Series representations for π^{3} involving the golden ratio

Jean-Christophe Pain
CEA, DAM, DIF, F-91297 Arpajon, France
Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, 91680 Bruyères-le-Châtel, France

July 1, 2022

Abstract

Although many series exist for π and π^{2}, very few are known for π^{3}. In this article, we derive, using a trigonometric identity obtained by Euler, two representations of π^{3} involving infinite sums and the golden ratio. The methodology can be generalized in order to obtain further series, relating by the way π^{3} to other mathematical constants.

1 Introduction

Many series exist for π and π^{2} [1]3. However, there are only very few published expressions for π^{3}. Besides the understanding of such a scarcity from the mathematical point of view and the derivation of summations in order to point out connections between mathematical constants, π^{3} is encountered in physics for instance in the expression of the equivalent of the effective area (used for electromagnetic antennas) for gravitational-wave antennas, which is a measure of the antenna's ability to gather energy from the incident wave [4,5]. In Ref. [6], Sun mentions that the only well-known series for π^{3} is the following one

$$
\begin{equation*}
\pi^{3}=32 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{3}} \tag{1}
\end{equation*}
$$

and in 2010 [7], the same author suggested that

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{\binom{2 k}{k}}{(2 k+1)^{3} 16^{k}}=\frac{7 \pi^{3}}{216}, \tag{2}
\end{equation*}
$$

which was proven later [8]. In the latter paper, Pilehrood and Pilehrood obtained the following Apéry-like series:

$$
\begin{equation*}
\pi^{3}=32 \sum_{k=0}^{\infty} \frac{\binom{2 k}{k}}{16^{k}(2 k+1)^{3}}-24 \sum_{k=0}^{\infty} \frac{\binom{2 k}{k}}{16^{k}(2 k+1)} \sum_{m=0}^{2 k-1} \frac{1}{(2 m+1)^{2}} . \tag{3}
\end{equation*}
$$

In the above mentioned article [6], Sun derived the following expression

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{2^{k} H_{k-1}^{(2)}}{k\binom{k k}{k}}=\frac{\pi^{3}}{48} \tag{4}
\end{equation*}
$$

where $H_{n}^{(2)}$ denotes, for $n \in \mathbb{N}^{*}$, the Harmonic number

$$
\begin{equation*}
H_{n}^{(2)}=\sum_{k=1}^{n} \frac{1}{k^{2}} . \tag{5}
\end{equation*}
$$

Gupta published new series representations of π, π^{3} and π^{5} in terms of Euler numbers and π^{2}, π^{4} and π^{6} in terms of Bernoulli numbers [9]. He found the following relation

$$
\begin{equation*}
\pi^{3}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)^{3}\left(2^{2 k+2}-1\right)} 2^{2 k+4}(2 k+3)!\sum_{j=0}^{k}\left[-\frac{1}{(2 n-1)^{2} \pi^{2}}\right]^{j} \frac{1}{(2 k-2 j+1)!} \tag{6}
\end{equation*}
$$

where j, k are integers and ≥ 0. Following his success in discovering a new formula for π, Simon Plouffe [10-12] postulated several identities which relate either π^{m} or $\zeta(m)$ to three infinite series. Letting

$$
\begin{equation*}
S_{n}(r)=\sum_{k=1}^{\infty} \frac{1}{k^{n}\left(e^{\pi r k}-1\right)}, \tag{7}
\end{equation*}
$$

the first two examples are

$$
\begin{gather*}
\pi=72 S_{1}(1)-96 S_{1}(2)+24 S_{1}(4) \tag{8}\\
\pi^{3}=720 S_{3}(1)-900 S_{3}(2)+180 S_{3}(4) . \tag{9}
\end{gather*}
$$

In the present work, we show that using a trigonometric series obtained by Euler and involving the functions $x \longmapsto \cot x$ as well as $x \longmapsto \operatorname{cosec} x=1 / \sin x$, it is possible to derive series expansions for π^{3}. We present two of them which are of particular interest since they involve the golden ratio.

2 New series for π^{3} involving the golden ratio

In the book by Borwein and Borwein [1], the following formula, due to Euler

$$
\begin{equation*}
\pi^{3}\left[\cot (\pi x) \operatorname{cosec}^{2}(\pi x)\right]=\sum_{n=-\infty}^{\infty} \frac{1}{(x-n)^{3}} \tag{10}
\end{equation*}
$$

is presented (13.b, p. 382). It can be used to derive series expansions for π^{3}. In particular, for $x=1 / 5$ or $x=1 / 10$ for instance, it is possible to obtain expressions of π^{3} as series multiplied by a coefficient involving the golden ratio. Indeed, let us consider first the case $x=1 / 5$. One has

$$
\begin{equation*}
\cos \left(\frac{\pi}{5}\right)=\frac{\phi}{2} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \left(\frac{\pi}{5}\right)=\sqrt{\frac{5-\sqrt{5}}{8}} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi=\frac{1+\sqrt{5}}{2} \tag{13}
\end{equation*}
$$

is the golden ratio. One thus has

$$
\begin{equation*}
\cot \left(\frac{\pi}{5}\right)=\frac{\sqrt{2} \phi}{\sqrt{5-\sqrt{5}}}=\frac{\phi}{\sqrt{3-\phi}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{cosec}\left(\frac{\pi}{5}\right)=\frac{2 \sqrt{2}}{\sqrt{5-\sqrt{5}}}=\frac{2}{\sqrt{3-\phi}} \tag{15}
\end{equation*}
$$

Therefore, using Eq. (10) for $x=1 / 5$ yields

$$
\begin{equation*}
\pi^{3}=\frac{125}{4} \frac{(3-\phi)^{3 / 2}}{\phi} \sum_{n=-\infty}^{\infty} \frac{1}{(1-5 n)^{3}} . \tag{16}
\end{equation*}
$$

In the same way, setting $x=1 / 10$, a similar expansion can be deduced. One has indeed

$$
\begin{equation*}
\cos \left(\frac{\pi}{10}\right)=\frac{\sqrt{10+2 \sqrt{5}}}{4}=\frac{\sqrt{2+\phi}}{2} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \left(\frac{\pi}{10}\right)=\frac{1}{2 \phi} \tag{18}
\end{equation*}
$$

yielding

$$
\begin{equation*}
\cot \left(\frac{\pi}{10}\right)=\phi \sqrt{2+\phi} \tag{19}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\operatorname{cosec}\left(\frac{\pi}{10}\right)=2 \phi \tag{20}
\end{equation*}
$$

giving finally the expansion

$$
\begin{equation*}
\pi^{3}=\frac{250}{\phi^{3} \sqrt{2+\phi}} \sum_{n=-\infty}^{\infty} \frac{1}{(1-10 n)^{3}} \tag{21}
\end{equation*}
$$

Additional expressions can of course be obtained for other values of x, but only a few of them will only involve the golden ratio. As an example, using $x=\pi / 15$, one has

$$
\begin{equation*}
\cos \left(\frac{\pi}{15}\right)=\frac{1}{8}(\sqrt{30+6 \sqrt{5}}+\sqrt{5}-1) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin \left(\frac{\pi}{15}\right)=\frac{1}{16}(2 \sqrt{3}-2 \sqrt{15}+\sqrt{40+8 \sqrt{5}}) \tag{23}
\end{equation*}
$$

which unfortunately involves $\sqrt{3} \ldots$

[^0]
3 Conclusion

We proposed two representations of π^{3} involving infinite series and the golden ratio. Although the number of expressions of this type is probably rather limited, the technique can be easily applied to derive other series, relating π^{3} to other mathematical constants. It is worth mentioning that the third power of π finds applications in several fields of physics, such as gravitational-wave antennas, in the expression of the effective area.

References

[1] J. M. Borwein and P. B. Borwein, Pi and the AGM, John Wiley and Sons, New York, 1987.
[2] J.-C. Pain, A double series for π using Fourier series and the Grothendieck-Krivine constant (2022), https://arxiv.org/abs/2206.05610
[3] J.-C. Pain, Relations between π and the golden ratio ϕ in the form of Bailey-Borwein-Plouffe-type formulas (2022),
https://doi.org/10.48550/arxiv.2205.08617
[4] M. A. Lewis, Gravitational-wave versus electromagnetic-wave antennas, IEEE Antennas and Propagation Magazine 37, 26-31 (1995).
[5] C. A. Pickover, A passion for mathematics (John Wiley \& Sons, Inc., Hoboken, New Jersey, 2005).
[6] Zhi-Wei Sun, A new series for π^{3} and related crongruences, Int. J. Math. 26, 1550055 (2015).
[7] Z. W. Sun, Conjecture on a new series for π^{3}, A Message to Number Theory List (sent on March 31, 2010).
[8] K. H. Pilehrood and T. H. Pilehrood, Series acceleration formulas for beta values, Discrete Math. Theor. Comput. Sci. 12, 223-236 (2010).
[9] H. C. Gupta, New series representations of π, π^{3} and π^{5} in terms of Euler numbers and π^{2}, π^{4} and π^{6} in terms of Bernoulli numbers (2017),
https://arxiv.org/ftp/arxiv/papers/1710/1710.04083.pdf
[10] S. Plouffe, Identities inspired by Ramanujan notebooks (part 2), April 2006, http://www.plouffe.fr/simon/
[11] M. Chamberland and P. Lopatto, Formulas for odd Zeta values and powers of π, Journal of Integer Sequences 14, 236147 (2011).
[12] B. Berndt, Ramanujan Notebooks (volumes I to V), Springer Verlag, 1985 to now.

[^0]: ${ }^{1}$ For instance, using $x=1 / 4$, since $\cot (\pi / 4)=1$ and $\operatorname{cosec}(\pi / 4)=\sqrt{2}$, one gets $\pi^{3}=32 \sum_{n=-\infty}^{\infty} \frac{1}{(1-4 n)^{3}}$.

