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Abstract

Following our discovery of a nice identity in a recent preprint of Hu and Kim, we show a link between
the Kurokawa multiple trigonometric functions and two functions introduced respectively by Borwein-
Dykshoorn and by Adamchik. In particular several identities involving ζ(3), π and the Catalan constant
G that are proved in these three papers are related.
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1 Introduction

There is a wealth of special functions arising from geometry and from transcendence theory. The purpose of
this paper is to provide identities relating some of them. The beginning of the story here is a recent preprint
of Hu and Kim [11] that gives the nice identity

ζ(3) =
4π2

21
log

(

e
4G
π C3

(

1
4

)16

√
2

)

.

where G =
∑

n≥0
(−1)n

(2n+1)2 is the Catalan constant, and C3 is the Kurokawa-Koyama triple cosine function

(see below).

The (slightly hidden) occurrences of 7ζ(3)/4π2 and of eG/2π reminded us two (out of four) identities in
a paper of Kachi and Tzermias [12], namely:

lim
n→∞

2n+1
∏

k=1

e−1/4

(

1− 1

k + 1

)

k(k+1)
2 (−1)k

= exp

(

7ζ(3)

4π2
+

1

4

)

and

lim
n→∞

2n+1
∏

k=1

(

1− 2

2k + 1

)k(−1)k

= exp

(

2G

π
+

1

2

)

.

In that paper Kachi and Tzermias proved four identities, and they indicated that they were not able to
deduce them directly from the values of a function introduced in 1993 by Borwein and Dykshoorn [4]. We
provided in [2] a proof of their identities, using the paper of Borwein and Dykshoorn and their function D
for two of the identities, and a paper of Adamchik [1] and his function E for the remaining two. It was thus
tempting to relate these functions D and E to the Kurokawa-Koyama triple cosine.

Furthermore, looking at the papers of Kurokawa, we found an expression of ζ(3) resembling the identity
given by Hu et Kim, namely (see [14, p. 62], also see [17, Theorem 2, p. 209])

ζ(3) =
8π2

7
log

(

21/4

S3(1/2)

)
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where S3 is the triple sine function of Kurokawa (in particular

S3(1/2) = e1/8
∏

n≥1

(

(

1− 1

4n2

)n2

e
1
4

)

.

It was then even more tempting to study these multiple trigonometric functions and to (try to) find a
link between all these results.

A possibly surprising fact is that the literature related to the functions of Borwein-Dykshoorn and of
Adamchik appears to be essentially disjoint from the literature related to the Kurokawa multiple trigono-
metric functions, with the notable exception of the book [28] where several papers of Kurokawa et al. are
cited in the references but do not seem to be exploited in the text. We propose to enlarge the bridge between
these two branches of the theory of special functions.

In the sequel, we will recall the definitions of the multiple trigonometric functions first introduced by
Kurokawa in [14, 15], then the definitions of the Borwein-Dykshoorn function D given in [4], and of the
Adamchik function E given in [1]. We will obtain close relations between these functions. Furthermore we
will show that an identity due to Holcombe [9] can also be obtained using multiple trigonometric functions.
We will also mention a link between these functions and the generalized Euler constant function in [8] (also
see [30] and [27]). We will end with two questions, one of which concerning an identity proved in [24], that
we were not able to address with multiple trigonometric functions.

2 Multiple trigonometric functions

In 1991–1992 (see [14, 15]) Kurokawa introduced the multiple sine functions defined by S1(z) := 2 sin(πz),
and for r ≥ 2,

Sr(z) := exp

(

zr−1

r − 1

)

∏

n≥1

(

Pr

( z

n

)

Pr

(

− z

n

)(−1)r−1)nr−1

where

Pr(z) = (1− z) exp

(

z +
z2

2
+ . . .+

zr

r

)

.

Since Pr(z) = Pr−1(z)e
zr/r, so that e(z/n)

r · (e(−z/n)r )(−1)r−1

= 1, we can clearly write, for r ≥ 2,

Sr(z) := exp

(

zr−1

r − 1

)

∏

n≥1

(

Pr−1

( z

n

)

Pr−1

(

− z

n

)(−1)r−1)nr−1

.

Note that in particular

S2(z) = ez
∏

n≥1

((

1− z
n

1 + z
n

)n

e2z
)

is equal to the function F studied by Hölder in [10, Eq. (4), p. 515]. Note that Sr is equal to 1/Λr for r > 1
where Λr is the function defined by Rovinskĭi in 1991 (compare [14, (1) p. 62] and [25, (5) p. 74]). Also see
[22] and [26].

We are not going to give more details in this section about multiple trigonometric functions, except for
one of the motivations of Kurokawa, who writes in [14]: as an application we report the calculation of the
”gamma factors” of Selberg-Gangolli-Wakayama zeta functions of rank one locally symmetric spaces, and
for pointers to a limited number of references, e.g., [29] for an early approach of a related question, and the
survey of Manin [20].
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3 The Borwein-Dykshoorn function

The Borwein-Dykshoorn function

D(x) = lim
n→∞

2n+1
∏

k=1

(

1 +
x

k

)k(−1)k+1

was introduced in [4] as a generalization of a result of Melzak [23] proving that

lim
n→∞

2n+1
∏

k=1

(

1 +
2

k

)k(−1)k+1

=
πe

2
·

This function can be extended to a meromorphic function on C with poles at the negative even integers. We
prove that this function is related to S2.

Theorem 1 The following equality holds:

D(x)

D(−x)
= ex

S2(x/2)
4

S2(x)
·

Proof. Let Dn(x) be defined by

Dn(x) :=

2n+1
∏

k=1

(

1 +
x

k

)k(−1)k+1

·

We can write

Dn(x) =

n
∏

j=1

(

1 +
x

2j

)−2j n
∏

j=0

(

1 +
x

2j + 1

)2j+1

=

n
∏

j=1

(

1 +
x

2j

)−2j

2n+1
∏

k=1

(

1 +
x

k

)k

n
∏

k=1

(

1 +
x

2k

)2k
·

Thus

Dn(x) =

2n+1
∏

k=1

(

1 +
x

k

)k

n
∏

j=1

(

1 +
x

2j

)4j

which implies

Dn(x)

Dn(−x)
=

2n+1
∏

k=1





1 +
x

k

1− x

k





k








n
∏

k=1







1− x/2

k

1 +
x/2

k







k








4

·

Multiplying the first product by e−2x(2n+1) and the second product by (e
x

2 enx)4 does not change the quantity
Dn(x)Dn(−x), thus

Dn(x)

Dn(−x)
=

2n+1
∏

k=1






e−2x





1 +
x

k

1− x

k





k














e
x

2

n
∏

k=1









ex







1− x/2

k

1 +
x/2

k







k
















4

which gives, when n tends to infinity,

D(x)

D(−x)
= ex

S2(x/2)
4

S2(x)
· �
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A corollary of this result gives the value of an infinite product studied in [12] which was proved again in
[2] by using the Borwein–Dykshoorn function.

Corollary 1 The following identities hold

lim
n→∞

2n
∏

k=1

(

1− 2

2k + 1

)k(−1)k

= exp

(

2G

π
− 1

2

)

and

lim
n→∞

2n+1
∏

k=1

(

1− 2

2k + 1

)k(−1)k

= exp

(

2G

π
+

1

2

)

where G =
∑

n≥0

(−1)n

(2n+ 1)2
is the Catalan constant.

Proof. Since

(

1− 2

4n+ 3

)−(2n+1)

tends to e (take the logarithm), it suffices to prove the second identity.

We write

2n+1
∏

k=1

(

1− 2

2k + 1

)k(−1)k

=
2n+1
∏

k=1

(

2k + 1

2k − 1

)k(−1)k+1

=

2n+1
∏

k=1

(

1 +
1

2k

)k(−1)k+1

2n+1
∏

k=1

(

1− 1

2k

)k(−1)k+1 ·

Hence, using Theorem 1

lim
n→∞

2n+1
∏

k=1

(

1− 2

2k + 1

)k(−1)k

=
D(1/2)

D(−1/2)
= e1/2

S2(1/4)
4

S2(1/2)
·

But we have S2(1/2) = 21/2 and S2(1/4) = 21/8 exp
(

G
2π

)

(see [16, p. 852], hence

lim
n→∞

2n+1
∏

k=1

(

1− 2

2k + 1

)k(−1)k

= e1/2
S2(1/4)

4

S2(1/2)
= exp

(

2G

π
+

1

2

)

·

Remark 1

• The function D can also be written (see, e.g., [2])

D(x) = ex
∏

k≥1

(

e−x
(

1 +
x

k

)k
)(−1)k+1

• The left hand term of the equality in Theorem 1, say f(x) := D(x)/D(−x), has the property that
f(−x) = 1/f(x). Hence this is the same for the right hand term, but it is of course easy to see that
the function S2(x) itself satisfies the identity S2(−x) = (S2(x))

−1 (see, e.g., [10, Eq.(5), p. 516]).

• Note that [4, Theorem, p. 204] gives an explicit (finite) formula in terms of the function Γ and of the
generalized Gamma function Γ1 defined in [3] and itself closely related to the Barnes function. There
is also a close formula for D(x) in [1, Proposition 5, p. 284]. Also see [24, Example 20, p. 139]. Finally,
an expression of D(x) in terms of the function γα and its derivative is given in [2, p. 86], where γα (see
[8] and [27]; also see [30]) is defined by:

γα(z) :=
∑

n≥1

zn−1
(

α− n log
(

1 +
α

n

))

.
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4 The Adamchik function E

Adamchik defined in [1] a function E by

E(x) := lim
n→∞

2N
∏

k=1

(

1− 4x2

k2

)k2(−1)k+1

.

It is easy to see that E(x) has also the following expression:

E(x) =
∏

k≥1

(

e4x
2

(

1− 4x2

k2

)k2)(−1)k+1

.

Recall that S3(x) is defined by

S3(x) = e
x
2

2

∏

n≥1

(

ex
2

(

1− x2

n2

)n2)

.

Also recall that the function C3(x) is defined by (see, e.g., [18, p. 1])

C3(x) =
∏

n≥1



ex
2

(

1− 4x2

(2n− 1)2

)

(2n−1)2

4





Now we state the following result.

Theorem 2 We have the following identity:

E(x) = e2x
2 S3(2x)

S3(x)8
= e2x

2 C3(x)8
S3(2x)

·

Proof. We write

E(x) =
∏

k≥1

(

e4x
2

(

1− 4x2

k2

)k2)(−1)k+1

=

∏

k≥1
k odd

(

e4x
2

(

1− 4x2

k2

)k2)

∏

k≥1

(

e4x
2

(

1− x2

k2

)4k2) =

∏

k≥1

(

e4x
2

(

1− 4x2

k2

)k2)

∏

k≥1

(

e4x
2

(

1− x2

k2

)4k2)2 ·

Hence

E(x) =
(

S3(2x)e
−2x2

)(

S3(x)e
−x2/2

)−8

= e2x
2 S3(2x)

S3(x)8
·

Now (see, e.g., [18, Theorem 1.1, p. 123]),

S3(2x) = S3(x)
4C3(x)4,

which gives

E(x) = e2x
2 C3(x)8
S3(2x)

�

Remark 2

∗ The first equality in Theorem 2 above and Equation (2.15) in [16, p. 850] imply Corollary 1 in the paper
of Adamchik [1, p. 286] where E(x) is expressed in terms of Li2(±e2iπx) and Li3(±e2iπx), up to replacing
i with −i, which does not change the result since E(x) is real (recall that Lik(x) :=

∑

n≥1
sinnx
nk ). It is

also interesting to compare these expressions and [31, Proposition 2 p. 618].
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∗ Note that [1, Proposition 6, p. 286] gives a close formula for E in terms of the Barnes function and of
the generalized gamma function Γ3.

We have as a corollary the following particular cases given in [1, p. 287].

Corollary 2 We have

lim
N→∞

2N
∏

k=1

(

1− 1

4k2

)k2(−1)k+1

= exp

(

1

8
− 2G

π
+

7ζ(3)

2π2

)

and

lim
N→∞

2N
∏

k=2

(

1− 1

k2

)k2(−1)k+1

=
π

4
exp

(

1

2
+

7ζ(3)

π2

)

Proof.
The left hand side of first equality is equal to E(1/4) thus, using Theorem 2, to e1/8C3(1/4)8S3(1/2)

−1.
But S3(1/2) is given in [17, p. 206], where we find

ζ(3) =
8π2

7
log(21/4A−1), where A := e1/8

∏

n≥1

(

e1/4
(

1− 1

4n2

)n2)

which can be written

S3(1/2) = 21/4 exp

(

−7
ζ(3)

8π2

)

.

The value of C3(1/4) is given in [18, p. 1], where we find

C3(1/4) = 21/32 exp

(

21ζ(3)

64π2
− G

4π

)

.

Here G is the Catalan constant. Note that there seems to be a misprint in [18], namely G/4π there should
be replaced with −G/4π as above (also see [11]). So we finally have

E(1/4) = exp

(

1

8
− 2G

π
+

7ζ(3)

2π2

)

.

5 Holcombe’s infinite product

In a 2013 paper [9] Holcombe proved that

π = e3/2
∏

n≥2

(

e

(

1− 1

n2

)n2)

.

This result can be deduced from the value of the derivative at 1 of the triple trigonometric function S3.
Namely

S3(x) = e
x
2

2

∏

n≥1

(

ex
2

(

1− x2

n2

)n2)

so that S3(1) = 0 and

S3(x) − S3(1)

x− 1
= −e

3
2 (1 + x)

∏

n≥2

(

e

(

1− 1

n2

)n2)

.

Letting x tend to 1, we thus have

S ′
3(1) = −2e

3
2

∏

n≥2

(

e

(

1− 1

n2

)n2)

.

Using the value S ′
3(1) = −2π (see [18, Prop. 4.1, p. 125]) gives Holcombe’s result.
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6 Miscellanea

Further links between the above mentioned functions and other special functions can be found in the litera-
ture. We give only quick remarks in this section.

Recall that the dilogarithm function, already alluded to in Remark 2, and the Clausen function are
respectively defined by

Li2(z) :=
∑

n≥1

zn

n2
(where |z| ≤ 1), and Cl2(θ) =

∑

n≥1

sinnθ

n2
·

The Clausen function Cl2 is related to the Barnes function G (see, e.g., [28, Equation (2) p. 175]):

Cl2(x) = x log π − x log
(

sin
(x

2

))

+ 2π log
G(1− x

2π )

G(1 + x
2π )

·

But we can find in [16] the relation

S2(z) = (2 sinπz)z exp





1

2π

∑

n≥1

sin(2πnz)

n2





hence

S2(z) = (2 sinπz)z exp

(

1

2π
Cl2(2πz)

)

.

Thus

log
G(1 + t)

G(1 − t)
= t log(2π)− logS2(t). (∗)

This identity can also be obtained directly from a relation for S2(x) given in [16, Theorem 2.5, p. 847] and
a relation given in [5, (2.1), p. 94], namely

S2(x) = exp

(∫ x

0

πt cot(πt) dt

)

and

∫ x

0

πt cot(πt)dt = x log(2π) + log
G(1 − x)

G(1 + x)
·

Relation (∗) can be double checked with the values of S2(1/2) =
√
2 and S2((1/4) = 21/8eG/2π given in [16,

Examples 2.9, p. 852] and the values ofG(3/2)/G(1/2) = Γ(1/2) =
√
π andG(5/4)/G(3/4) = 21/8π1/4e−G/2π

given in [21, p. 271]. This relation can also be used to give a closed form of values of S2(t) using known
values of G(1 + t)/G(1 − t), e.g., for t = 1/8 or t = 1/12 (see [6, Section 5] and the corrections and results
in [21, p. 272–273]).

Remark 3 In [5, p. 94] the authors write that the relation

∫ x

0

πt cot(πt)dt = x log(2π) + log
G(1 − x)

G(1 + x)
·

is originally due to Kinkelin. Actually Kinkelin proves a similar result —see the first equality after (26.)
p. 135 in [13]— for a function which is actually equal to Γ(x)x−1/G(x): as written in [7, p. 136] this function
has been comparatively neglected by researchers in favor of G.

This discussion opens the way to other links with several other special functions (e.g., the dilogarithm
already mentioned, the inverse tangent integral Ti2(z) :=

∑

j≥1(−1)j+1yj/j2 and the Legendre chi-function

χ2(z) :=
∑

k≥0 y
2k+1/(2k + 1)2, both defined for |z| ≤ 1) but we will not go further in this direction: the

reader can consult in particular [6, 21] and the references therein, with a special mention for the book of
Lewin [19].
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7 Conclusion

We end this paper with two questions.

First, we note that combining the expression of D(x)/D(−x) given above in terms of S2(x/2) and S2(x)
and the expression of D(x) in terms of the Hessami Pilehrood-Sondow-Hadjicostas function given in [2], one
can obtain a relation between this function and S2(x). Is it possible to obtain a relation with the higher
multiple trigonometric functions Sr(x)?

Second, an interesting identity is given in [24, p. 125] where it is proved by unusual methods:

lim
n→∞

[

e
n

4 (4n+1)n− 1
8−n(n+1)(2π)−

n

2

2n
∏

k=1

Γ

(

1 +
k

2

)k(−1)k
]

= 2
1
12 exp

(

5

24
− 3

2
ζ′(−1)− 7ζ(3)

16π2

)

where the right hand constant can also be written

(2e)1/12A3/2 exp

(

−7ζ(3)

16π2

)

with A := exp( 1
12 − ζ′(−1)) is the Glaisher-Kinkelin constant. We did not succeed in finding a relation

between this identity with multiple trigonometric functions. Of course the quantity 7ζ(3)/4π2 occurs, but,
after all, this is nothing but −7ζ′(−2) which looks somehow more mundane. Is it possible to find a proof of
this identity that uses multiple trigonometric functions?

Acknowledgments We would like to thank S. Hu and M.-S. Kim for discussions about their preprint [11].
We would also like to thank Olivier Ramaré and Sanoli Gun, in particular for their help in obtaining some
of the references.
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