
Parallel Computing 75 (2018) 1–10

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Computation of the 100 quadrillionth hexadecimal digit of π
on a cluster of Intel Xeon Phi processors

Daisuke Takahashi

Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan

a r t i c l e i n f o

Article history:

Received 18 December 2016

Revised 5 December 2017

Accepted 16 February 2018

Available online 17 February 2018

Keywords:

BBP-type formula

Modular exponentiation

Cluster of Intel Xeon Phi processors

a b s t r a c t

This paper presents the computation of a specific hexadecimal digit of π by using a Bailey–

Borwein–Plouffe (BBP)-type formula on a cluster of Intel Xeon Phi processors. The BBP-

type formula can be computed using modular exponentiation. We use Montgomery mul-

tiplication for the modular multiplication, which is the most time-consuming part of the

modular exponentiation. We vectorize multiple modular exponentiations and multiple in-

teger divisions by using Intel Advanced Vector Extensions 512 (Intel AVX-512) instructions.

A parallel implementation of the BBP-type formula is presented. The 100 quadrillionth hex-

adecimal digit of π was computed on a 512-node cluster of Intel Xeon Phi processors with

an elapsed time of 641 h 29 min that includes the time required for verification.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many computations of mathematical constants (e.g., π and e) have been performed with high precision [1–4] . Mathe-

matical constants are computed from their series expansion, such as:

π = 16 arctan

1

5

− 4 arctan

1

239

, arctan

1

q
=

∞ ∑

k =0

(−1) k

(2 k + 1) q 2 k +1
. (1)

Brent [5] and Salamin [6] independently discovered an algorithm to compute π . This algorithm has quadratic conver-

gence. Borweins discovered cubic and higher order algorithms for π [7,8] .

In 2009, Bellard computed π up to about 2.7 trillion decimal digits in about 131 days using the following Chudnovsky’s

formula [9] and an Intel Core i7 processor [1] .

1

π
= 12

∞ ∑

k =0

(−1) k (6 k)! (13591409 + 545140134 k)

(3 k)! (k !) 3 640320

3 k +3 / 2
. (2)

In 2013, Yee and Kondo computed π up to 12.1 trillion decimal digits in about 94 days using Chudnovsky’s formula and

dual Intel Xeon E5-2690 processors [3] . In 2016, Trueb computed π up to about 22.4 trillion decimal digits in about 105

days using Yee’s program and quad Intel Xeon E7-8890 v3 processors [4] .

An algorithm for the computation of a specific hexadecimal digit of π was discovered by Bailey, Borwein, and Plouffe

in 1995 (hereafter called the BBP formula) [10,11] . The BBP formula enables computation of a specific bit in π without

computing all the previous bits. PiHex [12] was a distributed computing project that used Bellard’s BBP-type formula to
E-mail address: daisuke@cs.tsukuba.ac.jp

https://doi.org/10.1016/j.parco.2018.02.002

0167-8191/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.parco.2018.02.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/parco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2018.02.002&domain=pdf
mailto:daisuke@cs.tsukuba.ac.jp
https://doi.org/10.1016/j.parco.2018.02.002

2 D. Takahashi / Parallel Computing 75 (2018) 1–10

compute the quadrillionth bit of π . This required 250 CPU-years and used 1734 computers from 56 different countries. Sze

computed the two quadrillionth bit of π in 23 days using Bellard’s formula and a 10 0 0-node cluster [13] . Karrels computed

the ten quadrillionth hexadecimal digit of π in 88 days using 51 machines with GPUs [14] .

Bailey et al. [15] stated that the main motivation for computing and analyzing π and other mathematical constants is

to explore whether and why these sequences are random numbers. Even just storing the values of 100 quadrillion (= 10 17)

hexadecimal digits of π requires a storage capacity of 50 PB. As of November 2017, the total storage capacity of Sunway

TaihuLight [16] , is ranked first in the TOP500 list [17] , is 20 PB. Thus, in order to know the 100 quadrillionth hexadecimal

digit of π , we have no other choice than to compute a few hexadecimal digits of π starting at position 10 17 by using the

BBP-type formula.

The Intel Many Integrated Core Architecture (Intel MIC Architecture) has emerged as an important computational accel-

erator in high-performance computing systems. The Knights Landing processor [18] is the second-generation Intel Xeon Phi

product. To best of our knowledge, an implementation of the BBP-type formula on a cluster of Intel Xeon Phi processors has

not yet been reported. In this paper, we present the use of a BBP-type formula on a cluster of Intel Xeon Phi processors to

compute a specific hexadecimal digit of π .

The remainder of this paper is organized as follows. Section 2 presents the BBP-type formula that we use. Section 3 de-

scribes modular exponentiation and Montgomery multiplication. In Section 4 , we propose an implementation of the

BBP-type formula on a cluster of Intel Xeon Phi processors. The performance results are then presented in Section 5 .

Section 6 presents the computation of the 100 quadrillionth hexadecimal digit of π on a 512-node cluster of Intel Xeon

Phi processors. Finally, Section 7 presents some concluding remarks.

2. BBP-type formula

The BBP formula [10,11] is as follows:

π =

∞ ∑

k =0

1

16

k

(
4

8 k + 1

− 2

8 k + 4

− 1

8 k + 5

− 1

8 k + 6

)
. (3)

Bellard’s formula [19] is approximately 43% faster than the BBP formula, and it is as follows:

π =

1

2

6

∞ ∑

k =0

(−1) k

2

10 k

(
− 2

5

4 k + 1

− 1

4 k + 3

+

2

8

10 k + 1

− 2

6

10 k + 3

− 2

2

10 k + 5

− 2

2

10 k + 7

+

1

10 k + 9

)
. (4)

Consider computing a few hexadecimal digits of π starting at position n + 1 for a positive integer n . Note that this is

equivalent to computing {16 n π}, where { ·} denotes the fractional part [11] .

From Eq. (4) , we have

{ 16

n π} = { −{ 16

n S(4 , 1 , −1) } − { 16

n S(4 , 3 , −6) } + { 16

n S(10 , 1 , 2) } − { 16

n S(10 , 3 , 0) }
−{ 16

n S(10 , 5 , −4) } − { 16

n S(10 , 7 , −4) } + { 16

n S(10 , 9 , −6) } } , (5)

where

S(m, j, l) =

∞ ∑

k =0

(−1) k
2

l

2

10 k (mk + j)
. (6)

We note that

{ 16

n S(m, j, l) } =

{ { � (4 n + l) / 10 � ∑

k =0

(−1) k
2

4 n + l−10 k

mk + j

}

+

∞ ∑

k = � (4 n + l) / 10 � +1

(−1) k
2

4 n + l−10 k

mk + j

}

=

{ { � (4 n + l) / 10 � ∑

k =0

(−1) k
2

4 n + l−10 k mod (mk + j)

mk + j

}

+

∞ ∑

k = � (4 n + l) / 10 � +1

(−1) k
2

4 n + l−10 k

mk + j

}

. (7)

The BBP-type formula requires a bit complexity of O (n log nM (log n)) where M (d) is the complexity of multiplying d -bit

integers [10] .

3. Modular exponentiation and Montgomery multiplication

A key operation of the BBP-type formula is the modular exponentiation 2 4 n + l−10 k mod (mk + j) in the numerator of the

first summation in Eq. (7) . Many algorithms for modular exponentiation have been proposed [20,21] . Algorithm 1 shows the

left-to-right binary modular exponentiation for x = a e mod N [20] . This algorithm consists of the modular squaring x 2 mod N

and the modular multiplication ax mod N. For evaluating the numerator of the first summation in equation (7) , we only

have to consider the case of x = 2 e mod N. In this case, the modular multiplication ax mod N in line 6 of Algorithm 1 can

be replaced by the left shift x � 1 and the conditional subtraction x − N when x ≥ N . Algorithm 2 shows the left-to-right

binary modular exponentiation for x = 2 e mod N. The m -ary method [20,21] and the sliding window method [20] are known

D. Takahashi / Parallel Computing 75 (2018) 1–10 3

Algorithm 1 Left-to-right binary modular exponentiation for x = a e mod N [20] .

Input: a, e, N positive integers

Output: x = a e mod N

1: let (e l e l−1 . . . e 1 e 0) be the binary representationof e , with e l = 1

2: x ← a

3: for i from l − 1 downto 0 do

4: x ← x 2 mod N

5: if e i = 1 then

6: x ← ax mod N

7: return x .

Algorithm 2 Left-to-right binary modular exponentiation for x = 2 e mod N.

Input: e, N positive integers

Output: x = 2 e mod N

1: let (e l e l−1 . . . e 1 e 0) be the binary representationof e , with e l = 1

2: x ← 2

3: for i from l − 1 downto 0 do

4: x ← x 2 mod N

5: if e i = 1 then

6: x ← x � 1

7: if x ≥ N then

8: x ← x − N

9: return x .

Algorithm 3 Montgomery multiplication algorithm [22] .

Input: A, B, N such that 0 ≤ A, B < N, β > N, gcd (β, N) = 1 ,

μ = −N

−1 mod β
Output: C = ABβ−1 mod N such that 0 ≤ C < N

1: C ← AB

2: q ← μC mod β
3: C ← (C + qN) /β
4: if C ≥ N then

5: C ← C − N

6: return C.

to reduce the number of modular multiplications for the modular exponentiation x = a e mod N. However, the number of

modular squaring operations for these methods is equal to that for the left-to-right binary modular exponentiation. Thus,

the left-to-right binary modular exponentiation is sufficiently for computing x = 2 e mod N in Algorithm 2 .

The modular exponentiation 2 4 n + l−10 k mod (mk + j) in the numerator of the first summation in Eq. (7) must be per-

formed exactly. The upper limit of the hexadecimal digit n is determined by (10 � (4 n + 2) / 10 � + 9) 2 < 2 113 when IEEE

754 128-bit floating-point arithmetic is used. In this case, the upper limit of the hexadecimal digit n is � √

2 · 2 54 � − 1 ≈
2 . 55 × 10 16 , and thus it is not sufficiently precise for computing the 100 quadrillionth (= 10 17 th) hexadecimal digit of π .

On the other hand, the upper limit of the hexadecimal digit n is determined by (10 � (4 n + 2) / 10 � + 9) 2 < 2 128 when 64-bit

× 64-bit → 128-bit unsigned integer multiplication is used. In this case, the upper limit of the hexadecimal digit n is

2 62 − 3 ≈ 4 . 61 × 10 18 . Thus, we use the 6 4-bit × 6 4-bit → 128-bit unsigned integer multiplication in the modular expo-

nentiation.

The most time-consuming part in Algorithm 2 is the modular squaring x 2 mod N. It includes modulo operations, which

are slow due to the integer division process. However, Montgomery multiplication [22] , shown as Algorithm 3 , is known to

avoid this. In Montgomery multiplication, it is necessary that gcd (β, N) = 1 . Here, since β is a positive power of two integer

and all denominators of Eq. (4) are odd numbers, we can use Montgomery multiplication in the modular exponentiation.

We note that Sze [13] and Karrels [23] also used Montgomery multiplication for the modular exponentiation when using

Bellard’s formula to compute the two quadrillionth bit of π and the quadrillionth hexadecimal digit of π , respectively.

Let MontgomeryMul (A, B) be the Montgomery multiplication, as in Algorithm 3 . The result of a Montgomery mul-

tiplication MontgomeryMul (A, B) is not AB mod N but rather ABβ−1 mod N [24] . To obtain a correct result at the end

of the modular exponentiation, we need to make a pre-multiplication MontgomeryMul (A, β2) and a post-multiplication

MontgomeryMul (A

e , 1) [24] . The post-multiplication is equivalent to computing A

e β−1 mod N. The modular exponentiation

x = 2 e mod N can be transformed into x = 2 e −log 2 ββ mod N when β is a positive power of two integer. Thus, the post-

multiplication can be avoided by replacing e with e − log β for the modular exponentiation x = 2 e mod N when e > log β .
2 2

4 D. Takahashi / Parallel Computing 75 (2018) 1–10

Algorithm 4 Newton’s method for the modular multiplicative inverse N

−1 mod 2 64 [25] .

Input: N such that 0 < N < 2 64 , 2 � N

Output: μ = N

−1 mod 2 64

1: μ ← { (3 N) � 2 } mod 2 64

2: for i from 1 to 4 do

3: μ ← μ(2 − Nμ) mod 2 64

4: return μ.

Algorithm 5 Modular exponentiation for x = 2 e mod N with Montgomery multiplication on 64-bit processors.

Input: e, N such that 0 < e < 2 64 , 0 < N < 2 63 , 2 � N

Output: x = 2 e mod N

1: if e < 65 then

2: x ← 2 e mod N

3: return x

4: e ← e − 64

5: let (e l e l−1 . . . e 1 e 0) be the binary representationof e , with e l = 1

6: x ← 2 65 mod N

7: for i from l − 1 downto 0 do

8: x ← MontgomeryMul (x, x)

9: if e i = 1 then

10: x ← x � 1

11: if x ≥ N then

12: x ← x − N

13: return x .

In Algorithm 3 , the modular multiplicative inverse μ = −N

−1 mod β is precomputed. Although the modular multiplica-

tive inverse can be computed by the extended Euclidean algorithm, Newton’s method is more efficient when β is a power

of two [20,25] . Algorithm 4 shows Newton’s method for the modular multiplicative inverse N

−1 mod 2 64 [25] . Here, (3 N) �2

is the correct multiplicative inverse modulo 2 5 (5 bits) [25] , where � denotes the exclusive or operation. Since Newton’s

method has quadratic convergence, four iterations are sufficient to obtain N

−1 mod 2 64 . Algorithm 5 shows the modular

exponentiation for x = 2 e mod N with the Montgomery multiplication on 64-bit processors.

4. Implementation of the BBP-type formula on a cluster of Intel Xeon Phi processors

Montgomery multiplication algorithms using vector instructions have been proposed [26,27] . Another approach is to use

the SIMD instructions to compute multiple Montgomery multiplications in parallel [27] . We vectorized the multiple Mont-

gomery squaring operations with Intel Advanced Vector Extensions 512 (Intel AVX-512) instructions [28] . In this scheme,

multiple numerators in the first summation of equation (7) can be computed in parallel.

Although the x86_64 mulq instruction performs the 64-bit × 64-bit → 128-bit unsigned integer multiplication, the

Intel AVX-512 instruction set only supports vpmuludq instruction, which performs 32-bit × 32-bit → 64-bit unsigned

integer multiplication. Thus, we use the radix- β interleaved Montgomery multiplication algorithm [22,27] , which is shown

as Algorithm 6 . In the radix-2 32 interleaved Montgomery multiplication, there is some overflow in the 64-bit unsigned

Algorithm 6 The radix- β interleaved Montgomery multiplication algorithm [22,27] .

Input: A, B, N, μ such that A =

∑ m −1
i =0 a i β

i , 0 ≤ a i < β, 0 ≤ A, B < N,

βm −1 ≤ N < βm , gcd (β, N) = 1 , μ = −N

−1 mod β
Output: C = ABβ−m mod N such that 0 ≤ C < N

1: C ← 0

2: for i from 0 to m − 1 do

3: C ← C + a i B

4: q ← μC mod β
5: C ← (C + qN) /β
6: if C ≥ N then

7: C ← C − N

8: return C.

integer addition. There are no carry bits for the 512-bit wide SIMD registers (ZMM0–ZMM31) on the Intel AVX-512 [28] .

Although it is possible to detect the overflow by using branches, there will be performance degradation on processors that

D. Takahashi / Parallel Computing 75 (2018) 1–10 5

void vsqrmod(uint64_t *c, uint64_t *a, uint64_t *N, uint32_t *mu)
/* Compute c[:] = (a[:] * a[:] * 2^-62) mod N[:].

We need mu[:] = -N[:]^-1 mod 2^31. */
{

uint64_t t0, t1, t2;
uint32_t a0, a1, N0, N1, q;
int i;

#pragma ivdep
#pragma vector aligned

for (i = 0; i < VLEN; i++) {
a0 = a[i] & 0x7FFFFFFF;
a1 = a[i] >> 31;
N0 = N[i] & 0x7FFFFFFF;
N1 = N[i] >> 31;
t0 = (uint64_t) a0 * a0;
t1 = (uint64_t) a0 * a1;
t2 = (uint64_t) a1 * a1;
q = ((uint32_t) t0 * mu[i]) & 0x7FFFFFFF;
t0 = ((t0 + (uint64_t) q * N0) >> 31) + (t1 + (uint64_t) q * N1);
t1 += t0 & 0x7FFFFFFF;
t2 += t0 >> 31;
q = ((uint32_t) t1 * mu[i]) & 0x7FFFFFFF;
t1 = ((t1 + (uint64_t) q * N0) >> 31) + (t2 + (uint64_t) q * N1);
c[i] = min(t1, t1 - N[i]);

}
}

Fig. 1. Vectorized multiple Montgomery squaring operations of 62-bit integers.

have SIMD instructions. Thus, we use the radix β = 2 31 of Algorithm 6 to avoid overflow. In this case, the upper limit of the

hexadecimal digit n is 2 60 − 2 ≈ 1 . 15 × 10 18 .

In lines 6 and 7 of Algorithm 6 , the performance is also degraded by the conditional subtraction C − N when C ≥ N .

For multiple Montgomery multiplications, such conditional subtractions can be vectorized with Intel AVX-512 vmovups ,
vpcmpuq , vmovdqu64 , and vpsubq instructions by the Intel C Compiler. On the other hand, min/max operations are ef-

fective for avoiding branches. The conditional subtraction can be replaced by the operation min (C, C − N) for 64-bit unsigned

integer values C and N with the wrap-around two’s complement arithmetic. Although the Intel Advanced Vector Extensions

2 (AVX2) instruction set [29] does not support the min instruction for 64-bit unsigned integers, the Intel AVX-512 instruc-

tion set supports the vpminuq instruction for 64-bit unsigned integers. This scheme is faster than conditional subtraction

on Intel Xeon Phi processors.

Fig. 1 shows the vectorized multiple Montgomery squaring operations for 62-bit integers. This corresponds to A = B, β =
2 31 , and m = 2 in Algorithm 6 . In Fig. 1 , #pragma ivdep instructs the compiler to ignore assumed vector dependencies,

and #pragma vector aligned instructs the compiler to use aligned data movement instructions for all array references

when vectorizing. The performance of the vectorized multiple Montgomery squaring operations in Fig. 1 depends on the

vector length. According to preliminary experimental results, the vector length VLEN in Fig. 1 is determined to be equal to

40 on Intel Xeon Phi processors. In this case, the vectorized multiple Montgomery squaring operations can be performed

by using only the 512-bit wide SIMD registers except for memory access for input/output arrays. The vectorized multiple

Montgomery squaring operations can be further optimized using the Intel AVX-512 intrinsic functions [30] .

When vectorizing multiple modular exponentiations for x = 2 e mod N, multiple modulo operations in line 6 of

Algorithm 5 can be vectorized using the _mm512_rem_epu64() intrinsic function in the Short Vector Math Library

(SVML) [30] . The number of iterations l in line 7 of Algorithm 5 may be different for multiple exponents, such as

e = (e l e l−1 . . . e 1 e 0) 2 . The exponent 4 n + l − 10 k of the modular exponentiation in equation (7) monotonically decreases.

Thus, if the number of iterations l for the first element of the exponent vector is greater than that for the last element

of the exponent vector, the scalar version of the modular exponentiation is performed. Since the number of calls for the

scalar version for the n th hexadecimal digit of π is O (log n) at most, the overhead for scalar processing is almost negligible.

In lines 9 and 10 of Algorithm 5 , the statement “if e i = 1 then x ← x � 1” degrades the performance because it introduces

a branch. However, because e i is 0 or 1, this branch can be omitted by performing the left shift x ← x � e i . Such multiple

left shifts can be vectorized with Intel AVX-512 vpsllvq instruction by the Intel C Compiler. Also, in lines 11 and 12 of

Algorithm 5 , the conditional subtraction x − N when x ≥ N can be replaced by the operation min (x, x − N) , similar to what

was done for the vectorized multiple Montgomery squaring operations shown in Fig. 1 .

The range of the absolute value of each fraction in equation (7) is [0, 1). Thus, the division and summation of equa-

tion (7) can be performed by using fixed-point arithmetic. In our implementation, we used 128-bit unsigned fixed-point

6 D. Takahashi / Parallel Computing 75 (2018) 1–10

Algorithm 7 192-bit by 64-bit unsigned integer division based on the exact division algorithm.

Input: x, N, r, μ such that 0 ≤ x < N, 0 < N < 2 64 , 2 � N,

r = (2 128 · x) mod N, μ = N

−1 mod 2 64

Output: q = � (2 128 · x) /N�
1: if r = 0 then

2: return 0

3: q 0 ← (−r · μ) mod 2 64

4: q 1 ← [{ (2 64 − 1) − umulh (N, q 0) } · μ] mod 2 64

5: q ← q 1 · 2 64 + q 0
6: return q .

arithmetic. According to the Q format [31] , a UQ128 number has 128 fractional bits, and its range is [0 , 1 − 2 −128] . UQ128

fixed-point arithmetic can be implemented using 128-bit unsigned integer arithmetic. Both GCC [32] and Clang [33] pro-

vide the __uint128_t extension for 128-bit unsigned integer arithmetic. Although the Intel C compiler also supports

the __uint128_t extension, a statement which contains the __uint128_t variables cannot be automatically vector-

ized. Thus, the summation of Eq. (7) is only performed with scalar processing. For negative values, we can use the two’s

complement representation. In this scheme, neither floating-point arithmetic nor the extraction of the fractional part of a

floating-point number is necessary. Also, it is not necessary to convert between the fraction and its hexadecimal form [10] .

Furthermore, when using 128-bit unsigned fixed-point arithmetic, the result does not depend on the computation order.

With Bellard’s formula, it correctly yields the first 25 hexadecimal digits for the ten quadrillionth hexadecimal digit of π .

For evaluating Eq. (7) with 128-bit unsigned fixed-point arithmetic, we need to compute 192-bit by 64-bit unsigned

integer division � (2 128 · x)/ N � , where x = 2 e mod N, and e , and N are positive integers such that 0 < N < 2 64 . Since the x86_64

divq instruction performs 128-bit by 64-bit unsigned integer division, the 192-bit by 64-bit unsigned integer division can

be implemented by the x86_64 divq instruction twice. However, the x86_64 divq instruction is a slow operation, and the

Intel AVX-512 instruction set does not support 128-bit by 64-bit unsigned integer division. Although Karrels used Newton’s

method for 192-bit by 64-bit integer division, the division and summation of Eq. (7) dominated 24% of the runtime for the

quadrillionth hexadecimal digit of π [23] .

If we know the remainder (2 128 · x) mod N in advance, we can use the exact division algorithm [34] for the 192-bit by

64-bit unsigned integer division. This remainder can be easily computed by replacing e with e + 128 for x = 2 e mod N. Since

the value of e is 4 n + l − 10 k in Eq. (7) , the additional cost for precomputing (2 128 · x) mod N is almost negligible when e

is sufficiently large. Algorithm 7 shows 192-bit by 64-bit unsigned integer division based on the exact division algorithm.

In Algorithm 7 , the modular multiplicative inverse μ = N

−1 mod 2 64 is precomputed. The modular multiplicative inverse

can be computed by using Algorithm 4 . In Algorithm 7 , the function umulh returns the upper 64-bit half of the 64-bit ×
64-bit → 128-bit unsigned integer multiplication. Multiple 192-bit by 64-bit unsigned integer divisions based on the exact

division algorithm can be vectorized by using the Intel AVX-512 instructions. The 128-bit quotient of the 192-bit by 64-bit

unsigned integer division is stored in a __uint128_t datatype variable. By using this scheme, the division and summation

of Eq. (7) dominate only about 7% of the runtime for the quadrillionth hexadecimal digit of π . On the other hand, the

modular exponentiation in the numerator of the first summation in Eq. (7) dominates about 92% of the runtime for the

quadrillionth hexadecimal digit of π .

The BBP-type formula is embarrassingly parallel except for the final summation of results. Thus, it can be easily paral-

lelized by using both OpenMP and MPI. By using the OpenMP schedule(guided) clause for main loop scheduling, the

chunk sizes are initially large, and they then decrease in order to better handle load imbalances between iterations. The

partial sum of each MPI process is computed using the OpenMP reduction clause. The total sum is then computed using

the MPI reduce operation in a block-cyclic distribution.

5. Performance results

In order to evaluate the implemented parallel computation of a specific hexadecimal digit of π , we measured both the

single-node performance and the multi-node performance. We averaged the elapsed times obtained from 10 executions of

the n th hexadecimal digit of π by using Bellard’s formula.

5.1. Single-node performance

The performance was measured on an Intel Xeon E5-2690 v4, an Intel Xeon Phi 5110P, and an Intel Xeon Phi 7250. Both

scalar and vector versions were implemented. The original programs were written in C with OpenMP. The scalar version uses

the Montgomery squaring routine with x86_64 inline assembly. The vector version uses a routine with multiple Montgomery

squaring operations with the Intel AVX2, Intel Initial Many Core Instructions (Intel IMCI) [35] , and Intel AVX-512 intrinsic

functions on the Intel Xeon E5-2690 v4, the Intel Xeon Phi 5110P, and the Intel Xeon Phi 7250, respectively. The specifications

D. Takahashi / Parallel Computing 75 (2018) 1–10 7

Table 1

Specification of the machines.

Intel Xeon processor Intel Xeon Phi coprocessor Intel Xeon Phi processor

Number of cores 14 60 68

Number of threads 28 240 272

CPU Intel Xeon E5-2690 v4 Broadwell-EP

2.6 GHz

Intel Xeon Phi 5110P Knights Corner

1.053 GHz

Intel Xeon Phi 7250 Knights Landing

1.4 GHz

L1 Cache (per core) I-Cache: 32 KB D-Cache: 32 KB I-Cache: 32 KB D-Cache: 32 KB I-Cache: 32 KB D-Cache: 32 KB

L2 Cache 256 KB (per core) 512 KB (per core) 1 MB (shared between two cores)

L3 Cache (shared) 35 MB N/A N/A

Main Memory DDR4-2400 256 GB GDDR5 8 GB MCDRAM 16 GB + DDR4-2400 96 GB

OS Linux 3.10.0–327.36.3. el7.x86_64 Linux 2.6.38.8 + mpss3.6 Linux 3.10.0–327.22.2.el7.

xppsl_1.4.1.3272.x86_64

C compiler Intel C Compiler Version 17.0.1.132 Intel C Compiler Version 17.0.1.132 Intel C Compiler Version 17.0.1.132

Table 2

Execution time to compute the 10 8 th hexadecimal digit of π .

Theoretical peak performance Time

FP64 FP32 INT32 vector scalar

(TFlops) (TFlops) (Tops) (sec) (sec)

Intel Xeon E5-2690 v4 0.582 1.165 0.582 1.251 2.031

Intel Xeon Phi 5150P 1.011 2.022 1.011 2.224 8.690

Intel Xeon Phi 7250 3.046 6.093 3.046 0.344 1.707

NVIDIA GeForce GTX 680 0.129 3.090 0.515 1.57 [23]

for these three platforms are shown in Table 1 . We note that Hyper-Threading [36] was enabled on each of these three

platforms.

For the Intel Xeon E5-2690 v4, the Intel Xeon Phi 5110P, and the Intel Xeon Phi 7250, the compiler options were icc
-O3 -xHOST -qopenmp , icc -O3 -mmic -qopenmp , and icc -O3 -xMIC-AVX512 -qopenmp , respectively. The

compiler option -O3 specifies to optimize for maximum speed and enable more aggressive optimizations, and -xHOST
specifies to generate instructions for the highest instruction set and processor available on the compilation host machine.

The compiler option -mmic specifies to build an application that runs natively on Intel MIC Architecture. The compiler op-

tion -xMIC-AVX512 specifies to generate Intel AVX-512 Foundation instructions, Intel AVX-512 Conflict Detection instruc-

tions, Intel AVX-512 Exponential and Reciprocal instructions, and Intel AVX-512 Prefetch instructions. The compiler option

-qopenmp specifies to enable the compiler to generate multi-threaded code based on the OpenMP directives. The exe-

cutions on the Intel Xeon Phi 5110P were performed in “native mode”. The executions on the Intel Xeon Phi 7250 were

performed in “flat mode” and “quadrant mode”. On the Intel Xeon Phi 5110P and the Intel Xeon Phi 7250, the environment

variable KMP_AFFINITY = granularity = fine,balanced was specified.

Table 2 lists the single-node execution time required to compute the 10 8 th hexadecimal digit of π on the Intel Xeon E5-

2690 v4, the Intel Xeon Phi 5150P, the Intel Xeon Phi 7250, and Karrels’s result using the NVIDIA GeForce GTX 680 [23] . We

note that the theoretical peak INT32 performances in Table 2 are based on the multiply-add operation for 32-bit integers.

The theoretical peak performance of the Intel Xeon Phi 7250 is about 3.01 times faster than that of the Intel Xeon

Phi 5150P. With the Intel Xeon Phi 5150P, the Intel IMCI does not support the Intel AVX-512 vpaddq instruction for the

64-bit integer addition or the vpmuludq instruction for the 32-bit × 32-bit → 64-bit unsigned integer multiplication.

The Intel C Compiler can vectorize the 64-bit integer addition with the IMCI vpadcd and vpaddsetcd instructions. We

implemented a wrapper function for the 32-bit × 32-bit → 64-bit unsigned integer multiplication by using the Intel IMCI

_mm512_mulhi_epu32() , _mm512_mullo_epi32() , and _mm512_mask_shuffle_epi32() intrinsic functions. This

is why the Intel Xeon Phi 7250 (vector version) is about 6.47 times faster than the Intel Xeon Phi 5150P (vector version).

Since the scalar version uses the x86_64 mulq instruction, which performs the 64-bit × 64-bit → 128-bit unsigned integer

multiplication for the Montgomery squaring, it has an advantage in that there is no need to use the interleaved Montgomery

multiplication in Algorithm 6 . Nevertheless, on the Intel Xeon Phi 7250, the vector version is about 4.96 times faster than

the scalar version.

Fig. 2 shows the speedup for computing the n th hexadecimal digit of π (vector version) on the Intel Xeon Phi 7250 when

from 1 to 272 threads are used. We note that the Intel Xeon Phi 7250 has 68 cores. The results indicate that hyper-threading

is effective for n ≥ 10 8 .

5.2. Multi-node performance

The performance was measured on the Fujitsu PRIMERGY CX1640 M1 cluster at the Joint Center for Advanced High

Performance Computing (JCAHPC), which the University of Tokyo and University of Tsukuba jointly operate. The original

program was written in C with OpenMP and MPI. We used the vector version described in Section 5.1 . The specification

8 D. Takahashi / Parallel Computing 75 (2018) 1–10

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

S
pe

ed
up

Number of threads

n = 10^7
n = 10^8
n = 10^9

Fig. 2. Speedup for computing the n th hexadecimal digit of π (vector version) on the Intel Xeon Phi 7250.

Table 3

Specification of the Fujitsu PRIMERGY CX1640 M1 cluster.

Number of nodes 8208

CPU Intel Xeon Phi 7250 (68-core, 1.4 GHz)

Main memory MCDRAM 16 GB + DDR4-2400 96 GB

Theoretical peak performance 25.004 PFlops

Total main memory size 897.75 TB

Interconnect Intel Omni-Path Architecture

Network topology Fat-tree

OS Linux 3.10.0–327.22.2.el7.xppsl_1.4.1.3272.x86_64

C compiler Intel C Compiler Version 17.0.1.132

MPI library Intel MPI 5.1.3.258

of the Fujitsu PRIMERGY CX1640 M1 cluster is shown in Table 3 . The experiments used from 1 to 512 nodes. The compiler

options were specified as mpiicc -O3 -xMIC-AVX512 -qopenmp . The executions on the Intel Xeon Phi 7250 were

performed using “flat mode” and “quadrant mode”. With the Intel Xeon Phi 7250 cluster, each processor has 1 MPI process,

and 268 threads per processor were used. The environment variable KMP_AFFINITY = granularity = fine,balanced
was specified.

Fig. 3 shows the average execution time required to compute the n -th hexadecimal digit of π on the Fujitsu PRIMERGY

CX1640 M1 cluster. For n = 10 9 on 512 nodes, the parallelization overhead dominates the execution time, as shown in

Fig. 3 . On the other hand, we can see that the speedup of the parallel implementation is nearly linear for n = 10 11 on 512

nodes.

6. The computation of the 100 quadrillionth hexadecimal digit of π

We have computed the 100 quadrillionth (= 10 17 th) hexadecimal digit of π by using Bellard’s formula on the Fu-

jitsu PRIMERGY CX1640 M1 cluster at the Joint Center for Advanced High Performance Computing (JCAHPC). The com-

putation was performed during the test operation period. The main run and the verification run were each performed

on 512 nodes. Due to the runtime limit for jobs, the main run and the verification run were each performed as 200

separate jobs. The elapsed times of the main run and the verification run were 320 h 31 min and 320 h 57 min,

respectively.

The main run computed 32 hexadecimal digits of π starting at position 10 17 , and the verification run computed 32 hex-

adecimal digits of π starting at position 10 17 − 1 . A comparison of these results showed that the hexadecimal digits of π
from the 10 17 th to the 10 17 + 22 nd digits were consistent. Table 4 shows the computed hexadecimal digits of π . Computa-

tion of the ten quadrillionth (= 10 16 th) hexadecimal digit of π by Karrels [14,37] has been verified with our computed 25

hexadecimal digits of π starting at position 10 16 .

D. Takahashi / Parallel Computing 75 (2018) 1–10 9

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256 512

T
im

e
(s

ec
)

Number of MPI processes

n=10^9
n=10^10
n=10^11

Fig. 3. Execution time for computing the n th hexadecimal digit of π on the Fujitsu PRIMERGY CX1640 M1 cluster.

Table 4

Computed hexadecimal digits of π .

Position Hexadecimal digits starting at this position

10 6 26C65E52CB459350050E4BB17
10 7 17AF5863EFED8DE97033CD0F6
10 8 ECB840E21926EC5AE0D2F3405
10 9 85895585A0428B564084E74A2
10 10 921C73C6838FB2B6223630F51
10 11 C9C381872D27596F81D0E48B9
10 12 5B4466E8D215388C4E014CEC5
10 13 A0F9FF371D17593E0D06D5892
10 14 0D39BABA1B8FED53DD5F8BDE8
10 15 [14] 8353CB3F7F0C9ACCFA9AA215F
10 16 9077E0164B9C613FD6C7F170C
10 17 A937EB59439E485E

7. Conclusion

This paper presented the use of a BBP-type formula on a cluster of Intel Xeon Phi processors to compute a specific hex-

adecimal digit of π . The BBP-type formula can be computed using modular exponentiation. We used Montgomery multipli-

cation for the modular multiplication, which is the most time-consuming part of the modular exponentiation. We vectorized

the multiple modular exponentiations and the multiple integer divisions by using the Intel AVX-512 instructions. The paral-

lel implementation of the BBP-type formula was presented. The 100 quadrillionth hexadecimal digit of π was computed on

a 512-node cluster of Intel Xeon Phi processors with an elapsed time of 641 h 29 min that includes the time required for

verification.

Acknowledgment

This research was conducted using the Fujitsu PRIMERGY CX1640 M1 cluster (Oakforest-PACS) in the Joint Center for

Advanced High Performance Computing (JCAHPC). This research was partially supported by JSPS KAKENHI Grant Number

JP16K00168.

References

[1] F. Bellard, Computation of 2700 billion decimal digits of pi using a desktop computer, 2010, http://bellard.org/pi/pi2700e9/pipcrecord.pdf .

[2] D. Takahashi , Parallel implementation of multiple-precision arithmetic and 2,576,980,370,0 0 0 decimal digits of π calculation, Parallel Comput. 36

(2010) 439–448 .
[3] A.J. Yee, S. Kondo, 12.1 trillion digits of pi, 2013, http://www.numberworld.org/miscruns/pi-12t/ .

[4] P. Trueb, π e trillion digit of π , 2016, http://www.pi2e.ch/ .
[5] R.P. Brent , Fast multiple-precision evaluation of elementary functions, J. ACM 23 (1976) 242–251 .

[6] E. Salamin , Computation of π using arithmetic-geometric mean, Math. Comput. 30 (1976) 565–570 .
[7] J.M. Borwein , P.B. Borwein , Cubic and higher order algorithms for π , Can. Math. Bull. 27 (1984) 436–443 .

http://bellard.org/pi/pi2700e9/pipcrecord.pdf
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0001
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0001
http://www.numberworld.org/miscruns/pi-12t/
http://www.pi2e.ch/
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0002
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0003
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0004
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0004

10 D. Takahashi / Parallel Computing 75 (2018) 1–10

[8] J.M. Borwein , P.B. Borwein , Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, John Wiley & Sons, 1987 .
[9] D.V. Chudnovsky , G.V. Chudnovsky , Approximations and complex multiplication according to Ramanujan, Ramanujan Revisited, Academic Press, 1988 .

375–396 and 468–472
[10] D. Bailey , P. Borwein , S. Plouffe , On the rapid computation of various polylogarithmic constants, Math. Comput. 66 (1997) 903–913 .

[11] D.H. Bailey, The BBP algorithm for pi, 2006, http://www.davidhbailey.com/dhbpapers/bbp-alg.pdf .
[12] C. Percival, PiHex A distributed effort to calculate Pi, 20 0 0, http://wayback.cecm.sfu.ca/projects/pihex/ .

[13] T.-W. Sze , The two quadrillionth bit of pi is 0! distributed computation of pi with Apache Hadoop, in: Proc. 2010 IEEE Second International Conference

on Cloud Computing Technology and Science (CloudCom 2010), 2010, pp. 727–732 .
[14] E. Karrels, Computing digits of π with CUDA, 2017, http://www.karrels.org/pi/ .

[15] D.H. Bailey , J.M. Borwein , A. Mattingly , G. Wightwick , The computation of previously inaccessible digits of π2 and catalan’s constant, Not. Am. Math.
Soc. 60 (2013) 844–854 .

[16] H. Fu , J. Liao , J. Yang , L. Wang , Z. Song , X. Huang , C. Yang , W. Xue , F. Liu , F. Qiao , W. Zhao , X. Yin , C. Hou , C. Zhang , W. Ge , J. Zhang , Y. Wang , C. Zhou ,
G. Yang , The sunway taihulight supercomputer: system and applications, Sci. China Inform. Sci. 59 (2016) 072001:1–072001:16 .

[17] TOP500 Supercomputer Sites, http://www.top500.org/ .
[18] A. Sodani , R. Gramunt , J. Corbal , H.-S. Kim , K. Vinod , S. Chinthamani , S. Hutsell , R. Agarwal , Y.-C. Liu , Knights landing: second-generation intel xeon

phi product, IEEE Micro. 36 (2016) 34–46 .

[19] F. Bellard, A new formula to compute the n’th binary digit of pi, 1997, http://bellard.org/pi/pi _ bin.pdf .
[20] R. Brent , P. Zimmermann , Modern Computer Arithmetic, Cambridge University Press, 2010 .

[21] D.E. Knuth , The Art of Computer Programming, Volume 2: Seminumerical Algorithms, third ed., Addison-Wesley, 1997 .
[22] P.L. Montgomery , Modular multiplication without trial division, Math. Comput. 44 (1985) 519–521 .

[23] E. Karrels, Computing the quadrillionth digit of π , 2013, http://on-demand.gputechconf.com/gtc/2013/presentations/S3071-Computing-the-
Quadrillionth- Digit- of- Pi.pdf .

[24] G. Hachez , J.-J. Quisquater , Montgomery exponentiation with no final subtractions: Improved results, in: Proc. Second International Workshop on

Cryptographic Hardware and Embedded Systems (CHES 20 0 0), in: Lecture Notes in Computer Science, 1965, Springer-Verlag, 20 0 0, pp. 293–301 .
[25] E.W. Mayer, Efficient long division via montgomery multiply, Comput. Res. Reposito. (2016) . abs/1303.0328. http://arxiv.org/abs/1303.0328v6 .

[26] S. Gueron , V. Krasnov , Software implementation of modular exponentiation, using advanced vector instructions architectures, in: Proc. 4th International
Workshop on the Arithmetic of Finite Fields (WAIFI 2012), in: Lecture Notes in Computer Science, 7369, Springer-Verlag, 2012, pp. 119–135 .

[27] J.W. Bos , P.L. Montgomery , D. Shumow , G.M. Zaverucha , Montgomery multiplication using vector instructions, in: Proc. Selected Areas in Cryptography
2013 (SAC 2013), in: Lecture Notes in Computer Science, 8282, Springer-Verlag, 2014, pp. 471–489 .

[28] Intel Corporation, Intel architecture instruction set extensions programming reference, 2016a, https://software.intel.com/sites/default/files/managed/26/

40/319433-026.pdf .
[29] Intel Corporation, Intel 64 and IA-32 architectures software developer’s manual, volume 1: Basic architecture, 2016b, http://www.intel.com/content/

dam/www/public/us/en/documents/manuals/64- ia- 32- architectures-software-developer-vol-1-manual.pdf .
[30] Intel Corporation, Intel C ++ compiler 17.0 developer guide and reference, 2016c, https://software.intel.com/en-us/intel-cplusplus-compiler-17.

0- user- and- reference- guide- pdf .
[31] Texas Instruments Incorporated, TMS320C64x DSP library programmer’s reference, 2003, http://www.ti.com/lit/ug/spru565b/spru565b.pdf .

[32] Free Software Foundation, Inc., GCC, the GNU Compiler Collection, https://gcc.gnu.org/ .

[33] The Clang Team, clang: a C language family frontend for LLVM, http://clang.llvm.org/ .
[34] T. Jebelean , An algorithm for exact division, J. Symb. Comput. 15 (1993) 169–180 .

[35] Intel Corporation, Intel Xeon Phi coprocessor instruction set architecture reference manual, 2012, https://software.intel.com/sites/default/files/forum/
278102/327364001en.pdf .

[36] D.T. Marr , F. Binns , D.L. Hill , G. Hinton , D.A . Koufaty , J.A . Miller , M. Upton , Hyper-threading technology architecture and microarchitecture, Intel Technol.
J. 6 (2002) 1–11 .

[37] A. Bellos, Pi day 2015: a sweet treat for maths fans, 2015, https://www.theguardian.com/science/2015/mar/13/pi- day- celebration- maths-

fans- language- memory- contests .

http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0005
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0006
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0007
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0007
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0007
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0007
http://www.davidhbailey.com/dhbpapers/bbp-alg.pdf
http://wayback.cecm.sfu.ca/projects/pihex/
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0008
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0008
http://www.karrels.org/pi/
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0009
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0009
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0009
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0009
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0009
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0010
http://www.top500.org/
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0011
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0011
http://bellard.org/pi/pi_bin.pdf
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0012
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0013
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0013
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0014
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0014
http://on-demand.gputechconf.com/gtc/2013/presentations/S3071-Computing-the-Quadrillionth-Digit-of-Pi.pdf
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0015
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0015
http://arxiv.org/abs/1303.0328v6
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0017
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0017
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0017
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0018
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0018
https://software.intel.com/sites/default/files/managed/26/40/319433-026.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf
https://software.intel.com/en-us/intel-cplusplus-compiler-17.0-user-and-reference-guide-pdf
http://www.ti.com/lit/ug/spru565b/spru565b.pdf
https://gcc.gnu.org/
http://clang.llvm.org/
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0019
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0019
https://software.intel.com/sites/default/files/forum/278102/327364001en.pdf
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0020
http://refhub.elsevier.com/S0167-8191(18)30033-4/sbref0020
https://www.theguardian.com/science/2015/mar/13/pi-day-celebration-maths-fans-language-memory-contests

	Computation of the 100 quadrillionth hexadecimal digit of π on a cluster of Intel Xeon Phi processors
	1 Introduction
	2 BBP-type formula
	3 Modular exponentiation and Montgomery multiplication
	4 Implementation of the BBP-type formula on a cluster of Intel Xeon Phi processors
	5 Performance results
	5.1 Single-node performance
	5.2 Multi-node performance

	6 The computation of the 100 quadrillionth hexadecimal digit of π
	7 Conclusion
	 Acknowledgment
	 References

