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ABSTRACT. Bailey and Crandall [4] recently formulated “Hypothesis A”, a general principle
to explain the (conjectured) normality of the binary expansion of constants like π and other
related numbers, or more generally the base b expansion of such constants for an integer b ≥ 2.
This paper shows that a basic mechanism underlying their principle, which is a relation between
single orbits of two discrete dynamical systems, holds for a very general class of representations
of numbers. This general class includes numbers for which the conclusion of “Hypothesis A”
is not true. The paper also relates the particular class of arithmetical constants treated by
Bailey and Crandall to special values of G-functions, and points out an analogy of “Hypothesis
A” with Furstenberg’s conjecture on invariant measures.
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1. Introduction

Much is known about the irrationality and transcendence of classical arithmetical constants
such as π, e, and ζ(n) for n ≥ 2. There are general methods which in many cases establish irra-
tionality or transcendence of such numbers. In contrast, almost nothing is known concerning
the question of whether arithmetical constants are normal numbers to a fixed base, say b = 2.
It is unknown whether any algebraic number is normal to any integer base b ≥ 2. Even very
weak assertions in the direction of normality are unresolved. For example, it is not known
whether

√
2 has arbitrarily long blocks of zeros appearing in its binary expansion, i.e. whether

lim infn→∞{{2n
√

2}} = 0.
Recently Bailey and Crandall [4] formulated “Hypothesis A”, which provides a hypothet-

ical general principle to explain the (conjectured) normality to base 2 of certain arithmetical
constants such as π and log 2.

Hypothesis A. Given a positive integer b ≥ 2 and a rational function R(x) = p(x)
q(x) ∈

Q(x), such that deg(p(x)) < deg(q(x)), and q(x) has no nonnegative integer roots, define

θ =
∑∞

n=0
p(n)
q(n)b

−n. If y0 = 0 and

yn+1 = byn +
p(n)

q(n)
(mod 1), (1.1)

then the sequence {yn : n ≥ 1} either has finitely many limit points or is uniformly distributed



(mod 1).

This hypothesis concerns the behavior of a particular orbit of the discrete dynamical system
(1.1). Assuming “Hypothesis A,” Bailey and Crandall deduced that the number θ either is
rational or else is a normal number to base b; these correspond to the two possible behaviors
of the sequence {yn : n ≥ 1} allowed by “Hypothesis A”, see Theorem 4.1 below. Proving
“Hypothesis A” appears intractable, but it seems useful in collecting a number of disparate
phenomona together under a single principle. A formulation in terms of dynamical systems is
natural, because the property of normality is itself expressable in terms of dynamics of an orbit
of another dynamical system, the b-transformation, see §2. The basic mechanism rendering
“Hypothesis A” useful is a relation between particular orbits of these two different dynamical
systems.

This paper provides some complements to the results of Bailey and Crandall. It shows that
the relation between particular orbits of two discrete dynamical systems underlying “Hypoth-
esis A” is valid very generally, in that it applies to expansions of real numbers of the form,
θ =

∑∞
n=1 ǫnb

−n, with ǫn arbitrary real numbers with ǫn → 0 as n → ∞, see Theorem 3.1.
Every real number has such an expansion, and “Hypothesis A” is not true in such generality.
Thus in order to be valid “Hypothesis A” must be restricted to apply only to expansions of
some special form. Bailey and Crandall do this, formulating “Hypothesis A” only for a count-
able class of arithmetical constants which in the sequel we call BBP-numbers. It does not seem
clear what should be the “optimal” class of arithmetical constants for which “Hypothesis A”
might be valid. The remainder of the paper discusses various mathematical topics relevant to
this issue. We relate BBP numbers to the theory of G-functions and characterize the subclass
of BBP -numbers which are “special values” of G-functions. We also compare “Hypothesis A”
to a conjecture of Furstenberg in ergodic theory, and this suggests some further questions to
pursue.

We now summarize the contents of the paper in more detail. In §2 and §3 we give the
dynamical connection underlying “Hypothesis A.” In §2 we review radix expansions to an
integer base b ≥ 2 treated as a discrete dynamical system acting on the interval [0, 1]. The
radix expansion of a real number θ is described by an orbit of a dynamical system, the b-
transformation Tb(x) = bx (mod 1), studied by Renyi [34] and Parry [31]. For a given number
θ its b-expansion can be computed from the iterates of this system

xn+1 = bxn (mod 1),

with initial condition x0 = θ (mod 1). The b-expansion of a real number θ ∈ [0, 1] is

θ =

∞∑

j=1

djb
−j,

in which the j-th digit dj := ⌊bxj−1⌋. In §3 we suppose the given real number θ is expressed as

θ =

∞∑

n=1

ǫnb
−n, (1.2)

in which ǫn is any sequence of real numbers with ǫn → 0 as n→ ∞. To this one can associate
a perturbed b-expansion associated to the perturbed b-transformation

yn+1 = byn + ǫn (mod 1), (1.3)

2



starting with an initial condition y0 ∈ [0, 1). The recurrence (1.3) is an infinite sequence of
maps which change at each iteration. Associated to this recurrence is the perturbed b-expansion

y0 + θ =
∞∑

j=0

d̃jb
−j,

in which the j-th digit d̃j := ⌊byj+ǫj+1⌋. Choosing the initial condition y0 = 0 gives a perturbed
b-expansion of θ. The mechanism underlying the approach of Bailey and Crandall is that the
the b-expansion of θ and the perturbed b-expansion of θ are strongly correlated in the following
sense: The orbit {yn : n ≥ 0} of the perturbed b-transformation with initial condition y0 = 0
asymptotically approaches the orbit {xn : n ≥ 0} associated to the b-transformation with
initial condition x0 = ⌊θ⌋. (Theorem 3.1) In particular, the orbits {xn : n ≥ 0} and the orbit
{yn : n ≥ 0} have the same set of limit points, and one is uniformly distributed (mod 1) if
and only if the other is. This implies that the perturbed b-expansion of θ, although different
from the b-expansion of θ, must have similar statistics, in various senses. This connection is
quite general, since every real number θ has representations of the form (1.2).

In §4 we consider the particular class of arithmetical constants treated in Bailey and Cran-
dall [4], consisting of the countable set of θ given by an expansion (1.2) with b ≥ 2 an integer

and ǫn = p(n)
q(n) where p(x), q(x) ∈ Z(x), with q(n) 6= 0 for all n ≥ 0. We call such numbers

BBP-numbers, and call the associated formula

θ =

∞∑

n=1

p(n)

q(n)
b−n,

a BBP-expansion to base b of θ. These numbers are named after Bailey, Borwein and Plouffe [5],
who demonstrated the usefulness of such representations (when deg(p(x)) < deg(q(x))) in com-
puting base b radix expansions of such numbers. We consider BPP -numbers having the addi-
tional restriction deg(p(x)) < deg(q(x)), for this condition is necessary and sufficient for ǫn → 0
as n → ∞, so that the results of §3 apply. The number-theoretic character of BPP -numbers
is that they are special values (at rational points) of functions satisfying a homogeneous linear
differential equation with integer polynomial coefficients. We derive the result of Bailey and
Crandall that “Hypothesis A” implies that such θ either are rational or are normal numbers
to base b (Theorem 4.1.) This result makes it of interest to find criteria to determine when
BBP -numbers are irrational, which we consider next.

In §5 we relate BBP -numbers to the theory of G-functions, and characterize the subclass of
BBP -numbers which are “special values” of G-functions. The subject of G-functions has been
extensively developed in recent years, see [2], [7], [14], and the special values of such functions
can often be proved to be irrational, see [7], [13],[19]. We observe that BBP -numbers satisfy
all but one of the properties required to be a special value of a G-function defined over the
base field Q. We then show that a BBP -expansion to base b corresponds to a special value of
a G-series at z = 1

b
if and only if the denominator polynomial q(x) (in lowest terms) factors

into linear factors over the rationals.(Theorem 5.2.) We show that if all the roots of q(x) are
distinct, then such special values are either rational or transcendental, using Baker’s results on
linear forms in logarithms, in Theorem 5.3, a result also obtained in Adikhari, Saradha, Shorey
and Tijdeman [1]. We summarize other known results on irrationality or transcendence of
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special values of G-functions of the type in Theorem 5.2. It is interesting to observe that every
one of the many examples given in [4] is a special value of a G-function. Many other interesting
examples of such constants were known earlier, for example in 1975 D. H. Lehmer [26, p. 139]
observed that

∞∑

n=0

1

(n+ 1)(2n + 1)(4n + 1)
=
π

3
.

In §6 we compare “Hypothesis A” with a conjecture of Furstenberg in ergodic theory, which
concerning measures that are ergodic for the joint action of two multiplicatively independent b-
transformations. Both conjectures have similar conclusions, though there seems to be no direct
relation between their hypotheses. Bailey and Crandall have found examples of arithmetical
constants which have the property of being BBP -numbers to two multiplicatively independent
bases. This suggests that one should look for further conditions under which the two conjectures
are more directly related.

In §7 we make concluding remarks. We describe an empirical taxonomy of various classes
of arithmetical constants, and formulate some alternative classes of arithmetical constants as
candidates for inclusion in “Hypothesis A.”

2. Radix Expansions

We consider radix expansions to an integer base b ≥ 2. They are obtained by iterating the
b-transformation

Tb(x) = bx (mod 1) . (2.1)

Given a real number x0 ∈ [0, 1), as initial condition, we produce the sequence of remainders

xn+1 = bxn (mod 1) , (2.2)

with 0 ≤ xn+1 < 1. That is,

xn+1 = bxn − dn+1 (2.3)

where

dn+1 = dn+1(x0) = ⌊bxn⌋ ∈ {0, 1, . . . , b− 1} (2.4)

is called the n-th digit of θ. The forward orbit of x0 is O+(x0) = {xn : n ≥ 0} and we call {xn}
the remainder sequence of the b-expansion. Iterating (2.3) n+ 1 times yields

xn+1 = bn+1x0 − dn+1 − bdn − · · · − bnd1 . (2.5)

Dividing by bn+1 yields

x0 =
n∑

j=1

djb
−j − b−n−1xn+1 .

Letting n→ ∞ yields the b-expansion of x0,

x0 =
∞∑

j=1

dj(x0)b
−j , (2.6)
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which is valid for 0 ≤ x0 < 1. For θ ∈ R we take x0 = θ − ⌊θ⌋ and d0(θ) = ⌊θ⌋ ∈ Z, thus
obtaining the representation

θ = d0(θ) +
∞∑

j=1

dj(θ)b
−j , (2.7)

which is called the b-expansion of theta. Note that (2.5) gives

xn ≡ bnx0 (mod 1) ≡ bnθ (mod 1) (2.8)

in this case.
The following property than an initial condition θ may have concerns the topological dy-

namics of the b-transformation for its iterates.

Definition 2.1 A real number θ ∈ [0, 1) is digit-dense to base b if, for every m ≥ 1, every legal
digit sequence of digits of length m occurs at least once as consecutive digits in the b-expansion

θ =
∞∑

n=1
dn(θ)β−n.

The following property that an initial condition θ may have concerns the metric dynamics
of the b-transformation for θ. It is well known that the b-transformation Tb has the uniform
measure (Lebesgue measure) on [0, 1] as its unique absolutely continuous invariant measure.

Definition 2.2 A real number θ ∈ [0, 1) is normal to base b if for every m ≥ 1 every digit
sequence d1d2 · · · dm ∈ {0, 1, . . . , d − 1}m occurs with limiting frequency b−m, as given by the
invariant measure µLeb.

Recall that
µLeb({x0 : d1(x0) · · · dn(x0) = d1d2 · · · dm}) = b−m ,

where µLeb(S) denotes the Lebesgue measure of S. It is well known that, for each b ≥ 2, the
set of θ ∈ [0, 1] that is normal to base b has full Lebesgue measure.

The properties of the digit expansion {dn(θ) : n ≥ 1} can be extracted from the remainder
sequence {xn}. The following result is well known.

Theorem 2.1 Given an integer base b ≥ 2 and a real number θ ∈ [0, 1].

(1) θ is digit-dense to base b if and only if its remainder sequence {xn(θ) : n ≥ 1} to base b
is dense in [0, 1].

(2) θ is normal to base b if and only if its remainder sequence {xn : n ≥ 1} to base b is
uniformly distributed in [0, 1].

(3) θ has an eventually periodic b-expansion. if and only if its remainder sequence {xn : n ≥
1} to base b has finitely many limit points. This condition holds if and only if {xn : n ≥ 1}
eventually enters a periodic orbit of the b-transformation, i.e. xm = xm+p for some m,
p ≥ 1. These equivalent conditions hold if and only θ is rational.
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Proof. (1). The set I(d1d2 · · · dm) := {θ ∈ [0, 1] : d1(θ) · · · dm(θ) = d1 · · · dm} is a half-open
interval [a, a+b−m) of length b−m, and the bm intervals partition [0, 1]. Digit-denseness implies
there exists some xk ∈ I(d1 · · · dm). This holds for allm ≥ 1 and generates a dense set of points.

(2). If θ has {xn : n ≥ 1} is uniformly distributed (mod 1) then the correct frequency of
points occurs in each interval I(d1 · · · dm), and this proves normality of θ. For the converse,
one uses the fact that I(d1 · · · dm) is a basis for the Borel sets in [0, 1).

(3). The key point to check is that if the limit set of {xn : n ≥ 1} is finite, then this finite
set forms a single periodic orbit of the b-transformation, and some xn lies in this orbit. We
omit details, cf. Bailey and Crandall [4, Theorem 2.8].

Remark. Most of the results above generalize to the β-transformation Tβ(x) = βx (mod 1)
for a fixed real β > 1; these maps were studied by Parry [31]. Associated to this map is the
notion of a β-expansion for any real number θ, in which the allowed digits are {0, 1, 2, . . . , ⌊β⌋}.
Not all digit sequences are allowed in β-expansions, but the set of allowed digit sequences
was characterized by Parry [31], see Flatto et al. [17] for other references. One defines a
number θ to be digit-dense to base β if every allowable finite digit sequence occurs in its β-
expansion.. There is a unique absolutely continuous invariant measure dµ of total mass one for
the β-transformation, and one defines a number θ to be normal to base β if every finite block
of digits occurs in its β-expansion with the limiting frequency prescribed by this invariant
measure. With these conventions, Theorem 2.1 remains valid for a general base β, except
that Theorem 2.1(3) must be taken only as characterizing eventually periodic orbits of the
β-transformation. That is, the final assertion in (3) that θ is rational must be dropped; it does
not hold for general β. For results relating normality of numbers in different real bases β, see
Brown, Moran and Pollington [12].

3. Perturbed Radix Expansions

Let b ≥ 2 be an integer, and let {ǫn : n ≥ 1} be an arbitrary sequence of real numbers
satisfying

lim
n→∞

ǫn = 0 . (3.1)

Set

θ = θ(b, {ǫn}) :=

∞∑

n=1

ǫnb
−n . (3.2)

We can study the real number θ using a perturbed b-expansion associated to the sequence {ǫn}.
The perturbed b-transformation on [0, 1) is the recurrence

yn+1 = byn + ǫn+1 (mod 1) , (3.3)

with 0 ≤ yn+1 < 1 and with given initial condition y0. That is,

yn+1 = byn + ǫn+1 − d̃n+1, (3.4)
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where

d̃n+1 = ⌊byn + ǫn+1⌋ ∈ Z (3.5)

is the (n+1)-st digit of the expansion. The digit sequence d̃n = dn(y0) and remainder sequence
{yn : n ≥ 0} depend on the initial condition y0. Since ǫn → 0, for all sufficiently large n, one
has d̃n ∈ {−1, 0, 1, . . . , b− 1, b}. Now (3.4) iterated n+ 1 times yields

yn+1 = ǫn+1 + bǫn + · · · + bnǫ1 + bn+1y0 −
n∑

j=0

d̃n−jb
j . (3.6)

Dividing by bn+1 yields

n∑

j=1

d̃jb
−j =

n∑

j=1

ǫjb
−j + (y0 − b−n−1yn+1) . (3.7)

Letting n→ ∞ yields the perturbed b-expansion

y0 + θ =
∞∑

j=1

d̃j(y0)b
−j , (3.8)

valid for 0 ≤ y0 < 1. We write yn = yn(y0) for the remainder sequence in (3.4)
The perturbed b-expansion {d∗n(θ) : n ≥ 1} for θ given by (3.2) is obtained by choosing

the initial condition y0 = 0, i.e. d∗n(θ) := d̃n(0). We also have the perturbed remainders
{y∗n(θ) : n ≥ 1} given by y∗n(θ) = yn(0).

The main observation of this section is that the remainders of the perturbed b-expansion
of such θ are related to the remainders of their b-expansion.

Theorem 3.1 Let b ≥ 2 be an integer and let θ :=
∑∞

n=1 ǫnb
−n, where ǫn are real numbers

with ǫn → 0 as n→ ∞. Let {y∗n(θ) : n ≥ 1} denote the associated perturbed remainder sequence
of θ, and {xn(θ) : n ≥ 1} denote the remainder sequence of its b-expansion. If

tn :=

∞∑

j=1

ǫn+jb
−j , (3.9)

then

xn(θ) = y∗n(θ) + tn (mod 1) . (3.10)

The orbits {xn(θ) : n ≥ 1} and {y∗n(θ) : n ≥ 1} asymptotically approach each other on the
torus T = R/Z as n→ ∞.

Proof. Since y0 = 0, formula (3.6) gives

yn+1 =
n∑

j=1

bn−jǫj (mod 1) . (3.11)
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Now

bnθ =

∞∑

y=1

bn−jǫj =

n∑

j=1

bn−jǫj + tn .

Thus

bnθ = yn + tn (mod 1) . (3.12)

For the b-expansion, (2.8) gives bnθ ≡ xn (mod 1), and combining this with (3.12) yields
(3.10).

Since ǫn → 0 as n→ ∞, we have tn → 0 as n→ ∞. Thus |xn(θ) − y∗n(θ)| → 0 on T as
n→ ∞. Note that on T = R/Z the points ǫ and 1 − ǫ are close.

Lemma 3.2 Let {xn : n ≥ 1} and {yn : n ≥ 1} be any two sequences in [0, 1] with xn = yn+δn
(mod 1) with δn → 0 as n→ ∞.

(1) The sequences {xn : n ≥ 1} and {yn : n ≥ 1} have the same sets of limit points, provided
the endpoints 0 and 1 are identified.

(2) The sequence {xn : n ≥ 1} is uniformly distributed (mod 1) if and only if {yn : n ≥ 1}
is uniformly distributed (mod 1).

Proof. (1) This is clear since xnj
→ ψ implies ynj

→ ψ and vice-versa, except at the endpoints
ψ = 0 or 1, which, by convention, we identify as the same point.

(2) This is well known, see Kuipers and Niederreiter [25, Theorem 1.2, p. 3].

One can compare the b-expansion {dn(θ) : n ≥ 1} and the perturbed b-expansion {d∗n(θ) :
n ≥ 1} of such θ. We have

dn(θ) = ⌊bxn−1⌋
d∗n(θ) = ⌊bn−1 + ǫn⌋ = ⌊b(xn−1 + tn−1(mod 1)) + ǫn⌋ .

Since tn → 0 and ǫn → 0 as n→ ∞, one expects that “most” digit values of the two expansions
will agree1, i.e. dn(θ) = d∗n(θ) for “most” sufficiently large values of n. However there is still
room for there to be infinitely many n where dn(θ) 6= d∗n(θ).

We next consider perturbed b-expansions having a finite number of limit points, and show
that they correspond to rational θ.

Theorem 3.3 Let b ≥ 2 be an integer and let θ =
∑∞

n=1 ǫnb
−n with ǫn a sequence of real

numbers with ǫn → 0 as n→ ∞. The following conditions are equivalent.

(i) θ ∈ Q.

(ii) The remainders {y∗n(θ) : n ≥ 1} of the perturbed b-expansion of θ have finitely many limit
points in [0, 1].

1This is an unproved heuristic statement. It is an open problem to prove that a natural density one proportion
of all n have dn(θ) = d

∗

n(θ).
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(iii) The orbit {y∗n(θ) : n ≥ 1} of the perturbed b-transformation asymptotically approaches
a periodic orbit {xk : 0 ≤ k ≤ p} of the b-transformation, with Tb(xk) = xk+1 and
Tb(xp) = x0 and for 0 ≤ j ≤ p− 1, such that

yn = xj + δn (mod 1) if n ≡ j (mod p) (3.13)

with δn → 0 as n→ ∞.

Proof. (i)⇒(ii). By Theorem 2.1 if θ ∈ Q the remainders {xn(θ) : n ≥ 1} of the b-
transformation have finitely many limit points. By Theorem 3.1 and Lemma 3.2 we conclude
that {y∗n(θ) : n ≥ 1} has the same set of limit points.
(ii)⇒(iii). By Theorem 3.1 and Lemma 3.2 the limit points of {y∗n(θ) : n ≥ 1} are the same
as {xn(θ) : n ≥ 1}. By Theorem 2.1 such limit points must form a periodic orbit of the
b-transformation.
(iii)⇒(i). The values {y∗n(θ) : n ≥ 1} have limit points the periodic orbit {xj : 1 ≤ j ≤ n} of
Tb. By Theorem 2.1, it follows that θ ∈ Q.

Remarks. (1). Any real number θ has some perturbed b-expansion satisfying the hypotheses
of Theorem 3.1, so in a sense these expansions are completely general. It follows from Theo-
rem 3.3 that Hypothesis A cannot be valid for all such θ, since there exist irrational θ that are
not normal numbers.

(2). The rationality criterion of Theorem 3.3 is not directly testable computationally, unless
all ǫn = 0 for n ≥ n0; the latter case essentially is the same as that of a b-transformation.
When infinitely many ǫn 6= 0, then the points {y∗n(θ) : n ≥ 1} stay outside the periodic orbit
for infinitely many values of n, and the role of the {ǫn} is to compensate for the expanding
nature of the map T (x) = bx (mod 1) by providing negative feedback to push the iterates
closer and closer to the periodic orbit.

(3). Theorem 3.1 does not extend to β-expansions for non-integer β. One can consider

θ = θ(β, {ǫn}) :=

∞∑

n=1

ǫnβ
−n . (3.14)

and define an associated perturbed β-transformation in the obvious way. However when β is
not an integer the analogue of Theorem 3.1 fails to hold, since (3.12) is no longer valid. In
particular, Theorem 3.1 does not extend to rational β = b

a
> 1, with a > 1.

4. BBP-Numbers and Hypothesis A

We consider expansions of the following special form.

Definition 4.1 A BBP-number to base b is a real number θ with a representation

θ =
∞∑

n=1

p(n)

q(n)
b−n , (4.1)

in which b ≥ 2 is an integer and p(x), q(x) ∈ Z[x] are relatively prime polynomials, with
q(n) 6= 0 for each n ∈ Z≥0. We call (4.1) a BBP-expansion to base b.
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Bailey, Borwein and Plouffe [5, p. 904] introduced this class of numbers, proving that
for them the d-th digit is computable2 in time at most O(d logO(1) d) using space at most
O(logO(1) d), which is the complexity class SC∗, a subclass of SC, see [24, p. 127].

We mainly consider BBP -numbers that satisfy the extra condition

deg(q(x)) > deg(p(x)) . (4.2)

This condition guarantees that ǫn = p(n)
q(n) → 0 as n → ∞, which allows Theorem 3.1 to be

applicable. We now formulate two hypotheses, whose conclusions are in terms of topological
dynamics and metric dynamics, respectively. The second of these is “Hypothesis A” of Bailey
and Crandall [4].

Weak Dichotomy Hypothesis. Let there be given a perturbed b-transformation with ǫn =
p(n)
q(n) with p(x), q(x) ∈ Z[x] and deg(q(x)) > deg(p(x)). Then the orbit {yn : n ≥ 1} for

θ(b, {ǫn}) either has finitely many limit points or else is dense in [0, 1].

Strong Dichotomy Hypothesis Let there be given a perturbed b-transformation with ǫn =
p(n)
q(n) with p(x), q(x) ∈ Z[x] and deg(q(x)) > deg(p(x)). Then the orbit {yn : n ≥ 1} for

θ(b, {ǫn}) either has finitely many limit points or is uniformly distributed on [0, 1]. Equivalently,
in measure theoretic terms, the measures µN = 1

N

∑N
k=1 δyk

converge in the vague topology as
N → ∞ to a limit measure µ, which is an invariant measure for the b-transformation, and
which is either a measure supported on a finite set or else is Lebesgue measure on [0, 1].

Bailey and Crandall [4] essentially established the following result.

Theorem 4.1 Let θ be a BBP-number to base b whose associated BBP expansion satisfies

deg(q(x)) > deg(p(x)) . (4.3)

Then the following conditional results hold.
(1) The Weak Dichotomy Hypothesis implies that θ is either rational or digit-dense to base

b.
(2) The Strong Dichotomy Hypothesis implies that θ is either rational or a normal number

to base b.

Proof. The condition (4.3) guarantees that ǫn = p(n)
q(n) → 0 as n → ∞. Thus Theorem 3.1

applies to the BBP -number

θ =

∞∑

n=1

p(n)

q(n)
b−n .

(1) By the Weak Dichotomy Hypothesis the limit set of {y∗n(θ) : n ≥ 1} is dense in [0, 1].
Now Lemma 3.2 (1) implies that b-expansion remainders {xn(θ) : n ≥ 1} are dense in [0, 1].
Theorem 2.1 (1) then shows that θ is digit-dense.

2Bailey, Borwein and Plouffe use the convention that “computing the d-th digit” means computing is an
approximation to b

d
θ (mod 1) that is guaranteed to be within a specified distance to it (mod 1). Usually this

determines the d-th digit, but it may not, near the endpoints of the digit interval.
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(2) By the Strong Dichotomy Hypothesis {y∗n(θ) : n ≥ 1} is uniformly distributed in [0, 1].
Now Lemma 3.2 (2) implies that {xn(θ) : n ≥ 1} is uniformly distributed in [0, 1]. Now θ is
normal to base b by Theorem 2.1 (2).

Bailey, Borwein and Plouffe [5] and Bailey and Crandall [4] give many examples of BBP -
numbers satisfying (4.2) where the associated real number θ is known to be irrational. For
example for various b one can obtain π, log 2, ζ(3) etc. They also observe that ζ(5) is a BBP -
number, to base b = 260, but it remains an open problem to decide if ζ(5) is irrational. All the
examples they give of BBP -numbers are actually of a special form: they are “special values”
of G-functions defined over Q, as we discuss next.

5. Special Values of G-Functions

The notion of G-function was introduced by Siegel [37] in 1929.

Definition 5.1 A power series

f(z) =

∞∑

n=0

anz
n (5.1)

defines a G-series over the base field Q if the following conditions hold.
(i) Rational coefficients condition. All an ∈ Q so we may write an = pn

qn
, with pn, qn ∈ Z

with (pn, qn) = 1 and qn ≥ 1.
(ii) Local analyticity condition. The power series f(z) has positive radius of convergence

r∞, and for each prime p the p-adic function fp(z) :=
∑∞

n=0 anz
n viewing an ∈ Q ⊆ Qp has

positive radius of convergence rp in Cp, where Cp = ˆ̄Qp is the completion of the algebraic
closure of Qp.

(iii) Linear differential equation condition. The power series f(z) formally satisfies a ho-
mogeneous linear differential equation in D = d

dz
with coefficients in the polynomial ring Q[z].

(iv) Growth condition. There is a constant C <∞ such that

gn := lcm(q1, q2, . . . , qn) < Cn (5.2)

for all n ≥ 1.

There is an extensive theory of G-functions, see Bombieri [7], André [2] and Dwork, Geroth
and Sullivan [14]. For the general definition of a G-function over an algebraic number field K
see André [2, p. 14], or Dwork et al. [14]. G-functions have an important role in arithmetic
algebraic geometry, where it is conjectured that G-functions are exactly the set of solutions
over Q̄[z] of a geometric differential equation over Q̄, as defined in Andre [2, p. 2]. In any case it
is known that the (minimal) homogeneous linear differential equation satisfied by a G-series is
of a very restricted kind: it must have regular singular points, and these must all have rational
exponents, by a result of Katz, cf. Bombieri [7, p. 46] and Bombieri and Sperber [8]. (The
growth condition (iv) plays a crucial role in obtaining this result.) It follows that a G-series
analytically continues to a multi-valued function on P1(C) minus a finite number of singular
points, cf. [14, p. xiv]. We call this multi-valued function a G-function.
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It is known that the set GK of G-series defined over a number field K form a ring over K,
under addition and multiplication, which is also closed under the Hadamard product

f ⊠ g(z) =

∞∑

n=0

anbnz
n , (5.3)

see [2, Theorem D, p. 14].

Definition 5.2 A special value of a G-function defined over K is a value f(b), where b ∈ K,
which is obtained by analytically continuation along some path from 0 to b that avoids singular
points.

Siegel [37] introduced G-functions and observed that irrationality results could be proved
for their “special values”, but did not give any details. Bombieri [7] developed the theory of
G-functions and gave explicit irrationality criteria in specific cases (his Theorem 6) for points
close to the center of the circle of convergence of the G-series, as a by-product of very general
results.

It is easy to show that each BBP -number is a special value of a power series on Q that
satisfies conditions (i)–(iii) of a G-series. They do not always satisfy the growth condition
(iv), however, and in a subsequent result we give necessary and sufficient conditions for the
condition (iv) to hold.

Theorem 5.1 Let R(x) = p(x)
q(x) ∈ Q(x) with p(x), q(x) ∈ Q[x] with (p(x), q(x)) = 1 and with

q(n) 6= 0 for all n ≥ 0, and set

f(z) =

∞∑

n=0

p(n)

q(n)
zn . (5.4)

Let fp(z) be the p-adic power series obtained by interpreting p(n)
q(n) ∈ Q ⊆ Qp. Then the power

series f(z) satisfies a homogeneous linear differential equation in d
dz

with coefficients in Q[z],
and f(z) has positive radius of convergence in C and fp(z) has a positive radius of convergence

in Cp = ̂̄Qp for all primes p.

Proof. For the first assertion, let p(x) =
∑l

j=0 ajx
j and q(x) =

∑m
j=0 bjx

j . Then the operator

D :=
dl+1

dzl+1
(1 − z)l+1(

m∑

j=0

bj(z
d

dz
)j) ∈ Q[z,

d

dz
] (5.5)

has the property that

Df(z) = 0. (5.6)

Indeed one has

q(z
d

dz
)f(z) =

∞∑

n=0

p(n)zn =
l∑

j=0

a′j(
1

1 − z
)j+1,
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where a′j are defined by the polynomial identity

l∑

j=0

ajx
j =

l∑

j=0

a′j

(
x

j

)
.

Multiplying this rational function by (1 − z)l+1 yields a polynomial of degree l in z, which is

annihilated by dl+1

dzl+1 , and this verifies (5.6).
For the second assertion, the power series expansion of f(z) clearly has radius of convergence

1 in C. It is easy to establish that the the p-adic series fp(z) has a positive radius of convergence
on some p-adic disk around zero since |q(n)| ≤ cnd cannot contain more than cd log n factors
of p.

We now give necessary and sufficient conditions for a power series arising from a BBP -
number to be a G-series.

Theorem 5.2 Let R(x) = p(x)
q(x) ∈ Q(x) with p(x), q(x) ∈ Q[x] with (p(x), q(x)) = 1 and with

q(n) 6= 0 for all n ≥ 0, and set f(z) =
∑∞

n=0
p(n)
q(n)z

n . Then the power-series f(z) is a G-series

(necessarily defined over Q) if and only if q(x) factors into linear factors in Q[x].

Proof. Suppose first that q(x) factors into linear factors over Q, say

q(x) = A
r∏

j=1

Lj(x)

with Lj(x) = ljx + mj with lj,mj ∈ Z with (lj ,mj) = 1. To show f(z) is a G-series, by
Theorem 5.1 it suffices to we check the growth condition (iv). Now

lcm(q1, q2, . . . , qn) ≤ lcm(q(1), q(2), . . . , q(n))

≤ |A|
r∏

j=1

lcm(Lj(1), . . . , Lj(n)) (5.7)

where Lj(n) = ljx+mj . It is well-known that

log(lcm[1, 2, . . . ,m]) =
∑

{p,j:pj≤m}

log p

=
m∑

n=1

Λ(n) = m+O(m) (5.8)

by the prime number theorem. This yields

lcm[1, 2, . . . ,m] = em(1+o(1)) (5.9)

as m→ ∞. This gives a bound

lcm(Lj(1), . . . , Lj(n)) ≤ lcm(1, 2, . . . , |lj |n + |mj |)
≤ e(|lj |n+|mj |)(1+o(1)) .
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Substituting this in (5.7) implies condition (iv).
For the opposite direction, we will show that if q(x) does not factor into linear factors over

Q then condition (iv) does not hold. Nagell [28] showed that if q(x) ∈ Z[x] is an irreducible
polynomial of degree d ≥ 2, then there is a positive constant c(d) with the property that for
any ǫ > 0 there is a positive constant C(ǫ) such that

lcm(q(1), q(2), . . . , q(n)) > C(ǫ)n(c(d)−ǫ)n (5.10)

holds for all n ≥ 1. One can prove this result with c(d) = d−1
d2 . Such a lower bound applies to

any denominator q(x) that does not split into linear factors over Q. To complete the argument
one must bound the possible cancellation between the numerators p(n), and denominators
q(n). If (p(x), q(x)) = 1 over Z[x], then

n∏

j=1

gcd(p(j), q(j)) ≤ Cn, (5.11)

for a finite constant C = C(p(x), q(x)). This follows since

gcd(p(n), q(n)) ≤ C

holds for all n, for a suitable C. To see this, factor p(x) =
∏

(x − αi) and q(x) =
∏

(x− βj),
with αi 6= βj for all i, j. Then one has, over the number field K spanned by these roots,

ideal − gcd((n − αi), (n − βj)) | (αi − βj). (5.12)

Taking a norm from K/Q of the product of all these ideals gives the desired constant C.

Remarks. (1) It is an interesting open question to determine what is the largest value of
c(d) allowed in (5.10). One can prove that it cannot be larger than d− 1.

(2) There are many more G-functions defined over Q than those given in Theorem 5.2.
The set of G-functions defined over Q is closed under multiplication, so that (log(1− z))2) is a
G-function, but its power series coefficients around z = 0 are not given by a rational function.
Also, for rational a, b, c the Gaussian hypergeometric function

2F 1(a, b, c, z) =

∞∑

n=0

(a)n(b)n
(c)nn!

zn,

is a G-function which is not of the above kind for “generic” a, b, c, see André [3].
According to the results of §4, the conclusion of “Hypothesis A” is really a statement about

irrational BBP -numbers. There is a good deal known about the irrationality or transcendence
of the special values of the G-series covered in Theorem 5.2, a topic which we now address.

Theorem 5.3 Let R(x) = p(x)
q(x) ∈ Q(x) with p(x), q(x) ∈ Q[x] with (p(x), q(x)) = 1 and with

q(n) 6= 0 for all n ≥ 0, and set

f(z) =

∞∑

n=0

p(n)

q(n)
zn .

If q(z) factors into distinct linear factors over Q, then for each rational r in the open disk of
convergence of q(z) around z = 0 the special value f(r) is either rational or transcendental.
Furthermore there is an effective algorithm to decide whether f(r) is rational or transcendental.
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Proof. We only sketch the details, since a similar result has been obtained by Adhikari,
Saradha, Shorey and Tijdeman [1], see also Tijdeman [38, Theorem 6].

By expanding R(x) in partial fractions, under the hypothesis that q(x) splits in linear
factors over Q one obtains an expansion of the form

R(x) = p0(x) +
s∑

j=1

cj
x− rj

,

in which p0(x) ∈ Q[x], and each cj , rj ∈ Q. In fact rj /∈ Z≥0, so all denominators q(n) 6= 0.
Now if rj =

pj

qj
then one has a decomposition,

∞∑

n=0

1

n− rj
zj = pj(z) +

qj∑

k=1

βj,k log(1 − exp(
2πik

qj
)z),

in which pj(z) is a polynomial with rational coefficients, while the coefficients βj are effectively
computable algebraic numbers in the field Q(exp(2πi

qj
)). It follows from this that one can ex-

press the function f(z) as a finite sum of terms of the form
aj

(1−z)j with rational coefficients

plus a finite sum of terms of the form −βj,k log(1 − αjz), with βj , αj effectively computable
algebraic numbers. The non-logarithmic terms all combine to give a rational function R0(z)
with coefficients in Q. Given a rational r with 0 < |r| < 1, it follows that f(r) is a finite sum
of linear forms in logarithms with algebraic coefficients, evaluated at algebraic points. Using
Baker’s transcendence result on linear forms in logarithms (Baker [6, Theorem 2.1]), f(r) is
transcendental if and only if the sum of all the logarithmic terms above is nonzero. There is
also an effective decision procedure to tell whether this sum is zero or not. If the logarith-
mic terms do sum to zero, then the remaining rational function terms sum up to the rational
number f(r) = R0(r).

The case where q(x) factors into linear factors over Q but has repeated factors is not covered
in the result above. This case includes the polylogarithm Lik(z) =

∑∞
n=1

zn

nk of order k, for each
k ≥ 2. Various results are known concerning the irrationality of such numbers. For example,
Lik(

1
b
) is irrational for all sufficiently large integers b, see Bombieri [7]. In fact it is known

that the set of numbers 1,Li1(
p
q
), ...,Lin(p

q
), with Li1(z) = log(1− z), are linearly independent

over the rationals whenever |p| ≥ 1 and |q| ≥ (4n)n(n−1)|p|n, according to Nikishin [30]. For
polylogarithms one has Lik(1) = ζ(k), also on the boundary of the disk of convergence. It
is not known whether ζ(k) is irrational for odd k ≥ 5, although a very recent result of T.
Rivoal [35] shows that an infinite number of ζ(k) for odd k must be irrational.

6. Invariant Measures and Furstenberg’s Conjecture

It is well known that for single expanding dynamical system, such as the b-transformation
Tb , there always exist chaotic orbits exhibiting a wide range of pathology. For example, there
exist uncountably many θ ∈ [0, 1] whose 2-transformation iterates {xn} satisfy

1

25
< xn <

24

25
for all n ≥ 0 ,
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see Pollington [33]. One can obtain ergodic invariant measures of Tb supported on the closure
of suitable orbits, which for example may form Cantor sets of measure zero.

If one considers instead two b-transformations, say Tb1 and Tb2 , with multiplicatively in-
dependent values, i.e. which generate a non-lacunary commutative semigroup S = 〈Tb1 , Tb2〉,
then the set of ergodic invariant measures for the whole semigroup is apparently of an ex-
tremely restricted form. Furstenberg has proposed the following conjecture, suggested as an
outgrowth of his work on topological dynamics, cf. Furstenberg [18, Sect. IV]. It is explicitly
stated in Margulis [27, Conjecture 4].

Furstenberg’s Conjecture. Let a, b ≥ 2 be multiplicatively independent integers. The only
Borel measures on [0, 1] that are simultaneously invariant ergodic measures for Ta(x) = ax
(mod 1) and Tb(x) = bx (mod 1) are Lebesgue measure and measures supported on finite sets
which are periodic orbits of both Ta and Tb.

Various results concerning this conjecture appear in Rudolph [36], Parry [32], Host [22]
and Johnson [23]. In particular, if there is any exceptional invariant measure violating the
conjecture, it must have entropy zero with respect to Lebesgue measure.

Furstenberg’s conjecture involves some ingredients similar to “Conjecture A”, and its con-
clusion involves a dichotomy similar to that in “Conjecture A.” This makes it natural to ask if
there is any relation between the two conjectures. At present none is known, in either direction.

One may look for BBP -numbers θ 6∈ Q which have properties similar to that expressed
in the hypothesis of Furstenberg’s conjecture , i.e. which possess BBP -expansions to two
multiplicatively independent bases. It is known that there exist irrational BBP -numbers
θ =

∑∞
n=1R(n)b−n which do possess BBP -expressions to two multiplicatively independent

bases. For example, Bailey and Crandall [4] observe that θ = log 2 has this property, on taking

b = 2 and R(x) =
1

x
,

and

b = 32 and R(x) =
6

2x− 1
,

see [4, eqn (4), and (10)]. They also observe that θ = π2 has this property, as it possesses
BBP -expansions to bases b = 2 and b = 34, the latter one found by Broadhurst [11, eqn.
(212), p. 35].

Question. Do all BBP -numbers which are special values of G-functions have BBP -
expansions in two multiplicatively independent bases?

To make tighter a possible connection between the two conjectures, one can ask for which
numbers does the following weaker version of “Hypothesis A” hold.

Invariant Measure Hypothesis Every BBP-number to base b has b-transformation it-
erates {xn} that are asymptotically distributed according to a limiting measure on [0, 1].
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It would be interesting to find extra hypotheses on a class of arithmetical constants under
which a precise connection can be established between “Hypothesis A” and Furstenberg’s
conjecture.

7. Concluding Remarks

Many of the examples of arithmetical constants arise as special values of G-functions defined
over the rationals, or at least “special values” of functions satisfying linear differential equations
with polynomial coefficients in Q[x]. Based on the known results, one may empirically group
these constants into three classes, of apparantly increasing order of difficulty of establishing
irrationality or transcendence results.

(1). special values of G-functions f(p
q
) defined over the rationals, with p

q
inside the disk of

convergence of the G-series.
(2). “singular values” f(1) of such a G-function, which are values taken at a singular point

of the associated (minimal order) linear differential equation, on the boundary of the disk of
convergence of a G-series, at which the G-expansion converges absolutely.

(3). “renormalized singular values,” which are the constant terms in an asymptotic expan-
sion of a G-function around a singular point.

In this hierarchy, an arithmetical constant may occur as more than one type. For example,
π2

6 = ζ(2) = Li2(1) occurs as a number of type (2), but it is also realized as a number of type
(1), which falls in the class of constants considered in this paper. It is a nontrivial problem to
determine what is the lowest level in the hierarchy a given constant belongs.

Various constants of types (1) and (2) appear in the renormalization of massive Feynman
diagrams, see Broadhurst [11] and Groote, Körner and Pivovarov [21], who cite Li4(

1
2) as such a

constant. Multiple zeta values and polylogarithms give many examples of type (2), see Borwein
et al. [9], [10]. Many of the most interesting arithmetical constants naturally arise as constants
of type (2) and (3). For examples, the values ζ(k) = Lik(1) appear as constants of type (2),
while Euler’s constant appears as a type (3) “renormalized” value at z = 1 of Li1(z). The
problem of showing the linear independence of all odd zeta values ζ(2n+ 1) over the rationals
has recently been of great interest from connections with various conjectures in arithmetical
algebraic geometry, see Goncharov [20]. Many other examples of type (2) and (3) constants
appear in Lehmer [26] and Flajolet and Salvy [16]. I am not aware of any irrationality or
transcendence results proved for a constant of type (3).

One can extend the hierarchy above outside the class of G-functions. E. Bombieri observes
that the power series

h(z) =

∞∑

n=1

1

n(n2 + 1)
zn

of BBP -type, which is not a G-series, has special value at z = 1 given by

h(1) =
1

2
ℜ(

Γ′(i)

Γ(i)
).

The value z = 1 lies on the boundary of the disk of convergence of the power series for this
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function, and corresponds to type (2) above. Another example is

∞∑

n=1

(−1)n

n2 + 1
=

2π

eπ − e−π
− 1,

see Flajolet and Salvy[16, p. 18], who give many other interesting examples.
The relevant special values of a rational power series for the approach of Bailey and Cran-

dall to apply are z = 1
b

for integer b ≥ 2, where the disk of convergence of the associated power
series has radius 1. One observes that the theory of G-functions provides irrationality results
for rational values z = a

b
, without regard for whether a = 1 or not. This suggests the following

question.

Question. Given a rational value z = a
b
, with 1 < |a| < |b|, is there an associated dynamical

system (possibly higher dimensional) for which an analogue of Theorem 3.3 holds, relating the
dynamics of one orbit to the β-expansion of θ, with β = a

b
.?

At present there seems to be no evidence that strongly favors a particular class of arith-
metical constants for which “Hypothesis A” might be expected to hold. The discussions of §5
and §6 suggest that one might consider the following classes.

(1). The largest class is the set of “special values” of power series f(z) defined over Q at
z = 1

b
, arising from solutions of Df(z) = 0 for some D ∈ W := Q[z, d

dz
], whose power-series

coefficients an → 0 as n→ ∞. This class includes all BBP-numbers.
(2) One could restrict to the subclass of special values z = 1

b
of G-functions defined over the

rationals. However we know of no compelling reason to restrict to special values of G-functions.
(3) The smallest class consists of a class of arithmetical constants which satisfy extra

conditions analogous to the hypotheses of Furstenberg’s conjecture. These consist of those
constants which are BBP -numbers to at least two multiplicatively independent bases. One
might add the further restriction that they also be special values of G-functions. As noted in
§6, this class includes π2 and log 2.
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