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Abstract. In an effort to modify Apéry’s proofs of the irrationality of log 2,

ζ(2), and ζ(3) to include other, perhaps less well known constants, the author

has identified a certain number R = .25205 . . . as a likely candidate for such an
irrationality proof. The actual proof, unfinished at the time of a discovery of a

different nature, depends on estimating the power to which a prime p divides

each rational convergent an/bn, where R is defined by an/bn → R as n→∞.
A conjecture is salvaged that gives an explicit class of Apéry-type numbers.

1. Introduction

Recall that we may prove that a real number α is irrational by exhibiting a
sequence {an/bn} of rational numbers (with bn →∞) that converges to α with the
property that there exist δ > 0 and C > 0 such that for all n

(1) 0 <
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bn
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n
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If α = c/d were rational, then we would have∣∣∣∣α− an

bn

∣∣∣∣ = ∣∣∣∣ cd − an

bn
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bnd

since bnc − and is a nonzero integer. Comparing this with our criterion (1), we
obtain

1
bnd

≤
∣∣∣∣α− an

bn
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or bδ
n < C · d, which is a contradiction because {bδ

n} is unbounded.
Apéry [1] found such a sequence of rationals for each of the constants log 2,

ζ(2), and ζ(3). One can view these sequences as arising from recurrence relations
satisfied by the summands of
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which, under Apéry’s method, result in sequences of rational numbers that converge
to 1

2 log 2, 1
5ζ(2), and 1

6ζ(3) respectively, as can be verified numerically with the
function Roger in Zeilberger’s Maple package AperyRecurrence [6].

2. Generalization

In search of other numbers than can be proven irrational by Apéry’s method, I
have used AperyRecurrence to study the more general sum

(2)
n∑

k=0

(
n

k

)p1
(

rn + sk

k

)p2

(t− 1)k

with positive integral parameters p1, p2, r, s, t. (Later we will see the advantage of
using (t− 1)k rather than tk.)

One can find (again using Roger) estimates of δ for various values of these
parameters. If δ > 0 for a given summand, then there is a possibility of finding an
Apéry-style irrationality proof.

It appears that for p1 and p2 greater than 2, there are no good candidates.
Moreover, even modifying r, s, and t for the cases p1 = p2 + 1 = 2 and p1 = p2 = 2
seems not to give candidates either; that is, ζ(2) and ζ(3) are just special cases.
Therefore we restrict ourselves to the case p1 = p2 = 1. (However, it might still
be of some interest to find alternative expressions for these numbers, as is done in
section 3 for the case s = p1 = p2 = 1. For example, how are they related to ζ(2)
and ζ(3)?)

For t ≥ 2, the sum
n∑

k=0

(
n

k

)(
n + k

k

)
(t− 1)k

gives a sequence of rational numbers converging to 1
2 log t

t−1 , which is irrational for
every t.

A more interesting sum is

(3)
n∑

k=0

(
n

k

)(
2n + k

k

)
(t− 1)k.

We first consider the case t = 2. Executing Zeilberger’s algorithm [5] with the
command

zeil(binomial(n,k)*binomial(2*n+k,k),k,n,N)

reveals that the summand F (n, k) =
(
n
k

)(
2n+k

k

)
satisfies the recurrence

(4) p0(n)F (n, k) + p1(n)F (n + 1, k) + p2(n)F (n + 2, k) = G(n, k + 1)−G(n, k),

where

p0(n) = −2(17n + 28)(2n + 1)(n + 1),

p1(n) = 1207n3 + 4402n2 + 5021n + 1730,

p2(n) = −4(17n + 11)(2n + 3)(n + 2),

G(n, k) = R(n, k) F (n, k),
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and R(n, k) is a rational function in n and k. Define two sequences {an}, {bn} by
the recurrences

p0(n)an + p1(n)an+1 + p2(n)an+2 = 0,(5)

p0(n)bn + p1(n)bn+1 + p2(n)bn+2 = 0(6)

with initial conditions a0 = 0, a1 = 1, b0 = 1, b1 = 4. These conditions ensure that
bn ∈ Z for all n; indeed, summing (4) over all integers k gives

bn =
n∑

k=0

(
n

k

)(
2n + k

k

)
.

In general, an is a non-integral rational number. The sequence {an/bn} begins

0,
1
4
,

865
3432

,
12643
50160

,
13619843
54035520

,
323746091
1284433920

,
115021083581
456335953920

,
2224431220019
8825233697280

, . . . .

The experimental δ for this sequence (given by Roger) remains positive for at least
several thousand terms, suggesting that the real number

R = lim
n→∞

an

bn
= .252053520203616476 . . .

may be proven irrational by Apéry’s method.
The number R did not appear in Plouffe’s Inverter [3] as a widely known constant

(and the advanced search was inoperable at the time), so it seemed that R was in
fact a new candidate for irrationality. What remains, then, is to prove that {an/bn}
satisfies the irrationality criterion (1) for some δ > 0. To do this we must estimate
bndn, where dn is the denominator of an. The leading terms of (6) give the estimate(

−68 + 1207N − 136N2
)
bn ≈ 0,

where N is the shift operator in n: Nbn = bn+1. Thus bn = O(αn), where α =
71+17

√
17

16 is a zero of the above quadratic polynomial.
A conjectural upper bound for dn is 11 · 2n−2 l2n, where lk = lcm(1, 2, . . . , k).

However, this is too crude, as it results in an asymptotic of 11
4 (2e2)n with 2e2 > α.

One possible approach to a refinement is the determination of the power ordp(dn)
to which each prime p divides dn. For example, for each of the primes p = 3, 97,
337 we have ordp(dn) = ordp(l2n) = blogp(2n)c; in these cases, l2n is the best we
can do. For most primes, however, we can do substantially better. The identity

ord7(an) = blog7(2n− 1)c+
⌊
log7

n
3

⌋
−
⌊
log7

2n−1
5

⌋
for p = 7 holds for the first fifteen thousand n. Additionally, p = 199 seems to be
similar to 7 in this regard. In general, ordp(dn) varies much more frequently than in
these special cases; however, it is still conceivable that explicit bounds exist. Thus
it would seem that R is likely irrational.

3. Closed forms

But, alas, an all-too-late consultation with the now-defunct Inverse Symbolic
Calculator [2] reveals that R is just 4

11 log 2, the irrationality of which does not
require extensive analysis. And once this is known it is not difficult to guess that

2t

6t + 5
log t

t−1
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is a general expression for the real number arising as the limit of an/bn, where a0 =
0, a1 = 1, b0 = F (0, 0), b1 = F (1, 0) + F (1, 1), F (n, k) =

(
n
k

)(
2n+k

k

)
(t − 1)k is the

summand of (3), and an, bn satisfy the recurrence given for F (n, k) by Zeilberger’s
algorithm.

In general, the sum (2) seems to satisfy a recurrence of order 2 whenever s = 1.
One may repeat the same procedure for r = 3, s = 1 to find the expression

6t2

24t2 − 6t− 1
log t

t−1

for the limit of an/bn. For r = 4, s = 1 we obtain

12t3

60t3 − 18t2 − 4t− 1
log t

t−1 .

With many more cases, it becomes clear that the general form (when s = 1) is

r! tr−1

(r + 1)! tr−1 − · · · − (r − 2)!
log t

t−1 .

(In finding the rational coefficients of log t
t−1 , Mathematica’s Rationalize func-

tion outperforms Maple’s convert(f, rational) in correctness.) One divides the
denominator by r! tr−1 and interpolates a rational function for each coefficient to
experimentally determine the general expression

(7)

(
(r + 1)−

r−1∑
k=1

r − k

k(k + 1)tk

)−1

log t
t−1 .
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