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RAPIDLY CONVERGING FORMULAE FOR ζ(4k ± 1)

SHUBHO BANERJEE AND BLAKE WILKERSON

Abstract. We provide rapidly converging formulae for the Riemann zeta
function at odd integers using the Lambert series Lq(s) =

∑∞
n=1

nsqn/(1−qn),
s = −(4k ± 1). Our main formula for ζ(4k − 1) converges at rate of about

e−
√

15π per term, and the formula for ζ(4k + 1), at the rate of e−4π per

term. For example, the first order approximation yields ζ(3) ≈
π
3
√

15

100
+

e−
√

15π

[

9

4
+ 4√

15
sinh(

√
15π

2
)
]

which has an error only of order 10−10.

1. Introduction

In a recent paper [3] we analyzed the |q| → 1− asymptotic behavior of a Lambert
series of the type

(1.1) Lq(s, x) =

∞
∑

n=1

nsqnx

1− qn
, s ∈ C,

with |q| < 1 and x > 0. At x = 1, the Lambert series Lq(s, x) is the generating
function for the divisor function σs(n), the sum of the sth powers of divisors of an
integer n [1]:

(1.2)

∞
∑

n=1

σs(n) q
n = Lq(s, 1).

For odd positive integer s values, the Lambert series is related to the Eisentein
series

(1.3) E2k(q) = 1− 4k

B2k

∞
∑

n=1

σ2k−1(n) q
n,

that are modular in nature [2].
In this paper we focus on the Lambert series at negative odd integer values of

s = −(4k ± 1), k = 1, 2, 3, ... and at x = 1. This Lambert series is related to the
Riemann zeta function at the corresponding positive integer values, ζ(4k ± 1), [4].
Our main results are stated in Sections 3, 4, and 5 where we provide a series of
rapidly converging formulae for ζ(4k±1). Where comparison is possible, our results
agree with those obtained using powerful computational methods [5, 7].

Key words and phrases. Lambert, Eisenstein, q-series, modular, Riemann zeta, divisor sum.
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2. Lambert series

In this section we focus on the Lambert series at negative odd integer arguments
and x = 1. Since x is set to 1 in this paper, to avoid redundancy we use the notation
Lq(s, 1) ≡ Lq(s).

Theorem 2.1. For odd negative integers s the Lambert series at x = 1 satisfies
the following relations :

(1) For s = −1,

Le−2πt(−1)− L
e
− 2π

t
(−1) =

1

2
log t− π

6
sinh(log t).

(2) For s = −(4k − 1) = −3,−7,−11, . . .,

1

t2k−1
Le−2πt(−4k + 1) + t2k−1

L
e
− 2π

t
(−4k + 1)

= (2π)4k−1
k

∑

j=0

(−1)j+1B2jB4k−2j cosh[(2k − 2j) log t]

(2j)! (4k − 2j)! (1 + δjk)

− ζ(4k − 1) cosh[(2k − 1) log t].

(3) For s = −(4k + 1) = −5,−9,−13, . . .,

1

t2k
Le−2πt(−4k − 1)− t2kL

e
− 2π

t
(−4k − 1)

= (2π)4k+1
k
∑

j=0

(−1)j+1B2jB4k+2−2j sinh[(2k + 1− 2j) log t]

(2j)! (4k + 2− 2j)!

+ ζ(4k + 1) sinh(2k log t),

where Bk is the kth Bernoulli number and δjk is the Kronecker delta.

Remark Although the theorem is stated for negative odd integer arguments of
the Lambert series, it holds true for positive odd arguments as well. The results
for positive odd arguments, obtained by using negative k values in the theorem,
reproduce modular properties of the Eisenstein series (1.3).

Proof. For the s = −1 case, by taking the logarithm of the complete expansion of
the q-Pochhammer symbol provided in the Referee Remark 3.3 of Ref. [3] we get

(2.1)

Lq(−1) =
π2

6t
+

1

2
log

t

2π
− t

24
+

∞
∑

n=1

Li1
(

e−
4nπ2

t

)

=
π2

6t
+

1

2
log

t

2π
− t

24
+ L

e
− 4π2

t
(−1),

where q = e−t and Lis(q) is the polylogarithm function. Replacing t with 2πt and
rearranging the terms completes the proof.

For s = −4k+1 we begin with the result in Corollary 2.4(2) of Ref. [3]. Replacing
t with 2πt, writing ζ ′(2 − 4k) in terms of ζ(4k − 1), and writing the zeta function
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at even arguments in terms of Bernoulli numbers gives

1

t2k−1
Le−2πt(−4k + 1)

≈ (2π)4k−1





(−1)k+1B2
2k

(2k)!2 2
+

k−1
∑

j=0

(−1)j+1B2jB4k−2j cosh[(2k − 2j) log t]

(2j)! (4k − 2j)!





− ζ(4k − 1) cosh[(2k − 1) log t].

The right hand side of the equation above is completely symmetric with respect to
a t → 1/t transformation. Thus adding t2k−1L

e
− 2π

t
(−4k+ 1) to the left hand side

of the equation to make it completely symmetric yields the result in the theorem.
Note that such symmetry arguments only guarantee numerical accuracy. However,
a comparison with Entry 21(i) in [4] shows that the result is exact, and there are
no other error terms. In the final result the B2

2k term is included in the sum over
j by using δjk and extending the limit of the sum from k−1 to k.

Similarly, for s = −4k − 1 case from Corollary 2.4(2) of Ref. [3] we obtain

1

t2k
Le−2πt(−4k − 1)

≈ (2π)4k+1
k
∑

j=0

(−1)j+1B2jB4k+2−2j sinh[(2k + 1− 2j) log t]

(2j)! (4k + 2− 2j)!

+ ζ(4k + 1) sinh(2k log t).

In this case the right hand side of the equation is antisymmetric with respect to a
t → 1/t transformation. Thus, we add t2kL

e
− 2π

t
(−4k − 1) to the left hand side of

the equation to make the equation completely antisymmetric. As in the case above,
a comparison with Entry 21(i) in [4] shows that the result is exact, which yields
the result in the theorem.

�

Corollary 2.2. For positive odd integers (4k − 1) = 3, 7, 11, ... we have

ζ(4k − 1) = (2π)4k−1
k

∑

j=0

(−1)j+1B2j B4k−2j

(2j)! (4k − 2j)! (1 + δjk)
− 2Le−2π(−4k + 1).

Proof. Substituting t = 1 in Theorem 2.1(2) and solving for ζ(4k − 1) completes
the proof. �

Corollary 2.3. For positive odd integers (4k + 1) = 5, 9, 13, ... we have

ζ(4k + 1) = (2π)4k+1
k

∑

j=0

(−1)j(2k + 1− 2j)B2jB4k+2−2j

2k (2j)! (4k + 2− 2j)!

− 2πe−2πL′
e−2π(−4k − 1)

k
− 2Le−2π(−4k − 1) ,

where L′ = dL/dq.

Proof. Differentiating Theorem 2.1(3) with respect to t at t = 1 and solving for
ζ(4k + 1) completes the proof. �
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Remark The results in Corollaries 2.2 and 2.3 are well known [4–6] but have been
reproduced here for the sake of completeness. The results hold true for negative
values of k as well.

3. Formulae for ζ(4k + 1)

In Corollary2.3 we established a formula for ζ(4k+1) that involved the Lambert
series and its derivative with respect to q at q = e−2π. In this section we establish
three new formulae for ζ(4k + 1) that are in terms of the Lambert series only, and
not its derivative.

First, we prove a general identity for the Lambert series that is true for all s
values in the form of the following lemma.

Lemma 3.1. For any positive prime integer p and s ∈ C the Lambert series at
x = 1 satisfies :

p−1
∑

n=0

L
q

1
p e

i 2πn
p

(s) = (ps+1 + p)Lq(s)− ps+1
Lqp(s).

Proof. Writing the Lambert series in terms of the divisor function using (1.2) gives

1

p

p−1
∑

n=0

L
q

1
p e

i 2πn
p

(s) =
1

p

p−1
∑

n=0

∞
∑

k=1

σs(k)q
k
p ei

2πnk
p

=
1

p

∞
∑

k=1

σs(k)q
k
p

p−1
∑

n=0

ei
2πnk

p

=

∞
∑

l=1

σs(lp) q
l

= (ps + 1)

∞
∑

l=1

σs(l) q
l − ps

∞
∑

p|l
σs(

l
p
) ql

= (ps + 1)
∞
∑

l=1

σs(l) q
l − ps

∞
∑

m=1

σs(m) qmp,

where p|l indicates sum only over integers l that are divisible by p. Rewriting the
two infinite sums in terms of Lambert series using (1.2) and multiplying by p on
both sides proves the lemma. In the proof above we used the following property of
the divisor function [1]

σs(lp) = (ps + 1)σs(l)− psσs(
l
p
),

where σs(
l
p
) is non-zero only when p divides l. �

Remark For p 6= 2 the limits of the sum over n in the lemma can be replaced with
the symmetric limits ranging from −(p − 1)/2 to (p − 1)/2. It is this symmetric
range that we use in later proofs when p = 3 and p = 5.
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Theorem 3.2. The Riemann zeta function at odd integers 4k+1 other than unity
can be written in terms of Lambert series at q = e−2π and e−4π as :

ζ(4k + 1) = (2π)4k+1
k

∑

j=0

(−1)j+1bjk B2jB4k+2−2j

(2j)!(4k + 2− 2j)!

− 2ak + 4

ak
Le−2π(−4k − 1) +

4

ak
Le−4π (−4k − 1),

where

ak = 24k+1 − (−1)k22k − 1,

bjk =
22j−1

[

1 + (1 + i)4k+1−2j
]

− 24k+1−2j
[

1 + (1 + i)2j−1
]

ak
.

Proof. Applying Theorem2.1(3) at t = 1
2 gives

(3.1)

22kLe−π(−4k − 1)− 1

22k
Le−4π (−4k − 1)

= − (2π)4k+1
k

∑

j=0

(−1)j+1B2jB4k+2−2j sinh(log 2
2k+1−2j)

(2j)! (4k + 2− 2j)!

− ζ(4k + 1) sinh(log 22k).

Applying Theorem2.1(3) at t = 1
2 − i

2 = 1/(1 + i) gives

(3.2)

(1 + i)2kL−e−π(−4k − 1, 1)− 1

(1 + i)2k
Le−2π(−4k − 1)

=− (2π)4k+1
k
∑

j=0

(−1)j+1B2jB4k+2−2j sinh[log(1 + i)2k+1−2j ]

(2j)! (4k + 2− 2j)!

− ζ(4k + 1) sinh[log(1 + i)2k].

Applying Lemma 3.1 at q = e−2π with p = 2 gives

(3.3)
L−e−π(−4k − 1) + Le−π(−4k − 1)

= (2−4k + 2)Le−2π(−4k − 1)− 2−4k
Le−4π (−4k − 1).

Eliminating L−e−π(−4k − 1) and Le−π(−4k − 1) from Equations (3.1), (3.2), and
(3.3) and solving for ζ(4k + 1) in terms of Le−2π (−4k − 1) and Le−4π(−4k − 1)
completes the proof of the theorem. �

Theorem 3.3. The Riemann zeta function at odd integers 4k+1 other than unity
can be written in terms of Lambert series at q = −e−3π, e−4π, and e−6π as :

ζ(4k + 1) =
(2π)4k+1

2bk

k
∑

j=0

(−1)j+1cjk B2jB4k+2−2j

(2j)!(4k + 2− 2j)!
+

(−1)k22k+1

bk
L−e−3π(−4k − 1)

− ak
24k−1bk

Le−4π (−4k − 1) +
22k

22k−1bk
Le−6π(−4k − 1)
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where

ak =
24k

(

34k+1 + 1
)

24k+1 − (−1)k22k + 1
,

bk =
34k+1 − 1

2
− (−1)k 22k − ak

[

24k+1 − (−1)k22k − 1

24k+1

]

,

cjk = 32j−1
1

∑

n=−1

(1 + in)4k+1−2j − 34k+1−2j
1

∑

n=−1

(1 + in)2j−1

− ak

[

1 + (1 + i)4k+1−2j

24k+1−2j
− 1 + (1 + i)2j−1

22j−1

]

.

Remark This formula converges at about 4.09 digits for each additional term in the
Lambert series. The first few examples of this theorem are listed in the Appendix.
If needed, the Lambert series at q = −e−3π can be replaced by Lambert series at
positive only q values using Lemma 3.1 at q = e−6π with p = 2,

L−e−3π (−4k − 1) =− Le−3π (−4k − 1) + (2−4k + 2)Le−6π(−4k − 1)

− 2−4k
Le−12π(−4k − 1).

However, the result as stated in the theorem is more compact and has the same rate
of convergence as the one with positive q values. Similar replacement for Lambert
series at negative q values can be made in Theorems 3.4 and 4.3 as well.

Proof. The proof is a generalization of the proof of Theorem3.2 to the p = 3 case.
Applying Theorem2.1(3) at t = 1

3 and t = 1
3 ± i

3 yields three equations involving
L

e
− 2π

3
(−4k− 1), L

e
− 2π

3
± 2πi

3
(−4k− 1), and ζ(4k+1) in terms of L−e−3π (−4k− 1),

and Le−6π (−4k − 1). Applying Lemma3.1 at q = e−2π with p = 3 gives

1
∑

n=−1

L
e
− 2π

3
+i 2πn

3
(−4k − 1) = (3−4k + 3)Le−2π (−4k − 1)− 3−4k

Le−6π(−4k − 1).

Theorem3.2 supplies the fifth equation that relates Le−2π(−4k−1) to Le−4π (−4k−
1) and ζ(4k + 1).

Using these five equations to eliminate L
e
− 2π

3
(−4k−1), L

e
− 2π

3
± 2πi

3
(−4k−1), and

Le−2π(−4k−1) and solving for ζ(4k+1) in terms of L−e−3π (−4k−1), Le−4π(−4k−
1), and Le−6π(−4k − 1) completes the proof of the theorem. �

Theorem 3.4. The Riemann zeta function at odd integers 4k+1 other than unity
can be written in terms of Lambert series at q = e−4π, −e−5π, and e−10π as :

ζ(4k + 1) =
(2π)4k+1

2bk

k
∑

j=0

(−1)j+1cjk B2jB4k+2−2j

(2j)!(4k + 2− 2j)!
− 1

24k−1bk
Le−4π (−4k − 1)

+
(−1)k22k+1ak

bk
L−e−5π(−4k − 1) +

2ak
bk

Le−10π (−4k − 1),
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where

ak =
24k+1 − (−1)k22k + 1

24k
[

54k+1 − 2× 52k cos(4k tan−1 2) + 1
] ,

bk =
ak
2

[

54k+1 −
2

∑

n=−2

(1 + in)4k
]

− 24k+1 − (−1)k22k − 1

24k+1
,

cjk = ak

[

52j−1
2

∑

n=−2

(1 + in)4k+1−2j − 54k+1−2j
2

∑

n=−2

(1 + in)2j−1

]

−
[

1 + (1 + i)4k+1−2j

24k+1−2j
− 1 + (1 + i)2j−1

22j−1

]

.

Remark This formula has a convergence rate of about 5.45 digits per term and is
our best result for ζ(4k + 1). The first few examples of this theorem are listed in
the Appendix.

Proof. The proof of this theorem is very similar to that of Theorem3.3. Theo-
rem2.1(3) is now applied at t = 1

5 ,
1
5 ± i

5 , and
1
5 ± 2i

5 and Lemma 3.1 is applied at

q = e−2π with p = 5 instead of p = 3. Rest of the logic remains the same. �

4. Additional formulae for ζ(4k + 1)

In the previous section we provided formulae for ζ(4k + 1) in terms of Lambert
series at q values of the form e−2npπ where p was a prime equal to 2, 3, or 5 and n
was 0, 1, or 2. In this section we provide an additional class of formulae for ζ(4k+1)

using Lambert series with q values of the form e−2n
√
mπ where m is equal to 3, 7,

or 15 and n is 0, 1, or 2.
First we state the following two lemmas on which the theorems in this section

are based. Both lemmas combine two Lambert series to produce a series with a
stronger convergence rate per term.

Lemma 4.1. For any s ∈ C the Lambert series at x = 1 satisfies :

Li
√
q(s) + L−i

√
q(s) = −(2s+1+ 2)Lq(s) + (22s+2+ 3× 2s+1+ 4)Lq2(s)

− (22s+2+ 2s+2)Lq4(s).

Proof. Applying Lemma3.1 at p = 2 and replacing q with −q gives

(4.1) Li
√
q(s) + L−i

√
q(s) = (2s+1 + 2)L−q(s)− 2s+1

Lq2(s).

Now using Lemma3.1 at p = 2 and replacing q with q2 gives

(4.2) Lq(s) + L−q(s) = (2s+1 + 2)Lq2(s)− 2s+1
Lq4(s).

Solving for L−q(s) in the second equation and replacing it in the first equation
above completes the proof. �

Lemma 4.2. For any s ∈ C the Lambert series at x = 1 satisfies :

Sq(s) ≡ i
[

Li
√
q(s)− L−i

√
q(s)

]

=
∞
∑

n=0

(−1)n+1(2n+ 1)ssech
[

(n+ 1
2 ) log q

]

.
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Proof.

Liq(s)− L−iq(s) =

∞
∑

n=1

ns(iq)n

1− (iq)n
−

∞
∑

n=1

ns(−iq)n

1− (−iq)n

=

∞
∑

m=0

(2m+ 1)s(iq)2m+1

1− (iq)2m+1
−

∞
∑

m=0

(2m+ 1)s(−iq)2m+1

1− (−iq)2m+1

=

∞
∑

m=0

2(2m+ 1)s(iq)2m+1

1− (iq)4m+2

= −2i

∞
∑

m=0

(−1)m+1(2m+ 1)sq2m+1

1 + q4m+2

= −i

∞
∑

m=0

(−1)m+1(2m+ 1)ssech[(2m+ 1) log q] .

Replacing q with
√
q and multiplying by i on both sides completes the proof. �

Now we state the three formulae for ζ(4k + 1) in increasing order of their con-
vergence rates in the form of the following theorems.

Theorem 4.3. The Riemann zeta function at odd integers 4k+1 other than unity

can be written in terms of the Lambert series at q = −e−
√
3π as :

ζ(4k + 1) = (2π)4k+1
k

∑

j=0

(−1)jbjk B2jB4k+2−2j

(2j)!(4k + 2− 2j)!
− akL−e−

√
3π(−4k − 1)

where

ak =
24k+1 + 1

24k − cos
(

2πk
3

) ,

bjk =
22j−1 sin

[ (2k−1−j)π
3

]

+ 24k+1−2j sin
[ (j+1)π

3

]

24k − cos
(

2πk
3

) .

Proof. Substituting t = (
√
3±i)/2 in Theorem2.1(3) and adding gives one equation

in L−e−
√

3π(−4k−1) and ζ(4k+1). Solving for ζ(4k+1) yields the final result. �

Theorem 4.4. The Riemann zeta function at odd integers 4k+1 other than unity

can be written in terms of the Lambert series at q = e−
√
7π, e−2

√
7π, and e−4

√
7π

as :

ζ(4k + 1) = (2π)4k+1
k

∑

j=0

(−1)jcjk B2jB4k+2−2j

(2j)!(4k + 2− 2j)!
+ akLe−

√
7π(−4k − 1)

+ bkLe−2
√

7π (−4k − 1) + 2−4kakLe−4
√

7π(−4k − 1),

where

ak =
2 + 2−4k − 2−2k+1 cos(4kθ)

1− 2−2k cos(4kθ)
,

bk = −4 + 3× 2−4k + 2−8k − 2−2k+2 cos(4kθ)− 2−6k+1 cos(4kθ)

1− 2−2k cos(4kθ)
,

cjk =
22k+

1
2
−j cos[(2j − 1)θ]− 2j−

1
2 cos[(4k + 1− 2j)θ]

22k − cos(4kθ)
,
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and θ = cot−1
√
7.

Proof. Substituting t = (
√
7 ± i)/4 in Theorem2.1(3) and adding gives one equa-

tion in L±ie−
√

7π/2(−4k − 1), L−e−
√

7π(−4k − 1), and ζ(4k + 1). Eliminating

the sum of L±ie−
√

7π/2(−4k − 1) using Lemma 4.1 at q = e−
√
7π, and eliminat-

ing L−e−
√

7π(−4k − 1) using Lemma 3.1 for p = 2 at q = e−2
√
7π yields the final

result. �

Theorem 4.5. The Riemann zeta function at odd integers 4k+1 other than unity

can be written in terms of the Lambert series at q = e−
√
15π, e−2

√
15π, and e−4

√
15π,

and the series S
e−

√
15π(−4k − 1) as :

ζ(4k + 1) = (2π)4k+1
k

∑

j=0

(−1)jcjk B2jB4k+2−2j

(2j)!(4k + 2− 2j)!
+ cot(2kθ)Se−

√
15π(−4k − 1)

+
(

2−4k + 2
)

L
e−

√
15π(−4k − 1)

−
(

2−8k + 3× 2−4k + 4
)

L
e−2

√
15π(−4k − 1)

+
(

2−8k + 2−4k+1
)

L
e−4

√
15π (−4k − 1),

where

cjk = csc(2kθ) sin[(2k+1−2j) θ],

and θ = cot−1
√
15.

Remark This result converges almost as rapidly as Theorem3.4 at 5.28 decimal
digits per term. Some examples of this theorem are listed in the Appendix.

Proof. Substituting t = (
√
15± i)/4 in Theorem2.1(3) and adding gives one equa-

tion containing both the sum and difference of L±ie−
√

15π/2(−4k−1), and ζ(4k+1).

Eliminating the sum of L±ie−
√

15π/2(−4k− 1) using Lemma 4.1 at q = e−
√
15π, and

eliminating the difference of L±ie−
√

15π/2(−4k− 1) using Lemma 4.2 at q = e−
√
15π

yields the final result. �

5. Formulae for ζ(4k − 1)

The methods of Section 4 are mirrored with minor variations to produce similar
results for ζ(4k − 1) stated in terms of the three theorems below.

Theorem 5.1. The Riemann zeta function at odd integers 4k − 1 can be written

in terms of Lambert series at q = e−
√
3π, e−2

√
3π, and e−4

√
3π as :

ζ(4k − 1) = (2π)4k−1
k

∑

j=0

(−1)j+1bjk B2jB4k−2j

(2j)!(4k − 2j)!
− 24k+1 + 4

ak
L

e−
√

3π(−4k + 1)

− 24k+2 + 2−4k+4 + 12 + 8 cos
[ (2k−1)π

3

]

ak
L

e−2
√

3π(−4k + 1)

+
2−4k+4 + 8

ak
L

e−4
√

3π(−4k + 1),
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where
ak = 24k+ 4 sin

[ (4k+1)π
6

]

,

bjk =
24k+1−2j cos

[ (2j−1)π
6

]

+ 22j+1 cos
[ (4k−1−2j)π

6

]

ak(1 + δjk)
.

Proof. Substituting t = (
√
3± i)/4 in Theorem2.1(2) and adding the results gives

one equation in L±ie−
√

3π/2(−4k+1), L
e−2

√
3π (−4k+1), and ζ(4k−1). Eliminating

eliminating L±ie−
√

3π/2(−4k+1) in favor of L−e−
√

3π(−4k+1), L
e−2

√
3π (−4k+1),

and L
e−4

√
3π(−4k + 1) using Lemma 3.1 for p = 2 at q = e−2

√
3π yields the final

result. �

Theorem 5.2. The Riemann zeta function at odd integers 4k − 1 can be written

in terms of Lambert series at q = e−
√
7π, e−2

√
7π, and e−4

√
7π as :

ζ(4k − 1) = (2π)4k−1
k
∑

j=0

(−1)j+1cjk B2jB4k−2j

(2j)!(4k − 2j)!
+

bk
ak

L
e−

√
7π (−4k + 1)

− (2−4k+2 + 2) bk − 2−2k+2

ak
L

e−2
√

7π (−4k + 1)

+
2−4k+2bk

ak
L

e−4
√

7π(−4k + 1),

where
ak = 22k + 2 cos[(4k−2) θ],

bk = 22k+1 + 2−2k+2 + 2
3
2 sin[(4k+1) θ] + 2 cos(4kθ),

cjk =
22k+

1
2
−j cos[(2j−1) θ] + 2j+

1
2 cos[(4k−1−2j) θ]

ak(1 + δjk)
,

and θ = cot−1
√
7.

Remark This formula for ζ(4k − 1) has a convergence rate of about 3.6 decimal
digits per term which is about 0.9 decimal digits per term faster than that of
Corollary2.2. Some examples of this theorem are listed in the Appendix.

Proof. Substituting t = (
√
7± i)/4 in Theorem2.1(2) and adding the results gives

one equation in L±ie−
√

7π/2(−4k+1), L−e−
√

7π(−4k+1), and ζ(4k−1). Eliminating

the sum of L±ie−
√

7π/2(−4k + 1) using Lemma 4.1 at q = e−
√
7π, and eliminating

L−e−
√

7π (−4k + 1) using Lemma3.1 for p = 2 at q = e−2
√
7π yields the final

result. �

Theorem 5.3. The Riemann zeta function at odd integers 4k − 1 can be written

in terms of Lambert series at q = e−
√
15π, e−2

√
15π, and e−4

√
15π, and the series

S
e−

√
15π (−4k + 1) as :

ζ(4k − 1) = (2π)4k−1
k

∑

j=0

(−1)j+1cjk B2jB4k−2j

(2j)!(4k − 2j)!
+ ak Se−

√
15π(−4k + 1)

+
(

2−4k+2 + 2
)

bkLe−
√

15π(−4k + 1)

−
(

2−8k+4 + 3× 2−4k+2 + 4
)

bkLe−2
√

15π(−4k + 1)

+
(

2−8k+4 + 2−4k+3
)

bkLe−4
√

15π(−4k + 1),
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where

ak =
cos[(4k − 1)θ]− 2 sin(4kθ)

4 cos2[(2k − 1)θ]
,

bk =
2 + 2 cos(4kθ) + sin[(4k − 1)θ]

4 cos2[(2k − 1)θ]
,

cjk =
cos[(2k − 2j)θ]

(1 + δjk) cos[(2k − 1)θ]
,

and θ = cot−1
√
15.

Remark This formula has a convergence rate of about 5.28 decimal digits per term
which is the best of our results for ζ(4k − 1). Some examples of this theorem are
listed in the Appendix.

Proof. Substituting t = (
√
15± i)/4 in Theorem2.1(2) and adding the results gives

one equation containing both the sum and difference of L±ie−
√

15π/2(−4k + 1),

and ζ(4k − 1). Eliminating the sum of L±ie−
√

15π/2(−4k + 1) using Lemma 4.1 at

q = e−
√
15π, and eliminating the difference of L±ie−

√
15π/2(−4k+1) using Lemma4.2

at q = e−
√
15π yields the final result. �

6. Additional results for the Lambert series

Some other interesting results can be arrived at through the manipulation of
results in the earlier sections. For example, from Theorem2.1 we get

Theorem 6.1. For any constant a with Re(a) > 0, the Lambert series Lq(s) at
negative odd integers s satisfies the following:

(1) For s = −(4k + 1) = -1, -5, -9, . . . ,

1

t2k

[

a2kL
e
− 2πt

a
(−4k − 1)− (a2k + a−2k)Le−2πt(−4k − 1)

+ a−2k
Le−2πat(−4k − 1)

]

−t2k
[

a2kL
e
− 2π

at
(−4k − 1)− (a2k + a−2k)L

e
− 2π

t
(−4k − 1)

+ a−2k
L

e
− 2πa

t
(−4k − 1)

]

=(2π)4k+1
k

∑

j=0

(−1)j+1bjk(a)B2jB4k+2−2j sinh[(2k + 1− 2j) log t]

(2j)! (4k + 2− 2j)!
.

(2) For s = −(4k − 1) = -3, -7, -11, . . . ,

1

t2k−1

[

a2k−1
L

e
− 2πt

a
(−4k + 1)− (a2k−1 + a−2k+1)Le−2πt(−4k + 1)

+ a−2k+1
Le−2πat(−4k + 1)

]

+ t2k−1
[

a2k−1
L

e
− 2π

at
(−4k + 1)− (a2k−1 + a−2k+1)L

e
− 2π

t
(−4k + 1)

+ a−2k+1
L

e
− 2πa

t
(−4k + 1)

]

=(2π)4k−1
k

∑

j=0

(−1)jcjk(a)B2jB4k−2j cosh[(2k − 2j) log t]

(2j)! (4k − 2j)!
,
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where

bjk(a) = a2k + a−2k − a2k+1−2j − a−2k−1+2j ,

and

cjk(a) =
a2k−1 + a−2k+1 − a2k−2j − a−2k+2j

(1 + δjk)
.

Proof. The proof follows from making the substitutions t → at and t → t/a in
Theorem2.1 and then combining them with the original result in Theorem2.1 in
the manner stated in the theorem above. The term containing the zeta function at
odd arguments, ζ(4k ± 1), is eliminated. The special case of s = −1 is included as
the k = 0 case in s = −(4k + 1). The log t term is eliminated in this case. �

As examples of Theorem6.1, odd powers of π can be calculated in terms of the
Lambert series at desired q values as stated below.

Example By choosing t = 1
2 ± i

2 and a = 1
2 in Theorem6.1(1), eliminating

L−e−π(−4k − 1) using Lemma3.1 at q = e−π and p = 2, and eliminating the
sum L

ie
− π

2
(−4k − 1) + L−ie

− π
2
(−4k − 1) using Lemma 4.1 we get

π = 72Le−π(−1)− 96Le−2π(−1) + 24Le−4π(−1),

π5 = 7056Le−π(−5)− 6993Le−2π(−5)− 63Le−4π(−5),

π9 =
28226880

41
Le−π(−9)− 112920885

164
Le−2π(−9) +

13365

164
Le−4π (−9).

Example By choosing t = 1 and a = 1
2 in Theorem6.1(2) we get

π3 = 720Le−π(−3)− 900Le−2π(−3) + 180Le−4π(−3),

π7 =
907200

13
Le−π (−7)− 70875Le−2π(−7) +

14175

13
Le−4π (−7),

π11=
27243216000

4009
Le−π(−11)− 218158565625

32072
Le−2π(−11)+

212837625

32072
Le−4π(−11).

Remark The results for the odd powers of π in the two examples above agree with
those listed by Plouffe [7].

Proposition 6.2. The results of Theorems 3.3 and 3.4 can be combined to produce
faster converging series for π4k+1 (than in the example above) in terms of the
Lambert series at q = −e−3π, e−4π,−e−5π, e−6π, and e−10π. For example,

π5 = −3686634L−e−3π(−5) + 2463048Le−4π(−5) + 402570L−e−5π(−5)

+
1843317

2
Le−6π(−5)− 201285

2
Le−10π (−5).

Remark Combining Theorems 3.4 and 4.5 gives the fastest converging, but not
the cleanest, result for π4k+1.

Similarly,

Proposition 6.3. The results of Corollary 2.2 and Theorem 5.2 can be combined to
produce a faster converging series for π4k−1 (than in the example above) in terms
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of the Lambert series at q = e−2π, e−
√
7π, e−2

√
7π, and e−4

√
7π. For example,

π3 =
3960

77− 29
√
7

Le−2π (−3) +
4320

77− 29
√
7

L
e−

√
7π(−3)

− 9360

77− 29
√
7

L
e−2

√
7π (−3) +

1080

77− 29
√
7

L
e−4

√
7π(−3).

Remark Combining the results of Theorems 5.2 and 5.3 gives the fastest converg-
ing result for π4k−1.

Proposition 6.4. By using the methods outlined in Section 3 but with s = −1 we
can calculate the logarithm of the first three primes in terms of the Lambert series :

log 2 =
2π

9
− 8

3
Le−2π (−1) +

8

3
Le−4π (−1),

log 3 =
19π

54
− 32

9
Le−2π (−1) +

4

3
L−e−3π (−1) +

8

9
Le−4π(−1) +

16

3
Le−6π (−1),

log 5 =
37π

72
− 8

3
Le−2π(−1) +

2

3
Le−4π (−1) + L−e−5π(−1) + Le−10π (−1).
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Appendix
We list examples of the first few ζ(4k + 1) generated by Theorem3.3. For com-

pactness only the coefficients are listed respectively for π4k+1, L−e−3π (−4k − 1),
Le−4π(−4k − 1), and Le−6π (−4k − 1).

ζ(5) =

[

682

201285
,−296

355
,−488

355
,
74

355

]

ζ(9) =

[

5048

150155775
,
2272

1605
,−5624

1605
,
142

1605

]

ζ(13) =

[

21462388

62314387009875
,−1056896

2114515
,−3188648

2114515
,

16514

2114515

]

ζ(17) =

[

12292037116

3476479836810605625
,
66978304

95520195
,−258280328

95520195
,

261634

95520195

]

ζ(21) =

[

203055579851796692

5594631411704844933908859375
,− 4297066496

12606788275
,−20920706408

12606788275
,

4196354

12606788275

]

ζ(25) =

[

91295430825021344

245007095801727658882798940625
,
274844360704

709832878755
,−1694577218888

709832878755
,

67100674

709832878755

]

Examples of the first few ζ(4k+1) generated by Theorem3.4. The coefficients are
listed respectively for π4k+1, Le−4π (−4k−1), L−e−5π(−4k−1), and Le−10π(−4k−1).
The result for ζ(5) matches that of Plouffe [7] when converted to positive q values.

ζ(5) =

[

694

204813
,−6280

3251
,− 296

3251
,

74

3251

]

ζ(9) =

[

6118928

182032863705
,−3908360

1945731
,

15904

1945731
,

994

1945731

]

ζ(13) =

[

4131911428

11996181573401025
,−2441359240

1221199811
,− 1056896

1221199811
,

16514

1221199811

]

ζ(17) =

[

687182059214356

194362869568557017703375
,−1525878246920

762905503491
,

66978304

762905503491
,

261634

762905503491

]

ζ(21) =

[

2560199089127112465412

70537137132904905751999929343125
,−953674355019400

476839323944771
,

− 4297066496

476839323944771
,

4196354

476839323944771

]

ζ(25) =

[

114987316346581920808496

308598430935986470640664020644801875
,−596046447625404680

298023086356971651
,

274844360704

298023086356971651
,

67100674

298023086356971651

]
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Examples of the first few ζ(4k+1) generated by Theorem4.4. The coefficients are
listed respectively for π4k+1, L

e−
√

7π(−4k−1), L
e−2

√
7π(−4k−1), L

e−4
√

7π(−4k−1).

ζ(5) =

[

5

558
√
7
,
64

31
,−130

31
,
4

31

]

ζ(9) =

[

6451

72571950
√
7
,
1088

543
,−8713

2172
,

17

2172

]

ζ(13) =

[

684521

751529653875
√
7
,
16480

8239
,−4219139

1054592
,

515

1054592

]

ζ(17) =

[

7556214529

808189287857201250
√
7
,
261248

130623
,−267518969

66878976
,

2041

66878976

]

ζ(21) =

[

11042228011

115045098786113871375
√
7
,
4191904

2095951
,−274720686005

68680122368
,

130997

68680122368

]

ζ(25) =

[

93518263081637

94909028455546692340078125
√
7
,
67120832

33560415
,−35190647292091

8797661429760
,

1048763

8797661429760

]

Examples of the first few ζ(4k+1) generated by Theorem4.5. The coefficients are
listed respectively for π4k+1, S

e−
√

15π(−4k−1), L
e−

√
15π(−4k−1), L

e−2
√

15π(−4k−1),
L

e−4
√

15π(−4k − 1).

ζ(5) =

[

5

378
√
15

,
7√
15

,
33

16
,−1073

256
,
33

256

]

ζ(9) =

[

19

145530
√
15

,
17

7
√
15

,
513

256
,−262913

65536
,

513

65536

]

ζ(13) =

[

5623

4214184975
√
15

,
7

33
√
15

,
8193

4096
,−67121153

16777216
,

8193

16777216

]

ζ(17) =

[

152161

11136941565750
√
15

,− 223

119
√
15

,
131073

65536
,−17180065793

4294967296
,

131073

4294967296

]

ζ(21) =

[

2100413011

15039186678619228125
√
15

,− 1673

305
√
15

,
2097153

1048576
,−4398049656833

1099511627776
,

2097153

1099511627776

]

ζ(25) =

[

368670553

266533834992158608875
√
15

,− 8143

231
√
15

,
33554433

16777216
,

−1125899957174273

281474976710656
,

33554433

281474976710656

]

ζ(29) =

[

276635171660523838

18471447539635216765490460984375
√
15

,
30233

3263
√
15

,
536870913

268435456
,

−288230376957018113

72057594037927936
,

536870913

72057594037927936

]
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Examples of the first few ζ(4k−1) generated by Theorem5.2. The coefficients are
listed respectively for π4k−1, L

e−
√

7π(−4k+1), L
e−2

√
7π(−4k+1), L

e−4
√

7π (−4k+1).

ζ(3) =

[

29
√
7

1980
,
24

11
,−52

11
,
6

11

]

ζ(7) =

[

851

963900
√
7
,
240

119
,−1927

476
,
15

476

]

ζ(11) =

[

98983

11006745750
√
7
,
3984

1991
,−510073

127424
,

249

127424

]

ζ(15) =

[

120891949

1310075958262500
√
7
,
65712

32855
,−26916047

6728704
,

4107

33643520

]

ζ(19) =

[

304799492533

321754984333646613750
√
7
,
1050576

525287
,−34425307261

8606302208
,

65661

8606302208

]

ζ(23) =

[

3069248396337203

315604617827322095616093750
√
7
,
16776432

8388215
,−1759136500931

439784046592
,

1048527

2198920232960

]

Examples of the first few ζ(4k−1) generated by Theorem5.3. The coefficients are
listed respectively for π4k−1, S

e−
√

15π(−4k+1), L
e−

√
15π(−4k+1), L

e−2
√

15π(−4k+1),
L

e−4
√

15π(−4k + 1).

ζ(3) =

[√
15

100
,− 1√

15
,
9

4
,−77

16
,
9

16

]

ζ(7) =

[

73

56700
√
15

,− 11

3
√
15

,
129

64
,−16577

4096
,
129

4096

]

ζ(11) =

[

82889

6385128750
√
15

,− 61

5
√
15

,
2049

1024
,−4197377

1048576
,

2049

1048576

]

ζ(15) =

[

3103

17239847625
√
15

,− 11

3
√
15

,
32769

16384
,−1073790977

268435456
,

32769

268435456

]

ζ(19) =

[

269130227

192947512626618750
√
15

,
781

171
√
15

,
524289

262144
,−274878693377

68719476736
,

524289

68719476736

]

ζ(23) =

[

247753871371

17365083188883060881250
√
15

,
1451

989
√
15

,
8388609

4194304
,−70368756760577

17592186044416
,

8388609

17592186044416

]
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