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ABSTRACT

The paper describes an interesting (and unexpected) application of the Fast Fourier transform in number
theory. Calculating more and more decimals of π (first by hand and then from the mid-20th century, by
digital computers) not only fascinated mathematicians from ancient times but kept them busy as well. They
invented and applied hundreds of methods in the process but the known number of decimals remained only a
couple of hundred as of the late 19th century. All that changed with the advent of the digital computers. And
although digital computers made possible to calculate thousands of decimals, the underlying methods hardly
changed and their convergence remained slow (linear). Until the 1970's. Then, in 1976, an innovative
quadratic convergent formula (based on the method of algebraic-geometric mean) for the calculation of π
was published independently by Brent [10] and Salamin [14]. After their breakthrough, the Borwein brothers
soon developed cubically and quartically convergent algorithms [8,9]. In spite of the incredible fast
convergence of these algorithms, it was the application of the Fast Fourier transform (for multiplication)
which enhanced their efficiency and reduced computer time [2,12,15].
The author would like to dedicate this paper to the memory of Ludolph van Ceulen (1540-1610), who spent
almost his whole life to calculate the first 35 decimals of π.
Keywords: approximation theory, Fast Fourier transform, elliptic function.

1. INTRODUCTION

On july 5, 2000 a very special ceremony1 took place in the St.Pieterskerk (St.Peter's Church) at Leiden, the
Netherlands. A replica of the original tombstone of Ludolph van Ceulen was placed into the Church since
the original disappeared [6, pp.51,13]. Ludolph van Ceulen (born 28 January 1540 in Hildesheim and died
31 December 1610 in Leiden) was a mathematician and fencing teacher. In 1600 Prince Maurits appointed
him as one of the first hoogleraar wiskunde (professor of mathematics) at the University of Leiden. He
dedicated almost all of his life to calculate more and more decimals of π. He published the 20 decimals in
his book: Van de Circel in 1596. But he went on to calculate the first 35 decimals2. As legend has it, the 35
decimals were engraved on his tombstone which later disappeared.
Now, 400 years later, the known number of digits of π exceeds 200 billion and increasing. It is not the
number crunching, which is interesting, but the new methods developed in the last decades. Although the
best algorithms seem to be simple in form but their computer implementation takes some time and ingenuity.
The key element is an efficient multiplication method. And here we can find an unexpected application from
signal processing: the Fast Fourier transform (FFT).

                                                       
1 The one day program "Pi in the St.Peter's Church" was part of the 4th Algorithmic Number Theory

Symposium (ANTS IV) in Leiden, The Netherlands, 2-7 july, 2000.
see also the home-page: http //www.wiskgenoot.nl      

2 It should be noted at this point that 39 decimals of π suffice for computing the circumference of a circle
enclosing the known universe with an error no greater than the radius of a hydrogen atom.
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2. SHORT HISTORY TILL THE 20th CENTURY

2.1. From ancient times till the 16th century:   The earliest values of π including the "Biblical" value of 3,
were almost certainly found by measurements. In the Egyptian Rhind Papyrus (about 1650 BC) there is
good evidence for π≈4(8/9)2 =3,16. The first theoretical calculation seems to have been carried out by
Archimedes of Syracuse (287-212 BC). He used inscribed and circumscribed polygons. Applying a polygon
with 96 side he obtained the approximation 310/71 < π < 31/7 (3,1408<π<3,1429). Archimedes did not have
the advantage of an algebraic and trigonometric notation so he had to rely on pure geometrical means.
Almost all of the methods from this period are based on the approximations of inscribed and circumscribed
polygons. The highlight of this period was achieved by Ludolph van Ceulen (1540-1610) who determined
the first 20 digits about 1596 based on a polygon with 60 x 229 (=32212254720) sides [7, pp.34]. Some years
later he succeeded to establish the first 35 digits [6, pp.102,13]. The Germans were so much impressed by
van Ceulen's achievement that they began to call π as the Ludolph's number3.

2.2. From the 16th till the 20th century:   The introduction of calculus in the 16th century made a large
number of new algorithms in the form of infinite series, products or continued fractions possible. François
Viète, a lawyer and amateur mathematician, was the first who expressed π by an infinite product in 1593.
John Wallis also developed an infinite product but in much simpler form. Newton used his own formulae to
calculate the first 15 decimals of π. When Gregory discovered the arctangent series in 1671 it led to a
number of new algorithms [6:pp.92]. In 1706 Machin used Gregory's series and his formula (named after
him) to calculate 100 decimals of π [2]. Euler invented dozens of new formulae for π [6:pp.112]. Without
going into details we simply present some of the most known formulae from this period:
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As for the nature of π, Lambert proved it to be irrational in 1761. It took more then 100 years till Lindemann
finally proved in 1882 that π is in fact transcendental putting the problem of squaring the circle to rest.

                                                       
3 see for example: Weierstrass,K.von: Zu Lindemann's Abhandlung: "Über die LUDOLPH'sche Zahl",

in [6, pp.207].
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3. THE 20th CENTURY

In the beginning of the 20th century, there appeared some new and very interesting theoretical result by
Ramanujan (based on elliptic and modular functions) [9]. Besides the theoretical development it was the
introduction of digital computers which made possible to calculate an unbelievable large number of decimals
of π. In the first 4000 years mathematicians could only calculate (by hand) the first 707 digits. As a test of
the first digital computer (ENIAC) John von Neumann proposed to calculate the value of π. The first
calculation by ENIAC in 1947 already provided 2000 digits. The team of scientists needed 70 hours
computer time including programming [6, pp.277].
With the computer a new era began. As the speed and memory of computers grew, so increased the known
number of digits. In 1961 D.Shanks and J.W.Wrench,Jr. break the 100000 decimals barrier on an IBM 7090
computer in less then 9 hours. But the formula used was still a variant of the arctan formula due to Störmer
[6, pp.576]:
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Interestingly, almost all calculations from the beginning of the 18th century until the early 1970's have relied
on one or an other form of the Machin's (arctan) formula. Since the 60' the increase in number of decimals
has been quite remarkable. Although Shanks and Wrench predicted in 1961 that to calculate the first 1
million digit should last for month (in computer time), nowadays it takes only minutes to calculate a couple
of millions decimals on a fast Pentium PC. In 1996 the Chudnovsky brothers crossed the 1 billion limit.
How could they do that? With faster and faster new algorithms and with an efficient multiplication method
by the Fast Fourier transform.

4.1. The Brent-Salamin algorithm:

One of the most crucial drawbacks of the known algorithms is their slow (linear) convergence. It was
therefore a milestone in the history of π research when Eugene Salamin and Richard Brent developed
(independently from each other) a dramatically new algorithm in the 70's [10,14]. Their algorithm is based
on the arithmetic-geometric mean (AGM) known already to Gauss [8]. The arithmetic-geometric mean was
the basis of Gauss' method for the calculation of elliptic integrals. With the help of the elliptic integral
relation of Legendre, π can be expressed in terms of the arithmetic-geometric mean and the resulting
algorithm is quadratically fast [12]. The Brent-Salamin algorithm is the following: set a0=1; b0=1/√2 and
s0=0.5 and calculate the iteration for k=1,2,...:

;/2;2

;;;2/)(
2

1

22
1111

kkkk
k

kk

kkkkkkkkk

sapcss

bacbabbaa

=−=

−==+=

−

−−−− (8)

Then pk converges to π quadratically. The first 5 terms of the Brent-Salamin algorithm give 1,3,9,20 and 42
decimals of π:

1 term (k=1):   π ≈ 3,1 ...
2 terms (k=2):   π ≈ 3,141 ...
3 terms (k=3):   π ≈ 3,141592653 ...
4 terms (k=4):   π ≈ 3,1415926535 8979323846  ...
5 terms (k=5):   π ≈ 3,1415926535 8979323846 2643383279 5028841971 69 ...

Quadratic converges means that with each new term the number of digits doubles! For a while it seemed
there was no way to develop faster algorithms. But not for long. The results of Brent and Salamin gave a
new impetus to the π research. Built on the same body of mathematics Jonathan and Peter Borwein
introduced an even faster algorithm in 1985.
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4.2. Borweins' cubically convergent algorithm:

Jonathan and Peter Borwein developed an even faster algorithms to approximate π in the 1980's. They also
applied the arithmetic-geometric mean (AGM) and transformation theory of elliptic integral and modular
equations [8,9]. Their cubically convergent algorithm is as follows: set a0 = 1/3 and s0=(√3-1)/2 and iterate:
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then the series of 1/ak converges cubically to π. Thus provides the first three terms 5,21 and 57 digits:

1 term (k=1):   r1 ≈ 3.14159 ...
2 terms (k=2):   π ≈ 3.1415926535 8979323846 2 ...
3 terms (k=3):   π ≈ 3.1415926535 8979323846 2643383279 5028841971

6939937510 5820974 ...

4.3. Borweins' quarticall convergent algorithm:

It was a great achievement of the Borwein's to push further and establish a quartically convergent algorithm.
Set a0 = 6-4√2 and  y0 = √2-1 and iterate [9]:
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and 1/ak converges to π quartically. The first terms provides:

1 term (k=1):   π ≈ 3.1415926 ...
2 terms (k=2):   π ≈ 3.1415926535 8979323846 2643383279 5028841971
2 terms (k=2):   π ≈ 3.1415926535 8979323846 2643383279 5028841971

6939937510 5820974944 5923078164 0628620899
8628034825 3421170679 8214808651 3282306647
0938446095 ...

The first 2 terms already gives 40 decimals, the first three terms gives 170 decimals! Only if Ludolph van
Ceulen had known this method! In fact, this series converge so fast that taking only the first 15 terms
provides 2 billions digits of π! Bailey applied this algorithm in his record-breaking calculation in 1987 [2].
It has been a long way to come from Machin's formulae to the quartically convergent Borwein-Borwein
algorithm. But to increase the efficiency of the calculations one need better (i.e. faster) numerical methods as
well. It seems simple to program algorithm (9) but how can we multiply two large numbers efficiently?

5. THE KEY INGREDIENT: FAST FOURIER TRANSFORM

Algorithm (8), (9) or (10) does not seem difficult to be implemented on a digital computer. We must note,
however, that all operations must be correct up to the required number of digits plus m (30 as the guard
digits for millions of decimal digit calculations) [12]. So we can see, that an efficient multiplication method
is a key element in all algorithms. We learned how to multiply two numbers already in the elementary
school and we know that to multiply two n-digit numbers we need nxn=n2 operations. With scientific terms:
the bit complexity of multiplication is O(n2). It seems all pretty simple but when we have to multiply two
numbers with millions of digits, then it is another story. So we may ask: isn't there any better way to
multiply large (i.e. long) numbers? The unexpected answer came in 1971. Then, Schönhage and Strassen
showed that it is possible to multiply two n-digit integers with bit complexity O(nlogn/loglogn) [9,15].
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Their method based on the application of the Fourier transform. Fourier transform? Fourier transform has
long been known to mathematicians and engineers alike. Its application ranges from heat equations to sound
engineering to speech recognition. But in number theory? How could that be? Here is a short answer.
Suppose we have to multiply two n-digit numbers x:=(x0, x1, x2, ..., xn-1) and y:=(y0, y1, y2, ..., yn-1).  Then a
key observation may be made: the product sequence z:=(z0, z1, z2, ..., z2n-1) of x and y is precisely the discrete
convolution C(x,y):
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where the subscript k-j is to be interpreted as k-j+N if k-j is negative. Now we apply the well known discrete
Fourier Transform [11]. First, extend x and y to length N=2n by appending zeros at the end of each. Let F(x)
denote the discrete Fourier transform of the sequence x, and let F-1(x) denote the inverse discrete Fourier
transform of x [2,9,11,12]:
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Then the convolution theorem states, that the Fourier transform of a convolution product is the ordinary
product of the Fourier transforms:
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Thus the enirely multiplication pyramid z can be obtained by performing two forward discrete Fourier
transforms, one vector complex multiplication and one inverse transform, each of length N=2n.

One must realize that it is the discrete Fast Fourier transform (FFT) which makes this scheme work. In
particular, if N=2m, then the discrete FFT can be evaluated in only 5m2m arithmetic operations.

There are of course several "tricks" in implementing FFT based multiplication. One usual trick is to utilize
the fact that the input data vectors x and y and the result vector z are purely real.
One other variation relies on the fact that the FFT can be applied in any number field in which there exists a
primitive Nth root of unity. This requirements holds for the field of integers modulo p, where p is a prime of
the form p=kN+1 [9]. The advantage to use a prime modulus field (instead of the field of complex numbers)
is that there are no round-off errors (since all computations are exact). Some further details concerning the
implementations can be found in [2,9,12].

Calculation of Reciprocals and Square Roots   Do we need something else besides a very fast multiplication
method? Not really. For we can determine the inverse of a number 1/y or its square root √y or 1/√y  by the
Newton's quadratically convergent  method:
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By applying the FFT method to multiply large numbers, it is possible to accelerate the computations
dramatically. In fact, in almost all record-breaking high-performance multi-precision computer programs
recently, some variation of the FFT method has been applied [2,9,12]. The current record of number of digits
is more than 200 billion. So we can conclude, that the successful combination of number theory and
computer science (via the FFT) made these records possible.
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CONCLUSIONS

Some methods of approximating the value of π are presented. With new methods developed in the last
decades it became possible to calculate billions of decimals of π. But to program the fastest algorithms of the
Borweins' one must have efficient multiplication methods as well. It is the discrete Fast Fourier transform,
which made fast multiplication of very long numbers possible. Almost all the current records apply one or
another version of FFT multiplication. In recent years, the computation of the expansion of π has assumed
the role as a standard test of computer integrity. Finally, it is interesting to note that the π research enjoys
considerable wide attention: popular books appeared on the subject [5,7] and even a new cologne named Pi
is marketed by Givenchy.
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