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~ ecently, the de terminat ion  of  n digits  o f  ~ has become something of  an in- 

dus t ry  [3; 10, pp. 62-63]. By  contrast, however, f e w  mathemat i c ians  seem in- 

terested in  calculating the logarithmic constant  e to comparable precis ion [7]. 

This area is underexplored, perhaps because in  the case of  e there is a straight- 

fo rward  Maclaurin ser ies  summat ion  that  is quite accu- 

rate.  
In this article, we demonst ra te  that there exist al ternative 

approximat ions  to e that  are also very accurate.  We have 
found over 20 such approximations,  all of which are elegant 

closed-form expressions obtainable using elementary calcu- 
lus. We have used some of  these approximat ions  to calcu- 
late e to tens of thousands of  decimal-place accuracy using 
commercial ly  available software. Our most  impressive result  
is a class of  closed-form approximat ions  with extremely 

rapid convergence that  should outperform the familiar mal- 
t i term Maclaurin series approximation.  Having been  unable 
to find these approximat ions  in a search of the publ ished and 
electronic literature, we elaborate  upon them here. 

Traditional Approximations to e 
The calculat ion of  e has  in t r igued mathemat ic ians  for  cen- 
turies.  Joos t  Biirgi appea r s  to have formula ted  the  first  ap- 

p rox imat ion  to e a round  1620 [5, p. 31], obta ining three-  
decimal-place  accuracy.  Isaac  Newton, in his De Analysi 
of 1669 [8, p. 235], pub l i shed  the first vers ion of  wha t  is 

now known  as the Maclaurin ser ies  express ion  for e z, 

which for z = 1 is equal to 

Direct: 

~ 1  1 •  1 
~=0~.,=1+1+~.,+3! u  (1) 

Equat ion (1) is a "simple, direct  a p p r o a c h  [that] is the bes t  

way of  calculat ing e to high accuracy"  [2, p. 313]. Today, 
numerica l  values  of  e are der ived using ei ther  opt imized 
vers ions  of  this  Maclaurin ser ies  [7, p. 157; S. Plouffe, per-  
sonal  communicat ion]  or  the cont inued-f rac t ion  expans ion  

approach  p ionee red  by Euler  [11, p. 1019]. 
An a l ternat ive  approach  to approx imat ing  e employs  the  

Maclaurin ser ies  express ion  for  ln(1 § x). This ser ies  was  

first d i scovered  independent ly  by  Newton  in about  1665 [6, 
p. 354] and Nicolaus  Mercator  in 1668 [7, pp. 38 and 74] 
and is val id on the interval - 1 < x ~ 1: 

x 2 x ~ x 4 x 5 x 6 x 7 
ln(1 + x) = x - - -  + + + (2) 

2 3 4 5 6 7 

�9 1998 SPRINGER-VERLAG NEW YORK, VOLUME 20, NUMBER 4, 1998 2 5  



Equation (2) can be used  to obtain c losed-form approxi-  
mat ions  to e that  require the calculat ion of  a single ex- 
press ion  ins tead  of  a sum of  n + 1 te rms  involving facto- 
rials as in Eq. (1). The only example  of  this  al ternative 

approach  we have found in the l i tera ture  se ts  x = 1/x in 
Eq. (2) and mul t ip l ies  the resul t  by x to obta in  

xln(l+l)= 
1 1 1 1 1 1 

1 - ~  + 3x--g- 4 7  + 5 7 -  6x ~ + 7x ~ . . . .  (3) 

Exponent ia t ing  and using the Maclaurin ser ies  for e x leads 2. 
to an approx imat ion  to e valid on the intervals  x < - 1 and 

x - >  1, one tha t  has  been  known by mathemat ic ians  and 
bankers  alike s ince the  early seventeenth  century:  

(1/x [ 1+11 
Classical: 1 + = e 1 2x 24x 2 

7 + 244_____~7 9 5 9  + 238 043 . | .  (4) J 16x 3 5760x 4 2304x 5 580 608x 6 

[In Eq. (4) and  all s imilar  equations la ter  in this article, 

the r ight-hand side is the produc t  of  e and  the b racke ted  

quantities. The ser ies  expans ion  in Eq. (4) can be obta ined 
in Mathematica using the following commands :  

classical = SeriesIx LogIl+l/x] /. 
x-~ l/y, y,0,6] 

Collect [E^classical, E] /. y-~ 1/x 

Other ser ies  expans ions  in this art icle can be  de te rmined  
in like manner.]  

To demons t ra te  how this approx imat ion  works,  we in- 
ser t  x = 100,000 in Eq. (4) and obta in  

( 1 /,00,000 
1 + 100,000] ~ 2.71826 82372. (4')  

F rom Eq. (4'),  it  is c lear  that  for x = 100,000, the closed- 

form left-hand side of  Eq. (4 ) - -wh ich  we  call  the  Classical 
m e t h o d - - y i e l d s  an approximat ion  to e that  is accura te  to 
four  decimal  places.  In compar ison  to the  Direct  method,  
however,  this  is small  pota toes;  for example ,  Eq. (1) with 
N = 16 provides  14-decimal-place accu racy  wi thout  too 

much more  computa t iona l  overhead.  As a result,  perhaps,  
c losed-form approx ima t ions  to e have rece ived  scant  at- 

tent ion outs ide  of  the  obl igatory in t roductory-ca lculus  dis- 

cussion of  Eq. (4) (e.g., [11, p. 5581). 

Seven New Ways of Looking at e 
Approximat ions  to e far more  accura te  than the Classical 
method  can be ob ta ined  via very s imilar  methods .  Below, 

we describe,  in o rde r  of  increasing accuracy,  seven dist inct  
algebraic express ions  that  approx imate  e for  all x > 1. In 
each of Eqs. (4)-(14),  it is the left-hand express ion  that  is 
being p r o p o s e d  as  an approx imant  to e. 

1. Complementary Classical Method (CCM): The Classical 
method  has  a complemen ta ry  form that  resul ts  from let- 

ting x = - x  in Eq. (4): 

CCM: 1 -  = e  l + ~ - x  + 24x 2 

2447 959 + 238043 + . . . ]  (5) 

+ + 5760~  + 2304x ~ 580 608x 6 " 

CCM possesses  vir tual ly the  same rate of  conver-  
gence as the Classical method,  but  it approaches  e f rom 

above,  not  below. Therefore,  CCM can be combined  
with  the Classical me thod  to c rea te  new approx imat ions  

to e that  converge much  more  rapidly than e i ther  form 
by i tself  (see below).  

Complementary Addition Method (CAM): A s imple  
improvement  results  f rom adding the Classical  me thod  

and CCM, and dividing the sum by 2: 

CAM: 2[(1 + 1)x+ (1 1)-xJ 
11 2447 238 043 

= e 1 + ~ + 5 7 6 0 ~  {- 580 608x 6 

Note that  this is, by the  ser ies  analysis, the equivalent  
of  the  Classical me thod  with  all of  the odd power s  of  x 

el iminated.  

3. Mirror-Image Method (MIM): An approach  s imilar  to 
that  used  to derive CAM can also be used to  c rea te  a 

distinct,  and even more  accurate ,  approx imat ion  to e. 
By replacing x with 2x in Eq. (3), adding this to Eq. (3) 
in which  x is rep laced  with - 2 x ,  dividing by  2, and  then  

exponent ia t ing,  we obta in  

( 2 x + l / x  [ 12x ~ 1  MIM: \ - 2 ~ - ~ - ]  = e 1 + 

23 1223 + O ( ~ ) +  " ' ]  (7) 
+ 1440~ + 362 880x 6 

Like CAM, this e l iminates  all odd powers  of  x f rom 
the r ight-hand side (RHS), but  MIM's coefficient  for  1/x 2 
is smal ler  than in CAM. The der ivat ion of MIM bears  a 
s t r iking resemblance  to Gregory 's  ser ies  expans ion  for  
In [(1 + x)/(1 - x)] [1, p. 661] and also to the ser ies  ex- 
pans ion  for coth lx [2, p. 310]. To our  knowledge,  how- 

ever, this approx imat ion  to e has  never  appea red  in the  

l i terature.  

. Power Ratio Method (PRM): The Power  Ratio Method 
was  arr ived at numerica l ly  by  investigating the behav- 

ior  of  numbers  that  have been  ra ised to their  own power .  
Examina t ion  of the ra te  of  change of  the rat io  be tween  
ad jacent  integer values  of  x that  have been ra ised  to the  
x p o w e r  leads to the fol lowing approx imat ion  to e: 

PRM: (x + 1) x+1 x x 
:c ~ ( x -  1) x 1 

=--(X + I)(I + I ) X - - ( X - - 1 ) ( 1 - - 1 )  -x 

[ 1 11 5525 + O ( 7 ~ ) +  . . .]  
= e 1 + ~ +  6 ~ x  4 + 580608x 6 (8) 
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As with CAM and MIM, PRM eliminates all odd power s  
of  x and yields a rate  of  convergence  of O(1/x2). 

5. CAM-MIM-PRM A m a l g a m  Method (CMPAM): Using 

the ser ies  expans ions  as  a guide, a s t ra ight forward  com- 
binat ion of CAM, MIM, and PRM can be c r ea t ed  that  
achieves  accuracy  to O(1/x6), five orders  of  magni tude  

be t t e r  than the Classical  method:  

1 
CMPAM: 1 ~ ( 1 9 4 1  PRM - 679 MIM - 53 CAM) 

= e 1 83 566 080x 6 " 

A var ie ty  of o ther  forms with bet ter- than-Classical  ac- 

curacy  may be formed in this  manner,  but  usual ly  at  the 

cos t  of  algebraic e legance  and computa t iona l  t ime; we 
examine  them elsewhere .  Below, we exp lore  more  
adroi t  ways  to increase  the  accuracy  of  these  approxi-  

mations.  

6. Brothers -Knox  Method (BK): Drawing on the  ideas  
inherent  in MIM and PRM, an ex t remely  rapidly  con- 

vergent  class of  approx imat ions  to e can be c rea ted  by  
subst i tut ing a x for x in MIM and then dividing the  nu- 

mera to r  and denomina to r  by ar:  

(, + a- )ox [ 1 
BK: ~ )  = e  1 +  12a2 ~ 

+ 1440a ~ + 362880a 6x ~ + "" " (10) 

One special  case  of  BK seems  especial ly well  su i ted  to 

computa t iona l  analysis:  

- - - -  = e 1 + - -  
2 -x  ] 3(2 ~x) 

+ 90(24~. ~ + 5670(26x ) + ~ -  + . . . .  (11) 

Another  special  case  of  BK, in which a = x and x 

is rep laced  by  2x, p rov ides  except ional ly  rap id  conver-  

gence to e: 

(2x~ + x-~/xZ~ [ 1 23 
~ - ~ -  x -Z]  = e 1 + 12(x4X ~ + 1440(xSX ) 

1223 O ( ) ] 1  
+ 362 880(x ~2~) + ~ + "'" " (12) 

Figure 1. A compar i son  of the new approximations CAM,  MIM,  and 

PRM versus the Classical and Direct methods for I -< x < 4. Al l  meth- 

ods are defined in the text. The Direct method is calculated us ing 

Eq. (1) in wh i ch  N = x and, the re fo re ,  is the  sum o f  x + 1 te rms ;  all 

other methods are closed-form approx ima t ions .  A 15-decimal-place- 

accurate approximation to e is plotted for visual reference. 

As x4~>>x! for integer values  of  x > 1, the RHS of  

Eq. (12) impl ies  that  BK should  converge  to e much more  
quickly than  the Direct  me thod  when  the two  methods  
are  c o m p a r e d  using N = x in Eq. (1). Fur thermore ,  the  
compara t ive  advantage of  BK versus  the Direct  me thod  

will only widen  for  increasing x. 

7. Hyperexponentiated Brothers-Knox Method (BI~)  : 
Obviously, the BK method can be general ized for a = x; 
x r ep laced  by 2x, and an arbi trary number  of expo-  

nent iat ions:  

{ ~ + - - - x - ( X " ) l x ( 2 X ~ ) = e [ l + l ~  . . .], (13) 
BK~: \ 2 x  n ~ ]  12(x4Xn ) + 

in which  n indicates  the order  of  the exponent ia t ion.  
BK ~ is, in fact, a general izat ion of  o ther  approx imat ions  
p r e sen t ed  here; for  example,  BK in the form of Eq. (12) 

co r r e sponds  to BK ~ with n = 1; MIM cor responds  to the  
der ivat ion  of  BK n with a = x u2, and n = O. 

The mos t  rapidly converging example  of  this class of  
approx ima t ions  results  when  n is se t  equal to x in BK n 

(or  equivalently, when a = x and x is rep laced  by 2x x 
in BK): 

BKX: =e 1 +  12(x-4xx) +.-- , (14) 

The convergence  of BK x is as tonishingly rapid; it wou ld  

appea r  to  posses s  greater- than-quadrat ic  convergence  

even for  small  x [4, pp. 70-71]. 
The ul t imate  example  of  hyperexponen t ia t ion  would  

employ  in BK the rela t ions a = x and  x = x 1' 1' x, where  
our  no ta t ion  fol lows Knuth 's  [9, p. 38] and  indicates  tha t  

x is to be  ra ised to the x p o w e r  x number  of  times. We 
do not  pursue  this here. Al though this approach  of  hy- 
pe rexponen t i a t ion  closely r e sembles  work  on infinite it- 

e ra ted  exponent ia l s  [ht tp: / /www.mathsoft .com/asolve/  
c onstant / i t rexp/ i t rexp.html] ,  we are  not  aware  of any ap- 
p l ica t ion  of  the la t ter  to the  calcula t ion of  e. 

Numerical Computations 
For  the visual ly inclined, we provide  two  figures and a table  
which i l lustrate  the  utility of  our  new closed-form approx-  

imat ions  to  e. 
Figure 1 compares  the Classical  and  Direct  methods  to 
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F igure  2. A c o m p a r i s o n  o f  t he  n e w  a p p r o x i m a t i o n s  C M P A M ,  BK,  and  

B K  n, w h e r e  n = 2, ve rsus  t he  D i rec t  m e t h o d  f o r  1 -< x -< 4. A 15 -dec -  

i m a l - p l a c e - a c c u r a t e  a p p r o x i m a t i o n  t o  e is p l o t t ed  f o r  v isua l  r e fe r -  

ence .  N o t e  tha t  the o r d i n a t e  sca le  is no t  t he  s a m e  as in F igu re  1. 

CAM, MIM, and PRM for small  x. The di rec t  me thod  (1) is 
computed  where  N = x. It is no tewor thy  that  all of  the new 
approx imat ions  shown here  tend to e f rom above,  whereas  

the  Direct  and  Classical  methods  app roach  e from below. 
The super ior  convergence  of  CAM, MIM, and PRM versus  

the Classical m e t h o d  is obvious; however ,  for  x -> 5, the 
Direct  me thod  is m o r e  accura te  than these  three  new ap- 

proximat ions .  
In Figure 2, the  Direct  method  is c o m p a r e d  to CMPAM, 

BK, and BK n for  small  x. The Direct  m e t h o d  is ca lcula ted 

as in Figure 1; BK is ca lcula ted  using the specia l  case  (12); 
and BK n is Eq. (13) wi th  n = 2. The ex t r eme ly  rapid  con- 
vergence of  CMPAM, BK, and BK n clear ly  ou tpaces  that  of 

the Direct  me thod  for  small  x. 
Table  1 p r e s e n t s  a compar i son  of  all the  approx ima-  

t ion me thods  for  l a rger  va lues  of  x than  those  shown  in 
the  figures. In Table  1, BK and BK n are  ca lcu la ted  as in 

Figure  2. 
In addition, we have made a very modes t  foray into the 

realm of high-precision calculations of  e. We have used MIM 

for this purpose ,  as  it  involves very few ar i thmet ic  opera-  
tions and pe r fo rms  well  wi thout  opt imizat ion.  Running 
Mathemat ica 2.2 on an IBM RS/6000 computer ,  we calcu- 
lated MIM in the form [(x + 1)/(x - 1)]x/2. This form of  MIM 

is chosen to mitigate the toss of precis ion that  occurs  if the 
calculation is done with MIM as shown in Eq. (7). For  the 
same reason, we manual ly typed in x as  1015,0~176 with 30,000 

decimal  places;  in Mathemat ica ,  there  is loss  of  prec is ion 
if one def ines  x as  x - - )  N [ ' I , O  ~ 3 0 0 0 0 ] ^ 1 5 0 0 0  instead. 
(Manual typing of  30,000 decimal  p laces  is not  an onerous  

task  using Mathemat i ca ' s  pas te  option.)  
Once x was  defined,  we employed  MIM to calculate  

29,999 correc t  dec imal  p laces  of  e in 15 s. This compares  
very  favorably to the  12-s runt ime on the same  hardware  

and sof tware  needed  to ca lcula te  an equivalent number  of  
cor rec t  decimal  p laces  using the N Ir E x p [ 1 ] ,  3 0 0 0 0 ] 
c o m m a n d  in Mathemat ica .  This is by  no means  a r igorous  

tes t  of  the computa t iona l  speed  and accuracy  obta inable  
wi th  our  new approx imat ions  using this sof tware /hardware  
configuration,  but  is p r e sen t ed  to give some compar i son  

b e t w e e n  exist ing and new methods .  
Given the extraordinar i ly  rapid  convergence of  BK n, we 

bel ieve that  it may be poss ib le  to use our  methods  to com- 

pute  e to unprecedented  accuracy.  As an ext reme example ,  
we es t imate  that  for x = 10, the  BK x approximat ion  would  
yield e accurate  to 40 bil l ion decimal  places,  a l though ob- 
viously that  computa t ional  t a sk  would be formidable.  
However ,  the computa t ional  potent ia l  of  the BK n class  of  

approx imat ions  calmot  be thoroughly  evaluated until opti- 
mizat ion of  the calculat ion of  x (x') using Fas t  Four ie r  

Transform (FFF)  methods  is pe r fo rmed  [S. Plouffe, per-  
sonal  communicat ion].  We leave these exper iments  to the 

exper t s  on this subject. 

Discussion 
We have identif ied and formal ly  es tabl i shed  the ex i s tence  
of  new closed-form approx imat ions  to e. Six of  the  new ap- 

p rox ima t ions  d iscussed  here  improve  upon the c lass ical  
c losed-form approximat ion.  In par t icular ,  the  BK n class  of  

approx ima t ions  converges  to e much more  rapidly  than 
even the direct  Maclaurin ser ies  method.  Therefore,  our  

work  may  have pract ica l  appl icat ion.  
The impressive numer ica l  accuracy  of  these  new ap- 

p rox ima t ions  should not  c loud our  eyes to an even more  
ex t raord ina ry  aspect:  the e legance and simplicity of  the  ex- 
p ress ions  for e, par t icular ly  MIM. Compared  to many  o ther  
me thods  for computing class ical  constants,  MIM is breath-  
taking. Only one addition, one subtraction,  one mult ipl ica-  

i r_,1 :t q =i5 IqK~[,],.. m. ~,], [ . ]  dr. c~. h ,m tf;~ m('~. t ~ ,  I r. [~*~., r r - ] .  [.], ~r.I,J.] |,til I li ~11 p] iF |  ~, | 

X (=N)  Classica l  CAM MIM PRM C M P A M  Di rect  B K  BK"  

10 0 1 2 2 7 7 - 4 0  400 

100 1 3 4 4 13 159 - 8 0 0  -80 ,000  

1000 2 5 6 6 19 2570 --12,000 -12,000,000 

Note: To i l lus t ra te  this  compar i son ,  in the f l int  row w h e r e  x = N  = 10, the Class ica l  method  = (1 + 1/10) w, MIM = (21/19) 1~ and the Direct  me thod  = 

~ ~  0 (l /k!) .  BW' is ca l cu la t ed  wi th  n = 2. The - s ign ind ica tes  a theore t ica l  es t imate .  
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tion (employed twice), one division, and one exponentia- 
tion are required to approximate e to tens of thousands of 
decimal places. The mathematical knowledge required to 
understand it is provided in introductory calculus, but the 
end result can be grasped and computed by an elementary- 
school student. The logarithmic constant e is famous for 
turning up whenever natural beauty and mathematical ele- 
gance commingle. Our work provides a new glimpse of its 

austere charm. 
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