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The Miraculous Bailey-Borwein-Plouffe Pi Algorithm

Steven Finch, Research and Development Team, MathSoft, Inc.

Overview: 10/1/95

David Bailey, Peter Borwein and Simon Plouffe have recently computed the ten billionth digit in the
hexadecimal expansion of pi. They utilized an astonishing formula:
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which enables one to calculate the dth digit of pi without being forced to calculate all the preceding d-1 digits.
No one had previously even conjectured that such a digit-extraction algorithm for pi was possible. Click here
to seethe origind CECM announcement and here to see a description for a non-technical audience. Bailey,
Borwein and Plouffe discovered their formula using the PSLQ lattice reduction algorithm.

We present here avery small verification of the digit-extraction result. Mathcad PLUS 6.0 was useful to us for
the purpose of a hasty check up to 1000 digits. A check of more digitsis ongoing. We wished to post our
work as rapidly as possible, believing that this incomplete work would be of interest to others.

The Mathcad PLUS 6.0 file plffel.mcd contains a dynamic, working version of our verification. If you have
6.0 and don't know how to view web-based Mathcad files, then you should read these instructions.

The following screenshot exhibits our verification algorithm (which, incidentally, we recognize isfar less
efficient than Bailey, Borwein and Plouffe's original algorithm).
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1000 digits of m, obtained fram an independent source:

3. 243 a85885a308d 31319522 el3707 344 9409352295151 d003
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d =30, 100... 1000
I d, 43
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Itistrivial to convert a hexadecimal expansion to abinary expansion. On the other hand, the following
guestion evidently remains unanswered. Do there exist polynomials a(n) and b(n) possessing integer
coefficients such that
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The just-released, historic Bailey-Borwein-Plouffe paper, CECM preprint P123: On the rapid computation of
various polylogarithmic constants starts where we have |eft off. Reading it, one gains the impression of an
emerging and deep theory of transcendental number computation. The untapped consequences of the
digit-extraction formula and others like it would appear to be rich and profound.

Postscript: 1/15/96

Victor Adamchik and Stan Wagon have recently published afascinating HTML paper Pi: A 2000-Y ear Search
Changes Direction. This paper presents many new formulas, including the following:
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for any real or complex valuer. Observe that this specializes to the original Bailey-Borwein-Plouffe formula
whenwesetr =0.

We refer the interested reader to the essay Archimedes constant for a detailed overview of pi facts and
formulas and to CECM preprint P130: The Quest for Pi. Plouffe has also compiled a Table of current records
for the computation of constants which gives the latest information on calculations such as these.

Postscript: 10/7/96

Fabrice Bellard has completed a computation of the 100 billionth hexadecimal digit of pi. Hereis his sci.math
posting, which interestingly appeared one year, amost to the day, after Bailey, Borwein and Plouffe's
announcement. Might the one trillionth hexadecimal digit of pi be known next year?

Postscript: 1/12/97

Simon Plouffe has discovered a new algorithm to compute the nth digit of pi and certain other mathematical
constantsin any base with very little memory. The price of such generality is speed: it isnot asfast asthe
Bailey-Borwein-Plouffe algorithm (but is comparable to other classical methods for computing pi). Hereisa
description of hiswork, along with Bellard's improvement.

Postscript: 2/28/97

Progress continues! Fabrice Bellard has discovered another miraculous formula which he estimates is 43%
faster than the Bailey-Borwein-Plouffe formula. A very simple proof is found here Another CECM resource
isalso now available: The Pi Pages

Postscript: 9/22/97

Fabrice Bellard has employed the Bailey-Borwein-Plouffe formulato compute the trillionth (1012t) binary
digit of pi. Hereis his e-message.
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