
ar
X

iv
:2

21
0.

17
02

1v
1 

 [
m

at
h.

C
O

] 
 3

1 
O

ct
 2

02
2

Ranking and Unranking Restricted Permutations

Peter Kagey

November 1, 2022

Abstract

We discuss efficient methods for unranking derangements and ménage per-
mutations. That is, given a list of these restricted permutations in lexicographic
order, we will provide an algorithm to efficiently extract the k-th permutation
from the list. We will show that this problem can be reduced to the problem of
computing the number of restricted permutations with a given prefix, and then
we will use rook theory to solve this counting problem. This has applications
to combinatorics, probability, statistics, and modeling.

1 Overview and preliminaries

In January 2020, Richard Arratia sent out an email announcing a talk he was
going to give about what came to be named “unranking derangements”. Arratia
noted that it is straightfoward to enumerate derangements (i.e. permutations
without fixed points) in both senses of the word: both counting the number
of derangements on n letters and listing them out one at a time. He asked,
however, what if we want to find the element at a particular index somewhere
in the middle of a lexicographically sorted list? Can one do this efficiently—in
particular, can this be done without writing out the entire list? This suggests
a broader combinatorial question: when is it possible to find the element at
a particular index of a totally ordered set in some computationally efficient
manner?

To be explicit about what we wish to compute efficiently, we define the
notion of a unranking.

Definition 1. Let C be a totally ordered finite set, and let {ci}
|C |
i=1 be the unique

sequence of elements in C such that ci < ci+1 for all 1 ≤ i < |C |. Then a
unranking is a map

unrankC : {1, 2, . . . , |C |} → C

that sends i 7→ ci.

1

http://arxiv.org/abs/2210.17021v1


An efficient way to unrank a collection of objects implies an efficient algo-
rithm for sampling from the collection uniformly at random. This can poten-
tially be of use in the case of Monte Carlo simulations and other instances where
it is useful to be able to sample uniformly from a collection of combinatorial
objects.

As the name suggests, every unranking problem comes with a dual ranking
problem.

Definition 2. A ranking of a totally ordered finite set C is a map

rankC : C → {1, 2, . . . , |C |}

that sends ci 7→ i.

The existence of both efficient ranking and unranking maps implies the ex-
istence of an efficient encoding for these objects, which may be of interest to
computer scientists. The encoding works by ranking an object to get its index,
which then can be stored in as a positive integer and unranked on retrieval to
recover the original object.

In January 2021, Richard Arratia announced a $100 prize for developing
an implementing an efficient algorithm for computing the unranking map in the
context of ménage permutations. In particular, he stated the problem as follows:

Problem 3. For n = 20 there are A000179(20) = 312 400 218 671 253 762 >

3.1 · 1017 ménage permutations [4]. Determine the 1017-th such permutation
when listed in lexicographic order.

In the remaining sections, we are show how to resolve all of the above prob-
lems in order to claim Richard Arratia’s $100 prize. That is, we will construct
an algorithm for ranking and unranking both derangements and ménage per-
mutations under the lexicographic ordering. We will show that the existence of
an efficient way to count the number of such permutations with a given prefix
implies that there is an efficient way to compute the ranking and unranking
maps. Then we will develop some ideas from rook theory and apply them to
the context of derangements and ménage permutations.

2 Prefix counting and word ranking

In both the case of unranking derangements and menage permutations (and in
many other applications) our combinatorial objects are words in lexicographic
order, which is a generalization of alphabetical order.

We begin by developing a general theory for unranking collections of words
in lexicographic order by counting the number of words with a given prefix.

2.1 Words with a given prefix

We will start by introducing some basic definitions about words and prefixes,
and to formalize the notion of lexicographic order.

2



Definition 4. A finite word w over an alphabet A is a finite sequence {wi ∈
A }Ni=1.

The collection of finite words over the alphabet A is denoted by WA , or just
W when the alphabet is implicit from context.

Definition 5. A word w = {wi ∈ A }Ni=1 is said to begin with a prefix α =
{αi ∈ A }Mi=1 if M ≤ N and wi = αi for all i ≤ M .

Definition 6. A word w is said to be before w′ in lexicographic order if
either w is a proper prefix of w′, or if at the first position, i, where w and w′

differ, wi < w′
i.

With these definitions established, we can turn the problem of unranking
words into a problem about counting words with specified prefixes.

Theorem 7. For k > 0, let W be a set of nonempty words on the alphabet [n],
and let C ( W be a finite subset of words on this alphabet, with a total order
given by its lexicographic order.

Let #prefixC : W → C be the function that counts the number of words in
C that begin with a given prefix.

Then the unranking function can be computed recursively by

unrankC (i) = fC

i ((1), 0) (1)

where

fC

i (α, j) =







fC

i (α′, j +#prefixC (α)) i > j +#prefixC (α) (2a)

fC
i (α′′, j) α 6∈ C and i ≤ j +#prefixC (α) (2b)

fC

i (α′′, j + 1) α ∈ C , i ≤ j +#prefixC (α), and i 6= j + 1 (2c)

α α ∈ C and i = j + 1, (2d)

where α = (α1, α2, . . . , αℓ), α
′ = (α1, α2, . . . , αℓ−1, 1+αℓ), α

′′ = (α1, α2, . . . , αℓ, 1),
and j denotes the number of words in C that occur strictly before α.

Proof. We make four claims that we will prove using induction on the recursive
applications of fC

i (α, j): that j is the number of words in C that occur strictly
before α, that α ≤ wi, and that the sequence of αs is strictly increasing.

This final claim (that the sequence of αs is strictly increasing) follows from
the observation that α < α′′ < α′ in lexicographic order.

Because each iteration increases either j or ℓ or both, the number of recursive
applications of fC

i required to determine wi is at most i +maxw∈W |w|, which
is finite because W only contains of finite words.

The base case is clear: We start with fC
i ((1), 0) because (1) is the lexico-

graphically earliest word, so 0 nonempty words strictly precede it, and (1) ≤ wi.
We will repeatedly use the observation that if j words precede α, then a

word has prefix α if and only if its index is in (j, j +#prefixC (α)]. Note that
this range is empty whenever there are no words prefixed by α.

3



Case (2a). Because j+#prefixC (α) is the index of the last word that begins
with α, if i > j +#prefixC (α), then wi must begin with a length-ℓ prefix that
is lexicographically later than α.

By construction, α′ is the lexicographically earliest word of length ℓ that
comes after α, therefore α′ ≤ wi. As such, the number of words that strictly
precede α′ is j +#prefixC (α), which is the sum of the number of words that
occur strictly before α and the number of words that have prefix α.

Case (2b). If α 6∈ C and i ≤ j +#prefixC (α), then α is a proper prefix of
wi, and wi is of length at least ℓ+1. By construction, α′′ is the lexicographically
earliest word of length ℓ+1 that has a prefix of α, so α′′ ≤ wi, and the number
of words in C that precede α′′ is equal to j, the number of words that precede
α.

Case (2c). If α ∈ C , i ≤ j+#prefixC (α), and i 6= j+1 then α must be the
word at index j + 1 < i, because α itself is the lexicographically earliest word
with the prefix α. Because words cannot appear multiple times in C , wi must
have α as a proper prefix. Therefore α′′ ≤ wi and the number of words that
strictly precede α′′ is j + 1: the number of words that strictly precede α plus α
itself.

Case (2d). If α ∈ C and i = j + 1, then wi = α because α itself is the
lexicographically earliest word with the prefix α, so it must occur at index
i = j + 1.

Notice that each recursive call of fC
i increases the sum of the letters of α.

If we suppose that C (≤k) ( W[n] is a finite set of words on the alphabet [n]

of length at most k, then unranking a word from C (≤k) requires at most nk

recursive applications of fC
(≤k)

i .
Therefore if there exists a polynomial time algorithm for computing #prefixC ,

then there exists an unranking algorithm that is polynomial in the size of the
alphabet A and the length of the longest word. In the case of restricted per-
mutations, each of these grow linearly with the number of letters in the ménage
permutations.

2.2 Ranking words

Just as we can recursively find a word at a given index, we can also recursively
find a index corresponding to a given word.

Claim 8. If C is a collection of words such that no word is a prefix of another,
then the rank of the word w ∈ C can be computed as the sum

1 +

|w|
∑

i=1

wi−1∑

i=1

#prefixC (wx
(i))

where w = (w1, w2, . . . , w|w|) and wx
(i) = (w1, w2, . . . , wi−1, x).

4



3 Basic notions of rook theory

Now that we have shown that we can unrank words whenever we can compute
the number of words with a given prefix, we want to develop techniques for this
new counting problem. In the case of unranking derangements and permuta-
tions, it is useful to use ideas from rook theory, which provides a theory for
understanding position-restricted permutations. Rook theory was introduced
by Kaplansky and Riordan [1] in their 1946 paper The Problem of the Rooks
and its Applications. In it, they discuss problems of restricted permutations in
the language of rooks placed on a chessboard.

R 3

R 4

R 8

R 1

R 2

R 7

R 5

R 6

Figure 1: An illustration of the rook placement corresponding to the permuta-
tion 34812756 ∈ S8. A rook is placed in square (i, π(i)) for each i.

3.1 Definitions in rook theory

We begin by introducing some preliminary ideas from rook theory.

Definition 9. A board B is a subset of [n]× [n] which represents the squares
of an n×n chessboard that rooks are allowed to be placed on. Every board B has
a complementary board Bc = ([n]× [n]) \B, which consists of all of the squares
of B that a rook cannot be placed on.

To each board, we can associate a generating polynomial that keeps track
of the number of ways to place a given number of rooks on the squares of B in
such a way that no two rooks are in the same row or column.

Definition 10. The rook polynomial associated with a board B,

pB(x) = r0 + r1x+ r2x
2 + · · ·+ rnx

n, (3)

5



is a generating polynomial where rk denotes the number of k-element subsets of
B such that no two elements share an x-coordinate or a y-coordinate.

In the context of permutations, we’re typically interested in rn, the number
of ways to place n rooks on a restricted n×n board. However, it turns out that
a naive application of the techniques from rook theory does not immediately
allow us to count the number of restricted permutations with a given prefix.
Computing the number of such permutations is known to be #P-hard for a
board with arbitrary restrictions. We can see this by encoding a board B as
a (0, 1)-matrix and computing the matrix permanent, since there is a bijection
between boards and (0, 1)-matrices. (In fact, Shevelev [6] claims that “the
theory of enumerating the permutations with restricted positions stimulated
the development of the theory of the permanent.”)

Lemma 11. Let MB = {aij} be an n× n matrix where

aij =

{

1 (i, j) ∈ B

0 (i, j) 6∈ B
. (4)

Then the coefficient of xn in pB(x) is given by the matrix permanent

perm(MB) =
∑

σ∈Sn

n∏

i=1

aiσ(i). (5)

Now is an appropriate time to recall Valiant’s Theorem.

Theorem 12 (Valiant’s Theorem [9]). The counting problem of computing the
permanent of a (0,1)-matrix is #P-complete.

Corollary 13. Computing the number of rook placements on an arbitrary n×n

board is #P-hard.

Therefore, in order to compute the number of permutations, we must exploit
some additional structure of the restrictions.

3.2 Techniques of rook theory

Rook polynomials can be computed recursively. The base case is that for an
empty board B = ∅, the corresponding rook polynomial is p∅(x) = 1, because
there is one way to place no rooks, and no way to place one or more rooks.

Lemma 14 ([5]). Given a board B and a square (x, y) ∈ B, we can define two
resulting boards from including or excluding the given square:

Bi = {(x′, y′) ∈ B : x 6= x′ and y 6= y′} (6)

Be = B \ (x, y). (7)

Then we can write the rook polynomial for B in terms of this decomposition.

pB(x) = xpBi
(x) + pBe

(x). (8)

6



If we want to compute a rook polynomial using this construction, we can end
up adding up lots of smaller rook polynomials—a number that is exponential
in the size of B. When the number of squares that are missing from B is small,
it can be easier to compute the rook polynomial of the complementary board,
pBc , and use the principle of inclusion/exclusion on its coefficients to determine
the rook polynomial for the original board, B.

In the case of derangements and ménage permutations, this is the strategy
we’ll use. We will start by finding the resulting board from a given prefix,
find the rook polynomial of the complementary board, and use the principle
of inclusion/exclusion to determine the number of ways to place rooks in the
resulting board.

4 Unranking derangements

4.1 The answer to a $100 question about derangements

In January 2020, Richard Arratia sent out an email proposing a seminar talk.
The title describes his first “$100 problem”:

Problem 15. “For 100 dollars, what is the 500 quadrillion-th derangement on
n = 20?”

Answer 16. The author’s computer program was able to compute the answer
in less than twenty milliseconds. When written as words in lexicographic order,
the derangement in S20 with rank 5× 1017 is

12 14 2 9 13 20 6 3 1 17 5 11 19 15 10 18 8 7 4 16. (9)

4.2 Overview for unranking derangements

Arratia’s question focused on unranking derangements written as words in lex-
icographic order. Other authors have looked at unranking derangements based
on other total orderings. In particular, Mikawa and Tanaka [3] give an algo-
rithm to rank/unrank derangements with respect to lexicographic ordering in
cycle notation.

In this section we will develop an algorithm for ranking and unranking de-
rangements with respect to their lexicographic ordering as words. The technique
that we use will broadly be re-used in the next section. It is worthwhile to begin
by recalling the definition of a derangement.

Definition 17. A derangement is a permutation π ∈ Sn such that π has no
fixed points. That is, the set of derangements on n letters is

Dn = {π ∈ Sn : π(i) 6= i ∀i ∈ [n]}. (10)

7



R

R

Figure 2: An example of a prefix α = (6, 1), and the board that results from
deleting the first ℓ = 2 rows and columns 6 and 1. The derived complementary
board of B from α is Bc

α = {(1, 2), (2, 3), (3, 4), (5, 5), . . . , (10, 10)}.

4.3 The complementary board

In order to compute the number of derangements with a given prefix, it is
useful to look at the board that results after placing ℓ rooks according to these
positions, as illustrated in Figure 2.

Definition 18. If B is an n × n board, and α = (α1, α2, . . . , αℓ) is a valid
prefix of length ℓ, the derived board of B from α, denoted Bα, is constructed
by removing rows 1, 2, . . . , ℓ and columns α1, α2, . . . , αℓ from B, reindexing in
such a way that both the row and column indexes are in [n− ℓ].

The derived complementary board Bc
α is the complement of Bα with

respect to [n− ℓ]× [n− ℓ].

Given a prefix of length ℓ, the number of ways of placing n− ℓ rooks on the
derived board Bα is, by construction, equal to the number of words in C with
prefix α

Lemma 19. Given a valid ℓ-letter prefix (α1, α2, . . . , αℓ) of a word on n letters,
the number of squares in the derived complementary board is

|Bc
α| = n− ℓ− |{ℓ+ 1, ℓ+ 2, . . . , n} ∩ {α1, α2, . . . , αℓ}|, (11)

and no two of these squares are in the same row or column.

Proof. Notice that the derived complementary board can be constructed in a
different order: by first taking the complement, then deleting rows and columns,
and finally reindexing the squares. Because the complementary board has no

8



two squares in the same row or column, deleting and reindexing results in a
derived complementary board with the same property.

Thus, we only need to classify which squares in the complementary board
are deleted to make the derived complementary board. We start by deleting ℓ

squares corresponding to the deletion of the first ℓ rows, namely (1, 1), (2, 2), . . . , (ℓ, ℓ).
Some of these squares may also be in columns α1, α2, . . . , αℓ, but to avoid

double-counting, we only consider those letters that are greater than ℓ. These
are |{ℓ+ 1, ℓ+ 2, . . . , n} ∩ {α1, α2, . . . , αℓ}|, as desired.

4.4 Derangements with a given prefix

Now that we have a way of quickly computing |Bc
α|, we can compute the number

of ways to place a given number of rooks on the complementary board. We can
use this to compute the rook polynomial for the derived complementary board
pBc

α
(x). We will see later that we can use the coefficients of this polynomial to

compute the number of ways of placing n− ℓ rooks on the derived board Bα.

Lemma 20. The rook polynomial for the complementary board Bc
α is

pBc
α
(x) =

|Bc

α
|

∑

j=0

(
|Bc

α|

j

)

xj . (12)

Proof. Recall that no two squares of Bc
α are in the same row or column. Thus

the number of ways to place j rooks is equivalent to selecting any j squares from
the collection of |Bc

α| squares.

Therefore the coefficient of xj in the rook polynomial is
(
|Bc

α
|

j

)
.

Now we introduce a lemma of Stanley [8] to compute the number of ways of
placing n− ℓ rooks in the derived board Bα ⊆ [n− ℓ]× [n− ℓ].

Lemma 21 ([8]). Let B ⊆ [n] × [n] be a board with complementary board Bc,
and denote the rook polynomial of Bc by PBc(x) =

∑n

k=0 r
c
kx

k.
Then the number of ways, N0, of placing n nonattacking rooks on B is given

by the principle of inclusion/exclusion

N0 =

n∑

k=0

(−1)krck(n− k)!. (13)

This lemma allows us to compute the number of rook placements on the
derived board Bα, which is the number of derangements in D that begin with
the prefix α.

Corollary 22. The number of derangements with prefix α = (α1, α2, . . . , αℓ) is
given by

#prefixD(α) =

|Bc

α
|

∑

j=0

(−1)j
(
|Bc

α|

j

)

(n− ℓ− j)!, (14)

9



which is A047920(n− ℓ, |Bc
α|) in the On-Line Encyclopedia of Integer Sequences

[4].

Because we can compute |Bc
α| from α in linear time (see Lemma 19), if we use

a computational model where factorials are given by an oracle and arithmetic
can be computed in constant time, then #prefixD can be computed in linear
time with respect to ℓ, the length of the prefix.

Example 23. For n = 12, we wish to count the number of derangements that
start with the prefix α = (6, 1), as illustrated in Figure 2. Since the prefix has
two letters, ℓ = 2 and n− ℓ = 12− 2 = 10. The number of squares in Bc

α is

|Bc
α| = 12− 2− |{3, 4, . . . , 12} ∩ {6, 1}|

︸ ︷︷ ︸

1

= 9. (15)

Thus there are A047920(10, 9) = 1 468 457 derangements in S12 that start with
the prefix α = (6, 1).

Now that we have an efficient algorithm for computing #prefixD : W →
N≥0, we can invoke the recursive formula in Theorem 7 to compute unrankD : N≥0 →
D and unrank derangements. The sequence of recursive steps is illustrated in
Table 1.

5 Unranking ménage permutations

After claiming Richard’s prize for unranking derangements, the conversation
shifted to how this technique could be extended. A natural next step seemed
to be to look at another family of restricted permutations, namely ménage
permutations.

A ménage permutation comes from the problème des ménages, introduced
by Édouard Lucas in 1891. There are a few choices of how to define these
permutations, but we will use the following definition for simplicity.

Definition 24. A ménage permutation is a permutation π ∈ Sn such that
for all i ∈ [n], π(i) 6= i and π(i)+1 6≡ i mod n. The set of ménage permutations
of length n is denoted by Mn.

5.1 The answer to a $100 question about ménage permu-

tations

By February 2020, it appeared that the techniques for unranking derangements
would not directly translate to the context of ménage permutations. In response,
Richard Arratia upped the stakes by offering another prize for unranking ménage
permutations. Specifically, he posed the following problem.

Problem 25. For n = 20 there are A000179(20) = 312 400 218 671 253 762 >

3.1 · 1017 ménage permutations. Determine the 1017-th such permutation when
listed in lexicographic order.

10



α (prefix) #prefixD(α) index range |Bc
α| unrankD(1000)

1 0 (0, 0] − fD
1000(1, 0)

2 2119 (0, 2119] 6 fD
1000(2, 0)

21 265 (0, 265] 6 fD
1000(21, 0)

22 0 (265, 265] − fD
1000(22, 265)

23 309 (265, 574] 5 fD
1000(23, 265)

24 309 (574, 883] 5 fD
1000(24, 574)

25 309 (883, 1192] 5 fD
1000(25, 883)

251 53 (883, 936] 4 fD
1000(251, 883)

253 0 (936, 936] − fD
1000(253, 936)

254 64 (936, 1000] 3 fD
1000(254, 936)

2541 11 (936, 947] 3 fD
1000(2541, 936)

2543 11 (947, 958] 3 fD
1000(2543, 947)

2546 14 (958, 972] 2 fD
1000(2546, 958)

2547 14 (972, 986] 2 fD
1000(2547, 972)

2548 14 (986, 1000] 2 fD
1000(2548, 986)

25481 3 (986, 989] 2 fD
1000(25481, 986)

25483 3 (989, 992] 2 fD
1000(25483, 989)

25486 4 (992, 996] 1 fD
1000(25486, 992)

25487 4 (996, 1000] 1 fD
1000(25487, 996)

254871 2 (996, 998] 0 fD
1000(254871, 996)

254873 2 (998, 1000] 0 fD
1000(254873, 998)

2548731 1 (998, 999] 0 fD
1000(2548731, 998)

2548736 1 (999, 1000] 0 fD
1000(2548736, 999)

25487361 1 (999, 1000] 0 fD
1000(25487361, 999)

Table 1: There are A000166(8) = 14833 derangements on 8 letters. The table
shows the recursive steps to find that the derangement at index 1000 is 25487361.

11



Using the techniques described in this section, we developed a computer
program that computed the answer in less than 30 milliseconds. (By compari-
son, unranking the 10157-th ménage permutation of the more than 1.25× 10157

ménage permutations in S100 with the same program takes about 7 seconds.)

Answer 26. The desired permutation is

7 16 19 12 2 8 15 1 18 14 3 9 20 10 5 17 13 4 11 6. (16)

5.2 Overview for unranking ménage permutations

As in the section about unranking derangements, we will use the insight from
Theorem 7 that if we can efficiently count the number of words with a given
prefix, then we can efficiently unrank the words.

The technique exploits the following observations: after placing rooks on a
board corresponding to our prefix, the remaining board has the property that
its complement can be partitioned into sub-boards that do not share rows or
columns. These sub-boards have a structure that we can understand, and we
can leverage that understanding to compute the rook polynomials of these sub-
boards and consequently of the complementary board itself. Once we have
computed the rook polynomial of the complementary board, we can again use
Lemma 21 to compute the number of full rook placements on the original board.
This gives us the number of ménage permutations with a given prefix.

5.3 Disjoint board decomposition

Figure 3 suggestively shows a placement of rooks according to a prefix that re-
sults in a board whose complement can be partitioned into sub-boards whose
squares don’t share any rows or columns. We will see that this property in-
deed holds in general, and we can exploit this in order to count the ménage
permutations with a given prefix.

The property of complements that can be partitioned into sub-boards whose
squares don’t share rows or columns is useful because it provides a way of
factoring the rook polynomial of the bigger board into the rook polynomials of
the sub-boards.

Definition 27. Two sub-boards B and B′ are called disjoint if no squares of
B are in the same row or column as any square in B′.

Kaplansky gives a way of computing the rook polynomial of a board in terms
of its disjoint boards.

Theorem 28 ([1]). If B can be partitioned into disjoint boards b1, b2, . . . , bm,
then the rook polynomial of B is the product of the rook polynomials of each
sub-board

pB(x) =

m∏

i=1

pbi(x). (17)

12



R

R

R

R

Figure 3: The prefix α = (3, 6, 1, 8), the derived board Bα, and the derived
complementary board Bc

α = O3 ⊔E2 ⊔O
⊺

7 . There are 8062 ways of placing eight
nonattacking rooks on Bα.

We will use this disjoint board decomposition repeatedly, because the boards
that result after placing a prefix can be partitioned into disjoint sub-boards
whose structure is well understood. Now we will give a name to these blocks,
which are illustrated in Figure 4.

Definition 29. A board is called staircase-shaped if it matches one of the
following four shapes:

O2n−1 = {(i, i) : i ∈ [n]} ∪ {(i, i+ 1) : i ∈ [n− 1]}

O
⊺

2n−1 = {(i, i) : i ∈ [n]} ∪ {(i+ 1, i) : i ∈ [n− 1]}

E2n−2 = {(i, i) : i ∈ [n− 1]} ∪ {(i+ 1, i) : i ∈ [n− 1]}

E
⊺

2n−2 = {(i, i) : i ∈ [n− 1]} ∪ {(i, i+ 1) : i ∈ [n− 1]}.

The subscripts represent the number of squares, and the names represent their
parity.

We now show that our resulting boards can be partitioned into boards of
these shapes.

Lemma 30. For ℓ ≥ 1, and prefix α = (α1, α2, . . . , αℓ) the derived complemen-
tary board Bc

α can be partitioned into disjoint staircase-shaped boards.

Proof. The proof proceeds by induction on the length of the prefix.
To establish the base case, consider a prefix of length ℓ = 1. Because of

the ménage restriction, α1 ∈ {2, 3, . . . , n − 1}, and the derived complementary
board Bc

(α1)
can be partitioned into two disjoint sub-boards with shapes O2α1−3

and O
⊺

2n−2α1−1. (This is illustrated for the case of n = 7 and α1 in Figure 5.)

13



. . .

. . .

O2n−1

. . .
. . .

O
⊺

2n−1

. . .
. . .

E2n−2

. . .

. . .

E
⊺

2n−2

Figure 4: Examples of each of the four staircase-shaped boards. The first two
boards are on grids of size n× n, the third is on a grid of size n× (n− 1) and
the fourth is on a grid of size (n− 1)× n.

The inductive hypothesis is that the derived complementary board for a
prefix of length ℓ− 1 consists of sub-boards with shape O2m−1, O

⊺

2m−1, E2m−2,
or E

⊺

2m−2. Placing a rook in row ℓ can remove a top row or a column or both in
a given sub-board. Table 2 below shows the resulting sub-boards after placing
a rook in ℓ-th row of B, which may be in the top row, the i-th column, or both.

Rook placement O2m−1 O
⊺

2m−1 E2m−2 E2m−2

Row 1 O2m−3 E
⊺

2m−2 O2m−3 E
⊺

2m−4

Column i O2i−3, E2m−2i E2i−2, O
⊺

2m−2i−1 E2i−2, E2m−2i−2 O2i−3, O
⊺

2m−2i−1

Row 1, column i O2i−5, E2m−2i O2i−3, O
⊺

2m−2i−1 O2i−3, E2m−2i−2 O2i−5, O
⊺

2m−2i−1

Table 2: The results of placing a rook in the first row, i-th column, or both for
all staircase-shaped boards.
Therefore placing any number of rooks in the first ℓ rows results in a board
whose complementary derived board is composed of disjoint staircase-shaped
sub-boards.

14



R

Figure 5: The first chessboard shows a placement of a rook at position 3, the
second shows how the derived complementary board can be partitioned into two
disjoint boards with 3 and 7 squares respectively.

5.4 Rook polynomials of blocks

Recall that the goal of partitioning B into disjoint sub-boards b1, b2, . . . , bm is
so that we can factor pB(x) in terms of pbi(x). Of course, this is only useful
if we can describe pbi(x), which is the goal of this subsection. Conveniently,
the rook polynomial of each bi will turn out to depend only on the number of
squares, |bi|, which can be computed recursively because of its staircase shape.

We will begin by defining a family of polynomials that, suggestively, will
turn out to be the rook polynomials that we are looking for. (The coefficients
of these polynomials are described by OEIS sequence A011973 [4].)

Definition 31. For j ≥ 0, the j-th Fibonacci polynomial Fj(x) is defined
recursively as:

F0(x) = 1 (18)

F1(x) = 1 + x (19)

Fn(x) = xFn−2(x) + Fn−1(x). (20)

The rook polynomials of the staircase-shaped boards agree with these Fi-
bonacci polynomials.

Lemma 32. If B is a staircase-shaped board with k squares, then B has rook
polynomial pB(x) = Fk(x), equal to the k-th Fibonacci polynomial.

Proof. We will recall the recursive construction of rook polynomials from Lemma
14, and proceed by induction on the number of squares, always choosing to in-
clude or exclude the upper-left square.

15



Since the reflections of board have the same rook polynomial as the unre-
flected board, without loss of generality, we will compute the rook polynomials
for O2m−1 and E2m−2, respectively.

To establish a base case, consider the rook polynomials when n = 1, so the
even board has |E0| = 0 squares and the odd board has |O1| = 1 square. We
can see the corresponding rook polynomials directly. There is 1 way to place 0
rooks on E0 and no ways to place more rooks; similarly there is 1 way to place
0 rooks on O1, 1 way to place 1 rook on O1, and no way to place more than one
rook. Thus

pE0(x) = 1 = F0(x), and (21)

pO1(x) = 1 + x = F1(x). (22)

With the base case established, our inductive hypothesis is that pB(x) =
Fh(x) whenever B is a staircase-shaped board with h < k squares.

Assume that we have k squares where k is even, so our board looks like Ek.
We can either place a rook or not in the upper-left square. If we include the
square, then (Ek)i ∼= Ek−2, if we exclude the square, then (Ek)e ∼= Ok−1. Thus
by Lemma 14, the rook polynomial of Ek is

pEk
(x) = xpEk−2

(x) + pOk−1
(x) (23)

= xFk−2(x) + Fk−1(x) (24)

= Fk(x). (25)

The case where k is odd proceeds in almost the same way. Here our board
looks like Ok. We can either place a rook or not in the upper-left square.
If we include the square, then (Ok)i ∼= Ok−2, if we exclude the square, then
(Ok)e ∼= Ek−1. Again by Lemma 14, the rook polynomial of Ok is

pOk
(x) = xpOk−2

(x) + pEk−1
(x) (26)

= xFk−2(x) + Fk−1(x) (27)

= Fk(x). (28)

Therefore, we now have the ingredients to describe the rook polynomial of
a derived complementary board.

Corollary 33. Suppose that Bc
α can be partitioned into m disjoint staircase-

shaped sub-boards of sizes b1, b2, . . . , bm. Then the rook polynomial of Bc
α is

pBc
α
(x) =

m∏

i=1

Fbi , (29)

where Fj is the j-th Fibonacci polynomial.

Proof. This follows directly from Theorem 28 together with Lemma 32.

16



5.5 Sub-boards from prefix

In this part, we discuss how to algorithmically compute the size of the sub-
boards of the partition of the derived complementary board Bc

α for a given
prefix α.

Lemma 34. Given a nonempty prefix α = (α1, α2, . . . , αℓ) and i 6∈ α, the
number of squares of Bc in column i that do not have a first coordinate in [ℓ] is
given by the rule:

ci =







0 i < ℓ

1 i = ℓ or i = n

2 ℓ < i < n

(30)

Proof. It is helpful to recall that the complementary boardBc consists of squares
on the diagonal, squares on the subdiagonal, and the square (1, n):

Bc = {(i, i) : i ∈ [n]} ∪ {(i+ 1, i) : i ∈ [n− 1]} ∪ {(1, n)}. (31)

Now if i < ℓ, then (i, i) and (i + 1, i) both have a first coordinate less than
or equal to ℓ.

If i = ℓ, then (i, i) has a first coordinate in [ℓ], but (i+1, i) = (ℓ+1, ℓ) does
not have its first coordinate in [ℓ].

If i = n, there are two squares of Bc in column i: (n, n) and (1, n). Only
(1, n) has its first coordinate in [ℓ].

If ℓ < i < n, then neither the square (i, i) nor (i+1, i) has its first coordinate
in [ℓ].

Now we will go through each contiguous section of columns, and count the
number of squares in each to build up the size of each of the blocks.

Lemma 35. Partition [n] \ α into contiguous parts, P . Each part Pi ∈ P of
the partition corresponds to a staircase-shaped sub-board of size

∑

p∈Pi
cp.

Therefore the size of the disjoint sub-boards in the derived complementary
board Bc

α is given by the multiset

Pα =







∑

p∈Pi

cp : Pi ∈ P






. (32)

Proof. Once the first row of a complementary ménage board has been deleted,
the resulting board has the property that any two nonadjacent columns do not
have any squares in the same row, because column i has squares in (i, i) and
(i+ 1, i).

Within each contiguous interval between the letters of α, the columns form
a staircase-shaped sub-board because each column with a square in position
(i+1, i) has a square to its right, in position (i+1, i+1) whenever i+1 6∈ α.

17



Example 36. As illustrated in Figure 3, if n = 12 and α = (3, 6, 1, 8), then the
contiguous partition of

[12] \ {3, 6, 1, 8} = { 2
︸︷︷︸

P1

, 4, 5
︸︷︷︸

P2

, 7
︸︷︷︸

P3

, 9, 10, 11, 12
︸ ︷︷ ︸

P4

} (33)

is {P1, P2, P3, P4}. The corresponding staircase-shaped sub-boards have sizes

k1 = c2 = 0 = 0

k2 = c4 + c5 = 1 + 2 = 3

k3 = c7 = 2 = 2

k4 = c9 + c10 + c11 + c12 = 2 + 2 + 2 + 1 = 7,

which matches what we observe in the illustration:

Bc
α = E0 ⊔ O3 ⊔ E2 ⊔ O

⊺

7 , (34)

5.6 Complementary polynomials

We have now established a method taking a prefix α and partitioning Bc
α into

disjoint staircase-shaped sub-boards, which allow us to determine the rook poly-
nomial of Bc

α. Using Lemma 21, this allows us to finally compute the number of
ways of placing n−ℓ rooks on Bα, thus determining the number of derangements
that begin with α.

Theorem 37. The number of ménage permutations that begin with a valid,
nonempty prefix α is

#prefixM(α) =

n∑

k=0

(−1)krck(n− k)! (35)

where
∑n

k=0 r
c
kx

k =
∏

p∈Pα
Fp, Fk is the k-th Fibonacci polynomial, and Pα is

the multiset corresponding to the size of the staircase-shaped sub-boards in the
disjoint partition of Bc

α.

Proof. This follows directly from Corollary 33 together with Lemma 35

Now that we have computed the number of ménage permutations, Theorem
7 provides an efficient unranking algorithm for M.

We will illustrate this with a specific example computing the number of
ménage permutations with a given prefix.

Example 38. We will continue with the running example illustrated in Figure
3 and expounded on in Example 36.

18



We’ve already seen that the for n = 12, the prefix α = (3, 6, 1, 8) partitions
the derived complementary board into three nonempty sub-boards:

Bc
α = E0 ⊔ O3 ⊔ E2 ⊔ O

⊺

7 . (36)

Lemma 32 tells us that the rook polynomial of Bc
α is

pBc
α
(x) = F3(x)F2(x)F7(x) (37)

= (1 + 3x+ x2)(1 + 2x)(1 + 7x+ 15x2 + 10x3 + x4) (38)

= 1 + 12x+ 57x2 + 136x3 + 170x4 + 105x5 + 27x6 + 2x7 (39)

=

7∑

k=0

rckx
k. (40)

By Lemma 21, the number of ways to place eight rooks on Bα is is

N0 =

7∑

k=0

(−1)krck(8− k)! (41)

= 1(8!)− 12(7!) + 57(6!)− 136(5!) + 170(4!)− 105(3!) + 27(2!)− 2(1!)
(42)

= 8062. (43)

Therefore there are 8062 ménage permutations in S12 that start with the prefix
(3, 6, 1, 8).

We can now repeatedly use the above counting technique in conjunction with
Theorem 7 to unrank derangements.

Example 39. There are A000179(8) = 4738 ménage permutations on 8 letters.
Table 3 shows the steps of the algorithm that determines that the 1000th ménage
permutation in lexicographic order is

w1000 = 3 5 4 8 2 7 1 6. (44)

6 Generalizations and open questions

In this final section we explore several possible future directions for applying
these ideas in new contexts. We can potentially apply these unranking tech-
niques to position-restricted permutations, permutations that satisfy certain in-
equalities with respect to a permutation statistic, or words that avoid or match
certain patterns.

6.1 Other restricted permutations

In a 2014 paper about finding linear recurrences for derangements, ménage
permutations and other restricted permutations, Doron Zeilberger introduces a
more general family of restricted permutations.

19



α #prefix(α) index range block sizes unrankM(i)

1 0 (0, 0] − fM
1000(1, 0)

2 787 (0, 787] (1, 11) fM
1000(2, 0)

3 791 (787, 1578] (3, 9) fM
1000(3, 787)

31 0 (787, 787] − fM
1000(31, 787)

32 0 (787, 787] − fM
1000(32, 787)

33 0 (787, 787] − fM
1000(33, 787)

34 159 (787, 946] (1, 7) fM
1000(34, 787)

35 166 (946, 1112] (1, 2, 5) fM
1000(35, 946)

351 24 (946, 970] (0, 2, 5) fM
1000(351, 946)

· · · 0 (970, 970] −
354 34 (970, 1004] (0, 5) fM

1000(354, 970)

3541 5 (970, 975] (0, 5) fM
1000(3541, 970)

3542 5 (975, 980] (0, 5) fM
1000(3542, 975)

· · · 0 (980, 980] −
3546 8 (980, 988] (0, 3) fM

1000(3546, 980)
3547 10 (988, 998] (0, 2, 1) fM

1000(3547, 988)
3548 6 (998, 1004] (0, 4) fM

1000(3548, 998)

35481 1 (998, 999] (0, 4) fM
1000(35481, 998)

35482 1 (999, 1000] (0, 4) fM
1000(35482, 999)

354821 0 (999, 999] (3) fM
1000(354821, 999)

· · · 0 (999, 999] −
354827 1 (999, 1000] (0, 1) fM

1000(354827, 999)

3548271 1 (999, 1000] (0) fM
1000(3548271, 999)

35482716 1 (999, 1000] () fM
1000(35482716, 999)

Table 3: The recursive computation of the 1000th ménage permutation.

20



Definition 40 ([10]). Let S ⊂ Z be a finite collection of integers. An S-
avoiding permutation is a permutation π ∈ Sn such that

π(i)− i− s 6≡ 0 mod n for all i ∈ [n] and s ∈ S. (45)

Example 41. In terms of S-avoiding permutations,

• ordinary permutations are ∅-avoiding permutations,

• derangements are {0}-avoiding permutations, and

• ménage permutations are {−1, 0}-avoiding permutations.

The results in the previous sections straightforwardly adapt to the cases of
unranking {i}-avoiding and {i, i+ 1} avoiding permutations.

Open Question 42. For arbitrary finite subsets S ⊂ Z, do there exist efficient
unranking algorithms on S-avoiding permutations?

The techniques used to unrank derangements and ménage permutations do
not appear to generalize even to superficially similar domains. So, in the spirit
of Richard Arratia’s bounties, it is only fair to offer one of my own.

Problem 43. Do there exist efficient unranking algorithms on {−1, 1}-avoiding
permutations?

The main obstruction to using the techniques from Section 5 to resolve this
question is that placing a rook and deleting a column does not necessarily cause
the left and right sides of that column to be disjoint. As such, unranking
{−1, 1}-avoiding permutations appears to require a genuinely novel insight.

6.2 Permutation statistics

Another area for exploration is unranking permutations with a given permuta-
tion statistic.

Open Question 44. Let inv : Sn → N≥0 be the map that counts inversions of a
permutation. Since inv is a Mahonian statistic, the generating function for the
number of permutations π ∈ Sn such that inv(π) = k is given by the q analog of
n!, n!q.

Does there exist an efficient unranking function on the set

I
k
n = {π ∈ Sn| inv(π) = k}, (46)

and if so, how does one construct it?

We can, of course, substitute inv with any other permutation statistic of
interest.

21



6.3 Pattern avoidance

In the field of combinatorics on words, there exists a notion of patterns and in-
stances of a pattern. At this level of informality, this is probably best illustrated
with an example (with undefined words in bold).

Example 45. The word 1100010110 is an instance of the pattern ABA with
A = 110 and B = 0010. The word 32123213212 is said to match the pattern
CC with C = 321 because it contains a substring of the form 321321.

Open Question 46. Given a pattern P , is it possible to unrank words of length
n over an alphabet A that are not instances of the pattern P? That match the
pattern P? That don’t match the pattern P?

6.4 Prefixes of Lyndon words

There are other collections of finite words that might be amenable to some of
the above techniques. In particular, Kociumaka, Radoszewski, and Rytter [2]
give polynomial time algorithms for unranking Lyndon words. We have some
conjectures about prefixes of Lyndon words and open questions about other
restricted words.

Definition 47. A Lyndon word is a string over an alphabet of letters that is
the unique minimum with respect to all of its rotations.

Example 48. 00101 is a Lyndon word because

00101 = min{00101, 01010, 10100, 01001, 10010} (47)

is the unique minimum of all of its rotations.
011011 is not a Lyndon word because while

011011 = min{011011, 110110, 101101, 011011, 110110, 101101}, (48)

it is not the unique minimum. (That is, rotating it three positions returns it
to itself.)

Definition 49 ([7]). Suppose that {ai}∞i=1 and {bi}∞i=1 are integer sequences
related by

1 +

∞∑

n=1

bnx
n =

∞∏

i=1

1

(1− xi)ai

. (49)

Then {bi}∞i=1 is said to be the Euler transform of {ai}∞i=1, denoted E({ai}∞i=1) =
{bi}

∞
i=1.

Definition 50. Let Lα = {ℓαn}
∞
n=1 where ℓαn is the number of Lyndon words

with prefix α and length n over the alphabet {0, 1}.

Conjecture 51. The Euler transform of the number of Lyndon words with
prefix α and length n over the alphabet {0, 1}, E(Lα) = {tαn}

∞
n=1, follows a

linear recurrence for all n ≥ Nα.

This conjecture and the following conjectures are based on the data in Table
??.

22



We start with two specific conjectures about two families of prefixes.

Conjecture 52. For k ≥ 1, let Lα be the sequence of the number of Lyndon
words of length n with prefix α = (0, 0, . . . , 0) of length k over the alphabet {0, 1}.
Then the Euler transform E(Lα) = {tαn}

∞
n=1 follows the linear recurrence t

α
n+1 =

2tαn for all n ≥ k + 2.

Conjecture 53. For k ≥ 2 let Lα be the sequence of the number of Lyndon
words of length n with prefix α = (1, 0, 0, . . . , 0) of length k over the alphabet
{0, 1}. Then the Euler transform E(Lα) = {tαn}

∞
n=1 follows the linear recurrence

tαn+k =
∑k−1

i=0 tαn+i for all n ≥ 1.

And more broadly, we have a conjecture in the case that the prefix is not
the zero sequence.

Conjecture 54. Let Lα be the sequence of the number of Lyndon words of
length n with prefix α over the alphabet {0, 1} such that α contains at least one
1. Then the Euler transform of the sequence, E(Lα) = {tαn}

∞
n=1, follows the

linear recurrence where all terms have coefficients of 0 or 1.

Open Question 55. If, as the evidence suggests, E(Lα) follows a linear re-
currence, what is the length of the recurrence and what are the coefficients of
the recurrence as a function of α?

References

[1] Irving Kaplansky and John Riordan.
“The problem of the rooks and its applications”.
In: Duke Mathematical Journal 13.2 (1946), pp. 259–268.
doi: 10.1215/S0012-7094-46-01324-5.
url: https://doi.org/10.1215/S0012-7094-46-01324-5.

[2] Tomasz Kociumaka, Jakub Radoszewski, and Wojciech Rytter.
“Computing k-th Lyndon Word and Decoding Lexicographically
Minimal de Bruijn Sequence”. In: Combinatorial Pattern Matching.
Springer International Publishing, 2014, pp. 202–211.
isbn: 978-3-319-07566-2.

[3] Kenji Mikawa and Ken Tanaka. “Lexicographic ranking and unranking
of derangements in cycle notation”.
In: Discret. Appl. Math. 166 (2014), pp. 164–169.

[4] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences.
2021. url: https://oeis.org/.

[5] John Riordan. An Introduction to Combinatorial Analysis.
USA: Princeton University Press, 1980. isbn: 9781400854332.

23

https://doi.org/10.1215/S0012-7094-46-01324-5
https://doi.org/10.1215/S0012-7094-46-01324-5
https://oeis.org/


[6] V. S. Shevelev. “Some problems of the theory of enumerating the
permutations with restricted positions”.
In: Journal of Soviet Mathematics 61.4 (Sept. 1992), pp. 2272–2317.
issn: 1573-8795. doi: 10.1007/BF01104103.
url: https://doi.org/10.1007/BF01104103.

[7] Neil James Alexander Sloane and Simon Plouffe.
Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.

[8] Richard P. Stanley. Enumerative Combinatorics: Volume 1. 2nd.
USA: Cambridge University Press, 2011. isbn: 1107602629.

[9] L.G. Valiant. “The complexity of computing the permanent”.
In: Theoretical Computer Science 8.2 (1979), pp. 189–201.
issn: 0304-3975.
doi: https://doi.org/10.1016/0304-3975(79)90044-6. url:
https://www.sciencedirect.com/science/article/pii/0304397579900446.

[10] Doron Zeilberger.
“Automatic Enumeration of Generalized Ménage Numbers”.
In: Séminaire Lotharingien de Combinatoire 71.B71a (2014).

24

https://doi.org/10.1007/BF01104103
https://doi.org/10.1007/BF01104103
https://doi.org/https://doi.org/10.1016/0304-3975(79)90044-6
https://www.sciencedirect.com/science/article/pii/0304397579900446

	1 Overview and preliminaries
	2 Prefix counting and word ranking
	2.1 Words with a given prefix
	2.2 Ranking words

	3 Basic notions of rook theory
	3.1 Definitions in rook theory
	3.2 Techniques of rook theory

	4 Unranking derangements
	4.1 The answer to a $100 question about derangements
	4.2 Overview for unranking derangements
	4.3 The complementary board
	4.4 Derangements with a given prefix

	5 Unranking ménage permutations
	5.1 The answer to a $100 question about ménage permutations
	5.2 Overview for unranking ménage permutations
	5.3 Disjoint board decomposition
	5.4 Rook polynomials of blocks
	5.5 Sub-boards from prefix
	5.6 Complementary polynomials

	6 Generalizations and open questions
	6.1 Other restricted permutations
	6.2 Permutation statistics
	6.3 Pattern avoidance
	6.4 Prefixes of Lyndon words


