High resolution graphs using Maple

By Simon Plouffe

Introduction

The idea of using a way to represent the variations of a function. Typically this function will go from

$$
f(x) \in R \rightarrow[0,1]
$$

What comes next naturally is to wrap the values from $[0,1]$ to the unit circle, so we will have

$$
f(x) \in R \rightarrow[0,1] \rightarrow e^{\wedge} 2 \pi i x
$$

But originally, these graphs were intended to explain the development of rational numbers in base 10 like the number $1 / 257=0.003891050583 \ldots$ the simple idea is then to represent the development by moving the decimal point to the right. This is the same as joining 2 adjacent points. So by joining 2 successive points we obtain the following graph.

Representation of $1 / 257$ in base 10
The use of the base 10 explains the 9 peaks but what about the other 'peaks'? There are 23 in this case. The first drawing was made on a wall by hand on a height of 1 m 50 Therefore, if we use the base 2 we have 1 point, it is the cardioid.

Expansion of $1 / 10037$ in base 2.
These are the successive lines obtained from the calculation of

$$
\frac{2^{n} \bmod 10037}{10037}=\frac{1}{10037}, \frac{2}{10037}, \frac{4}{10037}, \frac{8}{10037}, \ldots
$$

Which when rolled up on the unit circle gives the points

$$
\mathrm{e}^{\frac{2 \mathrm{I}}{10037} \pi}, \mathrm{e}^{\frac{4 \mathrm{I}}{10037} \pi}, \mathrm{e}^{\frac{8 \mathrm{I}}{10037} \pi}, \mathrm{e}^{\frac{16 \mathrm{I}}{10037} \pi}, \mathrm{e}^{\frac{32 \mathrm{I}}{10037} \pi}, \mathrm{e}^{\frac{64 \mathrm{I}}{10037} \pi}, \mathrm{e}^{\frac{128 \mathrm{I}}{10037} \pi}
$$

The color is added using the rule: color = length of each segment.

Translated into Maple

```
graphc:= proc(s, nom)
local nr, pr, ligne, n, i, g, v, liste, j, t1, fichier,
nn, nj, x1, x2, y1,
y2, p1, z, m, al;
    v:= gg(s);
    nn:= nops(v);
    nr : = convert(nom, string);
    fichier:= cat(nr, .jpg')
    interface(plotoutput = fichier);
    |iste := [];
    for j to nn do
        x1 := cos(2*pp*v[j][1]);
        y1 == sin(2*pp*v[j][1]);
        x2:= cos(2*pp**[j][2]);
        y2 := sin(2*pp*v[j][2]);
        ligne[j]]:= Mine([x1, y1], [x2, y2],
                color = COLOR(HUE, 1-0.5*sqrt((x1 - x2)^2 +
(y1-y2)^2)));
    |iste:= [op(liste), ligne[j]]
    end do;
    t 1 :=
        plots[textplot]([1, -1, typeset(nr, " "), font
= [COURIER, 24]]);
    display(op(licste), t1)
end proc
```

Before running it is appropriate to prepare the interfaces and the output.

```
printlevel:=5:
interface(plotdevice=jpeg):
interface(plotoptions="height=8192,width=8192"):
Digits:=16:
with(plottools):
with(plots):
pp:=evalf(Pi):
```

From this point on I started to experiment with everything that is known as functions between 0 and 1. Like for example, the distribution of fractional parts of Bernoulli numbers.

Distribution of values of $\left\{\mathrm{B}_{2} 2 \mathrm{k}\right\}$, and $\}$ is the fractional part.
To come back to the graphs seen above, I explored all the ways to generate them and even to enlarge in the center (10 x zoom) to see them more clearly.

Here are some examples of inverses of primes in base 60 and 240.

With $240^{n} \bmod 14009$, we obtain $P_{0}=92$ and $P_{1}=239$ the center of the huge 1 billion pixels gives 18 and 19 spikes.

Simon Plouffe 2020: base $=240$, prime $=991$, P1 $=204$, harmonics $=6,12,17,18,23,29,35,41,47$,

Near the center of $240^{n} \bmod 26437$ in inverted color for more visibility $P_{0}=239, P_{1}=92$
The number of spikes are within the sequence of harmonics : $1,17,18$,
$19,20,35,37,54,55,56,57,72,73,74,75,91,92$

Other experiments :
http://plouffe.fr/distributions\ modulo\ 1/

Pages at http://plouffe.fr/experiences\ 2/

Other sources of graphs:
http://plouffe.fr/Inverseofprimes/160/
http://plouffe.fr/Inverseofprimes/240/
http://plouffe.fr/Inverseofprimes/premiers\ base\ 240C/

Images at http://plouffe.fr/simon/IntegerRelations/

