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Abstract— MapReduce is an emerging and widely used pro-
gramming model for large-scale data parallel applications that
require to process large amount of raw data. There are several
implementations of MapReduce framework, among which Apache
Hadoop is the most commonly used and open source implemen-
taion. These frameworks are rarely deployed on supercomputers as
massive as Blue Waters. We want to evaluate how such massive
HPC resource can help solving large-scale data analytics, data-
mining problems using MapReduce / Hadoop framework.

In this paper we present our studies and detailed performance
analysis of MapReduce / Hadoop framework on Blue Waters Super-
computer. We have used standard popular MapReduce benchmark
suite that represents wide range of MapReduce applications with
various computation and data densities. Also, we are planning to
use Intel HiBench Haddop Benchamrk Suite in future. We identify
few factors that significantly affect the performance of MapReduce
/ Hadoop and shed light on few alternatives that can improve the
overall performance of MapReduce techniques on the system.

The results we have obtained strengthen our belief in pos-
sibility of using massive specialized superrcomputers to tackle
big data problems. We demonstrate the initial performance of
the MapReduce / Hadoop framework with encoraging results and
we are confident that the massive traditional High Perfromance
Computaing resource can be useful in tackling the big-data research
challneges and in solving large-scale data analytics, data-mining
problems.

Keywords: MapReduce, Hadoop, Blue Waters

1. Introduction
MapReduce [1] is a well-known programming framework

pioneered by Google for data intensive and large-scale data
analysis applications. The architecture is simple abstraction
that allows programmers to use a functional programming
style to create a map function that processes a key-value
pair associated with the input data to generate a set of
intermediate key-value pairs, and a reduce function that
merges all intermediate values associated with the same
intermediate key. The MapReduce programming model is
divided into 3 simple phases namely: Map; Shuffle and
Sort; Reduce as shown in figure 1.

Map Phase: In the map phase, the input data is
partitioned into input splits and assigned to Map tasks
associated with processing nodes in the cluster. The Map
task typically executes on the same node containing its
assigned partition of data in the cluster. These Map tasks

Fig. 1: MapReduce - 3 Phases

perform user-specified computations on each input key-
value pair from the partition of input data assigned to the
task, and generate a set of intermediate results for each key.

The shuffle and sort phase: The shuffle and sort phase
sorts the intermediate data generated by each Map task
from other nodes and divides this data into regions to be
processed by the reduce tasks. This phase also distributes
this data as needed to nodes where the Reduce tasks will
execute.

Reduce Phase: In reduce phase, the data divided by shuf-
fle and sort phase is processed. The Reduce tasks perform
additional user-specified operations on the intermediate data
possibly merging values associated with a key to a smaller
set of values to produce the output data.

All Map tasks must complete prior to the shuffle and sort
and reduce phases. The number of Reduce tasks does not
need to be the same as the number of Map tasks. For more
complex data processing procedures, multiple MapReduce
calls may be linked together in sequence.

The MapReduce programming model is also becoming
popular in scientific computing, where scientists need to
frequently analyze a large volume of experimental and



simulation data. Such data analysis is often implemented as
independent tasks that can be expressed as mapping opera-
tions in MapReduce. For example, in genome sequencing,
the matching of large number of sequences against a huge
collection of known sequences can be considered as mapping
of similarity function to pair of sequences. Similarly, for
the post-processing of simulation data, the tasks can be
expressed as MapReduce, where a single program is run
multiple times with different input parameters. MapReduce
is a simple and scalable approach that enables scientists to
achieve simulation results from large-scale data.

Google implemented MapReduce to execute very large
matrix-vector multiplications needed for the PageRank cal-
culations. Matrix operations such as matrix-vector and
matrix-matrix calculations fit very well into the MapReduce
style of computing. Another examples in numerical comput-
ing that can be solved are Singular Value Decomposition or
Sparse Matrix Vector Multiplication that are used in lots
of HPC applications. Given the large-scale problem size
and types that are addressed using MapReduce, and the
popularity of MapReduce as an implementation paradigm,
it is unquestionable to explore its use on traditional HPC
platforms.

In this paper, we conduct initial benchmarking and per-
formance results of MapReduce framework on the Blue
Waters [3] petascale system. We have briefly described the
challenges of using Mapreduce / Hadoop framework on
High Performance Computing (HPC) platforms. We have
used Apache Hadoop [2], the most popular and commonly
used MapReduce framework. However, there is no official
/ formal support for Hadoop or related stack on the Blue
Waters system.

The rest of the paper is organized as follows: Section 2
discusses the challenges while deploying and using MapRe-
duce / Hadoop on a High Perfoprmance Computing resource.
In Section 3, we describe the architecture of computing
systems used and brief description on the test cases and
benchmarks we have experimented with. We talk about ex-
perimental setup along with benchmarking environment and
Hadoop related configuration that we used and challenges
faced in deploying Apache Hadoop software stack on the
Blue Waters system in Section 4 follwed by results with
discusion in Section 5 . Related work is briefly reviewed in
Section 6 and finally we conclude and discuss future work
in Section 7.

2. Challenges on HPC System

There are certain challenges on how MapReduce-Hadoop
framework will fit into HPC environment. We have come
across few of them while working with the MapReduce
programing paradigm on the Blue Waters system.

2.1 Parallelism:
Most of the HPC applications use divide-conqure method

and each task communicate with other tasks frequently.
These applications are often classified according to how
often their subtasks need to synchronize or communicate
with each other. In applications that exhibit fine-grained
parallelism the subtasks communicate frequently while ap-
plications with coarse-grained parallelism the subtasks do
not communicate many times. Other types of HPC ap-
plications are embarrassingly parallel that rarely or never
have to communicate. Embarrassingly parallel applications
are considered the easiest to parallelize. MapReduce com-
pletely relies on Embarrassingly Parallel (EP) techniques.
May of the HPC applications do not fall in this category.
Programmers will need to rewrite the codes to expose the
EP method in their existing codes. Also the programming
models such as MPI, OpenMP, OpenACC etc developed
for Parallel Programming are not suitable for MapReduce
/ Hadoop framework.

2.2 Programming Language:
The main programming language for HPC applications is

either Fortran or C while Hadoop is written in Java so that
the code written can run on any hardware platform. This
is completely opposite when it comes to traditional HPC
applications, where they are compiled and optimized for
specific software and hardware platform on which they will
run. As per the HPC users, the codes written in Java are slow
and inefficient which is not acceptable in HPC coomunity.
Another reason is, Hadoop was essentially designed for
world wide web services, for which Java is almost perfect
language of programming, while HPC applications address
wide range of scientific applications that are developed
historically.

2.3 File System:
The main requirement of Hadoop is availability of local

data storage. However, for the HPC systems there is no local
storage. The file system is shared across all the available
nodes. Most of the time the file system is either General
Parallel File System (GPFS) [32], [33] or Lustre [34].
Simulating these shared files system as a local storage is not
straight forward. Additionally, these filesystems extensively
use POSIX, while Hadoop doesn’t support it.

2.4 Resource Management:
In traditional hadoop clusters the resource management

is entirely handled by the hadoop framework and the types
of workloads are similar. On the other hand, typical HPC
systems handle various types of workload and the resource
management is taken care by dedicated scheduling software
such as Moab [35], PBS or Slurm. Integrating these resource
scheduler with Hadoop is not a simple task.



2.5 Operating System:
Hadoop framework requires a full flavored operating sys-

tem. Current HPC systems have stripped down version of
linux kernel to reduce unwanted polling from the Operating
System (OS) which in turn improves the performance of an
application on the system. To use the MapReduce / Hadoop
framework one will have to use the Cluster Compatibility
Mode on the given system so that a full flavor of OS is
available for MapReduce applications.

2.6 IP stack over interconnect:
Hadoop framework uses TCP / IP or Ethernet and not

high speed and lossless Remote direct Memory Access
(RDMA) technologies. Hadoop does not support low
latency high speed interconnect with scalable topologies
like 3D Torus or 5D torus or Dragonfly or Gemini etc.
It supports only multi-stage clos style network [38]. The
network topologies mentioned above are relevant only to
HPC or Supercomputing.

We will have to look into all the above challenges to
evaluate the MapReduce / Hadoop framework on Blue
Waters system. However, solutions are being developed
and attempted to address a few of the above mentioned
challenges.

3. System Overview
In the section we describe the architecture of the com-

puting system we have used for the benchmarking and
performance evaluation of MapReduce framework and brief
description of test cases and benchmarking candidates. We
have used our Test and Development System as well as Blue
Waters [3] system to perform our experiments.

3.1 Computing System Overview
The hardware we used is the sustained petascale system

of Blue Waters [3] hosted at the University of IllinoisâĂŹs
National Center for Supercomputing Applications (NCSA)
and funded by NSF. Blue Waters is one of the largest
computational resources in the world, serving NSF Science
community researchers throughout the United States.

3.1.1 JYC Configuration
JYC is our Test and Development System (TDS) where

we test and evaluate software and changes before we deploy
it on Blue Waters. JYC is a single rack XE6m/XK6m.
There are 96 total nodes with a aggregate peak compute
performance of ~30.3 TF.

• 76 nodes are XE6 nodes with (1216 bulldozer modules,
2432 integer cores, 313 GF/node, 23.8 TF total):

– two AMD Interlagos processors (16 Bulldozer
modules total)

– 64 GB of RAM

• 8 nodes are XK6 nodes with (64 bulldozer modules,
128 integer threads, 156 GF x86/node, 655 GF/Fermi,
6.5 TF total):

– one AMD Interlagos processor (8 Bulldozer mod-
ules)

– 32 GB of RAM
– one NVIDIA Fermi GPU (with 6GB of RAM)

• The remaining 12 nodes are service nodes used for boot,
sdb, LNET routers, login, and network gateway. All 96
nodes are on the gemini interconnect which is cabled as
a 2D mesh 1D torus. The login and network gateways
each have a dual-port 10Gb Ethernet NIC.

• JYC also has Lustre as underlying file system, Torque
as resource manager and Cluster Compatibility mode.

3.1.2 Blue Waters Configuration

Blue Waters is a Cray XE6-XK7 supercomputing system
managed by the National Center for Supercomputing Appli-
cations for the National Science Foundation. The system has
a peak performance of 13.34 PF, aggregate IO throughput
in excess of 1 TB/s, 26 PB online disk capacity and nearly
200 PB of nearline storage. Blue Waters contains two types
of compute nodes: XE6 and XK7. There are 22,640 XE6
nodes and 4,224 XK7 nodes. Each XE6 node has two 16
core AMD 6276 CPUs, 64 GB of main memory. Each XK7
node has one 16 core AMD 6276 CPU, 32 GB of main
memory and one Nvidia Kepler K20X graphics processing
unit (GPU) with 6 GB of GDDR5 on-board memory. The
compute and file system nodes are interconnected using the
Cray Gemini high speed interconnection network. Two nodes
share a single Gemini ASIC (Application-Specific Integrated
Circuit), which contains two network interface controllers
(NICs) and a YARC-2 router. The network is organized in a
24 X 24 X 24 3D torus topology The detailed architecture
of the system is described in [42].

3.1.3 File System

The file system on Blue Waters will be built using Cray
Sonexion 1600 Lustre appliances. The Cray Sonexion 1600
appliances provide the basic storage building block for
the Blue Waters I/O architecture [41] and are referred to
as a "Scalable Storage Unit" (SSU). Each SSU is RAID
protected and is capable of providing up to 5.35 GB/s of IO
performance and approximately 120TB of usable disk space.
The scratch file system where the runs were made uses 180
(one hundred eighty) SSUs to provide 21.6 PB of usable
disk storage and 963 GB/s IO performance. This file system
can provide storage for up to 2 million file system objects.
This file system is high performance, high capacity transient
storage for applications.



3.1.4 Resource Management
The Blue Waters system uses TORQUE Resource Man-

ager [36] integrated with the Moab Workload Manager
to schedule and manage user jobs. Torque is based on
OpenPBS, most of the commands for managing your jobs
on Blue Waters will be the same as PBS commands. The
application launcher (aprun) utility on the Cray system
launches applications on compute nodes similar to mpirun
on many other systems to launch jobs. Application Level
Placement Scheduler (ALPS) take care of job placement and
execution of the applications submitted by aprun.

The Blue Waters system also has Cluster Compatibility
Mode (CCM), a component of Cray environment to support
full Linux compatibility mode. With help of CCM, XE/XK
compute node, normally carrying a stripped down operating
system, can be turned into a typical node in a standard
Linux cluster. This mode is used to run programs on the
MapReduce / Hadoop framework.

3.2 Benchmarks Information
In this section we describe the standard and industry

benchmarks we have used during our experiments. Some of
them are available with the Hadoop distribution while others
are developed by the academia or industry.

3.2.1 PI Calculation
PI is a MapReduce program that estimates the value of PI

using a quasi-Monte Carlo method. This program is available
with the Hadoop distribution. PI is a purely computational
application that employs a Monte Carlo method to estimate
the value of PI. It is very nearly "embarrassingly parallel":
the map tasks are all independent and the single reduce
task gathers very little data from the map tasks. There is
little network traffic or storage I/O. Detailed information on
PI program can be found here [22]. BBP is a MapReduce
program that uses Bailey-Borwein-Plouffe [39] to compute
exact digits of PI.

3.2.2 Word Count
Word Count is a MapReduce program that counts the

words in the input files. The program counts the occurrences
of each word in a large collection of documents. Map emits
<word,1> tuples. Reduce adds up the counts for a given
word from all map tasks and outputs the final count.

3.2.3 Grep
Grep is a MapReduce program that counts the matches

of a regex in the given input. It is helpful in searching a
pattern in a file and is a generic search tool used in many
data analyses. Each map task outputs lines containing either
of the patterns as <regex, 1> tuples. Reduce task adds up
the counts and emits <regex, n> tuples. This program is
available with the Hadoop distribution.

3.2.4 NNBench
NNBench is a benchmark that stresses the namenode. It

is useful for load testing the NameNode hardware and con-
figuration of underlying filesystem. The NNbench program
is part of Apache Hadoop distribution that can simulate
requests for creating, reading, renaming and deleting files
on the Hadoop filesystem.

3.2.5 DFSIO
The DFSIO program is part of Apache Hadoop distri-

bution to compute the aggregated bandwidh delivered by
HDFS. It is a read and write test for the filesystem. The
test handles large number of tasks performing read or write
operations in parallel. This test run as a MapReduce job,
where each map task i opens a file to read or write and
measures number of bytes transferred and the ececution time
for that task. Map tasks followed by a single reduce task for
post-processing that aggregates the results from all the map
tasks by computing average I/O rate and average throughput
for each map task. More information on how to run the
benchmark and interpreting the results obtained is explained
in [20].

3.2.6 Intel HiBench
Intel’s HiBench [4], a Hadoop benchmark suite consisting

of both synthetic micro-benchmarks and real world applica-
tions such as Sort, WordCount, TeraSort, Bayes, KMeans,
NutchIndexing, PageRank, DSFIOE. It can be used as a
representative proxy for benchmarking Hadoop applications.

3.2.7 MRBS
MRBS [21] is a comprehensive benchmark suite for eval-

uating the performance of MapReduce systems. MRBS con-
tains five benchmarks covering several application domains
and a wide range of applications that are data-intensive
versus compute-intensive or batch applications versus online
interactive applications.

4. Experimental Setup
In this section we describe the benchmarking environment

along with the configuration setting we used for Hadoop
deployment on Blue Waters system and we detail some of
the challenges faced in deploying Apache Hadoop software
stack on the Blue Waters system.

4.1 Benchmarking Environment
We have used JYC, the Test and Developemnt System

(TDS) as well as Blue Waters system for our experiments.
Blue Waters has 22640 XE and 4224 XK nodes while JYC
consists of 76 XE and 8 XK nodes. The file system is Lustre
which is shared across all the nodes.

Resource management and scheduling is handled by
Torque. So each job may or may not get different nodes



in the systems and at different network location. We have
integrated Yarn with the existing resource management and
scheduling software. We use ccmrun supported by Cluster
Compatibility Mode on Cray systems to properly launch the
MapReduce / Hadoop workload on the system.

4.2 MapReduce and Hadoop Settings
We have used an Open Source distribution of Apache

Hadoop stack 2.3.0. The node manager resource memory
is set to 52 GB which is approximately 80% of memory
available on a single compute node. The value for cpu-cores
is set to 32, virtual core to physical core ratio is set to 2
and virtual memory to physical memory ratio is set to 2.
The memory per container is set to 2 GB, therefore we can
have 25 number of containers per node. The heap sizes for
map task and reduce task are set to 1.6 GB and 3.2 GB
respectively. The detailed information on how to set these
parameters is available at [27] and we have followed these
instructions. We have used same settings on both JYC and
Blue Waters systems.

4.2.1 myHadoop
myHadoop [19] is a framework used for configuring

Hadoop on traditional HPC resources using the standard
job scheduling and resource manager software. User can
run Hadoop codes on the HPC resource without having
root privileges using myHadoop. It supports a regular non-
persistent mode where the local file system on each compute
node is used as the data directory for the Hadoop Distributed
File System (HDFS), and also a persistent mode where the
HDFS can be hosted on a shared file system such as Lustre
or GPFS. We have used myHadoop version 2.1.0.

4.2.2 Yarn
MapReduce / Hadoop workloads are excuted on stan-

dard Hadoop cluster with the help of resouce management
and scheduling entirely handled by Hadoop framework. In
contrast, the resouce management and scheduling is always
handled by special type of dedicated software or tool Like
Torque, Moab or PBS. While, a typical HPC resource has
several different users with various types of workloads,
Hadoop workload is similar in nature. Each job that runs
on HPC system can get different node configurations, can
be placed in various toplogy configurations or can get
different node types depends upon the type of hardware
configuration, available queues and scheduling policies. The
changes in the standard Hadoop cluster are very rare in terms
of node configuration or node placements in the topology.
We have integrated Yarn [37] with the Torque scheduler that
is currently available on the system.

4.3 Challenges On Blue Waters
• Scheduler:

User jobs on supercomputing systems are typically

Table 1: Timings of boot up using ssh on 25, 50 and 100
Nodes

Noof Nodes Time
25 179.497
50 355.244
100 700.06

managed by a job management system and a resource
manager. The Blue Waters system uses TORQUE Re-
source Manager integrated with the Moab Workload
Manager to schedule and manage user jobs. Apache
Hadoop stack comes with its own job scheduler, YARN
(Yet Another Resource Negotiator). YARN expects to
monitor and manage the nodes of a Hadoop cluster. The
version of YARN we used in this paper does not inte-
grate with existing workload and resource managers.
This is an inherent conflict in how YARN and Blue
Waters managers operate. MyHadoop works around this
conflict as follows:

– A regular job is submitted to the existing job
scheduler

– The list of nodes provided by the job scheduler are
then used to create a set of configuration files

– Using these files, a new (temporary) instance of
Hadoop cluster is booted up

– Hadoop jobs are not submitted to this instance of
the Hadoop cluster

In using this technique, other challenges were also
encountered. Timeout values for various components
had to be tuned to prevent the boot up process from
failing. Another major issue was after a Hadoop job
completes and tears down the Hadoop cluster, the BW
scheduler failed to detect end of the job. This resulted
in the BW scheduler waiting for wall clock timeout
instead of terminating after job completes. The tear
down process was modified so that BW scheduler
could detect and release nodes for other jobs.

• Scaling to larger node counts:
The Hadoop boot up script uses secure shell (ssh) to
start Hadoop processes on each node. This is done in
serial manner. For small node counts, this completed in
a reasonable time. As we scaled to larger node counts
(50+), the time to configure Hadoop cluster grew at an
unacceptable rate. It is observed that he time taken for
boot up is doubled when number of nodes are doubled.
The time taken for 25, 50 and 100 nodes are shown in
table 1.
Serial tools exist that implement parallel remote shell.
For our purposes, we have used pdsh [40] mainly be-
cause it is already configured to run on BW. Using pdsh
instead of ssh, we noticed a significant improvement in
boot up time.



Table 2: Timings of BBP operations on 19 Nodes
Noof Maps Computing Size Time

100 0.5 x 106 782.53
100 1.0 x 107 3224.59
200 1.0 x 107 1806.07

5. Results
In this section we illustrate initial results for a spectrum

of benchmarks that might give a broad picture of possibility
of using HPC resouce such as Blue Waters for large-scale
data analytics. We will perform extensive studies of other
benchmarks and applications and look into scalabilty of
these benchmarks in terms different Cluster Size as well
as Data Sizes in detail in the future. We will also evaluate
various possible optimization parameters on the system. We
will not be running MapReduce / Hadoop workload on the
entire system, instead we are planning on using upto 5%
of the XE6 nodes which are more than 1000 nodes. If the
results are encoraging we will perform scalability studies
upto 2000 nodes for the purpose of this paper.

5.1 Performance Evaluation
In this section, we show the results of different standard

Hadoop Benchmarks on the Blue Waters system. We also
made sure that the experimental setup almost inline with the
setup used in the work done at [30] so that we can have
fare comparison of the obtained results. We also present the
results that illustrate the impact of different data sizes and
node sizes and scalability studies with respect to Data size
and Cluster size.

5.1.1 PI Calculation

BBP is a map/reduce program that uses Bailey-Borwein-
Plouffe to compute exact digits of PI. This program is
available with the Hadoop distribution. BBP is a purely
computational application that employs a Bailey-Borwein-
Plouffe method to estimate the value of PI. It is very nearly
"embarrassingly parallel": the map tasks are all independent
and the single reduce task gathers very little data from the
map tasks. There is little network traffic or storage I/O. The
results of BBP on 5 nodes is shown in figure 2. It shows
that the time taken is decreasing when number of map tasks
are increased. BBP is computing 0.5 x 106 digits. The time
taken on our system is 25% less than the time taken in [30]
paper. The results obtained for 19 nodes are shown in table
2. It shows that there is 56% improvement in time taken
when number of Maps are doubled for the computation of
1.0 x 107 digits.

We also have performance numbers on more numbers of
nodes that are encoraging. However we have not presented
it here as we have not completed all the runs at this time.

Fig. 2: Performance of BBP on 5 Nodes

5.1.2 Word Count

We have used two datasets for Word Count. One is
Wikipedia [29] and other is Freebase [28]. The oroginal
size of Wikipedia dataset was small, so we have duppli-
cated the dataset few number of times to make the larger
dataset of size 105GB. Freebase is an opensource datase
released by Google. The size of this dataset is 361 GB. This
dataset is a knowledge graph database for structuring human
knowledge, which is used to support the collaborative web
based data oriented applications. We have used 5 nodes for
the performance of Word Count opeartion so that we can
compare the results obtained in [30] with our results. The
total time taken for wikipedia database is 2719 seconds and
4312 for Freebase database which is little more compare to
[30] results. We will investigate further the reason behind
this operation.

5.1.3 Grep

We have used Wikipedia [29] and is Freebase [28] datasets
for the Text Search operation with datasizes 105 GB and 361
GB respectively. We have used 5 nodes for the performance
of Text Search opeartion so that we can compare the results
obtained in [30] with our results. The total time taken
for Text Search Operation for Wikipedia dataset is 1019
seconds while for Freebase is 2884 seconds. There is more
than 50% of reduction in the execution time on the JYC
system as compare to results in [30]. We are confident
that we will observe similar performance on Blue Waters
too. On 20 nodes the time taken is 874 seconds and 300
seconds for Fressbase and Wikipedia dataset respectively.
The performance is order of 3.5 magnitute improved with
respect to the results obtained on 5 nodes.

5.1.4 TestDFSIO

DFSIO test handles large number of tasks performing read
or write operations in parallel. In this test we have used 25,
50, 100, 200, 400 and 500 XE nodes. The total numbers of
file written and read were 625, 1250, 2500, 5000, 10000 and



Table 3: Timings of Write and Read operations of DFSIO
on 25, 50, 100, 200, 400 and 500 Nodes

Number Write Read
Of Nodes Oper Oper

25 296.612 334.23
50 372.98 368.72

100 371.3 435.15
200 373.7 487.15
400 374.23 501.1
500 375.92 511.76

Fig. 3: Performance of DFSIO on on 25, 50, 100, 200, 400
and 500 Nodes

12500 respectively. The time taken for both Write and Read
opeartions in mentioned in table 3. For 25 nodes we have
observed 21.07 GB/Sec, for 50 nodes 33.51 GB/Sec, for 100
nodes 67.33 GB/Sec, for 200 nodes 133.79 GB/Sec, for 400
nodes 267.21 GB/Sec and for 500 nodes 332.51 GB/Sec.
The figure shows that the throughput increases linearly as
number of nodes are increased. The average IO rate is 187
MB/Sec for all the five configurations for write operations
and varies between 159 MB/Sec to 175 MB/Sec for read
opeartions. The throughput obtained is shown in figure 3.
The default dfs.blocksize is 128 MB, therefore we have set
the Lustre strip size to 128 MB and Lustre stripe count to
160, which is maximum number of OSTs to be used for the
scratch file system.

6. Related Work
Benchmarking is a de-facto process to measure perfor-

mance of any given system using a specific operation or set
of programs to compare the achieved results with standard
measures or other similar systems. Benchmarks are used
not only to test but also to measure and to predict the
sustained performance of computer system. Benchmarks are
also used to reveal their architectural weakness and strong
points. Benchmark data can provide valuable insight into
the likely behavior of a given system; it may also be used to
predict the performance of a new design. Benchmark data on
the other hand reflect more specifically how appropriate the
given design is for particular set of programs. Benchmarks
can be classified according to application classes, such as

scientific computing, commercial applications, distributed
systems, network services, multimedia applications, and
signal processing, etc. It is an important factor for evaluating
distributed systems, and extensive work has been conducted
in this area. There are various scientific and industry standard
performance benchmarking programs available. Some of
them are domain specific, some are associated with computer
hardware or software systems.

One of the most popular benchmark suite is TPC bench-
marks. The Transaction Processing Performance Council
(TPC), a non-profit organizatio that defines transaction pro-
cessing and database benchmarks, and distributes vendor-
neutral performance data to the industry. They have several
domain specific benchmarks such as TPC-C [5] and TPC-
E [6] , an on-line transaction processing benchmark to
evaluate online transaction processing (OLTP) performance
on various hardware and software configurations, TPC-DS
[8] and TPC-H [7], evaluates decision support systems, while
TPC-App [9] is an application server and web services
benchmark.

These benchmarks are useful in analysing performance
of distributed systems, however they are not suitable to
evaluate MapReduce framework. The scheduling policies
[10], data replication and partitioning policies [11], [12]
involve functionalities of microbenchmarks such as grep,
word count and sort which are available with standard
Hadoop distribution as described in [1].

There are few papers [13] and [14] depicting performance
of MapReduce on parallel database systems. In [15], the
authors compare MapReduce with parallel database system
while in [16] authors study how the job configuration pa-
rameters affect the performance of Hadoop. In [17] , authors
focus on architectural design issues and possible solutions
to improve the overall performance of Hadoop.

In [18], authors discuss about the framework which is
strongly based on myHadoop [19] approach to run Hadoop
workload on HPC machines and initial results on 33 nodes
of Cray XE6 / XK7 system. However none of them have
performed detailed studies on the system as massive as
Blue Waters, a Cray XE6/XK7 system consisting of more
than 22,640 XE6 compute nodes (each containing two AMD
Interlagos processors) augmented by more than 4224 XK7
compute nodes (each containing one AMD Interlagos pro-
cessor and one NVIDIA GK110 "Kepler" accelerator) in a
single Gemini interconnection fabric. While the results were
obtained in [18] are using in memory for the Cray system,
we will be using shared files system, Lustre.

In [23] authors discuss on optimizing nonblocking MPI
[26] collective operations to optimize MapReduce and in
[24] authors talk about a collective communication library,
Harp that can be used to support various applications from
HPC to cloud systems. In [25] authors have developed a high
performance MapReduce system for the MPI environment
that can be used to develop scientific applications in the



molecular dynamics fileld. In this paper, we are not focusing
on performance of HPC application that use MPI extensively.
However, we will look onto it in the future.

BlueWaters is one of the most powerful supercomputers
in the world that provides a HPC platform for scientists and
engineers across the country to solve wide range of challeng-
ing problems. We want to evaluate how such massive HPC
resource can help solving large-scale data analytics, data-
mining problems using MapReduce / Hadoop framework.

7. Conclusion and Future Work
There is no official support for Hadoop or related stack

on the Blue Waters system. The first and most important
challenge in achieving the project goal is to build a working
Hadoop stack on the system. We have built a working stack
on the Blue Waters system but it is not available to users.
The focus of the paper is to obtain benchmarking results
and not to provide a stable Hadoop stack on the system.
Using the latest version may not be feasible due to the
software ecosystem limitations. Therefore, the version works
best within the system limitations will be used.

Hadoop works with a share-nothing architecture, where
as systems such as BW are share everything designs. Using
a shared file system like Lustre may pose challenges. Some
workarounds are being investigated but their feasibility on
Blue Waters system is unknown at this time. We have
integrated YARN with the resource scheduler, MOAB that
is available on the system.

Currently, we have only initial results with the existing
opensource Apache Hadoop stack [2]. If this does not
produce comparable results, we will consider Ohio State
University’s IB-enabled Hadoop stack [31]. Blue Waters
can expose VERBS interfaces over Gemini network using
IBoGNI. However, the stability, and compliance of IBoGNI
is not well known. If it is stable, this stack will be preferred.

In this paper we have presented initial results of few
benchmarks such as PI, Grep, TestDFSIO, NNBench etc.
We will be considering few other standard benchmarks such
as terasort, contrail bio workload etc. to perform detailed
evaluation and analysis of MapReduce framework on Blue
Waters. We may consider Intel’s HiBench and PUMA bench-
mark suite and benchmarks if time permits. We will also
evaluate MRBS benchmark suite provided the tarball is made
available by the developers.

We will perform extensive studies of other benchamrks
and applications and look into scalabilty of these bench-
marks in terms different Cluster Size as well as Data Sizes
in detail in the future. We will also evaluate various possible
optimization parameters on the system.

The initial results on the MapReduce / Haddop framework
are encoraging and we are confident that the massive tradi-
tional High Perfromance Computing resource can be useful
in tackling the big-data research challenges and in solving
large-scale data analytics, data-mining problems.
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