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Abstract: In this work, we give two new Taylor expansions of arctan(x +ω), whereω represents a
finite increment of x. We discover several remarkable infinite series from these expansions by special
substitutions. Some of these infinite series give BBP-type formulae.
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1. Introduction

In 1673, Leibniz obtained an elegant infinite series of π/4 that now bears his name [1],
since then this field of mathematic began to attract widespread attentions among mathe-
maticians. Leibniz’s work was primarily concerned with quadrature, the π/4 series resulted
when he applied his method to the circle [2]. Later, Euler made the fundamental contribu-
tions to the theory of infinite series. He discovered a large number of infinite series [2–7];
these series give formulas for π as numerical results. Euler’s method of analysis has greatly
improved the development of this branch of mathematics.

In 1997, David Bailey, Peter Borwein, and Simon Plouffe discovered a striking formula
for π [8], and it can be used to generate the nth base-16 digit of π without having to look at
any prior digit [9]. A formula of this type is now called “BBP-type formula”. After that,
many researchers denoted themselves into this field; Chan [10] gave BBP-type formulas
involving the golden ratio; Adegoke [11,12], Bailey-Borweins-Plouffe [13,14], Chan [15,16],
Wei [17], Zhang [18,19], Guillera [20], and Takahashi [21–23] have found many new BBP-
type formulas.

The BBP-type formula was originally discovered by numerical methods; the authors
first supposed that such a formula exists and then searched for it using high-precision
approximate reals, a high-performance SGI workstation, and the PSLQ algorithm. Many
researchers obtained new formulas by this method [9,12–14,23–25]; it is worthwhile to
note that Takahashi [22] proposed a method of using Montgomery multiplication in the
computation of a binary BBP-type formula. However, this is not the only method to find the
BBP-type formula. Indeed, the numerical method is not priori because it can provide only
the formula but not the origin of the formula. For this reason, when a BBP-type formula is
discovered via an algorithm, we still need to provide a mathematical proof to make the
result rigorous. The second method to find a BBP-type formula is based on the theory of
calculus and infinite series. In this method, we need to firstly find infinite series, and their
numerical results are BBP-type formulas. It can be clearly seen that these infinite series
are the real origin of BBP-type formulas, and thus the method is priori. Some researchers
find new formulas by this method; Adegoke [11], Wei [17], and Chan [10,15,16] gave new
BBP-type formulas by integral calculus, with some of the formulas involving the golden
ratio; Zhang [18] discovered many new BBP-type formulas with different moduli by the
expansion of arctan[a/(x− 1)]; Bailey [26] made a systematic summary of the origin and
development of BBP-type formulas. It is especially worthwhile to note that the inverse
tangent function is closely related to the second method, useful infinite series can be
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obtained from the study of it [18]. Indeed, the well-known Gregory series can be seen as
the simplest series of this type, and it is the infinite series of the inverse tangent function.

In this paper, we will give two new Taylor’s expansions of arctan(x + ω). These
expansions have clear structures and certain laws of the progressions. We find several new
infinite series from these expansions, and their numerical results are BBP-type formulas. It
is worthwhile to note that Gregory’s series and Leibniz’s formula for π can also be deduced
from the new expansions. In addition, we also find other infinite series; although they can
not provide new BBP-type formulas, they are remarkable for their simplicity and regularity.

2. New Taylor Expansion of arctan(x +ω)

Let y = arctanx, if x changes by a finite increment ω, according to the well-known
Taylor’s expansion, we can represent the value of y at x + ω as

arctan(x + ω) = arctanx +
∞

∑
n=1

ωndny
dxn (1)

Since y = arctanx, we have

dy
dx = 1

1+x2 , d2y
dx2 = −2x

(1+x2)
2 , d3y

dx3 = 6x2−2
(1+x2)

3 , d4y
dx4 = −24x3+24x

(1+x2)
4

d5y
dx5 = 120x4−240x2+24

(1+x2)
4 , . . . ;

Hence,

arctan(x + ω) = arctanx +
ω

1 + x2 −
ω2x

(1 + x2)2 +
ω3(x2 − 1/3)

(1 + x2)3 − ω4(x3 − x)

(1 + x2)4 + . . .

This series, since the expression has no certain law, can provide nothing valuable to
us. Nevertheless, it can be transformed into another form, whose structure is immediately
clear. This new expansion can be suitably seen as a theorem, and, for this aim, we need to
firstly introduce a lemma.

Lemma 1. Suppose u = π/2− arctanx, y = arctanx, then

dny
dxn = (−1)n−1(n− 1)! sinn u sin nu (2)

Here, n ∈ N+.

Proof. Since u = π/2− arctanx, i.e.,x = cot u, it will be

dy
dx

=
1

1 + x2 = sin2 u,

or
dy = sin2 udx;

Take the differential of the formula, and we have

d2y = sin 2ududx,

since x = cot u, du = − sin2 udx, substitute the expression for du in this formula, and it
will be

d2y = − sin2 u sin 2udx2;

Take the differential of this formula and substitute du for − sin2 udx, and it will be

d3y = 2 sin3 u sin 3udx3.
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Similarly, continuing for higher differentials of y, we have

dy
dx = + sin u sin u,
d2y
dx2 = − sin2 u sin 2u,
d3y
dx3 = +2! sin3 u sin 3u,
d4y
dx4 = −3! sin4 u sin 4u,
d5y
dx5 = +4! sin5 u sin 5u,
d6y
dx6 = −5! sin6 u sin 6u,
. . .

From this, it can be easily seen that the proof of lemma is based on induction.
For n = 1, the lemma is apparently correct.
Supposing

dny
dxn = (−1)n−1(n− 1)! sinn u sin nu,

we just need to differentiate this formula to determine dn+1y/dxn+1, and it will be

dn+1y
dxn = ±n! sinn−1 u sin(n + 1)udu,

substituting du for − sin2 udx in the expression, we have

dn+1y
dxn+1 = ∓n! sinn+1 u sin(n + 1)u.

This finishes the proof. �

By Lemma 1, substitute Formula (2) into Series (1), and we have the following theorem.

Theorem 1. Suppose ω is an arbitrary finite increment of the variable x, then

arctan(x + ω) = arctanx +
∞

∑
n=1

(−1)n−1ωn

n
sinn u sin nu (3)

3. BBP-Type Formulas for π

According to Theorem 1, we can obtain many remarkable corollaries, each corollary
giving an infinite series and BBP-type formula for π. Firstly, it is worthwhile to note that
the well-known Gregory series [1], and thus the Leibniz’s Formula for π [2] can also be
deduced from this theorem. Thus, it can be seen as a new proof of this famous series and
formula, as the following corollary.

Corollary 1. Suppose ω is an arbitrary finite quantity, then

arctanω =
∞

∑
n=0

(−1)nω2n+1

2n + 1
(4)

Here, n ∈ N.

Proof. In Theorem 1, let x = 0, then arctan0 = 0, u = π/2, hence

sin u = 1, sin 2u = 0, sin 3u = −1, sin 4u = 0, . . . ;
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The sines of nu take a cycle with a period 4; substituting these values in Series (3), we
obtain Series (4).

In addition, this finishes the proof. �

Remark 1. As it is known, this is the Gregory series [1], taking ω = 1 in it gives Leibniz’s
Formula for π [2]:

π

4
=

∞

∑
n=0

(−1)n

2n + 1
(5)

Corollary 2. Suppose ω is an arbitrary finite quantity, then

arctan(1 + ω) = π
4 + 1

2

∞
∑

k=0

1
24k

(
ω8k+1

8k+1 −
ω8k+2

8k+2 + ω8k+3

2(8k+3)

− ω8k+5

22(8k+5) +
ω8k+6

22(8k+6) −
ω8k+7

23(8k+7)

) (6)

Here, k ∈ N.

Proof. In Theorem 1, let x = 1, then arctan1 = π/4, u = π/4, hence

sin u = 1√
2

, sin 2u = 1, sin 3u = 1√
2

, sin 4u = 0,

sin 5u = − 1√
2

, sin 6u = −1, sin 7u = − 1√
2
, sin 8u = 0, . . . ;

The sines of nu take a cycle with a period 8 here; substituting these values in Series (3),
we obtain Series (6).

In addition, this finishes the proof. �

Remark 2. Put ω = −1 in Series (6), and it will be

π
4 = 1

2

∞
∑

k=0

1
16k

(
1

8k+1 + 1
8k+2 + 1

2(8k+3)

− 1
22(8k+5) +

1
22(8k+6) −

1
23(8k+7)

) (7)

This is a BBP-type formula, by the notation of P function introduced by Bailey [22]:

P(s, b, m, A) =
∞

∑
k=0

(
1
bk

m

∑
j=1

aj

(mk + j)s

)
(8)

Here, s, b, m ∈ N+ and A = (a1, a2, . . . , aj), where ai ∈ N, i = 1, 2, . . . , j; this formula can
be expressed as

π

4
=

1
2

P
[
1, 16, 8, (1, 1, 2−1, 0,−2−2, 2−2,−23, 0)

]
(9)

or
π = P

[
1, 16, 8, (2, 2, 1, 0,−2−1, 2−1,−2−2, 0)

]
(10)

Remark 3. The original BBP formula for π found by Plouffe [8] is:

π = P[1, 16, 8, (4, 0, 0,−2,−1,−1, 0, 0)] (11)

Thus, it can be clearly seen that Formula (10) converges more rapidly, the speed of convergence
is determined only by aj in this case, and aj in Formula (10) are smaller.
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Remark 4. Series (6) can be expressed more concisely as

arctan(1 + ω) =
π

4
+

1
2

∞

∑
k=0

ω4k+1

(−4)k

(
1

4k + 1
− ω

4k + 2
+

ω2

2(4k + 3)

)
(12)

Put ω = −1 in this series, and we have

π =
∞

∑
k=0

1

(−4)k

(
2

4k + 1
+

2
4k + 2

+
1

4k + 3

)
(13)

In addition, it can be expressed by P function as

π = P[1,−4, 4, (2, 2, 1, 0)] (14)

This BBP-type formula was first discovered by Victor Adamchik and Stan Wagon via algo-
rithm [9]. We discover this formula in an absolute different approach.

Remark 5. It is reasonable to name the series like (12) “BBP-type series”, whose structure is exactly
the same as the BBP-type formula. Indeed, Series (12) can be written as

arctan(1 + ω) =
π

4
+

1
2

∞

∑
k=0

1

(−4)k

(
ω4k+1

4k + 1
− ω4k+2

4k + 2
+

ω4k+3

2(4k + 3)

)
(15)

If we introduce a new function W similar with function P:

W(ω, s, b, m, A) =
∞

∑
k=0

(
1
bk

m

∑
j=1

ajω
mk+j

(mk + j)s

)
(16)

Here s, b, m ∈ N+ and A =
(
a1, a2, . . . , aj

)
, where ai ∈ N, i = 1, 2, . . . , j, and ω is an

arbitrary finite quantity; then, Series (12), which gives BBP-type Formula (14) as a numerical result,
can be expressed now by W function as

arctan(1 + ω) =
π

4
+

1
2

W[ω, 1,−4, 4, (1,−1, 1, 0)] (17)

Remark 6. It is worthwhile to note that, from this point of view, Gregory Series (4) is the simplest
BBP-type series, and it can be expressed by W function as

arctanω = W[ω, 1, 2,−1, (1, 0)] (18)

In addition, Leibniz’s formula for π is the simplest BBP-type formula:

π

4
= P[1, 2,−1, (1, 0)] (19)

According to the remarks of Corollary 2 above, especially the W function in Remark 5, we give
the following corollaries of Theorem 1.

Corollary 3. Suppose ω is an arbitrary finite quantity, then

arctan(
√

3 + ω) =
π

3
+

1
4

W

[
ω, 1,−64, 6, (1,−

√
3

2
,

1
2

,−
√

3
23 ,

1
24 , 0)

]
(20)
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Proof. In Theorem 1, put x =
√

3, then arctan
√

3 = π/3, u = π/6, hence

sin u = 1
2 , sin 2u =

√
3

2 , sin 3u = 1, sin 4u =
√

3
2 , sin 5u = 1

2 , sin 6u = 0,
sin 7u = − 1

2 , sin 8u = −
√

3
2 , sin 9u = −1, sin 10u = −

√
3

2 , sin 11u = − 1
2 , sin 12u = 0, . . . ;

The sines of nu take a cycle with a period 12 here; substituting these values in Series (3),
we have

arctan(
√

3 + ω) = π
3 + 1

4

∞
∑

k=0

1
212k

(
ω12k+1

12k+1 −
√

3ω12k+2

12k+2 + ω12k+3

2(12k+3) −
√

3ω12k+4

23(12k+4)

+ ω12k+5

24(12k+5) −
ω12k+7

26(12k+7) +
√

3ω12k+8

27(12k+8)

− ω12k+9

27(12k+9) +
√

3ω12k+10

29(12k+10) −
ω12k+11

210(12k+11)

) (21)

This series can be expressed more concisely as

arctan(
√

3 + ω) =
π

3
+

1
4

∞

∑
k=0

1

(−64)k

[
ω6k+1

6k + 1
−
√

3ω6k+2

2(6k + 2)
+

ω6k+3

2(6k + 3)
−
√

3ω6k+4

23(6k + 4)
+

ω6k+5

24(6k + 5)

]
(22)

By the use of W function, this series can be written as (20), and here the sequence
A =

(
a1, a2, . . . , aj

)
in W function is not restricted in integers, but generalized to all real

numbers, i.e., ai ∈ R, i = 1, 2, . . . , j.
This finishes the proof. �

Remark 7. Put ω = −
√

3 in Series (20), and we obtain a new BBP formula:

π

3
√

3
=

∞

∑
k=0

(
27
−64

)k[ 1
22(6k + 1)

+
3

22(6k + 2)
+

3
23(6k + 3)

+
32

25(6k + 4)
+

32

26(6k + 5)

]
(23)

This formula shows that b in P function should be generalized from integers to rational
numbers, i.e., b ∈ Q; then, Formula (23) can be written by P function as

π

3
√

3
= P

[
1,−27

64
, 6, (2−2, 2−2, 2−3, 2−5, 2−6, 0)

]
(24)

It can be clearly seen that this BBP-type formula for π converges much more rapidly than
Formulas (10) and (11).

Corollary 4. Suppose ω is an arbitrary finite quantity, then

arctan(
1√
3
+ ω) =

π

6
+

3
4

W

[
ω, 1,−3

√
3

8
, 3, (1,−

√
3

2
, 0)

]
(25)

Proof. In Theorem 1, put x = 1/
√

3, then arctan1/
√

3 = π/6, u = π/3, thus

sin u =

√
3

2
, sin 2u =

√
3

2
, sin 3u = 0, sin 4u = −

√
3

2
, sin 5u = −

√
3

2
, sin 6u = 0, . . . ;

The sines of nu take a cycle with a period 6 here; substituting these values in Series (3),
we have

arctan(
1√
3
+ ω) =

π

6
+

3
4

∞

∑
k=0

(√
3

2

)6k(
ω6k+1

6k + 1
−
√

3ω6k+2

2(6k + 2)
+

√
3

3
ω6k+3

23(6k + 4)
−
√

3
4
ω6k+4

24(6k + 5)

)
(26)



Mathematics 2022, 10, 290 7 of 15

This series can be expressed more concisely as

arctan(
1√
3
+ ω) =

π

6
+

3
4

∞

∑
k=0

(
3
√

3
−8

)k(
ω3k+1

3k + 1
−
√

3ω3k+2

2(3k + 2)

)
(27)

By the use of the W function, it can be written as (25), and here b in W function is
generalized to real numbers, i.e., b ∈ R.

In addition, this finishes the proof. �

Remark 8. Generally, we conclude that it is convenient and necessary to generalize b and A
in both W function and P function from integers to real numbers, i.e., s, m ∈ N+, b ∈ R, and
A =

(
a1, a2, . . . , aj

)
, where ai ∈ R, i = 1, 2, . . . , j.

Remark 9. Put ω = −1/
√

3 in Series (25), and we have another new BBP formula:

π

3
√

3
=

∞

∑
k=0

1

(−8)k

[
1

2(3k + 1)
+

1
22(3k + 2)

]
(28)

or
π

3
√

3
= P

[
1,−8, 3, (2−1, 2−2, 0)

]
(29)

4. Infinite Series Deduced from Series (3)

In the preceding section, we obtained several corollaries of Theorem 1, and each of
them gave a BBP-type formula. In this section, nevertheless, we will give several corollaries
that are different from the previous ones; these corollaries give new infinite series.

Corollary 5. Suppose u ∈ (0, π), then

π

2
= u +

∞

∑
n=1

1
n

cosnu sin nu (30)

Here, n ∈ N.

Proof. In Theorem 1, put ω = −x, arctan(x + ω) = 0, then we have

arctanx =
∞

∑
n=1

xn

n
sinn u sin nu (31)

Since
arctanx =

π

2
− u and x = cot u =

cos u
sin u

,

Substitute these values in (31), and it will be

π

2
= u +

∞

∑
n=1

1
n

cosnu sin nu.

This series is not valid for all values of u. Indeed, y = arctanx is a multi-valued
function; for instance, arctan1 = π/4, but we also have arctan1 = 9π/4, 17π/4, . . ., which
means, when the variable x equals different values, the function y can take the same value.
This makes the differential calculus does not work, as it is known. Thus, we have to choose
an interval of y in which y is a single-valued function, i.e., y ∈ (−π/2, π/2). Furthermore,
when we set ω = −x = 0 in Series (3), both sides of the equation vanish, whence the
substitution loses its meaning in the derivation. Thus, x 6= 0, this also means y 6= 0 because
y = arctanx. Therefore, we limit y in the interval (0, π/2); thus, series (30) are valid when
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y ∈ (0, π/2), which also means u ∈ (0, π/2) because u = π/2 − y. In addition, the
equation retains the same when we substitute u for π − u, for

1
n

cosn(π − u) sin(nπ − nu) =
1
n
(− cosn u) sin nu = − 1

n
cosn u sin nu,

when n are odd numbers; and

1
n

cosn(π − u) sin(nπ − nu) =
1
n

cosn u(− sin nu) = − 1
n

cosn u sin nu,

when n are even numbers. Thus,

1
n

cosn(π − u) sin(nπ − nu) = − 1
n

cosn u sin nu, n ∈ N+.

Substitute this expression and u for π− u in the right-hand side of the equation, it can
be found that the equation retains the same. Hence, the interval of u should be (0, π).

In addition, this finishes the proof. �

Remark 10. It is interesting to write Series (30) in another form:

u =
π

2
−

∞

∑
n−1

1
n

cosnu sin nu (32)

This is a trigonometric expansion of u in the interval (0, π), hence it may have a relation to
the Fourier series. Indeed, according to the well-known Euler’s formula:

eiθ = cos θ + i sin θ,

we have:

cosn u = 1
2n (eiu + e−iu)n = 1

2n

n
∑

k=0

(
n
k

)
e(n−k)iue−kiu

= 1
2n

n
∑

k=0

(
n
k

)
e(n−2k)iu,

sin nu =
1
2i
(eniu − e−niu),

thus, each factor in the series has the form

cosn u sin nu = 1
2n+1i

n
∑

k=0

(
n
k

)
(e(2n−2k)iu − e−2kiu)

= 1
2n+1i

n
∑

k=1

(
n
k

)
(e2kiu − e−2kiu) = 1

2n

n
∑

k=1

(
n
k

)
sin(2ku).

If we set

ck =
∞

∑
n=k

1
2n

(
n
k

)
, where n, k ∈ N+;

then Series (32) can be written as

u =
π

2
−

∞

∑
k=1

ck sin(2ku).

Remark 11. If we put u = π/4 in Series (30), a BBP-type formula will be found:

π =
∞

∑
k=0

1

(−4)k

[
2

4k + 1
+

2
4k + 2

+
1

4k + 3

]
,
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which is the same as Formula (13), taking other specific values for u will not give new BBP-type
formulas too. Indeed, Series (30) is deduced from Series (3), thus every numerical result of (30) will
be the same as the corresponding numerical result of (3).

Although we cannot obtain more BBP-type formulas from series (3), it is still worth-
while to find new infinite series from it, and these series are themselves remarkable for
their simplicity, as the following corollaries.

Corollary 6. Suppose u ∈ (0, π/2), then

π

2
=

∞

∑
n=1

sin nu
n cosn u

(33)

Here, n ∈ N.

Proof. In Theorem 1, put

ω = −x− 1
x
= − 1

sin u cos u
,

then

arctan(x + ω) = arctan
(
− 1

x

)
= −π

2
+ arctanx,

substitute these values in Series (3), and we have

π

2
=

∞

∑
n=1

sin nu
n cosn u

.

Since this derivation is based on the substitution

ω = −x− 1
x

,

x 6= 0, which means y 6= 0. According to the same illustration in Corollary 5, this
series is valid at u ∈ (0, π/2). �

Corollary 7. Suppose u ∈ (0, π), then

π

2
=

u
2
+

∞

∑
n=1

sin nu
n

(34)

Here, n ∈ N+.

Proof. In Theorem 1, put
ω = −

√
1 + x2,

then
ω = − 1

sin u
and arctan

(
x−

√
1 + x2

)
= −1

2
arctan

1
x
= −u

2
,

substitute these values in Series (3), and we have Series (34). Since this derivation is based
on the substitution

ω = −
√

1 + x2 = − 1
sin u

,

it is apparent that u 6= 0, whence ω = −∞ thus loses its meaning. Furthermore, according
to the same illustration in Corollary 5, it should be y ∈ (−π/2, π/2). Therefore, π/2− y =
u ∈ (0, π).

In addition, this finishes the proof. �
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Remark 12. This series is indeed the Fourier expansion of u in interval (0, 2π). As it is known, the
Fourier series of any function f (u) which satisfies Dirichlet’s conditions in interval (α, α + 2π)
generally has the form:

a0

2
+

∞

∑
m=1

(am cos mu + bm sin mu),

where m ∈ N+ and
a0 = 1

π

∫ α+2π
α f (u)du,

am = 1
π

∫ α+2π
α f (u) cos mudu,

bm = 1
π

∫ α+2π
α f (u) sin mudu.

Hence, the coefficients of the Fourier series of f (u) = u (which satisfies Dirichlet’s conditions)
in the interval (0, 2π) will be

a0 = 1
π

∫ 2π
0 udu = 2π

am = 1
π

∫ 2π
0 u cos mudu =

[ u sin ux
mπ

]2π

0 + 1
mπ

∫ 2π
0 sin mudu = 0

bm = 1
π

∫ 2π
0 u sin mudx =−

[ u cos mu
mπ

]2π
0 + 1

mπ

∫ 2π
0 cos mudu = − 2

m

Thus, we have the Fourier series:

u
2
=

π

2
− sin u

1
− sin 2u

2
− sin 3u

3
− sin 4u

4
− sin 5u

5
− . . .

This series is exactly the same as Series (34) in the form. The only difference is, according to
Fourier analysis, this formula is valid in the interval (0, 2π), but the interval (0, π) is according
to our method.

Remark 13. If these Series (32), (33), and (34) are differentiated respectively, we obtain new infinite
series again:

1 +
∞

∑
n=0

cosn u cos(n + 2)u = 0 (35)

1 +
∞

∑
n=1

cos nu
cosn u

= 0 (36)

1
2
+

∞

∑
n=1

cos nu = 0 (37)

Here, n ∈ N in Series (35) and n ∈ N+ in Series (36) and (37); these series hold at the same
interval with their primitive series, which is Series (32), (33), and (34), respectively.

Remark 14. We shall note that it is interesting and useful to check these series by taking u as
specific values, which will immediately show the structure of the series. For instance, put u = π/4
in Series (35), and the right side of the equation will be

1− 1
2
− 1

2
− 1

22 +
1
23 +

1
23 +

1
24 −

1
25 −

1
25 −

1
26 +

1
27 +

1
27 + . . . ,

or (
1 + 1

24 +
1
28 + . . .

)
− 2
(

1
2 + 1

25 +
1
29 + . . .

)
+2
(

1
23 +

1
27 +

1
211 + . . .

)
−
(

1
22 +

1
26 +

1
210 + . . .

)
,

which vanishes apparently.
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5. Another New Taylor Expansion of arctan(x +ω)

In this section, we will give another new Taylor series of arctan(x +ω) as a theorem.
According to a similar reason as the Remark 11 of Corollary 5, we can not obtain new
BBP-type formulas from this new expansion, but the infinite series deduced from it still
deserves our attention. For this aim, we need a new lemma as follows:

Lemma 2. Suppose v = y = arctanx, then

d4k+1y
dx4k+1 = +(4k)! cos4k+1 v cos(4k + 1)v,
d4k+2y
dx4k+2 = −(4k + 1)! cos4k+2 v sin(4k + 2)v,
d4k+3y
dx4k+3 = −(4k + 2)! cos4k+3 v cos(4k + 3)v,
d4k+4y
dx4k+4 = +(4k + 3)! cos4k+2 v sin(4k + 4)v;

(38)

Here, k ∈ N.

Proof. We consider to express derivatives of y as functions of y itself this time, but, for
clarity, we use v to represent y, i.e., v = arctanx. Indeed,

dy
dx

=
1

1 + x2 =
1

1 + tan2 v
= cos2 v,

or
dy = cos2 vdx,

taking the differential of it, we have

d2y = − sin 2vdvdx,

since v = arctanx, then dv = cos2 vdx, thus

d2y = − cos2 v sin 2vdx2;

Similarly, taking the differential of this formula, we have

d3y = −2 cos v cos 3vdvdx2,

substitute dv for cos2vdx, and it will be

d3y = −2 cos3 v cos 3vdx3.

In the same manner, continuing for higher differentials of y, we have

dy
dx = cos v cos v
d2y
dx2 = − cos2 v sin 2v
d3y
dx3 = −2! cos3 v cos 3v
d4y
dx4 = +3! cos4 v sin 4v

d5y
dx5 = +4! cos5 v cos 5v
d6y
dx6 = −5! cos6 v sin 6v
d7y
dx7 = −6! cos7 v cos 7v
d8y
dx8 = +7! cos8 v sin 8v, . . . ;

Therefore, the proof is also based on induction like Lemma 1.
For k = 1, Formula (38) is apparently correct.
Suppose

d4k+1y
dx4k+1 = +(4k)! cos4k+1 v cos(4k + 1)v,
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taking the differential of it, we have

d4k+2y
dx4k+1 = −(4k + 1)! cos4k v sin(4k + 2)vdv,

since dv = cos2 vdx, it will be

d4k+2y
dx4k+2 = −(4k + 1)! cos4k+2 v sin(4k + 2)v;

In the same manner, taking the differential continuously and substitute dv for cos2 vdx,
we have

d4k+3y
dx4k+3 = −(4k + 2)! cos4k+3 v cos(4k + 3)v,

d4k+4y
dx4k+4 = +(4k + 3)! cos4k+4 v sin(4k + 4)v,

d4k+5y
dx4k+5 = +(4k + 5)! cos4k+5 v sin(4k + 5)v,

the last one is the same as

d4k+1y
dx4k+1 = +(4k + 1)! cos4k+1 v sin(4k + 1)v.

In addition, this finishes the proof. �

By Lemma 2, substitute Formula (2) into Series (1), and we have another new Taylor
expansion of arctan(x +ω) as the following theorem.

Theorem 2. Suppose ω is an arbitrary finite increment of the variable x, then

arctan(x + ω) = arctanx +
∞
∑

k=0

(
ω4k+1

4k+1 cos4k+1 v cos(4k + 1)v− ω4k+2

4k+2 cos4k+2 v sin(4k + 2)

−ω4k+3

4k+3 cos4k+3 v cos(4k + 3)v + ω4k+4

4k+4 cos4k+4 v sin(4k + 4)v
) (39)

Here, k ∈ N.

Corollary 8. Suppose v ∈ (−π/2, π/2), then

v =
∞
∑

n=0

(
sin4n+1 v cos(4n+1)v

4n+1 + sin4n+2 v sin(4n+2)v
4n+2

− sin4n+3 v cos(4n+3)v
4n+3 − sin4n+4 v sin(4n+4)v

4n+4

) (40)

Here, n ∈ N.

Proof. In Theorem 2, put ω = −x in Series (39), and we have

v =
∞
∑

n=0

(
x4n+1

4n+1 cos4n+1 v cos(4n + 1)v + x4n+2

4n+2 cos4n+2 v sin(4n + 2)v

− x4n+3

4n+3 cos4n+3 v cos(4n + 3)v− x4n+4

4n+4 cos4n+4 v sin(4n + 4)v
) (41)

Since v = arctanx, substitute x = tan v = sin v/ cos v in Series (41), and we obtain
Series (40). According to the same illustration in the Corollary 5, it should be y ∈ (0, π/2),
thus v ∈ (0, π/2) because v = y. In addition, it can be easily seen that the equation in
this corollary stays the same when we substitute v for −v, thus the interval of v should be
(−π/2, π/2).

In addition, this finishes the proof. �
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Corollary 9. Suppose v ∈ (0, π/2), then

π

2
=

∞

∑
n=0

(
cos(4n + 1)v

(4n + 1) sin4n+1 v
+

sin(4n + 2)v
(4n + 2) sin4n+2 v

− cos(4n + 3)v
(4n + 3) sin4n+3 v

− sin(4n + 4)v
(4n + 4) sin4n+4 v

)
(42)

Here, n ∈ N.

Proof. In Theorem 2, put

ω = −x− 1
x
= − 1

sin v cos v
,

then

arctan(x + ω) = arctan
(
− 1

x

)
= −π

2
+ arctanx,

substitute these values in Series (39), and we obtain Series (42). According to the same
illustration in the proof of Corollary 6, it should be y ∈ (0, π/2), thus v ∈ (0, π/2) because
v = y.

This finishes the proof. �

Corollary 10. Suppose v ∈ (−π/2, π/2), then

π

4
= −v

2
+

∞

∑
n=0

(
cos(4n + 1)v

4n + 1
+

sin(4n + 2)v
4n + 2

− cos(4n + 3)v
4n + 3

− sin(4n + 4)v
4n + 4

)
(43)

Here, n ∈ N.

Proof. In Theorem 2, put
ω = −

√
1 + x2,

since now

ω = − 1
cos v

and arctan
(

x−
√

1 + x2
)
= −1

2
arctan

1
x
=

v
2
− π

4
,

substituting these values in Series (39), and we obtain Series (43). According to the same
illustration in the proof of Corollary 7, it should be y ∈ (−π/2, π/2), thus v ∈ (−π/2, π/2)
because v = y. �

Remark 15. It is interesting and maybe curious rather than useful to note that Leibniz’s π/4
formula can also be obtained from this series, by setting v = 0.

Remark 16. Take the differentials of Series (40), (42), (43), respectively, and we have new series again:

1 =
∞
∑

n=0

(
sin4n v cos(4n + 2)v + sin4n+1 v sin(4n + 3)v

− sin4n+2 v cos(4n + 4)v− sin4n+3 v sin(4n + 5)v
) (44)

0 =
∞

∑
n=0

(
cos(4n)v
sin4n+2 v

+
sin(4n + 1)v

sin4n+3 v
− cos(4n + 2)v

sin4n+4 v
− sin(4n + 3)v

sin4n+5 v

)
(45)

− 1
2
=

∞

∑
n=0

(sin(4n + 1)v− cos(4n + 2)v− sin(4n + 3)v + cos(4n + 4)v) (46)

Here, n ∈ N, these series are valid at the same intervals with their primitive series, i.e., Series
(40), (42), and (43), respectively.
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6. Conclusions

In this study, we propose two new Taylor expansions of arctan(x + ω). These new
expansions have clear structure and exhibit certain law of progression. We obtain several
remarkable infinite series from them by specific substitutions. These infinite series give
new BBP-type formulas.

It is known that the BBP-type formula was found firstly by using the PSLQ algorithm.
However, this is not the only approach. Indeed, this numerical method is not priori because
it can only provide the formula as a result but not reveal the origin of it. For this reason,
when a BBP formula was discovered by algorithm, we still need a mathematical proof to
make the conclusion rigorous. The second approach, which is also what we adopted, is
to find infinite series firstly, and their numerical results give BBP-type formulas. Thus,
this approach is priori, and it is generally based on calculus. It is significant and useful
to realize the difference of these two approaches. In addition, it should be noted that the
inverse tangent function is generally related to the second approach. Indeed, Gregory’s
series can be seen as the simplest series of this type, and it is the infinite series of arctanx,
when x = 1; this series gives Leibniz’s formula.
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