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A Deterministic Mathematical Model for
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Abstract

In many important cellular processes, including mRNA ttatign, gene transcription, phosphotransfer, and
intracellular transport, biological “particles” move atp some kind of “tracks”. The motion of these particles can
be modeled as a one-dimensional movement along an ordege@rsze of sites. The biological particles (e.g.,
ribosomes, RNAPs, phosphate groups, motor proteins) halvene and cannot surpass one another. In some cases,
there is a preferred direction of movement along the track,io general the movement may be two-directional,
and furthermore the particles may attach or detach fronouarregions along the tracks (e.g. ribosomes may drop
off the mRNA molecule before reaching a stop codon).

We derive a new deterministic mathematical model for suahgport phenomena that may be interpreted as the
dynamic mean-field approximation of an important model frmichanical statistics called the asymmetric simple
exclusion process (ASEP) with Langmuir kinetics. Usingld¢oiloom the theory of monotone dynamical systems
and contraction theory we show that the model admits a unéguéibrium, and that every solution converges to
this equilibrium. This means that the occupancy in all thessalong the lattice converges to a steady-state value
that depends on the parameters but not on the initial camgditiFurthermore, we show that the model entrains (or
phase locks) to periodic excitations in any of its forwardchkward, attachment, or detachment rates.

We demonstrate an application of this phenomenologicasprart model for analyzing the effect of ribosome
drop off in mRNA translation. One may perhaps expect thapdfh from a jammed site may increase the total
flow by reducing congestion. Our results show that this istng. Drop off has a substantial effect on the flow,

yet always leads to a reduction in the steady-state prot@idygtion rate.
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theory, contraction after a short transient, entrainment.

. INTRODUCTION

Movement is essential for the functioning of cells. Carglikes organelles and vesicles must be carried
between different locations in the cells. The informatiome@led in DNA and mRNA molecules must be
decoded by “biological machines” (RNA polymerases andsdmoes) that move along these molecules
in a sequential order.

Many of these important biological transport processesrardeled as the movement of particles along
an ordered chain of sites. In the context of intercellulangport, the particles are motor proteins and
the chain models actin filaments or microtubules. In trapson, the particles are RNAPs moving along
the DNA molecule, and in translation the particles are ridmess moving along the mRNA molecule (see
Figure[1).

The movement in such processes may be unidirectional, asRiNArtranslation elongation, or bidi-
rectional, as in transcription or translation initiatidndeed, the normal forward flow of the RNAP may
be interrupted, due to transcription errors and variougaaless such as nucleosomes, in which case the
RNAP tracks back a few nucleotides and then resumes its mdonaard flow [54], [41], [E8], [10].
Translation initiation in eukaryotes usually includesfukfon from the 5’'end of the transcript towards
the start codon|1]. This diffusion process is believed tobbéirectional, but with a preference to the
5’—3’ direction. The movement of motor proteins like kinesirdatynein along microtubules is typically
unidirectional, but can be two-directional as well [1].

To increase efficiency, many particles may move simultaskycalong the same track thus pipelining
the production process. For example, to increase traoslatdficiency, a number of ribosomes may act
simultaneously as polymerases on the same mRNA molecule [E6

The moving biological particles have volume and usuallyncdarovertake a particle in front of them.
This means that a slowly moving particle may lead to the faioneof a traffic jam behind it. For example,
Leduc et al.[[31] have studied Kip3, a yeast kinesin-8 familgtor, and demonstrated that motor protein
traffic jams can exist, given the right conditions. Otherdsts have suggested that traffic jams of RNAP
[ribosomes] may evolve during transcription [translalifd], [27], [9].

In some of these biological transport processes, the bmdbgnachines may either attach or detach

at various sites along the tracks. For example, ribosomgsdatach from the mRNA molecule before
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Fig. 1. Biological processes that can be studied using theeinsuggested in this paper.

reaching the stop codon due to traffic “jams” and ribosorhesome interactions or due to depletion in
the concentration of tRNAS [72], [28], [57]. Also, it is knowvthat kinesin-family motor proteins are more
susceptible to dissociation when their pathway is blocKet],[[62].
Defects in these transport processes may lead to seveesédgsser may even be lethal. For example, [53]
lists the implications of malfunctions of protein motorsdisease and developmental defects.
Developing a better understanding of these dynamical bicéd processes by combining mathematical
modeling and biological experiments will have far reachimglications to basic science in fields such as

molecular evolution and functional genomics, as well adiegions in synthetic biology, biotechnology,



human health, and more. Mathematical or computational fimges especially important in developing
approaches for manipulating and controlling these pr&sss.g. in order to optimize various goals in
biotechnology.

A standard model for such transport processes iafiyenmetric simple exclusion proc€8SEP) [55],
[73]. This is a stochastic model describing particles tha hlong an ordered lattice of sites. Each site
can be either empty or occupied by a single particle, and tcfgacan only hop to an empty site. This
“simple exclusion principle” represents the fact that ttetigles have volume and cannot overtake one
another. Simple exclusion generates an indirect coupletgééen the particles. In particular, traffic jams
may develop behind a slow-moving patrticle.

In ASEP, a particle may hop to any of the two neighboring sibeg only if they are free). Typically,

a particle can attach the lattice in one of its ends and defiach the other end. When particles can
also attach or detach at internal sites along the lattice ntbhdel is referred to as ASEP witlangmuir
kinetics In the special case where the hops are unidirectional, ASE®metimes referred to as ttaally
asymmetric simple exclusion procFASEP). A TASEP-like system with Langmuir kinetics has tee
used to model limit order markets in [65], and is often usechodeling molecular motor traffi¢ [42], [43],
[32], [33], [16]. More generally, ASEP has become a fundamlemodel in non-equilibrium statistical
mechanics, and has been applied to model numerous natararaficial processes including traffic and
pedestrian flow, the movement of ants, evacuation dynaraias,more[[52].

In this paper, we introduce a deterministic mathematicall@h¢hat may be interpreted as the dynamic
mean-field approximation of ASEP with Langmuir kine{lid$-ALK). We analyze the MFALK using tools
from systems and control theory. In particular, we apply sostent developments in contraction theory
to prove that the model is globally asymptotically stabled @hat it entrains to periodic excitations in
the transition/attachment/detachment rates. In othedsyof these rates change periodically in time with
some common period’ then all the state-variables in the MFALK converge to a p#dcsolution with
period T". This is important because many biological processes arigeexby periodic signals (e.g. the
24h solar day or the periodic cell-division process), andppr functioning requires phase-locking or
entrainment to these excitations.

Our work is motivated by the analysis of a model for mRNA ttatisn called theribosome flow
model (RFM)[48]. This is the mean-field approximation of theidirectional TASEP without Langmuir
kinetics (see, e.g.. [52, section 4.9.7] ahd [6, p. R345¢cdntly, the RFM has been studied extensively



using tools from systems and control theary![36],/[71], [§BB], [35], [44], [45], [47], [70]. The analysis

is motivated by implications to many important biologicalegtions. For example, the sensitivity of the
protein production rate to the initiation and elongatioresaalong the mRNA molecule [45], maximization
of protein production rate [44], the effect of ribosome mdinyg [38], [47], and the consequences of
competition for ribosomes on large-scale simultaneous dmREnslation in the cell[[46] (see alspb [19],

[2] for some related models).

The MFALK presented here is much more general than the RFN,can thus be used to model and
analyze many transport phenomena, including all the biokbgrocesses mentioned above, that cannot
be captured using the RFM. We demonstrate this by using thAlUKRo model and analyze mRNA
translation withribosome drop off- a feature that cannot be modeled using the RFM.

Ribosome drop off is a fundamental phenomena that has estennsiderable attention (see, elg.] [57],
[25], [24], [68], [7], [61], [18], [28], [22], [20]). In manycases, ribosome drop off is deleterious to the
cell since translation is the most energetically consungragess in the cell and, furthermore, drop off
yields truncated, non-functional proteins. Thus, traipésrundergo selection to minimize drop off or its
energetic cost [67]/[63]/[61]/ [18]l [28]. [20]. There avarious hypotheses on the biological advantages
of ribosome drop off. For example, Zaher and Green [69] haggested that ribosome drop off is related
to proof reading. One may perhaps expect that another amyans$ that drop off from a jammed site
may increase the total flow by reducing congestion. Our tesuding analysis of the MFALK show that
this is not true. Drop off has a substantial effect on the flpet, it always leads to a reduction in the
steady-state protein production rate.

The remainder of this paper is organized as follows. The segtion describes the new mathematical
model. Sectiofi 1l presents our main analysis results.i@eV] describes the application of the MFALK
to model mRNA translation with ribosome drop off. The finattsen concludes and describes possible

directions for further research. To streamline the predent, all the proofs are placed in the Appendix.

II. THE MODEL

The MFALK is a set ofn first-order nonlinear differential equations, wheredenotes the number
of compartments or sites along the “track”. Each site is eiased with a state variable;(t) € [0, 1]
describing the normalized “level of occupancy” at sitat timet, with x;(t) = 0 [z;(¢) = 1] representing
that sitei is completely free [full] at timet. Sincez;(t) € [0, 1] for all ¢, it may also be interpreted as

the probability that sité is occupied at time.



The MFALK contains four sets of non-negative parameters:

e« N, 1=0,...,n, controls the forward transition rate from sit¢o sitei + 1,

v, © = 0,...,n, controls the backward transition rate from site 1 to sitez,

Gi,i=1,...,n, controls the attachment rate to site

e a5, 1=1,...,n, controls the detachment rate from site
where we arbitrarily refer to left-to-right flow along theah as forward flow, and to flow in the other
direction as backward flow.

The dynamical equations describing the MFALK are:

= Xo(1 = 21) + 71221 — 1) + S1(1 — 1) — Miwa (1 — 22) — o1 — oy,

By = M1 (1 — 22) + Yoxs(1 — 22) + a1 — 22) — Aoxa(l — x3) — Y122(1 — 1) — 2y,

jjn—l = )\n—2xn—2<1 - xn—l) + ’Yn—lxn<1 - xn—l) + Bn—l(l - xn—l) - )\n—lxn—1<1 - xn)
- ’Yn—an—l(]- - xn—?) — Op—1Tp—1,

jzn = )\n—lxn—l(l - xn) + ’Vn(]- - xn) + 571(1 - xn) - )\nxn - ’Vn—lxn(]- - xn—l) — Qpdp. (l)

To explain these equations, consider for example the exquédi the change in the occupancy in site

namely,

jZ’g = )\11’1(1 — .1'2) + 721’3(1 — ZE'Q) -+ 62(1 — ZE'Q) — )\21’2(1 — .1'3) — ’)/1122'2(1 — .I'l) — 9.

The term\;z;(1 — z5) represents the flow from sité to site 2. This increases with the occupancy in
site 1, and decreases with the occupancy in 8itédn particular, this term becomes zero when= 1,
i.e. when site2 is completely full. This is a “soft” version of the hard exslan principle in ASEP: the
effective entry rate into a site decreases as it becomear.filbte that the constany > 0 describes the
maximal possible transition rate from sitdgo site2. Similarly, the term\,z,(1 — x3) represents the flow
from site 2 to site3. The termy,z3(1 — z3) [y122(1 — 21)] represents the backward flow from siieto
site 2 [site 2 to site 1]. Note that these terms also model soft exclusion. The terth — z,) represents
attachment of particles from the environment to fitevhereasw,z, represents detachment of particles
from site2 to the environment (see Figl 2).

The MFALK is acompartmental moddR1], [51], as every state-variable describes the occupana
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Fig. 2. Topology of the MFALK.

compartment (e.g., a site along the the mRNA, gene, micubé)band the dynamical equations describe
the flow between these compartments and the environmentp&omental models play an important
role in pharmacokinetics, enzyme kinetics, basic nutrdigorocesses, cellular growth, and pathological
processes, such as tumourigenesis and atherosclerasis (@€/[21],[[17] and the references therein). More
specifically, the MFALK is a nonlinear tridiagonal compaéntal model, as every; directly depends
onz;_1,x;, andz;.; only.

Note also that

Zi"z‘ = Xo(1 —21) —yox1 + G1(1 — 1) — ayy

+ (1 = 2n) = A + Bn(1 — ) — a2y
-1

3

+ Bz 1 - xz azxz) (2)
=2

The term on the right-hand side of the first [second] line hhepresents the change:ig [z,] due to the
flow between the environment and sitdsite n], whereas the term on the third line represents the flow
between internal sites and the environment.

The output ratefrom siten at timet is the total flow from this site to the environment:

R(t) : = (A + an)zn(t) — (9 + Bu) (1 — z4(t)). (3

Note thatR(¢t) may be positive, zero, or negative.
In the particular case where;, = 5; = v, = 0 for all  the MFALK becomes the RFM, i.e. the
dynamic mean-field approximation of the unidirectional %S with open boundary conditions and

without Langmuir Kinetics.



Let z(¢,a) denote the solution of[1) at time > 0 for the initial conditionz(0) = a. Since the
state-variables correspond to normalized occupancydewad always assume thatelongs to the closed
n-dimensional unit cube:

C":={xeR":2;€[0,1],i=1,...,n}.

Let int(C™) denote the interior of”, and letoC™ denote the boundary @". The next section analyzes

the MFALK defined in[(1).

I1l. M AIN RESULTS
A. Invariance and persistence

It is straightforward to show that™ is an invariant set for the dynamics of the MFALK, that is,
if a € C" thenz(t,a) € C™ for all t > 0. The following result shows that a stronger property holds.
Recall that all the proofs are placed in the Appendix. Foatiohal convenience, let, := 0, 7o := 0,

Qpyr =0, and g, 1 := 0.
Proposition 1 Suppose that at least one of the following two conditionsi¢iol
Xi + Bix1 >0, forallie{0,...,n}, (4)

or

vi+ a1 >0, forallie{0,...,n}. (5)
Then for anyr > 0 there exists! = d(7) € (0,1/2] such that
d<zi(t+7a) <1—d, (6)

forall a € C", alli € {1,...,n}, and allt > 0.

This means in particular that trajectories that emanata ftite boundary o™ “immediately” enterC™.
This result is useful because as we will see below on the byndf C” the MFALK looses some
important properties. For example, the Jacobian matrihefdynamics[(1) is irreducible amnt(C™), but

becomes reducible on some points on the boundary”of



B. Contraction

Differential analysis and in particular contraction theqroved to be a powerful tool for analyzing
nonlinear dynamical systems. In a contractive systemedtajies that emanate from different initial
conditions contract to each other at an exponential ratg [84], [3]. Let |- |, : R — R, denote thel;

norm, i.e. forz € R", |z|y = |z1| + - - - + |za].
Proposition 2 Let

n = max{—)\o — Y — o1 — P1,—e — B, ..., =01 — Bl = Ay — Vo — Qy — 5n}-

Note thatn < 0. For anya,b € C™ and anyt > 0,

|x(t,a) — z(t,b)]; < exp(nt)la — bl;. (7)

This implies that thel; distance between any two trajectories contracts with thpoeantial ratey.
Roughly speaking, this also means that increasing all tihessy + 3;, i = 1,...,n, makes the system
“more contractive”. Indeed, these parameters have a datedtilizing effect on the dynamics of siie
whereas the other parameters affect the site indirectitheacoupling to the two adjacent sites.

Whenn = 0, (@) only implies that the.; distance between trajectories does not increase. Thigpyop
is not strong enough to prove the asymptotic propertiesriextin the subsections below. Indeed, in this
case it is possible that the MFALK witiot be contractive with respect to any fixed norm. Fortunately, a
certain generalization of contraction turns out to holdhis tcase.

Consider the time-varying dynamical system

w(t) = f(t, (1)), (8)

whose trajectories evolve on a compact and conveXsetR". Let z(t, ty, a) denote the solution of{8) at
time ¢ for the initial conditionz(¢y) = a. System([(B) is said to beontractive after a small oversho($0O)

[39] on Q w.r.t. a norm| - | : R* — R, if for any € > 0 there existy = ¢(¢) > 0 such that

|x(t,to, a) — x(t, to,0)| < (1 + €) exp(—~£t)|a — b,

for all a,b € 2 and allt > ¢, > 0. Intuitively speaking, this means contraction with an exgtial rate,

but with an arbitrarily small overshoot df+ .
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Proposition 3 Suppose that
Ni+7 >0, forallie{1,...,n—1}, 9)

and that at least one of the two conditio@), (5) holds. Then the MFALK is SO af” w.r.t. the L,

norm, that is, for any: > 0 there existy = ¢(¢) > 0 such that
|z(t,a) — z(t,b)]; < (14 ¢)exp(—Lt)|a —b|y, (10)

for all a,b € C™ and all t > 0.

Note that if \; +v; = 0 for somei € {1,...,n — 1}, thatis\; = »; = 0, then the MFALK decouples
into two separate MFALKSs: one containing sites. ., ¢, and the other containing sités-1,...,n. Thus,
assuming[(B) incurs no loss of generality.

There is an important difference between Propositidns 2[@anfl » < 0 then Propositiol]2 provides
an explicit exponential contraction rate.rjlf= 0 then Propositiofi3 can be used to deduce SO, but in this
result the contraction ratédepends orr and is not given explicitly.

The contraction results above imply that the MFALK satisBeseral important asymptotic properties.

These are described in the following subsections.

C. Global asymptotic stability

Since the compact and convex &t is an invariant set of the dynamics, it contains an equuitori

point e. By PropositiorilLe € int(C™). Applying (I0) withb = e yields the following result.

Corollary 1 Suppose that the conditions in Propositibh 3 hold. Then tHeAMK admits a unique

equilibrium pointe € int(C™) that is globally asymptotically stable, i.em; .., z(¢,a) = ¢, forall a € C™.

This means that the rates determine a unique distributiofii@palong the lattice, and that all trajectories
emanating from different initial conditions i asymptotically converge to this distribution. In additjon
perturbations in the occupancy levels along the sites vatl change this asymptotic behavior of the

dynamics. This also means that various numerical solve@RIEs will work well for the MFALK (see

e.g. [13]).
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Example 1 Fig. [3 depicts the trajectories of a MFALK with = 3, A\ = 1.0, \; = 1.2, Ay = 0.8,
)\3 = 0.9, Yi = )\Z —03,1= O, o3, a1 =0,y =0.1, ag =0, 51 =0, 62 =0.2, 53 = (), for six initial

conditions inC™. It may be seen that all trajectories converge to an eqitlibpointe € int(C?3). O

Fig. 3. Trajectories of the MFALK in Exampl@ 1 for six initigbnditions inC?.

The MFALK () can be written as

l"i :fi_l(l') —fz(x)—l—gz(zl), 1= 1,...,7’L, (11)

where

fo(x) == Ao(1 — 1) — Yoz,
fz(x> = )\ﬂi(l - $i+1) - %$i+1(1 - xi)7 t=1,...,n—1,
fn(x> = ATy — 'Yn(l - Jjn)u

gz(%) = ﬁz‘(l - xz) -y, 1=1,...,n. (12)
At steady-state, i.e. far = ¢, the left-hand side of all the equations [n](11) is zero, so
fi—l(e) = fl(€) — g,-(e,-), = ]., e n. (13)

/
Let v = |y, ..., am Biyeees BasYos o3 Yms Ao - - -, A | € RY? denote the parameters of the MFALK.

It follows from (13) that if we multiply all these parameteby ¢ > 0 then e will not change, that
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is, e(cv) = e(v). Let
R:= (A +an)en — (Y + Ba)(1 —en), (14)

denote thesteady-state output rat&@henR(cv) = cR(v), for all ¢ > 0, that is, the steady-state production

rate is homogeneous of order one w.r.t. the parameters, By (1

R = f.(e) — gnlen)
n—1
)+ Y giles) 0,...,n—1. (15)

Jj=i+1

This yields the following set of recursive equations relgtihe steady-state occupancy levels and the

output rate in the MFALK:

. R+, + By
XAt et B
R+ i€ - n_—l il€5
g = o Zﬂ_mgﬁ(ﬂ), i=n—1,...,1, (16)
Ai(1 = €iy1) + vicipr
and also
Ao+ Bi—R+>05 ) 95(€5)
€1 = .
Ao+ + 61+
For a givenu, this is a set of» + 1 equations in the: + 1 unknowns:ey, ..., e,, R.

Example 2 Consider the MFALK with dimensiomn = 2. Then [16) becomes

o R+ 72+ B
2 — )
A2 + Y2 + ag + B
R+ e
er = , 17
! A (1 —e3) + ez (17
and also
- Ao+ B —
€1 =

Ao+ + B +ar

This yields the polynomial equatiom,R? + a, R + ay = 0, where

az == A; — 71,
ar =M —=7)(2+ B2 — Ao — B1) — Mize — 2122 — 2171,

ag = (Ao + B1)A1(A2 + @) — (0 + ) (72 + Ba),
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with z; == Ao + v + oy + 51 and zp == Ay + 72 + g + [s.

Note that the polynomial equation admits several soluti@ngut only one solution corresponds to
the unique equilibrium point € C2. For example, for\; = 1, v; = 2, 3; = 3, andq; = 4 for all i the
polynomial equation becomesR? — 131R — 40 = 0. This admits two solutiong?; = (—3s — 131)/2
and R, = (3s — 131)/2, with s := 4/1889. SubstitutingR,; in (I7) yieldse = [e; ey]’, with e, < 0, SO
this is not a feasible solution. Substitutidty in (I7) yields (all numbers are to four digit accuraey)-
[0_4305 0.4695 / € C?, which is the unique feasible solution. Thus, the steadtesbutput rate isR, =
—0.3046. U

In general, [(16) can be transformed into a polynomial equatdr R. The next result shows that the

degree of this polynomial equation grows quickly with

Proposition 4 Consider the MFALK with dimension and with \; # ~;, «; # 0, 5; # 0, for all 4.
Then generically Eq(18) may be written asvo(R) = 0, wherew(R) is a polynomial equation i of

degreel + |2, and with coefficients that are algebraic functions of theesa

We note that this is exponential increase in the degree optignomial equation is a feature of the
MFALK that does not take place in the RFM. Indeed, in the RFM degree of the polynomial equation
for the steady-state production rate grows linearly with

Let sgn(-) : R — {—1,0, 1} denote the sign function, i.e.

4

sgn(y) =<0, y=0,

-1, y<O.

An interesting question is what ign(R). Indeed, if this is positive (negative) then this means thate
is a net steady-state flow from left to right (right to left)hd next subsection describes a special case
where this question can be answered rigorously.

1) Bidirectional flow with no Langmuir kineticsin the case wherg;, = o, =0,7i=1,...,n, i.e. a

system with no internal attachments and detachments[15j.bicomes

R=fi(e), i=0,...,n. (18)
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Proposition 5 Consider the case wherg = 5; =0, i = 1,...,n, and suppose tha@) holds. Then

sgn(R) = sgn (H i — Hm) : (29)
1=0 =0
In particular, if [T\, =], thenR =0, and

i—1 n
szo Aj _ Hj:i Vi
PR VER | R | VTR | P

Eq. (19) means that in the case of no Langmuir kinetics thadststate output from the right hand-side

i=1,...,n. (20)

€; =

of the chain will be positive [negative] if the the product thie forward rates is larger [smaller] than
the product of the backward rates. In transcription andstedion the steady state flow from the right
hand-side of the chain should always be positive, but inrotlases, e.g. transport along microtubules,

the steady state flow may be either positive or negative.

D. Entrainment

Assume now that some or all of the rates are time-varyingogerifunctions with the same peridd.
This may be interpreted as a periodic excitation of the systdany biological processes are affected by
such excitations due for example to the periodic 24h solgralahe periodic cell-cycle division process.
For example, translation elongation factors, tRNAs, ti@ien and transcription initiation factors, ATP
levels, and more may change in a periodic manner and affedugarates that appear in the MFALK.

A natural question is will the state-variables of the MFAL&werge to a periodic pattern with perio@®
We will show that this is indeed so, i.e. the MFALdftrainsto a periodic excitation in the rates. In order to
understand what this means, consider a different settamely, using the MFALK to model traffic flow.
Then the rates may correspond to traffic lights, changingperéodic manner, and the state-variables are
the density of the moving patrticles (cars) along differesdt®ns of the road, so entrainment corresponds
to what is known as the “green wave” (see e.g/ [26] and theertes therein).

We say that a functiorf is T-periodic if f(¢t+ 1) = f(¢) for all ¢. Assume that the;s, 7;S, a;S andg;s
are uniformly bounded, non-negative, time-varying fumes satisfying:

. there exists a (minimal)’ > 0 such that all the\;(¢)s, v:(¢)s, a;(t)s, ands;(t)s areT-periodic.
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« there existc;, c; > 0 such that at least one of the following two conditions holaisdll time ¢

)\Z<t)+/6l+l<t) > (1, 1= 0,...,TZ, (21)

72(15) +ai+1<t) > (2, 1= 07"'7”' (22)
« there exists:;; > 0 such that

)\z(t) + %’—l—l(t) >c3, 1=0,...,n. (23)

We refer to this model as thieeriodic MFALK (PMFALK)

Theorem 1 Consider the PMFALK with dimension There exists a unique functigit-) : R, — int(C"),

that is T-periodic, and for anyu € C™ the trajectoryx(¢,a) converges tap ast — oc.

Thus, the PMFALKentrains(or phase-locks) to the periodic excitation in the paramset@ particular,

this means that the output raf&t) in (@) converges to the uniquE-periodic function:

(An(t) + 7 (t) + Ba(t) + (1)) 0n(t) = (t) = Ba(?).

Note that since a constant function is a periodic functiarefbT” > 0, TheoreniIl implies that entrainment
holds also in the particular case wheresiagle parameter is oscillating (with perigd > 0), while all

other parameters are constant. Note also that Cordllaryildw® from Theoreni 1.

Example 3 Consider the MFALK with dimensiom = 3, parametersi,(t) = 1.0, A\ (t) = 1.2, A (t) =
140.5sin(wt/4), A3(t) = 0.9, vo(t) = 0.4, y1(t) = 0.4(1+sin((7t/4)+1/2)), v (t) = 0.25, v3(t) = 0.45,
ai(t) =0, as(t) = 0.05, as(t) =0, fi(t) =0, Pa(t) = 0.05(1 +sin((wt/2)+1/4)), f5(t) = 0, and initial
condition z(0) = [0.8 0.8 0.8]/- Note that all the rates here are periodic, with a minimal can
period T = 8. Fig.[4 depicts;(t), i = 1,2, 3, as a function of. It may be seen that each state variable

converges to a periodic function with peridd= 8. OJ

E. Strong Monotonicity
Recall that a proper con& C R"™ defines a partial ordering iR"™ as follows. For two vectorg, b € R",
we writea < bif (b—a) € K;a <bif a <banda # b; anda < b if (b —a) € int(K). The

systemy = f(y) is called monotoneif a« < b implies thaty(t,a) < y(t,b) for all ¢ > 0. In other
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Fig. 4. State variables; (¢) [solid line]; z2(t) [dashed line]; and:3(¢) [dotted line] as a function of in ExampleB. Note that each state
variable converges to a periodic function with a peribd= 8.

words, the flow preserves the partial ordering![60]. It isledhlstrongly monotonéf a < b implies
thaty(t,a) < y(t,b) for all t > 0.

From here on we consider the particular case where the cofe:is R’,. Thena < b if a; < b, for
all i, anda < b if a; < b; for all . A system that is monotone with respect to this partial angers

called cooperative

Proposition 6 For anya,b € C™, with a < b, the solutions of the MFALK satisfy
x(t,a) < xz(t,b), forallt>0. (24)

Furthermore, if (9) holds then
z(t,a) < z(t,b), forall ¢t > 0. (25)

To explain this, consider two initial densitiesand b with a; < b; for all 4, that is,b corresponds to a
larger or equal density at each site. Then the trajectarfes:) and z(¢,b) emanating from these initial
conditions continue to satisfy the same relationship betwie densities, namely; (¢, a) < x;(t, b), for
all < and for all timet > 0.

The MFALK is thus astrongly cooperative tridiagonal systef®CTS) onint(C™). Some of the

properties deduced above using contraction theory canbastieduced using this property [59].
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Remark 1 Suppose that we augment the MFALK into a modet ef 1 ODEs inn + 1 state-variables

by adding to it the equation

i'n—i—l = —)\0(1 — l’l) — YoZ1 — 61(1 — 1'1) + a1

’}/n(l - IL’n) + A nln — Bn(l - xn) + apz,
-1

3

Z 51 1 - xz azxz)

1=2
that is, ©,.1 = — >, ; (see(@)). Let = denote the vector of the + 1 state-variables. Clearly, this
augmented model admits a first integdli(t)) := S_77, (t). Also, for any initial condition inz(0) €
C™ xR, all the state-variables remain bounded, as the firstate-variables remain i and z,,.1(t) =
H(z(0)) — >, a;(t) for all ¢ > 0. It is straightforward to verify that the augmented systesmai
cooperative system, and that (@) holds then it is a SCTS. SCTS systems that admit a non-tfiksal

integral have many desirable properties (see, €.gl [40]).

F. Effect of attachment and detachment

One may perhaps expect that detachment from a jammed sitentr@ase the total flow by reducing
congestion. The next result shows that this is not so. Detaadh always decreases the steady-state

production rateR. Similarly, attachment always increasgs

Proposition 7 Consider a MFALK with dimension. Suppose that the conditions in Propositidn 3 hold.

Thenael <0, andg;; > 0, for all i,;. Also, 2% <0 andaﬁj >0forall j=0,1,...,n—1.

This means that an increase in any of the detachment [atEdhmates decreases [increases] the
steady-state density in all the sites. Also, an increaseynoé the internal detachment [attachment] rates

decreases [increases] the steady-state production da¢endxt example demonstrates this.

Example 4 Consider the MFALK withn =3, \;, =1, v, =0,7=10,1,2,3, 8; = a3 = 0,7 = 1,2, 3.
Fig.[d depictsR as a function ofy; € [0, 1] andas € [0, 1]. It may be seen thak decreases with both;

and as. O

We note that the analytical results in Propositidn 7 agre# wigh the simulation results obtained
using a TASEP model for translation that included altexgatnitiation along the mRNA and ribosome

drop-off [74].

The next section describes an application of the MFALK to @dgical process.
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Fig. 5. R as a function ofv; € [0,1] andas € [0, 1] for the MFALK in Example[%.

IV. AN APPLICATION: MODELING MRNA TRANSLATION WITH RIBOSOME DROP OFF

It is believed that during mRNA translation ribosome movains unidirectional from the 5’ end to
the 3’ end, and that ribosomes do not enter in the middle otdung regions. However, ribosomes can
detach from various sites along the mRNA molecule due formgta to collisions between ribosomes.
This is known as ribosome drop off.

As mentioned in the introduction, ribosome drop off has bientopic of numerous studies [57], [25],
[24], [68], [7], [61], [18], |28], [22], [20], [29]. It was sggested that in some cases ribosome drop off
is important for proof readind [69], and also that ribosortalisg/abortion plays a role in translational
regulation (e.g. see [56], [V4]).

It is clear that ribosome abortion has drawbacks. Indeadstation is the most energetically consuming
process in the cell, and abortion results in truncated, foantional and possibly deleterious proteins. It
is believed that transcripts undergo evolutionary sed@ctd minimize abortion and/or its energetic cost
[67], [63], [61], [18], [28], [20]. Nevertheless, there seg to be a certain minimal abortion rate even in
non-stressed conditions [57], [29]. This basal value waisnesed (see more details below) to be of the
order or10~* — 10~% abortion events per codon i&. coli. In other words, in every codon one out of
1,000 — 10, 000 decoding ribosomes aborts. This value is non-negligilbieel consider a drop-off rate of
4 %10~ per codon along a coding region 8f0 codons (approximately the average coding region length

for E. coli) then on average, around out of every100 ribosomes will fail to complete the translation
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of the mRNA.

To model translation with ribosome drop off, we use the MFAlKth ~, = 0 (i.e. no backwards
motion) andg; = 0 (i.e. no attachment to internal sites along the chain) fbi.aChanging the values of
the o;s allows to model and analyze the effect of ribosome drop btfifferent sites along the mRNA
molecule. We assume that

A; >0, forall (26)

as otherwise the chain decouples into two smaller, disatirdechains. Note thaf (R6) implies that the
conditions in Proposition]3 hold, so the model is SO@hw.r.t. the L; norm, and thus admits a unique
globally asymptotically stable equilibrium poiate int(C™).

We study the effect of ribosome drop off on the steady-stateéep production rate and ribosome
density using real biological data. To this end, we congidéf S. cerevisiagenes (see Figurés$ 6 and 7)
with various mRNA levels (all genes were sorted accordinghteir mRNA levels andl0 genes were
uniformly sampled from the list). Similarly to the approagbed in [48], we divided the mRNAs related
to these genes to non-overlapping pieces. The first piedades the first9 codons that are related to
various stages of initiation [63]. The other pieces inclienon-overlapping codons each, except for the
last one that includes betwe&mand 15 codons.

To model the translation dynamics in these mRNAs using MFAIM¢ model every piece of mRNA
as a site. We estimated the elongation ratesit each site using ribo-seq data for the codon decoding
rates [12], normalized so that the median elongation ral@. cerevisiaanRNAs becomes$.4 codons
per second([23]. The site rate {site timg~!, where site time is the sum over the decoding times of
all the codons in the piece of mMRNA corresponding to this. Sitleese rates thus depend on various
factors including availability of tRNA molecules, aminoi@s, Aminoacyl tRNA synthetase activity and
concentration, and local mRNA folding [12],1[1], [63].

The initiation rate)\, (that corresponds to the first piece) was estimated basekeornitosome density
per mRNA levels, as this value is expected to be approximatedportional to the initiation rate when
initiation is rate limiting [48], [36]. Again we applied a mnalization that brings the median initiation
rate of allS. cerevisiaanRNAs to be0.8 [9].

We analyzed the effect of uniform ribosome drop off with ariatthe range of0~° to 10~2 per codon.
This corresponds to; = - -- = «,, := «, I.€., all theq;s are equal, and.. denote their common value.

Since we assumetl) codons per siteg, values range fromi0—* to 10~2 (ten times the rate associated
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Fig. 6. Reduction in steady-state mean dengiin percent as a function af. € [107*,107?] for 10 S. cerevisiagyenes.

with a single codon). This makes sense as in the MFALK thel lef/@ccupancy in a site is related to
the probability to see a ribosome in this site.
Let
D i G

pi= ==
n

denote the steady-state mean ribosomal density. Figured[@ depictpo and R in our model as a function
of a. € [107*,107?]. In these figures the genes in the legends are sorted acgawlitheir expression
levels: the gene at the top (YGR192C) has the highest mRNA&Idewhile the gene at the bottom
(YER106W) has the lowest levels. It may be seen that as the affqdetachment) rate.. increases from
10~* to 1072, p decreases by abo@6%, and R decreases by abott%. This demonstrate the significant
ramifications that ribosomal drop off is expected to haverandlation and the importance of modeling
drop off.

Note also that there is a strong variability in the effect odloff on the different genes: for mRNAs
with higher expression levels (i.e. mMRNAs with higher copymier in the cell) the drop off effect is
weaker. It is possible that this is related to stronger dwahary selection for lower drop off rate in genes
with higher mRNA levels. Indeed, highly expressed genesi$ame” more ribosomes (due to higher
MRNA levels), so a given (per-mRNA) drop off rate is expediede more deleterious to the cell, and

a mutation which decreases the drop of rate in such genes higher probability of fixation.
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Fig. 7. Reduction in steady-state output rate (productaa)iz in percent as a function af. € [10™*,1072] for 10 S. cerevisiagenes.

V. DISCUSSION

In many important processes biological “particles” mowengl some kind of a one-dimensional “track”.
Examples include gene transcription and translationullitransport, and more. The flow can be either
bidirectional (as in the case of transcription) or unidil@tal (as in the case of translation), with the
possibility of both attachment and detachment of partiaekedifferent sites along the track. For example,
motor proteins like kinesin and dynein that move along aatenmicrotubule may detach and attach to
an overlapping microtubule.

To rigorously model and analyze such processes, we intesbacew deterministic mathematical model
that can be derived as the dynamic mean-field approximatidd&&P with Langmuir kinetics, called the
MFALK. Our main results show that the MFALK is a monotone armchitactive dynamical system. This
implies that it admits a globally asymptotically unique gigpuium point, and that it entrains to periodic
excitations (with a common peridgfl > 0) in any of its rates, i.e. the densities along the chain, d§ we
as the output rate, converge to unique period solutions petiod 7'.

It is important to note that several known models are spaaaés of the MFALK. These include for
example the RFM[]48], the model used in [15] for DNA transtidp, and the model of phosphorelays
in [11]

Topics for further research include the following. In theNRFt has been shown that the steady-state

1Although in this model the occupancy levels are normalizé@rently.
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production rate is related to the maximal eigenvalue of d@agemon-negative, symmetric tridiagonal
matrix with elements that are functions of the RFM rates,the \;s [44]. This implies that the mapping
(Mo, ..., An) — R is strictly concave, and that sensitivity analysis/ofis an eigenvalue sensitivity prob-
lem [45]. An interesting research topic is whether= R(X\g, ..., A\, Y0, -5 Yo, @1y« -+, Qs B, - -+ Bn)

in the MFALK can also be described using such a linear-algjekapproach.

The application of the MFALK to model ribosome drop off sugtgean interesting direction for further
study, namely, how to design genes that minimize the dropaté#.

Another research direction is motivated by the fact that ynahthe transport phenomena that can
be modeled using the MFALK do not take place in isolation. Eeample, many mRNA molecules are
translated in parallel in the cell. Thus, a natural next ssdp study networks of interconnected MFALKSs.
Graph theory can be used to describe the interconnectidngée the various MFALKSs in the network.
In this context, ribosome drop off may perhaps increase aoked production rate in the entire system,
as it allows ribosomes to detach from slow sites, enter th@ pbfree ribosomes, and then attach to
the initiation sites of other, less crowded, mMRNA moleculdéswever, drop off still incurs the biological
“cost” associated to the synthesis of a chain of amino-atidsis only a part of the desired protein. The
fact that the MFALK is contractive may prove useful in anahgg networks of MFALKS, as there exist
interesting results proving the overall contractivity of@twork based on contractivity of the subsystems
and their couplings (see, e.@l [5], [50]).

Another interesting topic for further research is studyihg effect of controlled detachment rates on
the formation of traffic jams. Indeed, it is known that kimegamily motor proteins are more susceptible

to dissociation when their pathway is blocked|[14],1[62].

APPENDIX: PROOFS

We begin by discussing some symmetry properties of the MFAdKthese will be useful in the proofs

later on.
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Symmetry

The MFALK enjoys two symmetries that will be useful later &iirst, letz;(¢) := 1—xz;(t),i = 1,...,n.

In other words,z;(¢) is the amount of “free space” at siteat time¢. Then using[(ll) yields

H=1—2)+Ma(l—2)+a(l—2) =7zl —2)— Az — fria,

22 = ’}/121(1 — 22) + )\223(1 — ZQ) -+ 062(1 — 22) — ’}/222(1 — 23) — )\122(1 — Zl) — 5222,

23n = ’Yn—lzn—l(l - Zn) + )\n<1 - Zn) + an<1 - Zn) — Tnin — )\n—lzn(l - Zn—l) - ﬁnzn- (27)

This is just the MFALK [1), but with the parameters permutedf@lows: A\, — Y&, Y& — Axs Bk — i,
and o, — f, for all k. The symmetry here follows from the fact that we can repldeeroles of the
forward and backward flows in the MFALK.

Next, lety;(t) == 1 — xp11-4(f), i = 1,...,n. In other wordsy,(t) is the amount of “free space” at

siten + 1 — 4 at time¢. Then using[{ll) yields

1= A1 = y1) + Yno12(1 —v1) + an(l —y1) — Mc1yi (1 — y2) — Y1 — Bub,

U2 = M—1y1(1 — 92) + Yn—2vs(1 — y2) + ap—1(1 — y2) — A—ota(l — y3) — Y—192(1 — y1) — Bu-1¥2,

yn - )\lyn—l(]- - yn) + 70(1 - yn) + al(]- - yn) - )\Oyn - Vlyn(]- - yn—l) - 51% (28)

This is just the MFALK [1), but with the parameters permutedfallows: \y — My V6 — Vn—ko
Br — apii-k, andag — B,o1-x for all k. Note that [(2)7) is simply[(28) with the variable renaming
Zi = UYna1—ir L= 1,...,n.

Both symmetries are reminiscent of tharticle-hole symmetrin ASEP [6], [30]: the basic idea is that
the progression of a particle from left to right is also thegression of a hole from right to left.

Proof of Propositiohl1lf () holds then the MFALK satisfies propertR) in [35], and [35, Lemma 1]
implies (6). If (B) holds then[(27) satisfies properBR) in [35], and this implies[(6)m

Proof of Propositionl2Write the MFALK asi = f(x). A calculation shows that the Jacobian ma-
trix J(z) := %L(x) satisfies.J(x) = L(z) + P, where L(z) is given in [3D), andP is the diagonal
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_—)\1(1 —1‘2) — Y122 Az +71(1 —xl) 0 T
)\1(1—1'2)4-’}/1%2 -z —’yl(l —xl) —)\2(1 —xg) — Y23 ... 0
0 )\2(1—$3)+’725L'3 0
L(x) = :
0 0 0
0 0 AM—1Tn—1 + 'Vn—l(l — CL'n_l)
L 0 0 e _An—ll’n—l - ’Vn—l(l - xn—l)_
(30)
matrix
P =diag(—X\ — v — a1 — Bi,—a2 — Bo, ..., =1 — Bue1, Ay — Yo — i — Bn). (29)

Note thatL(zx) is tridiagonal and Metzler (i.e, every off-diagonal entsynion-negative) for any € C".
Recall that the matrix measure, : R"*" — R induced by thelL; norm is given byu,(A) =
max{ci(A),...,c,(A)}, wherec;(A) is the sum of the elements in columinof A with off-diagonal
elements taken with absolute vallie|[64]. For the Jacolliahthe MFALK, 1, (J(z)) = n for all x € C™.
It is well-known (see, e.g.[ [3]) that this implies] (M.
Proof of Propositiohl3For ¢ € [0,1/2], let

Cli={reC": (<r;<1-( i=1,...,n}

Note thatCy = C", and thatC? is a strict subcube of™ for all ¢ € (0,1/2]. By Propositior 1L, for
any T > 0 there exists = () € (0,1/2), with {(7) — 0 asT — 0, such that

x(t+71,0) € C, forallt>0andallaecC". (31)

For anyz € C every entryL;; on the sub- and super-diagonal ofn (30) satisfies.;; > (s, wheres :=
min; <;<,—1{\; + 7} > 0. Combining this with[[35, Theorem 4], implies that for atye (0, 1/2] there
existse = ¢(¢) > 0, and a diagonal matriD = diag(1, q1, ¢1G2,-- -, @1G2 - - - @u_1), With ¢; = ¢;(g) >

0, such that the MFALK is contractive o6’ w.r.t. the scaledl, norm defined by|z|, p := [Dz];.
Furthermore, we can choosesuch thats(¢) — 0 as¢ — 0, and D(¢) — [ ase — 0. Now Thm. 1

in [39] implies that the MFALK is contractive after a smallarghoot and short transient (SOST). Prop. 4
in [39] implies that for the MFALK SOST is equivalent to SO,dathis completes the prool
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Proof of Propositiohl4We begin by recursively defining two sequences. For all ieteg> 1, let

ui+1:1+€1+€2+-~-+€i,

Civi =i + 0y + Ly + -+ L. (32)

with initial conditionsuy, = u; = 1, and{, = 0, /; = 1. We claim that fork = 0,1,...,n — 1 the

steady-state density in site— k is generically the ratio of two polynomials iR:

with deg(pi(R)) = ug, deg(qe(R)) = . (33)

Cn—k =

We prove this by induction oh. By (18),¢,, = aR+b, with a := (X, +7,+ 6, +a,) ! andb := (v, +06,)a,
and this proved (33) fok = 0. Using [16) again yields

R + Yn—1€En
An—1(1 —€,) + Yu_16n
B R+~,-1(aR+ )
N )\n—l + ('Vn—l — )\n_l)(aR + b)’

€n—1 =

and this proves[(33) fok = 1. Now assume that there exists> 2 such that[(3B) holds fok =
0,1,...,s—1. By (8),

_ R + Yn—s€n—s+1 — gn—s—l—l(en—s—i-l) — gn—s+2(en—s+2) - gn—l(en—l)
)\n—s(l - en—s—i—l) + VYn—s€n—s+1

6n—s )

and applying[(I2) and the induction hypothesis yields

R+ 771—55:::1 + (571—84-1 + an—s+1)p571 + (571—54—2 + an—s+2)p572 +o (571—1 + an—l)z_i +c

e 1 qs—1 qs—2
n—s — Ps—1 ’
)\n—s + (’Vn—s - )\n—s) Go_1
wherec := —f3,,_,.1— - -—f,_1. Multiplying the numerator and the denominator§yy . . ¢,_; yieldse,,_, =

ps/qs, Where

deg(ps) = max{1l +deg(qy ...qs—1),deg(ps_1q1 - - - qs—2),...,deg(piqz ... qs-1)},

deg(qs) = max{deg(q ...qs—1),deg(ps—1q1 ... qs—2)}.
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By the induction hypothesis,

deg(ps) =max{l+ 0, + -+ ls_q,us1 + 0+ +Llso,...;ug +lo+ -+ U1},

deg(qs) = max{l; + -+ -+ ls_1,us 1+l +--+ Ll o} (34)
It is straightforward to prove that (B2) implies that

Combining this with [(34) yieldsleg(p,) = 1+ ¢; + -+ -+ {,_1, anddeg(qs) = us_1 + 01 + - + s .
Thus,deg(p,s) = us anddeg(qs) = /5, and this completes the inductive proof £f|(33). In parecu(33)

yields
_ Pn-1 (R)
dn—1 (R> 7

€1

(36)

with deg(p,_1(R)) = u,_1, deg(g,_1(R)) = £,_1. Substituting this in the last equation ¢f[16) yields

n—1

Pn—1
Uq : :z—R+Zgj(ej),

wherev := \g + v + 1 + a1, and z := \g + (1. Arguing as above shows that this is a polynomial
equation of the formuw(R) = 0, with deg(w) =1+ ¢, + ---+ £,_1 = u,. It is straightforward to prove
by induction that[(3R) implies that

2k
uk:1+{§J, gk:

(we note in passing that the latter sequence is known as tobsgthal sequence [58]), and this completes
the proof of Proposition]4m

Proof of Proposition]5We begin by proving tha? > 0 implies that][._,\; > [[_,v. If R >0
then [I8) yields

Ao(1 —e1) > yoen,
Aiei(1 —eip1) >y (I —e), i=1,...,n—1,

An€n > (1l —ey). (37)
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Multiplying all these inequalities, and using the fact that int(C™) yields

To prove the converse implication, assume thai (38) holdgtiMying both sides of this inequality by
the strictly positive terrrf[;?:1 e;(1 —e;) yields

a; >

n n .
1=0 1=0
whereag := \o(1 —e1), a; ;= Ne;(1—e;41), i =1,....,n—1, a, = \pen, by := Yoe1, b := viei1(1—¢;),
i=1,...,n—1, andb, = v,(1 — e,). This means that, > b, for some index! € {0,...,n}. Since
R = a;, — b, (see [(18)), it follows thatR > 0. Summarizing, we showed tha > 0 if and only
if TIo X > [l - The proof thatR < 0 if and only if [ , A\ < [[,7: is similar. This implies
that R = 0 if and only if []"_, A\; = [, %. This completes the proof of (19).

To prove [2D), note thaf (18) yields

SR e e
n )\n+'yn’
R+ ve; .

€; = + Yicirt , t=n—1,...,1,

Ai(1 = €iy1) + vicipr

A — R
e = . (39)
T X+

SubstitutingR = 0 completes the proof of Prop] i

Proof of Propositiohl6Since the Jacobiaii(x) of the MFALK is Metzler (i.e, every off-diagonal entry
is non-negative) for any: € C™, the MFALK is a cooperative systern [60], and this yields] (24)

When\; +~; >0,i=1,...,n— 1, the matrixL(z) and, therefore,/(x), is irreducible for everyr €
int(C™), and combining this with Propositidd 1 implids [25) (see,. €60, Ch. 4]).m

Proof of Theorenm]1The Jacobian of the PMFALK ig/ (¢, z(t)) = L(t,z(t)) + P(t), with L given
in (30), andP is given in [29) (but now with time-varying rates). Pick aiitial time ¢, > 0, andr, > 0.
The stated conditions guarantee the existencg ©f(0, 1/2) such thatz(t, g, a) € C7 for all ¢ >ty + 7
and alla € C™. Also, [35, Thm. 4] implies that there exists a diagonaltgled L.; norm such that
the PMFALK is contractive onC?" w.r.t. this norm. Now entrainment follows from known resuttn
contractive systems with a periodic excitation (see, &g])[m

Proof of Propositiohl 7First, using Remarkl1 and the argument used in the prodf Gff4ép. 4] shows
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that all the derivatives in the statement of of Propositibexist.
Given a MFALK, pickj € {1,...,n} and consider the new MFALK obtained by changimgto &;,
with &; > «;, and all other rates unchanged. lZetR denote the steady-state density and production rate

in the modified MFALK. Seeking a contradiction, assume that

En > €n. (40)

Then [14) implies that
R> R, (41)

and if j = nthenR > R. By @8) withi = n— 1, R = M_ien1(1 — €n) — Yn_1en(l — €n_y)
and R = A—16n1(1 —€,) — Yn_16,(1 — é,_1), and combining this with[{40) an@_(41) yields

én—l Z €n—1- (42)

Now using [I5) withi = n — 2 yieldseé,,_, > e,_o, andé,,_, > e,_» if j = n— 1. Proceeding in this way

shows that

€ > €, k=nn—1,...,7, (43)

e >ep, k=7-—17—2 ... 1 (44)
Combining this with [IB) withi = 0 yields R < R. This contradicts[{41), so
En > €. (45)

Proceeding as above yields> ¢; for all i, so % < 0 for all 7, j. The proofs of all the other equations
J

in Prop.[T are very similar and therefore omittad.
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