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A Deterministic Mathematical Model for
Bidirectional Excluded Flow with

Langmuir Kinetics
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Abstract

In many important cellular processes, including mRNA translation, gene transcription, phosphotransfer, and

intracellular transport, biological “particles” move along some kind of “tracks”. The motion of these particles can

be modeled as a one-dimensional movement along an ordered sequence of sites. The biological particles (e.g.,

ribosomes, RNAPs, phosphate groups, motor proteins) have volume and cannot surpass one another. In some cases,

there is a preferred direction of movement along the track, but in general the movement may be two-directional,

and furthermore the particles may attach or detach from various regions along the tracks (e.g. ribosomes may drop

off the mRNA molecule before reaching a stop codon).

We derive a new deterministic mathematical model for such transport phenomena that may be interpreted as the

dynamic mean-field approximation of an important model frommechanical statistics called the asymmetric simple

exclusion process (ASEP) with Langmuir kinetics. Using tools from the theory of monotone dynamical systems

and contraction theory we show that the model admits a uniqueequilibrium, and that every solution converges to

this equilibrium. This means that the occupancy in all the sites along the lattice converges to a steady-state value

that depends on the parameters but not on the initial conditions. Furthermore, we show that the model entrains (or

phase locks) to periodic excitations in any of its forward, backward, attachment, or detachment rates.

We demonstrate an application of this phenomenological transport model for analyzing the effect of ribosome

drop off in mRNA translation. One may perhaps expect that drop off from a jammed site may increase the total

flow by reducing congestion. Our results show that this is nottrue. Drop off has a substantial effect on the flow,

yet always leads to a reduction in the steady-state protein production rate.
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bosome flow model, ribosome drop off, Langmuir kinetics, bi-directional flow, intracellular transport, contraction

The research of MM and TT is partially supported by research grants from the Israeli Ministry of Science, Technology & Space and the
Binational Science Foundation. The research of MM is also supported by a research grant form the Israeli Science Foundation.

Y. Zarai is with the School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel. E-mail: yoramzar@mail.tau.ac.il
M. Margaliot is with the School of Electrical Engineering and the Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978,

Israel. E-mail: michaelm@eng.tau.ac.il
T. Tuller is with the department of Biomedical Engineering and the Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978,

Israel. E-mail: tamirtul@post.tau.ac.il

http://arxiv.org/abs/1609.05676v1


2

theory, contraction after a short transient, entrainment.

I. INTRODUCTION

Movement is essential for the functioning of cells. Cargoeslike organelles and vesicles must be carried

between different locations in the cells. The information encoded in DNA and mRNA molecules must be

decoded by “biological machines” (RNA polymerases and ribosomes) that move along these molecules

in a sequential order.

Many of these important biological transport processes aremodeled as the movement of particles along

an ordered chain of sites. In the context of intercellular transport, the particles are motor proteins and

the chain models actin filaments or microtubules. In transcription, the particles are RNAPs moving along

the DNA molecule, and in translation the particles are ribosomes moving along the mRNA molecule (see

Figure 1).

The movement in such processes may be unidirectional, as in mRNA translation elongation, or bidi-

rectional, as in transcription or translation initiation.Indeed, the normal forward flow of the RNAP may

be interrupted, due to transcription errors and various obstacles such as nucleosomes, in which case the

RNAP tracks back a few nucleotides and then resumes its normal forward flow [54], [41], [8], [10].

Translation initiation in eukaryotes usually includes diffusion from the 5’end of the transcript towards

the start codon [1]. This diffusion process is believed to bebi-directional, but with a preference to the

5’→3’ direction. The movement of motor proteins like kinesin and dynein along microtubules is typically

unidirectional, but can be two-directional as well [1].

To increase efficiency, many particles may move simultaneously along the same track thus pipelining

the production process. For example, to increase translation efficiency, a number of ribosomes may act

simultaneously as polymerases on the same mRNA molecule [66], [4].

The moving biological particles have volume and usually cannot overtake a particle in front of them.

This means that a slowly moving particle may lead to the formation of a traffic jam behind it. For example,

Leduc et al. [31] have studied Kip3, a yeast kinesin-8 familymotor, and demonstrated that motor protein

traffic jams can exist, given the right conditions. Other studies have suggested that traffic jams of RNAP

[ribosomes] may evolve during transcription [translation] [4], [27], [9].

In some of these biological transport processes, the biological machines may either attach or detach

at various sites along the tracks. For example, ribosomes may detach from the mRNA molecule before
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Fig. 1. Biological processes that can be studied using the model suggested in this paper.

reaching the stop codon due to traffic “jams” and ribosome-ribosome interactions or due to depletion in

the concentration of tRNAs [72], [28], [57]. Also, it is known that kinesin-family motor proteins are more

susceptible to dissociation when their pathway is blocked [14], [62].

Defects in these transport processes may lead to severe diseases or may even be lethal. For example, [53]

lists the implications of malfunctions of protein motors indisease and developmental defects.

Developing a better understanding of these dynamical biological processes by combining mathematical

modeling and biological experiments will have far reachingimplications to basic science in fields such as

molecular evolution and functional genomics, as well as applications in synthetic biology, biotechnology,



4

human health, and more. Mathematical or computational modeling is especially important in developing

approaches for manipulating and controlling these processes, e.g. in order to optimize various goals in

biotechnology.

A standard model for such transport processes is theasymmetric simple exclusion process(ASEP) [55],

[73]. This is a stochastic model describing particles that hop along an ordered lattice of sites. Each site

can be either empty or occupied by a single particle, and a particle can only hop to an empty site. This

“simple exclusion principle” represents the fact that the particles have volume and cannot overtake one

another. Simple exclusion generates an indirect coupling between the particles. In particular, traffic jams

may develop behind a slow-moving particle.

In ASEP, a particle may hop to any of the two neighboring sites(but only if they are free). Typically,

a particle can attach the lattice in one of its ends and detachfrom the other end. When particles can

also attach or detach at internal sites along the lattice, the model is referred to as ASEP withLangmuir

kinetics. In the special case where the hops are unidirectional, ASEPis sometimes referred to as thetotally

asymmetric simple exclusion process(TASEP). A TASEP-like system with Langmuir kinetics has been

used to model limit order markets in [65], and is often used inmodeling molecular motor traffic [42], [43],

[32], [33], [16]. More generally, ASEP has become a fundamental model in non-equilibrium statistical

mechanics, and has been applied to model numerous natural and artificial processes including traffic and

pedestrian flow, the movement of ants, evacuation dynamics,and more [52].

In this paper, we introduce a deterministic mathematical model that may be interpreted as the dynamic

mean-field approximation of ASEP with Langmuir kinetics(MFALK). We analyze the MFALK using tools

from systems and control theory. In particular, we apply some recent developments in contraction theory

to prove that the model is globally asymptotically stable, and that it entrains to periodic excitations in

the transition/attachment/detachment rates. In other words, if these rates change periodically in time with

some common periodT then all the state-variables in the MFALK converge to a periodic solution with

periodT . This is important because many biological processes are excited by periodic signals (e.g. the

24h solar day or the periodic cell-division process), and proper functioning requires phase-locking or

entrainment to these excitations.

Our work is motivated by the analysis of a model for mRNA translation called theribosome flow

model (RFM)[48]. This is the mean-field approximation of theunidirectionalTASEPwithout Langmuir

kinetics (see, e.g., [52, section 4.9.7] and [6, p. R345]). Recently, the RFM has been studied extensively
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using tools from systems and control theory [36], [71], [37], [38], [35], [44], [45], [47], [70]. The analysis

is motivated by implications to many important biological questions. For example, the sensitivity of the

protein production rate to the initiation and elongation rates along the mRNA molecule [45], maximization

of protein production rate [44], the effect of ribosome recycling [38], [47], and the consequences of

competition for ribosomes on large-scale simultaneous mRNA translation in the cell [46] (see also [19],

[2] for some related models).

The MFALK presented here is much more general than the RFM, and can thus be used to model and

analyze many transport phenomena, including all the biological processes mentioned above, that cannot

be captured using the RFM. We demonstrate this by using the MFALK to model and analyze mRNA

translation withribosome drop off- a feature that cannot be modeled using the RFM.

Ribosome drop off is a fundamental phenomena that has received considerable attention (see, e.g., [57],

[25], [24], [68], [7], [61], [18], [28], [22], [20]). In manycases, ribosome drop off is deleterious to the

cell since translation is the most energetically consumingprocess in the cell and, furthermore, drop off

yields truncated, non-functional proteins. Thus, transcripts undergo selection to minimize drop off or its

energetic cost [67], [63], [61], [18], [28], [20]. There arevarious hypotheses on the biological advantages

of ribosome drop off. For example, Zaher and Green [69] have suggested that ribosome drop off is related

to proof reading. One may perhaps expect that another advantage is that drop off from a jammed site

may increase the total flow by reducing congestion. Our results using analysis of the MFALK show that

this is not true. Drop off has a substantial effect on the flow,yet it always leads to a reduction in the

steady-state protein production rate.

The remainder of this paper is organized as follows. The nextsection describes the new mathematical

model. Section III presents our main analysis results. Section IV describes the application of the MFALK

to model mRNA translation with ribosome drop off. The final section concludes and describes possible

directions for further research. To streamline the presentation, all the proofs are placed in the Appendix.

II. THE MODEL

The MFALK is a set ofn first-order nonlinear differential equations, wheren denotes the number

of compartments or sites along the “track”. Each site is associated with a state variablexi(t) ∈ [0, 1]

describing the normalized “level of occupancy” at sitei at timet, with xi(t) = 0 [xi(t) = 1] representing

that sitei is completely free [full] at timet. Sincexi(t) ∈ [0, 1] for all t, it may also be interpreted as

the probability that sitei is occupied at timet.
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The MFALK contains four sets of non-negative parameters:

• λi, i = 0, . . . , n, controls the forward transition rate from sitei to site i+ 1,

• γi, i = 0, . . . , n, controls the backward transition rate from sitei+ 1 to site i,

• βi, i = 1, . . . , n, controls the attachment rate to sitei,

• αi, i = 1, . . . , n, controls the detachment rate from sitei,

where we arbitrarily refer to left-to-right flow along the chain as forward flow, and to flow in the other

direction as backward flow.

The dynamical equations describing the MFALK are:

ẋ1 = λ0(1− x1) + γ1x2(1− x1) + β1(1− x1)− λ1x1(1− x2)− γ0x1 − α1x1,

ẋ2 = λ1x1(1− x2) + γ2x3(1− x2) + β2(1− x2)− λ2x2(1− x3)− γ1x2(1− x1)− α2x2,

...

ẋn−1 = λn−2xn−2(1− xn−1) + γn−1xn(1− xn−1) + βn−1(1− xn−1)− λn−1xn−1(1− xn)

− γn−2xn−1(1− xn−2)− αn−1xn−1,

ẋn = λn−1xn−1(1− xn) + γn(1− xn) + βn(1− xn)− λnxn − γn−1xn(1− xn−1)− αnxn. (1)

To explain these equations, consider for example the equation for the change in the occupancy in site2,

namely,

ẋ2 = λ1x1(1− x2) + γ2x3(1− x2) + β2(1− x2)− λ2x2(1− x3)− γ1x2(1− x1)− α2x2.

The termλ1x1(1 − x2) represents the flow from site1 to site 2. This increases with the occupancy in

site 1, and decreases with the occupancy in site2. In particular, this term becomes zero whenx2 = 1,

i.e. when site2 is completely full. This is a “soft” version of the hard exclusion principle in ASEP: the

effective entry rate into a site decreases as it becomes fuller. Note that the constantλ1 ≥ 0 describes the

maximal possible transition rate from site1 to site2. Similarly, the termλ2x2(1−x3) represents the flow

from site2 to site3. The termγ2x3(1− x2) [γ1x2(1 − x1)] represents the backward flow from site3 to

site 2 [site 2 to site1]. Note that these terms also model soft exclusion. The termβ2(1− x2) represents

attachment of particles from the environment to site2, whereasα2x2 represents detachment of particles

from site2 to the environment (see Fig. 2).

The MFALK is a compartmental model[21], [51], as every state-variable describes the occupancy in a
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Output rate

Fig. 2. Topology of the MFALK.

compartment (e.g., a site along the the mRNA, gene, microtubule), and the dynamical equations describe

the flow between these compartments and the environment. Compartmental models play an important

role in pharmacokinetics, enzyme kinetics, basic nutritional processes, cellular growth, and pathological

processes, such as tumourigenesis and atherosclerosis (see, e.g., [21], [17] and the references therein). More

specifically, the MFALK is a nonlinear tridiagonal compartmental model, as everẏxi directly depends

on xi−1, xi, andxi+1 only.

Note also that

n
∑

i=1

ẋi = λ0(1− x1)− γ0x1 + β1(1− x1)− α1x1

+ γn(1− xn)− λnxn + βn(1− xn)− αnxn

+

n−1
∑

i=2

(βi(1− xi)− αixi). (2)

The term on the right-hand side of the first [second] line hererepresents the change inx0 [xn] due to the

flow between the environment and site1 [site n], whereas the term on the third line represents the flow

between internal sites and the environment.

The output ratefrom siten at time t is the total flow from this site to the environment:

R(t) : = (λn + αn)xn(t)− (γn + βn)(1− xn(t)). (3)

Note thatR(t) may be positive, zero, or negative.

In the particular case whereαi = βi = γi = 0 for all i the MFALK becomes the RFM, i.e. the

dynamic mean-field approximation of the unidirectional TASEP with open boundary conditions and

without Langmuir kinetics.



8

Let x(t, a) denote the solution of (1) at timet ≥ 0 for the initial conditionx(0) = a. Since the

state-variables correspond to normalized occupancy levels, we always assume thata belongs to the closed

n-dimensional unit cube:

Cn := {x ∈ R
n : xi ∈ [0, 1], i = 1, . . . , n}.

Let int(Cn) denote the interior ofCn, and let∂Cn denote the boundary ofCn. The next section analyzes

the MFALK defined in (1).

III. M AIN RESULTS

A. Invariance and persistence

It is straightforward to show thatCn is an invariant set for the dynamics of the MFALK, that is,

if a ∈ Cn then x(t, a) ∈ Cn for all t ≥ 0. The following result shows that a stronger property holds.

Recall that all the proofs are placed in the Appendix. For notational convenience, letα0 := 0, γ0 := 0,

αn+1 := 0, andβn+1 := 0.

Proposition 1 Suppose that at least one of the following two conditions holds:

λi + βi+1 > 0, for all i ∈ {0, . . . , n}, (4)

or

γi + αi+1 > 0, for all i ∈ {0, . . . , n}. (5)

Then for anyτ > 0 there existsd = d(τ) ∈ (0, 1/2] such that

d ≤ xi(t+ τ, a) ≤ 1− d, (6)

for all a ∈ Cn, all i ∈ {1, . . . , n}, and all t ≥ 0.

This means in particular that trajectories that emanate from the boundary ofCn “immediately” enterCn.

This result is useful because as we will see below on the boundary of Cn the MFALK looses some

important properties. For example, the Jacobian matrix of the dynamics (1) is irreducible onint(Cn), but

becomes reducible on some points on the boundary ofCn.
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B. Contraction

Differential analysis and in particular contraction theory proved to be a powerful tool for analyzing

nonlinear dynamical systems. In a contractive system, trajectories that emanate from different initial

conditions contract to each other at an exponential rate [34], [49], [3]. Let | · |1 : Rn → R+ denote theL1

norm, i.e. forz ∈ R
n, |z|1 = |z1|+ · · ·+ |zn|.

Proposition 2 Let

η := max{−λ0 − γ0 − α1 − β1,−α2 − β2, . . . ,−αn−1 − βn−1,−λn − γn − αn − βn}.

Note thatη ≤ 0. For anya, b ∈ Cn and anyt ≥ 0,

|x(t, a)− x(t, b)|1 ≤ exp(ηt)|a− b|1. (7)

This implies that theL1 distance between any two trajectories contracts with the exponential rateη.

Roughly speaking, this also means that increasing all the sums αi + βi, i = 1, . . . , n, makes the system

“more contractive”. Indeed, these parameters have a directstabilizing effect on the dynamics of sitei,

whereas the other parameters affect the site indirectly viathe coupling to the two adjacent sites.

Whenη = 0, (7) only implies that theL1 distance between trajectories does not increase. This property

is not strong enough to prove the asymptotic properties described in the subsections below. Indeed, in this

case it is possible that the MFALK willnot be contractive with respect to any fixed norm. Fortunately, a

certain generalization of contraction turns out to hold in this case.

Consider the time-varying dynamical system

ẋ(t) = f(t, x(t)), (8)

whose trajectories evolve on a compact and convex setΩ ⊂ R
n. Let x(t, t0, a) denote the solution of (8) at

time t for the initial conditionx(t0) = a. System (8) is said to becontractive after a small overshoot(SO)

[39] on Ω w.r.t. a norm| · | : Rn → R+ if for any ε > 0 there existsℓ = ℓ(ε) > 0 such that

|x(t, t0, a)− x(t, t0, b)| ≤ (1 + ε) exp(−ℓt)|a− b|,

for all a, b ∈ Ω and all t ≥ t0 ≥ 0. Intuitively speaking, this means contraction with an exponential rate,

but with an arbitrarily small overshoot of1 + ε.
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Proposition 3 Suppose that

λi + γi > 0, for all i ∈ {1, . . . , n− 1}, (9)

and that at least one of the two conditions(4), (5) holds. Then the MFALK is SO onCn w.r.t. theL1

norm, that is, for anyε > 0 there existsℓ = ℓ(ε) > 0 such that

|x(t, a)− x(t, b)|1 ≤ (1 + ε) exp(−ℓt)|a− b|1, (10)

for all a, b ∈ Cn and all t ≥ 0.

Note that ifλi + γi = 0 for somei ∈ {1, . . . , n− 1}, that isλi = γi = 0, then the MFALK decouples

into two separate MFALKs: one containing sites1, . . . , i, and the other containing sitesi+1, . . . , n. Thus,

assuming (9) incurs no loss of generality.

There is an important difference between Propositions 2 and3. If η < 0 then Proposition 2 provides

an explicit exponential contraction rate. Ifη = 0 then Proposition 3 can be used to deduce SO, but in this

result the contraction rateℓ depends onε and is not given explicitly.

The contraction results above imply that the MFALK satisfiesseveral important asymptotic properties.

These are described in the following subsections.

C. Global asymptotic stability

Since the compact and convex setCn is an invariant set of the dynamics, it contains an equilibrium

point e. By Proposition 1,e ∈ int(Cn). Applying (10) with b = e yields the following result.

Corollary 1 Suppose that the conditions in Proposition 3 hold. Then the MFALK admits a unique

equilibrium pointe ∈ int(Cn) that is globally asymptotically stable, i.e.limt→∞ x(t, a) = e, for all a ∈ Cn.

This means that the rates determine a unique distribution profile along the lattice, and that all trajectories

emanating from different initial conditions inCn asymptotically converge to this distribution. In addition,

perturbations in the occupancy levels along the sites will not change this asymptotic behavior of the

dynamics. This also means that various numerical solvers ofODEs will work well for the MFALK (see

e.g. [13]).
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Example 1 Fig. 3 depicts the trajectories of a MFALK withn = 3, λ0 = 1.0, λ1 = 1.2, λ2 = 0.8,

λ3 = 0.9, γi = λi − 0.3, i = 0, . . . , 3, α1 = 0, α2 = 0.1, α3 = 0, β1 = 0, β2 = 0.2, β3 = 0, for six initial

conditions inCn. It may be seen that all trajectories converge to an equilibrium point e ∈ int(C3). �

0

0.1

0.2

0.3

0

0.4

0.5

0.6

0.7
x 3

0.8

0.9

1

x
1

0.5 10.8

x
2

0.60.40.21 0

Fig. 3. Trajectories of the MFALK in Example 1 for six initialconditions inC3.

The MFALK (1) can be written as

ẋi = fi−1(x)− fi(x) + gi(xi), i = 1, . . . , n, (11)

where

f0(x) := λ0(1− x1)− γ0x1,

fi(x) := λixi(1− xi+1)− γixi+1(1− xi), i = 1, . . . , n− 1,

fn(x) := λnxn − γn(1− xn),

gi(xi) := βi(1− xi)− αixi, i = 1, . . . , n. (12)

At steady-state, i.e. forx = e, the left-hand side of all the equations in (11) is zero, so

fi−1(e) = fi(e)− gi(ei), i = 1, . . . , n. (13)

Let v :=
[

α1, . . . , αn, β1, . . . , βn, γ0, . . . , γn, λ0, . . . , λn

]′

∈ R
4n+2
+ denote the parameters of the MFALK.

It follows from (13) that if we multiply all these parametersby c > 0 then e will not change, that
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is, e(cv) = e(v). Let

R := (λn + αn)en − (γn + βn)(1− en), (14)

denote thesteady-state output rate. ThenR(cv) = cR(v), for all c > 0, that is, the steady-state production

rate is homogeneous of order one w.r.t. the parameters. By (13),

R = fn(e)− gn(en)

= fi(e) +

n−1
∑

j=i+1

gj(ej), i = 0, . . . , n− 1. (15)

This yields the following set of recursive equations relating the steady-state occupancy levels and the

output rate in the MFALK:

en =
R + γn + βn

λn + γn + βn + αn

,

ei =
R + γiei+1 −

∑n−1

j=i+1
gj(ej)

λi(1− ei+1) + γiei+1

, i = n− 1, . . . , 1, (16)

and also

e1 =
λ0 + β1 −R +

∑n−1

j=2
gj(ej)

λ0 + γ0 + β1 + α1

.

For a givenv, this is a set ofn + 1 equations in then+ 1 unknowns:e1, . . . , en, R.

Example 2 Consider the MFALK with dimensionn = 2. Then (16) becomes

e2 =
R + γ2 + β2

λ2 + γ2 + α2 + β2

,

e1 =
R + γ1e2

λ1(1− e2) + γ1e2
, (17)

and also

e1 =
λ0 + β1 − R

λ0 + γ0 + β1 + α1

.

This yields the polynomial equationa2R2 + a1R + a0 = 0, where

a2 := λ1 − γ1,

a1 := (λ1 − γ1)(γ2 + β2 − λ0 − β1)− λ1z2 − z1z2 − z1γ1,

a0 := (λ0 + β1)λ1(λ2 + α2)− (γ0 + α1)γ1(γ2 + β2),
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with z1 := λ0 + γ0 + α1 + β1 andz2 := λ2 + γ2 + α2 + β2.

Note that the polynomial equation admits several solutionsR, but only one solution corresponds to

the unique equilibrium pointe ∈ C2. For example, forλi = 1, γi = 2, βi = 3, andαi = 4 for all i the

polynomial equation becomes−R2 − 131R − 40 = 0. This admits two solutionsR1 = (−3s − 131)/2

andR2 = (3s − 131)/2, with s :=
√
1889. SubstitutingR1 in (17) yieldse = [e1 e2]

′, with e2 < 0, so

this is not a feasible solution. SubstitutingR2 in (17) yields (all numbers are to four digit accuracy)e =
[

0.4305 0.4695
]′

∈ C2, which is the unique feasible solution. Thus, the steady-state output rate isR2 =

−0.3046. �

In general, (16) can be transformed into a polynomial equation for R. The next result shows that the

degree of this polynomial equation grows quickly withn.

Proposition 4 Consider the MFALK with dimensionn and with λi 6= γi, αi 6= 0, βi 6= 0, for all i.

Then generically Eq.(16) may be written asw(R) = 0, wherew(R) is a polynomial equation inR of

degree1 + ⌊2n

3
⌋, and with coefficients that are algebraic functions of the rates.

We note that this is exponential increase in the degree of thepolynomial equation is a feature of the

MFALK that does not take place in the RFM. Indeed, in the RFM the degree of the polynomial equation

for the steady-state production rate grows linearly withn.

Let sgn(·) : R → {−1, 0, 1} denote the sign function, i.e.

sgn(y) =



























1, y > 0,

0, y = 0,

−1, y < 0.

An interesting question is what issgn(R). Indeed, if this is positive (negative) then this means thatthere

is a net steady-state flow from left to right (right to left). The next subsection describes a special case

where this question can be answered rigorously.

1) Bidirectional flow with no Langmuir kinetics:In the case whereβi = αi = 0, i = 1, . . . , n, i.e. a

system with no internal attachments and detachments, Eq. (15) becomes

R = fi(e), i = 0, . . . , n. (18)
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Proposition 5 Consider the case whereαi = βi = 0, i = 1, . . . , n, and suppose that(9) holds. Then

sgn(R) = sgn

(

n
∏

i=0

λi −
n
∏

i=0

γi

)

. (19)

In particular, if
∏n

i=0
λi =

∏n

i=0
γi thenR = 0, and

ei =

∏i−1

j=0
λj

∏i−1

j=0
λj +

∏i−1

j=0
γj

=

∏n

j=i γj
∏n

j=i γj +
∏n

j=i λj

, i = 1, . . . , n. (20)

Eq. (19) means that in the case of no Langmuir kinetics the steady-state output from the right hand-side

of the chain will be positive [negative] if the the product ofthe forward rates is larger [smaller] than

the product of the backward rates. In transcription and translation the steady state flow from the right

hand-side of the chain should always be positive, but in other cases, e.g. transport along microtubules,

the steady state flow may be either positive or negative.

D. Entrainment

Assume now that some or all of the rates are time-varying periodic functions with the same periodT .

This may be interpreted as a periodic excitation of the system. Many biological processes are affected by

such excitations due for example to the periodic 24h solar day or the periodic cell-cycle division process.

For example, translation elongation factors, tRNAs, translation and transcription initiation factors, ATP

levels, and more may change in a periodic manner and affect various rates that appear in the MFALK.

A natural question is will the state-variables of the MFALK converge to a periodic pattern with periodT?

We will show that this is indeed so, i.e. the MFALKentrainsto a periodic excitation in the rates. In order to

understand what this means, consider a different setting, namely, using the MFALK to model traffic flow.

Then the rates may correspond to traffic lights, changing in aperiodic manner, and the state-variables are

the density of the moving particles (cars) along different sections of the road, so entrainment corresponds

to what is known as the “green wave” (see e.g. [26] and the references therein).

We say that a functionf is T -periodic if f(t+T ) = f(t) for all t. Assume that theλis, γis,αis andβis

are uniformly bounded, non-negative, time-varying functions satisfying:

• there exists a (minimal)T > 0 such that all theλi(t)s, γi(t)s, αi(t)s, andβi(t)s areT -periodic.
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• there existc1, c2 > 0 such that at least one of the following two conditions holds for all time t

λi(t) + βi+1(t) > c1, i = 0, . . . , n, (21)

γi(t) + αi+1(t) > c2, i = 0, . . . , n. (22)

• there existsc3 > 0 such that

λi(t) + γi+1(t) > c3, i = 0, . . . , n. (23)

We refer to this model as thePeriodic MFALK (PMFALK).

Theorem 1 Consider the PMFALK with dimensionn. There exists a unique functionφ(·) : R+ → int(Cn),

that is T -periodic, and for anya ∈ Cn the trajectoryx(t, a) converges toφ as t → ∞.

Thus, the PMFALKentrains(or phase-locks) to the periodic excitation in the parameters. In particular,

this means that the output rateR(t) in (3) converges to the uniqueT -periodic function:

(λn(t) + γn(t) + βn(t) + αn(t))φn(t)− γn(t)− βn(t).

Note that since a constant function is a periodic function for all T ≥ 0, Theorem 1 implies that entrainment

holds also in the particular case where asingle parameter is oscillating (with periodT > 0), while all

other parameters are constant. Note also that Corollary 1 follows from Theorem 1.

Example 3 Consider the MFALK with dimensionn = 3, parameters:λ0(t) ≡ 1.0, λ1(t) ≡ 1.2, λ2(t) =

1+0.5 sin(πt/4), λ3(t) ≡ 0.9, γ0(t) ≡ 0.4, γ1(t) = 0.4(1+sin((πt/4)+1/2)), γ2(t) ≡ 0.25, γ3(t) ≡ 0.45,

α1(t) ≡ 0, α2(t) ≡ 0.05, α3(t) ≡ 0, β1(t) ≡ 0, β2(t) = 0.05(1+ sin((πt/2)+1/4)), β3(t) ≡ 0, and initial

condition x(0) =
[

0.8 0.8 0.8
]′

. Note that all the rates here are periodic, with a minimal common

periodT = 8. Fig. 4 depictsxi(t), i = 1, 2, 3, as a function oft. It may be seen that each state variable

converges to a periodic function with periodT = 8. �

E. Strong Monotonicity

Recall that a proper coneK ⊆ R
n defines a partial ordering inRn as follows. For two vectorsa, b ∈ R

n,

we write a ≤ b if (b − a) ∈ K; a < b if a ≤ b and a 6= b; and a ≪ b if (b − a) ∈ int(K). The

systemẏ = f(y) is called monotoneif a ≤ b implies thaty(t, a) ≤ y(t, b) for all t ≥ 0. In other
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Fig. 4. State variablesx1(t) [solid line]; x2(t) [dashed line]; andx3(t) [dotted line] as a function oft in Example 3. Note that each state
variable converges to a periodic function with a periodT = 8.

words, the flow preserves the partial ordering [60]. It is called strongly monotoneif a < b implies

that y(t, a) ≪ y(t, b) for all t > 0.

From here on we consider the particular case where the cone isK := R
n
+. Thena ≤ b if ai ≤ bi for

all i, anda ≪ b if ai < bi for all i. A system that is monotone with respect to this partial ordering is

calledcooperative.

Proposition 6 For any a, b ∈ Cn, with a ≤ b, the solutions of the MFALK satisfy

x(t, a) ≤ x(t, b), for all t ≥ 0. (24)

Furthermore, if (9) holds then

x(t, a) ≪ x(t, b), for all t > 0. (25)

To explain this, consider two initial densitiesa and b with ai ≤ bi for all i, that is,b corresponds to a

larger or equal density at each site. Then the trajectoriesx(t, a) andx(t, b) emanating from these initial

conditions continue to satisfy the same relationship between the densities, namely,xi(t, a) ≤ xi(t, b), for

all i and for all timet ≥ 0.

The MFALK is thus astrongly cooperative tridiagonal system(SCTS) on int(Cn). Some of the

properties deduced above using contraction theory can alsobe deduced using this property [59].
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Remark 1 Suppose that we augment the MFALK into a model ofn + 1 ODEs inn + 1 state-variables

by adding to it the equation

ẋn+1 = −λ0(1− x1)− γ0x1 − β1(1− x1) + α1x1

− γn(1− xn) + λnxn − βn(1− xn) + αnxn

−
n−1
∑

i=2

(βi(1− xi)− αixi).

that is, ẋn+1 = −
∑n

i=1
ẋi (see(2)). Let x̃ denote the vector of then + 1 state-variables. Clearly, this

augmented model admits a first integralH(x̃(t)) :=
∑n+1

i=1
x̃i(t). Also, for any initial condition iñx(0) ∈

Cn×R+ all the state-variables remain bounded, as the firstn state-variables remain inCn and x̃n+1(t) =

H(x̃(0)) − ∑n

i=1
x̃i(t) for all t ≥ 0. It is straightforward to verify that the augmented system is a

cooperative system, and that if(9) holds then it is a SCTS. SCTS systems that admit a non-trivialfirst

integral have many desirable properties (see, e.g. [40]).

F. Effect of attachment and detachment

One may perhaps expect that detachment from a jammed site mayincrease the total flow by reducing

congestion. The next result shows that this is not so. Detachment always decreases the steady-state

production rateR. Similarly, attachment always increasesR.

Proposition 7 Consider a MFALK with dimensionn. Suppose that the conditions in Proposition 3 hold.

Then ∂ei
∂αj

< 0, and ∂ei
∂βj

> 0, for all i, j. Also, ∂R
∂αj

< 0, and ∂R
∂βj

> 0 for all j = 0, 1, . . . , n− 1.

This means that an increase in any of the detachment [attachment] rates decreases [increases] the

steady-state density in all the sites. Also, an increase in any of the internal detachment [attachment] rates

decreases [increases] the steady-state production rate. The next example demonstrates this.

Example 4 Consider the MFALK withn = 3, λi = 1, γi = 0, i = 0, 1, 2, 3, βi = α3 = 0, i = 1, 2, 3.

Fig. 5 depictsR as a function ofα1 ∈ [0, 1] andα2 ∈ [0, 1]. It may be seen thatR decreases with bothα1

andα2. �

We note that the analytical results in Proposition 7 agree well with the simulation results obtained

using a TASEP model for translation that included alternative initiation along the mRNA and ribosome

drop-off [74].

The next section describes an application of the MFALK to a biological process.
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Fig. 5. R as a function ofα1 ∈ [0, 1] andα2 ∈ [0, 1] for the MFALK in Example 4.

IV. A N APPLICATION: MODELING MRNA TRANSLATION WITH RIBOSOME DROP OFF

It is believed that during mRNA translation ribosome movement is unidirectional from the 5’ end to

the 3’ end, and that ribosomes do not enter in the middle of thecoding regions. However, ribosomes can

detach from various sites along the mRNA molecule due for example to collisions between ribosomes.

This is known as ribosome drop off.

As mentioned in the introduction, ribosome drop off has beenthe topic of numerous studies [57], [25],

[24], [68], [7], [61], [18], [28], [22], [20], [29]. It was suggested that in some cases ribosome drop off

is important for proof reading [69], and also that ribosome stalling/abortion plays a role in translational

regulation (e.g. see [56], [74]).

It is clear that ribosome abortion has drawbacks. Indeed, translation is the most energetically consuming

process in the cell, and abortion results in truncated, non-functional and possibly deleterious proteins. It

is believed that transcripts undergo evolutionary selection to minimize abortion and/or its energetic cost

[67], [63], [61], [18], [28], [20]. Nevertheless, there seems to be a certain minimal abortion rate even in

non-stressed conditions [57], [29]. This basal value was estimated (see more details below) to be of the

order or10−4 − 10−3 abortion events per codon inE. coli. In other words, in every codon one out of

1, 000−10, 000 decoding ribosomes aborts. This value is non-negligible. If we consider a drop-off rate of

4 ∗ 10−4 per codon along a coding region of300 codons (approximately the average coding region length

for E. coli) then on average, around10 out of every100 ribosomes will fail to complete the translation
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of the mRNA.

To model translation with ribosome drop off, we use the MFALKwith γi = 0 (i.e. no backwards

motion) andβi = 0 (i.e. no attachment to internal sites along the chain) for all i. Changing the values of

the αis allows to model and analyze the effect of ribosome drop off at different sites along the mRNA

molecule. We assume that

λi > 0, for all i, (26)

as otherwise the chain decouples into two smaller, disconnected chains. Note that (26) implies that the

conditions in Proposition 3 hold, so the model is SO onCn w.r.t. theL1 norm, and thus admits a unique

globally asymptotically stable equilibrium pointe ∈ int(Cn).

We study the effect of ribosome drop off on the steady-state protein production rate and ribosome

density using real biological data. To this end, we considered10 S. cerevisiaegenes (see Figures 6 and 7)

with various mRNA levels (all genes were sorted according totheir mRNA levels and10 genes were

uniformly sampled from the list). Similarly to the approachused in [48], we divided the mRNAs related

to these genes to non-overlapping pieces. The first piece includes the first9 codons that are related to

various stages of initiation [63]. The other pieces include10 non-overlapping codons each, except for the

last one that includes between5 and15 codons.

To model the translation dynamics in these mRNAs using MFALK, we model every piece of mRNA

as a site. We estimated the elongation ratesλi at each site using ribo-seq data for the codon decoding

rates [12], normalized so that the median elongation rate ofall S. cerevisiaemRNAs becomes6.4 codons

per second [23]. The site rate is(site time)−1, where site time is the sum over the decoding times of

all the codons in the piece of mRNA corresponding to this site. These rates thus depend on various

factors including availability of tRNA molecules, amino acids, Aminoacyl tRNA synthetase activity and

concentration, and local mRNA folding [12], [1], [63].

The initiation rateλ0 (that corresponds to the first piece) was estimated based on the ribosome density

per mRNA levels, as this value is expected to be approximately proportional to the initiation rate when

initiation is rate limiting [48], [36]. Again we applied a normalization that brings the median initiation

rate of allS. cerevisiaemRNAs to be0.8 [9].

We analyzed the effect of uniform ribosome drop off with a rate in the range of10−5 to 10−3 per codon.

This corresponds toα1 = · · · = αn := αc, i.e., all theαis are equal, andαc denote their common value.

Since we assumed10 codons per site,αc values range from10−4 to 10−2 (ten times the rate associated
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Fig. 6. Reduction in steady-state mean densityρ in percent as a function ofαc ∈ [10−4, 10−2] for 10 S. cerevisiaegenes.

with a single codon). This makes sense as in the MFALK the level of occupancy in a site is related to

the probability to see a ribosome in this site.

Let

ρ :=

∑n

i=1
ei

n
,

denote the steady-state mean ribosomal density. Figures 6 and 7 depictρ andR in our model as a function

of αc ∈ [10−4, 10−2]. In these figures the genes in the legends are sorted according to their expression

levels: the gene at the top (YGR192C) has the highest mRNA levels while the gene at the bottom

(YER106W) has the lowest levels. It may be seen that as the drop off (detachment) rateαc increases from

10−4 to 10−2, ρ decreases by about30%, andR decreases by about50%. This demonstrate the significant

ramifications that ribosomal drop off is expected to have on translation and the importance of modeling

drop off.

Note also that there is a strong variability in the effect of drop off on the different genes: for mRNAs

with higher expression levels (i.e. mRNAs with higher copy number in the cell) the drop off effect is

weaker. It is possible that this is related to stronger evolutionary selection for lower drop off rate in genes

with higher mRNA levels. Indeed, highly expressed genes “consume” more ribosomes (due to higher

mRNA levels), so a given (per-mRNA) drop off rate is expectedto be more deleterious to the cell, and

a mutation which decreases the drop of rate in such genes has ahigher probability of fixation.
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Fig. 7. Reduction in steady-state output rate (production rate)R in percent as a function ofαc ∈ [10−4, 10−2] for 10 S. cerevisiaegenes.

V. D ISCUSSION

In many important processes biological “particles” move along some kind of a one-dimensional “track”.

Examples include gene transcription and translation, cellular transport, and more. The flow can be either

bidirectional (as in the case of transcription) or unidirectional (as in the case of translation), with the

possibility of both attachment and detachment of particlesat different sites along the track. For example,

motor proteins like kinesin and dynein that move along a certain microtubule may detach and attach to

an overlapping microtubule.

To rigorously model and analyze such processes, we introduced a new deterministic mathematical model

that can be derived as the dynamic mean-field approximation of ASEP with Langmuir kinetics, called the

MFALK. Our main results show that the MFALK is a monotone and contractive dynamical system. This

implies that it admits a globally asymptotically unique equilibrium point, and that it entrains to periodic

excitations (with a common periodT > 0) in any of its rates, i.e. the densities along the chain, as well

as the output rate, converge to unique period solutions withperiodT .

It is important to note that several known models are specialcases of the MFALK. These include for

example the RFM [48], the model used in [15] for DNA transcription, and the model of phosphorelays

in [11].1

Topics for further research include the following. In the RFM, it has been shown that the steady-state

1Although in this model the occupancy levels are normalized differently.
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production rate is related to the maximal eigenvalue of a certain non-negative, symmetric tridiagonal

matrix with elements that are functions of the RFM rates, i.e. theλis [44]. This implies that the mapping

(λ0, . . . , λn) → R is strictly concave, and that sensitivity analysis ofR is an eigenvalue sensitivity prob-

lem [45]. An interesting research topic is whetherR = R(λ0, . . . , λn, γ0, . . . , γn, α1, . . . , αn, β1, . . . , βn)

in the MFALK can also be described using such a linear-algebraic approach.

The application of the MFALK to model ribosome drop off suggests an interesting direction for further

study, namely, how to design genes that minimize the drop offrate.

Another research direction is motivated by the fact that many of the transport phenomena that can

be modeled using the MFALK do not take place in isolation. Forexample, many mRNA molecules are

translated in parallel in the cell. Thus, a natural next stepis to study networks of interconnected MFALKs.

Graph theory can be used to describe the interconnections between the various MFALKs in the network.

In this context, ribosome drop off may perhaps increase the total production rate in the entire system,

as it allows ribosomes to detach from slow sites, enter the pool of free ribosomes, and then attach to

the initiation sites of other, less crowded, mRNA molecules. However, drop off still incurs the biological

“cost” associated to the synthesis of a chain of amino-acidsthat is only a part of the desired protein. The

fact that the MFALK is contractive may prove useful in analyzing networks of MFALKs, as there exist

interesting results proving the overall contractivity of anetwork based on contractivity of the subsystems

and their couplings (see, e.g. [5], [50]).

Another interesting topic for further research is studyingthe effect of controlled detachment rates on

the formation of traffic jams. Indeed, it is known that kinesin-family motor proteins are more susceptible

to dissociation when their pathway is blocked [14], [62].

APPENDIX: PROOFS

We begin by discussing some symmetry properties of the MFALK, as these will be useful in the proofs

later on.



23

Symmetry

The MFALK enjoys two symmetries that will be useful later on.First, letzi(t) := 1−xi(t), i = 1, . . . , n.

In other words,zi(t) is the amount of “free space” at sitei at time t. Then using (1) yields

ż1 = γ0(1− z1) + λ1z2(1− z1) + α1(1− z1)− γ1z1(1− z2)− λ0z1 − β1z1,

ż2 = γ1z1(1− z2) + λ2z3(1− z2) + α2(1− z2)− γ2z2(1− z3)− λ1z2(1− z1)− β2z2,

...

żn = γn−1zn−1(1− zn) + λn(1− zn) + αn(1− zn)− γnzn − λn−1zn(1− zn−1)− βnzn. (27)

This is just the MFALK (1), but with the parameters permuted as follows:λk → γk, γk → λk, βk → αk,

andαk → βk for all k. The symmetry here follows from the fact that we can replace the roles of the

forward and backward flows in the MFALK.

Next, let yi(t) := 1 − xn+1−i(t), i = 1, . . . , n. In other words,yi(t) is the amount of “free space” at

siten + 1− i at time t. Then using (1) yields

ẏ1 = λn(1− y1) + γn−1y2(1− y1) + αn(1− y1)− λn−1y1(1− y2)− γny1 − βny1,

ẏ2 = λn−1y1(1− y2) + γn−2y3(1− y2) + αn−1(1− y2)− λn−2y2(1− y3)− γn−1y2(1− y1)− βn−1y2,

...

ẏn = λ1yn−1(1− yn) + γ0(1− yn) + α1(1− yn)− λ0yn − γ1yn(1− yn−1)− β1yn. (28)

This is just the MFALK (1), but with the parameters permuted as follows: λk → λn−k, γk → γn−k,

βk → αn+1−k, and αk → βn+1−k for all k. Note that (27) is simply (28) with the variable renaming

zi → yn+1−i, i = 1, . . . , n.

Both symmetries are reminiscent of theparticle-hole symmetryin ASEP [6], [30]: the basic idea is that

the progression of a particle from left to right is also the progression of a hole from right to left.

Proof of Proposition 1.If (4) holds then the MFALK satisfies property (BR) in [35], and [35, Lemma 1]

implies (6). If (5) holds then (27) satisfies property (BR) in [35], and this implies (6).

Proof of Proposition 2. Write the MFALK as ẋ = f(x). A calculation shows that the Jacobian ma-

trix J(x) := ∂f

∂x
(x) satisfiesJ(x) = L(x) + P , whereL(x) is given in (30), andP is the diagonal
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L(x) =























−λ1(1− x2)− γ1x2 λ1x1 + γ1(1− x1) . . . 0

λ1(1− x2) + γ1x2 −λ1x1 − γ1(1− x1)− λ2(1− x3)− γ2x3 . . . 0

0 λ2(1− x3) + γ2x3 . . . 0
...

0 0 . . . 0

0 0 . . . λn−1xn−1 + γn−1(1− xn−1)

0 0 . . . −λn−1xn−1 − γn−1(1− xn−1)























(30)

matrix

P = diag(−λ0 − γ0 − α1 − β1,−α2 − β2, . . . ,−αn−1 − βn−1, λn − γn − αn − βn). (29)

Note thatL(x) is tridiagonal and Metzler (i.e, every off-diagonal entry is non-negative) for anyx ∈ Cn.

Recall that the matrix measureµ1 : R
n×n → R induced by theL1 norm is given byµ1(A) =

max{c1(A), . . . , cn(A)}, where ci(A) is the sum of the elements in columni of A with off-diagonal

elements taken with absolute value [64]. For the JacobianJ of the MFALK, µ1(J(x)) = η for all x ∈ Cn.

It is well-known (see, e.g., [3]) that this implies (7).

Proof of Proposition 3.For ζ ∈ [0, 1/2], let

Cn
ζ := {x ∈ Cn : ζ ≤ xi ≤ 1− ζ, i = 1, . . . , n}.

Note thatCn
0 = Cn, and thatCn

ζ is a strict subcube ofCn for all ζ ∈ (0, 1/2]. By Proposition 1, for

any τ > 0 there existsζ = ζ(τ) ∈ (0, 1/2), with ζ(τ) → 0 as τ → 0, such that

x(t + τ, a) ∈ Cn
ζ , for all t ≥ 0 and alla ∈ Cn. (31)

For anyx ∈ Cn
ζ every entryLij on the sub- and super-diagonal ofL in (30) satisfiesLij ≥ ζs, wheres :=

min1≤i≤n−1{λi + γi} > 0. Combining this with [35, Theorem 4], implies that for anyζ ∈ (0, 1/2] there

existsε = ε(ζ) > 0, and a diagonal matrixD = diag(1, q1, q1q2, . . . , q1q2 . . . qn−1), with qi = qi(ε) >

0, such that the MFALK is contractive onCn
ζ w.r.t. the scaledL1 norm defined by|z|1,D := |Dz|1.

Furthermore, we can chooseε such thatε(ζ) → 0 as ζ → 0, andD(ε) → I as ε → 0. Now Thm. 1

in [39] implies that the MFALK is contractive after a small overshoot and short transient (SOST). Prop. 4

in [39] implies that for the MFALK SOST is equivalent to SO, and this completes the proof.
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Proof of Proposition 4.We begin by recursively defining two sequences. For all integers i ≥ 1, let

ui+1 = 1 + ℓ1 + ℓ2 + · · ·+ ℓi,

ℓi+1 = ui + ℓ1 + ℓ2 + · · ·+ ℓi−1. (32)

with initial conditionsu0 = u1 = 1, and ℓ0 = 0, ℓ1 = 1. We claim that fork = 0, 1, . . . , n − 1 the

steady-state density in siten− k is generically the ratio of two polynomials inR:

en−k =
pk(R)

qk(R)
, with deg(pk(R)) = uk, deg(qk(R)) = ℓk. (33)

We prove this by induction onk. By (16),en = aR+b, with a := (λn+γn+βn+αn)
−1 andb := (γn+βn)a,

and this proves (33) fork = 0. Using (16) again yields

en−1 =
R + γn−1en

λn−1(1− en) + γn−1en

=
R + γn−1(aR + b)

λn−1 + (γn−1 − λn−1)(aR + b)
,

and this proves (33) fork = 1. Now assume that there existss ≥ 2 such that (33) holds fork =

0, 1, . . . , s− 1. By (16),

en−s =
R + γn−sen−s+1 − gn−s+1(en−s+1)− gn−s+2(en−s+2)− · · · − gn−1(en−1)

λn−s(1− en−s+1) + γn−sen−s+1

,

and applying (12) and the induction hypothesis yields

en−s =
R + γn−s

ps−1

qs−1

+ (βn−s+1 + αn−s+1)
ps−1

qs−1

+ (βn−s+2 + αn−s+2)
ps−2

qs−2

+ · · ·+ (βn−1 + αn−1)
p1
q1

+ c

λn−s + (γn−s − λn−s)
ps−1

qs−1

,

wherec := −βn−s+1−· · ·−βn−1. Multiplying the numerator and the denominator byq1 . . . qs−1 yieldsen−s =

ps/qs, where

deg(ps) = max{1 + deg(q1 . . . qs−1), deg(ps−1q1 . . . qs−2), . . . , deg(p1q2 . . . qs−1)},

deg(qs) = max{deg(q1 . . . qs−1), deg(ps−1q1 . . . qs−2)}.
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By the induction hypothesis,

deg(ps) = max{1 + ℓ1 + · · ·+ ℓs−1, us−1 + ℓ1 + · · ·+ ℓs−2, . . . , u1 + ℓ2 + · · ·+ ℓs−1},

deg(qs) = max{ℓ1 + · · ·+ ℓs−1, us−1 + ℓ1 + · · ·+ ℓs−2}. (34)

It is straightforward to prove that (32) implies that

ℓi ≤ ui ≤ ℓi + 1, i = 0, 1, 2, . . . . (35)

Combining this with (34) yieldsdeg(ps) = 1 + ℓ1 + · · · + ℓs−1, anddeg(qs) = us−1 + ℓ1 + · · · + ℓs−2.

Thus,deg(ps) = us anddeg(qs) = ℓs, and this completes the inductive proof of (33). In particular, (33)

yields

e1 =
pn−1(R)

qn−1(R)
, (36)

with deg(pn−1(R)) = un−1, deg(qn−1(R)) = ℓn−1. Substituting this in the last equation of (16) yields

v
pn−1

qn−1

= z − R +

n−1
∑

j=2

gj(ej),

where v := λ0 + γ0 + β1 + α1, and z := λ0 + β1. Arguing as above shows that this is a polynomial

equation of the formw(R) = 0, with deg(w) = 1 + ℓ1 + · · ·+ ℓn−1 = un. It is straightforward to prove

by induction that (32) implies that

uk = 1 +

⌊

2k

3

⌋

, ℓk =
2k − (−1)k

3
,

(we note in passing that the latter sequence is known as the Jacobsthal sequence [58]), and this completes

the proof of Proposition 4.

Proof of Proposition 5.We begin by proving thatR > 0 implies that
∏n

i=0
λi >

∏n

i=0
γi. If R > 0

then (18) yields

λ0(1− e1) > γ0e1,

λiei(1− ei+1) > γiei+1(1− ei), i = 1, . . . , n− 1,

λnen > γn(1− en). (37)



27

Multiplying all these inequalities, and using the fact thate ∈ int(Cn) yields

n
∏

i=0

λi >

n
∏

i=0

γi. (38)

To prove the converse implication, assume that (38) holds. Multiplying both sides of this inequality by

the strictly positive term
∏n

j=1
ej(1− ej) yields

n
∏

i=0

ai >
n
∏

i=0

bi,

wherea0 := λ0(1− e1), ai := λiei(1− ei+1), i = 1, . . . , n−1, an = λnen, b0 := γ0e1, bi := γiei+1(1− ei),

i = 1, . . . , n − 1, and bn = γn(1 − en). This means thataℓ > bℓ for some indexℓ ∈ {0, . . . , n}. Since

R = aℓ − bℓ (see (18)), it follows thatR > 0. Summarizing, we showed thatR > 0 if and only

if
∏n

i=0
λi >

∏n

i=0
γi. The proof thatR < 0 if and only if

∏n

i=0
λi <

∏n

i=0
γi is similar. This implies

thatR = 0 if and only if
∏n

i=0
λi =

∏n

i=0
γi. This completes the proof of (19).

To prove (20), note that (18) yields

en =
R + γn
λn + γn

,

ei =
R + γiei+1

λi(1− ei+1) + γiei+1

, i = n− 1, . . . , 1,

e1 =
λ0 −R

λ0 + γ0
. (39)

SubstitutingR = 0 completes the proof of Prop. 5.

Proof of Proposition 6.Since the JacobianJ(x) of the MFALK is Metzler (i.e, every off-diagonal entry

is non-negative) for anyx ∈ Cn, the MFALK is a cooperative system [60], and this yields (24).

Whenλi + γi > 0, i = 1, . . . , n− 1, the matrixL(x) and, therefore,J(x), is irreducible for everyx ∈

int(Cn), and combining this with Proposition 1 implies (25) (see, e.g., [60, Ch. 4]).

Proof of Theorem 1.The Jacobian of the PMFALK isJ(t, x(t)) = L(t, x(t)) + P (t), with L given

in (30), andP is given in (29) (but now with time-varying rates). Pick an initial time t0 ≥ 0, andτ0 > 0.

The stated conditions guarantee the existence ofζ ∈ (0, 1/2) such thatx(t, t0, a) ∈ Cn
ζ for all t ≥ t0 + τ

and all a ∈ Cn. Also, [35, Thm. 4] implies that there exists a diagonally-scaledL1 norm such that

the PMFALK is contractive onCn
ζ w.r.t. this norm. Now entrainment follows from known results on

contractive systems with a periodic excitation (see, e.g. [49]).

Proof of Proposition 7.First, using Remark 1 and the argument used in the proof of [46, Prop. 4] shows



28

that all the derivatives in the statement of of Proposition 7exist.

Given a MFALK, pick j ∈ {1, . . . , n} and consider the new MFALK obtained by changingαj to α̃j ,

with α̃j > αj , and all other rates unchanged. Letẽ, R̃ denote the steady-state density and production rate

in the modified MFALK. Seeking a contradiction, assume that

ẽn ≥ en. (40)

Then (14) implies that

R̃ ≥ R, (41)

and if j = n then R̃ > R. By (15) with i = n − 1, R = λn−1en−1(1 − en) − γn−1en(1 − en−1)

and R̃ = λn−1ẽn−1(1− ẽn)− γn−1ẽn(1− ẽn−1), and combining this with (40) and (41) yields

ẽn−1 ≥ en−1. (42)

Now using (15) withi = n− 2 yields ẽn−2 ≥ en−2, andẽn−2 > en−2 if j = n− 1. Proceeding in this way

shows that

ẽk ≥ ek, k = n, n− 1, . . . , j, (43)

ẽk > ek, k = j − 1, j − 2, . . . , 1. (44)

Combining this with (15) withi = 0 yields R̃ < R. This contradicts (41), so

ẽn > en. (45)

Proceeding as above yields̃ei > ei for all i, so ∂ei
∂αj

< 0 for all i, j. The proofs of all the other equations

in Prop. 7 are very similar and therefore omitted.
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