
 27 January 2021, v2

 1

A fast algorithm to find reduced hyperplane unit cells and solve N-

dimensional Bézout’s identities

Authors

Cyril Cayrona*

aLaboratory of Thermo Mechanical Metallurgy (LMTM), PX Group Chair, EPFL, Rue de la

Maladière 71b, Neuchâtel, 2000, Switzerland

Correspondence email: cyril.cayron@epfl.ch

Synopsis The paper explains the method to determine a short unit cell attached to any hyperplane

given by its integer vector p. Equivalently, it gives all the solutions of the N-dimensional Bézout’s

identity associated with the coordinates of p.

Abstract An algorithm is proposed to find a short solution and the affine set of solutions of Bézout’s

identities. The first part of the paper is devoted to the column-constrained unimodular matrix problem.

which consists in finding an integer matrix such that the absolute value of its determinant is 1 and the

values of its last column are fixed. In a second part, a recursive algorithm that determines some solutions

to the N-dimensional Bézout’s identity is presented. The third part shows how to combine the two

previous algorithm and uses parallel projections to determine a unit cell attached to any integer

hyperplane p. This unit cell can be then shorten by lattice reduction with LLL or cubification method.

The vectors of the unit cell form the affine space of all the solutions of the N-dimensional Bézout’s

identity based on the vector p.

Keywords: N-dimensional Bézout’s identity; hyperplane unit cell; lattice reduction.

1. Introduction

This study was initiated by the study made by Gorfman (2020) on what we will call the “column-

constrained unimodular matrix problem” which consists in determining an integer matrix M such that

its determinant is ±1 and the last column is equal to a fixed vector t. Since Gorfman proposed a

solution that seems reliable but slow, we have looked for another and more effective algorithm. The

algorithm we propose is based on 2D Bézout’s identity; it is detailed in §2. In parallel, we developed

in §3 an algorithm to determine some solutions to the N-dimensional Bézout’s identity. In §4, we

explain how to combine the algorithms of §2 and §3 to attach a unit cell to any hyperplane given by

its normal (reciprocal) vector, which could be useful in crystallography and geometry. Equivalently,

the algorithm gives the infinite set of solutions of N-dimensional Bézout’s identity, which could have

application in number theory and algebra. It is also shown how the unit cell can be further reduced

2

thanks to lattice reduction algorithms (LLL or cubification); i.e. how to determine an equivalent unit

cell with shorter and more orthogonal vectors.

In this paper, 𝑢𝑖 designs the ith coordinate of a vector 𝐮. Sometimes, the notation 𝐮(𝑖) will be also

equivalently used. It should not be confused with 𝐮𝑖 that is the ith vector in a set of vectors {𝐮𝑖}. The

coordinates of a vector 𝐮 are written in column and those of the vector noted 𝐮t are in line. From a

crystallographic point of view, column and line vectors belong to direct and reciprocal spaces,

respectively. The matrix multiplication notation is adopted. It means that even a “simple” scalar

product 𝐩 ∙ 𝐮 = ∑ 𝑝𝑖𝒊 𝑢𝑖 is written 𝐩t 𝐮 where “𝐩t” means “transpose of 𝐩”. Please note that a list of

vectors are represented by a matrix formed by the vector coordinates are written in columns, whereas

in the companion paper about lattice reduction (Cayron, 2021b), the vectors are written in row in

order to respect the usual custom in lattice reduction problems.

2. Algorithm to solve the column-constrained unimodular matrix problem

2.1. Case where one of the coordinates of t is ±𝟏

In the column-constrained unimodular matrix problem, there is a simple and immediate solution if the

Nth coordinate of 𝐭 is ±1. In that case, any triangular matrix M with 1 in the diagonal and with t as last

column checks the condition det(M) = 1. If one of the coordinates of 𝐭 is 1 but in a position i < N, then

a simple matrix of permutation P is sufficient to recalculate the matrix M. The example used by

Gorfman (2020) with the vector 𝐭 of coordinates [−1,4,2] enters in this category. A direct solution is

𝐌 = [
0 0 −1
0 1 4
1 0 2

]

We will not give more details here because the solutions are actually included in the more general

method based on Bézout’s identity explained as follows.

2.2. Case where t has coprime coordinates

With N = 2 the general solution is indeed given by the classical 2D Bézout’s identity. If we note 𝐭 =

 [
𝑎
𝑏
] , there is a solution if and only if the integers a and b are coprime, and the solution is simply

𝐌 = [
𝑢 𝑎
𝑣 𝑏

] , where u, v are the Bézout numbers associated with a, b, i.e. solutions of the equation

𝑎𝑢 + 𝑏𝑣 = 1. If a and b are not coprime, the determinant of any matrix M with t in last column

would be a multiple of gcd(a,b), the greatest common divisor of a and b, and thus cannot be equal to

±1. A fast and well-known algorithm to determine 2D Bézout numbers is based on iterative

Euclidean division (Wikipedia, 2021a).

3

Now, we consider the case where N > 2 and the vector t has its two last coordinates 𝑡𝑁−1 = 𝑎 and

𝑡𝑁 = b that are coprime numbers. A direct solution is the matrix M made of two blocks, the top right

one is the (𝑁 − 2) × (𝑁 − 2) identity matrix, and the bottom left one is [
𝑢 𝑎
𝑣 𝑏

] where u, v are the

Bézout numbers associated with a, b. If the two coprime coordinates of vector t, a and b are not the

last ones and are in positions i and j, respectively, the permutation matrices 𝐏(𝑖, 𝑁 − 1) and 𝐏(𝑗, 𝑁)

can be used to come back to the previous case. We recall that a permutation matrix 𝐏(𝑖, 𝑗) is a 𝑁 × 𝑁

identity matrix, except for the line 𝑖 for which 1 is written in the column 𝑗, and for the column 𝑗

where 1 is written in the line 𝑖. Permutation matrices are unimodular matrices and are equal to their

inverse. The unimodular matrix 𝐏 = 𝐏(𝑖, 𝑁 − 1). 𝐏(𝑗, 𝑁) is such that the vector 𝐏. 𝐭 has for last

coordinates the coprime numbers a and b. We thus came back to the case 𝑡𝑁−1 = 𝑎 and 𝑡𝑁 = b. If we

call M the two-block solution of this case, the solution of the problem is given by the matrix 𝐏−1.𝐌.

Please note that 𝐏−1 = 𝐏(𝑗, 𝑁). 𝐏(𝑖, 𝑁 − 1) ≠ 𝐏. The cases treated in this section include the case

mentioned in §2.1.

With 𝐭 of coordinates [1551, −540, 67, −102, 2140, −277, 32, 366, 450, 1532] used as example, the

algorithm gives immediately a solution:

𝐌 =

[

0 0 0 0 0 0 0 0 −463 1551
0 1 0 0 0 0 0 0 0 −540
0 0 0 0 0 0 0 0 −20 67
0 0 0 1 0 0 0 0 0 −102
0 0 0 0 1 0 0 0 0 2140
0 0 0 0 0 1 0 0 0 −277
0 0 0 0 0 0 1 0 0 32
0 0 0 0 0 0 0 1 0 366

−1 0 0 0 0 0 0 0 0 450
0 0 1 0 0 0 0 0 0 1532]

2.3. Case where t has no coprime coordinates

Now, let us consider the rarer cases in which none of the pairs (𝑡𝑖, 𝑡𝑗) of coordinates of 𝐭 are coprime

despite the fact that the set of coordinates of t is coprime (as mentioned previously, if it were not,

there would not be solution to the problem). One says that the set of integers {𝑡𝑖, 𝑖 = 1,… ,𝑁} is

coprime but not pairwise coprime. A classical example of a coprime but not pairwise coprime set is

{6, 10, 15}. Let us recall that in large dimension N the probability that a set of integers that is coprime

but not pairwise coprime is very small because the probability that two random integers are coprime is

quite high; it is equal to
1

𝜁(2)
=

6

𝜋2 ≈ 61%, where 𝜁 refers to the Riemann zeta function (Wikipedia,

2021b). The exact calculation of the probability for a set of N integers to be coprime but not pairwise

coprime as function of N is however not straightforward and clearly beyond the scope of the present

study. Even if rare, these cases can be solved as follows. We consider the two first coordinates 𝑡1 = 𝑎

and 𝑡2 = 𝑏 of the vector 𝐭 (any pair of coordinates would also work). As a and b are not coprime, they

4

can be written 𝑎 = 𝑥𝑦 and 𝑏 = 𝑦𝑧, where x, y, z are three integers and 𝑦 = gcd(𝑎, 𝑏) > 1. It is

important to note here that there is at least another coordinate 𝑡𝑖 with 𝑖 > 2, that cannot be divided by

y, because if it were not so, {𝑡𝑖} would not be coprime. We call (𝑢, 𝑣) the Bézout numbers associated

with (𝑎, 𝑏), or equivalently to (𝑥, 𝑧). We also call (𝛼, 𝛽) the Bézout numbers associated with (𝑢, 𝑣).

The determinant of the matrix 𝐁 = [
𝑢 𝑣

−𝛽 𝛼] is 1, and 𝐁. [
𝑥𝑦
𝑦𝑧] = [

𝑦
𝑘𝑦], with 𝑘 ∈ ℤ. We build the 𝑁 ×

𝑁 matrix 𝐌 from the 2 × 2 block 𝐁 and from the identity matrix of dimension 𝑁 − 2. The first

coordinate (𝐁. 𝐭)(1) of the new vector 𝐁. 𝐭 is coprime with at least one of the coordinates (𝐁. 𝐭)(𝑖) with

 𝑖 > 2. It means that the method described in the previous paragraph can be applied to calculate a

matrix M such that 𝑑𝑒𝑡(𝐌) = 1 and such that its last column is the vector 𝐁. 𝐭. The matrix 𝐁−1.𝐌 is

then such that its determinant is also 1 and its last column is 𝐭. As the determinant of 𝐁 is 1, 𝐁−1 is the

adjugate of B, and is thus an integer matrix. Consequently, 𝐁−1 𝐌 is also an integer matrix; it is the

solution of the problem. The algorithm is effective and fast, whatever the dimension N of the vector 𝐭.

We just give an example with the classical set of coprime but not coprime coordinates [6,10,15]. The

algorithm gives immediately a solution (the vectors are written in columns):

𝐌 = [
1 0 6
2 1 10
0 −7 15

]

Let us build another example with a vector 𝐭 of coordinates [−42, 10,15,−30,6]. A solution is

𝐌 =

[

0 4 0 1 −42
0 −1 0 0 10
0 0 0 −7 15

−1 0 0 0 −30
0 0 1 0 6]

It is important to note that the algorithm gives only one solution M, but that there is actually an

infinite set of solutions, even in the simple case of N = 2 because the Bézout numbers are not unique.

Indeed, if u, v are the Bézout numbers associated with a, b, i.e. solutions of the equation 𝑎𝑢 + 𝑏𝑣 =

1, then 𝑢 − 𝑘𝑏, 𝑣 + 𝑘𝑎 are also solutions. The set of solutions form a row that is perpendicular to the

vector [a, b] at a unit distance from the origin. It is an affine space of dimension 𝑁 − 1 = 1. This

geometrical representation of Bézout number will be used in the next sections.

3. N-dimensional Bézout’s identity

In this section, we present two methods to calculate some solutions of N-dimensional Bézout’s

identity. Given a set of integers {𝑝𝑖, 𝑖 = 1,… ,𝑁} we look for another set of integers {𝑢𝑖, 𝑖 = 1,… , 𝑁}

such that ∑ 𝑝𝑖𝑢𝑖 = 1𝑁
𝑖=1 . In other words, given an integer vector p of coordinates 𝑝𝑖, we want to get

the coordinates 𝑢𝑖 of an integer vector 𝐮 that is such that 𝐩t 𝐮 = 1. Surprisingly, we could not find in

literature algorithms in the cases 𝑁 > 3. We propose here two recursive algorithms among the four

we could find. They give different solutions that are all valuable.

5

Method-0. We consider 𝑝1 and 𝑝2 the two first coordinates of 𝐩, and we call (𝑢, 𝑣) their Bézout

numbers, i.e. 𝑢𝑝1 + 𝑣𝑝2 = 𝑔𝑐𝑑 (𝑝1, 𝑝2). If we note {𝑘𝑖, 𝑖 = 2,… ,𝑁} the Bézout numbers in

dimension 𝑁 − 1 associated with the set {𝑔𝑐𝑑(𝑝1, 𝑝2) , 𝑝3, … , 𝑝𝑁}, a solution of the initial N-

dimensional Bézout’s identity is {𝑢𝑘2, 𝑣𝑘2, 𝑘3, … , 𝑘𝑁}. This method is easy to compute by recursion

until the dimension decreases down to N = 2 for which the solution is given by the classical Bézout’s

algorithm. The problem related to this method is that the absolute values of the Bézout numbers 𝑢𝑖

can be quite high. One could screen all the pairs (𝑝𝑖, 𝑝𝑗) in place of (𝑝1, 𝑝2) to determine the lowest

Bézout numbers but this method would be unrealistic for high dimensions N. We could find another

method for which the values are lower than those usual found by method-0.

Method-1. The set of integers {𝑝𝑖, 𝑖 = 1,2, … ,𝑁} is sorted in the decreasing order of the absolute

values. The sorting permutation is kept in memory. The smaller non-null value is called 𝑝𝑖0. We

calculate the quotient and residue sets {𝑞𝑖, 𝑖 < 𝑖0} and {𝑟𝑖, 𝑖 < 𝑖0} with 𝑞𝑖 = ⌊
𝑝𝑖

𝑝𝑖0

⌋ and 𝑟𝑖 = 𝑝𝑖 − 𝑞𝑖𝑝𝑖0 ,

the quotient and remainder of the Euclidean division by 𝑝𝑖0. If we note {𝑢1, 𝑢2, … , 𝑢𝑖0−1, 𝑢𝑖0 , 0, . . ,0}

the Bézout numbers associated with the set {𝑟1, 𝑟2, … , 𝑟𝑖0−1, 𝑝𝑖0 , 0, . . ,0}, a solution of the N-

dimensional Bézout’s identity is {𝑢1, … , 𝑢𝑖0−1, 𝑢𝑖0 − ∑ 𝑞𝑖
𝑖0−1
𝑖=1 𝑢𝑖, 0, . . ,0}. This method is easy to

compute by recursion until the dimension decreases down to N = 2 for which the solution is given by

the classical Bézout algorithm. The correct order of the Bézout numbers associated with the initial set

{𝑝𝑖, 𝑖 = 1,2,… ,𝑁} is restored by applying 𝜎−1. The Bézout numbers calculated with this method are

smaller in absolute value than those obtained by method-0. For example, with the vector 𝐩t = [51,

450, −102, 240, −277, 54, 450, 532], method-0 gives 𝐮t = [−4876, 552, 0, 0, −1, 0, 0, 0], and

method-1 𝐮t = [−3, 0, 0, 0, 0, −3, 0, 1]. The calculation lasts only a few ms. Even if method-1 gives

small Bézout vectors u, it may not give systematically the smallest ones. We will see in the next

section, how to calculate shorter Bézout vectors u with the help of the column-constrained unimodular

matrices determined in §2.

4. Hyperplane unit cell

Let us assume that a hyperplane is given only by its normal vector 𝐩, an integer vector of the

reciprocal space. In 3D crystallography, we would say that we know the Miller indices ℎ, 𝑘, 𝑙 of the

plane 𝐩, i.e. 𝐩t = (ℎ, 𝑘, 𝑙). How to determine a unit cell such that 𝑁 − 1vectors of this cell belong to

the hyperplane, and one vector is in the first layer? In other words, we are looking for N vectors

{𝐛1, … , 𝐛𝑗, … , 𝐛𝑁} such that 𝑁 − 1 vectors {𝐛2, … , 𝐛𝑗, … , 𝐛𝑁} are such that 𝐩t 𝐛𝑗 = 0 (layer 𝑞 = 0),

and the first vector 𝐛1 is such that 𝐩t 𝐛1 = 1 (layer 𝑞 = 1). We propose a method to calculate a unit

cell based on the solution of the column-constrained unimodular matrix problem described in §2.

6

We start from the input vector 𝐩. A Bézout vector 𝐛1 in the layer 𝑞 = 1 is given by the Bézout vector

associated with 𝐩 by the algorithm detailed in §3 (method-1). Now, how to determine the 𝑁 − 1

vectors in the layer 𝑞 = 0? We consider the unimodular matrix M that is such that the last column is

the vector 𝐛1. The 𝑁 − 1 first column vectors of the matrix M are called 𝐯𝑗 for 𝑗 ∈ {2, . . 𝑁}. Each of

these vectors belongs to the lattice; thus, they are such that 𝐩t 𝐯𝑗 = 𝑞𝑗 ∈ ℤ. We construct by parallel

project along 𝐛1 the new vectors 𝐛𝑗 = 𝐯𝑗 − 𝑞𝑗 𝐛1. They verify 𝐩t 𝐛𝑗 = 0 for 𝑗 ∈ {2, . . 𝑁}; i.e. they

belong to the layer q = 0. A 3D example of these geometrical projections parallel to 𝐛1 is represented

in Figure 1.

Figure 1 Construction of the unit cell attached to the hyperplane 𝐩1 = (ℎ, 𝑘, 𝑙). First, the vector 𝐛1-

such that 𝐩1
t 𝐛1 = 1 is found by the Bézout’s algorithm detailed in §3. Then a unimodular matrix 𝐌 =

(𝐯2, 𝐯3, 𝐛1) is found with the algorithm described in §2. The vectors 𝐛2 and 𝐛3are obtained by

projections along the vector 𝐛1. The unit cell attached to the hyperplane 𝐩1 is (𝐛2, 𝐛3, 𝐛1).

We get a unit cell 𝐔 = (𝐛1, … , 𝐛𝑗, … , 𝐛𝑁) attached to the plane 𝐩 such that 𝑑𝑒𝑡(𝐔) = 1, 𝐩t 𝐛1 = 1,

and 𝐩t 𝐛𝑗 = 0 for 𝑖 ∈ {2, . . 𝑁}. It is the unit cell we were looking for. However, the vectors 𝐛𝑗 may be

quite large and their angles far from orthogonality. There are two methods to find a reduced unit cell

𝐔′ = (𝐛1
′ , … , 𝐛𝑗

′, … , 𝐛𝑁
′), with 𝐛𝑗

′ with shorter lengths and angles between each other’s closer to

orthogonality, and that have the same properties with the vector 𝐩. One could apply the LLL

algorithm, from the names of its authors Lenstra-Lenstra-Lovász (1982), that is well-known in

computer science and cryptography, or the alternative algorithm called cubification (Cayron, 2021b).

The latter choice is chosen. We wrote a computer program in Python 3.8 called GeneralizedBezout

7

that incorporates the hyperplanar reduction modules previously developed in the Python program

Cubification. This module gives a reduced unit cell in a few ms on our standard 6 years old laptop

computer.

Let us give an example with 𝐩t = (−54, 131,−48, 632, 23, 177, 333, 99,−581, 377). The

coordinates were chosen completely “randomly” by the author. The Bézout vector associated with the

plane 𝐩 given by method-1 described in §3 is 𝐛1
t = [1, 0, 0, 0, 11, 0, 0, −2, 0, 0]. After determining a

first unit cell by projections parallel to 𝐛1, and after reducing this unit cell, this vector becomes

(𝐛1
′)t = [0,1, 1, 0, 1, 0,0, 1, 1, 1]. The reduced unit cell is given by the matrix (the vectors are written

in columns):

𝐔′ =

[

0 −1 1 1 0 0 0 0 0 0
1 0 0 −1 −2 1 −1 0 0 −1
1 −2 −2 −1 −2 0 1 1 0 1
0 0 0 0 0 0 0 0 1 0
1 0 1 −1 1 2 0 0 −1 1
0 −2 1 0 0 −1 0 1 −1 −1
0 0 1 1 −1 0 0 −1 −1 1
1 0 −2 0 1 0 −2 0 −1 0
1 −1 0 −1 0 0 0 −1 0 0
1 −1 −1 −2 1 0 1 −1 0 0]

The calculation was made in 20 ms.

The matrix 𝐔′is interpreted crystallographically / geometically as the unit cell attached to the

hyperplane p. From an algebraic point of view, 𝐔′ = (𝐛1
′ , … , 𝐛𝑖

′, … , 𝐛𝑁
′) can equivalently be

understood as the infinite set of solutions of the N-dimensional Bézout’s idendity, where 𝐛1
′ is a

reduced solution of the equation 𝐩t 𝐛1
′ = 1, and the other vectors are such that 𝐩t 𝐛𝑗

′ = 0, 𝑗 ∈ {2, . . 𝑁}.

The set of solutions of Bézout’s identity are thus 𝐛1
′ + {ℤ 𝐛𝑗

′} with 𝑗 ∈ {2, . . 𝑁}, where {ℤ .} means all

the linear combinations with integer coefficients. This 𝑁 − 1 dimensional affine space represents all

the solutions of Bézout’s identity made on the coordinates of p.

We note that the solutions 𝐛𝑗
′ giving 𝐩t 𝐛𝑗

′ = 0 could be of interest for other arithmetic problems. In

general, they are given by an algorithm called PSLQ (Ferguson, Bailey & Arno, 1999; see also

Wikipedia, 2021c), where “PS refers to partial sums of squares, and LQ to a lower trapezoidal

orthogonal decomposition”. The PSLQ algorithm works for any vector 𝐩 ∈ ℝ𝑁 and has permitted to

discover numerous previously unknown identities among real numbers. One of them is the formula

for the value of π discovered by Bailey, Borwein & Plouffe (1997). Our algorithm gives only

solutions for vectors 𝐩 ∈ ℤ𝑁, but it may be more efficient. Let us consider the PSLQ is implemented

in Mathematica under the function FindIntegerNullVector. When applied to the vector 𝐩t =

 (−54, 131,−48, 632, 23, 177, 333, 99,−581, 377) given in the previous example, this function

8

gives only one solution that is [1,0, −2,0,2,0,2,0,0,−2]. We notice that this vector is larger than all

the vectors 𝐛𝑗
′ in columns 𝑗 ∈ {2, . . 𝑁} of the matrix 𝐔′. This could mean that our algorithm may have

some advantages over PSLQ to find integer relations between integers. More fundamental and

applicative research is however required to confirm or infirm this point.

5. Conclusion

In a first step, an algorithm is proposed for the column-constrained unimodular matrix problem. It

permits to find an integer matrix M such that det(M) = 1 and the last column vector of M is a given

vector t. In a second step, a recursive algorithm that finds some solutions to the N-dimensional

Bézout’s identity is presented. To any integer vector p, it gives an integer vector 𝐮 such that 𝐩t 𝐮 = 1.

At this stage, the vectors 𝐮 may be large, and the infinite set of solutions is yet not determined.The

third step combines the two previous ones and uses parallel projections to determine a unit cell

attached to any integer hyperplane p. This unit cell can be shorten by lattice reduction (LLL or

cubification). Equivalently, the vectors of the unit cell form the 𝑁 − 1 affine space of all the solutions

of the N-dimensional Bézout’s identity made on the integer coordinates of the vector p.

Acknowledgements Prof. Roland Logé is warmly acknowledged for the freedom given to our

research that sometimes goes beyond metallurgy.

Note: the Python program GeneralizedBezout will be made available for the reviewers of the present

manuscript. If and once the manuscript accepted for publication, it will be deposited on github or

freely available on demand.

References

Bailey, D.H.; Borwein, P. B.; Plouffe, S. (1997). On the Rapid Computation of Various

Polylogarithmic Constants. Mathematics of Computation. 66. 903–913.

Cayron, C. (2020) Complements to Mügge and Friedel’s Theory of Twinning, Metals 10, 231.

Cayron, C. (2021a) Axial Heterotwins, https://arxiv.org/abs/2011.03931 submitted to Acta

Crystallographica,

Cayron, C. (2021b). Lattice reduction by cubification, https://arxiv.org/abs/2101.04500 submitted to

Acta Crystallographica.

Ferguson, H.R.P., Bailey, D.H & Arno, S. (1999) Analysis of PSLQ, an integer relation finding

algorithm, Mathematics of Computation, 68, 351-369.

https://arxiv.org/abs/2011.03931
https://arxiv.org/abs/2101.04500

9

Gorfman, S. (2020). Algorithms for target transformations of lattice basis vectors. Acta Cryst. A76,

713-718.

Lenstra, A.K., Lenstra Jr. & H.W., Lovász, L. (1982) Factoring polynomials with rational

coefficients. Mathematische Annalen, 261 (4), pp. 515-534.

Nguyen, P.Q. & Vallée, B. (2010). The LLL algorithm. Survey and Applications. Springer-Verlag

Berlin Heidelberg.

Wikipedia (2021a), https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity, accessed on 15th Jan.

2021.

Wikipedia (2021b), https://en.wikipedia.org/wiki/Coprime_integers, accessed on 15th Jan. 2021.

Wikipedia (2021c), https://en.wikipedia.org/wiki/Integer_relation_algorithm, accessed on 15th Jan.

2021.

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
https://en.wikipedia.org/wiki/Coprime_integers
https://en.wikipedia.org/wiki/Integer_relation_algorithm

