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We find and prove relationships between Riemann zeta values

and central binomial sums. We also investigate alternating bino

mial sums (also called Apery sums). The study of nonalternating

sums leads to an investigation of different types of sums which

we call multiple Clausen values. The study of alternating sums

leads to a tower of experi mental resuIts involving polylogarithms

in the golden ratio.

1. INTRODUCTION

We shall begin by studying the central binomial sum
S(k), given as

00 1

S(k) :=~ n k C:)

for integer k. A classical evaluation is S(4) = ~~ ((4) .
Using a mixture of integer relation and other compu
tational techniques, we uncover remarkable links to
values of multi-dimensional polylogarithms of sixth
roots of unity which we call multiple Clausen values.
We are thence able to prove some surprising identi
ties - and empirically determine many more. Our
experimental integer relation tools are described in
some detail in [Borwein and Lison"'ek2000].

We shall finish by discussing the corresponding
alternating sum:

These are related to polylogarithmic ladders in the
golden ratio ~(V5~1). A classical evaluation is

A(3) = ~((3),

with its connections to Apery's proof of the irra
tionality of ((3); see [Borwein and Borwein 1987],
for example.

© A K Peters,Ltd.
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2. DEFINITIONS AND PRELIMINARIES

(2- 4)

(2- 2)

(2- 3)

Lia 2 , ... ,a n (z)
1- z

L
. () _ (- log( l- z))n
l{l} n Z - , 'n .

d Li 1,a 2 , . .. ,a n (z)
dz

Our first step is to write S(k) in integral form.

t ext oo t"
- t- == '""' Bn(x )-"e -1 Z:: n .

n=O

(_ 2)k- 2 .
S(k) = (k _ 2)! ](k-2,1).

3. NONALTERNATING CENTRAL BINOMIAL SUMS

and

Repeated application of (2-2) yields

Lemma 3.1. For all positive in tegers k ,

where {I}" denotes the string 1, . . . , 1 with n ones.
We will make use of the B ernoulli polynomials

later in this paper. Recall that B; (x) is defined by

and that Bn(O) is called the n -th B ernoulli number
and is written B i..

For convenience we choose t he following notation
for log-sine integrals:

Proof. We employ the gamma function and various
standard tricks. First

·b+l l 1r
/ 3 ( f). )a

r(a ,b):=:!b! 0 109(2 sin 2) +~(O-7f) ObdO.

(2- 5)

Finally, a standard result involving t he gamma
function will prove ver y useful:

(2-1 )
Lia1+l, ...,a n (z)

z
d Lia 1+2 ,a 2 , ... ,a n (z)

dz

Li (z) .==a l ,· · · ,ak •

with t he parameters required to be positive integers.
This is a generalization of the familiar polylogarithm
Lin(z) :== L:~= l zk/ k n

. Note that Lin(l) == ((n).
We will be most concerned with the value of the

multi-dimensional polylogarithm at the sixth root
of unity, w :== ei 1r

/ 3 . We refer to such a value as a
multipl e Clausen value (MCV) and write

/-l(a l , ... ,ak) :== Lia1,...,ak(w).

This MCV is analogous to the multiple zeta value
(MZV) , at z == 1, which has been studied in works
such as [Borwein et al. 1997; 1998; 2001]. We might
also have viewed these values as generalizations of
the Lerch zeta function. It transpires to be advan
tageous to separate the real and imaginary parts of
an MCV in a manner that is based on the sum of
the argument s. We refer to these parts as multiple
Glaish ers (mgl) and multiple Clausens (mcl). They
are defined by

mgl(a l ' ' ak) :== Re(i a 1+···+a k /-l(al ' ' ak)),

mc l(al ' ' ak) :== Im(ia1 +···+ak/-l(al, , ak)),

and may be written explicitly as multiple sin or cos
sums depending on the parity. For example, when
a + b is odd,

mgl(a, b) = ± '""' sin(n7fe),
s: n rrn

n > m > O

We start with some definitions which for the most
part follow [Lewin 1981; Borwein et al. 1997; 1998;
2001]. A useful multi-dimensional polylogarithm is
defined by

as is t he case in Theorem 3.3 below.
As elsewhere, the weight of a sum is L::=ia, while

the depth k is the number of parameters. This sep
aration corresponds, in the case k == 1, to Lewin's
[1981] separation of the polylogarithm at complex
exponential arguments into Clausen and Glaisher
fun ct ions.

We record the following differential properties of
our multi-dimensional polylogarithm:
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(3-2)

setting y2 = x and integrating by parts, this be
comes

00 1 {I=2:: In (-2logy)k-l y2n-2(2y)dy
n==1 (2:) r(n) 0

__ 00 (_2)k-I ({ I y2n _ (logy)k-2 )
- ~ C:)r(n) Jo 2n 2(k 1) Y dy

_(_2)k-I {I (logy)k-2 00 ~

- (k - 2)! Jo y ~ nC:)dy.

Using [Borwein and Borwein 1987, p. 384] we get

S(k) = (_2)k-l r (logy)k-2 yarcsin(y/2) dy

(k - 2)! Jo -y )1 - (y/2)2

(_2)k-2 {1r/3 .
= (k - 2)! Jo (log(2sinO/2))k-

20dO

with the change of variables y = 2 sin 0/2. . D

Hence to evaluate the sums 8(k), it is enough to de
termine log-sine integrals of-the special form j(k, 1).
The key is the following identity:

Lemma 3.2. For all k > 2,

I: (-i1r(3Y JL(k-r,{1}n)
r.r==O

= ((k, {I }n) - (-l)k+nr (n + 1, k - 2). (3-1)

Proof. First note the formal identity

·0 (0) ilog(1- e' ) = log 2 sin 2 + 2(0 - 1r).

We have, by (2-1),

JL(k, {1}n) = ((k, {1}n) + (W Lik _ 1,{ 1}n ( Z ) dz.
JI Z

We now integrate by parts repeatedly to obtain

JL(k, {I }n) = ((k, {I }n) _~ (-ItJL(n-r,?h) logT W

T.r==1
+ (_I)k-2 jW Li{l}n+l (z) logk-2 Z dz.

(k-2)! 1 z

Observe that log w = it: /3. Let z = eiO
• Then,

using (2-3),

JL(k,{1}n) = ((k,{1}n) - I: (-i1r/3YJL;~-r,{1h)
r==1

O( l)k l1r/3+ 'l - (-log(l-eiO))n+I (io)k- 2dO,
(k-2)! (n+l)! 0

which gives us the desired result upon application
of (3-2). D

Now, note that r(a, b), defined in (2-5), can be ex
panded out binomially and written as linear rational
combination of j(c, d), defined in (2-4), for various
c, d, including a nonzero multiple of j(a, b). So we
may repeatedly use the above identity to solve for
each j(a, b) in terms of multiple Clausen, Glaisher
and zeta values-all of the same form mcl(n, {1}k),
mgl(n, {1}k) and ((n, {1}k).

In particular, for all k, j(k-2, 1) and hence S(k)
can be written as a linear rational combination of
multiple zeta, Clausen and Glaisher values of this
form. This method, which we have automated in
Reduce and in Maple, recovers all previously known
results in a uniform fashion. It does not in gen
eral give especially nice looking identities, but we
are able to apply some other results about multiple
Clausen values derived in the next section to clean
things up for small k. After doing this, we obtain
the following evaluations of central binomial sums:

Theorem 3.3.

8(2) = ~((2)

8(3) = -~1r mcl(2) - ~((3)

8 (4) = ~~ ( (4)

8(5) = 21r mcl( 4) - 1: ((5) + ~((3)((2)

8(6) = -~1rmgl(4, 1) + ~~~~((6) - ~((3)2

8(7) = -61r mcl(6)- ~43 ((7)+2((5)((2)+ ~~ ((4)((3)

8(8) = -41rmgl(6, 1) + 32~63226800I((8) - ~:((5,3)

- 338 ((5)((3) + ~((2)((3)2.

The results for 8(2) and 8(4) are classical evalua
tions. That for 8(3) seems first to have appeared in
print in [Ghusayni 1998]. The others, and the gen
eral analysis, are new and it is hoped that they will
shed light on odd (-values, which remain a source
of many unanswered questions. We observe that
genuine MCVs, with depth k > 1, first occur for
n = 6 and 8. Moreover, David Bailey and David
Broadhurst have explicitly obtained 8(n) for n ~ 20
through a very high level application of integer re
lation algorithms. The result for 8(20) is presented
in [Bailey and Broadhurst 2001].
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4. MULTIPLE CLAUSEN VALUES

Central binomial sums naturally led us into a study
of multiple Clausen values. This study proved to
be quite fruitful and we were led to many striking
res ults.

To st art with, we quote from [Lewin 1981] some
result s about depth-one Clausen values:

(_1) n+12n- l7rnBn(i)
mgl(n) == , ' (4-1 )

n.

mcl(2n+l) = (-l)n(1-T2n)(1-3-2n)((2n+l).
2

4A. MCV Duality

In MZV analysis , one of the central results is the
now well-known MZV duality theorem recapitulated
in [Borwein et al. 1997]:

((al + 2, {I }b1 , • • • , ak+2, {I }bk)

== ((b k +2, {I }ak ' ... b, +2, {I }al)'

For all positive integers aI, a2, ... , an.
For MCV's, we have found two such duality re

sults , with the first result applying if the first argu
ment of the MCV is one (such sums converge as in
the classical Fourier setting) while the second holds
if the first argument of the MCV is two or more. The
pattern in Theorem 4.2 is somewhat complicated. A
prior example may make things clearer.

Example 4.1. JL (l , 3,1 ,2) - JL(l) JL(3, 1,2) + JL(2) x
JL (2,1,2) - JL(3) JL(l ,1,2) + JL(l ,3) JL(l, 2) - JL(l, 1,3) x
JL (2) + JL (2, 1,3) JL(l) - JL(l, 2,1,3) == O.

Each summand differs from its predecessor by sub
t ract ing '1' from the first argument of the right MCV
and adding' l ' to the first argument of the left MCV.
In t he case where there is a '1' as the first argument
of t he right MCV, this '1' is dropped and concate
nated onto the left MCV.

Theorem 4.2. For all positive integers aI , a2, ... , an,
we have

JL(l , al ' ... , an) - JL(l)JL(al , , an)

+ JL (2)JL(al - 1, , an) + ± JL(al)JL(l, a2 ,· .. , an)

=f JL(l , al) JL (a2, , an) + ± JL(l , an, .. , a 1) == O.

Proof We prove this by repeated integration by parts.
We use the differential properties (2-1) and (2-2)

to move weight from one multidimensional polylog
arithm to another:

JL(l, aI , ... , an)

= (W Lia1 ,...,an (Z)dz
Jo 1- z

== [Li (z) Li (z)] W -lw
Li1(z) Lia1- 1,...,aJ z) dz

1 al ,··· ,an 0
o Z

== ... == ... ± JL(l , an, ... , al ). D

As in other duality results , it is interesting to exam
ine what happens in the self-dual case. Suppose that
(aI, ... , an) == (an, ... , al) ; then, if al + ... + an is
even, the equation in Theorem 4.2 reduces to 0 == o.
If the sum is odd, the same equation shows that
JL(l, aI, ... , an) reduces to a sum and product of
lower weight MCVs.

The pattern in Theorem 4.4 below is more com
plicated. Hence an example will be even more in
structive. The bar denotes complex conjugation.

Example 4.3. JL(4,3, 1) + JL(l ) JL (3,3, 1) + JL (l ,l ) x
JL(2, 3,1) + JL(l ,1, 1) JL(l, 3,1) + JL(2 ,1, 1) JL(3 , 1) +
JL(1,2,1,1) JL(2, 1) + JL(l ,1,2,1,1) JL (l ,1) + JL(2 ,1,2,1,1) x

JL(l) + JL(3 ,1 ,2 ,1 ,1) == ((3 ,1 ,2 ,1 ,1 ).

Each summand differs from it s predecessor by sub
tracting '1' from the first argument of the right MCV
and concatenating '1' onto the left lVICV. In the case
where there is a 1 as the first argument of the right
MCV , this '1' is dropped and '1' is added t o t he first
argument of the left MCV .

Theorem 4.4 is specialization of the Holder con
volution [Borwein et al. 2001, (44)] with p == w and
q == 1 - w == w. That paper gives a more formal de
scription of the pattern of summation that we have
outlined above.

Theorem 4.4. For all positive in tegers aI , a2, ... , an,

JL( al +2 , {I }b1 , .•. , ak+2, {I }bk)

+ ;(i)JL(al+1, {1}b 1 ' · · · , ak+ 2, {l }bk) + ...
+ JL( {I }al+l)JL(l, {I }b1, .. . , ak+ 2, {I }bk)

+ JL(2 , {I }al )JL({I }b1 , ••• , ak+ 2, {I }bk) + ...
+ JL(b1+2, {1} al)JL(a2+2, .. . , ak + 2, { l}b k) + ...
+ JL(bk+2 , {I }ak' ... , b, + 2, {I }al )

== ((b k + 2, {I }ak' . . . , b, +2 , {I }al )·

Proof. As stated above, this follows by Holder con
volution, since Lia(w) == JL( q. It can also be proved
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using a similar integration by parts as above, using
the differentiation properties

d Lia 1 +2,a2, ...,an (1 - z) Lia 1+1,a2, ...,an (1 - z)
dz 1- z '

dLi1,a2,...,an (1 - z) Lia2,...,an (1 - z)
dz z

This identity allows us to move weight from a
multi-dimensional polylogarithm at z to one at l-z.

D

This suggested integration by parts technique also
yields a new proof for this type of Holder convo
lution. Hence, it provides another proof of MZV
duality.

In this case, self-dual strings do not tell us that
much. The only thing to note is that all the imag
inary terms on left side of the equation in Theo
rem 4.4 will vanish, since ab + lib is real. When
k = 1, the equation simplifies, on using (4-1), to

(-I)a(i1r /3)a+b+2
((a + 2, {Ih) + (a + l)!(b + I)!

= t (-i1r(3Y j.t(a + 2 - r, {lh)
r.r=O

b (i1r/3)r-----
+~ ,j.t(b + 2 - r, {I }a). (4-2)

r.r=O

We initially derived (4-2) by means of (3-1) and a
satisfying identity involving log-sine integrals, which
we proved using contour integration:

(-I)a+b((a+2, {1}b-l)

(i1r/3)a+l (-i1r /3)b
( )'b' - r(a+1, b-1) - r(b, a).
e-l-I ..

48. Special values of MCVs

To illustrate the utility of this last duality result,
consider (4-2) when a = 1 and b = 1. We obtain

21r 1r4

((3,1) - 2mgl(3, 1) - 3 mgl(2, 1) - 324 = o.

Using MZV analysis [Borwein et al. 2001], we know
that ((3,1) = 1r4/ 360, which is the first case in an
infinite series of evaluations in terms of powers of
1r4 , conjectured by Zagier and proved in [Borwein
et al. 1998]. Now from (4-5) below we have

1r3

mgl(2, 1) = 324.

This rewards us with

-23
mgl(3, 1) = 194401r4.

Next, we use the duality result to extract some
more general evaluations. Let

F(x,y):= ~ j.t(a+2,{lh) xa+lyb+l .
a,b~O

According to [Borwein et al. 2001], we know that
this generating function is hypergeometric:

F(x,y) = 1- 2Fl(-X,y; l-x;w). (4-3)

Unfortunately, this is not a very convenient equa
tion for extracting coefficients or proving formulas.
To get a more useful representation, we take (4-2) ,
multiply through by Xa+1yb+l and sum over all a, b 2:
O. This gives

e-i1rx/3F(x, y)+ei1ry/3F(y, x)+(e-i7rx/3_1)(ei1ry/3_1)

=G(xy ),
where

G(x, y) := ~ ((a + 2, {lh)x~+lyb+l
a,b~O

is the generating function for the corresponding mul
tiple zeta values. Now from prior work on MZVs
[Borwein et al. 1997] it is known that

(
Xk+yk_(X+y)k )

G(x,y) = 1- exp ~ k ((k) ·
k~2

We shall use this generating function identity to ob
tain more general results about special values of
mgl's and mel's. First we put the last identity in
a more symmetric form by letting

M(x, y) := F(ix, -iy) =
L (_l)b+l (mgl(a+2, {I }b)+imcl(a+2, {I }b))xa+1yb+l.
a,b~O

Then

e1rx/3M(x, y) + e1ry/3M(y, x) + (e1rx/3_1)(e1ry/3_1)

= G(ix, -iy). (4-4)

Theorem 4.5. For nonnegative integers a and b,

(1r /3)a+b+2
mgl({1}a,2,{lh) = (_1)a+b+1 2(a+b+2)!' (4-5)

and this value depends only on a + b.
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00

00

e - 7fy / 3 + 1fy/ 3 - 1

2y

using (2-3).
Now , multiplying through by i a +b+2

, extracting
real parts and proceeding by induction we find that
we must show that

(a+~+2) + ... + (_1)b(a+~+2)

= (_ l)b (a +~+ l).

This again gives us

as required.
Armed with this special cas e, we now prove the

full result for mgl({I},. 2, {l}b). We start with a
similar integration by parts as for the proof of (3-1).
We have

l
w Li (z)

J-l({Ih,2, {I }a) = 0 {1hl 1~ , ~1 } a dz

Z1r
= 3J-l({lh~ 1 ' 2, {l}a) + . . .

+(_l )b+ l (i 7r~3) b J-l (2, {l}a)

l
w (log(l - Z))bLi{l}a+l (z) d

+ , z
o b. z

by repeated integration by parts, which in turn is
seen to equal

i1f b+1 (i1f / 3)b ( {})
3J-l({lh- 1 ,2 ,{1}a)+··+(-1) b! J-l2 , 1 a

+ (_l) br; 1
) J-l(2 , {I }a+b)

2::0 fL(a+2, {1}b)(iy)b+2
y

n= l

Comparing real parts on each side of (4-4) yields

B(y) + e
7fy

/
3C (y) + 1fy(e

7fy/ 3
- 1) == D(y).

3

The value of mgl(n) and so of C(y) is given by (4-1),
while MZV duality yields ((2 , {1}2m-2) == ((2m)
with its familiar Bernoulli number evaluation. Com
bining these results and using the generating func
tion for the Bernoulli polynomials, we arrive at

e 7fy / 3 1fy 1
B(y) == -2- - 6 - 2'

which implies

Proo f. First we show that

b+l (1f /3)b+2
mgl(2 , {I h) = (-1) 2(b+ 2)!'

We give two proofs of this result.

(i) Multiply by y/x in (4-4) , and let x go to zero.
Set

C( y ) := L(_l)b+l mgl(b + 2)yb+2 ,
b=O

B(y) := L(_l)b+l mgl(2, {lh)yb+2,
b=O

00

m = l

b+l (1f /3)b+2
mgl(2 , {Ih) = (-1) 2(b + 2)!'

(ii ) Alternatively, we start with (4-3). Dividing by
x, sett ing y == iy, and letting x go to zero yields

Integrate both sides of this expression from 0 to w
along z == 1+ ei (7f- 8) , where 21f/3 ~ () ~ 1f, to obtain

Now we know that

00 (iy )nzn- 1

L n!
n= l

(1 - Z)-iy - 1

z

However,

(a+~+2) = (a+~+l) + (a;~~l),

and it is now easily seen that the left side telescopes.
D

-iI 1f

/

3
( e~I:/Y-1)(1- cos O+isinO) dO

o 2 - 2ms ()

-i(e-:Y

/

3

- ~ + i).

4C. Additional Evaluations

We can use (4-4) to obtain a clean expression for the
alternating sum of all mgl 's of the form mgl(a, {I }b)
of fixed weight. Let

A(x):=~ (~(-1)m+lmgl(n+2-m,{1}m))Xn.
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If we set x == y in( 4-4), after some work we obtain

1 ( 7rxe- 1rx/3
)A(x)==- -. _e1rx/3+2

2 sinh 7rX

1 ( 27rxe21rx
/3 )== - - - e1rx/3 + 2 .

2 e21rx - 1

This leads to
n-2

L)_l)m+l mgl(n + 2 - m, {l}m)
m=O

== -27r~ (Bn U)2n + Ur) ·
n.

We note that this equation is equivalent to

Re(l- 2Fl(-ix, -ix; 1- ix;w))

== Re(f (-ix)( ~ix)nwn )

n-'lXn=l

1 (7rxe-
1rX/ 3

)
= -"2 sinh(7rx) + e

1rx
/

3
- 2 ,

on using the hypergeometric representation of the
underlying generating function. We have not man
aged to prove this by more direct methods.

An unusual-looking class of identities may be ex
tracted from (4-3) on setting y == 1 - x. This gives

1 - e- i 1rx
/

3 = L p,(a+ 2, {lh) xa+l(l - x)b+\
a,b2:0

which - when we extract the coefficients of various
powers of x on both sides - gives us curious infinite
sums of MCVs of different weight, reminiscent of
similar rational (-evaluations [Borwein et al. 2000].
For example, extracting the coefficient of x yields

CX) •

~ 'l7r
L..,. p,(2, {Ih) = 3'
b=O

More generally, we obtain

to (p,(n + 1,{Ih) - (b+ l)p,(n, {Ih) + ' ..

+ (-1 )n+l ( b+1 ) /-l(2, {I }b)) == _ (-i7r /3)n
n-1 n!

5. MCV DIMENSIONAL CONJECTURES

While there do not appear to be many other closed
form evaluations, it is apparent that there is still
more to be learned by examining all MCVs-and
especially their integral representations. This is a

subject we have largely ignored in this paper, but
which figures large in [Broadhurst 1999], where poly
logarithms of the sixth root of unity were studied in
the context of integrals arising from quantum field
theory.

Experiments using linear relation algorithms sug
gested that the only MCVs that evaluate to rational
multiples of powers of 7r are those already identified,
namely mgl(3, 1) and mgl({I }b' 2, {I }a). Moreover
we found no other nontrivial reduction of an MCV to
a single rational multiple of powers of other MCVs.
Nevertheless, our integer relation searches suggested
a very simple enumeration of the basis size for MCVs
of a given weight.

Consider the set

of all multiple Clausen values of fixed weight, n. We
wish to determine the smallest set of real numbers
such that each element of e(n) can be written as
a rational linear combination of elements from this
set. This will consist of mel's of that weight or prod
ucts of lower weight mel's, mgl's, MZV's and powers
of 7r. We denote by 1(n) the size of the basis for
e(n). Similarly, we denote by R(n) the basis size
for multiple Glaisher values of weight n.

Our first conjecture is quite striking:

Conjecture 5.1. The following twisted Fibonacci re
cursion obtains:

R(n) == R(n - 1) + 1(n - 2),

1(n) == 1(n - 1) + R(n - 2),

R(O) == R(l) == 1, 1(0) == 1(1) == o.
A corollary is that W(n) :== R(n) + 1(n), the total
size of a rational basis for MCV's of weight n, should
satisfy

W(n) == W(n - 1) + W(n - 2),

which delightfully gives the Fibonacci sequence.
Looking at things more finely, we examined the

number P(n, k) of irreducibles of weight n and depth
k, such that a rational basis at this weight and
depth is formed from a minimum number of irre
ducibles, augmented by products of irreducibles of
lesser weight and depth. Again, we are lead to a
rather striking conjecture:

D
ow

nl
oa

de
d 

by
 [

Fl
or

id
a 

St
at

e 
U

ni
ve

rs
ity

] 
at

 0
1:

19
 0

7 
O

ct
ob

er
 2

01
4 



32 Experimental Mathematics, Vol. 10 (2001), No.1

Conjecture 5.2. This weight and depth filtration is

generated by

Both conjectures have been intensively checked by
the PSLQ algorithm [Bailey and Broadhurst 2001]
for k < n < 7. They provide compelling evidence
that there is a great deal of structure to MCVs. It
seems unlikely that they will be proved soon, since
they imply, inter alia, the irrationality of ((n) for
all odd n. The interested reader has online access
to some of the code we have used and also an inter
face for more general integer relation problems; see
section on Electronic Availability at the end.

6. APERY SUMS AND THE GOLDEN LADDER

By way of comparison we present results for the al
ternating binomial sums

As we now describe, we found that the cases k == 2,
3,4,5,6 reduce to classical polylogarithms of powers
of

vg-1
p :==

2

the reciprocal of the golden section. The ladder that
generates these results extends up to ((9). Details
of polylogarithmic ladder techniques are to be found
in [Lewin 1991].

The results for k < 5 were proved by classical
methods (and also obtained by John Zucker, private
communication). For k 2: 5, we were content to rely
on the empirical methods adopted in [Lewin 1991],
determining rational coefficients from high precision
numerical computations.

• At k == 2 one easily obtains from Clausen's hy
pergeometric square [Abramowitz and Stegun 1972;
Borwein and Borwein 1987] the result

A(2) == 2L2
,

where

L :== log p.

Indeed , we found 6 integer relations between A(2),
((2) , and the dilogarithms {Li 2 (PP) I pEe}, where

e :== {I, 2, 3, 4,6,8,10,12,20,24} , generates the cor
responding cyclotomic relations [Lewin 1991].

In general, it is more convenient to work with the
set

x, :== {Lk(PP) I pEe}

of Kummer-type polylogarithms, of the form

Lk(x) : = 1 j X(- log lyl)k-
1dy

(k - I)! 0 1 - y

= ~ (- log Ix Ir L. ()Z:: , l k - r X
r.

r = O

where as before Lik(x):== I:n>o x n/nk.

• At k == 3 one has Apery 's result

A(3) == ~((3 ) .

Moreover there are 5 integer relations between X 3 ,

L 3
, and ((3).

• At k == 4 we recently proved a result , using classi
cal polylogarithmic theory, which simplifies to

A(4) == 4L4 (p) - ~L4 - 7( (4)

where

Lk(x) :== Lk(x) - Lk(-x) == 2Lk(x) - 21
-

kLk( X
2

) .

In fact, there are 5 integer relations between X 4 , L 4
,

((4) and A(4). Another simple example is

A(4) == 1
96

L4(p3) - 2L4 - 2
9
3( (4).

• At k == 5 we found four empirical integer relations
between X 5 , L5

, ((5) and A(5). The simplest result
is

A(5) == ~L5(p2) + ~ L5 - 2((5).

More explicitly, with p :== (vg- 1)/2, this produces

00 ( 1)k+1f; ~5Ckk) = 2((5) - ~ log(p )5+ ~ log(p )3((2)

( )
2 ( ) ,,( 1 log(p) ) 2n

+4log p (3 + 80 Z:: (2n )5 - (2n)4 p ,
n>O

which, along with previous integer relation exclusion
bounds (see [Bailey and Borwein 2000; Borwein and
Lison v ek 2000], for example) , helps explain why no
'simple' evaluation for A(5) such as those for 8(2) ,
A(3), and 8(4) has ever been found.

• At k == 6 we found the empirical relation

11 {A(6) - ~(2(3)}

== 144L6 (p) - 6
9
4 L6 (p3) + ~ L6 - 2~34 ( ( 6 ),
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which is the simplest of three integer relations be
tween X 6 , L6

, ((6) and the combination A(6) -
~(2(3).

• At k == 7 there are 2 integer relations between X 7 ,

L7
, and ((7). There is no result for A(7) from this

set; presumably A(7) occurs in combination with
some other weight-7 irreducible, of which (2 (3) was
a harbinger, at k == 6.

• At k == 8 there is a single integer relation.

• At k == 9 the ladder terminates with a single inte
ger relation, namely

2791022262((9)

== 15750Lg (p24) + 74277 L g (p20) - 8750000Lg (p12)

- 19014912Lg (plO) - 206671500Lg (p8)

+ 1295616000Lg (p6) - 3180657375Lg (p4)

+ 4907952000Lg (p2) - 52537600Iog
g(p).

This still falls short of the ladder for ((11) found in
[Broadhurst 1998]. The current record is set by the
ladder for ((17) in [Bailey and Broadhurst 1999],.
which extends the weight-16 analysis of Henri Co
hen, Leonard Lewin and Don Zagier [Cohen et al.
1992], in the number field of the Lehmer polynomial
of conjecturally smallest Mahler measure.
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ELECTRONIC AVAILABILITY

See http://www.cecm.sfu.ca/projects/ezface+/ for
some of the code we have used in the investigations
reported here. A CECM interface for more gen
eral integer relation problems is available at http: //
www.cecm.sfu.ca/projects/IntegerRelations/.

NOTE ADDED IN PROOF

Since this paper was accepted we've learned that E.
Remiddi and J. A. M. Vermaseren [2000] studied a
cognate class of polylogarithms. Relations like those
of Theorem 4.2 are also in their paper.
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