
High-Level Verification using Theorem Proving
and Formalized Mathematics

(Extended Abstract)

John Harrison

Intel Corporation, EY2-03
5200 NE Elam Young Parkway

Hillsboro, OR 97124, USA
johnh@ichips.intel.com

Abstract. Quite concrete problems in verification can throw up the
need for a nontrivial body of formalized mathematics and draw on several
special automated proof methods which can be soundly integrated into a
general LCF-style theorem prover. We emphasize this point based on our
own work on the formal verification in the HOL Light theorem prover of
floating point algorithms.

1 Formalized mathematics in verification

Much of our PhD research [11] was devoted to developing formalized mathe-
matics, in particular real analysis, with a view to its practical application in
verification, and our current work in formally verifying floating point algorithms
shows that this direction of research is quite justified.

First of all, it almost goes without saying that some basic facts about real
numbers are useful. Admittedly, floating point verification has been successfully
done in systems that do not support real numbers at all [16, 17, 19]. After all,
floating point numbers in conventional formats are all rational (with denom-
inators always a power of 2). Nevertheless, the whole point of floating point
numbers is that they are approximations to reals, and the main standard gov-
erning floating point correctness [13] defines behavior in terms of real numbers.
Without using real numbers it is already necessary to specify the square root
function in an unnatural way, and for more complicated functions such as sin
it seems hardly feasible to make good progress in specification or verification
without using real numbers explicitly.

In fact, one needs a lot more than simple algebraic properties of the reals.
Even to define the common transcendental functions and derive useful proper-
ties of them requires a reasonable body of analytical results about limits, power
series, derivatives etc. In short, one needs a formalized version of a lot of elemen-
tary real analysis, an unusual mixture of the general and the special. A typical
general result that is useful in verification is the following:

If a function f is differentiable with derivative f ′ in an interval [a, b],
then a sufficient condition for f(x) ≤ K throughout the interval is that
f(x) ≤ K at the endpoints a, b and at all points of zero derivative.



This theorem is used, for example, in finding a bound for the error incurred
in approximating a transcendental function by a truncated power series. The
formal HOL version of this theorem looks like this:

|- (!x. a <= x /\ x <= b ==> (f diffl (f’ x)) x) /\

f(a) <= K /\

f(b) <= K /\

(!x. a <= x /\ x <= b /\ (f’(x) = &0) ==> f(x) <= K)

==> (!x. a <= x /\ x <= b ==> f(x) <= K)

A typical concrete result is a series expansion for π [1]:

π = Σ∞n=0

1
16n

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6
)

This allows us to approximate π arbitrarily closely by rational numbers.
Doing so is important both for detailed analysis of trigonometric range reduction
(reducing an argument x to a trigonometric function to r where x = r+Nπ/2)
and to dispose of trivial side-conditions. For example, an algorithm might rely
on the fact that sin(x) is positive for some particular x, and we can verify this
by confirming that 0 < x < π using an approximation of π. In HOL, the formal
theorem is as follows:

|- (\n. inv(&16 pow n) * (&4 / &(8 * n + 1) - &2 / &(8 * n + 4) -

&1 / &(8 * n + 5) - &1 / &(8 * n + 6))) sums pi

The mathematics needed in floating-point verification is an unusual mixture
of these general and special facts, and it’s sometimes the kind that isn’t widely
found in textbooks. For example, an important result we use is the power series
expansion for the cotangent function (for x 6= 0):

cot(x) = 1/x− 1
3
x− 1

45
x3 − 2

945
x5 − . . .

To derive this straightforward-looking theorem, both getting a simple recur-
rence relation for the coefficients and a reasonably sharp bound on their size,
is fairly non-trivial. A typical mathematics book either doesn’t mention such a
concrete result at all, or gives it without proof as part of a “cookbook” of well-
known useful results. After some time browsing in a library, we eventually settled
on formalizing a proof in Knopp’s classic book on infinite series [14]. Formalizing
this took several days of work, drawing extensively on existing analytical lemmas
in HOL. A side-effect is that we derived a general result on harmonic sums, the
simplest special cases of which are the well-known:

1 + 1/22 + 1/32 + 1/42 + · · · = π2/6

and

1 + 1/24 + 1/34 + 1/44 + · · · = π4/90

Knopp remarks



It is not superfluous to realize all that was needed to obtain even the
first of these elegant formulae.

We may add that it is even more surprising that such extensive mathematical
developments are used simply to verify that a floating point tangent function sat-
isfies a certain error bound. Of course, one also needs plenty of specialized facts
about floating point arithmetic, e.g. important properties of rounding. These
theories have also been developed in HOL Light [12] but we will not go into
more detail here.

2 Proof in HOL Light

The theorem prover we are using in our work is HOL Light [8],1 a version of the
HOL prover [5]. HOL is a descendent of Edinburgh LCF [6] which first defined the
‘LCF approach’ that these systems take to formal proof. LCF provers explicitly
generate proofs in terms of extremely low-level primitive inferences, in order to
provide a high level of assurance that the proofs are valid. In HOL Light, as
in most other LCF-style provers, the proofs (which can be very large) are not
usually stored permanently, but the strict reduction to primitive inferences in
maintained by the abstract type system of the interaction and implementation
language, which for HOL Light is CAML Light [4, 23]. The primitive inference
rules of HOL Light, which implements a simply typed classical higher order logic,
are very simple, and will be summarized below.

` t = t
REFL

Γ ` s = t ∆ ` t = u
Γ ∪∆ ` s = u

TRANS

Γ ` s = t ∆ ` u = v
Γ ∪∆ ` s(u) = t(v)

MK COMB

Γ ` s = t
Γ ` (λx. s) = (λx. t)

ABS

` (λx. t)x = t
BETA

{p} ` p ASSUME

Γ ` p = q ∆ ` p
Γ ∪∆ ` q EQ MP

1 See http://www.cl.cam.ac.uk/users/jrh/hol-light/index.html



Γ ` p ∆ ` q
(Γ − {q}) ∪ (∆− {p}) ` p = q

DEDUCT ANTISYM RULE

Γ [x1, . . . , xn] ` p[x1, . . . , xn]
Γ [t1, . . . , tn] ` p[t1, . . . , tn]

INST

Γ [α1, . . . , αn] ` p[α1, . . . , αn]
Γ [γ1, . . . , γn] ` p[γ1, . . . , γn]

INST TYPE

In MK COMB, the types must agree, e.g. s : σ → τ , t : σ → τ , u : σ and v : σ.
In ABS, we require that x is not a free variable in any of the assumptions Γ . In
ASSUME, p must be of Boolean type, i.e. a proposition.

All theorems in HOL are deduced using just the above rules, starting from
three axioms: Extensionality, Choice and Infinity. There are also definitional
mechanisms allowing the introduction of new constants and types, but these are
easily seen to be logically conservative and thus avoidable in principle.

CAML Light also serves as a programming medium allowing higher-level
derived rules (e.g. to automate linear arithmetic, first order logic or reasoning in
other special domains) to be programmed as reductions to primitive inferences,
so that proofs can be partially automated. This is very useful in practice. In
floating point proofs we make extensive use of quite intricate facts of linear
arithmetic, such as:

|- x <= a /\ y <= b /\

abs(x - y) < abs(x - a) /\ abs(x - y) < abs(x - b) /\

(x <= b ==> abs(x - a) <= abs(x - b)) /\

(y <= a ==> abs(y - b) <= abs(y - a))

==> (a = b)

Proving these by low-level primitive inferences can be tedious in the extreme,
so it is immensely valuable to have the process automated. Similarly, we often
use first order automation to avoid tedious low-level reasoning (e.g. chaining
together many inequalities) or exploit symmetries via lemmas such as:

|- (!x y. P x y = P y x) /\

(!x y. Q x ==> P x y)

==> !x y. Q x \/ Q y ==> P x y

Because these are all programmed as reductions to primitive inferences, we
have the security of knowing that any errors in the derived rule cannot result
in false “theorems” as long as the few primitive rules are sound. This can be
especially important in verification of real industrial systems, since an error in
a ‘proof’ can invalidate the entire result.

The basic LCF approach of exploiting traditional automated techniques [3,
15] or high-level methods of proof description [9] by reducing them to primitive



inferences in a single core logic seems to us a very fruitful one. Of course, it has
an efficiency penalty, but as we argue in [7], it is not usually too severe except
in a few special cases. Nevertheless, there is still much more work to be done to
make systems like HOL Light really usable by a nonspecialist. In our opinion, the
most impressive system for formalizing abstract mathematics is Mizar [18, 22],
and importing the strengths of that system into LCF-style provers is a popular
topic of research [10, 21, 24, 26].

The first sustained attempt to actually formalize a body of mathematics
(concepts and proofs) was Principia Mathematica [25]. This successfully derived
a body of fundamental mathematics from a small logical system. However, the
task of doing so was extraordinarily painstaking, and indeed Russell [20] re-
marked that his own intellect ‘never quite recovered from the strain of writing
it’. The correctness theorems we are producing in our work often involve tens or
hundreds of millions of applications of primitive inference rules, and build from
foundational results about the natural numbers up to nontrivial and highly con-
crete applied mathematics. Yet using HOL Light, which can bridge the abyss
between simple primitive inferences and the demands of real applications, doing
so is quite feasible.

References

1. D. Bailey, P. Borwein, and S. Plouffe. On the rapid computation of various poly-
logarithmic constants. Mathematics of Computation, 66:903–913, 1997.

2. Yves Bertot, Gilles Dowek, André Hirschowitz, Christine Paulin, and Laurent
Théry, editors. volume 1690 of Lecture Notes in Computer Science, Nice, France,
1999. Springer-Verlag.

3. Richard John Boulton. Efficiency in a fully-expansive theorem prover. Technical
Report 337, University of Cambridge Computer Laboratory, New Museums Site,
Pembroke Street, Cambridge, CB2 3QG, UK, 1993. Author’s PhD thesis.

4. Guy Cousineau and Michel Mauny. The Functional Approach to Programming.
Cambridge University Press, 1998.

5. Michael J. C. Gordon and Thomas F. Melham. Introduction to HOL: a theorem
proving environment for higher order logic. Cambridge University Press, 1993.

6. Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh
LCF: A Mechanised Logic of Computation, volume 78 of Lecture Notes in Computer
Science. Springer-Verlag, 1979.

7. John Harrison. Metatheory and reflection in theorem proving: A
survey and critique. Technical Report CRC-053, SRI Cambridge,
Millers Yard, Cambridge, UK, 1995. Available on the Web as
http://www.cl.cam.ac.uk/users/jrh/papers/reflect.dvi.gz.

8. John Harrison. HOL Light: A tutorial introduction. In Mandayam Srivas and
Albert Camilleri, editors, Proceedings of the First International Conference on
Formal Methods in Computer-Aided Design (FMCAD’96), volume 1166 of Lecture
Notes in Computer Science, pages 265–269. Springer-Verlag, 1996.

9. John Harrison. A Mizar mode for HOL. In Joakim von Wright, Jim Grundy, and
John Harrison, editors, Theorem Proving in Higher Order Logics: 9th International
Conference, TPHOLs’96, volume 1125 of Lecture Notes in Computer Science, pages
203–220, Turku, Finland, 1996. Springer-Verlag.



10. John Harrison. Proof style. In Eduardo Giménez and Christine Paulin-Mohring,
editors, Types for Proofs and Programs: International Workshop TYPES’96, vol-
ume 1512 of Lecture Notes in Computer Science, pages 154–172, Aussois, France,
1996. Springer-Verlag.

11. John Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.
Revised version of author’s PhD thesis.

12. John Harrison. A machine-checked theory of floating point arithmetic. In Bertot
et al. [2], pages 113–130.

13. IEEE. Standard for binary floating point arithmetic. ANSI/IEEE Standard 754-
1985, The Institute of Electrical and Electronic Engineers, Inc., 345 East 47th
Street, New York, NY 10017, USA, 1985.

14. Konrad Knopp. Theory and Application of Infinite Series. Blackie and Son Ltd.,
2nd edition, 1951.

15. Ramaya Kumar, Thomas Kropf, and Klaus Schneider. Integrating a first-order
automatic prover in the HOL environment. In Myla Archer, Jeffrey J. Joyce,
Karl N. Levitt, and Phillip J. Windley, editors, Proceedings of the 1991 Interna-
tional Workshop on the HOL theorem proving system and its Applications, pages
170–176, University of California at Davis, Davis CA, USA, 1991. IEEE Computer
Society Press.

16. J Strother Moore, Tom Lynch, and Matt Kaufmann. A mechanically checked proof
of the correctness of the kernel of the AMD5K86 floating-point division program.
IEEE Transactions on Computers, 47:913–926, 1998.

17. John O’Leary, Xudong Zhao, Rob Gerth, and Carl-Johan H. Seger.
Formally verifying IEEE compliance of floating-point hardware. In-
tel Technology Journal, 1999-Q1:1–14, 1999. Available on the Web as
http://developer.intel.com/technology/itj/q11999/articles/art 5.htm.

18. Piotr Rudnicki. An overview of the MIZAR project. Available on the Web as
http://web.cs.ualberta.ca/~piotr/Mizar/MizarOverview.ps, 1992.

19. David Rusinoff. A mechanically checked proof of IEEE compliance of
a register-transfer-level specification of the AMD-K7 floating-point multi-
plication, division, and square root instructions. LMS Journal of Com-
putation and Mathematics, 1:148–200, 1998. Available on the Web via
http://www.onr.com/user/russ/david/k7-div-sqrt.html.

20. Bertrand Russell. The autobiography of Bertrand Russell. Allen & Unwin, 1968.
21. Don Syme. Three tactic theorem proving. In Bertot et al. [2], pages 203–220.
22. Andrzej Trybulec. The Mizar-QC/6000 logic information language. ALLC Bulletin

(Association for Literary and Linguistic Computing), 6:136–140, 1978.
23. Pierre Weis and Xavier Leroy. Le langage Caml. InterEditions, 1993. See also the

CAML Web page: http://pauillac.inria.fr/caml/.
24. Markus Wenzel. Isar - a generic intepretive approach to readable formal proof

documents. In Bertot et al. [2], pages 167–183.
25. Alfred North Whitehead and Bertrand Russell. Principia Mathematica (3 vols).

Cambridge University Press, 1910.
26. Vincent Zammit. On the implementation of an extensible declarative proof lan-

guage. In Bertot et al. [2], pages 185–202.


