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ABSTRACT OF THE DISSERTATION

Experimental methods applied to

the computation of integer sequences

by Eric Samuel Rowland

Dissertation Director: Doron Zeilberger

We apply techniques of experimental mathematics to certain problems in number theory

and combinatorics. The goal in each case is to understand certain integer sequences,

where foremost we are interested in computing a sequence faster than by its definition.

Often this means taking a sequence of integers that is defined recursively and rewriting

it without recursion as much as possible. The benefits of doing this are twofold. From

the view of computational complexity, one obtains an algorithm for computing the

system that is faster than the original; from the mathematical view, one obtains new

information about the structure of the system.

Two particular topics are studied with the experimental method. The first is the

recurrence

a(n) = a(n− 1) + gcd(n, a(n− 1)),

which is shown to generate primes in a certain sense. The second is the enumeration of

binary trees avoiding a given pattern and extensions of this problem. In each of these

problems, computing sequences quickly is intimately connected to understanding the

structure of the objects and being able to prove theorems about them.
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Chapter 1

Introduction

1.1 Overview

This thesis applies techniques of automatic data generation, analysis, form-fitting, and

proof to problems in discrete mathematics — in particular to the problem of speeding

up the computation of terms in certain integer sequences.

This chapter is devoted to a description of the experimental methodology used

throughout the thesis and to the notion of an ansatz.

In Chapter 2 I discuss the recurrence

a(n) = a(n− 1) + gcd(n, a(n− 1))

with initial condition a(1) = 7 and prove that a(n)−a(n−1) takes on only 1s and primes,

making this recurrence a rare “naturally occurring” generator of primes. Toward a

generalization of this result to an arbitrary initial condition, we also study the limiting

behavior of a(n)/n and a transience property of the evolution. This work was published

in the Journal of Integer Sequences [25].

Chapter 3 considers the enumeration of trees avoiding a contiguous pattern. We pro-

vide an algorithm for computing the generating function that counts the n-leaf binary

trees avoiding a given binary tree pattern t. Equipped with this counting mechanism,

we study the analogue of Wilf equivalence in which two tree patterns are equivalent

if the respective n-leaf trees that avoid them are equinumerous. We investigate the

equivalence classes combinatorially, finding some relationships to Dyck words avoiding

a given subword. Toward establishing bijective proofs of tree pattern equivalence, we

develop a general method of restructuring trees that conjecturally succeeds to produce

an explicit bijection. This work has been submitted for publication [26].
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2

Results in mathematics are generally presented as static works, where evidence of

the dynamic discovery process has been removed. Aside from being the current cultural

norm, one reason for this is that conveying the history of a result is difficult and messy.

However, I believe that the human process that led to the discovery of a conjecture or

theorem or proof is the best way for another human to develop an understanding of

that material (short of recreating it from scratch). Therefore, possibly at the expense

of some elegance and brevity, I have attempted to indicate how the results in this thesis

were found.

The software used for this work was predominantly Mathematica. Several packages

developed by the author are available from http://math.rutgers.edu/~erowland/

programs.html. In particular, the package TreePatterns [27] accompanies Chap-

ter 3. Additionally, the algebra software Singular was used via an interface package by

Manuel Kauers and Viktor Levandovskyy [18] to compute Gröbner bases for systems

of polynomial equations in Chapter 3.

Sequence numbers such as A000108 refer to entries in the Encyclopedia of Integer

Sequences [29].

1.2 Experimental methodology

Experimental mathematics is not a new way of doing mathematics. In fact, it is the

oldest way of doing mathematics, the idea being that by naively generating explicit

numeric examples of a mathematical structure one can eventually perceive the general

symbolic structure. In practice, the methodology is as follows. Generate data in the

form of a sequence of integers or a graph or an image, etc. Then manipulate the data

until it takes a recognizable form, e.g., the Thue–Morse sequence or the 4-dimensional

hypercube graph or the Sierpiński sieve. Then undo the manipulations symbolically

to arrive at an algorithm for computing the original data. Most often this algorithm

represents a compression of the data in which its structure is revealed and by which it

may be computed more quickly.

For example, if we compute a function f(n) for n = 1, 2, . . . , 8 and find that the
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3

values are 1, 1, 2, 3, 5, 8, 13, 21 then (without requiring much analysis in this case) we

generally suspect that f(n) is the nth Fibonacci number.

Although this principle is quite old, what is relatively new is the use of computers

to assist in mathematics research. There are major advantages that computers provide

in both the stages of data generation and data analysis.

The advantage in generating data is the obvious one — that machines can simply

compute faster and more accurately than humans, so any algorithmic task can be done

on a much larger scale by machine. Sometimes the time or space needed to compute

more data grows quickly, making it infeasible to compute by hand. Sometimes small

values of the data do not fit into the general pattern (e.g., the first few terms of an

eventually periodic sequence), and the transience may in fact be long. In both these

cases it is clearly desirable to compute by machine.

The advantage in using modern mathematical software to study empirical data is

that the ease of setting up and executing computations with these systems allows the

mathematician to search for structure in real time. One can process the data in many

different ways fairly quickly — applying transformations of all sorts, looking for patterns

visually in the form of a plot or a graph, attempting fits to known ansatzes (as discussed

below), etc. Since the software is doing all the computation, there is little overhead

for the human, who is free to experiment with the data as much as it wishes. This

naturally increases the likelihood that significant patterns will be discovered.

1.3 The notion of ansatz

Humans are quite good at identifying some patterns. For example, it is easy for a

human (at least a human who has seen them before) to guess a general form for each

of the following sequences.

1, 4, 9, 16, . . .

2, 3, 5, 7, 11, 13, 17, 19, . . .

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, . . .
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4

However, this process of identification by human familiarity is not very robust. The

following sequences are of roughly the same complexity, in a certain mathematical sense,

as the preceding sequences, but they are not as immediately identifiable (especially out

of context of the preceding sequences).

2, 7, 14, 23, . . .

3, 7, 13, 19, 29, 37, 43, 53, . . .

1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 4, 2, 3, 3, 4, 1, . . .

That is, these sequences are not of the same complexity, in the sense of some humans,

as the first sequences. Consequently, we do not want to relegate pattern recognition to

humans alone.

Lookup tables such as the Encyclopedia of Integer Sequences [29] and analogous

databases for leading digits of real numbers [2, 23] provide one type of systematic

pattern recognition. In essence they extend the basic “recognizable primitives”.

How can we potentially recognize infinitely many different objects? We might start

by applying a finite set of transformations to all of our recognizable primitives. However,

no finite list will get us there. (We may of course iterate the transformations, but then

in attempting to identify an object we never know when to stop applying the inverse

transformations.)

We must work symbolically. To get software to “find a pattern” in empirical data,

we specify precisely the general form — the ansatz — of the pattern we are looking

for. The ansatz is the symbolic structure behind a class of objects, where each object

in the class is realized for certain values of the parameters.

Let us focus on ansatzes of integer sequences, with the understanding that the

principles apply equally well to other objects. (For example, in Chapter 3 we consider

several ansatzes of bijections on binary trees.) Frequently in discrete mathematics the

answer to a question can be rendered as a sequence of integers, and because they are

so universal there is much that we know about them.

Some historically successful ansatzes of integer sequences include (in roughly increas-

ing sophistication) periodic functions, polynomials, rational functions, quasi-polynomials,

 
 
 
 

 
 
 

PREVIE
W



5

C-recursive sequences (solutions of linear recurrences with constant coefficients), k-

regular sequences as introduced by Allouche and Shallit [1], sequences whose generating

functions are algebraic, and holonomic sequences (solutions of linear recurrences with

polynomial coefficients). Zeilberger [33] discusses many of these in greater detail. Each

of these ansatzes is useful in sequence identification problems because of its ubiquity in

mathematics. The sequences of Chapter 3, for instance, are all algebraic.

Given an ansatz and some data, it is generally routine to find (if it exists) an object

in that ansatz that represents the data. If the empirical data can be generated by a

function with fewer degrees of freedom than the data, then most likely the sequence has

been identified. A familiar example is the interpolation of polynomials: If a polynomial

of degree 2 correctly reproduces 4 terms of a sequence, this indicates some redundancy

in those terms.

Certainly one comes across objects in mathematics that do not fit a known ansatz.

When this happens it is the role of the human to study the object until its structure

becomes clear. That is, the human is the creator/identifier of new ansatzes, and this is

the not-yet-routine mathematics being done in the context of the experimental method.

Such was the case with the integer sequences in Chapter 2 and with the bijections in

Chapter 3; these new classes were introduced to answer particular number theoretic

and combinatorial questions.
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Chapter 2

A natural prime-generating recurrence

2.1 Introduction

Since antiquity it has been intuited that the distribution of primes among the natural

numbers is in many ways random. For this reason, functions that reliably generate

primes have been revered for their apparent traction on the set of primes.

Ribenboim [24, page 179] provides three classes into which certain prime-generating

functions fall:

(a) f(n) is the nth prime pn.

(b) f(n) is always prime, and f(n) 6= f(m) for n 6= m.

(c) The set of positive values of f is equal to the set of prime numbers.

Known functions in these classes are generally infeasible to compute in practice. For

example, both Gandhi’s formula

pn =

1− log2

−1
2

+
∑
d|Pn−1

µ(d)
2d − 1


[11], where Pn = p1p2 · · · pn, and Willans’ formula

pn = 1 +
2n∑
i=1


 n∑i

j=1

⌊(
cos (j−1)!+1

j π
)2
⌋


1/n


[31] satisfy condition (a) but are essentially versions of the sieve of Eratosthenes [12, 13].

Gandhi’s formula depends on properties of the Möbius function µ(d), while Willans’

formula is built on Wilson’s theorem. Jones [16] provided another formula for pn using

Wilson’s theorem.
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