On Multiplicative Sidon Sets

David R. Wood*

July 7, 2011

Abstract

Fix integers $b>a \geq 1$ with $g:=\operatorname{gcd}(a, b)$. A set $S \subseteq \mathbb{N}$ is $\{a, b\}$-multiplicative if $a x \neq b y$ for all $x, y \in S$. For all n, we determine an $\{a, b\}$-multiplicative set with maximum cardinality in $[n]$, and conclude that the maximum density of an $\{a, b\}$-multiplicative set is $\frac{b}{b+g}$.

Erdős $[2,3,4]$ defined a set $S \subseteq \mathbb{N}$ to be multiplicative Sidon ${ }^{1}$ if $a b=c d$ implies $\{a, b\}=\{c, d\}$ for all $a, b, c, d \in S$; see [8-10]. In a similar direction, Wang [13] defined a set $S \subseteq \mathbb{N}$ to be double-free if $x \neq 2 y$ for all $x, y \in S$, and proved that the maximum density of a double-free set is $\frac{2}{3}$; see [1] for related results. Here the density of $S \subseteq \mathbb{N}$ is

$$
\lim _{n \rightarrow \infty} \frac{|S \cap[n]|}{n} .
$$

Pór and Wood [7] generalised the notion of double-free sets as follows. For $k \in \mathbb{N}$, a set $S \subseteq \mathbb{N}$ is k-multiplicative (Sidon) if $a x=b y$ implies $a=b$ and $x=y$ for all $a, b \in[k]$ and $x, y \in S$. Pór and Wood [7] proved that the maximum density of a k-multiplicative set is $\Theta\left(\frac{1}{\log k}\right)$.

Here we study the following alternative generalisation of double-free sets. For distinct $a, b \in \mathbb{N}$, a set $S \subseteq \mathbb{N}$ is $\{a, b\}$-multiplicative if $a x \neq b y$ for all $x, y \in S$. Our main result is to determine the maximum density of an $\{a, b\}$-multiplicative set. Assume that $a<b$ throughout.

Say $x \in \mathbb{N}$ is an i-th subpower of b if $x=b^{i} y$ for some $y \not \equiv 0(\bmod b)$. If x is an i-th subpower of b for some even/odd i then x is an even/odd subpower of b.

First suppose that $\operatorname{gcd}(a, b)=1$. Let T be the set of even subpowers of b. We now prove that T is an $\{a, b\}$-multiplicative set with maximum density. In fact, for all $[n]$,

[^0]we prove that $T_{n}:=T \cap[n]$ has maximum cardinality out of all $\{a, b\}$-multiplicative sets contained in $[n]$.

The key to our proof is to model the problem using a directed graph. Let G be the directed graph with $V(G):=[n]$ where $x y \in E(G)$ whenever $b x=a y$ (implying $x<y$). Thus $S \subseteq[n]$ is $\{a, b\}$-multiplicative if and only if S is an independent set in G. If $x y z$ is a directed path in G, then $x=\frac{a}{b} y$ and $z=\frac{b}{a} y$. Thus each vertex y has indegree and outdegree at most 1. Since $x y \in E(G)$ implies $x<y, G$ contains no directed cycles. Thus G is a collection of disjoint directed paths. Hence a maximum independent set in G is obtained by taking all the vertices at even distance from the source vertices ${ }^{2}$, where a vertex y is a source (indegree 0) if and only if $\frac{a}{b} y$ is not an integer; that is, if $y \not \equiv 0(\bmod b)$.

We now prove that the vertices at distance d from a source vertex are precisely the d-th subpowers of b. We proceed by induction on $d \geq 0$. Each vertex y of G has an incoming edge if and only if $\frac{a}{b} y \in \mathbb{N}$, which occurs if and only if $y \equiv 0(\bmod b)$ since $\operatorname{gcd}(a, b)=1$. Thus the source vertices of G are precisely the 0 -th subpowers of b. This proves the $d=0$ case of the induction hypothesis. Now consider a vertex y at distance d from a source vertex. Thus $y=\frac{b}{a} x$ for some vertex x at distance $d-1$ from a source vertex. By induction, x is a $(d-1)$-th subpower of b. That is, $x=b^{d-1} z$ for some $z \not \equiv 0$ $(\bmod b)$. Thus $y=b^{d} \frac{z}{a}$, which, since $\operatorname{gcd}(a, b)=1$, implies that $\frac{z}{a}$ is an integer. Hence $\frac{z}{a} \not \equiv 0(\bmod b)$ and y is a d-th subpower of b, as claimed.

This proves that the even subpowers of b form a maximum independent set in G. That is, T_{n} is an $\{a, b\}$-multiplicative set of maximum cardinality in $[n]$. To illustrate this proof, the following table shows two examples of the graph G with $b=3$. Observe that the i-th row consists of the i-th subpowers of 3 regardless of a.

$a=1$ and $b=3$								$a=2$ and $b=3$									
1	2	4	5	7	8	10	11	2	4	5	7	8	10	11		14	16
\downarrow			\downarrow	\downarrow			\downarrow	\downarrow									
3	6	12	15	21	24	30	33	3	6			12	15			21	24
\downarrow		\downarrow			\downarrow					\downarrow							
9	18	36	45	63	72	90	99		9			18					36
\downarrow					\downarrow					\downarrow							
	48	108	135	189	216	270	297					27					48

[^1]We now bound $\left|T_{n}\right|$ from above. Observe that

$$
T_{n}=\left\{b^{2 i} y: 0 \leq i \leq \frac{1}{2} \log _{b} n, 1 \leq y \leq \frac{n}{b^{2 i}}, y \not \equiv 0 \quad(\bmod b)\right\} .
$$

Thus

$$
\begin{aligned}
\left|T_{n}\right| & \leq \sum_{i=0}^{\left\lfloor\left(\log _{b} n\right) / 2\right\rfloor}\left[\frac{b-1}{b} \frac{n}{b^{2 i}}\right] \\
& \leq 1+\frac{1}{2}\left(\log _{b} n\right)+\frac{(b-1) n}{b} \sum_{i \geq 0} \frac{1}{b^{2 i}} \\
& \leq 1+\frac{1}{2}\left(\log _{b} n\right)+\frac{(b-1) n}{b} \frac{b^{2}}{b^{2}-1} \\
& =1+\frac{1}{2}\left(\log _{b} n\right)+\frac{b n}{b+1} .
\end{aligned}
$$

We now bound $\left|T_{n}\right|$ from below. Observe that

$$
T_{n}=[n] \backslash\left\{b^{2 i+1} y: 0 \leq i \leq \frac{1}{2}\left(\left(\log _{b} n\right)-1\right), 1 \leq y \leq \frac{n}{b^{2 i+1}}, y \not \equiv 0 \quad(\bmod b)\right\} .
$$

Thus

$$
\begin{aligned}
\left|T_{n}\right| & \geq n-\sum_{i=0}^{\left.\left\lfloor\left(\log _{b} n\right)-1\right) / 2\right\rfloor}\left\lceil\frac{b-1}{b} \frac{n}{b^{2 i+1}}\right\rceil \\
& \geq n-\frac{1}{2}\left(\left(\log _{b} n\right)+1\right)-\frac{(b-1) n}{b^{2}} \sum_{i \geq 0} \frac{1}{b^{2 i}} \\
& \geq n-\frac{1}{2}\left(\left(\log _{b} n\right)+1\right)-\frac{(b-1) n}{b^{2}} \frac{b^{2}}{b^{2}-1} \\
& =n-\frac{1}{2}\left(\left(\log _{b} n\right)+1\right)-\frac{n}{b+1} \\
& =\frac{b n}{b+1}-\frac{1}{2}\left(\left(\log _{b} n\right)+1\right) .
\end{aligned}
$$

These upper and lower bounds on $\left|T_{n}\right|$ imply that

$$
\left|T_{n}\right|=\frac{b n}{b+1}+\Theta\left(\log _{b} n\right) .
$$

Hence the density of T is $\frac{b}{b+1}$, and because T_{n} is optimal for each n, no $\{a, b\}$ multiplicative set has density greater than $\frac{b}{b+1}$.

We now drop the assumption that $\operatorname{gcd}(a, b)=1$. Let $g:=\operatorname{gcd}(a, b)$. Since $a x=b y$ if and only if $\frac{a}{g} x=\frac{b}{g} y$, a set S is $\{a, b\}$-multiplicative if and only if S is $\left\{\frac{a}{g}, \frac{b}{g}\right\}$ multiplicative. Since $\frac{b / g}{b / g+1}=\frac{b}{b+g}$, we have the following result.
Theorem 1. Fix integers $b>a \geq 1$. Let $g:=\operatorname{gcd}(a, b)$. Then for every integer $n \in \mathbb{N}$, the even subpowers of $\frac{b}{g}$ in $[n]$ are an $\{a, b\}$-multiplicative set in $[n]$ with maximum cardinality. And the even subpowers of $\frac{b}{g}$ are an $\{a, b\}$-multiplicative set with density $\frac{b}{b+g}$, which is maximum.

Note that if $g=a$ then $b \geq 2 g$ and $b+g \leq \frac{3}{2} b$, and if $g<a$ then $a \geq 2 g$ and $b+g \leq b+a<\frac{3}{2} b$. In both cases the density bound $\frac{b}{b+g}$ in Theorem 1 is at least $\frac{2}{3}$, which is the bound obtained by Wang [13] for the $a=1$ and $b=2$ case.

In conclusion, we propose a further generalisation of double-free sets. Let $A, B \subset \mathbb{N}$. Say $S \subset \mathbb{N}$ is $\{A, B\}$-multiplicative if $a x=b y$ implies $\{a, x\}=\{b, y\}$ for all $a \in A$ and $b \in B$ and $x, y \in S$. One case is easily dealt with. For some prime number b, let $A:=[b-1]$ and $B:=\{b\}$. Then $\operatorname{gcd}(a, b)=1$ for all $a \in A$. Thus the even subpowers of b are $\{A, B\}$-multiplicative, and have maximum density.

References

[1] Jean-Paul Allouche, André Arnold, Jean Berstel, Srečko Brlek, William Jockusch, Simon Plouffe, and Bruce E. Sagan. A relative of the Thue-Morse sequence. Discrete Math., 139(1-3):455-461, 1995. doi:10.1016/0012-365X (93)00147-W.
[2] Paul Erdős. On sequences of integers no one of which divides the product of two others and some related problems. Izvestiya Naustno-Issl. Inst. Mat. i Meh. Tomsk, 2:74-82, 1938.
[3] Paul Erdős. On some applications of graph theory to number theoretic problems. Publ. Ramanujan Inst. No., 1:131-136, 1968/1969.
[4] Paul Erdős. Some applications of graph theory to number theory. In The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968), pp. 77-82. Springer, Berlin, 1969.
[5] Paul Erdős and Pál Turán. On a problem of Sidon in additive number theory, and on some related problems. J. London Math. Soc., 16:212-215, 1941. doi:10.1112/jlms/s1-16.4.212.
[6] Kevin O'Bryant. A complete annotated bibliography of work related to Sidon sequences. Electron. J. Combin., DS11, 2004. http://www.combinatorics.org/Surveys/index.html.
[7] Attila Pór and David R. Wood. Colourings of the Cartesian product of graphs and multiplicative Sidon sets. Combinatorica, 29(4):449-466, 2009. doi:10.1007/s00493-009-2257-0.
[8] Imre Z. Ruzsa. Erdős and the integers. J. Number Theory, 79(1):115-163, 1999. doi:10.1006/jnth.1999.2395.
[9] Imre Z. Ruzsa. Additive and multiplicative Sidon sets. Acta Math. Hungar., 112(4):345-354, 2006. doi:10.1007/s10474-006-0102-0.
[10] András Sárközy. Unsolved problems in number theory. Period. Math. Hungar., 42(1-2):17-35, 2001. doi:10.1023/A:1015236305093.
[11] Simon Sidon. Ein Satz űber trigonometrische Polynome und seine Anwendung in der Theorie der Fourier-Reihen. Math. Ann., 106:536-539, 1932.
[12] James Singer. A theorem in finite projective geometry and some applications to number theory. Trans. Amer. Math. Soc., 43(3):377-385, 1938. doi:10.2307/1990067.
[13] Edward T. H. Wang. On double-free sets of integers. Ars Combin., 28:97-100, 1989.

[^0]: *Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia (woodd@unimelb.edu.au). Supported by a QEII Research Fellowship from the Australian Research Council.
 ${ }^{1}$ Additive Sidon sets have been more widely studied; see the classical papers [5, 11, 12] and the recent survey by O'Bryant $[6]$. Let $\mathbb{N}:=\{1,2, \ldots\}$ and $[n]:=\{1,2, \ldots, n\}$.

[^1]: ${ }^{2}$ Note that this is not necessarily the only maximum independent set-for a path component with odd length, we may take the vertices at odd distance from the source of this path. This observation readily leads to a characterisation of all maximum independent sets in G, and thus of all $\{a, b\}$-multiplicative sets in $[n]$ with maximum cardinality. Details omitted.

