$\frac{4}{11} \log 2$ IS LIKELY IRRATIONAL

ERIC S. ROWLAND

DEPARTMENT OF MATHEMATICS
RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
PISCATAWAY, NJ 08854, USA

Abstract

In an effort to modify Apéry's proofs of the irrationality of $\log 2$, $\zeta(2)$, and $\zeta(3)$ to include other, perhaps less well known constants, the author has identified a certain number $R=.25205 \ldots$ as a likely candidate for such an irrationality proof. The actual proof, unfinished at the time of a discovery of a different nature, depends on estimating the power to which a prime p divides each rational convergent a_{n} / b_{n}, where R is defined by $a_{n} / b_{n} \rightarrow R$ as $n \rightarrow \infty$. A conjecture is salvaged that gives an explicit class of Apéry-type numbers.

1. Introduction

Recall that we may prove that a real number α is irrational by exhibiting a sequence $\left\{a_{n} / b_{n}\right\}$ of rational numbers (with $b_{n} \rightarrow \infty$) that converges to α with the property that there exist $\delta>0$ and $C>0$ such that for all n

$$
\begin{equation*}
0<\left|\alpha-\frac{a_{n}}{b_{n}}\right|<\frac{C}{b_{n}^{1+\delta}} \tag{1}
\end{equation*}
$$

If $\alpha=c / d$ were rational, then we would have

$$
\left|\alpha-\frac{a_{n}}{b_{n}}\right|=\left|\frac{c}{d}-\frac{a_{n}}{b_{n}}\right|=\left|\frac{b_{n} c-a_{n} d}{b_{n} d}\right| \geq \frac{1}{b_{n} d}
$$

since $b_{n} c-a_{n} d$ is a nonzero integer. Comparing this with our criterion (1), we obtain

$$
\frac{1}{b_{n} d} \leq\left|\alpha-\frac{a_{n}}{b_{n}}\right|<\frac{C}{b_{n}^{1+\delta}}
$$

or $b_{n}^{\delta}<C \cdot d$, which is a contradiction because $\left\{b_{n}^{\delta}\right\}$ is unbounded.
Apéry [1] found such a sequence of rationals for each of the constants $\log 2$, $\zeta(2)$, and $\zeta(3)$. One can view these sequences as arising from recurrence relations satisfied by the summands of

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \\
& \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}, \text { and } \\
& \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}
\end{aligned}
$$

Date: December 2, 2005.
which, under Apéry's method, result in sequences of rational numbers that converge to $\frac{1}{2} \log 2, \frac{1}{5} \zeta(2)$, and $\frac{1}{6} \zeta(3)$ respectively, as can be verified numerically with the function Roger in Zeilberger's Maple package AperyRecurrence [6].

2. Generalization

In search of other numbers than can be proven irrational by Apéry's method, I have used AperyRecurrence to study the more general sum

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}^{p_{1}}\binom{r n+s k}{k}^{p_{2}}(t-1)^{k} \tag{2}
\end{equation*}
$$

with positive integral parameters p_{1}, p_{2}, r, s, t. (Later we will see the advantage of using $(t-1)^{k}$ rather than t^{k}.)

One can find (again using Roger) estimates of δ for various values of these parameters. If $\delta>0$ for a given summand, then there is a possibility of finding an Apéry-style irrationality proof.

It appears that for p_{1} and p_{2} greater than 2 , there are no good candidates. Moreover, even modifying r, s, and t for the cases $p_{1}=p_{2}+1=2$ and $p_{1}=p_{2}=2$ seems not to give candidates either; that is, $\zeta(2)$ and $\zeta(3)$ are just special cases. Therefore we restrict ourselves to the case $p_{1}=p_{2}=1$. (However, it might still be of some interest to find alternative expressions for these numbers, as is done in section 3 for the case $s=p_{1}=p_{2}=1$. For example, how are they related to $\zeta(2)$ and $\zeta(3)$?)

For $t \geq 2$, the sum

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}(t-1)^{k}
$$

gives a sequence of rational numbers converging to $\frac{1}{2} \log \frac{t}{t-1}$, which is irrational for every t.

A more interesting sum is

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}\binom{2 n+k}{k}(t-1)^{k} \tag{3}
\end{equation*}
$$

We first consider the case $t=2$. Executing Zeilberger's algorithm [5] with the command

$$
\text { zeil(binomial }(\mathrm{n}, \mathrm{k}) * \text { binomial }(2 * \mathrm{n}+\mathrm{k}, \mathrm{k}), \mathrm{k}, \mathrm{n}, \mathrm{~N})
$$

reveals that the summand $F(n, k)=\binom{n}{k}\binom{2 n+k}{k}$ satisfies the recurrence
(4) $p_{0}(n) F(n, k)+p_{1}(n) F(n+1, k)+p_{2}(n) F(n+2, k)=G(n, k+1)-G(n, k)$, where

$$
\begin{aligned}
p_{0}(n) & =-2(17 n+28)(2 n+1)(n+1), \\
p_{1}(n) & =1207 n^{3}+4402 n^{2}+5021 n+1730, \\
p_{2}(n) & =-4(17 n+11)(2 n+3)(n+2), \\
G(n, k) & =R(n, k) F(n, k),
\end{aligned}
$$

and $R(n, k)$ is a rational function in n and k. Define two sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ by the recurrences

$$
\begin{align*}
p_{0}(n) a_{n}+p_{1}(n) a_{n+1}+p_{2}(n) a_{n+2} & =0 \tag{5}\\
p_{0}(n) b_{n}+p_{1}(n) b_{n+1}+p_{2}(n) b_{n+2} & =0 \tag{6}
\end{align*}
$$

with initial conditions $a_{0}=0, a_{1}=1, b_{0}=1, b_{1}=4$. These conditions ensure that $b_{n} \in \mathbb{Z}$ for all n; indeed, summing (4) over all integers k gives

$$
b_{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{2 n+k}{k}
$$

In general, a_{n} is a non-integral rational number. The sequence $\left\{a_{n} / b_{n}\right\}$ begins

$$
0, \frac{1}{4}, \frac{865}{3432}, \frac{12643}{50160}, \frac{13619843}{54035520}, \frac{323746091}{1284433920}, \frac{115021083581}{456335953920}, \frac{2224431220019}{8825233697280}, \ldots
$$

The experimental δ for this sequence (given by Roger) remains positive for at least several thousand terms, suggesting that the real number

$$
R=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=.252053520203616476 \ldots
$$

may be proven irrational by Apéry's method.
The number R did not appear in Plouffe's Inverter [3] as a widely known constant (and the advanced search was inoperable at the time), so it seemed that R was in fact a new candidate for irrationality. What remains, then, is to prove that $\left\{a_{n} / b_{n}\right\}$ satisfies the irrationality criterion (1) for some $\delta>0$. To do this we must estimate $b_{n} d_{n}$, where d_{n} is the denominator of a_{n}. The leading terms of (6) give the estimate

$$
\left(-68+1207 N-136 N^{2}\right) b_{n} \approx 0
$$

where N is the shift operator in $n: N b_{n}=b_{n+1}$. Thus $b_{n}=O\left(\alpha^{n}\right)$, where $\alpha=$ $\frac{71+17 \sqrt{17}}{16}$ is a zero of the above quadratic polynomial.

A conjectural upper bound for d_{n} is $11 \cdot 2^{n-2} l_{2 n}$, where $l_{k}=\operatorname{lcm}(1,2, \ldots, k)$. However, this is too crude, as it results in an asymptotic of $\frac{11}{4}\left(2 e^{2}\right)^{n}$ with $2 e^{2}>\alpha$. One possible approach to a refinement is the determination of the power $\operatorname{ord}_{p}\left(d_{n}\right)$ to which each prime p divides d_{n}. For example, for each of the primes $p=3,97$, 337 we have $\operatorname{ord}_{p}\left(d_{n}\right)=\operatorname{ord}_{p}\left(l_{2 n}\right)=\left\lfloor\log _{p}(2 n)\right\rfloor$; in these cases, $l_{2 n}$ is the best we can do. For most primes, however, we can do substantially better. The identity

$$
\operatorname{ord}_{7}\left(a_{n}\right)=\left\lfloor\log _{7}(2 n-1)\right\rfloor+\left\lfloor\log _{7} \frac{n}{3}\right\rfloor-\left\lfloor\log _{7} \frac{2 n-1}{5}\right\rfloor
$$

for $p=7$ holds for the first fifteen thousand n. Additionally, $p=199$ seems to be similar to 7 in this regard. In general, $\operatorname{ord}_{p}\left(d_{n}\right)$ varies much more frequently than in these special cases; however, it is still conceivable that explicit bounds exist. Thus it would seem that R is likely irrational.

3. Closed forms

But, alas, an all-too-late consultation with the now-defunct Inverse Symbolic Calculator [2] reveals that R is just $\frac{4}{11} \log 2$, the irrationality of which does not require extensive analysis. And once this is known it is not difficult to guess that

$$
\frac{2 t}{6 t+5} \log \frac{t}{t-1}
$$

is a general expression for the real number arising as the limit of a_{n} / b_{n}, where $a_{0}=$ $0, a_{1}=1, b_{0}=F(0,0), b_{1}=F(1,0)+F(1,1), F(n, k)=\binom{n}{k}\binom{2 n+k}{k}(t-1)^{k}$ is the summand of (3), and a_{n}, b_{n} satisfy the recurrence given for $F(n, k)$ by Zeilberger's algorithm.

In general, the sum (2) seems to satisfy a recurrence of order 2 whenever $s=1$. One may repeat the same procedure for $r=3, s=1$ to find the expression

$$
\frac{6 t^{2}}{24 t^{2}-6 t-1} \log \frac{t}{t-1}
$$

for the limit of a_{n} / b_{n}. For $r=4, s=1$ we obtain

$$
\frac{12 t^{3}}{60 t^{3}-18 t^{2}-4 t-1} \log \frac{t}{t-1} .
$$

With many more cases, it becomes clear that the general form (when $s=1$) is

$$
\frac{r!t^{r-1}}{(r+1)!t^{r-1}-\cdots-(r-2)!} \log \frac{t}{t-1}
$$

(In finding the rational coefficients of $\log \frac{t}{t-1}$, Mathematica's Rationalize function outperforms Maple's convert (f, rational) in correctness.) One divides the denominator by $r!t^{r-1}$ and interpolates a rational function for each coefficient to experimentally determine the general expression

$$
\begin{equation*}
\left((r+1)-\sum_{k=1}^{r-1} \frac{r-k}{k(k+1) t^{k}}\right)^{-1} \log \frac{t}{t-1} \tag{7}
\end{equation*}
$$

References

[1] Roger Apéry, "Irrationalité de $\zeta(2)$ et $\zeta(3) "$ ", Astérisque 61 (1979), 11-13.
[2] Centre for Experimental and Constructive Mathematics, Inverse Symbolic Calculator, http://oldweb.cecm.sfu.ca/projects/ISC/ISCmain.html.
[3] Simon Plouffe, Plouffe's Inverter, http://pi.lacim.uqam.ca/eng/.
[4] Alfred van der Poorten, "A proof that Euler missed... Apéry's proof of the irrationality of $\zeta(3) "$, Mathematical Intelligencer 1 (1979), 195-203.
[5] Doron Zeilberger, "A fast algorithm for proving terminating hypergeometric identities", Discrete Mathematics 80 (1990), 207-211.
[6] Doron Zeilberger, "Computerized deconstruction", Advances in Applied Mathematics 30 (2003), 633-654.

