to 0, but it means
that it will keep getting closer and closer, with the precise meaning of the
target challenge we just described.

Cake Again

We can now use this method to give a rigorous meaning to the question of
whether we can make our cake last forever by eating half of the cake, and
then half of the rest (which is a quarter) and then half of the rest, and then
half of the rest … forever. You might think your cake will last forever, but
the bit that’s left will eventually get so small as to become negligible, so
you will basically have eaten the whole cake.

This can be pictured in a very satisfying way on a square cake, as long
as you don’t mind that some pieces will be square and others will be
oblong.



The question is, how much cake will we have eaten after we get to forever?
At each stage we eat these amounts:

except this time it’s not the amount we eat at each stage that we’re
interested in, it’s the total amount we’re eating. The total amount we’ve
eaten after each stage is

Now we’re going to claim that if we ‘keep going forever’ we’ll eat all the
cake. By this we mean that we’ll get closer and closer to eating the whole
cake, as close as any smarty-pants could ever challenge, according to the
target-test method from before. Mathematically speaking, we’re saying that
the limit of the amount of cake we’ll eat is 1, the whole cake.

So along comes the smarty-pants to challenge us. This time the bullseye
is 1. They start by giving us a target that is 0.1 wide (measured by radius).



We have to show that after a finite number of allowed misses we can hit this
target and keep hitting it with all subsequent attempts. This time the
subsequent attempts are the successive rows of the above table. You might
think we need to add those fractions up to find the answer at each stage, but
we can be much more lazy than that (and one key to maths is to be as lazy
as possible). It’s much easier to think about how much cake is left, and that
will tell us how far away from the bullseye we are at each stage.

After the first attempt, there’s still  the cake remaining, so we’re  away
from the bullseye of 1. Seeing as the target is only 0.1 wide and  = 0.5 >
0.1 this has not hit the target.

Our next attempt gets us closer, but we have still left  of the cake, meaning
that we are  = 0.25 away from the bullseye of 1. Now 0.25 is still bigger
than 0.1 so we have not hit the target.

After the next attempt there is 0.125 remaining, still not close enough to
be on the target. After the next attempt there is 0.0625 remaining. Finally
this is smaller than 0.1, so this has landed close enough to the bullseye of 1



to be on the target. All subsequent stages will take us even closer to the
bullseye, so we will still be on the target forever. So we have passed the
target test for this particular target.

In fact, we can always pass the test, no matter what size of target we’re
given. Suppose the smarty-pants picks a target of width ε. It’s a bit harder
now because we need to make a winning strategy that will work no matter
what ε is. When the size of the target was a specific number (like 0.1 above)
we could just keep testing to see how much cake was left at each stage, and
stop when it was less than that number. To make a strategy that will work
for any ε we have to work out when the leftover cake will be less than ε
without knowing what ε is. This is where maths can start seeming
impossible to get your head around, because instead of an actual number, it
has become a letter, and you don’t know what it is.

What we have to do is realise that after each stage of eating we are
halving the amount of cake that’s left over, so the amount left goes

and so the amount left after n stages of eating is

Informally, we can now say ‘as n gets bigger and bigger, 2n becomes
enormous, so by making n bigger we can always make the leftover smaller



than any ε’.

To be more precise, we need to get to a point where this leftover is less than ε, that is

which is the same as saying

Now, 2n is always bigger than n (as long as n is bigger than 2), so if we just make
sure n >  then we’ll get this string of inequalities:

giving the result we need. This is not the most efficient way to do it, in the sense that
we haven’t found the first moment we hit the target. But that doesn’t matter; we just
need to know that we can hit it forever, we don’t need to know exactly when this
happens. This can feel satisfying if you like being lazy, or unsatisfying if you like
precision. I like both, but laziness wins.

So we have a watertight strategy for passing the target test for any size of
target. This means that by the mathematical definitions, the limit of the
amount of leftover cake is 0, so the limit of the amount we eat really is 1.
This is the meaning we have given to ‘what happens if we keep going
forever’.

Note that this ‘limit’ doesn’t mean a boundary. It doesn’t mean this is
the most cake that we can eat (although as it happens, this is the most cake
we can eat since we only started off with one cake). The use of this word
‘limit’ is supposed to capture the idea of something going on forever and
eventually settling down and not moving around any more.

This explanation is also how we extract ourselves from the conundrum
of Zeno’s paradox about travelling from A to B: we have to travel half the
distance, then half the remaining distance, and so on. The key is to look at
how long it takes us to do each stage of the journey. If we keep going at the
same speed throughout, then each stage will take half the time of the



previous stage. So although we have to go through an infinite number of
stages, they get so short that the total time we spend doing it is still finite. In
fact, it’s basically the same calculation as the chocolate cake example. If the
first stage takes us half an hour, the second stage takes a quarter of an hour,
the third takes an eighth (not that we usually measure hours in eighths), and
so on. If we keep adding up these times indefinitely, we have a ‘smarty-
pants target test’ situation, and it’s just like the answer to the chocolate
cake: the whole thing adds up to an hour, despite there being infinitely
many stages.

So it turns out we can do an infinite number of things in a finite space of
time, and we do it every single day by going from place to place. Unless we
stay in bed all day, but that’s beside the point.

Recurring Decimals

We can now give the target-test treatment to recurring decimals as well.
Let’s think about that most confounding one, 0.99999999 … which is also
written as , and you might have been told at some point in your life that
this ‘equals 1’. What does this actually mean? We tend to think of this
recurring decimal as ‘0.999 … with the 9’s going on forever’, but now we
know how to deal with it in a rigorous mathematical way. It’s just like
eating the cake. We gradually proceed down the decimal places. After the
first decimal place we have 0.9. After the second decimal place we have
0.99. After the third we have 0.999. And so on. The definition of  is that
it is the limit of this process. So when we are saying  = 1 all we are
claiming is that the limit of this process is 1. It doesn’t mean we actually
ever reach 1. It means that if an evil opponent comes along and sets up a
target for us with a bullseye at 1, we can pass the target test no matter how
small they make the target.

Let’s try it. Let’s say the first target is 0.01 wide. So our target looks like
this



Our first attempt is 0.9. How far away is this from the bullseye 1? It is 0.1
away, which is bigger than 0.01. So we have missed the target.

Our next attempt is 0.99. This is 0.01 away from the bullseye 1, which
means we have ricocheted off the edge of the target.



Our next attempt is 0.999. This is now only 0.001 away from the bullseye 1,
which means we have definitely hit the target this time. Morever, all our
subsequent attempts get closer to the bullseye, so we know that we will
now hit the target with all future attempts. So we have passed the target test.

Now we have to be sure we can pass this test no matter how small the target
is. Let’s suppose that the evil opponent gave us a target that was ε wide.
When will we start hitting this target?



We know we will hit it once our error margin is less than ε, which means
we need 0.0000 … 001 < ε for some number of 0’s. This is definitely
possible because we can put in as many 0’s as we want.

This is pretty much the same as the cake example, except that instead of halving the
leftover part each time, we are dividing it by 10. So we need n such that

which is the same as

Similarly to the last time, we can use the fact that 10n > n, so if we just pick n >  we
then have

as we wanted.

So if you think that 0.999 … will never ‘actually’ hit 1, you’re right but
missing the point. The definition of this recurring decimal has already got
that fact built into it, so it never actually has to ‘hit 1’ in order for the
recurring decimal to equal 1.

Another way to think of this is to ask: if 0.999 … isn’t 1, what is it? It
can’t be less than 1, because we’ve just shown that it gets closer to 1 than
any possible size of gap. So however small you think the gap is between 
and 1 the actual gap can’t be any bigger than 0. We now have two options.

1. Declare that 0.999 … makes no sense and isn’t a real number.
2. Declare that 0.999 … is 1.

Let’s compare these options. If we take the first option, we will not be able
to make sense of any other infinite decimal expansions either, and so we
will not get to fill in the gaps in the rational numbers. If we take the second
option, we get to fill in the gaps in the rational numbers, and nothing



logically bad happens at all, we just feel a bit queasy. If you remember that
0.999 … is just shorthand for ‘the limit as n approaches infinity of 0.99 … 9
with n decimal places’ then I hope your queasiness might subside and you
will be able to enjoy the ride.

The cake example corresponds to a recurring fraction if we use binary fractions
instead of decimals. This is because  in binary is 0.1, and then if we add on  we get
0.11, and then if we add on  we get 0.111 and so on, so the amount of cake we eat
if we go on forever is the recurring binary fraction 0.1111 …. And by an argument as
above, we can show that this limit is 1.

Aside on ‘Forever’

We’ve seen a lot of situations where we’re trying to imagine what happens
when something goes on forever, whether it’s handing out raffle tickets,
guests arriving at a hotel, floors of a skyscraper. This is hard because none
of these forevers is possible in reality. How can we imagine what would
happen if something impossible became possible?

It is a fun device in fiction to change one thing in reality but leave
everything else the same. For example, Superman lands on Earth but
everyone else on Earth is a normal human being. Or, someone has built a
time-travelling machine but all the humans are still normal human beings.
This is the sort of thing we’re trying to do in our ‘forever’ thought
experiments as well.

Mathematically and logically this is difficult, because logically if you
make something false become true, then everything becomes true. It’s a bit
like the fact that if you make 1 = 0 then everything is doomed to be equal to
0.

Think about an argument where someone says ‘If you’re right then I’m
the Queen of Sheba’. What they’re saying is that if you’re right then
everything might as well be true, including something entirely fanciful like
me being the Queen of Sheba. In logic, you can’t just take something that’s
false and make it true and think that there will be no consequences – the
consequence is that your logical system won’t be consistent any more. The
only way to do it that will keep the logical system consistent will be to



make everything true. ‘True’ and ‘False’ end up meaning the same thing,
and the world implodes. That’s why imagining Hilbert’s Hotel and infinite
cookies are only thought experiments, not logical arguments. That’s why
they’re open to debate, and why we have to work hard to turn them into
genuine mathematical arguments which are no longer open to debate, at
least, not by people who understand mathematics.

Other Long Decimal Expansions

We now have a hint of what an ‘infinitely long decimal expansion’ means.
It means this thing about targets. Every time you add a decimal place to a
number you’re changing it a little bit (unless the new decimal place is 0),
but as you add more and more decimal places, the amount that you’re
changing the number gets smaller and smaller. At some point it becomes
very negligible, that is, you know you will keep hitting the evil opponent’s
target, no matter how small they make it.

With recurring decimals, we extend the decimal places according to a
repeating pattern. The pattern doesn’t have to start at the beginning, and the
repeating cycles can be as long as you like, but eventually they repeat. Here
are a few examples:

The right-hand column is the more unambiguous way of writing down the
decimals so that we’re all completely clear which part is going to repeat.

The strange conundrum with irrational numbers is that there is no
pattern to the way that we’re extending the decimal places. The digits are
random, and never repeat themselves, not even in very, very long cycles. So
how can we tell what bullseye this number is heading towards? This is a
good question, and the answer is: we can’t.

This is the point where we flip everything upside down and do it all
backwards, which is what happens sometimes in maths and might make you
feel queasy. Being on a boat (especially a small boat) can make me feel



very queasy unless I tune into the way the boat is rocking with the waves
and fully let myself be rocked with it. At that point it becomes positively
exciting. (However, I’ve never managed to do this with those big swing
rides at theme parks. Those just make me feel ill.) What I find much harder
is coming back on land again. I’ve usually got so tuned into the rocking of
the boat that I can’t tune into the boring fixed land afterwards.

Here’s how we’re going to turn ourselves upside down with the targets.
Previously our evil opponent placed a target around the bullseye that we
were aiming for, and we had to pass various tests. This time we don’t know
where the bullseye should be. We just have a target that is getting smaller
and smaller. As long as we can keep hitting the target in the same way as
before, we win. What do we win? We win the knowledge that there was a
bullseye somewhere, even though we don’t know where it was.

This is what happens with infinitely long decimal expansions of
irrational numbers. We know that as the expansion gets longer the number
will settle down and keep hitting a very small target, but we never get to
find out where the bullseye is. For example, let’s think about π. It’s a
remarkable fact that no matter what circle you take, the ratio of its
circumference to its diameter will always be the same. It’s the same ratio
for all different sizes of circle. This ratio is an irrational number and we call
it π.

But what number is π? We don’t know. We have very long decimal
expansions of it (say, to 10 trillion digits) but this doesn’t mean we know
what the entire decimal expansion is. We can even compute any given digit
without computing the previous ones, by an algorithm of Simon Plouffe
from 1995. But we still can’t know the entire decimal expansion at once.

We know that we can hit any infinitesimally small target by going very,
very far down the decimal expansion, because after, say, 5 million digits the
number is hardly changing at all when we add more digits. But it is still
changing, and we do not know what bullseye it is heading towards. This is
the strange fact about the irrational numbers. They are everywhere, and we
really can’t say what they are, except by some circuitous arguments using
shrinking targets. It just so happens that π can be characterised precisely
without any reference to decimals, because it is simply the ratio of any
circle’s circumference to its diameter. Likewise  can be characterised as
the positive number which squares to 2. However, most irrational numbers



can’t be characterised in this way. So how do we say what they are? It’s
difficult.

What Are the Real Numbers?

No wonder it took so long to pin down the real numbers. It’s quite easy to
say what the previous types of number are up until that point – we did the
natural numbers, the integers and the rational numbers without too much
difficulty. Once you start letting irrational numbers in, the situation
becomes very difficult.

In one of those exciting moments in the history of mathematics, two
people worked out how to do it, in different countries, in different ways, at
almost exactly the same time. It’s remarkable how often this happens. It’s
almost as if there’s something in the ether that makes mathematicians in
different places around the world able to solve the same problem at the
same time. Not that there is an ether. Perhaps it’s just that mathematical
research reaches a certain point leading up to it and then the time is ripe for
it. The real numbers were finally properly pinned down by Cantor and
Dedekind, in completely different ways, independently, in 1872.

Cantor did it using the shrinking-target method that we’ve just been
describing; confusingly the name of another mathematician, Cauchy, is
usually associated with this construction because the shrinking-target
method is based on his ideas. It was Cantor who put the method to use for
constructing the real numbers. Dedekind did it by something more like
finding the gaps between the rational numbers. Both of these methods end
up with real numbers that look extraordinarily unlike anything we’re used
to thinking of as a number. This is just like our previous construction of
infinity, which turned out to be the ‘quantity of numbers in a set’ even
though we don’t know what the set is.

Using Cantor’s method, a real number is constructed as a sequence of
rational numbers that meets the target-practice condition. Here are a couple
of famous examples. The irrational number e can be defined via the
sequence of rational numbers: . Remember that n! is

n × (n – 1) × (n – 2) × … × 3 × 2 × 1.



Here, as a sort of technicality, we start n at 0 and define 0! to be 1.

One justification for this is that n! is the number of different orders in which you can
play the n songs on your iPod. If you have 0 songs on your iPod (as I currently do on
my new phone), there’s only one way in which you can play them, and that is by
doing nothing.

The numbers we’re considering here are:

and we’re going to add them all up forever. This wins in our evil opponent’s
target test, and so although we don’t really know what the bullseye is, we
know it’s there somewhere, and we call it e.

Miraculously, this is the same number you get by a more well-known definition of e
which is via the function ex. This is a function satisfying the following two properties:

1. The function’s gradient everywhere is itself. That is, if you plot a graph of it, the
slope at any point is just the y value of that point.

2. The y value (and gradient) at 0 is 1.

The number e is then the y value (and gradient) at 1.

Here’s another example. This time we add up these rational numbers:

This also beats our evil opponent’s target test, and again we don’t really
know what the bullseye is. We call it π. The fact that this is π is a curious
result that can be proved using some quite sophisticated techniques of
calculus.

Showing that these complicated abstract objects behave like numbers
takes a lot of work. We have to show how to add them up, how to multiply
them, and prove the rules that we want to be true about numbers, like that
the order of addition and multiplication doesn’t matter, that we can subtract



from both sides of an equation, and so on. It is amazing that something we
can understand so instinctively can be so difficult to turn into rigorous
mathematics. This can make mathematics seem frustrating to some people,
impotent to others, and pointless to yet others. To me it is simply
fascinating that our gut instincts can be so strong, and so difficult to
understand with our brains. It doesn’t mean we shouldn’t try, although we
can also be glad that great mathematicians like Cantor and Dedekind did it
for us, so that we can marvel at their solutions and not have to try and do it
ourselves.
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Weirdness

efore we end, here are some weird facts that come out of our new
understanding of the infinitely small. Infinite things and finite things start
getting mixed up in strange ways.

First of all, here’s how to make an infinite number of cookies with a
finite amount of cookie dough. You make the first cookie, and then you
make the second one with half as much dough as the previous one.

You make the next one with half of that, and then half of that, and so on. As
long as the first cookie wasn’t a giant monster cookie that used up half the
dough (or more), then you will never run out of dough. (Making a single
cookie with all your dough and baking it in a pizza dish seems to be
something people do these days.) You will have an infinite number of
cookies; the only snag will be that they will also be infinitely small and
once they’re smaller than a certain size you won’t be able to see them any
more.



How about making the cookies get small just a little bit more slowly?
Instead of making each cookie with half the dough of the previous one, you
could go back to the first cookie and just take a slightly smaller proportion
of that dough. So the second cookie could be half the first one, the next one
could be a third, the next one a quarter, and then a fifth, and so on.

The trouble is this time you will need an infinite quantity of dough.
On the other hand, you could make the second cookie with half the

radius of the first, and the next with a third the radius, and then a quarter
the radius, and then a fifth, and so on.

This time you will be able to stick within a finite quantity of dough.
However, if you line all these cookies up in a long line, they will stretch an
infinite distance.

What?

The Harmonic Series

The progression of numbers that we’re thinking about is



and is called the harmonic series. It is related to harmonics in music – these
are the wavelengths that give the harmonics of a note, expressed as ratios of
the main note. For example, on a violin if you play the G string without
putting any fingers down, you get the note G. You can play higher notes by
putting fingers down and shortening the part of the string that’s actually
vibrating. But you can play ‘harmonics’ by touching the string lightly at
certain places, without completely pressing it down. They sound more
ethereal and floaty than normal notes.

If you touch the string halfway up, the harmonic you get is the G an
octave higher than the main G. If you touch it a third of the way up, you get
the D an octave and a fifth above the original G string. You get the next
harmonics by touching the string a quarter of the way up, and then a fifth,
and then a sixth. You can’t hear much more than that on a violin string,
although you can hear some more on a cello string as the strings are much
longer, so there’s more space to find the harmonics.

These are the same notes that a brass player can play just by changing
the tension of their lips, and without using their fingers at all. The main note
of a brass instrument is more likely to be a B flat, but then the harmonics
are at the same intervals above the main note: an octave, then a fifth above
that, and so on.

The harmonic series is important in maths as well as in music. The
weird fact is that if we keep adding all these fractions up ‘forever’ it never
hits any kind of target. That is to say, the smarty-pants will always win. The
sum of the fractions will head towards infinity. We mentioned this before in
Chapter 11 when we talked about things growing slowly, but we weren’t in
a position to justify it.

Here’s what happens if we try to win the target test. Even if we hit the
target for a while, we’ll eventually start missing again: as we add more
fractions on, the total keeps growing enough that we’ll eventually fall off
the other end of the target. It heads towards infinity, despite the fact that the
amount we’re adding on each time seems to become negligible. Note that
the fact that the total keeps growing doesn’t automatically mean we’ll fail
the target test. After all, when we add  and then  and then , and so on, the
total is also growing. It’s just growing slowly enough that we never make it
past 1. Whereas with the harmonic series, it’s still growing slowly, but fast



enough that no matter what boundary we try to impose, we will always end
up going past that boundary.

Here are a few examples.

Let’s see if we can make it past 1, unlike the cake example when we
eat half the leftovers each time and never quite make it to eating the
whole cake until ‘forever’, when we just about get there. So we’re
trying to see if we can add up enough of the fractions in the harmonic
series and get something bigger than 1. And we can:

which is bigger than 1.
Let’s see if we can make it past 2. At this point I admit to resorting to a
spreadsheet to work this out. My spreadsheet tells me that once I get to

 I’ll be past 2, that is

Now that I’ve resorted to the spreadsheet, let’s see how long it takes to
get past 5. It gets really slow but does eventually happen at .

I originally thought I’d see how long it takes to get past 10, but it was
taking much too long so I gave up. Clearly a better method is needed if
we’re going to show that this heads towards infinity. For a start, ‘proof by
spreadsheet’ is not really a valid mathematical technique. But even if it
were, a method of showing that something heads to infinity isn’t very good
if it takes too long even to show it’s bigger than 10.

Here’s a much sneakier method. It’s sneaky, but it’s also rather clever.
We clump several of the terms together in groups of one, then two, then
four, then eight, and so on.



1. The first clump of fractions just has  in it, the first thing in the
harmonic series.

2. The second clump has the next two fractions,  and .
3. The third clump has twice as many fractions as the previous clump: the

next four fractions, that is

The fourth clump has yet twice as many fractions:

So to sum up, we have clumps like this:

Now let’s pause for a second and take stock. I’m going to show that each of
these clumps adds up to more than , apart from the first one, which only
has  so adds up to exactly that.

Because we’re lazy (or rather, because I like conserving brainpower)
I’m not actually going to add these clumps up – I’m just going to show that
they add up to something more than . Take the second clump, the one
containing  and . Each of these numbers is greater than or equal to . So
the total is greater than or equal to 2 × , because there are two terms, each
greater than or equal to . But 2 ×  = .

That was a bit of an over-the-top way of showing that  +  > , instead of
just adding the fractions up. However, the point is we’re coming up with a
method here that will generalise and enable us to get arbitrarily far along
the sum, whereas putting the fractions over a common denominator to add



them up, or using a spreadsheet, did not generalise well. Techniques that
generalise well often look silly when you apply them to basic examples. It’s
one of the reasons that learning maths is hard, because often all the basic
examples make the maths look silly or pointless or contrived.

Let’s keep going and take the third clump. This contains 4 terms. The
smallest of the 4 terms is the last one, . So all the other terms are bigger
than this, which means that the sum is greater than 4 ×  = .

Now look at the fourth clump. This contains eight terms, and the smallest
one is . So the total is greater than 8 ×  = .

We can go on like this forever. The next time we’ll take 16 terms, ending at 
. Each term is greater than or equal to  so the total is greater than  = .

Then we take 32 terms ending at . Then we take 64 terms ending at .
And so on.

A better way than saying ‘keep going forever’ or ‘and so on’ is to say what happens
for the nth clump, where n could be anything. The nth clump has 2n–1 terms and
ends at . Each term is greater than or equal to  and so the total is greater than 

, as we claimed.

So we see that if we add all the terms together, forever, it will be more than
what we get if we keep adding  to itself forever. And if we do that, we will
definitely never stop growing.

Here’s another way of thinking about it. If the evil opponent gives us a
target, and we manage to hit it, we are doomed to fall off again. Because we
will eventually have added on enough further clumps of numbers, each of



which is more than , that our total will get too big and fall off the other side
of the target.

In this case, the evil opponent wins.

Bar Charts

We can draw the harmonic series as a sort of bar chart, like this:

Here each bar has width 1, so the area of each rectangle is the width times
the height, which is  for each n. So the total area of all those bars is the
same as the thing we were just trying to do, adding up all the terms in the
harmonic series. This means that the area represented here is ‘infinite’.



What this really means is that no matter how big a number we think of, if
we go far enough down the graph (bigger and bigger n) we can find a place
where the area up to that point is definitely bigger than the number we
thought of. This means that as we include bigger and bigger n, the area
approaches infinity, in the sense of Chapter 11.

We are now starting to come back to the idea of the area contained by a
curve. If we draw a graph of  it looks like this.

First note that  gets very large when x is close to 0. We can’t say where it is
when x actually equals 0, but we can say that  tends to infinity as x tends to
0, which means, as above, that no matter how big a number we think of, we
can find a small x where  is bigger.

On the other hand as the graph goes off to the right, x becomes infinitely
large and  becomes infinitely small. So you might think that if we ignore
the beginning, infinite part of the graph, the area under the graph should be
finite. But it isn’t.

If we draw this curve superimposed on the bar chart, we get this picture
with the bars fitting snugly underneath:



We know that the bars have a total area that is infinite, and if you look at the
gaps between the bars and the curve, you can see that the bars have not
even filled in all the area – the area under the curve is more. The area under
the curve is more than something that was already infinite, so must also be
infinite.

In fact, the area under this curve is measured by the natural log, written
ln. (This is the log to base e, but we won’t go into that now.) Actually it is
one way of defining the natural log function: ln b is the area under this
graph from 1 up to b. The bar chart version shows us that the natural log
grows (slowly) to infinity, as we asserted in Chapter 11.

Areas Under Curves

This way of fitting a ‘bar chart’ snugly under a graph is at the heart of
finding the area under a curve. This is otherwise known as ‘integration’. It’s
a bit like in the previous chapter where we chopped up a circle into neat
polygons and hence triangles in order to estimate its area. Now we’re going
to chop the graph up into rectangular bars, and use that to estimate the area
by adding up rectangles. The narrower the rectangles are, the more accurate
the estimate of the area should be.

Finding the area under a curve was another of the great motivations
behind understanding the whole business of infinitesimally small things. At
first people were trying to use the notion of an actual ‘infinitesimally small’
length, and trying to say what it would mean to have rectangles that had



‘infinitesimally small’ width. Mathematicians were worried about this
approach, and rightly so – as we’ve said before, an infinitesimally small
length isn’t something that makes sense mathematically as a real number,
any more than an infinitely large real number does.

Instead, it was another of those moments where two people worked out
how to do it at similar times, in different countries, in different ways. This
time it was Lebesgue and Riemann, but it wasn’t quite as close together as
Cantor and Dedekind constructing the real numbers. Riemann did it using
the vertical bars just like we had in the example of  above. Curiously,
Lebesgue did it using horizontal bars. (This is an oversimplification, but
gives the general idea of the difference.) Lebesgue’s way is perhaps less
intuitive, but more powerful. I won’t go into it here as it requires a lot more
technicality.

Riemann’s way was to use vertical bars to give two estimates of the
area: an overestimate, and an underestimate. Take  again, for example. If
we just chopped it up into vertical bars:

there are two ways we could make rectangles. We could put the horizontal
lines either above the graph



or below the graph.

This is a bit like when we approximated the circle with a polygon fitting
outside the circle and also with a polygon fitting inside the circle, with the
circle sandwiched in between. Here if we put the rectangles above the
graph, then we’ve included more space than the graph has under it, so it’s
an overestimate of the area under the graph. But if we put them below, then
we’ve omitted some space that the graph has under it, so it’s an
underestimate. If we make the bars narrower, both of those estimates will
get closer to the curve and so improve. For example, if we make the bars
0.5 wide instead of 1, we get this, and the overestimate area has ‘improved’
by the shaded parts shown below:



If we do the same for the underestimate, it will improve by the following
shaded parts:

The genuine graph is sandwiched in between. Now the question is whether
the underestimate and the overestimate ever meet. They might not ever
actually meet, but they could get so close that the distance between them
has become negligible. How negligible? Negligible enough to defeat the old
smartypants again. It’s as if you and your friend are doing the target test
together, and you have to be able to both hit the same target forever, no
matter how small the target is. If you can both do it together, then you win.
Again you don’t necessarily know where the bullseye is, but there must be
one somewhere, and that is the answer to the area under the curve.



When you learn integration at school, you usually learn it as some kind
of nifty formula so that if you’re asked to integrate a particular function,
you manipulate the function and know what the answer is. But the reason
that works is this process of chopping the graph into infinitesimally small
bars. Just like with the infinite cookies, the target test is how we make
mathematical sense of what that means.

The Ultimate Cookie Conundrum

We’ll now go back to that last, most weird, cookie conundrum, where we
had an infinite number of cookies made from a finite amount of dough, and
yet the cookies stretched out to infinity when we lined them up. How is that
possible?

We were making cookies where the second one had radius  the first
one, then the third had radius  the first one, then , and so on.

When we line them up, the distance they take up is twice the harmonic
series, that is, double something that was already infinite. So it’s definitely
infinite. But what about the volume of cookie dough? Why is the volume of
cookie dough still finite?

Let’s assume the cookies are circular and perfectly even. I was once
criticised in public for assuming this about scones, and accused of using
factory-made scones. For the record, I do make my own scones, and I’m
perfectly aware that nothing on earth is perfectly round and even, but it’s a
good enough approximation for a maths discussion! It’s not exactly a life-
and-death situation after all.

Anyway, the volume of cookie dough for each cookie will be the area of
the circle times the thickness of the cookie. The area is πr2 and the radius of



the nth cookie is . Let’s call the thickness some fixed amount t. It’s a bit
odd to imagine the thickness staying the same even as the cookies become
infinitesimally tiny, but this still gives us a finite total volume, so if the
thickness became smaller as the cookies did, we would definitely have a
finite total volume.

This way of making slightly unrealistic assumptions is key to pure maths. We’re
trying to answer a particular question, and so we make various assumptions along
the way if we think it doesn’t significantly affect the answer to the question, even if it
makes the calculation less ‘lifelike’. If we were trying to answer the question ‘Exactly
how much dough do we use?’ then the assumption that the cookies are all the same
thickness would certainly affect the answer. However, we’re only trying to answer the
question ‘Is the amount of dough finite or infinite?’

Given these assumptions, the volume of the nth cookie is πr2 times the
thickness, that is

which gives us this sequence of volumes:

Now the πt part doesn’t ever change, so let’s pause and think about the only
part that does change, that is, the numbers

This is like the harmonic series

but now each term is squared. (It’s also what we’d get if we made square
cookies instead of round ones.) Squaring a fraction that’s smaller than 1
makes it even smaller (because you’re taking a fraction of a fraction), so



these numbers get smaller faster than the ordinary ones in the harmonic
series. This turns out to be key to knowing whether a sum grows to infinity
or stabilises to a limit. The individual terms have to get smaller, but they
have to do it quite fast. The ones in the harmonic series don’t do it fast
enough. The ones in the squared version do do it fast enough. So this sum is
finite. In fact, the target it lands on has its bullseye at .

This is hard to prove, but you can try and convince yourself it’s true by
trying to arrange small squares inside a 1 × 1 square. If we use a small
square whose edge is  long, then the area of the small square will be . So
filling in the 1 × 1 square with squares whose edges have lengths

is like finding the sum

and comparing it with the area of the big square, which is 1.
We can start by putting a  ×  square in the corner of the 1 × 1 square,

say like this

Next we have to put in a  ×  square. We could put it here



For the  ×  square we can’t put it in the bottom right corner now because
there’s not enough space left (the remaining space is only  wide), but we
can put it above the  ×  square like this.

We could keep going for a few more steps as follows:



If you try it for yourself you’ll find that there’s always a huge amount of
space left for you to position the next square. This isn’t a proof, but it
certainly feels like you’ll never run out of space. In fact, you might agree it
feels like you won’t even need the top right-hand quarter of the square:

meaning that we can fit all these small squares into the area of . This is
right – if you try putting  into your calculator, you’ll find it’s about
0.645, which is less than .



If you can remember any integration, it’s not too hard to prove that the sum is finite,
by thinking about the graph of .

The area under this curve will have to be more than the sum we’re looking for, if we
think about chopping it up into vertical bars like this.

So if the area under this graph is finite, then our sum must be finite too. If you
remember how to integrate  it’s not very hard to work out that the area under the
curve from 1 to b is 1 – , which is less than 1 no matter how big b becomes. So it’s
definitely finite.



Now, the amount of cookie that we have isn’t exactly the same as this
‘squared’ version of the harmonic series, but we just have to multiply the
whole thing by π times the thickness of the cookies. And because it was
finite before that, it must still be finite afterwards. (Unless we have
infinitely thick cookies. Sadly we don’t. Or maybe that’s a good thing
otherwise I’d be infinitely fat.) Another way of thinking about this final step
is that we could fit each of our round cookies inside each corresponding
square in the picture, with space to spare.

So the total volume of cookie dough is finite, even though when we line
all the cookies up side by side, they stretch an infinite distance.

Implausible Volumes

This weird situation with the cookies is related to a very strange and slightly
more mathematical example: the fact that you can take an infinite area,
rotate it through the air, and still only have swept out a finite volume. The
idea of rotating a shape through the air to make a volume is a bit like using
a potter’s wheel. The wheel rotates, so whatever shape you make with your
hands ends up being made all the way round the pot. I’ve always been
fascinated by these but have never had a chance to use one. It reminds me
of the magic of cutting snowflakes by folding paper up and making one cut
turn into 8, or 16, symmetrically. A potter’s wheel is a kind of smooth
version of that.

Imagine taking one of those big bubble-making hoops that you drag
through the air to make a bubble. If you drag it in an entire circle you’ll
have made a doughnut shape (a ring doughnut), formally called a torus. You
could imagine taking other shapes of a bubble-making hoop and waving
them through the air in a big circle. You’d make something that had circles
in one cross-section, and hoop shapes in the other. You might have seen
those Chinese paper fold-up toys, where you unfurl the shape in a fan-like
fashion and complete a circle with it, so you make a little creature that’s
slightly ‘solid’.

We could do it with this shape



and rotate it all the way around the x-axis to make something a bit vase-like

These are called ‘volumes of revolution’, because they’re made by
revolving through one complete revolution about the axis.

Now if we take the graph of  and rotate it around the x-axis we get this



which is more or less like stacking up the cookies we made in the previous
example. The radius at each n is , so the volume we’ve created here is
more or less the same (give or take a little curvedness) as the volume of the
cookies we just made. In fact if we wanted to make it even more like the
cookies, we could rotate these rectangular bars instead



to give this.

Now here’s the weird part. The area of the rectangular bars is infinite. But
the volume of the cookies is finite. The height of the infinite stack of



cookies is infinite. The cross-section of the stack of cookies is infinite! (It’s
twice the area of the rectangular bars.)

I hope you’re feeling disconcerted now, like you’re on a boat that’s
rocking up and down in the middle of a vast, crazy ocean. That’s fine. It’s
the joy of infinity. The real joy, to me, is understanding the logic behind it,
and seeing how to deal with these things with mathematical rigour. Because
then you can ride those waves, not get seasick, and even, perhaps, feel
positively exhilarated by it.

I recently went to Sydney for a conference, and the day before it started
I went on a whale-watching boat trip. The sea was quite rough but I
remembered to ride with the ups and downs of the boat and not try to resist
it. By the time we were far out of the harbour, almost everyone else on the
boat was sick and had to lie down, and only a few of us could really enjoy
the incredible power, majesty and elegance of the humpback whales. This is
what maths can feel like as well. It’s a very different kind of power, majesty
and elegance that we’re going out looking for, but it’s still a pity that so
many people get seasick on the way there.
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Where Infinity Is

y favourite Winnie-the-Pooh story is the one where Pooh and Piglet
are tracking some footprints round a tree. They think they’re following a
heffalump. When they get back to where they started they don’t realise it’s
their own footprints in the snow that they can see, so they think that the first
‘heffalump’ (who was in reality Pooh) has now been joined by two more.
Except that the two extra sets of footprints in reality belong to Pooh (going
round the tree the second time) and Piglet, who has now joined him in the
hunt. Only after they’ve been round a couple more times does it dawn on
them what is going on, and they sheepishly go home.

As I mentioned at the start, I grew up in a house with a fireplace and
chimney in the middle. We did have central heating but the original idea
was that the chimney would heat up the centre of the house, and every room
in the house was clustered around it. This meant that instead of the house
having an entrance with rooms coming off it, the rooms led onto each other
round the chimney.

The best thing about this when I was little was that my sister and I could
chase each other round the house in circles, looping round and round the
fireplace, through the kitchen, dining room, sitting room, kitchen, dining
room, sitting room. Then of course one of us would suddenly change
direction and try to catch the other ‘round the back’, and then we’d all
scream and run round in the opposite direction, kitchen, sitting room, dining



room, kitchen, sitting room, dining room. The wonderful thing about houses
with this sort of circular loop is that you essentially have an infinite house.
That is, there’s an infinite path you can walk along. It’s true that you will
keep coming back to the same place, but there’s something different about
coming back to the same place having gone round something, as opposed to
just going from A to B and back to A again. If you were like Theseus in the
labyrinth, trailing a piece of string behind you, then going round the
chimney back to where you started is definitely different from just going
from A to B and back, because the string will really have done something
and will now be looped around the chimney. You’ve been on a real journey.

Mathematics deals with this phenomenon in the form of something
called ‘covering spaces’. The idea is that instead of drawing a map of a
building showing where everything is, you draw a map showing all the
paths that you can take, trailing Theseus’ string behind you as if in a
labyrinth. Imagine tying one end of the string to the entrance, and tying the
other end of the string to you so that nothing becomes detached when you
plunge into the labyrinth. If you retrace your steps back out, your string will
come with you. But if you take a very different route out, the string might
be stuck inside, looped through the tunnels. If I went back to my childhood
home and attached some string to the front door and then attempted to run
round and round the chimney place, I’d need an infinitely long piece of
string. (And a bodyguard to stop me being taken away and locked up.) In
the mathematical covering-space interpretation this would turn into a path
that was actually infinitely long, instead of looping back on itself
repeatedly. It would be as if, like Piglet and Pooh, you don’t realise each
time you get back to where you started.

One of my ambitions is to live in a house with a genuine circular loop in
it again. Among mathematicians I call this a house ‘with homotopy’,
because homotopy is the mathematical concept that measures loops in
spaces. (We mentioned this in Chapter 13.) If it’s the kind of loop that you
could just pull closed with your Theseus-like trail of string, without it
getting stuck on something like a chimney, for example, then it doesn’t
count as a real loop. It only counts as a real loop if your string will get stuck
round it. Not like after I had my knee operation and the longest walk I could
take was a sad and pointless little circle around my kitchen.



I am particularly intrigued by houses with more than one staircase.
Apart from them being very grand, I like the fact that this gives them a
vertical loop, as you can go up one staircase, go down the other staircase,
and go back to the bottom of the first staircase. You would not be able to
pull your Theseus-like trail of string closed.

Where I currently live, I have no real loops. I have no homotopy.

Infinite Paths

Even though I don’t often chase my sister round in circles any more, I still
like buildings with loops in them because it means I can go on an infinitely
long walk. Mathematicians – and no doubt others – often like walking to
help them think. There’s something about the gentle movement that focuses
my thoughts. Sometimes I think it’s that the act of walking keeps the
logistical parts of my brain just busy enough that my dreamy mathematical
brain can roam free without the other part constantly bothering it and saying
things like ‘Don’t forget to buy some eggs’.

However, the trouble with going for an infinitely long walk is that
usually you would end up infinitely far away from home. Also, if I go for a
walk outdoors and think about maths at the same time, I am very likely to
get lost and also be hit by a car.

Having a building with a loop in it solves all these problems, because it
means you can walk round and round in circles ‘forever’, without feeling
like the circles are futile, because unlike when I just walked in a circle
around my kitchen, you’re really going round something solid, not just
empty space. As I have already mentioned, the maths department at the
University of Nice is entirely based on a circular corridor. The inside of the
circle is a beautiful circular inner courtyard, with floor-toceiling windows
from the corridor looking down on it. All the offices are on the outside of
the circle, and as you walk round and round the corridor you are always
facing onto this beautiful courtyard. I’m glad to say I was not the only
person who sometimes just walked round this in circles, thinking. There’s
something about the possibility of infinity that is liberating.

The problem with this department was it was so symmetrical it was
impossible to remember where I was. There were four staircases, equally
spaced around the circle, and whenever I emerged from a staircase I could



never work out whether it would be quicker to go left or right to get where I
wanted. The funny thing is the number of times I ended up going round the
circle more than once to get where I wanted, because I missed it on the way.

Paternoster

Another satisfyingly infinite structure is a paternoster. There is a quite
famous one of these in the Arts Tower at the University of Sheffield. It’s
like a lift, except much more interesting, consisting of a circular loop of
capsules, each of which carries two people (in Sheffield’s case). At any
given moment there’s one capsule at each floor going up, and one going
down, and a couple in the process of looping over the top or under the
bottom. The paternoster has no doors, and it never stops moving. You just
have to jump into a capsule as it goes past where you’re standing, and jump
off when it reaches the floor of your destination. It moves quite slowly in
reality, but still the first few times I took it I was terrified, and my pulse
shot up when I had to get on and off. It’s amazing that this thing hasn’t
fallen foul of health and safety regulations yet. It is technically forbidden to
ride over the top or under the bottom, but it is everyone’s first thought, and
I’d guess there aren’t many people at the university who haven’t tried it.

It’s called a paternoster because it’s supposed to remind us of a string of
rosary beads, and the idea of rosary beads is to keep track of how many
times you’ve said certain prayers. There might be ten small beads in a row
to keep count of saying ten Hail Marys, and then a larger bead to indicate
that it’s time to say a Lord’s Prayer before starting another ten Hail Marys.
‘Paternoster’ is how the Lord’s Prayer starts in Latin. The idea of the beads
is that having a physical way of keeping track of the number of repetitions
leaves your mind more free for thought.

I feel similarly about paternosters. I wish there were always paternosters
in buildings instead of lifts. To me it makes the whole building feel
connected in an infinite loop, rather than being made up of separate, finite-
sized floors that you have to travel in between. It means that my brain
doesn’t feel divided up into floors when I’m moving between floors, and
the predictable continuous motion means that my mind can feel more free
for thought than when I’m waiting for the unpredictable arrival of a lift.



This is a bit melodramatic, but when I’m thinking about maths this sort of
thing makes a surprising amount of difference to my progress.

Besides, a paternoster is an amazing vertical version of being able to go
round and round in circles (although you can’t really chase anyone round it)
and it makes me feel that a building is infinitely big. If you attach your
Theseus-like string to the ground floor and then get in a paternoster and go
round and round in it, you will again need an infinitely long piece of string.

Other Circles

We previously claimed that there was nothing really infinite in the world,
but now we see that circles are wonderfully infinite if you think about the
paths that you can take on them. Circular (or oval) racetracks are clever
because you can run any length of race on them. A little boy called Jacob
recently wrote to me to tell me that maths is his favourite subject, and also,
by the way, that he could do 84 metres on the monkey bars. I wondered if
he had a very long series of monkey bars, or kept turning round, or if he had
circular monkey bars so that he could keep going just as long as he wanted.

The Circle Line on the Tube used to be more fun because you could sit
on the train forever and keep going round and round, which is much more
like an infinite journey than going back and forth between the end stations
of a non-circular line. Some people are very excited by driving round and
round the M25 around London repeatedly (though personally I’m always
glad if I just managed to get part way round it without getting completely
stuck in traffic). I expect there are also such fanatics of other circular
highways round cities, like the Périphérique around Paris, or the Capital
Beltway around Washington, DC.

An even more interesting version of a circle is a Möbius strip. This is
made from a strip of paper, where you stick the ends together but instead of
sticking them in the obvious fashion

you twist the paper before sticking the ends together.



The intriguing thing about this, both physically and mathematically, is that
you have now stuck the front of the paper to the back, and the back to the
front, meaning that there is now only one side – the front and back have
become the same.

There are many interesting things you can do with this, but one simple
one is just to pick it up and go round it with your fingers. It’s even easier to
lose where you are on it than if you’re just going round a circle, as you can
get confused about whether you’re on the front or the back – because
there’s no difference. You can also try tracing your finger around the edge
of the Möbius strip. The edge is a single circle, but it loops back on itself
and then appears to ‘go round’ the Möbius strip again, although in reality
it’s only gone round once. It’s a sort of figure of eight, another very
satisfying shape to go round and round forever. How fitting that these
should be the symbols that begin and end our quest for infinity:

Except now we know there is no end, because not only does infinity go on
forever, but the hierarchy of infinities goes on forever, with bigger and
bigger infinities, even though we’re sitting quietly inside our large but finite
world. Perhaps we should no longer be surprised that something infinite can
fit inside something finite. Where infinity is concerned, it seems that almost
anything is possible. The world of mathematics fits in our brain but is
bigger than the universe.

Infinity is liberating but sometimes too liberating. I can think much
more freely and creatively if I feel I have an effectively infinite amount of
time at my disposal. I am more likely to prove a theorem if I have no fixed
engagements for the rest of the day, even if the proof only takes two hours.
If I only had two hours available, I probably wouldn’t be able to do it.

And yet, we’ve seen that if we were immortal we could procrastinate
forever. Knowing me, I probably actually would procrastinate forever.
Having infinite dimensions at our disposal gives us infinite subtleties that



we can’t deal with. But we can still dream about them even if we can’t
explain all those dreams.

I truly believe that trying to explain everything isn’t the point. Rather,
the point is to explain as much as we can, and, importantly, to be clear
where the boundary is between what we can and can’t explain. In my
mind’s eye, the sphere of things we can logically explain is at the centre of
the universe of ideas, and the aim of mathematics is to move as much as
possible into that sphere. So the sphere is always expanding, and as it does
so, its surface keeps growing. The surface is where the explicable and the
inexplicable meet.

The most beautiful things to me are the things just beyond that
boundary of logic. It’s the things we can get quite a long way towards
explaining, but then in the end they just elude us. I can get quite a long way
towards explaining why a certain piece of music makes me cry, but after a
certain point there’s something my analysis can’t explain. The same goes
for why looking at the sea makes me so ecstatic. Or why love is so glorious.
Or why infinity is so fascinating. There are things we can’t even get close to
explaining, in the realm far from the logical centre of our universe of ideas.
But for me all the beauty is right there on that boundary. As we move more
and more things into the realm of logic, the sphere of logic grows, and so its
surface grows. That interface between the inside and the outside grows, and
so we actually have access to more and more beauty. That, for me, is what
this is all about.

In life and in mathematics there is often a trade-off between beauty and
practicality, along with a contrast between dreams and reality, between the
explicable and the inexplicable. Infinity is a beautiful dream, inside the
beautiful dream that is mathematics.
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