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We propose an experimental mathematics approach leading to the computer-driven discovery of various conjectures about
structural properties of generating functions coming from enumeration of restricted lattice walks in 2D and in 3D.
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1 Introduction
There is a strange phenomenon about the generating functions that count lattice walks restricted to the quarter
plane: depending on the choice of the set S ⊆ {↙,←,↖, ↑,↗,→,↘, ↓} of admissible steps, the generating
function is sometimes rational, sometimes algebraic [but not rational], sometimes D-finite [but not algebraic],
and sometimes not even D-finite. This is quite in contrast to the corresponding problem in 1D, where the
generating functions invariably are algebraic [3]. Much progress was made recently on understanding why
this is so, and only very recently, Bousquet-Mélou and Mishna [9] have announced a classification of all the
256 possible step sets into algebraic, transcendental D-finite, and non-D-finite cases, together with proofs for
the algebraic and D-finite cases and strong evidence supporting the conjectured non-D-finiteness of the others.

As usual, a power series S(t) ∈ Q[[t]] is called algebraic if there exists a bivariate polynomial P (T, t) in
Q[T, t] such that P (S(t), t) = 0, and transcendental otherwise. Also as usual, a power series S(t) is called
D-finite if it satisfies a linear differential equation with polynomial coefficients. (Every algebraic power series
is D-finite, but not vice versa.) At first glance, it might seem easy to prove that a power series is algebraic
or D-finite: just come up with an appropriate equation, and then verify that the series satisfies this equation.
But as far as lattice walks are concerned, most proofs given so far are indirect in that they avoid exhibiting the
equation explicitly but merely are satisfied showing its existence. This is probably so because the equations
appearing in this context are often too big to be dealt with by hand.

Nevertheless, it is interesting to know the equations explicitly, because they provide a standard canonical
representation for a series, from which lots of further information can be extracted in a straightforward manner.
By applying a well-known technique from computer algebra (in modern fashion, cf. Section 2), we have
systematically searched for differential equations and algebraic equations that the series counting the walks in
the quarter plane satisfy. These are given in Section 3. We have also made a first step towards classifying walks
in Z3 confined to the first octant (cf. Section 4) by considering all step sets S with up to five elements, and
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performed a systematic search for equations of the corresponding series. More than 2000 hours of computation
time have been spent in order to analyze about 3500 different sequences.

We do not provide proofs that the equations we found are indeed correct, but the computational evidence in
favor of our equations is striking. We have no doubt that all the equations we found are correct. In principle,
it would be possible to supplement the “automatically guessed” equations by computer proofs in a systematic
fashion, using techniques that have recently been applied to some special cases [25, 24, 6]. But we found that
the computational cost for performing these automated proofs would be by far higher than what was needed
for the mere discovery.

2 Methodology
To study generating functions for lattice walks, we follow a classical scheme in experimental mathematics.
It is based on the following steps: (S1) computation of high order expansions of generating power series;
(S2) guessing differential and/or algebraic equations satisfied by those power series; (S3) empirical certifi-
cation of the guessed equations (sieving by inspection of their analytic, algebraic and arithmetic properties);
(S4) rigorous proof, based on (exact) polynomial computations.

In what follows, we only explain Steps (S1), (S2) and (S3). A full description of Step (S4) is given in [6].
By way of illustration, we choose an example requiring computations with human-sized outputs, namely the
classical case, initially considered by Kreweras [27, 7, 8], of walks in the quarter plane restricted to the step
set S = {←,↗, ↓}.

2.1 Basic Definitions and Facts
We focus on 2D and 3D lattice walks. The 2D walks that we consider are confined to the quarter plane N2,
they join the origin of N2 to an arbitrary point (i, j) ∈ N2, and are restricted to a fixed subset S of the step set
{↙,←,↖, ↑,↗,→,↘, ↓}. If f(n; i, j) denotes the number of such walks of length n (i.e., using n steps
chosen from S), the sequence f(n; i, j) satisfies the multivariate recurrence with constant coefficients

f(n+ 1; i, j) =
∑

(h,k)∈S

f(n; i− h, j − k) for n, i, j ≥ 0. (1)

Together with the appropriate boundary conditions

f(0; 0, 0) = 1 and f(n; i, j) = 0 if i < 0 or j < 0 or n < 0,

the recurrence relation (1) uniquely determines the sequence f(n; i, j). As is customary in combinatorics, we
let

F (t;x, y) =
∑
n≥0

(∑
i,j≥0

f(n; i, j)xiyj
)
tn

be the trivariate generating power series of the sequence f(n; i, j). As f(n; i, j) = 0 as soon as i > n or
j > n, the inner sum is actually finite, and so we may regard F (t;x, y) as a formal power series in t with
polynomial coefficients in Q[x, y].

Specializing F (t;x, y) to selected values of x and y leads to various combinatorial interpretations. Set-
ting x = y = 1 yields the power series F (t; 1, 1) whose coefficients count the total number of walks with
prescribed number of steps (and arbitrary endpoint); the choice x = y = 0 gives the series F (t; 0, 0) whose
coefficients count the number of walks returning to the origin; setting x = 1, y = 0 yields the power series
whose coefficients count the number of walks ending somewhere on the horizontal axis, etc.

By [10, Th. 7], multivariate sequences that satisfy recurrences with constant coefficients have moderate
growth, and thus their generating series are analytic at the origin. The next theorem refines this result in our
context.
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Theorem 1 The following inequality holds

f(n; i, j) ≤ |S|n for all (i, j, n) ∈ N3. (2)

In particular, the power series F (t; 0, 0), F (t; 1, 0), F (t; 0, 1) and F (t; 1, 1) are convergent in C[[t]] at t = 0
and their radius of convergence is at least 1/|S|.

Proof: The total number of unrestricted n-step walks starting from the origin is |S|n, so the number of walks
restricted to a certain region is bounded by this quantity. This implies that the coefficient of tn in F (t; 1, 1) is
at most |S|n. The bound also applies to the coefficient of tn in F (t;α, β) for α, β ∈ {0, 1}, as these series
count walks which are subject to further restrictions. 2

2.1.1 D-finite generating series of walks are G-functions
A power series S(t) =

∑
n≥0 ant

n in Q[[t]] is called a G-function(i) if (a) it is D-finite; (b) its radius of
convergence in C[[t]] is positive; (c) there exists a constant C > 0 such that for all n ∈ N, the common
denominator of a0, . . . , an is bounded by Cn.

Examples ofG-functions are the power series expansions at the origin of log(1− t) and (1− t)α for α ∈ Q.
More generally, the Gauss hypergeometric series 2F1(α, β, γ; t) with rational parameters α, β, γ, is also a G-
series [17]. A celebrated theorem of Eisenstein assures that any algebraic power series must be a G-function
(if S is algebraic, there exists an integer C ∈ N such that anCn+1 is an integer for all n.) The fact that
G-functions arise frequently in combinatorics was recently pointed out by Garoufalidis [20].
G-functions enjoy many remarkable properties. Chudnovsky [14] proved that the minimal order differential

equation satisfied by a G-series must be globally nilpotent (see Section 2.4.4 below for the definition and
an algorithmic use of this notion). By a theorem of Katz and Honda [22, 21], the global nilpotence of a
differential operator implies that all of its singular points are regular singular points with rational exponents.
See also [1, 13, 17] for more details on this topic.

Theorem 2 Let S(t) be one of the power series F (t; 0, 0), F (t; 1, 0), F (t; 0, 1) and F (t; 1, 1). If S is D-finite,
then S is a G-series. In particular, its minimal order homogeneous linear differential equation is Fuchsian
and it has only rational exponents. Moreover, the coefficient sequence of S(t) is asymptotically equivalent to
a sum of terms of the form κρnnα(log n)β for some constants κ ∈ R, α ∈ Q, ρ ∈ Q, and β ∈ N.

Proof: The conditions (a) and (c) in the definition of a G-function are clearly satisfied. The only non-trivial
point is the fact that the series S has a positive radius of convergence in C. This follows from Theorem 1.
The Fuchsianity of the minimal equation for S, and the rationality of its exponents, follow by combining the
results by Katz, Honda and Chudnovsky cited above. The claim on the asymptotics of the coefficients of S(t)
is a consequence of [20, Prop. 2.5]. 2

For 3D walks, the definitions are analogous. The trivariate power series F (t;x, y) is simply replaced by
the generating series G(t;x, y, z) ∈ Q[x, y, z][[t]] of the sequence g(n; i, j, k) that counts walks in N3 starting
at (0, 0, 0) and ending at (i, j, k) ∈ N3. Note that the appropriate versions of Theorems 1 and 2 hold; in
particular, the generating series of octant walks G(t; 1, 1, 1) is a G-series whenever it is D-finite.

2.2 Computing large series expansions
The recurrence (1) can be used to determine the value of f(n; i, j) for specific integers n, i, j ∈ N. Theorem 1
implies that f(n; i, j) is a non-negative integer whose bit size is at most O(n). If N ∈ N, the values f(n; i, j)

(i) The usual definition is more general, the coefficients of S can be taken in an arbitrary algebraic number field. For our purposes it is
sufficient and convenient to restrict to rational coefficients.
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for 0 ≤ n, i, j ≤ N can thus be computed altogether by a straightforward algorithm that uses O(N3) arith-
metic operations and Õ(N4) bit operations. (We assume that two integers of bit-size N can be multiplied in
Õ(N) bit operations; here, the soft-O notation Õ( ) hides logarithmic factors.) The memory storage require-
ment is proportional to N3. The same is also true for the truncated power series FN = F (t;x, y) mod tN .
For our experiments in 2D, we have chosen N = 1000. With this choice, the computation of the f(n; i, j) is
the step which consumes by far the most computation time in our calculations.(ii)

Example 1 The Kreweras walks satisfy the recurrence

f(n+ 1, i, j) = f(n, i+ 1, j) + f(n, i, j + 1) + f(n, i− 1, j − 1) for n, i, j ≥ 0,

which allows the computation of the first terms of the series F (t;x, y)

F (t;x, y) = 1 + xyt+ (x2y2 + y + x)t2 + (x3y3 + 2xy2 + 2x2y + 2)t3

+ (x4y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t4

+ (x5y5 + 4x3y4 + 4x4y3 + 5xy3 + 12x2y2 + 5x3y + 8y + 8x)t5 + · · ·

and also the first terms of the generating series F (t; 1, 1) for the total number of Kreweras walks

F (t; 1, 1) = 1 + t+ 3t2 + 7t3 + 17t4 + 47t5 + 125t6 + 333t7 + 939t8 + 2597t9+

7183t10 + 20505t11 + 57859t12 + 163201t13 + 469795t14 + · · ·

In the 3D case, the values g(n; i, j, k) for 0 ≤ n, i, j, k ≤ N can be computed in O(N4) arithmetic
operations, Õ(N5) bit operations andO(N4) memory space. In practice, we found that computingG mod tN

with N = 400 is feasible.

2.3 Guessing
Once the first terms of a power series are determined, our approach is to search systematically for candidates
of linear differential equations or of algebraic equations which the series may possibly satisfy. This technique
is classical in computer algebra and mathematical physics, see for example [11, 31, 28]. Differential and
algebraic guessing procedures are available in some computer algebra systems like Maple and Mathematica.

2.3.1 Differential guessing
If the first N terms of a power series S ∈ Q[[t]] are available, one can search for a differential equation
satisfied by S at precision N , that is, for an element L in the Weyl algebra Q[t]〈Dt〉 of differential operators
in the derivation Dt = d

dt with polynomial coefficients in t, such that

L(S) = cr(t)S(r)(t) + · · ·+ c1(t)S′(t) + c0(t)S(t) = 0 mod tN . (3)

Here, the coefficients c0(t), . . . , cr(t) ∈ Q[t] are not simultaneously zero, and their degrees are bounded
by a prescribed integer d ≥ 0. By a simple linear algebra argument, if d and r are chosen such that (d +
1)(r + 1) > N , then such a differential equation always exists. On the other side, if d, r and N are such that
(d + 1)(r + 1) � N , the equation (3) translates into a highly over-determined linear system, so it has no
reason to possess a non-trivial solution.

The idea is that if the given power series S(t) happens to be D-finite, then for a sufficiently large N , a
differential equation of type (3) (thus satisfied a priori only at precision N ) will provide a differential equation

(ii) We have carried out our computations on various different machines whose main memory ranges from 8 Gb to 32 Gb and which are
equipped with (multiple) processors all running at about 3GHz.
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which is really satisfied by S(t) in Q[[t]] (i.e., at precision infinity). In other words, the D-finiteness of a power
series can be (conjecturally) recognized using a finite amount of information.

Given the values d, r,N , and the first N terms of the series S, a candidate differential equation of type (3)
for S can be computed by Gaussian elimination in O(N3) arithmetic operations and Õ(N4) bit operations.
Actually, a modular approach is preferred to a direct Gaussian elimination over Q. Precisely, the linear algebra
step is performed modulo several primes p, and the results (differential operators modulo p) are recombined
over Q via rational reconstruction based on an effective version of the Chinese remainder theorem. (See [23]
for an implementation of this technique in Mathematica.)

If no differential equation is found, this definitely rules out the possibility that a differential equation of
order r and degree d exists. This does not, however, imply that the series at hand is not D-finite. It may
still be that the series satisfies a differential equation of order higher than r or an equation with polynomial
coefficients of degree exceeding d.

Asymptotically more efficient guessing algorithms exist, based on fast Hermite-Padé approximation [4] of
the vector of (truncated) power series [S, S′, . . . , S(r)]; they have arithmetic complexity quadratic or even
softly-linear in N . Such sophisticated algorithms were not needed to obtain the results of this paper, but they
have provided crucial help in the treatment of examples of critical sizes (e.g. guessing with higher values of
d, r,N and/or over a parametric base field like Q(x) instead of Q) needed for the proof in [6].

Example 2 (continued) N = 100 terms of the generating series F (t; 1, 1) of the total number of Krew-
eras walks are sufficient to conjecture that F (t; 1, 1) is D-finite, since it verifies the differential equation
L1,1(F (t; 1, 1)) = 0 mod tN , where

L1,1 = 4t2(t+ 1)(3t− 4)(3t− 1)3(9t2 + 3t+ 1)D4
t

+ 2t(3t− 1)2(2916t5 − 1296t4 − 3564t3 − 477t2 − 93t+ 52)D3
t

+ 3(3t− 1)(29808t6 − 26244t5 − 28440t4 + 2754t3 + 431t2 + 448t− 40)D2
t (4)

+ 6(68040t6 − 88452t5 − 37206t4 + 16758t3 + 954t2 + 253t− 126)Dt

+ 18(6480t5 − 8856t4 − 3078t3 + 714t2 + 211t+ 2).

Thus, with high probability, F (t; 1, 1) verifies the differential equation L1,1(F (t; 1, 1)) = 0.

Sometimes (see Section 2.4.4) one needs to guess the minimal-order differential equation Lmin(S) = 0
satisfied by the given generating power series. Most of the time, the choice (d, r) of the target degree and
order does not lead to this minimal operator. Worse, it may even happen that the number of initial terms N
is not large enough to allow the recovery of Lmin, while these N terms suffice to guess non-minimal order
operators. (The explanation of why such a situation occurs systematically was given in [5], for the case of
differential equations satisfied by algebraic functions.) A good heuristic is to compute several non-minimal
operators and to take their greatest common right divisor; generically, the result is exactly Lmin.

As a final general remark, let us point out that a power series satisfies a linear differential equation if and only
if its coefficients satisfy a linear recurrence equation with polynomial coefficients. A recurrence equation can
be computed either from a differential equation, or it can be guessed from scratch by proceeding analogously
as described above for differential equations.

Example 3 (continued) N = 100 terms of the series S(t) = F (t; 1, 1) suffice to guess that its coefficients
satisfy the order-6 recurrence

2(n+ 6)(n+ 7)(2n+ 13)(7n+ 34)un+6 − (n+ 6)(140n3 + 2402n2 + 13687n+ 25843)un+5

+ 3(28n4 + 626n3 + 5123n2 + 18281n+ 24070)un+4

− 18(n+ 4)(28n3 + 311n2 + 897n+ 304)un+3 + 108(n+ 3)(35n3 + 443n2 + 1787n+ 2309)un+2

− 324(n+ 2)(7n3 + 90n2 + 382n+ 545)un+1 − 972(n+ 1)(n+ 2)(n+ 4)(7n+ 41)un = 0.
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2.3.2 Algebraic guessing
If the first N terms of a power series S ∈ Q[[t]] are available, one can also search for an algebraic equation
satisfied by S at precision N , that is, for a bivariate polynomial P (T, t) in Q[T, t] such that

P (S(t), t) = cr(t)S(t)r + · · ·+ c1(t)S(t) + c0(t) = 0 mod tN . (5)

A similar discussion shows that candidate algebraic equations of type (5) for S can be “guessed” by performing
either Gaussian elimination or Hermite-Padé approximation on the vector [1, S, . . . , Sr], followed by a gcd
computation in Q[T, t] applied to two (or more) different guesses.

Example 4 (continued) N = 100 terms of the series S(t) = F (t; 1, 1) counting the total number of Kreweras
walks suffice to guess that F (t; 1, 1) is very probably algebraic, namely solution of the bivariate polynomial

P1,1(T, t) = t5(3t− 1)3T 6 + 6t4(3t− 1)3T 5 + t3(3t− 1)(135t2 − 78t+ 14)T 4

+ 4t2(3t− 1)(45t2 − 18t+ 4)T 3 + t(3t− 1)(135t2 − 26t+ 9)T 2 (6)

+ 2(3t− 1)(27t2 − 2t+ 1)T + 43t2 + t+ 2.

2.4 Empirical certification of guesses
Once discovered a differential equation (3) or an algebraic equation (5) that the power series S(t) seems
to satisfy, we inspect several properties of these equations, in order to provide more convincing evidence
that they are correct. These properties have various natures: some are computational features (moderate bit
sizes), others are algebraic, analytic and even arithmetic properties. We check them systematically on all the
candidates; if they are verified, as in the Kreweras example, this offers striking evidence that the guessed
equations are not artefacts.

2.4.1 Size sieve: Reasonable bit size
The differential equation (3) has typically much lower bit size than a differential equation produced by the
same guessing procedure applied to the same order, degree and precision, but to an arbitrary series having
coefficients of bit-size comparable to that of S(t). A similar observation holds for the algebraic equation (5).

Example 5 (continued) If we perturb the coefficients of S(t) = F (t; 1, 1) by just adding a random integer
between −100 and 100 to each of its coefficients, then the differential guessing procedures at order r = 4,
degree d = 9 and precision N = 100 will either give no result (the over-determined system approach) or
produce fake candidates (the Hermite-Padé approach) with polynomial coefficients in t, whose coefficients
in Q have numerators and denominators of about 500 decimal digits each, instead of 4 digits for L1,1.

2.4.2 Algebraic sieve: High order series matching
The equations (3) and (5) were obtained starting from N coefficients of the power series S(t). They are
therefore satisfied a priori only modulo tN . We compute more terms of S(t), say 2N , and check whether the
same equations still hold modulo t2N . If this is the case, chances increase that the guessed equations also hold
at infinite precision.

2.4.3 Analytic sieve: Singularity analysis
By Theorem 2, the minimal order operators for power series like S(t) = F (t; 0, 0) and S(t) = F (t; 1, 1) must
have only regular singularities (including the point at infinity) and their exponents must be rational numbers.

Example 6 (continued) The differential operator L1,1 is Fuchsian. Indeed, a (fully automated) local sin-
gularity analysis shows that the set of its singular points

{
−1, 0,∞, 1

3 ,
4
3 ,−

1
6 (1± i

√
3)
}

is formed solely
of regular singularities. Moreover, the indicial polynomials of L1,1 are, respectively: t(t − 1)(t − 2)(2t −
1), t(t− 1)(2t+ 1)(t+ 1), (t− 5)(t− 1)(t− 2)(t− 4), (t+ 1)t(4t− 1)(4t+ 1), t(t− 1)(t− 2)(t− 4), and
t(t− 2)(2t− 3)(t− 1). Their roots are the rational exponents of the singularities.
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2.4.4 Arithmetic sieve: G-series and global nilpotence
Last, but not least, we check an arithmetic property of the guessed differential equations by exploiting the fact
that those expected to arise in our combinatorial context are very special.

Indeed, by a theorem due to the Chudnovsky brothers [14], the minimal order differential operator L ∈
Q[t]〈Dt〉 killing a G-series enjoys a remarkable arithmetic property: L is globally nilpotent. By definition,
this means that for almost every prime number p (i.e., for all with finitely many exceptions), there exists an
integer µ ≥ 1 such that the remainder of the Euclidean (right) division of Dpµ

t by L is congruent to zero
modulo p [21, 16].

From a computational view-point, a fine feature is that the nilpotence modulo p is checkable. If r denotes
the order of L, let Mp be the p-curvature matrix of L, defined as the r × r matrix with entries in Q(t) whose
(i, j) entry is the coefficient ofDj−1

t in the remainder of the Euclidean (right) division ofDp+i−1
t by L. Then,

L is nilpotent modulo p if and only if the matrix Mp is nilpotent modulo p [16, 32].
In combination with Theorem 2, this yields a fast algorithmic filter: as soon as we guess a candidate

differential equation satisfied by a generating series which is suspected to be a G-series (e.g. by F (t; 1, 1)),
we check whether its p-curvature is nilpotent, say modulo the first 50 primes for which the reduced operator
L mod p is well-defined. If the p-curvature matrix of L is nilpotent modulo p for all those primes p, then the
guessed equation is, with very high probability, the correct one.

We push even further this arithmetic sieving. A famous conjecture, attributed to Grothendieck, asserts that
the differential equation L(S) = 0 possesses a basis of algebraic solutions (over Q(x)) if and only if its p-
curvature matrix Mp is zero modulo p for almost all primes p. Even if the conjecture is, for the moment, fully
proved only for order one operators and partially in the other cases [13], we freely use it as an oracle to detect
whether a guessed differential equation has a basis of algebraic solutions. For instance, the computation of the
p-curvature of an order 11 differential operator with polynomial coefficients of degree 96 in t, was one of the
key points in our discovery [6] that the trivariate generating function for Gessel walks is algebraic.

Example 7 (continued) The 5-curvature matrix M5(t) of the differential operator L1,1 in (4) has the form
1
d(t)M̃5(t), where d(t) = (3t − 1)7t6(t + 1)5(9t2 + 3t + 1)5(3t − 4) and M̃5(t) is a 4 × 4 matrix with
polynomial entries in Q[t] of degree at most 27. The characteristic polynomial χM5 of M5 reads

T 4 +
3 · 5
25

N3(t) t5 (3t− 1)10 T 3 +
33 · 5
210

N2(t) (3t− 1)5 T 2 +
35 · 52 · 7

27
N1(t)T +

39 · 53 · 72

23
N0(t),

where N0, N1, N2, N3 are irreducible polynomials in Z[t], of degree, respectively, 21, 26, 26, 21 and with
coefficients having at most 20 decimal digits.

The polynomial χM5 obviously equals T 4 modulo p = 5, so the 5-curvature of L1,1 is nilpotent (but
not zero(iii)) modulo 5. In fact, for all the primes 7 ≤ p < 100, the p-curvature matrix of L1,1 is also
nilpotent modulo p; it is even zero modulo p. Under the assumption that Grothendieck’s conjecture is true,
this indicates that L1,1 admits a basis of algebraic solutions, and so provides independent evidence that also
S(t) = F (t; 1, 1) is algebraic.

3 Empirical Results in 2D
In this section, we consider the total number of walks only, i.e., the generating function F (t; 1, 1). Because
of symmetries, the 256 possible step sets give rise to 92 different sequences only. By inspection of the first
N = 1000 terms, we found that 36 of them appear to be D-finite: 19 are algebraic and 17 are transcendental.
The D-finite step sets, together with the sizes of the equations we discovered, are listed in Table 1 in the
appendix. (There, and below, step sets are represented by compact pictograms, e.g. · • ·• ·

· · •
for S = {←,↗, ↓}.)

(iii) Modulo 5, the curvature matrix M5(t) has T 2 as minimal polynomial.
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3.1 Combinatorial Observations
Our classification matches the results of Bousquet-Mélou and Mishna [9]: for every sequence they prove D-
finite our software found a recurrence and a differential equation, and whenever a series is algebraic indeed, our
programs recognized it. Moreover, we found no recurrence or differential equation for any step set conjectured
non-D-finite by Bousquet-Mélou and Mishna. This strengthens the evidence in favor of the conjectured non-
D-finiteness of these cases.

3.2 Algebraic Observations
All but two of the minimal polynomials of the algebraic series share the property that they define a curve of
genus 0. As a consequence, there exists a rational parametrization in all these cases. For example, for the
Kreweras step set · • ·• ·

· · •
, the minimal polynomial P1,1 given in (6) defines a curve parameterized by

T (u) =
(u2 + 24u+ 151)a(u)

(u+ 9)(u2 + 24u+ 147)
and t(u) =

2
a(u)

,

where a(u) =
(
u6+66u5+1827u4+27180u3+229431u2+1042866u+1995717

)/
(u+11)(u2+22u+125)2,

i.e., for these rational functions we have

P1,1(T (u), t(u)) = 0.

The two algebraic series that do not admit a rational parametrization belong to the step sets • · ·· •
· • ·

(reverse
Kreweras) and •• ·· ·

· ••
(Gessel’s). Their genus is 1.

Another feature of the series which we found to be algebraic is that they all admit closed forms in terms of
(nested) radical expressions. For example, for the Kreweras step set, we find that F (t; 1, 1) is equal to

−1
t

+

√(
i−
√

3
)

(216t3 + 1) (t− 3t2)2 − 2it(36t2 − 15t+ 1)a(t) +
(
i+
√

3
)
a(t)2

6it3(3t− 1)3a(t)

where i =
√
−1 and a(t) =

3

√
24
√

3t9(3t− 1)9 (9t2 + 3t+ 1)3 − t3(3t− 1)3 (5832t6 + 540t3 − 1). Such
representations can be found by appealing to the built-in equation solvers of Maple and Mathematica applied
to the equation P1,1 = 0. Both features are remarkable because, among all algebraic power series, only a few
are rationally parameterizable or expressible in terms of radicals.

Also the transcendental D-finite series appear to have some special properties. Being D-finite, these series
are annihilated by some linear differential operator

L = c0(t) + c1(t)Dt + · · ·+ cr(t)Dr
t ∈ Q[t]〈Dt〉.

According to the DFactor command from Maple’s DEtools package, all the operators can be factorized into a
product of one irreducible operator of order 2 and several operators of order 1. As all the operators are globally
nilpotent, so are all their factors [16, 17].

We can therefore expect that every solution of these factors can be written as a sum of terms of the form

R(t)δ · 2F1

(
α β
γ

∣∣∣∣Z(t)
)
, (7)

where R and Z are rational functions in Q(t) and α, β, γ, δ are rational numbers. Indeed, Dwork [16, Item
7.4] has conjectured that any globally nilpotent second order differential equation has either algebraic solu-
tions or is gauge equivalent to a weak pullback of a Gauss hypergeometric differential equation with rational
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parameters. This conjecture was disproved by Krammer [26] and recently by Dettweiler and Reiter [15];
the counter-examples given in these papers require involved tools in algebraic geometry (arithmetic triangle
groups, systems associated to periods of Shimura curves, . . . )

We are therefore in a win-win situation: either the second order operators appearing as factors of our oper-
ators admit only solutions which are indeed sums of terms of the form (7), or there is a simple combinatorial
counter-example to Dwork’s conjecture. Let us illustrate this on one of the most simple examples, the step set
• · •· ·
• · •

. We find here the differential operator

4(32t2 − 12t− 1) + 4(8t− 1)(20t2 − 3t− 1)Dt + t(4t− 1)(112t2 − 5)D2
t + t2(4t− 1)2(4t+ 1)D3

t

which Maple factors into(
2(192t3 − 56t2 − 6t+ 1) + 4(24t2 − 1)(4t− 1)tDt + (4t− 1)2(4t+ 1)t2D2

t

)(
1/t+Dt

)
.

With the help of Maple’s built-in differential equation solver (the dsolve command), it can be found that the
differential operator gives rise to the representation

F (t; 1, 1) = − 1
4t

+
(

1 +
1
4t

)
2F1

(
1/2 1/2

1

∣∣∣∣ 16t2
)
.

(Incidentally, this solution can also be expressed in terms of elliptic functions.) We believe that all the tran-
scendental D-finite generating functions for any step set admit a representation as (a nested integral of) such
an expression. The solvers of Maple and Mathematica, however, are able to discover such a representation
only in the simplest cases. (Note that at present, no complete algorithm is known that is capable of finding
general pullback representations.)

3.3 Analytic Observations
By Theorem 2, all the coefficient sequences grow like κnαρn log(n)β for some constants κ, ρ, α, β (we only
care about the dominant part of their asymptotic expansions). From the differential equation or the recurrence
equation, we can determine ρ, α, and β exactly as roots of characteristic polynomials and indicial equations,
respectively. (See [33, 19] on how this is done.) We find that β = 0 in all cases. Knowing the recurrence,
we can also compute easily tens of thousands of sequence terms. With the help of convergence acceleration
techniques [12] applied to so many terms, it is possible to determine the remaining constant κ to an accuracy
of thirty digits or more. With that many digits, it makes sense to search systematically for potential exact
expressions of these constants using Plouffe’s inverter [30] and/or algorithms like LLL and PSLQ [2]. We
actually found “closed form” expressions for all these constants. They are included in Table 1 in the appendix.

By Theorem 1, the numbers ρ are bounded by the cardinality of the step set S. It turns out that ρ = |S|
unless the vector sum of the elements of the step set points outside the first quadrant. In these cases, ρ is an
algebraic number of degree 2 (e.g., ρ = 1 + 2

√
2 for the step set · · ·• ·

•••
). For α, we found only non-positive

numbers. Note that α being a negative integer implies that the corresponding series is transcendental [18].
All the constants κ have the form uρe0φe11 φ

e2
2 · · ·φer

r , where the φi are usually small integers, the ei are
rational numbers, and u is 1/π if F (t; 1, 1) is transcendental, and 1/Γ(α+ 1) if F (t; 1, 1) is algebraic.

There are some cases where the φi are not integers. Among them, very strange is only the case of the step
set •••• ·

•••
, for which we found r = 1, e0 = 7/2, e1 = 1/2, ρ = 2 + 2

√
6 and φ1 = (1137 + 468

√
6)/152000.

This last number may look like a guessing artefact at first glance, but we trust in its correctness, because the
number of correct digits exceeds by far the number of correct digits to be expected from an artefact.

4 Empirical Results in 3D
We have investigated walks in three dimensions confined to the first octant with step sets of up to five elements.
A priori, there are 83682 such step sets, and they give rise to 3334 different sequences. Of those, we have
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computed the first N = 400 terms of the generating function G(t; 1, 1, 1) of general walks, and searched for
potential differential equations, algebraic equations, and recurrence equations. We found that 134 sequences
appear to be D-finite, and among those, 50 appear to be algebraic.

4.1 Combinatorial Observations
For some of the sequences, it can be realized that their D-finiteness or algebraicity is a consequence of the
D-finiteness or algebraicity of a certain 2D walk. For example, the sequence corresponding to the step set

· · ·· · ·
· · ·

· · ·• •
· • ·

· · ·· • ·
· • ·

1, 4, 17, 75, 339, 1558, 7247, 34016, 160795, 764388, . . . (A026378)

is readily seen to be D-finite, since it may be regarded as a variation of the 2D step set · · ·• •
· • ·

in which the
step ↑ appears in two copies and empty steps are allowed. (Here and below, a three dimensional step set is
depicted in three separate slices: first the arrows tops of the forms (x, y,−1), then (x, y, 0), then (x, y, 1). For
example, the step set above is {(−1, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0, 1), (0, 1, 1)}. The given numbers are the
first coefficients in the expansion of G(t; 1, 1, 1).)

Discarding these cases from consideration, we are left with 35 different sequences whose generating series
appear to be D-finite; among those, three appear to be algebraic. Their step sets are given in the appendix.

We were not able to find an equation for the step set

· · •· · ·
• · ·

· · ·· ·
· · ·

• · ·· · ·
· · •

1, 1, 4, 7, 28, 70, 280, 787, 3148, 9526, 38104, . . . (A149080)

which is symmetric about all three axes, not even with 800 terms instead of 400. Also the step set

· · ·· • ·
· · ·

· • ·• ·
· · ·

· · ·· · ·
· · •

1, 1, 4, 13, 40, 136, 496, 1753, 6256, 22912, 85216, . . . (A149424)

which enjoys a rotational symmetry about the middle line of the first octant, and which may be viewed as a
three dimensional analogue of Kreweras’s step set, appears to be non-D-finite, even when 800 terms are taken
into account.

For walks in the quarter plane, it is conjectured in [29, Section 3] that D-finiteness is preserved under re-
versing arrows, i.e., the generating function for a step set S is D-finite if and only if the generating function for
the step set S′ is, when S′ is obtained from S by reversing all arrows. Our computations do not suggest that
this criterion also applies in 3D. Among the 134 sequences we found D-finite, there are 42 which correspond
to step sets in S for whose counterpart in S′ we were not able to find an equation. Among those, there are
some which satisfy only very large equations, so that chances are that they remain D-finite upon reversing
arrows, but with equations which are too large for us to find. Others satisfy quite small equations, for example
the sequence A026378 whose step set is given above.

4.2 Algebraic Observations
As in the 2D case, it turns out that most of the minimal polynomials of the algebraic series define curves of
genus 0, which therefore can be rationally parameterized. There are twelve cases of genus 1, these are elliptic
curves. Some of them turn out to be isomorphic (over Q). For example, those corresponding to the cases

· · ·· · ·
· · ·

· • ·• ·
· · •

· · ·• · ·
· · ·

1, 1, 4, 11, 32, 110, 360, 1163, 4112, 14066, 47848, . . . (A149232)

· · ·· · ·
· · ·

· • ·• ·
· · •

· · ·•• ·
· · ·

1, 2, 7, 27, 105, 426, 1787, 7590, 32633, 142152, 624659, . . . (A150591)

· · ·· · ·
· · ·

· • ·• ·
· · •

· · ·• · ·
· · •

1, 2, 10, 40, 176, 808, 3720, 17152, 81440, 384448, . . . (A151023)
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all have 1728 as j-invariant. They originate from the 2D Kreweras walks. Most interestingly, there are also
three step sets originating from the 2D reverse Kreweras walks ( • · ·· •

· • ·
) for which the genus is 5 (!).

For the transcendental series, we could observe the same phenomenon as in 2D: all the operators factor as
a product of a single irreducible operator of order two and several operators of order one. We therefore expect
again that all these series admit a representation as a hypergeometric pullback. As an example, the generating
function G(t; 1, 1, 1) of the sequence

· · ·· · •
· · ·

· · ·• ·
· • ·

· • ·· · ·
· · ·

1, 1, 2, 4, 10, 25, 70, 196, 588, 1764, . . . (A005817)

can be written in the form

4t+ 1
2t 2F1

(
1/2 1/2

3

∣∣∣∣ 16t2
)
− 2t− 1

4t3 2F1

(
−1/2 −1/2

2

∣∣∣∣ 16t2
)
− 4t2 − 2t+ 1

4t3
.

This representation was found by Mark van Hoeij. It is beyond the scope of the standard tools of Maple or
Mathematica.

4.3 Analytic Observations
Also concerning asymptotics, similar remarks apply as in 2D. All coefficient sequences grow like κnαρn for
some constants κ, α, ρ, where ρ is an integer or an algebraic number of degree 2 and α is a non-positive
number. We have not gone through the laborious task of determining the constants κ.
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to improve the presentation of this paper. We thank Pierre Nicodème and Bruno Salvy, who carefully read
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Appendix
Table 1 D-finite series and their step sets in 2D. The equation sizes columns refer to (minimal) recurrence
equation, differential equation, and algebraic equation, respectively. Example: The series F (t; 1, 1) for Krew-
eras walks (A151265) satisfies a differential equation of order 4 with polynomial coefficients of degree 9 and
an algebraic equation P (F (t; 1, 1), t) = 0 for a polynomial P (T, t) of degree 6 in T and 8 in t. The coefficient
sequence of F (t; 1, 1) satisfies a recurrence equation of order 6 with polynomial coefficients of degree 4. The
labels used in the columns “OEIS Tag” are taken from Sloane’s On-Line Encyclopedia of Integer Sequences
http://www.research.att.com/˜njas/sequences/. Constants in the asymptotics columns are

abbreviatedA = 1+
√

2, B = 1+2
√

2, C = 1+
√

3, D = 1+2
√

3, E =
√

6(379 + 156
√

6) (!), F = 1+
√

6.

OEIS Tag Steps Equation sizes Asymptotics OEIS Tag Steps Equation sizes Asymptotics

A000012 · · ·
· ·
· · •

1, 0 1, 1 1, 1 1 A000079 · · ·
· ·
· ••

1, 0 1, 1 1, 1 2n

A001405 · · ·
· ·
• · •

2, 1 2, 3 2, 2

√
2

Γ( 1
2

)

2n

√
n

A000244 · · ·
· •
· ••

1, 0 1, 1 1, 1 3n

A001006 · · •
• ·
· • ·

2, 1 2, 3 2, 2
3
√

3

2Γ( 1
2

)

3n

n3/2
A005773 · · ·

· ·
•••

2, 1 2, 3 2, 2

√
3

Γ( 1
2

)

3n

√
n

A126087 · · ·
• ·
• · •

3, 1 2, 5 2, 2
12
√

2

Γ( 1
2

)

23n/2

n3/2
A151255 • · ·

· •
• · ·

6, 8 4, 16 –
24
√

2

π

23n/2

n2

A151265 · • ·
• ·
· · •

6, 4 4, 9 6, 8
2
√

2

Γ( 1
4

)

3n

n3/4
A151266 · · •

• ·
· · •

7, 10 5, 16 –

√
3

2Γ( 1
2

)

3n

√
n

A151278 • · ·
· •
· • ·

7, 4 4, 12 6, 8
3
√

3
√

2Γ( 1
4

)

3n

n3/4
A151281 · · ·

· •
• · •

3, 1 2, 5 2, 2
1

2
3n

A005558 · · •
• •
• · ·

2, 3 3, 5 –
8

π

4n

n2
A005566 · • ·

• •
· • ·

2, 2 3, 4 –
4

π

4n

n

A018224 • · •
· ·
• · •

2, 3 3, 5 –
2

π

4n

n
A060899 · · ·

• •
• · •

2, 1 2, 3 2, 2

√
2

Γ( 1
2

)

4n

√
n

A060900 • · ·
• •
· · •

2, 3 3, 5 8, 9
4
√

3

3Γ( 1
3

)

4n

n2/3
A128386 • · ·

• ·
• · •

3, 1 2, 5 2, 2
6
√

2

Γ( 1
2

)

2n3n/2

n3/2

A129637 · · ·
· •
•••

3, 1 2, 5 2, 2
1

2
4n A151261 • · ·

• •
• · ·

5, 8 4, 15 –
12
√

3

π

2n3n/2

n2

A151282 · · ·
• ·
•••

3, 1 2, 5 2, 2
A2B3/2

23/4Γ( 1
2

)

Bn

n3/2
A151291 · · •

• •
· · •

6, 10 5, 15 –
4

3Γ( 1
2

)

4n

√
n

A151275 • · •
• ·
• · •

9, 18 5, 24 –
12
√

30

π

(
√

24)n

n2
A151287 • · •

• •
· • ·

7, 11 5, 19 –

√
8A7/2

π

(2A)n

n2

A151292 • · ·
• ·
•••

3, 1 2, 5 2, 2
4√3C2D3/2

8Γ( 1
2

)

Dn

n3/2
A151302 • · •

· ·
•••

9, 18 5, 24 –

√
5

3
√

2Γ( 1
2

)

5n

√
n

A151307 · • ·
• •
• · •

8, 15 5, 20 –

√
5

2
√

2Γ( 1
2

)

5n

√
n

A151318 · · ·
• •
•••

2, 1 2, 3 2, 2

p
5/2

Γ( 1
2

)

5n

√
n

A129400 · ••
• •
•• ·

2, 1 2, 3 2, 2
3
√

3

2Γ( 1
2

)

6n

n3/2
A151297 •• ·

• •
•• ·

7, 11 5, 18 –

√
3C7/2

2π

(2C)n

n2

A151312 • · •
• •
• · •

4, 5 3, 8 –

√
6

π

6n

n
A151323 •• ·

• •
· ••

2, 1 2, 3 4, 4

√
2 33/4

Γ( 1
4

)

6n

n3/4

A151326 · • ·
• •
•••

7, 14 5, 18 –
2
√

3

3Γ( 1
2

)

6n

√
n

A151314 •••
• ·
•••

9, 18 5, 24 –
EF 7/2

5
√

95π

(2F )n

n2

A151329 • · •
• •
•••

9, 18 5, 24 –

p
7/3

3Γ( 1
2

)

7n

√
n

A151331 •••
• •
•••

3, 4 3, 6 –
8

3π

8n

n

http://www.research.att.com/~njas/sequences/
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Table 2 Conjecturally algebraic series and their step sets in 3D. Step set figures are as in Section 4. Equation
sizes are as in Table 1.

First terms (OEIS Tag) Step sets Equation sizes

1, 1, 4, 10, 37, 121, 451, 1639, . . . (A025237)
· · ·
· • ·
· · ·

· · ·
· ·
· · •

• · ·
• · ·
• · ·

· · ·
· · ·
· • ·

· · ·
· ·
· · •

• · ·
• · ·
• · ·

2, 1 2, 3 2, 2

1, 1, 5, 15, 51, 199, 755, 2789, . . . (A149576)
· · ·
· • ·
· · ·

• · ·
• ·
• · ·

· · ·
· · ·
· · •

· · ·
· · ·
· • ·

• · ·
• ·
• · ·

· · ·
· · ·
· · •

11, 22 7, 31 12, 17

1, 2, 4, 14, 46, 134, 502, 1820, . . . (A149847)
• · ·
• · ·
• · ·

· · ·
· ·
· · •

· · ·
· • ·
· · ·

• · ·
• · ·
• · ·

· · ·
· ·
· · •

· · ·
· · ·
· • ·

8, 6 4, 16 6, 9

Table 3 Conjecturally transcendental D-finite generating series and their step sets in 3D. The equation sizes
columns refer to (minimal) recurrence equations, and differential equations, respectively.

OEIS Tag Step sets Equation sizes OEIS Tag Step sets Equation sizes

A148060
• · ·
• · ·
• · ·

· · ·
· ·
· · •

• · ·
· · ·
· · ·

9, 17 5, 28 A148438
· · ·
· · ·
· · •

• · ·
• ·
• · ·

· · ·
· • ·
· · ·

7, 10 5, 17

• · ·
• · ·
• · ·

· · ·
· ·
· · •

· · ·
• · ·
· · ·

· · ·
· · •
· · ·

• · ·
• ·
• · ·

· · ·
· · ·
· • ·

• · ·
• · ·
• · •

· · ·
· ·
· · ·

· · ·
· • ·
· · ·

· · ·
· · ·
· · •

• · ·
• ·
• · ·

· · ·
· · ·
· • ·

• · ·
• · ·
• · •

· · ·
· ·
· · ·

· · ·
· · ·
· • ·

A149090
• · ·
· · ·
· · ·

· · ·
· ·
· · •

• · ·
• · ·
• · ·

9, 17 5, 28

A149589
· · ·
· • ·
· · ·

· · ·
· ·
· · ·

• · ·
• · ·
• · •

10, 21 6, 29
· · •
• · •
· · •

· · ·
· ·
· · ·

· · ·
· · ·
· • ·

· · ·
· · ·
· • ·

· · ·
· ·
· · ·

• · ·
• · ·
• · •

· · ·
· · ·
• · ·

· · ·
· ·
· · •

• · ·
• · ·
• · ·

A005817
· · ·
· · •
· · ·

· · ·
• ·
· • ·

· • ·
· · ·
· · ·

2, 2 3, 4 A148005
· · ·
· · ·
• · ·

• · ·
· •
· · ·

· · ·
• · ·
· · ·

5, 8 4, 15

A148052
· · ·
· · ·
• · ·

• · ·
· •
• · ·

• · ·
· · ·
· · ·

7, 18 6, 27 A148068
• · ·
· · ·
• · ·

· · ·
· •
· · ·

• · ·
· · ·
• · ·

7, 17 6, 25

A148072
· · ·
· · •
· · ·

• · ·
· ·
• · ·

· · ·
· • ·
· · ·

12, 57 10, 69 A148162
· · ·
· • ·
· · ·

· · ·
· •
· · ·

• · ·
· · ·
• · ·

4, 3 3, 6

A148284
· · ·
· · •
· · ·

• · ·
• ·
• · ·

· · ·
· • ·
· · ·

14, 57 10, 71 A148331
· · ·
· · ·
• · •

• · •
· ·
· · ·

· · ·
· • ·
· · ·

11, 43 9, 53

A148507
· · ·
· · ·
• · ·

• · ·
• •
· · ·

· · ·
• · ·
· · ·

4, 6 4, 11 A148525
· · ·
• · ·
· · ·

• · ·
· •
• · ·

· · ·
• · ·
· · ·

7, 16 6, 25

A148548
• · ·
· · ·
· · ·

• · ·
· •
• · ·

· · ·
· · ·
• · ·

7, 19 6, 28 A148689
· · ·
· · •
· · ·

• · ·
· ·
• · ·

· · ·
· · •
· · ·

8, 25 8, 31

A148703
· · ·
· • ·
· · ·

· · ·
· •
· · ·

• · ·
• · ·
• · ·

4, 3 3, 6 A148790
· · ·
· · ·
· · •

· · •
• ·
· · ·

· · ·
· · •
· · ·

6, 12 5, 18

A148934
· · ·
· · ·
· • ·

• · •
· ·
· · ·

· · ·
• · •
· · ·

5, 5 4, 11 A149279
· · ·
· · •
· · ·

• · ·
• ·
• · ·

· · ·
· · •
· · ·

14, 62 10, 75

A149290
· · ·
· • ·
· · ·

· · ·
· ·
• · •

• · •
· · ·
· · ·

11, 53 9, 61 A149363
· · ·
· · ·
· · •

· · •
• ·
· · •

· · •
· · ·
· · ·

7, 16 6, 24

A149632
· · ·
· · ·
· · •

• · ·
• ·
• · ·

· · ·
· · ·
· · •

7, 11 5, 16 A149713
· · ·
· • ·
· · ·

· · ·
· ·
· · ·

• · •
· · ·
• · •

8, 22 7, 29

A150054
· · ·
· • ·
· · ·

• · ·
· •
• · ·

· · ·
· • ·
· · ·

12, 39 9, 52 A150370
· · ·
· · •
· · ·

• · ·
· •
• · ·

· · ·
· · •
· · ·

14, 62 10, 75

A150410
· · ·
· · ·
· · •

· · •
• •
· · ·

· · ·
· · •
· · ·

4, 6 4, 11 A150471
· · ·
· • ·
· · ·

· • ·
• ·
· · •

· · ·
· • ·
· · ·

12, 33 8, 42

A150499
· · ·
· · ·
· • ·

· • ·
• •
· · ·

· · ·
· · ·
· • ·

14, 48 9, 61 A150764
· · ·
· · •
· · ·

· · •
• ·
· · •

· · ·
· · •
· · ·

7, 13 6, 19

A150950
· · ·
· • ·
· · ·

· · ·
· ·
· · ·

• · ·
• · •
· · •

8, 23 7, 29 A151053
· · ·
· • ·
· · ·

• · ·
· •
· • ·

· · ·
· • ·
· · ·

14, 38 9, 48
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