
ar
X

iv
:2

20
8.

07
69

6v
1 

 [
m

at
h.

N
T

] 
 1

6 
A

ug
 2

02
2

BBP-TYPE FORMULAS — AN ELEMENTARY APPROACH

SIMON KRISTENSEN AND OSKAR MATHIASEN

Abstract. We provide a simple way of searching for formulas of
the Bailey–Borwein–Plouffe type together with an algorithm and
an implementation in sage. Aside from rediscovering some already
known formulas, the method has been used in the discovery of a
new BBP-type formula for

√
3π. In addition, the implementation

is very flexible and allows us to look for BBP-type formulas to
irrational bases but with integer coefficients. As an example of
this, searching in various Pisot bases, we have discovered a formula
for π in base 1 +

√
3, along with additional formulas.

1. Introduction

In 1997, D. Bailey, P. B. Borwein and S. Plouffe [4] discovered the
formula

(1) π =
∞
∑

k=0

1

16k

(

4

8k + 1
+

−2

8k + 4
+

−1

8k + 5
+

−1

8k + 6

)

The novelty of the formula is that it allows one to calculate – using
a spigot algorithm – the n’th digit in the hexadecimal expansion of π
without knowing the preceeding digits. Since then, many other for-
mulas of similar type have been discovered. We refer the reader to
D. Bayley’s on-line compendium [3] for a list of some of the known
formulas.

Before proceeding, we will need some notation.

Definition 1. A BBP-type formula is a series of the form

BBP(d, b, n, A) =
∞
∑

k=0

1

bk

n
∑

j=1

aj
(kn + j)d

,

where d, b, n ∈ N are called the degree, base and number respectively,
and A = (a1, . . . , an) ∈ Rn is a vector.

Often, one requires the aj’s to be integers, and clearly this is the
more interesting case. However, we will not be making this restric-
tion in calculations, although we will present only results with integer
coefficients. In this way, (1) states that

π = BBP(1, 16, 8, (4, 0, 0,−2,−1,−1, 0, 0)).
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A unified approach to searching for BBP-type formulas was how-
ever sadly lacking until D. Barsky, V. Muñoz and R. Pérez-Marco [5]
provided a framework for searching for such formulas. Their idea is
to set up a family of iterated integrals, depending on a single complex
variable, s say. These integrals are subsequently expanded into rap-
idly converging series. On substituting particular values of s into the
series and considering real and imaginary parts separately, one obtains
BBP-type formulas for a variety of numbers.

A main feature of their work is that they find representations of zero
as a BBP-type formula. These so-called null formulas have been among
the more mysterious ones in literature, and have given rise to relations
between BBP-type formulas.

In this paper, we give a less general form of the main theoretical tool
of Barsky, Muñoz and Pérez-Marco [5], which as it turns out admits a
simple and intuitive geometric interpretation. In addition, it is rather
simple to implement an algorithm based on the main result, which is
flexible enough to deal with a number of interesting cases.

2. Main theoretical results

We present here our main theoretical result, which in its simplicity
provides several BBP-type formulas.

Theorem 1. Let θ = a
b
2π with a

b
∈ Q and 2|b and let r ∈ (0, 1). Then,

arg(1 + r · eiθ) = BBP
(

1, 1

rb
, b, A

)

,

where A = (a1, . . . , ab) with aj = rj(−1)j+1 sin(jθ).

Proof. Our starting point is the Taylor series for log(1 + z) centred at
z = 0,

log(1 + z) =
∞
∑

n=1

(−1)n−1
zn

n
.

Substituting z = reiθ, we get,

log(1 + reiθ) =

∞
∑

n=1

(−1)n−1
rneinθ

n
.

Recalling that the argument of a complex number is nothing but the
imaginary part of the logarithm of the number,

arg(1 + reiθ) =

∞
∑

n=1

(−1)n−1
rn sin(nθ)

n
.

Now, sin(nθ) is clearly b-periodic, so writing each n = bk + j with
j = 1, 2, . . . , b, we get since 2|b,

arg(1 + reiθ) =

∞
∑

j=0

(

1

rb

)−k b
∑

j=1

rj(−1)j+1 sin(jθ)

bk + j
,
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π
4

π
4

A = 0

C = 1 + 1√
2
e

3

8
2πi

B = 1

Figure 1. Proof that π
4
= BBP(1, 16, 8, (1

2
, 1
2
, 1
4
, 0, −1

8
, −1

8
, −1

16
, 0))

as required. �

Note that we could just as well have taken the real part in the proof
to obtain a BBP-type formula for log |1+r·eiθ| = 1

2
log(1+r2+2r cos θ).

In the example given below, this would have resulted in a BBP-type
formula for log 2. The same procedure gives a formula for the logarithm
of a certain real number for each of our obtained formulas below. We
have left it for the interested reader to deduce such formulas from the
new ones obtained in this paper.

As an example of our main theorem, let us derive a BBP-type formula
for π/4, originally found by Ferguson, Bailey and Arno [6]. Letting
r = 1√

2
, a = 3 and b = 8, our theorem states that

π

4
= arg

(

1 + 1√
2
e

3

8
2πi
)

= BBP(1, 16, 8, A) =
∞
∑

k=0

1

16k

8
∑

j=1

aj
8k + j

,

where A = (a1, . . . , a8) = (1
2
, 1
2
, 1
4
, 0, −1

8
, −1

8
, −1

16
, 0).

We can interpret the main result geometrically in the following way.
Consider the circle in C with centre 1 and radius r, along with the
triangle subtended by the three points A = 0, B = 1 and C = 1+ reiθ.
Clearly, C lies on the circle considered. Moreover, the angle at B is
π − 2θπ, a rational multiple of π. If also the angle at A is a rational
multiple of π, the theorem yields a BBP-type formula for π. In the
example given, the triangle is an isosceles triangle with angles at A
and B equal to π

4
, see figure 1.
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Of course, such triangles are rather uncommon. However, as we will
see, we can sometimes combine triangles, which are not necessarily as
nice, and obtain new BBP-type formulas. The observation which makes
this work is the following lemma.

Lemma 2. For fixed d, n ∈ N and b > 1, the map BBP(d, b, n, ·) : Rn →
R is linear.

The proof is simply a matter of manipulating convergent series and
hence ommitted.

We would like to consider all BBP-type formulas arising from the
main theorem and look for combinations of them, which give formulas
of interest. Recall that the formulas arising in this way are for the
angle of the ABC-triangle at A, so unless this number is of interest,
the formulas obtained are not interesting in themselves, although it
may happen that they combine with other formulas to reveal a formula
of interest. In order to study these combinations, we define a function
which given an even natural number b we define the Circle-To-BBP
map CTBb : (0, 1)× N → Rb by letting

CTBb(r, a) = A = (a1, . . . , ab), with aj = rj(−1)j+1 sin
(

ja
b
2π
)

.

The map reads off the vector associated to the BBP-type formula
arising from Theorem 1 with the parameters r, b and θ = a

b
2π. In

other words, the range of the map is the collection of permissible vec-
tors from triangles arising by letting the point C vary over all corners
of a regular b-gon inscribed in a circle with centre 1 and radius r.

By periodicity of sine, CTBb(r, ·) is clearly b-periodic, but in fact one
only needs to consider a ∈ {1, . . . , b

2
−1}. Indeed, using that sine is odd

and 2π-periodic, we immediately verify the relations in the following
lemma.

Lemma 3. For b an even natural number and r ∈ (0, 1),

(1) CTBb(r, 0) = CTBb(r,
b
2
) = 0.

(2) CTBb(r, a) = −CTBb(r, b− a).

3. An algorithm

At this point, we are ready to turn the above results into an al-
gorithm. We first explain how our algorithm works when searching
for formulas for 0. We will subsequently explain how to modify it to
look for formulas for other constants. In this case, algorithm works as
follows.

(1) Fix an algebraic base number r ∈ (0, 1) (strictly speaking, the
base will be r−1) and an even natural number b.

(2) Compute all vectors CTBb(r, a) for a ∈ {1, . . . , b
2
− 1}.
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(3) Using a standard procedure [8] for finding approximate integer
relations between these vectors. We have used the LLL imple-
mentation in sage in our algorithm. We describe how to do this
below.

(4) Verify that any approximate identities are in fact proper iden-
tities. In our case, we have used exact algebraic arithmetic in
sage for this purpose on noting that all numbers in the vectors
CTBb(r, a) have coordinates which are arguments of algebraic
numbers.

(5) Output all relations found in this way.
(6) Check for linear dependence among the obtained formulas to

ensure that they are properly distinct. This is done by checking
whether the Gram matrix of any selection of vectors is zero.

The procedure in [8] describes how to find approximate integer rela-
tions between a set of real numbers. What we really need is an approx-
imate relation between vectors, but in our case, this is the same thing
if we work instead with the BBP-type formulas. Indeed, we do the fol-
lowing. First, we let xi = BBP(1, r−b, b,CTBb(r, i)) for i = 1, . . . , b

2
−1,

and take suitably good rational approximations x̂i to these numbers.
We now pick a large integer N and let mi = [Nx̂i], the nearest integer

to Nx̂i. Consider now the lattice Λ ⊆ R
b

2 , spanned by the vectors
vi = (0, . . . , 0, 1, 0, . . . , mi) with 1 in the i’th coordinate and mi in the
n + 1’st coordinate. Applying LLL to this lattice yields a non-zero
vector of small norm. But any vector of the lattice Λ is of the form

b/2−1
∑

i=1

aivi =



a1, . . . , ab/2−1,

b/2−1
∑

i=1

aimi



 .

This vector is short only if the final coordinate is small, that is, if we
have a near integer relation between the mi.

We would hope that the relation is in fact an integer relation between

the xi, i.e. that
∑b/2−1

i=1
aixi = 0. This is not an unreasonable hope.

Indeed, if we let ǫ > 0 be the worst among the qualities of our approx-
imations x̂i, then

N

∣

∣

∣

∣

∣

∣

b/2−1
∑

i=1

aixi

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

b/2−1
∑

i=1

aiN(xi − x̂i + x̂i)

∣

∣

∣

∣

∣

∣

≤ Nǫ

∣

∣

∣

∣

∣

∣

b/2−1
∑

i=1

ai

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

b/2−1
∑

i=1

aiNx̂i

∣

∣

∣

∣

∣

∣

≤ Nǫ

∣

∣

∣

∣

∣

∣

b/2−1
∑

i=1

ai

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

b/2−1
∑

i=1

aimi

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∑b/2−1

i=1
ai

∣

∣

∣

2
.
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Letting

s =

∥

∥

∥

∥

∥

∥

b/2−1
∑

i=1

aivi

∥

∥

∥

∥

∥

∥

2

the square of the Euclidean norm of the vector found by LLL, this
immediately implies that

∣

∣

∣

∣

∣

∣

b/2−1
∑

i=1

aixi

∣

∣

∣

∣

∣

∣

≤ s

N
+ |s|ǫ.

Note that by [8], the number s is within a constant factor of the square
of the smallest non-zero Euclidean norm occurring for a vector in Λ.
In other words, for ǫ small and N large, we will expect the the left
hand side to be really small and hence equal to zero to within some
tolerance. Whether this approximate equality is in fact an equality is
subsequently checked in the next step of the algorithm.

All that remains in order to include formulas for other numbers than
zero is to include them among the xi. If one is interested in obtaining a
formula for π, say, one would just include π in the list of xi as the b/2’th
element, so that the lattice Λ will now lie in Rb/2+1. This will allow
the algorithm to look for formulas for linear combinations including the
new number as well, and if one was looking for integer combinations
of other constants, these could also be added. Of course, it is entirely
possible that the integer relations coming out of the search algorithm
do not include the constants with a non-zero coefficient, in which case
we have just recovered a zero formula. In fact, if one plugs in an
entirely arbitrary number, in all probability the number in question
does not admit a BBP-type formula at all, and thus will be ignored
by the algorithm (though its inclusion may increase run time). In our
search, we have looked for formulas for π and multiples thereof. This
is due to the argument below.

We now finally describe how to reduce a candidate identity to a
problem in exact algebraic arithmetic, cf. Step 4 of the algorithm. As
described here, the procedure works for π.

A candidate identity obtained in Step 3 has the form

N
∑

i=1

ai arg
(

q + reiθi
)

= bπ,

where the ai and b are integers, not all zero; N is the length of the
formula, we are searching for (in our case b/2−1 or b/2); r is algebraic;
and the θi are rational multiples of π. Thus, ci = q + reiθi ∈ Q. Thus,
rewriting and using properties of the argument,

bπ =

N
∑

i=1

ai arg(ci) =

N
∑

i=1

arg (caii ) = arg

(

N
∏

i=1

caii

)

.
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Since Step 3 outputs an integer b, this implies that the number inside
the argument must be a real number, whence it must be equal to its
complex conjugate. The ai are likewise integers, so the equality to be
verified exactly is

N
∏

i=1

caii =

N
∏

i=1

ci
ai ,

an identity in algebraic numbers, which can be verified in exact algeb-
raic arithmetic.

An implementation of the above algorithm in sage can be found on
https://projects.au.dk/ada/

The algorithm described above outputs any BBP-type zero formulas
found in this way. As we will see below, it does not recover all known
formulas. Nonetheless, we believe that the method has its merits. One
such feature is the easily understood geometrical interpretation of the
algorithm. Another is the fact that r need not be an integer, but only
an algebraic number. In our experiments, we have attempted to look
for formulas with a Pisot number base.

Another feature of the algorithm is that the format of the output
in fact constitutes a geometric proof of the formula in question. This
is to be understood in the sense that the output is a linear combin-
ation of BBP-type formulas given in terms of the CTB-function. In
order to remove any computer interaction from the proof of a given
formula, one only needs to verify that the associated triangles have a
good configuration. This is best illustrated with an example. The null
formula

0 = 212
(

BBP(1, 212, 24,CTB24(1/
√
2, 5))

− BBP(1, 212, 24,CTB24(1/
√
2, 11))

)

,
(2)

was originally found by Lafont in [7], though in the usual BBP-notation.
Out algorithm recovers this formula. The form of the formula above
allows us to turn the formula above into an easily verifiable geometric
condition as illustrated in Figure 2. The large triangle gives rise to the
first term, while the smaller triangle gives rise to the second term. The
proof of the formula is simply a matter of verifying the fact that the
complex numbers 0, 1 + 2−1/2e

5

12
πi and 1 + 2−1/2e

11

12
πi are collinear –

essentially an exercise for undergraduates.

4. Computational results

We consider first integer bases, which are powers of 2 and 3. In
Table 1, we give a formula count of the known formulas in various bases
and lengths with integer coefficients. In addition to the formulas with
integer coefficients, our algorithm also finds formulas for 0 with non-
integer coefficients. These are omitted from the counts. All formulas

https://projects.au.dk/ada/
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A = 0

C = 1 + 1√
2
e

5

24
2πi

C ′ = 1 + 1√
2
e

11

24
2πi

B = 1

Figure 2. Geometric proof of Lafont’s null formula.

base r b # known formulas # recovered formulas

24 1/
√
2 8 1 0

26 1/2 6 1 0

212 1/
√
2 24 5 1

220 1/
√
2 40 3 1

36 1/
√
3 12 2 1
Table 1. Null formulas in integer bases

obtained are of degree 1. We list the values of base, the associated r
and the length b as they occur in Theorem 1.

In our condensed notation using the CTB-notation which allows for
easy geometric proof of the formulas, we have obtained the following
known formulas aside from Lafont’s formula (2) discussed above.

0 = 220
(

BBP(1, 220, 40,CTB40(1/
√
2, 3))

+ BBP(1, 220, 40,CTB40(1/
√
2, 5))

+ BBP(1, 220, 40,CTB40(1/
√
2, 11))

− BBP(1, 220, 40,CTB40(1/
√
2, 13))

− BBP(1, 220, 40,CTB40(1/
√
2, 15))

+ BBP(1, 220, 40,CTB40(1/
√
2, 19))

− BBP(1, 220, 40,CTB40(1/
√
2, 20))

)

,
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which one finds in [3]; and

0 = 386
√
3
(

BBP(1, 36, 12,CTB12(1/
√
3, 3))

− BBP(1, 36, 12,CTB12(1/
√
3, 5))

)

,
(3)

found by Adegoke in [1]. The leading coefficients, which admittedly
look a little silly, are there to ensure that if one rewrites the ob-
tained formula as a single BBP-type formula, it becomes a pure formula
without leading coefficient and with integer coefficients. For instance,
on expanding and regrouping terms, (3) becomes

0 = BBP(1, 729, 12, (243,−243,−324,−81, 27, 0,−9, 9, 12, 3,−1, 0)).

Using our algorithm, we have found a BBP-type formula for
√
3π,

which we have not been able to find in litterature. The formula reads
√
3π =

9

212
BBP(1, 212, 24, A),

with

A = (211, 0, 0, 210, 29, 0, 28, 28, 0, 0, 26, 0,

− 25, 0, 0,−24,−23, 0,−22,−22, 0, 0,−1, 0).

The computer generated proof found by the algorithm is
√
3π = 3

√
3
(

BBP(1, 212, 24,CTB24(1/
√
2, 5))

+ BBP(1, 212, 24,CTB24(1/
√
2, 11))

)

.

The BBP-type formula is found by expanding the right hand side.
The real merit of our algorithm is that it is able to produce BBP-

type formulas to non-integer bases, while still producing formulas with
integer coefficients. We have not been able to find examples of this in
literature, though Adegoke [2] does have BBP-type formulas in base
φ, the Golden ratio. However, the formulas obtained by Adegoke have
coefficients in Z[φ], which to us seems a little unnatural. The bases
studied must be algebraic. We have made our algorithm run with
several Pisot bases. Of course, the output will always be expansions
with rational coefficients as is the case with integer bases, and as such
they are not β-expansions in the sense of Rényi [10] and Parry [9].
Nevertheless, we find the expansions of interest. We are particularly
intrigued by the rather large number of expansions with the Golden
Ratio as a base.

In Table 2, we present the number of null formulas found to vari-
ous Pisot bases of low degree and height. In each case, the minimal
polynomial of the Pisot number; the approximate value of the Pisot
number, i.e. the real root which is greater than one 1, is given; the
denominator b is given; and the number of null formulas found are all
given. The value of r is in each case set equal to the reciprocal of the
Pisot number in question. The values of b chosen are 60 and 24 due
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Polynomial Approximate value b # formulas obtained
x2 − x− 1 1.618033 60 12
x2 − 2x− 2 2.732050 60 1
x2 − 2x− 1 2.414213 60 0
x2 − 3x+ 1 2.618033 60 4
x2 − 3x− 1 3.302775 60 0
x2 − 4x+ 2 3.414213 60 0
x3 − x− 1 1.3247179 60 3
x4 − x3 − 1 1.380277569 24 1

Table 2. Null formulas in Pisot bases

to the smoothness of these numbers. The effect is that our algorithm
finds formulas coming from even divisors of the numbers.

The first two lines of Table 2 are the Golden Ratio and
√
3 + 1 re-

spectively. We denoting the Golden ratio by φ, and putting ψ =
√
3+1,

we present a small selection of the formulas obtained by our algorithm.
For φ, we have for instance the following formulas. Since searching
for BBP-type formulas in non-integer bases appear to be largely unex-
plored territory, we have not found any of these in literature.

0 = −
(

BBP(1, φ60, 60,CTB60(φ
−1, 18))

+ BBP(1, φ60, 60,CTB60(φ
−1, 24)),

0 = −
(

BBP(1, φ60, 60,CTB60(φ
−1, 14))

+ BBP(1, φ60, 60,CTB60(φ
−1, 26)),

0 = −
(

BBP(1, φ60, 60,CTB60(φ
−1, 8))

+ BBP(1, φ60, 60,CTB60(φ
−1, 28)),

and

0 = −
(

BBP(1, φ60, 60,CTB60(φ
−1, 8))

− BBP(1, φ60, 60,CTB60(φ
−1, 9))

+ BBP(1, φ60, 60,CTB60(φ
−1, 21)).

In addition, our algorithm found a formula for for π to base φ,

π = 10BBP(1, φ15, 15,CTB(φ−1, 2)).

Note that the b in the latter formula is reduced to 15. This reduction
of the base is possible by the above remarks on the smoothness of 60.

For ψ =
√
3 + 1, the following null formula occurs in base 12, even

though we performed our search in base 60,

0 =
(

BBP(1, ψ12, 12,CTB12(ψ
−1, 2))

− BBP(1, ψ12, 12,CTB12(ψ
−1, 5)).
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While this is the only null formula, which we have found, a formula for
π did show up,

π = 12BBP(1, ψ12, 12,CTB12(ψ
−1, 2)).

Of course, by the two preceding formulas, it immediately follows that

π = 12BBP(1, ψ12, 12,CTB12(ψ
−1, 5)).

As a final remark on the non-integer formulas obtained, for the num-
ber φ+1 with minimal polynomial x2−3x+1, our usual approximation
parameter, measured by N in the application of LLL, of N = 1010 only
resulted in two null formulas. Increasing the parameter to N = 1015

resulted in an additional two formulas. This suggests that we may be
missing formulas, which should nevertheless show up as arising from
triangles in the way described in this paper, due to the restrictions in
sage.

5. Concluding remarks

We end this paper with some concluding remarks and open problems.
First, the abundance of zero formulas found for the Golden Ratio is

somewhat of a mystery! We really do not know why this particular
irrational base yields so many zero formulas. Judging from the other
Pisot numbers studied, it appears not to have anything to do with the
Pisot’ness of the number. Of course, it is entirely possible that we have
just not found all zero formulas for other numbers. The issue definitely
requires further study.

Second, the original intention behind BBP-type formulas was to find
deep digits in the expansions of numbers such as π, and indeed the
original BBP formula allows one to calculate the n’th binary digit of π
without knowing all the preceding ones. For irrational bases, such as
the Pisot bases studied in this paper, one also has a digital expansion,
namely the β-expansions of Rényi [10] and Parry [9]. It is not clear
to us how to extract digital information from the expansions produced
by our setup. Naively trying to extend the spigot algorithms to the
irrational setup fails miserably. Obtaining digital information from our
formulas remain an open problem.

Third and finally, we are only able to deal with BBP-type formulas
of degree one in the present setup. Obtaining a similarly intuitive and
geometrical approach to formulas of higher degree also remains an open
problem. It would appear that the simple interpretation with triangles
with vertices at 0, 1 and a point on a regular polygon on a particular
circle is no longer appropriate for this type of problem. We leave it for
the interested reader to ponder how to extend the interpretation of the
formulas and their algorithmical implementation to the higher degree
case.
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