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Automating John P. D’Angelo’s method to study Complete Polynomial Sequences

Shalosh B. EKHAD and Doron ZEILBERGER

In memory of Ron Graham1 (1935-2020) the coolest mathematician that I have ever known

Abstract: In a recent intriguing article by complex geometer (and several complex variabler)

John P. D’Angelo there was a surprising application of elementary (but very deep!) number theory

to complex geometry. What D’Angelo needed was the largest integer not representable as sum of

distinct values of triangular numbers (with analogous questions about other polynomial sequences).

He demonstrated, in terms of a few lucid examples, how to determine these numbers, and then

rigorously prove that they are indeed correct. In this short note we describe a Maple package that

implements these ideas enabling, at least in principle, but often also in practice, to determine these

numbers fully automatically. In fact, we show that the very same ideas can be turned into an

algorithm that inputs an arbitrary integer-generating polynomial, and positive integers a and C,

and outputs the smallest integer not representable as a sum of distinct values of that polynomial

with argument ≥ a in at least C different ways. (The cases that D’Angelo needed were a = 0 or

a = 1, and C = 1).

Maple Package

This article is accompanied by a Maple package JPDA.txt, available from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/JPDA.txt .

The web-page of this article,

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/jpda.html ,

contains numerous input and output files, some ot them referred to in this paper.

Introduction

In a recent fascinating article [D], John D’Angelo discovered a surprising connection between certain

dimensions in complex geometry and a problem in number theory tackled many years ago by such

giants as Klaus Roth, George Szekeres, and Ron Graham [G].

The initial problem was, given a polynomial p(j) , in j, that always yields positive integers for

j ≥ 0, to decide whether every sufficiently large integer n can be written as a sum of distinct

1 Ron Graham was not only a great combinatorialist, but also the “coolest” (i.e. socially skilled) mathematican I

have ever known. I confess that for a long time, while I did admire his many contributions, I felt that he got more

recognition than many other ‘nerdier’ (i.e. socially awkward) mathematicians who are even better than him, and,

to my shame, I used him as an example of an ‘over-rated mathematican’. But this was wrong of me! In particular

the paper [G] that he wrote two years after his PhD, testifies to his great depth!
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values of p(j). In other words, there exists an integer, the largest exceptional value, denoted (in

[G]) by λ(p), such that λ(p) is not representable as a sum of distinct values, but every integer

n > λ(p) is representable in such a way. Such polynomial sequences are called (in [D]) Complete

polynomial sequences, and (in [G]) Complete sequences of polynomial values.

At the end of [G], Ron Graham commented

“. . . Even for the simplest polynomials p(j), the exact determination of λ(p) is not easy”

Already in 1948 (probably without computers) R. Sprague proved (see [G]) that

λ(j2) = 128 .

In 1964 (most probably using computers), Graham proved that

λ(j3) = 12758 ,

λ(j4) > 2400000 .

How much do we know, exactly, today, with Moore’s exponential growth of computer power? Not

much more!

If you google (make sure to have the quotation marks) “128, 12758”, you are immediately lead

to OEIS sequence A001661 (https://oeis.org/A001661), that tells you that, in addition to the

above values, known back in 1964, we currently know that

λ(j4) = 5134240 , λ(j5) = 67898771 , λ(j6) = 11146309947 , λ(j7) = 766834015734 .

Surprisingly, except for the last number, these numbers already appeared in the 1995 edition [SP]

M5393, but only the first three numbers are listed in the first edition [S] (published 1973), where

it is sequence 2342.

Ron Graham [G] gave a beautiful necessary and sufficient condition, easily checked (it is imple-

mented in procedure RGc in the Maple package JPDA.txt accompanying our article) for the poly-

nomial p(j) to be complete. In other words for the existence of λ(p). His proof entails an explicit

upper bound, but as he commented himself, it is useless in practice.

In [D], John D’Angelo gave a nice algorithm for rigorously determining the exact value of λ(p) for

any given polynomial p(j), but rather than formulating it formally, he illustrated it in terms of a

few illuminating examples. In this short note, we will ‘reverse engineer’ his argument, and phrase

it formally, and more importantly, implement it, so that anyone interested in finding the exact

value of λ(p) (and hence the exact dimension of some problems in complex geometry, see [D]) can

do it by herself (or himself, or itself). Of course, it can only go so far, and we doubt that λ(j20)

will ever be known by human-kind (or machine-kind, for that matter).
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In fact the algorithm easily generalizes to the more general scenario.

Inputs:

• A polynomial p(j) that, thanks to Graham’s condition (Theorem [4] in [G], Theorem 3.1 in [D]),

is known to be complete ;

• a non-negative integer j0 ;

• a positive integer C .

Output: The largest integer, let’s call it λj0,C(p), that is not representable as sum of distinct

values of p(j) with j ≥ j0 in at least C different ways.

D’Angelo was particularly interested in λ0,1(
(

j+k
k

)

), λ1,1(
(

j+k
k

)

) for k = 2, 3, . . ., and gave the exact

values for k = 2 and k = 3. He also asked about the ratio of the latter quantities as k goes to

infinity.

In [D], the following exact values are given

λ0,1(

(

j + 2

2

)

) = 33 , λ1,1(

(

j + 2

2

)

) = 50 ,

λ0,1(

(

j + 3

3

)

) = 558 , λ1,1(

(

j + 3

3

)

) = 897 .

We further have (using D’Angelo’s method, to be described shortly)

λ0,1(

(

j + 4

4

)

) = 12659 , λ1,1(

(

j + 4

4

)

) = 23319 ,

λ0,1(

(

j + 5

5

)

) = 120838 , λ1,1(

(

j + 5

5

)

) = 291217 .

The sequence 33, 558, 12659, 120838, . . ., that may be viewed as the
(

j+k
k

)

analog of OEIS sequence

A001661 (that concerns jk), (and in some sense is a more natural one, since in discrete math the

natural basis of polynomials is the former, rather than the latter) was not (viewed Nov. 3, 2021)

in the OEIS. We hope that some kind soul would enter it. We also recommend the companion

sequence (where the case j = 0, i.e. 1, is not allowed to participate), 50, 897, 233319, 291217, . . .,

that is also of interest to John D’Angelo, since it has complex geometry implications.

3



Formalizing John D’Angelo’s algorithm

Step 1: Fix a positive integer K for exploration, and using Maple, or any other computer algebra

system, find the beginning up to the power qK of the generating function

∞
∏

j=j0

(1 + qp(j)) .

By the usual generatingfunctionolgy argument, the coefficient of qn is the exact number of ways of

representing n as a distinct sum of values of p(j) with j ≥ j0.

Find the largest n ≤ K whose coefficient is < C. We conjecture that this is also the largest integer

n < ∞ with that property, but so far it is only a conjecture. Let’s call this value N0.

in order to prove our conjecture that λj0,C(p) = N0, rigorously, we formulate the following state-

ment, regarding a positive integer y:

S(y) := y is representable as a sum of distinct values of p(j) for j ≥ j0 in at least C different ways.

We believe (based on the initial numerical exploration) that S(y) is true for all y > N0, but we would

like to prove it rigorously. By mathematical induction, if we can prove that S(y′) for N0 < y′ < y

implies S(y), we will be done. In all inductive proofs we need a base case, or more often base cases.

Let’s leave them open for now. In other words, in analogy to undetermined coefficients, we have

undetermined base cases for the inductive argument. So far we know (from the initial exploration,

that S(y) is true for N0 < y ≤ K, but perhaps that does not suffice. Let’s see.

Given such a positive integer y, let N be the unique integer such that

p(N) < y ≤ p(N + 1) .

D’Angelo’s ingeniously writes

y = (y − p(N − 3)) + p(N − 3) .

Now, wishful thinking, if we knew the following two facts

y − p(N − 3) > N0 ,

y − p(N − 3) < p(N − 3) ,

then things would follow by induction. By the inductive hypothesis, y − p(N − 3) is representable

as a sum of values of p(j) in at least C different ways, and for each of them we can add p(N − 3)

to get such a representation for y. The second condition guarantees that appending p(N − 3) will

not violate uniqueness (since there is no way that p(N − 3) can be a part of a representation of

y − p(N − 3)).
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But how to guarantee these conditions?

We have

y − p(N − 3) = (y − p(N)) + (p(N)− p(N − 3)) > p(N)− p(N − 3)

So if we knew that p(N)− p(N − 3) ≥ N0, then we would be in good shape.

In order to satisfy the second inequality, note that

y − p(N − 3) ≤ p(N + 1)− p(N − 3) < p(N − 3) ,

provided p(N + 1) < 2p(N − 3). So we also need

2p(N − 3)− p(N + 1) > 0 .

Both polynomials p(N)−p(N −3) and 2p(N −3)−p(N +1) have positive leading coefficient hence

there is a cutoff where they both start being positive. Let that cutoff be N1. Then the above

inductive argument is valid for y > p(N1). This leaves, as base cases for the induction argument,

all the integers from N0 to p(N1). If p(N1) is less than the K that we used above for exploration,

we are already done. Otherwise, let the computer check that the coefficients of the generating

function
∏

∞

j=j0
(1 + qp(j)) between N0 and p(N1) are all ≥ C.

The web-page of this paper contains numerous sample input and output files. In particular pro-

cedure CutoffV(p,j,st,C,K) in the Maple package not only finds the cutoffs (and checks them),

but spells out the above argument for each given case. See for example:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oJPDA1.txt .
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