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EVEN LATIN SQUARES OF ORDER 10

CAROLIN HANNUSCH AND ROLAND S. MAJOR

Abstract. The Alon-Tarsi Conjecture says that the number of
even latin squares of even order is not equal to the number of odd
latin squares of the same order. The conjecture is known to be
true for n ≤ 8 and for all n = 2r · p, where p is prime. In the
current paper we show that the number of even latin squares is
greater than the number of odd latin squares for n = 10.

1. Introduction and Notation

Let n ∈ N, we denote the number of all latin squares of order n by
L(n), the number of even latin squares of order n by Els(n) and the
number of odd latin squares of order n by Ols(n).

Alon and Tarsi [4] conjectured that Els(n) 6= Ols(n) for all even n.
Drisko [6] proved that Els(n) 6= Ols(n), when n = p·2r for any prime p.
Further, it is known that Els(n) > Ols(n) for n ∈ {2, 4, 6, 8} ([1], [2]).
It is clear that L(n) = Els(n) + Ols(n) for all n ∈ N. In the current
paper, we show that Els(10) > 1

2
L(10) and thus Els(10) > Ols(10).

The number of latin squares is known for n ∈ {1, . . . , 11} (A002860
in OEIS [3] ) The number of even latin squares and odd latin squares
are known for n ∈ {1, . . . , 8} (A114628 and A114629 in OEIS [1],[2])

Remark 1. It is known that Els(n) = Ols(n) for odd n (see e.g. [7])
thus

Els(9) = Ols(9) =
1

2
L(9) = 2762375748078446421265612800

and

Els(11) = Ols(11) =
1

2
L(11) =

388483418085885072053722173367115341155532800000.

Definition 1. A latin square of order n is a table of n rows and n
columns, each of them having the entries {1, . . . , n}, none of them hav-
ing an entry twice. A latin square is called symmetric, if its rows
coincide with its columns. A latin square is called reduced symmetric,
if it is symmetric and its first row and first column are (1, 2, . . . , n).

1

http://arxiv.org/abs/2012.15257v1


2 CAROLIN HANNUSCH AND ROLAND S. MAJOR

We denote the number of symmetric latin squares of order n by S(n)
and the number of reduced symmetric latin squares of order n by R(n).
Then we know [9] that S(n) = n! · R(n).

Definition 2. Given a latin square Λ, we can consider its rows and
columns as permutations on the set {1, . . . , n}. We denote the row per-
mutations by σ1, . . . , σn and the column permutations by τ1, . . . , τn. A
permutation is called even, if the number of its inversions is even, oth-
erwise it is called odd. For more details on permutations see for exam-
ple [8].

Λ τ1 τ2 . . . τn

σ1 . . .
σ2 . . .
...

...
σn . . .

Definition 3. A latin square Λ is called even, if
∏n

i=1
σi · τi is even.

Otherwise, Λ is called odd.

Lemma 1. Let Λ be a symmetric latin square. Then Λ is even.

Proof. Since Λ is symmetric, we have σi = τi for each i ∈ {1, . . . , n}.
Thus

∏n

i=1
σ2
i contains an even number of odd permutations, i.e. the

product itself is even. �

2. Transformations

Let Λ be a reduced symmetric latin square of order 10. Then by
Lemma 1 Λ is even. Our main goal is to find transformations on Λ
which keep the parity, but do not keep reduced symmetry.

Lemma 2. Let Λ be an even latin square of even order n. Then a latin
square gained by any permutation of rows and/or columns of Λ is also
even.

Proof. Let ω be a permutation of the columns of Λ. We denote the
latin square gained by ω as Λ∗ and its row and column permutations by
σ∗

1, . . . , σ
∗

n and τ ∗1 , . . . , τ
∗

n respectively. It is clear that
∏n

i=1
τi =

∏n

i=1
τ ∗i .

Although ω is moving different symbols in each row, its parity is the
same. If ω is an odd permutation and σi is even, then σ∗

i is odd. If σi is
odd, then σ∗

i is even. If ω is even, then the parity of σi does not change.
Since n is even we have that the parity of

∏n

i=1
σi equals the parity of∏n

i=1
σ∗

i . The proof is similar if ω is a permutation of the rows. �
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Remark 2. The number of all permutations of rows and columns in a
latin square of order n is (n!)2.

Lemma 3. Let Λ be a reduced symmetric latin square. Then there
exists a row permutation σi which contains a transposition (1, i).

Proof. We denote the nodes of Λ by Λ(i, j) for i, j ∈ {1, . . . , n}.
Let Λ be a reduced symmetric latin square. We assume indirectly

that there is no transposition containing 1. Since Λ(1, 1) = 1 the non
existence of such a transposition means that there is no other index i,
such that Λ(i, i) = 1. Since Λ is symmetric, we have Λ(i, j) = 1 implies
Λ(j, i) = 1 for any i, j ∈ {2, . . . , n}. Thus we have an even number +1
of 1-s in Λ. But Λ is a latin square, therefore for even n there is an even
number of 1-s in Λ, which is a contradiction. Thus there exists at least
one i 6= 1, such that Λ(i, i) = 1 and thus σi contains the transposition
(1, i). �

We define a map χ : Λ 7→ Λ∗ in the following way: Choose the row
permutation containing a transposition (1, i). Then we fix 1 and i in
the 1st and ith row and interchange all other elements of the affected
two rows, i.e. we switch the two affected rows except for the elements
{1, i}. We demonstrate the map χ in the picture below.

Λ

1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 1

3 4 5 6 7 8 9 10 1 2

4 5 6 7 8 9 10 1 2 3

5 6 7 8 9 10 1 2 3 4

6 7 8 9 10 1 2 3 4 5 7→

7 8 9 10 1 2 3 4 5 6

8 9 10 1 2 3 4 5 6 7

9 10 1 2 3 4 5 6 7 8

10 1 2 3 4 5 6 7 8 9

Λ∗

1 7 8 9 10 6 2 3 4 5

2 3 4 5 6 7 8 9 10 1

3 4 5 6 7 8 9 10 1 2

4 5 6 7 8 9 10 1 2 3

5 6 7 8 9 10 1 2 3 4

6 2 3 4 5 1 7 8 9 10

7 8 9 10 1 2 3 4 5 6

8 9 10 1 2 3 4 5 6 7

9 10 1 2 3 4 5 6 7 8

10 1 2 3 4 5 6 7 8 9

Lemma 4. Let Λ be a reduced symmetric latin square. Then χ(Λ) is
not reduced symmetric.

Proof. Since the first row of Λ is 1, 2, . . . , i, . . . , n we have in χ(Λ) only
1 and i at their natural place (place in natural order), all other n − 2
numbers are not at their natural place. �

Lemma 5. For any reduced symmetric latin square Λ of order 10 we
have that χ(Λ) is even.

Proof. We denote the row and column permutations of Λ∗ by σ∗

1 , . . . , σ
∗

10

and τ ∗, . . . , τ ∗10 respectively. We have σ∗

j = σj for all j 6= 1, j 6= i.
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Since 10 = 2 · 5, we know that σi is the product of five transpo-
sitions, one of them is (1, i) by Lemma 3. Then σ∗

1 = σi · (1, i),
which is the product of four transpositions. Thus σ∗

1 is an even per-
mutation as σ1 = 1id. Further, σ∗

i = (1, i) · σ1 = (1, i), i.e. σ∗

i is
an odd permutation as σi. Therefore

∏10

i=1
σ∗

i has the same parity as
∏10

i=1
σi. Now, we check the column permutations. We have τ ∗1 = τ1

and τ ∗i = τi. All other τj are multiplied by one transposition. Thus
∏10

k=1
τ ∗k has the same parity as

∏10

k=1
τk · ((j1, j2)(j3, j4)(j5, j6)(j7, j8))

2,
where j1, . . . , j8 ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10} \ {i}. �

Theorem 1. Els(10) ≥ R(10) · (10!)4

Proof. Let Λ be a reduced symmetric latin square of order 10. By
Lemma 1 Λ is even. Further, Lemma 3 makes it possible to create
a map χ : Λ 7→ Λ∗, such that Λ∗ is even by Lemma 5 and not reduced
symmetric by Lemma 4. Further, we can permute all rows and columns
of Λ and χ(Λ), combine these in any order and get again an even latin
square. �

3. Reduced symmetric latin squares of order 10

We compute R(10) with Algorithm 1. We generate every possible
reduced symmetric latin square of order 10 recursively. We build a
function that is given an incomplete square as an input, and yields all
possible squares that can be obtained from filling out that square as an
output. This function will systematically generate every possible re-
duced symmetric square when the input square is an incomplete square
only filled out with the first row and the first column (1, 2, . . . , 10 for
both).
Algorithm 1 shows a high-level description of how the function works.

In the description, {σi} represents the set of elements of σi and pj
represents the jth element of a permutation p.
Algorithm 1 was implemented in Python, and executed on a server

provided by the University of Debrecen. The implementation can
be found at https : //arato.inf.unideb.hu/major.sandor/research −
latin.py. The computation is single-threaded, running on a 3.1 GHz
Intel(R) Xeon(R) Gold 6254 CPU. The code is essentially a Python
generator function, yielding, counting and discarding reduced symmet-
ric latin squares of order 10 at an average speed of ∼ 4036 squares per
second.
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Algorithm 1 Generate reduced symmetric latin squares of order n

Input Λ: a possibly incomplete square, n: the order of Λ
Output all reduced symmetric latin squares of order n that can be

obtained by filling out Λ
1: function Generate(Λ, n)
2: if Λ has no incomplete lines then
3: yield Λ
4: else

5: Find the smallest 1 < i ≤ n for which σi is an incomplete
line of Λ.

6: Let E = {1, . . . , n} \ {σi} be the set of permissible elements
in σi.

1

7: Let P be the set of permissible permutations of E. 2

8: for each p ∈ P do

9: Let Λ′ be a copy of Λ.
10: Fill out σ′

i and τ ′i with p.
11: for each Λr ∈ Generate(Λ′, n) do
12: yield Λr

13: end for

14: end for

15: end if

16: end function

1: By the construction of the algorithm, |E| = n− i+ 1
2: A p ∈ P is permissible if for each j ∈ {1, . . . , |E|}, pj /∈ τj+i−1.

In other words, filling out σi with p would not violate the
rules of a latin square.

Although the computation has not ended yet, on the 87th day of
computation (125106 minutes) we got 30337000000 reduced symmetric
latin squares. Thus

R(10) ≥ 30337000000

We know by [3] and [5] the number of all latin squares of order 10 is

L(10) = 9982437658213039871725064756920320000.

We have by Theorem 1

Els(10) ≥ R(10)·(10!)4 ≥ 5260472602655869580083200000000000000>

4991218829106519935862532378460160000 =
1

2
· L(10).
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Thus
Els(10) > Ols(10).
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