On Multiplicative Sidon Sets

David R. Wood*

July 7, 2011

Abstract

Fix integers $b > a \ge 1$ with $g := \gcd(a,b)$. A set $S \subseteq \mathbb{N}$ is $\{a,b\}$ -multiplicative if $ax \ne by$ for all $x,y \in S$. For all n, we determine an $\{a,b\}$ -multiplicative set with maximum cardinality in [n], and conclude that the maximum density of an $\{a,b\}$ -multiplicative set is $\frac{b}{b+q}$.

Erdős [2, 3, 4] defined a set $S \subseteq \mathbb{N}$ to be multiplicative $Sidon^1$ if ab = cd implies $\{a,b\} = \{c,d\}$ for all $a,b,c,d \in S$; see [8–10]. In a similar direction, Wang [13] defined a set $S \subseteq \mathbb{N}$ to be double-free if $x \neq 2y$ for all $x,y \in S$, and proved that the maximum density of a double-free set is $\frac{2}{3}$; see [1] for related results. Here the density of $S \subseteq \mathbb{N}$ is

$$\lim_{n\to\infty}\frac{|S\cap[n]|}{n}.$$

Pór and Wood [7] generalised the notion of double-free sets as follows. For $k \in \mathbb{N}$, a set $S \subseteq \mathbb{N}$ is k-multiplicative (Sidon) if ax = by implies a = b and x = y for all $a, b \in [k]$ and $x, y \in S$. Pór and Wood [7] proved that the maximum density of a k-multiplicative set is $\Theta(\frac{1}{\log k})$.

Here we study the following alternative generalisation of double-free sets. For distinct $a, b \in \mathbb{N}$, a set $S \subseteq \mathbb{N}$ is $\{a, b\}$ -multiplicative if $ax \neq by$ for all $x, y \in S$. Our main result is to determine the maximum density of an $\{a, b\}$ -multiplicative set. Assume that a < b throughout.

Say $x \in \mathbb{N}$ is an *i-th subpower* of b if $x = b^i y$ for some $y \not\equiv 0 \pmod{b}$. If x is an *i-th* subpower of b for some even/odd i then x is an even/odd subpower of b.

First suppose that gcd(a, b) = 1. Let T be the set of even subpowers of b. We now prove that T is an $\{a, b\}$ -multiplicative set with maximum density. In fact, for all [n],

^{*}Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia (woodd@unimelb.edu.au). Supported by a QEII Research Fellowship from the Australian Research Council.

¹Additive Sidon sets have been more widely studied; see the classical papers [5, 11, 12] and the recent survey by O'Bryant [6]. Let $\mathbb{N} := \{1, 2, \dots\}$ and $[n] := \{1, 2, \dots, n\}$.

we prove that $T_n := T \cap [n]$ has maximum cardinality out of all $\{a, b\}$ -multiplicative sets contained in [n].

The key to our proof is to model the problem using a directed graph. Let G be the directed graph with V(G) := [n] where $xy \in E(G)$ whenever bx = ay (implying x < y). Thus $S \subseteq [n]$ is $\{a,b\}$ -multiplicative if and only if S is an independent set in G. If xyz is a directed path in G, then $x = \frac{a}{b}y$ and $z = \frac{b}{a}y$. Thus each vertex y has indegree and outdegree at most 1. Since $xy \in E(G)$ implies x < y, G contains no directed cycles. Thus G is a collection of disjoint directed paths. Hence a maximum independent set in G is obtained by taking all the vertices at even distance from the source vertices², where a vertex y is a source (indegree 0) if and only if $\frac{a}{b}y$ is not an integer; that is, if $y \not\equiv 0 \pmod{b}$.

We now prove that the vertices at distance d from a source vertex are precisely the d-th subpowers of b. We proceed by induction on $d \geq 0$. Each vertex y of G has an incoming edge if and only if $\frac{a}{b}y \in \mathbb{N}$, which occurs if and only if $y \equiv 0 \pmod{b}$ since $\gcd(a,b)=1$. Thus the source vertices of G are precisely the 0-th subpowers of b. This proves the d=0 case of the induction hypothesis. Now consider a vertex y at distance d from a source vertex. Thus $y=\frac{b}{a}x$ for some vertex x at distance d-1 from a source vertex. By induction, x is a (d-1)-th subpower of b. That is, $x=b^{d-1}z$ for some $z\not\equiv 0\pmod{b}$. Thus $y=b^d\frac{z}{a}$, which, since $\gcd(a,b)=1$, implies that $\frac{z}{a}$ is an integer. Hence $\frac{z}{a}\not\equiv 0\pmod{b}$ and y is a d-th subpower of b, as claimed.

This proves that the even subpowers of b form a maximum independent set in G. That is, T_n is an $\{a,b\}$ -multiplicative set of maximum cardinality in [n]. To illustrate this proof, the following table shows two examples of the graph G with b=3. Observe that the i-th row consists of the i-th subpowers of 3 regardless of a.

	a=1 and $b=3$										a=2 and $b=3$											
1	2	4	5	7	8	10	11		1	2	4	5	7	8	10	11	13	14	16			
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow			\downarrow	\downarrow			\downarrow	\downarrow			\downarrow	\downarrow			
3	6	12	15	21	24	30	33			3	6			12	15			21	24			
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow				\downarrow			\downarrow					\downarrow			
9	18	36	45	63	72	90	99				9			18					36			
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow							\downarrow					\downarrow			
27	48	108	135	189	216	270	297							27					48			
:	:	:	:	:	:	:	:												:			

²Note that this is not necessarily the only maximum independent set—for a path component with odd length, we may take the vertices at odd distance from the source of this path. This observation readily leads to a characterisation of all maximum independent sets in G, and thus of all $\{a, b\}$ -multiplicative sets in [n] with maximum cardinality. Details omitted.

We now bound $|T_n|$ from above. Observe that

$$T_n = \left\{ b^{2i}y : 0 \le i \le \frac{1}{2} \log_b n, \ 1 \le y \le \frac{n}{b^{2i}}, \ y \not\equiv 0 \pmod{b} \right\} .$$

Thus

$$|T_n| \le \sum_{i=0}^{\lfloor (\log_b n)/2 \rfloor} \left\lceil \frac{b-1}{b} \frac{n}{b^{2i}} \right\rceil$$

$$\le 1 + \frac{1}{2} (\log_b n) + \frac{(b-1)n}{b} \sum_{i \ge 0} \frac{1}{b^{2i}}$$

$$\le 1 + \frac{1}{2} (\log_b n) + \frac{(b-1)n}{b} \frac{b^2}{b^2 - 1}$$

$$= 1 + \frac{1}{2} (\log_b n) + \frac{bn}{b+1}.$$

We now bound $|T_n|$ from below. Observe that

$$T_n = [n] \setminus \left\{ b^{2i+1}y : 0 \le i \le \frac{1}{2}((\log_b n) - 1), \ 1 \le y \le \frac{n}{b^{2i+1}}, \ y \not\equiv 0 \pmod{b} \right\}$$
.

Thus

$$|T_n| \ge n - \sum_{i=0}^{\lfloor ((\log_b n) - 1)/2 \rfloor} \left\lceil \frac{b-1}{b} \frac{n}{b^{2i+1}} \right\rceil$$

$$\ge n - \frac{1}{2} ((\log_b n) + 1) - \frac{(b-1)n}{b^2} \sum_{i \ge 0} \frac{1}{b^{2i}}$$

$$\ge n - \frac{1}{2} ((\log_b n) + 1) - \frac{(b-1)n}{b^2} \frac{b^2}{b^2 - 1}$$

$$= n - \frac{1}{2} ((\log_b n) + 1) - \frac{n}{b+1}$$

$$= \frac{bn}{b+1} - \frac{1}{2} ((\log_b n) + 1) .$$

These upper and lower bounds on $|T_n|$ imply that

$$|T_n| = \frac{bn}{b+1} + \Theta(\log_b n) .$$

Hence the density of T is $\frac{b}{b+1}$, and because T_n is optimal for each n, no $\{a,b\}$ -multiplicative set has density greater than $\frac{b}{b+1}$.

We now drop the assumption that gcd(a,b) = 1. Let g := gcd(a,b). Since ax = by if and only if $\frac{a}{g}x = \frac{b}{g}y$, a set S is $\{a,b\}$ -multiplicative if and only if S is $\{\frac{a}{g},\frac{b}{g}\}$ -multiplicative. Since $\frac{b/g}{b/g+1} = \frac{b}{b+g}$, we have the following result.

Theorem 1. Fix integers $b > a \ge 1$. Let $g := \gcd(a, b)$. Then for every integer $n \in \mathbb{N}$, the even subpowers of $\frac{b}{g}$ in [n] are an $\{a, b\}$ -multiplicative set in [n] with maximum cardinality. And the even subpowers of $\frac{b}{g}$ are an $\{a, b\}$ -multiplicative set with density $\frac{b}{b+g}$, which is maximum.

Note that if g = a then $b \ge 2g$ and $b + g \le \frac{3}{2}b$, and if g < a then $a \ge 2g$ and $b + g \le b + a < \frac{3}{2}b$. In both cases the density bound $\frac{b}{b+g}$ in Theorem 1 is at least $\frac{2}{3}$, which is the bound obtained by Wang [13] for the a = 1 and b = 2 case.

In conclusion, we propose a further generalisation of double-free sets. Let $A, B \subset \mathbb{N}$. Say $S \subset \mathbb{N}$ is $\{A, B\}$ -multiplicative if ax = by implies $\{a, x\} = \{b, y\}$ for all $a \in A$ and $b \in B$ and $x, y \in S$. One case is easily dealt with. For some prime number b, let A := [b-1] and $B := \{b\}$. Then $\gcd(a, b) = 1$ for all $a \in A$. Thus the even subpowers of b are $\{A, B\}$ -multiplicative, and have maximum density.

References

- [1] Jean-Paul Allouche, André Arnold, Jean Berstel, Srečko Brlek, William Jockusch, Simon Plouffe, and Bruce E. Sagan. A relative of the Thue-Morse sequence. *Discrete Math.*, 139(1–3):455–461, 1995. doi:10.1016/0012-365X(93)00147-W.
- [2] Paul Erdős. On sequences of integers no one of which divides the product of two others and some related problems. *Izvestiya Naustno-Issl. Inst. Mat. i Meh. Tomsk*, 2:74–82, 1938.
- [3] PAUL ERDŐS. On some applications of graph theory to number theoretic problems. Publ. Ramanujan Inst. No., 1:131–136, 1968/1969.
- [4] Paul Erdős. Some applications of graph theory to number theory. In *The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich.,* 1968), pp. 77–82. Springer, Berlin, 1969.
- [5] PAUL ERDŐS AND PÁL TURÁN. On a problem of Sidon in additive number theory, and on some related problems. *J. London Math. Soc.*, 16:212–215, 1941. doi:10.1112/jlms/s1-16.4.212.
- [6] KEVIN O'BRYANT. A complete annotated bibliography of work related to Sidon sequences. *Electron. J. Combin.*, DS11, 2004. http://www.combinatorics.org/Surveys/index.html.
- [7] Attila Pór and David R. Wood. Colourings of the Cartesian product of graphs and multiplicative Sidon sets. *Combinatorica*, 29(4):449–466, 2009. doi:10.1007/s00493-009-2257-0.
- [8] IMRE Z. RUZSA. Erdős and the integers. J. Number Theory, 79(1):115–163, 1999. doi:10.1006/jnth.1999.2395.

- [9] IMRE Z. RUZSA. Additive and multiplicative Sidon sets. *Acta Math. Hungar.*, 112(4):345–354, 2006. doi:10.1007/s10474-006-0102-0.
- [10] András Sárközy. Unsolved problems in number theory. *Period. Math. Hungar.*, 42(1-2):17–35, 2001. doi:10.1023/A:1015236305093.
- [11] SIMON SIDON. Ein Satz über trigonometrische Polynome und seine Anwendung in der Theorie der Fourier-Reihen. *Math. Ann.*, 106:536–539, 1932.
- [12] James Singer. A theorem in finite projective geometry and some applications to number theory. *Trans. Amer. Math. Soc.*, 43(3):377–385, 1938. doi:10.2307/1990067.
- [13] EDWARD T. H. WANG. On double-free sets of integers. Ars Combin., 28:97–100, 1989.