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We propose a new kind of Ramanujan-type formula for 1/π2

and conjecture that it is related to the theory of modular func-
tions.

1. INTRODUCTION

In my papers [Guillera 02, Guillera 03], I prove the iden-
tities
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Inspired by these results and by Ramanujan’s formulas
[Borwein and Borwein 87, Chudnovsky and Chudnovsky
88, Ramanujan 14], I had the feeling that more formulas
of the same type could exist. So, I experimented in order
to find them. I now describe that research.

2. RAMANUJAN-TYPE FORMULAS

The kind of formulas we are looking for have the form
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where d, k, a, b, c are integers, B(n) = n!−5 C(n) or
B(n) = (−1)nn!−5C(n), and C(n) is the product of 5
rising factorials of fractions smaller than unity satisfying
the following condition: For every denominator in the
fraction of a rising factorial, we must have rising factorials
with all possible nonreducible fractions corresponding to
that denominator. Taking this into account, we have the
following cases for C(n):
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For q, we consider

q = j2, q = j2 − 1, q = j3, q = (j2 − 1)3, q = j4,

where j is also an integer. We will look for integer rela-
tions between
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This means that we want to find integers a, b, c, and d

such that aF0 + bF1 + cF2 + dG = 0, d �= 0. The algo-
rithms that solve this problem are called integer relations
algorithms. The software we are using for this purpose
is PARI-GP, because it is very fast at making numerical
calculations and has the LINDEP function which looks
for integer relations. To avoid the integer variable k, we

also use a variant of this method and look for integer
relations between

F 2
0 , F 2

1 , F 2
2 , F0F1, F0F2, F1F2,
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This variant is especially interesting if there exist formu-
las with large values of k. The new formulas my computer
found using these numerical methods are
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Once the software PARI-GP found these series, I used
Maple to check again if they were correct. The numer-
ical results show that they are correct to hundreds of
digits. Now examine the following Ramanujan-type for-
mulas [Borwein and Borwein 87, Chudnovsky and Chud-
novsky 88, Ramanujan 14]:
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It is interesting to observe that the numbers 48, 803, 74

are repeated in the denominators. This leads me to
think that formulas of type (2–1), such as (1–1), (1–2),
(1–3), (2–2), (2–3), (2–4), and (2–5), can be proved us-
ing the theory of modular functions, as is the case with
Ramanujan-like formulas, (2–6), (2–7), and (2–8).
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3. SUPPORTING THE CONJECTURE

To support this conjecture, I will explain the origin of
the number 803 in formula (2–7). We begin by consid-
ering Klein’s absolute invariant [Borwein and Borwein
87, Chudnovsky and Chudnovsky 88]
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4
27
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,
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It is known [Chudnovsky and Chudnovsky 88] that when
d is an integer such that Q(
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values, there exist [Chudnovsky and Chudnovsky 88] in-
tegers a, b, c, k such that
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There are not many numbers with that property: 2,
3, 7, 11, 19, 43, 67, and 163. For d = 43, we have
J

(
1+

√−43
2

)
= −9603, and the corresponding formula

is (2–7). Our new formula (2–4) is intriguing because of
the repetition of the numbers 803 and 5418. I think that
one can find a proof of this formula using the theory of
modular functions.

In [Berggren et al. 00], one can find the references
[Chudnovsky and Chudnovsky 88] and [Ramanujan 14]
and many more fascinating papers. In addition, the pa-
per, [Berndt and Chan 01], reinforces the hope that the
theory of modular forms is the key to proving the formu-
las developed in this paper.

4. RELATED FORMULAS

Boris Gourevitch [Gourevitch 02] has sent me, by email,
the formula below for 1/π3. He has found it by using
integer relations algorithms:
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We have seen in (1–3), (1–1), and (4–1) that
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It is very curious that using the Simon Plouffe inverter
[Plouffe], we find

F

(
1
2

)
= 7 ·ζ(3), G

(
1
2

)
= 256 ·ζ(3), H

(
1
2

)
=

π4

2
.

The evaluation G(1/2) has been proved by T. Amdeber-
han [Amdeberhan 97].
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