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ABSTRACT 
 
In this paper we discuss major problems related to reliability 
of random number generators used for simulation studies. 
We propose the decimals of π  as the most reliable random 
number generator as compared to certain real normal 
numbers as well as all families of pseudorandom number 
generators. A new property that a random number generator 
must have is introduced. Two applications are discussed. 
 
INTRODUCTION 
 
Every simulation study always uses random number 
generators in order to construct sufficiently large samples. 
So, in amount, random number generators are a central tool, 
and in despite of their importance, this topic is not 
sufficiently studied in modern research. As Coveyou 
remarked (Coveyou 1969), “random number generation is 
too important to be left to chance”. 
 
The history of random number generators begin with the age 
of computer. In fact, apart from manually generating random 
numbers, e.g. by a dice throwing, all random number 
generators use an algorithm  and are called “pseudo-random 
number generators”. So it cannot generate “truly random 
numbers” because of their deterministic nature. 
 
The aim of this work is to answer to some fundamental 
questions such as for example: what is really a random 
number generator? How many properties it must satisfy? Are 
random number generators sufficiently reliable? What is the 
state-of-the-art of ideal random number generators? Are 
normal numbers, as a new class whose normality has been 
recently proved (Bailey and Crandall 2001), or 
Champernowne constants (Champernowne 1933) suitable for 
generating good random numbers?  
 
PSEUDO RANDOM NUMBER GENERATORS 
 
Since the ‘50's, when the early electronic devices appear to 
be suitable to be applied to generate random sequences of 
numbers, many techniques have been proposed. The first 
method of a certain importance was the middle-square 
method (Von Neumann 1951). The idea was to take a 

number n 0  composed by a certain number d of digits (in a 

given base); the square n 2
0  has twice the number of digits of 

n 0 , so the d central digits of n 2
0  provide a sequence of digits 

apparenty random. A relation between n 0  and the new 

sequence of d digits is not trivial, and the iteration of this 
process provided for a certain time a first satisfactory 
example of “random number generator”. Obviously this 
method is unable to provide “truly random random numbers” 
for at least two reasons. The first is that the method is 
deterministic, and once the hidden algorithm revealed, the 
sequence is completely previsible. The second reason is that 
this method only gives periodic sequences. 
 
Nowdays, the most sure method for generating random 
sequence of numbers is to mixt different pseudorandom 
number generators, with a special attention in keeping secret 
the procedure! When a procedure is revealed, a test of 
randomness can be provided in order that the random number 
generator fails it. 
 
NORMAL NUMBERS AND IDEAL RANDOM 
NUMBER GENERATORS 
 
The most current accepted idea of truly random number 
generator, is provided by normal numbers. A normal number 
on base b is a real number whose expansion in base b 
contains each digits strings d 1 d 2 d 3 …d k  with the expected 

frequency 1/b k . A normal number tout court is a normal 
number on any base. The definition of normal number 
corresponds to the definition of ∞ -distributed sequences, 
whose properties have been extensively studied (Knuth 
1981). In particular all real numbers, with the exception of a 
set of measure zero, are normal numbers. 
 
For this reason, the number π  is often considered as an ideal 
random number generator (Dodge 1996). A proof of its 
normality is not yet available. Recent studies on π  (Bailey 
et al. 1997) have shown  some remarkable identities for π  as 
the following:  
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The above identity is of the same kind of the following one 
for log 2:  
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Bailey and Crandall proved that the number, whose addends 
are a subset of the terms of the preceding series  
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is normal (Bailey and Crandall 2002). So a proof of the 
normality of π  is perhaps not so far as it was until some 
years ago. Other relations between  π , other real numbers 
and normality can be found in (Bailey and Crandall 2001). 
The digits of π  satistfy all possible test of randomness 
(Dodge and Rousson, 1996; Murier and Rousson, 1998).  
The authors (Dodge and Melfi, to appear) recently 
investigated 1'000'000 coefficients of the continued fraction 
of  π  and have shown that the distribution of these 
coefficients is in accord with a Khinchin random variable, as 
for almost all real numbers.  
 
The digits  of π  have been used as test of efficiency for 
computers.  Modern computation of π  is based on 
algorithms introduced by Brent  and Salamin, and 
developped by Borwein and Borwein (Brent 1976; Salamin 
1976; Borwein and Borwein 1984). A new computer 
architecture is judged more efficient when it calculates the 
digits of π  more rapidly than another.  For this reason more 
than 200 billions digits are known today, so an extensive use 
of its digits as table of random numbers, e.g. on a CD-ROM 
or DVD-ROM support is proposed.   
 
RELIABILITY OF A PSEUDO RANDOM NUMBER 
GENERATOR  
 
Knuth provides a collection of properties that a sequence of 
numbers must satisfy in order to be classified as “truly 
random” (Knuth 1981). In this section we propose a property 
P that a sequence must satisfy in addition to those of Knuth. 
We will show that a real  number may be normal, but not 
satisfying this property of randomness.   
 
Definition. We will say that an infinite sequence of digits 
satisfy  the property P if, whenever we cut the sequence at a 
finite term, digits does not show significant autocorrelations.  
 
As a significant autocorrelation, a standard choice is an 
autocorrelation whose t-statistic exceeds 2. So a good 
pseudo-random number generator must provide sequences 
satisfying property P. As is usual in such a kind of definition, 
almost all real numbers have digits satisfying property P, and 
we conjecture that π  also has a digit expansion satisfying 
property P.  
 
On the other hand, the Champernowne constant is an 
exemple of a normal number, whose digits does not satisfy 
the property P. The Champernowne constant 
(Champernowne 1933) on base 2 is defined as 
  

0.11011100101110... 

 
i.e. by concatenating the sequence of natural integers in base 
2. Analogously one can define the Champernowne constant 
for any base b. It is always a normal number, but if we 
consider a finite subsequence of digits, for example, the 
concatenation of binary expression of numbers 1,2,…, 
10000, a strong autocorrelation appear at lags  
10,11,12,13,14=log 2 10000, with values of t-statistics 
respectively 2.22, 8.02, 20.32, 41.53, 101.94, 46.67 (See 
Figure 1).  Note that autocorrelation vanishes when the 
whole  infinite sequence of digits is considered. This 
phenomenon is not surprising, because the digits of a 
Champernowne constant are locally almost periodic. This is 
also due to the  artificial nature of the definition.  
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Figure 1. Autocorrelation function of the first 123’632 digits 
of  the binary Champernowne constant.  

 
One can easily argue that a “random” number in interval 
(0,1) is of such a nature with probability 0. In particular, we 
conjecture that π  satisfy property P, and therefore that the 
digits of π  are “truly random”.   
 
In Figure 2 one can see an analysis of the autocorrelation 
function, similar to that of Figure 1, applied to binary digits 
of π .  
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Figure 2. Autocorrelation function of the first 32’770 binary 
digits of  π . 
 



 

As is has been conjectured, there are no significant values of 
the autocorrelation function. 
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