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Abstract

With this paper we introduce a new series representation ofζ(3), which is based on

the Clausen representation of odd integer zeta values. Although, relatively fast converging

series based on the Clausen representation exist forζ(3), their convergence behavior is very

slow compared to BBP-type formulas, and as a consequence they are not used for explicit

numerical computations. The reason is found in the fact thatthe corresponding Clausen

function can be calculated analytically for a few rational arguments only, wherex = 1
6 is the

smallest one. Using polylogarithmic identities in combination with a polynomial description

of the even Bernoulli numbers, the convergence behavior of the Clausen-type representation

has been improved to a level that allows us to challenge ultimately all BBP-type formulas

available forζ(3). We present an explicit numerical comparison between one ofthe best

available BBP formulas and our formalism. Furthermore, we demonstrate by an explicit

computation using the first four terms in our series representation only thatζ(3) results with

an accuracy of2 ∗ 10−26, where our computation guarantees on each approximation level for

an analytical expression forζ(3).

1 INTRODUCTION

During the last decades BBP-type formulas have been established as the technique of choice
for very fast digit extraction of mathematical constants, as for example,π, ln(2), ζ(3) or ζ(5)

[1, 2, 3, 4, 5, 6, 7]. This is because the corresponding algorithms are simply to implement,
where the need of computer memory is very low and no multiple precision arithmetic software is
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required [6]. Apart from digit extraction interest has grown in BBP-type formulas in context with
statistical randomness of the digit expansions of polylogarithmic constants [1].

However, a shortcoming of BBP-type formulas is that a variety of binary degree-1 and degree-

2 formulas exist, but only a few ternary (base 3) or even higher degree BBP-type formulas for
polylogarithmic constants are known. The reason is found inthe strong increase of complexity

of polylogarithmic functional equations as a function of the corresponding binary degree. An
example is given by Adegoke [8] for a polylogarithmic functional equation of degree 5, where no

BBP-type formula forζ(7) or higher odd-integer zeta values has been discovered so far[8].
Concerning the computation of odd-integer valued zeta numbers the so called Clausen rep-

resentation of zeta numbers [9, 10, 11] allows for relatively fast digit extraction, which is not
restricted toζ(3) and ζ(5). We have combined this approach recently with a new polynomial
representation of the Bernoulli numbers in connection withBendersky’s L-numbers [12], which

appear in context with the logarithmic Gamma function [13].As a first application approximate
calculations ofζ(3), ζ(5) andζ(7) in terms this polynomial representation had been presented,

where this computational procedure is applicable to allζ-values with integer arguments, as well
as to related numbers like Catalan’s constant. Compared to digit extraction via corresponding

BBP-type formulas the convergence behavior is not really competitive because the Clausen func-
tions can be calculated analytically for a few rational arguments only, wherex = 1

6
is the smallest

one. In principle one may argue that the speed up in the convergence should be significant if
one would be able to find smaller real-type arguments which also allows one for an analytical
computation of the corresponding Clausen function. This isindeed possible by the use of poly-

logarithmic ladder identities, which exist forζ(3) and ζ(5). In this contribution we present a
first application to the numerical computation ofζ(3) where we combine polylogarithmic identi-

ties with our polynomial description of Bernoulli numbers to challenge one of the best available
BBP-type formulas typically used for digit extraction ofζ(3) [2]. We demonstrate by an explicit

computation that a fast computation ofζ(3) is possible, for example with an accuracy of about
10−26. Furthermore, we demonstrate that our approach guaranteesfor an analytical expression
of ζ(3) independently from the requested numerical accuracy. At last we present an explicit nu-

merical computation which shows that our series representation of ζ(3) converges more than six
orders of magnitude faster compared to the famous BBP-type formula discovered first by Bailey

and coworkers [14].
The paper is organized as follows: in section 2 we remark on the Clausen representation of

odd-integer zeta numbers and present a first computation ofζ(3) by use of a well known polylog-
arithmic ladder identity forLi3

(

1
2

)

. In section 3 we introduce our polynomial representation of

the even Bernoulli numbers and as a consequence forζ(2n), n ∈ N. This approach is then com-
bined with the Clausen representation ofζ(3) to achieve a fast converging series representation,
which guarantees on each approximation level for an analytical expression ofζ(3). Furthermore,

we demonstrate that the iterated use of an appropriate polylogarithmic functional equation for
Li3 (x) allows for a tremendous speed up of the convergence behaviorof our series representa-

tion. In section 4 we summarize our results.
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2 Clausen representation of zeta numbers

Well-known for a long time is the famous Euler representation [9, 10] ofζ(2n) with n ∈ N:

ζ(2n) = (−)n+1B2n
(2π)2n

2(2n)!
. (2.1)

For odd integer numbers, as for example, forn = 3 one finds [11, 15]:
Lemma 2.1

Cl3(x) =

∞
∑

n=1

cos(2πnx)

n3
= ζ(3) − 3π2x2 + 2π2x2ln(2π|x|)

− 8π2
∞
∑

n=1

ζ(2n)

2n(2n+ 1)(2n+ 2)
x2n+2 , (2.2)

with x ∈ R. A computation of the Clausen function Cl3(x) for the argumentx = 1
6

results in
[11]:

ζ(3) =
π2

8
− π2

12
ln(

π

3
) +

π2

3

∞
∑

n=1

ζ(2n)

2n(2n+ 1)(2n+ 2)

(

1

6

)2n

. (2.3)

Equation (2.3) converges rather fast, and obviously the convergence could be improved using

smaller arguments for the Clausen function. Unfortunately, this is not for possible x∈ Q, as
for smaller rational arguments asx = 1

6
partial sums remain in the computation of the Clausen

function, which are not expressible in terms ofζ(3). The way out is the use of polylogarithmic
functions, which are widely used in so called BBP formulas [3, 8, 16]. For example, it follows

for Li3
(

1
2

)

[3]:

Li3

(

1

2

)

=
∞
∑

n=1

1

n3

(

1

2

)n

=
7

8
ζ(3) +

1

6
(ln(2))3 − π2

12
ln(2) . (2.4)

ReformulatingLi3
(

1
2

)

in the following way:

Lemma 2.2

Li3

(

1

2

)

=

∞
∑

n=1

1

n3
einθ , (2.5)

with θ = i ln(2) the computation in terms of the corresponding Clausen functionsCl3(x) and
Sl3(x) results in:

Lemma 3.2

ζ(3) =
2π2

3
ln(2)− 6(ln(2))2 +

2

3
(ln(2))3 + 4(ln(2))2ln(ln(2))

+ 16(ln(2))2
∞
∑

n=1

(−)n+1ζ(2n)

2n(2n+ 1)(2n+ 2)

(

ln(2)

2π

)2n

, (2.6)
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whereSl3(x) is known analytically. Using the corresponding expressionfor Li3(
1
2
) the new

argumentx = ln(2)
2π

is x ≈ 1
9

instead ofx = 1
6
, and as a consequence the convergence is much

faster. Furthermore, this series shows up with an alternating sign which provides some benefit

in estimating the convergence properties. For example,ζ(3) results from the sum of the explicit
terms including the first term (n=1) from infinite series withan error ofδ ≈ 10−07.

One may notice that the argumentx = 1
6

works for all Clausen functionsCl2n+1 as the well
known identity exists [11]:

Cl2n+1(
π

3
) =

1

2

(

1− 2−2n
) (

1− 3−2n
)

ζ(2n+ 1) . (2.7)

This procedure is also applicable toζ(2), with [3, 16]:

Li2

(

1

2

)

=
π2

12
− 1

2
(ln(2))2 . (2.8)

It follows then forζ(2):

ζ(2) = 2ln(2)(1− ln(ln(2)))− 1

2
(ln(2))2 − 4ln(2)

∞
∑

n=1

(−)n+1ζ(2n)

2n(2n+ 1)

(

ln(2)

2π

)2n

.

(2.9)

Unfortunately, for zeta values with larger integer argument a similar computation seems not
possible because forLin

(

1
2

)

with n > 3 no closed expressions are known [17, 18, 19]. For

example, it follows forLi4
(

1
2

)

:

Li4

(

1

2

)

=
15

16
ζ(4)− 7

8
ζ(3)ln(2) +

1

4
ζ(2)(ln(2))2 +

∞
∑

n=1

(−)n

(n+ 1)3
Hn , (2.10)

whereHn denotes the ordinary finite harmonic series. For the corresponding infinite series no
analytical expression exists. As a consequence the computational scheme introduced here is

applicable to a non-trivial computation ofζ(3) only, asζ(2) is known from Eq. (2.1) explicitly.

3 Explicit calculation of ζ(3) in terms of polylogarithmic iden-

tities

To further improve the convergence in the calculation ofζ(3) a polynomial representation of the
Bernoulli numbers will be used [13]:

Proposition 2.1

ζ(2n) =
ζ(2)n

(2n− 1)

n
∑

l=1

(−)l+1

(

n + 2− l

2

)

P (l)(n), (3.1)

where the P-polynomials are available from the following recursion relation [13]:

P (n−l+1)(n) = 6n
l − 1

2n− l

n−1
∑

i=l−1

P i−l+2(i)

6i(2n− 2i)
, l > 1 . (3.2)
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with P (1)(n) = 1
n
. As an example, the next three Polynomials result to:

P (2)(n) =
3

2 ∗ 5 (3.3)

P (3)(n) =
3(21n− 43)

23 ∗ 52 ∗ 7 (3.4)

P (4)(n) =
63n2 − 387n+ 590

24 ∗ 53 ∗ 7 (3.5)

With this we have:

ln sin(πx) = ln(πx)

−
∞
∑

n=1

2ζ(2)n

(2n− 1)2n

(

n
∑

l=1

(−)l+1

(

n+ 2− l

2

)

P (l)(n)

)

x2n . (3.6)

For ζ(3) it follows then:

ζ(3) =
2π2

3
ln(2)− 6(ln(2))2 +

2

3
(ln(2))3 + 4(ln(2))2ln(ln(2))

+ 192
∞
∑

i=1

ci

(

ln(2)

2
√
6

)2i

, (3.7)

with

ci =

∞
∑

n=1

(−)n+1n(n + 1)P (i)(n+ i− 1)

(2n+ 2i− 3)(2n+ 2i− 2)(2n+ 2i− 1)(2n+ 2i)

(

ln(2)

2
√
6

)2n

. (3.8)

Using furthermore the polylogarithmic identities [7]:

Li3

(

3

4

)

+ 2Li3

(

1

3

)

+ Li3

(

1

4

)

=
19

6
ζ(3) +

1

3
(ln(3))3 − 4

3
(ln(2))3

− π2

3
ln(2) + 2ln

(

4

3

)

(ln(2))2 (3.9)

and

Li3

(

1

3

)

+
1

4
Li3

(

1

4

)

+ Li3

(

2

3

)

=
15

8
ζ(3) +

1

6
(ln(2))3 − π2

12
ln(2)

− 1

6

(

ln

(

3

2

))3

+
1

2
ln(3)

(

ln

(

3

2

))2

− π2

6
ln

(

3

2

)

,

(3.10)

together with the following functional equation forLi3(x): [7]

7

4
ζ(3) =

1

4
Li3

(

(

1− x

1 + x

)2
)

− 2Li3

(

1− x

1 + x

)

+ 2Li3(1− x)

+ Li3

(

1

1 + x

)

− 1

2
Li3(1− x2) +

π2

6
ln(1 + x)− 1

3
(ln(1 + x))3 , (3.11)
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a new identity results with all three arguments ofLi3(x) much closer to 1:

6Li3

(

2

3

)

+ 3Li3

(

3

4

)

− Li3

(

8

9

)

=
91

12
ζ(3)− π2

2
ln(2) +

7

3
(ln(2))3 − 1

3
(ln(3))3

− 1

3

(

ln

(

3

2

))3

− 2ln

(

4

3

)

(ln(2))2 + ln(3)

(

ln

(

3

2

))2

+
2

3

(

ln

(

4

3

))3

.

(3.12)

In a next step we computeLi3(x) in terms of the corresponding Clausen function by use of the

polynomial representation of the Bernoulli numbers and with the help of Eq. (3.1). It follows then
for the polylogarithmic functionLi3(x):

Li3(x) = ζ(3)− π2

6
ln

(

1

x

)

+
1

12

(

ln

(

1

x

))3

+
3

4

(

ln

(

1

x

))2

− 1

2

(

ln

(

1

x

))2

ln

(

ln

(

1

x

))

− 24

(

ln

(

1

x

))2 ∞
∑

n=1

2(−)n+1
n
∑

l=1

(−)l+1

(

n+ 2− l

2

)

P (l)(n)

(2n− 1)2n(2n+ 1)(2n+ 2)

(

ln
(

1
x

)

2
√
6

)2n+2

.

(3.13)

For ζ(3) this gives:

ζ(3) =
2π2

5
ln(3)− 54

5

(

ln

(

3

2

))2

− 27

5

(

ln

(

4

3

))2

+
9

5

(

ln

(

9

8

))2

− 6

5

(

ln

(

3

2

))3

+

(

ln

(

4

3

))3

+
1

5

(

ln

(

9

8

))3

+
28

5
(ln(2))3 − 4

5
(ln(3))3 − 4

5

(

ln

(

3

2

))3

+
36

5

(

ln

(

3

2

))2

ln

(

ln

(

3

2

))

+
18

5

(

ln

(

4

3

))2

ln

(

ln

(

4

3

))

− 6

5

(

ln

(

9

8

))2

ln

(

ln

(

9

8

))

+
1728

5

∞
∑

i=1

ai

(

ln(3
2
)

2
√
6

)2i

+
864

5

∞
∑

i=1

bi

(

ln(4
3
)

2
√
6

)2i

− 288

5

∞
∑

i=1

ci

(

ln(9
8
)

2
√
6

)2i

,

(3.14)

with

ai =

∞
∑

n=1

(−)n+1n(n + 1)P (i)(n)

(2n+ 2i− 3)(2n+ 2i− 2)(2n+ 2i− 1)(2n+ 2i)

(

ln(3
2
)

2
√
6

)2n

, (3.15)

bi =

∞
∑

n=1

(−)n+1n(n+ 1)P (i)(n)

(2n+ 2i− 3)(2n+ 2i− 2)(2n+ 2i− 1)(2n+ 2i)

(

ln(4
3
)

2
√
6

)2n

, (3.16)
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and

ci =
∞
∑

n=1

(−)n+1n(n+ 1)P (i)(n)

(2n+ 2i− 3)(2n+ 2i− 2)(2n+ 2i− 1)(2n+ 2i)

(

ln(9
8
)

2
√
6

)2n

, (3.17)

with the arguments
ln( 3

2
)

2
√
6

,
ln( 4

3
)

2
√
6

and
ln( 9

8
)

2
√
6

for the coefficients ai, bi and ci. Summing up the first

four terms (i=1,2,3,4) from each of the three infinite seriestogether with the explicit terms for an
approximate computationζ(3) follows with an error ofδ ≈ 0.3∗10−17. This is only two orders of
magnitude slower in the convergence when compared, for example, to the famous BBP formula

[14]:

ζ(3) =
1

672

∞
∑

k=0

(

1

4096

)k

[

2048

(24k + 1)3
− 11264

(24k + 2)3
− 1024

(24k + 3)3
+

11776

(24k + 4)3

− 512

(24k + 5)3
+

4096

(24k + 6)3
+

256

(24k + 7)3
+

3456

(24k + 8)3

+
128

(24k + 9)3
− 704

(24k + 10)3
− 64

(24k + 11)3
− 128

(24k + 12)3

− 32

(24k + 13)3
− 176

(24k + 14)3
+

16

(24k + 15)3
+

216

(24k + 16)3

+
8

(24k + 17)3
+

64

(24k + 18)3
− 4

(24k + 19)3
+

46

(24k + 20)3

− 2

(24k + 21)3
− 11

(24k + 22)3
+

1

(24k + 18)3

]

. (3.18)

Within an iterated use of the functional equation (3.10) better and better approximations can be

found. The slowest convergence is found now byLi3(23). As a consequence we rewrite with the
help of (3.10)Li3

(

2
3

)

. It follows first for the polylogarithmic function:

Li3

(

2

3

)

= 8Li3

(

√

2

3

)

− 8Li3

(

2
√
2√

2 +
√
3

)

− 8Li3

(√
2 +

√
3

2
√
3

)

+ 2Li3

(

4
√
6

5 + 2
√
6

)

+ 7ζ(3)− 2π2

3
ln

(

2
√
2√

2 +
√
3

)

+
4

3

[

ln

(

2
√
2√

2 +
√
3

)]3

,

(3.19)
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and finallyLi3
(

2
3

)

results to:

Li3

(

2

3

)

= ζ(3)− 2π2

3
ln

(

3

2

)

+
1

12

(

ln

(

3

2

))3

+
3

2

(

ln

(

3

2

))2

−
(

ln

(

3

2

))2

ln

(

1

2
ln

(

3

2

))

+
4π2

3
ln

(√
2 +

√
3

2
√
2

)

− 3

4

(

ln

(√
2 +

√
3

2
√
2

))3

− 6

(

ln

(√
2 +

√
3

2
√
2

))2

+ 4

(

ln

(√
2 +

√
3

2
√
3

))2

ln

(

ln

(√
2 +

√
3

2
√
3

))

− π2

3
ln

(

5 + 2
√
6

4
√
6

)

+
1

6
ln

(

5 + 2
√
6

4
√
6

)3

+
3

2

(

ln

(

5 + 2
√
6

4
√
6

))2

−
(

ln

(

5 + 2
√
6

4
√
6

))2

ln

(

ln

(

5 + 2
√
6

4
√
6

))

+
2π2

3
ln

(

2
√
3√

2 +
√
3

)

+
2

3

(

ln

(

2
√
3√

2 +
√
3

))3

− 6

(

ln

(

2
√
3√

2 +
√
3

))2

+ 4

(

ln

(

2
√
3√

2 +
√
3

))2

ln

(

ln

(

2
√
3√

2 +
√
3

))

+ 4

(

ln

(

3

2

))2 ∞
∑

n=1

(−)nζ(2n)

2n(2n + 1)(2n+ 2)

(

ln
(

3
2

)

4π

)2n

− 16

(

ln

(√
2 +

√
3

2
√
2

))2 ∞
∑

n=1

(−)nζ(2n)

2n(2n+ 1)(2n+ 2)





ln
(√

2+
√
3

2
√
2

)

2π





2n

− 16

(

ln

(

2
√
3√

2 +
√
3

))2 ∞
∑

n=1

(−)nζ(2n)

2n(2n+ 1)(2n+ 2)





ln
(

2
√
3√

2+
√
3

)

2π





2n

+ 4

(

ln

(

5 + 2
√
6

4
√
6

))2 ∞
∑

n=1

(−)nζ(2n)

2n(2n+ 1)(2n+ 2)





ln
(

5+2
√
6

4
√
6

)

2π





2n

,

(3.20)

where now four infinite series appear in the computation ofLi3
(

2
3

)

. The slowest convergence

is found in the first infinite series with the argumentx =
ln( 3

2
)

4π
≈ 1

31
. The other three argu-

ments are much smaller, at least by a factor of two. Insertingnow in each of the four infinite
series the polynomial representation of the even Bernoullinumbers (Eq. (3.1)) the combination
of polylogarithmic identities forLi3(x) with a polynomial description of Bernoulli numbers has

been established, where the polynomial representation guarantees for an additional speed up in
the convergence behavior of all of the four infinite series bymore than an order of magnitude.

Finally, at this approximation levelζ(3) results to:
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ζ(3) =
48π2

5
ln

(

3

2

)

+
6π2

5
ln

(

4

3

)

− 2π2

5
ln

(

9

8

)

− 96π2

5
ln

(√
2 +

√
3

2
√
2

)

− 48π2

5
ln

(

2
√
3√

2 +
√
3

)

+
28π2

5
ln

(

5 + 2
√
6

4
√
6

)

− 108

5

[

ln

(

3

2

)]2

− 27

5

[

ln

(

4

3

)]2

+
9

5

[

ln

(

9

8

)]2

+
432

5

[

ln

(√
2 +

√
3

2
√
2

)]2

+
432

5

[

ln

(

2
√
3√

2 +
√
3

)]2

− 108

5

[

ln

(

5 + 2
√
6

4
√
6

)]2

− 3

5

[

ln

(

4

3

)]3

− 6

5

[

ln

(

3

2

)]3

+
1

5

[

ln

(

9

8

)]3

+
54

5

[

ln

(√
2 +

√
3

2
√
2

)]3

− 48

5

[

ln

(

2
√
3√

2 +
√
3

)]3

− 12

5

[

ln

(

5 + 2
√
6

4
√
6

)]3

+
18

5

[

ln

(

4

3

)]2

ln

[

ln

(

4

3

)]

+
72

5

[

ln

(

3

2

)]2

ln

[

ln

(

3

2

)]

− −6

5

[

ln

(

9

8

)]2

ln

[

ln

(

9

8

)]

− 288

5

[

ln

(√
2 +

√
3

2
√
2

)]2

ln

[

ln

(√
2 +

√
3

2
√
2

)]

− 288

5

[

ln

(

2
√
3√

2 +
√
3

)]2

ln

[

ln

(

2
√
3√

2 +
√
3

)]

+
72

5

[

ln

(

5 + 2
√
6

4
√
6

)]2

ln

[

ln

(

5 + 2
√
6

4
√
6

)]

+
864

5

∞
∑

n=1

c(1)
n

[

ln
(

4
3

)

2
√
6

]2n

− 864

5

∞
∑

n=1

c(2)
n

[

ln
(

9
8

)

2
√
6

]2n

+
13824

5

∞
∑

n=1

c(3)
n

[

ln
(

3
2

)

4
√
6

]2n

− 13824

5

∞
∑

n=1

c(4)
n





ln
(√

2+
√
3

2
√
2

)

2
√
6





2n

− 13824

5

∞
∑

n=1

c(5)
n





ln
(

2
√
3√

2+
√
3

)

2
√
6





2n

+
3456

5

∞
∑

n=1

c(6)
n





ln
(

5+2
√
6

4
√
6

)

2
√
6





2n

.

(3.21)

Summing up again the first four terms (n=1,2,3,4) from each ofthe six infinite series together

with all terms given explicitlyζ(3) follows now with an error ofδ ≈ 0.37 ∗ 10−21. This is two
orders of magnitude faster in the convergence when comparedto the BBP formula [14].

It should be mentioned at this stage, that a further advantage of our series representation is
that all of these six types of coefficients can be expressed interms of elementary functions based
on logarithmic expressions. This allows for a more detailedinsight onζ(3) as it guarantees on
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each approximation level an analytical expression forζ(3).
The slowest convergence is now withLi3(34). Therefore, we rewrite the polylogarithmic func-

tion belonging to the argument
ln( 4

3
)

2
√
6

, again with the help of the functional equation (3.10). It

follows then:

Li3

(

3

4

)

= 8Li3

(

√

3

4

)

− 8Li3

(

2 +
√
3

2
√
3

)

− 8Li3

(

4

2 +
√
3

)

+ 2Li3

(

7 + 4
√
3

8
√
3

)

+ 7ζ(3)− 2π2

3
ln

(

4

2 +
√
3

)

+
4

3

[

ln

(

4

2 +
√
3

)]3

,

(3.22)

and finally:

Li3

(

3

4

)

= ζ(3)− 2π2

3
ln

(

4

3

)

− 1

12

(

ln

(

4

3

))3

+
3

2

(

ln

(

4

3

))2

−
(

ln

(

4

3

))2

ln

(

ln

(

4

3

))

+
4π2

3
ln

(

2 +
√
3

2
√
3

)

+
2

3

(

ln

(

2 +
√
3

2
√
3

))3

− 6

(

ln

(

2 +
√
3

2
√
3

))2

+ 4

(

ln

(

2 +
√
3

2
√
3

))2

ln

(

ln

(

2 +
√
3

2
√
3

))

+ 2π2ln

(

4

2 +
√
3

)

+
2

3
ln

(

4

2 +
√
3

)3

− 6ln

(

4

2 +
√
3

)2

+ 4

(

ln

(

4

2 +
√
3

))2

ln

(

ln

(

4

2 +
√
3

))

− π2

3
ln

(

7 + 4
√
3

8
√
3

)

− 1

6

(

ln

(

7 + 4
√
3

8
√
3

))3

+
3

2

(

ln

(

7 + 4
√
3

8
√
3

))2

−
(

ln

(

7 + 4
√
3

8
√
3

))2

ln

(

ln

(

7 + 4
√
3

8
√
3

))

+ 4

(

ln

(

4

3

))2 ∞
∑

n=1

(−)nζ(2n)

2n(2n+ 1)(2n+ 2)

(

ln
(

4
3

)

4π

)2n

− 16

(

ln

(

2 +
√
3

2
√
3

))2 ∞
∑

n=1

(−)nζ(2n)

2n(2n + 1)(2n+ 2)





ln
(

2+
√
3

2
√
3

)

2π





2n

− 16

(

ln

(

4

2 +
√
3

))2 ∞
∑

n=1

(−)nζ(2n)

2n(2n+ 1)(2n+ 2)





ln
(

4
2+

√
3

)

2π





2n

+ 4

(

ln

(

7 + 4
√
3

8
√
3

))2 ∞
∑

n=1

(−)nζ(2n)

2n(2n + 1)(2n+ 2)





ln
(

7+4
√
3

8
√
3

)

2π





2n

(3.23)

This procedure can be applied as often as necessary to compute ζ(3) with a default accuracy.
The only shortcoming is that the number of infinite series increases caused by the mathematical
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structure of the functional equation (3.10), where the corresponding arguments appear as nested
roots. As mentioned before, this procedure is not applicable to higher zeta values, as for example
ζ(5), because no appropriate functional equations exist. In order to finally challenge the BBP for-

mula [14] the polylogarithmsLi3
(√

2
3

)

andLi3
(√

3
4

)

appearing with the slowest convergence
behavior at this approximation level will be rewritten withthe help of (3.10). It follows:

Li3

(

√

2

3

)

= 8Li3

(

4

√

3

4

)

− 8Li3

(

4
√
2 + 4

√
3

2 4
√
2

)

− 8Li3

(

2 4
√
3

4
√
2 + 4

√
3

)

+ 2Li3

(√
2 +

√
3 + 2 4

√
6

4 4
√
6

)

+ 7ζ(3)− 2π2

3
ln

(

2 4
√
3

4
√
2 + 4

√
3

)

+
4

3

[

ln

(

2 4
√
3

4
√
2 + 4

√
3

)]3

,

(3.24)

and

Li3

(

√

3

4

)

= 8Li3

(

4

√

3

4

)

− 8Li3

(√
2 + 4

√
3

2 4
√
3

)

− 8Li3

(

2
√
2√

2 + 4
√
3

)

+ 2Li3

(

2 +
√
3 + 2 4

√
12

4 4
√
12

)

+ 7ζ(3)− 2π2

3
ln

(

2
√
2√

2 + 4
√
3

)

+
4

3

[

ln

(

2
√
2√

2 + 4
√
3

)]3

.

(3.25)

To further increase the speed up in the convergence behaviorwe use the polynom representation
of the Bernoulli numbers where both B2n and B2n−2 are involved [13]. It follows then forLi3(x):

Li3(x) = ζ(3)− π2

6
ln

(

1

x

)

+
1

12

(

ln

(

1

x

))3

+
3

4

(

ln

(

1

x

))2

− 1

2

(

ln

(

1

x

))2

lnln

(

1

x

)

− 1

288

(

ln

(

1

x

))4

+ 24

(

ln

(

1

x

))2 ∞
∑

n=1

[ (−)n+1
n+1
∑

l=1

(−)l+1

(

n + 5− l

4

)

P (l)(n+ 1)

(2n− 1)2n(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)

−
∞
∑

n=1

2(−)n+1
n
∑

l=1

(−)l+1

(

n + 2− l

2

)

P (l)(n)

(2n− 1)2n(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)

](

ln
(

1
x

)

2
√
6

)2n+2

(3.26)

Calculating all relevant polylogarithms with the formula presented above the additional speed up

in the convergence is more than one order of magnitude. Computing ζ(3) at this approximation
level, again by respecting the first four terms in the corresponding series (n=1,2,3,4), the accuracy

is better than10−25. This is more than six orders of magnitude better in the convergence when
compared to [14]. The complete numerical comparison with the BBP formula [14] for n=1,2,3
and 4 is presented in Tab. I.
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ζ(3) ζ(3)-Zeta series ζ(3)-(Zeta series+BP+PL) ζ(3)-BBP formula [14]

1st order
n=1 δ=0.2*10−04 δ=0.1*10−10 δ=0.7*10−07

2nd order
n=2 δ=0.2*10−06 δ=0.15*10−15 δ=0.4*10−11

3rd order

n=3 δ=0.3*10−08 δ=0.2*10−20 δ=0.3*10−15

4th order

n=4 δ=0.4*10−10 δ=0.2*10−25 δ=0.4*10−19

Table 1: Approximate computation ofζ(3) as a function of the summation index n by use of

the Clausen-function representation without and with use of the polynomial representation in
combination with corresponding polylogarithmic identities. The numerical errors are compared

to the BBP-type formula [14]

4 SUMMARY

In summary, we have presented a unique computational schemefor the explicit calculation ofζ(3)

by introducing a new series representation ofζ(3), which is based on the Clausen representation
of odd integer zeta values. By an appropriate combination ofpolylogarithmic identities with a

polynomial description of the even Bernoulli numbers, we were able to speed up the convergence
behavior of the Clausen-based representation ofζ(3) to a certain level which is significantly faster
than that of the best BBP-type formulas available forζ(3). Furthermore, we have presented a cor-

responding numerical comparison between or series representation and one of the best available
BBP formulas. Furthermore, we have demonstrated using the first four terms in our series repre-

sentation only thatζ(3) can be computed with an accuracy of2 ∗ 10−26, where our computation
guarantees on each approximation level for an completely analytical expression forζ(3). Finally,

we have shown that a computation by use of the combined polynomial representation ofB2n and
B2n−2 further improves the approximate calculation ofζ(3) by more than two orders of magnitude

at all approximation levels.
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