Plouffe's C onstant

We start with a formula which is surprising at first glance:

$$
\sum_{n=0}^{\infty} \frac{\rho\left(a_{n}\right)}{2^{n+1}}=\frac{1}{2 \cdot \pi}
$$

where

$$
a_{n}=\sin \left(2^{n}\right)=\left\{\begin{array}{l}
\sin (1) \text { if } n=0 \\
2 \cdot a_{0} \cdot \sqrt{1-\left(a_{0}\right)^{2} \quad \text { if } n=1} \\
2 \cdot a_{n-1} \cdot\left[1-2 \cdot\left(a_{n-2}\right)^{2}\right] \text { if } n \geq 2
\end{array}\right.
$$

and
$\rho(\mathrm{x})=\left\lvert\, \begin{array}{lll}1 & \text { if } & \mathrm{x}<0 \\ 0 & \text { if } & \mathrm{x} \geq 0\end{array}\right.$
In words, the binary expansion of $1 /(2 \cdot \pi)$ is completely determined by the sign pattern of the second-order recurrence $\{{\underset{a}{n}}\}$. The (trivial) proof uses the double angle formulas for sine and cosine:
$\sin (4 \cdot x)=2 \cdot \sin (2 \cdot x) \cdot \cos (2 \cdot x)=2 \cdot \sin (2 \cdot x) \cdot\left(1-2 \cdot \sin (x)^{2}\right)$
and the fact that
$\rho\left(a_{n}\right)=0 \quad$ iff $\quad 2^{n} \in(2 \cdot k \cdot \pi,(2 \cdot k+1) \cdot \pi)$ for some integer k
iff $\quad 2^{\mathrm{n}+1} \cdot \frac{1}{2 \cdot \pi} \in(2 \cdot \mathrm{k}, 2 \cdot \mathrm{k}+1)$
iff the nth bit of $1 /(2 \cdot \pi)$ is zero.

One might believe that we've uncovered here a fast way of computing the binary expansion of $1 /(2 \cdot \pi)$, but this would be a mistake. The reason is that we would need $\sin (1)$ to high accuracy for initialization, but computing $\sin (1)$ is no easier than computing $1 / \pi$.

The double angle formula for cosine gives rise to a simpler, first-order recurrence

$$
b_{n}=\cos \left(2^{n}\right)=\left\lvert\, \begin{aligned}
& \cos (1) \text { if } n=0 \\
& 2 \cdot\left(b_{n-1}\right)^{2}-1 \text { if } n \geq 1
\end{aligned}\right.
$$

but the sum

$$
\sum_{n=0}^{\infty} \frac{\rho\left(b_{n}\right)}{2^{n+1}}=0.4756260767 \ldots
$$

doesn't appear to have a closed-form expression. The double angle formula for tangent, however, gives rise to both a first-order recursion

$$
c_{n}=\tan \left(2^{n}\right)=\left\lvert\, \begin{aligned}
& \tan (1) \text { if } n=0 \\
& \frac{2 \cdot c_{n-1}}{1-\left(c_{n-1}\right)^{2}} \text { if } n \geq 1
\end{aligned}\right.
$$

and a closed-form expression for the sum

$$
\sum_{n=0}^{\infty} \frac{\rho\left(c_{n}\right)}{2^{n+1}}=\frac{1}{\pi}
$$

by a trivial proof like before. Again, computing $\tan (1)$ is no easier than computing $1 / \pi$.
We've observed so far that, for sine and tangent, certain irrational inputs yield recognizable irrational outputs. S. Plouffe([1]) wondered if this process could be adjusted somewhat. He asked if it was possible to initialize any of these three recurrences with rational values, such as $1 / 2$, and still obtain recognizable irrational binary expansions. Define

$$
\alpha_{\mathrm{n}}=\sin \left(2^{\mathrm{n}} \cdot \arcsin \left(\frac{1}{2}\right)\right)=\left\lvert\, \begin{aligned}
& \frac{1}{2} \text { if } \mathrm{n}=0 \\
& \frac{\sqrt{3}}{2} \text { if } \mathrm{n}=1 \\
& 2 \cdot \alpha_{\mathrm{n}-1} \cdot\left[1-2 \cdot\left(\alpha_{\mathrm{n}-2}\right)^{2}\right] \text { if } \mathrm{n} \geq 2
\end{aligned}\right.
$$

$$
\beta_{\mathrm{n}}=\cos \left(2^{\mathrm{n}} \cdot \arccos \left(\frac{1}{2}\right)\right)=\left\lvert\, \begin{aligned}
& \frac{1}{2} \text { if } \mathrm{n}=0 \\
& 2 \cdot\left(\beta_{\mathrm{n}-1}\right)^{2}-1 \text { if } \mathrm{n} \geq 1
\end{aligned}\right.
$$

$$
\gamma_{\mathrm{n}}=\tan \left(2^{\mathrm{n}} \cdot \arctan \left(\frac{1}{2}\right)\right)=\left\{\begin{array}{l}
\frac{1}{2} \text { if } \mathrm{n}=0 \\
\frac{2 \cdot \gamma_{\mathrm{n}-1}}{1-\left(\gamma_{\mathrm{n}-1}\right)^{2}} \text { if } \mathrm{n} \geq 1
\end{array}\right.
$$

then the first two sums turn out to be rational

$$
\sum_{n=0}^{\infty} \frac{\rho\left(\alpha_{n}\right)}{2^{n+1}}=\frac{1}{12} \quad \sum_{n=0}^{\infty} \frac{\rho\left(\beta_{n}\right)}{2^{n+1}}=\frac{1}{2}
$$

but the third sum
$C=\sum_{n=0}^{\infty} \frac{\rho\left(\gamma_{n}\right)}{2^{n+1}}=0.1475836177 \ldots$
is more mysterious. Plouffe numerically determined that

$$
\mathrm{C}=\frac{1}{\pi} \cdot \arctan \left(\frac{1}{2}\right)
$$

and it is reasonable to conjecture that C is irrational. A large number of decimal digits appear at the Inverse Symbolic Calculator web pages.
J. M. Borwein and R. Girgensohn([2]) succeeded in proving Plouffe's formula for C and much more. They demonstrated that, given an arbitrary real value x, if

$$
\xi_{\mathrm{n}}=\tan \left(2^{\mathrm{n}} \cdot \arctan (\mathrm{x})\right)=\left\lvert\, \begin{aligned}
& \mathrm{x} \text { if } \mathrm{n}=0 \\
& \text { if } \mathrm{n} \geq 1 \\
& \left\lvert\, \begin{array}{l}
\frac{2 \cdot \xi_{\mathrm{n}-1}}{1-\left(\xi_{\mathrm{n}-1}\right)^{2}} \text { if }\left|\xi_{\mathrm{n}-1}\right| \neq 1 \\
-\infty \text { if }\left|\xi_{\mathrm{n}-1}\right|=1
\end{array}\right.
\end{aligned}\right.
$$

then

$$
\sum_{n=0}^{\infty} \frac{\rho\left(\xi_{n}\right)}{2^{n+1}}=\left\{\begin{array}{l}
\frac{\arctan (x)}{\pi} \text { if } x \geq 0 \\
1+\frac{\arctan (x)}{\pi} \\
\text { if } x<0
\end{array}\right.
$$

which we call Plouffe's recursion.
This, however, was only one facet of their paper ([2]). It turns out to be crucial that the above sum, call it $f(x)$, satisfies the functional equation

$$
\begin{aligned}
& 2 \cdot f(x)=f\left(\frac{2 \cdot x}{1-x^{2}}\right) \text { if } x \geq 0 \\
& 2 \cdot f(x)-1=f\left(\frac{2 \cdot x}{1-x^{2}}\right) \text { if } x<0
\end{aligned}
$$

f.html

We won't attempt to summarize [2] except to remark that Plouffe's recursion appears to be the simplest example in the theory. Here are two results, corresponding to cosine and sine, due to Borwein and Girgensohn:

- Given arbitrary $-1 \leq \mathrm{x} \leq 1$, if

$$
\eta_{\mathrm{n}}=\left\lvert\, \begin{array}{ll}
\mathrm{x} & \text { if } \mathrm{n}=0 \\
\text { if } \mathrm{n} \geq 1 \\
& \begin{array}{l}
1-2 \cdot\left(\eta_{\mathrm{n}-1}\right)^{2} \\
2 \cdot\left(\eta_{\mathrm{n}-1}\right)^{2}-1
\end{array} \text { if }-1 \leq \eta_{\mathrm{n}-1} \leq 0 \\
& 0<\eta_{\mathrm{n}-1} \leq 1
\end{array}\right.
$$

then

$$
\sum_{n=0}^{\infty} \frac{\sigma\left(\eta_{n}\right)}{2^{n+1}}=\frac{\arccos (x)}{\pi}
$$

where

$$
\sigma(\mathrm{x})=\left\lvert\, \begin{array}{lll}
1 & \text { if } & -1 \leq \mathrm{x} \leq 0 \\
0 & \text { if } & 0<\mathrm{x} \leq 1
\end{array}\right.
$$

- Given arbitrary $0 \leq x \leq 1$, if

$$
\zeta_{n}=\left\lvert\, \begin{aligned}
& x \text { if } n=0 \\
& \text { if } n \geq 1 \\
& \\
& 2 \cdot \zeta_{n-1} \cdot \sqrt{1-\left(\zeta_{n-1}\right)^{2}} \text { if } 0 \leq \zeta_{n-1}<\frac{1}{\sqrt{2}} \\
& 2 \cdot\left(\zeta_{n-1}\right)^{2}-1 \text { if } \frac{1}{\sqrt{2}} \leq \zeta_{n-1} \leq 1
\end{aligned}\right.
$$

then

$$
\sum_{n=0}^{\infty} \frac{\tau\left(\zeta_{n}\right)}{2^{n+1}}=\frac{2 \cdot \arcsin (x)}{\pi}
$$

where

$$
\tau(\mathrm{x})=\left\lvert\, \begin{array}{ll}
1 & \text { if } 0 \leq \mathrm{x}<\frac{1}{\sqrt{2}} \\
0 & \text { if } \frac{1}{\sqrt{2}} \leq \mathrm{x} \leq 1
\end{array}\right.
$$

Other examples, associated with logarithmic, hyperbolic and elliptic integrals of the first kind, are presented in [2]. But suitably generalized binary expansions, given arbitrary x and extending those for the recursions $\left\{_{\mathrm{a}}\right\}$, $\left\{\alpha_{\mathrm{n}}\right\}$ and $\left\{b_{\mathrm{n}}\right\},\left\{\beta_{\mathrm{n}}\right\}$, remain undiscovered.

The Mathcad PLUS 6.0 file brwngrgs.mcd verifies the results given above. (Click here if you have 6.0 and don't know how to view web-based Mathcad files).

References

1. S. Plouffe, Home page (CECM, Simon Fraser University).
2. J. M. Borwein and R. Girgensohn, Addition theorems and binary expansions, Canadian J. M ath. 47 (1995) 262-273.
3. N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, AT\&T Research, look up sequences A004715, A004716 and A004717.

Return to the Favorite Mathematical Constants page .
Return to the Unsolved Mathematics Problems page.
Return to the MathSoft home page .

