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Abstract

In this paper we discuss P(n), the number of ways a given integer can be written as a sum of

primes. We adopt methods used in quantum statistics, where the central problem is the number of

ways in which energy is distributed among particles occupying single-particle states. The partition

function in statistical mechanics plays the role of the generating function of partitions. The bosonic

partition function of primes is constructed, and using the saddle-point approximation the density

of states is evaluated in the limit of large numbers n. This directly gives the asymptotic number of

prime partitions Pas(n). We discuss corrections to the leading asymptotic expression and compare

various approximations with the exact numerical values of P(n) up to n ∼ 107.
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I. INTRODUCTION

It has long been known that the asymptotic density of states of ideal bosons in a quantum-

mechanical harmonic oscillator in one dimension is identical to the number of ways of parti-

tioning an integer n into a sum of integers ≤ n, and is given by the famous Hardy-Ramanujan

formula [1]. It turns out that the generating function of the partitions given by Hardy and

Ramanujan is the canonical partition function of ideal bosons, with the number of particles

N → ∞ trapped in a one-dimensional harmonic oscillator potential. Alternately, it may

also be regarded as the grand partition function with chemical potential zero. It is inter-

esting to note that the quantum partition fucntion of bosons was written down by Hardy

and Ramanujan almost a decade before the advent of quantum statistical mechanics, when

Bose-Einstein statistics was discovered.

In an earlier collaboration by some of the authors [2], methods of statistical mechanics

were used to rederive the Hardy-Ramanujan formula for partitions of integers, as well as to

derive some general results regarding distinct partitions of various types. A similar technique

is applied in the present paper to derive an asymptotic formula for prime partitions, i.e.,

the number of ways P(n) that a given integer n can be expressed as a sum of primes. We

consider a many-body system whose energies are integers n, with degeneracies P(n). For

n → ∞, the leading asymptotic result is already available [3, 4]. Corrections to the leading

asymptotic result have been derived by Vaughan [5] using the saddle-point method. While

our leading-order (LO) result, including the pre-exponential factor, agrees with the one

given by Vaughan [5], our next to leading-order (NLO) term in the exponent has a different

coefficient. Our asymptotic result, which we denote by Pas(n), is compared numerically with

the exactly computed P(n) and found to be superior to both the LO result [3, 4] and that

given by Vaughan [5]. However, even for as large numbers as n ∼ 107, all of the asymptotic

expressions discussed here are still far from reaching the exact P(n).

In Section II, we first outline the the saddle-point method in general and then apply

it to obtain the density of states of a prime gas. We rederive the LO result and also the

most important NLO corrections. In Section III the asymptotic result for prime partitions

is compared numerically in detail with the exact prime partitions and the other asymptotic

results discussed here. We conclude the paper with a short summary in Section IV. Some

details about the density of primes, relevant to our analysis, are presented in the Appendix.
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II. UNRESTRICTED PARTITIONS WITH PRIMES

A. Saddle-point asymptotics for a single-particle spectrum

To set the notation and to outline the method, we begin with a discrete single-particle

spectrum given by ǫk; k = 1, · · · ,∞ in an infinite trap. Consider a system with a large

number of particles, such that N → ∞. At a given occupancy, the energy of the system is

given by

E =

∞
∑

k=1

nkǫk, (1)

where nk is the occupancy of the level ǫk which may be zero or a positive integer. In general

for any given single-particle spectrum, there are many ways of partitioning the energy E

into summands of ǫk.

The N -body canonical partition function of the system is given by

ZN(β) =
∑

k

ηk exp(−βEk) =

∫ ∞

0

dE ρN (E) exp(−βE), (2)

where β = 1/kT is the inverse temperature, Ek are the eigenenergies of the N-particle system

each with a degeneracy ηk. The N -particle density of states is denoted by

ρN (E) =
∑

k

ηkδ(E − Ek) =
1

2πi

∫ i∞

−i∞
dβ exp(βE)ZN(β). (3)

The integral representation on the r.h.s. above is simply the Laplace inverse of the partition

function which we will use later.

In terms of the single-particle spectrum, the partition function may be written, by taking

the limit N → ∞, as

Z(β) =
∞
∏

k=1

1

1− e−βǫk
=

∞
∏

k=1

1

1− xǫk
, x = exp(−β) < 1. (4)

The limit N → ∞ means that the partition of the total energy is unrestricted, allowing any

number of summands that is allowed by the value of the energy. The last part of Eq. (4) has

the familiar form of the generating function of partitions used in number theory [1]. In order

to evaluate the density through the Laplace transform in Eq. (3), we define the function

S(β) = βE + lnZ(β) , (5)
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which defines the canonical entropy, and

lnZ(β) = −
∞
∑

k=1

ln(1− e−βǫk) . (6)

We evaluate the inverse Laplace transform in Eq. (3) using the method of steepest descent,

or saddle-point method, so that

ρ(E) =
eS(β0)

√

2πS(2)(β0)
[1 + · · · ] , (7)

where S(β0) is the entropy evaluated at the saddle point β0 of the integrand. The dots

indicate so-called cumulants involving higher derivatives of the entropy, which become more

important for large β (see, e.g., Ref. [6]). Since we are interested here in the limit β → 0

relevant for the asymptotics of large N , we shall neglect them. The derivatives of S(β)

evaluated at the saddle point are denoted by

S(n)(β0) =
∂nS(β)

∂βn

∣

∣

∣

∣

β0

. (8)

The energy E is determined through the saddle-point condition, namely

∂S(β)

∂β

∣

∣

∣

∣

β0

= S(1)(β0) = E +
Z ′(β0)

Z(β0)
= 0 , (9)

if there exists a saddle point β0 fulfilling this equation.

B. Partition function for primes

The canonical partition function of a prime gas in the N → ∞ limit is

Z(β) =
∏

p

1

[1− e−βp]
, (10)

where the product runs over all primes p. This is also the generating function of the prime

partitions. Taking the logarithm of the partition function (10) gives a sum over all primes

p which we may also write as an integral

lnZ(β) = −
∑

p

ln(1− e−βp) = −
∫ ∞

x0

dx g(x) ln(1− e−βx) , (11)

where x0 is any real number smaller than the lowest prime: x0 < p1 = 2, and g(x) is the

exact density of primes given by the sum of delta function distributions

g(x) =
∑

p

δ(x− p) . (12)

4



For the study of asymptotics, we replace the exact g(x) by the average prime density

gav(x) which should be sufficient to obtain the leading contributions. By substituting this

function for g(x) in (11), we define the logarithm of the average partition function

lnZav(β) = −
∫ ∞

a

dx gav(x) ln(1− e−βx) , (13)

where the constant a must be chosen carefully, as will be discussed in the following. As

a specific choice, we use for gav(x) the asymptotic prime density that is well-known from

number theory (see the Appendix):

gav(x) = 1/ln(x) . (14)

Since we are only interested in asymptotic results, it will be sufficient to look at the limit

β → 0, i.e., the high-temperature limit of the partition function.

The integrand (14) in (13) has a pole at x = 1, which becomes relevant when a < 1. We

therefore define the following principal-value integral

I(a, β) = − lim
ǫ→0

[
∫ 1−ǫ

a

dx
1

ln(x)
ln(1− e−βx) +

∫ ∞

1+ǫ

dx
1

ln(x)
ln(1− e−βx)

]

, (a 6= 1) (15)

which in the following is denoted by the symbol −
∫∞
a

dx(. . . ), so that

lnZav(a, β) = I(a, β) = −−
∫ ∞

a

dx
1

ln(x)
ln(1− e−βx) . (16)

This integral exists for any a 6= 1 and for finite β. We now make the change of variable

y = βx to obtain

I(a, β) =
1

β ln(β)
−
∫ ∞

aβ

dy
1

[

1− ln(y)
ln(β)

] ln
(

1− e−y
)

. (17)

In order to make the next step more clear, we define

τ = 1/β (18)

and rewrite (17) as

I(a, τ) = − τ

ln(τ)
−
∫ ∞

a/τ

dy
1

[

1 + ln(y)
ln(τ)

] ln
(

1− e−y
)

, (19)

which we want to evaluate asymptotically in the limit τ → ∞. We split it into two parts,

writing

I(a, τ) = − τ

ln(τ)



−
∫ τ

a/τ

dy
1

[

1 + ln(y)
ln(τ)

] ln(1− e−y) +

∫ ∞

τ

dy
1

[

1 + ln(y)
ln(τ)

] ln(1− e−y)



 . (20)
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If we fix a to an arbitrary value in the limits 1 < a < 2 and take τ > 1, we may approximate

the first integral by the first term of the binomial expansion of its denominator and write

I(a, τ) ≃ − τ

ln(τ)





∫ τ

a/τ

dy

(

1− ln(y)

ln(τ)

)

ln(1− e−y) +

∫ ∞

τ

dy
1

[

1 + ln(y)
ln(τ)

] ln(1− e−y)



. (21)

In the limit τ → ∞, the second integral goes to zero and the first integral gives the asymp-

totic approximation

Ias(a, τ) = − τ

ln(τ)

∫ ∞

0

dy

(

1− ln(y)

ln(τ)

)

ln(1− e−y). (22)

Using (18) and (16), we obtain the following asymptotic form for the logarithm of the

partition function, which we call lnZas(β) and which we can evaluate analytically:

lnZas(β) =
1

β ln(β)

∫ ∞

0

dy

(

1 +
ln(y)

ln(β)

)

ln(1− e−y) = − f1
β ln(β)

+
f2

β ln2(β
(23)

with

f1 =
π2

6
, f2 =

Cπ2

6
+
∑

k

ln(k)

k2
= 1.88703 , (24)

where C = 0.577216 is the Euler constant and the sum over k has been evaluated numerically

(with kmax ∼ 10′000). Note that the result (23) does not depend on the precise value of a

that was chosen.

We now want to test the quality of the approximation (23), which should become accurate

in the limit β → 0. To that purpose we first integrate the principal-value integral lnZav(a, β)

in (16). Here we choose a = 0 for definiteness; we emphasize that this choice is a priori

independent of the fact that 1 < a < 2 was used to derive the approximation (23), and of

the fact that the lower integration limit in (23) is also zero. Then we compare it to the

exact function (11) and to the approximation lnZas(β) in (23). The results are shown in

Fig. 1. We see that both approximations approach the exact values closely for small β, while

lnZav(β) is better than lnZas(β) for the largest values of β. In Fig. 2, we see the same in a

region of smaller values for β. The approximation lnZas(β) given in (23) crosses the exact

curve near β ∼ 0.008 and appears to stay below it for β → 0. But it reveals itself as an

excellent asymptotic approximation to the exact lnZ(β) in the small-β limit.
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FIG. 1: Logarithm lnZ(β) of the partition function plotted versus β. Solid line (red): exact

function (11). Dotted line (green): numerically integrated principal-value integral lnZav(a, β) in

(16) with a = 0. Dash-dotted (blue) line: asymptotic approximation lnZas(β) in (23).
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FIG. 2: Same as Fig. 1, but shown in limit of small β.

Using the analytical approximate form (23) of the partition function, the inverse Laplace

transform (3) can now be evaluated in the saddle-point approximation, as outlined at the

end of Sect. II.A.
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C. Saddle-point approximation

In order to find the extremum we shall isolate the most singular terms in S(β) in the

high-temperature limit. We first write entropy, using (23) above, in the form

S(β) = βE − f1
β ln(β)

+
f2

β ln2(β)
, (25)

where we for simplicity omit the subscript “as” henceforth. Since the entropy above is given

up to order 1/ ln2(β), all further calculations will be done up to this order. To begin with

we need the following derivatives of the entropy

S(1)(β) = E +
f1

β2 ln(β)
+

f1

β2 ln2(β)
− f2

β2 ln2(β)
+ · · · , (26)

S(2)(β) = − 2f1
β3 ln(β)

− 3f1

β3 ln2(β)
+

2f2

β3 ln2(β)
+ · · · . (27)

The saddle-point solution β0 is given by the following convenient form

β0E = − f1
β0 ln(β0)

+
f2

β0 ln
2(β0)

− f1

β0 ln
2(β0)

+ · · · . (28)

This is a transcendental equation whose solution can be obtained iteratively as outlined in

Sec. III.B below. However, we may use the above condition directly in S(β0) to obtain

S(β0) = 2β0E +
f1

β0 ln
2(β0)

+ · · · , (29)

and

S(2)(β0) =
1

β2
0

[

2β0E − f1

β0 ln
2(β0)

+ · · ·
]

. (30)

Using the above solutions in terms of as yet undetermined β0, we obtain the asymptotic

density of a prime gas given by

ρ(E) =
exp(2β0E + f1

β0 ln
2(β0)

+ · · · )
√

(2π/β2
0)
[

2β0E − f1
β0 ln

2(β0)
+ · · ·

]

(31)

This asymptotic density is the same as the asymptotic formula for prime partitions denoted

here by P(n) = ρ(n=E). Any further analysis requires the solution of the saddle-point

condition (9) for β0(E). Since this is a transcendental equation, its solution is not straight

forward, even with the approximations we have made. We shall outline this next.
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D. Saddle-point solution

The solution of the saddle-point equation

βE = − f1
β ln β

, (32)

keeping only the leading-order, may be worked out successively. Let τ = 1/β:

f1
E

=
ln(τ)

τ 2
. (33)

We start by assuming the solution to be of the form

τ = a1E
a2 [ln(E)]a3 , (34)

where a1, a2, and a3 are constants to be determined using the Eq. (32). Upon substitution,

assuming large E, we get

f1
E

=
1

a21E
2a2(lnE)2a3

[ln a1 + a2 ln(E) + a3 ln ln(E)] ≈ a2
a21E

2a2(lnE)2a3−1
. (35)

First we determine the leading term, comparing powers, to find the solutions

a3 =
1

2
, a2 =

1

2
, a21 =

a2
f1

=
3

π2
. (36)

Thus we have the leading solution given by

τ =
1

β0

=

√

3

π2
E ln(E) . (37)

To leading order, therefore, we have the following result for the density of the prime gas,

or equivalently for unrestricted prime partitions:

ρ(E) =
eS(β0)

√

2πS ′′(β0)
=

e2π
√

E/[3 ln(E)]

√

4E3/2[3 ln(E)]1/2
. (38)

Apart from the prefactor, it is well known [3, 4] that ln[ρ(E)] ≈ 2π
√

E/(3 lnE). In the

paper by Vaughan [5] the prefactor has also been given by calculating
√

2πS(2)(β) which

agrees with the calculation given here.

Next we consider corrections to the the asymptotic result given in Eq. (38).
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E. Non-leading order corrections

The results of the previous subsection may be further improved by including additional

terms that were neglected in Eq. (35). This is done by assuming the solution to be of the

form

β0 = π

√

1

3E ln(E)

[

1 + a
ln[ln(E)]

ln(E)
+ b

1

ln(E)
· · ·

]

, (39)

where a, b are arbitrary coefficients to be determined using the equation above. The form of

the solution is suggested by the transcendental equation (35) itself. Since the LHS of (35)

is a monomial in E, the only way this can be satisfied is to have additional corrections to

cancel the non-leading terms. Writing

β2
0 ln(β0) = − π2

6E
, (40)

we expand the unknowns on the LHS to the desired order 1/ ln(E) in the limit of large E.

β2
0 =

π2

3E ln(E)

[

1 + 2a
ln[ln(E)]

ln(E)
+ 2b

1

ln(E)
+O{1/ln2(E)}

]

,

ln(β0) = −1

2
ln(E)

[

1 +
ln[ln(E)]

ln(E)
− ln

(

π2

3

)

1

ln(E)
− 2a

ln[ln(E)]

ln2(E)
− 2b

1

ln2(E)

]

.

Substituting these in the Eq. (35), we have

β2
0 ln(β0) = − π2

6E

[

1 + (2a+ 1)
ln[ln(E)]

ln(E)
+

2b− ln(π2/3)

ln(E)
+O{1/ln2(E)}

]

= − π2

6E
,

which now determines the constants a = −1/2, b = ln(π/
√
3) and therefore

β0 = π

√

1

3E ln(E)

[

1− 1

2

ln[ln(E)]

ln(E)
+

1

2

ln(π2/3)

ln(E)
· · ·

]

. (41)

The density of prime partitions is then obtained by substituting the above solution into

ρ(E) =
exp

[

2β0E
(

1 + (β0E)2

2f1E

)

+ · · ·
]

√

2π(2β0E/β2
0)

[

1− (β0E)2

2f1E
+ · · ·

]

, (42)

where we have kept the NLO term in the density consistent with the order to which the

solution has been obtained. Substituting for β0E from Eq. (41) we finally obtain

ρ(E) =
exp

{

2π
√

E
3 ln(E)

[

1− 1
2
ln[ln(E)]
ln(E)

+ 1+ln(π/
√
3)

ln(E)
+ · · ·

]}

√

{4[3 ln(E)]1/2E3/2 + · · · }
. (43)
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Identifying ρ(E) with P(n=E), the above equation gives the asymptotic prime parti-

tions of an integer n. The first correction to the exponent given above, proportional to

ln[ln(E)]/ln(E), is similar to that given by Vaughan [5] except that its coefficient here is -1
2

intead of +1. In the following section we shall test the approximation obtained by ignoring

all higher-order terms indicated by the dots above, thus defining

Pas(n) =
1

2[3 ln(E)]1/4E3/4
exp

{

2π

√

n

3 ln(n)

[

1− 1

2

ln[ln(n)]

ln(n)
+

1 + ln(π/
√
3)

ln(n)

]}

. (44)

III. NUMERICAL STUDIES OF THE ASYMPTOTIC PRIME PARTITION

A. Evaluation of data base for P(n)

We evaluate the prime partition P(n) using a standard method. Given an integer n, find

the distinct primes that divides n. The sum of distinct prime factors that decompose n is

denoted by S (n) [7]. For example, S (4) = 2 since 4 = 2 · 2 has only one distinct prime

that divides it; S (6) = 5 since 6 = 2 · 3, or S (52) = 15 since 52 = 2 · 2 · 13 (Note: if a

prime factor occurs several times, it should only be counted once.) Once the sum of prime

factors S (n) is generated in a table, the following recursion relation [8] is used to compute

the prime partitions (without any restriction)

P(n) =
1

n

[

S (n) +
n−1
∑

k=1

S (k) · P(n− k)

]

. (45)

which involves all prime partitions of integers less than n. This procedure is very time

consuming for large n. We have been able to compute P(n) for n up to 8′654′775. But, as

we shall see, even that large number is not sufficient to reach the asymptotics of P(n).

B. Numerical study of Pas(n)

Using the above derived data base for the exact P(n), we now test various approxima-

tions for their asymptotic behavior. Rather than calculating the exponentially growing full

function P(n), we look at its logarithm. We compare numerically the logarithm of the exact

P(n) with that of the following approximations:

11



• To lowest order (LO), we set the prefactor of the exponent in (44) to unity, ignoring

its denominator, and just keep the leading exponential term

P0(n) = exp

{

2π

√

n

3 ln(n)

}

, (46)

an asymptotic result that has been known for a long time [3, 4].

• The next approximation is that of Vaughan [5]:

PV (n) =
1

2[3 ln(E)]1/4E3/4
exp

{

2π

√

n

3 ln(n)

[

1 +
ln[ln(n)]

ln(n)

]}

. (47)

Note that the correction in the exponent here has a different coefficient from that in

our result 44).

• The third approximation we investigate is our asymptotic result (44) derived in the

previous section.

The numerical comparison of the above three expressions with the exact prime partitions

is now discussed in several steps.

We first plot lnP(n) versus n for the various approximations in Fig. 3. The solid (black)

curve gives the exact values lnP(n). Our present approximation (44), shown by the dashed

(red) line, comes closest to it, improving somewhat over the lowest-order approximation

lnP0(n) (46) shown by the dash-dotted (blue) line. The approximation (47) of Vaughan,

shown by the dotted (green) curve, overshoots the exact values substiantially.

From this figure we can, however, not assess the way in which the various approximations

approach the correct asymptotics. To this purpose we next show in Fig. 4 the relative

differences of the approximated logarithms, [lnPapp(n) − lnP(n)]/ lnP0(n), and plot them

versus 1/n so that they should tend to zero for n → ∞ (i.e., towards the left vertical

axis in the figure). Shown are, with the same symbols (and colors) as above, our present

approximation (44), the leading term (46), and that of Vaughan (47).

Some weak oscillations can be seen for values of n less than ∼ 20 (i.e., 1/n larger than

∼ 0.05). For the rest of the region, the oscillations damp out and all curves appear very

smooth. On this scale we cannot see, however, what goes on for larger n. To this purpose

we show in Fig. 5 the same results in the region 0 ≤ 1/n ≤ 0.001.

Here we see that sign changes occur in the two lowest curves: at n ∼ 5′800 for (44),

and at n ∼ 13′000 for (46). They therefore approach zero for n → ∞ from below, while

12
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FIG. 3: Logarithms lnP(n) in various approximations. Solid line (black): exact numerical values.

Dashed (red): lnPas(n) (44), dash-dotted (blue): LO lnP0(n) (46), dotted(green): Vaughan (47).
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FIG. 4: Relative differences [lnPapp(n) − lnP(n)]/ lnP0(n) plotted versus 1/n. Dashed (red):

present (44), dash-dotted (blue): LO term (46), dotted (green): Vaughan (47).

the curve of Vaughan (47) stays on the positive side. We note that our result (44) brings a

considerable improvement for the asymptotics over Vaughan’s result.

In order to see how (or if) the two lower curves approach the asymptotic result 0, we

focus on the largest region of n available in our computation and further reduce the scale to

1/n ≤ 10−5, as seen in Fig. 6; Vaughan’s curve stays outside this picture.
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FIG. 5: Same as in Fig. 4 in a different region of 1/n.

-0.04

-0.03

-0.02

-0.01

0.0

[l
n

P a
pp

(n
)

-
ln

P
(n

)]
/ln

P
0(

n)

0.0 2e-06 4e-06 6e-06 8e-06 1e-05

1/n

FIG. 6: Same as in Fig. 5 in the lowest region 1/n ≤ 10−5; Vaughan curve not seen at this scale.

Clearly, the differences are still quite far from reaching zero, even for our largest value

nmax = 8′654′775. We must therefore ask how far one has to go for the logarithm of our

theoretically well-founded asymptotics (44) to go over into the exact lnP(n). Although

the two curves in Fig. 6 do bend up towards zero for 1/n → 0, the slopes at their ends

(corresponding to nmax) are still rather small, so that there may be a very long way to go –

too long perhaps to be covered by any numerical computation of the exact P(n).

We conclude that our result Pas(n) in (44) appears to have the correct asymptotic be-

haviour, but that even the included corrections beyond the LO are not sufficient to reach

the exact partitions in our numerically accessible region.
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IV. SUMMARY

In this paper we have discussed P(n), the number of ways a given integer may be written

as a sum of primes – a central theme in number theory. We have adopted methods used

in quantum statistics where the central problem is the number of ways in which energy is

distributed among particles occupying single-particle states. The partition function in sta-

tistical mechanics plays the role of the generating function of partitions. We have discussed

the method in detail and then applied the same to the problem of prime partitions of an

integer. The dominant integral is evaluated using the saddle-point method.

The main results of the paper may be summarised as follows:

• While the main asymptotic form Eq. (46) has been known for some time, we derive non-

leading order (NLO) corrections to the exponent. There has not been much discussion

in the literature on the prefactor to the exponential form (46), needed to calculate

the absolute value of the prime partitions. An exception is Vaughan [5] who derived

the prefactor and also a correction to the exponent in (46), leading to the expression

given in (47). We obtain the same prefactor but a different NLO contribution to

the exponent of our result (44), which brings a considerable improvement for the

asymptotics compared to that of Vaughan.

• We use a well-known algorithm to compute the exact prime partitions, in order to

compare analytical expressions for asymptotic prime partitions numerically. We have

been able to do this up to more than 8 million in n. To our knowledge, a numerical

comparison of the exact results with asymptotic expressions has not been done before

up to this range.

• It has been known from earlier works, see for example Ref. [2], that for partitions of

ordinary integer numbers into integers (or their powers), the asymptotic expressions

become almost exact very soon – for n of the order of 100 or more. However, in the

case of prime partitions it is surprising that even for n around 8 million or more, the

asymptotic form Pas(n) given in Eq. (44) has by no means reached the exact P(n).

The relative error here remains much larger than in the case of other known integer

partitions.
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• Although both the exact P(n) and the asymptotic form Pas(n) given in (44) are

monotonously increasing, there difference is not monotonic. In fact, we found that

Pas(n) crosses P(n) around n ∼ 5′800 and approaches it from below for n → ∞
(within the limits of our data).

• Our main conclusion is that our result Pas(n) given in (44) appears to have the cor-

rect asymptotic behaviour, but that even the corrections included beyond the LO

expression P0(n) in (46) are not sufficient to reach the exact P(n) in the numerically

accessible region.
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Appendix: Some details about the density of primes

In this section, we discuss two approximations to the density of primes g(x) defined in

(12), which is related to the function π(x) that counts the number of primes p ≤ x by a

differentiation:

g(x) =
dπ(x)

dx
. (A.1)

Both π(x) and g(x) have been the object of a lot of research in number theory. π(x) is a

stair-case function whose average part is given by the asymptotic form

π(x) ∼ x

ln(x)
, (A.2)

which is a consequence of the prime number theorem. A more refined asymptotic form is

(see, e.g., [9]):

π(x) ∼ x

ln(x)
+

x

[ln(x)]2
+ · · ·+ (n− 1)!

x

[ln(x)]n
. (A.3)

Differentiating it yields the asymptotic expression for the density of primes

g(x) ∼ 1/ ln(x) , (A.4)

whereby all higher-order terms coming from (A.3) have cancelled successively. In Sec. III

we have used the above asymptotic form for the average prime density gav(x).

An expression for π(x) which has been conjectured by Riemann in 1859 and proved by

Mangold in 1959 is (see [9])

π(x) =
∞
∑

m=1

µ(m)

m
J(x1/m) , (A.5)

where µ(m) is the Moebius function [µ(1) = 1], the function J(x) is given [9] by

J(x) =

∞
∑

n=1

1

n

∑

p

Θ(x− pn) , (x > 0) (A.6)

and Θ(x) is the standard step function: Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0. In

(A.6), p again runs over all primes and n over all integers. Using an expansion of J(x)

derived by Riemann, one obtains the following expression for the density of primes (cf. [10])

gsc(x) =
1

x ln x

∞
∑

m=1

µ(m)

m

[

x1/m − 1

(x2/m − 1)
− 2 x1/2m

∑

α

cos
( α

m
ln x

)

]

. (A.7)

Here α > 0 are the zeros of the Riemann zeta function along the positive half-line, and

the validity of the Riemann hypothesis has been assumed. This expression, which does not
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FIG. 7: Density of primes g(x) obtained by the semiclassical expression gsc(x) in (A.7), using the

lowest 3000 Riemann zeros α and mmax = 14, coarse-grained with a Gaussian width γsh = 0.1.

appear to be widely known, has the form of a semiclassical “trace formula” [11, 12] and we

have therefore denoted it with the subscript “sc” for “semiclassical”. Ideally, gsc(x) should

yield the exact prime density g(x) in (12) if the sum over α is not truncated, and if the

Riemann hypothesis is true.

We have tested Eq. (A.7) numerically in order to convince ourselves of its validity. For

practical purposes, we have coarse-grained it, replacing the delta functions in (12) by normal-

ized Gaussians with a width γ, and correspondingly coarse-grained Eq. (A.7) as described

in Sec. 5.5 of [12].

Fig. 7 shows the results, obtained using the lowest 3000 Riemann zeros α. We see that the

coarse-grained trace formula indeed reproduces the Gaussian-smoothed density of primes,

replacing the delta functions in (12) by Gaussians centered exactly at the primes p. (Note

that the sum over m becomes finite for any finite value of x; in the case described here,

mmax = 14 was sufficient.)
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