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In this edition of October 2, 2005:

— Chapters 0, 1, 2, 3, 4 are in close-to-final form.
— Chapter 9 is still in preliminary form
— Chapter 10, in preparation is not included.

Others chapter are in intermediate form, waiting to be revised.

Also, both long and short forms of construction names are currently used, with one destined to become the
standard eventually. For unlabelled classes, the dictionary is

S≡ SEQ, M≡ MSET, P≡ PSET, C ≡ CYC,

while for labelled classes,
S≡ SEQ, P≡ SET, C ≡ CYC .
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PREFACE

ANALYTIC COMBINATORICS aims at predicting precisely the properties of large
structured combinatorial configurations, through an approach based extensively on
analytic methods. Generating functions are the central objects of the theory.

Analytic combinatorics starts from an exact enumerative description of combina-
torial structures by means of generating functions, which make their first appearance
as purely formal algebraic objects. Next, generating functions are interpreted as an-
alytic objects, that is, as mappings of the complex plane into itself. Singularities
determine a function’s coefficients in asymptotic form and lead to precise estimates
for counting sequences. This chain applies to a large numberof problems of discrete
mathematics relative to words, trees, permutations, graphs, and so on. A suitable adap-
tation of the methods also opens the way to the quantitative analysis of characteristic
parameters of large random structures, via a perturbational approach.

Analytic combinatorics can accordingly be organized basedon three components:

Symbolic Methodsdevelops systematic relations between some of the major
constructions of discrete mathematics and operations on generating func-
tions which exactly encode counting sequences.
Complex Asymptoticselaborates a collection of methods by which one can
extract asymptotic counting information from generating functions, once
these are viewed as analytic transformations of the complexdomain. Singu-
larities then appear to be a key determinant of asymptotic behaviour.
Random Structuresconcerns itself with probabilistic properties of large ran-
dom structures. Which properties hold with high probability? Which laws
govern randomness in large objects? In the context of analytic combina-
torics, these questions are treated by a deformation (adding auxiliary vari-
ables) and a perturbation (examining the effect of small variations of such
auxiliary variables) of the standard enumerative theory.

THE APPROACHto quantitative problems of discrete mathematics providedby an-
alytic combinatorics can be viewed as anoperational calculusfor combinatorics. The
present book exposes this view by means of a very large numberof examples con-
cerning classical combinatorial structures—most notably, words, trees, permutations,
and graphs. The eventual goal is an effective way of quantifying metric properties of
large random structures.

Given its capacity of quantifying properties of large discrete structures,Analytic
Combinatoricsis susceptible to many applications, within combinatoricsitself, but,
perhaps more importantly, within other areas of science where discrete probabilistic
models recurrently surface, like statistical physics, computational biology, or electri-
cal engineering. Last but not least, the analysis of algorithms and data structures in
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computer science has served and still serves as an importantmotivation in the devel-
opment of the theory.

⋆ ⋆ ⋆ ⋆ ⋆⋆

Part A: Symbolic Methods. This part specifically exposesSymbolic Combina-
torics, which is a unified algebraic theory dedicated to setting up functional relations
between counting generating functions. As it turns out, a collection of general (and
simple) theorems provide a systematic translation mechanism between combinato-
rial constructions and operations on generating functions. This translation process is
a purely formal one. Precisely, as regards basic counting, two parallel frameworks
coexist—one for unlabelled structures and ordinary generating functions, the other
for labelled structures and exponential generating functions. Furthermore, within the
theory, parameters of combinatorial configurations can be easily taken into account
by adding supplementary variables. Three chapters then compose this part: Chapter I
deals with unlabelled objects; Chapter II develops in a parallel way labelled objects;
Chapter III treats multivariate aspects of the theory suitable for the analysis of param-
eters of combinatorial structures.

⋆ ⋆ ⋆ ⋆ ⋆⋆

Part B: Complex asymptotics. This part specifically exposesComplex Asymp-
totics, which is a unified analytic theory dedicated to the process of extracting as-
ymptotic information from counting generating functions.A collection of general
(and simple) theorems provide a systematic translation mechanism between gener-
ating functions and asymptotic forms of coefficients. Four chapters compose this
part. Chapter IV serves as anintroduction to complex-analytic methodsand proceeds
with the treatment ofmeromorphic functions, that is, functions whose singularities are
poles,rational functionsbeing the simplest case. Chapter V developsapplications of
rational and meromorphic asymptotics of generating functions, with numerous appli-
cations related to words and languages, walks and graphs, aswell as permutations.
Chapter VI develops a general theory ofsingularity analysisthat applies to a wide
variety of singularity types, such as square-root or logarithmic, and has applications
to trees as well as to other recursively defined combinatorial classes. Chapter VII
presentsapplications of singularity analysisto 2-regular graphs and polynomials,
trees of various sorts, mappings, context-free languages,walks, and maps. It contains
in particular a discussion of the analysis of coefficients ofalgebraic functions. Chap-
ter VIII exploressaddle point methods, which are instrumental in analysing functions
with a violent growth at a singularity, as well as many functions with only a singularity
at infinity (i.e., entire functions).

⋆ ⋆ ⋆ ⋆ ⋆⋆

Part C: Random Structures. This part includes Chapter IX dedicated to the
analysis of multivariate generating functions viewed as deformation and perturbation
of simple (univariate) functions. As a consequence, many important characteristics
of classical combinatorial structures can be precisely quantified in distribution. Chap-
ter?? is an epilogue, which offers a brief recapitulation of the major asymptotic prop-
erties of discrete structures developed in earlier chapters.
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⋆ ⋆ ⋆ ⋆ ⋆⋆

Part D: Appendices.Appendix A summarizes some key elementary concepts of
combinatorics and asymptotics, with entries relative to asymptotic expansions, lan-
guages, and trees, amongst others. Appendix B recapitulates the necessary back-
ground in complex analysis. It may be viewed as a self-contained minicourse on
the subject, with entries relative to analytic functions, the Gamma function, the im-
plicit function theorem, and Mellin transforms. Appendix Crecalls some of the basic
notions of probability theory that are useful in analytic combinatorics.

⋆ ⋆ ⋆ ⋆ ⋆⋆

THIS BOOK is meant to be reader-friendly. Each major method is abundantly il-
lustrated by means of concrete examples1 treated in detail—there are scores of them,
spanning from a fraction of a page to several pages—offeringa complete treatment of a
specific problem. These are borrowed not only from combinatorics itself but also from
neighbouring areas of science. With a view of addressing notonly mathematicians of
varied profiles but also scientists of other disciplines,Analytic Combinatoricsis self-
contained, including ample appendices that recapitulate the necessary background in
combinatorics and complex function theory. A rich set of short Notes—there are more
than 250 of them—are inserted in the text2 and can provide exercises meant for self-
study or for students’ practice, as well as introductions tothe vast body of literature
that is available. We have also made every effort to focus oncore ideasrather than
technical details, supposing a certain amount of mathematical maturity but only basic
prerequisites on the part of our gentle readers. The book is also meant to be strongly
problem-oriented, and indeed it can be regarded as a manual,or even a huge algorithm,
guiding the reader to the solution of a very large variety of problems regarding dis-
crete mathematical models of varied origins. In this spirit, many of our developments
connect nicely with computer algebra and symbolic manipulation systems.

COURSEScan be (and indeed have been) based on the book in various ways.
Chapters I–III onSymbolic Methodsserve as a systematic yet accessible introduction
to the formal side of combinatorial enumeration. As such it organizes transparently
some of the rich material found in treatises3 like those of Bergeron-Labelle-Leroux,
Comtet, Goulden-Jackson, and Stanley. Chapters IV–VIII relative toComplex Asymp-
toticsprovide a large set of concrete examples illustrating the power of classical com-
plex analysis and of asymptotic analysis outside of their traditional range of applica-
tions. This material can thus be used in courses of either pure or applied mathematics,
providing a wealth of nonclassical examples. In addition, the quiet but ubiquitous
presence of symbolic manipulation systems provides a number of illustrations of the
power of these systems while making it possible to test and concretely experiment
with a great many combinatorial models. Symbolic systems allow for instance for
fast random generation, close examination of non-asymptotic regimes, efficient ex-
perimentation with analytic expansions and singularities, and so on.

1Examples are marked by “EXAMPLE · · · �”.
2Notes are indicated by� · · · �.
3References are to be found in the bibliography section at theend of the book.
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Our initial motivation when starting this project was to build a coherent set of
methods useful in the analysis of algorithms, a domain of computer science now well-
developed and presented in books by Knuth, Hofri, and Szpankowski, in the survey by
Vitter–Flajolet, as well as in our earlierIntroduction to the Analysis of Algorithmspub-
lished in 1996. This book can then be used as a systematic presentations of methods
that have proved immensely useful in this area; see in particular theArt of Computer
Programmingby Knuth for background. Studies in statistical physics (van Rensburg,
and others), statistics (e.g., David and Barton) and probability theory (e.g., Billingsley,
Feller), mathematical logic (Burris’ book), analytic number theory (e.g., Tenenbaum),
computational biology (Waterman’s textbook), as well as information theory (e.g., the
books by Cover–Thomas, MacKay, and Szpankowski) point to many startling connec-
tions with yet other areas of science. The book may thus be useful as a supplemen-
tary reference on methods and applications in courses on statistics, probability theory,
statistical physics, finite model theory, analytic number theory, information theory,
computer algebra, complex analysis, or analysis of algorithms.

Acknowledgements. This book would be substantially different and much less in-
formative without Neil Sloane’sEncyclopedia of Integer Sequences, Steve Finch’s
Mathematical Constants, Eric Weisstein’sMathWorld, and theMacTutor History of
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freely available on the Internet. Bruno Salvy and Paul Zimmermann have devel-
oped algorithms and libraries for combinatorial structures and generating functions
that are based on the MAPLE system for symbolic computations and have proven
to be extremely useful. We are deeply grateful to the authorsof the free software
Unix, Linux, Emacs, X11, TEX and LATEX as well as to the designers of the symbolic
manipulation system MAPLE for creating an environment that has proved invaluable
to us. We also thank students in courses at Barcelona, Berkeley (MSRI), Bordeaux,
Caen, Paris (́Ecole Polytechnique,́Ecole Normale, University), Princeton, Santiago de
Chile, Udine, and Vienna whose feedback has greatly helped us prepare a better book.
Thanks finally to numerous colleagues for their feedback. Inparticular, we wish to
acknowledge the support, help, and interaction provided atan incredibly high level
by members of theAnalysis of Algorithms (AofA)community, with a special mention
for Hsien-Kuei Hwang, Svante Janson, Don Knuth, Guy Louchard, Andrew Odlyzko,
Daniel Panario, Helmut Prodinger, Bruno Salvy, Michèle Soria, Wojtek Szpankowski,
Brigitte Vallée, and Mark Wilson. Stan Burris and BrigitteVallée especially have pro-
vided comments that have led us to revise the presentation ofseveral sections of this
book, while Svante Janson and Loı̈c Turban have provided extremely detailed feed-
back on several chapters, enabling us to correct many errors. Finally, support of our
home institutions (INRIA and Princeton University) as wellas various grants (French
government, European Union and the ALCOM Project, NSF) have contributed to mak-
ing our collaboration possible.
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An invitation to Analytic
Combinatorics

diä d� summeignÔmena aÎt� te prä aÍt� kaÈ prä �llhla t�npoikil�an âstÈn �peira; © d� deØ jewroÌ g�gnesjai toÌmèllonta perÈ fÔsew eÊkìti lìgú
— PLATO, The Timaeus1

ANALYTIC COMBINATORICS is primarily a book aboutCombinatorics, that is,
the study of finite structures built according to a finite set of rules.Analyticin the title
means that we concern ourselves with methods from mathematical analysis, in partic-
ular complex and asymptotic analysis. The two fields, combinatorial enumeration and
complex asymptotics, are organized into a coherent set of methods for the first time
in this book. Our broad objective is to discover how the continuous may help us to
understand the discrete and toquantifyits properties.

COMBINATORICS is as told by its name the science of combinations. Given ba-
sic rules for assembling simple components, what are the properties of the resulting
objects? Here, our goal is to develop methods dedicated toquantitativeproperties of
combinatorial structures. In other words, we want to measure things. Say that we
haven different items like cards or balls of different colours. Inhow many ways
can we lay them on a table, all in one row? You certainly recognize this counting
problem—finding the number ofpermutationsof n elements. The answer is of course
the factorial number,n ! = 1 ·2 · · ·n. This is a good start, and, equipped with patience
or a calculator, we soon determine that ifn = 31, say, then the number is the rather
large2

31 ! = 8222838654177922817725562880000000
.
= 0.8222838654 · 1034.

The factorials solve an enumerative problem, one that took mankind some time to sort
out, because the sense of the ‘· · · ’ in the formula is not that easily grasped. In his book

1“So their combinations with themselves and with each other give rise to endless complexities, which
anyone who is to give a likely account of reality must survey.” Plato speaks of Platonic solids viewed as
idealized primary constituents of the physical universe.

2 We use ‘α
.
= d to represent a numerical estimation of the realα by the decimald, with the last digit

being at most±1 from its actual value.

1



2 AN INVITATION TO ANALYTIC COMBINATORICS

The Art of Computer Programming(vol III, p. 23), Donald Knuth traces the discovery
to the HebrewBook of Creation(c. A .D. 400) and the Indian classicAnuyogadv̄ara-
sutra(c. A .D. 500).

Here is another more subtle problem. Assume that you are interested in permuta-
tions such that the first element is smaller than the second, the second is larger than the
third, itself smaller than the fourth, and so on. The permutations go up and down and
they are diversely known as up-and-down or zigzag permutations, the more dignified
name beingalternatingpermutations. Say thatn = 2m+ 1 is odd. An example is for
n = 9:

8 7 9 3
ր ց ր ց ր ց ր ց

4 6 5 1 2

The number of alternating permutations forn = 1, 3, 5, . . . turns out to be

1, 2, 16, 272, 7936, 353792, 22368256, . . . .

What are these numbers and how do they relate to the total number of permutations of
corresponding size? A glance at the corresponding figures, that is,1!, 3!, 5!, . . . or

1, 6, 120, 5040, 362880, 39916800, 6227020800, . . .

suggests that the factorials grow somewhat faster—just compare the lengths of the last
two displayed lines. But how and by how much? This is the prototypical question we
are addressing in this book.

Let us now examine the counting of alternating permutations. In 1881, the French
mathematician Désiré André made a startling discovery.Look at the first terms of the
Taylor expansion of the trigonometric functiontan(z):

tan z = 1
z

1!
+ 2

z3

3!
+ 16

z5

5!
+ 272

z7

7!
+ 7936

z9

9!
+ 353792

z11

11!
+ · · · .

The counting sequence for alternating permutations curiously surfaces. We say that
the function on the left is agenerating functionfor the numerical sequence (precisely,
a generating function of theexponentialtype due to the presence of factorials in the
denominators).

André’s derivation may nowadays be viewed very simply as reflecting of the con-
struction of permutations by means of certain binary trees:Given a permutationσ a
tree can be obtained onceσ has been decomposed as a triple〈σL,max, σR〉, by tak-
ing the maximum element as the root, and appending, as left and right subtrees, the
trees recursively constructed fromσL andσR. Part A of this book develops at length
symbolic methodsby which the construction of the classT of all such trees,

T = 1 + (T ,max , T )

translates into an equation relating generating functions,

T (z) = z +

∫ z

0

T (w)2 dw.

In this equation,T (z) :=
∑

n Tnz
n/n! is the exponential generating function of the

sequence(Tn), whereTn is the number of alternating permutations of (odd) lengthn.
There is a compelling formal analogy between the combinatorial specificationand the
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world of generating functions: Unions (∪) give rise to sums (+), max-placement gives
an integral (

∫
), forming a pair of trees means taking a square ([·]2).

At this stage, we know thatT (z) must solve the differential equation

d

dz
T (z) = 1 + T (z)2, T (0) = 0,

which, by classical manipulations, yieldsT (z) ≡ tan z. The generating function then
provides a simplealgorithmto compute recurrently the coefficients, since the formula,

tan z =
sin z

cos z
=
z − z3

3! + z5

5! − · · ·
1 − z2

2! + z4

4! − · · ·
,

implies (n odd)

Tn −
(
n

2

)
Tn−2 +

(
n

4

)
Tn−4 − · · · = (−1)(n−1)/2, where

(
a

b

)
=

a!

b!(a− b)!

is the conventional notation for binomial coefficients. At this stage, the exact enumer-
ative problem may be regarded as solved since a very simple recurrent algorithm is
available for determining the counting sequence, while thegenerating function admits
an explicit expression in terms of a well known function.

ANALYSIS, by which we mean mathematical analysis, is often describedas the
art and science ofapproximation. How fast do the factorial and the tangent number
sequences grow? What aboutcomparingtheir growths? These are typical problems
of analysis.

First, consider the number of permutations,n!. Quantifying the growth of these
numbers asn gets large takes us to the realm ofasymptotic analysis. The way to
express factorial numbers in terms of elementary functionsis known as Stirling’s for-
mula,

n! ∼ nne−n
√

2πn,

where the∼ sign means “approximately equal” (in fact, in the precise sense that the
ratio of both terms tends to 1 asn gets large). This beautiful formula, associated with
the name of the eighteenth century Scottish mathematician James Stirling, curiously
involves both the basise of natural logarithms and the perimeter2π of the circle.
Certainly, you cannot get such a thing without analysis. As afirst step, there is an
estimate for

logn! =
n∑

j=1

log j ∼
∫ n

1

log xdx ∼ n log(
n

e
),

explaining at least thenne−n term, but already requiring some amount of elementary
calculus. (Stirling’s formula precisely came a few decadesafter the fundamental bases
of calculus had been laid by Newton and Leibniz.) Note the usefulness of Stirling’s
formula: it tells us almost instantly that100! has 158 digits, while1000! borders the
astronomical102568.

We are now left with estimating the growth of the sequence of tangent numbers,
Tn. The analysis leading to the derivation of the generating functiontan(z) has been
so far essentially algebraic or “formal”. Well, we can plot the graph of the tangent
function, for real values of its argument and see that the function becomes infinite
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FIGURE 1. Two views of the functionz 7→ tan z: (left) a plot for real values
of z ∈ [−5..5]; (right) the modulus| tan z| whenz is assigned complex values in
the square±2.25 ± 2.25

√
−1.

at the points±π
2 , ±3π

2 , and so on (Figure 1). Such points where a function ceases
to be smooth are calledsingularities. By methods amply developed in this book, it
is the local nature of a generating function at its “dominant” singularities (i.e., the
ones closest to the origin) that determines the asymptotic growth of the sequence of
coefficients. In this perspective, the basic fact thattan z has dominant singularities at
±π

2 enables us to reason as follows: first approximate the generating functiontan z
near its two dominant singularities, namely,

tan(z) ∼
z→±π/2

8z

π2 − 4z2
;

then extract coefficients of this approximation; finally, get in this way a valid approx-
imation of coefficients:

Tn

n!
∼

n→∞
2 ·
(

2

π

)n+1

(n odd).

With present day technology, we also have availablesymbolic manipulationsys-
tems (also called “computer algebra” systems) and it is not difficult to verify the ac-
curacy of our estimates. Here is a small pyramid forn = 3, 5, . . . , 21,

2 1
16 15

272 271
7936 7935

353792 353791
22368256 22368251

1903757312 1903757267
209865342976 209865342434

29088885112832 29088885104489
4951498053124096 4951498052966307

(Tn) (T ⋆
n)
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FIGURE 2. The collection of all binary trees for sizesn = 2, 3, 4, 5 with respec-
tive cardinalities2, 5, 14, 42.

comparing the exact values ofTn against the approximationsT ⋆
n , where (n odd)

T ⋆
n :=

⌊
2 · n!

(
2

π

)n+1
⌋
,

and discrepant digits of the approximation are displayed inbold. Forn = 21, the error
is only of the order of one in a billion. Asymptotic analysis is in this case wonderfully
accurate.

In the foregoing discussion, we have played down a fact, and an important one.
When investigating generating functions from an analytic standpoint, one should gen-
erally assigncomplexvalues to arguments not just real ones. It is singularities in
the complex plane that matter and complex analysis is neededin drawing conclu-
sions regarding the asymptotic form of coefficients of a generating function. Thus,
a large portion of this book relies on acomplex analysistechnology, which starts to
be developed in Part B of the book titledComplex Asymptotics. This approach to
combinatorial enumeration parallels what happened in the nineteenth century, when
Riemann first recognized the deep relation between complex-analytic properties of the
zeta function,ζ(s) :=

∑
1/ns, and the distribution of primes, eventually leading to

the long-sought proof of the Prime Number Theorem by Hadamard and de la Vallée-
Poussin in 1896. Fortunately, relatively elementary complex analysis suffices for our
purposes, and we can include in this book a complete treatment of the fragment of the
theory needed to develop the bases of analytic combinatorics.

Here is yet another example illustrating the close interplay between combina-
torics and analysis. When discussing alternating permutations, we have enumerated
binary trees bearing distinct integer labels that satisfy aconstraint—to increase along
branches. What about the simpler problem of determining thenumber of possible
shapesof binary trees? LetCn be the number of binary trees that haven binary
branching nodes, hencen + 1 “external nodes”. It is not hard to come up with an
exhaustive listing for small values ofn; see Figure 2, from which we determine that

C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42.

These numbers are probably the most famous ones of elementary combinatorics. They
have come to be known as theCatalan numbersas a tribute to the Belgian French
mathematician Eugène Charles Catalan (1814-1894), but they already appear in works
of Euler and Segner in the second half of the eighteenth century. In his reference
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treatise onEnumerative Combinatorics, Stanley lists over twenty pages a collection of
some 66 different types of combinatorial structures that are enumerated by the Catalan
numbers.

First, one can write a combinatorial equation, very much in the style of what has
been done earlier, but without labels:

C = 2 + (C, • , C) .

With symbolic methods, it is easy to see that theordinary generating functionof the
Catalan numbers defined as

C(z) :=
∑

n≥0

Cnz
n,

satisfies an equation that is a direct reflection of the combinatorial definition, namely,

C(z) = 1 + z C(z)2.

This is a quadratic equation whose solution is

C(z) =
1 −

√
1 − 4z

2z
.

Then, by means of Newton’s theorem relative to the expansionof (1 + x)α, one finds
easily (x = −4z, α = 1

2 ) theclosed formexpression

Cn =
1

n+ 1

(
2n

n

)
.

Regarding asymptotic approximation, Stirling’s formula comes to the rescue: it
implies

Cn ∼ C⋆
n where C⋆

n :=
4n

√
πn3

.

This approximation is quite usable: it predictsC⋆
1
.
= 2.25 (whereasC1 = 1), which

is off by a factor of 2, but the error drops to 10% already forn = 10, and it appears to
be less than 1% for anyn ≥ 100.

A plot of the generating functionC(z) in Figure 3 illustrates the fact thatC(z)
has asingularity at z = 1

4 as it ceases to be differentiable (its derivative becomes
infinite). That singularity is quite different from a pole and for natural reasons it is
known a square-root singularity. As we shall see repeatedly, under suitable conditions
in the complex plane, a square root singularity for a function at a pointρ invariably
entails an asymptotic formρ−nn−3/2 for its coefficients. More generally, it suffices
to estimate a generating function near a singularity in order to deduce an asymptotic
approximation of its coefficients. This correspondence is amajor theme of the book,
one that motivates the four central chapters.

A consequence of the complex-analytic vision of combinatorics is the detection of
universality phenomenain large random structures. (The term is originally borrowed
from statistical physics and is nowadays finding increasinguse in areas of mathe-
matics like probability theory.) By universality is meant here that many quantitative
properties of combinatorial structures only depend on a fewglobal features of their
definitions, not on details. For instance a growth in the counting sequence of the form

C ·Ann−3/2,
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square-root singularity atz = 1

4 . Right: the ratioCn/(4nn−3/2) plotted together
with its asymptote at1/

√
π
.
= 0.56418.

arising from a square-root singularity, will be shown to be universal acrossall vari-
eties of trees determined by a finite set of allowed node degrees—this includes unary-
binary trees, ternary trees, 0–11–13 trees, as well as many variations like nonplane
trees and labelled trees. Even though generating functionsmay become arbitrarily
complicated—like an algebraic function of a very high degree or even the solution to
an infinite functional equation—it is still possible to extract with relative easeglobal
asymptotic lawsgoverningcounting sequences.

RANDOMNESS is another ingredient in our story. How useful is it to determine,
exactly or approximately, counts that may be so large as to require hundreds if not
thousands of digits in order to be written down? Take again the example of alternating
permutations. When estimating their number, we have indeedquantified the propor-
tion of these amongst all permutations. In other words, we have been predicting the
probabilitythat a random permutation of some sizen is alternating. Results of this sort
are of interest in all branches of science. For instance, biologists routinely deal with
genomic sequences of length105, and the interpretation of data requires developing
enumerative or probabilistic models where the number of possibilities is of the order
of 4105

. The language of probability theory then proves a great convenience when
discussing characteristic parameters of discrete structures, as we can interpret exact
or asymptotic enumeration results as saying something concrete about the likeliness
of values that such parameters assume. Equally important ofcourse are results from
several areas of probability theory: as demonstrated in thelater sections of this book,
such results merge extremely well with the analytic-combinatorial framework.

Say we are now interested in runs in permutations. These are the longest frag-
ments of a permutation that already appear in (increasing) sorted order. Here is a
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permutation where runs have been separated by vertical bars:

2 5 8 | 3 9 | 1 4 7 | 6 | .
Runs naturally present in a permutation are for instance exploited by a sorting algo-
rithm called “natural list mergesort”, which builds longerand longer runs, starting
from the original ones and merging them until the permutation is eventually sorted.
For our understanding of this algorithm, it is then of obvious interest to quantify how
many runs a permutation is likely to have.

LetAn,k be the number of permutations of sizen havingk runs. Then, the prob-
lem is once more best approached by generating functions andone finds that the coef-
ficient ofukzn inside thebivariategenerating function,

1 − u

1 − uez(1−u)
= 1 + zu+

z2

2!
(u+ 1) +

z3

3!
(u2 + 4u+ 1) + · · · ,

gives the sought numbersAn,k/n!. (A simple way of establishing this formula bases
itself on the tree decomposition of permutations and on the symbolic method.) From
there, we can easily determine effectively the mean, variance, and even the higher
moments of the number of runs that a random permutation has: it suffices to expand
blindly, or even better with the help of a computer, the bivariate generating function
above asu→ 1:

1

1 − z
+

1

2

z (2 − z)

(1 − z)
2 (u− 1) +

1

2

z2
(
6 − 4 z + z2

)

(1 − z)
3 (u− 1)

2
+ · · · .

Whenu = 1, we just enumerate all permutations: this is the constant term 1/(1 − z)
equal to the exponential generating function of all permutations. The coefficient of
u − 1 gives the generating function of themeannumber of runs, the next one gives
access to the second moment, and so on. In this way, we discover that the expectation
and standard deviation of the number of runs in a permutationof sizen evaluate to

µn =
n+ 1

2
, σn =

√
n+ 1

12
.

Then by easy analytic-probabilistic inequalities (Chebyshev inequalities) that other-
wise form the basis of what is known as the second moment method, we learn that the
distribution of the number of runs is concentrated around its mean: in all likelihood,
if one takes a random permutation, the number of its runs is going to be very close to
its mean. The effects of such quantitative laws are quite tangible. It suffices to draw a
sample of one elementfor n = 30 to get something like

13, 22, 29|12, 15, 23|8, 28|18|6, 26|4, 10, 16|1, 27|3, 14, 17, 20|2, 21, 30|25|11, 19|9|7, 24.

For n = 30, the mean is15 1
2 , and this sample comes rather close as it has 13 runs.

We shall furthermore see in Chapter IX that even for moderately large permutations
of size 10,000 and beyond, the probability for the number of observed runs to deviate
by more than 10% from the mean is less than10−65. As witnessed by this example,
much regularity accompanies properties of large combinatorial structures.

More refined methods combine the observation of singularities with analytic re-
suts from probability theory (e.g., continuity theorems for characteristic functions). In
the case of runs in permutations, the quantityF (z, u) viewed as a function ofz whenu
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0.1 . . 2, with F the bivariate generating function of Eulerian numbers, illustrates
the presence of a movable pole forF . Right: A diagram showing the distribution
of the number of runs in permutations forn = 6 . . 60.

is fixed appears to have a pole: this fact is apparent on Figure4 [left] since1/F has a
zero at somez = ρ(u) whereρ(1) = 1. Then we are confronted with a fairly regular
deformationof the generating function of all permutations. A parameterized version
(with parameteru) of singularity analysis then gives access to a descriptionof the
asymptotic behaviour of the Eulerian numbersAn,k. This enables us to describe very
precisely what goes on: In a random permutation of large sizen, once centred by its
mean and scaled by its standard deviation,the distribution of the number of runs is
asymptotically gaussian; see Figure 4 [right].

A somewhat similar type of situation prevails for binary trees, despite the fact
that the counting sequences and the counting generating functions look rather differ-
ent from their permutation counterparts. Say we are interested in leaves (also some-
times known as “cherries”) in trees: these are binary nodes that are attached to two
external nodes (2). Let Cn,k be the number of trees of sizen havingk leaves. The
bivariate generating functionC(z, u) :=

∑
n,k Cn,kz

nuk encodes all the information
relative to leaf statistics in random binary trees. A modification of previously seen
symbolic arguments shows thatC(z, u) still satisfies a quadratic equation resulting in
the explicit form,

C(z, u) =
1 −

√
1 − 4z + 4z2(1 − u)

2z
.

This reduces toC(z) for u = 1, as it should, and the bivariate generating func-
tion C(z, u) is a deformation ofC(z) asu varies. In fact, the network of curves of
Figure 5 for several fixed values ofu shows that there is a smoothly varying square-
root singularity. It is possible to analyse theperturbationinduced by varying values
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FIGURE 5. Left: The bivariate generating functionC(z, u) enumerating binary
trees by size and number of leaves exhibits consistently a square-root singularity
as function ofz for several values ofu. Right: a binary tree of size 300 drawn
uniformly at random has 69 leaves or “cherries”.

of u, to the effect thatC(z, u) is of the global analytic type

λ(u) ·
√

1 − z

ρ(u)
,

for some analyticλ(u) andρ(u). The already evoked process of singularity analysis
then shows that the probability generating function of the number of leaves in a tree
of sizen satisfies an approximation of the form

(
λ(u)

λ(1)

)
·
(
ρ(1)

ρ(u)

)n

(1 + o(1)) .

This “quasi-powers” approximation thus resembles very much the probability
generating function of a sum ofn independent random variables, a situation that re-
sorts to the classical Central Limit Theorem of probabilitytheory. Accordingly,the
limit distribution of the number of leaves in a large tree is Gaussian. In abstract terms,
the deformation induced by the secondary parameter (here, the number of leaves, pre-
viously, the number of runs) is susceptible to aperturbation analysis, to the effect that
a singularity gets smoothly displaced without changing itsnature (here, a square root
singularity, earlier a pole) and a limit law systematicallyresults. Again some of the
conclusions can be verified even by very small samples: the single tree of size 300
drawn at random and displayed in Figure 5 has 69 cherries while the expected value
of this number is

.
= 75.375 and the standard deviation is a little over 4. In a large

number of cases of which this one is typical, we findmetric lawsof combinatorial
structures that govern large structures with high probability and eventually make them
highly predictable.

Such randomness properties form the subject of Part C of thisbook dedicated to
random structures. As our earlier description implies, there is an extreme degree of
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FIGURE 6. The logical structure ofAnalytic Combinatorics.

generality in this analytic approach to combinatorial parameters, and after reading this
book, the reader will be able to recognize by herself dozens of such cases at sight, and
effortlessly establish the corresponding theorems.

A RATHER ABSTRACT VIEWof combinatorics emerges from the previous discus-
sion; see Figure 6. A combinatorial class, as regards its enumerative properties, can
be viewed as asurface in four-dimensional real space: this is the graph of its gener-
ating function, considered as a function from the setC ∼= R2 of complex numbers to
itself, and is otherwise known as a Riemann surface. This surface has “cracks”, that
is, singularities, which determine the asymptotic behaviour of the counting sequence.
A combinatorial construction (like forming freely sequences, sets, and so on) can then
be examined based on the effect it has on singularities. In this way, seemingly differ-
ent types of combinatorial structures appear to be subject to common lawsgoverning
not only counting but also finer characteristics of combinatorial structures. For the
already discussed case of universality in tree enumerations, additional universal laws
valid across many tree varieties constrain for instance height (which, with high prob-
ability, is proportional to the square-root of size) and thenumber of leaves (which is
invariably normal in the asymptotic limit).

Next, the probabilistic behaviour of a parameter of a combinatorial class is fully
determined by a bivariate generating function, which is a deformation of the basic
counting generating function of the class. (In the sense that setting the secondary
variableu to 1 erases the information relative to the parameter and leads back to
the univariate counting generating function). Then, theasymptotic distributionof a
parameter of interest is characterized by a collection of surfaces, each having its own
singularities. The way the singularities’ locations move or their nature changes under
deformation encodes all the necessary information regarding the distribution of the
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parameter under consideration. Limit laws for combinatorial parameters can then be
obtained and the corresponding phenomena can be organized into broad categories,
calledschemas. It would not be conceivable to attain such a far-reaching classification
of metric properties of combinatorial structures by elementary real analysis alone.

OBJECTSto which we are going to inflict the treatments just describedinclude
many of the most important ones of discrete mathematics, also the ones that surface
recurrently in several branches of the applied sciences. Weshall thus encounter words
and sequences, trees and lattice paths, graphs of various sorts, mappings, allocations,
permutations, integer partitions and compositions, and planar maps, to name a few.
In most cases, their principal characteristics will be finely quantified by the methods
of analytic combinatorics; see our concluding Chapter?? for a summary. This book
indeed develops a coherent theory of random combinatorial structures based on a pow-
erful analytic methodology. Literally dozens of quite diverse combinatorial types can
then be treated by a logically transparent chain. You will not find ready-made answers
to all questions in this book, but, hopefully,methodsthat can be successfully used to
address a greatmanyof them.
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Combinatorial Structures and
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Laplace discovered the remarkable correspondence between
set theoretic operations and operations on formal power series

and put it to great use to solve a variety of combinatorial problems.
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This chapter and the next are devoted to enumeration, where the problem is to deter-
mine the number of combinatorial configurations described by finite rules, and do so
for all possible sizes. For instance, how many different words are there of length 17?
of lengthn, for generaln? These questions are easy, but what if some constraints
are imposed, e.g., no four identical elements in a row? The counting sequences are
exactly encoded bygenerating functions, and, as we shall see,generating functions
are the central mathematical objectof combinatorial analysis. We examine here a
framework that, contrary to traditional treatments based on recurrences, explains the
surprising efficiency of generating functions in the solution of combinatorial enumer-
ation problems.

This chapter serves to introduce thesymbolicapproach to combinatorial enumer-
ations. The principle is that many general set-theoreticconstructionsadmit a direct
translation as operations over generating functions. Thisprinciple is made concrete
by means of a dictionary that includes a collection of core constructions, namely the
operations of union, cartesian product, sequence, set, multiset, and cycle. Supple-
mentary operations like pointing and substitution can be also be similarly translated.
In this way, alanguagedescribing elementary combinatorial classes is defined. The
problem of enumerating a class of combinatorial structuresthen simply reduces to
finding a properspecification, a sort of program for the class expressed in terms of the
basic constructions. The translation into generating functions then becomes a purely
mechanical symbolic process.

We show here how to describe integer partitions and compositions in such a con-
text, as well as several basic string and tree enumeration problems. A parallel ap-
proach, developed in Chapter II, applies to labelled objects and exponential generating

15
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functions—in contrast the plain structures considered in this chapter are calledunla-
belled. The methodology is susceptible to multivariate extensions with which many
characteristic parameters of combinatorial objects can also be analysed in a unified
manner: this is to be examined in Chapter III. The symbolic method also has the great
merit of connecting nicely with complex asymptotic methodsthat exploit analyticity
properties and singularities, to the effect that precise asymptotic estimates are usually
available whenever the symbolic method applies—a systematic treatment of these as-
pects forms the basis of Part B of this bookComplex Asymptotics(Chapters IV–VIII).

I. 1. Symbolic enumeration methods

First and foremost, combinatorics deals withdiscrete objects, that is, objects that
can be finitely described by construction rules. Examples are words, trees, graphs,
permutations, allocations, functions from a finite set intoitself, topological configu-
rations, and so on. A major question is toenumeratesuch objects according to some
characteristic parameter(s).

DEFINITION I.1. A combinatorial class, or simply aclass, is a finite or denumerable
set on which asizefunction is defined, satisfying the following conditions:

(i) the size of an element is a nonnegative integer;
(ii) the number of elements of any given size is finite.

If A is a class, the size of an elementα ∈ A is denoted by|α|, or |α|A in the
few cases where the underlying class needs to be made explicit. Given a classA,
we consistently letAn be the set of objects inA that have sizen and use the same
group of letters for the countsAn = card(An) (alternatively, alsoan = card(An)).
An axiomatic presentation is then as follows: a combinatorial class is a pair(A, | · |)
whereA is at most denumerable and the mapping| · | ∈ (A 7→ N) is such that the
inverse image of any integer is finite.

DEFINITION I.2. Thecounting sequenceof a combinatorial classA is the sequence
of integers(An)n≥0 whereAn = card(An) is the number of objects in classA that
have sizen.

EXAMPLE 1. Binary words.Consider first the setW of binary words, which are words over
the binary alphabetA = {0,1},

W := {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . . , 1001101, . . . },

with ε the empty word. Define size to be the number of letters a word comprises. There are
two possibilities for each letter and possibilities multiply, so that the counting sequence(Wn)
satisfies

Wn = 2n.

(This sequence has a well-known legend associated with the invention of the game of chess: the
inventor was promised by his king one grain of rice for the first square of the chessboard, two
for the second, four for the third, and so on. The king naturally could not deliver the promised
263 grains!) �
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EXAMPLE 2. Permutations.The setP of permutations is

P = {. . . 12, 21, 123, 132, 213, 231, 312, 321, 1234,. . . , 532614, . . . },
since a permutation ofIn := [1 . . n] is a bijective mapping that is representable by an an array,

“
1 2 n
σ1 σ2 · · · σn

”
,

or equivalently by the sequenceσ1σ2 · · ·σn of distinct elements fromIn. Let us define the
size of a permutation to be its length,n. For a permutation written as a sequence ofn distinct
numbers, there aren places where one can accommodaten, thenn − 1 remaining places for
n− 1, and so on. Therefore, the numberPn of permutations of sizen satisfies

Pn = n! = 1 · 2 · · ·n .

As indicated in our Invitation chapter, this formula has been known for a long time: Knuth [245,
p. 23] refers to the HebrewBook of Creation(c. A .D.. 400), and to theAnuyogadv ārasutra
(India, c.A .D. 500) for its discovery. �

EXAMPLE 3. Triangulations.The classT of triangulations comprises triangulations of con-
vex polygonal domains which are decompositions into non-overlapping triangles (taken up to
continuous deformations of the plane). Let us define the sizeof a triangulation to be the number
of triangles it is composed of. For the purpose of the presentdiscussion, the reader may content
herself with what is suggested by Figure 1; the formal specification of triangulations appears
on p. 33. It is a nontrivial combinatorial result due to Eulerand Segner around 1750 that the
numberTn of triangulations is

(1) Tn =
1

n+ 1

 
2n

n

!
=

(2n)!

(n+ 1)!n!
.

Following Euler, the counting of triangulations (Tn) is best approached by generating func-
tions: the modified binomial coefficients so obtained are known as Catalan numbers (see the
discussion p. 33) and are central in combinatorial analysis(Section I. 5.3). �

Although the previous three examples are simple enough, it is generally a good
idea, when confronted with a combinatorial enumeration problem, to determine the
initial values of counting sequences, either by hand or better with the help of a com-
puter, somehow. Here, we find:

(2)

n 0 1 2 3 4 5 6 7 8 9 10
Wn 1 2 4 8 16 32 64 128 256 512 1024
Pn 1 1 2 6 24 120 720 5040 40320 362880 3628800
Tn 1 1 2 5 14 42 132 429 1430 4862 16796

Such an experimental approach may greatly help identify sequences. For instance, had
we not known the formula (1) for triangulations, observing an unusual factorization
like

T40 = 22 · 5 · 72 · 11 · 23 · 43 · 47 · 53 · 59 · 61 · 67 · 71 · 73 · 79,

which contains all prime numbers from 43 to 79, would quicklyput us on the tracks
of the right formula. There even exists nowadays a hugeEncyclopedia of Integer
Sequencesdue to Sloane that is available in electronic form [355] (see also an earlier
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book by Sloane and Plouffe [356]). Indeed, the three sequences(Wn), (Pn), and(Tn)
are respectively identified1 asEISA000079, EISA000142, andEISA000108.

� 1. Necklaces.How many different types of necklace designs can you form with n beads,
each having one of two colours,◦ and•? Here are the possibilities forn = 1, 2, 3,

and it is postulated that orientation matters. This is equivalent to enumerating circular arrange-
ments of two letters and an exhaustive listing program can bebased on the smallest lexico-
graphical represent of each word, as suggested by (17) below. The counting sequence starts
as2, 3, 4, 6, 8, 14, 20, 36, 60, 108, 188, 352 and constitutesEISA000031. [An explicit formula
appears later in this chapter (p. 60).] What if two necklace designs that are mirror image of one
another are identified? �

� 2. Unimodal permutations.Such a permutation has exactly one local maximum. In other
words it is of the formσ1 · · ·σn with σ1 < σ2 < · · · < σk = n andσk = n > σk+1 > · · · >
σn, for somek ≥ 1. How many such permutations are there of sizen? Forn = 5, the number
is 16: the permutations are 12345, 12354, 12453, 12543, 13452, 13542, 14532 and 15432 and
their reversals. [Due to Jon Perry, seeEISA000079.] �

It is also of interest to note that words and permutations could be enumerated
using the most elementary counting principles, namely, forfinite setsB andC

(3)





card(B ∪ C) = card(B) + card(C) (providedB ∩ C = ∅)

card(B × C) = card(B) · card(C),

We shall see soon that these principles, which lie at the basis of our very concept of
number, admit a powerful generalization (Equation (16) below).

Next, for combinatorial enumeration purposes, it proves convenient to identify
combinatorial classes that are merely variant of one another.

DEFINITION I.3. Two combinatorial classesA andB are said to be (combinatorially)
isomorphic, which is writtenA ∼= B, iff their counting sequences are identical. This
condition is equivalent to the existence of a bijection fromA to B that preserves size,
and one also says thatA andB are bijectively equivalent.

We normally identify isomorphic classes and accordingly employ a plain equality
sign (A = B). We then confine the notationA ∼= B to stress cases where combinato-
rial isomorphism results some nontrivial transformation.

DEFINITION I.4. Theordinary generating function(OGF) of a sequence(An) is the
formal power series

(4) A(z) =

∞∑

n=0

Anz
n.

Theordinary generating function(OGF) of a combinatorial classA is the generating
function of the numbersAn = card(An). Equivalently, the OGF of classA admits

1Throughout this book, a reference likeEIS Axxx points to Sloane’sEncyclopedia of Integer Se-
quences[355]. The data base contains more than 100,000 entries.
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FIGURE 1. The classT of all triangulations of regular polygons (with size definedas the
number of triangles) is a combinatorial class. The countingsequence starts as

T0 = 1, T1 = 1, T2 = 2, T3 = 5, T4 = 14, T5 = 42.

Euler determined the OGFT (z) =
P

n Tnz
n asT (z) =

1−√1− 4z

2z
, from which there

results thatTn = 1
n+1

`
2n
n

´
. These numbers are known as theCatalan numbers(p. 33).

thecombinatorial form

(5) A(z) =
∑

α∈A
z|α|.

It is also said that the variablez markssize in the generating function.

The combinatorial form of an OGF in (5) results straightforwardly from observing
that the termzn occurs as many times as there are objects inA having sizen.

Naming convention.We adhere to a systematicnaming convention: classes, their
counting sequences, and their generating functions are systematically denoted by the
same groups of letters: for instance,A for a class,{An} (or {an}) for the counting
sequence, andA(z) (or a(z)) for its OGF.

Coefficient extraction.We let generally[zn]f(z) denote the operation of extract-
ing the coefficient ofzn in the formal power seriesf(z) =

∑
fnz

n, so that

(6) [zn]



∑

n≥0

fnz
n


 = fn.

(The coefficient extractor[zn]f(z) reads as “coefficient ofzn in f(z)”.)
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FIGURE 2. A molecule, methylpyrrolidinyl-pyridine (nicotine), is acomplex assembly
whose description can be reduced to a single formula corresponding here to a total of 26
atoms.

The OGFs corresponding to our three examplesW ,P , T are then

(7)





W (z) =

∞∑

n=0

2nzn =
1

1 − 2z

P (z) =

∞∑

n=0

n! zn

T (z) =

∞∑

n=0

1

n+ 1

(
2n

n

)
zn =

1 −
√

1 − 4z

2z
.

The first expression relative toW (z) is immediate as it is the sum of a geometric pro-
gression; The second generating functionP (z) is not related to simple functions of
analysis. (Note that the expression makes sense within the strict framewok of formal
power series; see APPENDIX A: Formal power series, p. 620.) The third expression
relative toT (z) is equivalent to the explicit form ofTn via Netwon’s expansion of
(1 + x)1/2 (p. 33). The OGFsW (z) andT (z) can then also be interpreted as stan-
dard analytic objects, upon assigning to the formal variable z values in the complex
domainC. In effect, the seriesW (z) andT (z) converge in a neighbourhood of0
and represent complex functions that are well defined near the origin, namely when
|z| < 1

2 for W (z) and |z| < 1
4 for T (z). The OGFP (z) is a purely formal power

series (its radius of convergence is 0) that can nonethelessbe subjected to the usual
algebraic operations of power series. As a matter of fact, with very few exceptions,
permutation enumeration is most conveniently approached by exponential generating
functions developed in Chapter II.

Combinatorial form of GFs. The combinatorial form (5) shows that generating
functions are nothing but a reduced representation of the combinatorial class, where
internal structures are destroyed and elements contributing to size (atoms) are replaced
by the variablez. In a sense, this is analogous to what chemists do by writing linear
reduced formulæ for complex molecules (Figure 2). Great useof this observation was
made by Schützenberger as early as the 1950’s and 1960’s. Itexplains in many ways
why so many formal similarities are to be found between combinatorial structures and
generating functions.
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H =
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+ z4 + z2 + z3 + z4 + z + z4 + z3

H(z) = z + z2 + 2z3 + 3z4

FIGURE 3. A finite family of graphs and its eventual reduction to a generating function.

Figure 3 provides a combinatorial illustration: start witha (finite) family of graphs
H, with size taken as the number of vertices. Each vertex in each graph is replaced
by the variablez and the graph structure is “forgotten”; then the monomials corre-
sponding to each graph are formed and the generating function is finally obtained
by gathering all the monomials. For instance, there are 3 graphs of size4 in H,
in agreement with the fact that[z4]H(z) = 3. If size had been instead defined by
number of edges, another generating function would have resulted, namely, withy
marking the new size:1 + y + y2 + 2y3 + y4 + y6. If both number of vertices
and number of edges are of interest, then a bivariate generating function,H(z, y) =
z+ z2y+ z3y2 + z3y3 + z4y3 + z4y4 + z4y6; such multivariate generating functions
are developed systematically in Chapter III.

A path often taken in the literature is to decompose the structures to be enu-
merated into smaller structures either of the same type or ofsimpler types, and then
extract from such a decompositionrecurrence relationssatisfied by the{An}. In this
context, the recurrence relations are either solved directly—whenever they are simple
enough—or by means ofad hocgenerating functions, introduced as a mere technical
artifice.

By contrast, in the framework to be described, classes of combinatorial structures
are builtdirectly in terms of simpler classes by means of a collection of elementary
combinatorialconstructions. (This closely resembles the description of formal lan-
guages by means of grammars, as well as the construction of structured data types in
programming languages.) The approach developed here has been termedsymbolic, as
it relies on a formal specification language for combinatorial structures. Specifically,
it is based on so–calledadmissible constructionsthat admit direct translations into
generating functions.

DEFINITION I.5. Assume thatΦ is a construction that associates to a finite collection
of classesB, C, · · · a new class

A := Φ[B, C, . . .],

in a finitary way: eachAn depends on finitely many of the{Bj}, {Cj}, . . .. Then
Φ is admissibleiff the counting sequence{An} of A only depends on the counting
sequences{Bj}, {Cj}, . . . ofB, C, . . ., and for some operatorΞ on sequences:

{An} = Ξ[{Bj}, {Cj}, . . .].
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In that case, since generating functions are determined by their coefficient se-
quences, there exists a well defined operatorΨ translatingΞ on the associated ordinary
generating functions

A(z) = Ψ[B(z), C(z), . . .].

As an introductory example, take the construction of cartesian product.

DEFINITION I.6. The cartesian product construction of two classesA andB forms
ordered pairs,

(8) A = B × C iff A = {α = (β, γ) | β ∈ B, γ ∈ C },
with the size of a pairα = (β, γ) being defined by

(9) |α|A = |β|B + |γ|C .
By considering all possibilities, it is immediately seen that the counting sequences

corresponding toA,B, C are related by the convolution relation

(10) An =

n∑

k=0

BkCn−k.

We recognize here the formula for a product of two power series. Therefore,

(11) A(z) = B(z) · C(z).

Thus, the cartesian product is admissible:A cartesian product translates as a product
of OGFs.

Similarly, letA,B, C be combinatorial classes satisfying

(12) A = B ∪ C, with B ∩ C = ∅,
with size defined in a consistent manner: forα ∈ A,

(13) |ω|A =





|ω|B if ω ∈ B
|ω|C if ω ∈ C.

One has

(14) An = Bn + Cn,

which, at generating function level, means

(15) A(z) = B(z) + C(z).

Thus,a union of sets translates as a sum of generating functions provided the sets are
disjoint.

The correspondences provided by (8)–(11) and (12)–(15) aresummarized by the
dictionary

(16)





A = B ∪ C =⇒ A(z) = B(z) + C(z) (providedB ∩ C = ∅)

A = B × C =⇒ A(z) = B(z) · C(z)

(Compare with the plain arithmetic case of (3).) Their meritis that they can be stated
as general-purpose translation rules that only need to be established once and for all.
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As soon as the problem of counting elements of a union of disjoint sets or a cartesian
product is recognized, it becomes possible to dispense altogether with the intermediate
stages of writing explicitly coefficient relations or recurrences like in (10) or (14). This
is the spirit of the symbolic method for combinatorial enumerations. Its interest lies
in the fact that several powerful set-theoretic constructions are amenable to such a
treatment.

I. 2. Admissible constructions and specifications

The main goal of this section is to introduce formally the basic constructionsthat
constitute the core of a specification language for combinatorial structures. This core
is based on disjoint unions, also known as combinatorial sums, and on Cartesian prod-
ucts that we have just discussed. We shall augment it by the constructions of sequence,
cycle, multiset, and powerset. A class isconstructibleor specifiableif it can be de-
fined from primal elements by means of these constructions. The generating function
of any such class satisfies functional equations that can be transcribed systematically
from a specification; see Theorems I.1 and I.2, as well as Figure 14 at the end of this
chapter for a summary.

I. 2.1. Basic constructions.First, we assume given a classE called theneutral
classthat consists of a single object of size 0; any such an object of size 0 is called
a neutral object. and is usually denoted by symbols likeǫ or 1. The reason for this
terminology becomes clear if one considers the combinatorial isomorphism

A ∼= E × A ∼= A× E .
We also assume as given anatomic classZ comprising a single element of size 1;

any such element is called an atom; an atom may be used to describe a generic node
in a tree or graph, in which case it may be represented by a circle (• or ◦), but also a
generic letter in a word, in which case it may be instantiatedasa, b, c, . . . . Distinct
copies of the neutral or atomic class may also be subscriptedby indices in various
ways. Thus, for instance we use the classesZa = {a}, Zb = {b} (with a, b of size 1)
to build up binary words over the alphabet{a, b}, orZ• = {•}, Z◦ = {◦} (with •, ◦
taken to be of size 1) to build trees with nodes of two coulurs.Similarly, we introduce
E2, E1, E2 to denote a class comprising the neutral objects2, ǫ1, ǫ2 respectively.

Clearly, the generating functions of a neutral classE and an atomic classZ are

E(z) = 1, Z(z) = z,

corresponding to the unit1, and the variablez, of generating functions.
Combinatorial sum (disjoint union).First considercombinatorial sumalso known

asdisjoint union. The intent is to capture the union of disjoint sets, but without the
constraint of any extraneous condition of disjointness. Weformalize the (combina-
torial) sum of two classesB andC as the union (in the standard set–theoretic sense)
of two disjoint copies, sayB2 andC3, of B andC. A picturesque way to view the
construction is as follows: first choose two distinct colours and repaint the elements of
B with the2-colour and the elements ofC with the3-colour. This is made precise by
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introducing two distinct “markers”2 and3, each a neutral object (i.e., of size zero);
the disjoint unionB + C of B, C is then defined as the standard set-theoretic union,

B + C := ({2} × B) ∪ ({3} × C) .

The size of an object in a disjoint unionA = B + C is by definition inherited from
its size in its class of origin, like in Equation (13). One good reason behind the
definition adopted here is that the combinatorial sum of two classes isalwayswell-
defined. Furthermore, disjoint union is equivalent to a standard union whenever it is
applied to disjoint sets.

Because of disjointness, one has the implication

A = B + C =⇒ An = Bn + Cn =⇒ A(z) = B(z) + C(z),

so that disjoint union is admissible. Note that, in contrast, standard set-theoretic union
is not an admissible construction since

card(Bn ∪ Cn) = card(Bn) + card(Cn) − card(Bn ∩ Cn),

and information on the internal structure ofB andC (i.e., the nature of this intersec-
tion) is needed in order to be able to enumerate the elements of their union.

Cartesian product.This constructionA = B×C forms all possible ordered pairs
in accordance with Definition I.6. The size of a pair is obtained additively from the
size of components in accordance with (9).

Next, we introduce a few fundamental constructions that build upon set-theoretic
union and product, and form sequences, sets, and cycles. These powerful construc-
tions suffice to define a broad variety of combinatorial structures.

Sequence construction.If C is a class then thesequenceclass SEQ(C) is defined
as the infinite sum

SEQ(C) = {ǫ} + C + (C × C) + (C × C × C) + · · ·
with ǫ being a neutral structure (of size 0). (The neutral structure in this context
plays a rôle similar to that of the “empty” word in formal language theory, while
the sequence construction is somewhat analogous to the Kleene star operation (‘⋆’);
see APPENDIX A: Regular languages, p. 622.) It is then readily checked that the
constructionA = SEQ(C) defines a proper class satisfying the finiteness condition for
sizes if and only ifC contains no object of size0. From the definition of size for sums
and products, there results that the size of a sequence is to be taken as the sum of the
sizes of its components:

γ = (α1, . . . , αℓ) =⇒ |γ| = |α1| + · · · + |αℓ|.
Cycle construction.Sequences taken up to a circular shift of their components

define cycles, the notation being CYC(B). Precisely, one has

CYC(B) := SEQ(B)/S,

whereS is the equivalence relation between sequences defined by

(α1, . . . , αr)S (β1, . . . , βr)

iff there exists somecircular shift τ of [1 . . n] such that for allj, βj = ατ(j); in other
words, for somed, one hasβj = α1+(j+d) mod n. Here is for instance a depiction of
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the cycles formed from the 8 and 16 sequences of lengths 3 and 4over two types of
objects (a, b): the number of cycles is 4 (forn = 3) and 6 (forn = 4). Sequences are
grouped into equivalence classes according to the relationS.

(17)
aaa

aab aba baa
abb bba bab

bbb

aaaa
aaab aaba abaa baaa
aabb abba bbaa baab

abab baba
abbb bbba bbab babb

bbbb

According to the definition, this construction correspondsto the formation of directed
cycles. We make only a limited use of it for unlabelled objects; however, its counter-
part plays a rather important rôle in the context of labelled structures and exponential
generating functions.

Multiset construction. Following common mathematical terminology,multisets
are like finite sets (that is the order between element does not count), but arbitrary
repetitions of elements are allowed. The notation isA = MSET(B) whenA is ob-
tained by forming allfinitemultisets of elements fromB. The precise way of defining
MSET(B) is as a quotient:

MSET(B) := SEQ(B)/R with R,

the equivalence relation between sequences being defined by(α1, . . . , αr)R (β1, . . . , βr)
iff there exists somearbitrary permutationσ of [1 . . n] such that for allj, βj = ασ(j).

Powerset construction.Thepowersetclass (or set class)A = SET(B) is defined
as the class consisting of allfinite subsets of classB, or equivalently, as the class
PSET(B) ⊂ MSET(B) formed of multisets that involve no repetitions.

We again need to make explicit the way the size function is defined when such
constructions are performed: like for products and sequences, the size of a composite
object—set, multiset, or cycle—is defined as the sum of the sizes of its components.

� 3. The semi-ring of combinatorial classes.Under the convention of identifying isomorphic
classes, sum and product acquire pleasant algebraic properties: combinatorial sums and carte-
sian products become commutative and associative operations, e.g.,

(A+ B) + C = A+ (B + C), A× (B × C) = (A× B)× C,
while distributivity holds,(A+B)×C = (A×C)+(B×C). The proofs are simple verifications
from the definitions. �

� 4. Natural numbers.Let Z := {•} with • an atom (of size 1). ThenI = SEQ(Z) \
{ǫ} is a way of describing natural integers in unary notation:I = {•, • •, •••, . . .}. The
corresponding OGF isI(z) = z/(1− z) = z + z2 + z3 + · · · . �

� 5. Interval coverings. Let Z := {•} be as before. ThenA = Z + (Z × Z) is a set of
two elements,• and(•, •), which we choose to draw as{•, •–•}. ThenC = SEQ(A) contains
elements like

•, • •, •–•, • •–•, •–• •, •–• •–•, • • • • .
With the notion of size adopted, the objects of sizen in C = SEQ(Z + (Z × Z)) are (isomor-
phic to) thecoveringsof the interval[0, n] by intervals (matches) of length either 1 or 2. The
generating function,

C(z) = 1 + z + 2 z2 + 3 z3 + 5 z4 + 8 z5 + 13 z6 + 21 z7 + 34 z8 + 55 z9 + · · · ,
is, as we shall see shortly (p. 40), the OGF of Fibonacci numbers. �
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I. 2.2. The admissibility theorem for ordinary generating functions. This sec-
tion is a formal treatment of admissibility proofs for the constructions we have consid-
ered. The final implication is that any specification of a constructible class translates
directly into generating function equations. The cycle construction involves the Eu-
ler totient functionϕ(k) defined as the number of integers in[1, k] that are relatively
prime tok (APPENDIX A: Arithmetical functions, p. 611).

THEOREM I.1 (Admissible unlabelled constructions).The constructions of union,
cartesian product, sequence, multiset, powerset, and cycle are all admissible. The
associated operators are

Sum: A = B + C =⇒ A(z) = B(z) + C(z)

Product: A = B × C =⇒ A(z) = B(z) · C(z)

Sequence: A = SEQ(B) =⇒ A(z) =
1

1 −B(z)

Cycle: A = CYC(B) =⇒ A(z) =
∞∑

k=1

ϕ(k)

k
log

1

1 −B(zk)
.

Multiset: A = MSET(B) =⇒ A(z) =





∏

n≥1

(1 − zn)−Bn

exp

( ∞∑

k=1

1

k
B(zk)

)

Powerset: A = PSET(B) =⇒ A(z) =






∏

n≥1

(1 + zn)Bn

exp

( ∞∑

k=1

(−1)k−1

k
B(zk)

)

The sequence, cycle, and set translations necessitate thatB0 = ∅.

The classE = {ǫ} consisting of the neutral object only, and the classZ consisting of
a single “atomic” object (node, letter) of size1 have OGFs

E(z) = 1 and Z(z) = z.

PROOF. The proof proceeds by cases, building upon what we have justseen regarding
unions and products.

Combinatorial sum (disjoint union).LetA = B+C. Since the union isdisjoint,
and the size of anA–element coincides with its size inB orC, one hasAn = Bn +Cn

andA(z) = B(z) + C(z), as discussed earlier. The rule also follows directly from
the combinatorial form of generating functions as expressed by (5):

A(z) =
∑

α∈A
z|α| =

∑

α∈B
z|α| +

∑

α∈C
z|α| = B(z) + C(z).

Cartesian Product.The admissibility result forA = B × C was considered as
an example for Definition I.6, the convolution equation (10)leading to the relation
A(z) = B(z) ·C(z). We can offer a direct derivation based on the combinatorialform
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of generating functions (5),

A(z) =
∑

α∈A
z|α| =

∑

(β,γ)∈(B×C)

z|β|+|γ| =



∑

β∈B
z|β|


×



∑

γ∈C
z|γ|


 = B(z)·C(z),

as follows from distributing products over sums. This derivation readily extends to an
arbitrary number of factors.

Sequence construction.Admissibility for A = SEQ(B) (with B0 = ∅) follows
from the union and product relations. One has

A = {ǫ} + B + (B × B) + (B × B × B) + · · · ,
so that

A(z) = 1 +B(z) +B(z)2 +B(z)3 + · · · =
1

1 −B(z)
,

where the geometric sum converges in the sense of formal power series since[z0]B(z) =
0, by assumption.

Powerset construction.LetA = PSET(B) and first takeB to be finite. Then, the
classA of all the finite subsets ofB is isomorphic to a product,

PSET(B) ∼=
∏

β∈B
({ǫ} + {β})

with ǫ a neutral structure of size0. Indeed, distributing the products in all possible
ways forms all the possible combinations, i.e., sets, of elements ofB with no repetition
allowed, by reasoning similar to what leads to such an identity as

(1 + a)(1 + b)(1 + c) = 1 + [a+ b+ c] + [ab+ bc+ ac] + abc,

where all combinations of variables appear. Then, directlyfrom the combinatorial
form of generating functions and the sum and product rules, we find

A(z) =
∏

β∈B
(1 + z|β|) =

∏

n

(1 + zn)Bn .

Theexp-log transformationA(z) = exp(logA(z)) then yields

(18)

A(z) = exp

( ∞∑

n=1

Bn log(1 + zn)

)

= exp

( ∞∑

n=1

Bn ·
∞∑

k=1

(−1)k−1 z
nk

k

)

= exp

(
B(z)

1
− B(z2)

2
+
B(z3)

3
− · · ·

)
,

where the second line results from expanding the logarithm,

log(1 + u) =
u

1
− u2

2
+
u3

3
− · · · ,

and the third line results from exchanging the order of summation.
The proof finally extends to the case ofB being infinite by noting that eachAn

depends only on thoseBj for which j ≤ n, to which the relations given above for
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the finite case apply. Precisely, letB(≤m) =
∑m

k=1 Aj andA(≤m) = SET(B(≤m)).
Then, withO(zm+1) denoting any series that has no term of degree≤ m, one has

A(z) = A(≤m)(z) +O(zm+1) and B(z) = B(≤m)(z) +O(zm+1).

On the other hand,A(≤m)(z) andB(≤m)(z) are connected by the fundamental expo-
nential relation (18) , sinceA(≤m) is finite. Lettingm tend to infinity, there follows
in the limit

A(z) = exp

(
B(z)

1
− B(z2)

2
+
B(z3)

3
− · · ·

)
.

(See APPENDIX A: Formal power series, p. 620 for the definition of formal conver-
gence.)

Multiset construction. First for finiteB (with B0 = ∅), the multiset classA =
MSET(B) is definable by

MSET(B) ∼=
∏

β∈B
SEQ(β).

In words, any multiset can be sorted, in which case it can be viewed as formed of a
sequence of repeated elementsβ1, followed by a sequence of repeated elementsβ2,
whereβ1, β2, . . . is a canonical listing of the elements ofB. The relation translates
into generating functions by the product and sequence rules,

A(z) =
∏

β∈B
(1 − z|β|)−1 =

∞∏

n=1

(1 − zn)−Bn

= exp

( ∞∑

n=1

Bn log(1 − zn)−1

)

= exp

(
B(z)

1
+
B(z2)

2
+
B(z3)

3
+ · · ·

)
,

where the exponential form results from the exp-log transformation. The case of an
infinite classB follows by a continuity argument analogous the one used for powersets.

Cycle construction.The translation of the cycle relationA = CYC(B) turns out
to be

A(z) =

∞∑

k=1

ϕ(k)

k
log

1

1 −B(zk)
,

whereϕ(k) is the Euler totient function. The first terms, withLk(z) := log(1 −
B(zk))−1 are

A(z) =
1

1
L1(z) +

1

2
L2(z) +

2

3
L3(z) +

2

4
L4(z) +

4

5
L5(z) +

2

6
L6(z) + · · · .

We defer the proof to APPENDIX A: Cycle construction, p. 618, since it relies in part
on multivariate generating functions to be officially introduced in Chapter III. �

The results for sets, multisets, and cycles are particular cases of the well known
Pólya theorythat deals more generally with the enumeration of objects under group
symmetry actions [318, 320]. This theory is exposed in many textbooks, see for in-
stance [76, 206]. The approach adopted here consists in considering simultaneously
all possible values of the number of components by means of bivariate generating
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functions. Powerful generalizations within the theory of species are presented in the
book by Bergeron, Labelle, and Leroux [36].

� 6.Vallée’s identity.LetM = MSET(C),P = PSET(C). Separating elements ofC according
to the parity of the number of times they appear in a multiset gives rise to the identity

M(z) = P (z)M(z2).

(Hint: a multiset contains elements of either odd or even multiplicity.) Accordingly, one can
deduce the translation of powersets from the formula for multisets. Iterating the relation above
yieldsM(z) = P (z)P (z2)P (z4)P (z8) · · · , that is closely related to the binary representation
of numbers and to Euler’s identity (p. 46). It is used for instance in Note 52 p. 82. �

Restricted constructions.In order to increase the descriptive power of the frame-
work of constructions, we also want to allow restrictions onthe number of components
in sequences, sets, multisets, and cycles. LetK be a metasymbol representing any of
SEQ,CYC,MSET,PSET and letΩ be a predicate over the integers, thenKΩ(A) will
represent the class of objects constructed byK but with a number of components con-
strained to satisfyΩ. Then, the notations

SEQ=k (or simply SEQk), SEQ>k, SEQ1 . . k

refer to sequences whose number of components are exactlyk, larger thank, or in the
interval1 . . k respectively and the same holds for other constructions. Inparticular,

SEQk(B) :=

k times︷ ︸︸ ︷
B × · · · B ≡ Bk, SEQ≥k(B) =

∑

j≥k

Bj ∼= Bk × SEQ(B),

MSETk(B) := SEQk(B)/R.

Similarly, SEQodd,SEQeven will denote sequences with an odd or even number of
components, and so on.

Translations for such restricted constructions are available, as shown generally in
Subsection I. 6.1. Suffice it to note for the moment that the constructionA = SEQk(B)
is really an abbreviation for ak-fold product, hence it admits the translation into OGFs

(19) A = SEQk(B) =⇒ A(z) = B(z)k.

I. 2.3. Constructibility and combinatorial specifications. By composing basic
constructions, we can build compact descriptions (specifications) of a broad variety of
combinatorial classes. Since we restrict attention toadmissibleconstructions, we can
immediately derive OGFs for these classes. Put differently, the task of enumerating a
combinatorial class is reduced toprogramminga specification for it in the language of
admissible constructions. In this subsection, we first discuss the expressive power of
the language of constructions, then summarize the symbolicmethod (for unlabelled
classes and OGFs) by Theorem I.2.

First, in the framework just introduced, the class of all binary words is described
by

W = SEQ(A) where A = {a, b} ∼= Z + Z,
the ground alphabet, comprises two elements (letters) of size1. The size of a binary
word then coincides with its length (the number of letters itcontains). In other words,
we start from basic atomic elements and build up words by forming freely all the
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objects determined by the sequence construction. Such a combinatorial description of
a class that only involves a composition of basic constructions applied to initial classes
E ,Z is said to be aniterative(or nonrecursive) specification. Other examples already
encountered include binary necklaces (Note 1, p. 18) and thenatural integers (Note 4,
p. 25) respectively defined by

N = CYC(Z + Z) and I = SEQ≥1(Z).

From there, one can construct ever more complicated objects. For instance,

P = MSET(I) ≡ MSET(SEQ≥1(Z))

means the class of multisets of natural integers, which is isomorphic to the class of
integer partitions (see Section I. 3 below for a detailed discussion). As such examples
demonstrate, a specification that is iterative can be represented as a single term built on
E ,Z and the constructions+,×,SEQ,CYC,MSET,PSET. An iterative specification
can be equivalently listed by naming some of the subterms (for instance partitions in
terms of natural integers themselves defined as sequences ofatoms).

Semantics of recursion.We next turn our attention to recursive specifications,
starting with trees (cf also APPENDIX A: Tree concepts, p. 625 for basic definitions).
In graph theory, a tree is classically defined as an undirected graph that is connected
and acyclic. Additionally, a tree isrooted if a particular vertex is distinguished to be
the root. Computer scientists commonly make use of trees calledplanethat are rooted
but also embedded in the plane, so that the ordering of subtrees attached to any node
matters. Here, we will give the name ofgeneral plane treesto such rooted plane trees
and callG their class, where size is the number of vertices; see, e.g.,[353]. (The term
“general” refers to the fact that all nodes degrees are allowed.) For instance, a general
tree of size 16, drawn with the root on top, is:

τ =

As a consequence of the definition, if one interchanges, say,the second and third root
subtrees, then a different tree results—the original tree and its variant are not home-
omorphically equivalent. (General trees are thus comparable to graphical renderings
of genealogies where children are ordered by age.). Although we have introduced
plane trees as 2-dimensional diagrams, it is obvious that any tree also admits a linear
representation: a treeτ with root ζ and root subtreesτ1, . . . , τr (in that order) can
be seen as the objectζ τ1, . . . , τr , where the box encloses similar representations of

subtrees. Typographically, a box· may be reduced to a matching pair of parentheses,
‘(·)’, and one gets in this way a linear description that illustrates the correspondence
between trees viewed as plane diagrams and functional termsof mathematical logic
and computer science.

Trees are best described recursively. A tree is a root to which is attached a (possi-
bly empty) sequence of trees. In other words, the classG of general trees is definable
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by the recursive equation

(20) G = Z × SEQ(G),

whereZ comprises a single atom written “•” and denoting a generic node.
Although such recursive definitions are familiar to computer scientists, the speci-

fication (20) may look dangerously circular to some. One way of making good sense
of it is via an adaptation of the numerical technique of iteration. Start withG[0] = ∅,
the empty set, and define successively the classes

G[j+1] = Z × SEQ(G[j]).

For instance,G[1] = Z × SEQ(∅) = {(•, ǫ)} ∼= {•} describes the tree of size 1, and

G[2] =
{
• , • • , • • • , • • • • , . . . ,

}

G[3] =

{
• , • • , • • • , • • • • , . . .

• • • , • • • • , • • • • , • • • • • • , . . .

}
.

First, eachG[j] is well-defined since it corresponds to a purely iterative specification.
Next, we have the inclusionG[j] ⊂ G[j+1], (G[j] admits of a simple interpretation as
the class of all trees of height< j). We can therefore regard the complete classG as
defined by the limit of theG[j], that is,G :=

⋃
j G[j].

� 7.Limes superior of classes.Let{A[j]} be any increasing sequence of combinatorial classes,
in the sense thatA[j] ⊂ A[j+1]. If A[∞] =

S
j A[j] is a combinatorial class, then the corre-

sponding OGFs satisfyA[∞](z) = limj→∞A[j](z) in the formal topology (APPENDIX A:
Formal power series, p. 620). �

DEFINITION I.7. A specificationfor an r–tuple ~A = (A(1), . . . ,A(r)) of classes is a
collection ofr equations,

(21)





A(1) = Ξ1(A(1), . . . ,A(r))
A(2) = Ξ2(A(1), . . . ,A(r))

· · ·
A(r) = Ξr(A(1), . . . ,A(r))

where eachΞi denotes a term built from theA’s using the constructions of disjoint
union, cartesian product, sequence, set, multiset, and cycle, as well as the initial struc-
turesE andZ.

We also say that the system is a specification ofA(1). A specification for a class of
combinatorial structures is thus a sort of formal grammar defining that class. Formally,
the system (21) is aniterativespecification if it is strictly upper-triangular, that is,A(r)

is defined solely in terms of initial classesZ, E ; the definition ofA(r−1) only involves
A(r), etc, so thatA(1) can be equivalently described by a single term. Otherwise, the
system is said to berecursive. In the latter case, the semantics of recursion is identical
to the one introduced in the case of trees: start with the “empty” vector of classes,
~A[0] := (∅, . . . , ∅), iterate ~A[j+1] = ~Ξ

[
~A[j]
]
, and finally take the limit.
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DEFINITION I.8. A class of combinatorial structures is said to beconstructibleor
specifiableiff it admits a (possibly recursive) specification in terms of sum, product,
sequence, set, multiset, and cycle constructions.

At this stage, we have therefore defined a specification language for combina-
torial structures which is some fragment of set theory with recursion added. Each
constructible class has by virtue of Theorem I.1 an ordinarygenerating function for
which defining equations can be produced systematically. Infact, it is even possible
to use computer algebra systems in order to compute itautomatically! See the article
of Flajolet, Salvy, and Zimmermann [159] for the description of such a system.

THEOREM I.2 (Symbolic method, unlabelled case).The generating function of a con-
structible class is a component of a system of generating function equations whose
terms are built from

1, z, + , × , Q , Exp , Exp ,Log,

where



Q[f ] =
1

1 − f
, Log[f ] =

∞∑

k=1

ϕ(k)

k
log

1

1 − f(zk)
,

Exp = exp

( ∞∑

k=1

f(zk)

k

)
, Exp[f ] = exp

( ∞∑

k=1

(−1)k−1 f(zk)

k

)
.

The operatorQ translating sequences (SEQ) is known as the quasi-inverse. The op-
eratorExp (multisets, MSET) is called the Pólya exponential andExp (powersets,
PSET) is the modified Pólya exponential. The operatorLog is the Pólya logarithm.
They are named after Pólya who first developed the general enumerative theory of
objects under permutation groups [36, 318, 320].

The statement of Corollary I.2 signifies that iterative classes have explicit generat-
ing functions involving compositions of the basic operators only, while recursive struc-
tures have OGFs that are accessible indirectly via systems of functional equations. As
we see at various places in this chapter, the following classes are constructible: binary
words, binary trees, general trees, integer partitions, integer compositions, nonplane
trees, polynomials over finite fields, necklaces, and wheels. We conclude this section
with a few examples.

Binary words. The OGF of binary words, as seen already, can be obtained di-
rectly from the iterative specification,

W = SEQ(Z + Z) =⇒ W (z) =
1

1 − 2z
,

whence the expected result,Wn = 2n.
General trees.The recursive specification of general trees leads to an implicit

definition of their OGF,

G = Z × SEQ(G) =⇒ G(z) =
z

1 −G(z)
.

From this point on, basic algebra does the rest. First the original equation is equivalent
(in the ring of formal power series) toG−G2 − z = 0. Next, the quadratic equation
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is solvable by radicals, and one finds

G(z) = 1
2

(
1 −

√
1 − 4z

)

= z + z2 + 2 z3 + 5 z4 + 14 z5 + 42 z6 + 132 z7 + 429 z8 + · · ·

=
∑

n≥1

1

n

(
2n− 2

n− 1

)
zn.

(The conjugate root is to be discarded since it involves a term z−1 as well as negative
coefficients.) The expansion then results from Newton’s binomial expansion,

(1 + x)α = 1 +
α

1
x+

α(α − 1)

2!
x2 + · · · ,

applied withα = 1
2 andx = −4z.

The numbers

(22) Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!
with OGF C(z) =

1 −
√

1 − 4z

2z

are known as the Catalan numbers (EISA000108) in the honour of Eugène Catalan
(1814-1894), a French and Belgian mathematician who developed many of their prop-
erties. These numbers are so common in combinatorics that wehave decided to use
a roman font for denoting them (like “log”, “ sin”, and so on). In summary,general
trees are enumerated by Catalan numbers:

Gn = Cn−1 ≡ 1

n

(
2n− 2

n− 1

)
.

For this reason the termCatalan treeis often employed as synonymous to “general
(rooted unlabelled plane) tree”.

Triangulations. Fix n+ 2 points arranged in anticlockwise order on a circle and
conventionally numbered from 0 ton+ 1 (for instance then+ 2nd roots of unity). A
triangulation is defined as a maximal decomposition of the convexn+ 2-gon defined
by the points inton triangles. Triangulations are taken here as abstract topological
configurations defined up to continuous deformations of the plane. The size of the
triangulation is the number of triangles, that is,n. Given a triangulation, we define
its “root” as a triangle chosen in some conventional and unambiguous manner (e.g., at
the start, the triangle that contains the two smallest labels). Then, a triangulation de-
composes into its root triangle and two subtriangulations (that may well be “empty”)
appearing on the left and right sides of the root triangle; the decomposition is illus-
trated by the following diagram:

= +
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The classT of all triangulations can be specified recursively as

T = {ǫ} + (T ×∇× T ) ,

provided that we consider a 2-gon (a diameter) as giving riseto an empty triangulation.
Consequently, the OGF satisfies the equationT = 1 + zT 2 and

T (z) =
1

2z

(
1 −

√
1 − 4z

)
.

As a result,triangulations are enumerated by Catalan numbers:

Tn = Cn ≡ 1

n+ 1

(
2n

n

)
.

This particular result goes back to Euler and Segner (1753),a century before Catalan;
see Figure 1 for first values and p. 70 for related bijections.

� 8. A bijection. Since both general trees and triangulations are enumeratedby Catalan num-
bers, there must exist a size-preserving bijection betweenthe two classes. Find one such bijec-
tion. [Hint: the construction of triangulations is evocative of binary trees, and binary trees are
themselves in bijective correspondence with general trees; see APPENDIX A: Tree concepts,
p. 625]. �

� 9. A variant specification of triangulations.Consider the classU of “nonempty” triangula-
tions of then-gon, that is, we exclude the 2-gon and the corresponding “empty” triangulation
of size 0. Then,U = T \ {ǫ} admits the specification

U = ∇+ (∇×U) + (U ×∇) + (U ×∇× U)

which also leads to the Catalan numbers viaU = z(1 + U)2 and U(z) = (1 − 2z −√
1− 4z)/(2z), so thatU(z) = T (z)− 1. �

I. 2.4. Exploiting generating functions and counting sequences. In this book
we are going to see altogether more than a hundred applications of the symbolic
method. Before engaging in technical developments, it is worth inserting a few com-
ments on the way generating functions and counting sequences can be put to good use
in order to solve combinatorial problems.

Explicit enumeration formulæ. In a number of situations, generating functions
are explicit and can be expanded in such a way that explicit formulae result for their
coefficients. A prime example is the counting of general trees and of triangulations
above, where the quadratic equation satisfied by an OGF is amenable to an explicit
solution—the resulting OGF could then be expanded by means of Newton’s binomial
theorem. Similarly, we derive later in this Chapter an explicit form for the number of
integer compositions by means of the symbolic method and OGFs (the answer turns
out to be simply2n−1) and derive many explicit specializations. In this book, we
assume as known the elementary techniques from basic calculus by which the Taylor
expansion of an explicitly given function can be obtained. (Good references on such
elementary aspects are Wilf’sGeneratingfunctionology[406], Graham, Knuth, and
Patashnik’sConcrete Mathematics[196], and our book [353].)
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Implicit enumeration formulæ. In a number of cases, the generating functions
obtained by the symbolic method are still in a sense explicit, but their form is such that
their coefficients are not clearly reducible to a closed form. It is then still possible to
obtain initial values of the corresponding counting sequence by means of a symbolic
manipulation system. Also, from generating functions, it is possible to derive system-
atically recurrences2 that lead to a procedure for computing an arbitrary number of
terms of the counting sequence in a reasonably efficient manner. A typical example of
this situation is the OGF of integer partitions,

P (z) =

∞∏

m=1

1

1 − zm
,

for which recurrences obtained from the OGF and associated to fast algorithms are
given in Note 12 (p. 39) and Note 17 (p. 46).

Asymptotic formulæ.Such forms are our eventual goal as they allow for an easy
interpretation and comparison of counting sequences. Froma quick glance at the
table of initial values ofWn, Pn, Tn given in Eq. (2), it is apparent thatWn grows
more slowly thanTn, which itself grows more slowly thanPn. The classification
of growth rates of counting sequences belongs properly to the asymptotic theory of
combinatorial structures which neatly relates to the symbolic method via complex
analysis. A thorough treatment of this part of the theory is presented in Chapters IV–
VIII. Given the methods exposed there, it becomes possible to estimate asymptotically
the coefficients of virtually any generating function, however complicated3, that is
provided by the symbolic method.

Here, we content ourselves with a few remarks based on elementary real analysis.
(The basic notations are described in APPENDIX A: Asymptotic Notation, p. 612.)
The sequenceWn = 2n grows exponentially and, in such an extreme simple case, the
exact form coincides with the asymptotic form. The sequencePn = n! must grow at a
faster asymptotic regime. But how fast? The answer is provided by Stirling’s formula,
an approximation to the factorial numbers due to the Scottish mathematician James
Stirling (1692–1770):

(23) n! =
(n
e

)n √
2πn

(
1 +O(

1

n
)

)
(n → +∞).

The ratios of the exact values to Stirling’s approximations

n: 1 2 5 10 100 1,000
n!

nne−n
√

2πn
: 1.084437 1.042207 1.016783 1.008365 1.000833 1.000083

show anexcellent qualityof the asymptotic estimate: the error is only 8% forn = 1,
less than 1% forn = 10, and less than 1 per thousand for anyn greater than 100.

2See [159, 169, 297] for such systematic approaches.
3In a number of cases, asymptotic analysis even applies to situations where the generating function

itself is not even explicit, but only accessible through a functional equation of sorts.
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FIGURE 4. The growth regimes
of three sequencesf(n) =
2n, Tn, n! (from bottom to top)
rendered by a plot oflog10 f(n)
versusn.

Stirling’s formula in turn gives access to the asymptotic form of the Catalan num-
bers, by means of a simple calculation:

Cn =
1

n+ 1

(2n)!

(n!)2
∼ 1

n

(2n)2ne−2n
√

4πn

n2ne−2n2πn
,

which simplifies to

(24) Cn ∼ 4n

√
πn3

.

Thus, the growth of Catalan numbers is roughly comparable toan exponential,4n,
modulated by a subexponential factor, here1/

√
πn3. A surprising consequence of this

asymptotic estimate to the area of boolean function complexity appears in Example 16
below.

Altogether, the asymptotic number of general trees and triangulations is well sum-
marized by a simple formula. Approximations become more andmore accurate asn
becomes large. Figure 4 illlustrates the different growth regimes of our three ref-
erence sequences while Figure 5 exemplifies the quality of the approximation with
subtler phenomena also apparent on the figures and well explained by asymptotic the-
ory. Such asymptotic formulæ then make comparison between the growth rates of
sequences easy.

� 10. The complexity of coding.A company specialized in computer aided design has sold to
you a scheme that (they claim) can encode any triangulation of sizen ≥ 100 using at most1.5n
bits of storage. After reading these pages, what do you do? [Hint: sue them!] See also Note 22
for related coding arguments. �

� 11. Experimental asymptotics.From the data of Figure 5, guess the value ofC⋆
107 /C107

and ofC⋆
5·106 /C5·106 to 25D. (See, e.g., [250] for related asymptotic expansions and [55] for

similar properties.) �

The interplay between combinatorial structure and asymptotic structure is indeed
the principal theme of this book. We shall see that a vast majority of the generating
functions provided by the symbolic method, however complicated, eventually lead to
similarly simple asymptotic estimates.
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n Cn C⋆
n C⋆

n/Cn

1 1 2.25 2.25675 83341 91025 14779 23178

10 16796 18707.89 1.11383 05127 524458̇9437 89064

100 0.89651 · 1057 0.90661 · 1057 1.01126 32841 24540 52257 13957

1000 0.20461 · 10598 0.20484 · 10598 1.00112 51328 1542 41647 01282

10000 0.22453 · 106015 0.22456 · 106015 1.00011 25013 28127 92913 51406

100000 0.17805 · 1060199 0.17805 · 1060199 1.00001 12500 13281 25292 96322

1000000 0.55303 · 10602051 0.55303 · 10602051 1.00000 11250 00132 81250 29296

FIGURE 5. The Catalan numbersCn, their Stirling approximationC⋆
n = 4n/

√
πn3, and

the ratioC⋆
n /Cn.

I. 3. Integer compositions and partitions

This section and the next ones provide examples of counting via specifications in
classical combinatorial domains. They illustrate the benefits of the symbolic method:
generating functions are obtained with hardly any computation, and at the same time,
many counting refinements follow from a basic combinatorialconstruction. The most
direct applications described here relate to the additive decomposition of integers
into summands with the classical combinatorial-arithmetic structures of partitions and
compositions. The specifications are iterative and simply combine two levels of con-
structions of type SEQ,MSET,CYC,PSET.

I. 3.1. Compositions and partitions. Our first examples have to do with decom-
posing integers into sums.

DEFINITION I.9. A compositionof an integern is a sequence(x1, x2, . . . , xk) of
integers (for somek) such that

n = x1 + x2 + · · · + xk, xj ≥ 1.

A partitionof an integern is a sequence(x1, x2, . . . , xk) of integers (for somek) such
that

n = x1 + x2 + · · · + xk and x1 ≥ x2 ≥ · · · ≥ xk.

In both cases, thexi’s are called the summands or the parts and the quantityn is
called the size of the composition or the partition.

By representing summands in unary using small discs (“•”), we can render graph-
ically a composition by drawing bars between some of the balls; if we arrange sum-
mands vertically, compositions appear as ragged-landscapes. In contrast, partitions
appear as staircases also known as Ferrers diagrams [76, p. 100]; see Figure 6. We
let C andP denote the class of pacement all compositions and all partitions. Since a
set can always be presented in sorted order, the difference between compositions and
partitions lies in the fact that the order of summandsdoesor does notmatter. This is
reflected by the use of a sequence construction (forC) against a multiset construction
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FIGURE 6. Graphical representations of compositions and partitions: (left) the composi-
tion 1+3+1+4+2+3 = 14 with its “ragged-landscape” and “balls-and-bars” models;
(right) the partition8 +8+ 6+5+ 4+4+ 4+2 +1+ 1 = 43 with its staircase (Ferrers
diagram) model.

(for P). In this perspective, it proves convenient to regard0 as obtained by the empty
sequence of summands (k = 0), and we shall do so from now on.

First, letI = {1, 2, . . .} denote the combinatorial class of all integers at least 1
(the summands), and let the size of each integer be its value.Then, the OGF ofI is,
as we know,

(25) I(z) =
∑

n≥1

zn =
z

1 − z
,

sinceIn = 1 for n ≥ 1, corresponding to the fact that there is exactly one object in I
for each sizen ≥ 1. If integers are represented in unary, say by small balls, one has,

(26) I = {1, 2, 3, . . .} = {•, • •, • • •, . . .} ∼= SEQ≥1{•},
which is another way to view the equalityI(z) = z/(1 − z).

Compositions.First, the specification of compositions as sequences admits, by
Theorem I.1, a direct translation into OGF:

(27) C = SEQ(I) =⇒ C(z) =
1

1 − I(z)
.

The collection of equations (25), (27) thus fully determinesC(z):

C(z) =
1

1 − z
1−z

=
1 − z

1 − 2z

= 1 + z + 2z2 + 4z3 + 8z4 + 16z5 + 32z6 + · · · .
From there, the counting problem for compositions is solvedby a straightforward
expansion of the OGF: one has

C(z) =




∑

n≥0

2nzn



−




∑

n≥0

2nzn+1



 ,

implying
Cn = 2n−1, n ≥ 1; C0 = 1.

This agrees with basic combinatorics since a composition ofn can be viewed as the
placement of separation bars at a subset of then − 1 existing places inbetweenn
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0 1 1
10 512 42
20 524288 627
30 536870912 5604
40 549755813888 37338
50 562949953421312 204226
60 576460752303423488 966467
70 590295810358705651712 4087968
80 604462909807314587353088 15796476
90 618970019642690137449562112 56634173
100 633825300114114700748351602688 190569292
110 649037107316853453566312041152512 607163746
120 664613997892457936451903530140172288 1844349560
130 680564733841876926926749214863536422912 5371315400
140 696898287454081973172991196020261297061888 15065878135
150 713623846352979940529142984724747568191373312 40853235313
160 730750818665451459101842416358141509827966271488 107438159466
170 748288838313422294120286634350736906063837462003712 274768617130
180 766247770432944429179173513575154591809369561091801088 684957390936
190 784637716923335095479473677900958302012794430558004314112 1667727404093
200 803469022129495137770981046170581301261101496891396417650688 3972999029388
210 822752278660603021077484591278675252491367932816789931674304512 9275102575355
220 842498333348457493583344221469363458551160763204392890034487820288 21248279009367
230 862718293348820473429344482784628181556388621521298319395315527974912 47826239745920
240 883423532389192164791648750371459257913741948437809479060803100646309888 105882246722733
250 904625697166532776746648320380374280103671755200316906558262375061821325312 230793554364681

FIGURE 7. Forn = 0, 10, 20, . . . , 250 (left), the number of compositionsCn (middle)
and the number of partitions (right). The figure illustratesthe difference in growth between
Cn = 2n−1 andPn = eO(

√
n).

aligned balls (the “balls and bars” model of Figure 6), of which there are clearly2n−1

possibilities.

Partitions. For partitions specified as multisets, the general translation mecha-
nism provides

(28) P = MSET(I) =⇒ P (z) = exp

(
I(z) +

1

2
I(z2) +

1

3
I(z3) + · · ·

)
,

with product form

(29)

P (z) =

∞∏

m=1

1

1 − zm

=
(
1 + z + z2 + · · ·

) (
1 + z2 + z4 + · · ·

) (
1 + z3 + z6 + · · ·

)
· · ·

= 1 + z + 2z2 + 3z3 + 5z4 + 7z5 + 11z6 + 15z7 + 22z8 + · · · .
where the counting sequence isEIS A000041. Contrary to compositions that are
counted by the explicit formula2n−1, no simple form exists forPn. Asymptotic
analysis of the OGF (28) based on the saddle point method (Chapter VIII) shows that
Pn = eO(

√
n). In fact a very famous theorem of Hardy and Ramanujan later improved

by Rademacher (see Andrew’s book [9] and Chapter VIII) provides a full expansion
of which the asymptotically dominant term is

Pn ∼ 1

4n
√

3
exp

(
π

√
2n

3

)
.

There are consequently appreciably fewer partitions than compositions (Figure 7).

� 12.A recurrence for the partition numbers.Logarithmic differentiation gives

z
P ′(z)

P (z)
=

∞X

n=1

nzn

1− zn
implying nPn =

n−1X

j=1

σ(j)Pn−j ,
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whereσ(n) is the sum of the divisors ofn (e.g.,σ(6) = 1 + 2 + 3 + 6 = 12). Consequently,
P1, . . . , PN can be computed inO(N2) integer-arithmetic operations. (The technique is gener-
ally applicable to powersets and multisets; see Note 40 for another application. Note 17 further
lowers the bound in the case of partitions toO(N

√
N).) �

By varying (27) and (28), we can use the symbolic method to derive a number of
counting results in a straightforward manner. First, we state:

PROPOSITIONI.1. Let T ⊆ I be a subset of the positive integers. The OGF of the
classesCT := SEQ(SEQT (Z)) andPT := MSET(SEQT (Z)) of compositions and
partitions having summands restricted toT is given by

CT (z) =
1

1 −∑n∈T z
n

=
1

1 − T (z)
, P T (z) =

∏

n∈T

1

1 − zn
.

PROOF. The statement results directly from Theorem I.1. �

This proposition permits us to enumerate compositions and partitions with re-
stricted summands, as well as with a fixed number of parts.

EXAMPLE 4. Compositions with restricted summands.In order to enumerate the classC{1,2}

of compositions ofn whose parts are only allowed to be taken from the set{1, 2}, simply write

C{1,2} = SEQ(I{1,2}) with I{1,2} = {1, 2}.
Thus, in terms of generating functions, one has

C{1,2}(z) =
1

1− I{1,2}(z)
with I{1,2}(z) = z + z2.

This formula implies

C{1,2}(z) =
1

1− z − z2
= 1 + z + 2z2 + 3z3 + 5z4 + +8z5 + 13z6 + · · · ,

and the number of compositions ofn in this class is expressed by a Fibonacci number,

C{1,2}
n = Fn+1 where Fn =

1√
5

»„
1 +
√

5

2

«n

−
„

1−
√

5

2

«n–
.

In particular, the rate of growth is of the exponential typeϕn, whereϕ :=
1 +
√

5

2
is the golden

ratio.
Similarly, compositions such that all their summands lie inthe set{1, 2, . . . , r} have gen-

erating function

C{1,...,r}(z) =
1

1− z − z2 − · · · zr
=

1

1− z 1−zr

1−z

=
1− z

1− 2z + zr+1
,

and the corresponding counts are given by generalized Fibonacci numbers. A double combina-
torial sum expresses these counts

(30) C{1,...,r}
n = [zn]

X

j

„
z(1− zr)

(1− z)

«j

=
X

j,k

(−1)k

 
j

k

! 
n− rk − 1

j − 1

!
.

This result is perhaps not too useful for grasping the rate ofgrowth of the sequence whenn gets
large, so that asymptotic analysis is called for. Asymptotically, for any fixedr ≥ 2, there is a
unique rootρr of the denominator1 − 2z + zr+1 in ( 1

2
, 1), this root dominates all the other



I. 3. INTEGER COMPOSITIONS AND PARTITIONS 41

roots and is simple. Methods amply developed in Chapter IV, imply that, for some constant
cr > 0,

(31) C{1,...,r}
n ∼ crρ−n

r for fixed r asn→∞.

The quantityρr plays a rôle similar to that of the golden ratio whenr = 2. �

� 13. Compositions into primes.The additive decomposition of integers into primes is still
surrounded with mystery. For instance, it is not known whether every even number is the sum
of two primes (Goldbach’s conjecture). However, the numberof compositions ofn into prime
summands (anynumber of summands is permitted) isBn = [zn]B(z) where

B(z) =

0
@1−

X

p prime

zp

1
A

−1

=
`
1− z2 − z3 − z5 − z7 − z11 − · · ·

´−1

= 1 + z2 + z3 + z4 + 3 z5 + 2 z6 + 6 z7 + 6 z8 + 10 z9 + 16 z10 + · · ·
(EISA023360) and complex asymptotic method make iteasyfrom there to determine the as-
ymptotic formBn ∼ 0.30365 · 1.47622n ; see Chapter IV. �

EXAMPLE 5. Partitions with restricted summands (denumerants).Whenever summands are
restricted to a finite set, the special partitions that result are called denumerants. A popular
denumerant problem consists in finding the number of ways of giving change of 99 cents using
coins that are pennies (1¢), nickels (5¢), dimes (10¢) and quarters (25¢). (The order in which
the coins are taken does not matter and repetitions are allowed.) For the case of a finiteT , we
predict from Proposition I.1 thatP T (z) is always arational function with poles that are at roots
of unity; also theP T

n satisfy a linear recurrence related to the structure ofT . The solution to
the original coin change problem is found to be

[z99]
1

(1− z)(1− z5)(1− z10)(1− z25)
= 213.

In the same vein, one proves that

P {1,2}
n = ⌈2n+ 3

4
⌋ P {1,2,3}

n = ⌈ (n+ 3)2

12
⌋.

There⌈x⌋ ≡ ⌊x + 1
2
⌋ denotes the integer closest to the real numberx. Such results are

typically obtained by the two step process: (i) decompose the rational generating function into
simple fractions; (ii) compute the coefficients of each simple fraction and combine them to get
the final result [76, p. 108].

The general argument also gives the generating function of partitions whose summands lie
in the set{1, 2, . . . , r} as

(32) P {1,...,r}(z) =

rY

m=1

1

1− zm
.

In other words, we are enumerating partitions according to the value of the largest summand.
One then finds by looking at the poles (Chapter IV):

(33) P {1,...,r}
n ∼ crnr−1 with cr =

1

r!(r − 1)!
.

A similar argument provides the asymptotic form ofP T
n whenT is an arbitrary finite set:

P T
n ∼

1

τ

nr−1

(r − 1)!
with τ :=

Y

n∈T
n, r := card(T ).
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This result originally due to Schur is discussed in Chapter IV. �

We next examine compositions and partitions with a fixed number of summands.

EXAMPLE 6. Compositions with a fixed number of parts.Let C(k) denote the class of compo-
sitions made ofk summands,k a fixed integer≥ 1. One has

C(k) = SEQk(I) ≡ I × I × · · · × I,
where the number of terms in the cartesian product isk. From there, the corresponding gener-
ating function is found to be

C(k) =
`
I(z)

´k
with I(z) =

z

1− z .

The number of compositions ofn havingk parts is thus

C(k)
n = [zn]

zk

(1− z)k
=

 
n− 1

k − 1

!
,

a result which constitutes a combinatorial refinement ofCn = 2n−1. (Note that the formula
C

(k)
n =

`
n−1
k−1

´
also results easily from the balls-and-bars model of compositions (Figure 6)).

In such a case, the asymptotic estimateC
(k)
n ∼ nk−1/(k − 1)! results immediately from the

polynomial form of the binomial coefficient
`

n−1
k−1

´
. �

EXAMPLE 7. Partitions with a fixed number of parts.Let P(≤k) be the class of integer
partitions with at mostk summands. With our notation for restricted constructions (p. 29), this
class is specified as

P(≤k) = MSET≤k(I).
It would be possible to appeal to the admissibility of such restricted compositions as developed
in Section I. 6.1, but the following direct argument suffices.

Geometrically, partitions, are represented as collections of points: this is the staircase
model of Figure 6). A symmetry around the main diagonal (alsoknown in the specialized
literature as conjugation) exchanges number of summands and value of largest summand: one
has (with previous notations)

P(≤k) ∼= P{1, . . k} =⇒ P (≤k)(z) = P {1, . . k}(z),

so that, by (32),

(34) P (≤k)(z) ≡ P {1,...,k} =

kY

m=1

1

1− zm
.

As a consequence, the OGF of partitions withexactlyk summands,P (k)(z) = P (≤k)(z) −
P (≤k−1)(z), evaluates to

P (k)(z) =
zk

(1− z)(1− z2) · · · (1− zk)
.

Given the equivalence between number of parts and largest part in partitions, the asymptotic
estimate (33) applies verbatim here. �
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� 14.Compositions with summands bounded in number and size.The number of compositions
of sizen with k summands each at mostr is

[zn]

„
z
1− zr

1− z

«k

,

and is expressible as a simple binomial convolution. �

� 15. Partitions with summands bounded in number and size.The number of partitions of
sizen with at mostk summands each at mostℓ is

[zn]
(1− z)(1− z2) · · · (1− zk+ℓ)

((1− z)(1− z2) · · · (1− zk)) · ((1− z)(1− z2) · · · (1− zℓ))
.

(The verification by recurrence is easy.) The GF reduces to the binomial coefficient
`

k+ℓ
k

´
as

z → 1; it is known as a Gaussian binomial coefficient, denoted
`

k+ℓ
k

´
z
, or a “q–analogue” of

the binomial coefficient [9, 76]. �

The last example of this section illustrates the close interplay between combi-
natorial decompositions and special function identities,which constitutes a recurrent
theme of classical combinatorial analysis.

EXAMPLE 8. The Durfee square of partitions and stack polyominoes.The diagram of any
partition contains a uniquely determined square (known as the Durfee square) that is maximal,
as exemplified by the following diagram:

=

This decomposition is expressed in terms of partition GFs as

P ∼=
[

k≥0

“
Zk2 ×P(≤k) × P{1,...,k}

”
,

It gives, via (32) and (34), the non-trivial identity

∞Y

n=1

1

1− zn
=
X

k≥0

zk2

((1− z) · · · (1− zk))2

(k is the size of the Durfee square), which is nothing but a formal rewriting of the geometric
decomposition.

Here is a similar case illustrating the direct correspondence between geometric diagrams
and generating functions, as afforded by the symbolic method.

Stack polyominoesare diagrams of compositions such that for somej, ℓ, one has1 ≤ x1 ≤
x2 ≤ · · · ≤ xj ≥ xj+1 ≥ · · · ≥ xℓ ≥ 1 (see [362, §2.5] for further properties). The diagram
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Spec. OGF coeff. asympt.

Composition SEQ(SEQ≥1(Z))
1− z
1− 2z

2n−1 1

2
2n

—, sum.≤ r SEQ(SEQ1 . . r(Z))
1− z

1− 2z + zr+2
Eq. (30) crρ

−n
r

—, k sum. SEQk(SEQ≥1(Z))
zk

(1− z)k

 
n− 1

k − 1

!
nk−1

(k − 1)!

Partitions MSET(SEQ≥1(Z))
∞Y

m=1

(1− zm)−1 —
1

4n
√

3
eπ
√

2n
3

—, sum.≤ r MSET(SEQ1 . . r(Z))

rY

m=1

(1− zm)−1 —
nr−1

r!(r − 1)!

—,≤ k sum. ∼= MSET(SEQ1 . . k(Z))

kY

m=1

(1− zm)−1 —
nk−1

k!(k − 1)!

Cyclic comp. CYC(SEQ≥1(Z)) Eq. (35) Eq. (36)
2n

n

Part., distinct sum.PSET(SEQ≥1(Z))
∞Y

m=1

(1 + zm) —
33/4

12n3/4
eπ
√

n
3

FIGURE 8. Partitions and compositions: specifications, generating functions, counting
sequences, and asymptotic approximation.

representation of stack polyominoes,

k ←→ P{1,...,k−1} ×Zk × P {1,...,k}

translates immediately into the OGF

S(z) =
X

k≥1

zk

1− zk

1

((1− z)(1− z2) · · · (1− zk−1))2
,

once use is made of the partition GFsP {1,...,k(z) of (32). This last relation provides abona fide
algorithm for computing the initial values of the number of stack polyominoes (EISA001523):

S(z) = z + 2 z2 + 4 z3 + 8 z4 + 15 z5 + 27 z6 + 47 z7 + 79 z8 + · · · .
The book of van Rensburg [392] describes many such constructions and their relation to certain
models of statistical physics. �

Figure 8 summarizes what has been learnt regarding compositions and parti-
tions. The way several combinatorial problems are solved effortlessly by the symbolic
method is worth noting.

I. 3.2. Related constructions.It is also natural to consider the two constructions
of cycle and powerset that we have not yet applied toI.
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Cyclic compositions (wheels).The classD = CYC(I) comprises compositions
defined up to circular shift of the summands; so, for instance2 + 3 + 1 + 2 + 5,
3 + 1 + 2 + 5 + 2, etc, are identified. Alternatively, we may view elements ofD
as “wheels” composed of circular arrangements of rows of balls (taken up to circular
symmetry).

A “wheel” (cyclic composition):

By the cycle construction, the OGF is

(35)
D(z) =

∞∑

k=1

ϕ(k)

k
log

(
1 − zk

1 − zk

)−1

= z + 2 z2 + 3 z3 + 5 z4 + 7 z5 + 13 z6 + 19 z7 + 35 z8 + · · · .
The coefficients are thus (EISA008965)

(36) Dn =
1

n

∑

k | n

ϕ(k)(2n/k − 1) ≡ −1 +
1

n

∑

k | n

ϕ(k)2n/k ∼ 2n

n
.

Notice thatDn is of the same asymptotic order as1
nCn, which is suggested by circular

symmetry of wheels, butDn ∼ 2Cn/n.
Partitions into distinct summands.The classQ = PSET(I) is the subclass

of P = MSET(I) corresponding to partitions determined like in Definition I.9, but
with the strict inequalitiesxk > · · · > x1, so that the OGF is

Q(z) =
∏

n≥1

(1 + zn) = 1 + z + z2 + 2z3 + 2z4 + 3z5 + 4z6 + 5z7 + 6z8 + · · · .

The coefficients (EISA000009) are not amenable to closed from. However the saddle
point method (Chapter VIII) yields the approximation:

(37) Qn ∼ 33/4

12n3/4
exp

(
π

√
n

3

)
,

which has a shape similar to that ofPn.

� 16. Odd versus distinct summands.The partitions ofn into odd summands(On) and into
distinct summands(Qn) are equinumerous. Indeed, one has

Q(z) =

∞Y

m=1

(1 + zm), O(z) =

∞Y

j=0

(1− z2j+1)−1.

Equality results from substituting(1 + a) = (1− a2)/(1− a) with a = zm,

Q(z) =
1− z2

1− z
1− z4

1− z2

1− z6

1− z3

1− z8

1− z4

1− z10

1− z5
· · · = 1

1− z
1

1− z3

1

1− z5
· · · ,

and simplification of the numerators with half of the denominators (in boldface). �
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Partitions into powers.Let Ipow = {1, 2, 4, 8, . . .} be the set of powers of 2.
The correspondingP andQ partitions have OGFs

P pow(z) =

∞∏

j=0

1

1 − z2j

= 1 + z + 2z2 + 2z3 + 4z4 + 4z5 + 6z6 + 6z7 + 10z8 + + · · ·

Qpow(z) =

∞∏

j=0

(1 + z2j

)

= 1 + z + z2 + z3 + z4 + z5 + · · · .
The first sequence1, 1, 2, 2, . . . is the “binary partition sequence” (EIS A018819);
the difficult asymptotic analysis was performed by de Bruijn[85] who obtained an
estimate that involves subtle fluctuations and is of the global form eO(log2 n). The
functionQpow(z) reduces to(1 − z)−1 since every number has a unique additive
decomposition into powers of 2. Accordingly, the identity

1

1 − z
=

∞∏

j=0

(1 + z2j

)

first observed by Euler is sometimes nicknamed the “computerscientist’s identity” as
it expresses the fact that every number admits a unique binary representation.

There exists a rich set of identities satisfied by partition generating functions—
this fact owes to deep connections with elliptic functions,modular forms, andq–
analogues of special functions on the one hand, basic combinatorics and number the-
ory on the other hand. See [9, 76] for an introduction to this fascinating subject.

� 17.Euler’s pentagonal number theorem.This famous identity expresses1/P (z) as
Y

n≥1

(1− zn) =
X

k∈Z

(−1)kzk(3k+1)/2.

It is proved formally and combinatorially in [76, p. 105]. As a consequence, the numbers
{Pj}Nj=0 can be determined inO(N

√
N) arithmetic operations. �

� 18.A digital surprise. Define the constant

ϕ :=
9

10

99

100

999

1000

9999

10000
· · · .

Is it a surprise that it evaluates numerically to

ϕ
.
= 0.8900100999989990000001000099999999899999000000000010 · · · ,

that is, its decimal representation involves only the digits0, 1, 8, 9? [This is suggested by a note
of S. Ramanujan, “Some definite integrals”,Messenger of Math.XLIV, 1915, pp. 10–18.] �

� 19. Lattice points.The number of lattice points with integer coordinates that belong to the
closed ball of radiusn in d–dimensional Euclidean space is

[zn2

]
1

1− z (Θ(z))d where Θ(z) = 1 + 2
∞X

n=1

zn2

.

Such OGFs are useful in cryptography [257]. Estimates may be obtained from the saddle point
method; see Chapter VIII. �
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I. 4. Words and regular languages

Fix a finite alphabetA whose elements are calledletters. Each letter is taken
to have size 1,i.e., it is an atom. Aword is then any finite sequence of letters,
usually written without separators. So, for us, with the choice of the latin alphabet
(A = {a,. . . ,z}), sequences written asygololihp , philology , zgrmblglps
are words. We denote the set of all words (often written asA⋆ in formal linguistics)
byW . Following a well-established tradition in theoretical computer science and for-
mal linguistics, any subset ofW is called alanguage(or formal language, when the
distinction with natural languages has to be made).

From the definition of the set of wordsW , one has

(38) W ∼= SEQ(A) =⇒ W (z) =
1

1 −mz
,

wherem is the cardinality of the alphabet,i.e., the number of letters. The generating
function gives us the counting result

Wn = mn.

This result is elementary, but, as is usual with symbolic methods, many enumerative
consequences result from a given construction. It is precisely the purpose of this
section to examine some of them.

We shall introduce separately two frameworks that each havegreat expressive
power to describe languages. The first one is iterative (i.e., nonrecursive) and it bases
itself on “regular specifications” that only involve sums, products, and sequences; the
other one that is recursive (but of a very simple form) is bestconceived of in terms
of finite automata and is equivalent to linear systems of equations. Both frameworks
turn out to be logically equivalent in the sense that they determine the same family
of languages, theregular languages, though the equivalence4 is nontrivial and each
particular problem usually admits a preferred representation. The resulting OGFs are
invariably rational functions, a fact to be systematicallyexploited from an asymptotic
standpoint in Chapters IV and V.

I. 4.1. Regular specifications.Consider words (or strings) over the binary al-
phabetA = {a, b}. There is an alternative way to construct binary strings. Itis
based on the observation that (with a minor adjustment at thebeginning) a string de-
composes into a succession of “blocks” each formed with a single b followed by an
arbitrary (possibly empty) sequence ofa’s. For instanceaaabaababaabbabbaaa de-
composes as

aaa || baa | ba | baa | b | ba | b | baaa.
Omitting redundant5 symbols, we have the alternative decomposition:

(39) W ∼= SEQ(a) × SEQ(b SEQ(a)) =⇒ W (z) =
1

1 − z

1

1 − z 1
1−z

.

4APPENDIXA: Regular languages, p. 622 provides a basis for this equivalence.
5As usual, when dealing with words, we freely omit redundant braces ‘{, }’ and cartesian products

‘×’. For instance, SEQ(a + b) anda b are shorthand notations for SEQ({a} + {b}) and{{a} × {b}}.
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This last expression reduces to(1 − 2z)−1 as it should.
Longest runs. The interest of the construction just seen is to take into account

various meaningful properties, for example longest runs. Denote bya<k := SEQ<k(a)
the collection of all words formed with the lettera only and whose length is between
0 andk − 1; the corresponding OGF is1 + z + · · · + zk−1 = (1 − zk)/(1 − z).
The collectionW〈k〉 of words which do not havek consecutivea’s is described by an
amended form of (39), and

W〈k〉 = a<k SEQ(ba<k) =⇒ W 〈k〉(z) =
1 − zk

1 − z
· 1

1 − z 1−zk

1−z

=
1 − zk

1 − 2z + zk+1
.

The OGF is in principle amenable to expansion, but the resulting coefficients expres-
sions are complicated and, in such a case, asymptotic estimates tend to be more usable.
From an analysis developed in Chapter V, it can indeed be deduced that the longest
run ofa’s in a random binary string of lengthn is asymptotic tolog2 n.

� 20.Runs in arbitrary alphabets.For an alphabet of cardinalitym, the quantity

1− zk

1−mz + (m− 1)zk+1

is the OGF of words withoutk consecutive occurrences of a designated letter. �

The case of longest runs exemplifies the usefulness of nestedconstructions in-
volving sequences. We set:

DEFINITION I.10. An iterative specification that only involves atoms (e.g., letters of a
finite alphabetA) together with combinatorial sums, cartesian products, and sequence
constructions is said to be aregular specification.

A languageL is said to beS-regular(specification-regular) if there exists a class
M described by a regular specificationR such thatL andM are combinatorially
isomorphic,L ∼= M.

The definition of regular specifications and the basic admisibility theorems imply
immediately:

PROPOSITIONI.2. AnyS-regular language has an OGF that is arational function.
This OGF is obtained from a regular specification of the language by translating each
letter into the variablez, disjoint unions into sums, cartesian products into products,
and sequences into quasi-inverses,(1 − ·)−1.

This result is technically shallow but its importance derives from the fact that
regular languages have great expressive power devolving from their rich closure prop-
erties (APPENDIX A: Regular languages, p. 622) as well as their relation to finite
automata discussed in the next subsection. Examples 9 and 10make use of Proposi-
tion I.2 and treat two problems closely related to longest runs.

EXAMPLE 9. Combinations and spacings.A regular specification describes the setL of
words that contain exactlyk occurrences of the letterb, from which the OGF automatically
derives:

(40) L = SEQ(a) (b SEQ(a))k =⇒ L(z) = zk/(1− z)k+1.
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Hence the number of words in the language satisfiesLn =
`

n
k

´
. This is otherwise combinato-

rially evident, since each word of lengthn is characterized by the positions of its lettersb, that
is, the choice ofk positions amongstn possible ones. Symbolic methods thus give us back the
well-known count of combinations by binomial coefficients.

Let
`

n
k

´
<d

be the number of combinations ofk elements amongst[1, n] with constrained
spacings: no element can be at distanced or more from its successor. The refinement of (40)

L[d] = SEQ(a) (b SEQ<d(a))
k−1 (bSEQ(a)) =⇒

X

n≥0

 
n

k

!

<d

zn =
zk(1− zd)k−1

(1− z)k+1
,

leads to a binomial convolution expression,
 
n

k

!

<d

=
X

j

(−1)j

 
k − 1

j

! 
n− dj
k

!
.

(This problem is analogous to compositions with bounded summands.) What we have just
analysed in thelargest spacing (constrained to be< d) in subsets; a parallel analysis yields
information regarding thesmallestspacing. �

EXAMPLE 10. Double run statistics.By forming maximal groups of equal letters in words,
one finds easily that, for a binary alphabet,

W = SEQ(b) SEQ(aSEQ(a) b SEQ(b)) SEQ(a).

Let W〈α,β〉 be the class of all words that have at mostα consecutivea’s and at mostβ
consecutiveb’s. The specification ofW produces a specification ofW〈α,β〉, upon replacing
SEQ(a),SEQ(b) by SEQ<α(a),SEQ<β(b) internally, and by SEQ≤α(a),SEQ≤β(b) externally.
In particular, the OGF of binary words that never have more thanr consecutive equal letters is
found to be (setα = β = r)

(41) W 〈r,r〉 =
1− zr+1

1− 2z + zr+1
=

1 + z + · · ·+ zr

1− z − · · · − zr
,

after simplification.
Révész in [333] tells the following amusing story attributed to T. Varga: “A class of high

school children is divided into two sections. In one of the sections, each child is given a coin
which he throws two hundred times, recording the resulting head and tail sequence on a piece
of paper. In the other section, the children do not receive coins, but are told instead that they
should try to write down a ‘random’ head and tail sequence of length two hundred. Collecting
these slips of paper, [a statistician] then tries to subdivide them into their original groups. Most
of the time, he succeeds quite well.”

The statistician’s secret is to determine the probability distribution of the maximum length
of runs of consecutive letters in a random binary word of length n (heren = 200). The
probability of this parameter to equalk is

1

2n

“
W 〈k,k〉

n −W 〈k−1,k−1〉
n

”

and is fully determined by (41). The probabilities are then easily computed using any symbolic
package: Forn = 200, the values found are

k 3 4 5 6 7 8 9 10 11 12

P: 6.54 10−8 7.07 10−4 0.0339 0.1660 0.2574 0.2235 0.1459 0.0829 0.0440 0.0226
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Thus, in a randomly produced sequence of length 200, there are usually runs of length 7 or
more: the probability of the event turns out to be close to 80%(and there is still a probability of
about 8% to have a run of length 11 or more). On the other hand most children (and adults) are
usually afraid of writing down runs longer than 4 or 5 as this is felt as strongly “non-random”.
The statistician simply selects the slips that contain runsof length 6 or more. Et voilà! �

� 21.Alice and Bob.Alice wants to communicaten bits of information to Bob over a channel
(a wire, an optic fiber) that transmits0,1–bits but is such that any occurrence of11 terminates
the transmission. Thus, she can only send on the channel an encoded version of her message
(where the code is of some lengthℓ ≥ n) that does not contain the pattern11.

Here is a first coding scheme: given the messagem = m1m2 · · ·mn, wheremj ∈ {0, 1},
apply the substitution:0 7→ 00 and1 7→ 10; terminate the transmission by sending11. This
scheme hasℓ = 2n+O(1), and we say its rate is 2. Can one design codes with rate arbitrarily
close to 1, asymptotically?

Let C be the class of allowed code words. A code of length at mostL is achievable only
if there is a one-to-one mapping from{0, 1}n into

SL
j=0 Cj , i.e.,2n ≤PL

j=0 Cj . Working out
the OGF ofC, one finds that necessarily

L ≥ λn+O(1), λ =
1

log2 ϕ

.
= 1.440420, ϕ =

1 +
√

5

2
.

Thus no code can achieve a rate better than1.44; i.e., a loss of at least 44% is unavoidable. (For
this and the next note, see, e.g., MacKay [277, Ch. 17].) �

� 22. Coding without long runs.Because of hysteresis in magnetic heads, certain storage
devices cannot store binary sequences that have more than 4 consecutive0’s or more than
4 consecutive1’s. A coding scheme that transforms an arbitrary binary string into a string
obeying this constraint is sought.

From the OGF, one finds[z11]W 〈4,4〉(z) = 1546 > 210 = 1024. Consequently, a
substitution can be built that translates an original 10 bitblock into an 11 bit block without
five consecutive equal letters. When substituted blocks areconcatenated, this may give rise to
unwanted sequences of consecutive letters that are longer than acceptable. It then suffices to use
“separators” and replace a substituted block of the formα · · ·β by the longer blockαα · · ·ββ,
where0 = 1 and1 = 0. The resulting code has rate13

10
.

Extensions of this method show that the rate 1.057 is achievable (theoretically). On the
other hand, by the previous note, any acceptable code must use asymptotically at least 1.056n
bits to encode strings ofn bits. (Hint: letα be the root near1

2
of 1− 2α+ α5 = 0, which is a

pole ofW 〈4,4〉. One has1/ log2(1/α) = 1.05621.) �

Patterns. There are many situations in the sciences where it is of interest to de-
termine whether the appearance of a certainpatternin long sequences of observations
is significant. In a genomic sequence of length 100,000 (the alphabet isA,G,C,T ),
is it or not meaninful to detect three occurrences of the patternTAGATAA, where the
letters appear consecutively and in the prescribed order? In computer network se-
curity, certain attacks can be detected by some well defined alarming sequences of
events, though these events may be separated by perfectly legitimate actions. On an
other register, data mining aims at broadly categorizing electronic documents in an
automatic way, and in this context the observation of well chosen patterns can provide
highly discriminating criteria. These various applications require determining which
patterns are, with high probability, bound to occur (these arenotsignificant) and which
are very unlikely to arise, so that actually observing them carries useful information.
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Quantifying the corresponding probabilistic phenomena reduces to an enumerative
problem—the case of double runs in Example 10 is in this respect typical.

The notion of pattern can be formalized in several ways. In this book, we shall
consider two of them:

(a) Subsequence pattern: such a pattern is defined by the fact that its letter must
appear in the right order, but not necessarily contiguously[168]. Subse-
quence patterns are also known as “hidden patterns”.

(b) Factor pattern: such a pattern is defined by the fact that its letter must appear
in the right orderandcontiguously [201, 372]. Factor patterns are also called
“block patterns” or simply “patterns” when the context is clear.

For a given notion of pattern, there are then two related categories of problems. First,
one may aim at determining the probability that a random wordcontains (or dually,
exclude) a pattern; this problem is equivalently formulated as an existence problem—
enumerate all words in which the pattern exists (i.e., occurs) independently of the
number of occurrences. Second, one may aim at determining the expectation (or even
the distribution) of the number of occurrences of a pattern in a random text; this prob-
lem involves enumerating enriched words, each with one occurrence of the pattern
distinguished.

Such questions are amenable to methods of analytic combinatorics and in partic-
ular to the theory of regular specifications and automata: see Example 11 below for a
first analysis of hidden patterns (to be continued in ChapterV) and Example 12 for an
analysis of factor patterns (to be further extended in Chapters III, IV, and IX).

EXAMPLE 11. Subsequence (hidden) patterns in a text.A sequence of letters that occurs
in the right order, but not necessarily contiguously in a text is said to be a “hidden pattern”.
For instance the pattern “combinatorics” is to be found hidden in Shakespeare’s Hamlet (Act I,
Scene 1)

Dared to the comb at; in which our v a lian t Hamlet–

F or so th i s side of our known world esteem’d him–
Did slay this Fortinbras; who by a seal’d compact,

Well ratified by law and heraldry,
Did forfeit, with his life, all those his lands

Whi c h he s tood seized of, to the conqueror. . .

Take a fixed finite alphabetA comprisingm letters (m = 26 for English). First, let
us examine the languageL of all words, also called “texts”, that contain a given wordp =
p1p2 · · · pk of length k as a subsequence. These words can be described unambigouslyas
starting with a sequence of letters not containingp1 followed by the letterp1 followed by a
sequence not containingp2, and so on:

L = SEQ(A \ p1)p1 SEQ(A \ p2)p2 · · ·SEQ(A \ pk)pk SEQ(A).

This is in a sense equivalent to parsing words unambiguouslyaccording to the leftmost occur-
rence ofp as a subsequence. The OGF is accordingly

L(z) =
zk

(1− (m− 1)z)k

1

1−mz .
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An easy analysis of the dominant simple pole atz = 1/m shows that

L(z) ∼
z→1/m

1

1−mz , so that Ln ∼
n→∞

mn.

Thus, a proportion tending to 1 of all the words of lengthn do containp as a subsequecne.

� 23. A refined analysis.Further consideration of the subdominant pole atz = 1/(m − 1)
yields, by the methods of Chapter IV, the refined estimate:

1− Ln

nm
= O

„
nk−1

„
1− 1

m

«n«
.

Thus, the probability ofnot containing a given subsequence pattern is exponentialy small. �

A census (Note 24) shows that there are in fact1.63 1039 occurrences of “combinatorics”
as a subsequence hidden somewhere in the text of Hamlet, whose length is 120,057 (this is the
number of letters that constitute the text). Is this the signof a secret encouragement passed to
us by the author of Hamlet?

Here is an analysis of the expected number of hidden patternsbased on enumerating en-
riched words, where an enriched word is a word together with adistinguished occurrence of the
pattern as a subsequence. Consider the regular specification

O = SEQ(A) p1 SEQ(A) p2 SEQ(A) · · ·SEQ(A) pk−1 SEQ(A) pk SEQ(A).

An element ofO is a(2k+ 1)-tuple whose first component is an arbitrary word, whose second
component is the letterp1, and so on, with letters of the pattern and free blocks alternating . In
other terms, anyω ∈ O represents precisely one possible occurrence of the hiddenpatternp in
a text built over the alphabetA. The associated OGF is simply

O(z) =
zk

(1−mz)k+1
.

The ratio between the number of occurrences and the number ofwords of lengthn then equals

(42) Ωn =
[zn]O(z)

mn
= m−k

 
n

k

!
,

and this quantity represents the expected number of occurrences of the hidden pattern in a
random word of lengthn, assuming all such words to be equally likely. For the parameters
corresponding to the text of Hamlet (n = 120, 057) and the pattern “combinatorics” (k = 13),
the quantityΩn evaluates to6.96 1037. The number of hidden occurrences observed is thus
23 times higher than what the uniform model predicts! However, similar methods make it
possible to take into account nonuniform letter probabilities (see Chapter III): based on the
frequencies of letters in the English text itself, the expected number of occurrences is found
to be1.71 1039—this is now only within 5% of what is observed. Thus, Shakespeare did not
(probably) conceal in his text any message relative to combinatorics. �

� 24. Dynamic programming.The number of occurrences of a subsequence pattern in a text
can be determined efficiently by scanning the text from left to right and maintaining a running
count of the number of occurrences of the pattern as well as all its prefixes. �
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I. 4.2. Finite automata. We begin with a simple device, thefinite automaton,
that is widely used in models of computation [113] and has wide descriptive power as
regards structural properties of words.

DEFINITION I.11. A finite automatonis a directed multigraph whose edges are la-
belled by letters of the alphabetA. It is customary to refer to vertices asstatesand to
denote byQ the set of states. An initial stateq0 ∈ Q and a set of final statesQf ⊆ Q
are designated.

The automaton is said to bedeterministicif for each pair(q, α) with q ∈ Q and
α ∈ A there exists at most one edge (one also says a transition) starting fromq that is
labelled by the letterα.

A finite automaton is able to process words, as we now explain.A word w =
w1 . . . wn is acceptedby the automaton if there exists a path in the multigraph con-
necting the initial stateq0 to one of the final states ofQf and whose sequence of edge
labels is preciselyw1, . . . , wn. For a deterministic finite automaton, it suffices to start
from the initial stateq0, scan the letters of the word from left to right, and follow at
each stage the only transition permitted; the word is accepted if the state reached in
this way after scanning the last letter ofw is a final state. Schematically:

a b a b b a

Q

A finite automaton thus keeps only a finite memory of the past (hence its name) and
is in a sense a combinatorial counterpart of the notion of Markov chain in probability
theory. In this book, we shall only consider deterministic automata.

As an illustration, consider the classL of all wordsw that contain the pattern
abb as a factor (the letters of the pattern should appear contiguously). Such words
are recognized by a finite automaton with4 states,q0, q1, q2, q3. The construction is
classical: stateqj is interpreted as meaning “the firstj characters of the pattern have
just been scanned”, and the corresponding automaton appears in Figure 9. The initial
state isq0, and there is a unique final stateq3.

DEFINITION I.12. A language is said to beA–regular(automaton regular) if it coin-
cides with the set of words accepted by a deterministic finiteautomaton. A classM is
A–regular if for some regular languageL, one hasM ∼= L.

� 25. Congruence languages.The language of binary representations of numbers that are
congruent to 2 to modulo 7 isA-regular. A similar property holds for any numeration base and
any boolean combination of basic congruence conditions. �

� 26.Binary representation of primes.The language of binary representations of prime num-
bers is neitherA-regular norS-regular. [Hint: this requires the Prime Number Theorem and
asymptotic methods of Chapter IV.] �
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a b b

a, bb a

a

0 1 2 3

FIGURE 9. Words that contain the patternabb are recognized by a4–state automaton
with initial stateq0 and final stateq3.

The following equivalence theorem is briefly discussed in the Appendix (see AP-
PENDIX A: Regular languages, p. 622).

Equivalence theorem (Kleene–Rabin–Scott). A language isS–regular
(specification regular) if and only if it isA–regular (automaton regular).

These two equivalent notions also coincide with the notion of regularity in formal
language theory (defined there by means of regular expressions and nondeterministic
finite automata [3, 113]). As already pointed out, the equivalence is non-trivial:it
is given by an algorithm that transforms one formalism into the other, but does not
transparently preserve combinatorial structure (e.g., insome cases, an exponential
blow up in the size of descriptions is involved). For this reason, we have opted to
develop both notions ofS-regularity andA-regularity in an independent way.

We next examine the way generating functions can be obtainedfrom a determin-
istic automaton. The process was first discovered in the late1950’s by Chomsky and
Schützenberger [74].

PROPOSITION I.3. Let G be a deterministic finite automaton with state setQ =
{q0, . . . , qs}, initial stateq0, and set of final statesQ = {qi1 , . . . , qif

}. The generat-
ing function of the languageL of all words accepted by the automaton is a rational
function that is determined under matrix form as

L(z) = u(I − zT )−1v.

There the transition matrixT is defined by

Ti,j = card {α ∈ A such that an edge(qi, qj) is labelled byα} ;

the row vectoru is the vector(1, 0, 0, . . . , 0) and the column vectorv = (v0, . . . , vs)
t

is such that6 vj = [[qj ∈ Q]].

In particular, by Cramer’s rule, the OGF of a regular language is the quotient of two
sparse determinants whose structure directly reflects the automaton transitions.
PROOF. For j ∈ {0, . . . , s}, introduce the class (language)Lj of all wordsw such
that the automaton, when started in stateqj , terminates in one of the final states after

6It proves convenient at this stage to introduce Iverson’s bracket notation: for a predicateP , the
variable[[P ]] has value 1 ifP is true and 0 otherwise.
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having readw. The following relation holds for anyj:

(43) Lj
∼= ∆j +

(
∑

α∈A
{α}L(qj◦α)

)
;

there∆j is the class{ǫ} formed of the word of length 0 ifqj is final and the empty
set (∅) otherwise; the notation(qj ◦ α) designates the state reached in one step from
stateqj upon reading letterα. The justification is simple: a languageLj contains the
word of length 0 only if the corresponding stateqj is final; a word of length≥ 1 that
is accepted starting from stateqj has a first letterα followed by a word that must lead
to an accepting state when starting from stateqj ◦ α.

The translation of (43) is then immediate:

(44) Lj(z) = [[qj ∈ Q]] + z
∑

α∈A
L(qj◦α)(z).

The collection of all the equations asj varies forms a linear system: with L(z) the
column vector(L0(z), . . . , Ls(z)), one has

L(z) = v + zT L(z),

where v andT are as described in the statement. The result follows by matrix inversion
upon observing thatL(z) ≡ L0(z). �

The patternabb. Consider the automaton recognizing the patternabb as given in
Figure 9. The languagesLj (whereLj is the set of accepted words when starting from
stateqj) are connected by the system of equations

L0 = aL1 + bL0L1 = aL1 + bL2L2 = aL1 + bL3L3 = aL3 + bL3 + ǫ,

which directly reflects the graph structure of the automaton. This gives rise to a set of
equations for the associated OGFs

L0 = zL1 + zL0
L1 = zL1 + zL2
L2 = zL1 + zL3
L3 = zL3 + zL3 + 1.

Solving the system, we find the OGF of all words containing thepatternabb: it is
L0(z) since the initial state of the automaton isq0, and

(45) L0(z) =
z3

(1 − z)(1 − 2z)(1 − z − z2)
.

The partial fraction decomposition

L0(z) =
1

1 − 2z
− 2 + z

1 − z − z2
+

1

1 − z
,

then yields
L0,n = 2n − Fn+3 +1,

with Fn a Fibonacci number. In particular the number of words of length n that do
not containabb is Fn+3 −1, a quantity that grows at an exponential rate ofϕn, with
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ϕ = (1 +
√

5)/2 the golden ratio. Thus, all but an exponentially vanishing proportion
of the strings of lengthn contain the given patternabb, a fact that was otherwise to
be expected on probabilistic grounds. (For instance, from Note 29, a random word
contains a large number, about∼ n/8, of occurrences of the patternabb.)

� 27. Regular specification for patternabb. The patternabb is simple enough that one can
come up with an equivalent regular expression describingL0, whose existence is otherwise
predicted by the Kleene-Rabin-Scott Theorem. An acceptingpath in the automaton of Figure 9
loops around state 0 with a sequence ofb, then reads ana, loops around state 1 with a sequence
of a’s and moves to state 2 upon reading ab; then there should be letters making the automaton
passs through states 1-2-1-2-· · · -1-2 and finally ab followed by an arbitrary sequence ofa’s
andb’s at state 3. This corresponds to the specification

L0 = SEQ(b) aSEQ(a)b SEQ(aSEQ(a)b) b SEQ(a+ b)

=⇒ L0(z) = z3

(1−z)2(1− z2

1−z
)(1−2z)

,

which gives back a form equivalent to (45). �

EXAMPLE 12. Words containing or excluding a pattern.Fix an arbitrary patternp =
p1p2 · · · pk and letL be the language of words containingat leastone occurrence ofp as a
factor. Automata theory implies that the set of words containing a pattern as a factor isA–
regular, hence admits a rational generating function. Indeed, the construction given forp = abb
generalizes in an easy manner: there exists a deterministicfinite automaton withk + 1 states
that recognizesL, the states memorizing at each stage the largest prefix of thepatternp just
seen. As a consequence:The OGF of the language of words containing a given factor pattern
of lengthk is a rational function of degree at mostk + 1. (The corresponding automaton is in
fact known as a Knuth–Morris–Pratt automaton [248].) The automaton construction however
provides the OGFL(z) in determinantal form, so that the relation between this rational form
and the structure of the pattern is not transparent.

Autocorrelations. An explicit construction due to Guibas and Odlyzko [200] nicely cir-
cumvents this problem. It is based on an “equational” specification that yields an alternative
linear system. The fundamental notion is that of anautocorrelation vector. For a givenp, this
vector of bitsc = (c0, . . . , ck−1) is most conveniently defined in terms of Iverson’s bracket as

ci = [[pi+1pi+2 · · · pk = p1p2 · · · pk−i]].

In other words, the bitci is determined by shiftingp right by i positions and putting a 1 if
the remaining letters match the originalp. Graphically,ci = 1 if the two framed factors ofp
coincide in

p ≡ p1 · · · pi pi+1 · · · pk

p1 · · · pk−i pk−i+1 · · · pk ≡ p.

For instance, withp = aabbaa, one has
a a b b a a_______________________
a a b b a a 1

a a b b a a 0
a a b b a a 0

a a b b a a 0
a a b b a a 1

a a b b a a 1

The autocorrelation is thenc = (1, 0, 0, 0, 1, 1). Theautocorrelation polynomialis defined as

c(z) :=

k−1X

j=0

cjz
j .
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For the example pattern, this givesc(z) = 1 + z4 + z5.
Let S be the language of words withno occurrence ofp andT the language of words that

end withp but have no other occurrence ofp. First, by appending a letter to a word ofS , one
finds a nonempty word either inS or T , so that

(46) S + T = {ǫ}+ S × A.
Next, appending a copy of the wordp to a word inS may only give words that containp at or
“near” the end. Precisely, the decomposition based on the leftmost occurrence ofp in Sp is

(47) S × {p} = T ×
X

ci 6=0

{pk−i+1pk−i+2 · · · pk},

corresponding to the configurations

S //////p//////
=

//////p//////
| {z }

T

pi+1 · · · pk

The translation of the system (46), (47) into OGFs then givesa system of two equations in the
two unknownS, T ,

S + T = 1 +mzS, S · zk = Tc(z),

which is then readily solved.

PROPOSITIONI.4. The OGF of wordsnot containing the patternp as a factor is

(48) S(z) =
c(z)

zk + (1−mz)c(z) ,

wherem is the alphabet cardinality,k = |p| the pattern length, andc(z) the autocorrelation
polynomial ofp.

A bivariate generating function based on the autocorrelation polynomial is derived in
Chapter III, from which is deduced the existence of a limiting Gaussian law for the number
of occurrences of any pattern in Chapter IX. �

� 28. At least once.The GFs of words containing at least once the pattern (anywhere) and
containing it only once at the end are

L(z) =
zk

(1−mz)(zk + (1−mz)c(z)) , T (z) =
zk

zk + (1−mz)c(z) ,

respectively. �

� 29. Expected number of occurrences of a pattern.For themeannumber of occurrences
of a factor pattern, calculations similar to those employedfor the number of occurrences of
a subsequence (even simpler) can be based on regular specifications. All the occurrences
p = p1p2 · · · pk as a factor are described by

bO = SEQ(A) (p1p2 · · · pk) SEQ(A), =⇒ bO(z) =
zk

(1−mz)2 .

Consequently, the expected number of such contiguous occurrences satisfies

(49) bΩn = m−k(n− k + 1) ∼ n

mk
.

Thus, the mean number of occurrences is proportional ton. �
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� 30.Waiting times in strings.LetL ⊂ SEQ{a, b} be a language andS = {a, b}∞ be the set
of infinite strings with the product probability induced byP(a) = P(b) = 1

2
. The probability

that a random stringω ∈ S starts with a word ofL is bL(1/2), wherebL(z) is the OGF of the
“prefix language” ofL, that is, the set of wordsw ∈ L that have no strict prefix belonging toL.
The GFbL(z) serves to express the expected time at which a word inL is first encountered: this
is 1

2
bL′( 1

2
). For a regular language, this quantity must be a rational number. �

� 31.A probabilistic paradox on strings.In a random infinite sequence, a patternp of lengthk
first occurs on average at time2kc(1/2), wherec(z) is the correlation polynomial. For instance,
the patternp = abb tends to occur “sooner” (at average position8) thanp′ = aaa (at average
position14). See [200] for a thorough discussion. Here are for instance the epochsat whichp
andp′ are first found in a sample of 20 runs

p : 3, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8, 9, 9, 10, 11, 14, 15, 15, 16, 21

p′ : 3, 4, 8, 8, 9, 10, 11, 11, 11, 12, 17, 22, 23, 27, 27, 27, 44, 47, 52, 52.

On the other hand, patterns of the same length have the same expected number of occurrences,
which is puzzling. The catch is that, due to overlaps ofp′ with itself, occurrences ofp′ tend to
occur in clusters, but, then, clusters tend to be separated by wider gaps than forp; eventually,
there is no contradiction. �

� 32. Borges’s Theorem.Take any fixed setΠ of finite patterns. A random text of lengthn
contains all the patterns of the setΠ (as factors) with probability tending to 1 exponentially
fast asn → ∞. (Reason: the rational functionsS(z/2) with S(z) as in (48) have no pole
in |z| ≤ 1; see also Chapters IV, V.)

Note: similar properties hold for many random combinatorial structures They are some-
times called “Borges’s Theorem” as a tribute to the famous Argentinian writer Jorge Luis Borges
(1899–1986) who, in his essay“The Library of Babel”, describes a library so huge as to contain:
“Everything: the minutely detailed history of the future, the archangels’ autobiographies, the
faithful catalogues of the Library, thousands and thousands of false catalogues, the demonstra-
tion of the fallacy of those catalogues, the demonstration of the fallacy of the true catalogue, the
Gnostic gospel of Basilides, the commentary on that gospel,the commentary on the commen-
tary on that gospel, the true story of your death, the translation of every book in all languages,
the interpolations of every book in all books.” �

In general, automata are useful in establishinga priori the rational character of
generating functions. They are also surrounded by interesting analytic properties
(e.g., Perron-Frobenius theory, Chapter IV, that characterizes the dominant poles)
and by asymptotic probability distributions of associatedparameters that are normally
Gaussian. They are most conveniently used for proving existence theorems, then sup-
plemented when possible by regular specifications, which are likely to lead to more
tractable expressions.

� 33. Variable length codes. A finite setF ⊂ W, whereW = SEQ(A) is called acodeif
any word ofW decomposes in at most one manner into factors that belong toF (with repeti-
tions allowed). For instanceF = {a, ab, bb} is a code andaaabbb = a|a|ab|bb has a unique
decomposition;F ′ = {a, aa, b} is not a code sinceaaa = a|aa = aa|a = a|a|a. The OGF of
the setSF of all words that admit a decomposition into factors all inF is a computable rational
function, irrespective of whetherF is a code. (Hint: use an “Aho–Corasick” automaton [4].) A
finite setF is a code iffSF (z) = (1 − F (z))−1. Consequently, the property of being a code
can be decided in polynomial time using linear algebra. The book by Berstel and Perrin [43]
develops systematically the theory of such variable-length codes. �
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αβ γ δ

αβ | γ δ

α γ | β δ

α δ |β γ

α | β γ δ

β |αγ δ

γ |αβ δ

δ |αβ γ

α | β | γ δ

α | γ |β δ

α |δ | β γ

β | γ |α δ

β | δ |αγ

γ | δ |αβ

α | β | γ | δ

FIGURE 10. The 15 ways of partitioning a four-element domain into blocks correspond
to S(1)

4 = 1, S
(2)
4 = 7, S

(3)
4 = 6, S

(4)
4 = 1.

I. 4.3. Related constructions.Words can, at least in principle, encode any com-
binatorial structure. We detail here one example that demonstrates the usefulness of
such encodings: it is relative to set partitions and Stirling numbers. The point to be
made is that some amount of “combinatorial preprocessing” is sometimes necessary
in order to bring combinatorial structures into the framework of symbolic methods.

Set partitions and Stirling partition numbers.A set partitionis a partition of a
finite domain into a certain number of nonempty sets, also called blocks. For instance,
if the domain isD = {α, β, γ, δ}, there are 15 ways to partition it (Figure 10). Let

S(r)
n denote the collection of all partitions of the set[1 . . n] into r non–empty blocks

andS(r)
n = card(S(r)

n ) the corresponding cardinality. The basic object under consid-
eration here is aset partition(not to be confused with integer partitions considered
earlier).

It is possible to find an encoding of partitions inS(r)
n of ann–set intor blocks by

words over ar letter alphabet,B = {b1, b2, . . . , br} as follows. Consider a set partition
̟ that is formed ofr blocks. Identify each block by its smallest element called the
block leader; then sort the block leaders into increasing order. Define the index of
a block as the rank of its leader amongst all ther leaders, with ranks conventionally
starting at1. Scan the elements1 ton in order and produce sequentiallyn letters from
the alphabetB: for an element belonging to the block of indexj, produce the letterbj.

For instance ton = 6, r = 3, the set partition̟ = {{6, 4}, {5, 1, 2}, {3, 7, 8}},
is reorganized by putting leaders in first position of the blocks and sorting them,

̟ = {
b1︷ ︸︸ ︷

{1, 2, 5},
b2︷ ︸︸ ︷

{3, 7, 8},
b3︷ ︸︸ ︷

{4, 6}},
so that the encoding is (

1 2 3 4 5 6 7 8
b1 b1 b2 b3 b1 b3 b2 b2

)
.

In this way, a partition is encoded as a word of lengthn overB with the additional
properties that: (i) allk letters occur; (ii) the first occurrence ofb1 precedes the first
occurrence ofb2 which itself precedes the first occurrence ofb3, etc. ThusS(r)

n is
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mapped into words of lengthn in the language

b1 SEQ(b1) · b2 SEQ(b1 + b2) · b3 SEQ(b1 + b2 + b3) · · · bk SEQ(b1 + b2 + · · ·+ br).

Graphically, this correspondence can be rendered by an “irregular staircase” represen-
tation, like

4 − 6 − −
3 − − − 7 8

1 2 − − 5 − − −
where the staircase has lengthn and heightr, each column contains exactly one ele-
ment, each row corresponds to a class in the partition.

The language specification immediately gives the OGF

S(r)(z) =
zk

(1 − z)(1 − 2z)(1 − 3z) · · · (1 − rz)
.

The partial fraction expansion ofS(r)(z) is readily computed,

S(r)(z) =
1

r!

r∑

j=0

(
r

j

)
(−1)r−j

1 − jz
, so that S(r)

n =
1

r!

r∑

j=1

(−1)r−j

(
r

j

)
jn.

In particular, one has

S(1)
n = 1; S(2)

n =
1

2!
(2n − 2); S(3)

n =
1

3!
(3n − 3 · 2n + 3).

These numbers are known as the Stirling numbers of the secondkind, or better, as
the Stirling partition numbers, and theS(r)

n are nowadays usually denoted by
{

n
r

}
;

see APPENDIX A: Stirling numbers, p. 624.
The counting of set partitions could eventually be done successfully thanks an

encoding into words, and the corresponding language forms aconstructible class of
combinatorial structures (actually a regular language). In the next chapter, we shall
examine another approach to the counting of set partitions that is based on labelled
structures and exponential generating functions.

Circular words (necklaces).Let A be a binary alphabet, viewed as comprised
of beads of two distinct colours. The class ofcircular wordsor necklaces(p. 18 and
Equation (17)) is defined by a CYC composition:

N = CYC(A) =⇒ N(z) =

∞∑

k=1

ϕ(k)

k
log

1

1 − 2zk
.

The series starts as (EISA000031)

N(z) = 2z + 3z2 + 4z3 + 6z4 + 8z5 + 14z6 + 20z7 + 36z8 + 60z9 + · · · ,
and the OGF can be expanded:

(50) Nn =
1

n

∑

k | n

ϕ(k)2n/k.

It turns out thatNn = Dn + 1 whereDn is the wheel count, p. 45. [The connection is
easily explained combinatorially: start from a wheel and repaint in white all the nodes
that are not on the basic circle; then fold them onto the circle.] The same argument
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proves that the number of necklaces over anm-ary alphabet is obtained by replacing2
bym in (50).

� 34.Finite languages.Viewed as a combinatorial object, afinite languageλ is a set of distinct
words, with size being the total number of letters of all words inλ. For a binary alphabet, the
class of all finite languages is thus

FL = PSET(SEQ≥1(A)) =⇒ FL(z) = exp

0
@X

k≥1

(−1)k−1 2zk

1− 2zk

1
A .

The series starts as (EISA102866) 1+2z+5z2+16z3+42z4+116z5+310z6+816z7+· · · .
�

I. 5. Tree structures

This section is concerned with basic tree enumerations. Trees are, as we saw al-
ready, the prototypical recursive structure. There, recursive specifications normally
lead to nonlinear equations (and systems of such equations)over generating func-
tions. The Lagrange inversion theorem is useful in solving the simplest category of
problems. The functional equations furnished by the symbolic method are then con-
veniently exploited by the asymptotic theory of Chapters VIand VII. A certain type
of analytic behaviour appears to be universal in trees, namely a √ –singularity; ac-
cordingly, as we shall see, most trees families occurring inthe combinatorial world
have counting sequences obeying an asymptotic formC Ann−3/2 that widely extends
what we know already for Catalan numbers (p. 36).

I. 5.1. Plane trees.Trees are commonly defined as undirected acyclic connected
graphs. In additions, the trees considered in this book are,unless specified otherwise,
rooted. In this subsection, we focus attention onplane trees, also sometimes called
ordered trees, where subtrees dangling from a node are ordered between themselves.
Alternatively, these trees may be viewed as abstract graph structures accompanied by
an embedding into the plane (see APPENDIXA: Tree concepts, p. 625 and[244, §2.3]).
They are precisely described in terms of a sequence construction.

First, consider the classG of general plane trees where all node degrees are al-
lowed (this repeats p. 33): we have

(51) G = Z × SEQ(G) =⇒ G(z) =
z

1 −G(z)
,

and, accordingly,G(z) =
1 −

√
1 − 4z

2
, so that the number of general trees of sizen

is a Catalan number:

Gn = Cn−1 =
1

n

(
2n− 2

n− 1

)
=

(2n− 2)!

n! (n− 1)!
.

Many classes of trees defined by all sorts of constraints on properties of nodes
appear to be of interest in combinatorics and in related areas like logic and computer
science. LetΩ be a subset of the integers that contains 0. Define the classT Ω of
Ω-restricted trees as formed of trees such that the outdegrees of nodes are constrained
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to lie in Ω. In what follows, an essential rôle is played by a characteristic function that
encapsulatesΩ,

φ(u) :=
∑

ω∈Ω

uω.

Thus,Ω = {0, 2} determines binary trees, where each node has either 0 or 2 de-
scendants, andφ(u) = 1 + u2; the choicesΩ = {0, 1, 2} andΩ = {0, 3} determine
respectively unary-binary trees (φ(u) = 1+u+u2) and ternary trees (φ(u) = 1+u3);
the case of general trees corresponds toΩ = Z≥0 andφ(u) = (1 − u)−1.

PROPOSITION I.5. The ordinary generating functionTΩ(z) of the classT Ω of Ω-
restricted trees is determined implicitly by the equation

TΩ(z) = z φ(TΩ(z)),

whereφ is the characteristic ofΩ, namelyφ(u) :=
∑

ω∈Ω u
ω. The tree counts are

given by

(52) TΩ
n ≡ [zn]TΩ(z) =

1

n
[un−1]φ(u)n.

PROOF. Clearly, forΩ-restricted sequences, we have

A = SEQΩ(B) A(z) = φ(B(z)),

so

T Ω = Z × SEQΩ(T ) =⇒ T (z) = zφ(T (z)).

This shows thatT ≡ TΩ is related toz by functional inversion:

z =
T

φ(T )
.

The Lagrange Inversion Theorem precisely provides expressions for such a case (see AP-
PENDIX A: Lagrange Inversion, p. 621):

Lagrange Inversion Theorem.The coefficients of an inverse function and
of all its powers are determined by coefficients of powers of the direct func-
tion: if z = T/φ(T ), then

[zn]T (z) =
1

n
[wn−1]φ(w)n, [zn]T (z)k =

k

n
[wn−k]φ(w)n.

The theorem immediately implies (52). �

The statement extends trivially to the case whereΩ is a multiset of integers, that
is, a set of integers with repetitions allowed. For instance, Ω = {0, 1, 1, 3} corre-
sponds to unary-ternary trees with two types of unary nodes,say, having one of two
colours; in this case, the characteristic isφ(u) = u0 + 2u1 + u3. The theorem gives
back the enumeration of general trees, whereφ(u) = (1 − u)−1, by way of the bino-
mial theorem applied to(1−u)−n. In general, it implies that, wheneverΩ comprisesr
elements,Ω = {ω1, . . . , ωr}, the tree counts are expressed as an(r− 1)-fold summa-
tion of binomial coefficients (use the multinomial expansion). An important special
case detailed below is whenΩ has only two elements.
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� 35. Forests. Consider orderedk-forests of trees defined byF = SEQk{T }. The Bürmann
form of Lagrange inversion implies

[zn]F (z) ≡ [zn]T (z)k =
k

n
[un−k] φ(u)n.

In particular, one has for forests of general trees (φ(u) = (1− u)−1):

[zn]

„
1−
√

1− 4z

2

«k

=
k

n

 
2n− k − 1

n− 1

!
;

the coefficients are also known as “ballot numbers”. �

EXAMPLE 13. “Regular” ( t-ary) trees. A tree is said to bet-regular ort-ary if Ω consists
only of the elements{0, t}. In other words, all internal nodes have degreet exactly, hence the
name (Figure 11). LetA := T {0,t}. In an element ofA, a node is either terminal or it has
exactlyt children. In this case, the characteristic isφ(u) = 1 + ut and the binomial theorem
combined with the Lagrange inversion formula gives

An =
1

n
[un−1] (1 + ut)n

=
1

n

 
n

n−1
t

!
providedn ≡ 1 mod t.

As the formula shows, only trees of total size of the formn = tν + 1 exist (a well-known fact
otherwise easily checked by induction), and

(53) Atν+1 =
1

tν + 1

 
tν + 1

ν

!
=

1

(t− 1)ν + 1

 
tν

ν

!
.

A particular rôle is played by 2-regular trees known asbinary trees. Then a form equivalent
to (53) reads:

The number of plane binary trees having a total of2ν+1 nodes (i.e.,ν binary nodes
andν + 1 external nodes) is the Catalan numberCν = 1

ν+1

`
2ν
ν

´
.

In this book, we shall useB to denote the class of binary trees. Size will be freely measured,
depending on context and convenience, by recording internal, external, or all nodes.

There is a variant of the determination of (53) that avoids congruence restrictions. LetA
be the class oft-ary trees and define the classbA of “pruned” trees as trees ofA deprived of
all their external nodes. The trees inbA now have nodes that are of degree at mostt. In order
to make bA bijectively equivalent toA , it suffices to regard trees ofbA as having

`
t
j

´
possible

types of nodes of degreej for anyj ∈ [0, t]: each node type inbA plainly encodes which of the
original t − j subtrees have been pruned. The equations above immediatelygeneralize to the
case of anΩ with multiplicities. One findsbφ(u) = (1 + u)t and bA(z) = zbφ( bA(z)), so that, by
Lagrange inversion,

bAν =
1

ν

 
tν

ν − 1

!
,

yet another equivalent form of (53), since, by basic combinatorics, bAν = Atν+1. �
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FIGURE 11. A general tree ofG51 (left) and a binary tree ofT {0,2}
51 (right) drawn

uniformly at random amongst theC50 andC25 possible trees respectively, withCn =
1

n+1

`
2n
n

´
thenth Catalan number.

� 36. Motzkin numbers.Let M(z) be the generating function for unary-binary trees (Ω =
{0, 1, 2}):

M(z) = z(1 +M(z) +M(z)2) =⇒ M(z) =
1− z −

√
1− 2z − 3z2

2z
.

One hasM(z) = z + z2 + 2 z3 + 4 z4 + 9 z5 + 21 z6 + 51 z7 + · · · . The coefficients
Mn = [zn]M(z) are given in Lagrange form as

Mn =
1

n

X

k

 
n

k

! 
n− k
k − 1

!
,

and called Motzkin numbers (EISA001006). �

� 37. Yet another variant oft-ary trees.Let eA be the class oft-ary trees, but with size now
defined as the number of external nodes (leaves). Then, one has

eA = Z + SEQt( eA).

The binomial form ofeAn follows from Lagrange inversion, sinceeA = z/(1− eAt−1). �

EXAMPLE 14. Hipparchus of Rhodes and Schröder.In 1870, the German mathematician Ernst
Schröder (1841–1902) published a paper entitledVier combinatorische Probleme. The paper
had to do with the number of terms that can be built out ofn variables using nonassociative
operations. In particular, the second of his four problems asks for the number of ways a string
of n identical letters, sayx, can be “bracketted”. The rule is best stated recursively:x itself is a
bracketting and ifσ1, σ2, . . . , σk with k ≥ 2 are bracketted expressions, then thek-ary product
(σ1)(σ2) · · · (σk) is a bracketting.

Let S denote the class of all brackettings, where size is the number of variables. Then, the
recursive definition is readily translated into the formal specification

(54) S = Z + SEQ≥2(S), Z = {x}.
To each bracketting of sizen is associated a tree whose external nodes contain the variable x
(and determine size), with internal nodes corresponding tobrackettings and having degree at
least 2 (while not contributing to size). The functional equation satisfied by the OGF is then

(55) S(z) = z +
S(z)2

1− S(z)
.
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(x1) ∧ (x2 ∨ (x3 ∧ x4 ∧ x5) ∨ x6) ∧ ((x7 ∧ x8) ∨ (x9 ∧ x10))

∧

x1 ∨ ∨

x2 ∧ x6

x3 x4 x5

∧ ∧

x7 x8 x9 x10

- x1 x3 x4 x5

x2

x6

x7 x8

x9 x10

-

FIGURE 12. An and–or positive proposition of the conjunctive type (top), its associated
tree (middle), and an equivalent planar series-parallel network of the serial type (bottom).

This is nota priori of the type corresponding to Proposition I.5 becausenotall nodes contribute
to size in this particular application. However, the quadratic equation induced by (55) can be
solved, giving

S(z) =
1

4

“
1 + z −

p
1− 6z + z2

”

= z + z2 + 3z3 + 11z4 + 45z5 + 197z6 + 903z7 + 4279z8 + 20793z9

+ 103049z10 + 518859z11 + · · · ,
where the coefficients areEISA001003. (These numbers also count series-parallel networks of
a specified type (e.g., serial in Figure 12, bottom), where placement in the plane matters.)

In an instructive paper, Stanley [363] discusses a page of Plutarch’sMoralia where there
appears the following statement:

“Chrysippus says that the number of compound propositions that can be made from
only ten simple propositions exceeds a million. (Hipparchus, to be sure, refuted this
by showing that on the affirmative side there are 103,049compound statements, and
on the negative side 310,952.)”

It is notable that the tenth number of Hipparchus of Rhodes7 (c. 190–120B.C.) is precisely
S10 = 103, 049. This is, for instance, the number of logical formulæ that can be formed from
ten boolean variablesx1, . . . , x10 (used once each and in this order) using and–or connectives in
alternation (no “negation”), upon starting from the top in some conventional fashion (e.g, with
an and-clause); see Figure 128. Hipparchus was naturally not cognizant of generating functions,

7This was first observed by David Hough in 1994; see [363]. In [203], Habsiegeret al. further note
that 1

2
(S10 + S11) = 310, 954, and suggest a related interpretation (based on negated variables) for the

other count given by Hipparchus.
8Any functional term admits a unique tree representation. Here, as soon as the root type has been

fixed (e.g., an∧ connective), the others are determined by level parity. Theconstraint of node degrees≥ 2
in the tree means that no superfluous connectives are used. Finally, any monotone boolean expression can
be represented by a series-parallel network: thexj are viewed as switches with thetrue andfalsevalues
being associated with closed and open circuits, respectively.
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Tree variety 1 2 3 4 5 6 7 8 n +∞

Plane gen. G = Z × SEQ(G) 1 1 2 5 14 42 132 4291
n

`
2n−2
n−1

´
∼ 4n−1/

√
πn3

Plane bin. T = Z + SEQ2(T ) 1 1 2 5 14 42 132 4291
n

`
2n−2
n−1

´
∼ 4n−1/

√
πn3

Unord. gen. H = Z × MSET(H) 1 1 2 4 9 20 48 115 − ∼ λ · βn/n3/2

Unord. bin. U = Z + MSET2(U) 1 1 1 2 3 6 11 23 − λ2 · βn
2 /n

3/2

FIGURE 13. The number of rooted trees of type plane/unordered and general/binary for
n = 1 . . 8 and the corresponding asymptotic forms. There,λ

.
= 0.43992, β

.
= 2.95576

for unordered general (EISA000081); λ2
.
= 0.31877, β2

.
= 2.48325 for unordered binary.

For binary trees (EISA001190), size is by, convention here, the number of external nodes.

but with the technology of the time (and a rather remarkable mind!), he would still be able to
discover a recurrence equivalent to (55),

(56) Sn = [[n ≥ 2]]

0
@ X

n1+···+nk=n

Sn1Sn2 · · ·Snk

1
A+ [[n = 1]],

where the sum has only 42 essentially different terms forn = 10 (see [363] for a discussion),
and finally determineS10. �

� 38.The Lagrangean form of Schröder’s GF.The generating functionS(z) admits the form

S(z) = zφ(S(z)) where φ(y) =
1− y
1− 2y

is the OGF of compositions. Consequently, one has

Sn =
1

n
[un−1]

„
1− u
1− 2u

«n

=
(−1)n−1

n

X

k

(−2)k

 
n

k + 1

! 
n+ k − 1

k

!

=
1

n

n−2X

k=0

 
2n− k − 2

n− 1

! 
n− 2

k

!
.

Is there a direct combinatorial relation to compositions? �

� 39. Faster determination of Schröder numbers.By forming a differential equation satisfied
by S(z) and extracting coefficients, one obtains a recurrence

(n+ 2)Sn+2 − 3(2n+ 1)Sn+1 + (n− 1)Sn = 0, n ≥ 1,

that entails a fast determination (in linear time) of theSn. In contrast, Hipparchus’s recurrence
implies an algorithm of complexityeO(

√
n) in the number of arithmetic operations involved.�

I. 5.2. Nonplane tree. An unordered tree, also callednonplanetree, is a tree
in the general graph–theoretic sense, so that there is no order distinction between
subtrees emanating from a common node. The unordered trees considered here are
furthermore rooted, meaning that one of the nodes is distinguished as the root. Ac-
cordingly, in the language of constructible structures, a rootedunorderedtree is a root
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node linked to amultisetof trees. Thus, the classH of all unordered trees, admits the
recursive specification:

H = Z × MSET(H) =⇒





H(z) = z
∞∏

m=1

(1 − zm)−Hm

= z exp
(
H(z) +

1

2
H(z2) +

1

3
H(z3) + · · ·

)
.

The first form of the OGF was given by Cayley in 1857 [48, p. 43]; it does not ad-
mit a closed form solution, though the equation permits one to determine all theHn

recurrently (EISA000081)

H(z) = z + z2 + 2z3 + 4z4 + 9z5 + 20z6 + 48z7 + 115z8 + 286z9 + · · · .
In addition, the local analysis of the singularities ofH(z) yields abona fideasymptotic
expansion forHn, a fact first discovered by Pólya [320] who proved that

(57) Hn ∼ λ · βn

n3/2
,

for some positive constantsλ
.
= 0.43992 andβ

.
= 2.95576 (see Chapter VII).

� 40. Fast determination of the Cayley–Pólya numbers.Logarithmic differentiation of the
equation satisfied byH(z) provides for theHn a recurrence that permits one to computeHn

in time polynomial inn. (Note: a similar technique applies to the partition numbers Pn; see
p. 39.) �

The enumeration of the class of trees defined by an arbitrary setΩ of nodes degree
immediately results from the translation of sets of fixed cardinality.

PROPOSITIONI.6. LetΩ ⊂ N be a finite set of integers containing 0. The OGFU(z)
of nonplane trees with degrees constrained to lie inΩ satisfies a functional equation
of the form

(58) U(z) = zΦ(U(z), U(z2), U(z3), . . .),

for some computable polynomialΦ.

PROOF. The class of trees satisfies the combinatorial equation,

U = Z × MSETΩ(U)

(
MSETΩ(U) ≡

∑

ω∈Ω

MSETω(U)

)
,

where the multiset construction reflects non-planarity, since subtrees stemming from
a node can be freely rearranged between themselves and may appear repeated. Theo-
rem I.3 (p. 77) provides the translation of MSETk(U):

Φ(U(z), U(z2), U(z3), . . .) =
∑

ω∈Ω

[uω] exp

(
u

1
U(z) +

u2

2
U(z2) + · · ·

)
.

The result follows. �

Once more, there are no explicit formulæ but only functionalequations implicitly
determining the generating functions. However, as we shallsee in Chapter VII, the
equations may be used to analyse the dominant singularity ofU(z). It is found that a
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“universal” law governs the singularities of simple tree generating functions that are
of the type

√
1 − z/ρ, corresponding to a general asymptotic scheme (see Figure 13),

(59) UΩ
n ∼ λΩ

(βΩ)n

√
n3

.

Many of these questions have their origin in combinatorial chemistry, starting with
Cayley in the 19th century [48, Ch. 4]. Pólya reexamined these questions, and in
his important paper published in 1937 [318] he developed at the same time a general
theory of combinatorial enumerations under group actions and of asymptotics methods
giving rise to estimates like (59). See the book by Harary andPalmer [206] for more
on this topic or Read’s edition of Pólya’s paper [320].

� 41. Binary nonplane trees.Unordered binary trees with size measured by the number of
external nodes are described by the equationU = Z + MSET2(U). The functional equation
determiningU(z) is

(60) U(z) = z +
1

2
U(z)2 +

1

2
U(z2); U(z) = z + z2 + z3 + 2z4 + 3z5 + · · · .

The asymptotic analysis of the coefficients (EISA001190) was carried out by Otter [306] who
established an estimate of type (59). (The values of the constants are summarized in Figure 13.)
The quantityUn is also the number of structurally distinct products ofn elements under a
commutative nonassociative binary operation. �

� 42. Hierarchies.Define the classK of hierarchies to be trees without nodes of outdegree 1
and size determined by the number of external nodes. The corresponding OGF satisfies (Cayley
1857, see [48, p.43])

K(z) =
1

2
z +

1

2

»
exp(K(z) +

1

2
K(z2) + · · · )− 1

–
,

from which the first values are found (EISA000669)

K(z) = z + z2 + 2z3 + 5z4 + 12z5 + 33z6 + 90z7 + 261z8 + 766z9 + 2312z10 + · · · .
These numbers also enumerate hierarchies in statistical classification theory [387]. They are the
non-planar analogues of the Hipparchus–Schröder’s numbers on p. 64. �

� 43.Nonplane series-parallel networks.Consider the classSP of series-parallel networks as
previously considered in relation to Hipparchus of Rhodes’example, p. 65, but ignoring planar
embeddings. Thus, all parallel arrangements of the (serial) networkss1, . . . , sk are considered
equivalent, while the linear arrangement in each serial network matters. For instance, forn =
2, 3:

-o--o- |-o-| -o--o--o- |-o-| |-o-o-| -o--|-o-|- -|-o-|--o -
|-o-| |-o-| |--o--| |-o-| |-o-|

|-o-|

Thus,SP2 = 2 andSP3 = 5. This is modelled by the grammar:

S = Z + SEQ≥2(P), P = Z + MSET≥2(S),

and, avoiding to count networks of one element twice,

SP (z) = S(z)+P (z)−z = z+2z2+5z3 +15z4 +48z5 +167z6 +602z7 +2256z8 + · · · .
This isEISA003430. The objects are usually described as networks of electric resistors. �
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I. 5.3. Related constructions.Trees underlie recursive structures of all sorts. A
first illustration is provided by the fact that the Catalan numbers,Cn = 1

n+1

(
2n
n

)

count general trees (G) of sizen + 1, binary trees (B) of sizen (if size is defined as
the number of internal nodes), as well as triangulations (T ) comprised ofn triangles.
The combinatorialist John Riordan even coined the nameCatalan domainfor the area
within combinatorics that deals with objects enumerated byCatalan numbers, and
Stanley’s book contains an exercise [364, Ex. 6.19] whose statement alone spans ten
full pages, with a lists of 66 types of objects(!) belonging to the Catalan domain. We
shall illustrate the importance of Catalan numbers by describing a few fundamental
correspondences that explain the occurrence of Catalan numbers in several areas of
combinatorics.

Rotation of trees.The combinatorial isomorphism relatingG andB (albeit with
a shift in size) coincides with a classical technique of computer science [244, §2.3.2].
To wit, a general tree can be represented in such a way that every node has two types
of links, one pointing to the leftmost child, the other to thenext sibling in left-to-right
order. Under this representation, if the root of the generaltree is left aside, then every
node is linked to two other (possibly empty) subtrees. In other words, general trees
with n nodes are equinumerous with pruned binary trees withn− 1 nodes:

Gn
∼= Bn−1.

Graphically, this is illustrated as follows:

The rightmost tree is a binary tree drawn in a conventional manner, following a 45◦

tilt. This justifies the name of “rotation correspondence” often given to this transfor-
mation.

Tree decomposition of triangulations.The relation betwen binary treesB and
triangulationsT is equally simple: draw a triangulation; define the root triangle as
the one that contains the edge connecting two designated vertices (for instance, the
vertices numbered 0 and 1); associate to the root triangle the root of a binary tree;
next, associate recursively to the subtriangulation on theleft of the root triangle a left
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subtree; do similarly for the right subtriangulation giving rise to a right subtree.

Under this correspondence, tree nodes correspond to triangle faces, while edges con-
nect adjacent triangles. What this correspondence proves is the combinatorial isomor-
phism

Tn
∼= Bn.

We turn next to another type of objects that are in correspondence with trees.
These can be interpreted as words encoding tree traversals,and interpreted geometri-
cally as paths in the discrete planeZ × Z.

Tree codes and Łukasiewicz words.. Any tree can be traversed starting from
the root, proceeding depth-first (and left-to-right), and backtracking upwards once a
subtree has been completely traversed. For instance, in thetree

(61) τ =

a

b c

d e f g

h i j

the first visits to nodes take place in the following order

a, b, d, h, e, f, c, g, i, j .

(Note: the tagsa, b, . . . added for convenience in order to distinguish nodes have no
special meaning; only the abstract tree shape matters here.) This order is known as
preorderor prefix ordersince a node is preferentially visited before its children.

Given a tree, the listing of the outdegrees of nodes in prefix order will be called
the preorder degree sequence. For the tree of (61), this is

σ = (2, 3, 1, 0, 0, 0, 1, 2, 0, 0).

It is a fact that the degree sequence determines the tree unambiguously. Indeed, given
the degree sequence, the tree is reconstructed step by step,adding nodes one after the
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other at the leftmost available place. Forσ, the first steps are then

+2 +3 +1 +0 +0

Next, if one represents degreej by a “symbol”fj, then the degree sequence becomes
aword over the infinite alphabetF = {f0, f1, . . .}, for instance,

σ ; f2f3f1f0f0f0f1f2f0f0.

This can be interpreted in logical language a denotation fora functional term built out
symbols fromF , wherefj represents a “function” of degreej. The correspondence
even becomes obvious if superfluous parentheses are added atappropriate place to
delimitate scope:

σ ; f2(f3(f1(f0), f0, f0), f1(f2(f0, f0))).

Such codes are known as Łukasiewicz codes9, in recognition of the work of the Polish
logician with that name. Jan Łukasiewicz (1878–1956) introduced them in order to
completely specify thesyntaxof terms in various logical calculi; they prove nowadays
basic in the development of parsers and compilers in computer science.

Finally, a tree code can be rendered as a walk over the discrete latticeZ × Z.
Associate to anyfj (i.e., any node of outdegreej) the displacement(1, j−1) ∈ Z×Z,
and plot the sequence of moves starting from the origin. On the example one finds:

f2 f3 f1 f0 f0 f0 f1 f2 f0 f0

1 2 0 −1 −1 −1 0 1 −1 −1

There, the last line represents the vertical displacements. The resulting paths are
known as Łukasiewicz paths. Such a walk is then characterized by two conditions:
the vertical displacements are in the set{−1, 0, 1, 2, . . .}; all its points, except for the
very last step, lie in the upper half-plane.

By this correspondence, the number of Łukasiewicz paths with n steps is the
shifted Catalan number,1n

(
2n−2
n−1

)
.

9A less dignified name is “Polish prefix notation”. The “reverse Polish notation” is a variant based on
postorder that has been used in calculators since the 1970’s.
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� 44. Conjugacy principle and cycle lemma.Let L be the class of all Łukasiewicz paths.
Define a “relaxed” path as one that starts at level 0, ends at level −1 but is otherwise allowed
arbitrary negative steps; letM be the corresponding class. Then, each relaxed path can be
cut-and-pasted uniquely after its leftmost minimum as described here:

This associates to every relaxed path of lengthν a unique standard path. A bit of combinatorial
reasoning shows that correspondence is 1-to-ν (each element ofL hasexactlyν preimages.)
One thus hasMν = νLν . This correspondence preserves the number of steps of each type
(f0, f1, . . .), so that the number of Łukasiewicz withνj steps of typefj is

1

ν
[x−1uν0

0 uν1
1 · · · ]

`
x−1u0 + u1 + xu2 + x2u3 + · · ·

´ν
=

1

ν

 
ν

ν0, ν1, . . .

!
,

under the necessary condition(−1)ν0 + 0ν1 + 1ν2 + 2ν3 + · · · = −1. This combinatorial
way of obtaining refined Catalan statistics is known as theconjugacy principle[330] or the
cycle lemma[111]. Raney has derived from it a purely combinatorial proof of the Lagrange
inversion formula [330] while Dvoretzky & Motzkin [111] have employed this technique to
solve a number of counting problems related to circular arrangements. �

EXAMPLE 15. Binary tree codes and Dyck paths. Walks associated with binary trees have
a very special form since the vertical displacements can only be +1 or −1. The resulting
paths of Łukasiewicz type are then equivalently characterized as sequences of numbersx =
(x0, x1, . . . , x2n, x2n+1) satisfying the conditions

(62) x0 = 0; xj ≥ 0 for 1 ≤ j ≤ 2n; |xj+1 − xj | = 1; x2n+1 = −1.

These coincide with “gambler ruin sequences”, a familiar object from probability theory: a
player plays head and tails. He starts with no capital (x0 = 0) at time 0; his total gain isxj at
timej; he is allowed no credit (xj ≥ 0) and loses at the very end of the gamex2n+1 = −1; his
gains are±1 depending on the outcome of the coin tosses (|xj+1 − xj | = 1).

It is customary to drop the final step and consider “excursions’ that take place in the upper
half-plane. The resulting objects defined as sequences(x0 = 0, x1, . . . , x2n = 0) satisfying
the first three conditions of (62) are known in combinatoricsasDyck paths10. By construc-
tion, Dyck paths of length2n correspond bijectively to binary trees withn internal nodes and
are consequently enumerated by Catalan numbers. LetD be the combinatorial class of Dyck
paths, with size defined as length. This property can also be checked directly: the quadratic
decomposition

(63)
= +

(ε)
D D

D

D = {ǫ} + (ր D ց)×D
=⇒ D(z) = 1 + (zD(z)z)D(z).

10Dyck paths are closely associated with free groups on one generator and are named after the German
mathematician Walther (von) Dyck (1856–1934) who introduced free groups around 1880.
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From this OGF, the Catalan number are found (as expected):D2n = 1
n+1

`
2n
n

´
. The decom-

position (63) is known as the “first passage” decomposition as it is based on the first time the
cumulated gains in the coin-tossing game pass through the value zero.

Dyck paths also arise in connection will well-parenthetized expressions. These are rec-
ognized by keeping a counter that records at each stage the excess of the number of opening
brackets ‘(’ over closing brackets ‘)’. Finally, one of the origins of Dyck path is the famous
ballot problem, which goes back to the nineteenth century [275]: there are two candidatesA
andB that stand for election,2n voters, and the election eventually results in a tie; what isthe
probability thatA is always ahead of or tied withB when the ballots are counted? The answer
is

D2n`
2n
n

´ =
1

n+ 1
,

since there are
`
2n
n

´
possibilities in total, of which the number of favorable cases isD2n, a

Catalan number. The central rôle of Dyck paths and Catalan numbers in problems coming from
such diverse areas is quite remarkable. Chapter V will present refined counting results regarding
lattice paths. �

� 45. Dyck paths and general trees.The class of Dyck paths admits an alternative sequence
decomposition

(64)
=

D D
DD

D = SEQ(Z ×D × Z),

which again leads to the Catalan GF. The decomposition (64) is known as the “arch decom-
position”. It can also be directly related to traversal sequences of general trees, but with the
directions ofedgetraversals being recorded (instead of traversals based on node degrees). �

� 46.Random generation of Dyck paths.Dyck paths of length2n can be generated uniformly at
random in time linear inn. (Hint: By the conjugacy principle of Note 44, it suffices to generate
uniformly a sequence ofn a’s andn + 1 b’s, then reorganize it according to the conjugacy
principle. �

� 47. Motzkin paths and unary-binary trees.Motzkin paths are defined by changing the third
condition of (62) defining Dyck paths into|xj+1 − xj | ≤ 1. They appear as codes for unary-
binary trees and are enumerated by the Motzkin numbers of Note 36. �

EXAMPLE 16. The complexity of boolean functions.Complexity theory provides many sur-
prising applications of enumerative combinatorics and asymptotic estimates. In general, one
starts with a finite set of mathematical objectsΩ and a combinatorial classD of descriptions.
By assumption, to every object ofδ ∈ D is associated an elementµ(δ) ∈ Ω, its “meaning”;
conversely any object ofΩ admits at least one description inD, that is, the functionµ is surjec-
tive. It is then of interest to quantify properties of the shortest description function defined for
ω ∈ Ω as

σ(ω) := min
˘
|δ|D

˛̨
µ(δ) = ω

¯
,

and called thecomplexityof element ofΩ (with respect toD).
We take hereΩ to be the class of all boolean functions onm variables. Their number is

||Ω|| = 22m

. As descriptions, we adopt the class of logical expressionsinvolving the logical
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connectives∨,∧ and pure or negated variables. Equivalently,D is the class of binary trees,
where internal nodes are tagged by a logical disjunction (‘∨’) or a conjunction (‘∧’), and each
external node is tagged by either a boolean variable of{x1, . . . , xm} or a negated variable of
{¬x1, . . . ,¬xm}. Define the size of a tree description as the number of internal nodes, that is,
the number of logical operators. Then, one has

(65) Dn =

 
1

n+ 1

 
2n

n

!!
· 2n · (2m)n+1,

as seen by counting tree shapes and possibilities for internal as well as external node tags.
The crux of the matter is that if the inequality

(66)
νX

j=0

Dj < ||Ω||,

holds, then there are not enough descriptions of size≤ ν to exhaustΩ. In other terms, there
must exist at least one object inΩ whose complexity exceedsν. If the left side of (66) is
much smaller than the right side, then, it must even be the case that “most”Ω-objects have a
complexity that exceedsν.

In the case of boolean functions and tree descriptions, the asymptotic form (24) is available.
There results from (65) that, forn, ν getting large, one has

Dn = O(16nmnn−3/2),

νX

j=0

Dj = O(16νmνν−3/2).

Chooseν such that the second expression iso(||Ω||). This is ensured for instance by taking for
ν the value

ν(m) :=
2m

4 + log2m
,

as verified by a simple asymptotic calculation. With this choice, one has the following sugges-
tive statement:

A fraction tending to 1 (asm → ∞) of boolean functions inm variables have tree
complexity at least2m/ log2m.

Regarding upper bounds on boolean function complexity, a function always has a tree
complexity that is at most2m+1 − 3. To see it, note that form = 1, the 4 functions are

0 ≡ (x1 ∧ ¬x1), 1 ≡ (x1 ∨ ¬x1), x1, ¬x1.

Next, a function ofm variables is representable by a technique known as the binary decision
tree (BDT),

f(x1, . . . , xm−1, xm) = (¬xm ∧ f(x1, . . . , xm−1, 0)) ∨ (xm ∧ f(x1, . . . , xm−1, 1)) ,

which provides the basis of the induction as it reduces the representation of anm-ary func-
tion to the representation of two(m − 1)-ary functions, consuming on the way three logical
connectives.

Altogether, basic counting arguments have shown that “most” boolean functions have a
tree-complexity that is “close” to the maximum possible, namely, O(2m). A similar result
has been established by Shannon for the measure called circuit complexity: circuits are more
powerful than trees, but Shannon’s result states thatalmost all boolean functions ofm variables
have circuit complexityO(2m/m). See [391], especially the chapter by Li and Vitányi, for a
discussion of such counting techniques within the framework of complexity theory. �

We finally conclude with a vast generalization of the previous examples.
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DEFINITION I.13. A classT of trees is said to be acontext-free variety of treesif it
coincides with the first component of a system of equations (T = S1) of a recursive
system

(67)





S1 = Φ1(Z,S1, . . . ,Sr)
...

...
...

Sr = Φr(Z,S1, . . . ,Sr),

where eachΦj is a constructor that only involves the operations of combinatorial sum
(+) and cartesian product (×), as well possibly as the neutral class,E = {ǫ}.

A combinatorial classC is said to becontext-freeif it is combinatorially isomor-
phic to a context-free variety of trees:C ∼= T .

The classes of general trees (G) and binary trees (B) are context-free varieties of
trees since they are specifiable as





G = Z × F
F = {ǫ} + (G × F)

, B = Z + (B × B).

(F designates ordered forests of general trees.) The Łukasiewicz language and the set
of Dyck paths are context-free classes since they are bijectively equivalent toG and
T .

This terminology is an extension of the concept of context-free language in the
theory of formal languages; there, one defines a context-free language as the language
formed with words that are obtained as sequences of leaf tags(read in left-to-right
order) of a context-free variety of trees. In formal linguistics, the one-to-one mapping
between trees and words is not generally imposed; when it is satisfied, the context-
free language is said to beunambiguous, since words and trees determine each other
uniquely.

An immediate consequence of admissibility theorems is the following proposition
first encountered by Chomsky and Schützenberger [74] in the course of their research
relating formal languages and formal power series:

PROPOSITIONI.7. A combinatorial classC that iscontext-freeadmits an OGF that
is analgebraic function.In other words, there exists a (non-null) bivariate polynomial
P (z, y) ∈ C[z, y] such that

P (z, C(z)) = 0.

PROOF. The context-free system (67) translates into a system





S1(z) = Ψ1(z, S1(z), . . . , Sr(z))
...

...
...

Sr(z) = Ψr(z, S1(z), . . . , Sr(z)),

where theΨj are polynomials. This follows by the basic sum and product rules.
It is then well-known that algebraic elimination is possible in polynomials sys-

tems. Here, it is possible to eliminate the auxiliary variablesS2, . . . , Sr, one by one,
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preserving the polynomial character of the system at each stage. The end result is then
a single polynomial equation satisfied byC(z) ≡ S1(z). (Methods for effectively
performing polynomial elimination include a repeated use of resultants and Groebner
basis algorithms; see APPENDIX B: Algebraic elimination, p. 629 for a brief discus-
sion and references.) �

Proposition I. 5.3 justifies the importance of algebraic functions in enumerative
theory and it will be put to use in later chapters of this book;see especially Chapter VII
for examples accompanied by asymptotic analyses. It constitutes a counterpart of
Proposition I.3 which asserts that rational generating functions arise from finite state
devices.

I. 6. Additional constructions

This section is devoted to the the constructions of sequences, sets, and cycles in
the presence of restrictions on the number of components as well as to mechanisms
that enrich the framework of core constructions, namely, pointing, substitution, and
the use of implicit combinatorial definitions.

I. 6.1. Restricted constructions.An immediate formula for OGFs is that of the
diagonal∆ of a cartesian productB × B defined as

A ≡ ∆(B × B) := {(β, β) | β ∈ B}.
Then, clearlyA2n = Bn so that

A(z) = B(z2).

The diagonal construction permits us to access the class of all unordered pairs of
(distinct) elements ofB, which isA = PSET2(B). A direct argument then runs as
follows: the unordered pair{α, β} is associated to the two ordered pairs(α, β) and
(β, α) except whenα = β, where an element of the diagonal is obtained. In other
words, one has the combinatorial isomorphism,

PSET2(B) + PSET2(B) + ∆(B ×B) ∼= B ×B,

meaning that
2A(z) +B(z2) = B(z)2.

The resulting translation into OGFs is thus

A = PSET2(B) =⇒ A(z) =
1

2
B(z)2 − 1

2
B(z2).

Similarly, for multisets, we find

A = MSET2(B) =⇒ A(z) =
1

2
B(z)2 +

1

2
B(z2),

while for cycles one has CYC2
∼= MSET2, and

A = CYC2(B) =⇒ A(z) =
1

2
B(z)2 +

1

2
B(z2).

This type of direct reasoning could be extended to treat triples, and so on, but the
computations (if not the reasoning) tend to grow out of control. An approach based
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on multivariate generating functions generatessimultaneouslyall cardinality restricted
constructions.

THEOREM I.3 (Component-restricted constructions).The OGF of sequences withk
componentsA = SEQk(B) satisfies

A(z) = B(z)k.

The OGF of sets,A = PSETk(B), is a polynomial in the quantitiesB(z), . . . , B(zk),

A(z) = [uk] exp

(
u

1
B(z) − u2

2
B(z2) +

u3

3
B(z3) − · · ·

)
.

The OGF of multisets,A = MSETk(B), is

A(z) = [uk] exp

(
u

1
B(z) +

u2

2
B(z2) +

u3

3
B(z3) + · · ·

)
.

The OGF of cycles,A = CYCk(B), is

A(z) = [uk]

∞∑

ℓ=1

ϕ(ℓ)

ℓ
log

1

1 − uℓB(zℓ)
.

The explicit forms for small values ofk are summarized in Figure 14.
PROOF. The result for sequences is obvious since SEQk(B) meansB × · · · × B (k
times). For the other constructions, the proof makes use of the techniques of Theo-
rem I.1, but it is best based on bivariate generating functions that are otherwise devel-
oped fully in Chapter III to which we refer for details. The idea consists in describing
all composite objects and introducing a supplementary marking variable to keep track
of the number of components.

TakeK to be a construction amongst SEQ,CYC,MSET,PSET, setA = K(B),
and letχ(α) for α ∈ A be the parameter “number ofB–components”. Define the
multivariate quantities

An,k := card
{
α ∈ A

∣∣ |α| = n, χ(α) = k
}

A(z, u) :=
∑

n,k

An,ku
kzn =

∑

α∈A
z|α|uχ(α).

For instance, a direct calculation shows that, for sequences, there holds

A(z, u) =
∑

k≥0

ukB(z)k

=
1

1 − uB(z)
.

For multisets and powersets, a simple adaptation of the already seen argument gives
A(z, u) as

A(z, u) =
∏

n

(1 − uzn)−Bn , A(z, u) =
∏

n

(1 + uzn)Bn ,

respectively. The result follows from there by the exp-log transformation upon ex-
tracting[uk]A(z, u). The case of cycles results from the bivariate generating function
for cycles derived in APPENDIX A: Cycle construction, p. 618. �



78 I. UNLABELLED STRUCTURES AND ORDINARY GENERATING FUNCTIONS

� 48.Sets with distinct component sizes.LetA be the class of the finite sets of elements from
B, with the additional constraint that no two elements in a sethave the same size. One has

A(z) =
∞Y

n=1

(1 +Bnz
n).

Similar identities serve in the analysis of polynomial factorization algorithms [141]. �

� 49.Sequences without repeated components.The generating function is formally:

Z ∞

0

exp

0
@X

k≥1

(−1)j−1 u
j

j
A(zj)

1
A e−u du.

(This form is based on the Eulerian integral:k! =
R∞
0
e−uuk du.) �

I. 6.2. Pointing and substitution. Two more constructions, namely pointing and
substitution, translate agreeably into generating functions. Combinatorial structures
are viewed here as formed of “atoms” (words are composed of letters, graphs of nodes,
etc) which determine their sizes. In this context, pointingmeans “pointing at a distin-
guished atom”; substitution, writtenB ◦ C or B[C], means “substitute elements ofC
for atoms ofB”.

DEFINITION I.14. Let {ǫ1, ǫ2, . . .} be a fixed collection of distinct neutral objects of
size 0. Thepointingof a classB, notedA = ΘB, is formally defined by

ΘB :=
∑

n≥0

Bn × {ǫ1, . . . , ǫn}.

Thesubstitutionof C intoB (also known as composition ofB andC), notedB ◦ C
or B[C], is formally defined as

B ◦ C ≡ B[C] :=
∑

k≥0

Bk × SEQk(C).

If Bn is the number ofB structures of sizen, thennBn can be interpreted as
counting pointed structures whereoneof then atoms composing aB-structure has
been distinguished (here by a special “pointer” of size0 attached to it). Elements of
B ◦ C may also be viewed as obtained by selecting in all possible ways an element
β ∈ B and replacing each of its atoms by an arbitrary element ofC.

The interpretations above rely (silently) on the fact that atoms in an object can
be eventually distinguished from each other. This can be obtained by “canonicaliz-
ing”11 the representations of objects: first define inductively thelexicographic order-
ing for products and sequences; next represent powersets and multisets as increasing
sequences with the induced lexicographic ordering (more complicated rules can also
canonicalize cycles). In this way, any constructible object admits a unique “rigid”

11Such canonicalization techniques also serve to develop fast algorithms for the exhaustive listing
of objects of a given size as well as for the range of problems known as “ranking” and “unranking”, with
implications in fast random generation. See, e.g., [280, 297, 405] for the general theory as well as [328, 416]
for particular cases like necklaces and trees.
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representation in which each particular atom is determinedby its place. Such a canon-
icalization thus reconciles the abstract definition, Definition I.14, and the intuitive
interpretation of pointing and substitution.

THEOREM I.4 (Pointing and substitution).The constructions of pointing and substi-
tution are admissible12:

A = ΘB =⇒ A(z) = z∂zB(z) ∂z :=
d

dz

A = B ◦ C =⇒ A(z) = B(C(z))

PROOF. By the definition of pointing, one has

An = n · Bn and A(z) = z
d

dz
B(z).

From the definition of substitution,A = B[C] implies, by the sum and product rules,

A(z) =
∑

k≥0

Bk · (C(z))k = B(C(z)),

and the proof is completed. �

Permutations as pointed objects.As an example of pointing, consider the classP
of all permutations written as words over integers startingfrom 1. One can go from a
permutation of sizen−1 to a permutation of sizen by selecting a “gap” and inserting
the valuen. When this is done in all possible ways, it gives rise to the combinatorial
relation

P = E + Θ(Z × P), E = {ǫ}, =⇒ P (z) = 1 + z
d

dz
(zP (z)).

This means that the OGF satisfies an ordinary differential equation whose formal so-
lution isP (z) =

∑
n≥0 n!zn.

Unary-binary trees as substituted objects.As an example of substitution, con-
sider the classB of (plane rooted) binary trees, where all nodes contribute to size. If
at each node there is substituted a linear chain of nodes (linked by edges placed on top
of the node), one forms an element of the classM of unary-binary trees; in symbols:

M = B ◦ SEQ≥1(Z) =⇒ M(z) = B

(
z

1 − z

)
.

Thus from the known OGF,B(z) = (1 −
√

1 − 4z2)/(2z), one derives

M(z) =
1 −

√
1 − 4z2(1 − z)−2

2z(1 − z)−1
=

1 − z −
√

1 − 2z − 3z2

2z
,

which matches the direct derivation on p. 64 (Motzkin numbers).

12In this book, we borrow from differential algebra the convenient notation∂z := d
dz

to represent
derivatives.
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� 50.Combinatorics of derivatives.The combinatorial operationD of “eraser–pointing” points
to an atom in an object and replaces it by a neutral object, otherwise preserving the overall
structure of the object. The translation ofD on OGFs is then simply∂ ≡ ∂z . Classical
identities of analysis then receive simple combinatorial interpretations, for instance,

∂(A×B) = (A× ∂B) + (∂A)×B);

Leibniz’s identity,∂m(f ·g) =
P

j

`
m
j

´
(∂jf)·(∂m−jg), also follows from basic combinatorics.

Similarly, for the “chain rule”∂(f ◦ g) = ((∂f) ◦ g) · ∂g. �

I. 6.3. Implicit structures. There are many cases where a combinatorial classX
is determined by a relationA = B + X , whereA andB are known. In terms of
generating functions, one hasA(z) = B(z) +X(z), so that

A = B + X =⇒ X(z) = A(z) − B(z).

For instance, the autocorrelation technique of Section I. 4.2 makes it possible to de-
scribe the classS of all words inW that donot contain a given patternp, whereas
the language of words containing the pattern is determined as the solution inX of the
equationW = S + X ; see p. 56. Similarly, for products, basic algebra gives

A = B × X =⇒ X(z) =
A(z)

B(z)
.

Here are the corresponding solutions for two of the composite constructions.

THEOREM I.5 (Implicit specifications).The generating functions associated to the
implicit equations inX

A = SEQ(X ), A = MSET(X )

are respectively

X(z) = 1 − 1

A(z)
, X(z) =

∑

k≥1

µ(k)

k
logA(zk),

whereµ(k) is the M̈obius function.

PROOF. For sequences, the relationA(z) = (1 − X(z))−1 is readily inverted. For
multisets, start from the fundamental relation of Theorem I.1 and take logarithms:

log(A(z)) =
∞∑

k=1

1

k
X(zk).

LetL = logA andLn = [zn]L(z). One has

nLn =
∑

d |n
(dXd),

to which it suffices to apply Möbius inversion; see APPENDIX A: Arithmetical func-
tions, p. 611. �

EXAMPLE 17. Indecomposable permutations.A permutationσ = σ1 · · ·σn (written here
as a word of distinct letters) is said to bedecomposableif, for some k < n, σ1 · · · σk is
a permutation of{σ1, . . . , σk}, i.e., a strict prefix of the permutation is itself a permutation.
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Any permutation decomposes uniquely as a catenation of indecomposable permutations; for
instance, here is the decomposition ofσ = 25 4 1 3 6 8 7 10 9:

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10

σ = 2 5 4 1 3 6 8 10 7 9

Thus the classP of all permutations and the classI of indecomposable ones are related by

P = SEQ(I).

This determinesI(z) implicitly, and Theorem I.5 gives:

I(z) = 1− 1

P (z)
where P (z) =

X

n≥0

n! zn .

This example illustrates the implicit structure theorem, but also the possibility ofbona fide
algebraic calculations with power series even in cases where they are divergent (APPENDIXA:
Formal power series, p. 620). One finds

I(z) = z + z2 + 3 z3 + 13 z4 + 71 z5 + 461 z6 + +3447 z7 + · · · ,

where the coefficients areEISA003319and

In = n!−
X

n1+n2=n
n1,n2≥1

(n1!n2!) +
X

n1+n2+n3=n
n1,n2,n3≥1

(n1!n2!n3!) − · · · .

From there, simple majorizations of the terms imply thatIn ∼ n!, so thatalmost all permuta-
tions are indecomposable; see [76, p. 262]. �

� 51.2-dimensional wanderings.A drunkard starts from the origin in theZ× Z plane and, at
each second, he makes a step in either one of the four directions, NW, NE, SW, SE. The steps
are thusտ,ր,ւ,ց. Consider the classL of “primitive loops” defined as walks that start and
end at the origin, but do not otherwise touch the origin. The GF ofL is (EISA002894)

L(z) = 1− 1
P∞

n=0

`
2n
n

´2
z2n

= 4 z2 + 20 z4 + 176 z6 + 1876 z8 + · · · .

(Hint: a walk is determined by its projections on the horizontal and vertical axes; 1-dimensional
walks that return to the origin in2n steps are enumerated by

`
2n
n

´
.) In particular[zn]L(z/4) is

the probability that the random walk first returns to the origin in n steps.
Such problems largely originate with Pólya and the implicit structure technique above was

most likely known to him [319]. See [58] for similar multidimensional extensions. The first
return analysis is given in Chapter VII, based on singularity analysis and Hadamard closure
properties. �
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EXAMPLE 18. Irreducible polynomials over finite fields.Objects not apparently combinatorial
can sometimes be enumerated by symbolic methods. Here is an indirect construction relative
to polynomials over finite fields. We fix a prime numberp and consider the base fieldFp of
integers taken modulop. The polynomial ringFp[X] is the ring of polynomials inX with
coefficients taken inFp. For all practical purposes, one may restrict attention to polynomials
that are monic, that is, whose leading coefficient is 1.

First, letP be the class of all monic polynomials, with the size of a polynomial being its
degree. Since a monic polynomial of degreen is described by a choice ofn coefficients, one
has

P ∼= SEQ(Fp) =⇒ P (z) =
1

1− pz and Pn = pn.

A polynomial is said to beirreducible if it does not decompose as a product of two polynomials
of smaller degrees. By unique factorization, each monic polynomial decomposes uniquely into
a product (with repetitions being possible) of monic irreducible polynomials. For instance, over
F3, one has

X10 +X8 + 1 = (X + 1)2(X + 2)2(X6 + 2X2 + 1).

Let I be the set of monic irreducible polynomials. The combinatorial isomorphism

P ∼= MSET(I)

expresses precisely the unique factorization property. Thus, the irreducibles are determined
implicitly from the class of all polynomials whose OGF is known. Theorem I.5 implies the
identity

I(z) =
X

k≥1

µ(k)

k
log

1

1− pzk
,

and, upon extracting coefficients,

In =
1

n

X

k | n

µ(k)pn/k.

In particular,In is asymptotic topn/n. This estimate constitutes the density theorem for irre-
ducible polynomials:

The fraction of irreducible polynomials amongst all polynomials of degreen over
the finite fieldFp is asymptotic to1

n
.

This property is analogous to the Prime Number Theorem of number theory (which is tech-
nically much harder [82]), after which the proportion of prime numbers in the interval [1, n]

is asymptotic to 1
log n

. (The derivation above is in essence due to Gauß. See Knopfmacher’s
book [235] for an abstract discussion of statistical properties of arithmetical semigroups.) �

� 52. Square-free polynomials. Let Q be the class of monic square-free polynomials (i.e.,
polynomials not divisible by the square of a polynomial). One has by “Vallée’s identity” (p. 29)
Q(z) = P (z)/P (z2), hence

Q(z) =
1− pz2

1− pz and Qn = pn − pn−1 (n ≥ 2).

Berlekamp’s book [38] discusses such facts together with relations to error correcting codes.�
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� 53. Balanced trees.The classE of balanced 2-3 trees contains all the (rooted planar) trees
whose internal nodes have degree 2 or 3 and such that all leaves are at the same distance from
the root. Only leaves contribute to size. Such tree trees, which are particular cases ofB-trees,
are a useful data structure for implementing dynamic dictionaries [245, 352]. Balanced trees
satisfy an implicit equation based on combinatorial substitution:

E = Z + E [(Z × Z) + (Z × Z × Z)] =⇒ E(z) = z + E(z2 + z3).

The expansion starts as (EISA014535) E(z) = z+ z2 + z3 + z4 +2 z5 +2 z6 +3 z7 +4 z8 +
5 z9+8 z10+ · · · .Odlyzko [299] has determined the growth ofEn to be roughlyϕn/n, where
ϕ = (1 +

√
5)/2 is the golden ratio. Cf Section IV. 7.2, p. 267 for a partial analysis. �

I. 7. Perspective

This chapter and the next amount to a survey of symbolic combinatorics, orga-
nized in a coherent manner summarized in Figure 14. We refer to the process of spec-
ifying combinatorial classes using these constructions and then automatically having
access to the corresponding generating functions as thesymbolic method. The sym-
bolic method is the “combinatorics” in analytic combinatorics: it allows us to organize
classical results in combinatorics with a unifying overallapproach, to derive new re-
sults that generalize and extend classical problems, and toaddress new classes of prob-
lems that are arising in computer science, computational biology, statistical physics,
and other scientific disciplines.

More important, the symbolic method leaves us with generating functions that we
can handle with the “analytic” part of analytic combinatorics. A full treatment of this
feature of the approach is premature, but a brief discussionmay help place the rest of
the book in context.

For a given class of problems, the symbolic method typicallyleads to a unified
treatment that reveals a natural class of functions in whichgenerating functions lie.
Even though the symbolic method is completely formal, we canoften successfully
proceed by using classical techniques from complex and asymptotic analysis. For
example, denumerants with a finite set of coin denominationsalways lead to ratio-
nal generating functions with poles on the unit circle. Suchan observation is useful
since then a common strategy for coefficient extraction can be applied (partial frac-
tion expansion, in the case of denumerants with coin denominations). In the same
vein, the run statistics constitute a particular case of thegeneral theorem of Chomsky
and Schützenberger to the effect that the generating function of a regular language
is necessarily a rational function. Theorems of this sort establish a bridge between
combinatorial analysis and special functions.

Not all applications of the symbolic method are automatic (though that is certainly
a goal underlying the approach). The example of counting setpartitions shows that
application of the symbolic method may require finding an adequate presentation of
the combinatorial structures to be counted. In this way, bijective combinatorics enters
the game in a nontrivial fashion.

Our introductory examples of compositions and partitions correspond to classes
of combinatorial structures withexplicit “iterative” definitions, a fact leading in turn to
explicit generating function expressions. The tree examples then introducerecursively
definedstructures. In that case, the recursive definition translates into afunctional
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1. The main constructions of disjoint union (combinatorial sum), product, sequence,
set, multiset, and cycle and their translation into generating functions (Theorem I.1).

Construction OGF

Union A = B + C A(z) = B(z) + C(z)

Product A = B × C A(z) = B(z) · C(z)

Sequence A = SEQ(B) A(z) =
1

1 −B(z)

Set A = SET(B) A(z) = exp

(
B(z) − 1

2
B(z2) + · · ·

)

Multiset A = MSET(B) A(z) = exp

(
B(z) +

1

2
B(z2) + · · ·

)

Cycle A = CYC(B) A(z) = log
1

1 −B(z)
+

1

2
log

1

1 −B(z2)
+ · · ·

2. The translation for sets, multisets, and cycles constrained by the number of compo-
nents (Theorem I.3, p. 77).

SEQk(B) : B(z)k

PSET2(B) : B(z)2

2
− B(z2)

2

MSET2(B) : B(z)2

2
+ B(z2)

2

CYC2(B) : B(z)2

2
+ B(z2)

2

PSET3(B) : B(z)3

6
− B(z) B(z2)

2
+ B(z3)

3

MSET3(B) : B(z)3

6
+ B(z) B(z2)

2
+ B(z3)

3

CYC3(B) : B(z)3

3
+ 2B(z3)

3

PSET4(B) : B(z)4

24
− B(z)2B(z2)

4
+ B(z)B(z3)

3
+ B(z2)2

8
− B(z4)

4

MSET4(B) : B(z)4

24
+ B(z)2B(z2)

4
+ B(z)B(z3)

3
+ B(z2)2

8
+ B(z4)

4

CYC4(B) : B(z)4

4
+ B(z2)2

4
+ B(z4)

2
.

3. The additional constructions of pointing and substitution(Section I. 6).

Construction OGF

Pointing A = ΘB A(z) = z d
dzB(z)

Substitution A = B ◦ C A(z) = B(C(z))

FIGURE 14. A dictionary of constructions applicable tounlabelledstructures, together
with their translation into ordinary generating functions(OGFs). (The labelled counterpart
of this table appears in Figure 16 of Chapter II, p. 136.)
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equationthat only determines the generating function implicitly. In simpler situations
(like binary or general trees), the equation can be solved and explicit counting results
still follow. In other cases (like non-planar trees) one canusually proceed with com-
plex asymptotic analysis directly from the functional equation and obtain very precise
asymptotic estimates; see Chapters IV–VII.

Analytic combinatorics is characterized by the focus on constructions that leave
us with generating functions that yield to classical techniques in complex analysis and
asymptotic analysis. For some combinatorial classes, as weshall see, we have the-
orems that carry us all the way from purely combinatorial constructions through to
asymptotic estimates for counting sequences, under general assumptions. For others,
the general theorems are yet to be proved, but the symbolic method lays the ground-
work for analysis that leads to the results that we seek.

Modern presentations of combinatorial analysis appear in the books of Comtet [76] (a
beautiful book largely example-driven), Stanley [362, 364] (a rich set with an algebraic ori-
entation), and Wilf [406] (generating functions oriented). An elementary but insightful pre-
sentation of the basic techniques appears in Graham, Knuth,and Patashnik’s classic [196], a
popular book with a highly original design. An encyclopedicreference is the book of Jackson
& Goulden [192] whose descriptive approach very much parallels ours.

The sources of the modern approaches to combinatorial analysis are hard to trace since they
are usually based on earlier traditions and informally stated mechanisms that were well mastered
by practicing combinatorial analysts. (See for instance MacMahon’s book [278] Combinatory
Analysisfirst published in 1917, the introduction of denumerant generating functions by Pólya
as exposed in [321], or the “domino theory” in [196, Sec. 7.1].) One source in recent times is
the Chomsky–Schützenberger theory of formal languages and enumerations [74]. Rota [336]
and Stanley [361, 364] developed an approach which is largely based on partially ordered sets.
Bender and Goldman developed a theory of “prefabs” [31] whose purposes are similar to the
theory developed here. Joyal [227] proposed an especially elegant framework, the “theory of
species”, that addresses foundational issues in combinatorial theory and constitutes the starting
point of the superb exposition by Bergeron, Labelle, and Leroux [36]. Parallel (but independent)
developments by the “Russian School” are nicely synthetized in the books by Sachkov [340,
341].

One of the reasons for the revival of interest in combinatorial enumerations and proper-
ties of random structures is the analysis of algorithms (a subject founded in modern times by
Knuth [247]), where the goal is to predict the performance characteristics of computer pro-
grams. The symbolic ideas exposed here have been applied to the analysis of algorithms in
surveys [134, 396] and are further exposed in our book [353]. Flajolet, Salvy, and Zimmer-
mann [159] have shown how to use them in order to automate the analysis of some well charac-
terized classes of combinatorial structures. Even more recently, research in statistical physics,
computational biology, and other scientific disciplines have been drawn towards the study of the
sorts of discrete models that can be specified by the sorts of combinatorial constructions that we
have described, and therefore are candidates for study via analytic combinatorics. Research in
these fields are the driving force in the study of new kinds of constructions on the combinatorics
side that lead to new methods on the analytic side.
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Labelled Structures and Exponential
Generating Functions
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Many objects of classical combinatorics present themselves naturally as labelled struc-
tures where atoms of an object (typically nodes in a graph or atree) are distinguishable
from one another by the fact that they bear distinctlabels. Without loss of generality,
we may take the set from which labels are drawn to be the set of positive integers.
For instance, a permutation can be viewed as a linear arrangement of distinct labels;
its cycle decomposition represents it as an unordered collection of circular directed
graphs whose nodes are labelled by integers.

Operations on labelled structures are based on a special product: thelabelled
productthat distributes labels between components. This operation is a natural ana-
logue of the cartesian product for plain unlabelled objects. The labelled product in
turn leads to labelled analogues of the sequence, set, and cycle constructions.

Labelled constructions translate overexponential generating functions. The trans-
lation schemes turn out to be analytically even simpler thanin the unlabelled case
considered in the previous chapter. At the same time, labelled constructions enable
us to take into account structures that are in many ways combinatorially richer than
their unlabelled counterparts, in particular as regards order properties. They constitute
another facet, with powerful descriptive powers, of the symbolic method for combi-
natorial enumeration.

In this chapter, we examine some of the most important classes of labelled objects,
including surjections, set partitions, permutations, labelled graphs and labelled trees,
as well as graphs and mappings from a finite set into itself. Certain aspects of words

1“This approach eliminates virtually all calculations.”
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can also be treated by this theory, a fact which has numerous consequences not only
in combinatorics itself but also in probability and statistics. In particular, labelled
constructions of words can be put to use in order to solve elegantly two classical
problems, the birthday problem and the coupon collector problem, as well as several
of their variants that have numerous applications in other fields, including the analysis
of hashing algorithms in computer science.

II. 1. Labelled classes

Throughout this chapter, we consider combinatorial classes in the sense of Chap-
ter I: we deal exclusively with finite objects; a combinatorial classA is a set of objects,
with a notion of size attached, so that the number of objects of each size inA is finite.
To these basic concepts, we now add the idea that the objects are labelled, by which
we mean that each atom carries with it a distinctive colour, or equivalently an integer
label, in such a way that all the labels occurring in an objectare distinct. Precisely:

DEFINITION II.1. A weakly labelled objectof sizen is a graph whose set of vertices
is a subset of the integers. Equivalently, we say that the vertices bear labels, with
the implied condition that labels are distinct integers from Z. An object of sizen is
said to bewell-labelled, or simplylabelled, if it is weakly labelled and, in addition,
its collection of labels is the complete integer interval[1 . . n]. A labelled classis a
combinatorial class comprised of well-labelled objects.

The graphs considered may be directed or undirected. In fact, when the need
arises, we shall take “object” to mean any kind of discrete structure enriched by in-
teger labels. Virtually all labelled classes considered inthis book can eventually be
encoded as graphs of sorts, so that this extended use of the notion of a labelled class
is a harmless convenience. (See Section II. 7 for a brief discussion of alternative but
logically equivalent frameworks for the notion of a labelled class.)

EXAMPLE 1. Labelled graphs.A labelled graph is by definition an undirected graph such that
distinct integer labels forming an interval of the form{1, 2, . . . , n} are supported by vertices.
A particular labelled graph of size 4 is then

g =

4 2

31
,

which represents a graph whose vertices bear the labels{1, 2, 3, 4} and whose set of edges is

{ {1, 3}, {2, 3}, {2, 4}, {1, 4} } .
Only the graph structure (as defined by its set of edges) counts, so that this is the same abstract
graph as in the alternative visual representations

g =

3 2

41
,

1 4

23
.

However, this graph is different from either of

h =

3 2

14
, j =

4 2

13
,
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There are altogetherG4 = 64 = 26 labelled graphs of size 4, i.e., comprising 4 nodes, in
agreement with the general formula (see p. 97 for details):Gn = 2n(n−1)/2. The labelled
graphs can be grouped into equivalence classes up to arbitrary permutation of the labels, which
determines thebG4 = 11 unlabelled graphs of size 4. Each unlabelled graph corresponds to a
variable number of labelled graphs: for instance, the totally disconnected graph (bottom, left)
and the complete graph (top, right) correspond to 1 labelling only, while the line graph admits
1
2

4! = 12 possible labellings.

FIGURE 1. Labelled versus unlabelled graphs for sizen = 4.

since, for instance, 1 and 2 are adjacent inh andj, but not ing. Altogether, there are 3 different
labelled graphs (namely,g, h, j), that have the same “shape”, corresponding to the unlabelled
quadrangle graph

Q =

• •

••
.

Figure 1 lists all the 64 labelled graphs of size 4 as well as their 11 unlabelled counterparts
viewed as equivalence classes of labelled graphs when labels are ignored. �

In order to count labelled objects, we appeal to exponentialgenerating functions.

DEFINITION II.2. Theexponential generating function(EGF) of a sequence{An} is
the formal power series

(1) A(z) =
∑

n≥0

An
zn

n !
.

Theexponential generating function(EGF) of a classA is the exponential generating
function of the numbersAn = card(An). Equivalently, the EGF of classA is

A(z) =
∑

n≥0

An
zn

n !
=
∑

α∈A

z|α|

|α| ! .
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It is also said that the variablez markssize in the generating function.

With the standard notation for coefficients of series, the coefficientAn in an exponen-
tial generating function is then recovered by2

An = n ! · [zn]A(z),

since[zn]A(z) = An/n! by the definition of EGFs and in accordance with the coeffi-
cient extractor notation, Eq. (6) of Chapter I.

Note that, like in the previous chapter, we adhere to a systematic naming con-
vention for generating functions of combinatorial structures. A labelled classA, its
counting sequence(An) (or (an)) and its exponential generating functionA(z) (or
a(z)) are all denoted by the same group of letters.

Neutral and atomic classes.Like in the unlabelled universe, it proves useful to
introduce a neutral (empty, null) objectǫ that has size0 and bears no label at all, and
consider it as a special labelled object; aneutral classE is then by definitionE = {ǫ}.
The (labelled)atomic classZ = { 1} is formed of a unique object of size 1 that, being
well-labelled, bears the integer label1 . The EGFs of the neutral class and the atomic
class are respectively

E(z) = 1, Z(z) = z.

EXAMPLE 2. Permutations. The class{P} of all permutations is prototypical of labelled
classes. Under the linear representation of permutations,where

σ =

0
@ 1 2 · · · n

σ1 σ2 · · · σn

1
A

is represented as the sequence(σ1, σ2, . . . , σn), the classP is schematically

P =

8
>>>>><
>>>>>:

ǫ , 1 , 1− 2

2− 1
,

1− 2− 3

2− 3− 1

3− 1− 2

2− 1− 3

1− 3− 2

3− 2− 1

, . . .

9
>>>>>=
>>>>>;

,

so thatP0 = 1, P1 = 1, P2 = 2, P3 = 6, etc. There, by definition, all the possible orderings
of the distinct labels are taken into account, so that the classP can be equivalently viewed as
the class of all labelled linear digraphs (with an implicit direction, from left to right, say, in the
representation). Accordingly, the classP of permutations has the counting sequencePn = n!
(argument: there aren positions where to place the element1, then(n− 1) possible positions
for 2, and so on). Thus the EGF ofP is

P (z) =
X

n≥0

n!
zn

n!
=
X

n≥0

zn =
1

1− z .

Permutations, as they contain information relative to the order of their elements are essential in
many applications related to order statistics. �

2Some authors prefer the notation[ zn

n!
]A(z) to n![zn]A(z), which we avoid in this book. Indeed,

Knuth [243] argues convincingly that the variant notation is not consistent with many desirable properties
of a “good” coefficient operator (e.g., bilinearity).
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EXAMPLE 3. Urns. The classU of totally disconnected graphs starts as

U =

8
><
>:
ǫ , 1 , 1 2 ,

1 2

3

,
1 2

3 4

,
1 2

5

3 4

, . . .

9
>=
>;
.

Order between the labelled atoms doesnot count, so that for eachn, there is onlyonepossible
arrangement andUn = 1. The classU can be regarded as the class of “urns”, where an
urn of sizen containsn distinguishable balls in an unspecified (and irrelevant) order. The
corresponding EGF is

U(z) =
X

n≥0

1
zn

n!
= exp(z) = ez.

(The fact that the EGF of the constant sequence(1)n≥0 is the exponential function explains the
term “exponential generating function”.) It also proves convenient, in several applications, to
represent elements of an urn in a sorted sequence, which leads to an equivalent representation
of urns asincreasing linear graphs; for instance,

1− 2− 3− 4− 5

may be equivalently used to represent the urn of size 5. Though urns look trivial at first glance,
they are of particular importance as building blocks of complex labelled structures (e.g., alloca-
tions of various sorts), as we shall see shortly. �

EXAMPLE 4. Circular graphs. Finally, the class of circular graphs, where cycles are oriented
in some conventional manner (say, positively here) is

C =

(
1 , 6

1

2

, 6

1

2 3

, 6

1

3 2

, . . .

)
.

Cyclic graphs correspond bijectively tocyclic permutations. One hasCn = (n − 1)! (argu-
ment: a directed cycle is determined by the succession of elements that “follow” 1, hence by a
permutation ofn− 1 elements). Thus, one has

C(z) =
X

n≥1

(n− 1)!
zn

n!
=
X

n≥1

zn

n
= log

1

1− z .

As we shall see in the next section, the logarithm is characteristic of circular arrangements of
labelled objects. �

� 1. Labelled trees.Let Un be now the number of labelled graphs withn vertices that are
connected and acyclic; equivalently,Un is the number of labelled unrooted nonplane trees. Let
Tn be the number of labelled rooted nonplane trees. The identity Tn = nUn is elementary,
since all vertices in a labelled tree are distinguishable (by their labels) and a root can be chosen
in n possible ways. In Section II. 5, we shall prove thatUn = nn−2 andTn = nn−1. �

II. 2. Admissible labelled constructions

We now describe a toolkit of constructions that make it possible to build complex
labelled classes from simpler ones. Combinatorial sum or disjoint union is defined
exactly as in Chapter I: it is the union of disjoint copies. Todefine a product that is
adapted to labelled structures, we cannot use the cartesianproduct, since an ordered
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pair of two labelled objects is not well-labelled (for instance the label 1 would invari-
ably appear repeated twice). Instead, we define a new operation, thelabelled product,
which translates naturally into exponential generating functions. From there, simple
translation rules follow for labelled sequences, sets, andcycles.

Binomial convolutions. As a preparation to the translation of labelled construc-
tions, we first briefly review the effect of products over EGFs. Let a(z), b(z), c(z) be
EGFs, witha(z) =

∑
n anz

n/n!, and so on. Thebinomial convolutionformula is:

(2) if a(z) = b(z) · c(z), thenan =

n∑

k=0

(
n

k

)
bkcn−k.

This formula results from the usual product of formal power series,

an

n!
=

n∑

k=0

bk
k!

· cn−k

(n− k)!
and

(
n

k

)
=

n!

k! (n− k)!
.

In the same vein, ifa(z) = a(1)(z) a(2)(z) · · ·a(r)(z), then

(3) an =
∑

n1+n2+···+nr=n

(
n

n1, n2, . . . , nr

)
a(1)

n1
a(2)

n2
· · · a(r)

nr
.

In Equation (3) there occurs the multinomial coefficient
(

n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · ·nr!
,

which counts the number of ways of splittingn elements intor distinguished classes
of cardinalitiesn1, . . . , nr. This property lies at the very heart of enumerative appli-
cations of binomial convolutions and EGFs.

II. 2.1. Labelled constructions. A labelled object may be relabelled.We only
considerconsistentrelabellings defined by the fact that they preserve the orderrela-
tions among labels.Then two dual modes of relabellings prove important:

— Reduction: For a weakly labelled structure of sizen, this operation reduces
its labels to the standard interval[1 . . n] while preserving the relative order
of labels. For instance, the sequence〈7, 3, 9, 2〉 reduces to〈3, 2, 4, 1〉. We
noteρ(α) the canonical reduction of the structureα.

— Expansion: This operation is defined relative to a relabelling function e ∈
[1 . . n] 7→ Z that is assumed to be strictly increasing. For instance,〈3, 2, 4, 1〉
may expand as〈33, 22, 44, 11〉, 〈7, 3, 9, 2〉, and so on. We notee(α) the re-
sult of relabellingα by e.

These notions enable us to devise a product suited to labelled objects.

The labelled product, (or simplyproduct), of objects and classes was originally
formalized under the name of “partitional product” by Foata[170]. Given two labelled
structuresβ ∈ B andγ ∈ C, this product noted asβ ⋆ γ is a set comprised of the
collection of well-labelled ordered pairs(β′, γ′) that reduce to(β, γ):

(4) β ⋆ γ := { (β′, γ′)
∣∣ (β′, γ′) is well–labelled, ρ(β′) = β, ρ(γ′) = γ }.
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FIGURE 2. The10 ≡
`
5
2

´
elements in the labelled product of a triangle and a segment.

An equivalent form is via expansion of labels:

(5) β⋆γ = { (e(β), f(γ)
∣∣ Im(e)∩ Im(f) = ∅, Im(e)∪ Im(f) = [ 1 . . |β| + |γ| ] },

wheree, f are relabelling functions with ranges Im(e), Im(f), respectively. Note that
elements of a labelled product are, by construction, well-labelled. Figure 2 displays
the labelled product of a particular object of size 3 with an other object of size 2.

The labelled productβ ⋆ γ of two elementsβ, γ of respective sizesn1, n2 is a set
whose cardinality is, withn = n1 + n2, expressed as

(
n1 + n2

n1, n2

)
≡
(
n

n1

)
,

since this quantity is the number of legal relabellings by expansion of the pair(β, γ).
(The example of Figure 2 verifies that the number of relabellings is indeed

(
5
2

)
= 10.)

If B andC are two labelled classes of combinatorial structures, the labelled prod-
uctA = B ⋆ C is defined by the usual extension of operations to sets:

(6) B ⋆ C =
⋃

β∈B, γ∈C
(β ⋆ γ).

In summary:

DEFINITION II.3. The labelled productof B and C, denotedB ⋆ C, is obtained by
forming ordered pairs fromB × C and performing all possible order-consistent rela-
bellings, ensuring that the resulting pairs are well labelled, as described by (4) or (5),
and (6).

Equipped with this notion, we can build sequences, sets, andcycles, in a way
much similar to the unlabelled case. We proceed to do so and, at the same time,
establishadmissibility3 of the constructions.

Labelled product.WhenA = B ⋆ C, the corresponding counting sequences sat-
isfy the relation,

(7) An =
∑

|β|+|γ|=n

(|β| + |γ|
|β|, |γ|

)
B|β|C|γ| =

∑

n1+n2=n

(
n

n1, n2

)
Bn1Cn2 .

3We recall that a construction is admissible (Chapter I) if the counting sequence of the result only
depends on the counting sequences of the operands. An admissible construction therefore induces a well-
defined transformation over exponential generating functions.
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The productBn1Cn2 keeps track of all the possibilities for theB andC components
and the binomial coefficient accounts for the number of possible relabellings, in accor-
dance with our earlier discussion. The binomial convolution property (7) then implies
admissibility,

A = B ⋆ C =⇒ A(z) = B(z) · C(z),

with the labelled product simply translating into the product operation on EGFs.

� 2. Multiple labelled products.The (binary) labelled product satisfies the associativity prop-
erty,

B ⋆ (C ⋆D) ∼= (B ⋆ C) ⋆D,
which may serve to defineB ⋆C ⋆D. The corresponding EGF is the productA(z) ·B(z) ·C(z).
This product rule generalizes tor factors with coefficients given by a multinomial convolu-
tion (3). �

k-sequences and sequences.The kth (labelled)powerof B is defined as(B ⋆
B · · · B), with k factors equal toB. It is denoted SEQk{B} as it corresponds to forming
k–sequences and performing all consistent relabellings. The (labelled)sequenceclass
of B is denoted by SEQ{B} and is defined by

SEQ{B} := {ǫ} + B + (B ⋆ B) + (B ⋆ B ⋆ B) + · · · =
⋃

k≥0

SEQk{B}.

The product relation for EGFs extends to arbitrary products(Note 2), so that

A = SEQk(B) =⇒ A(z) = B(z)k

A = SEQ(B) =⇒ A(z) =

∞∑

k=0

B(z)k =
1

1 −B(z)
,

where the last equation requiresB0 = ∅.

k–sets and sets.We denote by SETk{B} the class ofk–sets formed fromB. The
set class is defined formally, like in the case of the unlabelled multiset: it is the quotient
SETk{B} := SEQk{B}/R where the equivalence relationR identifies two sequences
when the components of one are a permutation of the components of the other (p. 25).
A “set” is like a sequence, but the order between components is immaterial. The
(labelled)setconstruction applied toB, denoted SET{B}, is then defined by

SET{B} def
= {ǫ} + B + SET2{B} + · · · =

⋃

k≥0

SETk{B}.

A labelledk–set is associated with exactlyk! different sequences. (In the unlabelled
case, formulæ are more complex.) Thus in terms of EGFs, one has (assumingB0 = ∅)

A = SETk(B) =⇒ A(z) =
1

k!
B(z)k

A = SET(B) =⇒ A(z) =

∞∑

k=1

1

k!
B(z)k = exp(B(z)).

Note that the distinction between multisets and powersets that is meaningful for unla-
belled structures is here immaterial: by definition components of a labelled set all have
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distinct labels so that, relative to the labelled universe,we have the correspondence:
MSET,PSET ; SET.

k–cycles and cycles.We also introduce the class ofk–cycles, CYCk{B} and the
cycle class. The cycle class is defined formally, like in the unlabelled case, as the
quotient CYCk{B} := SEQk{B}/S where the equivalence relationS identifies two
sequences when the components of one are a cyclic permutation of the components
of the other (p. 24). A cycle is like a sequence whose components can be circularly
shifted. In terms of EGFs, we have (assumingB0 = ∅)

A = CYCk(B) =⇒ A(z) =
1

k
B(z)k

A = CYC(B) =⇒ A(z) =
∞∑

k=0

1

k
B(z)k = log

1

1 −B(z)
,

since each cycle admits exactlyk representations as a sequence.

In summary:

THEOREM II.1. The constructions of combinatorial sum (disjoint union), labelled
product, sequence, cycle and set are all admissible. The associated operators on
EGFs are:

Sum: A = B + C =⇒ A(z) = B(z) + C(z)

Product: A = B ⋆ C =⇒ A(z) = B(z) · C(z)

Sequence: A = SEQ(B) =⇒ A(z) =
1

1 −B(z)

—k comp.: A = SEQk(B) ≡ (B)⋆k =⇒ A(z) = B(z)k

Set: A = SET(B) =⇒ A(z) = exp(B(z))

—k comp.: A = SETk(B) =⇒ A(z) =
1

k!
B(z)k

Cycle: A = CYC(B) =⇒ A(z) = log
1

1 −B(z)

—k comp.: A = CYCk(B) =⇒ A(z) =
1

k
B(z)k

Constructible classes.As in the previous chapter, we say that a class of labelled
objects is constructible if it admits a specification in terms of sums (disjoint unions),
the labelled constructions of product, sequence, set, cycle, and the initial classes de-
fined by the neutral structure of size0 and the atomic classZ = { 1 }. Regarding the
elementary classes discussed in Section II. 1, it is immediately recognized that

P = SEQ{Z}, U = SET{Z}, C = CYC{Z},

specify permutations, urns, and circular graphs respectively. These constructions are
basic building blocks out of which more complex objects can be constructed. In partic-
ular, as we shall explain shortly (Section II. 3 and Section II. 4), set partitions (S), sur-
jections (R), permutations under their cycle decomposition (P), and alignments(O)
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are constructible classes corresponding to

Surjections: R ≃ SEQ{SET≥1{Z}} (sequences-of-sets),

Set partititions: S ≃ SET{SET≥1{Z}} (sets-of-sets),

Alignments: O ≃ SEQ{CYC≥1{Z}} (sequences-of-cycles).

Permutations: P ≃ SET{CYC≥1{Z}}, (sets-of-cycles),

An immediate consequence of Theorem II.1 is the fact that theEGF of a con-
structible labelled class can be computed automatically.

THEOREM II.2. The exponential generating function of a constructible class of la-
belled objects is a component of a system of generating function equations whose
terms are built from1 andz using the operators

+ , × , Q(f) =
1

1 − f
, E(f) = ef , L(f) = log

1

1 − f
.

If we further allow cardinality restrictions in composite constructions, the operators
fk (for SEQk), fk/k! (for SETk), andfk/k (for CYCk) are to be added to the list.

II. 2.2. Labelled versus unlabelled enumeration.Any labelled classA has an
unlabelled counterpart̂A: objects inÂ are obtained from objects ofA by ignoring
the labels. This idea is formalized by identifying two labelled objects if there is an
arbitrary relabelling (not just an order-consistent one, as has been used so far) that
transforms one into the other. For an object of sizen, each equivalence class contains
a priori between 1 andn! elements. Thus:

PROPOSITIONII.1. The counts of a labelled classA and its unlabelled counterpart̂A
are related by

(8) Ân ≤ An ≤ n! Ân or equivalently 1 ≤ An

Ân

≤ n!.

EXAMPLE 5. Labelled and Unlabelled graphs.This phenomenon has been already encoun-
tered in our discussion of graphs (Figure 1). Let generallyGn and bGn be the number of graphs
of sizen in the labelled and unlabelled case respectively. One finds for n = 1 . . 15

bGn (unlabelled) Gn (labelled)
1 1
2 2
4 8

11 64
34 1024

156 32768
1044 2097152

12346 268435456
274668 68719476736

12005168 35184372088832
1018997864 36028797018963968

165091172592 73786976294838206464
50502031367952 302231454903657293676544

29054155657235488 2475880078570760549798248448
31426485969804308768 40564819207303340847894502572032
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The sequence{ bGn} constitutesEISA000088, which can be obtained by an extension of meth-
ods of Chapter I; see [206, Ch. 4]. The sequence{Gn} is determined directly by the fact that a
graph ofn vertices can have each of the

`
n
2

´
possible edges either present or not, so that

Gn = 2(
n
2) = 2n(n−1)/2.

The sequence of labelled counts obviously grows much fasterthan its unlabelled counterpart.
We may then verify the inequality (8) in this particular case. The normalized ratios,

ρn := Gn/ bGn, σn := Gn/(n! bGn),

are observed to be

n ρn = Gn/ bGn σn = Gn/(n! bGn)
1 1.000000000 1.0000000000
2 1.000000000 0.5000000000
3 2.000000000 0.3333333333
4 5.818181818 0.2424242424
5 30.11764706 0.2509803922
6 210.0512821 0.2917378918
8 21742.70663 0.5392536367
10 2930768.823 0.8076413203
12 446946830.2 0.9330800361
14 0.8521603960· 1011 0.9774915111
16 0.2076885783· 1014 0.9926428522

From these data, it is natural to conjecture thatσn tends (fast) to 1 asn tends to infinity. This is
indeed a nontrivial fact originally established by Pólya (see Chapter 9 of Harary and Palmer’s
book [206] dedicated to asymptotics of graph enumerations):

bGn ∼ 1

n!
2(

n
2) ∼ Gn

n!
.

In other words, “almost all” graphs of sizen should admit a number of labellings close ton!.
(Combinatorially, this corresponds to the fact that in a random unlabelled graph, with high
probability, all of the nodes can be distinguished based on the adjacency structure of the graph;
in such a case, the graph has no nontrivial automorphism and the number of distinct labellings
isn! exactly.) �

The case of urns and totally disconnected graphs resorts to the other extreme
situation where

Ûn = Un = 1.

The examples of graphs and urns illustrate the fact that, beyond the general bounds of
Proposition II.1, there is no automatic way to translate between labelled and unlabelled
enumerations. At least, if the classA is constructible, its unlabelled counterpartÂ can
be obtained by interpreting all the intervening constructions as unlabelled ones in the
sense of Chapter I (with SET 7→ MSET), both generating functions are computable,
and their coefficients can be compared.

� 3.Permutations and their unlabelled counterparts.The labelled class of permutations can be
specified byP = SEQ(Z); the unlabelled counterpart is the setbP of integers in unary notation,
and bPn ≡ 1, so thatPn = n!· bPn exactly. The specificationP ′ = SET(CYC(Z)) describes sets
of cycles and, in the labelled universe, one hasP ′ ∼= P ; however the unlabelled counterpart of
P ′ is the classcP ′ 6= bP of integer partitions examined in Chapter I. [In the unlabelled universe,
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there are special combinatorial isomorphisms like: SEQ≥1(Z) ∼= MSET≥1(Z) ∼= CYC(Z). In
the labelled universe, the identity SET◦CYC ≡ SEQ holds.] �

II. 3. Surjections, set partitions, and words

This section and the next are devoted to what could be termed level-two nonrecur-
sive structures defined by the fact that they combine two constructions. In this section,
we discuss surjections and set partitions (Section II. 3.1), which constitute labelled
analogues of integer compositions and integer partitions in the unlabelled universe.
The symbolic method then extends naturally to words over a finite alphabet, where
it opens access to an analysis of the frequencies of letters composing words. This
in turn has useful consequences for the study of some classical random allocation
problems, of which the birthday paradox and the coupon collector problem stand out
(Section II. 3.2).

II. 3.1. Surjections and set partitions. We examine classes

R = SEQ{SET≥1{Z}} and S = SET{SET≥1{Z}},
corresponding to sequences-of-sets (R) and sets-of-sets (S), or equivalently, sequences
of urns and sets of urns, respectively. Such abstract specifications model very classical
objects of discrete mathematics, namely surjections (R) and set partitions (S)

Surjections withr images. In elementary mathematics, a surjection from a setA
to a setB is a function fromA to B that assumes each valueat least once(an onto
mapping). Fix some integerr ≥ 1 and letR(r)

n denote the class of all surjections from
the set[1 . . n] onto [1 . . r] whose elements are also calledr–surjections.. Here is a

particular objectφ ∈ R(5)
9 :

(9) φ :

1 2 3 4 5 6 7 8 9

1 2 3 4 5

(Note that, ifφ(9) were 3, thenφ would not be a surjection.) We setR(r) =
⋃

n R(r)
n

and proceed to compute the corresponding EGF,R(r)(z). First, let us observe that an

r–surjectionφ ∈ R(r)
n is determined by theorderedr–tupleformed with the collection

of all preimage sets,
(
φ−1(1), φ−1(2), . . . , φ−1(r)

)
, themselves disjoint nonempty

sets of integers that cover the interval[1 . . n]. In the case of the surjectionφ of (9),
this alternative representation is

φ : ( {2}, {1, 3}, {4, 6, 8}, {9}, {5, 7} ) .

One has the combinatorial specification and EGF relation:

(10) R(r) = SEQr{V}, V = SET≥1{Z} =⇒ R(r)(z) = (ez − 1)r.

ThereV ≡ U \ {ǫ} designates the class of urns (U) that are nonempty, with EGF
V (z) = ez − 1, in view of our earlier discussion of urns. In words: “a surjection is a
sequence of nonempty sets”. See Figure II. 3.1 for an illustration.
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[    {2},          {1,  3},          {4,  6,  8},           {9},          {5, 7}    ]

FIGURE 3. The decomposition of surjections as sequences-of-sets: a surjection given by
its graph (top), its table (second line), and its sequence ofpreimages (bottom lines).

Equation (10) does solve the counting problem for surjections. For smallr, one
finds

R(2)(z) = e2z − 2ez + 1, R(3)(z) = e3z − 3e2z + 3ez − 1,

whence, by expanding,

R(2)
n = 2n − 2, R(3)

n = 3n − 3 · 2n + 3 .

The general formula follows similarly from expanding therth power in (10) by the
binomial theorem, and then extracting coefficients:

(11) R(r)
n = n! [zn]

r∑

j=0

(
r

j

)
(−1)je(r−j)z =

r∑

j=0

(
r

j

)
(−1)j(r − j)n.

� 4. A direct derivation of the surjection EGF.One can verify the result provided by the sym-
bolic method by returning to first principles. The preimage of value j by a surjection is a
nonempty set of some cardinalitynj ≥ 1, so that

(12) R(r)
n =

X

(n1,n2,...,nr)

 
n

n1, n2, . . . , nr

!
,

the sum being taken overnj ≥ 1, n1 + n2 + · · · + nr = n. Introduce the numbersVn :=
[[n ≥ 1]]. The formula (12) then assumes the simpler form

(13) R(r)
n ≡

X

n1,n2,...,nr

 
n

n1, n2, . . . , nr

!
Vn1Vn2 · · ·Vnr ,

where the summation now extends toall tuples(n1, n2, . . . , nr). The EGF of theVn isV (z) =P
Vnz

n/n! = ez − 1. Thus the convolution relation (13) leads again to (10). �
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Set partitions intor blocks. Let S(r)
n denote the number of ways of partitioning

the set[1 . . n] into r disjoint and nonempty equivalence classes also known asblocks.

We setS(r) =
⋃

n S(r)
n ; the corresponding objects are calledset partitions(the latter

not to be confused with integer partitions examined in Section I. 3). The enumeration
problem for set partitions is closely related to that of surjections. Symbolically, a
partition is determined as a labelledsetof classes (blocks), each of which is a non-
empty urn. Thus, one has

(14) S(r) = SETr{V}, V = SET≥1{Z} =⇒ S(r)(z) =
1

r!
(ez − 1)

r
.

The basic formula connecting the two counting sequences is,in accordance with (10)
and (14),

S(r)
n =

1

r!
R(r)

n

This can be interpreted directly along the lines of the proofof Theorem II.1: anr–
partition is associated with a group of exactlyr! distinctr–surjections, two surjections
belonging to the same group iff one obtains from the other by permuting the range
values,[1 . . r].

The numbersS(r)
n = n![zn]S(r)(z) are known as the Stirling numbers of the sec-

ond kind, or better, the Stirling “partition” numbers. Theywere briefly encountered
in the previous chapter and discussed in connection with encodings by words (Chap-
ter I, p. 59). Knuth, following Karamata, advocated for theS(r)

n the notation
{

n
r

}
.

From (11), an explicit form also exists:

(15) S(r)
n ≡

{
n

r

}
=

1

r!

r∑

j=0

(
r

j

)
(−1)j(r − j)n.

The books by Graham, Knuth, and Patashnik [196] and Comtet [76] contain a thor-
ough discussion of these numbers; see also APPENDIX A: Stirling numbers, p. 624.

All surjections and set partitions.Define now the collection of all surjections
and all set partitions by

R =
⋃

r

R(r), S =
⋃

r

S(r).

ThusRn is the class of all surjections of[1 . . n] ontoany initial segment of the inte-
gers, andSn is the class of all partitions of the set[1 . . n] into anynumber of blocks
(Figure 4). Symbolically, one has

(16)
R = SEQ(SET≥1{Z}) =⇒ R(z) =

1

2 − ez

S = SET(SET≥1{Z}) =⇒ S(z) = eez−1.

The numbersRn = n! [zn]R(z) andSn = n![zn]S(z) are calledsurjection num-
bers (also, “preferential arrangements” numbers,EIS A000670) and Bell numbers
(EIS A000110) respectively. These numbers are well determined by expanding the
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FIGURE 4. A complete listing of all set partitions for sizesn = 1, 2, 3, 4. The corre-
sponding sequence1, 1, 2, 5, 15, . . . is formed of Bell numbers,EISA000110.

EGFs:

R(z) = 1 + z + 3
z2

2!
+ 13

z3

3!
+ 75

z4

4!
+ 541

z5

5!
+ 4683

z6

6!
+ 47293

z7

7!
+ · · ·

S(z) = 1 + z + 2
z2

2!
+ 5

z3

3!
+ 15

z4

4!
+ 52

z5

5!
+ 203

z6

6!
+ 877

z7

7!
+ · · · .

Explicit expressions as finite double sums result from summing Stirling numbers,

Rn =
∑

r≥0

r!

{
n

r

}
, and Sn =

∑

r≥0

{
n

r

}
,

where each Stirling number is itself a sum given by (15). Alternatively, single (though
infinite) sums result from the expansions





R(z) =
1

2

1

1 − 1
2e

z

=
∞∑

ℓ=0

1

2ℓ+1
eℓz

and





S(z) = eez−1 =
1

e
eez

=
1

e

∞∑

ℓ=0

1

ℓ!
eℓz,

from which coefficient extraction yields

Rn =
1

2

∞∑

ℓ=0

ℓn

2ℓ and Sn =
1

e

∞∑

ℓ=0

ℓn

ℓ!
.

The formula for Bell numbers was found by Dobinski in 1877.
The asymptotic analysis of the surjection numbers (Rn) will be performed in

Chapter IV as one of the very first illustrations of complex asymptotic methods (the
meromorphic case); that of Bell’s partition numbers is bestdone by means of the
saddle point method exposed in Chapter IX. The asymptotic forms found are

(17) Rn ∼ n!

2

1

(log 2)n+1
and Sn ∼ n!

eer(n)−1

r(n)
n+1√

2π exp(r(n))
,
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wherer(n) is the positive root of the equationrer = n. One hasr(n) ∼ logn −
log logn, so that

logSn = n (logn− log logn− 1 + o(1)) .

Elementary derivations (i.e., based solely on real analysis) of these asymptotic forms
are also possible as discussed briefly in APPENDIX B: Laplace’s method, p. 639.

The line of reasoning adopted for the enumeration of surjections viewed as sequences-
of-sets and partitions viewed as sets-of-sets yields a general result that is applicable to
a wide variety of constrained objects.

PROPOSITIONII.2. LetR(A,B) be the class of surjections where the cardinalities of
the preimages lie inA ⊆ Z≥1 and the cardinality of the range belongs toB. The
corresponding EGF is

R(A,B)(z) = β(α(z)) where α(z) =
∑

a∈A

za

a!
, β(z) =

∑

b∈B

zb.

Let S(A,B) be the class of set partitions with part sizes inA ⊆ Z≥1 and with a
number of blocks that belongs toB. The corresponding EGF is

S(A,B)(z) = β(α(z)) where α(z) =
∑

a∈A

za

a!
, β(z) =

∑

b∈B

zb

b!
.

PROOF. One has

R(A,B) = SEQB{SETA{Z}} and S(A,B) = SETB{SETA{Z}},
where, as usual, the subscriptX specifies a construction with a number of components
restricted to the integer setX . �

EXAMPLE 6. Smallest and largest blocks in set partitions.Let eb(z) denote the truncated
exponential function,

eb(z) := 1 +
z

1!
+
z2

2!
+ · · ·+ zb

b!
.

The EGFsS〈≤b〉(z) = exp(eb(z) − 1) andS〈>b〉(z) = exp(ez − eb(z)), correspond to
partitions with all blocks of size≤ b and all blocks of size> b, respectively. �

� 5. No singletons.The EGF of partitions without singleton parts iseez−1−z . The EGF of
“double surjections” (each preimage contains at least two elements) is(2 + z − ez)−1. �

EXAMPLE 7. Comtet’s square.An exercise in Comtet’s book [76, Ex. 13, p. 225] serves
beautifully to illustrate the power of the symbolic method.The question is to enumerate set
partitions such that a parity constraint is satisfied by the number of blocks and/or the number of
elements in each block. Then, the EGFs are tabulated as follows:

Set partitions Any # of blocks Odd # of blocks Even # of blocks

Any block sizes eez−1 sinh(ez − 1) cosh(ez − 1)

Odd block sizes esinh z sinh(sinh z) cosh(sinh z)

Even block sizes ecosh z−1 sinh(cosh z − 1) cosh(cosh z − 1)
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The proof is a direct application of Proposition II.2, upon noting that

ez, sinh z, cosh z

are the characteristic EGFs ofZ≥0, 2Z≥0 + 1, and2Z≥0 respectively. The sought EGFs are
then obtained by forming the compositions

(
exp
sinh
cosh

)
◦
( −1 + exp

sinh
−1 + cosh

)
,

in accordance with general principles. �

II. 3.2. Applications to words and random allocations. Numerous enumera-
tive problems present themselves when analysing statistics on letters in words. They
find applications in the study ofrandom allocationsand the design ofhashing algo-
rithms of computer science [353]. Fix an alphabet

X = {a1, a2, . . . , ar}
of cardinalityr, and letW be the class of all words over the alphabetX , the size
of a word being its length. A word of lengthn, w ∈ Wn, is an unconstrained
function from [1 . . n] to [1 . . r], the function associating to each position the value
of the corresponding letter in the word (canonically numbered from 1 to r). For
instance, letX = {a, b, c, d, r} and take the letters ofX canonically numbered as
a1 = a, . . . , a5 = r; for the wordw = ‘abracadabra’, the table giving the position-
to-letter mapping is

(
a b r a c a d a b r a
1 2 3 4 5 6 7 8 9 10 11
1 2 5 1 3 1 4 1 2 5 1

)
,

which is itself determined by its sequence of preimages:

a=a1︷ ︸︸ ︷
{1, 4, 6, 8, 11},

b=a2︷ ︸︸ ︷
{2, 9},

c=a3︷︸︸︷
{5} ,

d=a4︷︸︸︷
{7} ,

r=a5︷ ︸︸ ︷
{3, 10} .

(In this particular case, all preimages are nonempty, but this need not always the case.)
The decomposition based on preimages then gives, withU the class of all urns

(18) W ≃ Ur ≡ SEQr{U} =⇒ W (z) = (ez)r = erz,

which yields backWn = rn, as was to be expected. In summary: words over anr-ary
alphabet are equivalent to functions into a set of cardinality r and are described by an
r-fold labelled product.

For the situation where restrictions are imposed on the number of occurrences of
letters, the decomposition (18) generalizes as follows.

PROPOSITION II.3. Let W(A) denote the family of words such that the number of
occurrences of each letter lies in a setA. Then

(19) W (A)(z) = α(z)r where α(z) =
∑

a∈A

za

a!
.
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The proof is a one-liner:W(A) ∼= SEQr(SETA(Z)). Though this result is tech-
nically a shallow consequence of the symbolic method, it hasseveral important appli-
cations in discrete probability; see [353, Ch. 8] for a discussion along the lines of the
symbolic method.

EXAMPLE 8. Restricted words.The EGF of words containingat mostb times each letter, and
that of words containingmorethanb times each letter are

(20) W〈≤b〉(z) = (eb(z))
r , W〈>b〉(z) = (ez − eb(z))

r ,

respectively. (Observe the analogy with Example 6.) Takingb = 1 in the first formula gives the
number ofn–arrangements ofr elements (i.e., of ordered combinations ofn elements amongstr
possibilities),

(21) n! [zn](1 + z)r = n!

 
r

n

!
= r(r − 1) · · · (r − n+ 1),

as anticipated; takingb = 0, but now in the second formula, gives back the number ofr-
surjections. For generalb, the generating functions of (20) contain valuable information on the
least frequent and most frequent letter in random words. �

EXAMPLE 9. Random allocations (balls-in-bins model).Throw at randomn distinguishable
balls intom distinguishable bins. A particular realization is described by a word of lengthn
(balls are distinguishable, say, as numbers from 1 ton) over an alphabet of cardinalitym (rep-
resenting the bins chosen). Let Min and Max represent the size of the least filled and most filled
bins, respectively. Then4,

(22)
P{Max ≤ b} = n! [zn]eb

“ z
m

”m

P{Max > b} = n! [zn]
“
ez/m − eb

“ z
m

””m

.

The justification of this formula relies on the easy identity

(23)
1

mn
[zn]f(z) ≡ [zn]f(

z

m
),

and on the fact that a probability is determined as the ratio between the number of favourable
cases (given by (20)) and the total number of cases (mn). The formulæ of (22) lend themselves
to evaluation using symbolic manipulations systems; for instance, withm = 100 andn = 200,
one finds forP(Max = k), wherek = 2, 4, 5, . . ., the values:

2 4 5 6 7 8 9 12 15 20
10−55 1.4 · 10−3 0.17 0.46 0.26 0.07 0.01 9.2 · 10−5 2.3 · 10−7 4.7 · 10−10

The valuesk = 5, 6, 7, 8 concentrate about 99% of the probability mass.
An especially interesting case is whenm andn are asymptotically proportional, that is,

n/m = α andα lies in a compact subinterval of(0,+∞). In that case, with probability
tending to 1 asn tends to infinity, one has

Min = 0, Max∼ log n

log log n
.

In other words, there are almost surely empty urns (in fact many of them, see Example 9 in
Chapter III) and the most filled urn grows logarithmically insize. Such probabilistic properties

4We letP(E) represent the probability of an eventE andE(X) the expectation of the random vari-
ableX; cf APPENDIXC: Random variables, p. 657.
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are best established by complex analytic methods (especially the saddle point method detailed in
Chapter VIII) based on exact generating representations like (20) and (22). They form the core
of the reference book [253] by Kolchin, Sevastyanov, and Chistyakov. The resulting estimates
are in turn invaluable in the analysis of hashing algorithms[191, 245, 353] to which the balls-
in-bins model has been recognized to apply with great accuracy [276]. �

� 6. Number of different letters in words.The probability that a random word of lengthn over
an alphabet of cardinalityr containsk different letters is

p
(r)
n,k :=

1

rn

 
r

k

!(
n

k

)
k!

(Choosek letters amongstr, then split then positions intok distinguished nonempty classes.)
The quantityp(r)

n,k is also the probability that a random mapping from[1 . . n] to [1 . . r] has an
image of cardinalityk. �

� 7. Arrangements.An arrangementof sizen is an ordered combination of (some) elements
of [1 . . n]. LetA be the class of all arrangements. Grouping together all the possible elements
not present in the arrangement into an urn shows that a specification and its companion EGF
are

A ≃ U ⋆ P , U = SET{Z}, P = SEQ{Z} =⇒ A(z) =
ez

1− z .

The counting sequenceAn =
Pn

k=0
n!
k!

starts as1, 2, 5, 16, 65, 326, 1957 (EISA000522); see
also Comtet [76, p. 75]. �

� 8. Balls-switching-bins model.There arem distinguishable balls and two bins (also called
“urns”)A andB. At any timet = 1, 2, . . ., one of the balls changes bins. The number of moves
of length2n that start with urnA full (at t = 0) and end with urnA again full (att = 2n) is

(2n)! · [z2n] (cosh(z))m.

[Hint: the EGF enumerates mappings where each preimage has an even cardinality.] From
there, one can generalize to the case whereA contains initiallyk balls and finallyℓ balls.
This is Ehrenfest’s simplified model of heat transfer that isanalysed thoroughly in [193] by
combinatorial methods. �

Birthday paradox and coupon collector problem.The next two examples illus-
trate applications of EGFs to two classical problems of probability theory, thebirthday
paradoxand thecoupon collector problem. Assume that there is a very long line of
persons ready to enter a very large room one by one. Each person is let in and de-
clares her birthday upon entering the room. How many people must enter in order
to find two that have the same birthday? The birthday paradox is the counterintuitive
fact that on average a birthday collision takes place as early asn

.
= 24. Dually, the

coupon collector problem asks for the average number of persons that must enter in
order to exhaust all the possible days in the year as birthdates. In this case, the an-
swer is the rather large numbern′ .

= 2364. The term “coupon collection” alludes
to the situation where images or coupons of various sorts areinserted in sales items
and some premium is given to those who succeed in gathering a complete collection.
The birthday problem and the coupon collector problem are relative to a potentially
infinite sequence of events; however, the fact that the first birthday collision or the
first complete collection occurs at any fixed timen only involves finite events. The
following diagram illustrates the events of interest:
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-

INJECTIVE SURJECTIVE

B (1st collision) C (complete collection)n = 0

n→ +∞/////////////////////////////////

In other words, we seek the time at which injectivityceasesto hold (the first birthday
collision, B) and the time at which surjectivitybeginsto be satisfied (a complete
collection,C). In what follows, we consider a year withr days (readers from earth
may taker = 365) and letX represent an alphabet withr letters (the days in the year).

EXAMPLE 10. Birthday paradox.LetB be the time of the first collision, which is a random
variable ranging between 2 andr+ 1 (where the upperbound derives from the pigeonhole prin-
ciple). A collision has not yet occurred at timen, if the sequence of birthdatesβ1, . . . , βn has
no repetition. In other words, the functionβ from [1, . . n] toX must be injective; equivalently,
β1, . . . , βn is ann-arrangement ofr objects. Thus, we have the fundamental relation

(24)

P {B > n} =
r(r − 1) · · · (r − n+ 1)

rn

=
n!

rn
[zn](1 + z)r

= n! [zn]
“
1 +

z

r

”r

,

where the second line repeats (21) and the third results fromthe series transformation (23).
The expectation of the random variableB is elementarily

(25) E(B) =
∞X

n=0

P {B > n} ,

this by virtue of a general formula valid for all discrete random variables (APPENDIX C: Ran-
dom variables, p. 657). From (24), line 1, this gives us a sum expressing theexpectation,
namely,

E(B) = 1 +
rX

n=1

r(r − 1) · · · (r − n+ 1)

rn
.

For instance, withr = 365, one finds that the expectation is the rational number,

E(B) =
12681 · · · 06674
51517 · · · 40625

.
= 24.61658,

where the denominator comprises as much as 864 digits.
An alternative form of the expectation derives from the generating function involved in (24),

line 3. Letf(z) =
P

n fnz
n be an entire function with nonnegative coefficients. Then the for-

mula

(26)
∞X

n=0

fnn! =

Z ∞

0

e−tf(t) dt,

is valid provided either the sum or the integral on the right converges. The reason is the usual
Eulerian representation of factorials,

n! =

Z ∞

0

e−ttn dt.
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FIGURE 5. A sample realization of the “birthday paradox” and “coupon collection”
with an alphabet ofr = 20 letters. The first collision occurs at timeB = 6 while the
collection becomes complete at timeC = 87.

Applying this principle to (25) with the probabilities given by (24) (third line), one finds

(27) E(B) =

Z ∞

0

e−t

„
1 +

t

r

«r

dt.

This last form is easily amenable to asymptotic analysis andthe Laplace method5 (see APPEN-
DIX B: Laplace’s method, p. 639) provides the estimation

(28) E(B) =

r
πr

2
+

2

3
+O(r−1/2),

asr tends to infinity. For instance, the asymptotic approximation given by the first two terms
of (28) is24.61119, which represents a relative error of only2 · 10−4.

The interest of such integral representations based on generating function is that they are
robust: they adjust naturally to many kinds of combinatorial conditions. For instance, the ex-
pected time necessary for the first occurrence of the event “b persons have the same birthday”
is found to have expectation given by the integral

(29) I(r, b) :=

Z ∞

0

e−teb−1

„
t

r

«r

dt.

(The basic birthday paradox corresponds tob = 2.) The formula (29) was first derived by
Klamkin and Newman in 1967; their paper [231] shows in addition that

I(r, b) ∼
r→∞

b
√
b! Γ

„
1 +

1

b

«
r1−1/b,

where the asymptotic form evaluates to 82.87 forr = 365 andb = 3, while the exact value
of the expectation is 88.73891. Thus three-way collisions also tend to occur much sooner than
one might think, with about 89 persons on average. Globally,such developments illustrate the
versatility of the symbolic approach to many basic probabilistic problems. �

5Knuth [244, Sec. 1.2.11.3] uses this calculation as a pilot example for(real) asymptotic analysis; the
quantityE(B) is related to Ramanujan’sQ-function (see also Eq. (45) below) byE(B) = 1 +Q(r).



108 II. LABELLED STRUCTURES AND EGFS

� 9. The probability distribution of time till a birthday collision. Elementary approximations
show that, for larger, and in the “central” regimen = t

√
r, one has

P(B > t
√
r) ∼ e−t2/2, P(B = t

√
r) ∼ 1√

r
te−t2/2.

The continuous probability distribution with densityte−t2/2 is called aRayleigh distribution.
Saddle point methods (Chapter VIII) may be used to show that for the first occurrence of a

b-fold birthday collision:P(B > tr1−1/b) ∼ e−tb/b!. �

EXAMPLE 11. Coupon collector problem.This problem is dual to the birthday paradox. We
ask for the first timeC whenβ1, . . . , βC contains all the elements ofX , that is, all the possible
birthdates have been “collected”. In other words, the event{C ≤ n} means the equality
between sets,{β1, . . . , βn} = X . Thus, the probabilities satisfy

(30)

P {C ≤ n} =
R

(r)
n

rn
=

r!
˘

n
r

¯

rn

=
n!

rn
[zn] (ez − 1)r

= n![zn]
“
ez/r − 1

”r

,

by our earlier enumeration of surjections. The complementary probabilities are then

P {C > n} = 1− P {C ≤ n} = n![zn]
“
ez −

“
ez/r − 1

”r”
.

An application of the Eulerian integral trick of (27) then provides a representation of the expec-
tation of the time needed for a full collection as

(31) E(C) =

Z ∞

0

“
1− (1− e−t/r)r

”
dt.

A simple calculation (expand by the binomial theorem and integrate termwise) shows that

E(C) = r
rX

j=1

 
r

j

!
(−1)j−1

j
,

which constitutes a first answer to the coupon collector problem in the form of an alternating
sum. Alternatively, in (31), perform the change of variables v = 1 − e−t/r, then expand and
integrate termwise; this process provides the more tractable form

(32) E(C) = rHr,

whereHr is the harmonic number:

Hr = 1 +
1

2
+

1

3
+ · · ·+ 1

r
.

Formula (32) is by the way easy to interpret directly6: one needs on average1 = r/r trials to
get the first day, thenr/(r − 1) to get a different day, etc.

Regarding (32), one has available the well-known formula (by comparing sums with inte-
grals or by Euler-Maclaurin summation),

Hr = log r + γ +
1

2r
+O(r−2), γ

.
= 0.57721 56649,

6Such elementary derivations are very much problem specific:contrary to the symbolic method, they
do not usually generalize to more complex situations.
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whereγ is known as Euler’s constant. Thus, the expected time for a full collection satisfies

(33) E(C) = r log r + γr +
1

2
+O(r−1).

Here the “surprise” lies the nonlinear growth of the expected time for a full collection. For a
year on earth,r = 365, the exact expected value is

.
= 2364.64602 while the approximation

provided by the first three terms of (33) yields2364.64625, representing a relative error of only
one in ten millions.

As usual, the symbolic treatment adapts to a variety of situations, for instance, to multiple
collections. The expected time till each item (birthday or coupon) is obtainedb times (the
standard case corresponds tob = 1) equals the quantity

J(r, b) =

Z ∞

0

“
1−

“
1− eb−1(t/r)e

−t/r
”r”

dt,

an expression that vastly generalizes (31). From there, onefinds [296]

J(r, b) = r (log r + (b− 1) log log r + γ − log(b− 1)! + o(1)) ,

so that only a few more trials are needed in order to obtain additional collections. �

� 10.The little sister.The coupon collector has a little sister to whom he gives his duplicates.
Foata, Lass, and Han [171] show that the little sister misses on averageHr coupons when her
big brother first obtains a complete collection. �

� 11. The probability distribution of time till a complete collection. The saddle point method
(Chapter VIII) may be used to prove that, in the regimen = r log r + tr:

lim
t→∞

P(C ≤ r log r + tr) = e−e−t

.

This continuous probability distribution is known adouble exponential distribution. For the
timeC(b) till a collection of multiplicity b, one has

lim
t→∞

P (C(b) < r log r + (b− 1)r log log r + tr) = exp(−e−t/(b− 1)!),

a property known as the Erdős-Rényi law, which finds applications in the study of random
graphs [117]. �

Words as both labelled and unlabelled objects.What distinguishes a labelled
structure from an unlabelled one? There is nothing intrinsic there, and everything is in
the eye of the beholder—or rather in the type of constructionadopted when modelling
a specific problem. Take the class of wordsW over an alphabet of cardinalityr. The
two generating functions (an OGF and an EGF respectively),

Ŵ (z) ≡
∑

n

Wnz
n =

1

1 − rz
and W (z) ≡

∑

n

Wn
zn

n!
= erz,

leading in both cases toWn = rn, correspond to two different ways of constructing
words: the first one directly as an unlabelled sequence, the other one as a labelled
power of letter positions. A similar situation arises forr–partitions, for which we
found as OGF and EGF,

Ŝ(r)(z) =
zr

(1 − z)(1 − 2z) · · · (1 − rz)
and S(r)(z) =

(ez − 1)r

r!
,

by viewing these either as unlabelled structures (an encoding via words of a regular
language, see Section I.4.3) or directly as labelled structures.
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II. 4. Alignments, permutations, and related structures

In this section, we start by considering specifications built by piling up two con-
structions, sequences-of-cycles and sets-of-cycles respectively. They define a new
class of objects, alignments, while serving to specify permutations in a novel way
as detailed below. (These specifications otherwise parallel surjections and set parti-
tions.) Permutations are in this context examined under their cycle decomposition,
the corresponding enumerative results being the most important ones combinatorially
(Section II. 4.1). In Section II. 4.2, we recapitulate the meaning of classes that can be
defined iteratively by a combination of any two nested labelled constructions.

II. 4.1. Alignments and Permutations. The two specifications under consider-
ation here are

(34) O = SEQ{CYC{Z}}, and P = SET{CYC{Z}},
defining new objects called alignments (O) and an important decomposition of per-
mutations (P).

Alignments. An alignment is a well-labelled sequence of cycles. LetO be the
class of all alignments. Schematically, one can visualize an alignments as a collection
of directed cycles arranged in a linear order, somewhat likeslices of a sausage fastened
on a skewer:

The symbolic method provides,

O = SEQ{CYC{Z}} =⇒ O(z) =
1

1 − log(1 − z)−1
,

and the expansion starts as

O(z) = 1 + z + 3
z2

2!
+ 14

z3

3!
+ 88

z4

4!
+ 694

z5

5!
+ · · · ,

but the coefficients (EIS A007840: “ordered factorizations of permutations into cy-
cles”) appear to admit of no simple form.

Permutations and cycles.From elementary mathematics, it is known that a per-
mutation admits a unique decomposition into cycles. Letσ = σ1 . . . σn be a permu-
tation. Start with any element, say1, and draw a directed edge from 1 toσ(1), then
continue connecting toσ2(1), σ3(1), and so on; a cycle containing 1 is obtained after
at mostn steps. If one repeats the construction, taking at each stagean element not yet
connected to earlier ones, the cycle decomposition of the permutationσ is obtained.
This argument shows that the class of sets-of-cycles (corresponding toP in (34)) is
isomorphic to the class of permutations as defined in SectionII. 1:

P = SET{CYC{Z}} ∼= SEQ{Z}.
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A permutation may be viewed as asetof cycles that are labelled circular digraphs. The diagram
shows the decomposition of the permutation

σ =

„
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
11 12 13 17 10 15 14 9 3 4 6 2 7 8 1 5 16

«
.

(Cycles read here clockwise andi is connected toσi by an edge in the graph.)

FIGURE 6. The cycle decomposition of permutations.

This combinatorial isomorphism is reflected by the obvious series identity

P (z) = exp

(
log

1

1 − z

)
=

1

1 − z
.

The property that exp and log are inverse of one another is an analytic reflex of the
combinatorial fact that permutations uniquely decompose into cycles!

As regards combinatorial applications, what is especiallyfruitful is the variety of
specializations of the construction of permutations from cycles. We state:

PROPOSITION II.4. Let P(A,B) be the class of permutations with cycle lengths in
A ⊆ Z>0 and with a number of cycles that belongs toB ⊆ Z≥0. The corresponding
EGF is

P (A,B)(z) = β(α(z)) where α(z) =
∑

a∈A

za

a
, β(z) =

∑

b∈B

zb

b!
.

EXAMPLE 12. Stirling cycle numbers.The number of permutations of sizen comprised ofr
cycles is determined by the explicit generating function, to the effect that

(35) P (r)
n =

n!

r!
[zn]

„
log

1

1− z

«r

.

These numbers are fundamental quantities of combinatorialanalysis. They are known as the
Stirling numbers of the first kind, or better, according to a proposal of Knuth, theStirling cycle
numbers. Together with the Stirling partition numbers, the properties of the Stirling cycle num-
bers are explored in the book by Graham, Knuth, and Patashnik[196] where they are denoted
by
ˆ
n
r

˜
. See APPENDIX A: Stirling numbers, p. 624. (Note that the number of alignments

formed withr cycles isr!
ˆ
n
r

˜
.) As we shall see shortly (p. 129) Stirling numbers also surface in

the enumeration of permutations by their number of records.
It is also of interest to determine what happens regarding cycles in a random permutation of

sizen. Clearly, when the uniform distribution is placed over all elements ofPn, each particular
permutation has probability exactly1/n!. Since the probability of an event is the quotient of



112 II. LABELLED STRUCTURES AND EGFS

the number of favourable cases over the total number of cases, the quantity

pn,k :=
1

n!

"
n

k

#

is the probability that a random element ofPn hasn cycles. This probabilities can be effectively
determined for moderate values ofn from (35) by means of a computer algebra system. Here
are for instance selected values forn = 100:

k : 1 2 3 4 5 6 7 8 9 10
pn,k : 0.01 0.05 0.12 0.19 0.21 0.17 0.11 0.06 0.03 0.01

.

For this valuen = 100, we expect in a vast majority of cases the number of cycles to be in the
interval [1, 10]. (The residual probability is only about0.005.) Under this probabilistic model,
the mean is found to be about5.18. Thus:A random permutation of size 100 has on average a
little more than 5 cycles; it rarely has more than 10 cycles.

Such procedures demonstrate a direct exploitation of symbolic methods. They do not
however tell us how the number of cycles could depend onn asn varies. Such questions are to
be examined systematically in Chapter III. Here, we shall content ourselves with a brief sketch.
First, form the bivariate generating function,

P (z, u) :=
∞X

r=0

P (r)(z)ur,

and observe that

P (z, u) =
∞X

r=0

ur

r!

„
log

1

1− z

«r

= exp

„
u log

1

1− z

«

= (1− z)−u.

Newton’s binomial theorem then provides

[zn](1− z)−u = (−1)n

 
−u
n

!
.

In other words, a simple formula

(36)
nX

k=0

"
n

k

#
uk = u(u+ 1)(u+ 2) · · · (u+ n− 1)

encodes precisely all the Stirling cycle numbers corresponding to a fixed value ofn. From there,
the expected number of cycles,µn :=

P
k kpn,k is easily found (use logarithmic differentiation

of (36)),

µn = Hn = 1 +
1

2
+ · · ·+ 1

n
.

In particular, one hasµ100 ≡ H100
.
= 5.18738. In general:The mean number of cycles in a

random permutation of sizen grows logarithmically withn, µn ∼ log n. �

EXAMPLE 13. Involutions and permutations without long cycles.A permutationσ is an
involution if σ2 = Id with Id the identity permutation. Clearly, an involution can have only
cycles of sizes1 and2. The classI of all involutions thus satisfies

(37) I = SET{CYC1,2{Z}} =⇒ I(z) = exp

„
z +

z2

2

«
.
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The explicit form of the EGF lends itself to expansion,

In =

⌊n/2⌋X

k=0

n!

(n− 2k)!2kk!
,

which solves the counting problem explicitly. Apairing is an involution without fixed point.
In other words, only cycles of length 2 are allowed, so that

J = SET(CYC2(Z)) =⇒ J(z) = ez2/2, J2n = 1 · 3 · 5 · · · (2n− 1).

(The formula forJn, hence that ofIn, can be checked by a direct reasoning.)
Generally, the EGF of permutations, all of whose cycles (in particular the largest one) have

length at most equal tor satisfies

B(r)(z) = exp

 
rX

j=1

zj

j

!
.

The numbersb(r)
n = [zn]B(r)(z) satisfy the recurrence

(n+ 1)b
(r)
n+1 = (n+ 1)b(r)

n − b(r)
n−r,

by which they can be computed fast. This gives access to the statistics of the longest cycle in a
permutation. �

EXAMPLE 14. Derangements and permutations without short cycles.Classically, a derange-
ment is defined as a permutation without fixed points, i.e.,σi 6= i for all i. Given an integer
r, anr–derangement is a permutation all of whose cycles (in particular the shortest one) have
length larger thanr. LetD(r) be the class of allr–derangements. A specification is

(38) D(r) = SET{CYC>r{Z}},
the corresponding EGF being then

(39) D(r)(z) = exp

 X

j>r

zj

j

!
=

exp(−Pr
j=1

zj

j
)

1− z .

For instance, whenr = 1, a direct expansion yields

D
(1)
n

n!
= 1− 1

1!
+

1

2!
− · · ·+ (−1)n

n!
,

a truncation of the series expansion ofexp(−1) that converges fast toe−1. Phrased differently,
the enumeration of derangements is a famous combinatorial problem with a pleasantly quaint
nineteenth century formulation [76]: “A number n of people go to opera, leave their hats on
hook in the cloakroom and grab them at random when leaving; the probability that nobody gets
back his own hat is asymptotic to1/e, which is nearly 37%”. (The usual proof uses an inclusion-
exclusion argument. Also, it is a sign of changing times thatMotwani and Raghavan [294, p. 11]
describe the problem as one of sailors that return to their ship in state of inebriation and choose
random cabins to sleep in.) For the generalized derangementproblem, there holds

(40)
D

(r)
n

n!
∼ e−Hr ,

(for any fixedr), as can be proved easily by complex asymptotic methods (Chapter IV). �
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All perms Derangements
1

1− z
e−z

1− z

Involutions Pairings

ez+z2/2 ez2/2

Shortest cycle> r

exp
“
− z

1
− z2

2
− · · · − zr

r

”

1− z

Longest cycle≤ r
exp

“
z
1

+ z2

2
+ · · ·+ zr

r

”

FIGURE 7. A summary of major EGFs related to permutations.

Like several other structures that we have been consideringpreviously, permu-
tation allow for transparent connections between structural constraints and the forms
of generating functions. The major counting results encountered in this section are
summarized in Figure 7.

� 12.Permutations such thatσf = Id. Such permutations are “roots of unity” in the symmetric
group. Their EGF is

exp

0
@X

d | f

zd

d

1
A ,

where the sum extends to all divisorsd of f . �

� 13. Parity constraints in permutations.The EGFs of permutations having only even size
cycles (E(z)) or odd size cycles (O(z)) are

E(z) = exp

„
1

2
log

1

1− z2

«
=

1√
1− z2

, O(z) = exp

„
1

2
log

1 + z

1− z

«
=

r
1 + z

1− z .

From the EGFs, one findsE2n = (1 · 3 · 5 · · · (2n− 1))2, O2n = E2n, O2n+1 = (2n +
1)E2n.

The EGFs of permutations having an even number of cycles (E∗(z)) and an odd number
of cycles (O∗(z)) are

E∗(z) = cosh(log
1

1− z ) =
1

2

1

1− z+
1

2
−z

2
, O∗(z) = sinh(log

1

1− z ) =
1

2

1

1− z−
1

2
+
z

2
,

so that parity of the number of cycles is evenly distributed amongst permutations of sizen
as soon asn ≥ 2. The generating functions obtained in this way are analogous to the ones
appearing in the discussion of “Comtet’s square” in the previous section. �

II. 4.2. Second level structures.Consider the three basic constructors of la-
belled sequence (SEQ), set (SET), and cycle (CYC). We can play the formal game
of examining what the various combinations produce as combinatorial objects. Re-
stricting attention to superpositions of two constructors(an external one applied to an
internal one) gives nine possibilities summarized by the following table:
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ext.\int. SEQ≥1 SET≥1 CYC

SEQ

Labelled compositions (L)

SEQ◦SEQ

1− z
1− 2z

Surjections (R)

SEQ◦SET

1

2− ez

Alignments (O)

SEQ◦CYC

1

1− log(1− z)−1

SET

Fragmented permutations (F)

SET◦SEQ

ez/(1−z)

Set partitions (S)

SET◦SET

eez−1

Permutations (P)

SET◦CYC

1

1− z

CYC

Supernecklaces (SI)

CYC ◦SEQ

log
1− z
1− 2z

Supernecklaces (SII)

CYC ◦SET

log(2− ez)−1

Supernecklaces (SIII )

CYC ◦CYC

log
1

1− log(1− z)−1

The classes of surjections, alignments, set partitions, and permutations appear
naturally as SEQ◦ SET, SEQ◦ CYC, SET ◦ SET, and SET ◦ CYC (top right corner).
The other ones represent essentially nonclassical objects. The case ofL corresponding
to SEQ◦ SEQ describes objects that are (ordered) sequences of linear graphs; this can
be interpreted as permutations with separators inserted, e.g,53|264|1, or alternatively
as integer compositions with a labelling superimposed, so thatLn = n! 2n−1. The
classF = SET{SEQ≥1{Z}} corresponds to unordered collections of permutations;
in other words, “fragments” are obtained by breaking a permutation into pieces (pieces
must be nonempty for definiteness). The interesting EGF is

F (z) = ez/(1−z) = 1 + z + 3
z2

2!
+ 13

z3

3
+ 73

z4

4!
+ · · · ,

(EISA000262: “sets of lists”). The corresponding asymptotic analysis serves to illus-
trate an important aspect of the saddle point method in Chapter VIII. What we termed
“supernecklaces” in the last row represents cyclic arrangements of composite objects
existing in three brands.

All sorts of refinements, of which Figure 7 may give an idea, are clearly possible.
We leave to the reader’s imagination the task of determiningwhich amongst the level 3
structures may be of combinatorial interest. . .

� 14.A meta-exercise: Counting specifications of leveln. The algebra of constructions satisfies
the combinatorial isomorphism SET{CYC{X}} ∼= SEQ{X} for all X . How many different
terms involvingn constructions can be built from three symbols CYC,SET, SEQ satisfying
a semi-group law (‘◦’) together with the relation SET◦CYC = SEQ? This determines the
number of specifications of leveln. [Hint: the OGF is rational as normal forms correspond to
words with an excluded pattern.] �

II. 5. Labelled trees, mappings, and graphs

In this section, we consider labelled trees as well as other important structures that
are naturally associated with them, namely mappings and functional graphs on one
side, graphs of small excess on the other side. Like in the unlabelled case considered
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in Section I. 6, the corresponding combinatorial classes are inherently recursive, the
case of trees being typical since a tree is obtained by appending a root to a collection
(set, sequence) of subtrees. From there, it is possible to build the graphs associated
to mappings from a finite set to itself, as these decompose as sets of connected com-
ponents that are cycles of trees. Variations of these construction finally open access
to the enumeration of graphs having a fixed excess of the number of edges over the
number of vertices.

II. 5.1. Trees. The trees to be studied here are invariably labelled, so thatnodes
bear distinct integer labels. Unless otherwise specified, they are rooted, meaning as
usual that one node is distinguished as the root. Labelled trees, like their unlabelled
counterparts, exist in two varieties:(i) plane trees where an embedding in the plane
is understood (or, equivalently, subtrees dangling from a node are ordered, say, from
left to right); (ii) nonplane trees where no such embedding is imposed (such trees are
then nothing but connected directed acyclic graphs with a distinguished root). Trees
may be further restricted by the additional constraint thatthe node outdegrees should
belong to a fixed setΩ ⊆ Z≥0 whereΩ ∋ 0.

Plane labelled trees.We first dispose of the plane variety of labelled trees. Let
A be the set of (rooted labelled) plane trees constrained byΩ. This family is specified
by

A = Z ⋆ SEQΩ{A},
whereZ represents the atomic class consisting of a single labellednode:Z = {1}.
The sequence construction appearing here reflects the planar embedding of trees, as
subtrees stemming from a common root are ordered between themselves. Accord-
ingly, the EGFA(z) satisfies

A(z) = zφ(A(z)) where φ(u) =
∑

ω∈Ω

uω.

This is exactly the same equation as the one satisfied by theordinary GF of Ω-
restrictedunlabelledplane trees (see Proposition I.5). Thus,1

n!An is the number

&
1

2

3

4

5

67

( 3, 2, 5, 1, 7, 4, 6)

FIGURE 8. A labelled plane tree is determined by an unlabelled tree (the “shape”) and
a permutation of the labels1, . . . , n.
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FIGURE 9. There areT1 = 1, T2 = 2, T3 = 9, and in generalTn = nn−1 Cayley trees
of sizen.

of unlabelled trees. In other words:in the plane rooted case, the number of labelled
trees equalsn! times the corresponding number of unrooted trees.As illustrated by
Figure 8, this is easily understood combinatorially: each labelled tree can be defined
by its “shape” that is an unlabelled tree and by the sequence of node labels where
nodes are traversed in some fixed order (preorder, say). Finally, one has, by Lagrange
inversion,

An = n![zn]A(z) = (n− 1)![un−1]φ(u)n.

This simple analytic–combinatorial relation enables us totranspose all of the enumer-
ative results of Section I.5.1 to plane labelled trees (uponmultiplying the evaluations
byn!, of course). In particular, the total number of “general” plane labelled trees (with
no degree restriction imposed, i.e.,Ω = Z≥0) is

n! × 1

n

(
2n− 2

n− 1

)
=

(2n− 2)!

(n− 1)!
= 2n−1 (1 · 3 · · · (2n− 3)) .

The corresponding sequence starts as1, 2, 12, 120, 1680 and isEISA001813.

Nonplane labelled trees.We next turn to labelled nonplane trees (Figure 9) to
which the rest of this section will be devoted. The classT of all such trees is definable
by a symbolic equation, which provides an implicit equationsatisfies by the EGF:

(41) T = Z ⋆ SET{T } =⇒ T (z) = zeT (z).

There the set construction translates the fact that subtrees stemming from the root are
not ordered between themselves. From the specification (41), the EGFT (z) is defined
implicitly by the “functional equation”

(42) T (z) = zeT (z).

The first few values are easily found, for instance by the method of indeterminate
coefficients,

T (z) = z + 2
z2

2!
+ 9

z3

3!
+ 64

z4

4!
+ 625

z5

5!
+ · · · .

As suggested by the first few coefficients(9 = 32, 64 = 43, 625 = 54), the general
formula is

(43) Tn = nn−1

which is established (like in the case of plane unlabelled trees, Chapter I) by the La-
grange Inversion Theorem (see APPENDIX A: Lagrange Inversion, p. 621).
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The enumerative resultTn = nn−1 is a famous one, attributed to the prolific
British mathematician Arthur Cayley (1821–1895) who had keen interest in combina-
torial mathematics and published altogether over 900 papers and notes. Consequently,
formula (43) given by Cayley in 1889 is often referred to as “Cayley’s formula” and
unrestricted nonplane labelled trees are often called “Cayley trees”. See [48, p. 51] for
a historical discussion. The functionT (z) is also known as the (Cayley) “tree func-
tion”; it is a close relative of theW–function [77] defined implicitly byWeW = z,
which was introduced by the Swiss mathematician Johann Lambert (1728–1777) oth-
erwise famous for first proving the irrationality of the numberπ.

A similar process gives the number of (nonplane rooted) trees where all (out)degrees
of nodes are restricted to lie in a setΩ. This corresponds to the specification:

T (Ω) = Z ⋆ SETΩ{T (Ω)} =⇒ T (Ω)(z) = zφ(T (Ω)(z)) whereφ(u) =
∑

ω∈Ω

uω

ω!
.

What the last formula involves is the “exponential characteristic” of the degree se-
quence (as opposed to the ordinary characteristic, in the planar case). It is once more
amenable to Lagrange inversion. In summary:

PROPOSITIONII.5. The number of rooted nonplane trees, where all nodes have their
outdegree inΩ, is

T (Ω)
n = (n− 1)![un−1](φ(u))n where φ(u) =

∑

ω∈Ω

uω

ω!
.

In particular, when all node degrees are allowed (Ω ≡ Z≥0), the number of trees is
Tn = nn−1 and its EGF is the Cayley tree function satisfyingT (z) = zeT (z).

� 15. Prüfer’s bijective proofs of Cayley’s formula.The simplicity of Cayley’s formula calls
for a combinatorial explanation. The most famous one is due to Prüfer (in 1918). It establishes
as follows a bijective correspondence between unrooted Cayley trees whose number isnn−2 for
sizen and sequences(a1, . . . , an−2) with 1 ≤ aj ≤ n for eachj. Given an unrooted treeτ ,
remove the endnode (and its incident edge) with the smallestlabel; leta1 denote the label of
the node that was joined to the removed node. Continue with the pruned treeτ ′ to geta2 in a
similar way. Repeat the construction of the sequence until the tree obtained only consists of a
single edge. For instance:

1

3

7

4 8
2

5

6

−→ (4, 8, 4, 8, 8, 4).

It can be checked that the correspondence is bijective; see [48, p. 53] or [289, p. 5]. �

� 16.Forests.The number of unorderedk–forests (i.e.,k–sets of trees) is

F (k)
n = n![zn]

(T (z))k

k!
=

(n− 1)!

(k − 1)!
[un−k](eu)n =

 
n− 1

k − 1

!
nn−k,

as follows from Bürmann’s form of Lagrange inversion. �
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� 17. Labelled hierarchies. The classL of labelled hierarchies is formed of trees whose
internal nodes are unlabelled and are constrained to have outdegree larger than 1, while leaves
have labels attached to them. Like for other labelled structure, size is the number of labels (so
that internal nodes do not contribute). Hierarchies satisfy the specification

L = Z + SET≥2{L}, =⇒ L = z + eL − 1− L.
This happens to be solvable in terms of the Cayley function:L(z) = T ( 1

2
ez/2−1/2) + z

2
− 1

2
.

The first few values are0, 1, 4, 26, 236 (EISA000311): these numbers count phylogenetic trees
(used to describe the evolution of a genetically related group of organisms) and correspond to
Schröder’s “fourth problem”; see [76, p. 224] and Section I.5.2 for unlabelled analogues.

The class of binary (labelled) hierarchies defined by the additional fact that internal nodes
can have degree 2 only is expressed by

M = Z + SET2{M} =⇒ M(z) = 1−
√

1− 2z and Mn = 1 · 3 · · · (2n− 3),

where the counting numbers are now the odd factorials. �

II. 5.2. Mappings and functional graphs. Let F be the class of mappings (or
“functions”) from [1 . . n] to itself. A mappingf ∈ [1 . . n] 7→ [1 . . n] can be repre-
sented by a directed graph over the set of vertices[1 . . n] with an edge connectingx
to f(x), for all x ∈ [1 . . n]. The graphs so obtained are calledfunctional graphsand
they have the characteristic property that the outdegree ofeach vertex is exactly equal
to 1.

Mappings and functional graphs.Given a mapping (or function)f , upon start-
ing from any pointx0, the succession of (directed) edges in the graph traverses the
vertices corresponding to iterated values of the mapping,

x0, f(x0), f(f(x0)), . . . .

Since the domain is finite, each such sequence must eventually loop on itself. When
the operation is repeated starting each time from an elementnot previously hit, the
vertices group themselves into components. This leads to another characterization
of functional graphs (Figure 10):A functional graph is a set of connected functional
graphs. A connected functional graph is a collection of rooted trees arranged in a
cycle.

26
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FIGURE 10. A functional graph of sizen = 26 associated to the mappingϕ such that
ϕ(1) = 16, ϕ(2) = ϕ(3) = 11, ϕ(4) = 23, and so on.
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Thus, withT being as before the class of all Cayley trees, and withK the class of
all connected functional graphs, we have the specification:

(44)






F = SET{K}
K = CYC{T }
T = Z ⋆ SET{T }

=⇒






F (z) = eK(z)

K(z) = log
1

1 − T (z)

T (z) = zeT (z).

What is especially interesting here is a specification binding three types of related
structures. From Equation (44), the EGFF (z) is found to satisfyF = (1 − T )−1. It
can be checked from there, by Lagrange inversion once again,that we have

Fn = nn,

as was to be expected (!) from the origin of the problem. More interestingly, Lagrange
inversion also provides for the number of connected functional graphs (expandlog(1−
T )−1 and recover coefficients by Bürmann’s form):

(45) Kn = nn−1Q(n) where Q(n) := 1 +
n− 1

n
+

(n− 1)(n− 2)

n2
+ . . . .

The quantityQ(n) that appears in (45) is a famous one that surfaces in many prob-
lems of discrete mathematics (including the birthday paradox, Equation (27)). Knuth
has proposed to call it “Ramanujan’sQ–function” as it already appears in the first let-
ter of Ramanujan to Hardy in 1913. The asymptotic analysis can be done elementarily
by developing a continuous approximation of the general term and approximating the
resulting Riemann sum by an integral: this is an instance of the Laplace method for
sums briefly explained in APPENDIX B: Laplace’s method, p. 639. (See also [244,
Sec. 1.2.11.3] and [353, Sec. 4.7].) In fact, very precise estimates come out naturally
from an analysis of the singularities of the EGFK(z), as we shall see in Chapters VI
and VII. The net result is

Kn ∼ nn

√
π

2n
,

so that a fraction about1/
√
n of all the graphs consist of a single component.

Constrained mappings.As is customary with the symbolic method, the construc-
tions (44) also lead to a large number of related counting results. First, the mappings
without fixed points, ((∀x) f(x) 6= x) and those without1, 2–cycles, (additionally,
(∀x) f(f(x)) 6= x), have EGFs

e−T (z)

1 − T (z)
,

e−T (z)−T 2(z)/2

1 − T (z)
.

The first equation is consistent with what a direct count yields, namely(n − 1)n,
which is asymptotic toe−1nn, so that the fraction of mappings without fixed point is
asymptotic toe−1. The second one lends itself easily to complex-asymptotic methods
that give

n![zn]
e−T−T 2/2

1 − T
∼ e−3/2nn,
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and the proportion is asymptotic toe−3/2. These two particular estimates are of the
same form as what has been found for permutations (the generalized derangements,
Eq. (40)). Such facts that are not quite obvious by elementary probabilistic arguments
are in fact neatly explained by the singular theory of combinatorial schemas developed
in Part B of this book.

Next, idempotent mappings satisfyingf(f(x)) = f(x) for all x correspond to
I ∼= SET{Z ⋆ SET{Z}}, so that

I(z) = ezez

and In =
n∑

k=0

(
n

k

)
kn−k.

(The specification translates the fact that idempotent mappings can have only cycles
of length 1 on which are grafted sets of direct antecedents.)The latter sequence
is EIS A000248, which starts as 1,1,3,10,41,196,1057. An asymptotic estimate can
be derived either from the Laplace method or, better, from the saddle point method
exposed in Chapter VIII.

Several analyses of this type are of relevance to cryptography and the study of
random number generators. For instance, the fact that a random mapping over[1 . . n]
tends to reach a cycle inO(

√
n) steps led Pollard to design a Monte Carlo integer

factorization algorithm, see [245, p. 371] and [353, Sec 8.8]. The algorithm once
suitably optimized first led to the factorization of the Fermat numberF8 = 228

+ 1
obtained by Brent in 1980.
� 18.Binary mappings.The classBF of binary mappings, where each point has either 0 or 2
preimages, is specified by

BF = SET{K}, K = CYC{P}, P = Z ⋆ B, B = Z ⋆ SET0,2{B}
(planted treesP and binary treesB are needed), so that

BF (z) =
1√

1− 2z2
, BF2n =

((2n)!)2

2n(n!)2
.

The classBF is an approximate model of the behaviour of (modular) quadratic functions under
iteration. See [13, 152] for a general enumerative theory of random mappings including degree-
restricted ones. �

� 19. Partial mappings. A partial mapping may be undefined at some points, where it can
be considered as taking a special value,⊥. The iterated preimages of⊥ form a forest, while
the remaining values organize themselves into a standard mapping. The classPF of partial
mappings is thus specified byPF = SET{T } ⋆ F , so that

PF (z) =
eT (z)

1− T (z)
and PFn = (n+ 1)n.

This construction lends itself to all sorts of variations. For instance, the classPFI of injective
partial maps is described as sets of chains of linear and circular graphs,PFI = SET{CYC{Z}+
SEQ≥1{Z}}, so that

PFI(z) =
1

1− z e
z/(1−z), PFIn =

nX

i=0

i!

 
n

i

!2

(This is a symbolic rewriting of part of the paper [53].) �

The symbolic method thus gives access to a wide variety of counting results rela-
tive to maps satisfying diverse constraints. A summary is offered in Figure 11.



122 II. LABELLED STRUCTURES AND EGFS

All mappings
1

1− T

Partial

eT

1− T

Injective partial
1

1− z e
z/(1−z)

Surjection
1

2− ez

Bijection
1

1− z
Connected (K)

log
1

1− T

No fixed point

e−T

1− T

Involution

ez+z2/2

Idempotent

ezez

Binary
1√

1− 2z2

FIGURE 11. A summary of various counting EGFs relative to mappings.

II. 5.3. Labelled graphs. Random graphs form a major chapter of the theory of
random discrete structures [51, 225]. We examine here enumerative results concerning
graphs of low “complexity”, that is, graphs which are very nearly trees. (Such graph
for instance play an essential rôle in the analysis of earlystages of the evolution of a
random graph, when edges are successively added, as shown in[148, 224].)

Unrooted trees and acyclic graphs.The simplest of all connected graphs are
certainly the ones that are acyclic. These are trees, but contrary to the case of Cayley
trees, no root is specified. LetU be the class of allunrootedtrees. Since a rooted tree
(rooted trees are, as we know, counted byTn = nn−1) is an unrooted tree combined
with a choice of a distinguished node (there aren possible such choices for trees of
sizen), one has

Tn = nUn implying Un = nn−2.

At generating function level, this combinatorial equalitytranslates into

U(z) =

∫ z

0

T (w)
dw

w
,

which integrates to give (takeT as the independent variable)

U(z) = T (z)− 1

2
T (z)2.

SinceU(z) is the EGF of acyclic connected graphs, the quantity

A(z) = eU(z) = eT (z)−T (z)2/2,

is the EGF of all acyclic graphs. (Equivalently, these are unordered forests of un-
rooted trees.) Methods developed in Chapters VI and VII imply the estimateAn ∼
e1/2 nn−2. Surprisingly, perhaps, there are barely more acyclic graphs than unrooted
trees—such phenomena are easily explained by singularity analysis.

Unicyclic graphs. Theexcessof a graph is defined as the difference between the
number of edges and the number of vertices. For a connected graph, this is always
−1 or more with the minimal value−1 being precisely attained by unrooted trees.
The classWk is the class of connected graphs of excess equal tok; in particular
U = W−1. The successive classesW−1,W0,W1, . . ., may be viewed as describing
connected graphs of increasing complexity.

The classW0 comprises all connected graphs with the number of edges equal
to the number of vertices. Equivalently, a graph inW0 is a connected graph with
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exactly one cycle (a sort of “eye”), and for that reason, elements ofW0 are sometimes
referred to as “unicyclic components” or “unicycles”. In a way, such a graph looks
very much like an undirected version of a connected functional graph. Precisely, a
graph ofW0 consists of a cycle of length at least 3 (by definition, graphshave neither
loops nor multiple edges) that is undirected (the orientation present in the usual cycle
construction is killed by identifying cycles isomorphic upto reflection) and on which
are grafted trees (these are implicitly rooted by the point at which they are attached
to the cycle). With UCYC representing the (new) undirected cycle construction, one
thus has

W0
∼= UCYC≥3{T }.

We claim that this construction is reflected by the EGF equation

(46) W0(z) =
1

2
log

1

1 − T (z)
− 1

2
T (z)− 1

4
T (z)2.

Indeed one has the isomorphism

W0 + W0
∼= CYC≥3{T },

since we may regard the two disjoint copies on the left as instantiating two possible
orientations of the undirected cycle. The result of (46) then follows from the usual
translation of the cycle construction. It is originally dueto the Hungarian probabilist
Rényi in 1959. Asymptotically, one finds (by methods of Chapter VI):

(47) n![zn]W0 ∼ 1

4

√
2πnn−1/2 − 5

3
nn−1 +

1

48

√
2πnn−3/2 + · · · .

Finally, the number of graphs made only of trees and unicyclic components is

eW−1(z)+W0(z) =
eT/2−3T 2/4

√
1 − T

,

and asymptotically:n![zn]eW−1+W0 ∼ Γ(3/4)2−1/4e−1/2π−1/2nn−1/4. Such graphs
stand just next to acyclic graphs in order of structural complexity. They are the undi-
rected counterparts of functional graphs encountered in the previous section.

� 20. 2-Regular graphs.This is based on Comtet’s account [76, Sec. 7.3]. A 2–regular graph
is an undirected graph in which each vertex has degree exactly 2. Connected 2–regular graphs
are thus undirected cycles of lengthn ≥ 3, so that the EGF of all 2–regular graphs is

R(z) =
e−z/2−z2/4

√
1− z .

Givenn straight lines in general position, a cloud is defined to be a set ofn intersection points
no three being collinear. Clouds and 2–regular graphs are equinumerous. [Hint: Use duality.]

The general enumeration ofr–regular graphs becomes somewhat more difficult as soon
asr > 2. Algebraic aspects are discussed in [184, 192] while Bender and Canfield [29] have
determined the asymptotic formula (forrn even),

R(r)
n ∼

√
2e(r

2−1)/4 rr/2

er/2r!
nrn/2,

for the number ofr–regular graphs of sizen. �
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Unrooted trees U ≡ W−1 = T − T 2/2 Un = nn−2

Acyclic gr. (forests) A = eT−T2/2 An ∼ e1/2nn−2

Unicycles W0 = 1
2

log 1
1−T
− T

2
− T2

4
W0,n ∼ 1

4

√
2πnn−1/2

Trees + unicycles B =
eT/2−3T2/4

√
1− T Bn ∼ Γ(

3

4
)
2−1/4

√
πe

nn−1/4

Conn. excessk Wk =
Pk(T )

(1− T )3k
Wk,n ∼ Pk(1)

√
2π

23k/2Γ( 3
4
k)
nn+(3k−1)/2

FIGURE 12. A summary of major enumeration results relative to labelledgraphs of
small excess.

Graphs of fixed excess.The previous discussion suggests considering more gen-
erally the enumeration of connected graphs according to excess. E. M. Wright made
important contributions in this area [413, 414, 415] that are revisited in the famous
“giant paper on the giant component” by Janson, Knuth, Łuczak, and Pittel [224].
Wright’s result are summarized by the following proposition.

PROPOSITIONII.6. The EGFWk(z) of connected graphs with excess (of edges over
vertices) equal tok is, for k ≥ 1, of the form

(48) Wk(z) =
Pk(T )

(1 − T )3k
, T ≡ T (z),

wherePk is a polynomial of degree3k + 2. For any fixedk, asn→ ∞, one has

(49) Wk,n = n![zn]Wk(z) =
Pk(1)

√
2π

23k/2Γ
(

3
2k
)nn+(3k−1)/2

(
1 +O(n−1/2)

)
.

The combinatorial part of the proof (see Note 21 below) is an interesting exercise
in graph surgeryand symbolic methods. The analytic part of the statement follows
straightforwardly from singularity analysis. The polynomialsP (T ) and the constants
Pk(1) are determined by an explicit nonlinear recurrence; one finds for instance:

W1 =
1

24

T 4(6 − T )

(1 − T )3
, W2 =

1

48

T 4(2 + 28T − 23T 2 + 9T 3 − T 4)

(1 − T )6
.

� 21.Wright’s surgery.The full proof of Proposition II.6 by symbolic methods requires the no-
tion of pointing in conjunction with multivariate generating function techniques of Chapter III.
It is convenient to definewk(z, y) := ykWk(zy), which is a bivariate generating function
with y marking the number of edges. Pick up an edge in a connected graph of excessk + 1,
then remove it. This results either in a connected graph of excessk with two pointed vertices
(and no edge in between) or in two connected components of respective excessh andk − h,
each with a pointed vertex. Graphically:

= +
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This translates into the differential recurrence on thewk (∂x := ∂
∂x

),

2∂ywk+1 =
`
z2∂2

zwk − 2y∂ywk

´
+

k+1X

h=−1

(z∂zwh) · (z∂zwk−h) ,

and similarly forWk(z) = wk(z, 1). From there, it can be verified by induction that eachWk

is a rational function ofT ≡ W−1. (See Wright’s original papers [413, 414, 415] or [224] for
details.) �

As explained in the giant paper [224], such results combined with complex ana-
lytic techniques provide with great detail information on the aspect of a random graph
Γ(n,m) with n nodes andm edges. In the sparse case wherem is of the order ofn,
one finds the following properties to hold “with high probability” (w.h.p.)7, that is,
with probability tending to 1 asn→ ∞ .

• Form = µn, with µ < 1
2 , the random graphΓ(m,n) has w.h.p. only tree

and unicycle components; the largest component is w.h.p. ofsizeO(log n).
• For m = 1

2n + O(n2/3), w.h.p. there appear one or several semi-giant
components that have sizeO(n2/3).

• Form = µn, with µ > 1
2 , there is w.h.p. a unique giant component of size

proportional ton.

In each case, refined estimates follow from a detailed analysis of corresponding gen-
erating functions, which is a main theme of [148] and especially [224]. Raw forms
of these results were first obtained by Erdős and Rényi who launched the subject in a
famous series of papers dating from 1959–60; see the books [51, 225] for a probabilis-
tic context and the paper [30] for the finest counting estimates available. In contrast,
the enumeration ofall connected graphs (irrespective of the number of edges, thatis,
without excess being taken into account) is a relatively easy problem treated in the
next section. Many other classical aspects of the enumerative theory of graphs are
covered in the bookGraphical Enumerationby Harary and Palmer [206].

II. 6. Additional constructions

Like in the unlabelled case, pointing and substitution are available in the world
of labelled structures (Section II. 6.1), and implicit definitions enlarge the scope of
the symbolic method (Section II. 6.2). The inversion process needed to enumerate
implicit structures is even simpler, since in the labelled universe sets and cycles have
more concise translations as operators over EGF. Finally, and this departs significantly
from Chapter I, the fact that integer labels are naturally ordered makes it possible to
take into account certain order properties of combinatorial structures (Section II. 6.3).

II. 6.1. Pointing and substitution. The pointing operation is entirely similar to
its unlabelled counterpart since it consists in distinguishing one atom amongst all the
ones that compose an object of sizen. The definition of composition for labelled

7Synonymous expressions are “asymptotically almost surely” (a.a.s) and “in probability”. The term
“almost surely” is sometimes used, though it lends itself toconfusion with properties of continuous
measures.
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structures is however a bit more subtle as it requires singling out “leaders” in sub-
stituends.

Pointing. Thepointingof a classB is defined by

A = ΘB iff An = [1 . . n]× Bn.

In other words, in order to generate an element ofA, select one of then labels and
point at it. Clearly

An = n · Bn =⇒ A(z) = z
d

dz
B(z).

Substitution (composition).The compositionor substitutioncan be defined so
that it correspondsa priori to composition of generating functions. It is formally
defined as

B ◦ C =

∞∑

k=0

Bk × SETk{C},

so that its EGF is
∞∑

k=0

Bk
(C(z))k

k!
= B(C(z)).

A combinatorial way of realizing this definition and form an arbitrary object ofB ◦ C,
is as follows. First select an element ofβ ∈ B called the “base” and letk = |β| be
its size; then pick up ak–set ofCk; the elements of thek–set are naturally ordered
by value of their “leader” (the leader of an object being by convention the value of
its smallest label); the element with leader of rankr is then substituted to the node
labelled by valuer of β.

THEOREM II.3. The combinatorial constructions of pointing and substitution are ad-
missible.

A = ΘB =⇒ A(z) = z∂zB(z), ∂z ≡ d

dz

A = B ◦ C =⇒ A(z) = B(C(z)).

For instance, the EGF of (relabelled) pairings of elements drawn fromC is

eC(z)+C(z)2/2,

since the EGF of involutions isez+z2/2.

� 22.Standard constructions based on substitutions.The sequence class ofA may be defined
by composition asP ◦ A whereP is the set of all permutations. The set class ofA may be
defined asU ◦ A whereU is the class of all urns. Similarly, cycles are obtained by substitution
into circular graphs. Thus,

SEQ(A) ∼= P ◦ A, SET(A) ∼= U ◦ A, CYC(A) ∼= C ◦ A.
In this way, permutation, urns and circle graphs appear as archetypal classes in a development
of combinatorial analysis based on composition. (Joyal’s “theory of species” [227] and the
book by Bergeron, Labelle, and Leroux [36] make a great use of such ideas and show that an
extensive theory of combinatorial enumeration can be basedon the concept of substitution.)�
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� 23.Distinct component sizes.The EGFs of permutations with cycles of distinct lengths and
of set partitions with parts of distinct sizes are

∞Y

n=1

(1 +
zn

n
),

∞Y

n=1

(1 +
zn

n!
).

The probability that a permutation ofPn has distinct cycle sizes tends toe−γ ; see [197,
Sec. 4.1.6] for a Tauberian argument and [323] for precise asymptotics. The corresponding
analysis for set partitions is treated in the seven author paper [233]. �

II. 6.2. Implicit structures. Let X be a labelled class implicitly defined by ei-
ther of the equations

A = B + X , A = B ⋆ X .
Then, solving the corresponding EGF equations leads to

X(z) = A(z) −B(z), X(z) =
A(z)

B(z)
,

respectively. For the composite labelled constructions SEQ,SET,CYC, the algebra is
equally easy.

THEOREM II.4 (Implicit specifications).The generating functions associated to the
implicit equations inX

A = SEQ(X ), A = SET(X ), A = CYC(X ),

are respectively

X(z) = 1 − 1

A(z)
, X(z) = logA(z), X(z) = 1 − e−A(z).

EXAMPLE 15. Connected graphs.In the context of graphical enumerations, the labelled
set construction takes the form of an enumerative formula relating a class of graphsG and the
subclass of its connected graphsK ⊂ G:

G = SET(K) =⇒ G(z) = eK(z).

This basic formula is known in graph theory [206] as theexponential formula.
Consider the classG of all (undirected) labelled graphs, the size of a graph being the

number of its nodes. Since a graph is determined by the choiceof its set of edges, there are
`

n
2

´

potential edges each of which may be taken in or out, so thatGn = 2(
n
2). LetK ⊂ G be the

subclass of all connected graphs. The exponential formula determinesK(z) implicitly,

K(z) = log

„
1 +

X

n≥1

2(
n
2) z

n

n!

«

= z +
z2

2!
+ 4

z3

3!
+ 38

z4

4!
+ 728

z5

5!
,

where the sequence isEIS A001187. The series is divergent, that is, it has radius of conver-
gence 0. It can nonetheless be manipulated as a formal series(APPENDIX A: Formal power
series, p. 620). Expanding by means oflog(1 + u) = u − u2/2 + · · · , yields a complicated
convolution expression forKn:

Kn = 2(
n
2) − 1

2

X 
n

n1, n2

!
2(

n1
2 )+(n2

2 ) +
1

3

X 
n

n1, n2, n3

!
2(

n1
2 )+(n2

2 )+(n3
2 ) − · · · .
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(Thekth term is a sum overn1 + · · ·+nk = n, with 0 < nj < n.) Given the very fast increase
of Gn with n, for instance

2(
n+1

2 ) = 2n 2(
n
2),

a detailed analysis of the various terms of the expression ofKn shows predominance of the first
sum, and, in that sum itself, predominance of the extreme terms corresponding ton1 = n − 1
or n2 = n− 1, so that

(50) Kn = 2(
n
2)
`
1− 2n2−n + o(2−n)

´
.

Thus, almost all labelled graphs of sizen are connected. In addition, the error term decreases
very fast: for instance, forn = 18, an exact computation based on the generating function for-
mula reveals that a proportion only0.0001373291074 of all the graphs are not connected—this
is extremelyclose to the value0.0001373291016 predicted by the main terms in the asymptotic
formula (50). Notice that here good use could be made of a purely divergent generating function
for asymptotic enumeration purposes. �

� 24. Bipartite graphs.A plane bipartite graph is a pair(G,ω) whereG is a labelled graph,
ω = (ωW , ωE) is a bipartition of the nodes (intoWestandEastcategories), and the edges are
such that they only connect nodes fromωW to nodes ofωE. A direct count shows that the EGF
of plane bipartite graphs is

Γ(z) =
X

n

γn
zn

n!
with γn =

X

k

 
n

k

!
2k(n−k).

The EGF of plane bipartite graphs that are connected islog Γ(z).
A bipartite graph is a labelled graph whose nodes can be partitioned into two groups so

that edges only connect nodes of different groups. The EGF ofbipartite graphs is

exp

„
1

2
log Γ(z)

«
=
p

Γ(z).

[Hint. The EGF of a connected bipartite graph is1
2

log Γ(z) as a factor of1
2

kills the East–
West orientation present in a connected plane bipartite graph. See Wilf’s book [406, p. 78] for
details.] �

Note.The class of all graphs is not fully constructible in the sense that it does not
admit a complete construction starting from single atoms and involving only sums,
products, sets and cycles. In a sense, it is too “large” to be constructible. This assertion
is established rigorously by complex analysis since EGFs ofconstructible classes must
have a nonzero radius of convergence, as proved in Chapter IV.

II. 6.3. Order constraints. A construction well suited to taking into account
many order properties of combinatorial structures is the modified labelled product,

A = (B2 ⋆ C).

This denotes the subset of the productB ⋆C formed with elements such that the small-
est label is constrained to lie in theB component. (To make this definition consistent,
it must be assumed thatB0 = 0.) We call this binary operation on structures theboxed
product.

THEOREM II.5. The boxed product is admissible.

(51) A = (B2 ⋆ C) =⇒ A(z) =

∫ z

0

(∂tB(t)) · C(t) dt, ∂t ≡
d

dt
.
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PROOF. The definition of boxed products implies the coefficient relation

An =

n∑

k=1

(
n− 1

k − 1

)
BkCn−k.

The binomial coefficient that appears in the standard labelled product is now modified
since onlyn − 1 labels need to be distributed between the two components,k − 1
going to theB component (that is constrained to contain the label1 already) andn−k
to theC component. From the equivalent form

An

n!
=

1

n

n∑

k=0

(
n

k

)
(kBk)Cn−k,

the result follows by taking EGFs. �

A useful special case is the min–rooting operation,

A = {1}2 ⋆ C,
for which a variant definition goes as follows. Take in all possible ways elements
γ ∈ C, prepend an atom with a label smaller than the labels ofγ, for instance0, and
relabel in the canonical way over[1 . . (n+1)] by shifting all label values by 1. Clearly
An+1 = Cn which yields

A(z) =

∫ z

0

C(t) dt,

a result also consistent with the general formula of boxed products.
For some applications, it is easier to impose constraints onthe maximal label

rather than the minimum. The max-boxed product written

A = (B� ⋆ C),

is then defined by the fact the maximum is constrained to lie intheB-component of
the labelled product. Naturally, the translation by an integral in (51) remains valid for
this trivially modified boxed product.
� 25.Combinatorics of integration.In the perspective of this book, integration by parts has an
immediate interpretation. Indeed, the equality,Z z

0

A′(t) ·B(t) dt = A(z) ·B(z)−
Z z

0

A(t) ·B′(t) dt,

reads off as:“The smallest label in an ordered pair, if it appears on the left, cannot appear on
the right.” �

EXAMPLE 16. Records in permutations.Given a sequence of numerical data,x = (x1, . . . , xn)
assumed all distinct, arecord in that sequence is defined to be an elementxj such thatxk < xj

for all k < j. (A record is an element “better” than its predecessors!) Figure 13 displays a
numerical sequence of lengthn = 100 that has 7 records. Confronted to such data, a statisti-
cian will typically want to determine whether the data obey purely random fluctuations or there
could be some indications of a “trend” or of a “bias” [83, Ch. 10]. (Think of the data as reflect-
ing share prices or athletic records, say.) In particular, if thexj are independently drawn from a
continuous distribution, then the number of records obeys the same laws as in a random permu-
tation of [1 . . n]. This statistical preamble then invites the question:How many permutations
of n havek records?
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2.5

0 20 40 60 80 100

FIGURE 13. A numerical sequence of size 100 with records marked by circles: there
are 7 records that occur at times1, 3, 5, 11, 60, 86, 88.

First, we start with a special brand of permutations, the ones that have theirmaximumat
the beginning. Such permutations are defined as (‘�’ indicates the boxed product based on the
maximum label)

Q = (Z� ⋆ P),

whereP is the class of all permutations. Observe that this gives theEGF

Q(z) =

Z z

0

„
d

dt
t

«
· 1

1− t dt = log
1

1− z ,

implying the obvious resultQn = (n− 1)! for all n ≥ 1. These are exactly the permutations
with onerecord. Next, consider the class

P(k) = SETk(Q).

The elements ofP(k) are unordered sets of cardinalityk with elements of typeQ. Define
the (max) leader of any component ofP(k) as the value of its maximal element. Then, if we
place the components in sequence, ordered by increasing values of their leaders, then read off
the whole sequence, we obtain a permutation withk records exactly. The correspondence8 is
clearly revertible. Here is an illustration, with leaders underlined:

{(7, 2, 6, 1), (4, 3), (9, 8, 5)} ∼= [(4, 3), (7, 2, 6, 1), (9, 8, 5))]

∼= 4, 3, 7, 2, 6, 1, 9, 8, 5.

Thus, the number of permutations withk records is determined by

P (k)(z) =
1

k!

„
log

1

1− z

«k

, P (k)
n =

"
n

k

#
,

where we recognize Stirling cycle numbers from Example 12. In other words:

The number of permutations of sizen havingk records is counted by the
Stirling “cycle” number

ˆ
n
k

˜
.

8This correspondence can also be viewed as a transformation on permutations that maps the number
of records to the number of cycles—it is known as Foata’s fundamental correspondence [267, Sec. 10.2].
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Returning to our statistical problem, the treatment of Example 12 p. 111 (to be revisited
in Chapter III) shows that the expected number of records in arandom permutation of sizen
equalsHn, the harmonic number. One hasH100

.
= 5.18, so that for 100 data items, a little

more than 5 records are expected on average. The probabilityof observing 7 records or more
is still about 23%, an altogether not especially rare event.In contrast, observing twice as many
records, that is, 14, would be a fairly strong indication of abias since, on random data, the
event has probability very close to10−4. Altogether, the present discussion is consistent with
the hypothesis for the data of Figure 13 to have been generated independently at random (and
indeed they were). �

It is possible to base a fair part of the theory of labelled constructions on sums and
products in conjunction with the boxed product. In effect, consider the three relations

F = SEQ{G} =⇒ f(z) =
1

1 − g(z)
, f = 1 + gf

F = SET{G} =⇒ f(z) = eg(z), f = 1 +

∫
g′f

F = CYC{G} =⇒ f(z) = log
1

1 − g(z)
, f =

∫
g′

1

1 − g

The last column is easily checked to provide an alternative form of the standard op-
erator corresponding to sequences, sets, and cycles. Each case is then itself deduced
directly from Theorem II.5 and the labelled product rule:

Sequences: they obey the recursive definition

F = SEQ{G} =⇒ F ∼= {ǫ} + (G ⋆ F).

Sets: we have

F = SET{G} =⇒ F ∼= {ǫ} + (G� ⋆ F),

which means that, in a set, one can always single out the component with
the largest label, the rest of the components forming a set. In other words,
when this construction is repeated, the elements of a set canbe canonically
arranged according to increasing values of their largest labels, the “leaders”.
(We recognize here a generalization of the construction used for records in
permutations.)
Cycles: The element of a cycle that contains the largest label can betaken
canonically as the cycle “starter”, which is then followed by an arbitrary
sequence of elements upon traversing the cycle in circular order. Thus

F = CYC{G} =⇒ F ∼= (G� ⋆ SEQ{G}).

Greene [199] has developed a complete framework of labelled grammars based
on standard and boxed labelled products. In its basic form, its expressive power is
essentially equivalent to ours, because of the above relations. More complicated order
constraints, dealing simultaneously with a collection of larger and smaller elements,
can be furthermore taken into account within this framework.
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FIGURE 14. A permutation of size 7 and its increasing binary tree lifting.

� 26. Higher order constraints, after Greene.Let the symbols�, ⊡, � represent smallest,
second smallest, and largest labels respectively. One has the correspondences (with∂z = d

dz
)

A =
“
B2 ⋆ C�

”
∂2

zA(z) = (∂zB(z)) · (∂zC(z))

A =
“
B2 � ⋆ C

”
∂2

zA(z) =
`
∂2

zB(z)
´
· C(z)

A =
“
B2 ⋆ C⊡ ⋆D�

”
∂3

zA(z) = (∂zB(z)) · (∂zC(z)) · (∂zD(z)) ,

and so on. These can be transformed into (iterated) integralrepresentations. [See [199] for
more.] �

The next two examples demonstrate the usefulness of min-rooting used in con-
junction with recursion. In this way, trees satisfying someorder conditions can be
constructed and enumerated easily. This is turn gives access to new characteristics of
permutations.

EXAMPLE 17. Increasing binary trees and alternating permutations.To each permutation,
one can associate bijectively a binary tree of a special typecalled anincreasing binary treeand
sometimes a heap–ordered tree or a tournament tree. This is aplane rooted binary tree in which
internal nodes bear labels in the usual way, but with the additional constraint that node labels
increase along any branch stemming from the root. Such treesare closely related to classical
data structures of computer science, like heaps and binomial queues [78, 352].

The correspondence (Figure 14) is as follows: Given a permutation of a set written as a
word,σ = σ1σ2 . . . σn, factor it in the formσ = σL ·min(σ) · σR, with min(σ) the smallest
label value in the permutation, andσL, σR the factors left and right ofmin(σ). Then the binary
treeβ(σ) is defined recursively in the format〈root, left,right〉 by

β(σ) = 〈min(σ), β(σL), β(σR)〉, β(ǫ) = ǫ.

The empty tree (consisting of a unique external node of size0) goes with the empty permutation
ǫ. Conversely, reading the labels of the tree in symmetric (infix) order gives back the original
permutation. (The correspondence is described for instance in Stanley’s book [362, p. 23–25]
who says that “it has been primarily developed by the French”, pointing at [172].)
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Thus, the familyI of binary increasing trees satisfies the recursive definition

I = {ǫ}+
`
Z2 ⋆ I ⋆ I

´
,

which implies the nonlinear integral equation for the EGF

I(z) = 1 +

Z z

0

I(t)2 dt.

This equation reduces toI ′(z) = I(z)2 and, under the initial conditionI(0) = 1, it admits the
solutionI(z) = (1 − z)−1. ThusIn = n!, which is consistent with the fact that there are as
many increasing trees as there are permutations.

The construction of increasing trees associated with permutation is instrumental in deriv-
ing EGFs relative to various local order patterns in permutations. We illustrate its use here by
counting the number ofup-and-down(or zig-zag) permutations, also known asalternatingper-
mutations. The result, already mentioned in ourInvitation chapter, was first derived by Désiré
André in 1881 by means of a direct recurrence argument.

A permutationσ = σ1σ2 . . . σn is an alternating permutation if

(52) σ1 > σ2 < σ3 > σ4 < · · · ,
so that pairs of consecutive elements form a succession of ups and downs; for instance,

6

2
3

4

1

7

5

6 2 3 1 7 4 5

Consider first the case of an alternating permutation ofodd size. It can be checked that the
corresponding increasing trees have no one–way branching nodes, so that they consist solely of
binary nodes and leaves. Thus, the corresponding specification is

J = Z +
`
Z2 ⋆ J ⋆ J

´
,

so that

J(z) = z +

Z z

0

J(t)2 dt and
d

dz
J(z) = 1 + J(z)2.

The equation admits separation of variables, which implies(with J(0) = 0)

J(z) = tan(z) = z + 2
z3

3!
+ 16

z5

5!
+ 272

z7

7!
+ · · · .

The coefficientsJ2n+1 are known as thetangent numbersor theEuler numbersof odd index
(EISA000182).

Alternating permutations ofevensize defined by the constraint (52) and denoted byJ can
be determined from

J = {ǫ}+
`
Z2 ⋆ J ⋆ J

´
,

since now all internal nodes of the tree representation are binary, except for the rightmost one
that only branches on the left. Thus,J

′
(z) = tan(z)J(z), and the EGF is

J(z) =
1

cos(z)
= 1 + 1

z2

2!
+ 5

z4

4!
+ 61

z6

6!
+ 1385

z8

8!
+ · · · ,
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FIGURE 15. An increasing Cayley tree (left) and its associated regressive mapping (right).

where the coefficientsJ2n are thesecant numbersalso known as Euler numbers of even index
(EISA000364). �

Use will be made later in this book (Chapter III, p. 22) of thisimportant tree
representation of permutations as it opens access to parameters like the number of
descents, runs, and (once more!) records in permutations. Analyses of increasing trees
also inform us of crucial performance issues regarding binary search trees, quicksort,
and heap–like priority queue structures [279, 353, 396, 398].

� 27. Combinatorics of trigonometrics.Interprettan z
1−z

, tan tan z, tan(ez − 1) as EGFs
of combinatorial classes. �

EXAMPLE 18. Increasing Cayley trees and regressive mappings.An increasing Cayley tree
is a Cayley tree (i.e., it is nonplane and rooted) whose labels along any branch stemming from
the root form an increasing sequence. In particular, the minimum must occur at the root, and
no plane embedding is implied. LetK be the class of such trees. The recursive specification is
now

K =
`
Z2 ⋆ SET{K}

´
.

The generating function thus satisfies the functional relations

K(z) =

Z z

0

eK(t) dt, K′(z) = eK(z),

withK(0) = 0. Integration ofK′e−K = 1 shows that

K(z) = log
1

1− z and Kn = (n− 1)!.

Thus the number of increasing Cayley trees is(n−1)!, which is also the number of permutations
of sizen − 1. These trees have been studied by Meir and Moon [283] under the name of
“recursive trees”, a terminology that we do not however retain here.

The simplicity of the formulaKn = (n−1)! certainly calls for a combinatorial interpreta-
tion. In fact, an increasing Cayley tree is fully determinedby its child parent relationship (Fig-
ure 15). Otherwise said, to each increasing Cayley treeτ , we associate a partial mapφ = φτ

such thatφ(i) = j iff the label of the parent ofi is j. Since the root of tree is an orphan,
the value ofφ(1) is undefined,φ(1) =⊥; since the tree is increasing, one hasφ(i) < i for
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all i ≥ 2. A function satisfying these last two conditions is called aregressive mapping. The
correspondence between trees and regressive mappings is then easily seen to be a bijective one.

Thus regressive mappings on the domain[1 . . n] and increasing Cayley trees are equinu-
merous, so that we may as well useK to denote the class of regressive mappings. Now, a regres-
sive mapping of sizen is evidently determined by a single choice forφ(2) (sinceφ(2) = 1),
two possible choices forφ(3) (either of1, 2), and so on. Hence the formula

Kn = 1 · 2 · 3 · · · (n− 1)

receives a natural interpretation. �

� 28. Regressive mappings and permutations.Regressive mappings can be related directly
to permutations. The construction that associates a regressive mapping to a permutation is
called the “inversion table” construction; see [245, 353]. Given a permutationσ = σ1, . . . , σn,
associate to it a functionψ = ψσ from [1 . . n] to [0 . . n− 1] by the rule

ψ(j) = card
˘
k < j

˛̨
σk > σj

¯
.

The functionψ is a trivial variant of a regressive mapping. �

� 29. Rotations and increasing trees.An increasing Cayley tree can be canonically drawn
by ordering descendants of each node from left to right according to their label values. The
rotation correspondence (p. 69) then gives rise to a binary increasing tree. Hence, increasing
Cayley trees and increasing binary trees are also directly related. Summarizing this note and
the previous one, we have a quadruple combinatorial connection,

Increasing Cayley tree∼= Regressive mappings∼= Permutations∼= Increasing binary trees,

that opens the way to yet more permutation enumerations. �

II. 7. Perspective

Together with the previous chapter and Figure I.14, this chapter and Figure 16
provide the basis for the symbolic method that is at the core of analytic combinatorics.
The translations of the basic constructions for labelled classes to EFGs could hardly
be simpler, but, as we have seen, they are sufficiently powerful to embrace numerous
classical results in combinatorics, ranging from the birthday and coupon collector
problems to graph enumeration.

The examples that we have considered for second-level structures, trees, map-
pings, and graphs lead to EGFs that are simple to express and natural to generalize.
(Often, the simple form is misleading—direct derivations of many of these EGFs that
do not appeal to the symbolic method can be rather intricate.) Indeed, the symbolic
method provides a framework that allows us to understand thenature of many of these
combinatorial classes. From there, numerous seemingly scattered counting problems
can be organized into broad structural categories and solved in an almost mechanical
manner.

Again, the symbolic method is only half of the story (the “combinatorics” in
analytic combinatorics), leading to EGFs for the counting sequences of numerous
interesting combinatorial classes. While some of these EGFs lead immediately to ex-
plicit counting results, others require the classical techniques in complex analysis and
asymptotic analysis that are covered in Part B (the “analytic” part of analytic combi-
natorics) to deliver asymptotic estimates. Together with these techniques, the basic
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1. The main constructions of union, and product, sequence, set, and cycle for labelled
structures together with their translation into exponential generating functions.

Construction EGF

Union A = B + C A(z) = B(z) + C(z)

Product A = B ⋆ C A(z) = B(z) · C(z)

Sequence A = SEQ{B} A(z) =
1

1 −B(z)

Set A = SET{B} A(z) = exp(B(z))

Cycle A = CYC{B} A(z) = log
1

1 −B(z)

2. The translation for sets, multisets, and cycles of fixed cardinality.

Construction EGF

Sequence A = SEQk{B} A(z) = B(z)k

Set A = SETk{B} A(z) =
1

k!
B(z)k

Cycle A = CYCk{B} A(z) =
1

k
B(z)k

3. The additional constructions of pointing and substitution.

Construction EGF

Pointing A = ΘB A(z) = z d
dzB(z)

Substitution A = B ◦ C A(z) = B(C(z))

4. The “boxed” product.

A = (B2 ⋆ C) =⇒ A(z) =

∫ z

0

(
d

dt
B(t)

)
· C(t) dt.

FIGURE 16. A “dictionary” of labelled constructions together with their translation
into exponentialgenerating functions (EGFs). The first constructions are counterparts of
the unlabelled constructions of the previous chapter (the multiset construction is not mean-
ingful here). The translation for composite constructionsof bounded cardinality appears
to be simple. Finally, the boxed product is specific to labelled structures. (Compare with
the unlabelled counterpart, Figure 14 of Chapter I, p. 14.)
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constructions, translations, and applications that we have discussed in this chapter re-
inforce the overall message that the symbolic method is a systematic approach that
is successful for addressing classical and new problems in combinatorics, generaliza-
tions, and applications.

We have been focussing onenumeration problems—counting the number of ob-
jects of a given size in a combinatorial class. In the next chapter, we consider how to
extend the symbolic method to help analyse other propertiesof combinatorial classes.

The labelled set construction and the exponential formula were recognized early by re-
searchers working in the area of graphical enumerations [206]. Foata [170] proposed a detailed
formalization in 1974 of labelled constructions, especially sequences and sets, under the names
of partitional complex; a brief account is also given by Stanley in his survey [361]. This is par-
allel to the concept of “prefab” due to Bender and Goldman [31]. The books by Comtet [76],
Wilf [ 406], Stanley [362], or Goulden and Jackson [192] have many examples of the use of
labelled constructions in combinatorial analysis.

Greene [199] has introduced a general framework of “labelled grammars”largely based
on the boxed product with implications for the random generation of combinatorial structures
in his 1983 dissertation. Joyal’s theory of species dating from 1981 (see [227] for the original
article and the book by Bergeron, Labelle, and Leroux [36] for a rich exposition), is based on
category theory; it presents the advantage of uniting in a common theory the unlabelled and the
labelled worlds.

Flajolet, Salvy, and Zimmermann have developed a specification language closely related
to the system exposed here. They show in [159] how to compile automatically specifications
into generating functions; this is complemented by a calculus that produces fast random gener-
ation algorithms [169].
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Combinatorial Parameters and
Multivariate Generating Functions

Generating functions find averages, etc.
— HERBERTWILF [406]

Je n’ai jamais été assez loin pour bien sentir l’application de l’algèbre à la géométrie. Je
n’aimais point cette manière d’opérer sans voir ce qu’on fait, et il me sembloit que résoudre un

problème de géométrie par les équations, c’étoit jouer un air en tournant une manivelle1.
— JEAN-JACQUESROUSSEAU, Les Confessions, Livre VI
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Many scientific endeavours demand precise quantitative information on probabilis-
tic properties ofparametersof combinatorial objects. For instance, when designing,
analysing, and optimizing a sorting algorithm, it is of interest to determine what the
typical disorder of data obeying a given model of randomnessis, and do so in the
mean, or even in distribution, either exactly or asymptotically. Similar situations arise
in a broad variety of fields, including probability theory and statistics, computer sci-
ence, information theory, statistical physics, and computational biology. The exact
problem is then a refined counting problem with two parameters, namely, size and
additional characteristic: this is the subject addressed in this chapter and treated by a
natural extension of the generating function framework. (The asymptotic problem can
be viewed as one of characterizing in the limit a family of probability laws indexed
by the values of the possible sizes: this is a topic to be discussed in Chapter IX.)
As demonstrated here, the symbolic methods initially developed for counting com-
binatorial objects adapt gracefully to the analysis of various sorts of parameters of
constructible classes, unlabelled and labelled alike.

1“I never went far enough to get a good feel for the applicationof algebra to geometry. I was not
pleased with this method of operating according to the ruleswithout seeing what one does; solving geomet-
rical problems by means of equations seemed like playing a tune by turning a crank.”

139
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Multivariate generating functions(MGFs)—ordinary or exponential—can keep
track of a collection of parameters defined over combinatorial objects. From the
knowledge of such generating functions, there result either explicit probability dis-
tributions or, at least, mean and variance evaluations. Forinherited parameters, all
the combinatorial classes discussed so far are amenable to such a treatment and tech-
nically, the translation schemes that relate combinatorial constructions and multivari-
ate generating functions present no major difficulty—they appear to be natural (no-
tational, even) refinements of the paradigm developed in Chapters I and II for the
univariate case. Typical applications from classical combinatorics are the number of
summands in a composition, the number of blocks in a set partition, the number of
cycles in a permutation, the root degree or path length of a tree, the number of fixed
point in a permutation, the number of singleton blocks in a set partition, the number
of leaves in trees of various sorts, and so on.

Beyond its technical aspects anchored in symbolic methods,this chapter also
serves as a first encounter with the general area of random combinatorial structures.
The general question is:What does a random object of large size look like?Multi-
variate generating functions first provide an easy access tomomentsof combinatorial
parameters—typically the mean and variance. In addition, when combined with basic
probabilistic inequalities, moment estimates often lead to precise characterizations of
properties of large random structures that hold with high probability. For instance, a
large integer partition conforms with high probability to adeterministic profile, a large
random permutation almost surely has at least one long cycleand a few short ones, and
so on. Such a highly constrained behaviour of large objects may in turn serve to design
dedicated algorithms and optimize data structures; or it may serve to build statistical
tests—when does one depart from randomness and detect a “signal” in large sets of
observed data?. Randomness aspects form a recurrent theme of the book: they will be
developed much further in Chapter IX, where complex-asymptotic methods of Part B
are grafted on the exact modelling by multivariate generating functions presented in
this chapter.

This chapter is organized as follows. First a few pragmatic developments re-
lated to bivariate generating functions, the multivariateparadigm specialized to two
variables, are presented in Section III. 1. Section III. 2 then presents the notion of
bivariate enumeration and its relation to discrete probabilistic models, including the
determination of moments, as the language of elementary probability theory does pro-
vide an intuitively appealing way to conceive of bivariate counting data. The sym-
bolic methodper sedeclined in its general multivariate version is centrally developed
in Sections III. 3 and III. 4: with suitable multi-index notations, the extension of the
symbolic method to the multivariate case is almost immediate. Recursive parame-
ters that often arise in particular from tree statistics form the subject of Section III. 5,
while complete generating functions and associated combinatorial models are dis-
cussed in Section III. 6. Additional constructions like pointing, substitution, and or-
der constraints lead to interesting developments, in particular, an original treatment
of the inclusion-exclusion principle in Section III. 7. Thechapter concludes with Sec-
tion III. 8, which presents a brief abstract discussion of extremal parameters like height
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in trees or smallest and largest components in composite structures— such parameters
are best treated via families of univariate generating functions.

III. 1. An introduction to bivariate generating functions ( BGFs)

We have seen in Chapters I and II that a number sequence(fn) can be encoded
by means of a generating function in one variable, either ordinary or exponential:

(fn) ; f(z) =





∑

n

fnz
n ordinary GF

∑

n

fn
zn

n!
exponential GF.

This encoding is powerful, since many combinatorial constructions admit of a trans-
lation as operations over such generating functions. In this way, one gains access to
many useful counting formulæ.

Similarly, consider a sequence of numbers(fn,k) depending on two integer valued
indices,n andk. Usually, in this book,(fn,k) will be an array of number (often
a triangular array), wherefn,k is the number of objectsϕ in some classF , such
that |ϕ| = n and some parameterχ(ϕ) is equal tok. We can encode this sequence
by means of abivariate generating function (BGF), which involves two variables,z
attached ton andu attached tok.

DEFINITION III.1. Thebivariate generating functions (BGFs), either of the ordinary
or exponential type, of an array(fn,k) are the formal power seriesf(z, u) in two
variables defined by

(fn,k) ; f(z, u) =






∑

n,k

fn,kz
nuk ordinary BGF

∑

n,k

fn,k
zn

n!
uk exponential BGF.

(The case of a “double exponential” GF corresponding tozn

n!
uk

k! is not used in the
book.)

As we shall see shortly, many parameters of constructible classes become acces-
sible through such BGFs. According to the point of view adopted momentarily here,
one starts with an array of numbers and forms a BGF by a double summation pro-
cess. We present here two examples related to binomial coefficients and Stirling cycle
numbers illustrating how such BGFs can be be determined, then manipulated. In what
follows it is convenient to refer to thehorizontalandverticalgenerating functions that
are each a one-parameter family of GFs in a single variable defined by

horizontal GF: fn(u) :=
∑

k

fn,ku
k;

vertical GF: f 〈k〉(z) :=
∑

n

fn,kz
n (ordinary case)

f 〈k〉(z) :=
∑

n

fn,k
zn

n!
(exponential case).
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f00 −→ f0(u)

f10 f11 −→ f1(u)

f20 f21 f22 −→ f1(u)
...

...
...

↓ ↓ ↓
f 〈0〉(z) f 〈1〉(z) f 〈2〉(z)

FIGURE 1. An array of numbers and its associated horizontal and vertical GFs.

The terminology is transparently explained if the elements(fn,k) are arranged as an
infinite matrix, withfn,k placed in rown and columnk, since the horizontal and verti-
cal GFs appear as the GFs of the rows and columns respectively(Figure 1). Naturally,
one has

f(z, u) =
∑

k

ukf 〈k〉(z) =





∑

n

fn(u)zn ordinary BGF

∑

n

fn(u)
zn

n!
exponential BGF.

EXAMPLE 1. The BGF of binomial coefficients.The binomial coefficient
`

n
k

´
, counts the

binary words of lengthn havingk occurrences of a designated letter; see Figure 2. In order to
compose the bivariate GF, start from the simplest case of Newton’s binomial theorem and form
directly the horizontal GFs corresponding to a fixedn:

(1) Wn(u) :=

nX

k=0

 
n

k

!
uk = (1 + u)n,

Then a summation over all values ofn gives the ordinary BGF

(2) W (z, u) =
X

k,n≥0

 
n

k

!
ukzn =

X

n≥0

(1 + u)nzn =
1

1− z(1 + u)
.

Such calculations are typical of BGF manipulations. What wehave done amounts to starting
from a sequence of numbers, determining the horizontal GFsWn(u) in (1), then the bivariate
GFW (z, u) in (2), according to the scheme:

Wn,k ; Wn(u) ; W (z, u).

Observe that (2) reduces to the OGF(1 − 2z)−1 of binary words, as it should, upon setting
u = 1.

In addition, one can deduce from (2) the vertical GFs of the binomial coefficients corre-
sponding to a fixed value ofk,

W 〈k〉(z) =
X

n≥0

 
n

k

!
zn =

zk

(1− z)k+1
,
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FIGURE 2. The setW5 of the32 binary words over the alphabet{�,�} enumerated
according to the number of occurrences of the letter ‘�’ gives rise to the bivariate counting
sequence{W5,j} = 1, 5, 10, 10, 5, 1.

from an expansion of the BGF with respect tou,

(3) W (z, u) =
1

1− z
1

1− u z
1−z

=
X

k≥0

uk zk

(1− z)k+1
,

and the result naturally matches what a direct calculation would give. �

� 1. The exponential BGF of binomial coefficients.It is

(4) fW (z, u) =
X

k,n

 
n

k

!
uk z

n

n!
=
X

(1 + u)n z
n

n!
= ez(1+u).

The vertical GFs areezzk/k!. The horizontal GFs are(1 + u)n, like in the ordinary case.�

EXAMPLE 2. The BGF of Stirling cycle numbers.As seen in Chapter II Example 12, the
number of permutations of sizen havingk cycles is the Stirling cycle number

ˆ
n
k

˜
with a vertical

EGF being

P 〈k〉(z) :=
X

n

"
n

k

#
zn

n!
=
L(z)k

k!
, L(z) := log

1

1− z .

From there, the exponential BGF is formed as follows (this revisits some of the calculations on
p. 112):

(5)
P (z, u) :=

X

k

P 〈k〉(z)uk =
X

k

uk

k!
L(z)k = euL(z)

= (1− z)−u.

The simplification is quite remarkable but altogether quitetypical, as we shall see shortly, in the
context of a labelled set construction. The starting point is thus a collection of vertical EGFs
and the scheme is now

P 〈k〉
n ; P 〈k〉(z) ; P (z, u).

Observe that (5) reduces to the EGF of permutations atu = 1.
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Numbers Horizontal GFs 
n

k

!
(1 + u)n

Vertical OGFs Ordinary BGF

zk

(1− z)k+1

1

1− z(1 + u)

Numbers Horizontal GFs"
n

k

#
u(u+ 1) · · · (u+ n− 1)

Vertical EGFs Exponential BGF

1

k!

„
log

1

1− z

«k

(1− z)−u

FIGURE 3. The various GFs associated to binomial coefficients (left) and Stirling cycle
numbers (right).

In addition, an expansion of the BGF according to the variable z provides a useful infor-
mation, namely, the horizontal GFs by virtue of Newton’s binomial theorem:

(6)
P (z, u) =

X

n≥0

 
n+ u− 1

n

!
zn =

X

n≥0

Pn(u)
zn

n!

where Pn(u) = u(u+ 1) · · · (u+ n− 1).

This last polynomial is called theStirling cycle polynomialof indexn and it describes com-
pletely the distribution of the number of cycles in all permutations of sizen. In addition, note
that the relation

Pn(u) = Pn−1(u)(u+ (n− 1)),

is equivalent to a recurrence
"
n

k

#
= (n− 1)

"
n− 1

k

#
+

"
n− 1

k − 1

#
,

by which Stirling numbers are often defined and easily evaluated numerically; see also AP-
PENDIX A: Stirling numbers, p. 624. (The recurrence is susceptible to a direct combinatorial
interpretation—addn either to an existing cycle or as a “new” singleton.) �

Concise expressions for BGFs like (2), (3), (5), or (17) summarized in Figure 3
are precious for deriving moments, variance, and even finer characteristics of distri-
butions, as we see next. The determination of such BGFs can becovered by a simple
extension of the symbolic method along the lines of what was done in Chapters I
and II, as detailed in Sections III. 3 and III. 4.

III. 2. Bivariate generating functions and probability dis tributions

Our purpose in this book is to analyse characteristics of combinatorial structures
of very diverse types. We shall be principally interested inenumeration according to
sizeand an auxiliary parameter, the corresponding problems being naturally treated
by means of BGFs. In order to avoid redundant definitions, it proves convenient to
introduce the sequence offundamental factors(ωn)n≥0, defined by

(7) ωn = 1 for ordinary GFs, ωn = n! for exponential GFs.
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Then, the OGF and EGF of a sequence(fn) are jointly represented as

f(z) =
∑

fn
zn

ωn
and fn = ωn [zn]f(z).

DEFINITION III.2. Given a combinatorial classA, a (scalar) parameteris a function
from A to Z≥0 that associates to any objectα ∈ A an integer valueχ(α). The
sequence

An,k = card
(
{α ∈ A

∣∣ |α| = n, χ(α) = k}
)
,

is called thecounting sequenceof the pairA, χ. Thebivariate generating function
(BGF)ofA, χ is defined as

A(z, u) :=
∑

n,k≥0

An,k
zn

ωn
uk,

and is of ordinary typeif ωn ≡ 1 and of exponential typeif ωn ≡ n!. One says that
the variablez marks sizeand the variableu marks the parameterχ.

NaturallyA(z, 1) reduces to the usual counting generating functionA(z) associ-
ated toA, and the cardinality ofAn is expressible as

An = ωn[zn]A(z, 1).

III. 2.1. Distributions and moments. As indicated in the introduction to this
chapter, the eventual goal of multivariate enumeration is the quantification of prop-
erties present with high regularity in large random structures. Within this section,
we discuss the relationship between probabilistic models needed to interpret bivari-
ate counting sequences and bivariate generating functions. The elementary notions
needed are recalled in APPENDIX A: Combinatorial probability, p. 616.

Consider a combinatorial classA. Theuniform probability distributionoverAn

assigns to anyα ∈ An a probability equal to1/An. We shall use the symbolP to
denote probability and occasionally subscript it with an indication of the probabilistic
model used, whenever this model needs to be stressed: we shall then writePAn (or
simply Pn if A is understood) to indicate probability relative to the uniform distribu-
tion overAn.

Probability generating functions.Consider a parameterχ. It determines over
eachAn a discreterandom variabledefined over the discrete probability spaceAn:

(8) PAn{χ = k} =
An,k

An
=

An,k∑
k An,k

.

Given a discrete random variableX , we recall that its itsprobability generating func-
tion (PGF)is the quantity

(9) p(u) =
∑

k

P(X = k)uk,

a generating function whose coefficients are probabilities. From (8) and (9), one has
immediately:
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FIGURE 4. Histograms of two combinatorial distributions. Left: the number of occur-
rences of a designated letter in a random binary word of length 50 (binomial distribution).
Right: the number of cycles in a random permutation of size 50(Stirling cycle distribution).

PROPOSITIONIII.1 (PGFs from BGFs).LetA(z, u) be the bivariate generating func-
tion of a parameterχ defined over a combinatorial classA. The probability generat-
ing function ofχ overAn is given by

∑

k

PAn(χ = k)uk =
[zn]A(z, u)

[zn]A(z, 1)
,

and is thus a normalized version of a horizontal generating function.

The translation into the language of probability enables usto make use of which-
ever intuition might be available in any particular case, while allowing for a nat-
ural interpretation of data (Figure 4). Indeed, instead of noting that the quantity
381922055502195 represents the number of permutations of size 20 that have 10
cycles, it is perhaps more informative to state the probability of the event, which is
0.00015, i.e., about 1.5 per ten thousand. Discrete distributions are conveniently rep-
resented byhistogramsor “bar charts”, where the height of the bar at abscissak indi-
cates the value ofP{X = k}. Figure 4 displays in this way two classical combinatorial
distributions. Given the uniform probabilistic model thatwe have been adopting, such
histograms are eventually nothing but a condensed form of the “stacks” corresponding
to exhaustive listings, like the one displayed in Figure 2.

Moments. Important information is conveyed bymoments. Given a discrete ran-
dom variableX , theexpectationof f(X) is by definition the linear functional

E(f(X)) :=
∑

k

P{X = k} · f(k).

The (power)momentsare

E(Xr) :=
∑

k

P{X = k} · kr.

Then the expectation (or average, mean) ofX , its variance, and its standard deviation
are expressed as

E(X), V(X) = E(X2) − E(X)2, σ(X) =
√

V(X).
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The expectation corresponds to what is typically seen when forming the arithmetic
mean value of a large number of observations: this property is theweak law of large
numbers[123, Ch X]. The standard deviation then measures the dispersionof values
observed from the expectation and it does so in a mean-quadratic sense.

Thefactorial momentdefined for orderr as

E (X(X − 1) · · · (X − r + 1))

is also of interest for computational purposes, since it is obtained plainly by differen-
tiation of PGFs (APPENDIX A: Combinatorial probability, p. 616). Power moments
are then easily recovered as linear combinations of factorial moments, see Note 7 of
Appendix A. In summary:

PROPOSITION III.2 (Moments from BGFs).The factorial moment of orderr of a
parameterχ is determined from the BGFA(z, u) byr-fold differentiation followed by
specialization at 1:

EAn (χ(χ− 1) · · · (χ− r + 1)) =
[zn]∂r

uA(z, u)u=1

[zn]A(z, 1)
.

In particular, the first two moments satisfy

EAn(χ) =
[zn]∂uA(z, 1)

[zn]A(z, 1)
, EAn(χ2) =

[zn]∂2
uA(z, 1)

[zn]A(z, 1)
+

[zn]∂uA(z, 1)

[zn]A(z, 1)
,

the variance and standard deviation being the determined by

V(χ) = σ(χ)2 = E(χ2) − E(χ)2.

PROOF. The PGFpn(u) of χ overAn is given by Proposition III.1. On the other hand,
factorial moments are on general grounds obtained from a PGFby differentiation and
specialization atu = 1 (APPENDIX A: Combinatorial probability, p. 616). The result
follows. �

In other words, the quantities

Ω(k)
n := ωn ·

(
[zn] ∂k

uA(z, u)
∣∣
u=1

)

give, after a simple normalization (by[zn]A(z, 1)), the factorial moments.

E (χ(χ− 1) · · · (χ− k + 1)) =
1

An
Ω(k)

n .

Most notably,Ω(1)
n is thecumulated valueof χ over all objects ofAn:

Ω(1)
n ≡ ωn · [zn] ∂uA(z, u)|u=1 =

∑

α∈An

χ(α) ≡ An · EAn(χ).

Accordingly, the GF (ordinary or exponential) of theΩ
(1)
n is sometimes named thecu-

mulativegenerating function. It can be viewed as an unnormalized generating function
of the sequence of expected values. These considerations explain Wilf’s suggestive
motto quoted on p. 139:

“Generating functions find averages, etc.”

The “etc” is to be interpreted as a token for higher moments.
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� 2. A combinatorial form of cumulative GFs.One has

Ω(1)(z) ≡
X

n

EAn(χ)An
zn

ωn
=
X

α∈A
χ(α)

z|α|

ω|α|
,

whereωn = 1 (ordinary case) orωn = n! (exponential case). �

EXAMPLE 3. Moments of the binomial distribution.The binomial distribution of indexn can
be defined as the distribution of the number ofa’s in a random word of lengthn over the binary
alphabet{a, b}. The determination of moments results easily from the ordinary BGF,

W (z, u) =
1

1− z − zu .

By differentiation, one finds

∂r

∂ur
W (z, u)

˛̨
˛̨ = r!zr

(1− 2z)r
.

Coefficient extraction then gives the form of the factorial moments of orders1, 2, 3, . . . , r as

n

2
,

n(n− 1)

4
,

n(n− 1)(n− 2)

8
, . . . ,

r!

2r

 
n

r

!
.

In particular, the mean and the variance are1
2
n and 1

4
n. The standard deviation is thus1

2

√
n

which is of an order much smaller than the mean: this indicates that the distribution is some-
how concentrated around its mean value, as suggested by Figure 4; see the next subsection for
quantitative estimates. �

� 3. De Moivre’s approximation of the Gaussian coefficients.The fact that the mean and
the standard deviation of the binomial distribution are respectively 1

2
n and 1

2

√
n suggests to

examine what goes on at a distance ofx standard deviations from the mean. Consider for
simplicity the case ofn = 2ν even. From the ratio

r(ν, ℓ) :=

`
2ν

ν+ℓ

´
`
2ν
ν

´ =
(1− 1

ν
)(1− 2

ν
) · · · (1− k−1

ν
)

(1 + 1
ν
)(1 + 2

ν
) · · · (1 + k

ν
)

an estimate of the logarithm shows that for any fixedx ∈ R,

lim
n→∞, ℓ=ν+x

√
ν/2

`
2ν

ν+ℓ

´
`
2ν
ν

´ = e−x2/2.

(Alternatively, Stirling’s formula can be employed.) ThisGaussian approximation for the bi-
nomial distribution was first discovered in 1733 by Abraham de Moivre (1667–1754), a close
friend of Newton. Much more general methods for establishing such approximations form the
subject of Chapter IX. �

EXAMPLE 4. Moments of the Stirling cycle distribution.Let us return to the example of cycles
in permutations which is of interest in connection with certain sorting algorithms like bubble
sort or insertion sort, maximum finding, andin situ rearrangement [239].

We are dealing with labelled objects, hence exponential generating functions. As seen
earlier on p. 143, the BGF of permutations counted accordingto cycles is

P (z, u) = (1− z)−u.
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We havePn = n!, whileωn = n! since the BGF is exponential. (The number of permutations
of sizen beingn!, the combinatorial normalization happens to coincide withthe factor of1/n!
present in all exponential generating functions.)

By differentiation of the BGF with respect tou, then settingu = 1, we next get the
expected number of cycles in a random permutation of sizen as a Taylor coefficient

(10) En(χ) = [zn]
1

1− z log
1

1− z = 1 +
1

2
+ · · ·+ 1

n
,

which is the harmonic numberHn. Thus, on average, a random permutation of sizen has about
log n+ γ cycles, a well known fact of discrete probability theory, derived on p. 112 by means
of horizontal generating functions.

For the variance, a further differentiation of the bivariate EGF gives

(11)
X

n≥0

En(χ(χ− 1))zn =
1

1− z

„
log

1

1− z

«2

.

From this expression and Note 4 (or directly from the Stirling polynomials), a calculation shows
that

(12) σ2
n =

 
nX

k=1

1

k

!
−
 

nX

k=1

1

k2

!
= log n+ γ − π2

6
+O

„
1

n

«
.

Thus, asymptotically,
σn ∼

p
log n.

The standard deviation is of an order smaller than the mean, and therefore deviations from the
mean have an asymptotically negligible probability of occurrence (see below the discussion of
moment inequalities). Furthermore, the distribution was proved to be asymptotically Gaussian
by V. Gončarov, around 1942, see [189] and Chapter IX. �

� 4. Stirling cycle numbers and harmonic numbers.By the “exp-log trick” of Chapter I, the
PGF of the Stirling cycle distribution satisfies

1

n!
u(u+ 1) · · · (u+ n− 1) = exp

„
vHn−v

2

2
H(2)

n +
v3

3
H(3)

n + · · ·
«
, u = 1 + v

whereH
(r)
n is the generalized harmonic number

Pn
j=1 j

−r. Consequently, any moment of
the distribution is a polynomial in generalized harmonic numbers, cf (10) and (12). Also, the
kth moment satisfiesEPn(χk) ∼ (log n)k. (The same technique expresses the Stirling cycle
number

ˆ
n
k

˜
as a polynomial in generalized harmonic numbersH

(r)
n−1.)

Alternatively, start from the expansion of(1 − z)−α and differentiate repeatedly with
respect toα; for instance, one has

(1− z)−α log
1

1− z =
X

n≥0

„
1

α
+

1

α+ 1
+ · · ·+ 1

n− 1 + α

« 
n+ α− 1

n

!
zn,

which provides (10) upon settingα = 1, while the next differentiation gives access to (12).�

The situation encountered with cycles in permutations is typical of iterative (non–
recursive) structures. In many other cases, especially when dealing with recursive
structures, the bivariate GF may satisfy complicated functional equations in two vari-
ables (see the example of path length in trees, Section III. 5below) that do not make
them available under an explicit form. Thus, exact expressions for the distributions
are not always available, but asymptotic laws can be determined in a large number of
cases (Chapter IX). In all cases, the BGFs are the central tool in obtaining mean and
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variance estimates, since their derivatives instantiatedatu = 1 become univariate GFs
that usually satisfy much simpler relations than the BGFs themselves.

III. 2.2. Moment inequalities and concentration of distributions. Qualitative-
ly speaking, families of distributions can be classified into two categories:(i) distri-
butions that at are spread, i.e., the standard deviation is of order at least as large as the
mean (e.g.the uniform distributions over[0 . . n], which have totally flat histograms,
are spread);(ii) distributions such that the standard deviation is of an order smaller
than the mean. Figure 4 illustrates the phenomena at stake and suggests that both
the Stirling cycle distributions and the binomial distributions belong to the second
category and are somehow concentrated around their mean value. Such informal ob-
servations are indeed supported by the Markov-Chebyshev inequalities, which take
advantage of information provided by the first two moments. (A proof is found in
APPENDIX A: Combinatorial probability, p. 616.)

Markov-Chebyshev inequalities.LetX be a nonnegative random variable
andY an arbitrary real variable. One has for an arbitraryt > 0:

P {X ≥ tE(X)} ≤ 1

t
(Markov inequality)

P {|Y − E(Y )| ≥ tσ(Y )} ≤ 1

t2
(Chebyshev inequality).

This result informs us that the probability of being much larger than the mean must
decay (Markov) and that an upperbound on the decay is measured in units given by
the standard deviation (Chebyshev).

The next proposition formalizes a concentration property of distributions. It ap-
plies to afamilyof distributions indexed by the integers.

PROPOSITION III.3 (Concentration of distribution).Consider a family of random
variablesXn, typically, a scalar parameterχ on the subclassAn. Assume that the
meansµn = E(Xn) and the standard deviationsσn = σ(Xn) satisfy the condition

lim
n→+∞

σn

µn
= 0.

Then the distribution ofXn is concentratedin the sense that, for anyǫ > 0, there
holds

(13) lim
n→+∞

P

{
1 − ǫ ≤ Xn

µn
≤ 1 + ǫ

}
= 1.

PROOF. It is a direct consequence of Chebyshev’s inequality. �

The concentration property (13) expresses the fact that values ofXn tend to be-
come closer and closer (in relative terms) to the meanµn asn increases. Another figu-
rative way to describe concentration, much used in random combinatorics, is by saying
that “Xn/µn tends to 1 in probability”. When this property is satisfied, the expected
value is in a strong sense a typical value. This fact is an extension of theweak law of
large numbersof probability theory. In that field, the concentration property (13) is
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FIGURE 5. Plots of the binomial distributions forn = 5, . . . , 50. The horizontal axis is
normalized (by a factor of1/n) and rescaled to1, so that the curves display

˘
P(Xn

n
= x)

¯
,

for x = 0, 1
n
, 2

n
, . . . .

also known asconvergence in probabilityand is then written more concisely:

Xn

µn

P−→ 1.

Concentration properties of the binomial and Stirling cycle distributions. The
binomial distributionis concentrated, since the mean of the distribution isn/2 and
the standard deviation is

√
n/4, a much smaller quantity. Figure 5 illustrates con-

centration by displaying the graphs (as polygonal lines) associated to the binomial
distributions forn = 5, . . . , 50. Concentration is also quite perceptible on simula-
tions asn gets large: the table below describes the results of batchesof ten (sorted)
simulations from the binomial distribution

{
1
2n

(
n
k

)}n

k=0
:

n = 100 39, 42, 43, 49, 50, 52, 54, 55, 55, 57
n = 1000 487, 492, 494, 494, 506, 508, 512, 516, 527, 545
n = 10, 000 4972, 4988, 5000, 5004, 5012, 5017, 5023, 5025, 5034, 5065
n = 100, 000 49798, 49873, 49968, 49980, 49999, 50017, 50029, 50080, 50101, 50284;

the maximal deviations from the mean observed on such samples are 22% (n = 102),
9% (n = 103), 1.3% (n = 104), and 0.6% (n = 105).

Similarly, the mean and variance computations of (10) and (12) imply that the
number of cycles in a random permutation of large size is concentrated.

Finer estimates on distributions form the subject of our Chapter IX dedicated
to limit laws. The reader may get a feeling of some of the phenomena at stake
when re-examining Figure 5: the visible emergence of a continuous curve (the bell
shaped curve) corresponds to a common asymptotic shape for the whole family of
distributions—the Gaussian law.

III. 3. Inherited parameters and ordinary MGFs

We have seen so far basic manipulations of BGFs (Section III.1) as well as their
use in order to determine moments of combinatorial distributions (Section III. 2). In
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this section and its labelled counterpart, Section III. 4, we address the question of de-
termining directly BGFs from combinatorial specifications. The answer is provided
by a simple extension of the symbolic method, which is formulated in terms ofmulti-
variate generating functions(MGFs). Such generating functions have the capability of
taking into account a finite collection (equivalently, a vector) of combinatorial parame-
ters. On the one hand, the theory specializes immediately toBGFs, which correspond
to the particular case of a single (scalar) parameter. On theother hand, it provides
“complete” (multivariate) generating functions discussed in Section III. 6.

III. 3.1. Multivariate generating functions (MGFs). The theory is best devel-
oped in full generality for the joint analysis of a fixed finitecollection of parameters.

DEFINITION III.3. Consider a combinatorial classA. A (multidimensional) param-
eterχ = (χ1, . . . , χd) on the class is a function fromA to the setZd

≥0 of d-tuples of
natural numbers. Thecounting sequenceofA with respect to size and the parameterχ
is then defined by

An,k1,...,kd
= card

{
α
∣∣ |α| = n, χ1(α) = k1, . . . , χd(α) = kd

}
.

We sometimes refer to such a parameter as a “multiparameter”whend > 1, and
a “simple” or “scalar” parameter otherwise. For instance, one may take the classP
of all permutationsσ, and forχj (j = 1, 2, 3) the number of cycles of lengthj in σ.
Alternatively, we may consider the classW of all wordsw over an alphabet with four
letters,{α1, . . . , α4} and take forχj (j = 1, . . . , 4) the number of occurrences of the
letterαj in w, and so on.

Themulti-index conventionemployed in various branches of mathematics greatly
simplifies notations: letu = (u1, . . . , ud) be a vector ofd formal variables andk =
(k1, . . . , kd) be a vector of integers of the same dimension; then, the multi-poweruk

is defined as the monomial

(14) uk := uk1
1 u

k2
2 · · ·ukd

d .

With this notation, we have:

DEFINITION III.4. LetAn,k be a multi-index sequence of numbers, wherek ∈ Nd.
The multivariate generating function (MGF)of the sequence of either ordinary or
exponential type is defined as the formal power series

(15)

A(z,u) =
∑

n,k

An,ku
kzn (ordinary MGF)

A(z,u) =
∑

n,k

An,ku
k
zn

n!
(exponential MGF).

Given a classA and a parameterχ, the multivariate generating function (MGF)
of the pair〈A, χ〉 is the MGF of the corresponding counting sequence. In particular,
one has thecombinatorial forms

(16)

A(z,u) =
∑

α∈A
u

χ(α)z|α| (ordinary MGF; unlabelled case)

A(z,u) =
∑

α∈A
u

χ(α) z
|α|

|α|! (exponential MGF; labelled case).
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One also says thatA(z,u) is the MGF of the combinatorial class with the formal
variableuj markingthe parameterχj andz markingsize.

From the very definition,A(z,1) (with 1 a vector of all 1’s) coincides with the
counting generating function ofA, either ordinary or exponential as the case may be.
One can then view an MGF as a deformation of a univariate GF by way of a (vector)
parameteru, with the property for the multivariate GF to reduce to the univariate
counting GF atu = 1. If all but one of theuj are set to 1, then a BGF results.
Thus, the symbolic calculus that we are going to develop opens full access to BGFs
and hence moments. In fact, it has the capacity of determining the joint probability
distributionof a finite collection of parameters.

� 5. Specializations of MGFs.The exponential MGF of permutations withu1, u2 marking the
number of 1-cycles and 2-cycles respectively turns out to be

(17) P (z, u1, u2) =
exp

“
(u1 − 1)z + (u2 − 1) z2

2

”

1− z .

(This is to be proved later in this chapter, p. 176.) The formula is checked to be consistent with
three already known specializations derived in Chapter II:(i) settingu1 = u2 = 1 gives back
the counting ofall permutations,P (z, 1, 1) = (1− z)−1, as it should;(ii) settingu1 = 0 and
u2 = 1 gives back the EGF of derangements, namelye−z/(1− z); (iii) settingu1 = u2 = 0
gives back the EGF of permutations with cycles all of length greater than 2,P (z, 0, 0) =

e−z−z2/2/(1− z), a generalized derangement GF. In addition, the specialized BGF

P (z, u, 1) =
e(u−1)z

1− z ,

enumerates permutations according to singleton cycles. This last BGF interpolates between the
EGF of derangements (u = 0) and the EGF of all permutations(u = 1). �

III. 3.2. Inheritance and MGFs. Parameters that areinherited from substruc-
tures can be taken into account by a direct extension of the symbolic method. With
a suitable use of the multi-index conventions, it is even thecase that the translation
rules previously established in Chapters I and II can be copied verbatim. This ap-
proach opens the way to a large quantity of multivariate enumeration results that then
follow automatically by the symbolic method.

Let us consider a pair〈A, χ〉, whereA is a combinatorial class endowed with its
usual size function| · | andχ = (χ1, . . . , χd) is a d-dimensional (multi)parameter.
Write χ0 for size andz0 for the variable marking size (previously denoted byz).
The key point for theoretical developments is to define an extended multiparameter
χ = (χ0, χ1, . . . , χd), that is, we treat size and parameters on an equal basis. Then
the ordinary MGF in (15) assumes an extremely simple and symmetrical form:

(18)

A(z) =
∑

k

Akz
k

=
∑

α∈A
z

χ(α).
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There, the indeterminates are the vectorz = (z0, z1, . . . , zd), the indices arek =
(k0, k1, . . . , kd) (wherek0 indexes size, previously denoted byn), and the usual multi-
index convention introduced in (14) is in force,

(19) z
k := zk0

0 zk1
1 · · · zd

kd ,

but it is now applied to(d+ 1)-dimensional vectors.
Next, we define inherited parameters.

DEFINITION III.5. Let 〈A, χ〉, 〈B, ξ〉, 〈C, ζ〉 be three combinatorial classes endowed
with parameters of the same dimensiond. The parameterχ is said to beinheritedin
the following cases:

• Disjoint union: whenA = B + C, the parameterχ is inherited fromξ, ζ iff
its value is determined by cases fromξ, ζ:

χ(ω) =





ξ(ω) if ω ∈ B
ζ(ω) if ω ∈ C.

• Cartesian product: whenA = B×C, the parameterχ is inherited fromξ, ζ
iff its value is obtained additively from the values ofξ, ζ:

χ(〈β, γ〉) = ξ(β) + ζ(γ).

• Composite constructions: whenA = K{B}, whereK is a metasymbol
representing any ofSEQ,MSET PSET,CYC, the parameterχ is inherited
from ξ iff its value is obtained additively from the values ofξ on compo-
nents; for instance, for sequences:

χ([β1, . . . , βr]) = ξ(β1) + · · · + ξ(βr).

With a natural extension of the notation used for constructions, one shall write

〈A, χ〉 = 〈B, ξ〉 + 〈C, ζ〉, 〈A, χ〉 = 〈B, ξ〉 × 〈C, ζ〉, 〈A, χ〉 = K {〈B, ξ〉} .

This definition of inheritance is seen to be a natural extension of the axioms that
size itself has to satisfy (Chapter I): size of a disjoint union is defined by cases, while
size of a pair, and similarly of a composite construction, isobtained by addition.

THEOREM III.1 (Inherited parameters and ordinary MGFs).LetA be a combinatorial
class constructed fromB, C, and letχ be a parameter inherited fromξ defined on
B and (as the case may be) fromζ on C. Then the translation rules of admissible
constructions stated in Theorem I.1 apply provided the multi-index convention(18) is
used. The associated operators on ordinary MGFs are then:
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Union: A = B + C =⇒ A(z) = B(z) + C(z)

Product: A = B × C =⇒ A(z) = B(z) · C(z)

Sequence: A = SEQ(B) =⇒ A(z) =
1

1 −B(z)

Cycle: A = CYC(B) =⇒ A(z) =

∞∑

ℓ=1

ϕ(ℓ)

ℓ
log

1

1 −B(zℓ)
.

Multiset: A = MSET(B) =⇒ A(z) = exp

( ∞∑

ℓ=1

1

ℓ
B(zℓ)

)

Powerset: A = PSET(B) =⇒ A(z) = exp

( ∞∑

ℓ=1

(−1)ℓ−1

ℓ
B(zℓ)

)

PROOF. The verification for sums and products is immediate, given the combinatorial
forms of OGFs. For disjoint unions, one has

A(z) =
∑

α∈A
z

χ(α) =
∑

β∈B
z

ξ(β) +
∑

γ∈C
z

ζ(γ),

as results from the fact that inheritance is defined by cases on unions. For cartesian
products, one has

A(z) =
∑

α∈A
z

χ(α) =
∑

β∈B
z

ξ(β) ×
∑

γ∈C
z

ζ(γ),

as results from the fact that inheritance is defined additively on products.
The translation of composite constructions in the case of sequences, powersets,

and multisets are then built up from the union and product schemes, in exactly the
same manner as in the proof of Theorem I.1. Cycles are dealt with by the methods of
APPENDIX A: Cycle construction, p. 618. �

This theorem is a straightforward extension of the symbolicmethod, but it is im-
portant because it can be applied in a wide range of combinatorial applications. The
reader is especially encouraged to study carefully the treatment of integer composi-
tions below, as it illustrates in its bare bones version the power of the symbolic method
for taking into account combinatorial parameters.

The multi-index notation is a crucial ingredient for developing the general theory
of multivariate enumerations. However, in most cases, we work with only a small
number of parameters, typically one or two. In such cases, weoften use vectors of
variables like(z, u) or (z, u, v), the corresponding monomials being then written as
znuk or znukvℓ. This has the advantage of avoiding unnecessary subscripts.

Integer compositions and marks.The classC of all integer compositions (Chap-
ter I) is specified by

C = SEQ(I), I = SET≥1(Z),

whereI is the set of all positive numbers. The corresponding OGFS are

I(z) =
1

1 − I(z)
, I(z) =

z

1 − z
,
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so thatCn = 2n−1 (n ≥ 1). Say we want to enumerate compositions according
to the numberχ of summands. One way to proceed, in accordance with the formal
definition of inheritance, is as follows. Letξ be the parameter that takes the constant
value 1 on all elements ofI. The parameterχ on compositions is inherited from the
(almost trivial) parameterξ ≡ 1 defined on summands. The ordinary MGF of〈I, ξ〉
is obviously

I(z, u) = zu+ z2u+ z3u+ · · · =
zu

1 − z
.

LetC(z, u) be the BGF of〈C, χ〉. By Theorem III.1, the schemes translating admis-
sible constructions in the univariate case carry over to themultivariate case, so that

(20) C(z, u) =
1

1 − I(z, u)
=

1

1 − u z
1−z

=
1 − z

1 − z(u+ 1)
.

Et voila!
Here is an alternative way of arriving at (20), which is important and is of much

use in the sequel. One may regard the enumeration of compositions with respect to
the number of summands as the enumeration of compositions with respect to both
size (i.e., number of atoms) and number ofmarks, where each summand carries a
mark, say ‘µ’, which is an object of size 0. The number of marks is clearlyinherited
from summands to compositions. Then, one has an enriched specification, and its
translation into MGFs,

(21) C = SEQ
(
µSEQ≥1(Z)

)
=⇒ C(z, u) =

1

1 − uI(z)
.

as granted by Theorem III.1 and based on the correspondence:Z 7→ z, µ 7→ u.
This notion of mark when used in conjunction with Theorem III.1 provides access to
many joint parameters, as shown in Example 5 below.

EXAMPLE 5. Summands in integer compositions.Consider the double parameterχ =
(χ1, χ2) whereχ1 is the number of parts equal to 1 andχ2 the number of parts equal to 2. One
can write down an extended specification, withµ1 a combinatorial mark for summands equal
to 1 andµ2 for summands equal to 2,

(22)
C = SEQ

„
µ1Z + µ2Z2 + SEQ≥3(Z)

«

=⇒ C(z, u1, u2) =
1

1− (u1z + u2z2 + z3(1− z)−1)
,

whereuj (j = 1, 2) records the number of marks of typeµj .
Similarly, letµ mark each summand andµ1 mark summands equal to 1. Then, one has,

(23) C = SEQ

„
µµ1Z+µSEQ≥2(Z)

«
=⇒ C(z, u1, u) =

1

1− (uu1z + uz2(1− z)−1)
,

whereu keeps track of the total number of summands andu1 records the number of summands
equal to 1.
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FIGURE 6. A random composition ofn = 100 represented as a ragged landscape (top);
its associated profile120212310415171101, defined as the partition obtained by sorting the
summands (bottom).

MGFs obtained in this way via the multivariate extension of the symbolic method can then
provide explicit counts, after suitable series expansions. For instance, the number of composi-
tions ofn with k parts is, by (20),

[znuk]
1− z

1− (1 + u)z
=

 
n

k

!
−
 
n− 1

k

!
=

 
n− 1

k − 1

!
,

a result otherwise obtained in Chapter I by direct combinatorial reasoning (the balls-and-bars
model). The number of compositions ofn containingk parts equal to 1 is obtained from the
special caseu2 = 1 in (22),

[znuk]
1

1− uz − z2

(1−z)

= [zn−k]
(1− z)k+1

(1− z − z2)k+1
,

where the last OGF closely resembles a power of the OGF of Fibonacci numbers.
Following the discussion of Section III. 2, such MGFs also carry complete information on

moments. In particular, the cumulated value of the number ofparts in all compositions ofn has
OGF

∂uC(z, u)|u=1 =
z(1− z)
(1− 2z)2

,

as seen from Section III. 2.1, since cumulated values are obtained via differentiation of a BGF.
Therefore, the expected number of parts in a random composition of n is exactly (n ≥ 1)

1

2n−1
[zn]

z(1− z)
(1− 2z)2

=
1

2
(n+ 1).

A further differentiation will give access to the variance.The standard deviation is found to
be 1

2

√
n− 1, which is of an order (much) smaller than the mean. Thus, the distribution of the

number of summands in a random composition satisfies the concentration property asn→∞.

In the same vein, the number of parts equal to a fixed numberr in compositions is deter-
mined by

C = SEQ

„
µZr + SEQ6=r(Z)

«
=⇒ C(z, u) =

„
1−

„
z

1− z + (u− 1)zr

««−1

.
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It is then easy to pull out the expected number ofr-summands in a random composition of
sizen. The differentiated form

∂uC(z, u)|u=1 =
zr(1− z)2
(1− 2z)2

gives by partial fraction expansion

∂u
bC(z, u)

˛̨
˛
u=1

=
2−r−2

(1− 2z)2
+

2−r−1 − r2−r−2

1− 2z
+ q(z),

for a polynomialq(z) that we do not need to make explicit. Extracting thenth coefficient of the
cumulative GFC′

u(z, 1) and dividing by2n−1 yields the mean number ofr-parts in a random
composition. Another differentiation gives access to the second moment. One finds:

PROPOSITIONIII.4 (Summands in integer compositions).The total number of summands in a
random composition of sizen has mean1

2
(n+1) and a distribution that is concentrated around

the mean. The number ofr summands in a composition of sizen has mean
n

2r+1
+O(1);

and a standard deviation of order
√
n, which also ensures concentration of distribution.

Clearly, suitable MGFs can keep track of any finite collection of summand types in compo-
sitions, and the method is extremely general. Much use of this way of envisioning multivariate
enumeration will be made throughout this book. �

From the point of view of random structures, the example of summands shows
that random compositions of large size tend to conform to a global “profile”. With
high probability, a composition of sizen should have aboutn/4 parts equal to 1,n/8
parts equal to 2, and so on. Naturally, there are statistically unavoidable fluctuations,
and for any finiten, the regularity of this law cannot be perfect: it tends to fade
away especially as regards to largest summands that arelog2(n) + O(1) with high
probability. (In this region mean and standard deviation both become of the same order
and areO(1), so that concentration no longer holds.) However, such observationsdo
tell us a great deal about what a typical random composition must (probably) look
like—it should conform to a “logarithmic profile”,

1n/4 2n/8 3n/16 4n/32 · · · .
Here are for instance the profiles of two compositions of sizen = 1024 drawn uni-
formly at random:

1250 2138 370 429 515 610 74 80, 91, 1253 2136 368 431 513 68 73 81 91 102

to be compared to the “ideal” profile

1256 2128 364 432 516 68 74 82 91.

It is a striking fact that samples of a very few elements or even justoneelement (this
would be ridiculous by the usual standards of statistics) are often sufficient to illus-
trate asymptotic properties of large random structures. The reason is once more to be
attributed to concentration of distributions whose effectis manifest here. Profiles of a
similar nature present themselves amongst objects defined by the sequence construc-
tion, as we shall see throughout this book. (Establishing such general laws is often
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not difficult but it requires the full power of complex-analytic methods developed in
Chapters IV–VIII.)

� 6. Largest summands in compositions.For anyǫ > 0, with probability tending to 1 as
n → ∞, the largest summand in a random integer composition of sizen is almost surely of
size in the interval[(1 − ǫ) log2 n, (1 + ǫ) log2 n]. (Hint: use the first and second moment
methods. More precise estimates are given in Chapter V.) �

In the sequel, it proves convenient to adopt a simplifying notation, much in the
spirit of our basic convention, where the atomZ is systematically reflected by the
namez of the variable in GFs.

Simplified notation for marks.The same symbol (usuallyu, v, u1, u2 . . .)
is freely employed to designate a combinatorial mark (of size 0) and the
corresponding marking variable in MGFs.

For instance, we allow ourselves to write directly, for compositions,

C = SEQ(uSEQ≥1 Z)), C = SEQ(uu1Z + uSEQ≥2 Z)),

whereu marks all summands andu1 marks summands equal to 1, giving rise to (21)
and (23). Note that the symbolic scheme of Theorem III.1 invariably applies to enu-
meration according to the number of zero-size marks inserted into specifications.

III. 3.3. Number of components in abstract unlabelled schemas. Consider a
constructionA = K(B), where the metasymbolK designates any standardunlabelled
constructor amongst SEQ,MSET,PSET,CYC. What is sought is the BGFA(z, u) of
classA, with u marking each component. The specification is then of the form

A = K(uB), K = SEQ,MSET,PSET,CYC .

Theorem III.1 applies and yields immediately the BGFA(z, u). In addition, differ-
entiating with respect tou then settingu = 1 provides the GF of cumulated values
(hence, in a non-normalized form, the OGF of the sequence of mean values of the
number of components):

Ω(z) =
∂

∂u
A(z, u)

∣∣∣∣
u=1

.

In summary:
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PROPOSITIONIII.5 (Components in unlabelled schemas).Given a construction,A =
K(B), the BGFA(z, u) and the cumulated GFΩ(z) associated to the number of com-
ponents are given by the following table:

K BGF (A(z, u)) Cumulative OGF(Ω(z))

SEQ :
1

1− uB(z)
A(z)2 · B(z) =

B(z)

(1−B(z))2

PSET :

8
>>><
>>>:

exp

 ∞X

k=1

(−1)k−1 u
k

k
B(zk)

!

∞Y

n=1

(1 + uzn)Bn

A(z) ·
∞X

k=1

(−1)k−1B(zk)

MSET :

8
>>><
>>>:

exp

 ∞X

k=1

uk

k
B(zk)

!

∞Y

n=1

(1− uzn)−Bn

A(z) ·
∞X

k=1

B(zk)

CYC :
∞X

k=1

ϕ(k)

k
log

1

1− ukB(zk)

∞X

k=1

ϕ(k)
B(zk)

1−B(zk)
.

Mean values are then recovered with the usual formula,

EAn(# components) =
[zn]Ω(z)

[zn]A(z)
.

A similar process applies to the number of components of a fixed sizer in anA-object.
� 7. r-Components in abstract unlabelled schemas.Consider unlabelled structures. The BGF
of the number ofr-components inA = K{B} is given by

A(z, u) = (1−B(z)− (u− 1)Brz
r)−1 , A(z, u) = A(z) ·

„
1− zr

1− uzr

«Br

,

in the case of sequences (K = SEQ) and multisets (K = MSET), respectively. Similar formulæ
hold for the other basic constructions and the cumulative GFs. �

� 8. Number of distinct components in a multiset.The specification and the BGF are
Y

n≥1

`
1 + uSEQ≥1(Z)

´
=⇒ =⇒

Y

n≥1

„
1 +

uzn

1− zn

«Bn

,

as follows from first principles. �

As an illustration, we discuss the profile of random partitions (Figure 7).

EXAMPLE 6. The profile of partitions.LetP = MSET(I) be the class of all integer partitions,
whereI = SEQ≥1(Z) represents integers in unary notation. The BGF ofP with u marking
the numberχ of parts (or summands) is obtained from the specification

P = MSET(uI) =⇒ P (z, u) = exp

 ∞X

k=1

uk

k

zk

1− zk

!
.

Equivalently, from first principles,

P ∼=
∞Y

n=1

SEQ(uIn) =⇒
∞Y

n=1

1

1− uzn
.
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FIGURE 7. A random partition of sizen = 100 has an aspect rather different from the
profile of a random composition of the same size (Figure 6).

The OGF of cumulated values then results from the second formof the BGF by logarithmic
differentiation:

(24) Ω(z) = P (z) ·
∞X

k=1

zk

1− zk
.

Now, the factor on the right in (24) can be expanded as

∞X

k=1

zk

1− zk
=

∞X

n=1

d(n)zn,

with d(n) the number of divisors ofn. Thus, the mean value ofχ is

(25) En(χ) =
1

Pn

nX

j=1

d(j)Pn−j .

The same technique applies to the number of parts equal tor. The form of the BGF is

eP ∼= SEQ(uIr)×
Y

n6=r

SEQ(In) =⇒ eP (z, u) =
1− zr

1− uzr
· P (z),

which implies that the mean value of the numbereχ of r-parts satisfies

En(eχ) =
1

Pn
[zn]

„
P (z) · zr

1− zr

«
=

1

Pn
(Pn−r + Pn−2r + Pn−3r + · · · ) .

From these formulæ and a decent symbolic manipulation package, the means are calculated
easily till values ofn well in the range of several thousand. �

The comparison between Figures 6 and 7 together with the supporting analysis
shows that different combinatorial models may well lead to rather different types of
probabilistic behaviours. Figure 8 displays the exact value of the mean number of parts
in random partitions of sizen = 1, . . . , 500, (as calculated from (25)) accompanied
with the observed values of one random sample for each value of n in the range. The
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FIGURE 8. The number of parts in random partitions of size1, . . . , 500: exact values of
the mean and simulations (circles, one for each value ofn).

mean number of parts is known to be asymptotic to
√
n logn

π
√

2/3
,

and the distribution, though it admits a comparatively large standard deviation (O(
√
n)),

is still concentrated in the technical sense; see [118].
In recent years, Vershik and his collaborators [93, 394] have shown that most in-

teger partitions tend to conform to a definite profile given (after normalization by
√
n)

by the continuous plane curvey = Ψ(x) defined implicitly by

(26) y = Ψ(x) iff e−αx + e−αy = 1, α =
π√
6
.

This is illustrated in Figure 9 by two randomly drawn elements ofP1000 represented
together with the “most likely” limit shape. The theoretical result explains the huge
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FIGURE 9. Two partitions ofP1000 drawn at random, compared to the limiting shape
Ψ(x) defined by (26).
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differences that are manifest on simulations between integer compositions and integer
partitions.

The last example demonstrates the application of BGFs to estimates regarding
the root degree of a tree drawn uniformly at random amongst the classGn of general
Catalan trees of sizen. Tree parameters such as number of leaves and path length
that are more global in nature and need a recursive definitionwill be discussed in
Section III. 5 below.

EXAMPLE 7. Root degree in general Catalan trees.Consider the parameterχ equal to the
degree of the root in a tree, and take the classG of all plane unlabelled trees, i.e., general Catalan
trees. The specification is obtained by first defining trees (G), then defining trees with a mark
for subtrees(G◦) dangling from the root:

8
<
:
G = Z × SEQ(G)
G◦ = Z × SEQ(uG)

=⇒

8
><
>:

G(z) =
z

1−G(z)

G(z, u) =
z

1− uG(z)
.

This set of equations reveals that the probability that the root degree equalsr is

Pn{χ = r} =
1

Gn
[zn−1]G(z)r =

r

n− 1

 
2n− 3− r
n− 2

!
∼ r

2r+1
,

this by Lagrange inversion and elementary asymptotics. Also, the cumulative GF is found to be

Ω(z) =
zG(z)

(1−G(z))2
.

The relation satisfied byG entails a further simplification,

Ω(z) =
1

z
G(z)3 =

„
1

z
− 1

«
G(z)− 1,

so that the mean root degree admits a closed form,

En(χ) =
1

Gn
(Gn+1 −Gn) = 3

n− 1

n+ 1
,

a quantity clearly asymptotic to3.
A random plane tree is thus usually composed of a small numberof root subtrees, at least

one of which should accordingly be fairly large. �

III. 4. Inherited parameters and exponential MGFs

The theory of inheritance developed in the last section applies almostverbatimto
labelled objects. The only difference is that the variable marking size must carry a fac-
torial coefficient dictated by the needs of relabellings. Once more, with a suitable use
of multi-index conventions, the translation mechanisms developed in the univariate
case (Chapter II) remain in vigour, this in a way that parallels the unlabelled case.

Let us consider a pair〈A, χ〉, whereA is a labelled combinatorial class endowed
with its size function| · | andχ = (χ1, . . . , χd) is ad-dimensional parameter. Like
before, the parameterχ is extended intoχ by inserting size as zeroth coordinate and
a vectorz = (z0, . . . , zd) of d+ 1 indeterminates is introduced, withz0 marking size
andzj markingχj . Once the multi-index convention of (19) definingzk has been
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brought into the game, the exponential MGF of〈A, χ〉 (see Definition III.4) can be
rephrased as

(27)

A(z) =
∑

k

Ak

z
k

k0!

=
∑

α∈A

z
χ(α)

|α|! .

In a sense, this MGF is exponential inz (aliasz0) but ordinary in the other variables;
only the factorialk0! is needed to take into account relabelling induced by labelled
products.

We a priori restrict attention to parameters that do not depend on the absolute
values of labels (but may well depend on the relative order oflabels): a parameter is
said to becompatibleif, for anyα, it assumes the same value on any labelled objectα
and all the order-consistent relabellings ofα. A parameter is said to beinheritedif it is
compatible and it is defined by cases on disjoint unions and determined additively on
labelled products—this is Definition III.5 with labelled products replacing cartesian
products. In particular, for a compatible parameter,inheritance signifies additivity on
components of labelled sequences, sets, and cycles. We can then cut-and-paste (with
minor adjustments) the statement of Theorem III.1:

THEOREM III.2 (Inherited parameters and exponential MGFs).Let A be a labelled
combinatorial class constructed fromB, C, and letχ be a parameter inherited from
ξ defined onB and (as the case may be) fromζ on C. Then the translation rules
of admissible constructions stated in Theorem II.1 apply. is used. The associated
operators on exponential MGFs are:

Union: A = B + C =⇒ A(z) = B(z) + C(z)

Product: A = B ⋆ C =⇒ A(z) = B(z) · C(z)

Sequence: A = SEQ(B) =⇒ A(z) =
1

1 −B(z)

Cycle: A = CYC(B) =⇒ A(z) = log
1

1 −B(z)
.

Set: A = SET(B) =⇒ A(z) = exp
(
B(z)

)
.

PROOF. Disjoint unions are treated like in the unlabelled multivariate case. Labelled
products result from

A(z) =
∑

α∈A

z
χ(α)

|α|! =
∑

β∈B,γ∈C

(|β| + |γ|
|β|, |γ|

)
z

ξ(β)
z

ζ(γ)

(|β| + |γ|)! ,

and the usual translation of binomial convolutions that reflect labellings by means of
products of exponential generating functions (like in the univariate case detailed in
Chapter II). The translation for composite constructions is then immediate. �

This theorem can be exploited to determine moments, in a way that entirely par-
allels its unlabelled counterpart.

EXAMPLE 8. The profile of permutations.Let P be the class of all permutations andχ the
number of components. Using the concept of marking, the specification and the exponential
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FIGURE 10. The profile of permutations: a rendering of the cycle structure of six random
permutations of size 500, where circle areas are drawn in proportion to cycle lengths.
Permutations tend to have a few small cycles (of sizeO(1)), a few large ones (of size
Θ(n)), and altogether haveHn ∼ log n cycles on average.

BGF are

P = SET (uCYC(Z)) =⇒ P (z, u) = exp

„
u log

1

1− z

«
= (1− z)−u,

as was already obtained by anad hoccalculation in (5). We also know (page 149) that the mean
number of cycles is the harmonic numberHn and that the distribution is concentrated since the
standard deviation is much smaller than the mean.

Regarding the numberχ of cycles of lengthr, the specification and the exponential BGF
are now

(28)
P = SET (CYC 6=r(Z) + uCYC=r(Z))

=⇒ P (z, u) = exp

„
log

1

1− z + (u− 1)
zr

r

«
=
e(u−1)zr/r

1− z .

The EGF of cumulated values is then

(29) eΩ(z) =
zr

r

1

1− z .

The result is a remarkably simple one:In a random permutation of sizen, the mean number
of r-cycles is equal to1

r
for anyr ≤ n.

Thus, the profile of a random permutation, where profile is defined as the ordered sequence
of cycle lengths departs significantly from what has been encountered for integer compositions
and partitions. Formula (29) also sheds a new light on the harmonic number formula for the
mean number of cycles—each term1

r
in the harmonic number expresses the mean number ofr

cycles.
Since formulæ are so simple, one can get more information. By(28) one has, as seen

above,

P{χ = k} =
1

k! rk
[zn−kr]

e−zr/r

1− z ,

where the last factor counts permutations without cycles oflengthr. From this (and the asymp-
totics of generalized derangement numbers in Chapter IV), one proves easily that the asymptotic
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FIGURE 11. Two random allocations withm = 12, n = 48. The rightmost diagrams
display the bins sorted by decreasing order of occupancy.

law of the number ofr-cycles is Poisson2 of rate 1
r
; in particular it is not concentrated. (This in-

teresting property to be established in later chapters constitutes the starting point of an important
study by Shep and Lloyd [354].)

Also, the mean number of cycles whose size is betweenn/2 andn is Hn−H⌊n/2⌋ a quan-
tity that is approximatelylog 2

.
= 0.69314. In other words, we expect a random permutation

of sizen to have one or a few large cycles. (See the paper [354] for the original discussion of
largest and smallest cycles). �

EXAMPLE 9. Allocations, balls-in-bins models, and the Poisson law.Random allocations
and the balls-in-bins model have been introduced in ChapterII in connection with the birthday
paradox and the coupon collector problem. Under this model,there aren balls thrown into
m bins in all possible ways, the total number of allocations being thusmn. By the labelled
construction of words, the bivariate EGF withz marking the number of balls andu marking the
numberχ(s) of bins that contains balls (s a fixed parameter) is given by

A = SEQm (SET6=s(Z) + uSET=s(Z)) =⇒ A(s)(z, u) =

„
ez + (u− 1)

zs

s!

«m

.

In particular, the distribution of the number of empty bins (χ(0)) is expressible in terms of
Stirling partition numbers:

Pm,n(χ(0) = k) ≡ n!

mn
[ukzn]A(0)(z, u) =

(m− k)!
mn

 
m

k

!(
n

m− k

)
.

By differentiation of the BGF, there results an exact expression for the mean (anys ≥ 0):

(30)
1

m
Em,n(χ(s)) =

1

s!

„
1− 1

m

«n−s
n(n− 1) · · · (n− s+ 1)

ms
.

Letm andn tend to infinity in such a way thatn
m

= λ is a fixed constant. This regime is ex-
tremely important in many applications, some of which are listed below. The average proportion

2 The Poisson distribution of rateλ > 0 is supported by the nonnegative integers and determined by

P{k} = e−λ λ
k

k!
.
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of bins containings elements is1
m

Em,n(χ(s)), and from (30), one obtains by straightforward
calculations the asymptotic limit estimate,

(31) lim
n/m=λ, n→∞

1

m
Em,n(χ(s)) = e−λ λ

s

s!
.

In other words, a Poisson formula describes the average proportion of bins of a given size in a
large random allocation. (Equivalently, the occupancy of arandom bin in a random allocation
satisfies a Poisson law in the limit.)

The variance of eachχ(s) (with fixed s) is estimated similarly via a second derivative and
one finds:

Vm,n(χ(s)) ∼ me−2λλ
s

s!
E(λ), E(λ) :=

„
eλ − sλs−1

(s− 1)!
− (1− 2s)

λs

s!
− λs+1

s!

«
.

As a consequence, one has the convergence in probability,

1

m
χ(s) P−→e−λ λ

s

s!
,

valid for anyfixeds ≥ 0. �

� 9. Hashing and random allocations.Random allocations of balls into bins are central in the
understanding of a class of important algorithms of computer science known ashashing[161,
245, 352, 353, 396]: given a universeU of data, set up a function (called a hashing function)
h : U −→ [1 . .m] and arrange for an array ofm bins; an elementx ∈ U is placed in bin number
h(x). If the hash function scrambles the data in a way that is suitably (pseudo)uniform, then the
process of hashing a file ofn records (keys, data items) intom bins is adequately modelled by
a random allocation scheme. Ifλ = n

m
, representing the “load”, is kept reasonably bounded

(say,λ ≤ 10), the previous analysis implies that hashing allows for an almost direct access to
data. �

Number of components in abstract labelled schemas.Like in the unlabelled uni-
verse, a general formula gives the distribution of the number of components for the
basic constructions.

PROPOSITIONIII.6. Consider labelled structures and the parameterχ equal to the
number of components in a constructionA = K{B}, whereK is one ofSEQ,SET CYC.
The exponential BGFA(z, u) and the exponential GFΩ(z) of cumulated values are
given by the following table:

(32)

K exp. MGF(A(z, u)) Cumul. EGF(Ω(z))

SEQ :
1

1− uB(z)
A(z)2 ·B(z) =

B(z)

(1−B(z))2

SET : exp (uB(z)) A(z) ·B(z) = B(z)eB(z)

CYC : log
1

1− uB(z)

B(z)

1−B(z)
.

Mean values are then easily recovered, and one finds

En(χ) =
Ωn

An
=

[zn]Ω(z)

[zn]A(z)
,

by the same formula as in the unlabelled case.
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� 10.r-Components in abstract labelled schemas.The BGFA(z, u) and the cumulative EGF
Ω(z) are given by the following table,

SEQ :
1

1−
`
B(z) + (u− 1)Brzr

r!

´ 1

(1−B(z))2
· Brz

r

r!

SET : exp

„
B(z) + (u− 1)

Brz
r

r!

«
eB(z) · Brz

r

r!

CYC : log
1

1−
`
B(z) + (u− 1)Brzr

r!

´ 1

(1−B(z))
· Brz

r

r!
,

in the labelled case. �

EXAMPLE 10. Set partitions. Set partitionsS are sets of blocks, themselves nonempty sets of
elements. The enumeration of set partitions according to the number of blocks is then given by

S = SET(uSET≥1(Z)) =⇒ S(z, u) = eu(ez−1).

Since set partitions are otherwise known to be enumerated bythe Stirling partition numbers,
one has the BGF and the vertical EGFs as a corollary,

X

n,k

(
n

k

)
uk z

n

n!
= eu(ez−1),

X

n

(
n

k

)
zn

n!
=

1

k!
(ez − 1)k,

which is consistent with earlier calculations of Chapter II.
The EGF of cumulated values,Ω(z) is then

Ω(z) = (ez − 1)eez−1,

which is almost a derivative ofS(z):

Ω(z) =
d

dz
S(z)− S(z).

Thus, the mean number of blocks in a random partition of sizen is

Ωn

Sn
=
Sn+1

Sn
− 1,

a quantity directly expressible in terms of Bell numbers. A delicate computation based on
the asymptotic expansion of the Bell numbers reveals that the expected value and the standard
deviation are asymptotic to (Chapter VIII)

n

log n
,

√
n

log n
,

respectively. Similarly the exponential BGF of the number of blocks of sizek is

S = SET(uSET=k(Z) + SET6=0,k(Z)) =⇒ S(z, u) = eez−1+(u−1)zk/k!,

out of which mean and variance can be derived. �

EXAMPLE 11. Root degree in Cayley trees.Consider the classT of Cayley trees (nonplane
labelled trees) and the parameter “root-degree”. The basicspecifications are

8
<
:
T = Z ⋆ SET(T )

T ◦ = Z ⋆ SET(uT )
=⇒

8
<
:

T (z) = zeT (z)

T (z, u) = zeuT (z).
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The set construction reflects the non-planar character of Cayley trees and the specificationT ◦ is
enriched by a mark associated to subtrees dangling from the root. Lagrange inversion provides
the fraction of trees with root degreek,

1

(k − 1)!

n!

(n− 1− k)!
(n− 1)n−2−k

nn−1
∼ e−1

(k − 1)!
, k ≥ 1.

Similarly, the cumulative GF is found to beΩ(z) = T (z)2, so that the mean root degree satisfies

ETn(root degree) = 2(1− 1

n
) ∼ 2.

Thus the law of root degree is asymptotically a Poisson law ofrate1 (shifted by 1). Probabilistic
phenomena qualitatively similar to those encountered in plane trees are observed here as the
mean root degree is asymptotic to a constant. However a Poisson law eventually reflecting the
nonplanarity condition replaces the modified geometric law(known as a negative binomial law)
present in plane trees. �

� 11.Numbers of components in alignments.Alignments (O) are sequences of cycles (Chap-
ter II). The expected number of components in a random alignment ofOn is

[zn] log(1− z)−1(1− log(1− z)−1)−2

[zn](1− log(1− z)−1)−1
.

Methods of Chapter V imply that the number of components in a random alignment has expec-
tation∼ n/(e− 1) and standard deviationΘ(

√
n). �

� 12. Image cardinality of a random surjection.The expected cardinality of the image of a
random surjection inRn (see Chapter II) is

[zn]ez(2− ez)−2

[zn](2− ez)−1
.

The number of values whose preimages have cardinalityk is obtained by replacing the single
exponential factorez by zk/k!. Methods of Chapters IV and V imply that the image cardinality
of a random surjection has expectationn/(2 log 2) and standard deviationΘ(

√
n). �

� 13. Distinct component sizes in set partitions.Take the number ofdistinct block sizes and
cycle sizes in set partitions and permutations. The bivariate EGFs are

∞Y

n=1

“
1− u+ uezn/n!

”
,

∞Y

n=1

“
1− u+ uezn/n

”
,

as follows from first principles. �

Postscript: Towards a theory of schemas.Let us look back and recapitulate
some of the information gathered in pages 156—169 regardingthe number of compo-
nents in composite structures. The classes considered in the table below are composi-
tions of two constructions, either in the unlabelled or the labelled universe. Each entry
contains the BGF for the number of components (e.g., cycles in permutations, parts
in integer partitions, and so on), and the asymptotic ordersof the mean and standard
deviation of the number of components for objects of sizen.

Some obvious facts stand out from the data and call for explanation. First the
outer construction appears to play the essential rôle: outer sequenceconstructs (cf
integer compositions, surjections and alignments) tend todictate a number of com-
ponents that isΘ(n) on average, while outersetconstructs (cf integer compositions,
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Unlabelled structures

Integer partitions, MSET◦SEQ

exp

„
u

z

1− z +
u2

2

z2

1− z2
+ · · ·

«

∼
√
n log n

π
p

2/3
, Θ(

√
n)

Integer compositions, SEQ◦SEQ„
1− u z

1− z

«−1

∼ n

2
, Θ(

√
n)

Labelled structures

Set partitions, SET◦SET

exp (u (ez − 1))

∼ n

log n
∼
√
n

log n

Surjections, SEQ◦ SET

(1− u (ez − 1))−1

∼ n

2 log 2
, Θ(

√
n)

Permutations, SET◦CYC

exp
`
u log(1− z)−1

´

∼ log n, ∼ √log n

Alignments, SEQ◦CYC
`
1− u log(1− z)−1´−1

∼ n

e− 1
, Θ(

√
n)

FIGURE 12. Major properties of the number of components in six level-two structures.
For each class, from top to bottom:(i) specification type;(ii) BGF; (iii) mean and vari-
ance of the number of components.

set partitions, and permutations) are associated with a greater variety of asymptotic
regimes. Eventually, such facts can be organized into broadanalytic schemas, as will
be seen in Chapters IV–IX.

� 14.Singularity and probability.The differences in behaviour are to be assigned to the rather
different types of singularity involved: on the one hand sets corresponding algebraically to an
exp(·) operator induce an exponential blow up of singularities; onthe other hand sequences
expressed algebraically by quasi-inverses(1− ·)−1 are likely to induce polar singularities. Re-
cursive structures like trees lead to yet other types of phenomena with a number of components,
i.e., the root degree, that is bounded in probability. �

III. 5. Recursive parameters

In this section, we adapt the general methodology of previous sections in order to
treat parameters that are defined by recursive rules over structures that are themselves
recursively specified. Typical applications concern treesand tree-like structures.

Regarding the number of leaves, or more generally, the number of nodes of some
fixed degree, in a tree, the method of placing marks applies like in the non-recursive
case. It suffices to distinguish elements of interest and mark them by an auxiliary
variable. For instance, in order to mark composite objects made ofr components,
wherer is an integer andK designates any of SEQ, SET (or MSET,PSET), CYC, one
should split a constructionK(C) according to the identity

K(C) = K=r(C) + K6=r(C),
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then introduce a mark (u) in front of the first term of the sum. This technique gives
rise to specifications decorated by marks to which Theorems III.1 and III.2 apply. For
a recursively defined structure, the outcome is a functionalequation defining the BGF
recursively. This technique is illustrated by Examples 12 ands 13 below in the case of
Catalan trees and the parameter number of leaves.

EXAMPLE 12. Leaves in general Catalan trees.How many leaves does a random tree of
some variety have? Can different varieties of trees be somehow distinguished by the proportion
of their leaves? Beyond the botany of combinatorics, such considerations are for instance rele-
vant to the analysis of algorithms since tree leaves, havingno descendants, can be stored more
economically; see [244, Sec. 2.3] for an algorithmic motivation for such questions.

Consider once more the classG of plane unlabelled trees,G = Z × SEQ(G), enumerated
by the Catalan numbers:Gn = 1

n

`
2n−2
n−1

´
. The classG◦ where each leaf is marked is

G◦ = Zu+ Z × SEQ≥1(G◦) =⇒ G(z, u) = zu+
zG(z, u)

1−G(z, u)
.

The induced quadratic equation can be solved explicitly

G(z, u) =
1

2

“
1 + (u− 1)z −

p
1− 2(u+ 1)z + (u− 1)2z2

”
.

It is however simpler to expand using the Lagrange inversiontheorem which provides

Gn,k = [uk] ([zn]G(z, u)) = [uk]

„
1

n
[yn−1](u+

y

1− y )n

«

=
1

n

 
n

k

!
[yn−1]

yn−k

(1− y)n−k
=

1

n

 
n

k

! 
n− 2

k − 1

!
.

These numbers are known as Narayana numbers, seeEISA001263, and they surface repeatedly
in connexion with ballot problems. The mean number of leavesderives from the cumulative
GF, which is

Ω(z) = ∂uG(z, u)|u=1 =
1

2
z +

1

2

z√
1− 4z

,

so that the mean isn/2 exactly forn ≥ 2. The distribution is concentrated since the standard
deviation is easily calculated to beO(

√
n). �

EXAMPLE 13. Leaves and node types in binary trees.The classB of binary plane trees, also
enumerated by Catalan numbers (Bn = 1

n+1

`
2n
n

´
) can be specified as

(33) B = Z + (B × Z) + (Z ×B) + (B × Z × B),

which stresses the distinction between four types of nodes:leaves, left branching, right branch-
ing, and binary. Letu0, u1, u2 be variables that mark nodes of degree 0,1,2, respectively.Then
the root decomposition (33) provides for the MGFB = B(z, u0, u1, u2) the functional equa-
tion

B = zu0 + 2zu1B + zu2B
2,

which, by Lagrange inversion, gives

Bn,k0,k1,k2 =
2k1

n

 
n

k0, k1, k2

!
,



172 III. PARAMETERS AND MULTIVARIATE GFS

subject to the natural conditions:k0 + k1 + k2 = n and andk0 = k2 + 1. Specializations and
moments can be easily calculated from such an approach [327]. In particular, the mean number
of nodes of each type is asymptotically:

leaves:∼ n

4
, 1-nodes :∼ n

2
, 2-nodes :∼ n

4
.

There is an equal asymptotic proportion of leaves, double nodes, left branching, and right
branching nodes. Also, the standard deviation is in each case O(

√
n), so that each of the

corresponding distributions is concentrated. �

� 15. Leaves and node-degree profile in Cayley trees.For Cayley trees, the bivariate EGF
with u marking the number of leaves is the solution to

T (z, u) = uz + z(eT (z,u) − 1).

The distribution is expressed in terms of Stirling partition numbers. The mean number of leaves
in a random Cayley tree is asymptotic tone−1.

More generally, the mean number of nodes of outdegreek in a random Cayley tree of
sizen is asymptotic to

n · e−1 1

k!
.

Degrees of nodes are thus approximately given by a Poisson law of rate 1. �

� 16.Node-degree profile in simple varieties of trees.For a family of trees generated byT (z) =
zφ(T (z)) with φ a power series, the BGF of the number of nodes of degreek satisfies

T (z, u) = z
“
φ(T (z, u)) + φk(u− 1)T (z, u)k

”
,

whereφk = [uk]φ(u). The cumulative GF is

Ω(z) = z
φkT (z)k

1− zφ′(T (z))
= φkz

2T (z)k−1T ′(z),

from which expectations can be determined. �

� 17. Marking in functional graphs.Consider the classF of finite mappings discussed in
Chapter II:

F = SET(K), K = CYC(T ), T = Z ⋆ SET(T ).

The translation into EGFs is

F (z) = eK(z), K(z) = log
1

1− T (z)
, T (z) = zeT (z).

Here are bivariate EGFs for(i) the number of components,(ii) the number of maximal trees,
(iii) the number of leaves:

(i) euK(z), (ii)
1

1− uT (z)
,

(iii)
1

1− T (z, u)
with T (z, u) = (u− 1)z + zeT (z,u).

The trivariate EGFF (u1, u2, z) of functional graphs withu1 marking components andu2

marking trees is

F (z, u1, u2) = exp(u1 log(1− u2T (z))−1) =
1

(1− u2T (z))u1
.

An explicit expression for the coefficients involves the Stirling cycle numbers. �
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We shall stop here these examples that could be multipliedad libitumsince such
calculations greatly simplify when interpreted in the light of asymptotic analysis. The
phenomena observed asymptotically are, for good reasons, especially close to what
the classical theory of branching processes provides (see the book by Harris [209]).

Linear transformations on parameters and path length in trees. We have so far
been dealing with a parameter defined directly by recursion.Next, we turn to other pa-
rameters such as path length. As a preamble, one needs a simple linear transformation
on combinatorial parameters. LetA be a class equipped with two scalar parameters,
χ andξ, related by

χ(α) = |α| + ξ(α).

Then, the combinatorial form of BGFs yields
∑

α∈A
z|α|uχ(α) =

∑

α∈A
z|α|u|α|+ξ(α) =

∑

α∈A
(zu)|α|uξ(α),

that is,

(34) Aχ(z, u) = Aξ(zu, u).

This is clearly a general mechanism:

Linear transformations and MGFs: A linear transformation on param-
eters induces a monomial substitution on the correspondingmarking vari-
ables in MGFs.

We now put this mechanism to use in the recursive analysis of path length in trees.

EXAMPLE 14. Path length in trees.The path length of a tree is defined as the sum of distances
of all nodes to the root of the tree, where distances are measured by the number of edges on
the minimal connecting path of a node to the root. Path lengthis an important characteristic
of trees. For instance, when a tree is used as a data structurewith nodes containing additional
information, path length represents the total cost of accessing all data items when a search
is started from the root. For this reason, path length surfaces, under various models, in the
analysis of algorithms like algorithms and data structuresfor searching and sorting (e.g., tree-
sort, quicksort, radix-sort); see [244, 353].

The definition of path length as

λ(τ ) :=
X

ν∈τ

dist(ν, root(τ )),

transforms into an inductive definition:

(35) λ(τ ) =
X

υ root subtree of τ

(λ(υ) + |υ|) .

To establish this identity, distribute nodes in their corresponding subtrees; correct distances to
the subtree roots by 1, and regroup terms.

From this point on, we specialize the discussion to general Catalan trees (see Note 18 for
other cases):G = Z × SEQ(calG). Introduce momentarily the parameterµ(τ ) = |τ |+ λ(τ ).
Then, one has from the inductive definition (35) and the general transformation rule (34):

(36) Gλ(z, u) =
z

1−Gµ(z, u)
and Gµ(z, u) = Gλ(zu, u).
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In other words,G(z, u) ≡ Gλ(z, u) satisfies a nonlinear functional equation of the difference
type:

G(z, u) =
z

1−G(uz, u)
.

(This functional equation will be encountered again in connection with area under Dyck paths:
see Chapter V, p. 299.) The generating functionΩ(z) of cumulated values ofλ then obtains
by differentiation with respect tou upon settingu = 1. We find in this way thatΩ(z) :=
∂uG(z, u)|u=1 satisfies

Ω(z) =
z

(1−G(z))2
`
zG′(z) + Ω(z)

´
,

which is a linear equation that solves to

Ω(z) = z2 G′(z)

(1−G(z))2 − z =
z

2(1− 4z)
− z

2
√

1− 4z
.

Consequently, one has (n ≥ 1)

Ωn = 22n−3 − 1

2

 
2n− 2

n− 1

!
,

where the sequence starting 1, 5, 22, 93, 386 forn ≥ 2 constitutesEIS A000346. By an
elementary asymptotic analysis, we get:

The mean path length of a random Catalan tree of sizen is asymptotic to
1
2

√
πn3; in short: a branch from the root to a random node in a random

Catalan tree of sizen has expected length of the order of
√
n.

Random Catalan trees thus tend to be somewhat imbalanced—bycomparison, a fully balanced
binary tree has all paths of length at mostlog2 n+O(1). �

The imbalance in random Catalan trees is a general phenomenon—it holds for
binary Catalan and more generally for all simple varieties of trees. Note 18 below and
Chapter VII (p. 405) imply that path length is invariably of ordern

√
n on average in

such cases. Height is of typical order
√
n as shown by Rényi and Szekeres [332], de

Bruijn, Knuth and Rice [88], Kolchin [251], as well as Flajolet, and Odlyzko [151].
Figure 13 borrowed from [353] illustrates this on a simulation. (The contour of the
histogram of nodes by levels, once normalized, has been proved to converge to the
process known as Brownian excursion.)

� 18. Path length in simple varieties of trees.The BGF of path length in a variety of trees
generated byT (z) = zφ(T (z)) satisfies

T (z, u) = zφ(T (zu, u)).

In particular, the cumulative GF is

Ω(z) ≡ ∂u (T (z, u))u=1 =
φ′(T (z))

φ(T (z))
(zT ′(z))2,

from which coefficients can be extracted. �
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FIGURE 13. A random pruned binary tree of size 256 and its associated level profile: the
histogram on the left displays the number of nodes at each level in the tree.

III. 6. Complete generating functions and discrete models

By acompletegenerating function, we mean, loosely speaking, a generating func-
tion in a (possibly large, and even infinite in the limit) number of variables that mark a
homogeneous collection of characteristics of a combinatorial class3. For instance one
may be interested in the joint distribution ofall the different letters composing words,
the number of cycles ofall lengths in permutations, and so on. A complete MGF
naturally entails very detailed knowledge on the enumerative properties of structures
to which it is relative. Complete generating functions, given their expressive power,
also make weighted models accessible to calculation, a situation that covers in partic-
ular Bernoulli trials (p. 179) and branching processes fromclassical probability theory
(p. 185).

Complete GFs for words.As a basic example, consider the class of all words
W = SEQ{A} over some finite alphabetA = {a1, . . . , ar}. Let χ = (χ1, . . . , χr),
whereχj(w) is the number of occurrences of the letteraj in wordw. The MGF ofA
with respect toχ is

A = u1a1 + u2a2 + · · ·urar =⇒ A(z,u) = zu1 + zu2 + · · · + zur,

andχ onW is clearly inherited fromχ onA. Thus, by the sequence rule, one has

(37) W = SEQ(A) =⇒ W (z,u) =
1

1 − z(u1 + u2 + · · · + ur)
,

3Complete GFs arenot new objects. They are simply a an avatar of multivariate GFs.Thus the term
is only meant to be suggestive of a particular usage of MGFs, and essentially no new theory is needed in
order to cope with them.
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which describes all words according to their compositions into letters. In particular,
the number of words withnj occurrences of letteraj andn =

∑
nj is in this frame-

work obtained as

[un1
1 un2

2 · · ·unr
r ] (u1 + u2 + · · · + ur)n =

(
n

n1, n2, . . . , nr

)
=

n!

n1!n2! · · ·nr
.

We are back to the usual multinomial coefficients.

� 19. After Bhaskara Acharya(circa 1150AD). Consider all the numbers formed in decimal
with digit 1 used once, with digit 2 used twice,. . . , with digit 9 used nine times. Such numbers
all have 45 digits. Compute their sumS and discover, much to your amazement thatS equals

45875559600006153219084769286399999999999999954124440399993846780915230713600000.

This number has a long run of nines (and further nines are hidden!). Is there a simple explana-
tion? This exercise is inspired by the Indian mathematicianBhaskara Acharya who discovered
multinomial coefficients near 1150AD; see [244, p. 23] for a brief historical note. �

Complete GFs for permutations and set partitions.Consider permutations and
the various lengths of their cycles. The MGF whereuk marks cycles of lengthk for
k = 1, 2, . . . can be written as an MGF ininfinitely manyvariables:

(38) P (z,u) = exp

(
u1
z

1
+ u2

z2

2
+ u3

z3

3
+ · · ·

)
.

The MGF expressionU has the neat feature that, upon specializing all but a finite
number ofuj to 1, we derive all the particular cases of interest with respect to any
finite collection of cycles lengths. Observe also that one can calculate in the usual
way any coefficient[zn]P as it only involves the variablesu1, . . . , un.

� 20.The theory of formal power series in infinitely many variables. (This note is for formal-
ists.) Mathematically, an object likeP in (38) is perfectly well defined. LetU = {u1, u2, . . .}
be an infinite collection of indeterminates. First, the ringof polynomialsR = C[U ] is well
defined and a given element ofR involves only finitely many indeterminates. Then, fromR,
one can define the ring of formal power series inz, namelyR[[z]]. (Note that, iff ∈ R[[z]], then
each[zn]f involves only finitely many of the variablesuj .) The basic operations and the notion
of convergence, as described in APPENDIXA: Formal power series, p. 620, apply in a standard
way.

For instance, in the case of (38), the complete GFP (z,u) is obtainable as the formal limit

P (z,u) = lim
k→∞

exp

„
u1
z

1
+ · · ·+ uk

zk

k
+
zk+1

k + 1
+ · · ·

«

in R[[z]] equipped with the formal topology. (In contrast, the quantity evocative of a generating
function of words over an infinite alphabet

W
!
=

 
1− z

∞X

j=1

uj

!−1

cannot receive a sound definition as a element of the formal domainR[[z]].) �

Henceforth, we shall keep in mind that verifications of formal correctness regard-
ing power series in infinitely many indeterminates are always possible by returning to
basic definitions.
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Complete generating functions are often surprisingly simple to expand. For in-
stance, the equivalent form of (38)

P (z,u) = eu1z/1 · eu2z2/2 · eu3z3/3 · · ·
implies immediately that the number of permutations withk1 cycles of size1, k2 of
size2, and so on, is

(39)
n!

k1! k2! · · ·kn! 1k1 2k2 · · ·nkn
,

provided
∑
jkj = n. This is a result originally due to Cauchy. Similarly, the EGF of

set partitions withuj marking the number of blocks of sizej is

S(z,u) = exp

(
u1
z

1!
+ u2

z2

2!
+ u3

z3

3!
+ · · ·

)
.

A formula analogous to (39) follows: the number of partitions with k1 blocks of size
1, k2 of size2, and so on, is

n!

k1! k2! · · · kn! 1!k1 2!k2 · · ·n!kn
.

Several examples of such complete generating functions arepresented in Comtet’s
book; see [76], pages 225 and 233.

� 21. Complete GFs for compositions and surjections.The complete GFs of integer compo-
sitions and surjections withuj marking the number of components of sizej are

1

1−P∞
j=1 ujzj

,
1

1−P∞
j=1 uj

zj

j!

.

The associated counts withn =
P

j jkj are given by
 
k1 + k2 + · · ·
k1, k2, . . .

!
,

n!

1!k12!k2 · · ·

 
k1 + k2 + · · ·
k1, k2, . . .

!
.

These factored forms derive directly from the multinomial expansion. The symbolic form of
the multinomial expansion of powers of a generating function is sometimes expressed in terms
of Bell polynomials, themselves nothing but a rephrasing ofthe multinomial expansion; see
Comtet’s book [76, Sec. 3.3] for a fair treatment of such polynomials. �

� 22. Faà di Bruno’s formula. The formulæ for the successive derivatives of a functional
compositionh(z) = f(g(z))

∂zh(z) = f ′(g(z))g′(z), ∂2
zh(z) = f ′′(g(z))g′(z)2 + f ′(z)g′′(z), . . . ,

are clearly equivalent to the expansion of a formal power series composition. Indeed, assume
without loss of generality thatz = 0 andg(0) = 0; setfn := ∂n

z f(0), and similarly forg, h.
Then:

h(z) ≡
X

n

hn
zn

n!
=
X

k

fk

k!

“
g1z +

g2
2!
z2 + · · ·

”k

.

Thus in one direct application of the multinomial expansion, one finds

hn

n!
=
X

k

fk

k!

X

C

 
k

ℓ1, ℓ2, . . . , ℓk

!“g1
1!

”ℓ1
“g2

2!

”ℓ2 · · ·
“gk

k!

”ℓk
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where the summation conditionC is: 1ℓ1 + 2ℓ2 + · · · + kℓk = n, ℓ1 + ℓ2 + · · · + ℓk = k.
This shallow identity is known as Faà di Bruno’s formula [76, p. 137]. (Faà di Bruno (1825–
1888) was canonized by the Catholic Church in 1988, presumably for reasons not related to his
formula.) �

� 23. Relations between symmetric functions.Symmetric functions may be manipulated by
mechanisms that are often reminiscent of the set and multiset construction. They appear in
many areas of combinatorial enumeration. LetX = {xi}ri=1 be a collection of formal variables.
Define the symmetric functions

Y

i

(1 + xiz) =
X

n

anz
n,

Y

i

1

1− xiz
=
X

n

bnz
n,

X

i

xiz

1− xiz
=
X

n

cnz
n.

Thean, bn, cn, called resp. elementary, monomial, and power symmetric functions are express-
ible as

an =
X

i1<i2<···<ir

xi1xi2 · · ·xir , bn =
X

i1≤i2≤···≤ir

xi1xi2 · · ·xir , cn =
rX

i=1

xr
i .

The following relations hold for the OGFsA(z), B(z), C(z) of an, bn, cn::

B(z) =
1

A(−z) , A(z) =
1

B(−z) ,

C(z) = z
d

dz
logB(z), B(z) = exp

Z z

0

C(t)
dt

t
.

Consequently, each ofan, bn, cn is polynomially expressible in terms of any of the other quan-
tities. (The connection coefficients, like in Note 22, involve multinomials.) �

� 24. Regular graphs.A graph isr–regular iff each node has degree exactly equal tor. The
number ofr–regular graphs of sizen is

[xr
1x

r
2 · · ·xr

n]
Y

1≤i<j≤n

(1 + xixj).

[Gessel [184] has shown how to extract explicit expressions from such huge symmetric func-
tions.] �

III. 6.1. Word models. The enumeration of words constitutes a rich chapter of
combinatorial analysis, and complete GFs serve to generalize many results to the case
of nonuniform letter probabilities, like the coupon collector problem and the birthday
paradox considered in Chapter II. Applications are to be found in classical probability
theory and statistics [83] (the so-called Bernoulli trial models), as well as in computer
science [372] and mathematical models of biology [401].

EXAMPLE 15. Words and records.Fix an alphabetA = {a1, . . . , ar} and letW = SEQ{A}
be the class of all words overA, whereA is naturally ordered bya1 < a2 < · · · < ar.
Given a wordw = w1 · · ·wn, a (strict) record is an elementwj that is larger than all preceding
elements:wj > wi for all i < j. (Refer to Figure 13 of Chapter II for a graphical rendering of
records in the case of permutations.)

Consider first the subset ofW comprising all words that have the lettersai1 , . . . , aik as
successive records, wherei1 < · · · < ik. The symbolic description of this set is in the form of
a product ofk terms

(40) SEQ

„
ai1(a1 + · · ·+ ai1)

«
· · · SEQ

„
aik (a1 + · · ·+ aik)

«
.
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Consider now MGFs of words wherez marks length,v marks the number of records, and each
uj marks the number of occurrences of letteraj . The MGF associated to the subset described
in (40) is then

„
zvui1(1− z(u1 + · · ·+ ui1))−1

«
· · ·

„
zvuik (1− z(u1 + · · ·+ uik ))−1

«
.

Summing over all values ofk and ofi1 < · · · < ik gives

(41) W (z, v,u) =
rY

s=1

`
1 + zvus (1− z(u1 + · · ·+ us))

−1´ ,

the rationale being that, for arbitrary quantitiesys, one has by distributivity:

rX

k=0

X

1≤i1<···<ik≤r

yi1yi2 · · · yik =
rY

s=1

(1 + ys).

We shall encounter more applications of (41) below. For the time being let us simply
examine the mean number of records in a word of lengthn over the alphabetA, when all such
words are taken equally likely. One should setuj 7→ 1 (the composition into specific letters is
forgotten), so thatW assumes the simpler form

W (z, v) =
rY

j=1

„
1 +

vz

1− jz

«
.

Logarithmic differentiation then gives access to the generating function of cumulated values,

Ω(z) ≡ ∂

∂v
W (z, v)

˛̨
˛̨
v=1

=
z

1− rz
rX

j=1

1

1− (j − 1)z
.

Thus, by partial fraction expansion, the mean number of records inWn (whose cardinality
is rn) has the exact value

(42) EWn(# records) = Hr −
r−1X

j=1

(j/r)n

r − j .

There appears the harmonic numberHr, like in the permutation case, but now with a negative
correction term which, for fixedr, vanishes exponentially fast withn (this betrays the fact that
some letters from the alphabet might be missing). �

EXAMPLE 16. Weighted word models and Bernoulli trials.Let A = {a1, . . . , ar} be an
alphabet of cardinalityr, and letΛ = {λ1, . . . , λr} be a system of numbers calledweights,
where weightλj is viewed as attached to letteraj . Weights may be extended from letters to
words multiplicatively by defining the weightπ(w) of wordw as

π(w) = λi1λi2 · · ·λin if w = ai1ai2 · · · ain

=

rY

j=1

λ
χj(w)

j ,

whereχj(w) is the number of occurrences of letteraj in w. Finally, the weight of a set is by
definition thesumof the weights of its elements.
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Combinatorially, weights of sets are immediately obtainedonce the corresponding gener-
ating function is known. Indeed, letS ⊆ W = SEQ{A} have complete GF

S(z, u1, . . . , ur) =
X

w∈S

z|w|u
χ1(w)
1 · · ·uχr(w)

r ,

whereχj(w) is the number of occurrences of letteraj in w. Then one has

S(z, λ1, . . . , λr) =
X

w∈S

z|w|π(w),

so that extracting the coefficient ofzn gives the total weight ofSn = S ∩Wn under the weight
systemΛ. In other words,the GF of a weighted set is obtained by substitution of the numerical
values of the weights inside the associated complete MGF.

In probability theory, Bernoulli trials refer to sequencesof independent draws from a fixed
distribution with finitely many possible values. One may think of the succession of flippings of
a coin or castings of a die. If any trial hasr possible outcomes, then the various possibilities
can be described by letters of ther-ary alphabetA. If the probability of thejth outcome is
taken to beλj , then theΛ-weighted models on words becomes the usual probabilistic model
of independent trials. (In this situation, theλj ’s are often written aspj ’s.) Observe that, in the
probabilistic situation, one must haveλ1 + · · ·+ λr = 1 with eachλj satisfying0 ≤ λj ≤ 1.
The equiprobable case, where each outcome has probability1/r can be obtained by setting
λj = 1/r and it then becomes equivalent to the usual enumerative model. In terms of GFs,
the coefficient[zn]S(z, λ1, . . . , λr) then represents the probability that a random word ofWn

belongs toS . Multivariate generating functions and cumulative generating functions then obey
properties similar to their usual (ordinary, exponential)counterparts.

As an illustration, assume one has a biased coin with probability p for heads (H) andq =
1−p for tails (T ). Consider the event: “in n tosses of the coin, there never appearℓ contiguous
heads”. The alphabet isA = {H,T}. The construction describing the events of interest is, as
seen in Chapter I,

S = SEQ<ℓ{H}SEQ{T SEQ<ℓ{H}}.
Its GF withu marking heads andv marking tails is then

W (z, u, v) =
1− zℓuℓ

1− zu

„
1− zv 1− zℓuℓ

1− zu

«−1

.

Thus, the probability of the absence ofℓ-runs amongst a sequence ofn random coin tosses is
obtained after the substitutionu→ p, v → q in the MGF,

[zn]
1− pℓzℓ

1− z + qpℓzℓ+1
,

leading to an expression which is amenable to numerical or asymptotic analysis. Feller’s
book [124, p. 322–326] offers for instance a classical discussion of the problem. �

EXAMPLE 17. Records in Bernoulli trials. To conclude the discussion of probabilistic
models on words, we come back to the analysis of records. Assume now that the alphabet
A = {a1, . . . , ar} has in all generality the probabilitypj associated with the letteraj . The
mean number of records is analysed by a process entirely parallel to the derivation of (42): one
finds by logarithmic differentiation of (41)

(43) EWn(# records) = [zn]Ω(z) where Ω(z) =
z

1− z
rX

j=1

pj

1− z(p1 + · · ·+ pj−1)
.



III. 6. COMPLETE GENERATING FUNCTIONS AND DISCRETE MODELS 181

The cumulative GFΩ(z) in (43) has simple poles at the points1, 1/Pr−1, 1/Pr−2, and so on,
wherePs = p1 + · · ·+ ps. For asymptotic purposes, only the dominant poles atz = 1 counts
(see Chapter IV for a systematic discussion), near which

Ω(z) ∼
z→1

1

1− z
rX

j=1

pj

1− Pj−1
.

Consequently, one has an elegant asymptotic formula generalizing the case of permutations that
has a harmonic mean (10):

The mean number of records in a random word of lengthn with nonuni-
form letter probabilitiespj satisfies asymptotically(n→ +∞)

EWn(# records) ∼
rX

j=1

pj

pj + pj+1 + · · ·+ pr
.

This relation and similar ones were obtained by Burge [63]; analogous ideas may serve to anal-
yse the sorting algorithmQuicksortunder equal keys [351] as well as the hybrid data structures
of Bentley and Sedgewick; see [35, 75]. �

Coupon collector problem and birthday paradox.Similar considerations apply
to weighted EGFs of words, as considered in Chapter II. For instance, the probability
of having attained a complete coupon collection at timen in case a company issues
couponj with probabilitypj , for 1 ≤ j ≤ r, is (coupon collector problem, Chapter II)

P(C ≤ n) = n![zn]

r∏

j=1

(epjz − 1) .

The probability that all coupons are different at timen is (birthday paradox, Chap-
ter II)

P(B > n) = n![zn]

r∏

j=1

(1 + pjz) ,

which corresponds to the birthday problem in the case of nonuniform mating periods.
Integral representations comparable to the ones of ChapterII are also available:

E(C) =

∫ ∞

0



1 −
r∏

j=1

(1 − e−pit)



 dt, E(B) =

∫ ∞

0

r∏

j=1

(1 + pjt) e
−t dt.

See the study by Flajolet, Gardy, and Thimonier [138] for several variations on this
theme.

� 25. Birthday paradox with leap years.Assume that the 29th of February exists precisely
once every fourth year. Estimate the effect on the expectation of the first birthday collision.�

EXAMPLE 18. Rises in Bernoulli trials: Simon Newcomb’s problem.Simon Newcomb (1835–
1909), otherwise famous for his astronomical work, was reportedly fond of playing the follow-
ing patience game: one draws from a deck of 52 playing cards, stacking them in piles in such
a way that one new pile is started each time a card appears whose number is smaller than its
predecessor. What is the probability of obtainingt piles? A solution to this famous problem is
found in MacMahon’s book [278] and a concise account by Andrews appears in [9, Section 4.4].
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Simon Newcomb’s problem can be rephrased in terms of rises. Given a wordw =
w1 · · ·wn over the alphabetA ordered bya1 < a2 < · · · , a weak riseis a positionj < n
such thatwj ≤ wj+1. (The numbers of piles in Newcomb’s problem is the number of cards
minus 1 minus the number of rises.) LetW (z, v,u) be the MGF of all words wherez marks
length,v marks the number of weak rises, anduj marks the number of occurrences of letterj.
Setzj = zuj and letWj(z, v,u) be the MGF relative to those nonempty words that start with
letteraj , so that

W = 1 + (z1W1 + · · ·+ zrWr).

TheWj satisfy the set of equations (j = 1, . . . , r),

(44) Wj = zj + zj (W1 + · · ·+Wj−1) + vzj (Wj + · · ·+Wr) ,

as seen by considering the first letter of each word. The linear system (44) is easily solved upon
settingWj = zjXj . Indeed, by differencing, one finds that

(45) Xj+1 −Xj = zjXj(1− v), Xj+1 = Xj(1 + zj(1− v)),
In this way, eachXj can be determined in terms ofX1. Then transporting the resulting expres-
sions into the relation (44) instantiated atj = 1, and solving forX1 leads to an expression for
X1, hence for all theXj and finally forW itself:

(46) W =
v − 1

v − P−1
, P :=

rY

j=1

(1 + (1− v)zj).

Goulden and Jackson provide a similar looking expressions in [192] (pp. 72 and 236).
The result of (46) gives access to moments (e.g., mean and variance) of the number of

rises in a Bernoulli sequence as well as to counting results,once coefficients of the MGF are
extracted. (See also [184, 192] for some of the possible tools from the theory of symmetric
functions.) The OGF (46) can alternatively be derived by an inclusion-exclusion argument:
refer to the particular case of rises in permutations and Eulerian numbers which is discussed
below. �

� 26. The final solution to Simon Newcomb’s problem.Consider a deck of cards witha suits
andr distinct card values. SetN = ra. (The original problem hasr = 13, a = 4, N = 52.)
One has from (46):W = (v−1)P/(1−vP )−1. The expansion of(1−y)−1 and the collection
of coefficients yields

[za
1 · · · za

r ]W = (1− v)
X

k≥1

vk−1[za
1 · · · za

r ]P k = (1− v)N+1
X

k≥1

 
k

a

!r

vk−1,

so that[za
1 · · · za

rv
t]W =

t+1X

k=0

(−1)t+1−k

 
N + 1

t+ 1− k

! 
k

a

!r

. �

III. 6.2. Tree models. We examine here two important GFs associated with tree
models; these provide valuable information concerning thedegree profileand thelevel
profileof trees, while being tightly coupled with an important class of stochastic pro-
cesses, namely thebranching processes.

The major classes of trees that we have encountered so far arethe unlabelled
plane trees and the labelled nonplane trees, prototypes being the general Catalan trees
(Chapter I) and the Cayley trees (Chapter II). In both cases,the counting generating
functions satisfy a relation of the form

(47) Y (z) = zφ(Y (z)),
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where the GF is either ordinary (plane unlabelled trees) or exponential (nonplane la-
belled trees). Corresponding respectively to the two cases, the functionφ is deter-
mined by

(48) φ(w) =
∑

ω∈Ω

uω, φ(w) =
∑

ω∈Ω

uω

ω!
,

whereΩ ⊆ N is the set of allowed node degrees. Meir and Moon in an important pa-
per [283] have described some common properties of tree families that are determined
by the Axiom (47). (For instance mean path length is invariably of ordern

√
n, see

Chapter VII, and height isO(
√
n).) Following these authors, we callsimple variety of

treesany class whose counting GF is defined by an equation of type (47). For each
of the two cases of (48), we write

(49) φ(w) =

∞∑

j=0

φjw
j .

Degree profile of trees.First we examine thedegree profileof trees. Such a
profile is determined by the collection of parametersχj , whereχj(τ) is the number
of nodes of outdegreej in τ . The variableuj will be used to markχj , that is, nodes of
outdegreej. The discussion already conducted regarding recursive parameters shows
that the GFY (z,u) satisfies the equation

Y (z,u) = zΦ(Y (z,u)) where Φ(w) = u0φ0 + u1φ1w + u2φ2w
2 + · · · .

Formal Lagrange inversion can then be applied toY (z,u), to the effect that its coeffi-
cients are given by the coefficients of the powers ofΦ.

PROPOSITIONIII.7 (Degree profile of trees).The number of trees of sizen and degree
profile (n0, n1, n2, . . .) in a simple variety of trees defined by the “generator”(49) is

(50) Yn;n0,n1,n2,... = ωn · 1

n

(
n

n0, n1, n2, . . .

)
φn0

0 φn1
1 φn2

2 · · · .

There,ωn = 1 in the unlabelled case, whereasωn = n! in the labelled case. The
values of thenj are assumed to satisfy the two consistency conditions:

∑
j nj = n

and
∑

j jnj = n− 1.

PROOF. The consistency conditions translate the fact that the total number of nodes
should ben while the total number of edges should equaln−1 (each node of degreej
is the originator ofj edges). The result follows from Lagrange inversion

Yn;n0,n1,n2,... = ωn · [un0
0 un1

1 un2
2 · · · ]

(
1

n
[wn−1]Φ(w)n

)
,

to which a standard multinomial expansion applies, yielding (50).
For instance, for general Catalan trees (φj = 1) and for Cayley trees (φj = 1/j!)

these formulæ become

1

n

(
n

n0, n1, n2, . . .

)
and

(n− 1)!

0!n01!n12!n2 · · ·

(
n

n0, n1, n2, . . .

)
.

�
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The proof above also reveals the logical equivalence between the general tree
counting result of Proposition III.7 and the most general case of Lagrange inversion.
(This results from the fact thatΦ can be specialized to any particular series.) Put
otherwise, any direct proof of (50) provides a combinatorial proof of the Lagrange
inversion theorem. Such direct derivations have been proposed by Raney [330] and
are based on simple but cunning surgery performed on latticepath representations of
trees (the “conjugation principle” of which a particular case is the “cycle lemma” of
Dvoretzky–Motzkin [111]).

Level profile of trees.The next example demonstrates the utility of complete
generating functions for investigating the level profile oftrees.

EXAMPLE 19. Trees and level profile.Given a rooted treeτ , its level profileis defined as the
vector(n0, n1, n2, . . .) wherenj is the number of nodes present at levelj (i.e., at distancej
from the root) in treeτ . Continuing within the framework of a simple variety of trees, we now
define the quantityYn;n0,n1,n2 to be the number of trees with sizen and level profile given by
thenj . The corresponding complete GFY (z,u) with z marking size anduj marking nodes at
level j is expressible in terms of the fundamental “generator”φ:

(51) Y (z,u) = zu0φ (zu1φ (zu2φ (zu3φ(· · · )))) .
We may call this a “continuedφ-form”. For instance general Catalan trees have generator
φ(w) = (1− w)−1, so that in this case the complete GF is the continued fraction:

Y (z,u) =
u0z

1− u1z

1− u2z

1− u3z

. . .

.

(See Section V. 2 for complementary aspects.) In contrast, Cayley trees are generated by
φ(w) = ew, so that

Y (z,u) = zu0e
zu1e

zu2e
zu3e

..
.

,

which is a “continued exponential”, that is, a tower of exponentials. Expanding such generating
functions with respect tou0, u1, . . ., in order gives straightforwardly:

PROPOSITION III.8 (Level profile of trees). The number of trees of sizen and level pro-
file (n0, n1, n2, . . .) in a simple variety of trees defined by the “generator”φ(w) of (49) is

Yn;n0,n1,n2,... = ωn−1 · φ(n0)
n1

φ(n1)
n2

φ(n2)
n3
· · · where φ(µ)

ν := [wν ]φ(w)µ.

There, the consistency conditions aren0 = 1 and
P

j nj = n. In particular, the counts for
general Catalan trees and for Cayley trees are respectively
 
n0 + n1 − 1

n1

! 
n1 + n2 − 1

n2

! 
n2 + n3 − 1

n3

!
· · · , (n− 1)!

n0!n1!n2! · · ·n
n1
0 nn2

1 nn3
2 · · · .

(Note that one must always haven0 = 1 for a single tree; the general formula withn0 6= 1 and
ωn−1 replaced byωn−n0 gives the level profile of forests.) The first of these enumerative results
is due to Flajolet [128] and it places itself within a general combinatorial theoryof continued
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fractions (Chapter V); the second one is due to Rényi and Szekeres [332] who developed such
a formula in the context of a deep study of the distribution ofheight in random Cayley trees.�

� 27. Continued forms for path length.The BGF of path length are obtained from the level
profile MGF by means of the substitutionuj 7→ qj . For general Catalan trees and Cayley trees,
this gives

G(z, q) =
z

1− zq

1− zq2

. . .

, T (z, q) = zezqe
zq2e

..
.

,

whereq marks path length. The MGFs are ordinary and exponential respectively. (Combined
with differentiation, such MGFs represent an attractive option for mean value analysis.) �

Trees and processes.The next example is an especially important application of
complete GFs, as these GFs provide a bridge between combinatorial models and a
major class of stochastic processes, thebranching processesof probability theory.

EXAMPLE 20. Weighted tree models and branching processes.Consider the familyG of all
general plane trees. LetΛ = (λ0, λ1, . . .) be a system of numeric weights. The weight of a
node of outdegreej is taken to beλj and the weight of a tree is the product of the individual
weights of its nodes:

(52) π(τ ) =
∞Y

j=0

λ
χj(τ)

j ,

with χj(τ ) the number of nodes of degreej in τ . One can view the weighted model of trees as
a model in which a tree receives a probability proportional to π(w). Precisely, the probability
of selecting a particular treeτ under this model is, for a fixed sizen

(53) PGn,Λ(τ ) =
π(τ )P

|τ |=n π(τ )
.

This defines a probability measure over the setGn and one can consider events and random
variables under this weighted model.

The weighted model defined by (52) and (53) covers any simple variety of trees: just
replace eachλj by the quantityφj given by the “generator’ (49) of the model. For instance,
plane unlabelled unary-binary trees are obtained byΛ = (1, 1, 1, 0, 0, . . .), while Cayley trees
correspond toλj = 1/j!. Two equivalence-preserving transformationsare then especially
important in this context:

(i) Let Λ∗ be defined byλ∗
j = cλj for some nonzero constantc. Then the weight cor-

responding toΛ∗ satisfiesπ∗(τ ) = c|τ |π(w). Consequently, the models associated
to Λ andΛ∗ are equivalent as regards (53).

(ii) Let Λ◦ be defined byλ◦
j = θjλj for some nonzero constantθ. Then the weight

corresponding toΛ◦ satisfiesπ◦(τ ) = c|τ |−1π(w), since
P

j jχj(τ ) = |τ | − 1 for
any treeτ . Thus the modelsΛ◦ andΛ are again equivalent.

Each transformation has a simple effect on the generatorφ, namely:

(54) φ(w) 7→ φ∗(w) = cφ(w) and φ(w) 7→ φ◦(w) = φ(θw).
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Once equipped with such equivalence transformations, it becomes possible to describe
probabilistically the process that generates trees according to a weighted model. Assume that
λj ≥ 0 and that theλj are summable. Then the normalized quantities

pj =
λjP
j λj

form a probability distribution overN. By the first equivalence-preserving transformation the
model induced by the weightspj is the same as the original model induced by theλj . (By
the second equivalence transformation, one can furthermore assume that the generatorφ is the
probability generating function of thepj .)

Such a model defined by nonnegative weights{pj} summing to 1 is nothing but the classi-
cal model ofbranching processes(also known as Galton-Watson processes) ; see [16]. In effect,
a realizationT of the branching process is classically defined by the two rules: (i) produce a
root node of degreej with probability pj ; (ii) if j ≥ 1, attach to the root node a collection
T1, . . . , Tj of independent realizations of the process. This may be viewed as the development
of a “family” stemming from a common ancestor where any individual has probabilitypj of
giving birth toj descendants. Clearly, the probability of obtaining a particular finite treeτ has
probabilityπ(τ ), whereπ is given by (52) and the weights areλj = pj . The generator

φ(w) =
∞X

j=0

pjw
j

is then nothing but the probability generating function of (one-generation) offspring, with the
quantityµ = φ′(1) being its mean size.

For the record, we recall that branching processes can be classified into three categories
depending on the values ofµ:

Subcriticality: whenµ < 1, the random tree produced is finite with probability 1
and its expected size is also finite.
Criticality: whenµ = 1, the random tree produced is finite with probability 1 but its
expected size is infinite.
Supercriticality: whenµ > 1, the random tree produced is finite with probability
strictly less than 1.

From the discussion of equivalence transformations (54), there furthermore results that, regard-
ing trees of afixed sizen, there is complete equivalence between all branching processes with
generators of the form

φθ(w) =
φ(θw)

φ(θ)
.

Such families of related functions are known as “exponential families” in probability theory. In
this way, one may always regard at will the random tree produced by a weighted model of some
fixed sizen as originating from a branching process of subcritical, critical, or supercritical type
conditioned upon the size of the total progeny.

Finally, take a setS ⊆ G for which the complete generating function ofS with respect to
the degree profile is available,

S(z, u0, u1, . . .) =
X

τ∈S
z|τ |

“
u

χ0(τ)
0 u

χ1(τ)
1 · · ·

”
.

Then, for a system of weightsΛ, one has

S(z, λ0, λ1, . . .) =
X

τ∈S
π(τ )z|τ |.
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Thus, the probability that a weighted tree of sizen belongs toS becomes accessible by extract-
ing the coefficient ofzn. This appliesa fortiori to branching processes as well. In summary,
the analysis of parameters of trees of sizen under either weighted models or branching pro-
cess models derives from substituting weights or probability values inside the corresponding
combinatorial generating functions. �

The reduction of combinatorial tree models to branching processes has been pur-
sued early, most notably by the “Russian School”: see especially the books by Kolchin
[251, 252] and references therein. (For asymptotic purposes, the equivalence between
combinatorial models and critical branching processes often turns out to be most fruit-
ful.) Conversely, symbolic-combinatorial methods may be viewed as a systematic way
of obtaining equations relative to characteristics of branching processes. We do not
elaborate further along these lines as this would take us outside of the scope of the
present book.

� 28.Catalan trees, Cayley trees, and branching processes.Catalan trees of sizen are defined
by the weighted model in whichλj ≡ 1, but also equivalently bybλj = cθj , for any c > 0
andθ ≤ 1. In particular they coincide with the random tree produced by the critical branching
process whose offspring probabilities are geometric:pj = 1/2j+1.

Cayley trees area priori defined byλj = 1/j!. They can be generated by the critical
branching process with Poisson probabilities,pj = e−1/j!, and more generally with an arbi-
trary Poisson distributionpj = e−λλj/j!. �

III. 7. Additional constructions

We discuss here additional constructions already examinedin earlier chapters,
namely pointing and substitution (Section III. 7.1) as wellas order constraints (Sec-
tion III. 7.2) on the one hand, implicit structures (SectionIII. 7.3) on the other hand.
Given the that basic translation mechanisms can be directlyadapted to the multivariate
realm, such extensions involve basically no new concept andthe methods of Chap-
ters I and II can be recycled. In Section III. 7.4, we revisit the classical principle of
inclusion-exclusion under a generating function perspective. In this light, the principle
appears as a typically multivariate device well-suited to enumerating objects accord-
ing the number of occurrences of sub-configurations.

III. 7.1. Pointing and substitution. Let 〈F , χ〉 be a class–parameter pair, where
χ is multivariate of dimensionr ≥ 1 and letF (z) be the MGF associated to it in
the notations of (18) and (27). In particularz0 = z marks size, andzk marks the
componentj of the multiparameterk. If z marks size, then, like in the univariate case,
θz translates the fact of distinguishing one atom. Generally,pick up a variablex ≡ zj

for somej with 0 ≤ j ≤ r. Then since

x∂x(satbxf ) = f · (satbxf ),

the interpretation of the operatorθx ≡ x∂x is immediate; it means “pick up in all
possible ways in objects ofF a configuration marked byx and point to it”. For
instance, ifF (z, u) is the BGF of trees wherez marks size andu marks leaves,
thenθuF (z, u) = u∂uF (z, u) enumerates trees with one distinguished leaf.
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Similarly, the substitutionx 7→ S(z) in a GFF , whereS(z) is the MGF of a
classS, means attaching an object of typeS to configurations marked by the variablex
in F . We refrain from giving detailed definitions (that would be somewhat clumsy
and uninformative) as the process is better understood by practice than by long formal
developments. Justification in each particular case is easily obtained by returning to
the combinatorial representation of generating functionsas images of combinatorial
classes.

EXAMPLE 21. Constrained integer compositions and “slicing”.This example illustrates
variations around the substitution scheme. Consider compositions of integers where successive
summands have sizes that are constrained to belong to a fixed setR ⊆ N2. For instance, the
relations

R1 = {(x, y) | 1 ≤ x ≤ y}, R2 = {(x, y) | 1 ≤ y ≤ 2x},
correspond to weakly increasing summands in the case ofR1 and to summands that can at most
double at each stage in the case ofR2. In the “ragged landscape” representation of composi-
tions, this means considering diagrams of unit cells aligned in columns along the horizontal
axis, with successive columns obeying the constraint imposed byR.

LetF (z, u) be the BGF of suchR–restricted compositions, wherez marks total sum andu
marks the value of the last summand, that is, the height of thelast column. The functionF (z, u)
satisfies a functional equation of the form

(55) F (z, u) = f(zu) + (L [F (z, u)])u 7→zu ,

wheref(z) is the generating function of the one-column objects andL is a linear operator over
formal series inu given by

(56) L[uj ] :=
X

(j,k)∈R
uk.

In effect, Equation (55) describes inductively objects as comprising either one column (f(zu))
or else being formed by adding a new column to an existing one.In the latter case, the last
column added has a sizek that must be such that(j, k) ∈ R, if it was added after a column of
sizej, and it will contributeukzk to the BGFF (z, u); this is precisely what (56) expresses. In
particular,F (z, 1) gives back the enumeration ofF–objects irrespective of the size of the last
column.

For a ruleR that is “simple enough”, the basic equation (55) will often involve a substi-
tution. Let us first rederive in this way the enumeration of partitions. We takeR = R1 and
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FIGURE 14. The technique of “adding a slice” for enumerating constrained compositions.
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assume that the first column can have any positive size. Compositions into increasing summands
are clearly the same as partitions. Since

L[uj ] = uj + uj+1 + uj+2 + · · · = uj

1− u ,

the functionF (z, u) satisfies a functional equation involving a substitution,

(57) F (z, u) =
zu

1− zu +
1

1− zuF (z, zu).

This relation iterates:any linear functional equation of the substitution type

φ(u) = α(u) + β(u)φ(σ(u))

is solved formally by

(58) φ(u) = α(u) + β(u)α(σ(u)) + β(u)β(σ(u))α(σ〈2〉(u)) + · · · ,

whereσ〈j〉(u) designates thejth iterate ofu.
Returning to compositions into increasing summands, that is, partitions, the turnkey so-

lution (58) gives, upon iterating on the second argument with the first argument treated as a
parameter:

(59) F (z, u) =
zu

1− zu +
z2u

(1− zu)(1− z2u)
+

z3u

(1− zu)(1− z2u)(1− z3u)
+ · · · .

Equivalence with the alternative form

(60) F (z, u) =
zu

1− z +
z2u2

(1− z)(1− z2)
+

z3u3

(1− z)(1− z2)(1− z3)
+ · · ·

is then easily verified from (57) upon expandingF (z, u) as a series inu and applying the
method of indeterminate coefficients to the form(1− zu)F (z, u) = zu+ F (z, zu). The pre-
sentation (60) is furthermore consistent with the treatment of partitions given in Chapter I since
the quantity[uk]F (z, u) clearly represents the OGF of (nonempty) partitions whose largest
summand isk. (In passing, the equality between (59) and (60) is a shallowbut curious identity
that is quite typical of the area ofq-analogues.)

This same method has been applied in [155] to compositions satisfying conditionR2

above. In this case, successive summands are allowed to double at most at each stage. The
associated linear operator is

L[uj ] = u+ · · ·+ u2j = u
1− u2j

1− u .

For simplicity, it is assumed that the first column has size 1.Thus,F satisfies a functional
equation of the substitution type:

F (z, u) = zu+
zu

1− zu
`
F (z, 1)− F (z, z2u2)

´
.

This can be solved by means of the general iteration mechanism (58), treating momentarily
F (z, 1) as a known quantity: witha(u) := zu+ F (z, 1)/(1− zu), one has

F (z, u) = a(u)− zu

1− zua(z
2u2) +

zu

1− zu
z2u2

1− z2u2
a(z6u4)− · · · .
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Then, the substitutionu = 1 in the solution becomes permissible. Upon solving forF (z, 1),
one eventually gets the somewhat curious GF for compositions satisfyingR2:

F (z, 1) =

P
j≥1(−1)j−1z2j+1−j−2/Qj−1(z)P

j≥0(−1)jz2j+1−j−2/Qj(z)

where Qj(z) = (1− z)(1− z3)(1− z7) · · · (1− z2j−1).

The sequence of coefficients starts as1, 1, 2, 3, 5, 9, 16, 28, 50 and isEIS A002572: it rep-
resents for instance the number of possible level profiles ofbinary trees, or equivalently the
number of partitions of 1 into summands of the form1, 1

2
, 1

4
, 1

8
, . . . (this is related to the num-

ber of solutions to Kraft’s inequality). See [155] for details including very precise asymptotic
estimates and Tangora’s paper [377] for relations to algebraic topology. �

The reason for presenting the slicing method in some detail is that it is very gen-
eral. It has been in particular employed to derive a number oforiginal enumerations of
polyominos by area, a topic of interest in some branches of statistical mechanics: for
instance, the book by Janse van Rensburg [392] discusses many applications of such
lattice models to polymers and vesicles. See Bousquet-Mélou’s review paper [57] for
a methodological perspective. Some of the origins of the method point to Pólya in the
1930’s, see [319], and independently to Temperley [379, pp. 65–67].

� 29. Pointing-erasing and the combinatorics of Taylor’s formula. The derivative operator∂x

corresponds combinatorially to a “pointing-erasing” operation: select in all possible ways an
atom marked byx and make it transparent tox-marking (e.g., by replacing it by a neutral
object). The operator

µk[f ](x) :=
1

k!
∂k

xf(x),

then corresponds to picking up in all possible way a subset ofk configurations marked byx and
unmarking them. The identity (Taylor’s formula)

f(x+ y) =
X

k≥0

„
1

k!
∂k

xf(x)

«
yk

can then receive a simple combinatorial interpretation: Given a population of individuals (F
enumerated byf ), form the bicoloured population of individuals enumerated byf(x+y), where
each atom of each object can be repainted either inx-colour ory-colour; this is equivalent to
deciding a priori for each individual to repaintk of its atoms fromx to y, this for all possible
values ofk ≥ 0. Taylor’s formula follows. �

� 30.Carlitz compositions I.LetK be the class of compositions such that all pairs of adjacent
summands are formed of distinct values. These can be generated by the operatorL[uj ] =

uz
1−uz

− ujzj , so thatL[f(u)] = uz
1−uz

f(1) − f(uz); The BGFK(z, u), with u marking the
value of the last summand, then satisfies a functional equation,

K(z, u) =
uz

1− uz +
uz

1− uzK(z, 1)−K(z, zu),

giving eventuallyK(z) ≡ K(z, 1) under the form

(61)
K(z) =

0
@1 +

X

j≥1

(−z)j

1− zj

1
A

−1

= = 1 + z + z2 + 3z3 + 4z4 + 7z5 + 14z6 + 23z7 + 39z8 + · · · .
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valley: σi−1 > σi < σi+1 leaf node (u0)

double rise: σi−1 < σi < σi+1 unary right-branching (u1)

double fall: σi−1 > σi > σi+1 unary left-branching (u′
1)

peak: σi−1 < σi > σi+1 binary node (u2)

FIGURE 15. Local order patters in a permutation and the four types of nodes in the
corresponding increasing binary tree.

The sequence of coefficients constitutesEISA003242. Such compositions have been introduced
by Carlitz in 1976; the derivation above is from a paper by Knopfmacher and Prodinger [234]
who provide early references and asymptotic properties. (We resume this thread in Note 32
below and in Chapter IV, p. 249.) �

III. 7.2. Order constraints. We refer in this subsection to the discussion of or-
der constraints in labelled products that has been given in Chapter II. We recall that
the modified labelled product

A = (B2 ⋆ C)

only includes the elements of(B ⋆ C) such that the minimal label lies in theA com-
ponent. Once more the univariate rules generalize verbatimfor parameters that are
inherited and the corresponding exponential MGFs are related by

A(z,u) =

∫ z

0

(∂tB(t,u)) · C(t,u) dt.

To illustrate this multivariate extension, we shall consider a quadrivariate statistic on
permutations.

EXAMPLE 22. Local order patterns in permutations. An elementσi of a permutation
written σ = σ1, . . . , σn when compared to its immediate neighbours can be categorized into
one of four types4 summarized in the first two columns of Figure 15. The correspondence with
binary increasing trees described in Example 17 of Chapter II then shows the following: peaks
and valleys correspond to binary nodes and leaves, respectively, while double rises and double
falls are associated with right-branching and left-branching unary nodes. Letu0, u1, u

′
1, u2 be

markers for the number of nodes of each type, as summarized inFigure 15. Then the exponential
MGF of increasing trees under this statistic satisfies

∂

∂z
I(z,u) = u0 + (u1 + u′

1)I(z,u) + u2I(z,u)2.

This is solved by separation of variables as

(62) I(z,u) =
δ

u2

v1 + δ tan(zδ)

δ − v1 tan(zδ)
− v1
u2
,

where the following abbreviations are used:

v1 =
1

2
(u1 + u′

1), δ =
q
u0u2 − v2

1 .

4Here, for|σ| = n, we regardσ asborderedby (−∞,−∞), i.e., we setσ0 = σn+1 = −∞ and let
the indexi in Figure 15 as varying in[1 . . n]. Alternative bordering conventions prove occasionally useful.
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FIGURE 16. The level profile of a random increasing binary tree of size 256. (Compare
with Figure 13 for binary trees under the uniform Catalan statistic.)

One has

I = u0z + u0(u1 + u′
1)
z2

2!
+ u0((u1 + u′

1)
2 + 2u0u2)

z3

3!
,

which agrees with the small cases. This calculation is consistent with what has been found in
Chapter II regarding the EGF of all nonempty permutations and of alternating permutations,

z

1− z , tan(z),

that derive from the substitutions{u0 = u1 = u′
1 = u2 = 1} and{u0 = u2 = 1, u1 =

u′
1 = 0}, respectively. The substitution{u0 = u1 = u, u′

1 = u2 = 1} gives a simple variant
(without the empty permutation) of the BGF of Eulerian numbers (71) derived below by other
means (p. 197).

By specialization of the quadrivariate GF, there results that, in a tree of sizen the mean
number of nodes of nullary, unary, or binary type is asymptotic to n/3, with a variance that is
O(n), thereby ensuring concentration of distribution. �

A similar analysis yields path length. It is found that a random increasing binary
tree of sizen has mean path length

2n logn+O(n).

Contrary to what the uniform combinatorial model give, suchtree tend to be rather
well balanced, and a typical branch is only about 38.6% longer than in a perfect binary
tree (since2/ log 2

.
= 1.386). This fact applies to binary search trees (Note 31) and

it justifies that the performance of such trees is quite good when they are applied to
random data [245, 279, 353] or subjected to randomization [338, 294].

� 31. Binary search trees (BSTs). Given a permutationτ , one defines inductively a tree
BST(τ ) by

BST(ǫ) = ∅; BST(τ ) = 〈τ1, BST(τ |<τ1 , BST(τ |>τ1).

(There,τ |P represents the subword ofτ consisting of those elements that satisfy predicateP .)
Let IBT(σ) be the increasing binary tree canonically associated toσ. Then one has the funda-
mentalEquivalence Principle,

IBT(σ)
shape≡ BST(σ−1),

whereA
shape≡ B means thatA andB have identical tree shapes. �
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III. 7.3. Implicit structures. Here again, we note that equations involving sums
and products, either labelled or not, are easily solved justlike in the univariate case.
The same applies for the sequence construction and for the set construction, especially
in the labelled case—refer to the corresponding sections ofChapters I and II. Again,
the process is best understood by examples.

Suppose for instance one wants to enumerate connected labelled graphs by the
number of nodes (marked byz) and the number of edges (marked byu). The classK
of connected graphs and the classG of all graphs are related by the set construction,

G = SET{K},
meaning that every graph decomposes uniquely into connected components. The cor-
responding exponential BGFs then satisfy

G(z, u) = eK(z,u) implying K(z, u) = logG(z, u),

since the number of edges in a graph is inherited (additively) from the corresponding
numbers in connected components. Now, the number of graphs of sizen havingk
edges is

(
n(n−1)/2

k

)
, so that

(63) K(z, u) = log

(
1 +

∞∑

n=1

(1 + u)n(n−1)/2 z
n

n!

)
.

This formula, which appears as a refinement of the univariateformula of Chapter II,
then simply reads:connected graphs are obtained as components (thelog operator) of
general graphs, where a general graph is determined by the presence or absence of an
edge (corresponding to(1+u)) between any pair of nodes (the exponentn(n−1)/2).

Pulling out information out of the formula (63) is however not obvious due to the
alternation of signs in the expansion oflog(1 + w) and due to the strongly divergent
character of the involved series. As an aside, we note here that the quantity

K̂(z, u) = K
( z
u
, u
)

enumerates connected graphs according to size (marked byz) and excess (marked
byu) of the number of edges over the number of nodes. This means that the results of
Section 5.3 of Chapter II obtained by Wright’s decomposition can be rephrased as the
expansion (withinC(u)[[z]]):

(64)
log

(
1 +

∞∑

n=1

(1 + u)n(n−1)/2 z
nu−n

n!

)
=

1

u
W−1(z) +W0(z) + · · ·

=
1

u

(
T − 1

2
T 2

)
+

(
1

2
log

1

1 − T
− 1

2
T − 1

4
T 2

)
+ · · · ,

with T ≡ T (z). See Temperley’s early works [378, 379] as well as the “giant paper on
the giant component” [224] and the paper [158] for direct derivations that eventually
constitute analytic alternatives to Wright’s combinatorial approach.

EXAMPLE 23. Smirnov words. Following the treatment of Goulden and Jackson [192], we
define a Smirnov word to be any word that has no consecutive equal letters. LetW = SEQ{A}
be the set of words over the alphabetA = {a1, . . . , ar} of cardinalityr, andX be the set of
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Smirnov words. Let alsouj mark the number of occurrences of thejth letter in a word. One
has

W (z,u) =
1

1− (v1 + · · ·+ vr)
with vj = zuj .

Start from a Smirnov word and substitute to any letteraj that appears in it an arbitrary nonempty
sequence of lettersaj . When this operation is done at all places of a Smirnov word, it gives
rise to an unconstrained word. Conversely, any word is associated to a unique Smirnov word by
collapsing into single letters maximal groups of contiguous equal letters. In other terms, words
derive from Smirnov words by a simultaneous substitution:

W = S
ˆ
a1 7→ SEQ≥1{a1}, . . . , ar 7→ SEQ≥1{ar}

˜
.

There results the relation

(65) W (v1, . . . , vr) = S

„
v1

1− v1 , . . . ,
vr

1− vr

«
.

This relation determines the MGFS(v1, . . . , vr) implicitly. Indeed, since the inverse function
of v/(1− v) is v/(1 + v), one finds

(66) S(v1, . . . , vr) = W

„
v1

1 + v1
, . . . ,

vr

1 + vr

«
.

For instance, if we setvj = z, that is, we “forget” the composition of the words into letters,
we get the OGF of Smirnov word counted according to length as

1

1− r z
1+z

=
1 + z

1− (r − 1)z
= 1 +

X

n≥1

r(r − 1)n−1zn.

This is consistent with elementary combinatorics since a Smirnov word of lengthn is deter-
mined by the choice of its first letter (r possibilities) followed by a sequence ofn − 1 choices
constrained to avoid one letter amongstr (and corresponding tor − 1 possibilities for each
position). The interest of (66) is to apply equally well to the Bernoulli model where letters may
receive unequal probabilities and where a direct combinatorial argument does not appear to be
easy: it suffices to perform the substitutionvj 7→ pjz in this case.

From these developments, one can next build the GF of words that never contain more
thanm consecutive equal letters. It suffices to effect in (66) the substitutionvj 7→ vj +· · ·+vm

j .
In particular for the univariate problem (or, equivalently, the case where letters are equiproba-
ble), one finds the OGF

1

1− r
z 1−zm

1−z

1 + z 1−zm

1−z

=
1− zm+1

1− rz + (r − 1)zm+1
.

This extends to an arbitrary alphabet the analysis of singleruns and double runs in binary words
that was performed in Section 4 of Chapter I. Naturally, thisapproach applies equally well
to nonuniform letter probabilities and to a collection of run-length upperbounds dependent on
each particular letter. For instance, this topic is pursuedin several works of Karlin and coauthors
(see, e.g., [290]), themselves motivated by biological applications. �

� 32.Carlitz compositions II.Here is an alternative derivation of the OGF of Carlitz composi-
tions (Note 30, p. 190). Carlitz compositions with largest summand≤ r are obtained from the
OGF of Smirnov words by the substitutionvj 7→ zj :

(67) K[r](z) =

 
1−

rX

j=1

zj

1 + zj

!−1

,
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The OGF of all Carlitz compositions the results from lettingr →∞:

(68) K(z) =

 
1−

∞X

j=1

zj

1 + zj

!−1

.

The asymptotic form of the coefficients is derived in ChapterIV, p. 249. �

III. 7.4. Inclusion-Exclusion. Inclusion-exclusion is a familiar type of reason-
ing rooted in elementary mathematics. Its principle, in order to countexactly, consists
in grosslyovercounting, then performing a simple correction of the overcounting, then
correcting the correction, and so on. Characteristically,enumerative results provided
by inclusion exclusion involve an alternating sum. We revisit this process here in the
perspective of multivariate generating functions, where it essentially reduces to a com-
bined use of substitution and implicit definitions. Our approach follows Goulden and
Jackson’s encyclopedic treatise [192].

Let E be a set endowed with a real or complex valued measure| · | in such a way
that, forA,B ⊂ E , there holds

|A ∪B| = |A| + |B| whenever A ∩B = ∅.
Thus,| · | is an additive measure, typically taken as set cardinality (i.e., |e| = 1 for
e ∈ E) or a discrete probability measure onE (i.e., |e| = pe for e ∈ E). The general
formula

|A ∪B| = |A| + |B| − |AB| where AB := A ∩B,
follows immediately from basic set-theoretic principles:

∑

c∈A∪B

|c| =
∑

a∈A

|a| +
∑

b∈B

|b| −
∑

i∈A∩B

|i|.

What is called theinclusion-exclusion principleor sieve formulais the following mul-
tivariate generalization, for an arbitrary familyA1, . . . , Ar ⊂ E :
(69)

|A1 ∪ · · · ∪Ar| ≡
∣∣E \ (A1A2 · · ·Ar)

∣∣ where A := E \A
=

∑

1≤i≤r

|Ai| −
∑

1≤i1<i2≤r

|Ai1Ai2 | + · · · + (−1)r−1|A1A2 · · ·Ar|.

(The easy proof by induction results from elementary properties of the boolean algebra
formed by the subsets ofE ; see, e.g., [76, Ch. IV].) An alternative formulation results
from settingBj = Aj ,Bj = Aj :

(70)

|B1B2 · · ·Br| = |E| −
∑

1≤i≤r

|Bi|

+
∑

1≤i1<i2≤r

|Bi1Bi2 | − · · · + (−1)r|B1B2 · · ·Br|.

In terms of measure, this equality quantifies the set of objects satisfyingexactlya
collection of simultaneousconditions (all theBj) in terms of those that violateat
least someof the conditions (theBj).
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Derangements.Here is a textbook example of an inclusion–exclusion argument,
namely, the enumeration ofderangements. Recall that a derangement is a permuta-
tion σ such thatσi 6= i, for all i. Fix E as the set of all permutations of[1, n], take
the measure| · | to be set cardinality, and letBi be the subset of permutations inE
associated to the propertyσi 6= i. (There are consequentlyr = n conditions.) Thus,
Bi means having no fixed point ati, whileBi means having a fixed point at thedis-
tinguishedvaluei. Then, the left hand side of (70) is the number of permutations that
are derangements, that is,Dn. As regards the right hand side, thekth sum comprises
itself

(
n
k

)
terms counting possibilities attached to the choices of indicesi1 < · · · < ik;

each such choice is associated to a factorBi1 · · ·Bik
that describes all permutations

with fixed points at the distinguished pointsi1, . . . , ik (i.e.,σ(i1) = i1, . . . , σik
= ik).

Clearly,|Bi1 · · ·Bik
| = (n− k)!. Therefore one has

Dn = n! −
(
n

1

)
(n− 1)! +

(
n

2

)
(n− 2)! − · · · + (−1)n

(
n

n

)
0!,

which rewrites into the more familiar form

Dn

n!
= 1 − 1

1!
+

1

2!
− · · · + (−1)n

n!
.

This gives an elementary derivation of the derangement numbers already encountered
in Chapter II and obtained there by means of the labelled set and cycle constructions.

The derivation above is perfectly fine but carrying it out on complex examples
may represent somewhat of a challenge. In contrast, as we nowexplain, there exists
a parallel approach based on multivariate generating functions, which is technically
easy to deal with and has great versatility.

Let us now reexamine derangements in a generating function perspective. Con-
sider the setP of all permutations and build a supersetQ as follows. The setQ
is comprised of permutations in which an arbitrary number offixed points—some,
maybe none, not necessarily all—have beendistinguished. (This corresponds to arbi-
trary products of theBj in the argument above.). For instanceQ contains elements
like

1, 3, 2, 1, 3, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3,

where distinguished fixed points are underlined. Clearly, if one removes the distin-
guished elements of aγ ∈ Q, what is left constitutes an arbitrary permutation of the
remaining elements. One has

Q ∼= U ⋆ P ,
whereU denotes the class of urns that are sets of atoms. In particular, the EGF ofQ
isQ(z) = ez/(1− z). What we’ve just done is enumerating the quantities that appear
in (70), but with the signs “wrong”, i.e., all pluses.

Introduce now the variablev to mark the distinguished fixed points in objects
of Q. The exponential BGF is then by general principles of this chapter:

Q(z, v) = evz 1

1 − z
.
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Let nowP (z, u) be the BGF of permutations whereu marks the number of fixed
points. (Let us ignore momentarily the fact thatP (z, u) is otherwise known.) Per-
mutations withsomefixed points distinguished are generated by the substitution u 7→
1 + v insideP (z, u). In other words one has the fundamental inclusion-exclusion
relation

Q(z, v) = P (z, 1 + v).

This is then easily solved as

P (z, u) = Q(z, u− 1),

so that knowledge of (the easy)Q gives (the harder)P . For the case at hand, this
yields

P (z, u) =
e(u−1)z

1 − z
, P (z, 0) = D(z) =

e−z

1 − z
,

and, in particular, the EGF of derangements has been retrieved. Note that the sought
P (z, 0) comes out asQ(z,−1), so that signs corresponding to the sieve formula (70)
have now been put “right”, i.e., alternating.

The process employed for derangements is clearly very general. It is a generating
function analogue of the inclusion-exclusion principle: counting objects that satisfy a
number ofsimultaneousconstraints is reduced to counting objects that violatesomeof
the constraints at distinguished “places”—the latter is usually a simpler problem The
generating function analogue of inclusion exclusion is then simply the substitution
v 7→ u− 1, if a bivariate GF is sought, orv 7→ −1 in the univariate case.

Rises in permutations and patterns in words.The book by Goulden and Jack-
son [192, pp. 45–48] describes a useful formalization of the inclusion process operat-
ing on MGFs. Conceptually, it combines substitution and implicit definitions. Once
again, themodus operandiis best grasped through examples, two of which are detailed
below.

EXAMPLE 24. Rises and ascending runs in permutations.A rise (also called anascent) in
a permutationσ = σ1 · · ·σn is a pair of consecutive elementsσiσi+1 satisfyingσi < σi+1

(with 1 ≤ i < n). The problem is to determine the numberAn,k of permutations of size having
exactlyk rises, together with the BGFA(z, u). By symmetry, we are also enumerating descents
(defined byσi > σi+1) as well as ascending runs that are each terminated by a descent.

Guided by the inclusion-exclusion principle, we tackle theeasier problem of enumerating
permutations withdistinguishedrises, of which the set is denoted byB. For instance,B contains
elements like

2 1 3ր4ր8ր9ր11 15 12 5ր10 13 7 14,

where those rises that are distinguished are represented byarrows. (Note that some rises may
not be distinguished.) Maximal sequences of adjacent distinguished rises (boxed in the repre-
sentation) will be calledclusters. Then,B can be specified by the sequence construction applied
to atoms (Z) and clusters (C) as

B = SEQ(Z + C), where C = (Z ր Z) + (Z ր Z ր Z) + · · · = SET≥2(Z).
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since a cluster is an ordered sequence, or equivalently a set, furthermore having at least two
elements. This gives the EGF ofB as

B(z) =
1

1− (z + (ez − 1− z)) =
1

2− ez
,

which happens to coincide with the EGF of surjections.
For inclusion-exclusion purposes, we need the BGF ofB with v marking the number of

distinguished rises. A cluster of sizek containsk − 1 rises, so that

B(z, v) =
1

1− (z + (ezv − 1− zv)/v) =
v

v + 1− ezv
.

Now, the usual argument applies: the BGFA(z, u) satisfiesB(z, v) = A(z, 1 + v), so that
A(z, u) = B(z, u− 1), which yields the particularly simple form

(71) A(z, u) =
u− 1

u− ez(u−1)
.

In particular, this GF expands as

A(z, u) = 1 + z + (u+ 1)
z2

2!
+ (u2 + 4u+ 1)

z3

3!
+ (u3 + 11u2 + 11u + 1)

z4

4!
+ · · · .

The coefficientsAn,k are known as theEulerian numbers. In combinatorial analysis, these
numbers are almost as classic as the Stirling numbers. A detailed discussion of their properties
is to be found in classical treatises like [76] or [196]. (From Eq. (71), permutations without
rises are enumerated byB(z,−1) = ez, an altogether obvious result.)

Moments derive easily from an expansion of (71) atu = 1, which gives

A(z, u) =
1

1− z +
1

2

z2

(1− z)2 (u− 1) +
1

12

z3(2 + z)

(1− z)3 (u− 1)2 + · · · .

In particular: the mean of the number of rises in a random permutation of sizen is 1
2
(n − 1)

and the variance is∼ 1
12
n, ensuring concentration of distribution.

The same method applies to the enumeration ofascending runs: for a fixed parameterℓ,
an ascending run of lengthℓ is a sequence of consecutive elementsσiσi+1 · · ·σi+ℓ such that
σi < σi+1 < · · · < σi+ℓ. (Thus, a rise is an ascending run of length 1.) We define a cluster as a
sequence of distinguished runs which overlap in the sense that they share some of the elements
of the permutation. The exponential BGF of permutations with distinguished ascending runs is
then

B(z, v) =
1

1− z − bI(z, v)
, where bI(z, v) =

X

n,k

In,kv
k z

n

n!
,

andIn,k is the number of ways of covering the segment[1, n] with k distinct intervals of lengthℓ
that are contained in[1, n] and have integral end points. The numbersIn,k themselves result
from elementary combinatorics (see also the case of patterns in words below) and one has for
the OGF corresponding tobI:

I(z, v) ≡
X

n,k

In,kv
kzn =

zℓ+1v

1− v(z + z2 + · · ·+ zℓ)
.

(Proof: The first segment in the covering must be placed on theleft, the other ones appear in
succession, each shifted right by 1 toℓ positions from the previous one.) The last two equations
finally determine the exponential BGF of permutations with size marked byz and ascending
runs of lengthℓ+ 1 marked byu,

(72) A(z, u) = B(z, u− 1),
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given the inclusion-exclusion principle.
The resulting formulæ are checked to generalize the case of rises (ℓ = 1). They can

be made explicit by first expanding the OGFI(z, v) into partial fractions, then applying the
transformation(1− ωz)−1 7→ eωz in order to translateI(z, v) into bI(z, v). The net result is

A(z, u) =
1

1− z − bI(z, u− 1)
, where bI(z, v) = (1− z)(v + 1) +

ℓX

j=1

cj(v)e
ωj(v)z

involves a sum of exponentials. In this last equation, theωj(v) are the roots of the characteristic
equationωℓ = v(1 + · · · + ωℓ−1) and thecj(v) are the corresponding coefficients in the
partial fraction decomposition ofI(z, v). These expressions were first published by Elizalde
and Noy [114] who obtained them by means of tree decompositions.

The BGF (72) can be exploited in order to determine quantitative information on long runs
in permutations. First, an expansion atu = 1 (also, a direct reasoning: see the discussion of
hidden words in Chapter I) shows that the mean number of ascending runs of lengthℓ − 1 is
(n − ℓ + 1)/ℓ! exactly, as soon asn ≥ ℓ. This entails that, ifn = o(ℓ!), the probability of
finding an ascending run of lengthℓ− 1 tends to 0 asn → ∞. What is used in passing in this
argument is the general fact that for a discrete variableX with values in0, 1, 2, . . ., one has
(with Iverson’s notation)

P(X ≥ 1) = E([[X ≥ 1]]) = E(min(X, 1)) ≤ E(X).

An inequality in the converse direction can be obtained fromthe second moment method. In
effect, the variance of the number of ascending runs of length ℓ − 1 is found to be of the exact
form αℓn + βℓ whereαℓ is essentially1/ℓ! andβℓ is of comparable order (details omitted).
Then, by Chebyshev’s inequalities, concentration of distribution holds as long asℓ is such that
(ℓ + 1)! = o(n). In this case, with high probability (i.e., with probability tending to 1 asn
tends to∞), there are many ascending runs of lengthℓ− 1. In particular:

Let Ln be the length of the longest ascending run in a random permutation of n
elements. Letℓ0(n) be the smallest integer such thatℓ! ≥ n. Then the distribution
of Ln is concentrated in the sense thatLn/ℓ0(n) converges in probability to 1: for
anyǫ > 0, one has

lim
n→∞

P

„
1− ǫ < Ln

ℓ0(n)
< 1 + ǫ

«
= 1.

What has been found here is a fairly sharp threshold phenomenon. �

� 33. Permutations withoutℓ–ascending runs.The EGF of permutations without1–, 2– and
3–ascending runs are respectively
0
@X

i≥0

x2i

(2i)!
− x2i+1

(2i+ 1)!

1
A

−1

,

0
@X

i≥0

x3i

(3i)!
− x3i+1

(3i+ 1)!

1
A

−1

,

0
@X

i≥0

x4i

(4i)!
− x4i+1

(4i+ 1)!

1
A

−1

,

and so on. (See Elizalde and Noy’s article [114] for similar computations, as well as interesting
results involving other types of order patterns in permutations.) �

Many variations on the theme of rises and ascending runs are clearly possible. Lo-
cal order patterns in permutations have been intensely researched, notably by Carlitz
in the 1970’s. Goulden and Jackson [192, Sec. 4.3] offer a general theory of patterns
in sequences and permutations. Special permutations patterns associated with binary
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increasing trees are also studied by Flajolet, Gourdon, andMartı́nez [140] (by com-
binatorial methods) and Devroye [96] (by probabilistic arguments). On another regis-
ter, the longest ascending run has been found above to be of order(log n)/ log logn
in probability. The superficially resembling problem of analysing the length of the
longest increasing sequencein random permutations (elements must be in ascending
order but need not be adjacent) has attracted a lot of attention, but is considerably
harder. This quantity is∼ 2

√
n on average and in probability, as shown by a pene-

trating analysis of the shape of random Young tableaus due toLogan, Shepp, Vershik,
and Kerov [266, 395] Solving a problem open for over 20 years, Baik, Deift, and Jo-
hansson [18] have eventually determined its limiting distribution. The undemanding
survey by Aldous and Diaconis [6] discusses some of the background of this prob-
lem, while Chapter VIII shows how to derive bounds that are ofthe right order of
magnitude but rather crude, using saddle-point methods.

EXAMPLE 25. Patterns in words. Take the set of all wordsW = SEQ{A} over a finite
alphabetA = {a1, . . . , ar}. A patternp = p1p2 · · · pk, which is particular word of lengthk
has been fixed. What is sought is the BGFW (z, u) of W, whereu marks the number of
occurrences of patternp inside a word ofW. Results of Chapter I already give access to
W (z, 0), which is the OGF of words not containing the pattern.

In accordance with the inclusion-exclusion principle, oneshould introduce the classX of
words augmented by distinguishing an arbitrary number of occurrences ofp. Define acluster
as a maximal collection of distinguished occurrences that have an overlap. For instance, if
p = aaaaa, a particular word may be give rise to the particular cluster:

a b a a a a a a a a a a a a a b a a a a a a a a b b
---------------------------------------------------

a a a a a
a a a a a

a a a a a

Then objects ofX decompose as sequences of either arbitrary letters fromA or clusters:

X = SEQ(Z + C) ,
with C the class of all clusters.

Clusters are themselves obtained by repeatedly sliding thepattern, but with the constraint
that it should constantly overlap partly with itself. Letc(z) be the autocorrelation polynomial
of p as defined in Chapter I, and setbc(z) = c(z) − 1. A moment’s reflection should convince
the reader thatzkbc(z)s−1 when expanded describes all the possibilities for forming clusters ofs
overlapping occurrences. On the example above, one hasbc(z) = 1 + z + z2 + z3 + z4, and
a particular cluster of 3 overlapping occurrences corresponds to one of the terms inzkbc(z)2 as
follows:

z5

z }| {
a a a a a z5

a a a

z2

z}|{
a a × (z + z2 + z3 + z4)

a

z4

z }| {
a a a a × (z + z2 + z3 + z4).

The OGF of clusters is consequentlyC(z) = zk/(1− bc(z)) since this quantity describes all
the ways to write the pattern (zk) and then slide it so that it should overlap with itself (this
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is given by(1 − bc(z))−1). A slightly different way on obtaining this expressions ofC(z) is
described in Note 36 below.

By a similar reasoning, the BGF of clusters isvzk/(1 − vbc(z)), and the BGF ofX with
the supplementary variablev marking the number of distinguished occurrences is

X(z, v) =
1

1− rz − vzk/(1− vbc(z)) .

Finally, the usual inclusion-exclusion argument (changev to u − 1) yieldsW (z, u) =
X(z, u− 1). As a result:

For a patternp with correlation polynomialc(z) and lengthk, the BGF
of words over an alphabet of cardinalityr, whereu marks the number of
occurrences ofp, is

W (z, u) =
(u− 1)c(z) − u

(1− rz)((u− 1)c(z)− u) + (u− 1)zk
.

The specializationu = 0 gives back the formula already found in Chapter I. The same princi-
ples clearly apply to weighted models corresponding to unequal letter probabilities, provided a
suitably weighted version of the correlation polynomial isintroduced (Note 36 below). �

There are a very large number of formulæ related to patterns in strings. For
instance, BGFs are known for occurrences of one or several patterns under either
Bernoulli or Markov models; see Note 36 below. We refer to Szpankowski’s book [372],
where such questions are treated systematically and in great detail. Bourdon and
Vallée [56] have even succeeded in extending this approach todynamical sources
of information, thereby extending a large number of previously known results. Their
approach even makes it possible to analyse the occurrence ofpatterns in continued
fraction representations of real numbers.

� 34.Moments of number of occurrences.The derivatives ofX(z, v) at v = 0 give access to
the factorial moments of the number of occurrences of a pattern. In this way or directly, one
determines

W (z, u) =
1

1− rz +
zk

(1− rz)2 (u− 1) + 2
zk((1− rz)(c(z)− 1) + zk)

(1− rz)3
(u− 1)2

2!
+ · · · .

The mean number of occurrences isr−n times the coefficient ofzn in the coefficient of(u−1)
and is(n− k + 1)r−k, as anticipated. The coefficient of of(u− 1)2/2! is of the form

2r−2k

(1− rz)3 +
2r−k(1 + 2kr−k − c(1/r))

(1− rz)2 +
P (z)

1− rz ,

with P a polynomial. There results that the variance of the number of occurrences is of the
form

αn+ β, α = r−k(2c(1/r)− 1 + r−k(1− 2k)).

Consequently, the distribution is concentrated around itsmean. (See also the discussion of
“Borges’ Theorem” in Chapter I, p. 58.) �

� 35.Words with fixed repetitions.LetW 〈s〉(z) = [us]W (z, u) be the OGF of words contain-
ing a pattern exactlys times. One has, fors > 0 ands = 0 respectively,

W 〈s〉(z) =
zkN(z)s−1

D(z)s+1
, W 〈0〉(z) =

c(z)

D(z)
,

withN(z) andD(z) given by

N(z) = (1− rz)(c(z)− 1) + zk, D(z) = (1− rz)c(z) + zk.
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The expression ofW 〈0〉 is in agreement with Chapter I, Equation (48). �

� 36.Patterns in Bernoulli sequences.LetA be an alphabet where letterα has probabilityπα

and consider the Bernoulli model where letters in words are chosen independently. Fix a pat-
ternp = p1 · · · pk and define the finite language ofprotrusionsas

Γ =
[

i : ci 6=0

{pi+1pi+2 · · · pk},

where the union is over all correlation positions of the pattern. Define now the correlation
polynomialγ(z) (relative top and theπα) as the generating polynomial of the finite language
of protrusions weighted byπα. For instance,p = ababa gives rise toΓ = {ǫ, ba, baba} and

γ(z) = 1 + πaπbz
2 + π2

aπ
2
bz

4.

Then, the BGF of words withz marking length andU marking the number of occurrences ofp
is

W (z, u) =
(u− 1)γ(z)− u

(1− z)((u− 1)γ(z)− u) + π[p]zk
,

whereπ[p] is the product of the probabilities of letters ofp. �

� 37. Patterns in binary trees.Consider the classB of pruned binary trees. An occurrence of
patternt in a treeτ is defined by a node whose “dangling subtree” is isomorphic tot. Let p
be the size oft. The BGFB(z, u) of classB whereu marks the number of occurrences oft is
sought.

The OGF ofB is B(z) = (1 − √1− 4z)/(2z). The quantityvB(zv) is the BGF ofB
with v marking external nodes. By virtue of the pointing operation, the quantity

Uk :=

„
1

k!
∂k

v (vB(zv))

«

v=1

,

describes trees withk distinct external nodes distinguished (pointed). The quantity

V :=
X

Uku
k(zp)k satisfies V = (vB(zv))v=1+uzp ,

by virtue of Taylor’s formula. It is also the BGF of trees withdistinguished occurrences oft.
Settingv 7→ u− 1 in V then gives backB(z, u) as

B(z, u) =
1

2z

“
1−

p
1− 4z − 4(u− 1)zp+1)

”
.

In particular

B(z, 0) =
1

2z

“
1−

p
1− 4z + 4zp+1

”

gives the OGF of treesnot containing patternt. The method generalizes to any simple variety
of trees and it can be used to prove that the factored representation (as a directed acyclic graph)
of a random tree of sizen has expected sizeO(n/

√
log n); see [162]. �

III. 8. Extremal parameters

Apart from additively inherited parameters already examined at length in this
chapter, another important category is that of parameters defined by a maximum rule.
Two major cases are the largest component in a combinatorialstructure (for instance,
the largest cycle of a permutation) and the maximum degree ofnesting of construc-
tions in a recursive structure (typically, the height of a tree). In this case, bivariate
generating functions are of little help. The standard technique consists in introducing
a collection of univariate generating functions defined by imposing a bound on the
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parameter of interest. Such GFs can then be constructed by the symbolic method in
its univariate version.

III. 8.1. Largest components. Consider a constructionB = Φ{A}, whereΦ
may involve an arbitrary combination of basic constructions, and assume here for
simplicity that the construction forB is a non–recursive one. This corresponds to a
relation between generating functions

B(z) = Ψ[A(z)],

whereΨ is the functional that is the “image” of the combinatorial constructionΦ.
Elements ofA thus appear as components in an objectβ ∈ B. Let B〈b〉 denote the
subclass ofB formed with objects whoseA–components all have a size at mostb. The
GF ofB〈b〉 is obtained by the same process as that ofB itself, save thatA(z) should
be replaced by the GF of elements of size at mostb. Thus,

B〈b〉(z) = Ψ[TbA(z)],

where thetruncation operatoris defined on series by

Tbf(z) =

b∑

n=0

fnz
n (f(z) =

∞∑

n=0

fnz
n).

Several cases of this situation have already been encountered in earlier chapters.
For instance, the cycle decomposition of permutations translated by

P (z) = exp

(
log

1

1 − z

)

gives more generally the EGF of permutations with longest cycle≤ b,

P 〈b〉(z) = exp

(
z

1
+
z2

2
+ · · · + zb

b

)
,

which involves the truncated logarithm. Similarly, the EGFof words over anm–ary
alphabet

W (z) = (ez)
m

leads to the EGF of words such that each letter occurs at mostb times:

W 〈b〉(z) =

(
1 +

z

1!
+
z2

2!
+ · · · + zb

b!

)m

,

which now involves the truncated exponential. One finds similarly the EGF of set
partitions with largest block of size at mostb,

S〈b〉(z) = exp

(
z

1!
+
z2

2!
+ · · · + zb

b!

)
.

A slightly less direct example is that of the longest run in a sequence of binary
draws. The collectionW of binary strings over the alphabet{a, b} admits the decom-
position

W = SEQ(a) · SEQ(b SEQ(a)),
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corresponding to a “scansion ” dictated by the occurrences of the letterb. The corre-
sponding OGF then appears under the form

W (z) = Y (z) · 1

1 − zY (z)
whereY (z) =

1

1 − z

corresponds toY = SEQ(a). Thus, the OGF of strings with at mostk− 1 consecutive
occurrences of the lettera obtains upon replacingY (z) by its truncation:

W 〈k〉(z) = Y 〈k〉(z)
1

1 − zY 〈k〉(z)
whereY 〈k〉(z) = 1 + z + z2 + · · · + zk−1,

so that

W 〈k〉(z) =
1 − zk

1 − 2z + zk+1
.

Such generating functions are thus easy to derive. The asymptotic analysis of
their coefficients is however often hard when compared to additive parameters, owing
to the need to rely on complex analytic properties of the truncation operator. The bases
of a general asymptotic theory have been laid by Gourdon [194].

� 38.Smallest components.The EGF of permutations with smallest cycle of size> b is

exp(− z
1
− z2

2
− · · · − zb

b
)

1− z .

A symbolic theory ofsmallestcomponents in combinatorial structures is easily developed as
regards GFs. Elements of the corresponding asymptotic theory are provided by Panario and
Richmond in [309]. �

III. 8.2. Height. The degree of nesting of a recursive construction is a general-
ization of the notion of height in the simpler case of trees. Consider for instance a
recursively defined class

B = Φ{B},
whereΦ is a construction. LetB[h] denote the subclass ofB composed solely of ele-
ments whose construction involves at mosth applications ofΦ. We have by definition

B[h+1] = Φ{B[h]}.
Thus, withΨ the image functional of constructionΦ, the corresponding GFs are de-
fined by arecurrence,

B[h+1] = Ψ[B[h]].

It is usually convenient to start the recurrence with the initial conditionB[−1](z) = 0.
(This discussion is related to semantics of recursion, p. 31)

Consider for instance general plane trees defined by

G = N × SEQ(G) so that G(z) =
z

1 −G(z)
.

Define the height of a tree as the number of nodes on its longestbranch. Then the set
of trees of height≤ h satisfies the recurrence

G[0] = N , G[h+1] = N × SEQ(G[h]).
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Accordingly, the OGF of trees of bounded height satisfies

G[−1](z) = 0, G[0](z) = z, G[h+1](z) =
z

1 −G[h](z)
.

The recurrence unwinds and one finds

G[h](z) =
z

1 − z

1 − z

. . .

1 − z

,

where the number of stages in the fraction equalsb. This is the finite form (technically
known as a “convergent”) of acontinued fractionexpansion. From implied linear re-
currences and an analysis based on Mellin transforms, de Bruijn, Knuth, and Rice [88]
have determined the average height of a general plane tree tobe∼ √

πn. We provide a
proof of this fact in Chapter V dedicated to applications of rational and meromorphic
asymptotics.

For plane binary trees defined by

B = Z + B × B so that B(z) = z + (B(z))2,

(size is the number of external nodes), the recurrence is

B[0](z) = z, B[h+1](z) = z + (B[h](z))2.

In this case, theB[h] are the approximants to a “continuous quadratic form”, namely

B[h](z) = z + (z + (z + (· · · )2)2)2.
These are polynomials of degree2h for which no closed form expression is known,
nor even likely to exist5. However, using complex asymptotic methods and singularity
analysis, Flajolet and Odlyzko [151] have shown that the average height of a binary
plane tree is∼ 2

√
πn.

For Cayley trees, finally, the defining equation is

T = {1} ⋆ SET(T ) so that T (z) = zeT (z).

The EGF of trees of bounded height satisfy the recurrence

T [0](z) = z, T [h+1](z) = zeT [h](z).

We are now confronted with a “continuous exponential”,

T [h](z) = zeze
ze

..
. zez

.

The average height was found by Rényi and Szekeres who appealed again to complex
asymptotics and found it to be∼

√
2πn.

These examples show that height statistics are closely related to iteration theory.
Except in a few cases like general plane trees, normally no algebra is available and
one has to resort to complex analytic methods as exposed in forthcoming chapters.

5These polynomials are exactly the much studied Mandelbrot polynomials whose behaviour in the
complex plane gives rise to extraordinary graphics.
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III. 8.3. Averages and moments.For extremal parameters, the GF of mean val-
ues obey a general pattern. LetF be some combinatorial class with GFf(z). Consider
for instance an extremal parameterχ such thatf [h](z) is the GF of objects withχ-
parameterat mosth. The GF of objects for whichχ = k exactlyis equal to

f [h](z) − f [h−1](z).

Thus differencing gives access to the probability distribution of height overF . The
generating function of cumulated values (providing mean values after normalization)
is then

Ξ(z) =
∞∑

h=0

h
[
f [h](z) − f [h−1](z)

]

=

∞∑

h=0

[
f(z)− f [h](z)

]
,

as is readily checked by rearranging the second sum, or equivalently using summation
by parts.

For maximum component size, the formulæ involve truncated Taylor series. For
height, analysis involves in all generality the differences between the fixed point of a
functionalΦ (the GFf(z)) and the approximations to the fixed point (f [h](z)) pro-
vided by iteration. This is a common scheme in extremal statistics.

� 39.Hierarchical partitions.Let ε(z) = ez − 1. The generating function

ε(ε(· · · (ε(z)))) (h times).

can be interpreted as the EGF of certain hierarchical partitions. (Such structures show up in
statistical classification theory [387, 388].) �

� 40. Balanced trees.Balanced structures lead to counting GFs close to the ones obtained for
height statistics. The OGF of balanced 2-3 trees of heighth counted by the number of leaves
satisfies the recurrence

Z[h+1](z) = Z[h](z2 + z3) = (Z[h](z))2 + (Z[h](z))3,

which can be expressed in terms of the iterates ofσ(z) = z2 + z3. It is also possible to express
the OGF of cumulated values of the number of internal nodes insuch trees. �

� 41.Extremal statistics in random mappings.One can express the EGFs relative to the largest
cycle, longest branch, and diameter of functional graphs. Similarly for the largest tree, largest
component. [Hint: see [152] for details.] �

� 42.Deep nodes in trees.The BGF giving the number of nodes at maximal depth in a general
plane tree or a Cayley tree can be expressed in terms of a continued fraction or a continuous
exponential. �

III. 9. Perspective

The message of this chapter is that we can use the symbolic method not just to
count combinatorial objects but also to quantify their properties. The relative ease
with which we are able to do so is testimony to the power of the method as major
organizing principle of analytic combinatorics.
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The global framework of the symbolic method leads us to a natural structural cat-
egorization of parameters of combinatorial objects. First, the concept ofinherited pa-
rameterspermits a direct extension of the already seen formal translation mechanisms
from combinatorial structures to GFs, for both labelled andunlabelled objects—this
leads to MGFs useful for solving a broad variety of classicalcombinatorial problems.
Second, the adaptation of the theory torecursive parametersprovides information
about trees and similar structures, this even in the absenceof an explicit represen-
tation of the associated MGFs. Third,extremal parameterswhich are defined by a
maximum rule (rather than an additive rule) can be studied byanalysing families of
univariate GFs. Yet another illustration of the power of thesymbolic method is found
in the notion ofcomplete GFs, which in particular enable us to study Bernoulli trials
and branching processes.

As we shall see starting with Chapter IV, these approaches become especially
powerful since they serve as the basis for theasymptotic analysis of properties of
structures. Not only does the symbolic method provide precise information about
particular parameters, but also it paves the way for the discovery of general theorems
that tell us what to expect about a broad variety of combinatorial types.

Multivariate generating functions are a common tool from classical combinatorial analy-
sis. Comtet’s book [76] is once more an excellent source of examples. A systematization of
multivariate generating functions for inherited parameters is given in the book by Goulden and
Jackson [192].

In contrast generating functions for cumulated values of parameters (related to averages)
seemed to have received relatively little attention until the advent of digital computers and
the analysis of algorithms. Many important techniques are implicit in Knuth’s treatises, es-
pecially [244, 245]. Wilf discusses related issues in his book [406] and the paper [404].
Early systems specialized to tree algorithms have been proposed by Flajolet and Steyaert in
the 1980s [129, 166, 167, 369]; see also Berstel and Reutenauer’s work [41]. Some of the
ideas developed there initially drew their inspiration from the well established treatment of
formal power series in noncommutative indeterminates, seethe books by Eilenberg [113] and
Salomaa–Soittola [343] as well as the proceedings edited by Berstel [42]. Several computations
in this area can nowadays even be automated with the help of computer algebra systems, as
shown by Flajolet, Salvy, and Zimmermann [159, 344, 420].
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Generating functions are a central concept of combinatorial theory. In Part A,
we have treated them as formal objects, that is, as formal power series. Indeed, the
major theme of Chapters I–III has been to demonstrate how thealgebraic structure
of generating functions directly reflects the structure of combinatorial classes. From
now on, we examine generating functions in the light ofanalysis. This point of view
involves assigningvaluesto the variables that appear in generating functions.

Comparatively little benefit results from assigning only real values to the vari-
ablez that figures in a univariate generating function. In contrast, assigningcomplex
values turns out to have serendipitous consequences. When we do so, a generating
function becomes a geometric transformation of the complexplane. This transforma-
tion is very regular near the origin—one says that it isanalytic (or holomorphic). In
other words, near0, it only effects a smooth distortion of the complex plane. Farther
away from the origin, some cracks start appearing in the picture. These cracks—the
dignified name issingularities—correspond to the disappearance of smoothness. It
turns out that a function’s singularities provide a wealth of information regarding the
function’s coefficients, and especially their asymptotic rate of growth. Adopting a
geometric point of view for generating functions has a largepay-off.

By focussing on singularities, analytic combinatorics treads in the steps of many
respectable older areas of mathematics. For instance, Euler recognized that the fact
for the Riemann zeta functionζ(s) to become infinite at 1 implies the existence of
infinitely many prime numbers, while Riemann, Hadamard, andde la Vallée-Poussin
uncovered deeper connections between quantitative properties of the primes and sin-
gularities of1/ζ(s).

1Quoted in The Mathematical Intelligencer, v. 13, no. 1, Winter 1991.
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The purpose of this chapter is largely to serve as an accessible introduction or a
refresher of basic notions regarding analytic functions. We start by recalling the el-
ementary theory of functions and their singularities in a style tuned to the needs of
analytic combinatorics. Cauchy’s integral formula expresses coefficients of analytic
functions as contour integrals. Suitable uses of Cauchy’s integral formula then make
it possible to estimate such coefficients by suitably selecting an appropriate contour
of integration. For the common case of functions that have singularities at a finite
distance, the exponential growth formula relates thelocationof the singularities clos-
est to the origin—these are also known as dominant singularities—to theexponential
order of growthof coefficients. Thenatureof these singularities then dictates the fine
structure of the asymptotics of the function’s coefficients, especially thesubexponen-
tial factors involved.

As regards generating functions, combinatorial enumeration problems can be
broadly categorized according to a hierarchy of increasingstructural complexity. At
the most basic level, we encounter scattered classes, whichare simple enough, so that
the associated generating function and coefficients can be made explicit. (Examples of
Part A include binary and general plane trees, Cayley trees,derangements, mappings,
and set partitions). In that case, elementary real-analysis techniques usually suffice
to estimate asymptotically counting sequences. At the next, intermediate, level, the
generating function is still explicit, but its form is such that no simple expression is
available for coefficients. This is where the theory developed in this and the next chap-
ters comes into play. It usually suffices to have an expression for a generating function,
but not necessarily its coefficients, so as to be able to deduce precise asymptotic es-
timates of its coefficients. (Surjections, generalized derangements, unary-binary trees
are easily subjected to this method. A striking example, that of trains, is detailed in
Section IV. 4.) Properties of analytic functions then make this analysis depend only on
local propertiesof the generating function at a few points, its dominant singularities.
The third, highest, level, within the perspective of analytic combinatorics, comprises
generating functions that can no longer be made explicit, but are only determined by a
functional equation. This covers structures defined recursively or implicitly by means
of the basic constructors of Part A. The analytic approach even applies to a large
number of such cases. (Examples include simple families of trees, balanced trees,
and the enumeration of certain molecules treated at the end of this chapter. Another
characteristic example is that of nonplane unlabelled trees treated in Chapter VII.)

As we are going to see in this chapter and the next four ones, the analytic method-
ology applies to almost all the combinatorial classes studied in Part A, which are pro-
vided by the symbolic method. In the present chapter we carryout this programme
for rational functionsandmeromorphic functions, where the latter are defined by the
fact their singularities are simplypoles.

IV. 1. Generating functions as analytic objects

Generating functions, considered in Part A as purelyformal objects subject to
algebraic operations, are now going to be interpreted asanalyticobjects. In so doing
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FIGURE 1. Left: the graph of the Catalan OGF,f(z), for z ∈ (− 1
4
,+ 1

4
); right: the

graph of the derangement EGF,g(z), for z ∈ (−1,+1).

one gains an easy access to the asymptotic form of their coefficients. This informal
section offer a glimpse of themes that form the basis of Chapters IV–VII.

In order to introduce the subject softly, let us start with two simple generating
functions, one,f(z), being the OGF of the Catalan numbers (cfG(z), p. 33), the
other,g(z), being the EGF of derangements (cfD(1)(z), p. 113):

(1) f(z) =
1

2

(
1 −

√
1 − 4z

)
, g(z) =

exp(−z)
1 − z

.

At this stage, the forms above are merely compact descriptions of formal power series
built from the elementary series

(1 − y)−1 = 1 + y + y2 + · · · , (1 − y)1/2 = 1 − 1

2
y − 1

8
y2 − · · · ,

exp(y) = 1 +
1

1!
y +

1

2!
y2 + · · · ,

by standard composition rules. Accordingly, the coefficients of both GFs are known
in explicit form

fn := [zn]f(z) =
1

n

(
2n− 2

n− 1

)
, gn := [zn]g(z) =

(
1

0!
− 1

1!
+

1

2!
− · · · + (−1)n

n!

)
.

Stirling’s formula and comparison with the alternating series givingexp(−1) provide
respectively

(2) fn ∼
n→∞

4n

√
πn3

, gn = ∼
n→∞

e−1 .
= 0.36787.

Our purpose now is to provide intuition on how such approximations could be
derived without a recourse to explicit forms. We thus examine, heuristically for the
moment, the direct relationship between the asymptotic forms (2) and the structure of
the corresponding generating functions in (1).

Granted the growth estimates available forfn andgn, it is legitimate to substitute
in the power series expansions of the GFsf(z) andg(z) any real or complex value
of a small enough modulus, the upper bounds on modulus beingρf = 1

4 (for f ) and
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FIGURE 2. The images of regular grids byf(z) (left) andg(z) (right).

ρg = 1 (for g). Figure 1 represents the graph of the resulting functions when such
real values are assigned toz. The graphs are smooth, representing functions that are
differentiable any number of times forz interior to the interval(−ρ,+ρ). However, at
the right boundary point, smoothness stops:g(z) become infinite atz = 1, and so it
even ceases to be finitely defined;f(z) does tend to the limit12 asz → (1

4 )−, but its
derivative becomes infinite there. Such special points at which smoothness stops are
calledsingularities, a term that will acquire a precise meaning in the next sections.

Observe also that, in spite of the series expressions being divergent outside the
specified intervals, the functionsf(z) andg(z) can becontinuedin certain regions: it
suffices to make use of the global expressions of Equation (1), with exp and√ being
assigned their usual real-analytic interpretation. For instance:

f(−1) =
1

2

(
1 −

√
5
)
, g(−2) =

e2

3
.

Such continuation properties, most notably to thecomplexrealm, will prove essential
in developing efficient methods for coefficient asymptotics.

One may proceed similarly with complex numbers, starting with numbers whose
modulus is less than the radius of convergence of the series defining the GF. Figure 2
displays the images of regular grids byf andg, as given by (1). This illustrates the fact
that a regular grid transforms into an orthogonal network ofcurves and more precisely
thatf andg preserve angles—this property corresponds to complex differentiability
and is equivalent to analyticity to be introduced shortly. The singularity off is clearly
perceptible on the right of its diagram, since, atz = 1

4 (corresponding tof(z) = 1
2 ),

the functionf folds lines and divides angles by a factor of 2.

Let us now turn to coefficient asymptotics. As is expressed by(2), the coefficients
fn andgn each belong to a general asymptotic type for coefficients of afunctionF ,
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namely,

[zn]F (z) = Anθ(n),

corresponding to an exponential growth factorAn modulated by a tame factorθ(n),
which is subexponential. Here, one hasA = 4 for fn andA = 1 for gn; also,
θ(n) ∼ 1

4 (
√
πn3)−1 for fn andθ(n) ∼ e−1 for gn. Clearly,A should be related to the

radius of convergence of the series. We shall see that invariably, for combinatorial gen-
erating functions, the exponential rate of growth is given by A = 1/ρ, whereρ is the
first singularity encountered along the positive real axis (Theorem IV.6). In addition,
under general complex-analytic conditions, it will be established thatθ(n) = O(1) is
systematically associated to a simple pole of the generating function (Theorem IV.10,
p. 245), whileθ(n) = O(n−3/2) systematically arises from a singularity that is of the
square-root type (Chapters VI and VII). In summary, as this chapter and the next ones
will copiously illustrate, the coefficient formula

(3) [zn]F (z) = Anθ(n),

with its exponentially dominating term and its subexponential factor, is central. We
have:

First Principle of Coefficient Asymptotics. The locationof a function’s
singularities dictates theexponential growth(An) of its coefficients.
Second Principle of Coefficient Asymptotics.Thenatureof the function’s
singularities determines the associatesubexponential factor(θ(n)).

Observe that the rescaling rule,

[zn]F (z) = ρ−n[zn]F (ρz),

enables one to normalize functions so that they are singularat 1. Then various the-
orems, starting with Theorems IV.9 and IV.10, provide sufficient conditions under
which the following central implication is valid,

(4) h(z) ∼ σ(z) =⇒ [zn]h(z) ∼ [zn]σ(z).

Thereh(z), whose coefficients are to be estimated, is a function singular at 1 and
σ(z) is a local approximation near the singularity; usuallyσ is a much simpler func-
tion, typically like (1 − z)α logβ(1 − z) whose coefficients are comparatively easy
to estimate (Chapter VI). The relation (4) expressesa mapping between asymptotic
scales of functions near singularities and asymptotics scales of coefficients. Under
suitable conditions, it then suffices to estimate a functionlocally at few distiguished
points (singularities), in order to estimate its coefficients asymptotically.

� 1. Euler, the discrete, and the continuous.Eulers’s proof of the existence of infinitely many
prime numbers illustrates in a striking manner the way analysis of generating functions can
inform us on the discrete realm. Define, for reals > 1 the function

ζ(s) :=

∞X

n=1

1

ns
,
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known as the Riemann zeta function. The decomposition (p ranges over the prime numbers
2, 3, 5, . . .)

(5)

ζ(s) =

„
1 +

1

2s
+

1

22s
+ · · ·

«„
1 +

1

3s
+

1

32s
+ · · ·

«„
1 +

1

5s
+

1

52s
+ · · ·

«
· · ·

=
Y

p

„
1− 1

ps

«−1

expresses precisely the fact that each integer has a unique decomposition as a product of primes.
Analytically, the identity (5) is easily checked to be validfor all s > 1. Now suppose that there
were only finitely many primes. Lets tend to1+ in (5). Then, the left hand side becomes
infinite, while the right hand side tends to the finite limit

Q
p(1 − 1/p)−1: contradiction has

been reached. �

� 2. Elementary transfers.Elementary series manipulation yield the following general result:
Let h(z) be a power series with radius of convergence> 1 and assume thath(1) 6= 0; then
one has

[zn]
h(z)

1− z ∼h(1), [zn]h(z)
√

1− z∼− h(1)

2
√
πn3

, [zn]h(z) log
1

1− z ∼
h(1)

n
.

See Bender’s survey [27] for many similar statements. �

� 3. Asymptotics of generalized derangements.The EGF of permutations without cycles of
length 1 and 2 satisfies (p. 113)

j(z) =
e−z−z2/2

1− z with j(z) ∼
z→1

e−3/2

1− z .

Analogy with derangements suggests that[zn]j(z) ∼
n→∞

e−3/2. [For a proof, use Note 2 or

refer to Example 8.] Here is a table of exact values of[zn]j(z) (with relative error of the
approximation bye−3/2 in parentheses):

n = 5 n = 10 n = 20 n = 50

jn : 0.2 0.22317 0.2231301600 0.2231301601484298289332804707640122
error : (10−1) (2 · 10−4) (3 · 10−10) (10−33)

The quality of the asymptotic approximation is extremely good, such a property being invariably
attached to polar singularities. �

IV. 2. Analytic functions and meromorphic functions

Analytic functionsare a primary mathematical concept of asymptotic theory. They
can be characterized in two essentially equivalent ways (see IV. 2.1): by means of
convergent series expansions (à la Cauchy and Weierstraß)and by differentiability
properties (à la Riemann). The first aspect is directly related to the use of generating
functions for enumeration; the second one allows for a powerful abstract discussion
of closure properties that usually requires little computation.

Integral calculus with analytic functions (see IV. 2.2) assumes a shape radically
different from what it is in the real domain: integrals become quintessentially inde-
pendent of details of the integration contour—certainly the prime example of this fact
is Cauchy’s famous residue theorem. Conceptually, this independence makes it pos-
sible to relate properties of a function at a point (e.g., thecoefficients of its expansion
at 0) to its properties at another far-away point (e.g., its residue at a pole).
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The presentation in this section and the next one constitutes an informal review2

of basic properties of analytic functions tuned to the needsof asymptotic analysis of
counting sequences. The entry in APPENDIX B: Equivalent definitions of analytic-
ity, p. 631 provides further information, in particular a proofof the Basic Equiva-
lence Theorem, Theorem IV.1 below. For a detailed treatment, we refer the reader to
one of the many excellent treatises on the subject, like the books by Dieudonné [98],
Henrici [212], Hille [214], Knopp [237], Titchmarsh [382], or Whittaker and Wat-
son [402].

IV. 2.1. Basics. We shall consider functions defined in certainregionsof the
complex domainC. By a region is meant anopensubsetΩ of the complex plane
that isconnected. Here are some examples:

simply connected domain slit complex plane indented disc annulus

Classical treatises teach us how to extend to the complex domain the standard
functions of real analysis: polynomials are immediately extended as soon as complex
addition and multiplication have been defined, while the exponential is definable by
means of Euler’s formula. One has for instance

z2 = (x2 − y2) + 2ixy, ez = ex cos y + iex sin y,

if z = x + iy, that is,x = ℜ(z) andy = ℑ(z) are the real and imaginary parts ofz.
Both functions are consequently defined over the whole complex planeC.

The square-root and the logarithm are conveniently described in polar coordinates
by

(6)
√
z =

√
ρeiθ/2, log z = log ρ+ iθ,

if z = ρeiθ. One can take the domain of validity of (6) to be the complex plane slit
along the axis from0 to−∞, that is, restrictθ to the open interval(−π,+π), in which
case the definitions above specify what is known as theprincipal determination. There
is no way for instance to extend by continuity the definition of

√
z in any domain

containing 0 in its interior since, fora > 0 andz → −a, one has
√
z → i

√
a as

z → −a from above, while
√
z → −i√a asz → −a from below. This situation is

depicted here:

2The reader previously unfamilar with the theory of analyticfunctions should essentially be able to
adopt Theorems IV.1 and IV.2 as “axioms” and start from there using basic definitions and a fair knowledge
of elementary calculus. Figure 18 at the end of this chapter (p. 274) recapitulates the main results of
relevance toAnalytic Combinatorics.
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+i
√
a

−i√a
0

√
a The values of

√
z

asz varies along|z| = a.

The pointz = 0 where several determinations “meet” is accordingly known as a
branch point.

Analytic functions. First comes the main notion of an analytic function that
arises from convergent series expansions and is closely related to the notion of gener-
ating function encountered in previous chapters.

DEFINITION IV.1. A functionf(z) defined over a regionΩ is analytic at a point
z0 ∈ Ω if, for z in some open disc centred atz0 and contained inΩ, it is representable
by a convergent power series expansion

(7) f(z) =
∑

n≥0

cn(z − z0)
n.

A function is analytic in a regionΩ iff it is analytic at every point ofΩ.

As derives from an elementary property of power series, given a functionf that is
analytic at a pointz0, there exists a disc (of possibly infinite radius) with the property
that the series representingf(z) is convergent forz inside the disc and divergent for
z outside the disc. The disc is called thedisc of convergenceand its radius is the
radius of convergenceof f(z) at z = z0, which will be denoted byRconv(f ; z0).
Quite elementarily, the radius of convergence of a power series conveys information
regarding the rate at which its coefficients grow; see Subsection IV. 3.2 below for
developments. It is also easy to prove (see APPENDIX B: Equivalent definitions of
analyticity, p. 631) that if a function is analytic atz0, it is then analytic at all points
interior to its disc of convergence.

Consider for instance the functionf(z) = 1/(1 − z) defined overC \ {1} in the
usual way via complex division. It is analytic at 0 by virtue of the geometric series
sum,

1

1 − z
=
∑

n≥0

1 · zn,

which converges in the disc|z| < 1. At a pointz0 6= 1, we may write

(8)

1

1 − z
=

1

1 − z0 − (z − z0)
=

1

1 − z0

1

1 − z−z0

1−z0

=
∑

n≥0

(
1

1 − z0

)n+1

(z − z0)
n.

The last equation shows thatf(z) is analytic in the disc centred at 0 with radius|1−z0|,
that is, the interior of the circle centred atz0 and passing through the point 1. In
particularRconv(f, z0) = |1− z0| andf(z) is globally analytic in the punctured plane
C \ {1}.
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The last example illustrates the definition of analyticity.However, the series re-
arrangement approach that it uses might be difficult to carryout for more complicated
functions. In other words, a more manageable approach to analyticity is called for.
The differentiability properties developed next provide such an approach.

Differentiable (holomorphic) functions.The next important notion is a geomet-
ric one based on differentiability.

DEFINITION IV.2. A functionf(z) defined over a regionΩ is calledcomplex-diffe-
rentiable(alsoholomorphic) at z0 if the limit, for complexδ,

lim
δ→0

f(z0 + δ) − f(z0)

δ

exists. (In particular, the limit is independent of the wayδ tends to0 in C.) This limit
is denoted as usual byf ′(z0) or d

dz f(z)
∣∣
z0

. A function is complex-differentiable inΩ
iff it is complex-differentiable at everyz0 ∈ Ω.

Clearly, if f(z) is complex-differentiable atz0 andf ′(z0) 6= 0, it acts locally as a
linear transformation:

f(z) − f(z0) ∼ f ′(z0)(z − z0) (z → z0).

Thenf(z) behaves in small regions almost like a similarity transformation (composed
of a translation, a rotation, and a scaling). In particular,it preserves angles3 and infin-
itesimal squares get transformed into infinitesimal squares; see Figure 3 for a render-
ing.

For instance the function
√
z, defined by (6) in the complex plane slit along the

ray (−∞, 0), is complex-differentiable at anyz of the slit plane since

(9) lim
δ→0

√
z + δ −√

z

δ
= lim

δ→0

√
z

√
1 + δ/z − 1

δ
=

1

2
√
z
,

which extends the customary proof of real analysis. Similarly,
√

1 − z is analytic in
the complex plane slit along the ray(1,+∞). More generally, the usual proofs from
real analysis carry over almost verbatim to the complex realm, to the effect that

(f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′,

(
1

f

)′
= − f ′

f2
, (f ◦ g)′ = (f ′ ◦ g)g′.

The notion of complex differentiability is thus much more manageable than the notion
of analyticity.

It follows from a well known theorem of Riemann (see for instance [212, vol. 1,
p 143] and APPENDIX B: Equivalent definitions of analyticity, p. 631) that analyticity
and complex differentiability are equivalent notions.

THEOREM IV.1 (Basic Equivalence Theorem).A function is analytic in a regionΩ if
and only if it is complex-differentiable inΩ.

The following are known facts (see again Appendix B): if a function is analytic
(equivalently complex-differentiable) inΩ, it admits (complex) derivatives of any or-
der there. This property markedly differs from real analysis: complex differentiable

3A mapping of the plane that locally preserves angles is also called aconformalmap.
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FIGURE 3. Multiple views of an analytic function. The image of the domain Ω = {z
˛̨

|ℜ(z)| < 2, |ℑ(z)| < 2} by f(z) = exp(z)+ z+2: [top] transformation of a square grid
in Ω by f ; [middle] the modulus and argument off(z); [bottom] the real and imaginary
parts off(z).

(equivalently, analytic) functions are all smooth. Also derivatives of a function are
obtained through term-by-term differentiation of the series representation of the func-
tion.

Meromorphic functions. We finally introducemeromorphic4 functions that are
mild extensions of the concept of analyticity (or holomorphy) and are essential to the
theory.

The quotient of two analytic functionsf(z)/g(z) ceases to be analytic at a point
a whereg(a) = 0. However, a simple structure for quotients of analytic functions
prevails.

DEFINITION IV.3. A functionh(z) is meromorphicat z = z0 iff in a neighbourhood
of z = z0 with z 6= z0 it it can be represented asf(z)/g(z), with f(z) andg(z) being

4“Holomorphic” and “meromorphic” are words coming from Greek, meaning respectively “of com-
plete form” and “of partial form”.
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analytic atz = z0. In that case, it admits nearz0 an expansion of the form

(10) h(z) =
∑

n≥−M

hn(z − z0)
n.

If h−M 6= 0 andM ≥ 1, thenh(z) is said to have apoleof orderM at z = a. The
coefficienth−1 is called theresidueof h(z) at z = a and is written as

Res[h(z); z = a].

A function is meromorphic in a region iff it is meromorphic atany point of the region.

IV. 2.2. Integrals and residues.A path in a regionΩ is described by its param-
eterization, which is a continuous functionγ mapping[0, 1] into Ω. Two pathsγ, γ′

in Ω having the same end points are said to behomotopic(in Ω) if one can be contin-
uously deformed into the other while staying withinΩ as in the following examples:

homotopic paths:

A closed path5 is defined by the fact that its end points coincide:γ(0) = γ(1), and
a path issimpleif the mappingγ is one-to-one. A closed path is said to be aloop of
Ω if it can be continuously deformedwithin Ω to a single point; in this case one also
says that the path is homotopic to 0. In what follows we implicitly restrict attention to
paths that are assumed to be rectifiable. Unless otherwise stated, all integration paths
will be assumed to be oriented positively.

Integrals along curves in the complex plane are defined in theusual as curvilinear
integrals of complex-valued functions. Explicitly: letf(x + iy) be a function andγ
be a path; then,

∫

γ

f(z) dz :=

∫ 1

0

f(γ(t))γ′(t) dt

=

∫ 1

0

[AC −BD] dt+ i

∫ 1

0

[AD +BC] dt,

wheref = A+ iB andγ′ = C+ iD. However integral calculus in the complex plane
is of a radically different nature from what it is on the real line—in a way it is much
simpler and much more powerful. One has:

THEOREM IV.2 (Null Integral Property).Letf be analytic inΩ and letλ be a simple
loop ofΩ. Then

∫
λ f = 0.

5By default, paths used in this book are assumed to be positively oriented piecewise continuously
differentiable (hence rectifiable); in addition, closed paths are assumed to be positively oriented.
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Equivalently, integrals are largely independent of details of contours: forf analytic
in Ω, one has

(11)
∫

γ

f =

∫

γ′

f,

providedγ andγ′ are homotopic (not necessarily closed) paths inΩ. A proof of The-
orem IV.2 is sketched in APPENDIX B: Equivalent definitions of analyticity, p. 631.

Residues.The importantResidue Theoremdue to Cauchy relatesglobal prop-
erties of a meromorphic function (its integral along closedcurves) to purelylocal
characteristics at designated points (the residues at poles).

THEOREMIV.3 (Cauchy’s residue theorem).Leth(z) be meromorphic in the regionΩ
and letλ be a simple loop inΩ along which the function is analytic. Then

1

2iπ

∫

λ

h(z) dz =
∑

s

Res[h(z); z = s],

where the sum is extended to all poless of h(z) enclosed byλ.

PROOF. (Sketch) To see it in the representative case whereh(z) has only a pole at
z = 0, observe by appealing to primitive functions that

∫

λ

h(z) dz =
∑

n≥−M
n 6=−1

hn

[
zn+1

n+ 1

]

λ

+ h−1

∫

λ

dz

z
,

where the bracket notation
[
u(z)

]
λ

designates the variation of the functionu(z) along
the contourλ. This expression reduces to its last term, itself equal to2iπh−1, as is
checked by using integration along a circle (setz = reiθ). The computation extends
by translation to the case of a unique pole atz = a.

In the case of multiple poles, we observe that the simple loopcan only enclose
finitely many poles (by compactness). The proof then followsfrom a simple decom-
position of the interior domain ofλ into cells each containing only one pole. Here is
an illustration in the case of three poles.

(Contributions from internal edges cancel.) �

Global (integral) to local (residues) connections.Here is a textbook example of
a reduction from global to local properties of analytic functions. Define the integrals

Im :=

∫ ∞

−∞

dx

1 + x2m
,
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and consider specificallyI1. Elementary calculus teaches us thatI1 = π since the
antiderivative of the integrand is an arc tangent:

I1 =

∫ ∞

−∞

dx

1 + x2
= [arctanx]

+∞
−∞ = π.

Here is an alternative, and in many ways more fruitful, derivation. In the light
of the residue theorem, we consider the integral over the whole line as the limit of
integrals over large intervals of the form[−R,+R], then complete the contour of
integration by means of a large semi-circle in the upper half-plane, as shown below:

0

i

−R +R
Let γ be the contour comprised of the interval and the semi-circle. Insideγ, the

integrand has a pole atx = i, where

1

1 + x2
≡ 1

(x + i)(x− i)
= − i

2

1

x− i
+ · · · ,

so that its residue there is−i/2. By the residue theorem, the integral taken overγ is
equal to2πi times the residue of the integrand ati. As R → ∞, the integral along
the semi-circle vanishes (it is less thanπR/(1 + R2) in modulus), while the integral
along the real segment givesI1 in the limit. There results the relation givingI1:

I1 = 2iπRes

(
1

1 + x2
;x = i

)
= (2iπ)

(
− i

2

)
= π.

The evaluation of the integral in the framework of complex analysis rests solely
upon the local expansion of the integrand at special points (here, the pointi). This is a
remarkable feature of the theory, one that confers it much simplicity, when compared
to real analysis.

� 4. The general integralIm. Let α = exp( iπ
2m

) so thatα2m = −1. Contour integration of
the type used forI1 yields

Im = 2iπ
mX

j=1

Res

„
1

1 + x2m
;x = α2j−1

«
,

while, for anyβ = α2j−1 with 1 ≤ j ≤ m, one has

1

1 + x2m
∼

x→β

1

2mβ2m−1

1

x− β ≡ −
β

2m

1

x− β .

As a consequence,

I2m = − iπ
m

`
α+ α3 + · · ·+ α2m−1´ =

π

m sin π
2m

.

In particular,I2 = π/
√

2, I3 = 2π/3, I4 = π
4

√
2
p

2 +
√

2, and 1
π
I5, 1

π
I6 are expressible by

radicals, but1
π
I7,

1
π
I9 are not. The special cases1

π
I17,

1
π
I257 are expressible by radicals.�
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� 5. Integrals of rational fractions.Generally, all integrals of rational functions taken over the
whole real line are computable by residues. In particular,

Jm =

Z +∞

−∞

dx

(1 + x2)m
, Km =

Z +∞

−∞

dx

(12 + x2)(22 + x2) · · · (m2 + x2)

can be explicitly evaluated. �

Cauchy’s coefficient formula.Many function-theoreticconsequences derive from
the residue theorem. For instance, iff is analytic inΩ, z0 ∈ Ω andλ is a simple loop
of Ω encirclingz0, one has

(12) f(z0) =
1

2iπ

∫

λ

f(ζ)
dζ

ζ − z0
.

This follows directly since

Res [f(ζ)/(ζ − z0); ζ = z0] = f(z0).

Then, by differentiation with respect toz0 under the integral sign, one gets similarly

(13)
1

k!
f (k)(z0) =

1

2iπ

∫

λ

f(ζ)
dζ

(ζ − z0)k+1
.

The values of a function and its derivatives at a point can thus be obtained as values of
integrals of the function away from that point. The world of analytic functions is a very
gentle one in which to live: contrary to real analysis, a function is differentiableany
number of timesas soon as it is differentiableonce. Also, Taylor’s formula invariably
holds: as soon asf(z) is analytic atz0, one has

(14) f(z) = f(z0) + f ′(z0)(z − z0) +
1

2!
f ′′(z0)(z − z0)

2 + · · · ,
with the representation being convergent in a small disc centred atz0. [Proof: a veri-
fication from (12) and (13), or a series rearrangement as in (B.7), p. 632.]

A very important application of the residue theorem concerns coefficients of ana-
lytic functions.

THEOREM IV.4 (Cauchy’s Coefficient Formula).Let f(z) be analytic in a region
containing0 and letλ be a simple loop around0 that is positively oriented. Then the
coefficient[zn]f(z) admits the integral representation

fn ≡ [zn]f(z) =
1

2iπ

∫

λ

f(z)
dz

zn+1
.

PROOF. This formula follows directly from the equalities

1

2iπ

∫

λ

f(z)
dz

zn+1
= Res

[
f(z)z−n−1; z = 0

]
= [zn]f(z),

of which the first follows from the residue theorem, and the second from the identifi-
cation of the residue at 0 as a coefficient. �

Analytically, the coefficient formula allows one to deduce information about the
coefficients from the values of the function itself, using adequately chosen contours of
integration. It thus opens the possibility of estimating the coefficients[zn]f(z) in the
expansion off(z) near0 by using information onf(z) awayfrom 0. The rest of this
chapter will precisely illustrate this process in the case of rational and meromorphic
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functions. Observe also that the residue theorem provides the simplest known proof
of the Lagrange inversion theorem (see APPENDIX A: Lagrange Inversion, p. 621)
whose rôle is central to tree enumerations, as we saw in Chapters I and II. The notes
below explore some independent consequences of the residuetheorem and the coeffi-
cient formula.

� 6. Liouville’s Theorem. If a functionf(z) is analytic in the whole ofC and is of modulus
bounded by an absolute constant,|f(z)| ≤ B, then it must be a constant. [By trivial bounds,
upon integrating on a large circle, it is found that the Taylor coefficients at the origin of index
≥ 1 are all equal to 0.] Similarly, iff(z) is of at most polynomial growth,|f(z)| ≤ B (|z|+1)r

over the whole ofC, then it must be a polynomial. �

� 7. Lindelöf integrals. Let a(s) be analytic inℜ(s) > 1
4

where it is assumed to satisfy
a(s) = O(exp((π − δ)|s|)) for someδ with 0 < δ < π. Then, one has for| arg(z)| < δ,

∞X

k=1

a(k)(−z)k = − 1

2iπ

Z 1/2+i∞

1/2−i∞
a(s)zs π

sin πs
ds,

in the sense that the integral exists and provides the analytic continuation of the sum in| arg(z)| <
δ. [Close the integration contour by a large semi-circle on the right and evaluate by residues.]
Such integrals, sometimes called Lindelöf integrals, provide representations for many functions
whose Taylor coefficients are given by an explicit rule [173, 265]. �

� 8. Continuation of polylogarithms.As a consequence of Lindelöf’s representation, the gen-
eralizedpolylogarithmfunctions,

Liα,k(z) =
X

n≥1

n−α(log n)kzn (α ∈ R, k ∈ Z≥0),

are analytic in the complex planeC slit along(1 +∞). (More properties can be found in [135,
173].) For instance, one obtains in this way

“
∞X

n=1

(−1)n log n ” = −1

4

Z +∞

−∞

log( 1
4

+ t2)

cosh(πt)
dt = 0.22579 · · · = log

r
π

2
,

when the divergent series on the left is interpreted asLi0,1(−1) = limz→−1+ Li0,1(z). �

� 9. Magic duality. Let φ be a function initially defined over the nonnegative integers but
admitting a meromorphic extension over the whole ofC. Under growth conditions in the style
of Note 7, the function

F (z) :=
X

n≥1

φ(n)(−z)n,

which is analytic at the origin, is such that, near positive infinity,

F (z) ∼
z→+∞

E(z)−
X

n≥1

φ(−n)(−z)−n,

for some elementary functionE(z). [Starting from the representation of Note 7, close the
contour of integration by a large semicircle to the left.] Insuch cases, the function is said to
satisfy the principle ofmagic duality—its expansion at0 and∞ are given by one and the same
rule. Functions

1

1 + z
, log(1 + z), exp(−x), Li2(−z), Li3(−z),

as well as hypergeometric functions (and many other!) satisfy a form of magic duality. Ra-
manujan [39] made a great use of this principle, which applies to a wide class of functions
including hypergeometric ones; see Hardy’s insightful discussion [207, Ch XI]. �
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� 10.Euler–Maclaurin and Abel–Plana summations. Under simple conditions on the analytic
function f , one has Plana’s (also known as Abel’s) complex variables version of the Euler–
Maclaurin summation formula:

∞X

n=0

f(n) =
1

2
f(0) +

Z ∞

0

f(x) dx+

Z ∞

0

f(iy)− f(−iy)
e2iπy − 1

dy.

(See [213, p. 274] for a proof and validity conditions.) �

� 11.Nörlund-Rice integrals.Let a(z) be analytic forℜ(z) > k0 − 1
2

and of at most polyno-
mial growth in this right half plane. Then, withγ a simple loop around the interval[k0, n], one
has

nX

k=k0

 
n

k

!
(−1)n−ka(k) =

1

2iπ

Z

γ

a(s)
n! ds

s(s− 1)(s− 2) · · · (s− n)
.

If a(z) is meromorphic in a larger region, then the integral can be estimated by residues. For
instance, with

Sn =

nX

k=1

 
n

k

!
(−1)k

k
, Tn =

nX

k=1

 
n

k

!
(−1)k

k2 + 1
,

it is found thatSn = −Hn (a harmonic number), whileTn oscillates boundedly asn →
+∞. [This technique is a classical one in the calculus of finite differences, going back to
Nörlund [298]. In computer science it is known as the method of Rice’s integrals [160] and
is used in the analysis of many algorithms and data structures including digital trees and radix
sort [245, 372].] �

IV. 3. Singularities and exponential growth of coefficients

For a given function, a singularity can be informally definedas a point where the
function ceases to be analytic. (Poles are the very simplesttype of singularity.) Singu-
larities are, as we have stressed repeatedly, essential to coefficient asymptotics. This
section presents the bases of a discussion within the framework of analytic function
theory.

IV. 3.1. Singularities. Let f(z) be an analytic function defined over the interior
region determined by a simple closed curveγ, and letz0 be a point of the bounding
curveγ. If there exists an analytic functionf∗(z) defined over some open setΩ∗

containingz0 and such thatf∗(z) = f(z) in Ω∗ ∩ Ω, one says thatf is analytically
continuableat z0 and thatf⋆ is animmediate analytic continuationof f .

Analytic continuation:

( f )

Ω

( f* )

z0

Ωγ *

f∗(z) = f(z) onΩ∗ ∩ Ω.

Consider for instance the quasi-inverse function,f(z) = 1/(1 − z). Its power se-
ries representationf(z) =

∑
n≥0 z

n initially converges in|z| < 1. However, the
calculation of (8) shows that it is representable locally bya convergent series near
any pointz0 6= 1. In particular, it is continuable at any point of the unit disc ex-
cept1. (Alternatively, one may appeal to complex-differentiability to verify directly
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thatf(z), which is given by a “global” expression, is holomorphic, hence analytic, in
the punctured planeC \ {1}.)

In sharp contrast to real analysis where a function admits ofmany smooth ex-
tensions, analytic continuation is essentiallyunique: if f∗ (in Ω⋆) andf∗∗ (in Ω⋆⋆)
continuef at z0, then one must havef∗(z) = f∗∗(z) in the intersectionΩ⋆ ∩ Ω⋆⋆,
which in particular includes a small disc aroundz0. Thus, the notion of immediate
analytic continuation at a boundary point is intrinsic. Theprocess can be iterated and
we say thatg is ananalytic continuation6 of f along a pathγ, even if the domains of
definition off andg do not overlap, provided a finite chain of intermediate functions
connectsf andg. This notion is once more intrinsic—this is known as the principle of
unicity of analytic continuation(Rudin [339, Ch. 16] provides a thorough discussion).
An analytic function is then much like a hologram: as soon as it is specified in any
tiny region, it is rigidly determined in any wider region where it can be continued.

DEFINITION IV.4. Given a functionf defined in the region interior to the simple
closed curveγ, a pointz0 on the boundary (γ) of the region is asingular pointor a
singularity7 if f is notanalytically continuable atz0.

Granted the intrinsic character of analytic continuation,we can usually dispense with
a detailed description of the original domainΩ and the curveγ. In simple terms, a
function is singular atz0 if it cannot be continued as an analytic function beyondz0.
A point at which a function is analytic is also called by contrast aregular point.

The two functionsf(z) = 1/(1−z) andg(z) =
√

1 − z may be taken as initially
defined over the open unit disk by their power series representation. Then, as we
already know, they can be analytically continued to larger regions, the punctured plane
Ω = C \ {1} for f [e.g., by the calculation of (8)] and the complex plane slit along
(1,+∞) for g [e.g., by virtue of differentiability as in (9)]. But both are singular at 1:
for f , this results from the fact that (say)f(z) → ∞ asz → 1; for g this is due to the
branching character of the square-root. Figure 4 displays afew types of singularities
that are traceable by the way they deform a regular grid near aboundary point.

It is easy to check from the definitions that a converging power series is analytic
inside its disc of convergence. In other words, it can have nosingularity inside this
disc. However, itmusthave at least one singularity on the boundary of the disc, as
asserted by the theorem below. In addition, a classical theorem, called Pringsheim’s
theorem, provides a refinement of this property in the case offunctions with nonneg-
ative coefficients, which includes all combinatorial generating functions.

THEOREMIV.5 (Boundary singularities).A function analyticf(z) at the origin whose
expansion at the origin has a finite radius of convergenceR necessarily has a singu-
larity on the boundary of its disc of convergence,|z| = R.

6The collection of all function elements continuing a given function gives rise to the notion ofRiemann
surface, for which many good books exist, e.g., [119, 360]. We shall normally avoid appealing to this theory.

7For a detailed discussion, see [98, p. 229], [237, vol. 1, p. 82], or [382].
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FIGURE 4. The images of a grid on the unit square (with corners±1 ± i) by various
functions singular atz = 1 reflect the nature of the singularities involved. Singularities are
apparent near the right of each diagram where small grid squares get folded or unfolded in
various ways. (In the case of functionsf0, f1, f4 that become infinite atz = 1, the grid
has been slightly truncated to the right.)
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PROOF. Consider the expansion

(15) f(z) =
∑

n≥0

fnz
n,

assumed to have radius of convergence exactlyR. We already know that there can
be no singularity off within the disc|z| < R. To prove that there is a singularity
on |z| = R, suppose a contrario thatf(z) is analytic in the disc|z| < ρ for someρ
satisfyingρ > R. By Cauchy’s coefficient formula (Theorem IV.4), upon integrating
along the circle of radiusr = (R + ρ)/2, and by trivial bounds, it is seen that the
coefficient[zn]f(z) is O(r−n). But then, the series expansion off would have to
converge in the disc of radiusr > R, a contradiction. �

Pringsheim’s Theorem stated and proved now is a refinement ofTheorem IV.5 that
applies toall series having nonnegative coefficients, in particular, generating func-
tions. It is central to asymptotic enumeration as the remainder of this section will
amply demonstrate.

THEOREM IV.6 (Pringsheim’s Theorem).If f(z) is representable at the origin by a
series expansion that has nonnegative coefficients and radius of convergenceR, then
the pointz = R is a singularity off(z).

� 12. Proof of Pringsheim’s Theorem.(See also [382, Sec. 7.21].) Suppose a contrario that
f(z) is analytic atR, implying that it is analytic in a disc of radiusr centred atR. We choose
a numberh such that0 < h < 1

3
r and consider the expansion off(z) aroundz0 = R− h:

(16) f(z) =
X

m≥0

gm(z − z0)m.

By Taylor’s formula and the representability off(z) together with its derivatives atz0 by means
of (15), we have

gm =
X

n≥0

 
n

m

!
fnz

n−m
0 ,

and in particular,gm ≥ 0.
Given the wayh was chosen, the series (16) converges atz = R+h (so thatz− z0 = 2h)

as illustrated by the following diagram:

z0 = R− h
R
R+ h

R 2h r

Consequently, one has

f(R+ h) =
X

m≥0

0
@X

n≥0

 
n

m

!
fnz

m−n
0

1
A (2h)m.
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This is a converging double sum of positive terms, so that thesum can be reorganized in any
way we like. In particular, one has convergence of all the series involved in

f(R+ h) =
X

m,n≥0

 
n

m

!
fn(R− h)m−n(2h)m

=
X

n≥0

fn [(R− h) + (2h)]n

=
X

n≥0

fn(R+ h)n.

This establishes the fact thatfn = o((R + h)n), thereby reaching a contradiction with the
assumption that the serie representation off has radius of convergence exactlyR. Pringsheim’s
theorem is proved. �

Singularities of a function analytic at 0 which lie on the boundary of the disc of
convergence are calleddominant singularities. Pringsheim’s theorem appreciably
simplifies the search for dominant singularities of combinatorial generating functions
since these have nonnegative coefficients—it is then sufficient to investigate analytic-
ity along the positive real line and detect the first place at which it ceases to hold.

For instance, the derangement EGF and the surjection EGF,

D(z) =
e−z

1 − z
, S(z) = (2 − ez)−1

are analytic except for a simple pole atz = 1 in the case ofD(z), and except for
pointszk = log 2+2ikπ that are simple poles in the case ofS(z). Thus the dominant
singularities for derangements and surjections are at1 andlog 2 respectively.

It is known that
√
Z cannot be unambiguously defined as an analytic function in

a neighbourhood ofZ = 0. As a consequence, the function

C(z) = (1 −
√

1 − 4z)/2,

which is the generating function of the Catalan numbers, is an analytic function in
regions that must exclude1/4; for instance, one may opt to take the complex plane
slit along the ray(1/4,+∞). Similarly, the function

L(z) = log
1

1 − z

which is the EGF of cyclic permutations is analytic in the complex plane slit along
(1,+∞).

A function having no singularity at a finite distance is called entire; its Taylor
series then converges everywhere in the complex plane. The EGFs,

ez+z2/2 and eez−1,

associated respectively with involutions and set partitions, are entire.

IV. 3.2. The Exponential Growth Formula. We say that a number sequence
{an} is of exponential orderKn which we abbreviate as (the symbol⊲⊳ is a “bowtie”)

an ⊲⊳ K
n iff lim sup |an|1/n = K.

The relationX ⊲⊳ Y reads as “X is of exponential orderY ”. It expresses both an
upper bound and a lower bound, and one has, for anyǫ > 0:
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(i) |an| >i.o (K− ǫ)n, that is to say,|an| exceeds(K− ǫ)n infinitely often (for
infinitely many values ofn);

(ii) |an| <a.e. (K + ǫ)n, that is to say,|an| is dominated by(K + ǫ)n almost
everywhere (except for possibly finitely many values ofn).

This relation can be rephrased asan = Knϑ(n), whereϑ is asubexponential factor
satisfying

lim sup |θ(n)|1/n = 1;

such a factor is thus bounded from above almost everywhere byany increasing expo-
nential (of the form(1+ǫ)n) and bounded from below infinitely often by any decaying
exponential (of the form(1 − ǫ)n). Typical subexponential factors are

1, n3, (logn)2,
√
n,

1
3
√

logn
, n−3/2, log logn.

(Functions likee
√

n andexp(log2 n) are to be treated as subexponential factors for the
purpose of this discussion.) Thelim sup definition also allows in principle for factors
that are infinitely often very small or 0, liken2 sinnπ

2 , logn cos
√
nπ

2 , and so on. In
this and the next chapters, we shall develop systematic methods that enable one to
extract such subexponential factors from generating functions.

It is an elementary observation that the radius of convergence of the series rep-
resentation off(z) at 0 is related to the exponential growth rate of the coefficients
fn = [zn]f(z). To wit, if Rconv(f ; 0) = R, then we claim that

(17) fn ⊲⊳

(
1

R

)n

, i.e., fn = R−nθ(n) with lim sup |θ(n)|1/n = 1.

� 13. Radius of convergence and exponential growth.This only requires the basic definition
of a power series.(i) By definition of the radius of convergence, we have for any small ǫ > 0,
fn(R− ǫ)n → 0. In particular,|fn|(R− ǫ)n < 1 for all sufficiently largen, so that|fn|1/n <
(R− ǫ)−1 “almost everywhere”.(ii) In the other direction, for anyǫ > 0, |fn|(R+ ǫ)n cannot
be a bounded sequence, since otherwise,

P
n |fn|(R + ǫ/2)n would be a convergent series.

Thus,|fn|1/n > (R+ ǫ)−1 “infinitely often”. �

A global approach to the determination of growth rates is desirable. This is made
possible by Theorem IV.5.

THEOREM IV.7 (Exponential Growth Formula).If f(z) is analytic at0 andR is the
modulus a singularity nearest to the origin in the sense that8

R := sup
{
r ≥ 0

∣∣ f is analytic in|z| < r
}
,

then the coefficientfn = [zn]f(z) satisfies

fn ⊲⊳

(
1

R

)n

.

8One should think of the process definingR as follows: take discs of increasing radiir and stop as
soon as a singularity is encountered on the boundary. (The dual process that would start from a large disc
and restrict its radius is in general ill-defined—think of

√
1 − z.)
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For functions with nonnegative coefficients, including allcombinatorial generating
functions, one can also adopt

R := sup
{
r ≥ 0

∣∣ f is analytic at all points of0 ≤ z < r
}
.

PROOF. Let R be as stated. We cannot haveR < Rconv(f ; 0) since a function is
analytic everywhere in the interior of the disc of convergence of its series representa-
tion. We cannot haveR > Rconv(f ; 0) by the Boundary Singularity Theorem. Thus
R = Rconv(f ; 0). The statement then follows from (17). The adaptation to nonnega-
tive coefficients results from Pringsheim’s theorem. �

The exponential growth formula thus directly relates the exponential order of
growth of coefficients of a function to thelocationof its singularities nearest to the
origin. This is precisely expressed by theFirst Principle of Coefficient Asymptotics
(p. 215), which, given its importance, we repeat here:

First Principle of Coefficient Asymptotics. The locationof a function’s
singularities dictates theexponential growth(An) of its coefficient.

Several direct applications to combinatorial enumerationare given below.

EXAMPLE 1. Exponential growth and combinatorial enumeration. Here are a few immediate
applications of of exponential bounds.

Surjections.The function
R(z) = (2− ez)−1

is the EGF of surjections. The denominator is an entire function, so that singularities may only
arise from its zeros, to be found at the points

χk = log 2 + 2ikπ, k ∈ Z.

The dominant singularity ofR is then atρ = χ0 = log 2. Thus, withrn = [zn]R(z),

rn ⊲⊳ (
1

log 2
)n.

Similarly, if “double” surjections are considered (each value in the range of the surjection
is taken at least twice), the corresponding EGF is

R∗(z) =
1

2 + z − ez
,

with the counts starting as 1,0,1,1,7,21,141 (EIS A032032). The dominant singularity is at
ρ∗ defined as the positive root of equationeρ∗ − ρ∗ = 2, and the coefficientr∗n satisfies:
r∗n ⊲⊳ ( 1

ρ∗ )n Numerically, this gives

rn ⊲⊳ 1.44269n and r∗n ⊲⊳ 0.87245n ,

with the actual figures for the corresponding logarithms being

n 1
n

log rn
1
n

log r∗n
10 0.33385 −0.22508
20 0.35018 −0.18144
50 0.35998 −0.154449
100 0.36325 −0.145447
∞ 0.36651 −0.13644

(log 1/ρ) (log(1/ρ∗)
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These estimates constitutes a weak form of a more precise result to be established later
in this chapter: If random surjections of sizen are taken equally likely, the probability of a
surjection being a double surjection is exponentially small.

Derangements.There, ford1,n = [zn]e−z(1− z)−1 andd2,n = [zn]e−z−z2/2(1 − z)−1 we
have, from the poles atz = 1,

d1,n ⊲⊳ 1n and d2,n ⊲⊳ 1n.

The upper bound is combinatorially trivial. The lower boundexpresses that the probability for a
random permutation to be a derangement isnot exponentially small. Ford1,n, we have already
proved by an elementary argument the stronger resultd1,n → e−1; in the case ofd2,n, we shall
establish later the precise asymptotic equivalentd2,n → e−3/2, in accordance with what was
announced in the introduction.

Unary-Binary trees.The expression

U(z) =
1− z −

√
1− 2z − 3z2

2z
= z + z2 + 2 z3 + 4 z4 + 9 z5 + · · · ,

represents the OGF of (plane unlabelled) unary-binary trees. From the equivalent form,

U(z) =
1− z −

p
(1− 3z)(1 + z)

2z
,

it follows thatU(z) is analytic in the complex plane slit along( 1
3
,+∞) and(−∞,−1) and

is singular atz = −1 andz = 1/3 where it has branch points. The closest singularity to the
origin being at1

3
, one has

Un ⊲⊳ 3n.

In this case, the stronger upper boundUn ≤ 3n results directly from the possibility of encoding
such trees by words over a ternary alphabet using Łukasiewicz codes (Chapter I). A complete
asymptotic expansion will be obtained in Chapter VI. �

� 14. Coding theory bounds.Let C be a combinatorial class. We say that itcan be encoded
with f(n) bits if, for all sufficiently large values ofn, elements ofCn can be encoded as words
of f(n) bits. Assume thatC has OGFC(z) with radius of singularityR satisfying0 < R < 1.
Then, for anyǫ, C can be encoded with(1 + ǫ)κn bits whereκ = − log2 R, butC cannot be
encoded with(1− ǫ)κn bits.

Similarly, if C has EGFbC(z) with radius of singularityR satisfying0 < R < ∞, C can
be encoded withn log(n/e) + (1 + ǫ)κn bits whereκ = − log2 R, butC cannot be encoded
with n log(n/e) + (1− ǫ)κn bits. �

Saddle-point bounds.The exponential growth formula (Theorem IV.7) can be
supplemented by effective upper bounds which are very easy to derive and often turn
out to be surprisingly accurate. We state:

PROPOSITIONIV.1 (Saddle-Point bounds).Let f(z) be analytic in the disc|z| < R
with 0 < R ≤ ∞. DefineM(f ; r) for r ∈ (0, R) byM(f ; r) := sup|z|=r |f(z)|.
Then, one has, foranyr in (0, R), the family ofsaddle point upper bounds

(18) [zn]f(z) ≤ M(f ; r)

rn
implying [zn]f(z) ≤ inf

r∈(0,R)

M(f ; r)

rn
.

If in additionf(z) has nonnegative coefficients at 0, then

(19) [zn]f(z) ≤ f(r)

rn
implying [zn]f(z) ≤ inf

r∈(0,R)

f(r)

rn
.
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PROOF. In the general case of (18), the first inequality results from trivial bounds ap-
plied to the Cauchy coefficient formula, when integration isperformed along a circle:

[zn]f(z) =
1

2iπ

∫

|z|=r

f(z)
dz

zn+1
.

It is consequently valid for anyr smaller than the radius of convergence off at 0. The
second inequality in (18) plainly represents the best possible bound of this type.

In the positive case of (19), the bounds can be viewed as a direct specialization
of (18). (Alternatively, they can be obtained elementarilysince, in the case of positive
coefficients,

fn ≤ f0
rn

+ · · · + fn−1

rn−1
+ fn +

fn+1

rn+1
+ · · · ,

whenever thefk are nonnegative.) �

Note that the values that provides the best bound in (19) can be determined by
cancelling a derivative,

(20) s
f ′(s)

f(s)
= n.

Thanks to the universal character of the first bound,anyapproximate solution of this
last equation will in fact provide a valid upper bound.

For reasons well explained by the saddle point method (Chapter VIII), these
bounds usually capture the actual asymptotic behaviour up to a polynomial factor
only. A typical instance is the weak form of Stirling’s formula,

1

n!
≡ [zn]ez ≤ en

nn
,

which only overestimates the true asymptotic value by a factor of
√

2πn.

� 15. A suboptimal but easy saddle-point bound.Let f(z) be analytic in|z| < 1 with non-
negative coefficients. Assume thatf(x) ≤ (1 − x)−β for someβ ≥ 0 and allx ∈ (0, 1).
Then

[zn]f(z) = O(nβ).

(Better bounds of the formO(nβ−1) are usually obtained by the method of singularity analysis
exposed in Chapter VI.) �

EXAMPLE 2. Combinatorial examples of saddle point bounds.Here are applications to frag-
mented permutations, set partitions (Bell numbers), involutions, and integer partitions.

Fragmented permutations.Consider first fragmented permutations defined byF = SET(SEQ≥1(Z))

in the labelled universe (Chapter II, p. 115). The EGF isez/(1−z), and we claim that

(21)
1

n!
Fn ≡ [zn]ez/(1−z) ≤ e2

√
n− 1

2
+O(n−1/2).

Indeed, the minimizing radius of the saddle point bound (19)is s such that

0 =
d

ds

„
s

1− s − n log s

«
=

1

(1− s)2 −
n

s
.

The equation is solved bys = (2n+ 1−√4n+ 1)/(2n). One can either use this exact value
and compute an asymptotic approximation off(s)/sn, or adopt right away the approximate
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n eIn In

100 0.106579 · 1085 0.240533 · 1083

200 0.231809 · 10195 0.367247 · 10193

300 0.383502 · 10316 0.494575 · 10314

400 0.869362 · 10444 0.968454 · 10442

500 0.425391 · 10578 0.423108 · 10576
–2

–1

0 1 2 3

FIGURE 5. A comparison of the exact number of involutionsIn to its approximation
eIn = n!e

√
n+n/2n−n/2: [left] a table; [right] a plot oflog10(In/eIn) againstlog10 n

suggesting that the ratio satisfiesIn/eIn ∼ K · n−1/2, the slope of the line being≈ 1
2
.

values1 = 1 − 1/
√
n, which leads to simpler calculations. The estimate (21) results. It is off

from the actual asymptotic value only by a factor of ordern−3/4 (cf Example VIII.5, p. 479).

Bell numbers and set partitions.Another immediate applications is an upper bound on Bell
numbers enumerating set partitions,S = SET(SET≥1(Z)), with EGF eez−1. According
to (20), the best saddle point bound is obtained fors such thatses = n. Thus,

(22)
1

n!
Sn ≤ ees−1−n log s, s : ses = n,

where, additionally,s = log n − log log n + o(log log n). See Chapter VIII, p. 477 for the
complete saddle point analysis.

Involutions.Involutions are specified byI = SET(CYC1,2(Z)) and have EGFI(z) = exp(z+
1
2
z2). One determines, by choosings =

√
n as an approximate solution to (20):

(23)
1

n!
In ≤ e

√
n+n/2

nn/2
.

(See Figure 5 for numerical data and Example VIII.3, p. 475 for a full analysis.) Similar bounds
hold for permutations with all cycle lengths≤ k and permutationsσ such thatσk = Id.

Integer partitions.The function

(24) P (z) =

∞Y

k=1

1

1− zk
= exp

 ∞X

ℓ=1

1

ℓ

zℓ

1− zℓ

!

is the OGF of integer partitions, an unlabelled analogue of set partitions. Its radius of con-
vergence isa priori bounded from above by 1, since the setP is infinite and the second form
of P (z) shows that it is exactly equal to 1. ThereforePn ⊲⊳ 1n. A finer upper bound results
from the estimate

(25) Λ(t) := logP (e−t) ∼ π2

6t
+ log

r
t

2π
− 1

24
t+O(t2),

which obtains from Euler–Maclaurin summation or, better, from a Mellin analysis follow-
ing APPENDIX B: Mellin transform, p. 646. Indeed, the Mellin transform ofΛ is, by the
harmonic sum rule,

Λ⋆(s) = ζ(s)ζ(s+ 1)Γ(s), s ∈ 〈1,+∞〉,
and the successive leftmost poles ats = 1 (simple pole),s = 0 (double pole), ands = −1
(simple pole) translate into the asymptotic expansion (25). Whenz → 1−, we have

(26) P (z) ∼ e−π2/12

√
2π

√
1− z exp

„
π2

6(1− z)

«
,
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from which we derive (chooses = D
√
n as an approximate solution to (20))

Pn ≤ Cn−1/4eπ
√

2n/3,

for someC > 0. This last bound is once more only off by a polynomial factor,as we shall
prove when studying the saddle point method (Proposition VIII.3, p. 484). �

� 16.A natural boundary.One hasP (reiθ)→∞ asr → 1−, for any angleθ that is a rational
multiple of2π. Pointse2iπp/q being dense on the unit circle, the functionP (z) admits the unit
circle as anatural boundary, i.e., it cannot be analytically continued beyond this circle. �

IV. 4. Closure properties and computable bounds

Analytic functions are robust: they satisfy a rich set of closure properties. This
fact makes possible the determination of exponential growth constants for coefficients
a wide range of classes of functions. Theorem IV.8 below expresses computability
of growth rate for all specifications associated with iterative specifications. It is the
first result of this sort that relates symbolic methods of Part A with analytic methods
developed here.

Closure properties of analytic functions.The functions analytic at a pointz = a
are closed under sum and product, and hence form a ring. Iff(z) andg(z) are ana-
lytic at z = a, then so is their quotientf(z)/g(z) providedg(a) 6= 0. Meromorphic
functions are furthermore closed under quotient and hence form a field. Such prop-
erties are proved most easily using complex-differentiability and extending the usual
relations from real analysis, for instance,(f + g)′ = f ′ + g′, (fg)′ = fg′ = f ′g.

Analytic functions are also closed under composition: iff(z) is analytic atz = a
andg(w) is analytic atb = f(a), theng ◦ f(z) is analytic atz = a. Graphically:

a
f g

b=f(a) c=g(b)

The proof based on complex-differentiability closely mimicks the real case. Inverse
functions exist conditionally: iff ′(a) 6= 0, thenf(z) is locally linear neara, hence
invertible, so that there exists ag satisfyingf ◦g = g◦f = Id,whereId is the identity
function, Id(z) ≡ z. The inverse function is itself locally linear, hence complex
differentiable, hence analytic. In short, the inverse of ananalytic functionf at a place
where the derivative does not vanish is an analytic function.

� 17. The analytic inversion lemma.Let f be analytic onΩ ∋ z0 and satisfyf ′(z0) 6= 0.
Then there esists a small regionΩ1 ⊆ Ω containingz0 and aC > 0 such that|f(z)− f(z′)| >
C|z − z′|, for all z, z′ ∈ Ω1. Consequently,f maps bijectivelyΩ1 onf(Ω1). �

One way to establish closure properties, as suggested above, is to deduce analyt-
icity criteria from complex differentiability by way of theBasic Equivalence Theorem
(Theorem IV.1). An alternative approach, closer to the original notion of analyticity,
can be based on a two-step process:(i) closure properties are shown to hold true for
formal power series;(ii) the resulting formal power series are proved to be locally
convergent by means of suitable majorizations on their coefficients. This is the basis
of the classical method ofmajorant seriesoriginating with Cauchy.
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� 18.The majorant series technique.Given two power series, definef(z) � g(z) if |[zn]f(z)| ≤
[zn]g(z) for all n ≥ 0. The following two conditions are equivalent:(i) f(z) is analytic in the
disc|z| < ρ; (ii) for anyr > ρ−1 there exists ac such that

f(z) � c

1− rz .

If f, g are majorized byc/(1−rz), d/(1−rz) respectively, thenf +g andf ·g are majorized,

f(z) + g(z) � c+ d

1− rz , f(z) · g(z) � e

1− sz ,

for anys > r and for somee dependent ons. Similarly, the compositionf ◦ g is majorized:

f ◦ g(z) � c

1− r(1 + d)z
.

Constructions for1/f and for the functional inverse off can be similarly developed. See
Cartan’s book [67] and van der Hoeven’s study [389] for a systematic treatment. �

For functions defined by analytic expressions, singularities can be determined
inductively in an intuitively transparent manner. IfSing(f) andZero(f) are respec-
tively the set of singularities and zeros of functionf , then, due to closure properties
of analytic functions, the following informally stated guidelines apply.

8
>>>>>>>><
>>>>>>>>:

Sing(f ± g) ⊆ Sing(f) ∪ Sing(g)
Sing(f × g) ⊆ Sing(f) ∪ Sing(g)
Sing(f/g) ⊆ Sing(f) ∪ Sing(g) ∪ Zero(g)

Sing(f ◦ g) ⊆ Sing(g) ∪ g(−1)(Sing(f))
Sing(

√
f) ⊆ Sing(f) ∪ Zero(f)

Sing(log(f)) ⊆ Sing(f) ∪ Zero(f)

Sing(f (−1)) ⊆ f(Sing(f)) ∪ f(Zero(f ′)).

A mathematically rigorous treatment would require considering multivalued func-
tions and Riemann surfaces, so that we do not state detailed validity conditions and,
at this stage, keep for these formulæ the status of useful heuristics. In fact, because
of Pringsheim’s theorem, the search of dominant singularities of combinatorial gener-
ating function can normally avoid considering the completemultivalued structure of
functions, since only some initial segment of the positive real half–line needs to be
considered. This in turn implies a powerful and easy way of determining the expo-
nential order of coefficients of a wide variety of generatingfunctions, as we explain
next.

Computability of exponential growth constants.As defined in Chapters I and II,
a combinatorial class isconstructibleor specifiableif it can be specified by a finite
set of equations involving only the basic constructors. A specification isiterativeor
non-recursiveif in addition the dependency graph of the specification is acyclic, that
is, no recursion is involved and a single functional term (written with sums, products,
as well as sequence, set, and cycle constructions) describes the specification.

Our interest here is in effective computability isues. We recall that a real number
α is computable iff there exists a programΠα which on inputm outputs a rational
numberαm guaranteed to be within±10−m of α. We state:

THEOREM IV.8 (Computability of growth).LetC be aconstructibleunlabelled class
that admits of aniterativespecification in terms of(SEQ,PSET,MSET,CYC; +,×)
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starting with (1,Z). Then the radius of convergenceρC of the OGFC(z) of C is
either+∞ or a (strictly) positive computable real number.

LetD be aconstructiblelabelled class that admits of aniterativespecification in
terms of(SEQ,SET,CYC; +, ⋆) starting with(1,Z). Then the radius of convergence
ρD of the EGFD(z) ofD is either+∞ or a (strictly) positive computable real number.

Accordingly, if finite, the constantsρC , ρD in the exponential growth estimates,

[zn]C(z) ≡ Cn ⊲⊳

(
1

ρC

)n

, [zn]D(z) ≡ 1

n!
Dn ⊲⊳

(
1

ρD

)n

,

are computable numbers.

PROOF. In both cases, the proof proceeds by induction on the structural specification
of the class. For each classF , with generating functionF (z), we associate asignature,
which is an ordered pair〈ρF , τF 〉, whereρF is the radius of convergence ofF andτF
is the value ofF atρF , precisely,

τF := lim
x→ρ−

F

F (x).

(The valueτF is well defined as an element ofR ∪ {+∞} sinceF , being a counting
generating function, is necessarily increasing on(0, ρF ).)

Unlabelled case.An unlabelled classG is either finite, in which case its OGFG(z)
is a polynomial, or infinite, in which case it diverges atz = 1, so thatρG ≤ 1. It
is clearly decidable, given the specification, whether a class is finite or not: a neces-
sary and sufficient condition is that one of the unary constructors (SEQ,MSET,CYC)
intervenes in the specification. We prove (by induction) theassertion of the theorem
together with the stronger property thatτF = ∞ as soon as the class is infinite.

First, the signatures of the neutral class1 and the atomic classZ, with OGF1 and
z, are〈+∞, 1〉 and〈+∞,+∞〉. Any nonconstant polynomial which is the OGF of a
finite set has the signature〈+∞,+∞〉. The assertion is thus easily verified in these
cases.

Next, letF = SEQ(G). The OGFG(z) must be nonconstant and in fact satisfy
G(0) = 0 in order for the sequence construction to be properly defined. Thus, by the
induction hypothesis, one has0 < ρG ≤ +∞ andτG = +∞. Now, the functionG
being increasing and continuous along the positive axis, there must exist a valueβ
such that0 < β < ρG with G(β) = 1. For z ∈ (0, β), the quasi-inverseF (z) =
(1 − G(z))−1 is well defined and analytic; asz approachesβ from the left,F (z)
increases unboundedly. Thus, the smallest singularity ofF along the positive axis is
at β, and by Pringsheim’s theorem, one hasρF = β. The argument simultaneously
shows thatτF = +∞. There only remains to check thatβ is computable. The
coefficients ofG form a computable sequence of integers, so thatG(x), which can be
well approximated via truncated Taylor series, is an effectively computable number9

9The present argument only establishes non-constructivelythe existenceof a program, based on the
fact that truncated Taylor series converge geometrically fast at an interior point of their disc of convergence.
Making explict this program and the involved parameters from the specification itself however represents a
much harder problem (that of “uniformity” with respect to specifications) that is not addressed here.
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if x is itself a positive computable number less thanρG. Then binary search provides
an effective procedure for determiningβ.

Next, we consider the multiset construction,F = MSET(G), whose translation
into OGFs necessitates the Pólya exponential:

F (z) = Exp(G(z)) whereExp(h(z)) := exp

(
h(z) +

1

2
h(z2) +

1

3
h(z3) + · · ·

)
.

Once more, the induction hypothesis is assumed forG. If G is a polynomial, thenF
is a rational function with poles at roots of unity only. Thus, ρF = 1 andτF = ∞
in that particular case. In the general case ofF = MSET(G) with G infinite, we start
by fixing arbitrarily a numberr such that0 < r < ρG ≤ 1 and examineF (z) for
z ∈ (0, r). The expression forF rewrites as

Exp(G(z)) = eG(z) · exp

(
1

2
G(z2) +

1

3
G(z3) + · · ·

)
.

The first factor is analytic forz on(0, ρG) since, the exponential function being entire,
eG has the singularities ofG. As to the second factor, one hasG(0) = 0 (in order
for the set construction to be well-defined), whileG(x) is convex forx ∈ [0, r] (since
its second derivative is positive). Thus, there exists a positive constantK such that
G(x) ≤ Kx whenx ∈ [0, r]. Then, the series12G(z2) + 1

3G(z3) + · · · has its terms
dominated by those of the convergent series

K

2
r2 +

K

3
r3 + · · · = K log(1 − r)−1 −Kr.

By a well known theorem of analytic function theory, a uniformly convergent sum of
analytic functions is itself analytic; consequently,1

2G(z2) + 1
3G(z3) + · · · is analytic

at allz of (0, r). Analyticity is then preserved by the exponential, so thatF (z), being
analytic atz ∈ (0, r) for anyr < ρG has a radius of convergence that satisfiesρF ≥
ρG. On the other hand, sinceF (z) dominates termwiseG(z), one hasρF ≤ ρG. Thus
finally one hasρF = ρG. Also, τG = +∞ impliesτF = +∞.

A parallel discussion covers the case of the powerset construction (SET) whose
associated functionalExp is a minor modification of the Pólya exponentialExp.
The cycle construction can be treated by similar arguments based on consideration
of “Pólya’s logarithm” asF = CYC(G) corresponds to

F (z) = Log
1

1 −G(z)
, where Log h(z) = log h(z) +

1

2
log h(z2) + · · · .

In order to conclude with the unlabelled case, there only remains to discuss the
binary constructors+, ×, which give rise toF = G + H , F = G · H . It is easily
verified thatρF = min(ρG, ρH). Computability is granted since the minimum of two
computable numbers is computable. ThatτF = +∞ in each case is immediate.

Labelled case.The labelled case is covered by the same type of argument as above,
the discussion being even simpler, since the ordinary exponential and logarithm re-
place the Pólya operatorsExp andLog. It is still a fact that all the EGFs of infinite
nonrecursive classes are infinite at their dominant positive singularity, though the radii
of convergence can now be of any magnitude (compared to 1). �
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� 19. Relativized constructions.This is an exercise in induction. Theorem IV.8 is stated for
specifications involving the basic constructors. Show thatthe conclusion still holds if the corre-
sponding relativized constructions (K=r,K<r,K>r with K being any of the basic constructors)
are also allowed. �

� 20. Syntactically decidable properties.For unlabelled classesF , the propertyρF = 1 is
decidable. For labelled and unlabelled classes, the property ρF = +∞ is decidable. �

� 21. Pólya–Carlson and a curious property of OGFs.Here is a statement first conjectured
by Pólya, then proved by Carlson in 1921 (see [97, p. 323]): If a function is represented by
a power series with integer coefficients that converges inside the unit disc, then either it is a
rational function or it admits the unit circle as a natural boundary. This theorem applies in
particular to the OGF of any combinatorial class. �

� 22. Trees are recursive structures only!General and binary trees cannot receive an iterative
specification since their OGFs assume a finite value at their Pringsheim singularity. [The same
is true of most simple families of treee; cf Proposition IV.5p. 265]. �

� 23.Nonconstructibility of permutations and graphs.The classP of all permutations cannot
be specified as a constructible unlabelled class since the OGF P (z) =

P
n n!zn has radius of

convergence 0. (It is of course constructible as a labelled class.) Graphs, whether labelled or
unlabelled, are too numerous to form a constructible class. �

Theorem IV.8 establishes a link between analytic combinatorics, computability
theory, and symbolic manipulation systems. It is based on anarticle of Flajolet, Salvy,
and Zimmermann [159] devoted to such computability issues in exact and asymptotic
enumeration. (Recursive specifications are not discussed now since they tend to give
rise to branch points, themselves amenable to singularity analysis techniques to be
developed in Chapters VI and VII.) The inductive process, implied by the proof of
Theorem IV.8, that decorates a specification with the radiusof convergence of each of
its subexpressions provides a practical basis for determining the exponential growth
rate of counts associated to a nonrecursive specification. The example of trains de-
tailed below is typical.

EXAMPLE 3. Combinatorial trains.This somewhat artificial example from [132] (see Fig-
ure 6) serves to illustrate the scope of Theorem IV.8 and demonstrate its inner mechanisms at
work. Define the class of alllabelled trainsby the following specification,

(27)

8
>><
>>:

T r = Wa ⋆ SEQ(Wa ⋆ SET(Pa)),
Wa = SEQ≥1(Pℓ),
Pℓ = Z ⋆Z ⋆ (1 + CYC(Z)),
Pa = CYC(Z) ⋆ CYC(Z).

In figurative terms, a train (T ) is composed of a first wagon (Wa) to which is appended a
sequence of passenger wagons, each of the latter capable of containing a set of passengers
(Pa). A wagon is itself composed of “planks” (Pℓ) determined by their end points(Z ⋆Z) and
to which a circular wheel (CYC(Z)) may be attached. A passenger is composed of a head and



IV. 4. CLOSURE PROPERTIES AND COMPUTABLE BOUNDS 241

T r

⋆

Wa

Seq≥1

⋆

Z Z +

1 Cyc

Z

Seq

⋆

(Wa) Set

⋆

Cyc

Z

Cyc

Z

×

Wa

S1

×

z z +

1 L

z

S

×

(Wa) exp

×

L

z

L

z

0.48512

0.68245

1

∞ ∞ 1

∞ 1

∞

0.48512

0.68245

0.68245 1

1

1

∞

1

∞

FIGURE 6. The inductive determination of the radius of convergence ofthe EGF of
trains: (top) a hierarchical view of the specification ofT r; (bottom left) the corresponding
expression tree of the EGFTr(z); (bottom right) the value of the radii for each subexpres-
sion ofTr(z) (with L(y) = log(1− y)−1, S(y) = (1− y)−1, S1(y) = yS(y)).

a belly that are each circular arrangements of atoms. Here isa depiction of a random train:

The translation into a set of EGF equations is immediate and asymbolic manipulation system
readily provides the form of the EGF of trains as

Tr(z) =
z2

“
1 + log((1 − z)−1)

”

“
1 − z2

“
1 + log((1 − z)−1)

””

0
B@1 −

z2
“
1 + log((1 − z)−1)

”
e(log((1−z)−1))2

1 − z2
“
1 + log((1 − z)−1)

”

1
CA

−1

,

together with the expansion

Tr(z) = 2
z2

2!
+ 6

z3

3!
+ 60

z4

4!
+ 520

z5

5!
+ 6660

z6

6!
+ 93408

z7

7!
+ · · · .

The specification (27) has a hierarchical structure, as suggested by the top representation of
Figure 6, and this structure is itself directly reflected by the form of the expression tree of the GF
Tr(z). Then each node in the expression tree ofTr(z) can be tagged with the corresponding
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value of the radius of convergence. This is done according tothe principles of Theorem IV.8;
see the bottom-right part of Figure 6. For instance, the quantity 0.68245 associated toWa(z)
is given by the sequence rule and is determined as smallest positive solution to the equation

z2 `1− log(1− z)−1´ = 1.

The tagging process works upwards till the root of the tree isreached; here the radius of con-
vergence ofTr is determined to beρ

.
= 0.48512 · · · , a quantity that happens to coincide with

the ratio[z49]Tr(z)/[z50]Tr(z) to more than 15 decimal places. �

IV. 5. Rational and meromorphic functions

The last section has fully justified theFirst Principle of coefficient asymptotics
leading to the exponential growth formulafn ⊲⊳ A

n for the coefficients of an analytic
functionf(z). Indeed, as we saw, one hasA = 1/ρ, whereρ equals both the radius of
convergence of the series representingf and the distance of the origin to the dominant,
i.e., closest, singularities. We are going to start examining here theSecond Principle,
already quoted on p. 215 and relative to the form,

fn = Anθ(n),

with θ(n) the subexponential factor:

Second Principle of Coefficient Asymptotics.Thenatureof the function’s
singularities determines the associatesubexponential factor(θ(n)).

In this section, we develop a complete theory in the case of rational functions (that is,
quotients of polynomials) and, more generally, meromorphic functions. The net result
is that, for such functions, the subexponential factors areessentially polynomials:

Polar singularities ; Subexponential factorsθ(n) are ofpolynomial growth.

A distinguishing feature is the extremely good quality of the asymptotic approxima-
tions obtained; for naturally occuring combinatorial problems, 15 digits of accuracy is
not uncommon in coefficients of index as low as50 (see Figure 7 below for a striking
example).

IV. 5.1. Rational functions. A functionf(z) is arational functioniff it is of the
form f(z) = N(z)/D(z), with N(z) andD(z) being polynomials, which me may
without loss of generality assume to be relatively prime. For rational functions that
are analytic at the origin (e.g., generating functions), wehaveD(0) 6= 0.

Sequences{fn}n≥0 that are coefficients of rational functions satisfy linear re-
currence relations with constant coefficients. This fact iseasy to establish: com-
pute [zn]f(z) · D(z); then, withD(z) = d0 + d1z + · · · + dmz

m, one has, for
all n > deg(N(z)),

m∑

j=0

djfn−j = 0.

The main theorem we prove here provides anexactfinite expression for coeffi-
cients off(z) in terms of the poles off(z). Individual terms in these expressions are
sometimes calledexponential polynomials.
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THEOREM IV.9 (Expansion of rational functions).If f(z) is a rational function that
is analytic at zero and has poles at pointsα1, α2, . . . , αm, then its coefficients are a
sum of exponential polynomials: there existm polynomials{Πj(x)}m

j=1 such that,
for n larger than some fixedn0,

(28) fn ≡ [zn]f(z) =

m∑

j=1

Πj(n)α−n
j .

Furthermore the degree ofΠj is equal to the order of the pole off atαj minus one.

PROOF. Sincef(z) is rational it admits a partial fraction expansion. To wit:

f(z) = Q(z) +
∑

(α,r)

cα,r

(z − α)r
,

whereQ(z) is a polynomial of degreen0 := deg(N)−deg(D) if f = N/D. Thereα
ranges over the poles off(z) andr is bounded from above by the multiplicity ofα as
a pole off . Coefficient extraction in this expression results from Newton’s expansion,

[zn]
1

(z − α)r
=

(−1)r

αr
[zn]

1

(1 − z
α )r

=
(−1)r

αr

(
n+ r − 1

r − 1

)
α−n.

The binomial coefficient is a polynomial of degreer − 1 in n, and collecting terms
associated with a givenα yields the statement of the theorem. �

Notice that the expansion (28) is also an asymptotic expansion in disguise: when
grouping terms according to theα’s of increasing modulus, each group appears to be
exponentially smallerthan the previous one. In particular, if there is a unique dominant
pole,|α1| < |α2| ≤ |α3| ≤ · · · , then

fn ∼ α−n
1 Π1(n),

and the error term is exponentially small as it isO(α−n
2 nr) for somer. A classical

instance is the OGF of Fibonacci numbers,

f(z) =
z

1 − z − z2
,

with poles at
−1 +

√
5

2

.
= 0.61803 and

−1 −
√

5

2

.
= −1.61803, so that

Fn =
1√
5
ϕn − 1√

5
ϕ̄n =

ϕn

√
5

+O(
1

ϕn
),

with ϕ = (1 +
√

5)/2 the golden ratio, and̄ϕ its conjugate.

� 24. A simple exercise.Let f(z) be as in Theorem IV.9, assuming additionally a unique
dominant poleα1 of multiplicity r. Then, by inspection of the proof of Theorem IV.9:

fn =
C

(r − 1)!
α−n−1

1 nr−1

„
1 +O

„
1

n

««
with C = lim

z→α1

(z − α1)
rf(z).

This is certainly the most direct illustration of the SecondPrinciple: under the assumptions, a
one-term asymptotic expansion of the functon at its dominant singularity suffices to determine
the asymptotic form of the coefficients. �
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EXAMPLE 4. Qualitative analysis of a rational function.This is an artificial example designed
to demonstrate that all the details of the full decomposition are usually not required. The rational
function

f(z) =
1

(1− z3)2(1− z2)3(1− z2

2
)

has a pole of order 5 atz = 1, poles of order 2 atz = ω,ω2 (ω = e2iπ/3 a cubic root of unity),
a pole of order 3 atz = −1, and simple poles atz = ±

√
2. Therefore,

fn = P1(n) + P2(n)ω−n + P3(n)ω−2n + P4(n)(−1)n+

+P5(n)2−n/2 + P6(n)(−1)n2−n/2

where the degrees ofP1, . . . , P6 are respectively4, 1, 1, 2, 0, 0. For an asymptotic equivalent
of fn, only the poles at roots of unity need to be considered since they corresponds to the fastest
exponential growth; in addition, onlyz = 1 needs to be considered for first order asymptotics;
finally, atz = 1, only the term of fastest growth needs to be taken into account. In this way, we
find: the correspondence

f(z) ∼ 1

32 · 23 · ( 1
2
)

1

(1− z)5 =⇒ fn ∼ 1

32 · 23 · ( 1
2
)

 
n+ 4

4

!
∼ n4

864
.

The way the analysis can be developedwithout computing detailsof partial fraction expansion
is typical. �

Theorem IV.9 applies to any specification leading to a GF thatis a rational func-
tion10 Combined with the qualitative approach to rational coefficient asymptotics, it
gives access to a large number of effective asymptotic estimates for combinatorial
counting sequences.

EXAMPLE 5. Asymptotics of denumerants.Denumerants are integer partitions with summands
restricted to be from afixed finite set (Chapter I, p. 41). We letPT be the class relative to
setT ⊂ Z>0, with the known OGF,

P T (z) =
Y

ω∈T

1

1− zω
.

A particular case is the one of integer partitions whose summands are in{1, 2, . . . , r},

P {1,...,r}(z) =

rY

m=1

1

1− zm
.

The GF has all its poles that are roots of unity. Atz = 1, the order of the pole isr, and one has

P {1,...,r}(z) ∼ 1

r!

1

(1− z)r
,

asz → 1. Other poles have smaller multiplicity: for instance the multiplicity of z = −1 is
equal to the number of factors(1−z2j)−1 in P {1,...,r}, that is⌊r/2⌋; in general a primitiveqth
root of unity is found to have multiplicity⌊r/q⌋. There results thatz = 1 contributes a term of

10In Part A, we have been occasionally led to discuss coefficients of rational functions, thereby antic-
ipating on the statement of the theorem: see for instance thediscussion of parts in compositions (p. 158)
and of records in sequences (p. 179).
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the formnr−1 to the coefficient of ordern, while each of the other poles contributes a term of
order at mostn⌊r/2⌋. We thus find

P {1,...,r}
n ∼ crnr−1 with cr =

1

r!(r − 1)!
.

The same argument provides the asymptotic form ofP T
n , since, to first order asymptotics,

only the pole atz = 1 counts. One then has:

PROPOSITIONIV.2. LetT be a finite set of integers without a common divisor (gcd(T ) = 1).
The number of partitions with summands restricted toT satisfies

P T
n ∼

1

τ

nr−1

(r − 1)!
, with τ :=

Y

n∈T
n, r := card(T ).

For instance, in a strange country that would have pennies (1cent), nickels (5 cents), dimes
(10 cents), and quarters (25 cents), the number of ways to make change for a total ofn cents is

[zn]
1

(1− z)(1− z5)(1− z10)(1− z25)
∼ 1

1 · 5 · 10 · 25
n3

3!
≡ n3

7500
,

asymptotically. �

IV. 5.2. Meromorphic Functions. An expansion similar to that of Theorem IV.9
holds true for coefficients of a larger class—meromorphic functions.

THEOREMIV.10 (Expansion of meromorphic functions).Letf(z) be a function mero-
morphic for|z| ≤ R with poles at pointsα1, α2, . . . , αm, and analytic at all points of
|z| = R and atz = 0. Then there existm polynomials{Πj(x)}m

j=1 such that:

(29) fn ≡ [zn]f(z) =

m∑

j=1

Πj(n)α−n
j + O(R−n).

Furthermore the degree ofΠj is equal to the order of the pole off atαj minus one.

PROOF. We offer two different proofs, one based on subtracted singularities, the other
one based on contour integration.

(i) Subtracted singularities.Around any poleα, f(z) can be expanded locally:

f(z) =
∑

k≥−M

cα,k(z − α)k(30)

= Sα(z) +Hα(z)(31)

where the “singular part”Sα(z) is obtained by collecting all the terms with index in
[−M . . − 1] (Sα(z) = Nα(z)/(z − α)M with Nα(z) a polynomial of degree less
thanM ) andHα(z) is analytic atα. Thus settingS(z) :=

∑
j Sαj (z), we observe

thatf(z) − S(z) is analytic for|z| ≤ R. In other words, by collecting the singular
parts of the expansions and subtracting them, we have “removed” the singularities of
f(z), whence the name ofmethod of subtracted singularitiessometimes given to the
method [212, vol. 2, p. 448].

Taking coefficients, we get:

[zn]f(z) = [zn]S(z) + [zn](f(z) − S(z)).

The coefficient of[zn] in the rational functionS(z) is obtained from Theorem 1. It
suffices to prove that the coefficient ofzn in f(z)−S(z), a function analytic for|z| ≤
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R, is O(R−n). This fact follows from trivial bounds applied to Cauchy’s integral
formula with the contour of integration beingλ = {z / |z| = R}, as in the proof of
Theorem IV.7:∣∣∣∣[z

n](f(z) − S(z))

∣∣∣∣ =
1

2π

∣∣∣∣
∫

|z|=R

(f(z) − S(z))
dz

zn+1

∣∣∣∣ ≤
1

2π

O(1)

Rn+1
2πR.

(ii) Contour integration.There is another line of proof for Theorem IV.10 which
we briefly sketch as it provides an insight which is useful forapplications to other
types of singularities treated in Chapter VI. It consists inusing directly Cauchy’s
coefficient formula and “pushing” the contour of integration past singularities. In
other words, one computes directly the integral

In =
1

2iπ

∫

|z|=R

f(z)
dz

zn+1

by residues. There is a pole atz = 0 with residuefn and poles at theαj with residues
corresponding to the terms in the expansion stated in Theorem IV.10; for instance, if
f(z) ∼ c/(z − a) asz → a, then

Res(f(z)z−n−1; z = a) = Res(
c

(z − a)
z−n−1; z = a) =

c

an+1
.

Finally, by the same trivial bounds as before,In isO(R−n). �

� 25.Effective error bounds.The error termO(Rn) in (29), call itεn, satisfies

|εn| ≤ sup
|z|=R

|f(z)|.

This results immediately from the second proof. This bound may be useful, even in the case of
rational functions. �

EXAMPLE 6. Surjections.These are defined as sequences of sets (R = SEQ(SET≥1(Z))) with
EGFR(z) = (2−ez)−1 (see p. 98). We have already determined the poles, the one of smallest
modulus being atlog 2

.
= 0.69314. At this dominant pole, one findsR(z) ∼ − 1

2
(z− log 2)−1.

This implies an approximation for the number of surjections:

Rn ≡ n![zn]R(z) ∼ ξ(n), with ξ(n) :=
n!

2
·
` 1

log 2

´n+1
.

Here is, forn = 2, 4, . . . , 32, a table of the values of the surjection numbers (left) compared
with the asymptotic approximation rounded11 to the nearest integer,⌈ξ(n)⌋: It is piquant to
see that⌈ξ(n)⌋ provides the exact value ofRn for all values ofn = 1, . . . , 15, and it starts
losing one digit forn = 17, after which point a few “wrong” digits gradually appear, but in
very limited number; see Figure 7. (A similar situation holds for tangent numbers discussed
in our Invitation, p. 4.) The explanation of such a faithful asymptotic representation owes to
the fact that the error terms provided by meromorphic asymptotics are exponentially small. In
effect, there is no other pole in|z| ≤ 6, the next ones being atlog 2 ± 2iπ with modulus of
about 6.32. Thus, forrn = [zn]R(z), there holds

(32)
Rn

n!
∼ 1

2
·
` 1

log 2

´n+1
+O(6−n).

11The notation⌈x⌋ representsx rounded to the nearest integer:⌈x⌋ := ⌊x+ 1
2
⌋.
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3 3
75 75

4683 4683
545835 545835

102247563102247563
2809156759528091567595

1064134297044310641342970443
53156546819813555315654681981355

33855346632568453233385534663256845326
26776877962443842031152677687796244384203088

25748444198031903845442032574844419803190384544450
29582791210741454726506488752958279121074145472650646597

40022257598441684924861275390834002225759844168492486127555859
62975620649500660335183739353346356297562064950066033518373935416161

1140356879401188048374246419618490196311403568794011880483742464196174527074
2354515408573489664918449063714485547639523545154085734896649184490637145314147690

FIGURE 7. The surjection numbers pyramid: forn = 2, 4, . . . , 32, the exact values of
the numbersRn (left) compared to the approximation⌈ξ(n)⌋ with discrepant digits in
boldface (right).

For the double surjection problem,R∗(z) = (2 + z − ez), we get similarly

[zn]R∗(z) ∼ 1

eρ∗ − 1
(ρ∗)−n−1,

with ρ∗ = 1.14619 the smallest positive root ofeρ∗ − ρ∗ = 2. �

It is worth reflecting on this example as it is representativeof a production chain
based on the two successive implications reflecting the spirit of Part A and Part B of
the book:




S = SEQ(SET≥1(Z)) =⇒ S(z) =
1

2 − ez

S(z) ∼
z→log 2

−1

2

1

(z − log 2)
;

1
n!Sn ∼ 1

2 (log 2)−n−1.

There the first implication (written ‘=⇒’ as usual) is provided automatically by the
symbolic method. The second one (written here ‘;’) is a formal translation from the
expansion of the GF at its dominant singularity to the asymptotic form of coefficients,
validity being granted by complex-analytic conditions.

EXAMPLE 7. Alignments.These are sequences of cycles (O = SEQ(CYC(Z)), p. 110) with
EGF

O(z) =
1

1− log(1− z)−1
.

There is a singularity whenlog(1 − z)−1 = 1, which is atρ = 1 − e−1 and arises before
z = 1 where the logarithm becomes singular. Then, the computation of the asymptotic form of
[zn]O(z) only requires a local expansion nearρ,

O(z) ∼ −e−1

z − 1 + e−1
=⇒ [zn]O(z) ∼ e−1

(1− e−1)n+1
,

and the coefficient estimates result from Theorem IV.10. �
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� 26.Some “supernecklaces”.One estimates

[zn] log

 
1

1− log 1
1−z

!
∼ 1

n
(1− e−1)−n,

where the EGF enumerates labelled cycles of cycles (supernecklaces, p. 114). [Hint: Take
derivatives.] �

EXAMPLE 8. Generalized derangements.The probability that the shortest cycle in a random
permutation of sizen has length larger thank is

[zn]D(k)(z), where D(k)(z) =
e−

z
1
− z2

2
−···− zk

k

1− z ,

as results from the specificationD(k) = SET(CYC>k(Z)). For anyfixedk, one has (easily)
D(k)(z) ∼ e−Hk/(1− z) asz → 1, with 1 being a simple pole. Accordingly the coefficients
[zn]D(k)(z) tend toe−Hk asn → ∞. Thus, due to meromorphy, we have the characteristic
implication

D(k)(z) ∼ e−Hk

1− z =⇒ [zn]D(k)(z) ∼ e−Hk .

Since there is no other singularity at a finite distance, the error in the approximation is (at least)
exponentially small,

(33) [zn]
e−

z
1
− z2

2
−···− zk

k

1− z = e−Hk +O(R−n),

for anyR > 1. The casesk = 1, 2 in particular justify the estimates mentioned at the beginning
of this chapter, on p. 216. �

This example is also worth reflecting upon. In prohibiting cycles of length< k,
we modify the EGF of all permutations,(1 − z)−1 by a factore−z/1−···−zk/k. The
resulting EGF is meromorphic at 1; thus only the value of the modifying factor at
z = 1 matters, so that this value, namelyeHk , provides the asymptotic proportion
of k-derangements. We shall encounter more and more shortcuts of this sort as we
progress into the book.

� 27.Shortest cycles of permutations are not too long.LetSn be the random variable denoting
the length of the shortest cycle in a random permutation of sizen. Using the circle|z| = 2 to
estimate the error in the approximatione−Hk above, one finds that, fork ≤ log n,

˛̨
˛P(Sn > k)− e−Hk

˛̨
˛ ≤ 1

2n
e2

k+1

,

which is exponentially small in this range ofk-values. Thus, the approximatione−Hk remains
good whenk is allowed to tend sufficiently slowly to∞ with n. One can also explore the
possibility of better bounds and larger regions of validityof the main approximation. (See
Panario and Richmond’s study [309] for a general theory of smallest components in sets.)�

� 28. Expected length of the shortest cycle.The classical approximation of the harmonic
numbers,Hk ≈ log k+ γ suggestse−γ/k as a possible approximation to (33) forboth largen
and largek in suitable regions. In agreement with this heuristic argument, the expected length
of the shortest cycle in a random permutation of sizen is effectively asymptotic to

nX

k=1

e−γ

k
∼ e−γ log n,
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a property first discovered by Shepp and Lloyd [354]. �

The next example illustrates the analysis of a collection ofrational generating
functions (Smirnov words) paralleling nicely the enumeration of a special type of
integer composition (Carlitz compositions) that resorts to meromorphic asymptotics.

EXAMPLE 9. Smirnov words and Carlitz compositions.Bernoulli trials have been discussed
in Chapter III, in relation to weighted word models. Take theclassW of all words over anr-ary
alphabet, where letterj is assigned probabilitypj and letters of words are drawn independently.
With this weighting, the GF of all words isW (z) = 1/(1 −P pjz) = (1 − z)−1. Consider
the problem of determining the probability that a random word of lengthn is of Smirnov type,
that is, all blocks of length 2 are formed with distinct letters. In order to avoid degeneracies, we
imposer ≥ 3 (since forr = 2, the only Smirnov words areababa . . . andbabab . . . ).

By our discussion of Section III. 7 (p. 193), the GF of Smirnovwords (again with the
probabilistic weighting) is

S(z) =
1

1−P pjz

1+pjz

.

By monotonicity of the denominator, this rational functionhas a unique dominant singularity
atρ such that

(34)
rX

j=1

pjρ

1 + pjρ
= 1,

andz = ρ is a simple pole. Consequently,ρ is a well-characterized algebraic number defined
implicitly by an equation of degreer. There results that the probability for a word to be Smirnov
is (not too surprisingly) exponentially small, with the precise formula being

[zn]S(z) ∼ C · ρ−n, C =

 
rX

j=1

pjρ

(1 + pjρ)2

!−1

.

A similar analysis, using bivariate generating functions,shows that in a random word of lengthn
conditioned to be Smirnov, the letterj appears with asymptotic frequency

(35) qj =
1

Q

pj

(1 + pjρ)2
, Q :=

rX

j=1

pj

(1 + pjρ)2
,

in the sense that the mean number of occurrences of letterj is asymptotic toqjn. All these
results are seen to be consistent with the equiprobable letter casepj = 1/r, for which ρ =
r/(r − 1).

Carlitz compositionsillustrate a limit situation, in which the alphabet is infinite, while
letters have different sizes. Recall that a Carlitz composition of the integern is a composition
of n such that no two adjacent summands have equal value. By Note III.30, p. 190, such
compositions can be obtained by substitution from Smirnov words, to the effect that

(36) K(z) =

 
1−

∞X

j=1

zj

1 + zj

!−1

.

The asymptotic form of the coefficients then results from an analysis of dominant poles. The
OGF has a simple pole atρ, which is the smallest positive root of the equation

(37)
∞X

j=1

ρj

1 + ρj
= 1.
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FIGURE 8. The coefficients[zn]f(z), wheref(z) =
`
1 + 1.02z4

´−3 `
1− 1.05z5

´−1

illustrate a periodic superposition of smooth behaviours that depend on the residue class
of n modulo 20.

(Note the analogy with (34) due to commonality of the combinatorial argument.) Thus:

Cn ∼ C · βn, C
.
= 0.45636 34740, β

.
= 1.75024 12917.

There,β = 1/ρ with ρ as in (37). In a way analogous to Smirnov words, the asymptotic
frequency of summandk appears to be proportional tokρk/(1 + ρk)2; see [234, 273] for
further properties. �

IV. 6. Localization of singularities

There are situations where a function possesses several dominant singularities,
that is, several singularities are present on the boundary of the disc of convergence.
We examine here the induced effect on coefficients and discuss ways to localize such
dominant singularities.

IV. 6.1. Multiple singularities. In the case when there exists more than one
dominant singularity, several geometric terms of the formβn sharing the same mod-
ulus (and each carrying its own subexponential factor) mustbe combined. In simpler
situations, such terms globally induce a pure periodic behaviour for coefficients that is
easy to describe. In the general case, irregular fluctuations of a somewhat arithmetic
nature may prevail.

Pure periodicities.When several dominant singularities off(z) have the same
modulus and are regularly spaced on the boundary of the disc of convergence, they
may induce complete cancellations of the main exponential terms in the asymptotic
expansion of the coefficientfn. In that case, different regimes will be present in the
coefficientsfn based on congruence properties ofn. For instance, the functions

1

1 + z2
= 1 − z2 + z4 − z6 + z8 − · · · , 1

1 − z3
= 1 + z3 + z6 + z9 + · · · ,
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exhibit patterns of periods 4 and 3 respectively, this corresponding to poles that are
roots of unity or order 4(±i), and 3 (ω : ω3 = 1). Accordingly, the function

φ(z) =
1

1 + z2
+

1

1 − z3
=

2 − z2 + z3 + z4 + z8 + z9 − z10

1 − z12

has coefficients that obey a pattern of period 12 (for example, the coefficientsφn such
thatn ≡ 1, 5, 6, 7, 11 modulo12 are zero). Accordingly, the coefficients of

[zn]ψ(z) where ψ(z) = φ(z) +
1

1 − z/2
,

manifest a different exponential growth whenn is congruent to1, 5, 6, 7, 11 mod 12.
See Figure 8 for such a superposition of pure periodicities.In many combinatorial
applications, generating functions involving periodicities can be decomposed at sight,
and the corresponding asymptotic subproblems generated are then solved separately.

� 29. Decidability of polynomial properties.Given a polynomialp(z) ∈ Q[z], the following
properties are decidable:(i) whether one of the zeros ofp is a root of unity;(ii) whether one
of the zeros ofp has an argument that is commensurate withπ. [One can use resultants. An
algorithmic discussion of this and related issues is given in [195].] �

Nonperiodic fluctuations.As a representative example, consider the polynomial
D(z) = 1 − 6

5z + z2, whose roots are

α =
3

5
+ i

4

5
, ᾱ =

3

5
− i

4

5
,

both of modulus1 (the numbers3, 4, 5 form a Pythagorean triple), with argument±θ0
whereθ0 = arctan(4

3 )
.
= 0.92729. The expansion of the functionf(z) = 1/D(z)

starts as
1

1 − 6
5z + z2

= 1 +
6

5
z +

11

25
z2 − 84

125
z3 − 779

625
z4 − 2574

3125
z5 + · · · ,

the sign sequence being

+ + +−−−+ + + +−−−+ + +−−−−+ + +−−−−+ + +−−− ,
which indicates a somewhat irregular oscillating behaviour, where blocks of 3 or 4
pluses follow blocks of 3 or 4 minuses.

The exact form of the coefficients off results from a partial fraction expansion:

f(z) =
a

1 − z/α
+

b

1 − z/ᾱ
with a =

1

2
+

3

8
i, b =

1

2
− 3

8
i,

whereα = eiθ0 , α = e−iθ0 Accordingly,

(38) fn = ae−inθ0 + beinθ0 =
sin((n+ 1)θ0)

sin(θ0)
.

This explains the sign changes observed. Since the angleθ0 is not commensurate with
π, the coefficients fluctuate but, unlike in our earlier examples, no exact periodicity is
present in the sign patterns. See Figure 9 for a rendering andFigure 10 of Chapter V
(p. 308) for a meromorphic case linked to compositions into prime summands.

Complicated problems of an arithmetical nature may occur ifseveral such sin-
gularities with non–commensurate arguments combine, and some open problem even
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FIGURE 9. The coefficients off = 1/(1 − 6
5
z + z2) exhibit an apparently chaotic

behaviour (left) which in fact corresponds to a discrete sampling of a sine function (right),
reflecting the presence of two conjugate complex poles.

remain in the analysis of linear recurring sequences. (For instance no decision proce-
dure is known to determine whether such a sequence ever vanishes.) Fortunately, such
problems occur infrequently in combinatorial applications, where dominant poles of
rational functions (as well as many other functions) tend tohave a simple geometry as
we explain next.

� 30. Irregular fluctuations and Pythagorean triples.The quantity1
π
θ0 is an irrational num-

ber, so that the sign fluctuations of (38) are “irregular” (i.e., non purely periodic). [Proof:a
contrario. Indeed, otherwise,α = (3 + 4i)/5 would be a root of unity. But then the minimal
polynomial ofα would be a cyclotomic polynomial with nonintegral coefficients, a contradic-
tion; see [260, VIII.3] for the latter property.] �

� 31.Skolem-Mahler-Lech Theorem.Let fn be the sequence of coefficients of a rational func-
tion,f(z) = A(z)/B(z), whereA,B ∈ Q[z]. The set of alln such thatfn = 0 is the union of
a finite (possibly empty) set and a finite number (possibly zero) of infinite arithmetic progres-
sions. (The proof is based onp-adic analysis, but the argument is intrinsically nonconstructive;
see [295] for an attractive introduction to the subject and references.) �

Periodicity conditions for positive generating functions. By the previous dis-
cussion, it is of interest to locate dominant singularitiesof combinatorial generating
functions, and, in particular, determine whether their arguments (the “dominant direc-
tions”) are commensurate to2π. In the latter case, different asymptotic regimes of the
coefficients manifest themselves, depending on congruenceproperties ofn.

First a few definitions. For a sequence(fn) with GF f(z), the supportof f ,
denotedSupp(f), is the set of alln such thatfn 6= 0. The sequence (also its GF) is
said to admitspan, or period, d if for somer, there holds

Supp(f) ⊆ r + dZ ≡ {r, r + d, r + 2d, . . .}.
In that case, iff is analytic at 0, then there exists a functiong analytic at 0 such that
f(z) = zrg(zd). The largest span,p, is often plainly referred to asthe period, all
other spans being divisors ofp. With E := Supp(f), this maximal span is attainable
as p = gcd(E − E) (pairwise differences) as well asp = gcd(E − {r}) where
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FIGURE 10. Illustration of the “Daffodil Lemma”: the images of circlesz = Reiθ (R =

0.4 . . 0.8) rendered by a polar plot of|f(z)| in the case off(z) = z7ez25

+z2/(1−z10)),
which has span 5.

r := min(E). For instancesin(z) has period 2,cos(z) + cosh(z) has period 4,z3ez5

has period 5, and so on.
In the context of periodicities, a basic property is expressed by what we have

chosen to name figuratively the “Daffodil Lemma”. By virtue of this lemma, the span
of a functionf with nonnegative coefficients is related to the behaviour of|f(z)| asz
varies along circles centred at the origin (Figure 10).

LEMMA IV.1 (“Daffodil Lemma”). Letf(z) be analytic in|z| < ρ and have nonneg-
ative coefficients at 0. Assume thatf does not reduce to a monomial and that forsome
nonzero nonpositivez satisfying|z| < ρ, one has

|f(z)| = f(|z|).

Then, the following hold:(i) the argument ofz must be commensurate to2π, i.e.,
z = Reiθ with θ/(2π) = r

p ∈ Q (an irreducible fraction) and0 < r < p; (ii) f

admitsp as a span.

PROOF. This classical lemma is a simple consequence of the strong triangle inequality.
Indeed, withz = Reiθ, the equality|f(z)| = f(|z|) implies that the complex numbers
fnR

neinθ for n ∈ Supp(f) all lie on the same ray (a half-line emanating from0).
This is impossible ifθ is irrational, as soon as the expansion off contains at least two
monomials. �

Berstel [40] first realized that rational generating functions arisingfrom regular
languages can only have dominant singularities of the formρωj , whereω is a certain
root of unity. This property in fact extends to many nonrecursive specifications, as
shown by Flajolet, Salvy, and Zimmermann in [159].

PROPOSITION IV.3 (Commensurability of dominant directions).Let S be a con-
structible labelled class that is nonrecursive, in the sense of Theorem IV.8. Assume
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that the EGFS(z) has a finite radius of convergenceρ. Then there exists a com-
putable integerd ≥ 1 such that the set of dominant singularities ofS(z) is contained
in the set{ρωj}, whereωd = 1.

PROOF. (Sketch) see [40, 159]).] By definition, a nonrecursive classS is obtained
from 1 andZ by means of a finite number of union, product, sequence, set, and
cycle constructions. We have seen earlier, in Section IV. 4,an inductive algorithm that
determines radii of convergence. It is then easy to enrich that algorithm and determine
simultaneously (by induction on the specification) the period of its GF and the set of
dominant directions.

The period is determined by simple rules. For instance, ifS = T ⋆U (S = T ·U )
andT, U are infinite with respective periodsp, q, one has

Supp(T ) ⊆ a+ pZ, Supp(U) ⊆ b+ qZ =⇒ Supp(S) ⊆ a+ b+ ξZ,

with ξ = gcd(p, q). Similarly, forS = SEQ(T ),

Supp(T ) ⊆ a+ pZ =⇒ Supp(S) ⊆ δZ,

where nowδ = gcd(a, p).
Regarding dominant singularities, the case of a sequence construction is typical.

It corresponds tog(z) = (1 − f(z))−1. Assume thatf(z) = zah(zp), with p the
maximal period, and letρ > 0 be such thatf(ρ) = 1. The equations determining
any dominant singularityζ aref(ζ) = 1, ζ = |ρ|. In particular, the equations imply
|f(ζ)| = f(|ζ|), so that, by the Daffodil Lemma, the argument ofζ must be of the
form 2πr/s. An easy refinement of the argument shows that, forδ = gcd(a, p), all the
dominant directions coincide with the multiples of2π/δ. The discussion of cycles is
entirely similar sincelog(1− f)−1 has the same dominant singularities as(1− f)−1.
Finally, for exponentials, it suffices to observe thatef does not modify the singularity
pattern off , sinceexp(z) is an entire function. �

� 32.Daffodil lemma and unlabelled classes.Proposition IV.3 applies to any unlabelled class
S that admits a nonrecursive specification, provided its radius of convergenceρ satisfiesρ < 1.
(Whenρ = 1, there is a possibility of having the unit circle as a naturalboundary—a property
that is otherwise decidable.) �

Exact formulæ. The error terms appearing in the asymptotic expansion of coef-
ficients of meromorphic functions are already exponentially small. By peeling off the
singularities of a meromorphic function layer by layer, in order of increasing modulus,
one is led to extremely precise—or even exact—expansions for the coefficients. Such
exact representations are found for Bernoulli numbersBn, surjection numbersRn, as
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well as Secant numbersE2n and Tangent numbersE2n+1, defined by

∞∑

n=0

Bn
zn

n!
=

z

ez − 1
(Bernoulli numbers)

∞∑

n=0

Rn
zn

n!
=

1

2 − ez
(Surjection numbers)

∞∑

n=0

E2n
z2n

(2n)!
=

1

cos(z)
(Secant numbers)

∞∑

n=0

E2n+1
z2n+1

(2n+ 1)!
= tan(z) (Tangent numbers).

Bernoulli numbers.These numbers traditionally writtenBn can be defined by their
EGFB(z) = z/(ez − 1). The functionB(z) has poles at the pointsχk = 2ikπ, with
k ∈ Z \ {0}, and the residue atχk is equal toχk,

z

ez − 1
∼ χk

z − χk
(z → χk).

The expansion theorem for meromorphic functions is applicable here: start with the
Cauchy integral formula, and proceed as in the proof of Theorem IV.10, using as
external contours a large circle of radiusR that passes half way between poles. AsR
tends to infinity, the integrand tends to 0 (as soon asn ≥ 2) because the Cauchy kernel
z−n−1 decreases as an inverse power ofR while the EGF remainsO(R). In the limit,
corresponding to an infinitely large contour, the coefficient integral becomes equal to
the sum of all residues of the meromorphic function over the whole of the complex
plane.

From this argument, we get the representationBn = −n!
∑

k∈Z\{0} χ
−n
k . This

verifies thatBn = 0 if n is odd andn ≥ 3. If n is even, then grouping terms two by
two, we get the exact representation (which also serves as anasymptotic expansion):

(39)
B2n

(2n)!
= (−1)n−121−2nπ−2n

∞∑

k=0

1

k2n
.

Reverting the equality, we have also established that

ζ(2n) = (−1)n−122n−1π2n B2n

(2n)!
with ζ(s) =

∞∑

k=1

1

ks
, Bn = n![zn]

z

ez − 1
,

a well-known identity that provides values of the Riemann zeta function (ζ(s)) at even
integers as rational multiples of powers ofπ.
Surjection numbers.In the same vein, the surjection numbers have EGFR(z) =
(2 − ez)−1 with simple poles at

χk = log 2 + 2ikπ where R(z) ∼ 1

2

1

χk − z
.
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SinceR(z) stays bounded on circles passing half way in between poles, we find the
exact formula,Rn = 1

2n!
∑

k∈Z
χ−n−1

k . An equivalent real formulation is

(40)
Rn

n!
=

1

2

(
1

log 2

)n+1

+
∞∑

k=1

cos((n+ 1)θk)

(log2 2 + 4k2π2)(n+1)/2
, θk := arctan(

2kπ

log 2
),

which exhibits infinitely many harmonics of fast decaying amplitude.

� 33. Alternating permutations, tangent and secant numbers.The relation (39) also provides
a representation of thetangent numberssinceE2n−1 = (−1)n−1B2n4n(4n − 1)/(2n). The
secant numbersE2n satisfy

∞X

k=1

(−1)k

(2k + 1)2n+1
=

(π/2)2n+1

2 (2n)!
E2n,

which can be read either as providing an asymptotic expansion ofE2n or as an evaluation of the
sums on the left (the values of a DirichletL-function) in terms ofπ. The asymptotic number of
alternating permutations (Chapter II) is consequently known to great accuracy. �

� 34. Solutions to the equationtan(x) = x. Let xn be thenth positive root of the equation
tan(x) = x. For any integerr ≥ 1, the sumS(r) :=

P
n x

−2r
n is a computable rational

number. [From folklore andThe American Mathematical Monthly.] �

IV. 6.2. Localization of zeros and poles.We gather here a few results that often
prove useful in determining the location of zeros of analytic functions, and hence of
poles of meromorphic functions. A detailed treatment of this topic may be found in
Henrici’s book [212].

Let f(z) be an analytic function in a regionΩ and letγ be a simple closed curve
interior toΩ, and on whichf is assumed to have no zeros. We claim that the quantity

(41) N(f ; γ) =
1

2iπ

∫

γ

f ′(z)

f(z)
dz

exactly equals the number of zeros off insideγ counted with multiplicity. [Proof: the
functionf ′/f has its poles exactly at the zeros off , and the residue at each poleα
equals the multiplicity ofα as a root off ; the assertion then results from the residue
theorem.]

Since a primitive function off ′/f is log f , the integral also represents the vari-
ation of log f alongγ, which is written[log f ]γ . This variation itself reduces to2iπ
times the variation of the argument off alongγ, sincelog(reiθ) = log r+ iθ and the
modulusr has variation equal to 0 along a closed contour ([log r]γ = 0). The quantity
[θ]γ is, by its definition,2π multiplied by the number of times the transformed contour
f(γ) winds about the origin. This observation is known as theArgument Principle:

Argument Principle. The number of zeros off(z) (counted with multiplic-
ities) insideγ equals the winding number of the transformed contourf(γ)
around the origin.

By the same argument, iff is meromorphic inΩ ∋ γ, thenN(f ; γ) equals the differ-
ence between the number of zeros and the number of poles off insideγ, multiplicities
being taken into account. Figure 11 exemplifies the use of theargument principle in
localizing zeros of a polynomial.



IV. 6. LOCALIZATION OF SINGULARITIES 257

1.81.61.41.210.80.60.40.20

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

0 32.521.510.50-0.5 0

1.5

1

0.5

0

-0.5

-1

-1.5

0 543210-1-2 0

4

2

0

-2

-4

0 1086420-2-4-6-8 0

8

6

4

2

0

-2

-4

-6

-8

FIGURE 11. The transforms ofγj = {|z| = 4j
10
} by P4(z) = 1 − 2z + z4, for j =

1, 2, 3, 4, demonstrate thatP4(z) has no zero inside|z| < 0.4, one zero inside|z| < 0.8,
two zeros inside|z| < 1.2 and four zeros inside|z| < 1.6. The actual zeros are at
ρ4 = 0.54368, 1 and1.11514 ± 0.77184i.

By similar devices, we get Rouché’s theorem:

Rouché’s theorem.Let the functionsf(z) andg(z) be analytic in a region
containing in its interior the closed simple curveγ. Assume thatf and g
satisfy|g(z)| < |f(z)| on the curveγ. Thenf(z) andf(z) + g(z) have the
same number of zerosinsidethe interior domain delimited byγ.

An intuitive way to visualize Rouché’s Theorem is as follows: since|g| < |f |, then
f(γ) and(f + g)(γ) must have the same winding number.

� 35. Proof of Rouché’s theorem.Under the hypothesis of Rouché’s theorem, for0 ≤ t ≤ 1
h(z) = f(z) + tg(z) is such thatN(h; γ) is both an integer and an analytic, hence continuous,
function oft in the given range. The conclusion of the theorem follows. �

� 36. The fundamental theorem of algebra.Every complex polynomialp(z) of degreen has
exactlyn roots. A proof follows by Rouché’s theorem from the fact that, for large enough
|z| = R, the polynomial assumed to be monic is a “perturbation” of its leading term,zn. �
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� 37.Symmetric function of the zeros.Let Sk(f ; γ) be the sum of thekth powers of the roots
of equationf(z) = 0 insideγ. One has

Sk(f ; γ) =
1

2iπ

f ′(z)

f(z)
zk dz,

by a variant of the proof of the Argument Principle. �

These principles form the basis of numerical algorithms forlocating zeros of ana-
lytic functions, in particular the ones closest to the origin, which are of most interest to
us. One can start from an initially large domain and recursively subdivide it until roots
have been isolated with enough precision—the number of roots in a subdomain being
at each stage determined by numerical integration; see Figure 11 and refer for instance
to [92] for a discussion. Such algorithms even acquire the status of full proofs if one
operates with guaranteed precision routines (using, e.g.,careful implementations of
interval arithmetics).

IV. 6.3. Patterns in words: a case-study.Analysing the coefficients of a single
generating function that is rational is a simple task, ofteneven bordering on the trivial,
granted the exponential-polynomial formula for coefficients (Theorem IV.9). How-
ever, in analytic combinatorics, we are often confronted with problems that involve
an infinite family of functions. In that case, Rouché’s Theorem and the Argument
Principle provide decisive tools for localizing poles, while Theorems IV.3 (Residue
Theorem) and IV.10 (Expansion of meromorphic functions) serve to determine effec-
tive error terms. An illustration of this situation is the analysis of patterns in words for
which GFs have been derived in Chapters I (p. 50) and III (p. 200).

All patterns are not born equal. Surprisingly, in a random sequence of coin toss-
ings, the patternHTT is likely to occur much sooner (after 8 tosses on average) than
the patternHHH(needing 14 tosses on average); see the preliminary discussion in
Example I.12 (p. 56). Questions of this sort are of obvious interest in the statisti-
cal analysis of genetic sequences [268, 401]. Say you discover that a sequence of
length 100,000 on the four lettersA,G,C,T contains the patternTACTACtwice. Can
this be assigned to chance or is this is likely to be a meaningful signal of some yet
unknown structure? The difficulty here lies in quantifying precisely where the asymp-
totic regime starts, since, by Borges’s Theorem (Note I.32,p. 58), sufficiently long
texts will almost certainly contain any fixed pattern. The analysis of rational gener-
ating functions supplemented by Rouché’s theorem provides definite answers to such
questions.

We consider here the classW of words over an alphabetA of cardinalitym ≥ 2.
A patternp of some lengthk is given. As seen in Chapters I and III, its autocorre-
lation polynomial is central to enumeration. This polynomial is defined asc(z) =∑k−1

j=0 cjz
j, wherecj is 1 if p coincides with itsjth shifted version and 0 otherwise.

We consider here the enumeration of words containing the patternp at least once, and
dually of words excluding the patternp. In other words, we look at problems such as:
What is the probability that a random text of lengthn does (or does not) contain your
name as a block of consecutive letters?
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Length(k) Types c(z) ρ

k = 3 aab, abb, bba, baa 1 0.61803
aba, bab 1 + z2 0.56984
aaa, bbb 1 + z + z2 0.54368

k = 4 aaab, aabb, abbb,
bbba, bbaa, baaa 1 0.54368

aaba, abba, abaa,
bbab, baab, babb 1 + z3 0.53568

abab, baba 1 + z2 0.53101
aaaa, bbbb 1 + z + z2 + z3 0.51879

FIGURE 12. Patterns of length3, 4: autocorrelation polynomial and dominant poles ofS(z).

The OGF of the class of words excludingp is, we recall,

(42) S(z) =
c(z)

zk + (1 −mz)c(z)
.

(Proposition I.4, p. 57), and we shall start with the casem = 2 of a binary alphabet.
The functionS(z) is simply a rational function, but the location and nature ofits poles
is yet unknown. We only knowa priori that it should have a pole in the positive inter-
val somewhere between12 and1 (by Pringsheim’s Theorem and since its coefficients
are in the interval[1, 2n], for n large enough). Figure 12 gives a small list, for patterns
of lengthk = 3, 4, of the poleρ of S(z) that is nearest to the origin. Inspection of the
figure suggestsρ to be close to12 as soon as the pattern is long enough. We are going
to prove this fact, based on Rouché’s Theorem applied to thedenominator of (42).

As regards termwise domination of coefficients, the autocorrelation polynomial
lies between1 (for less correlated patterns likeaaa...b ) and1 + z + · · · + zk−1

(for the special caseaaa...a ). We set aside the special case ofp having only equal
letters, i.e., a “maximal” autocorrelation polynomial—this case is discussed at length
in the next chapter. Thus, in this scenario, the autocorrelation polynomial starts as
1 + zℓ + · · · for someℓ ≥ 2. Fix the numberA = 0.6. On |z| = A, we have

(43) |c(z)| ≥
∣∣1 − (A2 +A3 + · · · )

∣∣ =

∣∣∣∣1 − A2

1 −A

∣∣∣∣ =
1

10
.

In addition, the quantity(1 − 2z) ranges over the circle of diameter[−0.2, 1.2] as
z varies along|z| = A, so that|1 − 2z| ≥ 0.2. All in all, we have found that, for
|z| = A,

|(1 − 2z)c(z)| ≥ 0.02.

On the other hand, fork > 7, we have|zk| < 0.017 on the circle|z| = A. Then,
amongst the two terms composing the denominator of (42), thefirst is strictly dom-
inated by the second along|z| = A. By virtue of Rouché’s Theorem, the number
of roots of the denominator inside|z| ≤ A is then same as the number of roots of
(1 − 2z)c(z). The latter number is 1 (due to the root1

2 ) sincec(z) cannot be 0 by the
argument of (43). Figure 13 exemplifies the extremely well-behaved characters of the
complex zeros.
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FIGURE 13. Complex zeros ofz31 + (1− 2z)c(z) represented as joined by a polygonal
line: (left) correlated patterna(ba)15; (right) uncorrelated patterna(ab)15.

In summary, we have found that for all patterns with at least two different letters
(ℓ ≥ 2) and lengthk ≥ 8, the denominator has a unique root in|z| ≤ A = 0.6.
The property for lengthsk satisfying4 ≤ k ≤ 7 is then easily verified directly. The
caseℓ = 1 where we are dealing with long runs of identical letters can be subjected
to an entirely similar argument (see also Example V.2, p. 282, for details). Therefore,
unicity of a simple poleρ of S(z) in the interval(0.5, 0.6) is granted.

It is then a simple matter to determine the local expansion ofs(z) nearz = ρ,

S(z) ∼
z→ρ

Λ̃

ρ− z
, Λ̃ :=

c(ρ)

2c(ρ) − (1 − 2ρ)c′(ρ) − kρk−1
,

from which a precise estimate for coefficients derives by Theorems IV.9 and IV.10.
The computation finally extends almost verbatim to nonbinary alphabets, withρ

being now close to1
m . It suffices to use the disc of radiusA = 1.2/m. The Rouché

part of the argument grants us unicity of the dominant pole inthe interval(1/m,A)
for k ≥ 5 whenm = 3, and fork ≥ 4 and anym ≥ 4. (The remaining cases are
easily checked individually.)

PROPOSITIONIV.4. Consider anm-ary alphabet. Letp be a fixed pattern of lengthk ≥
4, with autocorrelation polynomialc(z). Then the probability that a random word of
lengthn does not containp as a pattern (a block of consecutive letters) satisfies

(44) PWn(p does not occur) = Λp(mρ)
−n−1 +O

((5
6

)n
)
,

whereρ ≡ ρp is the unique root in( 1
m ,

6
5m ) of the equationzk + (1 −mz)c(z) = 0

andΛp := mc(ρ)/(mc(ρ) − c′(ρ)(1 −mρ) − kρk−1).

Despite their austere appearance, these formulæ have indeed an a fairly concrete
content. First, the equation satisfied byρ can be put under the formmz = 1+zk/c(z),
and, sinceρ is close to 1

m , we may expect the approximation (remember the use of
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“≈” as meaning “numerically approximately equal”)

mρ ≈ 1 +
1

γmk
,

whereγ := c(m−1) satisfies1 ≤ γ < m/(m − 1). By similar principles, the
probabilities in (44) should be approximately

PWn(p does not occur) ≈
(

1 +
1

γmk

)−n

≈ e−n/(γmk).

For a binary alphabet, this tells us that the occurrence of a pattern of lengthk starts
becoming likely whenn is of the order of2k, that is, whenk is of the order oflog2 n.
The more precise moment when this happens must depend (viaγ) on the autocorrela-
tion of the pattern, with strongly correlated patterns having a tendency to occur a little
late. (This vastly generalizes our empirical observationsof Chapter I.) However, the
mean number of occurrences of a pattern in a text of lengthn does not depend on the
shape of the pattern. The apparent paradox is easily resolved: correlated patterns tend
to occur late, while being prone to appear in clusters. For instance, the “late” pattern
aaa , when it occurs, still has probability12 to occur at the next position as well and
cash in another occurrence; in contrast no such possibilityis available to the “early”
uncorrelated patternaab , whose occurrences must be somewhat spread out.

Such analyses are important as they can be used to develop a precise understand-
ing of the behaviour of data compression algorithms (the Lempel–Ziv scheme); see
Julien Fayolle’s contribution [122] for details.

� 38.Multiple pattern occurrences.A similar analysis applies to the generating functionS〈s〉(z)
of words containing a fixed numbers of occurrences of a patternp. The OGF is obtained
by expanding (with respect tou) the BGFW (z, u) obtained in Chapter III by means of an
inclusion-exclusion argument. Fors ≥ 1, one finds

S〈s〉(z) = zkN(z)s−1

D(z)s+1
, D(z) = zk+(1−mz)c(z), N(z) = zk+(1−mz)(c(z)−1)),

which now has a pole of multiplicitys+ 1 at z = ρ. �

� 39. Patterns in Bernoulli sequences—asymptotics.Similar results hold when letters are as-
signed nonuniform probabilities,pj = P(aj), for aj ∈ A. The weighted autocorrelation poly-
nomial is then defined by protrusions, as in Note III.36 (p. 202). Multiple pattern occurrences
can be also analysed. �

IV. 7. Singularities and functional equations

In the various combinatorial examples discussed so far in this chapter, we have
been dealing with functions that are given by explicit expressions. Such situations
essentially cover nonrecursive structures as well as the very simplest recursive ones,
like Catalan or Motzkin trees, whose generating functions are expressible in terms of
radicals. In fact, as will shall see extensively in this book, complex analytic methods
are instrumental in analysing coefficients of functionsimplicitly specified by func-
tional equations. In other words:the nature of a functional equation can often provide
information regarding the singularities of its solution. Chapter V will illustrate this
philosophy in the case of rational functions defined by systems of positive equations;
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a very large number of examples will then be given in ChaptersVI and VII, where
singularities much more general than poles are treated.

In this section, we discuss three representative functional equations,

f(z) = zef(z), f(z) = z + f(z2 + z3), f(z) =
1

1 − zf(z2)
.

that illustrate the use of fundamental inversion or iteration properties to locate domi-
nant singularities and derive exponential growth estimates for coefficients.

IV. 7.1. Inverse functions. We start with a generic problem: given a functionψ
analytic at a pointy0 with z0 = ψ(y0) what can be said about its inverse, namely the
solution(s) to the equationψ(y) = z whenz is nearz0 andy neary0?

Let us examine what happens whenψ′(y0) 6= 0, first without paying attention to
analytic rigour. One has locally (‘≈’ means as usual ‘approximately equal’)

(45) ψ(y) ≈ ψ(y0) + ψ′(y0)(y − y0),

so that the equationψ(y) = z should admit, forz nearz0, a solution satisfying

(46) y ≈ y0 +
1

ψ′(y0)
(z − z0).

If this is granted, the solution being locally linear, it is differentiable, hence analytic.
The Analytic Inversion Lemma12 provides a firm foundation for this calculation.

LEMMA IV.2 (Analytic Inversion). Let ψ(z) be analytic aty0, with ψ(y0) = z0.
Assume thatψ′(y0) 6= 0. Then, forz in some small neighbourhoodΩ0 of z0, there
exists an analytic functiony(z) that solves the equationψ(y) = z and is such that
y(z0) = y0.

PROOF. [Sketch] The proof involves ideas analogous to those used to establish Rouché’s
Theorem and the Argument Principle (see especially the argument justifying Equa-
tion (41), p. 256) As a preliminary step, define the integrals(j ∈ Z≥0)

(47) σj(z) :=
1

2iπ

∫

γ

ψ′(y)

ψ(y) − z
yj dy,

whereγ is a small enough circle centred aty0 in they-plane.
First considerσ0. This function satisfiesσ0(z0) = 1 [by the Residue Theorem]

and is a continuous function ofz whose value can only be an integer, this value being
the number of roots of the equationψ(y) = z. Thus, forz close enough toz0, one
must haveσ0(z) ≡ 1. In other words, the equationψ(y) = z has exactly one solution,
the functionψ is locally invertible and a solutiony = y(z) that satisfiesy(z0) = y0 is
well-defined.

Next examineσ1. By the Residue Theorem once more, the integral definingσ1(z)
is the sum of the roots of the equationψ(y) = z that lie insideγ, that is, in our case,
the value ofy(z) itself. (This is also a particular case of Note 37.) Thus, onehas
σ1(z) ≡ y(z). Since the integral definingσ1(z) depends analytically onz for z close
enough toz0, analyticity ofy(z) results. �

12A more general statement and several proof techniques are also discussed in APPENDIXB: Implicit
Function Theorem, p. 637.
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� 40. Details. Let ψ be analytic in an open discD centred aty0. Then, there exist a small
circleγ centred aty0 and contained inD such thatψ(y) 6= y0 onγ. [Zeros of analytic functions
are isolated, a fact that results from the definition of an analytic expansion]. The integralsσj(z)
are thus well defined forz restricted to be close enough toz0, which ensures that there exisst
a δ > 0 such that|ψ(y) − z| > δ for all y ∈ γ. One can then expand the integrand as a
power series in(z − z0), integrate the expansion termwise, and form in this way the analytic
expansions ofσ0, σ1 at z0. [This line of proof follows [214, I, Section 9.4].] �

� 41. Inversion and majorant series.The process corresponding to (45) and (46) can be trans-
formed into a sound proof: first derive a formal power series solution, then verify that the formal
solution is locally convergent using the method of majorantseries (p. 237). �

The Analytic Inversion Lemma states the following:An analytic function locally
admits an analytic inverse near any point where its first derivative is nonzero.How-
ever, as we see next, a function cannot be analytically inverted in a neighbourhood of
a point where its first derivative vanishes.

Consider now a functionψ(y) such thatψ′(y0) = 0 butψ′′(y0) 6= 0, then, by the
Taylor expansion ofψ, one expects

(48) ψ(y) ≈ ψ(y0) +
1

2
(y − y0)

2ψ′′(y0).

Solving formally fory now indicates alocally quadraticdependency

(y − y0)
2 ≈ 2

ψ′′(y0)
(z − z0),

and the inversion problem admitstwo solutions satisfying

(49) y ≈ y0 ±
√

2

ψ′′(y0)

√
z − z0.

What this informal argument suggests is that the solutions have a singularity atz0, and,
in order for them to be suitably specified, one must somehow restrict their domain of
definition: the case of

√
z (the root(s) ofy2 − z = 0) discussed on p. 217 is typical.

Given some pointz0 and a neighbourhoodΩ, theslit neighbourhoodalong direc-
tion θ, is the set

Ω\θ :=
{
z ∈ Ω

∣∣ arg(z − z0) 6≡ θ mod 2π
}
.

We state:

LEMMA IV.3 (Singular Inversion).Let ψ(y) be analytic aty0, with ψ(y0) = z0.
Assume thatψ′(y0) = 0 andψ′′(y0) 6= 0. There exists a small neighbourhoodΩ0

such that the following holds: for any directionθ, there exist two functions,y1(z)

and y2(z) defined onΩ\θ
0 that satisfyψ(y(z)) = z; each is analytic inΩ\θ

0 , has a
singularity at the pointz0, and satisfieslimz→z0 y(z) = y0.

PROOF. [Sketch] Define the functionsσj(z) as in the proof of the previous lemma,
Equation (47). One now hasσ0(z) = 2, that is, the equationψ(y) = z possessestwo
roots neary0, whenz is nearz0. In other wordsψ effects a double covering of a small
neighbourhoodΩ of y0 onto the image neighbourhoodΩ0 = ψ(Ω) ∋ z0. By possibly
restrictingΩ, we may furthermore assume thatψ′(y) only vanishes aty0 in Ω (zeros
of analytic functions are isolated) and thatΩ is simply connected.
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Fix any directionθ and consider the slit neighbourhoodΩ
\θ
0 . Fix a pointζ in

this slit domain; it has two preimages,η1, η2 ∈ Ω. Pick up the one namedη1. Since
ψ′(η1) is nonzero, the Analytic Inversion lemma applies: there is alocal analytic

inversey1(z) of ψ. Thisy1(z) can then be uniquely continued13 to the whole ofΩ\θ
0 ,

and similarly fory2(z). We have thus obtained twodistinctanalytic inverses.
Assumea contrario thaty1(z) can be analytically continued atz0. It would then

admit a local expansion

y1(z) =
∑

n≥0

cn(z − z0)
n,

while satisfyingψ(y1(z)) = z. But then, composing the expansions ofψ andy would
entail

ψ(y1(z)) = z0 +O
(
(z − z0)

2
)

(z → z0),

which cannot coincide with the identity function (z). A contradiction has been reached.
The pointz0 is thus a singular point fory1 (as well as fory2). �

� 42. Singular inversion and majorant series.In a way that parallels Note 41, the process
summarized by Equations (48) and (49) can be justified by the method of majorant series,
which leads to an alternative proof of the Singular Inversion Lemma. �

� 43.Higher order branch points.If all derivatives ofψ till order r− 1 inclusive vanish aty0,
there arer inverses,y1(z), . . . , yr(z), defined over a slit neighbourhood ofz0. These satisfy
yj(z) = y0 + ωj−1(z − z0)1/r +O((z − z0)2/r) asz → z0, whereω := e2iπ/r. �

Tree enumeration.We can now consider the problem of obtaining information
on the coefficients of a functiony(z) defined by an implicit equation

(50) y(z) = zφ(y(z)),

whenφ(u) is analytic atu = 0. In order for the problem to be well-posed (alge-
braically in terms of formal power series and analytically near the origin), we assume
thatφ(0) 6= 0. Equation (50) may then be rephrased as

(51) ψ(y(z)) = z where ψ(u) =
u

φ(u)
,

so that it is in fact an instance of the inversion problem for analytic functions.
Equation (50) occurs in the counting of various types of trees, as seen in Sec-

tions I. 5.1 (p. 61) and II. 5.1 (p. 116). A typical case isφ(u) = eu, which corresponds
to labelled nonplane trees, known as Cayley trees. The functionφ(u) = (1+u)2 is as-
sociated to unlabelled plane binary trees andφ(u) = 1+u+u2 to unary–binary trees
(Motzkin trees). A full analysis was developed by Meir and Moon [283], themselves
elaborating on earlier ideas of Pólya [318, 320] and Otter [306]. In all these cases, the
exponential growth rate of the number of trees can be automatically determined.

13The fact of slittingΩ0 makes the resulting domain simply connected, so that analytic continuation
becomes uniquely defined. In contrast, the punctured domainΩ0 \ {z0} is not simply connected, so that
the argument cannot be applied to it. As a matter of fact,y1(z) gets continued toy2(z), when the ray of
angleθ is crossed: the pointz0 where two determinations meet is abranch point.



IV. 7. SINGULARITIES AND FUNCTIONAL EQUATIONS 265

PROPOSITION IV.5. Let φ be a function analytic at 0, having nonnegative Taylor
coefficients, and such thatφ(0) 6= 0. LetR ≤ +∞ be radius of convergence of the
series representingφ at 0. Under the condition,

(52) lim
x→R−

xφ′(x)

φ(x)
> 1,

there exists a unique solutionτ ∈ (0, R) of thecharacteristic equation,

(53)
τφ′(τ)

φ(τ)
= 1.

Then, the formal solutiony(z) of the equationy(z) = zφ(y(z)) is analytic at 0 and
its coefficients satisfy the exponential growth formula:

[zn] y(z) ⊲⊳

(
1

ρ

)n

where ρ =
τ

φ(τ)
=

1

φ′(τ)
.

Note that condition (52) is automatically realized as soon as φ(R−) = +∞, which
covers our earlier examples as well as all the cases whereφ is an entire function (e.g.,
a polynomial). Figure 14 displays graphs of functions on thereal line associated to a
typical inversion problem, that of Cayley trees, whereφ(u) = eu.
PROOF. By Note 44 below, the functionxφ′(x)/φ(x) is an increasing function ofx
for x ∈ (0, R). Condition (52) thus guarantees the existence and unicity of a solution
of the characteristic equation. (Alternatively, rewrite the characteristic equation as
φ0 = φ2τ

2 + 2φ3τ
3 + · · · , where the right side is clearly an increasing function.)

Next, we observe that the equationy = zφ(y) admits a unique formal power
series solution, which furthermore has nonnegative coefficients. (This solution can for
instance be built by the method of indeterminate coefficients.) The Analytic Inversion
Lemma (Lemma IV.2) then implies that this formal solution represents a function,
y(z), that is analytic at 0, where it satisfiesy(0) = 0.

Now comes the hunt for singularities and, by Pringsheim’s Theorem, one may
restrict attention to the positive real axis. Letr ≤ +∞ be the radius of convergence
of y(z) at 0 and sety(r) := limx→r− y(x), which is well defined (though possibly
infinite), given positivity of coefficients. Our goal is to prove thaty(r) = τ .

— Assumea contrariothaty(r) < τ . One would then haveψ′(y(r)) 6= 0. By
the Analytic Inversion Lemma,y(z) would be analytic atr, a contradiction.

— Assumea contrariothaty(r) > τ . There would then existr∗ ∈ (0, r) such
thatψ′(y(r∗)) = 0. But theny would be singular atr∗, by the Singular
Inversion Lemma, also a contradiction.

Thus, one hasy(r) = τ , which is finite. Finally, sincey andψ are inverse functions,
one must have

r = ψ(τ) = τ/φ(τ) = ρ,

by continuity asx→ r−, which completes the proof. �

Proposition IV.5 thus yields analgorithm that produces the exponential growth
rate associated to tree functions. This rate is itself invariably a computable number as
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FIGURE 14. Singularities of inverse functions:φ(u) = eu (left); ψ(u) = u/φ(u)
(middle);y = Inv(ψ) (right).

Type φ(u) (R) τ ρ yn ⊲⊳ ρ
−n

binary tree (1 + u)2 (∞) 1 1
4

yn ⊲⊳ 4n

Motzkin tree 1 + u+ u2 (∞) 1 1
3

yn ⊲⊳ 3n

gen. Catalan tree
1

1− u (1) 1
2

1
4

yn ⊲⊳ 4n

Cayley tree eu (∞) 1 e−1 yn ⊲⊳ e
n

FIGURE 15. Exponential growth for classical tree families.

soon asφ is computable (i.e., its sequence of coefficients is computable). This com-
putability result complements Theorem IV.8 which is relative to nonrecursive struc-
tures only.

As an example of application of Proposition IV.5, general Catalan trees corre-
spond toφ(y) = (1−y)−1, whose radius of convergence isR = 1. The characteristic
equation isτ/(1 − τ) = 1, which impliesτ = 1

2 andρ = 1
4 . We obtain (not a

suprise!) yn ⊲⊳ 4n, a weak asymptotic formula for the Catalan numbers. Similarly,
for Cayley trees,φ(u) = eu andR = +∞. The characteristic equation reduces to
(τ − 1)eτ = 0, so thatτ = 1 andρ = e−1, giving a weak form of Stirling’s formula:
[zn]y(z) = nn−1

n! ⊲⊳ en. Figure 15 summarizes the application of the method to a few
already encountered tree families.

As our previous discussion suggests, the dominant singularity of tree generating
functions is, under mild conditions, of the square-root type. Such a singular behaviour
can then be analysed by the methods of Chapter VI and the coefficients admit an
asymptotic form

[zn] y(z) ∼ C · ρ−nn−3/2,

with a subexponential factor of the formO(n−3/2).

� 44.Convexity of GFs and the Variance Lemma.Let φ(z) be a nonconstant analytic function
with nonnegative coefficients and a nonzero radius of convergenceR, such thatφ(0) 6= 0.
Forx ∈ (0, R) a parameter, define theBoltzmann random variableΞ (of parameterx) by the
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property

(54) P(Ξ = n) =
φnx

n

φ(x)
, with E(sΞ) =

φ(sx)

φ(x)

the probability generating function ofΞ. By differentiation, the first two moments ofΞ are

E(Ξ) =
xφ′(x)

φ(x)
, E(Ξ2) =

x2φ′′(x)

φ(x)
+
xφ′(x)

φ(x)
.

There results, for any nonconstant GFφ, the general convexity inequality valid for0 < x < R:

d

dx

„
xφ′(x)

φ(x)

«
> 0,

due to the fact that the variance of a nondegenerate random variable is always positive. Equiv-
alently, the functionlog(φ(et)) is convex fort ∈ (−∞, logR). (In statistical physics, a Boltz-
mann model (of parameterx) corresponds to a classΦ (with OGFφ) from which elements are
drawn according to the size distribution (54).) �

� 45.A variant form of the inversion problem.Consider the equationy = z + φ(y), whereφ
is assumed to have nonegative coefficients and be entire, with φ(u) = O(u2) at u = 0. This
corresponds to a simple variety of trees in which trees are counted by the number of their leaves
only. For instance, we have already encountered labelled hierarchies (phylogenetic trees in
Section II. 5, p. 119) corresponding toφ(u) = eu−1−u, which gives rise to one of “Schröder’s
problems”. Letτ be the root ofφ′(τ ) = 1 and setρ = τ − φ(τ ). Then[zn]y(z) ⊲⊳ ρ−n. For
the EGFL of labelled hierarchies (L = z+ eL− 1−L), this givesLn/n! ⊲⊳ (2 log 2− 1)−n.
(Observe that Lagrange inversion also provides[zn]y(z) = 1

n
[wn−1](1− y−1φ(y))−n.) �

IV. 7.2. Iteration. The study of iteration of analytic functions was launched by
Fatou and Julia in the first half of the twentieth century. Ourreader is certainly aware
of the beautiful images associated with the name of Mandelbrot whose works have
triggered renewed interest in these questions now classified as resorting to the field
of “complex dynamics” [23, 95, 288, 311]. In particular, the sets that appear in this
context are often of a fractal nature. Mathematical objectsof this sort are occasionally
encountered in analytic combinatorics. We present here thefirst steps of a classic
analysis of balanced trees published by Odlyzko [299] in 1982.

Consider the classE of balanced 2–3 treesdefined as trees whose node degrees
are restricted to the set{0, 2, 3}, with the additional property that all leaves are at the
same distance from the root (Note 53, p. 83). We adopt as notion of size the number
of leaves (also called external nodes), the list of all4 trees of size8 being:

Given an existing tree, a new tree is obtained by substituting in all possible ways to
each external node (2) either a pair(2,2) or a triple (2,2,2), and symbolically,
one has

E [2] = 2 + E
[
2 → (22 + 222)

]
.
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FIGURE 16. The iterates of a pointx0 ∈ (0, 1
ϕ
), herex0 = 0.6, by σ(z) = z2 + z3

converge fast to 0.

In accordance with the specification, the OGF ofE satisfies the functional equation

(55) E(z) = z + E(z2 + z3),

corresponding to the seemingly innocuous recurrence

En =

n∑

k=0

(
k

n− 2k

)
Ek with E0 = 0, E1 = 1.

Let σ(z) = z2 + z3. Equation (55) can be expanded by iteration in the ring of
formal power series,

(56) E(z) = z + σ(z) + σ[2](z) + σ[3](z) + · · · ,
whereσ[j](z) denotes thejth iterate of the polynomialσ: σ[0](z) = z, σ[h+1](z) =
σ[h](σ(z)) = σ(σ[h](z)). Thus,E(z) is nothing but the sum of all iterates ofσ.
The problem is to determine the radius of convergence ofE(z), and by Pringsheim’s
theorem, the quest for dominant singularities can be limited to the positive real line.

Forz > 0, the polynomialσ(z) has a unique fixed point,ρ = σ(ρ), at

ρ =
1

ϕ
where ϕ =

1 +
√

5

2

is the golden ratio. Also, for any positivex satisfyingx < ρ, the iteratesσ[j](x)
do converge to 0; see Figure 16. Furthermore, sinceσ(z) ∼ z2 near0, these iterates
converge to 0 doubly exponentially fast (Note 46). By the triangle inequality,|σ(z)| ≤
σ(|z|), the sum in (56) is a normally converging sum of analytic functions, and is thus
itself analytic. ConsequentlyE(z) is analytic in the whole of the open disk|z| < ρ.

It remains to prove that the radius of convergence ofE(z) is exactly equal toρ.
To that purpose it suffices to observe thatE(z), as given by (56), satisfies

E(x) → +∞ as x→ ρ−.

Let N be an arbitrarily large but fixed integer. It is possible to select a positivexN

sufficiently close toρ with xN < ρ, such that theN th iterateσ[N ](xN ) is larger than
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FIGURE 17. Left: the circle of convergence ofE(z) and its fractal domain of analyticity
(in gray with darker areas representing slower convergenceof iterates ofσ). Right: the
ratio En/(ϕ

nn−1) plotted againstlog n for n = 1 . . 500 confirms thatEn ⊲⊳ ϕn and
illustrates the periodic fluctuations expressed by Equation (58).

1
2 (the functionσ[N ](x) admitsρ as a fixed point and it is continuous and increasing at
ρ). Given the sum expression (56), this entails the lower boundE(xN ) > N

2 for such
anxN < ρ. ThusE(x) is unbounded asx→ ρ− andρ is a singularity.

The dominant positive real singularity ofE(z) is thusρ = ϕ−1, and the Expo-
nential Growth Formula gives:

PROPOSITIONIV.6. The number of balanced 2–3 trees satisfies:

(57) [zn]E(z) ⊲⊳
(1 +

√
5

2

)n
.

It is notable that this estimate could be established so simply by a purely qualita-
tive examination of the basic functional equation and of a fixed point of the associated
iteration scheme.

The complete asymptotic analysis of theEn requires the full power of singular-
ity analysis methods to be developed in Chapter VI. Equation(58) below states the
end result, which involves fluctuations that are clearly visible on Figure 17. There is
overconvergence of the representation (56), that is, convergence in certain domains
beyond the disc of convergence ofE(z). Figure 17 displays the domain of analyticity
of E(z) and reveals its fractal nature.

� 46. Quadratic convergence.First, forx ∈ [0, 1
2
], one hasσ(x) ≤ 3

2
x2, so thatσ[j](x) ≤

(3/2)2
j−1 x2j

. Second, forx ∈ [0, A], whereA is any number< ρ, there is a numberkA such

thatσ[kA](x) < 1
2
, so thatσ[k](x) ≤ (3/2) (3/4)2

k−kA
. Thus, for anyA < ρ, the series of

iterates ofσ is quadratically convergent whenz ∈ [0, A]. �
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� 47. The asymptotic number of 2–3 trees.This analysis is from [299, 301]. The number of
2–3 trees satisfies asymptotically

(58) En =
ϕn

n
Ω(log n) +O

„
ϕn

n2

«
,

whereΩ is a periodic function with mean value(φ log(4 − ϕ))−1 .
= 0.71208 and period

log(4− φ)
.
= 0.86792. Thus oscillations are inherent inEn. A plot of the ratioEn/(φ

n/n) is
offered in Figure 17. �

IV. 7.3. Complete asymptotics of a functional equation.George Pólya (1887–
1985) is mostly remembered by combinatorialists for being at the origin of Pólya
theory, a branch of combinatorics that deals with the enumeration of objects invariant
under symmetry groups. However, in his classic article [318, 320] which founded
this theory, Pólya discovered at the same time a number of startling applications of
complex analysis to asymptotic enumeration14 . We detail one of these now.

The combinatorial problem of interest here is the determination of the numberMn

of chemical isomeres of alcoholsCnH2n+1OH without asymmetric carbon atoms.
The OGFM(z) =

∑
nMnz

n that starts as (EISA000621)

(59) M(z) = 1 + z + z2 + 2z3 + 3z4 + 5z5 + 8z6 + 14z7 + 23z8 + 39z9 + · · · ,
is accessible through a functional equation:

(60) M(z) =
1

1 − zM(z2)
.

Iteration of the functional equation leads to a continued fraction representation,

M(z) =
1

1 − z

1 − z2

1 − z4

. . .

,

from which Pólya found:

PROPOSITION IV.7. Let M(z) be the solution analytic around 0 of the functional
equation

M(z) =
1

1 − zM(z2)
.

Then, there exist constantsK, β, andB > 1, such that

Mn = K · βn
(
1 +O(B−n)

)
, β

.
= 1.68136 75244, K

.
= 0.36071 40971.

PROOF. We offer two proofs. The first one is based on direct consideration of the
functional equation and is of a fair degree of applicability. The second one, following
Pólya, makes explicit a special linear structure present in the problem. As suggested
by the main estimate, the dominant singularity ofM(z) is a simple pole.

14In many ways, Pólya can be regarded as the grand father of thefield of analytic combinatorics.



IV. 7. SINGULARITIES AND FUNCTIONAL EQUATIONS 271

First proof. By positivity of the functional equation,M(z) dominates coef-
ficientwise any GF(1 − zM<m(z2))−1, whereM<m(z) :=

∑
0≤j<mMnz

n is
the mth truncation ofM(z). In particular, one has the domination relation (use
M<2(z) = 1 + z)

M(z) � 1

1 − z − z3
.

Since the rational fraction has its dominant pole atz
.
= 0.68232, this implies that

the radiusρ of convergence ofM(z) satisfiesρ < 0.69. In the other direction, since
M(z2) < M(z) for z ∈ (0, ρ), then, one has the numerical inequality

M(z) ≤ 1

1 − zM(z)
, 0 ≤ z < ρ.

This can be used to show (Note 48) that the Catalan generatingfunctionC(z) = (1−√
1 − 4z)/(2z) is a majorant ofM(z) on the interval(0, 1

4 ), which implies thatM(z)

is well defined and analytic forz ∈ (0, 1
4 ). In other words, one has14 ≤ ρ < 0.69.

Altogether, the radius of convergence ofM lies strictly between 0 and 1.

� 48. Alcohols, trees, and bootstrapping.SinceM(z) starts as1 + z + z2 + · · · while
C(z) starts as1 + z + 2z2 + · · · , there is a small interval(0, ǫ) such thatM(z) ≤ C(z). By
the functional equation ofM(z), one hasM(z) ≤ C(z) for z in the larger interval(0,

√
ǫ).

Bootstrapping then shows thatM(z) ≤ C(z) for z ∈ (0, 1
4
). �

Next, asz → ρ−, one must havezM(z2) → 1. (Indeed, if this was not the
case, we would havezM(z2) < A < 1 for someA. But then, sinceρ2 < ρ, the
quantity(1 − zM(z2))−1 would be analytic atz = ρ, a clear contradiction.) Thus,ρ
is determined implicitly by the equation

ρM(ρ2) = 1, 0 < ρ < 1.

One can estimateρ numerically (Note 49), and the statement follows withβ = 1/ρ.
(Pólya determinedρ to five decimals by hand!)

The previous discussion also implies thatρ is a pole ofM(z), which must be
simple (since∂z(zM(z2)

∣∣
z=ρ

> 0). Thus

(61) M(z) ∼
z→ρ

K
1

1 − z/ρ
, K :=

1

ρM(ρ2) + 2ρ3M ′(ρ2)
.

The argument shows at the same time thatM(z) is meromorphic in|z| < √
ρ
.
= 0.77.

That ρ is the only pole ofM(z) on |z| = ρ results from the fact thatzM(z2) =
z+z3+ · · · can be subjected to the type of argument encountered in the context of the
Daffodil Lemma (see the discussion of quasi-inverses in theproof of Proposition IV.3,
p. 253). The translation of the singular expansion (61) thenyields the statement.

� 49. The growth constant of molecules.The quantityρ can be obtained as the limit of the
ρm satisfying

Pm
n=0Mnρ

2n+1
m = 1, together withρ ∈ [ 1

4
, 0.069]. In each case, only a few

of theMn (provided by the functional equation) are needed. One obtains: ρ10
.
= 0.595,

ρ20
.
= 0.594756, ρ30

.
= 0.59475397, ρ40

.
= 0.594753964. This algorithms constitutes a

geometrically convergent scheme with limitρ
.
= 0.59475 39639. �
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Second proof.First, a sequence of formal approximants follows from (60) starting
with

1,
1

1− z ,
1

1− z

1− z2

=
1− z2

1− z − z2
,

1

1− z

1− z2

1− z4

=
1− z2 − z4

1− z − z2 − z4 + z5
,

which permits us to compute any number of terms of the seriesM(z). Closer exami-
nation of (60) suggests to set

M(z) =
ψ(z2)

ψ(z)
,

whereψ(z) = 1 − z − z2 − z4 + z5 − z8 + z9 + z10 − z16 + · · · . Back substitution
into (60) yields

ψ(z2)

ψ(z)
=

1

1 − z
ψ(z4)
ψ(z2)

or
ψ(z2)

ψ(z)
=

ψ(z2)

ψ(z2) − zψ(z4)
,

which showsψ(z) to be a solution of the functional equation

ψ(z) = ψ(z2) − zψ(z4), ψ(0) = 1.

The coefficients ofψ satisfy the recurrence

ψ4n = ψ2n, ψ4n+1 = −ψn, ψ4n+2 = ψ2n+1, ψ4n+3 = 0,

which implies that their values are all contained in the set{0,−1,+1}.
Thus,M(z) appears to be the quotient of two function,ψ(z2)/ψ(z), each analytic

in the unit disc, andM(z) is meromorphic in the unit disc. A numerical evaluation
then shows thatψ(z) has its smallest positive real zero atρ

.
= 0.59475, which is a

simple root. The quantityρ is thus a pole ofM(z) (since, numerically,ψ(ρ2) 6= 0).
Thus

M(z) ∼ ψ(ρ2)

(z − ρ)ψ′(ρ)
=⇒ Mn ∼ − ψ(ρ2)

ρψ′(ρ)

(
1

ρ

)n

.

Numerical computations then yield Pólya’s estimate. Et voilà! �

The example of Pólya’s alcohols is exemplary, both from a historical point of
view and from a methodological perspective. As the first proof of Proposition IV.7
demonstrates, quite a lot of information can be pulled out ofa functional equation
without solving it. (A similar situation will be encountered in relation to coin foun-
tains, Example V.7, p. 299.) Here, we have made great use of the fact that iff(z) is
analytic in|z| < r and somea priori bounds imply the strict inequalities0 < r < 1,
then one can regard functions likef(z2), f(z3), and so on, as “known” since they are
analytic in the disc of convergence off and even beyond, a situation also evocative
of our earlier discussion of Pólya operators in SubsectionIV. 4. Globally, the lesson
is that functional equations, even complicated ones, can beused to bootstrap the local
singular behaviour of solutions, and one can often do so evenin the absence of any
explicit generating function solution. The transition from singularities to coefficient
asymptotics is then a simple jump.
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� 50. An arithmetic exercise.The coefficientsψn = [zn]ψ(z) can be characterized simply
in terms of the binary representation ofn. Find the asymptotic proportion of theψn for n ∈
[1 . . 2N ] that assume each of the values0, +1, and−1. �

IV. 8. Perspective

In this chapter, we have started examining generating functions under a new light.
Instead of being merelyformal algebraicobjects—power series—that encodeex-
actly counting sequences, generating functions can be regarded as analyticobjects—
transformations of the complex plane—whose singularitiesprovide a wealth of infor-
mation concerningasymptoticproperties of structures.

Singularities provide a royal road to coefficient asymptotics. We could treat here,
with a relatively simple apparatus, singularities that arepoles. In this perspective,
the two main statements of this chapter are the theorems relative to the expansion of
rational and meromorphic functions, (Theorems IV.9 and IV.10). These are classical
results of analysis. Issai Schur (1875–1941) is to be counted amongst the very first
mathematicians who recognized their rôle in combinatorial enumerations (denumer-
ants, Example 5, p. 244). The complex-analytic thread was developed much further by
George Pólya in his famous paper of 1937 (see [318, 320]), which Read in [320, p. 96]
describes as a “landmark in the history of combinatorial analysis”. There, Pólya laid
the groundwork of combinatorial chemistry, the enumeration of objects under group
actions, as well as the complex-asymptotic theory of graphsand trees.

The present chapter serves as the foundation stone of a rich theory to be devel-
oped in future chapters. In particular the method of singularity analysis exposed in
Chapter VI considerably extends the range of applicabilityof the Second Principle to
functions having singularities appreciably more complicated that poles (e.g., the ones
involving fractional powers, logarithms iterated logarithms, and so on).

As we hope to convince our reader, a consequence of the theorydeveloped in
Part B is that most combinatorial classes amenable to symbolic descriptions can be
thoroughly analysed, as regards their asymptotic properties, by means of a selected
collection of basic theorems of complex analysis. The case of structures like balanced
trees and molecules, where only a functional equation of sorts is available, is exem-
plary.

This chapter has been designed to serve as a refresher of basic complex analysis, with
special emphasis on methods relevant for analytic combinatorics. See Figure 18 for a concise
summary of results. References most useful for the discussion given here include the books of
Titchmarsh [382] (oriented towards classical analysis), Whittaker and Watson [402] (stressing
special functions), Dieudonné [98], Hille [214], and Knopp [237]. Henrici [212] presents com-
plex analysis under the perspective of constructive and numerical methods, a highly valuable
point of view for this book.

De Bruijn’s classic booklet [86] is a wonderfully concrete introduction to effective asymp-
totic theory, and it contains many examples from discrete mathematics thoroughly worked out
using a complex-analytic approach. The use of such analyticmethods in combinatorics was
pioneered in modern times by Bender and Odlyzko, whose first publications in this area go
back to the 1970’s. The state of affairs in 1995 regarding analytic methods in combinatorial
enumeration is superbly summarized in Odlyzko’s scholarlychapter [301]. Wilf devotes his
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Basics. The theory of analytic functions benefits of the equivalencebetween two notions,
analyticity and differentiability. It is the basis of a powerful integral calculus, much different
from its real variable counterpart. The following two results can serve as “axioms” of the theory.

THEOREM IV.1 [Basic Equivalence Theorem] (p. 219): Two fundamentalnotions are equiv-
alent, namely, analyticity (defined by convergent power series) and holomorphy (defined by
differentiability). Combinatorial generating functions, a priori determined by their expansions
at0 thus satisfy the rich set of properties associated with these two equivalent notions.
THEOREM IV.2 [Null Integral Property] (p. 221): The integral of an analytic function along a
simple loop (closed path that can be contracted to a single point) is 0. Consequently, integrals
are largely independent of particular details of the integration contour.

Residues.For meromorphic functions (functions with poles), residues are essential. Co-
efficients of a function can be evaluated by means of integrals. The following two theorems
provide connections between local properties of a function(e.g., coefficients at one point) and
global properties of the function elsewhere (e.g., an integral along a distant curve).

THEOREM IV.3 [Cauchy’s residue theorem] (p. 222): In the realm of meromorphic functions,
integrals of a function can be evaluated based on local properties of the function at a few specific
points, its poles.

THEOREM IV.4 [Cauchy’s Coefficient Formula] (p. 224): This is an almost immediate conse-
quence of Cauchy’s residue theorem: The coefficients of an analytic function admit of a repre-
sentation by a contour integral. Coefficients can then be evaluated or estimated using properties
of the function at points away from the origin.

Singularities and growth.Singularities (places where analyticity stops), provide essential
information on the growth rate of a function’s coefficients.The “First Principle” relates the
exponential growth rate of coefficients to the location of singularities.

THEOREM IV.5 [Boundary singularities] (p. 227): A function (given by its series expansion
at0) always has a singularity on the boundary of its disc of convergence.

THEOREM IV.6 [Pringsheim’s Theorem] (p. 229): This theorem refines the previous one for
functions with non-negative coefficients. It implies that,in the case of combinatorial generating
functions, the search for a dominant singularity can be restricted to the positive real axis.

THEOREM IV.7 [Exponential Growth Formula] (p. 231): The exponential growth rate of co-
efficients of is dictated by thelocationof the singularities nearest to the origin—thedominant
singularities.

THEOREM IV.8 [Computability of growth] (p. 237): For any combinatorial class that is nonre-
cursive (iterative), the exponential growth rate of coefficients is invariably a computable number.
This statement can be regarded as the first general theorem ofanalytic combinatorics.

Coefficient asymptotics.The “Second Principle” relates subexponential factors of coef-
ficients to the nature of singularities. For rational and meromorphic functions, everything is
simple.

THEOREM IV.9 [Expansion of rational functions] (p. 243): Coefficients of rational functions
are explicitly expressible in terms of the poles, given their location (values) and nature (multi-
plicity).

THEOREMIV.10 [Expansion of meromorphic functions] (p. 245): Coefficients of meromorphic
functions admit of a precise asymptotic form with exponentially small error terms, given the
location and nature of the dominant poles.

FIGURE 18. A summary of the main results of Chapter IV.
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Chapter 5 ofGeneratingfunctionoloy[406] to this question. The books by Hofri [215] and Sz-
pankowski [372] contain useful accounts in the perspective of analysis of algorithms. See also
our book [353] for a light introduction and the chapter by Vitter and Flajolet [396] for more on
this specific topic.





V

Applications of Rational and
Meromorphic Asymptotics

Analytic methods are extremely powerful and when they apply,
they often yield estimates of unparalleled precision.

— ANDREW ODLYZKO [301]
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The primary goal of this chapter is to provide combinatorialillustrations of the power
of complex analytic methods, and specifically of the rational–meromorphic frame-
work. At the same time, we shift gears and envisage counting problems at a new level
of generality. Precisely, we consider combinatorial-analytic schemas, which, broadly
speaking, are widefamiliesof combinatorial types amenable to a common analytic
framework and associated with a common collection of asymptotic properties.

The first schema comprises regular specifications and languages, whicha priori
leads to rational generating functions and thus systematically resort to Theorem IV.9.
This is not the end of the story, however, since in general oneis interested not just
in a single set of combinatorial objects, but rather in a whole family of classes. The
case of patterns in words at the end of the previous chapter has already exemplified
this situation. Here, we extend the analysis to the determination of longest runs, cor-
responding to maximal sequences of good (or bad) luck in games of chance. In so
doing, we develop analytical methods that apply in many cases to largest components.
We then consider an important class of regular specifications, the ones that are built on
nested sequences and combinatorially correspond to lattice paths. Besides providing
a precise quantification of height in Dyck paths, this also leads to the determination of
height in random (general) Catalan trees. The treatment is to a large extent made pos-
sible because nested sequence constructions lead naturally to nested quasi-inverses,
that is, continued fractions. And continued fractions enjoy a wealth of algebraic and
analytic properties.

277
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Next, we discuss a general schema of analytic combinatoricsknown as thesuper-
critical sequenceschema, which provides a prime illustration of the power of mero-
morphic asymptotics while being of a very wide applicability. For instance, one can
predict very precisely (and easily) the number of ways that an integer can be decom-
posed additively as a sum of primes (or twin primes), this even though many details
of the distribution of primes are still surrounded in mystery.

Last we discuss positive linear systems of generating functions: although the re-
sulting generating functions are once more bound to be rational, there is benefit in
examining them as defined implicitly (rather than solving explicitly) and work out
singularities directly. The crucial technical tool there is the Perron-Frobenus theory
of nonnegative matrices, whose importance has been long recognized in the theory
of finite Markov chains. A general discussion of singularities can then be conducted,
leading to valuable consequences on a variety of models—paths in graphs, finite au-
tomata, and transfer matrices.

All these cases illustrate the power of rational and meromorphic asymptotics.
The last example discussed treats locally constrained permutations, where rational
functions even provide an entry to the world of permutations.

Universality is a term originating with statistical physics that is also nowadays
increasingly used in probability theory. By universality is meant a collection of key
properties that are shared by a wide family of models and are largely independent of
particulars of each models. For instance, in statistical physics, random placements
of pieces or random walks on a regular lattice share common properties that do not
depend on the particular geometry of the lattice, whether square, triangular, or honey-
comb. In probability theory, it is established that sums of random variable converge
to a Gaussian limit, so that the Gaussian law is universal forsums of random vari-
ables (under suitably mild moment conditions). In this spirit, we can describe the
supercritical sequence as universal accross combinatorics as it covers a large family
of models simply characterized by the presence of an external sequence construction
(F = S(G)) accompanied with a natural analytic assumption (“supercriticality”).
Alignments, compositions, and surjections for instance find themselves sheltered un-
der a common umbrella and analytic theory tells us that theymustshare many features,
like having a linear number of components in the mean and withhigh probability, an
asymptotically predetermined proportion of components ofeach possible type, and so
on. In a similar spirit, one can regard exponential-polynomial behaviour as universal
across all problems described by regular expressions (Sections V. 1 and V. 2) or by
finite state models (Section V. 4 and V. 5).

V. 1. Regular specification and languages

A combinatorial specification is said to beregular if it is nonrecursive (“itera-
tive”) and it involves only the constructions of Atom, Union, Product, and Sequence;
see Chapter I. For convenience and without loss of analytic generality, we consider
here unlabelled structures. Since the operators translating these constructions into gen-
erating functions are all of a rational nature, it follows that the corresponding OGFs
are invariably rational. Then Theorem IV.9 applies directly:
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THEOREMV.1 (Regular specification asymptotics).LetC be an unlabelled class that
is described by a regular specification. Then the coefficients of the OGFC(z) satisfy
an exponential-polynomial formula,

(1) Cn ≡ [zn]C(z) =

m∑

j=1

Πj(n)α−n
j ,

for a family of algebraic numbersαj (the poles ofC(z)) and a family of polynomi-
alsΠj .

If a single singularityα dominates, then a simple asymptotic formula results:
Cn ∼ cnkα−n. The examples of the present section are all of this type, andthey are so
for reasons that are obvious in each particular case. In all generality, the exponential-
polynomial form of Equation (1) may involve severalα’s of the same modulus. How-
ever, from the discussion of periodicities in the previous chapter, the dominant direc-
tions ofC(z) are always commensurate with2π (Berstel’s Theorem [40] extended in
Proposition IV.3), and this in turn implies (Note 1 below) a simple form for “sections”
of the sequence(Cn). Furthermore, we shall see later strong structural conditions
(Perron-Frobenius Theory) ensuring both simplicity and uniqueness of the dominant
pole. In summary, an asymptotic formcnkα−n is the rule for coefficients of rational
functions arising from combinatorial specifications.

� 1.Regular specifications and periodicities.Soittola [358] enounced several results that make
it possible to extract legible asymptotics from exponential polynomials when some positivity
condition is satisfied. In particular, letf(z) ∈ Q(z) be the OGF corresponding to a regular
specification. Then there exists a computable integerd ≥ 1 (thesplitting index) such thateach
d-section of the sequence(fn), namely(fr+nd)n for somer with 0 ≤ r < d, satisfies an
asymptotic formula of the form,

fdn+r = βn
d Πr(n) +

mrX

j=1

βn
r,jΠr,j(n),

with βr > |βr,j | for all j, where eachmj is in Z≥0 and theΠr,Πr,j are polynomials. (Note:
This statement neither implies nor requires simplicity of the dominant poles.) �

General trees of bounded height, denumerants, as well as partitions and compo-
sitions into summands at mostr constitute prime examples of structures admitting
regular specifications.

The name “regular specification” has been chosen so as to be inagreement with
the notions of regular expression and regular language fromformal language theory
introduced in Chapter I. We saw there that a language is called S–regular (“spec-
ification regular”) if it is combinatorially isomorphic with a classR which admits a
regular specification. The most frequent case is that of a language specified by aregu-
lar expression, involving letters of the alphabet, union, catenation, andKleene star. If
the regular expression is unambiguous, i.e., every word is uniquely parsable (see AP-
PENDIX A: Regular languages, p. 622), it is combinatorially isomorphic to a regular
specification. In the general case, one may encounter regular expressions that are am-
biguous; then, the systematic application of the translation rules amounts to counting
every word with its multiplicity, that is, the number of waysin which it can be parsed.
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PROPOSITIONV.1 (Regular expression counting).Given a regular expressionR (as-
sumed to be of finite ambiguity), the ordinary generating functionLR(z) of the lan-
guageL(R), countingwith multiplicity, is given by the inductive rules:

ǫ 7→ 1, a 7→ z, ∪ 7→ +, · 7→ ×, ⋆ 7→ (1 − (.))−1.

In particular, if R is unambiguous, then the ordinary generating function satisfies
LR(z) = L(z) and is given directly by the rules above. In both cases, the coefficients
[zn]LR(z) admit of an exponential-polynomial form.

Note. If R is ambiguous, it is known that one can build an unambigousR′ such
that L(R) = L(R′). Consequently, the conclusions of Proposition V.1 extend in
principle to counting without multiplicities words inanyregular language. One then
has however to rely on an indirect automaton construction (see the appendices) whose
computational complexity is in general exponential.
PROOF. Formal rules associate to any proper regular expressionR a specificationR:

ǫ 7→ 1 (the empty object), a 7→ Za (Za an atom),
∪ 7→ +, · 7→ ×, ⋆ 7→ SEQ(.)

It is readily recognized that this mapping is such thatR generates exactly the collec-
tion of all parsings of words according toR. The translation rules of Chapter I then
yield the first part of the statement. The second part followssinceL(z) = LR(z)
wheneverR is unambiguous. �

EXAMPLE 1. A potpourri of regular specifications.We briefly recapitulate here a number
of combinatorial problems already encountered in ChaptersI–III. that are reducible to regular
specifications.

Compositions of integers(Section I.3) are specified byC = S(S≥1(Z)), whence the OGF
(1−z)/(1−2z) and the closed formCn = 2n−1, an especially trivial exponential-polynomial
form. Polar singularities are also present for compositions into k summands (Sk(S≥1(Z))
and for compositions whose summands are restricted to the interval [1, r] (S(S1 . . r(Z)), with
corresponding generating functions

zk

(1− z)k
,

1− z
1− 2z + zr+1

.

In the first case, one has an explicit form for the coefficients,
`

n−1
k−1

´
, which is also a particular

exponential-polynomial form (with the basis of the exponential being 1). The second case
requires a dedicated analysis of the dominant polar singularity, a task that is undertaken in
Example 2 below for the closely related problem of determining longest runs in random binary
words. We shall also see later (Section V. 3 and Example 9) that a rich class of summand-
restricted compositions resorts to the framework of meromorphic asymptotics.

Integer partitionsinvolve the multiset construction. However, when summandsare re-
stricted to the interval[1 . . r], the specification satisfies the combinatorial identity (Section I.3),

M(S1 . . r(Z)) ≃ S(Z)×S(Z×2)× · · ·S(Z×r),

corresponding to the OGF
rY

j=1

1

1− zj
.
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This case has already served as a leading example in our discussion of denumerants in Ex-
ample 5, where the analysis of the pole at 1 furnishes the dominant asymptotic behaviour
(nk−1/(k!(k − 1)!)) of these special partitions.

Wordslead to many problems that are prototypical of the regular specification framework.
In Section 1.4, we saw that one could give a regular expression describing the set of words
containing the patternabb, from which the exact and asymptotic forms of counting coefficients
derive. The case of long runs of a single letter is similarly amenable to to regular specifications
and is detailed below. Note however that, for a general pattern p, the generating functions of
words constrained to include (or dually exclude)p are best based on the inclusion-exclusion
argument of Section III.6.4. The corresponding asymptoticanalysis has already served as a
pilot example in Section IV. 6.3 of the previous chapter.

Words can also be analysed under the Bernoulli model, where letter i is selected with
probabilitypi; cf Section III.5 for a general discussion. We saw there thatone can put regular
specifications to good use in order to analyse the mean numberof records in a random word.

Set partitionsare typically labelled objects. However, when suitably constrained, they
can sometimes be encoded by words described by regular expressions; see Section I.4.3 for
partitions intok classes, where the OGF has been found to be

S(k)(z) =
zk

(1− z)(1− 2z) · · · (1− kz) implying S(k)
n ∼ kn

k!
,

and the asymptotic estimate results from the dominant pole at 1/k.
Treeshave generating functions that, in all nondegenerate cases, are beyond rational func-

tions. However, the generating function of general (Catalan) trees of height≤ h is rational;
see Section III.7 relative to extremal parameters. The corresponding analysis is detailed below,
Section V. 2 and Example 6, in relation to the enumeration of Dyck paths in a strip. �

� 2. Partially commutative monoids. Let W = A⋆ be the set of all words over a finite
alphabetA whose letters are also considered as formal indeterminates. Consider a setC of
commutation rules between pairs of elements ofA. For instance, ifA = {a, b, c}, thenC =
{ab = ba, ac = ca}means thata commutes with bothb andc, butbc is not a commuting pair:
bc 6= cb. LetM = W/[C] be the set of equivalent classes of words (monomials) under the
rules induced byC.M is called apartially commutative monoidor a trace monoid.

If A = {a, b}, then the two possibilities forC areC = ∅ andC := {ab = ba}. Normal
forms forM are given by the regular expressions(a+b)⋆ anda⋆b⋆ corresponding to the OGFs

1

1− a− b ,
1

1− a− b+ ab
.

If A = {a, b, c}, the possibilities forC, the corresponding normal forms, and the OGFsM are
as follows. IfC = ∅, thenM≃ (a+ b)⋆ with OGF(1− a− b− c)−1; the other cases are

ab = ba ab = ba, ac = ca ab = ba, ac = ca, bc = cb
(a⋆b⋆c)⋆a⋆b⋆ a⋆(b+ c)⋆ a⋆b⋆c⋆

1

1− a− b− c+ ab

1

1− a− b− c+ ab+ ac+ bc

1

1− a− b− c+ ab+ ac+ bc− abc .

Cartier and Foata [68] have proved the general result (based on extended Möbius inversion),

M =

 X

F

(−1)|F |F

!−1

,

in which the sum is over all monomialsF formed with distinct letters that all commute pairwise.
Goldwurm and Santini [188] have proved that[zn]M(z) ∼ K · αn for someK,α > 0. �
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EXAMPLE 2. Longest runs in wordsThe analysis of longest runs in words provides an
illustration of the technique of localizing dominant singularities in rational functions and of the
corresponding coefficient extraction process. In Chapter I, we have determined the family of
OGFs describing the lengthL of the longest run of consecutivea’s in a binary word over the
alphabetW = {a, b}. The counting GF associated with the property(L < k) for a fixedk is
a rational function. Determining the probability distribution of L over the set of all words of
lengthn is then equivalent to analysing thewholefamily of GFs indexed byk. The probabilistic
problem is a famous one, discussed by Feller in [123], as it represents a basic question in the
analysis of runs of good (or bad) luck in a succession of independent events. Our presentation
closely follows an insightful note of Knuth [241] whose research was motivated by the related
problem of analysing carry propagation in certain binary adders.

PROPOSITIONV.2. The longest run parameterL taken over the set of binary words of lengthn
(endowed with the uniform distribution) satisfies, forh in any bounded set ofZ, the uniform
estimate1

(2) Pn (L < ⌊lgn⌋+ h) = e−α(n)2−h

+O

„
log n

n

«
, α(n) := 2{lg n}.

In particular, the mean and variance satisfyEn(L) = lgn + O(1) andVn(L) = O(1), and
the distribution is concentrated around its mean.

The probability distribution in (2) is called adouble exponential distribution(Figure 1). In
fact, the formula is anasymptoticone. It does not represent a uniquelimit distribution in the
usual sense, but rather a whole family depending on the fractional part oflgn, that is, on the
wayn is placed with respect to powers of 2. This phenomenon is further reflected by the fact
that the second asymptotic term in the mean is subject to fluctuations (albeit of a tiny amplitude),
see the discussion ofΦ(x) below.
PROOF. The specificationW〈k〉 = a<kS(ba<k) describes those words for which this length
is strictly less thank. The expression of the OGF,

(3) W 〈k〉(z) =
1− zk

1− z ·
1

1− z 1−zk

1−z

=
1− zk

1− 2z + zk+1
,

results. Quite clearly, one should locate the dominant pole, separate it from the other poles (as
this leads to constructive error terms), as well as estimatethe contribution to the coefficients
arising from this dominant pole.

(i) Locating the dominant pole.The OGFW 〈k〉 has, by the first form of (3) a dominant
pole ρk which is a root of the equation1 = s(ρk), wheres(z) = z(1 − zk)/(1 − z). We
considerk ≥ 2. Sinces(z) is an increasing polynomial ands(0) = 0, s( 1

2
) < 1, s(1) = 1, the

root ρk must lie in the open interval( 1
2
, 1). In fact, as one easily verifies, the conditionk ≥ 2

guarantees thats(0.6) > 1, hence the refined estimate

(4)
1

2
< ρk <

3

5
(k ≥ 2).

It now becomes possible to derive very precise estimates by bootstrapping. (This technique is a
form of iteration for approaching a fixed point—its use in thecontext of asymptotic expansions
is detailed in De Bruijn’s book [86].) Writing the defining equation forρk as a fixed point
equation,

z =
1

2
(1 + zk),

1The symbollg x denotes the binary logarithm,lgx = log2 x.
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and making use of the rough estimates (4) yields next

(5)
1

2

„
1 + (

1

2
)k

«
< ρk <

1

2

„
1 + (

3

5
)k

«
.

Thus,ρk is exponentially close to1
2
, and a further iteration from (5) shows

(6) ρk =
1

2
+

1

2k+1
+O

„
k

22k

«
,

which constitutes a very precise estimate.

(ii) Contribution from the dominant pole.A straight calculation provides the value of the
residue,

(7) Rn,k := −Res
h
W 〈k〉(z)z−n−1; z = ρk

i
=

1− ρk
k

2− (k + 1)ρk
ρ−n−1

k ,

which is expected to provide the main approximation to the coefficients ofW 〈k〉 asn → ∞.

The meaning of (7) is better grasped if one notes that the residue resembles2ne−n/2k

. We shall
return to such approximations shortly.

(iii) Separation of the subdominant poles.Consider the circle|z| = 3
4

and take the second
form of the denominator ofW 〈k〉, namely

1− 2z + zk+1.

In view of Rouché’s theorem, we may regard this polynomial as the sumf(z) + g(z), where
f(z) = 1 − 2z andg(z) = zk+1. The termf(z) has on the circle a modulus that varies
between1

2
and 5

2
; the termg(z) is at most27

64
for anyk ≥ 2. Thus, on the circle|z| = 3

4
, one

has|g(z)| < |f(z)|, so thatf(z) andf(z) + g(z) have the same number of zeros inside the
circle. Sincef(z) admitsz = 1

2
as only zero there, the denominator must also have a unique

root in |z| ≤ 3
4
, and that root must coincide withρk.

Similar arguments also give bounds on the error term when thenumber of words with
longest run of length at mostk is estimated by the residue (7) at the dominant pole. On the
disc |z| = 3

4
, the denominator ofW 〈k〉 stays bounded away from 0 (its modulus is at least

5
64

whenk ≥ 2, by previous considerations). Thus, the modulus of the remainder integral is
O((4/3)n), and in fact bounded from above by35(4/3)n. In summary, if we letqn,k represent
the probability that the longest run in a random word of lengthn is less thank, one has available
the main estimate

(8) qn,k := Pn(L < k) =
1− ρk

k

1− (k + 1)ρk
k/2

„
1

2ρk

«n+1

+O

„
(
2

3
)n

«
,

uniformlywith respect tok. Here is table of the numerical values of the quantities appearing in
the approximation ofqn,k when written under the formck · (2ρk)−n:

k ck · (2ρk)−n

2 1.17082 · 0.80901n

3 1.13745 · 0.91964n

4 1.09166 · 0.96378n

5 1.05753 · 0.98297n

10 1.00394 · 0.99950n
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FIGURE 1. The double exponential laws: Left, histograms forn at 2p (black),
2p+1/3 (dark gray), and2p+2/3 (light gray), wherex = k− lg n. Right, empirical
histograms for 1000 simulations withn = 100 (top) andn = 140 (bottom).

(iv) There finally remains to transform the main estimate (8) intothe limit form asserted
in the statement. First, the “tail inequalities”

(9) Pn

„
L <

3

4
lg n

«
= O

“
e−

1
2

4√n
”
, Pn (L ≥ 2 lg n) = O

„
1

n

«
,

describe the tail of the probability distribution ofLn. They derive from simple bounding tech-
niques applied to the main approximation (8) using (6). Thus, for asymptotic purposes, only a
small region aroundlgn needs to be considered.

Regarding the central regime, fork = lgn + x andx in [− 1
4

lg n, lg n], the approxima-
tion (6) ofρk and related quantities applies, and one finds

(2ρk)−n = exp
“
− n

2k
+O(kn2−2k)

”
= e−n/2k

„
1 +O(

log n

n
)

«
.

(This results from standard expansions like(1−a)n = e−na exp(O(na2)).) At the same time,
the coefficient of this quantity in (8) is

1 +O(kρk
k) = 1 +O

„
log n

n3/4

«
.

Thus a double exponential approximation holds (Figure 1) and for k = lg n + x with x in
[− 1

4
lgn, lgn], one has (uniformly)

(10) qn,k = e−n/2k
„

1 +O

„
log n

n3/4

««
.

In particular, upon settingk = ⌊lgn⌋ + h, the first part of the statement follows. (The floor
function takes into account the fact thatk must be an integer.)
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The mean and variance estimates derive from the fact that thedistribution quickly decays
at values away fromlg n while it satisfies (10 ) in the central region. The mean is given by

En(L) :=
X

h≥0

[1− Pn(L < h)] = Φ(n) +O

„
log2 n

n

«
, Φ(x) :=

X

h≥0

h
1− e−x/2h

i
.

Consider the three casesh < h0, h ∈ [h0, h1], andh > h1 with h0 = lg x − log log x and
h1 = lg x+ log log x, where the general term is (respectively) close to 1, between 0 and 1, and
close to 0. By summing, one finds elementarilyΦ(x) = lg x + O(log log x) asx → ∞, and
elementary ways of catching the nextO(1) term are discussed for instance in [353, p. 403].

The method of choice for precise asymptotics is to treatΦ(x) as a harmonic sum and apply
Mellin transform techniques (APPENDIX B: Mellin Transform, p. 646). The Mellin transform
of Φ(x) is

Φ⋆(s) :=

Z ∞

0

Φ(x)xs−1 dx =
Γ(s)

1− 2s
ℜ(s) ∈ (−1, 0).

The double pole ofΦ⋆ at 0 and the simple poles ats = 2ikπ
log 2

are reflected by the asymptotic
expansion:

Φ(x) = lg x+
γ

log 2
+

1

2
+P (lgx)+O(x−1), where P (w) =

X

k∈Z\{0}
Γ

„
2ikπ

log 2

«
e2ikπw.

The oscillating functionP (w) has amplitude of the order of10−6. (See [139, 241, 372] for
more on this topic.) The variance is similarly analysed. � The analysis
is closely related to the case of words excluding a patterns in Chapter IV. There, we conducted
a global analysis applicable to any pattern. Here, we have specialized the discussion to patterns
aaa· · · a and effectively extracted a whole family of limit distributions. What is striking is the
existence of aninfinite family of limit laws, which depend on the fractional part oflg n. �

� 3. Longest runs in Bernoulli sequences.Consider an alphabetA with letters independently
chosen according to the probability distribution{pj}. Then, the OGF of words where each
letter is repeated at mostk times derives from the construction of Smirnov words and is

W [k](z) =

 
1−

X

i

piz
1− (piz)

k

1− (piz)k+1

!−1

.

Let pmax be the smallest of thepj . Then the expected length of the longest run of any letter
is log n/ log pmax + O(1), and very precise quantitative information can be derived from the
OGFs by methods akin to Example 9 (Smirnov words and Carlitz compositions) in Chapter IV,
p. 249. �

The next batch of examples in this section develops the analysis of walks in a
special type of graphs. These examples serve two purposes: they illustrate further
cases of modelling by means of regular specifications, and, at the same time, provide
a bridge with the analysis of lattice paths in the next section.

EXAMPLE 3. Walks of the pure-birth type.Consider a walk on the nonnegative integers that
starts at 0 and is only allowed to either stay at the same placeor progress by an increment of+1.
Our goal is to enumerate the possible configurations that start from 0 and reach pointm − 1
in n steps. A step fromj to j + 1 will be encoded by a letteraj ; a step from statej to statej
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FIGURE 2. A simulation of 10 trajectories of the
pure-birth process tilln = 1024, with geometric
probabilities corresponding toq = 1/2, compared
to the curvelog2 x.

will be encoded bycj . A diagram representing these steps is then:

(11)

a a a0 1 2

c0 c1 c2

(Compare with (21).) The language encoding all legal walks from state 0 to statem− 1 can be
described by a regular expression,

H0,m−1 = (c0)
⋆a0(c1)

⋆a1 · · · (cm−2)
⋆am−2(cm−1)

⋆,

and the representation is certainly unambiguous. Symbolicly using letters as variables, the
corresponding ordinary multivariate generating functionis then

H0,m−1(~a,~c) =
a0a1 · · · am−2

(1− c0)(1− c1) · · · (1− cm−1)
.

Assume that the steps are assigned weights, withαj corresponding toaj andγj to cj .
Weights of letters are extended multiplicatively to words in the usual way (cf Chapter III). If in
addition, one takesγj = 1 − αj , one obtains a probabilistic weighting: the walker starts from
position 0, and, if atj, at each clock tick, she either stays at the same place with probability1−
αj or moves to the right with probabilityαj . The OGF of such weighted walks then becomes

(12) H0,m−1(z) =
α0α1 · · ·αm−2z

m−1

(1− (1− α0)z)(1− (1− α1)z) · · · (1− (1− αm−1)z)
,

and[zn]H is the probability for the walker to be found at positionj at (discrete) timen. This
walk process can be alternatively interpreted as a (discrete-time) purebirth processin the usual
sense of probability theory: There is a population of individuals and, at each discrete epoch, a
new birth may take place, the probability of a birth beingαj when the population is of sizej.

The form (12) readily lends itself to a partial fraction decomposition. The poles ofH are
at the points(1− αj)

−1 and one finds asz → (1− αj)
−1:

H0,m−1(z) ∼ rj,m−1(1− αj)

1− z(1− αj)
where rj,m−1 :=

α0α1 · · ·αm−2Q
k∈[0,m−1], k 6={j}

(αk − αj)
.

Thus, the probability of being in statem− 1 at timen is

[zn]H0,m−1(z) =
m−1X

j=0

rj,m−1(1− αj)
n+1.

This has the form of an alternating sum that can be evaluated in each particular instance.



V. 1. REGULAR SPECIFICATION AND LANGUAGES 287

An especially interesting case of the pure-birth walk is when the quantitiesαk are geomet-
ric: αk = qk+1 for someq with 0 < 1 < k. In that case, the probability of being in statem−1
aftern transitions becomes

m−1X

j=0

(−1)jq(
j
2)

(q)j(q)m−j−1
(1− qm−j−1)n+1, (q)j := (1− q)(1− q2) · · · (1− qj).

This corresponds to a stochastic progression in a medium with exponentially increasing hard-
ness or, equivalently, to the growth of a population where the current size of the population
adversely affects fertility in an exponential manner. On intuitive grounds, we expect an evo-
lution of the process to stay reasonably close to the curvey = log1/q x; see Figure 2 for a
simulation confirming this fact, which can be justified by means of the analytic formulæ just
described. This particular analysis is borrowed from [131], where it was initially developed in
connection with the algorithm called “approximate counting” to be described below. �

Note. The theory of pure birth processes is discussed under acalculational and
non measure-theoretic angle in the book by Bharucha-Reid [46]. See also theCourse
by Karlin and Taylor [229] for a concrete presentation.

EXAMPLE 4. Approximate Counting.Assume you need to keep a counter that is able to record
the number of certain events (say impulses) and should have the capability of keeping counts
till a certain maximal valueN . A standard information-theoretic argument (withℓ bits, one
can only keep track of2ℓ possibilities) implies that one needs⌈log2N + 1⌉ bits to perform the
task—a standard binary counter will indeed do the job. However, in 1977, Robert Morris has
proposed a way to maintain counters that only requires of theorder of log logN bits. What’s
the catch?

Morris’ elegant idea consists in relaxing the constraint ofexactness in the counting process
and, by playing with probabilities, tolerate a small error on the counts obtained. Precisely, his
solution maintains a random quantityQ which is initialized byQ = 0. Upon receiving an
impulse, one updatesQ according to the following simple procedure (withq ∈ (0, 1) a design
parameter):

procedure Update(Q);
with probability qQ+1 do Q := Q+ 1 (else keep Q unchanged).

When asked the number of impulses (number of times the updateprocedure was called) at any
moment, simply use the following procedure to return an estimate:

procedure Answer(Q);

output
q−Q − 1

1− q .

LetQn be the value of the random quantityQ aftern executions of the update procedure
andXn the corresponding estimate output by the algorithm. It is easy to verify (by recurrence
or by generating functions, see Note 4 below) that

(13) E(q−Qn) = n(1− q) + 1, so that E(Xn) = n.

Thus the answer provided at any instant is anunbiased estimator(in a mean value sense) of
the actual countn. On the other hand, the analysis of the geometric pure-birthprocess in the
previous example applies. In particular, the exponential approximation(1 − α)n ≈ e−nα in
conjunction with the basic formulæ show that for largen andm sufficiently near tolog1/q n,
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one has (asymptotically) thegeometric-birth distribution

(14) P

“
Qn = log1/q n+ x

”
=

∞X

j=0

(−1)jq(
j
2)

(q)j(q)∞
exp(−qx−j−1) + o(1).

(We refer to [131] for details.) Such calculations imply thatQn is with high probability (w.h.p.)
close tolog1/q n. Thus, ifn ≤ N , the value ofQn will be w.h.p. bounded from above by
(1 + ǫ) log1/q N , with ǫ a small constant. But this means that the integerQ, which can itself
be represented in binary, will only require

(15) log2 log n+O(1)

bits for storage, for fixedq.
A closer examination of the formulæ reveals that the accuracy of the estimate improves

considerably whenq becomes close to 1. Thestandard erroris defined as1
n

p
V(Xn) and it

measures (in a mean quadratic sense) the relative error to likely to be made. The variance of
Qn is, like the mean, determined by recurrence or generating functions, and one finds

(16) V(q−Qn) =

 
n

2

!
(1− q)3

q
,

1

n

p
V(Xn) ∼

r
1− q
q

.

This means that accuracy increases asq approaches 1 and, by suitably dimensioningq, one can
make it as small as desired. In summary, (13), (16), and (15) express the following property:
Approximate counting makes it possible to count tillN using only aboutlog logN bits of stor-
age, while achieving a standard error that is almost a constant and can be set to any prescribed
value.Morris’ trick is now fully understood.

For instance, withq = 2−1/16, it proves possible to count up to216 = 65536 using only
8 bits (instead of 16), with an error likely not to exceed 20%.Naturally, there’s not too much
reason to appeal to the algorithm when asinglecounter needs to be managed. (Everybody can
afford a few bits!) Approximate Counting turns out to be useful when a very large number of
counts need to be keptsimultaneously. It constitutes one of the early examples of a probabilistic
algorithm in the management of large volumes of data, also known asdata mining.

Functions akin to those of (14) also surface in other areas ofprobability theory. Guillemin,
Robert, and Zwart [202] have detected them in processes that combine an additive increase and
a multiplicative decrease (AIMD processes), in a context motivated by the adaptive transmis-
sion of “windows” of varying sizes in large communication networks (the TCP protocol of the
internet). Biane, Bertoin, and Yor [44] encountered a function identical to (14) in their study of
exponential functionals of Poisson processes. �

� 4. Moments ofq−Qn . It is a perhaps surprising fact that any integral moment ofq−Qn is a
polynomial inn andq, like in (13), (16). To see it, define

Φ(w) ≡ Φ(w, ξ, q) :=
X

m≥0

qm(m+1)/2 ξmwm

(1 + ξq)(1 + ξq2) · · · (1 + ξqm+1)
.

By (12), one has
X

m≥0

H0,mw
m =

1

1− zΦ

„
w;

z

1− z , q
«
.

On the other hand,Φ satisfiesΦ(w) = 1− qξ(1− w)Φ(qw), hence theq–identity,

Φ(w) =
X

j≥0

(−qξ)j
h
(1−w)(1− qw) · · · (1− qj−1w)

i
,
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which resorts toq-calculus2. ThusΦ(q−r; ξ, q) is a polynomial for anyr ∈ Z≥0, as the ex-
pansion terminates. See Prodinger’s study [326] for connections with basic hypergeometric
functions and Heine’s transformation. �

Our last example makes use of regular expressions in order toestimate moments.
Note that ambiguous representations are purposely used to accomplish the task.

EXAMPLE 5. Occurrences of “hidden” patterns in texts.Fix an alphabetA = {a1, . . . , ar} of
cardinalityr and assume a probability distribution onA to be given, withpj the probability of
letteraj . We consider the Bernoulli model onW = S(A), where the probability of a word is
the product of the probabilities of its letters (cf Section III.5). A word p = y1 · · · yk called the
pattern is fixed. The problem is to gather information on the random variableX representing
the number of occurrences ofp in the setWn, where occurrences as a“hidden pattern”, i.e.,
as asubsequence, are counted (Section I.4.1). This is a basic example where counting with
ambiguity proves useful.

The generating function associated toW endowed with its probabilistic weighting is

W (z) =
1

1−P pjz
=

1

1− z .

The regular expression

(17) O = S(A)y1S(A) · · ·S(A)yk−1S(A)ykS(A)

describes all contexts of occurrences ofp as a subsequence in all words. Graphically, this may
be rendered as follows for a pattern of length3, p = y1y2y3:

(18) y1 y2 y3

There the boxes indicate distinguished positions where letters of the pattern appear and the
horizontal lines represent arbitrary separating words (S(A)). The corresponding OGF

(19) O(z) =
π(p)zk

(1− z)k+1
, π(p) := py1 · · · pyk−1pyk

counts elements ofW with ambiguity, where the ambiguity coefficient of a wordw ∈ W is
precisely equal to the number of occurrences ofp as a subsequence inw. There results that the
expected number of hidden occurrences ofp in a random word of lengthn is

(20) [zn]O(z) = π(p)

 
n

k

!
,

which is consistent with what a direct probabilistic reasoning would give.
We next proceed to determine the variance ofX overWn. In order to do so, we need

contexts in whichpairsof occurrences appear. LetQ denote the set of all words inW with two
occurrences (i.e., an ordered pair of occurrences) ofp as a subsequence being distinguished.
Then clearly[zn]Q(z) must representEWn [X2]. There are several cases to be considered.
Graphically, a pair of occurrences may be interleaved and share no common position, like in
what follows:

(21)

(
y1 y2 y3

y1 y2 y3

2By q–calculus is roughly meant the collection of special function identities relating power series of
the form

P
an(q)zn, wherean(q) is a rational fraction whose degree is quadratic inn. See [10, Ch. 10]

for basics and [181] for more advanced (q–hypergeometric) material.
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But they may also have one or several overlapping positions,like in

(22)

(
y1 y2 y3

y1 y2 y3

(23)

(
y1 y2 y3

y1 y2 y3

(This last situation necessitatesy2 = y3, typical patterns beingabb andaaa.)
In the first case corresponding to (21), where there are no overlapping positions, the con-

figurations of interest have OGF

(24) Q[0](z) =

 
2k

k

!
π(p)2z2k

(1− z)2k+1
.

There, the binomial coefficient
`
2k
k

´
counts the total number of ways of freely interleaving two

copies ofp; the quantityπ(p)2z2k takes into account the2k distinct positions where the letters
of the two copies appear; the factor(1− z)−2k−1 corresponds to all the possible2k+1 fillings
of the gaps between letters.

In the second case, let us start by considering pairs where exactly one position is overlap-
ping, like in (22). Say this position corresponds to therth andsth letters ofp (r ands may not
be equal). Obviously, we needyr = ys for this to be possible. The OGF of the configurations
is now  

r + s− 2

r − 1

! 
2m− r − s
m− r

!
π(p)2(pyr )−1z2k−1

(1− z)2k
.

There, the first binomial coefficient
`

r+s−2
r−1

´
counts the total number of ways of interleaving

y1 · · · yr−1 andy1 · · · ys−1; the second binomial
`
2m−r−s

m−r

´
is similarly associated to the inter-

leavings ofyr+1 · · · yk andys+1 · · · yk; the numerator takes into account the fact that2k − 1
positions are now occupied by predetermined letters; finally the factor(1− z)−2k corresponds
to all the2k fillings of the gaps between letters. Summing over all possibilities for r, s gives the
OGF of pairs with one overlapping position as

(25) Q[1](z) =

0
@ X

1≤r,s≤k

 
r + s− 2

r − 1

! 
2m− r − s
m− r

!
[[yr = ys]]

pyr

1
A π(p)2z2k−1

(1− z)2k
.

Similar arguments show that the OGF of pairs of occurrences with at leasttwo shared
positions (see, e.g., 23)) is of the form, withP a polynomial,

(26) Q[≥2](z) =
P (z)

(1− z)2k−1
,

for the essential reason that, in the finitely many remainingsituations, there are at most(2k−1)
possible gaps.

We can now examine (24), (25), (26) in the light of singularities. The coefficient[zn]Q[0](z)
is seen to cancel to first asymptotic order with the square of the mean as given in (20). The
contribution of the coefficient[zn]Q[≥2](z) appears to be negligible as it isO(n2k−2). The
coefficient[zn]Q[1](z), which isO(n2k−1), is seen to contribute to the asymptotic growth of
the variance. In summary, after a trite calculation, we obtain:
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PROPOSITIONV.3. The numberX of occurrences of a hidden patternp in a random text of
sizen obeying a Bernoulli model satisfies

EWn [X] = π(p)

 
n

k

!
∼ π(p)

k!
nk, VWn [X] =

π(p)2κ(p)2

(2k − 1)!
n2k−1

„
1 +O(

1

n
)

«
,

where the “correlation coefficient”κ(p)2 is given by

κ(p)2 =
X

1≤r,s≤k

 
r + s− 2

r − 1

! 
2m− r − s
m− r

!
[[yr = ys]]

„
1

pyr

− 1

«
.

In particular, the distribution ofX is concentrated around its mean.

This example is based on an article by Flajolet, Szpankowski, and Vallée [168]. There the
authors show further that the asymptotic behaviour of moments of higher order can be worked
out. By the moment convergence theorem, this calculation entails thatthe distribution ofX
overWn is asymptotically normal. The method also extends to a much more general notion
of “hidden” pattern, e.g., distances between letters ofp can be constrained in various ways
so as to determine a valid occurrence in the text [168]. It also extends to the very general
framework of dynamical sources [56], which include Markov models as a special case. The
two references [56, 168] thus provide a set of analyses that interpolate between thetwo extreme
notions of pattern occurrence—as a block of consecutive symbols or as a subsequence (“hidden
pattern”). Such studies demonstrate that hidden patterns are with high probability bound to
occur an extremely large number of times in a long enough text—this might cast some doubts
on numerological interpretations encountered in various cultures. �

� 5. Hidden patterns and shuffle relations.To each pairsu, v of words overA associate
the weighted-shuffle polynomial in the indeterminatesA denoted by

`̀
u
v

´́
t

and defined by the
properties

8
>>>><
>>>>:

  
xu

yv

!!

t

= x

  
u

yv

!!

t

+ y

  
xu

v

!!

t

+ t[[x = y]]x

  
u

v

!!

t  
1

u

!!

t

=

  
u

1

!!

t

= u

wheret is a parameter,x, y are elements ofA, and1 is the empty word. Then the OGF ofQ(z)
above is

Q(z) = σ

»  
p

p

!!

(1−z)

–
1

(1− z)2k+1
,

whereσ is the substitutionaj 7→ pjz. �

V. 2. Lattice paths and walks on the line.

In this section, we considerlattice pathsthat are fundamental objects of com-
binatorics. Indeed, they relate to trees, permutations, and set partitions, to name a
few. They also correspond to walks on the integer half-line and as such they relate to
classical 1-dimensional random walks and to birth-and-death processes of probability
theory. The lattice paths discussed here have steps that correspond to movements ei-
ther immediately to the left or to the right. Combinatorially, such paths are the limit
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of paths of bounded height, themselves definable as nested sequences. As a conse-
quence, the OGF’s obtained involve a cascade of quasi-inverses,1/(1 − f), so that
they are of the continued fraction type.

DEFINITION V.1 (Lattice path).A (lattice)pathυ = (U0, U1, . . . , Un) is a sequence
of points in the latticeN×N such that ifUj = (xj , yj), thenxj = j and|yj+1−yj | ≤
1. An edge〈Uj , Uj+1〉 is called anascent(a) if yj+1 − yj = +1, a descent(b) if
yj+1 − yj = −1, and alevel step(c) if yj+1 − yj = 0.

The quantityn is thelengthof the path,o(υ) := y0 is theinitial altitude, h(υ) :=
yn is thefinal altitude. A path is called anexcursionif both its initial and final altitudes
are zero. The extremal quantitiessup{υ} := maxj yj and inf{υ} := minj yj are
called theheightanddepthof the path.

It is assumed that paths are normalized by the conditionx0 = 0. With this nor-
malization, a path of lengthn is encoded by a word witha, b, c representing ascents,
descents, and level steps, respectively. What we call thestandard encodingis such
a word in which each stepa, b, c is (redundantly) subscripted by the value of they-
coordinate of its associated point. For instance,

w = c0 a0 a1 a2 b3 c2 c2 a2 b3 b2 b1 a0 c1
encodes a path that connects the initial point(0, 0) to the point(13, 1). Such a path
can also be regarded as a rendering of the evolution in discrete time of a walk over the
integer line:

a0 a1 2a

c0 c1 c2

1 2b b

Equivalently, lattice paths cane be read as trajectories ofbirth-and-death processes.
(Compare with the pure-birth case in (11) above.)

Let H be the set of all lattice paths. Given a geometric condition (Q), it is then
possible to associate to it a “language”H[Q] that comprises the collection of all path
encodings satisfying the conditionQ. This language can be viewed either as a set or
as a formal sum,

H [Q] =
∑

{w | Q}
w,

in which case it becomes the generating function in infinitely many indeterminates of
the corresponding condition.

The general subclass of paths of interest in this subsectionis defined by arbitrary
combinations of flooring (m), ceiling (h), as well as fixing initial(k) and final (l)
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FIGURE 3. The three major decompositions of lattice paths: the archdecompo-
sition (top), the last passages decomposition (bottom left), and the first passage
decomposition (bottom right).

altitudes:

H
[≥m,<h]
k,l = {w ∈ H : o(w) = k, h(w) = l, inf{w} ≥ m, sup{w} < h}.

We also need the specializations,H
[<h]
k,l = H

[≥0,<h]
k,l , H [≥m]

k,l = H
[≥m,<∞]
k,l , Hk,l =

H
[≥0,<∞]
k,l . Three simple combinatorial decompositions of paths then suffice to derive

all the basic formulæ.
Arch decomposition: An excursion from and to level 0 consists of a sequence of

“arches”, each made of either ac0 or aa0H[≥1]
1,1 b1, so that

(27) H0,0 =
(
c0 ∪ a0H[≥1]

1,1 b1

)⋆

,

which relativizes to height< h.
Last passages decomposition.Recording the times at which each level0, . . . , k

is last traversed gives

(28) H0,k = H[≥0]
0,0 a0H[≥1]

1,1 a1 · · · ak−1H[≥k]
k,k

First passage decomposition.The quantitiesHk,l with k ≤ l are implicitly deter-
mined by the first passage throughk in a path connecting level 0 tol, so that

(29) H0,l = H[<k]
0,k−1ak−1Hk,l (k ≤ l),

(A dual decomposition holds whenk ≥ l.)

The basic results express the generating functions in termsof a fundamental con-
tinued fraction and its associated convergent polynomials. They involve the “numera-
tor” and “denominator” polynomials, denoted byPh andQh that are defined as solu-
tions to the second order (or “three-term”) recurrence equation

(30) Yh+1 = (1 − ch)Yh − ah−1bhYh−1, h ≥ 1,

together with the initial conditions(P−1, Q−1) = (1, 0), (P0, Q0) = (0, 1), and with
the conventiona−1b0 = 1. In other words, settingCj = 1− cj andAj = aj−1bj, we
have:

P0 = 0, P1 = 1, P2 = C2, P3 = C1C2 −A2

Q0 = 0, Q1 = C0, Q2 = C0C1 −A1, Q3 = C0C1C2 − C2A1 − C0A2
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These polynomials are known as continuant polynomials [246, 399].

THEOREM V.2 (Path continued fractions [128]). (i) The generating functionH0,0 of
all excursions is represented by the fundamental continuedfraction:

H0,0 =
1

1 − c0 −
a0b1

1 − c1 −
a1b2

1 − c2 −
a2b3

. . .

.(31)

(ii) The generating function of ceiled excursionH [<h]
0,0 is given by a convergent of the

fundamental fraction (withPh, Qh given by (30):

H
[<h]
0,0 =

1

1 − c0 −
a0b1

1 − c1 −
a1b2

. . .

1 − ch−1

(32)

=
Ph

Qh
.(33)

(iii) The generating function of floored excursions is given by thetruncation of the
fundamental fraction:

H
[≥h]
h,h =

1

1 − ch − ahbh+1

1 − ch+1 −
ah+1bh+2

. . .

(34)

=
1

ah−1bh

QhH0,0 − Ph

Qh−1H0,0 − Ph−1
,(35)

PROOF. Repeated use of the arch decomposition (27) provides a formof H [<h]
0,0 with

nested quasi-inverses(1 − f)−1 that is the finite fraction representation (32), for in-
stance,

H[<1]
00

∼= S{c0}, H[<2]
00

∼= S{c0 + a0S{c1}b1},
H[<3]

00
∼= S{c0 + a0S{c1 + a0S{c2}b2}b1}.

The continued fraction representation for basic paths (namelyH0,0) is then obtained
by letting h → ∞ in (32). Finally, the continued fraction form (34) for ceiled ex-
cursions is nothing but the fundamental form (31), when the indices are shifted. The
three continued fraction expressions (31), (32), (34) are hence established.

Finding explicit expressions for the fractionsH [<h]
0,0 andH [≥h]

h,h next requires de-
termining the polynomials that appear in the convergents ofthe basic fraction (31).
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By definition, the convergent polynomialsPh andQh are the numerator and denomi-
nator of the fractionH [<h]

0,0 . For the computation ofH [<h]
0,0 andPh, Qh, one classically

introduces the linear fractional transformations

gj(y) =
1

1 − cj − ajbj+1y
,

so that

(36) H
[<h]
0,0 = g0 ◦ g1 ◦ g2 ◦ · · · ◦ gh−1(0) andH0,0 = g0 ◦ g1 ◦ g2 ◦ · · · , .

Now, linear fractional transformations are representableby 2 × 2-matrices

(37)
ay + b

cy + d
7→
(
a b
c d

)
,

in such a way that composition corresponds to matrix product. By induction on the
compositions that build upH [<h]

0,0 , there follows the equality

(38) g0 ◦ g1 ◦ g2 ◦ · · · ◦ gh−1(y) =
Ph − Ph−1ah−1bhy

Qh −Qh−1ah−1bhy
,

wherePh andQh are seen to satisfy the recurrence (30). Settingy = 0 in (38)
proves (33).

Finally, H [≥h]
h,h is determined implicitly as the rooty of the equationg0 ◦ · · · ◦

gh−1(y) = H0,0, an equation that, when solved using (38), yields the form (35). �

A large number of generating functions can be derived by similar techniques. We
refer to the article [128], where this theory was first systematically developed and to
the exposition given in [192, Chapter 5]. Our presentation here draws upon [143]
where the theory was put to further use in order to develop a formal algebraic theory
of the general birth-and-death process in continuous time.
� 6. Transitions and crossings.The lattice pathsH0,l corresponding to the transitions from
altitude 0 tol andHk,0 (from k to 0) have OGFs

H0,l =
1

βl
(QlH0,0 − Pl) , Hk,0 =

1

αk
(QkH0,0 − Pk).

The crossingsH[<h]
0,h−1 andH[<h]

h−1,0 have OGFs,

H
[<h]
0,h−1 =

αh−1

Qh
, H

[<h]
h−1,0 =

βh−1

Qh
,

obtained from the last passages decomposition. (Abbreviations used are:αm = a0 · · · am−1,
βm = b1 · · · bm.) This gives combinatorial interpretations for fractionsof the form1/Q and
results from the basic decompositions combined with Theorem V.2; see [128, 143] for details.
�

We examine next a few specializations of the general formulæprovided by Theo-
rem V.2.

EXAMPLE 6. Height of standard lattice paths.In order to count lattice paths, it suffices to effect
one of the substitutions,

σM : aj 7→ z, bj 7→ z, cj 7→ z; σD : aj 7→ z, bj 7→ z, cj 7→ 0.

In the former case, all three step types are taken into account, giving rise to so-called “Motzkin
paths”; in the latter case level steps are disallowed, and one obtains so-called “Dyck paths”.
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FIGURE 4. Three random Dyck paths of length2n = 500 have altitudes resp.
20, 31, 24: the distribution is spread, see Proposition V.4.

We henceforth restrict attention to the case of Dyck paths. See Figure 4 for three simu-
lations suggesting that the distribution of height is somewhat spread. The continued fraction
expressingH0,0 is in this case purely periodic, and it represents a quadratic function:

H0,0(z) =
1

1− z2

1− z2

1− . . .

=
1

2z2

“
1−

p
1− 4z2

”
,

sinceH0,0 satisfiesy = (1 − z2y)−1. The families of polynomialsPh, Qh are in this case
determined by a recurrence with constant coefficients and they coincide, up to a shift of indices.
Define classically the Fibonacci polynomials by the recurrence

(39) Fh+2(z) = Fh+1(z)− zFh(z), F0(z) = 0, F1(z) = 1.

One findsQh = Fh+1(z
2) andPh = Fh(z2). (The Fibonacci polynomials are essentially

reciprocals of Chebyshev polynomials.) By Theorem V.2, theGF of paths of height< h is then

H
[<h]
00 (z) =

Fh(z2)

Fh+1(z2)
.

(We get more and, for instance, the number of ways of crossinga strip of widthh − 1 is
H

[<h]
0,h−1(z) = zh−1/Fh+1(z

2).) Note that the polynomials have an explicit form,

Fh(z) =

⌊(h−1)/2⌋X

k=0

 
h− 1− k

k

!
(−z)k,

as follows from the generating function expression:
P

h Fh(z)yh = y/(1− y + zy2).
The equivalence between Dyck paths and (general) plane treetraversals discussed in Chap-

ter I implies that trees of height at mosth and sizen+ 1 are equinumerous with Dyck paths of
length2n and height at mosth. Set for convenience

G[h](z) = zH
[<h+1]
00 (z1/2) = z

Fh+1(z)

Fh+2(z)
,

which is precisely the OGF of general plane trees having height ≤ h. (This is otherwise in
agreement with the continued fraction form obtained directly in Chapter III). It is possible to go
much further as first shown by De Bruijn, Knuth, and Rice in a beautiful paper [88], which also
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constitutes the historic application of Mellin transformsin analytic combinatorics. (We refer to
this paper for and historical context and references.)

First, solving the linear recurrence (39) withz treated as a parameter yields the alternative
closed form expression

(40) Fh(z) =
Gh −Gh

G−G
, G =

1−√1− 4z

2
, G =

1 +
√

1− 4z

2
.

There,G(z) is the OGF of all trees, and an equivalent form ofG[h] is provided by

(41) G−G[h−2] =
√

1− 4z
uh(z)

1− uh
, where u =

1−√1− 4z

1 +
√

1− 4z
=
G2

z
,

as is easily verified. ThusG[h] can be expressed in terms ofG(z) andz:

G−G[h−2] =
√

1− 4z
X

j≥1

z−jhG(z)2jh.

The Lagrange-Bürmann inversion theorem then gives after asimple calculation

(42) Gn+1 −G[h−2]
n+1 =

X

j≥1

∆2

 
2n

n− jh

!
,

where

∆2

 
2n

n−m

!
:=

 
2n

n+ 1−m

!
− 2

 
2n

n−m

!
+

 
2n

n− 1−m

!
.

Consequently, the number of trees of height≥ h − 1 admits of closed form: it is a “sampled”
sum by steps ofh of the2nth line of Pascal’s triangle (upon taking second order differences).

The relation (42) leads easily to the asymptotic distribution of height in random trees of
sizen. Stirling’s formula yields the Gaussian approximation of binomial numbers: fork =
o(n3/4) and withw = k/

√
n, one finds

(43)

`
2n

n−k

´
`
2n
n

´ ∼ e−w2
„

1− w4 + 3w2

6n
+

5w8 + 6w6 − 45w4 − 60

360n2
+ · · ·

«
.

The use of the Gaussian approximation (43) inside the exact formula (42) then implies:The
probability that a tree of sizen + 1 has height at leasth − 1 satisfies uniformly forh ∈
[α
√
n, β
√
n] (with 0 < α < β <∞) the estimate

(44)
Gn+1 −G[h−2]

n+1

Gn+1
= Θ

„
h√
n

«
+O

„
1

n

«
, Θ(x) :=

X

j≥1

e−j2x2

(4j2x2 − 2).

The functionΘ(x) is a “theta function” which classically arises in the theoryof elliptic func-
tions [402]. Since binomial coefficients decay fast away from the center, simple bounds also
show that the probability of height to be at leastn1/2+ǫ decays likeexp(−n2ǫ), hence is expo-
nentially small. Note also that the probability distribution of heightH itself admits of an exact
expression obtained by differencing (42), which is reflected asymptotically by differentiation of
the estimate of (44):
(45)

PGn+1

ˆ
H = ⌊x√n⌋

˜
= − 1√

n
Θ′ (x)+O

„
1

n

«
, Θ′(x) :=

X

j≥1

e−j2x2

(12j2x−8j4x3).
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FIGURE 5. The limit density of the distribution of height−Θ′(x).

The forms (44) and (45) also give access to moments of the distribution of height. We find

EGn+1

ˆ
Hr˜ ∼ 1√

n
Sr

„
1√
n

«
, where Sr(y) := −

X

h≥1

hrΘ′(hy).

The quantityyr+1Sr(y) is a Riemann sum relative to the function−xrΘ′(x), and the step
y = n−1/2 decreases to 0 asn→∞. Approximating the sum by the integral, one gets:

EGn+1

ˆ
Hr˜ ∼ nr/2µr where µr := −

Z ∞

0

xrΘ′(x) dx.

The integral givingµr is a Mellin transform in disguise (sets = r + 1) to which the treatment
of harmonic sums applies. We then get upon replacingn+ 1 to n:

PROPOSITIONV.4. The expected height of a random plane rooted tree comprisingn nodes is

√
πn− 1

2
+ o(1).

More generally, the moment of orderr of height is asymptotic to

µrn
r/2 where µr = r(r − 1)Γ(r/2)ζ(r).

The random variableH/
√
n obeys asymptotically a Theta distribution, in the sense of both the

“central” estimate (44) and the “local” estimate (45). The same asymptotic estimates hold for
height of Dyck paths having length2n.

The improved estimate of the mean is from [88]. The general moment forms are in fact
valid for any realr (not just integers). An alternative formula for the Theta function appears in
the Note below. Figure 5 plots the limit density−Θ′(x). �

� 7. Height, Fibonacci and Chebyshev polynomials.The reciprocal polynomialsUh(z) =
zhFh(1/z) satisfyUh(cos(θ)) = sin((h + 1)θ)/ sin(θ) as is readily verified from the recur-
rence (39) and elementary trigonometry. Thus, the roots ofFh(z) are(4 cos2 jπ/h)−1 and the
partial fraction expansion ofG[h](z) can be worked out explicitly [88]. There results

(46) G
[h−2]
n+1 =

4n+1

h

X

1≤j≤h/2

sin2 jπ

h
cos2n jπ

h
,

which provides in particular an asymptotic form for any fixedh. (This formula can also be
found directly from the sampled sum (42) by multisection of series.) Asymptotic analysis of
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this last expression whenh = x
√
n yields the alternative expression

lim
n→∞

PGn+1

ˆ
H ≤ x√n

˜
= 4π5/2x−3

X

j≥0

j2e−j2π2/x2

( ≡ 1−Θ(x)),

which reflects a classical transformation formula of theta functions. See the study by Biane,
Pitman, and Yor [47] for fascinating connections between this formula, Brownian motion, and
the functional equation of the Riemann zeta function. �

� 8. Motzkin paths.The OGF of Motzkin paths of height< h is

1

1− z ·
DH

[h]
0,0

„
z

1− z

«
,

whereDH
[h]
0,0 above refers to Dyck paths. Therefore, such paths of lengthn can be enumerated

exactly by formulæ derived from (42) and 46). In particular,the expected height is∼
p
πn/3.

�

� 9. Height in simple varieties of trees.Consider a simple variety of trees corresponding to
the GF equationY (z) = zφ(Y (z)) (see Chapter III) and values ofn such that there exists
a tree of sizen. Assume that there exists a positiveτ strictly within the disc of convergence
of φ such thatτφ′(τ ) − φ(τ ) = 0. Then, therth moment of height (H) is asymptotically
ξr/2r(r − 1)Γ(r/2)ζ(r)nr/2. The normalized quantityH = H/ξ obeys asymptotically a
Theta distribution in the sense of both the central estimate(44) and the local estimate (45).
[This is from [151] and [137] respectively.] For instance,ξ = 2 for plane binary trees and
ξ =
√

2 for Cayley trees. �

EXAMPLE 7. Area under Dyck path and coin fountains.Consider the case of Dyck path
and the parameter equal to the area below the path. Area undera lattice path can be defined
as the sum of the indices (i.e., the starting altitudes) of all the variables that enter the standard
encoding of the path. Thus, the BGFD(z, q) of Dyck path withz marking half-length andq
marking area is obtained by the substitution

aj 7→ qjz, bj 7→ qj , cj 7→ 0

inside the fundamental continued fraction (31). It proves convenient to operate with the contin-
ued fraction

(47) F (z, q) =
1

1− zq

1− zq2

. . .

,

so thatD(z, q) = F (q−1z, q2). SinceF andD satisfy difference equations, for instance,

(48) F (z, q) =
1

1− zqF (qz, q)
,

moments of area can be determined by differentiating and setting q = 1 (see Chapter III for
such a direct approach).

A general trick fromq–calculus is effective to derive an alternative expressionof F . At-
tempt to express the continued fractionF of (47) as a quotientF (z, q) = A(z)/B(z). Then,
the relation (48) implies

A(z)

B(z)
=

1

1− qz A(qz)
B(qz)

, henceA(z) = B(qz), B(z) = B(qz)− qzB(q2z),
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whereq is treated as a parameter. The difference equation satisfiedby B(z) is readily solved
by indeterminate coefficients: this classical technique was introduced in the theory of integer
partitions by Euler. WithB(z) =

P
bnz

n, the coefficients satisfy the recurrence

b0 = 1, bn = qnbn − q2n−1bn−1.

This is a first order recurrence onbn that unwinds to give

bn = (−1)n qn2

(1− q)(1− q2) · · · (1− qn)
.

In other words, introducing the “q-exponential function”,

(49) E(z, q) =
∞X

n=0

(−z)nqn2

(q)n
, where (q)n = (1− q)(1− q2) · · · (1− qn),

one finds

(50) F (z, q) =
E(qz, q)

E(z, q)
.

Given the importance of the functions under discussion in various branches of mathemat-
ics, we cannot resist a quick digression. The name of theq-exponential comes form the obvious
property thatE(z(q − 1), q) reduces toe−z asq → 1−. The explicit form (49) constitutes in
fact the “easy half” of the proof of the celebrated Rogers-Ramanujan identities, namely,

(51)

E(−1, q) =
∞X

n=0

qn2

(q)n
=

∞Y

n=0

(1− q5n+1)−1(1− q5n+4)−1

E(−q, q) =
∞X

n=0

qn(n+1)

(q)n
=

∞Y

n=0

(1− q5n+2)−1(1− q5n+3)−1,

that relate theq-exponential to modular forms. See Andrews’ book [9, Ch. 7] for context.
Here is finally a cute application of these ideas to asymptotic enumeration. Odlyzko and

Wilf define in [304, 301] an(n,m) coin fountain as an arrangement ofn coins in rows in such a
way that there arem coins in the bottom row, and that each coin in a higher row touches exactly
two coins in the next lower row. LetCn,m be the number of(n,m) fountains andC(q, z) be
the corresponding BGF withq markingn andz markingm. SetC(q) = C(q, 1). The question
is to determine the total number of coin fountains of arean, [qn]C(q). The series starts as (this
is EISA005169)

C(q) = 1 + q + q2 + 2q3 + 3q4 + 5q5 + 9q6 + 15q7 + 26q8 + · · · ,
as results from inspection of the first few cases.

The functionC(q) is a priori meromorphic in|q| < 1. From the bijection with Dyck paths
and area, one finds

C(q) =
1

1− q

1− q2

1− q3

. . .

.
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Objects Weights(αj , βjγj) Counting Orth. pol.

Simple paths 1, 1, 0 Catalan # Chebyshev
Permutations j + 1, j, 2j + 1 Factorial # Laguerre
Alternating perm. j + 1, j, 0 Secant # Meixner
Involutions 1, j, 0 Odd factorial # Hermite
Set partition 1, j, j + 1 Bell # Poisson-Charlier
Nonoverlap. set part. 1, 1, j + 1 Bessel # Lommel

FIGURE 6. Some special families of combinatorial objects togetherwith corre-
sponding weights, moments, and orthogonal polynomials.

The identity (50) implies

C(q) =
E(q, q)

E(1, q)
.

An exponential lower bound of the form1.6n holds on[qn]C(q), since(1 − q)/(1− q − q2)
is dominated byC(q) for q > 0. At the same time, the number[qn]C(q) is majorized by
the number of compositions, which is2n−1. Thus, the radius of convergence ofC(q) has to
lie somewhere between0.5 and0.61803 . . . . It is then easy to check by numerical analysis
the existence of a simple zero of the denominator,E(−1, q), nearρ

.
= 0.57614. Routine

computations based on Rouché’s theorem then makes it possible to verify formally thatρ is the
only simple pole in|q| < 3/5 (the process is detailed in [301]). Thus, singularity analysis of
meromorphic functions applies:

PROPOSITIONV.5. The number of coin fountains made ofn coins satisfies asymptotically

[qn]C(q) = cAn +O((5/3)n), c
.
= 0.31236, A = ρ−1 .

= 1.73566.

This example illustrates the power of modelling by continued fractions as well as the
smooth articulation with meromorphic function asymptotics. �

The systematic theory of lattice path enumerations and continued fractions was
developed initially because of the need to count weighted lattice paths, notably in the
context of the analysis of dynamic data structures in computer science [136]. In this
framework, a system of multiplicative weightsαj , βj , γj is associated with the steps
aj, bj , cj , each weight being an integer that represents a number of “possibilities”
for the corresponding step type. A system of weighted lattice paths has counting
generating functions given by an easy specialization of thecorresponding multivariate
expressions we have just developed, namely,

(52) aj 7→ αjz, bj 7→ βjz, cj 7→ γjz,

wherez marks the length of paths. One can then sometimes solve an enumeration
problem expressible in this way by reverse-engineering theknown collection of con-
tinued fractions as found in a reference book like Wall’s treatise [399]. Next, for
general reasons, the polynomialsP,Q are always elementary variants of a family of
orthogonal polynomials that is determined by the weights [73, 128, 371]. When the
multiplicities have enough structural regularity, the weighted lattice paths are likely to
correspond to classical combinatorial objects and to classical families of orthogonal
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FIGURE 7. An interconnection network on2n = 12 points.

polynomials; see [128, 136, 187, 192] and Figure 6 for an outline. We illustrate this
by a simple example due to Lagarias, Odlyzko, and Zagier [258].

EXAMPLE 8. Interconnection networks and involutions.The problem considered here was
introduced by Lagarias, Odlyzko, and Zagier in [258]: There are2n points on a line, with
n point-to-point connections between pairs of points. What is the probable behaviour of the
width of such an interconnection network?Imagine the points to be1, . . . , 2n, the connections
as circular arcs between points, and let a vertical line sweep from left to right; width is defined
as the maximum number of edges encountered by such a line. Onemay freely imagine a tunnel
of fixed capacity (this corresponds to the width) inside which wires can be placed to connect
points pairwise. See Figure 7.

Let I2n be the class of all interconnection networks on2n points, which is precisely the
collection of ways of grouping2n elements inton pairs, or, equivalently, the class of all in-
volutions (i.e., permutations with cycles of length2 only). The numberI2n equals the “odd
factorial”,

I2n = 1 · 3 · 5 · · · (2n− 1),

whose EGF isez2/2 (see Chapter II). The problem calls for determining the quantity I [h]
2n that

is the number of networks corresponding to a width≤ h.
The relation to lattice paths is as follows. First, when sweeping a vertical line across a

network, define an active arc at an abscissa as one that straddles that abscissa. Then build
the sequence of active arcs counts at half-integer positions 1

2
, 3

2
, . . . , 2n − 1

2
, 2n + 1

2
. This

constitutes a sequence of integers where each member is±1 the previous one, that is, a lattice
path without level steps. In other words, there is an ascent in the lattice path for each element
that is smaller in its cycle and a descent otherwise. One may view ascents as associated to
situations where a node “opens” a new cycle, while descents correspond to “closing” a cycle.

Involutions are much more numerous than lattice paths, so that the correspondence from
involutions to lattice paths is many-to-one. However, one can easily enrich lattice paths, so
that the enriched objects are in one-to-one correspondencewith involutions. Consider again a
scanning position at a half-integer where the vertical linecrossesℓ (active) arcs. If the next
node is of the closing type, there areℓ possibilities to choose from. If the next node is of
the opening type, then there is only one possibility, namely, to start a new cycle. A complete
encoding of a network is obtained by recording additionallythe sequence of then possible
choices corresponding to descents in the lattice path (somecanonical order is fixed, for instance,
oldest first). If we write these choices as superscripts, this means that the set of all enriched
encodings of networks is obtained from the set of standard lattice path encodings by effecting
the substitutions

bj 7→
jX

k=1

b
(k)
j .
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FIGURE 8. Three simulations of random networks with2n = 1000 illustrate the
tendency of the profile to conform to a parabola with height close ton/2 = 250.

The OGF of all involutions is obtained from the generic continued fraction of Theorem V.2
by the substitution

aj 7→ z, bj 7→ j z,

wherez records the number of steps in the enriched lattice path, or equivalently, the number
of nodes in the network. In other words, we have obtained combinatorially a formal continued
fraction representation,

∞X

n=0

(1 · 3 · · · (2n− 1))z2n =
1

1− 1 · z2

1− 2 · z2

1− 3 · z2

. . .

,

which was originally discovered by Gauß [399]. Theorem V.2 then gives immediately the OGF
of involutions of width at mosth as a quotient of polynomials. Define

I [h](z) :=
X

n≥0

I
[h]
2n z

2n.

One has

I [h](z) =
1

1− 1 · z2

1− 2 · z2

. . .

1− h · z2

=
Ph(z)

Qh(z)

wherePh andQh satisfy the recurrence

Yh+1 = Yh − hz2Yh−1.

The polynomials are readily determined by their generatingfunctions that satisfies a first-order
linear differential equation reflecting the recurrence. Inthis way, the denominator polynomials
are identified to be reciprocals of the Hermite polynomials,

Qh(z) = (z/2)hHh(
1

2z
),

themselves defined classically [2, Ch. 22] as orthogonal with respect to the measuree−x2

dx
on (−∞,∞) and expressible via

Hm(x) =

⌊m/2⌋X

m=0

(−1)jm!

j!(m − 2j)!
(2x)m−2j ,

X

m≥0

Hm(x)
tm

m!
= ext−t2 .
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In particular, one finds

I [0] = 1, I [1] =
1

1− z2
, I [2] =

1− 2z2

1− 3z2
, I [3] =

1− 5z2

1− 6z2 + 3z4
, &c.

The interesting analysis of the dominant poles of the rational GF’s, for any fixedh, is
discussed in the paper [258]. Furthermore, simulations strongly suggest that the width of a
random interconnection network on2n nodes is tightly concentrated aroundn/2; see Figure 8.
Louchard [271] succeeded in proving this fact and a good deal more: With high probability,
the profile (the profile is defined here as the number of active arcs as time evolves) of a random
network conforms asymptotically to a deterministic parabola 2nx(1 − x/(2n)) to which are
superimposed random fluctuations of amplitude onlyO(

√
n) well-characterized by a Gaussian

process. In particular,the width of a random network of2n nodes converges in probability to
n
2

. �

V. 3. The supercritical sequence and its applications

We have seen earlier in this section that surjections and alignments with EGFs

1

2 − exp(z)
,

1

1 − log(1 − z)−1

have coefficients that satisfy simple asymptotic estimatesof the formC · An. A sim-
ilar property holds for integer compositions, where there is even an exact counting
formula, namely,2n−1. The common feature of these examples is that that they all
involve a sequence construction in their specification and correspond to the schema
F = S(G), in either the labelled or the unlabelled case.

We thus consider a sequence constructionF = S(G), with the associated GFs
(either ordinary or exponential) satisfying the usual relation

F (z) =
1

1 −G(z)
,

andG(0) = 0 for well-foundedness. We shall writefn = [zn]F (z) and gn =
[zn]G(z). We also restrict attention to the case where the radius of convergence ofG
is nonzero, in which case, the radius of convergence ofF is also nonzero by virtue of
closure properties of analytic functions. We set:

DEFINITION V.2. Let F,G be GFs with nonnegative coefficients that are analytic
at 0, withG(0) = 0. The schemaF (z) = (1 − G(z))−1 is said to besupercriticalif
G(ρ) > 1, whereρ = ρG is the radius of convergence ofG.

Note thatG(ρ) is well defined as the limitlimx→ρ− G(x) sinceG(x) increases
along the positive real axis. (The valueG(ρ) corresponds to what has been denoted
earlier byτG when discussing “signatures” in Section IV. 4.) We assume thatG(z) is
unperiodicin the sense that there does not exist an integerd ≥ 2 such thatG(z) =
h(zd) for someh analytic at 0. (This normalization is merely a convenience that
entails no loss of generality.) One has
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THEOREMV.3 (Supercritical sequence asymptotics).Let the schemaF = (1−G)−1

be supercritical and assume thatG is unperiodic. Then, one has

[zn]F (z) =
1

σG′(σ)
· σ−n (1 +O(An)) ,

whereσ is the root in(0, ρG) of G(σ) = 1, andA is a number less than 1. The
numberX ofG–components in a randomC–structure of sizen has mean and variance
satisfying

En(X) =
1

ρG′(ρ)
· (n+ 1) − 1 +

G′′(ρ)

G′(ρ)2
+O(An)

Vn(X) =
ρG′′(ρ) +G′(ρ) − ρG′(ρ)2

ρ2G′(ρ)3
· n+O(1).

In particular, the distribution is concentrated.

PROOF.[Proof [165, 359]] The basic observation is thatG increases continuously from
G(0) = 0 to G(ρG) = τG (with τG > 1 by assumption) whenx increases from 0
to ρG. Therefore, the positive numberσ, which satisfiesG(σ) = 1 is well defined.
Then,F is analytic at all points of the interval(0, σ). The functionG being analytic
atσ, satisfies, in a neighbourhood ofσ

G(z) = 1 +G′(σ)(z − σ) +
1

2!
G′′(σ)(z − σ)2 + · · · .

so thatF (z) has a pole atz = σ; also, this pole is simple sinceG′(ρ) > 0. Pring-
sheim’s theorem then implies that the radius of convergenceof F must coincide
with σ.

There remains to show thatF (z) is meromorphic in a disc of some radiusR > σ
with the pointσ as the only singularity inside the disc. This results from the assump-
tion thatG is unperiodic. In effect, one hasG(σeiθ) ≤ 1 for all θ by the triangular
inequality. It suffices to verify thatG(σeiθ) 6= 1 for θ ∈ [−π, π]\{0} to ensure thatF
is analytic at points of the circle|z| = σ, with the sole exception ofσ. A contrario,
G(σeiθ) = 1 would imply, by the converse of the triangle inequality that

gnσ
neinθ = gnσ

n,

for all values ofn such thatgn 6= 0. This in turn is only possible if there is a root
of unity, ω = e2iπ/d, such thatωn = 1 whenevergn 6= 1. This last fact is itself
incompatible with the assumption thatG(z) is unperiodic.

In summary,F (z) has a simple pole atz = σ and is otherwise analytic at all
points of |z| = σ. Thus, by compactness, there exists a disc of radiusR > σ in
whichF is analytic except for a unique pole atσ. Taker such thatσ < r < R and
apply the main theorem of meromorphic function asymptoticsto deduce the stated
formula withA = σ/r.
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Consider next the number ofG-components in a randomF structure of sizen.
Bivariate generating functions give access to the expectation of this random variable:

En(X) =
1

fn
[zn]

∂

∂u

1

1 − uG(z)

∣∣∣∣
u=1

=
1

fn
[zn]

G(z)

(1 −G(z))2
.

The problem is now reduced to extracting coefficients in a univariate generating func-
tion with a double pole atz = ρ, and it suffices to expand the GF locally atρ. The
variance calculation is similar though it involves a triplepole. �

When a sequence construction is supercritical, the number of components is in the
mean≍ n while its standard deviation is≍ √

n. Thus, the distribution is concentrated
(see Chapter III). In fact, there results from a general theorem of Bender [26] that
the distribution of the number of components is asymptotically Gaussian; see later
chapters for details.

Direct cases of application to combinatorial generating functions are

a1(z) =
z

1 − z
, a2(z) = ez − 1, a3(z) = log(1 − z)−1,

corresponding respectively to integer compositions (OGF), surjections (EGF), and
alignments. Thus:

• The expected number of summands in a random composition of the integer
n is ∼ n+1

2 , with variance∼ n
4 .

• The expected cardinality of the range of a random surjectionwhose domain
has cardinalityn is asymptotic toβn with β = 1/(2 log 2);

• The expected number of components in a random alignment of size n is
asymptotic ton/(e− 1).

EXAMPLE 9. Compositions with restricted summands, compositions intoprimes.Unrestricted
integer compositions are well understood as regards enumeration: their number is exactly
Cn = 2n−1, their OGF isC(z) = (1 − z)/(1 − 2z), and compositions withk summands
are enumerated by binomial coefficients. Such simple exact formulæ disappear when restricted
compositions are considered, but, as we now show, asymptotics is much more robust to changes
in specifications.

Let S be a subset of the integersZ≥1 such thatgcd(S) = 1, i.e., not all members ofS
are multiples of a common divisord ≥ 2. In order to avoid trivialities, we also assume that
S 6= {1}. The classCS of compositions with summands constrained to the setS then satisfies:

Specification: CS = S(SS(Z));

OGF: D(z) =
1

1− S(z)
, S(z) =

X

s∈S

zs.

By assumption,S(z) is unperiodic, so that Theorem V.3 applies directly. There is a well-defined
numberσ such that

S(σ) = 1, 0 < σ < 1,

and the number ofS–restricted compositions satisfies

(53) CS
n := [zn]CS(z) =

1

σS′(σ)
· σ−n (1 +O(An)) .
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10 16 15
20 732 734
30 3603936057
40 17722071772261
50 8710926387109248
60 42815500474281549331
70 210444532770210444530095
80 1034366226718710343662265182
90 508406414757253508406414781706
100 2498893292949083824988932929612479

FIGURE 9. The pyramid relative to compositions into prime summandsfor n =
10 . . 100: (left: exact values; right: asymptotic formula rounded).

Amongst the already discussed cases,S = {1, 2} gives rise to Fibonacci numbers and, more
generally,S = {1, . . . , r} corresponds to partitions with summands at mostr. In this case, the
OGF,

C{1,...,r}(z) =
1

1− z 1−zr

1−z

=
1− z

1− 2z + zr+1

is a simple variant of the OGF associated to longest runs in strings. The treatment of the latter
can be copied almost verbatim to the effect that the largest component in a random composition
of n is found to belg n+O(1), both on average and with high probability.

Here is a surprising application of the general theory. Consider the case whereS is taken
to be the set of prime numbers,Prime = {2, 3, 5, 7, 11, . . .}, thereby defining the class of
compositions into prime summands. The sequence starts as

1, 0, 1, 1, 1, 3, 2, 6, 6, 10, 16, 20, 35, 46, 72, 105,

corresponding to the OGF1 + z2 + · · · , and isEIS A023360in Sloane’s encyclopedia. The
formula (53) applies to provide the asymptotic form of the number of such compositions. It
is also well worth noting that the constants appearing in (53) are easily determined to great
numerical precision, as we now explain.

By (53) and the preceding equation, the dominant singularity of the OGF of compositions
into prime is the positive rootσ < 1 of the characteristic equation

S(z) ≡
X

p Prime

zp = 1.

Fix a threshold valuem0 (for instancem0 = 10 or 100) and introduce the two series

S−(z) :=
X

s∈S, s<m0

zs, S+(z) :=

 X

s∈S, s<m0

zs

!
+

zm0

1− z .

Clearly, forx ∈ (0, 1), one hasS−(x) < S(x) < S+(x). Define two constantsσ−, σ+ by the
conditions

S−(σ−) = 1, S+(σ+) = 1, 0 < σ−, σ+ < 1.

These constants are algebraic numbers that are accessible to computation. At the same time,
they satisfyσ+ < σ < σ−. As the order of truncation,m0, increases, the values ofσ+, σ−

are expected to provide better and better approximations toσ together with an interval in
which σ provably lies. For instance,m0 = 10 is enough to determine that0.66 < σ <
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FIGURE 10. Errors in the approximation of the number of compositions into
primes forn = 70 . . 100: left, the values ofCPrime

n − g(n); right, the correc-
tion g2(n) arising from the next two poles, which are complex conjugateand the
continuous extrapolation of this approximation.

0.69, and the choicem0 = 100 givesσ to 15 guaranteed digits of accuracy, namely,σ
.
=

0.67740 17761 30660. Then, the asymptotic formula (53) instantiates as

(54) CPrime
n ∼ g(n), g(n) := 0.30365 52633 · 1.47622 87836n .

The constantσ−1 .
= 1.47622 is akin to the family of Backhouse constants described in [126].

Once more, the asymptotic approximation is very good as shown by the pyramid of Fig-
ure 9. The difference betweenCPrime

n and its approximationg(n) from Eq. (54) is plotted on
the left of Figure 10. The seemingly haphazard oscillationsthat manifest themselves are well
explained by the principles discussed in the previous section. It appears that the next poles of
the OGF are complex conjugate and lie near−0.76 ± 0.44i, having modulus about0.88. The
corresponding residues then jointly contribute a quantityof the form

g2(n) = c · An sin(ωn+ ω0), A
.
= 1.13290,

for some constantsc, ω, ω0. Comparing the left and right parts of Figure 10 shows this next
layer of poles to explain quite well the residual errorCPrime

n − g(n). (The diagram on the right
in Figure 10 also displays the values of the continuous interpolation tog2(n).)

Here is a final example that demonstrates in a striking way thescope of the method. Define
the setPrime2 of “twinned primes” as the set of primes that belong to a twin prime pair, that is,
p ∈ Prime2 if one ofp−2, p+2 is prime. The setPrime2 starts as3, 5, 7, 11, 13, 17, 19, 29, 31, . . .
(numbers like23 or 37 are thus excluded). The asymptotic formula for the number ofcomposi-
tions of the integern into summands that are twinned primes, is

CPrime2
n ∼ 0.18937 · 1.29799n .

It is quite remarkable that the constants involved are stillcomputable real numbers (and of low
complexity, even), this despite the fact that it is not knownwhether the set of twinned primes is
finite or infinite. Incidentally, a sequence that starts likeCPrime2

n ,

1, 0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 4, 3, 7, 7, 8, 14, 15, 21, 28, 33, 47, 58, . . .
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and coincides till index 22 included (!), but not beyond, wasencountered by P. A. MacMahon3,
as the authors discovered, much to their astonishment, fromscanning Sloane’s Encyclopedia,
where it appears asEISA002124. �

Profiles of supercritical sequences.We have seen in Chapter III that integer com-
positions and integer partitions, when sampled at random, tend to assume rather dif-
ferent aspects. Given a sequence construction,F = S(G), the profile of an element
α ∈ F is the vector(X〈1〉, X〈2〉, . . .) whereX〈1〉(α) is the number ofG–components
in α that have sizej. In the case of (unrestricted) integer compositions, it could be
proved elementarily that, on average and for sizen, the number of1 summands is
∼ n/2, the number of2 summands is∼ n/4, and so on. Now that meromorphic
asymptotic is available, such a property can be placed in a much wider perspective.

PROPOSITIONV.6. Consider a supercritical sequence construction,F = S(G), with
the “unperiodic” condition. The number ofG–components of any fixed sizek in a
randomF–object of sizen satisfies

(55) En(X〈k〉) =
gkσ

k

σG′(σ)
n+O(1), Vn(X〈k〉) = O(n).

There,σ is the root in(0, ρG) ofG(σ) = 1, andgk = [zk]G(z).

PROOF. The bivariate GF withu marking the number ofG–components of sizek is

F (z, u) =
1

1 − (G(z) + (u− 1)gkzk)
,

as results from the theory developed in Chapter III. The meanvalue is then given by a
quotient,

En(X〈k〉) =
1

fn
[zn]

∂

∂u
F (z, u)

∣∣∣∣
u=1

=
1

fn
[zn]

gkz
k

(1 −G(z))2
.

The GF of cumulated values has a double pole atz = σ, and the estimate of the mean
value follows. The variance is estimated similarly, after two successive differentiations
and the analysis of a triple polar singularity. �

The total number of componentsX satisfiesX =
∑
X〈k〉, and, by Theorem V.3,

its mean is asymptotic ton/(σG′(σ)). Thus, Equation (55) indicates that, at least
in some average-value sense, the “proportion” of components of sizek amongst all
components is given bygkσ

k. Also, sinceG(σ) = 1, the coefficientsgkσ
k add up

to 1.

EXAMPLE 10. The profiles of compositions, surjections, and alignments.Proposition V.6
immediately applies to compositions (that are sequences ofsequences), surjections (sequences
of sets), and alignments (sequences of cycles). The following table summarizes the conclusions:

3See “Properties of prime numbers deduced from the calculus of symmetric functions”,Proc. London
Math. Soc., 23 (1923), 290-316). MacMahon’s sequence corresponds to the compositions into arbitrary
oddprimes.
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FIGURE 11. Profile of structures drawn at random represented by the sizes
of their components in sorted order: (from left to right) a random surjection,
alignment, and composition of sizen = 100.

Structures Specif. Law (gkσ
k) Type σ

Compositions S(S≥1(Z))
1

2k
Geometric

1

2

Surjections S(P≥1(Z))
1

k!
(log 2)k Poisson log 2

Alignments S(C(Z))
1

k
(1− e−1)k Logarithmic 1− e−1

The geometric and Poisson law are classical; thelogarithmic distribution(also called “logarithmic-
series distribution”) of parameterλ is by definition the law of a random variableY such that

P(Y = k) =
1

log(1− λ)−1

λk

k
.

The way the internal construction induces the law of component sizes,

Sequence7→Geometric; Set7→Poisson; Cycle7→Logarithmic,

stands out. Figure 11 exemplifies the phenomenon by displaying components sorted by size and
represented by vertical segments of corresponding lengthsfor three randomly drawn objects of
sizen = 100. �

� 10.Proportion ofk–components and convergence in probability.For any fixedk, the random
variableX〈k〉

n /Xn converges in probability (the notion is defined in Chapter III) to the value
gkσ

k,

X
〈k〉
n

Xn

P−→ gkσ
k, i.e., lim

n→∞
P

(
gkσ

k(1− ǫ) ≤ X
〈k〉
n

Xn
≤ gkσ

k(1 + ǫ)

)
= 1,

for anyǫ > 0. The proof is an easy consequence of the Chebyshev inequalities (the distributions
of Xn andX〈k〉

n are both concentrated). �

� 11. Random generation of supercritical sequences.Let F = S(G) be a supercritical se-
quence scheme. Consider a sequence of i.i.d. (independently identically distributed) random
variablesY1, Y2, . . . each of them obeying the discrete law

P(Y = k) = gkσ
k, k ≥ 1.

A sequence is said to be hittingn if Y1+ · · ·+Yr = n for somer ≥ 1. The vector(Y1, . . . , Yr)
for a sequence conditioned to hitn has the same distribution as the sequence of the lengths of
components in a randomF–object of sizen.

For probabilists, this explains the shape of the formulæ in Theorem V.3, which resemble
renewal relations [123, Sec. XIII.10]. It also implies that, given a uniform randomgenerator for
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G–objects, one can generate a randomF–object of sizen in O(n) steps on average [107]. This
applies to surjections, alignments, and compositions in particular. �

� 12. Largest components in supercritical sequences.Let F = S(G) be a supercritical se-
quence. Assume thatgk = [zk]G(z) satisfies the asymptotic “smoothness” condition

gk ∼
k→∞

cρ−kkβ, c, ρ ∈ R>0, β ∈ R.

Then the sizeL of the largestG component in a randomF object satisfies, for sizen,

EFn(X) =
1

log(ρ/σ)
(log n+ β log log n) + o(log log n).

This covers integer compositions (ρ = 1, β = 0) and alignments (ρ = 1, β = −1). [The anal-
ysis generalizes the case of longest runs in Example 2 and is based on similar principles. The

GF ofF objects withL ≤ m isF 〈m〉(z) =
“
1−Pk≤m gkz

k
”−1

, according to Section III.7.

Form large enough, this has a dominant singularity which is a simple pole atσm such that
σm − σ ∼ c1(σ/ρ)mmβ . There follows a double-exponential approximation

PFn(L ≤ m) ≈ exp
“
−c2nmβ(σ/ρ)m

”

in the “central” region. See Gourdon’s study [194] for details.] �

V. 4. Functional equations: positive rational systems

For rational functions, positivity coupled with some simple ancillary conditions
entails a host of important properties, like unicity of the dominant singularity. Such
facts result from the classical Perron-Frobenius theory ofnonnegative matrices that
we summarize in this section. They in turn imply strong properties of large random
structures.

The basic case is that of ad-dimensional column vectory(z) of generating func-
tions satisfying a linear system of the form

y(z) = a+zT y(z),

for some(d × d) matrix T and vectora. If T satisfies suitable positivity conditions
anda is nonnegative, then any componentyj(z) closely resembles the extremely sim-
ple rational function,

1

1 − λ1z
,

whereλ1 is a well-characterized eigenvalue ofT . Accordingly, the asymptotic phe-
nomena associated with such systems are highly predictable. We propose to expose
here the general theory and treat in the next section classical applications to paths in
graphs and to languages recognized by finite automata.

V. 4.1. Perron-Frobenius theory of nonnegative matrices.For an arbitrary square
matrixA ∈ Rm×m, thespectrumis the set of itseigenvalues, that is, the set ofλ such
thatλI −A is not invertible (i.e., not of full rank), whereI is the unit matrix with the
appropriate dimension. Adominant eigenvalueis one of largest modulus. Finally, the
spectral radius of an arbitrary matrixA is defined as

(56) σ(A) = max
j

{|λj |},
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FIGURE 12. The irreducibility conditions of Perron-Frobenius theory. Left:
a strongly connected digraph. Right: a weakly connected digraph that is not
strongly connected is a collection of strongly connected components related by a
directed acyclic graph.

where the set{λj} is the set of eigenvalues ofA (also called spectrum). The spectral
radiusσ(A) describes growth properties associated to the powers ofA. Indeed, given
the Jordan normal form of matrices, it is easy to see that all entries ofAn are bounded
from above by a multiple ofσ(A)n ·nr−1, wherer is the maximum multiplicity of any
dominant eigenvalue. When analysing a family of combinatorial models that admit a
matrix formulation, it is then of obvious interest to determine the value of the spectral
radius and the multiplicities attached to dominant eigenvalues.

The properties of positive and of nonnegative matrices havebeen superbly elicited
by Perron [316] in 1907 and by Frobenius [174] in 1908–1912. The corresponding
theory has far-reaching implications: it lies at the basis of the theory of finite Markov
chains and it extends to positive operators in infinite-dimensional spaces [254].

ForA a scalar matrix of dimensionm × m with nonnegative entries, a crucial
rôle is played by thedependency graph; this is the (directed) graph with vertex set
V = {1 . .m} and edge set containing the directed edge(a → b) iff Aa,b 6= 0. The
reason for this terminology is the following: LetA represent the linear transformation{
y⋆

i =
∑

j Ai,jyj

}

i
; then, the fact that an entryAi,j is nonzero means thaty⋆

i depends

effectively onyj and is translated by the directed edge(i → j) in the dependency
graph.

From this point on, we consider matrices with nonnegative entries. Two notions
are essential, irreducibility and aperiodicity (the termsare borrowed from Markov
chain theory and matrix theory).

DEFINITION V.3. The matrixA is calledirreducibleif its dependency graph is strongly
connected (i.e., any two vertices are connected by a directed path). A strongly con-
nected digraphG is periodicwith parameterd iff all its cycles have a length that is a
multiple ofd. In that case, the graph decomposes into cyclically arranged layers: the
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FIGURE 13. The aperiodicity conditions of Perron-Frobenius theory: an aperi-
odic digraph (left) and a periodic digraph (right).

vertex setV can be partitioned intod classes,V = V0 ∪ · · · ∪ Vd−1, in such a way
that the edge setE satisfies

(57) E ⊆
d−1⋃

i=0

(Vi × V(i+1) mod d).

The maximal possibled is called theperiod. If no decomposition exists withd ≥ 2, so
that the period has the trivial value 1, then the graph and allthe matrices that admit
it as their dependency graph are calledaperiodic.

By considering only simple paths, it is then seen that irreducibility is equivalent
to the condition that(I+A)m has all its entries that are strictly positive. See Figure 12
for a graphical rendering of irreducibility and for the general structure of a (weakly
connected) digraph. As an illustration of periodicity, a directed10-cycle is periodic
with parameterd = 1, 2, 5, 10 and the period is 10. See Figure 13 for representations
of a periodic and an aperiodic digraph.

Periodicity also means that the existence of paths of lengthn between any given
pair of nodes〈i, j〉 is constrained by the congruence classn mod d. A contrario,
aperiodicity entails the existence, for alln sufficiently large, of paths of lengthn con-
necting〈i, j〉. From the definition, a matrixA with periodd has, up to simultaneous
permutation of its rows and columns, a cyclic block structure




0 A0,1 0 · · · 0

0 0 A1,2 · · · 0

...
...

...
. . .

...
0 0 0 · · · Ad−2,d−1

Ad−1,0 0 0 · · · 0




where the blocksAi,i+1 are reflexes of the connectivity betweenVi andVi+1 in (57).

THEOREM V.4 (Perron-Frobenius theorem).LetA be a matrix that is assumed to be
irreducible in the sense that its dependency graph is strongly connected.

(i) If A has (strictly)positive elements, then its eigenvalues can be ordered in
such a way that

λ1 > |λ2| ≥ |λ3| ≥ · · · ,
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i.e.,A has a unique dominant eigenvalue which is positive and simple.
(ii) If A hasnonnegative elements, then its eigenvalues can be ordered in such a

way that

λ1 = |λ2| = · · · = |λd| > |λd+1| ≥ |λd+2| ≥ · · · ,
and each of the dominant eigenvalues is simple, withλ1 being positive. Furthermore,
the quantityd is precisely equal to the period of the dependency graph. Ifd = 1,
in particular, then there is unicity of the dominant eigenvalue. If d ≥ 2, the whole
spectrum is invariant under the set of transformations

λ 7→ λe2ijπ/d, j = 0, 1, . . . , d− 1.

For proof techniques including a full proof of Part(i) of the theorem, see AP-
PENDIX B: Perron-Frobenius theory of nonnegative matrices, p. 651.

For short, one says that a matrix is positive (resp. nonnegative) if all its elements
are positive (resp. nonnegative). Here are two useful turnkey results, Corollaries V.1
and V.2.

COROLLARY V.1. Any one of the following conditions suffices to guarantee theexis-
tence of a unique dominant eigenvalue of a nonnegative matrix T :

(i) T has (strictly) positive entries;
(ii) T is such that, some powerT s is (strictly) positive;

(iii) T is irreducible and at least one diagonal element ofT is nonzero;
(iv) T is irreducible and the dependency graph ofT is such that there exist at

least two paths from the same source to the same destination that are of
relatively prime lengths.

PROOF. The proof makes use of the well-known correspondence between terms in
coefficients of matrix products and paths in graphs (see below Section V. 5 for more).
Sufficiency of condition(i) results directly from Case(i) of Theorem V.4. Condi-
tion (ii) immediately implies irreducibility. Unicity of the dominant eigenvalue (hence
aperiodicity) results from Perron-Frobenius properties of As, by whichλs

1 > |λ2|s.
(Also, by elementary graph combinatorics, one can always take the exponents to be
at most the dimensionm.) By basic combinatorics of paths in graphs, Conditions(iii)
and(iv) each imply Condition(ii). �

V. 4.2. Positive rational functions. The importance of Perron-Frobenius theory
and of its immediate consequence, Corollary V.1, stems fromthe fact that uniqueness
of the dominant eigenvalue is usually related to a host of analytic properties of gen-
erating functions as well as probabilistic properties of structures. In particular, as we
shall see in the next section, several combinatorial problems (like automata or paths
in graphs) can be reduced to the following case.

COROLLARY V.2. Consider the matrix

F (z) = (I − zT )−1,

whereT , called the “transition matrix”, is a scalar nonnegative matrix. It is assumed
thatT is irreducible. Then each entryFi,j(z) of F (z) has a radius of convergenceρ
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that coincides with the smallest positive root of the determinantal equation

∆(z) := det(I − zT ) = 0.

Furthermore, the pointρ is a simple pole of anyFi,j(z).
In addition, ifT is aperiodic or if it satisfies any of the conditions of Corollary V.1,

then all singularities other thanρ are strictly dominated in modulus byρ.

The statement obviously applies to any positive linear combinations of entries ofF
and thus to solutions of any system of the formy(z) = a+zT y(z).
PROOF. Define first (as in the statement)ρ = 1/λ1, whereλ1 is the eigenvalue ofT of
largest modulus that is guaranteed to be simple by assumption of irreducibility and by
Perron-Frobenius properties. Next, the relations inducedbyF = I + zTF , namely,

Fi,j(z) = δi,j + z
∑

k

Ti,kFk,j(z),

together with positivity and irreducibility entail that theFi,j(z) must all have the same
radius of convergencer. Indeed, eachFij depends positively on all the other ones (by
irreducibility) so that any infinite value of an entry in the system must propagate to all
the other ones.

The characteristic polynomial

∆(z) = det(I − zT ),

has roots that are inverses of the eigenvalues ofT andρ = 1/λ1 is smallest in modulus.
Thus, since∆ is the common denominator to all theFi,j(z), poles of anyFi,j(z) can
only be included in the set of zeros of this determinant, so that the inequalityr ≥ ρ
holds.

It remains to exclude the possibilityr > ρ, which means that no “cancellations”
with the numerator can occur atz = ρ. The argument relies on finding a positive
combination of some of theFi,j thatmustbe singular atρ. We offer two proofs, each
of interest in its own right: one(a) is conveniently based on the Jacobi trace formula,
the other(b) is based on supplementary Perron–Frobenius properties.

(a) Jacobi’s trace formula for matrices [192, p. 11],

(58) det ◦ exp = exp ◦Tr or log ◦ det = Tr ◦ log

generalizes the scalar identities4 eaeb = ea+b andlog ab = log a + log b. Here we
have (forz small enough)

Tr log(I − zT )−1 =
∑

i

∑

n≥1

Ti,i,n
zn

n

= log det(I − zT )−1,

where the first line results from expansion of the logarithm and the second line is an
instance of the trace formula. Thus, by differentiation, the sum

∑
i Mi,i(z) is seen to

be singular atρ = 1/λ1 and we have established thatr = ρ.

4The Jacobi trace formula is readily verified when the matrix is diagonalizable, and from there, it can
be extended to all matrices by an algebraic “density” argument.
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(b) Alternatively, letv1 be the eigenvector ofT corresponding toλ1. Perron-
Frobenius theory also teaches us that, under the irreducibility and aperiodicity condi-
tions, the vectorv1 has all its coordinates that are nonzero. Then the quantity

(1 − zT )−1v1 =
1

1 − zλ1
v1

is certainly singular at1/λ1. But it is also a linear combination of theFi,j ’s. Thus
at least one of the entries ofF (hence all of them by the discussion above) must be
singular atρ = 1/λ1. Therefore, we have againr = ρ.

Finally, under the additional assumption thatT is aperiodic, Perron-Frobenius
theory grants us thatρ = 1/λ1 is well-separated in modulus from all other singulari-
tiesF . �

Several of these arguments will be recycled when we discuss the harder problem
of analysing coefficients of positive algebraic functions in Chapter VII.

We next proceed to show that properties of the Perron-Frobenius type even ex-
tend to a large class of linear systems of equations that havenonnegative polynomial
coefficients. Such a case is important because of its applicability to transfer matrices;
see Section V. 5 below.

Some definitions extending the ones of scalar matrices must first be set. A poly-
nomial

p(z) =
∑

j

cjz
ej , everycj 6= 0,

is said to be primitive if the quantityδ = gcd({ej}) is equal to 1; it is imprimitive
otherwise. Equivalently,p(z) is imprimitive iff p(z) = q(zδ) for somebona fide
polynomialq and someδ > 1. Thus,z, 1 + z, z2 + z3, z + z4 + 2z8 are primitive
while 1, 1 + z2, z3 + z6, 1 + 2z8 + 5z12 are not.

DEFINITION V.4. A linear system with polynomial entries,

(59) f(z) = v(z) + T (z)f(z)

whereT ∈ R[z]r×r, v ∈ R[z]r, andf ∈ R[z]r the vector of unknowns is said to be:

(a) rationally proper (r–proper)if T (0) is nilpotent, meaning thatT (0)r is the
null matrix;

(b) rationally nonnegative (r–nonnegative)if each componentvj(z) and each
matrix entryTi,j(z) lies inR≥0[z];

(c) rationally irreducible (r–irreducible)if (I + T (z))r has all its entries that
are nonzero polynomials.

(d) rationally aperiodic (r–periodic)if at least one diagonal entry of some power
T (z)e is a primitive polynomial.

It is again possible to visualize these properties of matrices by drawing a directed
graph whose vertices are labelled1, 2, . . . , r, with the edge connectingi to j that is
weighted by the entryTi,j(z) of matrix T (z). Properness means that all sufficiently
long paths (and all cycles) must involve some positive powerof z— it is a condi-
tion satisfied in well-founded combinatorial problems; irreducibility means that the
dependency graph is strongly connected by paths whose edgesare associated with
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nonzero polynomials; periodicity means that all closed paths involve weights that are
polynomials in someze for somee > 1.

For instance, ifW is a matrix with positive entries, thenzW is r–irreducible and

r–aperiodic, whilez3W is r–periodic. The matrixT =

0
@ z z3

1 0

1
A is r–proper, r–

irreducible, and r–aperiodic, sinceT 2 =

0
@ z2 + z3 z4

z z3

1
A. The matrixT =

0
BB@

z3 1 0
0 0 z
z2 0 0

1
CCA

is r–proper, but it fails to be r–aperiodic since all cycles only involve powers ofz3, as
is visible on the associated graph:

2z

3

1 z

z

By abuse of language, we say thatf(z) is a solution of a linear system if it coin-
cides with the first component of a solution vector,f ≡ f1. The following theorem
generalizes Corollary V.2.

THEOREMV.5 (Positive rational systems).(i) Assume that a rational functionf(z) is
a solution of a system (59) that is r–positive, r–proper, r–irreducible, and r–aperiodic.
Then,f(z) has a unique dominant singularityρ that is positive, and is a simple pole;
ρ is the smallest positive solution of

(60) det(I − T (z)) = 0.

(ii) Assume thatf(z) is a solution of a system that is r–positive, r–proper, and r–
irreducible (but not necessarily r–aperiodic). Then, the set of dominant singularities
of f(z) is of the form{ρj}d−1

j=0 , whereρ0 ∈ R≥0, ρj/ρ0 = η is a root of unity, and
ρjη

ℓ is a dominant singularity for allℓ = 0, 1, 2, . . . . In addition, eachρj is a simple
pole.

PROOF. Consider first Case(i). For any fixedx > 0, the matrixT (x) satisfies the
Perron Frobenius conditions, so that it has a maximal positive eigenvalueλ1(x) that
is simple. More information derives from the introduction of matrix norms5. Spectral
radius and matrix norms are intimately related since

σ(A) = lim
n→+∞

(||An||)1/n .

In particular, this relation entails that the spectral radius is an increasing function of
matrix entries: for nonnegative matrices, ifA ≤ B (in the sense thatAi,j ≤ Bi,j for
all i, j), then one hasσ(A) ≤ σ(B); if A < B (in the sense thatAi,j < Bi,j for
all i, j), then one hasσ(A) < σ(B). (To see the last inequality, note the existence of
ǫ > 0 such thatA ≤ (1 − ǫ)B.)

5A matrix norm||.|| satisfies:||A|| = 0 impliesA = 0; ||cA|| = |c|·||A||; ||A+B|| ≤ ||A|+||B||;
||A× B|| ≤ ||A|| · ||B||.
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Returning to the case at hand, equation (56) and the surrounding remarks imply
that the spectral radiusσ(T (x)), which also equalsλ1(x) for positivex, satisfies

λ1(0) = 0, λ1(x) strictly increasing, λ1(+∞) = +∞.

(The first condition reflects properness, the second one is a consequence of irreducibil-
ity, and the last one derives from simple majorizations.) Inparticular, the equation
λ1(x) = 1 admits a unique rootρ on (0,+∞). (Notice thatλ1(x) is a real branch of
the algebraic curvedet(λI −T (x)) = 0 that dominates all other branches in absolute
value forx > 0. There results from the general theory of algebraic functions that
λ1(x) is analytic at every pointx > 0.)

There remains to prove that:(a) ρ is at most a simple pole off(z); (b) ρ is
actually a pole;(c) there are no other singularities of modulus equal toρ.

Fact(a) amounts to the property thatρ is a simple root of the equationλ(ρ) = 1,
that is,λ′(ρ) 6= 0. (To proveλ′(ρ) 6= 0, we can argue a contrario. First derivatives
λ′(ρ), λ′′(ρ), etc, cannot be zero till someoddorder inclusively since this would con-
tradict the increasing character ofλ(x) aroundρ along the real line. Next, if deriva-
tives till someevenorder≥ 2 inclusively were zero, then we would have by the local
analytic geometry ofλ(z) nearρ some complex valuez1 satisfying:|λ(z1)| = 1 and
|z1| < ρ; but for such a valuez1, by irreducibility and aperiodicity, for some exponent
e, the entries ofT (z1)

e would be all strictly dominated in absolute value by those of
T (ρ)e, hence a contradiction.) Then,λ′(ρ) 6= 0 holds and by virtue of

det(I − T (z)) = (1 − λ1(z))
∏

j 6=1

(1 − λj(z)) = (1 − λ1(z))
det(I − T (z))

1 − λ1(z)
,

the quantityρ is only a simple root ofdet(I − T (z)).
Fact(b) means that no “cancellation” may occur atz = ρ between the numerator

and the denominator given by Cramer’s rule. It derives from an argument similar
to the one employed for Corollary V.2. Fact(c) derives from aperiodicity and the
Perron-Frobenius properties. �

V. 5. Paths in graphs, automata, and transfer matrices.

A cluster of applications of rational functions is to problems that are naturally
described as paths in digraphs, or equivalently as finite automata. In physics, the cor-
responding treatment is also the basis of what is called the “transfer matrix method”.
We start our exposition with the enumeration of paths in graphs that constitutes the
most direct introduction to the subject.

V. 5.1. Paths in graphs.LetG be a directed graph with vertex set{1, . . . ,m},
where self-loops are allowed and label each edge(a, b) by the formal variablega,b.
We introduce the matrixG such that

(61) Ga,b = ga,b if the edge(a, b) ∈ G, Ga,b = 0 otherwise,

which is called theformal adjacency matrixof G. Then, from the standard definition
of matrix products, the powersGr have elements that are path polynomials. More
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precisely, one has the simple but essential relation,

(62) (G)r
i,j =

∑

w∈P(i,j;r)

w,

whereP(i, j, r) is the set of paths inG that connecti to j and have lengthr, and a
pathw is assimilated to the monomial in indeterminates{gi,j} that represents multi-
plicatively the succession of its edges; for instance:

(G)3i,j =
∑

m1=i,m2,m3,m4=j

gm1,m2gm2,m3gm3,m4 ,

In other words, powers of the matrix associated to a graph “generate” all paths in
a graph. One may then treat simultaneously all lengths of paths (and all powers of
matrices) by introducing the variablez to record length.

PROPOSITIONV.7. (i) LetG be a digraph and letG be the matrix associated toG
by rules(61)The OGFF 〈i,j〉(z) of the set of all paths fromi to j in a digraphG with
z marking length andga,b marking the occurrence of edge(a, b) is the entryi, j of the
matrix (I − zG)−1, namely

F 〈i,j〉(z) = (I − zG)−1
∣∣
i,j

=
∆〈i,j〉(z)

∆(z)
,

where∆(z) = det(I − zG) and∆〈i,j〉(z) is the determinant of the minor of index
i, j of I − zG.

(ii) The generating function of nonempty closed paths is given by
∑

i

(F 〈i,i〉(z) − 1) = −z∆′(z)

∆(z)
.

The quantitydet(I − zG) is obviously the reciprocal polynomial of the charac-
teristic polynomial ofG.
PROOF. Part(i) results from the discussion above which implies

F 〈i,j〉(z) =

∞∑

n=0

zn (Gn)i,j =
(
(I − zG)

−1
)

i,j
,

and from the cofactor formula of matrix inversion. Part(ii) results from Jacobi’s trace
formula (58). Introduce the quantity known as thezeta function,

ζ(z) := exp

(
∑

i

∞∑

n=1

F 〈i,i〉
n

zn

n

)
= exp

( ∞∑

n=1

zn

n
TrGn

)

= exp
(
Tr log(I − zG)−1

)
= det(I − zG)−1,

where the last line results from the Jacobi trace formula. Thus,ζ(z) = ∆(z)−1. On
the other hand, differentiation combined with the definition of ζ(z) yields

z
ζ′(z)

ζ(z)
= −z∆′(z)

∆(z)

=
∑

i

∞∑

n=1

F 〈i,i〉
n zn,
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and Part(ii) follows. �

The numeric substitutionσ : ga,b 7→ 1 transforms the matrixG into the usual
adjacency matrix. In particular, the number of paths of lengthn is obtained, under this
substitution, as[zn](1 − zG])−1. In a similar vein, it is possible to consider weighted
graphs, where thega,b are assignedreal-valued weights; with the weight of a path
being defined by the product of its edges weights, one finds that [zn](I − zG)−1

equals the total weight of all paths of lengthn. If furthermore the assignment is made
in such a way that

∑
b ga,b = 1, then the matrixG, which is called a stochastic matrix,

can be interpreted as the transition matrix of a Markov chain.

� 13.Fast computation of the characteristic polynomial.Observe that

z
ζ′(z)

ζ(z)
=
X

n≥1

znTr Gn =
X

λ

λz

1− λz ,

(the sum is over eigenvalues). From this, one deduces an algorithm that determines the charac-
teristic polynomial of a matrix of dimensionm in O(m4) arithmetic operations. [Hint: com-
puting the quantities TrGj for j = 1, . . . ,m requires preciselym matrix multiplications.] �

� 14.The matrix tree theorem.LetG be a directed graph without loops and associated matrix
G, with ga,b marking edge(a, b). The Laplacian matrixL[G] is defined by

L[G]i,j = −gi,j + [[i = j]]
X

k

gi,k.

Let L1[G] be the matrix obtained by deleting the first row and first column of L[G]. Then, the
“tree polynomial”

T1[G] := detL1[G]

enumerates all (oriented) spanning trees ofG rooted at node 1. [This classic result belongs to a
circle of ideas initiated by Kirchhoff, Sylvester, Borchardt and others in the 19th century. See,
e.g., the discussions by Knuth [244, p. 582–583] and Moon [289].] �

Let us now assume that positive weights are assigned to the edges ofG. In other
words, the quantitiesga,b in (61) have positive values. If the resulting matrix is irre-
ducible and aperiodic, then Perron-Frobenius theory applies. There existsρ = 1/λ1,
with λ1 > 0 the dominant eigenvalue ofG, and the OGF of weighted paths fromi to
j has a simple pole atρ. A host of probabilistic properties of paths result from there,
after a certain “residue matrix” has been calculated:

LEMMA V.1 (Iteration of Perron-Frobenius matrices).SetM(z) = (I−zG)−1 where
G has nonnegative entries, is irreducible, and is aperiodic.Let λ1 be the dominant
eigenvalue ofG. Then the “residue” matrixR such that

(63) (I − zG)−1 =
R

1 − zλ1
+O(1) (z → λ−1

1 )

has entries given by (〈x, y〉 represents a scalar product)

Rij =
riℓj
〈r, ℓ〉 ,

wherer andℓ are right and left eigenvectors ofG corresponding to the eigenvalueλ1.
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PROOF. Let E be the ambient space. There exists a direct sum decomposition E =
F1 + F2 whereF1 is the 1-dimensional eigenspace generated by the eigenvector (r)
corresponding to eigenvalueλ1 andF2 is the supplementary space which is the direct
sum of characteristic spaces corresponding to the other eigenvaluesλ2, . . . . (For the
purposes of the present discussion, one may freely think of the matrix as diagonal-
izable, withF2 the union of eigenspaces associated toλ2, . . . .) ThenG as a linear
operator acting onF admits the decomposition

G = λ1P + S,

whereP is the projector onF1 andS acts onF2 with spectral radius|λ2|, as illustrated
by the diagram:

(64)

O

~v
P~v

(r)

F2S~v

By standard properties of projections,P 2 = P andPS = SP = 0 so that

G
n = λn

1P + S.

Consequently, there holds,

(65)

(I − zG)−1 =
∑

n≥0

znλn
1P + znS

=
P

1 − λ1z
+ (I − zS)−1.

Thus, the residue matrixR coincides with the projectorP .
Now, for any vectorw, by general properties of projections, one has (R ≡ P ):

Rw = c(w)r,

for some coefficientc(w). Application of this to each of the base vectorsej (i.e.,
ej = (δj1, . . . , δjd)

t) shows that the matrixR has each of itscolumnsproportional to
the eigenvectorr. A similar reasoning with the transposeGt of G and the associated
residue matrixRt shows that the matrixR has each of itsrows proportional to the
eigenvectorℓ. In other words, for some constantγ, one must have

Ri,j = γℓjri.

The normalization constantγ is itself finally determined byℓRr = 〈ℓ, r〉.
We finally observe that a full expansion can be obtained:

(66) (I − zG)−1 P

1 − λ1z
+
∑

k≥0

Rk

(
z − λ−1

1

)k
, Rk := Sk(I − λ−1

1 S)−k−1.

The proof also reveals that one needs to solve one polynomialequation for determining
λ1, and then the other quantities in (66) are all obtained by inverting matrices in the
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field of constants extended by the algebraic quantityλ1. (Numerical procedures are
likely to be used instead for large matrices.) �

Equipped with this lemma, we can now state:

THEOREM V.6 (Random paths in digraphs).Let G be a nonnegative matrix associ-
ated to a weighted digraphG, assumed to be irreducible and aperiodic. Consider the
collectionPa,b of (weighted) paths with fixed origina and final destinationb. Then,
the number of traversals of edge(s, t) in a random element ofPa,b has mean

(67) τs,tn+O(1) where τs,t :=
ℓsgs,trt
λ1〈ℓ, r〉

.

In other words, a long random path tends to spend asymptotically a fixed (nonzero)
fraction of its time traversing any given edge. Accordingly, the number of visits of
vertexs is also proportional ton and obtained by summing the expression of (67)
according to all the possible values oft.
PROOF. First, the total weight (“number”) of paths inPa,b satisfies

(68) [zn]
[
(I − zG)−1

]
a,b

∼ λ1
raℓb
〈ℓ, r〉 ,

as follows from Lemma V.1. Next, introduce the modified matrix H = (hi,j) defined
by

hi,j = gi,j u
[[i=s∧j=t]].

In other words, we mark each traversal of edgei, j by the variableu. Then, the
quantity

(69) [zn]

[
∂

∂u
(I − zH)−1

∣∣∣∣
u=1

]

a,b

represents the total number of traversals of edge(s, t), with weights taken into ac-
count. Simple algebra6 shows that

(70)
∂

∂u
(I − zH)−1

∣∣∣∣
u=1

= (I − zG)−1 (zH ′) (I − zG),

whereH ′ := (∂uH)u=1 has all its entries equal to 0, except for thes, t entry whose
value isgs,t. By the calculation of the residue matrix in Lemma V.1, the coefficient
of (69) is then asymptotic to

(71) [zn]
Ra,s

1 − λ1z
gs,tz

Rt,b

1 − λ1z
∼ υnλn−1

1 , υ :=
raℓsgs,trtℓb

〈ℓ, r〉2 .

Comparison of (71) and (68) finally yields the result since the relative error terms are
O(n−1) in each case. �

Another consequence of this last proof and Equation (68) is that the numbers of
paths starting ata and ending at eitherb or c satisfy

(72) lim
n→∞

Pa,b,n

Pa,c,n
=
ℓb
ℓc
.

6If A depends onu, one has∂uA−1 = A−1(∂uA)A−1, which is a noncommutative generalization
of the usual differentiation rule for inverses.
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In other words, the quantity
ℓb∑
j ℓj

is the probability that a random path with origin fixed at somepoint a but otherwise
unconstrained will end up at pointb aftern steps. Such properties are strongly evoca-
tive of Markov chain theory discussed below in Example 12.

� 15. Concentration of distribution for the number of passages.Under the conditions of the
theorem, the standard deviation of the number of traversalsof a designated node or edge is
O(
√
n). Thus in a random long path, the distribution of the number ofsuch traversals is con-

centrated. [Compared to (70), the calculation of the secondmoment requires taking a further
derivative, which leads to a triple pole. The second moment and the square of the mean, which
are eachO(n2), are then found to cancel to main asymptotic order.] �

EXAMPLE 11. Walks on the interval revisited.As a direct illustration, consider the walks
associated to the graphG(5) with vertex set1, . . . , 5 and edges being formed of all pairs(i, j)
such that|i− j| ≤ 1. The matrix is

G(5) =

0
B@

1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

1
CA.

The characteristic polynomial factorizes as

χG(5)(z) = z(z − 1)(z − 2)(z2 − 2z − 2),

and its dominant root isλ1 = 1 +
√

3. From there, one finds a left eigenvector (which is also a
right eigenvector since the matrix is symmetric):

r = ℓt = (1,
√

3, 2,
√

3, 1).

Thus a random path (with the uniform distribution over all paths corresponding to the weights
being equal to 1) visits nodes1, . . . , 5 with frequencies proportional to

1, 1.732, 2, 1.732, 1,

implying that the central nodes are visited more often—suchnodes have higher degrees of
freedom, hence there tends to be more paths that traverse them.

In fact, this example has structure. For instance, the corresponding problem on an interval
of length 11, leads to a matrix with a highly factorable characteristic polynomial

χG(11) = z (z − 1) (z − 2)
`
z2 − 2 z − 2

´ `
z2 − 2 z − 1

´ `
z4 − 4 z3 + 2 z2 + 4 z − 2

´
.

The reader may have recognized a particular case of lattice paths which resort to to the theory
exposed in Section V. 2. For instance, according to Theorem V.2, the OGF of paths from vertex
1 to vertex 1 in the graph withk vertices is given by the continued fraction

1

1− z − z2

1− z2

. . .

1− z2

1− z

.
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G =

0
BB@

1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 0

1
CCA eG =

0
BBBBB@

1
2

1
2

0 0 0 0
1
2

0 1
2

0 0 0
1
2

0 0 1
2

0 0
1
2

0 0 0 1
2

0
1
2

0 0 0 0 1
2

1 0 0 0 0 0

1
CCCCCA

FIGURE 14. The devil’s staircase (m = 6) and the two matrices that can model it.

(The number of fraction bars isk; the first and last quotients are1 − z, the others being equal
to 1.) From this it can be shown that the characteristic polynomial ofG is an elementary variant
of the Fibonacci–Chebyshev polynomial of Example 6. The analysis based on Theorem V.6
is simpler, albeit more rudimentary, as it only provides a first-order asymptotic solution to the
problem. �

EXAMPLE 12. Elementary theory of Markov chains.Consider the case where the row sums of
matrixG are all equal to 1, that is,

P
j gi,j = 1. Such a matrix is called astochastic matrix. The

quantitygi,j can then be interpreted as the probability of leaving statei for statej, assuming
one is in statei. Assume that the matrixG is irreducible and aperiodic. Clearly, the matrixG

admits the column vectorr = (1, 1, . . . , 1)t as an eigenvector corresponding to the dominant
eigenvalueλ1 = 1. The left eigenvectorℓ normalized so that its elements sum to 1 is called the
(row) vector of stationary probabilities. It must be determined by linear algebra and it involves
finding an element of the kernel of matrixI −G, which can be done in a standard way.

Application of Theorem V.6 and Equation (68) shows immediately the following:

PROPOSITIONV.8 (Stationary probabilities of Markov chains).Consider a weighted graph cor-
responding to a stochastic matrixG which is irreducible and aperiodic. Letℓ be the normalized
left eigenvector corresponding to the eigenvalue 1. A random (weighted) path of lengthn with
fixed origin and destination visits nodes a mean number of times asymptotic toℓsn and tra-
verses edge(s, t) a mean number of times asymptotic toℓsgs,tn. A random path of lengthn
with fixed origin ends at vertexs with probability asymptotic toℓs.

This first-order asymptotic property certainly constitutes the most fundamental result in
the theory of finite Markov chains. �

The next example illustrates an elementary technique oftenemployed in calcula-
tions of eigenvalues and eigenvectors. It presupposes thatthe matrix to be analysed
can be reduced to a sparse form and has a regular enough structure.

EXAMPLE 13. The devil’s staircase. You live in a house that has a staircase withm steps.
You come back home a bit loaded and at each second, you can either succeed in climbing a
step or fall back all the way down. On the last step, you alwaysstumble and fall back down
(Figure 14). Where are you likely to be found at timen?

Precisely, two slightly different models correspond to this informally stated problem. The
probabilistic model views it as a Markov chain with equally likely possibilities at each step
and is reflected my matrixeG in Figure 14. The combinatorial model just assumes all possible
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evolutions (“histories”) of the system as equally likely and it corresponds to matrixG. We opt
here for the latter, keeping in mind that the same method basically applies to both cases.

We first write down the constraints expressing the joint properties of an eigenvalueλ and
its right eigenvectorx = (x1, . . . , xm)t. The equations corresponding to(λI −G)x = 0 are
formed of a first batch ofm− 1 relations,

(73) (λ− 1)x1 − x2 = 0, −x1 + λx2 − x3 = 0, · · · ,−x1 + λxm1 − xm = 0,

together with the additional relation (one cannot go higherthan the last step):

(74) −x1 + λxm = 0.

The solution to (73) is readily found by pulling out successively x2, . . . , xm as functions ofx1:

(75) x2 = (λ− 1)x1, x3 = (λ2 − λ− 1)x1, · · · , xm = (λm − λm−1 − · · · − 1)x1.

Combined with the special relation (74), this last relationshows thatλmust satisfy the equation

(76) 1− 2λm + λm+1.

Letλ1 be the largest positive root of this equation, existence anddominance beeing guaranteed
by Perron-Frobenius properties. Note that the quantityρ := 1/λ1 satisfies the characteristic
equation

1− 2ρ+ ρm+1 = 0,

already encountered when discussing longest runs in words;the discussion of Example 2 then
grants us the existence of an isolatedρ near1

2
, hence the fact thatλ1 is slightly less than 2.

Similar devices yield the left eigenvectory = (y1, . . . , ym). It is found easily thatyj must
be proportional toλ−j

1 . We thus obtain from Theorem V.6 and Equation (72):The probability
of being in statej (i.e., being on stepj of the stair) at timen tends to the limit

̟j = γλ−j
1

whereλ1 is the root near 2 of(76)and the normalization constantγ is determined by
P

j ̟j =
1. In other words, the distribution of the altitude at timen is a truncated geometric distribu-
tion with parameter1/λ1. For instance,m = 6 leads toλ1 = 1.98358, and the asymptotic
probabilities of being in states1, . . . , 6 are

(77) 0.50413, 0.25415, 0.12812, 0.06459, 0.03256, 0.01641,

exhibiting clearly a geometric decay. Here is the simulation of a random history forn = 100:

5

0 20 40 60 80 100

In this case, the frequencies observed are0.44, 0.26, 0.17, 0.08, 0.04, 0.01, pretty much in
agreement with what is expected.

Finally, the similarity with the longest run problem is easily explained. Letu andd be
letters representing steps upwards and downwards respectively. The set of paths from state 1 to
state 1 is described by the regular expression

P1,1 =
`
d+ ud + · · ·+ um−1d

´⋆
,

corresponding to the generating function

P1,1(z) =
1

1− z − z2 − · · · − zm
,
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a variant of the OGF of words withoutm-runs of the letteru, which also corresponds to the
enumeration of compositions with summands≤ m. The case of the probabilistic transition
matrix eG is left as an exercise to the reader. �

This last example is typical: in many cases combinatorial problems have some
amount of regularity. In such situations, all the resourcesof linear algebra are avail-
able, including the vast body of knowledge gathered over years on calculations of
structured determinants; see for instance Krattenthaler’s survey [255] and the book [393].

V. 5.2. Finite automata. Word problems corresponding to regular languages can
be treated by the theory of regular specifications whenever they have enough structure
and an unambiguous regular expression description is of tractable form. This was
the main theme of Sections V. 1 and V. 2. The dual point of view of automata theory
proves useful whenever no such direct description is in sight. Finite automata resorting
essentially to the theory of paths in graphs, the results from the previous sections apply
with only minor adaptation. For convenience, we start by recalling definitions already
given in Chapter I.

DEFINITION V.5. A finite automatonA over a finite alphabetA is a directed multi-
graph whose vertex setQ is called the set of states and whose edges are labelled by
letters of the alphabet. This graph is equipped with a designated initial stateq0 ∈ Q
and a designated set of final statesQf ⊆ Q.

A word w is said to be accepted by the automaton if there exists a pathπ in the
graph connecting the initial stateq0 to one of the final statesq ∈ Qf , so that the
succession of labels of the pathπ corresponds to the sequence of letters composingw.
The pathπ is then called an accepting path forw. (We can regard the finitely many
states as keeping a patial memory of the past, an interpretation that proves useful in
design issues.) The set of accepted words is denoted byL(A).

In all generality, a finite automaton may be anondeterministicdevice: given a
wordw, one might not “know”a priori which choices to effect at vertices in order to
accept it. A finite automaton is said to bedeterministicif given any stateq ∈ Q and
any letterx ∈ A, there is at most one edge from vertexq that bears labelx. In that
case, one decides easily (in linear time) whether a word is accepted by just following
edges dictated by the sequence of letters inw. All automata to be used in the examples
below are deterministic.

PROPOSITIONV.9 (Finite state automata counting).Any language accepted by a de-
terministic finite automaton has a rational generating function obtained as follows.
If the language is specified by the deterministic automatonA = 〈Q,Qf , q0〉, then
the corresponding ordinary generating functionL0(z) is the componentL0(z) of the
linear system of equations

{
Lj(z) = φj + z

∑

a∈A
Lτ(qj,a)(z)

}
,

whereφj equals 1 ifqj ∈ Qf and 0 otherwise, and whereτ(qj , a) is the index of the
state reachable from stateqj when the lettera is read.
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As a consequence, the number of words in the language accepted by a finite-state
automaton always admits of an exponential-polynomial form.

Note.The most fundamental result of the theory of regular languages is that there
is complete equivalence between three descriptive models:regular expressions, de-
terministic finite automata, and nondeterministic finite automata. The corresponding
theorems are due to Kleene (the equivalence between regularexpression and nonde-
terministic finite automata) and to Rabin and Scott (the equivalence between nonde-
terministic and deterministic automata). Thus, finite automata whether deterministic
or not accept (“recognize”) the family of all regular languages.
PROOF. By the fundamental equivalence of models, one may freely assume the au-
tomaton to be deterministic. The quantityLj is nothing but the OGF of the language
obtained by changing the initial state of the automaton toqj . Each equation expresses
the fact that a word accepted starting fromqj may be the empty word (ifqj is final)
or, else, it must consist of a lettera followed by a continuation that is itself accepted
when the automaton is started from the “next” state, that is,the state of indexτ(qj , a).
(Equivalently, one may reduce the proof to the enumeration of paths in graphs as de-
tailed above.)

Existence of the exponential-polynomial form immediatelyresults from rational-
ity of the OGF. �

As implied by the statement of the proposition, the OGF of thelanguage defined
by a deterministic finite automaton involves a quasi-inverse (1 − zT )−1 where the
transition matrixT is a direct encoding of the automaton’s transitions. Corollary V.2
and Lemma V.1 have been precisely custom-tailored for this situation. As is by now
usual, we shall allow weights on letters of the alphabet, corresponding to a Bernoulli
model on words. We say that an automaton is irreducible (resp. aperiodic) if the
underlying graph and the associated matrix are irreducible(resp. aperiodic).

PROPOSITIONV.10 (Random words and automata).LetL be a language recognized
by a deterministic finite automatonA that is irreducible and aperiodic. The number
of words ofL satisfies

Ln ∼ cλn
1

(
1 +O(d−n)

)
,

whereλ1 is the dominant (Perron-Frobenius) eigenvalue of the transition matrix ofA
andc, d are positive constants withd > 1.

In a random word ofLn, the number of traversals of a designated vertex or edge
has a mean that is asymptotically linear inn and is given by Theorem V.6.

� 16. Unambiguous automata.A nondeterministic finite state automaton is said to be un-
ambiguous if the set of accepting paths for any given words comprises at most one element.
The translation into generating function as described above also applies to such automata, even
though they are nondeterministic. �

EXAMPLE 14. Locally constrained words.Consider a fixed alphabetA = {a1, . . . , am} and a
setF ⊆ A2 of forbidden transitions between consecutive letters. Theset of words overA with
no such forbidden transition is denoted byL and is called a locally constrained language. (The
particular case where exactly all pairs of equal letters areforbidden corresponds to Smirnov
words and has been discussed on p. 249.)
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1 0 1 1
1 0 0 0
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FIGURE 15. Locally constrained words: The transition matrix (T ) associated
to the forbidden pairsF = {ac, ad, bb, cb, cc, cd, da, db}, the corresponding au-
tomaton, and the graph with widths of vertices and edges drawn in proportion to
their asymptotic frequencies.

Clearly, the words ofL are recognized by an automaton whose state space is isomorphic
toA: stateq simply memorizes the fact that the last letter read was aq. The graph of the au-
tomaton is then obtained by the collection of allowed transitions(q, r) 7→ a, with (q, r) 6∈ F .
(In other word, the graph of the automaton is the complete graph in which all edges that corre-
spond to forbidden transitions are deleted.) Consequently, the OGF of any locally constrained
language is a rational function. Its OGF is given by

(1, 1, . . . , 1)(I − zT )−1(1, 1, . . . , 1)t,

whereTij is 0 if (ai, aj) ∈ F and 1 otherwise. If each letter can follow any other letter inan
accepted word, the automaton is irreducible. The graph is aperiodic except in a few degenerate
cases (e.g., in the case where the allowed transitions wouldbea→ b, c, b→ d, c→ d, d→ a).
Under irreducibility and aperiodicity, the number of wordswill be ∼ cλ−n

1 and each letter will
have on average an asymptotic constant frequency. (See (34)and (35) of Chapter IV for the
case of Smirnov words.)

For the example of Figure 15, the alphabet isA = {a, b, c, d}. There are eight forbidden
transitions and the characteristic polynomial is found to beλ3(λ − 2). Thus, one hasλ1 = 2.
The right and left eigenvectors are found to be

r = (2, 2, 1, 1)t, ℓ = (2, 1, 1, 1).

Then, the matrix(τs,t), whereτs,t represents the asymptotic frequency of transitions from
letters to lettert is found in accordance with Theorem V.6:

Γ =

0
BB@

1
4

1
4

0 0
1
8

0 1
16

1
16

1
8

0 0 0
0 0 1

16
1
16

1
CCA .

This means that a random path spends a proportion equal to1
4

of its time on a transition between
ana and ab, but much less (1

16
) on transitions between pairs of lettersbc, bd, cc, ca. The letter

frequencies in a random word ofL are( 1
2
, 1

4
, 1

8
, 1

8
), so that ana is four times more frequent

than ac or ad, and so on. See Figure 15 (right) for a rendering.
Various specializations, including multivariate GF’s andnonuniform letter models are

readily treated by this method. Bertoniet al. develop in [45] related variance and distribu-
tion calculations in the case of the number of occurrences ofa symbol in an arbitrary regular
language. �
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FIGURE 16. The de Bruijn graph: (left)ℓ = 3; (right) ℓ = 7.

EXAMPLE 15. De Bruijn graphs. Two thieves want to break into a house whose entrance is
protected by digital lock with an unknown four-digit code. As soon as the four digits of the code
are typed consecutively, the gate opens. The first thief proposes to try in order all the four-digit
sequences , resulting in as much as 40,000 key strokes in the worst-case. The second thief, who
is a mathematician, says he can tryall four-digit combinations with only 10,003 key strokes.
What is the mathematician’s trade secret?

Clearly certain optimizations are possible: for instance,for an alphabet of cardinality 2
and codes of 2 letters, the sequence00110 is better than the naı̈ve one,00 01 10 11, which
is redundant; a few more attempts will lead to an optimal solution for 3–digit codes that has
length 11 (rather than 24), for instance,

0001110100.

The general question is then: How far can one go and how to construct such sequences?
Fix an alphabet of cardinalitym. A sequence that contains as factors (contiguous blocks)

all the k letter words is called ade Bruijn sequence. Clearly, its length must be at least
δ(m,k) = mk +k−1, as it must have at leastmk positions at distance at leastk from the end.
A sequence of smallest possible lengthδ(m,k) is called aminimalde Bruijn sequence. Such
sequences were discovered by N. G. de Bruijn [84] in 1946, in response to a question coming
from electrical engineering, where all possible reactionsof a device presented as a black box
must be tested at minimal cost. We shall expose here the case of a binary alphabet,m = 2, the
generalization tom > 2 being obvious.

Let ℓ = k−1 and consider the automatonBℓ that memorizes the last block of lengthℓ read
when scanning the input text from left to right. A state is thus assimilated to a string of lengthℓ
and the total number of states is2ℓ. The transitions are easily calculated: letq ∈ {0, 1}ℓ be
a state and letσ(w) be the function that shifts all letters of a wordw one position to the left,
dropping the first letter ofw in the process (thusσ maps{0, 1}ℓ to {0, 1}ℓ−1); the transitions
are

q
07→ σ(q)0, q

17→σ(q)1.

If one further interprets a stateq as the integer in the interval[0 . . 2ℓ− 1] that it represents, then
the transition matrix assumes a remarkably simple form:

Ti,j = [[(j ≡ 2i mod 2ℓ) or (j ≡ 2i+ 1 mod 2ℓ)]].

See Figure 16 for a rendering borrowed from [168].
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Combinatorially, the de Bruijn graph is such that each node has indegree 2 and outdegree 2.
By a well known theorem going back to Euler:A necessary and sufficient condition for an
undirected connected graph to have an Eulerian circuit (that is, a closed path that traverses
each vertex exactly once) is that every node has even degree.For a strongly connected digraph,
the condition is that each node has an outdegree equal to its indegree.This last condition is
obviously satisfied here. Take an Eulerian circuit startingand ending at node0ℓ; its length is
2ℓ+1 = 2k. Then, clearly, the sequence of edge labels encountered when prefixed with the word
0k−1 = 0ℓ constitutes a minimal de Bruijn sequence. In general, the argument gives a de Brujin
sequence with minimal lengthmk +k−1. Et voilà! The trade secret of the thief-mathematician
is exposed.

Back now to enumeration. The de Bruijn matrix is irreduciblesince a path labelled by
sufficiently many zeros always leads any state to the state0ℓ, while a path ending with the
letters ofw ∈ {0, 1}ℓ leads to statew. The matrix is aperiodic since it has a loop on states0ℓ

and1ℓ. Thus, by Perron Frobenius properties, it has a unique dominant eigenvalue, and it is
not hard to check that its value isλ1 = 2, corresponding to the right eigenvector(1, 1, . . . , 1)t.
If one fixes apatternw ∈ {0, 1}ℓ, Theorem V.6 yields the fact that a random word contains
on average∼ n

2ℓ occurrences of patternw. Note 15 also implies that the distribution of the
number of occurrences is concentrated around the mean as thevariance isO(n). This gives us
in a simple manner a version of what was nicknamed “Borges’s Theorem” in Chapter I:Almost
every sufficiently long text containsall patterns of some predetermined lengthℓ. As a matter of
fact, the de Bruijn graph may be used to quantify many properties of occurrences of patterns in
random words, and it has been used for this purpose in severalworks including [32, 147, 168].
�

EXAMPLE 16. Words with excluded patterns.Fix a finite set of patternsΩ = {w1, . . . , wr},
where eachwj is a word ofA⋆. The languageE ≡ EΩ of words that contain no factor inΩ is
described by the extended regular expression

E = A⋆ \
r[

j=1

(A⋆wjA
⋆),

which constitutes a concise but highly ambiguous description. By closure properties of regular
languages,E is itself regular and there must exist a deterministic automaton that recognizes it.

An automaton recognizingE can be constructed starting from the de Bruijn automaton of
indexk = −1 + max |wj | and deleting all the vertices and edges that correspond to a word
of Ω. Precisely, vertexq is deleted wheneverq contains a factor inΩ; the transition (edge) from
q associated with letterα gets deleted whenever the wordqα contains a factor inΩ. The pruned
de Bruijn automaton, call itB◦

k, accepts all words of0kE , when it is equiped with the initial
state0k and all states are final. Thus, the OGFE(z) is in all cases a rational function.

The matrix ofB◦
k is the matrix ofBk with some nonzero entries replaced by 0. Assume that

B◦
k is irreducible. This assumption only eliminates a few pathological cases (e.g.,Ω = {01}

on the alphabet{0, 1}). Then, the matrix ofB◦
k admits a simple Perron-Frobenius eigenvalue

λ1. By domination properties (Ω 6= ∅), we must haveλ1 < m, wherem is the cardinality
of the alphabet. Aperiodicity is automatically granted. Wethen get by a purely qualitative
argument:The number of words of lengthn excluding patterns from the finite setΩ is, under
the assumption of irreducibility, asymptotic tocλn

1 , for somec > 0 andλ1 < ||A||. This last
result is a strong metric form of Borges’ Theorem.
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The construction of a pruned automaton is clearly a generalization of the case of words
obeying local constraints in Example 14 above. �

� 17. Words with excluded patterns and digital trees.Let S be a finite set of words. An
automaton recognizingS, considered as a finite language, can be constructed as a tree. The tree
obtained is akin to the classicaldigital treeor trie that serves as a data structure for maintaining
dictionaries [245].

A modification of the construction yields an automaton of size linear in the total number of
characters that appear in words ofS. [Hint. The construction can be based on the Aho–Corasick
automaton [4]). �

� 18. Words excluding a subsequence.The language formed of all words that do not con-
tainw1 · · ·wk as a subsequence (or “hidden pattern”), except at the very end, is described by
the unambiguous regular expression

(A \ w1)
⋆w1 (A \ w2)

⋆ w2 · · ·wr−1 (A \ wk)⋆ wk .

Assume the alphabet is endowed with a family of weights, withpj the weight of letteraj ∈ A.
The OGFF (z) of wordsnot containingw as a subsequence satisfies, withqj := 1− pj ,

F (z) =

k−1X

j=1

(p1 · · · pj)z
j

(1− q1z) · · · (1− qj+1z)
,

from which an asymptotic formula for[zn]F (z) derives. E.g., in the equiprobable case (pi =
1/m)

[zn]F (z) ∼ 1

mn
(m− 1)n−k+1 nk−1

(k − 1)!
.

(This problem is closely related to the discussion of pure-birth processes on page 285.) �

V. 5.3. Transfer matrix methods. The transfer matrix method constitutes a vari-
ant of the modelling by deterministic automata and by paths in graphs. The very
general statement of Theorem V.5 applies here with full strength. Here, we shall il-
lustrate the situation by the width of trees following an early article by Odlyzko and
Wilf [ 303] and continue with an example that draws its inspiration from the insightful
exposition of domino tilings and generating functions in the book of Graham, Knuth,
and Patashnik [196].

EXAMPLE 17. Width of trees.The width of a tree is defined as the maximal number of nodes
that can appear on any layer at a fixed distance from the root. If a tree is drawn in the plane,
then width and height can be seen as the horizontal and vertical diomensions of the bounding
rectangle. Also, width is an indicator of the complexity of traversing the tree in a breadth-first
search (by a queue), while height is associated to depth-first search (by a stack).

Transfer matrices are ideally suited to the problem of analysing the number of trees of fixed
width. Consider a simple variety of trees corresponding to the equationY (z) = zφ(Y (z)),
where the “generator”φ describes the formation of trees and letY [w](z) be the GF of trees of
width at mostw. Such trees are easily built layer by layer. Say there arek nodes at a certain
level in the tree (with1 ≤ k ≤ w); the number of possibilities for attachingℓ levels at the next
level is the number ofk-forests of depth 1 havingℓ leaves, that is, the quantity

tk,ℓ = [yℓ]φ(y)k.
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LetT be thew×w matrix with entryTk,ℓ = zℓtk,ℓ. Then, clearly, the quantityzi(T h)i,j (with
1 ≤ i, j ≤ w) is the number ofi-forests of heighth, width at mostw, with j nodes on levelh.
Thus, the GF ofY-trees having width at mostw is

Y [w](z) = (z, 0, 0, . . .)(I − T )−1(1, 1, 1, . . .)t.

For instance, in the case of general Catalan trees, the matrix T has the shape,

T =

0
BB@

z
`
1
0

´
z2
`
2
0

´
z3
`
3
0

´
z4
`
4
0

´

z
`
2
1

´
z2
`
3
1

´
z3
`
4
1

´
z4
`
5
1

´

z
`
3
2

´
z2
`
4
2

´
z3
`
5
2

´
z4
`
6
2

´

z
`
4
3

´
z2
`
5
3

´
z3
`
6
3

´
z4
`
7
3

´

1
CCA ,

for width 4. The analysis of dominant poles provides asymptotic formulae for[zn]Y [w](z):

w = 2 w = 3 w = 4 w = 5 w = 6
0.0085 · 2.1701n 0.0026 · 2.8050n 0.0012 · 3.1638n 0.0006 · 3.3829n 0.0004 · 3.5259n

Additionally, the exact distribution of height in trees of sizen becomes computable in polyno-
mial time (though with a somewhat high degree polynomial).

The character of these generating functions has not been investigated in detail since the
original work [303], so that, at the moment, analysis stops there. Fortunately, probability theory
can take over the problem. Chassaing and Marckert [70] have shown, for Cayley trees, that the
width satisfies

En(W ) =

r
π

2
+O

“
n1/4

p
log n

”
, Pn(

√
2W ≤ x)→ 1−Θ(x),

whereΘ(x) is the Theta function defined in (44). This answers very precisely an open ques-
tion of Odlyzko and Wilf [303]. The distributional results of [70] extend to trees in any simple
variety (under mild and natural analytic assumptions on thegeneratorφ): see the paper by
Chassaing, Marckert, and Yor [71], which builds upon earlier results of Drmota and Gitten-
berger [104]. In essence, the conclusion of these works is that the breadth first search traversal
of a large tree in a simple variety gives rise to a queue whose size fluctuates asymptotically
like a Brownian excursion, and is thus, in a strong sense, of acomplexity comparable to depth-
first search: trees taken uniformly don’t have much of a preference as to the way they may be
traversed.

�

� 19.A question on width polynomials.It is unknown whether the following assertion is true.
The smallest positive rootρk of the denominator ofY [k](z) satisfies

ρk = ρ+
c

k2
+ o(k−2),

for somec > 0. If such an estimate holds together with suitable companionbounds, it would
yield a purely analytic proof of the fact that expected widthof n–trees isΘ(

√
n), as well as

detailed probability estimates. (The classical theory of Fredholm equations may be useful here.)
�

EXAMPLE 18. Monomer-dimer tilings of a rectangle.Suppose one is given pieces that may be
one of the three forms: monomers (m) that are1 × 1 squares, and dimers that are dominoes,
either vertically(v) oriented1× 2, or horizontally (h) oriented2× 1. In how many ways can
ann× 3 rectangle be covered completely and without overlap (‘tiled’) by such pieces?
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The pieces are thus of the following types,

m = , h = , v = ,

and here is a particular tiling of a5× 3 rectangle:

In order to approach this counting problem, one defines a classC of combinatorial objects
called configurations. A configuration relative to ann× k rectangle is a partial tiling, such that
all the firstn− 1 columns are entirely covered by dominoes while between zeroand three unit
cells of the last column are covered. Here are for instance, configurations corresponding to the
example above.

These diagrams suggest the way configurations can be built bysuccessive addition of
dominoes. Starting with the empty rectangle0 × 3, one adds at each stage a collection of
at most three dominoes in such a way that there is no overlap. This creates a configuration
where, like in the example above, the dominoes may not be aligned in a flush-right manner.
Continue to add successively dominoes whose left border is at abscissa1, 2, 3, etc, in a way
that creates no internal “holes”.

Depending on the state of filling of their last column, configuration can thus be classified
into 8 classes that we may index in binary asC000, . . . , C111. For instanceC001 represent con-
figurations such that the first two cells (from top to bottom, by convention) are free, while the
third one is occupied. Then, a set of rules describes the new type of configuration obtained,
when the sweep line is moved one position to the right and dominoes are added. For instance,
we have

C010 ⊙ =⇒ C101.

In this way, one can set up a grammar (resembling a deterministic finite automaton) that
expresses all the possible constructions of longer rectangles from shorter ones according to the
last layer added. The grammar comprises productions like

C000 = ǫ+mmmC000 +mvC000 + vmC000

+ ·mmC100 +m·mC010 +mm·C001 + v·C001 + ·vC100

+m··C011 + ·m·C101 + ··mC110 + ···C111 .

In this grammar, a “letter” likemv represent the addition of dominoes, in top to bottom order,
of typesm, v respectively; the letterm·mmeans adding twom-dominoes on the top and on the
bottom, etc.
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The grammar transforms into a linear system of equations with polynomial coefficients.
The substitutionm 7→ z, h, v 7→ z2 then gives the generating functions of configurations with
z marking the area covered:

C000(z) =
(1− 2z3 − z6)(1 + z3 − z6)

(1 + z3)(1− 5z3 − 9z6 + 9z9 + z12 − z15)
.

In particular, the coefficient[z3n]C000(z) is the number of tilings of ann× 3 rectangle:

C000(z) = 1 + 3z3 + 22z6 + 131z9 + 823z12 + 5096z15 + · · · .

The sequence grows likec αn (for n ≡ 0 (mod 3)) whereα
.
= 1.83828 (α is the cube root

of an algebraic number of degree 5). (See [69] for a computer algebra session.) On average,
for largen, there is a fixed proportion of monomers and the distributionof monomers in a
random tiling of a large rectangle is asymptotically normally distributed, as results from the
developments of Chapter IX. �

As is typical of the tiling example, one seeks to enumerate a “special” set of
configurationsCf . (In the example above, this isC000 representing complete rectangle
coverings.) One determines an extended set of configurationsC (the partial coverings,
in the example) such that:(i) C is partitioned into finitely many classes;(ii) there is a
finite set of “actions” that operate on the classes;(iii) size is affected in a well-defined
additive way by the actions. The similarity with finite automata is apparent: classes
play the rôle of states and actions the rôle of letters.

Often, the method of transfer matrices is used to approximate a hard combinato-
rial problem that is not known to decompose, the approximation being by means of a
family of models of increasing “widths”. For instance, the enumeration of the number
Tn of tilings of ann× n square by monomers and dimers remains a famous unsolved
problem of statistical physics. Here, transfer matrix methods may be used to solve the
n × w version of the monomer–dimer coverings, in principle at least, for any fixed
width w: the result will always be a rational function, though its degree, dicated by
the dimension of the transfer matrix, will grow exponentially with w. (The “diagonal”
sequence of then × w rectangular models corresponds to the square model.) It has
been at least determined by computer search that the diagonal sequenceTn starts as
(this isEISA028420):

1, 7, 131, 10012, 2810694, 2989126727, 11945257052321, . . . .

From this and other numerical data, one estimates numerically that (Tn)1/n2 →
1.94021 . . ., but no expression for the constant is known to exist. The difficulty of
coping with the finite-width models is that their complexity(as measured , e.g., by
the number of states) blows up exponentially withw—such models are best treated
by computer algebra; see [419]—and no law allowing to take a diagonal is visible.
However, the finite width models have the merit of providing at least provable upper
and lower bounds on the exponential growth rate of the hard “diagonal problem”.

In contrast, for coverings by dimers only, a strong algebraic structure is available
and the number of covers of ann×n square by horizontal and vertical dimers satisfies
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a beautiful formula originally discovered by Kasteleyn (n even):

(78) U2n = 2n2/2
n∏

j=1

n∏

k=1

(
cos2

jπ

n+ 1
+ cos2

kπ

n+ 1

)
.

This sequence isEISA004003,

1, 2, 36, 6728, 12988816, 258584046368, 53060477521960000, . . . .

It is elementary to prove from (78) that

lim
n→+∞

(
Û2n

)1/(2n)2

= exp

(
1

π

∞∑

n=0

(−1)n

(2n+ 1)2

)
= eG/π .

= 1.33851 . . . ,

whereG is Catalan’s constant. This means in substance that each cell has a number of
degrees of freedoms equivalent to1.33851. See Percus’ monograph [315] for proofs
of this famous result and Finch’s book [126, Sec. 5.23] for context and references.
� 20.Powers of Fibonacci numbers.Consider the OGFs

G(z) :=
1

1− z − z2
=
X

n≥0

Fn+1z
n, G[k](z) :=

X

n≥0

(Fn+1)
k zn,

whereFn is a Fibonacci number. The OGF of monomer–dimer placements on ak × n board
when only monomers (m) and horizontal dimers(h) are allowed is obviouslyG[k](z). On the
other hand, it is possible to set up a transfer matrix model with statei (0 ≤ i ≤ k) correspond-
ing to i positions of the current column occupied by a previous domino. Consequently,

G[k](z) = coeffk,k(I − zT )−1, where Ti,j =

 
i

i+ j − k

!
,

for 0 ≤ i, j ≤ k. [The denominator ofG[k](z) is otherwise known exactly [244, Ex. 1.2.8.30].]
�

� 21.Tours on chessboards.The OGF of Hamiltonian tours on ann× w rectangle is rational
(one is allowed to move from any cell to any other vertically or horizontally adjacent cell). The
same holds for king’s tours and knight’s tours. �

� 22. Cover time of graphs.Given a fixed digraphG assumed to be strongly connected, and
a designated start vertex, one travels at random, moving at each time to any neighbour of the
current vertex, making choices with equal likelihood. The expectation of the time to visit all the
vertices is a rational number that is effectively (though perhaps not efficiently!) computable.
[Hint: set up a transfer matrix, a state of which is a subset ofvertices representing those vertices
that have been already visited. For an interval[0, . .m], this can be treated by the dedicated
theory of walks on the integer interval, as in Section V. 2; for the complete graph, this is equiva-
lent to the coupon collector problem. Most other cases are “hard” to solve analytically and one
has to resort to probabilistic approximations; see Aldous and Fill’s forthcoming book [7] for a
probabilistic approach.] �

EXAMPLE 19. Self-avoiding walks and polygons.A long standing open problem shared by
statistical physics, combinatorics, and probability theory alike is that of quantifying properties
of self-avoiding configurations on the square lattice (Figure 17). Here we consider objects that,
starting from the origin (the “root”) follow a path, and are solely composed of horizontal and
vertical steps of amplitude±1. Theself-avoiding walkor SAWcan wander but is subject to the
condition that it never crosses nor touches itself. Theself-avoiding polygonsor SAPs, whose
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FIGURE 17. A self-avoiding polygon or SAP (left) and a self-avoiding walk or
SAW (right).

class is denoted byP , are self-avoiding walks, with only an exception at the end,where the end-
point must coincide with the origin. We shall focus here on polygons. It proves convenient also
to considerunrooted polygons(also called simply-connectedpolyominoes), which are polygons
where the origin is discarded, so that they plainly represent the possible shapes of SAPs up to
translation. For length2n, the numberpn of unrooted polygons satisfiespn = Pn/(4n) since
the origin (2n possibilities) and the starting vertex (2 possibilities) of the corresponding SAPs
are disregarded in that case. Here is a table, for small values ofn, listing polyominoes and the
corresponding counting sequencespn, Pn.

n: 2 3 4 5 6 7 8 9 10
pn (EISA002931): 1 2 7 28 124 588 2938 15268 81826
Pn (EISA010566): 8 24 112 560 2976 16464 94016 549648 3273040

Take the (widely open) problem of determining the numberPn of SAPs of perimeter2n.
This (intractable) problem can be approached as a limit of the (tractable) problem7 that con-
sists in enumerating the collectionP [w] of SAPs of widthw, for increasing values ofw. The
latter problem is amenable to the transfer matrix method, asfirst discovered by Entig in 1980;
see [116]. Indeed, take a polygon and consider a sweepline that movesfrom its left to its right.
Once width is fixed, there are at most22w+2 possibilities for the ways a vertical sweepline
may intersect the polygon’s edges at half integer abscissæ.(There arew + 1 edges and for
each of these, one should “remember” whether they connect with the upper or lower boundary.)
The transitions are then themselves finitely described. In this way, it becomes possible to set
up a transfer matrix for any fixed widthw. For fixedn, by computing values ofP [w]

n with
increasingw, one finally determines (in principle) the exact value of anyPn.

The program suggested above has been carried out to record values by the “Melbourne
School” under the impulse of Tony Guttmann. For instance, Jensen [226] found in 2003 that

7In this version of the text, we limit ourselves to a succinct description and refer to the original pa-
pers [116, 226] for details.
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the number of unrooted polygons of perimeter 100 is

p50 = 7545649677448506970646886033356862162.

Attaining such record values necessitates algorithms thatare much more sophisticated than the
naı̈ve approach we have just described, as well as a number ofhighly ingenious programming
optimizations.

It is an equally open problem to estimate asymptotically thenumber of SAPs of perime-
tern. Given the exact values till perimeter 100 or more, a batteryof fitting tests for asymptotic
formula can be applied, leading to highlyconvincing(though still heuristic) formulæ. Thanks
to several workers in this area, we can regard the final answeras “known”. From the works of
Jensen and his predecessors, it results that a reliable empirical estimate is of the form

(
pn = Bµ2n(2n)−β(1 + o(1)),

µ
.
= 2.63815 85303, β = −5

2
± 3 · 10−7, B

.
= 0.5623013.

Thus, the answer is almost certainly of the formpn ≍ µ2nn−5/2 for unrooted polygons and
Pn ≍ µ2nn−3/2 for rooted polygons. It is believed that the same connectiveconstantµ dictates
the exponential growth rate of self-avoiding walks. See Finch’s book [126, Sec. 5.10] for a
perspective and numerous references.

There is also great interest in the numberpm,n of polyominos with perimeter2n and
aream, with area defined as the number of square cells composing thepolyomino. Studies
conducted by the Melbourne school yield numerical data thatare consistent to an amazing
degree (e.g., moments till order ten and small–n corrections are considered) with the following
assumption:The distribution of area in a fixed-perimeter polyomino obeys in the asymptotic
limit an “Airy area distribution”. This distribution is defined as the limit distribution of the
area under Dyck paths, a problem that was briefly discussed onp. 299 and to which we propose
to return in Chapter IX. See [226, 334] and references therein for a discussion of polyomino
area. It is finally of great interest to note that the interpretation of data was strongly guided by
what is already known for exactly solvable models of the typewe are repeatedly considering in
this book. �

V. 6. Additional constructions

We conclude this chapter with a discussion8 of a construction that builds on top
of rational functions by means of certain transformations.Specifically, it is possible
to enumerate constrained permutations by making use of the transfer matrix (or finite
automaton) framework.

We examine here problems whose origin lies in nineteenth century recreational
mathematics. For instance, theménageproblem solved and popularized byÉdouard
Lucas in 1891, see [76], has the following quaint formulation:What is the number of
possible ways one can arrangen married couples (‘ménages’) around a table in such
a way that men and women alternate, but no woman sits next to her husband?

The ménage problem is equivalent to a permutation enumeration problem. Sit first
conventionally the men at places numbered0, . . . , n− 1, and letσi be the position at
the right of which theith wife is placed. Then, a ménage placement imposes the
conditionσi 6= i andσi 6= i + 1 for eachi. We consider here a linearly arranged

8Contents of this section are supplementary material that can be omitted on first reading.
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table (see remarks at the end for the other classical formulation that considers a round
table), so that the conditionσi 6= i + 1 becomes vacuous wheni = n. Here is a
ménage placement forn = 6 corresponding to the permutation

σ =

[
1 2 3 4 5 6
4 5 6 2 1 3

]

61 2 3 4 5

Clearly, this is a generalization of the derangement problem (for which the weaker
conditionσi 6= i is imposed), where the cycle decomposition of permutationssuffices
to provide a direct solution (see Chapter II).

Given a permutationσ = σ1 · · ·σn, any quantityσi − i is called anexceedance
of σ. Let Ω be a finite set of integers that we assume to be nonnegative. Then a
permutation is said to beΩ-avoiding if none of its exceedances lies inΩ. The counting
problem, as we now demonstrate, provides an interesting case of application of the
transfer matrix method.

The setΩ being fixed, consider first for allj the class of augmented permutations
Pn,j that are permutations of sizen such thatj of the positions are distinguished
and the corresponding exceedances lie inΩ, the remaining positions having arbitrary
values (but with the permutation property being satisfied!). Loosely speaking, the
objects inPn,j can be regarded as permutations with “at least”j exceedances inΩ.
For instance, withΩ = {1} and

σ =

(
1 2 3 4 5 6 7 8 9
2 3 4 8 6 7 1 5 9

)
,

there are 5 exceedances that lie inΩ (at positions1, 2, 3, 5, 6) and with3 of these
distinguished (say by enclosing them in a box), one obtains an element counted by
P9,3 like

2 3 4 8 6 7 1 5 9.

LetPn,j be the cardinality ofPn,j . We claim that the numberQn = QΩ
n of Ω-avoiding

permutations of sizen satisfies

(79) Qn =

n∑

j=0

(−1)jPn,j .

Equation (79) is typically aninclusion-exclusionrelation. To prove it formally, de-
fine the numberRn,k of permutations that have exactlyk exceedances inΩ and the
generating polynomials

Pn(w) =
∑

j

Pn,jw
j , Rn(w) =

∑

k

Rn,kw
k.
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FIGURE 18. A graphical rendering of the legal template20?02?11?relative to
Ω = {0, 1, 2}.

The GF’s are related by

Pn(w) = Rn(w + 1) or Rn(w) = Pn(w − 1)..

(The relationPn(w) = Rn(w + 1) simply expresses symbolically the fact that each
Ω-exceedance inR may or may not be taken in when composing an element ofP .) In
particular, we havePn(−1) = Rn(0) = Rn,0 = Qn as was to be proved.

The preceding discussion shows that everything relies on the enumerationPn,j

of permutations with distinguished exceedances inΩ. Introduce the alphabetA =
Ω ∪ {‘?’}, where the symbol ‘?’ is called the ‘don’t-care symbol’. A word onA, an
instance withΩ = {0, 1, 2} being 20?02?11?, is called atemplate. To an augmented
permutation, one associates a template as follows: each exceedance that is not distin-
guished is represented by a don’t care symbol; each distinguished exceedance (thereby
an exceedance with value inΩ) is represented by its value. A template is said to be
legal if it arises from an augmented permutation. For instance a template2 1 · · · can-
not be legal since the corresponding constraints, namelyσ1 − 1 = 2, σ2 − 2 = 1, are
incompatible with the permutation structure (one should haveσ1 = σ2 = 3). In con-
trast, the template 20?02?11? is seen to be legal. Figure 18 is a graphical rendering;
there, letters of templates are represented by dominoes, with a cross at the position
of a numeric value inΩ, and with the domino being blank in the case of a don’t-care
symbol.

LetTn,j be the set of legal templates relative toΩ that have lengthn and comprise
j don’t care symbols. Any such legal template is associated toexactlyj! permutations,
sincen − j position-value pairs are fixed in the permutation, while thej remaining
positions and values can be taken arbitrarily. There results that

(80) Pn,n−j = j!Tn,j and Qn =

n∑

j=0

(−1)n−jj!Tn,j,

by (79). Thus, the enumeration of avoiding permutations rests entirely on the enumer-
ation of legal templates.

The enumeration of legal templates is finally effected by means of a transfer ma-
trix method, or equivalently, by a finite automaton. If a templateτ = τ1 · · · τn is legal,
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then the following condition is met,

(81) τj + j 6= τi + i,

for all pairs(i, j) such thati < j and neither ofτi, τj is the don’t-care symbol. (There
are additional conditions to characterize templates fully, but these only concern a few
letters at the end of templates and we may ignore them in this discussion.) In other
words, aτi with a numerical value preempts the valueτi+i. Figure 18 exemplifies the
situation in the caseΩ = {0, 1, 2}. The dominoes are shifted one position each time
(since it is the value ofσ − i that is represented) and the compatibility constraint (81)
is that no two crosses should be vertically aligned. More precisely the constraints (81)
are recognized by a deterministic finite automaton whose states are indexed by subsets
of {0, . . . , b− 1} where the “span”b is defined asb = maxω∈Ω ω. The initial state is
the one associated with the empty set (no constraint is present initially), the transitions
are of the form{

(qS , j) 7→ qS′ whereS′ = ((S − 1) ∪ {j − 1}) ∩ {0, . . . , b− 1}, j 6= ‘?’
(qS , ?) 7→ qS′ whereS′ = (S − 1) ∩ {0, . . . , b− 1};

the final state is equal to the initial state (this translatesthe fact that no domino can
protrude from the right, and is implied by the linear character of the ménage problem
under consideration). In essence, the automaton only needsa finite memory since the
dominoes slide along the diagonal and, accordingly, constraints older than the span
can be forgotten. Notice that the complexity of the automaton, as measured by its
number of states, is2b.

Here are the automata corresponding toΩ = {0} (derangements) and toΩ =
{0, 1} (ménages).

{0} { } { }

For the ménage problem, there are two states depending on whether or not the cur-
rently examined value has been preempted at the preceding step.

From the automaton construction, the bivariate GFTΩ(z, u) of legal templates,
with u marking the position of don’t care symbols, is a rational function that can
be determined in an automatic fashion fromΩ. For the derangement and ménage
problems, one finds

T {0}(z, u) =
1

1 − z(1 + u)
, T {0,1}(z, u) =

1 − z

1 − z(2 + u) + z2
.

In general, this gives access to the OGF of the correspondingpermutations. Consider
the partial expansion ofTΩ(z, u) with respect tou, taken under the form

(82) TΩ(z, u) =
∑

r

cr(z)

1 − uur(z)
,
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assuming for convenience only simple poles. There the sum isfinite and it involves
algebraic functionscj anduj of the variablez. Finally, the OGF ofΩ-avoiding per-
mutations is obtained fromTΩ by the transformation

znuk 7→ (−z)nk!,

which is the transcription of (80). Define the (divergent) OGF of all permutations,

F (y) =

∞∑

n=0

n! yn = 2F0[1, 1; y],

in the terminology of hypergeometric functions. Then, by the remarks above and (82),
we find

QΩ(z) =
∑

r

cr(−z)F (−uj(−z)).

In other words,the OGF ofΩ-avoiding permutations is a combination of compositions
of the OGF of the factorial series with algebraic functions.

The expressions simplify much in the case of ménages and derangements where
the denominators ofT are of degree 1 inu. One has

Q{0}(z) =
1

1 + z
F (

z

1 + z
) = 1 + z2 + 2z3 + 9z4 + 44z5 + 265z6 + 1854z7 + · · · ,

for derangements, whence a new derivation of the known formula,

Q{0}
n =

n∑

k=0

(−1)k

(
n

k

)
(n− k)!.

Similarly, for (linear) ménage placements, one finds

Q{0,1}(z) =
1

1 + z
F (

z

(1 + z)2
) = 1 + z3 + 3z4 + 16z5 + 96z6 + 675z7 + · · · ,

which isEISA00027and corresponds to the formula

Q{0,1}
n =

n∑

k=0

(−1)k

(
2n− k

k

)
(n− k)!.

Finally, the same techniques adapts to constraints that “wrap around”, that is, con-
straints taken modulon. (This corresponds to a round table in the ménage problem.)
In that case, what should be considered is the loops in the automaton recognizing tem-
plates (see also the previous discussion of the zeta function of graphs). One finds in
this way the OGF of the circular (i.e., classical) ménage problem to beEISA000179,

Q̂{0,1}(z) =
1 − z

1 + z
F (

z

(1 + z)2
)+2z = 1+z+z3+2z4+13z5+80z6+579z7+· · · ,

which yields the classical solution of the (circular) ménage problem,

Q̂{0,1}
n =

n∑

k=0

(−1)k 2n

2n− k

(
2n− k

k

)
(n− k)!,

a formula that is due to Touchard; see [76, p. 185] for pointers to the vast classical
literature on the subject. The algebraic part of the treatment above is close to the
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inspiring discussion offered in Stanley’s book [362]. An application to robustness of
interconnections in random graphs is presented in [145].

For asymptotic analysis purposes, the following general property proves useful:
LetF be the OGF of factorial numbers and assume thaty(z) is analytic at the origin
where it satisfiesy(z) = z − λz2 +O(z3); then it is true that

(83) [zn]F (y(z)) ∼ [zn]F (z(1 − λz)) ∼ n!e−λ.

(The proof results from simple manipulations of divergent series in the style of [27].)
This gives at sight the estimates

Q{0}
n ∼ ne−1, Q{0,1}

n ∼ ne−2.

More generally, for any setΩ containingλ elements, one has

Q{Ω}
n ∼ ne−λ.

Furthermore, the numberRΩ
n,k of permutations having exactlyk occurrences (k fixed)

of an exceedance inΩ is asymptotic to

Q{Ω}
n ∼ ne−λλ

k

k!
.

In other words, the rare event that an exceedance belongs toΩ obeys of Poisson distri-
bution withλ = |Ω|. These last two results are established by means of probabilistic
techniques in the book [22, Sec. 4.3]. The relation (83) points to a way of arriving at
such estimates by purely analytic-combinatorial techniques.

� 23. Other constrained permutations.Given a permutationσ = σ1 · · ·σn, asuccession gap
is defined as any differenceσi+1 − σi. Discuss the counting of permutations whose succession
gaps are constrained to lie outside of a finite setΩ. In how many ways can a kangaroo pass
through all points of the integer interval[1, n] starting at1 and ending atn while making hops
that belong to{−2,−1, 1, 2}? �

� 24. Shuffle products.Let L,M be two languages over two disjoint alphabets. Then, the
shuffle productS of L andM is such thatbS(z) = bL(z) · cM(z), where bS, bL,cM are the
exponential generating functions ofS ,L,M. Accordingly, if the OGFL(z) andM(z) are
rational then the OGFS(z) is also rational. [This technique may be used to analyse generalized
birthday paradox and coupon collector problems; see [138].] �

V. 7. Notes

Applications of rational functions in discrete and continuosu mathematics are in
abundance. Many examples are to be found in Goulden and Jackson’s book [192].
Stanley [362] even devotes a full chapter of his bookEnumerative Combinatorics,
vol. I, to rational generating functions. These two books push the theory further than
we can do here, but the corresponding asymptotic aspects which we expose lie outside
of their scope. The analytic theory of positive rational functions starts with the works
of Perron and Frobenius at the beginning of the twentieth century and is explained
in books on matrix theory likes those of Bellman [24] and Gantmacher [176]. Its
importance has been long recognized in the theory of finite Markov chains, so that the
basic theory of positive matrices is well developed in many elementary treatises on
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probability theory. For such aspects, we refer for instanceto the classic presentations
by Feller [123] or Karlin and Taylor [229].

The supercritical sequence schema is the first in a list of abstract schemas that
neatly exemplify the interplay between combinatorial, analytic, and probabilistic prop-
erties of large random structures. The origins of this approach are to be traced to early
works of Bender [26, 27] followed by Soria and Flajolet [163, 165, 359].

Turning to more specific topics, we mention in relation to Section V. 2 the first
global attempt at a combinatorial theory of continued fractions by Flajolet in [128]
together with related works of Jackson of which an exposition is to be found in [192,
Ch. 5] and a summary in [143] in relation to birth and death processes. Walks on
graphs are well discussed in Godsil’s book [187]. The discussion of local constraints
in permutations based on [145] combines the combinatorial elements bound in Stan-
ley’s book [362] with the general philosophy of analytic combinatorics. Our treatment
of words and languages largely draws its inspiration from the line of research started
by Schützenberger in the early 1960’s and on the subsequentaccount to be found in
Lothaire’s book [267]. A nice review of transfer matrix methods (including a discus-
sion of limit distributions) is offered by Bender, Richmond, and Williamson in [34].

There are many topics that would naturally fit into this chapter but weren’t ready for the
present edition. Amongst the ones that may be treated (briefly) in future editions, we mention:
exactly solvable models of convex polygons, the Ehrenfest urn model, random walks on undi-
rected graphs, shuffles and Laplace transforms, variationson cycles in graphs, digital trees and
the Aho-Corasick construction, the Goulden-Jackson cluster method. Future editions will be
available from Philippe Flajolet’s web page.
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Singularity Analysis of Generating
Functions

Es ist eine Tatsache, daß die genauere Kenntnis
des Verhaltens einer analytischen Funktion

in der Nähe ihrer singulären Stellen
eine Quelle von arithmetischen Sätzen ist.1

— ERICH HECKE [211, Kap. VIII]
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A function’s singularities are reflected in the function’s coefficients. For rational frac-
tions and meromorphic functions, the local analysis of polar singularities provides
contributions to coefficients in the form of exponential polynomials, that is, products
of polynomials and simple exponentials. In this chapter, wepresent a general ap-
proach to singularity analysis of generating functions that is no longer restricted to
polar singularities and extends to a very large class of functions that have moderate
growth or decay at their dominant singularities. The basic principle is the existence of
acorrespondencebetween

the asymptotic expansion of a function near its dominant singularities
and

the asymptotic expansion of the function’s coefficients.

This mapping essentially preserves orders of growth in the sense that larger functions
have larger coefficients.

Precisely, the method of singularity analysis applies to “algebraic–logarithmic”
functions whose singular expansions involve fractional powers and logarithms. It re-
lies on two types of results: first, it is possible to set up acatalogueof asymptotic ex-
pansions for coefficients of standard functions occurring in such singular expansions

1“It is a fact that the precise knowledge of the behaviour of ananalytic function in the vicinity of its
singular points is a source of arithmetic properties.”

345
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second,transfer theoremsallow us to extract the asymptotic order of coefficients of
error terms from singular expansions and error terms.

The developments are based on Cauchy’s coefficient formula used in conjunction
with special contours of integration known asHankel contours. The contours come
very close to the singularities then steer away; by design, they have the property of
capturing essential asymptotic informations contained inthe functions’ singularities.

An important feature of the method is to require only local asymptotic properties
of the function to be analysed. In this way, it is often instrumental in the case of
functions only indirectly accessible through functional equations. In particular, the
method of singularity analysis allows us to treat models where singularities of the
square–root type occur, which is invariably the case for simple tree types. It also
applies to search trees of various kinds as well as to severalsearching and sorting
algorithms whose analyses (see later chapters) often involve logarithmic factors.

VI. 1. Introduction

Rational and meromorphic functions have coefficients whoseasymptotic form
involves “exponential polynomials”, that is, finite linearcombinations of elements of
the form (

1

ω

)n

nk−1,

with k a positive integer. This reflects the nature of polar singularities, with corre-
sponding elements of the form

1

(1 − z
ω )k

,

for the function itself. We examine here a class of methods that yield a much wider
range of subexponential factors. The method, calledsingularity analysis, provides
asymptotic forms of coefficients which are of the type

(
1

ω

)n

nα−1 (log n)β,

with α andβ being arbitrary real (or even complex) numbers. Such forms relate to
singularities of a more complicated nature than mere poles,namely, elements of the
form

1

(1 − z
ω )α

(
log

1

1 − z
ω

)β

.

in the asymptotic expansion of the function at its singularity ω.
The exponential factorω−n is, as seen in Chapter IV, easily accounted for as

the location of the dominant singularities always induces amultiplicative exponential
factor for coefficients. Iff(z) is singular atz = ω, theng(z) := f(z/ω) satifies, by
the scaling rule of Taylor expansions

[zn] f(z) = ωn[zn] f(
z

ω
) = ωn[zn] g(z),
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FIGURE 1. The five functions from Eq. (1) and a plot of their coefficient se-
quences illustrate the tendency of coefficient extraction to be consistent with or-
ders of growth of functions.

andg(z) itself is singular on the unit disc. Consequently, in most ofthe discussion
that follows, we shall examine functionsf(z) that are singular atz = 1, a condition
that entails no loss of generality.

Consider commonly encountered functions that are singularat1. Here is a small
sample of those admitting expansions of an elementary form:

(1)

Function Coeff. (exact) Coeff. (asymptotic)

(f1) [zn] 1−
√

1− z =
2

n4n

 
2n− 2

n− 1

!
∼ 1

2
√
πn3

(f2) [zn]
1√

1− z =
1

4n

 
2n

n

!
∼ 1√

πn

(f3) [zn]
1

1− z = 1 ∼ 1

(f4) [zn]
1

1− z log
1

1− z = Hn ∼ log n

(f5) [zn]
1

(1− z)2 = n+ 1 ∼ n.

Such a table obviously has structure: a logarithmic factor in the function is reflected by
a similar factor in the coefficients; square-roots somehow induce square-roots; finally
functions of larger growth have larger coefficients; see Figure 1.

Here is a partial explanation of such observations. First, regarding the basic func-
tions in the scale, the Newton expansion

(1 − z)−α =

∞∑

n=0

(
n+ α− 1

n

)
zn
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when specialized to an integerk immediately gives the asymptotic form of the coeffi-
cients involved,

(2)
[zn](1 − z)−k ≡ (n+ 1)(n+ 2) · · · (n+ k − 1)

(k − 1)!

=
nk−1

(k − 1)!

(
1 +O(

1

n
)

)
.

For generalα, it is therefore natural to expect

(3)
[zn](1 − z)−α ≡

(
n+ α− 1

α− 1

)

=
nα−1

(α− 1)!

(
1 +O(

1

n
)

)
.

It turns out that the asymptotic formula and even a full asymptotic expansion are valid
for real or complexα, provided we interpret(α − 1)! suitably. Indeed, one has, (see
Section VI. 2 and Theorem VI.1)

(4) [zn](1 − z)−α ∼ nα−1

Γ(α)

(
1 +

α(α − 1)

2n
+ · · ·

)
,

whereΓ(α) is theEuler Gamma functiondefined as

(5) Γ(α) :=

∫ ∞

0

e−ttα−1 dt,

forℜ(α) > 0, which coincides with(α−1)! wheneverα is an integer. Basic properties
of this function are recalled in APPENDIX B: Gamma function, p. 633.

We indeed observe from the pair (2)–(3) that functions of theform (1 − z)−α

that are larger at the singularityz = 1 (corresponding to larger values ofα) also have
larger coefficients. The correspondence that this observation suggests is very general
as we are going to see repeatedly throughout this chapter.

Second, an asymptotic expansion off(z) aroundz = 1 is typically of the form

(6) f(z) = σ(z) +O(τ(z)) whereσ(z) ≫ τ(z) asz → 1,

with σ andτ belonging to an asymptotic scale of standard functions likethe collec-
tion {(1 − z)−α}α∈R in simpler cases. Taking formally Taylor coefficients in the
expansion (6), we arrive at

(7) fn ≡ [zn]f(z) = [zn]σ(z) + [zn]O(τ(z)).

Therefore, in order to extract asymptotic informations on the coefficients off(z), two
ingredients are needed:

(i) A catalogue of exact or asymptotic forms for coefficients of standard singu-
lar functionsσ(z);

(ii) A way of extracting coefficients of functions known only by their order of
growth around the singularity.
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The first aspect(i) is achieved by expansions of the type (4). The second aspect(ii)
is achieved by transfer lemmas which under suitable conditions, essentially analytic
continuation, guarantee that

[zn]O(τ(z)) = O([zn]τ(z)),

a relation which is much less trivial than its symbolic form would seem to imply (see
Section VI. 3 and Theorem VI.3).

In summary, under favourable conditions which it is the goalof this chapter to
elicit, we have available the implication

(8) f(z) = σ(z) +O(τ(z)) =⇒ fn = σn +O(τn).

The process of singularity analysis thus parallels the analysis of coefficients of rational
and meromorphic functions presented in the previous chapter. The range of singular
behaviours taken into account by singularity analysis is however considerably larger.
We shall allow here functions from the scale

1

(1 − z)α
(log

1

1 − z
)β (z → 1),

which, for coefficients, appear to induce subexponential factors of the form

θ(n) = nα−1(logn)β .

(See Theorem VI.2.) Even iterated logarithms (log log’s) and more exotic functions
can be encapsulated in the method.

As an illustration of themodus operandi, consider the function

f(z) =
e−z−z2/2

√
1 − z

,

which is the EGF of2–regular graphs (or equivalently, “clouds”, see Chapter IIor [76]).
Singularity analysis permits us to reason as follows. The functionf(z) is only singu-
lar atz = 1 where it has a branch point. Expanding the numerator aroundz = 1, we
have

(9) f(z) =
e−3/4

√
1 − z

+O((1 − z)3/2).

Therefore(see Theorems VI.1 and VI.3, as well as the discussion on page362 below),
upon translating formally and term–by–term, one has

(10) [zn]f(z) = e−3/4

(
n− 1/2

n

)
+O

(
n− 3/2

n

)
=
e−3/4

√
πn

+O(n−3/2),

and a full asymptotic expansion into descending powers ofn can be obtained.
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VI. 2. Coefficient asymptotics for the basic scale

This section and the next are essentially based on the theorydeveloped by Flajolet
and Odlyzko [153] and calledsingularity analysis. Technically the theory relies on a
systematic use of Hankel contours in Cauchy coefficient integrals. Hankel contours
classically serve to express the Gamma function: see APPENDIXB: Gamma function,
p. 633. Here they are first used to estimate coefficients of a standard scale of functions,
and then to prove transfer theorems for error terms . This constitutes the basic process
by which an asymptotic expansion of a function near a singularity is directly mapped
to a matching asymptotic expansion of its coefficients.

Returning to the binomial expansion, we have for generalα,

[zn](1 − z)−α = (−1)n

(−α
n

)
=

(
n+ α− 1

n

)
=
α(α + 1) · · · (α+ n− 1)

n!
.

This quantity is expressible in terms of Gamma factors, and

(11)

(
n+ α− 1

n

)
=

Γ(n+ α)

Γ(α)Γ(n+ 1)
,

providedα is neither 0 nor a negative integer. Whenα ∈ {0,−1, . . .}, the co-
efficients

(
n+α−1

n

)
eventually vanish, so that the asymptotic problem of estimating

[zn](1−z)−α becomes void. The asymptotic analysis of the coefficients
(

n+α−1
n

)
can

be carried out elementarily by means of Stirling’s formula or by real integral estimates:
see Notes 1 and 2. However, a far more productive method consists in analysing these
coefficients by means of Cauchy’s coefficient formula applied to their GF. For us, this
approach has two major advantages: it paves the way to the proof of transfer theorems;
it readily extends to coefficients of functions involving logarithmic (and even iterated
logarithmic) factors.

� 1.Stirling’s formula and asymptotics of binomial coefficients. The gamma function form (11)
of the binomial coefficients yields

[zn](1− z)−α =
nα−1

Γ(α)

„
1 +O(

1

n
)

«
,

when Stirling’s formula is applied to the gamma factors. �

� 2. Beta integrals and asymptotics of binomial coefficients.The following constitutes a direct
way of obtaining the general asymptotic form of

`
n+α−1

n

´
based on the Eulerian Beta integral

(see [402, p.254] and APPENDIX B: Gamma function, p. 633). Consider the quantity

φ(n, α) =

Z 1

0

tα−1(1− t)n−1 dt =
(n− 1)!

α(α+ 1) · · · (α+ n− 1)
≡ 1

n
`

n+α−1
n

´ ,

where the second form results elementarily from successiveintegrations by parts. The change
of variablest = x/n yields

φ(n, α) =
1

nα

Z n

0

xα−1(1− x/n)n−1 dt ∼
n→∞

1

nα

Z ∞

0

xα−1e−x dx ≡ Γ(α)

nα
,

where the asymptotic form results from the standard limit formula of the exponential:exp(a) =
limn→∞(1 + a/n)n. �
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R

FIGURE 2. The contoursC0, C1, andC2 ≡ H(n) used for estimating the coeffi-
cients of functions from the standard asymptotic scale.

THEOREMVI.1 (Standard function scale).Letα be a number not belonging to the set
{0,−1,−2, . . .}. The coefficient ofzn in

f(z) = (1 − z)−α

admits for largen a full asymptotic expansion in descending powers ofn,

[zn]f(z) ∼ na−1

Γ(α)

(
1 +

∞∑

k=1

ek(α)

nk

)
,

whereek(α) is a polynomial inα of degree2k.

The polynomialek(α) turns out to be divisible byα(α − 1) · · · (α − k). In par-
ticular, we have
(12)

fn = [zn](1 − z)−α ∼ nα−1

Γ(α)

(
1 +

α (α− 1)

2n
+
α (α− 1) (α− 2) (3α− 1)

24n2

+
α2 (α− 1)

2
(α− 2) (α− 3)

48n3
+ · · ·

)
.

PROOF. First the coefficient[zn](1− z)−α is expressed by means of Cauchy’s coeffi-
cient formula,

(13) fn =
1

2iπ

∫

C
(1 − z)−α dz

zn+1
,

with C a small enough contour that encircles the origin, for instance the positively
oriented circleC0 = {z, |z| = 1

2}. Next this contourC0 gets deformed into another
one,C1, consisting of a large circle of radiusR > 1 with a notch that comes back
near and to the left ofz = 1. (In effect, any simple closed contour around the origin
that does not cross the half–linez ≥ 1 is adequate.) Since the integrand along large
circles decreases asO(R−n−α), we can finally letR tend to infinity. We are then left
with an integral representation forfn whereC is thus replaced by a contourC2 that
starts from−∞ in the lower half plane, winds around1 clockwise and ends at+∞ in
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the upper half plane. This is a typical case of aHankel contourotherwise described
in APPENDIX B: Gamma function, p. 633.

In order to specify fully the integration path, we particularizeC2 to be the contour
H(n) that passes at a distance1

n from the half line[1,+∞[:

(14) H(n) = H−(n) + H+(n) + H◦(n)

where

(15)






H−(n) = {z = w − i
n , w ≥ 1}

H+(n) = {z = w + i
n , w ≥ 1}

H◦(n) = {z = 1 − eiφ

n , φ ∈ [−π
2 ,

π
2 ]}.

Now, a change of variable

(16) z = 1 +
t

n

in the integral (13) gives the form

(17) fn =
nα−1

2iπ

∫

H
(−t)−α

(
1 +

t

n

)−n−1

dt

whereH is exactly the Hankel contour encountered in the proof of Theorem B.1.
We have

(18)(
1 +

t

n

)−n−1

= e−(n+1) log(1+t/n) = e−t

[
1 +

t2 − 2t

2n
+

3t4 − 20t3 + 24t2

24n2
+ · · ·

]
.

Thus, the integrand in (17) converges pointwise (as well as uniformly in any bounded
domain of thet plane) to(−t)−αe−t which is precisely the “kernel” that appears in
Hankel’s formula for the Gamma function. Substitution of the asymptotic form

(1 +
t

n
)−n−1 = e−t(1 +O(

1

n
)),

asn→ ∞ inside the integral (17) suggests that

[zn](1 − z)−α =
nα−1

Γ(α)
(1 +O(

1

n
)).

Furthermore, the full expansion (18) when plugged into the integral (17) formally
leads to an expansion in descending powers ofn.

To complete the argument outlined in the previous paragraph, one then proceeds
as follows:

(i) Split the contour according to|t| ≤ log2 n and |t| ≥ log2 n. The part
corresponding to|t| ≥ log2 n is seen to be negligible in the scale of the
problem; for instance, there,

(
1 +

t

n

)−n

= O(exp(− log2 n)).
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n = 10 n = 20 n = 50
4n

√
πn3

`
1 1 8708 6 935533866 2022877684829178931751713264

− 9
8
N−1 16 603 65 45410086 197 7362936920522405787299715

+ 145
128

N−2 16 815 656 5051735 19782 79553371460627490749710

− 1155
1024

N−3 1679 4 6564 073885 1978261 300061101426696482732

+ 36939
32768

N−4 16796 656412 2750 19782616 64919884629357813591

− 295911
262144

N−5 16796 6564120 303 1978261657 612856326190245636

+ 4735445
4194304

N−6 16796 656412042 6 197826165775 9023715384519184

− 37844235
33554432

N−7
´

16796 6564120420 19782616577561 03402179527600

Cn 16796 6564120420 1978261657756160653623774456

FIGURE 3. Improved approximations to the Catalan numbers obtainedby suc-
cessive terms of their asymptotic expansion.

(ii) On the remaining part of the contour,|t| ≤ log2 n, the quantityt
n is small

enough, being of orderlog
2 n

n , so that a terminating form of (18) may be
developed to any predetermined order with uniform error terms.

These considerations justify term-by-term integration ofexpansion (18) within the
integral of (17).

The full expansion is then computed as follows. A term of the form tr

ns in the
expansion (18) induces, by Hankel’s formula, a term of the form 1

Γ(α−r)
1

ns . The
expansion so obtained is nondegenerate providedα differs from a negative integer or
zero. Since

1

Γ(α− k)
=

1

Γ(α)
(α− 1)(α− 2) · · · (α− k).

the expansion in the statement of the theorem eventually follows. �

The asymptotic approximations obtained are far from being as accurate as the
ones that derive from meromorphic asymptotics in Chapter IV, where exponentially
small error terms could be derived. However here, when the first few terms of the
asymptotic expansion are included, it is not uncommon to obtain results with about
10−6 accuracy, already for values ofn in the range101–102. Figure 3 examplifies this
situation by displaying the approximations obtained for the Catalan numbers,

Cn =
4n

n+ 1
[zn](1 − z)−1/2,

whenC10, C20, C50 are considered and up to eight asymptotic terms are taken into
account.

The basic principle underlying the method of proof of Theorem VI.1 is simple. It
consists in taking a contour of integration that comes closeto the singularity atz = 1.
By choosing this contour to pass at distance1

n , the kernel in Cauchy’s coefficient
formula transforms into an exponential, while the functioncan be locally expanded,
with the differential coefficient only introducing a rescaling factor of1/n:

1

zn+1
7→ e−t, (1 − z)−α 7→ nα(−t)−α, dz 7→ 1

n
dt.
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In other words, the contourH(n) “captures” the behaviour of the function near its
singularity, thereby enabling coefficient estimation.

This principle has the further advantage of generalizing toa wide class of singular
functions, most notably the ones that involve logarithmic terms, as well as leading to
a whole range of transfers ofO(.) ando(.) terms, to be established in the next section.

THEOREM VI.2 (Standard coefficient scale, logarithms).Let α be a number not in
{0,−1,−2, . . .}. The coefficient ofzn in

f(z) = (1 − z)−α

(
1

z
log

1

1 − z

)β

admits for largen a full asymptotic expansion in descending powers oflogn,

(19) fn = [zn]f(z) ∼ nα−1

Γ(α)
(logn)

β

[
1 +

C1

1!

β

logn
+
C2

2!

β(β − 1)

(logn)2
+ · · ·

]
.

There,Ck = Ck(α) represents

Γ(α)
dk

dsk

1

Γ(s)

∣∣∣∣
s=α

.

A coefficient of 1
z is introduced in front of the logarithm sincelog(1 − z)−1 =

z + O(z2). In this way,f(z) is abona fidepower series inz, even in cases whenβ is
not a positive integer.
PROOF. The proof is a simple variant of that of Theorem VI.1, see [153] for details.
The basic expansion used is now

f(1 +
t

n
)(1 +

t

n
)−n−1 ∼ e−t

(−n
t

)α(
log

(−n
t

))β

∼ e−t(−t)−α

nα
(logn)β

(
1 − log(−t)

logn

)β

∼ e−t(−t)−α

nα
(logn)β

(
1 − β

log(−t)
logn

+
β(β − 1)

2!
(
log(−t)
logn

)2 + · · ·
)
.

It proves again justified to employ this expansion inside theintegral defining the coef-
ficients. What comes out is a collection of Hankel integrals of the form

− 1

2iπ

∫ (0)

+∞
(−t)−se−t(log(−t))k dt

which reduce to derivatives of1Γ(s) as is seen by differentiation with respect tos under
the integral sign. �

A typical example of application of Theorem VI.2 is

[zn]
1√

1 − z

1
1
z log 1

1−z

=
1√

πn logn

(
1 − γ + 2 log 2

logn
+O(

1

log2 n
)

)
.

(Surprising as it may seem, such singular functions do occurin combinatorics and the
analysis of algorithms [162].)

Furthermore, a direct adaptation of the proof of our basic theorems leads to results
regarding the coefficients of many functions that have a nearly polynomial growth.
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It is proved in [153] that, for a class of functionsL slowly varyingat ∞ and for
α 6= 0,−1, . . ., one has:

(20) [zn]
1

(1 − z)α
L(

1

1 − z
) ∼ nα−1

Γ(α)
L(n).

Logarithms and their powers constitute typical instances of such slowly varying func-
tions; iterated logarithms also belong to this class and, for a generalα 6= 0,−1, . . .,
the relation (20) specializes to

[zn](1−z)−α

(
1

z
log

1

1 − z

)β (
1

z
log

(
1

z
log

1

1 − z

))δ

∼ nα−1

Γ(α)
(log n)β(log logn)δ.

A full asymptotic expansion in descending powers oflogn can once more be derived
in this case [153].

Special cases.The conditions of Theorem VI.2 exclude explicity the case whenα is
an integer≤ 0. The formulæ actually remain valid in this case, provided one interprets
them as limit cases, making use of0 = 1/Γ(0) = 1/Γ(−1) = · · · . Whenβ is a
positive integer, stronger forms are valid. Such cases are summarized in Figure 4 and
discussed now.

The case of integralα ∈ Z≤0. Whenα is an integer≤ 0, the coefficients of
f(z) = (1 − z)−α eventually reduce to zero, so that the asymptotic coefficient ex-
pansion becomes trivial. This situation is implicitly covered by the statement of Theo-
rem VI.1 since, in that case,1/Γ(α) = 0. When logarithms are present (withα ∈ Z≤0

still), the expansion of Theorem VI.2 regarding

[zn](1 − z)−α(
1

z
log

1

1 − z
)β

remains valid provided we again take into account the equality 1/Γ(α) = 0 in for-
mula (19) after effecting simplifications by Gamma factors:It is only the first term
of (19) that vanishes,

(21) fn = [zn]f(z) ∼ nα−1 (logn)
β

[
C∗

1

1!

β

logn
+
C∗

2

2!

β(β − 1)

(log n)2
+ · · ·

]
,

where,C∗
k ≡ C∗

k (α) satisfies

C∗
k =

dk

dsk

1

Γ(s)

∣∣∣∣
s=α

.

For instance, we find

[zn]
z

log(1 − z)−1
= − 1

n log2 n
+

2γ

n log3 n
+O(

1

n log4 n
).

The case of integralβ ∈ Z≥0. Whenβ is a nonnegative integer, the error terms
can be further improved with respect to the ones predicted bythe general statement of
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α 6∈ {0,−1,−2, . . .} (Eq.) α ∈ {0,−1,−2, . . .} (Eq.)

β 6∈ Z≥0
nα−1

Γ(α)
(log n)β

∞X

j=0

Cj

(log n)j
(19) fn ∼ nα−1(logn)β

∞X

j=1

C⋆
j

(logn)j
(21)

β ∈ Z≥0
nα−1

Γ(α)

∞X

j=0

Ej(log n)

nj
(22) nα−1

∞X

j=0

Fj(log n)

nj
(24)

FIGURE 4. The general and special cases offn ≡ [zn]f(z) whenf(z) is as in
Theorem VI.2.

Theorem VI.2. For instance, we have (see also Note 3):

[zn]
1

1 − z
log

1

1 − z
= logn+ γ +

1

2n
− 1

12n2
+O(

1

n4
)

[zn]
1√

1 − z
log

1

1 − z
∼ 1√

πn

(
logn+ γ + 2 log 2 +O(

log n

n
)

)
.

(In such a case, the expansion of Theorem VI.2 terminates since only its first(k +
1) terms are nonzero.) In fact, in the general case of nonintegral α, there exists an
expansion of the form

(22) [zn](1 − z)−α logk 1

1 − z
∼ nα−1

Γ(α)

[
E0(log n) +

E1(logn)

n
+ · · ·

]
,

where theEj are polynomials of degreek, as can be proved by adapting the argument
employed for generalα. It is worth however mentioning an alternative approach due
to Frobenius and Jungen [228], and based on the observation that

(1 − z)−α

(
log

1

1 − z

)k

=
∂k

∂αk
(1 − z)−α.

If one lets the operators of differentiation( ∂/∂α ) and coefficient extraction ([zn] )
commute —this can be justified by Cauchy’s coefficient formula upon differentiating
under the integral sign— one gets directly

(23) [zn](1 − z)−α

(
log

1

1 − z

)k

=
∂k

∂αk

Γ(n+ α)

Γ(α)Γ(n + 1)
.

For instance, there is an exact formula,

[zn](1 − z)−α log
1

1 − z
=

Γ(n+ α)

Γ(α)Γ(n+ 1)

[
1

α
+

1

α+ 1
+ · · · + 1

n+ α− 1

]
.

The joint caseα ∈ Z≤0, β ∈ Z≥0. If α is an integer ofZ≤0, the coefficients
appear as finite differences of coefficients of logarithmic functions. Explicit formulæ
are then available elementarily from the calculus of finite differences. For instance,
with α = −r for r ∈ Z≥0, one has

(24) [zn](1 − z)r log
1

1 − z
= (−1)r r!

n(n− 1) · · · (n− r)
.
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The caseα = −r, β = k is covered similarly by (23). Note that, in this case, there is
a formula analogous to (22),

(25) [zn](1 − z)r logk 1

1 − z
∼ n−r−1

[
F0(logn) +

F1(log n)

n
+ · · ·

]
,

but now withdeg(Fj) = k − 1.

� 3. Shifted harmonic numbers.Define theα-shifted harmonic number by

hn(α) :=
n−1X

j=0

1

j + α
.

SetL(z) := − log(1− z). Then, one has

[zn](1− z)−αL(z) =

 
n+ α− 1

n

!
hn(α)

[zn](1− z)−αL(z)2 =

 
n+ α− 1

n

!
`
h′

n(α) + hn(α)2
´
.

(Note:hn(α) = ψ(α+ n)− ψ(α), whereψ(s) := ∂s log Γ(s).) In particular,

[zn]
1√

1− z log
1

1− z =
1

4n

 
2n

n

!
[2H2n −Hn],

whereHn ≡ hn(1) is the usual harmonic number. �

� 4. Oscillations and complex exponents.Fluctuations occur in the case of singular expansions
involving complex exponents. From the consideration of[zn](1− z)±i ≍ n∓i, one finds

[zn] cos

„
log

1

1− z

«
=
P (log n)

n
+O(

1

n2
),

whereP (u) is a continuous and 1–periodic function. In general, oscillations are present in
[zn](1− z)−α for any nonrealα. �

VI. 3. Transfers

Once coefficients of a fairly extensive scale have been made explicit, there re-
mains to show how to translate error terms in the asymptotic approximation of a func-
tion near a singularity. This task is even technically simpler as a coarser analysis suf-
fices. It still relies on the principles of contour integration by means of Hankel-type
paths.

A natural extension of the previous results is to assume the error terms valid in the
complex plane slit along the real half line[1,+∞[. In fact weaker conditions suffice
and any domain whose boundary makes an acute angle with the half line [1,+∞[ is
suitable.

DEFINITION VI.1. Given two numbersφ,R with R > 1 and0 < φ < π
2 , the open

domain∆(φ,R) is defined as

∆(φ,R) = {z
∣∣ |z| < R, z 6= 1, |Arg(z − 1)| > φ}.

A domain is a∆–domain if it is a∆(φ,R) for someR (R > 1) and someφ (0 < φ <
π
2 ). A function is∆–analytic if it is analytic in some∆–domain.
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FIGURE 5. A ∆–domain and the contour used to establish Theorem 5.4.

Analyticity in a∆–domain (Figure 5) is the basic condition fortransferto coeffi-
cients of error terms in asymptotic expansions.

THEOREMVI.3 (Transfer, Big-Oh and little-oh).(i) Assume thatf(z) is ∆–analytic
and that it satisfies in the intersection of a neighbourhood of 1 and of its∆–domain
the condition

f(z) = O

(
(1 − z)−α(log

1

1 − z
)β

)
.

Then
[zn]f(z) = O(nα−1(log n)β).

(ii) Assume thatf(z) is ∆–analytic and that it satisfies in the intersection of a neigh-
bourhood of 1 and of the∆–domain the condition

f(z) = o

(
(1 − z)−α(log

1

1 − z
)β

)
.

Then
[zn]f(z) = o(nα−1(logn)β).

PROOF. The starting point is Cauchy’s coefficient formula,

fn ≡ [zn]f(z) =
1

2iπ

∫

γ

f(z)
dz

zn+1
,

whereγ is a loop around the origin which is internal to the∆–domain off . We choose
the positively oriented contour (Figure 5)γ = γ1 + γ2 + γ3 + γ4, with





γ1 = { z
∣∣ |z − 1| =

1

n
, |Arg(z − 1)| ≥ θ] }

γ2 = { z
∣∣ 1

n
≤ |z − 1|, |z| ≤ r, Arg(z − 1) = θ }

γ3 = { z
∣∣ |z − 1| = r, |Arg(z − 1)| ≥ θ] }

γ4 = { z
∣∣ 1

n
≤ |z − 1|, |z| ≤ r, Arg(z − 1) = −θ }.

If the ∆ domain off is ∆(φ,R), we assume that1 < r < R, andφ < θ < π
2 , so that

the contourγ lies entirely inside the domain of analyticity off .
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For j = 1, 2, 3, 4, let

f (j)
n =

1

2iπ

∫

γj

f(z)
dz

zn+1
.

The analysis proceeds by bounding the absolute value of the integral along each of
the four parts. In order to keep notations simple, we detail the proof in the case where
β = 0.

(1) Inner circle.From trivial bounds, the contribution there is

|f (1)
n | = O(

1

n
) ·O((

1

n
)−α),

as the function isO(( 1
n )−α), the contour has lengthO( 1

n ), andz−n−1 is
O(1) there.

(2) Rectilinear part. Settingω = eiθ, and performing the change of variable
z = 1 + ωt

n , we find

|f (2)
n | < 1

2π

∫ ∞

1

K

(
t

n

)−α ∣∣∣∣1 +
ωt

n

∣∣∣∣
−n−1

dt,

for some constantK > 0 such that|f(z)| < K(1 − z)−α over the∆–
domain. From the relation∣∣∣∣1 +

ωt

n

∣∣∣∣ ≥ 1 + ℜ(
ωt

n
) = 1 +

t

n
cos θ,

there results

|f (2)
n | < K

2π
Jnn

α−1 where Jn =

∫ ∞

1

t−α

(
1 +

t cos θ

n

)−n

dt.

For a givenα, the integralsJn are all bounded above by some constant since
they admit a limit asn tends to infinity:

Jn →
∫ ∞

1

t−αe−t cos θ dt.

(The condition onθ that0 < θ < π
2 precisely ensures convergence of the

integral.) Thus, globally, on this part of the contour, we have

|f (2)
n | = O(nα−1),

and the same bound holds forγ4 by symmetry.
(3) Outer circle.There,f(z) is bounded whilez−n is of the order ofr−n. Thus,

f
(3)
n is exponentially small.

In summary, each of the four integrals of the split contour contributesO(nα−1). The
statement of Part(i) of the theorem thus follows.

(ii) An adaptation of the proof shows thato(.) error terms may be translated
similarly. All that is required is a further breakup of the rectilinear part in the proof of
Theorem VI.3 at a distancelog2 n/n from 1, see [153] for details. �

An immediate corollary of Theorem VI.3 is the possibility oftransferringasymp-
totic equivalencefrom singular forms to coefficients:
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COROLLARY VI.1 (sim–transfer).Assumef is ∆–analytic and, asz → 1 in ∆,

f(z) ∼ (1 − z)−α,

withα 6∈ {0,−1,−2, · · · }. Then, the coefficients off satisfy

[zn]f(z) ∼ nα−1

Γ(α)
.

PROOF. It suffices to observe that, withg(z) = (1 − z)−α, one has

f(z) ∼ g(z) iff f(z) = g(z) + o(g(z)),

then apply Theorem VI.1 to the first term, and Theorem VI.3 (little-oh transfer) to the
remainder. �

� 5. Transfer of nearly polynomial functions.Let f(z) be∆–singular and satisfy the singular
expansionf(z) ∼ (1 − z)r, wherer ∈ Z≥0. Then, fn = o(n−r−1). [This is a direct
consequence of the little-oh transfer.] �

� 6.Transfer of “large” functions.The∆–analyticity condition can be weakened for functions
that are large at their singularity. Assume thatf(z) is analytic in the open disk|z| < 1, and that
in the whole of the open disk

f(z) = O((1− z)−α).

Then, provided thatα > 1,

[zn]f(z) = O(nα−1).

[Hint. Integrate on the circle of radius1− 1
n

; see also [153].] �

The theorems that we have seen justify a fairly mechanical process for translating
asymptotic information on a function into information on its coefficients. The process
is based on a set of simple rules. Withα 6∈ {0,−1,−2, . . .}, we have





f(z) = (1 − z)−α =⇒ fn =
nα−1

Γ(α)
+ · · ·

f(z) = O((1 − z)−α) =⇒ fn = O(nα−1)
f(z) = o((1 − z)−α) =⇒ fn = o(nα−1)

f(z) ∼ (1 − z)−α =⇒ fn ∼ nα−1

Γ(α)

together with corresponding refinements for logarithmic terms. A table that extends
examples already given is displayed in Fig 6. The only requirement of the method is
that the asymptotic expansion of the function should be valid in an area of the complex
plane extending beyond the disk of convergence of the original series, as described by
the notions of∆–domain and∆–analyticity. This is usually not a stringent require-
ment in combinatorial applications, as we shall see repeatedly in this chapter and the
next one.
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Function Coefficients

(1− z)3/2 1√
πn5

(
3

4
+

45

32n
+

1155

512n2
+O(

1

n3
))

(1− z) (0)

(1− z)1/2 − 1√
πn3

(
1

2
+

3

16n
+

25

256n2
+O(

1

n3
))

(1− z)1/2 log(1− z)−1 − 1√
πn3

(
1

2
log n+

γ + 2 log 2− 2

2
+O(

log n

n
))

(1− z)1/3 − 1

3Γ( 2
3
)n4/3

(1 +
2

9n
+

7

81n2
+O(

1

n3
))

z log−1(1− z)−1 1

n log2 n
(−1 +

2γ

log n
+
π2 − 6γ2

2 log2 n
+O(

1

log3 n
))

1 (0)

log(1− z)−1 1

n

log2(1− z)−1 1

n
(2 log n+ 2γ − 1

n
− 1

6n2
+O(

1

n4
))

(1− z)−1/3 1

Γ( 1
3
)n2/3

(1 +O(
1

n
))

(1− z)−1/2 1√
πn

(1− 1

8n
+

1

128n2
+

5

1024n3
+O(

1

n4
))

(1− z)−1/2 log(1− z)−1 1√
πn

(log n+ γ + 2 log 2− logn+ γ + 2 log 2

8n
+O(

log n

n2
))

(1− z)−1 1

(1− z)−1 log(1− z)−1 log n+ γ +
1

2n
− 1

12n2
+

1

120n4
+O(

1

n6
))

(1− z)−1 log2(1− z)−1 log2 n+ 2γ log n+ γ2 − π2

6
+O(

log n

n
)

(1− z)−3/2

r
n

π
(2 +

3

4n
− 7

64n2
+O(

1

n3
))

(1− z)−3/2 log(1− z)−1

r
n

π
(2 log n+ 2γ + 4 log 2− 2 +

3 log n

4n
+O(

1

n
))

(1− z)−2 n+ 1

(1− z)−2 log(1− z)−1 n logn+ (γ − 1)n+ log n+
1

2
+ γ +O(

1

n
)

(1− z)−2 log2(1− z)−1 n(log2 n+ 2(γ − 1) log n+ γ2 − 2γ + 2− π2

6
+O(

log n

n
))

(1− z)−3 1
2
n2 + 3

2
n+ 1

FIGURE 6. A table of some commonly encountered functions and the asymp-
totic forms of their coefficients.
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VI. 4. First examples of singularity analysis

The previous section has provided tools by which, starting from the expansion of
a function at its singularity2, one can justify the term-by-term transfer to coefficients,

(26) f(z) =
z→1

σ(z) +O(τ(z)) (z ∈ ∆) =⇒ fn =
n→∞

σn +O(τn).

There, it is assumed thatσ is a finite linear combination of standard functions of the
form ({(1 − z)−α} or logarithmic variants, thatτ(z) also lies in the scale. (Note:
the case when the exponent−α of τ(z) lies in Z≤0, adjustments must be made, as
already discussed.) The fundamental condition is the validity of expansion (26) in a
∆-domain in accordance with Theorem VI.3; the coefficientsσn, τn are given by the
basic Theorems VI.1 and VI.2.

The functions
1

1 − z
, exp(z), log

1

1 − z
,
√

1 − z,

are all ∆–analytic (withexp(z) being even entire). Thus, one should expect the
method of singularity analysis to be applicable to most functions that are composition
of base functions, provided their singular growth is only polynomial. (For instance
exp(z/(1 − z)) is excluded, but such fast growing functions are well covered by the
saddle point method described in a later chapter.) This class includes the generating
functions for many of the elementary non–recursive combinatorial structures that can
be specified using sequences, sets, and cycles. Thus, singularity analysis isa priori
broadly applicable to elementary combinatorics.

We examine here several applications of singularity analysis to such functions ex-
plicitly given by “analytic” expressions. The examples aredrawn from combinatorial
enumeration.

1. “Clouds” and 2–regular graphs.The function

C(z) =
e−

z
2− z2

4√
1 − z

is the EGF of 2–regular graphs or equivalently “clouds”. (Let n straight lines in the
plane be given; a “cloud” is a set ofn points no three of which are collinear; see Chap-
ter II and [76].) Combinatorially, the generating function reflects the decomposition
of 2–regular graphs as sets (P) of connected components that are undirected cycles
(UC) of size≥ 3:

C = P(UC≥3(Z)), C(z) = exp

(
1

2

(
log(1 − z)−1 − z − z

2

))
.

As this is our first example, it is worth spelling out in detailthe process of singularity
analysis applied to this function.

The functionC(z) being the product ofe−z/2−z2/4 (that is entire) and of(1 −
z)−1/2 (that is analytic in the unit disk) is itself analytic in the unit disk. Furthermore,
as(1 − z)−1/2 is ∆–analytic (it is well-defined and analytic in the complex plane slit
along[1,+∞[, for instance),C(z) is itself∆–analytic, with a singularity atz = 1.

2Such an expansion is also called asingular expansionfor short.
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The asymptotic expansion ofC(z) nearz = 1 obtains starting from the standard
(analytic) expansion ofe−z/2−z2/4 atz = 1,

e−z/2−z2/4 = e−3/4 + e−3/4(1 − z) +
e−3/4

4
(1 − z)

2 − e−3/4

12
(1 − z)

3
+ · · · .

The factor(1−z)−1/2 is its own asymptotic expansion, clearly valid in any∆–domain.
Forming the product yields:

C(z) =
e−3/4

√
1 − z

+ e−3/4
√

1 − z +
e−3/4

4
(1 − z)

3/2 − e−3/4

12
(1 − z)

5/2
+ · · · .

By the principles of singularity analysis (Theorems VI.1 and VI.3), the asymptotic
determination of the coefficientscn = [zn]C(z) results from a direct translation which
we present here in tabular form:
∣∣∣∣∣∣∣∣∣∣∣∣∣

C(z) = cn =

e−3/4 1√
1 − z

e−3/4

(
n− 1/2

−1/2

)
∼ e−3/4

√
πn

[
1 − 1

8n
+

1

128n2
+ · · ·

]

+ e3/4
√

1 − z +e−3/4

(
n− 3/2

−3/2

)
∼ −e−3/4

2
√
πn3

[
1 +

3

8n
+ · · ·

]

+O((1 − z)3/2) +O(
1

n5/2
).

Terms are then collected with expansions suitably truncated to the coarsest error term,
so that here a 3–term expansion results.

In the sequel, we shall not detail such computations and content ourselves with
putting in parallel the function’s expansion and the coefficient’s expansion, like

(27)





C(z) =
e−3/4

√
1 − z

+ e3/4
√

1 − z + +O((1 − z)3/2) (z → 1)

cn =
e−3/4

√
πn

− 5e−3/4

8
√
πn3

+O(
1

n5/2
) (n→ +∞).

Here is a numerical check. Setc(1)n := e−3/4/
√
πn and letc(2)n represent the sum of

the first two terms of the expansion ofcn in (27). One finds:

n 5 50 500

n!c
(1)
n 14.30212 1.1462888618 · 1063 1.4542120372 · 101132

n!c
(2)
n 12.51435 1.1319602511 · 1063 1.4523942721 · 101132

n!cn 12 1.1319677968 · 1063 1.4523943224 · 101132

2. Unary–binary Trees.The function

U(z) =
1 − z −

√
(1 + z)(1 − 3z)

2z

is the OGF of unary–binary trees enumerated by Motzkin numbers. It is singular at
z = −1 andz = 1

3 , the dominant singularity being atz = 1
3 . By branching properties

of the square-root function,U(z) is analytic in a∆–domain like the one depicted
below:
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0
−1

1

3

Around the point13 , a singular expansion holds, which translates into an asymptotic
expression forUn := [zn]U(z):





U(z) = 1 − 31/2
√

1 − 3z + O((1 − 3z)3/2)

Un =

√
3

4πn3
3n + O(3nn−5/2).

Further terms in the singular expansion ofU(z) at z = 1
3 provide additional terms in

the asymptotic expression of the Motzkin numbers (Un), for instance,

Un ∼
√

3

4πn3
3n

(
1 − 15

16
n−1 +

505

512
n−2 − 8085

8192
n−3 +

505659

524288
n−4 +O

(
n−5

))
.

3. Children’s Rounds.The function

R(z) = exp(z log
1

1 − z
) = (1 − z)−z

is the EGF of certain combinatorial configurations introduced by Stanley [361] and
nicknamed by him “children’s rounds”. A round is a labelled set of directed cycles
each of which has a center attached:

R = P(Z ⋆ C(Z)).

An equivalent form ofR(z) is

R(z) =
1

1 − z
e(1−z) log(1−z)

so that the only singularity is atz = 1, where

R(z) =
1

1 − z
+ log(1 − z) + O((1 − z)0.99).

Thus for coefficients,

rn ≡ [zn]R(z) = 1 − 1

n
+ O(n−1.99).

A more detailed analysis yields

rn = 1 − 1

n
− 1

2n2
(logn+ γ − 1) +O(

log2 n

n3
),

and an expansion to any order can be obtained.
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� 7. The asymptotic shape of the rounds numbers.A full asymptotic expansion ofrn is of the
form

rn ∼ 1−
X

j≥1

Pj(log n)

nj
,

wherePj(x) is a polynomial of degreej − 1 in x. (The coefficients ofPj are rational com-
binations of powers ofγ, ζ(2), . . . , ζ(j − 1).) This expansion can be obtained by a computer
algebra program to any predetermined order. �

4. An elementary function.The final example is meant to show the way rather
arbitrary compositions of basic functions can be treated bysingularity analysis. Con-
sider the function

F (z) =
1

2

[
1 −

√
1 − 4 log

1

1 − log 1
1−z

]
,

which is built as a composition

F (z) = C(L(L(z))) whereC(z) =
1

2
(1 −

√
1 − 4z), L(z) = log

1

1 − z
.

(Combinatorially,F is the EGF of trees in which nodes are replaced by cycles of
cycles, a rather artificial combinatorial object!)

The problem is to locate the dominant singularity ofF (z) and determine its na-
ture, which can be done inductively on the structure ofF (z). The dominant positive
singularityρ of F (z) satisfies

L(L(ρ)) =
1

4
so that ρ = 1 − ee−1/4−1,

sinceC(z) is singular at14 , L(z) has positive coefficients and it assumes the value∞
when it becomes singular.

SinceL(L(z)) is analytic atρ, a local expansion ofF (z) is obtained by compos-
ing an expansion ofC(z) at 1

4 with the standard Taylor expansion ofL(L(z)) at ρ.
All computations done, this gives us

F (z) =
1

2
− C1(ρ− z)1/2 +O((ρ− z)3/2) with C1 = e

5
8− 1

2 e−1/4

.

In summary, we have found

fn ≡ [zn]F (z) =
C1

2ρ
√
πn3

(
1

ρ

)n [
1 +O(

1

n
)

]
,

with

ρ = 1 − ee−1/4−1 ≈ 0.198443, C1 = e
5
8− 1

2 e−1/4 ≈ 1.26566.

The method clearly applies in a large number of cases to elementary functions
of combinatorial analysis that are defined explicitly by composition of exponentials,
logarithms, and algebraic roots. Such functions arise systematically from elementary
iterative structures studied in Section IV.3.3, and singularity analysis can often be
employed in order to refine the exponential growth estimatesglobally obtained there.
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� 8. The asymptotic number of trains.Combinatorial trains have been introduced in Section
IV.3.3 as a way to exemplify the power of complex asymptotic methods. One finds that, at its
dominant singularityρ, the EGFTr(z) is of the formTr(z) ∼ C/(1− z/ρ), and, by singularity
analysis,

[zn]Tr(z) ∼ 0.11768 31406 15497 · 2.06131 73279 40138n.

(This asymptotic approximation is good to 15 significant digits for n = 50, in accordance with
the fact that the dominant singularity is a simple pole.) �

VI. 5. Inversion and implicitly defined functions

Recursively defined structures lead to functional equations whose solutions may,
in many cases, be analysed locally near singularities. A common pattern in this context
is the appearance of singularities of the square-root type,which proves to be universal
for a broad class of problems involving trees and tree-like structures. Accordingly, by
singularity analysis, the square-root singularity induces in coefficients subexponential
terms of the formn−3/2.

Inverse functions. We return to the analysis of the coefficients of a function defined
implicitly by an equation

(28) y(z) = zφ(y(z)) or equivalently z =
y(z)

φ(y(z))
.

Here again, it is assumed thatφ(u) is a function with nonnegative coefficients and
φ(0) 6= 0.

The problem of solving (28) is one of functional inversion. We have seen in
Chapter IV thatan analytic function admits locally an analytic inverse if and only if
its first derivative is nonzero. Setψ(u) = u/φ(u); the equationψ′(u) = 0 has, under
the conditions of the problem, at most one positive solutionstrictly within the disc of
convergence ofφ, which satisfies

(29) φ(τ) − τφ′(τ) = 0.

We assume from now this quantityτ to exist. For reasons already discussed (see Sec-
tion 6 of Chapter IV) the radius of convergence ofy(z) is the corresponding positive
valueρ of z such thaty(ρ) = τ , that is to say

ρ =
τ

φ(τ)
=

1

φ′(τ)
.

The analysis now needs to be more precise in three respects:

(i) all the dominant singularities are to be located;
(ii) analyticity ofy(z) in a∆–domain must be established;

(iii) a singular expansion needs to be determined.

These points are somewhat intertwined.
The situation corresponding to the functionφ(u) = eu, so thaty(z) = zey(z) (the

Cayley generating function), is typical of the general situation. From (29), the radius
of convergence ofy(z) is ρ = e−1 corresponding toτ = 1. The image of a circle in
they–plane, centered at the origin and having radiusr < 1, by the functionye−y is
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y :

1

0

0.5

-0.5

10.5-1 0

-1

-0.5 z = yey

=⇒

-1

1

0.5

0

-0.5

10-1-1.5 0.5-0.5

FIGURE 7. The images of concentric circles by the mappingy 7→ z = ye−y. It
is seen thaty 7→ z = ye−y is injective on|y| ≤ 1 with an image extending beyond
the circle|z| = e−1 [in grey], so that the inverse functiony(z) is analytically
continuable in a∆–domain aroundz = e−1.

a curve of thez–plane that properly contains the circle|z| = re−r, see Figure 7, as
φ(y) = ey that has nonnegative coefficients satisfies

φ(reiθ) ≤ φ(r) for all θ ∈ [−π,+π].

Furthermore, the inequality is strict except forθ 6= 0. The image of the circle of radius
1 is a curveC that has a cusp atρ = e−1 since the first derivative ofy/φ(y) vanishes
there.

This geometry shows that the inverse function ofy/φ(y), that isy(z), is uniquely
defined forz insideC. Thus,y(z) is ∆–analytic. A singular expansion fory(z) is then
simply derived from reversion of the power series expansionof z = ye−y. We have

ye−y = e−1 − e−1

2
(y − 1)2 +

e−1

3
(y − 1)3 − e−1

8
(y − 1)4 + · · · ,

so that solving fory gives

y − 1 =
√

2(1 − ez)1/2 +
2

3
(1 − ez) +O((1 − ez)3/2).

The discussion of the general case follows the same principles. The relation be-
tweenz andy, in the vicinity of (z, y) = (ρ, τ), may be put under the form (see
Chapter IV, Section 6),

(30) ρ− z = H(y), where H(y) :=

(
τ

φ(τ)
− y

φ(y)

)
,

the functionH(y) in the right hand side being such thatH ′(τ) = 0. Thus, the depen-
dency betweeny andz is locally a quadratic one:

ρ− z =
1

2!
H ′′(τ)(y − τ)2 +

1

3!
H ′′′(τ)(y − τ)3 + · · · .
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This relation can be locally inverted: first extract square roots and derive

−√
ρ− z =

√
H ′′(τ)

2
(y − τ)

[
1 + c1(y − τ) + c2(y − τ)2 + ...

]
.

(The determination with a−√ should be chosen there asy(z) increases toτ− as
z → ρ−.) This implies, by solving with respect toy − τ :

y− τ = −d1(ρ− z)1/2 + d2(ρ− z) + d3(ρ− z)3/2 + · · · with d1 = (2/H ′′(τ))1/2.

PROPOSITION VI.1. Let φ be a function analytic at 0 having nonnegative Taylor
coefficients withφ(0) = 0, and such that there exists a positive solutionτ to the
characteristic equation,

φ(τ) − τφ′(τ) = 0,

strictly within the disc of convergence ofφ. Let y(z) be the solution analytic at the
origin of y(z) = zφ(y(z)). Theny(z) has a dominant singularity at

z = ρ where ρ =
τ

φ(τ)
.

The singular expansion ofy at ρ is of the form

y(z) = τ +

∞∑

j=1

d∗j (1 − z

ρ
)j/2.

for some computable constantsd∗j . In particular, one has

d∗1 = −
√

2φ(τ)

φ′′(τ)
.

� 9. Computability of the singular expansion.Define

h(w) :=

s
τ/φ(τ )− w/φ(w)

(τ −w)2
,

so thaty(z) satisfies
√
ρ− z = (τ − y)h(y). The singular expansion ofy can then be deduced

by Lagrange inversion from the expansion of the negative powers ofh(w) at w = τ . This
technique yields for instance explicit forms for coefficients in the singular expansion ofy =
zey. �

A simple example likeφ(u) = 1 + u2 for which

y(z) =
1 −

√
1 − 4z2

2z
shows that it need not however be true in all generalityy has a unique dominant
singularity: here there are two conjugate singularities,− 1

2 and+ 1
2 . However, the

conditions for this to happen are rather simple. Let us say that a power seriesh(u) is
d–periodic ifh(u) = uek(ud) for some power seriesk, with dmaximal. A function is
called here periodic if it isd–periodic from somed ≥ 2 and aperiodic otherwise. An
elementary argument developed in Note 10 shows that that periodicity does not occur
for y(z) unlessφ(u) is itself periodic, in which casey(z) = zw(zd) for some analytic
w(z), whenφ(u) = ψ(ud) for somed ≥ 2.

From singularity analysis, we get directly:
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THEOREM VI.4 (Coefficients of tree functions).Assume the conditions of Proposi-
tion VI.1, and, additionally, thatφ(w) is aperiodic. The coefficients of the solution
y(z) to y = zφ(y) satisfy

[zn]y(z) ∼ d∗1ρ
−n

2
√
πn3

[
1 +

∞∑

k=1

ek

nk

]
,

for some effectively computable coefficient sequenceek.

In caseφ(u) is d–periodic for somed ≥ 2, the additional conguence condition,
n ≡ 1 (d), must be imposed for an asymptotic expansion as the other coefficients
all vanish. The dominant singularities are atρe2ijπ/d and their contributions must
be added up in accordance with the discussion of the next section (details left as an
exercise).

� 10.Periodicities.Assume thatφ(u) = ψ(ud)with ψ analytic at 0. Lety = y(z) be the root
of y = zφ(y). SetZ = zd and letY be the root ofY = Zψ(Y )d. One has by construction
y(z) = Y (zd)1/d, given thatyd = zdφ(y)d. SinceY (Z) = Y1Z + Y2Z

2 + · · · , we verify
that the nonzero coefficients ofy(z) are amongst those of index1, 1 + d, 1 + 2d, . . . .

If d is chosen maximal, thenψ(u)d is aperiodic. Thus, Theorem VI.4 applies toY (Z).
The functionY (Z) is∆–regular (relative to its dominant singularity atρ1/d), and it has a square
root singularity there and none other on|Z| = ρ1/d. Also, sinceY = zψ(Y )1/d, Y (Z) cannot
vanish on|Z| ≤ ρ1/d, Z 6= 0. Thus,[Zν ]Y (Z)1/d is analytic in|Z| ≤ ρ1/d, except atρ1/d

wheer it has a√ branch point. All computations done, we find that

[zn]y(z) ∼ d · d
∗
1ρ

−n

2
√
πn3

when n ≡ 1 (mod d).

This is a kind of Perron-Frobenius property for periodic tree functions. �

Here is a table of the most basic varieties of simple trees andthe corresponding
asymptotic estimates found in this way:

Type φ(u) Sing. expansion ofy(z) yn

binary (1 + u)2 1− 4
q

1
4
− z + · · · 4n

√
πn3

+O(n−5/2)

unary-binary 1 + u+ u2 1− 3
q

1
3
− z + · · · 3n+1/2

2
√
πn3

+O(n−5/2)

general (1− u)−1 1
2
−
q

1
4
− z 4n−1

√
πn3

+O(n−5/2)

Cayley eu 1−
√

2e
√
e−1 − z + · · · en

√
2πn3

+O(n−5/2)

Combining Proposition VI.1 with methods of the previous section, we have avail-
able a method that permits us to analyse in turn[zn]f(y(z)), for a wide class of im-
plicitly definedy(z). This observation will be put to good use in Chapter VII, when
analysing a variety of tree parameters.

� 11. Stirling’s formula via singularity analysis.Since the solution toY = zeY analytic at 0
satisfies[zn] = nn−1/n! (by Lagrange inversion) and, at the same time, its singularity is known
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from Proposition VI.1, we have:

nn−1

n!
∼ en

√
2πn3

„
1− 1

12
n−1 +

1

288
n−2 +

139

51840
n−3 − · · ·

«
.

Thus Stirling’s formulaalsoresults from singularity analysis. �

VI. 6. Singularity analysis and closure properties

At this stage, we have available composition rules for singular expansions of the
types previously considered under operations like±, ×, ÷. These are induced by
corresponding rules for extended formal power series, where generalized exponents
and logarithmic factors are allowed. In the previous section, we have also seen that
inversion of usually gives rise to square-root singularities.

In this section we examine first the rôle of functional composition, then we show
that generating functions amaneable to singularity analysis are closed under differen-
tiation and integration.

VI. 6.1. Functional composition. Let f andg be functions analytic at the origin
with nonnegative coefficients, and consider the composition

h = f ◦ g, h(z) = f(g(z)).

Let ρf , ρg, ρh be the corresponding radii of convergence, and letτf = f(ρf), and
so on. We shall asume thatf andg are∆–continuable and that they admit singular
expansions in the scale of powers. There are three cases to bedistinguished depending
on howτg compares toρf . Clearly one has:

— Supercritical case, whenτg > ρf . In that case, whenz increases from0,
there is a valuer strictly less thanρg such thatg(r) attains the valueρf ,
which triggers a singularity off ◦ g. In other wordsr ≡ ρh = g(−1)(ρf ).
Around this point,g is analytic and a singular expansion off ◦ g is obtained
by composing the singular expansion off with the regular expansion ofg
at r. The singularity type is that of the external function(f).

— Subcritical case, whenτg < ρf . In this dual situation, the singularity off ◦g
is driven by that of the inside functiong. We haveρh = ρg, τh = f(ρg)
and the singular expansion off ◦ g is obtained by composing the regular
expansion off with the singular expansion ofg at ρg. The singularity type
is that of the internal function(g).

— Critical case, whenτg = ρf . In this boundary case, there is a confluence
of singularities. We haveρh = ρg, τh = τf , and the the singular expansion
is obtained by composition rules of the singular expansions. The singularity
type is a mix of the types of the internal and external functions(f, g).

This terminology extends the notion of supercritical sequence schema introduced
in Chapter V, where we considered the casef(z) = (1 − z)−1 and discussed some
of the probabilistic consequences. Rather than stating general conditions that would
be unwieldy, it is better to discuss examples directly, referring to the above guide-
lines supplemented by the plain algebra of generalized power expansions, whenever
necessary.
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EXAMPLE 1. Combinatorial sums.Based on the discussion above, a reasonably general
strategy for the asymptotic analysis of a class of combinatorial sums of the form

Sn =
nX

k=1

fkg
(k)
n .

can be developped. Therefk is a sequence of numbers, usually of a simple form and called the
weights, while theg(k)

n are a triangular array of numbers, for instance Pascal’s triangle.
For the weightsfk we shall consider expressly sequences such thatf(z) is ∆–analytic

with a singular expansion involving functions of the standard scale of Theorems VI.1, VI.2,
VI.3. Typical examples forf(z) and(fk) are3

(31)
1
k

1
4k

`
2k
k

´
1 Hk k k2

log 1
1−z

1√
1−z

1
1−z

1
1−z

log 1
1−z

z
(1−z)2

z+z2

(1−z)3
.

The triangular arraysg(k)
n discussed here are taken here to arise as coefficients of the

powersof some fixed function,

g(k)
n = [zn](g(z))k where g(z) =

∞X

n=1

gnz
n,

with g(z) an analytic function at the origin having non–negative coefficients and satisfying
g(0) = 0. Examples are

(32)
z

1−z
zez z(1 + z) 1−

√
1−4z
2

1−2z−
√

1−4z
2z

T (z) [T = zeT ]`
n−1
k−1

´
kn−k

(n−k)!

`
k

n−k

´
k
n

`
2n−k−1

n−1

´
k
n

`
2n

n−k

´
k nn−k−1

(n−k)!

An interesting class of such arrays arises from the Lagrangeinversion theorem. Indeed, ifg(z)
is implicily defined byg(z) = zG(g(z)), one hasgn,k = k

n
[wn−k]G(z)n. (For instance, the

last three cases of (32) are obtained in this way by takingG(w) as1/(1− w), (1 + w)2, ew.)
By design, the generating function of theSn is simply

S(z) =
∞X

n=0

Snz
n = f(g(z)) with f(z) =

∞X

k=0

fkz
k.

Thus the asymptotic analysis ofSn can be directly based on the general discussion of compo-
sition of singularities off(z) andg(z).

A. Bernoulli sums.Let φ be a function mappingZ≥0 into itself and setfk := φ(k).
Consider the sums

Sn :=

nX

k=0

φ(k)
1

2n

 
n

k

!
.

If Xn is a Bernoulli random variable ofBern(n, 1
2
), thenSn = E(φ(Xn)) is exactly the

expectation ofφ(Xn). Then, with previous notations, we find for the OGF of the sequence
(Sn):

S(z) =
2

2− z f
„

z

2− z

«
.

Considering weights whose OGF has, like in (31) radius of convergence 1, what we have is a
variant of the composition schema, with an additional prefactor. The composition scheme is
of the subcritical typesince the functiong(z) = z/(2 − z) has radius of convergence equal

3Weights like log k,
√
k, 1/(k2 + 1), etc, also satisfy these conditions [173, 135], but the proofs

require advanced techniques discussed below.
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to 2. The singularities ofS(z) are then of the same type as those of the weight gff(z) and one
verifies, in all cases of (31), that, to first asymptotic order, Sn ∼ φ(n/2): this is in agreement
with the fact that the binomial distribution is concentrated near its meann

2
. Singularity analysis

provides additionally complete asymptotic expansions, for instance,

E(
1

Xn
|Xn > 0) =

2

n
+

2

n2
+

6

n3
+O(n−4)

E(HXn) = log
n

2
+ γ +

1

2n
− 1

12n2
+O(n−3).

See [125, 135] for more along these lines.

� 12.General Bernoulli sums.LetXn ∈ Bern(n; p) be a general Bernoulli random variable,

P(Xn = k) =

 
n

k

!
pkqn−k, q = 1− p.

Then withfk = φ(k), one has

E(φ(Xn)) = [zn]
1

1− qz f
„

pz

1− qz

«
,

so that the analysis develops as in the caseBern(n; 1
2
). �

B. Generalized Knuth–RamanujanQ-functions.For reasons motivated by analysis of al-
gorithms, Knuth has encountered repeatedly sums of the form

Qn({fk}) = f0 + f1
n− 1

n
+ f2

(n− 1)(n− 2)

n2
+ · · · .

(See, e.g., [249, pp. 305–307].) There(fk) is a sequence of coefficients (usually of at most
polynomial growth). For instance, we have seen in Chapter II, Section 3 that the casefk ≡ 1
yields the expected time till the first collision in the birthday paradox problem.

A closer examination shows that the analysis of suchQn is reducible to singularity analy-
sis. Writing

Qn({fk}) = f0 +
n!

nn−1

X

k≥1

fk
nn−k−1

(n− k)!
reveals the closeness with the last column of (32). Indeed, setting

F (z) =
X

k≥1

fk

k
zk,

one has (n ≥ 1)

Qn = f0 +
n!

nn−1
[zn]S(z) where S(z) = F (T (z)),

andT (z) is the Cayley tree function (T = zeT ).
For weightsfk = φ(k) that are of polynomial growth, the schema iscritical. Thus,

the singular expansionS(z) is obtained by composing the singular expansion off with the
expansion ofT , namely,T ∼ 1−

√
2
√

1− ez. For instance,φ(k) = kr for some integerr ≥ 1

leads toF (z) that has anrth order pole atz = 1. Then, the singularity type ofF (T (z)) is of
the formZ−r/2 whereZ = (1 − ez), which is reflected bySn ≍ ennr/2−1. After the final
normalization, we see thatQn ≍ n(r+1)/2. Globally, for many weights of the formfk = φ(k),
we expectQn to be of the rough form

√
kφ(
√
n), which agrees with the fact that the expectation

of the first collision in the birthday problem is on average near
p
πn/2. �
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� 13. Higher moments of the birthday problem.Take the model where there aren days in the
year and letB be the random variable representing the first birthday collision. ThenPn(B >
k) = k!n−k

`
n
k

´
, and

En(Φ(B)) = Φ(1) +Qn({∆Φ(k)}), where ∆Φ(k) := Φ(k + 1)− Φ(k).

For instanceEn(B) = 1 + Qn(〈1, 1, . . .〉). We thus get moments of various functionals (here
stated to two asymptotic terms):

Φ(x) x x2 + x x3 + x2 x4 + x3

En(Φ(B))
p

πn
2

+ 2
3

2n+ 2 3
q

πn3

2
− 2n 8n2 − 7

q
πn3

2

via singularity analysis. �

� 14.How to weigh an urn? The “shake-and-paint” algorithm.You are given an urn contain-
ing an unknown numberN of identical looking balls. How to estimate this number in much
fewer thanO(N) operations? A probabilistic solution due to Brassard and Bratley [60] uses a
brush and paint. Shake the urn, pull out a ball, then mark it with paint and replace it into the
urn. Repeat until you find an already painted ball. LetX be the number of operations. One has
E(X) ∼

p
πN/2. Further more the quantityY := X2/2 constitues, by the previous note, an

asymptotically unbiased estimator ofN , in the sense thatE(Y ) ∼ N . In other words, count the
time till an already painted ball is first found, and return half of the square of this time. One also
has
p

V(Y ) = N . By performing the experimentm times (usingm different colours of paint)
and by taking the arithmetic average of them estimates, one obtains an unbiased estimator
whose typical accuracy is

p
1/m. For instance,m = 16 gives an expected accuracy of 25%.

(Similar principles are used in the design of data mining algorithms.) �

� 15.Catalan sums.These are defined by

Sn :=
X

k≥0

fk

 
2n

n− k

!
, S(z) =

1√
1− 4z

f

„
1− 2z −√1− 4z

2z

«
.

The case whenρf = 1 corresponds to a critical composition and it can be discussed much in
the same way as the Ramanujan sums. �

EXAMPLE 2. “Supertrees”. Let G be the class of general Catalan trees with OGFG(z) =
1
2
(1−√1− 4z). Its radius of convergence is1

4
and its singular value isG( 1

4
) = 1

2
. Consider

the two generating functions:

H(z) = G(zG(z)), K(z) = G(2zG(z)).

The functionzG(z) is the OGF of planted trees, that is trees such that to the rootis attached
a stem and an extra node, corresponding to the specificationZG. Then,H(z) is the OGF
of the classH = G[ZG] of trees such that, on each node there is grafted a planted tree (by
the combinatorial substitution of Chapter I) —we shall callsuch objects “supertrees”. The
OGFK(z) similarly corresponds to the case when the stems can be of anytwo colours,H =
G[(Z + Z ′)G]. Combinatorial sum expressions are available:

Hn =

nX

k=1

1

k

 
2k − 2

k − 1

! 
2n− k − 1

n− 1

!
, Kn =

nX

k=1

2k

k

 
2k − 2

k − 1

! 
2n− k − 1

n− 1

!
.

SinceρG = 1
4

andτG = 1
2
, the composition scheme is subcritical in the case ofH and

critical in the case ofK. In the first case, the singularity is of square-root type andone finds
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easily:

H(z) ∼
z→ 1

4

2−
√

2

4
− 1√

8

r
1

4
− z, Hn ∼ 4n

8
√

2πn
.

In the second case, one has

K(z) ∼
z→ 1

4

1

2
− 1√

2
(
1

4
− z)1/4, Kn ∼ 4n

8Γ( 3
4
)n5/4

.

The occurrence of the exponent5
4

is striking. This examples shows that asymptotic terms of
the typenp/q with q 6= 1, 2 may well appear in elementary combinatorics and coefficients of
simple algebraic functions. Such situations tend to be associated with nonstandard limit laws,
akin to the stable distributions of probability theory; seeour discussion at the end of Chapter IX.

�

EXAMPLE 3. Supercritical cycle schema.Consider the schemeH = C(G) which forms
labelled cycles from basic components ofG. The egfs are related by

H(z) = log
1

1−G(z)
.

Consider the case whereG attains the value 1 before becoming singular, that is,τG > 1. Then,
this corresponds to a supercritical composition schema. This case can be discussed much in
the same way as the supercritical sequence schema of ChapterV, with a logarithmic singularity
replacing a polar singularity.

Let σ := ρH , which is determined byG(σ) = 1. First, one finds:

H(z) ∼
z→σ

log
1

1− z/ρ − log(σG′(σ)) +A(z),

whereA(z) is analytic atz = σ. Thus:

[zn]H(z) ∼ σ−n

n
.

(The error term implicit in this estimate is exponentially small).
The bgfH(z, u) = log(1 − uG(z))−1 has the variableu marking the number of com-

ponents inH-objects. In particular, the mean number of components in a randomH-object of
size is∼ λn, whereλ = 1/(σG′(σ)), and the distribution is concentrated around its mean.
Similarly, the mean number of components with sizek in a randomHn object is found to be
asymptotic toλgkσ

k, wheregk = [zk]G(z), �

VI. 6.2. Differentiation and integration. Functions amenable to singularity anal-
ysis are closed under differentiation4. This is once more in sharp contrast with real
analysis. The following statement is a version tuned to our needs of well-known differ-
entiability properties of complex asymptotic expansions (see, e.g., Olver’s book [305,
p. 9]). For simplicity, we restrict attention to functions whose singular expansion is of
the form

(33) f(z) =

J∑

j=0

cj(1 − z)αj +O((1 − z)A).

4The presentation of this section is borrowed from [125].
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z

radius

1

κ | 1 − z |

φ
φ’

FIGURE 8. The geometry of the contourγ(z) used in the proof of the differenti-
ation theorem.

THEOREM VI.5 (Singular differentiation).If f(z) is ∆-regular and admits a singu-
lar expansion near its singularity in the sense of(33), then for each integerr > 0,
dr

dzr f(z) is also∆-regular and admits an expansion obtained through term-by-term
differentiation:

dr

dzr
f(z) = (−1)r

J∑

j=0

cj
Γ(αj + 1)

Γ(αj + 1 − r)
(1 − z)αj−r +O((1 − z)A−r).

PROOF. Clearly, all that is required is to establish the effect of differentiation on error
terms, which is expressed symbolically as

d

dz
O((1 − z)A) = O((1 − z)A−1).

By iteration, only the case of a single differentiation (r = 1) needs to be considered.
Let g(z) be a function that is regular in a domain∆(φ, η) where it is assumed

to satisfyg(z) = O((1 − z)A) for z ∈ ∆. Choose a subdomain∆′ := ∆(φ′, η′),
whereφ < φ′ < π

2 and0 < η′ < η. By elementary geometry, for any sufficiently
smallκ > 0, the disc of radiusκ(z − 1) centered at a valuez ∈ ∆′ lies entirely in∆;
see Figure 8. We fix such a small valueκ and letγ(z) represent the boundary of that
disc oriented positively.

The starting point is Cauchy’s integral formula

(34) g′(z) =
1

2πi

∫

C

g(w)
dw

(w − z)2
,

a direct consequence of the residue theorem. HereC should encirclez while lying
inside the domain of regularity ofg, and we opt for the choiceC ≡ γ(z). Then trivial
bounds applied to (34) give:

|g′(z)| = O
(
||γ(z)|| · (1 − z)A|1 − z|−2

)

= O
(
|1 − z|A−1

)
.

The estimate involves the length of the contour,||γ(z)||, which isO(1 − z) by con-
struction, as well as the bound ong itself, which isO((1− z)A) since all points of the
contour are themselves at a distance exactly of the order of|1 − z| from 1. �
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It is also well known that integration of asymptotic expansions is usually easier
than differentiation. Here is a statement custom-tailoredto our needs.

THEOREMVI.6 (Singular integration).Letf(z) be∆-regular and admit a∆-expansion
near its singularity in the sense of(33). Then

∫ z

0 f(t) dt is also∆-regular. Assume
that none of the quantitiesαj andA equals−1.

(i) If A < −1, then the singular expansion of
∫
f is

(35)
∫ z

0

f(t) dt = −
J∑

j=0

cj
αj + 1

(1 − z)αj+1 +O
(
(1 − z)A+1

)
.

(ii) If A > −1, then the singular expansion of
∫
f is

∫ z

0

f(t) dt = −
J∑

j=0

cj
αj + 1

(1 − z)αj+1 + L0 +O
(
|1 − z|A+1

)
,

where the “integration constant”L0 has the value

L0 :=
∑

αj<−1

cj
αj + 1

+

∫ 1

0

[
f(t) −

∑

αj<−1

cj(1 − t)αj

]
dt.

The case where either someαj orA is−1 is easily treated by the additional rules
∫ z

0

(1 − t)−1 dt = L(z),

∫ z

0

O(|1 − t|−1) dt = O(L(z)).

that are consistent with elementary integration, and similar rules are easily derived for
powers of logarithms. Furthermore, the correspondingO–transfers hold true. (The
proofs are simple modifications of the one given below for thebasic case.)
PROOF. The basic technique consists in integrating, term by term,the singular expan-
sion off . We letr(z) be the remainder term in the expansion off , that is,

r(z) := f(z) −
J∑

j=0

cj(1 − z)αj .

By assumption, throughout the∆-domain one has, for some positive constantK,

|r(z)| ≤ K|1 − z|A.

(i) CaseA < −1. Straight-line integration between0 andz, provides (35), as
soon as it has been established that

∫ z

0

r(t) dt = O
(
|1 − z|A+1

)
.

By Cauchy’s integral formula, we can choose any path of integration that stays within
the region of analyticity ofr. We choose the contourγ := γ1 ∪γ2, shown in Figure 9.
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0 1

1 + η

φ

z
γ1

γ2

FIGURE 9. The contour used in the proof of the integration theorem.

Then, one has
∣∣∣∣
∫

γ

r(t) dt

∣∣∣∣ ≤
∣∣∣∣
∫

γ1

r(t) dt

∣∣∣∣+
∣∣∣∣
∫

γ2

r(t) dt

∣∣∣∣

≤ K

∫

γ1

|1 − t|A |dt| +K

∫

γ2

|1 − t|A| |dt|

= O(|1 − z|A+1).

where the symbol|dt| designates the differential line element (often denoted byds) in
the corresponding curvilinear integral. Both integrals areO(|1− z|A+1): for the inte-
gral alongγ1, this results from explicitly carrying out the integration; for the integral
alongγ2, this results from the trivial boundO(||γ2||(1 − z)A).

(ii) CaseA > −1. We letf−(z) represent the “divergence part” off that gives
rise to nonintegrability:

f−(z) :=
∑

αj<−1

cj(1 − z)αj .

Then with the decompositionf = [f − f−] + f−, integrations can be performed
separately. First, one finds

∫ z

0

f−(t) dt = −
∑

αj<−1

cj
αj + 1

(1 − z)αj+1 +
∑

αj<−1

cj
αj + 1

.

Next, observe that the asymptotic condition guarantees theexistence of
∫ 1

0
applied to

[f − f−], so that
∫ z

0

[f(t) − f−(t)] dt =

∫ 1

0

[f(t) − f−(t)] dt+

∫ z

1

[f(t) − f−(t)] dt.
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The first of these two integrals is a constant that contributes toL0. As to the second
integral, term-by-term integration yields

∫ z

1

[f(t) − f−(t)] dt = −
∑

αj>−1

cj
αj + 1

(1 − z)αj+1 +

∫ z

1

r(t) dt.

The remainder integral is finite, given the growth conditionon the remainder term,
and, upon carrying out the integration along the rectilinear segment joining1 to z,
trivial bounds show that it is indeedO(|1 − z|A+1). �

VI. 6.3. Polylogarithms. The generalizedpolylogarithmLiα,r, whereα is an
arbitrary complex number andr a nonnegative integer is defined for|z| < 1 by

Liα,r(z) :=
∑

n≥1

(log n)r z
n

nα
,

and the notationLiα abbreviatesLiα,0. In particular, one hasLi1,0(z) = Li1(z),
the usual logarithm. The singular expansion of the polylogarithm, taken from [135],
involves the Riemannζ function:

THEOREMVI.7 (Singularities of polylogarithms).The functionLiα,r(z) is∆–continuable
and, forα 6∈ {1, 2, . . .}, it satisfies the singular expansion
(36)

Liα,0(z) ∼ Γ(1−α)wα−1 +
∑

j≥0

(−1)j

j!
ζ(α− j)wj , w = − log z =

∞∑

ℓ=1

(1 − z)ℓ

ℓ
.

For r > 0, the singular expansion ofLiα,r is obtained by

Liα,r(z) = (−1)r ∂r

∂αr
Liα,0(z), L(z) := log

1

1 − z
,

and corresponding termwise differentiation of(36)with respect toα.

In particular, forα < 1, the main asymptotic term ofLiα,r is

Γ(1 − α)(1 − z)α−1Lr(z).

Similar expansions hold whenα is a positive integer; see [135] for details.
PROOF.[Proof (sketch)] The proof whenz → 1− along the real line is a simple conse-
quence of Mellin transform techniques (see APPENDIX B: Mellin transform, p. 646).
Taker = 0 and setΛ(w) = Liα(e−w). The Mellin transform ofΛ is

Λ⋆(s) = ζ(s+ α)Γ(s),

sinceΛ is a harmonic sum. There are poles ats = 0,−1,−2, . . . due to the Gamma
factor and a pole ats = 1 − α due to the zeta function. A standard Mellin analysis
then yields the estimate (36) whenw → 0, at least whenz is real.

In order to extend the estimate beyond the disc of convergence|z| = 1, one starts
from a Lindelöf integral representation of the polylogarithm (Chapter IV),

Liα(−z) = − 1

2iπ

∫ 1/2+i∞

1/2−i∞

zs

s

π

sinπs
ds.



VI. 6. SINGULARITY ANALYSIS AND CLOSURE PROPERTIES 379

Settingz = −ei(w−π) and s = 1/2 + it, the integral can then be analysed as a
“harmonic integral” (a continuous analogue of harmonic sums) by means of Mellin
transforms; see [135] for details. �

� 16. Stirling’s formula from polylogarithms.One haslog n! = [zn](1 − z)−1 Li0,1(z), to
which singularity analysis is applicable. Theorem VI.7 yields the singular expansion

1

1− z Li0,1(z) ∼ L(z)− γ
(1− z)2 +

1

2

−L(z) + γ − 1 + log 2π

1− z + · · · ,

from which Stirling’s formula reads off:

log n! ∼ n log n− n+
1

2
log n+ log

√
2π + · · · .

[Stirling’s constantlog
√

2π comes out as−ζ′(0).] Similarly, for the “superfactorial function”:

1122 · · ·nn ∼ An 1
2

n2+ 1
2

n+ 1
12 e−

1
4

n2

, A := exp
`

1
12
− ζ′(−1)

´
= exp

“
− ζ′(2)

2π2 + log(2π)+γ
12

”
.

The constantA is the Glaisher-Kinkelin constant [126, p. 135]. �

VI. 6.4. Hadamard Products. TheHadamard productof two functionsf(z), g(z)
analytic at the origin is defined as their term-by-term product,
(37)
f(z) ⊙ g(z) =

∑

n≥0

fngnz
n, where f(z) =

∑

n≥0

fnz
n, g(z) =

∑

n≥0

gnz
n.

As we are going to see following an article of Fill, Flajolet,and Kapur [125], the
class of functions amenable to singularity analysis is closed under Hadamard products.
Establishing sucha closure property requires methods for composing functions from
the basic scale, namely(1 − z)a, as well as error terms of the formO((1 − z)A). We
address these problems in turn.

The expansion around the origin,

(38) (1 − z)a = 1 +
−a
1
z +

(−a)(−a+ 1)

2!
z2 + · · · ,

gives through term-by-term multiplication

(39) (1 − z)a ⊙ (1 − z)b = 2F1[−a,−b; 1; z].

Here2F1 represents the classicalhypergeometric functionof Gauss defined by

(40) 2F1[α, β; γ; z] = 1 +
αβ

γ

z

1!
+
α(α + 1)β(β + 1)

γ(γ + 1)

z2

2!
+ · · · .

From the transformation theory of hypergeometrics, see e.g. [402, Ch XIV], we know
that, in general, hypergeometric functions can be expandedin the vicinity of z = 1
by means of thez 7→ 1 − z transformation. Instantiation of this transformation with
γ = 1 yields

(41) 2F1[α, β; 1; z] =
Γ(1 − α− β)

Γ(1 − α)Γ(1 − β)
2F1[α, β;α + β; 1 − z]

+
Γ(α+ β − 1)

Γ(α)Γ(β)
(1 − z)−α−β+1

2F1[1 − α, 1 − β; 2 − α− β; 1 − z].

From theer, we state:
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PROPOSITIONVI.2 (Singularity analysis of Hadamard products).(i) Whena, b, and
a + b are not integers, the Hadamard product(1 − z)a ⊙ (1 − z)b has an infinite
∆-expansion with exponent scale{0, 1, 2, . . .} ∪ {a+ b+ 1, a+ b+ 2, . . .}, namely,

(1 − z)a ⊙ (1 − z)b ∼
∑

k≥0

λ
(a,b)
k

(1 − z)k

k!
+
∑

k≥0

µ
(a,b)
k

(1 − z)a+b+1+k

k!
,

where the coefficientsλ andµ are given by

λ
(a,b)
k =

Γ(1 + a+ b)

Γ(1 + a)Γ(1 + b)

(−a)k(−b)k

(−a− b)k
, µ

(a,b)
k =

Γ(−a− b− 1)

Γ(−a)Γ(−b)
(1 + a)k(1 + b)k

(2 + a+ b)k
.

Herexk is defined whenk is a nonnegative integer asx(x+ 1) · · · (x+ k − 1).
(ii) Assume thatf(z) andg(z) are∆-regular in∆(ψ0, η) and that

f(z) = O((1 − z)a) and g(z) = O((1 − z)b), z ∈ ∆(ψ0, η),

wherea andb satisfya+b+1 < 0. Then the Hadamard product(f ⊙g)(z) is regular
in a (possibly smaller)∆-domain, call it∆′, where it admits the expansion

(42) (f ⊙ g)(z) = O((1 − z)a+b+1).

Part(ii) is proved by means of contour integration techniques in [125]. Globally,
Theorem VI.2 establishes the closure under Hadamard products of functions amenable
to singularity analysis in the sense of (33). The treatment of boundary cases and of
logarithmic factors is discussed in [125].

EXAMPLE 4. Pólya’s drunkard problem.(This example is taken from [125].) In the d–
dimensional latticeZd of points with integer coordinates, the drunkard performs arandom
walk starting from the origin with steps in{−1,+1}d, each taken with equal likelihood. The
probability that the drunkard is back at the origin after2n steps is

(43) q(d)
n =

 
1

22n

 
2n

n

!!d

,

since the walk is a productd independent 1–dimensional walks. The probability that2n is the
epoch of thefirst return to the origin is the quantityp(d)

n , which is determined implicitly by

(44)

 
1−

∞X

n=1

p(d)
n zn

!−1

=

∞X

n=0

q(d)
n zn,

as results from the convolution equations expressing the decomposition of loops into primitive
loops. In terms of the associated ordinary generating functionsP andQ, this relation thus reads
as(1− P (z))−1 = Q(z).

The asymptotic analysis of theqn’s is straightforward; the one of thepn’s is more in-
volved and is of interest in connection with recurrence and transience of the random walk; see,
e.g., [101, 262]. The Hadamard closure theorem provides a direct access to this problem. Define

λ(z) :=
X

n≥0

1

22n

 
2n

n

!
zn ≡ 1√

1− z .
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Then, Equations (43) and (44) imply:

P (z) = 1− 1

λ(z)⊙d
, where λ(z)⊙d := λ(z)⊙ · · · ⊙ λ(z) (d times).

The singularities ofP (z) are found to be as follows.

d = 1: No Hadamard product is involved and

P (z) = 1−
√

1− z, implying p(1)
n =

1

n22n−1

 
2n− 2

n− 1

!
∼ 1

2
√
πn3

.

(This agrees with the classical combinatorial solution expressed in terms of Catalan numbers.)

d = 2: By the Hadamard closure theorem, the functionQ(z) = λ(z) ⊙ λ(z) admits a
priori a singular expansion atz = 1 that is composed solely of elements of the form(1− z)α

possibly multiplied by integral powers of the logarithmic functionL(z). From a computational
standpoint (cf. the Zigzag Algorithm), it is then best to start from the coefficients themselves,

q(2)n ∼
„

1√
πn
− 1

8
√
πn3

+ · · ·
«2

∼ 1

π

„
1

n
− 1

4n2
+ · · ·

«
,

and reconstruct the only singular expansion that is compatible, namely

Q(z) =
1

π
L(z) +K +O((1− z)1−ǫ),

whereǫ > 0 is an arbitrarily small constant andK is fully determined as the limit asz →
1 of Q(z) − π−1L(z). Then it can be seen that the functionP is ∆–continuable. (Proof:
Otherwise, there would be complex poles arising from zeros of the functionQ on the unit disc,
and this would entail inp(2)

n the presence of terms oscillating around 0, a fact that contradicts
the necessary positivity of probabilities.) The singular expansion ofP (z) at z = 1 results
immediately from that ofQ(z):

P (z) ∼ 1− π

L(z)
+

π2K

L2(z)
+ · · · .

so that, by Theorems VI.2 and VI.3, one has

p
(2)
n =

π

n log2 n
− 2π

γ + πK

n log3 n
+O

„
1

n log4 n

«

K = 1 +

∞X

n=1

 
16−n

 
2n

n

!2

− 1

πn

!

.
= 0.8825424006106063735858257 .

(See the study by Louchardet al. [274, Sec. 4] for somewhat similar calculations.)

d = 3: This case is easy sinceQ(z) remains finite at its singularityz = 1 where it admits
an expansion in powers of(1− z)1/2, to the effect that

q(3)n ∼
„

1√
πn
− 1

8
√
πn3

+ · · ·
«3

∼ 1

π3/2

„
1

n3/2
− 3

8n5/2
+ · · ·

«
.

The functionQ(z) is a priori ∆-continuable and its singular expansion can be reconstructed
from the form of coefficients:

Q(z) ∼
z→1

Q(1)− 2

π

√
1− z +O(|1− z|),

leading to

P (z) =

„
1− 1

Q(1)

«
− 2

πQ2(1)

√
1− z +O(|1− z|).
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By singularity analysis, the last expansion gives

p
(3)
n =

1

π3/2Q2(1)

1

n3/2
+O

„
1

n2

«

Q(1) =
π

Γ
`

3
4

´4
.
= 1.3932039296856768591842463.

A complete asymptotic expansion in powersn−3/2, n−5/2, . . . can be obtained by the same de-
vices. In particular this improves the error term above toO(n−5/2). The explicit form ofQ(1)
results from its expression as the generalized hypergeometric 3F2[

1
2
, 1

2
, 1

2
; 1, 1; 1], which eval-

uates by Clausen’s theorem and Kummer’s identity to the square of a complete elliptic integral.
(See the papers by Larry Glasser for context, for instance [185]; nowadays, several computer
algebra systems even provide this value automatically.)

Higher dimensions are treated similarly, with logarithmicterms surfacing in asymptotic
expansions for all even dimensions. �

VI. 7. Multiple singularities

The basic principle for a function with multiple dominant singularities parallels
the situation of rational and meromorphic functions:the contributions from each sin-
gularity must be added up.

Let us demonstrate themodus operandibefore stating the general theorem. Take
for instance the function

(45) g(z) =
ez

√
1 − z2

.

There are two singularities atz = +1 andz = −1, with

g(z) ∼ e√
2
√

1 − z
z → +1 and g(z) ∼ e−1

√
2
√

1 + z
z → −1.

We have

[zn]
e√

2
√

1 − z
∼ e√

2πn
and [zn]

e−1

√
2
√

1 + z
∼ e−1(−1)n

√
2πn

.

To get the coefficient[zn]g(z), it proves justified to add up these two contributions (by
Theorem VI.8 below), so that

[zn]g(z) ∼ 1√
2πn

[e+ (−1)ne−1].

The justification for this process is provided by the technical result below.

THEOREMVI.8 (Multiple singularities).Letf(z) have a finite number of singularities
on the unit circle at pointsζj = eiθj , for j = 1 . . r.

(H1). Let∆0 be a∆–domain. Assume thatf(z) is analytic in the indented disk

D =

r⋂

j=1

(ζj · ∆0),

with ζ · ∆0 the image of∆0 by the rotationz 7→ ζz.
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0 1

FIGURE 10. A contour used to prove the transfer theorem in the case ofmultiple
singularities (herer = 3).

(H2). Assume that there arer functionsh1(z), . . . , hr(z) with hj(z) analytic in
a circular neighbourhood ofζj such that asz → ζj in D, one has

f(z) = hj(z) +O

(
(1 − z

ζj
)−α

)
.

Under these assumptions, the coefficients off(z) satisfy

[zn]f(z) = O(nα−1).

A function analytic in a domain likeD is sometimes said to be star–continuable,
a notion that is the natural generalization of∆–analyticity for functions with several
dominant singularities.
PROOF. Like in the case of a single singularity, the proof bases itself on Cauchy’s
coefficient formula. A composite contourγ like the one depicted on Figure 10 is used.
Estimates on each fragment of the contour obey the same principles as in the proof of
Theorem VI.3. �

In other words, each dominant singularity can be analysed independently, the
singular expansions are then each transferred to coefficients and the corresponding
asymptotic contributions are finally collected.

This theorem applies to a function likeg(z) defined in Eq. (45) as follows. Define

f(z) = g(z) − e√
2
√

1 − z
− e−1

√
2
√

1 + z
.

Let ζ1 = 1 andζ2 = −1 be the two dominant singularities. Then,f(z) satisfies the
conditions of Theorem VI.8 withα = 1

2 , and

h1(z) = − e−1

√
2
√

1 + z
, h2(z) = − e√

2
√

1 − z
.

Thus,
[zn]f(z) = O(n−3/2).
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The coefficient[zn]g(z) is then recovered by

[zn]g(z) = [zn]
e√

2
√

1 − z
+ [zn]

e−1

√
2
√

1 + z
+O(n−3/2).

The process is simple though its justification is slightly complicated by the fact
that one must deal with multiple expansions valid at different points (this is the rôle
played by the “regular” partshj).

As yet another example, consider the problem of estimating the coefficients of

f(z) =

√
1 + z

1 − z
= exp

(
1

2
log

1 + z

1 − z

)
,

which is the EGF of permutations having only cycles of odd length. We have

f(z) =
21/2

√
1 − z

− 2−3/2
√

1 − z +O((1 − z)3/2) (z → 1)

f(z) = 2−1/2
√

1 + z +O((1 + z)3/2) (z → −1).

Therefore,

[zn]f =
21/2

√
πn

+
−2−1/2 + (−1)n21/2

√
πn3

+O(n−5/2).

This last example illustrates the occurrence of singular parts with different weights.

The situation of multiple dominant singularities ties withthe corresponding dis-
cussion of Chapter IV. In the periodic case where the dominant singularities are at all
roots of unity, different regimes manifest themselves cyclically depending on modular
properties of the indexn, like in the two examples above. In the (seldom occurring)
case where dominant singularities have arguments incommensurable toπ, aperiodic
fluctuations may appear, the discussion being similar to thecorresponding case for
rational functions.

VI. 8. Tauberian theory and Darboux’s method

There are several alternative approaches to the analysis ofcoefficients of gener-
ating functions with moderate growth.All of them naturally provide estimates com-
patible with singularity analysis methods(Theorems VI.1, VI.2, and VI.3). Each one
requires some sort of “regularity condition” either on the part of the function or on the
part of the coefficient sequence, the regularity condition of singularity analysis being
in essence analytic continuation.

The methods briefly surveyed here fall into three broad categories:

(i) Elementary real analytic methods;
(ii) Tauberian theorems;

(iii) Darboux’s method.

Elementary real analytic methods assume somea priori smoothness conditions on
the coefficient sequence; they are included here for the sakeof completeness, though
properly speaking they do not belong to the galaxy of complexasymptotic methods.
Their scope is mostly limited to the analysis of products while the other methods
permit to approach more general functional composition patterns.
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Tauberian theorems belong to the category of advanced real analysis methods;
they also needs somea priori regularity on the coefficients, typically positivity or
monotonicity.

Darboux’s method requires some smoothness of the function on the closed unit
disk, and, by its techniques and scope, it is the closest to singularity analysis.

We content ourselves with a brief discussion of the main results. For more infor-
mation, the reader is referred to Odlyzko’s excellent survey [301].

Elementary real analytic methods.An asymptotic equivalent of the coefficients of
a function can sometimes be worked out elementarily from simple properties of the
component functions. The regularity conditions are a smooth asymptotic behaviour of
the coefficients of one of the two factors in a product of generating functions. A good
source for these techniques is Bender’s survey [27].

THEOREMVI.9 (Bender’s method).Leta(z) =
∑
anz

n andb(z) =
∑
bnz

n be two
power series with radii of convergenceα > β ≥ 0 respectively. Assume thatb(z)
satisfies the ratio test,

bn−1

bn
→ β as n→ ∞.

Then the coefficients of the productf(z) = a(z) · b(z) satisfy, provideda(β) 6= 0,

[zn]f(z) ∼ a(β)bn as n→ ∞.

PROOF. (Sketch) The basis of the proof is the following chain:

fn = a0bn + a1bn−1 + a2bn−2 + · · · + anb0)

= bn

(
a0 + a1

bn−1

bn
+ a2

bn−2

bn
+ · · · + an

b0
bn

)

= bn

(
a0 + a1(

bn−1

bn
) + a2(

bn−2

bn−1
)(
bn−1

bn
) + · · ·

)

∼ bn(a0 + a1β + a2β
2 + · · · ).

There, only the last line requires a little elementary analysis that is left as an exercise
to the reader. �

This theorem applies for instance to the EGF of 2–regular graphs:

f(z) = a(z) · b(z) with a(z) = e−z/2−z2/4, b(z) =
1√

1 − z

=⇒ fn ∼ e−3/4

(
n− 1/2

n

)
∼ e−3/4

√
πn

.

Clearly, a whole collection of lemmas could be given in the same vein. Singularity
analysis usually provides more complete expansions, though Theorem VI.9 does apply
to a few situations not covered by it.

� 17.Some formal calculations.Estimate asymptotically the coefficients ofzn in
„X zn

n!

«“X
n!zn

”
,
“X

2nzn
”“X

nz2n
”
.

�
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Tauberian theory. Tauberian methods apply to functions whose growth is known
along the positive real line. The regularity conditions arein the form of additional
assumptions on the coefficients (positivity or monotonicity) known under the name of
Tauberian “side conditions”. An insightful introduction to the subject may be found in
Titchmarsh’s book [382], and a detailed exposition in Postnikov’s monograph [322].
We cite the most famous of all Tauberian theorems due to Hardy, Littlewood, and
Karamata. Here, a function is said to beslowly varyingat infinity iff, for any c > 0,
one hasL(cx)/L(x) → 1 asx → +∞; examples of slowly varying functions are
provided by powers of logarithms or iterated logarithms.

THEOREM VI.10 (The HLK Tauberian theorem).Let f(z) be a power series with
radius of convergence equal to 1, satisfying

(46) f(z) ∼ 1

(1 − z)α
L(

1

1 − z
),

for someα ≥ 0 with L a slowly varying function. Assume that the coefficientsfn =
[zn]f(z) are all non–negative (this is the “side condition”). Then

(47)
n∑

k=0

fk ∼ nα

Γ(α+ 1)
L(n).

The conclusion (47) is consistent with what singularity analysis gives: Under the
conditions, and if in addition analytic continuation is assumed, then

(48) fn ∼ nα−1

Γ(α)
L(n),

which by summation yields the estimate (47).
It must be noted that a Tauberian theorem requires very little on the part of the

function. However, it also gives less since the result it provides is valid in the more
restrictive sense of mean values, or Cesàro averages. (However, if further regular-
ity conditions on thefn are injected, for instance monotonicity, then the conclusion
of (48) can be deduced from (47) by purely elementary real analysis.) The method ap-
plies only to functions that are large enough at their singularity, and despite numerous
efforts to improve the conclusions, it is the case that Tauberian theorems have little
concrete to offer in terms of error estimates.

Appeal to a Tauberian theorem is justified when a function has, apart from the
positive half line, a very irregular behaviour near its circle of convergence, for in-
stance when each point of the unit circle is a singularity. (The function is then said to
admit the unit circle as a natural boundary.) An interestingexample of this situation is
discussed by Greene and Knuth [197] who consider the function

(49) f(z) =
∞∏

k=1

(1 +
zk

k
)
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that is the EGF of permutations having cycles all of different lengths. A little compu-
tation shows that

log

∞∏

k=1

(
1 +

zk

k

)
=

∞∑

k=1

zk

k
− 1

2

∞∑

k=1

z2k

k2
+

1

3

∞∑

k=1

z3k

k3
− · · ·

∼ log
1

1 − z
− γ + o(1).

(Only the last line requires some care, see [197].)
Thus, we have

f(z) ∼ e−γ

1 − z
=⇒ 1

n
(f0 + f1 + · · · + fn) ∼ e−γ ,

by virtue of Theorem VI.9. In fact, Greene and Knuth were ableto supplement this
argument by a “bootstrapping” technique and show a strongerresult, namely

fn → e−γ .

� 18.Another formal exercise.Find estimates for

[zn]

∞Y

k=1

(1 +
zk

√
k

).

�

Darboux’s method. The method of Darboux requires, as regularity condition, that
functions be smooth enough —i.e., sufficiently differentiable— on their circle of con-
vergence. What lies at the heart of this many–facetted method is a simple relation
between the smoothness of a function and the corresponding decrease of its Taylor
coefficients.

THEOREM VI.11 (Darboux’s method).Assume thatf(z) is continuous in the closed
disk|z| ≤ 1, and is in additionk times continuously differentiable(k ≥ 0) on |z| = 1.
Then

(50) [zn]f(z) = o

(
1

nk

)
.

PROOF. Start from Cauchy’s coefficient formula

fn =
1

2iπ

∫

C
f(z)

dz

zn+1
.

Because of the continuity assumption, one may take as integration contourC the unit
circle. Settingz = eiθ yields the Fourier version of Cauchy’s coefficient formula,

(51) fn =
1

2π

∫ 2π

0

f(eiθ)e−niθ dθ.

The integrand in (51) is strongly oscillating and the Riemann–Lebesgue lemma of
classical analysis (see [382, p. 403]) shows that the integral givingfn tends to 0 as
n→ ∞.
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This argument covers the casek = 0. The case of a generalk is then derived
through successive integrations by parts, as

[zn]f(z) =
1

2π(in)k

∫ 2π

0

f (k)(eiθ)e−niθ dθ.

�

Various consequences of Theorem VI.11 are given in reference texts also under
the name of Darboux’s method. See for instance [76, 197, 212, 406]. We shall only
illustrate the mechanism by rederiving in this framework the analysis of the EGF of
2–regular graphs. Clearly, we have

(52)
f(z) =

e−z/2−z2/4

√
1 − z

=
e−3/4

√
1 − z

+ e−3/4
√

1 − z +R(z).

ThereR(z) is the product of(1 − z)3/2 with a function analytic atz = 1 that is a rest
in the Taylor expansion ofe−z/2−z2/4. Thus,R(z) is of classC1, i.e., continuously
differentiable once. By Theorem VI.11, we have

[zn]R(z) = o

(
1

n

)
,

so that
(53)

[zn]f(z) = e−3/4

(
n− 1/2

n

)
+ e−3/4

(
n− 3/2

n

)
+ o

(
1

n

)
=
e−3/4

√
πn

+ o

(
1

n

)
.

Darboux’s method bears some resemblance to singularity analysis in that the es-
timates derive from translating error terms in expansions.Smoothness conditions,
rather than plain order of growth information, are requiredby it. It is often applied
in situations like in (52)–(53) to functions that are products of the typeh(z)(1 − z)α

with h(z) analytic at 1, or combinations thereof. In such particular cases, Darboux’s
method is however subsumed by singularity analysis.

It is inherent to Darboux’s method that it cannot be applied to functions whose
expansion only involves terms that become infinite, while singularity analysis can.
A clear example arises in the analysis of the common subexpression problem [162]
where there occurs a function with a singular expansion of the form

1√
1 − z

1√
log 1

1−z

[
1 +

c1

log 1
1−z

+ · · ·
]
.

� 19.Darboux versus singularity analysis.This exercise gives an instance where Darboux’s
method applies but not singularity analysis. Let

Fr(z) =

∞X

n=0

z2n

(2n)r
.
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Show thatF0(z), and hence eachFr, is singular at every point of the unit circle. [Hint: examine
the growth ofF0 near2nth roots of unity.] Use Darboux’s method to analyse asymptotically

[zn]ezF5(z).

�

VI. 9. Notes

General surveys of asymptotic methods in enumeration have been given by Ben-
der [27] and more recently Odlyzko [301]. A general reference to asymptotic analysis
that has a remarkably concrete approach is De Bruijn’s book [86]. Comtet’s book [76]
and Wilf’s book [406] each devote a chapter to these questions.

This chapter is almost entirely based on the theory developed by Flajolet and
Odlyzko in [153], where the term “singularity analysis” originates from. That the-
ory itself draws its inspiration from classical analytic number theory, for instance the
prime number theorem where similar constours are used (see the discussion in [153]
for sources). Another area where Hankel contours are used isthe inversion theory of
integral transforms [99], in particular in the case of algebraic and logarithmic singu-
larities.

As seen repeatedly in this chapter, singularity analysis applies to functions with a
moderate (at most polynomial) rate of growth near their dominant singularities. The
conditions are simply analytic continuation and validity of the singular expansions
in the corresponding domains. Such conditions are automatically satisfied by a large
number of functions given by explicit “analytic” expressions, most notably a large
subset of the generating functions of elementary combinatorial structures defined by
the basic constructions of sequence, set, and cycle. Thus singularity analysis ties well
with the symbolic enumeration methods of Chapters I–III.

The cases of molecules and of simple trees show that singularity analysis also ap-
plies to many functions defined by functional equations corresponding to recursively
defined combinatorial structures. A detailed study ofsingular functional equations
does permit in cases like these to analyse coefficients of generating functions that are
only definedimplicitly. Many of these problems belong to an area of on-going re-
search. Prototypes are to be found in Pólya’s paper that contains numerous examples
of nonplane trees, Odlyzko’s analysis of balanced 2-3 trees(we gave earlier a first
approximation of the analysis), as well as in two problems tobe examined later: the
analysis of the height of binary trees in (a singular iteration problem), and the anal-
ysis of multidimensional search ink–d–trees and quad-trees (a singular differential
system).

The application of the method of singularity analysis is rather mechanical since
it corresponds to a direct term by term translation, once general analyticity conditions
are recognized to hold. Salvy [344] has indeed succeeded in automating the analysis
of a large class of generating functions in this way; relateddecision procedures in this
context are also discussed in [159].

Darboux’s method can often be employed as an alternative to singularity analy-
sis. It is still by far the most widely used technique in the literature, though the direct
mapping of asymptotic scales afforded by singularity analysis appears to us much
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more transparent. Darboux’s method is well explained in thebooks by Comtet [76],
Henrici [212], Olver [305], and Wilf [406]. Tauberian theory is treated in detail in
Postnikov’s monograph [322], with an excellent introduction to be found in Titch-
marsh’s book [382].

Finally, another range of asymptotic behaviour —that of very rapidly growing
functions and entire functions— can be covered by the use of thesaddle point method
examined in Chapter VIII. TheMellin transform is the basis of another range of
complex-asymptotic techniques applyinginter alia to functions of an “arithmetical
nature”: in this book, it is only discussed briefly in APPENDIX B: Mellin transform,
p. 646.



VII

Applications of Singularity Analysis

Mathematics is being lazy. Mathematics is letting the principles do the work for you
so that you do not have to do the work for yourself.

— GEORGEPÓLYA 1

I wish to God these calculations had been executed by steam.

— CHARLES BABBAGE (1792-1871)
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Singularity analysis paves the way to the analysis of a largevariety of generating
functions. In accordance with Pólya’s aphorism, it enables us to “be lazy” and “let the
principles work for you”. In this chapter we illustrate thissituation with singularity
analysis developed in Chapter VI being put to use in order to analyse whole classes of
generating functions lavishly provided by the symbolic methods of Chapters I–III.

The exp–log schema (Section VII. 1) is a general schema of analytic combina-
torics that covers the set construction, either labelled orunlabelled, applied to gen-
erators whose singularity is of logarithmic type. This schema parallels in generality
the supercritical schema of Chapter V. It applies to permutations, derangements, 2–
regular graphs, mappings, and functional graphs. It is eventhe case that properties
relative to the factorization of polynomials with coefficients over a finite field can be
attached to it. In particular, one can obtain in a transparent manner a prime num-
ber theorem for such polynomials as well as several other characteristics of random
polynomials.

The next sections deal with recursively defined structures.In that case, generating
functions are accessible by means of an equation or a system that implicitly defines
them. A distinctive feature of many such combinatorial generating functions is yet
another type ofuniversality: square-root singularities are universal, a fact that trans-
lates into universality of the exponent− 3

2 in corresponding asymptotic estimates of
coefficients.

Trees are the prototypical recursively defined combinatorial type. For simple va-
rieties, equations merely involve properties of inverses of analytic functions. This
applies to simple varieties of trees determined by degree constraints. Universality

1Quoted in M Walter, T O’Brien, Memories of George Pólya, Mathematics Teaching 116 (1986)

391
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of square-root singularities entails that several quantities assume the same behaviour
across quite different looking tree varieties: the subexponential growth factor of tree
counts has a universal− 3

2 exponent, nodes tend to be found at level about
√
n and

height is of that
√
n order with high probability, path length grows liken

√
n, and so

on. Such results hold for classical tree types (e.g., Catalan, unary-binary, Cayley) and
the methods extend to many tree-like classes of combinatorics including functional
graphs, mappings, and hierarchies (Section VII. 2). Essentially the same methods ap-
ply to functions defined by a single implicit equation: in that case failure cases of
the Implicit Function Theorem replace failure of invertiblity in analytic functions, but
square-root singularity is still universal. Consequencesare found in the general enu-
meration of nonplane unlabelled, secondary structures of molecular biology, nonplane
unlabelled rees, as well as isomers of alkanes in theoretical chemistry (Section VII. 3).

A number of generating functions of combinatorics are algebraic functions (Sec-
tion VII. 4, meaning that they satisfy either one polynomialequation or are compo-
nents of a polynomial system. At this level of generality, a whole family of singular
behaviours is possible, though singular expansions can only involve fractional expo-
nents. Singularity analysis is invariably applicable. Theinvestigation of algebraic
functions requires viewing them as plane algebraic curves and making use of the
famous Newton-Puiseux theorem of elementary algebraic geometry, which strongly
constrains the allowable types of singularities. For functions given by positive polyno-
mial systems, the general results specialize and one encounters once more square-root
singularities (Subsection VII. 4.2).

Algebraic functions manifest themselves first and foremostwhen dealing with
context-free specifications and languages. In that case, under a technical condition
of irreducibility, the theory of positive polynomial systems applies. As an example
we discuss geometric configurations in the plane satisfyinga non-crossing constraint.
Algebraic functions may also surface as solutions of various types of functional equa-
tions: this is in particular the case for many types of walks generalizing Dyck and
Motzkin paths (via the kernel method) and for many types of random maps (via the
quadratic method). In all these cases, singular exponents of various forms are bound
to occur.

VII. 1. The “exp–log” schema

In this section, we examine a schema that is of a level of generality comparable
to the supercritical sequence schema of Chapter V but whose “physics” is rather dif-
ferent. This schema extends what is encountered when constructing of permutations
(P) as labelled sets of cycles (K):

P (z) = exp (K(z)) , K(z) = log
1

1 − z
.

The distinctive feature here is the fact that a logarithmic singularity for theK–components
gets composed with an exponential, to the effect that the generating function of the
composedP–objects exhibits a singularity of polynomial growth (hereP (z) = (1 −
z)−1). In the case of permutations, everything is explicit and wehave seen in Chap-
ter V that the distribution of the number of components is concentrated around its
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F κ n = 100 n = 272 n = 739
Permutations 1 5.18737 6.18485 7.18319
Derangements 1 4.19732 5.18852 6.18454
2–regular 1

2 2.53439 3.03466 3.53440
Mappings 1

2 2.97898 3.46320 3.95312

FIGURE 1. Some exp–log structures (F ) and the mean number ofG–
components forn = 100, 272 ≡ ⌈100 · e⌋, 739 ≡ ⌈100 · e2⌋.

meanHn = logn+ γ + o(1). We know from Chapter IV that with a positive proba-
bility a largeP-structure contains noK–component of size 1; see also the discussion
of derangements in Chapter II.

Very similar properties hold true under very general conditions. We start with the
definition of a logarithmic function:

DEFINITION VII.1. A functionG(z) with radius of convergence satisfying0 < ρ <
∞ is said to be oflogarithmic typeif the following conditions hold:

(i) the numberρ is the unique singularity ofG(z) on |z| = ρ;
(ii) the functionG(z) is continuable to a∆–domain;

(iii) asz → ρ in ∆, functionG(z) satisfies

G(z) = κ log
1

1 − z/ρ
+ λ+O

(
1

(log(1 − z/ρ))2

)
,

for someκ > 0 andλ ∈ R.

An exp–log schema is then defined as follows:

DEFINITION VII.2. LetF = P(G) be a labelled set construction. The schema is said
to be of theexp–log typeif the egfG(z) is of logarithmic type.

LetF = K(G) be an unlabelled set construction:K = M (multiset) orP (pow-
erset). The schema is said to be of theexp–log typeif the OGFG(z) is of logarithmic
type and its radius of convergence satisfies0 < ρ < 1.

As we shall see below, beyond permutations, this schema covers mappings, un-
labelled functional graphs, polynomials over finite fields,2–regular graphs, as well
as generalized derangements. Singularity analysis gives precise information on the
decomposition of largeF objects intoG components.

THEOREMVII.1 (Exp–log schema).Given a schemaF = P(G) of the exp–log type,
one has

[zn]F (z) =
eλ+r0

Γ(κ)
nκ−1ρ−n

(
1 +O

(
(logn)−2

))
,

[zn]G(z) =
κ

n
ρ−n

(
1 +O

(
(log n)−2

))
,

wherer0 = 0 in the labelled case andr0 is given by(1) in the case of unlabelled
multisets.

LetX be the number ofG–components in a randomF–object. Then:

EFn(X) = κ(logn− ψ(κ)) + λ+ r1 +O
(
(logn)−2

)
(ψ(s) ≡ d

dsΓ(s))
VFN (X) = (κ+ r2) logn,
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wherer1 = r2 = 0 in the labelled case andr1 > 0 is given by(2) in the case
of unlabelled multisets. In particular the distribution ofX in a largeFn object is
concentrated around its mean.

This result is from an article by Flajolet and Soria [163] (with a correction to the
logarithmic type condition given by Jennie Hansen [204]). We shall show in a later
chapter that, in addition, the asymptotic distribution ofX is invariably Gaussian under
such exp-log conditions.
PROOF. We first discuss the labelled case whereF (z) = expG(z). The estimate for
[zn]G(z) follows directly from singularity analysis with the transfer of error terms of
typelog−2. ForF (z), it is based on

F (z) ∼ eλ

(1 − z/ρ)κ
,

(with a log−2 relative error term), to which singularity analysis applies.
The BGF ofF with u marking the number ofG–components isF (z, u) =

exp(uG(z)), so that the function

f1(z) :=
∂

∂u
F (z, u)

∣∣∣∣
u=1

= F (z)G(z),

which is an EGF of cumulated values, satisfies nearρ

f1(z) ∼
eλ

(1 − z/ρ)κ

(
κ log

1

1 − z/ρ
+ λ

)

to the effect that

[zn]f1(z) ≡ ([zn]F (z))·EFn(X) =
eλ

Γ(κ)
ρ−n

(
κ logn− κψ(κ) + λ+O

(
(log n)−2

))
.

The variance analysis is conducted in the same way, but usinga second derivative.
For the unlabelled case, let us consider the multiset construction. The analysis of

[zn]G(z) obeys the same principles as in the labelled case as it only depends on the
logarithmic assumption. The usual translation of multisets can be put under the form

F (z) = exp (G(z) +R(z)) , R(z) :=
∞∑

j=2

G(zj)

j
,

andR(z) involves termsR(z2), . . . that are each analytic in|z| < ρ1/2. Thus,R(z)
is itself analytic (as a uniformly convergent sum of analytic functions) in|z| < ρ1/2,
which properly contains the disc|z| < ρ since by assumptionρ < 1. One thus has
∆-analyticity ofF and, asz → ρ,

(1) F (z) ∼ eλ+r0

(1 − z/ρ)κ
, r0 :=

∞∑

j=2

G(ρj)

j
.

The asymptotic expansion of[zn]G(z) follows.
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Regarding the BGFF (z, u) of ofF with umarking the number ofG–components,
one has

F (z, u) = exp

(
uG(z)

1
+
u2G(z2)

2
+ · · ·

)
.

Consequently,

f1(z) :=
∂

∂u
F (z, u)

∣∣∣∣
u=1

= F (z) (G(z) +R1(z)) , R1(z) =

∞∑

j=2

G(zj).

Again, the singularity type is that ofF (z) multiplied by a logarithmic term:

(2) f1(z) ∼ F (z)(G(z) + r1), r1 :=

∞∑

j=2

G(ρj)

and the statement for the mean value ofX follows.
The variance analysis proceeds along similar lines. For instance, in the labelled

case, one has

([zn]F (z))En(X2) = [zn](f1(z)+f2(z)), f2(z) =
∂2

∂u2
F (z, u)

∣∣∣∣
u=1

= F (z)G(z)2,

which involves at its singularity a log-squared term. �

EXAMPLE 1. Direct instances of the exp–log schema.The case ofpermutationscorresponds
to κ = 1, λ = 0, and it is easily seen to be in agreement with the statement ofTheorem VII.1.
Let Ω be a finite set of the integers and consider next permutationswithoutany cycle of length
in Ω. This includesderangements(Ω = {1}) and their generalizations. Then,

G(z) = log
1

1− z −
X

ω∈Ω

zω

ω
.

The theorem applies withκ = 1 but with nowλ := −Pω∈Ω ω
−1.

The class of2–regular graphsis obtained by the set construction applied to undirected
cycles of length≥ 3. In this case

F (z) = exp(G(z)), G(z) =
1

2
log

1

1− z −
z

2
− z2

4
.

This is an exp–log scheme withκ = 1
2

andλ = − 3
4
. In particular the mean number of cycles

is asymptotic to1
2

log n.
In Chapter V, we have encountered the classF of mappings(functions from a finite set to

itself) as labelled sets of connected components (K), themselves (directed) cycles of trees (T ).
The class of all mappings has an EGF given by

F (z) = exp(K(z)), K(z) = log
1

1− T (z)
, T (z) = zeT (z),

with T the Cayley tree function. The analysis of the previous chapter shows thatT (z) is singular
at z = e−1 where it admits the singular expansionT (z) ∼ 1 −

√
2
√

1− ez. ThusG(z) is
logarithmic withκ = 1

2
andλ = log

√
2. In particular, the number of connected mappings

satisfies

Kn ≡ n![zn]K(z) = nn

r
π

2n

“
1 +O(n−1/2)

”
.
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(X + 1)
“

X10 + X9 + X8 + X6 + X4 + X3 + 1
” “

X14 + X11 + X10 + X3 + 1
”

X3 (X + 1)
“

X2 + X + 1
”2 “

X17 + X16 + X15 + X11 + X9 + X6 + X2 + X + 1
”

X5 (X + 1)
“

X5 + X3 + X2 + X + 1
” “

X12 + X8 + X7 + X6 + X5 + X3 + X2 + X + 1
” “

X2 + X + 1
”

X2
“

X2 + X + 1
”2 “

X3 + X2 + 1
” “

X8 + X7 + X6 + X4 + X2 + X + 1
” “

X8 + X7 + X5 + X4 + 1
”

“
X7 + X6 + X5 + X3 + X2 + X + 1

” “
X18 + X17 + X13 + X9 + X8 + X7 + X6 + X4 + 1

”

FIGURE 2. The factorizations of five random polynomials of degree 25over
F2. One out of five polynomials in this sample has no root in the base field (the
asymptotic probability is14 by Note 3).

In other words:the probability for a random mapping of sizen to consist of a single component
is∼p π

2n
. Also, the mean number of components in a random mapping of sizen is

1

2
log n+ log

√
2eγ +O(n−1/2).

Similar properties hold for mappings without fixed points that are analogous to derangements
and were discussed in Chapter II. �

We shall see below on page 413 that unlabelled functional graphs, which are the
counterpart of (labelled) mappings, also resort to the exp-log schema.

EXAMPLE 2. Polynomials over finite fields.Given its importance in various areas of mathemat-
ics and in applications to coding theory, symbolic computation, and cryptography, we devote a
special item to this factorization properties of random polynomials over finite fields. A prelim-
inary discussion has already been given at the end of ChapterI.

Let Fp be the finite field withp elements andP = Fp[X] the set of monic polynomials
with coefficients in the field. We view these polynomials as (unlabelled) combinatorial objects
with size identified to degree. Since a polynomial is specified by the sequence of its coefficients,
there arepn monic polynomials of degreen, and the OGF isP (z) = (1− pz)−1.

Polynomials are a unique factorization domain, since they can be subjected in the usual
way to Euclidean division. A nonconstant polynomial that has no proper nonconstant divisor
is termedirreducible —irreducibles are the analogues of the primes in the integerrealm. The
unique factorization property implies that the collectionI of monic irreducible polynomials is
implicitly determined byP ∼= M(I), which is reflected by a functional relation determining
I(z):

log
1

1− pz = I(z) +
1

2
I(z2) +

1

3
I(z3) + · · · .

As seen in Chapter I, one can solve explicitly forI(z) using Möbius inversion, to the effect that

I(z) =
X

k≥1

µ(k)

k
log

1

1− pzk

= log
1

1− pz +R(z),

whereR(z) is analytic in|z| < p−1/2. ThusI(z) is logarithmic. There results thatIn ∼ pn/n,
which constitutes a “Prime Number Theorem” for polynomialsover finite fields: A fraction
asymptotic to1

n
of the polynomials inFp[X] are irreducible. This says that a polynomial of

degreen is roughly comparable to a number written in basep havingn digits as the proportion
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of prime numbers amongst such numbers is about1/(n log p), by virtue of the classical Prime
Number Theorem.

In addition, Theorem VII.1 yields:The mean number of factors of a random polynomial
of degreen is∼ log n and the distribution is concentrated.This and similar developments lead
to a complete analysis of some of the basic algorithms known for factoring polynomials over
finite fields; see [141]. �

� 1. The divisor function for polynomials.Let δ(̟) for ̟ ∈ P be the total number of monic
polynomials (not necessarily irreducible) dividing̟: if ̟ = ιe1

1 · · · ιek
k , where theιj are

distinct irreducibles, thenδ(̟) = (e1 + 1) · · · (ek + 1). One has

EPn(δ) =
[zn]

Q
j≥1(1 + 2zj + 3z2j + · · · )

[zn]
Q

j≥1(1 + zj + z2j + · · · ) =
[zn]P (z)2

[zn]P (z)
,

so that the mean value ofδ overPn is exactly(n + 1). This evaluation is relevant to poly-
nomial factorization overZ since it gives an upper bound on the number of ireducible factor
combinations that need to be considered in order to lift a factorization fromFp(X) to Z(X);
see [397, 246]. �

� 2. The cost of finding irreducible polynomials.Assume that it takes expected timet(n) to
testa random polynomial of degreen for irreducibility. Then it takes expected time∼ nt(n)
to find a random polynomial of degreen: simply draw a polynomial at random and test it for
irreducibility. Testing fro ireducibility can be achievedby developing a polynomial factorization
algorithm which is stopped as soon as a nontrivial factor is found. See works by Panarioet al.
for details [307, 308]. �

Under the exp–log conditions, it is also possible (and easy)to analyse thepro-
file of structures, that is the number of components of sizer for each fixedr. We
recall here that the Poisson distribution of parameterν is the law of a discrete random
variableY such that

E(uY ) = e−ν(1−u), P(Y = k) = e−ν ν
k

k!
.

A variableY is said to be anegative binomialof parameter(m,α) if its probability
generating function and its individual probabilities satisfy:

E(uY ) =

(
1 − α

1 − αu

)m

, P(Y = k) =

(
m+ k − 1

k

)
αk(1 − α)m.

(The quantityP(Y = k) is the probability that themth success in a sequence of
independent trials with individual success probabilityα occurs at timem+k; see [124,
p. 165].)

PROPOSITIONVII.1 (Profiles of exp–log structures).Assume the conditions of Theo-
rem VII.1 and let the number ofX(r) of components of sizer in a randomFn object
of sizen. In the labelled case,X(r) admits a limit distribution of the Poisson type in
the sense that, for any fixedk,

(3) lim
n→∞

PFn(X(r) = k) = e−ν ν
k

k!
, ν = grρ

r, gr ≡ [zr]G(z).
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In the unlabelled case,X(r) admits a limit distribution of the negative binomial type
in the sense that, for any fixedk,
(4)

lim
n→∞

PFn(X(r) = k) =

(
Gr + k − 1

k

)
αk(1 − α)Gr , α = ρr, Gr ≡ [zr]G(z).

PROOF. In the labelled case, the BGF ofF with u marking the numberX(r) of r–
components is

F (z, u) = exp ((u− 1)grz
r)F (z).

Extracting the coefficient ofuk leads to

[uk]F (z, u) = exp (−grz
r)
zkr

k!
F (z),

to which singularity analysis applies directly. Observe that the factor ofF (z) con-
tributes the probability of (3) asz → ρ while the singularity type ofF (z) remains
unaffected.

In the unlabelled case, the starting BGF equation is

F (z, u) =

(
1 − zr

1 − uzr

)Gr

F (z),

and the analytic reasoning is similar to the labelled case. �

The unlabelled version covers in particular polynomials over finite fields; see [141,
236] for related results.

� 3. Mean profiles.The mean value ofX(r) satisfies

EFn(X(r)) ∼ grρ
r, EFn(X(r)) ∼ Gr

ρr

1− ρr
,

in the labelled and unlabelled (multiset) case respectively. In particular, the mean number of
roots of a random polynomial overFp that lie in the base fieldFp is asymptotic to p

p−1
; the

asymptotic probability that a polynomial has no root in the base field is(1− 1/p)p. �

� 4. Profiles of powersets.In case of unlabelled powersetsF = P(G) (no repetitions of
elements allowed), the distribution ofX(r) satisfies

lim
n→∞

PFn(X(r) = k) =

 
Gr

k

!
αk(1− α)Gr−k, α =

ρr

1 + ρr
,

i.e., the limit is a binomial law of parameters(Gr, ρ
r/(1 + ρr)). �

VII. 2. Simple varieties of trees

A simple variety of treesV is a class of trees determined by a subsetΩ of the
integers, so that all node degrees of a tree inV are constrained to belong toΩ ∋ 0.
Such simple varieties exist in four versions: plane or nonplane, unlabelled or labelled.
In three of the four cases, the generating function ofV satisfies an equation of the form

(5) y(z) = zφ(y(z)),
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corresponding to the fact that a tree is recursively formed as a root to which is ap-
pended a collection (either a sequence or a set) of subtrees.The algebraic situation is
then summarized by the following table:

(6)

Plane Non-plane

Unlabelled (OGF)
V = Z × SΩ(V)
V (z) = zφ(V (z))
φ(w) :=

∑
ω∈Ω u

ω

V = Z × MΩ(V)
V (z) = zΦ(V (z)))
(Φ a Pólya operator)

Labelled (EGF)
V = Z ⋆SΩ(V)

V̂ (z) = zφ(V̂ (z))
φ(w) :=

∑
ω∈Ω u

ω

V = Z ⋆PΩ(V)

V̂ (z) = zφ(V̂ (z))

φ(w) :=
∑

ω∈Ω
uω

ω!

The generating functions are ordinary (V ) in the unlabelled case, exponential(V̂ )
otherwise. The nonplane unlabelled trees further involve aPólya operatorΦ, which is
a sum of monomials in the quantitiesV (z2), V (z3), . . . .

The relationy = zφ(y), which prevails in the first three cases of (6) have been
treated in Section VI.5. In essence,y is defined by inversion of the relationz =
y/φ(y) and inversion “fails” when the first derivative of the function to be inverted
vanishes. At this point, the dependencyy 7→ z becomes quadratic, so that its inverse
z 7→ y gives rise to a square-root singularity. We are going to explore the effect of this
situation on the probabilistic behaviour of tree parameters.

VII. 2.1. Basic analyses.In the three cases resorting to Equation (5), the main
quantities of interest involve a characteristic equation and a condition on the basic
constructor functionφ of (6), which is invariably assumed to be analytic at the origin.
The condition is the existence of the characteristic quantity τ > 0 satisfying

(7) τφ′(τ) − φ(τ) = 0, 0 < τ < Rconv(φ).

We recall also thatφ(w) is said to beunperiodicif a decompositionψ(w) = wah(wd)
with h analytic at 0 impliesd = 1. Paraphrasing the results of Section VI.5, we state:

THEOREM VII.2 (Enumeration of simple trees).Let y(z) be defined by associated
to a simple variety according to(5). Assume thatφ is unperiodic and such that the
characteristic condition(7) is satisfied. Then the coefficients ofy(z) admit a complete
asymptotic expansion

[zn]y(z) ∼ γρ−n

2
√
πn3

[
1 +

∞∑

k=1

ek

nk

]
, ρ :=

τ

φ(τ)
, γ =

√
2φ(τ)

φ′′(τ)
.

The heart of the matter is, under the conditions of the theorem, the singular ex-
pansion ofy(z) at z = ρ,

(8) y(z) = τ +

∞∑

j=1

(−1)jd⋆
j

(
1 − z

ρ

)j/2

,

that will prove essential in the analysis of many tree parameters. The developments
that follow all make use of the assumptions of Theorem VII.2.We set for convenience
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of notations:

γ := d⋆
1 =

√
2φ(τ)

φ′′(τ)
.

� 5. Mobiles.A (labelled) mobile, as defined by Bergeron, Labelle, and Leroux [36, p. 240],
is a (labelled) tree in which subtrees dangling from the rootare taken up to cyclic shift:

1 2 3! + 3 = 9 4! + 4 × 2 + 4 × 3 + 4 × 3 × 2 = 68

(Think of Calder’s creations.) The EGF satisfies (EISA038037)

M(z) = z + 2
z2

2!
+ 9

z3

3!
+ 68

z4

4!
+ 730

z5

5!
+ · · ·

= z

„
1 + log

1

1−M(z)

«
.

The asymptotic formula for the number of of mobiles is1
n!
Mn ∼ C · Ann−3/2, whereC

.
=

0.46563, A
.
= 1.15741; see [36, p. 261]. �

EXAMPLE 3. Root degrees in simple varieties.As an immediate application, we discuss
the probability distribution ofroot-degreein simple varieties of trees under the conditions of
Theorem VII.2. LetV [k] be the subset ofV composed of all trees whose root has degree equal
to k. The quantityV [k]

n /Vn is the probability that the root of a random tree of sizen has
degreek. Since a tree inV [k] is formed by appending a root to a collection ofk trees, one has

V [k](z) = φkzV (z)k, φk := [wk]φ(w).

For anyfixedk, a singular expansion results from raising both members of (8) to thekth power,
so that, in particular,

(9) V [k](z) = τk − kγτk−1

r
1− z

ρ
+O

„
1− z

ρ

«
.

This is to be compared to the basic estimate (8): the ratioV
[k]

n /Vn is then asymptotic to the
ratio of the coefficients of

p
1− z/ρ in the corresponding generating functions,V [k](z) and

V (z) ≡ y(z). Thus, for any fixedk, we have found that

(10)
V

[k]
n

Vn
= ρkφkτ

k−1 +O(n−1/2).

(The error term is in fact of the formO(n−1), as seen when pushing the expansion one step
further.) Sinceρ = 1/φ′(τ ), one can rephrase (10) as follows:The random variable∆ repre-
senting the root-degree admits a discrete limit distribution given by

(11) lim
n→∞

PVn(∆) =
kφkτ

k−1

φ′(τ )
.

By general principles (Chapter IX), the convergence is uniform and a stronger form can be
developed from singularity analysis techniques. The probability generating function of the limit
law admits the simple formuφ′(τu)/φ′(τ ).
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For our four pilot examples, this gives:

Tree φ(w) τ, ρ Probability distr. (type)
binary (1 + w)2 1, 1

4
PGF: 1

2
u+ 1

2
u2 (Bernoulli)

unary-binary 1 + w + w2 1, 1
3

PGF: 1
3
u+ 2

3
u2 (Bernoulli)

general (1− w)−1 1
2
, 1

4
PGF:u/(2− u) (Sum of two geometric)

Cayley ew 1, e−1 PGF:ueu−1 (shifted Poisson)

The probability distribution is thus characterized by the fact that its probability generating func-
tion is a rescaled version of thederivativeof the basic tree constructorφ(w). �

EXAMPLE 4. Mean level profile in simple varieties.The question we address here is that of
determining the mean number of nodes at levelk (i.e., at distancek from the root) in a random
tree of some large sizen. An explicit expression for the joint distribution of nodesat all levels
has been developed in Section 5 of Chapter III, but this exactmultivariate representation is
somewhat hard to interpret in concrete terms.

Let ξj(t) be the number of nodes at levelk in tree t. Define the generating function of
cumulated values,

Xk(z) :=
X

t∈V
ξk(t)z|t|.

Clearly,X0(z) ≡ y(z) since each tree has a unique root. Then, since the parameterξk is the
sum over subtrees of parameterξk−1, we are in the situation of inheritance, as discussed in
Chapter III. We find for a tree with root subtreest1, . . . , tdeg(t),

Xk(z) =
X

t∈V

0
@

deg(t)X

j=0

ξk(tj)

1
A z|t|

= z
X

r

rφry(z)
r−1Xk−1(z) = zφ′(y(z))Xk−1(z),

so that by recurrence:

(12) Xk(z) =
`
zφ′(y(z))

´k
y(z).

Making use of the (analytic) expansion ofφ′ atτ , namely,φ′(y) ∼ φ′(τ ) + φ′′(τ )(y− τ ) and
of ρφ′(τ ) = 1, one gets for any fixedk

Xk(z) ∼
„

1− kγρφ′′(τ )

r
1− z

ρ

«„
τ − γ

r
1− z

ρ

«
∼ τ − γ(τρφ′′(τ )k + 1)

r
1− z

ρ
.

Thus comparing the singular part ofXk(z) to that ofy(z), we find: For fixed k, the mean
number of nodes at levelk in a tree is of the asymptotic form

EVn [ξk] ∼ Ak + 1, A := τρφ′′(τ ).

This result was first given by Meir and Moon in an important paper of 1978, which started the
general theory of simple families of trees [283]. The striking fact is that, although the number
of nodes at levelk can at least double at each level (in the case of the most shrubby trees), the
growth is only linear on average. In figurative terms, the immediate vicinity of the root starts
like a “cone”. and trees of simple varieties tend to be ratherskinny near their base.

When used in conjunction with saddle point bounds, the exactGF expression of (12) addi-
tionally provides a probabilistic upper bound on the heightof trees of the formO(n1/2+δ) for
anyδ > 0. Indeed restrictz to the interval(0, ρ) and assume thatk = n1/2+δ . Let χ be the
height parameter. First, we have

(13) PVn(χ ≥ k) ≡ EVn([[ξk ≥ 1]]) ≤ EVn(ξk).
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FIGURE 3. Three random 2–3 trees (Ω = {0, 2, 3}) of sizen = 500 have height
respectively 48, 57, 47. The skinny aspect of the base, albeit subject to wide
variation, is in accordance with the analysis developed in the text.

Next by saddle point bounds, for any legal positivex (0 < x < Rconv(φ)),

(14) EVn(ξk) ≤
`
xφ′(y(x))

´k
y(x)x−n ≤ τ

`
xφ′(y(x))

´k
x−n.

Fix now

x = ρ− nδ

n
.

Then, local expansions show that

(15) log
“`
xφ′(y(x))

´k
x−n

”
∼ −γ1n

3δ/2 + γ2n
δ,

for some positive constantsγ1, γ2. Thus, by (13) and (14):In a simple variety of trees, the prob-
ability of height exceedingn1/2+δ is exponentially small, being of the rough formexp(−n3δ/2).
Accordingly, the mean height isO(n1/2+δ) for any δ > 0. Flajolet and Odlyzko [151] have
characterized the moments of height, thenmean being in particular asymptotic toλ

√
n and the

limit distribution being of the Theta type already encountered in Chapter V in relation to the
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height of general Catalan trees. Further local limit and large deviation estimates appear in [137].
Figure 3 displays three random trees of sizen = 500. �

� 6. The variance of level profiles.The BGF of trees withu marking nodes at levelk has an
explicit expression, in accordance with the developments of Chapter III. For instance fork = 3,
this iszφ(zφ(zφ(uy(z)))). Double differentiation followed by singularity analysisshows that

VVn [ξk] ∼ 1

2
A2k2 − 1

2
A(3− 4A)k + τA− 1,

another result of Meir and Moon [283]. The precise analysis of the mean and variance in the
interesting regime wherek ≍ √n is also given in [283], but it requires the saddle point method
of Chapter VIII or the methods of Chapter IX. �

VII. 2.2. Additive functionals. We consider next an important class of recursive
parameters of trees, which generalize path length considered in Section 4 of Chap-
ter III. A tree parameterξ is said to be anadditive functionalif it is defined in terms
of a simpler tree parameterη by a recursion of the type:

(16) ξ(t) = η(t) +

deg(t)∑

j=1

ξ(tj),

wheredeg(t) is the degree of the root oft and thetj are the root subtrees oft (whose
number isdeg(t)). Unwinding the recursion shows that

(17) ξ(t) :=
∑

s�t

η(s),

where the sum is extended to all subtreess of t (written s � t). What is needed is
access to moments ofξ viewed as a random variable over the subclassVn of all trees
of sizen.

Expectation of a recursive parameter over trees of a fixed size is of prime rele-
vance to the analysis of algorithms operating on trees [353]. For ease of notations,
take the case of a simple variety of theunlabelled plane type. The generating function
of cumulated values are defined in the usual way as

X(z) :=
∑

t∈V
ξ(t)z|t|, H(z) :=

∑

t∈V
η(t)z|t|,

and the goal is to determine their relationship. We have

X(z) = H(z) + X̃(z), X̃(z) :=
∑

t∈V


z|t|

deg(t)∑

j=1

ξ(tj)


 .
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Spitting the expression of̃X(z) according to the valuesr of degree, we get

X̃(z) =
∑

r≥0


φrz

1+|t1|+···+|tr|
r∑

j=1

ξ(tj)




=
∑

r≥0

(
φrz

1+|t1|+···+|tr|rξ(t1)
)

= zX(z)
∑

r≥0

(
rφry(z)

r−1
)
.

In summary, this leads to a linear equation satisfied byX ,

X(z) = H(z) + zφ′(y(z))X(z),

which solves to

(18) X(z) =
H(z)

1 − zφ′(y(z))
=
zy′(z)

y(z)
H(z).

This is our main equation. To get its second form, note that differentiating the funda-
mental relationy = zφ(y)) yields the identity

y′(1 − zφ′(y)) = φ(y) =
y

z
, i.e., 1 − zφ′(y) =

y

zy′
.

� 7.A combinatorial interpretation.Equation (17) suggest to viewX(z) as the gf of trees with
one subtree marked to which is attached a weight ofη. Then (18) can be read as follows: point
to an arbitrary node at a tree inV (the gf iszy′(z)), “subtract” the tree attached to this node (a
factor ofy(z)−1), and replace it by the same tree but now weighted byη (the gf isH(z)). �

� 8. Labelled varieties.Formula (18) holds verbatim for labelled trees (either of the plane or
nonplane type), provided we interprety(z),X(z),H(z) as egf’s:X(z) :=

P
t∈V ξ(t)z

|t|/|t|!,
and so on. �

Given Equation (18), it is an easy task to churn out a number ofmean value
estimates for many tree parameters of interest.

EXAMPLE 5. Mean degree profile.Let ξ(t) ≡ ξk(t) be the number of nodes of degreek in
random tree of some varietyV. The analysis extends that of the root degree seen earlier. The
parameterξ is an additive functional induced by the basic parameterη(t) ≡ ηk(t) defined by
ηk(t) := [[deg(t) = k]]. By the analysis of root degree, we have for the GF of cumulated values
associated toη

H(z) = φkzy(z)
k, φk := [wk]φ(w),

so that, by the fundamental formula (18),

X(z) = φkzy(z)
k zy

′(z)

y(z)
= z2φky(z)

k−1y′(z).

The singular expansion ofzy′(z) results from that ofy(z) by differentiation (Chapter VI),

zy′(z) =
1

2
γ

1p
1− z/ρ

+O(1),

and the corresponding coefficient is[zn](zy′) = nyn. This gives immediately the singularity
type ofX, which is of the form of an inverse square root. Thus,

X(z) ∼ ρφkτ
k−1(zy′(z))
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implying (ρ = τ/φ(τ ))
Xn

nyn
∼ φkτ

k

φ(τ )
.

Consequently, one has:In a simple variety, the mean number of nodes of degreek is asymptotic
to λkn, whereλk := φkτ

k/φ(τ ); in other words, the probability distribution of the degree∆′

of a random node in a random tree of sizen satisfies

lim
n→∞

Pn(∆) =
φkτ

k

φ(τ )
, with PGF:

X

k

λku
k =

φ(uτ )

φ(τ )
.

� 9. Variances.The variance of the number ofk-ary nodes is∼ νn, so that the distribution of
the number of nodes of this type is concentrated, for each fixed k. The starting point is the BGF
defined implicitly by

Y (z, u) = z
“
φ(Y (z, u)) + φk(u− 1)Y (z, u)k

”
,

upon taking a double derivative with respect tou, settingu = 1, and finally performing singu-
larity analysis on the resulting GF of cumulated values. �

For the usual tree varieties this gives:

Tree φ(w) τ, ρ Probability distr. (type)
binary (1 +w)2 1, 1

4
PGF: 1

4
+ 1

2
u+ 1

4
u2 (Bernoulli)

unary-binary 1 + w + w2 1, 1
3

PGF: 1
3

+ 1
3
u+ 1

3
u2 (Bernoulli)

general (1−w)−1 1
2
, 1

4
PGF:1/(2 − u) (Geometric)

Cayley ew 1, e−1 PGF:eu−1 (Poisson)

For instance, asymptotically, a general Catalan tree has onaveragen
2

leaves,n
4

nodes of degre 1
n
8

of degree 2, and so on; a Cayley tree has∼ ne−1/k! nodes of degreek; for binary (Catalan)
trees, the four possible types of nodes each appear each withasymptotic frequency1

4
. (These

data are in agreement with the fact that a random tree underVn is distributed like a branching
process tree determined by the PGFφ(uτ )/φ(τ ); see the corresponding remarks in Chapter III.)

�

� 10.The mother of a random node.The discrepancy in distributions between the root degree
and the the degree of a random node deserves an explanation. Pick up a node distinct from the
root at random in a tree and look at the degree of its mother. The PGF of the law is in the limit
uφ′(uτ )/φ′(τ ). Thus the degree of the root is asymptotically the same as that of the mother of
any non-root node.

More generally, letX have distributionpk := P(X = k). Construct a random variableY
such that the probabilityqk := P(Y = k) is proportional both tok andpk. Then for the
associated PGFs, the relationq(u) = p′(u)/p′(1) holds. The law ofY is said to be thesize-
biasedversion of the law ofX. Here, a mother is picked up with an importance proportionalto
its degree. �

EXAMPLE 6. Path length. Path length in trees can be analysed starting from the bivariate
generating function given (see Chapter III, p. 174) by a functional equation of the difference
type that involves the transformationz 7→ uz. This is useful for the computation of higher
moments, but for mean values, one may as well proceed directly from the additive functional
scheme. Path length is definable inductively by

ξ(t) = |t| − 1 +

deg(t)X

j=1

ξ(tj).
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In this case, we haveη(t) = |t| − 1 corresponding to the GF of cumulated values

H(z) = zy′(z)− y(z).

Thus, by the fundamental relation (18), one finds:

X(z) = (zy′(z)− y(z))zy
′(z)

y(z)
=
z2y′(z)2

y(z)
− zy′(z).

Since the type ofy′(z) at its singularity isZ−1/2 whereZ := (1− z/ρ), and the formula for
X(z) involves the square ofy′, the singularity ofX(z) is of typeZ−1/2, that is, it resembles
a simple pole. This means thatXn = [zn]X(z) grows likeρ−n, so that the mean value ofξ
overVn has growthn3/2. Determining the dominant terms is done by combining local singular
expansions as usual:

X(z) + zy′(z) ∼ γ2

4τ

1

Z
+O(Z−1/2).

As a result:In a random tree of sizen in a simple variety, the expectation of path satisfies

(19) EVn(ξ) = λ
√
πn3 +O(n), λ :=

s
φ(τ )

2τ 2φ′′(τ )
.

For our classical varieties, the main terms of (19) are then:

Binary Unary-binary General Cayley

∼
√
πn3 ∼ 1

2

√
3πn3 ∼ 1

2

√
πn3 ∼

q
1
2
πn3

Observe that the quantity1
n

EVn(ξ) represents the expected depth of a random node in random
tree (the probability model is then[1 . . n]×Vn), which is thus∼ λ√n. This result is consistent
with the previously noted fact that height of a tree is with high probability not much larger than
O(n1/2). �

� 11. Variance of path length.The variance of path length is asymptotic toλ2n
3/2 for

some computable constantλ2 > 0. Hence the distribution is “spread”. Louchard [270] and
Takács [374] have additionally worked out the asymptotic form of all moments, leading to a
characterization of the limit law of path length that can be described in terms of the Airy func-
tion and coincides with the Brownian excursion area. �

� 12. Generalizations of path length.Take the elementary costη(t) to be|t|α for some expo-
nentα > 0. Then the results of Chapter VI make it possible to analyse the relevant singularity
of the GFH(z) (via Hadamard products and singularities of polylogarithms). This entails for
the mean values ofξ precise estimates generalizing those of path length (whichcorresponds
to α = 1). There is a quantitative difference depending on whetherα < 1 1

2
, α = 1

2
, α > 1

2
.
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For instance for binary trees, one finds (Kα andK′
0 are explicit constants):

η(t) in the case|t| = n En(ξ)

nα ( 3
2
< α)

Γ(α− 1
2
)

Γ(α)
nα+ 1

2 +O(nα− 1
2 )

n3/2 1

Γ(3/2)
n2 +O(n log n)

nα ( 1
2
< α < 3

2
)

Γ(α− 1
2
)

Γ(α)
nα+ 1

2 +O(n)

n1/2 1√
π
n log n +O(n)

nα (0 < α < 1
2
) Kαn +O(1)

log n K′
0n − 2

√
πn1/2 +O(1).

This is based on an article by Fill, Flajolet, and Kapur [125]. �

In summary, the developments of this section thus provide precise information
on the shape of large random trees in simple varieties. The root degree has a special
distribution, a random node has degree obeying a distribution (with PGFφ(uτ)/φ(τ))
which directly reflects the nature of the tree constructorφ. A typical node is at depth
about

√
n, the height of the tree being itself in all likelihood not much larger and path

length being∼ λn3/2 on average.

VII. 2.3. Enumeration of some non-plane unlabelled trees.We shall discuss
here the enumeration of two classes of non-plane trees following Pólya [318, 320] and
Otter [306], which are very important sources for the asymptotic theory of tree enu-
meration (see also the brief account in [206]). These authors used the more traditional
method of Darboux instead of singularity analysis, but thisdistinction is immaterial
here as calculations develop under completely parallel lines under both theories. The
two classes under consideration are those of “general” and binary non-plane unla-
belled trees. Pólya operators are then central to the enumeration, and their treatment
in terms of radii of convergence and singularities is typical of the asymptotic theory
of unlabelled objects obeying symmetries, i.e., involvingthe unlabelledM, P, C con-
structions.

We prove here:

PROPOSITIONVII.2 (Special non-plane unlabelled trees).Consider the two classes
of non-plane unlabelled trees

H = Z × M(H), W = Z × M{0,2}(W)

respectively of the general and binary type. Then, with constantsCH , AH andCW , AW

given in(24)and(25), one has

Hn ∼ CH

2
√
πn3

An
H , W2n−1 ∼ CW

2
√
πn3

An
W .

PROOF. (i) General case.The OGF of nonplane unlabelled trees is the analytic
solution to the functional equation

(20) H(z) = z exp

(
H(z)

1
+
H(z2)

2
+ · · ·

)
.
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Let T be the solution to

(21) T (z) = zeT (z),

that is to say, the Cayley function. The functionH(z) has a radius of convergenceρ
strictly less than 1 as its coefficients dominate those ofT (z), the radius of convergence
of the latter being exactlye−1 .

= 0.367. The radiusρ cannot be 0 since the number of
trees is bounded from above by the number of plane trees whoseOGF has radius14 .
Thus, one has14 ≤ ρ ≤ e−1.

Rewriting the defining equation ofH(z) as

H(z) = ζeH(z) with ζ := z exp

(
H(z2)

2
+
H(z3)

3
+ · · ·

)
,

we observe thatζ = ζ(z) is analytic for|z| < ρ1/2, that is to say in a disk that properly
contains the disk of convergence ofH(z). We may thus rewriteH(z) as

H(z) = T (ζ(z)).

Sinceζ(z) is analytic atz = ρ, a singular expansion ofH(z) nearz = ρ results from
composing the singular expansion ofT at e−1 with the analytic expansion ofζ at ρ.
In this way, we get:

(22) H(z) = 1 − C(1 − 1

ρ
)1/2 +O((1 − z

ρ
)), C =

√
2eρζ′(ρ).

Thus,

[zn]H(z) ∼ C

2
√
πn3

ρ−n.

(ii) Binary case.Consider the functional equation

(23) f(z) = z +
1

2
f(z)2 +

1

2
f(z2).

This enumerates non-plane binary trees with size defined as the number of leaves, so
thatW (z) = 1

z f(z2). Thus, it suffices to analyse[zn]f(z), which avoids dealing with
periodicity phenomena.

The OGFf(z) has a radius of convergenceρ that is at least14 (since there are
fewer non-plane trees than plane ones). It is also at most1

2 as results from comparison
of f with the solution to the equationg = z + 1

2g
2. We may then proceed as before:

treat the term1
2f(z2) as a function in|z| < ρ1/2, as though it were known, then solve.

To this effect, set

ζ(z) := z +
1

2
f(z2),

which exists in|z| < ρ1/2. Then, the equation (23) becomes a plain quadratic equa-
tion, f = ζ + 1

2f
2, with solution

f(z) = 1 −
√

1 − 2ζ(z).

The singularityρ is the smallest positive solution ofζ(ρ) = 1
2 . The singular expansion

of f is obtained by composing the analytic expansion ofζ at ρ with
√

1 − 2ζ. The
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usual square-root singularity results:

f(z) ∼ 1 − C
√

1 − z/ρ, C :=
√

2ρζ′(ρ).

This induces theρ−nn−3/2 form for the coefficients[zn]f(z) ≡ [z2n−1]W (z). �

� 13.Full asymptotic expansions forHn,W2n−1. These exist since the OGFs admit complete
asymptotic expansions in powers of

p
1− z/ρ. �

The argument used in the proof of the proposition may seem nonconstructive.
However, numerically, the values ofρ andC may be determined to great accuracy.
See the notes below as well as Finch’s section on “Otter’s tree enumeration con-
stants” [126, Sec. 5.6].

� 14. Numerical evaluation of constants I.Here is an unoptimized procedure controlled by a
parameterm ≥ 0 for general non-plane unlabelled trees.

ProcedureGet value of ρ(m : integer);
1. Set up a procedure to compute and memorize theHn on demand;
(this can be based on recurrence relations implied byH ′(z); see [297])
2. Definef [m](z) :=

Pm
j=1Hnz

n;

3. Defineζ [m](z) := z exp
“Pm

k=2
1
k
f [m](zk)

”
;

4. Solve numericallyζ [m](x) = e−1 for x ∈ (0, 1) to max(m, 10) digits of accuracy;
5. Returnx as an approximation toρ.

For instance, here is a conservative estimate of the accuracy attained form = 0, 10, . . . , 50 (in
a few billion machine instructions):

m = 0 m = 10 m = 20 m = 30 m = 40 m = 50
3 · 10−2 10−6 10−11 10−16 10−21 10−26

Empirically, accuracy appears to be a little better than10−m/2. This yields to 25D:
(24)
ρ
.
= 0.3383218568992076951961126, AH ≡ ρ−1 .

= 2.955765285651994974714818
CH

.
= 1.559490020374640885542206.

The formula of the Proposition correctly estimatesH100 with a relative error of10−3. �

� 15. Numerical evaluation of constants II.The procedure of the previous note adapts easily
to give:
(25)
ρ
.
= 0.4026975036714412909690453, AW ≡ ρ−1 .

= 2.483253536172636858562289
CW

.
= 1.130033716398972007144137.

The formula of the Proposition correctly estimates[z100]f(z) with a relative error of7 · 10−3.
�

The two results, general and binary, are thus obtained by a modification of the
method used for simple varieties of trees, upon treating thePólya operator part as a
“perturbation” of the corresponding equations of simple varieties of trees. A more
general theory is possible for any simple variety of unlabelled non-plane treesT =
ZMΩ(T ) (for someΩ ⊂ Z≥0, but it requires more advanced methods to be discussed
below.
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VII. 2.4. Tree like structures. It is possible to treat many combinatorial struc-
tures related to trees by techniques exposed earlier in thissection. A square root
singularity is usually the norm, as is its corollary, theρ−nn−3/2 asymptotic form for
coefficients. As the routine is now well established, we shall content ourselves with a
brief discussion of some examples encountered earlier in this book.

1. Trees by leaves and hierarchies.Given a nonempty setΩ ⊂ Z≥0 that does not
contain 0,1, it makes sense to consider the class of labelledtrees,

C = Z + KΩ(C), K = S or P.

These are trees (plane or non-plane) with size counted as thenumber of leaves and
with degrees constrained to lie inΩ. The EGF is then of the form

C(z) = z + φ(C(z)).

(The fact that0, 1 6∈ Ω ensures well foundedness of the definition.)
The discussion given for simple families of trees adapts easily. Assume for sim-

plicity φ here to be entire. ThenC(z) is a solution toy = z + φ(y) that remains
analytic, whenz increases from 0 along the positive axis, as long as the function
y − φ(y) has a nonzero derivative. Thus, the smallest positive singularity ρ and the
corresponding singular valueτ := y(ρ) satisfy the system of two equations:

(26) τ = ρ+ φ(τ), 1 = φ′(τ).

In other words,τ is the smallest root ofφ′(τ) = 1 and ρ is then determined by
ρ = τ −φ(τ). Near(ρ, τ), the dependence betweenz andy is locally a quadratic one:

ρ− z ∼ 1

2
φ′′(τ)(τ − y),

that is,

y ∼ τ − γ

(
1 − z

ρ

)1/2

, γ :=

√
1

2
ρφ′′(τ).

(A full expansion can be obtained.) Thus, for coefficients, one has:

(27) [zn]y ∼ γ

2
√
πn3

ρ−n, γ =

√
1

2
ρφ′′(τ).

In Chapter II, we have considered the classH of labelled hierarchies defined by
the choiceΩ = {2, 3, . . .}, i.e.,H = Z + P≥2(H). These occur in statistical classifi-
cation theory: given a collection ofn distinguished items,Hn is the number of ways
of superimposing a nontrivial classification (cf Figure 4).Such abstract classifications
usually no planar structure so thatφ(w) =

∑
ω∈Ωw

ω/ω! is hereew − 1 − w. Thus,
we find mechanicallyτ = log 2, ρ = 2 log 2 − 1, and

1

n!
Hn ∼ 1

2
√
πn3

(2 log 2 − 1)
−n+1/2

.

For the unlabelled version,̃H, a calculation combines the analysis above with the
principles employed for nonplane trees to the effect that

H̃n ∼ γ

2
√
πn3

ρ−n, ρ
.
= 0.29224.
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|===|===|===|German
| | |===|English
| | |===|Dutch
| |
| |===|===|Swedish
| |===|Danish
|===|Greek
|
|===|===|===|Portuguese
| | |===|Spanish
| | |===|Italian
| | |===|French
| |
| |===|Romanian
|
|===|Armenian

FIGURE 4. A hierarchy placed on some of the modern Indoeuropean languages.

2. Mappings.The basic decomposition of mappings,

F = exp(K), K = log
1

1 − T
, T = zeT ,

lends itself to a number of multivariate extensions. For instance, the parameterχ(φ)
equal to the number of cyclic points gives rise to the BGF

F (z, u) = exp

(
log

1

1 − T

)
= (1 − uT )−1.

The mean number of a cyclic points in a random mapping of sizen is accordingly

µn =
n!

nn
[zn]

(
∂

∂u
F (z, u)

∣∣∣∣
u=1

)
=

n!

nn
[zn]

T

(1 − T )2
.

Singularity analysis is immediate as

T

(1 − T )2
∼

z→e−1

1

2

1

1 − ez
implying [zn]

T

(1 − T )2
∼

n→∞
1

2
en.

The mean number of cyclic points in a randomn–mapping is asymptotic to
√
πn/2.

A large number of parameters can be analysed in this way systematically as shown in
the survey [152]: see Figure 5 for a summary of results whose proof we leave asan
exercise to the reader. The leftmost table describes globalparameters of mappings;
the rightmost table is relative to properties of random point in randomn-mapping:λ
is the distance to its cycle of a random point,µ the length of the cycle to which the
point leads, tree size and component size are respectively the size of the largest tree
containing the point and the size of its (weakly) connected component. In particular, a
random mapping of sizen has relatively few components, some of which are expected
to be of a fairly large size.

3. Simple varieties of mappings.Let Ω be a subset of the integers and consider
mappingsφ ∈ F such that the number of preimages of any point is constrainedto
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# components ∼ 1
2

log n

# cyclic nodes ∼
p
πn/2

# terminal nodes ∼ ne−1

tail length (λ) ∼
p
πn/8

cycle length (µ) ∼
p
πn/8

tree size ∼ n/3
component size ∼ 2n/3

FIGURE 5. Expectations of the main additive parameters of random mappings
of sizen.

lie in Ω. Such special mappings may serve to model the behaviour of special classes
of functions under iteration. For instance the quadratic functionsφ(x) = x2 + a
overFp have the property that each elementy has either zero, one, or two preimages
(depending on whethery − a is a quadratic nonresidue, 0, or a quadratic residue).
Such constrained mappings are of interest in various areas of computational number
theory and cryptography.

The basic decomposition of general mappings needs to be amended in this case.
Start with the family of treesT that are the simple variety corresponding toΩ:

T = zφ(T ), φ(w) :=
∑

ω∈Ω

uω

ω1
.

At any point of a cycle, one must graftr trees with the constraint thatr+1 ∈ Ω (since
one arrow “comes from” the cycle itself). Such legal tuples with a root appended are
represented by

U = zφ′(T ),

sinceφ is an exponential generating function and shift corresponds to differentiation.
Then connected components and components are formed in the usual way by

K = log
1

1 − U
, F = exp(K) =

1

1 − U
.

We assume thatφ (i.e., Ω) satisfies the general conditions of Theorem VII.2, withτ
the characteristic value. ThenT (z) has a square-root singularity atρ = τ/φ(τ). The
same holds forU which satisfies the singular expansion

(28) U(z) ∼ 1 − ρφ′′(τ)γ

√
1 − z

ρ
.

Thus, eventually,

F (z) ∼ λ√
1 − z

ρ

.

There results the universality of the exponent−1/2 in such constrained mappings:

[zn]F (z) ∼ λ√
πn

ρ−n,

which nicely extends what is known to hold for unrestricted mappings. The analysis
of additive functionals can then proceed on lines very similar to the case of standard
mappings, to the effect that the estimates of Figure 5 hold, albeit with different multi-
plicative constants. The programme just sketched has been carried out in a thorough
way by Arney and Bender in [13] to which we refer for a detailed treatment.
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4. Unlabelled functional graphs. Unlabelled functional graphs or mapping
patterns (F ) are unlabelled digraphs in which each vertex has outdegreeequal to 1.
Equivalently, they can be regarded as multisets of components (L) that are cycles of
nonplane unlabelled trees (H),

F = M(L); L = C(U); H = Z × M(H),

a specification that entirely parallels that of mappings.
The OGFH(z) has a square-root singularity by virtue of (22) above, with addi-

tionallyH(ρ) = 1. The translation of the unlabelled cycle construction,

L(z) =
∑

j≥1

ϕ(j)

j
log

1

1 −H(zj)
,

implies thatL(z) is logarithmic, andF (z) has a singularity of type1/
√
Z where

Z := 1 − z/ρ. Thus,unlabelled functional graphs constitute an exp-log structure
with κ = 1

2 . The number of unlabelled functional graphs thus grows likeCρ−nn−1/2

and the mean number of components in a random functional graph is∼ 1
2 logn, like

for the labelled mapping counterpart. See [284] for more on this topic. Unlabelled
functional graphs are sometimes called “mapping patterns”in the literature.

� 16.Alternative form forF (z). Arithmetical simplifications associated with the Euler totient
function yield:

F (z) =
∞Y

k=1

“
1−H(zk)

”−1

.

A similar form applies generally to multisets of unlabelledcycles. �

5. Unrooted trees.All the trees considered so far have been rooted and this
version is the one most useful in applications. Anunrooted tree2 is by definition a
connected acyclic (undirected) graph. In that case, the tree is clearly non-plane and no
special root node is distinguished.

The counting of the classU of unrooted labelled treesis easy: there are plainly
Un = nn−2 of these since all nodes are distinguished by a label, which entails that
nUn = Tn with Tn = nn−1 by Cayley’s formula. Incidentally, the EGFU(z) satisfies

(29) U(z) =

∫ z

0

T (y)
dy

y
= T (z) − 1

2
T (z)2,

as already seen when we discussed labelled graphs in ChapterII.
Forunrooted unlabelled trees, symmetries are in the way and an tree can be rooted

in a number of ways that depends on its shape. For instance of star graph leads to a
number of different rooted trees that equals 2 (choose either the center or one of the
peripheral nodes), while a line graph gives rise to⌈n/2⌉ structurally different rooted
trees. WithH the class of rooted unlabelled trees andI the class of unrooted trees,
we have at this stage only minor refinements of the general inequality

In ≤ Hn ≤ nIn.

2Unrooted trees are also called sometimesfree trees.
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A table of values of the ratioHn/In suggests that the answer is closer to the upper
bound:

(30) n 10 20 30 40 50 60
Hn/In 6.78 15.58 23.89 32.15 40.39 48.62

The solution is provided by a famous exact formula due to Otter, namely

(31) I(z) = H(z) − 1

2

(
H(z)2 −H(z2)

)
.

It gives in particular (EISA000055)

I(z) = z + z2 + z3 + 2 z4 + 3 z5 + 6 z6 + 11 z7 + 23 z8 + 47 z9 + 106 z10 + · · · .
Given (31), it is child’s play to determine the singular expansion ofI knowing that
ofH . The radius of convergence ofI is the same as that ofH as the termH(z2) only
introduces exponentially small coefficients. Thus, it suffices to analyseH − 1

2H
2:

H(z) − 1

2
H(z)2 ∼ 1

2
− δ2

(
1 − z

ρ

)
+ δ3

(
1 − z

ρ

)3/2

+ O

((
1 − z

ρ

)2
)
.

What is noticeable is the cancellation in coefficients for the termZ1/2 (since1 − x−
1
2 (1 − x)2 = 1

2 + O(x2)), so thatZ3/2 is the actual singularity type ofI. Clearly,
the constantδ3 is computable from the first four terms in the singular expansion ofH
atρ. Then singularity analysis yields:The number of unrooted trees of sizen satisfies
the formula

(32) In ∼ 3δ3

4
√
πn5

ρ−n, In ∼ 0.5349496061 · 2.9955765856nn−5/2.

The numerical values are from [126] and the result is Otter’s original [306]. The
formula gives an error slighly under10−2 for n = 100. An unrooted tree of sizen
gives rise to about different0.8n rooted trees on average, which agrees well with the
observations of (30).

� 17. Dissimilarity property of trees.Fix an unrooted tree. Two verticesu, v are similar
there exists an automorphism of the tree that exchangesu andv. Two edgese, f are similar if
there is an automorphism of the tree that exchangese andf . Let p∗ andq∗ be the number of
equivalence classes of vertices and edges under similarity. Then the following identity, called
the dissimilarity theorem, holds,

p∗ − q∗ = 1− s,
wheres is 1 if the tree admits a “central symmetric” edge and 0 otherwise. Summing over all
unrooted trees gives the basic formula (31). [This is based on Read’s account in [320, p. 107]
and on [206, p. 56].] �

VII. 3. Positive implicit functions

Our goal here is to show that square root singularity holds inthe wide context of
generating functions satisfying a single functional equation,

(33) y(z) = G(z, y(z)), G(0, 0) = 0, G′
w(0, 0) = 0,
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under suitable conditions onG. (By trivial algebra, the initial conditions onG can be
further weakened toG(0, 0) > 0 and0 ≤ G′

w(0, 0) < 1). For many combinatorial ap-
plications, it is legitimate to assume thatG is bivariate analyticaround(0, 0) and that
it has nonnegative Taylor coefficients there, an assumptionthat is made throughout
this section. Thus, we postulate that the representation

(34) G(z, w) =
∑

m,n≥0

gm,nz
mwn, with gm,n ≥ 0, g0,0 = 0, g0,1 = 0,

holds in a domain|z| < R, |y| < S. Next, in order to avoid trivialities, we consider
only G′s that arenonlinear, that is, one at least of the coefficientsgm,n for n ≥
2 is strictly positive. (Else, one could plainly solve the linear equation fory(z).)
Accordingly, we also postulate that

(35) gm,n > 0 for somem and for somen ≥ 2.

Finally, for reasons of the same nature as in the discussion of simple families of trees,
singularities may only occur from a failure of the implicit function theorem. As we
shall see in the proof of the main theorem below, this necessitates the existence of two
numbersr, s > 0 such that

(36) G(r, s) = s, Gw(r, s) = 1, with r < R, s < S.

The system (36) is called thecharacteristic system. Finally, we recall that a function
f(z) =

∑
n≥0 fnz

n is aperiodicif cannot be put under the formf(z) = zah(zd) with
d > 2 andh analytic at 0. (Put otherwise, there exist three indicesn1, n2, n3 such that
fn1fn2fn3 6= 0 andgcd(n2 − n1, n3 − n1) = 1.) The main result here [27, 285] is3

THEOREM VII.3 (Positive implicit functions).Let G(z, w) be a positive bivariate
analytic function satisfying(34) and let the equation(33) admit a solutiony(z) that
is analytic at0, has nonnegative coefficients, and is aperiodic. Assume further the
conditions(35) and (36). Then,y(z) converges atz = r where it has a square-root
singularity:

y(z) =
z→r

s− γ
√

1 − z/r +O(1 − z/r), γ :=

√
2rG′

z(r, s)

G′′
ww(r, s)

.

The expansion is valid in a∆-domain, so that

[zn]y(z) =
n→∞

γ

2
√
πn3

r−n
(
1 +O(n−1

)
.

Note that statement tacitly implies the existence of at mostone root of the char-
acteristic system within the analyticity domain ofG.
PROOF. By assumptiony(z) is analytic at the origin with nonnegative Taylor coeffi-
cients. Letρ be its radius of convergence, andτ = y(ρ). By Pringsheim’s theorem,
ρ is a singularity ofy. Meir and Moon [285] provide an argument to the effect that

3This theorem has an interesting history. A version of it was first stated by Bender in 1974 (Theo-
rem 5 of [27]). Canfield [66] then pointed out the fact that Bender’s conditions were notquite sufficient. A
corrected statement was given by Meir and Moon in [285] with a further (minor) erratum in [286]. We fol-
low heer the form given in Theorem 10.13 by Odlyzko [301] with the correction of another minor misprint
(regardingg0,1 which should readg0,1 6= 1 or, better,g0,1 ∈ [0, 1[).
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ρ = r andτ = s. The square-root singularity then follows from the usual argument
based on the failure of the implicit function theorem. �

The solutions to the characteristic system (36) can be regarded as the intersection
points of two curves, namely,

G(r, s) − s = 0, G′
w(r, s) = 1.

Here are plots in the case of two functionsG: the first one has nonnegative coefficients
while the second one (corresponding to a counterexample of Canfield [66]) involves
negative coefficients. Positivity of coefficients implies convexity properties that avoid
pathological situations.

G(z, y) =
1

1− z − y − 1− y − y3 G(z, y) =
z

24 − 9y + y2

(positive) (not positive)

0

0.2

0.4

(s)

0.1 0.2
(r)

0

2

4

(s)

10 20
(r)

EXAMPLE 7. Trees with variable edge lengths and node sizes.Consider unlabelled plane
trees in which nodes can be of different sizes: what is given is a setbΩ of ordered pairs(ω,σ),
where a value(ω,σ) means that a node of degreeω and sizeσ is allowed. Simple varieties
in their basic form correspond toσ ≡ 1; trees enumerated by leaves (including hierarchies)
correspond toσ ∈ {0, 1} with σ = 1 iff ω = 0. Figure 6 indicates the way such trees can
model the self-bonding of single stranded nucleic acids like RNA, according to Watermanet
al. [216, 349, 367]. Clearly an extremely large number of variations are possible.

The fundamental equation in the case of a finitebΩ is

Y (z) = P (z, Y (z)), P (z,w) :=
X

(ω,σ)∈bΩ

zσwω.

In the aperiodic case, we shall invariably have a formula of the form

Yn ∼ C ·Ann3/2,

with the universal square-root singularity and the universal count exponent− 3
2
. �

� 18. Schröder numbers.Consider the classY of unary-binary trees where unary nodes have
size 2, while leaves and binary nodes have the usual size 1. The GF satisfiesY = z + z2Y +
zY 2, so that

Y (z) = zD(z2), D(z) =
1− z −

√
1− 6z + z2

2z
.
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A fragment of RNA is, in first approximation, a tree-like
structure with edges corresponding to bases pairs and
“loops” corresponding to leaves. There are constraints
on the sizes of leaves (taken here between 4 and 7) and
length of edges (here between 1 and 4 base pairs). Such
a RNA fragment can then be viewed as a planted treeP
attached to a binary tree (Y) with equations:

P = AY, Y = AY 2 +B,
A = z2 + z4 + z6 + z8, B = z4 + z5 + z6 + z7.

FIGURE 6. A simplified combinatorial model of RNA structures as considered
by Watermanet al. [216, 349, 367].

We haveD(z) = 1+2 z+6 z2 +22 z3 +90 z4 +394 z5 + · · · , which isEISA006318(“Large
Schröder numbers”). By the bijective correspondence between trees and lattice paths,Y2n+1 is
in bijective correspondence with excursions of lengthn made of steps(1, 1), (2, 0), (1,−1).
Upon tilting by 45◦, this is equivalent to paths connecting the lower left corner to the upper
right corner of an(n× n) square that are made of horizontal, vertical, and diagonalsteps, and
never going under the diagonal. The seriesS = z

2
(1 +D) enumerates Schröder’s generalized

parenthesis systems (Chapter I):S := z + S2/(1− S), and the asymptotic formula

Sn ∼ 1

2
Dn−1 ∼ 1

4
√
πn3

“
3− 2

√
2
”−n+1/2

follows straightforwardly. �

EXAMPLE 8. Nonplane trees and alkanes.In chemistry, carbon atoms (C) are known to have
valency 4 while hydrogen (H) has valency 1.Alkanes, also known as paraffins (Figure 7), are
are acyclic molecules formed of carbon and hydrogen atoms according to this rule and without
multiple bonds; they are thus of the typeCnH2n+2. In combinatorial terms, we are talking
of unrooted trees with (total) node degrees in{1, 4}. The rooted version of these trees are
determined by the fact that a root is chosen and (out)degreesof nodes lie in the setΩ = {0, 3};
these are rooted ternary trees and they correspond to alcohols (with theOH group marking one
of the carbon atoms). The problem of enumerating isomers of alkanes and alcohols has been at
the origin of Pólya paper [318, 320].

Alcohols (A) are the simplest to enumerate as they are rooted trees. The OGF starts as
(EISA000598)

A(z) = 1 + z + z2 + z3 + 2 z4 + 4 z5 + 8 z6 + 17 z7 + 39 z8 + 89 z9 + · · · ,

with size being taken here as the number of internal nodes. The specification is

A = {ǫ}+ZM3(A).

(EquivalentlyA+ := A \ {ǫ} satisfiesA+ = ZM0, 1, 2, 3(A+).) This implies thatA(z)
satisfies the functional equation:

A(z) = 1 + z

„
1

3
A(z3) +

1

2
A(z)A(z2) +

1

6
A(z)3

«
.
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H H H H H H H OH H
| | | | | | | | |
| | | | | | | | |

H--C--H H--C--C--H H--C--C--C--H H--C--C--C--H
| | | | | | | | |
| | | | | | | | |
H H H H H H H H H

Methane Ethane Propane Propanol

FIGURE 7. A few examples of alkanes (CH4, C2H6, C3H8) and an alcohol.

In order to apply Theorem VII.3, introduce the function

G(z, w) = 1 + z

„
1

3
A(z3) +

1

2
A(z2)w +

1

6
w3

«
,

which exists in|z| < |ρ|1/2 and |w| < ∞, with ρ the (yet unknown) radius of convergence
of A. Like before, the Pólya termsA(z2), A(z3) are teated as known functions. By methods
similar to those used in the analysis of binary and general trees (Subsection VII. 2.3), we find
that the characteristic system admits a solution,

r
.
= 0.3551817423143773928, s

.
= 2.1174207009536310225,

so thatρ = r and y(ρ) = s. Thus the growth of the number of alcohols is of the form
C · 2.81546nn−3/2.

LetB(z) be the OGF of alkanes (EISA000602):

B(z) = 1 + z + z2 + 2 z3 + 3 z4 + 5 z5 + 9 z6 + 18 z7

+35 z8 + 75 z9 + 159 z10 + 355 z11 + 802 z12 + 1858 z13 + · · ·
For instance,B6 = 5 because there are 5 isomers of hexane,C6H14, for which chemists had to
develop a nomenclature system, interestingly enough basedon a diameter of the tree:

Hexane 3-Methylpentane 2-Methylpentane

2,3-Dimethylbutane 2,2-Dimethylbutane

The number of structurally different alkanes can then be found an adaptation of the dissim-
ilarity formula (31) for which we refer to [36, p.290]. This problem has served as a powerful
motivation for the enumeration of graphical trees and its has a fascinating history which goes
back to Cayley. (See Rains and Sloane’s article [329] and [320]). The asymptotic formula of
alkanes is of the usual form with ann−5/2 term, as these are unrooted molecules. �

The pattern of analysis should by now be clear, and we state:

THEOREM VII.4 (Nonplane unlabelled trees).Let Ω ∋ 0 be a finite subset ofZ≥0

and consider the varietyV of (rooted) nonplane unlabelled trees. Assume aperiodicity
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(gcd(Ω) = 1) and the condition thatΩ contains at least one element larger than 1.
Then the number of trees of sizen in V satisfies an asymptotic formula:

Vn ∼ C ·Ann−3/2.

PROOF. The argument given for alcohols is transposed verbatim. Only the existence
of a root of the characteristic system needs to be established.

The radius of convergence ofV (z) is a priori≤ 1. The fact thatρ is strictly less
than 1 is established by means of a lower bound,Vn > Bn for someB > 1 and
infinitely many large enough values ofn. To obtain this exponential diversity, first
choose ann0 such thatVn0 > 1, then build a perfectd-ary tree (for somed ∈ Ω,
d 6= 0, 1) tree of heighth, and finally graft freely subtrees of sizen0 at n/(4n0)
of the leaves of the perfect tree. Choosingd such thatdh > n/(4n0) yields the
lower bound. That the radius of convergence is nonzero results from the upper bound
provided by corresponding plane trees whose growth is at leat exponential. Thus, one
has0 < ρ < 1.

By the translation of multisets of bounded cardinality, thefunctionG is polyno-
mial in finitely many of the quantities{V (z), V (z2), . . .}. Thus the functionG(z, w)
constructed like in the case of alcohols converges in|z| < ρ1/2, |w| < ∞. As
z → ρ−1, we must haveτ := V (ρ) finite, since otherwise, there would be a con-
tradiction in orders of growth in the nonlinear equationV (z) = · · · + · · ·V (z)d · · ·
as z → ρ. Thus (ρ, τ) satisfiesτ = G(ρ, τ). For the derivative, one must have
G′

w(ρ, τ) = 1 since’: (i) a smaller value would mean thatV is analytic atρ (by
the Implicit Function Theorem);(ii) a larger value would mean that a singularity has
been encountered earlier (by the usual argument on failure of the Implicit Function
Theorem). Thus, Theorem VII.3 on positive implicit functions is applicable. �

A large number of variations are clearly possible as evidenced by the title of an
article [205] published by Harary, Robinson, and Schwenk in 1975, namely, “Twenty-
step algorithm for determining the asymptotic number of trees of various species”.

VII. 4. The analysis of algebraic functions

Algebraic series and algebraic functions are simply definedas solutions of a poly-
nomial equation (Definition VII.3). It is a nontrivial fact established by elimination
theory (which can itself be implemented by way of resultantsor Groebner bases) that
they are equivalently defined as components of solutions of polynomial systems .

The starting point is the following definition of an algebraic function.

DEFINITION VII.3. A functionf(z) analytic in a neighbourhodV of a pointz0 is said
to bealgebraicif there exists a (nonzero) polynomialP (z, y) ∈ C[z, y], such that

P (z, f(z)) = 0, z ∈ V .
A power seriesf ∈ C[[z]] is said to be an algebraic power series if it coincides with
the expansion of an algebraic function at 0.

� 19. Algebraic definition of algebraic series.It is customary to definef to be an algebraic
series if it satisfiesP (z, f) = 0 in the sense of formal power series, withouta priori consid-
eration of convergence issues. Then the technique of majorizing series may be used to prove



420 VII. APPLICATIONS OF SINGULARITY ANALYSIS

that the coefficients off grow at most exponentially. Thus, the new definition is equivalent to
Definition —refalg-def. �

Thedegreeof an algebraic seriesf is by definition the minimal value ofdegy P (z, y) =
1 over all polynomials that are cancelled byf (so that rational series are algebraic of
degree 1). Note that one can always assumeP to be irreducible (that isP = QR
implies that one ofQ orR is a scalar) and of minimal degree.

An algebraic function may also be defined by starting with a polynomial system
of the form

(37)





P1(z, y1, . . . , ym) = 0
...
Pm(z, y1, . . . , ym) = 0,

where eachPj is a polynomial. A solution of (37) is by definition anm-tuple(f1, . . . , fm)
that cancels eachPj , that is,Pj(z, f1, . . . , fm) = 0. Any of thefj is called a com-
ponent solution. A basic result ofelimination theoryis that any component solution
of a nondegenerate polynomial system is an algebraic series(APPENDIX B: Alge-
braic elimination, p. 629). In other words, one can eliminate the auxiliary variables
y2, . . . , ym and construct a single bivariate polynomialQ such thatQ(z, y1) = 0.

Algebraic functions have singularities constrained to bebranch points. By this
is meant that the local expansion at such a singularity is a fractional power series
known as a Newton–Puiseux expansion. Singularity analysisis systematically appli-
cable to algebraic functions—hence the characteristic form of asymptotic expansions
that involve terms of the formωnnp/q (for some algebraic numberω and some ratio-
nal exponentp/q). In this section, we develop such basic structural results(Subsec-
tion VII. 4.1). However, coming up with effective solutions(i.e., decision procedures)
is not obvious in the algebraic case. Hence, a number of nontrivial algorithms are also
described in order to locate and analyse singularities (Newton’s polygon method), and
eventually determine the asymptotic form of coefficients. In particular, the multival-
ued character of algebraic functions creates a need to solve“connection problems”.
Finally, like in the rational case, positive systems (Subsection VII. 4.2) enjoy spe-
cial properties that further constrain what can be observedas regards asymptotic be-
haviours, including a return of the square-root singularity. Our presentation of positive
systems is based on an essential result of the theory, the Drmota–Lalley–Woods theo-
rem, that plays for algebraic functions a rôle quite similar to that of Perron-Frobenius
theory for rational functions.

VII. 4.1. General algebraic functions. Let P (z, y) be an irreducible polyno-
mial of C[z, y],

P (z, y) = p0(z)y
d + p1(z)y

d−1 + · · · + pd(z).

The solutions of the polynomial equationP (z, y) = 0 define a locus of points(z, y)
in C × C that is known as acomplex algebraic curve. Let d be they-degree ofP .
Then, for eachz there are at mostd possible values ofy. In fact, there existd values
of y “almost always”, that is except for a finite number of cases:
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— If z0 is such thatp0(z0) = 0, then there is a reduction in the degree iny
and hence a reduction in the number ofy-solutions for the particular value
of z = z0. One can conveniently regard the points that disappear as “points
at infinity”.

— If z0 is such thatP (z0, y) has a multiple root, then some of the values ofy
will coalesce.

Define theexceptional setof P as the set (R is the resultant):

(38) Ξ[P ] := {z
∣∣ R(z) = 0}, R(z) := R(P (z, y), ∂yP (z, y), y).

(The quantityR(z) is also known as the discriminant ofP (z, y) taken as a function
of y.) If z 6∈ Ξ[p], then we have a guarantee that there existd distinct solutions to
P (z, y) = 0, sincep0(z) 6= 0 and∂yP (z, y) 6= 0. Then, by the implicit function
theorem, each of the solutionsyj lifts into a locally analytic functionyj(z). What we
call abranchof the algebraic curveP (z, y) = 0 is the choice of such anyj(z) together
with a connected region of the complex plane throughout which this particularyj(z)
is analytic.

Singularities of an algebraic function can thus only occur if z lies in the excep-
tional setΞ[P ]. At a pointz0 such thatp0(z0) = 0, some of the branches escape to
infinity, thereby ceasing to be analytic. At a pointz0 where the resultant polynomial
R(z) vanishes butp0(z) 6= 0, then two or more branches collide. This can be either
a multiple point (two or more branches happen to assume the same value, but each
one exists as an analytic function aroundz0) or a branch point (some of the branches
actually cease to be analytic). An example of an exceptionalpoint that is not a branch
point is provided by the classical lemniscate of Bernoulli:at the origin, two branches
meet while each one is analytic there (see Figure 8).

10-1
FIGURE 8. The lemniscate of Bernoulli defined byP (z, y) = (z2 +y2)2−(z2−
y2) = 0: the origin is a double point where two analytic branches meet.

A partial knowledge of the topology of a complex algebraic curve may be gotten
by first looking at its restriction to the reals. Consider forinstance the polynomial
equationP (z, y) = 0, where

P (z, y) = y − 1 − zy2,

which defines the OGF of the Catalan numbers. A rendering of the real part of the
curve is given in Figure 9. The complex aspect of the curve as given byℑ(y) as a
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FIGURE 9. The real section of the Catalan curve (top). The complex Catalan
curve with a plot ofℑ(y) as a function ofz = (ℜ(z),ℑ(z)) (bottom left); a
blowup ofℑ(y) near the branch point atz = 1

4 (bottom right).

function ofz is also displayed there. In accordance with earlier observations, there are
normally two sheets (branches) above each each point. The exceptional set is given
by the roots of the discriminant,

R = z(1 − 4z).

Forz = 0, one of the branches escapes at infinity, while forz = 1/4, the two branches
meet and there is a branch point; see Figure 9.

In summary the exceptional set provides a set ofpossible candidatesfor the sin-
gularities of an algebraic function. This discussion is summarized by the slightly more
general lemma that follows.

LEMMA VII.1 (Location of algebraic singularities).LetY (z), analytic at the origin,
satisfy a polynomial equationP (z, Y ) = 0. Then,Y (z) can be analytically continued
along any half-line emanating from the origin that does not cross any point of the
exceptional set(38).

Nature of singularities. We start the discussion with an exceptional point that is
placed at the origin (by a translationz 7→ z + z0) and assume that the equation
P (0, y) = 0 hask equal rootsy1, . . . , yk wherey = 0 is this common value (by
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a translationy 7→ y + y0 or an inversiony 7→ 1/y, if points at infinity are consid-
ered). Consider a punctured disk|z| < r that does not include any other exceptional
point relative toP . In the argument that follows, we lety1, (z), . . . , yk(z) be analytic
determinations of the root that tend to 0 asz → 0.

Start at at some arbitrary value interior to the real interval (0, r), where the quan-
tity y1(z) is locally an analytic function ofz. By the implicit function theorem,y1(z)
can be continued analytically along a circuit that starts from z and returns toz while
simply encircling the origin (and staying within the punctured disk). Then, by per-
manence of analytic relations,y1(z) will be taken into another root, say,y(1)

1 (z). By
repeating the process, we see that after a certain number of timesκ with 1 ≤ κ ≤ k,
we will have obtained a collection of rootsy1(z) = y

(0)
1 (z), . . . , y

(κ)
1 (z) = y1(z) that

form a set ofκ distinct values. Such roots are said to form acycle. In this case,y1(tκ)
is an analytic function oft except possibly at 0 where it is continuous and has value 0.
Thus, by general principles (regarding removable singularities), it is in fact analytic
at 0. This in turn implies the existence of a convergent expansion near 0:

(39) y1(t
κ) =

∞∑

n=1

cnt
n.

The parametert is often called thelocal uniformizing parameter, as it reduces a mul-
tivalued function to a single value one. This translates back into the world ofz: each
determination ofz1/κ yields one of the branches of the multivalued analytic function
as

(40) y1(z) =

∞∑

n=1

cnz
n/κ.

Alternatively, withω = e2iπ/κ a root of unity, theκ determinations are obtained as

y
(j)
1 =

∞∑

n=1

cnω
nzn/κ,

each being valid in a sector of opening< 2π. (The caseκ = 1 corresponds to an
analytic branch.)

If r = k, then the cycle accounts for all the roots which tend to 0. Otherwise,
we repeat the process with another root and, in this fashion,eventually exhaust all
roots. Thus, all thek roots that have value0 at z = 0 are grouped into cycles of size
κ1, . . . , κℓ. Finally, values ofy at infinity are brought to zero by means of the change
of variablesy = 1/u, then leading to negative exponents in the expansion ofy.

THEOREMVII.5 (Newton–Puiseux expansions at a singularity).Letf(z) be a branch
of an algebraic functionP (z, f(z)) = 0. In a circular neighbourhood of a singular-
ity ζ slit along a ray emanating fromζ, f(z) admits a fractional series expansion
(Puiseux expansion) that is locally convergent and of the form

f(z) =
∑

k≥k0

ck(z − ζ)k/κ,
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for a fixed determination of(z − ζ)1/κ, wherek0 ∈ Z andκ is an integer≥ 2, called
the “branching type”.

Newton (1643-1727) discovered the algebraic form of Theorem VII.5, published
it in his famous treatiseDe Methodis Serierum et Fluxionum(completed in 1671). This
method was subsequently developed by Victor Puiseux (1820–1883) so that the name
of Puiseux series is customarily attached to fractional series expansions. The argument
given above is taken from the neat exposition offered by Hille in [214, Ch. 12, vol. II].
It is known as a “monodromy argument”, meaning that it consists in following the
course of values of an analytic function along paths in the complex plane till it returns
to its original value.

Newton polygon.Newton also described a constructive approach to the determination
of branching types near a point(z0, y0), that by means of the previous discussion can
always be taken to be(0, 0). In order to introduce the discussion, let us examine the
Catalan generating function nearz0 = 1/4. Elementary algebra gives the explicit
form of the two branches

y1(z) =
1

2z

(
1 −

√
1 − 4z

)
, y2(z) =

1

2z

(
1 +

√
1 − 4z

)
,

whose forms are consistent with what Theorem VII.5 predicts. If however one starts
directly with the equation,

P (z, y) ≡ y − 1 − zy2 = 0

then, the translationz = 1/4 − Z (the minus sign is a mere notational convenience),
y = 2 + Y yields

(41) Q(Z, Y ) ≡ −1

4
Y 2 + 4Z + 4ZY + ZY 2.

Look for solutions of the formY = cZα(1+o(1)) with c 6= 0 (the existence is granted
a priori by the Newton-Puiseux Theorem). Each of the monomials in (41) gives rise to
a term of a well determined asymptotic order. respectivelyZ2α, Z1, Zα+1, Z2α+1. If
the equation is to be identically satisfied, then the main asymptotic order ofQ(Z, Y )
should be 0. Sincec 6= 0, this can only happen if two or more of the exponents in
the sequence(2α, 1, α + 1, 2α + 1) coincideand the coefficients of the correspond-
ing monomial inP (Z, Y ) is zero, a condition that is an algebraic constraint on the
constantc. Furthermore, exponents of all the remaining monomials have to be larger
since by assumption they represent terms of lower asymptotic order.

Examination of all the possible combinations of exponents leads one to discover
that the only possible combination arises from the cancellation of the first two terms
of Q, namely− 1

4Y
2 + 4Z, which corresponds to the set of constraints

2α = 1, −1

4
c2 + 4 = 0,

with the supplementary conditionsα + 1 > 1 and2α + 1 > 1 being satisfied by this
choiceα = 1

2 . We have thus discovered thatQ(Z, Y ) = 0 is consistent asymptotically
with

Y ∼ 4Z1/2, Y ∼ −4Z1/2.
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FIGURE 10. The real curve defined by the equationP = (y−x2)(y2−x)(y2−
x3) − x3y3 near(0, 0) (left) and the corresponding Newton diagram (right).

The process can be iterated upon subtracting dominant terms. It invariably gives
rise to complete formal asymptotic expansions that satisfyQ(Z, Y ) = 0 (in the Cata-
lan example, these are series in±Z1/2). Furthermore, elementary majorizations estab-
lish that such formal asymptotic solutions represent indeed convergent series. Thus,
local expansions of branches have indeed been determined.

An algorithmic refinement (also due to Newton) can be superimposed on the pre-
vious discussion and is known as the method ofNewton polygons. Consider a general
polynomial

Q(Z, Y ) =
∑

j∈J

ZajY bj ,

and associate to it the finite set of points(aj , bj) in N×N, which is called the Newton
diagram. It is easily verified that the only asymptotic solutions of the formY ∝ Zt

correspond to values oft that are inverse slopes (i.e.,∆x/∆y) of lines connecting
two or more points of the Newton diagram (this expresses the cancellation condition
between two monomials ofQ) andsuch that all other points of the diagram are on this
line or to the right of it. In other words:

Newton’s polygon method.Any possible exponentsτ such thatY ∼ cZτ is
a solution to a polynomial equation corresponds to one of theinverse slopes
of the leftmost convex envelope of the Newton diagram. For each viableτ ,
a polynomial equation constrains the possible values of thecorresponding
coefficientc. Complete expansions are obtained by repeating the process,
which means deflatingY from its main term by way of the substitutionY 7→
Y − cZτ .
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Figure 10 illustrates what goes on in the case of the curveP = 0 where

P (z, y) = (y − z2)(y2 − z)(y2 − z3) − z3y3

= y5 − y3z − y4z2 + y2z3 − 2 z3y3 + z4y + z5y2 − z6,

considered near the origin. As the partly factored form suggests, we expect the curve
to resemble the union of two orthogonal parabolas and of a curvey = ±z3/2 having a
cusp, i.e., the union of

y = z2, y = ±√
z, y = ±z3/2,

respectively. It is visible on the Newton diagram of the expanded form that the possible
exponentsy ∝ zt at the origin are the inverse slopes of the segments composing the
envelope, that is,

τ = 2, τ =
1

2
, τ =

3

2
.

For computational purposes, once determined the branchingtypeκ, the value of
k0 that dictates where the expansion starts, and the first coefficient, the full expansion
can be recovered by deflating the function from its first term and repeating the Newton
diagram construction. In fact, after a few initial stages ofiteration, the method of inde-
terminate coefficients can always be eventually applied4. Computer algebra systems
usually have this routine included as one of the standard packages; see [347].

Asymptotic form of coefficients. The Newton–Puiseux theorem describes precisely
the local singular structure of an algebraic function. The expansions are valid around a
singularity and, in particular, they hold in indented disksof the type required in order
to apply the formal translation mechanisms of singularity analysis (Chapter VI).

THEOREM VII.6 (Algebraic asymptotics).Let f(z) =
∑

n fnz
n be an algebraic se-

ries. Assume that the branch defined by the series at the origin has a unique dominant
singularity atz = α1 on its circle of convergence. Then, the coefficientfn satisfies
the asymptotic expansion,

fn ∼ α−n
1



∑

k≥k0

dkn
−1−k/κ


 ,

wherek0 ∈ Z andκ is an integer≥ 2.
If f(z) has several dominant singularities|α1| = |α2| = · · · = |αr|, then there

exists an asymptotic decomposition (whereǫ is some small fixed number,ǫ > 0)

fn =

r∑

j=1

φ(j)(n) +O((|α1| + ǫ))−n,

where eachφ(j)(n) admits a compleet asymptotic expansion,

φ(j)(n) ∼ α−n
j



∑

k≥k
(j)
0

d
(j)
k n−1−k/κj


 ,

4Bruno Salvy, private communication, August 2000
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with k(j)
0 in Z, andκj an integer≥ 2.

PROOF. The directional expansions granted by Theorem VII.5 are ofthe exact type
required by singularity analysis (Chapter VI). Composite contours are to be used in the
case of multiple singularities, in which case eachφ(j)(n) is the contribution obtained
by transfer of a local singular element. �

In the case of multiple singularities, arithmetic cancellations may occur: consider
for instance the case of

1√
1 − 6

5z + z2
= 1 + 0.60z + 0.04z2 − 0.36z3 − 0.408z4 − · · · ,

and refer to the corresponding discussion of rational coefficients. Fortunately, such
delicate situations tend not to arise in combinatorial situations.

EXAMPLE 9. Branches of unary-binary trees.the generating function of unary binary trees is
defined byP (z, f) = 0 where

P (z, y) = y − z − zy − zy2,

so that

f(z) =
1− z −

√
1− 2z − 3z2

2z
=

1− z −
p

(1 + z)(1− 3z)

2z
.

There exist only two branches:f and its conjugatēf that form a 2–cycle at1
3
. The singularities

of all branches are at0,−1, 1
3

as is apparent from the explicit form off or from the defining
equation. The branch representingf(z) at the origin is analytic there (by a general argument or
by the combinatorial origin of the problem). Thus, the dominant singularity off(z) is at 1

3
and

it is unique in its modulus class. The “easy” case of Theorem VII.7 then applies oncef(z) has
been expanded ear1

3
. As a rule, the organization of computations is simpler if one makes use

of the local uniformizing parameter with a choice of sign in accordance to the direction along
which the singularity is approached. In this case, we setz = 1

3
− δ2 and find

f(z) = 1− 3 δ +
9

2
δ2 − 63

8
δ3 +

27

2
δ4 − 2997

128
δ5 + · · · , δ = (

1

3
− z)1/2.

This translates immediately into

fn ≡ [zn]f(z) ∼ 3n+1/2

2
√
πn3

„
1− 15

16n
+

505

512n2
− 8085

8192n3
+ · · ·

«
.

The approximation provided by the first three terms is quite good: for n = 10 already, it
estimatesf10 = 835. with an error less than1. �

EXAMPLE 10. Branches of non-crossing forests.Consider the polynomial equationP (z, y) =
0, where

P (z, y) = y3 + (z2 − z − 3)y2 + (z + 3)y − 1,

and the combinatorial GF satisfyingP (z, F ) = 0 determined by the initial conditions (EIS A054727:

F (z) = 1 + 2z + 7z2 + 33z3 + 181z4 + 1083z5 + · · · .
(Combinatorial aspects are developed below in Section VII.5.1, andFn = [zn]F (z) is the
number of non-crossing graphs of sizen that are forests.)

The exceptional set is mechanically computed: its elementsroots of the discriminant

R = −z3(5z3 − 8z2 − 32z + 4).
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FIGURE 11. Non-crossing graphs:(a) a random connected graph of size 50;
(b) the real algebraic curve corresponding to non-crossing forests.

Newton’s algorithm shows that two of the branches at 0, sayy0 andy2, form a cycle of length 2
with y0 = 1 − √z + O(z), y2 = 1 +

√
z + O(z) while it is the “middle branch”y1 =

1 + z +O(z2) that corresponds to the combinatorial GFF (z).
The nonzero exceptional points are the roots of the cubic factor ofR, namely

Ω = {−1.93028, 0.12158, 3.40869}.
Let ξ

.
= 0.1258 be the root in(0, 1). By Pringsheim’s theorem and the fact that the OGF

of an infinite combinatorial class must have a positive dominant singularity in[0, 1], the only
possibility for the dominant singularity ofy1(z) is ξ. (For a more general argument, see below.)

For z nearξ, the three branches of the cubic give rise to one branch that is analytic with
value approximately0.67816 and a cycle of two conjugate branches with value near1.21429
atz = ξ. The expansion of the two conjugate branches is of the singular type,

α± β
p

1− z/ξ,
where

α =
43

37
+

18

37
ξ − 35

74
ξ2

.
= 1.21429, β =

1

37

p
228− 981ξ − 5290ξ2

.
= 0.14931.

The determination with a minus sign must be adopted for representing the combinatorial GF
whenz → ξ− since otherwise one would get negative asymptotic estimates for the nonnegative
coefficients. Alternatively, one may examine the way the three real branches along(0, ξ) match
with one another at 0 and atξ−, then conclude accordingly.

Collecting partial results, we finally get by singularity analysis the estimate

Fn =
β

2
√
πn3

ωn

„
1 +O(

1

n
)

«
, ω =

1

ξ
.
= 8.22469

where the cubic algebraic numberξ and the sexticβ are as above. �

The example above illustrates several important points in the analysis of coeffi-
cients of algebraic functions when there are no simple explicit radical forms. First of
all a given combinatorial problem determines a unique branch of an algebraic curve
at the origin. Next, the dominant singularity has to be identified by “connecting” the
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FIGURE 12. The algebraic curve associated to the generating function of su-
pertrees of typeK.

combinatorial branch with the branches at every possible singularity of the curve. Fi-
nally, computations tend to take place over algebraic numbers and not simply rational
numbers.

So far, examples have illustrated the common situation where the exponent at the
dominant singularity is12 , which is reflected by a factor ofn−3/2 in the asymptotic
form of coefficients. Our last example shows a case where the exponent assumes a
different value, namely14 .

EXAMPLE 11. Branches of “supertrees”.Consider the quartic equation

y4 − 2 y3 + (1 + 2 z) y2 − 2 yz + 4 z3 = 0

and letK be the branch analytic at 0 determined by the initial conditions:

K(z) = 2 z2 + 2 z3 + 8 z4 + 18 z5 + +64 z6 + 188 z7 + · · · .
(This OGF in fact corresponds to bicoloured “supertrees” already studied in Chapter VI, Section
6.)

The discriminant is found to be

R = 16 z4 `16 z2 + 4 z − 1
´
(−1 + 4 z)3 ,

with roots at 1
4

and(−1 ±
√

5)/8. The dominant singularity of the branch of combinatorial
interest turns out to be atz = 1

4
whereK( 1

4
) = 1

2
. The translationz = 1

4
+ Z, y = 1

2
+ Y

then transforms the basic equation into

4 Y 4 + 8ZY 2 + 16Z3 + 12Z2 + Z = 0.

According to Newton’s polygon, the main cancellation arises from 1
4
Y 4 − Z = 0: this cor-

responds to a segment of inverse slope1/4 in the Newton diagram and accordingly to a cycle
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formed with 4 conjugate branches, i.e., a fourth-root singularity. Thus, one has,

K(z) ∼
z→ 1

4

1/2− 1√
2

„
1

4
− z
«1/4

− 1√
2

„
1

4
− z
«3/4

+ · · · , [zn]K(z) ∼
n→∞

4n

8Γ( 3
4
)n5/4

,

which is consistent with earlier found values. Observe thatwe have started here with the raw
algebraic equation satisfies byK. �

Computable coefficient asymptotics. The previous discussion contains the germ
of a complete algorithm for deriving an asymptotic expansion of coefficients of any
algebraic function. We sketch here the main principles leaving some of the details to
the reader. Observe that the problem is aconnection problems: the “shapes” of the
various sheets around each point (including the exceptional points) are known, but
it remains to connect them together and see which ones are encountered first when
starting from a given branch at the origin.

Algorithm ACA: Algebraic Coefficient Asymptotics.
Input: A polynomial P (z, y) with d = degy P (z, y); a seriesY (z) such that
P (z, Y ) = 0 and assumed to be specified by sufficiently many initial termsso as to
be distinguished from all other branches.
Output: The asymptotic expansion of[zn]Y (z) whose existence is granted by The-
orem VII.6.
The algorithm consists of three main steps:Preparation, Dominant singularities,
andTranslation.

I. Preparation:Define the discriminantR(z) = R(P, P ′
y , y).

(P1) Compute the exceptional setΞ = {z
˛̨
R(z) = 0} and the points of infinityΞ0 =

{z
˛̨
p0(z) = 0}, wherep0(z) is the leading coefficient ofP (z, y) considered as a

function ofy.
(P2) Determine the Puiseux expansions of all thed branches at each of the points of

Ξ ∪ {0} (by Newton diagrams and/or indeterminate coefficients). This includes the
expansion of analytic branches as well. Let{yα,j(z)}dj=1 be the collection of all
such expansions at someα ∈ Ξ ∪ {0}.

(P3) Identify the branch at 0 that corresponds toY (z).

II. Dominant singularities(Controlled approximate matching of branches). LetΞ1,Ξ2, . . .
be a partition of the elements ofΞ ∪ {0} sorted according to the increasing values of their
modulus: it is assumed that the numbering is such that ifα ∈ Ξi andβ ∈ Ξj , then|α| < |β| is
equivalent toi < j. Geometrically, the elements ofΞ have been grouped in concentric circles.
First, a preparation step is needed.

(D1) Determine a nonzero lower boundδ on the radius of convergence of any local Puiseux
expansion of any branch at any point ofΞ. Such a bound can be constructed from
the minimal distance between elements ofΞ and from the degreed of the equation.

The setsΞj are to be examined in sequence until it is detected that one ofthem contains a sin-
gularity. At stepj, letσ1, σ2, . . . , σs be an arbitrary listing of the elements ofΞj . The problem
is to determine whether anyσk is a singularity and, in that event, to find the right branch to
which it is associated. This part of the algorithm proceeds by controlled numerical approxima-
tions of branches and constructive bounds on the minimum separation distance between distinct
branches.
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(D2) For each candidate singularityσk, with k ≥ 2, setζk = σk(1 − δ/2). By assump-
tion, eachζk is in the domain of convergence ofY (z) and of anyyσk,j .

(D3) Compute a nonzero lower boundηk on the minimum distance between two roots of
P (ζk, y) = 0. This separation bound can be obtained from resultant computations.

(D4) EstimateY (ζk) and eachyσk,j(ζk) to an accuracy better thanηk/4. If two elements,
Y (z) andyσk,j(z) are (numerically) found to be at a distance less thanηk for z =
ζk, then they are matched:σk is a singularity and the correspondingyσk,j is the
corresponding singular element. Otherwise,σk is declared to be a regular point for
Y (z) and discarded as candidate singularity.

The main loop onj is repeated until a singularity has been detected., whenj = j0, say. The
radius of convergenceρ is then equal to the common modulus of elements ofΞj0 ; the corre-
sponding singular elements are retained.

III. Coefficient expansion. Collect the singular elements at all the pointsσ determined to
be a dominant singularity at Phase III. Translate termwise using the singularity analysis rule,

(σ − z)p/κ 7→ σp/κ−n Γ(−p/κ+ n)

Γ(−p/κ)Γ(n+ 1)
,

and reorganize into descending powers ofn, if needed.

This algorithm vindicates the following assertion:

PROPOSITIONVII.3 (Decidability of algebraic connections.).The dominant singu-
larities of a branch of an algebraic function can be determined by the algorithmACA
in a finite number of operations.

VII. 4.2. Positive algebraic systems.The discussion of algebraic singularities
specializes nicely to the case of positive functions. We first indicate a procedure that
determines the radius of convergence of any algebraic series withpositivecoefficients.
The procedure takes advantage of Pringsheim’s theorem thatallows us to restrict at-
tention to candidate singularities on the positive half-line. It represents a shortcut that
is often suitable for human calculation and, in fact, the it systematizes some of the
techniques already used implicitly in earlier examples.

Algorithm ROCPAF: Radius of Convergence of Positive Algebraic Functions.
Input: A polynomial P (z, y) with d = degy P (z, y); a seriesY (z) such that
P (z, Y ) = 0 that is known to have only nonnegative coefficients ([zn]Y (z) ≥ 0)
and is assumed to be specified by sufficiently many initial terms.
Output: The radius of convergenceρ of Y (z).

Plane-sweep.Let Ξ+ be the subset of those elements of the exceptional setΞ which are
positive real.

(R1) Sort the subset of those branches{y0,j} at0+ that have totally real coefficients. This
is essentially a lexicographic sort that only needs the initial parts of each expansion.
Set initiallyξ0 = 0 andU(z) = Y (z).

(R2) Sweep over allξ ∈ Ξ+ in increasing order. To detect whether a candidateξ is the
dominant positive singularity, proceed as follows:

— Sort the branches{yξ,j} at ξ− that have totally real coefficients.
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— using the orders atξ+0 andξ−, match the branchU(z) with its correspond-
ing branch atξ−, sayV (z); this makes use of the total ordering between real
branches atξ+0 andξ−. If the branchV (z) is singular, then returnρ = ξ as the
radius of convergence ofY (z) and useV (z) as the singular element ofY (z)
at z = ρ; otherwise continue with the next value ofξ ∈ Ξ+ while replacing
U(z) by V (z) andξ0 by ξ.

This algorithm is a plane-sweep that takes advantage of the fact that the real
branches near a point can be totally ordered; finding the ordering only requires in-
spection of a finite number of coefficients. The plane-sweep algorithm enables us
to trace at each stage the original branch and keep a record ofits order amongst all
branches. The method works since no two real branches can cross at a point other than
a multiple point, such a point being covered as an element ofΞ+.

We now turn to positive systems. Most of the combinatorial classes known to ad-
mit algebraic generating functions involve singular exponents that are multiples of12 .
This empirical observation is supported by the fact, to be proved below, that a wide
class of positive systems have solutions with a square-rootsingularity. Interestingly
enough, the corresponding theorem is due to independent research by several authors:
Drmota [103] developed a version of the theorem in the course of studies relative to
limit laws in various families of trees defined by context-free grammars; Woods [409],
motivated by questions of Boolean complexity and finite model theory, gave a form
expressed in terms of colouring rules for trees; finally, Lalley [259] came across a simi-
larly general result when quantifying return probabilities for random walks on groups.
The statement that follows is a fundamental result in the analysis of algebraic sys-
tems arising from combinatorics and is (rightly) called the“Drmota-Lalley-Woods”
theorem. Notice that the authors of [103, 259, 409] prove more: Drmota and Lalley
show how to pull out limit Gaussian laws for simple parameters (e.g., as in [103] by
a perturbative analysis; see Chapter IX); Woods shows how todeduce estimates of
coefficients even in some periodic or non-irreducible cases(see definitions below).

In the treatment that follows we start from a polynomial system of equations,

{yj = Φj(z, y1, . . . , ym)} , j = 1, . . . ,m.

We shall discuss in the next section a class of combinatorialspecifications, the “context-
free” specifications, that leads systematically to such fixed-point systems. The case of
linear systems has been already dealt with, so that we limit ourselves here tononlinear
systemsdefined by the fact that at least one polynomialΦj is nonlinear in some of the
indeterminatesy1, . . . , ym.

First, for combinatorial reasons, we define several possible attributes of a polyno-
mial system.

— Algebraic positivity(or a-positivity). A polynomial system is said to bea-
positiveif all the component polynomialsΦj have nonnegative coefficients.

Next, we want to restrict consideration to systems that determine a unique solution
vector(y1, . . . , ym) ∈ (C[[z]])

m. (This discussion is related to 0-dimensionality in the
sense alluded to earlier.) Define thez-valuationval(~y) of a vector~y ∈ C[[z]]m as the
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minimum over allj’s of the individual valuations5 val(yj). The distance between two
vectors is defined as usual byd(~y, ~y′) = 2− val(~y−~y′). Then, one has:

— Algebraic properness(or a-properness). A polynomial system is said to be
a-properif it satisfies a Lipschitz condition

d(Φ(~y),Φ(~y ′)) < Kd(~y, ~y ′) for someK < 1.

In that case, the transformationΦ is a contraction on the complete metric space of
formal power series and, by the general fixed point theorem, the equationy = Φ(y)
admits a unique solution. In passing, this solution may be obtained by the iterative
scheme,

~y(0) = (0, . . . , 0)t, ~y(h+1) = Φ(y(h)), y = lim
h→∞

y(h).

The key notion is irreducibility. To a polynomial system,~y = Φ(~y), associate its
dependency graphdefined as a graph whose vertices are the numbers1, . . . ,m and
the edges ending at a vertexj arek → j, if yj figures in a monomial ofΦk(j). (This
notion is reminiscent of the one already introduced for linear system on page V.4.)

— Algebraic irreducibility(or a-irreducibility). A polynomial system is said to
bea-irreducibleif its dependency graph is strongly connected.

Finally, one needs a technical notion of periodicity to dispose of cases like

y(z) =
1

2z

(
1 −

√
1 − 4z

)
= z + z3 + 2z5 + · · · ,

(the OGF of complete binary trees) where coefficients are only nonzero for certain
residue classes of their index.

— Algebraic aperiodicity(or a-aperiodicity). A power series is said to beaperi-
odic if it contains three monomials (with nonzero coefficients),ze1 , ze2 , ze3 ,
such thate2− e1 ande3− e1 are relatively prime. A proper polynomial sys-
tem is said to be aperiodic if each of its component solutionsyj is aperiodic.

THEOREM VII.7 (Positive polynomial systems).Consider a nonlinear polynomial
system~y = Φ(~y) that is a-proper, a-positive, and a-irreducible. In that case, all
component solutionsyj have the same radius of convergenceρ < ∞. Then, there
exist functionshj analytic at the origin such that

(42) yj = hj

(√
1 − z/ρ

)
(z → ρ−).

In addition, all other dominant singularities are of the form ρω with ω a root
of unity. If furthermore the system is a-aperiodic, allyj haveρ as unique dominant
singularity. In that case, the coefficients admit a completeasymptotic expansion of the
form

(43) [zn]yj(z) ∼ ρ−n



∑

k≥1

dkn
−1−k/2


 .

5Let f =
P∞

n=β fnzn with fβ 6= 0; the valuation off is by definitionval(f) = β.
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PROOF. The proof consists in gathering by stages consequences of the assumptions. It
is essentially based on close examination of “failures” of the implicit function theorem
and the way these lead to singularities.

(a) As a preliminary observation, we note that each component solution yj is an
algebraic function that has a nonzero radius of convergence. In particular, singularities
are constrained to be of the algebraic type with local expansions in accordance with
the Newton-Puiseux theorem (Theorem VII.5).

(b) Properness together with the positivity of the system implies that eachyj(z)
has nonnegative coefficients in its expansion at 0, since it is a formal limit of ap-
proximants that have nonnegative coefficients. In particular, each power seriesyj has
a certain nonzero radius of convergenceρj . Also, by positivity,ρj is a singularity
of yj (by virtue of Pringsheim’s theorem). From the nature of singularities of alge-
braic functions, there exists some orderR ≥ 0 such that eachRth derivative∂R

z yj(z)
becomes infinite asz → ρ−j .

We establish now thatρ1 = · · · = ρm. In effect, differentiation of the equations
composing the system implies that a derivative of arbitraryorder r, ∂r

zyj(z), is a
linear form in other derivatives∂r

zyj(z) of the same order (and a polynomial form in
lower order derivatives); also the linear combination and the polynomial form have
nonnegative coefficients. Assume a contrario that the radiiwere not all equal, say
ρ1 = · · · = ρs, with the other radiiρs+1, . . . being strictly greater. Consider the
system differentiated a sufficiently large number of times,R. Then, asz → ρ1, we
must have∂R

z yj tending to infinity forj ≤ s. On the other hand, the quantitiesys+1,
etc., being analytic, theirRth derivatives that are analytic as well must tend to finite
limits. In other words, because of the irreducibility assumption (and again positivity),
infinity has topropagate and we have reached a contradiction. Thus, all theyj have
the same radius of convergence and we letρ denote this common value.

(c1) The key step consists in establishing the existence of a square-root singularity
at the common singularityρ. Consider first the scalar case, that is

(44) y − φ(z, y) = 0,

whereφ is assumed to depend nonlinearly ony and have nonnegative coefficients.
The requirement of properness means thatz is a factor of all monomials, except the
constant termφ(0, 0).

Let y(z) be the unique branch of the algebraic function that is analytic at 0. Com-
parison of the asymptotic orders iny inside the equalityy = φ(z, y) shows that (by
nonlinearity) we cannot havey → ∞ whenz tends to a finite limit. Let nowρ be the
radius of convergence ofy(z). This argument shows thaty(z) is necessarily finite at
its singularityρ. We setτ = y(ρ) and note that, by continuityτ − φ(ρ, τ) = 0.

By the implicit function theorem, a solution(z0, y0) of (44) can be continued
analytically as(z, y0(z)) in the vicinity of z0 as long as the derivative with respect
to y,

J(z0, y0) := 1 − φ′y(z0, y0)
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remains nonzero. The quantityρ being a singularity, we must haveJ(ρ, τ) = 0. (In
passing, the system

τ − φ(ρ, τ) = 0, J(ρ, τ) = 0,

determines only finitely many candidates forρ.) On the other hand, the second deriv-
ative−φ′′yy is nonzero at(ρ, τ) (by positivity, since no cancellation can occur); there
results by the classical argument on local failures of the implicit function theorem that
y(z) has a singularity of the square-root type (see also ChaptersIV and VI). More pre-
cisely, the local expansion of the defining equation (44) at(ρ, τ) binds(z, y) locally
by

−(z − ρ)φ′z(ρ, τ) −
1

2
(y − τ)2φ′′yy(ρ, τ) + · · · = 0,

where the subsequent terms are negligible by Newton’s polygon method. Thus, we
have

y − τ = −
√

φz(ρ, τ)

φ′′yy(ρ, τ)
(ρ− z)1/2 + · · · ,

the negative determination of the square-root being chosento comply with the fact
thaty(z) increases asz → ρ−. This proves the first part of the assertion in the scalar
case.

(c2) In the multivariate case, we graft an ingenious argument [259] that is based
on a linearized version of the system to which Perron-Frobenius theory is applicable.
First, irreducibility implies that any component solutionyj depends nonlinearly on
itself (by possibly iteratingΦ), so that a discrepancy in asymptotic behaviours would
result for the implicitly definedyj in the event that someyj tends to infinity.

Now, the multivariate version of the implicit function theorem grants locally the
analytic continuation of any solutiony1, y2, . . . , ym atz0 provided there is no vanish-
ing of the Jacobian determinant

J(z0, y1, . . . , ym) := det

(
δi,j −

∂

∂yj
Φi(z0, y1, . . . , ym)

)
,

whereδi,j is Kronecker’s symbol. Thus, we must have

J(ρ, τ1, . . . , τm) = 0 where τj := yj(ρ).

The next argument (we follow Lalley [259]) uses Perron-Frobenius theory and
linear algebra. Consider the modified Jacobian matrix

K(z0, y1, . . . , ym) :=

(
∂

∂yj
Φi(z0, y1, . . . , ym)

)
,

which represents the “linear part” ofΦ. Forz, y1, . . . , ym all nonnegative, the matrix
K has positive entries (by positivity ofΦ) so that it is amenable to Perron-Frobenius
theory. In particular it has a positive eigenvalueλ(z, y1, . . . , ym) that dominates all
the other in modulus. The quantity

λ̂(z) = λ(y1(z), . . . , ym(z))

is increasing as it is an increasing function of the matrix entries that themselves in-
crease withz for z ≥ 0.
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We propose to prove that̂λ(ρ) = 1, In effect,λ̂(ρ) < 1 is excluded since other-
wise(I−K) would be invertible atz = ρ and this would implyJ 6= 0, thereby contra-
dicting the singular character of theyj(z) atρ. Assumea contrarioλ̂(ρ) > 1 in order
to exclude the other case. Then, by the increasing property,there would existsρ1 < ρ

such that̂λ(ρ1) = 1. Let v1 be a left eigenvector ofK(ρ1, y1(ρ1), . . . , ym(ρ1)) cor-
responding to the eigenvaluêλ(ρ1). Perron-Frobenius theory grants that such a vector
v1 has all its coefficients that are positive. Then, upon multiplying on the left byv1 the
column vectors corresponding toy andΦ(y) (which are equal), one gets an identity;
this derived identity upon expanding nearρ1 gives

(45) A(z − ρ1) = −
∑

i,j

Bi,j(yi(z) − yi(ρ1))(yj(z) − yj(ρ1)) + · · · ,

where· · · hides lower order terms and the coefficientsA,Bi,j are nonnegative with
A > 0. There is a contradiction in the orders of growth if eachyi is assumed to be
analytic atρ1 since the left side of (45) is of exact order(z − ρ1) while the right side
is at least as small as to(z − ρ1)

2. Thus, we must havêλ(ρ) = 1 andλ̂(x) < 1 for
x ∈ (0, ρ).

A calculation similar to (45) but withρ1 replaced byρ shows finally that, if

yi(z) − yi(ρ) ∼ γi(ρ− z)α,

then consistency of asymptotic expansions implies2α = 1, that isα = 1
2 . (The

argument here is similar to the first stage of a Newton polygonconstruction.) We have
thus proved that the component solutionsyj(z) have a square-root singularity. (The
existence of a complete expansion in powers of(ρ − z)1/2 results from examination
of the Newton diagram.) The proof of the general case (42) is at last completed.

(d) In the aperiodic case, we first observe that eachyj(z) cannot assume an
infinite value on its circle of convergence|z| = ρ, since this would contradict the
boundedness of|yj(z)| in the open disk|z| < ρ (whereyj(ρ) serves as an upper-
bound). Consequently, by singularity analysis, the Taylorcoefficients of anyyj(z) are
O(n−1−η) for someη > 1 and the series representingyj at the origin converges on
|z| = ρ.

For the rest of the argument, we observe that ify = Φ(z, ~y), theny = Φ〈m〉(z, ~y)
where the superscript denotes iteration of the transformation Φ in the variables~y =
(y1, . . . , ym). By irreducibility,Φ〈m〉 is such thateachof its component polynomials
involvesall the variables.

Assume that there would exists a singularityρ∗ of someyj(z) on |z| = ρ. The
triangle inequality yields|yj(ρ

∗)| < yj(ρ) where strictness is related to the general
aperiodicity argument encountered at several other placesin this book. But then, the
modified Jacobian matrixK〈m〉 of Φ〈m〉 taken at theyj(ρ

∗) has entries dominated
strictly by the entries ofK〈m〉 taken at theyj(ρ). There results (see page 317) that the
dominant eigenvalue ofK〈m〉(z, ~yj(ρ

∗)) must be strictly less than 1. But this would
imply thatI −K〈m〉(z, ~yj(ρ

∗)) is intervertible so that theyj(z) would be analytic at
ρ∗. A contradiction has been reached:ρ is the sole dominant singularity of eachyj

and this concludes the argument. �
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We observe that the dominant singularity is obtained amongst the positive solu-
tions of the system

~τ = Φ(ρ, ~τ ), J(ρ, ~τ ) = 0.

For the Catalan GF, this yields for instance

τ − 1 − ρτ2 = 0, 1 − 2ρτ = 0,

giving back as expected:ρ = 1
4 , τ = 1

2 .

VII. 5. Combinatorial applications of algebraic functions

In this section, we first present context-free specifications that admit a direct
translation into polynomial systems (Section VII. 5.1). When particularized to for-
mal languages, this gives rise to context-free languages that, provided an unambiguity
condition is met, lead to algebraic generating functions.

The next two subsections introduce objects whose constructions still lead to alge-
braic functions, but in a non-obvious way. This includes: walks with a finite number
of allowed basic jumps (Section VII. 5.2) and planar maps (Section VII. 5.3). In that
case, bivariate functional equations are induced by the combinatorial decompositions.
The common form is

(46) Φ(z, u, F (z, u), h1(z), . . . , hr(z)) = 0,

whereΦ is a known polynomial and the unknowns areF andh1, . . . , hr. Specific
methods are needed in order to attain solutions to such functional equations that would
seem at first glance to be grossly underdetermined. Random walks lead to a linear
version of (46) that is treated by the so-called “kernel method”. Maps lead to nonlinear
versions that are solved by means of Tutte’s “quadratic method”. In both cases, the
strategy consists in bindingz andu by forcing them to lie on an algebraic curve
(suitably chosen in order to eliminate the dependency onF (z, u)), and then pulling
out the algebraic consequences of such a specialization.

VII. 5.1. Context-free specifications and languages.A context-free systemis a
collection of combinatorial equations,

(47)






C1 = Φ1(~a, C1, . . . , Cm)
...

...
Cm = Φm(~a, C1, . . . , Cm),

where~a = (a1, . . .) is a vector of atoms and each of theΦj only involves the combi-
natorial constructions of disjoint union and cartesian product. A combinatorial class
C is said to be context-free if it is definable as the first component (C = C1) of a well-
founded context-free system. The terminology comes from linguistics and it stresses
the fact that objects can be “freely” generated by the rules in (47), this without any
constraints imposed by an outside context6.

6Formal language theory also defines context-sensitive grammars where each rule (called a produc-
tion) is applied only if it is enabled by some external context. Context-sensitive grammars have greater
expressive power than context-free ones, but they depart significantly from decomposability since they are
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For instance the class of plane binary trees defined by

B = e+ (i× B × B) (e, i atoms)

is a context-free class. The class of general plane trees defined by

G = o× SEQ(G) (o an atom)

is definable by the system

G = o×F , F = 1 + (F × G),

with F defining forests, and so it is also context-free. (This example shows more
generally that sequences can always be reduced to polynomial form.)

Context-free specifications may be used to describe all sorts of combinatorial
objects. For instance, the classT of triangulations of convex polygons is specified
symbolically by

(48) T = ∇ + (∇× T ) + (T ×∇) + (T ×∇× T ),

where∇ represents a generic triangle.

The general symbolic rules given in Chapter I apply in all such cases. Therefore
the Drmota-Lalley-Woods theorem (Theorem VII.7) providesthe asymptotic solution
to an important category of problems.

THEOREMVII.8 (Context-free specifications).A context-free classC admits an OGF
that satisfies a polynomial system obtained from the specification by the translation
rules:

A + B 7→ A+B, A× B 7→ A ·B.
The OGFC(z) is an algebraic function to which algebraic asymptotics applies. In
particular, a context-free classC that gives rise to an algebraically aperiodic irre-
ducible system has an enumeration sequence satisfying

Cn ∼ γ√
πn3

ωn,

whereγ, ω are computable algebraic numbers.

This last result explains the frequently encountered estimates involving a factor
of n−3/2 (corresponding to a square-root singularity of the OGF) that can be found
throughout analytic combinatorics.

� 20.Extended context-free specifications.If A,B are context-free specifications then:(i) the
sequence classC = SEQ(A) is context-free;(ii) the substitution classD = A[b 7→ B] is
context-free. �

We detail below an example from combinatorial geometry.

EXAMPLE 12. Planar non-crossing configurations.The enumeration of non-crossing planar
configurations is discussed here at some level of generality. (An analytic problem in this orbit
has been already treated in Example 10.) The purpose is to illustrate the fact that context-free
descriptions can model naturally very diverse sorts of objects including particular topological-
geometric configurations. The problems considered have their origin in combinatorial musings

surrounded by strong undecidability properties; accordingly context-sensitive grammars cannot be associ-
ated with any global generating function formalism.
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of the Rev. T.P. Kirkman in 1857 and were revisited in 1974 by Domb and Barett [100] for the
purpose of investigating certain perturbative expansionsof statistical physics. Our presentation
follows closely the synthesis offered by Flajolet and Noy in[150].

Consider for each value ofn the regularn-gon built from vertices taken for convenience
to be then complex roots of unity and numbered0, . . . , n− 1. A non-crossing graph is a graph
on this set of vertices such that no two of its edges cross. From there, one defines non-crossing
connected graphs, non-crossing forests (that are acyclic), and non-crossing trees (that are acyclic
and connected); see Figure 13. Note that there is a well-defined orientation of the complex plane
and also that the various graphs considered can always be rooted in some canonical way (e.g.,
on the vertex of smallest index) since the placement of vertices is rigidly fixed.

Trees. A non-crossing tree is rooted at 0. To the root vertex, is attached an ordered collec-
tion of vertices, each of which has an end-nodeν that is the common root of two non-crossing
trees, one on the left of the edge(0, ν) the other on the right of(0, ν). Let T denote the class
of trees andU denote the class of trees whose root has been severed. Witho denoting a generic
node, we then have

T = o× U , U = SEQ(U × o× U),

which corresponds graphically to the “butterfly decomposition”:

U
UU

U U

U = T = 

In terms of OGF, this gives the system

(49) {T = zU, U = (1− zU2)−1} ⇐⇒ {T = zU, U = 1 + UV, V = zU2},
where the latter form corresponds to the expansion of the sequence operator. Consequently,T
satisfiesT = T 3 − zT + z2, which by Lagrange inversion givesTn = 1

2n−1

`
3n−3
n−1

´
.

Forests.A (non-crossing) forest is a non-crossing graph that is acyclic. In the present con-
text, it is not possible to express forests simply as sequences as trees, because of the geometry
of the problem.

Starting conventionally from the root vertex 0 and following all connected edges defines a
“backbone” tree. To the left of every vertex of the tree, a forest may be placed. There results
the decomposition (expressed directly in terms of OGF’s),

(50) F = 1 + T [z 7→ zF ],

whereT is the OGF of trees andF is the OGF of forests. In (50), the termT [z 7→ zF ] denotes
a functional composition. A context-free specification in standard form results mechanically
from (49) upon replacingz by zF , namely

(51) F = 1 + T, T = zFU, U = 1 + UV, V = zFU2.

This system is irreducible and aperiodic, so that the asymptotic shape ofFn is of the form
γωnn

−3/2, as predicted by Theorem VII.8. This agrees with the preciseformula determined in
Example 10.

Graphs.Similar constructions (see [150]) give the OGF’s of connected graphs and general
graphs. The results are summarized in Figure 13. Note the common shape of the asymptotic
estimates and also the fact that simple binomial terms or sums are available in each case. �
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(connected graph)

(tree) (forest)

(graph)

Configuration / OGF Coefficients (exact / asymptotic)
Trees (EIS: A001764) z + z2 + 3z3 + 12z4 + 55z5 + · · ·

T 3 − zT + z2 = 0
1

2n− 1

 
3n− 3

n− 1

!

∼
√

3

27
√
πn3

(
27

4
)n

Forests (EIS: A054727) 1 + z + 2z2 + 7z3 + 33z4 + 181z5 · · ·

F 3 + (z2 − z − 3)F 2 + (z + 3)F − 1 = 0

nX

j=1

1

2n− j

 
n

j − 1

! 
3n− 2j − 1

n− j

!

∼ 0.07465√
πn3

(8.22469)n

Connected graphs (EIS: A007297) z + z2 + 4z3 + 23z4 + 156z5 + · · ·

C3 + C2 − 3zC + 2z2 = 0
1

n− 1

2n−3X

j=n−1

 
3n− 3

n+ j

! 
j − 1

j − n+ 1

!

∼ 2
√

6− 3
√

2

18
√
πn3

“
6
√

3
”n

Graphs (EIS: A054726) 1 + z + 2z2 + 8z3 + 48z4 + 352z5 + · · ·

G2 + (2z2 − 3z − 2)G+ 3z + 1 = 0
1

n

n−1X

j=0

(−1)j

 
n

j

! 
2n− 2− j
n− 1− j

!
2n−1−j

∼
p

140− 99
√

2

4
√
πn3

“
6 + 4

√
2
”n

FIGURE 13. (Top) Non-crossing graphs: a tree, a forest, a connectedgraph, and
a general graph. (Bottom) The enumeration of non-crossing configurations by
algebraic functions.
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Note on “tree-like” structures. A context-free specification can always be re-
garded as defining a class of trees. Indeed, if thejth term in the constructionΦj

is “coloured” with the pair(i, j), it is seen that a context-free system yields a class
of trees whose nodes are tagged by pairs(i, j) in a way that is consistent with the
system’s rules (47). However, despite this correspondence, it is often convenient to
preserve the possibility of operating directly with objects7 when the tree aspect is un-
natural. By a terminology borrowed from the theory of syntaxanalysis in computer
science, such trees are referred to as “parse trees” or “syntax trees”.

Let A be a fixed finite alphabet whose elements are called letters. AgrammarG
is a collection of equations

(52) G :






L1 = Ψ1(~a,L1, . . . ,Lm)
...

...
Lm = Ψm(~a,L1, . . . ,Lm),

where eachΨj involves only the operations of union (∪) and catenation product( · )
with ~a the vector of letters inA. For instance,

Ψ1(~a,L1,L2,L3) = a2 · L2 · L3 ∪ a3 ∪ L3 · a2 · L1.

A solution to (52) is anm-tuple of languages over the alphabetA that satisfies the
system. By convention, one declares that the grammarG defines the first component,
L1.

To each grammar (52), one can associate a context-free specification (47) by
transforming unions into disjoint union, ‘∪’ 7→ ‘+’, and catenation into cartesian
products, ‘·’ 7→ ‘×’. Let Ĝ be the specification associated in this way to the gram-
marG. The objects described bŷG appear in this perspective to be trees (see the
discussion above regarding parse trees). Leth be the transformation from trees of̂G
to languages ofG that lists letters in infix (i.e., left-to-right) order: we call such anh
the erasing transformation since it “forgets” all the structural information contained in
the parse tree and only preserves the succession of letters.Clearly, application ofh to
the combinatorial specifications determined byĜ yields languages that obey the gram-
marG. For a grammarG and a wordw ∈ A⋆, the number of parse treest ∈ Ĝ such
thath(t) = w is called theambiguity coefficientof w with respect to the grammarG;
this quantity is denoted byκG(w).

A grammarG is unambiguous if all the corresponding ambiguity coefficients are
either 0 or 1. This means that there is a bijection between parse trees of̂G and words
of the language described byG: each word generated is uniquely “parsable” according
to the grammar. From Theorem VII.8, we have immediately:

PROPOSITIONVII.4 (Context-free languages).Given a context-free grammarG, the
ordinary generating function of the languageLG(z), counting wordswith multiplicity,
is an algebraic function. In particular, a context-free language that admits an unam-
biguous grammar specification has an ordinary generating functionL(z) that is an
algebraic function.

7Some authors have even developed a notion of “object grammars”; see for instance [110] itself
inspired by techniques of polyomino surgery in [91].
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This theorem originates from early works of Chomsky and Sch¨utzenberger [74]
which have exerted a strong influence on the philosophy of thepresent book.

For example consider the Łukasiewicz language

L = (a · L · L · L) ∪ b.
This can be interpreted as the set of functional terms built from the ternary symbola
and the nullary symbolb:

L = {b, abbb, aabbbbb, ababbbb, . . .}
≃ {b, a(b, b, b), a(a(b, b, b), b, b), a(b, a(b, b, b), b), . . . },

where≃ denotes combinatorial isomorphism. It is easily seen that the terms are in
bijective correspondence with their parse trees, themselves isomorphic to ternary trees.
Thus the grammar is unambiguous, so that the OGF equation translates directly from
the grammar,

(53) L(z) = zL(z)3 + z.

As another example, we revisit Dyck paths that are definable by the grammar,

(54) D = 1 ∪ (a ·D · b ·D) ,

wherea denotes ascents andb denotes descents. Each word in the language must
start with a lettera that has a unique matching letterb and thus it is uniquely parsable
according to the grammar (54). Since the grammar is unambiguous, the OGF reads
off:

D(z) = z + z2D(z)2.

VII. 5.2. Walks and the kernel method. Start with a setΩ that is a finite sub-
set ofZ and is called the set ofjumps. A walk (relative toΩ) is a sequencew =
(w0, w1, . . . , wn) such thatw0 = 0 andwi+1 − wi ∈ Ω, for all i, 0 ≤ i < n. A
nonnegative walk(also known as a “meander”) satisfieswi ≥ 0 and anexcursionis a
nonnegative walk such that, additionally,wn = 0. The quantityn is called the length
of the walk or the excursion. For instance, Dyck paths and Motzkin paths analysed in
Section V. 2 are excursions that correspond toΩ = {−1,+1} andΩ = {−1, 0,+1}
respectively. (Walks and excursions can be viewed as particular cases of paths in a
graph in the sense of Section V. 5, with the graph taken to be the infinite setZ>0 of
integers.)

We propose to determinefn, the number of excursions of lengthn and typeΩ,
via the corresponding OGF

F (z) =

∞∑

n=0

fnz
n.

In fact, we shall determine the more general BGF

F (z, u) :=
∑

n,k

fn,ku
kzn,

wherefn,k is the number of walks of lengthn and final altitudek (i.e., the value
of wn in the definition of a walk is constrained to equalk). In particular, one has
F (z) = F (z, 0).
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We let−c denote the smallest (negative) value of a jump, andd denote the largest
(positive) jump. A fundamental rôle is played in this discussion by the “characteristic
polynomial” of the walk,

S(y) :=
∑

ω∈Ω

yω =
d∑

j=−c

Sjy
j

that is a Laurent polynomial8. Observe that the bivariate generating function of gen-
eralized walks where intermediate values are allowed to be negative, withz marking
the length andu marking the final altitude, is rational:

(55) G(z, u) =
1

1 − zS(u)
.

Returning to nonnegative walks, the main result to be provedbelow is the follow-
ing: For each finite setΩ ∈ Z, the generating function of excursions is an algebraic
function that is explicitly computable fromΩ. There are many ways to view this result.
The problem is usually treated within probability theory bymeans of Wiener-Hopf
factorizations [335]. In contrast, Labelle and Yeh [256] show that an unambiguous
context-free specification can be systematically constructed, a fact that is sufficient to
ensure the algebraicity of the GFF (z). (Their approach is based implicitly on the con-
struction of a finite pushdown automaton itself equivalent,by general principles, to a
context-free grammar.) The Labelle-Yeh construction reduces the problem to a large,
but somewhat “blind”, combinatorial preprocessing, and, for analysts it has the dis-
advantage of not extracting a simpler (and noncombinatorial) structure inherent in the
problem. The method described below is often known as the “kernel” method. It takes
its inspiration from exercises in the 1968 edition of Knuth’s book [238] (Ex. 2.2.1.4
and 2.2.1.11) where a new approach was proposed to the enumeration of Catalan and
Schröder objects. The technique has since been extended and systematized by several
authors; see for instance [19, 20, 59, 120, 121].

Let fn(u) = [zn]F (z, u) be the generating function of walks of lengthn with u
recording the final altitude. There is a simple recurrence relating fn+1(u) to fn(u),
namely,

(56) fn+1(u) = S(u) · fn(u) − rn(u),

wherern(u) is a Laurent polynomial consisting of the sum of all the monomials of
S(u)fn(u) that involve negative powers9 of u:

(57) rn(u) :=

−1∑

j=−c

uj ([uj ]S(u)fn(u)) = {u<0}S(u)fn(u).

8If Ω is a set, then the coefficients ofS lie in {0, 1}. The treatment above applies in all generality to
cases where the coefficients are arbitrary positive real numbers. This accounts for probabilistic situations
as well as multisets of jump values.

9The convenient notation{u<0} denotes the singular part of a Laurent expansion:{u<0}f(z) :=P
j<0

`
[uj ]f(u)

´
· uj .
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The idea behind the formula is to subtract the effect of thosesteps that would take the
walk below the horizontal axis. For instance, one has

S(u) =
S−1

u
+O(1) : rn(u) =

S−1

u
fn(0)

S(u) =
S−2

u2
+
S−1

u
+O(1) : rn(u) =

(
S−2

u2
+
S−1

u

)
fn(0) +

S−2

u
f ′

n(0)

and generally:

(58) λj(u) =
1

j!
{u<0}ujS(u).

Thus, from (56) and (57) (multiply byzn+1 and sum), the generating function
F (z, u) satisfies the fundamental functional equation

(59) F (z, u) = 1 + zS(u)F (z, u)− z{u<0} (S(u)F (z, u)) .

Explicitly, one has

(60) F (z, u) = 1 + zS(u)F (z, u)− z
c−1∑

j=0

λj(u)

[
∂j

∂uj
F (z, u)

]

u=0

,

for Laurent polynomialsλj(u) that depend onS(u) in an effective way by (58).
The main equations (59) and (60) involve one unknown bivariate GF,F (z, u)

andc univariate GF’s, the partial derivatives ofF specialized atu = 0. It is true, but
not at all obvious, that the single functional equation (60)fully determines thec + 1
unknowns. The basic technique is known as “cancelling the kernel” and it relies on
strong analyticity properties; see the book by Fayolleet al. [121] for deep ramifica-
tions. The form of (60) to be employed for this purpose startsby grouping on one side
the terms involvingF (z, u),

(61) F (z, u)(1 − zS(u)) = 1 − z

c−1∑

j=0

λj(u)Gj(z), Gj(z) :=

[
∂j

∂uj
F (z, u)

]
.

If the right side was not present, then the solution would reduce to (55). In the case at
hand, from the combinatorial origin of the problem and implied bounds, the quantity
F (z, u) is bivariate analytic at(z, u) = (0, 0) (by elementary exponential majoriza-
tions on the coefficients). The main principle of the kernel method consists incoupling
the values ofz andu in such a way that1 − zS(u) = 0, so thatF (z, u) disappears
from the picture. A condition is that bothz andu should remain small (so thatF re-
mains analytic). Relations between the partial derivatives are then obtained from such
a specializations,(z, u) 7→ (z, u(z)), which happen to be just in the right quantity.

Consequently, we consider the “kernel equation”,

(62) 1 − zS(u) = 0,

which is rewritten as
uc = z · (ucS(u)).

Under this form, it is clear that the kernel equation (62) definesc + d branches of an
algebraic function. A local analysis (Newton’s polygon method) shows that, amongst
thesec + d branches, there arec branches that tend to 0 asz → 0 while the otherd
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tend to infinity asz → 0. Letu0(z), . . . , uc−1(z) be thec branches that tend to 0, that
we call “small” branches. In addition, we single outu0(z), the “principal” solution,
by the reality condition

u0(z) ∼ γz1/c, γ := (Sc)
1/c ∈ R>0 (z → 0+).

By local uniformization (39), the conjugate branches are given locally by

uℓ(z) = u0(e2iℓπz) (z → 0+).

Couplingz andu by u = uℓ(z) produces interesting specializations of Equa-
tion (61). In that case,(z, u) is close to(0, 0) whereF is bivariate analytic so that the
substitution is admissible. By substitution, we get

(63) 1 − z

c−1∑

j=0

λj(uℓ(z))

[
∂j

∂uj
F (z, u)

]

u=0

, ℓ = 0 . . c− 1.

This is now a linear system ofc equation inc unknowns (the partial derivatives) with
algebraic coefficients that, in principle, determinesF (z, 0).

A convenient approach to the solution of (63) is due to Mireille Bousquet-Mélou.
The argument goes as follows. The quantity

(64) M(u) := uc − zuc
c−1∑

j=0

λj(u)
∂j

∂uj
F (z, 0)

can be regarded as a polynomial inu. It is monic while it vanishes by construction at
thec small branchesu0, . . . , uc−1. Consequently, one has the factorization,

(65) M(u) =

c−1∏

ℓ=0

(u− uℓ(z)).

Now, the constant term ofM(u) is otherwise known to equal−zS−cF (z, 0), by the
definition (64) ofM(u) and by Equation (58) specialized toλ0(u). Thus, the compar-
ison of constant terms between (64) and (65) provides us withan explicit form of the
OGF of excursions:

F (z, 0) =
(−1)c−1

S−cz

c−1∏

ℓ=0

uℓ(z).

One can then finally return to the original functional equation and pull the BGFF (z, u).
We can thus state:

PROPOSITIONVII.5 (Kernel method for walks).Let Ω be a finite step of jumps and
let S(u) be the characteristic polynomial ofΩ. Consider thec small branches of the
“kernel” equation,

1 − zS(u) = 0,

denoted byu0(z), . . . , uc−1(z).
The generating function of excursions is expressible as

F (z) =
(−1)c−1

zS−c

c−1∏

ℓ=0

uℓ(z) whereS−c = [u−c]S(u)
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is the multiplicity (or weight) of the smallest element−c ∈ Ω. More generally the
bivariate generating function of nonnegative walks (also known as meanders) withu
marking final altitude is bivariate algebraic and given by

F (z, u) =
1

uc − zucS(u)

c−1∏

ℓ=0

(u− uℓ(z)) .

Our treatment above is based on an article of Banderier and Flajolet [20] where
several similar results are established. In particular, bridges are walks (possibly in-
volving negative steps) that return on the horizontal axis,i.e., their final altitude
equals 0. The OGF of bridges is expressible in terms of the small branches, by

B(z) = z

c∑

j=1

u′j(z)

uj(z)
= z

d

dz
log (u1(z) · · ·uc(z)) .

(This is easily obtained by a residue calculation of the diagonal of(1 − zS(u))−1.)

We give next a few examples illustrating this kernel technique.

EXAMPLE 13. Trees and Łukasiewicz codes.A particular class of walks is of special in-
terest; it corresponds to cases wherec = 1, that is, the largest jump in the negative direction
has amplitude 1. Consequently,Ω + 1 = {0, s1, s2, . . . , sd}. In that situation, combinato-
rial theory teaches us the existence of fundamental isomorphisms between walks defined by
stepsΩ and trees whose degrees are constrained to lie in1 + Ω. The correspondence is by
way of Łukasiewicz codes10, also known as ‘Polish” prefix codes, “Polish” prefix notation and
introduced in Chapter I. From this, we expect to find tree GF’sin such cases.

As regards generating functions, there now exists onlyonesmall branch, namely the so-
lution u0(z) to u0(z) = zφ(u0(z)) (whereφ(u) = uS(u)) that is analytic at the origin. One
then hasF (z) = F (z, 0) = 1

z
u0(z), so that the walk GF is determined by

F (z, 0) =
1

z
u0(z), u0(z) = zφ(u0(z)), φ(u) := uS(u).

This form is consistent with what is already known regardingthe enumeration of simple families
of trees. In addition, one finds

F (z, u) =
1− u−1u0(z)

1− zS(u)
=
u− u0(z)

u− zφ(u)
.

Classical specializations are rederived in this way:

— the Catalan walk (Dyck path), defined byΩ = {−1,+1} andφ(u) = 1 + u2, has

u0(z) =
1

2z

“
1−

p
1− 4z2

”
;

— the Motzkin walk, defined byΩ = {−1, 0,+1} andφ(u) = 1 + u+ u2 has

u0(z) =
1

2z

“
1− z −

p
1− 2z − 3z2

”
;

10Such a code [267] is obtained by a preorder traversal of the tree, recording ajump ofr − 1 when a
node of outdegreer is encountered. The sequence of jumps gives rise to an excursion followed by an extra
−1 jump.
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— the modified Catalan walk, defined byΩ = {−1, 0, 0+1} (with two steps of type0)
andφ(u) = 1 + 2u+ u2, has

u0(z) =
1

2z

`
1− 2z −

√
1− 4z

´
;

— thed-ary tree walk (the excursions encoded-ary trees) defined byΩ = {−1, d−1},
hasu0(z) that is defined implicitly by

u0(z) = z(1 + u0(z)
d).

This vastly generalizes the enumeration of Dyck paths discussed in Chapter I. �

EXAMPLE 14. Walks with amplitude equal to 2.Take nowΩ = {−2,−1, 1, 2} so that

S(u) = u−2 + u−1 + u+ u2.

Then,u0(z), u1(z) are the two branches that vanish asz → 0 of the curve

y2 = z(1 + y + y3 + y4).

The linear system that determinesF (z, 0) andF ′(z, 0) is
8
>><
>>:

1−
„

z

u0(z)2
+

z

u0(z)

«
F (z, 0)− z

u0(z)
F ′(z, 0) = 0

1−
„

z

u1(z)2
+

z

u1(z)

«
F (z, 0)− z

u1(z)
F ′(z, 0) = 0

(derivatives are taken with respect to the second argument)and one finds

F (z, 0) = −1

z
u0(z)u1(z), F ′(z, 0) =

1

z
(u0(z) + u1(z) + u0(z)u1(z)).

This gives the number of walks, through a combination of series expansions,

F (z) = 1 + 2z2 + 2z3 + 11z4 + 24z5 + 93z6 + 272z7 + 971z8 + 3194z9 + · · · .
A single algebraic equation forF (z) = F (z, 0) is then obtained by elimination (e.g., via
Groebner bases) from the system:

8
<
:

u2
0 − z(1 + u0 + u3

0 + u4
0) = 0

u2
1 − z(1 + u1 + u3

1 + u4
1) = 0

zF + u0u1 = 0

Elimination shows thatF (z) is a root of the equation

z4y4 − z2(1 + 2z)y3 + z(2 + 3z)y2 − (1 + 2z)y + 1 = 0.

For walks corresponding toΩ = {−2,−1, 0, 1, 2}, we find similarlyF (z) = − 1
z
u0(z)u1(z),

whereu0, u1 are the small branches ofy2 = z(1 + y + y2 + y3 + y4), the expansion starts as

F (z) = 1 + z + 3z2 + 9z3 + 32z4 + 120z5 + 473z6 + 1925z7 + 8034z8 + · · · ,
andF (z) is a root of the equation

z4y4 − z2(1 + z)y3 + z(2 + z)y2 − (1 + z)y + 1 = 0.

In this case, the GFs are no longer of the simple tree type. �

It is of interest to note that singularities of the branches involved in the statement
of Proposition VII.5 can be worked out in all generality [20]. The GF of excursions
has a dominant singularity of type

√
Z, while that of bridges is of type1/

√
Z. Param-

eters of walks, excursions, bridges, and meanders can then be analysed in a uniform
fashion [20].
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� 21. Asymptotics of excursions and bridges.Define the structural constantτ by S(τ ) = 0,
τ > 0. Then assuming aperiodicity, the number of bridges (Bn) and the number of excursions
(En) satisfy

Bn ∼ β0
P (τ )n

√
2πn

, En ∼ ǫ0 P (τ )n

2
√
πn3

,

where

β0 =
1

τ

s
P (τ )

P ′′(τ )
, ǫ0 =

(−1)c−1

S−c

s
2P (τ )3

P ′′(τ )

c−1Y

j=1

uj

„
1

P (τ )

«
.

There, theuj represent the small branches andu0 is the branch that is real positive asz → 0.
Details are in [20]. �

VII. 5.3. Maps and the quadratic method. A (planar) map is a connected pla-
nar graph together with an embedding into the plane. In all, generality, loops and
multiple edges are allowed. A planar map therefore separates the plane into regions
called faces (Figure 14). The maps considered here are in addition rooted, meaning
that a face, an incident edge, and an incident vertex are distinguished. In this section,
only rooted maps are considered11. When representing rooted maps, we shall agree
to draw the root edge with an arrow pointing away from the rootnode, and to take
the root face as that face lying to the left of the directed edge (represented in grey on
Figure 14).

Tutte launched in the 1960’s a large census of planar maps, with the intention
of attacking the four-colour problem by enumerative techniques12; see [62, 383, 384,
385, 386]. There exists in fact an entire zoo of maps defined by variousdegree or con-
nectivity constraints. In this chapter, we shall limit ourselves to conveying a flavour
of this vast theory, with the goal of showing how algebraic functions arise. The pre-
sentation takes its inspiration from the book of Goulden andJackson [192, Sec. 2.9]

LetM be the class of all maps where size is taken to be the number of edges. Let
M(z, u) be the BGF of maps withu marking the number of edges on the outside face.
The basic surgery performed on maps distinguishes two casesbased upon the nature
of the root edge. A rooted map will be declared to be isthmic ifthe root edger of map
µ is an “isthmus” whose deletion would disconnect the graph. Clearly, one has,

(66) M = o+ M(i) + M(n),

whereM(i) (resp.M(n)) represent the class of isthmic (resp. non-isthmic) maps and
‘o’ is the graph consisting of a single vertex and no edge. Thereare accordingly two
ways to build maps from smaller ones by adding a new edge.

11Nothing is lost regarding asymptotic properties of random structures when a rooting is imposed.
The reason is that a map has, with probability exponentiallyclose to 1, a trivial automorphism group; con-
sequently, almost all maps ofm edges can be rooted in2m ways (by choosing an edge, and an orientation
of this edge), and there is an almost uniform2m-to-1 correspondence between unrooted maps and rooted
ones.

12The four-colour theorem to the effect that every planar graph can be coloured using only four colours
was eventually proved by Appel and Haken in 1976, using structural graph theory methods supplemented
by extensive computer search.
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FIGURE 14. A planar map.

(i) The class of all isthmic maps is constructed by taking two arbitrary maps and
joining them together by a new root edge, as shown below:

The effect is to increase the number of edges by 1 (the new rootedge) and have the
root face degree become 2 (the two sides of the new root edge) plus the sum of the
root face degrees of the component maps. The construction isclearly revertible. In
other words, the BGF ofM(i) is

(67) M (i)(z, u) = zu2M(z, u)2.

(ii) The class of non-isthmic maps is obtained by taking an already existing map
and adding an edge that preserves its root node and “cuts across” its root face in some
unambiguous fashion (so that the construction should be revertible). This operation
will therefore result in a new map with an essentially smaller root-face degree. For
instance, there are 5 ways to cut across a root face of degree 4, namely,
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This corresponds to the linear transformation

u4 7→ zu5 + zu4 + zu3 + zu2 + zu1.

In general the effect on a map with root face of degreek is described by the trans-
formationuk 7→ z(1 − uk+1)/(1 − u); equivalently, each monomialg(u) = uk is
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transformed intou(g(1)−ug(u))/(1−u). Thus, the OGF ofM(n) involves a discrete
difference operator:

(68) M (n)(z, u) = zu
M(z, 1)− uM(z, u)

1 − u
.

Collecting the contributions from (67) and (68) in (66) thenyields the basic func-
tional equation,

(69) M(z, u) = 1 + u2zM(z, u)2 + uz
M(z, 1)− uM(z, u)

1 − z
.

The functional equation (69) binds two unknown functions,M(z, u) andM(z, 1).
Much like in the case of walks, it would seem to be underdetermined. Now, a method
due to Tutte and known as the quadratic method provides solutions. Following Tutte
and the account in [192, p. 138], we consider momentarily the more general equation

(70) (g1F (z, u) + g2)
2

= g3,

wheregj = Gj(z, u, h(z)) and theGj are explicit functions—here the unknown func-
tions areF (z, u) andh(z) (cf. M(z, u) andM(z, 1) in (69)). Bindu andz in such
a way that the left side of (70) vanishes, that is, substituteu = u(z) (a yet unknown
function) so thatg1F + g2 = 0. Since the left-hand side of (70) now has a double root
in u, so must the right-hand side, which implies

(71) g3 = 0,
∂g3
∂u

∣∣∣∣
u=u(z)

.

The original equation has become a system of two equations intwo unknowns that de-
termines implicitlyh(z) andu(z). From there, elimination provides individual equa-
tions foru(z) and forh(z). (If needed,F (z, u) can then be recovered by solving a
quadratic equation.) It will be recognized that, if the quantities q1, g2, g3 are polyno-
mials, then the process invariably yields solutions that are algebraic functions.

We now carry out this programme in the case of maps and Equation (69). First,
isolateM(z, u) by completing the square, giving

(72)

(
M(z, u)− 1

2

1 − u+ u2z

u2z(1 − u)

)2

= Q(z, u) +
M(z, 1)

u(1 − u)
,

where

Q(z, u) =
z2u4 − 2zu2(u− 1)(2u− 1) + (1 − u2)

4u4z2(1 − u)2
.

Next, the condition expressing the existence of a double root is

Q(z, u) +
1

u(1 − u)
M(z, 1) = 0, Q′

u(z, u) +
2u− 1

u2(1 − u)2
M(z, 1) = 0.

It is now easy to eliminateM(z, 1), since the dependency inM is linear, and a
straightforward calculation shows thatu = u(z) should satisfy

(
u2z + (u− 1)

) (
u2z + (u − 1)(2u− 3)

)
= 0.
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The first parameterization would lead toM(z, 1) = 1/z which is not acceptable.
Thus,u(z) is to be taken as the root of the second factor, withM(z, 1) being defined
parametrically by

z =
(1 − u)(2u− 3)

u2
, M(z, 1) = −u 3u− 4

(2u− 3)2
.

The change of parameteru = 1− 1/w reduces this further to the “Lagrangean form”,

(73) z =
w

1 − 3w
, M(z, 1) =

1 − 4w

(1 − 3w)2
.

To this the Lagrange inversion theorem can be applied. The number of maps with
n edges,Mn = [zn]M(z, 1) is then determined as

Mn = 2
(2n)!3n

n!(n+ 2)!
,

and one obtains SequenceA000168of theEIS:

M(z, 1) = 1 + 2z + 9z2 + 54z3 + 378z4 + 2916z5 + 24057z6 + 208494z7 + · · · .
We refer to [192, Sec. 2.9] for detailed calculations (that are nowadays routinely per-
formed with assistance of a computer algebra system). Currently, there exist many
applications of the method to maps satisfying all sorts of combinatorial constraints
(e.g., multiconnectivity); see [348] for a recent panorama.

The derivation above has purposely stressed a parameterized approach as this
constitutes a widely applicable approach in many situations. In a simple case like this,
we may also eliminateu and solve explicitly forM(z, 1), to wit,

M(z) ≡M(z, 1) = − 1

54 z2

(
1 − 18z − (1 − 12z)3/2

)
.

It is interesting to note that the singular exponent here is3
2 , a fact further reflected by

the somewhat atypical factor ofn−5/2 in the asymptotic form of coefficients:

Mn ∼ 2√
πn5

12n (n→ ∞).

Accordingly, randomness properties of maps are appreciably different from what is
observed in trees and many commonly encountered context-free objects.

VII. 6. Notes

The exp-log schema, like its companion, the supercritical-sequence schema, il-
lustrates the level of generality that can be attained by singularity analysis techniques.
Refinements of the results we have given can be found in the book by Arratia, Barbour,
and Tavaré [15], which develops a stochastic process approach to these questions; see
also [14] by the same authors for an accessible introduction.

The rest of the chapter deals in an essential manner with recursively defined struc-
tures. As noted repeatedly in the course of this chapter, this is very often conducive
to square-root singularity and universal behaviours that are quantified by exponents
of the form 1

2 ,
3
2 , . . . . Simple varieties of trees have been introduced in an impor-

tant paper of Meir and Moon [283], that bases itself on methods developed earlier by
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Pólya [318, 320] and Otter [306]. One of the merits of [283] is to demonstrate that
a high level of generality is attainable when discussing properties of trees. A similar
treatment can be inflicted more generally to recursively defined structures when their
generating function satisfies an implicit equation. In thisway, nonplane unlabelled
trees are shown to exhibit properties very similar to their plane counterparts. It is of
interest to note that such of the enumerative questions in this area had been initially
motivated by problems of theoretical chemistry: see the colourful account of Cay-
ley and Sylvester’s works in [48], the reference books by Harary–Palmer [206] and
Finch [126], as well as ṔOlya’s original studies [318, 320].

Algebraic functions are the modern counterpart of the studyof curves by classical
Greek mathematicians. They are either approached by algebraic methods (this is the
core of algebraic geometry) or by transcendental methods. For our purposes, how-
ever, only rudiments of the theory of curves are needed. For this, there exist several
excellent introductory books, of which we recommend the ones by Abhyankar [1],
Fulton [175], and Kirwan [230]. On the algebraic side, we have striven to provide
an introduction to algebraic functions that requires minimal apparatus. At the same
time the emphasis has been put somewhat on algorithmic aspects, since most algebraic
models are nowadays likely to be treated with the help of computer algebra. As re-
gards symbolic computational aspects, we recommend the treatise by von zur Gathen
and Jürgen [397] for background, while polynomial systems are excellentlyreviewed
in the book by Cox, Little, and O’Shea [79].

In the combinatorial domain, algebraic functions have beenused early: in Euler
and Segner’s enumeration of triangulations (1753) as well as in Schröder’s famous
“Vier combinatorische Probleme” described by Stanley in [364, p. 177]. A major ad-
vance was the realization by Chomsky and Schützenberger that algebraic functions are
the “exact” counterpart of context-free grammars and languages (see their historic pa-
per [74]). A masterful summary of the early theory appears in the proceedings edited
by Berstel [42] while a modern and precise exposition forms the subject of Chapter 6
of Stanley’s book [364]. On the analytic-asymptotic side, many researchers have long
been aware of the power of Puiseux expansions in conjunctionwith some version of
singularity analysis (often in the form of the Darboux–Pólya method: see [320] based
on Pólya’s classic paper [318] of 1937). However, there appeared to be difficulties in
coping with the fully general problem of algebraic coefficient asymptotics [66, 287].
We believe that Section VII. 4.1 sketches the first complete theory. In the case of
positive systems, the “Drmota-Lalley-Woods” theorem is the key to most problems
encountered in practice—its importance should be clear from the developments of
Section VII. 4.2.

The applications of algebraic functions to context-free languages have been known
for some time (e.g., [133]). Our presentation of 1-dimensional walks of a general type
follows a recent article by Banderier and Flajolet [20], whch can be regarded as the
analytic pendant of algebraic studies by Gessel [182, 183]. The kernel method has its
origins in problems of queueing theory and random walks [120, 121] and is further
explored in an article by Bousquet-Mélou and Petkovšek [59]. The algebraic treat-
ment of random maps by the quadratic method is due to brilliant studies of Tutte in
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the 1960’s: see for instance his census [383] and the account in the book by Jackson
and Goulden [192]. A combinatorial-analytic treatment of multiconnectivity issues
is given in [21], where the possibility of treating in a unified manner abouta dozen
families of maps appears clearly.
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Saddle Point Asymptotics

Like a lazy hiker, the path crosses the ridge at a low point;
but unlike the hiker, the best path takes the steepest ascentto the ridge.

[· · · ] The integral will then be concentrated in a small interval.

— DANIEL GREENE AND DONALD KNUTH [198, sec. 4.3.3]
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A saddle pointof a surface is a point reminiscent of the inner part of a saddle or of a
geographical pass between two mountains. If the surface represents the modulus of an
analytic function, saddle points are simply determined as the zeros of the derivative of
that function.

In order to estimatecomplex integralswith an analytic integrand, it is often a good
strategy to take as a contour of integration a line that “crosses” one or several of the
saddle points of the function. When applied to integrals depending on a large parame-
ter, as is the case for Cauchy integrals giving coefficients of generating functions, this
provides in many cases very accurate asymptotic information.

The saddle point method can lead to asymptotic estimates andeven to complete
asymptotic expansions. Its principle is to use a saddle point crossing path, then esti-
mate the integrand locally near this saddle point (at which point the integrand achieves
its maximum), and deduce by local approximations and termwise integration an as-
ymptotic expansion of the integral itself. Some sort of “localization” or “concentra-
tion” property is required to ensure that the contribution near the saddle point captures
the essential part of the integral. A simplified form of the method provides what are
known as saddle point bounds—these are useful and technically simple upper bounds
obtained by applying trivial bounds to a saddle point crossing path

As regards coefficient extraction in the context of analyticcombinatorics, the
method applies well to rapidly varying functions. Typical instances are entire func-
tions as well as functions with singularities at a finite distance that exhibit some form
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FIGURE 1. The “tripod”: two views of|1 + z + z2 + z3| (front, top) with level
lines displayed.

of exponential growth. Saddle point analysis then complements singularity analysis
whose scope is essentially the category of functions havingmoderate (polynomial)
growth at their singularities. The saddle point method is also a method of choice for
the analysis of coefficients of large powers of some fixed function and, in this context,
it paves the way to the study of multivariate asymptotics andlimiting distributions
developed developed in the next chapter.

Applications are given here to Stirling’s formula as well asthe asymptotics of
the involution numbers and Bell numbers enumerating set partitions. The asymptotic
enumeration of integer partitions is one of the jewels of classical analysis and we
provide an introduction to this rich topic where saddle points give access to effective
estimates of an amazingly good quality. Other combinatorial applications include a
new derivation of Stirling’s formula, balls-in-bins models and capacity, the number of
increasing subsequences in permutations, blocks in set partitions, and the counting of
acyclic graphs (forests of unrooted trees).

VIII. 1. Preamble: Landscapes of analytic functions and saddle points

Given any functionf analytic in an open setΩ, the surface inR3 generated by its
modulus, namely, in(x, y, t) coordinates,

t(x, y) = |t(x+ iy)|,
is far from being arbitrary. Its points can be of only one of three types: ordinary points,
(the generic case), zeros, and saddle points.

The functiont(x, y) is initially defined fromR2 to R, but it is also convenient to
treat it as a function fromC to R and writet(z) = t(x, y) whenz = x+ iy. Let z0 =
x0 + iy0 be an interior point ofΩ. The local shape of the surfacet(z) for z nearz0
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depends on which of the initial elements in the sequencef(z0), f
′(z0), f ′′(z0), . . .,

vanish. An idea of the typical shape of such a surface can be obtained by examining
Figure 1 relative to the modulus of the third degree polynomial1+ z+ z2 + z3 which
has zeros at−1, i,−i while its derivative has zeros at13 ± i

3

√
2. The classification

of points is conveniently obtained by considering polar coordinates,z = z0 + reiθ,
with r small.

An ordinary pointis such thatf(z0) 6= 0, f ′(z0) 6= 0. This is clearly the generic
situation as analytic functions have only isolated zeros. In that case, one has for small
r > 0:

(1) t(z) =
∣∣f(z0) + reiθf ′(z0) +O(r2)

∣∣ = t(z0)
∣∣∣1 + λrei(θ+φ) +O(r2)

∣∣∣ ,

where we have setf ′(z0)/f(z0) = λeiφ. The modulus then satisfies

t(z) = t(z0)
(
1 + λr cos(θ + φ) +O(r2)

)
.

Thus, forr taken small enough, asθ varies,t(z) is maximum whenθ = −φ (where it
is∼ 1+r), and minimum whenθ = −φ+π (where it is∼ 1−r). Whenθ = −φ± π

2 ,
t(z) = t(z0) + o(r), which means thatt(z) is stationary. This is easily interpreted:
the lineθ ≡ −φ (mod π) is (locally) a steepest descent line; the perpendicular line
θ ≡ −φ+ π

2 (mod π) is locally a level line. In particular, near an ordinary point, the
surfacet(x, y) has neither a minimum nor a maximum. In figurative terms, thisis like
standing on the flank of a mountain.

A zerois by definition a point such thatf(z0) = 0. In this case, the functiont(z)
attains its minimum value 0 atz0. A zero is thus like a sink or the bottom of a lake,
save that, in the landscape of an analytic function, all lakes are at see level.

A saddle pointis a point such thatf(z0) 6= 0, f ′(z0) = 0. It is said to be asimple
saddle point if furthermoref ′′(z0) 6= 0. In that case, a calculation similar to (1),

(2) t(z) =

∣∣∣∣f(z0) +
1

2
r2e2iθf ′′(z0) +O(r3)

∣∣∣∣ = t(z0)
∣∣∣1 + λr2ei(2θ+φ) +O(r3)

∣∣∣ ,

where we have set12f
′′(z0)/f(z0) = λeiφ, shows that the modulus satisfies

t(z) = t(z0)
(
1 + λr2 cos(2θ + φ) +O(r3)

)
.

Thus, starting at the directionθ = −φ and turning aroundz0, the following sequence
of events regarding the modulust(z) = |f(z)| is observed: it is maximal (θ = −φ),
stationary (θ = −φ+ π

2 ), minimal (θ = −φ+π), stationary, (θ = −φ+3π
2 ), maximal

again (θ = −φ + π), and so on. The pattern, symbolically ‘+ = – =’, repeats itself
twice. This is superficially similar to an ordinary point, save for the important fact that
changes are observed at twice the angular speed. Accordingly, the shape of the surface
looks quite different; it is like the central part of a saddle. Two level curves cross at a
right angle: one steepest descent line (away from the saddlepoint) is perpendicular to
another steepest descent line (towards the saddle point). In a mountain landscape, this
is thus much like a pass between two mountains.

Here is a diagram showing the local structure of level curves(in solid lines),
steepest descent lines (dashed with arrows pointing towards the direction of increase)
and regions (hashed) where the surface lies below the reference valuet(z0):
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FIGURE 2. The different types of points on a surface|f(z)|: an ordinary point,
a zero, a simple saddle point. Heref(z) = cos z and the points are an ordinary
point atπ/4 (upper left), a zero atπ/2 (upper right), and a saddle point at0
(bottom center). Level lines are shown on the surfaces.
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Ordinary point Zero Saddle point

The two regions on each side corresponding to points with an altitudebelowa simple
saddle point are often referred to as “valleys”.

Generally, amultiple saddle pointhas multiplicityp if f(z0) 6= 0 and all deriva-
tivesf ′(z0), . . . , f (p)(z0) are equal to zero whilef (p+1)(z0) 6= 0. In that case, the
basic pattern ‘+ = – =’ repeats itselfp + 1 times. A double saddle point is also called
a “monkey saddle” since it can be visualized as a saddle having places for the legs
and the tail. From such a double saddle point, three roads go down leading to three
different valleys.

THEOREM VIII.1 (Classification of points on modulus surfaces).A surface|f(z)|
attached to the modulus of a function analytic over an open set Ω has points of only
three possible types:(i) ordinary points, (ii) zeros, (iii) saddle points. A simple
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saddle point is locally the common apex of two curvilinear sectors with angleπ
2 , also

referred to as “valleys”.

As a consequence, the surface defined by the modulus of an analytic function has
no maximum: this property is known as theMaximum Modulus Principle. It has no
minimum either, apart from zeros. It is therefore a peaklesslandscape in de Bruijn’s
words [86]. The three different types of points are illustrated by Figure 2. Here is a
diagram representing forf(z) = 1 + z + z2 + z3 the network of level curves and the
orthogonal network of steepest ascent/descent lines (compare with Figure 1):

(3) −1 (zero)

i (zero)

−i (zero)

− 1
3
− i

3

√
2 (saddle point)

− 1
3
− i

3

√
2 (saddle point)

(0)

� 1. The Fundamental Theorem of Algebra.This theorem asserts that a polynomial has at least
one root (hencen roots if its degree isn). Let P (z) = 1 + a1z + · · · anz

n be a polynomial
of degreen. Considerf(z) = 1/P (z). By basic analysis, one can takeR sufficiently large, so
that on|z| = R, one has|f(z)| < 1

2
. Assumea contrario thatP (z) has no zero. Then,f(z)

which is analytic in|z| ≤ R should attain its maximum at an interior point (sincef(0) = 1),
so that a contradiction has been reached. �

� 2. Saddle points of polynomials and the convex hull of zeros.Let P be a polynomial andH
the convex hull of its zeros. Then any root ofP ′(z) lies inH. (Proof: assume distinct zeros
and consider

φ(z) :=
P ′(z)

P (z)
=

X

α : P (α)=0

1

z − α .

If z lies outsideH, thenz sees all zerosα in a half-plane, this by elementary geometry. By
projection on the normal to the half plane boundary, there results that, for someθ, one has
ℜ(eiθφ(z)) < 0, so thatP ′(z) 6= 0.) �

VIII. 2. Overview of the saddle point method

Saddle point analysis is a general method suited to the estimation of integrals of
analytic functionsF (z),

(4) I =

∫ B

A

F (z) dz,

whereF (z) ≡ Fn(z) involves some large parametern→ +∞. The method is usually
instrumental when the integrandF is subject to rather violent variations, typically
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when there occurs in it some exponential or some fixed function raised to a large
power (for instance,n). This situation covers a large number of Cauchy coefficient
integrals of the form

(5) gn ≡ [zn]g(z) =
1

2iπ

∮
g(z)

dz

zn+1
.

In the last case, the symbol
∮

indicates that allowable paths are constrained to encircle
the origin (the domain of definition of the integrand is a subset ofC \ {0}; the points
A,B can then be seen as coinciding and can be taken somewhere along the negative
real line).

VIII. 2.1. Saddle point bounds. Considering the general form (4), we letC be
a contour joiningA andB and taken in a domain of the complex plane whereF (z) is
analytic. By standard inequalities, we have

(6) |I| ≤ ||C|| · max
z∈C

|F (z)|,

with ||C|| representing the length ofC. This is the usualtrivial boundfrom integration
theory applied to a fixed contourC.

For an analytic integrandF with A andB inside the domain of analyticity, there
is an infinite classP of acceptable paths to choose from, all in the analyticity domain
of F . Thus, we may write

(7) |I| ≤ min
C∈P

[
||C|| · max

z∈C
|F (z)|

]
,

where the minimum is taken over all pathsC ∈ P. Broadly speaking, a bound of
this type is called asaddle point bound1. When paths lie in finite regions of the com-
plex plane, the length factor||C|| is normally unimportant for asymptotic bounding
purposes.

If there happens to be a pathC from A to B such that no point is at an alti-
tude higher thanmax(|F (A)|, |F (B)|), then a simple bound results:|I| ≤ ||C|| ·
max(|F (A)|, |F (B)|). (This is in a sense the uninteresting case.) However, the usual
situation with Cauchy coefficient integrals of combinatorics is that paths have to go at
some higher altitude. A pathC that traverses a saddle point by connecting two points
at a lower altitude on the surface and by following two steepest descent lines across
the saddle point is clearly a local minimum for the path functional

Φ(C) = max
z∈C

|F (z)|,

as neighbouring paths must possess a higher maximum. Such a path is called asaddle–
point pathor asteepest descent path. Thus, the search for a path realizing the mini-
mum of

min
C

[
max
z∈C

|F (z)|
]
,

1Notice additionally that the optimization problem need notbe solved exactly, as any approximate
solution to (7) still furnishes a valid upper bound because of the universal character of the trivial bound (6).
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(a simplification of (7) to its essential feature) naturallyleads to considering saddle
points and saddle-point paths. This leads to the variant of (7),

(8) |I| ≤ ||C0|| · max
z∈C0

|F (z)|, C0 minimizesmax
z∈C

|F (z)|,

also referred to as asaddle point bound.
We can summarize this stage of the discussion by a generic simple statement.

THEOREM VIII.2 (General saddle point bounds).LetF (z) be a function analytic in
a domainΩ. Consider the class of integral

∫
γ F (z) dz where the contourγ connects

two pointsA,B and is constrained to a classP of allowable paths inΩ (e.g., they
may be constrained to encircle 0). Then one has thesaddle point bounds:

(9)

∣∣∣∣
∫

γ

F (z) dz

∣∣∣∣ ≤ min
C∈P

[
||C|| · max

z∈C
|F (z)|

]
(first form)

≤ ||C0|| · max
z∈C0

|F (z)| (second form)

whereC0 minimizesmax
z∈C

|F (z)|.

If A andB lie in opposite valleys of a saddle pointz0, then the best bounds of the
second type are obtained as saddle point paths made of arcs connectingA to B
throughz0.

The first form isa priori better than the second form as it encapsulates the length
of the contour itself. The difference is however immaterialin virtually all asymptotic
problems. This statement remains silent about topologicaldetails regarding the choice
of the contour as it is clearly not possible to offer a universally valid criterion and
the specific landscape of the modulus surface|F (z)| under consideration has to be
investigated. Fortunately, in cases of combinatorial interest some strong positivity
is present and the selection of the suitable saddle point contour is normally greatly
simplified.

� 3. An integral of powers.Consider the polynomialP (z) = 1 + z + z2 + z3 illustrated by
Figure 1 and Equation (3). Define the line integral

In =

Z +i

−1

P (z)n dz.

On the segment connecting the end point, the maximum of|P (z)| is 0.63831, giving the weak
trivial boundIn = O(0.63831n). In contrast, there is a saddle point atz0 = 1

3
+ i

3

√
2 where

|P (z0)| = 1
3
, resulting in the bound

|In| ≤ λ
„

1

3

«n

, λ := |z0 + 1|+ |i− z0| .= 1.44141,

as follows from adopting a contour made of two segments connecting−1 to i throughz0. �

In the particular case of Cauchy coefficient integrals whereF (z) = g(z)z−n−1

andg(z) is function with nonnegative coefficients, there is usuallya saddle point on
the positive real axis. We can then reexamine in a new light the bounds of Chapter IV.
Assume for simplicity thatg(z), which has radius of convergenceR with 0 < R ≤
+∞, satisfiesg(x) → +∞ asx → R−. Then one hasF (0+) = F (R−) = +∞.
This means that there is at least one positive valueζ such that the derivativeF ′(x) of
the real functionF (x) vanishes in(0, R). (Actually, there can be only one such point,
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see below.) But this pointζ is also a derivative of the complex functionF (z). Sinceζ
is a local minimum, we have additionallyF ′′(ζ) < 0, and the saddle point is crossed
transversally by a circle of radiusζ. Thus, the saddle point bound of the second kind
(with circles centred at the origin constituting the allowable paths) instantiates to

[zn]g(z) ≤ g(ζ)

ζn
, ζ root of ζ

g′(ζ)

g(ζ)
= n+ 1.

The bounds of the first kind are very similar and read

[zn]g(z) ≤ g(ζ)

ζ
n , ζ root of ζ

g′(ζ)

g(ζ)
= n,

when optimization is carried out over circles centred at theorigin.
We examine below two particular cases related to the centralbinomial and the

inverse factorial. The corresponding landscapes in Figure3 which bear a surprising
resemblance to one another are, by the previous discussion,instances of a general
pattern for functions with nonnegative coefficients.

� 4. Upward convexity ofg(x)x−n. Forg(z) having nonnegative coefficients at the origin, the
quantityg(x)x−n is upward convex forx > 0, so that the saddle point equation forζ (or ζ) can
have at most one root. Indeed, the second derivative

(10)
d2

dx2

g(x)

xn
=
x2g′′(x)− 2nxg′(x) + n(n+ 1)g(x)

xn+2
,

is positive forx > 0 since its numerator,
X

k≥0

(n+ 1− k)(n− k)gkx
k, gk := [zk]g(z),

has only nonnegative coefficients. �

EXAMPLE 1. Saddle point bounds for central binomials and inverse factorials. Consider the
two contour integrals around the origin,

(11) Jn =
1

2iπ

I
(1 + z)2n dz

zn+1
, Kn =

1

2iπ

I
ez dz

zn+1
,

whose values are otherwise known, by virtue of Cauchy’s coefficient formula:

Jn =

 
2n

n

!
, Kn =

1

n!
.

In that case, with reference to Eq. (4), one can think of the end pointsA andB as coinciding
and taken somewhat arbitrarily on the negative real axis while the contour has to encircle the
origin once and counter–clockwise.

The landscapes of the two integrands are represented on Figure 3. The saddle point equa-
tions are respectively

2n

1 + z
− n+ 1

z
= 0, 1− n+ 1

z
= 0.

The saddle points are thus respectively at

z0 =
n+ 1

n− 1
, z0 = n+ 1.
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FIGURE 3. The modulus of the integrands ofJn (central binomials) andKn

(inverse factorials) forn = 5 and the corresponding saddle point contours.
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This provides the upper bounds (of the second kind)

(12) Jn ≤
„

4n2

n2 − 1

«n

, Kn ≤ en+1

(n+ 1)n
,

which are valid for all valuesn ≥ 2. �

It is seen on these two examples that the saddle point bounds catch the proper
exponential growths, being off only by a factor ofO(n−1/2). This is in fact a common
phenomenon well explained by the saddle point method.

Borrowing a metaphor of De Bruijn [86], the situation may be described as fol-
lows. Estimating a path integral is like estimating the difference of altitude between
two villages in a mountain range. If the two villages are in different valleys, the best
strategy (this is what road networks often do) consists in following paths that cross
boundaries between valleys at passes,i.e., through saddle points.

VIII. 2.2. The saddle point method. Given a fixed contourC traversing asimple
saddle point along its axis, the saddle point corresponds locally to a maximum of the
integrand along the path. It is furthermore natural to expect that a small neighbourhood
of the saddle point might provide the dominant contributionto the integral. The saddle
point method is applicable precisely when this is the case and when this dominant
contribution can be estimated by means of local expansions.

To proceed, it is convenient to setF (z) = ef(z)and consider

I =

∫ B

A

ef(z) dz,

wheref(z) ≡ fn(z) like F (z) ≡ fn(z) involves some large parametern. After pos-
sibly some preparation based on the use of Cauchy’s theorem and suitable contours,
we may assume that the contourC connects the end pointsA andB and is a path
traversing a unique saddle pointz0 ∈ C along the steepest descent line. Thus, we have
available the saddle point equationF ′(z0) = 0 or equivalently

f ′(z0) = 0,

as well as, by assumption,|ef(A)| < |ef(z0)| and|ef(B)| < |ef(z0)|, meaning thatz0
is the highest point on the surface of|F (z)|.

The saddle point method is based on splittingC asC = C(0) ∪ C(1), whereC(0)

containsz0, and estimating separately the integrals
∫
C(0) and

∫
C(1) . In order for the

method to work, conflicting requirements regarding the dimensioning ofC(0) andC(1)

must be satisfied, as we now explain.

— Neglect the tail integrals.The contourC(1) should be taken so that the tail
integral

∫
C(1) is negligible:

(13)
∫

C(1)

F (z) dz = o

(∫

C
F (z) dz

)
.

Usually, this condition, rather than being checkeda priori, results from
global bounds relative to the function under considerationas well as from
the choices dictated by the next two steps.
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— Centrally approximate the integrand.The basic condition upon which the
method depends is that locally, alongC(0), the two-term expansion

(14) f(z) = f(z0) = f(z0) +
1

2
f ′′(z0)(z − z0) +O(ǫn),

should be valid, withǫn → 0 asn → ∞. This is not automatically granted
asF depends onn, as do usuallyz0 andf ′′(z0). This conditionrequires
that C(0) should be sufficiently small. (Usually, ||C(0)||/||C|| → 0.) The
validity of the local expansion implies:

∫

C(0)

F (z) dz ∼ ef(z0)

∫

C(0)

e
1
2 f ′′(z0)(z−z0)

2

dz

— Complete the tails.Along the steepest descent line, the quantityf ′′(z −
z0)(z − z0)

2 is negative. Then, in order to fully capture the contribution
from the saddle point region, the Gaussian integral should be asymptotically
equivalent to a complete Gaussian integral:

(15)
∫

C(0)

e
1
2 f ′′(z0)(z−z0)

2

dz ∼ i

∫ ∞

−∞
e−λx2/2 dx ≡ i

√
2π

λ
, λ = |f ′′(z0)| ,

whereλ := |f ′′(z0)|. This imposesthe conflicting requirement thatC(0)

should be large enough: at the end points ofC(0), one should havef ′′(z0)(z−
z0)

2 tending to infinity. (Note: In (15) we have silently assumed that the
change of variables results in the real line being traversedfrom negative to
positive values; else a−1 factor should be inserted.)

The three main steps above are characteristic of the saddle-point method. They
represent the complex-analytic counterparts of the methodof Laplace (APPENDIX B:
Laplace’s method, p. 639) for the evaluation of real integrals depending on a large
parameter. Indeed one can regard the saddle point method as being

Saddle Point Method = Choice of Contour + Laplace’s Method.

Like its real-variable counterpart, the saddle point method is a a general strategy rather
than a completely deterministic algorithm. Nonetheless, we choose to summarize the
previous discussion by a Theorem:

THEOREM VIII.3 (Saddle Point Formula).Consider an integralI =
∫ B

A
F (z) dz

where the integrandF is an analytic function depending on a large parameter and
A,B lie in opposite valleys across a saddle pointz0. SetF (z) = ef(z). Then, if the
saddle point contourC connectingA toB can be split intoC = C(0))∪ C(1) in such a
way that

(i) Tails are negligible, cf. Equation(13),
(ii) Central approximations hold, cf. Equation(14),

(iii) Tails can be completed back, cf. Equation(15),

then one has
1

2iπ

∫ B

A

ef(z) dz ∼ ef(z0)

√
2π|f ′′(z0)|

.
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The following remarks may help implement the saddle point method. In many
cases, the error in the two-term expansion is likely to be given by the next term, which
involves a third derivative. In that case, it is good guess toattempt to dimensionC(0)

as being of lengthδ ≡ δ(n) chosen in such a way that

(16) f ′′′(z0)δ
3 → 0, f ′′(z0)δ

2 → ∞,

so that both local approximation and tail completion can be satisfied. We call this
choice the saddle pointdimensioning heuristic. Also, in many cases, it proves con-
venient to adopt paths that come very close to the saddle point but need not pass
exactly through it. Similarly, the steepest descent line may be followed only ap-
proximately. These comments apply for instance for functionsFn(z) of the form
Fn(z) = Hn(z)g(z) (e.g.,Hn(z) = h(z)n, a large power of a fixed function) where
g does not depend onn and is well-behaved—it is then computationally convenientto
treatg as a perturbation and use a contour dictated byHn alone.

As an illustration, a blind application of the conclusion ofTheorem VIII.3 toJn

andKn of Example 1 gives forf(z) respectively

2n log(1 + z) − (n+ 1) log z, z − (n+ 1) log z,

which results in the correct asymptotic equivalents forJn andKn:

Jn ∼ 4n

√
πn

, Kn ∼ nne−n
√

2πn.

In the sequel, we make use of the general principles of saddlepoint analysis but
focus on the particular case of Cauchy coefficient integralsfor generating functions
with positive coefficients. The geometry of the problem is simpler in that case since,
as we saw, it usually suffices to consider as integration contour a circles with proper
radius centred at the origin and passing through a positive real saddle point.

EXAMPLE 2. Saddle point analysis of the exponential and the inverse factorial. The purpose
of this example is to provide a concrete illustration of saddle point analysis by working out the
problem of estimating1

n!
= [zn]ez . The starting point is the Cauchy coefficient integral

Kn =
1

2iπ

Z

|z|=r

ez dz

zn+1
,

where the contour of integration is taken to be a circle of radiusr. We carry out the saddle point
strategy with its usual three steps:(i) Neglect the tails; (ii) Centrally approximate; (iii) Com-
plete the tails. The landscape of the modulus of the integrand is displayed in Figure 3. There
is a saddle point atz = n+ 1 with an axis perpendicular to the real line. We thus expect good
bounds to derive from adopting as integration contour a circle centered at the origin with radius
n + 1 (or about) as integration contour. We adopt a circle of radius r = n as integration con-
tour (n+ 1 would do equally well but would slightly complicate calculations). Also, it proves
convenient to switch to polar coordinates and setz = neiθ .

(i) Neglect the tails.For z = neiθ one has

|ez| = en cos θ,
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FIGURE 4. Plots of|ezz−n−1| for n = 3 andn = 30 (scaled according to the
value of the saddle point) illustrate the essential concentration condition as higher
values ofn produce steeper saddle point paths.

and since the cosine function is unimodal on[−π,+π], the contribution of any part of the
contour outside a circular arc defined by its endpointsne±iθ0 is

(17) O
“
nenn−ne−n cos θ0

”
.

Thus this contribution is exponentially small compared toenn−n, whenθ0 is any fixed number
θ0 < 0, but also as long asθ0 is a function ofn satisfying

n cos(θ0) > C log n,

for anyC > 0. A definite choice is fixed in the next phase.
(ii) Centrally approximate.The original integral in polar coordinates becomes

(18) Kn =
en

nn
· 1

2π

Z +π

−π

en[eiθ−1−iθ] dθ.

Seth(θ) = eiθ − 1− iθ with expansion asθ → 0:

h(θ) = −θ
2

2
− iθ3

6
+
θ4

24
+ · · · .

The absence of a linear term inθ indicates a saddle point. The function

|eh(θ)| = ecos θ−1,

is unimodal with its peak atθ = 0 and the same property holds for|enh(θ)| which is even more
strongly peaked atθ = 0.

The estimation ofKn proceeds by isolating a small portion of the contour (corresponding
to z near the real axis). We thus set

K(0)
n =

Z +θ0

−θ0

enh(θ) dθ, K(1)
n =

Z 2π−θ0

θ0

enh(θ) dθ,

and chooseθ0 in accordance with the general heuristic (16):

(19) nθ20 →∞, nθ30 → 0.

One way of realizing the compromise is to adoptθ0 = na wherea is any number between− 1
2

and− 1
3
, for instance

θ0 ≡ θ0(n) = n−2/5.
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Thus the angle of the central region tends to zero; in the notations of our general discussion
in (16), one hasδ ∼ nθ0, that is,δ ∼ n3/5. With this choice ofθ0, the bound (17) instantiates
to

(20) K(1)
n = O

“
exp

“
−Cn1/5

””
, C > 0.

We now turn to the precise evaluation of the central integralK
(0)
n . Nearθ = 0, only the

terms till order 2 matter in the expansion ofh(θ) because of the second condition of (19), which
ensuresnθ3 → 0 throughout the central region. One has:

(21)
K

(0)
n ∼

Z +θ0

−θ0

e−nθ2/2 dθ

∼ 1√
n

Z +θ0
√

n

−θ0
√

n

e−t2/2 dt

The first line of (21) uses the fact thatnθ3 → 0 so thath(θ) can be reduced to its quadratic
approximation, with error terms of ordernθ30 = n−1/5; the second line is based on the rescaling
t = θ

√
n.

(iii) Complete the tails. We have

(22)
K

(0)
n ∼ 1√

n

Z +∞

−∞
e−t2/2 dt

∼
r

2π

n
.

The first line is justified by the fact that the tails of the Gaussian integral in (21) are exponen-
tially small. (O(exp(−Cn1/5)), again) Accordingly the integral can be completed to the full
range(−∞,+∞), which induces error terms that are exponentially small anyhow. Finally, the
complete Gaussian integral evaluates to closed form and theestimate follows.

Assembling (20) and (22), we have obtained

K(0)
n +K(1)

n ∼
r

2π

n
.

Hence the final result

Kn ≡ 1

n!
∼ en

nn
√

2πn
.

We have thus established Stirling’s formula by the saddle point method. �

VIII. 2.3. Complete asymptotic expansions.Like Laplace’s method, the saddle
point method can normally be made to provide full asymptoticexpansions. The idea
is still to localize the contribution in the same central region as the one that gave rise
to the first-order saddle point estimate but take into account the corrections terms to
the quadratic approximation. We make explicit here the calculations relative to the
inverse factorial.

It suffices to revisit the estimation ofK(0) sinceK(1) is exponentially small. One
first rewrites

K(0)
n =

∫ θ0

−θ0

e−nθ2/2en(cos θ−1− 1
2 θ2) dθ

=
1√
n

∫ θ0
√

n

−θ0
√

n

e−w2/2enξ(w/
√

n) dw, ξ(θ) := cos θ − 1 − 1

2
θ2.
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The calculation proceeds exactly in the same way as for the Laplace method (APPEN-
DIX B: Laplace’s method, p. 639). It suffices to expandh(θ) to any fixed order, which
is legitimate in the central region. In this way, a representation of the form,

K(0)
n =

1√
n

∫ θ0
√

n

−θ0
√

n

e−w2/2

(
1 +

M−1∑

k=1

Ek(w)

nk/2
+O

(
1 + w3M

nM/2

))
dw,

is obtained, where theEk(w) are computable polynomials of degree3k. Distributing
the integral operator over terms in the asymptotic expansion and completing the tails
yields an expansion of the form

K(0)
n ∼ 1√

n

(
M−1∑

k=0

dk

nk/2
+O(n−M/2)

)
,

where

dk :=

∫ +∞

−∞
e−w2/2Ek(w) dw.

in which all odd terms disappear by parity andd0 =
√

2π. The net result is here:

1

n!
∼ enn−n

√
2πn

(
1 − 1

12n
+

1

288n2
+

139

51840n3
− 571

2488320n4
+ · · ·

)
.

(Notice the amazing similarity with the form obtained directly for n! in APPENDIXB:
Laplace’s method, p. 639.)

� 5. A factorial surprise. Why is it that the expansion ofn! and1/n! involve the same set
of coefficients, up to sign? [Hint: the derivations involve similar integrals, but taken along
different paths; similarity of the coefficients results from basic properties of Hankel contours.]
�

In summary the process of saddle point analysis is made possible by a fundamen-
tal split of the integration contour —here, a circle— into a small arc centered on the
real axis. The small arc has to satisfy two conflicting requirement: to be large enough
so as to capture the essential contribution of the integral;and to be small enough so as
to allow the function to be well approximated locally by its quadratic terms. In addi-
tion, the estimation is made possible because the function decays appropriately, away
from the real axis, so that the integrand remains small on thenoncentral part of the
contour. Since only a central region matters (up to exponentially small error terms),
compete asymptotic expansions can usually be derived.

VIII. 3. Large powers

The extraction of coefficients in powers of a fixed function and more generally of
functions of the formA(z)B(z)n constitutes a prototypical and easy application of the
saddle point method. We wil thus be concerned here with the problem of estimating

[zN ]A(z) ·B(z)n =
1

2iπ

∮
A(z)B(z)n dz

zn+1
.

This situation generalizes directly the example of inversefactorials and the exponen-
tial, where we have dealt with[zn](ez)n as well as the case of the central binomial
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coefficients where an estimate of[zn](1+z)2n is wanted. On another register, the La-
grange inversion theorem expresses the coefficients of certain implicitly defined func-
tions in terms of coefficients of powers, so that the techniques exposed here are also
relevant to the study of trees, forests, functional graphs and maps. Further important
applications relate to large deviations and local limit laws explored in Section VIII. 7
as well as in the next chapter.

We consider in this section two fixed functions,A(z) andB(z) satisfying the
following conditions:

C1: The functionsA(z) =
∑

j≥0 ajz
j andB(z) =

∑
j≥0 bjz

j are analytic at 0
and have nonnegative coefficients; furthermore it is assumed (without loss
of generality) thatB(0) 6= 0.

C2: The functionB(z) is aperiodic in the sense thatgcd
{
j
∣∣ bj > 0

}
= 1.

(ThusB(z) is not a function of the formβ(zp) for some integerp > 0.)
C3: LetR be the radius of convergenceR ≤ ∞ of B(z); the radius of conver-

gence ofA(z) is at least as large asR.

We introduce the following quantity called thespread:

T := lim
x→R−

xB′(x)

B(x)
.

Our purpose is to analyse the coefficients

[zn]A(z) ·B(z)n,

whenN andn are linearly related. The conditionN < Tn is both technically needed
in our proof and inherent in the nature of the problem. (ForB a polynomial of de-
greed, the spread isT = d; for a functionB whose derivative at its dominant positive
singularity remains bounded, the spread is finite; forB(z) = ez and more generally
for entire functions, the spread isT = ∞.)

Saddle-point bounds.First the saddle point bounds come out immediately:

PROPOSITION VIII.1 (Saddle point bounds for large powers).Consider functions
A(z) andB(z) satisfying the conditionsC1, C2, C3 above. Letλ be fixed a positive
number with0 < λ < T and letζ be the unique positive root of the equation

ζ
B′(ζ)

B(ζ)
= λ.

Then, withN = λn an integer, one has

[zN ]A(z) · B(z)n ≤ A(ζ)B(ζ)nζ−N .

PROOF. The existence and unicity ofζ is guaranteed by an argument encountered in
Chapter IV in the context of enumerating simple varieties oftrees. The rest follows
by an immediate application of general saddle point bounds. �

As a first application, consider the problem of estimating the binomial coefficients(
n
λn

)
for someλ with 0 < λ < 1. We assume for convenience thatλn is an integer

and writeN = λn. Proposition VIII.1 provides
(
n

λn

)
= [zN ](1 + z)n ≤ (1 + ζ)nζ−N ,
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where ζ
1+ζ = λ, i.e.,ζ = λ

1−λ . A simple computation then shows that

2−n

(
n

λn

)
≤ exp(nH(λ)), where H(λ) = −λ logλ− (1 − λ) log(1 − λ)

is theentropy function. Thus, forλ 6= 1
2 , the binomial coefficients

(
n
λn

)
are expo-

nentially smaller than the central coefficient
(

n
n/2

)
, and the entropy function precisely

quantifies this exponential gap.

� 6. Anomalous dice games.The probability of a score equal toλn in n casts of an unbiased
die is bounded from above by a quantity of the forme−nH where

H = −6 + log

„
1− ζ6

1− ζ

«
− (λ− 1) log ζ,

andζ is an algebraic function ofλ determined by
P5

j=0(λ− j)ζj = 0. �

� 7. Large deviation bounds for sums of random variables.Let g(u) = E(uX) be the prob-
ability generating function of a discrete random variableX ≥ 0 and letµ = g′(1) be the
corresponding mean (assumeµ < ∞). SetN = λn and letζ be the root ofζg′(ζ)/g(ζ) = λ
assumed to exist within the domain of analyticity ofg. Then, forλ < µ, one has

X

k≤N

[uk]g(u)n ≤ 1

1− ζ g(ζ)
nζ−N .

Dually, forλ > µ, one finds
X

k≥N

[uk]g(u)n ≤ ζ

ζ − 1
g(ζ)nζ−N .

These are exponential bounds on the probability thatn copies of the variableX have a sum
deviating substantially from the expected value. �

The saddle point bounds for large powers are technically shallow but still useful
if only rough order-of-magnitude estimates are sought. Thefull saddle point method
is in fact applicable under the conditions of Proposition VIII.1.

THEOREM VIII.4 (Saddle point analysis for large powers).Under the conditions of
the preceding proposition, one has

(23) [zN ]A(z) · B(z)n = A(ζ)
B(ζ)n

ζN+1
√

2πnξ
(1 + o(1)).

whereζ is the unique root ofζB′(ζ)/B(ζ) = λ and

ξ =
d2

dζ2
(logB(ζ) − λ log z) .

In addition, a full expansion in descending powers ofn exists.
These estimates hold uniformly forλ in any compact interval of(0, T ), i.e., any

interval [λ′, λ′′] with 0 < λ′ < λ′′ < T , whereT is the spread.

Note. We have opted for a basic formulation of the theorem with conditions onA
andB that are not minimal. It is easily recognized that the estimates of Theorem VIII.4
still hold provided thatthe function|B(reiθ)| attains a unique maximum on the posi-
tive real axis, whenr ∈ (0, T ) is fixed andθ varies on[−π, π]. Also, in order for the
statement to hold true, it is only required thatthe functionA(z) does not vanish on
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(0, T ), andA(z) could then well be allowed to have negative coefficients. Finally, if
A(ζ) = 0, then a simple modification of the argument still provides precise estimates
in this vanishing case; see Note 10 below.
PROOF. We discuss the analysis corresponding to a fixedλ. The function|B(reiθ)| is,
by positivity of coefficientsandaperiodicity, uniquely maximal atθ = 0 for any fixed
r. It is also infinitely differentiable at 0. Consequently there exists a (small) angle
θ1 ∈ (0, π) such that

|B(reiθ)| ≤ |B(reiθ1)| for all θ ∈ [θ1, π],

and at the same time,|B(reiθ)| is strictly decreasing on[0, θ1] (it is given by a Taylor
expansion without linear term).

We carry out the integration along the saddle point circle,z = ζeiθ, where the
previous inequalities on|B(z)| hold. The contribution for|θ| > θ1 is exponentially
negligible. Thus, up to exponentially small terms, the sought coefficient is given
asymptotically byJ(θ1), where

J(φ) =
1

2π

∫ φ1

−φ1

A(ζeiφ)B(ζeiφ)eniφ dφ.

It is then possible to impose asecondrestriction onθ, by introducingθ0 according to
the general heuristic, namely,nθ20 → ∞, nθ30 → 0. We fix here

θ0 ≡ θ0(n) = n−2/5.

By the decrease of|B(ζeiθ)| on [θ0, θ1] and by local expansions, the quantityJ(θ1)−
J(θ0) is of the formexp(−cn1/5) for somec > 0, that is, exponentially small.

Finally, local expansion are valid in the central range since θ0 tends to 0 asn →
∞. One finds forz = ζeiθ and|θ| ≤ θ0,

A(z)B(z)n ∼ A(ζ)B(ζ)nζ−N exp(−nξθ2/2).

Then the usual process applies upon completing the tails, resulting in the stated esti-
mate. The existence of a complete expansion in powers ofn−1/2 results from pushing
the expansion oflogB(z) to an arbitrary order (like in the case of Stirling’s formula).
Finally, by parity all the odd integrals vanish so that the expansion turns out to be in
descending powers ofn. �

An immediate application of Theorem VIII.4 is to the centralbinomial coefficient(
2n
n

)
= [zn](1 + z)2n. In the same way, one gets an estimate of the central trinomial

number,

Tn := [zn](1 + z + z2)n satisfying Tn ∼ 3n+1/2

2
√
πn

.

The Motzkin numbers count unary-binary trees, so that

Mn = [zn]M(z) where M = z(1 +M +M2).

The standard approach is the one seen earlier based on singularity analysis as the
implicitly defined functionM(z) has an algebraic singularity of the√ -type, but the
Lagrange inversion formula provides an equally workable route. It gives

Mn+1 =
1

n+ 1
[zn](1 + z + z2)n+1,
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which is amenable to saddle point analysis via Theorem VIII.4. Hence,

Mn ∼ 3n+1/2

2
√
πn3

.

� 8. Central Stirling numbers.The central Stirling numbers of both kinds satisfy

n!

(2n)!

"
2n

n

#
∼ c1An

1n
−1/2 `1 +O(n−1)

´
,

n!

(2n)!

(
2n

n

)
∼ c2An

2n
−1/2 `1 +O(n−1)

´
,

whereA1
.
= 2.45540, A2

.
= 1.54413, andA1, A2 are expressible in terms of special values of

the Cayley tree function. Similar estimates hold for
ˆ
αn
βn

˜
and

˘
αn
βn

¯
. �

� 9. Integral points on high-dimensional spheres.This note is based on an article by Mazo
and Odlyzko [281]. LetN(n, α) be the number of lattice points (i.e., points with integer coor-
dinates) inn-dimensional space that lieon the sphere of radiusN =

√
αn assumed to be an

integer. Then,

N(n, α) = [zN ]Θ(z)n, where Θ(z) :=
X

n∈Z

zn2

= 1 + 2
∞X

n=1

zn2

.

Thus, there are computable constantsK,L depending ona such thatN(n, α) ∼ Kn−1/2Ln.
The number of lattice pointsinside the sphere can be similarly estimated. (Such bounds are
useful in coding theory, combinatorial optimization, especially the knapsack problem, and cryp-
tography.) �

� 10.Coalescence of a saddle point with roots of multipliers.Fix ζ and take a multiplierA(z)
in Theorem VIII.4 such thatA(ζ) = 0. The formula is to be modified,

[zN ]A(z) · B(z)n =
ˆ
A′(ζ) + ζA′′(ζ)

˜ B(ζ)n

ζN+1
p

2πn3ξ3
(1 + o(1)).

Higher order cancellations can also be taken into account. �

� 11.A function with negative coefficients that is minimal along the positive axis.TakeB(z) =
1 + z − z10 with |z| ≤ 1

10
. By design,B(z) has negative Taylor coefficients. On the other

hand,|B(reiθ)| for fixed r ≤ 1
10

(say) attains its unique maximum atθ = 0. In such a case,
the saddle point method applies and an estimate of[zn]B(z)n (say) is obtained by (23). �

Large powers, saddle points, and singularity analysis.In general, the Lagrange
inversion formula establishes an exact correspondence between two problems relative
to the estimation of

— coefficients of large order in large powers and
— coefficients of implicitly defined functions.

In one direction, the Lagrange Inversion Theorem has the capacity of bring-
ing the evaluation of coefficients of implicit functions into the orbit of the saddle
point method. We obtain in this way a statement that paraphrases Theorem VII.2 on
page 399:LetY be defined implicitly byY = zφ(Y ), whereφ is analytic at 0, aperi-
odic, and such that the characteristic equationφ(τ) − τφ′(τ) = 0 has a positive root
within the disc of convergence ofφ. Then

[zn]Y (z) ∼ γ
ρ−n

2
√
πn3

, ρ :=
τ

φ(τ)
, γ :=

√
2φ(τ)

φ′′(τ)
.
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(This provides the number of trees in a simple variety, withφ being the degree gener-
ating function of the variety.)

The saddle point method is in a few cases more convenient to work with than
singularity analysis, especially when explicit or uniformupper bounds are required,
since constructive bounds tend to be more easily obtained onfixed circles than on
variable Hankel contours.

� 12. An assertion of Ramanujan.In his first letter to Hardy, Ramanujan (1913) announced
that

1

2
en = 1 +

n

1!
+
n2

2!
+ · · ·+ nn−1

(n− 1)!
+
nn

n!
θ,

where θ =
1

3
+

4

135(n + k)
,

andk lies between8
45

and 2
21

. Ramanujan’s assertion indeed holds for alln ≥ 1; see [142] for
a proof based on saddle points and effective bounds. �

Conversely, the Lagrange Inversion Theorem makes it possible to approach large
powers problems by means of singularity analysis of an implicitly defined function2.
This mode of operation can prove very useful when there occurs a coalescence be-
tween saddle points and singularities of the integrand.

� 13.Coalescence between a saddle-point and a singularity.The integral in

In := [yn](1 + y)1n(1− y)−α =
1

2iπ

Z

0+

(1 + y)2n

(1− y)α
dy,

can be treated directly, but this requires a suitable adaptation of the saddle-point method, given
the coalescence between a saddle point at 1 [the part withoutthe (1 − y)α factor] and a
singularity at that same point. Alternatively, it can be subjected to the change of variables
z = y/(1 = y)2. Theny is defined implicitly byy = z(1 + y)2 and subject to singularity
analysis, so that

In =
1

2iπ

Z

0+

1 + y

(1− y)1+α

dz

zn+1
= [zn]

1 + y

(1− y)1+α
.

Sincey(z) has a square-root singularity atz = 1/4, the integrand is of typeZ−(1+α)/2, and

In ∼ 22n−α

Γ(α+1
2

)
n(α−1)/2.

In general, forφ(y) satisfying the assumptions (relative toB) of Theorem VIII.4, one finds
(τ : φ(τ )− τφ′(τ ) = 0)

1

2iπ

Z

0+

φ(y)n

(φ(τ )− φ(y))α

dy

yn
∼ c

„
φ(τ )

τ

«n
n(α−1)/2

Γ(α+1
2

)
.

Van der Waerden discuses this problem systematically in [390]. See also Section VIII. 7.2 below
for other coalescence situations. �

2This is in essence an approach suggested by several sectionsof the original memoir of Darboux[81,
Section 3–Section 5], in which “Darboux’s method” discussed in Chapter VI was first proposed. It is also
of interest to note that a Lagrangean change of variables transforms a saddle point contour in a contour
approximately of the type used in singularity analysis.
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VIII. 4. Four combinatorial examples

After a detour through generalities, we are now fully equipped to come back to
analytic combinatorics. In this section, we examine four combinatorial examples,

Involutions(I), Set partitions(S),
Fragmented permutations(F), Integer partitions(P).

The generating functionsI, S, F are EGFs whileP is an OGF. They have all been
made explicit in Chapters I and II:

I(z) = ez+z2/2, S(z) = eez−1, F (z) = e
z

1−z , P (z) =

∞∏

j=1

1

1 − zj
.

The first two are entire functions (i.e., they only have a singularity at∞), the last two
have a singularity atz = 1, but in each case, they exhibit a violent growth—of an
exponential type—near their positive singularity at either a finite or infinite distance.

Each example is treated, starting from the easier saddle point bounds and proceed-
ing with the saddle point method. The allowable paths considered here are invariable
circles centred at the origin, so that it is the variation of the generating function along
such circles that matters, in accordance with our earlier discussion of saddle points and
Cauchy coefficient integrals. Each example illustrates thegeneral principles and at the
same time demonstrates some specific twists of the method. For instance, the example
of involutions shows what may happen when an approximate saddle point is traversed
and linear terms modify the Gaussian integral. Bell numbersillustrate the need of
a good asymptotic technology for an implicitly defined saddle point [346]. Integer
partitions exemplify a situation where the generating function possesses exceptionally
rich properties.

EXAMPLE 3. Involutions. Let In be the number of involutions of[1..n], that is the number

of permutationsτ such thatτ 2 is the identity permutation. The egf ofIn is I(z) = ez+z2/2.
The exact value of the positive saddle point of the Cauchy integral

In

n!
=

1

2iπ

I
I(z)

dz

zn+1

is the positive rootζ of ζ(1 + ζ) = n+ 1, that is,

ζ =
−1 +

√
4n+ 5

2
=
√
n− 1

2
+

5

8
√
n

+O(n−3/2).

By routine asymptotic computations, the saddle point boundbecomes

In

n!
≤ e−1/4n−n/2en/2+

√
n(1 + o(1)).

Notice that if we use the approximate saddle point value,bζ(n) =
√
n, we only lose the factor

e−1/4 .
= 0.77880.

In agreement with the discussion in the introduction these bounds are expected to be quite
good, and we shall see later that they only off by a factor ofO(n1/2) from the true asymptotic
form of In given by Knuth in [240] (where the derivation is carried out by means of the Laplace
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method for sums). In fact, Moser and Wyman (1955) have shown that this results from the
saddle point method, upon integrating along a circle of radiusζ(n) (or about). We set

h(z) := log I(z)− (n+ 1) log z = z +
z2

2
− (n+ 1) log z.

First, some general considerations are in order regarding the behaviour of|I(z)| along
large circles,z = reiθ. One has

log |I(reiθ)| = r cos θ +
r2

2
cos 2θ.

As a function ofθ, this function decreases on(0, π
2
) as it is the sum of two decreasing functions.

Thus,|I(z)| attains its maximum(er+r2/2) at r and its minimum(e−r2/2) at z = ri. In the
left half plane, first forθ ∈ (π

2
, 3π

4
), the modulus|I(z)| is at moster sincecos 2θ < 0. Finally,

for θ ∈ ( 3π
4
, π) smallness is granted by the fact thatcos θ < −1/

√
2 resulting in the bound

|I(z)| ≤ er2/2−r/
√

2. The same argument applies to the lower half planeℑ(z) < 0 to the
effect thatI(z) is strongly peaked atz = r and is exponentially small (by a factor of the form
e−cr) away from it. This preliminary discussion will enable us toneglect the tails of the Cauchy
integral.

We now fix the radius asr =
√
n as this is convenient for calculations while being ex-

tremely close to the actual saddle point. We specify the central region as defined by|θ| ≤ θ0,
whereθ0 ≡ θ0(n) is determined according to the general heuristic (16), which, under polar
coordinates, reads as

r2θ20h
′′(r)→ +∞, r3θ30h

′′′(r)→ 0.

Since one hasr =
√
n and

(24)
h′(z) = 1 + z − n

z
, h′′(z) = 1 +

n

z2
, h′′′(z) = −2n

z3
,

h′(
√
n) = 1 h′′(

√
n) = 2, h′′′(

√
n) = − 2√

n
,

the heuristic suggests to take

θ20 ≫
1

n
, θ30 ≪

1

n
,

i.e.,θ0 should be chosen of an order betweenn−1/2 andn−1/3. We fix here

θ0 = n−2/5,

from which it is easily checked that tails are exponentiallysmall, i.e., of the formexp(−nα)
for someα > 0, by virtue of the previous paragraph.

We then proceed and consider the central integral (r =
√
n)

J(0)
n =

eh(r)

2π

Z +θ0

−θ0

exp
“
h(reiθ)− h(r)

”
dθ.

What is required is a Taylor expansion with remainder near the point
√
n. Observe that in the

central region, we haveh′′′(z) = O(n−1/2), this by (24. Thus, with stillr =
√
n,

h(z)− h(r) = h′(r)(z − r) +
1

2
h′′(r)(z − r)2 +O(n−1/2(z − r)3).

The first order term is present as we are not passing exactly through the saddle point. Since
z − r = r(eiθ − 1) ∼ irθ and|z − r| = O(n1/10), one finds

h(z)− h(r) = irθ + rθ2 +O(n−1/5).
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This is enough to guarantee that

J(0)
n =

eh(
√

n)

2π

Z +θ0

−θ0

ei
√

nθ−nθ2

dθ
“
1 +O(n−1/5)

”
.

Then the tails can be completed in the usual way, leading to

J(0)
n =

eh(
√

n)

2π

Z +∞

−∞
ei

√
nθ−nθ2/2 dθ

“
1 +O(n−1/5)

”
.

This integral evaluates to closed form by completing the square:
Z +∞

−∞
eaθ−nθ2

dθ = e−a2/(4n)

Z +∞

−∞
e−η2

dη,

and using Cauchy’s theorem whenevera is complex. This gives

(25)
In

n!
=
e−1/4

2
√
πn

n−n/2en/2+
√

n

„
1 +O(

1

n1/5
)

«
,

which is our final estimate. The saddle point bound found earlier is thus only off by a factor of√
n. Here is a table comparing the asymptotic estimateI◦n provided by the right side of (25) to

the exact value ofIn:
n = 10 n = 100 n = 1000

I10 = 9496 I100 = 2.40533 · 1082 I1000 = 2.14392 · 101296

I◦10 = 8839 I◦100 = 2.34149 · 1082 I◦1000 = 2.12473 · 101296 .

The error is empirically close to0.3/
√
n, a fact that could be proved by developing a complete

asymptotic expansion along the lines exposed in the previous section. �

EXAMPLE 4. Set partitions and Bell numbers.The number of partitions of a set ofn elements
defines the Bell numberSn and one has

Sn = n!e−1[zn]F (z) where F (z) = eez

.

The saddle point equation relative toF (z)z−n−1 is

ζeζ = n+ 1.

This famous equation admits an asymptotic solution obtained by iteration (or “bootstrapping”,
see [86, p. 26]) upon writingζ + log ζ = log(n+ 1):

(26) ζ ≡ ζ(n) = log n− log log n+
log log n

log n
+O

„
log2 log n

log2 n

«
.

The corresponding saddle point bound reads

Sn ≤ n!
eeζ−1

ζn
.

With the approximate solutionbζ(n) = log n, this provides the upper bound

Sn ≤ n!
en−1

(log n)n
.

In particular, the last bound is enough to check that there are much fewer set partitions than
permutations, the ratio being bounded from abobe by a quantity of the forme−n log log n.
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In order to implement the saddle point strategy, integration will be carried out over a circle
of radiusr. First, observe that the functionF (z) is strongly concentrated near the real axis
since, withz = reiθ,

(27) |ez| = er cos θ,
˛̨
˛eez

˛̨
˛ ≤ eer cos θ

.

In particularF (reiθ) is exponentially smaller thanF (r) for any fixedθ 6= 0, whenr gets large.
We then set

h(z) = log

„
F (z)

zn+1

«
= ez − (n+ 1) log z,

and proceed to estimate the integral,

Fn =
1

2iπ

Z
F (z)

dz

zn+1
,

along the circle of radiusr = ζ.
The usual saddle point heuristic suggests to define the “range” of the saddle point by a

quantityθ0 ≡ θ0(n) such that the quadratic terms in the expansion ofh at r tend to infinity,
while the cubic terms tend to zero. In order to carry out the calculations, it is convenient to
express all quantities in terms ofr alone, which is possible sincen can be disposed of by means
of the relationn = 1 = rer. We find:

h′′(r) = er(1 + r−1), h′′′(r) = er(1− 2r2).

Thus,θ0 should be chosen such thatr2erθ20 →∞, r3erθ30 → 0, and the choicerθ0 = e−2r/5

is suitable. It is then easily verified from the bounds (27) that tails are exponentially small, so
that they can be neglected.

One then considers the central contribution,

F (0)
n :=

1

2iπ

Z

γ0

F (z)
dz

zn+1
,

whereγ0 is the part of the circlez = reiθ such that|θ| ≤ θ0 ≡ e−2r/5r−1. Since onγ0, the
third derivative is uniformlyO(er), one has there

h(reiθ) = h(r)− 1

2
r2θ2h′′(r) +O(r3θ3er).

This approximation can then be transported into the integral F (0), then tails can be completed
in the usual way. The net effect is the estimate

[zn]F (z) =
eh(r)

p
2πh′′(r)

`
1 +O

`
r3θ3er´´ ,

which, upon making the error term explicit rephrases, as follows.

PROPOSITIONVIII.2. The numberSn of set partitions of sizen satisfies

(28) Sn = n!
eeζ−1

ζn
p

2πζ(ζ + 1)eζ

“
1 +O(e−r/5)

”
,

whereζ is defined implicitly byζeζ = n+ 1, so thatζ = log n− log log n+ o(1).

Here is a numerical table of the exact valuesSn compared to the main termS◦
n of the

approximation (28):

n = 10 n = 100 n = 1000
S10 = 115975 S100

.
= 4.75853 · 10115 S1000

.
= 2.98990 · 101927

S◦
10

.
= 114204 I◦100

.
= 4.75537 · 10115 S◦

1000
.
= 2.99012 · 101927 .
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The error is about1.5% forn = 10, less than10−3 and10−4 for n = 100 andn = 1, 000.
This example is probably the most famous application of saddle point techniques to com-

binatorics, see [86, p. 104]. The asymptotic form in terms ofζ itself is the proper one as no
back substitution of an asymptotic expansion ofζ (in terms ofn and log n) can provide an
asymptotic expansion forSn solely in terms ofn. Regarding explicit representations in terms
of n, it is only log Sn that can be expanded as

1

n
log Sn = log n− log log n− 1 +

log log n

log n
+

1

log n
+O

 „
log log n

log n

«2
!
.

(Saddle point estimates often involve such implicitly defined quantities.) �

EXAMPLE 5. Fragmented permutations.These correspond toF (z) = exp(z/(1− z)). The
example illustrates the case of a singularity at a finite distance. We set as usual

h(z) =
z

1− z − (n+ 1) log z,

and start with saddle point bounds. The saddle point equation is

(29)
ζ

(1− ζ)2 = n+ 1,

so thatζ comes close to the singularity at1 asn gets large:

ζ =
2n+ 3−√4n+ 5

2n+ 2
= 1− 1√

n
+

1

2n
+O(n−3/2).

Here it is natural to take
bζ(n) = 1− 1√

n
,

leading to

[zn]F (z) ≤ e−1/2e2
√

n(1 + o(1)).

The saddle point method is then applied with integration along a circle of radiusr = ζ.
The saddle point heuristic suggests to localize the integral to a small sector of angle2θ0 and
sinceh′′(r) = O(n3/2) while h′′′(r) = O(n2), this means takingθ0 such thatn3/4θ0 → ∞
andn2/3θ0 → 0. For instance, the choiceθ0 = n−7/10 is suitable. Concentration is easily
verified: we have

˛̨
˛e1/(1−z)

˛̨
˛
z=reiθ

= e · exp

„
1− r cos θ

1− 2r cos θ + r2

«
,

which is a unimodal function ofθ for θ ∈ (−π, π). (The maximum of this function ofθ is of
orderexp((1− r)−1) attained atθ = 0; the minimum isO(1) attained atθ = π.) In particular,
along the saddle point circle, one has

(30)
˛̨
˛e1/(1−z)

˛̨
˛
z=reiθ

= O(exp
“√

n− n1/10
”
, r = 1− n−1/2, θ = n−7/10.

so that tails are exponentially small. Local expansions then enable us to justify the use of
the general saddle point formula (Theorem VIII.3) in this case. The net result is, withFn =
n![zn]F (z),

(31) Fn ∼ n!
e−1/2e2

√
n

2
√
πn3/4

,

which is onlyO(n−3/4) of the corresponding saddle point bound. The error of the saddle point
approximation is about 4%, 1%, 0.3% forn = 10, 100, 1000, respectively. �
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The expansion above has been extended by E. Maitland Wright [411, 412] to sev-
eral classes of functions with a singularity whose type is anexponential of a function
of the form(1 − z)−ρ. (For the case of (31), Wright [411] refers to an earlier article
of Perron published in 1914.) His interest was due, at least partly, to applications to
generalized partition asymptotics, of which the basic cases are discussed below.

� 14.Wright’s expansions.Here is a special case. Consider the function

F (z) = (1− z)−β exp

„
A

(1− z)ρ

«
, A > 0, ρ > 0.

Then, a saddle point analysis yields, e.g., whenρ < 1,

[zn]F (z) ∼ Nβ−1−ρ/2 exp (A(ρ+ 1)Nρ)p
2πAρ(ρ+ 1)

, N :=

„
n

Aρ

« 1
ρ+1

.

(The caseρ ≥ 1 involves more terms of the asymptotic expansion of the saddle point.) The
method generalizes to analytic and logarithmic multipliers, as well as to a sum of terms of the
formA(1− z)−ρ inside the exponential. See [412] for details. �

� 15.Some oscillating coefficients.Define the function

s(z) = sin

„
z

1− z

«
.

The coefficientssn = [zn]s(z) are seen to change sign atn = 6, 21, 46, 81, 125, 180, . . . . Do
signs change infinitely many times? (Hint: Yes. there are twocomplex conjugate saddle points
and their asymptotic form combine a growth of the formnaeb

√
n with an oscillating factor

similar tosin
√
n.)

The sum

Un =

nX

k=0

 
n

k

!
(−1)k

k!

exhibits similar fluctuations. �

EXAMPLE 6. Integer partitions.We are dealing here with a famous chapter of both asymp-
totic combinatorics and additive number theory3. A problem similar to that of asymptotically
enumerating partitions was first raised by Ramanujan in a letter to Hardy in 1913, and subse-
quently developed in a famous joint work of Hardy and Ramanujan (see the account in Hardy’s
Lectures[207]). The Hardy–Ramanujan expansion was later perfected by Rademacher who, in
a sense, gave an “exact” formula for the partition numbersPn.

Like before, we start with simple saddle point bounds. LetPn denote the number of integer
partitions ofn, with OGF

P (z) =
Y

j≥1

1

1− zj
.

3A complete derivation with all details would consume more space than what we can devote to this
questions. We outline here the proof strategy in such a way that (hoperfully) the reader can supply details
by herself. The cited references provide a complete treatment.
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A form amenable to bounding derives from the exp–log reorganization,

P (z) = exp

∞X

n=1

log(1− zn)−1

= exp

„
z

1− z +
1

2

z2

1− z2
+

1

3

z3

1− z3
· · ·
«

= exp

„„
1

1− z

«
·
„
z

1
+

z2

2(1 + z)
+

z3

3(1 + z + z2)
+ · · ·

««
.

The denominator of the general term satisfies, forx ∈ (0, 1),mxm−1 < 1+x+ · · ·+xm−1 <
m, so that

(32)
1

1− x
X

m≥1

x

m2
< logP (x) <

1

1− x
X

m≥1

xm

m2
.

This proves for realx→ 1 that

(33) P (x) = exp

„
π2

6(1− x) (1 + o(1)

«
,

given the elementary identity
P
m−2 = π2/6. The singularity type atz = 1 resembles that of

fragmented permutations in the previous example, and, at least, the growth along the real axis
is similar. An approximate saddle point is then

(34) bζ(n) = 1− π√
6n
,

which gives a saddle point bound

Pn ≤ exp
`
K
√
n(1 + o(1)

´
, K = π

r
2

3
.

Proceeding further involves transforming the saddle pointbounds into a saddle point anal-
ysis. Based on previous experience, we shall integrate along a circle of radiusr = bζ(n). To
do so, two ingredients are needed:(i) an approximation in the central range;(ii) bounds estab-
lishing that the functionP (z) is small away from the central range so that tails can be neglected
and completed. Assuming the expansion (32) to lift to an areaof the complex plane near the
real axis, the range of the saddle point should be analogous to what was found already for
exp(z/(1 − z)), so thatθ0 = n−7/10 will be adopted. Accordingly, we choose to integrate
along a circle of radiusr = bζ(n) given by (34) and define the central region byθ0 = n−7/10.
Under these conditions, the central region is seen under an angle that isO(n−1/5) from the
point z = 1.

(i) Central approximation. This requires a refinement of (32) tillo(1) terms as well as an
argument establishing a lifting to a region near the real axis. We setz = e−t and start with
t > 0. The function

L(t) := logP (e−t) =
X

m≥1

e−mt

m(1− e−mt)

is a harmonic sum which is amenable to Mellin transform techniques (as described in APPEN-
DIX B: Mellin transform, p. 646). The base function ise−t/(1 − e−t), the amplitudes are
the coefficients1/m and the frequencies are the quantitiesm figuring in the exponents. The
Mellin transform of the base function, as given in the appendix, is Γ(s)ζ(s). The Dirichlet
series associated to the amplitude frequency pairs is

P
m−1m−s = ζ(s+ 1), so that

L⋆(s) = ζ(s)ζ(s+ 1)Γ(s).
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FIGURE 5. Integer partitions. (Left) The surface|P (z)| with P (z) the OGF of integer
partitions. The plot shows the major singularity atz = 1 and smaller peaks corresponding
to singularities atz = −1, e±2iπ/3 and other roots of unity. (Right) A plot ofP (reiθ) for
varyingθ andr = 0.5, . . . , 0.75 illustrates the increasing concentration property ofP (z)
near the real axis.

ThusL(t) is amenable to Mellin asymptotics and one finds

(35) L(t) =
π2

6t
+

1

2
log t− log

√
2π − 1

24
t+O(t2), t→ 0+,

from the poles ofL⋆(s) at s = 1, 0,−1. This corresponds to an improved form of (33):

(36) logP (z) =
π2

6(1− z) +
1

2
log(1− z)− π2

12
− log

√
2π +O(1− z).

At this stage, we make a crucial observation:The precise estimate (35) extends whent lies in
any sector symmetric about the real axis, situated in the half-planeℜ(t) > 0, and with an
opening angle of the formπ − δ for an arbitrary δ > 0. This derives from the fact that the
Mellin inversion integral and the companion residue calculations giving rise to (35) extend to
the complex realm as long as|Arg(t)| < π

2
. (See the appendix on Mellin or the article [139].)

Thus, the expansion (36) holds throughout the central region given our choice of the angleθ0.
The analysis in the central region is then practically isomorphic to the one ofexp(z/(1 − z))
in the previous example, and it presents no special difficulty.

(ii) Bounds in the noncentral region.This is here a nontrivial task since half of the factors
enteringP (z) are infinite atz = −1, one third are infinite atz = e±2iπ/3, and so on. Accord-
ingly, the landscape of|P (z)| along a circle of radiusr that tends to 1 is quite chaotic. (See
Figure 5 for a rendering.) It is possible to extend the analysis of logP (z) near the real axis by
way of the Mellin transform to the casez = e−t−iφ ast → 0 andφ = 2π p

q
is commensurate
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to 2π. In that case, one must operate with

Lφ(t) =
X

m≥1

1

m

e−m(t+iφ)

1− e−m(t+iφ)
=
X

m≥1

X

k≥1

1

m
e−mk(t+iφ),

which is yet another harmonic sum. The net result is that when|z| tends radially towardse2πi p
q ,

thenP (z) behaves roughly like

(37) exp

„
π2

6q2(1− |z|)

«
,

which is a power1/q2 of the exponential growth asz → 1−1. This analysis extends to a small
arc. Considering a complete covering of the circle by arcs whose centres are of argument2π j

N
,

j = 1, . . . , N − 1, withN chosen large enough, makes it possible to bound the contribution of
the noncentral region and prove it to be exponentially small. There are many technical details
to be filled in order to justify this approach, so that we switch to a more synthetic one based on
transformation properties ofP (z), following [9, 12, 17, 207]. (Such properties also enter the
Hardy-Ramanujan-Rademacher formula forPn in an essential way.)

The fundamental identity satisfied byP (z) reads

(38) P (e−2πτ ) =
√
τ exp

„
π

12

„
1

τ
− τ
««

P (e−2π/τ ),

which is valid whenℜ(τ ) > 0. The proof is a simple rephrasing of a transformation formula of
Dedekind’sη (eta) function, summarized in Note 16 below.

� 16.Modular transformation for the Dedekindeta function. Consider

η(τ ) := q1/24
∞Y

m=1

(1− qm), q = e2πiτ ,

with ℑ(τ ) > 0. Thenη(τ ) satisfies the “modular transformation” formula,

(39) η

„
− 1

τ

«r
τ

i
η(τ ).

This transformation property is first proved whenτ is purely imaginaryτ = it, then extended
by analytic continuation. Its logarithmic form results from a residue evaluation of the integral

1

2πi

Z

γ

cotπs cotπ
s

τ

ds

s
,

with γ a large contour avoiding poles. (This elementary derivation is due to C. L. Siegel.)
Note. The functionη(τ ) satisfies transformation formulæ underS : τ 7→ τ + 1 andT :
τ 7→ −1/τ , which generate the group of modular (in fact “unimodular”)transformationsτ 7→
(aτ + b)/(cτ + d) with ad− bc = 1. Such functions are called modular forms. �

Given (38), the behaviour ofP (z) away from the positive real axis and near the unit circle
can now be quantified. We skip details and content ourselves with a representative special case,
the situation whenz → −1. Consider thusP (z) with z = e−2πt+iπ, where, for our purposes,
we may taket = 1√

24n
. Then, Equation (38) relatesP (z) toP (z′), with τ = t− i/2 and

z′ = e−2π/τ = exp

„
− 2πt

t2 + 1
4

«
eiφ, φ = − π

t2 + 1
4

.

Thus|z′| → 1 ast→ 0 with the important condition that|z′| − 1 = O
`
(|z| − 1)1/4

´
. In other

words,z′ has movedawayfrom the unit circle. Thus, since|P (z′)| < P (|z′|), we may apply
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the estimate (36) toP (|z′|) to the effect that

log |P (z)| ≤ π

24(1− |z|) (1 + o(1), (z → −1+).

This is an instance of what was announced in (37) and is in agreement with the surface plot of
Figure 5. The extension to an arbitrary angle presents no difficulty.

The two properties developed in(i) and(ii) above guarantee that the approximation (36)
can be used and that tails can be completed. We find accordingly that

Pn ∼ [zn]
e−π2/12

√
1− z exp

„
π2

6(1− z)

«
.

All computations done, this provides:

PROPOSITIONVIII.3. The numberpn of partitions of integern satisfies

(40) pn ≡ [zn]
∞Y

k=1

1

1− zk
∼ 1

4n
√

3
eπ
√

2n/3

The singular behaviour along and near the real line is comparable to that ofexp((1−z)−1),
which explains a growth likee

√
n for the number of integer partitions. �

The asymptotic formula (40) is only the first term of a complete expansion involv-
ing decreasing exponentials that was discovered by Hardy and Ramanujan in 1917 and
later perfected by Rademacher (see Note 18 below). While thefull Hardy–Ramanujan
expansion necessitates considering infinitely many saddle–points near the unit circle
and requires the modular transformation [9], the first term (40) only requires the as-
ymptotic expansion of the partition generating function nearz = 1.

� 17.A simple yet powerful formula.Define (cf [207, p. 118])

P ◦
n =

1

2π
√

2

d

dn

„
eKλn

λn

«
, K = π

r
2

3
, λn :=

r
n− 1

24
.

ThenP ◦
n approximatesPn with a relative precision of ordere−c

√
n for somec > 0. For

instance, the error is less than3 ·10−8 for n = 1000. [Hint: The transformation formula makes
it possible to evaluate the central part of the integral veryprecisely.] �

� 18.The Hardy–Ramanujan–Rademacher expansion.The number of integer partitions satis-
fies theexactformula

Pn =
1

π
√

2

∞X

k=1

Ak(n)
√
k
d

dn

sinh(π
k

q
2
3
(n− 1

24
))

q
n− 1

24

,

where Ak(n) =
X

h mod k,gcd(h,k)=1

ωh,ke
−2iπh/k,

ωh,k is a certain 24th root of unity,ωh,k = exp(πis(h, k)), andsh,k =

k−1X

µ=1

{{µ
k
}} {{hµ

k
}} is

known as a Dedekind sum, with{{x}} = x−⌊x⌋− 1
2
. Proofs are to be found in [9, 12, 17, 207].

�
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The principles underlying the partition example have been made into a general
method by Meinardus [282] in 1954. Meinardus’ method abstracts the essential fea-
tures of the proof and singles out sufficient conditions under which the analysis of an
infinite product generating function can be achieved. The conditions, in agreement
with the Mellin treatment of harmonic sums, requires analytic continuation of the
Dirichlet series involved inlogP (z) (or its analogue), as well as smallness towards
infinity of that same Dirichlet series. A summary of Meinardus’ method constitutes
Chapter 6 of Andrews treatise on partitions [9] to which the reader is referred. The
method applies to many cases where the summands and their multiplicities have a very
regular arithmetic structure.

� 19.Meinardus’ theorem.Consider the infinite product (an ≥ 0)

f(z) =

∞Y

n=1

(1− zn)−an .

The associated Dirichlet series isα(s) =
X

n≥1

an

ns
. Assume thatα(s) is continuable into a

meromorphic function toℜ(s) ≥ −C0 for someC0 > 0, with only a simple pole at some
ρ > 0 and residueA; assume also thatα(s) is of moderate growth in the half-plane, namely,
α(s) = O(|s|C1), for someC1 > 0 (as|s| → ∞ in ℜ(s) ≥ −C0). Let g(z) =

P
n≥1 anz

n

and assume a concentration condition of the form

ℜg(e−t−2iπy)− g(e−t) ≤ −C2y
−ǫ.

Then the coefficientfn = [zn]f(z) satisfies

fn = Cnκ exp
“
Knρ/(ρ+1)

”
, K = (1 + ρ−1)

ˆ
AΓ(ρ+ 1)ζ(ρ+ 1)

˜1/(ρ+1)
.

The constantsC, κ are:

C = eD′(0)(2π(1 + ρ))−1/2 [AΓ(ρ+ 1)ζ(ρ+ 1)](1−2D(0))/(2ρ+2) , κ =
D(0) − 1− 1

2
ρ

1 + ρ
.

The proof, details of the concentration condition, and error terms are to be found in [9, Ch 6].
�

� 20. Various types of partitions.The number of partitions into distinct odd summands,
squares, cubes, triangular numbers, are cases of application of Meinardus’ method. For instance
the method provides, for the numberQn of partitions intodistinct summands, the asymptotic
form

Qn ∼ eπ
√

n/3

4 · 31/4n3/4
.

The central approximation is obtained by a Mellin analysis from

L(t) := logQ(et) =

∞X

m=1

(−1)m

m

e−mt

1− e−mt
, L⋆(s) = −Γ(s)ζ(s)ζ(s+ 1)(1− 2−s),

L(t) ∼ π2

12t
− log

√
2 +

1

24
t..

(See the already cited references [9, 12, 17, 207].) �
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� 21. Plane partitions. A plane partition of a given numbern is a two-dimensional array of
integersni,j that are nonincreasing both from left to right and top to bottom and that add up
to n. The first few terms (EISA000219) are1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859 and P.
A. MacMahon proved that the OGF is

R(z) =
∞Y

n=1

(1− zn)−n.

Meinardus’ method applies to give

Rn ∼ (ζ(3)2−11)1/36n−25/36 exp
“
3 · 2−2/3ζ(3)1/3n2/3 + 2c

”
,

wherec = − e
4π2 (log(2π) + γ − 1).

See [9, p. 199] for this result due to Wright [410] in 1931. �

� 22.Partitions into primes.LetP (Π)
n be the number of partitions ofn into summands that are

all prime numbers,

P (Π)(z) =
∞Y

n=1

(1− z)−pn ,

wherepn is thenth prime (p1 = 2, p2 = 3, . . . ). The sequence starts as (EISA000607):

1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 30, 35, 40.

Then

(41) logP (Π)
n ∼

„
2

3

«1/2

π

„
n

log n

«1/2

(1 + o(1)) .

An upper bound of a form consistent with (41) can be derived elementarily as a saddle point
bound based on the property

X

n≥1

e−tpn ∼ t

log t
, t→ 0.

This last fact results either from the Prime Number Theorem or from a Mellin analysis based
on the fact thatΠ(s) :=

P
p−s

n satisfies, withµ(m) the Möbius function,

Π(s) =
∞X

m=1

µ(m) log ζ(ms).

(See Roth and Szekeres’ study [337] as well as Yang’s article [418] for relevant references and
recent technology.) This is in sharp contrast with compositions into primes (Chapter V) whose
analysis turned out to be especially easy. �

VIII. 5. Admissibility

The saddle point method is, as witnessed by the previous section, a very versatile
approach to the analysis of coefficients of fast-growing generating functions. How-
ever, it is often cumbersome to apply step-by-step. Fortunately, it proves possible to
encapsulate the conditions encountered in the analysis of the inverse factorial, invo-
lutions, and Bell numbers into a general framework. This leads to the notion of an
admissible function. By design, saddle point analysis applies to such functions and
asymptotic forms for their coefficients can be systematically determined. Such an ap-
proach was initiated by Hayman [210] whose steps we closely follow in this section.
A crisp account is also given in Section II.7 of Wong’s book [408] and in Odlyzko’s
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authoritative survey [301]. A great merit of abstraction in this context is that admis-
sible functions satisfy useful closure properties, so thatan infinite class of admissible
functions relevant for combinatorial applications can then be determined.

In this section, we principally base our discussion onH–admissibility (where the
prefixH is in recognition of Hayman’s original contributions). We consider here a
functionf(z) that is analytic at the origin and whose coefficient sequence[zn]f(z) is
to be estimated. As was done with previous examples, it proves convenient to switch
to polar coordinates and examine the expansion off(reiθ) when the argument is near
the real axis. The fundamental expansion in this context reads
(42)

log f(reiθ) = log f(r)+

∞∑

ν=1

αν(r)
(iθ)ν

ν!
, α0(r) = log f(r), αν(r) = r

d

dr
αν−1(r).

The most important quantities for saddle point analysis arethe first two terms,
a(r) = α1(r) andb(r) = α2(r). It proves convenient to operate withf(z) put into
exponential form,f(z) = eh(z), and a simple computation yields

(43) a(r) = rh′(r), b(r) = r2h′′(r) + rh′(r).

In terms off , itself, one has

a(r) = r
f ′(r)

f(r)
, b(r) = r

f ′(r)

f(r)
+ r2

f ′′(r)

f(r)
− r2(

f ′(r)

f(r)
)2.

Wheneverf(z) has nonnegative Taylor coefficients,a(r) and b(r) are positive for
r > 0. (This follows from an argument already encountered in (10).)

DEFINITION VIII.1 (Hayman–admissibility).Let f(z) have radius of convergenceρ
with 0 < ρ ≤ ∞ and be always positive on some subinterval]R0, ρ[ of ]0, ρ[. The
functionf(z) is said to beadmissibleif it satisfies the following three conditions.

H1. [Capture condition]lim
r→ρ

b(r) = +∞.

H2. [Locality condition]For some functionδ(r) defined over]R0, ρ[ and satis-
fying0 < δ < π, one has

f(reiθ) ∼ f(r)eiθa(r)−θ2b(r)/2 asr → R0,

uniformly in |θ| ≤ δ(r).
H3. [Decay condition]Uniformly in δ(r) ≤ |θ| < π

f(reiθ) = o

(
f(r)√
b(r)

)
.

Admissible functions in the above sense are also calledHayman admissibleor H–
admissible.

Coefficients ofH–admissible functions can be systematically analysed to first
asymptotic order as expressed by the following statement.

THEOREMVIII.5 (Coefficients of admissible functions).Letf(z) be anH–admissible
function andζ ≡ ζ(n) be the unique solution in the interval]R0, ρ[ of the the saddle
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point equation

ζ
f ′(ζ)

f(ζ)
= n.

The Taylor coefficients off(z) satisfy

(44) fn ≡ [zn]f(z) ∼ f(ζ)

ζn
√

2πb(ζ)
asn→ ∞

with b(z) = z2h′′(z) + zh′(z) andh(z) = log f(z).

The proof following Hayman’s original works bases itself ona general result that
describes the shape of the individual termsfnr

n in the Taylor expansion off(z) asr
gets closer to its limit valueρ. It turns out that the termsfnr

n exhibit a bell-shaped
profile. The asymptotic form (44) will then immediately result from a proper choice
of r.

LEMMA VIII.1. Asr tends toρ, one has

(45) fnr
n =

f(r)√
2πb(r)

[
exp

(
− (a(r) − n)2

b(r)

)
+ ǫn

]
,

where the error term satisfiesǫn = o(1) asr → ρ uniformly with respect to integers
n, i.e.,limr→ρ supn |ǫn| = 0.

PROOF. The coefficientsfn are given by Cauchy’s formula,

fnr
n =

1

2π

∫ 2π−δ

−δ

f(reiθ)e−inθ dθ,

whereδ = δ(n) is as specified by the admissibility definition. The estimation of this
integral is once more based on a fundamental split

fnr
n = I(0) + I(1) where I(0) =

1

2π

∫ +δ

−δ

, I(1) =
1

2π

∫ 2π−δ

+δ

.

From condition H3 (the “decay” condition), uniformly inn:

(46) I(1) = o

(
f(r)

b(r)1/2

)
.

On the other hand, condition H2 (the “locality” condition) gives uniformly inn:

(47)

I(0) =
f(r)

2π

∫ +δ

−δ

ei(a(r)−n)θ− 1
2 b(r)θ2

(1 + o(1)) dθ

=
f(r)

2π

[∫ +δ

−δ

ei(a(r)−n)θ− 1
2 b(r)θ2

dθ + o

(∫ +∞

−∞
e−

1
2 b(r)θ2

)]
.

The second integral in the last line of (47) isO(b(r)−1/2) asr → ρ. Rescaling the
first integral and setting(a(r) − n)(2/b(r))1/2 = c, we obtain

(48) I(0) =
f(r)

π
√

2b(r)

[∫ +δ
√

b(r)/2

−δ
√

b(r)/2

e−t2+ict + o(1)

]
.
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FIGURE 6. The families of Boltzmann distributions associated withinvolutions
(f(z) = ez+z2/2 with r = 4 . . 8) and set partitions (f(z) = eez−1 with r =
2 . . 3) obey an approximate Gaussian profile.

Now, it follows from conditions H2 and H3, both taken atθ = δ(r) thatb(r)δ2 →
∞ asr → ρ. Thus the integral in (48) can be extended to a complete Gaussian integral,
introducing onlyo(1) error terms. This entails

(49) I(0) =
f(r)

π
√

2b(r)

[∫ +∞

−∞
e−t2+ict + o(1)

]
,

and the Gaussian integral evaluates to
√
πe−c2/4 (by completing the square and shift-

ing vertically the integration line). Thus, combining the estimate (49) for the central
integral I(0) and the estimate (46) for the remainder integral, we obtain the stated
estimate (45). �

Theorem VIII.5 has a probabilistic content. There exists a family of discrete
random variablesX(r) indexed byr ∈ (0, R) and defined by

P(X(r) = n) =
fnr

n

f(r)
.

(The model indexed byr in which a randomF structures with GFf(z) is drawn with
its size being the random valueX(r) defines a Boltzmann model.) These random
variables asr → R thus approach a Gaussian limit; see Figure 6. The choice of a
suitabler for a given largen then suffices to complete the proof of the Theorem.
PROOF.[Proof of Theorem VIII.5] To establish the theorem, we firstobserve thata(r)
is increasing (as its derivativeb(r)/r is positive) and, in addition tends to infinity
(this results from settingn = 0 in formula (45)). Thusζ(n) is well–defined. Setting
r = ζ(n) in (45) then completes the proof of Theorem VIII.5. �

The rôle of the various conditions should be clear from the preceding discussion
and from the study of the exponential function. The choice ofthe functionδ(n) for a
particular problem is to be guided by consideration of the expansion (42). We must
have

α2(r)δ
2 → ∞ and α3(r)δ

3 → 0.
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This is because the method requires a nearly complete integral to arise while the error
terms after the quadratic part oflog f(reiθ) should be kept small enough. Thus, in
order to work, the method necessitatesa priori

(α3(r))
2

(α2(r))3
→ 0.

Then,δ should be taken in such a way that (≪ still means “much smaller than”)

(50)
1

α
1/2
2

≪ δ ≪ 1

α
1/3
3

,

a possible choice being the geometric mean of the two bounds

(51) δ(r) = α
−1/4
2 α

−1/6
3 .

The note below illustrates the fact thatH–admissibility and singularity analysis con-
ditions are in a sense complementary.

� 23. Non-admissible functions.The functionf(z) = (1 − z)−1 fails to be be admissible

as the asymptotic form that Theorem VIII.5 would imply is theerroneous[zn]
1

1− z
!!∼ e−1

√
2π
,

corresponding to a saddle point near1−n−1. The explanation of the discrepancy is as follows:
Expansion (42) hasαν(r) of the order of(1−r)−ν, so that the locality condition and the decay
condition cannot be simultaneously satisfied.

Singularity analysis salvages the situation by using a larger part of the contour and by
normalizing to a global Hankel Gamma integral instead of a more “local” Gaussian integral.
This is also in accordance with the fact that the saddle pointformula gives in the case of[zn](1−
z)−1 a fraction0.14676 of the true value, namely,1. (More generally, functions of the form
(1− z)−β are typical instances with too slow a growth to be admissible.) �

Other functions failing to satisfy the decay condition alone areez2

andez2

+ ez

as they are also large, away from the central arc and near the negative real axis.
A valuable characteristic of Hayman’s work is that it leads to general theorems

guaranteeing that large classes of functions are admissible.

THEOREMVIII.6 (Closure ofH–admissible functions).Letf(z) andg(z) be admis-
sible functions and letP (z) be a polynomial with real coefficients. Then:

• (i) The productf(z)g(z) and the exponentialef(z) are admissible functions.
• (ii) The sumf(z) + P (z) is admissible. If the leading coefficient ofP (z) is

positive thenf(z)P (z) andP (f(z)) are admissible.
• (iii) If the Taylor coefficients ofeP (z) are eventually positive, theneP (z) is

admissible.

PROOF. We refer to Hayman’s original paper [210] for full proofs that are not difficult.
They essentially reduce to making an inspired guess for the choice of theδ function,
which may be guided by Equations (50) and (51), and then checking the conditions of
the admissibility definition. For instance, in the case of the exponential,F (z) = ef(z),
the conditions H1, H2, H3 are satisfied if one takesδ(r) = (f(r))−2/5. �

The closure theorem gives back the known results regarding involutions and set
partitions (Bell numbers). It is also to be observed that theOGF of integer partitions
is admissible given our discussion of concentration properties in Example 6.
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� 24.Idempotent mappings.Consider functions from a finite set to itself (“mappings” or“func-
tional graphs” in the terminology of Chapter II) that are idempotent, i.e.,φ ◦ φ = φ. The EGF
is I(z) = exp(zez) since cycles are constrained to have length 1 exactly. The functionI(z) is
admissible and

In ∼ n!√
2πnζ

ζ−ne(n+1)/(ζ+1),

whereζ is the positive solution ofζ(ζ + 1)eζ = n + 1. This example is due to Harris and
Schoenfeld; see [208]. �

� 25. The number of societies.A society onn distinguished individuals is defined by Sloane
and Wieder [357] as follows: first partition then individuals into nonempty subsets and then
form an ordered set partition [preferential arrangement] into each subset. The class of societies
is thus specified byS = P (S≥1(P(Z))), and (labelled) societies are “third-level” structures
with EGF

S(z) = exp

„
1

2− ez

«
.

The sequence starts as1, 1, 4, 23, 173, 1602 (EIS75729); asymptotically

Sn ∼ C e
√

2n/ log 2

n3/4(log 2)n
,

for some computableC. (The singularity is of type “exponential-of-pole” atlog 2.) �

The closure theorem also implies as a very special case that any GF of the form
eP (z) with P (z) a polynomial with positive coefficients can be subjected to saddle
point analysis resulting in the estimate of Theorem VIII.5.This has been noted by
Moser and Wyman [292, 293] who list a number of combinatorial applications.

COROLLARY VIII.1 (Exponentials of polynomials).Let P (z) =
∑m

j=1 ajz
j have

nonnegative coefficients and be aperiodic in the sense thatgcd{j | aj 6= 0} = 1. Let
f(z) = eP (z). Then, one has

fn ≡ [zn]f(z) ∼ 1√
2πλ

eP (r)

rn
, where λ =

(
r
d

dr

)2

P (r),

andr is a function ofn given implicitly byr d
drP (r) = n.

The computations are purely mechanical as they involve the asymptotic expan-
sion (with respect ton) of an algebraic equation. This example covers involutions,
permutations of a fixed order in the symmetric group, permutations with cycles of
bounded length, as well as set partitions with bounded blocksizes. More generally,
Corollary VIII.1 applies to any labelled set construction,

F = P(G),

corresponding to the EGF equationF (z) = eG(z), when the sizes ofG–components
are restricted to a finite set. In that case, one has

F [m] = P
(
∪r

j=1Gj

)
, F [m](z) = exp




m∑

j=1

Gj
zj

j!



 ,

to which the exponential-of-polynomials schemes applies.This covers graphs (plain
or functional) whose connected components are of bounded size.
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� 26.Applications of “exponentials of polynomials”.Corollary VIII.1 applies to the following
combinatorial situations:

Permutations of orderp (σp = 1) f(z) = exp
“P

j | p
zj

j

”

Permutations with longest cycle≤ p f(z) = exp
“Pp

j=1
zj

j

”

Partitions of sets with largest block≤ p f(z) = exp
“Pp

j=1
zj

j!

”
.

For instance, the number of solutions ofσp = 1 in the symmetric group satisfies

fn ∼
“n
e

”n(1−1/p)

p−1/2 exp(n1/p),

for any fixed primep ≥ 3 (Moser and Wyman [292, 293]). �

Complete asymptotic expansions.Harris and Schoenfeld have introduced in [208]
a technical condition of admissibility that is stronger than Hayman admissibility and
is calledHS-admissibility. Under suchHS-admissibility, a complete asymptotic ex-
pansion can be obtained. We omit the definition here due to itstechnical character
but refer instead to the original paper [208] and to Odlyzko’s survey [301]. Odlyzko
and Richmond [302] later showed that, ifg(z) isH–admissible, thenf(z) = eg(z) is
HS–admissible. Thus, takingH–admissibility to mean at least exponential growth,
full asymptotic expansions are to be systematically expected at double exponential
growth and beyond.

A range of application is to nested structures generalizinginteger partitions and
set partitions. For instance, in addition to set partitions, superpartitions (of sets) de-
fined as

S = P(P≥1(P≥1(Z))), with EGF S(z) = eeez−1−1,

can be subjected to this theory and saddle point estimates apply a priori.

� 27. Third-level classes.Consider labelled classes defined from atoms (Z) by threenested
constructions of the formK◦K′

≥1 ◦K′′
≥1, where eachK,K′,K′′ is either a set(P) or a sequence

(S) construction. All cases can be analysed, either by saddle point and admissibility (SP) or
by singularity analysis (SA). Here is a table recapitulating structures, together with their EGF,
radius of convergence (ρ), and analytic type.

PPP eeez−1−1 ρ =∞ (SP) SPP 1
2−eez−1 ρ = 1 + log log 2 (SA)

PPS eez/(1−z)−1 ρ = 1 (SP) SPS 1

2−ez/(1−z) ρ = log 2
1+log 2

(SA)

PSP exp( 1
2−ez ) ρ = log 2 (SP) SSP 2−ez

3−2ez ρ = log 3
2

(SA)

PSS ez/(1−2z) ρ = 1
2

(SP) SSS 1−2z
1−3z

ρ = 1
3

(SA)

The outermost construction dictates the analysis type and precise asymptotic equivalents can be
developed in all cases. �

VIII. 6. Combinatorial averages and distributions

Saddle point methods are useful not only for estimating combinatorial counts as
we have seen so far, but also for extracting asymptotically probabilistic characteristics
of combinatorial structures. This subject may be organizedalong two major lines
dictated by analysis:
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— Univariate problems: These include the analysis of generating functions that
encode information relative to moments of distributions and are obtained by
differentiating multivariate generating functions. In the context of saddle
point analyses, the dominant asymptotic form of the mean value as well as
bounds on the variance usually result, leading in many casesto concentra-
tion of distribution (convergence in probability) results.

— Families of univariate problems: These correspond to situations where the
GF of a structure with parameter value equal to or bounded by some quan-
tity b gives rise to a family (indexed byb) of generating functions that are
amenable to either saddle point bounds or even to the complete saddle point
method.

Problems a true multivariate nature will be examined in the next chapter dedicated to
multivariate asymptotics and limit distributions.

VIII. 6.1. Moment analyses. In cases where a counting generating functionF (z)
succumbs to saddle point methods, e.g., by being admissible, there are usually a num-
ber of associated parameters such that the bivariate GFF (z, u), which is a deforma-
tion of F (z, u) whenu is close to 1, will also be amenable to a saddle point analysis.
In particular the GFs

∂uF (z, u)|u=1 , , ∂2
uF (z, u)

∣∣
u=1

, . . . ,

relative to successive (factorial) moments are likley to beamenable to an analysis
that closely resembles that ofF (z) itself. In this way, moments can be estimated
asymptotically. We illustrate this point by the number of blocks in set partitions.

EXAMPLE 7. Blocks in random set partitions.The function

f(z, u) = eu(ez−1)

is the bivariate generating function of set partitions withu marking the number of blocks also
called parts. We setf(z) = f(z, 1) and define

g(z) =
∂

∂u
f(z, u)

˛̨
˛̨
u=1

= eez+z−1.

Thus, the quantity
gn

fn
=

[zn]g(z)

[zn]f(z)

represents the mean number of parts in a random partition of[1 . . n]. We already know thatf(z)
is admissible and so isg(z) by closure properties. The saddle point for the coefficient integral
of f(z) occurs atζ such thatζeζ = n, and it is already known thatζ = log n−log log n+o(1).

It would be possible to analyzeg(z) by means of Theorem VIII.5 directly: the analysis
then involves a saddle pointζ1 6= ζ that is relative tog(z). An analysis of the mean would
then follow, albeit at some computational effort. It is however more transparent to appeal to
Lemma VIII.1 and analyse the coefficients ofg(z) at the saddle point off(z).

Let a(r), b(r) and a1(r), b1(r) be the functions of Eq. (43) relative tof(z) and g(z)
respectively:

log f(z) = ez − 1 log g(z) = ez + z − 1
a(r) = rer a1(r) = rer + r = a(r) + r
b(r) = (r2 + r)er b1(r) = (r2 + r)er + r = b(r) + r.
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Thus, estimatinggn by Lemma VIII.1 with the formula taken atr = ζ, one finds

gn =
eζf(ζ)p
2πb1(ζ)

»
exp

„
− ζ2

b1(ζ)

«
+ o(1)

–
,

while the corresponding estimate forfn is

fn =
f(ζ)p
2πb1(ζ)

[1 + o(1)].

Given thatb1(ζ) ∼ b(ζ) and thatζ2 is of much smaller order thanb1(ζ), one has
gn

fn
= eζ(1 + o(1)) =

n

log n
(1 + o(1)).

A similar computation applies to the second moment of the number of parts which is
found to be asymptotic toe2ζ (the computation involves taking a second derivative). Thus, the
standard deviation of the number of parts is of an ordero(eζ) that is smaller than the mean.
This implies a concentration property for the distributionof the number of parts.

PROPOSITIONVIII.4. The variableXn equal to the number of parts in a random partition of
[1 . . n] has expectation

E{Xn} =
n

log n
(1 + o(1)).

The distribution satisfies a “concentration” property: foranyǫ > 0, one has

P

˛̨
˛̨ Xn

E{Xn}
− 1

˛̨
˛̨ > ǫ

ff
→ 0 asn→ +∞.

The analysis of higher moments is not difficult but it requires care in the manipulation of
asymptotic expansions: for instance, Salvy and Shackell [346] who “do it right” report that two
discrepant estimates (differing by a factor ofe−1) had been previously published regarding the
value of the mean. �

� 28.Moments of the number of blocks in set partitions.LetXn be the number of blocks in a
random partition ofn elements. Then, one has

E(Xn) =
n

log n
+
n log log n (1 + o(1))

log2 n
, V(Xn) =

n

log2 n
+
n(2 log log n− 1 + o(1))

log2 n
,

which proves concentration. The calculation is best performed in terms of the saddle pointζ,
then converted in terms ofn. [See Salvy’s étude [345].] �

� 29. The shape of random involutions.Consider a random involution of sizen, the EGF of
involutions beingez+z2/2. Then the mean number of 1-cycles and 2-cycles satisfy

E(# 1-cycles) =
√
n+O(1), E(# 2-cycles) =

1

2
n+O(

√
n).

In addition, the corresponding distributions are concentrated. �

� 30. Mean number of parts in integer partitions.The mean number of parts (or summands)
in a random integer partition of sizen is

1

K

√
n log n+O(n1/2), K = π

r
2

3
.

For a partition into distinct part, the mean number of parts is

2
√

3 log 2

π

√
n+ o(n1/2).
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The complex-analytic proof only requires the central estimates oflogP (e−t) andlogQ(e−t),
given the concentration properties, as well as the estimates

X

m≥1

e−mt

1− e−mt
∼ − log t+ γ

t
+

1

4
,
X

m≥1

(−1)m−1 e−mt

1− e−mt
∼ log 2

t
− 1

4
,

which result from a standard Mellin analysis, the respective transforms being

Γ(s)ζ(s)2, Γ(s)(1− 21−s)ζ(s)2.

Full asymptotic expansions of the mean and of moments of any order can be determined. In
addition, the distributions are concentrated around theirmean. (The first order estimates are
due to Erdős and Lehner [118] who gave an elementary derivation and also obtained the limit
distribution of the number of summands in both cases: they are a double exponential (forP )
and a Gaussian (forQ).) �

The next example illustrates a simple—but partial—approach based on saddle
points to a famous problem of combinatorial theory. In that case, a generating function
for the first moments is directly obtained.

EXAMPLE 8. Increasing subsequences in permutations.Given a permutation written in linear
notation asσ = σ1 · · ·σn, an increasing subsequence is a subsequenceσi1 · · ·σik which is in
increasing order, i.e.,i1 < · · · < ik andσi1 < · · ·σik . The question asked is:What is the
mean number of increasing subsequences in a random permutation?

The problem has a flavour analogous to that of “hidden” patterns in random words, which
was tackled in Chapter V, and indeed similar methods are applicable to determine moments of
the number of increasing subsequences. Define atagged permutationas a permutation together
with one of its increasing subsequence distinguished. (We also consider the null subsequence
as an increasing subsequence.) For instance,

7 |3 5 2 |6 4 1 |8 9

is a tagged permutation with the increasing subsequence368 that is distinguished. The vertical
bars are used to identifty the tagged elements, but they may also be interpreted as decomposing
the permutation into subpermutation fragments. We letT be the class of tagged permutations,
T (z) be the corresponding EGF, and setTn = n![zn]T (z). Themeannumber of increasing
subsequences in a random permutation of sizen is clearlytn = Tn/n!.

In order to enumerateT , we letP be the class of all permutations andP+ the subclass of
non empty permutations. Then, one has up to isomorphism,

T = P ⋆ set (P+),

since a tagged permutation can be reconstructed from its initial fragment and theset of its
fragments (by ordering the set according to increasing values of initial elements). This combi-
natorial argument gives the EGFT (z) as

T (z) =
1

1− z exp

„
z

1− z

«
.

The generating functionT (z) can be expanded, so that the quantityTn admits a closed
form,

Tn =
nX

k=0

 
n

k

!
n!

k!
.

From there it is possible to analyseTn adntn asymptotically by means of the Laplace method
for sums. However, analytically, the functionT (z) is a mere variant of the EGF of fragmented
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permutations. Saddle point conditions are again easily checked, either directly or via admissi-
bility, to the effect that

(52) tn ≡ Tn

n!
∼ e−1/2e2

√
n

2
√
πn1/4

.

(Compare with the closely related estimate (31) on p. 479.) The result is originally due to
Lifschitz and Pittel [264] who obtained it using real analytic methods.

This analysis provides information about an important and much less accessible parameter,
λ(σ), representing thelength of the longest increasing subsequencein σ If ι(σ) is the number
of increasing subsequences, then one has

2λ(σ) ≤ ι(σ),

since the number of increasing subsequences ofσ is at leastas large as the number of subse-
quences contained in thelongestincreasing subsequence. Letℓn be the expectation ofλ over
permutations of sizen. Then, by convexity of the function2x, one has

(53) 2ℓn ≤ tn, so that ℓn ≤ 2

log 2

√
n(1 + o(1)),

by (52). In summary:

PROPOSITIONVIII.5. The mean number of increasing subsequences in a random permutation
of n elements is asymptotically

e−1/2e2
√

n

2
√
πn1/4

(1 + o(1)) .

Accordingly, the expected length of the longest increasingsubsequence in a random permutation
of sizen satisfies the inequality

ℓn ≤ 2

log 2

√
n(1 + o(1)).

�

� 31.A useful recurrence.A decomposition according to the location ofn yields the recurrence

tn = tn−1 +
1

n

n−1X

k=0

tk, t0 = 1.

HenceT (z) satisfies the ordinary differential equation,

(1− z)2 d
dz
T (z) = (2− z)T (z), T (0) = 1,

which can be solved explicitly. Also the differential equation gives rise to the recurrence

tn+1 = 2tn − n

n+ 1
tn−1, t0 = 0, t1 = 2,

by whichtn can be computed efficiently in a linear number of operations. �

� 32.Related combinatorics.The sequence of values ofTn starts as1, 2, 7, 34, 209, 1546, 13327,
and isEISA002720. It counts the following equivalent objects:(i) then × n binary matrices
with at most one entry1 in each column;(ii) the partial matchings of the complete bipartite
graphKn,n; (iii) the injective partial mappings of[1 . . n] to itself. �
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� 33. A simple probabilistic lower bound.Elementary probability theory provides a simple
lower bound onℓn. Let X1, . . . ,Xn be independent random variables uniformly distributed
over [0, 1]. Assumen = m2. Partition[0, 1[ into m subintervals each of the form[ j−1

m
, j

m
[

andX1, . . . ,Xn intom blocks, each of the formX(k−1)m+1, . . . ,Xkm. There is a probability
1−(1−m−1)m ∼ 1−e−1 that block numbered 1 contains an element of subinterval numbered
1, block numbered 2 contains an element of subinterval numbered 2, and so on. Then, with
high probability, at leastm

2
of the blocks contain an element in their matching subinterval.

Consequently,ℓn ≥ 1
2

√
n. (The factor1

2
can even be improved a little.) The crisp booklet

by Steele [365] describes many similar as well as more advanced applications to combinatorial
optimization. See also the book of Motwani and Raghavan [294] for applications to randomized
algorithms in computer science. �

The upper bound obtained on the expected lengthℓn of the longest increasing
sequence is of the form2.89

√
n while Note 33 describes a lower bound of the form

ℓn ≥ 1
2

√
n. In fact, Logan and Shepp [266] independently of Vershik and Kerov [395]

have succeeded in establishing the much more difficult result

ℓn ∼ 2
√
n.

Their proof is based on a detailed analysis of the profile of a random Young tableau.
(The bound obtained here by a simple mixture of saddle point estimates and combi-
natorial approximations at least provides the right order of magnitude.) This has led
in turn to attempts at characterizing the asymptotic distribution of the length of the
longest increasing subsequence. The problem remained unsolved for two decades,
despite many tangible progresses. J. Baik, P. A. Deift, and K. Johansson [18] even-
tually obtained a solution (in a publication dated 1999) by relating longest increasing
subsequences to eigenvalues of random matrix ensembles. Weregretfully redirect the
reader to presentations of the beautiful theory surrounding this sensational result, for
instance [6, 89].

� 34.The Baik–Deift-Johansson Theorem.Consider the Painlevé II equationu′′(x) = 2u(x)3+
xu(x), and the particular solutionu0(x) that is asymptotic to−Ai(x) asx→ +∞, with Ai(x)
the Airy function which solvesy′′ − xy = 0. Define the Tracy–Widom distribution (arising in
random matrix theory)

F (t) = exp

„Z ∞

t

(x− t)u0(x)
2 dx

«
.

Then, the distribution of the length of the longest increasing subsequence,Ln satisfies for all
fixed t:

lim
n→∞

P

“
Ln ≤ 2

√
n+ tn1/6

”
= F (t).

Thus the discrete random variableLn converges to a well-characterized distribution [18]. �

VIII. 6.2. Families of univariate problems. We shall content ourselves with
giving a single example related to random allocations, occupancy statistics, and balls-
in-bin models that were already discussed in Chapter II. In addition, we limit ourselves
to the use of saddle point bounds.

EXAMPLE 9. Capacity in occupancy problems.Assume thatn balls are thrown inton bins,
uniformly at random. How many balls does the most filled bin contain? We shall in fact deal
with a generalized version of the problem wheren balls are thrown intom bins, in the regime
n = αm for some fixedα in (0,+∞). The size of the most filled bin will be called thecapacity
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FIGURE 7. Three random allocations ofn = 50 balls inm = 50 bins.

and we letCn,m denote the random variable, when allmn tables are taken equally likely. Under
our conditions a random bin contains on average a constant number,α, of balls. The proposition
below proves that the most filled bin has somewhat more, as exemplified by Figure 7.

PROPOSITIONVIII.6. Let n andm tend simultaneously to infinity, with the constraint that
n
m

= α remains constant. Then, the expected capacity satisfies

1

2

log n

log log n
(1 + o(1)) ≤ E{Cn,m} ≤ 2

log n

log log n
(1 + o(1)).

In addition, the probability of capacity to lie outside the interval determined by the lower and
upper bounds tends to 0 asm,n→∞.

PROOF. We detail the proof whenα = 1 and abbreviateCn = Cn,m. From Chapter II, we
know that

(54)

8
><
>:

P{Cn ≤ b} =
n!

nn
[zb](eb(z))

n

P{Cn > b} =
n!

nn
(enz − (eb(z))

n),

whereeb(z) is the truncated exponential:

eb(z) =
bX

j=0

zj

j!
.

The two equalities of (54) permit us to bound the left and right tails of the distribution. As
suggested by the Poisson approximation of balls-in-bins model, we decide to adopt saddle point
bounds based onz = 1. This gives

(55)

8
>><
>>:

P{Cn ≤ b} ≤ n!en

nn

„
eb(1)

e

«n

P{Cn > b} ≤ n!en

nn

„
1−

„
eb(1)

e

«n«
.

We set

(56) ρb(n) =

„
eb(1)

e

«n

.

This quantity represents the probability thatn Poisson variables of rate 1 all have valueb or less.
(We know for elementary probability theory that this shouldbe a reasonable approximation of
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the problem at hand.) A weak form of Stirling’s formula, namely, n!en

nn < 2
√
πn (n ≥ 1),

then yields an alternative version of (55),

(57)


P{Cn ≤ b} ≤ 2

√
πnρb(n)

P{Cn > b} ≤ 2
√
πn (1− ρb(n)).

For fixedn, the functionρb(n) increases steadily frome−n to 1 asb varies from0 to∞.
In particular, the “transition region” whereρb(n) stays away from both 0 and 1 is expected to
play a rôle. This suggests definingb0 ≡ b0(n) such that

b0! ≤ n < (b0 + 1)!,

so that

b0(n) =
log n

log log n
(1 + o(1)).

We also observe that, asn, b→∞, there holds

(58)
ρb(n) = (e−1eb(1))

n =

„
1− e−1

(b+ 1)!
+O(

1

(b+ 2)!
)

«n

= exp

„
− ne−1

(b+ 1)!
+O(

n

(b+ 2)!
)

«
.

Left tail. We takeb = ⌊ 1
2
b0⌋ and a simple computation from (58) shows that forn large

enough,ρb(n) ≤ exp(− 3
√
n). Thus, by the first inequality of (57), the probability that the

capacity be less than1
2
b0 is exponentially small:

(59) P{Cn ≤ 1

2
b0(n)} ≤ 2

√
πn exp(− 3

√
n).

Right tail. Takeb = 2b0. Then, again from (58), forn large enough, one has1− ρb(n) ≤
1− exp(− 1

n
) = 1

n
(1 + o(1)). Thus, the probability of observing a capacity that exceeds2b0

is vanishingly small, and isO(n−1/2). Taking nextb = 2b0 + r with r > 0, similarly gives the
bound

(60) P{Cn > 2b0(n) + r} ≤ 2

r
π

n

„
1

b0(n)

«r

.

The analysis of the left and right tails in Equations (59) and(60) now implies

(61)

8
>>>><
>>>>:

E{Cn} ≤ 2b0(n) +
∞X

r=0

2

r
π

n
(b0(n))−r = 2b0(n)(1 + o(1))

E{Cn} ≥
⌊ 1
2

b0(n)⌋X

r=0

ˆ
1− 2

√
πn exp(− 3

√
n)
˜

=
1

2
b0(n)(1 + o(1)).

This justifies the claim of the proposition whenα = 1. The general case (α 6= 1) follows
similarly from saddle point bounds taken atz = α. �

The saddle point bounds described above are obviously not tight, with some care in deriva-
tions, one can show by the same means that the distribution isconcentrated aroundlog n/ log log n.
In addition, the saddle point method may be used instead of crude bounds. The net effect is: the
expected capacity satisfies, for any fixedα = n/m:

E{Cn,m} ∼ log n

log log n
.

This result, in the context of longest probe sequences in hashing, was obtained by Gonnet [191]
under the Poisson model. Many key estimates regarding random allocations (including ca-
pacity) are to be found in the book by Kolchinet al. [253]. Analyses of the type discussed
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FIGURE 8. The coefficients[zN ]enz whenn = 100 andN = 0 . . 200 have a
bell-shaped aspect. (The coefficients are normalized bye−n.)

above are also useful in evaluating various dynamic hashingalgorithms by saddle point meth-
ods [130, 331]. �

VIII. 7. Variations on the theme of saddle points

We conclude this chapter with extensions of the basic paradigm in two major
directions. First, we discuss perturbations of the basic saddle point paradigm in the
case of large powers (Subsection VIII. 7.1): this paves the way for the analysis of
Gaussian laws in the next chapter, where the rich framework of “Quasi-Powers” plays
a central rôle in so many combinatorial applications. Nextwe examine the case of
higher order saddle points (Subsection VIII. 7.2). We conclude this section with brief
indications on what is known as phase transitions or critical phenomena in the applied
sciences and as uniform asymptotics in the applied mathematics literature: technically,
this involves a combination of multiple saddle points and perturbation theory.

VIII. 7.1. Large powers and Gaussian forms.Saddle point analysis has conse-
quences for multivariate asymptotics and is a direct way of proving that many discrete
distributions tend to the Gaussian law in the asymptotic limit. For large powers, this
property derives painlessly from our earlier developments, especially Theorem VIII.4,
by means of a “perturbation” analysis.

First, let us examine a particularly easy problem:How do the coefficients of
[zN ]enz vary as a function ofN whenn is some large but fixed number?These
coefficients are

c
(n)
N = [zN ]enz =

nN

N !
.

By the ratio test, they have a maximum whenN ≈ n and are small whenN differs
significantly fromn; see Figure 8. The bell-shaped profile is also apparent on the
figure and is easily verified by real analysis. The situation is then similar to what
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is already known of the binomial coefficients on thenth line of Pascal’s triangle,
corresponding to[zn](1 + z)n with N varying.

The asymptotically Gaussian character of coefficients of large powers is actually
universal amongst a wide class of analytic functions. We prove this within the frame-
work of large powers already investigated in Section VIII. 4and consider the general
problem of estimating the coefficients[zN ] (A(z) · B(z)n) asN varies. In accordance
with Section VIII. 4, we postulate the following:(C1): A(z), B(z) are analytic at 0
and have nonnegative coefficients;(C2): A(z) is aperiodic;(C3) The radius of con-
vergenceR ofB(z) is a minorant of the radius of convergence ofA(z). We also recall
that thespreadhas been defined as

T := lim
x→R−

xB′(x)

B(x)
.

THEOREM VIII.7 (Large powers and Gaussian forms).Consider the “large powers”
coefficients:

(62) c
(n)
N := [zN ] (A(z) ·B(z)n) .

Assume that the two analytic functionsA(z), B(z) satisfy the conditions(C1), (C2),
and (C3) above. Assume also that the radius of convergence ofB satisfiesR > 1.
Define the two constants:

µ =
B′(1)

B(1)
, σ2 =

B′′(1)

B(1)
+
B′(1)

B(1)
−
(
B′(1)

B(1)

)2

(σ > 0).

Then the coefficientsc(n)
N for fixedn asN varies have an asymptotically Gaussian

profile in the precise sense that forN = µn+ x
√
n, there holds (asn→ ∞)

(63)
1

A(1)B(1)n
c
(n)
N =

1

σ
√

2πn
e−x2/(2σ2)

(
1 +O(n−1/2)

)
,

uniformly with respect tox, whenx belongs to a finite interval of the real line.

PROOF. We start with a few easy observation that shed light on the global behaviour
of the coefficients. First, sinceR > 1, we have the exact summation,

∞∑

N=0

C
(n)
N = A(1)B(1)n,

which explains the normalization factor in the estimate (63). Next, by definition of the
spread and sinceR > 1, one has

µ =
B′(1)

B(1)
< T = lim

x→R−

xB′(x)

B(x)
,

given the general property thatxB′(x)/B(x) is increasing. Thus, the estimation of
the coefficients in the rangeN = µn±O(

√
n) falls into the orbit of Theorem VIII.4

which expresses the results of the saddle point analysis in the case of large powers.
Referring to the statement of Theorem VIII.4, the saddle point equation is

ζ
B′(ζ)

B(ζ)
=
B′(1)

B(1)
+

x√
n
,
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with ζ a function ofx andn. Forx in a bounded set, we thus haveζ ∼ 1 asn→ ∞. It
then suffices to effect an asymptotic expansion of the quantitiesζ, A(ζ), B(ζ), ξ in the
saddle point formula of Equation (23). In other words, the fact thatN is close toµn
induces forζ a small perturbation with respect to the value 1. Withaj := A(j)(1) and
bj := B(j)(1), one finds mechanically

ζ = 1 +
b20

b0b2 + b0b1 − b1
2

x√
n

+O(n−1)

B(ζ)

ζµ
= b0 +

x2

2n

b30
b0b2 + b0b1 − b1

2 +O(n−3/2),

and so on. The statement follows. �

Take firstA(z) ≡ 1. In the particular case whenB(z) is the probability generating
function of a discrete random variableY , one hasB(1) = 1, and the coefficient
µ = B′(1) is the mean of the distribution. The functionB(z)n is then the probability
generating function (PGF) of a sum ofn independent copies ofY . Theorem VIII.7
then describes a Gaussian approximation of the distribution of the sum near the mean.
Such an approximation is called alocal limit law, where the epithet “local” refers
to the fact that the estimate applies to the coefficients themselves. (In contrast, an
approximation of the partial sums of the coefficients by the Gaussian error function
is known as acentral limit law or as anintegral limit law.) In the more general
case whereA(z) is also a probability generating function of a nondegenerate random
variable (i.e.,A(z) 6= 1), similar properties hold and one has:

COROLLARY VIII.2 (Local limit law for sums). Let X be a random variable with
probability generating function (PGF)A(z) andY1, . . . , Yn be independent variables
with PGFB(z), wheer it is assumed thatX and theYj are supported onZ≥0. Assume
thatA(z) andB(z) are analytic in some disc that contains the unit disc in its interior
and thatB(z) is aperiodic. Then the sum,

Sn := X + Y1 + Y2 + · · · + Yn,

satisfies a local limit law of the Gaussian type: Forx in any finite interval, one has

P
(
Sn = ⌊µn+ tσ

√
n⌋
)

=
e−t2/2

√
2πn

(
1 +O(n−1/2)

)
.

PROOF. This is just a restatement of Theorem VIII.7, settingx = tσ and taking into
accountA(1) = B(1) = 1. �

� 35. An alternative proof.The saddle pointζ is near 1 whenN is near the centreN ≈ µn.
It is alternatively possible to recover thec(N)

n by Cauchy’s formula upon integrating along the
circle |z| = 1, which is then only anapproximatesaddle point contour. This convenient variant
is often used in the literature, but one needs to take care of linear terms in expansions. Its origins
go back to Laplace himself in his first proof of the local limittheorem (which was expressed
however in the language of Fourier series as Cauchy’s theorywas yet to be born). See Laplace’s
treatiseThéorie Analytique des Probabilités[261] first published in 1812 for much fascinating
mathematics. �

Gaussian forms for large powers admit many variants. As already pointed out
in Section VIII. 4, the positivity conditions can be greatlyrelaxed. Also, estimates
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for partial sums of the coefficients are possible by similar techniques. The asymp-
totic expansions can be extended to any order. Finally, suitable adaptations of The-
orems VIII.4 and VIII.7 make it possible to allowx to tend slowly to infinity and
manage what is known as a “moderate deviation” regime. We do not pursue these as-
pects here since we shall develop a more general framework, that of “Quasi-Powers”
in the next chapter.

VIII. 7.2. Multiple saddle points. All the analyses carried out so far have been
in terms of simple saddle points, which is by far the most common situation. In order
to get a feel of what to expect in the case of multiple saddle points, consider first the
problem of estimating the tworeal integrals,

In :=

∫ 1

0

(1 − x2)n dx, Jn :=

∫ 1

0

(1 − x3)n dx.

(For the purpose of this discussion, we ignore the fact that the integrals can be eval-
uated in closed form by way of the Beta function.) The contribution of any interval
[x0, 1] is exponentially small, and the ranges to be considered on the right of 0 are a
little overO(n−1/2) andO(n−1/3), respectively. One thus sets

x =
t

2
√
n

for In, x =
t

3
√
n

for Jn.

Then local expansions apply, tails can be completed in the usual way, to the effect that

In ∼ 1
2
√
n

∫ ∞

0

e−t2 dt, Jn ∼ 1
3
√
n

∫ ∞

0

e−t3 dt.

The integrals reduce to the ones defining the Gamma function,which provides the
final estimates

In ∼ 1

2

Γ(1
2 )

n
1
2

, Jn ∼ 1

3

Γ(1
3 )

n
1
3

.

The repeated occurrences of1
2 in the quadratic case and of1

3 in the cubic case stand
out. The situation in the cubic case is typical of the Laplacemethod for integrals when
a multiple critical point is present.

What has been just encountered in the case of real integrals is representative of
what to expect forcomplexintegrals and saddle points of higher orders. Consider, for
simplicity, the case of a double saddle point of an analytic functionf(z). At such a
point z0, we havef(z0) 6= 0, f ′(z0) = f ′′(z0) = 0, andf ′′′(z0) 6= 0. Then, there
are three steepest descent lines emanating from the saddle point and three steepest
ascent lines. Accordingly, one should think of the landscape of |f(z)| as formed of
three “valleys” separated by three mountains and meeting atthe common pointz0.
The characteristic aspect is that of of a “monkey saddle” (comparable to a saddle with
places for two legs and a tail) and is displayed in Figure 9.

In view of the previous discussion, we can enounce a modified form of the saddle
point formula of Theorem VIII.3:Consider an integralI =

∫ B

A F (z) dz, where the
integrandF (z) = ef(z) is an analytic function andA,B lie in opposite valleys across
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FIGURE 9. Two views of a double saddle point also known as “monkey saddle”.

a doublesaddle pointz0. Then assuming that tails can be neglected and completed
back, and that a fourth-order expansion applies, one has

(64)
1

2iπ

∫ B

A

ef(z) dz ∼ ±ωΓ(1
3 )

2iπ

ef(z0)

3
√
|f ′′′(z0)|

.

There,ω is a cube root of unity (ω3 = 1) dependent upon the position of the contour
that results from the original contour linkingA andB, while the sign± depends on
orientation. The approach to formula (64) consists simply in carrying out the integra-
tion of ∫

C

exp

(
1

3!
f ′′′(z0)(z − z0)

3

)
dz,

with C made of the two rays parametrized byte2ijπ/3, te2ij′π/3 for t ∈ R>0.

� 36.Higher-order saddle points.For a saddle point of orderp + 1, the saddle point formula
reads

1

2iπ

Z B

A

ef(z) dz ∼ ±ω
Γ( 1

p
)

2iπ

ef(z0)

p
p
|f(p)(z0)|

,

whereωp = 1. �

� 37. Vanishing multipliers and multiple saddle points.This note supplements Note 36. For
a saddle point of orderp + 1 and an integrand of the form(z − ζ)b · eh(z), the saddle point
formula must be modified according to

Z ∞

0

xbe−axp/p! dx =
1

p

„
a

p!

«b+1

p!Γ

„
b+ 1

p!

«
.

Thus, the argument of theΓ factor is changed from1
p

to b+1
p

, as is the exponent of|f (p)(z0)|
and ofn−1 in the case of large power estimates. �

We give below an application to the counting of forests of unrooted trees made
of a large number of trees. The problem is relevant to the analysis of random graphs
during the phase where a giant component has not yet emerged.
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FIGURE 10. The functionH governing the exponential rate of the number of
forests exhibits a “phase transition” atα = 1

2 (left); the quantity1
n log(Fm,n/n!)

as a function ofα = m/n for n = 200 (right).

EXAMPLE 10. Forests of unrooted trees.The problem here consists in determining the number
Fm,n of ordered forests, i.e., sequences, made ofm (labelled, nonplane) unrooted trees and
comprised ofn nodes in total. The number of unrooted trees is sizen is, by virtue of Cayley’s
formula,nn−2 and its EGF is expressed asU = T −T 2/2, whereT is the Cayley tree function
satisfyingT = zeT . Consequently, we have

1

n!
Fm,n = [zn]

„
T (z)− 1

2
T (z)2

«m

=
1

2iπ

Z

0+

(T − 1

2
T 2)m dz

zn+1
.

Like in the analytic proof of the Lagrange Inversion Theoremit proves convenient to adopt
t = T as an independent variable, so thatz = te−t becomes a dependent variable. Since
dz = (1− t)e−t, this provides the integral representation:

1

n!
Fm,n =

1

2iπ

Z

0+

(t− 1

2
t2)ment(1− t) dt

tn+1
.

The case of interest here is whenm andn are linearly related. We thus setm = αn, wherea
priori α ∈ (0, 1). Then, the integral representation ofFm,n becomes

(65)
1

n!
Fm,n =

1

2iπ

Z

C

enhα(t)(1− z) dt
t
, hα(t) := α log(1− t

2
)+ t+(α−1) log t,

whereC encircles 0. This has the form of a “large power” integral. Saddle points are found as
usual as zeros of the derivativeh′

α; there are two of them given by

ζ0 = 2− 2α, ζ1 = 1.

Forα < 1
2
, one hasζ0 > ζ1 while for α > 1

2
the inequality is reversed andζ0 < ζ1. In both

cases, a simple saddle point analysis succeeds, based on thesaddle point nearer to the origin;
see Note 38 below. In contrast, whenα = 1

2
, the pointsζ0 andζ1 coalesce to the common

value 1. In this last case, we haveh′
1
2
(1) = h′′

1
2
(1) = 0 whileh′′′

1
2
(1) = −2 is nonzero: there is

adouble saddle pointat 1.
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� 38.Forests and simple saddle points.When0 < α < 1
2
, the number of forests satisfies, for

some computableC−(α), for some computableC−(α).

1

n!
Fn,m ∼ C−(α)

eH−(α)

n1/2
, H−(α) = 1− α log 2.

When 1
2
< α < 1, the number of forests satisfies, for some computableC+(α),

1

n!
Fn,m ∼ C+(α)

eH+(α)

n1/2
, H+(α) = α logα+ 2− 2α+ (α− 1) log(2− 2α).

This results from a routine simple saddle point analysis atζ1 andζ0 respectively. �

The number of forests thus presents two different regimes depending on whetherα < 1
2

or α > 1
2
, and there is a discontinuity of the analytic form of the estimates atα = 1

2
. The

situation is reminiscent of “critical phenomena” and phasetransitions (e.g., from solid to liquid
to gas) in physics, where such discontinuities are encountered. This provides a good motivation
to study what happens right at the “critical” valueα = 1

2
.

We thus consider the special valueα = 1
2

and seth ≡ h 1
2

. What is to be determined is

therefore the number of forests of total sizen that are made ofn/2 trees, assuming naturallyn
even. Bearing in mind that the double saddle point is atζ = ζ0 = ζ1 = 1, one has

h(z) = 1− 1

3
(z − 1)3 +O((z − 1)4) (z → 1).

Thus, upon neglecting the tails and localizing the integralto a disc centred at 1 with radiusδ ≡
δ(n) such that

nδ3 →∞, nδ4 → 0

(δ = n−3/10 is suitable), we have the asymptotic equivalence (withy representingz − 1)

(66)
1

n!
Fm,n = −e

n(1− 1
2

log 2)

2iπ

Z

D

e−ny3/3y dy + exponentially small,

whereD is a certain (small) contour containing 0 obtained by transformation fromC.
The discussion so far has left aside the choice of the contourC in (65), hence of the

geometric aspect ofD near 0, which is needed in order to fully specify (66). Because of the
minus sign in the third derivative,h′′′(1) = −2, the three steepest descent half lines stemming
from 1 have angles0, e2iπ/3, e−2iπ/3. This suggest to adopt as original contourC in (65) two
symmetric segments stemming from 1 connected by a loop left of 0; see Figure 11. Elementary
calculations justify that the contour can be suitably dimensioned so as to remain always below
levelh(1). See also the right drawing of Figure 11 where the level curves of the valleysbelow
the saddle point are drawn together with a legal contour of integration that winds about 0.

Once the original contour of integration has been fixed, the orientation ofD in (66) is fully
determined. After effecting the further change of variables y = wn−1/3 and completing the
tails, we find

(67)
1

n!
Fm,n ∼ λ

n2/3
en(1− 1

2
log 2), λ = − 1

2iπ

Z

E

e−y3/3y dy,

whereE connects∞e−2iπ/3 to 0 then to∞e2iπ/3. The evaluation of the integral givingλ is
now straightforward (in terms of the Gamma function), whichgives

1

n!
Fn/2,n ∼

2 · 3−1/3

Γ( 2
3
)
en(1− 1

2
log 2)n−2/3.
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The numberthree is characteristically ubiquitous in the formula. (The formula displays the
exponent2

3
instead of1

3
in the general case (66) because of the factor(1 − z) present in the

integral representation (65), which vanishes at the saddlepoint 1; see also Note 37.) �

The problem of analysing random forests composed of a large number of trees has
been first addressed by the Russian School, most notably Kolchin and Britikov. We
refer the reader to Kolchin’s book [252, Ch. I] where nearly thirty pages are devoted
to a deeper study of the number of forests and of associated parameters. Kolchin’s
approach is however based on an alternative presentation interms of sums of indepen-
dent random variables and stable laws of index3

2 . As it turns out there is a striking
parallel with the analysis of the growth of the random graph in the critical region,
when the random graph stops resembling a large collection ofdisconnected tree com-
ponents.

An almost sure sign of (hidden or explicit) monkey saddles isthe occurrence of
Γ(1

3 ) factors in the final formulæ and cube roots in exponents of powers ofn. It is in
fact possible to go much further than we have done here with the analysis of forests
(where we have stayed right at the critical point) and provide asymptotic expressions
that describe the transition between regimes, here fromAnn−1/2, toBnn−2/3, then
toCnn−1/2. The analysis then appeals to the theory of coalescent saddle points well
developed by applied mathematicians (see, e.g., the exposition in [50, 305, 408]) and
the already evoked rôle of the Airy function. We do not pursue this thread further since
it properly belongs to multivariate asymptotics. It is exposed in a detailed manner in
an article of Banderier, Flajolet, Schaeffer, and Soria [21] relative to the size of the
core in a random map from, on which our presentation of forests has been modelled.
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The results of several studies conducted towards the end of the previous millen-
nium do suggest that, amongst threshold phenomena and phasechanges, there is a fair
amount of universality in descriptions of combinatorial and probabilistic problems by
means of multiple and coalescing saddle points. In particular Γ(1

3 ) factors and the
Airy function surface recurrently in the works of Flajolet,Janson, Knuth, Łuczak and
Pittel [148, 224], which are relative to the Erdős–Renyi random graph modelin its
critical phase; see also [158] for a partial explanation. The occurrence of the Airy area
distribution (in the context of certain polygon models related to random walks) can be
related to this orbit of techniques, as first shown by Prellberg [324], and strong nu-
merical evidence evoked in Chapter V suggests that this should extend to the difficult
problem of self-avoiding walks [334]. Airy-related distributions also appear in prob-
lems relative to the random satisfiability of boolean expressions [52], the path length
of trees [375, 373, 374], as well as cost functionals of random allocations[154]. The
reasons are sometimes well understood in separate contextsby probabilists, statistical
physcists, combinatorialist, and analysts, but a global framework is still missing.

VIII. 8. Notes

Saddle point methods take their sources in applied mathematics, one of them be-
ing the asymptotic analysis by Debye (1909) of Bessel functions of large order. Saddle
point analysis is sometimes called steepest descent analysis, especially when integra-
tion contours strictly coincide with steepest descent paths. Saddle points themselves
are also called critical points (i.e., points where a first derivative vanishes). Because
of its roots in applied mathematics, the method is well covered by the literature in
this area, and we refer to the books by Olver [305], Henrici [212], or Wong [408] for
extensive discussions. A vivid introduction to the subjectis to be found in De Bruijn’s
book [86]. We also recommend Odlyzko’s impressive survey [300].

To a large extent, saddle point methods have made an irruption in combinatorial
enumerations in the 1950’s. Early combinatorial papers were concerned with permu-
tations (involutions) or set partitions: this includes works by Moser and Wyman [291,
292, 293] that are mostly directed towards entire functions.

Hayman’s approach [210] which we have exposed here (see also [408]) is notable
in its generality as it envisions saddle point analysis in anabstract perspective, which
makes it possible to develop general closure theorems. A similar thread was followed
by Harris and Schoenfeld who gave stronger conditions then allowing full asymptotic
expansions [208]; Odlyzko and Richmond [302] were successful in connecting these
conditions with Hayman admissibility. Another valuable work is Wyman’s extension
to nonpositive functions [417].

Interestingly enough, developments that parallel the onesin analytic combina-
torics have taken place in other regions of mathematics. Erwin Schrödinger intro-
duced saddle point methods in his lectures [350] at Dublin in 1944 in order to pro-
vide a rigorous foundation to some models of statistical physics that closely resemble
balls-in-bins models. Daniels’ publication [80] of 1954 is a historical source for sad-
dle point techniques in probability and statistics, where refined versions of the central
limit theorem can be obtained. (See for instance the description in Greene and Knuth’s
book [198].) Since then, the saddle point method has proved a useful tool for deriving
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Gaussian limiting distributions. We have given here some idea of this approach which
is to be developed further in a later chapter, where we shall discuss some of Canfield’s
results [65]. Analytic number theory also makes a heavy use of saddle point analysis.
In additive number theory, the works by Hardy, Littlewood, and Ramanujan relative to
integer partitions have been especially influential, see for instance Andrews’ book [9]
and Hardy’sLectureson Ramanujan [207] for a fascinating perspective. In multi-
plicative number theory, generating functions take the form of Dirichlet series while
Perron’s formula replaces Cauchy’s formula. For saddle point methods in this context,
we refer to Tenenbaum’s book [381] and his seminar survey [380].

A more global perspective on limit probability distributions and saddle point tech-
niques will be given in the next chapter as there are strong relations to the quasi-powers
framework developed there, to local limit laws, and to largedeviation estimates. Gen-
eral references for some of these aspects of the saddle pointmethod are the articles of
Bender–Richmond [25], Canfield [65], and Gardy [178, 179, 180]. Regarding multi-
ple saddle points and phase transitions, we refer the readerto references provided at
the end of Section VIII. 7.
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Multivariate Asymptotics and Limit
Distributions

Un problème relatif aux jeux du hasard,
proposé à un austère janseniste par un homme du monde,

a été à l’origine du Calcul des Probabilités1.
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Analytic combinatorics2 deals with the enumeration of combinatorial structures
in relation to algebraic and analytic properties of generating functions. The most ba-
sic cases are the enumeration of combinatorial classes and the analysis of moments of
combinatorial parameters. These involve generating functions in one (formal or com-
plex) variable as discussed extensively in previous chapters. They are consequently
essentiallyunivariateproblems.

Many applications, in combinatorics as well as in the applied sciences, require
quantifying the behaviour ofparametersof combinatorial structures. It is typically
useful to know that a random permutation of sizen has a number of runs whose
average (mean) equals to(n+1)/2, but it may be equally important to know to which

1“A problem relative to games of chance proposed to an austereJansenist by a man of the world has
been at the origin of the calculus of probabilities.” Poisson refers here to the fact that questions of betting
and gambling posed by the Chevalier de Méré (who was both a gambler and a philosopher) led Pascal (an
austere religious man) to develop some the first foundationsof probability theory.

2Warning : This chapter is still in avery preliminary state (November 2004). It is only included at
this stage in order to illsutrate the global architecture ofAnalytic Combinatorics.
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extent such an average isrepresentativeof what occurs in simulations or on actual
data that obey the randomness model. As a matter if fact, in a random permutation of
sizen = 1, 000, it is found that there are about 70% chances that the number of runs
be in the interval990 . . 1010. Even more dramatically, for runs and a permutation of
sizen = 1, 000 still, there is probability less than10−6 to observe a case that deviates
by more than 10% from the mean value; this probability decreases to about10−65 for
n = 10, 000, and is even less than10−653 for n = 100, 000. As illustrated by such
numeric data, there is obvious interest in analysing the “central” region near the mean,
as well as in quantifying the risk of finding instances that deviate appreciably from the
expected value. These are now typicallybivariateproblems.

It is frequently observed that the histograms of the distribution of a combinatorial
parameter (for varying size values) exhibit a common characteristic “shape”. In this
case, we say that there exists alimit law, which may be of thediscreteor thecontinu-
oustype. Our aim here is to detect such limit laws, and a few examples have already
appeared scattered in this book, in the case where they can bereduced to a collection
of univariate analyses. This chapter provides a coherent set of analytic techniques
dedicated to extracting coefficients of bivariate analyticfunctions. The mathematics
combine methods of complex asymptotic analysis as previously exposed with a small
selection of fundamental theorems from the analytic side ofclassical probability the-
ory.

In simpler cases, limit laws arediscreteand, when this happens, they often belong
to the geometric or Poisson type. In many other cases, limit laws arecontinuous, a
prime example being the Gaussian law associated with the famous bell-shaped curve,
which surfaces so frequently in elementary combinatorial structures. The goal of this
chapter is to offer a fundamental analytic framework for extracting limit laws from
combinatorics.

Symbolic methods provide bivariate generating functions for many natural pa-
rameters of combinatorial structures. Analytically, the auxiliary variable marking the
combinatorial parameter under study then induces adeformationof the (univariate)
counting generating function. This deformation may affectthe type of singularity that
the counting generating function presents in various ways.A perturbationof univari-
ate singularity analysis is then often sufficient to derive an asymptotic estimate of the
probability generating function of a given parameter, whentaken over objects of some
large size. Continuity theorems from probability theory finally allow us to conclude
on the existence of a limit law.

An especially important component of this paradigm is the framework of “Quasi-
Powers”. Large powers tend to occur for coefficients of generating functions (think
of quantities of the form≈ ρ−n that arise from radius of convergence bounds). The
collection of deformations of a single counting generatingfunction is then likely to
induce for the corresponding coefficients a collection of approximations that involve
large powers together with small error terms—these are referred to as quasi-powers.
From there, a Gaussian laws is derived along lines that are somewhat reminiscent of
the classical central limit theorem of probability theory (expressing the asymptotically
Gaussian character of sums of independent random variables).
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The direct relation that can be established between combinatorial specifications
and asymptotic properties, in the form of limit laws, is especially striking, and it is
a characteristic feature of analytic combinatorics. In fact, almost any classical law
of probability theory and statistics is likely to occur somewhere in analytic combina-
torics. Conversely, almost any simple combinatorial parameter is likely to be governed
by an asymptotic law.

IX. 1. Limit laws and combinatorial structures

What is given is a combinatorial classC, labelled or unlabelled, and an integer
valued combinatorial parameterχ. There results both a family of probabilistic models,
namely for eachn the uniform distribution overCn that assigns to anyγ ∈ Cn the
probability

P(γ) =
1

Cn
, with Cn = card(Cn),

and a corresponding family of random variables obtained by restrictingχ toCn. Under
the uniform distribution overCn, we then have

PCn(χ = k) =
1

Cn
card

{
γ ∈ Cn

∣∣ χ(γ) = k
}
.

We writePCn to indicate the probabilistic model relative toCn, but also freely abbre-
viate it toPn or write P(χn) wheneverC is clear in context.

As n increases, the histograms of the distributions ofχ often share a common
profile; see Figure 1 for two characteristic examples that wediscuss next. Our purpose
is to relate such phenomena to the analysis of bivariate generating functions provided
by the symbolic method.

Binary words. Let us start by discussing the case of binary words with two simple
parameters, one leading to a discrete law, the other to a continuous limit. The ex-
ample is purposely chosen simple enough that explicit expressions are available for
the probability distributions at stake. Nonetheless, it istypical of the approach taken
in this chapter, and, once equipped with suitably general theorems, it is hardly more
difficult to discuss the number of leaves in a nonplane unlabelled tree or the number
of summands in a composition into prime summands.

Take the classWn of binary words of lengthn over the alphabet{a, b} and con-
sider the two parameters forw ∈ W :

χ(w) := number of initiala’s in w, ξ(w) := total number ofa’s in w.

Explicit expressions are available for the counts and

PWn(χ = k) =
1

2k+1
[[0 ≤ k < n]] +

1

2n
[[k = n]],

PWn(ξ = k) =
1

2n

(
n

k

)
.

The probabilities relative toχ then resemble, in the asymptotic limit of largen, the
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FIGURE 1. Histograms of probability distributions for the number of initial
a’s in a random binary string (parameterχ, left) and the total number ofa’s
(parameterξ, right). The histogram corresponding toχ is not normalized and
direct convergence to a discrete geometric law is apparent;for ξ, the horizontal
axis is scaled ton, and the histograms quickly conform to the bell-shaped curve
that is characteristic of a continuous gaussian limit.

geometric distribution. One has, for eachk,

lim
n→∞

PWn(χ = k) =
1

2k
.

(In this simple case, it is even true that the limit is exactlyattained as soon asn >
k.) We say that there is alimit law of the discrete typefor χ, this limit law being a
geometric.

In contrast, the parameterξ has meanµn := n/2 and a standard deviationσn :=
1
2

√
n. One should then centre and scale the parameterχ, introducing (overWn) the

“standardized” (or “normalized”) random variable

X⋆
n :=

ξ − n/2
1
2

√
n

,

which can be considered to lie in a fixed scale. It then becomespossible to examine
the behaviour of the (cumulative) distribution functionP(X⋆

n ≤ y) for some fixedy.
In terms ofχ itself, this means that we are consideringP(ξ ≤ µn + yσn) for real
values ofy. Then, the classical approximation of the binomial coefficients yields the
approximation:

(1) lim
n→∞

P(ξ ≤ µn + yσn) =
1√
2π

∫ y

−∞
e−t2/2 dt,

which can be derived by summation from the “local” approximation

(2)
1

2n

(
n

1
2n+ 1

2y
√
n

)
∼ e−y2/2

√
πn

.

We now say that there is alimit law of the continuous typefor ξ, this limit law being a
Gaussian.
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Though cases mixing the discrete and the continuous are theoretically conceivable
(a rare instance arises in the theory of map enumerations and“cores”, see [21]), the
discrete–continuous dichotomy applies to most combinatorial cases of interest.

Distributional properties. As illustrated by the previous discussion, there are two
major types of convergence that the discrete distribution of a combinatorial parameter
may satisfy:

Discrete−→ Discrete and Discrete−→ Continuous.

In accordance with the general notion of convergence in distribution (or weak con-
vergence, see APPENDIX C: Convergence in law, p. 662), we shall say that alimit
law exists for a parameter if there is convergence of the corresponding family of (cu-
mulative) distribution functions. In the broad context of convergence of probability
laws, one also speaks of acentral limit law when such a convergence holds. In the
discrete-to-discrete case, convergence is established without standardizing the random
variables involved. In the discrete-to-continuous case, the parameter should be centred
at its mean and scaled by its standard deviation, like in (1).

There is also interest in obtaining alocal limit law, which, when available, quan-
tifies individual probabilities and probability densities, like in (2). The distinction
between local and central limits is immaterial in the discrete-to-discrete case, where
the existence of one type of law implies the other. In the discrete-to-continuous case,
it is technically more demanding to derive a local limit law than a central one, as
stronger analytic properties are required.

Thespeed of convergencein a limit law describes the way the finite combinatorial
distributions approach their asymptotic limit. It provides useful information on the
quality of asymptotic approximations for finiten models.

Finally, quantifying the “risk” of extreme configurations necessitates estimates on
the tails of the distributions, that is, the behaviour of the probability distribution far
away from its mean. Such estimates are also calledlarge deviationestimates. Large
deviation theory constitutes a useful complement to the study of central and local
limits, as exemplified by the discussion of runs in the introduction to this chapter.

In the remainder of the this chapter, we shall first examine the situation of dis-
crete limits. After this, several sections will be dedicated to the case of continuous
limits, with special emphasis on limit laws of the Gaussian type. In each of the two
cases, the discussion of central laws starts with acontinuity theorem, which states
conditions under which convergence in law can be established from convergence of
transforms. (The transforms in question are probability generating functions for the
discrete case, characteristic functions or Laplace transforms otherwise). Refinements,
known as the Berry-Esseen inequalities when the limit law iscontinuous, then re-
late speed of convergence of the combinatorial distributions to their limit on the one
hand, a distance between transforms on the other hand. Put otherwise, distributions
are close if their transforms are close. Large deviation estimates are often obtained
by a technique of “shifting the mean”, which is familiar in probability and statistics.
The last section gives brief indications on the occurrence of non-Gaussian laws in the
discrete-to-continuous scenario.
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Limit laws and bivariate generating functions. In this chapter, the starting point of
a distributional analysis is invariably a bivariate generating function

F (z, u) =
∑

n,k

fn,ku
kzn,

wherefn,k represents (up to a possible normalization factor) the number of structures
of sizen in some classF . What is sought is asymptotic information relative to the
array of coefficients

fn,k = [znuk]F (z, u),

which could in principle be approached by an iterated use of Cauchy’s coefficient
formula,

[znuk]F (z, u) =

(
1

2iπ

)2 ∫

γ

∫

γ′

F (z, u)
dz

zn+1

du

uk+1
.

Thus, adouble coefficient extractionis to be effected. It turns out that it is in general
arduous if not unfeasible to approach a bivariate counting problem in this way, so that
another route is explored throughout this chapter3.

First, observe that the specialization atu = 1 of F (z, u) gives the counting gen-
erating function ofF , that is,F (z) = F (z, 1). Next, as seen repeatedly starting
from Chapter III, the moments of the combinatorial distribution {fn,k} for fixed n
and varyingk are attainable through the partial derivatives atu = 1, namely

first moment↔ ∂

∂u
F (z, u)

∣∣∣∣
u=1

, second moment↔ ∂2

∂u2
F (z, u)

∣∣∣∣
u=1

, · · · .

In summary:Counting is provided by the bivariate generating functionF (z, u) taken
atu = 1; moments result from the bivariate generating function taken in aninfinites-
imal neighbourhood ofu = 1.

Our approach to limit laws will be as follows.

Estimate the (unormalized) probability generating function

fn(u) :=
∑

k

fn,ku
k ≡ [zn]F (z, u).

This is viewed asingle coefficient extraction(extracting the coefficient
of zn) but parameterizedby u. Thanks to the availability of continuity the-
orems, the following can be proved for a great many cases of combinatorial
interest:The existence and the shape of the limit law derive from an analysis
of the bivariate generating functionF (z, u) taken in afixedneighbourhood
of u = 1. In addition, thanks to Berry–Esseeen inequalities,the quality
of an asymptotic estimate forfn(u) translates into a speed of convergence
estimate for the corresponding laws.Also, for the discrete-to-continuous
case,local limit laws derive from consideration of the bivariategenerating
functionF (z, u) taken on the whole of the unit circle,|u| = 1. Finally,
large deviationestimates are seen to arise from estimates offn(u) whenu

3A collection of recent works by Pemantle and coauthors [312, 313, 314] shows however that a well-
defined class of bivariate asymptotic problems can be attacked by the theory of functions of several complex
variables and a detailed study of the geometry of a singular variety.
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FIGURE 2. The correspondence between regions of theu–plane and asymptotic
properties of combinatorial distributions.

is real andu < 1 (left tail) or u > 1 (right tail). This is to large extent
a reflection of saddle point bounds. In summary:Large deviations are re-
lated to the behaviour ofF (z, u) for real values ofu in an interval[α, β]
containingu = 1.

The correspondence betweenu-domains and properties of laws is summarized in Fig-
ure 2.

Singularity perturbation. As seen throughout Chapters IV–VIII, analytic combina-
torics approaches the univariate problem of counting objects of sizen starting from
the Cauchy coefficient integral,

[zn]F (z) =
1

2iπ

∫

γ

F (z)
dz

zn+1
.

The singularities ofF (z) can be exploited, whether they are of a polar type (Chap-
ters IV and V), algebraic-logarithmic (Chapters VI and VII)or essential and amenable
to saddle point methods (Chapter VIII). It is in this way thatasymptotic forms of
[zn]F (z) are derived.

From the discussion above, crucial information on combinatorial distributions
is accessible from the bivariate generating functionF (z, u) whenu varies in some
domain containing 1. This suggests to considerF (z, u) not so much as an analytic
function of two complex variables, wherez andu would play a symmetric rôle, but
rather as a collection of functions ofz indexed by a secondary parameteru. In other
words,F (z, u) is considered as adeformationof F () ≡ F (z, 1) whenu varies in a
domain containingu = 1. Cauchy’s coefficient integral gives

fn(u) ≡ [zn]F (z, u) =
1

2iπ

∫

γ

F (z, u)
dz

zn+1
.

We can then examine the way the parameteru affects the analysis of singularities
performed in the aymptotic counting problem of estimating[zn]F (z, 1). Such an
approach is called asingularity perturbation analysis. It consists in tracing the effect
of a perturbation byu on the standard singularity analysis assocaited to the univariate
problem.
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The essential feature of the analysis of coefficients by means of complex tech-
niques as seen in Chapters IV–VIII is to be “robust”. Being based on explicit estimates
of contour integrals, it is usually amenable to smooth perturbations whose effect can
be traced throughout calculations. Explicit estimates normally result (though added
care in estimations is needed to ensure uniformity). In thischapter, we are going to
see many applications of this strategy.

Regarding binary words and the two parametersχ (initial run of a’s) andξ (total
number ofa’s), the general strategy of singularity perturbation instantiates as follows.
In the case ofWχ, there are two components in the BGF

Wχ(z, u0) =
1

1 − u0z
· 1 − z

1 − 2z
,

and, in essence, the dominant singular part—a simple pole atz = 1/2—arises from
the second component, which does not change whenu0 varies. Accordingly, one has

Wχ(z, u0) ∼
z→1

1
2

1 − u0

2

W (z), [zn]Wχ(z, u0) ∼
1
2

1 − u0

2

2n.

The probability generating function ofχ overWn is then obtained upon dividing by
2−n, and

1

2n
[zn]Wχ(z, u0) ∼

1
2

1 − u0

2

=

∞∑

k=0

1

2k+1
uk

0 ,

where the last expression is none other than the probabilitygenerating function of
a discrete law, namely, the geometric distribution of parameter 1

2 . As we shall see
in section IX. 2 where we enounce a continuity theorem for probability generating
functions, this is enough to conclude that the distributionofχ converges to a geometric
law.

In the second case, that ofWξ, the auxiliary parameter modifies the location of
the singularity,

Wξ(z, u0) =
1

1 − z (1 + u0)
.

Then, the singular behaviour is strongly dependent upon a singularity at

ρ(u0) =
1

(1 + u0)

thatmovesask varies, while the type of singularity (here a simple pole) remains the
same. Accordingly, the coefficients obey a “large power law”(here of an exact type)
and, as regards the probability generating function ofξ overWn, one has

1

2n
[zn]Wξ(z, u0) =

(
1

2ρ(u0)

)n

,

This analytical form is reminiscent of the central limit theorem of probability theory
after which large powers, corresponding to sums of a large number of independent
random variables, entail convergence to a Gaussian law. By continuity theorems for
integral transforms exposed in Sections IX. 4, there results a continuous limit law of
the Gaussian type in this case.
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F (z, u) whenu ≈ 1 Type of law Method and classes

Sing. + expo. fixed Discrete limit Subcritical composition Section xxx
(Neg. binom, Poisson, . . . ) Subcritical Seq., Set, . . . Section xxx

Sing. moves, expo. fixed Gaussian(n, n) Supercritical composition Section xxx
— — Meromorphic perturb. Section xxx
— — (Rational fns) Section xxx
— — Sing. Analysis pertub. Section xxx
— — (Alg., implicit fns) Section xxx
Sing. fixed, expo. moves Gaussian(log n, log n) Exp-log struct. Section xxx
— — (Differential eq.) Section xxx
Sing. + expo. move Gaussian [Gao-Richmond [177]]
Essential singularity often Gaussian Saddle point perturbation Section xxx
Discontinuous singular type non-Gaussian (Various cases) Section xxx
— Stable Critical composition Section xxx

FIGURE 3. A rough typology of bivariate generating functionsF (z, u) and limit
laws.

The foregoing discussion suggests that a “minor” perturbation of bivariate gener-
ating function that affects neither the location nor the nature of the singularity could
lead to a discrete limit law. A “major” change in exponent or even like here in loca-
tion is likely to be conducive to a continuous limit law, of which the prime example
is the normal distribution. Figure 3 outlines a typology of limit laws in the context
of bivariate asymptotics. A bivariate generating functionF (z, u) is to be analysed.
The deformation induced byu may affect the type of singularity thatF (z, u) has in
various ways. An adapted complex coefficient extraction then provides various types
of limit laws.

IX. 2. Discrete limit laws

Take a classC on which a parameterχ is defined. This determines for eachn
a random variableXn, which isχ restricted toCn, whereCn is endowed with the
uniform probability distribution. In this section, we givethe general definitions and
results that are suitable for the discrete-to-discrete situation, where a discrete parame-
ter tends without normalization to a discrete distribution. The corresponding notion of
convergence is given in Subsection IX. 2.1. Probability generating functions (PGFs)
are important since, by virtue of a continuity theorem stated in Subsection IX. 2.2,
convergence in law results from convergence of PGFs. At the same time, the fact that
PGFs of two distributions are close entails that the original distribution functions are
close. Finally, large deviation estimates for a distribution can be easily related to an-
alytic continuation of its PGFs, a fact introduced in Subsection IX. 2.3. This section
organizes some general tools and accordingly we limit ourselves to a single combina-
torial application, that of the number of cycles of some small fixed size in a random
permutation. The next section will provide a number of deeper applications to random
combinatorial structures.
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IX. 2.1. Convergence to a discrete law.In order to specify precisely what a
limit law is, we base ourselves on the general context described in APPENDIX C:
Convergence in law, p. 662. The principles exposed there provide for what should be
the “right” notion convergence of a family of discrete distributions to a limit discrete
distribution. Here is a self-standing definition.

DEFINITION IX.1 (Discrete-to-discrete convergence).The random variableXn (su-
ported byZ≥0) is said to converge in law to a discrete variableY supported byZ≥0

if for eachk ≥ 0, one has

(3) lim
n→∞

P(Xn ≤ k) = P(Y ≤ k), i.e., lim
n→∞

∑

j=k

pn,j =
∑

j≤k

qj ,

wherepn,k = P(Xn ≤ k) andqk := P(X = k). One also says that the parameterχ
onC admits a limit lawof typeX .

Convergence is said to take place atspeedǫn if

(4) sup
k

∣∣∣∣∣∣

∑

j≤k

P(Xn = j) −
∑

j≤k

qj

∣∣∣∣∣∣
≤ ǫn,

The condition in (3) can be rewritten in terms of the distribution functionsFn, G
of Xn, Y as

limFn(k) = G(k),

pointwise for eachk. When such a property of type (3) relative to distribution func-
tions holds, it is also called a “central” limit law. (One good reason for this termi-
nology is that convergence of distribution functions is principally informative in the
“central part” of the distribution, where a fair proportionof the probability mass lies.)
By differencing, the condition of (3) is clearly equivalentto the condition that, for
eachk,

(5) lim
n
pn,k = qk,

andδn is called a local speed of convergence if

sup
k

|pn,k − qk| ≤ δn.

The property (5) is said to constitute alocal limit law, as probabilitiespn,k are esti-
mated “locally”. Thus:For the convergence of a discrete law to a discrete law, there
is complete equivalence between the existence of central and local limits. Note 1
below shows elementarily that there always exists a speed ofconvergence thattends
to 0 asn tends to infinity. In other words, plain convergence of distribution functions
or of individual probabilities implies uniform convergence (this is in fact a general
phenomenon).
� 1. Uniform convergence.Local and central convergences to a discrete limit law are always
uniform. In other words, there always exists speedsǫn, δn tending to 0 asn→∞.

Assume simply the condition (3) and its equivalent form (5).Fix a smallǫ > 0. First
dispose of the tails: there exists ak0 such that

P
k≥k0

qk ≤ ǫ, so that
P

k<k0
qk > 1− ǫ. Now,

by simple convergence, there exists ann0 such that, for alln larger thann0 and eachk < k0,
|pn,k − qk| < ǫ/k0. Thus, we have

P
k<k0

pn,k > 1 − 2ǫ, hence
P

k≥k0
pn,k ≤ 2ǫ. In

other words,
P

k≥k0
qk and

P
k≥k0

pn,k are both in[0, 2ǫ]. There results that convergece of
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distribution functions is uniform, with speed5ǫ at most. At the same time, the local speedδn is
at most4ǫ. �

� 2. Speed in local and central estimates.LetMn be the spread ofχ onCn defined asMn :=
maxγ∈Cn χ(γ). Then, a speed of convergence in (4) is given by

ǫn := Mnδn +
X

k>Mn

pk.

(Refinements of these inequalities can obtained from tail estimates detailed below.) �

� 3. Total variation distance.The total variation distancebetweenX andY is classically

dTV (X,Y ) := sup
E⊆Z≥0

|PY (E)− PX(E)| = 1

2

X

k≥0

|P(Y = k)− P(X = k)| .

(Equivalence between the two forms is established elementarily by considering the particular
E for which the supremum is attained.) The argument of Note 1 shows that convergence in
distribution also implies that the total variation distance betweenXn andX tends to 0. In
addition, by Note 2, one hasdTV (Xn,X) ≤Mnδn +

P
k>Mn

pk. �

� 4. Escape to infinity.The sequenceXn, where

P{Xn = 0} =
1

3
, P{Xn = 1} =

1

3
, P{Xn = n} =

1

3
,

does not satisfy a discrete limit law in the sense above, although limn P{Xn = k} exists for
eachk. Some of the probability mass escapes to infinity and, in a way, convergence takes place
in Z ∪ {+∞}. �

A highly plausible indication of the occurrence of a discrete law is the fact that
µn = O(1), σn = O(1). Examination of initial entries in the table of values of the
probabilities will then normally permit one to decide whether a limit law holds.

EXAMPLE 1. Singleton cycles in permutations.The case of the number of singleton cycles
(cycles of length 1) in a random permutation of sizen illustrates the basic definitions and it can
be analysed with minimal analytic apparatus. The exponential BGF is

P (z, u) =
exp(z(u− 1))

1− z ,

which determines the meanµn = 1 and the standard deviationσn = 1 (for n ≥ 2). The table
of numerical values of the probabilitiespn,k = [znuk]P (z, u) immediately tells what goes on.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

n = 4 0.375 0.333 0.250 0.000 0.041
n = 5 0.366 0.375 0.166 0.083 0.000 0.008
n = 10 0.367 0.367 0.183 0.061 0.015 0.003
n = 20 0.367 0.367 0.183 0.061 0.015 0.003

The exact distribution is easily extracted from the bivariate GF,

pn,k := [znuk]P (z, u) =
1

k!
[zn−k]

e−z

1− z =
dn−k

k!
,

wheren!dn is the number of derangements of sizen, that is,

dn = [zn]
e−z

1− z =
nX

j=0

(−1)j

j!
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Asymptotically, one hasdn ∼ e−1. Thus, for fixedk, we have

lim
n→∞

pn,k = pk, pk =
e−1

k!
.

As a consequence, the distribution of singleton cycles in a random permutation of large size
tends to a Poisson law of rateλ = 1.

Convergence is quite fast. Here is a table of differences,δn,k = pn,k − e−1

k!
:

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

n = 10 2.3 10−8 −2.5 10−7 1.2 10−6 −3.7 10−6 7.3 10−6 1.0 10−5

n = 20 1.8 10−20 −3.9 10−19 3.9 10−18 −2.4 10−17 1.1 10−16 −3.7 10−16

The speed of convergence is easily bounded. One hasdn = e−1 +O(1/n!), by the alternating
series property, so that

pn,k =
e−1

k!
+O

„
1

k! (n− k)!

«
=
e−1

k!
+O

 
1

n!

 
n

k

!!
=
e−1

k!
+O

„
2n

n!

«
.

As a consequence, one obtains local (δn) and central (ǫn) speed estimates

δn = O

„
2n

n!

«
, ǫn = O

„
n2n

n!

«
.

These bounds are quite tight. For instance one computes thatδ50
.
= 1.5 10−52 while the quan-

tity 2n/n! evaluates to3.7 10−50. �

IX. 2.2. Continuity theorem for PGFs. A higher level approach to discrete
limit laws in analytic combinatorics is based on asymptoticestimates ofpn(u), the
PGF of the random variableXn. If, for sufficiently many values ofu, one has

pn(u) → q(u) (n→ +∞),

one can infer that the coefficientspn,k = [uk]pn(u) (for any fixedk) tend to the limit
qk with generating functionq(u). A continuity theoremfor characteristic functions
describes precisely sets of conditions under which convergence of probability gener-
ating functions to a limit entails convergence of coefficients to a limit, that is to say
the occurrence of a discrete limit law. We state here a continuity theorem with very
general analytic conditions.

THEOREM IX.1 (Continuity Theorem, discrete laws).Let Ω be an arbitrary set con-
tained in the unit disc and having at least one accumulation point in theinteriorof the
disc. Assume that the PGFspn(u) =

∑
k≥0 pn,ku

k andq(u) =
∑

k≥0 qku
k are such

that there is convergence,
lim

n→+∞
pn(u) = q(u),

pointwisefor eachu in Ω. Then a discrete limit law holds in the sense that, for eachk,

lim
n→+∞

∑

j≤k

pn,j =
∑

j≤k

qj .

PROOF. Thepn(u) area priori analytic in |u| < 1 and uniformly bounded by 1 in
modulus throughout|u| ≤ 1. Vitali’s Theorem is a classical result of analysis whose
statement (see [382, p. 168] or [212, p. 566]) is as follows:
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FIGURE 4. The PGFs of singleton cycles in random permutations of size n =
4, 8, 12 (left to right and top to bottom) illustrate convergence to the limit PGF
of the Poisson(1) distribution (bottom right). Here the modulus of each PGF for
|ℜ(u)|, |ℑ(u)| ≤ 3 is displayed.

Vitali’s theorem. Let F be a family of analytic functions defined in a re-
gionS (i.e., an open connected set) and uniformly bounded on everycom-
pact subset ofS. Let{fn} be a sequence of functions ofF that converges
on a setΩ ⊂ S having a point of accumulationq ∈ S. Then{fn} converges
in all of S, uniformly on every compact subsetT ⊂ S.
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Here,S is the open unit disc on which all thepn(u) are bounded. The sequence in
question is{pn(u)}. By assumption, there is convergence ofpn(u) to q(u) on Ω.
Vitali’s theorem implies that this convergence is uniform in any compact subdisc of
the unit disc, for instance,|u| ≤ 1

2 . Then, Cauchy’s coefficient formula provides

(6)

qk =
1

2iπ

∫

|u|=1/2

q(u)
du

uk+1

= lim
n→∞

1

2iπ

∫

|u|=1/2

pn(u)
du

uk+1

= lim
n→∞

pn,k.

Uniformity granted by Vitali’s theorem combined with continuity of the contour inte-
gral (with respect to the integrand) establishes the statement. �

Feller gives the sufficient set of conditions:pn(u) → q(u) pointwise for all real
u ∈]0, 1[; see [123, p. 280] for a proof that only involves elementary real analysis. It
is perhaps surprising that very different sets can be taken,for instance,

Ω =
[
− 1

3 ,− 1
2

]
, Ω = { 1

n}, Ω =
{√

−1
2 + 1

2n

}
.

The next statement relates a measure of distance between twoPGFS,p(u) and
q(u) to the distance betwen distributions. It is naturally of interest when quantifying
speed of convergence to the limit in the discrete-to-discrete case.

THEOREM IX.2 (Speed of convergence, discrete laws).Consider two discrete laws
supported byZ≥0, with corresponding distribution functionsF (x), G(x) and proba-
bility generating functionsp(u), q(u).

(i) Assume that the laws have first moments. Then, for anyT ∈ (0, π), one has,
for some absolute constantsc = 1

4 ,
(7)

sup
k

|F (k) −G(k)| ≤ c

∫ +T

−T

|p(eit) − q(eit)|
t

dt+
c

T
sup

T≤|t|≤π

∣∣p(eit) − q(eit)
∣∣ .

(ii) Assume thatp(u) andq(u) are analytic in|u| < ρ for someρ > 1. Then, for
anyr satisfying1 < r < ρ, one has

sup
k

|F (k) −G(k)| ≤ c(r) sup
|u|=r

|p(u) − q(u)| , c(r) :=
1

r(r − 1)
.

PROOF. (i) Observe first thatp(1) = q(1) = 1, so that the integrand is of the form
0
0 at u = 1. By APPENDIX C: Transforms of distributions, p. 658, the existence
of first moments, sayµ andν, implies that, for smallt, one hasp(eit) − q(eit) =
(µ− ν)t+ o(t), so that the integral is well defined.

For any givenk, Cauchy’s coefficient formula provides

(8) F (k) −G(k) =
1

2iπ

∫

γ

p(u) − q(u)

1 − u

du

uk+1
,
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whereγ is the circle|u| = 1. (The factor(1 − u)−1 sums coefficients.) Setu = eit

and split the interval of integration accordingly. For allt, one has
∣∣∣∣

t

eit − 1

∣∣∣∣ ≤
π

2
.

This makes it possible to replace(1 − u)−1 by 1/t, up to a constant multiplier. The
statement follows upon splitting the interval of integration according to|t| ≤ T and
|t| > T , and then applying trivial bounds.

(ii) Start again from (8), but integrate along|u| = r. Trivial bounds provide the
statement. � The first form is universal holds with
strictly minimal assumptions (existence of expectations); the second form is a priori
only usable for distributions that have exponential tails.In the context of limit laws,
the first form of the theorem serves to relate the distance on the unit circle between
the PGFpn(u) of a combinatorial parameter and the limit PGFq(u) to the speed of
convergence to the limit law. (In this sense, it prefigures the Berry-Esseen inequalities
discussed in the continuous context below.)

EXAMPLE 2. Cycles of lengthm in permutations.Let us first revisit the case of singleton
cycles,m = 1, in this new light. The BGFP (z, u) = ez(u−1)/(1− z) has for eachu a simple
pole atz = 1 and is otherwise analytic inC \ {1}. Thus, a meromorphic analysis provides
instantly, pointwise for any fixedu,

[zn]F (z, u) = e(u−1) +O(R−n),

with anyR > 1. This, by the continuity theorem, Theorem IX.1, implies convergence to a
Poisson law.

Next, one should estimate a distance between characteristic functions over the unit circle.
One has (foru = eit)

pn(u)− q(u) = [zn]
ez(u−1) − e(u−1)

1− z .

There is a removable singularity atz = 1. Thus, integration over the circle|z| = 2 in the
z-plane coupled with trivial bounds yields

|pn(u)− q(u)| ≤ 2−n sup
|z|=2

˛̨
˛ez(u−1) − e(u−1)

˛̨
˛ = O

`
2−n|1− u|

´
.

One can then apply Theorem IX.2 with an arbitrary choice ofT to the effect that a speed of
convergence to the limit isO(2−n). (AnyO(R−n) is possible by the same argument.)

This approach generalizes to the number ofm–cycles in a random permutation. The ex-
ponential BGF is

F (z, u) =
e(u−1)zm/m

1− z .

Then, singularity analysis of the meromorphic function ofz (for u fixed) gives immediately

lim
n→∞

[zn]F (z, u) = e(u−1)/m.

The right side of this equality is none other than the PGF of a Poisson law of rateλ = 1
m

. The
continuity theorem and the first form of the speed of convergence theorem then imply:

PROPOSITIONIX.1 (m-Cycles in permutations).The number ofm–cycles in a random per-
mutation of large size converges in law to a Poisson distribution of rate1/m with speed of
convergenceO(R−n) for anyR > 1.
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This vastly generalizes our previous observations on singleton cycles. �

� 5. Poisson law for rare events.Consider the Bernoulli distribution with PGF(p + qu)n.
If q depends onn in such a way thatq = λ/n for some fixedλ, then the limit law of the
Bernoulli random variable is Poisson of rateλ. (This “law of small numbers” explains the
Poisson character of activity in radioactive decay as well as the probability of accidental deaths
of soldiers in the Prussian army resulting from the kick of a horse [Bortkiewicz, 1898].) �

IX. 2.3. Large deviations. In the case of discrete limit laws, the study of large
deviations is related to saddle-point bounds and is consequently often quite easy. We
give with a general statement which is nothing but a rephrasing of saddle point bounds
(Chapter IV) in the context of discrete probability distributions.

THEOREMIX.3 (Large deviations, discrete laws).Letp(u) = E(uX) be a probability
generating function that is analytic for|u| ≤ r wherer is some number satisfying
r > 1. Then, the following “local” and “central” large deviationbounds hold:

P(X = k) ≤ p(r)

rk
, P(X > k) ≤ p(r)

rk(r − 1)
.

PROOF. The local bound is a direct consequence of saddle point bounds given in
Chapter IV. The central bound derives from the equality

P(X > k) =
1

2iπ

∫

|u|=r

p(u)

(
1 +

1

u
+

1

u2
+ · · ·

)
du

uk+2
=

1

2iπ

∫

|u|=r

p(u)
du

uk+1(u − 1)
,

upon applying trivial bounds. �

In accordance with this theorem and as is easily checked directly, the geometric
and the negative binomial laws have exponential tails; the Poisson law has a “super-
exponential” tail, beingO(r−k) for anyr > 1, as the PGF is entire. (See definitions
in APPENDIX C: Special distributions, p. 660.) By their nature, the bounds can be
simultaneously applied to a whole family of probability generating functions. Hence
their use in obtaining uniform estimates in the context of limit laws. The bound pro-
vided always exhibits a geometric decay in the value ofk—this is both a stength and
a limitation on the method.

IX. 3. Combinatorial instances of discrete laws

In this section, we focus our attention on a general analyticschema based on com-
positions. The subcritical case of this schema is such that the perturbations induced
by the secondary variable (u) affect neither the location nor the nature of the basic
singularity involved in the univariate counting problem. The limit laws are then of the
discrete type: for sequences, labelled sets, and labelled cycles, theese limit laws are in-
variably of the negative binomial (NB[2]), Poisson, and geometric type, respectively.
Additionally, it is easy to describe the profiles of combinatorial objects resulting from
such subcritical constructions.

First, we consider the generalcomposition schema,

F (z, u) = g(uh(z)).

This schema expresses over generating functions the combinatorial operationG[H] of
substitutionof componentsH enumerated byh(z) inside “templates”G enumerated



IX. 3. COMBINATORIAL INSTANCES OF DISCRETE LAWS 529

byg(z). (See Chapters I and II for the unalabelled and labelled versions.) The variable
z marks size as usual, and the variable marks the size of theG template.

We assume globally thatg andh have nonnegative coefficients and thath(0) = 0
so that the compositiong(h(z)) is well-defined. We letρg andρh denote the radii of
convergence off andg, and define

(9) τg = lim
x→ρ−

g

g(x) and τh = lim
x→ρ−

h

h(x).

The (possibly infinite) limits exist due to nonnegativity ofcoefficients. As already
seen in Chapter VI, three cases are to be distinguished.

DEFINITION IX.2. The composition schemag(uh(z)) is said to be: subcritical if
τh < ρg, critical if τh = ρg, supercriticalif τh > ρg.

In terms of singularities, the behaviour ofg(h(z)) at its dominant singularity
is dictated by the dominant singularity ofg (subcritical case), or by the dominant
singularity off (supercritical case), or it should involve a mixture of the two (critical
case). This section discusses thesubcritical case. First, a general statement about
subcritical compositions:

PROPOSITION IX.2 (Subcritical composition).Consider the bivariate composition
schemeF (z, u) = g(uh(z)). Assume thatg(z) and h(z) satisfy thesubcriticality
conditionτh < ρg, and thath(z) has a unique singularity atρ = ρh on its disc of
convergence, which is of the algebraic–logarithmic type

h(z) = τ − c(1 − z

ρ
)λ + o

(
(1 − z

ρ
)λ

)
,

whereτ = τh, c ∈ R+, 0 < λ < 1. Then, a discrete limit law holds,

lim
n→∞

fn,k

fn
= qk, qk =

kgkτ
k−1

g′(τ)
,

with probability generating functionq(u) =
ug′(τu)

g′(τ)
.

What stands out is that, via its PGF,the limit law is a direct reflection of the derivative
of the outer function involved in the composition.
PROOF. First, for the univariate problem, sinceg(z) is analytic atτ , the function
g(h(z)) is singular atρh and is analytic in a∆–domain. Its singular expansion is
obtained by composing the regular expansion ofg(z) atτ with the singular expansion
of h(z) atρh:

F (z) ≡ g(h(z)) = g(τ) − cg′(τ)(1 − z/ρ)λ(1 + o(1)).

Thus,F (z) satisfies the conditions of singularity analysis, and

(10) fn ≡ [zn]F (z) = − cg′(τ)

Γ(−λ)
n−λ−1(1 + o(1)).

Also, the mean and variance of the distribution are clearlyO(1).
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Next, for the bivariate problem, fix anyu with, say,u ∈ (0, 1). The BGFF (z, u)
is still singular atz = ρ, and its singular expansion obtained fromF (z, u) = g(uh(z))
by composition, is

F (z, u) = g(uh(z)) = g(uτ − cu(1 − z/ρ)λ + o((1 − z/ρ)λ))
= g(uτ) − cug′(uτ)(1 − z/ρ)λ + o((1 − z/ρ)λ).

Thus, singularity analysis implies immediately:

lim
n→∞

[zn]F (z, u)

[zn]F (z, 1)
=
ug′(uτ)

g′(τ)
.

By the continuity theorem for PGFs, this is enough to imply convergence to the dis-
crete limit law with PGFug′(τu)/g′(τ), and the proposition is established. �

Under the subcritical composition scheme, it is also true that the tails have a
uniformly geometric decay. Letu0 be any number of the interval(1, ρg/τh). Then
f(z, u0) a a function ofz is analytic near the origin with a dominant singularity atρh

obtained by composing the regular expansion ofg with the singular expansion ofh:

f(z, u0) = h(u0τh) − ch′(u0τh)(1 − z/ρ)λ + o((1 − z/ρ)λ).

There results the asymptotic estimate

pn,k =
[zn]f(z, u0)

[zn]f(z, 1)
∼ h′(u0τh).

Thus, for some constantK ≡ K(u0), one has

pn(u0) < K.

It is easy also to verify thatpn(u) is analytic atu0, so that, by Theorem IX.3,

pn,k < K(u0) · u−k
0 ,

∑

j>k

pj,k <
K(u0)

u0 − 1
u−k

0 .

Thus the combinatorial distributions satisfy uniformly (with respect ton) a large de-
viations bound. In particular the probability that there are more than a logarithmic
number of components satisfies

(11) Pn(χ > logn) = O(n−θ), θ = log u0.

Such tail estimates may additionally serve to evaluate the speed of convergence to the
limit law (as well as the total variation distance) in the subcritical composition schema.

� 6. Semi-small powers and singularity analysis.Let h(z) satisfy the stronger singular expan-
sion

h(z) = τ − c(1− z/ρ)λ +O(1− z/ρ)ν ,

for 0 < λ < ν < 1. Then, fork ≤ C log n (someC > 0), the results of singularity analysis
can be extended (as stated and proved in Chapter VI, they are only valid for fixedk)

[zn]h(z)k = kcρ−nn−λ−1
“
1 +O(n−θ1 )

”
,

for someθ1 > 0, uniformly with respect tok. [The proof recycles all the ideas of Chapter VI
and only needs some care in checking uniformity with respectto k of the major steps.] �
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� 7. Speed of convergence in subscritical compositions.Combining the exponential tail esti-
mate (11) and local estimates deriving from the singularityanalysis of “semi-small” powers in
the previous notes, one obtains for the distribution functions associated withpn,k andpk the
speed estimate

sup
k
|Fn(k)− F (k)| ≤ L

nθ2
.

There,L andθ2 are two positive constants. �

In the labelled universe, the functional composition schema encompasses the se-
quence, set, and cycle constructions. It suffices to take forthe outer functiong in the
compositiong ◦ h the quantities

(12) Q(w) =
1

1 − w
, E(w) = ew, L(w) = log

1

1 − w
.

We state:

PROPOSITION IX.3 (Subcritical constructions).Consider the constructions ofse-
quenceS(H), whether labelled or not, labelledsetP(H) and labelledcycleC(H) As-
sume the subcriticality conditions of the previous proposition, namelyτ < 1, τ <∞,
τ < 1, respectively, whereτ is the singular value ofh(z). Then, the distribution of
the numberχ of components determined byfn,k/fn, is such thatχ = 1 + Y admits a
discrete limit law that is of type, respectively: negative binomialNB[2], Poisson, and
geometric. Fork ≥ 1, the limit form forqk = limn P(Y = k) are respectively

qS
k = (1 − τ)2(k + 1)τk, qP

k = e−τ τk

(k)!
, qC

k = (1 − τ)τk .

In an object of positive size, the number of components is always≥ 1. In terms of
the standard definition of the three laws (APPENDIX C: Special distributions, p. 660)
the distribution of the number of components isχ = 1 + Y whereY is supported by
Z≥0.
PROOF. In accordance with Proposition IX.2 and Equation (12), thePGF of the dis-
crete limit law involves the derivatives

Q′(w) =
1

(1 − w)2
, E′(w) = ew, L′(w) =

1

1 − w
.

The last two cases precisely give rise to the classical Poisson and geometric law. The
first case gives rise to the negative binomial lawNB[2] which also appears in this
form as a sum of two geometricly distributed random variables. �

The technical simplicity with which limit laws are pulled out of combinatorics is
worthy of note.

EXAMPLE 3. Root degrees in trees.Consider first the number of components in a sequence
(ordered forest) of general Catalan trees. The bivariate OGF is

F (z, u) =
1

1− uh(z) , h(z) =
1

2

`
1−
√

1− 4z
´
.

We haveτh = 1/2 < ρg = 1, so that the composition schema is subcritical. Thus, for a forest
of total sizen, the numberXn of tree components satisfies

lim
n→∞

P{Xn = k} =
k

2k+1
(k ≥ 1).



532 IX. MULTIVARIATE ASYMPTOTICS

Since a tree is equivalent to a node appended to a forest, thisasymptotic estimate also holds for
the root degree of a general Catalan tree.

Consider next the number of components in a set (unordered forest) of Cayley trees. The
bivariate EGF is

F (z, u) = euh(z), h(z) = zeh(z).

We haveτh = 1 < ρg = +∞, again a subcritical composition schema. Thus the numberXn

of tree components in a random unordered forest of sizen admits the limit distribution

lim
n→∞

P{Xn = k} = e−1/(k − 1)!, (k ≥ 1),

a shifted Poisson law of parameter 1; asymptotically, the same property also holds for the root
degree of a random Cayley tree

The same method applies more generally to a simple variety oftreesV (see Chapter VII)
with generatorφ, under the condition of the existence of a rootτ of the characteristic equation
φ(τ )− τφ′(τ ) = 0 at a point interior to the disc of convergence ofφ. The BGF satisfies

V (z, u) = zφ(uV (z)), V (z) = 1− γ
p

1− /zρ+O(1− z/ρ).
so that

V (z, u) ∼
z→ρ

ρφ(uτ )− γ uφ
′(uτ )

φ′(τ )

p
1− /zρ.

The PGF of the distribution of root degree is accordingly

uφ′(τu)

φ′(τ )
=
X

k≥1

kφkτ
k

φ′(τ )
uk.

(A limit law was established directly under its local form inChapter VII.) �

The root degree in a random labelled nonplane tree (Cayley tree) admits in the
asymptotic limit a Poisson law, while the root degree of a large plane tree (a Catalan
tree) tends to a negative binomial (NB[2]) distribution. Proposition IX.2 shows, in
a precise technical sense, that the negative binomial law for Catalan trees is a direct
reflection of planarity specified by a sequence construction, while the Poisson law
arises from the set construction attached to nonplanarity.

� 8. Bell number distributions.Consider the “set-of-sets” schema

F (z, u) = exp(euh(z) − 1),

assuming subcriticality. This corresponds to a schemeF = P(P≥1(H)). Then the numberχ
of components satisfies asymptotically a “derivative Bell”law:

P(χ = k) =
1

K

kSkτ
k

k!
, K = e−eτ−τ−1,

whereSn = n![zn]eez−1 is a Bell number. There exists parellel results: for sequence-of-sets,
involving the surjection numbers; for set-of-sequences involving the fragmented permutation
numbers. �

� 9. High levels in Cayley trees.The number of nodes at level 5 (i.e., at distance 5 from the
root) in a Cayley tree has the nice PGF

u
d

du

0
BB@e
−1 + e−1 + e−1 + e−1 + e−1+u 1

CCA ,

and thus involves “super Bell” numbers. �
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A further direct application of continuity of PGFs is the distribution of the number
of H-components of a fixed sizem in a compositionΓ[H] with GF g(h(z)), again
under thesubcriticality condition. In the terminology of Chapter III, we are thus
characterizing theprofile of combinatorial objects, at least as regards components of
some fixed size. The bivariate GF is then

F (z, u) = g(h(z) + (u− 1)hmz
m),

with hm = [zm]h(z). The singular expansion atz = ρ is

F (z, u) = g(τ+(u−1)hmρ
m)−cg′(τ+(u−1)hmρ

m)(1−z/ρ)λ)+o((1−z/ρ)λ).

Thus, the PGFpn(u) for objects of sizen satisfies

(13) lim
n→∞

pn(u) =
g′(τ + (u − 1)hmρ

m)

g′(τ)
.

Like before this specializes in the case of sequences, sets,and cycles giving a result
analogous to Proposition IX.2.

PROPOSITIONIX.4 (Fixed size components).Under the subcriticality conditions of
Propositions IX.2 and IX.3, the number of components of a fixed sizem in a random
sequence, set, or cycle construction applied to a class withGF h(z) admits a discrete
limit law. Withhm := [zm]h(z), ρ the radius of convergence ofh(z), andτ := h(ρ),
the distributions are as follows:

For sequences, the limit law is a negative binomial (NB[2]) of parametera =
hmρ

m

1 − τ + hmρm
. For sets, the limit law is Poisson with parameterλ = hmρ

m. For

cycles, the limit is geometric of parametera =
hmρ

m

1 − τ + hmρm
.

EXAMPLE 4. Root subtrees of sizem. In a Cayley tree, the number of root subtrees of some
fixed sizem has, in the limit, a Poisson distribution,

pk = e−λ λ
k

k!
, λ =

mm−1e−m

m!
.

In a general Catalan tree, the distribution is a negative binomialNB[2]

pk = (1− a)2(k + 1)ak, a−1 = 1 +
m22m−1

`
2m−2
m−1

´ .

Generally, for a simple variety of trees under the usual conditions of existence of a solution to
the characteristic equation,V = zφ(V ), one finds“en deux coups de cuillère à pot”,

V (z, u) = zφ(V (z) + Vmz
m(u− 1))

V (z, u) ∼ ρφ(τ + Vmρ
m(u− 1))− ργφ′(τ + Vmρ

m(u− 1))
p

1− z/ρ
limit PGF =

φ′(τ + Vmρ
m(u− 1))

φ′(τ )
.

(Notations are the same as in Example 3.) �

Arbitrarily many schemas leading to discrete limit laws could be listed. Roughly,
conditions are that the auxiliary variableu does not affect the location nor the nature
of the dominant singularity ofF (z, u). Such conditions are met by the subcritical
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schemas, since eventually the auxiliary variable only appears as a multiplicative coef-
ficient in a local singular expansion.

� 10.The product schema.Define

F (z, u) = A(uz) · B(z),

that corresponds to a product construction,F = A × B, with u marking the size of theA–
component in the product. Assume that the radii of convergence satisfyρA > ρB and that
B(z) has a unique dominant singularity of the algebraic-logarithmic type. Then, the size of the
A component in arandomF structure has a discrete limit law with PGF,

p(u) =
A(ρu)

A(ρ)
.

The proof results directly from singularity analysis. Alternatively, an elementary proof can be
given based on the weaker requirement that the coefficient ofB satisfybn+1/bn → ρ−1. �

Regarding the number of components, the case of a supercritical composition
leads to continuous limit laws of the Gaussian type, as we shall see in the next sec-
tions. The critical case may lead to a variety of probabilistic laws due to the confluence
of singularities that then manisfests itself. In the example that follows, we show that a
particular critical composition scheme already studied inChapter VII leads to a collec-
tion of Poisson laws describing the small component profile of composite structures.

EXAMPLE 5. Small components in sets of logarithmic structures.Consider first the exp–
log schema in the simpler labelled case: it is corresponds tothe constructionF = P(G),
that is,F (z, u) = exp(uG(z)) under the assumption thatG(z) is logarithmic. This means
(Chapter VII) thatG(z) is ∆-singular and satisfies locally

G(z) = κL(z/ρ) + λ+ η(z), where L(z) := log(1− z)−1,

andη(z) = O(1/L(z/ρ)2) asz → ρ in a ∆ domain. We already know from Chapter VII
that the number of components has mean and variance each of the order oflog n, so that a
discrete limit law is not to be expected for the total number of components. However, the
situation becomes quite different iffixedsize components are considered. A limit distribution
has already been obtained in Chapter VII under its local formand it may be revisited in the light
of methods of the present chapter as follows. Letm be a fixed integer larger than 1. The BGF
of F objects withu marking the number ofm components is

F (z, u) = exp ((u− 1)grz
r) .

Under the logarithmic assumption, one has for anyu in a small neighbourhood of1 asz → ρ
in a∆-domain:

F (z, u) ∼ eλw(u)(1− z/ρ)−κ, w(u) = exp ((u− 1)grρ
r) .

By singularity analysis, this tells us thatthe number ofm–components in a randomF–structure
of large size tends to a Poisson distribution with parameterλ := grρ

r.
This result applies for anym less than some arbitrary fixed boundB. In addition, truely

multivariate methods discused at the end of this chapter enable one to prove that the the number
of components of sizes1, 2, . . . , B areasymptotically independent. This gives a very precise
model of the probabilistic profile of small components in randomF–objects as a product of in-
dependent Poisson laws of parametergrρ

r for r = 1, . . . , B. Similar results hold for unlabelled
multisets, but with the negative binomial law replacing thePoisson law. �
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FIGURE 5. Small components of size≤ 20 in random permutations (left) and
random mappings (right) of size 1,000: each object corresponds to a line and each
component is represented by a square of proportional area.

The previous example covers well known exp-log structures introduced by Flajo-
let and Soria in [163]. In the labelled case, we have permutations (as sets of cycles),
random mappings and 2–regular graphs (as sets of connected components). A render-
ing of the cycle structure of random permutations already appears in Chapter III; see
also Figure 5. In the unlabelled case, the prime example is that of polynomials over
finite fields to which we return later in this chapter.

In contrast,large component sizes cannot be independently distributed. (E.g., a
permutation can have only cycle one larger thann/2, two cycles larger thann/3, etc.)
A general probabilistic theory of the joint distribution oflargest components in exp–
log structures has been developed by Arratia, Barbour, and Tavaré [15] and some of its
developments draw their inspiration from earlier studies conducted under the analytic
combinatorial angle. This joint distribution of large components can be characterized
in terms of what is known as the Poisson–Dirichlet process. For instance, as shown by
Gourdon [194], the largest component itself involves the Dickmann function otherwise
known to describe the distribution of the largest prime divisor of a random integer over
a large interval of the form[1 . . N ].

� 11.Random mappings.The number of components of some fixed sizem in a large random
mapping (functional graph) is asymptotically Poisson(λ) whereλ = Kme

−m/m! andKm =
m![zm] log(1− T )−1 enumerates connected mappings. (ThereT is the Cayley tree function.)
The fact thatKme

−m/m! ≈ 1/(2m) explains the fact that small compoents are somewhat
sparser for mappings than for permutations. �

As a last example here, we discuss the length of the longest initial run of a’s in
random binary words satisfying various types of constraints. This discussion com-
pletes the informal presentation of Section IX. 1. The basiccombinatorial objects are
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FIGURE 6. Walks, excursions, bridges, and meanders: random samples of length 50.

the setW = {a, b}⋆ of binary words. A wordw ∈ {W} can also be viewed as de-
scribing a walk in the plane, provided one interpretsa andb as the vectors(+1,+1)
and(+1,−1) respectively. Such walks in turn describe fluctuations in coin tossing
games, as described by Feller [123]. What is especially interesting here is to observe
the complete chain where a specific constraint leads in succession to a combinatorial
decomposition, a specific analytic type of BGF, and a local singular structure that is
then reflected by a particular limit law.

EXAMPLE 6. Initial runs in random walks.We consider here walks in the right half plane
that start from the origin and are made of stepsa = (1, 1), b = (1,−1). According to the
discussion of Chapters V and VII, one can distinguish four major types of walks (Figure 6).

• Unconstrained walks(W) corresponding to words and freely described byW =
S(a, b);

• Dyck paths(D) that always have a nonnegative ordinate and end at level0; the
closely related classG = Db represents the collection of gambler’s ruin sequences.
In probability theory, Dyck paths are also refereed to asexcursions.

• Bridges(B) that are walks that may have negative ordinates but must finish at level 0.
• Meanders(M) which have have always a nonnegative altitude and may end atan

arbitrary nonnegative altitude.

The parameterχ of interest is in all cases the length of the longest initial run ofa’s.
First, the unconstrained walks obey the decomposition

W = S(a)S(bS(a)),

already employed in Chapters I and IV. Thus, the BGF is

W (z, u) =
1

1− zu
1

1− z(1− z)−1
.

By singularity analysis of the pole atρ = 1/2, the PGF ofχ on random words ofWn satisfies

pn(u) ∼
1
2

1− u
2

,

and, as expected, this corresponds to a limit geometric law of parameter1
2
. This is the first

example presented (Section IX. 1) in order to introduce discrete limit laws.
As it is well-known, Dyck pathsD play an important rôle in combinatorial constructions

related to lattice paths (Chapters I and V). A sequence decomposes into “arches” that are
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themselves Dyck paths encapsulated by a paira, b,

D = S(aDb),
which yields a GF of the Catalan domain,

D(z) =
1

1− z2D(z)
, D(z) =

1−
√

1− 4z2

2z2
.

In order to extract the initial run ofa’s, we observe that a word whose initiala-run isak con-
tainsk components of the formbD. This corresponds to a decomposition in terms of the first
traversals of altitudesk − 1, . . . , 1, 0,

D =
X

k≥0

ak(bD)k,

illustrated by the following diagram:

Thus, the BGF is

D(z, u) =
1

1− z2uD(z)
.

This is an even function ofz. In terms of the singular element,δ = (1− 4z)1/2, one finds

F1(z
1/2, u) =

2

2− u −
2u

(2− u)2 δ +O(δ2),

asz → 1/4. Thus, the PGF ofχ on random words ofD2n satisfies

p2n(u) ∼ u

(2− u)2 ,

which is the PGF of a negative binomialNB[2] of parameter1
2

shifted by 1. (Naturally, in this
case, explicit expressions for the combinatorial distribution are available, as this is equivalent
to the classical ballot problem.)

A bridge decomposes into a sequence of arches, either positive or negative,

B = S(aDb + bDa),
whereD is likeD, but with the rôles ofa andb interchanged. In terms of OGFs, this gives

B(z) =
1

1− 2z2D(z)
=

1√
1− 4z2

.

The setB+ of nonempty walks that start with at least onea admits a decomposition similar to
thatD,

B+(z) =

0
@X

k≥1

akb(Db)k−1

1
A · B,

since the paths factor uniquely as aD component that hits 0 for the first time followed by aB
oscillation. Thus,

B+(z) =
z2

1− z2D(z)
B(z).
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The remaining casesB− = B\B+ consist of either the empty word or of a sequence of positive
or negative arches starting with a negative arch, so that

B−(z) = 1 +
z2D(z)

1− 2z2D(z)
.

The BGF results from these decompositions:

B(z, u) =
z2u

1− z2uD(z)
B(z) + 1 +

z2D(z)

1− 2z2D(z)
.

Again, the singular expansion is obtained mechanically,

B(z1/2, u) =
1

2− u
1

δ
+O(1),

whereδ = (1− 4z)1/2. Thus, the PGF ofχ on random words ofB2n satisfies

p2n(u) ∼ 1

2− u .

The limit law is geometric of parameter1/2.
A meander decomposes into an initial runak, a succession of descents with their compan-

ion (positive) arches in some numberℓ ≤ k, and a succession of ascents with their correspond-
ing (positive) arches. The computations are similar to the previous cases, more intricate, but
still “automatic”. One finds that

M(z, u) =

„
XY

(1−X)(1− Y )
− XY 2

(1−XY )(1− Y )

«
1

1− Y +
1

1−X ,

withX = zu, Y = zW1(z), so that

M(z, u) = 2
1− u− 2 z + 2uz2 + (u− 1)

√
1− 4 z2

(1− zu)
`
1− 2 z −

√
1− 4 z2

´ `
2− u+ u

√
1− 4 z2

´ .

There are now two singularities atz = ± 1
2
, with singular expansions,

M(z, u) =
z→1/2

u
√

2

(2− u)2
1√

1− 2z
+O(1), M(z, u) =

z→−1/2

4− u
4− u2

+ o(1),

so that only the singularity at1/2 matters asymptotically. Then, we have

pn(u) ∼ u

(2− u)2 ,

and the limit law is a shifted negative binomialNB[2] of parameter1/2. In summary:

PROPOSITIONIX.5. The length of the initial run ofa’s in unconstrained walks and bridges is
asymptotically distributed like a geometric; in Dyck excursions and meanders like a negative
binomialNB[2].

Similar analyses can be applied to walks with a finite set of steps [20]. �

� 12.The number of meanders.A meander uniquely decomposes into an excursion followed by
a (possibly empty) sequence of elements of the formaD. There results thatM(z) = D(z)/(1−
zD(z)), and

M(z) =

√
1− 4z2 − 1 + 2z

2z(1− 2z)
,

so thatMn =
`

n
⌊n/2⌋

´
. �
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� 13. Leftmost branch of a unary-binary (Motzkin) tree.The class of unary-binary trees (or
Motkzkin trees) is defined as the class of unlabelled rooted plane trees where (out)degrees of
nodes are restricted to the set{0, 1, 2}. The parameterχ under consideration is the length of
the lefmost branch measured by the number of nodes it contains. A tree can be viewed as a
leftmost branch at each node of which is grafted either nothing (the node has degree 1) or a tree,
except for the last node on the branch. Hence the decomposition and the BGF:

M(z) =
X

k≥1

zkM(z)k−1, M(z, u) =
z

1− zuM(z)
.

The first equation corresponds toM = z(1+M +M2) as it should. The dominant singularity
is at z = 1/3 whereM( 1

3
) = 1. There results that the limit PGF ofχ is 4u/(3 − u)2. The

limit distribution is a negative binomialNB[2] with parameter1
3
, shifted by 1. �

IX. 4. Continuous limit laws

Throughout this chapter, our goal is to quantify sequences of random variables
Xn that arise from an integer valued combinatorial parameterχ defined on a combi-
natorial classF . It is a fact that, when the meanµn and the standard deviationσn of χ
onFn tend to infinity asn gets large, then a continuous limit law usually holds. That
limit law arises not from theXn themselves (as was the case for discrete-to-discrete
convergence in the previous section) but from their standardized versions:

X⋆
n =

Xn − µn

σn
.

In this section, we provide definitions and major theorems needed to deal with the
discrete-to-continuous situation.

A random variableY specified by itsdistribution function,

P{Y ≤ x} = F (x),

is said to becontinuousif F (x) is continuous (see APPENDIX C: Random variables,
p. 657). In that case,F (x) has no jump, and there is no single value in the range ofY
that bears a nonzero probability mass. If in additionF (x) is differentiable, the random
variableY is said to have adensity, g(x) = F ′(x), so that

P(Y ≤ x) =

∫ x

−∞
g(x) dx, P{x < Y ≤ x+ dx} = g(x) dx.

A particularly important case for us here is the standardGaussianor normaldistribu-
tion function,

Φ(x) =
1√
2π

∫ x

−∞
e−w2/2 dw,

also called theerror function(erf), the corresponding density being

ξ(x) ≡ Φ′(x) =
1√
2π
e−x2/2.

This section and the next ones are relative to the existence of limit laws of the con-
tinuous type, with Gaussian limits playing a prominent rôle. The general definitions
of convergence in law (or in distribution) and of weak convergence (see APPENDIXC:
Convergence in law, p. 662) instantiate as follows.
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DEFINITION IX.3 (Discrete-to-continuous convergence).LetY be acontinuousran-
dom variable with distribution functionFY (x). A sequence of random variablesYn

with distribution functionsFYn(x) is said to converge in distribution toY if, point-
wise, for eachx,

lim
n→∞

FYn(x) = FY (x).

In that case, one writesYn
D

=⇒Y andFYn

D
=⇒FY .

Convergence is said to take place at speedǫn if

sup
x∈R

|FYn(x) − FY (x)| ≤ ǫn.

The definition does nota priori require uniform convergence. It is a known fact
that convergence to a continuous limit is always uniform. This uniformity means that
there always exists a speedǫn that tends to 0 asn→ ∞.

Discrete limit laws can be established via convergence of probability generating
functions to a common limit, as asserted by the continuity theorem for PGFs, Theo-
rem IX.1. In the case of continuous limit laws, one has to resort to integral transforms
(see APPENDIX C: Transforms of distributions, p. 658), whose definitions we now
recall.

— The Laplace transform—also called themoment generating function—
λY (s) is defined by

λY (s) := E{esY } =

∫ +∞

−∞
esx dF (x).

— the Fourier transform—also called thecharacteristic function— φY (t) is
defined by

φY (t) := E{eitY } =

∫ +∞

−∞
eitx dF (x).

(Integrals are taken in the sense of Lebesgue-Stieltjes or Riemann-Stieltjes; cf AP-
PENDIX C: Probability spaces and measure, p. 655.)

There are two classical versions of the continuity theorem,one for characteris-
tic functions, the other for Laplace transforms. Both may beviewed as extensions
of the continuity theorem for PGF’s. Characteristic functions always exist and the
corresponding continuity theorem gives a necessary and sufficient condition for con-
vergence of distributions. As they are a universal tool, characteristic functions are
therefore often favoured in the probabilistic literature.In the context of this book,
strong analyticity properties go along with combinatorialconstructions so that both
transforms usually exist and can be put to good use.

THEOREM IX.4 (Continuity of integral transforms).Let Y, Yn be random variables
with Fourier transforms (characteristic functions)φ(t), φn(t), and assume thatY has
a continuous distribution function. A necessary and sufficient condition for the con-

vergence in distribution,Yn
D

=⇒Y , is that,pointwise, for each realt,

lim
n→∞

φn(t) = φ(t).
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LetY, Yn be random variables with Laplace transformsλ(s), λn(s) that exist in
a common interval[−s0, s0]. If, pointwisefor each reals ∈ [−s0, s0],

lim
n→∞

λn(s) = λ(s),

then theYn converge in distribution toY : Yn
D

=⇒Y .

The first part of this thorem is also known asLévy’s continuity theoremfor char-
acteristic functions.
PROOF. See Billingsley’s book [49, Sec. 26], for Fourier transforms, and [49, p. 408],
for Laplace transforms. �

� 14. Laplace transforms need not exists.Let Yn be a mixture of a Gaussian and a Cauchy
distribution:

P(Yn ≤ x) =

„
1− 1

n

«Z x

−∞

e−w2/2

√
2π

dw +
1

πn

Z x

−∞

dw

1 +w2
.

ThenYn convergences in distribution to a standard Gaussian limitY , thoughλn(s) only exists
for ℜ(s) = 0. �

The continuity theorem for PGFs eventually relies on continuity of the Cauchy
coefficient formula that realizes the inversion needed in recovering coefficients from
PGFs. Similarly, the continuity theorem for integral transforms may be viewed as
expressing the continuity of inverse Laplace or Fourier transforms, this in the specific
context of probability distribution functions.

The next theorem is an effective version of the Fourier inversion theorem that
proves especially useful for characterizing speeds of convergence. It bounds in a
constructive manner the sup-norm distance between two distribution functions by a
special metric distance between their characteristic functions. Recall that||f ||∞ :=
supx∈R |f(x)|.
THEOREM IX.5 (Berry-Esseen inequality).Let F,G be distribution functions with
characteristic functionsφ(t), γ(t). Assume thatG has a bounded derivative. There
exist absolute constantsc1, c2 such that for anyT > 0,

||F −G||∞ ≤ c1

∫ +T

−T

∣∣∣∣
φ(t) − γ(t)

t

∣∣∣∣ dt+ c2
||G′||∞
T

.

PROOF. See Feller [124, p. 538] who gives

c1 =
1

π
, c2 =

24

π
as possible values for the constants.2

This theorem is typically used withG being the limit distribution function (often
a Gaussian for which||G′||∞ = (2π)−1/2) andF = Fn a distribution that belongs to
a sequence converging toG. The quantityT may be assigned an arbitrary value; the
one giving the best bound in a specific application context isthen normally chosen.

� 15. A general version of Berry–Esseen.Let F,G be two distributions functions. Define
Lévy’s “concentration function”,QG(h) := supx(G(x + h) − G(x)), h > 0. There
exists an absolute constantC such that

||F −G||∞ ≤ CQG(
1

T
) + C

Z +T

−T

˛̨
˛̨φ(t)− γ(t)

t

˛̨
˛̨ dt.
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FIGURE 7. The standardized distribution functions of the binomiallaw (top), the
corresponding Fourier transforms (middle), and the Laplace transforms (bottom),
for n = 3, 6, 9, 12, 15. The distribution functions centred around the meanµn =
n/2 and scaled according to the standard deviationσn = n1/2/2 converge to a

limit which is the Gaussian error function,Φ(x) =
1√
2π

∫ x

−∞
e−w2/2 dw. Ac-

cordingly, the corresponding Fourier transforms —or characteristic functions—
converge toφ(t) = e−t2/2, while the Laplace transforms —or moment generating
functions— converge toλ(s) = es2/2.

See Elliott’s book [115, Lemma 1.47] and the article by Stef and Tenenbaum for a discus-
sion [366]. The latter provides inequalities analogous to Berry-Esseen, but relative to Laplace
transforms on the real line (bounds tend to be much weaker dueto the smoothing nature of the
Laplace transform). �
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Large powers and the central limit theorem. The binomial distribution is defined
as the distribution of a random variableXn with PGF

pn(u) =

(
1

2
+
u

2

)n

,

and characteristic function,φn(t) = pn(eit). The mean isµn = n/2 and the vari-
ance isσ2

n = n/4. Therefore, the standardized variableX∗
n = (Xn − µn)/σn has

characteristic function

(14) φ∗n(t) ≡ E(eitX⋆
n) =

(
cosh(

it√
n

)n

.

The asymptotic form is directly found by taking logarithms,and one finds

(15) logφ∗n(t) = n log

(
1 − t2

2n
+

t4

6n2
+ · · ·

)
= − t

2

2
+O(

1

n
),

pointwise, for any fixedt, asn → ∞. This establishes convergence to the Gaussian
limit. In addition, the Berry-Esseen inequalities show that the speed of convergence is
O(n−1/2), a fact that is otherwise easily verified directly using Stirling’s formula.

� 16. De Moivre’s Central Limit Theorem.Characteristic functions extend the normal limit
law for unbiased Bernoulli distributions to the general case with PGF(p+ qu)n, for fixedp, q
with p+ q = 1. (The result is accessible directly from Stirling’s formula, which constitutes De
Moivre’s original derivation.) �

Thecentral limit theorem(CLT, then term was coined by Pólya in 1920, originally
because of its “zentralle Rolle” in probability theory) of probability theory expresses
the Gaussian character of sums of random variables. It was first discovered4 in the
particular case of Bernoulli variables by De Moivre. The general version is due to
Gauss (who, around 1809, had realized from his works on geodesy and astronomy
the universality of the “Gaussian” law but had only unsatisfactory arguments) and to
Laplace (in the period 1812–1820). Laplace in particular uses Fourier methods and his
formulation of the CLT is fully general, though some of the precise validity conditions
of his arguments only became apparent a century later.

THEOREM IX.6 (Basic CLT). LetTj be independent random variables supported by
Z≥0 with a common distribution of (finite) meanµ and (finite) standard deviationσ.
LetSn := T1 + · · · + Tn. Then the standardized sumS⋆

n converges to the standard
normal distribution,

S⋆
n ≡ Sn − µn

σ
√
n

D
=⇒N (0, 1).

PROOF. The proof is based on local expansions of characteristic functions. First, by a
general theorem, the existence of the first two moments implies that

φT (t) = 1 + iµt− 1

2
(µ2 + σ2)t2 + o(t2), t→ 0.

4For a perspective on historical aspects of CLT, we refer to Hans Fischer’s well-informed mono-
graph [127].
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By shifting, it suffices to consider the case of zero-mean variables (µ = 0). We then
have, pointwise for eacht asn→ ∞,

φT

(
t

σ
√
n

)n

=

(
1 − t2

2n
+ o(

t2

2n
)

)n

→ e−t2/2,

like in Equations (14) and (15). The conclusion follows fromthe continuity theorem.
(This theorem is in virtually any basic book on probability theory, e.g., [124, p. 259]
or [49, Sec. 27].) �

The central limit theorem in the independent case is the subject of Petrov’s com-
prehensive monograph [317]. There are many extensions of the CLT, to variables that
are independent but not necessarily identically distributed (the Lindeberg–Lyapunov
conditions) or variables that are only dependent in some weak sense (mixing condi-
tions); see the discussion by Billingsley [49, Sec. 27]. In the particular case where the
T ’s are discrete, a stronger “local” form of the Theorem results from the saddle point
method; see our discussion in Chapter VIII, the classic treatment by Gnedenko and
Kolmogorov [186], and extensions in Section IX. 9.

� 17. Poisson distributions of large parameter.LetXλ be Poisson with rateλ. As λ tends to
infinity, Stirling’s formula provides easily convergence to a Gaussian limit. The error terms can
then be compared to what the Berry-Esseen bounds provide. (In terms of speed of convergence,
such Poisson approximations to combinatorial distributions are sometimes of a better quality
than the standard Gaussian law; see Hwang’s comprehensive study [221] for a general analytic
approach.) �

IX. 5. Quasi-powers and Gaussian limits

The central limit theorem of probability theory admits a fruitful extension in the
context of analytic combinatorics. As we now show, it suffices that the PGF of a
combinatorial parameter behaves nearly like a large power of a fixed function to en-
sure convergence to a Gaussian limit. We first illustrate this point by considering the
Stirling cycle distribution.

EXAMPLE 7. The Stirling cycle distribution.Consider the Stirling cycle numbers
ˆ
n
k

˜
, and let

Xn be the corresponding random variable with probability distribution
ˆ 1

n!
nk

˜
, with PGF,

pn(u) =

 
n+ u− 1

n

!
=
u(u+ 1)(u+ 2) · · · (u+ n− 1)

n!
=

Γ(u+ n)

Γ(u)Γ(n+ 1)
.

We have for fixedu near 1,

(16) pn(u) =
nu−1

Γ(u)

„
1 +O(

1

n
)

«
=

1

Γ(u)

“
e(u−1)

”log n
„

1 +O(
1

n
)

«
.

As results from Stirling’s formula for the Gamma function (or from singularity analysis of
[zn](1 − z)−u, Chapter VI), the error term in (16) isO(n−1) whenu stays in a small enough
neighbourhhod of 1, for instance|u − 1| ≤ 1

2
. Thus, asn → +∞, pn(u) is approximately a

“large power” ofeu−1 taken with exponentlog n, multiplied by a fixed function,(Γ(u))−1. By
analogy to the central limit theorem, we may expect a Gaussian law.
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The mean satisfiesµn = log n+γ+o(1), the standard deviation satisfiesσn =
√

log n+
o(1). We thus consider the standardized random variable,

X∗
n =

Xn − L− γ√
L

, L = log n,

whose characteristic function is

φ∗
n(t) =

e−it(L1/2+γL−1/2)

Γ(eit/
√

L)
exp

“
L(eit/

√
L − 1)

” „
1 +O(

1

n
)

«
.

For fixedt, with L→∞, the logarithm is then found mechanically to satisfy

log φ∗
n(t) = − t

2

2
+O((log n)−1/2).

This is sufficient to establish a Gaussian limit law,

(17) lim
n→∞

P

n
Xn ≤ log n+ γ + x

p
log n

o
=

1√
2π

Z x

−∞
e−w2/2 dw.

PROPOSITIONIX.6 (Goncharov’s Theorem).The Stirling cycle distribution,P(Xn = k) =
1
n!

ˆ
n
k

˜
, describing the number of cycles and the number of records ina random permutation of

sizen is asymptotically normal.

This result was obtained by Goncharov as early as 1944, see [189], albeit without an error
term as his investigations predate the Berry-Esseen inequalities. �

The cycle example is characteristic of the occurrence of Gaussian laws in analytic
combinatorics. What happens is that the approximation (16)by a power with “large”
exponentβn = logn leads after normalization, to the characteristic functionof a
Gaussian variable, namelye−t2/2. From there, the limit distribution (17) results by
the continuity theorem. This is in fact a very general phenomenon, as demonstrated
by a theorem of Hsien-Kuei Hwang [217, 220] that we state next and that builds upon
earlier statements of Bender and Richmond [33].

The following notations prove especially convenient: given a functionf(u) ana-
lytic at u = 1, we set

(18) m(f) =
f ′(1)

f(1)
, v(f) =

f ′′(1)

f(1)
+
f ′(1)

f(1)
−
(
f ′(1)

f(1)

)2

.

The notationsm, v suggest their probabilistic counterparts while neatly distinguishing
between the analytic and probabilistic realms: Iff is the PGF of a random variableX ,
thenf(1) = 1 andm(f), themean, coincides with the expectationE(X); the quantity
v(f) then coincides with the varianceV(X).

THEOREM IX.7 (Quasi-Powers, Central law).Let theXn be nonnegative discrete
random variables with probability generating functionpn(u). Assume that,uniformly
in a fixed complex neighbourhood ofu = 1, for sequencesβn, κn → +∞, there holds

(19) pn(u) = A(u) (B(u))βn

(
1 +O(

1

κn
)

)
,

whereA(u), B(u) are analytic atu = 1 andA(1) = B(1) = 1. Assume finally that
B(u) satisfies the so-called “variability condition”,

v(B(u)) ≡ B′′(1) +B′(1) −B′(1) 6= 0.
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Under these conditions, the distribution ofXn is asymptotically Gaussian, and the
speed of convergence to the Gaussian limit isO(κ−1

n + β
−1/2
n ):

P

{
Xn − βnU

′(0)√
βnU ′′(0)

≤ x

}
= Φ(x) +O

(
1

κn
+

1√
βn

)
.

The mean and variance ofXn satisfy

(20)
µn ≡ E(Xn) = βn m(B(u)) + m(A(u)) +O(

1

κn
)

σ2
n ≡ V(Xn) = βn v(B(u)) + v(A(u)) +O(

1

κn
)

This theorem is a direct application of the following lemma,also due to Hwang,
that applies more generally to arbitrary discrete or continuous distributions, and is thus
entirely phrased in terms of integral transforms.

LEMMA IX.1 (Quasi-Powers, general distributions).Assume that the Laplace trans-
formsλn(s) = E{esXn} of a sequence of random variablesXn are analytic in a disc
|s| < ρ, for someρ > 0, and satisfy there an expansion of the form

(21) λn(s) = eβnU(s)+V (s)

(
1 +O(

1

κn
)

)
,

with βn, κn → +∞ asn → +∞, andU(s), V (s) analytic in |s| ≤ ρ. Assume also
the variability condition,

U ′′(0) 6= 0.

Under these assumptions, the mean and variance ofXn satisfy

(22)
E{Xn} = βnU

′(0) + V ′(0) +O(κ−1
n ),

V{Xn} = βnU
′′(0) + V ′′(0) +O(κ−1

n ).

The distribution ofXn is asymptotically Gaussian and the speed of convergence to the
Gaussian limit isO(κ−1

n + β
−1/2
n ).

PROOF. This closely follows the lines of Hwang’s works [217, 220]. First, we estimate
the mean and variance. The variables is a priori restricted to a small neighbourhood
of 0. By assumption, the functionlogλn(s) is analytic at 0 and it satisfies

logλn(s) = βnU(s) + V (s) +O(
1

κn
)

This asymptotic expansion carries over, with the same type of error term, to deriva-
tives at 0 because of analyticity: this can be checked directly from Cauchy integral
representations,

1

k!

dr

dsr
logλn(s)

∣∣∣∣
s=0

=
1

2iπ

∫

γ

logλn(s)
ds

sr+1
,

upon using a small but fixed integration contourγ and taking advantage of the basic
expansion oflogλn(s). In particular, the mean and variance satisfy the estimates
of (22).
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Next, we consider the standardized variable,

X⋆
n =

Xn − βnU
′(0)√

βnU ′′(0)
, λ⋆

n(s) = E{esX⋆
n}.

We have

log λ⋆
n(s) = − βnU

′(0)√
βnU ′′(0)

s+ logλn(
s√

βnU ′′(0)
).

Local expansions to third order based on the assumption (21)show that

(23) logλ⋆
n(s) =

s2

2
+O(

|s| + |s|3

β
1/2
n

) +O(
1

κn
),

uniformly with respect tos in a disc of radiusO(β
1/2
n ), and in particular in any fixed

neighbourhood of 0. This is enough to conclude as regards convergence in distribution
to a Gaussian limit, by the continuity theorem of either Laplace transforms (restrict-
ing s to be real) or of Fourier transforms (takings = it).

Finally, the speed of convergence results from the Berry-Esseen inequalities. Take
T ≡ Tn = cβ

1/2
n , wherec is taken sufficiently small but nonzero, in such a way that

the local expansion ofλn(s) at 0 applies. Then, the expansion (23) instantiated at
s = it entails that the quantity

∆n :=

∫ Tn

−Tn

∣∣∣∣∣
λ⋆

n(it) − e−t2/2

t

∣∣∣∣∣ dt+
1

Tn

satisfies

∆n = O(β−1/2
n + κ−1

n ),

and the statement follows by the Berry-Esseen theorem. �

Theorem IX.7 applies immediately to the Stirling cycle distribution for which
the estimate (16) was derived. It shows in addition that the speed of convergence is
O((log n)−1/2) for this distribution.

The Quasi-Powers Theorem under either form (19) or (21) can be readformally
as expressing the distribution of a (pseudo)random variable

Z = Y0 +W1 +W2 + · · · +Wβn ,

whereY0 “corresponds” toeV (s) (orA(u)) and eachWj to eU(s) (orB(u)). However,
there is noa priori requirement thatβn should be an integer, nor thateU(s), eV (s)

be Laplace transforms of probability distribution functions. In a way, the theorem
recycles the intuition that underlies the central limit theorem and makes use of the
analytic machinery behind it. But, in applications, functions likeeU(s), eV (s) do not
necessarily admit a direct probabilistic interpretation.

It is of particular importance to note that the conditions ofTheorem IX.7 and
Lemma IX.1 are purely local:what is required islocal analyticity of the quasi-power
approximation atu = 1 for PGF’s or, equivalently,s = 0 for Laplace-Fourier trans-
forms. This important feature is ultimately due the normalization of random variables
and transforms that goes along with continuous limit laws
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� 18. Higher moments under Quasi-powers.Following Hwang [220], one has under the con-
ditions of the Quasi-Powers Theorem, Lemma IX.1, and for each fixedk,

E(Xk
n) = k!̟k(βn) +O

„
βk

n

κn

«
, ̟k(s) := [sk]eβnU(s)+V (s).

(̟k is a polynomial of degreek, which describes precisely the behaviour of higher moments.)
�

Singularity perturbation and Gaussian laws. The main thread of this chapter is
bivariate generating functions. In general, we are given a BGFF (z, u) and aim at
extracting a limit distribution from it. The quasi-power paradigm in the form (19) is
what one should look for, in the case where the mean and the standard deviation both
tend to infinity with the sizen of the model.

We proceed heuristically in this informal discussion. Start from the BGF and
consideru as a parameter. If singularity analysis applies to the counting generating
functionF (z, 1), it leads to an approximation,

fn ≈ C · ρ−nnα,

whereρ is the dominant singularity ofF (z, 1) andα is related to the critical exponent
of F (z, 1) atρ. A similar type of analysis is often applicable toF (z, u) for u near 1.
Then, it is reasonable to expect an approximation for thez-coefficients of the bivariate
GF,

fn(u) ≈ C(u)ρ(u)−nnα(u).

In this perspective, the corresponding PGF is of the form

pn(u) ≈ C(u)

C(1)

(
ρ(u)

ρ(1)

)−n

nα(u)−α(1).

The strategy envisioned here is thus a perturbation analysis of singular expansions
with the auxiliary parameteru being restricted to a small neighbourhood of 1.

In particular if only the dominant singularity moves withu, we have a rough form

pn(u) ≈ C(u)

C(1)

(
ρ(u)

ρ(1)

)−n

,

suggesting a Gaussian law with mean and variance that are both O(n). If only the
exponent moves, then

pn(u) ≈ C(u)

C(1)
nα(u)−α(1),

suggests again a Gaussian law, but with mean and variance that are bothO(log n).
These cases point to the fact that a rather simple perturbation of a univariate

analysis may yield limiting Gaussian distributions. Each major coefficient extrac-
tion method of Chapters IV–VIII plays a rôle, and the present chapter illustrates this
important point in the following contexts:

— meromorphic analysisfor functions with polar singularities (Section IX. 6
below, based on a perturbation of methods of Chapters IV and V);
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— singularity analysisfor functions with algebraic–logarithmic singularity
(Section IX. 7 below, based on a perturbation of methods of Chapters VI
and VII);

— saddle point analysisfor functions with fast growth at their singularity (Sec-
tion IX. 8 below, based on a perturbation of methods of Chapters VIII).

Roughly, the decomposable character of many elementary combinatorial struc-
tures is reflected by strong analyticity properties of bivariate GF’s that, after perturba-
tion analysis, lead, via the Quasi-Powers Theorem (TheoremIX.7), to Gausssain laws.
The coefficient extraction methods being based on contour integration supply the nec-
essary uniformity conditions. (In contrast, Darboux’s method or Tauberian theorems,
being nonconstructive, arenot normally applicable in this context.)

IX. 6. Perturbation of meromorphic asymptotics

This section discusses schemas that rely on the analysis of coefficients of mero-
morphic functions, as discussed in Chapters IV and V. It is largely based on works
of Bender who, starting with his seminal article [26], was the first to propose abstract
analytic schemas leading to Gaussian laws in analytic combinatorics. Our presenta-
tion also follows subsequent works of Bender, Flajolet, Hwang, Richmond, and So-
ria [33, 163, 165, 217, 218, 219, 220, 359].

EXAMPLE 8. The surjection distribution.We revisit the distribution of image cardinality in
surjections for which the concentration property has been established in Chapter V. This exam-
ple serves to introduce bivariate asymptotics in the meromorphic case. Consider the distribution
of image cardinality in surjections, with BGF

F (z, u) =
1

1− u(ez − 1)
.

Restrictu near 1, for instance|u − 1| ≤ 1
10

. The functionF (z, u), as a function ofz, is
meromorphic with singularities at

ρ(u) + 2ikπ, ρ(u) = log(1 +
1

u
).

The principal determination of the logarithm is used (withρ(u) nearlog 2 whenu is near 1). It
is then seen thatρ(u) stays within0.06 from log 2, for |u − 1| ≤ 1

10
. Thusρ(u) is the unique

dominant singularity ofF , the next nearest one beingρ(u)± 2iπ with modulus certainly larger
than6.

From the coefficient analysis of meromorphic functions (Chapter IV), the quantities
fn(u) = [zn]F (z, u) are estimated as follows,

(24)
fn(u) = Res

`
F (z, u)z−n−1

´
z=ρ(u)

+
1

2iπ

Z

|z|=5

F (z, u)
dz

zn+1

=
1

uρ(u)eρ(u)
ρ(u)−n +O(5−n).

It is important to note that the error term isuniform with respect tou, onceu has been con-
strained to satisfy|u − 1| ≤ 0.1. This fact derives from the coefficient extraction method,
since, in the remainder Cauchy integral of (24), the denominator of F (z, u) stays bounded
away from 0.
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The second estimate in Equation (24), constitutes a prototypical case of application of the
quasi-power schema. Thus, the numberXn of image points in a random surjection of sizen
obeys in the limit a Gaussian law. The local expansion ofρ(u),

ρ(u) ≡ log(1 + u−1) = log 2− 1

2
(u− 1) +

3

8
(u− 1)2 + · · · ,

yields
ρ(1)

ρ(u)
= 1 +

1

2 log 2
(u− 1) − 3 ln(2) − 2

8(log 2)2
(u− 1)2 +O

`
(u− 1)3

´
,

so that the mean and standard deviation satisfy

µn ∼ C1n, σn ∼
√
C2 n, C1 :=

1

2 log 2
, C2 :=

1− log 2

4(log 2)2
.

In particular, the variability condition is satisfied. Finally, one obtains, withΦ the Gaussian
error function,

P{Xn ≤ C1n+ x
√
C2n} = Φ(x) +O

„
1√
n

«
.

This estimate can alternatively be viewed as a purely asymptotic statement regarding Stirling
partition numbers.

PROPOSITIONIX.7. The surjection distribution defined as1
Sn

˘
n
k

¯
, withSn =

P
k k!
˘

n
k

¯
the

normalizing factor (the surjection number), satisfiesuniformly for all realx,

1

Sn

X

k≤C1n+x
√

C2n

k!

(
n

k

)
=

1√
2π

Z x

−∞
e−w2/2 dw+O

„
1√
n

«
.

This result already appears in Bender’s foundational study[26], �

The following analytic schema vastly generalizes the case of surjections. It is
again strongly inspired by the works of Bender [26].

THEOREM IX.8 (Meromorphic schema).LetF (z, u) be a bivariate function that is
bivariate analytic at(z, u) = (0, 0) and has nonnegative coefficients there. Assume
that F (z, 1) is meromorphic inz ≤ r with only a simple pole atz = ρ for some
positiveρ < r. Assume also the following conditions.

(i) Meromorphic perturbation:there existsǫ > 0 and r > ρ such that in the
domain,D = {|z| ≤ r} × {|u− 1| < ǫ} , the functionF (z, u) admits the
representation

F (z, u) =
B(z, u)

C(z, u)
,

whereB(z, u), C(z, u) are analytic for(z, u) ∈ D withB(ρ, 1) 6= 0. (Thus
ρ is a simple zero ofC(z, 1).)

(ii) Nondegeneracy:one has∂zC(ρ, 1) · ∂uC(ρ, 1) 6= 0, ensuring the existence
of a nonconstantρ(u) analytic atu = 1, such thatC(ρ(u), u) = andρ(1) =
ρ.

(iii) Variability: one has

v

(
ρ

ρ(u)

)
6= 0.
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Then, the random variable with probability generating function

pn(u) =
[zn]F (z, u)

[zn]F (z, 1)

converges in distribution to a Gaussian variable with a speed of convergence that is
O(n−1/2). The mean and the standard deviation ofXn are asymptotically linear inn.

First we offer a few comments. Given the analytic solutionρ(u) of the implicit
equationC(ρ(u), u) = 0, the PGFE(uXn) satisfies a quasi-powers approximation of
the formA(u)(ρ(1)/ρ(u))n, as we prove below. The meanµn and varianceσ2

n are
then of the form

(25) µn = m

(
ρ(1)

ρ(u)

)
n+O(1), σ2

n = v

(
ρ(1)

ρ(u)

)
n+O(1).

The variability condition of the Quasi-Powers Theorem is precisely ensured by condi-
tion (iii). Set

ci,j :=
∂i+j

∂zi∂uj
C(z, u)

∣∣∣∣
(ρ,1)

.

The numerical coefficients in (25) can themselves be solely expressed in terms of
partial derivatives ofC(z, u) by series reversion,
(26)

ρ(u) = ρ− c0,1

c1,0
(u− 1)−

c21,0c0,2 − 2c1,0c1,1c0,1 + c2,0c
2
0,1

2c31,0

(u− 1)2 +O((u− 1)3).

In particular the fact thatρ(u) is nonconstant, analytic, and a simple root corresponds
to c0,1c1,0 6= 0 (by the analytic Implicit Function Theorem). The variance condition
is then computed to be equivalent to the cubic inequality in theci,j :

(27) ρ c1,0
2c0,2 − ρ c1,0c1,1c0,1 + ρ c2,0c0,1

2 + c0,1
2c1,0 + c0,1c1,0

2ρ 6= 0.

PROOF. We can now proceed with asymptotic estimates. Consider a domain|u−1| ≤
δ inside the region of analyticity ofB,C. Then, one has

fn(u) := [zn]F (z, u) =
1

2iπ

∮
F (z, u)

dz

zn+1
,

where the integral is taken along a small enough contour encircling the origin. We
use the analysis of polar singularities described in Chapter IV, exactly like in (24). As
F (z, u) has at most one (simple) pole in|z| ≤ r, we have

(28) fn(u) = Res

(
B(z, u)

C(z, u)
z−n−1

)

z=ρ(u)

+
1

2iπ

∫

|z|=r

F (z, u)
dz

zn+1
,

where we may assumeu suitably restricted by|u − 1| < δ in such a way that|r −
ρ(u)| < 1

2 (r − ρ).
The modulus of the second term in (28) is bounded from above by

(29)
K

rn
where K =

sup|z|=r,|u−1|≤δ |B(z, u)|
inf|z|=r,|u−1|≤δ |C(z, u)| .
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Since the domain|z| = r, |u− 1| ≤ δ is closed,C(z, u) attains its minimum that must
be nonzero, given the unicity of the zero ofC. At the same time,B(z, u) being
analytic, its modulus is bounded from above. Thus, the constantK in (29) is finite.

A residue computation of the first term, in accordance with the analysis of mero-
morphic functions, then yields

fn(u) =
B(ρ(u), u)

C′(ρ(u), u)
ρ(u)−n−1 +O(r−n),

uniformly for u in a small enough fixed neighbourhood of1. The mean and variance
then satisfy (25), with the coefficient in the leading term ofthe variance term that is,
by assumption, nonzero. Thus, the conditions of the Quasi-Powers Theorem in the
form (19) are satisfied, and the law is Gaussian in the asymptotic limit. �

Some form of condition regarding nondegeneracy is a necessity. For instance, the
functions

1

1 − z
,

1

1 − zu
,

1

1 − zu2
,

1

1 − z2u
,

each fail to satisfy the nondegeneracy and the variability condition, and the variance
of the corresponding discrete distribution is identically0. The combinatorial variance
isO(1) for a related function like

F (z, u) =
1

1 − z(u+ 2) + 2z2u
=

1

(1 − 2z)(1 − zu)
,

which is excluded by the variability condition of the theorem—there a discrete limit
law, a geometric, is known to hold; see page 516. Yet another situation arises when
considering

F (z, u) =
1

(1 − z)(1 − zu)
.

There is now a double pole at 1 whenu = 1 that arises from “confluence” atu = 1 of
two analytic branchesρ1(u) = 1 andρ2(u) = 1/u. In this particular case, the limit
law is continuous but non-Gaussian; in fact, this limit is the uniform distribution over
the interval[0, 1], since

F (z, u) = 1 + z(1 + u) + z2(1 + u+ u2) + z3(1 + u+ u2 + u3) + · · · .
In addition, for this case, the mean isO(n) but the variance isO(n2). Such situations
are briefly examined in Section IX. 11 at the end of this Chapter.

� 19. Higher order poles.Under the conditions of Theorem IX.8, a limit Gaussian law holds
for the distributions generated by the BGFF (z, u)m, which has anmth order pole. See [26].
�

EXAMPLE 9. The Central Limit Theorem and discrete renewal theory.Let g(u) be any PGF
(g(1) = 1) of a random variable supported byZ≥0 that is analytic at 1 and nondegenerate (i.e.,
v(g) > 0). Then

F (z, u) =
1

1− zg(u)
has a singularity at1/g(u) that is a simple pole,

ρ(u) =
1

g(u)
.
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Theorem IX.8 then applies to give a weak form of the central limit theorem for discrete prob-
ability distributions with PGFs that are analytic at 1. (In such a case, a refined Gaussian con-
vergence property—a local limit law, see Chapter VIII and Section IX. 9 below—also derives
from the saddle point method.)

Under the same analytic assumptions ong, consider now the “dual” BGF,

G(z, u) =
1

1− ug(z) ,

where the rôles ofz andu have been interchanged. In addition, we must impose for consis-
tency thatg(0) = 0. There is a simple probabilistic interpretation in terms ofrenewal processes
of classical probability theory. Assume a light bulb has a lifetime ofm days with probabil-
ity gm = [zm]g(z) and is replaced as soon as it ceases to function. LetXn be the number
of light bulbs consumed inn days assuming independence, conditioned upon the fact thata
replacement takes place on thenth day. Then the PGF ofXn is [zn]G(z, u)/[zn]G(z, 1).
(The normalizing quantity[zn]G(z, 1) is precisely the probability that a renewal takes place on
dayn.) Theorem IX.8 applies. The functionG has a simple dominant pole atz = ρ(u) such
thatg(ρ(u)) = 1/u, with ρ(1) = 1 sinceg is by asumption a PGF. One finds

1

ρ(u)
= 1 +

1

g′(1)
(u− 1) +

1

2

g′′(1) + 2g′(1)− 2g′(1)2

g′(1)3
(u− 1)2 + · · · .

Thus the limit distribution ofXn is normal with mean and variance satisfying

E(Xn) ∼ n

µ
, V(Xn) ∼ nσ

2

µ3
,

whereµ := m(g) andσ2 := v(g) are the mean and variance attached tog. (This calcula-
tion checks the variability conditionen passant.) The mean value result certainly conforms to
probabilistic intuition. �

� 20.Renewals every day.In the renewal scenario, no longer condition on the fact thata bulb
breaks down on dayn. LetYn be the number of bulbs consumed so far. Then the BGF ofYn is
found by expressing that there is a sequence of renewals followed by a last renewal that is to be
credited to all intermediate epochs:

X

n≥1

E(uY
n )zn =

1

1− ug(z)
g(u)− g(zu)

1− z .

A Gaussian limit also holds forYn. �

� 21. A mixed CLT–renewal scenario.ConsiderG(z, u) = 1/(1 − g(z, u)) whereg has
nonnegative coefficients, satisfiesg(1, 1) = 1, and is analytic at(z, u) = (1, 1). This models
the situation where bulbs are replaced but a random cost is incurred, depending on the duration
of the bulb. Under general conditions, a limit law holds and it is Gaussian. This applies for
instance toH(z, u) = 1/(1 − a(z)b(u)), wherea andb are nondegenerate PGFs (a random
repairman is called). �

The preceding discussion of renewal processes also brings us extremely close
analytically to a sequence schemaF = S(G) and

F (z, u) =
1

1 − ug(z)
,

in the case where the schema iscritical. It is then possible to refine the moment
estinmates of Chapter V and obtain the probabilistic profileof supercritical sequences.
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FIGURE 8. When components are sorted by size and represented by vertical
segment of corresponding length, supercritical sequencespresent various profiles
described by Proposition IX.8. The diagrams display the mean profiles of large
surjections, alignments, and compositions for component sizes≤ 5.

PROPOSITION IX.8 (Supercritical sequences).Consider a sequence schema that is
supercritical, i.e., the value ofg at its dominant positive singularity satisfiesτg > 1.
Assumingg to be aperiodic andg(0) = 0, the numberXn of G–components in a
randomFn structure of some large sizen is asymptotically Gaussian with

E(Xn) ∼ n

g′(σ)
, V(Xn) ∼ n

g′′(σ) + g′(σ) − g′(σ)2

g′(σ)3
,

where σ is the radius of convergence ofg. The numberX(m)
n of components

of some fixed sizem is asymptotically normal with mean∼ θmn, whereθm =
gmσ

m/(σg′(σ)).

PROOF. The first part is a direct consequence of Theorem IX.8 and of the previous
calculations withρ replacing 1. The second part results from the BGF

1

1 − (u− 1)gmzm − g(z)
,

and from the fact thatu = 1 induces a smooth perturbation of the pole atρ corre-
sponding tou = 1. �

This proposition aplies to alignments, surjections, compositions of various
sorts—including compositions into prime summands. The profile of supercritical se-
quences is then appreciably different from what was obtained in the subcritical case,
where discrete limit laws prevail. Fundamentally, the proportion of fixed size com-
ponents is close toθm, up to Gaussian fluctuations. The diagrams of Chapter V and
Figure 8 clearly illustrate this situation.

� 22.Alignments and Stirling cycle numbers.Alignments are sequences of cycles (Chapter II),
corresponding toS(C≥1(Z)), with exponential BGF

F (z, u) =
1

1− u log(1− z)−1
.
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The functionρ(u) is explicit,ρ(u) = 1− e−1/u, and the number of cycles in a random align-
ment is asymptotically Gaussian. This yields an asymptoticstatement on Stirling cycle num-
bers:Uniformly for all realx, withOn =

P
k k!
ˆ
n
k

˜
the alignment number, there holds

1

On

X

k≤C1n+x
√

C2n

k!

"
n

k

#
=

1√
2π

Z x

−∞
e−w2/2 dw +O

„
1√
n

«
,

where the two constantsC1, C2 areC1 =
1

e− 1
,C2 =

1

(e− 1)2
. �

� 23.Summands in constrained integer compositions.Consider integer compositions where the
summands are constrained to belong to a setΓ ⊆ N+, and letXn be the number of summands
in a random composition of integern. The ordinary BGF is

F (z, u) =
1

1− ug(z) , g(z) =
X

γ∈Γ

zγ .

Assume thatΓ contains at least two relatively prime elements, so thatg(z) is aperiodic. The
radius of convergence ofg(z) can only be∞ (wheng(z) is a polynomial) or 1 (wheng(z)
comprises infinitely many terms but is dominated by(1−z)−1). At any rate, the sequence con-
struction is supercritical, so that the distribution ofXn is asymptotically normal. For instance, a
Gaussian limit holds for compositions into prime or even twin-prime summands of Chapter V.
�

The next two examples are relative to runs in permutations and patterns in words.
They do not resort to a supercritical sequence but their analytic structure is very much
similar. It is of interest to note that the BGFs were each deduced in Chapter III by an
inclusion-exclusion argument that involves sequences in an essential way.

EXAMPLE 10. Ascending runs in permutations and Eulerian numbers.The exponential BGF
of Eulerian numbers (that count runs in permutations) is

F (z, u) =
u(1− u)
e(u−1)z − u ,

where, foru = 1, we haveF (z, 1) = (1− z)−1. The roots of the denominator are then

ρk(u) := ρ(u) +
2ikπ

u− 1
, ρ(u) =

log u

u− 1
,

wherek is an arbitrary element ofZ. As u is close to 1,ρ(u) is close to 1, while the other
polesρk(u) with k 6= 0 escape to infinity. This fact is also consistent with the limit form
F (z, 1) = (1− z)−1 which has only one pole at1. If one restrictsu to |u| ≤ 2, there is clearly
at most one root of the denominator in|z| ≤ 2 that is given byρ(u). Thus, we have foru close
enough to 1,

F (z, u) =
1

ρ(u)− z +R(z, u),

with R(z, u) analytic in|z| ≤ 2, and

[zn]F (z, u) = ρ(u)−n−1 +O(2−n).

The variability conditions are satisfied since

ρ(u) =
log u

(u− 1)
= 1− 1

2
(u− 1) +

1

3
(u− 1)2 + · · · ,

so thatv(1/ρ(u)) = 1
12

is nonzero.
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FIGURE 9. The diagrams of poles of the BGFF (z, u) associated to the pattern
abaa with correlation polynomialc(z) = 1 + z3 whenu varies on the unit circle.
The denominator is of degree4 in z: one branch,ρ(u) clusters near the dominant
singularityρ = 1

2 of F (z, 1) while three other singularities stay away from the
disc |z| ≤ 1

2 and escape to infinity asu→ 1.

PROPOSITIONIX.9. The Eulerian distribution is asymptotically Gaussian, with mean and vari-
ance given byµn = n+1

2
, σ2

n = n+1
12

.

This example is a famous one and our derivation follows Bender’s paper [26]. The Gauss-
ian character of the distribution has been known for a long time; it is for instance to be found in
David and Barton’sCombinatorial Chance[83] published in 1962. There are in this case inter-
esting connections with elementary probability theory: ifUj are independent random variables
that are uniformly distributed over the interval[0, 1], then one has

[znuk]F (z, u) = P{⌊U1 + · · ·+ Un⌋ < k}.
Because of this fact, the normal limit is thus often derived aconsequence of the central limit
theorem of probability theory, after one takes care of unimportant details relative to the integer
part⌊·⌋ function; see [83, 342]. �

EXAMPLE 11. Patterns in strings.Consider the classF of binary strings (the “texts”), and
fix a “pattern”w of lengthk. Let χ be the number of (possibly overlapping) occurrences of
w. (The patternw occurs if it is a factor,i.e., if its letters occur contiguously in the text.) Let
F (z, u) be the BGF relative to the pair(F , χ). The Guibas-Odlyzko correlation polynomial5

c(z) ≡ cw(z) relative tow is defined for instance in [353], where it is shown that the OGF of
words with patternw excluded is

F (z, 0) =
c(z)

zk + (1− 2z)c(z)
.

5The correlation polynomial, as defined in Chapter I, has coefficients in{0, 1}, with [zj ]c(z) = 1 iff
w matches its left shifted image byj positions.
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By similar string decompositions, the full BGF is found to be[147, p. 145]

F (z, u) =
1− (c(z)− 1)(u− 1)

1− 2z − (u− 1)(zk + (1− 2z)(c(z)− 1))
.

Let D(z, u) be the denominator. ThenD(z, u) depends analytically onz, for u near 1 and
z near1/2. In addition, the partial derivativeD′

z(
1
2
, 1) is nonzero. Thus,ρ(u) is analytic

atu = 1, with ρ(1) = 1/2. The local expansion of the rootρ(u) of D(ρ(u), u) follows from
local series reversion,

2ρ(u) = (1− 2−k(u− 1) + (k2−2k − 2−kc(
1

2
)) (u− 1)2 +O((u− 1)3).

Theorem IX.8 applies.

PROPOSITIONIX.10. The number of occurrences of a fixed pattern in a randomlarge string is
asymptotically normal. The number of occurrences has mean and varianceσ2

n that satisfy

n

2k
+O(1), σ2

n =

„
2−k(1 + 2c(

1

2
)) + 2−2k(1− 2k)

«
n+O(1).

The mean does not depend on the order of letters, only on the length of the pattern. �

� 24. Patterns in Bernoulli texts.Asymptotic normality also holds when letters in strings
are chosen independently but with an arbitrary probabilitydistribution. It suffices to use the
weighted correlation polynomial described in a note of Chapter III. �

EXAMPLE 12. Parallelogram polyominos.Polyominos are plane diagrams that are closely
related to models of statistical physics, while having beenthe subject of a vast combinatorial
literature. This example has the merit of illustrating a level of difficulty somewhat higher than
in previous examples and typical of many “real–life” applications. Our presentation follows an
early article of [28] and a more recent paper of Louchard [272]. We consider here the variety of
polyominos calledparallelograms. A parallelogram is a sequence of segments,

[a1, b1], [a2, b2], . . . , [am, bm], a1 ≤ a2 · · · ≤ am, b1 ≤ b2 ≤ · · · ≤ bm,
where theaj andbj are integers withbj − aj ≥ 1, and one takesa1 = 0 for definiteness. A
parallelogram can thus be viewed as a stack of segments (with[aj+1, bj+1] placed on top of
[aj , bj ]) that leans smoothly to the right:

(This instance has area 39, width 13, height 9, and perimeter13 + 9 = 22.)
The quantitym is called the height, the quantitybm − a1 the width, their sum is called

the (semi)perimeter, and the grand total
P

j(bj − aj) is called the area. We examine paral-
lelograms of fixed area and investigate the distribution of the perimeter. The ordinary BGF of
parallelograms, withz marking area andu marking perimeter turns out to be

(30) F (z, u) = u
J1(z, u)

J0(z, u)
,
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whereJ0, J1 belong to the realm of “q–analogues” and generalize the classical Bessel functions,

J0(q, u) :=
X

n≥0

(−1)nunqn(n+1)/2

(q; q)n(uq; q)n
, J1(q, u) :=

X

n≥1

(−1)n−1unqn(n+1)/2

(q; q)n−1(uq; q)n
,

with the “q–factorial” notation being used:

(a; q)n = (1− a)(1− aq) · · · (1− aqn−1).

The expression (30) of the BGF results from a simple construction: a parallelogram is
either an interval, or it is derived from an existing parallelogram by stacking on top a new
interval. LetG(w) ≡ G(x, y, z, w) be the OGF withx, y, z, w marking width, height, area,
and length of top segment, respectively. The GF of a parallelogram made of a single nonzero
interval is

a(w) ≡ a(x, y, z, w) =
xyzw

1− xzw .
The operation of piling up a new segment on top of a segment of lengthm that is represented
by a termwm is described by

y

„
zmwm

1− xzw + · · ·+ zw

1− xzw

«
= xyzw

1− xmwm

(1− zw)(1− xzw)
.

Thus,G satisfies the functional equation,

(31) G(w) =
xyzw

1− xzw +
xyzw

(1− zw)(1− xzw)
[G(1)−G(xzw)] .

This is the method of “adding a slice” already employed in Chapter III. and reflected by the
relation (31). Now, an equation of the form,

G(w) = a(w) + b(w)[G(1) −G(λw)],

is solved by iteration:

G(w) = a(w) + b(w)G(1)− b(w)G(λ(w))
=

`
a(w)− b(w)a(λw) + b(w)b(λw)a(λ2w)− · · ·

´

+G(1)
`
b(w)− b(w)b(λw) + b(w)b(λw)b(λ2w)− · · ·

´
.

One then isolatesG(1) by settingw = 1. This expressesG(1) as the quotient of two similar
looking series (formed with sums of products ofb–values). Here, this givesG(x, y, z, 1), from
which the form (30) ofF (z, u) derives, sinceF (z, u) = G(u, u, z, 1).

In such a seemingly difficult situation, one should first estimate[zn]F (z, 1), the number
of parallelogram of “size” (i.e., area) equal ton. We haveF (z, 1) = J1(z, 1)/J0(z, 1), where
the denominator is

J0(z, 1) = 1− z

(1− z)2 +
z3

(1− z)2(1− z2)2
− z6

(1− z)2(1− z2)2(1− z3)2
+ · · · .

Clearly,J0(z, 1) andJ1(z, 1) are analytic in|z| < 1, and it is not hard to see thatJ0(z, 1)
decreases from 1 to about−0.24 whenz varies between0 and 1

2
, with a root at

ρ
.
= 0.43306 19231 29252,

whereJ ′
0(ρ, 1)

.
= −3.76 6= 0, so that the zero is simple6. SinceF (z, 1) is by construction

meromorphic in the unit disc, andJ1(ρ, 1)
.
= 0.48 6= 0, the number of parallelograms satisfies

[zn]F (z, 1) ∼ J1(ρ, 1)

ρJ ′
0(ρ, 1)

„
1

ρ

«n

= α1 · αn
2 ,

6As usual, such computations can be easily validated by carefully controlled numerical evaluations
coupled with Rouché’s theorem (see Chapter IV).
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where

α1
.
= 0.29745 35058 07786, α2

.
= 2.30913 85933 31230.

As is common in meromorphic analyses, the approximation of coefficients is quite good; for
instance, the relative error is only about10−8 for n = 35.

We are now ready for bivariate asymptotics. Take|z| ≤ r = 7
10

and|u| ≤ 11
10

. Because

of the form of their general terms that involvezn2/2un in the numerators while the denomi-
nators stay bounded away from 0, the functionsJ0(z, u) andJ1(z, u) remain analytic there.
Thus,ρ(u) exists and is analytic foru in a sufficiently small neighbourhood of 1 (by Weier-
strass preparation or implicit functions). The nondegeneracy conditions are easily verified by
numerical computations. There results that Theorem IX.8 applies.

PROPOSITIONIX.11. The perimeter of a random parallelogram polyomino of arean admits a
limit law that is Gaussian with mean and variance that satisfy: µn ∼ µn, σn ∼ σ

√
n, with

µ
.
= 0.84176 20156, σ

.
= 0.42420 65326.

This indicates that a random parallelogram is most likely toresemble a slanted stack of
fairly short segments. �

� 25.Width and height of parallelogram polyominos are normal. Similar perturbation methods
show that the expected height and width are eachO(n) on average, again with Gaussian limits.
�

� 26. The base of a coin fountain.A coin fountain (Chapter IV) is defined as a vectorv =
(v0, v1, . . . , vℓ), such thatv0 = 0, vj ≥ 0 is an integer,vℓ = 0 and|vj+1 − vj | = 1. Take as
size thearea, n =

P
vj . Then the distribution of the base lengthℓ in a random coin fountain

of sizen is asymptotically normal. (This amounts to considering allruin sequences of a fixed
area as equally likely, and considering the number of steps in the game as a random variable.)
Similarly the number of vector entries equal to 0 is asymptotically Gaussian. �

Perturbation of systems of linear equations.There is usually a fairly transparent
approach to the analysis of BGFs defined implicitly as solutions of functional equa-
tions. One should start with the analysis atu = 1 and then examine the effect on
singularities whenu varies in a very small neighbourhood of 1. In accordance with
what we have already seen many times, the process is a perturbation analysis of the
solution to a functional equation near a singularity, here one thatmoves.

We illustrate, mostly by way of examples, the application ofTheorem to functions
defined implicitly by a linear system of positive equations.Positive rational functions
arise in connection with problems that can be equivalently described by finite state
devices, by paths in graphs, and by Markov chains. The bivariate problem is then
expressed by a linear equation

(32) Y (z, u) = V (z, u) + T (z, u) · Y (z, u),

whereT (z, u) is anm×mmatrix with polynomial entries inz, u having nonnegative
coefficients,Y (z, u) is anm×1 column vector of unknowns, andV (z, u) is a column
vector of nonnegative initial conditions.

Regarding the univariate problem,

(33) Y (z) = V (z) + T (z) · Y (z).
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, whereY (z) = Y (z, 1) and so on, we place ourselves under the assumptions of
Theorem V.5 of Chapter V. This means that properness, positivity, irreducibility, and
aperiodicity are assumed throughout. In this case (see the developments of Chapter V),
Perron-Frobenius theory applies to the univariate matrixT (z). In other words, the
function

C(z) = det(I − T (z))

has a unique dominant rootρ > 0 that is a simple zero. Accordingly, any component
F (z) = Yi(z) of a solution to the system (32) has a unique dominant singularity
atz = ρ that is a simple pole,

F (z) =
B(z)

C(z)
,

with B(ρ) 6= 0.
In the bivariate case, each component of the solution to the system (32) can be

put under the form

F (z, u) =
B(z, u)

C(z, u)
, C(z, u) = det(I − T (z, u)).

SinceB(z, u) is a polynomial, it does not vanish for(z, u) in a sufficiently small
neighbourhood of(ρ, 1). Similarly, by the analytic Implicit Function Theorem, there
exists a functionρ(u) locally analytic nearu = 1, such that

C(ρ(u), u) = 0, ρ(1) = ρ.

Thus, it is sufficient that the variability conditions (26) be satisfied to infer a limit
Gaussian distribution.

THEOREM IX.9 (Positive rational systems).LetF (z, u) be a bivariate function that
is analytic at(0, 0) and has nonnegative coefficients. Assume thatF (z, u) coincides
with the componentY1 of a system of linear equations inY = (Y1, . . . , Ym)T ,

Y = V + T · Y,
whereV = (V1(z, u), . . . , Vm(z, u)), T = (Ti,j(z, u))

m
i,j=1, and each ofVj , Ti,j

is a polynomial inz, u with nonnegative coefficients. Assume also thatT (z, 1) is
transitive, proper, and primitive, and letρ(u) be the unique solution of

det(I − T (ρ(u), u)) = 0,

assumed to be analytic at 1, such thatρ(1) = ρ. Then, provided the variability condi-
tion,

v

(
ρ(1)

ρ(u)

)
> 0,

is satisfied, a Gaussian Limit Law holds for the coefficients of F (z, u) with mean and
variance that areO(n) and speed of convergence that isO(n−1/2).

The constantsµ, σ involved in estimates of the mean and standard deviation,
µn ∼ µn, σn ∼ σ

√
n, are then determined fromC(z, u) = det(I − T (z, u)) by

Eq. (26). Thus, in any particular application, one can determine by computation
whether the variability condition is satisfied. It may be however more difficult to
check these conditions for a whole classes of problems.
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EXAMPLE 13. Limit theorem for Markov chains.Assume thatM is the transition matrix of
an irreducible aperiodic Markov chain, and consider the parameterχ that records the number
of passages through state 1 in a path of lengthn that starts in state 1. Then, the theorem applies
with

V = (1, 0, . . . , 0)T , Ti,j(z, u) = zMi,j + z(u− 1)Mi,0δj,0.

We therefore derive a classical limit theorem for Markov chains:

PROPOSITIONIX.12. In an irreducible and aperiodic (finite) Markov chain, the number of
times that a designated state is reached whenn transitions are effected is asymptotically Gauss-
ian.

The conclusion also applies to paths in any strongly connected aperiodic digraph as well
as to paths conditioned by their source and/or destination. �

� 27.Sets of patterns in words.This note extends Example 11 relative to the occurrence of a
singlepattern in a random text. Given the classW = S(A) of words over a finite alphabetA,
fix a finite set of “patterns”S ⊂ W and define the parameterχ(w) as the total number of
occurrences of members ofS in the wordw ∈ W. It is possible to build finite automaton
(essentially a digital tree built onS equipped with return edges) that records simultaneously the
number of partial occurrences of each pattern. Then, the limit law of χ is Gaussian; see Bender
and Kochman’s paper [32] and [144, 147] for an approach based on the de Bruin graph.�

Virtually all of the combinatorial classes that resort to transfer matrix methods
exposed in Chapter V lead to Gaussian laws in the asymptotic limit.

EXAMPLE 14. Tilings. (See Bender [34].) Take an(2 × n) chessboard of 2 rows andn
columns, and consider coverings with “monomer tiles” that are (1 × 1)-pieces, and “dimer
tiles” that are either of the horizontal(1× 2) or vertical(2× 1) type. The parameter of interest
is here the number of tiles. Consider next the collection of all “partial coverings” in which
each column is covered exactly, except possibly for the lastone. The partial coverings are of
one of 4 types and the legal transitions are described by a compatibility graph. For instance, if
the previous column started with one horizontal dimer and contained one monomer, the current
column has one occupied cell, and one free cell that may then be occupied either by a monomer
or a dimer. This finite state description corresponds to a setof linear equations over BGFs (with
z marking the area covered andu marking the total number of tiles), with the transition matrix
found to be

T (z, u) = z

0
BB@

u u2 u2 u2

1 0 0 0
u 0 0 0
u 0 0 0

1
CCA .

In particular, we have

det(I − T (z, u)) = 1− zu− z2(u2 + u3).

Then, Theorem IX.9 applies: the number of tiles is asymptotically normal. The method clearly
extends to(k × n) chessboards, for any fixedk. �

� 28.Succession-constrained integer compositions.Consider integer compositions where con-
secutive summands add up to at least 4. The number of summandsin such a composition of
large size is asymptotically normal. [Hint: see Bender and Richmond [34]] �

� 29. Height in trees of bounded width.Consider general Catalan trees of width less than a
fixed boundw. (The width is the maximum number of nodes at any level in the tree.) In such
trees, the distribution of height is asymptotically Gaussian. �
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IX. 7. Perturbation of singularity analysis asymptotics

In this section, we examine schemes that arises when generating functions con-
tain algebraic-logarithmic singularities. For instance,trees often lead to singularities
that are of the square-root type and such a singular behaviour persists for a num-
ber of bivariate generating functions associated to aditively inherited parameters. In
such cases, the underlying machinery is the method of singularity analysis detailed in
Chapter VI, on which suitable perturbative developments are applied.

An especially important feature of the method of singularity analysis and of the
associated Hankel contours is the fact that it preserves uniformity of expansions7.
This feature is crucial in translating bivariate expansion, where we need to estimate
uniformlya coefficientfn(u) = [zn]F (z, u) that depends on the parameteru, given
some (uniform) knowledge on the singular structure ofF (z, u) in terms ofz. We state
here an easy but crucial lemma that takes care of remainder terms in expansions and
hence enables the use of singularity analysis in a perturbedcontext.

LEMMA IX.2 (Uniformity lemma, singularity analysis).Letfu(z) be a family of func-
tions analytic in a common∆-domain∆, withu a parameter taken in a bounded setU .
Suppose that there holds

|fu(z)| < K(u)|1 − z|−α(u),

whereK(u) is uniformly bounded,K(u) < K for u ∈ U , andα(u) is such that
−ℜ(α(u) > B for some finite realB. Then, there exists a constantK̃ (computable
from∆,K,B such that

|[zn]fu(z)| < K̃nB−1.

PROOF. It suffices to revisit the proof of the Big-Oh transfer (O-transfer) theorem
of Chapter VI, paying due attention to uniformity. The proofproceeds by Cauchy’s
formula,

fu, n ≡ [zn]fu(z) =
1

2iπ

∫
γfu(z)

dz

zn+1
,

whereγ = ∪jγj is the contour used earlier. Accordingly, we letf
(j)
u,n be the contribu-

tion in Cauchy’s integral arising from partγj of the contour. Letr be the radius of the
circular part of the contour, corresponding in earlier notations toγ3. Without loss of
generality, we may assume|r − 1| < 1. Trivial bounds imply whenB > 0 that that

|f (3)
u,n| ≤

K

(r − 1)B+1
r−n,

with an analogous formula ifB < 0. The partγ1 corresponding to the small circular
arc at distance1/n from 1 is similarly dealt with by trivial bounds to the effectthat

|f (1)
u,n| ≤ KnB−1.

7For instance, Darboux’s method only providesnon-constructiveerror terms, as it is based on the
Riemann-Lebesgue lemma; it cannot be employed for bivariate asymptotics. A similar comment applies to
most Tauberian theorems.
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FIGURE 10. A display of the family of GF’sF (z, u0) corresponding to leaves in
general Catalan trees whenu0 ∈ [ 12 ,

3
2 ]. It is seen that the singularities are all of

the square root type (dashed line), with a movable singularity at ρ̃(u) = (1 +
u1/2)−2.

The two conjugate rectlinear parts corresponding toγ2, γ4 each lead to

|fu,n(2)| = |f (4)
u,n| ≤

K

2π
Jnn

B−1, Jn :=

∫ ∞

1

t−B

(
1 +

1

n
t cos θ

)n

.

Combining the four majorizations yields the result. � What this lemma expresses
is more general than the meromorphic scheme; only the error terms in estimates of
PGFs tend to be naturally less good as we replace an exponentially small error term
inherent to meromorphic functions by a term that is usuallyO(n−β) in the context of
singularity analysis. (Note that the proof above also supplies the uniformity estimates
needed in the proof of the little-oh transfer (o-transfer) of Chapter VI.)

� 30.Uniformity in the presence of lagarithmic multipliers.Similar estimates hold whenf(z)
is multiplied by a power ofL(z) = − log(1− z). �

EXAMPLE 15. Leaves in general Catalan trees.As an introductory example, let us briefly
revisit the analysis of the number of leaves in general Catalan trees, a problem already treated
in Chapter III. where an explicit expression (a product of two binomial coefficients) has been
derived. The computations are a little simpler if we adopt asBGF

G(z, u) = F (z, u2) =
1

2

“
1 + (u2 − 1)z −

p
1− 2(u2 + 1)z + (u2 − 1)2z2

”
,
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so that we consider a parameter equal to twice the number of leaves. In this case, the discrimi-
nant factors nicely:

1− 2(u2 + 1)z + (u2 − 1)2z2 = (1− z(1 + u)2)(1− z(1− u)2),
which leads to the expression

(34) G(z, u) = A(z, u) +B(z, u)
p
C(z, u),

with

A(z, u) =
1

2
(1 + (u2 − 1)z), B(z, u) = −1

2

p
1− z(1− u)2,

C(z, u) =
1

2

`
1− z(1 + u)2

´
.

This decomposition clearly shows that, whenu is close enough to 1, the functionG(z, u) has a
dominant singularity of the square-root type at

ρ(u) =
1

(1 + u)2
.

At the same time, ifu is kept such that|1 − u| ≤ 1
2
, thenB(z, u) remains analytic in both of

its arguments for|z| < 2. For any such fixedu, we have for the BGF, by (34),

(35) G(z, u) = a0(u) + b(u)
p

1− z/ρ(u) + a1(u)(1− z/ρ(u)) +O((1− z/ρ(u))3/2),

for some computable coefficientsa0, a1, b, c that depend onu and are in fact analytic inu near
u = 1. Singularity analysis then provides, pointwise for eachu,

(36) [zn]G(z, u) =
−2√
π
B(ρ(u), u) ρ(u)−nn−3/2

„
1 +O(

1

n
)

«
.

The expansion (35) is uniform whenu lies in a sufficiently small complex neighbourhood of 1.
It can be seen (details below) that the expansion of the coefficient in (36) is also uniform by
virtue of of the general uniformity preserving property of the singularity analysis process, as
expressed by Lemma IX.2. We are thus exactly in a case of application of the Quasi-Powers
Theorem, so that the limit law for the number of leaves is asymptotically Gaussian. �

IX. 7.1. General algebraic-logarithmic conditions. The example of leaves in
tres leads to simple computations, but is is characteristicof the machinery needed in
more general cases. The theorem that follows is relative to any singular exponentα
not in Z≤0.

THEOREM IX.10 (Algebraic singularity schema).LetF (z, u) be a bivariate function
that is bivariate analytic at(z, u) = (0, 0) and has nonnegative coefficients there.
Assume the following conditions:

(i) Algebraic perturbation:there exist three functionsA,B,C, analytic in a
domainD = {|z| ≤ r} × {|u − 1| < ǫ}, for somer > 0 andǫ > 0, such
that the following representation holds,

(37) F (z, u) = A(z, u) +B(z, u)C(z, u)−α,

thatρ < r is the unique (simple) root in|z| ≤ r of the equationC(z, 1) = 0,
and thatB(ρ, 1) 6= 0.

(ii) Nondegeneracy: one has∂zC(ρ, 1) · ∂uC(ρ, 1) 6= 0, ensuring the existence
of a nonconstantρ(u) analytic atu = 1, such thatC(ρ(u), u) = 0 and
ρ(1) = ρ.
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(iii) Variability: one has

v

(
ρ

ρ(1)

)
6= 0.

Then, the random variable with probability generating function

pn(u) =
[zn]F (z, u)

[zn]F (z, 1)

converges in distribution to a Gaussian variable with a speed of convergence that is
O(n−1/2). The meanµn and the standard deviationσn are asymptotically linear inn.

The remarks following the statement of Theorem IX.8 apply. Accordingly, the
meanµn and varianceσ2

n are computable by the general formula (25), and the vari-
ability condition is expressible in terms of the values ofC and its derivatives at(ρ, 1)
by means of Equation (27).

PROOF. Observe first that one does not need to worry about thea priori domain of
existence ofF (z, u) since Equation (37) provides automatically analytic continuation
to a collection of∆–domains atρ(u) whenu varies. Thus, it suffices that the repre-
sentation (37) be established initially in some open domainof {|z| < ρ}× {|u| < 1},
by unicity of analytic continuation.

By the assumptions made, the functionF (z, 1) admits a singular expansion of the
form
(38)
F (z, 1) = (a0 + a1(z − ρ) + · · · )

+ (b0 + b1(z − ρ) + · · · )
(
c1(z − ρ) + c2(z − ρ)2 + · · ·

)−α
.

There, theaj, bj , cj represent the coefficients of the expansion inz of A,B,C for
z nearρ whenu is instantiated at 1. (We may considerC(z, u) normalized by the
condition thatc1 is positive real, and take, e.g.,c1 = 1.) Singularity analysis then
implies the estimate

(39) [zn]F (z, 1) = b0(−c1ρ)−αρ−nn
α−1

Γ(α)

(
1 +O(

1

n
)

)
.

All that is needed now is a “lifting” of relations (38) and (39), for u in a small
neighbourhood of1. First, we observe that by the analyticity assumption onA, the
coefficient[zn]A(z, u) is exponentially small compared toρ−n, for u close enough
to 1. Thus, for our purposes, we may freely restrict attention toB(z, u)C(z, u)−α.
(The functionA is only needed in some cases so as to ensure nonnegativity of the
first few coefficients ofF .) Next, it is convenient to operate with afixedrather than
movable singularity. This is simply achieved by considering the normalized function

Φ(z, u) := B

(
z

ρ(u)
, u

)
C

(
z

ρ(u)
, u

)−α

.

Providedu is restricted to a suitably small neighbourhood of 1 andz to |z| < R for
someR >′, the functionsB(z/ρ(u), u) andC(z/ρ(u), u) are analytic in bothz andu,
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with C(z, u) having a fixed simple zero atz = 1. There results that the function

1

1 − z
C

(
z

ρ(u)
, u

)

has a removable singularity atz = 1 and is in fact analytic in|z| < r, |u − 1| < δ.
Thus,Φ satisfies an expansion of the form

Φ(z, u) = (1 − z)−α
∑

n≥0

φn(u)(1 − z)n,

that is convergent and such that each coefficientφj(u) is an analytic function ofu for
|u− 1| < δ.

We may restrict this neighbourhood as we please, with|u − 1| ≤ δ provided we
keepǫ ≥ δ > 0. First, by Weierstrass preparation, there is foru sufficiently near to 1,
a unique simple rootρ(u) nearρ of the equation

C(ρ(u), u) = 0.

We haveρ(1) = ρ with ρ(u) being locally analytic at 1. One can then expandA,B,C
near(ρ(u), u). This gives the bivariate expansion
(40)
F (z, u) = (a0(u) + a1(z − ρ(u)) + · · · )

+ (b0(u) + b1(u)(z − ρ(u)) + · · · )
(
c1(u)(z − ρ(u)) + c2(u)(z − ρ(u))2 + · · ·

)−α
.

There, by assumption, we have thataj(u), bj(u), cj(u) are analytic in|u − 1| ≤ ǫ,
and are eachO(r−n). In addition,ρ(u)α and(−c1(u))α are well-defined by principal
values, since their specializations atu = 1 are positive. Thus, we have a singular
expansion forF (z, u); for instance, whenα ∈] − 1, 0[,

(41)
F (z, u) = a0(u) + a1(u)(z − ρ(u))

+ b0(u)(−c1(u)ρ(u))−α(1 − z/ρ(u))−α +R(z),

where
R(z) = O

(
(1 − z/ρ(u))α+1

)
,

and theO–error term is uniform for|u− 1| < δ:

|R(z)| ≤ K · |1 − z/ρ(u)|,
for some absolute constantK. We thus have

(42) [zn]F (z, u) = b0(u)(−c1(u)ρ(u))−αρ(u)−nn
α−1

Γ(α)

(
1 +O(

1

n
)

)
.

where the error term is again uniform. An especially important fact for this argument
is the following: the singularity analysis process is a uniform coefficient extraction
method.This is precisely provided by Lemma IX.2.

Equation (42) shows thatfn(u) = [zn]F (z, u) satisfies precisely the conditions
of the Quasi-Powers Theorem. Therefore, the law with PGFfn(u)/fn(1) is asymptot-
ically normal with a mean and a standard deviation that are bothO(n). Since the error
term in (42) isO(1/n), the speed of convergence to the Gaussian limit isO(1/

√
n).

�
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� 31. Logarithmic multipliers.The conclusions of Theorem IX.10 extend to functions repre-
sentable under the more general form

F (z, u) = A(z, u) +B(z, u)C(z, u)−α (logC(z, u))k .

(The proof follows exactly the same pattern.) �

EXAMPLE 16. Leaves in classical varieties of trees.We start with binary Catalan trees and
with the BGF

F (z, u) = z(u+ 2zF (z, u) + F (z, u)2),

so that

F (z, u2) =
1

2z

“
1− 2z −

p
(1− 2z(1 + u))(1− 2z(1− u))

”
.

This is almost the same as the BGF of leaves in general Catalantrees. The dominant singularity
is at ρ(u) = 1

2(1+u)
, and the limit law is Gaussian. The asymptotic form of the mean and

variance are immediately derived fromρ, and we find that the number of leavesXn in a binary
Catalan tree satisfies

E{Xn} =
n

4
+O(1), σ{Xn} =

√
n

4
+O(n−1/2).

In the case of Cayley trees, the BGF equation8 is

F (z, u) = z(u− 1 + eF (z,u)).

By Lagrange inversion, the distribution is related to the Stirling partition numbers. The func-
tional equation admits an explicit solution in terms of Lambert’s “W -function”, which is such
thatz = WeW , with the branch choice thatW = 0 whenz = 0. Thus,W (z) = −T (−z),
whereT = zeT is the classical “Cayley tree function”. Here, we have

F (z, u) = z(u− 1)−W (−zez(u−1)).

The functionW has a dominant singularity of the square-root type at−e−1. Thus, one can
solve forρ(u), again in terms of theW function. Here, we find

ρ(u) =
1

u− 1
W (e−1(u− 1)).

In particular, we getρ(1) = e−1, as we should. The expansion nearu = 1 then comes
automatically

ρ(u)

ρ(1)
= 1− e−1(u− 1) +

3

2
e−2(u− 1)2 +O((u− 1)3).

Hence the mean and the variance of the numberXn of leaves in a random tree of sizen satisfy:

E{Xn} ∼ e−1 n ≈ 0.36787 n, σ2{Xn} ∼ e−2(e− 2)n ≈ 0.09720 n,

and the limit law is a Gaussian. �

� 32. Leaves in Motzkin trees.The number of leaves in a unary-binary (Motzkin) tree is
asymptotically Gaussian. �

8This example constitutes a typical application of symbolicmanipulation systems.
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EXAMPLE 17. Patterns in binary Catalan trees.We develop here a more sophisticated example
coming from the analysis of pattern matching in trees [370, 162] that generalizes the problem
of leaves. Fix a nonempty binary treew and letω[t] ≡ ωw[t] be the number of occurrences of
patternw in treet. By this, we mean the number of internal nodesν in t such that the subtree
of t rooted atν is isomorphic tow. The problem is of interest in the analysis of some symbolic
manipulation algorithms and of “sharing” strategies; see [370, 162] for the algorithmic context.

A pattern occurs either in the left root subtreet0 or in the right root subtreet1 or at the
root iself if t coincides withw. This gives rise to the recursive definition

ω[t] = ω[t0] + ω[t1] + [[t = w]], ω[∅] = 0,

where[[P ]] denotes the indicator function ofP whose value is 1 ifP is true, and 0 otherwise.
The functionuω[t] is almost multiplicative, and

uω[t] = u[[t=w]]uω[t0]uω[t1] = uω[t0]uω[t1] + [[t = w]] · (u− 1).

Thus, the bivariate generating functionF (z, u) wherez marks internal nodes andu marks the
number of occurrences ofw,

F (z, u) :=
X

t

z|t|uω[t],

satisfies the algebraic equation,

F (z, u) = 1 + (u− 1)zm + zF (z, u)2,

withm = |w| the number of internal nodes ofw.
The quadratic equation forF leads to

F (z, u) =
1

2z

“
1−

p
1− 4z − 4zm+1(u− 1)

”
.

The discriminant has a unique rootρ = 1/4 whenu = 1, while it hasm + 1 roots foru 6= 1.
By general properties of implicit and algebraic functions (implicit function theorem, Weierstrass
preparation), asu tends to 1, one of these roots, call itρ(u) tends to1/4 while all the other ones
{ρj(u)}mj=1 escape to infinity. We have

H(z, u) :=
1− 4z − 4zm+1(u− 1)

1− z/ρ(u) =
mY

j=1

(1− z/ρj(u)),

which is an analytic function in(z, u) for (z, u) in a complex neighbourhood of(1/4, 1). This
results from the fact that the algebraic function1/ρ(u) is analytic atu = 1. It gives the singular
expansion ofG(z, u) = zF (z, u):

G(z, u) =
1

2
− 1

2

p
H(z, u)

p
1− z/ρ(u).

Thus, we are exactly under the conditions of the theorem. Thequantityω taken over a random
binary tree of sizen+ 1 has mean and variance given asymptotically by

m

„
1

4ρ(u)

«
n, v

„
1

4ρ(u)

«
n.

The expansion ofρ(u) at1 is computed easily by iteration of the defining equation:

z =
1

4
− zm+1(u− 1) =

1

4
− (

1

4
− zm+1(u− 1))m+1(u− 1) + · · · .

Thus,

ρ(u) =
1

4
− 1

4m+1
(u− 1) +

m+ 1

42m+1
(u− 1)2 + · · · .
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This shows that the meanµn and the varianceσ2
n of the number of occurrences of a pattern

of sizem in a random binary tree of sizen satisfy

µn ∼ n

4m
, σ2

n ∼ n(
1

4m
− 2m+ 1

42m
);

also, the distribution is asymptotically Gaussian. In particular, the probability of occurrence of
a pattern at a random node of a random trees decreases fast (the factor of4−m in the estimate of
averages) with the size of the pattern, a property that was tobe expected and that also holds for
strings. The paper of Steyaert and Flajolet [370] shows that similar properties (equivalent to the
mean value analysis) hold for any simply generated family. The expression of the BGFF (z, u)

is given by Flajolet, Sipala, and Steyaert in [162], where similar developments are used to show
that the minimal “dag representation” of a random tree —identical subtrees are “shared” and
represented only once— is of average sizeO(n(log n)−1/2). �

� 33.Patterns in classical varieties of trees.Patterns in general Catalan trees and Cayley trees
can be similarly analysed. �

We shall see later that such laws, established here via explicit representations of
the BGFs, extend to varieties of trees whose generating functions are only accessible
implicitly via functional equations (Subsection IX. 7.3).

IX. 7.2. The exponential–logarithmic schema.So far, the occurrence of a
Gaussian law has been related to amovable singularitythat causes coefficients of
a bivariate generating functionF (z, u) to obey a rough power law of the form

fn(u) = [zn]F (z, u) ≈ ρ(u)−n,

so that the Quasi-Powers Theorem applies with a scaling factor βn = n. In this
section, we discuss the situation of a fixed singularity andvariable exponentin sin-
gular expansions. This means a somewhat stronger decomposition property for a
BGF as the singularity remains constant when the auxiliary parameteru varies, as
in F (z, u) = C(z)−α(u). Typical cases of application are to the set constructions,
where the analysis of number of components can be rephrased as the estimation of
coefficients in

F (z, u) = exp (uG(z)) ,

whenG(z) is, roughly speaking, logarithmic. In this case, we have parameters whose
mean and variance grow logarithmically, a typical instancebeing the number of cycles
in permutations. Analytically, this comes from an approximate form

F (z, u) ≈ (1 − z/ρ)−α(u),

so that

fn(u) = [zn]F (z, u) ≈ ρ−nnα(u)−1 ≡ ρ−n

n
exp(α(u) log n).

This is again a case of application of the Quasi-Powers Theorem, but now with a
scaling factorβn = logn. The developments in this section are inspired by a paper
of Flajolet and Soria [163] who first extracted certain universally valid laws for such
assemblies of logarithmic structures.
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THEOREM IX.11 (General variable exponent schema).Let F (z, u) be a bivariate
function that is analytic at(z, u) = (0, 0) and has nonnegative coefficients there.
Assume the following conditions.

(i) Exponent perturbation.Assume that there existǫ > 0 andr > ρ such that
in the domain,

D =
{
(z, u)

∣∣ |z| ≤ r, |u− 1| ≤ ǫ
}
,

the functionF (z, u) admits the representation

(43) F (z, u) = A(z, u) +B(z, u)C(z)−α(u)

whereA(z, u), B(z, u) are analytic for(z, u) ∈ D, the functionα(u) is
analytic in |u − 1| ≤ ǫ with α(1) 6∈ {0,−1,−2, . . .}, andC(z) is analytic
for |z| ≤ r, the equationC(ζ) = 0 having a unique rootζ = ρ in |z| ≤ r
that is simple, withB(ρ, 1) 6= 0.

(ii) Variability: one has

α′(1) + α′′(1) 6= 0.

Then the variable with probability generating function

pn(u) =
[zn]F (z, u)

[zn]F (z, 1)

converges in distribution to a Gaussian variable and the speed of convergence is
O((log n)−1/2). The corresponding meanµn and varianceσ2

n satisfy

µn ∼ α′(1) logn, σ2
n ∼ α′′(1) logn.

PROOF. Clearly, for the univariate problem, by singularity analysis, one has

[zn]F (z, 1) = B(ρ, 1)(−ρC′(ρ))−α(1)ρ−n n
α(1)−1

Γ(α(1))

(
1 +O(

1

n

)
.

For the bivariate problem, the contribution arising from[zn]A(z, u) is exponentially
small, sinceA(z, u) is z-analytic in|z| ≤ r.

Write next
B(z, u) = (B(z, u) −B(ρ, u)) +B(ρ, u).

The first term satisfies

B(z, u) −B(ρ, u) = O((z − ρ)),

uniformly with respect tou, since

B(z, u) −B(ρ, u)

z − ρ

is analytic inz andu, by division of power series representations. LetA be an upper
bound onα(u) on |u − 1| ≤ ǫ. Then, by singularity analysis and its companion
uniformity,

[zn](B(z, u) −B(ρ, u))C(z)−α(u) = O(ρ−nnA−2).

By suitably restricting the domain ofu to |u − 1| ≤ δ, one may freely assume that
A− 2 < α(1) − 7

4 . Thus, the contribution from this part is small.
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It only remains to analyse

[zn]B(ρ, u)C(z)−α(u).

This is done exactly like in the univariate case, again taking advantage of the unifor-
mity afforded by singularity analysis. We find, uniformly for u in a small neighbour-
hood of 1,

[zn]F (z, u) =
B(ρ, u)ρ−n

nΓ(α(u))
(−ρC′(ρ))−α(u)eα(u) log n

(
1 +O(n−1/2)

)
.

Thus, the Quasi-Powers Theorem applies and the law is Gaussian in the limit. �

The next proposition covers a scheme closely related to the exponential logarith-
mic setting. Its proof only requires a slight modification ofthe calculations involved
in the error terms. It complements Example 5 where the numberof small components
has been found to be Poisson.

PROPOSITIONIX.13 (Sets of labelled logarithmic structures).Consider the labelled
set constructionF = P(G). Assume thatG(z) has radius of convergenceρ and is
∆-continuable with a singular expansion of the form

G(z) = κ log
1

1 − z/ρ
+ λ+O

(
1

log2(1 − z/rho)

)
.

Then, the limit law of the number ofG-components in a largeF -structure is asymp-
totically Gaussian with mean and variance both asymptotic to κ logn.

The bivariate EGF forpermutationswith u marking the number of cycles is

F (z, u) =
∑[

n

k

]
uk z

n

n!
= (1 − z)−u = exp

(
u log

1

1 − z

)
·,

so that we are in the simplest case of an exponential-logarithmic schema. Theo-
rem IX.11 implies thatthe number of cycles in a random permutation of sizen con-
verges to a Gaussian limiting distribution.This classical result stating the asymptot-
ically normal distribution of the Stirling numbers (of the first kind) constitutes Gon-
charov’s Theorem. It has already been stated with a direct proof in Proposition IX.6,
thanks to the explicit character of the “horizontal” generating functions (the Stirling
polynomials) in this particular case.

EXAMPLE 18. Cycles in derangements.The number of cycles is asymptotically normal in
generalized derangements where a finite setS of cycle lengths are forbidden. This results
immediately from the BGF

F (z, u) = exp(uG(z)), G(z) = log
1

1− z −
X

s∈S

zs

s
.

The classical derangement problem corresponds toS = {1}; see [76]. �

EXAMPLE 19. Clouds and 2-regular graphs.“Clouds” are defined in [76, p. 274] and they
have already been encountered in Chapters II and VI: letn straight lines in the plane be given
in general position, so that there are

`
n
2

´
intersecting points; a cloud of sizen is a (maximal)

set ofn intersection points, no three of which are collinear. By duality, there is a one–to–
one correspondence between clouds and2–regular graphs. A 2–regular graph of sizen is an
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undirected graph withn edges, such that each vertex has degree exactly 2. Any 2–regular graph
may be decomposed into a product of connected components that are (undirected) cycles of
length at least 3. Hence the bivariate EGF for 2–regular graphs, withu marking the number of
connected components, is:

F (z, u) = exp

„
u(

1

2
log

1

1− z −
z

2
− z2

4
)

«
=
e−uz/2−uz2/4

(1− z)u/2
.

The functionexp(u(z/2 + z2/4)) is entire, so that the conditions of Theorem IX.11 are satis-
fied. Thus, the number of connected components in a 2–regulargraph, (this is equivalent to the
number of polygons in a cloud) has a Gaussian limiting distribution. �

EXAMPLE 20. Random mappings. Let f denote a function that maps the setN =
{1, 2, · · · , n} into itself. Such a functionf may be represented by a directed graphGf with
vertex setN and edge set{(i, f(i)); i ∈ N}. Such graphs, in which every point has out–degree
one, are calledfunctional digraphs; see [206, p. 68]. A functional digraph may be viewed as
a set of components that are themselves cycles of rooted labelled trees. The bivariate EGF for
functional digraphs withu marking connected components is

F (z, u) = exp
`
u(log

1

1− T (z)
)
´
,

where the generating function of rooted labelled treesT (z) is the Cayley tree function defined
implicitly by the relationT (z) = z exp(T (z)). By the inversion theorem for implicit functions
we have

T (z) = 1−
p

2(1− ez) +
X

k≥2

ck(1− ez)k/2.

Thus,

F (z, u) = exp
n
u

„
1

2
log

1

1− ez +H((1− ez)1/2)

«o
,

whereH(v) is analytic atv = 0. From this form and Theorem IX.11, we obtain a theorem
of Stepanov [368]: The number of components in functional digraphs has a limiting Gaussian
distribution.

This approach extends to functional digraphs satisfying various degree constraints as con-
sidered in [13]. This analysis and similar ones are relevant to integer factorization, using Pol-
lard’s “rho” method [152, 242, 353]. �

Unlabelled constructions.In the case of unlabelled structures, the classF of multi-
sets over a classG have OGF,

∑

n≥0

Fnz
n =

∏

n≥1

(1 − zn)−Gn .

By taking logarithms and reorganizing the corresponding series, we get the alternative
form

F (z) = exp

(
G(z)

1
+
G(z2)

2
+
G(z3)

3
+ · · ·

)
.
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Similarly, in the bivariate case, whereu marks the number of components, the bivari-
ate GF is (see Chapter III),

F (z, u) =
∑

n,k≥0

Fn,ku
kzn = exp

(
u

1
G(z) +

u2

2
G(z2) +

u3

3
G(z3) + · · ·

)
,

which is of the formexp(G(z))u ·B(z, u). Here, we are interested in structures such
thatG(z) has a logarithmic singularity, in which case Theorem IX.11 applies, as soon
asG(z) has radius of convergenceρ < 1.

EXAMPLE 21. Polynomial factorization.Fix a finite fieldK = GF (q) and consider the classP
of monic polynomials (having leading coefficient 1) inK[z], with I the subclass of irreducible
polynomials. Obviously,Pn = qn, so that

P (z) = (1− qz)−1.

Because of the unique factorization property, a polynomialis a multiset of irreducible polyno-
mial, whence the relation

P (z) = exp

„
I(z)

1
+
I(z2)

2
+
I(z3)

3
+ · · ·

«
.

The preceding relation can be inverted using Möbius inversion. If we setL(z) = logP (z),
then we have

I(z) =
X

k≥1

µ(k)
L(zk)

k
= log

1

1− qz +
X

k≥2

µ(k)
L(zk)

k
,

whereµ is the Moebius function.
SinceL(zk) is analytic for|z| < q−1/2 wheneverk ≥ 2, and |L(zk)| < cst|z|k, the

sum
P

k≥2 µ(k)L(zk)/k is analytic for|z| ≤ τ , with q−1 < τ < q−1/2. HenceI(z) has an

isolated singularity of logarithmic type atz = q−1 < 1.
Thus the average number of irreducible factors in a polynomial, and its variance, are both

asymptoticallylog n + O(1) (this result appears in [242, Ex. 4.6.2.5]). LetΩn be the random
variable representing the number of irreducible factors ofa random polynomial of degreen over
GF (q), each factor being counted with its order of multiplicity. Then asn tends to infinity, for
any two real constantsλ < µ, we have

P{log n+ λ
p

log n < Ωn < log n+ µ
p

log n} → 1√
2π

Z µ

λ

e−t2/2 dt.

This statement [163] is a counterpart of the famous Erdös–Kac Theorem (1940) for the number
of prime divisors of natural numbers (with herelog n that replaceslog log n when dealing with
integers at mostn). A similar result holds for the parameterωn that represents the number of
distinct irreducible factors in a random polynomial of degreen. �

It is perhaps instructive to re-examine this last example atan abstract level, in the
light of general principles of analytic combinatorics.

A polynomial over a finite field is determined by thesequence
of its coefficients. Hence, the class of all polynomials, as ase-
quence class, has a polar singularity. On the other hand, unique
factorization entails that a polynomial is also amultisetof irre-
ducible factors (“primes”). Thus, the class of irreduciblepoly-
nomials, that is implicitly determined, is logarithmic, since the
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multiset construction to be inverted is in essence an exponential
operator. Consequently, the number of irreducible factorsobeys
the exponential-logarithmic scheme, so that it is asymptotically
Gaussian.

Eventually, the limit law arises because of the purely analytic character of the gener-
ating functions involved, together with permanence of analytic relations implied by
combinatorial constructions.

EXAMPLE 22. Mapping patterns.Let f andg be two functions mapping the set{1, 2, · · · , n}
into itself. Mappingsf and g are said to be equivalent if there exists a permutationπ of
{1, 2, · · · , n} such thatf(i) = j iff g(π(i)) = π(j). Mapping patterns are thus equivalence
classes of mapping functions, or equivalently functional digraphs on unlabelled points. They
correspond to multisets of cycles of rooted unlabelled trees. The OGF for rooted unlabelled
trees satisfies the implicit relationA(z) = z exp(

P
1
k
A(zk)), and Otter [306] proved that

A(z) = 1− c1
p

(1− z/η) +
X

k≥2

ck(1− z/η)k.

for someη < 1: see our detailed account in Chapter VII.
On the other hand, by the translation of the cycle construction, if G is the unlabelled cycle

construction applied toA, then (see Chapter III),

G(z) =
X

k≥1

φ(k)

k
log

1

1− A(zk)
,

whereφ(k) is the Euler totient function. In the present context, sinceA(z) has radius of con-
vergenceη strictly less than1,

G(z) = log
1

1− A(z)
+ S(z),

whereS(z) is analytic atη. Finally the bivariate OGF for random mapping patterns satisfies

F (z, u) = exp
`X

k≥1

ukG(zk)

k

´

= exp
`
u log

1

1− A(z)
+ uS(z) + T (z, u)

´

= exp

„
u

2
log

1

1− z/η + u
`
(1− z/η)1/2´+ uS(z) + T (z, u)

«
,

whereS(z) is analytic atη, T (z, u) is analytic forz = η andu = 1, andH is analytic around
0, withH(0) = 0. Thus conditions for applying Theorem IX.11 are satisfied and the number of
components in random mapping patterns has a Gaussian limiting distribution. The mean value
is asymptotic to1

2
log n (this result appears in [284] and the variance is1

2
log n+O(1). �

EXAMPLE 23. Arithmetical semigroups.Knopfmacher [235] defines an arithmetical semigroup
as a semigroup with unique factorization, and a size function (or degree) such that

|xy| = |x|+ |y|,
where the number of elements of a fixed size is finite. IfP is an arithmetical semigroup andI
its set of ‘primes’ (irreducible elements), axiomA# of Knopfmacher asserts the condition

card{x ∈ P / |x| = n} = cqn +O(qαn) (α < 1).
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It is shown by Knopfmacher that several algebraic structures forming arithmetical semigroups
satisfy axiomA#, and thus the conditions of Theorem IX.11 are automaticallysatisfied. There-
fore, the results deriving from Theorem IX.11 fit into the framework of Knopfmacher’s “ab-
stract analytic number theory”, since they provide generalconditions under which theorems of
the Erdös–Kac type must hold true. Examples of applicationare Galois polynomial rings (the
example of polynomial factorization), finite modules or semisimple finite algebras over a finite
fieldK = GF (q), integral divisors in algebraic function fields, ideals in the principal order of
a algebraic function field, finite modules, or semisimple finite algebras over a ring of integral
functions. �

IX. 7.3. Algebraic and implicit functions. Many combinatorial problems, es-
pecially as regards paths and trees, lead to descriptions bycontext–free languages.
Accordingly, the GF’s are algebraic functions. The most frequent situation is that of
univariate GF’s having singularities of the square-root type.

COROLLARY IX.1 (Algebraic functions).LetF (z, u) be a bivariate function that is
analytic at(0, 0) and has nonnegative coefficients. Assume thatF (z, u) is one of the
solutionsy of a polynomial equation

Φ(z, u, y) = 0,

whereΦ is an irreducible polynomial of total degreem, of degreed ≥ 2 in y. Assume
thatF (z, 1) is has a unique dominant singularity atρ > 0, with a singular behaviour
of the square-root type there. Define the resultant polynomial,

∆(z, u) = resulty

(
Φ(z, u, y),

∂

∂y
Φ(z, u, y)

)
,

and assume thatρ is a simple root of∆(z, 1). Let ρ(u) be the unique root of the
equation

∆(ρ(u), u),

analytic at 1, such thatρ(1) = ρ. Then, provided the variability condition

v

(
ρ(1)

ρ(u)

)
> 0,

is satisfied, a Gaussian Limit Law holds for the coefficients of F (z, u).

PROOF. The assumption of a square-root singularity (see ChaptersVI and VII)
means that the polynomialΦ(ρ, 1, y) has a double zero aty = τ , where τ =
limz→ρ− F (z, 1). Equivalently, we have

(
∂

∂y
Φ(ρ, 1, y)

)

y=τ

= 0,

(
∂2

∂y2
Φ(ρ, 1, y)

)

y=τ

6= 0.

Thus, Weierstrass preparation gives the local factorization

Φ(z, u, y) = (y2 + c1(z, u)y + c2(z, u))H(z, u, y),

whereH(z, u, y) is analytic and nonzero at(ρ, 1, τ) while c1(z, u), c2(z, u) are ana-
lytic at (z, u) = (ρ, τ).
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From the solution of the quadratic equation, we must have locally

y =
1

2

(
−c1(z, u)±

√
c1(z, u)2 − 4c2(z, u)

)
.

Consider first(z, u) restricted by0 ≤ z < ρ and0 ≤ u < 1. SinceF (z, u) is real
there, we must havec1(z, u)2 − 4c2(a, u) also real and nonnegative. SinceF (z, u) is
continuous and increasing withz for fixed u, and since the discriminantc1(z, u)2 −
4c2(a, u) vanishes at 0, the determination with the minus sign has to beconstantly
taken. In summary, we have

F (z, u) =
1

2

(
−c1(z, u) −

√
c1(z, u)2 − 4c2(z, u)

)
.

The functionC(z, u) = c21(z, u) − 4c2(z, u) has a simple real zero at(ρ, 1).
Thus there is locally a unique analytic branch of the solution toC(ρ(u), u) = 0 such
that ρ(1) = ρ.. This branch is also by necessity a root of the resultant equation
∆(ρ(u), u) = 0. The conditions of Theorem IX.10 therefore apply and the Gaussian
law follows.2

This theorem asserts that, under suitable conditions, the only possible dominant
singularity of the BGF is a “lifting” of the singularity of the univariate GFF (z, 1)
and the nature of the singularity —the square-root type— does not change. The result
generalizes to the case of a functionΦ that is analytic in sufficiently large bounded
domains,e.g., an entire function. The condition is that the analytic curves

Φ(z, u, y) = 0,
∂

∂y
Φ(z, u, y) = 0

have an intersection that “moves analytically” and nontrivially for u near1, and a
sufficient condition for this is the nonvanishing of the Jacobian determinant

(44) J(z, u, y) :=

∣∣∣∣∣

∂
∂z Φ(z, u, y) ∂

∂y Φ(z, u, y)
∂2

∂zy Φ(z, u, y) ∂2

∂y2 Φ(z, u, y)

∣∣∣∣∣

and its first derivative with respect tou at (ρ, 1, τ),

(45) J(ρ, 1, τ) 6= 0,
∂

∂u
J(z, u, y)

∣∣∣∣
(ρ,1,τ)

6= 0.

In the case of Corollary IX.1 and of these extensions, the expansion ofρ(u) atu = 1,
hence the mean and variance of the distribution, are computable explicitly fromΦ, its
derivatives, and the quantitiesρ andτ = F (ρ, 1).

The corollary applies to a great variety of decomposable parameters of context–
free languages, tree like objects, and more generally many recursively defined com-
binatorial types. Examples of parameters covered are leaves, node types, and various
sorts of patterns in combinatorial tree models. Drmota has worked out a different
set of conditions for asymptotic normality. In particular,one of Drmota’s important
results [103] yields asymptotic normality, under minor technical restrictions, for a
polynomialsystemwith positive coefficients that is “irreducible”, meaning that the
dependency graph between nonterminals is strongly connected.
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� 34.Nodes of degreek in simple varieties of trees.Their distribution is asymptotically Gauss-
ian. �

� 35.Leaves in nonplane unlabelled trees.Their distribution is asymptotically Gaussian.�

IX. 7.4. Differential equations. Ordinary differential equations(ODE’s, for
short) in one variable, whenlinear and with analytic coefficients, have solutions whose
singularities occur at well-defined places, namely those that entail a reduction of order.
The possible singular exponents of solutions are then obtained as roots of a polyno-
mial equation, the indicial equation. Such ordinary differential equations are usually
a reflection of a combinatorial decomposition and suitably parametrized versions then
open access to a number of combinatorial parameters. In thiscase, the ODE normally
remains an ODE in the main variablez that records size, while the auxiliary variableu
only affects the coefficients but not the global shape of the original ODE.

Three cases may then occur for a linear ODE parametrized byu.

• Movable singularity:the location of the dominant singularityρ(u) changes
with u but the singular exponent does not change; the analysis is then similar
to that of algebraic-logarithmic singularities.

• Movable exponent:the dominant singularity does not move but the sin-
gular exponentα(u) changes; the analysis then resorts to the exponential-
logarithmic schema.

• Movable singularity and movable exponent:in this case, the singular be-
haviour is essentially dictated by the movable singularitybut with an aux-
iliary contribution arising from the movable exponent; theanalysis of this
mixed case then requires an extension of the quasi-power framework, as
developed by Gao in Richmond in [177].

Here, we focus on the important case of a fixed singularity anda movable exponent.
The required singularity perturbation analysis is inspired by the treatment of Flajolet
and Lafforgue in [149]. The corresponding univariate problems resort to holonomic
asymptotics.

Linear differential equations. The example of the distribution of levels of nodes
in random binary search trees or heap–ordered trees illustrates well the situation of
a fixed singularity and movable exponent. A heap–ordered tree (HOT) is a plane
binary increasing tree. HOTs constitute an unambiguous tree representation of per-
mutations [353]. The EGF of HOTs is

F (z) =
1

1 − z
=
∑

n≥0

n!
zn

n!
,

as results either from the combinatorial bijection with permutations or from the root
decomposition of increasing trees that translates into thefunctional equation,

(46) F (z) = 1 +

∫ z

0

F 2(t) dt,

a Riccati equation in disguise. LetF (z, u) be the BGF of HOT’s whereu records the
depth of external nodes. In other words,fn,k = [znuk]F (z, u) is such that1nfnn, k
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represents the probability that a random external node in a random tree of sizen is at
depthk in a random tree. The probability space is then a product set of cardinality
(n + 1) · n!, as there aren! trees each containing(n + 1) external nodes. By a
standard equivalence principle, the quantities1

nfnn, k also give the probability that a
random unsuccessful search in a random binary search tree ofsizen necessitatesk
comparisons.

Since the depth of a node is inherited from subtrees, the functionF (z, u) satisfies
the linear integral equation,

(47) F (z, u) = 1 + 2u

∫ z

0

F (t, u)
dt

1 − t
,

or, after differentiation,

∂

∂z
F (z, u) =

2u

1 − z
F (z, u), F (0, u) = 1.

This equation is in fact a linear ODE withu entering as a parameter,

d

dz
y(z) − 2u

1 − z
y(z) = 0, y(0) = 0.

The solution of any separable first-oder ODE is obtained by quadratures, here,

F (z, u) =
1

(1 − z)2u
.

From singularity analysis, providedu avoids{0,− 1
2 ,−1, . . .}, we have

fn(u) := [zn]F (z, u) =
n2u−1

Γ(2u)

(
1 +O(

1

n
)

)
,

and the error term is uniform inu provided, say,|u − 1| ≤ 1
4 . Thus, Theorem IX.11

applies, and the law with PGFfn(u)/fn(1) converges to a Gaussian limit.
A similar result holds for levels of internal nodes, and is proved by similar de-

vices. The Gaussian profile is even perceptible on single instance (see the particular
figure in Chapter III), which actually suggests a stronger “functional limit theorem”
for these objects: this has been proved by Chauvin and Jabbour [72] using martingale
theory.

Naturally, explicit expressions are available in such a simple case,

fn(u)

fn(1)
=

2u · (2u+ 1) · · · (2u+ n− 1)

(n+ 1)!
,

so a direct proof of the Gaussian limit in the line of Goncharov’s theorem is clearly
possible; see Mahmoud’s book [279, Ch. 2], for this result originally due to Louchard.
What is interesting here is the fact thatF (z, u) viewed as a function ofz has a singu-
larity at z = 1 that does not move and, in a way, originates in the combinatorics of
the problem—the EGF(1− z)−1 of permutations. The auxiliary parameteru appears
here directly in the exponent, so that the application of singularity analysis or of the
more sophisticated Theorem IX.11 is immediate.
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COROLLARY IX.2 (Linear differential equations).LetF (z, u) be a bivariate gener-
ating function with nonnegative coefficients that satisfiesa linear differential equation

a0(z, u)
∂rF

∂zr
+
a1(z, u)

(ρ− z)

∂r−1F

∂zr−1
+ · · · + ar(z, u)

(ρ− z)r
F = 0,

with aj(z, u) analytic atρ, anda0(ρ, 1) 6= 0. Letfn(u) = [zn]F (z, u), and assume
the following conditions:

• [Nonconfluence]The indicial polynomial

(48) J(α) = a0(ρ, 1)(α)(r) + a1(ρ, 1)(α)(r−1) + · · · + ar(ρ, 1)

has a unique rootσ > 0 which is simple and such that all other rootsα 6= σ
satisfyℜ(α) < σ;

• [Dominant growth]fn(1) ∼ C · ρ−nnσ−1, for someC > 0.
• [Variability condition]

sup
v(fn(u))

logn
> 0.

Then the coefficients ofF (z, u) admit a limit Gaussian law.

PROOF. (See the paper by Flajolet and Lafforgue [149] for a detailed example or the
books by Henrici [212] and Wasow [400] for a general treatment of singularities of lin-
ear ODEs.) We assume in this proof that no two roots of the indicial polynomial (48)
differ by an integer. Consider first the univariate problem.A differential equation,

(49) a0(z)
drF

dzr
+

a1(z)

(ρ− z)

dr−1F

dzr−1
+ · · · + ar(z)

(ρ− z)r
F = 0,

with the aj(z) analytic atρ anda1(ρ) 6= 0 has a basis of local singular solutions
obtained by substituting(ρ − z)−α and cancelling the terms of maximum order of
growth. The candidate exponents are thus roots of theindicial equation,

J(α) ≡ a0(ρ)(α)(r) + a1(ρ)(α)(r−1) + · · · + ar(ρ) = 0.

If there is a unique (simple) root of maximum real part,α1, then there exists a solution
to (49) of the form

Y1(z) = (ρ− z)−α1h1(ρ− z),

whereh1(w) is analytic at 0 andh1(0) = 1. (This results easily from a solution by
indeterminate coefficients.) All other solutions are then of smaller growth and of the
form

Yj(z) = (ρ− z)−αjhj(ρ− z) (log(z − ρ))kj ,

for some integerskj and some functionshj(w) analytic and nonzero atw = 0. Then,
F (z) has the form

F (z) =
r∑

j=1

cjYj(z).

Then, providedc1 6= 0,

[zn]F (z) =
c1

Γ(σ)
ρ−nnα1−1(1 + o(1)).
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Under the assumptions of the theorem, we must haveσ = α1, andc1 6= 0. The reality
assumption is natural for a seriesF (z) that has real coefficients.

Whenu varies in a neighbourhood of 1, we have a uniform expansion

(50) F (z, u) = c1(u)(ρ− z)−σ(u)H1(ρ− z, u)(1 + o(1)),

for some bivariate analytic functionH1(w, u) with H1(0, u) = 1, whereσ(u) is the
algebraic branch that is a root of

J(α, u) ≡ a0(ρ, u)(α)(r) + a1(ρ, u)(α)(r−1) + · · · + ar(ρ, u) = 0,

and coincides withσ atu = 1. By singularity analysis, this entails

(51) [zn]F (z, u) =
c1(u)

Γ(σ)
ρ−nnα1(u)−1(1 + o(1)),

uniformly for u in a small neighbourhood of1, with the error term beingO(n−a) for
somea > 0. Thus Theorem IX.11 applies and the limit law is Gaussian.

The crucial point in (50,51) is the uniform character of expansions with respect
to u. This results from two facts:(i) the solution to (49) may be specified by analytic
conditions at a pointz0 such thatz0 < ρ and there are no singularities of the equation
betweenz0 andρ. (ii) there is a suitable set of solutions with an analytic component
in z andu and singular parts of the form(ρ − z)−αj(u), as results from the matrix
theory of differential systems and majorant series. (This last point is easily verified if
no two roots of the indicial equation differ by an integer; otherwise, see [149] for an
alternative basis of solutions foru near 1,u 6= 1.) 2

EXAMPLE 24. Node levels in quadtrees.This example is taken from [149]. Quadtrees are
one of the most versatile data structure for managing a collection of points in multidimensional
space. They are based on a recursive decomposition similar to that of BSTs.

Hered is the dimension of the data space. Letfn,k be the number of external nodes at level
k in a quadtree of sizen grown by random insertions, and letF (z, u) be the corresponding BGF.
Two integral operators play an essential rôle,

I g(z) =

Z z

0

g(t)
dt

1− t J g(z) =

Z z

0

g(t)
dt

t(1− t) .

The basic equation that reflects the recursive splitting process of quadtrees is then

(52) F (z, u) = 1 + 2duJd−1
IF (z, u).

The integral equation (52) satisfied byF then transforms into a differential equation of orderd,

I
−1

J
1−d F (z, u) = 2duF (z, u),

where
I
−1g(z) = (1− z)g′(z), J

−1g(z) = z(1− z)g′(z).
The linear ODE version of (52) has an indicial polynomial that is easily determined by

examination of the reduced form of the ODE (52) atz = 1. There, one has

J
−1g(z) = I

−1g(z)− (z − 1)2g′(z) ≈ (1− z)g′(z).
Thus,

I
−1

J
1−d(1− z)−θ = θd(1− z)−θ +O((1− z)−θ+1),

and the indicial polynomial is
J(α, u) = αd − 2du.
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In the univariate case, the root of largest real part isα1 = 2; in the bivariate case, we have

α1(u) = 2u1/d,

where the principal branch is chosen. Thus,

fn(u) = γ(u)nα1(u)(1 + o(1)).

By the combinatorial origin of the problem,F (z, 1) = (1 − z)−2, so that the coefficientγ(1)
is nonzero. Thus, the conditions of the corollary are satisfied. The law is Gaussian in the limit,
with mean and variance

µn ∼ 2

d
log n, σ2

n ∼
2

d
log n.

The same result applies to the cost of a random search, eithersuccessful or not, as shown
in [149] by an easy combinatorial argument. �

Nonlinear differential equations. Though nonlinear differential equations do not
obey a simple classification of singularities, there are a few examples in analytic com-
binatorics that can be treated by singularity perturbationmethods. We detail here
typical analysis of properties of binary search trees (BSTs), equivalently HOTs, that is
taken from [140]. The Riccati equation involved reduces, by classical techniques, to
a linear second order equation whose perturbation analysisis particularly transparent
and akin to earlier analyses of ODEs. In this problem, the auxiliary parameter induces
a movable singularity that directly resorts to the Quasi-Powers Theorem.

EXAMPLE 25. Paging of binary search trees.Fix a “bucket size” parameterb ≥ 2. Given
a binary search treet, its b-index is a tree that is constructed by retaining only those internal
nodes oft which correspond to subtrees of size> b. As a data structure, such an index is well-
suited to “paging”, where one has a two-level hierarchical memory structure: the index resides
in main memory and the rest of the tree is kept in pages of capacity b on peripheral storage, see
for instance [279]. We letι[t] = ιb[t] denote the size —number of nodes— of theb-index oft.

Like in Eq. (46), the bivariate generating function

F (z, u) :=
X

t

λ(t)uι[t]z|t|

satisfies a Riccati equation that reflects the root decomposition of trees,

(53)
∂

∂z
F (z, u) = uF 2(z, u) + (1− u) d

dz

„
1− zb+1

1− z

«
, F (0, u) = 1,

where the general quadratic relation (46) has to be corrected in its low order terms.
The GFs of moments are rational functions with a denominatorthat is a power of(1− z),

as results from differentiation atu = 1. Mean and variance follow:

µn =
2(n+ 1)

b+ 2
− 1, σ2

n =
2

3

(b− 1)b(b+ 1)

(b+ 2)2
(n+ 1).

(The result for the mean is well-known, refer to quantityAn in the analysis of quicksort on
p. 122 of [240].)

Multiplying both sides of (53) byu now gives an equation satisfied byH(z, u) :=
uF (z, u),

∂

∂z
H(z, u) = H2(z, u) + u(1− u) d

dz

„
1− zb+1

1− z

«
,
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that may as well be taken as a starting point sinceH(z, u) is the bivariate GF of parameter1+ιb
(a quantity also equal to the number of external pages). The classical linearization transforma-
tion of Riccati equations,

H(z, u) = −X
′
z(z, u)

X(z, u)
,

yields

(54)
∂2

∂z2
X(z, u) + u(u− 1)A(z)X(z, u) = 0, A(z) =

d

dz

„
1− zb+1

1− z

«
,

withX(0, u) = 1, X ′
z(0, u) = −u. By the classical existence theorem of Cauchy, the solution

of (54) is an entire function ofz for each fixedu, as the linear differential equation has no
singularity at a finite distance. Furthermore, the dependency of X on u is also everywhere
analytic; see the remarks of [400, Sec. 24], for which a proof derives by inspection of the
classical existence proof based on indeterminate coefficients and majorant series. Thus,X(z, u)
is actually an entire function ofbothcomplex variablesz andu. As a consequence, for any fixed
u = u0, the functionH(z, u0) is a meromorphic function ofz whose coefficients are amenable
to singularity analysis.

In order to proceed further, we need to prove that, in a sufficiently small neighbourhood of
u = 1,X(z, u) has only one simple root, corresponding forH(z, u) to a unique dominant and
simple pole. This fact itself derives from general considerations surrounding the Preparation
Theorem of Weierstrass:in the vicinity of any point(z0, u0) with X(z0, u0) = 0, the roots
of the bivariate analytic equationX(z, u) = 0 are locally branches of an algebraic function.
Here, we haveX(z, 1) ≡ 1− z. Thus, asu tends to 1, all solutions ofX(z, u) must escape to
infinity except for one branchρ(u) that satisfiesρ(1) = 1. By the nonvanishing ofX ′

u(z, 1) and
the implicit function theorem, the functionρ(u) is additionally an analytic function aboutu =
1.

The argument is now complete: foru in a sufficiently complex neighbourhood of 1, we
have a Quasi-Powers approximation,

[zn]H(z, u) = ρ(u)−n−1 `1 +O(K−n)
´
,

for some fixed constantK > 0. The Gaussian limit results. �

As shown in [140], a similar analysis applies to patterns in binary search trees
and heap–ordered trees. This is related to the analysis of local order patterns in per-
mutations, for which gaussian limit laws have been obtainedby Devroye [96] using
extensions of the central limit theorem to weakly dependentrandom variables.

Similar displacements of singularity arise for node types in varieties of increasing
trees, extending the case of HOTs that are binary. This is discussed in [37]. For
instance, ifφ(w) is the degree generator a family of increasing trees, the nonlinear
ODE satisfied by the BGF of leaves is

∂

∂z
F (z, u) = (u− 1)φ(0) + φ(F (z, u)).

Wheneverφ is a polynomial, there is a spontaneous singularity at someρ(u) that
depends analytically onu. Thus, again the Quasi-Powers Theorem applies; see [37].

IX. 8. Perturbation of saddle point asymptotics

We shall be brief here, as the subject is excellently coveredin Sachkov’s book to
which we refer for details. Entire functions and functions with a fast growth at their
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singularity do not in general lead to quasi-power expansions. As we known from uni-
variate asymptotics (Chapter VIII), the coefficient expansions involve a combination
of large powers (that arise from the Cauchy kernel) and of thevery fast singular be-
haviour of the function under consideration. Accordingly,bivariate asymptotic studies
necessitate a perturbation of saddle point expansions. A framework more flexible than
the Quasi-Powers Theorem is then needed.

Here, we base our brief discussion on a theorem taken from Sachkov’s book [342].
THEOREM IX.12 (Generalized quasi-powers).Assume that the generating function
pn(u) of a discrete random variableXn has a representation of the form

pn(u) = exp (hn(u)) (1 + o(1)) ,

that holds uniformly, where eachhn(u) is analytic in a fixed neighbourhoodΩ of 1.
Assume also the condition,

(55)
h′′′n (u)

(h′n(1) + h′′n(1))3/2
→ 0,

uniformly foru ∈ Ω. Then, the random variable

X∗
n =

Xn − h′n(1)

(h′n(1) + h′′n(1))1/2

converges in distribution to a normal law with parameters(0, 1).

PROOF. See [342, Sec. 1.4] for details. Setσ2 = h′n(1) + h′′n(1), and expand the
Laplace transform ofXn at t/σ. This gives

hn(et/σ) = h′n(1)
t

σ
+ (h′n(1) + h′′n(1))

t2

2σ
+ o(1).

Thus, the Laplace transform ofX∗
n converges to the transform of a standard Gauss-

ian.2
This theorem extends the quasi-power scheme. In effect, if

hn(u) = βn logB(u) +A(u),

then the quantity (55) isO(β
−1/2
n ), uniformly. The application of this theorem to

saddle point integrals is in principle routine, though the manipulation of asymptotic
scales associated with expressions involving the saddle point value may become cum-
bersome. We detail here the case of singletons in random involutions for which the
saddle point is an algebraic function ofn andu.

� 36. Effective speed bounds.A metric version of the theorem, with error terms, cane be
developed assuming suitable error bounds. �

EXAMPLE 26. Singletons in random involutions.This example is again borrowed from
Sachkov’s book [342]. The BGF is

F (z, u) = exp

„
zu+

z2

2

«
.

The saddle point equation (see Chapter VIII) is then
„
d

dz
uz +

z2

2
− (n+ 1) log z

«

z=ζ

= 0.
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This defines the saddle pointζ ≡ ζ(n, u),

ζ(n, u) = −u
2

+
1

2

p
4n+ 4 + u2

=
√
n− u

2
+
u2 + 4

8

1√
n

+O(n−1),

where the error term is uniform foru near 1. By the saddle point formula, one has

[zn]F (z, u) =
1p

2πD(n, u)
F (ζ(n, u), u)ζ(n, u)−n.

The denominator is determined in terms of second derivatives, according to the classical saddle
point formula (Chapter VIII),

D(n, u) =

„
z2 ∂

2

∂z2
+ z

∂2

∂z2

»
uz +

z2

2

–«

z=ρ

,

and its main asymptotic order does not change whenu varies in a sufficiently small neighbour-
hood of 1,

D(n, u) = 2n− u√n+O(1),

again uniformly. Thus, the PGF of the number of singleton cycles satisfies

pn(u) =
F (ζ(n,u), u)

F (ζ(n, 1), 1)

„
ζ(n, u)

ζ(n, 1)

«−n

(1 + o(1)),

uniformly, for u near 1. This is of the form

pn(u) = exp (hn(u)) (1 + o(1)),

and local expansions then yield the centering constants

an := h′
n(1) =

√
n− 1

2
+O(n−1/2), b2n := h′

n(1) + h′′
n(1) =

√
n− 1 +O(n−1/2).

The theorem applies directly to this case and the variable

1

bn
(Xn − an)

is asymptotic to a standard normal.
A little care with the error terms in the asymptotic expansions shows that the mean and

standard deviationµn, σn are asymptotic toan, bn, respectively. Therefore, the number of
singletons in a random involution of sizen has meanµn and standard deviationσn that satisfy

µn ∼ n1/2, σn ∼ n1/4.

This computation also determines the law of doubleton cycles and of all cycles, that are given
by

1

2
(n−Xn),

1

2
(n+Xn),

respectively. In particular, the number of doubleton cycles has average1
2
n − 1

2
n1/2. Thus, a

random involution has a relatively small number of singleton cycles. �

EXAMPLE 27. The Stirling partition numbers.The numbers
˘

n
k

¯
correspond to the BGF

F (z, u) = exp (u(ez − 1)) .

The saddle pointζ ≡ ζ(n, u) is the positive root nearn/ logn of the equation

ζeζ =
n+ 1

u
.
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The theorem applies:

PROPOSITIONIX.14. The Stirling partition distribution defined by1
Sn

˘
n
2

¯
, with Sn a Bell

number, is asymptotically normal, with mean and variance that satisfy

µn ∼ n

log n
, σ2

n ∼
n

(log n)2
.

We refer once more to Sachkov’s book for computational details. �

Summarizing the last example as well as earlier results, we now have the fact that
all four Stirling-related distributions,

1

n!

[
n

k

]
,

k!

On

[
n

k

]
,

1

Sn

{
n

k

}
,

k!

Rn

{
n

k

}
,

associated to permutations, alignments, set partitions, and surjections are asymptoti-
cally Gaussian.

Saddle point and functional equations.The average-case analysis of the number of
nodes in random digital trees or “tries” can be carried out using the Mellin transform
technology. The corresponding distributional analysis isappreciably harder and due
to Jacquet and Régnier [222]. A complete description is offered in Section 5.4 of
Mahmoud’s book which we follow. What is required is to analyse the BGF

F (z, u) = ezT (z, u),

where the Poisson generating functionT (z, u) satisfies the nonlinear difference equa-
tion,

T (z, u) = uT 2(
z

2
, u) + (1 − u)(1 + z)e−z.

This equation is a direct reflection of the problem specification. At u = 1, one has
T (z, 1) = 1,F (z, 1) = ez. The idea is thus to analyse[zn]F (z, u) by the saddle point
method.

The saddle point analysis ofF requires asymptotic information onT (z, u) for
u = eit (the original treatment of [222] is based on characteristic functions). There,
the main idea is to “quais-linearize” the problem, setting

L(z, u) = log T (z, u),

with u a parameter. This function satisfies the approximate relation L(z, u) ≈
2L(z/2, u), and a bootstrapping argument shows that, in suitable regions of the com-
plex plane,L(z, u) = O(|z|), uniformly with respect tou. The functionL(z, u) is
then expanded with respect tou = eit atu = 1, i.e., t = 0, using a Taylor expansion,
its companion integral representation, and the bootstrapping bounds. The moment-
like quantities,

Lj(z) =
∂j

∂tj
L(z, eit)

∣∣∣∣
t=0

,

can be subjected to Mellin analysis forj = 1, 2 and bounded forj ≥ 3. In this way,
there results that

L(z, eit) = L1(z)t+
1

2
L2(z)t

2 +O(zt3),
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uniformly. The Gaussian law under a Poisson model immediately results from the
continuity theorem of characteristic functions. Under theoriginal Bernoulli model,
the Gaussian limit follows from a saddle point analysis of

F (z, eit) = ezeL(z,eit).

An even more delicate analysis has been carried out by Jacquet and Szpankowski
in [223]. It is relative to path length in digital search trees and involves the formidable
non-linear bivariate difference-differential equation

∂

∂z
F (z, u) = F 2(

z

2
, u).

IX. 9. Local limit laws

Under conditions similar to those of the Quasi-Powers Theorem, a cluster of con-
clusions may be drawn regarding densities of distributionsand probabilities of large
deviations from the mean. We examine here the occurrence of local limit laws, which
corresponds to convergence of a discrete probability distribution to theGaussian den-
sity functionrather than convergence of distribution functions to theGaussian error
function, as we have seen so far. Such local laws hold very frequently,but their proofs
require some sort of additional “smoothness” assumptions,either a combinatorial or
analytic. Under assumptions of the Quasi-Powers Theorem, it is also possible to quan-
tify precisely the exponential rate of decay for probabilities of rare events, far away
from the center of the distribution. This section explores both aspects that fit well
withing the general framework of quasi-powers. One aspectsprovides precise asymp-
totic information on values of the individual probabilities, especially near the mean;
the other aspect quantifies the smallness of probabilities far away from the mean and,
when conditions apply, it provides sharp quantitative versions of the concentration of
distribution discussed at the beginning of this chapter.

So far, we have examined the occurrence of continuous limit laws in the sense of
convergence of distribution functions. Thus, a standardizedYn converges in distribu-
tion toY , if

P{Yn ≤ x} → P{Y ≤ x}.
In the case of a Gaussian limit that arises from a sequence of discrete distributions of
variablesXn with mean and varianceµn, σ

2
n, such a property quantifies the probabil-

ities over any nonempty interval scaled according toσn,

(56) Pr{µn + aσn < Xn ≤ µn + bσn} =
1√
2π

∫ b

a

e−x2/2 dx + o(1),

for any a, b with a < b. From there, it is however in general not possible to draw
information on any individual probability,

pn,k = P{Xn = k},
by differencing, since the error terms in (56) will usually hide any nontrivial asymp-
totic information on individualpn,k.
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FIGURE 11. The histogram of the Eulerian distribution scaled to(n + 1) on the
horizontal axis, forn = 3 . . 60. The distribution is seen to quickly converge to a
bell-shaped curve corresponding to the Gaussian densitye−x2/2/(2π)1/2.

On the other hand, numerical examination of discrete probability distributions
reveals that the histograms of thepn,k often assume a bell-shape profile in the asymp-
totic limit. For instance Figure 11, borrowed from our book [353], displays thepn,k

that correspond to the Eulerian numbers. For a given value ofn, the maximum proba-
bility pn,k is seen to occur “in the middle”, near the mean, and to obey an approximate
law,

p2n,n ≈ 1.35√
2n
,

for values nearn = 60. The standard deviation of the distribution is otherwise known
to be∼

√
n/12. Thus, the we expect an approximate formula of the form

p
n,n/2+x

√
n/12

≈ C√
n
e−x2/2,

for integral values of the argumentk = n/2 + x
√
n/12, with some constantC about

1.35.

DEFINITION IX.4. A sequence of discrete probability distributions,pn,k = P{Xn =
k}, with meanµn and standard deviationσn is said to obey alocal limit law of the
Gaussian typeif, for some setS of real numbers, and a sequenceǫ→ 0,

sup

∣∣∣∣σnpn,⌊µn+xσn⌋ −
1√
2π
e−x2/2

∣∣∣∣ ≤ ǫn.

The local limit law is said to hold onS and the law is said to hold withrelative speed
of convergenceǫn.

When such a local limit law exists, it usually holds on arbitrary bounded intervals
of the real line.
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FIGURE 12. The values of the functionB(u) for the Eulerian distribution when
|u| = 1, represented by a polar plot of|B(eiθ)| on the ray of angleθ (right). (The
dashed contours represent the relevant parts of the unit circle, for comparison.)
The maximum is uniquely attained atu = 1, whereB(1) = 1. This entails a
local limit law for the Eulerian distribution.

THEOREM IX.13 (Local limit law). Let Xn be a sequence of nonnegative discrete
random variables with probability generating functionpn(u). Assume thatuniformly
in an annulus,

1 − ǫ ≤ u ≤ 1 + ǫ, ǫ > 0

the PGFs satisfy

(57) pn(u) = A(u) (B(u))
βn

(
1 +O(

1

κn
)

)
,

whereA(u), B(u) are analytic in the annulus andA(1) = B(1) = 1, v(B(u)) =
B′′(1) +B′(1)−B′(1) 6= 0. Assume also thatB(u) attains uniquely in maximum on
|u| = 1 at u = 1: for all v, with |v| = 1 andv 6= 1, one has|B(v)| < 1.

Under these conditions, the distribution ofXn satisfies a local limit law of the
Gaussian type on arbitrary bounded intervals of the real line.

Note that the mean and variance ofXn are given by Eq. (20).
PROOF. A direct application of the saddle point method, as developed in Chap-
ter VIII. 2

This theorem applies in particular to quasi-power expansions, whenever the dom-
inant singularityρ(u), that is a perturbation of the dominant singularityρ of the uni-
variate problem, is analytic at all points of|u| = 1 and uniquely attains its minimum
atu = 1.

EXAMPLE 28. Local laws for sums of RV’s.The simplest application is to the binomial
distribution, for which

B(u) =
1 + u

2
.
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In a precise technical sense, the local limit arises in the BGF,

F (z, u) =
1

1− z(1 + u)/2
,

because the dominant singularityρ(u) = 2/(1+u) exists on the whole of the unit circle,|u| =
1, and it attains uniquely its minimum modulus atu = 1; accordingly,B(u) = ρ(1)/ρ(u) is
uniquely maximal atu = 1.

More generally, the theorem applies to any sumSn = T1 + · · · + Tn of independent,
identically, random variables whose maximal span is equal to 1 and whose PGF is analytic on
the unit circle. In that case, the BGF is

F (z, u) =
1

1− zB(u)
,

the PGF ofSn is a pure power,
pn(u) = B(u)n,

and the fact that the minimal span of theXj is 1 entails thatB(u) attains uniquely its maximum
at 1. Such cases have been known for a long time in probabilitytheory. See Chapter 9 of [186].
�

At this stage, it is worth pointing an examplenot leading to a local law. Consider
the binomial distribution restricted to even values,

pn,2k =
2

2n

(
n

2k

)
, pn,2k+1 = 0.

The BGF is

F (z, u) =
1

1 − z(1 + u)/2
+

1

1 − z(1 − u)/2
− 1.

This has two poles,

ρ1(u) =
2

1 + u
, ρ2(u) =

2

1 − u
,

and it is clearly not true that a single one dominates throughout the domain|u| = 1.
Accordingly, the PGF satisfies

pn(u) = (1 + u)n + (1 − u)n,

and no quasi-power law, with a unique analyticB(u), holds uniformly foru on the
unit circle. In essence, a local limit law will be likely to hold when a PGF has a sharp
peak near 1 and stays much smaller in modulus along the rest ofthe unit circle. In
contrast, for the even binomial distribution, one haspn(1) = pn(−1).

EXAMPLE 29. Local law for the Eulerian distribution.For Eulerian numbers, we have derived
the approximate expression,

pn(u) = B(u)−n−1 +O(2−n),

whenu is close enough to1, with

B(u) = ρ(u)−1 =
u− 1

log u
.

The plot of the functionB(u) whenu varies over|u| = 1 is then displayed in Fig. 12.
This case requires in fact a minor extension of Theorem IX.13since the principal deter-

mination of the logarithm cannot be extended to the whole of the unit circle, in particular at
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u = −1. However, it is easily realized that the quasi-power expansion holds with the pos-
sible exception of a small segment of the integration contour nearu = −1. However, there,
the integrand is anyway exponentially smaller than on the rest of the contour, and the proof of
Theorem IX.13 is easily adjusted to cover such case.

From this enhanced argument, there results that a local limit law of the Gaussian type holds
for the Eulerian distribution on any compact subset of the real line. �

With a similar care to be exercised regarding principal determinations and dom-
inant singularities, many of our earlier analyses can be turned into local limit laws.
What is needed is a dominant singularityρ(u) that yields the main asymptotic form of
the PGF’s on most of the unit disc and that achieves uniquely its minimum at 1, while
the rest of the unit disc contributes negligibly. For instance, this covers the surjection
distribution, for which

ρ(u) = log(1 + u−1), B(u) =
log 2

log(1 + u−1)
,

leaves in general Catalan trees, where

B(u) =
(1 +

√
u)2

4
,

or in binary Catalan trees.
The Stirling cycle distribution satisfies

pn(u) =
e(u−1) log n

Γ(u)

(
1 +O(

1

n
)

)
.

This approximation remains uniform as long asu avoids−1, but, there,pn(u) is small
anyway (beingO(n−2)), so that again an extended form of Theorem IX.13 applies
and a local limit law holds. The same argument applies to nodelevels in quadtrees of
Example 24.

� 37.Peaks of distributions.It is possible to analyse asymptotically in detail the values of the
peak of the Eulerian and Stirling cycle distributions. (Forthe Eulerian distribution, see, e.g., the
study of Lesieur and Nicolas [263].) �

IX. 10. Large deviations

Moment inequalities constrain the shape of a distribution given its mean and vari-
ance. In particular, ifσn/µn → 1, the concentration property holds. This property
comes from Chebyshev’s inequality according to which the probability of observing
a value that deviates by more thanx standard deviations from the mean isO(x−2).
Such general bounds, though sufficient to establish a concentration property, are much
weaker than what holds under conditions of the quasi-power type, where the probabil-
ities of deviation are in fact exponentially decreasing with in x.

Figure 13 displays the logarithms of the Eulerian distribution. As logarithms of
probabilities are plotted, the distribution is seen to decay very rapidly away from the
meanµn ∼ n/2. Consider for instance extreme cases. Clearly, there is a unique
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FIGURE 13. The quantitieslog pn,k relative to the Eulerian numbers illustrate an
extremely fast decay of the distribution away from the mean.Here, the diagrams
corresponding ton = 10, 20, 30, 40 (top to bottom) are plotted. The common
shape of the curves indicates a large deviation property.

permutation that has a minimal number of rises, namely the fully sorted permutation
with probability

pn,1 =
1

n!
.

In contrast, sinceµn ∼ n/2 andσ2
n ∼ n/12, this extreme case is roughly atx =

√
3n

from the mean; thus, the Chebyshev inequalities only provides the very weak upper
bound of∼ 1

3n for this extreme case. Forn = 40, the Chebyshev upper bound on the
probability is thus about0.008 while the exact value1/40! is of the order of10−48.

Extensions of the quasi-power framework are once more well-suited to prove such
exponentially small tails, as we now explain. It turns out that the ubiquitous functions
ρ(u), B(u) are directly related tolarge deviationestimates. Such estimates nicely
supplement the already known limit laws, either central or local.

DEFINITION IX.5. A sequence of discrete random variables{Xn} with pn,k =
P{Xn = k}, satisfies alocal large deviation propertyof type(βn,W (x)) over the
interval [x0, x1], if for anyx ∈ [x0, x1],

(58)
1

βn
log pn,xβn ≤W (x) +O(β−1

n ).

The functionW (x) is called alarge deviation functionandβn is thescaling factor.

The inequality (58) isa priori only meaningful ifxβn is an integer, but it makes
sense as well if it is understood thatpn,w = 0 for nonintegral values ofw andlog 0 =
−∞. Of course, the large deviation property is nontrivial onlywhenW (x) ≤ 0, with
W (x) not identically 0. A global (and marginally stronger) form of large deviations
can also be defined when local probabilities are replaced by corresponding values of
the cumulative distribution function. Large deviation theory is introduced nicely in
the book of den Hollander [94].
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THEOREM IX.14 (Quasi-powers, large deviations).Consider a sequence of dis-
crete random variables{Xn} with PGF pn(u). Assume that there exist a func-
tionsA(u), B(u), analytic in some interval[u0, u1] with 0 < u0 < 1 < u1, such
that a quasi-power expansion holds,

(59) pn(u) = A(u)B(u)βn
(
1 +O(κ−1

n

)
,

uniformly. Then theXn satisfy a large deviation property,

(60)
1

βn
log pn,xβn ≤W (x) +O(β−1

n ),

where the large deviation functionW (x) is given by

(61) W (x) = min
u∈[u0,u1]

log

(
B(u)

ux

)
.

PROOF. The basic observation is that iff(u) =
∑

n fnu
n is an analytic function with

nonnegative coefficients, then, for positiveu,

(62) fk := [uk]f(u) ≤ f(u)

uk
≤ min

u>0

f(u)

uk
.

The first inequality holds for any positiveu in the disc of analyticity off(u); the
second bound, with a similar condition, consists in taking the best possible value ofu.
See our earlier discussion of saddle point bounds.

The combination of the principle (62) applied tof(u) = pn(u), and of the as-
sumption of the theorem (59) yields

log pn,xβn ≤ βn min
u∈[u0,u1]

log

(
B(u)

ux

)
+O(1).

Thus, a large deviation property holds withW (x) given by (61).2
In general, the functionW (x) is computable fromB(u) and its derivatives. The

minimum is attained at either an end-point or a point such that

d

du
(logB(u) − x log u) = 0.

Let η(x) be a value ofu ∈ [u0, u1] that cancels this derivative. Thus,η is an inverse
function ofuB′(u)/B(u),

η(x)
B′(η(x))

B(η(x)
= x.

Then, a large deviation function is

(63) W (x) = logB(η(x)) − x log η(x).

� 38.Prove similar types of bounds for the cumulative quantities

Pn,k =
X

j≤k

pn,j , Qn,k =
X

j≥k

pn,j .

�
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FIGURE 14. The large deviation function relative to the Eulerian distribution, for
u ∈ [0.3, 0.7].

EXAMPLE 30. Large deviations for the Eulerian distribution.In this case, the BGF has a
unique dominant singularity foru with ǫ < u < 1/ǫ, and anyǫ > 0. Thus, there is a quasi-
power expansion with

B(u) =
(u− 1)

log u
,

on any interval[ǫ, 1/ǫ]. Thenη(x) is computable as the inverse function of

h(u) =
u

u− 1
− 1

log u
.

This function increases from 0 to 1 asu increases from0 to 1, so that the inverse function is
well defined over any closed interval[ǫ, 1− ǫ]. The functionW (x) is then determined by (63);
see Figure 14 for a plot ofW (x) that “explains” the data of Figure 13.

We find that

W (0.3) = W (0.7) = −0.252, W (0.4) = W (0.6) = −0.061,

W (0.45) = W (0.55) = −0.015,

andW (0.5) = 0, as expected. For instance, the probability of deviating by20% from the mean
valueµn ∼ 0.5n is approximatelyexp(−0.061 n). Forn = 100, this upper bound is about
e−6.07, while the exact value of the probability givesp100,60

.
= e−8.58. In the same vein, there

is probability less than10−6 of deviating by 10% from the mean, whenn = 1, 000; the upper
bound becomes less than10−65, for n = 10, 000, less than10−653, for n = 100, 000. (These
are the estimates stated at the very beginning of this chapter.) �

� 39. Quasi-Powers and large deviations.Under the Quasi-Powers assumption, it is usually
possible to convert the upperbound into an equality. This has been done by Hwang [217, 218,
219], who bases himself on a technique of Cramér. Roughly, by shiting the mean, the main
Quasi-Powers Theorem can be applied at someu = u0 with u0 6= 1. �

IX. 11. Non-Gaussian continuous limits

Previous sections of this chapter have developed two basic paradigms for bivariate
asymptotics (see also Figure 3):
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— a “minor” singularity perturbation mode leading to discrete laws,
— a “major” singularity perturbation mode leading to continuous laws.

However, in both cases, the assumption has been made so far that the collection of sin-
gular expansions parameterized by the auxiliary variable all belong to a common ana-
lytic class and exhibit no sharp discontinuity when the secondary parameter traverses
the valueu = 1. In this section we briefly explore by means of examples the way dis-
continuities in singular behaviour induce no-Gaussian laws (Subsection IX. 11.1), then
conclude with a fairly general discussion of the critical composition schema (Subsec-
tion IX. 11.2), thereby completing the classification of analytic composition schemes.
The discontuities observed in the cases discussed here are reminiscent of what is
known as phase transition phenomena in statistical physics, and we find it suggestive
to borrow this terminology here.

IX. 11.1. Phase transition diagrams.Perhaps the simplest case of discontinuity
in singular behaviour is the already discussed BGF,

F (z, u) =
1

(1 − z)(1 − zu)
,

whereu records the number ofa’s in a random word ofa⋆b⋆. The limit law is clearly
the continuous uniform distribution over the interval[0, 1]. From the point of view of
the singular structure ofF (z, u), as a function ofz, three distinct cases arise depending
on the values ofu:

• u < 1: simple pole atρ(u) = 1;
• u = 1: double pole atρ(1) = 1;
• u > 1: simple pole atρ(u) = 1/u.

Thus both the singularity location atρ(u) and the singular exponentα(u) experience
a nonanalytic transition atu = 1. This arises from a “confluence” of two singular
terms whenu = 1.

To visualize such cases, it is useful to introduce a simplified diagram representa-
tion, called aphase transition diagramand defined as follows. WriteZ = ρ(u) − z
and reduce the singular expansion to its dominant singular term Zα(u). Then, the
diagram representingF (z, u) above is

u = 1 − ǫ u = 1 u = 1 + ǫ
ρ(u) = 1 ρ(1) = 1 ρ(u) = 1/u
Z−1 Z−2 Z−1

A complete classification of such confluences and discontinuities is still lack-
ing (see however Marianne Durand’s thesis [108] for interesting fragments), and is
perhaps beyond reach given the vast diversity of situationsencountered in a combina-
torialist’s practice.

EXAMPLE 31. Arcsine law for unbiased random walks.This problem is studied in detail by
Feller [123, p. 94] who notes: “Contrary to intuition, the maximum accumulated gain is much
more likely to occur towards the very beginning or the very end of a coin-tossing game than
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FIGURE 15. Histograms of the distribution of the maximum of a randomwalk
for n = 10 . . 60 (left) and the density of the arcsine law (right).

somewhere in the middle.” See Figure 15. In fact, ifXn is the time of the first occurrence of
the maximum in a random game (walk with±1 steps) of durationn, one has

P{Xn < xn} ∼ 2

π
arcsin

√
x,

a distribution function with density

f(x) =
1

π
p
x(1− x)

.

The BGF results from the standard decomposition of positivewalks. Roughly, there is a
sequence of steps ascending to the (nonnegative) maximum accompanied by “arches” (the left
factor) followed by an excursion below than back to the maximum, followed by a sequence of
descending steps with their companion arches. This translates directly into an equation satisfied
by the BGFF (z, u) of the location of the first maximum.

(64) F (z, u) =
1

1− zuD(zu)
· D(z) · 1

1− zD(z)
,

which involves the GF of gambler’s ruin sequences (Example 6),

D(z) =
1−
√

1− 4z2

2z
.

In such a simple case, explicit expressions are available from (64), as it suffices to expand first
with respect tou, then toz. We obtain in this way the ultra-classical result:
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FIGURE 16. A plot of1/F (z, u) for z ∈ [0.4, 0.55] whenu is assigned values
between1

2 and 5
4 (left). The exponent functionα(u) and the singular valueρ(u)

for u ∈ [1/2, 3/2] (right).

PROPOSITIONIX.15 (Arc sine law). Setu2ν := 2−2ν
`
2ν
ν

´
. The probability that the first

maximum in a random walk of lengthn = 2ν occurs atk = 2ρ or k = 2ρ+ 1 is 1
2
u2ρu2ν−2ρ,

for 0 < k < 2ν. For anyx ∈ (0, 1), the positionTn of the first maximum satisfies

lim
n→∞

Pn(Xn < xn) =
2

π
arcsin

√
x.

(The asymptotic form reflects by summation that ofu2ν sinceu2ν ∼ (πnu)−1/2.)
It is instructive to compare this to the way singularities evolve asu crosses the value 1.

The dominant positive singularity is atρ(u) = 1/2 if u < 1, while ρ(u) = 1/(2u), if u > 1.
Local expansions show that, withc<(u), c(u) > two computable functions, there holds:

F (z, u) ∼ c<(u)
1√

1− 2z
, F (z, u) ∼ c>(u)

1√
1− 2z

.

Naturally, atu = 1, all words are counted and

F (z, 1) =
1

1− 2z
.

Thus, the corresponding phase transition diagram is (see Figure 16):

u = 1− ǫ u = 1 u = 1 + ǫ

ρ(u) = 1
2

ρ(1) = 1
2

ρ(u) = 1
2u

Z−1/2 Z−1 Z−1/2

(Negative singularities have a smaller weight and may be discarded.) �

In this particular case, elementary combinatorics yields the arcsine distribution
without the need of a recourse to singularities. The point tobe made here is that
the arcsine law could be expected when a similar phase transition diagram occurs.
There is of course universality in this singular view of the arcsine law, which can be
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extended to walks with zero drift (Chapter VII). This kind ofuniversality is a parallel
to the universality of Brownian motion, which is otherwise familiar to probabilists.

� 40. Number of maxima and other stories.The construction underlying (64) also serves to
analyse;(i) the number of times the maximum is attained.(ii) the difference between the
maximum and the final altitude of the walk;(iii) the duration of the period following the last
occurrence of the maximum. �

EXAMPLE 32. Path length in trees.A final example is the distribution of path length in trees,
which has been studied by Louchard, Takacs and others [270, 269, 375, 376]. The distribution
is knownnot to be Gaussian as results from computation of the first few moments. In the case
of general Catalan trees, the analysis reduces to that of thefunctional equation

F (z, u) =
1

1− zF (zu, u)
.

This definesF (z, u) as a formal continued fraction, which suggests setting (cf Chapters III
and V as well as our discussion of coin fountains and polyomino models)

F (z, u) =
A(z)

B(z)
,

the variableu being viewed as a parameter. From the basic functional equation, there results

A(z) = B(zu), B(z) = B(zu)− zB(zu2).

The functional equation forB may now be solved by indeterminate coefficients:

B(z) = 1 +

∞X

n=1

(−1)n un(n−1)zn

(1− u)(1− u2) · · · (1− un)
.

Because of the quadratic exponents involved, the functionsB(z) andF (z, u) have radius of
convergence0 whenu > 1, and are thus nonanalytic. In contrast, whenu < 1, thenB(z, u) is
an entire function ofz, so thatF (z, u) is meromorphic inz. Hence the singularity diagram:

u = 1− ǫ u = 1 u = 1 + ǫ

ρ(u) > 1
4

ρ(1) = 1
4

ρ(u) = 0

Z−1 Z1/2 —

The limit law is theAiry area distribution, that is related to the Airy function [269, 270, 375,
376]. By an analyticaltour de force, Prellberg [324] has developed a method based on cintegral
representations and oalescing saddle points (Chapter VIII) that permits us to extract the phase
transition diagram above, together with precise uniform asymptotic expansions. As similar
problems occur in relation to connectivity of random graphs[158], future years should see
more applications of Prellberg’s method. �

IX. 11.2. Semi-large powers, critical compositions, and stable laws. We con-
clude this section by a discussion of critical compositionsthat typically involve con-
fluences of singularities and lead to a general class of continuous distributions closely
related tostable lawsof probability theory. We start with an example where every-
thing is explicit, that of zero contacts in random bridges, then state a general theorem
on “semi-large” powers of functions of singularity analysis type, and finally discuss
combinatorial applications.
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EXAMPLE 33. Zero-contacts in bridges.Consider once more fluctuations in coin tossings,
and specifically bridges, corresponding to a conditioning of the game by the fact that the final
gain is 0 (negative capitals are allowed). These are sequences of arbitrary positive or negative
“arches”, and the number of arches in a bridge is exactly equal to the number of intermedaite
steps at which the capital is 0. From the arch decomposition,theer results that the ordinary BGF
of bridges withz marking length andu marking zero-contacts is

B(z, u) =
1

1− 2uz2D(z)
.

Analysing this function is conveniently done by introducing

F (z, u) ≡ B
„

1

2

√
z, u

«
=

1

1− u(1−√1− z) .

The phase transition diagram is then easily found to be:

u = 1− ǫ u = 1 u = 1 + ǫ

ρ(u) = 1 ρ(1) = 1 ρ(u) = 1− (1− u−1)2

Z1/2 Z−1/2 Z−1

Thus, there are discontinuities, both in the location of thesingularity and the exponent. But
these are of a type different from what gave rise to the arcsine law of random walks.

The problem of the limit law is here easily solved since explicit expressions are provided
by the Lagrange Inversion Theorem. One finds:

[uk][zn]F (z, u) = [zn]
`
1−
√

1− z
´k

=
k

n
[wn−k](2− w)−n = 2k−2n k

n

 
2n− k − 1

n− 1

!
.

Then Stirling’s formula provides:

PROPOSITIONIX.16. The numberXn of zero-contacts of a random bridge of size2n satisfies,
as→∞ the local limit law,

lim
n→∞

P(Xn = x
√
n) =

x

2
√
n
e−x2/4,

for x in any compact set of[0,+∞[.

A random variable with density and distribution function given by

(65) r(x) =
x

2
e−x2/4, R(x) = 1− ex2/4,

is called a Rayleigh law. Thus the number of zero contacts obeys a Rayleigh law in the asymp-
totic limit. �

� 41. Cyclic points in mappings.The number of cyclic points in mappings has exponential
BGF (1− uT (z))−1, with T the Cayley tree function. The singularity diagram is of the same
form as in Example 33. Explicit forms are available by Lagrange inversion, and the limit law is
again Rayleigh. (Note: This has been vastly generalized by Drmota and Soria [105, 106].) �

Both Example 33 and Note 41 exemplify the situation of an analytic composition
scheme of the form(1 − uf(z))−1 which is critical, since in each casef assumes
value 1 at its singularity. Both can be treated elementarilysince they involve powers
that are amenable to Lagrange inversion, eventually resulting in a Rayleigh law. As
we now explain, there is a family of functions that appear to play a universal rôle
in problems sharing such singular types. What follows is taken from an article by
Banderieret al. [21].
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FIGURE 17. TheG-functions forλ = 0.1 . .0.8 (left; from bottom to top) and
for λ = 1.2 . . 1.9 (right; from top to bottom); the thicker curves represent the
Rayleigh law (left,λ = 1

2 ) and the Airy law (right,λ = 3
2 ).

We first introduce a functionG that otherwise naturally surfaces in the study of
stable9 distributions in probability theory. For any parameterλ ∈ (0, 2), define the
entire function

(66) G(x, λ) :=






1

π

∑

k≥1

(−1)k−1xk Γ(1 + λk)

Γ(1 + k)
sin(πkλ) (0 < λ < 1)

1

πx

∑

k≥1

(−1)k−1xk Γ(1 + k/λ)

Γ(1 + k)
sin(πk/λ) (1 < λ < 2)

The functionG(x; 1
2 ) is a normalized variant of the Rayleigh distribution (65). The

functionG(x; 3
2 ) constitutes the density of the “Airy map” distribution found in ran-

dom maps as well as in other colascence phenomena and discussed in detail below,
see (73).

THEOREMIX.15 (Semi-large powers).The coefficient ofzn in a powerH(z)k of a∆-
continuable functionH(z) with singular exponentλ admits the following asymptotic
estimates.

(i) For 0 < λ < 1, that is,H(z) = σ − hλ(1 − z/ρ)λ + O(1 − z/ρ), and when
k = xnλ, with x in any compact subinterval of(0,+∞), there holds

(67) [zn]Hk(z) ∼ σkρ−n 1

n
G

(
xhλ

σ
, λ

)
.

(ii) For 1 < λ < 2, that is,H(z) = σ − h1(1− z/ρ) + hλ(1− z/ρ)λ +O((1 −
z/ρ)2), whenk = σ

h1
n + xn1/λ, with x in any compact subinterval of(−∞,+∞),

9In probability theory, stable laws are defined as the possible limit laws of sums of independent iden-
tically distributed random variables. The functionG is a trivial variant of the density of the stable law of
indexλ; see Feller’s book [124, p. 581–583]. Valuable informations regarding stable lawsmay be found in
the books by Breiman [61, Sec. 9.8], Durett [109, Sec. 2.7], and Zolotarev [421].
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there holds

(68) [zn]Hk(z) ∼ σkρ−n 1

n1/λ
(h1/hλ)1/λG

(
xh

1+1/λ
1

σh
1/λ
λ

, λ

)
.

(iii) For λ > 2, a Gaussian approximation holds. In particular, for2 < λ < 3,
that is,H(z) = σ− h1(1− z/ρ)+ h2(1− z/ρ)2 − hλ(1− z/ρ)λ +O((1 − z/ρ)3) ,
whenk = σ

h1
n+ x

√
n, withx in any compact subinterval of(−∞,+∞), there holds

(69) [zn]Hk(z) ∼ σkρ−n 1√
n

σ/h1

a
√

2π
e−x2/2a2

with a = 2(h2

h1
− h1

2σ )σ2/h2
1.

The term “semi-large” refers to the fact that the exponentsk in case(i) are of the
formO(nθ) for someθ < 1 chosen in accordance with the region where an “interest-
ing” renormalization takes place and dependent on each particular singular exponent.
When the interesting region reaches theO(n) range in case(iii), the analysis of large
powers, as detailed in Chapter IX, starts to apply and Gaussian forms results.
PROOF. The proofs are somewhat similar to the basic ones in singularity analysis, but
they require a suitable adjustment of the geometry of the Hankel contour and of the
corresponding scaling.

Case(i). A classical Hankel contour, with the change of variablez = ρ(1− t/n),
yields the approximation

[zn]Hk(z) ∼ −σ
kρ−n

2iπn

∫
et−hλx

σ tλ

dt

The integral is then simply estimated by expandingexp(−hλx
σ tλ) and integrating

termwise

(70) [zn]Hk(z) ∼ −σ
kρ−n

n

∑

k≥1

(−x)k

k!

(
hλ

σ

)k
1

Γ(−λk) ,

which is equivalent to Equation (67), by virtue of the complement formula for the
Gamma function.

Case(ii). When1 < λ < 2, the contour of integration in thez-plane is chosen
to be a positively oriented loop, made of two rays of angleπ/(2λ) and−π/(2λ) that
intersect on the real axis at a distance1/n1/λ left of the singularity. The coefficient
integral ofHk is rescaled by settingz = ρ(1 − t/n1/λ), and one has

[zn]Hk(z) ∼ − σkρ−n

2iπn1/λ

∫
e

hλ
h1

tλ

e−
xh1

σ t dt.

There, the contour of integration in thet-plane comprises two rays of angleπ/λ and
−π/λ, intersecting at−1. Settingu = tλhλ/h1, the contour transforms into a clas-
sical Hankel contour, starting from−∞ over the real axis, winding about the origin,
and returning to−∞. So, withα = 1/λ, one has

[zn]Hk(z) ∼ −σ
kρ−n

2iπnα
α

(
h1

hλ

)α ∫
eu e

− xh
α+1
1

σhα
λ

uα

uα−1 du .
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Expanding the exponential, integrating termwise, and appealing to the complement
formula for the Gamma function finally reduces this last formto (68).

Case(iii). This case is only included here for comparison purposes, but, as
recalled before the proof, it is essentially implied by the developments of Chapter IX
based on the saddle point method. When2 < λ < 3, the angleφ of the contour of
integration in thez–plane is chosen to beπ/2, and the scaling is

√
n: under the change

of variablez = ρ(1 − t/
√
n), the contour is transformed into two rays of angleπ/2

and−π/2 (i.e., a vertical line), intersecting at−1, and

[zn]Hk(z) ∼ − σkρ−n

2iπ
√
n

∫
ept2−h1x

σ t dt ,

with p = h2

h1
− h1

2σ . Complementing the square, and lettingu = t− h1x
2pσ , we get

[zn]Hk(z) ∼ −σkρ−n

2iπ
√
n
e
− h2

1
4pσ2 x2

∫
epu2

du ,

which gives Equation (69). By similar means, such a Gaussianapproximation can be
shown to hold for any non-integral singular exponentλ > 2. �

� 42. Zipf laws. Zipf’s law, named after the Harvard linguistic professor George Kingsley
Zipf (1902–1950), is the observation that, in a language like English, the frequency with which
a word occurs is roughly inversely proportional to its rank—the kth most frequent word has
frequency proportional to1/k. Thegeneralized Zipf distributionof parameterα > 1 is the law
of a variableZ such that

P(Z = k) =
1

ζ(α)

1

kα
.

It has infinite mean forα ≤ 2 and infinite variance forα ≤ 3. It was proved in Chapter VI that
polylogarithms are amenable to singularity analysis. Consequently, the sum of a large number
of independent Zipf variables satisfies a local limit law of the stable type with indexα − 1
(α 6= 2). �

EXAMPLE 34. Mean level profiles of trees.Consider the depth of a random node in a random
tree taken from a simple varietyY that satisfies the usual analytic assumptions of Chapter VII.
The problem of quantifying this distribution is equivalentto that of determining themeanlevel
profile, that is the sequence of numbersMn,k representing the mean number of nodes at dis-
tancek from the root. (The probability that a random node lies at level k is thenMn,k/n.) The
first few levels have been characterized in Chapter VII, and the analysis of that chapter can now
be completed thanks to Theorem IX.15. The problem was solvedby Meir and Moon [283] in
an important article that launched the analytic study of simple varieties of trees. As usual, we
let φ(w) be the generator of the simple varietyY, with Y (z) satisfyingY = zφ(Y ), and we
designate byτ the positive root of the characteristic equation:

τφ′(τ )− φ(τ ) = 0.

It is known from Chapter VII that the GFY (z) has a square root singularity atρ = τ/φ(τ ).
We also assume aperiodicity ofφ. Then Meir and Moon’s major result (Theorem 4.3 of [283])
is as follows

PROPOSITIONIX.17 (Mean level profiles).The mean profile of a large tree in a simple variety
obeys a Rayleigh law in the asymptotic limit: fork/

√
n in any bounded interval ofR≥0, the

mean number of nodes at altitudek satisfies asymptotically

Mn,k ∼ AkeAk2/(2n),
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whereA = τφ′′(τ ).

(Note: Meir and Moon base their analysis on a Lagrangean change of variable and on the
saddle point method.)
PROOF. For eachk, defineYk(z, u) to be the BGF withu marking the number of nodes at
depthk. Then, the root decomposition of trees translates into the recurrence:

Yk(z, u) = zφ(Yk−1(z, u)), Y0(z, u) = zuφ(Y (z)) = uY (z).

By construction, we have

Mn,k =
1

Yn
[zn]

„
∂

∂u
Yk(z, u)

«

u=1

.

On the other hand, the fundamental recurrence yields
„
∂

∂u
Yk(z, u)

«

u=1

=
`
zφ′(Y (z))

´k
Y (z).

Now, φ′(Y ) has, likeY , a square root singularity. The semi-large powers theorem applies
with λ = 1

2
, and the result follows. � The same method of gives access to the

variance of the number of nodes at any depthk. The variance of the altitude of a random node
is also easily computed [283]. �

� 43. The number of cyclic points in mappings.In the basic case of random mapping, we are
dealing withF (z, u) = (1− uT (z))−1, and a Rayleigh law holds. This extends to the number
of cyclic points in a simple variety of mappings (e.g., mappings defined by a finite constraint
on degrees). �

� 44.The width of trees.The expectation of the widthW of a tree in a simple variety satisfies

C1

√
n ≤ EYn(W ) ≤ C2

p
n log n,

for someC1, C2 > 0. This is due to Odlyzko and Wilf [303] in 1987. (Better bounds are
now known, sinceWn/

√
n has been later recognized to be related to Brownian excursion. In

particular, the expected width is∼ c√n.) �

The results of Theorem IX.15 provide in addition useful information on compo-
sition schemas of the form

M(z, u) = C(uH(z)),

providedC andH are algebraic-logarithmic in the sense above. Combinatorially,
this represents a substitution between structures,M = C ◦ H, and the coefficient
[znuk]M(z, u) counts the number ofM-structures of sizen whoseC-componnet,
also calledcore in what follows, has sizek. Then the probability distribution of core-
sizeXn in M-structures of sizen is given by

P(Xn = k) =
[zk]C(z)

[zn]C(H(z))
[zn]H(z)k.

The case where the schema is critical, in the sense thatH(rH) = rG with rH , rC
the radii of convergence ofH,G, follows as a direct consequence of Theorem IX.15.
What comes out is the following informally stated general principle (details would
closely mimic the statement of Theorem IX.15 and are omitted).
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PROPOSITION IX.18 (Critical compositions).In a composition schemaG(uH(z))
whereH andG have singular exponentsλ, λ′ with λ′ ≤ λ:

(i) for 0 < λ < 1, the normalized core-sizeXn/n
λ is spread over(0,+∞)

and it satisfies a local limit law whose density involves the stable law of indexλ; in
particular,λ = 1

2 corresponds to a Rayleigh law.
(ii) for 1 < λ < 2, the distribution ofXn is bimodal and the “large region”

Xn = cn+ xn1/λ leads to a stable law of indexλ;
(iii) for 2 < λ, the standardized version ofXn admits a local limit law that is of

Gaussian type.

Similar phenomena occur whenλ′ > λ, but with a greater preponderance of
the “small” region. Many instances have already appeared scattered in the literature.
especially in connection with rooted trees. For instance, this proposition explains well
the occurrence of the Rayleigh law (λ = 1

2 ) as the distribution of cyclic points in
random mappings and of zero-contacts in random bridges. Thecaseλ = 3/2 appears
in forests of unrooted trees (see the discussion in Chapter VIII for a complementary
approach based on coalescing saddle points) and it is ubiquitous in planar maps, as
attested by the article of Banderieret al. on which this subsection is largely based [21].
We detail one of the cases in the following example, which explains the meaning of
the term “large region” in Proposition IX.18.

EXAMPLE 35. Biconnected cores of planar maps.The OGF of rooted planar maps, with size
determined by the number ofedges, is by Chapter VII,

(71) M(z) = − 1

54z2

“
1− 18z − (1− 12z)3/2

”
,

with a characteristic3
2

exponent. Define a separating vertex orarticulation point in a map to
be a vertex whose removal disconnects the graph. LetC denote the class of nonseparable maps,
that is, maps without an articulation point (also known as biconnected maps). Starting from
the root edge, any map decomposes into a nonseparable map, called the “core” on which are
grafted arbitrary maps, as illustrated by the following diagram:

There results the equation:

(72) M(z) = C(H(z)), H(z) = z(1 +M(z))2.

This gives in passing the OGF of nonseparable maps as the algebraic function of degree 3
specified implicitly by the equation

C3 + 2C2 + (1− 18z)C + 27z2 − 2z = 0,
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FIGURE 18. Left: The standard Airy distribution. Right: Observed frequencies
of core-sizesk ∈ [20; 1000] in 50,000 random maps of size 2,000, showing the
bimodal character of the distribution.

with expansion at the origin (EISA000139):

C(z) = 2 z + z2 + 2 z3 + 6 z4 + 22 z5 + 91 z6 + · · · , Ck = 2
(3k)!

(k + 1)!(2k + 1)!
.

(The closed form results from a Lagrangean parameterization.) Now the singularity ofC is also
of theZ3/2 type as seen by inversion of (72) or from the Newton diagram attached to the cubic
equation. We find in particular

C(z) =
1

3
− 4

9
(1− 27z/4) +

8
√

3

81
(1− 27z/4)3/2 +O((1− 27z/4)2),

which is reflected by the asymptotic estimate,

Ck ∼ 2

27

√
3

π

„
17

4

«k

k−5/2.

The parameter considered here is the distribution of the sizeXn of the core (containing
the root) in a random map of sizen. The composition relation isM = C ◦ H , whereH =
Z(1 +M)2. The BGF is thusM(z, u) = C(uH(z)) where the compositionC ◦H is of the
singular typeZ3/2 ◦ Z3/2. What is peculiar here is the “bimodal” caracter of the distribution
of core-size (see Figure 18 borrowed from [21]), which we now detail.

First straight singularity analysis shows that, forfixedk,

P(Xn = k) = Ck
[zn]H(z)k

Mn
∼

n→∞
kCkh

k−1
0 ,

whereh0 = 4
27

is the value ofH(z) at its singularity. In other words, there is local convergence
of the probabilities to a fixeddiscretelaw. The estimate above can be proved to remain uniform
as long ask tends to infinity sufficiently slowly. We shall call this the “small range” ofk values.
Now, summing the probabilities associated to this small range gives the valueC(h0) = 1

3
.

Thus,one-third of the probability mass of core-size arises from the small range, where a discrete
limit law is observed.

The other part of the distribution constitutes the “large range” to which Theorem IX.15
applies. This contains asymptotically2

3
of the probability mass of the distribution ofXn. In

that case, the limit law is given by aG(x; 3
2
) law, also known as “map Airy” law and one finds

for k = 1
3
n+ xn2/3, the continuous local limit:

(73) P(Xn) ∼ 1

3
A(

3

4
22/3x), A(x) = 2e−2x2/3

`
xAi(x2)− Ai′(x2)

´
.
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ThereAi(x) is the Airy function , andA(x) defines the map Airy distribution displayed in
Figure 18, a variant of the stable law of index3

2
. �

The bimodal character of the law can now be bettler understood following [21].
A random maps decomposes completely into biconnected components and the largest
biconnected component has, with high probability, a size that isO(n). There are also a
large number (O(n)) “dangling” biconnected components. In a rooted map, the root is
in a sense placed “at random”. Then, with a fixed probability is either lies in the large
compoent (in which case, the distribution of that large component is observed, this is
the continuous part of the distribution given by the Airy maplaw), or else one of the
small components is picked up by the root (this is the discrete part of the distribution).

� 45. Critical cycles.The theory adapts to logarithmic factors. For instance the critical com-
positionF (z, u) = − log(1 − ug(z)) leads to developments similar to those of the critical
sequence. In this way, it becomes possible for instance to analyse the number of cyclic points
in a random connected mapping. �

� 46.The base of supertrees.Supertrees defined in Chapter VI are trees rooted on trees. Here
we consider the bicoloured variantK = G(2ZG), with G the class of general Catalan trees.
Then, the law of the externalG-component is related to a stable law of index1

4
. �

IX. 12. Multivariate limit laws

There exist natural extensions of continuity theorems, both for PGFs and for inte-
gral transforms. Consider for instance the joint distribution of the numbersχ1, χ2 of
singletons and doubletons in random permutations. Then, the parameterχ = (χ1, χ2)
has a trivariate EGF

F (z, u1, u2) =
exp((u1 − 1)z + (u2 − 1)z2/2)

1 − z
.

Thus, the bivariate PGF satisfies, by meromorphic analysis,

pn(u1, u2) = [zn]F (z, u1, u2) ∼ e(u1−1) e(u2−1)/2.

The joint distribution of(χ1, χ2) is then a product of a Poisson(1) and a Poisson(1/2)
distribution; in particularχ1 andχ2 are asymptotically independent. Such a fact
results from an extension of the continuity theorem (Theorem IX.1) to multivariate
PGF’s that is proved by multiple Cauchy integration.

Consider next the joint distribution ofχ = (χ1, χ2), whereχj is the number of
j-summands in a random integer composition. Each parameter individually obeys a
limit Gaussian law, since the sequence construction is supercritical. The trivariate GF
is

F (z, u1, u2) =
1

1 − z(1 − z)−1 − (u1 − 1)z − (u2 − 1)z2
.

By meromorphic analysis, a higher dimensional quasi-powerapproximation may be
derived:

[zn]F (z, u1, u2) ∼ c(u1, u2)ρ(u1, u2)
−n,

for some 3rd degree algebraic functionρ(u1, u2). In such cases, multivariate versions
of the continuity theorem for integral transforms can be applied. See the book by Gne-
denko and Kolmogorov [186], and especially the treatment of Bender and Richmond
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in [33]. As a result, the joint distribution is, in the asymptotic limit, a bivariate Gauss-
ian distribution. Such generalizations are typical and involve essentially no radically
new concept, just natural technical adaptations.

A highly interesting approach to multivariate problems is that of functional limit
theorems.There the goal is to characterize the joint distribution of apotentially in-
finite collections of parameters. The limit process is then astochastic process. For
instance, the joint distribution of all altitudes in randomwalks gives rise to Brownian
motion. The joint distribution of all cycle lengths in random permutations is described
explicitly by Cauchy’s formula (Chapter III), and DeLaurentis and Pittel [90] have
also shown convergence to the standard Brownian motion process. A rather spec-
tacular application of this context of ideas was provided in1977 by Logan, Shepp,
Vershik and Kerov [266, 395]. These authors show that the shape of the pair of Young
tableaux [240] associated to a random permutation conforms, in the asymptotic limit
and with high probability, to a deterministic trajectory defined as the solution to a
variational problem. In particular, the width of a Young tableau associated to a per-
mutation gives the length of the longest increasing sequence of the permutation. By
specializing their results, the authors were able to show that the expected length in a
random permutation of sizen is asymptotic to2

√
n, a long standing conjecture at the

time.

IX. 13. Notes

This chapter is primarily inspired by the works of Bender andRichmond [26, 33,
34], Canfield [65], Flajolet, Soria, and Drmota [102, 103, 105, 106, 163, 165, 359] as
well as Hwang [217].

Bender’s seminal paper [26] initiated the study of bivariate analytic schemes that
lead to Gaussian laws and the paper [26] may rightly be considered to be at the origin
of the field. Canfield [65], building upon earlier works showed the approach to extend
to saddle point schemas.

Tangible progress was next made possible by the developmentof the singular-
ity analysis method [153]. Earlier works were mostly restricted to methods based on
subtraction of singularities, as in [26], which is in particular effective for meromor-
phic cases. The extension to algebraic–logarithmic singularities was however difficult
given that the classical method of Darboux does not provide for uniform error terms.
In contrast, singularity analysisdoesapply to classes of analytic functions, since it al-
lows for uniformity of estimates. The papers by Flajolet andSoria [163, 165] were the
first to make clear the impact of singularity analysis on bivariate asymptotics. Gao and
Richmond [177] were then able to extend the theory to cases where both a singularity
and its singular exponent are allowed to vary.

From there, Soria developed considerably the framework of schemas in her doc-
torate [359]. Hwang extracted the very important concept of “quasi-powers” in his
thesis [217] together with a wealth of properties like full asymptotic expansions,
speed of convergence, and large deviations. Drmota established general existence
conditions leading to Gaussian laws in the case of implicit,especially algebraic, func-
tions [102, 103]. The “singularity perturbation” framework for solutionsof linear
differential equations first appears under that name in [149]. The presentation in
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this chapter is very liberally based on the survey paper [146]. Finally, the books
by Sachkov, see [340] and especially [342], offer a modern perspective on bivariate
asymptotics applied to classical combinatorial structures.

As pointed out in the introduction, the way combinatorial constructions induce
limit laws via schemas based on a purely local perturbation of a singular structure
is quite striking. Take for instance the principle that any fixed pattern occurs almost
surely in a large random object and its number of occurrencesis governed by Gaussian
fluctuations. We have shown this property to hold true for strings, uniform tree models,
and search trees. In a context that involves either a rational function, an algebraic
function, or a solution to a nonlinear differential equation, it eventually reduces to a
very simple property, a singularity that smoothly moves. . .

I can see looming ahead one of those terrible exercises in probability where
six men have white hats and six men have black hats and you haveto

work it out by mathematics how likely it is that the hats will get
mixed up and in what proportion. If you start thinking about

things like that, you would go round the bend. Let me assure you of that!

—AGATHA CHRISTIE

(The Mirror Crack’d. Toronto, Bantam Books, 1962.)
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APPENDIX A

Auxiliary Elementary Notions

This appendix contains entries arranged in alphabetical order regarding the following topics:

Arithmetical functions; Asymptotic Notations; Combinatorial probability; Cycle
construction; Formal power series; Lagrange Inversion; Regular languages; Stir-
ling numbers; Tree concepts.

The corresponding notions and results are used throughout the book, and in particular in Part A
relative toSymbolic Methods.

1. Arithmetical functions. A general reference for this section is Apostol’s
book [11]. First, theEuler totient functionϕ(k) intervenes in the unlabelled cycle
construction. It is defined as the number of integers in[1, k] that are relatively prime
to k. Thus, one hasϕ(p) = p−1 if p ∈ {2, 3, 5, . . .} is a prime. More generally when
the prime number decomposition ofk is k = pα1

1 · · · pαr
r , then

ϕ(k) = pα1−1
1 (p1 − 1) · · · pαr

r (pr − 1).

A number is squarefree if it is not divisible by the square of aprime. TheMöbius
functionµ(n) is defined to be 0 ifn is not squarefree and otherwise is(−1)r if n =
p1 · · · pr is a product ofr distinct primes.

Many elementary properties of arithmetical functions are easily established by
means of aDirichlet generating functions(DGF). Let (an)n≥1 be a sequence; its
DGF formally defined by

α(s) =

∞∑

n=1

an

ns
.

In particular, the DGF of the sequencean = 1 is the Riemann zeta function,ζ(s) =∑
n≥1 n

−s. The fact that every number uniquely decomposes into primesis reflected
by Euler’s formula,

(1) ζ(s) =
∏

p∈P

(
1 − 1

ps

)−1

,

wherep ranges over the setP of all primes. (As observed by Euler, the fact that
ζ(1) = ∞ in conjunction with (1) provides a simple analytic proof that there are
infinitely many primes! See Note IV.1, p. 215)

Equation (1) implies elementarily that

(2) M(s) :=
∑

n≥1

µ(n)

ns
=
∏

p∈P

(
1 − 1

ps

)
=

1

ζ(s)
,

whereµ(n) is the Möbius coefficient defined above.

611
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Finally, if (an), (bn), (cn) have DGFα(s), β(s), γ(s), then one has the equiva-
lence

α(s) = β(s)γ(s) ⇐⇒ an =
∑

d | n

bdcn/d.

In particular, takingcn = 1 (γ(s) = ζ(s)) and solving forβ(s) shows (using (2)) the
implication

an =
∑

d | n

bd ⇐⇒ bn =
∑

d | n

µ(d)an/d,

which is known asMöbius inversion. This relation is used in the enumeration of
irreducible polynomials (Section I. 6.3).

2. Asymptotic Notations. Let S be a set ands0 ∈ S a particular element ofS. We
assume a notion of neighbourhood to exist onS. Examples areS = Z>0∪{+∞} with
s0 = +∞, S = R with s0 any point inR, andS = C or a subset ofC with s0 = 0,
and so on. Two functionsφ andg from S \ {s0} to C are given.

— O–notation: write
φ(s) =

s→s0

O(g(s))

if the ratioφ(s)/g(s) stays bounded ass → s0 in S. In other words, there
exists a neighbourhoodV of s0 and a constantC > 0 such that

|φ(s)| ≤ C |g(s)| , s ∈ V , s 6= s0.

One also says that“ φ is of order at mostg, or φ is big–Oh ofg (ass tends
to s0)” .

— ∼–notation: write
φ(s) ∼

s→s0

g(s)

if the ratioφ(s)/g(s) tends to 1 ass→ s0 in S. One also says that “φ andg
are asymptotically equivalent (ass tends tos0)”.

— o–notation: write
φ(s) =

s→s0

o(g(s))

if the ratioφ(s)/g(s) tends to 0 ass → s0 in S. In other words, for any
(arbitrarily small)ε > 0, there exists a neighbourhoodVε of s0 (depending
onε), such that

|φ(s)| ≤ ε |g(s)| , s ∈ Vε, s 6= s0.

One also says that“ φ is of order smaller thang, or φ is little–oh ofg (ass
tends tos0)” .

These notations are due to Bachmann and Landau towards the end of the nineteenth
century. See Knuth’s note for a historical discussion [247, Ch. 4].

Related notations, of which however we only make scanty use,are

— Ω-notation: write
φ(s) =

s→s0

Ω(g(s))

if the ratioφ(s)/g(s) stays bounded from below in modulus by a nonzero
quantity, ass→ s0 in S. One then says thatφ is of order at leastg.
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— Θ-notation: write
φ(s) =

s→s0

Θ(g(s))

if φ(s) = O(s) andφ(s) = Ω(s). One then says thatφ is of order exactlyg.

For instance, one has asn→ +∞ in Z>0:

sinn = o(logn); logn = O(
√
n); logn = o(

√
n);(

n
2

)
= Ω(n

√
n); πn+

√
n = Θ(n).

As x→ 1 in R≤1, one has
√

1 − x = o(1); ex = O(sinx); log x = Θ(x− 1).

We take as granted in this book the elementary asymptotic calculus with such no-
tations (see, e.g., [353, Ch. 4] for a smooth introduction close to the needs of analytic
combinatorics and de Bruijn’s classic [86] for a beautiful presentation.). We shall re-
tain here in particular the fact that Taylor expansions imply asymptotic expansions;
for instance, the convergent expansions valid for|u| < 1,

log(1+u) =

∞∑

k=1

(−1)k

k
uk, exp(u) =

∑

k≥0

1

k!
uk, (1−u)−α =

∑

k≥0

(
k + α− 1

k

)
uk,

imply (asu→ 0)

log(1+u) = u+O(u2), exp(u) = 1+u+
u2

2
+O(u3), (1−u)1/2 = 1− u

2
+O(u2),

and, in turn, (asn→ +∞)

log

(
1 +

1

n

)
=

1

n
+O

(
1

n2

)
,

(
1 − 1

logn

)1/2

= 1 − 1

2 logn
+ o

(
1

logn

)
.

Two important asymptotic expansions are Stirling’s formula for factorials and the
harmonic number approximation, valid forn ≥ 1,

(3)
n! = nne−n

√
2πn (1 + ǫn) , 0 < ǫn <

1
12n

Hn = logn+ γ +
1

2n
− 1

12n2
+ ηn ηn = O

(
n−4

)
, γ

.
= 0.57721,

that are best established as consequences of the Euler–Maclaurin summation formula
(see [86, 353] as well as APPENDIX B: Mellin transform, p. 646).

Asymptotic scales.An important notion due to Henri Poincaré is that of anas-
ymptotic scale. A sequence of functionsω0, ω1, . . . is said to constitute an asymptotic
scale if all functionsωj exist in a common neighbourhood ofs0 ∈ S and if they satisfy
there, for allj ≥ 0:

ωj+1(s) = o(ωj(s)), i.e., lim
s→s0

ωj+1(s)

ωj(s)
= 0.

Examples at0 are the scales:uj(x) = xj ; v2j(x) = xj log x andv2j+1(x) = xj ;
wj(x) = xj/2. Examples at infinity aretj(n) = n−j, and so on. Given a scale
Φ = (ωj(s))j≥0, a functionf is said to admit anasymptotic expansionin the scaleΦ
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if there exists a family of complex coefficients(λj) (the family is then necessarily
unique) such that, for each integerm:

(4) f(s) =
m∑

j=0

λjωj(s) +O(ωm+1(s)) (s→ s0).

In this case, one writes

(5) f(s) ∼
∞∑

j=0

λjωj(s), (s→ s0)

with an extension of the symbol ‘∼’. (Some authors prefer the notation ‘≈”.) The
scale may be finite and in most cases, we do not need to specify it as it clear from
context. For instance, one can write

Hn ∼ logn+ γ +
1

12n
, tanx ∼ x+

1

3
x3 +

2

15
x5.

In the first case, it is understood thatn → ∞ and the scale islogn, 1, n−1, n−2, . . . .
In the second case,x → 0 and the scale isx, x3, x5, . . . . Note that in the case of an
infinite expansion, convergence of the infinite sum is not implied in (5): the relation is
to be interpreted literaly in the sense of (4) as a collectionof more and more precise
descriptions off ass becomes closer and closer tos0.

� 1. Simplification rules for the asymptotic calculus.Some of them are

O(λf) −→ O(f) (λ 6= 0)
O(f) ±O(g) −→ O(|f | + |g|)

−→ O(f) if g = O(f)
O(f · g) −→ O(f)O(g).

Similar rules apply foro(·). �

� 2. Harmonics of harmonics.The harmonic numbers are readily extended to non-integral
index by (cf also theψ function p. 636)

Hx :=

∞X

k=1

„
1

k
− 1

k + x

«
.

For instance,H1/2 = 2− 2 log 2. This extension is related to the Gamma function [402], and it
can be proved that the asymptotic estimate (3), withx replacingn, remains valid asx→ +∞.
A typical asymptotic calculation shows that

HHn = log log n+ γ +
γ + 1

2

log n
+O

„
1

log2 n

«
.

What is the shape of an asymptotic expansion ofHHHn
? �
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� 3. Stackings of dominos. A stock of dominos of length 1cm is given. It is well known that
one can stack up dominos in a harmonic mode:

1/21/31/4

Estimate within 1% the minimal number of dominos needed to achieve a horizontal span of
1m (=100cm). [Hint: about 1.509261043 dominos!] Set up a scheme to evaluate this integer
exactly, and do it! �

� 4. High precision fraud.Why is it that, to forty decimal places, one finds

4

500,000X

k=1

(−1)k−1

2k − 1
.
= 3.141590653589793240462643383269502884197

π
.
= 3.141592653589793238462643383279502884197,

with only four “wrong” digits in the first sum? (Hint: consider the simpler problem

1

9801
.
= 0.00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 · · · .)

Many fascinating facts of this kind are found in works by Jon and Peter Borwein [54, 55]. �

Uniform asymptotic expansions.The notions previously introduced admit of
uniform versions in the case of families dependent on a secondary parameter [86,
pp. 7–9]. Let{fu(s)}u∈U be a family of functions indexed byU . An asymptotic
equivalence like

fu(s) = O (g(s)) (s→ s0),

is said to beuniform with respect tou if there exists an absolute constantK (indepen-
dent ofu ∈ U ) and a fixed neighbourhoodV of s0 such that

∀u ∈ U, ∀s ∈ V : |fu(s)| ≤ K|g(s)|.
This definition in turn gives rise to the notion of a uniform asymptotic expansion: it
suffices that, for eachm, theO error term in (4) be uniform in the sense above. Such
notions are central for the determination of limit laws in Chapter IX, where a uniform
expansion of a class of generating functions near a singularity is usually required.

� 5. Examples of uniform asymptotics.One hasuniformly, for u ∈ R andu ∈ [0, 1] respec-
tively:

sin(ux) =
x→∞

O(1),

„
1 +

1

n

«u

=
n→∞

1 +
u

n
+O

„
1

n2

«
.

However, the second expansion no longer holds uniformly with respect tou whenu ∈ R (take
u = ±n), though it holdspointwise(non-uniformly) for any fixedu ∈ R. What about the

assertion

„
1 +

1

n

«u

=
n→∞

1 +
u

n
+O

„
u2

n2

«
for u ∈ R? �
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3. Combinatorial probability . This entry gathers elementary concepts from proba-
bility theory specialized to the discrete case and used in Chapter III. A more elaborate
discussion of probability theory forms the subject of Appendix C.

Given a finite setS, theuniform probability measureassigns to anyσ ∈ S the
probability mass

P(σ) =
1

card(S)
.

The probability of any set, also known asevent, E ⊆ S, is then measured by

P{E} :=
card(E)

card(S)
=
∑

σ∈E
P(σ)

(“the number of favorable cases over the total number of cases”).
Given a combinatorial classA, we make extensive use of this notion with the

choice ofS = An. This defines a probability model (indexed byn), in which of ele-
ments of the sizen in A are taken with equal likelihood. For this uniform probabilistic
model, we write

Pn and PAn ,

whenever the size and the type of combinatorial structure considered need to be em-
phasized.

Next consider a parameterχ, which is a function fromS to Z≥0. We regard such
a parameter as arandom variable, determined by its probability distribution,

P(χ = k) =
card ({σ | χ(σ) = k})

card(S)
.

The notions above extend gracefully to nonuniform probability models that are deter-
mined by a family of nonnegative numbers(pσ)σ∈S which add up to 1:

P(σ) = pσ, P(E) :=
∑

σ∈E
pσ, P(χ = k) =

∑

χ(σ)=k

pσ.

Moments. An important information on a distribution is provided by itsmoments.
We state here the definitions for an arbitrary discrete random variable supported byZ
and determined by its probability distribution,P(X = k) = pk where the(pk)k∈Z

are nonnegative numbers that add up to 1. Theexpectationof f(X) is defined as the
linear functional

E(f(X)) =
∑

k

P{X = k} · f(k).

In particular, the (power)momentof orderr is defined as the expectation:

E(Xr) =
∑

k

P{X = k} · kr.

Of special importance are the first two moments of the random variableX . The
expectation (also mean or average)E(X) is

E(X) =
∑

k

P{X = k} · k.
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The second momentE(X2) gives rise to thevariance,

V(X) = E
(
(X − E(X))2

)
= E(X2) − E(X)2,

and, in turn, to thestandard deviation

σ(X) =
√

V(X).

The mean deserves its name as first observed by Galileo Galilei (1564–1642): if a large
number of draws are effected and values ofX are observed, then the arithmetical mean
of the observed values will normally be close to the expectation E(X). The standard
deviation measures in a mean quadratic sense the dispersionof values around the
expectationE(X).

� 6. The weak law of large numbers.Let (Xk) be a sequence of mutually independent random
variables with a common distribution. If the expectationµ = E(Xk) exists, then for everyǫ:

lim
n→∞

P

„˛̨
˛̨ 1
n

(X1 + · · ·+Xn)− µ
˛̨
˛̨ > ǫ

«
= 0.

(See [123, Ch X] for a proof.) Note that the property does not require finite variance. �

Probability generating function.Theprobability generating function(PGF) of
X is by definition:

p(u) :=
∑

k

P(X = k)uk,

and an alternative expression ispn(u) = E(uX). Moments can be recovered from the
PGF by differentiation at 1, for instance:

E(X) =
d

du
p(u)

∣∣∣∣
u=1

, E(X(X − 1)) =
d2

du2
p(u)

∣∣∣∣
u=1

.

More generally, the quantity,

E(X(X − 1) · · · (X − k + 1)) =
dk

duk
p(u)

∣∣∣∣
u=1

,

is known as thekth factorial moment.

� 7. Relations between factorial and power moments.Let X be a discrete random variable
with PGFp(u); denote byµr = E(Xr) its rth moment and byφr its factorial moment. One
has

µr = ∂r
t p(e

t)
˛̨
t=0

, φr = ∂r
up(u)|u=1 .

Consequently, with
˘

n
k

¯
and

ˆ
n
k

˜
the Stirling numbers of both kinds (APPENDIX A: Stirling

numbers, p. 624),

φr =
X

j

(−1)r−j

"
r

j

#
µj ; µr =

X

j

(
r

j

)
φj .

(Hint: for φr → µr, expand the Stirling polynomial defined in (12) below; in theconverse
direction, writep(et) = p(1 + (et − 1)).) �
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Markov-Chebyshev inequalities.These are fundamental inequalities that apply
equally well to discrete and to continuous random variables(see Appendix C for the
latter).

THEOREM A.1 (Markov-Chebyshev inequalities).Let X be anonnegativerandom
variable andY anarbitraryreal random variable. One has for an arbitraryt > 0:

P {X ≥ tE(X)} ≤ 1

t
(Markov inequality)

P {|Y − E(Y )| ≥ tσ(Y )} ≤ 1

t2
(Chebyshev inequality).

PROOF. Without loss of generality, one may assume thatx has been scaled in such
a way thatE(X) = 1. Define the functionf(x) whose value is 1 ifx ≥ t, and 0
otherwise. Then

P{X ≥ t} = E(f(X)).

Sincef(x) ≤ x/t, the expectation on the right is less than1/t. Markov’s inequality
follows. Chebyshev’s inequality then results from Markov’s inequality applied toX =
|Y − E(Y )|2. �

Theorem A.1 informs us that the probability of being much larger than the mean
must decay (Markov) and that an upperbound on the decay is measured in units given
by the standard deviation (Chebyshev).

Moment inequalities are discussed for instance in Billingsley’s reference trea-
tise [49, p. 74]. They are of great importance in discrete mathematics where they
have been put to use in order to show theexistenceof surprising configurations. This
field was pioneered by Erdős and is often known as the “probabilistic method” [in
combinatorics]; see the book by Alon and Spencer [8] for many examples. Moment
inequalities can also be used to estimate the probabilitiesof complex events by reduc-
ing the problems to moment estimates for occurrences of simpler configurations—this
is one of the bases of the “first and second moment methods”, again pioneered by
Erdős, which are central in the theory of random graphs [51, 225]. Finally, moment
inequalities serve to design, analyse, and optimize randomized algorithms, a theme
excellently covered in the book by Motwani and Raghavan [294].

4. Cycle construction. The unlabelled cycle construction is introduced in Chapter I
and is classically obtained within the framework of Pólya theory [76, 318, 320]. The
derivation given here is based on an elementary use of symbolic methods that fol-
lows [164]. It relies on bivariate GF’s developed in Chapter III, withz marking size
andu marking the number of components. Consider a classA and the sequence class
S = SEQ≥1(A). A sequenceσ ∈ S is primitive (or aperiodic) if it is not the repetition
of another sequence (e.g.,αββαα is primitive, butαβαβ = (αβ)2 is not). The class
PS of primitive sequences is determined implicitly,

S(z, u) ≡ uA(z)

1 − uA(z)
=
∑

k≥1

PS(zk, uk),
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which expresses that every sequence possesses a “root” thatis primitive. Möbius
inversion then gives

PS(z, u) =
∑

k≥1

µ(k)S(zk, uk) =
∑

k≥1

µ(k)
ukA(zk)

1 − ukA(zk)
.

A cycle is primitive if all of its linear representations areprimitive. There is an
exact one-to-ℓ correspondence between primitiveℓ-cycles and primitiveℓ-sequences.
Thus, the BGFPC(z, u) of primitive cycles is obtained by effecting the transforma-
tion uℓ 7→ 1

ℓu
ℓ onPS(z, u), which means

PC(z, u) =

∫ u

0

P (z, v)
dv

v
,

giving after term-wise integration,

PC(z, u) =
∑

k≥1

µ(k)

k
log

1

1 − ukA(zk)
.

Finally, cycles can be composed from arbitrary repetitionsof primitive cycles
(each cycle has a primitive “root”), which yields forC = CYC(A):

C(z, u) =
∑

k≥1

PC(zk, uk).

The arithmetical identity
∑

d | k µ(d)/d = ϕ(k)/k gives eventually

(6) C(z, u) =
∑

k≥1

ϕ(k)

k
log

1

1 − ukA(zk)
.

Formula (6) specializes to the one that appears in the translation of the cycle
construction in the unlabelled case (Theorem I.1), upon setting u = 1; this formula
also coincides the statement of Proposition III.5 regarding the number of components
in cycles, and it yields the general multivariate version (Theorem III.1) by a simple
adaptation of the argument.

� 8. Around the cycle construction.Similar methods yield the BGFs of multisets of cycles and
multisets of aperiodic cycles as

Y

k≥1

1

1− ukA(zk)
and

1

1− uA(z)
,

respectively [87]. (The latter fact corresponds to the property that any wordcan be written
as a decreasing product of Lyndon words. Notably, it serves to construct bases of free Lie
algebras [267, Ch. 5].) �

� 9. Aperiodic words.An aperiodic word is a primitive sequence of letters. The number of
aperiodic words of lengthn over anm-ary alphabet corresponds to primitive sequences with
A(z) = mz and is

PW (m)
n =

X

d | n

µ(d)mn/d.

Form = 2, the sequence starts as2, 2, 6, 12, 30, 54, 126, 240, 504, 990 (EISA027375). �



620 A. AUXILIARY ELEMENTARY NOTIONS

5. Formal power series. Formal power series extend the usual operations on polyno-
mials to infinite series of the form

(7) f =
∑

n≥0

fnz
n,

wherez is a formal indeterminate. The notationf(z) is also employed. LetK be a
ring of coefficients (usually we shall take one of the fieldsQ,R,C); the ring of formal
power series is denoted byK[[z]] and it is the setKN (of infinite sequences of elements
of K) written as infinite power series (7) and endowed with the operations of sum and
product,

(
∑

n

fnz
n

)
+

(
∑

n

gnz
n

)
:=

∑

n

(fn + gn) zn

(
∑

n

fnz
n

)
×
(
∑

n

gnz
n

)
:=

∑

n

(
n∑

k=0

fkgn−k

)
zn.

A topology, known as theformal topology, is put onK[[z]] by which two se-
riesf, g are “close” if they coincide to a large number terms. First, the valuation of
a formal power seriesf =

∑
n fnz

n is the smallestr such thatfr 6= 0 and is de-
noted byval(f). (One setsval(0) = +∞.) Given two power seriesf andg, their
distanced(f, g) is then defined as2− val(f−g). With this distance (in fact an ultramet-
ric distance), the space of all formal power series becomes acomplete metric space.
Roughly, the limit of a sequence of series{f (j)} exists if, for eachn, the coefficient
of ordern in f (j) eventually stabilizes to a fixed value asj → ∞. In this wayformal
convergencecan be defined for infinite sums: it suffices that the general term of the
sum should tend to 0 in the formal topology,i.e., the valuation of the general term
should tend to∞. Similarly for infinite products, where

∏
(1 + u(j)) converges as

soon asu(j) tends to 0 in the topology of formal power series.
It is then a simple exercise to prove that the sumQ(f) :=

∑
k≥0 f

k exists (the
sum convergerges in the formal topology) wheneverf0 = 0; the quantity then de-
fines thequasi-inversewritten (1 − f)−1, with the implied properties with respect to
multiplication (namely,Q(f)(1 − f) = 1). In the same way one defines formally
logarithms and exponentials, primitives and derivatives,etc. Also, the composition
f ◦ g is defined wheneverg0 = 0 by substitution of formal power series. More gen-
erally, any (possibly infinitary) process on series that involves at each coefficient only
finitely many operations is well-defined and is accordingly acontinuous functional in
the formal topology.

� 10.The OGF of permutations.The ordinary generating function of permutations,

P (z) :=
∞X

n=0

n!zn = 1 + z + 2z2 + 6z3 + 24z4 + 120z5 + 720z6 + 5040z7 + · · ·

exists as an element ofC[[z]], although the series has radius of convergence 0. The quantity
1/P (z) is for instance well-defined (via the quasi-inverse) and onecan compute legitimately
and effectively1−1/P (z) whose coefficients enumerate indecomposable permutations(p. 81).
The formal seriesP (z) can even be made sense of analytically as an asymptotic series (Euler),
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since Z ∞

0

e−t

1 + tz
dt ∼ 1− z + 2!z2 − 3!z3 + 4!z4 − · · · (z → 0+).

Thus, the OGF of permutations is also representable as the (formal, divergent) asymptotic series
associated to an integral. �

It can be proved that the usual functional properties of analysis extend to formal
power series provided they make sense formally. The extension to multivariate formal
power series follows along entirely similar lines.

6. Lagrange Inversion. Lagrange inversion (Lagrange, 1770) relates the coefficients
of the inverse of a function to coefficients of the powers of the function itself. It
thus establishes a fundamental correspondence between functional composition and
standard multiplication of series. Although the proof is technically simple, the result
altogether non-elementary.

The inversion problemz = h(y) is solved by the Lagrange series given below. It
is assumed that[y0]h(z) = 0, so that inversion is formally well defined and analyt-
ically local, and[y1]h(y) 6= 0. The problem is is then conveniently standardized by
settingh(y) = y/φ(y).

THEOREM A.2. Let φ(u) =
∑

k≥0 φku
k be a power series ofC[[z]] with φ0 6= 0.

Then, the equationy = zφ(y) admits a unique solution inC[[z]] whose coefficients
are given by (Lagrange form)

(8) y(z) =

∞∑

n=1

ynz
n, where yn =

1

n
[un−1]φ(u)n.

Furthermore, one has fork > 0 (Bürmann form)

(9) y(z)k =

∞∑

n=1

y(k)
n zn, where y(k)

n =
k

n
[un−k]φ(u)n.

By linearity, a form equivalent to Burmann’s (9), withH an arbitrary function, is

[zn]H(y(z)) =
1

n
[un−1] (H ′(u)φ(u)n) .

PROOF. The method of indeterminates coefficients provides a system of polynomial
equations for{yn} that is seen to admit a unique solution:

y1 = φ0, y2 = φ0φ1, y3 = φ0φ
2
1 + φ2

0φ2, . . . .

Sinceyn only depends polynomially on the coefficients ofφ(u) till order n, one may
assume without loss of generality, in order to establish (8)and (9) thatφ is a poly-
nomial. Then, by general properties of analytic functions,y(z) is analytic at 0 (see
Chapter IV and APPENDIX B: Equivalent definitions of analyticity, p. 631 for def-
initions) and it maps conformally a neighborhood of 0 into another neighbourhood
of 0. Accordingly, the quantitynyn = [zn−1]y′(z) can be estimated by Cauchy’s
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coefficient formula:

(10)

nyn =
1

2iπ

∫

0+

y′(z)
dz

zn
(Direct coefficient formula fory′(z))

=
1

2iπ

∫

0+

dy

(y/φ(y))n
(Change of variablez 7→ y)

= [yn−1]φ(y)n (Reverse coefficient formula forφ(y)n).

In the context of complex analysis, this useful result appears as nothing but an avatar
of the change-of-variable formula. The proof of Bürmann’sform is similar. �

There exist instructive (but longer) combinatorial proofsbased on what is known
as the “cyclic lemma” or “conjugacy principle” [330] for Łukasiewicz words. (See
also Note 44 in Chapter I.) Another classical proof due to Henrici relies on properties
of iteration matrices [213, Section 1.9]; see also Comtet’s book for related formula-
tions [76].

Lagrange inversion serves most notably to develop explicitformulæ for simple
families of trees (Chapters I and II), random mappings (Chapter II), and more gener-
ally for problems involving coefficients of powers of functions.

� 11.Lagrange–Bürmann inversion for fractional powers.The formula

[zn]

„
y(z)

z

«α

=
α

n+ α
[un]φ(u)n+α

holds for any real or complex exponentα, and hence generalizes Bürmann’s form. One can
similarly expandlog(y(z)/z). �

� 12.Abel’s identity.By computing in two different ways the coefficient

[zn]e(α+β)y = [zn]eαy · eβy,

wherey = zey is the Cayley tree function, one derivesAbel’s identity

(α+ β)(n+ α+ β)n−1 = αβ
nX

k=0

 
n

k

!
(k + α)k−1(n− k + β)n−k−1.

�

7. Regular languages. A languageis a set of words over some fixed alphabetA. The
structurally simplest (yet nontrivial) languages are theregular languagesthat, as as-
serted on p. 54, can be defined in a variety of equivalent ways (see [3, Ch. 3] or [113]):
by regular expressions, either ambiguous or not, and by finite automata, either deter-
ministic or nondeterministic. Our definitions ofS-regularity (S as in specification)
andA-regularity (A as in automation) from Chapter I correspond to definability by
unambiguousregular expression anddeterministicautomaton, respectively.

Regular expressions and ambiguity.Here is the classical definition of a regular
language in formal language theory.

DEFINITION A.1. The categoryRegExp of regular expressionsis defined inductively
by the property that it contains all the letters of the alphabet (a ∈ A) as well as the
empty symbolǫ, and is such that, ifR1, R2 ∈ RegExp, then the formal expressions
R1 ∪R2, R1 ·R2 andR⋆

1 are regular expressions.
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Regular expressions are meant to denotelanguages. The languageL(R) asso-
ciated toR is obtained by interpreting ‘∪’ as set-theoretic union, ‘·’ as catenation
product extended to sets and ‘⋆’ as the star operation:L(R⋆) := {ǫ} ∪ L (R) ∪
(L(R) · L (R)) ∪ · · · . These operations rely on set-theoretic operations and place no
condition on multiplicities (a word may be obtained in several different ways). Ac-
cordingly, the notions of a regular expression and a regularlanguage are useful when
studying structural properties of languages, but they mustbe adapted for enumeration
purposes, where unambiguous specifications are needed.

A wordw ∈ L(R) may be parsable in several ways according toR: theambiguity
coefficient(or multiplicity) of w with respect to the regular expressionR is defined1

as the number of parsings and writtenκ(w) = κR(w).
A regular expressionR is said to beunambiguousif for all w, we haveκR(w) ∈

{0, 1}, ambiguous otherwise. In the unambiguous case, ifL = L(R), thenL is S-
regular in the sense of Chapter I, a specification being obtained by the translation
rules:

(11) ∪ 7→ +, · 7→ ×, ( )⋆ 7→ SEQ,

and the translation mechanism afforded by Proposition I.2 p. 48 applies. (Use of the
general mechanism (11) in the ambiguous case would imply that we enumerate words
with multiplicity (ambiguity) coefficients taken into account.)

A-regularity implies S-regularity. This construction is due to Kleene [232]
whose interest had its origin in the formal expressive powerof nerve nets. Within
the classical framework of the theory of regular languages,it produces from an au-
tomaton (possibly nondeterministic) a regular expression(possibly ambiguous).

For our purposes, let a deterministic automatona be given, with alphabetA, set
of statesQ, with q0 andQ the initial state and the set of final states respectively.
The idea consists in constructing inductively the family oflanguagesL(r)

i,j of words
that connect stateqi to stateqj passing only through statesq0, . . . , qr in betweenqi
andqj . We initialize the data withL(−1)

i,j to be the singleton set{a} if the transition
(qi ◦ a) = qj exists, and the emptyset (∅) otherwise. The fundamental recursion

L(r)
i,j = L(r−1)

i,j + L(r−1)
i,r SEQ(S){L(r−1)

r,r }L(r−1)
r,j ,

incrementally takes into account the possibility of traversing the “new” stateqr. (The
unions are clearly disjoint and the segmentation of words according to passages
through stateqr is unambiguously defined, hence the validity of the sequencecon-
struction.) The languageL accepted bya is then given by the regular specification

L =
∑

qj∈Q

L||Q||
0,j ,

that describes the set of all words leading from the initial stateq0 to any of the final
states while passing freely through any intermediate stateof the automaton.

1 For instance ifR = (a ∪ aa)⋆ andw = aaaa, thenκ(w) = 5 corresponding to the five parsings:
a · a · a · a, a · a · aa, a · aa · a, aa · a · a, aa · aa.
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S-regularity ≡ Unambiguous
RegExp −→ General

RegExp
↑ K ↓ I

A-regularity ≡ Deterministic
FA

RS←− Nondeterministic
FA

FIGURE 1. Equivalence between various notions of regularity:K is Kleene’s construc-
tion; RS is Rabin-Scott’s reduction;I is the inductive construction of the text.

S-regularity impliesA-regularity. An object described by a regular specification
r can be first encoded as a word, with separators indicating theway the word should be
parsed unambiguously. These encodings are then describable by a regular expression
using the correspondence of (11). Next any language described by a regular expression
is recognizable by an automaton (possibly nondeterministic) as shown by an inductive
construction. (We only state the principles informally here.) Let →• r •→ represent
symbolically the automaton recognizing the regular expressionr, with the initial state
on the left and the final state(s) on the right. Then, the rulesare schematically

→• r + s •→ = ր
ց
→• r •→
→• s •→

→• r × s •→ = →• r •→→• s •→

→• r⋆ •→ = ↓→• r •→↑ .
Finally, a standard result of the theory, the Rabin-Scott theorem, asserts that any non-
deterministic finite automaton can be emulated by a deterministic one. (Note: this
general reduction produces a deterministic automaton whose set of states is the pow-
erset of the set of states of the original automaton; it may consequently involve an
exponential blow-up in the size of descriptions.)

8. Stirling numbers.. These numbers count amongst the most famous ones of com-
binatorial analysis. They appear in two kinds:

• the Stirling cycle number(also called ‘of the first kind’)
[
n
k

]
enumerates

permutations of sizen havingk cycles;
• theStirling partition number(also called ‘of the second kind’)

{
n
k

}
enumer-

ates partitions of ann-set intok nonempty equivalence classes.

The notations
[
n
k

]
and

{
n
k

}
proposed by Knuth (himself anticipated by Karamata) are

nowadays most widespread; see [196].
The most natural way to define Stirling numbers is in terms of the “vertical” EGFs

when the value ofk is kept fixed:

∑

n≥0

[
n

k

]
zn

n!
=

1

k!

(
log

1

1 − z

)k

∑

n≥0

{
n

k

}
zn

n!
=

1

k!
(ez − 1)

k
.
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From there, the bivariate EGFs follow straightforwardly:

∑

n,k≥0

[
n

k

]
uk z

n

n!
= exp

(
u log

1

1 − z

)
= (1 − z)−u

∑

n,k≥0

{
n

k

}
uk z

n

n!
= exp (u(ez − 1)) .

Stirling numbers and their cognates satisfy a host of algebraic relations. For in-
stance, the differential relations of the EGFs imply recurrences reminiscent of the
binomial recurrence

[
n

k

]
=

[
n− 1

k − 1

]
+ (n− 1)

[
n− 1

k

]
,

{
n

k

}
=

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
.

By expanding the powers in the vertical EGF of the Stirling partition numbers or by
techniques akin to Lagrange inversion, one finds explicit forms
[
n

k

]
=

∑

0≤j≤h≤n−k

(−1)j+h

(
h

j

)(
n− 1 + h

n− k + h

)(
2n− k

n− k − h

)
(h− j)n−k+h

h!
{
n

k

}
=

1

k!

r∑

j=0

(
k

j

)
(−1)j(k − j)n.

Though comforting, these forms are not too useful in general. (The one relative to
Stirling cycle numbers was obtained by Schlömilch in 1852 [76, p. 216].)

A more important relation is that of the generating polynomials of the
[
n
r

]
for

fixedn,

(12) Pn(u) ≡
n∑

r=0

[
n

r

]
ur = u · (u + 1) · (u + 2) · · · (u+ n− 1).

This nicely parallels the OGF for the
{

n
r

}
for fixedr

∞∑

n=0

{
n

r

}
zn =

zr

(1 − z)(1 − 2z) · · · (1 − kz)
.

� 13.Schlömilch’s formula.It is established starting from

k!

n!

"
n

k

#
=

1

2iπ

I
logk 1

1− z
dz

zn+1
,

via the change of variablea la Lagrange:z = 1− e−t. See [76, p.216] and [156]. �

9. Tree concepts. In the abstract graph-theoretic sense, aforest is an acyclic (undi-
rected) graph and atree is a forest that consists of just one connected component. A
rooted treeis a tree in which a specific node is distinguished, theroot. Rooted trees
are drawn with the root either below (the mathematician’s and botanists’s convention)
or on top (the genealogist’s and computer scientist’s convention), and in this book, we
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employ both conventions indifferently. Here are then two planar representations of the
same rooted tree

(13)

a∗

b

c d

e f

g h i

j k

l

a∗

b

d

j e k

l

f

i g h

c

where the star distinguishes the root. (Tags on nodes,a, b, c, etc, are not part of the tree
structure but only meant to discriminate nodes here.) A treewhose nodes are labelled
by distinct integers then becomes alabelled tree, this in the precise technical sense of
Chapter II. Size is defined by the number of nodes (vertices).Here is for instance a
labelled tree of size 9:

(14)

5

9

6 4

3

8 1

7

2

In a rooted tree, theoutdegreeof a node is the number of its descendants; with the
sole exception of the root, outdeegree is thus equal to degree (in the graph-theoretic
sense, i.e., the number of neighbours) minus 1. Once this convention is clear, one
usually abbreviates “outdegree” by “degree” when speakingof rooted trees. Aleaf is
a node without descendant, that is, a node of (out)degree equal to 0. For instance the
tree in (14) has 5 leaves. Non-leaf nodes are also called internal nodes.

Many applications from genealogy to computer science require superimposing
an additional structure on a graph-theoretic tree. Aplane tree(sometimes also called
a planar tree) is defined as a tree in which subtrees dangling from a common node
are ordered between themselves and represented from left toright in order. Thus, the
two representations in (13) are equivalent as graph-theoretic trees, but they become
distinct objects when regarded as plane trees.

Binary trees play a special role in combinatorics. These arerooted trees in which
every nonleaf node has degree 2 exactly as, for instance, in the first two drawings
below:
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In the second case, the leaves have been distinguished by ‘2’. The pruned binary tree
(third representation) is obtained from a regular binary tree by removing the leaves. A
binary tree can be fully reconstructed from its pruned version, and a tree of size2n+1
always expands a pruned tree of sizen.

A few major classes are encountered throughout this book. Here is a summary2.

General plane trees (Catalan trees) G = Z × SEQ{G} (unlabelled)
Binary trees A = Z + (Z ×A×A) (unlabelled)
Nonempty pruned binary trees B = Z + 2(Z × B) + (Z × B × B) (unlabelled)
Pruned binary trees C = 1 + (Z × B × B) (unlabelled)
General nonplane trees (Cayley trees) T = Z × SET{T } (labelled)

The corresponding GFs are respectively

G(z) =
1 −

√
1 − 4z

2
, A(z) =

1 −
√

1 − 4z2

2z
, B(z) =

1 − 2z −
√

1 − 4z

2z
,

C(z) =
1 −

√
1 − 4z

2z
, T (z) = zeT (z),

being respectively of type OGF for the first four and EGF for the last one. The corre-
sponding counts are

Gn =
1

n

(
2n− 2

n− 1

)
, A2ν+1 =

1

ν + 1

(
2ν

ν

)
, Bn =

1

n+ 1

(
2n

n

)
(n ≥ 1),

Cn =
1

n+ 1

(
2n

n

)
, Tn = nn−1.

The common occurrence of the Catalan numbers, (Cn = Bn = A2n+1 = Gn+1) is
explained by pruning and by the rotation correspondence described on p. 69.

2 The term “general” refers to the fact that no degree constraint is imposed.





APPENDIX B

Basic Complex Analysis

This appendix contains entries arranged in alphabetical order regarding the following topics:

Algebraic elimination; Equivalent definitions of analyticity; Gamma function; Im-
plicit Function Theorem; Laplace’s method; Mellin transform; Perron-Frobenius
theory of nonnegative matrices; Several complex variables.

The corresponding notions and results are used in particular starting with Part B, which is
relative toComplex Asymptotics.

1. Algebraic elimination. Auxiliary quantities can be eliminated from systems of
polynomial equations. In essence, elimination is achievedby suitable combinations of
the equations themselves. One of the best strategies is based on Gröbner bases and is
presented in the excellent book of Cox, Little, and O’Shea [79]. This entry develops a
more elementary approach based onresultants.

Resultants.Consider a field of coefficientsK which may be specialized as
Q,C,C(z), . . ., as the need arises. A polynomial of degreed in K[x] has at most
d roots inK and exactlyd roots in the algebraic closurēK of K. Given two polyno-
mials,

P (x) =

ℓ∑

j=0

ajx
ℓ−j , Q(x) =

m∑

k=0

bkx
m−k,

their resultant(with respect to the variablex) is the determinant of order(ℓ+m),

(1) R(P,Q, x) = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 · · · 0 0
0 a0 a1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · aℓ−1 aℓ
b0 b1 b2 · · · 0 0
0 b0 b1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · bm−1 bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

also called the Sylvester determinant. By its definition, the resultant is a polynomial
form in the coefficients ofP andQ. The main property of resultants is the following:
(i) If P (x), Q(x) ∈ K[x] have a common root in the algebraic closureK̄ of K, then
R(P (x), Q(x), x) = 0. (ii) Conversely, ifR(P (x), Q(x), x) = 0 holds, then either
a0 = b0 = 0 or elseP (x), Q(x) have a common root in̄K. [The idea of the proof
of (i) is as follows. LetS be the matrix in (1). Then the homogeneous linear system
Sw = 0 admits a solutionw = (ξℓ+m−1, . . . , ξ2, ξ, 1) whereξ is a common root ofP
andQ; this is only possible ifdet(S) ≡ R vanishes.] We refer to Lang’s treatise [260,
V.10] for a detailed presentation of resultants.

Equating the resultant to 0 thus provides anecessarycondition for the existence
of common roots, but not always a sufficient one. This has implications in situations

629
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where the coefficientsaj, bk depend on one or several parameters. In that case, the
conditionR(P,Q, x) = 0 will certainly capture all the situations whereP andQ have
a common root, but it may also include some situations where there is a reduction in
degree, although the polynomials have no common root. For instance, takeP (x) =
tx − 2 andQ(x) = tx2 − 4 (with t a parameter); the resultant with respect tox is
found to be

R = 4t(1 − t).

Indeed, the conditionR = 0 corresponds to either a common root (t = 1 for which
P (2) = Q(2) = 0) or to some degeneracy in degree (t = 0 for whichP (x) = −2 and
Q(x) = −4 have no common zero).

Systems of equations.Given a system

(2) {Pj(z, y1, y2, . . . , ym) = 0}, j = 1 . .m,

defining an algebraic curve, we can then proceed as follows inorder to extract a sin-
gle equation satisfied by one of the indeterminates. By taking resultants withPm,
eliminate all occurrences of the variableym from the firstm − 1 equations, thereby
obtaining a new system ofm − 1 equations inm − 1 variables (withz kept as a pa-
rameter, so that the base field isC(z)). Repeat the process and successively eliminate
ym−1, . . . , y2. The strategy (in the simpler case where variables are eliminated in
succession exactly one at a time) is summarized in the skeletton procedureEliminate:

procedureEliminate (P1, . . . , Pm, y1, y2, . . . ym);
{Elimination ofy2, . . . , ym by resultants}
(A1, . . . , Am) := (P1, . . . , Pm);
for j from m by −1 to 2do
for k from j − 1 by −1 to 1 do

Ak := R(Ak, Aj , yj);
return (A1).

The polynomials obtained need not be minimal, in which case,one should appeal
to multivariate polynomial factorization in order to select the relevant factors at each
stage. (Groebner bases provide a neater alternative to these questions, see [79].)

Computer algebra systems usually provide implementationsof both resultants and
Groebner bases. The complexity of elimination is however exponential in the worst-
case: degrees essentially multiply, which is somewhat intrinsic asy0 in the quadratic
system ofk equations

y0 − z − yk = 0, yk − y2
k−1 = 0, . . . , y1 − y2

0 = 0

(determining the OGF of regular trees of degree2k) represents an algebraic function
of degree2k and no less.

� 1.Resultant and roots.LetP,Q ∈ C[x] have sets of roots{αj} and{βk} respectively. Then

R(P,Q,x) = aℓ
0b

m
0

ℓY

i=1

mY

j=1

(αi − βj) = aℓ
0

mY

i=1

Q(αi).
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Thediscriminantof P classically defined byD(P ) := a−1
0 R(P (x), P ′(x), x) satisfies

D(P ) ≡ a−1
0 R(P (x), P ′(x), x) = a2ℓ−2

0

Y

i6=j

(αi − αj).

Given the coefficients ofP and the value ofD(P ), there results an effectively computable
bound on the minimal separation distanceδ between any two roots ofP . [Hint. Let
A = 1 + maxj(|aj/a0|). Then eachαj satisfies|αj | < mA. SetL =

`
ℓ
2

´
. Then

δ ≥ |a0|2−2ℓ|D(P )|(2A)L−1.] �

2. Equivalent definitions of analyticity. Two parallel notions are introduced at the
beginning of Chapter IV: analyticity (defined by power series expansions) and holo-
morphy (defined as complex differentiability). As is known from any textbook on
complex analysis, these notions are equivalent. Given their importance for analytic
combinatorics, this appendix entry sketches a proof of the equivalence, which is sum-
marized by the following diagram:

Analyticity
[A]−→
←−
[C]

C-differentiability
↓ [B]

Null integral Property

A. Analyticity implies complex-differentiability. Let f(z) be analytic in the disc
D(z0;R). We may assume without loss of generality thatz0 = 0 andR = 1 (else
effect a linear transformation on the argumentz). According to the definition of ana-
lyticity, the series representation

(3) f(z) =

∞∑

n=0

fnz
n,

converges for allz with |z| < 1. Elementary series rearrangements first entail that
f(z) given by this representation is analytic at anyz1 interior toD(0; 1). Similar
techniques then show the existence of the derivative as wellas the fact that the deriv-
ative can be obtained by term-wise differentiation of (3).

� 2. Proof of [A]: Analyticity implies differentiability.First, formally, the binomial theorem
provides

(4)

f(z) =
X

n≥0

fnz
n =

X

n≥0

fn(z1 + z − z1)n

=
X

n≥0

nX

k=0

 
n

k

!
fnz

k
1 (z − z1)n−k

=
X

m≥0

cm(z − z1)m, cm :=
X

k≥0

 
m+ k

k

!
fm+kz

k
1 .

Let r1 be any number smaller than1− |z1|. We observe that (4) makes analytic sense. Indeed,
one has the bound|fn| ≤ CAn, valid for anyA > 1 and someC > 0. Thus, the terms in (4)
are dominated in absolute value by those of the double series

(5)
X

n≥0

nX

k=0

 
n

k

!
CAn|z1|krn−k

1 = C
X

n≥0

An(|z1|+ r1)
n =

C

1−A(|z1|+ r1)
,

which is absolutely convergent as soon asA is chosen such thatA < (|z1|+ r1)
−1.
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Complex differentiability of at anyz1 ∈ D(0; 1) derives from the analogous calculation,
valid for small enoughδ,

(6)

1

δ
(f(z1 + δ)− f(z1))) =

X

n≥0

nfnz
n−1
1 + δ

X

n≥0

nX

k=2

 
n

k

!
fnz

k
1 δ

n−k−2

=
X

n≥0

nfnz
n−1
1 +O(δ),

where boundedness of the coefficient ofδ results from an argument analogous to (5). �

The argument of Note 2 has shown that the derivative off at z1 is obtained by
differentiating termwise the series representingf . More generally derivatives of all
orders exist and can be obtained in a similar fashion. In viewof this fact, the equalities
of (4) can also be interpreted as theTaylor expansion(by grouping terms according to
values ofk first):

(7) f(z1 + δ) = f(z1) + δf ′(z1) +
δ2

2!
f ′′(z1) + · · · ,

which is thus generally valid for analytic functions.

B. Complex differentiability implies the “Null Integral” Property. The Null Inte-
gral Property relative to a domainΩ is the property:

∫

λ

f = 0 for any loopλ ⊂ Ω.

(A loop is a closed path that can be contracted to a single point in the domainΩ, cf
Chapter IV). Its proof results simply from the Cauchy-Riemann equations and from
Green’s formula.

� 3. Proof of[B]: the Null Integral Property.This starts from theCauchy–Riemann equations.
Let P (x, y) = ℜf(x + iy) andQ(x, y) = ℑf(x + iy). By adopting successively in the
definition of complex differentiabilityδ = h andδ = ih, one findsP ′

x + iQ′
x = Q′

y − iP ′
y ,

implying

(8)
∂P

∂x
=
∂Q

∂y
and

∂P

∂y
= −∂Q

∂x
,

known as the Cauchy–Riemann equations. (The functionsP andQ satisfy the partial differ-
ential equations∆f = 0, where∆ is the 2-dimensionalLaplacian∆ := ∂2

∂x2 + ∂2

∂y2 ; such
functions are known asharmonic functions.) The Null Integral Property, given differentiabil-
ity, results from the Cauchy–Riemann equations, upon taking into account Green’s theorem of
multivariate calculus,Z

∂K

Adx+Bdy =

Z Z

K

„
∂B

∂x
− ∂A

∂y

«
dx dy,

which is valid for any (compact) domainK enclosed by a simple curve∂K. �

C. Complex differentiability implies analyticity.The starting point is the formula

(9) f(a) =
1

2iπ

∫

γ

f(z)

z − a
dz,

knowing only differentiability off and its consequence, the Null Integral Property
(but preciselynot postulating the existence of an analytic expansion). Thereγ is a
simple positive loop encirclinga inside a region wheref is analytic.
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� 4. Proof of [C]: the integral representation.The proof of (9) is obtained by decomposing
f(z) in the original integral asf(z) = f(z)− f(a) + f(a). Define accordingly

g(z) =


f(z)−f(a)

z−a
for z 6= a

f ′(a) for z = a.

By the differentiability assumption,g is continuous and holomorphic (differentiable) at any
point other thana. Its integral is thus 0 alongγ. On the other hand, we have

Z

γ

1

z − a dz = 2iπ,

by a simple computation: deformγ to a small circle alonga and evaluate the integral directly
by settingz − a = reiθ. �

Once (9) is granted, it suffices to write, e.g., for an expansion at 0,

f(z) =
1

2iπ

∫

γ

f(t)
dt

t− z

=
1

2iπ

∫

γ

f(t)

(
1 +

z

t
+
z2

t2
+ · · ·

)
dt

t

=
∑

n≥0

fnz
n, fn :=

1

2iπ

∫

γ

f(t)
dt

tn+1
.

(Exchanges of integration and summation are justified by normal convergence.) An-
alyticity is thus proved from complex-differentiability and its consequence the Null
Integral Property.

� 5. Cauchy’s formula for derivatives.One has

f (n)(a) =
n!

2iπ

Z

γ

f(z)

(z − a)n+1
dz.

This follows from (9) by differentiation under the integralsign. �

� 6. Morera’s Theorem.Suppose thatf is continuous [but nota priori known to be differen-
tiable] in an open setΩ and that its integral along any triangle inΩ is 0. Then,f is analytic
(hence holomorphic) inΩ. [For a proof, see, e.g, [325, p. 68].] �

3. Gamma function. The formulæ of singularity analysis in Chapter IV involve the
Gamma functionin an essential manner. The Gamma function extends to nonintegral
arguments the factorial function and we collect in this appendix a few classical facts
regarding it. Proofs may be found in classic treatises like Henrici’s [212] or Whittaker
and Watson’s [402].

Basic properties.Euler introduced the Gamma function as

(10) Γ(s) =

∫ ∞

0

e−tts−1 dt,

where the integral converges providedℜ(s) > 0. Through integration by parts, one
immediately derives the basic functional equation of the Gamma function,

(11) Γ(s+ 1) = sΓ(s).
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s
0 420-2-4

y
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6
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2

0

-2

-4

-6

FIGURE 1. A plot of Γ(s) for reals.

SinceΓ(1) = 1, one hasΓ(n + 1) = n!, so that the Gamma function serves to
extend the factorial function for nonintegral arguments. For combinatorial purposes,
the special value,

(12) Γ

(
1

2

)
:=

∫ ∞

0

e−t dt√
t

= 2

∫ ∞

0

e−x2

dx =
√
π,

proves to be quite important. It implies in turnΓ(− 1
2 ) = −2

√
π.

From (11), the Gamma function can be analytically continuedto the whole ofC
with the exception of poles at0,−1,−2, . . . . The functional equation used backwards
yields

Γ(s) ∼ (−1)m

m!

1

s+m
(s → −m) ,

so that the residue ofΓ(s) at s = −m is (−1)m/m!. Figure 1 depicts the graph of
Γ(s) for real values ofs.

� 7. Evaluation of the Gaussian integral.DefineJ :=
R∞
0
e−x2

dx. The idea is to evalu-
ateJ2:

J2 =

Z ∞

0

Z ∞

0

e−(x2+y2) dxdy.

Going to polar coordinates,(x2 + y2)1/2 = ρ, x = ρ cos θ, y = ρ sin θ yields, via the standard
change of variables formula:

J2 =

Z ∞

0

Z π
2

0

e−ρ2

ρdρdθ.

The equalityJ2 = π/4 results. �
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Hankel contour representation.Euler’s integral representation ofΓ(s) used in
conjunction with the functional equation permits us to continueΓ(s) to the whole of
the complex plane. A direct approach due to Hankel provides an alternative integral
representation valid for all values ofs.

THEOREM B.1 (Hankel’s contour integral).Let
∫ (0)

+∞ denote an integral taken along
a contour starting at+∞ in the upper plane, winding counterclockwise around the
origin, and proceeding towards+∞ in the lower half plane. Then, for alls ∈ C,

(13)
1

π
sin(πs)Γ(1 − s) =

1

Γ(s)
= − 1

2iπ

∫ (0)

+∞
(−t)−se−t dt.

In (13),(−t)−s is assumed to have its principal determination whent is negative real,
and this determination is then extended uniquely by continuity throughout the contour.
The integral then closely resembles the definition ofΓ(1 − s). The first form of (13)
can also be rewritten as1Γ(s) , by virtue of the complement formula given below.

� 8. Proof of Hankel’s representation.We refer to volume 2 of Henrici’s book [212, p. 35] or
Whittaker and Watson’s treatise [402, p. 245] for a detailed proof.

A contour of integration that fulfills the conditions of the theorem is typically the contour
H that is at distance 1 of the positive real axis comprising three parts: a line parallel to the
positive real axis in the upper half–plane; a connecting semi–circle centered at the origin; a line
parallel to the positive real axis in the lower half–plane. More precisely,H = H− ∪H+ ∪H◦,
where

(14)

8
<
:
H− = {z = w − i, w ≥ 0}
H+ = {z = w + i, w ≥ 0}
H◦ = {z = −eiφ, φ ∈ [−π

2
, π

2
]}.

Let ǫ be a small positive real number, and denote byǫ · H the image ofH by the trans-
formationz 7→ ǫz. By analyticity, for the integral representation, we can equally well adopt as
integration path the contourǫ · H, for anyǫ > 0. The main idea is then to letǫ tend to 0.

Assume momentarily thats < 0. (The extension to arbitrarys then follows by analytic
continuation.) The integral alongǫ · H decomposes into three parts:

The integral along the semi–circle is 0 if we take the circle of a vanishing small
radius, since−s > 0.
The contributions from the upper and lower lines give, asǫ→ 0

Z (0)

+∞
(−t)−se−t dt = (−U + L)

Z ∞

0

t−se−t dt

whereU andL denote the determinations of(−1)−s on the half-lines lying in the
upper and lower half planes respectively.

By continuity of determinations,U = (e−iπ)−s andL = (e+iπ)−s. Therefore, the right hand
side of (13) is equal to

− (−eiπs + e−iπs)

2iπ
Γ(1− s) =

sin(πs)

π
Γ(1− s),

which completes the proof of the theorem. �
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Expansions.The Gamma function has poles at the nonpositive integers buthas
no zeros. Accordingly,1/Γ(s) is an entire function with zeros at0,−1, . . ., and the
position of the zeros is reflected by the product decomposition,

(15)
1

Γ(s)
= seγs

∞∏

n=1

[
(1 +

s

n
)e−s/n

]

(of the so–called Weierstraß type). Thereγ = 0.57721 denotes Euler’s constant

γ = lim
n→∞

(Hn − logn) ≡
∞∑

n=1

[
1

n
− log(1 +

1

n
)

]
.

The logarithmic derivative of the Gamma function is classically known as the psi
function and is denoted byψ(s):

ψ(s) :=
d

ds
log Γ(s) =

Γ′(s)

Γ(s)
.

In accordance with (15),ψ(s) admits a partial fraction decomposition

(16) ψ(s+ 1) = −γ −
∞∑

n=1

[
1

n+ s
− 1

n

]
.

From (16), there results that the Taylor expansion ofψ(s + 1), hence ofΓ(s + 1),
involves values of the Riemann zeta function,

ζ(s) =
∞∑

n=1

1

ns
,

at the positive integers: for|s| < 1,

ψ(s+ 1) = −γ +

∞∑

n=2

(−1)nζ(n)sn−1.

so that the coefficients in the expansion ofΓ(s) around any integer are polynomi-
ally expressible in terms of Euler’s constantγ and values of the zeta function at the
integers. For instance, ass→ 0,

Γ(s+ 1) = 1 − γ s+

(
π2

12
+
γ2

2

)
s2 +

(
−ζ(3)

3
− π2γ

12
− γ3

6

)
s3 +O(s4).

Another direct consequence of the infinite product formulæ for Γ(s) andsinπs is
the complement formula for the Gamma function,

(17) Γ(s)Γ(−s) = − π

s sinπs
,

which directly results from the factorization of the sine function (due to Euler),

sin s = s

∞∏

n=1

(
1 − s2

n2π2

)
.

In particular, Equation (17) gives back the special value (cf (12)): Γ(1
2 ) =

√
π.
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� 9. The duplication formula.This is

22s−1Γ(s)Γ(s+
1

2
) = π1/2Γ(2s),

which provides the expansion ofΓ near1/2:

Γ(s+
1

2
) = π1/2 − (γ + 2 log 2)π1/2s+

„
π5/2

4
+

(γ + 2 log 2)2 π1/2

2

«
s2 +O(s3).

The coefficients now involvelog 2 as well as zeta values. �

Finally, a famous and absolutely fundamental asymptotic formula is Stirling’s
approximation, familiarly known as “Stirling’s formula”:

Γ(s+ 1) = sΓ(s) ∼ sse−s
√

2πs

[
1 +

1

12s
+

1

288s2
− 139

51840s3
+ · · ·

]
.

It is valid for (large) reals > 0, and more generally for alls→ ∞ in |Arg(s)| < π−δ
(anyδ > 0). For the purpose of obtaining effective bounds, the following quantitative
relation [402, p. 253] often proves useful,

Γ(s+ 1) = sse−s(2πs)1/2eθ/(12s), where0 < θ ≡ θ(s) < 1,

an equality that holds now for alls ≥ 1. Stirling’s formula is usually proved by
appealing to the method of Laplace applied to the integral representation forΓ(s +
1), see APPENDIX B: Laplace’s method, p. 639, or by Euler-Maclaurin summation
(Note 10). It is derived by different means in APPENDIX B: Mellin transform, p. 646.

� 10. Stirling’s formula via Euler-Maclaurin summation.Stirling’s formula can be derived
from Euler–Maclaurin summation applied tolog Γ(s). [See: [196, Sec. 9.6].] �

� 11. The Eulerian Beta function. It is defined forℜ(p),ℜ(q) > 0 by any of the following
integrals,

B(p, q) :=

Z 1

0

xp−1(1− x)q−1 dx =

Z ∞

0

yp−1

(1 + y)p+q
dy = 2

Z π
2

0

cos2p−1 θ sin2q−1 θ dθ,

where the last form is known as a Wallis integral. It satisfies:

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

[See [402, p. 254] for a proof generalizing that of Note 7.] �

4. Implicit Function Theorem. In its real variable version, the implicit function
theorem asserts that, for a sufficiently smooth functionF (z, w) of two variables, a
solution to the the equationF (z, w) = 0 exists in the vicinity of a solution point
(z0, w0) (therefore satisfyingF (z0, w0) = 0) provided the partial derivative satisfies
F ′

w(z0, w0) 6= 0. This theorem admits a complex-analytic extension, which is essen-
tial for the analysis of recursive structures.

Without loss of generality, one restricts attention to(z0, w0) = (0, 0). Let
F (z, w) be an analytic function of two complex variables in the sensethat it admits a
convergent representation valid in a polydisc,

(18) F (z, w) =
∑

m,n≥0

fm,nz
mwn, |z| < R, |w| < S.
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for someR,S > 0 (cf APPENDIX B: Several complex variables., p. 652).

THEOREMB.2 (Analytic Implicit Functions).LetF be bivariate analytic near(0, 0).
Assume thatF (0, 0) ≡ f0,0 = 0 andF ′

w(0, 0) ≡ f0,1 6= 0. Then, there exists a unique
functionf(z) analytic in a neighbourhood|z| < ρ of 0 such thatf(0) = 0 and

F (z, f(z)) = 0, |z| < ρ.

� 12.Proofs of the Implicit Function Theorem.See Hille’s book [214] for details.
(i) Proof by residues. Make use of the principle of the argument and Rouché’s Theorem

to see that the equationF (z,w) has a unique solution near 0 for|z| small enough. Appeal then
to the related result of Chapter IV (based on the residue theorem) that expresses the sum of the
solutions to an equation as a contour integral. Here, this expresses the solution as (C a small
enough contour around 0 in thew–plane)

f(z) =
1

2iπ

Z

C

w
F ′

w(z, w)

F (z, w)
dw,

which is checked to represent an analytic function ofz.
(ii) Proof by majorant series. SetG(z, w) := w− f−1

0,1F (z, w). The equationF (z,w) =
0 becomes the fixed-point equationw = G(z, w). The bivariate seriesG has its coefficients
dominated termwise by those of

bG(z, w) =
A

(1− z/R)(1−w/S)
− A− Aw

S
.

The equationw = bG(z, w) is quadratic. It admits a solutionbf(z) analytic at 0,

bf(z) = A
z

R
+
A(A2 + AS + S2)

S2

z2

R2
+ · · · ,

whose coefficients dominate termwise those off .
(iii) Proof by Picard’s method of successive approximants. WithG like before, define the

sequence of functions
φ0(z) := 0; φj+1(z) = G(z, φj(z)),

each analytic in a small neighbourhood of 0. Thenf(z) can be obtained as

f(z) = lim
j→∞

φj(z) ≡ φ0(z)−
∞X

j=0

(φj(z)− φj+1(z)) ,

which is itself checked to be analytic near 0 by the geometricconvergence of the series. �

Weierstrass Preparation.The Weierstrass Preparation Theorem (WPT) also
known asVorbereitungssatzis a useful complement to the Implicit Function Theo-
rem.

Given a collectionZ = (z1, . . . , zm) of variables, we designate as usual byC[[Z]]
the ring of formal power series in indeterminatesZ. We letC{Z} denote the subset
of these that are convergent in a neighbourhood of(0, . . . , 0), i.e., analytic (cf AP-
PENDIX B: Several complex variables., p. 652).

THEOREM B.3 (Weierstraß Preparation).Let f = f(z1, . . . , zm) in C(Z) (respec-
tivelyC{Z}) be such thatf(0, . . . , 0) = 0. A Weierstraß polynomial is a polynomial
of the form

zd + g1z
d−1 + · · · + gd,
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wheregj ∈ C(Z \ {z1}) (respectivelygj ∈ C{Z \ {z1}}) and g(0, . . . , 0) = 0.
Assume thatf depends on at least one of thezj with j ≥ 2 (i.e.,f(0, z2, . . . , zm) is
not identically 0). Then,f admits a unique factorization

f(z1, z2, . . . , zm) = W (z1) · F (z2, . . . , zm),

whereW (z) is a Weierstraß polynomial andF (0, . . . , 0) 6= 0 is in C(z) (respectively
C{Z}).

An accessible proof and a discussion are found in Abhyankar’s lecture notes [1,
Ch. 16]. In essence, Theorem B.3 implies that functions implicitly defined by a tran-
scendental equation (an equationf = 0) are locally of the same nature as algebraic
functions (corresponding to the equationW = 0). In particular, form = 2, when the
solutions have singularities, these singularities can only be branch points and com-
panion Puiseux expansions hold (Chapter VII). The theorem acquires even greater
importance when perturbative singular expansions (corresponding tom ≥ 3) become
required for the purpose of extracting limit laws (Chapter IX).

5. Laplace’s method. The method of Laplace serves to estimate asymptoticallyreal
integrals depending on a large parametern (which may be a positive integer or real
number). Though it is primarily a real analysis technique, we present it in detail in
this appendix given its relevance to the saddle point method, which deals instead with
complexcontour integrals.

Case study: a Wallis integral.In order to demonstrate the essence of the method,
consider first the problem of estimating asymptotically theWallis integral

(19) In :=

∫ π/2

−π/2

(cosx)
n
dx,

asn → +∞. The cosine attains its maximum atx = 0 (where its value is 1), and
since the integrand ofIn is a large power, the contribution to the integral outside any
fixed segment containing 0 is exponentially small and can consequently be discarded
for all asymptotic purposes. A glance at the plot ofcosn x asn varies (Figure 2) also

0
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0-2-4 42 6-6

FIGURE 2. Plots ofcosn x [left] andcosn(w/
√
n) [right], for n = 1 . .. 20.
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Z π/2

−π/2

cosn x dx =
1√
n

Z π
2

√
n

− π
2

√
n

„
cos

w√
n

«n

dw Setx = w/
√
n; chooseκn = n1/10

∼ 1√
n

Z κn

−κn

„
cos

w√
n

«n

dw [Neglect the tails]

∼ 1√
n

Z κn

−κn

e−w2/2dw [Central approxim.]

∼ 1√
n

Z ∞

−∞
e−w2/2dw [Complete the tails]

∼
r

2π

n
.

FIGURE 3. A typical application of the Laplace method.

suggests that the integrand tends to conform to a bell-shaped profile near the centre as
n increases. This is not hard to verify: setx = w/

√
n, then a local expansion yields

(20) cosn x ≡ exp(n log cos(x)) = exp

(
−w

2

2
+O(n−1w4)

)
,

the approximation being valid as long asw = O(n1/4). Accordingly, we choose
(somewhat arbitrarily)

κn := n1/10,

and define the central range by|w| ≤ κn. These considerations suggest to rewrite the
integralIn as

In =
1√
n

∫ +π
√

n/2

−π
√

n/2

(
cos

w√
n

)n

dw,

and expect under this new form an approximation by a Gaussianintegral arising from
the central range.

Laplace’s method proceeds in three steps:
(i) Neglect the tails of the original integral;

(ii) Centrally approximate the integrand by a Gaussian;
(iii) Complete the tails of the Gaussian integral.

In the case of the cosine integral (19), the chain is summarized in Figure 3. Details of
the analysis follow.

(i) Neglect the tails of the original integral: By (20), we have

cosn

(
κn√
n

)
∼ exp

(
−1

2
n1/5

)
,

and, as the integrand is unimodal, this exponentially smallquantity bounds the inte-
grand throughout|w| > κn, that is, on a large part of the integration interval. This
gives

(21) In =
1√
n

∫ +κn/
√

n

−κn/
√

n

cosn xdx+O

(
exp

(
− 1

2
κ2

n

))
,
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and the error term is of the order ofexp(− 1
2n

1/5).

(ii) Centrally approximate the integrand by a Gaussian: In the central region, we
have

(22)

I
(1)
n :=

∫ +κn/
√

n

−κn/
√

n

cosn xdx

=
1√
n

∫ +κn

−κn

e−w2/2 exp
(
O(n−1w4)

)
dw

=
1√
n

∫ +κn

−κn

e−w2/2
(
1 +O(n−1w4)

)
dw

=
1√
n

∫ +κn

−κn

e−w2/2 dw +O(n−3/2),

given the uniformity of approximation (20) forw in the integration interval.

(iii) Complete the tails of the Gaussian integral: The incomplete Gaussian inte-
gral in (22) can be easily estimated once it is observed that its tails are small. Precisely,
one has, forW ≥ 0,

∫ ∞

W

e−w2/2 dw ≤ e−W 2/2

∫ ∞

0

e−h2/2 dh ≡
√
π

2
e−W 2/2

(by the change of variablew = W + h). Thus,

(23)
∫ +κn

−κn

e−w2/2 dw =

∫ +∞

−∞
e−w2/2 dw +O

(
exp

(
− 1

2
κ2

n

))
.

It now suffices to collect the three approximations, (21), (22), and (23): we have
obtained in this way.

(24) In =
1√
n

∫ +∞

−∞
e−w2/2 dw +O(n−3/2) ≡

√
2π

n
+ O(n−3/2).

These three steps are the heart of Laplace’s method.

In the asymptotic scale of the problem, the exponentially small errors in the tails
can be completely neglected. The error in (24) then arises from the central approxi-
mation (20), and its companionO(w4n−1) term. This can easily be improved and it
suffices to appeal to further terms in the expansion oflog cosx near 0. For instance,
one has (x = w/

√
n):

(25) cosn x = e−w2/2

(
1 − w4

12n
+O(n−2w8)

)
.

Proceeding like before, we find that a further term in the expansion ofIn is obtained
by considering the additive correction

ǫn := − 1√
n

∫ +∞

−∞
e−w2/2

(
w4

12n

)
dw ≡ −

√
π

8n3
,

so that

In =

√
2π

n
−
√

π

8n3
+O(n−5/2).
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Clearly, a full asymptotic expansion can be obtained in thismanner.

� 13.Wallis integrals and central binomials.The integralIn is an integral considered by John
Wallis (1616–1703). It can be evaluated through partial integration or by its relation to the Beta
integral (Note 11) asIn = Γ( 1

2
)Γ(n

2
+ 1

2
)/Γ(n

2
+ 1). There results (n 7→ 2n)

 
2n

n

!
∼ 22n

√
πn

„
1− 1

8n
+

1

128n2
+

5

1024n3
− · · ·

«
,

which is yet another avatar of Stirling’s formula. �

General case of large powers.Laplace’s method applies under very general con-
ditions to integrals involving large powers of a fixed function.

THEOREMB.4 (Laplace’s method).Letf andg be indefinitely differentiable real val-
ued functions defined over some compact intervalI of the real line. Assume that|g(x)|
attains its maximum at a unique pointx0 interior to I and thatf(x0), g(x0), g

′′(x0) 6=
0. Then, the integral

In :=

∫

I

f(x)g(x)n dx

admits a full asymptotic expansion:

(26) In ∼
√

2π

λn
f(x0)g(x0)

n


1 +

∑

j≥1

δj
nj


 , λ := −g

′′(x0)

g(x0)
.

� 14.Proof of Laplace’s Theorem.It follows exactly the steps explained above. Let us asume
first thatf(x) ≡ 1. Then, one choosesκn as a function tending slowly to infinity like before
(κn = n1/10 is suitable). It suffices to expand

I(1)
n :=

Z x0+κn/
√

n

x0−κn/
√

n

en log g(x) dx,

as the differenceIn − I(1)
n is exponentially small. Set firstx = x0 +X and

L(X) := log g(x0 +X)− log g(x0) + λ
X2

2
,

so that, withw = X
√
n, the central contribution becomes:

I(1)
n =

g(x0)
n

√
n

Z κn

−κn

e−λw2/2enL(w/
√

n) dw.

Then, it is possible to expandL(X) to any orderM ,

L(X) =

M−1X

j=3

ℓjX
j +O(XM ),

andenL(w/
√

n) admits a full expansion in descending powers of
√
n:

enL(w/
√

n) ∼ 1 +
ℓ3w

3

√
n

+
2ℓ4w

4 + ℓ23w
6

2n
+ · · · .

There, by construction, the coefficient ofn−k/2 is a polynomialEk(w) of degree3k. This
expression can be truncated to any order, resulting in

I(1)
n =

g(x0)
n

√
n

Z κn

−κn

e−λw2/2

 
1 +

M−1X

k=1

Ek(w)

nk/2
+O

„
1 + w3M

nM/2

«!
dw.
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One can then complete the tails at the expense of exponentially small terms since the Gaussian
tails are exponentially small.

The full asymptotic expansion is revealed by the following device: for any power series
h(w), introduce the Gaussian transform,

G[f ] :=

Z ∞

0

e−w2/2f(w) dw,

which is understood to operate by linearity on integral powers ofw,

G[w2r] = 1 · 3 · · · (2r − 1)
√

2π, G[w2r+1] = 0.

Then, the complete asymptotic expansion ofIn is obtained by the formal expansion

(27)
g(x0)

n

√
nλ
·G
h
exp

“
λ−3/2w3yeL(λ−1/2wy)

”i
, eL(X) :=

1

X3
L(X), y 7→ 1√

n
.

The addition of the prefactorf(x) (omitted so far) induces a factorf(x0) in the in the main
term of the final result and it affects the coefficients in the smaller order terms in a computable
manner. Details are left as an exercise to the reader. �

� 15.The next term?One has (withfj := f (j)(x0), etc):

In

√
λn√

2πg(x0)n
= f0 +

−9λ3f0 + 12λ2f2 + 12λf1g3 + 3λf0g4 + 5g2
3f0

24λ3n
+O(n−2),

which is best determined using a symbolic manipulation system. �

The method is susceptible of a large number of extensions. Roughly it requires
a point where the integrand is maximized, which induces somesort of exponential
behaviour, local expansions then allowing for a replacement by standard integrals.

� 16. Special cases of Laplace’s method.Whenf(x0) = 0, the integral normalizes to an

integral of the form
R
w2e−w2/2. If g′′(x0) = 0 butg(iv)(x0) 6= 0 then a factorΓ( 1

4
) replaces

the characteristic
√
π ≡ Γ( 1

2
). [Hint:

R∞
0

exp(−wβ)wα dw = β−1Γ((α + 1)β−1).] If the
maximum is attained at one end of the intervalI = [a, b] while g′(x0) = 0, g′′(x0) 6= 0, then
the estimate (26) must be multiplied by a factor of1

2
. If the maximum is attained at one end of

the intervalI while g′(x0) 6= 0, then the right normalization isw = x/n and the integrand is
reducible to an exponentiale−w. Here are some dominant asymptotic terms:

x0 6= a, b g′′(x0) 6= 0, f(x0) = 0
p

π
2λ5n3 g(x0)

n(λf ′′(x0) + f ′(x0)g
′′′(x0))

x0 6= a, b g′′(x0) = 0, g(iv)(x0) 6= 0 Γ( 1
4
) 4

q
3

2λ⋆n
f(x0)g(x0)

n
“
λ⋆ = − g(iv)(x0)

g(x0)

”

x0 = a f(x0) 6= 0, g′(x0) 6= 0 − 1
ng′(x0)

f(x0)g(x0)
n+1 .

A similar analysis is employed in Chapter VIII, when we discuss coalscence cases of the saddle-
point method. �

EXAMPLE 1. Stirling’s formula via Laplace’s method.Start from an integral representation
involving n!, namely,

In :=

Z ∞

0

e−nxxn dx =
n!

nn+1
.

This is a direct case of application of the theorem, except for the fact that the integration interval
is not compact. The integrand attains its maximum atx0 = 1 and the remainder integral

R∞
2

is
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accordingly exponentially small as proved by the chain
Z ∞

2

e−nxxn dx = (2e−2)n

Z ∞

0

“
1 +

x

2

”n

e−nx dx [x 7→ x+ 2]

< (2e−2)n

Z ∞

0

enx/2e−nx dx =
2

n
(2e−2)n [log(1 + x/2) < x/2].

Then the integral from 0 to 2 is amenable to the standard version of Laplace’s method as stated
in Theorem B.4 to the effect that

n! = nne−n
√

2πn

„
1 +O

„
1

n

««
.

The asymptotic expansion ofIn derives from (27) and involves the combinatorial GF

(28) H(z, u) := exp

„
u

„
log(1− z)−1 − z − z2

2

««
.

The noticeable fact is thatH(z, u) is the exponential BGF of permutations that are generalized
derangements involving no cycles of length 1 or 2, withz marking size andu marking the
number of cycles:

H(z, u) =
X

n,k≥0

hn,ku
k z

n

n!
= 1+ 1

3
uz3+ 1

4
uz4+ 1

5
uz5+( 1

6
u+ 1

18
u2)z6+( 1

7
u+ 1

12
u2)z7+· · · .

Then, a full asymptotic expansion ofIn is obtained by applying the Gaussian transformG to
H(wy,−y−2) (with y = n−1/2), resulting in

n! ∼ nne−n
√

2πn

„
1 +

1

12n
+

1

288n2
− 139

51840n3
− · · ·

«
.

PROPOSITIONB.1 (Stirling’s formula). The factorial function admits the complete asymptotic
expansion asx→ +∞:

x! ≡ Γ(x+ 1) ∼ xxe−x
√

2πx

0
@1 +

X

q≥1

cq
xq

1
A .

The coefficients satisfycq =

2qX

k=1

(−1)k

2q+k(q + k)!
h2q+2k,k, wherehn,k counts the number of

permutations of sizen havingk cycles, all of length≥ 3.

The derivation above is due to Wrench (see [76, p. 267]). �

The scope of the method goes much beyond the case of integralsof large pow-
ers. Roughly, what is needed is a localization of the main contribution of an integral
to a smaller range (“Neglect the tails”) where local approximations can be applied
(“Centrally approximate”) . The approximate integral is then finally estimated by
completing back the tails (“Complete the tails”).

The Laplace method is excellently described in books by de Bruijn [86] and
Henrici [212]. A thorough discussion of special cases and multidimensional integrals
is found in the book by Bleistein and Handelsman [50]. Its principles are fundamental
to the development of the saddle point method in Chapter VIII.

� 17.The classical proof of Stirling’s formula.This proceeds from the integral

Jn :=

Z ∞

0

e−xxn dx ( = n!)
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The maximum of the integrand is atx0 = n and the central range is now nown ± κn
√
n.

Reduction to a Gaussian integral follows, though the estimate is no longer an immediate case
of application of Theorem B.4. �

Laplace’s method for sums.The basic principles of the method of Laplace (for
integrals) can are often be recycled for the asymptotic evaluation of discrete sums.
Take a finite or infinite sumSn defined by

Sn :=
∑

k

t(n, k).

A preliminary task consists in working out the general aspect of the family of num-
bers{t(n, k)} for fixed (but large)n ask varies. In particular, one should locate the
valuek0 ≡ k0(n) of k for which t(n, k) is maximal. In a vast number of cases, tails
can be neglected; a central approximationt̂(n, k) of t(n, k) for k in the “central” re-
gion neark0 can be determined, frequently under the form [remember thatwe use in
this book ‘≈’ in the loose sense of ’approximately equal’]

t̂(n, k) ≈ s(n)φ

(
k − k0

σn

)
.

Thereφ is some simple smooth function whiles(n) andσn are scaling constants. The
quantityσn indicates the range of the asymptotically significant terms. One may then
expect

Sn ≈ s(n)
∑

k

φ

(
k − k0

σn

)
.

Then providedσn → ∞, one may further expect to approximate the sum by an inte-
gral, which after completing the tails, gives

Sn ≈ s(n)σn

∫ ∞

−∞
φ(t) dt.

Case study: Sums of powers of binomial coefficients.Here is, in telegraphic
style, an application to sums of powers of binomial coefficients:

S(r)
n =

+n∑

k=−n

(
2n

n+ k

)r

.

The largest term arises atk0 = 0. Also, one has elementarily
(

2n
n+k

)
(
2n
n

) =

(
1 − 1

n

)
· · ·
(
1 − k−1

n

)
(
1 + 1

n

)
· · ·
(
1 + k

n

) .

Upon taking logarithms, using approximations oflog(1±x), and exponentiating back,
one finds

(29)

(
2n

n+k

)
(
2n
n

) = exp

(
−k

2

n
+O(k3n−2)

)
.
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This approximation holds fork = o(n2/3), where it provides a gaussian approxima-
tion (φ(x) = e−rx2

) with a span ofσn =
√
n. Tails can be neglected to the effect

that
1(

2n
n

)rS(r)
n ∼

∑

k

exp

(
−rk

2

n

)
,

say with|k| < n1/2κn whereκn = n1/10. Then approximating the Riemann sum by
an integral and completing the tails, one gets

Sr
n ∼

(
2n

n

)r√
n

∫ ∞

−∞
e−rw2

dw, that is, Sr
n ∼ 22rn

√
r

(πn)−(r−1)/2,

which is our final estimate. l

� 18.Elementary approximation of Bell numbers.The Bell numbers counting set partitions are

Bn = n![zn]eez−1 = e−1
∞X

k=0

kn

k!
.

The largest term occurs fork neareu whereu is the positive root of the equationueu = n+ 1;
the central terms are approximately Gaussian. There results the estimate,

(30) Bn = n!e−1(2π)−1/2(1 + u−1)−1/2 exp

„
eu(1− u log u)− 1

2
u

«`
1 +O(e−u)

´
.

This example is taken from de Bruijn’s book [86, p. 108]. �

6. Mellin transform . The Mellin transform of a functionf defined overR>0 is the
complex-variable functionf⋆(s) defined by the integral

(31) f⋆(s) :=

∫ ∞

0

f(x)xs−1 dx.

This transform is also occasionally denoted byM[f ] or M[f(x); s]. Its importance
devolves from two properties:(i) it mapsasymptotic expansions of a function at 0
and+∞ to singularities of the transform;(ii) it factorizesharmonic sums (defined
below). The conjunction of the mapping property and the harmonic sum property
makes it possible to analyse asymptotically rather complicated sums arising from a
linear superposition of models taken at different scales. Major properties are summa-
rized in Figure 4. In this brief review, detailed analytic conditions must be omitted:
see [139] as well as comments and references at the end of this entry.

It is assumed thatf is locally integrable. Then, the two conditions,

f(x) =
x→0+

O(xu), f(x) =
x→+∞

O(xv),

guarantee thatf∗ exists fors in a strip,

s ∈ 〈−u,−v〉, i.e., −u < ℜ(s) < −v.
Thus existence of the transform is granted providedv < u. The prototypical Mellin
transform is the Gamma function discussed earlier in this appendix:

Γ(s) :=

∫ ∞

0

e−xxs−1 dx = M[e−x; s], 0 < ℜ(s) <∞.
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Similarly f(x) = (1 + x)−1 is O(x0) at 0 andO(x−1) at infinity, and hence its
transform exists in the strip〈0, 1〉; it is in fact π/ sinπs, as a consequence of the
Eulerian Beta integral. The Heaviside function defined byH(x) := [[0 ≤ x < 1]]
exists in〈0,+∞〉 and has transform1/s.

Harmonic sum propery.The Mellin transform is a linear transform. In addition,
it satisfies the simple but important rescaling rule:

f(x)
M7→ f⋆(s) implies f(µx)

M7→ µ−sf⋆(s),

for anyµ > 0. Linearity then entails the derived rule

(32)
∑

k

λkf(µkx)
M7→
(
λkµ

−s
k

)
· f⋆(s),

valid a priori for any finite set of pairs(λk, µk) and extending to infinite sums when-
ever the interchange of

∫
and

∑
is permissible. A sum of the form (32) is called

a harmonic sum, the functionf is the “base function”, theλ’s are the “amplitudes”
and theµ’s the “frequencies”. Equation (32) then yields the “harmonic sum rule”:
The Mellin transform of a harmonic sumfactorizesas the product of the transform of
the base function and a generalized Dirichlet series associated to amplitudes and fre-
quencies. Harmonic sums surface recurrently in the context of analytic combinatorics
and Mellin transforms are a method of choice for coping with them.

Here are a few examples of application of the rule (32):

X

k≥1

e−k2x2 7→
ℜ(s)>1

1
2
Γ(s/2)ζ(s)

X

k≥0

e−x2k 7→
ℜ(s)>0

Γ(s)

1− 2−s

X

k≥0

(log k)e−
√

kx 7→
ℜ(s)>2

−ζ′(s/2)Γ(s)
X

k≥1

1

k(k + x)
7→

0<ℜ(s)<1
ζ(2− s) π

sin πs
.

� 19. Connection between power series and Dirichlet series.Let (fn) be a sequence of num-
bers with at most polynomial growth,fn = O(nr), and with OGFf(z). Then, one has

X

n≥1

fn

ns
=

1

Γ(s)

Z ∞

0

f
`
e−x

´
xs−1 dx, ℜ(s) > r + 1.

For instance, one obtains the Mellin pairs

e−x

1− e−x

M7→ ζ(s)Γ(s) (ℜ(s) > 1), log
1

1− e−x

M7→ ζ(s+ 1)Γ(s) (ℜ(s) > 0).

These serve to analyse sums or, conversely, deduce analyticproperties of Dirichlet series. �

Mapping properties.Mellin transfoms map asymptotic terms in the expansions
of a functionf at 0 and+∞ onto singular terms of the transformf⋆. This property
stems from the basic identities

H(x)xα M7→ 1

s+ α
(s ∈ 〈−α,+∞〉), (1−H(x))xβ M7→ 1

s+ β
(s ∈ 〈−∞,−β〉),

as well as what one obtains by differentiation with respect to α, β.
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Function (f(x)) Mellin transform (f⋆(s))

f(x)

Z ∞

0

f(x)xs−1 dx definition, s ∈ 〈−u,−v〉
1

2iπ

Z c+i∞

c−i∞
f⋆(s)x−s ds f⋆(s) inversion th.,−u < c < −v

X

i

λifi(x)
X

i

λif
⋆
i (s) linearity

f(µx) µ−sf⋆(s) scaling rule (µ > 0)

xρf(xθ)
1

θ
f⋆
“s+ ρ

θ

”
power rule

X

i

λif(µix)

 X

i

λiµ
−s
i

!
· f⋆(s) harmonic sum rule (µi > 0)

Z ∞

0

λ(t)f(tx) dt

Z ∞

0

λ(t)t−s dt · f⋆(s) harmonic integral rule

f(x) logk x ∂k
s f

⋆(s) diff. I, k ∈ Z≥0, ∂s := d
ds

∂k
xf(x)

(−1)kΓ(s)

Γ(s− k) f⋆(s− k) diff. II, k ∈ Z≥0, ∂x := d
dx

∼
x→0

xα(log x)k ∼
s→−α

(−1)kk!

(s+ α)k+1
mapping: x→ 0, left poles

∼
x→+∞

xβ(log x)k ∼
s→−β

(−1)k−1k!

(s+ β)k+1
mapping: x→∞, right poles

FIGURE 4. A summary of major properties of Mellin transforms.

The converse mapping property also holds. Like for other integral transforms,
there is an inversion formula: iff is continuous in an interval containingx, then

(33) f(x) =
1

2iπ

∫ c+i∞

c−i∞
f⋆(s)x−s ds,

where the abscissac should be chosen in the “fundamental strip” off ; for instance
anyc satisfying−u < c < −v with u, v as above is suitable.

In many cases of practical interest,f⋆ is continuable as a meromorphic function
to the whole ofC. If the continuation off⋆ does not grow too fast along vertical lines,
then one can estimate the inverse Mellin integral of (33) by residues. This corresponds
to shifting the line of integration to somed 6= c and taking poles into account by the
residue theorem. Since the residue at a poles0 of f⋆ involves a factor ofx−s0 , the
contribution ofs0 will give useful information onf(x) asx → ∞ if s0 lies to the
right of c, and onf(x) asx → 0 if s0 lies to the left. Higher order poles introduce
additional logarithmic factors. The “dictionary” is simply

(34)
1

(s− s0)k+1

M−1

−→ ± (−1)k

k!
x−s0 (log x)k,
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where the sign is ‘+’ for a pole on the left of the fundamental strip and ‘−’ for a pole
on the right.

Mellin asymptotic summation.The combination of mapping properties and the
harmonic sum property constitutes a powerful tool of asymptotic analysis. As an
example, let us first investigate the pair

F (x) :=
∑

k≥1

1

1 + k2x2
, F ⋆(s) =

1

2

π

sin 1
2πs

ζ(s),

whereF ⋆ results from the harmonic sum rule and is is originally defined in the strip
〈1, 2〉. The function is meromorphically continuable to the whole of C with poles at
the points0, 1, 2 and4, 6, 8, . . .. The transformF ⋆ is small towards infinity, so that
application of the dictionary (34) is justified. One then finds mechanically:

F (x) ∼
x→0+

π

2x
− 1

2
+O(xM ), F (x) ∼

x→+∞
π2

6x2
− π4

90x4
+ · · · ,

for anyM > 0.
A particularly important quantity in analytic combinatorics is the harmonic sum

Φ(x) :=

∞∑

k=0

(
1 − e−x/2k

)
.

It occurs for instance in the analysis of longest runs in words (p. 285). By the harmonic
sum rule, one finds

Φ⋆(s) = − Γ(s)

1 − 2s
, s ∈ 〈−1, 0〉

(The transform ofe−x − 1 is alsoΓ(s), but in the shifted strip〈−1, 0〉.) The singu-
larities ofΦ⋆ are ats = 0, where there is a double pole, ats = −1,−2, . . . which are
simple poles, but also at the complex points

χk =
2ikπ

log 2
.

The Mellin dictionary (34) can still be applied provided oneintegrates along a long
rectangular contour that passes in-between poles. The salient feature is here the pres-
ence of fluctuations induced by the imaginary poles, since

x−χk = exp (−2ikπ log2 x) ,

and each pole induces a Fourier element. All in all, one finds (anyM > 0):

(35)





Φ(x) ∼
x→+∞

log2 x+
γ

log 2
+

1

2
+ P (x) +O(xM )

P (x) :=
1

log 2

∑

k∈Z\{0}
Γ

(
2ikπ

log 2

)
e−2ikπ log2 x.

The analysis forx→ 0 is also possible: in this particular case, it yields

Φ(x) ∼
x→0

∑

n≥1

(−1)n−1

1 − 2−n

xn

n!
,
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which is what would result from expanding the exponential inΦ(x) and reorganiz-
ing the terms, and consequently constitutes an exact representation (i.e., ‘∼’ can be
replaced by ‘=’).

� 20.Mellin-type derivation of Stirling’s formula.One has the Mellin pair

L(x) =
X

k≥1

log
“
1 +

x

k

”
− x

k
, L⋆(s) =

π

s sin πs
ζ(−s), s ∈ 〈−2,−1〉.

Note thatL(x) = log(e−γx/Γ(1 + x)). Mellin asymptotics provides

L(x) ∼
x→+∞

−x log x− (γ − 1)x− 1

2
log x− log

√
2π − 1

12x
+

1

360x3
− 1

1260x5
+ · · · ,

where one recognizes Stirling’s expansion ofx!,

log x! ∼
x→+∞

log
“
xxe−x

√
2πx

”
+
X

n≥1

B2n

2n(2n − 1)
x1−2n,

with Bn the Bernoulli numbers. �

� 21. Mellin-type analysis of the harmonic numbers.For a parameterα > 0, one has the
Mellin pair:

Kα(x) =
X

k≥1

„
1

kα
− 1

(k + x)α

«
, K⋆

α(s) = −ζ(α− s)Γ(s)Γ(α− s)
Γ(α)

.

This serves to estimate harmonic numbers and their generalisations, for instance

Hn ∼
n→∞

log n+ γ − 1

2n
−
X

k≥2

Bk

k
n−k ∼ log n+ γ +

1

2n
− 1

12n2
+

1

120n4
− · · · ,

sinceK1(n) = Hn. �

EXAMPLE 2. Euler-Maclaurin summation via Mellin analysis.Let f be continuous on
(0,+∞) and satisfyf(x) =x→+∞ O(x−1−δ), for someδ > 0, and

f(x) ∼
x→0+

∞X

k=0

fkx
k.

The summatory functionF (x) satisfies

F (x) :=
X

n≥1

f(nx), F ⋆(s) = ζ(s)f⋆(s),

by the harmonic sum rule. The collection of (trimmed) singular expansions off⋆ at s =
0,−1,−2, . . . is summarized by the formal sum

f⋆(s) ≍
„
f0
s

«

s=0

+

„
f1
s+ 1

«

s=1

+

„
f2
s+ 2

«

s=1

+ · · · .

Thus, by the mapping properties, providedF ⋆(s) is small towards±i∞ in finite strips, one has

F (x) ∼
x→0

1

x

Z ∞

0

f(t) dt+
∞X

j=0

fjζ(−j)xj ,

where the main term is associated to the singularity ofF ⋆ at 1 and arises from the pole ofζ(s),
with f⋆(1) giving the integral off . The interest of this approach is that it is very versatile and
allows for various forms of asymptotic expansions off at 0 as well as multipliers like(−1)k,
log k, and so on; see [139] for details and Gonnet’s note [190] for alternative approaches. �
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General references on Mellin transforms are the books by Doetsch [99] and Wid-
der [403]. The term “harmonic sum” and some of the corresponding technology orig-
inates with the abstract [157]. This brief presentation is based on the survey arti-
cle [139] to which we refer for a detailed treatment. Mellin analysisof “harmonic
integrals” is a classical topic of applied mathematics for which we refer to the books
by Wong [408] and Paris–Kaminski [310]. Useful treatments of properties of use in
discrete mathematics and analysis of algorithms appear in the books by Hofri [215],
Mahmoud [279], and Szpankowski [372].

7. Perron-Frobenius theory of nonnegative matrices. Perron-Frobenius theory
gives access to growth properties associated to nonnegative matrices and hence to the
dominant singularities of generating functions that satisfy linear systems of equations
with nonnegative coefficients. Applications to rational asymptotics, paths, graphs,
and automata are detailed in Chapter V. The purpose here is only to sketch the main
techniques from elementary matrix analysis that intervenein this theory.

THEOREM B.5 (Basic Perron-Frobenius Theorem).LetA be a matrix whose entries
are all positive. Then,A has a unique eigenvalueλ(A) which has greatest modulus.
This eigenvalue is positive and simple.

� 22.Proof of the Basic Theorem B.5.The main idea consists in investigating the set of possible
“expansion factors”

(36) S :=
˘
λ
˛̨
∃ v ≥ 0, A v ≥ λ v

¯
.

(Therev ≥ 0 means that all components ofv are nonnegative andv ≥ w means thatv−w ≥
0.) The largest of the expansion factors,

µ := sup(S),

plays a vital rôle in the argument. The proof relies on establishing that it coincides with the
dominant eigenvalueλ(A). We setd = dim(A).

Simple inequalities show thatS contains at least the interval[0, dmini,j ai,j ]. Inequalities
relative to the norm|| · ||1 show thatS ⊆ [0,

P
i,j ai,j ]. Thus,µ is finite and nonzero. That the

supremum valueµ is actually attained (i.e.,µ ∈ S) results from a simple topological argument
detailed in [24]: take a bounded familyv(j) corresponding to a sequenceλ(j) tending toµ;
extract a convergent subsequence tending to a vectorv(∞), which must then satisfyA v(∞) ≥
µ v(∞). We letw be such a vector ofRd

≥0 satisfyingAw ≥ µw.
Next, one hasAw = µw. Indeed, suppose a contrario that this is not the case and that

(without loss of generality)

(37)
X

j

A1,jwj − µw1 = η,
X

j

Ai,jwj − µw1 ≥ 0 (i = 2, . . . , d),

for η > 0. Then, given the slack afforded byη, one could construct a small perturbationw⋆

of w (by w⋆
j = wj for j = 2, . . . , d andw⋆

1 = w1 + e1/(2µ)) as well as a valueµ⋆ such
thatAw⋆ ≥ µ⋆ w with µ⋆ > µ, a contradiction. Thus,µ is an eigenvalue ofA andw is an
eigenvector corresponding to this eigenvalue.

Furthermore, all eigenvalues are dominated in modulus byµ. Let indeedν andx be such
thatA x = ν x. One hasA| x | ≥ |ν| | x |, where | x | designates the vector whose entries
are the absolute values of the corresponding entries ofx. Thus, by the maximality property
definingµ, one must have|ν| ≤ µ. If |ν| = µ andx is a corresponding eigenvector, then
A|x | ≥ µ| x |, and by the same argument as in (37), one must haveA| x | = µ|x|. Thus|x| is
also an eigenvector corresponding toµ. Then, by the triangle inequality, one has|A x | ≥ A| x |,
so that in factA|x | = |A x |, which by the converse triangle inequality implies thatx = ω y,
whereω ∈ C andy has nonnegative entries. From this observation and the factthatA y = ν y,
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it results thatν is positive real, so thatν = µ. Unicity of the dominant eigenvalue is therefore
established.

Finally, simplicity of the eigenvalueµ results from a specific argument based on subma-
trices. IfBk is obtained fromA by deleting thekth row and thekth column, then, on general
grounds, one hasλ(A) > λ(Bk). From there, through the equality

− d

dλ
|A− λI | = |B1 − λI |+ · · ·+ |Bd − λI |

(here |A| = det(A)), it can be verified that the derivative of the characteristic polynomial
of A atµ is strictly negative, and in particular nonzero; hence simplicity of the eigenvalueµ.
(See [24] for details of this argument.) �

Extensions of this basic theorem are discussed in the text (Chapter V). Excellent
treatments of Perron-Frobenius theory are to be found in thebooks of Bellman [24,
Ch. 16], Gantmacher [176, Ch. 13], as well as Karlin and Taylor [229, p. 536–551].

8. Several complex variables.. The theory of analytic (or holomorphic) functions of
one complex variables extends nontrivially to several complex variables. This deep
theory has been largely developed in the course of the twentieth century. Here we
shall only need the most basicconcepts, not the deeper results, of the theory.

Consider the spaceCm enodowed with the metric

|z| = |(z1, . . . , zm)| =
m∑

j=1

|zj |2,

under which it is isomorphic to the Euclidean spaceR2m. A functionf from Cm to C

is said to be analytic at some pointa if in a neighbourhood ofa it can be represented
by a convergent power series,
(38)
f(z) ≡ f(z1, · · · , zm) =

∑

n

fn(z−a)n ≡
∑

n1,...,nm

fn1,...,nm(z1−a1)
n1 · · · (zm−am)nm .

There and throughout the theory extensive use is made of multi-index conventions, as
encountered in Chapter III.

An expansion (38) converges in a polydisc
∏

j{|zj −aj | < rj}, for somerj > 0.
A convergent expansion at(0, . . . , 0) has its coefficients majorized in absolute value
by those of a series of the form

m∏

j=1

1

1 − zj/Rj
=
∑

n

R−nzn ≡
∑

n1,...,nm

Rn1
1 · · ·Rnm

m zn1
1 · · · znm

m .

From there, closure of analytic functions under sums, products, and compositions re-
sult from standard manipulations of majorant series (see Chapter IV for the univariate
case). Finally, a function is analytic in an open setΩ ⊆ Cm iff it is analytic at each
a ∈ Ω.

A remarkable theorem of Hartogs asserts thatf(z) with z ∈ Cm is analyticjointly
in all thezj (in the sense of (38)) if it is analyticseparatelyin each variablezj. (The
version of the theorem that postulatesa priori continuity is elementary.)
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Like in the one-dimensional case, analytic functions can beequivalently defined
by means of differentiability conditions. A function isC-differentiable or holomorphic
ata if as∆z → 0 in Cm, one has

f(z − a) − f(a) =
m∑

j=1

cj∆zj +O (|∆z|) .

The coefficientscj are the partial derivatives,cj = ∂zjf(a). The fact that this relation
does not depend on the way∆z tends to 0 implies the Cauchy-Riemann equations.
In a way that parallels the single variable case, it is provedthat two conditions are
equivalent:f is analytic;f is complex differentiable.

Iterated integrals are defined in the natural way and one finds, by a repeated use
of calculus in a single variable,

(39) f(z) =
1

(2iπ)n

∫

C1

· · ·
∫

Cm

f(ζ)

(ζ1 − z1) · · · (ζm − zm)
dζ1 · · · dζm,

whereCj is a small circle surroundingzj in thezj plane. By differentiation under the
integral sign, Equation (39) also provides an integral formula for the partial derivatives
of f , which is the analogue of Cauchy’s coefficient formula. Iterated integrals are
independent of details of the “polypath” on which they are taken, and uniqueness of
analytic continuation holds.

The theory of functions of several complex variables develops in the direction of
an integral calculus that is much more powerful than the iterated integrals mentioned
above; see for instance the book by Aı̆zenberg and Yuzhakov [5] for a multidimen-
sional residue approach. Egorychev’s monograph [112] develops systematic applica-
tions of the theory of functions of one or several complex variables to the evaluation
of combinatorial sums. Pemantle [312, 313, 314] has launched an ambitious research
programme meant to extract the coefficients of meromorphic multivariate generating
functions by means of this theory, with the ultimate goal of obtaining systematically
asymptotics from multivariate generating functions. In contrast, see especially Chap-
ter IX, we can limit ourselves to developing a perturbative theory of one-variable
complex function theory.

In the context of this book, the basic notion of analyticity in several complex vari-
ables serves to confer abona fideanalytic meaning to multivariate generating func-
tions. Basic definitions are also needed in the context of functionsf defined implicitly
by functional relations of the formH(z, f) = 0 or H(z, u, f) = 0, where analytic
functions of two or three complex variables (likeH) make an appearance. (See in
particular the discussion of the analytic Implicit Function Theorem in this Appendix.)





APPENDIX C

Complements of Probability Theory

This appendix contains entries arranged in logical order regarding the following topics:

Probability spaces and measure; Random variables; Transforms of distributions;
Special distributions; Convergence in law.

In this book we start from probability spaces that are finite,since they arise from objects of a
fixed size in some combinatorial class (see Chapter III of Part A and APPENDIX A: Combi-
natorial probability, p. 616 for elementary aspects), then need basic propertiesof continuous
distributions in order to characterize asymptotic limit laws. The entries in this appendix are
used principally in Chapter IX of Part C relative toRandom Structures. They present a unified
framework that encompasses discrete and continuous probability distributions alike.

1. Probability spaces and measure. An axiomatization of probability theory1 was
discovered in the 1930s by Kolmogorov. Ameasurable spaceconsists of a setΩ,
called the set of elementary events or the sample set and aσ-algebraA of subsets ofΩ
called events (that is, a collection of sets containing∅ and closed under complement
and denumerable unions). Ameasure spaceis a measurable space endowed with a
measureµ : A 7→ R≥0 that is additive over finite or denumerable unions of disjoint
sets; in that case, elements ofA are called measurable sets. Aprobability spaceis a
measure space for which the measure satisfies the further normalizationµ(Ω) = 1; in
that case, we also writeP for µ. Any setS ⊆ Ω such thatµ(S) = 1 is called asupport
of the probability measure.

The definitions given above cover several important cases.

(i) Finite sets with the uniform measurealso known as “counting” measure. In
this case,Ω is finite, all sets are inA (i.e., are measurable), and (|| · || denotes cardinal-
ity)

µ(E) :=
||E||
||S|| .

Nonuniform measures over a finite setΩ are determined by assigning a nonnegative
weightp(ω) to each element ofΩ (with

∑
ω∈Ω p(ω) = 1) and setting

µ(E) :=
∑

e∈E

p(e).

(We also writeP(e) for P({e}) ≡ µ({e}) = p(e).) In this book,Ω is usually the sub-
classCn formed by the objects of sizen in some combinatorial classC. The uniform
probability is normally assumed, although sometimes weighted models are consid-
ered: see for instance in Chapter III the discussion of weighted word models and
Bernoulli trials as well as the case of weighted tree models and branching processes.

1For this entry we refer to the vivid and well motivated presentation in Williams’ book [407] or to
many classical treatises like the ones by Billingley [49] and Feller [123].
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(ii) Discrete probability measures over the integers(supported byZ or Z≥0). In
this case the measure is determined by a functionp : Z 7→ R≥0 and

µ(E) :=
∑

e∈E

p(e),

with µ(Z) = 1. (All sets are measurable.) More general discrete measuressupported
by denumerable sets ofR can be similarly defined.

(iii) The real lineR equipped with theσ-algebra generated by the open intervals
constitutes a standard example of a measurable space; in that case, any member of
theσ-algebra is known as a Borel set. The measure, denoted byλ, that assigns to an
interval(a, b) the valueλ(a, b) = b− a (and is extended nontrivially to all Borel sets
by additivity) is known as the Lebesgue measure. The interval [0, 1] endowed withλ
is a probability space. The lineR itself is not a probability space sinceλ(R) = +∞.

In the measure-theoretic framework, arandom variableis a mappingX from
a probability spaceΩ (equipped with itsσ-algebraA and its measurePΩ) to R

(equipped with its Borel setsB) such that the preimageX−1(B) of anyB ∈ B lies
in A. ForB ∈ B, the probability thatX lies inB is then defined as

P(X ∈ B) := PΩ(X−1(B)).

Since the Borel sets can be generated by the semi-infinite intervals(−∞, x], this prob-
ability is equivalently determined by the function

F (x) := P(X ≤ x),

which is called thedistribution functionor cumulative distribution functionof X .
It is then possible to introduce random variables directly by means of distribution
functions, see the next entry below,Random variables.

The next step is to go from measures of sets to integrals of (real valued) func-
tions. Lebesgue integrals are constructed, first for indicator functions of intervals,
then for simple (staircase) functions, then for nonnegative functions, finally for inte-
grable functions. One defines in this way, for an arbitrary measureµ, the Lebesgue
integral

(1)
∫
fdµ, also written

∫
f(x)dµ(x) or

∫
f(x)µ(dx),

where the last notation is often preferred by probabilists.The basic idea is to decom-
pose the domain ofvaluesof f into finitely many measurable sets (Ai) and, for a
positive functionf , consider the supremum over all finite decompositions (Ai)

(2)
∫
f dµ := sup

(Ai)

∑

i

[
inf

ω∈Ai

f(ω)

]
µ(Ai).

(Thus Riemman integration proceeds by decomposing the domain of the function’s
argumentswhile Lebesgue integrals decomposes the domain ofvaluesand appeals to
a richer notion of measure.)

In (1) and (2), the possibility exists thatµ assigns a nonzero measure to cer-
tain individual points. In such a context, the integral is sometimes referred to as
the Lebesgue-Stieltjesintegral. It suitably generalizes theRiemann-Stieltjesintegral
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which, given a real valued functionM , defines the following extension of the standard
Riemann integral:

(3)
∫
f(x) dM(x) = lim

(Bk)

∑

k

f(xk)∆Bk
(M).

There theBk form a finite partition of the domain in which the argument off ranges,
the limit is taken as the largestBk tends to 0, eachxk lies in Bk, and∆Bk

(M) is
the variation ofM onBk. The great advantage of Stieltjes (hence automatically of
Lebesgue) integrals is to unify many of the formulæ relativeto discrete and continuous
probability distributions while providing a simple framework adapted to mixed cases.

2. Random variables. A real random variableX is fully characterized by its (cumu-
lative) distribution function

FX(x) := P(X ≤ x),

which is a nondecreasing right-continuous function satisfying F (−∞) = 0,
F (+∞) = 1.

A variable isdiscreteif it is supported by a finite or denumerable set. Almost
all discrete distributions in this book are supported byZ or Z≥0. (An interesting
exception is the collection of limit distributions occurring in longest runs of words;
see Chapter IV.)

A variableX is continuousif it assigns zero probability mass to any finite or
denumerable set. In particular, it has no jump. An easy theorem states that any distri-
bution function can be decomposed into a discrete and a continuous part,

F (x) = c1F
d(x) + c2F

c(x), c1 + c2 = 1.

(The jumps must sum to at most 1, hence their set is at most denumerable.) A variable
is absolutely continuousif it assigns zero probability mass to any Borel set of mea-
sure 0. In that case, the Radon Nikodym Theorem asserts that there exists a function
w such that

FX(x) =

∫ x

−∞
w(y) dy.

(There, in all generality, the Lebesgue integral is required but the Riemann integral is
sufficient for all practical purposes in this book.) The functionw(x) is called adensity
of the random variableX (or of its distribution function). WhenFX is differentiable
everywhere it admits the density

w(x) =
d

dx
FX(x),

by the Fundamental Theorem of Calculus.

� 1. The Lebesgue decomposition theorem.It states that any distribution functionF (x) de-
composes as

F (x) = c1F
d(x) + c2F

ac + c3F
s(x), c1 + c2 + c3 = 1,
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whereF d is discrete,F ac is absolutely continuous, andF s is continuous butsingular, i.e., it
is supported by a Borel set of Lebesgue measure 0. Singular random variables are constructed,
e.g., from the Cantor set. �

In this book, all combinatorial distributions are discrete(and then usually sup-
ported byZ≥0). All continuous distributions obtained as limits of discrete ones are,
in our context, absolutely continuous and the qualifier “absolutely” is globally under-
stood when discussing continuous distributions.

If X is a random variable, theexpectationof a functiong(X) is defined

E (g(X)) =

∫

Ω

g(X)dP =

∫

R

g(x)dF (x),

where the latter form involves the distribution functionF of X . In particular the
expectationor meanof X is E(X), and generally itsmomentof orderr is

µ(r) = E(Xr).

(These quantities may not exist forr 6= 0.)
� 2. Alternative formulæ for expectations.If X is supported byR≥0 and has a density:

E(X) =

Z ∞

0

(1− F (x)) dx.

If X is supported byZ≥0:

E(X) =
X

k≥0

P(X > k).

Prrofs are by partial integration and summation: for instance withpk = P(X = k),

E(X) =
X

k≥1

kpk = (p1 + p2 + p3 + · · · ) + (p2 + p3 + · · · ) + (p3 + · · · ) + · · · .

Similar formulæ hold for higher moments. �

3. Transforms of distributions. The Laplace transform ofX (or of its distribution
functionF ) is defined2 by

λX(s) := E
(
esX

)
=

∫ +∞

−∞
esx dF (x),

and is also known as the moment generating function (see below for an existential
discussion). The characteristic function is defined by

φX(t) = E
(
eitX

)
=

∫ +∞

−∞
eitx dF (x),

and it is a Fourier transform Both transforms are formal variants of one another and
φX(t) = λX(it).

If X is discrete and supported byZ, then itsprobability generating function(PGF)
is defined as

PX(u) := E(uX) =
∑

k∈Z

P(X = k)uk.

2If F has a discrete component, then integration is to be taken in the sense of Lebesgue-Stieltjes or
Riemann-Stieltjes.
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As an analytic object this always exists whenX is nonnegative (supported byZ≥0),
in which case the PGF is analytic at least in the open disc|u| < 1. If X assumes
arbitrarily large negative values, then the PGF certainly exists on the unit circle, but
sometimes not on a larger domain. The precise domain of existence of the PGF as an
analytic function depends on the geometric rate of decay of the left and right tails of
the distribution, that is, ofP(X = k) ask → ±∞. The characteristic function of the
variableX (and of its distribution functionFX ) is

φX(t) := E(eitX) = PX(eit) =
∑

k∈Z

P(X = k)eikt.

It always exists forreal values oft. The Laplace transform of a discrete distribution is

λX(s) := E(esX) = PX(es) =
∑

k∈Z

P(X = k)eks.

If X is a continuous random variable with distribution functionF (x) and density
w(x), then the characteristic function is expressed as

φX(t) := E(eitX) =

∫

R

eitxw(x) dx.

and the Laplace transform is

λX(s) := E(esX) =

∫

R

esxw(x) dx.

The Fourier transform always exists for real arguments (by integrability of the Fourier
kernel eit whose modulus is 1). The Laplace transform, when it exists ina strip,
extends analytically the characteristic function via the equalityφX(t) = λX(it). The
Laplace transform is also called themoment generating functionsince an alternative
formulation of its definition, valid for discrete and continuous cases alike, is

λX(s) :=
∑

k≥0

E(Xk)
sk

k!
,

which indeed represents the exponential generating function of moments. (We prefer
not to use this terminology so as to avoid a possible confusion with the many other
types generating functions employed in this book.)

� 3. Centring, scaling, and standardization.LetX be a random variable. DefineY = X−µ
σ

.
The representations as expectations of the Laplace transform of the characteristic function make
it obvious that

φY (t) = e−µitφX

„
t

σ

«
, λY (s) = e−µsλX

“ s
σ

”
.

One says thatY is obtained fromX by centring (by a shift ofµ) and scaling (by a factor ofσ).
If µ andσ are the mean and standard deviation ofX, then one says thatY is a standardized
version ofX. �

� 4. Moments and transforms.The moments are accessible from either transform,

µ(r) := E{Y r} =
dr

dsr
λ(s)

˛̨
˛̨
s=0

= (−i)r dr

dtr
φ(t)

˛̨
˛̨
t=0

.
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In particular, we have

(4)

µ =
d

ds
λ(s)

˛̨
˛̨
s=0

= −i d
dt
φ(t)

˛̨
˛̨
t=0

µ(2) =
d2

ds2
λ(s)

˛̨
˛̨
s=0

= − d

dt
φ(t)

˛̨
˛̨
t=0

σ2 =
d2

ds2
log λ(s)

˛̨
˛̨
s=0

= − d2

dt2
log φ(t)

˛̨
˛̨
t=0

.

The direct expression of the standard deviation in terms oflog λ(s), called thecumulant gener-
ating function, often proves computationally handy. �

� 5. Mellin transforms of distributions.The quantityM(s) := E(Xs−1) is called the Mellin
transform ofX (or of its distribution functionF ), whenX is supported byR≥0. In particular,
if X admits a density, then this notion coincides with the usual definition of a Mellin transform.
When it exists, the value of the Mellin transform at an integer s = k provides the moment of
orderk − 1. At other points, the Mellin transform provides moments of fractional order. �

� 6. A “symbolic” fragment of probability theory.Consider discrete random variables sup-
ported byZ≥0. LetX,X1, . . . be random variables with PGFp(u) and letY have PGFq(u).
Then, certain natural operations admit a translation into PGFs:

Operation PGF
Switch (Bern(λ)⇒ X | Y ) λp(u) + (1− λ)q(u)
Sum X + Y p(u) · q(u)

X1 + · · ·+Xn p(u)n

Random sum X + 1 + · · ·+XY q(p(u))

Size bias ∂X
up′(u)

p′(1)

(“Bern” means a Bernoulli{0, 1} variableB and the switch is interpreted asBX + (1−B)Y .
Size-biased distributions occur in Chapter VII.) �

The importance of these transforms derives from the existence ofcontinuity the-
oremby which convergence of distributions can be established via convergence of
transforms.

4. Special distributions. A compendium of special distribution is provided by Fig-
ure 1.

A Bernoulli trial of parameterq is an event that has probabilityq of having value 0
(interpreted as “failure”) and probabilityp of having value 1 (interpreted as “success”),
with p+q = 1. Formally, this is the setΩ = {0, 1} endowed with the probability mea-
sureP(0) = q, P(1) = p. The binomial distribution (also called Bernoulli distribu-
tion) of parametersn, q is the random variable that represents the number of successes
in n independent Bernoulli trials. This is the probability distribution associated with
the game of heads-and-tails. The geometric distribution isthe distribution of a ran-
dom variableX that records the number of failures till the first success is encountered
in a potentially arbitrarily long sequence of Bernoulli trials. By extension, one also
refers to independent experiments with finitely many possible outcomes as Bernoulli
trials. In that sense, the model of words of some fixed length over a finite alphabet and
nonuniform letter weights (or probabilities) belongs to the category of Bernoulli mod-
els; see Chapter III. The negative binomial distribution ofindexm (writtenNB[m])
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Distrib. Prob.(D), density(C) PGF(D), Char. function(C)

D Binomial (n, p)

 
n

k

!
pk(1− p)n−k (q + pz)n

D Geometric (q) (1− q)qk 1− q
1− qz

D Neg. binomial[m] (q)

 
m+ k − 1

k

!
qk(1− q)m

„
1− q
1− qz

«m

D Log. series (λ)
1

− log(1− λ)

λk

k!

log(1− λz)
log(1− λ)

D Poisson (λ) e−λλ
k

k!
eλ(1−z)

C Gaussian or Normal,N (0, 1)
e−x2/2

√
2π

e−t2/2

C Exponential e−x 1

1− it
C Uniform [− 1

2
,+ 1

2
] [[− 1

2
≤ x ≤ + 1

2
]]

sin(t/2)

(t/2)

FIGURE 1. A list of commonly encountered discrete (D) and continuous(C)
probability distributions: type, name, probabilities or density, probability gener-
ating function or characteristic function.

and parameterq corresponds to the number of failures beforem successes are en-
countered. We have found in Chapter VII that it is systematically associated with the
number ofr–components in an unlabelled multiset schemaF = M(G) whose com-
position of singularities is of the exp-log type. The geometric distribution appears
in several schemas related to sequences while the logarithmic series distribution is
closely tied to cycles (Chapter V).

The Poisson distribution counts amongst the most importantdistributions of prob-
ability theory. Its essential properties are recalled in Figure 1. It occurs for instance in
the distribution of singleton cycles and ofr-cycles in a random permutation and more
generally in labelled composition schemes (Chapter IX).

In this book all probability distributions arising directly from combinatorics area
priori discrete as they are defined on finite sets—typically a certain subclassCn of a
combinatorial classC. However, as the sizen of the objects considered grows, these
finite distributions may approach a continuous limit. In this context, by far the most
important law is theGaussian lawalso known asnormal law, which is defined by its
density and its distribution function:

(5) g(x) =
e−x2/2

√
2π

, Φ(x) =
1√
2π

∫ x

−∞
e−y2/2 dy.

The corresponding Laplace transform is then evaluated by completing the square:

λ(s) =
1√
2π

∫ +∞

−∞
e−y2/2+sy dy. = es2/2,
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Characteristic function (φ(t)) Distribution function (F (x))
φ(0) = 1 F (−∞) = 0, F (+∞) = 1
|φ(t0)| = 1 for somet0 6= 0 Lattice distribution, span2π

t0
φ(t) =

t→0
1 + iµt+ o(t) E(X) = µ <∞

φ(t) =
t→0

1 + iµt− ν
t2

2
+ o(t2) E(X2) = ν <∞

logφ(t) = − t2

2 X
d
=N (0, 1)

φ(t) → 0 ast→ ∞ X is continuous
φ(t) integrable (is inL1) X is absolutely continuous

density isw(x) =
1

2π

∫ +∞

−∞
e−itxφ(t) dt.

λ(s) := φ(−is) exists inα < ℜ(s) < β Exponential tails

limT→∞
1

2T

∫ +T

−T
|φ(t)|2 dt equals

∑
i(pi)

2; thepi are the jumps

φn(t) → φ(t) (point conv.) Fn
D

=⇒F (weak conv.)

Xn
D

=⇒X (conv. in distribution)
φn “close” toφ Fn “close” toF (Berry-Esseen)

FIGURE 2. The correspondence between properties of the distribution function
(F ) of a random variable(X) and properties of the corresponding characteristic
functions(φ).

and, similarly, the characteristic function isφ(t) = e−t2/2. The distribution of (5) is
referred to as thestandardnormal distribution,N (0, 1); if X is N (0, 1), the variable
Y = µ + σX defines the normal distribution with meanµ and standard deviationσ,
denotedN (µ, σ).

Amongst other continuous distributions appearing in this book, we mention the
theta distributions associated to the height of trees and Dyck paths (Chapter V) and
the stable laws alluded to in Chapter VI.

5. Convergence in law. Let Fn be a family of distribution functionsFn. We say
generally that theFn converge weaklyto a distribution functionF if pointwise

(6) lim
n
Fn(x) = F (x),

for every continuity pointx of F . This is expressed by writingFn ⇒ F as well

asXn
D

=⇒X , if Xn, X are random variables corresponding toFn, F . We say that
Xn converges in distributionor converges in lawto X . For discrete distributions
supported byZ, and equivalent form of (6) islimn Fn(k) = F (k) for eachk ∈ Z;
for continuous distributions, Equation (6) just means thatlimn Fn(x) = F (x) for
all x ∈ R. Although in all generality anything can tend to anything else, due to the
finite nature of combinatorics, we shall only need in this book the convergences

Discrete⇒ Discrete, Discrete⇒ Continuous (after standardization).
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Properties of random variables are reflected by probabilities of characteristic
functions and Figure 2 offers an aperçu. Most important forus is theContinuity
Theoremof characteristic functions due to Lévy and stated in Chapter IX. The Berry–
Esseen inequalities also stated in Chapter IX lie at the origin of precise speed of con-
vergence estimates to asymptotic limits.
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5–56,377–416.

82. H. Davenport,Multiplicative Number Theory, revised by H. L. Montgomery, second ed., Springer-
Verlag, New York, 1980.

83. F. N. David and D. E. Barton,Combinatorial chance, Charles Griffin, London, 1962.
84. N. G. de Bruijn,A combinatorial problem, Nederl. Akad. Wetensch., Proc.49 (1946), 758–764, Also

in Indagationes Math.8, 461–467 (1946).
85. , On Mahler’s partition problem, Indagationes Math.10 (1948), 210–220, Reprinted from

Koninkl. Nederl. Akademie Wetenschappen, Ser. A.
86. , Asymptotic methods in analysis, Dover, 1981, A reprint of the third North Holland edition,

1970 (first edition, 1958).
87. N. G. de Bruijn and D. A. Klarner,Multisets of aperiodic cycles, SIAM Journal on Algebraic and

Discrete Methods3 (1982), 359–368.
88. N. G. de Bruijn, D. E. Knuth, and S. O. Rice,The average height of planted plane trees, Graph Theory

and Computing (R. C. Read, ed.), Academic Press, 1972, pp. 15–22.
89. Percy Deift,Integrable systems and combinatorial theory, Notices Amer. Math. Soc.47 (2000), no. 6,

631–640.
90. J. M. DeLaurentis and B. G. Pittel,Random permutations and brownian motion, Pacific Journal of

Mathematics119(1985), no. 2, 287–301.
91. Marie-Pierre Delest and Gérard Viennot,Algebraic languages and polyominoes enumeration, Theo-

retical Computer Science34 (1984), 169–206.
92. Michael Dellnitz, Oliver Schütze, and Qinghua Zheng,Locating all the zeros of an analytic function

in one complex variable, J. Comput. Appl. Math.138(2002), no. 2, 325–333.
93. A. Dembo, A. Vershik, and O. Zeitouni,Large deviations for integer partitions, Markov Processes

and Related Fields6 (2000), no. 2, 147–179.
94. Frank den Hollander,Large deviations, American Mathematical Society, Providence, RI, 2000.
95. Robert L. Devaney,A first course in chaotic dynamical systems, Addison-Wesley Studies in Nonlin-

earity, Addison-Wesley Publishing Company Advanced Book Program, Reading, MA, 1992, Theory
and experiment, With a separately available computer disk.

96. Luc Devroye,Limit laws for local counters in random binary search trees, Random Structures &
Algorithms2 (1991), no. 3, 302–315.

97. P. Dienes,The taylor series, Dover, New York, 1958, A reprint of the first Oxford University Press
edition, 1931.
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117. P. Erdős and A. Rényi,On a classical problem of probability theory, Magyar Tud. Akad. Mat. Kutató
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R (resultant notation), 629
[zn] (coefficient extractor), 19
.
= (numeric approximation), 1
E (expectation), 104, 616, 658
ℑ (imaginary part), 217
Ω (asymptotic notation), 612
P (probability), 104, 145
ℜ (real part), 217
Θ (asymptotic notation), 612
V (variance), 617
≈ (asymptotic notation), 614
⊲⊳ (exponential order), 230
O (asymptotic notation), 612
◦ (substitution), 78
∼= (combinatorial isomorphism), 18
m (analytic mean), 545
v (analytic variance), 545
〈·〉 (strip ofC), 646
⌈·⌋ (nearest integer function), 41
⌈ · ⌋ (rounding notation), 246H

(contour integral), 460
∂ (derivative), 79
σ (standard deviation), 617
∼ (asymptotic notation), 612
⋆ (labelled product), 92
lg (binary logarithm), 282
o (asymptotic notation), 612
Rconv (radius of convergence), 218
Res (residue operator), 221
+, seedisjoint union
[[·]] (Iverson’s notation), 54

CYC (cycle construction), 24, 95
MSET (multiset construction), 25
PSET (powerset construction), 25
SEQ (sequence construction), 24, 94
SET (set construction), 94
Θ (pointing), 78

Abel identity, 622
Abel–Plana summation, 226
adjacency matrix (of graph), 318
admissible construction, 21, 91
Airy area distribution, 337
Airy function, 497, 507, 597, 605
alcohol, 271, 417–418
algebraic curve, 420

algebraic function, 451, 452
asymptotic, 451
branch, 421
coefficient, 426–451
elimination, 629–631
Newton polygon, 424–426
Puiseux expansion, 423–426
singularities, 421–451

algebraic topology, 190
algorithm

approximate counting, 287–289
balanced tree, 83, 267
binary search tree, 192
digital tree (trie), 331
hashing, 103, 167, 500
irreducible polynomials, 397
polynomial factorization, 397
shake and paint, 373

alignment, 110–309
alkanes, 417–419
allocation,seeballs-in-bins model, 103–109
alphabet, 47
ambiguity

context-free grammar, 441
regular expression, 289, 623

analytic continuation, 226
analytic function, 218–226

equivalent definitions, 631–633
composition, 370–374
differentiation, 374–378
Hadamard product, 379–382
integration, 374–378
inversion, 236, 262–267, 366–370
iteration, 267–270
Lindelöf integrals, 225

approximate counting, 287–289
area (of Dyck path), 299
argument principle, 256
arithmetical functions, 611
arrangement, 104, 105
asymptotic

algebraic, 451
expansion, 613
notations, 612–615
scale, 613–614

atom, 23, 90
autocorrelation (in words), 56, 258
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automaton
finite, 53

average,seeexpectation

balanced tree,seetree
ballot numbers, 63
ballot problem, 73
balls-in-bins model, 104, 166–167

capacity, 497–500
Poisson law, 166

Bell numbers, 101
asymptotics, 646

Bell polynomials, 177
Bernoulli numbers, 254
Bernoulli trial, 180, 281, 660
Beta function(B), 637
BGF,seebivariate generating function
bijective equivalence (∼=), 18
binary decision tree (BDT), 74
binary search tree (BST), 192
binary tree, 626
binomial coefficient, 92

asymptotics, 350–353
central approximation, 645–646
sum of powers, 645–646

binomial convolution, 92
binomial distribution, 660
birth and death process, 292
birth process, 286
birthday paradox, 105–109, 181, 372
bivariate generating function (BGF), 145
Boltzmann model, 267, 489
boolean function, 73
bootstrapping, 282
bordering condition (permutation), 191
Borges, Jorge Luis, 58
boxed product, 128–132
branch (of curve), 421
branch point (analytic function), 264
branch point (function), 218
branching processes, 185–187
bridge (lattice path), 446
Brownian motion, 174, 332, 406, 597
Bürmann inversion,seeLagrange inversion

canonicalization, 78
cartesian product construction (×), 22
Catalan numbers (Cn), 17, 32–34, 36, 63, 69–

74, 627
asymptotics, 353
generating function, 33

Catalan sum., 373
Catalan tree, 33, 163
Cauchy’s residue theorem, 222
Cauchy–Riemann equations, 632
Cayley tree, 117–119, 168
Cayley tree function,seeTree function (T )
central limit law, 517
centring (random variable), 659
Chebyshev inequalities, 150, 618

Chebyshev polynomial, 296
circular graph, 91
class (labelled), 87–137
class (of combinatorial structures), 16
cloud, 362, 571
cluster, 197, 200
coalescence of saddle point

with other saddle point, 507
with roots, 473
with singularity, 474

code (words), 58
coding theory, 36, 50, 58, 233
coefficient extractor ([zn]), 19
coin fountain, 300, 559
combination, 48
combinatorial

class, 16, 88
isomorphism (∼=), 18
parameter, 139–208
sums, 371–374

combinatorial chemistry, 416–419
combinatorial probability, 616–618
combinatorial schema,seeschema
complete generating function, 175–187
complex differentiability, 219
complex dynamics, 267
complexity theory, 73
composition (of integer), 37–46

Carlitz type, 190, 194, 249
complete GF, 177
cyclic (wheel), 45
largest summand, 159, 307, 311
local constraints, 188–190, 249
number of summands, 42, 156–157
prime summands, 41, 307–309
profile, 158, 309
r-parts, 157
restricted summands, 306–309

composition (singular), 370–374
computable numbers, 237
computer algebra,seesymbolic manipulation
concentration (of probability distribution), 150–

151
conformal map, 219
conjugacy principle (paths), 72
connection, 430
constructible class, 237–242
construction

cartesian product (×), 22
cycle (CYC), 24, 154, 618–620

labelled, 95, 164
disjoint union (+), 24
implicit, 80–83
labelled product (⋆), 92–94
multiset (MSET), 25, 154
pointing(Θ), 78–80, 187
powerset (PSET), 25, 154

labelled, 164
sequence (SEQ), 24, 154
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labelled, 94, 164
set (SET)

labelled, 94
substitution (◦), 78–80, 187–190

context-free
asymptotics, 392, 437–438, 441
language, 437, 441–442
specification, 74–76, 437–441

continuant polynomial, 294
continuation (analytic), 226
continued fraction, 184, 205, 270, 291–304
continuous random variable, 657
contour integral (

H
), 460

convergence in probability, 151
convexity (of GFs), 267
convexity inequalities, 462
correlation,seeatocorealtion1
coupon collector problem, 105–109, 181
cover time (walk), 335
covering (of interval), 25
cumulant generating function, 660
cumulated value (of parameter), 147
cumulative generating function, 147
cycle construction (CYC), 24, 154, 618–620

labelled, 95, 164
undirected, labelled, 123

cycle lemma (paths), 72
cyclic permutation, 91

Daffodil Lemma, 253
Darboux’s method, 387
data compression, 261
data mining, 373
de Bruijn graph, 329–330
Dedekindη function, 483
degree (of tree node), 626
density (random variable), 657
denumerant, 41, 244–245
dependency graph, 312
derangement, 113, 196, 248, 338, 395
derivative (∂), 79
devil’s staircase, 324–326
dice games, 471
Dickman function, 535
differentiation (singular), 374–378
digital tree (trie), 331
digraph,seegraph
Dirichlet generating function (DGF), 611
disc of convergence (series), 218
discrete random variable, 657
discriminant (of a polynomial), 421
discriminant (of polynomial), 631
disjoint union construction (+), 24, 91
distribution,seeprobability distribution
distribution function (random variable), 657
divergent series, 81, 127, 620
dominant singularity, 230
double exponential distribution, 282
Drmota-Lalley-Woods Theorem, 432
drunkard problem, 81, 380–382

Dyck path, 73, 442, 446
area, 299
height, 295–299

Dyck paths, 72
dynamical source, 291

EGF,seeexponential generating function
Ehrenfest urn model, 105
eigenvalue,seematrix
EIS (Sloane’s Encyclopedia), 17
elimination (algebraic function), 629–631
entire function, 230
entropy, 471
Euler numbers, 133
Euler’s constant (γ), 109, 636
Euler–Maclaurin summation, 226, 650
Eulerian numbers, 198, 556
Eulerian tour (in graph), 330
exceedances (in permutations), 338
excursion (lattice path), 292, 442–448
exp-log transformation, 27, 77
expectation (or mean, average),E, 104, 146,

616, 658
exponential families (of functions), 186
exponential generating function

definition, 89
product, 92

exponential growth formula, 230–236
exponential order (⊲⊳), 230
exponential polynomial, 242, 345

Faà di Bruno’s formula, 177
factorial moment, 617
factorial moments, 147
Ferrers diagram, 37
Fibonacci numbers, 40, 56
Fibonacci polynomial, 296
finite automaton, 53, 326–331

deterministic, 326
non-deterministic, 326

finite field, 82
finite language, 61
finite state model, 326, 331–337
forest (of trees), 63, 118, 625
formal language,seelanguage
formal power series,seepwer series1
formal topology (power series), 620
four-colour theorem, 448
Fourier transform, 658
fractals, 269
fragmented permutation, 114–115, 479

asymptotic, 234
free tree,seetree, unrooted
function (of complex variable)

analytic, 218–226
differentiable, 219
entire, 219, 230
holomorphic, 219
meromorphic, 220

functional equation, 261–273
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kernel method, 443
quadratic method, 450

functional graph, 119–121, 413
Fundamental Theorem of Algebra, 257, 459

Galton-Watson process, 186
gambler ruin sequence, 72
Gamma function (Γ), 348, 633–637
Gaussian binomial, 43
Gaussian distribution, 502–503, 661
Gaussian integral, 634
general tree, 627
generating function

algebraic, 451
complete, 175–187
exponential, 87–137
multivariate, 139–208
ordinary, 15–85

geometric distribution, 660
GF,seegenerating function
golden ratio (ϕ), 40, 83
graph

acyclic, 122
adjacency matrix, 318
aperiodic, 313
bipartite, 128
circular, 91
colouring, 448
connected, 127–128
de Bruijn, 329–330
enumeration, 96–97
excess, 122
functional, 119–121, 413
labelled, 88–89, 96–97, 122–125
map, 448–451
non-crossing, 427–428, 438–441
paths, 318–326
periodic, 1, 312
random, 123–125
regular, 123, 178, 362, 395
spanning tree, 320
strongly connected, 312
unlabelled, 96–97
zeta function, 319

Green’s formula, 632
Groebner basis, 76, 629

Hadamard product, 379–382
Hamlet, 51
Hankel contour, 352, 635
Hardy–Ramanujan–Rademacher expansion,

484–485
harmonic function, 632
harmonic number (Hn), 108, 149, 357, 613

asymptotics, 650
generating function, 149

harmonic sum, 647
Hartogs’ Theorem, 652
hashing algorithm, 103, 167, 500
Heaviside function, 647

height (of tree), 296–299
Hermite polynomial, 303
hidden pattern, 289–291, 331
hierarchy, 119, 267, 410
Hipparchus, 64
histograms, 146
holomorphic function, 219
homotopy (of paths), 221
horse kicks, 528
hypergeometric function (2F1), 379

implicit construction, 80–83, 127–128, 193–195
Implicit Function Theorem, 637–639
inclusion-exclusion, 195–202, 338
increasing tree, 132–135, 191–192
Indoeuropean languages, 411
inheritance (of parameters), 151, 164
integer composition,seecomposition (of inte-

ger)
integer partition,seepartition (of integer)
integration (singular), 374–378
interconnection network, 302
inversion (analytic), 236, 366–370
inversion table (permutation), 135
involution, 112, 475–477
involution (permutation), 302
isomorphism (combinatorial,∼=), 18
iteration, 267
iteration (of analytic function), 268–270
iterative specification, 30–32, 237–242
Iverson’s notation ([[·]]), 54

Jacobi trace formula, 315, 319

kernel method (functional equation), 443
Knuth–Ramanujan function,see Ramanujan’s

Q-function

labelled class, object, 87–137, 163–170
labelled construction, 92–98
labelled product (⋆), 92
Lagrange inversion, 62–66, 117, 621–622
LambertW–function, 118
language, 622

context-free, 437, 441–442
regular, 342, 622–624

language (formal), 47
Laplace’s method, 503, 639–646

for sums, 645–646
Laplacian, 632

of graph, 320
large deviations, 471
large powers, 469–474, 500–503
largest components, 311
lattice path, 291–304

decompositions, 293
lattice points, 46
law of large numbers, 147, 617
law of small numbers, 528
leaf (of tree), 171, 626
Lebesgue integral, 656
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Lebesgue measure, 656
letter (of alphabet), 47
light bulb, 553
limit law, 513–607
Lindelöf integrals, 225
Liouville’s theorem, 225
local limit law, 502, 517
localization (of zeros and poles), 256
logarithm, binary (lg), 282
logarithmic-series distribution, 310
longest run (in word), 282–285
loop (in complex region), 221
Łukasiewicz codes, 71, 446–447
Lyndon words, 619

magic duality, 225
majorant series, 236–237
map, 448–451, 603–605
mapping, 119–121, 395–396, 411–412, 602

idempotent, 491
regressive, 135

mapping pattern,seefunctional graph
mark (in combinatorial specification), 156
marking variable, 19, 153
Markov chain, 53, 320, 561
Markov-Chebyshev inequalities, 150, 618
matrix

aperiodic, 313
eigenvalue, 311

dominant, 311
irreducible, 312
nonnegative, 314
norm, 317
Perron Frobenius theory, 311–314, 651–652
positive, 314
spectral radius, 312
spectrum, 311
stochastic, 320, 324
trace, 315, 319
transfer, 331–337

matrix tree theorem, 320
Maximum Modulus Principle, 459
mean,seeexpectation
meander (lattice path), 442–446, 538
measure theory, 655–657
Meinardus’ method (integer partitions), 485
Mellin transform, 285, 298, 646–651
ménage problem, 337
meromorphic function, 220
MGF, seemultivariate generating function
mobile (tree), 400
Möbius function (µ), 611
Möbius inversion, 80, 396, 612
modular form, 483
moment inequalities, 150–151
moment methods, 618
moments (of random variable), 146, 616, 658
monkey saddle, 458, 503–508
monodromy, 424
Motzkin numbers, 64, 73, 79

asymptotics, 364, 427
Motzkin path, 295, 299
multinomial coefficient, 92, 176
multiset construction (MSET), seeconstruction,

multiset, 154
multiset construction (mset), 25
Multiset construction., 25
multivariate generating function (MGF), 139–

208

naming convention, 19, 90
Narayana numbers, 171
natural boundary, 236
nearest integer function (⌈·⌋), 41
necklace, 18, 60
negative binomial distribution, 397, 661
network, 302
neutral object, 23, 90
Newton polygon, 424–426
Newton’s binomial expansion, 33
nicotine, 20
non-crossing configuration, 427–428, 438–441
nonplane tree, 66–68, 117
Nörlund-Rice integrals, 226
normal distribution,seeGaussian distribution
numeric approximation (

.
=), 1

numerology, 291

O (asymptotic notation), 612
o (asymptotic notation), 612
OGF,seeordinary generating function
order constraints (in constructions), 128–135,

191–192
ordinary generating function (OGF), 18
ordinary point (analytic function), 457
orthogonal polynomials, 301
oscillations (of coefficients), 251, 270, 357
outdegree,seedegree (of tree node)

pairing (permutation), 113
parameter (combinatorial), 139–208

cumulated value, 147
inherited, 151–154
recursive, 170–174

parse tree, 441
partially commutative monoid, 281
partition

of sets,seeset partition
partition (of integer), 37–46

asymptotics, 235
denumerant, 41, 244–245
distinct summands, 485
Durfee square, 43
Ferrers diagram, 37
Hardy–Ramanujan–Rademacher expansion,

484–485
largest summand, 41
Meinardus’ method, 485
number of parts, 494
number of summands, 42, 160
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plane, 486
prime summands, 486
profile, 160
r-parts, 161

partition of set,seeset partition
path (in complex region), 221
path length,seetree
patterns

in permutations, 199
in trees, 202
in words, 50–52, 55–58, 200, 258–261, 289–

291, 556–557, 561
pentagonal numbers, 46
period (of sequence, GF), 252
periodicity (of coefficients), 250
periodicity (of GF), 304
periodicity condition, 399, 415
permutation, 90, 110–114

alternating, 132–134, 256
ascending runs, 197–199, 555–556
bordering condition, 191
cycles, 110–114, 143, 164–166, 395, 544–

545
cycles of lengthm, 527–528
cyclic, 91
derangement, 113, 196, 248, 338, 395
exceedances, 338
fixed order, 492
increasing subsequences, 495–497
indecomposable, 80
inversion table, 135
involution, 112, 235, 302, 475–477, 494
local order types, 191–192
longest cycle, 113, 492
longest increasing subsequence, 200, 496–

497
ménage, 337
odd cycles, 384
pairing, 113
pattern, 199
profile, 165
record, 129–131
records, 544–545
rises, 197–199
shortest cycle, 113, 248–249
singletons, 523–524
tree decomposition, 132–134

Perron Frobenius theory, 311–314, 651–652
perturbation theory, 500
PGF,seeprobability generating function
phase transition, 594
phase transition diagram, 594
phylogenetic trees, 119
Picard approximants, 638
Plana’s summation, 226
plane partition (of integer), 486
plane tree, 61–66
pointing construction (Θ), 78–80, 125–127, 187
Poisson distribution, 661

Poisson law, 166
Poisson-Dirichlet process, 535
Pólya operators, 32
Pólya operators, 239
Pólya–Carlson Theorem, 240
polydisc, 652
polylogarithm, 225, 378–379
polynomial

primitive, 316
polynomial (finite field), 82, 396–397
polynomial system, 420, 432
polyomino, 43, 190, 336, 557–559
power series, 15, 18, 89, 141, 152, 176, 620–621

convergence, 620
divergent, 81, 127, 620
formal topology, 620
product, 620
quasi-inverse, 620
sum, 620

powerset construction (PSET), 25, 154
labelled, 164

powerset construction (SET), seeconstruction,
powerset

preferential arrangement numbers, 100
prime number, 215–216
principal determination (function), 217
Pringsheim’s theorem, 227
probabilistic method, 618
probability (P), 104, 145
probability distribution

Airy area, 337
Bernoulli, 660
binomial, 660
double exponential, 109, 282–285
Gaussian, 502–503, 661
geometric, 660
geometric–birth, 288
logarithmic series, 310
negative binomial, 397, 661
Poisson, 661
Rayleigh, 108, 598
stable laws, 374
theta function, 297, 332
Tracy–Widom, 497
Zipf laws, 601

probability generating function, 617
probability space, 655
profile (of objects), 158, 397–398
pruned binary tree, 627
psi function (ψ), 636
Puiseux expansion (algebraic function), 423–

426

q–calculus, 288, 300
q–calculus, 46
quadratic method (functional equation), 450
quasi-inverse, 32

R (resultant notation), 629
radioactive decay, 528
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radius of convergence (series), 218, 231
Ramanujan’sQ-function, 107, 120, 372–373
random generation, 73, 310
random matrix, 497
random variable, 616, 655–663

continuous, 657
density, 657
discrete, 657

random variable (discrete), 145
random walk,seewalk
rational function, 224, 242–245, 256–258

positive, 314–318
Rayleigh distribution, 598
record

in permutation, 129–131
in word, 178

recursion (semantics of), 31
recursive parameter, 170–174
recursive specification, 30–32
region (of complex plane), 217
regular

expression, 279, 342, 622–624
language, 278–282, 342, 622–624
specification, 278–282

regular point (analytic function), 227
relabelling, 92
renewal process, 310, 553
Res (residue operator), 221
residue, 221–226

Cauchy’s theorem, 222
resultant (R), 76, 629–631
Rice integrals,seeNörlund-Rice integrals
Riemann surface, 227
Rogers-Ramanujan identities, 300
rotation correspondence (tree), 69
Rouché’s theorem, 257
round (children’s), 364
rounding notation (⌈ · ⌋), 246
RV, seerandom variable

saddle point
analytic function, 457–459
bounds, 233, 460–464, 470
large powers, 469–474, 500–503
method, 455–509
multiple, 503–508

scaling (random variable), 659
schema (combinatorial-analytic), 159–160,

167–170, 277, 278
exp–log, 392–398
supercritical sequence, 304–311

Schröder’s problems, 64, 119, 416
self-avoiding configurations, 335–337
semantics of recursion, 31
sequence construction (SEQ), 24, 154

labelled, 94, 164
series

algebraic, 451
series-parallel network, 65, 68
set construction (SET), seeconstruction, set

labelled, 94
set partition, 59–60, 98–109, 168

asymptotics, 235
block, 100
largest block, 492
number of blocks, 168, 493–494

several complex variables, 652–653
shuffle product, 342
sieve formula,seeinclusion-exclusion
Simon Newcomb’s problem, 181–182
simple variety (of trees), 183, 299
singular expansion, 362
singularity (of function), 226–230

dominant, 230
singularity analysis, 345–390

applications, 391–453
size (of combinatorial object), 16, 88
size-biased (probability), 405
Skolem-Mahler-Lerch Theorem, 252
slow variation, 386
Smirnov word, 193, 249, 285, 327
society (combinatorial class), 491
spacings, 48
span (of sequence, GF), 252
spanning tree, 320
species, 29, 85, 126, 137
specification, 31

iterative, 30–32
recursive, 30–32

spectral radius, 312
spectrum,seematrix
stable laws,seeprobability distribution
standard deviation, (σ), 617
standardization (random variable), 516, 659
statistical physics, 44, 190, 278, 334–335, 594
steepest descent, 457, 460
Stieltjes integral, 656–657
Stirling numbers, 624–625

cycle (1st kind), 111, 144, 544
partition (2nd kind), 59–60, 100, 168

Stirling’s approximation, 35, 369, 379, 637,
643–645, 650

strip (〈·〉), 646
subcrititical composition schema, 529–534
subexponential factor, 231
subsequence statistics,see hidden patterns,

words
substitution construction (◦), 78–80, 187–190
supercritical cycle, 374
supercritical sequence, 304–311, 370
supernecklaces, 115
supertree, 373–374, 429, 605
support (of probability measure), 655
support (of sequence, GF), 252
surjection, 98–109, 309

asymptotics, 246
complete GF, 177

surjection numbers, 101, 255
symbolic manipulation, 240
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symbolic methods, 15
symmetric functions, 178

Tauberian theory, 386
Taylor expansion, 190, 632
theory of species, 126
theta function, 297–299, 332
threshold phenomenon, 199
tiling, 332–335, 561
total variation distance (probability), 523
totient function (ϕ), 611
totient function (of Euler), 26, 611
trace monoid,seepartially commutative monoid
trains, 240–242, 366
transfer matrix, 331–337
transfer theorem, 357–360
tree, 30, 61–68, 115–125, 625

additive functional, 403–407
balanced, 83, 267–270
binary, 63, 626
branching processes, 185–187
Catalan, 33
Cayley, 117–119
degree profile, 183–184, 404–405
exponential bounds, 264–267
forests, 63
general, 30, 627
height, 205, 296–299, 401–403
increasing, 132–135, 191–192
leaf, 171, 563, 626
level profile, 184–185, 401–403
Łukasiewicz codes, 71
mobile, 400
non-crossing, 427–428, 438–441
nonplane, 66–68, 407–409
nonplane, labelled, 117
parse tree, 441
path length, 173–174, 185, 405–406
pattern, 202
plane, 61–66, 626
plane, labelled, 116
regular, 63
root subtrees, 533
root-degree, 163, 168, 400–401, 531–532
rooted, 625
search, 192
simple variety, 183, 299, 368–370, 398–414,

473–474
supertree, 373–374, 429
t-ary, 63
unary-binary, 64, 79
unrooted, 413–414
width, 331–332, 602

tree concepts, 625–627
Tree function (T ), 366–370
triangulation (of polygon), 19, 33–34, 438
trinomial numbers, 472
truncated exponential, 102

unambiguous,seeambiguity

uniform expansions
singularity analysis, 562–563

uniform probability measure, 616
uniformity (asymptotic expansions), 615–616
uniformization (algebraic function), 423
universality, 278, 508
unlabelled structures, 151–163
unperiodic (GF), 304
urn, 91

Vallée’s identity, 29
valley (saddle point), 458
variance (V), 617
Vitali’s theorem (analytic functions), 524

w.h.p. (with high probability), 125, 150
walk

first return, 81
walk (in graph), 318–337

birth type, 285–289
cover time, 335
devil’s staircase, 324–326
integer line, 292–295
interval, 292–299
self-avoiding, 335–337

Wallis integral, 637, 642
Weierstrass Preparation Theorem (WPT), 638–

639
wheel, 45
width (of tree), 331–332
winding number, 256
word, 47–61, 103–109

aperiodic, 619
code, 58
excluded patterns, 330
language, 47, 622
local constraints, 327
longest run, 282–285
pattern, 50–52, 55–58, 200, 258–261, 289–

291, 556–557, 561
record, 178
regular expression, 279
runs, 48–50, 193
Smirnov, 193, 249, 285, 327

zeta function (of graph), 319
zeta function, Riemann (ζ), 215, 255, 636


