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Introduction 
 
The comprehension of rational numbers 
began with the computation of continued 
fractions. 
 
In short,  
 
If we have a real number x, the 
approximation of x will be given by the 
continued fraction expansion of x. 
 
If x = gamma = 0.57721566… then one 
of the approximation is 71/226, that is 
 

226 gamma ≈ 71. 
 
For us, this is ax – b = 0, 0 being small 
with a,b being integers. 
 
The algorithm:   
 

n n+1
n n

1 1y =  and x =
x x
⎡ ⎤ ⎧ ⎫

⎨ ⎬⎢ ⎥
⎣ ⎦ ⎩ ⎭

 

 
where the y(n) are the quotients, { } is 
the fractional part and [ ] is the floor 
function.  
 
Actually there is a way to compute the 
y(n) by using only additions. 
 
From an old Math. Of Computation 
article :  
 
If 0<x<1, pose x0 = x 
 

do xk -> xk, 2xk, 3xk, … until nx > 1. 
The quotien is then n-1. 
1-(n-1)xk = xk+1 

end do. 
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It is long but no special multiplication 
algorithm is necessary,  
here 2xk = xk+ +xk  ,3xk = xk++xk+xk, … 

 

 

To go from 2 to more dimensions took 
many years and many generations of 
mathematicians. 
  
Gauss 60 degrees algorithm,  
Hermite, Jacobi, Poincaré, Perron, Brun,   
Ferguson and Forcade 1979, 
Lenstra-Lenstra-Lovasz 1982, 
Lagarias and Odlyzko 1985, … 
 
The PSLQ, LLL, Integer Relations 
algorithm are now implemented in most 
CAS like Maple, Mathematica and Pari-
GP now but they are still not exactly the 
exact or proper generalizations.  
 

 
 
For 1 number this is the geometrical 
interpretation, for 2 numbers… 
 
Well, here is an algorithm : 
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Take 2 real numbers, a, b 
 
do 
{| a - b |} = c 
a  b 
b  c 
od 
 
{ } is the fractional part. 
  
Will return eventually something like 
 

aX + bY + Z ≈ 0 
 
where X, Y, Z are all integers. 
 
For example with Pi, exp(1) after 100 
iterations I have (still by using only 
additions and >)…  
 
;-)   
 

 
 
9257454    ‐   5824723     6865462e π + =  
 
With 0 = .9089493e-9 
 
It does work but it is NOT the best 
solution. 
 
This is exactly the point, there is a way 
to make it to work but to find the 
simplest solution for the length that’s 
another story. 
 
NOTE : there is a way to generalize with 
3, 4, 5 entries and more but again it 
finds a solution but not the best. 
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PSLQ LLL and Integer Relations 
algorithms  
 
There are new algorithms that are 
widely used since the late 80’s but fast 
enough in the early 1990’s. 
 
They are called LLL algorithms, PSLQ 
algorithms or more generally speaking : 
Integer Relations algorithms. 
 
We focus on this version of the 
algorithm : 
 
Given a vector of real numbers  
 

1 2 3[ , , ,..., ]nx x x x  
 

the algorithm is able to find integers for 
which 

1
0

n

i i
i
a x

=

=∑ or near 0 

 
When n=2, the problem of finding 
suitable integers is widely known as the 
continued fraction algorithm (equivalent 
to the euclidian algorithm). 
 
 
If we look at the equation then one can 
point out that it could be used to reverse 
the fundamental theorem of algebra. 
 
In which (one of the form of it) every  
polynomial as a root. 
 
Given a polynomial there is always a 
way to find 1 root.  
 
In reverse : given an algebraic number 
X how can we find the simplest or 
shortest polynomial having X as a root? 
 
We just have to use the algorithm to 
find it. [1,x,x2,x3,x4,x5,… ,xn]
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The reasons for the difficulty came from  
 
1) The continued fraction algorithm is 
simple and is a greedy algorithm. 
 
2) There are many possible 
generalizations of the euclidian 
algorithm that leads nowhere. 
 
3) The generalizations of the E.A. are far 
from being greedy algorithms.   

Here is an example : 
 
Let’s take v = (½+√5/2)48 
 
As we know v is a linear combination of 
√5 and 1, in short v = [√5, 1] 
 

Or v = 5374978561+2403763488√5 
 

In terms of PSLQ (Maple 9.5) we ask  
 
With a working precision of 28 decimals 
 
PSLQ(v, sqrt(5), 1); 
 
It returns : [0, 98209, -219602] 
 

This is false. 
 
If I ask : PSLQ(1,sqrt(5),v); 
returns 
[-1791659574, -4006272456, 1] 
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This is false again and in addition the 
answer varies with the input being 
sorted or not???!! 
 
What about Mathematica ? 
 
It hangs. 
 
What about Pari-Gp? 
 
Same answer as Maple. 
 
If I increase the precision to 100 
decimals then it finds it properly. 
 
In fact v = 
10749957121.99999999990697636 this 
is very close to an integer and the 3 
programs were trapped by this local 
minimum.  

There are other known bad examples 
like that, one of them is the Ramanujan 
number : exp(π√163) = 
262537412640768744 almost exactly.  
 
But this is not the worst. 
 
Actually that example reformulated 
would be that 
 
log(262537412640768744) ‐π=0

163  

 
Here the numerator is 18 digits long and 
the approximation to Pi is 31 digits.  
 
The ratio is 31/18, not bad but look at 
this one :  
 
log(11614094642430242607991748403072229) ‐log( )=0

163
φ
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In this case the ratio is 2. 
The length of the big integer is 35 and 
the number of exact digits is 71. 
 
This is a trick : the big integer is the 
163’rd Lucas number. 
 

n n
1+ 5 1‐ 5‐
2 2 nL

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
But what is the problem? 
 
By increasing the precision, let’s take 
the double of the precision of the worst 
near integer number then the problem is 
solved isn’t? 
 
Not so fast.  
 
This is true for most of the classical 
examples yes. Like the example I gave 
earlier.  
 

But isn’t true that most real numbers are 
actually transcendental numbers ? 

 
 
Rationals are very easy to compute. 
 
Some transcendental numbers are very 
easy to generate too like the 
 
Champernowne number  
 
0.123456789101112131415… 
 
(that number is a nightmare to expand 
into a continued fraction, don’t try this 
at home).  
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The Liouville classic example :  
0.110001000000000000000001000… 
 
Is even worst, even closer to rationals 
 
Or even your favorite version of a Thue-
Morse sequence coded into a real 
number. 
 
The Kolakoski constant. 
 
These numbers can be computed to 
zillion of digits with an ordinary PC and a 
big hard disk. 
 
What is the maximum number of 
decimals humans can compute? 

 
Well, the SETI project made 1021 flops. 
One physician calculated that if all atoms 
of the entire universe would be had been 
used since the beginning we would be at 
10121 only.  
 
For all practical purposes :  
 
All numbers are rational.
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Pisot sequences 
 
Consider this recurrence :  
 

2
1

2
n

n
n

aa
a
+

+

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

 

With a(1) = 6 and a(2) = 31, let’s call it 
T(6,31) then by using GFUN we can find 
easily that T(6,31) when expanded into 
a series in x satisfies :  
 

23 5 3 2
x+1

x +x +x ‐x ‐5x+1  
 

Numerator : initial conditions. 
Denominator : recurrence. 
 
In other words T(6,31) is recurrent and 
the degree is 23. This is false because 
David Boyd found recently that T(6,31) 
is in fact a recurrence of degree 
6852224 at least. 
 

After looking at a few cases, David Boyd 
conjectured that : T(a,a2-a+1) is 
recurrent and the recurrence is of the 
form :  

2 4 ‐ 2 ‐ 3 ‐            ... ...e e eaa x x x x x x+ − − − − −  
 

Where e(k+1)≈e(k)2 
 
In other words, it took 14 days of 
computation to find that the degree is 
6852224, see David Boyd (Un. British 
Columbia) papers. 
 
Note : I did put a(0) = 1 for simplicity,  
which simplifies the recurrence. 
 
What we know is that most of these 
recurrences are chaotic and very few are 
rational polynomials. Note : Mandelbrot 
fractal is generated with a similar rec. 
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Since we suspect that a(n) is a linear 
recurrence then by constructing a power 
series evaluated at x<<1 we cab use 
continued fractions to detect 
anomalities. This is the only tool we 
have.  
 
In that case : a(n) ≈  (5.15494091)n. 
 
Fibonacci sequence or 23’rd degree 
recurrence can be done simply. 
 
Of course it is trivial to linearize a 
recurrence like Fibonacci. 
 
First step : The definition is recursive 
but the computation is not. 
 
Second step : arrays are not needed. 
 
Third step : we can use smart 
procedures to linearize, see Maple 
reference with `option remember`. 

 
Fourth step : a puzzle. 
 
Compute the Fibonacci sequence  
 
(1,1,2,3,5,8,13,21,34,55…) 
 
by using the smallest amount of 
memory. 
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Answer : by using additions. 
 
A = 1 
B = 1 
 
do loop 

B  B + A 
A  B  - A 
print B 

end loop. 
 
Only 2 memory words. 
 
Other steps are : 
 
Binary power method for simple 
recurrences like Fibonacci are not too 
complicated to implement since F(n) has 
many properties…but not the case with 
T(6,31). 
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Zeolites 
 
Zeolites are part of every day life. 
They are porous minerals. 
They are found in nature and are made 
by humans since recently. 
 
(taken from a faq site about them). 
http://www.zeolyst.com/html/faq.html 
 
Zeolites are three-dimensional, 
microporous, crystalline solids with well-
defined structures that contain 
aluminum, silicon, and oxygen in their 
regular framework; cations and water 
are located in the pores.  
 
Zeolites means boiling rock, 
Aluminosilicates minerals. 
 
What is interesting for us is the 
crystalline structure and how we can 

count the number of atoms in a 
structure. 
 
They are very useful materials.
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What they do is to count how many 
atoms there are from a central cell. 
 

 
 
(this is what replaced phosphates in 
soaps). 
This zeolite is :Sodium Zeolite A, used 
as a water softener in detergent powder. 
Because it is porous it can be used as a 
filter, there are many industrial 
applications of these minerals. 

Detergent powders. 
Can replace CFC’s in aerosols, etc. 
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Here is another one (more complex than 
NaCl) :  
 

 

  
The same structure viewed at a different 
angle. 
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To study the structure we choose a 
central point and count the number of 
atoms touching that point : also called 
the Coordination Sequence (CS). 
 
In this case the count is :  
 
Sequence A008114 of the O.E.I.S. 
 
1,4,10,20,34,58,82,102,136,176, 
220,266,306,362,428,484,550,    
626,694,778,868,942,1042,1146, 
1230,1350,1468,1554,1684,1822,          
1926,2072,2214,2322,2494,2654, 
2764,2950,3126,3246,3450,3638, 
3762,3984,4188,4322,4566,4778, … 
 
As we know, a regular 3D structure 
would normally have a simple formula. 

For example : the number of points on 
surface of octahedron is (also called the 
coordination sequence for cubic lattice). 
 
1,6,18,38,66,102,146,198, 
258,326,402,486,578,678, 
786,902,1026,1158,1298, 
1446,1602,1766,1938,2118, 
2306,2502,2706,2918,3138, 
3366,3602,3846,4098,4358, 
4626,4902,5186, … 
 
This is simple : by using GFUN (Maple) 
or GeneratingFunctions (Mathematica),  
 
In a few milli-seconds it finds : 
a(n) = 4n^2 + 2 , n>0. 
 
The Generating Function is  
((1+x)/(1-x))^3. 
 
Now we expect zeolites to be the same 
isn’t?  not quite. 
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In the case of the octahedron if we use 
finite difference we can reconstruct the 
g.f. by using Monmort formula, i.e. : ∆2 
 
But when the differences, GFUN and 
even home made specialized programs 
for cracking a sequence do not work 
then we must admit that even if the 
structure is relatively simple :  
 
There are no known formulas for the 
number of atoms surrounding a central 
one. This problem is still not well 
understood.  
 
GFUN is a well known package in Maple 
that is specialized in manipulating series, 
sequences and rational polynomials.  
It was first made by Plouffe-Bergeron, 
greatly enhanced by Salvy-Zimmermann 
and is now an essential part of the OEIS 

as a standard tool for cracking a 
sequence. 
 
Now if we go back to a very simple 
structure : NaCl (common salt). 
 
If we compute the potential at 0 using 
the rule for coordinates i,j,k then : 
 
1) i,j,k ≠ 0 
2) The sign being (–1)i + j + k  
3) the charges are +/- 1/r 

The TOTAL electrostatic potential at the 
origin due to all charges is hence 
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M3= -1.74756459463318219063621… 
 
That constant is called the Madelung 
constant for NaCl and despite many 
formulas defining it we are still unable to 
say IF the constant can be expressed 
with known others like log(2), √3 or Pi. 
  
Now there are very beautiful formulas 
for that constant : 
 

 

 

 

 
 

This is very interesting but the question 
is : What IS Madelung constant??? 
 

Because we know that for example 
gamma = potential at 0 of charges 
placed at 1,2,3,4,….
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At least 4 serious attempts were made 
using PSLQ, LLL and the like programs 
and so far even with more than 1000 
digits known : nothing was found. 
 
 
Nature is more seriously complex than 
we thought maybe…? 
 

What can we do then? 
 
About Pisot sequences, only small 
recurrences and rational polynomials can 
be found using GFUN, up to ~1000 
terms. 
Recurrences can be detected with ~100 
terms.  
Ordinary high-precision computations for 
other detections. 
 
Zeolites : GFUN is well suited for simple 
cases since only finite differences are 
needed. But maybe Grobner basis for 
more? 
 
Madelung constant : More PSLQ-LLL like 
programs, massive attacks. 
 
Clues : terms with 1/(exp(x) -1), Epstein 
series, mixed constants maybe? 
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PSLQ-LLL limits. 
 
-Degree of algebraic can be < 120 but 
no more. 
 
A recent finding used 10000 digits and a 
special version of MPFUN of Bailey with 
parallel computation in order to achieve 
results. 
 
- Some weaknesses when near an 
integer! 
 
- Input sorted or not produce different 
outputs. 
 
- Transcendental numbers could be very 
close to integers or rationals.
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Terms to be searched on the internet: 
 
Algebraically Independent 
Transcendental Number 
Integer Relation 
LLL algorithm 
PSLQ algorithm , HJLS, PSOS 
Lattice Reduction 
Gauss 60 degree algorithm 
Ferguson-Forcade Algorithm 
Lenstra-Lenstra-Lovasz 
Bailey-Borwein-Plouffe algorithm 
Plouffe algorithm for Pi in decimal and binary 
Schanuel's Conjecture 
Pisot sequences, David Boyd 
Zeolites 
 
Computer Algebra Systems 
 
-Maple : IntegerRelations, GFUN package 
 
-Mathematica : see the GeneratingFunctions 
package, Recognize, Mallinger 
 
-Pari-GP : lindep, algdep. 
 


