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Abstract

With this paper we introduce a new series representatiog(®f, which is based on
the Clausen representation of odd integer zeta values.oédth relatively fast converging
series based on the Clausen representation exig{39r their convergence behavior is very
slow compared to BBP-type formulas, and as a consequengethenot used for explicit
numerical computations. The reason is found in the fact titcorresponding Clausen
function can be calculated analytically for a few rationgjiaments only, where = % is the
smallest one. Using polylogarithmic identities in comlbioa with a polynomial description
of the even Bernoulli numbers, the convergence behavidiiausen-type representation
has been improved to a level that allows us to challenge atéip all BBP-type formulas
available for((3). We present an explicit numerical comparison between ortbeobest
available BBP formulas and our formalism. Furthermore, wendnstrate by an explicit
computation using the first four terms in our series repragiem only that(3) results with
an accuracy o? * 10~25, where our computation guarantees on each approximatiehfter
an analytical expression fqr3).

1 INTRODUCTION

During the last decades BBP-type formulas have been establias the technique of choice
for very fast digit extraction of mathematical constantsf@a examplesr, in(2), ¢(3) or {(5)

[T, 2,[3,[4,[5/6][7]. This is because the corresponding dlyos are simply to implement,
where the need of computer memory is very low and no multipdeipion arithmetic software is
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required [6]. Apart from digit extraction interest has groiw BBP-type formulas in context with
statistical randomness of the digit expansions of polylidigaic constants [1].

However, a shortcoming of BBP-type formulas is that a varaébinary degree-1 and degree-
2 formulas exist, but only a few ternary (base 3) or even higlegree BBP-type formulas for
polylogarithmic constants are known. The reason is founthénstrong increase of complexity
of polylogarithmic functional equations as a function oé ttorresponding binary degree. An
example is given by Adegokel[8] for a polylogarithmic furoetal equation of degree 5, where no
BBP-type formula forl (7) or higher odd-integer zeta values has been discovered & far

Concerning the computation of odd-integer valued zeta rmumthe so called Clausen rep-
resentation of zeta numbeis [9,] 10] 11] allows for relagivfabt digit extraction, which is not
restricted to¢(3) and((5). We have combined this approach recently with a new polyabmi
representation of the Bernoulli numbers in connection Bi#éimdersky’s L-numbers [12], which
appear in context with the logarithmic Gamma function [18$. a first application approximate
calculations of((3), ¢(5) and((7) in terms this polynomial representation had been ptesen
where this computational procedure is applicable t@-alalues with integer arguments, as well
as to related numbers like Catalan’s constant. Comparedjibexktraction via corresponding
BBP-type formulas the convergence behavior is not reallgpetitive because the Clausen func-
tions can be calculated analytically for a few rational angats only, where = % is the smallest
one. In principle one may argue that the speed up in the cgexee should be significant if
one would be able to find smaller real-type arguments whish allows one for an analytical
computation of the corresponding Clausen function. Thiedged possible by the use of poly-
logarithmic ladder identities, which exist fd(3) and{(5). In this contribution we present a
first application to the numerical computation{@B) where we combine polylogarithmic identi-
ties with our polynomial description of Bernoulli numbeosdhallenge one of the best available
BBP-type formulas typically used for digit extraction@B) [2]. We demonstrate by an explicit
computation that a fast computation @) is possible, for example with an accuracy of about
10726, Furthermore, we demonstrate that our approach guaraftteas analytical expression
of ((3) independently from the requested numerical accuracy. W@ present an explicit nu-
merical computation which shows that our series repretientaf ((3) converges more than six
orders of magnitude faster compared to the famous BBP-typeula discovered first by Bailey
and coworkerd [14].

The paper is organized as follows: in section 2 we remark erClausen representation of
odd-integer zeta numbers and present a first computatiof3pby use of a well known polylog-
arithmic ladder identity foris (%) In section 3 we introduce our polynomial representation of
the even Bernoulli numbers and as a consequencg ®ar), n € N. This approach is then com-
bined with the Clausen representation/¢$) to achieve a fast converging series representation,
which guarantees on each approximation level for an aralygxpression of (3). Furthermore,
we demonstrate that the iterated use of an appropriatequalyithmic functional equation for
Lis (x) allows for a tremendous speed up of the convergence behaivaur series representa-
tion. In section 4 we summarize our results.



2 Clausen representation of zeta numbers

Well-known for a long time is the famous Euler representaj)[10] of {(2n) with n € N:

_ (_\n+1 (27T)2n
((2n) = (—) BQn2(2n)! ) (2.1)
For odd integer numbers, as for example,/foe 3 one finds[[11] 15]:
Lemma 2.1
> 2
Cly(z) = Y 22 cos2mnT) oy L 3a2? 4 9n2uin(2rla])
n=1

- 2n+-2 292
s ZQn 2n+1 2n+2)x - (22)

with x € R. A computation of the Clausen function,Ct) for the argument: = : results in
[11]:

2 2 2

T 2 & 1\*"
@) = ﬁ__l” ?Z% 2n+1 2n+2) (6) ' (2:3)

n=1

Equation (2.3) converges rather fast, and obviously theyexgrence could be improved using
smaller arguments for the Clausen function. Unfortunatilis is not for possible x Q, as

for smaller rational arguments as= % partial sums remain in the computation of the Clausen
function, which are not expressible in terms(@8). The way out is the use of polylogarithmic
functions, which are widely used in so called BBP formulgs8316]. For example, it follows

for Liz (1) [B]:

1\ =11\ 7 1 5 T
Lis (5) = ; = (5) = 5¢@) + £ () = 5in(2) - (2.4)
ReformulatingLis (3 ) in the following way:
Lemma2.2

. 1 = 1 inf
L’l3 (5) = Z ﬁe s (25)

n=1

with # =i In(2) the computation in terms of the corresponding CéugunctionsCi;(x) and
Sls(x) results in:

Lemma 3.2
¢(3) = 2%ln(z) —6(In(2))* + g(ln@))?’ +4(In(2))2In(In(2))
2~ (5)"¢(2n) n(2)\*"
+ 16(in(2)) ZZn(2n+1)(2n+2)< o ) ' (2.6)

n=1
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where Si3(x) |s known analytlcally Usrng the corresponding expresdmmLiz(3) the new
argumentr = ( Visz ~ 5 instead ofr = £, and as a consequence the convergence is much
faster. Furthermore, this series shows up with an altergatign which provides some benefit
in estimating the convergence properties. For exangdhs, results from the sum of the explicit
terms including the first term (n=1) from infinite series wath error ofs ~ 107°7.

One may notice that the argument= % works for all Clausen function§'l,,,,; as the well
known identity exists [11]:

1
Cloni(5) = 5 (1=27) (L=37") (20 +1). 2.7)
This procedure is also applicable@(®), with [3,[16]:
X 1 7T2 1 9

It follows then for((2):

C(2) = An(2)(1 ~ In(in(2))) — 3 (in(2))* ~ 4in(2 D e

n=1

XL (=) (2n) <zn(2)>2” |

(2.9)

Unfortunately, for zeta values with larger integer argutreesimilar computation seems not
possible because fati, () with n > 3 no closed expressions are knownl[L7] 18, 19]. For
example, it follows forLi, (3):

n

Lin (5) = 12604) = L6+ LCIn(2)? + Z

H, , 2.10
(n+ 1 ( )
where H,, denotes the ordinary finite harmonic series. For the cooredipg infinite series no
analytical expression exists. As a consequence the cotgnahscheme introduced here is
applicable to a non-trivial computation ¢f3) only, as¢(2) is known from Eq. (2.1) explicitly.

3 Explicit calculation of ((3) in termsof polylogarithmiciden-
tities

To further improve the convergence in the calculatioq @f) a polynomial representation of the
Bernoulli numbers will be used13]:
Proposition 2.1

¢

C@n) = G

[M]=

(=) < nreed ) PY(n), (3.1)

=1 2

where the P-polynomials are available from the followingursion relation[[13]:

=1 n—1 PiH2()

n—1 = 6'(2n — 21)

POy = 6 A>1. (3.2)
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with P (n) = 1. As an example, the next three Polynomials result to:

3
P3(n) = P (3.3)
3(21n — 43)
3 _
POm) = S5rgmey (34
63n? — 387n + 590

4

P(n) = 24 % B3 % 7 (3:5)
With this we have:
In sin(rx) = In(mx)

Z% (Z (=) ( n+22 —1 ) P(l)(n)> 27 (3.6)
n=1 =1

For ((3) it follows then:

() = ZIn2) - 6(tn@) + 2P + 4 @) inn)
+ 192 Z ¢ (%) 2 , (3.7)
with
N (=) n(n 4+ 1)PD(n+i—1) n(2)\>"
o Z(2"+2i—3)(2n+2z’—2)(2n+2i—1)(2n+2¢) (2\@) : (3.8)

n=1

Using furthermore the polylogarithmic identities [7]:

i (§) +2ia (5) + Zia () = 56)+ 500 - S0m2)

- ;ln@) + 2In (g) (in(2))? (3.9)

and
Lis (%) ¥ 1 Liy G) 4 Lis (%) _ %f’g(za) + %(zn@))?’ _ gln(Q)

() o () 20

(3.10)
together with the following functional equation fais(x): [7]
7 1 ((1-z) (1-x ,
o (=) S — ) - T 0 - Lm0, (310)
13 112 5 13 T G n T 3 n x))°, .



a new identity results with all three arguments/@f(x) much closer to 1:

6Lis (;) + 3Lig G) — Lig (g) = %4(3) — gln(2) + g(zn(2))3 — %(zn(?)))?’

(3.12)

In a next step we computkis(z) in terms of the corresponding Clausen function by use of the
polynomial representation of the Bernoulli numbers andhhe help of Eq. (3.1). It follows then
for the polylogarithmic functiorliz(x):

) = =i (2) s (i (D) 2 (o (2)) - ((2)) ()
iy (21 .
()5 B (" )P()”<Zn<;>> |

21/6
(3.13)

0 - -3 (n(3) () 3 Q) 50

with

a; = i (=) n(n + 1) PO (n) (ln(%)
" (20420 - 3)(2n+ 20 — 2)(2n + 20 — 1)(2n + 2i) \ 21/6

n=1

) n . (3.15)

RS (=)™ 'n(n +1)PD(n) In(3)
b= 2 (2n 4 20 — 3)(2n + 2i — 2)(2n + 2i — 1)(2n + 24) < /G

n=1

) n . (3.16)



and

OO n i 2n
(20420 - 3)(2n + 20— 2)(2n + 20 — 1)(2n + 20) \ 2V/6 ’ '
with the argument., fi), l;ff andl ( ) for the coefficients ab; and ¢. Summing up the first

four terms (i=1,2,3,4) from each of the three infinite setaggether with the explicit terms for an
approximate computatiafi(3) follows with an error o ~ 0.3x10~'7. This is only two orders of
magnitude slower in the convergence when compared, for ghearto the famous BBP formula

[14]:
@) = %i<4096)k

k=0
2048 11264 1024 11776
24k + 17 24k 127  (24k 43P | (24k 4
512 4096 256 3456
T Ak 457 2k 160 | (2417 24k +8)
128 704 64 128
(24k +9)3  (24k+10)3  (24k +11)3  (24k + 12)3
32 176 16 216
Ak 137 24kt 147 | 24k 1157 | 24k + 16)°
8 64 4 46
+ + — +
(24k +17)3 ' (24k +18)3  (24k +19)3 ' (24k 4 20)3
2 11 1

+

- - 1
(24k +21)3  (24k +22)® ' (24k + 18)3 (3.18)

Within an iterated use of the functional equation (3.10}dyednd better approximations can be
found. The slowest convergence is found nowlbfy(2) As a consequence we rewrite with the
help of (3.10)Lis (2). It follows first for the polylogarithmic function:

(2N . 2 , 2v/2 (V243
LZ3 <§) = 8LZ3 (\/;) — 8L’l3 (m) — 8LZ3 (W)
[ 46 27° 2v/2

4 24/2 ’
' 5[“(@%)] |

(3.19)



and finallyLi; () results to:
(2 o2 (3 1 3\\* 3 3\ \?
bs(5) = o= (5) +i5(m(3) +3(n(3))
\\? /1 /3\\ 4n [v2+v3) 3 NCERVAR
()R )0 () (59)
VZ+v3\) VZ+v3\) V343
- o(n(55) 1 (o (5) m(+(547)
2 [(5+2V6 5426\ 3 5+9v6)\ )\’
) b))
. 5+2\f . 5+2f L E
3 V2++/3
z In —6(In 7\/_ 2
3 \f+f V2+V3
i 2V3
\f+\f V2+ V3
(rcen) (@)
n )) +1)(2n+2)< o )
In _ﬁ+\/§ S e m ()
2v/2 2n(2n +1)(2n + 2) 27

203 \\ < (0)een) in (éfﬁ) !
— 16 <ln <m>> Z 2n(2n +1)(2n + 2) ( 2m

(3.20)

where now four infinite series appear in the computatiori@f(%). The slowest convergence

is found in the first infinite series with the argument= @ ~ % The other three argu-
ments are much smaller, at least by a factor of two. Insertimg in each of the four infinite
series the polynomial representation of the even Bernaulinbers (Eq. (3.1)) the combination
of polylogarithmic identities follis(x) with a polynomial description of Bernoulli numbers has
been established, where the polynomial representatioragtees for an additional speed up in
the convergence behavior of all of the four infinite seriegviayre than an order of magnitude.

Finally, at this approximation level(3) results to:



(D) ()5 (0) -5 (%)
B (2] + 2 (28] - [ ()]
sM% | +3 [ ()T vl (28))

() (] -

)] 4 <>r #5)
()
(Ol (] 2 )

Aol ()22 - (5] o (5
2 () ()

b b () g ]
5420 [ 1 13824Z o [Z\}rn

[SSIIN

V23 N J3
13824 Z ! n (Ve )} _ 1880 !l” (%)
_ n=1

26 5 21/6
2n
0o 54+2v6
356§ m (%)
D n=1 ! 2\/6

(3.21)

Summing up again the first four terms (n=1,2,3,4) from eacthefsix infinite series together
with all terms given explicitly (3) follows now with an error off ~ 0.37 x 102! This is two
orders of magnitude faster in the convergence when compartée BBP formulal[14].

It should be mentioned at this stage, that a further advand&g@ur series representation is

that all of these six types of coefficients can be expressestins of elementary functions based
on logarithmic expressions. This allows for a more detaihsight on((3) as it guarantees on

9



each approximation level an analytical expressior({ay.
The slowest convergence is now withs(2). Therefore, we rewrite the polylogarithmic func-

tion belonging to the argumel%%, again with the help of the functional equation (3.10). It
follows then:

Lis G) — SLis ( Z) _ 8Li (2;\/%@) _ 8Li (2+4\/§)

e (L2 e -2 () <5 (5255
(3.22)

and finally:

a(2) - o) (o)

+ 4 (ln (2;\/\§/§> In <ln (2;\/\5/5>> + 27%ln (2 +4\/§) + %ln (2 +4\/§)3
- o) o (e5)) o i) - ()
3 2
2

— 16 (ln (2 3 2
reaB\\V & (rcen (T
o (ln ( 8v/3 )) ;Qn(2n+1)(2n+2) ( 27

This procedure can be applied as often as necessary to ceq@ytwith a default accuracy.
The only shortcoming is that the number of infinite serieseases caused by the mathematical

2> —)"((2n In 2+4 3
) Z 2n(25z +) lc)((22n)+ 2) ( (27Tf> )
)

(3.23)
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structure of the functional equation (3.10), where theesponding arguments appear as nested
roots. As mentioned before, this procedure is not appletabhigher zeta values, as for example
¢(5), because no appropriate functional equations exist. lerdadfinally challenge the BBP for-

mula [14] the polylogarithmgis (\/% and Lis \/g appearing with the slowest convergence
behavior at this approximation level will be rewritten witte help of (3.10). It follows:

. 2 o ./3 [ V2+3 : 2V/3
m( Q =8%<¢3—&@(3%7>‘%%G51%>

([ V2+V3+2V6 27 2v/3
o () (250

4 2V/3 ’
‘*%[m(@iiﬁ)]’

(3.24)
and
B\ ()3 V2 + /3 . 22
M« ﬁ _8%<%3_&%<2ﬁ§> ““&E?%)
(2+V3+2v12 27> 2v2
+ 2Ll< G >+7C(3) < in (W)
4 2v/2 ’
+ §[ln<\/§+€/§>]
(3.25)

To further increase the speed up in the convergence behagiase the polynom representation
of the Bernoulli numbers where both,Band B,,_, are involved[[13]. It follows then foLi;(x):

i = -5 () () 1) 302 )

(_)n+1 ni:l(—)Hl < n +i) —1 ) P(l)(n +1)

_% (l” G)Y i (l” (é))Q nil [(Qn - 1)l2:;(2n @t 22 1 3)(2n 1 4)

n(H\"
21/6
(3.26)

n 2—1
L2 Z(V“<"+2 )fwm>
Calculating all relevant polylogarithms with the formulepented above the additional speed up
in the convergence is more than one order of magnitude. Congp{(3) at this approximation
level, again by respecting the first four terms in the comesiing series (n=1,2,3,4), the accuracy
is better thanl0~2°. This is more than six orders of magnitude better in the cayarece when

compared to[[14]. The complete numerical comparison wighBBP formulal[[14] for n=1,2,3
and 4 is presented in Tab. I.

(2n—1)2n(2n+1)(2n+2)(2n + 3)(2n + 4)

n=1
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((3) ((3)-Zeta series ((3)-(Zeta series+BP+PL)) ((3)-BBP formulal[14]
1st order
n=1 0=0.2*10"% 0=0.1*10"10 0=0.7*10"°7
2nd order
n=2 0=0.2*10" 0=0.15*10"15 0=0.4*10"1
3rd order
n=3 0=0.3*10"% 6=0.2*10"2° 0=0.3*10"1
4th order
n=4 0=0.4*10"10 6=0.2*10"% 0=0.4*10"%

Table 1: Approximate computation @{3) as a function of the summation index n by use of
the Clausen-function representation without and with usthe polynomial representation in
combination with corresponding polylogarithmic ider@#i The numerical errors are compared
to the BBP-type formula [14]

4 SUMMARY

In summary, we have presented a unique computational scloeiie explicit calculation of (3)

by introducing a new series representatioq @), which is based on the Clausen representation
of odd integer zeta values. By an appropriate combinatigmobflogarithmic identities with a
polynomial description of the even Bernoulli numbers, weenable to speed up the convergence
behavior of the Clausen-based representati@i)fto a certain level which is significantly faster
than that of the best BBP-type formulas availablelf@). Furthermore, we have presented a cor-
responding numerical comparison between or series regegim and one of the best available
BBP formulas. Furthermore, we have demonstrated usingrtddiur terms in our series repre-
sentation only thaf(3) can be computed with an accuracy2of 10~2°, where our computation
guarantees on each approximation level for an completellytical expression fo¢(3). Finally,

we have shown that a computation by use of the combined polialoepresentation aB,,, and
B.,._» further improves the approximate calculatiorf¢$) by more than two orders of magnitude
at all approximation levels.

References

[1] Bailey, D. H., Borwein, P. B., Plouffe, S. (1997) On th@id computation of various poly-
logarithmic constants, Mathematics of Computation, 6@, 90

[2] Bailey, D. H., Crandall, R. E. (2001) On the random ch&aof fundamental constant
expansions, Experimental Mathematics 10, 175.

12



[3] Broadhurst, D. J. (1998) Polylogarithmic ladders, hg@®metric series and the ten mil-
lionth digits of{(3) and((5).arXiv.math/9803067v1.

[4] Chamberland, M. (2003) Binary BBP-formulae for loghrits and generalized Gaussian-
Mersenne primes, Journal of Integer Sequences 6, 10.

[5] Borwein, F., Jonathan, M., Borwein, D., Galway, W., Wilh, F. (2004) Finding and ex-
cluding b-ary Machin-type individual digit formulae, Caha. Math. 56, 897.

[6] Bailey, D. H. (2010) A compendium of BBP-type formulas fmathematical constants.
http://crd.Ibl.govi-dhbailey/ dhbpapers/bbp-formulas.pdf

[7] Adegoke, K. (2011) A novel approach to the discovery ohéey BBP-type formulas for
polylogarithm identities, Notes on Number Theory and DaseMathematics, 17, No.1, 4.

[8] Adegoke, K. (2013) Formal proofs of degree 5 binary BBPet formulas, Funct. Approx.
Comment. Math. 48, 19.

[9] Hecke, E. (1944) Herleitung des Euler-Produktes deaetktion und einigerL-Reihen aus
ihrer Funktionalgleichung, Mathematische Annalen, 118%.2

[10] Havil, J. (2003) Exploring Eulers constant, Princetémversity Press.

[11] Bentz, H. J., Braun, J. (1994ber die Werte voig(2n+1), Hildesheimer Informatikberichte,
14, 1.

[12] L. Bendersky, Sur la fonction Gamma generalisee, Actdhvb1 (1933), 263.

[13] Braun, J., Romberger, D., Bentz, H. J. (2015) Fast caming series for
zeta numbers in terms of polynomial representations of @&dln numbers,
http://www.arXiv.org/abs/math/1503.04636, 1.

[14] Bailey, D. H., Borwein, J. M., Calkin, N. J., Girgensaqli, Luke, D. R., Moll, V. H. (2007)
Experimental Mathematics in Action, Wellesley, MA A K Peter

[15] Adamchik, V. S. (1998) Polygamma functions of negatiwder, J. Comput. Appl. Math.,
100, 91.

[16] Adegoke, K. (2010) New binary and ternary digit extraot(BBP-type) formulas for trilog-
arithm constantd\ew York J. Math., 16, 361.

[17] Sitaramachandrarao, R (1987) A Formula of S. Ramanudjurnal of Number Theory, 25,
1.

[18] De-Yin Zheng, Further summation formulae related toegalized harmonic numbers, J.
Math. Anal. Appl.335 (2007), 692.

[19] Zlobin, S. A. (2007) Special values of Generalized Ragarithms,
http://www.arXiv.org/abs/math/0/12.1656v1, 1.

13


http://arxiv.org/abs/math/9803067
http://crd.lbl.gov/~dhbailey/
http://www.arXiv.org/abs/math/1503.04636
http://www.arXiv.org/abs/math/0712.1656v1

	1 INTRODUCTION
	2 Clausen representation of zeta numbers
	3 Explicit calculation of (3) in terms of polylogarithmic identities
	4 SUMMARY

