
Discrete Applied Mathematics 144 (2004) 270–280
www.elsevier.com/locate/dam

Problem identi!cation using program checking

Christian S. Collberga ;1, Todd A. Proebstingb
aDepartment of Computer Science, University of Arizona, Tucson, AZ, USA

bMicrosoft Research, One Microsoft Way, Redmond, WA, USA

Received 16 May 2002; received in revised form 16 January 2003; accepted 20 November 2003

Abstract

We describe A�goVista, a web-based search engine that assists computer scientists !nd algorithms and implementations
that solve speci!c problems. A�goVista also allows algorithm designers to advertise their results in a forum accessible to
programmers and theoreticians alike. A�goVista is not keyword based. Rather, users provide input⇒output samples that
describe the behavior of their needed algorithm. This query-by-example requires no knowledge of specialized terminology
—the user only needs an ability to formalize her problem. A�goVista’s search mechanism is based on a novel application
of program checking, a technique developed as an alternative to program veri!cation and testing. A�goVista operates at
http://www.algovista.com.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Program checking; Software repository; Type discrimination; Search engine; Algorithm

1. Background

Frequently, working software developers encounter a problem with which they are unfamiliar, but which—they suspect
—has probably been previously studied. Just as frequently, algorithm developers work on problems that they suspect have
practical applications.

Unfortunately, the programmer with a problem in search of a solution and the theoretician with a solution in search
of an application are unlikely to connect across the geographical and linguistic chasms that often separate the two. In
many organizations working programmers do not have easy access to a theoretician, and, when they do, they often !nd
communication di=cult.

In this paper we will describe A�goVista, a web-based, interactive, searchable, and extensible database of problems
and algorithms designed to bring together applied and theoretical computer scientists. Practicing programmers can query
A�goVista to look for relevant theoretical results, and theoretical computer scientists can extend A�goVista with problem
solutions.

A�goVista relies on a novel application of a program (or result) checking. Program checking was developed by Manuel
Blum and others [3–5,9,15,16,18] as an alternative to program veri!cation and testing. Program checking extends programs
with checkers that verify the correctness of the results they compute.

1.1. Two motivating episodes

To motivate the need for specialized search engines for computer scientists, we will consider two concrete episodes
from the experience of the authors.

1 This work has been supported in part by the NSF under Grant CCR-0073483.
E-mail address: collberg@cs.arizona.edu (C.S. Collberg).

0166-218X/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2003.11.005

http://www.algovista.com
mailto:collberg@cs.arizona.edu

C.S. Collberg, T. Proebsting / Discrete Applied Mathematics 144 (2004) 270–280 271

Working on the design of graph-coloring register allocation algorithms, the second author showed his theoretician
colleague Sampath Kannan the following graphs:

“Do these graphs mean anything to you?” Todd asked.

“Sure”, Prof. Kannan replied, “they’re series-parallel graphs”.

This was the beginning of a collaboration which resulted in a paper in the Journal of Algorithms [12].
In a similar episode, the !rst author showed his theoretician colleague Clark Thomborson the following graph-

transformation:

“Do you know what I am doing here?” Christian asked.

“Sure”, Prof. Thomborson soon replied, “you’re shrinking the biconnected components of the underlying (undirected)
graph”.

This result became an important part of a joint paper on software watermarking [7].
It is important to note that, while in both these episodes the authors had a pretty good grasp of the problem they

were working on, they lacked knowledge of the relevant terminology. Hence, standard keyword-based search techniques
would not have been of much assistance. In these episodes, the theoretical computer scientist provided the crucial problem
identi!cation that allowed the authors to conduct further bibliographical searches themselves.

1.2. Interacting with A�goVista

A�goVista is an online database that stores and codi!es problems, algorithms, and combinatorial structures developed
within the Computer Science theory community. An applied computer scientist will typically interact with A�goVista by
providing input⇒output samples. A�goVista will then search its database looking for problems that map input to output.

272 C.S. Collberg, T. Proebsting / Discrete Applied Mathematics 144 (2004) 270–280

As a concrete example, consider the following query:

This query asks:

Suppose that from the linked structure on the left of the ⇒ I compute the list of nodes to the right. What function
f am I then computing?

A�goVista might then respond with:

This looks like a topological sort of a directed acyclic graph. You can read more about topological sorting at
http://www.nist.gov/dads/HTML/topologcsort.html. A Java implementation can be found at
http://www.math.grin.edu/∼rebelsky/Courses/152/97F/Outlines/outline.49.html.

A�goVista is also able to identify some simple combinatorial structures. Given the following query:

A�goVista might respond with:

This looks like a complete bipartite graph. You can read more about this structure at http://mathworld.
wolfram.com/CompleteBipartiteGraph.html.

1.3. Organization

The remainder of this paper is organized as follows. Section 2 introduces program checking and describes how checklets
(program checkers in A�goVista) are used as the basic entries in A�goVista’s database. Section 3 presents the overall
architecture of A�goVista and discusses relevant security issues. Section 4 describes the design of the A�goVista query
language and type system. Section 5 introduces query transformations that the system uses to bridge any potential semantic
gap between user queries and checklets. Section 6 evaluates the performance of the search algorithms. Section 7 discusses
related work, and Section 8, !nally, summarizes our results.

2. Program checking

A�goVista can be seen as a novel application of program checking, an idea popularized by Manuel Blum and his
students. The idea behind program checking is simply this. Suppose we are concerned about the correctness of a procedure
P in a program we are writing. We intend for P to compute a function f, but we are not convinced it does so. We have
three choices:

(1) We can attempt to prove that P ≡ f over the entire domain of P.
(2) We can test that P(x) = f(x), where x is drawn from a reasonable domain of test data.
(3) We can include a result checker CPf with the program. For every actual input x given to P, the result checker checks

that P(x) = f(x).

We normally require CPf and P to be independent of each other; i.e. they should be programmed using very diPerent
algorithms. We also want the checker to be e9cient. To ensure that these conditions are met, it is generally expected that
a result checker CPf should be asymptotically faster than the program P that it checks. That is, we expect that if P runs
in time T then CPf should run in time o(T).

http://www.nist.gov/dads/HTML/topologcsort.html
http://www.math.grin.edu/~rebelsky/Courses/152/97F/Outlines/outline.49.html
http://mathworld.wolfram.com/CompleteBipartiteGraph.html
http://mathworld.wolfram.com/CompleteBipartiteGraph.html

C.S. Collberg, T. Proebsting / Discrete Applied Mathematics 144 (2004) 270–280 273

Fig. 1. Some simple checklets. (a) A sorting checklet. Its speed depends on how fast we can compare two multisets for equality. If the
elements are small enough we can use bucket sort in O(n) time. Otherwise, we can use a hashing scheme that runs in time proportional
to the size of the hash table. (b) A topological sorting checklet.

Table 1
Partial list of problem and graph descriptions found in A�goVista

Maximal independent set Transitive closure
Longest common subsequence Clique problem
Independent set Proper edge coloring
Perfect matching Spanning Tree
AVL Tree Undirected Graph
Complete graph Single destination shortest path
All pairs shortest path Strongly connected Graph
Single source shortest path Combination
Maximum bipartite matching Least common multiple
Directed Acyclic Graph Hamiltonian cycle
Articulation points Eulerian graph
Matching Permutation
Euler cycle Biconnected Graph
Connected graph Single pair shortest path
Bipartite Graph Clique
Maximum consecutive subsequence

2.1. Checklets: result checkers in A�goVista

The A�goVista database consists of a collection of result checkers which we call checklets. A checklet typically takes a
user query input⇒output as input and either accepts or rejects. If the checklet accepts a query, it also returns a description
of the problem it checks for.

Fig. 1 shows some simple checklets. Fig. 1(b), is a particularly interesting checklet for topological sorting. Any acyclic
graph will typically have more than one topological order. It is therefore not possible for the checklet to simply run a
topological sorting procedure on the input graph and compare the resulting list of nodes with the output list given in
the query. Rather, the checklet must, as shown in Fig. 1(b), !rst check that every node in the input graph occurs in the
output node list, and then check that if node f comes before node t in the output list then there is no path t ❀ f in the
input graph.

A�goVista currently contains some three-hundred problem descriptions, some of which are listed in Table 1.

2.2. Examples

We will next examine two examples of what A�goVista can do.

274 C.S. Collberg, T. Proebsting / Discrete Applied Mathematics 144 (2004) 270–280

Example 1. Suppose Bob is trying to write a program that identi!es the locations for a new franchise service. Given a set
of potential locations, he wants the program to compute the largest subset of those locations such that no two locations
are close enough to compete with each other. It is trivial for him to compute which pairs of locations would compete,
but he does not know how to compute the feasible subset. He starts by trying to come up with an example of how his
program should work:

• If there are three locations a; b; c and a competes with b and c, then the best franchise locations are b and c.

If Bob is unable to come up with his own algorithm for this problem he might turn to one of the search-engines on the
web. But, which keywords should he use? Or, Bob could consult one of the algorithm repositories on the web, such as
http://www.cs.sunysb.edu/∼algorith/, which is organized hierarchically by category. But, in which category does
this problem fall? Or, he could enter the example he has come up with into A�goVista at algovista.com:

[a--b,a--c]==>[c,b]

This query expresses:

If the input to my program is two relationships, one between a and b and one between a and c, then the output is
the collection [b,c].

Another way of thinking about this query is that the input is a graph of three nodes a, b, and c, and edges
a-b and a-c, but it is not necessary for Bob to know about graphs. A�goVista returns to Bob a link directly to
http://www.cs.sunysb.edu/∼algorith/files/independent-set.shtml which contains a description of the
Maximal Independent Set problem. From this site there are links to implementations of this problem.

Example 2. Suppose Bob is writing a simple DNA sequence pattern matcher. He knows that given two sequences
〈a; a; t; g; g; g; c; t〉 and 〈c; a; t; g; g〉, the matcher should return the match 〈a; t; g; g〉, so he enters the query

([a,a,t,g,g,g,c,t],[c,a,t,g,g])==>[a,t,g,g]

into A�goVista which (within seconds) returns the link http://www.nist.gov/dads/HTML/longestcommn.html to a
description of the longest common subsequence problem.

2.3. Checklet construction

Much research has gone into the search for e=cient result checkers for many classes of problems. In some cases,
e=cient result checkers are easy to construct. For example, let P(x) return a factor of the composite integer x. This is
generally thought to be a computationally di=cult problem. However, checking the correctness of a result returned by
P is trivial; it only requires one division. On the other hand, let P(x) return a least-cost traveling salesman tour of the
weighted graph x. Checking that a given tour is actually a minimum-cost tour is as expensive as !nding the tour itself.

In some cases it may be di=cult to construct checklets which run in an acceptable amount of time. This is particularly
true of NP-hard problems for which it would seem to be impossible to !nd polynomial time result checking algorithms.
In these cases we may have to use spot-checking [9], a recent development in result checking, to check hard problems
probabilistically.

3. System overview

A typical user will search A�goVista by submitting a query through the A�goVista web page, where it is matched
against the checklets in the checklet database. The output from any accepting checklet is transferred back to the client
and presented to the user.

To extend the database with new problem identi!cations, a user downloads a checklet template, modi!es and tests it,
and uploads the new checklet into the server where it is added to the checklet database. A�goVista is the !rst search
engine on the web to allow arbitrary users to upload executable code into its database. In [8] we address a number of
related security issues.

http://www.cs.sunysb.edu/~algorith/
http://algovista.com
http://www.cs.sunysb.edu/~algorith/files/independent-set.shtml
http://www.nist.gov/dads/HTML/longestcommn.html

C.S. Collberg, T. Proebsting / Discrete Applied Mathematics 144 (2004) 270–280 275

The basic A�goVista search algorithm is very simple:

function search (query)
q ← parse(query)
responses ← {}
for every combination of query transformations T1(T2(· · ·)) do

q′ ← T1(T2(· · · q · · ·))
for every checklet c in the database do

if c accepts q′ with response r then
responses ← responses ∪ {r}

return responses
The algorithm is essentially an exhaustive search: a query is submitted to every checklet in the database, and the

response of every accepting checklet is returned. In Section 5, we show that a query may also undergo a set of
representation transformations prior to being submitted. These transformations try to compensate for the fact that user
queries and checklets may use diPerent data representations for the same problem.

4. The query language

The primitives of QL, the A�goVista query language, include integers, Soats, booleans, lists, tuples, atoms, and links.
Links are (directed and undirected) edges between atoms that are used to build up linked structures such as graphs and
trees. Special syntax was provided for these structures since we anticipate that many A�goVista users will be wanting to
identify graph structures and problems on graphs.

The following grammar shows the concrete syntax of the query language:

S → int | float | bool |
S ‘ ==>’ S |
atom [‘ /’ S] |
atom ‘ ->’[‘ /’ S] atom |
atom ‘ --’ [‘ /’ S] atom |
‘ [’ [S { ‘ ,’ S }] ‘]’ |
‘ (’ S ‘ ,’ S ‘)’

bool → ‘ true’ | ‘ false’
atom → ‘ a’ : : : ‘ z’
int → ‘ 0’ : : : ‘ 9’ {‘mbox0’ : : : ‘ 9’}
float → int ‘ .’ int
{S==>Ss maps inputs to outputs, {(S; S)s represents a pair of elements, and {[S{,S}]s represents a list of ele-

ments. Atoms, {atom[=S]s, are one-letter identi!ers that are used to represent nodes of linked structures such as graphs
and trees. They can carry optional node data. Links between nodes can be directed {atom->[/S]atoms, or undirected
{atom–[=S]atoms, and can also carry edge data.
Fig. 2 gives some example queries. In the query in Fig. 2 �, a directed graph is mapped to a directed graph. The query

in Fig. 2 � asks A�goVista to identify a particular graph, which turns out to be a strongly connected directed graph.
Fig. 2 �, !nally, shows a query that maps a pair of vectors to a vector:

{([3,7],[5,1,6])==>[5,1,6,3,7]s.

A�goVista returns the result 〈List append〉 since
append([5,1,6],[3,7])=[5,1,6,3,7].

To arrive at this result A�goVista !rst swapped the input pair using a query transformation. Query transformations
yield alternative input⇒output queries for A�goVista to consider.

5. Query transformations

Early on in the design of A�goVista we realized that there is often a representational gap between a user’s query and
the checklet that is designed to match this query. For example, there are any number of reasonable ways for a user to
express a topological sorting query, including representing the input graph as a list of edges, an adjacency matrix, or a

276 C.S. Collberg, T. Proebsting / Discrete Applied Mathematics 144 (2004) 270–280

Fig. 2. Example QL queries.

list of neighbors. These queries are shown in Fig. 2 �–�. The corresponding topological sorting checklet, on the other
hand, might expect the input graph only in a matrix form.

A�goVista provides a set of query transformations that will automatically mutate queries between common representa-
tions. For example, given the topological sorting query in Fig. 2 �, A�goVista would automatically produce the queries
in Fig. 2 �–�, all of which would be matched against the checklets in the checklet database.

In Section 3 we described a straightforward algorithm that employs exhaustive search to submit every possible mutation
of a query to every checklet in the checklet database. Obviously, with dozens of transformations and maybe hundreds
of checklets this procedure will be prohibitively expensive. Precomputing viable transformations can speed up searching
by eliminating any such useless transformations. Whenever a new checklet is added to the database, A�goVista generates
a new search procedure ST;C automatically. This procedure is hardcoded to handle exactly the set of transformations T
which are available in the database of transformations, and the set of checklets C which are currently available in the
checklet database. ST;C is constructed such that given an input query q whose type is T <q=, ST;C will apply exactly those
combinations of transformations to q that will result in viable mutated queries. A query is viable if it is correctly typed
for checking by at least one checklet. In other words, A�goVista’s optimized search procedure ST;C will never perform a
useless transformation, one that could not possibly lead to a mutated query correctly typed for some checklet.

In order to apply transformations and to test checklets e=ciently, A�goVista determines the signature of an input query
upon its arrival. Given the query’s signature, A�goVista knows exactly which, if any, checklets to test, and which, if any,
transformations to apply. Furthermore, A�goVista knows the exact signature of each newly-generated query because it
knows the input query signature and how the transformation will transform the signature. For example, A�goVista knows
that applying the FlipPair transform to

Map(Pair(Float,Int),Float)

will yield

Map(Pair(Int,Float),Float).

This observation yields a very simple, but highly optimized architecture that applies transformations and tests checklets
based on signatures, in which there is one function per signature responsible for all the operations that aPect queries of
that signature. Each function has three parts: verifying the originality of the query, testing all matching checklets, and
generating isomorphic queries by applying transformations. All generated queries are simply handed oP to the function
that handles their signature.

Fig. 3 is a graphical representation of the functions that would be generated for the checklets and transformations in our
running example. The nodes depict the signature-bound functions and the edges show transformations from one signature
to another. The shaded nodes are those nodes that have associated checklets.

To construct this query signature graph we start with those signatures accepted by checklets—they are trivially accept-
able. Then, for all of those signatures, we apply the inverted transformations wherever possible.

C.S. Collberg, T. Proebsting / Discrete Applied Mathematics 144 (2004) 270–280 277

Fig. 3. A query signature graph. The two transformations Int2Float and FlipPair are represented by I → F and (�; �) → (�; �),
respectively. Shaded nodes represent viable signatures, those that have associated checklets.

There is, however, one unfortunate complication. Consider the following example:

[a->b,b->c]
Vector2VectorPair
⇒ ([a,b,c],[a->b,b->c])
Vector2VectorPair
⇒ ([a,b,c],([a,b,c],[a->b,b->c]))
Vector2VectorPair
⇒ ([a,b,c],([a,b,c],([̄a,b,c], [a->b,b->c])))
⇒ · · ·

In this particular example, the query { [a->b,b->c]s (representing a linked list 〈a; b; c〉) is transformed into
{ ([a,b,c],[a->b,b->c])s. This is the standard A�goVista representation of a linked structure, a pair of a node-list
and an edge-list. However, the Vector2VectorPair transformation can be re-applied to the edge-list in the transformed
query, ad in;nitum.

As it turns out, with any su=ciently rich set of transformations, it is always possible to generate an in!nite number
of signatures. To avoid this problem, and to bound the number of signatures, we put a limit on the number of transfor-
mations that will be applied to any query. Typical values for this limit is four to six. With our current database of 95
checklets, with 28 unique signatures, and 23 transformations, A�goVista can accept queries with 9828 diPerent signatures.
The generation of the decision tree and all of the signature-speci!c functions is done automatically by a small Icon
program [11].

6. Evaluation

Table 2 shows the search times for some typical queries. The times were collected by running each query four times
and averaging the wall clock times of the last three runs. The reason for discarding the !rst measurement is that Java
start-up times are quite signi!cant and unpredictable. Furthermore, in web applications such as this one, programs are
typically pre-loaded into (a large) primary memory and queries are !elded without any disk accesses.

The !ve columns of Table 2 show the query, the average wall clock times for the query using the exhaustive and the
precomputed search, and the average wall clock times for generating all mutated queries using the exhaustive and the
precomputed algorithms. In other words, the last two columns do not include the execution times of the checklets, just
the time it takes to generate the transformed queries that would be submitted to the checklets.

278 C.S. Collberg, T. Proebsting / Discrete Applied Mathematics 144 (2004) 270–280

Table 2
Timing measurements

Query Search Mutations

Exhaustive Precomputed Exhaustive Precomputed

{[1,3]==>2s 0.41 0.37 0.12 0.39
{(1,2)==>3s 0.41 0.44 0.12 0.46
{([a,b,c,d],[a->b,b->c,c->d,d->a])s 0.79 0.32 0.17 0.31
{([a,b,c,d],[a->b,b->c,c->d])==>[a,b,c,d]s 2.2 0.55 0.83 0.54
{[a->b,b->c,c->d]==>[a,b,c,d]s 0.16 0.44 0.04 0.37
{[a->b,b->c]==>[a,b]s 0.69 0.39 0.13 0.42
{([a,b,c,d],[a->/2b,b->/2c,c->/3d])==>3s 2.1 0.45 0.78 0.49
{[a->/1b,b->/2c,c->/3d]==>6s 0.17 0.47 0.04 0.36
{([1,2,3],[4,5,6])==>[1,2,3,4,5,6]s 0.41 0.45 0.09 0.42
{[6,5,4,3,2,1]==>[1,2,3,4,5,6]s 0.05 0.34 0.01 0.34

Times are in seconds. Anomalous measurements are due to rounding errors and inadequate timer reso-
lution. The measurements were collected on a lightly loaded Sun Ultra 10 workstation with a 333 MHz
UltraSPARC-IIi CPU and 256 MB of main memory, running A�goVista on Sun JDK 1.2.1.

Looking at Table 2 it is clear, as would be expected, that in most cases the precomputed search algorithm is superior
to the exhaustive algorithm. However, it should be stressed that the comparison is inherently unfair. The exhaustive
algorithm, although slower, will sometimes report results that the precomputed algorithm will overlook. The reason is that
the precomputed algorithm limits the number of transformations that can be applied to a query, while the exhaustive one
does not.

It is interesting to note that the size of the exhaustive algorithm is constant whereas the size of the implementation of the
precomputed algorithm grows with the number of checklets and transformations. This will sometimes result in detrimental
instruction cache ePects. This is illustrated in Table 2 where for simple queries the exhaustive search algorithm performs
better than the precomputed algorithm.

We expect that as the system grows with more checklets and query transformations, the performance of the precomputed
search algorithm will greatly exceed that of the exhaustive algorithm. The reason is that the execution time of the exhaustive
algorithm for a query Q is

O(#mutations(Q)× #checklets)

while the execution time of the precomputed search algorithm is

O(#viable mutations(Q));

where we expect

#viable mutations(Q)� #mutations(Q):

7. Related work

A number of web sites, for example the CRC Dictionary [2] and the Encyclopedia of Mathematics [19], already provide
encyclopedic information on algorithms, data structures, and mathematical results. Like all encyclopedias, however, they
are of no use to someone unfamiliar with the terminology of the !eld they are investigating.

More relevant to the present research is Sloane’s On-Line Encyclopedia of Integer Sequences [17]. This search service
allows users to look up number sequences without knowing their name. For example, if a user entered the sequence
{1; 2; 3; 5; 8; 13; 21; 34s, the server would respond with “Fibonacci numbers.” It is interesting to note that, although many
of the entries in the database include a program or formula to generate the sequences, these programs do not seem to be
used in searching the database. Similar search services are Plou=e’s Inverter [14] where one can look up real numbers
and the Encyclopedia of Combinatorial Structures [13].

C.S. Collberg, T. Proebsting / Discrete Applied Mathematics 144 (2004) 270–280 279

Inductive Logic Programming (ILP) [1] is a branch of Machine Learning. One application of ILP has been the automatic
synthesis of programs from examples and counter-examples. For example, given a language of list-manipulation primitives
(car, cdr, cons, and null) and a set of examples

append([],[],[]).
append([1],[2],[1,2]).
append([1,2],[3,4],[1,2,3,4]).

an ILP system might synthesize the following Prolog-program for the append predicate:

append(A, B, B) :- null(A).
append(A,B,C) :- car(A, X), cdr(A, Y),

append(Y, B, C1),
cons(X, C1, C).

Obviously, this application of ILP is far more ambitious than A�goVista. While both ILP and A�goVista produce
programs from input⇒output examples, ILP synthesizes them while A�goVista just retrieves them from its database. The
ILP approach is, of course, very attractive (we would all like to have our programs written for us!), but has proven not
to be particularly useful in practice. For example, in order to synthesize Quicksort from an input of sorting examples, a
typical ILP system would !rst have to be taught Partition from a set of examples that split an array in two halves around
a pivot element:

partition(3,[],[],[]).
partition(5,[6],[],[6]).
partition(7,[6],[6],[]).
partition(5,[6,3,7,9,1],[3,1],[6,7,9]).
A�goVista is essentially a reverse de;nition dictionary for Computer Science terminology. Rather than looking up a term

to !nd its de!nition (as one would in a normal dictionary), a reverse de!nition dictionary allows you to look up the term
given its de!nition or an example. The DUDEN [6] series of pictorial dictionaries is one example: to !nd out what that
strange stringed musical instrument with a hand-crank and keys is called, you scan the musical instruments pages until you
!nd the matching picture of the hurdy-gurdy. Another example is The Describer’s Dictionary [10] where one can look up
{mixture of gypsum or limestone with sand and water and sometimes hair used primarily for walls and ceilingss to !nd
that this concoction is called plaster.

8. Summary

A�goVista provides a unique resource to computer scientists to enable them to discover descriptions and implementations
of algorithms without knowing theoretical nomenclature. A�goVista is a web-based search engine that accepts

input ⇒ output

pairs as input and !nds algorithms that match that behavior. This Query-By-Example mechanism relieves users of the
burden of knowing terminology outside their domain of expertise. A�goVista is extensible—algorithm designers may
upload their algorithms into A�goVista’s database in the form of checklets that recognize acceptable input/output behavior.

A�goVista is operational at http://www.algovista.com.
The current implementation of A�goVista provides several diPerent search modes. Users can choose to search

compressively or quickly, using the exhaustive or precomputed search algorithms, respectively. Furthermore, searching
can be done by value (the default search mode as described in this paper), by signature, or by keyword. Signature
searching provides faster but less precise results by only matching the types of queries and checklets. Finally, A�goVista
also provides signature searching of the Java APIs.

It should be obvious that A�goVista is not able to solve all programmers’ problems all of the time. A programmer who
is unable to abstract away from details of the problem at hand, formalizing it into one or two crisp examples will not be
helped by A�goVista. He will also not be helped by any other search tool or Computer Science text-book. Furthermore,
a programmer who is not able to come up with these simple input ⇒ output samples for his problem also will not be
able to generate test data for his !nished program.

Acknowledgements

Will Evans pointed out the relationship between checklets and program checking. Dengfeng Gao implemented most of
the checklets in the current database. Sean Davey implemented the Java API signature search algorithm. We thank them all.

http://www.algovista.com

280 C.S. Collberg, T. Proebsting / Discrete Applied Mathematics 144 (2004) 270–280

References

[1] F. Bergadano, D. Gunetti, Inductive Logic Programming—From Machine Learning to Software Engineering, MIT Press, Cambridge,
MA, 1995, iSBN 0-262-02393-8.

[2] P.E. Black, Algorithms, data structures, and problems—terms and de!nitions for the CRC dictionary of computer science, engineering
and technology, http://hissa.ncsl.nist.gov/∼black/CRCDict.

[3] M. Blum, Program checking, in: S. Biswas, K.V. Nori (Eds.), Proceedings of Foundations of Software Technology and Theoretical
Computer Science, Lecture Notes in Computer Science, Vol. 560, Springer, Berlin, Germany, 1991, pp. 1–9.

[4] M. Blum, Program result checking: a new approach to making programs more reliable, in: S.C. Andrzej Lingas, R.G. Karlsson (Eds.),
Automata, Languages and Programming, 20th International Colloquium, Lecture Notes in Computer Science, Vol. 700, Springer,
Lund, Sweden, 1993, pp. 1–14.

[5] M. Blum, S. Kannan, Designing programs that check their work, J. Assoc. Comput. Mech. 42 (1) (1995) 269–291.
[6] M. Clark, B. Mohan, The Oxford-DUDEN Pictorial English Dictionary, Oxford University Press, Oxford, 1995, iSBN 0-19-861311-3.
[7] C. Collberg, C. Thomborson, Software watermarking: models and dynamic embeddings, in: Principles of Programming Languages

1999, POPL’99, San Antonio, TX, 1999, http://www.cs.auckland.ac.nz/∼collberg/Research/Publications/
CollbergTh%omborson99a/index.html.

[8] C.S. Collberg, T.A. Proebsting, A�goVista—a search engine for computer scientists, Technical Report 2000-01, 2000.
[9] F. ErgWun, S. Kannan, S.R. Kumar, R. Rubinfeld, M. Vishwanathan, Spot-checkers, J. Comput. System Sci. 3 (60) (2000) 717–751.
[10] D. Grambs, The Describer’s Dictionary, W. W. Norton & Company, NY, 1995, iSBN 0-393-31265-8.
[11] R.E. Griswold, M.T. Griswold, The Icon Programming Language, 2nd Edition, Prentice-Hall, Englewood CliPs, NJ, 1990.
[12] S. Kannan, T.A. Proebsting, Register allocation in structured programs, J. Algorithms 29 (2) (1998) 223–237.
[13] S. Petit, Encyclopedia of Combinatorial Structures, http://algo.inria.fr/encyclopedia.
[14] S. PlouPe, PlouPe’s Inverter, http://www.lacim.uqam.ca/pi.
[15] R. Rubinfeld, Batch checking with applications to linear functions, Inform. Process. Lett. 42 (2) (1992) 77–80.
[16] R. Rubinfeld, Designing checkers for programs that run in parallel, Algorithmica 15 (4) (1996) 287–301.
[17] N.J.A. Sloane, Sloane’s on-line encyclopedia of integer sequences, http://www.research.att.com/∼njas/sequences/

index.html.
[18] H. Wasserman, M. Blum, Software reliability via run-time result-checking, J. Assoc. Comput. Mech. 44 (6) (1997) 826–849.
[19] E. Weisstein, Encyclopedia of Mathematics, http://www.treasure-troves.com/math.

http://hissa.ncsl.nist.gov/~black/CRCDict
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergTh%omborson99a/index.html
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergTh%omborson99a/index.html
http://algo.inria.fr/encyclopedia
http://www.lacim.uqam.ca/pi
http://www.research.att.com/~njas/sequences/index.html
http://www.research.att.com/~njas/sequences/index.html
http://www.treasure-troves.com/math

	Problem identification using program checking
	Background
	Two motivating episodes
	Interacting with AlambdagoVista
	Organization

	Program checking
	Checklets: result checkers in AlambdagoVista
	Examples
	Checklet construction

	System overview
	The query language
	Query transformations
	Evaluation
	Related work
	Summary
	Acknowledgements
	References

