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Preface

[I]ntuition comes to us much earlier and with much less outside in-
fluence than formal arguments which we cannot really understand
unless we have reached a relatively high level of logical experience
and sophistication. . . . In the first place, the beginner must be con-
vinced that proofs deserve to be studied, that they have a purpose,
that they are interesting.

George Polya, Mathematical Discovery: On Understanding,
Learning and Teaching Problem Solving, 1968

The authors first met in 1985, when Bailey used the Borwein quartic algo-
rithm for π as part of a suite of tests on the new Cray-2 then being installed
at the NASA Ames Research Center in California. As our collaboration has
grown over the past 18 years, we have became more and more convinced of
the power of experimental techniques in mathematics. When we started our
collaboration, relatively few mathematicians employed computations in serious
research work. In fact, there appeared to be a widespread view in the field that
“real mathematicians don’t compute.” In the ensuing years, computer hard-
ware has skyrocketed in power and plummeted in cost, thanks to the remarkable
phenomenon of Moore’s Law. In addition, numerous powerful mathematical
software products, both commercial and noncommercial, have become available.
But just importantly, a new generation of mathematicians is eager to use these
tools, and consequently numerous new results are being discovered.

The experimental methodology described in this book, as well as in the second
volume of this work, Experimentation in Mathematics: Computational Paths
to Discovery [48], provides a compelling way to generate understanding and
insight; to generate and confirm or confront conjectures; and generally to make
mathematics more tangible, lively and fun for both the professional researcher
and the novice. Furthermore, the experimental approach helps broaden the
interdisciplinary nature of mathematical research: a chemist, physicist, engineer,
and a mathematician may not understand each others’ motivation or technical



ii

language, but they often share an underlying computational approach, usually
to the benefit of all parties involved.

Our views have been expressed well by Epstein and Levy in a 1995 article on
experiment and proof [88].

The English word “prove”—as its Old French and Latin ancestors—
has two basic meanings: to try or test, and to establish beyond doubt.
The first meaning is largely archaic, though it survives in technical
expressions (printer’s proofs) and adages (the exception proves the
rule, the proof of the pudding). That these two meanings could have
coexisted for so long may seem strange to us mathematicians today,
accustomed as we are to thinking of “proof” as an unambiguous
term. But it is in fact quite natural, because the most common way
to establish something in everyday life is to examine it, test it, probe
it, experiment with it.

As it turns out, much the same is true in mathematics as well. Most
mathematicians spend a lot of time thinking about and analyzing
particular examples. This motivates future development of theory
and gives one a deeper understanding of existing theory. Gauss de-
clared, and his notebooks attest to it, that his way of arriving at
mathematical truths was “through systematic experimentation.” It
is probably the case that most significant advances in mathemat-
ics have arisen from experimentation with examples. For instance,
the theory of dynamical systems arose from observations made on
the stars and planets and, more generally, from the study of physi-
cally motivated differential equations. A nice modern example is the
discovery of the tree structure of certain Julia sets by Douady and
Hubbard: this was first observed by looking at pictures produced by
computers and was then proved by formal arguments.

Our goal in these books is to present a variety of accessible examples of mod-
ern mathematics where intelligent computing plays a significant role (along with
a few examples showing the limitations of computing). We have concentrated
primarily on examples from analysis and number theory, as this is where we
have the most experience, but there are numerous excursions into other areas
of mathematics as well (see the Table of Contents). For the most part, we have
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contented ourselves with outlining reasons and exploring phenomena, leaving
a more detailed investigation to the reader. There is, however, a substantial
amount of new material, including numerous specific results that have not yet
appeared in the mathematical literature, as far as we are aware.

This work is divided into two volumes, each of which can stand by itself. This
volume, Mathematics by Experiment: Plausible Reasoning in the 21st Century,
presents the rationale and historical context of experimental mathematics, and
then presents a series of examples that exemplify the experimental methodology.
We include in this volume a reprint of an article co-authored by one of us that
complements this material. The second book, Experimentation in Mathematics:
Computational Paths to Discovery, continues with several chapters of additional
examples. Both volumes include a chapter on numerical techniques relevant to
experimental mathematics.

Each volume is targeted to a fairly broad cross-section of mathematically
trained readers. Most of this volume should be readable by anyone with solid
undergraduate coursework in mathematics. Most of the second volume should be
readable by persons with upper-division undergraduate or graduate-level course-
work. None of this material involves highly abstract or esoteric mathematics.

The subtitle of this volume is taken from George Polya’s well-known work,
Mathematics and Plausible Reasoning [166]. This two-volume work has been
enormously influential—if not uncontroversial—not only in the field of artificial
intelligence, but also in the mathematical education and pedagogy community.

Some programming experience is valuable to address the material in this
book. Readers with no computer programming experience are invited to try a
few of our examples using commercial software such as Mathematica and Maple.
Happily, much of the benefit of computational-experimental mathematics can
be obtained on any modern laptop or desktop computer—a major investment in
computing equipment and software is not required.

Each chapter concludes with a section of commentary and exercises. This
permits us to include material that relates to the general topic of the chapter,
but which does not fit nicely within the chapter exposition. This material is
not necessarily sorted by topic nor graded by difficulty, although some hints,
discussion and answers are given. This is because mathematics in the raw does
not announce, “I am solved using such and such a technique.” In most cases,
half the battle is to determine how to start and which tools to apply.

We should mention two recent books on mathematical experimentation: [106]
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and [142]. In both cases, however, the focus and scope centers on the teaching
of students and thus is quite different from ours.

We are grateful to our colleagues Victor Adamchik, Heinz Bauschke, Pe-
ter Borwein, David Bradley, Gregory Chaitin, David and Gregory Chudnovsky,
Robert Corless, Richard Crandall, Richard Fateman, Greg Fee, Helaman Fergu-
son, Steven Finch, Ronald Graham, Andrew Granville, Christoph Haenel, David
Jeffrey, Jeff Joyce, Adrian Lewis, Petr Lisonek, Russell Luke, Mathew Morin,
David Mumford, Andrew Odlyzko, Hristo Sendov, Luis Serrano, Neil Sloane,
Daniel Rudolph, Asia Weiss, and John Zucker who were kind enough to help
us prepare and review material for this book; to Mason Macklem, who helped
with material, indexing (note that in the index definitions are marked in bold,
and quotes with a suffix “Q”), and more; to Jen Chang and Rob Scharein, who
helped with graphics; to Janet Vertesi who helped with bibliographic research;
to Will Galway, Xiaoye Li, and Yozo Hida, who helped with computer program-
ming; and to numerous others who have assisted in one way or another in this
work. We thank Roland Girgensohn in particular for contributing a significant
amount of material and reviewing several drafts. We owe a special debt of grat-
itude to Klaus Peters for urging us to write this book and for helping us nurse it
into existence. Finally, we wish to acknowledge the assistance and the patience
exhibited by our spouses and family members during the course of this work.
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Chapter 1

What is Experimental
Mathematics?

The computer has in turn changed the very nature of mathemati-
cal experience, suggesting for the first time that mathematics, like
physics, may yet become an empirical discipline, a place where things
are discovered because they are seen.

David Berlinski, 1997 [35]

If mathematics describes an objective world just like physics, there
is no reason why inductive methods should not be applied in math-
ematics just the same as in physics.

Kurt Gödel, 1951 [98]

1.1 Background

One of the greatest ironies of the information technology revolution is that while
the computer was conceived and born in the field of pure mathematics, through
the genius of giants such as John von Neumann and Alan Turing, until recently
this marvelous technology had only a minor impact within the field that gave it
birth.

This has not been the case in applied mathematics, as well as in most other
scientific and engineering disciplines, which have aggressively integrated com-

1
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puter technology into their methodology. For instance, physicists routinely uti-
lize numerical simulations to study exotic phenomena ranging from supernova
explosions to big bang cosmology—phenomena that in many cases are beyond
the reach of conventional laboratory experimentation. Chemists, molecular bi-
ologists, and material scientists make use of sophisticated quantum-mechanical
computations to unveil the world of atomic-scale phenomena. Aeronautical engi-
neers employ large-scale fluid dynamics calculations to design wings and engines
for jet aircraft. Geologists and environmental scientists utilize sophisticated
signal processing computations to probe the earth’s natural resources. Biol-
ogists harness large computer systems to manage and analyze the exploding
volume of genome data. And social scientists—economists, psychologists, and
sociologists—make regular use of computers to spot trends and inferences in
empirical data.

In the late 1980s, recognizing that its members were lagging behind in em-
bracing computer technology, the American Mathematical Society began a reg-
ular “Computers and Mathematics” section in the monthly newsletter, Notices
of the American Mathematical Society, edited at first by Jon Barwise and sub-
sequently by Keith Devlin. This continued until the mid-1990s and helped to
convince the mathematical community that the computer can be a useful re-
search tool. In 1992, a new journal, Experimental Mathematics, was launched,
founded on the belief “that theory and experiment feed on each other, and that
the mathematical community stands to benefit from a more complete exposure
to the experimental process.” It encouraged the submission of algorithms, results
of experiments, and descriptions of computer programs, in addition to formal
proofs of new results [87].

Perhaps the most important advancement along this line is the development
of broad spectrum mathematical software products such as Mathematica and
Maple. These days, many mathematicians are highly skilled with these tools and
use them as part of their day-to-day research work. As a result, we are starting to
see a wave of new mathematical results discovered partly or entirely with the aid
of computer-based tools. Further developments in hardware (the gift of Moore’s
Law of semiconductor technology), software tools, and the increasing availability
of valuable Internet-based facilities, are all ensuring that mathematicians will
have their day in the computational sun.

This new approach to mathematics—the utilization of advanced computing
technology in mathematical research—is often called experimental mathemat-
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ics. The computer provides the mathematician with a “laboratory” in which
he or she can perform experiments: analyzing examples, testing out new ideas,
or searching for patterns. Our book is about this new, and in some cases not
so new, way of doing mathematics. To be precise, by experimental mathemat-
ics, we mean the methodology of doing mathematics that includes the use of
computations for:

1. Gaining insight and intuition.

2. Discovering new patterns and relationships.

3. Using graphical displays to suggest underlying mathematical principles.

4. Testing and especially falsifying conjectures.

5. Exploring a possible result to see if it is worth formal proof.

6. Suggesting approaches for formal proof.

7. Replacing lengthy hand derivations with computer-based derivations.

8. Confirming analytically derived results.

Note that the above activities are, for the most part, quite similar to the
role of laboratory experimentation in the physical and biological sciences. In
particular, they are very much in the spirit of what is often termed “computa-
tional experimentation” in physical science and engineering, which is why we feel
the qualifier “experimental” is particularly appropriate in the term experimental
mathematics.

We should note that one of the more valuable benefits of the computer-based
experimental approach in modern mathematics is its value in rejecting false
conjectures (Item 4): A single computational example can save countless hours
of human effort that would otherwise be spent attempting to prove false notions.

With regards to Item 5, we observe that mathematicians generally do not
know during the course of research how it will pan out, but nonetheless must,
in a conventional mathematical approach, prove all the pieces along the way as
assurance that the project makes sense and remains on course. The methods of
experimental mathematics allow mathematicians to maintain a reasonable level
of assurance without nailing down all the lemmas the first time through. At the
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end of the day, they can decide if the result merits proof. If it is not the answer
that was sought, or if it is simply not interesting enough, much less time will
have been spent coming to this conclusion.

Many mathematicians remain uncomfortable with the appearance in pub-
lished articles of expressions such as “proof by Mathematica” or “established by
Maple” (see Item 7 above). There is, however, a clear trend in this direction, and
it seems to us to be both futile and counterproductive to resist it. In Chapter 7
we will further explore the nature of mathematical experimentation and proof.

1.2 Complexity Considerations

Gordon Moore, the co-founder of Intel Corporation, noted in a 1965 article

The complexity for minimum component costs has increased at a rate
of roughly a factor of two per year. . . . Certainly over the short term
this rate can be expected to continue, if not to increase. Over the
longer term, the rate of increase is a bit more uncertain, although
there is no reason to believe it will not remain nearly constant for at
least 10 years. [155]

With these sentences, Moore stated what is now known as Moore’s Law,
namely the observation that semiconductor technology approximately doubles
in capacity and overall performance roughly every 18 to 24 months (not quite
every year as Moore predicted above). This trend has continued unabated for
nearly 40 years, and, according to Moore and other industry analysts, there is
still no end in sight—at least another ten years is assured [2]. This astounding
record of sustained exponential progress has no peer in the history of technol-
ogy. What’s more, we will soon see mathematical computing tools implemented
on parallel computer platforms, which will provide even greater power to the
research mathematician.

However, we do not suggest that amassing huge amounts of processing power
can solve all mathematical problems, even those that are amenable to compu-
tational analysis. There are doubtless some cases where a dramatic increase in
computation could, by itself, result in significant breakthroughs, but it is easier
to find examples where this is unlikely to happen.

For example, consider Clement Lam’s 1991 proof of the nonexistence of a fi-
nite projective plane of order ten [140]. This involved a search for a configuration
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of n2 + n + 1 points and equally many lines. Lam’s computer program required
thousands of hours of run time on a Cray computer system. Lam estimates that
the next case (n = 18) susceptible to his methods would take millions of years
on any conceivable architecture.

Along this line, although a certain class of computer-based mathematical
analysis is amenable to “embarrassingly parallel” (the preferred term is now
“naturally parallel”) processing, these tend not to be problems of central inter-
est in mathematics. A good example of this is the search for Mersenne primes,
namely primes of the form 2n − 1 for integer n. While such computations are
interesting demonstrations of mathematical computation, they are not likely to
result in fundamental breakthroughs. By contrast let us turn to perhaps the
most fundamental of current algorithmic questions.

The P versus NP problem. (This discussion is taken from [45].) Of the
seven million-dollar Millennium Prize problems, the one that is most germane
to our present voyage is the so-called “P versus NP problem,” also known as the
“P 6= NP” problem. We quote from the discussion on the Clay web site:

It is Saturday evening and you arrive at a big party. Feeling shy, you
wonder whether you already know anyone in the room. Your host
proposes that you must certainly know Rose, the lady in the corner
next to the dessert tray. In a fraction of a second you are able to
cast a glance and verify that your host is correct. However, in the
absence of such a suggestion, you are obliged to make a tour of the
whole room, checking out each person one by one, to see if there is
anyone you recognize. This is an example of the general phenomenon
that generating a solution to a problem often takes far longer than
verifying that a given solution is correct. Similarly, if someone tells
you that the number 13, 717, 421 can be written as the product of two
smaller numbers, you might not know whether to believe him, but
if he tells you that it can be factored as 3607 times 3803, then you
can easily check that it is true using a hand calculator. One of the
outstanding problems in logic and computer science is determining
whether questions exist whose answer can be quickly checked (for
example by computer), but which require a much longer time to
solve from scratch (without knowing the answer). There certainly
seem to be many such questions. But so far no one has proved that



6 CHAPTER 1. WHAT IS EXPERIMENTAL MATHEMATICS?

any of them really does require a long time to solve; it may be that we
simply have not yet discovered how to solve them quickly. Stephen
Cook formulated the P versus NP problem in 1971.

Although in many instances one may question the practical distinction be-
tween polynomial and nonpolynomial algorithms, this problem really is central
to our current understanding of computing. Roughly it conjectures that many
of the problems we currently find computationally difficult must per force be
that way. It is a question about methods, not about actual computations, but it
underlies many of the challenging problems one can imagine posing. A question
that requests one to “compute such and such a sized incidence of this or that
phenomena” always risks having the answer, “It’s just not possible,” because
P 6= NP.

With the “NP” caveat (though factoring is difficult it is not generally as-
sumed to be in the class of NP -hard problems), let us offer two challenges that
are far fetched, but not inconceivable, goals for the next few decades.

First Challenge. Design an algorithm that can reliably factor a
random thousand digit integer.

Even with a huge effort, current algorithms get stuck at about 150 digits.
Details can be found at http://www.rsasecurity.com/rsalabs/challenges/

factoring, where the current factoring challenges are listed. One possible solu-
tion to the factorization problem may come through quantum computing, using
an algorithm found by Peter Shor in 1994 [178]. However, it is still not clear
whether quantum phenomenon can be harnessed on the scale required for this
algorithm to be practical.

With regards to cash prizes, there is also $100, 000 offered for any honest
10, 000, 000 digit prime: http://www.mersenne.org/prime.htm.

Primality checking is currently easier than factoring, and there are some very
fast and powerful probabilistic primality tests—much faster than those providing
“certificates” of primality. There is also the recently discovered “AKS” deter-
ministic polynomial time algorithm for primality, whose implementations, as we
note in Section 7.2 of the second volume, keep improving.

Given that any computation has potential errors due to: (i) subtle (or even
not-so-subtle) programming bugs, (ii) compiler errors, (iii) system software er-
rors, and (iv) undetected hardware integrity errors, it seems increasingly point-
less to distinguish between these two types of primality tests. Many would take
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their chances with a (1 − 10−100) probability statistic over a “proof” any day
(more on this topic is presented in Section 7.2 of the second volume).

The above questions are intimately related to the Riemann Hypothesis and its
extensions, though not obviously so. They are also critical to issues of Internet
security. If someone learns how to rapidly factor large numbers, then many
current security systems are no longer secure.

Many old problems lend themselves to extensive exploration. One example
that arose in signal processing is called the Merit Factor problem, and is due in
large part to Marcel Golay with closely related versions due to Littlewood and
to Erdős. It has a long pedigree though certainly not as elevated as the Riemann
Hypothesis.

The problem can be formulated as follows. Suppose An consists of all se-
quences (a0 = 1, a1, · · · , an) of length n + 1 where each ai is restricted to 1 or
−1, for i > 0. If ck =

∑n−k
j=0 ajaj+k, then the problem is to minimize

∑n
k=−n c2

k

over An for each fixed n. This is discussed at length in [56].
Minima have been found up to about n = 50. The search space of sequences

of size 50 is 250 ≈ 1015, which approaches the limit of the very large-scale cal-
culations feasible today. The records use a branch and bound algorithm which
grows more or less like 1.8n. This is marginally better than the naive 2n growth
of a completely exhaustive search but is still painfully exponential.

Second Challenge. Find the minima in the merit factor problem
for sizes n ≤ 100.

The best hope for a solution lies in development of better algorithms. The
problem is widely acknowledged as a very hard problem in combinatorial op-
timization, but it isn’t known to be in one of the recognized hard classes like
NP . The next best hope is a radically improved computer technology, perhaps
quantum computing. And there is always a remote chance that analysis will
lead to a mathematical solution.

1.3 Proof versus Truth

In any discussion of an experimental approach to mathematical research, the
questions of reliability and standards of proof justifiably come to center stage.
We certainly do not claim that computations utilized in an experimental ap-
proach to mathematics by themselves constitute rigorous proof of the claimed
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results. Rather, we see the computer primarily as an exploratory tool to discover
mathematical truths, and to suggest avenues for formal proof.

For starters, it must be acknowledged that no amount of straightforward
case checking constitutes a proof. For example, the “proof” of the Four Color
Theorem in the 1970s, namely that every planar map can be colored with four
colors so adjoining countries are never the same color, was considered a proof
because prior mathematical analysis had reduced the problem to showing that a
large but finite number of bad configurations could be ruled out. The “proof” was
viewed as somewhat flawed because the case analysis was inelegant, complicated
and originally incomplete (this computation was recently redone after a more
satisfactory analysis). Though many mathematicians still yearn for a simple
proof, there is no particular reason to believe that all elegant true conjectures
have elegant proofs. What’s more, given Gödel’s result, some may have no proofs
at all.

Nonetheless, we feel that in many cases computations constitute very strong
evidence, evidence that is at least as compelling as some of the more complex
formal proofs in the literature. Prominent examples include: (1) the determina-
tion that the Fermat number F24 = 2224

+ 1 is composite, by Crandall, Mayer,
and Papadopoulos [80]; (2) the recent computation of π to more than one trillion
decimal digits by Yasumasa Kanada and his team; and (3) the Internet-based
computation of binary digits of π beginning at position one quadrillion organized
by Colin Percival. These are among the largest computations ever done, math-
ematical or otherwise (the π computations will be described in greater detail
in Chapter 3). Given the numerous possible sources of error, including pro-
gramming bugs, hardware bugs, software bugs, and even momentary cosmic-ray
induced glitches (all of which are magnified by the sheer scale of these compu-
tations), one can very reasonably question the validity of these results.

But for exactly such reasons, computations such as these typically employ
very strong validity checks. For example, the Crandall-Mayer-Papadopoulos
computation employed a “wavefront” scheme. Here a faster computer system
computed a chain of squares modulo F24, such as 321000000

mod F24, 322000000

mod F24, 323000000
mod F24, · · · . Then each of a set of slower computers started

with one of these intermediate values, squared it 1,000,000 times modulo F24,
and checked to see if the result (a 16-million-bit integer) precisely reproduced
the next value in the chain. If it did, then this is very strong evidence that both
computations were correct. If not, then the process was repeated [80, page 187].
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In the case of computations of digits of π, it has been customary for many
years to verify a result either by repeating the computation using a different
algorithm, or by repeating with a slightly different index position. For example, if
one computes hexadecimal digits of π beginning at position one trillion (we shall
see how this can be done in Chapter 3), then this can be checked by repeating
the computation at hexadecimal position one trillion minus one. It is easy to
verify (see Algorithm 3 in Section 3.4) that these two calculations take almost
completely different trajectories, and thus can be considered “independent.” If
both computations generate 25 hexadecimal digits beginning at the respective
positions, then 24 digits should perfectly overlap. If these 24 hexadecimal digits
do agree, then we can argue that the probability that these digits are in error, in
a very strong (albeit heuristic) sense, is roughly one part in 1624 ≈ 7.9× 1028, a
figure much larger even than Avogadro’s number (6.022×1022). Percival’s actual
computation of the quadrillionth binary digit (i.e., the 250 trillionth hexadecimal
digit) of π was verified by a similar scheme, which for brevity we have simplified
here.

Kanada and his team at the University of Tokyo, who just completed a com-
putation of the first 1.24 trillion decimal digits of π, employed an even more
impressive validity check (Kanada’s calculation will be discussed in greater de-
tail in Section 3.1). They first computed more than one trillion hexadecimal
digits, using two different formulas. The hexadecimal digit string produced by
both of these formulas, beginning at hex digit position 1,000,000,000,001, was
B4466E8D21 5388C4E014. Next, they employed the algorithm, mentioned in the
previous paragraph and described in more detail in Chapter 3, which permits
one to directly compute hexadecimal digits beginning at a given position (in
this case 1,000,000,000,001). This result was B4466E8D21 5388C4E014. Needless
to say, these two sets of results, obtained by utterly different computational
approaches, are in complete agreement. After this step, they converted the hex-
adecimal expansion to decimal, then back to hexadecimal as a check. When this
final check succeeded, they felt safe to announce their results.

As a rather different example, a computation jointly performed by one of the
present authors and David Broadhurst, a British physicist, discovered a previ-
ously unknown integer relation involving a set of 125 real constants associated
with the largest real root of Lehmer’s polynomial [22]. This computation was
performed using 50,000 decimal digit arithmetic and required 44 hours on 32
processors of a Cray T3E parallel supercomputer. The 125 integer coefficients
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discovered by the program ranged in size up to 10292. The certification of this
relation to 50,000 digit precision was thus at least 13,500 decimal digits beyond
the level (292 × 125 = 36, 500) that could reasonably be ascribed to numerical
roundoff error. This result was separately affirmed by a computation on a differ-
ent computer system, using 59,000-digit arithmetic, or roughly 22,500 decimal
digits beyond the level of plausible roundoff error.

Independent checks and extremely high numerical confidence levels still do
not constitute formal proofs of correctness. What’s more, we shall see in Sec-
tion 1.4 of the second volume some examples of “high-precision frauds,” namely
“identities” that hold to high precision, yet are not precisely true. Even so, one
can argue that many computational results are as reliable, if not more so, than a
highly complicated piece of human mathematics. For example, perhaps only 50
or 100 people alive can, given enough time, digest all of Andrew Wiles’ extraor-
dinarily sophisticated proof of Fermat’s Last Theorem. If there is even a one
percent chance that each has overlooked the same subtle error (and they may
be psychologically predisposed to do so, given the numerous earlier results that
Wiles’ result relies on), then we must conclude that computational results are
in many cases actually more secure than the proof of Fermat’s Last Theorem.

Richard Dedekind’s marvelous book, Two Essays on Number Theory [85],
originally published in 1887, provides a striking example of how the nature of
what is a satisfactory proof changes over time. In this work, Dedekind introduces
Dedekind cuts and a modern presentation of the construction of the reals (see
Item 2 at the end of this chapter). In the second essay, “The Nature and Meaning
of Numbers,” an equally striking discussion of finite and infinite sets takes place.
Therein, one is presented with Theorem 66:

Theorem. There exist infinite systems.

Proof. My own realm of thoughts, i.e., the totality S of all things,
which can be objects of my thought, is infinite. For if s signifies
an element of S, then is the thought s′, that s can be object of my
thought, itself an element of S. If we regard this as transform φ(s) of
the element s then has the transformation φ of S, thus determined,
the property that the transform S ′ is part of S; and S ′ is certainly
proper part of S, because there are elements in S (e.g., my own
ego) which are different from such thought s′ and therefore are not
contained in S ′. Finally, it is clear that if a, b are different elements of
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S, their transformation φ is a distinct (similar) transformation (26).
Hence S is infinite, which was to be proved.

A similar presentation is found in §13 of the Paradoxes des Unendlichen, by
Bolzano (Leipzig, 1851). Needless to say, such a “proof” would not be acceptable
today. In our modern formulation of mathematics there is an Axiom of Infinity,
but recall that this essay predates the publications of Frege and Russell and the
various paradoxes of modern set theory.

Some other examples of this sort are given by Judith Grabiner, who for in-
stance compares Abel’s comments on the lack of rigor in 18th-century arguments
with the standards of Cauchy’s 19th-century Cours d’analyse [100].

1.4 Paradigm Shifts

We acknowledge that the experimental approach to mathematics that we propose
will be difficult for some in the field to swallow. Many may still insist that
mathematics is all about formal proof, and from their viewpoint, computations
have no place in mathematics. But in our view, mathematics is not ultimately
about formal proof; it is instead about secure mathematical knowledge. We
are hardly alone in this regard—many prominent mathematicians throughout
history have either exemplified or explicitly espoused such a view.

Gauss expressed an experimental philosophy, and utilized an experimental
approach on numerous occasions. In the next section, we shall present one
significant example. Examples from de Morgan, Klein, and others will be given
in subsequent sections.

Georg Friedrich Bernhard Riemann (1826–1866) was one of the most influ-
ential scientific thinkers of the past 200 years. However, he proved very few
theorems, and many of the proofs that he did supply were flawed. But his
conceptual contributions, such as Riemannian geometry and the Riemann zeta
function, as well as his contributions to elliptic and Abelian function theory,
were epochal.

Jacques Hadamard (1865–1963) was perhaps the greatest mathematician to
think deeply and seriously about cognition in mathematics. He is quoted as
saying “. . . in arithmetic, until the seventh grade, I was last or nearly last,”
which should give encouragement to many young students. Hadamard was both
the author of The Psychology of Invention in the Mathematical Field [107], a
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1945 book that still rewards close inspection, and co-prover of the Prime Number
Theorem in 1896, which stands as one of the premier results of 19th century
mathematics and an excellent example of a result whose discovery and eventual
proof involved detailed computation and experimentation. He nicely declared:

The object of mathematical rigor is to sanction and legitimize the
conquests of intuition, and there was never any other object for it.
(J. Hadamard, from E. Borel, “Lecons sur la theorie des fonctions,”
1928, quoted in [165])

G. H. Hardy was another of the 20th century’s towering figures in mathe-
matics. In addition to his own mathematical achievements in number theory, he
is well known as the mentor of Ramanujan. In his Rouse Ball lecture in 1928,
Hardy emphasized the intuitive and constructive components of mathematical
discovery:

I have myself always thought of a mathematician as in the first in-
stance an observer, a man who gazes at a distant range of mountains
and notes down his observations. . . . The analogy is a rough one, but
I am sure that it is not altogether misleading. If we were to push it
to its extreme we should be led to a rather paradoxical conclusion;
that we can, in the last analysis, do nothing but point; that proofs
are what Littlewood and I call gas, rhetorical flourishes designed to
affect psychology, pictures on the board in the lecture, devices to
stimulate the imagination of pupils. This is plainly not the whole
truth, but there is a good deal in it. The image gives us a gen-
uine approximation to the processes of mathematical pedagogy on
the one hand and of mathematical discovery on the other; it is only
the very unsophisticated outsider who imagines that mathematicians
make discoveries by turning the handle of some miraculous machine.
Finally the image gives us at any rate a crude picture of Hilbert’s
metamathematical proof, the sort of proof which is a ground for its
conclusion and whose object is to convince. [59, Preface]

As one final example, in the modern age of computers, we quote John Milnor,
a contemporary Fields medalist:
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If I can give an abstract proof of something, I’m reasonably happy.
But if I can get a concrete, computational proof and actually produce
numbers I’m much happier. I’m rather an addict of doing things
on computer, because that gives you an explicit criterion of what’s
going on. I have a visual way of thinking, and I’m happy if I can see
a picture of what I’m working with. [169, page 78]

We should point out that paradigm shifts of this sort in scientific research
have always been difficult to accept. For example, in the original 1859 edition
of Origin of the Species, Charles Darwin wrote,

Although I am fully convinced of the truth of the views given in this
volume . . ., I by no means expect to convince experienced naturalists
whose minds are stocked with a multitude of facts all viewed, during
a long course of years, from a point of view directly opposite to mine.
. . . [B]ut I look with confidence to the future—to young and rising
naturalists, who will be able to view both sides of the question with
impartiality. [81, page 453]

In the 20th century, a very similar sentiment was expressed by Max Planck
regarding quantum physics:

[A] new scientific truth does not triumph by convincing its opponents
and making them see the light, but rather because its opponents die
and a new generation grows up that is familiar with it. [163, page
33–34]

Thomas Kuhn observed in his epochal work The Structure of Scientific Rev-
olutions,

I would argue, rather, that in these matters neither proof nor error
is at issue. The transfer of allegiance from paradigm to paradigm is
a conversion experience that cannot be forced. [134, page 151]

Two final quotations deal with the dangers of overreliance on tradition and
“authority” in scientific research. The first is an admonition by the early English
scholar-scientist Robert Record, in his 1556 cosmology textbook The Castle of
Knowledge:
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No man can worthily praise Ptolemye . . . yet muste ye and all men
take heed, that both in him and in all mennes workes, you be not
abused by their autoritye, but evermore attend to their reasons, and
examine them well, ever regarding more what is saide, and how it is
proved, than who saieth it, for autorite often times deceaveth many
menne. [90, page 47]

The following is taken from an intriguing, recently published account of why
one of the most influential articles of modern mathematical economics, which in
fact later led to a Nobel Prize for its authors (John R. Hicks and Kenneth J.
Arrow), was almost not accepted for publication:

[T]o suggest that the normal processes of scholarship work well on
the whole and in the long run is in no way contradictory to the
view that the processes of selection and sifting which are essential to
the scholarly process are filled with error and sometimes prejudice.
(Kenneth Arrow [190])

1.5 Gauss, the Experimental Mathematician

Carl Friedrich Gauss once confessed

I have the result, but I do not yet know how to get it. [8, page 115]

Gauss was particularly good at seeing meaningful patterns in numerical data.
When just 14 or 15 years old, he conjectured that π(n), the number of primes
less than n, is asymptotically approximated by n/ log n. This conjecture is, of
course, the Prime Number Theorem, eventually proved by Hadamard and de la
Vallée Poussin in 1896. This will be discussed in greater detail in Section 2.8.

Here is another example of Gauss’s prowess at “mental experimental mathe-
matics.” One day in 1799, while examining tables of integrals provided originally
by James Stirling, he noticed that the reciprocal of the integral

2

π

∫ 1

0

dt√
1− t4

,
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agreed numerically with the limit of the rapidly convergent arithmetic-geometric
mean iteration: a0 = 1, b0 =

√
2 ;

an+1 =
an + bn

2
, bn+1 =

√
anbn. (1.5.1)

The sequences (an) and (bn) have the common limit 1.1981402347355922074 . . .
Based on this purely computational observation, Gauss was able to conjecture
and subsequently prove that the integral is indeed equal to this common limit.
It was a remarkable result, of which he wrote in his diary (see [50, pg. 5] and
below) “[the result] will surely open up a whole new field of analysis.” He was
right. It led to the entire vista of 19th century elliptic and modular function
theory.

We reproduce the relevant pages from his diary as Figures 1.1 and 1.2.
The first shows the now familiar hypergeometric series which, along with the
arithmetic-geometric mean iteration, we discuss in some detail in Section 5.6.2.

In Figure 1.2, an excited Gauss writes:

Novus in analysi campus se nobis aperuit, scilicet investigatio func-
tionem etc. (October 1798) [A new field of analysis has appeared to
us, evidently in the study of functions etc.]

And in May 1799 (a little further down the page), he writes:

Terminum medium arithmetico-geometricum inter 1 et (root 2) esse
pi/omega usque ad figuram undcimam comprobaviums, qua re demon-
strata prorsus novus campus in analysi certo aperietur. [We have
shown the limit of the arithmetical-geometric mean between 1 and
root 2 to be pi/omega up to eleven figures, which on having been
demonstrated, a whole new field in analysis is certain to be opened
up.]

1.6 Geometric Experiments

Augustus de Morgan (1806–71), the first President of the London Mathematical
Society, was equally influential as an educator and a researcher [170]. As the
following two quotes from De Morgan show, neither a pride in numerical skill
nor a desire for better geometric tools is new. De Morgan like many others saw
profound differences between two and three dimensions:
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Figure 1.1: Gauss on the lemniscate.
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Figure 1.2: Gauss on the arithmetic-geometric mean.
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Considerable obstacles generally present themselves to the beginner,
in studying the elements of Solid Geometry, from the practice which
has hitherto uniformly prevailed in this country, of never submitting
to the eye of the student, the figures on whose properties he is rea-
soning, but of drawing perspective representations of them upon a
plane. . . . I hope that I shall never be obliged to have recourse to
a perspective drawing of any figure whose parts are not in the same
plane.

There is considerable evidence that young children see more naturally in
three than two dimensions.

Elsewhere, de Morgan celebrates:

In 1831, Fourier’s posthumous work on equations showed 33 figures
of solution, got with enormous labor. Thinking this is a good oppor-
tunity to illustrate the superiority of the method of W. G. Horner,
not yet known in France, and not much known in England, I pro-
posed to one of my classes, in 1841, to beat Fourier on this point, as
a Christmas exercise. I received several answers, agreeing with each
other, to 50 places of decimals. In 1848, I repeated the proposal,
requesting that 50 places might be exceeded: I obtained answers of
75, 65, 63, 58, 57, and 52 places.

Angela Vierling’s web page http://math.bu.edu/people/angelav/projects/

models well describes 19th-century desire for aids to visualization:

During many of these investigations, models were built to illustrate
properties of these surfaces. The construction and study of plaster
models was especially popular in Germany (particularly in Göttingen
under the influence of Felix Klein). Many of the models were mass
produced by publishing houses and sold to mathematicians and math-
ematics departments all over the world. Models were built of many
other types of surfaces as well, including surfaces arising from the
study of differential geometry and calculus. Such models enjoyed a
wonderful reception for a while, but after the 1920’s production and
interest waned.
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Felix Klein, like De Morgan, was equally influential as researcher and as ed-
ucator. These striking and very expensive models still exist in many university
departments and can be viewed as a precursor to modern electronic visualization
tools such as Rob Scharein’s KnotPlot site http://www.colab.sfu.ca/KnotPlot,
which now has a three dimensional “immersive reality” version, and the remark-
able Electronic Geometry Models site http://www.eg-models.de.

While we will not do a great deal of geometry in this book, this arena has
great potential for visualization and experimentation. Three beautiful theorems
come to mind where visualization, in particular, plays a key role:

1. Pick’s theorem on the area of a simple lattice polygon, P :

A(P ) = I(P ) +
1

2
B(P )− 1, (1.6.2)

where I(P ) is the number of lattice points inside P and B(P ) is the number
of lattice points on the boundary of P including the vertices.

2. Minkowski’s seminal result in the geometry of numbers that a symmetric
convex planar body must contain a nonzero lattice point in its interior if
its area exceeds four.

3. Sylvester’s theorem: Given a noncollinear finite set in the plane, one can
always draw a line through exactly two points of the set.

In the case of Pick’s theorem it is easy to think of a useful experiment (one of
the present authors has invited students to do this experiment). It is reasonable
to first hunt for a formula for acute-angled triangles. One can then hope to
piece together the more general result by triangulating the polygon (even if it is
nonconvex), and then clearly for right-angled triangles. Now place the vertices
at (n, 0), (0,m), and (0, 0) and write a few lines of code that separately totals
the number of times (j, k) lies on the boundary lines or inside the triangle as j
ranges between 0 and n and k between 0 and m. A table of results for small
m and n will expose the result. For example, if we consider all right-angled
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triangles of height h and width w with area 30, we obtain:



h w A I B
10 6 30 22 18
12 5 30 22 18
15 4 30 21 20
20 3 30 19 24
30 2 30 14 34
60 1 30 0 62




. (1.6.3)

It is more of a challenge to think of a useful experiment to determine that
“4” is the right constant in Minkowski’s theorem. Both of these results are very
accessibly described in [160].

James Sylvester, mentioned in Item 3 above, was president of the London
Mathematical Society in the late 19th century. He once wrote, “The early study
of Euclid made me a hater of geometry” [146]. Discrete geometry (now much in
fashion as “computational geometry” and another example of very useful pure
mathematics) was clearly more appealing to Sylvester. For Sylvester’s theorem
(posed but not solved by Sylvester), one can imagine various Java applets but
scattering a fair number of points on a sheet of white paper and using a ruler
seems more than ample to get a sense of the truth of the result.

Sylvester’s conjecture was largely forgotten for 50 years. It was first estab-
lished—“badly” in the sense that the proof is much more complicated than it
needed to be—by Gallai (1943) and also by Paul Erdős, who named “the Book”
in which God keeps elegant and aesthetically perfect proofs. Kelly’s proof, which
was declared by Erdős to be “in the Book,” was actually published by Donald
Coxeter in the MAA Monthly in 1948 (this is a good example of how easily the
archival record is often obscured). A marvellous eponymous book is [3]. It is
chock full of proofs that are or should be in the book and, for example, gives six
proofs of the infinitude of primes.

Proof Sketch. Let S be the given set of points. Consider the collection C of
pairs (L, p), where L is a line through (at least two distinct) points in S and
where p is a point in S not on L. Then C is nonempty and contains only finitely
many such pairs. Among those, pick (L, p) such that the distance from p to L
is minimal. We claim that L harbors exactly two points from S.

Assume not, then, L contains 3 or more points. In Figure 1.3, L is represented
as the horizontal line. Let q be the projection of p onto L. In Figure 1.3, we
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Sylvester

Figure 1.3: Kelly’s 1948 “Proof from the Book.”

drew 3 points of S on L. Label these points a, b, c. (Two must be on one side of
q.) Consider b and draw the line L′ through p and either a or c, whichever line
is closer to b. In Figure 1.3, L′ is the slanted line. Then (L′, b) belongs to C and
the distance from b to L′ is strictly smaller than the distance from p to L. But
this contradicts the choice of (L, p). 2

As with the visual proof of the irrationality of
√

2, we will give in Section
2.9, we see forcibly the power of the right minimal configuration.

Dirac conjectured that every sufficiently large set of n noncollinear points
contains at least n/2 proper (or elementary) lines through exactly two points.

By contrast,

The Desmic configuration, discovered by Stephanos in 1890, is [· · · ] a
configuration spanning 3-space, consisting of three tetrads of points,
each two of the tetrads being in perspective from the four points of
the third tetrad. This means that any line intersecting two of the
tetrads also intersects the third. [55]
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It is conjectured that in many senses this configuration (built from the cor-
ners of the cube and a point at infinity) is unique [55]. One can view the Desmic
configuration as showing that the Sylvester-Gallai theorem “fails in three dimen-
sions.”

Sylvester had a most colorful and somewhat difficult life which included a
seminal role in the founding of Johns Hopkins University, and ended as the first
Jewish Chair in Oxford. Educated in Cambridge, he could not graduate until
1871, when theological tests were finally abolished. This is engagingly described
in Oxford Figures [90].

Along this line, readers may be interested in Figures 1.4 and 1.5, which are
taken from Part VII of a 19th century experimental geometry book by the French
educator Paul Bert. The intention was to make school geometry more intuitive
and empirical, quite far from Euclid’s Elements.

1.6.1 On Picture-Writing

George Polya, in an engaging eponymous American Mathematical Monthly ar-
ticle, provides three compelling examples of converting pictorial representations
of problems into generating function solutions [164]:

1. In how many ways can you make change for a dollar?

This leads to the (US currency) generating function

∞∑

k=1

Pkx
k =

1

(1− x1)(1− x5)(1− x10)(1− x25)(1− x50)
,

which one can easily expand using a Mathematica command,

Series[1/((1-x)*(1-x^5)*(1-x^10)*(1-x^25)*(1-x^50)), {x, 0, 100}]

to obtain P100 = 292 (242 for Canadian currency, which lacks a 50 cent
piece). Polya’s illustration is shown in Figure 1.6.
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Figure 1.6: Polya’s illustration of the change solution.

2. Dissect a polygon with n sides into n− 2 triangles by n− 3 diagonals and
compute Dn, the number of different dissections of this kind.

This leads to the fact that the generating function for D3 = 1, D4 = 2, D5 =
5, D6 = 14, D7 = 42, . . .

D(x) =
∞∑

k=1

Dkx
k

satisfies

D(x) = x [1 + D(x)]2 ,

whose solution is therefore

D(x) =
1− 2x−√1− 4x

x
,

and Dn+2 turns out to be the n-th Catalan number
(
2n
n

)
/(n + 1).

3. Compute Tn, the number of different (rooted) trees with n knots.

The generating function of the Tn becomes a remarkable result due to
Cayley:

T (x) =
∞∑

k=1

Tkx
k = x

∞∏

k=1

(1− xk)−Tk , (1.6.4)
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where remarkably the product and the sum share their coefficients. This
produces a recursion for Tn in terms of T1, T2, · · · , Tn−1, which starts: T1 =
1, T2 = 1, T3 = 2, T4 = 4, T5 = 9, T6 = 20, · · · We shall revisit such products
in Section 4.2 of the second volume of this work.

In each case, Polya’s main message is that one can usefully draw pictures
of the component elements—(a) in pennies, nickels dimes and quarters (plus
loonies in Canada and half dollars in the US), (b) in triangles and (c) in the
simplest trees (with the fewest knots).

1.7 Sample Problems of Experimental Math

In the January 2002 issue of SIAM News, Nick Trefethen of Oxford University
presented ten diverse problems used in teaching graduate numerical analysis
students at Oxford University, the answer to each being a certain real number.
Readers were challenged to compute ten digits of each answer, with a $100 prize
to the best entrant. Trefethen wrote, “If anyone gets 50 digits in total, I will be
impressed.”

Success in solving these problems requires a broad knowledge of mathematics
and numerical analysis, together with significant computational effort to obtain
solutions and ensure correctness of the results. The strengths and limitations of
Maple, Mathematica, Matlab and other software tools are strikingly revealed
in these exercises.

A total of 94 teams, representing 25 different nations, submitted results.
Twenty of these teams received a full 100 points (10 correct digits for each
problem). Since these results were much better than expected, an anonymous
donor provided funds for a $100 award to each team. The present authors and
Greg Fee entered, but failed to qualify for an award. The ten problems are:

1. What is limε→0

∫ 1

ε
x−1 cos(x−1 log x) dx?

2. A photon moving at speed 1 in the x-y plane starts at t = 0 at (x, y) =
(1/2, 1/10) heading due east. Around every integer lattice point (i, j) in
the plane, a circular mirror of radius 1/3 has been erected. How far from
the origin is the photon at t = 10?
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3. The infinite matrix A with entries a11 = 1, a12 = 1/2, a21 = 1/3, a13 =
1/4, a22 = 1/5, a31 = 1/6, etc., is a bounded operator on `2. What is ||A||?

4. What is the global minimum of the function exp(sin(50x)) + sin(60ey) +
sin(70 sin x) + sin(sin(80y))− sin(10(x + y)) + (x2 + y2)/4?

5. Let f(z) = 1/Γ(z), where Γ(z) is the gamma function, and let p(z) be
the cubic polynomial that best approximates f(z) on the unit disk in the
supremum norm || · ||∞. What is ||f − p||∞?

6. A flea starts at (0, 0) on the infinite 2-D integer lattice and executes a
biased random walk: At each step it hops north or south with probability
1/4, east with probability 1/4 + ε, and west with probability 1/4− ε. The
probability that the flea returns to (0, 0) sometime during its wanderings
is 1/2. What is ε?

7. Let A be the 20000 × 20000 matrix whose entries are zero everywhere
except for the primes 2, 3, 5, 7, · · · , 224737 along the main diagonal and
the number 1 in all the positions aij with |i − j| = 1, 2, 4, 8, · · · , 16384.
What is the (1, 1) entry of A−1.

8. A square plate [−1, 1]× [−1, 1] is at temperature u = 0. At time t = 0 the
temperature is increased to u = 5 along one of the four sides while being
held at u = 0 along the other three sides, and heat then flows into the
plate according to ut = ∆u. When does the temperature reach u = 1 at
the center of the plate?

9. The integral I(a) =
∫ 2

0
[2 + sin(10α)]xα sin(α/(2 − x)) dx depends on the

parameter α. What is the value α ∈ [0, 5] at which I(α) achieves its
maximum?

10. A particle at the center of a 10 × 1 rectangle undergoes Brownian mo-
tion (i.e., 2-D random walk with infinitesimal step lengths) till it hits the
boundary. What is the probability that it hits at one of the ends rather
than at one of the sides?

These problems and their solutions are described in detail in a forthcoming
book [41]. Answers correct to 40 digits are available at the URL
http://web.comlab.ox.ac.uk/oucl/work/nick.trefethen/hundred.html.
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Inspired by this set of problems, the present authors have assembled a similar
set of problems, similar in style to the SIAM/Oxford 100 Digit Challenge, but
emphasizing the flavor of experimental mathematics. As in the above problem
set, a real constant is defined in each case. The objective here is to produce at
least 100 correct digits digits, so that a total of 1000 points can be earned. Several
of these can be solved by fairly direct application of numerical computation, but
others require mathematical analysis and reduction before computation can be
done in reasonable time. Each problem provides an “extra credit” question, for
which an additional 100 points may be earned. The maximum total score is thus
2000 points.

In each case, these problems can be solved with techniques presented either
in this volume or in the companion volume. Answers, with references, can be
found at the URL http://www.expmath.info.

1. Compute the value of r for which the chaotic iteration xn+1 = rxn(1 −
xn), starting with some x0 ∈ (0, 1), exhibits a bifurcation between 4-way
periodicity and 8-way periodicity.

Extra credit: This constant is an algebraic number of degree not exceeding
20. Find the minimal polynomial with integer coefficients that it satisfies.

2. Evaluate

∑

(m,n,p)6=0

(−1)m+n+p

√
m2 + n2 + p2

, (1.7.5)

where convergence means the limit of sums over the integer lattice points
enclosed in increasingly large cubes surrounding the origin.

Extra credit: Identify this constant.

3. Evaluate the sum

∞∑

k=1

(
1− 1

2
+ · · ·+ (−1)k+1 1

k

)2

(k + 1)−3.

Extra credit: Evaluate this constant as a multiterm expression involving
well-known mathematical constants. This expression has seven terms, and
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involves π, log 2, ζ(3), and Li5(1/2), where Lin(x) =
∑

k>0 xn/nk. Hint:
The expression is “homogenous,” in the sense that each term has the same
total “degree.” The degrees of π and log 2 are each 1, the degree of ζ(3) is
3, the degree of Li5(1/2) is 5, and the degree of αn is n times the degree
of α.

4. Evaluate

∞∏

k=1

[
1 +

1

k(k + 2)

]log2 k

=
∞∏

k=1

k[log2(1+ 1
k(k+2))].

Extra credit: Evaluate this constant in terms of a less-well-known mathe-
matical constant.

5. Given a, b, η > 0, define

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + ...

.

Calculate R1(2, 2).

Extra credit: Evaluate this constant as a two-term expression involving a
well-known mathematical constant.

6. Calculate the expected distance between two random points on different
sides of the unit square.

Hint: This can be expressed in terms of integrals as

2

3

∫ 1

0

∫ 1

0

√
x2 + y2 dx dy +

1

3

∫ 1

0

∫ 1

0

√
1 + (y − u)2 du dy.

Extra credit: Express this constant as a three-term expression involving
algebraic constants and an evaluation of the natural logarithm with an
algebraic argument.
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7. Calculate the expected distance between two random points on different
faces of the unit cube.

Hint: This can be expressed in terms of integrals as

4

5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
x2 + y2 + (z − w)2 dw dx dy dz

+
1

5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
1 + (y − u)2 + (z − w)2 du dw dy dz.

Extra credit: Express this constant as a six-term expression involving alge-
braic constants and two evaluations of the natural logarithm with algebraic
arguments.

8. Calculate

∫ ∞

0

cos(2x)
∞∏

n=1

cos
(x

n

)
dx.

Extra credit: Express this constant as an analytic expression. Hint: It is
not what it first appears to be.

9. Calculate

∑

i>j>k>l>0

1

i3jk3l
.

Extra credit: Express this constant as a single-term expression involving
a well-known mathematical constant.

10. Evaluate

W1 =

∫ π

−π

∫ π

−π

∫ π

−π

1

3− cos (x)− cos (y)− cos (z)
dx dy dz.

Extra credit: Express this constant in terms of the Gamma function.
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1.8 Internet-Based Mathematical Resources

We list here some Internet-based resources that we have found useful in our
research. We have selected those that we believe will be fairly permanent, but
some may become defunct with the passage of time. An updated list of these
URLs, with links, can be found at http://www.expmath.info.

Institutional Sites

1. American Institute of Mathematics:
http://www.aimath.org

2. Canadian Mathematical Society’s KaBoL site:
http://camel.math.ca/Kabol

3. Clay Mathematics Institute:
http://www.claymath.org

4. Experimental Mathematics Journal:
http://www.expmath.org

5. European Mathematical Society:
http://elib.uni-osnabrueck.de

6. Mathematical Association of America Online:
http://www.maa.org

7. Math-Net (International Mathematical Union):
http://www.Math-Net.org

8. MathSciNet:
http://e-math.ams.org/mathscinet

9. Society for Industrial and Applied Mathematics:
http://www.siam.org

Commercial Sites

1. Apple Computer’s Advanced Computation Group research site:
http://developer.apple.com/hardware/ve/acgresearch.html
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2. The Cinderella interactive geometry site:
http://www.cinderella.de

3. Integrals.com (operated by Wolfram Research):
http://www.integrals.com

4. Maplesoft (Maple):
http://www.maplesoft.com

http://www.mapleapps.com

5. MathResources interactive dictionaries:
http://www.mathresources.com

6. Mathworks (Matlab):
http://www.mathworks.com

7. NEC’s CiteSeer database:
http://citeseer.nj.nec.com

8. Eric Weisstein’s World of Mathematics site:
http://mathworld.wolfram.com

9. Wolfram Research, Inc. (Mathematica):
http://www.wolfram.com

Noncommercial Software and Tools

1. Alf-Christian Achilles’ computer science bibliography:
http://liinwww.ira.uka.de/bibliography

2. The Algorithm Project software library:
http://algo.inria.fr/libraries/software.html

3. The ArXiv mathematics article database:
http://front.math.ucdavis.edu

4. The Boyer-Moore theorem prover:
http://www.cs.utexas.edu/users/moore/best-ideas/nqthm

5. The CECM Euler-zeta computation tool:
http://www.cecm.sfu.ca/projects/ezface+
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6. The CECM integer relation tool (see also Item 7):
http://www.cecm.sfu.ca/projects/IntegerRelations

7. The CECM inverse symbolic calculator:
http://www.cecm.sfu.ca/projects/ISC

8. The CECM RevEng tool (see also Item 7):
http://psg.cecm.sfu.ca/projects/revenge/client/RevEngClient.html

9. Richard Crandall’s integer computation software:
http://www.perfsci.com

10. Richard Fateman’s online integration tool:
http://torte.cs.berkeley.edu:8010/tilu

11. The FFTW site (FFT software):
http://www.fftw.org

12. The FIZ-Karlsruhe journal and abstract database:
http://www.zblmath.fiz-karlsruhe.de

13. The GNU high-precision arithmetic library:
http://www.gnu.org/software/gmp/gmp.html

14. The Magma computational algebra system:
http://magma.maths.usyd.edu.au/magma

15. The NERSC double-double, quad-double, and arbitrary precision compu-
tation software:
http://www.expmath.info

16. The NERSC Experimental Mathematician’s Toolkit:
http://www.expmath.info

17. The NERSC PiSearch facility (searches for names or hex digit sequences
in the first several billion binary digits of π):
http://pi.nersc.gov

18. The Netlib software repository (linear algebra and other math software):
http://www.netlib.org
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19. Neil Sloane’s online dictionary of integer sequences:
http://www.research.att.com/~njas/sequences

Other Resources

1. Lee Borrell’s “Absolute Certainty?” site:
http://www.fortunecity.com/emachines/e11/86/certain.html

2. Jonathan Borwein’s π pages:
http://www.cecm.sfu.ca/personal/jborwein/pi cover.html

3. The CECM π recital site (recites π in numerous languages):
http://www.cecm.sfu.ca/pi/yapPing.html

4. Gregory Chaitin’s site on algorithmic information theory:
http://www.cs.umaine.edu/~chaitin.

5. The de Smit-Lenstra site on the mathematics of Escher’s “Print Gallery”:
http://escherdroste.math.leidenuniv.nl

6. Stewart Dickson’s math art site:
http://emsh.calarts.edu/~mathart

7. The electronic geometry site:
http://www.eg-models.de

8. The Embree-Trefethen-Wright pseudospectra and eigenproblem site:
http://web.comlab.ox.ac.uk/projects/pseudospectra

9. Helaman Ferguson’s mathematical sculpture site:
http://www.helasculpt.com

10. Steven Finch’s mathematical constant site:
http://pauillac.inria.fr/algo/bsolve/constant/constant.html

11. The Geometry Analysis Numerics Graphics (GANG) site:
http://www.gang.umass.edu

12. Xavier Gourdon and Pascal Sebah’s site for famous math constants:
http://numbers.computation.free.fr/Constants/constants.html
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13. Andrew Granville’s Pascal triangle site:
http://www.cecm.sfu.ca/organics/papers/granville/support/pascalform.html

14. David Griffeath’s cellular automata site:
http://psoup.math.wisc.edu

15. Jerry Grossman’s Erdős number site:
http://www.acs.oakland.edu/~grossman/erdoshp.html

16. Thomas Hales’ Kepler problem site:
http://www.math.pitt.edu/~thales/kepler98

17. David Joyce’s site (Java implementation of Euclid’s Elements, and the
Mandelbrot and Julia set explorer):
http://aleph0.clarku.edu/~djoyce

18. Yasumasa Kanada’s π site:
http://www.super-computing.org

19. Donald Knuth’s site on primes in π:
http://mathpages.com/home/kmath184/kmath184.htm

20. The Mersenne prime site:
http://www.mersenne.org

21. National Institute of Standards and Technology’s Digital Library of Math-
ematical Functions:
http://dlmf.nist.gov

22. The Organic Mathematics Project site:
http://www.cecm.sfu.ca/organics

23. The Piworld site (features artwork based on π):
http://www.piworld.de

24. George Reese’s Buffon needle site:
http://www.mste.uiuc.edu/reese/buffon/buffon.html

25. RSA Security’s factorization challenge site:
http://www.rsasecurity.com/rsalabs/challenges/factoring
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Figure 1.7: The Sierpinski cube.

26. Saint Andrews College’s history of mathematics site (and curve resource):
http://www-gap.dcs.st-and.ac.uk/history

27. Rob Scharein’s KnotPlot research and development site:
http://www.colab.sfu.ca/KnotPlot

28. Angela Vierling’s mathematical models site:
http://math.bu.edu/people/angelav/projects/models

29. Jeff Weeks’ topology and geometry site:
http://www.geometrygames.org

30. Figure 1.7 shows a Sierpinski cube plotted in JavaView
http://www.cecm.sfu.ca/news/coolstuff/JVL/htm/gallery.htm
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1.9 Commentary and Additional Examples

1. The old and the new. David Joyce’s Java implementation of Eu-
clid’s Elements and his Mandelbrot and Julia Set Explorer show what
technology can offer, for old and new material, when used appropriately:
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html and
http://aleph0.clarku.edu/~djoyce/julia/explorer.html.

2. Dedekind’s preference for mental constructs is also apparent in his
development of the real numbers [85]:

Many authors who adopted Dedekind’s basic ideas preferred not
to follow him in defining the real numbers as creations of the
mind corresponding to cuts in the system of rational numbers.
. . . Bertrand Russell emphasised the advantage of defining the
real numbers simply as . . . segments of the rationals. . . . But
Dedekind had his reasons . . . for defining the real numbers as
he did. When Heinrich Weber expressed his opinion in a let-
ter to Dedekind that an irrational number should be taken to
be the cut, instead of something new which is created in the
mind and supposed to correspond to the cut, Dedekind replied
“We have the right to grant ourselves such a creative power, and
besides it is much more appropriate to proceed thus because
of the similarity of all numbers. The rational numbers surely
also produce cuts, but I will certainly not give out the rational
number as identical with the cut generated by it; and also by
introduction of the irrational numbers, one will often speak of
cut-phenomena with such expressions, granting them such at-
tributes, which applied to the numbers themselves would sound
quite strange.”[104, page 224]

3. Hardy’s “apology.” G. H. Hardy (1877–1947), the leading British an-
alyst of the first half of the 20th century, wrote compellingly in defense
of pure mathematics. In his essay, A Mathematician’s Apology [108], he
noted that

All physicists and a good many quite respectable mathemati-
cians are contemptuous about proof.
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Hardy’s Apology is also a spirited defense of beauty over utility:

Beauty is the first test. There is no permanent place in the world
for ugly mathematics.

Along this line, many have noted his quote,

Real mathematics . . . is almost wholly “useless.”

This has been overplayed and is now very dated, given the importance
of cryptography, data compression and other applications of algebra and
number theory that have arisen in recent years. But Hardy does acknowl-
edge that if number theory could be employed for any “practical and obvi-
ously honourable purpose,” then “neither Gauss nor any other mathemati-
cian would have been so foolish as to decry or regret such applications.”

4. Ramsey’s theorem. Ramsey’s theorem asserts that given positive inte-
gers k and l there is an integer R(k, l) so that any graph with R(k, l) vertices
either possesses a clique (complete subgraph) with k vertices or an inde-
pendent set with l vertices. R(3) = R(3, 3) = 6 and R(4) = R(4, 4) = 18.
This is often described as saying that at a six-person dinner party either
there are three friends or there are three strangers. Such numbers R(k, 1)
are very hard to compute.

Indeed, Paul Erdős suggested that if an alien demanded we give it the
value of R(5) in order to save the Earth, we should set all mathematicians
and computers to calculating the value. But if the alien demanded R(6),
then humanity should attempt to destroy it before it destroyed us.

The following is from the site: http://www.math.uiuc.edu/~mileti/

Museum/ramsey.html:

One version of Ramsey’s Theorem states that no matter which
number k you choose, you can find a number n such that given
any arrangement of n pegs, [connected by red or green string]
there must exist a monochromatic collection of k pegs. We will
denote the smallest such n that works for a given k by R(k).
The above results can be stated more succinctly by saying that
R(3) = 6 and R(4) = 18. It is easy to see that R(1) = 1
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(given only 1 peg, there are no pieces of string, so it forms a
monochromatic collection for vacuous reasons) and R(2) = 2 (If
you only have 2 pegs, there is only piece of string, so the 2 pegs
form a monochromatic collection).

Perhaps surprisingly, nobody knows the value of R(k) for any k
larger than 4. The best results currently known state that R(5) is
somewhere between 43 and 49 (inclusive) and R(6) is somewhere
between 102 and 165. You might wonder why, given the incred-
ible computing power at our disposal, we can not simply search
through all arrangements of string for 43 pegs through 49 pegs
to find the actual value of R(5). However, one can calculate that
there are 2903 (a number that has 272 decimal digits!) ways to
arrange red and green string among 43 pegs, which is a number
beyond ordinary comprehension (scientists estimate that there
are about 80 digits in the number of electrons in the universe).
By using symmetry, one can drastically lower the number of such
arrangements a computer would have to look at, but even if we
only had to examine 1 out of every 1 trillion configurations, we
would still be left with over 2864 arrangements (a number that
has 261 digits!). Estimating the values of R(k) requires mathe-
matical ingenuity in addition to brute force calculations.

5. Gödel’s theorem and complexity. While there are still no “ordinary”
Gödel statements (that is, true but unprovable), the Paris-Harrington the-
orem comes close. It is “[a]n arithmetically expressible true statement from
finitary combinatorics . . . that is not provable in Peano arithmetic. The
statement S in question is the strengthening of the finite Ramsey theorem
by requiring the homogeneous set H to be ‘relatively large,’ i.e., card H ≥
min H.” (Math Reviews). See also http://www.cs.utexas.edu/users/

moore/best-ideas/nqthm/ and http://www.fortunecity.com/emachines/

e11/86/certain.html.

6. Goodstein’s theorem. Another very striking example is that of Good-
stein sequences [180]. Consider writing a number base b. Doing the same
for each of the exponents in the resulting representations, until the process
stops, yields the hereditary base b representation of n. For example, the
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hereditary base 2 representation of 266 is

266 = 222+1

+ 22+1 + 21.

Base change. Let Bb(n) be the natural number obtained on replacing
each b by b + 1 in the hereditary base b representation of n. For example,
“bumping the base” from 2 to 3 above gives

B2(266) = 333+1

+ 33+1 + 3.

Consider a sequence of integers obtained by repeatedly applying the op-
eration: Bump the base and subtract one from the result . Iteratively per-
forming this procedure for 266 yields

2660 = 266

2661 = 333+1

+ 33+1 + 2

2662 = 444+1

+ 44+1 + 1

2663 = 555+1

+ 55+1

2664 = 666+1

+ 66+1 − 1

= 666+1

+ 5 · 66 + 5 · 65 + · · ·+ 5 · 6 + 5

2665 = 777+1

+ 5 · 77 + 5 · 75 + · · ·+ 5 · 7 + 4

· · ·

Done generally, this determines the Goodstein sequence starting at n. That
is, we recursively define nonnegative integers n0 = n, n1, · · · , nk, . . . by

nk+1 = Bk+2(nk)− 1,

if nk > 0 and nk+1 = 0 otherwise. We initially obtain very rapid growth:
2668 ≈ 101011

and 4k first reaches 0 for k = 3 (2402653211 − 1) ≈ 10121210695.

However, Goodstein in 1944 proved that every Goodstein sequence con-
verges to 0.

Remarkably, in 1982 Paris and Kirby showed that Goodstein’s theorem is
not provable in ordinary Peano arithmetic, despite being a fairly ordinary
sounding number-theoretic fact.
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There are quite natural, closely related games on finite trees such as “Her-
cules and the Hydra” in which the fact that Hercules always has a winning
strategy to defeat a many-headed hydra is independent of arithmetic. Such
results show that even in a seemingly computational framework, we may
bump into Gödel’s theorem [132].

7. Hales’ computer-assisted proof of Kepler’s conjecture. In 1611,
Kepler described the stacking of equal-sized spheres into the familiar ar-
rangement we see for oranges in the grocery store. He asserted that this
packing is the tightest possible. This assertion is now known as the Kepler
conjecture, and has persisted for centuries without rigorous proof. Hilbert
included the Kepler conjecture in his famous list of unsolved problems in
1900. In 1994, Thomas Hales, now at the University of Pittsburgh, pro-
posed a five-step program that would result in a proof: (a) treat maps
that only have triangular faces; (b) show that the face-centered cubic and
hexagonal-close packings are local maxima in the strong sense that they
have a higher score than any Delaunay star with the same graph; (c) treat
maps that contain only triangular and quadrilateral faces (except the pen-
tagonal prism); (d) treat maps that contain something other than a triangle
or quadrilateral face; (e) treat pentagonal prisms.

In 1998, Hales announced that the program was now complete, with Samuel
Ferguson (son of Helaman Ferguson) completing the crucial fifth step. This
project involved extensive computation, using an interval arithmetic pack-
age, a graph generator, and Mathematica. The computer files containing
the source code and computational results occupy more than three Gbytes
of disk space. Additional details, including papers, are available at the
URL http://www.math.pitt.edu/~thales/kepler98.

As this book was going to press, the Annals of Mathematics has decided to
publish Hales’ paper, but with a cautionary note, because although a team
of referees is “99% certain” that the computer-assisted proof is sound, they
have not been able to verify every detail [185]. One wonders if every other
article in this journal has implicitly been certified to be correct with more
than 99% certainty.

8. “That’s Mathematics” in song.
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1. Counting sheep
When you’re trying to sleep,
Being fair
When there’s something to share,
Being neat
When you’re folding a sheet,
That’s mathematics!

2. When a ball
Bounces off of a wall,
When you cook
From a recipe book,
When you know
How much money you owe,
That’s mathematics!

3. How much gold can you hold in
an elephant’s ear?
When it’s noon on the moon,
then what time is it here?
If you could count for a year,
would you get to infinity,
Or somewhere in that vicinity?

4. When you choose
How much postage to use,
When you know
What’s the chance it will snow,
When you bet
And you end up in debt,
Oh try as you may,
You just can’t get away
From mathematics!

5. Andrew Wiles gently smiles,
Does his thing, and voila!
Q.E.D., we agree,
And we all shout hurrah!
As he confirms what Fermat
Jotted down in that margin,
Which could’ve used some enlargin’.

6. Tap your feet,
Keepin’ time to a beat
Of a song
While you’re singing along,
Harmonize
With the rest of the guys,
Yes, try as you may,
You just can’t get away
From mathematics!

c© Tom Lehrer 1995 (used by permission).

9. Mathematics of Escher’s “Print Galley.” In Maurits C. Escher’s 1956
painting “Prentententoonstelling,” a young man is viewing a painting in
an exhibition gallery. As his eyes follow the waterfront buildings shown
in this painting around in a circle, he discovers among these buildings the
very gallery he is standing in. Bart de Smit and Hendrik Lenstra have
shown that the painting can be viewed as drawn on an elliptic curve over
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the complex plane, and if continued would repeat itself, with each itera-
tion reduced in size by a factor of 22.5836845286 . . . and rotated clockwise
by 157.6255960832 . . . degrees [83]. This research received feature cov-
erage in the New York Times [172]. Details are available at the URL
http://escherdroste.math.leidenuniv.nl.

10. Techniques for putting the Internet to work.

As a teenager in early 19th Century Britain, Michael Faraday
struggled to overcome a lack of formal education by reading
(among other things) self-help books that were popular at the
time. It was from one such book (Improvement of the Mind, au-
thored by Isaac Watts) that Faraday learned four ways to become
smarter: (1) attend lectures, (2) take notes, (3) correspond with
people of similar interests, (4) join a discussion group. (Scott
Butner, ChemAlliance Staff)

11. Gravitational boosting. “The Voyager Neptune Planetary Guide” (JPL
Publication 89–24) has an excellent description of Michael Minovitch’s
computational and unexpected discovery of gravitational boosting (other-
wise known as slingshot magic) at the Jet Propulsion Laboratory in 1961.

The article starts by quoting Arthur C. Clarke: “Any sufficiently advanced
technology is indistinguishable from magic.” Until Minovitch discovered
that the so-called Hohmann transfer ellipses were not the minimum energy
way of getting to the outer planets, “most planetary mission designers con-
sidered the gravity field of a target planet to be somewhat of a nuisance, to
be cancelled out, usually by onboard Rocket thrust.” For example, without
a gravitational boost from the orbits of Saturn, Jupiter and Uranus, the
Earth-to-Neptune Voyager mission (achieved in 1989 in little more than a
decade) would have taken more than 30 years!

12. John Maynard Keynes. Two excerpts follow from Keynes the Man,
written on the 50th anniversary of the great economist’s death, by Sir
Alec Cairncross, in the Economist, April 20, 1996:

Keynes distrusted intellectual rigour of the Ricardian type as
likely to get in the way of original thinking and saw that it
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was not uncommon to hit on a valid conclusion before finding
a logical path to it. . . . “I don’t really start,” he said, “until I
get my proofs back from the printer. Then I can begin serious
writing.”

Keynes’ undergraduate training was in mathematics at Cambridge, where
he excelled as at most things he tried. He was an avid collector of rare
books and manuscripts, Newton’s included. Keynes and Hardy were vir-
tually the only scientists who intersected with the Bloomsbury group.

13. A world of doughnuts and spheres. As this book was going to press,
the Russian mathematician Grigori Perelman was lecturing on a proof of
the Poincaré Conjecture. His potentially ground-breaking work, if found
to be valid, may earn him a share of a $1 million prize for solving one of
the Clay Mathematics Institute’s “Millennium Prize Problems.” The Clay
Institute’s web site describes the Poincaré Conjecture in these terms:

If we stretch a rubber band around the surface of an apple, then
we can shrink it down to a point by moving it slowly, with-
out tearing it and without allowing it to leave the surface. On
the other hand, if we imagine that the same rubber band has
somehow been stretched in the appropriate direction around a
doughnut, then there is no way of shrinking it to a point with-
out breaking either the rubber band or the doughnut [Figure
1.8]. We say the surface of the apple is “simply connected,” but
that the surface of the doughnut is not. Poincaré, almost a hun-
dred years ago, knew that a two dimensional sphere is essentially
characterized by this property of simple connectivity, and asked
the corresponding question for the three dimensional sphere (the
set of points in four dimensional space at unit distance from the
origin). This question turned out to be extraordinarily difficult,
and mathematicians have been struggling with it ever since.

Peter Sarnak, a well-known Princeton University mathematician, described
Perelman’s work in these words: “He’s not facing Poincaré directly, he’s
just trying to do [a] grander scheme.” The Poincaré result is merely “a
million dollar afterthought.” Prof. Sun-Yung Alice Chang observed that
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Figure 1.8: The torus and the two-sphere.

the Poincaré Conjecture is “in the same scale as Fermat’s Last Theorem.
[Proving] it puts you in the history of mathematics; the dream of every
mathematician” [65]. Along this line, a New York Times report [123]
observed, “That grown men and women can make a living pondering such
matters is a sign that civilization, as fragile as it may sometimes seem,
remains intact.”

14. The number partitioning problem. Given a set of n nonnegative
integers a1, a2, · · · , an, the number partitioning problem is to divide this
set into two subsets such that the sums of the numbers in each subset are as
nearly equal as possible. Brian Hayes calls this “the easiest hard problem”
[112]. It is well known to be NP -complete. Nonetheless, some reasonably
effective heuristic algorithms are known for solution. Hayes provides the
following analogy for one of these:

One of the cherished customs of childhood is choosing up sides for
a ball game. Where I grew up, we did it this way: The two chief
bullies of the neighborhood would appoint themselves captains
of the opposing teams, and then they would take turns picking
other players. On each round, a captain would choose the most
capable (or, toward the end, the least inept) player from the
pool of remaining candidates, until everyone present had been
assigned to one side or the other. The aim of this ritual was
to produce two evenly matched teams and, along the way, to
remind each of us of our precise ranking in the neighborhood
pecking order. It usually worked.
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None of us in those days—not the hopefuls waiting for our name
to be called, and certainly not the two thick-necked team leaders—
recognized that our scheme for choosing sides implements a greedy
heuristic for the balanced number partitioning problem. And we
had no idea that this problem is NP-complete—that finding the
optimum team rosters is certifiably hard. We just wanted to get
on with the game.

Solutions to this problem exhibit a curious experimental phenomenon:
When n is smaller than the number of bits needed to encode the ai, the
computational cost grows exponentially with n. When n is larger than this
value, the computational cost actually decreases, then levels off, growing
only linearly with n [154].

15. Hersh’s humanist philosophy of mathematics. However hard math-
ematical paradigm shifts are to accept and whatever the result of these
tides, mathematics is and will remain a uniquely human undertaking. In-
deed, Reuben Hersh’s arguments for a humanist philosophy of mathemat-
ics [114, 115], as paraphrased below, become even more convincing in our
experimental setting:

1. Mathematics is human. It is part of and fits into human cul-
ture. It does not match Frege’s concept of an abstract, timeless,
tenseless, objective reality.

2. Mathematical knowledge is fallible. As in science, mathe-
matics can advance by making mistakes and then correcting or
even re-correcting them. The “fallibilism” of mathematics is
brilliantly argued in Lakatos’ Proofs and Refutations.

3. There are different versions of proof or rigor. Standards of
rigor can vary depending on time, place, and other things. The
use of computers in formal proofs, exemplified by the computer-
assisted proof of the four color theorem in 1977, is just one ex-
ample of an emerging nontraditional standard of rigor.

4. Empirical evidence, numerical experimentation and proba-
bilistic proof all can help us decide what to believe in mathemat-
ics. Aristotelian logic isn’t necessarily always the best way of
deciding.
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5. Mathematical objects are a special variety of a social-cultural-
historical object. Contrary to the assertions of certain post-
modern detractors, mathematics cannot be dismissed as merely
a new form of literature or religion. Nevertheless, many mathe-
matical objects can be seen as shared ideas, like Moby Dick in
literature, or the Immaculate Conception in religion.

16. Quantum Computer. n. a radical, still largely theoretical, alternative
to the VON NEUMANN ARCHITECTURE of present DIGITAL COM-
PUTERS. First posited by Richard Feynman in 1982, and detailed by
Deutsch (1985) it relies on exploiting quantum mechanical properties of:
quantization, entanglement, and especially quantum interference. Inter-
ference means outcomes of quantum processes depend on all possible his-
tories of a process, and makes quantum computers exponentially more
powerful than classical ones. Entanglement means spatially separated,
non-interacting, systems with prior interaction may still have locally in-
accessible information in common. This is what makes quantum encryp-
tion possible. The field exploded after 1994 when Peter Shor discovered a
quantum algorithm for efficient FACTORIZATION of very large numbers.
Such methods would render current CODING THEORY and encryption
techniques, such as RSA, ineffective.

qubit, n. the QUANTUM COMPUTER analogue of a computer BIT.
It models the fact that atoms can be prepared in a SUPERPOSITION of
two different electronic states. Analogously, a quantum two-state system—
a quantum bit or qubit—can be prepared in a superposition of its two
logical states 0 and 1. Thus a qubit can simultaneously be both 0 and 1.
(The above two definitions are taken from [42].)

17. Mathematics, history and philosophy.

The history of mathematics, lacking the guidance of philosophy,
has become blind, while the philosophy of mathematics, turning
its back on the most intriguing phenomena in the history of
mathematics, has become empty. (Imre Lakatos, in Proofs and
Refutations [138, 125])
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18. Nature of mathematical genius. Mathematical genius appears to be
a rare but remarkable phenomenon. Is it a genetic? An emergent acci-
dent of DNA? The result of good parenting? A stimulating intellectual
environment? The product of inspiring teachers?

(a) Recent interviews (Peter Liljedahl, SFU, unpublished PhD work) with
top-level mathematicians suggests that most do not read very much,
preferring to have results described to them, and put a large emphasis
on the role of chance—which always favors the prepared mind.

(b) Mathematical genius is almost always noted early in life and blossoms
rather soon. As G. H. Hardy observed in his A Mathematician’s Apol-
ogy, “Mathematics, more than any other art or science, is a young
man’s game. . . . I do not know an instance of a major mathematical
advance initiated by a man past fifty. . . . [Newton’s] “greatest ideas
of all, fluxions and the law of gravitation, came to him about 1666,
when he was twenty-four.” [108, pg. 78]. Needless to say, this does
not bode well for the present authors!

(c) Archimedes, Newton, Euler, Gauss, Ramanujan, and others all seem
to have had extraordinary facilities for numerical and algebraic com-
putation. Most of us know the story of Gauss who, when his teacher
asked the class to sum the integers from 1 to 100, quickly noted that
this was 50×101 = 5050, and was the only student to obtain the cor-
rect answer! Ramanujan’s genius was his incredible skill at algebraic
manipulation, a skill that flowered largely in a vacuum of advanced
training in modern mathematics. The following is told of John von
Neumann, who made fundamental contributions to computer science,
mathematical economics, meteorology, probability theory, and quan-
tum mechanics in the early 20th century [149, pg. 10]:

Two bicyclists are 20 miles apart and head toward each other
at 10 miles per hour each. At the same time a fly traveling
at a steady 15 miles per hour starts from the front wheel
of the northbound bicycle. It lands on the front wheel of
the southbound bicycle, and then instantly turns around and
flies back, and after next landing instantly flies north again.
Question: What total distance did the fly cover before it was
crushed between the two front wheels?
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The slow way of answering is to calculate the distance that
the fly travels on its first trip to the southbound front wheel,
then the distance it travels on its next trip to the northbound
wheel, and finally to sum the infinite series so obtained. . . .
The short way is to note that the bicycles will meet exactly
an hour after starting, by which time the 15-miles-per-hour
fly must have covered 15 miles. When the question was put to
[John von Neumann], he danced and answered immediately,
“15 miles.” “Oh, you’ve heard the trick before,” said the
disappointed questioner. “What trick?” asked the puzzled
Johnny. “I simply summed the infinite series.”

(d) Others are known for their prodigious skill and boundless energy in
ranging over a wide variety of very difficult topics with ease. The fol-
lowing is told of Nobel-prize-winning mathematical physicist Richard
Feynman, during a lecture at CalTech [97, 145]:

Feynman immediately rose, astonishingly, to say that such
objects would be gravitationally unstable. Furthermore, he
said that the instability followed from general relativity. The
claim required a calculation of the subtle countervailing ef-
fects of stellar forces and relativistic gravity. Fowler thought
he was talking through his hat. A colleague later discov-
ered that Feynman had done a hundred pages of work on the
problem years before. The Chicago astrophysicist Subrah-
manyan Chandrasekhar independently produced Feynman’s
result—it was part of the work for which he won a Nobel
Prize twenty years later. Feynman himself never bothered
to publish. Someone with a new idea always risked finding,
as one colleague said, “that Feynman had signed the guest
book and already left.”

John Maynard Keynes, who studied the original writings of Isaac
Newton while riding taxicabs between British treasury board meet-
ings, wrote this of Newton on the tricentenary of his birth [129, 145]:

His peculiar gift was the power of holding continuously in
his mind a purely mental problem until he had seen straight
through it. I fancy his pre-eminence is due to his muscles of
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intuition being the strongest and most enduring with which
a man has ever been gifted. Anyone who has ever attempted
pure scientific or philosophical thought knows how one can
hold a problem momentarily in one’s mind and apply all one’s
powers of concentration to piercing through it, and how it will
dissolve and escape and you find that what you are surveying
is a blank. I believe that Newton could hold a problem in
his mind for hours and days and weeks until it surrendered
to him its secret. Then being a supreme mathematical tech-
nician he could dress it up, how you will, for purposes of
exposition, but it was his intuition which was pre-eminently
extraordinary—“so happy in his conjectures,” said de Mor-
gan, “as to seem to know more than he could possibly have
any means of proving.”

(e) In a recent provocative essay, David Lykken explores the emergence
of genius. Here is his conclusion [145]:

Ericsson and Charness [89] are willing to acknowledge that
genetic differences in temperament and “preferred activity
level” may determine which of us go for the gold but, curi-
ously, they cling to the assumption that individual genetic
differences in both physical and mental capacities are not
important, perhaps nonexistent. This would require us to
believe that . . . little Gauss’s ability to correct his father’s
arithmetic at three and confound his school master at ten
resulted, not from extraordinary mental hardware, but from
mental software acquired through self-directed practice in an
intellectually unstimulating environment.

Those of us who have studied MZ [monozygote, i.e., identical]
twins reared apart from one another find these assumptions
. . . incredible. We cannot believe that MZA twins [monozy-
gote twins reared apart] correlate .75 in IQ merely because,
in their separate environments, their similarities in tempera-
ment led them to indulge in very similar amounts of practice
on very similar topics. . . .

I think we must agree with Ericsson, however, that works of
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genius tend to be the product of minds enriched by years of
concentrated effort. Isaac Newton often became so caught
up in cerebration that he would forget to eat or sleep. Edwin
Land, inventor of the instant Polaroid camera and of a so-
phisticated computational theory of color vision, sometimes
worked at his desk for 36 hours or more, unaware of the pas-
sage of time until he felt faint on standing up. Similar stories
were told of Edison. It does not follow, however, that these
were ordinary minds to begin with.

Edison, Feynman, Land, and Newton all from their boyhood
had intense curiosity, an enthusiasm or zeal for discovery and
understanding. Each of them was able to take seriously hy-
potheses that others thought to be implausible (or had not
thought about at all). All four possessed a kind of intellectual
arrogance that permitted them to essay prodigious tasks, to
undertake to solve problems that most of their contempo-
raries believed to be impossible. And each of them had quite
extraordinary powers of concentration. . . .

I think what lies at the heart of these mysteries is genetic,
probably emergenic. The configuration of traits of intel-
lect, mental energy, and temperament with which, during
the plague years of 1665–6, Isaac Newton revolutionized the
world of science were, I believe, the consequence of a genetic
lottery that occurred about nine months prior to his birth,
on Christmas day, in 1642.
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Chapter 2

Experimental Mathematics in
Action

The purpose of computing is insight, not numbers.

Richard Hamming, Numerical Methods for Scientists and
Engineers, 1962

In this chapter, we will present a few particularly engaging examples of modern
experimental mathematics in action. We invite those readers with access to
some of the computational tools we mention below to personally try some of
these examples—with some sense of realism and with a caution not to emulate
Winnie the Pooh’s heuristics in Figure 2.1 too closely.

2.1 Pascal’s Triangle

Although Blaise Pascal (1623–1662) is commonly credited with what is now
known as Pascal’s triangle (namely the array of integers such that row m and

column n has the value

(
m

n

)
, typically shown centered on the page), this well-

known numerical scheme is actually much older. The earliest written account
may be in a 1303 Chinese book by Chu Shih-Chieh, entitled Precious Mirror of
the Four Elements, but even here, Pascal’s triangle is called “The Old Method.”
Thus it is at least 700 years old, and probably centuries older still. Given its
simplicity and antiquity, it is natural to expect that every conceivable aspect of

53
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Figure 2.1: How not to perform experiments: guess and check.
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this venerable scheme has been discovered and studied at length. But even in
such arenas, diligent researchers can sometimes glean new insights.

Start with the familiar binomial coefficient,
(

m

n

)
=

m!

n!(m− n)!
, (2.1.1)

and consider the remainders on division by 2. That is, set

F2(m,n) =

(
m

n

)
mod 2. (2.1.2)

Let N2(m) be the number of 1s in the set (F2(m,n), 0 ≤ n ≤ m).
By means of an algebraic argument, it can be shown that N2(m) is given by

N2(m) = 2B1(m), (2.1.3)

where B1(m) is the number of 1s in the binary representation of m [102].
But there is another proof of this fact that demonstrates the power of visu-

alization in experimental mathematics.
Pascal’s triangle has long been used as a tool to visualize the behavior of the

binomial coefficient function. For example, the combinatorial identity

(
m

n

)
=

(
m− 1

n− 1

)
+

(
m− 1

n

)
is equivalent to the Pascal triangle rule that the value

of entry (m,n) is merely the sum of the entries to the left and right of it, on
the previous row. As another example, the fact that binomial coefficients are
greatest when n = bm/2c is evident from visual inspection—centrally located
cells have had the greatest benefit of the combining add operation in the rows
above, and this visual observation can indeed be fashioned into a rigorous proof.

Consider now a modified Pascal triangle where entries are reduced modulo
2, as shown in Figure 2.2. Such a figure was easy to generate using the Internet-
based tool available at http://www.cecm.sfu.ca/organics/papers/granville/

support/pascalform.html. It is evident from the left-hand image in Figure 2.2,
which comes from the interface, that the entries of this Pascal triangle form a
Sierpinski triangle, which in the limit is a self-similar figure akin to those studied
by Mandelbrot [151]. In fact, it can be seen that this figure exhibits the fractional
dimension log2 3 = 1.58496 . . . [192].
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Figure 2.2: Pascal triangles modulo two?

The right-hand figure shows a computer realization of this process on a tetra-
hedron, due to Darrell Hepting. Now let’s take a look at a proof of identity (2.1.3)
in the style of experimental mathematics, a proof that we argue is significantly
easier than the usual algebraic proof of this result.

Given a positive integer m, construct a Pascal triangle modulo 2 of size
2dlog2 me. In this way the m-th row corresponds to a line that crosses the lower
half of the largest upright triangle. Note that successive binary digits of m
specify whether the line crosses the upper (0) or the lower (1) half of successively
smaller upright triangles. The upper halves always contain one half-sized upright
triangle, whereas the lower halves contain two such triangles. The total number
of triangles crossed by the line is thus multiplied by a factor of two whenever
the lower half is crossed. The total number of ones in the m-th row is thus the
product of the factors of two associated with each one in the binary expansion
of m. This proves (2.1.3). See Stephen Wolfram’s article [192] and the Crandall-
Pomerance book [78] (research problem 8.22) for additional details and some
generalizations.

We should add here that Wolfram has recently published his long-awaited
tome A New Kind of Science, an exhaustive study of cellular automata with
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connections to numerous other fields of science. Wolfram’s approach in this
book is almost exclusively experimental, employing nearly 1000 high-resolution
graphical examples to highlight his observations, building up to his “Principle
of Computational Equivalence.” In this regard, one could view Pascal’s triangle
modulo 2 as merely a particular instance of a one-dimensional cellular automata
[193].

We might note in passing that the Sierpinski triangle has a habit of appearing
in quite a few unexpected places in mathematics. One remarkable example, in
quite a different context, is the following. Construct an “arbitrary” triangle,
with vertices (x1, y1), (x2, y2) and (x3, y3). Specify a starting point (x, y) within
the triangle. Then iterate the following construction: First select a random
integer r in the set (1, 2, 3), and then construct a new point (x′, y′) as follows:

(x′, y′) =

(
1

2
(x + xr),

1

2
(y + yr)

)
. (2.1.4)

This procedure is then iterated indefinitely.
If you carry out this procedure on a computer with a high-resolution display,

it is immediately evident that, no matter what triangle is specified, and no
matter what initial point is selected, the resulting figure (after possibly the first
few points) is a Sierpinski triangle contained in the original triangle—see, for
example, Figure 2.3. In other words, the Sierpinski triangle is the “attractor”
set for this iteration (by the way, it is easier to “see” this fact than to prove
it). The study of these fractal objects and the schemes used to generate them is
by itself a fascinating example of experimental mathematics in action. See, for
example, Michael Barnsley’s interesting book, Fractals Everywhere [30].

2.2 A Curious Anomaly in the Gregory Series

In 1988, Joseph Roy North of Colorado Springs observed that Gregory’s series
for π,

π = 4
∞∑

k=1

(−1)k+1

2k − 1
= 4(1− 1/3 + 1/5− 1/7 + · · · ), (2.2.5)

when truncated to 5,000,000 terms, gives a value that differs strangely from the
true value of π. Here is the truncated Gregory value and the true value of π:
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Figure 2.3: Sierpinski triangle by random selections.

3.14159245358979323846464338327950278419716939938730582097494182230781640...
3.14159265358979323846264338327950288419716939937510582097494459230781640...

2 -2 10 -122 2770

The series value differs, as one might expect from a series truncated to 5,000,000
terms, in the seventh decimal place—a “4” where there should be a “6.” But the
next 13 digits are correct! Then, following another erroneous digit, the sequence
is once again correct for an additional 12 digits. In fact, of the first 46 digits,
only four differ from the corresponding decimal digits of π. Further, the “error”
digits appear to occur in positions that have a period of 14, as shown above.
Such anomalous behavior begs explanation.

Once observed, it is natural (and easy given a modern computer algebra
system) to ask if something similar happens with the logarithm. Indeed it does,
as the following value obtained by truncating the series log 2 = 1− 1/2 + 1/3−
1/4 + · · · shows:
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0.69314708055995530941723212125817656807551613436025525140068000949418722...
0.69314718055994530941723212145817656807550013436025525412068000949339362...

1 -1 2 -16 272 -7936

Here again, the “erroneous” digits appear in locations with a period of 14. In the
first case, the differences from the “correct” values are (2,−2, 10,−122, 2770),
while in the second case the differences are (1,−1, 2,−16, 272,−7936). We
note that each integer in the first set is even; dividing by two, we obtain
(1,−1, 5,−122, 1385).

How can we find out exactly what is going on here? A great place to start is by
enlisting the help of an excellent resource for the computational mathematician:
Neil Sloane and Simon Plouffe’s Internet-based integer sequence recognition tool,
available at http://www.research.att.com/~njas/sequences. This tool has no
difficulty recognizing the first sequence as “Euler numbers” and the second as
“tangent numbers.” Euler numbers and tangent numbers are defined in terms
of the Taylor’s series for sec x and tan x, respectively:

sec x =
∞∑

k=0

(−1)kE2kx
2k

(2k)!

tan x =
∞∑

k=0

(−1)k+1T2k+1x
2k+1

(2k + 1)!
. (2.2.6)

Indeed, this discovery, made originally through the print version of the se-
quence recognition tool available more than a decade ago, led to a formal proof
that these sequences are indeed the source of the “errors” in these sequences.
The precise result is that the following asymptotic expansions hold:

π

2
− 2

N/2∑

k=1

(−1)k+1

2k − 1
≈

∞∑
m=0

E2m

N2m+1
(2.2.7)

log 2−
N/2∑

k=1

(−1)k+1

k
≈ 1

N
+

∞∑
m=1

T2m−1

N2m
. (2.2.8)

Now the genesis of the anomaly mentioned above is clear: North, in computing π
by Gregory’s series, had by chance truncated the series at 5,000,000 terms, which
is exactly one-half of a fairly large power of ten. Indeed, setting N = 10, 000, 000
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in Equation (2.2.7) shows that the first hundred or so digits of the truncated
series value are small perturbations of the correct decimal expansion for π. And
the asymptotic expansions show up on the computer screen, as we observed
above. Similar phenomena occur for other constants. (See [47] for proofs of
(2.2.7) and (2.2.8), together with some additional details.)

2.3 Bifurcation Points in the Logistic Iteration

Of course, our earlier remarks about pure mathematicians being slow to take
advantage of the computer do have some exceptions. In particular, the entire
area of dynamical systems (sometimes referred to as chaos theory) owes its very
existence to modern information technology. And one of the classic examples of
a chaotic iteration is known as the logistic iteration: Fix a real number r > 0,
select x0 in the unit interval (0, 1), and then iterate

xk+1 = rxk(1− xk). (2.3.9)

This is termed the “logistic” iteration because of its roots in computational
ecology: It mimics the behavior of a biological population, which, if it becomes
too numerous, exhausts its available food supply and then falls back to a smaller
population, possibly oscillating in an irregular manner over many generations.

For values of r < 1, the iterates (xk) quickly converge to zero. For 1 < r < 3,
the iterates converge to a single nonzero limit point. At r = 3, a bifurcation
occurs: For 3 < r < 3.449489 . . . = 1 +

√
6, the iterates oscillate between two

distinct limit points. A second bifurcation occurs at r = 1 +
√

6. In particular,
for 1 +

√
6 < r < 3.544090359 . . ., the iterates oscillate in a periodic fashion

between four distinct limit points. This pattern of limit point bifurcation and
period doubling occurs at successively shorter intervals, until r > 3.5699457 . . .,
when iterates behave in a completely chaotic manner. This behavior is shown
in Figure 2.4.

Until recently, the identity of the third bifurcation point, namely the constant
b3 = 3.544090359 . . ., was not known. It is fairly straightforward, by means of
recursive substitutions of Equation (2.3.9), to demonstrate that this constant
must be algebraic, but the bound on the degree of the integer polynomial that
b3 satisfies is quite large and thus not very useful.

A tool that can be used in such situations is an integer relation algorithm.
This is an algorithm which, when given n real numbers (x1, x2, · · · , xn), returns
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Figure 2.4: Bifurcation in the logistic iteration.

integers (a1, a2, · · · , an), not all zero, such that a1x1+a2x2+· · ·+anxn = 0 (if such
a solution exists). Such computations must be done using very high precision
arithmetic, or else the results are not numerically significant. At present the best
algorithm for integer relation detection appears to be the “PSLQ” algorithm
of mathematician-sculptor Helaman Ferguson [92, 15, 23], although the “LLL”
algorithm is also often used. We will discuss integer relation detection in greater
depth in Section 6.3.1. For the time being we mention the Internet-based integer
relation tool at http://www.cecm.sfu.ca/projects/IntegerRelations and the
Experimental Mathematician’s Toolkit at http://www.expmath.info.

One straightforward application of an integer relation tool is to recover the
polynomial satisfied by an algebraic number. If you suspect that a constant
α, whose numerical value can be calculated to high precision, is algebraic of
degree n, then you can test this conjecture by computing the (n+1)-long vector
(1, α, α2, · · · , αn), and then using this vector as input to an integer relation
calculation. If it finds a solution vector (a0, a1, a2, · · · , an) with a sufficiently
high degree of numerical accuracy, then you can be fairly confident that these
integers are precisely the coefficients of the polynomial satisfied by α.
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In the present example, where α = b3, a predecessor algorithm to PSLQ
recovered the polynomial

0 = 4913 + 2108t2 − 604t3 − 977t4 + 8t5 + 44t6 + 392t7 − 193t8 − 40t9

+48t10 − 12t11 + t12. (2.3.10)

You might like to try to rediscover this polynomial by using the Internet-based
tool mentioned above. To do this requires a high-precision value of b3. Its value
correct to 120 decimal digits is:

3.5440903595 5192285361 5965986604 8045405830 9984544457 3675457812
2530305842 9428588630 1225625856 6424891799 9626089927 7589974545

If you do not wish to type this number in, you may find it by using Mathematica:

FindRoot[4913 + 2108*t^2 - 604*t^3 - 977*t^4 + 8*t^5 +
44*t^6 + 392*t^7 - 193*t^8 - 40*t^9 + 48*t^10 - 12*t^11 +
t^12 == 0, {t, 3.544}, WorkingPrecision -> 125]

or by using a similar command with the Experimental Mathematician’s Toolkit.
Recently, the fourth bifurcation point b4 = 3.564407266095 . . . was identi-

fied by a similar, but much more challenging, integer relation calculation. In
particular, it was found that α = −b4(b4 − 2) satisfies a certain integer poly-
nomial of degree 120. The recovered coefficients descend monotonically from
25730 ≈ 1.986 × 1072 down to 1. This calculation required 10,000 decimal digit
precision arithmetic, and more than one hour on 48 processors of a parallel
computer system. Full details can be found in [23].

We add in passing that the limiting ratio of the intervals between successive
bifurcation points in the logistic iteration is 4.669201609 . . . This is known as
Feigenbaum’s constant, named for Mitchell Feigenbaum who first observed, as
a result of computational experiments, that this limiting ratio holds for a wide
class of chaotic iterations, not just the logistic iteration. A fascinating account
of this discovery is given in [96]. Researchers have subsequently made numerous
attempts to recognize Feigenbaum’s constant as an algebraic number, or as a
simple formula involving other well-known constants of mathematics, but these
efforts have failed so far. An algorithm for calculating Feigenbaum’s constant to
high precision is given in [60].
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2.4 Experimental Mathematics and Sculpture

In the previous section, we mentioned the PSLQ algorithm, which was discovered
in 1993 by Helaman Ferguson. This is certainly a signal accomplishment—for
example, the PSLQ algorithm (with associated lattice reduction algorithms)
was recently named one of ten “algorithms of the century” by Computing in
Science and Engineering [15]. Nonetheless Ferguson is even more well-known for
his numerous mathematics-inspired sculptures, which grace numerous research
institutes in the United States. Photos and highly readable explanations of these
sculptures can be seen in a lovely book written by his wife, Claire [91]. Together,
the Fergusons recently won the 2002 Communications Award, bestowed by the
Joint Policy Board of Mathematics. The citation for this award declares that
the Fergusons “have dazzled the mathematical community and a far wider public
with exquisite sculptures embodying mathematical ideas, along with artful and
accessible essays and lectures elucidating the mathematical concepts.”

Ferguson notes that the PSLQ algorithm can be thought of as a n-dimension
extension of the Euclidean algorithm, and is, like the Euclidean scheme, funda-
mentally a “subtractive” algorithm. As Ferguson explains, “It is also true that
my sculptural form of expression is subtractive: I get my mathematical forms
by direct carving of stone.” [167]

There is a remarkable and unanticipated connection between Ferguson’s
PSLQ algorithm and at least one of Ferguson’s sculptures. It is known that
the volumes of complements of certain knot figures (which volumes in R3 are in-
finite) are finite in hyperbolic space, and sometimes are given by certain explicit
formulas. This is not true of all knots. Many of these hyperbolic complements
of knots correspond to certain discrete quotient subgroups of matrix groups.

One of Ferguson’s sculptures, known as the “Eight-Fold Way,” is housed at
the Mathematical Sciences Research Institute in Berkeley, California (see Figure
2.5 and item 33 at the end of this chapter).

Another of Ferguson’s well-known sculptures is the “Figure-Eight Comple-
ment II” (see Figure 2.6 and Item 33 at the end of this chapter). It has been
known for some time that the hyperbolic volume V of the figure-eight knot
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Figure 2.5: Ferguson’s “Eight-Fold Way” sculpture.
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Figure 2.6: Ferguson’s “Figure-Eight Knot Complement” sculpture.
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complement is given by the formula

V = 2
√

3
∞∑

n=1

1

n
(
2n
n

)
2n−1∑

k=n

1

k
(2.4.11)

= 2.029883212819307250042405108549 . . . (2.4.12)

In 1998, British physicist David Broadhurst conjectured that V/
√

3 is a rational
linear combination of

Cj =
∞∑

n=0

(−1)n

27n(6n + j)2
. (2.4.13)

Indeed, it is, as Broadhurst [61] found using a PSLQ program:

V =

√
3

9

∞∑
n=0

(−1)n

27n

(
18

(6n + 1)2
− 18

(6n + 2)2
− 24

(6n + 3)2

− 6

(6n + 4)2
+

2

(6n + 5)2

)
. (2.4.14)

You can verify this yourself, using for example the Mathematician’s Toolkit,
available at http://www.expmath.info. Just type the following lines of code:

v = 2 * sqrt[3] * sum[1/(n * binomial[2*n,n]) * sum[1/k, \
{k, n, 2*n-1}], {n, 1, infinity}]

pslq[v/sqrt[3], table[sum[(-1)^n/(27^n*(6*n+j)^2), \
{n, 0, infinity}], {j, 1, 6}]]

When this is done you will recover the solution vector (9,−18, 18, 24, 6,−2, 0).
A proof that formula (2.4.14) holds, together with a number of other identities
for V , is given at the end of this chapter in Items 34 and 35. As you will see,
this proof is a classic example of a proof from experimental methodology, in that
it relies on “knowing” ahead of time that the formula holds.

As we shall see in Section 3.4, constants given by a formula of the general
type given in (2.4.14), namely a “BBP-type” formula, possess some remarkable
properties, among them the fact that you can calculate the n-th digit (base-3
digit in this case) of such constants by means of a simple algorithm, without
having to compute any of the first n− 1 digits.
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Ferguson comments that the discovery of this BBP-type expression for V
is a “major advance toward understanding the figure-eight knot complement
volume.” Accordingly, he has carved Broadhurst’s formula on the figure-eight
knot complement sculptures commissioned by the Clay Mathematics Institute,
both the Inner Mongolian black granite piece and the smaller bronzes (the Clay
Math Award pieces). As he explains, “Finally the subtractive sculpture and the
subtractive algorithm have come together.”

2.5 Recognition of Euler Sums

In April 1993, Enrico Au-Yeung, an undergraduate at the University of Waterloo,
brought to the attention of one of us (Borwein) the curious result [43]

∞∑

k=1

(
1 +

1

2
+ · · ·+ 1

k

)2

k−2 = 4.59987 . . .

≈ 17

4
ζ(4) =

17π4

360
. (2.5.15)

The function ζ(s) in (2.5.15) is the classical Riemann zeta function,

ζ(s) =
∞∑

n=1

1

ns
.

Bernoulli showed that for even integers, ζ(2n) is a rational multiple of π2n [50].
(Bernoulli’s result is proved in Section 3.2 of the second volume of this work.)

Au-Yeung had computed the sum in (2.5.15) to 500,000 terms, giving an
accuracy of 5 or 6 decimal digits. Suspecting that his discovery was merely a
numerical coincidence, Borwein sought to compute the sum to a higher level of
precision. Using Fourier analysis and Parseval’s equation, he obtained

1

2π

∫ π

0

(π − t)2 log2(2 sin
t

2
) dt =

∞∑
n=1

(
∑n

k=1
1
k
)2

(n + 1)2
. (2.5.16)

The idea here is that the series on the right of (2.5.16) permits one to evaluate
(2.5.15), while the integral on the left can be computed using the numerical
quadrature facility of Mathematica or Maple. When he did this, he was surprised
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to find that the conjectured identity holds to more than 30 digits. We should add
here that by good fortune, 17/360 = 0.047222 . . . has period one and thus can
plausibly be recognized from its first six digits, so that Au-Yeung’s numerical
discovery was not entirely far-fetched.

What Borwein did not know at the time was that Au-Yeung’s suspected
identity follows directly from a related result proved by De Doelder in 1991
[86]. In fact, it had cropped up even earlier as a problem in the American
Mathematical Monthly, but the story goes back further still. Some historical
research showed that Euler considered these summations. In response to a letter
from Goldbach, he examined sums that are equivalent to

∞∑

k=1

(
1 +

1

2m
+ · · ·+ 1

km

)
(k + 1)−n. (2.5.17)

The great Swiss mathematician was able to give explicit values for certain of
these sums in terms of the Riemann zeta function. For example, he found an
explicit formula for the case m = 1, n ≥ 2.

In retrospect, perhaps it was for the better that Borwein had not known
of De Doelder’s and Euler’s results, because Au-Yeung’s intriguing numerical
discovery launched a fruitful line of research by a number of researchers that
continued until nearly the present day. Sums of this general form are nowadays
known as “Euler sums” or “Euler-Zagier sums.”

In order to explore them more rigorously, it has been necessary to develop
an efficient means to calculate their value to high precision—namely the 200
or more digit accuracy needed to obtain numerically significant results using
integer relation calculations. Along this line, one of us (Bailey [20]) found a
satisfactory scheme involving the Euler-Maclaurin summation formula. Another,
more powerful scheme is described in [45]. These techniques will be discussed in
Section 7.5 of the second volume of this work.

High precision calculations of many of these sums, together with considerable
investigations involving heavy use of Maple’s symbolic manipulation facilities,
eventually yielded numerous new results.

Below are just a few of the interesting results that were first discovered nu-
merically and have since been established analytically [44]. Since these results
were first obtained in 1994, many more specific identities have been discovered,
and a growing body of general formulas and other results have been proven.
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These results, together with the underlying numerical and symbolic techniques
used in their derivation, are discussed further in Chapter 3 of the second volume.

∞∑

k=1

(
1 +

1

2
+ · · ·+ 1

k

)2

(k + 1)−4 =
37

22680
π6 − ζ2(3)

∞∑

k=1

(
1 +

1

2
+ · · ·+ 1

k

)3

(k + 1)−6 =

ζ3(3) +
197

24
ζ(9) +

1

2
π2ζ(7)− 11

120
π4ζ(5)− 37

7560
π6ζ(3)

∞∑

k=1

(
1− 1

2
+ · · ·+ (−1)k+1 1

k

)2

(k + 1)−3 =

4 Li5

(
1

2

)
− 1

30
log5(2)− 17

32
ζ(5)− 11

720
π4 log(2) +

7

4
ζ(3) log2(2)

+
1

18
π2 log3(2)− 1

8
π2ζ(3), (2.5.18)

where Lin(x) =
∑

k>0 xk/kn denotes the polylogarithm function.

2.6 Quantum Field Theory

In another recent development, David Broadhurst (who discovered the identity
(2.4.14) for Ferguson’s Clay Math Award sculpture) has found, using similar
methods, that there is an intimate connection between Euler sums and constants
resulting from evaluation of Feynman diagrams in quantum field theory [63, 64].
In particular, the renormalization procedure (which removes infinities from the
perturbation expansion) involves multiple zeta values, which we will discuss in
detail in Chapter 3 of the second volume.

Broadhurst’s recent results are even more remarkable. He has shown [61],
using PSLQ computations, that in each of ten cases with unit or zero mass, the
finite part of the scalar 3-loop tetrahedral vacuum Feynman diagram reduces
to four-letter “words” that represent iterated integrals in an alphabet of seven
“letters” comprising the single 1-form Ω = dx/x and the six 1-forms ωk =
dx/(λ−k− x), where λ = (1 +

√−3)/2 is the primitive sixth root of unity, and k
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runs from 0 to 5. A four-letter word here is a four-dimensional iterated integral,
such as

U = ζ(Ω2ω3ω0) =∫ 1

0

dx1

x1

∫ x1

0

dx2

x2

∫ x2

0

dx3

(−1− x3)

∫ x3

0

dx4

(1− x4)
=

∑

j>k>0

(−1)j+k

j3k
.

There are 74 such four-letter words. Only two of these are primitive terms
occurring in the 3-loop Feynman diagrams: U , above, and

V = Re[ζ(Ω2ω3ω1)] =
∑

j>k>0

(−1)j cos(2πk/3)

j3k
.

The remaining terms in the diagrams reduce to products of constants found in
Feynman diagrams with fewer loops. These ten cases are shown in Figure 2.7.
In these diagrams, dots indicate particles with nonzero rest mass. The formulas
that have been found, using PSLQ, for the corresponding constants are given in
Table 2.1. In the Table the constant C =

∑
k>0 sin(πk/3)/k2.

2.7 Definite Integrals and Infinite Series

We mention here one particularly useful application of experimental mathematics
methodology: evaluating definite integrals and sums of infinite series by means
of numerical calculations. In one sense, there is nothing new here, since mathe-
maticians have utilized computers to compute the approximate numerical value
of definite integrals and infinite series since the dawn of computing. What we
suggest here, however, is a slightly different approach: Use advanced numerical
quadrature techniques and series summations methods, extended to the realm of
high-precision arithmetic, and then use the computed values (typically accurate
to tens or even hundreds of decimal digits) as input to a computer-based con-
stant recognition tool, which hopefully can recognize the constant as a simple
expression involving known mathematical constants.

We will discuss techniques for computing definite integrals and sums of series
to high precision in Section 7.4 of the second volume of this work. For the time
being, we simply note that both Mathematica and Maple have incorporated some
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Figure 2.7: The ten tetrahedral configurations.

V1 = 6ζ(3) + 3ζ(4)

V2A = 6ζ(3)− 5ζ(4)

V2N = 6ζ(3)− 13
2
ζ(4)− 8U

V3T = 6ζ(3)− 9ζ(4)

V3S = 6ζ(3)− 11
2
ζ(4)− 4C2

V3L = 6ζ(3)− 15
4
ζ(4)− 6C2

V4A = 6ζ(3)− 77
12

ζ(4)− 6C2

V4N = 6ζ(3)− 14ζ(4)− 16U

V5 = 6ζ(3)− 469
27

ζ(4) + 8
3
C2 − 16V

V6 = 6ζ(3)− 13ζ(4)− 8U − 4C2

Table 2.1: Formulas found by PSLQ for the ten tetrahedral diagrams.
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reasonably good numerical facilities for this purpose, and it is often sufficient to
rely on these packages when numerical values are needed.

For our first example, we use Maple or Mathematica to compute the following
three integrals to over 100 decimal digit accuracy:

∫ 1

0

t2 log(t) dt

(t2 − 1)(t4 + 1)
=

0.180671262590654942792308128981671615337114571018296766266

240794293758566224133001770898254150483799707740 . . .

∫ π/4

0

t2 dt

sin2(t)
=

0.843511841685034634002620051999528151651689086421444293697

112596906587355669239938399327915596371348023976 . . .
∫ π

0

x sin x dx

1 + cos2 x
=

2.467401100272339654708622749969037783828424851810197656603

337344055011205604801310750443350929638057956006 . . . (2.7.19)

(the third of these is from [106]). Both Maple and Mathematica attempt to
evaluate these definite integrals analytically. In each case, however, while the
results appear to be technically correct, they are not very useful, in that they
are either rather lengthy, or involve advanced functions and complex entities.
We suspect that there are considerably simpler closed-form versions.

Indeed, using the Inverse Symbolic Calculator (ISC) tool (a constant recogni-
tion facility) at http://www.cecm.sfu.ca/projects/ISC, we obtain the following,
based solely on the numerical values above:

∫ 1

0

t2 log(t) dt

(t2 − 1)(t4 + 1)
=

π2(2−√2)

32∫ π/4

0

t2 dt

sin2(t)
= −π2

16
+

π log(2)

4
+ G

∫ π

0

x sin x dx

1 + cos2 x
=

π2

4
, (2.7.20)
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where G denotes Catalan’s constant

G =
∞∑

n=0

(−1)n

(2n + 1)2
.

We might add that Catalan’s constant is widely believed to be irrational, but
this has never been proved. Using an integer relation tool, together with a
high-precision numerical value of Catalan (which can easily be found by typing
N[Catalan, 100] in Mathematica), you can see that it is not a root of an integer
polynomial with reasonable degree and reasonable-sized coefficients.

As an exercise, we challenge you to evaluate

∫ π/4

0

t3 dt

sin2(t)
.

Other examples of numerical identification of definite integrals will be presented
in Section 7.4 of the second volume of this work.

As a second example, as we shall see in Section 3.1, rational linear com-
binations of arctangent formulas can be devised to produce relatively efficient
algorithms for computing π. In fact, such formulas have been used for centuries.
One approach to finding such formulas is to analytically derive them. Another
approach is to simply explore for them using the numerical values of individual
arctan formulas. For instance, by computing values of the individual arctans
below to moderately high precision, and applying an integer relation tool, one
can easily deduce the relations

π = 48 arctan
1

49
+ 128 arctan

1

57
− 20 arctan

1

239
+ 48 arctan

1

110443

π = 176 arctan
1

57
+ 28 arctan

1

239
− 48 arctan

1

682
+ 96 arctan

1

12943
.

(2.7.21)

One way to do this is by using the “Experimental Mathematician’s Toolkit,”
which is available at http://www.expmath.info. Type the string

pslq[pi, arctan[1/49], arctan[1/57], arctan[1/239],
arctan[1/110443]]
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and you will obtain the vector (1,−48,−128, 20,−48), which gives the first for-
mula of (2.7.21). These particular formulas were used by Kanada in his latest
computation of π to more than one trillion decimal digits.

A third example, one of the most remarkable examples of constant recognition
in the literature, is due to Ronald Graham and Henry Pollak [101]. They were
studying the sequences (an) and (bn), defined by a0 = m, then

an+1 = b
√

2an(an + 1)c (2.7.22)

followed by

bn = a2n+1 − 2a2n−1. (2.7.23)

Can the sequence (an) and/or (bn) be identified? Graham and Pollak found that
if you define the constants α(m), for integers m ≥ 1,

α(m) = 0.b1b2b3 · · ·2 , (2.7.24)

meaning that the sequence (bn) is to be interpreted as the binary expansion of
the constant α(m), then the resulting constants are simple algebraic numbers.
In particular,

α(1) =
√

2− 1

α(2) =
√

2− 1

α(3) = 2
√

2− 2

α(4) = 2
√

2− 2

α(5) = 3
√

2− 4

α(6) = 4
√

2− 5

α(7) = 3
√

2− 4

α(8) = 5
√

2− 7

α(9) = 4
√

2− 5

α(10) = 6
√

2− 8.

This recognition led to an explicit formula for the sequence (an) as

an = bτ(2(n−1)/2 + 2(n−1)/2)c, (2.7.25)
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where τ is the m-th smallest real number in the set {1, 2, 3, · · · }∪ {√2, 2
√

2,
3
√

2, · · · }. See [101] for complete details. It is not known if generalized sequences
such as

an+1 = b
√

3an(an + 1)c (2.7.26)

an+1 = b 3
√

2an(an + 1)(an + 2)c (2.7.27)

have analogous properties.
We will discuss constant recognition techniques more in Section 6.3.

2.8 Prime Numbers and the Zeta Function

The oldest systematic treatment of prime numbers is in Euclid’s Elements, writ-
ten about 300 BCE. Euclid’s results on prime numbers, like his results on geom-
etry, are presented entirely as theorems and proofs, with scarcely any motivating
examples or mention of how these results were first discovered. Thus it is not
possible to learn to what extent experimental methods were used in the original
discovery of these principles. In more recent times, we have written accounts of
the discoveries of various prime number results, and we can find several clear
examples of experimental mathematics in action. As a canonical example, in
1849 Gauss recounted his analysis of the density of prime numbers:

I pondered this problem as a boy, in 1792 or 1793, and found that the
density of primes around t is 1/ log t, so that the number of primes
up to a given bound x is approximately

∫ x

2
dt/ log t. [103, 99]

Formal proof that the above approximation is asymptotically correct, which
is now known as the Prime Number Theorem, did not come until 1896, more
than 100 years after Gauss’ experimental discovery [78]. In his writings on the
subject, Gauss expressed a fascination with prime numbers that is reminiscent
of the fascination other mathematicians have expressed with the digits of π:

The problem of distinguishing prime numbers from composite num-
bers and of resolving the latter into their prime factors is known to
be one of the most important and useful in arithmetic. It has en-
gaged the industry and wisdom of ancient and modern geometers to
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such an extent that it would be superfluous to discuss the problem at
length. . . . Further, the dignity of the science itself seems to require
that every possible means be explored for the solution of a problem
so elegant and so celebrated. [95, Article 329 (1801)]

This fascination with prime numbers has not diminished in the 201 years
since this was written. Compare for example the comments of Don Zagier, in a
recent article analyzing the first 50 million prime numbers:

[T]here is no apparent reason why one number is prime and another
not. To the contrary, upon looking at these numbers one has the
feeling of being in the presence of one of the inexplicable secrets of
creation. [194]

In recent years, with the advent of computers, the prime-counting function
π(x) has been tabulated precisely for rather large values of x. This has been done
by using some rather advanced techniques that we will not describe here. Inter-
ested readers are referred to the new book, Prime Numbers: A Computational
Perspective, by Richard Crandall and Carl Pomerance [78], where two different
advanced techniques are presented. Table 2.2 gives values of π(x) for powers of
ten up to 1022, together with the corresponding values of the approximate for-
mula given by the Prime Number Theorem, and the differences

∫ x

2
dt/ log t−π(x).

The last-listed and most recent calculation is due to P. Demichel and X. Gour-
don (February 2001). This data was obtained from Eric Weisstein’s very useful
“World of Mathematics” web site http://mathworld.wolfram.com.

One of the principal motivations of computing values of the prime-counting
function π(x) is to explore a fascinating and highly promising connection to the
Riemann zeta function, a discovery which is a classic example of an experimental
approach to mathematical research. The following material is adapted in part
from an excellent and very readable article by Andrew Granville [103].

In examining the data in Table 2.2, we observe that the overcount values
in the last column appear to be roughly

√
x. Thus one might think that by

subtracting
√

x, one would get an asymptotically better approximation. This
is not the case—in 1914, Littlewood proved that the differences between π(x)
and Gauss’ approximation change sign infinitely often. In 1933, Skewes showed

that the first sign change must occur at least by 10101034

, a number known as
the Skewes number because of its prodigious size (see [78], Exercise 1.35). This
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x π(x)
∫ x

2
dt/ log t Difference

101 4 5 1
102 25 29 4
103 168 177 9
104 1229 1245 16
105 9592 9629 37
106 78498 78627 129
107 6 64579 6 64917 338
108 57 61455 57 62208 753
109 508 47534 508 49234 1700
1010 4550 52511 4550 55614 3103
1011 41180 54813 41180 66400 11587
1012 3 76079 12018 3 76079 50280 38262
1013 34 60655 36839 34 60656 45809 1 08970
1014 320 49417 50802 320 49420 65691 3 14889
1015 2984 45704 22669 2984 45714 75287 10 52618
1016 27923 83410 33925 27923 83442 48556 32 14631
1017 2 62355 71576 54233 2 62355 71656 10821 79 56588
1018 24 73995 42877 40860 24 73995 43096 90414 219 49554
1019 234 05766 72763 44607 234 05766 73762 22381 998 77774
1020 2220 81960 25609 18840 2220 81960 27836 63483 2227 44643
1021 21127 26948 60187 31928 21127 26948 66161 26181 5973 94253
1022 2 01467 28668 93159 06290 2 01467 28669 12482 61497 19323 55207

Table 2.2: The prime-counting function π(x) and Gauss’ approximation.
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bound has recently been reduced to a “tiny” number, a mere 10316 [103]. Lit-
tlewood [143, pg. 110–112] gives a fascinating discussion of his interaction with
Skewes.

A key development in this area stems from Riemann’s discovery in 1859 that

π(x)− ∫ x

2
dt/ log t√

x/ log x
≈ −1− 2

∑
γ∈S

sin(γ log x)

γ
, (2.8.28)

where S is the set of γ such that γ > 0 and 1/2 + iγ is a zero of the Riemann
zeta function ζ(s) =

∑
k>0 1/ks. The left-hand side of (2.8.28) is simply the

overcount noted in Table 2.2, divided by what we earlier observed to be the
apparent size of the error term, namely

√
x/ log x (a more accurate version of

the approximation
√

x). The right-hand side of (2.8.28) is suggestive of a Fourier
series—it is as if the prime numbers have “music” in them.

In Riemann’s 1859 memoir, in which he presented this approximation formula
(2.8.28), he noted that the result was contingent upon (actually equivalent to) the
hypothesis that the only zeroes of ζ(s) for complex numbers s = σ + iγ with 0 ≤
σ ≤ 1 are for σ = 1/2 [171]. This is the famous Riemann Hypothesis, whose proof
has eluded the best mathematicians for nearly 150 years. Photocopies of the first
two pages of Riemann’s memoir on the zeta function, stored in Göttingen, are
shown in Figures 2.8 and 2.9.

Riemann’s 1859 memoir did not contain any clues as to how he was led to
make this conjecture. For many years mathematicians believed that Riemann
had come to this conjecture on the basis of some profound intuition. Indeed,
the Riemann Hypothesis has been held up as a premier example of the heights
one could attain by sheer intellect alone. In 1929, long after Riemann’s death,
the renowned number theorist Carl Ludwig Siegel (1896–1981) learned that Rie-
mann’s widow had donated his working papers to the Göttingen University li-
brary. Among these papers Siegel found several pages of heavy-duty numerical
calculations, with a number of the lowest-order zeroes of the zeta function cal-
culated to several decimal places each. As Andrew Granville has observed, “So
much for pure thought alone” [103]. The Riemann-Siegel formula is developed
further in Item 2 of Chapter 3 in the second volume.

In 1936 Cramer proposed a probabilistic model of the primes. In particular,
he defined a sequence X3, X4, · · · of independent random variables on {0, 1}
with P (Xn = 1) = 1/ log n, and P (Xn = 0) = 1 − 1/ log n (here, P denotes
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Figure 2.8: Page one of Riemann’s 1859 manuscript.
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Figure 2.9: Page two of Riemann’s 1859 manuscript.
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probability). This turns out to be a fairly good model for occurrence of prime
numbers. In fact, it can be shown that

lim
n→∞

∑
x≤n≤x+h Xn∫ x+h

x
dt/ log t

= 1 (2.8.29)

with probability 1. In such comparisons of statistical distributions, it is natural
to consider the variance,

V = E

( ∑

x≤n≤x+h

Xn −
∫ x+h

x

dt

log t

)2

. (2.8.30)

(here, E denotes expected value). Unfortunately, it can be shown that this
variance is not the same as the corresponding statistical variance of the prime
counting function π(x). In Figure 2.10, we show 100 zeroes of the zeta function,
beginning with the (1021 + 1)-th zero, displayed as the dotted line, with pseudo-
random numbers (added and scaled to the endpoints of the graph) displayed
as the dashed line for comparison. The ranks of the zeroes, minus (1021 + 1),
are plotted on the x-axis, while the imaginary parts of the zeroes, minus the
imaginary part of the (1021+1)-th zero (namely 144176897509546973538.498 . . .),
are plotted on the y axis. It is clear from this plot that the zeroes of the Riemann
zeta function are hardly “randomly” spaced—they adhere to a straight line much
more closely than the pseudorandom data. It is as if the zeroes of the Riemann
zeta function consciously “repel” each other, so as to stay much closer to constant
spacing.

Given how well Gauss’ model has worked in the past, this breakdown was
both unexpected and disconcerting. As Paul Erdős wrote, “God may not play
dice with the universe, but something strange is going on with the primes.” [147]

In 1976, Julia Mueller revisited the question of the variance of the prime
counts in her PhD dissertation. Building on her work, Daniel Goldston and Hugh
Montgomery soon made the remarkable discovery that a good understanding of
the variance is actually equivalent to the spacing between pairs of zeroes of
the zeta function. Three years earlier, while investigating a different question
of number theory, Montgomery had been led to the following conjecture: The
expected number of zeroes of the zeta function in a gap of length T times the
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Figure 2.10: ζ function zeroes (dotted) vs pseudo-random data (dashed)
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average gap, following a zero, is

∫ T

0

(
1−

(
sin πu

πu

)2
)

du. (2.8.31)

If the zeroes of the zeta function were randomly spaced, this value would simply
be T . This conjecture agrees with the observed repulsion of zeroes, as observed in
Figure 2.10. For example, we would expect to find another zero within 0.01 times
the average spacing roughly one time in 100 trials for random spacing, whereas
this formula predicts that such close spacing would occur only one time in nearly
1,000,000 instances. We can compare how closely this data matches with actual
nearest-neighbor spacing for the zeta function, by examining calculated data by
Andrew Odlyzko [158]. Figure 2.11 shows this spacing data based on a billion
zeroes near the 1.3× 1016-th zero.

As you can see from this graph, this function agrees extremely well with the
experimentally measured spacings. Montgomery has now partially proven that
his conjecture is correct—he has shown that the Fourier transform of his distri-
bution function is correct in a small range, assuming the Riemann Hypothesis.

The next step in this saga is even more remarkable. Soon after his exper-
imental discovery on the prime counts and zero spacing, Montgomery visited
the Institute for Advanced Study in Princeton, hoping to discuss his new ideas
with Selberg and Bombieri, who were both at the Institute at the time. In a
communal afternoon tea, Montgomery happened to chat with Freeman Dyson,
the renowned mathematical physicist (although he originally was a number the-
orist). When Montgomery told Dyson of his new ideas on the zeroes of the
Riemann zeta function, Dyson responded that he was very familiar with this
problem, and in fact was even aware of the issue of the spacing of the zeroes.
But it wasn’t from number theory that Dyson was aware of these phenomena;
instead, Dyson had encountered these questions through quantum mechanics.
In fact, Montgomery’s distribution was precisely the function that Dyson had
found ten years earlier when modeling energy levels in quantum chaos. These
researchers immediately realized that this serendipitious coincidence would likely
lead to more progress on both the number theory and quantum physics fronts.

The quantum chaos equations are comparatively simpler than those of prime
number theory, and so they were better understood. As a result, there was a
flurry of new activity in the field. Researchers focused not only on close pairs of
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Figure 2.11: Nearest neighbor spacing versus Montgomery’s distribution.
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zeroes, but also three-at-a-time correlations and n-at-a-time correlations. How-
ever, it was 20 years later (1994) before Rudnick and Sarnak proved the quantum
mechanics analogue of Montgomery’s result (that the Fourier transform of the
distribution function is correct in a small range, assuming the Riemann Hypoth-
esis) [174]. Then in 1996, two mathematical physicists (Bogolmony and Keating)
rederived the Montgomery-Dyson prediction for n-at-a-time correlations from a
new angle. They took a classic conjecture of number theory, namely the Hardy-
Littlewood version of the prime k-tuplets conjecture, and showed that this also
led to a similar conclusion [40]. Since then there has been a flurry of new re-
search in this area, both on the number theory and mathematical physics fronts.
These developments have led some in the field to optimistically predict that the
long-sought proof of the Riemann Hypothesis may be at hand. As Michael Berry
said in 2000,

I have a feeling that the Riemann Hypothesis will be cracked in the
next few years. I see the strands coming together. Someone will soon
get the million dollars. [130]

The million dollars Berry mentions here refers to a prize that has been offered
for the proof of the Riemann Hypothesis (and for several other outstanding
mathematical problems) by the Clay Mathematics Institute. Details of this
prize are available on the Clay Institute web site http://www.claymath.org. A
very readable recent survey is to be found in [73].

2.9 Two Observations about
√

2

As we observed earlier in the discussion of Pascal’s triangle, it is still possible
to find new insights even in the oldest areas of mathematics. We illustrate
this principle again with two intriguing observations on that oldest of irrational
constants, the square root of two.

2.9.1 Irrationality

We first present Tom Apostol’s lovely new geometric proof of the irrationality
of
√

2 [6].
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Figure 2.12: Root two is irrational.

Proof. To say
√

2 is rational is to draw a right-angled isoceles triangle with
integer sides. Consider the smallest right-angled isoceles triangle with integer
sides—that is with shortest hypotenuse.

Suppose ABC is that triangle with apex A and hypotenuse AC. Draw a circle
centered at A of length AB and mark the point D where it cuts the hypotenuse.
Now draw the tangent to the circle at D and mark the point E where it cuts the
base of the triangle. Then DEC is a smaller isoceles right-angled triangle and
again has integer sides (see Figure 2.12). This is a contradiction. 2

As Figure 2.12 suggests, this can be beautifully illustrated in a dynamic
geometry package such as Geometer’s Sketchpad or Cinderella. We can continue
to draw smaller and smaller integer-sided similar triangles until the area drops
below 1

2
. But we give it here to emphasize the ineffably human component of

the best proofs, and to suggest the role of the visual.
Algebraically this leads to the following proof that nonperfect squares have

irrational roots: If p/q =
√

n, then

p′

q′
=

n q − b√nc p

p− b√nc q
=

p

q
(2.9.32)
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and 0 < p′ < p, 0 < q′ < q. It is left to the reader to convert this into a picture
along the lines of Figure 2.12.

2.9.2 Rationality

Ironically,
√

2 can sometimes make things rational:

(√
2
√

2
)√

2

=
√

2
(
√

2·√2)
=
√

2
2

= 2. (2.9.33)

Hence, by the principle of the excluded middle ,

either
√

2
√

2 ∈ Q or
√

2
√

2
/∈ Q.

In either case, we can deduce that there are irrational numbers α and β with
αβ rational. But how do we know which ones? This is not an adequate proof for
an Intuitionist nor a Constructivist. It is entirely ineffective, and we may build

a whole mathematical philosophy project around such issues. Actually,
√

2
√

2
is

transcendental by the Gelfond-Schneider theorem (Exercise 28), but proofs of
this are hard and usually suffer from the same flaws.

It is instructive to compare this result with the assertion that α =
√

2 and
β = 2 log2(3) yield αβ = 3 as Mathematica confirms. This illustrates nicely that
verification is often easier than discovery. Similarly, the fact that multiplication
is easier than factorization is at the base of secure encryption schemes for e-
commerce.

Indeed, there are eight possible rational/irrational triples: αβ = γ; finding
examples of all cases is now a good exercise (Exercise 29). Note how much can be
taught about computation with rational numbers, approximation to irrationals,
rates of convergence, etc. from these simple pieces.

We close the section with a description of the meeting between the inventor
of logarithms (John Napier) and the scientist who made them into technology
(Henry Briggs) [188]:

[W]here almost one quarter hour was spent, each beholding the other
with admiration before one word was spoken: at last Mr. Briggs
began “My Lord, I have undertaken this long journey purposely to
see your person, and to know by what wit or ingenuity you first
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came to think of this most excellent help unto Astronomy, viz. the
Logarithms: but my Lord, being by you found out, I wonder nobody
else found it out before, when now being known it appears so easy.”

2.10 Commentary and Additional Examples

1. The hardest possible proof? Use Fermat’s last theorem to prove 21/n

is irrational for integer n > 2. Generalize.

2. The final digit of a sum. Problem: Determine the final digit `n of
σn =

∑n
k=1 k. (Taken from [106]).

Solution: Computational experimentation shows the pattern repeats mod-
ulo 20; `n+20 = `n mod 20 is easily proven from σn+20 = σn +

∑n+20
n+1 k.

3. The 3x+1 problem. This is a classic example of an innocent looking,
but highly intractable problem:

For integer x, let T (x) = (3x + 1)/2 for x odd and x/2 for x
even. The 3x + 1 conjecture is that starting from any positive
integer n, repeated iteration of T eventually returns to 1.

This problem is best described in the interactive article by Jeff Lagarias at
http://www.cecm.sfu.ca/organics/papers/lagarias (see also [137]), with
records stored at http://www.ieeta.pt/~tos/3x+1.html. This conjecture
has been “checked” to at least 100 · 250.

4. Limit of a simple iteration. Establish the limit of the iteration that
starts with a0 = 0, a1 = 1/2 and iterates an+1 = (1 + an + a3

n−1)/3, for
n > 1. Determine what happens as a1 = a is allowed to vary.

5. Putnam problem 1985–B5. Evaluate

K =

∫ ∞

0

t−1/2e−1985(t+t−1) dt.

Answer: K =
√

πe−3970/
√

1985. The Putnam problems listed here and in
subsequent chapters are taken from [128]. Hint: This is problematic to
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evaluate numerically as stated, since its value is tiny. So consider instead
K(α) =

∫∞
0

t−1/2e−α(t+t−1) dt for some other specific (or general) constant
α.

6. Putnam problem 1987–A6. Let n be a positive integer and let a3(n) be
the number of zeroes in the ternary expansion of n. Determine for which
positive x the series

∑∞
n=1 xa3(n)/n3 converges. Answer: For x < 25. In

the b-ary analogue,
∑∞

n=1 xab(n)/nb converges if and only if x < bb − b + 1.

7. Putnam problem 1987–B1. Evaluate

∫ 4

2

√
log (9− x)√

log (9− x) +
√

log (3 + x)
dx (= 1).

8. Putnam problem 1991–A5. Find the supremum of

∫ y

0

√
x4 + (y − y2)2 dx,

for 0 ≤ y ≤ 1. Hint: Plot the function.

9. Putnam problem 1992–A2. Evaluate

∫ 1

0

C(−y − 1)
1992∑

k=1

1

y + k
dy,

where C(α) is the coefficient of x1992 in the Maclaurin expansion of (1+x)α.
Answer: 1992.

10. Putnam problem 1992–B3. Consider the dynamical system generated
by a0 = x and

an+1 =
y2 + a2

n

2
,

for n ≥ 0. Determine the region in the plane for which the iteration
converges. What is its area? Hint: Try computing some values and plot
the results. Assuming without loss of generality x, y > 0, the limit must
satisfy 2` − `2 = y2. Thus the region defined is the convex hull of unit
circles centered at (±1, 0). Answer: π + 4.
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11. Random projections. Consider a arbitrary point inside a triangle. De-
termine what happens asymptotically when the point is projected to suc-
cessive sides of the triangle, where the side is selected either in cyclical
order or pseudo-randomly. Hint: Consider first what happens in an obtuse
triangle.

12. Putnam problem 1995–B4. Determine a simple expression for

σ =
8

√√√√√√
2207− 1

2207− 1

2207− 1

2207− · · ·

. (2.10.34)

Hint: Calculate this limit to 15 decimal place accuracy, using ordinary
double-precision arithmetic. Then use the ISC tool, with the “integer
relation algorithm” option, to recognize the constant as a simple algebraic
number. The result can be proved by noting that σ8 = 2207 − 1/σ8, so
that σ4 + σ−4 = 47. Answer: (3 +

√
5)/2.

13. Berkeley problem 1.1.35. Find the derivative at x = 0 of

∫ cos(x)

sin(x)

et2+xt dt.

Hint: Plot it. Answer = (e− 3)/2. The Berkeley problems listed here and
in subsequent chapters are taken from [84].

14. Berkeley problem 7.6.6. Compute A106
and A−7 for A =

[
3/2 1/2

−1/2 1/2

]
.

Hint: Use Mathematica or Maple to evaluate An for various integers n.

15. Two radical expressions. (From [113, pg. 81, 84]). Express

3

√
cos

(
2

7
π

)
+ 3

√
cos

(
4

7
π

)
+ 3

√
cos

(
6

7
π

)

3

√
cos

(
2

9
π

)
+ 3

√
cos

(
4

9
π

)
+ 3

√
cos

(
8

9
π

)
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as radicals. Hint: Calculate to high precision, then use the ISC tool to
find the polynomial they satisfy.

Answers: 3

√
1
2
(5− 3 3

√
7) and 3

√
3
2

3
√

9− 3.

16. Some simple continued fractions. Compute the simple continued frac-
tion for e, (e− 1)/2, e2, log(2), log(10), 31/2, 21/3, π, π/2, eπ, and πe.

17. Crandall’s continued fraction. Compute, then guess and prove, the
continued fraction for

√
2
e
√

2 + 1

e
√

2 − 1
,

which fraction is manifestly not periodic, proving in this way that e
√

2 is
irrational. Richard Crandall informs us that this (in 1968) was the first
and perhaps only interesting thing he ever proved all by himself.

18. Putnam problem 1988–B2. Prove or disprove: If x and y are real
numbers with y ≥ 0 and y(y + 1) ≤ (x + 1)2, then y(y − 1) ≤ x2. Hint:
Plot it.

19. Putnam problem 1989–A3. Show that all roots of

11 z10 + 10 iz9 + 10 iz − 11 = 0

lie on the unit circle. Hint: This can be solved explicitly using Maple, Math-
ematica, or a custom-written root-finding program that employs Newton
iterations. A detailed discussion of polynomial root-finding techniques can
be found in Section 7.3 of the second volume.

20. Putnam problem 1992–A3. For a given positive integer m find all
triples (n, x, y) of positive integers with (n,m) = 1 solving (x2 + y2)m =
(xy)n. Hint: Using a symbolic math program, try finding solutions for
various integer pairs x, y. Answer: The only solution is (m + 1, 2m/2, 2m/2)
for m even.

21. Berkeley problem 6.11.5. Prove that
√

2 + 3
√

3 is irrational. Hint: Use
Maple or Mathematica to find the minimum polynomial of this constant.
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22. Fateman’s web integrator. Richard Fateman maintains an on line inte-
gration tool, http://torte.cs.berkeley.edu:8010/tilu. In its early days,
as much as two of every three requests were ill formed; to address this, the
interface performs a significant amount of heuristic work to decide what
users intend by expressions such as

∫
ax + bx

cx + dx
dx or

∫
sinx]dx.

The tool also runs directly runs on the Macintosh graphing calculator.

23. The happy end problem. The happy end problem is to find, for n ≥ 3,
the smallest positive integer N(n) such that any set of N(n) points, no
three of which are collinear, must contain n points that are the vertices of
a convex n-gon. It is so called because Ester Klein, who posed the problem,
married George Szekeres shortly after he and Paul Erdős proved the first
bounds on the problem [144]. It is still open [144].

24. The Mann iteration. For any continuous function f : [0, 1] 7→ [0, 1], the
iteration x0 = x ∈ [0, 1] and

xn =
1

n

n−1∑

k=0

f(xk)

(the Césaro average) always converges to a fixed point of f . One can
study many other summability methods similarly. Since the function can
be highly obstreperous, this is largely a theoretical real-variable iteration,
albeit a beautiful one. Easy examples will convince one of how painfully
slow or unstable convergence can be. This is especially understandable in
light of

Theorem 2.10.1 (Sharkovsky). If a continuous self-mapping of the re-
als, f , possesses a periodic point of order m, then f will possess a periodic
point of order n, precisely when n follows m in the following ordering of
the natural numbers:

3, 5, 7, · · · 23, 25, 27, · · · 223, 225, 227, · · · 233, 235, 237, · · · , · · · , 23, 222, 2, 1.
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In particular this includes the famous result of Li and Yorke to the effect
that “period three implies chaos.”

25. Finding coefficients of an integer polynomial. The numerical iden-
tification methods described here work especially well when you know a
priori that a given integral, sum or other constant is a linear combina-
tion of given quantities, and you wish only to obtain the precise integer
coefficients. For example, if you are told that, for any integer N > 0,

∞∑
n=0

nne−n

(n + N)!

evaluates to a polynomial of degree N in e, then it is an easy matter, for
any given small N , to pick off the integers. Indeed, for N < 10, say, you
can discover that

QN =
∞∑

n=0

nne−n

(n + N)!
−

N∑

k=1

(−1)k−1ek

(N − k)! kk
(2.10.35)

is a rational number. The first four are −1,−1/4,−7/108, −97/6912.
Continuing in this manner, you can ultimately discover that

QN =
N∑

k=1

(−1)k

(N − k)!kk

k−1∑
n=0

kn

n!
. (2.10.36)

This relies on replacing exp(−n) by its series, exchanging order of summa-
tion, and then discovering and deriving the identity

n∑

k=0

(−1)k kn

(
N + n

N + k

)
= (−1)n

N∑

k=1

kn(−1)k−1

(
N + n

N − k

)
(2.10.37)

or equivalently

M+N∑

k=0

(−1)k (M − k)M

(
M + N

k

)
= 0 (2.10.38)
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for all M,N > 0. This in turn follows (using the binomial theorem) from

P∑

k=0

(−1)k kn

(
P

k

)
= 0, (2.10.39)

for all 0 ≤ n < P . The final identity (2.10.39) is established by setting
Df(x) = xf ′(x) and observing that Dk(1− x)P has a zero at 1 for k < P .

26. A taste of J. E. Littlewood’s Miscellany. We record a variety of obser-
vations, mathematical, stylistic and personal from Littlewood’s wonderful
Miscellany, a collection originally published in 1953, but republished with
an excellent introduction by Béla Bollobás in 1988 [143]. More of Little-
wood is to be found at the end of Chapter 4 of the second volume.

(a) (Entry (10) page 28) Dissection of squares and cubes into squares and
cubes, finite in number and all unequal. “The square dissection is pos-
sible in an infinity of different ways (the simplest, due to Duijvestijn,
is shown in [Figure 2.13]). A cube dissection is not possible.” The
proof of the second is short and elegant.

(b) (Entry (19) page 32) An isoperimerical problem: an area of (greatest)
diameter not greater than 1 is at most 1

4
π.

Outline: “It is easy to see that we may suppose the area convex and
on one side of one of its ‘tangents’.” With polar coordinates

area =
1

2

∫ π
2

0

(
r2(θ) + r2(θ − π

2
)
)

dθ,

and the integrand never exceeds one.

(c) (Page 38) Kakeya’s problem. “Find the region of least area in which a
segment of unit length can turn continuously through 360o (minimize
the area swept over). It was long thought that the answer was as in
[Figure 2.14] and the area 1

8
π. In 1930 [sic], however, A. S. Besicovitch,

(Math. Zeit. 27 (1928), 312–320.) showed that the answer is zero
area (unattained): given an arbitrarily small ε the area swept can be
less than ε.”

(d) (§2, Misprints, page 56)
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Figure 2.13: Duijvestijn’s dissection.



96 CHAPTER 2. EXPERIMENTAL MATHEMATICS IN ACTION
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Figure 2.14: Kakeya’s conjectured answer—the three-cusp hypocycloid.

“I once challenged Hardy to find a misprint on a certain page
of a joint paper. He failed: it was in his own name ‘G, H.
Hardy’.”

“A minute I wrote (about 1917) for the Ballistics office ended
with the sentence ‘Thus σ should be made as small as pos-
sible.’ This did not appear in the printed minute. But P. J.
Brigg said ‘What is that?’ A speck in the blank space turned
out to be the tiniest σ I have ever seen (the printers must
have scoured London for it.).”

27. The hypocycloid. Cartesian coordinates are given by

x = (a− b) cos(t) + b cos ((a/b− 1)t) , y = (a− b) sin(t)− b sin ((a/b− 1)t)

for a > b > 0. This is plotted for a = 1, b = 2/3 in Figure 2.14.

An excellent source for curves is http://www-gap.dcs.st-and.ac.uk/

history/Curves/Curves.html.

28. The Gelfond-Schneider theorem. This is the result that for complex
algebraic numbers α 6= 0, 1 and β irrational, the quantity αβ is transcen-
dental. It follows that
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Figure 2.15: Donald Coxeter’s own kaleidoscope

(a)
√

2
√

2
is transcendental; and

(b) eπ = (−1)−i is transcendental.

29. Eight solutions. Find examples of all eight rational and irrational pos-
sibilities of αβ = γ.

30. Quantum connections. Another connection between quantum theory
and the Riemann zeta is the observation, by Richard Crandall in 1991,
that there exists an initial wave function ψ(x, 0)—having no zero-crossings
whatever (it looks like a “bell curve,” for example)—which, under standard
Schroedinger propagation, has evolved at a certain time T into a ψ(x, T )
with infinitely many zero-crossings, each such zero corresponding to a crit-
ical zero of ζ(1/2 + ix). It is not yet known whether there are additional
consequences of this observation. Some details are given in [78].

31. H. S. M. (Donald) Coxeter (1907–2003). The renowned Canadian
geometer H. S. M. Coxeter passed away in late March 2003. Coxeter was
known for making extensive use of physical models in his research. A
portion of his collection is on display at the University of Toronto, where
he worked for 67 years. The model shown in Figure 2.15 now resides at
York University in Toronto.

Among his numerous published books, Regular Complex Polytopes, for ex-
ample, is lavishly illustrated with beautiful and often intricate figures. He
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was a friend of Maurits C. Escher, the graphic artist. In a 1997 paper, Cox-
eter showed that Escher, despite knowing no mathematics, had achieved
“mathematical perfection” in his etching “Circle Limit III.” “Escher did it
by instinct,” Donald Coxeter noted, “I did it by trigonometry.”

His Introduction to Geometry was widely used as a text for university
courses in geometry. The spirit of his work is perhaps best captured by
a quote from Bertrand Russell that Coxeter includes in the preface to
Introduction to Geometry:

Mathematics, rightly viewed, possesses not only truth, but su-
preme beauty—a beauty cold and austere, without appeal to
any part of our weaker nature, without the gorgeous trappings
of painting or music, yet sublimely pure, and capable of a stern
perfection such as only the greatest art can show. [175, pg. 73]

This quote is doubly interesting given the fact that Russell may have
been responsible for Coxeter pursuing a mathematical career, according
to Arthur Sherk, the executor for Coxeter’s mathematics. Russell, who
was a family friend, read a prize-winning essay on dimensionality that
Coxeter wrote at age 16. He then told Coxeter’s father that his son was
unusually gifted mathematically, and urged him to change the direction of
Coxeter’s education.

Along this line, Robert Moody wrote the following, in a letter supporting
Coxeter’s nomination to receive an honorary doctorate at York University
in Toronto, Canada:

Modern science is often driven by fads and fashion, and mathe-
matics is no exception. Coxeter’s style, I would say, is singularly
unfashionable. He is guided, I think, almost completely by a
profound sense of what is beautiful.

Two sculptures based on Coxeter’s work decorate the Fields Institute in
Toronto. One, hanging from the ceiling, is a three-dimensional projection
of a four-dimensional regular polytope whose 120 faces are dodecahedrons
as shown in Figure 2.16.

Coxeter’s fascination with geometry extended beyond the purely intellec-
tual. For example, he was intrigued by the suggestion that Einstein’s brain
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Figure 2.16: A projection of a four dimensional polytope.

exhibited unusual bilateral symmetry, which in part accounted for his ge-
nius, and has made provision for his brain to be similarly examined.

David Mumford recently commented that Coxeter placed great value on
working out the details of complicated explicit examples:

In my book, Coxeter has been one of the most important 20th
century mathematicians—not because he started a new perspec-
tive, but because he deepened and extended so beautifully an
older esthetic. The classical goal of geometry is the exploration
and enumeration of geometric configurations of all kinds, their
symmetries and the constructions relating them to each other.
The goal is not especially to prove theorems but to discover
these perfect objects and, in doing this, theorems are only a tool
that imperfect humans need to reassure themselves that they
have seen them correctly. This is a flower garden whose beauty
has almost been forgotten in the 20th century rush to abstrac-
tion and generality. I share Coxeter’s love of this perspective,



100 CHAPTER 2. EXPERIMENTAL MATHEMATICS IN ACTION

which has deep roots in algebraic as well as Euclidean geom-
etry. I always found the algebraic roots-and-weights approach
to Lie groups arid and unsatisfying until I found Coxeter’s work
fleshing this out with a rich tapestry of examples. My own inter-
est in explicit compactifications of the moduli space of Abelian
varieties led me to wonderful parts of his work on explicit fun-
damental domains for quadratic forms modulo GLn(Z). In the
21st century, I think we see signs of a renewed appreciation of
the significance of the classical geometry mode in mathematics,
perhaps linked with having easily usable computational tools. I
trust that this perspective will never die. [156]

A color illustration of the octahedral kaleidoscope Coxeter had built is
shown in Chapter 8. Asia Weiss writes

The kaleidoscope was not built by Coxeter, but rather designed
by him and made in a workshop in London, England I believe
in the late 1920s. . . . Two kaleidoscopes were made: octahedral
and icosahedral. (As the tetrahedral group is a subgroup in the
octahedral group, the tetrahedral kaleidoscope was not made.)
We also have the icosahedral one, but this one is damaged and
I did not have it repaired as yet. [191]

32. Math meets ice. Figure 8.5 in the Color Supplement (Chapter 8) shows
Helaman Ferguson’s Costa surface sculpture, which he entered in the In-
ternational Snow Sculpture Championship held at Breckenridge, Colorado,
January 19-24, 1999 [70]. This piece was entitled “Invisible Handshake,”
because it is the space between two hands just before they clasp. Ferguson
carved this piece with the assistance of Stan Wagon, Dan Schwalbe, Tomas
Nemeth, and (posthumously) Alfred Gray. Here is Ferguson’s account:

I choose this negative Gaussian curvature geometric form specif-
ically because of the material properties of snow. Snow with its
fair compressive strength and poor tensile strength is a carica-
ture of stone. But negative Gaussian curvature, even in snow,
presents a fabric of saddle points everywhere. Each point of
the surface is the keystone of a pair of principal arches. There
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were 14 other snow sculptures completed at the Breckenridge
affair; a week later they all completely imploded in the heat
wave. Our negative Gaussian curvature snow carving stood, re-
tained its structure, sublimed, thinned, gracile. (Taken from
http://www.helasculpt.com.)

33. Mathematics of Ferguson’s sculptures. The quotient group corre-
sponding to Ferguson’s “Eight-Fold Way” sculpture is a certain subgroup
of SL2(Z), i.e., the set of invertible, unit-determinant 2× 2 matrices with
integer entries. One particular subgroup of SL2(Z) corresponds to a tes-
sellation of the hyperbolic circle by 7-gons. This design is used as the
tiled base of Ferguson’s “Eight-Fold Way,” which is at the Mathematical
Sciences Research Institute in Berkeley, CA. Another subgroup has a fun-
damental domain of 24 seven-gons, which has identifications corresponding
to the surface of the marble sculpture above the base.

Ferguson’s “Figure-Eight Knot Complement II” sculpture corresponds to
a certain subgroup of index 12 in the Bianchii group, which is SL2(Z[ω3]),
where ω3 = (−1 + i

√
3)/2 is a third root of unity. Let Γ denote the

multiplicative group of 2× 2 matrices generated by the matrices

[
1 0
0 ω3

]
and

[
0 −1
1 0

]
. (2.10.40)

This Γ is the fundamental group of the figure-eight knot complement.
The complement is the double quotient U2\SL2(C)/Γ, where U2 is the
group of unitary matrices (i.e., inverse is conjugate transpose) in C. The
first quotient U2\SL2(C) is geometrically the three-dimensional hyperbolic
space. This group Γ is an “arithmetic” subgroup of SL2(C). The group
SL2(Z[ω3]) is known as the Eisenstein integers, a ring of algebraic inte-
gers. The figure-eight knot is absolutely unique in this respect—there is
no other knot with this double quotient possessing the discrete group arith-
metic property. For further details of the group-theoretic structure of these
objects, see [186].

34. Clausen’s function and the figure-eight knot complement volume.
As we saw in Section 2.4, the volume of the figure-eight knot complement
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is given by Equation (2.4.14). That is,

V =
2√
27

∞∑

k=0

(−1

27

)k (
9

(6k + 1)2
− 9

(6k + 2)2
− 12

(6k + 3)2

− 3

(6k + 4)2
+

1

(6k + 5)2

)
. (2.10.41)

The reason is sketched below. Note that this proof crucially requires know-
ing the answer in advance, and moving back from the discovered result to
something provable.

(a) We take the log sine integral

V = −2

∫ π/3

0

log

(
2 sin

(
t

2

))
dt (2.10.42)

as the defining formula for the requisite volume. Recall that the
Clausen function is given by

Cl2(θ) =
∑
n>0

sin(nθ)

n2
, (2.10.43)

which satisfies Cl2(
π
2
) = G. Then integration of (2.10.42) shows

V = i
{
Li2

(
e−iπ/3

)− Li2
(
eiπ/3

)}

= 2 ImLi2

(
1 + i

√
3

2

)
= 2 Cl2

(π

3

)
= 3 Cl2

(
2 π

3

)
.

All the requisite details about Clausen’s function are to be found in
Lewin [141].

(b) A hypergeometric equivalent formulation of (2.10.41) is

V√
3

?
= 2 F

(
1

6
,
1

6
, 1;

7

6
,
7

6
;
−1

27

)
− 1

2

(
1

3
,
1

3
, 1;

4

3
,
4

3
;
−1

27

)

− 8

27
F

(
1

2
,
1

2
, 1;

3

2

3

2
;
−1

27

)
− 1

24
F

(
2

3
,
2

3
, 1;

5

3
,
5

3
;
−1

27

)

+
2

225
F

(
5

6
,
5

6
, 1;

11

6
,
11

6
;
−1

27

)
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which with some effort is expressible in terms of the dilogarithm. This
leads to the following:

V
?
= Im

{
4 Li2

(
i
√

3

3

)
− 8

3
Li2

(
i
√

3

9

)

+ Li2

(
1

2
− i

√
3

6

)
+ 8 Li2

(
−1

2
+

i
√

3

6

)}
.

(c) Now, Lewin in equation (5.5) of [141] gives

Im Li2
(
reiθ

)
= ω log(r) +

1

2
Cl2 (2ω)− 1

2
Cl2 (2ω + 2θ) +

1

2
Cl2 (2θ) ,

where ω = arctan(r sin θ/(1 − r cos θ)). Using this, a proof that
(2.10.41) holds is reduced to showing that, with α = arctan(

√
3/9),

4 Cl2

(π

3

)
= 2 Cl2 (2 α) + Cl2 (π + 2 α)− 3 Cl2

(
5

3
π + 2 α

)
,

which is true by applying the two variable identities for Clausen’s
function given in Equations (4.61) and (4.63) of [141], with θ = π

3
.

(d) Many other identities lie in (4.63) such as, with α = arctan
(

1
3

)
,

6 G = 2 Cl2 (2 α)− 3 Cl2

(
2 α− π

2

)
+ Cl2

(
2 α +

π

2

)
.

A much harder identity is

7
√

7

4
L−7 (2) = 3 Cl2 (α)− 3 Cl2 (2 α) + Cl2 (3 α)

with α = 2 arctan
(√

7
)
.

35. Further identities for the knot complement volume are explored
below.
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(a) On expanding the Clausen function of (2.10.43), we obtain

V =
∑
n≥1

2 sin(nπ/3)

n2

=
√

3

( ∞∑
n=0

1

(6n + 1)2
+

∞∑
n=0

1

(6n + 2)2

−
∞∑

n=0

1

(6n + 4)2
−

∞∑
n=0

1

(6n + 5)2

)
,

or equivalently,

V =

√
3

9

∑
n≥1

n− 1
2

(n− 1
3
)2(n− 2

3
)2

.

(b) Changing variables in (2.10.42) and using the binomial theorem, we
derive

V = −2

∫ 1

0

log (y)√
1− (

y
2

)2
dy = 2

∞∑
n=0

(
2 n
n

)

(2 n + 1)2 16n
.

The next two equivalent identities are derivable using (1.76) in [141]
which gives the series for Li2(e

i π/3):

(c)

V =
2π

3

(
1− log

(π

3

)
+

∑
m≥1

ζ(2m)

m(2m + 1)62m

)
,

and

V =
2π

3
− 2π

3
log

(π

3

)
+ 2

∑
n≥1

Bn

2n

(π
3
)2n+1

(2n + 1)!
.

(d) Show that

V = 2
√

3 Im L2

(
i
√

3 + 1

2

)
= −

√
3

∫ 1

0

log y

1− y + y2
dy.
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(e) Hence expanding the last denominator and differentiating the β-function
(see Section 5.4), deduce that

V = 2
√

3
∑
n≥1

{Ψ (n)−Ψ (2 n)} β (n, n) = 2
√

3
∑
n≥1

∑2n−1
k=n

1
k

n
(
2n
n

)

= 2
√

3
∑
n≥1

∑2n−1
k=1

1
k

n
(
2n
n

) − 2
√

3
∑
n≥1

∑n−1
k=1

1
k

n
(
2n
n

) .

(f) This is equivalent to

V = 2
√

3

∫ 1/2

0

log
(

1+s
1−s

)

(1− s2)
√

1− 4 s2
ds−2

√
3

∫ 1/2

0

−s log (1− s2)

(1− s2)
√

1− 4 s2
ds,

where the first integral corresponds to
∑2n−1

k=1 1/k and the second to∑n−1
k=1 1/k. These are equivalent to

V =
√

3

∫ π/2

0

log
(

1+(sin t)/2
1−(sin t)/2

)

1− (sin2 t)/4
ds

−
√

3

∫ π/2

0

(− sin t

2

)
log(1− (sin2 t)/4)

1− (sin2 t)/4
dt,

where
∫ π/2

0
sin2N+1 t dt = Γ2(N+1)4N/Γ(2N+2), and

∫ π/2

0
sin2N t dt =

Γ2(N + 1/2)22N−1/Γ(2N + 1). A symmetric rendition of the integral
is:

V = 2
√

3

∫ 1/2

0

(1 + s) log (1 + s)− (1− s) log (1− s)

(1− s2)
√

1− 4 s2
ds.

(g) Deduce that

V =
√

3
∞∑

n=0

∑2 n+1
k=1 (−1)k+1k−1

(
2 n
n

)
(2n + 1)

.

(h) Finally,

−
√

3
∞∑

n=2

∑n−1
k=1 k−1

n
(
2 n
n

) =

√
3

2

∫ 1

0

log (1− t (1− t))

1− t + t2
dt.
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Let

H1 =
∞∑

n=1

∑n−1
k=1 k−1

n
(
2 n
n

) , H2 =
∞∑

n=1

∑2n−1
k=1 k−1

n
(
2 n
n

) .

Then V = 2
√

3 {H2 −H1} and, following the logic of the previous
exercise,

H1 =
∞∑

k=0

(−1

27

)k {
− 1/3

(6k + 1)2
+

1

(6k + 2)2
+

10/9

(6k + 3)2

+
1/3

(6k + 4)2
− 1/27

(6k + 5)2

}
,

while

H2 =
∞∑

k=0

(−1

27

)k {
2/3

(6k + 1)2
− 2/9

(6k + 3)2
− 2/27

(6k + 5)2

}
.

See [141, 61] for additional details.

36. Census of hypberbolic knots. The URL http://newweb.cecm.sfu.ca/

cgi-bin/KnotPlot/objtest/hyperbolic census?knot=k4.1 contains a cen-
sus of hyperbolic knots (most, but not all, knots are hyperbolic). The
figure-eight knot, not the trefoil, is now simplest when viewed by the num-
ber of perfect tetrahedra in its complement.

37. Jeff Weeks on experimental topology. Jeff Weeks recently wrote:

There are plenty of such [experimentally discovered topology]
results, but most would require a fair amount of explanation to
be significant to non-specialists. For example, one of my favorites
is the (computationally discovered!) pattern in the canonical
triangulation for two-bridge knot and link complements. The
canonical triangulation is geometrically defined, yet it exactly
encodes the twists in the (topological) tangle decomposition of
the knot or link. The correspondence is remarkably simple, with
exactly two tetrahedra realizing each twist. This result has since
been proved, but the proof is long and difficult. . . . I could try
to dig up a figure illustrating how the pairs of tetrahedra realize
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Figure 2.17: Weeks’ two-bridge discovery.

the twists, . . . but then it’s not clear that you could explain it
easily so that a non-specialist would understand why it’s such an
amazingly beautiful thing (as opposed to the reader struggling
just to get a dim grasp of what the result is saying, without
really appreciating what makes it cool).

Figure 2.17 attempts to illustrate Jeff Weeks’ beautiful discovery.

38. Griffeath’s “psoup” cellular automata web site. David Griffeath
well describes his site http://psoup.math.wisc.edu as follows:

Hi there. I’m a math prof at the University of Wisconsin-Madison
whose research these days focuses on self-organization of ran-
dom cellular automata. For the past ten years or so I have been
producing colorful computer graphics and animations that illus-
trate the ability of local parallel update rules to generate spatial
structure from disordered initial states. My work has appeared
in numerous books and periodicals, including Nonlinear Science
Today and Scientific American. Some of my cellular automaton
(CA) rules have been featured in the simulation packages CA-
LAB and James Gleick’s Chaos: The Software. This home page
is intended to provide a gallery of my images and movies, as well
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Figure 2.18: 7th iterate of Sierpinski triangle made by paper cutting and folding.

as links to software that allows you to design your own.

It’s tempting to think of self-organization as evolution from pri-
mordial soup. Machines that orchestrate such dynamics are
sometimes called mixmasters. I use both garden-variety PCs and
dedicated Cellular Automaton Machines (CAMs) as mixmasters.
Since my other great fixation in life is gastronomy (witness the
important 3-letter word hidden in my Welsh last name), this site
is laid out as a kitchen.

39. Fractal cards. Not all impressive representations require a computer.
Elaine Simmt and Brent Davis [179] describe lovely constructions made by
repeated paper folding and cutting that result in beautiful fractal “pop-
up” cards. Nonetheless, in Figure 2.18, we show the seventh iterate of a
Sierpinski triangle built in software by following those paper cutting and
folding rules in software. Note the similarity to the tetrahedron in Figure
2.2. Recursive Maple code is given below:
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sierpinski:= proc( n::nonnegint )
local p1, p2, q1, q2, r1, r2, plotout;

p1:= [1.,0.,0.]; q1:= [-1.,0.,0.]; r1:= [0.,0.,1.];
p2:= [1.,1.,0.]; q2:= [-1.,1.,0.]; r2:= [0.,1.,1.];
plotout:= polys(n, p1, p2, r1, r2, q1, q2);

return PLOT3D( plotout, SCALING(CONSTRAINED),
AXESSTYLE(NONE), STYLE(PATCHNOGRID), ORIENTATION(90,45) );

end:

polys:= proc( n::nonnegint, p1, p3, r1, r3, q1, q3 )
local p2, q2, r2, s1, s2, s3, t1, t2, t3, u2, u3;

if n=0 then return POLYGONS([p1,p3,r3,r1], [q1,q3,r3,r1]) fi;
p2:= (p1+p3)/2; q2:= (q1+q3)/2; r2:= (r1+r3)/2;
s1:= (p1+r1)/2; s2:= (p2+r2)/2; s3:= (p3+r3)/2;
t1:= (q1+r1)/2; t2:= (q2+r2)/2; t3:= (q3+r3)/2;
u2:= (p2+q2)/2; u3:= (p3+q3)/2;

return polys(n-1, p2, p3, s2, s3, u2, u3),
polys(n-1, s1, s2, r1, r2, t1, t2),
polys(n-1, u2, u3, t2, t3, q2, q3),
POLYGONS([p1,p2,s2,s1], [q1,q2,t2,t1]); end:

40. Gauss on learning. In Boris Stoicheff’s often enthralling biography of
Gerhard Herzberg (1903-1999), Gauss is recorded as writing

It is not knowledge, but the act of learning, not possession but
the act of getting there which generates the greatest satisfaction.
[182, page 42]

Herzberg, who fled Germany for Saskatchewan in 1935, won the 1971 Nobel
Prize in Chemistry for his pioneering work in molecular spectroscopy. His
impact on Canadian—and international—science, signally in chemistry,
physics and astronomy, has been enormous.

41. Horizontal Riemann curves. Figure 2.19 plots the modulus of the
function Z defined by (x, y) 7→ |ζ(x + iy)| for 1/5 < x < 4/5 and 1 <
y < 100. Much related material and many illustrations are to be found in
Brian Conrey’s survey [73].

Plot Z(x, y) as a function of x on the critical strip [0, 1] for various values
of y. (Compare what happens with the roles of x and y reversed.) As
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Figure 2.19: The modulus of the ζ function.

it turns out, the monotonicity exhibited in the graph of level curves of
Z(·, y) implies the Riemann Hypothesis. This conclusion is given in [197],
and was discovered while the first author of that paper was teaching an
undergraduate complex variable class.

42. Hardy and Littlewood’s Four Axioms for Collaboration. Harald
Bohr, quoting from the preface of Béla Bollobás’ 1988 edition of Little-
wood’s Miscellany, said:

The first [axiom] said that when one wrote to the other (they of-
ten preferred to exchange thoughts in writing instead of orally),
it was completely indifferent whether what they said was right
or wrong. As Hardy put it, otherwise they could not write com-
pletely as they pleased, but would have to feel a certain respon-
sibility thereby. The second axiom was to the effect that, when
one received a letter from the other, he was under no obligation
whatsoever to read it, let alone answer it—because, as they said,
it might be that the recipient of the letter would prefer not to
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work at that particular time, or perhaps that he was just then
interested in other problems. . . . The third axiom was to the ef-
fect that, although it did not really matter if they both thought
about the same detail, still, it was preferable that they should
not do so. And, finally, the fourth, and perhaps most important
axiom, stated that it was quite indifferent if one of them had not
contributed the least bit to the contents of a paper under their
common name; otherwise there would constantly arise quarrels
and difficulties in that now one, and now the other, would oppose
being named co-author.

These rules work very well in the present age.

43. What is a tool? James O’Donnell wrote a mere five years ago:

I am a student of the works of St. Augustine and shall begin ac-
cordingly with confession. The single most transforming feature
of cyberspace as we inhabit it in 1997 for my own scholarship
can be found in a warehouse on the edges of downtown Seattle.
I mean the nerve center of www.amazon.com. [159]

Google, MathSciNet—the online version of Mathematical Reviews at
http://e-math.ams.org/mathscinet, and Amazon.com are just as much
tools of discovery as are PSLQ, the Inverse Calculator and Mathematica.

44. Tea with John-Paul II. James Glanz wrote in “Web Archive Opens a
New Realm of Research” (New York Times, April 30, 2001):

Three years ago, said Dr. Zanelli in Chile, one of his own stu-
dents posted a paper and the next day received an e-mail message
from Dr. Witten. The student was at first so shocked that he
accused Dr. Zanelli of playing an elaborate practical joke.

“We learned that great physicists do read the archives daily and
they browse through all the preprints,” Dr. Zanelli said, “even
if they come from an obscure place in the end of the world.”

Dr. Witten’s instant response, Dr. Zanelli said, “was like having
the pope drop by for tea.”
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Such is the promise of the wired world, deluges of spam not withstanding.

45. False proofs of big theorems. David Einstein has commented that in
the last generation, there has always been at least one somewhat serious
purported proof of the Poincaré conjecture under scrutiny. Similar com-
ments hold for Fermat’s Last Theorem, the Riemann Hypothesis, the Four
Color Theorem, and so on. Many famous mathematicians have survived
premature publicity for proofs found later to be unavoidably flawed. Hans
Rademacher’s putative proof of the falsehood of the Riemann Hypothesis
made the pages of Time in the late forties, even after the flaw had been
discovered by Siegel.[73]

Of course, even the existence of generally accepted proofs does not dis-
courage many amateurs from hunting for counterexamples nor from trying
to square the circle or trisect angles.

46. Research, teaching and communication. The Fields medalist Bill
Thurston, in his 1995 article, “On proof and progress,” makes the obser-
vation about researchers’ habits that

Mathematicians have developed habits of communication that
are often dysfunctional. Organizers of colloquium talks every-
where exhort speakers to explain things in elementary terms.
Nonetheless, most of the audience at an average colloquium talk
gets little of value from it. Perhaps they are lost within the first
5 minutes, yet sit silently through the remaining 55 minutes. Or
perhaps they quickly lose interest because the speaker plunges
into technical details without presenting any reason to investi-
gate them. At the end of the talk, the few mathematicians who
are close to the field of the speaker ask a question or two to avoid
embarrassment.

This pattern is similar to what often holds in classrooms, where
we go through the motions of saying for the record what we think
the students “ought” to learn, while the students are trying to
grapple with the more fundamental issues of learning our lan-
guage and guessing at our mental models. Books compensate by
giving samples of how to solve every type of homework problem.
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Professors compensate by giving homework and tests that are
much easier than the material “covered” in the course, and then
grading the homework and tests on a scale that requires little
understanding. We assume that the problem is with the students
rather than with communication: that the students either just
don’t have what it takes, or else just don’t care.

Outsiders are amazed at this phenomenon, but within the math-
ematical community, we dismiss it with shrugs.

47. Riemann and robust notation. Figures 2.8 and 2.9, which reproduce
the first two pages of the final manuscript of Riemann’s celebrated 1859
paper [171] illustrate how robust mathematical notation is. If a counter-
example or theorem is originally due to Hilbert or Cauchy, there is a good
chance we reproduce it with exactly the same syntax.

48. Hoffman’s art. Experimental visualization in low-dimensional geom-
etry was one of the primary motivations for Klaus Peters’ decision in
the early nineties to establish the journal Experimental Mathematics—see
http://www.expmath.org. This is now a flourishing, high quality journal
with several Fields medalists on its board. Some of the better examples
of geometric visualization are due to David Hoffman—see the web sites
http://www.gang.umass.edu and http://emsh.calarts.edu/~mathart/

portfolio/SPD Costa portfolio.html.

49. Euler, Goldbach and the birth of ζ. What follows is a direct tran-
scription of correspondence between Euler and Goldbach [124], leading to
the origin of the zeta function and multi-zeta values.

(a) 59. Goldbach an Euler, Moskau, 24. Dez. 1742 [footnote:
AAL: F.136, Op. 2, Nr.8, Blatt 54–55]

[. . . ] Als ich neulich die vermeinten summas der beiden letzteren
serierum in meinem vorigen Schreiben wieder betrachtet, habe ich
alsofort wahrgenommen, daß selbige aus einem bloßem Schreibfehler
entstanden, von welchem es aber in der Tat heißet: Si non errasset,
fecerat ille minus1.

1Frei zitiert nach Marcus Valerius Martialis, I, 21,9
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denn ich bin durch diese Gelegenheit auf summationes aliarum se-
rierum geraten, die ich sonst kaum gesuchet, viel weniger gefunden
haben würde.

Ich halte dafür, daß es ein problema problematum ist, die summam
huius:

/54r/1 +
1
2n

(
1 +

1
2m

)
+

1
3n

(
1 +

1
2m

+
1

3m

)
+

1
4n

(
1 +

1
2m

+
1

3m
+

1
4m

)
+ etc.

in den casibus zu finden, wo m et n nicht numeri integri pares et sibi
aequales sind, doch gibt es casus, da die summa angegeben werden
kann, exempli gr[atia], si m = 1, n = 3, denn es ist

1 +
1
23

(
1 +

1
2

)
+

1
33

(
1 +

1
2

+
1
3

)
+

1
43

(
1 +

1
2

+
1
3

+
1
4

)
+ etc. =

π4

72
.

(wenn π gewöhnlichermaßen für die peripheriam circuli, cuius diam-
eter = 1, genommen wird), hingegen wieß ich die summas serierum

A · · · 1 +
1
25

(
1 +

1
2

)
+

1
35

(
1 +

1
2

+
1
3

)
+

1
45

(
1 +

1
2

+
1
3

+
1
4

)
+ etc.

B · · · 1 +
1
24

(
1 +

1
2

)
+

1
34

(
1 +

1
2

+
1
3

)
+

1
44

(
1 +

1
2

+
1
3

+
1
4

)
+ etc.

noch nicht, ob ich gleich weiß , daß 2A + B = 19π6

2·5·7·34 , wie ich denn
auch die summam der folgenden beiden /55/ serieum C + D allezeit
finden kann, si m et n sint numeri pares quicunque

C · · · 1 +
1
2n

(
1 +

1
2m

)
+

1
3n

(
1 +

1
2m

+
1

3m

)
+ etc.

D · · · 1 +
1

2m

(
1 +

1
2n

)
+

1
3m

(
1 +

1
2n

+
1
3n

)
+ etc.

Übrigens beziehe ich mich auf mein voriges Schreiben und verbleibe
nächst herzlicher Anwünschung eines glücklichen neuen Jahres[. . . ]

(b) “Lisez Euler, lisez Euler, c’est notre maitre a tous.”

This letter is the first in which Goldbach precisely formulates the
series which sparked Euler’s further investigations into what would
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become known as the Zeta-function. These investigations were ap-
parently due to a serendipitous mistake. The first sentence above
translates as follows:

When I recently considered further the indicated sums of
the last two series in my previous letter, I realized immedi-
ately that the same series arose due to a mere writing error,
from which indeed the saying goes, “Had one not erred, one
would have achieved less.”(Si non errasset, fecerat ille mi-
nus). [Translation thanks to Martin Matmüller, scientific
collaborator of Euler’s Opera Omnia, vol. IVA4, Birkhuser
Verlag.]

(c) Confirm Goldbach’s evaluation (m = 3, n = 1):

ζ(3, 1) + ζ(4) =
π4

72

(in the language of Section 3.4 of the second volume of this work).

50. Gauss: the next generation.

Gauss’s second son, Eugene, emigrated to the United States in
1830, enlisted in the army, and later went into business in Mis-
souri. Eugene is said to have had some of his father’s gift for
languages and the ability to perform prodigious arithmetic cal-
culations, which he did for recreation after his sight failed him
in old age. (David T. Lykken [145])

51. Flexibility.

When the facts change, I change my mind. What do you do,
sir? (John Maynard Keynes, quoted in The Economist, Dec. 18,
1999, pg. 47)

52. Mathematics and the aesthetic impulse.

If my teachers had begun by telling me that mathematics was
pure play with presuppositions, and wholly in the air, I might
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have become a good mathematician, because I am happy enough
in the realm of essence. But they were overworked drudges,
and I was largely inattentive, and inclined lazily to attribute to
incapacity in myself or to a literary temperament that dullness
which perhaps was due simply to lack of initiation. (George
Santayana, Persons and Places [177, pg. 238–9])



Chapter 3

Pi and Its Friends

I am ashamed to tell you to how many figures I carried these com-
putations, having no other business at the time.

Issac Newton, 1666

The desire, as well as the need, to calculate ever more accurate values of π, the
ratio of the circumference of a circle to its diameter, has challenged mathemati-
cians for many centuries. In recent years, π computations have provided some
fascinating examples of computational mathematics. But first, a little historical
background, which we have condensed from a 1997 article [17]. Additional his-
torical details are available from the fascinating new book Pi Unleashed [7], and
from [50, 34]. We should also mention the MacTutor web site, maintained by
the Department of Mathematics at the University of St. Andrews in Scotland:
http://www-gap.dcs.st-and.ac.uk/history. This is particularly good for bio-
graphical information about historical mathematicians, including those involved
with π.

3.1 A Short History of Pi

About 2000 BCE, the Babylonians used the approximation 31
8

= 3.125. At this
same time or earlier, according to an ancient Egyptian document, Egyptians
assumed that a circle with diameter nine has the same area as a square of side
eight, which implies π = 256

81
= 3.1604 . . . Some have argued from the following

biblical passage that the ancient Hebrews used π = 3:

117
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Also, he made a molten sea of ten cubits from brim to brim, round
in compass, and five cubits the height thereof; and a line of thirty
cubits did compass it round about (1 Kings 7:23; see also 2 Chron.
4:2).

The first rigorous mathematical calculation of the value of π was due to
Archimedes (ca. 250 BCE), who used a scheme based on inscribed and circum-
scribed polygons to obtain the bounds 310

71
< π < 31

7
. Indeed, Archimedes’

scheme constitutes the first true algorithm for π, in the sense that it is a well-
defined scheme that is capable of producing an arbitrarily accurate value for
the constant. This scheme can be stated as a simple recursion, as follows. Set
a0 = 2

√
3 and b0 = 3. Then define

an+1 =
2anbn

an + bn

bn+1 =
√

an+1bn. (3.1.1)

This recursion converges to π, with the error decreasing by a factor of approxi-
mately four with each iteration. Variations of Archimedes’ geometrical scheme
were the basis for all high-accuracy calculations of π for the next 1,800 years.
For example, the Chinese mathematician Tsu Chung-Chih used a variation of
this method to compute π correct to seven digits in the fifth century CE.

Little progress was made in Europe during the dark ages, but one very signif-
icant advance in arithmetic was made in India. This was the invention, in about
450 CE, of our modern positional, zero-based decimal arithmetic system—the
Indo-Arabic system. This discovery greatly accelerated arithmetic in general,
and computing π in particular. The Indo-Arabic system was introduced into Eu-
rope in 1000 CE, but due to resistance from several quarters, centuries elapsed
before it finally enjoyed widespread use. The resistance ranged from accoun-
tants who didn’t want their livelihood upset to clerics who regarded the system
as “diabolical,” on account of what they incorrectly assumed was its origin in the
Arabic world. European commerce resisted the system until the 18th century,
and even in scientific circles, its usage was limited until the 17th century [119].
The difficulty of doing arithmetic prior to the Indo-Arabic system is indicated by
the words of counsel given to a wealthy German merchant in the 16th century,
who was considering where to send his son for college:

If you only want him to be able to cope with addition and subtraction,
then any French or German university will do. But if you are intent
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on your son going on to multiplication and division—assuming that
he has sufficient gifts—then you will have to send him to Italy. [119,
pg. 577]

In the 17th century, Newton and Leibniz discovered calculus, and this pow-
erful new tool was quickly exploited to find new formulas for π. One early
calculus-based formula comes from the integral

arctan x =

∫ x

0

dt

1 + t2
=

∫ x

0

(1− t2 + t4 − t6 + · · · ) dt

= x− x3

3
+

x5

5
− x7

7
+

x9

9
− · · · . (3.1.2)

Substituting x = 1 gives the well-known Gregory–Leibniz formula

π/4 = 1− 1/3 + 1/5− 1/7 + 1/9− 1/11 + · · · (3.1.3)

(recall our discussion of Gregory’s series in Section 2.2). This particular series
is practically useless for computing π—it converges so slowly that hundreds
of terms would be required to compute even two correct digits. However, by
employing a trigonometric identity

π/4 = arctan(1/2) + arctan(1/3), (3.1.4)

attributed to Euler in 1738, you can obtain

π/4 =
1

2
− 1

3 · 23
+

1

5 · 25
− 1

7 · 27
+ · · ·

+
1

3
− 1

3 · 33
+

1

5 · 35
− 1

7 · 37
+ · · · , (3.1.5)

which converges much more rapidly. An even faster formula, discovered a gen-
eration earlier by Machin, can be obtained using the identity

π/4 = 4 arctan(1/5)− arctan(1/239) (3.1.6)

in a similar way. This formula was used in numerous computations of π, cul-
minating with Shanks’ computation of π to 707 decimal digits accuracy in 1874
(although it was later found that this result was in error after the 527th decimal
place).
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Figure 3.1: Newton’s scheme to compute π.

Newton himself discovered a different formula. He began by considering the
area A of the left-most region under the circle as shown in Figure 3.1. On one
hand, this is merely the difference between the area of the circular sector, which
is π/24, and the area of the triangle, which is

√
3/32. On the other hand, A can

be written as the integral

A =

∫ 1/4

0

√
x− x2 dx. (3.1.7)

By employing his own binomial theorem, Newton wrote (3.1.7) as:

A =

∫ 1/4

0

x1/2(1− x)1/2 dx

=

∫ 1/4

0

x1/2
(
1− x/2− x2/8− x3/16− 5x4/128− · · · ) dx

=

∫ 1/4

0

(
x1/2 − x3/2

2
− x5/2

8
− x7/2

16
− 5x9/2

128
− · · ·

)
dx. (3.1.8)

Integrating this series term-by-term and combining the above results yielded the
formula

π =
3
√

3

4
+ 24

(
1

3 · 8 −
1

5 · 32
− 1

7 · 128
− 1

9 · 512
− · · ·

)
. (3.1.9)
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Newton personally used this formula to compute π. He recorded 15 digits in his
diary, but as he later confessed, “I am ashamed to tell you to how many figures
I carried these computations, having no other business at the time.”

One of the more interesting figures in the history of π calculations is Johan
Zacharias Dase, who lived in Vienna in the mid-1800s. According to the Mac-
Tutor web site (see above), Dase once demonstrated his computational skill by
multiplying 79532853 × 93758479 = 7456879327810587 in just 54 seconds; two
20-digit numbers required 6 minutes; two 40-digit numbers required 40 minutes;
two 100-digit numbers required 8 hours 45 minutes. After being shown how to
use the formula

π/4 = arctan(1/2) + arctan(1/5) + arctan(1/8), (3.1.10)

he calculated π to 200 places in his head. He later calculated a seven-digit
logarithm table, and extended a table of integer factorizations to 10,000,000.
Gauss requested that Dase be permitted to assist him, but Dase died shortly
afterward.

Along this line, recent historical research has uncovered several non-European
mathematicians who did notable early work on π that until recently was not
well known. For example, the Chinese mathematician Tsu Chung-Chih used a
variation of Archimedes’ method to compute π correct to seven digits in the fifth
century. A millennium later Al-Kāshi in Samarkand, “who could calculate as
eagles can fly,” computed 2π in sexagecimal as

6 +
16

60
+

59

602
+

28

603
+

01

604
+

34

605
+

51

606
+

46

607
+

14

608
+

50

609

(accurate to seventeen decimal places) using 3 · 228-gons. Another remarkable
but little-known mathematician was Madhava of Sangamagramma, who lived in
India in the late 1300s and early 1400s. Madhava derived the Gregory-Leibniz
series for π (3.1.3) at least 200 years before Gregory or Leibniz found it. He also
derived the variant series

π =
√

12

(
1− 1

3 · 3 +
1

5 · 32
− 1

7 · 33
+ · · ·

)
, (3.1.11)

and used it to compute π to 11 decimal places. For additional information, see
[34] and the MacTutor web site.
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One motivation for computations of π was very much in the spirit of modern
experimental mathematics: to see if the decimal expansion of π repeats, which
would mean that π is the ratio of two integers (i.e., rational), or to recognize π as
some algebraic constant. The question of the rationality of π was settled in the
late 1700s, when Lambert and Legendre proved that the constant is irrational.
The question of whether π is algebraic was settled in 1882, when Lindemann
proved that it is transcendental. Lindemann’s proof also settled, once and for
all, the ancient Greek question of whether the circle could be squared with ruler
and compass: It cannot, because numbers that are the lengths of lines that can
be constructed using ruler and compasses (often called constructible numbers)
are necessarily algebraic, and squaring the circle is equivalent to constructing
the value π.

In 1945, Ferguson utilized some mechanical calculating machines to compute
π to 530 decimal digits, using the formula

π

4
= 3 arctan

(
1

4

)
+ arctan

(
1

20

)
+ arctan

(
1

1985

)
, (3.1.12)

and over the next two years increased this to 808 digits. With this result, they
discovered that Shanks’ 1874 computation was wrong after the first 527 places.

While such devices saved considerable labor compared with pencil-and-paper
arithmetic, they were still a far cry from modern high-speed computers—each
operand had to be manually typed, for example. The first truly electronic com-
putation of π was performed in 1949 on the original ENIAC. This calculation
was suggested by John von Neumann, who wished to study the digits of π and
e. Computing 2037 decimal places of π on the ENIAC required 70 hours. A sim-
ilar calculation today could be performed in a fraction of second on a personal
computer.

Later computer calculations were further accelerated by the discovery of ad-
vanced algorithms for performing the required high-precision arithmetic opera-
tions. For example, in 1965 it was found that the newly-discovered fast Fourier
transform (FFT) could be used to perform high-precision multiplications much
more rapidly than conventional schemes. These methods dramatically lowered
the computer time required for computing π and other mathematical constants
to high precision. These techniques will be discussed more in Section 6.2. See
also [10] and [58].

In spite of these advances, until the 1970s all computer evaluations of π still
employed classical formulas, usually one of the Machin-type formulas. Some
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Name Year Digits Value
Babylonians 2000? BCE 1 3.125 (31

8
)

Egyptians 2000? BCE 1 3.16045 (4(8
9
)2)

China 1200? BCE 1 3
Bible (1 Kings 7:23) 550? BCE 1 3
Archimedes 250? BCE 3 3.1418 (ave.)

Chang Hong 130 CE 1 3.1622 (
√

10)
Ptolemy 150 CE 3 3.14166
Wang Fau 250 CE 1 3.15555 (142

45
)

Liu Hui 263 CE 5 3.14159
Siddhanta 380 CE 3 3.1416
Tsu Ch’ung Chi 480 CE 7 3.1415926 (355/113)
Aryabhata 499 CE 4 3.14156 (62832/2000)

Brahmagupta 640 CE 1 3.162277 (=
√

10)
Al-Khowarizmi 800 CE 4 3.1416
Fibonacci 1220 CE 3 3.141818
Madhava 1400 CE 11 3.14159265359
Al-Kāshi 1429 CE 14 3.14159265358979
Otho 1573 CE 6 3.1415929
Viéte 1593 CE 9 3.1415926536 (ave.)
Romanus 1593 CE 15 3.141592653589793
Van Ceulen 1596 CE 20 3.14159265358979323846
Van Ceulen 1615 CE 35

Table 3.1: Pre-calculus era π calculations.
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Name Year Digits
Newton 1665 16
Sharp 1699 71
Seki Kowa 1700 10
Kamata 1730 25
Machin 1706 100
De Lagny 1719 127 (112 correct)
Takebe 1723 41
Matsunaga 1739 50
Von Vega 1794 140 (136 correct)
Rutherford 1824 208 (152 correct)
Strassnitzky and Dase 1844 200
Clausen 1847 248
Lehmann 1853 261
Rutherford 1853 440
Shanks 1874 707 (527 correct)

Table 3.2: Calculus era π calculations.
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Figure 3.2: Ramanujan’s 75th birthday stamp.

new infinite series formulas were discovered by Ramanujan around 1910, but
these were not well known until quite recently when his writings were widely
published. Ramanujan’s related mathematics may be followed in [109, 51, 37].
One of these series is the remarkable formula

1

π
=

2
√

2

9801

∞∑

k=0

(4k)!(1103 + 26390k)

(k!)43964k
. (3.1.13)

Each term of this series produces an additional eight correct digits in the result.
Gosper used this formula to compute 17 million digits of π in 1985. Gosper also
computed the first 17 million terms of the continued fraction expansion of π.
At about the same time, David and Gregory Chudnovsky found the following
variation of Ramanujan’s formula:

1

π
= 12

∞∑

k=0

(−1)k (6k)!(13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
. (3.1.14)
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Each term of this series produces an additional 14 correct digits. The Chud-
novskys implemented this formula using a clever scheme that enabled them to
utilize the results of an initial level of precision to extend the calculation to
even higher precision. They used this method in several large calculations of π,
culminating with a computation to over four billion decimal digits in 1994.

Along this line, it is interesting to note that the Ramanujan-type series (see
[50, pg. 188]

1

π
=

∞∑
n=0

((
2n
n

)

16n

)3
42 n + 5

16
(3.1.15)

permits one to compute the billionth binary digit of 1/π without computing the
first half of the series.

While the Ramanujan and Chudnovsky series are considerably more efficient
than the classical formulas, they share with them the property that the number
of terms one must compute increases linearly with the number of digits desired
in the result. In other words, if you want to compute π to twice as many digits,
you have to evaluate twice as many terms of the series.

In 1976, Eugene Salamin and Richard Brent independently discovered an
algorithm for π based on the arithmetic-geometric mean (AGM) and some ideas
originally due to Gauss in the 1800s (although for some reason Gauss never saw
the connection to computing π). The Salamin–Brent algorithm may be stated
as follows. Set a0 = 1, b0 = 1/

√
2 and s0 = 1/2. Calculate

ak =
ak−1 + bk−1

2

bk =
√

ak−1bk−1

ck = a2
k − b2

k

sk = sk−1 − 2kck

pk =
2a2

k

sk

. (3.1.16)

Then pk converges quadratically to π: Each iteration of this algorithm approxi-
mately doubles the number of correct digits—successive iterations produce 1, 4,
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9, 20, 42, 85, 173, 347, and 697 correct decimal digits of π. Twenty-five iterations
are sufficient to compute π to over 45 million decimal digit accuracy. However,
each of these iterations must be performed using a level of numeric precision
that is at least as high as that desired for the final result.

Beginning in 1985, one of the present authors (Jonathan Borwein) and his
brother Peter Borwein discovered some additional algorithms of this type [50].
One is as follows. Set a0 = 1/3 and s0 = (

√
3− 1)/2. Iterate

rk+1 =
3

1 + 2(1− s3
k)

1/3

sk+1 =
rk+1 − 1

2
ak+1 = r2

k+1ak − 3k(r2
k+1 − 1). (3.1.17)

Then 1/ak converges cubically to π—each iteration approximately triples the
number of correct digits. Another algorithm is as follows: Set a0 = 6− 4

√
2 and

y0 =
√

2− 1. Iterate

yk+1 =
1− (1− y4

k)
1/4

1 + (1− y4
k)

1/4

ak+1 = ak(1 + yk+1)
4 − 22k+3yk+1(1 + yk+1 + y2

k+1). (3.1.18)

Then ak converges quartically to 1/π. This particular algorithm, together with
the Salamin–Brent scheme, has been employed by Yasumasa Kanada of the
University of Tokyo in several computations of π over the past 15 years or so,
including his 1999 computation of π to more than 206 billion decimal digits.

Daniel Shanks, who in 1961 computed π to over 100,000 digits, once de-
clared that a billion digit computation would be “forever impossible.” But both
Kanada and the Chudnovskys computed more than one billion digits in 1989.
Similarly, the intuitionist mathematicians Brouwer and Heyting once asserted
the “impossibility” of ever knowing whether the sequence “0123456789” appears
in the decimal expansion of π [116]. This sequence was found in 1997 by Kanada,
beginning at position 17,387,594,880. Even as late as 1989, British mathematical
physicist Roger Penrose ventured, in the first edition of his book The Emperor’s
New Mind, that we are not likely to know whether a string of ten consecutive
sevens occurs in the decimal expansion of π [162, pg. 115]. By the time his
book was published, Kanada had already found a string of ten consecutive sixes
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in his 480-million-digit computation of π. When one of the present authors
mentioned this to Penrose in 1990, he replied that he was “startled to learn
how far the combination of human mathematical ingenuity with computer tech-
nology has enabled the calculation of the decimal expansion of π to be carried
out.” Accordingly, he changed his text to “twenty consecutive sevens,” which
appeared in subsequent printings of the book. This was just in time, as a string
of ten consecutive sevens was found by Kanada in 1997, beginning at position
22,869,046,249.

As this book was nearing completion (2003), the authors learned that Kanada,
with a team consisting of Y. Ushiro of Hitachi, H. Kuroda, and M. Kudoh of the
University of Tokyo, and the assistance of nine others from Hitachi, have now
computed π to over 1.24 trillion decimal digits. Kanada and his team first com-
puted π in hexadecimal (base 16) to 1,030,700,000,000 places, using the following
two arctangent relations for π:

π = 48 arctan
1

49
+ 128 arctan

1

57
− 20 arctan

1

239
+ 48 arctan

1

110443

π = 176 arctan
1

57
+ 28 arctan

1

239
− 48 arctan

1

682
+ 96 arctan

1

12943
.

(3.1.19)

The first formula was found in 1982 by K. Takano, a high school teacher and
song writer. The second formula was found by F. C. W. Störmer in 1896.

Kanada and his team evaluated these formulas using a scheme analogous
to that employed by Gosper and the Chudnovskys, in that they were able to
avoid explicitly storing the multiprecision numbers involved. This resulted in a
scheme that is roughly competitive in efficiency compared to the Salamin-Brent
and Borwein quartic algorithms they had previously used, yet with a significantly
lower total memory requirement. In particular, they were able to perform their
latest computation on a system with 1 Tbyte (1012 bytes) main memory, the
same as with their previous computation, yet obtain six times as many digits.

After Kanada and his team verified that the hexadecimal digit strings pro-
duced by these two computations were in agreement, they performed an addi-
tional check by directly computing 20 hexadecimal digits beginning at position
1,000,000,000,001. This calculation, which employed an algorithm that we shall
describe in Section 3.4, required 21 hours, much less than the time required for
the first step. The result of this calculation, B4466E8D21 5388C4E014, perfectly
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agreed with the corresponding digits produced by the two arctan formulas. At
this point they converted their hexadecimal value of π to decimal, and con-
verted back to hexadecimal as a check. These conversions employed a numerical
approach similar to that used in the main and verification calculations. The
entire computation, including hexadecimal and decimal evaluations and checks,
required roughly 600 hours on their 64-node Hitachi parallel supercomputer.
The main segment of the computation ran at nearly 1 Tflop/s (i.e., one tril-
lion floating-point operations per second), although this performance rate was
slightly lower than the rate of their previous calculation of 206 billion digits.
Full details will appear in an upcoming paper [126].

According to Kanada, the ten decimal digits ending in position one trillion
are 6680122702, while the ten hexadecimal digits ending in position one tril-
lion are 3F89341CD5. Some data on the frequencies of digits in π, based on
Kanada’s computations, are given in Section 4.1. Additional information of
this sort is available from Kanada’s web site: http://www.super-computing.org.
Additional historical background on record-breaking computations of π is avail-
able at http://www.cecm.sfu.ca/personal/jborwein/pi cover.html. A listing
of some milestones in the history of the computation of π is given in Tables 3.1,
3.2, and 3.3.

In retrospect, one might wonder why in antiquity π was not measured to an
accuracy in excess of 22/7. One conjecture is that it reflects not an inability to do
so, but instead a very different mind set to a modern (Baconian) experimental
one. Along this line, Marty Gerrietts, an acquaintance of one of the present
authors, may provide an explanation:

I work at a youth emergency shelter and my students (right now) are
11 to 17. My youngest were as accurate as my oldest. They measured
circles that I had drawn on paper . . . and used rulers to measure the
string. It was probably coincidental, but they were consistently com-
ing up with 3.1, 3.15, 3.11. That’s pretty good for string and rulers.
You have to understand that they didn’t have a clue that we were
finding pi. These students have very poor educational backgrounds.
Those that had heard of it thought it was some magic number that
only geometry teachers know about. The concept that is just a ratio
between diameter and circumference had never been presented to any
of them. For my convenience, I had made the circles with diameters
of 2, 3, 4, 5 and 7. I had them measure and record the diameter,
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Name Year Digits
Ferguson 1946 620
Ferguson 1947 710
Ferguson and Wrench 1947 808
Smith and Wrench 1949 1,120
Reitwiesner et al. (ENIAC) 1949 2,037
Nicholson and Jeenel 1954 3,092
Felton 1957 7,480
Genuys 1958 10,000
Felton 1958 10,021
Guilloud 1959 16,167
Shanks and Wrench 1961 100,265
Guilloud and Filliatre 1966 250,000
Guilloud and Dichampt 1967 500,000
Guilloud and Bouyer 1973 1,001,250
Miyoshi and Kanada 1981 2,000,036
Guilloud 1982 2,000,050
Tamura 1982 2,097,144
Tamura and Kanada 1982 4,194,288
Tamura and Kanada 1982 8,388,576
Kanada, Yoshino and Tamura 1982 16,777,206
Ushiro and Kanada Oct. 1983 10,013,395
Gosper Oct. 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada, Tamura, Kubo, et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Chudnovskys Jun. 1989 525,229,270
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1989 1,011,196,691
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Takahashi and Kanada Jun. 1995 3,221,225,466
Kanada Aug. 1995 4,294,967,286
Kanada Oct. 1995 6,442,450,938
Kanada and Takahashi Jun. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada, Ushiro, Kuroda, Kudoh Dec. 2002 1,241,100,000,000

Table 3.3: Digital era π calculations.
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then loop the string around the circle and record the circumference.
Then I had them go back and find the ratio in each case. Of course,
it came to about 3 in each case and they were astounded! From there
we went to a historical perspective of pi and they created their own
formula for finding circumference.

In the same vein, one likely reason that Gauss and Ramanujan did not further
develop the ideas in their identities for π is that an iterative algorithm, as op-
posed to explicit results, was not satisfactory for them (especially Ramanujan).
Ramanujan would much have preferred formulae such as π ≈ 3 log 5280/

√
67 or

π ≈ 3 log 640320/
√

163.

3.2 Fascination with Pi

One might wonder what has been the motivation behind these modern compu-
tations of π, given that questions such as the irrationality and transcendence
of π were settled more than 100 years ago. Doubtless one motivation is simply
the raw challenge of harnessing the stupendous power now available in modern
computer systems for this classical computational problem. We should add that
programming such calculations is definitely not trivial, especially on large, dis-
tributed memory computer systems. There have been several practical spin-off
benefits from these efforts. For example, some new techniques for performing
the fast Fourier transform (FFT), which is heavily used in modern science and
engineering computing, had their roots in attempts to accelerate computations
of π.

What’s more, it has long been recognized that the computation of π is a
very strong test of computer system integrity. As we pointed out both in Sec-
tion 1.3 and in our discussion above on Kanada’s calculation, such computations
are typically checked by repeating the computation with a different formula, or
even with a completely different computation approach. When two indepen-
dent computations produce the same result, this is rather strong evidence that
the computer has performed trillions of arithmetic operations, and transferred
trillions of bytes of data between different components of the computer system,
without error. In 1985, one of the present authors used two computations of π to
test a new Cray-2 supercomputer at NASA’s Ames Research Center, and these
computations in fact disclosed at least one significant hardware defect. Testing
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computer integrity and performance is Yasumasa Kanada’s primary motivation
in the computations he has done on Hitachi supercomputers.

Beyond purely practical considerations is the continuing interest in the funda-
mental question of the normality (digit randomness) of π. Kanada, for example,
has performed detailed statistical analysis of his computed results of π to see if
there are any statistical abnormalities that suggest π is not normal. We shall
discuss this question more fully in Section 4.1.

But there is no doubt that one motivation for computations of π is the eternal
fascination with this most prominent and mysterious of mathematical constants,
a fascination shared both by professional scientists and mathematicians as well as
the lay public. At the present time there are hundreds of web sites devoted to π
(see, for example, http://www.piworld.de), and thousands of online research pa-
pers and other documents dealing with π. There are even several Internet-based
clubs devoted to π, one of which requires that initiates recite by heart the first
100 digits of π with “respect, fluency, and smoothness” (see http://pi314.at).
The very popular web-site http://www.cecm.sfu.ca/pi/yapPing.html recites π
in many different languages.

Fascination with π is also evident in the many recent popular books, television
shows, and movies that have mentioned π. In the 1967 Star Trek episode “Wolf
in the Fold,” Spock foiled the evil computer by telling it to compute the last
digit of π. A May 1993 segment of The Simpsons featured the character Apu
boasting that he can recite π to 40,000 digits, and that the last digit is a “1”
(one of the present authors was asked by the show’s writers for this digit—see
Figure 3.3). In November 1996, the MSNBC network aired a news segment
about π, including interviews with one of the present authors and several other
mathematicians at Simon Fraser University. The 1997 movie Contact, starring
Jodie Foster, was based on the 1986 book by noted astronomer Carl Sagan. In the
book version, the lead female character searched for patterns in the digits of π,
and after her mysterious experience found confirmation in the base-11 expansion
of π [176]. A 1997 book entitled The Joy of Pi sold thousands of copies [39]. A
1998 movie entitled Pi began with decimal digits of π displayed on the screen.
The 2001 Academy Award-winning movie A Beautiful Mind , which portrayed
the life of mathematician John Nash, shows π in equations scribbled by the lead
actor Russell Crowe (although the π characters here appear to denote the prime-
counting function and other nongeometric entities). The 2002 book Life of Pi
by Canadian author Yann Martel won the Booker Prize, a prestigious British
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literary award [152]. Finally, in the 2003 movie Matrix Reloaded , the Key Maker
warns that a door will be accessible for exactly 314 seconds, a figure that Time
speculated was a reference to π [77].

Along this line, National Public Radio reported on April 12, 2003 that novelty
automatic teller machine withdrawal slips, showing a balance of $314, 159.26, are
popular in New York City. One can scribble a note on the back and, apparently
innocently, let the intended target be suitably impressed by one’s amazingly
healthy saving account. Scott Simon, the host of this NPR show, noted the
close resemblance to π.

For those who know The Hitchhiker’s Guide to the Galaxy, it is amusing
that 042 occurs at the digits ending at the fifty-billionth decimal place in each
of π and 1/π—thereby providing an excellent answer to the ultimate question,
“What is forty two?”

It is hard to imagine e or log 2 playing the same role. That said, the publicity
surrounding the Millennium problems has lead to a spate of recent popular
books on the Riemann Hypothesis. The million dollar prize for the Riemann
Hypothesis even formed the basis of a recent episode of the television program
Law and Order, in which student notebooks contained quite accurate formulas.

3.3 Behind the Cubic and Quartic Iterations

The genesis of the π algorithms (3.1.13), (3.1.17), (3.1.18) and related material
is itself an illustrative example of experimental mathematics. For nonnegative
integer N , the function

α(N) =
E ′(kN)

K(kN)
− π

4 K2(kN)
(3.3.20)

had arisen, where kN is the N -th singular value, and K and E ′ are complete
elliptic integrals as detailed in the discussion of Legendre’s relation in Section
5.6.1. For present purposes, it suffices that (3.3.20) is very easy to compute. For
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Figure 3.3: Fax from The Simpsons show.
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example, the first few non–composite values are (to 20 digit accuracy):

α(1) ≈ 0.49999999999999999999

α(2) ≈ 0.41421356237309504880

α(3) ≈ 0.36602540378443864678

α(5) ≈ 0.33188261099247156221

α(7) ≈ 0.32287565553229529536.

It is obvious that α(1) = 1/2 and easy to spot that α(2) =
√

2−1, from which
it was quickly observed that α(3) = (

√
3 − 1)/2 and that α(7) = (

√
7 − 2)/2,

but α(5) did not appear to be a quadratic. Twenty years ago, such identifica-
tion was not as easy, and it was only when it occurred to the Borweins that
quadratic fields congruent to ±1 mod 4 behave differently that they stumbled
upon (experimentally) the identity

α(5) =

√
5−

√
2
√

5− 2

2
. (3.3.21)

Nowadays, this is almost trivial: A “Minpoly” calculation immediately re-
turns 29 − 80x − 24x2 + 16x4 = 0 and this has the surd above as its smallest
positive root. At this point, the authors could use known results only to prove
the value of α(1), α(2) and α(3). Those for α(5) and α(7) remained conjectural.
There was, however, an empirical family of algorithms for π: let α0 = α(N) and
k0 = k′N (where k′ =

√
1− k2) and iterate

kn+1 =
1− k′n
1 + k′n

(3.3.22)

αn+1 = (1 + kn+1)
2αn −

√
N 2n+1kn+1. (3.3.23)

Then

lim
n→∞

α−1
n = π. (3.3.24)

Again, (3.3.24) was provable for N = 1, 2, 3 and only conjectured for N = 5, 7.
In each case the algorithm appeared to converge quadratically to π. On closer
inspection while the provable cases were correct to 5, 000 digits, the empirical
ones agreed with π to roughly 100 places only. Now, in many ways to have
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discovered a “natural” number that agreed with π to that level—and no more—
would have been more interesting than the alternative. That seemed unlikely,
but recoding and rerunning the iterations kept producing identical results.

Twenty years ago, very high-precision calculation was less accessible, and
the code was being run in a Berkeley Unix integer package. After about six
weeks of effort, it was found that the square root algorithm in the package was
badly flawed, but only if run with an odd precision of more than 60 digits!
And for idiosyncratic reasons that had only been the case in the two unproven
cases. Needless to say, tracing the bug was a salutary and somewhat chastening
experience.

3.4 Computing Individual Digits of Pi

An outsider might be forgiven for thinking that essentially everything of interest
with regards to π has been discovered. For example, this sentiment is suggested
in the closing chapters of Beckmann’s 1971 book on the history of π [33, pg. 172].
Ironically, the Salamin–Brent quadratically convergent iteration was discovered
only five years later, and the higher-order convergent algorithms followed in the
1980s. In 1990, Rabinowitz and Wagon discovered a “spigot” algorithm for π,
which permits successive digits of π (in any desired base) to be computed with
a relatively simple recursive algorithm based on the previously generated digits
(see [168] and Item 15 at the end of this chapter).

But even insiders are sometimes surprised by a new discovery. Prior to 1996,
almost all mathematicians believed that if you want to determine the d-th digit
of π, you have to generate the entire sequence of the first d digits. (For all
of their sophistication and efficiency, the schemes described above all have this
property.) But it turns out that this is not true, at least for hexadecimal (base
16) or binary (base 2) digits of π. In 1996, Peter Borwein, Simon Plouffe, and
one of the present authors (Bailey) found an algorithm for computing individual
hexadecimal or binary digits of π [21]. To be precise, this algorithm:

(1) directly produces a modest-length string of digits in the hexadecimal or
binary expansion of π, beginning at an arbitrary position, without needing
to compute any of the previous digits;

(2) can be implemented easily on any modern computer;
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(3) does not require multiple precision arithmetic software;

(4) requires very little memory; and

(5) has a computational cost that grows only slightly faster than the digit
position.

Using this algorithm, for example, the one millionth hexadecimal digit (or
the four millionth binary digit) of π can be computed in less than a minute
on a 2001-era computer. The new algorithm is not fundamentally faster than
best-known schemes for computing all digits of π up to some position, but its
elegance and simplicity are nonetheless of considerable interest. This scheme is
based on the following remarkable new formula for π:

Theorem 3.4.1

π =
∞∑
i=0

1

16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
. (3.4.25)

Proof. First note that for any k < 8,
∫ 1/

√
2

0

xk−1

1− x8
dx =

∫ 1/
√

2

0

∞∑
i=0

xk−1+8i dx

=
1

2k/2

∞∑
i=0

1

16i(8i + k)
. (3.4.26)

Thus one can write
∞∑
i=0

1

16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)

=

∫ 1/
√

2

0

4
√

2− 8x3 − 4
√

2x4 − 8x5

1− x8
dx, (3.4.27)

which on substituting y =
√

2x becomes
∫ 1

0

16 y − 16

y4 − 2 y3 + 4 y − 4
dy =

∫ 1

0

4y

y2 − 2
dy −

∫ 1

0

4y − 8

y2 − 2y + 2
dy

= π. (3.4.28)
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2

However, in presenting this formal derivation, we are disguising the actual
route taken to the discovery of this formula. This route is a superb example of
experimental mathematics in action.

It all began in 1995, when Peter Borwein and Simon Plouffe of Simon Fraser
University observed that the following well-known formula for log 2 permits one
to calculate isolated digits in the binary expansion of log 2:

log 2 =
∞∑

k=0

1

k2k
. (3.4.29)

This scheme is as follows. Suppose we wish to compute a few binary digits be-
ginning at position d+1 for some integer d > 0. This is equivalent to calculating
{2d log 2}, where {·} denotes fractional part. Thus we can write

{2d log 2} =

{{
d∑

k=0

2d−k

k

}
+

∞∑

k=d+1

2d−k

k

}

=

{{
d∑

k=0

2d−k mod k

k

}
+

∞∑

k=d+1

2d−k

k

}
. (3.4.30)

We are justified in inserting “mod k” in the numerator of the first summation,
because we are only interested in the fractional part of the quotient when divided
by k.

Now the key observation is this: The numerator of the first sum in Equation
(3.4.30), namely 2d−k mod k, can be calculated very rapidly by means of the bi-
nary algorithm for exponentiation, performed modulo k. The binary algorithm
for exponentiation is merely the formal name for the observation that exponenti-
ation can be economically performed by means of a factorization based on the bi-
nary expansion of the exponent. For example, we can write 317 = ((((32)2)2)2)·3,
thus producing the result in only 5 multiplications, instead of the usual 16. Ac-
cording to Knuth, this technique dates back at least to 200 bce [131, pg. 461].
In our application, we need to obtain the exponentiation result modulo a positive
integer k. This can be done very efficiently by reducing modulo k the intermedi-
ate multiplication result at each step of the binary algorithm for exponentiation.
A formal statement of this scheme is as follows:
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Algorithm 1 Binary algorithm for exponentiation modulo k.

To compute r = bn mod k, where r, b, n and k are positive integers: First set t
to be the largest power of two such that t ≤ n, and set r = 1. Then

A: if n ≥ t then r ← br mod k; n ← n− t; endif
t ← t/2
if t ≥ 1 then r ← r2 mod k; go to A; endif 2

Note that the above algorithm is performed entirely with positive integers
that do not exceed k2 in size. Thus ordinary 64-bit floating-point or integer
arithmetic, available on almost all modern computers, suffices for even rather
large calculations. 128-bit floating-point arithmetic (double-double or quad pre-
cision), available at least in software on many systems (see Section 6.2.1), suffices
for the largest computations currently feasible.

We can now present the algorithm for computing individual binary digits of
log 2.

Algorithm 2 Individual digit algorithm for log 2.

To compute the (d + 1)-th binary digit of log 2: Given an integer d > 0, (1)
calculate each numerator of the first sum in Equation (3.4.30), using Algorithm
1, implemented using ordinary 64-bit integer or floating-point arithmetic; (2)
divide each numerator by the respective value of k, again using ordinary floating-
point arithmetic; (3) sum the terms of the first summation, while discarding any
integer parts; (4) evaluate the second summation as written using floating-point
arithmetic—only a few terms are necessary since it rapidly converges; and (5)
add the result of the first and second summations, discarding any integer part.
The resulting fraction, when expressed in binary, gives the first few digits of the
binary expansion of log 2 beginning at position d + 1. 2

As soon as Borwein and Plouffe found this algorithm, they began seeking
other mathematical constants that shared this property. It was clear that any
constant α of the form

α =
∞∑

k=0

p(k)

q(k)2k
, (3.4.31)
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where p(k) and q(k) are integer polynomials, with deg p < deg q and q having no
zeroes at nonnegative integer arguments, is in this class. Further, any rational
linear combination of such constants also shares this property. Checks of various
mathematical references eventually uncovered about 25 constants that possessed
series expansions of the form given by equation (3.4.31).

As you might suppose, the question of whether π also shares this property did
not escape these researchers. Unfortunately, exhaustive searches of the mathe-
matical literature did not uncover any formula for π of the requisite form. But
given the fact that any rational linear combination of constants with this prop-
erty also shares this property, Borwein and Plouffe performed integer relation
searches to see if a formula of this type existed for π. This was done, using
computer programs written by one of the present authors (Bailey), which im-
plement the “PSLQ” integer relation algorithm in high-precision, floating-point
arithmetic [92, 13]. We will discuss the PSLQ algorithm and related techniques
more in Section 6.3.

In particular, these three researchers sought an integer relation for the real
vector (α1, α2, · · · , αn), where α1 = π and (αi, 2 ≤ i ≤ n) is the collection of
constants of the requisite form gleaned from the literature, each computed to
several hundred decimal digit precision. To be precise, they sought an n-long
vector of integers (ai) such that

∑
i aiαi = 0, to within a very small “epsilon.”

After a month or two of computation, with numerous restarts using new α vectors
(when additional formulas were found in the literature) the identity (3.4.25) was
finally uncovered. The actual formula found by the computation was:

π = 4F (1/4, 5/4; 1;−1/4) + 2 arctan(1/2)− log 5, (3.4.32)

where F (1/4, 5/4; 1;−1/4) = 0.955933837 . . . is a hypergeometric function eval-
uation. Reducing this expression to summation form yields the new π formula:

π =
∞∑
i=0

1

16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
. (3.4.33)

To return briefly to the derivation of Formula (3.4.33), let us point out that it
was discovered not by formal reasoning, or even by computer-based symbolic
processing, but instead by numerical computations using a high-precision im-
plementation of the PSLQ integer relation algorithm. It is most likely the first
instance in history of the discovery of a new formula for π by a computer. We
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might mention that, in retrospect, Formula (3.4.33) could be found much more
quickly, by seeking integer relations in the vector (π, S1, S2, · · · , S8), where

Sj =
∞∑

k=0

1

16k(8k + j)
. (3.4.34)

Such a calculation could be done in a few seconds on a computer, even if one did
not know in advance to use 16 in the denominator and 9 terms in the search,
but instead had to stumble on these parameters by trial and error. But this
observation is, as they say, 20-20 hindsight. The process of real mathematical
discovery is often far more tortuous and less elegant than the polished version
typically presented in textbooks and research journals.

It should be clear at this point that the scheme for computing individual
hexadecimal digits of π is very similar to Algorithm 2. For completeness, we
state it as follows:

Algorithm 3 Individual digit algorithm for π.

To compute the (d + 1)-th hexadecimal digit of π: Given an integer d > 0, we
can write

{16dπ} = {4{16dS1} − 2{16dS4} − {16dS5} − {16dS6}}, (3.4.35)

using the Sj notation of Equation (3.4.34). Now apply Algorithm 2, with

{16dSj} =

{{
d∑

k=0

16d−k

8k + j

}
+

∞∑

k=d+1

16d−k

8k + j

}

=

{{
d∑

k=0

16d−k mod 8k + j

8k + j

}
+

∞∑

k=d+1

16d−k

8k + j

}
(3.4.36)

instead of equation (3.4.30), to compute {16dSj} for j = 1, 4, 5, 6. Combine
these four results, discarding integer parts, as shown in (3.4.35). The resulting
fraction, when expressed in hexadecimal notation, gives the hex digit of π in
position d + 1, plus a few more correct digits. 2

As with Algorithm 2, multiple-precision arithmetic software is not required—
ordinary 64-bit or 128-bit floating-point arithmetic suffices even for some rather
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large computations. We have omitted here some numerical details for large
computations—see [21]. Sample implementations in both C and Fortran-90 are
available from the web site http://www.expmath.info.

One mystery that remains unanswered is why Formula (3.4.33) was not dis-
covered long ago. As you can see from the above proof, there is nothing very
sophisticated about its derivation. There is no fundamental reason why Euler,
for example, or Gauss or Ramanujan, could not have discovered it. Perhaps the
answer is that its discovery was a case of “reverse mathematical engineering.”
Lacking a motivation to find such a formula, mathematicians of previous eras
had no reason to derive one. But this still doesn’t answer the question of why
the algorithm for computing individual digits of log 2 had not been discovered
before—it is based on a formula, namely Equation (3.4.29), that has been known
for centuries.

Needless to say, Algorithm 3 has been implemented by numerous researchers.
In 1997, Fabrice Bellard of INRIA computed 152 binary digits of π starting
at the trillionth binary digit position. The computation took 12 days on 20
workstations working in parallel over the Internet. His scheme is actually based
on the following variant of 3.4.33:

π = 4
∞∑

k=0

(−1)k

4k(2k + 1)

− 1

64

∞∑

k=0

(−1)k

1024k

(
32

4k + 1
+

8

4k + 2
+

1

4k + 3

)
. (3.4.37)

This formula permits individual hex or binary digits of π to be calculated roughly
43% faster than (3.4.25).

A year later, Colin Percival, then a 17-year-old student at Simon Fraser
University, utilized a network of 25 machines to calculate binary digits in the
neighborhood of position 5 trillion, and then in the neighborhood of 40 trillion.
In September 2000, he found that the quadrillionth binary digit is “0,” based on
a computation that required 250 CPU-years of run time, carried out using 1,734
machines in 56 countries. Table 3.4 gives some results known as of this writing.

One question that immediately arises in the wake of this discovery is whether
or not there is a formula of this type and an associated computational scheme
to compute individual decimal digits of π. Searches conducted by numerous
researchers have been unfruitful. Now it appears that there is no nonbinary
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Hex Digits Beginning
Position at This Position
106 26C65E52CB4593

107 17AF5863EFED8D

108 ECB840E21926EC

109 85895585A0428B

1010 921C73C6838FB2

1011 9C381872D27596

1.25× 1012 07E45733CC790B

2.5× 1014 E6216B069CB6C1

Table 3.4: Computed hexadecimal digits of π.

formula of this type—this is ruled out by a new result co-authored by one of
the present authors (see Section 3.7) [49]. However, none of this removes the
possibility that there exists some completely different approach that permits
rapid computation of individual decimal digits of π. Also, as we will see in
the next section, there do exist formulas for certain other constants that admit
individual digit calculation schemes in various nonbinary bases (including base
ten).

3.5 Unpacking the BBP Formula for Pi

It is worth asking “why” the formula

π =
∞∑
i=0

1

16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
(3.5.38)

exists. As observed above, this identity is equivalent to, and can be proved by
establishing:

π =

∫ 1/
√

2

0

4
√

2− 8x3 − 4
√

2x4 − 8x5

1− x8
dx.

The present version of Maple evaluates this integral to

−2 log 2 + 2 log(2−
√

2) + π + 2 log(2 +
√

2), (3.5.39)
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which simplifies to π. In any event, one can ask what the individual series in
(3.5.38) comprise. So consider

Sb =
∞∑

k=0

1

16k(8k + b)

for 1 ≤ b ≤ 8 and the corresponding normalized integrals

I(b) = 2b/2

∫ 1/
√

2

0

xb−1

1− x8
dx. (3.5.40)

Again, Maple provides closed forms for I(b) in which the basic quantities seem to
be the following: arctan(2), arctan(1/2),

√
2 arctan(1/

√
2), log(2), log(3), log(5),

and log(
√

2±1). At this point one may use integer relation methods and obtain:

S1 =
π

8
+

log 5

8
−
√

2 log(
√

2− 1)

4
− arctan(1/2)

4
+

√
2 arctan(

√
2/2)

4

S2 =
log(3)

4
+

arctan(1/2)

2

S3 =
π

4
−
√

2 log(
√

2− 1)

2
− arctan(1/2)

2
−
√

2 arctan(
√

2/2)

2
− log 5

4

S4 =
log 5

2
− log 3

2

S5 = −π

2
−
√

2 log(
√

2− 1) + arctan(1/2) +
√

2 arctan(
√

2/2)− log 5

2
S6 = log 3− 2 arctan(1/2)

S7 = −π + log 5− 2
√

2 log(
√

2− 1) + 2 arctan(1/2)− 2
√

2 arctan(
√

2/2)

S8 = 8 log 2− 2 log 5− 2 log 3. (3.5.41)

Thus the “simple” hexadecimal formula (3.5.38) is actually a molecule made
up of more subtle hexadecimal atoms: with the final bond coming from the
simple identity arctan 2 + arctan(1/2) = π/2. As an immediate consequence,
one obtains the formula arctan(1/2) = S2 − S6/4.

Furthermore, the facts that

Im

(
log

(
1− 1− i

x

))
= arctan

(
1

1− x

)

2 arctan(1/3) + arctan(1/7) = arctan(1/2) + arctan(1/3)

= arctan 1 = π/4 (3.5.42)
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allow one to write directly a base-64 series for arctan(1/3) (using x = 4) and a
base-1024 series for arctan(1/7) (using x = 8). This yields the identity

π

4
=

1

16

∞∑
n=0

(−1)n

64n

(
8

4n + 1
+

4

4n + 2
+

1

4n + 3

)

+
1

256

∞∑
n=0

(−1)n

1024n

(
32

4n + 1
+

8

4n + 2
+

1

4n + 3

)
, (3.5.43)

which is similar to, although distinct from, the identity used by Bellard and
Percival in their computations.

3.6 Other BBP-Type Formulas

A formula of the type mentioned in the previous sections, namely

α =
∞∑

k=0

p(k)

bkq(k)
, (3.6.44)

is now referred to as a BBP-type formula, named after the initials of the authors
of the 1997 paper where the π hex digit algorithm appeared [21]. For a constant
α given by a formula of this type, it is clear that individual base-b digits can be
calculated, using the scheme similar to the ones outlined in the previous section.
The paper [21] includes formulas of this type for several other constants. Since
then, a large number of other BBP-type formulas have been discovered.

Most of these identities were discovered using an experimental approach,
using PSLQ searches. Others were found as the result of educated guesses based
on experimentally obtained results. In each case, these formulas have been
formally established, although the proofs are not always as simple as the proof
of Theorem 3.4.1. We present these results, in part, to underscore the fact that
the approach used to find the new formula for π has very broad applicability.

A sampling of the known binary BBP-type formulas (i.e., formulas with a
base b = 2p for some integer p) is shown in Table 3.5. Some nonbinary BBP-
type formulas are shown in Table 3.6. These formulas are derived from several
sources: [21, 61, 62]. An updated collection is available at [16]. The constant G
that appears in Table 3.5 is Catalan’s constant, namely G = 1− 1/32 + 1/52 −
1/72 + · · · = 0.9159655941 . . .
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π
√

3 =
9
32

∞∑

k=0

1
64k

(
16

6k + 1
+

8
6k + 2

− 2
6k + 4

− 1
6k + 5

)

π2 =
9
8

∞∑

k=0

1
64k

(
16

(6k + 1)2
− 24

(6k + 2)2
− 8

(6k + 3)2
− 6

(6k + 4)2

+
1

(6k + 5)2

)

log2 2 =
1
32

∞∑

k=0

1
64k

(
64

(6k + 1)2
− 160

(6k + 2)2
− 56

(6k + 3)2
− 40

(6k + 4)2

+
4

(6k + 5)2
− 1

(6k + 6)2

)

π log 2 =
1

256

∞∑

k=0

1
4096k

(
4096

(24k + 1)2
− 8192

(24k + 2)2
− 26112

(24k + 3)2
+

15360
(24k + 4)2

− 1024
(24k + 5)2

+
9984

(24k + 6)2
+

11520
(24k + 8)2

+
2368

(24k + 9)2
− 512

(24k + 10)2

+
768

(24k + 12)2
− 64

(24k + 13)2
+

408
(24k + 15)2

+
720

(24k + 16)2

+
16

(24k + 17)2
+

196
(24k + 18)2

+
60

(24k + 20)2
− 37

(24k + 21)2

)

G =
1

1024

∞∑

k=0

1
4096k

(
3072

(24k + 1)2
− 3072

(24k + 2)2
− 23040

(24k + 3)2
+

12288
(24k + 4)2

− 768
(24k + 5)2

+
9216

(24k + 6)2
+

10368
(24k + 8)2

+
2496

(24k + 9)2
− 192

(24k + 10)2

+
768

(24k + 12)2
− 48

(24k + 13)2
+

360
(24k + 15)2

+
648

(24k + 16)2

+
12

(24k + 17)2
+

168
(24k + 18)2

+
48

(24k + 20)2
− 39

(24k + 21)2

)

Table 3.5: Binary BBP-type formulas.
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log 2 =
2
3

∞∑

k=0

1
9k(2k + 1)

π
√

3 =
1
9

∞∑

k=0

1
729k

(
81

12k + 1
− 54

12k + 2
− 9

12k + 4
− 12

12k + 6

− 3
12k + 7

− 2
12k + 8

− 1
12k + 10

)

log 3 =
1

729

∞∑

k=0

1
729k

(
729

6k + 1
+

81
6k + 2

+
81

6k + 3
+

9
6k + 4

+
9

6k + 5
+

1
6k + 6

)

π2 =
2
27

∞∑

k=0

1
729k

(
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2

− 27
(12k + 5)2

− 72
(12k + 6)2

− 9
(12k + 7)2

− 9
(12k + 8)2

− 5
(12k + 10)2

+
1

(12k + 11)2

)

log
(

9
10

)
=

−1
10

∞∑

k=0

1
k10k

log
(

1111111111
387420489

)
=

1
108

∞∑

k=0

1
1010k

(
108

10k + 1
+

107

10k + 2
+

106

10k + 3

+
105

10k + 4
+

104

10k + 5
+

103

10k + 6
+

102

10k + 7

+
10

10k + 8
+

1
10k + 9

)

25
2

log


781

256

(
57− 5

√
5

57 + 5
√

5

)√
5

 =

∞∑

k=0

1
55k

(
5

5k + 2
+

1
5k + 3

)
(3.6.45)

Table 3.6: Nonbinary BBP-type formulas.
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In addition to the formulas in Tables 3.5 and 3.6, there are two other classes
of constants known to possess binary BBP-type formulas. The first is logarithms
of certain integers. Clearly, log n can be written with a binary BBP formula (i.e.
a formula with b = 2m for some integer m) provided n factors completely using
primes whose logarithms have binary BBP formulas—one merely combines the
individual series for the different primes into a single binary BBP formula. We
have seen that the logarithm of the prime 2 possesses a binary BBP formula,
and so does log 3, by the following reasoning:

log 3 = 2 log 2 + log

(
1− 1

4

)
= 2

∞∑

k=1

1

k2k
−

∞∑

k=1

1

k4k

=
1

2

∞∑

k=0

1

4k

(
2

2k + 1
+

1

2k + 2

)
− 1

4

∞∑

k=0

1

4k

(
2

2k + 2

)

=
∞∑

k=0

1

4k

(
1

2k + 1

)
. (3.6.46)

In a similar manner, it can be shown, by examining the factorization of 2n + 1
and 2n−1, where n is an integer, that numerous other primes have this property.
Some additional primes can be obtained by noting that the real part of the Taylor
series expansion of

α = log

(
1± (1 + i)k

2n

)
(3.6.47)

yields a BBP-type formula. See [16] for details.
The logarithms of the following primes are now known to possess binary BBP

formulas [69]:

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 61, 73, 109, 113, 127, 151,

241, 257, 331, 337, 397, 683, 1321, 1429, 1613, 2113, 2731, 5419, 8191,

14449, 26317, 38737, 43691, 61681, 65537, 87211, 131071, 174763,

246241, 262657, 268501, 279073, 312709, 524287, 525313, 599479,

2796203, 4327489, 7416361, 15790321, 18837001, 22366891 (3.6.48)

This list is certainly not complete, and it is unknown whether or not all primes
have this property, or even whether the list of such primes is finite or infinite.
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One can also obtain BBP-type formulas in nonbinary bases for the logarithms
of certain integers and rational numbers. One example is given by the base
ten formula for log(9/10) in Table 3.6. This has been used to compute the ten
billionth decimal digit of log(9/10) [21].

One additional class of binary BBP-type formulas that we will mention here
is arctangents of certain rational numbers. We present here the results of ex-
perimental searches, using the PSLQ integer relation algorithm, which we have
subsequently established formally. The formal derivation of these results pro-
ceeds as follows. Consider the set of rationals given by q = |Im(T )/Re(T )| or
|Re(T )/Im(T )|, where

T =
m∏

k=1

(
1± i

2tk

)uk
(

1± 1 + i

2vk

)wk

(3.6.49)

for various m-long nonnegative integer vectors t, u, v, w and choices of signs as
shown [50, pg. 344]. For example, setting t = (1, 1), u = (1, 1), v = (1, 3), w =
(1, 1), with signs (1,−1,−1, 1), gives the result T = 25/32 − 5i/8, which yields
q = 4/5. Indeed, one can obtain the formula

arctan

(
4

5

)
=

1

217

∞∑

k=0

1

220k

(
524288

40k + 2
− 393216

40k + 4
− 491520

40k + 5
+

163840

40k + 8

+
32768

40k + 10
− 24576

40k + 12
+

5120

40k + 15
+

10240

40k + 16
+

2048

40k + 18

+
1024

40k + 20
+

640

40k + 24
+

480

40k + 25
+

128

40k + 26
− 96

40k + 28

+
40

40k + 32
+

8

40k + 34
− 5

40k + 35
− 6

40k + 36

)
. (3.6.50)

The set of rationals for which BBP formulas can be obtained in this way can be
further expanded by applying the formula

tan(r + s) =
tan r + tan s

1− tan(rs)
, (3.6.51)

for rationals r and s for which binary BBP-type formulas are found. By applying
these methods, it can be shown that binary BBP formulas exist for the arctan-
gents of the following rational numbers. Only those rationals with numerators
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< denominators ≤ 25 are listed here.

1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, 1/6, 5/6, 1/7, 3/7,

4/7, 5/7, 6/7, 1/8, 7/8, 1/9, 2/9, 7/9, 8/9, 3/10, 1/11, 2/11,

3/11, 7/11, 8/11, 10/11, 1/12, 5/12, 1/13, 4/13, 6/13, 7/13, 9/13,

11/13, 12/13, 3/14, 5/14, 1/15, 4/15, 8/15, 1/16, 7/16, 11/16, 13/16,

15/16, 1/17, 4/17, 6/17, 7/17, 9/17, 11/17, 15/17, 16/17, 1/18, 13/18,

3/19, 4/19, 6/19, 7/19, 8/19, 9/19, 11/19, 17/19, 9/20, 1/21, 13/21,

16/21, 20/21, 3/22, 7/22, 9/22, 19/22, 21/22, 2/23, 4/23, 6/23, 7/23,

9/23, 10/23, 11/23, 14/23, 15/23, 7/24, 11/24, 23/24, 1/25, 2/25,

13/25, 19/25, 21/25 (3.6.52)

Note that not all “small” rationals appear in this list. As it turns out, by
applying the methods given in the paper [49] (see the next section), one can
rule out the possibility of Machin-type BBP formulas (as described in Section
3.6) for the arctangents of 2/7, 3/8, 5/8, 4/9, and 5/9. Thus we believe the
above list to be complete for rationals with numerators and denominators up to
ten. Beyond this level, we do not know for sure whether this list is complete,
or whether applying formula (3.6.49), together with addition and subtraction
formulas, generates all possible rationals possessing binary BBP-type formulas.

One can obtain BBP formulas in nonbinary bases for the arctangents of cer-
tain rational numbers by employing an appropriate variant of formula (3.6.49).

3.7 Does Pi Have a Nonbinary BBP Formula?

As we mentioned above, from the day that the BBP-formula for π was discovered,
many researchers have wondered whether there exist BBP-type formulas that
would permit computation of individual digits in bases other than powers of two
(such as base ten). This is not such a far-fetched possibility, because both base-2
and base-3 formulas are known for π2, as well as for log 2 (see Tables 3.5 and
3.6). But extensive computations failed to find any nonbinary formulas for π.

Recently one of the present authors, together with David Borwein (Jon’s
father) and William Galway, established that there are no nonbinary Machin-
type arctangent formulas for π. We believe that if there is no nonbinary Machin-
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type arctangent formula for π, then there is no nonbinary BBP-type formula of
any form for π. We will summarize this result here. Full details and other related
results can be found in [49].

We say that the integer b > 1 is not a proper power if it cannot be written as
cm for any integers c and m > 1. We will use the notation ordp(z) to denote the
p-adic order of the rational z ∈ Q. In particular, ordp(p) = 1 for prime p, while
ordp(q) = 0 for primes q 6= p, and ordp(wz) = ordp(w) + ordp(z). The notation
νb(p) will mean the order of the integer b in the multiplicative group of the
integers modulo p. We will say that p is a primitive prime factor of bm−1 if m is
the least integer such that p|(bm−1). Thus p is a primitive prime factor of bm−1
provided νb(p) = m. Given the Gaussian integer z ∈ Q[i] and the rational prime
p ≡ 1 (mod 4), let θp(z) denote ordp(z) − ordp(z), where p and p are the two
conjugate Gaussian primes dividing p, and where we require 0 < =(p) < R(p)
to make the definition of θp unambiguous. Note that

θp(wz) = θp(w) + θp(z). (3.7.53)

Given κ ∈ R, with 2 ≤ b ∈ Z and b not a proper power, we say that κ has a
Z-linear or Q-linear Machin-type BBP arctangent formula to the base b if and
only if κ can be written as a Z-linear or Q-linear combination (respectively) of
generators of the form

arctan

(
1

bm

)
= = log

(
1 +

i

bm

)
= bm

∞∑

k=0

(−1)k

b2mk(2k + 1)
. (3.7.54)

We will also use the following theorem, first proved by Bang in 1886:

Theorem 3.7.1 The only cases where bm − 1 has no primitive prime factor(s)
are when b = 2, m = 6, bm − 1 = 32 · 7; and when b = 2N − 1, N ∈ Z, m = 2,
bm − 1 = 2N+1(2N−1 − 1).

We can now state the main result of this section:

Theorem 3.7.2 Given b > 2 and not a proper power, then there is no Q-linear
Machin-type BBP arctangent formula for π.



152 CHAPTER 3. PI AND ITS FRIENDS

Proof. It follows immediately from the definition of a Q-linear Machin-type
BBP arctangent formula that any such formula has the form

π =
1

n

M∑
m=1

nm= log(bm − i) (3.7.55)

where n > 0 ∈ Z, nm ∈ Z, and M ≥ 1, nM 6= 0. This implies that

M∏
m=1

(bm − i)nm ∈ eniπQ× = Q× (3.7.56)

For any b > 2 and not a proper power we have Mb ≤ 2, so it follows from Bang’s
Theorem that b4M − 1 has a primitive prime factor, say p. Furthermore, p must
be odd, since p = 2 can only be a primitive prime factor of bm− 1 when b is odd
and m = 1. Since p is a primitive prime factor, it does not divide b2M − 1, and
so p must divide b2M + 1 = (bM + i)(bM − i). We cannot have both p|bM + i and
p|bM − i, since this would give the contradiction that p|(bM + i)− (bM − i) = 2i.
It follows that p ≡ 1 (mod 4), and that p factors as p = pp over Z[i], with
exactly one of p, p dividing bM − i. Referring to the definition of θ, we see that
we must have θp(b

M − i) 6= 0. Furthermore, for any m < M , neither p nor p

can divide bm − i since this would imply p | b4m − 1, 4m < 4M , contradicting
the fact that p is a primitive prime factor of b4M − 1. So for m < M , we have
θp(b

m − i) = 0. Referring to equation (3.7.55), using Equation (3.7.53) and the
fact that nM 6= 0, we get the contradiction

0 6= nMθp(b
M − i) =

M∑
m=1

nmθp(b
m − i) = θp(Q

×) = 0. (3.7.57)

Thus our assumption that there was a b-ary Machin-type BBP arctangent for-
mula for π must be false. 2

3.8 Commentary and Additional Examples

1. The ENIAC Integrator and Calculator. ENIAC, built in 1946 at
the University of Pennsylvania, had 18,000 vacuum tubes, 6,000 switches,
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Figure 3.4: The ENIAC computer.

10,000 capacitors, 70,000 resistors, 1,500 relays, was 10 feet tall, occu-
pied 1,800 square feet, and weighed 30 tons. ENIAC could perform 5,000
arithmetic operations per second—1,000 times faster than any earlier ma-
chine, but a far cry from today’s leading-edge microprocessors, which can
perform more than four billion operations per second. The first stored-
memory computer, ENIAC could store 200 digits, which again is a far cry
from the hundreds of megabytes in a modern personal computer system.
Data flowed from one accumulator to the next, and after each accumulator
finished a calculation, it communicated its results to the next in line. The
accumulators were connected to each other manually. A photo is shown in
Figure 3.4.

2. Four approximations to pi. Here are two well known, but fascinating,
approximations to π:

π ≈ 3√
163

log (640320) ,
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correct to 15 decimal places, and

π ≈ 3√
67

log (5280) ,

correct to 9 decimal places. Both rely on somewhat deeper number theory
(see Section 1.4 in the second volume). Here are two nice algebraic π
approximations:

π ≈ 66

√
2

33
√

29− 148

and

π ≈ 63

25

17 + 15
√

5

7 + 15
√

5
.

3. An arctan series for pi. Find rational coefficients ai such that the
identity

π = a1 arctan
1

390112
+ a2 arctan

1

485298

+a3 arctan
1

683982
+ a4 arctan

1

1984933

+a5 arctan
1

2478328
+ a6 arctan

1

3449051

+a7 arctan
1

18975991
+ a8 arctan

1

22709274

+a9 arctan
1

24208144
+ a10 arctan

1

201229582

+a11 arctan
1

2189376182

holds [7, pg. 75]. Also show that an identity with even simpler coefficients
exists if arctan 1/239 is included as one of the terms on the RHS. Hint:
Use an integer relation program (see Section 6.3), or try the tools at one
of these sites: http://www.cecm.sfu.ca/projects/IntegerRelations or
http://www.expmath.info.

4. Ballantine’s series for pi. A formula of Euler for arccot is

x

∞∑
n=0

(n!)2 4n

(2 n + 1)! (x2 + 1)n+1 = arctan

(
1

x

)
(3.8.58)
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As observed by Ballantine in 1939, ([34]) this allows one to rewrite the vari-
ant of Machin’s formula, used by Guilloud and Bouyer in 1973 to compute
a million digits of π,

π

4
= 12 arctan

1

18
+ 8 arctan

1

57
− 5 arctan

1

239
(3.8.59)

in the neat form

π = 864
∞∑

n=0

(n!)2 4n

(2 n + 1)! 325n+1 + 1824
∞∑

n=0

(n!)2 4n

(2 n + 1)! 3250n+1

− 20 arctan
1

239
, (3.8.60)

where the terms of the second series are just decimal shifts of the terms of
the first.

5. Convergence rates for pi formulas. Analyze the rates of convergence
of Archimedes iteration (3.1.1), the Salamin-Brent iteration (3.1.16), the
Borwein cubic iteration (3.1.17) and the Borwein quartic iteration (3.1.18),
by means of explicit computations. Use the high-precision arithmetic facil-
ity built into Maple or Mathematica, or write your own C++ or Fortran-90
code using the ARPREC arbitrary precision software available at
http://www.expmath.info, or the GNU multiprecision software available
at http://www.gnu.org/software/gmp/gmp.html. Such iterations are dis-
cussed more in Sections 5.6.2 and 5.6.3.

6. Biblical pi. As noted in Section 3.1, the Biblical passages 1 Kings 7:23
and 2 Chronicles 4:2 indicate that π = 3. In spite of the fact the context
of these verses clearly suggests an informal approximation, not a precise
statement of mathematical fact, this discrepancy has been a source of
consternation among Biblical literalists for centuries. For example, an
18th-century German Bible commentary attempted to explain away this
discrepancy using the imaginative (if pathetic) suggestion that the circular
pool in Solomon’s temple (clearly described in 2 Chron. 4:2 as “round in
compass”) was instead hexagonal in shape [33, pg. 75–76]. Even today,
some are still unwilling to accept that the Bible could simply be mistaken
here. One evangelical scholar, for example, writes:
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However, the recorded dimensions are still no problem if we con-
sider the shape of the vessel. In 1 Kings 7:26, we read that its
“brim was made like the brim of a cup, as a lily blossom.” Hence,
the sea was not a regular cylinder, but had an outward curving
rim. Although we do not know the exact points on the vessel
where the measurements were taken, the main part of the sea
always will be somewhat smaller than the 10 cubits measured
“from brim to brim.” [150]

Another geometric difficulty in these Biblical passages is that 1 Kings 7:26
(three verses after it gives its dimensions) gives a volume of 2,000 “baths”
for the basin, while 2 Chron. 4:5 gives the figure 3,000 baths. 2 Chron. 4:2
gives the height of the basin as five cubits. Using the accepted conversions
that one “cubit” is roughly 46 cm, and that one “bath” is roughly 23
liters, then assuming Solomon’s pool was cylindrical in shape, we obtain
an actual volume of roughly 1660 baths. If the basin was rounded on the
bottom, then its volume was even lower than this.

7. Exponentiation of pi. Arguably the most accessible transcendental
number to compute is eπ. The following iteration computes D digits in
log(D) steps.

Algorithm 4 Computation of exp(π).

Set k0 = 1/
√

2 and for n < N iterate

k′n =
√

1− k2
n, kn+1 =

1− k′n
1 + k′n

.

Then return (
kN

4

)−1/2N

.

Some care needs to be taken with guard digits. 2

8. Algorithms for Gamma values. An algorithm for π may be viewed as
an algorithm for Γ

(
1
2

)
, and there is a quite analogous iteration for Γ at

the values 1/3, 2/3, 1/4, 3/4, 1/6, and 5/6. This, in turn, allows rapid
computation of Γ

(
k
24

)
, for all integer k. We illustrate with:
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Algorithm 5 Computation of Γ
(

1
4

)
.

Let x0 = 21/2, y1 = 21/4. Let

xn+1 =

√
xn + 1/

√
xn

2
(3.8.61)

yn+1 =
yn
√

xn + 1/
√

xn

yn + 1
. (3.8.62)

Then

Γ4

(
1

4

)
= 16 (1 +

√
2)3

∞∏
n=1

x−1
n

(
1 + xn

1 + yn

)3

.

This yields a quadratically convergent iteration for Γ
(

1
4

)
. 2

No such iteration is known for Γ
(

1
5

)
; see [50, 46].

9. An integral representation of Euler’s constant. While it is known
that Γ

(
1
3

)
and Γ

(
1
4

)
are transcendental, the status of Euler’s constant

γ = lim
n→∞

n∑

k=1

1

k
− log(n) (3.8.63)

is unsettled.

Problem: Show that

γ =

∫ ∞

0

(
1

et − 1
− 1

t et

)
dt.

10. Computation of Euler’s constant. Perhaps the most efficient method
of computation, due to Brent and MacMillan ([50, pg. 336]), is based on
Bessel function identities. It allows one to show that if γ is rational it
must have a denominator with millions of digits. The underlying identity,
known to Euler, is

γ + log(z/2) =
S0(z)−K0(z)

I0(z)
(3.8.64)
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where Iν(z) =
∑∞

k=0(z/2)2k+ν/(k! Γ(k + ν + 1)), while K0(z) = ∂Iν(0)/∂ν

and S0(z) =
∑∞

k=0(
∑k

j=1 1/j) (z/2)2k/(k!)2.

An algorithm follows from knowing the first terms of the asymptotic ex-
pansion for K0 and I0. It is

Algorithm 6 Computation of K0 and I0:

A0 = − log(n), B0 = 1, U0 = A0, V0 = 1, and for k = 1, 2, · · · ,

Bk = Bk−1n
2/k2, Ak = (Ak−1n

2/k + Bk)/k,

Uk = Uk−1 + Ak, Vk = Vk−1 + Bk. (3.8.65)

Terminate when Uk and Vk no longer change, and return γ ≈ Uk/Vk. With
log(n) computed efficiently, this scheme takes O(D) storage and approxi-
mately 2.07 D steps to compute γ to D decimal places. 2

11. Buffon’s needle. Suppose we have a lined sheet of paper, and a needle
that is precisely as long as the distance between the lines. Compute the
probability that the needle “thrown at random” on the sheet of paper will
lie on a line. Answer: 2/π. Although this is certainly not a good way to
calculate π (millions of trials would be required to obtain just a few digits),
it is an instructive example of how π arises in unlikely settings (see also
the next two exercises). Some additional discussion of this problem, plus
a computer-based tool that allows one to perform these trials, is available
at the URL http://www.mste.uiuc.edu/reese/buffon/buffon.html.

12. Putnam problem 1993-B3. If two real numbers x and y are generated
uniformly at random in (0, 1), what is the probability that the nearest
integer to x/y is even? Hint: Ignoring negligible events, for this to occur
either 0 < x/y < 1/2 or (4n − 1)/2 < x/y < (4n + 1)/2. The first
occurs in a triangle of area 1/4 and the subsequent in triangles of area
1/(4n−1)−1/(4n+1). Now apply the Gregory-Leibniz formula. Answer:
The probability is (5− π)/4 ≈ 0.4646018.

13. Number-theory probabilities. Prove (a) The probability that an in-
teger is square-free is 6/π2. (b) The probability that two integers are
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relatively prime is also 6/π2. This is a good example of π appearing in a
number-theory setting. See [110].

14. The irrationality of pi. We reproduce in extenso Ivan Niven’s 1947 very
concise proof that π is irrational [157].

Let π = a/b, the quotient of positive integers. We define the polynomials

f(x) =
xn(a− bx)n

n!

F (x) = f(x)− f (2)(x) + f (4)(x)− · · ·+ (−1)nf (2n)(x),

the positive integer n being specified later. Since n!f(x) has integral co-
efficients and terms in x of degree not less than n, f(x) and its deriva-
tives f (j)(x) have integral values for x = 0; also for x = π = a/b, since
f(x) = f(a/b− x). By elementary calculus we have

d

dx
{F ′(x) sin x− F (x) cos x} = F ′′(x) sin x + F (x) sin x = f(x) sin x

and
∫ π

0

f(x) sin xdx = [F ′(x) sin x− F (x) cos x]π0 = F (π) + F (0). (3.8.66)

Now F (π) + F (0) is an integer, since f (j)(0) and f (j)(π) are integers. But
for 0 < x < π,

0 < f(x) sin x <
πnan

n!
,

so that the integral in (3.8.66) is positive but arbitrarily small for n suf-
ficiently large. Thus (3.8.66) is false, and so is our assumption that π is
rational. 2

This proof gives a good taste of the ingredients of more subtle irrationality
and transcendence proofs.

15. A spigot algorithm for e and pi. A spigot method for a numerical
constant is one that can produce digits one by one (“drop by drop”) [168].
This is especially easy for e as carries are not a big issue.
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(a) The following algorithm, due to Rabinowitz and Wagon, generates
successive digits of e. Initialize an array A of length n+1 to 1. Then
repeat the following n − 1 times: (a) multiply each entry in A by
ten; (b) Starting from the right, reduce the i-th entry of A modulo
i + 1, carrying the quotient of the division one place left. The final
quotient produced is the next digit of e. This algorithm is based on
the following formula, which is simply a restatement of e =

∑
1/i!.

e = 1 +
1

1

(
1 +

1

2

(
1 +

1

3

(
1 +

1

4

(
1 +

1

5
(1 + · · · )

))))
.

(b) Implement a parallel spigot algorithm for π, based on showing that:

π = 2 +
1

3

(
2 +

2

5

(
2 +

3

7

(
2 + · · ·

(
2 +

k

2k + 1
· · ·

))))
.

The last term can be approximated by 2 + 4k/(2k + 1) where k =
log2(10)n to produce n digits of π “drop by drop.” If one wishes to
run the algorithm without a specified end, one must take more care.

One may view the iteration (4.2.7), which we will study in Chapter 4, as
a spectacular (albeit unproven) spigot algorithm for π base 16.

16. Wagon’s BBP identity. Determine the range of validity of the following
identity, which is due to Stan Wagon:

π + 4 arctan z + 2 log

(
1− 2z − z2

z2 + 1

)
=

∞∑

k=0

1

16k

(
4(z + 1)1+8k

1 + 8k
− 2(z + 1)4+8k

4 + 8k
− (z + 1)5+8k

5 + 8k
− (z + 1)6+8k

6 + 8k

)
.

17. Monte Carlo calculation of pi. Monte Carlo simulation was pioneered
during the Manhattan project by Stanislaw Ulam and others, who recog-
nized that this scheme permitted simulations beyond the reach of conven-
tional methods on the systems then available. We illustrate here a Monte
Carlo calculation of π, which is a poor method to compute π, but illustra-
tive of this general class of computation. Nowadays, Monte Carlo methods
are quite popular because they are well suited to parallel computation on
systems such as “Beowulf” clusters.
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(a) Design and implement a Monte Carlo simulation for π, based on gen-
erating pairs of uniformly distributed numbers in the unit square and
testing whether they lie inside the unit circle. Use the pseudoran-
dom number generator x0 = 314159 and xn = cxn−1 mod 232, where
c = 59 = 1953125. This generator is of the well known class of lin-
ear congruential generators and has period 230 [131, pg. 21]. It can
be easily implemented on a computer using IEEE 64-bit “double”
datatype, since the largest integer that can arise here is less than 253.
Variations with longer periods can easily be designed, although the
implementation is not as convenient. The results of this generator are
normalized, by 232 in this case, to produce results in the unit interval.

(b) Extend your program to run on a parallel computer system, with the
property that your parallel program generates the same overall scheme
of pseudorandom numbers, and thus gets the same result for π, as a
serial implementation (you may for convenience assume that n, the
total number of pseudorandom numbers generated, is evenly divisible
by p, the number of processors). This is a very desirable feature of a
parallel program, because it allows you to certify your parallel results
by comparing them with a conventional single-processor run, and it
permits you to take advantage of a range of system sizes. Hint: De-
sign the program so that processor k (where processors are numbered
from 0 to p − 1) generates the m = n/p members of the sequence
(xkm, xkm+1, xkm+2, · · · , xkm+m−1). Note that the starting value xkm

for processor k can be directly computed as xkm = 59kmx0 mod 232.
This exponentiation modulo 232 may be performed by using Algo-
rithm 1, implemented with 128-bit floating-point or “double-double”
arithmetic (see Section 6.2.1).

(c) Generate the following sequence of pseudorandom numbers and exper-
imentally determine what distribution they satisfy (i.e., by computing
means, standard deviations, graphs, etc.): Let x1 and x2 be a pair of
uniform (0, 1) pseudorandom numbers generated as described above.
Set v =

√
x2

1 + x2
2 and w =

√
−2 log v/v. Then produce the results

y1 = wx1 and y2 = wx2.

18. Life of Pi. At the end of his story, Piscine (Pi) Molitor [152, pp.316–7]
writes
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I am a person who believes in form, in harmony of order. Where
we can, we must give things a meaningful shape. For example—I
wonder—could you tell my jumbled story in exactly one hundred
chapters, not one more, not one less? I’ll tell you, that’s one
thing I hate about my nickname, the way that number runs on
forever. It’s important in life to conclude things properly. Only
then can you let go.

We may not share the sentiment, but we should celebrate that Pi knows π
to be irrational.



Chapter 4

Normality of Numbers

Anyone who wants to make a name for himself can examine the major
issue of whether π is normal, or perhaps more accurately, whether π
is not normal.

Jörg Arndt and Christoph Haenel, Pi Unleashed, 2001

In this chapter, we address a fundamental problem of mathematics, a paradox
of sorts: Whereas on one hand it can be proven that “almost all” real numbers
are normal, and whereas it appears from experimental analysis that many of the
fundamental constants of mathematics are normal to commonly used number
bases, as yet there are no proofs, nor even any solid reason why we should observe
this behavior. What we shall show here is that the theory of BBP constants,
which as we have seen is a classic case study of experimental mathematics in
action, opens a pathway into the investigation of normality, and in fact has
already yielded some intriguing results.

4.1 Normality: A Stubborn Question

Given a real number α and an integer b > 2, we say that α is b-normal or
normal base b if every sequence of k consecutive digits in the base-b expansion
of α appears with limiting frequency b−k. In other words, if a constant is 10-
normal, then the limiting frequency of “3” (or any other single digit) in its
decimal expansion is 1/10, the limiting frequency of “58” (or any other two-digit

163
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pair) is 1/100, and so forth. We say that a real number α is absolutely normal
if it is b-normal for all integers b > 1 simultaneously.

In spite of these strong conditions, it is well known from measure theory
that the set of absolutely normal real numbers in the unit interval has measure
one, or in other words, that almost all real numbers are absolutely normal (see
Exercise 1 at the end of this chapter). Further, from numerous analyses of com-
puted digits, it appears that many of the fundamental constants of mathematics
are normal to commonly used number bases. By “fundamental constants,” we
include π, e,

√
2, the golden mean τ = (1 +

√
5)/2, as well as log n and the

Riemann zeta function ζ(n) for positive integers n > 1, and many others. For
example, it is a reasonable conjecture that every irrational algebraic number is
absolutely normal, since there is no known example of an irrational algebraic
number whose decimal expansion (or expansion in any other base) appears to
have skewed digit-string frequencies.

Decimal values are given for a variety of well known mathematical constants
in Table 4.1 [66, 94]. In addition to the widely recognized constants such as π
and e, we have listed Catalan’s constant (G), Euler’s constant (γ), an evaluation
of the elliptic integral of the first kind K(1/

√
2), an evaluation of an elliptic

integral of the second kind E(1/
√

2), Feigenbaum’s α and δ constants, Khint-
chine’s constant K, and Madelung’s constant M3. Binary values for some of
these constants, as well as Chaitin’s Ω constant (from the field of computational
complexity) [66], are given in Table 4.2. As you can see, none of the expansions
in either table exhibits any evident “pattern.”

The digits of π have been studied more than any other single constant, in
part because of the widespread fascination with π. Along this line, Yasumasa
Kanada of the University of Tokyo has tabulated the number of occurrences of
the ten decimal digits “0” through “9” in the first one trillion decimal digits of π.
These counts are shown in Table 4.3. For reasons given in Section 3.4, binary (or
hexadecimal) digits of π are also of considerable interest. To that end, Kanada
has also tabulated the number of occurrences of the 16 hexadecimal digits “0”
through “F,” as they appear in the first one trillion hexadecimal digits. These
counts are shown in Table 4.4. As you can see, both the decimal and hexadecimal
single-digit counts are entirely reasonable.

Some readers may be amused by the PiSearch utility, which is available at
http://pi.nersc.gov. This online tool permits one to enter one’s name (or any
other modest-length alphabetic string, or any modest-length hexadecimal string)
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Constant Value√
2 1.4142135623730950488 . . .√
3 1.7320508075688772935 . . .√
5 2.2360679774997896964 . . .

φ =
√

5−1
2

0.61803398874989484820 . . .
π 3.1415926535897932385 . . .

1/π 0.31830988618379067153 . . .
e 2.7182818284590452354 . . .

1/e 0.36787944117144232160 . . .
eπ 23.140692632779269007 . . .

log 2 0.69314718055994530942 . . .
log 10 2.3025850929940456840 . . .

log2 10 3.3219280948873623478 . . .
log10 2 0.30102999566398119522 . . .
log2 3 1.5849625007211561815 . . .
ζ(2) 1.6449340668482264365 . . .
ζ(3) 1.2020569031595942854 . . .
ζ(5) 1.0369277551433699263 . . .

G 0.91596559417721901505 . . .
γ 0.57721566490153286061 . . .

Γ(1/2) =
√

π 1.7724538509055160273 . . .
Γ(1/3) 2.6789385347077476337 . . .
Γ(1/4) 3.6256099082219083121 . . .

K(1/
√

2) 1.8540746773013719184 . . .

E(1/
√

2) 1.3506438810476755025 . . .
αf 4.669201609102990 . . .
δf 2.502907875095892 . . .
K 2.6854520010653064453 . . .

M3 1.7475645946331821903 . . .

Table 4.1: Decimal values of various mathematical constants.
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Constant Value
π 11.001001000011111101101010100010001000010110100011000010001 . . .
e 10.101101111110000101010001011000101000101011101101001010100 . . .√
2 1.0110101000001001111001100110011111110011101111001100100100 . . .√
3 1.1011101101100111101011101000010110000100110010101010011100 . . .

log 2 0.1011000101110010000101111111011111010001110011110111100110 . . .
log 3 1.0001100100111110101001111010101011010000001100001010100101 . . .

Ω 0.0000001000000100001000001000011101110011001001111000100100 . . .

Table 4.2: Binary values of various mathematical constants.

Digit Occurrences
0 99999485134
1 99999945664
2 100000480057
3 99999787805
4 100000357857
5 99999671008
6 99999807503
7 99999818723
8 100000791469
9 99999854780

Total 1000000000000

Table 4.3: Statistics for the first trillion decimal digits of π.
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Digit Occurrences
0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1000000000000

Table 4.4: Statistics for the first trillion hexadecimal digits of π.
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Figure 4.1: A random walk based on one million digits of π.

and see if it appears encoded in the first several billion binary digits of π. Along
this line, a graphic based on a random walk of the first million decimal digits of
π, courtesy of David and Gregory Chudnovsky, is shown in Figure 4.1. It maps
the digit stream to a surface in ways similar to those used by Mandelbrot and
others.

As we mentioned in Section 3.2, the question of whether π, in particular,
or, say,

√
2, is normal or not has intrigued mathematicians for centuries. But

in spite of centuries of effort, not a single one of the fundamental constants of
mathematics has ever been proven to be b-normal for any integer b, much less for
all integer bases simultaneously. And this is not for lack of trying—some very
good mathematicians have seriously investigated this problem, but to no avail.
Even much weaker results, such as the digit “1” appears with nonzero limiting
frequency in the binary expansion of π, and the digit “5” appears infinitely often
in the decimal expansion of

√
2, have heretofore remained beyond the reach of

modern mathematics.

One result in this area is the following. Let f(n) =
∑

1≤j≤nblog10 jc. Then
the Champernowne number,

∞∑
n=1

n

10n+f(n)
= 0.12345678910111213141516171819202122232425 . . . ,
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where the positive integers are concatenated in a decimal value, is known to be
10-normal. There are similar constants and normality results for other number
bases. However, no one, to the authors’ knowledge, has ever argued that this
constant and its relatives are “natural” or “fundamental” constants.

Consequences of a proof in this area would definitely be interesting. For
starters, such a proof would immediately provide an inexhaustible source of
provably reliable pseudorandom numbers for numerical or scientific experimen-
tation. We also would obtain the mind-boggling but uncontestable consequence
that if π, for example, is shown to be 2-normal, then the entire text of the Bible,
the Koran and the works of William Shakespeare, as well as the full LATEX source
text for this book, must all be contained somewhere in the binary expansion of
π, where consecutive blocks of eight bits (two hexadecimal digits) each represent
one ASCII character. Unfortunately, this would not be much help to librarians
or archivists, since every conceivable misprint of each of these books would also
be contained in the binary digits of π.

Before continuing, we should mention the “first digit” principle, also known
as Benford’s principle. In the 1880s, Simon Newcomb observed a pattern in
the first digits of logarithm tables: A “1” is significantly more likely to occur
than “2,” a “2” more than a “3,” and so on. In other words, the collection
of first digits of data in logarithm tables certainly does not reflect the statistics
expected of 10-normal numbers. In the 20th century, Frank Benford rediscovered
this phenomenon, noting that it applies to many types of numerical data, ranging
from values of physical constants to census data to the stock market. One can
deduce this principle by observing that natural laws surely cannot be dependent
on our choice of units, and thus must be scale-independent. This suggests that
we view numerical data on a logarithmic scale. In the logarithmic sense, a leading
“1” appears roughly 30% of the time (since log10 2− log10 1 = 0.30102999 . . .), a
“2” appears roughly 17.6% of the time (since log10 3 − log10 2 = 0.1760912 . . .),
and so on. More recently scientists have applied Benford’s principle in diverse
ways, including fraud detection in business accounting [118].

4.2 BBP Constants and Normality

Until recently, the BBP formulas mentioned in Sections 3.4 and 3.6 were assigned
by some to the realm of “recreational” mathematics—interesting but of no seri-
ous consequence. But the history of mathematics has seen many instances where
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results once thought to be idle curiosities were later found to have significant
consequences. This now appears to be the case with the theory of BBP-type
constants.

What we shall establish below, in a nutshell, is that the 16-normality of π
(which, of course, is equivalent to the 2-normality of π), as well as the normality
of numerous other irrational constants that possess BBP-type formulas, can be
reduced to a certain plausible conjecture in the theory of chaotic sequences. At
this time we do not know the full implications of this result. It may be the first
salvo in the resolution of this age-old mathematical question, or it may be merely
a case of reducing one very difficult mathematical problem to another. But at
the least, this result appears to lay out a structure—a “roadmap” of sorts—for
the analysis of this question. Thus it seems worthy of investigation.

We shall also establish that a certain well-defined class of real numbers,
uncountably infinite in number, is indeed b-normal for certain bases b. This
result is not dependent on any unproven conjecture. We will also present some
results on the digit densities of algebraic irrationals. All of these recent results are
direct descendants of the theory of BBP-type constants that we have presented
in Sections 3.4 and 3.6.

The results for BBP-type constants derive from the following observation,
which was given in a recent paper by one of the present authors and Richard
Crandall [24]. Here we define the norm ||α|| for α ∈ [0, 1) as ||α|| = min(α, 1−α).
With this definition, ||α − β|| measures the shortest distance between α and β
on the unit circumference circle in the natural way. Suppose α is given by a
BBP-type formula, namely

α =
∞∑

k=0

p(k)

bkq(k)
, (4.2.1)

where p and q are polynomials with integer coefficients, with 0 ≤ deg p < deg q,
and with q having no zeroes at nonnegative integer arguments. Now define the
recursive sequence (xn) as x0 = 0, and

xn =

{
bxn−1 +

p(n)

q(n)

}
, (4.2.2)

where the notation {·} denotes the fractional part as before. Recall from Section
3.4 that we can write the base-b expansion of α beginning at position n+1, which
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we denote αn, as

αn = {bnα} =

{ ∞∑

k=0

bn−kp(k)

q(k)

}

=

{{
n∑

k=0

bn−kp(k)

q(k)

}
+

∞∑

k=n+1

bn−kp(k)

q(k)

}
. (4.2.3)

Now observe that the sequence (xn) generates the first part of this expres-
sion. In particular, given ε > 0, assume that n is sufficiently large such that
p(k)/q(k) < ε for all k ≥ n. Then we can write, for all sufficiently large n,

||xn − αn|| ≤
∣∣∣∣∣

∞∑

k=n+1

bn−kp(k)

q(k)

∣∣∣∣∣

≤ ε

∞∑

k=n+1

bn−k =
ε

b− 1
≤ ε. (4.2.4)

With this argument, we have established the following, which we observe is also
true if the expression p(k)/q(k) is replaced by any more general sequence r(k)
that tends to zero for large k:

Theorem 4.2.1 Let α be a BBP-type constant as defined above, with αn the
base-b expansion of α beginning at position n + 1, and (xn) the BBP sequence
associated with α, as given in (4.2.2) above. Then ||xn − αn|| → 0 as n →∞.

In other words, the BBP sequence associated with α, as given in Formula
(4.2.2), is a close approximation to the sequence (αn) of shifted digit expansions,
so much so that if one has a property such as equidistribution in the unit interval,
then the other does also (this will be made precise in Section 4.5). We now state
a hypothesis, which is believed to be true, based on experimental evidence, but
which is not yet proven:

Hypothesis 4.2.2 (Bailey-Crandall). Let p(x) and q(x) be polynomials with
integer coefficients, with 0 ≤ deg p < deg q, and with q having no zeroes for
nonnegative integer arguments. Let b ≥ 2 be an integer, and let rn = p(n)/q(n).
Then the sequence x = (x0, x1, x2, · · · ) determined by the iteration x0 = 0, and

xn = {bxn−1 + rn} (4.2.5)

either has a finite attractor or is equidistributed in [0, 1).
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We shall define “equidistributed” and “finite attractor” in Section 4.5. In the
meantime we rely on intuition.

Theorem 4.2.3 Assuming Hypothesis 4.2.2, any constant α given by a formula
of the type α =

∑
k≥0 p(k)/(bkq(k)), with p(k) and q(k) polynomials as given in

Hypothesis 4.2.2, is either rational or b-normal.

The proof of this theorem is given in Section 4.5. We should note here that even
if a particular instance of Hypothesis 4.2.2 could be established, it would have
significant consequences. For example, if it could be established that the simple
iteration given by x0 = 0 and

xn =

{
2xn−1 +

1

n

}
(4.2.6)

is equidistributed in [0, 1), then it would follow from Theorem 4.2.3 that log 2 is
2-normal. Observe that this sequence is simply the BBP sequence for log 2. In
a similar vein, if it could be established that the iteration given by x0 = 0 and

xn =

{
16xn−1 +

120n2 − 89n + 16

512n4 − 1024n3 + 712n2 − 206n + 21

}
(4.2.7)

is equidistributed in [0, 1), then it would follow that π is 16-normal (and so
is 2-normal also). This is the BBP sequence for π. The fractional term here
is obtained by combining the four fractions in the BBP formula for π, namely
Equation (3.4.25), into one fraction, and then shifting the index by one.

Before continuing, we wish to mention a curious phenomenon. Suppose we
compute the binary sequence yn = b2xnc, where (xn) is the sequence associated
with log 2 as given in Equation 4.2.6. In other words, (yn) is the binary sequence
defined as yn = 0 if xn < 1/2 and yn = 1 if xn ≥ 1/2. Theorem 4.2.1 tells us,
in effect, that (yn) eventually should agree very well with the true sequence of
binary digits of log 2. In explicit computations, we have found that the sequence
(yn) disagrees with 15 of the first 200 binary digits of log 2, but in only one
position over the range 5000 to 8000.

As noted above, the BBP sequence for π is x0 = 0, and xn as given in
Equation (4.2.7). In a similar manner as with log 2, we can compute the hex-
adecimal digit sequence yn = b16xnc. In other words, we can divide the unit
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interval into 16 equal subintervals, labeled (0, 1, 2, 3, · · · , 15), and set yn to be
the label of the subinterval in which xn lies. When this is done, a remarkable
phenomenon occurs: The sequence (yn) appears to perfectly (not just approxi-
mately) produce the hexadecimal expansion of π. In explicit computations, the
first 1,000,000 hexadecimal digits generated by this sequence are identical with
the first 1,000,000 hexadecimal digits of π − 3. (This is a fairly difficult compu-
tation, as it requires roughly n2 bit-operations, and is not easily performed on a
parallel computer system.)

Conjecture 4.2.4 The sequence (b16xnc), where (xn) is the sequence of iterates
defined in equation (4.2.7), precisely generates the hexadecimal expansion of π−
3.

Evidently, this phenomenon arises from the fact that in the sequence associated
with π, the perturbation term rn = p(n)/q(n) is summable, whereas the corre-
sponding expression for log 2, namely 1/n, is not summable. In particular, note
that expression (4.2.4) for α = π gives

||αn − xn|| ≤
∞∑

k=n+1

120k2 − 89k + 16

16j−n(512k4 − 1024k3 + 712k2 − 206k + 21)

≈ 120(n + 1)2 − 89(n + 1) + 16

16(512(n + 1)4 − 1024(n + 1)3 + 712(n + 1)2 − 206(n + 1) + 21)

(4.2.8)

so that

∞∑
n=1

||αn − xn|| ≤ 0.01579 . . . . (4.2.9)

For the sake of heuristic argument, let us assume for the moment that the
αn are independent, uniformly distributed random variables in (0, 1), and let
δn = ||αn − xn||. Note that an error (i.e. an instance where xn lies in a different
subinterval of the unit interval than αn) can only occur when αn is within δn

of one of the points (0, 1/16, 2/16, · · · , 15/16). Since xn < αn for all n (where
< is interpreted in the wrapped sense when xn is slightly less than one), this
event has probability 16δn. Then the fact that the sum (4.2.9) has a finite
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value implies, by the first Borel-Cantelli lemma, that there can only be finitely
many errors [38, pg. 153]. The comparable figure for log 2 is infinite, which
implies by the second Borel-Cantelli lemma that discrepancies can be expected
to appear indefinitely, but with decreasing frequency. Further, the small value
of the sum (4.2.9) suggests that it is unlikely that any errors will be observed. If
instead of summing (4.2.9) from one to infinity, we instead sum from 1,000,001
to infinity (since we have computationally verified that there are no errors in the
first 1,000,000 elements), then we obtain 1.465× 10−8, which suggests that it is
very unlikely that any errors will ever occur.

4.3 A Class of Provably Normal Constants

We now summarize an intriguing recent development in this arena, due to one
of the present authors and Richard Crandall, which offers additional hope that
the BBP approach may eventually yield the long-sought proof of normality for
π, log 2, and other BBP-type constants [25]. In the previous section, we noted
that the 2-normality of

log 2 =
∞∑

n=1

1

n2n
(4.3.10)

rests on the (unproven) conjecture that the iteration given by x0 = 0 and xn =
{2xn−1 + 1/n} is equidistributed in the unit interval. We now consider the class
of constants where the summation defining log 2, namely (4.3.10), is taken over
a certain subset of the positive integers:

αb,c =
∑

n=ck>1

1

nbn
=

∞∑

k=1

1

ckbck , (4.3.11)

where b > 1 and c > 2 are integers. The simplest instance of this class is

α2,3 =
∑

n=3k>1

1

n2n
=

∞∑

k=1

1

3k23k (4.3.12)

= 0.0418836808315029850712528986245716824260967584654857 . . .10

= 0.0AB8E38F684BDA12F684BF35BA781948B0FCD6E9E06522C3F35B . . .16 .

We first prove the following interesting fact:
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Theorem 4.3.1 Each of the constants αb,c, where b > 1 and c > 2 are integers,
is transcendental.

Proof. A famous theorem due to Roth states [173] that if |P/Q−α| < 1/Q2+ε

admits infinitely many rational solutions P/Q (i.e., if α is approximable to degree
2 + ε for some ε > 0), then α is transcendental. We show here that αb,c is
approximable to degree c− δ. Fix a k and write

αb,c = P/Q +
∑

n>k

1

cnbcn , (4.3.13)

where gcd(P, Q) = 1 and Q = ckbck
. The sum over n gives

|αb,c − P/Q| <
2

ck+1(Q/ck)c
<

ckc

Qc
. (4.3.14)

Now ck log b + k log c = log Q, so that ck < log Q/ log b, and we can write

ckc < (log Q/ log b)c = Qc(log log Q−log log b)/ log Q. (4.3.15)

Thus for any fixed δ > 0,

|αb,c − P/Q| <
1

Qc(1+log log b/ log Q−log log Q/ log Q)
<

1

Qc−δ
, (4.3.16)

for all sufficiently large k. 2

Consider now the BBP sequence associated with α2,3, namely the sequence
defined by x0 = 0, and

xn = {2xn−1 + rn}, (4.3.17)

where rn = 1/n if n = 3k, and rn = 0 otherwise. Successive iterates of this
sequence are:
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.
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A pattern is clear: The sequence consists of a concatenation of triply-repeated
segments, each consisting of fractions whose denominators are successively higher
powers of 3, and whose numerators range over all integers less than the denom-
inator that are coprime to the denominator. Indeed, the successive numerators
in each subsequence are given by the simple linear congruential pseudorandom
number generator zn = 2zn−1 mod 3j for a fixed j.

What we have observed is that the question of the equidistribution of the
sequence (xn) (and, hence, the question of the normality of α2,3) reduces to the
behavior of a concatenation of normalized pseudorandom sequences of a type
(namely linear congruential) that have been studied in mathematical literature,
and which in fact are widely implemented for use by scientists and engineers.
These observations lead to a rigorous proof of normality for many of these con-
stants. In particular, we obtain the result that each of the constants

αb,c =
∑

n=ck>1

1

nbn
=

∞∑

k=1

1

ckbck , (4.3.18)

where b > 1, and c is co-prime to b, is b-normal. This result was first given
in [25]. We present here a significantly simpler proof, based on the following
lemma:

Lemma 4.3.2 (Hot spot lemma.) The constant α is b-normal if and only if
there exists a constant M such that for every interval (c, d),

lim sup
n→∞

#0≤j<n[{bjα} ∈ (c, d)]

n(d− c)
≤ M. (4.3.19)

This result is proved in [135, pg. 77]. A stronger result is given in [29].

Theorem 4.3.3 Each of the constants

αb,c =
∞∑

k=1

1

ckbck , (4.3.20)

where b > 1, and c is co-prime to b, is b-normal.
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Proof. For convenience, we will establish the result for α = α2,3. Let (xn) be
the BBP sequence associated with α, as given in (4.3.18), and let αn = {2nα}
be the tail of the binary expansion of α after the first n bits. First note, as in
the proof of Theorem 4.2.1, that

||xn − αn|| =

∣∣∣∣∣
∞∑

k=n+1

2n−krk

∣∣∣∣∣ <
1

n
. (4.3.21)

Given n, let m be the largest power of 3 less than n, and assume that n is large
enough so that n > m > 2/(d− c). The interval (c− 1/n, d + 1/n) contains no
more than bm(d− c)c+ 2 multiples of 1/m, and thus can contain at most three
times this many occurrences of xj in the first n elements. Thus we can write

#0≤j<n[αj ∈ (c, d)]

n(d− c)
≤ #0≤j<n[xj ∈ (c− 1/n, d + 1/n)]

n(d− c)
(4.3.22)

≤ 3[m(d− c) + 2]

n(d− c)
<

3[m(d− c) + 2]

m(d− c)
(4.3.23)

= 3 +
6

m(d− c)
< 6. (4.3.24)

In other words, for all n > 6(d− c), no subinterval of [0, 1) contains more than
six times as many elements of the sequence ({2jα}, 0 ≤ j < n) as it “should.”
By Lemma 4.3.2, this establishes that α is 2-normal. 2

We should add that α2,3 was actually proven 2-normal by Stoneham in 1970
[183]. The new BBP-based approach described above now makes it possible to
extend these and other previous results to a much larger class. For example, it
is shown in [25] that all constants of the form

α2,3(r) =
∞∑

k=1

1

3k23k+rk
, (4.3.25)

where rk is the k-th bit in the binary expansion of r ∈ (0, 1), are 2-normal and
transcendental. It is fairly easy to show that if r 6= s, then α2,3(r) 6= α2,3(s).
In other words, for every real number r ∈ (0, 1), there corresponds a distinct
real constant α2,3(r). Since there are uncountably many reals in (0, 1), it follows
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that there are uncountably many 2-normal, transcendental numbers of the form
given by (4.3.25).

As an amusing sidelight, these α constants also possess the rapid individual
digit computation property possessed by conventional BBP-type constants. Fur-
thermore, in this case the computation is extraordinarily rapid. For example,
the googol-th (i.e., the 10100-th) binary digit of α2,3 can be calculated in less than
one second on a 2001-era computer. This digit is 0. The first ten hexadecimal
digits starting at this position are 2205896E7B.

4.4 Algebraic Irrationals

Although there is no proof of this assertion, as far as we can tell, there are no
BBP-type formulas for algebraic irrationals such as

√
2, 3
√

10 and φ = (1+
√

5)/2.
Thus it appears that the theory we have developed above to address the question
of normality for BBP-type constants is inapplicable to the case of algebraic
irrationals. Yet from all available experimental evidence, these constants are
also b-normal for all commonly used number bases. In any event, even basic
questions such as whether the decimal expansion of

√
2 has infinitely many fives

remain unanswered.
Recently, some results on the density of ones in binary expansions of certain

algebraic irrationals were obtained by the present authors, Richard Crandall,
and Carl Pomerance [19]. These results are certainly much weaker than full
normality, but are worth mentioning given the paucity of results in this arena.

If a is an integer, we shall define B(a) as the number of ones in the binary
representation of a. If x is real, 0 < x < 1, then by Bn(x), we shall mean the
number of ones in the first n binary digits of x after the “decimal” point. Note
that if x is a binary fraction (i.e., x = c/2d for integers c and d), then x has two
valid binary expansions—one terminating in zeroes and the other terminating in
ones. Thus in such instances below, we shall clarify which expansion we mean.
For a rational number r with 0 < r < 1, we define the function C(r) = 1 in the
case that r is a binary fraction; otherwise, C(r) = c/d, where c is the number
of ones in the terminally repeating block of digits in the binary expansion of r,
and where d is the length of the block of repeating digits.

For real numbers x and y, with 0 < x < 1 and 0 < y < 1, we use the notation
(Ak(x, y, n), 0 ≤ k < 2n) to denote the acyclic convolution of the first n binary
digits of x and the first n binary digits of y. To be specific, let the binary digits
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of x and y be indexed starting with 0. Then

Ak(x, y, n) =
n−1∑
j=0

xjyk−j, 0 ≤ k < 2n,

where by the subscript k − j we mean k − j + n if k < j.

Theorem 4.4.1 Let r be a rational number, 0 < r < 1, and suppose that s =
√

r
is irrational. Then

lim inf
n→∞

Bn(s)√
C(r)n

≥ 1,

We first prove two lemmas.

Lemma 4.4.2 For any two positive integers a and b, B(a + b) ≤ B(a) + B(b),
and B(ab) ≤ B(a)B(b). The same is true for reals, namely Bn(x+y) ≤ Bn(x)+
Bn(y) and Bn(xy) ≤ Bn(x)Bn(y), provided we first trim x and y to n bits.

Proof. The assertion on sums is easily shown by verifying it for one- and two-
bit values of a and b, and then arguing by induction on the number of bits in
a and b. The assertion on products follows from the first by observing that the
process of binary multiplication is merely a sequence of binary additions with
shifts by appending zeroes. 2

Lemma 4.4.3 For x and y with 0 < x, y < 1, define

zn(x, y) =
2n−1∑

k=0

Ak(x, y, n)2−k−1. (4.4.26)

Then |zn(x, y) − xy| < 21−n. In other words, the binary expansion of zn(x, y)
agrees with x · y up to approximately n digits (it might be slightly fewer because
of trailing ones, but the bound still holds).
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Proof. This follows by the simple observation that the acyclic convolution
reproduces the process of multiplication of two binary fractions. The error in
using only the first n bits of the two operands can be found as follows. Write
x = αn + βn, where αn is the value obtained by using only the first n bits of
the binary expansion of x, with β < 2−n, and similarly write y = γn + δn. Since
zn(x, y) = αnγn precisely, we have

|zn(x, y)− xy| < αnδn + γnβn + βnδn < 2 · 2−n = 21−n. (4.4.27)

Note that zn(x, y) is always an underestimate of xy, except in the case where x
and y are binary fractions represented using the expansion terminating in zeroes,
in which case zn(x, y) = xy exactly for all sufficiently large n. 2

Proof of Theorem 4.4.1. In the hypothesis of Theorem 4.4.1, r is rational,
but s =

√
r is irrational. Since s is irrational, |zn(s, s)− r| < 21−n, and further

since the binary expansion of s has infinitely many ones (and it cannot terminate
in zeroes or ones), zn(s, s) will always underestimate s2 = r. In the case that r is
a binary fraction, this underestimation means that the approximations zn(s, s)
cannot possibly replicate the binary expansion that terminates in zeroes, but
they can and therefore must replicate with increasing fidelity the expansion that
terminates in ones. In the case that r is not a binary fraction, the approximations
zn(s, s) must replicate with increasing fidelity the unique binary expansion of r.
Here by “replicate with increasing fidelity,” we mean that the relevant binary
expansions of zn(s, s) and r agree for all digits up to some position n − d for
some fixed integer d.

Here we observe that Lemma 4.4.2 also applies to the real fraction multipli-
cation (i.e., convolution) process described in Lemma 4.4.3. Thus Bn(zn(s, s)) ≤
B2

n(s). Now since zn(s, s) replicates with increasing fidelity the expansion of r,
we must have, at the least,

lim inf
n→∞

Bn(zn(s, s))

n
= lim inf

n→∞
Bn(r)

n
. (4.4.28)

But since Bn(r)/n converges to C(r), this means that given ε > 0,

n(Bn(s)/n)2 ≥ Bn(zn(s, s))/n ≥ Bn(r)/n− ε ≥ C(r)− 2ε (4.4.29)

for all sufficiently large n, which establishes our result. 2
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Theorem 4.4.1 only applies to irrational square roots of rational numbers. In a
new paper (2003) by the present authors, Richard Crandall, and Carl Pomerance,
this result has been significantly strengthened to the following:

Theorem 4.4.4 For positive real algebraic x of degree d > 1 and for any ε > 0
there exists some N (depending on x and ε) such that for all n > N ,

Bn(x) > (1− ε)(2ad)
−1/dn1/d,

where ad > 0 is the leading coefficient of the minimum integer polynomial for
y = x/2blog2 xc.

The proof of this result is given in [19]. Interestingly, this proof involves “BBP
tails,” or, in other words, BBP sums beyond certain digit positions, driving home
once more the usefulness of the BBP idea.

Whereas with Theorem 4.4.1, we had that the number of ones in the first n
bits of an irrational square root is asymptotically at least a constant times

√
n,

with Theorem 4.4.4 we have a constant times the d-th root of n, where d is the
algebraic degree. So, for example, the number of ones in the first n bits of 3

√
2

must be at least some constant times 3
√

n. Obviously we do not believe that
this is the strongest result possible. All experimental evidence suggests that the
limiting density of ones in the binary expansion of any algebraic irrational is not
only greater than zero, but in fact is precisely 1/2, and further that the density
of each of the four two-bit combinations is 1/4, etc. But lacking formal proof,
such a supposition could conceivably be incorrect.

4.5 Periodic Attractors and Normality

In this section, we shall prove the result mentioned above, namely Theorem
4.2.3, which implies normality for irrational BBP-type constants, conditional on
Hypothesis 4.2.2. For some additional results and full details, consult [24], from
which we have adapted this material. First, some preliminaries:

As before, we define the norm ||α|| for α ∈ [0, 1) as ||α|| = min(α, 1 − α).
With this definition, ||α − β|| measures the shortest distance between α and β
on the unit circumference circle in the natural way. A simple result, which we
will term the “dilated-norm rule,” is the following: If 0 ≤ δ ≤ 1/(2||z||), then
because ||δz|| is now bounded above by 1/2, we have ||δz|| = δ||z||.
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A base-b expansion α = 0.α1α2α3 · · · , where each αj is an integer in [0, b−1],
is taken to be unique for α. When competing expansions exist, as in decimal
0.1000 . . . = 0.0999 . . ., we select the variant with trailing zeros. We define the
frequency (when it exists) with which a given finite digit string (d1d2 · · · dk)
appears in α to be the limit as N → ∞ of the number of instances where
αj = d1, αj+1 = d2, · · · , αj+k−1 = dk, j ≤ N + 1− k, divided by N .

For a sequence x = (x0, x1, · · · ) of real numbers in [0, 1), we define the count-
ing function

C(x, c, d, N) = #(xj ∈ [c, d) : j < N).

In other words, the C function gives the count of the first N elements of the
sequence x that lie in the interval [c, d). We now introduce a standard definition
from the literature:

Definition 4.5.1 A sequence x in [0, 1) is said to be equidistributed if for any
0 ≤ c < d < 1 we have

lim
N→∞

C(x, c, d,N)

N
= d− c.

This definition is identical to that of “uniform distribution modulo 1,” as given
in [135, p.1]. The following two basic results are taken from that source:

Theorem 4.5.2 Let (xn) be equidistributed. If a sequence (yn) has the property
that {yn} → β (constant β) as n →∞, then the sequence ({xn + yn}) is likewise
equidistributed. In particular, if yn → 0, then ({xn + yn}) is equidistributed.

Theorem 4.5.3 A number α is b-normal if and only if the sequence ({bnα} :
n = 1, 2, 3, · · · ) is equidistributed.

We now define the notions of finite attractor and periodic attractor:

Definition 4.5.4 A sequence x = (xn) in [0, 1) is said to have a finite attractor
W = (w0, w1, · · · , wP−1) if for any ε > 0, there is some K = K(ε) such that for
all k ≥ 0, we have ||xK+k−wt(k)|| < ε, for some function t(k), with 0 ≤ t(k) < P .

Definition 4.5.5 A sequence x = (xn) in [0, 1) is said to have a periodic at-
tractor W = (w0, w1, · · · , wP−1), if for any ε > 0, there is some K = K(ε) such
that for any k ≥ 0, we have ||xK+k − wk mod P || < ε.
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Theorem 4.5.6 Assume a sequence (yn) has the property that yn → β (with
β constant) as n → ∞. Then a sequence (xn) in [0, 1) has a finite attractor
(alternatively, a periodic attractor) if and only if ({xn + yn}) does.

Proof. This follows immediately from the ε-restriction in the definitions of
finite attractor and periodic attractor. 2

We will now show that in certain cases of interest here, these two notions of
attractor coincide:

Theorem 4.5.7 Let α be real and assume an integer base b ≥ 2. If the sequence
x = ({bnα}) has a finite attractor W , then W is a periodic attractor, and the
structure of the attractor W is necessarily

W = (w0, {bw0}, {b2w0}, · · · , {bP−1w0}).

Moreover, each element in W is rational.

Proof. Let W = {w0, w1, · · · , wP−1} be the finite attractor for x. Let d =
min0≤i,j<P (||wi−wj||), and choose ε < d/(4b). Let Wε be the set of all z in [0, 1)
such that ||z − wi|| < ε for some 0 ≤ i < P . Then we know that there is some
K ′(ε) such that for all k > K ′ we have xk ∈ Wε. Let K be the first k > K ′, such
that ||xk − w0|| < ε. We then have:

||xK+1 − bw0|| = ||bxK − bw0|| = b||xK − w0|| < bε < d/4, (4.5.30)

where the second equality follows from the bounded dilation rule mentioned at
the start of the present section.

It follows that xK+1 is within bε of {bw0}, and similarly xK+k+1 is within
bε of {bw0} whenever xK+k is within ε of w0, which must occur infinitely often.
Since there can be at most one element of the attractor set W in the region of
size d/4 about {bw0}, and since the choice of ε above was arbitrary, we conclude
that bw0 must be the element of W in that region. We can for notational
convenience assume that w1 = {bw0}. Then ||xK+1−w1|| < ε, and the argument
can be repeated to show that xK+2 is close to w2 = {b2w0}, etc., and finally
that xK+P−1 is close to wP−1 = {bP−1w0}. It then follows that the member
of W which xK+P is close to must be w0, since otherwise the ε region around
w0 would never be visited again by the x sequence and thus w0 could not be a
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member of the attractor set. Therefore, W = (w0, {bw0}, · · · , {bP−1w0}), and
W is a periodic attractor for the x sequence. Rationality of the attractor points
is demonstrated by noting the periodicity condition w0 = {bP w0}, which implies
that for some integer m, we have w0 = m/(bP − 1), and similarly for the other
wi ∈ W . 2

Theorem 4.5.8 If the sequence (xn) as defined by x0 = 0, xn = {bxn−1 + rn},
where b is a positive integer, rn → 0 and rn 6= 0, has a finite attractor W , then
W is a periodic attractor, and each element of W is rational.

Proof. Let W = {w0, w1, · · · , wP−1} be the finite attractor for x. Let d =
min0≤i,j<P (||wi − wj||), and choose ε < d/(4b + 4). Let Wε be the set of all z
in [0, 1) such that ||z − wi|| < ε for some 0 ≤ i < P . Then we know that there
is some K ′(ε) such that for all k > K ′, we have xk ∈ Wε and |rk| < ε. Let K
be the first k > K ′, such that ||xk − w0|| < ε. We then have (again we use the
dilated-norm rule from the start of the present section):

||xK+1 − bw0|| = ||bxK + rK+1 − bw0|| ≤ b||xK − w0||+ ε

< (b + 1)ε < d/4. (4.5.31)

The remainder of the proof of this result follows the second paragraph of the
proof of Theorem 4.5.7. 2

Now we are in a position to establish the following result:

Theorem 4.5.9 The sequence ({bnα}) has a finite attractor if and only if α is
rational.

Proof. Assume that the sequence ({bnα}) has a finite attractor. By Theorem
4.5.7 it then has a periodic attractor. In the definition of a periodic attractor, let
K be the index corresponding to ε = 1/(4b), and set h = ||xK − w0||. Suppose
h > 0. Then let m = blogb(ε/h)c, and note that bmh ≤ ε < bm+1h < bε < 1/4.
Thus we can write (once again using the dilated-norm rule):

||xK+m+1 − wm+1 mod P || = ||bm+1xK − bm+1w0|| = bm+1||xK − w0||
= bm+1h > ε. (4.5.32)
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But this contradicts the definition of the periodic attractor. Thus we conclude
that h = 0, so that xK+k = wk mod P for all k ≥ 0. In other words, after
at most K initial digits, the base-b expansion of α repeats with period P , so
that α is rational. As for the converse, α = p/q rational implies the sequence
(bnp/q) = (((pbn) mod q)/q) is periodic, having in fact the period 1 for α = 0
and, for p/q in lowest terms, the period of the powers of b modulo q. 2

We may now prove Theorem 4.2.3.

Theorem 4.2.3. Assuming Hypothesis 4.2.2, every irrational constant with a
BBP-type formula for a given base b is b-normal.

Proof. Assume Hypothesis 4.2.2. Then suppose a real number α possesses a
formula of the form

α =
∞∑

k=1

1

bk

p(k)

q(k)
, (4.5.33)

where p(k) and q(k) are integer polynomials, with deg p < deg q and with q(k)
not having any zeroes for positive integers k. We first observe that α is rational
if and only if the sequence (xn), where

xn =

{
bxn−1 +

p(n)

q(n)

}

has a finite attractor. To see this, we know from Theorem 4.5.9 that the sequence
({bnα}) has a periodic attractor if and only if α is rational. Following the BBP
strategy, we can write

{bnα} =

{
n∑

k=1

bn−kp(k)

q(k)
+

∞∑

k=n+1

bn−kp(k)

q(k)

}
(4.5.34)

= {xn + tn}, (4.5.35)

where x is defined by x0 = 0 and the recursion

xn = bxn−1 +
p(n)

q(n)
,

with the sequence t given by

tn =
∞∑

k=1

1

bk

p(k + n)

q(k + n)
.
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Provided that deg p < deg q as in Hypothesis 4.2.2, given any ε there is some
n such that |p(k + n)/q(k + n)| < ε for all k ≥ 1. For such n, we have |tn| <
ε
∑

k≥1 b−k = ε/(b − 1) ≤ ε. Thus tn converges to zero as n → ∞. Hence, it
follows from Theorem 4.5.9 that (xn) has a periodic attractor if and only if α is
rational. 2

4.6 Commentary and Additional Examples

1. Borel’s normal number theorem. This theorem asserts that almost
every real number has normally distributed digits in any or all bases. It
is a special case of the strong law of large numbers applied to Bernoulli
trials, or of the first Borel-Cantelli lemma that if a sequence of events An

is such that
∑

n P (An) converges, then lim supn An(= ∪n ∩m>n Am) = 0.

(a) Show that the real numbers in I = [0, 1] with no fives in prime posi-
tions base ten form a negligible set.

(b) Prove the Borel normal law for binary numbers. Hint: Let sn(ω) =∑n
k=1 rk(ω) where

rk(ω) =

{
+1, dk = 1

−1, dk = 0,

and dk = dk(ω) is the k-th digit of ω. Note that sn(ω)/n → 0 if and
only if

∑
k≤n dk(ω)/n → 1/2. Show for ε > 0 that

P [ ω : |sn(ω)| ≥ nε] ≤ 1

n4ε4

∫ 1

0

s4
n dω.

Then show that ∫ 1

0

s4
n dω = n + 3n(n− 1)

and deduce the P [ ω : |sn(ω)| ≥ nε] ≤ 3/(n2ε4). If we choose
εn appropriately

∑
n P [ ω : |sn(ω)| ≥ nεn] is finite. Conclude that

sn(ω)/n → 0 for almost all ω and observe that this is the asserted
conclusion.



4.6. COMMENTARY AND ADDITIONAL EXAMPLES 187

(c) Generalize this to an arbitrary base. Conclude that almost every
number is absolutely normal. In 1916, Sierpinski gave an “effective”
construction of an absolutely normal number. This has recently been
expressed recursively in [32]. There are still no “natural” examples of
absolutely normal numbers, unless one considers Chaitin’s constant
to be one.

The second Borel-Cantelli lemma shows that for a sequence of independent
events when

∑
n P (An) diverges, then lim supn An = 1. Together they

provide a “zero-one” law. Full details are in [38].

2. The normal numbers are small topologically. We note that while the
absolutely normal numbers comprise a set of full measure, Salt proved in
1966 that it is of the first Baire category. Indeed, let b, r, and n be integers
0 ≤ r < b, b > 1, and for 0 ≤ x < 1, let Nn(r, x) denote the number of
occurrences of r in the first n terms of the base-b expansion of x, and let
L(r, x) denote the set of limit points of the sequence whose nth term is
N(r, x)/n. Then L(r, x) = [0, 1] for all x ∈ [0, 1) with the exception of a
set of the first category (i.e., a countable union of nowhere dense sets). By
contrast, the Liouville numbers form a set of transcendental numbers of
measure zero whose complement is first category [50, pg. 352].

3. Rational times normal is normal.

Theorem 4.6.1 Whenever α is normal to base b, then so is rα for every
nonzero positive rational r.

Proof. This result is an example application of the hot spot lemma,
namely Lemma 4.3.2. First, suppose that α is normal, and consider pα for
a positive integer p. Let {·} denote fractional part. Then {bjpα} ∈ [x, y)
implies that one of the following p mutually exclusive conditions must hold:

{bjα} ∈ [x/p, y/p)

{bjα} ∈ [x/p + 1/p, y/p + 1/p)

{bjα} ∈ [x/p + 2/p, y/p + 2/p)

· · · · · ·
{bjα} ∈ [x/p + (p− 1)/p, y/p + (p− 1)/p).
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Since α is normal, the limiting frequency of each of the above is (y−x)/p.
Thus the limiting frequency of {bjpα} ∈ [x, y) is p times this value, or
y − x. This establishes that pα is normal.

Now suppose that α is normal, and consider α/p for a positive integer p.
We can assume that y − x < 1/p, because otherwise we can take C = 2p
in the condition of Theorem 4.6.1. Then {bjα/p} ∈ [x, y) implies {bjα} ∈
[{px}, {py}), where we understand that in some cases {px} > {py}, due to
“wrapping” around the unit interval, in which case we take this to mean
the union of the two intervals [0, {py}) and [{px}, 1). However, in either
case, the total length is p(y − x), so that the limiting frequency of {bjα}
in this set is p(y − x). Thus we can write

lim sup
n→∞

#0≤j≤n−1({bjα/p} ∈ [x, γ))

n
≤ p(γ − x),

where we must use ≤ since whereas {bjα/p} ∈ [x, γ) implies {bjα} ∈
[{px}, {py}), the converse is not true. But this is good enough for Theorem
4.3.2, which then implies that α/p is normal. This proof is taken from [28].
See also exercise 8.9 in [135, pg. 77]. 2

4. Rational plus normal is normal.

Theorem 4.6.2 Whenever α is normal to base b, then so is r + α for
every nonzero positive rational r.

Proof. This proof is left as an exercise (see proof of Theorem 4.6.1 above).

5. Proof that Champernowne’s constant is 10-normal. Using the hot
spot lemma, one can fairly easily prove that Champernowne’s number
C = 0.12345678910111213141516 . . . is 10-normal:

(a) Observe that the decimal expansion of C consists of a concatenation of
sections of k-long integers, with section k having length Lk = 9k10k−1.

(b) Within section k, observe, by experimental calculations if desired,
that among all j-long strings of decimal digits with j ≤ k, the all-
ones string appears most frequently, and this string appears Aj,k =
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(j + 9k)10k−j−1 times. Prove that this expression (or a somewhat
larger upper bound) holds. Hint: Enumerate the number of ways a
j-long string of ones is entirely contained within a k-digit integer, and
also the number of instances where a j-long string of ones spills from
one k-digit integer to the next, in the Champernowne expansion.

(c) Let nk denote the positions of the successive ends of sections in the
Champernowne expansion, i.e., nk = L1 + L2 + · · · + Lk. Calculate
an upper bound for cj,k = Aj,1 + Aj,2 + · · · + Aj,k, the total count of
appearances of the j-long all-one string through the end of section k.

(d) Apply the hot spot lemma, namely Lemma 4.3.2, to prove that C
is 10-normal. Hint: Note that for nk−1 < n < nk, the count of
appearances of any j-long string in the first n digits is no greater than
cj,k, and that for n in this range, n > Lk−1. Also observe that any
given interval contains a subinterval with decimal fraction endpoints,
with length at least 1/10 of the length of the interval.

6. Density of binary digits in algebraic irrationals. In some analysis
of the density of binary digits in the expansions of certain algebraic ir-
rationals, the present authors, together with Richard Crandall and Carl
Pomerance, attempted to estimate the following function, as R goes to
infinity:

Ud(R) =
∞∑

m=1

(
R+m+d−1

d−1

)

2m
(r,D ∈ N).

(a) It is easy to discover that Ud(R) satisfies the recursion

f (R, d)− 2 f (R, d− 1) =

(
R + d− 1

d− 1

)
. (4.6.36)

Now Maple can “tell” one that

Ud(R) =
1

2

(
R + d

d− 1

)
F

(
1, d + R + 1, R + 2;

1

2

)
, (4.6.37)

and a computer-algebra-assisted use of Euler’s integral for the hyper-
geometric function simplifies to

∞∑
m=1

(
R+m+d−1

d−1

)

2m
=

∫ 1

0
(2− x)d−1 xR dx

β (R + 1, d)
(4.6.38)
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(the β function is discussed in Section 5.4). From (4.6.38), it is fairly
easy to obtain precise asymptotics and estimates as needed. However,
it is more relevant that it is now easy by computer to show that the
right side of (4.6.38), call this Vd(R), satisfies (4.6.36). As

V1(R) = (R + 1)

∫ 1

0

xRdx =
∞∑

m=1

1

2m
= U1(R) = 1,

we are done, in what is an exemplary use of experimental math.

(b) Problem. Compute a good upper bound for Ud(R) for large R and
determine its asymptotic behaviour in R.

Answer. We assume R > d and begin by writing

K(R, d) =

∫ 1

0

(2− x)d−1 xR dx, (4.6.39)

so that

Vd(R) =
K(R, d)

β (R + 1, d)
. (4.6.40)

Observe with a change of variables

1

R + 1
< K(R, d) =

∫ 1

0

(1 + t)d−1 (1− t)R dt

=

∫ 1

0

(
1− t2

)d−1
(1− t)R+1−d dt

<

∫ 1

0

(1− t)R+1−d dt =
1

R + 2− d
,

where the lower bound comes from estimating the original integral.
In a similar manner,

1

β (R + 1, d)
=

Γ(R + 1 + d)

Γ(R + 1) Γ(d)
=

1

(d− 1)!

d∏

k=1

(
1 +

k

R

)

<
Rd

(d− 1)!

(
1 +

d

R

)d

<
Rd

(d− 1)!
ed/R.
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Combining these last two inequalities yields

Ud(R) <

[
R

R + 2− d
ed/R

]
R(d−1)

(d− 1)!
,

for R > d. If we call this last bracketed expression γd(R), we see that

R

R + 2
≤ γd(R) <

(
1 +

1

m

)
e

1
m+1

for R > md, m ≥ 1. Thus, globally the constant is bounded above
by 2

√
e and asymptotically in R the upper and lower bounds tend to

1. This also shows

lim sup
R→∞

Ud(R)

(R(d−1)/(d− 1)!)
≤ 1.

We leave it to the reader to show, using Stirling’s formula, that indeed

lim
R→∞

Ud(R)

(R(d−1)/(d− 1)!)
= 1.

(c) Show that

Ud(R) =
d−1∑
j=0

(
R + d

j

)
.

See [19] for further details.

7. Sierpinski’s number. As noted in this chapter, in 1916 Sierpinski gave
an “effective” construction of an absolutely normal number, σ, recently
expressed recursively in [32]. That said, the present algorithm does not
allow computation of any digits of σ. It would be very interesting to rectify
this state of affairs.

8. A normal number as a pseudorandom number generator. Recall
the constant α2,3 defined in Section 4.3, which is known to be 2-normal.
The binary expansion of α2,3 is a good pseudorandom bit generator, and
the sequence yn = {2nα2,3} of shifted fractional parts is a good (0, 1)
uniform pseudorandom number generator. In particular, the sequence y53n

can be used to generate independent 64-bit IEEE floating-point iterates,
each with 53 bits of α2,3, with a scheme that can be easily implemented in
any programming language and is well suited for parallel computation:
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(a) Observe that in the sequence (4.3.18), each section of length 2 · 3k

starts with b3k/2c/3k.

(b) Note that if m is the largest power of three less than n, then

xn =
2n−mbm/2c mod m

m
.

The exponentiation here can be done using Algorithm 1 (Section
3.4), implemented using 128-bit integer or double-double floating-
point arithmetic (see Section 6.2.1).

(c) Observe that if yn is the sequence of shifted fractional parts as defined
above, then xn is identical to yn, to within the 53-bit accuracy of IEEE
double floating-point arithmetic, provided that n is not within 100 of
a power of three. Hint: Recall the proof of Theorem 4.2.1.

(d) Observe that the numerators of successive elements of the sequence
x53n (within a 2m/3-long segment) can be generated using the itera-
tion x53(n+1) = qx53n mod m, where q = 253.

(e) Implement this scheme on a computer, generating n independent
IEEE 64-bit floating-point values in (0, 1), each with successive 53-bit
sections of α2,3, beginning at a given starting index a in the binary
expansion of α2,3, subject to the assumed restriction that the range
a ≤ j < a + n does not include any value within 100 of a power of 3.

(f) Show that the period of the resulting pseudorandom number gen-
erator is 2m/3, where m is the largest power of three less than or
equal to the starting index a. Hint: See [131, pg. 21]. What range
should a be chosen in, so as to insure that the period is as large as
possible, yet not so large as to result in numeric overflows, given the
computer arithmetic being used (say 128-bit integer or double-double
floating-point—see Section 6.2.1)?

(g) Implement this scheme on a parallel computer, preserving the prop-
erty that the overall sequence of pseudo-random numbers generated
by all processors is identical to that generated by a single-processor
program. This property is important in parallel computing not only
for debugging purposes, but also to permit flexibility in the number
of processors used. Hint: Note that each processor can independently
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calculate the starting value of its assigned segment of the sequence.
See also Exercise 17 of Chapter 3.

9. Chaitin’s (Omega) constant. Chaitin’s constant is perhaps the most
compact information theoretic way to encode undecidability via the halting
problem for Turing machines. One common accounting of this is as follows.
Fix a prefix-free universal Turing machine U : (i.e., if instances U(p) and
U(q) each halt, then neither p nor q is a prefix of the other.) Then Chaitin’s
Omega is defined by

Ω =
∑

{U(p) halts}
2−|p|.

Despite being intrinsically incomputable, the first 64 binary digits of this
version of Chaitin’s constant are

0000001000000100000110001000011010001111110010111011101000010000,

as has been recently established in [66].

10. Transcendentality and irrationality.

(a) Prove that loga b and a1/b are irrational except in the obvious cases.

(b) Prove that e is irrational by considering

∣∣∣∣∣
p

q
−

q∑
n=0

1

n!

∣∣∣∣∣ <
1

q · q! .

(c) More generally, prove that
∑

n≥0(±1)n/n! is irrational for all choices
of (±1)n, thus explicitly constructing continuum-many irrational num-
bers.

(d) Establish Liouville’s theorem that if α is algebraic of degree n, then
for all ε > 0 and all c > 0

0 <

∣∣∣∣α−
p

q

∣∣∣∣ <
c

qn+ε

has only finitely many solutions with p and q integer.
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(e) Deduce that
∑

n≥0(±1)n/10n! is transcendental for all choices of (±1)n,
thus explicitly constructing an uncountably infinite class of transcen-
dental numbers.

11. The Copeland-Erdős constant. This is 0.23571113171923 . . ., obtained
by concatenating the primes. It is sequence A033308 in Sloane’s online
sequence encyclopedia. This and other information may be found by en-
tering the decimal in the Inverse Symbolic Calculator. In 1946, Copeland
and Erdős showed that it is 10-normal.

12. Paul Erdős, a life that added up to something. In 1996 the mathe-
matical community lost a brilliant and beloved colleague. Here are excerpts
from an essay written by Charles Krauthammer of the Washington Post
[133]:

One of the most extraordinary minds of our time has left. “Left”
is the word Paul Erdős, a prodigiously gifted and productive
mathematician, used for “died.” “Died” is the word he used to
signify “stopped doing math.” Erdős never died. He continued
doing math, notoriously a young person’s field, right until the
day he died Friday, Sept. 20. He was 83. . . .

He had no home, no family, no possessions, no address. He went
from math conference to math conference, from university to
university, knocking on the doors of mathematicians throughout
the world, declaring “My brain is open” and moving in. His
colleagues, grateful for a few days collaboration with Erdős—his
mathematical breadth was as impressive as his depth—took him
in.

Erdős traveled with two suitcases, each half-full. One had a few
clothes; the other, mathematical papers. He owned nothing else.
Nothing. His friends took care of the affairs of everyday life for
him—checkbook, tax returns, food. He did numbers. . . .

His Washington Post obituary ends with this abrupt and rather
painful line: “He leaves no immediate survivors.”

But in reality he did: hundreds of scientific collaborators and
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1,500 mathematical papers produced with them. An astonish-
ing legacy in a field where a lifetime product of 50 papers is
considered extraordinary.

Mathematicians tend to bloom early and die early. The great In-
dian genius, Srinivasa Ramanujan, died at 32. The great French
mathematician, Evariste Galois died at 21. (In a duel. The
night before, it is said, he stayed up all night writing down ev-
erything he knew. Premonition?) And those who don’t literally
die young, die young in Erdős’ sense. By 30, they’ve lost it.

Erdős didn’t. He began his work early. At 20 he discovered
a proof for a classic theorem of number theory (that between
any number and its double must lie a prime, i.e., indivisible,
number). He remained fecund till his death. Indeed, his friend
and benefactor, Dr. (of math, of course) Ron Graham, estimates
that perhaps 50 new Erdős papers are still to appear.

Erdős was unusual in yet one other respect. The notion of the
itinerant, eccentric genius, totally absorbed in his own world of
thought, is a cliche that almost always attaches to the adjective
“anti-social.” From Bobby Fischer to Howard Hughes, obsession
and misanthropy seem to go together.

Not so Erdős. He was gentle, open and generous with others.
He believed in making mathematics a social activity. Indeed, he
was the most prolifically collaborative mathematician in history.
Hundreds of colleagues who have published with him or been
advised by him can trace some breakthrough or insight to an
evening with Erdős, brain open.

The picture of Paul Erdős in Figure 4.2 captures him very well. It is shown
at Grossman’s Erdős Number Project (see http://www.acs.oakland.edu/

~grossman/erdoshp.html). Using this online tool, one finds, for example,
that there are three Borweins with “Erdős number two,” which connotes
that they each wrote a paper with some direct co-author of Erdős, but
not with Erdős himself. One also finds that Roland Girgensohn has Erdős
number two, and that David Bailey has Erdős number three.
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Figure 4.2: A 1993 photo of Paul Erdős.



Chapter 5

The Power of Constructive
Proofs I

A proof is a proof. What kind of a proof? It’s a proof. A proof is a
proof. And when you have a good proof, it’s because it’s proven.

Jean Chretien, Prime Minister of Canada, on the need for
evidence of weaponry in Iraq, CBC News, Sept. 5, 2002.

The advent of the modern computer mathematics systems makes much previ-
ously elusive material tangible and certainly helps drive a taste for the concrete.
Even when not explicitly using such software, a constructive computational ap-
proach to mathematical proofs and derivations is often significantly more en-
lightening and intuition-promoting than purely abstract approaches. Illustrating
both the power and the pleasure of these constructive approaches is the aim of
this chapter.

5.1 The Fundamental Theorem of Algebra

We will start this chapter with a proof of the Fundamental Theorem of Algebra,
as an experimental mathematician might construct. Let p be a polynomial
defined on the complex plane C:

p(x) = a0 + a1x + a2x
2 + · · ·+ anxn. (5.1.1)

197
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Suppose that p(x) has no roots in C. For some sufficiently large s, we can
assume |p(x)| > 1 for all x with |x| ≥ s, because for sufficiently large x, the xn

term dominates. Since |p(x)| is continuous on the interior and boundary of the
circle with radius s, it follows from fundamental continuity axioms that |p(x)|
achieves a minimum value at a point t in this (solid) circle. We will see numerous
examples in subsequent sections of this “min/max” or “variational” approach in
action. Now write

q(z) = p(z − t) = q0 + q1z + · · ·+ qnz
n. (5.1.2)

Presumably the polynomial q has a global minimum M at 0, and M = |q0| =
|q(0)| > 0.

Our proof strategy is to construct some point x, close to the origin, such
that |q(x)| < |q(0)|, thus contradicting the presumption that q has a global
minimum at zero. One idea that immediately suggests itself to the experimental
mathematician is to employ Newton’s method, for finding roots of a function f .
This is the well-known scheme in which we choose x0 to be some initial value,
and then iterate

xk+1 = xk − f(xk)

f ′(xk)
(5.1.3)

(see Section 6.2.5). One detail that needs to be observed here is how to handle
the case where the derivative in Newton’s iteration (5.1.3) is zero. In that case
we simply adapt a higher-order approximation from the Taylor’s series of the
function f(x). In particular, if the first m derivatives of f(x) at xk are zero, but
not the (m + 1)-st derivative, then we can write

xk+1 = xk +

(−m!f(xk)

f (m)(xk)

)1/m

, (5.1.4)

where the m-th root of a complex number z = aeib is calculated using the well-
known formula

z1/m = a1/m (cos(b/m) + i sin(b/m)) . (5.1.5)

In general we have no global guarantee that xk+1 is closer to the root than xk, but
for the purposes of our present proof strategy, we do not require this—we only
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require some point x whose function value is slightly smaller than the function
value at zero. If Newton’s method gives us merely a direction in the complex
plane for which the function value decreases in magnitude (a descent direction),
then by moving a small distance in that direction, we hope to achieve our goal
of exhibiting a complex x such that |q(x)| < |q(0)|. This is the strategy we will
pursue.

So suppose that the first nonzero coefficient of q, following q0, is qm (if there
is no nonzero coefficient following q0, then the polynomial reduces to a constant):

q(x) = q0 + qmxm + qm+1x
m+1 + · · ·+ qnx

n. (5.1.6)

Note that q(m)(x) = m!qm. Thus, in accordance with (5.1.4), we will choose x
to be the complex number

x = r

(−q0

qm

)1/m

(5.1.7)

for some small positive real r that we will specify below. Now we can write

q(x) = q0 − q0r
m + qm+1r

m+1

(−q0

qm

)1+1/m

+ · · ·+ qnr
n

(−q0

qm

)n/m

= q0(1− rm) + E , (5.1.8)

where the error term E satisfies

|E| ≤ rm+1 max |qi|
1− s

∣∣∣∣
q0

qm

∣∣∣∣
1+1/m

(5.1.9)

for s = r|q0/qm|, which is smaller than one when r is sufficiently small. In
this way, E can be made arbitrarily small in ratio to |q0|rm by choosing r small
enough. Thus, for such an r, we have |q(x)| = |q(0)(1− rm) + E| < |q(0)|, which
contradicts our original assumption that q(x) has a global minimum at zero.

This establishes the Fundamental Theorem of Algebra. Continuing by in-
duction, we have constructively proven:

Theorem 5.1.1 Every complex polynomial of degree n has exactly n complex
roots.

More importantly, we have gained some modest insight into how to practically
locate roots. Indeed, a careful scheme along these lines can lead to a fairly
robust numerical procedure for finding polynomial roots (this is discussed more
in Section 7.3 of the second volume of this work).
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5.1.1 Liouville’s Theorem and the Sine Product

Of course, depending on what tools we consider elementary, other proofs may
seem equally or more transparent. Suppose we are familiar with the following
generalization of the Fundamental Theorem of Algebra, an application of the
Cauchy-Goursat theorem:

Theorem 5.1.2 (Liouville). Every entire function in the complex plane with
polynomial growth of degree at most n is a polynomial of degree at most n.

Then the assumption that

p(x) = a0 + a1x + a2x
2 + · · ·+ anx

n

never vanishes leads almost immediately to the Fundamental Theorem of Alge-
bra.

We illustrate the use of Theorem 5.1.2 by deriving the product formula for
the sin function (5.4.41). This will be discussed more completely in Section 5.4.
We begin by considering

σ(z) = π z

∞∏
n=1

(
1− z2

n2

)
, (5.1.10)

for z ∈ C, and analyzing the quotient

q(z) =
σ(z)

sin(πz)
. (5.1.11)

We rewrite σ as

σ(z) = π z(1− z)
∞∏

n=1

(
1 +

z(1− z)

n(n + 1)

)
,

by gathering the terms in 1 + z/n and 1 − z/(n + 1) together. This shows
that σ(1 − z) = σ(z) and so that σ(z + 1) = −σ(z). Thus, q is entire as both
numerator and denominator have simple zeros at the integers and are pole free.
Moreover,

q(z + 1) = q(z),
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and

q(n) = q(0) = lim
z→0

sin(z)

z
= 1, (5.1.12)

for each integer n. It remains to bound q. First, we write
∣∣∣∣∣
∞∏

n=1

(
1− z2

n2

)∣∣∣∣∣ ≤ exp

( ∞∑

k=1

log

(
1 +

|z|2
k2

))
(5.1.13)

≤ exp

(
log(1 + |z|2) +

∫ ∞

1

log

(
1 +

|z|2
u2

)
du

)

= exp(π|z| − 2|z| arctan(1/|z|)) ≤ exp(π|z|).
Then we observe that, as q has period 1, it suffices to establish that

|q(z)| ≤ a |z|+ b, when − 1/2 ≤ Re(z) ≤ 1/2 (5.1.14)

for some a, b > 0. Once (5.1.14) is established, Theorem 5.1.2 ensures that q
is at most linear, but as q takes the value 1 infinitely often, q(z) ≡ 1 and we
are done. To establish Equation (5.1.14), let us write x and y for the real and
imaginary parts of z. We note that

inf
|x|,|y|≤1/2

∣∣∣∣
sin z

z

∣∣∣∣ > 0 (5.1.15)

as sin has zeroes only at the integers, while for |x| ≤ 1/2 and |y| ≥ 1/2 we have

| sin(πz)| ≥ | sinh(π|y|)| ≥ c exp(π|z|)− d, (5.1.16)

for c, d > 0. Combining these last two estimates with that of (5.1.10) produces
(5.1.14).

Even if we distrust and only partially understand Theorem 5.1.2, and we
perform the steps in the previous proof informally, we finish with greater security
that the result is true and more reason to search for a compelling and constructive
proof.

That said, computer algebra systems are not perfect and this seems an appro-
priate place to highlight one of the issues most vexing for symbolic computation—
selecting the right branch of the inverse of a function.
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5.1.2 Roots and Branches

We start with two “failures”:

Example 5.1.3 Simplifying
√

x.

Evaluating asymptotic expansions for the Airy function (the first solution of
w′′ − zw = 0, which one can see in the rainbow), Rob Corless and Dave Jeffrey
could not get correct values for negative x, in Maple version 4 (circa 1988).

The problem turned out to be in the calculation of

√−x .

Maple was “simplifying” automatically

√−x → i
√

x ,

and therefore when it tried substituting, say, x = −4 it computed as follows.

√−x → i
√

x; i
√

x → i
√−4; i

√−4 → i2
√

4 → −2 .

Of course, they wanted
√
−(−4) = 2. Corless and Jeffrey’s quick fix was to

program

temp:= -x; sqrt(temp);

The slow fix was to identify a set of problems called generically by Maple devel-
opers as “The Square Root Bug.” Of course, humans routinely write

√
x2 = x

and worry about it afterwards. 2

Example 5.1.4 Simplifying sin(arcsin(x)).

One computer algebra system simplified SIN(ASIN(5/4)) → −5/4 using the
“standard” formulae:

arcsin z = arctan

(
z√

1− z2

)
(5.1.17)

sin (arctan z) =
z√

z2 + 1
, (5.1.18)
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and internally used (5.1.17) to convert inverse sine to inverse tangent:

arcsin(5/4) = arctan(−5i/3).

The system then used (5.1.18), with the complex number, and got the wrong
sign:

−5i/3√
52(−1)/32 + 1

=
−5i/3√
−16/9

= −5/4.

This time the cure was to modify

arcsin z = arctan

(
z√

1− z2

)

sin (arctan z) =
z√

z2 + 1
= z

1√
z2 + 1

to

arcsin z = arctan

(
z√

1− z2

)
(5.1.19)

sin (arctan z) = z

√
1

z2 + 1
, (5.1.20)

and to ensure that
√

1

z
was not automatically simplified to

1√
z
.

2

Additionally, the different systems and reference books do not necessarily
agree on what the domain of arcsin is (even, for example, in different editions of
Abromowitz and Stegun [1]), or where the branch cut for log occurs.

These and other examples show how errors may be caused by any of the
following

√
xy → √

x
√

y,
√

x2 → x,√
1

z
→ 1√

z
, log(ez) → z,

log(1/z) → − log z, arctan z = arcsin

(
z√

z2 + 1

)
,
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being used in simplifications.

The source of the problems is that in the complex plane, functions such as
log, square root, are multi-valued. In each problematic transformation, at least
one multi-valued function is being manipulated in the complex plane using a law
that applies to the single-valued function defined for real, positive arguments.
The issue becomes how to treat multivalued functions (i) in human mathematics,
and (ii) in a computer system.

Many solutions have been proposed:

Example 5.1.5 Simplifying log AB.

Consider the relation
log(AB) = log A + log B .

Maple proves this is wrong by substituting A = B = −1.

> eq:= log(A*B)=log(A)+log(B);
eq := ln(A B) = ln(A) + ln(B)

> subs({A=-1,B=-1},eq);
ln(1) = 2 ln(-1)

> simplify(%);
0 = 2 I Pi

Many people are quite unhappy with this. They reply either (i) Abramowitz
and Stegun define the multivalued function Log (a Principal Value) and this is
the function to use: the correct equation should be

Log(AB) = LogA + LogB;

or (ii) they observe that the trouble is that Maple is not working on the Riemann
surface, and if it did, all its problems would be solved.

To explain these responses, several terms need to be specified. A multivalued
function is a function (e.g., log, inverse sine, square root) that can, in principle,
have multiple values associated with it. A function returning multiple values is a
multivalued function that is defined to return more than one value. The values
might be returned as a set or in some other data structure. A principal-valued
function is a selection of multivalued function that specifies a single preferred
value. Corless and Jeffrey then asked whether log(−1) represents the single
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number iπ? All the solutions z of the equation exp(z) = −1, as the set {iπ +
2iπk | k ∈ Z}? Some object in between these two, perhaps a single number
iπ + 2iπk with the value of k being fixed later?

A traditional response was provided by Carathéodory writing on the equation

log z1z2 = log z1 + log z2 , (5.1.21)

for complex z1, z2.

The equation merely states that the sum of one of the (infinitely
many) logarithms of z1 and one of the (infinitely many) logarithms
of z2 can be found among the (infinitely many) logarithms of z1z2,
and conversely every logarithm of z1z2 can be represented as a sum
of this kind (with a suitable choice of log z1 and log z2).

The above definition is not an equality between sets. Consider a special case of
3 log z = log z3.

3 log(−1) = log[(−1)3] = log(−1) .

The left-hand side is the set {3iπ + 6iπk}, but the right-hand is the set {iπ +
2iπk}. Also, mathematically, log z does not have a unique value, while computer
algebra systems accept a specific value for z and return a unique log z. From
another point of view, the value of log z is no longer determined solely by the
value of z: The value to be given to log z is also determined by the context.
Thus, if the left-hand side log(−1) equals iπ, then the right-hand log(−1) equals
3iπ.

Multiple values are not computational as working with the solution of the
cubic equation z3 + 3qz − 2r = 0 shows. In keeping with Carathéodory, the so-
lution by radicals, ascribed to Cardano (1501–1576) and Tartaglia (1499–1557),
is written as

z =
(
r +

(
r2 + q3

)1/2
)1/3

+
(
r − (

r2 + q3
)1/2

)1/3

.

Each square root has two values and each cube root has three, and each term
in the addition takes an independent value. Even allowing for symmetry, z is
elected from a set of more than three possible z.

Jeffrey writes:
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Traditionally, this inefficiency has not bothered human mathemati-
cians, who patiently try all the solutions until the three correct ones
are verified, but it is not desirable in a computer system.

He likewise argues against using Riemann surfaces (others disagree) and ends
up recommending the use of principal values in computer systems, with labeled
branches to express multivaluedness better, and the use of the so-called un-
winding number, [122, 76], to keep transformations correct. In conclusion he
appropriately notes that there is reluctance to give up the old formulae




((((
z2

)1/2
)3

)1/3
)4




1/4

= z ??

and that there are limits to what computer algebra systems can introduce, uni-
laterally, in the way of new mathematical ideas and notation. We refer the reader
to [75] for a fuller discussion of the issues in “reasoning about the elementary
functions of complex analysis.”

When a program returns a patently negative value for an area or a complex
number in a real integral, any alert user will be flagged. While numerical checking
will help, it is much more invidious when simplification of an expression takes
a wrong branch internally, but returns, say, log(7/9) when the right answer is
log(4/5).

Suffice it to say that the user of any system should be alert to such issues
and on the inherent difficulties in addressing the underlying problems.

5.2 The Uncertainty Principle

In this section, we illustrate in detail how one may be led to a larger discovery
by directed computation and visualization.

Some readers may be familiar with the uncertainty principle from quantum
mechanics, which is often expressed as the fact that the position and momentum
of a subatomic-scale particle cannot simultaneously be prescribed or measured to
arbitrary accuracy. Other readers may be familiar with the uncertainty principle
from signal processing theory, which is often expressed as the fact that a signal
cannot simultaneously be “time-limited” and “frequency-limited.” Remarkably,
the precise mathematical formulations of these two principles are identical.
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Richard Crandall illustrates the uncertainty principle with a “thought exper-
iment.” Imagine that a tuning fork is struck, then very quickly silenced—just
a brief burst of sound. If the duration ∆t is short enough, the perceived pitch
would be ambiguous, so that the “uncertainty” in the frequency ∆f would be
large. More precisely, the spectrum of such a sound, if viewed on a spectrum an-
alyzer, would be rather broad. If the duration is long, then the listener (and the
spectrum analyzer) can hear enough cycles of the signal to gauge the pitch quite
accurately, in which case ∆f is small—the spectrum would be sharply peaked
at the tuning fork’s natural frequency. Thus we can write ∆t∆f > C for some
constant C. This is the basic idea of the uncertainty principle.

The most common proof of the uncertainty principle is not terribly difficult,
although it is hardly intuitive (and certainly not very enlightening) at first read-
ing. We will sketch it here, assuming some elementary facts of analysis. Let
us consider a real, continuously differentiable, L2 function f(t), which further
satisfies f(t)

√
t → 0 as |t| → ∞. For convenience, we will also assume here that

f(−t) = f(t), as this insures that the Fourier transform f̂(x) of f(t) is purely
real, although in general this condition is not necessary. Define (see also Section
2.2 of the second volume):

E(f) =

∫ ∞

−∞
f 2(t) dt

V (f) =

∫ ∞

−∞
t2f 2(t) dt

f̂(x) =

∫ ∞

−∞
f(t)e−itx dt

Q(f) =
V (f)

E(f)
· V (f̂)

E(f̂)
. (5.2.22)

Theorem 5.2.1 With the above assumptions and definitions, Q(f) ≥ 1/4, with
equality if and only if f(t) = ae−(bt)2/2 for real constants a and b.

Proof. By applying the integral form of the Schwarz inequality [4, pg. 256]
(see also formula (5.3.32)), to the functions tf(t) and f ′(t), we can write

∣∣∣∣
∫ ∞

−∞
tf(t)f ′(t) dt

∣∣∣∣
2

≤
[∫ ∞

−∞
t2f 2(t) dt

] [∫ ∞

−∞
(f ′(t))2dt

]
. (5.2.23)



208 CHAPTER 5. THE POWER OF CONSTRUCTIVE PROOFS I

Furthermore,

∫ ∞

−∞
tf(t)f ′(t) dt =

1

2

∫ ∞

−∞
t
df2(t)

dt
dt = −1

2
E(f) (5.2.24)

by applying integration by parts. Let g(t) = f ′(t). By noting that ĝ(x) =
−ixf̂(x), and by applying Parseval’s identity [161, pg. 65] to f(t) and g(t), we
obtain, respectively,

∫ ∞

−∞
|f(t)|2 dt =

1

2π

∫ ∞

−∞
|f̂(x)|2 dx

∫ ∞

−∞
|f ′(t)|2 dt =

1

2π

∫ ∞

−∞
x2|f̂(x)|2 dx. (5.2.25)

Combining these results, we obtain our desired inequality. Recall that equality
in the Schwarz inequality occurs only when the two functions (tf(t) and f ′(t)
in this case) are linear scalings of each other, i.e., f ′(t) = ctf(t) for some c.
By solving this elementary differential equation, we conclude that the minimum
value 1/4 is achieved if and only if f(t) = ae−(bt)2/2 for constants a and b. By
the way, it is worth noting that Q(f) is unaffected by a linear scaling of either
the function argument t or the function value f(t). 2

Now let us approach this problem as an experimental mathematician might.
As was mentioned above, it is natural when studying Fourier transforms (par-
ticularly in the context of signal processing) to consider the “dispersion” of a
function and to compare this with the dispersion of its Fourier transform. Not-
ing what appears to be an inverse relationship between these two quantities, we
are naturally led to consider the expression

Q(f) =
V (f)

E(f)
· V (f̂)

E(f̂)
. (5.2.26)

With the assistance of Maple or Mathematica, we can readily work out some
examples, as shown in Table 5.1. We note that each of the entries in the last
column of the table is in the range (1/4, 1/2). For example, the expression in
the bottom right corner of the table is approximately 0.26329. Can we get any
lower?
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f(t) Interval f̂(x) E(f) V (f) V (f̂) Q(f)
1− t sgnt [−1, 1] 2(1− cos x)/x2 2/3 1/15 4π 3/10

1− t2 [−1, 1] 4(sin x− x cos x)/x3 16/15 16/105 16π/3 5/14
1/(1 + t2) [−∞,∞] π exp(−x sgnx) π/2 π/2 π2/2 1/2

e−|t| [−∞,∞] 2/(1 + x2) 1 1/2 2π 1/2
1 + cos t [−π, π] 2 sin(πx)/(x− x3) 3π π3 − 15π/2 2π2 (π2 − 15/2)/9

Table 5.1: Q values for various functions.

To further study this problem with an experimental approach, we employ
numerical methods, since these permit the above calculations to be performed for
a wide variety of functions, analytic or tabular. We can do this by approximating
the Fourier transform f̂(x) by means of a step-function approximation to the
integral, as follows (see also Section 6.1). Assume that f(t) is zero (or sufficiently
small) outside [−a/2, a/2], and its Fourier transform f̂(x) is zero (or sufficiently
small) outside [−b/2, b/2]. Select an even integer n so that ab = 2πn. This
usually requires that we adjust a and b to be larger than the minimum values
needed, particularly if a large value of n is needed for high accuracy in the
approximation. n is typically chosen to be a power of two. Then we can write

f̂

(
bk

n

)
=

∫ ∞

−∞
f(t)e−itbk/n dt

≈ a

n

n
2
+1∑

j=−n
2
+1

f

(
aj

n

)
e−i(aj/n)(bk/n) (5.2.27)

=
a

n

n
2
+1∑

j=−n
2
+1

f

(
aj

n

)
e−2πijk/n (5.2.28)

for −n/2 + 1 ≤ k ≤ n/2. If we adopt the convention that f(t) = f(t − a) for
t > a/2, and f̂(x) = f̂(x− b) for x > b/2, then we can write

f̂

(
bk

n

)
=

a

n

n−1∑
j=0

f

(
aj

n

)
e−2πijk/n, (5.2.29)

for 0 ≤ k ≤ n− 1, which is now in a form suitable for the application of widely
available fast Fourier transform (FFT) routines.
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The integrals in the definition of Q can now be computed using similar step-
function approximations, as follows:

E(f) =

∫ ∞

−∞
f 2(t) dt ≈ a

n

n
2
+1∑

j=−n
2
+1

f 2

(
aj

n

)

V (f) =

∫ ∞

−∞
t2f 2(t) dt ≈ a

n

n
2
+1∑

j=−n
2
+1

(
aj

n

)2

f 2

(
aj

n

)

E(f̂) =

∫ ∞

−∞
f̂ 2(x) dx ≈ b

n

n
2
+1∑

j=−n
2
+1

f̂ 2

(
bj

n

)

V (f̂) =

∫ ∞

−∞
x2f̂ 2(x) dx ≈ b

n

n
2
+1∑

j=−n
2
+1

(
bj

n

)2

f̂ 2

(
bj

n

)
, (5.2.30)

where we use the results of the FFT scheme for the indicated array of f̂ values.
Given an equispaced array (tk) with spacing d, and a corresponding array

(yk), define f(t) to be the function given by parabolic interpolation in the (yk)
array. To be precise, this means that for t in the interval (tk, tk+1), define f(t) =
yk − h(3yk − 4yk+1 + yk+2)/2 + h2(yk − 2yk+1 + yk+2)/2, where h = (t − tk)/d.
We can now employ a simple search strategy to explore the space of continuous
functions to find one that minimizes Q:

Algorithm 7 To find a Q-minimizing function f(t):

Given c and m, first construct the (m + 3)-long abscissa array (tk = ck/m),
for 0 ≤ k ≤ m + 2, which has spacing d = c/m. Define the tent-function
array (yk = 1 − k/m) for 0 ≤ k ≤ m, with ym+1 = ym+2 = 0. Define f(t)
as above based on the (yk) array. For negative t, define f(t) = f(−t), and
define f(t) = 0 for |t| > c. Initially set δ to be some small value, and calculate
Qmin = Q(f), utilizing the scheme described above, for f(t) as just defined. Now
iterate as follows: Starting with k = 1 (not k = 0), increase yk by δ (leaving
other yj unchanged) and calculate Q(f) for f(t) associated with this altered y
array. If Q(f) < Qmin, then replace Qmin by Q(f), and replace the y array
with the altered y array; if not, then decrease yk by δ, and replace as before if
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Q(f) < Qmin. Either way, increment k and perform similar tests until the case
k = m is complete. If for some k the test Q(f) < Qmin was true, then repeat
beginning with k = 1. If not, then reduce δ by a factor of two and start again.
Terminate when δ is sufficiently small. 2

In our implementation of this procedure, we use the parameters a = 128, b =
64π and n = 4096 for the FFT and integration procedures (so that ab = 2πn as
required in the FFT). In the search procedure, we set c = 8 and m = 32. We
set the initial δ = 1/16, and we terminate when δ < 10−6. This requires about
30 minutes on a 2003-era personal computer or workstation. An acceptable, but
less accurate, result is obtained in just a minute or so by using the termination
condition δ < 10−4.

The final experimentally determined Q-minimizing function f(t) that we ob-
tain is plotted in Figure 5.1. Needless to say, its shape strongly suggests a
Gaussian probability curve. Actually, we have graphed both f(t) and the func-
tion e−(bt)2/2, where b = 0.45446177, on the same plot—they are identical to the
precision of the plot! We graphed the difference between these two functions
in Figure 5.2. The value of Q corresponding to this f(t) is 0.25001158, which
indeed is very close to 1/4.

If you do calculations of this sort, you may discover a curious fact. When the
numeric computational scheme described above (which is based on discrete, step-
function approximations for the various integrals involved) is applied to compute
Q for a scaled Gaussian function (namely a function of the form ae−(bt)2/2),
the result of this calculation is very accurate. The value of Q produced by
our program is 1/4, correct to 15 decimal places (using ordinary IEEE double
floating-point arithmetic), even with a modest value of n. For other types of
functions, with a step-function interval of 10−4 or so, typically only six or seven
digits are good.

What is happening here is that we have experimentally uncovered an im-
portant and nontrivial fact of numerical analysis: If a function f(t) and all its
derivatives approach zero as t approaches the endpoints of the interval [a, b]
(which condition is certainly satisfied by the Gaussian probability density func-
tion on (−∞,∞)), then calculating the definite integral of f(t) on [a, b] by means
of a simple step-function or trapezoidal approximation scheme is extraordinarily
accurate [9, pg. 280]. This fact, which is a consequence of the Euler-Maclaurin
summation formula, is the basis of some new robust and high-precision numerical
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Figure 5.1: Experimental Q-minimizing function and matching Gaussian.
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Figure 5.2: Difference between Q-minimizing function and matching Gaussian.
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quadrature algorithms. We shall discuss these schemes, plus the Euler-Maclaurin
summation formula, in Section 7.4 of the second volume.

5.3 A Concrete Approach to Inequalities

Discovering and establishing inequalities underpins much of mathematics. It
has been claimed that most of analytic number theory is the Cauchy-Schwarz
inequality in various disguises. Its ubiquitous extension is Hölder’s inequality.
For 1 ≤ p, q ≤ ∞, we define the p−norm of a sequence in Rn by

‖x‖p = p

√√√√
n∑

k=1

|xk|p.

For p = ∞, the norm is ‖x‖∞ = maxn
k=1 |xk|, which coincides with limp→∞ ‖x‖p.

We use 〈x, y〉 for the dot-product.

Theorem 5.3.1 If 1/p + 1/q = 1 then

〈x, y〉 ≤ ‖x‖p ‖y‖q, (5.3.31)

with equality only if xk and yk are “aligned” (i.e., x = cy for some scalar c).

Proof. We may assume x and y are nonzero. We proceed in several steps.
First, we establish the Fenchel-Young inequality

1

p
|x|p +

1

q
|y|q ≥ xy

for real x and y. This can be done by observing that it suffices to assume x, y
are positive and to use calculus on the function x 7→ (xp)/p+(yq)/q−xy, which
has a critical point at 0 and is convex. Then we have

∑

k

(
1

p
xp

k +
1

q
yq

k

)
≥

∑

k

xkyk,

which is
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1

p
‖x‖p

p +
1

q
‖y‖q

q ≥ 〈x, y〉.

In particular if z = x/‖x‖p
p, and w = y/‖y‖q

q, we deduce that 〈z, w〉 ≤ 1 as each
of w, z are unit length and 1/p + 1/q = 1. This establishes (5.3.31).

We leave the proof of the equality statement to the reader. They emerge on
analyzing when the Fenchel-Young inequality is an equality. 2

The corresponding integral inequality

∫

R

x(t)y(t) dt ≤
[∫

R

|x(t)|p dt

]1/p [∫

R

|y(t)|q dt

]1/q

(5.3.32)

is proven in the same way.
When p = q = 2, we recover the Cauchy-Schwarz inequality. In general for

a function f : Rn 7→ R∪∞, we may define the (Fenchel-Legendre) conjugate by

f ∗(y) = sup
x
〈x, y〉 − f(x).

The conjugate is always convex and lower semicontinuous. First used, less ex-
plicitly, by Legendre in the study of adjoint systems of ODE’s, f ∗ plays a role
like the Fourier conjugate in that for convex (lower-semi) continuous functions
f = f ∗∗, [54]. For example, f = x → x log(x) − x has f ∗ = exp and f ∗∗ = f .
Hence, symbolically performing the code below actually proves that f is convex.
Moreover, the definitional inequality f(x) + f ∗(y) ≥ 〈x, y〉 is what we used in
the proof. As we observed in Section 5.1.2, computer algebra systems struggle
with branches (i.e., multiple inverses).

Thus, the following Maple code

conj:=proc(f,y) local x,g:g:=y*x-f(x);
simplify(subs(x=solve(diff(g,x),x)[1],g),symbolic);end;

has to be massaged to deal with xp/p, but is fine with x4/4. We have illustrated
that convexity is in some sense easy to handle computationally. A much more
sophisticated version of the above is detailed next.

Example 5.3.2 A symmetric pair of functions [54].
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(a) Given real γ1, γ2, · · · , γn > 0, define h : Rn → (−∞, +∞] by

h(x) =

{∏n
i=1 x−γi

i if x ∈ Rn
++

+∞ otherwise.

By writing g(x) = exp(log g(x)) and using a composition formula, one can
prove that

h∗(y) =




−(γ + 1)

n∏
i=1

(−yi

γi

)γi/(γ+1)

if − y ∈ Rn
+

+∞ otherwise,

where γ =
∑

i γi.

(b) Given real α1, α2, · · · , αn > 0, define α =
∑

i αi and suppose a real µ
satisfies µ > α + 1. Now define a function f : Rn × R → (−∞, +∞] by

f(x, s) =

{
µ−1sµ

∏
i x

−αi
i if x ∈ Rn

++, s ∈ R+

+∞ otherwise.

Using part (a) one may then prove that

f ∗(y, t) =

{
ρν−1tν

∏
i(−yi)

−βi if − y ∈ Rn
++, t ∈ R+

+∞ otherwise

for constants

ν =
µ

µ− (α + 1)
, βi =

αi

µ− (α + 1)
, ρ =

∏
i

(αi

µ

)βi

.

The punch line is that on deducing f = f ∗∗, we explicitly represent f as a
convex function. Indeed, one can now show that f is strictly convex, since
f ∗ is differentiable.

2
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5.4 The Gamma Function

The Gamma function naturally extends the factorial and will appear throughout
this chapter. We begin with a characterization that again exploits convexity. The
Γ-function is usually defined as an integral

Γ(x) =

∫ ∞

0

exp(−t)tx−1 dt (5.4.33)

for Re(x) > 0.

Theorem 5.4.1 (Bohr-Mollerup). The Γ−function is the unique function
f : (0,∞) → (0,∞) with the following three properties:

1. f(1) = 1;

2. f(x + 1) = xf(x);

3. f is log-convex (i.e., x → log(f(x)) is convex).

Proof. We sketch the proof. First we show the integral in (5.4.33) does indeed
have the requisite three properties. The first two are easy integration exercises
(which can be automated in Maple or Mathematica). For the key property 3, we
use the integral version of Hölder’s inequality (5.3.32) to show that

√
Γ(x) Γ(y) ≤ Γ

(
x + y

2

)
.

Conversely, we set g(x) = log(f(x)), we observe that g(n+1) = log(n!), and use
the convexity estimate

x log(n) ≤ g(n + 1 + x)− g(n + 1) ≤ x log(n + 1) (5.4.34)

for 0 < x ≤ 1.
Hence, for 0 < x ≤ 1,

0 ≤ g(x)− log
n! nx

x(x + 1) · · · (x + n)
≤ x log

(
x +

1

n

)
. (5.4.35)
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It follows using f(x + 1) = xf(x), that for all x > 0

f(x) = lim
n→∞

n! nx

x(x + 1) · · · (x + n)
= Γ(x). (5.4.36)

2

Equation (5.4.36) often proves useful in its own right, as we shall see in
(5.4.37) and in (5.4.44).

Another nice characterization of the Gamma function, which in practice often
seems more difficult to apply, is:

Theorem 5.4.2 If f is a complex valued function on (a,∞] such that f(x+1) =
xf(x) for all x > a and

lim
n→∞

f (t + n + 1)

n! nt
= 1 (5.4.37)

for 0 ≤ t < 1, then f = Γ on (a,∞].

Proof. The fact that Γ satisfies (5.4.37) is (5.4.36). Conversely, if f and g
satisfy (5.4.37), then consider h = f/g which satisfies limn→∞ h(t + n + 1) = 1.
Since h(x) = h(t+n+1), the two solutions must both coincide with Γ, on (a,∞].

2

We illustrate the use of the Bohr-Mollerup Theorem as follows:

Example 5.4.3 The β−function.

The β−function is defined by the integral

β(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt (5.4.38)

for Re(x), Re(y) > 0. It has the following striking evaluation, often established
by using polar coordinates and double integrals (we shall see a third approach
in the next section):

β(x, y) =
Γ(x) Γ(y)

Γ(x + y)
. (5.4.39)
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This we shall now deduce from the Bohr-Mollerup result. We define f = x →
β(x, y) Γ(x+ y)/Γ(y) and proceed to verify the three properties. Point one is an
easy integration exercise. For point two, we need to show (1 + t/s)β(s + 1, t) =
β(s, t). We observe that β(s, t+1) = β(s, t)−β(s+1, t) which we combine with
β(s + 1, t) = (s/t)β(s, t + 1). It remains to show f is log-convex as again follows
by an application of Hölder’s inequality. Thus f = Γ as required. In particular,
we now obtain the famous evaluation

Γ

(
1

2

)
=

√
β

(
1

2
,
1

2

)
=
√

π, (5.4.40)

as follows on making the change of variables t = cos(s)2 in the definition of the
β−function. In the next subsection we shall link this formula to the volumes of
p−balls in Rn. 2

The power of this approach is that it provides a generally applicable paradigm
and that all or most can be automated or checked computationally—even when
the general case may prove too hard to program, special cases can be checked
symbolically or numerically, and add security! A second illustration is:

Example 5.4.4 The Γ−duplication formula.

Γ(2s) = 22s−1 Γ(s) Γ(s + 1/2)/
√

π.

This is established in the same way by considering

f(s) =
√

π Γ(2s)/(22s−1 Γ(s + 1/2)).

In this case log-convexity has already been established and the other steps are
easy in light of (5.4.40).

To complete this section, we derive the classical product for the sine function
and relate it to the Γ−function. 2

Example 5.4.5 The sin-product formula.

sin(π x) = π x

∞∏
n=1

(
1− x2

n2

)
(5.4.41)
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and

π

sin(πx)
= Γ(x)Γ(1− x). (5.4.42)

Now (5.4.42) follows directly from (5.4.41) and (5.4.36). We outline a proof of
(5.4.41) whose full details are in [184]. We examine the polynomial

Pm(x) =
1

2i

[(
1 + π i

x

m

)m

−
(
1− π i

x

m

)m]
→m sin(πx),

and check that the roots of P2m are 0,±(2k/π) tan(jπ/(2k)) for 0 < j < k. As
the coefficient of x in P2m is π, we may write

P2m(x) = x

k−1∏
j=1

(
1− π2x2

4k2 tan2(jπ/(2k))

)
. (5.4.43)

Finally, one must take care to legitimate the passage to the limit in (5.4.43),
using the fact that tan(x)/x → 1 as x → 0. 2

One may heuristically derive (5.4.41) as Euler did by considering sin(πx)
as an “infinite” polynomial and rewriting it as a product in terms of the roots
0, {1/n2}. It is thus plausible that

sin(π x)

x
= c

∞∏
n=1

(
1− x2

n2

)
, (5.4.44)

and Euler argues that as with a polynomial, c should be the value at zero and the
coefficient of the linear term (in x2) should be the sum of the roots:

∑
n n−2 =

π2/6. The argument above made this both less obvious and more rigorous.
Also, we emphasize that each step may be checked or discovered formally in
many computer algebra packages.

5.4.1 Volumes of Balls

The volume of the unit ball in the ‖ · ‖p-norm, Vn(p), was first determined by
Dirichlet by explicitly evaluating the iterated integrals. He obtained

Vn(p) = 2n
Γ(1 + 1

p
)n

Γ(1 + n
p
)

, (5.4.45)
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([5], Section 1.8). We note that the Γ-function again proves invaluable, and that
even the special case when p = 2,

Vn = 2n Γ(3
2
)n

Γ(1 + n
2
)

=
Γ(1

2
)n

Γ(1 + n
2
)
,

gives a formula more concise than that recorded in most analysis books. One can
try graphing this as a function of p for n = 2, 3, · · · , and observing the limiting
cases p = 1,∞.

The following Maple code derives this formula as an iterated integral for
arbitrary p and fixed n. The intermediate steps again give beta function values.
The code can easily be converted into a human proof valid for arbitrary n.

vol := proc(n)
local f,x,i,ul,u,j,t; global p;
p := evaln(p);
if n=1 then 2 else
f := (1-add(x[i]^p,i=1..n-1))^(1/p);
for i from n-1 by -1 to 1 do

f := subs(x[i]=t,f); f := int(f,t);
ul := 1-add(x[j]^p,j=1..i-1); u := ul^(1/p);
f := subs(t^p=ul,f); f := subs(t=u,f);
f := map(normal,f); f := simplify(f);
od;

2^n*f;
fi; end:

It is also fun to determine in which dimension the volume of the Euclidean ball
is maximized.

Let us recall the Laplace transform of a function f defined by

L(z) = L(f)(z) =

∫ ∞

0

e−ztf(t) dt

for Re(z) > 0. We finish the section with another, induction-free, Laplace
transform-based, proof of (5.4.45). We shall evaluate

vp(y) = Voln({x : ‖x‖p
p ≤ y}),
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for y > 0 as follows. First, observe that

vp(y) = vp(1) yn/p.

We now compute

L(vp)(1) = vp(1) L(y 7→ yn/p)(1) = vp(1) Γ

(
1 +

n

p

)
. (5.4.46)

To evaluate the left-hand side we write

L(vp)(1) =

∫ ∞

0

e−t

(∫

‖x‖p
p≤t

dx

)
dt

=

∫

R

(∫ ∞

‖x‖p
p

e−t dt

)
dx =

∫

Rn

e−‖x‖
p
p dx

=
n∏

k=1

∫

R

e−|xk|p dxk = 2n Γ

(
1 +

1

p

)n

. (5.4.47)

Now comparing (5.4.46) and (5.4.47) recovers

vp(1) = 2n
Γ(1 + 1

p
)n

Γ(1 + n
p
)

as claimed. Moreover, most if not all of this can be performed by a good com-
puter algebra integral transform package.

5.5 Stirling’s Formula

One of the most fundamental asymptotic formula in analysis is the so-called Stir-
ling’s formula (actually due to De Moivre) for the factorial, and more generally,
for the Γ function.

Theorem 5.5.1

lim
n→∞

n!√
2πn (n/e)n

= 1 (5.5.48)

and moreover, for n > 1

1 +
1

12n + 12
<

n!√
2πn (n/e)n

< 1 +
1

12n− 24
. (5.5.49)
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While (5.5.48) yields an excellent relative error formula, (5.5.49) shows that the
absolute error will be large. For example, with n = 100, the ratio is approxi-
mately 0.9997, but the absolute error of the order of 10155. With more work,
(5.5.49) can be made significantly more precise, but the version given is often
more than sufficient.
Proof. To deduce the estimate we consider log n! and argue as follows. By the
trapezoidal formula (see Section 7.4 of the second volume), we have

n log(n)− n + 1 =
n−1∑

k=1

∫ k+1

k

log (x) dx

=
1

2

n−1∑

k=1

[log (k) + log (k + 1)] +
1

12

n∑

k=1

ek
−2,(5.5.50)

where ek lies in [k, k + 1]. If we denote this last series by Rn, it is easy to
see by the comparison test that it converges to a finite number R. We may
rewrite (5.5.50) as (n + 1/2) log (n)− n− log (n!) → R− 1, or equivalently that
rn = n−n−1/2 exp(n) n! converges to a limit r, and so also

r = lim
n→∞

r2
n

r2n

= lim
n→∞

Γ (n + 1)2 4n
√

2

Γ (2 n + 1)
√

n
. (5.5.51)

Squaring, and taking the limit, we obtain

r2 = 4
∞∏

k=1

4k2

4k2 − 1
= 2π, (5.5.52)

where this last identity is one of Wallis’ famous formulae. It may be derived from
Euler’s product formula for π (5.4.41) with x = 1/2, or by repeatedly integrating∫ π/2

0
sin2n(t) dt by parts. This establishes (5.5.48).

Now with a little more care, one can obtain (5.5.49) by estimating that
1/12(n + 1) < R−Rn ≤ 1/12(n− 1), and considering the first few terms of the
Taylor series for exp. 2

A very important consequence, derived along the way, is that the central
binomial coefficient

(
2n
n

) ∼ 4n/
√

πn, and you may equally easily estimate other

binomial coefficients such as
(
3n
n

)
, of the form examined elsewhere in this book.
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It is interesting to consider how to be led to the correct result. First, to
see that (n/e)n

√
n is the right estimate and then to discover that r =

√
2π,

especially given that the convergence is only O(1/n).

5.6 Derivative Methods of Evaluation

Another potent and concrete way of establishing an identity is by obtaining an
appropriate differential equation. For example consider

f(x) =

(∫ x

0

e−s2

ds

)2

g(x) =

∫ 1

0

exp(−x2(1 + t2))

1 + t2
dt.

The derivative of f + g is zero: In Maple,

f:=x->Int(exp(-s^2),s=0..x)^2;
g:=x->Int(exp(-x^2*(1+t^2))/(1+t^2),t=0..1);
with(student):d:=changevar(s=x*t,diff(f(x),x),t)+diff(g(x),x);
d:=expand(d);

shows this. Hence, f(s) + g(s) is constant for 0 ≤ s ≤ ∞ and so, on justifying
the limit at ∞,

(∫ ∞

0

exp(−t2) dt

)2

= f(∞) = g(0) = arctan(1) =
π

4
.

The change of variables t2 = x shows that this evaluation of the normal distri-
bution agrees with Γ(1/2) =

√
π.

In similar fashion, we may evaluate

F (y) =

∫ ∞

0

exp(−x2) cos(2xy) dx

by checking that it satisfies the differential equation F ′(y) + 2y F (y) = 0. We
obtain

F (y) =

√
π

2
exp(−y2),

since we have just evaluated F (0) =
√

π/2, and again this is all easily imple-
mentable.
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5.6.1 Legendre’s Relation and Applications

We now turn to a study of the complete elliptic integral of the first and second
kinds

K(k) =

∫ π/2

0

1√
1− k2 sin2(s)

ds

E(k) =

∫ π/2

0

√
1− k2 sin2(s) ds (5.6.53)

for k in [0, 1].
We denote the complementary integrals by K ′(k) = K(k′), E ′(k) = E(k′)

with k′ =
√

1− k2. A beautiful and important relationship follows:

Theorem 5.6.1 (Legendre’s Relation). For all 0 < k < 1,

E(k) K(k′) + K(k) E ′(k)−K(k) K ′(k) =
π

2
.

Proof. It is easy to check that K and E satisfy the coupled second order
differential equation:

dK(k)

dk
=

E(k)− (1− k2)K(k)

k(1− k2)

dE(k)

dk
=

E(k)−K(k)

k
.

These allow us to check, by hand or computer, that

f(k) = E(k) K ′(k) + K(k) E ′(k)−K(k) K ′(k)

has derivative zero. It remains to determine the constant. The easiest way is to
evaluate limt→0 f(t). We observe that K(0) = E(0) = π/2 with error of order k,
and that E ′(0) = 1; since K ′(k) ∼ log(4/k), we determine that

lim
t→0

f(t) =
π

2
+ lim

t→0
(K(t)− E(t))K ′(t) =

π

2
.

2

Legendre, in a tour de force, actually determined the constant by evaluating
the four quantities at the third singular value k3 = (

√
3−1)/

√
8. This is discussed

in detail in [50].
In a similar manner, we next evaluate K(1/

√
2) and E(1/

√
2).
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alias(K=EllipticK,E=EllipticE):k0:=1/sqrt(2);
K_0:=Int(1/sqrt(1-k0^2*sin(s)^2),s=0..Pi/2);
K1:=changevar(t=sin(s),K_0,t);assume(x>0,x<1):
K1:=simplify(changevar(x^2=t^2/(2-t^2),K1,x),symbolic);
K1:=simplify(changevar(u=x^4,K1,u));

The changes of variables (s → t → x → u) given in this Maple code reduces to

K

(
1√
2

)
=

1

2
√

2
β

(
1

2
,
1

4

)
=

√
πΓ(1

4
)√

8Γ(3
4
)

=
Γ2(1

4
)

4
√

π
,

on using (5.4.39), (5.4.40) and (5.4.42). By combining similar computations
with (5.6.53), we may deduce that

E

(
1√
2

)
=

4Γ2(3
4
) + Γ2(1

4
)

8
√

π
.

5.6.2 The AGM Iteration

The arithmetic-mean of Gauss and Legendre has already been introduced in
previous chapters. Our goal in this section is to establish the basic properties of
the iteration. As we noted, Gauss’s specific discovery was that the reciprocal of
the integral

2

π

∫ 1

0

dt√
1− t4

(5.6.54)

agreed numerically with the limit of the rapidly convergent arithmetic-mean
iteration given by a0 = 1, b0 =

√
2 and computing

an+1 =
an + bn

2
, bn+1 =

√
anbn. (5.6.55)

Indeed, the sequences an, bn have a common limit 1.1981402347355922074 . . .
It is a nice exercise to show that for all positive initial values, the iteration

converges quadratically to a shared limit which we denote M(a, b), see [50].
It was the genius of Gauss that saw the limit. The next result gives a proof
especially suited to computer verification or discovery.



226 CHAPTER 5. THE POWER OF CONSTRUCTIVE PROOFS I

Theorem 5.6.2

π/2

M(a, b)
=

∫ π/2

0

dt√
a2 cos2(t) + b2 sin2(t)

. (5.6.56)

Proof. We first show that

I(a, b) =
π/2

M(a, b)

satisfies

I(a, b) = I(A(a, b), G(a, b)), (5.6.57)

where A(a, b) = (a + b)/2 and G(a, b) =
√

ab. Once this is shown, we have

I(a, b) = I(an, bn) = · · · = I(M(a, b),M(a, b)) =
π/2

M(a, b)
,

as required since I(c, c) = π/(2c), as it is easy to justify exchanging the limit
and the integral.

To establish (5.6.57), consider the following Maple code.

assume(a>0,b>0):
J:=simplify(changevar(s=b*tan(t),I(a,b),s),symbolic);
J1:=changevar(u=(s-a*b/s)/2,J,u); lprint(%);
j:=4/(a^2+(u-(u^2+a*b)^(1/2))^2)^(1/2)/

((u-(u^2+a*b)^(1/2))^2+b^2)^(1/2)
*(u-(u^2+a*b)^(1/2))^2/((u-(u^2+a*b)^(1/2))^2+a*b);

j0:=1/sqrt((A(a,b)^2+u^2)*(G(a,b)^2+u^2));

The code implements the change of variables s = b tan(t) and u = (s− ab/s)/2.
The most problematic step is the verification that the consequent integrand,
j0/j, simplifies as required. This is achieved by a resultant computation:

S:=simplify((j0/j)^2,radical);
p1 := R^2 - (u^2+a*b);
p2 := subs((u^2+a*b)^(1/2) = R, Zero - (numer(S) - denom(S)));
resultant( p1,p2,R); simplify(series(j/j0,u,8));
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and for peace of mind, the series of j/j0 can be computed! 2

Placing together (5.6.54) and (5.6.56), we have succeeded in establishing the
discovery of Gauss in the form

M(
√

2, 1) =

√
2

π
Γ2

(
3

4

)
= 1.1981402347355922074399224922803238 . . . ,

using five steps of the iteration.
It is also possible to discover the form of the substitution u = (s− ab/s)/2,

by taking a general quadratic form and solving for the parameters.

5.6.3 Other Mean Iterations

Finally, the more general study of means [50] also provides many opportunities
for experimentation and computation. Consider a mean iteration, in which we
start with a0 > 0 and b0 > 0 and iterate the discrete dynamical system

an+1 = M(an, bn), bn+1 = N(an bn)

for two strict means, that is a > b implies a > M(a, b) > b. This is a Gaussian
iteration. The limit exists and is denoted (M

⊗
N)(a, b), and exhibits quadratic

convergence when the means are symmetric. The triumph of the AGM is that
we identify quadratic convergence to an important nonelementary function.

As a second example, consider

an+1 =
an +

√
an bn

2
, bn+1 =

bn +
√

an bn

2
.

While it is hard to guess the (linearly convergent) limit, once told that it is the
logarithmic mean

L(a, b) =
a− b

log(a)− log(b)
,

proof of this fact reduces to showing the identity

L(a, b) = L
(

a +
√

ab

2
,
b +

√
ab

2

)
. (5.6.58)

The following Maple code implements the iteration:
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L:=proc(a,b,n) local k,c,d; c:=a;d:=b; for k to n
do(c,d):=(M(c,d),M(d,c)) od;c;end;

Thus, a hundred iterates yields

L(2., 1., 100.) = 1.4426950408889634073599246810014976 . . . ,

while

L(2, 1) = 1.4426950408889634073599246810018921 . . . ,

which agree to 30 places.
This illustrates the invariance principle asserting that limit is the unique

mean f with f(an, bn) = f(an+1, bn+1). In this case the means are not symmetric
and convergence is only linear.

Similarly, we met the Archimedian iteration in Chapter 3. In this language, it
is due to Gauss, Pfaff, Schwab, and Borchardt in the 19th century and establishes
that

an+1 =
2anbn

an + bn

, bn+1 =
√

an+1 bn

converges to

B(a, b) =

√
b2 − a2

arccos(a/b)

for 0 < a < b, and to

B(a, b) =

√
a2 − b2

arccosh(a/b)

for 0 < b < a. Armed with the invariance principle, the reader or her computer
should be able to prove this assertion, and to determine the (linear) rate of
convergence.

5.6.4 Gregory and Euler

We conclude this section by providing computer-verifiable proofs of

π

4
=

∞∑

k=1

(−1)k−1

2k − 1
(5.6.59)
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and

π2

6
=

∞∑

k=1

1

k2
. (5.6.60)

For the former, consider

cot(x) =
cot(x/2)− cot(π/2− x/2)

2
(5.6.61)

and then observe that a telescoping identity yields

2−n

2n−1∑

k=1

(−1)k cot

(
(2k + 1)π

4

2n

)
= 1.

Recall that 2n tan(a/2n) → a, as n →∞.
As always, we need to justify taking limits. The justification follows from

Tannery’s theorem (a form of dominated convergence) and we have proven Gre-
gory’s formula (5.6.59).

Similarly, check that

csc2(x) =
csc2(x/2) + csc2(π/2 + x/2)

4
, (5.6.62)

and that a telescoping sum yields

2 4−n

2n−1−1∑

k=1

csc2

(
(2k + 1)π

2n+1

)
= 1.

Again, taking limits carefully establishes

π2

8
=

∞∑

k=1

1

(2k − 1)2
,

which is equivalent to (5.6.60), on separating odd and even terms.
While the technical details are important, from our perspective it is more

interesting that we can perform all the steps experimentally, and worry about
their legitimacy at the end, once we “know the truth!”
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5.7 Commentary and Additional Examples

1. A 3-D maximum problem. Determine the maximum of

f : (x, y, z) 7→ sin (x)2

x
+

sin (y)2

y
+

sin (z)2

z

for nonnegative x + y + z = π. [Taken from [106].]

Solution: The unique maximum can be seen numerically to be x = y =
z = 1.047197551196597 . . ., which is clearly π/3, and by symmetry one
does expect that x = y = z. Then observe that for all variables in [0, π/2],
f is strictly concave and so the critical point is a strict maximum value of
27/(4/π). Otherwise we may assume x > π/2 and 0 < y, z ≤ π/2. Let g
denote x 7→ sin (x)2 /x. Hence, by monotonicity and concavity f(x, y, z) ≤
g(π/2) + f(0, y, z) < g(π/2) + 2g(π/4) = 6/π < 27/(4/π).

2. An infinite product formula for the Gamma function. Show that

Γ(x) =
e−γx

x

∞∏
n=1

[
ex/n

1 + x
n

]
,

for x > 0. Hint: Use the definition of γ and the product obtained in the
conclusion of the Bohr-Mollerup Theorem.

3. A radially invariant generalization of arctan(1). For each positive
integer n,

∫

[0,1]n

dx1 · · · dxn

(1 + x2
1 + · · ·+ x2

n)(n+1)/2
=

π(n+1)/2

(n + 1)2nΓ(n+1
2

)
.

Reason: Let

A =

∫

[0,1]n

dx1 · · · dxn

(1 + x2
1 + · · ·+ x2

n)(n+1)/2

J =

∫

[0,∞)n

dx1 · · · dxn

(1 + x2
1 + · · ·+ x2

n)(n+1)/2
.
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Each variable is maximal in one nth of the n-dimensional hypercube. So
symmetry and setting yn = 1/xn, yj = xjyn for 1 ≤ j ≤ n− 1 gives

J = n

∫ ∞

0

∫

[0,yn]n−1

dy1 · · · dyn

(1 + y2
1 + · · ·+ y2

n)(n+1)/2

= n

∫ ∞

0

∫

[0,1]n−1

dx1 · · · dxn

(1 + x2
1 + · · ·+ x2

n)(n+1)/2

= n

∫ 1

0

∫

[0,1]n−1

dx1 · · · dxn

(1 + x2
1 + · · ·+ x2

n)(n+1)/2

+ n

∫ ∞

1

∫

[0,1]n−1

dx1 · · · dxn

(1 + x2
1 + · · ·+ x2

n)(n+1)/2

= nA + n

∫ 1

0

∫

[0,yn]n−1

dy1 · · · dyn

(1 + y2
1 + · · ·+ y2

n)(n+1)/2

= (n + 1)A.

Thus

A =
J

n + 1
=

1

(n + 1)2n

∫ ∞

−∞
· · ·

∫ ∞

−∞

dy1 · · · dyn

(1 + y2
1 + · · ·+ y2

n)(n+1)/2
.

We may now apply a standard result for radially invariant integrals over Rn,
in which we denote the surface measure of the unit n-sphere by σ(Sn−1) =
2πn/2/Γ(n/2). We have
∫ ∞

−∞
· · ·

∫ ∞

−∞

dy1 · · · dyn

(1 + y2
1 + · · ·+ y2

n)(n+1)/2
= σ(Sn−1)

∫ ∞

0

rn−1

(1 + r2)(n+1)/2
dr,

=
πn/2

Γ(n/2)

∫ ∞

0

un/2−1

(1 + u)(n+1)/2
du

=
π(n+1)/2

Γ((n + 1)/2)
,

via the beta integral, and the result follows.

4. The Psi function. Many sums can be expressed in terms of the Ψ func-
tion and its derivatives, also known as polygamma functions. This is be-
cause

Ψ (z) =
Γ′ (z)

Γ (z)
=

∞∑
n=1

z

n(z + n)
− 1

z
− γ,
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where the first equality is definitional.

(a) Show that Ψ(1 + z) = Ψ(z) + 1/z, that Ψ(1) = −γ, Ψ(1/2) = −γ −
2 log 2, and Ψ(n) =

∑n
k=1 1/k − γ. Obtain a similar formula for

Ψ (n + 1/2), for n ∈ N.

(b) Prove that
Ψ(z)−Ψ(1− z) = π cot (πz) .

(c) Obtain a duplication formula for Ψ from that of Γ.

(d) Show that

Ψ(z) =

∫ ∞

0

e−t − e−zt

1− e−t
dt− γ

and that for n = 1, 2, 3, · · ·

Ψ(n)(z) = (−1)n+1

∫ ∞

0

tne−zt

1− e−t
dt

for Rez > 0.

5. Derangements. A derangement is a permutation of n symbols that leaves
no symbol in the same place. (a) Show that the number of derangements
of n symbols, dn, satisfies the recursion

dn = (n− 1)dn−1 + (n− 1)dn−2

and has d1 = 0, d2 = 1. Hence, find (b) an exponential generating function
E , and (c) a closed form for dn.

Answer: (b)

exp(−x)

1− x
=

∞∑

k=1

dk

k!
.

(c) Hence,

dn = n!
n∑

k=0

(−1)k

k!
.

Hint: (a) Consider whether two objects are interchanged or not. (b) The
differential equation satisfied by E is (1 − x)E ′ = xE ; now deduce (c).
Alternatively, write dn = n! bn so that bn − bn−1 = −(bn−1 − bn−2)/n and
solve directly.
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6. An ODE pair. Find a first order system of differential equations satisfied
by

a(x) =

∫ ∞

0

e−t sin (x t)√
t

dt (5.7.63)

b(x) =

∫ ∞

0

e−t cos (x t)√
t

dt (5.7.64)

for x > 0 and so, or otherwise, solve for a and b explicitly. Answer:
√

π
(√

1 + x2 ± 1
)

2(1 + x2)
,

are the two functions.

7. Maximum volume of unit ball. Find the integer dimension N where
the volume of the unit ball is maximized. For what real dimension is the
volume maximized?

8. A simple recursion. Consider the recursion with a0 = e, a1 = 2e and

nan = 2(an−1 + an−2).

Show that the ordinary generating function satisfies O′ = 2(1 + x)O, and
thus O(x) = exp((1 + x)2). Hence, show

a2n =
∑
m≥0

1

(n + m)!

(
2n + 2m

2n

)
,

and find a similar formula for the odd terms.

9. Base-four sequences. There are 4n base-four sequence of length n?
How many are there with an odd number of zeros? Answer: There are
2n−1(2n − 1) such sequences. Hint: The number is

∑
π

1

m0!m1!m2!m3!

summed over all partitions of n = m0 + m1 + m2 + m3 with m0 odd. The
exponential generating function is E(x) = sinh(x)(exp(x))3.
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10. Putnam problem 1997–B5. Let τ0 = 1 and τn = 2τn−1 , for n ≥ 1.
Show that τn ≡ τn−1 mod n. Hint: First, try some examples using Maple
or Mathematica. Then use Fermat’s little theorem to show inductively the
stronger claim that τm ≡ τn−1 mod n for m ≥ n− 1.

11. Show that under very general conditions on f , the identity
∫ ∞

−∞
f(x)dx =

∫ ∞

−∞
f(x− 1/x)dx

holds. Use this to prove
∫ ∞

−∞
e−x2−1/x2

dx =

√
π

e2
.

12. Berkeley problem 3.2.3. Solve the differential equation

d2

dx2
y (x)− 2

d

dx
y (x) + y (x) = sin (x)

with initial conditions y(0) = 1 and y′(0) = 0. Hint: Both Maple and
Mathematica can solve this directly. Answer: y (x) = (1/2) ex−(1/2)x ex+
(1/2) cos (x).

13. A dilogarithm identity. The dilogarithm is a natural extension of
− log(1− x) defined by

Li2(x) =
∞∑

n=1

xn

n2
.

Prove, by differentiation, the functional equation

Li2(x) + Li2(1− x)− log(x) log(1− x) =
π2

6
.

Hence, show

Li2

(
1

2

)
=

∞∑
n=1

1

2n n2
=

π2

12
− 1

2
log2(2).

There is a corresponding functional equation for the trilogarithm Li3(x) =∑∞
n=1 xn/n3. The functional equation developed by Landen around 1760 is

Li3 (x) + Li3 (1− x) + Li3

(
x

−1 + x

)
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= ζ (3) + ζ(2) log (1− x)− 1

2
log2 (1− x) log (x) +

1

6
log3 (1− x) ,

from which one can obtain closed forms at x = 1/2 and also at x =
(
√

3− 5)/2 (see (5.7.65)).

14. Forensic mathematics. Lewin [141, 6.3.3] gives as (6.13) the identity

Li3

(
3−√5

2

)
=

4

5
Li3(1) +

π2

15
log

(
3−√5

2

)
− 1

12
log3

(
3−√5

2

)

(5.7.65)

due to Landen (1780), and then writes

These calculations are given in Edward’s Treatise on the Integral
Calculus, Vol. 2, and there is quoted from Landen’s memoirs the
equation

1

13
+

1

23
+

1

33
+· · · = θ2

13
+

θ4

23
+

θ6

33
+· · · , where θ = 2 sin(π/10).

This result is obviously incorrect, since the terms on the right
are all less than the corresponding terms on the left, but a search
through the memoirs has failed to reveal any relation of the above
type apart from the trivial one in which θ = 2 sin(π/6), though
it is difficult to believe this is the result which was intended. It
might be pointed out that since θ2 = (3−√5)/2, such a relation
between Li3(1) and Li3[(3 −

√
5)/2], if one should exist, would

enable each to be isolated with the aid of (6.13), and there is
no reason to expect that Li3(1) can in fact be calculated in this
way. Edward’s publishers have not succeeded in throwing any
further light on the subject, and it looks as if this little mystery
may have to remain unsolved.

The mystery remains. Can integer relation methods shed any new light?

15. Berkeley problem 6.10.7. Let R be a commutative ring with a unit.
Show that for all positive integers and all ring elements, the ideal generated
by an − 1 and am − 1 is the same as that generated by a[n,m] − 1. (Here



236 CHAPTER 5. THE POWER OF CONSTRUCTIVE PROOFS I

[n,m] denotes the gcd of n and m). Hint: Let n = sd and consider the
factorization of xsd − 1. Conversely, write d = xn − ym and consider
ad − 1 = (axn − 1)− ad(aym − 1).

16. Berkeley problem 7.1.28. Let P denote all polynomials over R. Show
that p 7→ p+p′ is an invertible map on P . Hint: Try low-degree polynomial
examples.

17. Berkeley problem 7.5.23. Let M1
n be the n × n tridiagonal matrix

with ajj = 2, aij = −1 if |i − j| = 1 and all other entries zero. (a)
Find the determinant of M1

n and (b) show that all eigenvalues are positive.
Hint: Use Maple or Mathematica to find this determinant. Answer: (a)
det(M1

n) = n + 1. (b) M1
n is positive definite.

18. Fibonacci and Lucas numbers in terms of hyperbolic functions.
Show that Fn is a constant times i−n sinh(ns) and Ln = 2 i−n cosh(ns).
Several formulas are then easy to obtain from the addition formulas for
sinh and cosh.

19. Berkeley problem 7.6.13. Is there a real square matrix with A2 + 2A+
5I = 0? Hint: Try some 2× 2 examples. Answer: Yes.

20. Generalized arithmetic-geometric mean inequality. Show that the
complex extension of the arithmetic-geometric mean inequality,

∣∣∣∣
a + b

2

∣∣∣∣ ≥
√
|ab|,

holds for complex a, b whose ratio a/b lies “outside” a certain cardiod
in the complex plane. What can be found as a complex extension of
(a1 + a2 + · · ·+ an) /n ≥ (a1a2 · · · an)1/n for positive a1, a2, · · · an?

21. Viéte’s product.

√
2

2

√
2 +

√
2

2

√
2 +

√
2 +

√
2

2
· · · = 2

π

is considered to be the first truly infinite formula [34].
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(a) Consider the following analogue of Viéte’s formula:

P =

√
2

√
1 +

√
2

√
1 +

√
2√

1+
√

2

√
1 +

√
2√

1+
√

2√
1+
√

2

· · · .

By writing a recursion for P , determine the limit to high-precision
and attempt to identify it. Then prove the conjectured result.

(b) Apply the same method to Viéte’s product.

(c) Consider t0 = 0 and t 7→ (1 +
√

3− 2 t)/2.

Hint: (a) Consider the mapping t0 = 1/
√

2 and t 7→
√

2/(1 + t). (c) This

should lead to a similar looking formula involving roots of two for 2
√

3/π.
Answer: (a) K

(
1/
√

2
)
/4.

22. Berkeley problem 7.6.14. Show that a square Hermitian solution to
A5 +A3 +A = 3I must be the identity. Hint: The minimal polynomial for
A must have only real roots and divide t5 + t3 + t− 3 which has one real
root at 1.

23. Berkeley problem 7.9.16. Let

A =




2 −1 0

−1 2 −1

0 −1 2


 .

Show that any matrix B that commutes with A must be a quadratic poly-
nomial in A. Hint: Consider the explicit form of a quadratic in A and the
information implicit in AB−BA = 0. This yields a set of linear equations
that can be solved using Maple or Mathematica.

24. Two proofs without words. Show that

∞∑
n=1

2n [1− cos (x/2n)]2

sin (x/2n−1)
= tan

(x

2

)
− x

2
, |x| < π
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and

2
∞∑

n=1

1− cos (x/2n)

sin (x/2n−1)
= tan

(x

2

)
, |x| < π.

These arose from dissecting a kite (recursively) into a circular sector and
triangles [68].

25. From Ramanujan’s lost notebook. The following examples appeared
in Ramanujan’s lost notebook [36]:

(a) For t ≥ 0 and a > 0, evaluate

I(a, t) =

∫ ∞

−t

ax

Γ (x + 1)
dx

+

∫ ∞

0

e−axxt−1

π2 + log2 (x)

(
cos (π t)− sin (π t)

π
log (x)

)
dx.

(b) Hence, for s ≥ 0, evaluate

J (s) =

∫ ∞

0

sx

Γ (x + 1)
dx +

∫ ∞

0

e−s x

x
(
π2 + log2 (x)

)dx = I(s, 0).

(c) For t ≥ 0 and a > 0, evaluate

K(a, t) =

∫ ∞

−t

ax

Γ (x + 1)
dx

+
π

2

∫ ∞

0

(
eiπ (t+ix)

at+ix
Γ (t + ix) +

e−iπ(t−ix)

at−ix
Γ (t− ix)

)
dx.

(d) For a ≥ 0 and 0 ≤ λ < 1 evaluate

lim
ε→0

ε

∞∑
n=0

a(λ+n)ε

Γ (1 + (λ + n)ε)
.

Hint: (a) by differentiating I with respect to t, show I(a, t) is a function
of a alone. By differentiating I with respect to a, identify the function up
to a multiplicative constant. Evaluate I(0, 0) to obtain the constant.
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(c) More elaborately, show K(t, a) satisfies the same differential equation
and finally, identify the constant by showing K(1, 0) = J (1).

For (d), identify the limit as a Riemann integral.

Parts (a), (c) and (d) originate on pages 226 and 227 of the Lost Notebook,
which was uncovered in Trinity College, Cambridge by George Andrews in
1976. Part (d) is a true part of a false “identity” in the notebook.

In a lecture entitled “25 years with Ramanujan’s Lost Note-
book: Some General Observations” at the New York Academy
of Sciences, Andrews, an Evan Pugh Professor of Mathematics
at Pennsylvania State University, recalled the “heart-pounding
excitement” of the moment when he realized he had come across
a notebook detailing more than 135 pages of work from the last
year in the life of the self-educated mathematical genius Ra-
manujan, the son of an accountant, who died at age 33 in 1920.

“That’s a moment that’s hard to beat,” Andrews said. “It was
one of those great moments in life when for completely unde-
served reasons you realize that you have stumbled across some-
thing that is extremely important.” In a talk that mixed Ra-
manujan’s biographical details with his mathematical theories,
Andrews stressed the “surprise” that characterized the work of
Ramanujan, a national hero in India. “Not many mathemati-
cians are on postage stamps,” [Figure 3.2] he noted.

See http://members.nyas.org/events/conference/mtg 02 1205.html.
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Chapter 6

Numerical Techniques I

Far better an approximate answer to the right question, which is
often vague, than the exact answer to the wrong question, which can
always be made precise.

J. W. Tukey, “The Future of Data Analysis,” Annals of
Mathematical Statistics, 1962 [187]

So far, we have focused on case studies of experimental mathematics in action.
In this chapter, we will examine in more detail some of the underlying compu-
tational techniques that are used in this type of research. We will also mention
a number of widely available tools for implementing these techniques, either
commercially or freely via the Internet.

We shall discuss computational techniques such as high-precision arithmetic
and integer relation detection, in part because these techniques are significantly
more accessible than other aspects of experimental mathematics, such as sym-
bolic computation. Further, the algorithms we describe here can be implemented
in ordinary Java, C, C++, or Fortran-90 code. Such code can be enhanced for
particular applications, potentially resulting in computer programs that out-
perform commercial software for certain tasks. In contrast, symbolic computa-
tion requires some rather sophisticated techniques and data structures, and is
thus not easily implemented by nonspecialists. What’s more, advanced concepts,
such as Groebner bases, are involved, which likely are unfamiliar to the majority
of readers. As a result, we will, for the most part, not deal with symbolic com-
putation here. Interested readers are referred to Joel Cohen’s newly published
books on the topic [71, 72].

241
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We focus here on practical algorithms and techniques. In some cases, there
are known techniques that have superior efficiencies or other characteristics, but
for various reasons are not considered suitable for practical implementation. We
acknowledge the existence of such algorithms but do not, in most cases, devote
space to them in these books.

6.1 Convolutions and Fourier Transforms

Convolution computations frequently arise in experimental mathematics, in ap-
plications ranging from polynomial multiplication, which we will address in
Chapter 14 of the second volume, to high-precision multiplication, which we
will address in Section 6.2.4, and even the computation of the Riemann zeta
function. The “acyclic” or “linear” convolution Ck(x, y) of two n-long vectors
x = (xn) and y = (yn) is defined as the 2n-long vector

Ak(x, y) =
∑

i+j=k

xiyj 0 ≤ k < 2n. (6.1.1)

The cyclic convolution of x and y is defined as n-long vector

Ck(x, y) =
∑

i+j=k

xiyj 0 ≤ k < n (6.1.2)

=
n−1∑
j=0

xjyk−j, (6.1.3)

where in this case the indices i + j and k − j are interpreted modulo n—i.e.,
k − j is read as k − j + n if k − j < 0.

For small values of n, these convolutions can be calculated explicitly as
shown. For larger n (typically n ≥ 64 or so), significantly faster results can
be obtained by employing fast Fourier transforms (FFTs). The FFT is merely
an efficient means of computing the discrete Fourier transform (DFT) and the
inverse discrete Fourier transform, which are defined for a complex sequence
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z = (z0, z1, z2, · · · , zn−1) as follows:

Fk(z) =
n−1∑
j=0

zje
−2πijk/n 0 ≤ k < n

F−1
k (z) =

1

n

n−1∑
j=0

zje
2πijk/n 0 ≤ k < n. (6.1.4)

An acyclic convolution can be reduced to a cyclic convolution simply by extend-
ing the n-long input vectors x and y to length 2n with zeroes. When this is
done, we can write

Ak(x, y) =
2n−1∑
j=0

xjxk−j, 0 ≤ k < 2n, (6.1.5)

where the subscript k − j is interpreted as k − j + 2n when k − j < 0. Cyclic
convolutions of size 2n can in turn be calculated using the DFT as

ck = F−1
k [Fj(a)Fj(b)], 0 ≤ k < 2n. (6.1.6)

The three DFTs indicated in the above formula, in turn, can be efficiently cal-
culated by employing the FFT. The cost of an n-point FFT is roughly 5n log2 n
operations, so the cost of three 2n-point FFTs is roughly 30n log2 n. But in this
case, where the input data vectors x and y are real, special variants of the FFT
are widely known that reduce the computational cost to approximately half this
figure, or roughly 15n log2 n. These operation counts assume that n is a power
of two, since the FFT algorithm is most efficient when n is a power of two.

We should note here that very efficient FFT library routines (even vari-
ants for real data input) are usually supplied by computer vendors as part of
their scientific software libraries. There is also some excellent FFT software
available from community software libraries, notably the FFTW software at
http://www.fftw.org. Thus it is usually not necessary for researchers to write
their own FFT computation code. For those who do need to investigate further
into FFT computation techniques, these are discussed in [11, 189].

The DFT, as well as associated FFT computational techniques, are defined
for finite-length sequences. As we have seen in Section 5.2, experimental math-
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ematicians frequently encounter the continuous Fourier transform, which is de-
fined for a real function f(t) on (−∞,∞) as

f̂(x) =

∫ ∞

−∞
f(t)e−itx dx (6.1.7)

(see also Section 2.2 of the second volume). Discrete approximations to f̂(x)
can be found using the DFT and FFTs, as follows. Assume that f(t) is zero
(or sufficiently small) outside the interval [−a/2, a/2], and assume its Fourier
transform f̂(x) is zero (or sufficiently small) outside [−b/2, b/2]. Select an even
integer n so that ab = 2πn. The integer n is usually chosen to be a power of two,
since this choice facilitates the usage of FFTs. A large value of n is often required
to produce sufficient accuracy in the approximations below, so the parameters a
and b may need to be increased to match the size of n. Given values of a, b, and
n, we can write

f̂

(
bk

n

)
=

∫ ∞

−∞
f(t)e−itbk/n dt

≈ a

n

n
2
+1∑

j=−n
2
+1

f

(
aj

n

)
e−i(aj/n)(bk/n) (6.1.8)

=
a

n

n
2
+1∑

j=−n
2
+1

f

(
aj

n

)
e−2πijk/n, (6.1.9)

for −n/2 + 1 ≤ k ≤ n/2. If we adopt the convention that f(t) = f(t − a) for
t > a/2, and f̂(x) = f̂(x− b) for x > b/2, then we can write

f̂

(
bk

n

)
=

a

n

n−1∑
j=0

f

(
aj

n

)
e−2πijk/n, (6.1.10)

for 0 ≤ k ≤ n− 1, which is now in a form suitable for the application of FFTs.

An example of using this method to compute several Fourier transforms is
given in Section 5.2.
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6.2 High-Precision Arithmetic

We have already seen numerous examples of high-precision numerical calcula-
tions. Indeed, such computations frequently arise in experimental mathematics.
We shall focus here on high-precision floating-point computation. High-precision
integer computation is also required in some aspects of mathematical computa-
tion, particularly in prime number computations and symbolic manipulations,
but as we shall see, many of the algorithms described below are equally appli-
cable to both types of arithmetic. An excellent presentation of high-precision
integer arithmetic is given in [78].

At this point in time, almost all computer systems support the IEEE-754
standard for floating-point arithmetic. The IEEE “single” (32-bit) format fea-
tures roughly seven decimal digit accuracy and a dynamic range of 10±38. The
IEEE “double” (64-bit) format features roughly 16 decimal digit accuracy and
a dynamic range of 10±308. On many Intel and Intel-compatible processors, an
additional “extended” (80-bit) format with roughly 19 digits is available. An
IEEE “quad” (128-bit) format with roughly 33 decimal digits has been defined,
but it is not yet implemented on any of the widely used microprocessors.

When higher precision arithmetic is required in experimental mathematics,
many researchers employ the high-precision arithmetic facilities built into com-
mercial software packages such as Maple and Mathematica. In both of these
products, almost all defined functions can be numerically evaluated to arbi-
trarily high precision. One weakness of these products is that performance is
significantly slower compared to what can be achieved using custom programs
and libraries. However, intelligent usage of these custom libraries requires cor-
respondingly greater understanding of the underlying nature of high-precision
computation. Either way, some familiarity with this type of computation is
essential.

6.2.1 Double-Double and Quad-Double Arithmetic

The most frequently needed form of high-precision arithmetic is twice that of the
IEEE 64-bit format. As mentioned above, this level of precision is not yet widely
available in hardware. However, it can be achieved by utilizing a pair of IEEE
64-bit “double” words, where the first word is the closest 64-bit word to the
full value, and the second word is the difference (positive or negative) between
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the full value and the first word. Fortunately, this “double-double” arithmetic
(with 106 mantissa bits or roughly 32 decimal digits) is both fast and easy to
implement. This is due mainly to the thoughtful design of the IEEE floating-
point standard, wherein the results of all arithmetic operations are guaranteed
to be the closest possible value to the exact result for the given operands.

We briefly state here some key algorithms used in double-double arithmetic.
Here ⊕,ª and ⊗ denote the result of IEEE 64-bit arithmetic operations.

Algorithm 8 Double + double.

This computes the high- and low-order words of the sum of two IEEE 64-bit
values a and b.

1. s := a⊕ b;
2. v := sª a;
3. e := (aª (sª v))⊕ (bª v);
4. Return (s, e). 2

Algorithm 9 Split.

This splits an IEEE 64-bit value a into ahi and alo, each with 26 bits of significance
and one hidden bit, such that a = ahi + alo.

1. t := (227 + 1)⊗ a;
2. ahi := tª (tª a);
3. alo := aª ahi;
4. Return (ahi, alo). 2

Algorithm 10 Double × double.

This computes the high- and low-order words of the product of two IEEE 64-bit
values a and b.

1. p := a⊗ b;
2. (ahi, alo) := split(a);
3. (bhi, blo) := split(b);
4. e := ((ahi ⊗ bhi ª p)⊕ ahi ⊗ blo ⊕ alo ⊗ bhi)⊕ alo ⊗ blo;
5. Return (p, e). 2
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With regards to Algorithm 10, we should note that some processors, notably
IBM PowerPC and RS6000 processors and Intel IA-64 processors, have a “fused
multiply-add” instruction that greatly simplifies double × double operations. In
this case, one can simply write p := a ⊗ b and e := a ⊗ b − p. Note, however,
that it is often necessary to specify a special compiler option (such as -qstrict
on IBM systems) to insure that this code is performed as written.

From these basic building blocks, one can construct a complete library of
double-double arithmetic operations. For example, to add (a1, a2) to (b1, b2),
it suffices to use Algorithm 8 to add a1 and b1, yielding high- and low-order
results, then adding a2 + b2 to the low-order result. This scheme gives a double-
double sum accurate to within two bits in the low-order word. A fully accurate
result can be obtained with somewhat more effort. Double-double multiplication
and division can be performed using straightforward adaptations of the classic
multiplication and division schemes for decimal arithmetic. Full details are given
in [117].

With somewhat more effort, “quad-double” arithmetic can be performed us-
ing these same methods. This features 212 mantissa bits or roughly 64 decimal
digits. Note however that this arithmetic, like double-double arithmetic, does
not extend the dynamic range, which remains roughly 10±308.

A software library implementing the above schemes is available on the In-
ternet. This library, which is written in C, includes not only double-double
but also quad-double routines. In addition to the basic arithmetic operations,
many transcendental functions are also supported. Included in this package are
C++ and Fortran-90 translation modules, which permit the library routines to
be called from ordinary C++ and Fortran-90 programs with only minor mod-
ifications to the source code, by utilizing operator overloading. Programs that
use double-double arithmetic typically run five times slower than the equivalent
64-bit versions, and quad-double versions typically run 20 times slower. This
software is available at http://www.expmath.info.

6.2.2 Arbitrary Precision Arithmetic

By “arbitrary precision” we mean a software facility that permits one to adjust
the level of numeric precision over a wide range, typically extending to the
equivalent of thousands or possibly even millions of decimal digits. An extended
dynamic range is almost always included as well, since such computations often
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require a larger range than the 10±308 range available with the IEEE double
format.

For these levels of precision, the best approach is as follows. Define an
arbitrary precision datum to be an (n + 4)-long string of words. The sign of the
first word is the sign ± of the datum, and the absolute value of the first word is
n, the number of mantissa words used. The second word contains an exponent
p. Words three through n + 2 are the n mantissa words mi, each of which has
an integer value between 0 and 2b − 1, or in other words b bits of the mantissa.
Finally, words n + 3 and n + 4 are reserved as “scratch” words for various
arithmetic routines. One can optionally designate an additional word, placed at
the start of the data structure, to specify the amount of memory available for
this datum, so as to avoid memory overwrite errors during execution. The value
A represented by this datum is

A = ±(2pbm1 + 2(p−1)bm2 + 2(p−2)bm3 + · · ·+ 2(p−n+1)bmn),

where it is assumed that m1 6= 0 and mn 6= 0 for nonzero A. Zero is represented
by a string consisting of a sign word and an exponent word, both of which are
zero.

There are several variations possible with this general design. One approach
is to utilize 64-bit IEEE floating-point words, with b = 48 mantissa bits per
word. Addition operations can easily be performed by adding the two vectors
of mantissas (suitably shifted to adjust for differences in exponent), and then
releasing carries beginning from the last mantissa word back to the first. Mul-
tiplication and division can be performed by straightforward adaptations of the
long multiplication and long division schemes taught in grammar school, per-
formed modulo 248 instead of modulo 10. The multiplication of two individual
48-bit entities can be performed by 48-bit variations of Algorithms 9 and 10. In
fact (and this is a key point for high performance), up to 25 = 32 such products
can be accumulated before needing to release carries, since 5 + 48 = 53, and
integers as large as 253 can be accommodated exactly in a 64-bit IEEE word.

This approach was taken in the software package described in [26]. Like the
double-double and quad-double libraries mentioned above, this software includes
C++ and Fortran-90 translation modules, so that these functions can be invoked
from ordinary programs with only minor modifications to the source code. The
resulting software is available at the URL http://www.expmath.info.

Another approach is to utilize arrays of integer data, with integer arithmetic
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operations, since all values in the data structure above are whole numbers. The
disadvantage of this approach is that integer arithmetic is not as well standard-
ized in microprocessors as floating-point arithmetic. Also, 64-bit integer multi-
plication is not yet universally supported in hardware. Thus it is hard to write
programs that are both fast and easily portable to different systems. Nonethe-
less, some integer-based implementations have been successful, notably the GNU
package, available at the URL http://www.gnu.org/software/gmp/gmp.html.

6.2.3 Karatsuba Multiplication

One of the simplest schemes to accelerate multiprecision multiplication, and also
one of the most widely used, was originally discovered by the Russian mathe-
matician Karatsuba in 1962 [127]. It is based on the observation that if a high-
precision number is split in two, then the full product can be obtained with only
three half-sized times half-sized multiplications, instead of four as with conven-
tional multiplication.

In particular, let x be a number with 2b-bit precision. We can write x =
x0 + Bx1, where B = 2−b and x0 and x1 are binary fractions of comparable
precision. Let y similarly be represented as y0 + By1. Then we can compute as
follows [78]:

t = (x0 + x1) · (y0 + y1) (6.2.11)

u = (x0 − x1) · (y0 − y1) (6.2.12)

v = x1y1 (6.2.13)

xy =
1

2
(t + u)− v +

B

2
(t− u) + vB2 (6.2.14)

Note that multiplications by 1/2 and by B are merely binary shifts of the “dec-
imal” point. Thus the only expensive computations required here are the three
multiplications involved in computing t, u, and v.

What’s more, this scheme can be applied recursively to perform the three
indicated multiplications, until the multiplication problems are reduced to a size
that ordinary grammar-school multiplication is preferred. It can be shown that
the total number of operations in the recursive Karatsuba scheme is on the order
of (log n)log 3/ log 2, compared with log2 n for classical schemes [78].

In practical implementations, the Karatsuba scheme is typically more eco-
nomical than efficient conventional schemes beginning at roughly 400 decimal
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digit precision. It is not as efficient as FFT-based multiplication, which we will
address in the next subsection (above roughly 1,000 decimal digit precision), but
it is much easier to implement than a full-fledged FFT-based scheme. What’s
more, it requires significantly less memory than a FFT-based scheme, for a
given precision level. It is interesting to note that in several of Kanadas recent
record-breaking computations of π, he used a Karatsuba scheme at the highest
precision levels, and applied FFT-based schemes only when the Karatsuba re-
cursion reached a certain precision level, where there was sufficient memory to
use FFTs. For reasons such as these, the Karatsuba scheme is likely to remain
a common fixture in high-precision computation packages.

6.2.4 FFT-Based Multiplication

The conventional and Karatsuba multiplication schemes are suitable for up to
roughly 1000 decimal digit precision. For even higher levels of precision, sig-
nificantly faster performance can be achieved by employing a convolution-FFT
approach. Suppose we wish to multiply two n-precision values whose man-
tissa words (assuming a fixed number of bits per word) are given by a =
(a0, a1, a2, · · · , an−1) and b = (b0, b1, b2, · · · , bn−1). It is easy to see that the
desired result, except for releasing carries, is simply the acyclic convolution of
the a and b vectors, which can in turn be reduced to cyclic convolutions and
then rapidly evaluated using FFTs.

This can be done as follows. First, extend the two vectors to length 2n by
appending n zeroes to each. Then the 2n-long product c of a and b is the cyclic
convolution of a and b:

ck =
2n−1∑
j=0

ajbk−j, 0 ≤ k < 2n, (6.2.15)

where by bk−j we mean bk−j+2n when k − j is negative. This cyclic convolution
is evaluated using FFTs as described earlier in the chapter. The ck results
from the FFT process are floating-point numbers. Rounding these values to the
nearest integer, and then releasing carries beginning at c2n−1 gives the desired
multiplication result.

One important issue here is that the FFT-based computation of the ck must
be accurate enough to reliably recover their integer-valued results. For example,
in a one million by one million decimal digit multiplication, the ck results are



6.2. HIGH-PRECISION ARITHMETIC 251

typically as large as 2113, and these must be reliably rounded to the correct inte-
ger values even in the presence of some floating-point roundoff error. A common
solution is to split each input word containing 48 mantissa bits into 4 words,
each containing 12 mantissa bits, and employ conventional 64-bit IEEE arith-
metic in the FFT. The computational cost of this strategy is roughly 60n log2 n
operations, where n is the number of input words, but this is still much faster
than conventional multiplication (roughly 30n2 operations, assuming Algorithms
8, 9, and 10) for higher levels of precision.

This scheme is suitable for precision levels up to approximately 10,000,000
decimal digits. As a precaution for computations above approximately 1,000,000
digits, it is wise to perform the following validity check: After rounding the re-
sults of the final inverse FFT to the nearest integer, also determine the largest
difference between these results and the nearest integer. If this maximum dif-
ference is larger than, say, 3/8, then the user should be alerted that the results
can no longer be certified. To use the FFT-based approach for even higher levels
of precision, it is necessary to divide the input data further, say to only 6 man-
tissa bits per 64-bit word, or to employ double-double arithmetic for the FFT.
We might add that the test we describe above has also proven to be an effec-
tive computer system integrity test—one of the present authors has uncovered
several flaws in computer hardware and software using this test.

Another detail worth mentioning here is that efficient FFTs are most com-
monly targeted to power-of-two data sizes. If your desired level of precision
(measured in 64-bit words) is not a power of two, it is often possible to employ
FFTs in the computation, yet avoid having to increase the precision level to the
next highest power of two, which would double both the memory requirement
and the computational cost. This can best be illustrated by example.

Consider the case n = p + 2, where p = 2r (so that xp, xp+1, yp and yp+1 are
potentially nonzero). First, extend the sequences x and y with zeroes to length
2p = 2r+1 (instead of length 2r+2 as in the conventional FFT procedure). Then
apply forward and inverse FFTs to the extended sequences x and y to produce
the circular convolution of these extended sequences, which is:

z0 = x0y0 + xp−1yp+1 + xpyp + xp+1yp−1

z1 = x0y1 + x1y0 + xpyp+1 + xp+1yp

z2 = x0y2 + x1y1 + x2y0 + xp+1yp+1

z3 = x0y3 + x1y2 + x2y1 + x3y0
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· · · = · · ·
zp = x0yp + x1yp−1 + · · ·+ xpy0

· · · = · · ·
z2p−1 = xp−2yp+1 + xp−1yp + xpyp−1 + xp+1yp−2 (6.2.16)

This result differs from the desired 2n-long linear convolution of x and y in two
respects: (1) the initial three values (z0, z1 and z2) are “corrupted” with some
additional terms, and (2) the final four members of the sequence are missing.
These four missing values are

z2n−4 = z2p = xp−1yp+1 + xpyp + xp+1yp−1

z2n−3 = z2p+1 = xpyp+1 + xp+1yp

z2n−2 = z2p+2 = xp+1yp+1

z2n−1 = z2p+3 = 0 (6.2.17)

Ignoring the last zero value, these three expressions are exactly the values that
have “corrupted” the first three elements of the desired z sequence. Thus by sep-
arately computing these three expressions, one can correct the z sequence to the
desired 2n-point linear convolution result. Note that these three values can be
obtained by computing a linear convolution on the sequences x̄ = {xp−1, xp, xp+1}
and ȳ = {yp−1, yp, yp+1} and discarding the first two elements of the six-long re-
sult. It is clear from this example that this technique can be extended to evaluate
the linear convolution of sequences of size n = p + m for any m < p = 2r, al-
though it is not efficient once m is larger than about 2r−1. The scheme can be
applied recursively.

As it turns out, if one plots the computational cost (the number of arith-
metic operations versus problem size) required for this scheme, the result is an
intriguing fractal structure that is sometimes called the “devil’s staircase” (see
Figure 6.1). For this reason, the above technique is sometimes referred to as the
“devil’s convolution.” Additional details of this scheme are given in [14, 79].

Additional results and techniques for using various types of FFTs for high-
precision arithmetic can be found in Crandall’s books on mathematical compu-
tation [79, 78].
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Figure 6.1: Computational cost for the devil’s convolution.
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6.2.5 Algebraic and Transcendental Functions

So far we have focused on multiplication. In this section, we will describe some
schemes for high-precision computation of several additional operations, includ-
ing division and common transcendental functions. We present here only an
informal sketch of these methods. See [12, 26] for additional details.

We start with a scheme for extra-high precision division. As we mentioned
earlier, for moderate precision levels an adaptation of the conventional grammar
school division is adequate. Beyond several hundred digit precision, it is faster
to use a Newton iteration scheme, which involves only multiplications, and a few
other relatively inexpensive operations. Square roots, cube roots and n-th roots
for integers n > 3 can be found using similar Newton iteration schemes.

Algorithm 11 Extra-high precision division.

To perform a/b, first set x0 to the 64-bit approximation of 1/b, and then employ
a Newton iteration scheme to obtain 1/b to full precision:

xk+1 = xk + xk(1− bxk). (6.2.18)

Multiplying the final approximation to 1/b by a gives the desired quotient. These
iterations can be accelerated by utilizing a working precision level that approx-
imately doubles with each iteration. Note that the above scheme involves only
addition/subtraction operations and multiplies (which can be done using FFTs).
If done carefully, the total computation cost is only slightly more than three times
the cost of the final multiplication.

Algorithm 12 Square roots.

Square roots can be computed in a similar manner, using the Newton iteration
for 1/

√
a:

xk+1 = xk +
xk

2
(1− ax2

k). (6.2.19)

Multiplying the final approximation to 1/
√

a by a gives the square root of a.
Some additional details are given in [26].
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Algorithm 13 Pi.

The constant π, which is needed for trigonometric functions, among other things,
may be efficiently calculated using the Salamin-Brent algorithm: Set a0 =
1, b0 = 1/

√
2, and d0 =

√
2 − 1/2. Then iterate the following arithmetic-

geometric mean (AGM) operations beginning with k = 1:

ak = (ak−1 + bk−1)/2

bk =
√

ak−1bk−1

dk = dk−1 − 2k(ak − bk)
2. (6.2.20)

Then pk = (ak + bk)
2/dk converges quadratically to π—each iteration approxi-

mately doubles the number of correct digits. Unfortunately this algorithm is not
self-correcting like algorithms based on Newton iterations. Thus all iterations
must be done with at least the precision level desired for the final result.

The value of π can also be calculated quite rapidly using some of the infinite
series presented in Chapter 3, for example Formulas (3.1.13), (3.1.14), or (3.1.19).

Algorithm 14 Exp.

For moderate levels of precision (up to roughly 1,000 decimal digits), et may be
calculated using the following modification of the Taylor’s series for et:

et =

(
1 + r +

r2

2!
+

r3

3!
+

r4

4!
· · ·

)256

2n, (6.2.21)

where r = t′/256, t′ = t−n log 2 and where n is chosen to minimize the absolute
value of t′. The exponentiation by 256 in this formula is performed by repeated
squaring. Reducing t in this manner significantly accelerates convergence in the
above series. On some systems, reducing by 1,024 instead of 256 is even faster.

Algorithm 15 Log.

Given this scheme for et, moderate-precision natural logarithms of an argument
a may then be calculated using the Newton iteration

xk+1 = xk +
a− ex

ex
, (6.2.22)

using a doubling level of precision as before.
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Algorithm 16 Extra-high precision exp and log.

For very high precision (beyond several hundred decimal digits), it is better to
calculate logarithms by means of a quadratically convergent algorithm originally
due to Salamin, as described by Brent in [58]. Inputs t that are extremely close
to 1 are handled using a Taylor series. Otherwise, let n be the number of bits
of precision required in the result. If t is exactly two, select m > n/2. Then the
following formula gives log 2 to the required precision:

log 2 =
π

2mA(1, 4/2m)
. (6.2.23)

Here A(a, b) is the limit of the AGM: Let a0 = a and b0 = b, and iterate

ak+1 = (ak + bk)/2 bk+1 =
√

akbk (6.2.24)

until convergence. For other t, select m such that s = t2m > 2n/2. Then the
following formula gives log t to the required precision:

log t =
π

2A(1, 4/s)
−m log 2. (6.2.25)

Given this scheme for logarithms, very high-precision exponentials can be cal-
culated using Newton iterations, using a doubling level of precision as before.

Algorithm 17 Sin and cos.

For modest precision, one can calculate sin t via the Taylor’s series

sin s = s− s3

3!
+

s5

5!
− s7

7!
· · · , (6.2.26)

where s = t−aπ/256, and where the integer a is chosen to minimize the absolute
value of s. Then one calculates

sin t = sin(s + aπ/256)

cos t = cos(s + aπ/256),

by applying elementary trigonometric identities for sums. The required val-
ues sin(aπ/256) and cos(aπ/256) can be precalculated—they involve compound
square roots of 2. Reducing t in this manner significantly accelerates conver-
gence in the above series for sin s. On some systems, using 1,024 subdivisions
instead of 256 is even faster. Inverse cosine and sine can then be calculated using
Newton iterations.



6.3. CONSTANT RECOGNITION 257

Algorithm 18 Extra-high precision sin and cos.

For very high precision (above roughly 1,000 decimal digits), sines and cosines,
as well as the inverse functions, can be calculated using complex arithmetic
versions of the advanced algorithms described above for exp and log (recall that
eix = cos x + i sin x). See [26] for full details. 2

An arbitrary precision software package implementing the above algorithms,
including both basic arithmetic functions (with FFT-based schemes for very high
precision) and numerous transcendental functions, is available from the URL
http://www.expmath.info.

6.3 Constant Recognition

Mathematicians have long dreamed of a facility that would recognize a com-
puted numerical constant in an analytic formula in terms of known mathematical
functions and constants. With some recent discoveries and algorithmic improve-
ments, that day has arrived. Indeed, we have already seen numerous examples
of this methodology in action. We describe here some of the algorithmic and
numerical techniques involved.

Let x = (x1, x2, · · · , xn) be a vector of real numbers. x is said to possess an
integer relation if there exist integers ai, not all zero, such that a1x1+a2x2+· · ·+
anxn = 0. By an integer relation algorithm, we mean a practical computational
scheme that can recover the integers ai, if they exist, or can produce bounds
within which no integer relation exists.

Although the integer relation problem is often regarded to be a relatively
“new” problem, it is really a rather old problem. The earliest reference is in
the works of Euclid, whose Euclidean algorithm solves this problem in the case
n = 2. A solution for n > 2 was attempted by numerous mathematicians in the
18th, 19th, and 20th centuries. The first general n integer relation algorithm
was discovered in 1977 by Ferguson and Forcade [93].

One approach to integer relation detection is to apply the Lenstra-Lenstra-
Lovasz (LLL) lattice reduction algorithm. However, there are difficulties with
this approach, notably the selection of a required multiplier—if it is too small,
or too large, the LLL solution will not be the desired integer relation. Some of
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these difficulties were addressed in the “HJLS” algorithm [111], but this scheme
suffers from numerical instability.

6.3.1 PSLQ

At the present time, the best integer relation algorithms are variants of the
“PSLQ” algorithm [92], which was discovered in 1993 by Helaman Ferguson.
PSLQ originally came to prominence with its role in the discovery of the BBP
formula for π. In addition to possessing good numerical stability, PSLQ is guar-
anteed to find a relation in a polynomially bounded number of iterations. The
name “PSLQ” derives from its usage of a partial sum of squares vector and a
LQ (lower-diagonal-orthogonal) matrix factorization.

We present here a statement of the standard PSLQ algorithm. For additional
details, see [92, 15, 23], from which this material has been adapted. Here x is
the n-long input real vector, and “nint” is the nearest integer function (for half-
integer values, select the integer with greater absolute value). One selects the
parameter γ ≥

√
4/3 (in our implementations, we select γ =

√
4/3).

Algorithm 19 Standard PSLQ.

Initialize:
1. Set the n× n matrices A and B to the identity.

2. For k := 1 to n do: set sk :=
√∑n

j=k x2
j ; enddo; set t = 1/s1; for k := 1 to n

do: set yk := txk; sk := tsk; enddo.

3. Compute the initial n× (n− 1) matrix H as Hij = 0 if i < j, Hjj := sj+1/sj,
and Hij := −yiyj/(sjsj+1) if i > j.
4. Reduce H: for i := 2 to n do: for j := i − 1 to 1 step −1 do: set t :=
nint(Hij/Hjj); and yj := yj + tyi; for k := 1 to j do: set Hik := Hik − tHjk;
enddo; for k := 1 to n do: set Aik := Aik − tAjk and Bkj := Bkj + tBki; enddo;
enddo; enddo.

Iterate the following until an entry of y is within a reasonable tolerance of zero,
or precision has been exhausted:

1. Select m such that γi|Hii| is maximal when i = m.
2. Exchange the entries of y indexed m and m + 1, the corresponding rows of A
and H, and the corresponding columns of B.
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3. Remove the corner on H diagonal: If m ≤ n−2 then set t0 :=
√

H2
mm + H2

m,m+1,

t1 := Hmm/t0 and t2 := Hm,m+1/t0; for i := m to n do: set t3 := Him,
t4 := Hi,m+1, Him := t1t3 + t2t4 and Hi,m+1 := −t2t3 + t1t4; enddo; endif.

4. Reduce H: for i := m + 1 to n do: for j := min(i− 1,m + 1) to 1 step −1 do:
set t := nint(Hij/Hjj) and yj := yj+tyi; for k := 1 to j do: set Hik := Hik−tHjk;
enddo; for k := 1 to n do: set Aik := Aik − tAjk and Bkj := Bkj + tBki; enddo;
enddo; enddo.

5. Norm bound: Compute M := 1/ maxj |Hjj|. Then there can exist no relation
vector whose Euclidean norm is less than M .

Upon completion, the desired relation is found in the column of B corresponding
to the zero entry of y. 2

High-precision arithmetic must be used for almost all applications of PSLQ.
In general, if one wishes to recover a relation of length n, with coefficients of
maximum size d digits, then the input vector x must be specified to at least nd
digits, and one must employ floating-point arithmetic accurate to at least nd
digits. PSLQ typically recovers relations when the working precision is only 10
to 15 percent higher than this minimum value.

In the course of the operation of the PSLQ algorithm on a real computer
system, the entries of the y vector gradually decrease in size, with the largest
and smallest entries usually differing by no more than two or three orders of
magnitude. When a relation is detected by the algorithm, the smallest entry of
the y vector abruptly decreases to roughly the “epsilon” of the working precision
(i.e., 10−p, where p is the precision level in digits). The detection threshold in
the termination test (iteration Step 6) above is typically set to be a few orders of
magnitude greater than the epsilon value, in order to allow for reliable relation
detection in the presence of some numerical roundoff error. The ratio between
the smallest and the largest y entry when a relation is detected can be taken
as a “confidence level” that the relation is a true relation and not an artifact
of insufficient numeric precision. Very small ratios at detection, such as 10−100,
almost certainly denote a true relation (although, of course, such results are
experimental only, and do not constitute rigorous proof).

PSLQ runs reasonably fast for many problems, but in other cases large
amounts of computer time are required. For these problems, one can utilize
a two-level scheme, wherein most PSLQ iterations are performed using ordinary
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64-bit IEEE double arithmetic, with the arbitrary-precision arrays updated as
needed. This “two-level” scheme runs as much as 65 times faster on some prob-
lems. For very large problems, a three-level scheme yields further acceleration.
Details of these methods are given in [23].

6.3.2 Multipair PSLQ

Even with the improvements mentioned above, PSLQ runtimes are painfully
long for some very large problems of current interest. Thus one is led to consider
employing modern parallel computer systems, which have the potential of many
times faster performance than single-processor scientific workstations or personal
computers.

Unfortunately, PSLQ, unlike most other algorithms used in experimental
mathematics, is singularly unsuited for parallel computation. Large PSLQ cal-
culations often require millions of iterations, each of which must be completed
before the next begins. Furthermore, within an individual iteration, the key
reduction operation (iteration Step 4) has a recursion that inhibits parallel exe-
cution, except at the innermost loop level. Thus there is virtually no concurrency
to exploit in a parallel implementation.

Recently, a variant of the PSLQ algorithm, known as the “multipair” PSLQ
algorithm, was discovered that dramatically reduces the number of sequential
iterations, while at the same time exhibiting moderately high concurrency in
the major steps of individual iterations. What’s more, it runs somewhat faster
than the standard PSLQ even on single-processor systems.

Here γ ≥
√

4/3 and β < 1/2 are adjustable parameters (in our implementa-

tions, we set γ =
√

4/3 and β = 2/5).

Algorithm 20 Multipair PSLQ.

Initialize:
1. For j := 1 to n do: for i := 1 to n do: if i = j then set Aij := 1 and Bij := 1
else set Aij := 0 and Bij := 0; enddo; enddo.

2. For k := 1 to n do: set sk :=
√∑n

j=k x2
j ; enddo; set t = 1/s1; for k := 1 to n

do: set yk := txk; sk := tsk; enddo.
3. Initial H: For j := 1 to n− 1 do: for i := 1 to j − 1 do: set Hij := 0; enddo;
set Hjj := sj+1/sj; for i := j + 1 to n do: set Hij := −yiyj/(sjsj+1); enddo;
enddo.
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Iterate the following until an entry of y is within a reasonable tolerance of zero,
or precision has been exhausted:
1. Sort the entries of the (n − 1)-long vector {γi|Hii|} in decreasing order,
producing the sort indices.
2. Beginning at the sort index m1 corresponding to the largest γi|Hii|, select
pairs of indices (mi,mi + 1), where mi is the sort index. If at any step either mi

or mi + 1 has already been selected, pass to the next index in the list. Continue
until either βn pairs have been selected, or the list is exhausted. Let p denote
the number of pairs actually selected in this manner.
3. For i := 1 to p do: exchange the entries of y indexed mi and mi + 1, and the
corresponding rows of A, B and H; enddo.
4. Remove corners on H diagonal: For i := 1 to p do: if mi ≤ n−2 then set t0 :=√

H2
mi,mi

+ H2
mi,mi+1, t1 := Hmi,mi

/t0 and t2 := Hmi,mi+1/t0; for i := mi to n do:

set t3 := Hi,mi
; t4 := Hi,mi+1; Hi,mi

:= t1t3 + t2t4; and Hi,mi+1 := −t2t3 + t1t4;
enddo; endif; enddo.
5. Reduce H: For i := 2 to n do: for j := 1 to n− i+1 do: set l := i+ j− 1; for
k := j + 1 to l − 1 do: set Hlj := Hlj − TlkHkj; enddo; set Tlj := nint(Hlj/Hjj)
and Hlj := Hlj − TljHjj; enddo; enddo.
6. Update y: For j := 1 to n − 1 do: for i := j + 1 to n: set yj := yj + Tijyi;
enddo; enddo.
9. Update A and B: For k := 1 to n do: for j := 1 to n− 1: for i := j + 1 to n
do: set Aik := Aik − TijAjk and Bjk := Bjk + TijBik; enddo; enddo; enddo.
8. Norm bound: Compute M := 1/ maxj |Hjj|. Then there can exist no relation
vector whose Euclidean norm is less than M .
9. Termination test: If the largest entry of A exceeds the level of numeric
precision used, then precision is exhausted. If the smallest entry of the y vector
is less than the detection threshold, a relation has been detected and is given in
the corresponding row of B. 2

There are several differences between this algorithm and the standard one-
level PSLQ algorithm: (1) there is no reduction step in the initialization; (2) the
B matrix is transposed from the standard PSLQ algorithm; (3) up to βn disjoint
pairs (not just a single pair) of adjacent indices are selected in each iteration; (4)
the H reduction loop proceeds along successive lower diagonals of the H matrix;
(5) a T matrix is employed, which contains the t multipliers of the standard
PSLQ; and (6) the y, A, and B arrays are not updated with H, but in separate
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loops.
Unlike standard PSLQ, there is no proof that the multipair PSLQ scheme is

guaranteed to find a relation within a polynomially bounded number of itera-
tions. On the other hand, we have found, based on experience with a variety of
sample problems, that the norm bound increases much more rapidly than in the
standard PSLQ. Indeed, it appears that the selection of up to βn disjoint pairs
of indices in Step 2 above has the effect of reducing the iteration count by nearly
the factor βn. This results in a significant saving in the number of expensive
reduction and update steps.

The bottom line is that even on single processor systems, the multipair PSLQ
algorithm appears to be significantly faster than the standard PSLQ [23]. Both
the standard PSLQ and the multipair PSLQ schemes, including two-level and
even three-level variants, have been programmed in C++ and Fortran-90, tar-
geted to the arbitrary precision package mentioned earlier in the chapter. This
software is available from the URL http://www.expmath.info.

6.3.3 Practical Constant Recognition

Practical constant recognition facilities require more than efficient integer rela-
tion detection schemes. Usually a sequence of methods are used. An approach
that is used in some software is the following (here α is the input numerical
constant) [27].

1. Table look-up. An indexed table of well-known numerical constants is
checked to see if it contains α, to within some tolerance.

2. Algebraic check. The vector (1, α, α2, · · · , αn) is computed and then input
to an integer relation finding routine, to see if α is an algebraic number of
degree n or less. The integer n is chosen so that the runtime is reasonable
for the numeric precision being used.

3. Strided algebraic check. The vector (1, αk, α2k, · · · , αnk) is computed and
then input to an integer relation finding routine, for integers k up to some
maximum level m. As before, the parameters m and n are selected to make
runtimes reasonable.

4. Multiplicative check. log |α| is computed, and then an integer relation
check is done with the natural logarithms of the first few primes, as well as
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several other well-known constants, such as π, e, log 2, log 3, G and γ (here
G is Catalan’s constant and γ is Euler’s gamma constant.) If a relation
is found in this set of numbers, then this means α is given by a one-term
formula of the form

α = ±2a3b5c7d11e13f17g19hπkel(log 2)m(log 3)nGoγp

for rationals a, b, c, · · · , p. The number of primes and the set of other con-
stants used here are quite arbitrary. They are typically chosen for effective
constant discovery in a particular environment, under the constraint of
reasonable run times.

5. Multiterm constant check. In this test, which is typically done with just
double-double or with double precision, numerous integer relation tests are
made for sample formulas that involve, for example, up to four terms, each
of which has some combination of well-known mathematical constants.
Thousands of such searches can be done in a few seconds. Such searches
often turn up formulas that are not found using the above searches.

An on-line tool that employs this search strategy is available at the URL
http://www.cecm.sfu.ca/projects/ISC. A scheme employing a slightly different
approach (a Java-based client) is available at http://psg.cecm.sfu.ca/projects/
revenge/client/RevEngClient.html. Software that performs this type of search
strategy is also available as part of the Experimental Mathematician’s Toolkit:
http://www.expmath.info. Another interesting resource in this regard is Finch’s
recently published Mathematical Constants [94].

Maple 9, released in summer 2003, incorporates a quite functional constant
recognition tool. Typing identify(3.146264370) returns 31/2 + 21/2. One can
expect such features with refinements in future releases of Maple and Mathemat-
ica.

6.4 Commentary and Additional Examples

1. Continued fractions. We should emphasize how continued fractions
expose different structure: The golden mean is the simplest irrational, e
shows great structure, [1, 2, 3, 4, · · · ] is a ratio of Bessel functions, and π
remains a complete mystery. Thus, a good rule in constant recognition is
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to always convert a decimal expansion to a simple continued fraction or to
another base (say, binary), to see if this alternate representation is helpful.

2. A new formula for Khintchine’s constant. Let {ai} be the continued
fraction expansion of a random real number. The Gauss-Kuz’min distri-
bution states that

Prob(an = k) = − log2

[
1− 1

(k + 1)2

]
.

Khintchine showed that the limiting geometric mean, limk(a1a2 · · · ak)
1/k,

exists a.e. and equals

K0 =
∞∏

k=1

[
1 +

1

k(k + 2)

]log2 k

=
∞∏

k=1

k[log2(1+ 1
k(k+2))]

= 2.68545200106530644530971483548179569382038229399446 . . .

Little is known about K0. Is it rational, algebraic, or related to π or e?
The formula is very slowly convergent.

For any positive integer N , we may, however, derive a quite effective iden-
tity

log(K0) log(2) =
∞∑

s=1

ζ(2s,N)
As

s
−

N∑

k=2

log

(
1− 1

k

)
log

(
1 +

1

k

)
,

where the Hurwicz zeta function is defined as

ζ(s,N) =
∞∑

n=1

1

(n + N)s
= ζ(s)−

N∑
n=1

n−s,

while As =
∑2s−1

k=1 (−1)k−1/k and N is a free parameter that can be varied
for optimization and as an error check. The method has been used to com-
pute K0 to 7,350 digits—from which it seems to obey the Gauss-Kuz’min
distribution [18].

3. Putnam problem 1998–B5. Let N be the “rep-one” integer consisting
of 1, 998 ones. Find the thousandth digit after the decimal point in

√
N .
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Answer: The digit is a “1.” Hint: This can easily be verified by employing
high-precision arithmetic. Once verified, this can be established by writing

101000
√

N =

√
103998 − 102000

3
,

and so
101999 − 4

3
< 101000

√
N <

101999 − 4

3
.

4. Dynamical systems, numerical analysis, and formal power series.
We present here a brief overview of a surprising connection between nu-
merical analysis of dynamical systems and formal power series [53]. We
begin with a simple question: What, exactly, does the fixed time step for-
ward Euler numerical method do to the solution of the simple initial value
problem

dy

dt
= y2, (6.4.27)

with y(0) = y0? The numerical procedure is just

yn+1 = yn + hy′n (6.4.28)

for integer n ≥ 0, where y′n = y2
n and h > 0 is the chosen time step.

It turns out to be useful to rescale y and t so that v = hy and τ = ht,
giving

dv

dτ
= v2 , (6.4.29)

and (6.4.28) becomes

vn+1 = vn + v2
n . (6.4.30)

We may then rephrase our question to ask instead what the relationship
between vn and v(τ) is.

The point of view taken in [74] is that of backward error analysis. That is,
instead of asking for the difference between v(n) and vn, we ask instead if
there is another differential equation, say

dw

dτ
= B(w)w2 , (6.4.31)
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whose solution interpolates vn. That is, we impose the conditions w(0) =
v0 and w(τ + 1) = w(τ) + w(τ)2 (see Formula (6.4.30), and see if we can
find such a function B(w).

It turns out that we can use the method of modified equations [105] to
find as many terms of the Taylor series for B(w) as we desire. When we
compute the modified equation for (6.4.27) to (say) fifth order, we get

dw

dt
=

(
1− w +

3

2!
w2 − 16

3!
w3 +

124

4!
w4 − 1256

5!
w5

)
w2 . (6.4.32)

Now we see the sequence 1, −1, 3, −16, 124, −1256 appearing. This is
sequence M3024 in Sloane’s dictionary [181], which points us directly to
the very beautiful and useful paper [136]. It tells us that if

B(w) =
∑
n≥0

cnw
n , (6.4.33)

then

cn =
1

n− 1

n−1∑
i=1

(
n− i + 1

i + 1

)
cn−i ,

and this, combined with the functional equation

B(w) =
(1 + w)2

1 + 2w
B(w + w2)

(which can be iterated to give us two converging infinite products for B),
allows us to write an efficient program to evaluate B(w). We can show that
B(w) has a pole at w = −1/2; by mapping backwards, solving w + w2 =
−1/2, we find two more (complex) poles. Iterating this process finds an
infinite number of complex poles, approaching the Julia set for the map
v → v + v2 arbitrarily closely; see Figure 6.2.

The Julia set itself approaches the origin arbitrarily closely. That is, there
are poles arbitrarily close to the point of expansion of the series given
for B. Thus the series (6.4.33) diverges—but, nonetheless, it can be used
to evaluate B(w) for w close enough to zero, using the built-in sequence
acceleration techniques of Maple. This is precisely where the convergent
infinite products are slow, and hence, the series is useful. See [74] for
details.
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Figure 6.2: The first 16000 poles of B(v), approaching the Julia set of v → v+v2.

5. Accelerations for Catalan’s constant. (This material is condensed
from [57].) Acceleration formulas for slowly convergent series such as Cata-
lan’s constant may be based on transformations of the log tangent integral.
The simplest acceleration formula of its type is

G =
π

8
log(2 +

√
3) +

3

8

∞∑

k=0

1

(2k + 1)2
(
2k
k

) , (6.4.34)

due to Ramanujan. This is the first of an infinite family of formulae for
G, each of which includes an infinite series whose general term consists
of a linear recurrence damped by the summand in (6.4.34). Each series
evaluates to a rational linear combination of G and π times the logarithm
of an algebraic unit (i.e., an invertible algebraic integer). The most striking
example is

G =
π

8
log

(
10 +

√
50− 22

√
5

10−
√

50− 22
√

5

)
+

5

8

∞∑

k=0

L2k+1

(2k + 1)2
(
2k
k

) ,

(6.4.35)
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where L1 = 1, L2 = 3, and Ln are the Lucas numbers (M0155 in Sloane’s
Encyclopedia).

The series acceleration results (6.4.34) and (6.4.35) appear as natural con-
sequences of transformation formulae for the log tangent integral, although
Ramanujan apparently derived his result (6.4.34) by quite different meth-
ods. The connection with log tangent integrals is best explained by the
equation

G = −
∫ π/4

0

log(tan θ) dθ, (6.4.36)

obtained by expanding the integrand into its Fourier cosine series and
integrating term by term. Ramanujan’s result (6.4.34) arises from the
transformation

2

∫ π/4

0

log(tan θ) dθ = 3

∫ π/12

0

log(tan θ) dθ. (6.4.37)

Formula (6.4.35) arises similarly from the transformation

2

∫ π/4

0

log(tan θ) dθ = 5

∫ 3π/20

0

log(tan θ) dθ

−5

∫ π/20

0

log(tan θ) dθ. (6.4.38)

A great virtue of such log tangent identities is that they can be efficiently
hunted for by integer relation methods.

6. More Catalan formulas. Evaluate

(a) ∑
n≥1

n

16n
ζ(2n + 1),

due to Glaisher (1913), and

(b) ∑
n≥1

(n + 1)
3n − 1

4n
ζ(n + 2),

due to Flajolet and Vardi (1996) in terms of Catalan’s constant.
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Figure 6.3: Three images quantized at quality 50 (L), 48 (C) and 75 (R).

7. Continued fraction for Euler’s constant. Compute the simple con-
tinued fraction for Euler’s constant and see if it appears to satisfy the
Gauss-Kuz’min distribution.

8. The perceptual dipper effect. Over the past decade, the JPEG image
compression standard (see http://www.jpeg.org), originally named for the
Joint Photographic Experts Group, has become the benchmark for com-
pressing natural still images for use on the internet. This standard has
been extremely successful in maintaining a balance between low file size
and high subjective image quality.

However, JPEG-encoded images can exhibit unexpected objectionable arti-
facts. For example, for images already encoded using compression methods
based around the discrete cosine transform (DCT), further compression by
requantization can create objectionable visual artifacts. This phenomenon,
called the JPEG perceptual dipper effect, is an example of the more gen-
eral concept of a visual threshold, wherein two approximations of the same
original image, which differ little from each other in terms of some given
numerical measure, differ dramatically in the “quality” of their visual fi-
delity to the original image.

The dipper effect is illustrated in Figure 6.3. The mandrill image in the
center is more compressed than the leftmost, yet appears better than the
one on the left, and compares quite favorably to the much less compressed
image on the right. The effect can be easily avoided by simple calculations
in the process of designing the quantization matrices used to re-quantize
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the given image. This is of practical consequence for delivery of images
where bandwidth or storage is an issue (such as in delivery of data to cell
phones, PDAs and other wireless devices), since it is possible to assess and
exploit the dipper effect in software ([31] and [148]). Needless to say, such
effects must be seen to be discovered.

9. The Universal Computer: The road from Leibniz to Turing. This
is an engaging account by Martin Davis of the history of logic and the
birth of the modern computer [82]. In his story—chock full of colorful
detail, such as Frege’s extreme antisemitism and Gödel’s conversion to
full-blooded Platonism—one reads

(a) “For it is unworthy of excellent men to lose hours like slaves in the
labor of calculation which could be safely relegated to anyone else if
the machine were used.” (Leibniz)

(b) That Poincaré is reputed to have said Cantor’s set theory “would be
regarded as a disease from which one had recovered.” and that he did
write of Russell, “It is difficult to see that the word if acquires when
written ⊃, a virtue it did not possess when written if.”

(c) “To exist in mathematics means to be constructed by intuition; and
the question whether a certain language is consistent, is not only
unimportant in itself, it is also not a test for mathematical existence.”
(Brouwer)

(d) That Hardy, of Hilbert’s Entscheidungsproblem (decision problem),
said correctly, “There is of course no such Theorem and this is very
fortunate, . . .”

(e) When Turing, after showing the unsolvability of the halting prob-
lem, went to Princeton to work with Church and others in 1936, von
Neumann wrote him a letter of reference that made no mention of
his work on computability (von Neumann reportedly said that after
what Gödel did he would never read another paper in logic). But by
the beginning of World War Two, von Neumann was openly using
Turing’s ideas and goals of building practical computing machines.
By the end of Turing’s wartime stay at Bletchley Park, he had played
a key role in breaking the German codes and was in possession of “a
working knowledge of vacuum electronics.”
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The last chapters of [82] tell of the development of Turing’s computer sci-
ence influenced Automatic Computing Machine (ACE) and von Neumann
and others’ more engineering influenced ENIAC, about which Turing may
have been thinking when he wrote of “the American tradition of solving
one’s difficulties by much equipment rather than by thought.” By the end
of the last century, Turing was recognized along with von Neumann as
the intellectual progenitors of modern computing. Davis summarized his
account with these words:

“This story underscores the power of ideas and the futility of predicting
where they will lead.” (Martin Davis)
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Chapter 7

Making Sense of Experimental
Mathematics

7.1 Introduction

Philosophers have frequently distinguished mathematics from the physical sci-
ences. While the sciences were constrained to fit themselves via experimentation
to the “real” world, mathematicians were allowed more or less free reign within
the abstract world of the mind. This picture has served mathematicians well for
the past few millennia but the computer has begun to change this. The com-
puter has given us the ability to look at new and unimaginably vast worlds. It
has created mathematical worlds that would have remained inaccessible to the
unaided human mind, but this access has come at a price. Many of these worlds,
at present, can only be known experimentally. The computer has allowed us to
fly through the rarefied domains of hyperbolic spaces and examine more than a
billion digits of π but experiencing a world and understanding it are two very
different phenomena. Like it or not, the world of the mathematician is becoming
experimentalized.1

The computers of tomorrow promise even stranger worlds to explore. Today,
however, most of these explorations into the mathematical wilderness remain
isolated illustrations. Heuristic conventions, pictures and diagrams developing

1This entire chapter is a reprint (with permission) of “Making Sense of Experimental Math-
ematics,” by J. M. Borwein, P. B. Borwein, R. Girgensohn, and S. Parnes, Mathematical
Intelligencer, vol. 18 (1996), page 12–18.
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in one sub-field often have little content for another. In each sub-field unproven
results proliferate but remain conjectures, strongly held beliefs or perhaps mere
curiosities passed like folk tales across the Internet. The computer has provided
extremely powerful computational and conceptual resources but it is only re-
cently that mathematicians have begun to systematically exploit these abilities.
It is our hope that by focusing on experimental mathematics today, we can
develop a unifying methodology tomorrow.

7.1.1 Our Goals

The genesis of this article was a simple question: “How can one use the com-
puter in dealing with computationally approachable but otherwise intractable
problems in mathematics?” We began our current exploration of experimen-
tal mathematics by examining a number of very long–standing conjectures and
strongly held beliefs regarding decimal and continued fraction expansions of
certain elementary constants. These questions are uniformly considered to be
hopelessly intractable given present mathematical technology. Unified field the-
ory or cancer’s “magic bullet” seem accessible by comparison. But like many of
the most tantalizing problems in mathematics their statements are beguilingly
simple. Since our experimental approach was unlikely to result in any new dis-
coveries2, we focused on two aspects of experimentation: systematization and
communication.

For our attempted systematization of experimental mathematics we were
concerned with producing data that were “completely” reliable and insights that
could be quantified and effectively communicated. We initially took as our model
experimental physics. We were particularly interested in how physicists verified
their results and the efforts they took to guarantee the reliability of their data.
The question of reliability is undoubtedly central to mathematicians and here
we believe we can draw a useful distinction between experimental physics and
mathematics. While it is clearly impossible to extract perfect experimental data
from nature such is not the case with mathematics. Indeed, reliability of raw
mathematical data is far from the most vexing issue.

Let us turn to our second and primary concern: insight. All experimental
sciences turn on the intuitions and insights uncovered through modeling and the

2We will not discuss the computational difficulties here but there are many non-trivial
mathematical and computer–related issues involved in this project.
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use of probabilistic, statistical and visual analysis. There is really no other way
to proceed, but this process even when applied to mathematics inevitably leads
to some considerable loss of exactness.

The communication of insight, whether derived from mathematical experi-
ment or not, is a complex issue. Unlike most experimentalized fields, Mathemat-
ics does not have a “vocabulary” tailored to the transmission of condensed data
and insight. As in most physics experiments the amount of raw data obtained
from mathematical experiments is, in general, too large for anyone to grasp. The
collected data needs to be compressed and compartmentalized. To make up for
this lack of unifying vocabulary we have borrowed heavily from statistics and
data analysis to interpret our results. For now we have used restraint in the
presentation of our results in what we hope is an intuitive, friendly and convinc-
ing manner. Eventually what will probably be required is a multi-leveled hyper-
textual presentation of mathematics, allowing mathematicians from diverse fields
to quickly examine and interpret the results of others—without demanding the
present level of specialist knowledge. [Not only do mathematicians have trouble
communicating with lay audiences, but they have significant difficulty talking to
each other. There are hundreds of distinct mathematical languages. The myth
of a universal language of mathematics is just that. Many subdisciplines simply
can not comprehend each other.]

7.1.2 Unifying Themes

We feel that many of these problems can be addressed through the development
of a rigorous notion of experimental mathematics. In keeping with the positivist
tradition, mathematics is viewed as the most exact of sciences and mathemati-
cians have long taken pride in this. But as mathematics has expanded, many
mathematicians have begun to feel constrained by the bonds placed upon us by
our collective notion of proof. Mathematics has grown explosively during our
century with many of the seminal developments in highly abstract seemingly non-
computational areas. This was partly from taste and the power of abstraction
but, we would argue, equally much from the lack of an alternative. Many intrin-
sically more concrete areas were, by 1900, explored to the limits of pre-computer
mathematics. Highly computational, even “brute-force” methods were of neces-
sity limited but the computer has changed all that. A re-concretization is now
underway. The computer–assisted proofs of the four color theorem are a prime
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example of computer–dependent methodology and have been highly controver-
sial despite the fact that such proofs are much more likely to be error free than,
say, even the revised proof of Fermat’s Last Theorem.

Still, these computerized proofs need offer no insight. The Wilf/Zeilberger
algorithms for “hypergeometric” summation and integration, if properly imple-
mented, can rigorously prove very large classes of identities. In effect, the al-
gorithms encapsulate parts of mathematics. The question raised is: “How can
one make full use of these very powerful ideas?” Doron Zeilberger has expressed
his ideas on experimental mathematics in a paper dealing with what he called
“semi-rigorous” mathematics. While his ideas as presented are somewhat con-
troversial, many of his ideas have a great deal of merit.

The last problem is perhaps the most surprising. As mathematics has con-
tinued to grow there has been a recognition that the age of the mathematical
generalist is long over. What has not been so readily acknowledged is just how
specialized mathematics has become. As we have already observed, sub-fields
of mathematics have become more and more isolated from each other. At some
level, this isolation is inherent but it is imperative that communications between
fields should be left as wide open as possible.

As fields mature, speciation occurs. The communication of sophisticated
proofs will never transcend all boundaries since many boundaries mark true
conceptual difficulties. But experimental mathematics, centering on the use of
computers in mathematics, would seem to provide a common ground for the
transmission of many insights. And this requires a common meta–language3.
While such a language may develop largely independent of any conscious direc-
tion on the part of the mathematical community, some focused effort on the
problems of today will result in fewer growing pains tomorrow.

7.2 Experimental Mathematics

7.2.1 Journal of

A professor of psychology was exploring the creative process and as one of his
subjects chose a mathematician who was world famous for his ability to solve

3This may not be a fanciful dream as the Computer Algebra Systems (CAS) of today are
beginning to provide just that.
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problems. They gave him a problem to work on. He wrote something down and
immediately scribbled it out. He wrote something else down and scribbled it out.
The professor asked him to leave everything on the page. He explained that he
was interested in the process, the wrong answers and the right answers. The
mathematician sat down. Wrote something. The psychology professor waited
in anticipation but the mathematician announced he could not proceed without
erasing his mistakes. While the mathematician in this situation is undoubtedly
fairly idiosyncratic in how he attacks problems there is a strongly felt separa-
tion between the creative process of mathematics and the published or finished
product.

A current focal point for experimental mathematics is the journal called Ex-
perimental Mathematics. But does it really seek to change the way we do math-
ematics, or to change the way we write mathematics? We begin by attempting
to extract a definition of “experimental” from the Journal’s introductory arti-
cle ([87]) “About this Journal” by David Epstein, Silvio Levy and Rafael de la
Llave.

The word “experimental” is conceived broadly: many mathematical
experiments these days are carried out on computers, but others
are still the result of pencil-and-paper work, and there are other
experimental techniques, like building physical models. ([87] p. 1)

It seems that almost anything can be conceived of as being experimental.
Let us try again.

Experiment has always been, and increasingly is, an important method
of mathematical discovery. (Gauss declared that his way of arriving
at mathematical truths was “through systematic experimentation”.)
Yet this tends to be concealed by the tradition of presenting only
elegant, well-rounded and rigorous results. ([87] p. 1)

Now we begin to get closer to the truth. Experimentation is still ill defined
but is clearly an important part of the mathematical process. It is clearly not new
but by implication must be inelegant, lopsided and lax. We, of course, dispute
all three of these points and while we do not reply directly to these charges, we
hope the reader will be convinced that there need be no compromises made with
respect to the quality of the work.
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But what is the journal interested in publishing? Their goal seems to be
two-fold.

While we value the theorem-proof method of exposition, and while we
do not depart from the established view that a result can only become
part of mathematical knowledge once it is supported by a logical
proof, we consider it anomalous that an important component of the
process of mathematical creation is hidden from public discussion. It
is to our loss that most of the mathematical community are almost
always unaware of how new results have been discovered. ([87] p. 1)

and

The early sharing of insights increases the possibility that they will
lead to theorems: an interesting conjecture is often formulated by
a researcher who lacks the techniques to formalize a proof, while
those who have the techniques at their fingertips have been looking
elsewhere.

It appears that through the journal Experimental Mathematics the editors
advocate a not undramatic change in writing style. So what does a paper pub-
lished in that journal look like? A recent example is “Experimental Evaluation of
Euler sums” by D. H. Bailey, J. Borwein and R. Girgensohn ([20]). The authors
describe how their interest in Euler sums was roused by a surprising discovery:

In April 1993, Enrico Au-Yeung, an undergraduate at the Uni-
versity of Waterloo, brought to the attention of one of us the curious
fact that

∞∑

k=1

(
1 +

1

2
+ · · ·+ 1

k

)2

k−2 = 4.59987 · · ·

≈ 17

4
ζ(4) =

17π4

360

based on a computation to 500,000 terms. This author’s reaction was
to compute the value of this constant to a higher level of precision
in order to dispel this conjecture. Surprisingly, a computation to 30
and later to 100 decimal digits still affirmed it. ([20] p. 17)
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Serendipity and Experimentation

After Enrico Au-Yeung’s serendipitous discovery, D. Bailey, J. Borwein and R.
Girgensohn launched a full fledged assault on the problem. This is documented
in “Experimental Detection of Euler Sums” (the material below was taken from
David Bailey’s slides).

Experimental Approach

1. Employ an advanced scheme to compute high-precision (100+ digit) nu-
merical values for various constants in a class.

2. Conjecture the form of terms involved in possible closed-form evaluations.

3. Employ an integer relation finding algorithm to determine if an Euler
sum value is given by a rational linear combination of the conjectured
terms.

4. Attempt to find rigorous proofs of experimental results.

5. Attempt to generalize proofs for specific cases to general classes of Euler
sums.

Table 7.1: Serendipity and experimentation

This type of serendipitous discovery must go on all the time, but it needs the
flash of insight that will place it in a broader context. It is like a gold nugget
waiting to be refined—without a context it would remain a curiosity. The authors
now proceeded to provide a context by mounting a full-fledged assault on the
problem. They systematically applied an integer relation detection algorithm
to large classes of sums of the above type, trying to find evaluations of these
sums in terms of zeta functions (see Table 7.1 and 7.2 for details). Some of the
experimentally discovered evaluations were then proven rigorously, others remain
conjectures. While Au-Yeung’s insight may fill us with a sense of amazement,
the experimenters’ approach appears quite natural and systematic.

The editors of Experimental Mathematics are advocating a change in the
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way mathematics is written, placing more emphasis on the mathematical process.
Imre Lakatos in his influential though controversial book Proofs and Refutations
[138] advocated a similar change from what he called the deductivist style of
proof to the heuristic style of proof. In the deductivist style, the definitions are
carefully tailored to the proofs. The proofs are frequently elegant and short. But
it is difficult to see what process led to the discovery of the theorem and its proof.
The heuristic style maintains the mathematical rigor but again the emphasis is
more on process. One does not merely give the definition but perhaps includes
a comment on why this definition was chosen and not another. This is clearly
an important shift if the editors wish to meet their second objective, the sharing
of insights.

7.2.2 The Deductivist Style

The major focus of this section is Imre Lakatos’s description of the deductivist
style in Proofs and Refutations. An extreme example of this style is given in the
form of a computer generated proof of (1 + 1)n = 2n in Table 7.3.

Euclidean Methodology has developed a certain obligatory style of
presentation. I shall refer to this as “deductivist style.” This style
starts with a painstakingly stated list of axioms, lemmas and/or
definitions. The axioms and definitions frequently look artificial and
mystifyingly complicated. One is never told how these complications
arose. The list of axioms and definitions is followed by the carefully
worded theorems. These are loaded with heavy-going conditions; it
seems impossible that anyone should ever have guessed them. The
theorem is followed by the proof. ([138] p. 142)

This is the essence of what we have called formal understanding. We know that
the results are true because we have gone through the crucible of the mathe-
matical process and what remains is the essence of truth. But the insight and
thought processes that led to the result are hidden.

In deductivist style, all propositions are true and all inferences valid.
Mathematics is presented as an ever-increasing set of eternal, im-
mutable truths. ([138] p. 142)
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Some Experimental Results

Definitions:

ζ(s) =
∞∑

k=1

k−s

sh(m,n) =
∞∑

k=1

(
1 +

1

2
+ · · ·+ 1

k

)m

(k + 1)−n m ≥ 1, n ≥ 2

Some experimentally derived conjectures:

sh(3, 2) =
15

2
ζ(5) + ζ(2)ζ(3)

sh(3, 3) = −33

16
ζ(6) + 2ζ2(3)

sh(3, 4) =
119

16
ζ(7)− 33

4
ζ(3)ζ(4) + 2ζ(2)ζ(5)

sh(3, 6) =
197

24
ζ(9)− 33

4
ζ(4)ζ(5)− 37

8
ζ(3)ζ(6) + ζ3(3) + 3ζ(2)ζ(7)

sh(4, 2) =
859

24
ζ(6) + 3ζ2(3)

We are given the raw data with which to work, carefully organized to give
us a glimpse into the investigators’ insights on the problem. Note in the first
formula for sh(3, 2), 3 + 2 = 5, on the right hand side of the equation we have
ζ(5) and ζ(3)ζ(2).

Some proven Euler sums:

sh(2, 2) =
3

2
ζ(4) +

1

2
ζ2(2) =

11π4

360

sh(2, 4) =
2

3
ζ(6)− 1

3
ζ(2)ζ(4) +

1

3
ζ3(2)− ζ2(3) =

37π6

22680
− ζ2(3)

The proven evaluation for sh(2, 2) above implies the truth of Au-Yeung’s dis-
covery.

Table 7.2: Some experimental results
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Shrinking or encapsulating mathematics

When one first learns to sum infinite series one is taught to sum geometric
series

1 + ρ + ρ2 + · · ·+ ρk + · · · = 1

1− ρ

when |ρ| < 1. Next one learns to sum telescoping series. For example if
f(i) = 1

i+1
− 1

i+2
, it is not to hard to see that

n∑
i=0

f(i) = (1− 1

2
) + (

1

2
− 1

3
) · · · ( 1

n + 1
− 1

n + 2
) = 1− 1

n + 2

and in particular that
∞∑
i=0

f(i) = 1.

The Wilf-Zeilberger algorithms employ “creative telescoping” to show that a
sum or integral is zero. The algorithms really provide a meta-insight into a
broad range of problems involving identities. Unfortunately the proofs pro-
duced by the computer, while understandable by most mathematicians are at
the same time uninteresting. On the other hand, the existence of WZ proofs
for large classes of objects gives us a global insight into these areas.

Table 7.3: Shrinking or encapsulating mathematics

Deductivist style hides the struggle, hides the adventure. The whole
story vanishes, the successive tentative formulations of the theorem
in the course of the proof-procedure are doomed to oblivion while
the end result is exalted into sacred infallibility. ([138] p. 142)

Perhaps the most extreme examples of the deductivist style come out of
the computer generated proofs guaranteed by Wilf and Zeilberger’s algorithmic
proof theory. It is important to note here that Wilf and Zeilberger transform the
problem of proving identities to the more computer oriented problem of solving
a system of linear equations with symbolic coefficients.
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These WZ proofs (see Table 7.4) are perhaps the ultimate in the deductivist
tradition. At present, knowing the WZ proof of an identity amounts to little
more (We will discuss the importance of certificates later.) than knowing that
the identity is true. In fact, Doron Zeilberger in [195] has advocated leaving
only a QED at the end of the statement, the author’s seal that he has had the
computer perform the calculations needed to prove the identity. The advantage
of this approach is that the result is completely encapsulated. Just as one would
not worry about how the computer multiplied two huge integers together or
inverted a matrix, one now has results whose proofs are uninteresting.

7.3 Zeilberger and the Encapsulation of

Identity

7.3.1 Putting a Price on Reliability

In the last two sections we talked about the importance of communicating in-
sights within the mathematical community. There we focused on the process of
mathematical thought but now we want to talk about communicating insights
that have not been made rigorous.

We have already briefly talked about Wilf and Zeilberger’s algorithmic proof
theory and its denial of insight. In this section we will discuss the implications
of this theory and D. Zeilberger’s philosophy of mathematics as contained in
Theorems for a Price: Tomorrow’s Semi-Rigorous Mathematical Culture ([196]).

It is probably unfortunate but perhaps necessary that the two voices most
strongly advocating truly experimental math are also at times the most hy-
perbolic in their language. We will concentrate mostly on the ideas of Doron
Zeilberger but G. J. Chaitin should not and will not be ignored.

We will begin with D. Zeilberger’s “Abstract of the future”

We show in a certain precise sense that the Goldbach conjecture is
true with probability larger than 0.99999 and that its complete truth
could be determined with a budget of 10 billion. ([196] p. 980)

Once people get over the shock of seeing probabilities assigned to truth in math-
ematics the usual complaint is that the 10 billion is ridiculous. Computers have
been getting better and cheaper for years. What can it mean that “the complete
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An Uninteresting(?) Proof

Below is a sample WZ proof of (1 + 1)n = 2n (this proof is a modified version
of the output of Doron Zeilberger’s original Mapleprogram, influenced by the
proof in [195]).

Let F (n, k) =

(
n
k

)
2−n. We have to show that l(n) =

∑
k F (n, k) = 1. To

do this we will show that l(n + 1)− l(n) = 0 for every n ≥ 0 and that l(0) = 1.
The second half is trivial since for n = 0, F (0, 0) is equal to 1 and 0 otherwise.
The first half is proved by the WZ algorithm.
We construct

G(n, k) =
−1

2(n+1)

(
n

k − 1

)(
=

−k

2(n− k + 1)
F (n, k)

)
,

with the motive that

WZ = F (n + 1, k)− F (n, k) = G(n, k + 1)−G(n, k) (check!).

Summing WZ with respect to k gives

∑

k

F (n + 1, k)−
∑

k

F (n, k) =

∑

k

(G(n, k + 1)−G(n, k)) = 0

(by telescoping). We have now established that l(n + 1)− l(n) = 0 and we are
done.
The proof gives little insight into this binomial coefficient identity. However,
the algorithms give researchers in other fields direct access to the field of special
function identities.

Table 7.4: An uninteresting(?) proof
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truth could be determined with a budget of 10 billion?” What is clear from the
article is that this is an additive measure of the difficulty of completely solving
this problem. If we know that the Riemann hypothesis will be proven if we prove
lemmas costing 10 billion, 2 billion and 2 trillion dollars respectively, we can tell
at a glance not merely what it would “cost” to prove the hypothesis but also
where new ideas will be essential in any proof. ( This assumes that 2 trillion is
a lot of “money.”)

The introduction of “cost” leads immediately to consideration of a trend that
has over taken the business world and is now intruding rapidly on academia: a
focus on productivity and efficiency.

It is a waste of money to get absolute certainty, unless the conjectured
identity in question is known to imply the Riemann Hypothesis ([196]
p. 980)

We have taken this quote out of its context (Wilf and Zeilberger’s algorithmic
proof theory of identities) [196] but even so we think it is indicative of a small
but growing group of mathematicians who are asking us to look at not just
the benefits of reliability in mathematics but also the associated costs. See for
example A. Jaffe and F. Quinn in [120, 121] and G. Chaitin in [67]. Still, we have
not dealt with the central question. Why does D. Zeilberger need to introduce
probabilistic “truths?” and how might we from a “formalist” perspective not feel
this to be a great sacrifice?

7.3.2 It’s All About Insight

Why is Zeilberger so willing to give up on absolute truths? The most reasonable
answer is that he is pursuing deeper truths. In Identities in Search of Identities,
Zeilberger advocates an examination of identities for the sake of studying iden-
tities. Still as Herb Wilf and others have pointed out it is possible to produce
an unlimited number of identities. It is the context, the ability to use and ma-
nipulate these identities, that make them interesting. Why then might we think
that studying identities for their own sake may lead us down the golden path
rather than the garden path?

We are now looking for what might be called meta-mathematical structures.
We remove the math from its original context and isolate it, trying to detect
new structures. When doing this it is impossible to collect only the relevant
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information that will lead to the new discovery. One collects objects (theorems,
statistics, conjectures, etc.) that have a reasonable degree of similarity and
familiarity and then attempts to eliminate the irrelevant or the untrue (counter
examples). We are preparing for some form of eliminative induction. There is
a built in stage, where objects are subject to censorship. In this context, it is
not unreasonable to introduce objects where one is not sure of their truth, since
all the objects, whether proved or not, will be subject to the same degree of
scrutiny. Moreover, if these probably true objects fall into the class of reliable
(i.e., they fit the new conjecture) objects, it may be possible to find a legitimate
proof in the new context. Recall that the fast WZ algorithms transform the
problem of proving an identity to one of solving a system of linear equations
with symbolic coefficients.

It is very time consuming to solve a system of linear equations with
symbolic coefficients. By plugging in specific values for n and other
parameters if present, one gets a system with numerical coefficients,
which is much faster to handle. Since it is unlikely that a random
system of inhomogeneous linear equations with more equations than
unknowns can be solved, the solvability of the system for a number of
special values of n and the other parameters is a very good indication
that the identity is indeed true. ([196] p. 980)

Suppose we can solve the system above for ten different assignments for
n and the other parameters but cannot solve the general system. What do
we do if we really need this identity? We are in a peculiar position. We have
reduced the problem of proving identities involving sums and integrals of proper-
hypergeometric terms to the problem of solving a possibly gigantic system of
inhomogeneous linear equations with more equations than unknowns. We have
an appropriately strong belief that this system has a solution but do not have
the resources to uncover this solution.

What can we do with our result? If we agree with G. J. Chaitin, we may
want to introduce it as an “axiom.”

I believe that elementary number theory and the rest of mathematics
should be pursued more in the spirit of experimental science, and that
you should be willing to adopt new principles. I believe that Euclid’s
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statement that an axiom is a self-evident truth is a big mistake4.
The Schrödinger equation certainly isn’t a self-evident truth! And
the Riemann Hypothesis isn’t self-evident either, but it’s very useful.
A physicist would say that there is ample experimental evidence for
the Riemann Hypothesis and would go ahead and take it as a working
assumption. ([67] p. 24)

In this case, we have ample experimental evidence for the truth of our identity
and we may want to take it as something more than just a working assumption.
We may want to introduce it formally into our mathematical system.

7.4 Experiment and “Theory”

We have now examined two views of experimental mathematics but we appear
to be no closer to a definition than when we began. However, we are now ready
to begin in full our exploration of experiment. In Advice to a Young Scientist, P.
B. Medawar defines four different kinds of experiment: the Kantian, Baconian,
Aristotelian, and the Galilean. Mathematics has always participated deeply in
the first three categories but has somehow managed to avoid employing the
Galilean model. In developing our notion of experimental mathematics we will
try to adhere to this Galilean mode as much as possible.

We will begin with the Kantian experiments. Medawar gives as his example:

generating “the classical non-Euclidean geometries (hyperbolic, ellip-
tic) by replacing Euclid’s axiom of parallels (or something equivalent
to it) with alternative forms.” ([153] pp. 73–74)

It seems clear that mathematicians will have difficulty escaping from the Kantian
fold. Even a Platonist must concede that mathematics is only accessible through
the human mind and thus at a basic level all mathematics might be considered
a Kantian experiment. We can debate whether Euclidean geometry is but an
idealization of the geometry of nature (where a point has no length or breadth
and a line has length but no breadth?) or nature an imperfect reflection of
“pure” geometrical objects, but in either case the objects of interest lie within
the minds eye.

4There is no evidence that Euclid ever made such a statement. However, the statement
does have an undeniable emotional appeal.
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Similarly, we cannot escape the Baconian experiment. In Medawar’s words
this

is a contrived as opposed to a natural happening, it “is the conse-
quence of ‘trying things out’ or even of merely messing about.” ([153]
p. 69)

Most of the research described as experimental is Baconian in nature and in fact
one can argue that all of mathematics proceeds out of Baconian experiments.
One tries out a transformation here, an identity there, examines what happens
when one weakens this condition or strengthens that one. Even the application of
probabilistic arguments in number theory can be seen as a Baconian experiment.
The experiments may be well thought out and very likely to succeed but the
ultimate criteria of inclusion of the result in the literature is success or failure.
If the “messing about” works (e.g., the theorem is proved, the counterexample
found) the material is kept; otherwise, it is relegated to the scrap heap.

The Aristotelian experiments are described as demonstrations:

apply electrodes to a frog’s sciatic nerve, and lo, the leg kicks; always
precede the presentation of the dog’s dinner with the ringing of a bell,
and lo, the bell alone will soon make the dog dribble. ([153] p. 71)

The results are tailored to demonstrate the theorems, as opposed to the exper-
iments being used to devise and revise the theorems. This may seem to have
little to do with mathematics but it has everything to do with pedagogy. The
Aristotelian experiment is equivalent to the concrete examples we employ to help
explain our definitions, theorems, or the problems assigned to students so they
can see how their newly learned tools will work.

The last and most important is the Galilean experiment:

(the) Galilean Experiment is a critical experiment—one that dis-
criminates between possibilities and, in doing so, either gives us con-
fidence in the view we are taking or makes us think it in need of
correction. ([153])

Ideally one devises an experiment to distinguish between two or more competing
hypotheses. In subjects like medicine the questions are in principal more clear
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cut (the Will Roger’s phenomenon or Simpson’s paradox complicates matters 5

Does this medicine work (longevity, quality of life, cost effectiveness, etc.)? Is this
treatment better than that one? Unfortunately, these questions are extremely
difficult to answer and the model Medawar presents here does not correspond
with the current view of experimentation. Since the spectacular “failure” (i.e., it
worked beautifully but ultimately was supplanted see [139]) of Newtonian physics
it has been widely held that no amount of experimental evidence can prove or
disprove a theorem about the world around us and it is widely known that
in the real world the models one tests are not true. Medawar acknowledges the
difficulty of proving a result but has more confidence than modern philosophers in
disproving hypotheses. If experiment cannot distinguish between hypotheses or
prove theorems, what can it do? What advantages does it have? Is it necessary?

7.5 “Theoretical” Experimentation

While there is an ongoing crisis in mathematics, it is not as severe as the crisis in
physics. The untestability of parts of theoretical physics (e.g., string theory) has
led to a greater reliance on mathematics for “experimental verification.” This
may be in part what led Arthur Jaffe and Frank Quinn to advocate what they
have named “Theoretical Mathematics”(note that many mathematicians think
they have been doing theoretical mathematics for years) but which we like to
think of as “theoretical experimentation.” There are certainly some differences
between our ideas and theirs but we believe they are more of emphasis than
substance.

Unlike our initial experiment where we are working with and manipulating
floating point numbers, “theoretical experimentation” would deal directly with
theorems, conjectures, the consequences of introducing new axioms. ... Note
that by placing it in the realm of experimentation, we shift the focus from the
more general realm of mathematics, which concerns itself with the transmission
of both truth and insight, to the realm of experimentation, which primarily deals
with the establishment of and transmission of insight. Although it was originally
conceived outside the experimental framework, the central problems Jaffe and

5Simpson’s paradox notes that two data sets can separately support one conclusion while
the union of the data supports the opposite conclusion. Will Roger’s phenomenon notes that
in a medical study it is possible to transfer a patient from one group to another and improve
the statistics of both groups.
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Quinn need to deal with are the same. They must attempt to preserve the
rigorous core of mathematics, while contributing to an increased understanding
of mathematics both formally and intuitively.

As described in Arthur Jaffe and Frank Quinn’s “Theoretical Mathemat-
ics”: Toward a Cultural Synthesis of Mathematics and Theoretical Physics it
appears to be mainly a call for a loosening of the bonds of rigor. They suggest
the creation of a branch of theoretical (experimental) mathematics akin to the-
oretical physics, where one produces speculative and intuitive works that will
later be made reliable through proof. They are concerned about the slow pace
of mathematical developments when all the work must be rigorously developed
prior to publication. They argue convincingly that a haphazard introduction of
conjectorial mathematics will almost undoubtedly result in chaos.

Their solution to the problems involved in the creation of theoretical (exper-
imental) mathematics comes in two parts. They suggest that

theoretical work should be explicitly acknowledged as theoretical and
incomplete; in particular, a major share of credit for the final result
must be reserved for the rigorous work that validates it. ([120] p.10)

This is meant to ensure that there are incentives for following up and proving
the conjectured results.

To guarantee that work in this theoretical mode does not affect the reliability
of mathematics in general, they propose a linguistic shift.

Within a paper, standard nomenclature should prevail: in theoret-
ical material, a word like “conjecture” should replace “theorem”; a
word like “predict” should replace “show” or “construct”; and expres-
sions such as “motivation” or “supporting argument” should replace
“proof.” Ideally the title and abstract should contain a word like
“theoretical”, “speculative”, or “conjectural”. ([120] p.10)

Still, none of the newly suggested nomenclature would be entirely out of place
in a current research paper. Speculative comments have always had and will
always have a place in mathematics.

This is clearly an exploratory form of mathematics. But is it truly exper-
imental in any but the Baconian sense? The answer will of course lie in its
application. If we accept the description at face value, all we have is a lessening
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of rigor, covered by the introduction of a new linguistic structure. More “math-
ematics” will be produced but it is not clear that this math will be worth more,
or even as much as, the math that would have been done without it.

It is not enough to say that mathematical rigor is strangling mathematical
productivity. One needs to argue that by relaxing the strictures temporarily one
can achieve more. If we view theoretical (experimental) mathematics as a form
of Galilean experimentation then in its idealized form “theoretical” (experimen-
tal) mathematics should choose between directions (hypotheses) in mathematics.
Like any experimental result the answers will not be conclusive, but they will
need to be strong enough to be worth acting on.

Writing in this mode, a good theoretical paper should do more than just
sketch arguments and motivations. Such a paper should be an extension of the
survey paper, defining not what has been done in the field but what the author
feels can be done, should be done and might be done, as well as documenting
what is known, where the bottlenecks are, etc. In general, we sympathize with
the desire to create a “theoretical” mathematics but without a formal structure
and methodology it seems unlikely to have the focus required to succeed as a
separate field.

One final comment seems in order here. “Theoretical” mathematics, as prac-
ticed today, seems a vital and growing instititution. Mathematicians now rou-
tinely include conjectures and insights with their work (a trend that seems to be
growing). This has expanded in haphazard fashion to include algorithms, sug-
gested algorithms and even pseudo algorithms. We would distinguish our vision
of “experimental” mathematics from “theoretical” mathematics by an emphasis
on the constructive/algorithmic side of mathematics. There are well established
ways of dealing with conjectures but the rules for algorithms are less well defined.
Unlike most conjectures, algorithms if sufficiently efficacious soon find their way
into general use.

While there has been much discussion of setting up standardized data bases to
run algorithms on, this has proceeded even more haphazardly. Addressing these
issues of reliability would be part of the purview of experimental mathematics.
Not only would one get a critical evaluation of these algorithms but by reducing
the problems to their algorithmic core, one may facilitate the sharing of insights
both within and between disciplines. At its most extreme, a researcher from one
discipline may not need to understand anything more than the outline of the
algorithm to make important connections between fields.
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7.6 A Mathematical Experiment

7.6.1 Experimentation

We now turn to a more concrete example of a mathematical experiment. Our
meta-goal in devising this experiment was to investigate the similarities and
differences between experiments in mathematics and in the natural sciences,
particularly in physics. We therefore resolved to examine a conjecture which
could be approached by collecting and investigating a huge amount of data:
the conjecture that every non-rational algebraic number is normal in every base
(see Table 7.5). It is important to understand that we did not aim to prove or
disprove this conjecture; our aim was to find evidence pointing in one or the
other direction. We were hoping to gain insight into the nature of the problem
from an experimental perspective.

The actual experiment consisted of computing to 10,000 decimal digits the
square roots and cube roots of the positive integers smaller than 1000 and then
subjecting these data to certain statistical tests (again, see Table 7.5). Under the
hypothesis that the digits of these numbers are uniformly distributed (a much
weaker hypothesis than normality of these numbers), we expected the probability
values of the statistics to be distributed uniformly between 0 and 1. Our first
run showed fairly conclusively that the digits were distributed uniformly. In fact,
the Anderson-Darling test, which we used to measure how uniformly distributed
our probabilities were suggested that the probabilities might have been “too
uniform” to be random. We therefore ran the same tests again, only this time
for the first 20,000 decimal digits, hoping to detect some non-randomness in the
data. The data were not as interesting on the second run.

7.6.2 Verification

It is even more important in mathematics than in the physical sciences that the
data under investigation are completely reliable. At first glance it may seem
that the increasing reliance of mathematicians on programs such as Maple and
Mathematica has decreased the need for verification. Computers very rarely
make arbitrary mistakes in arithmetic and algebra. But all the systems have
known and unknown bugs in their programming. It is therefore imperative that
we check our results. So what efforts did we take to verify our findings?
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Background on Normality

Definition. A real number is normal to the base 10 if every block of digits of
length k occurs with frequency 1/10k.

Example: the Champernowne number

0.01234567891011121314 . . . 99100101 . . .

is known to be normal base 10.
Except for artificially created examples no numbers have been proven normal in
any particular base. If we allow artificial numbers there are no explicit numbers
known to be normal in every basea

Questions

• Are all non-rational algebraic numbers normal base 10?

• Do all non-rational algebraic numbers have uniformly distributed digits?

aG. J. Chaitin in Randomness and Complexity in Pure Mathematics, has a number he
calls Ω =

∑
p halts 2−|p|, the halting probability, which he notes is “sort of a mathematical

pun”, but is normal to all bases. He does this by identifying integers with binary strings
representing Turing machines and summing over the programs that stopped (non-trivially,
see [67] p.12).

Table 7.5: Background on normality
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First of all, we had to make sure that the roots we computed were accu-
rate to at least 10,000 (resp. 20,000) digits. We computed these roots using
Maple as well as Mathematica, having them compute the roots to an accuracy
of 10,010 digits. We then did two checks on the computed approximation sn to√

n. First, we tested that
√

n ∈ [sn − 10−10005, sn + 10−10005] by checking that
(sn − 10−10005)2 < n < (sn + 10−10005)2. Second, we tested that the 10,000th
through 10,005th digits were not all zeros or nines. This ensures that we actually
computed the first 10,000 digits of the decimal expansion of

√
n. (We note that

Mapleinitially did not give us an accuracy of 10,000 digits for all of the cube
roots, so that we had to increase the precision.)

We then had to make sure that we computed the statistics and probability
values accurately—or at least to a reasonable precision, since we used asymptotic
formulas anyway. We did this by implementing them both in Maple and in
Mathematica and comparing the results. We detected no significant discrepancy.

We claim that these measures reasonably ensure the reliability of our exper-
imental results.

7.6.3 Interpretation

Our experimental results support the conjecture that every non-rational alge-
braic number is normal; more precisely, we have found no evidence against this
conjecture. In this section we will describe how we looked at and interpreted the
experimental data to arrive at this conclusion. We include only a few examples
of how we looked at the data here. In fact, we have only looked at certain aspects
of normality and randomness in decimal expansions. Thus our results may be
interpreted more narrowly to support the hypothesis that algebraic numbers are
normal base 10. A full description will be found in [52].

Our main goal here is to give a quick visual summary that is at once con-
vincing and data rich. These employ some of the most basic tools of visual
data analysis and should probably form part of the basic vocabulary of an ex-
perimental mathematician. Note that traditionally one would run a test such
as the Anderson-Darling test (which we have done) for the continuous uniform
distribution and associate a particular probability with each of our sets of prob-
ability, but unless the probability values are extremely high or low it is difficult
to interpret these statistics.

Experimentally, we want to test graphically the hypothesis of normality and
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Data and Statistics

We looked at the first 10,000 digits after the decimal point of the
√

n where
n < 1000 is not a perfect square and of 3

√
n where n < 1000 is not a perfect

cube.
Tests used:

• χ2—to check that each digit occurs 1/10 of the time (discrete uniform
distribution base 10).

• Discrete Cramér-von Mises—to check that all groups of 4 consecutive
digits occurs 1/10,000 of the time (discrete uniform distribution base
10,000).

• Anderson-Stephens —to check that the power spectrum of the sequence
matches that of white noise (periodicity).

• Anderson-Darling—continuous uniform distribution.

Important point: In order for us to claim we have generated any evidence at
all either for or against we have made two fairly strong assumptions.

• The first 10,000 digits are representative of the remaining digits.

• These digits behave as far as our statistical tests go like independent
random variables.

In fact, for the first and second 10,000 digits our final conclusions are identical.
The second assumption is problematic. Since we have beautiful algorithms to
calculate these numbers, by most reasonable definitions of independent and
random, these digits are neither.

Table 7.6: Data and statistics
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randomness (or non-periodicity) for our numbers. Because the statistics them-
selves do not fall into the nicest of distributions, we have chosen to plot only
the associated probabilities. We include two different types of graphs here. A
quantile-quantile plot is used to examine the distribution of our data and scatter
plots are used to check for correlations between statistics.

The first is a quantile-quantile plot of the chi square base 10 probability
values versus a a discrete uniform distribution. For this graph we have placed
the probabilities obtained from our square roots and plotted them against a
perfectly uniform distribution. Finding nothing here is equivalent to seeing that
the graph is a straight line with slope one. This is a crude but effective way of
seeing the data. The disadvantage is that the data are really plotted along a one
dimensional curve and as such it may be impossible to see more subtle patterns.

The other graphs are examples of scatter plots. The first scatter plot shows
that nothing interesting is occurring. We are again looking at probability values
this time derived from the discrete Cramer-von Mises (CVM) test base 10,000.
For each cube root we have plotted the point (fi, si), where fi is the CVM base
10,000 probability associated with the first 2500 digits of the cube root of i and
si is the probability associated with the next 2500 digits. A look at the graph
reveals that we have now plotted our data on a two dimensional surface and
there is a lot more “structure” to be seen. Still, it is not hard to convince oneself
that there is little or no relationship between the probabilities of the first 2500
digits and the second 2500 digits.

The last graph is similar to the second. Here we have plotted the probabilities
associated with the Anderson-Stephens statistic of the first 10,000 digits versus
the first 20,000 digits. We expect to find a correlation between these tests since
there is a 10,000 digit overlap. In fact, although the effect is slight, one can
definitely see the thinning out of points from the upper left hand corner and
lower right hand corner.

7.7 Conclusion

All the versions of experimental mathematics that we have dealt with so far have
two characteristics: their main interest is in expanding our mathematical knowl-
edge as rapidly as possible and none of them stray too far from the mainstream.
In many cases this urgency leads to a temporary relaxation of rigor, a relaxation
that is well documented and hopefully can be cleaned up afterwards. In other
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Figure 7.1: Graphical statistics of our experiments
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cases it may be intrinsic to the mathematics they wish to explore. When a field
has been as wildly successful as mathematics has been in the past few centuries
there is a reluctance to change. We have hoped to convince some of the read-
ers that these changes are revolutionary only in the same sense that the earth
revolves around the sun.

We conclude with a definition of experimental mathematics.

Experimental Mathematics is that branch of mathematics that concerns itself
ultimately with the codification and transmission of insights within the math-
ematical community through the use of experimental (in either the Galilean,
Baconian, Aristotelian or Kantian sense) exploration of conjectures and more
informal beliefs and a careful analysis of the data acquired in this pursuit.

Results discovered experimentally will, in general, lack some of the rigor
associated with mathematics but will provide general insights into mathematical
problems to guide further exploration, either experimental or traditional. We
have restricted our definition of experimental mathematics to methodological
pursuits that in some way mimic Medawar’s views of Gallilean experimentation.
However, our emphasis on insight also calls for the judicious use of examples
(Aristotelian experimentation).

If the mathematical community as a whole was less splintered, we would
probably remove the word “codification” from the definition. That is to say
that a great deal of time will need to be spent on developing a language for the
expression of experimental results. Since there are real communications problems
between fields and since the questions to be explored will be difficult, it seems
imperative that experimental investigators make every effort to organize their
insights and present their data in a manner that will be as widely accessible as
possible6.

With respect to reliability and rigor, the main tools here are already in place.
We need to stress systematization of our exploration. As in our experimental
project on normality, it is important to clearly define what has been looked at,
how things have been examined, and what confidence the reader should have
in the data. Although mathematicians may not like to admit it, ease of use
will have to be a primary consideration if experimental results are to be of
widescale use. As such, visualization and hypertextual presentations of material

6It is clear that mechanisms are developing for transmitting insights within fields, even if
this is only through personal communications.
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will become increasingly important in the future. We began by stealing some of
the basic tools of scientific analysis and laying claim to them. As the needs of
the community become more apparent one would expect these tools and others
to evolve into a form better suited to the particular needs of the mathematical
community. Someday, who knows, first year graduate students may be signing
up for Experimental Methods in Mathematics I.
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Chapter 8

A Color Supplement

Here we display various images which could not or should not be seen only in
gray scale, as shown elsewhere in these volumes. We also should mention here
Tom Banchoff and David Cervone’s beautiful interactive collection, Computer
Graphics in Mathematical Research from ICM 1978 to ICMS 2002. See also
http://www.math.union.edu/local/ICMS-poster.

1. Figure 8.1 shows a Pascal triangle, where each entry has been reduced
modulo two as discussed in Section 2.1, together with a tetrahedral design
illustrating the same concept.

2. Figure 8.2 shows three 10 × 10 arrays colored with the digits of the first
hundred digits of 223/71, π, and 22/7. One sees a clear pattern on the
right (22/7), a more subtle structure on the left (223/71), and a “random”
coloring in the middle (π) (see Chapter 1 of the second volume).

3. Figure 8.3 illustrates Apostol’s remarkably simple proof that
√

2 is irra-
tional. We simply continue to draw smaller and smaller integer-sided sim-
ilar triangles until the area drops below 1/2, when we have a contradiction
(see Section 2.9).

4. Figure 8.4 is a photo of Ferguson’s “Eight-Fold Way” sculpture, which is
at the Mathematical Sciences Research Institute in Berkeley, California,
and his “Figure-Eight Knot Complement” sculpture, which is at Mount
Holyoke College in South Hadley, Massachusetts. In the “Eight-Fold Way,”
the ridges and grooves on the white tetrahedral form show how to map the
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fundamental domain onto the tetrahedron. If you move your finger along
any groove or ridge, alternating left and right turns at each corner, then
in eight steps you will return to your starting point. See Section 2.4 and
Exercise 33 of Chapter 2 for additional details.

As we mentioned in Section 2.4, the volume of the “Figure-Eight Knot
Complement” shape in hyperbolic space is given by a certain infinite series
involving binomial coefficients in the denominators. Using Ferguson’s own
PSLQ algorithm, Broadhurst later showed that this volume is also given
by BBP-type formula, permitting one to rapidly calculate binary digits
at arbitrary positions. See Section 2.4 and Exercise 33 of Chapter 2 for
additional details.

5. Figure 8.5 shows a snow sculpture rendition of the Costa surface, which
was carved in 1999 in an international snow scupture competition by Hela-
man Ferguson, with the assistance of Stan Wagon, Dan Schwalbe, Tomas
Nemeth, and (posthumously) Alfred Gray. The Costa surface is the sim-
plest example of an infinite family of minimal surfaces. It was discovered
visually by David Hoffman, William Meeks III, and James Hoffman, who
between 1983 and 1985 studied equations put forth by Celso Costa, a
Brazilian graduate student. The unique negative curvature of the Costa
surface lends structural stability to the piece. A week after the snow sculp-
ture competition in 1999, all other 14 entries had collapsed, but the “Invis-
ible Handshake” (Ferguson’s name for the sculpture) still stood. See Item
32 of Chapter 2 for additional details.

6. Figure 8.6 is a photo of the “Firmament,” a sculpture of five touching
spheres, by John Robinson, presented to Donald Coxeter on his 90th birth-
day, when the sculpture “Intuition” was unveiled outside the Fields Insti-
tute.

7. Figure 8.7 is a reproduction of a first day issue stamp commemorating the
75th birthday of Ramanujan. It was mailed from India with the correct
postage added on the back. It arrived safely in Scotland despite the address
being David Borwein’s home address.

8. Figure 8.8 is a photo of the octahedral kaleidoscope that Coxeter designed,
and which was constructed in a London workshop in the 1920s. Two kalei-
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doscopes were made, one the octahedral model shown here, and another
one, an icosahedral model that is not shown here.

9. Figure 8.9 shows the Julia set associated with the modulus of the modular
function k, as described in the exercises to Chapter 4 of the second volume.

10. Figure 8.10 shows a graphic based on a random walk of the first million
decimal digits of π, courtesy of David and Gregory Chudnovsky. It maps
the digit stream to a surface in ways similar to those used by Mandelbrot
and others.

11. Figure 8.11 is a photo of the original ENIAC computer system, from the
archives of the Smithsonian Institution.

12. Figure 8.12 illustrates the “experimental topology” of knots, as discussed
in Item 37 of Chapter 2 in this book and also in Chapter 3 of the second
volume.

13. Figure 8.13 is another example of two knots that were once thought to be
distinct, but which are now known to be identical, as mentioned in Chapter
3 of the second volume.

14. Figure 8.14 represents a projection of a regular polyhedron in four dimen-
sions, with 120 faces each of which is a dodecahedron. An artist’s rendering
of this polyhedron hangs from the ceiling the Fields Institute in Toronto.

15. Figure 8.15 shows the Riemann surface of the Lambert W function, re-
spectively, as discussed in Chapter 5 of the second volume.

16. Figure 8.16 shows the Julia set associated with the Newton iteration for
the polynomial x3−1 = 0, as discussed in Chapter 7 of the second volume.
What is actually plotted here, encoded in various colors, is the number
of iterations required to converge to one of the three roots if you perform
complex Newton iterations starting at the given point, using double-double
precision arithmetic for extra accuracy. Note that the iterations do not
merely converge to the nearest point. Instead, a filamentary structure (a
“Julia set”) of measure zero is formed, separating infinitely many discon-
nected convergence sets.
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17. Figure 8.17 is a plot of all roots of polynomials with coefficients in (0, 1,−1)
up to degree N = 18. These zeros are colored by their local density
normalized to the range of densities; from red for low density to yellow for
high density. The bands, quite clearly visible in the plot, are unexplained.
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Figure 8.1: Pascal triangles modulo two?

Figure 8.2: A pictorial proof of Archimedes’ inequality

Figure 8.3: Root two is irrational.
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Figure 8.5: Ferguson’s snow sculpture of the Costa surface

Figure 8.6: The “Firmament” by John Robinson.

Figure 8.7: Ramanujan’s seventy-fifth birthday stamp.
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Figure 8.8: Coxeter’s own kaleidoscope model.
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Figure 8.9: The modulus of the modular function k.
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Figure 8.10: A random walk based on one million digits of π.

Figure 8.11: The ENIAC computer.
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Figure 8.12: The knots 10161 and 10162.

Figure 8.13: How does one identify two knots?

Figure 8.14: Projection of 4-D polyhedron.



311

Figure 8.15: The Riemann surface for the Lambert function.

Figure 8.16: Julia set associated with Newton solutions of x3 − 1 = 0.
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Figure 8.17: Roots of zero-one polynomials.
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[171] Bernhard Riemann. Über die Anzahl der Primzahlen unter einer Gegebenen
Grösse. In Hermann Weyl, editor, Das Kontinuum und Andere Monographien.
Chelsea Publishing Co., New York, 1972.

[172] Sara Robinson. Mathematician Fills In a Blank for a Fresh Insight on Art.
New York Times, Jul. 30 2002.

[173] K. Roth. Rational Approximations to Algebraic Numbers. Mathematika,
2:1–20, 1955.

[174] Zeev Rudnick and Peter Sarnak. The n-Level Correlations of L-Functions.
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Gödel, Kurt, 1Q, 270
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Preface

“Moreover a mathematical problem should be difficult in order to
entice us, yet not completely inaccessible, lest it mock our efforts. It
should be to us a guidepost on the mazy path to hidden truths, and
ultimately a reminder of our pleasure in the successful solution. . . .

Besides it is an error to believe that rigor in the proof is the enemy
of simplicity.”

David Hilbert, Paris International Congress, 1900 [210]

As we recounted in the first volume of this work, Mathematics by Experiment:
Plausible Reasoning in the 21st Century [43], when we started our collaboration
in 1985, relatively few mathematicians employed computations in serious re-
search work. In fact, there appeared to be a widespread view in the field that
“real mathematicians don’t compute.” In the ensuing years, computer hard-
ware has skyrocketed in power and plummeted in cost, thanks to the remarkable
phenomenon of Moore’s Law. In addition, numerous powerful mathematical
software products, both commercial and noncommercial, have become available.
But just as importantly, a new generation of mathematicians is eager to use
these tools, and consequently numerous new results are being discovered.

The experimental methodology described in these books provides a com-
pelling way to generate understanding and insight; to generate and confirm or
confront conjectures; and generally to make mathematics more tangible, lively,
and fun for both the professional researcher and the novice. Furthermore, the
experimental approach helps broaden the interdisciplinary nature of mathemat-
ical research: a chemist, physicist, engineer, and a mathematician may not un-
derstand each others’ motivation or technical language, but they often share an
underlying computational approach, usually to the benefit of all parties involved.

A typical scenario of using this experimental methodology is the following.
Note the “dialogue” between human and computer, which is very typical of this
approach to mathematical research:

1. Studying a mathematical problem to identify aspects that need to be better
understood.
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2. Using a computer to explore these aspects, by working out specific exam-
ples, generating plots, etc.

3. Noting patterns or other phenomena evident in the computer-based results
that relate to the problem under study.

4. Using computer-based tools to identify or “explain” these patterns.

5. Formulating a chain of credible conjectures that, if true, would resolve the
question under study.

6. Deciding if the potential result points in the desired direction and is worth
a full-fledged attempt at formal proof.

7. Performing additional computer-based experiments to gain greater confi-
dence in the key conjectures.

8. Confirming these conjectures by rigorous proof.

9. Using symbolic computing software to double-check analytical derivations.

Our goal in these books is to present a variety of accessible examples of mod-
ern mathematics where intelligent computing plays a significant role (along with
a few examples showing the limitations of computing). We have concentrated
primarily on examples from analysis and number theory, as this is where we
have the most experience, but there are numerous excursions into other areas
of mathematics as well (see the Table of Contents). For the most part, we have
contented ourselves with outlining reasons and exploring phenomena, leaving
a more detailed investigation to the reader. There is, however, a substantial
amount of new material, including numerous specific results that have not yet
appeared in the mathematical literature, as far as we are aware.

This work is divided into two volumes, each of which can stand by itself.
The first volume, Mathematics by Experiment: Plausible Reasoning in the 21st
Century [43], presents the rationale and historical context of experimental math-
ematics, and then presents a series of examples that exemplify the experimental
methodology. We include in the first volume a reprint of an article co-authored
by two of us that complements this material. This second volume, Experimenta-
tion in Mathematics: Computational Paths to Discovery, continues with several
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chapters of additional examples. Both volumes include a chapter on numerical
techniques relevant to experimental mathematics.

Each volume is targeted to a fairly broad cross-section of mathematically
trained readers. Most of the first volume should be readable by anyone with
solid undergraduate coursework in mathematics. Most of this volume should be
readable by persons with upper-division undergraduate or graduate-level course-
work. None of this material involves highly abstract or esoteric mathematics.

Some programming experience is valuable to address the material in this
book. Readers with no computer programming experience are invited to try a
few of our examples using commercial software such as Mathematica and Maple.
Happily, much of the benefit of computational-experimental mathematics can
be obtained on any modern laptop or desktop computer—a major investment in
computing equipment and software is not required.

Each chapter concludes with a section of commentary and exercises. This
permits us to include material that relates to the general topic of the chapter,
but which does not fit nicely within the chapter exposition. This material is
not necessarily sorted by topic nor graded by difficulty, although some hints,
discussion and answers are given. This is because mathematics in the raw does
not announce, “I am solved using such and such a technique.” In most cases,
half the battle is to determine how to start and which tools to apply.

We are grateful to our colleagues Victor Adamchik, Heinz Bauschke, Pe-
ter Borwein, David Bradley, Gregory Chaitin, David and Gregory Chudnovsky,
Robert Corless, Richard Crandall, Richard Fateman, Greg Fee, Helaman Fergu-
son, Steven Finch, Ronald Graham, Andrew Granville, Christoph Haenel, David
Jeffrey, Jeff Joyce, Adrian Lewis, Petr Lisonek, Russell Luke, Mathew Morin,
David Mumford, Andrew Odlyzko, Hristo Sendov, Luis Serrano, Neil Sloane,
Daniel Rudolph, Asia Weiss, and John Zucker who were kind enough to help us
prepare and review material for this book; to Mason Macklem, who helped with
material, indexing (note that in the index definitions are marked in bold, and
quotes with a suffix “Q”), and more; to Jen Chang and Rob Scharein, who helped
with graphics; to Janet Vertesi who helped with bibliographic research; to Will
Galway, Xiaoye Li, and Yozo Hida, who helped with computer programming;
and to numerous others who have assisted in one way or another in this work.
We owe a special debt of gratitude to Klaus Peters for urging us to write this
book and for helping us nurse it into existence. Finally, we wish to acknowledge
the assistance and the patience exhibited by our spouses and family members
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during the course of this work.
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Chapter 1

Sequences, Series, Products and
Integrals

Several years ago I was invited to contemplate being marooned on the
proverbial desert island. What book would I most wish to have there,
in addition to the Bible and the complete works of Shakespeare?
My immediate answer was: Abramowitz and Stegun’s Handbook of
Mathematical Functions. If I could substitute for the Bible, I would
choose Gradsteyn and Ryzhik’s Table of Integrals, Series and Prod-
ucts. Compounding the impiety, I would give up Shakespeare in
favor of Prudnikov, Brychkov and Marichev’s Tables of Integrals and
Series. . . On the island, there would be much time to think about
waves on the water that carve ridges on the sand beneath and focus
sunlight there; shapes of clouds; subtle tints in the sky. . . With the
arrogance that keeps us theorists going, I harbor the delusion that it
would be not too difficult to guess the underlying physics and formu-
late the governing equations. It is when contemplating how to solve
these equations—to convert formulations into explanations—that hu-
mility sets in. Then, compendia of formulas become indispensable.

Michael Berry, 2001 [23]

In the first volume, we presented numerous examples of experimental mathe-
matics in action. In particular, we examined how a computational-experimental
approach could be used to identify constants and sequences, evaluate definite

1
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integrals and infinite series, discover new identities involving fundamental con-
stants and functions of mathematics, provide a more intuitive approach to math-
ematical proofs, and formulate conjectures that can lead to important advances
in the field. In this chapter, we introduce our discussion with a number of
additional intriguing examples in the realm of sequences, series, products and
integrals.

1.1 Pi is not 22/7

We first consider an example from the early history of π, as described in Section
2.1 of the first volume.

Even Maple or Mathematica “knows” π 6= 22/7, since

0 <

∫ 1

0

(1− x)4x4

1 + x2
dx =

22

7
− π, (1.1.1)

though it would be prudent to ask “why” it can perform the evaluation and
“whether” we should trust it?

Assume we trust it. Then the integrand is strictly positive on the interior of
the interval of integration, and the answer in (1.1.1) is necessarily an area and
thus strictly positive, despite millennia of claims that π is 22/7. Of course, 22/7
is one of the early continued fraction approximations to π. The first four are
3, 22/7, 333/106, 355/113.

In this case, computing the indefinite integral provides immediate reassur-
ance. We obtain

∫ t

0

x4 (1− x)4

1 + x2
dx =

1

7
t7 − 2

3
t6 + t5 − 4

3
t3 + 4 t− 4 arctan (t) . (1.1.2)

This is easily confirmed by differentiation, and the Fundamental Theorem of
Calculus substantiates (1.1.1).

In fact one can take this idea a bit further. We note that
∫ 1

0

x4 (1− x)4 dx =
1

630
, (1.1.3)

and we observe that

1

2

∫ 1

0

x4 (1− x)4 dx <

∫ 1

0

(1− x)4x4

1 + x2
dx <

∫ 1

0

x4 (1− x)4 dx. (1.1.4)



1.1. PI IS NOT 22/7 3

Figure 1.1: A pictorial proof of Archimedes’ inequality

On combining this with (1.1.1) and (1.1.3), we straightforwardly derive 223/71 <
22/7−1/630 < π < 22/7−1/1260 < 22/7, and so re-obtain Archimedes’ famous
computation

3
10

71
< π < 3

10

70
(1.1.5)

(illustrating that it is sometimes better not to fully reduce a fraction to lowest
terms).

This derivation of the estimate above seems first to have been written down
in Eureka, the Cambridge student journal in 1971 [96]. The integral in (1.1.1)
was apparently shown by Kurt Mahler to his students in the mid-1960s, and
it had appeared in a mathematical examination at the University of Sydney in
November, 1960. Figure 1.1 shows the estimate graphically illustrated. The
three 10× 10 arrays color the digits of the first hundred digits of 223/71, π, and
22/7. One sees a clear pattern on the right (22/7), a more subtle structure on
the left (223/71), and a “random” coloring in the middle (π).

It is tempting to ask if there is a clean general way to mimic (1.1.1) for more
general rational approximations, or even continued fraction convergents. This
is indeed possible to some degree as discussed by Beukers in [24]. The most
satisfactory result is

anπ − bn

cn

=

∫ 1

0

t2 n (1− t2)
2 n (

(1 + it)3 n+1 + (1− it)3 n+1)

(1 + t2)3 n+1 dt, (1.1.6)

for n ≥ 1, where the integers an, bn and cn are implicitly defined by the integral
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in (1.1.6). The first three integrals evaluate to 14π − 44, 968π − 45616/15 and
75920π − 1669568/7, so again we start with π − 22/7.

Unlike Beukers’ preliminary attempts in [24], such as the seemingly promising
∫ 1

0

tn (1− t)n

(t2 + 1)n+1dt,

this set of approximates actually produces an explicit if weak irrationality esti-
mate [44, 24]: for large n,

∣∣∣∣π −
pn

qn

∣∣∣∣ ≥
1

q1.0499
n

.

As Beukers sketches one consequence of this explicit sequence
∣∣∣∣π −

p

q

∣∣∣∣ ≥
1

q21.04...

for all integers p, q with sufficiently large q. (Here 21.04 . . . = 1 + 1/0.0499. In
fact, in 1993 Hata by different methods had improved the number 21.4 to 8.02.)

While it is easy to discover “natural” results like

1

5

∫ 1

0

x (1− x)2

(1 + x)3 dx =
7

10
− log (2) , (1.1.7)

the fact that 7/10 is again a convergent to log 2 seems to be largely a happen-
stance. For example,

∫ 1

0

x12 (1− x)12

16 (1 + x2)
dx =

431302721

137287920
− π

∫ 1

0

x12 (1− x)12

16
dx =

1

1081662400

leads to the true, if inelegant, estimate that 5902037233/1878676800 < π <
224277414953/71389718400, where the interval is of size 1.39 · 10−9.

In contrast to this easy symbolic success, Maple struggles with the following
version of the sophomore’s dream:

∫ 1

0

1

xx
dx =

∞∑
n=1

1

nn
. (1.1.8)
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When students are asked to confirm this, they most typically mistake numerical
validation for symbolic proof: 1.291285997 = 1.291285997. One seems to need
to nurse a computer system, starting with integrating

x−x = exp (−x log x) =
∞∑

n=0

(−x log x)n

n!
,

term by term. See Exercise 3 at the end of this chapter.

1.2 Two Products

Consider the product
∞∏

n=2

n3 − 1

n3 + 1
=

2

3
, (1.2.9)

which has a rational value, and the seemingly simpler one (squares instead of
cubes)

∞∏
n=2

n2 − 1

n2 + 1
=

π

sinh(π)
, (1.2.10)

which evaluates to a transcendental number. Mathematica and Maple success-
fully evaluate such products, although not always in the same form. In this case,
Mathematica produces expressions involving the gamma function, while Maple
returns the values shown above. In either case, we learn little or nothing from the
results, since the software typically cannot recreate the steps of validation. In
such a situation, it often pays to ask our software to evaluate the finite products
and then take limits. Note that in earlier versions of Maple or Mathematica,
the infinite products would have been returned unevaluated, so that we may
have been led directly to the finite products. Nowadays the system knows more,
but we often learn less! To use a modern educational term, we are not led to
“unpack” the concepts.

When asked to evaluate the finite products Maple returns expressions involv-
ing Gamma function values. For the first product (1.2.9), this expression can be
simplified to

N∏
n=2

n3 − 1

n3 + 1
=

2

3

N2 + N + 1

N(N + 1)
,
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and from this, one may get the idea that the evaluation can be done by tele-
scoping. This directly leads to the following proof, which just consists of filling
in the intermediate steps Maple still does not care to tell us:

N∏
n=2

n3 − 1

n3 + 1
=

N∏
n=2

(n− 1) (n2 + n + 1)

(n + 1) (n2 − n + 1)
=

N−2∏
n=0

(n + 1)

N∏
n=2

(n + 1)

·

N∏
n=2

(n2 + n + 1)

N−1∏
n=1

(n2 + n + 1)

=
2

N (N + 1)
· N2 + N + 1

3
→ 2

3
.

The second finite product does not simplify in any helpful way; however, the
Gamma function expression, together with the Maple evaluation of the infinite
product, gives us the hint that the sin-product formula

sin(π x) = π x

∞∏
n=1

(
1− x2

n2

)
, (1.2.11)

which we met in Chapter 5 of the first volume, plays a role here. With this idea,
the proof of the evaluation is simple: By complexification (and holomorphy), it
follows from (1.2.11) that

sinh(π)

π
= 2

∞∏
n=2

n2 + 1

n2
,

and we get

sinh(π)

π
·
∞∏

n=2

n2 − 1

n2 + 1
= 2

∞∏
n=2

n2 − 1

n2
= 1,

since the final product is again telescoping.
Do these evaluations generalize in a useful manner? For example, does the

product
∏∞

n=2(n
4 − 1)/(n4 + 1) have an evaluation in terms of basic constants?

Maple tells us that indeed

∞∏
n=2

n4 − 1

n4 + 1
=

π sinh(π)

cosh(
√

2 π)− cos(
√

2 π)
, (1.2.12)
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and it again produces a Gamma function expression for the finite product. For
analogous products with fifth powers, Maple fails to return an evaluation. How-
ever, we now have enough hints to try our own hands at these products: Ap-
parently we have to use properties of the Gamma function. In fact, setting
ω = exp(πi/r) and using the relations

∏2r
j=1(n− zwj)(−1)j

= (nr− zr)/(nr + zr),

as well as
∑2r

j=1 ωj(−1)j = 0 and
∏2r

j=1(ω
j)(−1)j

= −1, it follows from the product
representation of the Gamma function

Γ(x) = lim
n→∞

n! nx

x(x + 1) · · · (x + n)
(1.2.13)

that, for r ∈ N, r > 1, and z ∈ C \ N,

∞∏
n=1

nr − zr

nr + zr
=

∞∏
n=1

2r∏
j=1

(
1− zωj

n

)(−1)j

= −
2r∏

j=1

Γ(−zωj)−(−1)j

.

Hence, for m ∈ N,

∞∏

n=1, n 6=m

nr − zr

nr + zr
= − mr + zr

(mr − zr)Γ(−z)

2r−1∏
j=1

Γ(−zwj)−(−1)j

,

where as z → m,

(mr − zr)Γ(−z) =
mr − zr

(m− z)

Γ(m + 1− z)

(m− 1− z) · · · (1− z)(−z)
→ rmr−1 1

m!(−1)m
.

This gives the finite evaluation

Pr(m) =
∞∏

n=1, n 6=m

nr −mr

nr + mr

= (−1)m+1 2m(m!)

r

2r−1∏
j=1

Γ(−mωj)−(−1)j

. (1.2.14)

When r = 2s is even, this can in a few steps be further reduced to

−(−1)m 2επm

s
(sinh πm)(−1)s

s−1∏
j=1

(
cosh

(
2πm sin

(
jπ
2s

))− cos
(
2πm cos

(
jπ
2s

)))(−1)j

,
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where ε is 0 or 1 as s is respectively odd or even. From this, evaluations (1.2.10)
and (1.2.12) immediately follow as special cases.

Interestingly, for odd r ≥ 5, these products do not seem to have a closed form
“nicer” than (1.2.14). In particular, they do not seem to be rational numbers
like P3(1) (and in fact P3(m)). The use of integer relation algorithms—to 400
digits—shows that P5(1) satisfies no integer polynomial with degree less than 21
and Euclidean norm less than 5 · 1018.

1.3 A Recursive Sequence Problem

The following problem on a recursively defined sequence appeared in American
Mathematical Monthly (Problem 10901, [58]). We will describe here how the
problem, which really is a problem about functional equations, can be solved via
the experimental approach.

Problem: Let a1 = 1,

a2 =
1

2
+

1

3
, a3 =

1

3
+

1

7
+

1

4
+

1

13
,

a4 =
1

4
+

1

13
+

1

8
+

1

57
+

1

5
+

1

21
+

1

14
+

1

183
,

and continue the sequence, constructing an+1 by replacing each fraction 1/d in
the expression for an with 1/(d + 1) + 1/(d2 + d + 1). Compute limn→∞ an.

Solution: We first observe that if s0(x) = 1/x and sn+1(x) = sn(x+1)+sn(x2+
x + 1) for n ≥ 0, x > 0, then an = sn+1(1). What do these functions sn(x) look
like? Like s0(x), the plots of successive sn(x) resemble reciprocal functions. If we
instead examine the functions sn(1/x), we find that these are fairly well behaved,
appearing to converge quickly to a smooth, monotone increasing function g(x)
(see Figure 1.2). Indeed, we find fairly good convergence (to roughly four decimal
places) for n = 25, by comparing s24(1/x) with s25(1/x). What is this function
g(x)?

Examining the sequence of calculated numerical values used for plotting,
we find that while g(x) = limn sn(1/x) is not defined at zero, it appears that
limx→0 g(x) = 0. Further, it appears that g′(0) = 1, g(1) ≈ 0.7854 and
g′(1) = 1/2. Needless to say, the value 0.7854 is an approximation to π/4.
These observations suggest that perhaps g(x) = arctan x.
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Figure 1.2: Convergence of sn(1/x) to g(x)
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Let f(x) = arctan(1/x) for x > 0. By applying the addition formula for the
tangent, we note that

tan[f(x + 1) + f(x2 + x + 1)] =

1

x + 1
+

1

x2 + x + 1

1− 1

x + 1
· 1

x2 + x + 1

=
1

x
= tan[f(x)].

This means that f(x) satisfies f(x) = f(x + 1) + f(x2 + x + 1), confirming that
we are on the right track. In fact, we are finished if we can show that sn(x)
converges pointwise to f(x).

To demonstrate this, we first verify that the function E(x) = 1/(x f(x))
decreases strictly to 1 as x → ∞. By differentiation, it suffices to show that
− arctan(x) + x/(x2 + 1) < 0. But this follows since − arctan(x) + x/(x2 + 1) is
strictly decreasing (its derivative is −2x2/(x2 +1)2), and it starts at 0 for x = 0.

The second step is to show that for all x > 0, we have

f(x) ≤ sn(x) ≤ f(x) · E(x + n). (1.3.15)

For n = 0 this is merely the condition xf(x) ≤ 1. Now if (1.3.15) holds for some
n > 0, then we infer

f(x + 1) ≤ sn(x + 1) ≤ f(x + 1) · E(x + n + 1),

and (using the monotonicity of E)

f(x2 + x + 1) ≤ sn(x2 + x + 1) ≤ f(x2 + x + 1) · E(x2 + x + 1 + n)

≤ f(x2 + x + 1) · E(x + n + 1).

Adding (and using the functional equation for f), we obtain (1.3.15) for n + 1.
These facts together imply limn→∞ sn(x) = f(x) for each x > 0.

Thus we have demonstrated here that an → π/4 [58]. 2

An extension of these methods leads to the following theorem:

Theorem 1.3.1 Let A = {s : R+ → R : limx→∞ x s(x) = 1} and define a
mapping T : A → A by (Ts)(x) = s(x + 1) + s(x2 + x + 1) for s ∈ A. Then
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the sequence (sn) defined by the iteration sn+1 = Tsn converges pointwise to
f(x) = arctan(1/x), for every s0 ∈ A. Equivalently, every orbit of T converges
pointwise to f , which is the unique fixed point of T in A.

Proof. Define e(x) = infy≥x s0(y)/f(y) and E(x) = supy≥x s0(y)/f(y). Then
f(x) e(x) ≤ s0(x) ≤ f(x) E(x) for all x > 0, while e(x) increases to 1 and E(x)
decreases to 1 as x →∞. Now the same induction as in Step 2 above gives us

f(x) e(x + n) ≤ sn(x) ≤ f(x) E(x + n) for all n ≥ 0, x > 0.

This implies sn(x) → f(x) for x > 0. This argument, slightly modified, also
shows that f(x) = arctan(1/x) is the unique fixed point of T in A. 2

The same procedure works for 1/x → 1/(x+y)+y/(x2+xy+1), for 0 < y ≤ 1.
More generally, there are similar functional equations for other inverse functions.
Thus, for l(x) = log(1 + 1/x) the equation is

l(x) = l(2x + 1) + l(2x).

The corresponding iteration, for x = 1, starting with s0(x) = 1/x, produces the
classical result

2n+1−1∑

k=2n

1/k → log(2) as n →∞.

Similarly, for τ(x) = arctanh(1/x) = 1
2
log((1 + x)/(1 − x)), the functional

equation is

τ(x) = τ(x + 1) + τ(x2 + x− 1),

for x > 1. Likewise for σ = x 7→ arcsinh(1/x) we have

σ(x) = σ
(√

x2 + 1
)

+ σ
(
x
√

x2 + 1
(√

x2 + 1 +
√

x2 + 2
))

.

And, for ρ(x) = arcsin(1/x), we have

ρ(x) = ρ
(√

x2 + 1
)

+ ρ
(
x
√

x2 + 1
(
x +

√
x2 − 1

))
,



12 CHAPTER 1. SEQUENCES, SERIES, PRODUCTS AND INTEGRALS

for all x ≥ 1.
For these four functional equations, the result corresponding to Theorem

1.3.1 can be established. In fact, the basic inequality corresponding to Step 2
above for the last two functions would read

f(x) · e(
√

x2 + n) ≤ sn(x) ≤ f(x) · E(
√

x2 + n),

for x ≥ 1, where sn is defined, as before, by s0 ∈ A and

sn+1(x) = sn(
√

x2 + 1) + sn

(
x
√

x2 + 1
(√

x2 + 1 +
√

x2 + 2
))

in the case of σ, and

sn+1(x) = sn(
√

x2 + 1) + sn

(
x
√

x2 + 1
(
x +

√
x2 − 1

))

in the case of ρ. By contrast,

ρ(x) = ρ

(
x2

(x− 1)
√

x2 − 1 +
√

2 x− 1

)
− ρ

(
x

x− 1

)

is another functional equation for arcsin(1/x) which does not have convergent
orbits.

1.4 High Precision Fraud

Consider the sums

∞∑
n=1

bn tanh(π)c
10n

?
=

1

81
,

an evaluation which is wrong but valid to 268 decimal places, and

∞∑
n=1

bn tanh(π/2)c
10n

?
=

1

81
,

which is valid to “only” 12 places. Both series actually evaluate to transcendental
numbers.
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What underlies these “fraudulent” evaluations? The “quick” reason is that
tanh(π) and tanh(π/2) are almost integers, with, e.g., 0.99 < tanh(π) < 1.
Therefore, bn tanh(π)c will be equal to n − 1 for many n; precisely for n =
1, · · · , 268. Since

∞∑
n=1

n− 1

10n
=

1

81
,

this explains the evaluations. Looking more closely at this argument, one is
directly led to continued fractions as the deeper reason behind the frauds. For
any irrational positive α, we can write

α = [a0, a1, · · · , an, an+1, · · · ]
= a0 +

1

a1 +
1

a2 +
1

a3 + · · ·

,

with integral an and a0 ≥ 0, an ≥ 1 for n ≥ 1. This is hard to compute by
hand, but easy even on a small computer or calculator. For the parameters in
our series, we get

tanh(π) = [0, 1,267, 4, 14, 1, 2, 1, 2, 2, 1, 2, 3, 8, 3, 1, · · · ]
(1.4.16)

and

tanh
(π

2

)
= [0, 1,11, 14, 4, 1, 1, 1, 3, 1, 295, 4, 4, 1, 5, 17, 7, · · · ].

(1.4.17)

It cannot be a coincidence that the integers 267 and 11 (each equal to the
number of places of agreement with 1/81 in the respective formula) appear
in these expansions! There must be a connection between series of the type∑ bnαc zn and the continued fraction expansion of an irrational α. In fact,
consider the infinite continued fraction approximations for α generated by

pn+1 = pnan+1 + pn−1, p0 = a0 = bαc, p−1 = 1,
qn+1 = qnan+1 + qn−1, q0 = 1, q−1 = 0.
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Then for n ≥ 0, p2n/q2n increases to α, while p2n+1/q2n+1 decreases to α and

1

qn (qn + qn+1)
<

∣∣∣∣α−
pn

qn

∣∣∣∣ <
1

qn qn+1

.

Let further εn = qnα− pn. Then from the above it follows that

|εn+1| < 1

qn + qn+1

< |εn| < 1

qn+1

≤ 1.

All of this is standard and may be found in [132], [207], or [174]. Our aim now
is to show a relationship between the above series and the continued fraction
expansion of α. A first key is the following lemma, which we will not prove here
since it requires some knowledge about linear Diophantine equations (cf. [47],
where this material is taken from).

Lemma 1.4.1 For any irrational α > 0 and n,N ∈ N, we have

bnα + εNc = bnαc for n < qN+1,
bnα + εNc = bnαc+ (−1)N for n = qN+1.

Theorem 1.4.2 For irrational α > 0,
∞∑

n=1

bnαczn =
p0 z

(1− z)2
+

∞∑
n=0

(−1)n zqnzqn+1

(1− zqn) (1− zqn+1)
.

Proof. Let

Gα(z, w) =
∞∑

n=1

zn wbnαc, (1.4.18)

for |z|, |w| < 1. Then for N > 0,

(1− zqN wpN ) Gα(z, w)−
qN∑
n=1

znwbnαc

=
∞∑

n=1

zn+qN
(
wb(n+qN )αc − wbnαc+pN

)

=
∞∑

n=1

zn+qN wbnαc+pN
(
wbnα+εN c−bnαc − 1

)

= zqN+1+qN wbqN+1 αc+pN

(
w(−1)N − 1

)
+ O(zqN+1+qN+1)

= zqN+1+qN wpN+1+pN (−1)N w − 1

w
+ O(zqN+1+qN+1), (1.4.19)
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since bqN+1αc = bεN+1c + pN+1 = pN+1 if N is odd, and = pN+1 − 1 if N is
even.

Now write PN =
∑qN

n=1 zn wbnαc and QN = 1 − zqN wpN . Then AN =
QNPN+1 − QN+1PN is a polynomial of degree at most qN + qN+1 in z, and
therefore it follows from (1.4.19) that

AN = QN+1(QNGα − PN)−QN(QN+1Gα − PN+1)

= (−1)N w − 1

w
zqN wpN zqN+1wpN+1 .

This in turn implies

PN+1

QN+1

− PN

QN

=
AN

QNQN+1

= (−1)N w − 1

w

zqN wpN zqN+1wpN+1

QNQN+1

.

Next summing from zero to infinity, and noting that (1.4.19) implies that Gα −
PN/QN tends to 0 as N tends to infinity, shows that

Gα(z, w) =
zwp0

1− zwp0
− 1− w

w

∞∑
n=0

(−1)n zqnwpnzqn+1wpn+1

(1− zqnwpn) (1− zqn+1wpn+1)
.

Now differentiating with respect to w and then letting w tend to 1 proves the
assertion. 2

This theorem was first proved (for α ∈ (0, 1)) by Mahler in [157].

Example 1.4.3 α = tanh(π).

In this case, qn = 1, 1, 268, 1073, · · · for n = 0, 1, 2, 3, · · · , and thus

∞∑
n=1

bn tanh(π)czn =
z2

(1− z)2
− z269

(1− z)(1− z268)
+ · · · .

Therefore,

1

81
− 2 · 10−269 ≤

∞∑
n=1

bn tanh(π)c
10n

≤ 1

81
+ 2 · 10−269,

and similarly for α = tanh(π
2
). 2
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Example 1.4.4 α = eπ
√

163/9.

With one of our favorite transcendental numbers, α = eπ
√

163/9 = [640320,
1653264929, · · · ], we get the incorrect evaluation

∞∑
n=1

bneπ
√

163/9c
2n

?
= 1280640,

which is, however, correct to at least half a billion digits. 2

Example 1.4.5 α = log10(2).

In this case, bnαc + 1 is the number of decimal digits of 2n. Then qn =
1, 3, 10, 93, · · · for n = 0, 1, 2, 3, · · · , and as a result the transcendental num-
ber

∑bn log10(2)c/2n is equal to 146/1023 to 30 decimal digits. Interestingly,
if e(n), respectively o(n), count the number of even, respectively odd, decimal
digits of n, then

∞∑
n=1

o(2n)

2n
=

1

9

is rational, while

∞∑
n=1

e(2n)

2n
=

∞∑
n=1

bn log10(2)c+ 1

2n
−

∞∑
n=1

o(2n)

2n

is transcendental. We will not prove the transcendency result here, but the
evaluation for the sum with o(2n) follows in the next theorem. 2

Theorem 1.4.6 If o(n) counts the odd decimal digits of n, then

∞∑
n=1

o(2n)

2n
=

1

9
.
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Proof. Let 0 < q < 1 and m ∈ N, m > 1, and consider the base-m expansion
of q,

q =
∞∑

n=1

an

mn
with 0 ≤ an < m,

where when ambiguous we take the terminating expansion. Then an is the
remainder of bmnqc modulo m, and therefore we can just as well write

q =
∞∑

n=1

bmnqc (mod m)

mn
. (1.4.20)

Now let F (q) =
∑∞

k=1 ckq
k be a power series with radius of convergence 1.

Then for 0 < q < 1, from (1.4.20) we get, by exchanging the order of summation
(as is valid within the radius of convergence),

F (q) =
∞∑

k=1

ck qk =
∞∑

k=1

ck

∞∑
n=1

bmnqkc mod m

mn
=

∞∑
n=1

f(n)

mn
,

with f(n) =
∑

k≥1 ck

(bmnqkc mod m
)
. Now if q = 1/b, where b is an integer

multiple of m, then bmn/bkc mod m is the k-th digit (mod m) of the base-b
expansion of the integer mn. (Here we start the numbering of the digits with 0,
e.g., the 0-th digit of 1205 is 5.) Thus for F (q) = q/(1 − q) and m = 2 (and b
even), f(n) counts the odd digits in the base-b expansion of 2n. For b = 10, we
have f(n) = o(2n), and we obtain

1

9
= F

(
1

10

)
=

∞∑
n=1

o(2n)

2n
.

2

1.5 Knuth’s Series Problem

We give an account here of the solution, by one of the present authors (Borwein)
to a problem recently posed by Donald E. Knuth of Stanford University in the
American Mathematical Monthly (Problem 10832, Nov. 2000):
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Problem: Evaluate

S =
∞∑

k=1

(
kk

k!ek
− 1√

2πk

)
.

Solution: We first attempted to obtain a numerical value for S. Maple produced
the approximation

S ≈ −0.08406950872765599646.

Based on this numerical value, the Inverse Symbolic Calculator, available at the
URL http://www.cecm.sfu.ca/projects/ISC, with the “Smart Lookup” feature,
yielded the result

S ≈ −2

3
− 1√

2π
ζ

(
1

2

)
. (1.5.21)

Calculations to even higher precision (50 decimal digits) confirmed this approx-
imation. Thus within a few minutes we “knew” the answer.

Why should such an identity hold? One clue was provided by the surprising
speed with which Maple was able to calculate a high-precision value of this slowly
convergent infinite sum. Evidently the Maple software knew something that we
did not. Peering under the covers, we found that Maple was using the Lambert
W function, which is the functional inverse of w(z) = zez.

Another clue was the appearance of ζ(1/2) in the above experimental identity,
together with an obvious allusion to Stirling’s formula in the original problem.
This led us to conjecture the identity

∞∑

k=1

(
1√
2πk

− P (1/2, k − 1)

(k − 1)!
√

2

)
=

1√
2π

ζ

(
1

2

)
, (1.5.22)

where P (x, n) denotes the Pochhammer function x(x + 1) · · · (x + n − 1), and
where the binomial coefficients in the LHS of (1.5.22) are the same as those of
the function 1/

√
2− 2x. Maple successfully evaluated this summation, as shown

on the RHS. We now needed to establish that

∞∑

k=1

(
kk

k!ek
− P (1/2, k − 1)

(k − 1)!
√

2

)
= −2

3
.
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Guided by the presence of the Lambert W function

W (z) =
∞∑

k=1

(−k)k−1zk

k!
,

an appeal to Abel’s limit theorem suggested the conjectured identity

lim
z→1

(
dW (−z/e)

dz
+

1

2− 2z

)
= 2/3.

Here again, Maple was able to evaluate this summation and establish the identity.
2

As can be seen from this account, the above manipulation took considerable
human ingenuity, in addition to computer-based symbolic manipulation. We
include this example to highlight a challenge for the next generation of math-
ematical computing software—these tools need to more completely automate
this class of operations, so that similar derivations can be accomplished by a
significantly broader segment of the mathematical community.

1.6 Ahmed’s Integral Problem

The same comments apply to an “experimental” solution to a problem posed by
Zafar Ahmed in the American Mathematical Monthly [3]:

Problem: Evaluate

F =

∫ 1

0

arctan
(√

x2 + 2
)

√
x2 + 2 (x2 + 1)

dx.

Solution: Since presently available symbolic computing software is unable to
produce a closed-form evaluation, we try to identify the integral via its numerical
value,

F ≈ 0.51404189589007076139762973957688287.

The Inverse Symbolic Calculator (with the integer relations algorithm clicked on)
declares that this number matches 5π2/96. A test to higher precision confirms
this evaluation.



20 CHAPTER 1. SEQUENCES, SERIES, PRODUCTS AND INTEGRALS

It remains to prove the experimentally well-founded conjecture

F =
5

96
π2.

An idea is needed, which, as always, takes more human insight than any com-
puter algebra system (at present) has built in. However, such a system can
help to quickly identify promising starting points—and it can then carry out the
symbolic manipulations which, taken together, constitute a proof. One possible
starting point for this problem is to generalize: Using Maple, set

> assume(x>0,p>0); interface(showassumed=0);
> g := arctan(p*sqrt(x^2+2))/sqrt(x^2+2)/(x^2+1);

g =
arctan(p

√
x2 + 2)√

x2 + 2 (x2 + 1)

> G := Int(g(x,p),x=0..1);

G =

∫ 1

0

arctan(p
√

x2 + 2)√
x2 + 2 (x2 + 1)

dx,

so that F = G(1). On the other hand,

> diff(g,p);

1

(1 + p2 (x2 + 2)) (x2 + 1)

is a rational function in x and p, so that it may pay to write

F = G(1) =

∫ 1

0

∫ 1

0

∂g(x, p)/∂p dp dx =

∫ 1

0

∫ 1

0

∂g(x, p)/∂p dx dp,

where the exchange of order of integration is justified by Fubini’s (Tonelli’s)
theorem. Thus we are led to

> int(diff(g,p),x=0..1);



1.6. AHMED’S INTEGRAL PROBLEM 21

1

4

−4p arctan

(
p√

1 + 2p2

)
+ π

√
1 + 2p2

(p2 + 1)
√

1 + 2p2

> map(int,expand(int(diff(g,p),x=0..1)),p=0..1);

∫ 1

0

−
p arctan

(
p√

1 + 2p2

)

(p2 + 1)
√

1 + 2p2
dp +

1

16
π2

> G1 := map(int,expand(int(diff(g,p),x=0..1)),p=0..1)-Pi^2/16;

G1 =

∫ 1

0

−
p arctan

(
p√

1 + 2p2

)

(p2 + 1)
√

1 + 2p2
dp

and F = G1 + π2/16. Now using arctan(y) + arctan(1/y) = π/2 for y > 0 and
then doing a change of variables x = 1/p, we obtain

> G2:=subs(arctan(p/sqrt(1+2*p^2))=Pi/2-arctan(sqrt(1+2*p^2)/p),G1);

G2 =

∫ 1

0

−
p

(
1

2
π − arctan

(√
1 + 2p2

p

))

(p2 + 1)
√

1 + 2p2
dp

> G3:=map(int,expand(op(1,G2)),p=0..1);

G3 = − 1

24
π2 +

∫ 1

0

p arctan

(√
1+2p2

p

)

(p2 + 1)
√

1 + 2p2
dp

> G4:=simplify(student[changevar](x=1/p,G3,x));
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G4 = − 1

24
π2 +

∫ ∞

1

arctan
(√

x2 + 2
)

(x2 + 1)
√

x2 + 2
dx

> H:=G4+Pi^2/24;

H =

∫ ∞

1

arctan
(√

x2 + 2
)

(x2 + 1)
√

x2 + 2
dx

so that F = G1 + π2/16 = G4 + π2/16 = H + π2/48. This evaluates F −H =
π2/48. This suggests we also evaluate

F + H =

∫ ∞

0

∫ 1

0

∂g(x, p)/∂p dp dx =

∫ 1

0

∫ ∞

0

∂g(x, p)/∂p dx dp.

Indeed,

> int(diff(g,p),x=0..infinity);

−1

2

π
(
p +

√
1− 2p2

)

(p2 + 1)
√

1 + 2p2

> FpH := int(int(diff(g,p),x=0..infinity),p=0..1);

FpH =
1

12
π2.

Now the result is proved by

> solve({f-h=Pi^2/48,f+h=Pi^2/12},{f,h});

{f =
5

96
π2, h =

1

32
π2}.

2
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Generalization: We note that in the same fashion we can evaluate
∫ 1

0

arctan(
√

x2 + b2)√
x2 + b2 (x2 + 1)

dx−
∫ ∞

1

arctan(
√

x2 + b2)√
x2 + b2 (−1 + x2 + b2)

dx

=
3

4

π arctan(
√

b2 − 1)√
b2 − 1

− 1

2

π arctan(
√

b4 − 1)√
b2 − 1

,

∫ 1

0

arctan(
√

x2 + b2)√
x2 + b2 (x2 + 1)

dx +

∫ ∞

1

arctan(
√

x2 + b2)√
x2 + b2 (x2 + 1)

dx

=
π arctan(

√
b2 − 1)√

b2 − 1
− 1

2

π arctan(
√

b4 − 1)√
b2 − 1

,

and for b =
√

2 this yields the previous closed form. Moreover, for b = 1,

∫ 1

0

arctan(
√

x2 + 1)

(x2 + 1)3/2
dx =

(
1

4
−
√

2

2

)
π +

3

2

√
2 arctan(

√
2),

and for b = 0,
∫ 1

0

arctan(x)

x (x2 + 1)
dx =

G

2
+

1

8
π log(2),

where G is Catalan’s constant.

1.7 Evaluation of Binomial Series

A classical binomial series, derived from the arctan series, and given in [44], is

∑
n≥1

−9n + 18(
2n
n

) = 2
π√
3
. (1.7.23)

A more modern sum, due to Bill Gosper [124], is

∑
n≥0

50n− 6(
3n
n

)
2n

= π. (1.7.24)

In [7], whole classes of formulas for π of this type are proved, such as

∑
n≥0

Sk(n)(
8kn
4kn

)
(−4)kn

= π,
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where Sk(n) is a polynomial in n of degree 4k with rational coefficients, explicitly
computable (for fixed k).

Motivated by such results, we shall consider here the following two families
of sums:

b2(k) =
∑
n≥1

nk

(
2n
n

) ,

b3(k) =
∑
n≥1

nk

(
3n
n

)
2n

,

for k ∈ Z. We shall record closed forms for the sums b2(k) and recursion formulas
for the sums b3(k), both in the case of positive k. These were discovered with
the help of integer relation and similar methods, described below. The case of
negative k is more complex; we shall finish with some primarily experimental
results. This material is taken from [54] (for b2(k) with negative k) and from
[59].

The key observation is that the sums have integral representations involving
the polylogarithms Lp(z) =

∑
n>0 zn/np, see [61]. Using the following properties

of the β-function (see Section 5.4 of the first volume):

1(
2n
n

) = (2n + 1) β(n + 1, n + 1) = nβ(n, n + 1) and

1(
3n
n

) = (3n + 1) β(2n + 1, n + 1) = nβ(2n + 1, n) = 2nβ(2n, n + 1),

we find that

b2(k) =

∫ 1

0

L−k(x(1− x)) + 2 L−k−1(x(1− x)) dx (1.7.25)

=

∫ 1

0

L−k−1(x(1− x))

x
dx,

and

b3(k) =

∫ 1

0

L−k

(
x2(1− x)

2

)
+ 3 L−k−1

(
x2(1− x)

2

)
dx (1.7.26)

=

∫ 1

0

L−k−1

(
x2(1−x)

2

)

1− x
dx = 2

∫ 1

0

L−k−1

(
x2(1−x)

2

)

x
dx.
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For fixed k ≥ 0, these integrals are easy to compute symbolically in Maple and
(with some additional effort) in Mathematica.

1.7.1 The Case of Non-Negative k

For integer k ≥ 0, L−k(x) is clearly a rational function, and it is useful to write
it as a partial fraction

L−k(x) =
k+1∑
j=1

ck
j

(x− 1)j
.

Since x dL−k(x)/dx = L−k−1(x), we may obtain the recursion

ck
j = − (

j ck−1
j + (j − 1) ck−1

j−1

)
. (1.7.27)

Let

M2(k, x) = L−k(x) + 2 L−k−1(x)

M3(k, x) = L−k(x) + 3 L−k−1(x).

We may then easily verify that the coefficients of the partial fraction of M2 and
M3 are governed by recursion (1.7.27) with initial conditions given by c0

1(2) =
1, c0

2(2) = 2, c0
j(2) = 0 otherwise and c0

1(3) = 2, c0
2(3) = 3, c0

j(3) = 0 otherwise,
respectively.

This in turn is easily verified—by hand or in a computer algebra system—to
yield

ck
j (2) =

(−1)k+j

j

j∑
m=1

(−1)m (2m− 1) mk+1

(
j

m

)
, (1.7.28)

ck
j (3) =

(−1)k+j

j

j∑
m=1

(−1)m (3m− 1) mk+1

(
j

m

)
.

As is often the case, this is somewhat easier to verify than to find.
Next we observe that the values of the integrals in (1.7.25) and (1.7.26) are

of the form

b2(k) =
∑

j

ck
j (2)

∫ 1

0

(1− x(1− x))−j dx
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and

b3(k) =
∑

j

ck
j (3)

∫ 1

0

(
1− x2(1− x)/2

)−j
dx, (1.7.29)

respectively. So we set ourselves the task of hunting for a recursion for

d2(j) =

∫ 1

0

(1− x(1− x))−j dx

and for

d3(j) =

∫ 1

0

(
1− x2(1− x)/2

)−j
dx.

By computing the first few cases, we determine that d2(j) is a rational com-
bination of 1 and π/

√
3, while d3(j) is a rational combination of 1, log 2 and

π. Thus it is reasonable to hunt for two-term recursions for d2 and three-term
recursions for d3.

Now integer relation computations come to the rescue. We look for relations
between d2(p), d2(p + 1), and d2(p + 2), say for 0 ≤ p ≤ 4, and are rewarded by
the relations [2, 2,−3], [−2, 9,−6], [6,−16, 9], [−10, 23,−12], [14,−30, 15]. By
inspection we have d2(0) = 1, d2(1) = 2π/(3

√
3) and

(4p− 10) d2(p− 2)− (7p− 12) d2(p− 1) + (3p− 3) d2(p) = 0 (1.7.30)

for p ≥ 2.
For d3, we look for four-term relations between d3(p), d3(p+1), d3(p+2) and

d3(p + 3), and we return [−3,−24, 78,−50], [−24, 183,−310, 150], [−105, 500,
−696, 300], [240,−975, 1236,−500], [−429, 1608,−1930, 750]. A little more in-
tense pattern matching leads to d3(0) = 1, d3(1) = 3 log(2)/5 + π/5, d3(2) =
9/25 + 48 log(2)/125 + 37π/250, while d3(3) = 627/1250 + 972 log(2)/3125 +
843π/6250, as is predicted by

3(3p− 10)(3p− 8) d3(p− 3)− (79(p− 2)(p− 3) + 21 + p) d3(p− 2) (1.7.31)

+ (77p− 153)(p− 2) d3(p− 1)− 25(p− 1)(p− 2) d3(p) = 0

for p ≥ 3.
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In each case once discovered one can prove the recursion by considering the
indefinite integral from 0 to t, which Mathematica and Maple can perform. One
may then verify that the integral has a zero at t = 1. We illustrate this for the
case N = 2. We combine the integrals in (1.7.30) and consider

∫ t

0

4p− 10

(1− x(1− x))p−2
− 7p− 12

(1− x(1− x))p−1
+

3p− 3

(1− x(1− x))p
dx (1.7.32)

= −(2t− 1)(t− 1)t

(1− t + t2)p−1
.

If we differentiate this last expression back and simplify we recover the integrand
as required. Since the right-hand side of (1.7.32) has a zero at t = 1 we are done.
Similarly for (1.7.31), and it is to assure the zero at t = 1 that the factor of 1/2n

is needed.

The quantities d2(j) (and therefore also the b2(k)) can in fact be computed
explicitly (but this realization for us came after having found the recursion). To
find the explicit formula, substitute y = 2x− 1 in the integral d2(j) to get

d2(j) = 4j

∫ 1

0

1

(3 + x2)j
dx.

This satisfies the recursion d2(1) = 2π/(3
√

3) and

d2(j + 1) =
2

3j
(1 + (2j − 1) d2(j)) .

This leads to the explicit representation

d2(j) =
1

3j

(
2j − 2

j − 1

)
·
(

j−1∑
i=1

3i

(2i− 1)
(
2i−2
i−1

) +
2√
3

π

)
.

Putting this together with formula (1.7.28) and simplifying as much as possible
gives

b2(k − 1) =
(−1)k

2

k∑
j=1

(−1)jj!S(j)
k

(
2j
j

)

3j

(
j−1∑
i=0

3i

(2i + 1)
(
2i
i

) +
2

3
√

3
π

)
,
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for k ≥ 1, where S(j)
k are the Stirling numbers of the second kind,

S(j)
k =

(−1)j

j!

j∑
m=0

(−1)m mk

(
j

m

)
.

For a similar explicit formula for b3(k), we would need to evaluate the inte-
grals d3(j) explicitly. This would involve doing the partial fraction decomposition
of the integrand 1/[(1 + x)j(x2 − 2x + 2)j], and while possible in principle, it
leads to such unwieldy recursions that we have refrained from doing that.

To recapitulate, we have now proven that

b2(k) = pk + qk
π√
3
,

with explicitly given rationals pk, qk, and

b3(k) = rk + sk π + tk log 2,

with certain rationals rk, sk, tk, for which we have very efficient iterations. Ex-
plicitly,

∑
n≥1

1(
2n
n

) =
1

3
+

2

9

π√
3
,

∑
n≥1

n(
2n
n

) =
2

3
+

2

9

π√
3
,

∑
n≥1

n2

(
2n
n

) =
4

3
+

10

27

π√
3
,

∑
n≥1

1(
3n
n

)
2n

=
2

25
− 6

125
log(2) +

11

250
π,

∑
n≥1

n(
3n
n

)
2n

=
81

625
− 18

3125
log(2) +

79

3125
π,

∑
n≥1

n2

(
3n
n

)
2n

=
561

3125
+

42

15625
log(2) +

673

31250
π.
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In particular, we can deduce, by elimination, that (1.7.23) and (1.7.24) hold,
and we can deduce the corresponding formulas

∑
n≥1

−150n2 + 230n− 36(
3n
n

)
2n

= π,

∑
n≥1

575n2 − 965n + 273(
3n
n

)
2n

= 6 log 2.

Moreover, the recursions derived for b2(k) and b3(k), namely b2(k) =
∑

j ck
j (2)d2(j)

and b3(k) =
∑

j ck
j (3)d3(j), are sufficiently concise that we can compute symbolic

values such as those of b3(200) or of b2(300) in a few seconds.

Without the factor of 1/2n, the sum b3 would not have such an evalua-
tion in terms of simple constants. In general, the position of the poles of
L−k(ax2(1− x)), i.e., of the zeros of fa(x) = 1 − ax2(1 − x), determines the
evaluation of

∑
an nk/

(
3n
n

)
. If fa has a sufficiently simple factorization, then

we can expect an evaluation of the sum in terms of more basic constants. For
example, with a = −1/4, we get (using Maple to evaluate the integral)

∑
n≥1

(−1)n

(
3n
n

)
4n

= − 1

28
− 3

32
log(2) +

13

112

arctan
(√

7
5

)
√

7
,

∑
n≥1

(−1)n n(
3n
n

)
4n

= − 81

1568
− 9

256
log(2) +

17

6272

arctan
(√

7
5

)
√

7
,

while for a = 1 Maple returns an expression which can only be simplified to

∑
n≥1

1(
3n
n

) =
4

23
+

2

23

∑

23r3+55r+23=0

r log(1987− 598r + 621r2).

Similarly, the sums
∑

an nk/
(
2n
n

)
lead to similar recursions; for example the

classical

∑
n≥1

(−1)n nk

(
2n
n

) = rk + sk
arctanh(1/

√
5)√

5
,
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with appropriate rationals rk, sk. Another tractable example is the sum
∑

nk/
(
4n
2n

)
,

which has

∑
n≥1

nk

(
4n
2n

) = rk + sk
π√
3

+ tk
arctanh(1/

√
5)√

5
,

again for appropriate rationals.

1.7.2 Some Results for Negative k

For k = −1 and k = −2, the sums b2(k) and b3(k) can still be computed explicitly
via the integrals (1.7.25) and (1.7.26):

∑
n≥1

1

n
(
2n
n

) =
1

3

π√
3
,

∑
n≥1

1

n2
(
2n
n

) =
1

18
π2 =

ζ(2)

3
,

∑
n≥1

1

n
(
3n
n

)
2n

=
1

10
π − 1

5
log(2),

∑
n≥1

1

n2
(
3n
n

)
2n

=
1

24
π2 − 1

2
log(2)2.

For k < −2, however, it seems that the integrals have no accessible an-
tiderivative, so that a direct computation does not appear possible. One might
conjecture that the sums b3(k) then have no explicit reduction to simpler con-
stants, but that conjecture would be wrong. One just has to expand the range
of constants among which to hunt for a relation. In fact, it turns out that
multi-dimensional polylogarithms

La1,··· ,am(z) =
∑

n1>···>nm>0

zn1

na1
1 · · ·nam

m

(with positive integers aj) will appear in the evaluations, for suitable z. For
example, some of the relations proved in [54], as part of a more comprehensive



1.7. EVALUATION OF BINOMIAL SERIES 31

analysis, are the following (note that Ln(1) = ζ(n)):

∑
n≥1

1

n3
(
2n
n

) =
2

3
π Im

(
L2(e

iπ/3)
)− 4

3
ζ(3),

∑
n≥1

1

n4
(
2n
n

) =
17

36
ζ(4),

∑
n≥1

1

n5
(
2n
n

) = 2π Im
(
L4(e

iπ/3)
)− 19

3
ζ(5) +

2

3
ζ(3)ζ(2),

∑
n≥1

1

n6
(
2n
n

) = −4

3
π Im

(
L4,1(e

iπ/3)
)

+
3341

1296
ζ(6)− 4

3
ζ2(3).

In [54, 59], the terms such as Im
(
L4,1(e

iπ/3)
)

were termed Clausen functions.

Motivated by these results, one may conjecture that also the sums b3(k) for
negative k can be evaluated in terms of multi-dimensional polylogarithms, with
suitable parameters and at suitable points z. To find the right parameters, we
employ integer relation detection schemes between the sums b3(k) and various
polylogarithms. This of course involves a lot of trial and error. But in the end,
the following evaluations are found by PSLQ.

None of these evaluations are proved yet. They are almost certainly true,
since they have been verified to at least 100 digits. Only the evaluation for b3(−3)
can be proved rigorously, by laborious polylog manipulations—the interested



32 CHAPTER 1. SEQUENCES, SERIES, PRODUCTS AND INTEGRALS

reader may feel challenged to try it.

∞∑
n=1

1

n3
(
3 n
n

)
2n

= −33

16
ζ (3) +

1

6
log3 (2)− 1

24
π2 log (2) + π Im (L2(i))

= −1

4
ζ(3) +

1

6
log3(2)− 1

24
π2 log(2)− 4 Re (L2,1(i))

= −39

16
ζ(3) +

1

8
π2 log(2)− 4 Re

(
L2,1(

1+i
2

)
)

+ 4 Re
(
L3(

1+i
2

)
)
,

∞∑
n=1

1

n4
(
3 n
n

)
2n

= −143

16
ζ(3) log(2) +

91

640
π4 − 3

8
log4(2) +

3

8
π2 log2(2)

− 8 L4(
1
2
)− 8 Re

(
L3,1(

1+i
2

)
)− 8 Re

(
L4(

1+i
2

)
)
,

∞∑
n=1

1

n5
(
3 n
n

)
2n

=
405

32
ζ(5) +

21

4
ζ(3) log2(2)− 1

10
π4 log(2)− 23

144
π2 log3(2)

− 13

8
π2ζ(3) +

1

240
log5(2)− 13 L5(

1
2
)− 25

2
L4,1(

1
2
)

+ 3 π Im (L4(i))− 16 Re
(
L4,1(

1+i
2

)
)

+ 16 Re
(
L5(

1+i
2

)
)
.

Note that Im(L2(i)) = G, namely Catalan’s constant.
Of course, there are still relations between the various polylogarithmic con-

stants employed here (as is evidenced, for example, by the different evalua-
tions for b3(−3); note also that L2(1/2) = π2/12 − log2(2)/2 and L3(1/2) =
7ζ(3)/8−π2 log(2)/12+ log3(2)/6). This means that evaluations other than the
ones given above are possible. We have tried to find those evaluations with the
smallest rational factors. Again, we must emphasize that the evaluations given
here are still conjectural.

1.8 Continued Fractions of Tails of Series

We have already seen several examples of continued fractions in this chapter—
see for example the formulas 1.4.16 and 1.4.17. In this section, we observe that
the tails of the Taylor series for many standard functions, such as arctan and log,
can be expressed as continued fractions in a variety of ways. A surprising side
effect is that some of these continued fractions provide dramatic accelerations for
the underlying power series. These investigations were motivated by a surprising
observation about Gregory’s series (see Sections 1.3 and 5.6.4 of the first volume).
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1.8.1 Gregory’s Series Reexamined

As discussed in Section 1.3 of the first volume, Gregory’s series for π,

π = 4
∞∑

k=1

(−1)k+1

2k − 1
= 4(1− 1/3 + 1/5− 1/7 + · · · ), (1.8.33)

when truncated to 5,000,000 terms, gives a value that differs strangely from the
true value of π:

3.14159245358979323846464338327950278419716939938730582097494182230781640...
3.14159265358979323846264338327950288419716939937510582097494459230781640...

2 -2 10 -122 2770

The series value differs, as one might expect from a series truncated to 5,000,000
terms, in the seventh decimal place—a “4” where there should be a “6”. But the
next 13 digits are correct! Then, following another erroneous digit, the sequence
is once again correct for an additional 12 digits. This pattern continues as shown.
It is explained, ex post facto, by substituting N = 107 in the result below:

Theorem 1.8.1 For integer N divisible by 4 the following asymptotic expansion
holds:

π

2
− 2

N/2∑

k=1

(−1)k−1

2k − 1
∼

∞∑
m=0

E2m

N2m+1
(1.8.34)

=
1

N
− 1

N3
+

5

N5
− 61

N7
+ · · · ,

where the coefficients are the even Euler numbers 1, −1, 5, −61, 1385, −50521 · · · .

The observation on the digits in the Gregory series arrived in the mail from
Joseph Roy North in 1987. After verifying its truth numerically (which is much
quicker today), it was an easy matter to generate a large number of the “errors”
to high precision. The authors of [37] then recognized the sequence of errors
above as the Euler numbers—with the help of Sloane’s Handbook of Integer
Sequences. The presumption that this sequence of errors is a form of Euler-
Maclaurin summation is now formally verifiable for any fixed N in Maple. This
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allowed them to determine that this phenomenon is equivalent to a set of identi-
ties between Bernoulli and Euler numbers, which could with considerable effort
have been established. Secure in the knowledge that this observation holds, it is
then easier, however, to use the Boole summation formula, which applies directly
to alternating series and Euler numbers (see [37]). Because N was a power of
ten, the asymptotic expansion was obvious on the computer screen.

This is a good example of a phenomenon that really does not become appar-
ent without working to reasonably high precision (who recognizes 2, −2, 10?),
and which highlights the role of pattern recognition and hypothesis validation
in experimental mathematics.

It was an amusing additional exercise to compute π to 5, 000 digits from
the Gregory series. Indeed, with N = 200, 000 and correcting using the first
thousand even Euler numbers, Borwein and Limber [62] obtained 5, 263 digits
of π (plus 12 guard digits). Thus, while the alternating Gregory series is very
slowly convergent, the errors are highly predictable.

1.8.2 Euler’s Continued Fraction

Identities such as

a0 + a1 + a1a2 + a1a2a3 + a1a2a3a4 (1.8.35)

= a0 +
a1

1− a2

1 + a2 − a3

1 + a3 − a4

1 + a4

are easily verified symbolically. The general form can then be obtained by sub-
stituting aN + aN aN+1 for aN and checking that the shape of the right hand
side is preserved. This allows many series to be reexpressed as finite continued
fractions. For example, with a0 = 0, a1 = x, a2 = −x2/3, a3 = −3x2/5, · · · we
obtain, in the limit, the continued fraction for arctan due to Euler:

arctan(x) =
x

1 +
x2

3− x2 +
9x2

5− 3x2 +
25x2

7− 5x2 + · · ·

. (1.8.36)
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When x = 1, this becomes the first continued fraction for 2/π given by Lord
Brouncker (1620–1684):

2

π
=

1

1 +
9

2 +
25

2 +
49

2 + · · ·

.

If we let a0 =
∑N

1 bk be the initial segment of a similar series, we may use
(1.8.35) to replace the next M terms, say, by a continued fraction. Applied to
arctan this leads to:

arctan(z) =
N∑

n=1

(−1)n−1 z2n−1

2n− 1
+

(−1)Nz2N+1

2N + 1
+

(2N + 1)2z2

(2N + 3)− (2N + 1)z2
+

(2N + 3)2z2

(2N + 5)− (2N + 3)z2
+

(2N + 5)2z2

(2N + 7)− (2N + 5)z2
+ · · · .

(1.8.37)

1.8.3 Gauss’s Continued Fraction

An immediately richer vein lies in Gauss’s continued fraction for the ration of

two hypergeometric functions
F(a, b + 1; c + 1; z)

F(a, b; c; z)
, see [207]. Recall that within

its radius of convergence, the Gaussian hypergeometric function is defined by

F(a, b; c; z) = 1 +
ab

c
z +

a(a + 1)b(b + 1)

c(c + 1)
z2

+
a(a + 1)(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2)
z3 + · · · . (1.8.38)

The general continued fraction is developed by a reworking of the contiguity
relation

F(a, b; c; z) = F(a, b + 1; c + 1; z)− a(c− b)

c(c + 1)
z F(a, b + 1; c + 2; z),
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and formally, at least, this is quite easy to derive. Convergence and convergence
estimates are more delicate. In the limit, for b = 0, this process yields

F(a, 1; c; z) =
1

1−
a
c
z

1−
(c−a)
c(c+1)

z

1−
c(a+1)

(c+1)(c+2)
z

1−
2(c−a+1)

(c+2)(c+3)
z

1−
(c+1)(a+2)
(c+3)(c+4)

z

1− · · ·

(1.8.39)

which is the case of present interest.
It is well known and easy to verify that log(1 + z) = z F(1, 1; 2;−z). It

is then a pleasant surprise to discover that log(1 + z) − z = 1
2
z2 F(2, 1; 3;−z),

log(1 + z)− z + 1
2
z2 = 1

3
z3 F(3, 1; 4;−z), and to conjecture that

log (1 + z) +
N−1∑
n=1

(−1)n zn

n
=

zN

N
F(N, 1; N + 1;−z). (1.8.40)

This is easy to first verify for a few cases and then confirm rigorously. As always,
a formula for log leads correspondingly to one for arctan:

arctan (z)−
N−1∑
n=0

(−1)n z2 n+1

2 n + 1
=

z2 N+1

2 N + 1
F

(
N +

1

2
, 1; N +

3

2
;−z2

)
.(1.8.41)

Happily, in both cases (1.8.39) is applicable—as it is for a variety of other
functions, including for example log[(1+z)/(1−z)], (1+z)k, and

∫ z

0
(1+ tn)−1 dt

= z F (1/n, 1; 1 + 1/n;−zn). Note that this last function recaptures log(1 + z)
and arctan(z) for n = 1 and 2 respectively.

We give the explicit continued fractions for (1.8.40) and (1.8.41) in the con-
ventional more compact form.

Theorem 1.8.2 Gauss’s continued fractions for log and arctan are:

log (1 + z) +
N−1∑
n=1

(−1)n zn

n
(1.8.42)

=
(−1)N+1zN

N +

N2z

N + 1 +

12z

N + 2 +

(N + 1)2z

N + 3 +

22z

N + 4 +
· · ·
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and

arctan (z)−
N−1∑
n=0

(−1)n z2 n+1

2 n + 1
(1.8.43)

=
(−1)Nz2N+1

2N + 1 +

(2N + 1)2z2

2N + 3 +

22z2

2N + 5 +

(2N + 3)2z2

2N + 7 +

42z2

2N + 9 +
· · · .

See [56] for details.
Suppose we return to Gregory’s series, but add a few terms of the contin-

ued fraction for (1.8.41). One observes numerically that if the results are with
N = 500, 000, adding only five terms of the continued fraction has the effect of
increasing the precision by more than 30 digits.

Example 1.8.3 Hypergeometric functions.

Let

E1(N, M, z) = log(1 + z)

−
(
−

N∑
n=1

(−z)n

n
− (−z)N+1

N + 1
FM(N + 1, 1; N + 2;−z)

)

E2(N, M, z) = arctan(z)

−
(
−

N−1∑
n=0

(−1)nz2n+1

2n + 1
− (−1)Nz2N+1

2N + 1
FM

(
N +

1

2
, 1; N +

3

2
;−z2

))
.

(1.8.44)

Then E1(N,M, z) and E2(N,M, z) measure the precision of the approxima-
tions to log(1 + z) and arctan(x) by the first N terms of Taylor series and then
adding M terms of their continued fractions respectively. Let

E∗(N,M) = E2(N,M, 1/2) + E2(N,M, 1/5) + E2(N,M, 1/8).

Tables 1.1, 1.2, 1.3, and 1.4 record the data for the approximations to the con-
stants log(1.9), log(2), arctan(1) and arctan(1/2)+arctan(1/5)+arctan(1/8) re-
spectively. Note that arctan(1) = arctan(1/2) + arctan(1/5) + arctan(1/8) is a
Machin formula we saw in Chapter 3 of the first volume. 2



38 CHAPTER 1. SEQUENCES, SERIES, PRODUCTS AND INTEGRALS

5× 10 5× 102 5× 103 5× 104

0 0.48× 10−4 0.13× 10−25 0.15× 10−232 0.13× 10−2292

1 0.43× 10−4 0.11× 10−25 0.14× 10−232 0.11× 10−2292

2 0.40× 10−8 0.11× 10−31 0.14× 10−240 0.11× 10−2302

M 3 0.34× 10−8 1.00× 10−32 0.12× 10−240 0.10× 10−2302

4 0.12× 10−11 0.40× 10−37 0.50× 10−248 0.41× 10−2312

5 0.10× 10−11 0.35× 10−37 0.45× 10−248 0.37× 10−2312

6 0.78× 10−15 0.31× 10−42 0.40× 10−255 0.33× 10−2321

Table 1.1: Error |E1(N,M, 0.9)| for N = 5× 10k(1 ≤ k ≤ 4) and 0 ≤ M ≤ 6

5× 10 5× 102 5× 103 5× 104 5× 105 5× 106

0 0.99× 10−2 1.00× 10−3 1.00× 10−4 1.00× 10−5 1.00× 10−6 1.00× 10−7

1 0.97× 10−2 1.00× 10−3 1.00× 10−4 1.00× 10−5 1.00× 10−6 1.00× 10−7

2 0.91× 10−6 1.00× 10−9 1.00× 10−12 1.00× 10−15 1.00× 10−18 1.00× 10−21

M 3 0.86× 10−6 1.00× 10−9 1.00× 10−12 1.00× 10−15 1.00× 10−18 1.00× 10−21

4 0.31× 10−9 0.39× 10−14 0.40× 10−19 0.40× 10−24 0.40× 10−29 0.40× 10−34

5 0.28× 10−9 0.39× 10−14 0.40× 10−19 0.40× 10−24 0.40× 10−29 0.40× 10−34

6 0.22× 10−12 0.34× 10−19 0.36× 10−26 0.36× 10−33 0.36× 10−40 0.36× 10−47

Table 1.2: Error |E1(N,M, 1)| for N = 5× 10k(1 ≤ k ≤ 6) and 0 ≤ M ≤ 6

5× 10 5× 102 5× 103 5× 104 5× 105 5× 106

0 0.50× 10−2 0.50× 10−3 0.50× 10−4 0.50× 10−5 0.50× 10−6 0.50× 10−7

1 0.48× 10−2 0.50× 10−3 0.50× 10−4 0.50× 10−5 0.50× 10−6 0.50× 10−7

2 0.44× 10−6 0.49× 10−9 0.50× 10−12 0.50× 10−15 0.50× 10−18 0.50× 10−21

M 3 0.42× 10−6 0.49× 10−9 0.50× 10−12 0.50× 10−15 0.50× 10−18 0.50× 10−21

4 0.15× 10−9 0.19× 10−14 0.20× 10−19 0.20× 10−24 0.20× 10−29 0.20× 10−34

5 0.14× 10−9 0.19× 10−14 0.20× 10−19 0.20× 10−24 0.20× 10−29 0.20× 10−34

6 0.10× 10−12 0.17× 10−19 0.18× 10−26 0.18× 10−33 0.18× 10−40 0.18× 10−47

Table 1.3: Error |E2(N + 1,M, 1)| for N = 5× 10k(1 ≤ k ≤ 6) and 0 ≤ M ≤ 6
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5× 10 5× 102

0 0.31× 10−32 0.37× 10−304

1 0.19× 10−33 0.23× 10−305

2 0.11× 10−37 0.15× 10−311

M 3 0.26× 10−38 0.37× 10−312

4 0.56× 10−42 0.92× 10−318

5 0.13× 10−42 0.23× 10−318

6 0.59× 10−46 0.13× 10−323

Table 1.4: Error |E∗(N, M)| for N = 5× 10k(1 ≤ k ≤ 2) and 0 ≤ M ≤ 6

After some further numerical experimentation, it is clear that for large a, c
the continued fraction F(a, 1, c; z) is rapidly convergent. And indeed the rough
rate is apparent. This is part of the content of the next theorem:

Theorem 1.8.4 ([56]) Suppose −1 ≤ z < 0, with a ≥ 2 and a + 1 ≤ c ≤ 2a.
Then the following error estimate holds for all M ≥ 2:

|F (a, 1, c; z)− FM(a, 1; c; z)|

≤ Γ(n + 1)(n + a)Γ(n + c− a)Γ(a)Γ(c)

Γ(n + a)Γ(n + c)aΓ(c− a)

(
2a

(c− 2)
(
1− 2

z

)
+ (2a− c)

)M

,

where n = bM/2c and FM(a, 1; c; z) is the M−th convergent of the continued
fraction to F (a, 1, c; z).

We leave it as an exercise to compare the estimates in Theorem 1.8.4 with
the computed errors in Tables 1.1 and 1.2 (using a = N and c = N + 1) and
Table 1.3 (using a = N + 1/2 and c = N + 3/2). The results are very good.

In [207], one can find listed many explicit continued fractions, which can be
derived from Gauss’s continued fraction or various of its limiting cases. These
include exp, tanh, tan and various less elementary functions. One especially at-
tractive fraction is that for Jn−1(z)/Jn(z) and In−1(z)/In(z), where J and I are
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Bessel functions of the first kind. In particular,

Jn−1(2z)

Jn(2z)
=

n

z
−

z
(n+1)

1−
z2

(n+1)(n+2)

1−
z2

(n+2)(n+3)

1− · · ·

. (1.8.45)

Setting z = i and n = 1 leads to the very beautiful continued fraction I1(2)/I0(2) =
[1, 2, 3, 4, · · · ]. In general, arithmetic simple continued fractions correspond to
such ratios.

An example of a more complicated situation is:

(2 z′)2 N+1 F
(
N + 1

2
, 1

2
; N + 3

2
; z2

)

(N + 1)
(
2 N+2
N+1

)
F

(−1
2
; ·; z2

) =
arcsin (z)√

1− z2
− σ2N(z), (1.8.46)

where σ2N is the 2N -th Taylor polynomial for (arcsin z)/
√

1− z2. Only for
N = 0 is this precisely of the form of Gauss’s continued fraction.

1.8.4 Perron’s Continued Fraction

Another continued fraction expansion is based on Stieltjes’ work on the moment
problem (see Perron [174]) and leads to similar acceleration. In volume 2, page
18 of [174], one finds a beautiful continued fraction for

∫ z

0

tµ

1 + t
dt =

z

(µ + 1) +
(µ + 1)2z

(µ + 2)− (µ + 1)z +
(µ + 2)2z

(µ + 3)− (µ + 2)z + · · ·

,

(1.8.47)

valid for µ > −1,−1 < z ≤ 1. One can observe that this can be proved by
Euler’s continued fraction if we write

1

zµ

∫ z

0

tµ

1 + t
dt =

z

µ + 1
− z2

µ + 2
+

z3

µ + 3
− z4

µ + 4
+ · · ·

and observe that (1.8.47) follows from (1.8.35) in the limit.
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Since

zµ+1

µ + 1
F (µ + 1, 1; µ + 2;−z) =

∫ z

0

tµ

1 + t
dt, (1.8.48)

z2 µ+1

2 µ + 1
F

(
µ +

1

2
, 1; µ +

3

2
;−z2

)
=

∫ z

0

t2 µ

1 + t2
dt, (1.8.49)

for µ > 0, on examining (1.8.40) and (1.8.41) this is immediately applicable
to provide Euler continued fractions for the tail of the log and arctan series.
Explicitly, we obtain:

Theorem 1.8.5 Perron’s continued fractions for (1.8.40) and (1.8.41) are:

log (1 + z) +
N−1∑
n=1

(−1)n zn

n
(1.8.50)

=
(−1)N+1zN

N +

N2z

(N + 1)−Nz +

(N + 1)2z

(N + 2)− (N + 1)z +
· · ·

and

arctan z −
N−1∑
n=0

(−1)n z2 n+1

2 n + 1
(1.8.51)

=
(−1)Nz2N+1

2N + 1 +

(2N + 1)2z2

(2N + 3)− (2N + 1)z2 +

(2N + 3)2z2

(2N + 5)− (2N + 3)z2 +
· · · .

Moreover, while the Gauss and Euler/Perron continued fractions obtained are
quite distinct, the convergence behavior is very similar to that of the previous
section. Note also the coincidence of (1.8.51) and (1.8.37). Indeed as we have
seen Theorem 1.8.5 coincides with a special case of (1.8.35).

1.9 Partial Fractions and Convexity

We consider a network objective function pN given by

pN(q) =
∑

σ∈SN

(
N∏

i=1

qσ(i)∑N
j=i qσ(j)

)(
N∑

i=1

1∑N
j=i qσ(j)

)
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summed over all N ! permutations; so a typical term is

(
N∏

i=1

qi∑N
j=i qj

)(
N∑

i=1

1∑n
j=i qj

)
.

For example, with N = 3 this is

q1q2q3

(
1

q1 + q2 + q3

)(
1

q2 + q3

)(
1

q3

)(
1

q1 + q2 + q3

+
1

q2 + q3

+
1

q3

)
.

This arose as the objective function in research into coupon collection and the
researcher, Ian Affleck, wished to show pN was convex on the positive orthant.

First we try to simplify the expression for pN . The partial fraction decompo-
sition gives:

p1(x1) =
1

x1
,

p2(x1, x2) =
1

x1
+

1

x2
− 1

x1 + x2

,

p3(x1, x2, x3) =
1

x1
+

1

x2
+

1

x3
− 1

x1 + x2

− 1

x2 + x3

− 1

x1 + x3

+
1

x1 + x2 + x3

. (1.9.52)

Partial fraction decompositions are another arena in which computer algebra
systems are hugely useful. The reader is invited to try performing the third case
in (1.9.52) by hand. It is tempting to predict the “same” pattern will hold for
N = 4. This is easy to confirm (by computer if not by hand) and so we are led
to:

Conjecture 1.9.1 For each N ∈ N the function

pN(x1, · · · , xN) =

∫ 1

0

(
1−

N∏
i=1

(1− txi)

)
dt

t
(1.9.53)

is convex, indeed 1/pN is concave.
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One may check symbolically that this is true for N < 5 via a large Hessian
computation. But this is impractical for larger N . That said, it is easy to
numerically sample the Hessian for much larger N , and it is always positive
definite.

Unfortunately while the integral is convex, the integrand is not, or we would
be done. Nonetheless, the process was already a success, as the researcher was
able to rederive his objective function in the form of (1.9.53).

A year later, Omar Hjab suggested re-expressing (1.9.53) as the joint expecta-
tion of Poisson distributions. See “Convex,” SIAM Electronic Problems and So-
lutions at the URL http://www.siam.org/journals/problems/99-002.htm. Ex-
plicitly this leads to:

Lemma 1.9.2 If x = (x1, · · · , xn) is a point in the positive orthant Rn
+, then

∫ ∞

0

(
1−

n∏
i=1

(1− e−txi)

)
dt =

(
n∏

i=1

xi

)∫

Rn
+

e−〈x,y〉 max(y1, · · · , yn) dy,

(1.9.54)

where 〈x, y〉 = x1y1 + · · ·+ xnyn is the Euclidean inner product.

Proof. Let us denote the left-hand side of (1.9.54) by f . Since

1− e−txi = xi

∫ t

0

e−xiyi dyi,

it follows that

1−
n∏

i=1

(1− e−txi) =

(
n∏

i=1

xi

)(∫

Rn
+

e−〈x,y〉 dy −
∫

Sn
t

e−〈x,y〉 dy

)
,

where

Sn
t = {y ∈ Rn

+ | 0 < yi ≤ t for i = 1, · · · , n}.
Hence

f(x) =

(
n∏

i=1

xi

)∫ ∞

0

dt

∫

Rn
+\Sn

t

e−〈x,y〉 dy =

(
n∏

i=1

xi

)∫ ∞

0

dt

∫

Rn
+

e−〈x,y〉χt(y) dy,
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where

χt(y) =

{
1 if max(y1, · · · , yn) > t,

0 otherwise.

Therefore

f(x) =

(
n∏

i=1

xi

)∫

Rn
+

e−〈x,y〉 dy

∫ ∞

0

χt(y) dt

=

(
n∏

i=1

xi

)∫

Rn
+

e−〈x,y〉 max(y1, · · · , yn) dy.

2

It follows from the lemma that

pN(x) =

∫

RN
+

e−(y1+···+yN ) max

(
y1

x1

, · · · ,
yN

xN

)
dy,

and hence that pN is positive, decreasing and convex, as is the integrand. To
derive the stronger result that 1/pN is concave we proceed as follows. Let

h(a, b) =
2ab

a + b
.

Then h is concave and concavity of 1/pN is equivalent to

pN

(
x + x′

2

)
≤ h(pN(x), pN(x′)) for all x, x′ ∈ RN

+ . (1.9.55)

To establish this, define

m(x, y) = min

(
x1

y1

, · · · ,
xn

yn

)
for x, y ∈ RN

+ .

Then, since

m(x, y) + m(x′, y) ≤ 2m

(
x + x′

2
, y

)
,

we have

pN

(
x + x′

2

)
=

∫

Rn
+

e−(y1+···+yn)

m
(

x+x′
2

, y
) dy ≤

∫

Rn
+

2e−(y1+···+yn)

m(x, y) + m(x′, y)
dy

=

∫

Rn
+

e−(y1+···+yn)h

(
1

m(x, y)
,

1

m(x′, y)

)
dy ≤ h(pN(x), pN(x′)).
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Where we leave it to the reader to confirm that the final assertion follows since
h is concave and

∫
RN

+
e−(y1+···+yN ) dy = 1. This is a form of Jensen’s inequality.

2

Observe that since h(a, b) ≤
√

ab ≤ (a + b)/2, it follows from (1.9.55) that
pN is log-convex (and convex). A little more analysis of the integrand shows pN

is strictly convex. There is still no truly direct proof of the convexity of pN .
An amusing related example, which cries out for generalization, is that for

a > b > c > d > 0, the function

f(x) =
ax − bx

cx − dx

is convex on the real line, but log f(x) is convex on the real line only when
ad ≥ bc, and is concave on the real line when ad < bc. These assertions are
fairly easy to deduce from:

Proposition 1.9.3 Let gµ(x) = (e2µx − 1)/(e2x − 1), `µ(x) = log gµ(x), and
`µ,ν(x) = log

(
gµ(x)− gν(x)

)
. Then, for µ > 1, a > b > 1, and all real x,

1. g′µ(x) ≥ 0, `′µ(x) ≥ 0, `′′µ(x) ≥ 0, g′′µ(x) ≥ 0,

2. `′′a(x)− `′′b (x) ≥ 0, g′′a(x)− g′′b (x) ≥ 0,

3. `′′a,b(x) ≥ 0 when a− b ≥ 1, and `′′a,b(x) < 0 when a− b < 1.

Note that Item 2 says `µ becomes more convex as the parameter µ increases,
and similarly for gµ. Note also that

log

(
sinh (µx)

sinh (x)

)
= log

(
e2 µx − 1

e2 x − 1

)
− 2 x.

As an example, with some care, the convex conjugate of the function f :
x 7→ log (sinh (3 x) / sinh (x)) can be symbolically nursed to g : y 7→ y/2 ·
log

[
(y +

√
−3y2 + 16)/(−2y + 4)

]
+log

[
(−2 +

√
−3y2 + 16)/2

]
. Since in turn

the conjugate of g is much more easily computed to be f , this produces a sym-
bolic computational proof that f and g are convex and are mutually conjugate.
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1.10 Log-concavity of Poisson Moments

Recall that a sequence {an} is log-convex if an+1an−1 ≥ a2
n, for n ≥ 1 and is log

concave when the sign is reversed. Consider the unsolved Problem 10738 posed
by Radu Theodorescu in the 1999 American Mathematical Monthly [200]:

Problem: For t > 0 let

mn(t) =
∞∑

k=0

kn exp(−t)
tk

k!

be the nth moment of a Poisson distribution with parameter t. Let cn(t) =
mn(t)/n! . Show

a) {mn(t)}∞n=0 is log-convex for all t > 0.

b) {cn(t)}∞n=0 is not log-concave for t < 1.

c∗) {cn(t)}∞n=0 is log-concave for t ≥ 1.

Solution. (a) Neglecting the factor of exp(−t) as we may, this reduces to

∑

k,j≥0

(jk)n+1tk+j

k!j!
≤

∑

k,j≥0

(jk)ntk+j

k! j!
k2 =

∑

k,j≥0

(jk)ntk+j

k!j!
k2 + j2

2
,

and this now follows from 2jk ≤ k2 + j2.
(b) As

mn+1(t) = t

∞∑

k=0

(k + 1)n exp(−t)
tk

k!
,

on applying the binomial theorem to (k + 1)n, we see that mn(t) satisfies the
recurrence

mn+1(t) = t

n∑

k=0

(
n

k

)
mk(t), m0(t) = 1.

In particular for t = 1, this produces the sequence

1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, · · · .
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These are the Bell numbers, which can be discovered from consulting Sloane’s
on-line integer sequence recognition tool that we have mentioned above. This
tool can also tell us that for t = 2, we have obtained generalized Bell numbers,
and can give us the exponential generating functions. The Bell numbers were
known earlier to Ramanujan.

Now an explicit computation shows that

t
1 + t

2
= c0(t) c2(t) ≤ c1(t)

2 = t2

exactly if t ≥ 1. Also, preparatory to the next part, a simple calculation shows
that

∑
n≥0

cnu
n = exp (t(eu − 1)) . (1.10.56)

(c∗) (The ‘*’ indicates this was the unsolved component.) We appeal to a recent
theorem due to E. Rodney Canfield [74]. A search in 2001 on MathSciNet for
“Bell numbers” since 1995 turned up 18 items. This article showed up as paper
#10. Later, Google found the paper immediately! Canfield proves the lovely
and quite difficult result below.

Theorem 1.10.1 If a sequence 1, b1, b2, · · · is non-negative and log-concave,
then so is the sequence 1, c1, c2, · · · determined by the generating function equa-
tion

∑
n≥0

cnun = exp

(∑
j≥1

bj
uj

j

)
.

Using equation (1.10.56) above, we apply this to the sequence bj = t/(j− 1)!
which is log-concave exactly for t ≥ 1. 2

Indeed, symbolic computation—facilitated by the recursion above—strongly
suggests the only violation of log-concavity of the sequence {cn(t)}∞n=0 for t > 0,
occurs as illustrated in b). We have not been able to prove this conjecture. It
seems to require a significant strengthening of Theorem 1.10.1 to cover the case
when the first term of {1, bn} is replaced by b0 6= 1.

It transpired that the given solution to (c) was the only one received by the
Monthly. This is quite unusual. The reason might well be that it relied on the
following sequence of steps:
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Question ⇒ Computer Algebra System ⇒ Web Interface

⇒ Search Engine ⇒ Digital Library

⇒ Hard New Paper ⇒ Answer

Now if only we could automate this!

1.11 Commentary and Additional Examples

1. Dictionaries are like timepieces. Samuel Johnson observed that dic-
tionaries are like clocks: The best do not run true, and the worst are better
than none. The same is true of tables and databases. We quoted Michael
Berry as saying “Compounding the impiety, I would give up Shakespeare
in favor of Prudnikov, Brychkov and Marichev” [177]. That excellent com-
pendium contains

∞∑

k=1

∞∑

l=1

1

k2 (k2 − kl + l2)
=

π∝√3

30
, (1.11.57)

where the “∝” is probably “4” [177, vol. 1, entry 9, pg. 750]. Integer
relation methods suggest that no reasonable value of ∝ works. What is
intended in formula (1.11.57)? Note that

(a)

∞∑
n=1

∞∑
m=1

2

n2 (n2 −mn + m2)
+

∞∑
n=1

∞∑
m=1

2

n2 (n2 + mn + m2)
=

∑
m,n∈Z

∑

mn6=0

1

n2 (n2 + mn + m2)
= 6 ζ(4)

(b)

∞∑
n=1

n−1∑
m=1

1

nm (n2 + mn + m2)
+

∞∑
n=1

∞∑
m=1

1

n2 (n2 + mn + m2)
=

13

12
ζ(4)
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(c)

∞∑
n=1

∞∑
m=1

1

n2 (n2 + mn + m2)
=

2√
3

Im
∞∑

n=1

Ψ
(
1 + n−1+i

√
3

2

)

n3

=
2√
3

Im

∫ ∞

0

Li3

(
e

(
−1+i

√
3

2

)
t

)

et − 1
dt

= 1.00445719820157402755414025 . . . .

2. A series for pi with first term 22/7. In [96] an estimate of π−355/113
is also given.

(a) Let P (t) = 4− 4 t2 + 5 t4 − 4 t5 + t6 and Q(t) = t(1− t). Show that

4

1 + t2
=

4− 4 t2 + 5 t4 − 4 t5 + t6

1 + t4 (1− t)4 /4

and so

π =

∫ 1

0

P (t)

1 + Q4(t)/4
dt =

1

2

∫ 1

0

P (t) + P (1− t)

1 + Q4(t)/4
dt.

(b) Observe that P (t)+P (1− t) = 6+2Q(t)−Q2(t)−2Q3(t) and deduce
that

π =
1

2

∞∑
n=0

(
−1

4

)n ∫ 1

0

6 + 2Q(t)−Q2(t)− 2Q3(t)

1 + Q4(t)/4
dt =

∞∑
n=0

an

where

an =

(
−1

4

)n {
3 (4 n)!2

(8 n + 1)!
+

(4 n + 1)!2

(8 n + 3)!
− (4 n + 2)!2

2 (8 n + 5)!
− (4 n + 3)!2

(8 n + 7)!

}
.

(c) This series, which can be neatly written as a sum of four 5F4 functions,
gains roughly three digits per term.

Check that the series has constant term 22/7 and continues

22

7
− 76

15015

(
−1

4

)
+

543

37182145

(
−1

4

)2

− 308

6511704225

(
−1

4

)3

+ · · · .
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(d) Find an economical way to show

355

113
− 33

108
< π <

355

113
+

24

108
.

3. A sophomore’s dream. Show that

∫ 1

0

xx dx =
∞∑

n=1

(−1)n+1

nn
,

and that ∫ 1

0

x−x dx =
∞∑

n=1

1

nn
.

Give meaning to and evaluate
∫ 1

0
xxx

dx. In each case, it helps to start by
writing the integrand as a series and to justify integrating term by term.

4. Some binary digit algorithms. Whenever a function satisfies a suitable
addition formula, its inverse admits algorithms to compute binary (or other
base) representations [57]. We begin with an introductory example. Let
x ≥ 0. Set

a0 = x and an+1 =
2an

1− a2
n

(with an+1 = −∞ if an = ±1).

Then ∑
an<0
n≥0

1

2n+1
=

arctan x

π
.

Let an interval I ⊆ R and subsets D0, D1 ⊆ I with D0 ∪ D1 = I and
D0 ∩D1 = ∅ be given, as well as functions r0 : D0 → I, r1 : D1 → I. Then
consider the system (S) of the following two functional equations for an
unknown function f : I → [0, 1].

2f(x) = f(r0(x)) if x ∈ D0, (S0)

2f(x)− 1 = f(r1(x)) if x ∈ D1. (S1)

Such a system always leads to an iteration:

a0 = x and an+1 =

{
r0(an) an ∈ D0,

r1(an) an ∈ D1.
(1.11.58)
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Then:

f(a0) = f(x) =
∑

an∈D1
n≥0

1

2n+1
. (1.11.59)

Several examples. Here are some elementary transcendental functions f
that satisfy a system of type (S) with algebraic r0, r1.

(a) f(x) = log x/ log 2, I = [1, 2], D0 = [1,
√

2), D1 = [
√

2, 2],
r0(x) = x2, r1(x) = x2/2.

Of course, the recursion (1.11.58) and (1.11.59) can be used to com-
pute the binary expansion of the function f . Take for example x =
a0 = 3/2. Then a1 = 9/8, a2 = 81/64, a3 = 6561/4096, a4 =
316/225, and so on. The first 20 binary digits of log 3/ log 2 are
(1.10010101110000000001)2.

(b) f(x) = arccos(x)/π, I = [−1, 1], D0 = (0, 1], D1 = [−1, 0],
r0(x) = 2x2 − 1, r1(x) = 1− 2x2.

Note that rk
0 = r0 ◦ · · · ◦ r0 is the Chebyshev polynomial of the first

kind T2k for [−1, 1].

(c) f(x) = 2 arcsin(x)/π, I = [0, 1], D0 = [0, 1/
√

2), D1 =
[1/
√

2, 1], r0(x) = 2x
√

1− x2, r1(x) = 2x2 − 1.

(d) f(x) =

{
arctan(x)/π x ∈ [0,∞)

1 + arctan(x)/π x ∈ [−∞, 0),
D0 = [0,∞), D1 =

[−∞, 0), r0(x) = 2x
1−x2 , r0(1) = −∞, r1(x) = 2x

1−x2 , r1(−1) =
−∞.

(e) f(x) = arccot(x)/π, I = R ∪ {−∞}, D0 = [0,∞), D1 =
[−∞, 0), r0(x) = x2−1

2x
, r0(0) = −∞, r1(x) = x2−1

2x
.

(f) f(x) = arsinh(x)/ log 2, I = [0, 3/4], D0 = [0, 1/2
√

2), D1 =
[1/2

√
2, 3/4], r0(x) = 2x

√
1 + x2, r1(x) = 5/2x

√
1 + x2−3/2x2−

3/4.

(g) f(x) = arccos(x)/π satisfies

3f(x) = f(4x3 − 3x) if x ∈ (1/2, 1],
3f(x)− 1 = f(−4x3 + 3x) if x ∈ (−1/2, 1/2],
3f(x)− 2 = f(4x3 − 3x) if x ∈ [−1,−1/2].
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That means that ternary representations of f can be computed by
the following recursion:

Set a0 = x, an+1 =

{
4a3

n − 3an an ∈ (1/2, 1] ∪ [−1,−1/2]

−4a3
n + 3an an ∈ (−1/2, 1/2].

Then
arccos(x)

π
=

∑

an∈(−1/2,1/2]

1

3n+1
+

∑

an∈[−1,−1/2]

2

3n+1
.

Full details are given in [57].

5. A two-term recursion. Problem: Determine the behavior of the iter-
ation un+1 = |un| − un−1 for arbitrary real starting points u0 = x and
u1 = y. Then attempt to generalize this behavior. (Taken from [127].)

Solution: Numerical testing shows the iteration has period nine. One proof
is to explicitly compute, (preferably using a symbolic math program) the
messy looking algebraic function this determines. It can be seen that each
case returns [x, y]. More explicitly

A =

[
0 1

−1 1

]
B =

[
0 1

−1 −1

]

can be used to represent the iteration. Then B3 = I = −A3 and analysis
of the cases above shows that it always devolves to A3 B A3 B2 which is
the identity.

A nice generalization is that for M, K > 1 and integer, the iteration

uk+1 = cos
( π

K

)
(|uk|+ uk) + cos

( π

M

)
(|uk| − uk)− uk−1

has period KM + K − M . This can again be checked symbolically for
many small M and K. One may prove this by considering

A =

[
0 1

−1 2 cos(π/K)

]
B =

[
0 1

−1 2 cos(π/M)

]

and reducing the iteration to (AK B)M−2 AK B2.
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6. A rational function recursion. Problem: Solve the recursion u0 = 2
and

un+1 =
2 un + 1

un + 2
.

(Taken from [127]). Solution: The first few numerators are

2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574

and clearly satisfy nk+1 = 3 nk − 1. Sloane’s online sequence recognition
tool announces that the numerators are (3n + 1)/2. The denominators are
one smaller and so

un =
3n+1 + 1

3n+1 − 1
.

This can now easily proved by induction.

7. A sequence with nines. Problem: Determine the number of nines in
the tail of the sequence

un+1 = 3 u4
n + 4 u3

n,

with u0 = 9. (Taken from [127]).

Solution: The first six or so cases show there is a 5 followed by 2k occur-
rences of 9. Define uk = 6 · 102k − 1 and show inductively that this is
so.

8. Continued fraction of Champernowne’s number. Compute the first
ten or twenty terms of the continued fraction for Champernowne’s num-
ber, namely the decimal constant 0.123456789101112131415 . . . Explain
the phenomenon observed.

9. A sequence involving square roots. Problem: Consider the iteration

cn+1 = cn + r − cn√
1 + c2

n

, c0 ≥ 1,

where r is a positive constant. For which r does the sequence {cn} con-
verge? In case of convergence to c 6= c0, prove that lim(cn+1 − c)/(cn − c)
exists and determine its value. In case of divergence, find a precise asymp-
totic expression for cn.
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Solution: Justify the following assertions: When 0 < r < 1, the sequence
converges to c = r/

√
1− r2 and either cn = c for every integer n ≥ 0, or

lim(cn+1 − c)/(cn − c) =1− (1− r2)3/2. When r = 1, cn ∼ (3n/2)1/3; and
when r > 1, cn ∼ (r − 1)n.

10. A sequence involving exponentials. Problem: Define a sequence {tk}
by setting

t1 = 1, tk+1 = tk exp(−tk), k = 1, 2, · · · .

Determine the behavior of the sequence.

Solution: Note that tk tends monotonically to a limit ` which must neces-
sarily be zero. Hence t−1

k+1−t−1
k = t−1

k (exp tk−1), which tends to exp′(0) = 1
as k tends to infinity. Whence, since Cesàro averaging preserves limits,

1

mtm
=

1

m

m−1∑

k=1

etk − 1

tk
+

1

mt1

also tends to 1, and

lim
m→∞

mtm = 1.

The reader is invited to perform a similar analysis for a more general
g : [0, 1] 7→ [0, 1].

11. Some double integrals. Problem: Evaluate the following integrals:

(a) ∫ 1

0

∫ 1

0

1

(1− x2y2)
dx dy

(
=

π2

8

)

(b) ∫ 1

0

∫ 1

0

1

(1− xy)
dx dy

(
=

π2

6

)

(c) ∫ 1

−1

∫ 1

−1

1√
1 + x2 + y2

dx dy

(
= 4 log(2 +

√
3)− 2π

3

)
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(d)
1

4

∫ 1

0

∫ 1

0

1

(x + y)
√

(1− x)(1− y)
dx dy (= G)

(e) ∫ 1

0

∫ 1

0

1− x

(1− xy)| log(xy)| dx dy (= γ).

12. A double summation. Evaluate
∞∑

n=1

∞∑
m=1

1

(m2n + mn2 + 2 mn)
(= 7/4).

13. Infinite series and dilogarithms. Prove that for positive integers a and
b,

∞∑
m=0

zm

(am + b)2
=

z−b/a

a

a−1∑

k=0

e−2πibk/aLi2(z
1/ae2πik/a),

and note the finitude of the sum. If one believes in Li evaluations as
“fundamental,” then this leads to a finite expression for the Broadhurst
V constant (mentioned in Chapter 2 of the first volume), as well as some
other BBP sums.

14. An infinite product evaluation. Evaluate

z − 1

w − 1

∞∏
n=1

w1/2n
+ 1

z1/2n + 1
.

for w, z > 0. Hint: Examine the case w = 2.

15. Quasi-elliptic integrals. Show that
∫

6 x√
x4 + 4 x3 − 6 x2 + 4 x + 1

dx = log
(
a(x) + b(x)

√
D(x)

)
(1.11.60)

where

a(x) = x6 + 12 x5 + 45 x4 + 44 x3 − 33 x2 + 43

b(x) = x4 + 10 x3 + 30 x2 + 22 x− 11

D(x) = x4 + 4 x3 − 6 x2 + 4 x + 1.
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Hint: Confirm that in (1.11.60) a′ = 6x, /b and hence that (1.11.60) is a
pseudo-elliptic integral in the sense described in [206]. The following is
taken from the abstract of [206]:

In this report we detail the following story. Several centuries
ago, Abel noticed that the well-known elementary integral

∫
dx√

x2 + 2bx + c
= log

(
x + b +

√
x2 + 2bx + c

)

is just a presage of more surprising integrals of the form

∫
f(x)dx√

D(x)
= log

(
p(x) + q(x)

√
D(x)

)
.

Here f is a polynomial of degree g and the D are certain polyno-
mials of degree deg D(x) = 2g+2. Specifically, f(x) = p′(x)/q(x)
(so q divides p′). Note that, morally, one expects such integrals
to produce inverse elliptic functions and worse, rather than an
innocent logarithm of an algebraic function.

Abel went on to study abelian integrals, and it was Cheby-
shev who explained—using continued fractions—what is going
on with these “quasi-elliptic” integrals. Recently, the second
author computed all the polynomials D over the rationals of de-
gree 4 that have an f as above. We explain various contexts in
which the present issues arise. These contexts include symbolic
integration of algebraic functions, the study of units in function
fields and, given a suitable polynomial g, the consideration of the
period length of the continued fraction expansion of the numbers√

g(n) as n varies over the integers. But the major content of
this survey is an introduction to period continued fractions in
hyperelliptic—thus quadratic—function fields.

16. Clausen’s product. Prove that

2F1
2 (a, b, a + b + 1/2, z)

= 3F2 (2 a, a + b, 2 b, a + b + 1/2, 2 a + 2 b, z) (1.11.61)
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Hint: Show both sides satisfy the following differential equation

0 = x2 (x− 1) y(3)(x)− 3 x (a + b + 1/2− (a + b + 1) x) y(2)(x)

+
[(

2(a2 + b2 + 4 ab) + 3(a + b) + 1
)
x− (a + b) (2(a + b) + 1)

]
y
′
(x)

+ 4 ab (a + b) y(x),

are analytic at zero and have appropriate initial values. Use Clausen’s
product to deduce that

arcsin2(x) =
1

2

∞∑
n=1

(2x)2n

n2
(
2n
n

) .

Hint: arcsin(x) = x · 2F1 (1/2, 1/2, 3/2; x2).

17. An application of Clausen’s product. Consider the hypergeometric
function

Ga : x 7→ F

(
a, a +

1

2
, 2a + 1; x

)

and show that
Gab = Gb

a for all a, b ∈ R.

By considering G−1/2 determine the closed form for Ga.

18. Putnam problem 1987–A6. Let n be a positive integer and let a3(n) be
the number of zeroes in the ternary expansion of n. Determine for which
positive x the series

∑∞
n=1 xa3(n)/n3 converges. Answer: For x < 25. In

the b-ary analogue
∑∞

n=1 xab(n)/nb converges if and only if x < bb − b + 1.

19. Putnam problem 1987–B2. For r, s nonnegative with r+s ≤ t, evaluate

s∑

k=0

(
s
k

)
(

t
r+k

)
(

=
t + 1

(t + 1− s)
(

t−s
r

)
)

.

20. Putnam problem 1987-B4. Let x0 = 4/5 and y0 = 3/5 and consider
the dynamical system

xn+1 ← xn cos (yn)− yn sin (yn) yn+1 ← xn sin (yn) + yn cos (yn) .

Does the system converge and if so to what? Hint: It may help to consider
z = x + i y.
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21. Putnam problem 1989–A2. Evaluate

∫ a

0

∫ b

0

emax(a2y2,b2x2)dy dx.

Hint:
2

ab

∫ ab

0

∫ z

0

ez2

dw dz =
ea2b2 − 1

ab
.

22. Putnam problem 1990–A1. Let T0 = 2, T1 = 3, and T2 = 6. Find a
simple formula for Tn where

Tn = (n + 4) Tn−1 − 4nTn−2 + (4 n− 8) Tn−3 (= n! + 2n).

23. Putnam problem 1990–B5. Is there an infinite sequence of non zero
reals {an} so that

p(x) =
n∑

k=0

akx
k

has n distinct real roots for all n? Hint: Let an = (−10)−n2
and evaluate

p at 102k.

24. Putnam problem 1993–A2. Suppose that a sequence {xn} of nonzero
real numbers satisfies x2

n = 1 + xn+1 xn−1 for all n. Show that for some
real a, the sequence satisfies xn+1 = a xn − xn−1. Hint: Examine values of
(xn+1 + xn−1)/xn for various n.

25. Putnam problem 1997–A3. Evaluate

E =

∫ ∞

0

∞∑

k=0

(−1)k x2 k+1

2kk!

∞∑

k=0

x2 k

4k (k!)2 dx.

Answer: 1.6487212707001281 . . . =
√

e. Solution: The integrand is the
expression x exp(−x2/2) I0(x), which Maple can identify and integrate.
Alternately, one can interchange the integral and the second sum to obtain

E =
∞∑

k=0

∫∞
0

x2 k+1e−1/2 x2
dx

4k (k!)2 =
∞∑

k=0

1

2kk!
.
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26. Putnam problem 1999–A3. Consider the power series expansion

1

1− 2x− x2
=

∑
n≥0

anx
n.

Prove that for each integer n ≥ 0, there is an integer m such that

a2
n + a2

n+1 = am.

Answer: It transpires that

a2
n + a2

n+1 = a2n+1, (1.11.62)

which remains to be proven. Hint: The first 15 coefficients are

1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025,

and the desired squares are

5, 29, 169, 985, 5741, 33461, 195025,

which is more than enough to spot the pattern. To prove this either ex-
plicitly use the closed form for

an =
1

2
√

2

((
1 +

√
2
)n+1

−
(
−
√

2 + 1
)n+1

)
,

or show that both sides of (1.11.62) satisfy the same recursion (and initial
conditions).

27. Log-concavity. An easy criterion for log-concavity of a sequence is New-
ton’s lemma that if

∑n
k=0 akx

k is a real polynomial with only real roots
then its coefficients are log-concave, as are ak/

(
n
k

)
(0 < k < n).

(a) Use Rolle’s theorem to prove Newton’s lemma.

(b) Deduce that the binomial coefficients, row by row, as the Stirling
numbers of the first and second kind are log-concave. In particular,
they are unimodal.

(c) The Catalan numbers are log-convex.
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(d) The Motzkin numbers, Mn (see Item 41), are log concave. This was
first shown in 1998 and may be established analytically, as in [104],
starting with the recursion

(n + 2)Mn = (2n + 1)Mn−1 + 3(n− 1)Mn−2,

with ordinary generating function

(1− x)−√1− 2x− 3x2

2x2
.

(e) Prove that the sequence xn = Mn/Mn−1 is increasing (equivalent to
log-concavity) by considering that the function f : [2,∞) → R by
f(x) = 2 on [2, 3] and by

f(x) =
2x + 3

x + 2
+

3(x− 1)

x + 2

1

f(x− 1)

thereafter. Thus f(n) = xn. Show that f is continuous, increasing and
piece-wise smooth with limx→∞ f(x) = 3.

28. Putnam problem 1999–A4. Sum the series

S =
∞∑

m=1

∞∑
n=1

m2 n

3m(n 3m + m 3n)

(
=

9

32

)
. (1.11.63)

Hint: Interchange m and n and average to obtain S =
(∑

n≥1 n/3n
)2

.

29. Putnam problem 1999–A6. Consider the sequence defined by a1 =
1, a2 = 2, a3 = 24, and, for n > 3,

an =
6a2

n−1an−3 − 8an−1a
2
n−2

an−2 an−3

. (1.11.64)

Show that n divides an for all n. Hint: Consider the much simpler linear
recursion satisfied by bn = an/an−1, which is solved by 2n−1(2n−1 − 1) so
that

an = 2n(n−1)/2

n−1∏

k=1

(
2k − 1

)
.

Write n as 2a b where b is odd and observe that a ≤ n(n − 1)/2 and b
divides 2φ(b) − 1, where φ is Euler’s totient function.
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30. Berkeley problem 1.3.3. Establish the limit of the recursion x0 = 1 and

xn+1 =
3 + 2 xn

3 + xn

,

for n > 0. Does the initial value matter? Answer: ` =
√

13−1
2

. Note: The
Maple code

iter1:=proc(y,n) local x,k; x:=y; for k to n do
x:=(3+2*x)/(3+x);od;solve(Minpoly(x,2))[1];end:

answers this symbolically.

31. Berkeley problem 1.3.4. Similarly for

xn+1 =
1

2 + xn

.

Answer: ` =
√

2− 1.

32. Continued fraction errors. Compare the estimates in Theorem 1.8.4
with the computed errors in Table 1.1 using a = N and c = N + 1, and in
Table 1.3 using a = N + 1/2 and c = N + 3/2.

33. Berkeley problems 5.7.1, 5.7.2, and 5.7.3. Evaluate

∫ 2 π

0

eeit

dt (= 2 π),

∫ 2 π

0

eeit−itdt (= 2 π),

and, for a > b > 0, show

1

2 π

∫ 2 π

0

1

|aeit − b|4 dt =
b2 + a2

(a2 − b2)3 .

Hint: Proofs use the Cauchy integral formula for derivatives.
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34. A double integral—series equivalence. For nonnegative integer m,
(a) show that

−i

∫ ∞

0

∫ ∞

0

tme(ix−1)t

1 + x2
dt dx =

m!

2m+1

(
m∑

n=0

2n

n + 1
− i

π

2

)
. (1.11.65)

(b) Hence, establish that the moment evaluations:

∫ ∞

0

tm
∫ ∞

0

cos(tx)

1 + x2
dx dt =

m!

2m+1

π

2
(1.11.66)

and

∫ ∞

0

tm
∫ ∞

0

sin(tx)

1 + x2
dx dt =

m!

2m+1

m∑
n=0

2n

n + 1
. (1.11.67)

In particular, (c) show that (1.11.67) also equals

m!

2(m + 1)

m∑

k=0

1(
m
k

) .

Hint: The left-hand side is

−im!

∫ ∞

0

(1− ix)−1−m

1 + x2
dx.

Both sides then of (1.11.65) satisfy the recursion

2 (m + 1)r (m)−m(m + 1)r (m− 1) = m!,

with initial value r(0) = 1
2
− i π

4
. Now justify exchanging the order of

integration.

35. An open summation problem. Does

∞∑
n=1

(
2
3

+ 1
3

sin (n)
)n

n

converge? This is an open problem.
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36. Hadamard inequality. Let A = {aij} be a real n×n positive semidefinite
Hermitian matrix.

(a) Show

det(A) ≤
n∏

i=1

aii,

with equality if and only if A is a diagonal matrix or if some aii is zero.

(b) By applying the result of (a) to AA∗ obtain the inequality

| det(A)| ≤
(

n∏
i=1

n∑
j=1

|aij|2
)1/2

,

for arbitrary square matrices. Hint: Apply the arithmetic-geometric mean
inequality to the diagonalization of A.

37. A tangent series. (From [136, pg. 83]). For each positive n evaluate

Tn =
n−1∑

k=0

tan2

(
π (2 k + 1)

4 n

)
,

with proof. Answer: Tn = n(2n− 1).

38. Putnam problem 1989–B3. Let f : [0,∞) → [0,∞) be differentiable
and satisfy f ′(x) = 6f(2x) − 3f(x). Assume that |f(x)| ≤ exp(−√x).
Determine a formula for the moments

µn =

∫ ∞

0

xn f(x) dx

of f for n = 1, 2, 3 · · · . Deduce that {3n µn/n!} converges and that the
limit is only zero if µ0 is 0. Hint: Use integration by parts in the formula
for µn, which then involves f ′(x); a recursion for µn will then be apparent.

39. Putnam problem 1992–A4. Consider an infinitely differentiable real
function f with

f

(
1

n

)
=

n2

1 + n2
.
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for positive integers n. Determine the Maclaurin series of f . Hint: Con-
sider the series of f(x) − 1/(1 + x2), and recall that if a C∞ function is
zero on a sequence converging to zero, then all of its derivatives are zero
(although this doesn’t necessarily imply that the function is analytic in a
neighborhood of zero).

40. Putnam problem 2000–A4. Show that the improper integral

I = lim
M→∞

∫ M

0

sin(x) sin(x2) dx (1.11.68)

exists. Hint: Numerical experimentation shows that a limit of approx-
imately 0.4917 is reached. The existence of the limit can be rigorously
established in two ways: (a) Since the integrand equals cos(x2 − x) −
cos(x2 + x))/2, it suffices to show that limM→∞

∫ M

0
cos(x + x2) dx exists.

After a change of variables, it suffices to consider

n−1∑

k=0

∫ (k+1/2)π

(k−1/2)π

cos (u)√
1 + 4 u

du.

This converges by the alternating series test. (b) Use Cauchy’s theorem
to integrate the entire functions exp(ix2 ± ix) over a triangular path with
vertices at 0,M and (1+ i)M . Easy estimates show that the integrals over
the vertical and the diagonal edges converge.

41. Several classic sequences. In each case try to find a generating function
or rule for the sequence below:

(a) 6, 28, 496, 8128, 33550336, 8589869056, 137438691328,
2305843008139952128, · · ·

(b) 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597,
27644437, · · ·

(c) 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798, 15511, 41835, · · ·
(d) 1, 2, 6, 22, 94, 454, 2430, 14214, 89918, 610182, 4412798, · · ·
(e) 1, 4, 11, 16, 24, 29, 33, 35, 39, 45, 47, 51, 56, 58, 62, 64, · · ·
(f) 1, 20, 400, 8902, 197281, 4865617, · · ·
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Answers: a) The first few perfect numbers.

b) The Motzkin numbers. Among other interpretations they count the
number of ways to join n points on a circle by nonintersecting chords, and
the number of length n paths from (0, 0) to (n, 0) that do not go below
the horizontal axis and are made up of steps (1, 1), (1,−1) and (1, 0). The
generating function (see Item 27) is (1− x−√1− 2x− 3x2)/(2x2).

c) The Bell numbers, whose exponential generating function is exp(ex−1).

d) Values of Bell polynomials, in this case counting ways of placing n
labeled balls into n unlabelled (but 2-colored) boxes. (See Section 1.10.)

e) Aronson’s sequence, whose definition is: “t is the first, fourth, eleventh,
· · · letter of this sentence.”

f) The number of possible chess games after n moves.

42. Duality for Mahler’s generating function. Let α > 0 be irrational
and consider Gα(z, w) =

∑∞
n=1 zn wbnαc as in (1.4.18). Define Fα(z, w) =∑∞

n=1 zn
∑bnαc

m=1 wm. Show

(a)

Fα(z, w) =
z

1− z
Gα−1(w, z)

(b)

Fα(z, w) + Fα−1(w, z) =
z

1− z

w

1− w
.

43. A continued fraction form of Mahler’s generating function. Let
α > 0 be irrational. Show that

1− w

w

∞∑
n=1

zn wbnαc =
1

c0 +
1

c1 +
1

c2 + · · ·

, (1.11.69)

where

c0 =
z−1w−a0 − 1

w−1 − 1
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and for n ≥ 1

cn =
z−qn−2w−pn−2 [z−anqn−1w−anpn−1 − 1]

z−qn−1w−pn−1 − 1
=

zqnwpn − z−qn−2w−pn−2

z−qn−1w−pn−1 − 1
.

Here {an} are the convergents, and pn/qn are the partial quotients of the
continued fraction for α. In particular, sums like

∞∑
n=1

1

3n 2bnαc and
∞∑

n=1

1

2n 3bnαc

are non-quadratic irrationals since their continued fractions are clearly un-
bounded.

(a) Apply (1.11.69) for α = (1 +
√

5)/2 so that an =1 and pn and qn are
Fibonacci numbers. Apply this also to

√
2± 1.

(b) Using Exercise 42 deduce a continued fraction for
∑∞

n=1bnαc zn.

More details and quite broad extensions—found experimentally—may be
found in [48].

44. Beatty’s Theorem. Let irrational numbers σ, τ > 0 be given. Use the
Mahler continued fraction to show that the sets of integer parts

S = {bnσc : 0 < n ∈ N} , T = {bnτc : 0 < n ∈ N}

partition N \ {0} if and only if σ > 1 and

1

σ
+

1

τ
= 1.

What happens in the case that σ is rational?

[Beatty’s Theorem, as often the case was rediscovered by Beatty. It was
known to Lord Raleigh and others earlier. This is a good example of
Stigler’s Law of Eponymy, namely that “No scientific law is named after
its original discoverer” [137, page 60]. Stigler’s law is named after Stephen
Stigler, the son of the 1982 Nobel prize winning economist George Stigler.
Neither Stigler was the “discoverer” of this principle.]
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Hint: Observe first that σ, τ > 1 is necessary. Set α = σ−1 and β = τ −1.
Note that S and T partition the positive integers if and only if

Gα(z, z) + Gβ(z, z) =
∞∑

n=1

zn =
z

1− z
.

Use Exercise 42 to show this happens if and only if

Gβ(z, z) = Gα−1(z, z),

which in turn happens exactly when bnβc = bn(α−1)c for all n ≥ 1. This
last equivalence holds if and only if β α = 1, and this is the same as

1

σ
+

1

τ
= 1.

(A direct proof of the “if” is quite easy.)

45. Wilker’s inequalities. Show that for 0 < x < π/2 one has

2 +
2

45
x3 tan(x) >

sin2(x)

x2
+

tan(x)

x
> 2 +

16

π4
x3 tan(x),

and that the constants 2/45 and 16/π4 are the best possible.

46. A Gamma integral. Show that
∫ ∞

0

eiyya−1 dy = ia Γ (a)

for 0 < a < 1. Hence evaluate
∫∞
0

cos
(
xb/b

)
dx for b > 1. Hint: Use

Cauchy’s theorem on a contour that goes from 0 to R and then on a
quarter circle to iR and back on the vertical axis to 0.

47. The Airy integral. For real x the Airy integral is defined by

Ai(x) =
1

π

∫ ∞

0

cos

(
1

3
t3 + xt

)
dt.

Integrate by parts to show that the integral is well defined. Then obtain the
value of Ai(0). Finally, show that Ai2(z) satisfies w′′− 4zw′− 2w = 0. See
also [139]. Some difficult Airy-related integrals are derived and discussed
in connection with the quantum bouncer in [88].
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48. Zeros of the Airy function. Let N(Ai) denote the real zeros of the Airy
function Ai. Then, for n = 2, 3, · · · we define the Airy zeta function

Z(n) =
∑

a∈N(Ai)

1

an
=

πTn−1(0)

Γ(n)

where

Tn(z) = C(n)(z)

∫ ∞

0

Ai2(u) du

−
n∑

j=1

(
n

j

)
C(n−j)(z)

dj−1

dzj−1
Ai2(z) +

dn−1

dzn−1
(Ai(z)Bi(z)),

with C(z) = Bi(z)/Ai(z), [88]. Here Ai and Bi are the fundamental solu-
tions to w′′ = zw with Ai(0) = 3

√
3/(3Γ(2/3)) and Bi(0) = 35/6/(3Γ(2/3)),

and Ai is the Airy integral.

49. Fun with Airy functions. Let αn = Ai(n)(0) and βn = Bi(n)(0).

(a) Show that αn+3 = (n + 1)αn, with a similar recursion for βn.

(b) Show that α∗n = (Ai2)
(n)

(0) and β∗n = (Bi2)
(n)

(0) both satisfy δn+3 =
(4n + 2)δn.

(c) Consider γn = (Ai/Bi)(n) (0) and δn = (Ai Bi)(n) (0). Show that
δn+3 = (4n + 2)δn, and obtain a recursion for γn via the convolu-
tion

n∑
j=0

(
n

j

)
δj γn−j = β∗n.

Note the analogy with the Bernoulli numbers.

50. More on the Airy zeta function. Express Z(n) of Exercise 48 explicitly
as a polynomial in

X =
35/6

2 π
Γ2(2/3) =

1

2 π Ai(0)Bi(0)
.
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For example,

Z(2) = X2 = 3
32/3Γ4 (2/3)

4 π2
,

Z(7) = X7 − 7

12
X4 +

13

180
X,

and

Z(10) = X10 − 5

6
X7 +

209

1008
X4 − 17

1296
X.

Note that ∫ ∞

0

Ai2 (t) dt = Ai
′
(0)2 =

3
√

3 Γ2 (2/3)

4 π2 .

Exercise 48 may help find the desired polynomials.

51. Gosper’s continued fraction for pi. During his record 1985 compu-
tation of the simple continued fraction for π, Gosper found some large
convergents, but no strong evidence to suggest that π has a bounded or
unbounded continued fraction. Gosper describes how continued fractions
allow you to “see” what a number is. “[I]t’s completely astounding ... it
looks like you are cheating God somehow” [4, page 112]. He goes on to
talk about how this sense of surprise has driven him to extensive work with
continued fractions.

52. A positivity problem. Show that f defined by

f(x) =
∞∑

j=0

(−2)j x2j

∏j
i=1 (2i − 1)

is strictly positive for 0 < x < 1. Hint: g = x 7→ f(x)/x satisfies g′(x) +
2 g(x2) = 0 and g(0) = 1, g(1) = 0.

53. Ramanujan’s AGM continued fraction. The assertions below are
extensions of those in Entry 12 of Chapter 18 of Ramanujan’s Second
Notebook. Let

Rη(a, b) =
a

η +
b2

η +
4a2

η +
9b2

η + ...
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for a, b, η > 0.

(a) Then show the marvelous fact that

Rη

(
a + b

2
,
√

ab

)
=
Rη(a, b) +Rη(b, a)

2
.

This relies on knowing for y > 0 that

2

η

∑

k≥0

sech((2k + 1)πy/2)

1 + {(2k + 1)/η}2
= Rη(θ

2
2(q), θ

2
3(q))

1

η

∑

k∈Z

sech(kπy)

1 + {(2k)/η}2
= Rη(θ

2
3(q), θ

2
2(q)),

where q = exp(−πy), and observing how y 7→ y
2

interacts with these
two identities. While these two series are hard to derive, they are
easy to verify numerically.

(b) The continued fraction is hard to compute directly for a = b. We
shall find a way to use the last hyperbolic series to compute it.

(c) Determine the relationship betweenRη andR1. Hence, for 0 < b < a,
show that

R1(a, b) =
π

2

∑
n∈Z

a K(k)

K2(k) + a2 n2π2
sech

(
nπ

K(k′)
K(k)

)
, (1.11.70)

where k = b/a = θ2
2/θ

2
3.

(d) For y = 1, this evaluates

R1

(
1,

1√
2

)
=

π

2

∑
n∈Z

K(1/
√

2) sech(nπ)

K2(1/
√

2) + n2π2
,

with similar evaluations for R1(1, kN) at the N -th singular value dis-
cussed in Section 4.2.

(e) DenoteR(a) = R1(a, a). Write (1.11.70) as a Riemann sum to deduce
that

R(a) =

∫ ∞

0

sech
(

π x
2 a

)

1 + x2
dx = 2 a

∞∑

k=1

(−1)k+1

1 + (2 k − 1) a
, (1.11.71)
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where the final equality comes from the Cauchy-Lindelöf Theorem
(Theorem 6.5.4). The final sum provides an analytic continuation of
R, and can be written in the computationally efficient form R(a) =
1/2 Ψ (3/4 + 1/4 a−1)− 1/2 Ψ (1/4 + 1/4 a−1). (Here Ψ = Γ

′
/Γ is the

digamma function.) Observe that

R(a) =
2a

1 + a
F

(
1

2a
+

1

2
, 1;

1

2a
+

3

2
;−1

)

= 2

∫ 1

0

t1/a(1 + t2)−1 dt = a

∫ ∞

0

sech(ax) e−x dx

is now of the form for Gauss’s continued fraction of Section 7.8 of the
first volume.

(f) Conclude that R(1) = log 2 and R(1/2) = 2 − π/2 with similar
evaluations for all Egyptian fractions (1/n).

(g) Prove that

R(2) =
√

2
{π

2
− log(1 +

√
2)

}
.

Evaluate also R(3/2) and R(5).

(h) One can derive the rapidly convergent ζ-series

R(a) =
π

2
sec

( π

2a

)
+

2 a2(1 + 8a− 106a2 + 280a3 + 9a4)

(a2 − 1) (9 a2 − 1) (5 a− 1) (7 a− 1)
+ C(a)

where

C(a) =
1

2

∑
n≥1

{ζ(2n + 1)− 1} (3a− 1)2n − (a− 1)2n

(4a)2n
.

54. A fast series. It is possible to deduce from the previous exercise, using
Poisson summation (see Theorem 2.3.1), that

(a) For 0 < b ≤ a, k = b/a,K = K(k), and K ′ = K(k′) we have

R1(a, b) = R
( πa

2K ′

)
+

π

cos(K ′/a)

1

e2K/a − 1

+
2πa

K ′
∑

d∈O+

(−1)(d−1)/2

1− π2d2a2/(4K ′2)
1

eπdK/K′ − 1
.
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This allows a highly effective computation of the continued fraction
when a is close to b, and so the series (1.11.70) is not effective. De-
termine the proper interpretation when a = b.

(b) The AGM relationship, R1(b, a) = 2R1((a + b)/2,
√

ab) − R1(a, b),
then allows one to compute R1(a, b) for a < b equally effectively.
(See [39] for details.)

(c) Denoting by O+ the positive odd integers, one may establish
∫ ∞

−∞

sech (bx)

1 + x2
eiax dx =

π

cos b
e−a +

2π

b

∑

d∈O+

(−1)(d−1)/2e−πda/(2b)

1− π2d2/(4b2)
.

Interpret this relation for the possibility that b is an odd integer times
π/2. Compare the next exercise.

55. A cosh integral.

(a) Show that, for |a| ≤ b, one has
∫ ∞

0

cosh (at)

cosh (bt) (1 + t2)
dt

=
π

2

1

b sin(b)

(
sin (b)

∫ a

0

sin (a− t)

cos
(

1
2

π t
b

) dt− sin (a)

∫ b

0

sin (b− t)

cos
(

1
2

π t
b

) dt

)

+
π

2

sin (a)

sin (b)
− sin (a− b)

sin (b)

∫ ∞

0

1

cosh (bt) (1 + t2)
dt.

Hint: Show that both sides satisfy the same second-order differential
equation in a with the same values for a = 0 (namely the value∫∞

0
sech (bx) / (1 + x2) dx = R (π/2/b) ) and for a = b ( π/2).

(b) Deduce that
∫ ∞

0

sech (bt)

1 + t2
cos (at) dt

=
cosh (a)

2

{
Ψ

(
3

4
+

1

2

b

π

)
−Ψ

(
1

4
+

1

2

b

π

)}

− π

2b

∫ a

0

sinh (a− t) sech

(
π t

2 b

)
dt

for all a, b ≥ 0.
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(c) Note that as b → 0, the final integrand is convergent to zero but not
uniformly, and the prior evaluation becomes

∫ ∞

0

cos (at)

1 + t2
dt =

π

2
e−a.

The final integral in (b) equals
∫ a

0
cosh (a− t) arctan

(
sinh

(
π t
2 b

))
dt.

(d) Show for |a| < b that

∫ ∞

0

cosech (bt)

1 + t2
sinh (at) dt = π

∞∑

k=1

sin (kπ (1− a/b))

b + kπ
.

56. Infinitely differentiable functions. A lovely result of E. Borel [197,
pg. 191] shows that for every real sequence {an} there is an infinitely
differentiable function on R such that f (n)(0) = an.

A remarkable explicit example occurs via Ramanujan’s continued fraction.
Use equation (1.11.71) to show that the function a 7→ R(a) has Maclaurin
series

∑
n≥0 E2n a2n+1, with zero radius of convergence. Hint: Show that∫∞

0
sech(πx/2)x2n dx = E2n for each positive integer n. Then estimate

∣∣∣∣∣R(a)−
N−1∑
n=0

a2n+1E2n

∣∣∣∣∣ ≤ a2N+1

∫ ∞

0

sech
(π x

2

)
x2N dx = a2N+1|E2N |,

where E2N denote the Euler numbers.

57. Two expected distances. These results originate with James D. Klein.

(a) The expected distance between two random points on different sides
of the unit square:

2

3

∫ 1

0

∫ 1

0

√
x2 + y2 dx dy +

1

3

∫ 1

0

∫ 1

0

√
1 + (y − u)2 du dy

= 0.869009055274534463884970594345406624856719 . . .

=
2

9
+

1

9

√
2 +

5

9
log

(
1 +

√
2
)

.
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(b) The expected distance between two random points on different faces
of the unit cube:

4

5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
x2 + y2 + (z − w)2 dw dx dy dz

+
1

5

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
1 + (y − u)2 + (z − w)2 du dw dy dz

= 0.92639005517404672921816358654777901444496019010734 . . .

=
4

75
+

17

75

√
2− 2

25

√
3− 7

75
π

+
7

25
log

(
1 +

√
2
)

+
7

25
log

(
7 + 4

√
3
)

.

(c) Show that the first term in (b) is

√
2π

5

∞∑
n=2

F (1/2,−n + 2; 3/2; 1/2)

(2 n + 1) Γ (n + 2) Γ (5/2− n)

+
4

15

√
2 +

2

5
log

(√
2 + 1

)
− 1

75
π

and the second term is
√

π

10

∞∑
n=0

F (1, 1/2,−1/2− n,−n− 1; 2, 1/2− n, 3/2;−1)

(2 n + 1) Γ (n + 2) Γ (3/2− n)

− 2

25
+

√
2

50
+

1

10
log

(√
2 + 1

)
.

This allows one to numerically compute the expectation to high pre-
cision and to express both of the individual integrals in terms of the
same set of constants. These expectations have actually been checked
by computer simulations. Hint: Reduce the first integral to a three
dimensional one and use the binomial theorem on both.

58. Euler: The Master of Us All. Laplace once wrote, “Read Euler, read
Euler. He is the master of us all.” This quote is used for the title of Dun-
ham’s lovely book about Euler [107]. It contains a concise biography and
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emphasizes his breadth and mastery of all the topics of his period. Dun-
ham’s discussions on Euler and logarithms, and on Euler and infinite series,
are especially worth reading in conjunction with this chapter. The former
emphasizes the centrality of logarithms and their generalizations to Euler’s
work, and the latter discusses in illuminating detail Euler’s conquest of the
Basel problem of evaluating ζ(2).
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Chapter 2

Fourier Series and Integrals

Having contested the various results [Biot and Poisson] now recognise
that they are exact but they protest that they have invented another
method of expounding them and that this method is excellent and the
true one. If they had illuminated this branch of physics by important
and general views and had greatly perfected the analysis of partial
differential equations, if they had established a principal element of
the theory of heat by fine experiments . . . they would have the right to
judge my work and to correct it. I would submit with much pleasure
. . . But one does not extend the bounds of science by presenting, in
a form said to be different, results which one has not found oneself
and, above all, by forestalling the true author in publication.

Joseph Fourier, c. 1825 [135]

It is often useful to decompose a given function into its components, analyze
those and then put the function together again, possibly in a different way.
One of the most classical (and mathematically interesting) methods is to use
trigonometric functions. This is the basis for the theory of Fourier analysis. One
can think of a sound (a certain tone played on the violin, say) as consisting of
countably many oscillations with different discrete frequencies, which together
define the pitch and the specific timbre of the tone. These component frequencies
can be identified via Fourier analysis—mathematically, by computing the Fourier
series of a periodic function. Of course, in reality no oscillation is precisely
periodic and a sound will consist of a continuum of frequencies—mathematically,
this is analyzed by taking the continuous Fourier transform. Thus, the Fourier

77
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transform arises from Fourier series by taking more and more frequencies into
account. This process is described by the Poisson summation formula. Finally,
the question arises if a function thus analyzed can be reconstructed from its
Fourier series. It turns out that even for a continuous function, the Fourier
series may not be everywhere convergent. Thus one is led to consider special
summation methods, or “kernels.”

These are the topics covered in the next few sections. The interested reader
can find more details than we have room to give here in the introductory ex-
position in Chapter 8 of Stromberg’s book [197], or in the exhaustive classical
treatment of Zygmund [213], or in the more modern books by Katznelson [144]
and Butzer/Nessel [72].

Fourier methods are always a good tool for the evaluation of sums and in-
tegrals. Once such an object is identified as a Fourier series or integral, that
knowledge can be used for the evaluation, or methods such as the Parseval equa-
tion or Poisson summation can be brought to bear. We will see some examples
of this in the present chapter, and we have already seen and will see more of
that in the first volume and throughout this second volume.

2.1 The Development of Fourier Analysis

We start with some historical background here, which we have adapted in part
from the MacTutor website http://www-gap.dcs.st-and.ac.uk/~history, and
also from R. Bhatia’s monograph on Fourier series [25].

Joseph Fourier was one of the more colorful figures of mathematical his-
tory. Originally intending to be a Catholic priest, Fourier declined to take his
vows when he realized that he could not extinguish his interest in mathematics.
Shortly afterwards he became involved in the movement that led to the French
Revolution in 1793, but fortunately for modern mathematics he was spared the
guillotine, and was able to study mathematics at the Ecole Normale in Paris
under the tutelage of Lagrange. A few years later he was appointed as a sci-
entific adviser for Napoleon’s expedition to Egypt. When Napoleon’s army was
defeated by Nelson at the battle of the Nile, Fourier and the other French ad-
visers insisted that they be able to retain some of the artifacts they had found
there. The British refused, but at least permitted the French to make a catalog
of what they felt were the more important items. Fourier was given this task
by the French commanders. The eighth item on his catalog was the Rosetta
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stone, which had been recognized by the French scientists on the expedition as a
possible key to understanding of the Egyptian language. Later in Europe, when
published copies of the inscriptions were made available, Champollion, a student
who had been inspired by Fourier himself to study Egyptology, succeeded in the
first translation.

Fourier’s principal contributions to mathematics, namely Fourier analysis
and Fourier series, paralleled and even stimulated the development of the en-
tire field of real analysis. Fourier analysis had its origin in the 1700s, when
d’Alembert derived the wave equation that describes the motion of a vibrating
string, starting with an initial “function,” which at the time was restricted to
an analytic expression. In 1755 Daniel Bernoulli gave another solution for the
problem in terms of standing waves, namely waves associated with the n + 1
points 0, 1/n, 2/n, · · · , (n− 1)/n, 1 on the string that remain fixed. The motion
for n = 1, 2, · · · is the first harmonic, the second harmonic and so on. Bernoulli
asserted that every solution to the problem of the plucked string is merely a sum
of these harmonics.

Beginning in 1804, Joseph Fourier began to analyze the conduction of heat
in solids. He not only discovered the basic equations governing heat conduction,
but he developed methods to solve them, and in the process developed and
extended Fourier analysis to a much broader range of scientific problems. He
described his work in his book The Analytical Theory of Heat, which is regarded
as one of the most important books in the history of physics.

Like Bernoulli, Fourier asserted that any continuous function can be written
as

f(x) =
∞∑

n=−∞
An eint. (2.1.1)

But Fourier claimed that his representation is valid not only for f given by a
single analytical formula, but for f given by any graph, which at the time was
a more general object, encompassing, for example, a piecewise combination of
different analytic expressions. Fourier was not able prove his assertions, at least
not to the satisfaction of the mathematical community at the time (and certainly
not to the standards required today). But other mathematicians were intrigued,
and pursued these questions with renewed determination.

Dirichlet was the first to find a rigorous proof. He defined a real function
as we now understand the term, namely as a general mapping from one set of
reals to another, thus decoupling analysis from geometry. He then was able
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to prove that for every “piecewise smooth” function f , the Fourier series of f
converges to f(x) at any point x where f is continuous, and to the average value
(f(x+) + f(x−))/2 if f has a jump discontinuity at x. This was the first major
convergence result for Fourier series.

Mathematicians realized that to handle functions that have infinitely many
discontinuities, it was necessary to generalize the notion of an integral beyond
the intuitive idea of the area under a curve. Riemann succeeded in developing
a theory of integration that could handle such functions, and using this theory,
he was able to exhibit an example of a function that did not satisfy Dirichlet’s
piecewise continuous condition, yet still possessed a pointwise convergent Fourier
series. Cantor observed that changing a function f at a few points does not
change its Fourier coefficients. In the course of asking how many points can
be changed while preserving Fourier coefficients, he was led to the notion of
countably infinite and uncountably infinite sets. Ultimately Lebesgue extended
Dirichlet’s, Riemann’s, and Cantor’s results into what we now know as measure
theory, where sets of measure zero, almost everywhere equality of functions, and
almost everywhere convergence of functions supersede the simple concepts that
prevailed in the 1700s.

In summary, it is not an exaggeration to say that all of modern real and
complex analysis has its roots in Fourier series and Fourier analysis.

2.2 Basic Theorems of Fourier Analysis

2.2.1 Fourier Series

We will consider 2π-periodic functions f : R → C. For p > 0, we write f ∈ Lp(T)
if such an f is Lebesgue measurable and satisfies

‖f‖p =

[∫ π

−π

|f(t)|p dt

]1/p

< ∞

(T stands for Torus). Note that ‖ · ‖p is not a norm on Lp, since any function f
which is 0 almost everywhere will have ‖f‖p = 0. (Later we will identify functions
which are equal a.e.) In what follows, we will be mainly interested in the spaces
L1(T) and L2(T). Note that ‖·‖1 ≤ ‖·‖2 and L2(T) ( L1(T). If f is 2π-periodic
and continuous on R, then we write f ∈ C(T) and equip this space with the
uniform norm.
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For a function f ∈ L1(T), define the n-th Fourier coefficient (n ∈ Z) by

f̂n =

∫ π

−π

f(t) e−int dt.

This is motivated by the insight that if we write

sn(t) =
1

2π

n∑

k=−n

ck eikt (2.2.2)

for some sequence ck and assume L1(T)-convergence of (sn) to some f ∈ L1(T),

then f̂n = cn. Thus for arbitrary f ∈ L1(T) we will write, formally and sugges-
tively,

f(t) ∼ 1

2π

∞∑
n=−∞

f̂n eint,

where in general no assertion about convergence of this series is implied. Any
convergence statement is to be read in the sense of symmetric limits, i.e. of

sn(f, t) =
1

2π

n∑

k=−n

f̂k eikt.

Fourier coefficients usually are complex numbers, even when f is a real-valued
function. Sometimes it is desirable to have a real-valued series for f . Then the
Fourier series can be equivalently written as

f(t) ∼ 1

2π
a0 +

1

π

∞∑
n=1

(an cos(nt) + bn sin(nt))

where

an =

∫ π

−π

f(t) cos(nt) dt and

bn =

∫ π

−π

f(t) sin(nt) dt.

Note that

sn(f, t) =
1

2π
a0 +

1

π

n∑

k=1

(ak cos(kt) + bk sin(kt)).



82 CHAPTER 2. FOURIER SERIES AND INTEGRALS

Example 2.2.1 Fourier series of a symmetric function.

Define f ∈ L1(T) by f(t) = (π− t)/2 for t ∈ [0, 2π). Then f̂n = −iπ/n for n 6= 0

and f̂0 = 0, and its Fourier series is given by

f(t) ∼ −i

2

∞∑
n=−∞

n6=0

1

n
eint, (2.2.3)

or, equivalently,

f(t) ∼
∞∑

n=1

sin(nt)

n
. (2.2.4)

The right-hand side of (2.2.4) equals 0 at t = 0 , while the left-hand side by
definition equals π/2. Thus, equality cannot hold pointwise here. The situation
would improve if we were to define f(0) = 0. In fact, it follows from

∞∑
n=1

zn

n
= −Ln(1− z) for |z| ≤ 1, z 6= 1, (2.2.5)

by setting z = eit and taking real and imaginary parts, that

∞∑
n=1

sin(nt)

n
=

π − t

2
and (2.2.6)

∞∑
n=1

cos(nt)

n
= − ln |2 sin(t/2)| , (2.2.7)

for all t ∈ (0, 2π), and even with uniform convergence on every closed subinterval
of (0, 2π). 2

The question now is under what condition the Fourier series of a function con-
verges to that function. The answer depends on the definition of “convergence”
and is most interesting in the cases of pointwise, L1(T)- and L2(T)-convergence.

Pointwise and uniform convergence. As we have seen in the above example
(and as is clear from the computation of Fourier series), L1(T)-functions which
are equal a.e. will have the same Fourier series. By the uniqueness theorem for
Fourier series, the converse is also true: Functions with the same Fourier series
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are equal a.e. It is not true that the Fourier series of any continuous function
is pointwise convergent to that function. An example due to Lebesgue is given
in Item 6 at the end this chapter. Such functions must have a complicated
structure, because they cannot be of bounded variation. A function f : R → C
is of bounded variation on (a, b) if there is an M > 0 with

n−1∑

k=0

|f(tk+1)− f(tk)| ≤ M for all a < t0 < t1 < · · · < tn < b.

The infimum of all such M is the total variation of f , thus

V b
a (f) = sup

{
n−1∑

k=0

|f(tk+1)− f(tk)| : a < t0 < t1 < · · · < tn < b, n ∈ N

}
.

The set of all functions of bounded variation on (a, b) is denoted BV (a, b). An
equivalent characterization (due to Lebesgue) is that f can be written as the
difference of two bounded increasing functions. Thus any BV -function f is
differentiable a.e., and the one-sided limits f(t+) and f(t−) exist in (a, b).

Theorem 2.2.2 (Jordan test). For f ∈ L1(T) ∩BV (a, b) we have

lim
n→∞

sn(f, t) =
f(t−) + f(t+)

2
for every t ∈ (a, b)

and uniformly on every compact subinterval of (a, b) where f is continuous. If
f ∈ C(T), then the convergence is uniform on R.

Note that this theorem is proved via Césaro summation, and thus via the
Fejér kernel, which we will discuss in Section 2.3.3.

The Jordan test is another explanation of the convergence properties of the
Fourier series for the function f from the previous example. If another function
f ∈ C(T) is defined by f(t) = t2 on [−π, π], then

f(t) ∼ 1

3
π2 + 4

∞∑
n=1

(−1)n

n2
cos(nt).

Since f is continuous on R, the Fourier series converges uniformly to f , by the
Jordan test. However, since sn(f, t) is uniformly convergent, this also follows
directly from the uniqueness theorem for Fourier series.
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For t = 0 we get from this the identity

∞∑
n=1

(−1)n−1

n2
=

π2

12
.

By separating even and odd parts, this proves that

ζ(2) =
∞∑

n=1

1

n2
=

π2

6
. 2

To conclude the section on pointwise convergence, we note that the Fourier
series of an f ∈ L1(T) may be divergent everywhere (by an example due to
Kolmogorov in 1926). If, however, f ∈ Lp(T) for p > 1, then sn(f, t) converges
to f(t) a.e. (Carleson/Hunt 1966).

Convergence in L1(T). From now on it makes sense to identify functions
which are equal almost everywhere, so that ‖ · ‖1 and ‖ · ‖2 are now norms in the
respective spaces. Thus we will deal, strictly speaking, with equivalence classes
of functions instead of pointwise defined functions, although this will not be
denoted explicitly. For example, the statement that such a function is continuous
will mean that in its equivalence class we can find a continuous function, then
denoted by the same symbol. This notation is unusual but convenient, and
it corresponds to how one deals with these objects informally. It can lead to
dangerous pitfalls, though, as we will see later. In general, the Fourier series of
an f ∈ L1(T) need not be convergent to f with respect to the L1(T)-norm. Of
the many restrictions on f which imply convergence, we mention here only one
which is particularly simple (and has a convincing analog in the case of Fourier
transforms).

Theorem 2.2.3 Let f ∈ L1(T). If
∑∞

n=−∞ |f̂n| < ∞, then f ∈ C(T) and

f(t) =
1

2π

∞∑
n=−∞

f̂n eint,

with convergence in the L1(T)-norm as well as uniformly on T.

There are functions in L1(T) (even continuous ones) for which the Fourier
coefficients are not absolutely summable. It is a difficult and in general open
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problem to characterize those sequences which are Fourier sequences of an L1(T)-
function. A weak necessary condition follows from the Riemann-Lebesgue lemma
(see next subsection and Exercise 14): The Fourier coefficients of any f ∈ L1(T)

satisfy lim|n|→∞ f̂n = 0.

Convergence in L2(T). In contrast to the L1-case, for p > 1 the Fourier series
of any f ∈ Lp(T) converges to f in the Lp(T)-norm. For p = 2 this follows
directly from the usual Hilbert space theory: The trigonometric functions con-
stitute an orthogonal basis for L2(T). This implies that the Fourier coefficients
of an f ∈ L2(T) are square-summable and that every square-summable sequence
is the sequence of Fourier coefficients of an f ∈ L2(T). (That is the Riesz-Fischer
theorem.) Another consequence of Hilbert space theory is the Parseval equation.

Theorem 2.2.4 (Parseval’s formula.) For any f, g ∈ L2(T), the identity

1

2π

∞∑
n=−∞

f̂n ĝn =

∫ π

−π

f(t) g(t) dt (2.2.8)

holds. In particular, for f = g we get 1
2π

∑∞
n=−∞

∣∣∣f̂n

∣∣∣
2

=
∫ π

−π
|f(t)|2 dt.

Example 2.2.5 Parseval’s formula and the zeta function.

Applying the Parseval equation to the function f(t) = (π− t)/2 on (0, 2π) from
the first example in this section again gives the identity, after simplifying,

ζ(2) =
∞∑

n=1

1

n2
=

π2

6
.

This is the same result as in the previous example, but the Parseval equation is
conceptually simpler than the Jordan test. Applying the Parseval equation to
f(t) = t2/4− πt/2 + π2/6 gives

ζ(4) =
∞∑

n=1

1

n4
=

π4

90
,

and this can be continued to give ζ(2n) as a rational multiple of π2n for any
n ∈ N. The general formula is given in the next chapter, by a different method.
Similar formulas for ζ(2n+1) are unknown (and highly unlikely to exist; see the
next chapter for more information). 2
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Example 2.2.6 Parseval’s formula and Euler sums.

Multiplying the evaluations (2.2.6) and (2.2.7), using the Cauchy product, sim-
plifying and doing a partial fraction decomposition gives

− ln |2 sin(t/2)| · π − t

2
=

∞∑
n=1

1

n

n−1∑

k=1

1

k
sin(nt) on (0, 2π). (2.2.9)

Now Parseval proves the Euler sum formula that we first mentioned in the first
volume:

1

4

∫ 2π

0

(π − t)2 ln2(2 sin(t/2)) dt = π

∞∑
n=1

(∑n−1
k=1 k−1

)2

n2
.

2

2.2.2 Fourier Transforms

We now consider functions f : R → C. For p > 0, we write f ∈ Lp(R) if such an
f is Lebesgue measurable and satisfies

‖f‖p = [

∫ ∞

−∞
|f(t)|p dt]1/p < ∞.

As before, functions which are equal a.e. will be identified, so that ‖·‖p is a norm.
In what follows, we will be mainly interested in the spaces L1(R) and L2(R). In
contrast to the periodic case, there is now no inclusion relation between these
spaces. If f : R → C is continuous, we write f ∈ C(R) and equip this space
with the uniform norm.

The Fourier transform on L1(R) is now a direct analog of the Fourier co-
efficients on L1(T). By further analogy to the previous subsection, a Fourier
transform on L2(R) would also be of interest. However, the definition of such an
L2(R)-transform is not as straightforward as before, since these spaces are not
contained in each other. There is, however, a meaningful transform on L2(R),
and we will discuss this after giving the properties of the L1(R)-transform.
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Fourier Transform on L1(R). For a function f ∈ L1(R), define the Fourier

transform of f to be the function f̂ : R → C given by

f̂(x) =

∫ ∞

−∞
f(t) e−ixt dt.

As the example f = I(−π,π) (characteristic function) with f̂(x) = 2 sin(πx)/π
shows, the Fourier transform of an f ∈ L1(R) need not be in L1(R). It is not

difficult to show, however, that such an f̂ is always continuous, with ‖f̂‖∞ ≤
‖f‖1. The Riemann-Lebesgue lemma says that, additionally, lim|x|→∞ f̂(x) = 0.
It is proved by approximating f by step functions.

Under what conditions can an f ∈ L1(R) be reconstructed from its Fourier
transform? In principle, this is always possible: By the uniqueness theorem for
Fourier transforms, functions with the same Fourier transform must be equal a.e.
In practice, one would like a simple formula for this inversion. Such a formula
is given in the inversion theorem below, whose proof is not easy: It depends
on constructing and investigating a suitable summation kernel for the Fourier
transform (often the Gauss or the Fejér kernel are used).

Theorem 2.2.7 If f ∈ L1(R) is such that f̂ ∈ L1(R), then f, f̂ ∈ C(R) and

f(t) =
1

2π

∫ ∞

−∞
f̂(x) eixt dx (2.2.10)

for all t ∈ R.

Conditions which are good for f̂ ∈ L1(R) are given in Item 10 at the end of
this chapter.

Example 2.2.8 Sinc integrals.

For f(t) = max{1 − |t|, 0} we compute f̂(x) = sinc2(x/2) ∈ L1(R), where
sinc x = (sin x)/x. Thus by Theorem 2.2.7, we immediately get

∫ ∞

−∞
sinc2(x/2) eixt dx = 2π max{1− |t|, 0} (2.2.11)

for all t, and especially
∫∞
−∞ sinc2(x/2) dx = 2π. Maple’s built-in integral trans-

form package knows this integral:
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inttrans[fourier]((sin(x/2)/(x/2))^2,x,t); returns 2 Pi (-2 t
Heaviside(t) + t Heaviside(t - 1) - Heaviside(t - 1)

+ t Heaviside(t + 1) + Heaviside(t + 1))

This is an inelegant form of the answer we gave. Note that newer versions
of Maple can evaluate the integral directly as well, while in previous versions
this was only possible with the use of the Fourier transform, so that researchers
had to have more knowledge about what they were doing. Thus this is another
example of being able to watch technology in progress! 2

Fourier Transform on L2(R). Since L2(R) is not a subset of L1(R), in contrast
to the periodic case, the definition of the Fourier transform cannot be directly
transferred onto this space: The function f(t) e−ixt may not be integrable! For
this reason, the Fourier transform on L2(R) is usually defined as the continuation
of the Fourier transform on L1(R)∩L2(R) which is dense in L2(R). An equivalent
(and more practical) definition is the following. First of all, note that for f ∈
L2(R), fA = f · χ(−A,A) ∈ L1(R) for any A > 0. It can be proved, with some

effort, that then f̂A ∈ L2(R).

Definition 2.2.9 Let f ∈ L2(R). If the L2(R)-limit of the functions f̂A for
A → ∞ exists in L2(R), then it is called the Fourier (or Plancherel) transform

of f and is again denoted by f̂ .

By definition, the Fourier transform of an f ∈ L2(R) is always in L2(R). It
need not be continuous, nor does the Riemann/Lebesgue lemma hold. It can be

proved that ‖f‖2 = ‖f̂‖2 (Parseval equation), and that every function in L2(R)
is the Fourier transform of an f ∈ L2(R). An f ∈ L2(R) is reconstructible from
its Fourier transform by the same process as in Theorem 2.2.7.

Theorem 2.2.10 For any f ∈ L2(R),

f(t) =
1

2π

∫ ∞

−∞
f̂(x) eixt dx = lim

A→∞
1

2π

∫ A

−A

f̂(x) eixt dx (2.2.12)

in L2(R).

Example 2.2.11 Fourier transform of sine-exponential.
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We have already computed f̂(x) = 2 sin(πx)/x for f(t) = χ(−π,π)(t). This f̂ is
in L2(R), but not in L1(R). Theorem 2.2.10 now says that

∫ ∞

−∞

sin(πx)

πx
eixt dx = χ(−π,π)(t) a.e. 2

It would be interesting to replace this a.e.-statement with a pointwise state-
ment, since a.e.-statements are more difficult to handle when the goal is exact
evaluation of a series or integral, and so they are less useful for experimental
mathematics. In fact, a standard theorem of Fourier analysis (Jordan’s theo-
rem, see [72, p. 205]) is: If f ∈ L1(R) is of bounded variation in an interval
including the point t, then

lim
a→∞

1

2π

∫ a

−a

f̂(x) eixt dx =
1

2
(f(t+) + f(t−)) .

Applied to the above example, this gives

lim
a→∞

∫ a

−a

sin(πx)

πx
eixt dx =





0 for |t| > π,

1 for |t| < π,
1
2

for |t| = π.

(2.2.13)

.

2.3 More Advanced Fourier Analysis

2.3.1 The Poisson Summation Formula

There are obvious similarities between Fourier series and Fourier transforms.
Thus one would think that there are connections between the two concepts.
That is indeed so, and the link is provided by the Poisson summation formula.

As a first example, take a function F ∈ L1(T) and note that F̂n = f̂(n) if
f ∈ L1(R) is defined to equal F on (−π, π) and to vanish everywhere else. This
already is a simple special case of the Poisson summation formula.

A second approach to Poisson summation can be motivated by the following
question. Take a function g ∈ C(R), and assume that the sequence (g( n

w
)) is

absolutely summable for each w > 0. Consider Fw(t) =
∑∞

n=−∞ g
(

n
w

)
eint for
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w > 0. Such functions Fw are often investigated in connection with summation
procedures for Fourier series, and we will do so in the next subsection. A first
graphical observation is that the restrictions to (−π, π) of these functions Fw

tend to be concentrated more and more around 0 for increasing w. If, however,
the functions 1

w
Fw(t/w) are plotted, then there seems to be convergence towards

a limit function which depends on g. What is this limit function, and how can
we prove convergence? The answer is again given by the Poisson summation
formula.

In general, the Poisson formula links the finite and the infinite transforms
via the so-called periodization, an operation which associates L1(R)-functions in
a natural way with 2π-periodic functions: For f ∈ L1(R), set F (t) =

∑
j∈Z f(t+

2πj) for all t for which the limit exists. The next theorem is (one version of)
the classical Poisson formula, linking the Fourier series of F with the Fourier
transform of f .

Theorem 2.3.1 (Poisson summation formula). Let f ∈ L1(R).
a) The periodization F exists for almost every t ∈ T, and we have F ∈ L1(T)

and ‖F‖1 ≤ ‖f‖1.
b) The Fourier series of F is

∞∑
j=−∞

f(t + 2πj) ∼ 1

2π

∞∑
n=−∞

f̂(n) eint, (2.3.14)

in other words, we have F̂n = f̂(n) for all n ∈ Z.

Proof. a) Obviously f(t + 2πj) is integrable over [−π, π], and we have

∞∑
j=−∞

∫ π

−π

|f(t + 2πj)| dt =
∞∑

j=−∞

∫ π+2πj

−π+2πj

|f(t)| dt

=

∫ ∞

−∞
|f(t)| dt = ‖f‖L1(R) < ∞.

By B. Levi’s theorem, the series F is absolutely convergent a.e., we have F ∈
L1(T), and summation and integration can be exchanged. Now we also get
‖F‖L1(T) ≤ ‖f‖L1(R) by using the triangle inequality, doing the exchange and
then using the above computation.
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b) Now applying B. Levi’s theorem to the functions f(t + 2πj) · e−nt for
fixed n, and using the fact that the function e−int is 2π-periodic, we get with the
same summation trick as before,

F̂n =

∫ π

−π

F (t) e−int dt =

∫ ∞

−∞
f(t) e−int dt = f̂(n).

2

Of course, it is interesting to ask when the identity holds pointwise instead of
just in the sense of Fourier series. From the Jordan test it can be deduced that
if f ∈ L1(R) ∩ BV (R) and f(t) = 1

2
(f(t+) + f(t−)) everywhere, then equality

holds for all t.

Example 2.3.2 Fourier series of hyperbolic functions.

Choose y > 0 and define

f(t) =

{
e−yt for t > 0,

0 for t < 0,

and f(0) = 1/2. Then f̂(x) = (y + ix)−1, and Poisson says that

∞∑
j=−∞

f(t + 2πj) =
1

2π

∞∑
n=−∞

1

y + in
eint,

which is equivalent to

1

2π

(
1

y
+ 2

∞∑
n=1

y cos(nt) + n sin(nt)

y2 + n2

)
=

∑

j>t/(2π)

e−y(t+2πj) +

{
1
2
, t ∈ 2πZ,

0, otherwise.

Setting t = 0, we get

π coth(πy) =
1

y
+ 2y

∞∑
n=1

1

y2 + n2
.

Setting t = 1/2, we get

πcosech(πy) =
1

y
+ 2y

∞∑
n=1

(−1)n

x2 + n2
. 2
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Example 2.3.3 A quadratic exponential identity.

Now choose s > 0 and set f(t) = e−st2 . Then f̂(x) =
√

π
s
e−x2/(4s) (see Section

5.6 of the first volume), and Poisson says that

∞∑
j=−∞

e−s(t+2πj)2 =
1

2

√
1

πs

∞∑
n=−∞

e−n2/(4s) eint. (2.3.15)

By analyticity, this can be extended to hold for all Re(s) > 0. We will meet this
formula again in Section 3.1. 2

Example 2.3.4 A series identity that does not hold pointwise.

Take an even real-valued continuous g ∈ L1(R) such that (g( n
w
)) is absolutely

summable for each w > 0 and assume that ĝ ∈ L1(R). Then using Poisson and
the inversion theorem 2.2.7 it follows that

∞∑
n=−∞

g
( n

w

)
eint = w

∞∑
j=−∞

ĝ (w(t + 2πj)) , (2.3.16)

where equality is meant in L1(T). This equality does not hold pointwise! In

Katznelson’s book [144] an example is given of a function f ∈ L1(R) with f̂ ∈
L1(R) for which equality does not hold pointwise in Poisson’s formula (2.3.14),
because the periodization does not converge uniformly. This is the “dangerous
pitfall” that we mentioned earlier: Even though the left-hand side of (2.3.16) is a
continuous function, the right-hand side is not necessarily continuous; it is only
equal to a continuous function a.e. To deduce pointwise equality from this would
be wrong! This is a noteworthy difference to the situation in Theorem 2.2.7.

In any case, this gives an answer to the question at the beginning of the
present subsection: The limit function (in the L1(R)-sense) of the Fw’s, restricted
to (−π, π) and then suitably rescaled, is the Fourier transform of g. This follows
from (2.3.16), since

‖ 1
w
Fw

(
t
w

) · χ(−πw,πw) − ĝ(t)‖1 =

∫ πw

−πw

|
∞∑

j=−∞
j 6=0

ĝ(t + 2πjw)| dt +

∫

|t|>πw

|ĝ(t)| dt

≤ 2

∫

|t|>w

|ĝ(t)| dt → 0 (w →∞)
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if ĝ ∈ L1(R). Often enough (but not always) this convergence is even uniform
on R.

This is a very visual theorem; it can be discovered and explored on the
computer. In this sense Formula (2.3.16) is the experimental version of Poisson’s
summation formula! 2

2.3.2 Convolution Theorems

As we have seen, the Fourier series even of a continuous function need not
converge back to the function, neither in the L1-sense nor pointwise. Often,
convergence properties of such a series can be improved by putting additional
factors into the series to “force convergence.” For example, it can be proved
(and will be in the next subsection) that for f ∈ C(T) the series

σn(f, t) =
1

2π

n∑

k=−n

(
1− |k|

n + 1

)
f̂k eikt

converges to f uniformly as well as in the L1-sense; this is Fejér’s famous theorem.
How do these convergence factors work? If we set

Fn(t) =
n∑

k=−n

(
1− |k|

n + 1

)
eikt,

then the Fourier coefficients of σn(f, t) are the product of those of f and those of
Fn. Thus it seems reasonable that convergence properties of σn can be deduced
from suitable properties of Fn. An important relation between these objects is
given by the following theorem.

Theorem 2.3.5 (Convolution theorem for L1(T)). For f, g ∈ L1(T) define

h(t) = (f ∗ g)(t) =
1

2π

∫ π

−π

f(t− u) g(u) du.

1. Then the integral exists for a.e. t ∈ T, and we have h ∈ L1(T) and
‖h‖1 ≤ 1

2π
‖f‖1 ‖g‖1.
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2. Moreover, ĥn = 1
2π

f̂n · ĝn holds for the Fourier coefficients.

Applied to the question above, this convolution theorem says that σn(f, t) =
(Fn ∗ f)(t). In the next section, this will lead to a proof of Fejér’s theorem. We
will in fact be able to treat much more general summation kernels.

In the following sections, we will also need a convolution theorem in L1(R).

Theorem 2.3.6 (Convolution theorem for L1(R)). For f, g ∈ L1(R) define

h(t) = (f ∗ g)(t) =

∫ ∞

−∞
f(t− u) g(u) du.

1. Then the integral exists for a.e. t ∈ R, and we have h ∈ L1(R) and
‖h‖1 ≤ ‖f‖1 ‖g‖1.

2. Moreover, ĥ(x) = f̂(x) · ĝ(x) holds for the Fourier transforms.

The convolution in L1(R) tends to make functions smoother but less localized.
If g is, for example, the characteristic function of an interval, then h = f ∗ g will
be absolutely continuous for every L1-function f . If, on the other hand, both f
and g are L1-functions with bounded supports, equal to, say, [−a, a] and [−b, b],
then the support of h = f ∗ g will be equal to [−(a + b), a + b].

Convolution theorems are quite important in computational mathematics!
To compute a convolution one usually has to perform many multiplications,
so that it is expensive in terms of time and memory. On the other hand,
a single multiplication often is cheap. The convolution theorems (which have
many analogs for different types of convolutions) say that convolutions can be
transformed into multiplications and thus may be much easier to compute than
appears on first glance. Techniques for computing convolutions using the fast
Fourier transform (FFT) are presented in Chapter 6 of the first volume. The
speed of convolutions computed using FFTs is a principal reason that Fourier
theory in general, and the FFT in particular, are so important in computational
science.

2.3.3 Summation Kernels

With regard to Fejér’s sum σn, the convolution theorem says that σn(f, t) =
(Fn ∗f)(t), and we are interested in the question whether Fn ∗f → f for n →∞
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in a suitable norm (L1 or uniformly). This question can be generalized: Under
what conditions on a family of functions (Kw) ⊆ L1(T) is there convergence
‖Kw ∗ f − f‖1 → 0 (w → ∞) for all f ∈ L1(T)? Under what conditions is
there uniform convergence for continuous f? Any family of type (Kw) is called a
kernel. If there is suitable convergence then (Kw) is also called an approximate
identity, and the question is now open to systematic experimentation. Which
conditions of a kernel make it an approximate identity?

It is proved in Katznelson’s book [144] that the following conditions imply
that some family (Kw) ⊆ L1(T) is an approximate identity for Lp(T) (1 ≤ p <
∞) and for C(T):

(S1)
1

2π

∫ π

−π

Kw(t) dt = 1 for all w,

(S2)

∫ π

−π

|Kw(t)| dt ≤ M uniformly in w,

(S3) lim
w→∞

∫

δ≤|t|≤π

|Kw(t)| dt = 0 for all 0 < δ < π.

Of particular interest here are kernels of the form Kw(t) =
∑∞

k=−∞ g( k
w
) eikt

for suitable functions g, since many classical kernels are of this form. Now our
direction should be clear: the “experimental” version (2.3.16) of the Poisson
formula will be of use.

Theorem 2.3.7 Let Kw(t) =
∑∞

k=−∞ g( k
w
) eikt and assume that g ∈ C(R) ∩

L1(R), that (g( n
w
)) is absolutely summable for each w > 0, and that g(0) = 1

and ĝ ∈ L1(R). Then (Kw) is an approximate identity.

Proof. We have to check (S1)–(S3) above. Condition (S1) is a condition on
the middle Fourier coefficient of Kw and follows from g(0) = 1. Regarding (S2),
we have, using (2.3.16) and the theorem of B. Levi,

∫ π

−π

|Kw(t)| dt =
1

2π

∫ π

−π

∣∣∣∣∣w
∞∑

j=−∞
ĝ(w(t + 2πj))

∣∣∣∣∣ dt

≤ w

∞∑
j=−∞

∫ π

−π

|ĝ(w(t + 2πj))| dt

= w

∫ ∞

−∞
|ĝ(wt)| dt = ‖ĝ‖1,
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which is a uniform bound. Finally, we get by similar computations as before
that

∫

δ≤|t|≤π

|Kw(t)| dt ≤
∫

|t|>wδ

|ĝ(t)| dt,

which tends to 0 for w →∞ since ĝ ∈ L1(R). 2

All of the conditions in Theorem 2.3.7 are easily checked symbolically. More-
over, the methods employed here allow more detailed investigations of the ap-
proximation properties of the kernels by direct computation of the Fourier trans-
form. For example, often the Lebesgue constants, defined as ‖Kw‖1, determine
the rate of convergence of Kw ∗ f to f , or, if Kw is not an approximate identity,
the growth rate of Kw ∗ f . The Lebesgue constants, as computed in the proof
of (S2), satisfy ‖Kw‖1 ≤ ‖ĝ‖1. This bound is precise, since the same Poisson
methods also gives

‖Kw‖1 ≥ ‖ĝ‖1 − 2

∫

|t|>πw

|ĝ(t)| dt.

Example 2.3.8 The Fejér kernel.

The kernel Fn as defined above comes from the Cesáro summation method ap-
plied to Fourier series; thus σn(f, t) = (Fn ∗ f)(t). By geometric summation, Fn

can also be written as

Fn(t) =
sin2(n+1

2
t)

(n + 1) sin2( t
2
)
.

If we set g(x) = max{1 − |x|, 0}, then Fn = Kn+1. Since ĝ(t) = sinc2(t/2) ∈
L1(R), the conditions of Theorem 2.3.7 are satisfied. Thus we deduce directly
that Fn is an approximate identity in Lp(T) and in C(T). Moreover, since ĝ is
non-negative, for the Lebesgue constants we get ‖Fn‖1 = ‖ĝ‖1 = 2π (compare
with the example in Section 2.2.2). 2

Example 2.3.9 The Poisson kernel.
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Another important summation method is Abel summation. Applied to Fourier
series, it leads to the Poisson kernel, defined as

Pr(t) =
∞∑

k=−∞
r|k| eikt =

1− r2

1− 2r cos(t) + r2
for 0 ≤ r < 1.

The question is whether Pr ∗ f → f in Lp(T) or in C(T) for r → 1. By
setting w = −1/ ln(r) and g(x) = e−|x|, we have Pr(t) = Kw(t). Since ĝ(t) =
2/(1+ t2) ∈ L1(R), Theorem 2.3.7 produces convergence of Pr ∗f to f . Similarly
to the Fejér kernel, Pr as well as g and ĝ are nonnegative, so that we again have
‖Pr‖1 = ‖Kw‖1 = ‖ĝ‖1 = 2π. 2

Example 2.3.10 The Dirichlet kernel.

The same methods also explain why the usual summation of Fourier series does
not always give convergence. This summation corresponds to the Dirichlet kernel

Dn(t) =
n∑

k=−n

eikt =
sin

((
n + 1

2

)
t
)

sin
(

t
2

)

via sn(f, t) = (Dn∗f)(t). The Dirichlet kernel is of the form Kn with g = χ[−1,1].
This g is neither continuous, nor does it have a Fourier transform in L1(R) (its
Fourier transform is ĝ(t) = 2sinc(t).) Thus Theorem 2.3.7 is not applicable.
But the experimental Poisson formula (2.3.16) can still be used to estimate the
Lebesgue constants and gives ‖Dn‖1 =

∫ nπ

−nπ
|2sinc(t)| dt+O(1) = 8

π
ln(n)+O(1).

These are unbounded, and so the Dirichlet kernel can be expected to have worse
summation properties than the Fejér and Poisson kernels above. 2

In summary, the methods described here are very useful to gauge norm-
convergence properties of kernels of the special form Kw(t) =

∑
g( k

w
) eikt in a

direct, computational way, and they open the door to further experimentation.
Our description has been adapted from [118], but reportedly these methods go
back at least to Korovkin.

Of course, norm-convergence does not imply pointwise convergence. As de-
scribed in [144], instead of (S1)–(S3) the following properties of a kernel can
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be used to prove pointwise convergence of Kw ∗ f to f : Kw satisfies (S1), is
non-negative and even, and satisfies

lim
w→∞

(
sup

δ≤|t|≤π

Kw(t)

)
= 0 for all 0 < δ < π.

This allows one to decide, for given f ∈ L1(T) and t0 ∈ R, whether (Kw ∗
f)(t0) converges to f(t0).

For the Fejér kernel, it leads to Lebesgue’s condition: If there exists a value
f̌(t0) such that

lim
h→0

1

h

∫ h

0

∣∣∣∣
f(t0 + t) + f(t0 − t)

2
− f̌(t0)

∣∣∣∣ dt = 0,

then σn(f, t) → f̌(t0) for n →∞. In particular, σn(f, t) → f(t) a.e.
For the Poisson kernel, it leads to Fatou’s condition: If there exists a value

f̌(t0) such that

lim
h→0

1

h

∫ h

0

(
f(t0 + t) + f(t0 − t)

2
− f̌(t0)

)
dt = 0,

then (Pr ∗ f)(t0) → f̌(t0) for r → 1−. In particular, (Pr ∗ f)(t) → f(t) a.e.
The convergence is uniform on closed subintervals where f is continuous.

2.4 Examples and Applications

2.4.1 The Gibbs Phenomenon

If a function f ∈ L1(T) is of bounded variation, it may have jump discontinuities.
The Jordan test says that the Fourier series of f converges to the center of the gap
at such a point. Directly to the left and right of the jump, the series converges
pointwise, but not uniformly on any interval containing the discontinuity, to
the function. The function f(t) = (π − t)/2 =

∑
n−1 sin(nt) on [0, 2π] is a

good example for this behavior, see Figure 2.1, where the series for (π − t)/2 is
evaluated to 20 terms.

One notices that the cut-off Fourier series “overshoots” the function at the
discontinuity. These oscillations do not diminish when more terms are added;
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they just move closer to the discontinuity. When the experimental physicist
A. Michelson (famous for the Michelson-Morley experiment, which led to Ein-
stein’s special relativity) had built a machine to calculate Fourier series and fed
it a discontinuous function, he noticed this phenomenon. It was unexpected for
him, but after hand calculations confirmed this behavior, he wrote a letter to
Nature in 1898, expressing his doubts that “a real discontinuity can replace a
sum of continuous curves” (cited after Bhatia [25]). J. Willard Gibbs, one of
the founders of modern thermodynamics, replied to this letter and clarified the
matter. Thus here we have another example of a mathematical theorem which
was experimentally discovered (by an experimental physicist)!

Now what is the explanation for the Gibbs phenomenon? Inspection of the
picture shows that the largest overshoot seems to occur around the point π/N
if N terms of the Fourier series are added. Thus we compute

sN

(
f,

π

N

)
=

N∑
n=1

sin
(

nπ
N

)

n
=

π

N

N∑
n=1

sin
(

nπ
N

)
nπ
N

,

where the last sum is a Riemann sum for the integral

I =

∫ π

0

sin(t)

t
dt.

Therefore, sN(f, π
N

) → I for N →∞. Since I/f(0+) = I/(π/2) ≈ 1.178979744,
this explains why the overshoot does not go away for large N . This overshoot of
roughly 18% is not dependent on the function f used here as an example, but
can be observed (and proved) for any jump discontinuity.

Does the Gibbs phenomenon vanish when we use Fejér’s series instead of
the Fourier series? Figure 2.2 shows the Fejér approximation to f , again to 20
terms. The oscillation is now replaced by a pronounced “undershoot” to the
right of 0 (this can be explained by the positivity of the Fejér kernel); again, the
undershoot can be observed to move closer to the discontinuity but not vanish
altogether when more terms are added. In fact, we have to pay for the increased
smoothness of the approximation by its reduced willingness to snuggle up to the
limit function.
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Figure 2.1: The Gibbs phenomenon for Fourier series
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Figure 2.2: The Gibbs phenomenon for Fejér series
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2.4.2 A Function with Given Integer Moments

The kth moment of a function f ∈ L1(R) is defined as

µk(f) =

∫ ∞

−∞
f(t) tk dt,

provided that t 7→ f(t) tk ∈ L1(R). The Hamburger moment problem is the
problem to find a function f with a given sequence of moments (µk). This
problem is underdetermined: There can be non-vanishing functions whose every
moment is 0. This is easily seen by the following argument. Assume that f is k
times differentiable with every derivative in L1(R). Then by partial integration,

f̂ (k)(x) =

∫ ∞

−∞
f (k)(t) e−ixt dt = (ix)k f̂(x),

and by the inversion theorem,
∫∞
−∞ f̂(x) xk dx = 2πf (k)(0). Thus if f ∈ L1(R) is

infinitely differentiable with every derivative in L1(R) and satisfies f (k)(0) = 0

for all k, then all moments of f̂ vanish. Of course, such non-trivial functions f
exist, even with compact support.

Obviously, for an even function every odd moment vanishes. To generalize
this, it is quite easy to find, for given n ∈ N, a function whose kth moment is
non-zero precisely when k mod n = 0. Just choose an infinitely differentiable
function f ∈ L1(R) with all derivatives in L1(R), and such that all its derivatives
are non-zero at 0. Then set g(t) = f(tn), and by the chain and product rule of
differentiation, g(k)(0) is non-zero precisely for k mod n = 0. Thus, ĝ satisfies the
moment condition. If f is analytic, say f(t) =

∑∞
j=0 aj tj, then g(k)(0) = (qn)! aq

if k = qn and g(k)(0) = 0 otherwise. An example for such a function f is
f(t) = (1 + t) e−t2/2.

When this was first investigated some years ago, numerical fast Fourier trans-
forms were used—as a test—to calculate the moments for g(t) = f(tn), where
f(t) = (1 + t) e−t2/2 as above. The scheme for doing this is presented in Section
6.1 of the first volume. When this was done, it was noticed that the resulting mo-
ment values were extremely accurate, far more than one would expect based on
what amounts to a simple step-function approximation to the Fourier integrals.
Readers may recall that we also encountered this phenomenon in Section 5.2
of the first volume. This phenomenon, which is rooted in the Euler-Maclaurin
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summation formula, is the foundation of some extremely efficient and highly
accurate numerical quadrature schemes that we shall see in Sections 7.4.2 and
7.4.3.

2.4.3 Bernoulli Convolutions

Consider the discrete probability density on the real line with measure 1
2

at
each of the two points ±1. The corresponding measure is the so-called Bernoulli
measure, denoted b(X). For every 0 < q < 1, the infinite convolution of measures

µq(X) = b(X) ∗ b(X/q) ∗ b(X/q2) ∗ · · · (2.4.17)

exists as a weak limit of the finite convolutions. The most basic theorem about
these infinite Bernoulli convolutions is due to Jessen and Wintner ([140]). They
proved that µq is always continuous and that it is either absolutely continuous or
purely singular. This statement follows from a more general theorem on infinite
convolutions of purely discontinuous measures (Theorem 35 in [140]); however,
it is not difficult to prove the statement directly with the use of Kolmogoroff’s
0-1-law (which can be found, e.g., in [26]). The question about these measures is
to decide for which values of the parameter q they are singular, and for which q
they are absolutely continuous.

This question can be recast in a more real-analytic way by defining the dis-
tribution function Fq of µq as

Fq(t) = µq(−∞, t], (2.4.18)

and to ask for which q this continuous, increasing function Fq is singular, and
for which it is absolutely continuous. Note that Fq satisfies Fq(t) = 0 for t <
−1/(1− q) and Fq(t) = 1 for t > 1/(1− q).

Another way to define the distribution function Fq is by functional equations:
Fq is the only bounded solution of the functional equation

F (t) =
1

2
F

(
t− 1

q

)
+

1

2
F

(
t + 1

q

)
(2.4.19)

with the above restrictions. Moreover, if Fq is absolutely continuous and thus
has a density fq ∈ L1(R), then fq satisfies the functional equation

2q f(t) = f

(
t− 1

q

)
+ f

(
t + 1

q

)
(2.4.20)
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almost everywhere. This is a special case of a much more general class of equa-
tions, namely two-scale difference equations. Those are functional equations of
the type

f(t) =
N∑

n=0

cn f(αt− βn) (t ∈ R) (2.4.21)

with cn ∈ C, βn ∈ R and α > 1. They were first discussed by Ingrid Daubechies
and Jeffrey C. Lagarias, who proved existence and uniqueness theorems and
derived some properties of L1-solutions [98, 99]. One of their theorems, which
we state here in part for the general equation (2.4.21) and in part for the specific
case (2.4.20), is the following:

Theorem 2.4.1 1. If α−1(c0 + · · ·+ cN) = 1, then the vector space of L1(R)-
solutions of (2.4.21) is at most 1-dimensional.

2. If, for given q ∈ (0, 1), equation (2.4.20) has a non-trivial L1-solution fq,

then its Fourier transform satisfies f̂q(0) 6= 0, and is given by

f̂q(x) = f̂q(0)
∞∏

n=0

cos(qn x). (2.4.22)

In particular, for normalization we can assume f̂q(0) = 1.

3. On the other hand, if the right-hand side of (2.4.22) is the Fourier trans-
form of an L1-function fq, then fq is a solution of (2.4.20).

4. Any non-trivial L1-solution of (2.4.21) is finitely supported. In the case
of (2.4.20), the support of fq is contained in [−1/(1− q), 1/(1− q)].

This implies in particular that the question whether the infinite Bernoulli con-
volution (2.4.17) is absolutely continuous is equivalent to the question whether
(2.4.20) has a non-trivial L1-solution. Now what is known about these questions?

It is relatively easy to see that in the case 0 < q < 1/2, the solution of (2.4.20)
is singular; it is in fact a Cantor function, meaning that it is constant on a dense
set of intervals. This was first proved by R. Kershner and A. Wintner [146]. (An
example of a Cantor function is depicted in Figure 6.1 of the first volume.)
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It is also easy to see that in the case q = 1/2 there is an L1-solution of (2.4.19),
namely f1/2(t) = 1

4
χ[−2,2](t). Moreover, this can be used to construct a solution

for every q = 2−1/p where p is an integer, namely

fq(t) = f1/2(t) ∗ f1/2(qt) ∗ · · · ∗ f1/2(q
p−1t). (2.4.23)

This was first noted by Wintner via the Fourier transform [209]. Explicitly, we
have

f̂2−1/p(x) =
∞∏

n=0

cos(2−n/px) =
∞∏

m=0

p−1∏

k=0

cos(2−(m+k/p)x)

= f̂1/2(x) · f̂1/2(q
1/px) · · · f̂1/2(q

(p−1)/px),

which is equivalent to (2.4.23) by the convolution theorem.
Note that the regularity of these solutions f2−1/p increases when p and thus

q = 2−1/p increases: f2−1/p ∈ Cp−2(R). From the results given so far, one might
therefore surmise that (2.4.20) would have a non-trivial L1-solution for every
q ≥ 1/2 with increasing regularity when q increases. This supposition, however,
would be wrong, and it came as a surprise when Erdős proved in 1939 [111]
that there are some values of 1/2 < q < 1 for which (2.4.20) does not have an
L1-solution, namely, the inverses of Pisot numbers. A Pisot number (discussed
further in Exercise 13 of Chapter 7) is defined to be an algebraic integer greater
than 1 all of whose algebraic conjugates lie inside the unit disk. The best known
example of a Pisot number is the golden mean ϕ = (

√
5+1)/2. The characteristic

property of Pisot numbers is that their powers quickly approach integers: If a is
a Pisot number then there exists a θ, 0 < θ < 1, such that

dist(an, Z) ≤ θn for all n ∈ N. (2.4.24)

Erdős used this property to prove that if q = 1/a for a Pisot number a, then

lim supx→∞
∣∣∣f̂q(x)

∣∣∣ > 0. Thus in these cases, fq cannot be in L1(R), since that

would contradict the Riemann-Lebesgue lemma. Erdős’s proof uses the Fourier
transform f̂q: Consider, for N ∈ N,

∣∣∣f̂q(q
−Nπ)

∣∣∣ =
∞∏

n=1

|cos(qnπ)| ·
N−1∏
n=0

∣∣cos(q−nπ)
∣∣ =: C · pN ,
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where C > 0. Moreover, choose θ 6= 1/2 according to (2.4.24) and note that

pN =
N−1∏
n=0

θn≤1/2

∣∣cos(q−nπ)
∣∣ ·

N−1∏
n=0

θn>1/2

∣∣cos(q−nπ)
∣∣

≥
N−1∏
n=0

θn≤1/2

cos(θnπ) ·
N−1∏
n=0

θn>1/2

∣∣cos(q−nπ)
∣∣

≥
∞∏

n=0
θn≤1/2

cos(θnπ) ·
∞∏

n=0
θn>1/2

∣∣cos(q−nπ)
∣∣ = C ′ > 0,

independently of N .
In 1944, Raphaël Salem [186] showed that the reciprocals of Pisot numbers

are the only values of q where f̂q(x) does not tend to 0 for x → ∞. In fact, no
other q > 1

2
are known at all where Fq is singular. Moreover, the set of explicitly

given q with absolutely continuous Fq is also not very big: The largest such set
known to date was found by Adriano Garsia in 1962 [115]. It contains reciprocals
of certain algebraic numbers (such as roots of the polynomials xn+p− xn− 2 for
max{p, n} ≥ 2) besides the roots of 1

2
.

Matters remained in this state for more than 30 years; the question remained
settled only for countably many q ∈ [1

2
, 1). The most recent significant progress

then was made in 1995 by Boris Solomyak [195], who developed exciting new
methods in geometric measure theory to prove that Fq is in fact absolutely
continuous for almost every q ∈ [1

2
, 1). (See also [172] for a simplified proof and

[171] for a survey and some newer results.)
This, however, yields no explicit result; the set of q’s for which the behavior of

Fq is known explicitly is the same as before. Here we now suggest an experimental
approach to at least identify q-values for which the behavior of Fq can be guessed.
In fact, define a map Tq, mapping the set of L1-functions with support in [−1/(1−
q), 1/(1− q)] and with f̂q(0) = 1 into itself, by

(Tqf)(t) =
1

2q

(
f

(
t− 1

q

)
+ f

(
t + 1

q

))
for t ∈ R.

Then note that the fixed points of Tq are the solutions of (2.4.20) and that Tq

is nonexpansive (cf. Chapter 6). Therefore one may have hope that by iterating
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the operator it may be possible to approximate the fixed point. In fact, if a
sequence of iterates T n

q f converges in L1(R) for some initial function f , then the
limit will be a fixed point of Tq, since Tq is continuous. It is, however, not easy
to prove convergence; no convergence proof is known. It is, on the other hand,
possible to prove a weaker result, namely convergence in the mean, provided
that a fixed point exists: If a solution fq ∈ L1(R) of (2.4.20) exists, then for
every initial function f ∈ L1(R) with support in [−1/(1− q), 1/(1− q)],

lim
n→∞

∥∥∥∥∥
1

n

n−1∑

k=0

T k
q f − fq

∥∥∥∥∥
1

= 0.

This theorem follows from properties of Markov operators [150] and from a
result by Mauldin and Simon [159], showing that if an L1-density fq exists, then
it must be positive a.e. on its support.

In practice, we observe that the iterates usually seem to converge directly,
even without the means. Plotting them, we hope to infer existence and regularity
of L1-solutions by visual inspection. The figures on the next pages show the 25th
iterate for f = χ−1/(1−q),1/(1−q) as initial function. Figure 2.3 shows convergence

to f1/2 ∗f1/2 for q = 1/
√

2; Figure 2.4 shows that for q = (
√

5−1)/2, the iterates
do not converge to a meaningful function. It is not known if there is a density
for any rational q ∈ (1/2, 1). Figures 2.5 and 2.6 show that there seems to be
a continuous limit in both cases shown; moreover, regularity seems to increase
when q increases.

2.5 Some Curious Sinc Integrals

Define

In =

∫ ∞

0

sinc(x) · sinc
(x

3

)
· · · sinc

(
x

2n + 1

)
dx.
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Figure 2.3: 25th iterate for for q = 1/
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Figure 2.4: 25th iterate for q = (
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5− 1)/2
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Figure 2.5: 25th iterate for q = 2/3
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Figure 2.6: 25th iterate for q = 3/4
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Then Maple or Mathematica evaluate

I0 =

∫ ∞

0

sinc(x) dx =
π

2
,

I1 =

∫ ∞

0

sinc(x)sinc
(x

3

)
dx =

π

2
,

...

I6 =

∫ ∞

0

sinc(x) · sinc
(x

3

)
· · · sinc

( x

13

)
dx =

π

2
, but

I7 =

∫ ∞

0

sinc(x) · sinc
(x

3

)
· · · sinc

( x

15

)
dx =

467807924713440738696537864469

935615849440640907310521750000
π,

where the fraction is approximately 0.499999999992646 . . ..
When this fact was recently verified by a researcher using a computer algebra

package, he concluded that there must be a “bug” in the software. This conclu-
sion may be too hasty, but it does raise the question: How far can we trust our
computer algebra system? Or as computer scientists often ask, “Is it a bug or a
feature?”

In this section, we will derive general formulas for this type of sinc integrals,
thereby proving that all of the above evaluations are in fact correct. Thus, this
is a somewhat cautionary example for too enthusiastically inferring patterns
from symbolic or numerical computations. The material comes from [33], and
additional information can also be found in [34].

2.5.1 The Basic Sinc Integral

It will turn out that the general multi-sinc integral can be reduced to the integral
I0, so that it makes sense to first evaluate this integral. Note that the function
sinc(x) is not an element of L1(R)! Thus, Lebesgue theory cannot be applied
here directly, and in fact the integral has to be interpreted correctly. Here we
use the usual interpretation

I0 =

∫ ∞

0

sinc(x) dx = lim
a→∞

∫ a

0

sinc(x) dx.
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Thus we interpret it as an improper Riemann integral, or at best as the limit of
Lebesgue integrals.

Of course, Maple or Mathematica directly evaluate I0 = π
2
, but this is not

helpful for those who demand understanding or a proof. Where does this evalu-
ation come from? Peering behind the covers, we find that Maple knows∫ a

0

sinc(x) dx = Si(a) → π

2
for a →∞.

However, this just shifts the problem to another level, since Si equals the integral
by definition. Here we will now give several proofs of this identity: One will be
short (and incomplete), one will be wrong, and one will then be constructive!

For the first proof we just remember the Jordan theorem in Section 2.2.2,
which directly implies that

lim
a→∞

∫ a

−a

sinc(πx) eixt dx =
1

2

(
χ(−π,π)(t+) + χ(−π,π)(t−)

)
,

so that t = 0 gives the desired evaluation. However, this is only a proof modulo
the Jordan theorem. A direct proof would still be preferable.

The second “proof” is not a proof, just an idea: Write the sinc function as
an inner integral and then use Fubini. Writing 1/x =

∫∞
0

e−tx dt, we would have
to use Fubini on the function g(t, x) = e−tx sin(x) on R×R. The double integral
that results from exchanging the integration order does, in fact, give∫ ∞

0

∫ ∞

0

e−tx sin(x) dx dt =

∫ ∞

0

1

1 + t2
dt =

π

2
.

However, this exchange is not allowed, since the function g is not in L1(R2).
But this idea can now be made into a proof which is valid and constructive.

If g is not L1 on R2, then we just have to restrict the domain of g at first. Now
Fubini is applicable in∫ a

0

sinc(x) dx =

∫ a

0

∫ ∞

0

e−xt sin(x) dt dx

=

∫ ∞

0

∫ a

0

e−xt sin(x) dx dt

=

∫ ∞

0

1

1 + t2
[
1− e−at(t sin(a) + cos(a))

]
dt,

=
π

2
−

∫ ∞

0

e−at

1 + t2
(t sin(a) + cos(a)) dt,
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and the final integral goes to 0 for a → ∞ as follows by elementary estimates
(see [26]).

Another constructive method to evaluate the sinc integral is given in Item
26 in the Exercises at the end of this chapter.

2.5.2 Iterated Sinc Integrals

Now let n ≥ 1 and a0, a1, · · · , an be positive reals. Our goal is to find inequalities
(explicit formulas will be given in the exercises) for the integral

τ =

∫ ∞

0

n∏

k=0

sinc(ak x) dx

which in particular explain the behavior of the integrals In. For simplicity and
without loss, we can assume that a0 = 1.

Theorem 2.5.1 Let s =
∑n

k=1 ak. If s ≤ 1, then τ = π
2
; if s > 1, then τ < π

2
.

Proof. Let τ(x) =
∏n

k=0 sinc(ak x). Note that sinc(ak x) = f̂k(x) with fk =
1

2ak
χ[−ak,ak]. Thus by the convolution theorem, τ(x) = (f0 ∗ · · · ∗ fn)̂ (x), and by

the inversion theorem,
∫ ∞

−∞
τ(x) dx = 2π (f0 ∗ · · · ∗ fn)(0) = 2π

1

2

∫ 1

−1

(f1 ∗ · · · ∗ fn)(u) du. (2.5.25)

Now since the support of fk equals [−ak, ak], the support of (f1 ∗ · · · ∗ fn)
equals [−s, s]. If s ≤ 1, then

∫ 1

−1

(f1 ∗ · · · ∗ fn)(u) du =

∫ ∞

−∞
(f1 ∗ · · · ∗ fn)(u) du

= (f1 ∗ · · · ∗ fn)̂ (0) =
n∏

k=1

sinc(ak 0) = 1,

and
∫∞
−∞ τ(x) dx = π follows. If, on the other hand, s > 1, then the inter-

val [−1, 1] is strictly inside the support of (f1 ∗ · · · ∗ fn). Since (f1 ∗ · · · ∗ fn) is
strictly positive in the interior of its support, we get

∫ 1

−1

(f1 ∗ · · · ∗ fn)(x) dx <

∫ ∞

−∞
(f1 ∗ · · · ∗ fn)(x) dx = 1,
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and
∫∞
−∞ τ(x) dx < π follows. 2

This theorem explains why the values of In suddenly drop below π
2

at n = 7
and not before: We have 1

3
+ 1

5
+ · · ·+ 1

13
< 1 but 1

3
+ 1

5
+ · · ·+ 1

13
+ 1

15
> 1.

A geometric interpretation of this behavior can also be given. Consider the
polyhedra

P = {(x1, · · · , xn) : −1 ≤
n∑

k=1

xk ≤ 1, −ak ≤ xk ≤ ak for k = 1, · · · , n},

Q = {(x1, · · · , xn) : −1 ≤
n∑

k=1

akxk ≤ 1, −1 ≤ xk ≤ 1 for k = 1, · · · , n},

H = {(x1, · · · , xn) : −1 ≤ xk ≤ 1 for k = 1, · · · , n}.

Then by formula (2.5.25),

τ =
π

2n a1 · · · an

∫ min(1,s)

0

(
χ[−a1,a1] ∗ · · · ∗ χ[−an,an]

)
(x) dx

=
π

2

Vol(P )

2n a1 · · · an

=
π

2

Vol(Q)

Vol(H)
.

Thus the value of τ drops below π
2

precisely when the constraint −1 ≤ ∑
akxk ≤

1 becomes active and “bites” into the hypercube H.
Of course, the same methods will also work for infinite products. Consider

the function

C(x) =
∞∏

n=1

cos
(x

n

)

which is continuous since the product is absolutely convergent. We are interested
in the integral µ =

∫∞
0

C(x) dx. High precision numerical evaluation of this
highly oscillatory integral is by no means straightforward but possible. We get

∫ ∞

0

C(x) dx ≈ 0.785380557298632873492583011467332524761,

while π
4
≈ 0.785398 only differs in the fifth significant place. Can this numerical

evaluation µ < π
4

be confirmed symbolically? Indeed it can, by reduction to a
sinc integral of the above type, only this time with an infinite product. Recall
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the sine product (1.2.11) and note that a corresponding product for the cosine
can be derived:

sin(x) = x

∞∏
n=1

(
1− x2

π2 n2

)
, cos(x) =

∞∏

k=0

(
1− 4x2

π2 (2k + 1)2

)
.

Using this we get, by exchanging the order of multiplication,

C(x) =
∞∏

n=1

∞∏

k=0

(
1− 4x2

π2 n2 (2k + 1)2

)
=

∞∏

k=0

sinc

(
2x

2k + 1

)
.

Now apply the theorem to get that

µ =

∫ ∞

0

C(x) dx = lim
N→∞

∫ ∞

0

N∏

k=0

sinc

(
2x

2k + 1

)
dx <

π

4
.

This remarkable observation was made by Bernard Mares, then 17, and lead
to the entire development that we have given of the iterated sinc integrals. More
examples are given in the Exercises. There is an interesting connection with
random harmonic series in [187].

2.6 Korovkin’s Three Function Theorems

In 1953, Pavel Korovkin [148] provided an approach to uniform approximation
results that is especially well suited to computational assistance and discovery.
While the result can be given much more generally, we limit ourselves to the two
most basic cases.

Below we let ι denote the identity function t 7→ t, we let C[0,1] denote the
continuous functions on the unit interval, and ⇒ denotes uniform convergence
(i.e., in the supremum norm). Also, [0, 1] can easily be replaced by any compact
interval [a, b].

Recall that an operator between continuous function spaces is positive if it
maps nonnegative functions to nonnegative functions (when linear this is nec-
essarily a monotone and bounded linear operator). The motivating example
is

Example 2.6.1 Bernstein operators.
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For n in N, let Bn(f) be defined by

Bn(f)(t) =
n∑

k=0

f

(
k

n

)(
n

k

)
tk (1− t)n−k . (2.6.26)

It is clear that the Bernstein operators are linear and positive and indeed take
values which are polynomials. 2

Theorem 2.6.2 (First Korovkin three function theorem). Let Ln be a
sequence of positive linear operators from C[0, 1] to C[0, 1]. Suppose that

Ln(1) ⇒n 1, Ln(ι) ⇒n ι, Ln(ι2) ⇒n ι2.

Then

Ln(f) ⇒n f

as n →∞ for all f in C[0, 1].

Proof. The hypotheses imply that Ln(q) ⇒n q for all quadratic q. Fix f in
C[0, 1], x in [0, 1], and ε > 0. We claim that one can find a quadratic qε

x with
f ≤ qε

x and f(x) + ε ≥ qε
x. Thus

Ln(f) ≤ Ln (qε
x) ⇒n qε

x ≤ f(x) + ε.

A compactness argument completes the proof. The details are left for the
reader as Exercise 33. 2

Corollary 2.6.3 (Stone-Weierstrass) The Bernstein polynomials are uniformly
dense in C[0, 1].

Proof. We check by hand or in a computer algebra system that Bn(1) = 1,
Bn(ι) = ι, and slightly more elaborately Bn(ι2) = ι2 + 1

n
(ι− ι2) ⇒n ι2. 2

In the periodic case, the role of t and t2 is taken by sin and cos, as the second
Korovkin theorem shows.
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Theorem 2.6.4 (Second Korovkin three function theorem). Let Ln be a
sequence of positive linear operators from C(T) to C(T). Suppose that

Ln(1) ⇒n 1, Ln(sin) ⇒n sin, Ln(cos) ⇒n cos .

Then
Ln(f) ⇒n f

as n →∞ for all f in C(T).

The great virtue of the Korovkin approach is that it provides us with a well
formed program. We illustrate with the second theorem. For any kernel (Kn), we
may induce a sequence of linear operators Kn(f) = Kn ∗ f and must answer two
questions: (i) Is each Kn positive? (ii) Does Kn(f) ⇒n f for the three functions
f = 1, sin, cos? The first is usually easy to answer; the second frequently is a
direct computation.

Example 2.6.5 Dirichlet and Fejér Operators.

We revisit the uniform convergence properties of the Dirichlet and Fejér kernels
from Section 2.3.3.

1. The Dirichlet kernel induces the operator

Dn(f) = Dn ∗ f

where Dn = sin ((n + 1/2)t) / sin (t/2). This is quite easily seen not to
be positive. (A good thing since we know that Dn(f) need not converge
uniformly to f for f in C(T).)

2. The Fejér kernel induces the operator

Fn(f) = Fn ∗ f

where Fn = sin2 ((n + 1)/2)t) /[(n + 1) sin2 (t/2)] ≥ 0. Thus, to recover
Fejér’s theorem on the uniform convergence of the Cesáro averages it suf-
fices to compute

Fn(1) = 1, Fn(sin) =
n

n + 1
sin, Fn(cos) =

n

n + 1
cos . 2
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2.7 Commentary and Additional Examples

1. An error function evaluation. (AMM Problem 11000, Mar. 2003)
[149].

(a) Work out the ordinary generating function of
(
2n
n

)
and so evaluate

∑
n+m=N

(
2n

n

)(
2m

m

)
.

(b) Evaluate ∫ π
2

0

cos2n (x) sin2m (x) dx.

(c) Recall the error function, erf(x) = 2√
π

∫ x

0
exp (−t2) dt, and show for

a > 0 that

a

∫ π
2

0

erf
(√

a cos x
)
erf

(√
a sin x

)
sin (2 x) dx = e−a + a− 1.

(d) The previous evaluation can be viewed as an inner product of the
functions erf (

√
a sin x) sin x and erf (

√
a cos x) cos x. Determine that

∫ π
2

0

erf2
(√

a cos x
)
cos2 (x) dx

=
∞∑

N=0

(−a
4

)N+1
(8N + 12)

(
2 N
N

)

(N + 2)!
F

(
1

2
,−N,−N − 1

2
;
3

2
,−N +

1

2
;−1

)

=
1

2 π
− 2

∫ 1

0

e−1/2 a(1+x2)

1 + x2

{
I0

(
1

2
a

(
1 + x2

))− I1

(
1

2
a

(
1 + x2

))}
dx.

2. Failure of Fubini. Evaluate these integrals:

(a) ∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2dx dy = −π

4

and ∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2dy dx =
π

4
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(b)
∫ 1

0

∫ ∞

1

(
e−xy − 2 e−2 xy

)
dy dx−

∫ ∞

1

∫ 1

0

(
e−xy − 2 e−2 xy

)
dx dy = ln (2)

(c)
∫ ∞

0

∫ ∞

0

4 xy − x2 − y2

(x + y)4 dy dx =

∫ ∞

0

∫ ∞

0

4 xy − x2 − y2

(x + y)4 dx dy = 0

but, for all m, c > 0
∫ mc

0

∫ c

0

4 xy − x2 − y2

(x + y)4 dx dy =
m

(1 + m)2 6→ 0,

as c →∞.

In each case, explain why they differ without violating any known theorem.

3. Failure of l’Hôpital’s rule. Evaluate these limits:

Let f(x) = x + cos (x) sin (x) and g(x) = esin(x) (x + cos (x) sin (x)).

Then limx→∞
f(x)
g(x)

does not exist although limx→∞
f ′(x)
g′(x)

= 0. This is a cau-
tion against carelessly dividing by zero!

4. Various Fourier series evaluations.

(a) Compute the Fourier series of t/2, |t|, t2 and (t3 − π2 t)/3 on [−π, π].

(b) Plot the 6th and 12th Fourier polynomials against the function in
each case.

(c) Compute enough Fourier coefficients of sin (x3) on [−π, π] to be con-
vinced of Parseval’s equation.

(d) Compute the Fourier series of t2 and (t3 − π2 t)/3 on [0, 2 π].

(e) Use Parseval’s equation with (t3 − π2 t)/3 to evaluate ζ(6). Then
apply Parseval to t4/4.

(f) Show that ∫ π/2

0

log (2 sin(t/2)) dt = −G,

where G is Catalan’s constant.
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(g) Show that for a > 0,

cos (ax) =
sin (π a)

π a
− 2

sin (π a) a cos (x)

(a2 − 1) π
+ 2

sin (π a) a cos (2 x)

(a2 − 4) π

− 2
sin (π a) a cos (3 x)

(a2 − 9) π
+ · · · . (2.7.27)

Similarly evaluate the Fourier series for exp(ax).

(h) Substitute x = π in (2.7.27) to obtain the partial fraction expansion
for cot (compare the first example in Section 2.3.1) and integrate to
recover the product formula for sin (justifying all steps).

(i) Evaluate
∑

n≥0 1/(4n2 − 1).

5. Two applications of Parseval’s equation. Use Parseval’s equation in
L2(R) to evaluate

∫ ∞

−∞

sin2(t)

t2
dt = π and

∫ ∞

−∞

sin4(t)

t4
dt =

2π

3
.

See also Exercise 28.

6. Lebesgue’s example of a continuous function with divergent Fourier
series.

Construction. We follow Stromberg page 557 and let ak = 2
∑k

j=1 j! for
k ≥ 0 and define

fn(x) =
n∑

k=1

sin(ak|x|)
k

χk(|x|)

on [−π, π], where χk is the characteristic function of [π/ak, π/ak−1], and
extend f by 2π-periodicity onto R. Then f(x) = limn→∞ fn(x) is continu-
ous and the Fourier series is uniformly convergent on [δ, 2π − δ] for δ > 0,
but sak

(f, 0) →∞ for k →∞.

Convergence on [δ, 2π− δ]. This is easy since f = fn on this interval for
large n, so that the “Riemann localization principle” for Fourier series can
be used: If f1(t) = f2(t) for every t in some nonvoid open interval I, then
|sn(f1, t)− sn(f2, t)| → 0 for every t ∈ I.

Divergence at 0. The divergence estimate comes as follows:
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Figure 2.7: Approximation f3 to Lebesgue’s function

(a) We start with Dirichlet’s kernel: it can be proved that the n−th
partial sum behaves like

sn(f, 0) =
2

π

∫ π

0

f(t)
sin(nt)

t
dt + εn

where εn → 0.
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(b) We estimate the first part of the integral as
∣∣∣∣∣
∫ π/ak

0

f(t)
sin(akt)

t
dt

∣∣∣∣∣ ≤
π

k + 1

since | sin(x)
x
| ≤ 1 and |f(t)| ≤ 1

k+1
.

(c) We estimate the second part of the integral via

2

∫ π/ak−1

π/ak

f(t)
sin(akt)

t
dt +

1

k

∫ π/ak−1

π/ak

cos(2 akt)

t
dt = k!

ln(2)

k
, (2.7.28)

and the second term on the left, say Ik, is no bigger than 1
2πk

on using
the Bonnet second mean value theorem to write

|Ik| =

∣∣∣∣
ak

kπ

∫ ψ

π/ak

cos(2 akt) dt

∣∣∣∣ ≤
1

2kπ
,

for some ak−1

π
≤ ψ ≤ ak

π
.

(d) We estimate the third part of the integral as
∣∣∣∣∣
∫ π

π/ak−1

f(t)
sin(akt)

t
dt

∣∣∣∣∣ ≤
ak−1

π

∣∣∣∣∣
∫ ψ

π/ak−1

f(t) sin(akt) dt

∣∣∣∣∣

≤ ak−1

π

(∣∣∣∣f(t)
cos(akt)

ak

∣∣∣∣
ψ

π/ak−1

+

∣∣∣∣
∫ π

ψ

f ′(t)
cos(akt)

ak

dt

∣∣∣∣
)

≤ ak−1

ak

(
1

π
+ ak−1

)
→ 0,

on using the mean value theorem again, and then applying integration
by parts with the estimates that |f(t)| ≤ 1, |f ′(t)| ≤ ak−1. Thus, the
dominant term is the first integral in (2.7.28) and sak

(f, 0) →∞.

7. Non-uniqueness of Fourier series. Can a trigonometric series converge
a.e. on R to a function ϕ ∈ L1(T ) and yet not be the Fourier series of ϕ?
This question was first answered in the affirmative with ϕ = 0 in 1916
by the Russian analyst D. E. Menshow. His counterexample involves the
Cantor set. For more details, see [197], from which the above text was
cited.
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8. Nowhere differentiable continuous functions. The first famous ex-
ample of a continuous nowhere differentiable function was constructed by
K. Weierstrass in 1872. (Tradition has it that Bolzano and Riemann con-
structed such examples before Weierstrass, but their examples did not
become widely known.) Weierstrass’s example was given in the form of a
trigonometric series. We state it here as a series on [0, 1], not on [−π, π] or
[0, 2π] as before, because this will simplify matters later; we analogously
write f ∈ L1(0, 1), and formulas and theorems on Fourier series are easily
converted to this case. Weierstrass’s example was

Ca,b(t) =
∞∑

n=0

an cos(bn 2πt)

with |a| < 1 and integral b > 1. Weierstrass proved that Ca,b is nowhere
differentiable when b ∈ 2N + 1 and ab > 1 + 3

2
π. This once and for all

settled the question if such functions could exist (at the beginning of the
19th century, Ampére “proved” that every continuous function must be
differentiable at some point). Some questions were left open, however: It
is clear that Ca,b is differentiable when |a| b < 1, since the series is then
termwise differentiable. But what happens for |a| b between 1 and 1 + 3

2
π?

This question gave several mathematicians a headache, until in 1916 G.
H. Hardy proved that both Ca,b and the corresponding sine series

Sa,b(t) =
∞∑

n=0

an sin(bn 2πt)

are nowhere differentiable whenever b is a real greater than 1, and ab > 1.
In his paper, Hardy first treated the case when b ∈ N, i.e., when the
functions are given by their Fourier series, and only afterwards treated
the general case of arbitrary real b. Hardy’s methods were not easy, not
even in the Fourier case (where he used the Poisson kernel, among other
things). In the ensuing years, several other, simpler proofs have been
published. In the middle of the 20th century, G. Freud and J.-P. Kahane
gave conditions for the differentiability of lacunary Fourier series (where
non-zero Fourier coefficients are spaced far apart), from which the non-
differentiability of Weierstrass’s function follows. Another approach to the
Weierstrass functions uses functional equations.
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Prove:

(a) The Weierstrass sine series f = Sa,2 with b = 2 satisfies the system of
two functional equations

f

(
t

2

)
= a f(t) + sin(t), f

(
t + 1

2

)
= a f(t)− sin(t) (2.7.29)

for every t ∈ [0, 1]. The cosine series Sa,2 satisfies an analogous sys-
tem.

(b) The Weierstrass function is the only bounded solution of the respec-
tive system on [0, 1].

Hint for (b): Use Banach’s fixed point theorem. (Note that it not only
proves uniqueness, but can also be used to give an explicit approximation
procedure. It is instructive to investigate how this procedure approaches
the Weierstrass function for different initial guesses.)

9. Replicative functions. Let D be an interval containing (0, 1). A function
f : D → C is called replicative (on D) if it satisfies the functional equation

1

p

p−1∑

k=0

f

(
t + k

p

)
= u(p) f(t) for all t ∈ D and p ∈ N, (2.7.30)

with a u : N → C (which turns out to be unique if f 6≡ 0). This notion was
introduced (with more generality) by D. E. Knuth in [147]. Examples are
the cotangent (cot(πt) is replicative on (0, 1) with u(p) = 1), the Bernoulli
polynomials (Bm(t) is replicative on R with u(p) = 1/pm) and derivatives
of the Psi function (the m-th derivative of Ψ = Γ′/Γ is replicative on R+

with u(p) = pm). Functions which are replicative and 1-periodic have
multiplicative Fourier coefficients.

Theorem 2.7.1 (a) Let f : D → C, f 6≡ 0, be replicative on D with
u(p). Then u is necessarily multiplicative, i.e., u(mn) = u(m) · u(n)
for all m,n ∈ N.
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(b) Let f ∈ L1(0, 1) be replicative on (0, 1) with a sequence u(p). Then

f̂mn = u(n)f̂m.

This implies: If u ≡ 1, then f(t) = f̂0. If u 6≡ 1, then

f(t) ∼ f̂−1

−1∑
n=−∞

u(−n) e2πint + f̂1

∞∑
n=1

u(n) e2πint.

(c) Let u be multiplicative and assume that f(t) = L
∑∞

n=1 u(n) e2πint is
pointwise convergent on [0, 1], where L is a linear summation method.
Then f is replicative on [0, 1].

Part (c) of this theorem makes it easy to construct many different examples
of replicative functions on [0, 1]. Verify the following Fourier series:

(a)
∑

n−2 sin(2πnt) = −2π
∫ t

0
ln(2 sin(πx)) dx on [0, 1],∑

n−2 cos(2πnt) = B2(t) on [0, 1].

(b)
∑

n−1 sin(2πnt) = B1(t) on (0, 1) and = 0 on 0, 1,∑
n−1 cos(2πnt) = − ln(2 sin(πt)) on (0, 1) and = ∞ on 0, 1.

(c) C1
∑

sin(2πnt) = 1
2
cot(πt) on (0, 1) and = 0 on 0, 1,

C1
∑

cos(2πnt) = −1
2

on (0, 1) and = ∞ on 0, 1,
where C1 stands for Césaro summation.

(d) A
∑

n sin(2πnt) = 0 on [0, 1],
A

∑
n cos(2πnt) = −1/(4 sin2(πt)) on (0, 1) and = ∞ on 0, 1,

where A stands for Abel summation.

(e)
∑∞

n=0 an sin(pn 2πt) = Sa,p(t) on [0, 1],∑∞
n=0 an cos(pn 2πt) = Ca,p(t) on [0, 1],

for p a prime, i.e., the nowhere differentiable Weierstrass functions
can be replicative.

10. Conditions for f̂ ∈ L1(R).

(a) It is often useful to decide whether f̂ ∈ L1(R) for a given f ∈ L1(R),

without having to explicitly compute f̂ . The usual conditions assume
differentiability properties of f , since smoothness of f translates into
shrinkage of f̂ . Thus, f ∈ C2(R) is sufficient for f̂ ∈ L1(R). However,



124 CHAPTER 2. FOURIER SERIES AND INTEGRALS

this condition does not cover the Fejér kernel, for example. A stronger
condition, which is good for functions with bounded support, is given
in the next theorem.

Theorem 2.7.2 Let f be an absolutely continuous function on the
real line with compact support and let f ′ be of bounded total variation
on R, i.e., V (f ′) < ∞. Then f̂ ∈ L1(R) and

‖f̂‖1 ≤ 4
√

V (f ′) ‖f‖1. (2.7.31)

This theorem presents another experimental challenge: Is the con-
stant “4” appearing there best possible? The answer is not known.
Non-systematic experimentation has found no value for the constant
greater than π, which is achieved for the Fejér kernel. It is also not
known if the “compact support” condition in the theorem is really
needed.

Perform a systematic experiment on Theorem 2.7.2, in analogy to the
experimentation for the uncertainty principle described in Section 5.2
of the first volume.

(b) A quite different condition is due to Chandrasekharan: If f ∈ L1(R),

continuous at 0, and satisfies f̂ ≥ 0 on R, then f̂ ∈ L1(R). The dis-

advantage of this condition is that it uses f̂ explicitly. It is applicable,
however, to both the Fejér and the Poisson kernel.

11. More kernels. For each of the following kernels, decide whether (resp.
for which parameters) it is an approximate identity in L1(R). Note that
sometimes a version of Theorem 2.3.7 with weakened assumptions (allow-
ing more variety in the kernels) is needed.

(a) The de la Vallée-Poussin kernel V n
m, depending on two integer pa-

rameters m,n with n > m, is defined by V n
m(t) =

∑n+m
k=−(n+m) an

m,k eikt

where

an
m,k =





1, if |k| ≤ n−m,
n+m+1−|k|

2m+1
, if n−m ≤ |k| ≤ n + m,

0, otherwise.

Hint: Let m,n tend to infinity such that n/m → λ.
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(b) For α > 0, the (C, α)-kernel F
(α)
n is defined as F

(α)
n (t) =

∑n
k=−n a

(α)
n,k eikt

where

a
(α)
n,k =

{
Γ(n−|k|+α+1)Γ(n+1)
Γ(n−|k|+1)Γ(n+α+1)

, if |k| ≤ n + 1,

0, otherwise.

(c) For parameters α0, · · · , αp ∈ R with α0 + · · ·+ αp = 1, the Blackman

kernel H
(α0,··· ,αp)
n is defined by H

(α0,··· ,αp)
n (t) =

∑n
k=−n h

(α0,··· ,αp)
n,k eikt

where

h
(α0,··· ,αp)
n,k =

p∑
j=0

αj cos(jktn),

with tn = 2π
2n+1

.

(d) The Fejér-Korovkin kernel FKn is defined as

FKn(t) =





2 sin2(π/(n + 2))

n + 2

[
cos((n + 2)t/2)

cos(π/(n + 2))− cos t

]2

,

(n + 2)/2,

depending on whether t 6= ±π/(n+2)+2jπ or t = ±π/(n+2)+2jπ,

respectively. It can be written in the form FKn(t) =
n∑

k=−n

an,k eikt

where

an,k =
(n− |k|+ 3) sin |k|+1

n+2
π − (n− |k|+ 1) sin |k|−1

n+2
π

2(n + 2) sin(π/(n + 2))
.

(e) Finally, the Jackson kernel Jn is a rescaled version of the square of
the Fejér kernel, namely

Jn(t) =
3

n(2n2 + 1)

[
sin(nt/2)

sin(t/2)

]4

.

12. The Haar basis. As we mentioned in the text, the trigonometric func-
tions eint constitute an orthogonal basis for the space L2(T), so that L2-
statements follow from general Hilbert space theory. Bases other than
the trigonometric are of course conceivable and are in fact used in prac-
tice for the analysis of L2-functions. Since about 15 years ago, certain
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bases of L2(R), called wavelet bases, have found widespread use in signal
analysis. Such bases are constructed as follows. Take a ψ ∈ L2(R) and
define ψj,n(t) = 2n/2 ψ(2n t− j). Then ψ is called an orthogonal wavelet if
{ψj,n : j, n ∈ Z} is an orthonormal basis of L2(R).

Show: ψ = χ[0,1/2)−χ[1/2,1) is an orthogonal wavelet. The associated basis
{ψj,n} is called the Haar basis of L2(R).

13. The Schauder basis. The foundation of the theory of bases in Banach
spaces was laid by J. Schauder in the 1930’s. A sequence (xn) in a Banach
space B is called a basis of B if for every x ∈ B there exists a unique
sequence of scalars (αn) with

x =
∞∑

n=1

αn xn in B.

The trigonometric functions are not a basis for L1(T) or for C(T), although
their span is dense in these spaces. The standard example of a basis for
the space C[0, 1] is also due to Schauder (although G. Faber had used the
same basis before Schauder, in a different analytical guise). This Faber-
Schauder basis is the system of continuous functions {σ0,0, σ1,0} ∪ {σi,n :
n ∈ N, i = 0, · · · , 2n−1 − 1}, where σ0,0(t) = 1 − t, σ1,0(t) = t, and the
function σi,n is the linear interpolation of the points

(0, 0),

(
i

2n−1
, 0

)
,

(
2i + 1

2n
, 1

)
,

(
i + 1

2n−1
, 0

)
, (1, 0).

This system is a basis of the space C[0, 1], more precisely: Every continuous
function f : [0, 1] → R has a unique, uniformly convergent expansion of
the form

f(x) = γ0,0(f) σ0,0(x) + γ1,0(f) σ1,0(x) +
∞∑

n=1

2n−1−1∑
i=0

γi,n(f) σi,n(x),

where the coefficients γi,n(f) are given by γ0,0(f) = f(0), γ1,0(f) = f(1),
and

γi,n(f) = f

(
2i + 1

2n

)
− 1

2
f

(
i

2n−1

)
− 1

2
f

(
i + 1

2n−1

)
.



2.7. COMMENTARY AND ADDITIONAL EXAMPLES 127

Knowing the Schauder basis expansion of a continuous function f can be
useful in the analysis of f . For example, Faber proved in 1910 a criterion
for differentiability of f in terms of its Schauder coefficients: If f ′(x0) ∈ R
exists for some x0 ∈ [0, 1], then

lim
n→∞

2n ·min{|γi,n(f)| : i = 0, · · · , 2n−1 − 1} = 0. (2.7.32)

Interestingly, this condition can be used to prove non-differentiability of
the Weierstrass functions in an elementary way. Prove:

(a) The Schauder coefficients of the Weierstrass sine series f = Sa,2 satisfy
the recursion

γ0,1(f) = 0,

γi,n+1(f) = aγi,n(f) + γi,n(sin) for n ∈ N, i = 0, · · · , 2n−1 − 1,

γi,n+1(f) = aγi−2n−1,n(f)−γi−2n−1,n(sin) for n ∈ N, i = 2n−1, · · · , 2n − 1.
Hint: Use the functional equations (2.7.29).

(b) Faber’s condition (2.7.32) is not satisfied for f = Sa,2. Thus this
function is nowhere differentiable.

It is instructive to experiment with the recursion in (a): to plot the
Schauder coefficients and Schauder approximations for the Weierstrass and
for other functions which satisfy similar functional equations. Details of
this method can be found in [116] and [117].

14. Riemann-Lebesgue lemma. Deduce the following from the Riemann-
Lebesgue lemma for every Lebesgue integrable function f .

(a) For any real σ(t)

lim
t→∞

∫

R

f(x) cos2 (tx + σ(t)) dx =
1

2

∫

R

f(x) dx.

(b) The coefficients f̂(n) → 0 as n →∞.

Conclude that the trigonometric series
∑

n>1 sin (nt) / log (n) is not the
Fourier series of any integrable function.
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When an is convex decreasing with limit zero and with
∑

n>0 an/n = ∞, it
is in fact the case that

∑
n>0 an cos (nt) is a Fourier series of an integrable

function, but
∑

n>0 an sin (nt) is not [197, Chapter 8].

15. A few Fourier transforms. We have already seen many examples of
Fourier transforms and their Laplace transform variants. The specializa-
tion to the Mellin transform is explored in the next chapter.

(a) Show that the Fourier transform of cos2(ax) is the function
cos [y2/(4a)− π/4] /

√
2a. Find the transform of sin2(ax).

(b) Show that for a > 0, the Fourier transform of |x| exp(−a|x|) is

a (2/π)1/2 (a2 − y2) / (a2 + y2)
2
.

(c) Find the transform of 1/xη and of 1/ (a2 + x2).

(d) Find all square-integrable solutions to f̂/
√

2π = f (the fixed points of
the normalized Fourier transform). Then experiment with the orbit
of f 7→ f̂/

√
2π for various choices f0.

16. The isoperimetric inequality. The ancient Greek geometers knew al-
ready that a circle with given perimeter encloses a larger area than any
polygon with the same perimeter. In 1841 Steiner extended this result
to simple closed plane curves. Here we will sketch a Fourier series proof
(due to Hurwitz), for simplicity restricted to (piecewise) C1-curves. Thus,
assume that we have a simple, closed C1-curve (x(t), y(t)) in R2 of length∫ π

−π
(x′(s)2 + y′(s)2)1/2 ds = 2π. Without loss of generality we can assume

that x′(s)2 + y′(s)2 = 1 for all s. We wish to minimize the area inside the
curve, given by

A =

∫ π

−π

x(s) y′(s) ds.

Show: A ≥ π with equality if and only if (x(t)−x̂0)
2+(y(t)−ŷ0)

2 = 1. This
is the isoperimetric inequality. Hint: Substitute Fourier series, transfer
the formulas for derivatives from Section 2.4.2 to the L1(T)-case and use
Parseval’s equation.

17. The maximum principle. In like fashion, employ Poisson’s kernel to
heuristically deduce that the maximum principle discussed briefly in Sec-
tion 6.5 applies.
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18. The heat equation. The one-dimensional heat equation

∂φ

∂t
(x, t) =

π

4i

∂2φ

∂x2
(x, t),

is solved by the general theta function
∑

n∈Z xn exp(−πi tn2). More use-
fully, when G : R 7→ C is continuous and bounded we may solve the
equation

∂φ

∂t
(x, t) = K

∂2φ

∂x2
(x, t),

with boundary condition φ(x, t) → G(x) as t → 0+, by the infinitely
differentiable function

G ∗ E1/
√

2Kt (x) =
1

2
√

πKt

∫

R

G(x− y) exp(−y2/2Kt) dy,

for x in R and t > 0.

19. The easiest three-dimensional Watson integral. We start with the
easiest integral to evaluate. Let

W3(w) =

∫ π

0

∫ π

0

∫ π

0

1

1− w cos (x) cos (y) cos (z)
dx dy dz,

for suitable w > 0.

(a) Prove that

W3(1) =

∫ π

0

∫ π

0

∫ π

0

1

1− cos (x) cos (y) cos (z)
dx dy dz

=
1

4
Γ4

(
1

4

)
= 4 π K

(
1√
2

)

via the binomial expansion and [44, Exercise 14, page 188].

(b) More generally

W3((2kk′)2) = π3 F
(
1/2, 1/2, 1/2; 1, 1; 4 k2

(
1− k2

))
= 4π K2 (k) .
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20. The harder three-dimensional Watson integrals. We now describe
results largely in Joyce and Zucker [141, 142], where more background
can also be found. The following integral arises in Gaussian and spherical
models of ferromagnetism and in the theory of random walks.

(a) One of the most impressive closed-form evaluations of a multiple in-
tegral is Watson’s

W1 =

∫ π

−π

∫ π

−π

∫ π

−π

1

3− cos (x)− cos (y)− cos (z)
dx dy dz

=
1

96
(
√

3− 1) Γ2

(
1

24

)
Γ2

(
11

24

)
(2.7.33)

= 4 π
(
18 + 12

√
2− 10

√
3− 7

√
6
)

K2 (k6)

where k6 =
(
2−√3

) (√
3−√2

)
is the sixth singular value of Section

4.2.

Note that W1 = π3
∫∞
0

exp(−3t) I3
0 (t) dt allows for efficient com-

putation [141] where the Bessel function I0(t) has been written as
(1/π)

∫ π

0
exp(t cos(θ)) dθ. The evaluation (2.7.33) in its original form

is due to Watson and is really a tour de force. In the next Exercise we
describe a refined and simplified evaluation due to Joyce and Zucker
[142].

(b) Similarly, the integral

W2 =

∫ π

0

∫ π

0

∫ π

0

dx dy dz

3− cos (x) cos (y)− cos (y) cos (z)− cos (z) cos (x)

=
√

3 π K2
(
sin

( π

12

))
=

21/3

8 π
β2

(
1

3
,
1

3

)
(2.7.34)

where sin (π/12) = k3 is the third singular value, again as in Section
4.2. Indeed, as we shall see in Exercise 21, (2.7.34) is easier and can
be derived on the way to (2.7.33).

(c) The evaluation (2.7.34) then implies that

1
π

W2 =
∫ π

0

∫ π

0

dy dz√
9− 8 cos (y) cos (z)− cos2 (y)− cos2 (z) + cos2 (y) cos2 (z)

on performing the innermost integration carefully.
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(d) The expression inside the square-root factors as (cos x cos y + cos x +
cos y− 3)(cos x cos y− cos x− cos y− 3). Upon substituting s = x/2,
and t = y/2, one obtains

∫ π
2

0

∫ π
2

0

dy dx√(
1− sin2 (x) sin2 (y)

)
(1− cos2 (x) cos2 (y))

=
1

4π

∞∑
m=0

∞∑
n=0

β3

(
n +

1

2
, m +

1

2

)(
m + n

n

)
=
√

3 K2
(
sin

( π

12

))
.

21. More about the Watson integrals.

(a) For a > 1, b > 1 show that

1

2

∫ π

0

1√
(a + cos(y)) (b− cos(y))

dy =
K

(√
2(b+a)

(1+b)(1+a)

)
√

(1 + b) (1 + a)

=

∫ 1/2 π

0

1√
(1 + b) (1 + a) cos2 (t) + (1− a) (1− b) sin2 (t)

dt

(b) A beautiful but harder to establish identity is that

∫ π
2

0

K

(√
c2 cos2 (s) + sin2 (s)

)
ds = K

(√
1− c

2

)
K

(√
1 + c

2

)

(2.7.35)

or equivalently that

∫ π
2

0

K
(√

1− (2kk′)2 cos2(θ)
)

dθ = K (k) K (k′)

with k′ =
√

1− k2. Hence

∫ π
2

0

K

(√
1− (2kNk′N)2 cos2(θ)

)
dθ =

√
N K2 (kN)

where kN is the N -th singular value. This is especially pretty for
N = 1, 3, 7 so that 2 kNk′N = 1, 1/2, 1/8 respectively.
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(c) Deduce that face centered cubic (FCC) lattice for the Green’s function
evaluates as

1

π
W2 =

∫ π
2

0

K

(√
3

4
cos2 (s) + sin2 (s)

)
ds =

√
3 K2 (k3) .

(d) Correspondingly, Watson’s evaluation for the simple cubic (SC) lattice
relied on deriving

W1 =
√

2 π

∫ π

0

K

(
cos(x)− 5

2

)
dx,

and the following extension of (2.7.35):

∫ π
2

0

K

(√
c2 cos2 (s) + d2 sin2 (s)

)
ds =

K




√
1− cd−

√
(d2 − 1) (c2 − 1)

2




× K




√
1 + cd−

√
(d2 − 1) (c2 − 1)

2


 .

(e) The Generalized Watson integrals. Let

W1(w1) =
∫ π

−π

∫ π

−π

∫ π

−π

1
3− w1 (cos (x)− cos (y)− cos (z))

dx dy dz

W2(w2) =∫ π

0

∫ π

0

∫ π

0

dx dy dz

3− w2 (cos (x) cos (y)− cos (y) cos (z)− cos (z) cos (x))
.

In a beautiful study, Joyce and Zucker [142], using the sort of elliptic
and hypergeometric transformations we have explored, now are able
to show fairly directly that

W2(−w1(3 + zw1)/(1− w1)) = (1− w1)
1/2 W1(w1).

Verify that, with w1 = −1, this leads to a quite direct evaluation of
(2.7.33) from (2.7.34).
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(f) It is also true that

W1 =
√

2 π

∫ π
2

0

K

(
1

2
+

1

2
sin2 (t)

)
dt.

(g) A more symmetric form. Show that

∫ π
2

0

K
(√

1− 4 k2 (1− k2) cos2 (x)
)

dx

=

∫ π
2

0

∫ π
2

0

dt dx√
cos2(t) + 4 k2(1− k2) cos2(x) sin2(t)

for 0 < k < 1. Hint: For (21d) consider N = 3 (c2 = 3/4) in
(21c), and let a and b be defined as a = (3− cos x) / (1 + cos x) and
b = (3 + cos x) / (1− cos x) in (21a).

22. Watson integral and Burg entropy. Consider the perturbed Burg
entropy maximization problem

v (α) = sup
p≥0
{ log (p(x1, x2, x3)) |

∫ 1

0

∫ 1

0

∫ 1

0

p(x1, x2, x3) dx1dx2dx3 = 1,

and for k = 1, 2, 3,

∫ 1

0

∫ 1

0

∫ 1

0

p(x1, x2, x3) cos (2 πxk) dx1dx2dx3 = α},

maximizing the log of a density p with given mean, and with the first
three cosine moments fixed at a parameter value 0 ≤ α < 1. It transpires
that there is a parameter value α such that below and at that value v(α)
is attained, while above it is finite but unattained. This is interesting
severally:

(a) The general method—maximizing
∫

T
log (p(t)) dt subject to a finite

number of trigonometric moments—is frequently used. In one or two
dimensions such spectral problems are always attained when feasible.

(b) There is no easy way to see this problem qualitatively changes at α,
but we can get an idea by considering

p (x1, x2, x3) =
1/W1

3−∑3
1 cos (2πxi)

,
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and checking that this is feasible for

α = 1− 1/(3W1) ≈ 0.340537329550999142833

in terms of the first Watson integral, W1.

(c) By using Fenchel duality [61] one can show that this p is optimal.

(d) Indeed, for all α ≥ 0 the only possible optimal solution is of the form

pα (x1, x2, x3) =
1

λ0
α −

∑3
1 λi

α cos (2πxi)
,

for some real numbers λi
α. Note that we have four coefficients to

determine; using the four constraints we can solve for them. For
0 ≤ α ≤ α, the precise form is parameterized by the generalized
Watson integral:

pα (x1, x2, x3) =
1/W1(w)

3−∑3
1 w cos (2πxi)

,

and α = 1 − 1/(3W1(w)), as w ranges from zero to one. Note also
that W1(w) = π3

∫∞
0

I3
0 (w t) e−3t dt, allows one to quickly obtain w

from α numerically. For α > α, no feasible reciprocal polynomial can
stay positive. Full details are given in [60].

23. A “momentary” recursion. Choose p ∈ N and define polynomials
qk(x) recursively by q0(x) = −1 and qn+1(x) = q′n(x)−xp−1 qn(x). Give an
explicit formula for qn(0) (and for qn(x)?).

24. The limit of certain Fourier transforms. For p ∈ 2N let fp(t) = e−tp/p.

In Figure 2.8, the functions f̂p(x) are shown for p = 2, 8, 16. The figure
suggests that there may be a limit function as p →∞. Identify this limit
function!

25. The Schilling equation. The Schilling equation is the functional equa-
tion

4q f(qt) = f(t + 1) + 2f(t) + f(t− 1) for t ∈ R

with a parameter q ∈ (0, 1). It has its origin in Physics, and although it has
been studied intensively in recent years, there are still many open questions
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Figure 2.8: The oscillatory Fourier transforms f̂2, f̂8, f̂16

connected with it. The main question is to find values of q for which the
Schilling equation has a non-trivial L1-solution. Discuss this question!
Hint: If an L1-function f satisfies (2.4.20), then a rescaled version of f ∗ f
satisfies the Schilling equation.

26. Another way to evaluate the sinc integral. The evaluation of the
integral

∫∞
0

sin y/y dy = π/2 also follows on taking the limit, via Binet’s
mean value theorem [197, p. 328], of the absolutely convergent integral

∫ ∞

0

sin y

y1+ε
dy =

π

2

sec(π
2
ε)

Γ(1 + ε)
.

Maple happily provides the second integral in a form which simplifies to
that we have given. A conventional Mellin transform based proof follows.

(a) For 0 < ε < 1, use the Γ-function to write

∫ ∞

0

sin y

y1+ε
dy =

1

Γ(ε + 1)

∫ ∞

0

dx

∫ ∞

0

sin(x) exp(−xt)tε dt.
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(b) Interchange variables and evaluate the inner integral to tε/(t2 + 1).

(c) Then use the β-function to prove

∫ ∞

0

tε

t2 + 1
dt = β

(
1

2
− 1

ε
,
1

2
− 1

ε

)
=

π

2
sec

(π

2
ε
)

.

Note: ∫ ∞

0

log2 n (s)

s2 + 1
ds = (−1)n

(π

2

)2 n+1

E2 n.

27. An explicit formula for the sinc integrals. Assume that n ≥ 1 and
a0, a1, · · · , an > 0. For γ = (γ1, · · · , γn) ∈ {−1, 1}n define

bγ = a0 +
n∑

k=1

γk ak and εγ =
n∏

k=1

γk.

Show:

(a)
∑

γ∈{−1,1}n

εγ br
γ =

{
0, for r = 0, 1, · · · , n− 1,

2n n!
∏n

k=1 ak, for r = n,

where b0
γ = 1 even if bγ = 0. Hint: Expand both sides of ea0t

∏n
k=1(e

akt−
e−akt) =

∑
γ∈{−1,1}n εγ ebγt into a power series in t and compare coef-

ficients.

(b)
n∏

k=0

sin(akx) =
1

2n

∑

γ∈{−1,1}n

εγ cos(bγx− π
2

(n + 1)).

(c)

∫ ∞

0

n∏

k=0

sin(ak x)

x
dx =

π

2

1

2n n!

∑

γ∈{−1,1}n

εγ bn
γ sign(bγ).

(d)

∫ ∞

0

n∏

k=0

sinc(ak x) dx =
π

2

1

a0


1− 1

2n−1 n! a1 · · · an

∑

bγ<0

εγb
n
γ


.

(e) The first “bite.” If
∑n−1

k=1 ak ≤ a0 <
∑n

k=1 ak, then

∫ ∞

0

n∏

k=0

sinc(ak x) dx =
π

2

1

a0

(
1− (a1 + · · ·+ an − a0)

n

2n−1 n! a1 · · · an

)
.
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28. A special sinc integral. Evaluate

∫ ∞

0

sincn(x) dx =
π

2


1 +

1

2n−2

∑

1≤r≤n
2

(−1)r

(r − 1)!

(n− 2r)n−1

(n− r)!




=
π

2n (n− 1)!

∑

0≤r≤n
2

(−1)r

(
n

r

)
(n− 2r)n−1.

Thus confirm the results of Exercise 5.

29. A strange cosine integral. Let C∗(x) = cos(2x)
∏∞

n=1 cos (x/n). Show
symbolically that

∫∞
0

C∗(x) dx < π/8, and show numerically that

0 <
π

8
−

∫ ∞

0

C∗(x) dx < 10−41.

This is thus hard to distinguish numerically from π/8; compare Exercise
39.

30. Multi-variable sinc integrals. For x, y ∈ Rm we write x · y to denote
the dot product. Define the sinc space Sm,n to be the set of m× (m + n)
matrices S = (s1 s2 · · · sm+n) of column vectors in Rm such that

∫

Rm

∣∣∣∣∣
m+n∏

k=1

sinc(sk · y)

∣∣∣∣∣ dy < ∞,

and a function σ : Sm,n → R by

σ(S) =

∫

Rm

m+n∏

k=1

sinc(sk · y) dy.

Correspondingly, define the polyhedron space Pm,n to be the complete set
of m× (m+n) matrices P = (p1 p2 · · · pm+n) and a function ν : Pm,n → R
by

ν(P ) = Vol{x ∈ Rn : |pk · x| ≤ 1 for k = 1, 2, · · · ,m + n}.
(a) Note that by change of basis, for S ∈ Sm,n and P ∈ Pm,n we have

σ(S) = |det(M)|σ(MS) and ν(P ) = |det(N)| ν(NP )

for non-singular matrices M (m×m) and N (n× n).
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(b) The following correspondence between multidimensional sinc integrals
and volumes of polyhedra can be proved with some effort (see [34]):
If n ≥ m, if A is a non-singular (m × m)-Matrix, and if B is any
(m× n)-matrix having m of its columns linearly independent, then

σ(A|B) =
σ(Im|A−1B)

|det(A)| =
πm

2n

ν(In|(A−1B)T )

|det(A)| .

Similarly, if n ≥ m, if C is a non-singular (n×n)-matrix, and if D is
any (n×m)-matrix such that C−1D has m linearly independent rows,
then

ν(C|D) =
ν(In|C−1D)

|det(C)| =
2n

πm

σ(Im|(C−1D)T )

|det(C)| .

(c) Use the theorem from (b) to determine (with the use of symbolic
integration) the volume of {x ∈ R6 : |pk · x| ≤ 1, k = 1, · · · , 11},
where pi is the i-th column of the matrix

P =




10 0 0 0 0 0 9 10 −1 −3 7
0 10 0 0 0 0 −2 −1 −8 2 −6
0 0 10 0 0 0 −9 7 −5 5 1
0 0 0 10 0 0 5 −2 −9 −8 −9
0 0 0 0 10 0 −10 −2 −3 6 −4
0 0 0 0 0 10 −8 9 2 7 −10




.

Hint: ν(P ) = (32/(5π5))
∫
R5

∏11
k=1 sinc(si · y) dy, where

S =




10 0 0 0 0 9 −2 −9 5 −10 −8
0 10 0 0 0 10 −1 7 −2 −2 9
0 0 10 0 0 −1 −8 −5 −9 −3 2
0 0 0 10 0 −3 2 5 −8 6 7
0 0 0 0 10 7 −6 1 −9 −4 −10




.

31. Another iterated sinc integral. Problem: For positive constants (ai),
evaluate∫ ∞

−∞
· · ·

∫ ∞

−∞

sin(a1x1)

x1

· · · sin(anxn)

xn

sin(a1x1 + · · ·+ anxn)

x1 + · · ·+ xn

dx1 · · · dxn.

Answer: πn min(a1, . . . , an)).
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32. Infinite series and Clausen’s product. For x and t appropriately
restricted:

(a) Use Clausen’s product to obtain

∞∑
n=0

(t)n (−t)n

(2 n)!
(2 x)2 n = cos (2 t arcsin (x))

and

−1

2

∞∑
n=1

(t)n (−t)n

(2 n)!

(
4 sin2 x

)n
= sin2 (t x) .

(b) Obtain the Taylor series

arcsin2(x) =
1

2

∑
n≥1

(2 x)2n

n2
(
2n
n

)

on taking an appropriate limit as t → 0 (see also Problem 16 of
Chapter 1). Hence, show

∑
n≥1

1

n2
(
2n
n

) =
π2

18
and

∑
n≥1

(−1)n

n2
(
2n
n

) = −2 log2

(
1 +

√
5

2

)
.

Evaluate
∑

n≥1 3n/
(
2n
n

)
and both of

∑
n≥1 (±1)n /

(
2n
n

)
.

33. Proof of the Korovkin theorems. Prove Theorems 2.6.2 and 2.6.4.

34. Korovkin by inequalities. An interesting recent approach to the Ko-
rovkin theorems is given in [205]. Recall that a subset of a continuous
function space is a subalgebra if it is closed under pointwise multiplication.
Therein, the following elegant lemma is proven:

Lemma 2.7.3 Suppose that A is a norm-closed subalgebra of C[a, b] that
contains 1. Let T be a positive linear operator on A such that T (1) ≤ 1.
Then

(a) E(h) = T (h)2 − T (h2) ≥ 0,
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(b) |T (fg)− T (f)T (g)| ≤ E(f) E(g),

(c) ‖T (fg)− T (f)T (g)‖2 ≤ ‖E(f)‖ ‖E(g)‖,
(d) ‖T (fg)− T (f)T (g)‖2 ≤ ‖E(f)‖ ‖E(g) + E(k)‖,

for all elements f, g, h and k in the algebra.

Proof. (a) is established by observing that T (h + t 1)2) ≥ 0 for all real
t. Then (b) follows with h replaced by f + tg, and (c) and (d) are easy
consequences. 2

It is now a nice problem to show that the first and second Korovkin theo-
rems follow—if one knows that the polynomials are dense in C[a, b]. More-
over, the same approach will yield:

Theorem 2.7.4 (Complex Korovkin theorem.) Let D = {z ∈ C :
|z| ≤ 1}. Let Tn be positive linear operators on C(D) such that Tn(h) ⇒ h
for h = 1, z and |z|2. Then this holds for all h in C(D).

To prove this it helps to observe that positive operators preserve conju-
gates: T

(
h
)

= T (h) for all h in C(D).

35. Bézier curves. The Bézier curve of degree n defined by n + 1 points
b0, b1, . . . , bn is exactly the Bernstein polynomial interpolating the values
at k/n

n∑

k=1

bk

(
n

k

)
tk (1− t)n−k. (2.7.36)

Typically, parametric cubic Bézier curves in the plane such as

x(t) = − (1− t)3 − t (1− t)2 +
3

2
t2 (1− t) + t3 (2.7.37)

y(t) =
1

2
(1− t)3 + t (1− t)2 +

3

4
t2 (1− t) +

1

2
t3

are fitted together for smoothing purposes. To compute the values it is
useful to observe Castlejau’s algorithm that the basis functions Bn,k =
t 7→ (

n
k

)
tk (1− t)n−k satisfy the recursion Bn,−1 = Bn−1,n = 0 and

Bn,k(t) = (1− t) Bn−1,k(t) + t Bn−1,k−1(t),
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for 0 ≤ k ≤ n and all real t.

36. Bernstein polynomials. Determine the appropriate Bernstein polyno-
mials on [−1, 1].

37. Rate of approximation. As we have seen, the rate of approximation
is tied to the smoothness of the underlying function. In Lebesgue’s proof
of the Stone-Weierstrass Theorem, the main work is in showing that | · |
can be uniformly approximated by polynomials on [−1, 1]. Plot the first
few Bernstein polynomials and observe that the approximation is worst at
zero, where |t| is not differentiable.

38. Korovkin kernels. Apply the Korovkin theorems to the Poisson, Fejér-
Korovkin and Jackson kernels respectively.

39. Contriving coincidences.

(a) A consequence of the theta transform, (2.3.15), in the form s θ2
3 (e−πs) =

θ2
3

(
e−π/s

)
, is that

∑
n≥1

e−(n/10)2 ≈ 5 Γ

(
1

2

)
− 1

2

and they agree through 427 digits, with similar more baroque esti-
mates for higher powers of ten.

(b) The fact that α = exp(π
√

163/3) ≈ 640320 lies deeper and relates
to the fact that the only imaginary quadratic fields with unique fac-
torization are Q

(√−d
)

are with d = 1, 2, 4, 7, 11, 19, 43, 67 and the
largest 163.

(c) This leads to a spectacular “billion-digit” fraud

∞∑
n=1

[nα]

2n
≈ 1280640.

As we saw this is explained by Theorem 1.4.2 and the fact that as a
continued fraction,

α = [640320, 1653264929, 30, 1, 321, 2, 1, 1, 1, 4, 3, 4, 2, . . .].
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(d) Determine the integers Nd such that

∞∑
n=1

[nαd]

2n
≈ Nd,

for αd = exp(π
√

d/3) with d = 19, 43, 67, 163, and determine the error
in each case.

These examples signal the danger of inferring a symbolic identity from tools
like PSLQ without knowing the context. That said, we know of nearly no
cases where such spectacular deception has occurred without contrivance.



Chapter 3

Zeta Functions and Multi-Zeta
Values

I see some parallels between the shifts of fashion in mathematics and
in music. In music, the popular new styles of jazz and rock became
fashionable a little earlier than the new mathematical styles of chaos
and complexity theory. Jazz and rock were long despised by classi-
cal musicians, but have emerged as art-forms more accessible than
classical music to a wide section of the public. Jazz and rock are no
longer to be despised as passing fads. Neither are chaos and com-
plexity theory. But still, classical music and classical mathematics
are not dead. Mozart lives, and so does Euler. When the wheel of
fashion turns once more, quantum mechanics and hard analysis will
once again be in style.

Freeman Dyson, 1996 [108]

The Riemann zeta function has already appeared in various contexts in earlier
chapters. We start this chapter with gathering up its basic properties in one
place. After some further discussion of special values of the function, we complete
this chapter with a more detailed exploration of multiple zeta values (Euler
sums), as introduced in Chapter 2 of the first volume.

The zeta-function (of Riemann) is defined by the following series

ζ(s) =
∞∑

n=1

1

ns
, (3.0.1)

143
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for Re(s) > 1. The estimate

1

n + 1
+

1

n + 2
+ · · ·+ 1

2n
>

n

2n
=

1

2
,

and the comparison test for series, show that ζ has a pole at s = 1. To go further
we introduce the alternating zeta function

α(s) =
∞∑

n=1

(−1)n+1

ns
, (3.0.2)

and note that α(1) = log(2). This series clearly converges (and is analytic as a
uniform limit) for Re(s) > 0. Moreover regrouping the terms shows that

α(s) = −
∞∑

n=1

1

(2n)s
+

∞∑
n=1

1

(2n− 1)s
= 2−sζ(s)−

∞∑
n=1

1

(2n− 1)s
(3.0.3)

ζ(s) =
∞∑

n=1

1

(2n)s
+

∞∑
n=1

1

(2n− 1)s
= 2−sζ(s) +

∞∑
n=1

1

(2n− 1)s
.

Then (3.0.3) shows
∑∞

n=1 1/(2n − 1)s = (1 − 2−s)ζ(s) and that α(s) = (1 −
21−s)ζ(s). Thus

ζ(s) =
α(s)

(1− 21−s)
(3.0.4)

for Re(s) > 0 which provides an analytic continuation of ζ in the right halfplane,
with ζ(1

2
) = 0.6048986430 . . .. We also note that α(2) = 1

2
ζ(2) = π2/12.

3.1 Reflection and Continuation of Zeta

There are various routes to extend ζ into the left halfplane. We choose to
start with the function τ(t) = [θ3(e

−πt) − 1]/2, where θ3(q) =
∑∞

n=−∞ qn2
as is

discussed in Section 4.2. For Re(s) > 1/2 we choose to use the Mellin transform

Ms(τ) =

∫ ∞

0

τ(x)xs−1 dx
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and write

Ms(τ) =
∞∑

n=1

n−2sπ−s

∫ ∞

0

e−tts−1 dt =
Γ(s)

πs
ζ(2s). (3.1.5)

Hence

Γ
(s

2

)
ζ(s)π−s/2 =

∫ ∞

0

ts/2−1τ(t) dt (3.1.6)

=

∫ ∞

1

ts/2−1τ(t) dt +

∫ 1

0

t−1/2τ

(
1

t

)
ts/2−1 dt

+
1

2

∫ 1

0

(t−1/2 − 1)ts/2−1 dt. (3.1.7)

Here we have used the theta transform (2.3.15) to replace τ(t) by τ(1/t) on
[1,∞). We deduce that

Γ
(s

2

)
ζ(s)π−s/2 = −

(
1

s
+

1

1− s

)
+

∫ ∞

1

ts/2 + t(1−s)/2

t
τ(t) dt, (3.1.8)

as we see on evaluating the final integral and sending t → 1/t in the second
integral in (3.1.6). Because τ(t) = O(e−πt) as t → ∞, the integral in (3.1.8) is
an entire function of s, and as Γ has a simple pole at zero, we see that (3.1.8)
extends ζ analytically with a single simple pole at s = 1.

Most beautifully, we note that (3.1.8) is left unchanged by the substitution
s → 1− s and so we obtain the famous functional equation or reflection formula
for the Riemann zeta function:

Γ
(s

2

)
ζ(s)π−s/2 = Γ

(
1− s

2

)
ζ(1− s)π(1−s)/2. (3.1.9)

Symmetry of ζ around the line Re(s) = 1
2

is now apparent. We also note that
(3.1.9) shows that ζ(−2n) is zero for even negative integers (because Γ has poles
at those values). These are called “trivial” zeros. As we shall see in the next
section ζ(−2n + 1) is a Bernoulli number and so rational.

The reflection formula must represent one of the most beautiful findings in
mathematics. The British analyst G. N. Watson, discussing his response to
equally beautiful formulae of the wonderful Indian mathematical genius Ra-
manujan (1887–1920), such as those in Section 3.2.3, describes
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a thrill which is indistinguishable from the thrill I feel when I en-
ter the Sagrestia Nuovo of the Capella Medici and see before me
the austere beauty of the four statues representing “Day,” “Night,”
“Evening,” and “Dawn” which Michelangelo has set over the tomb
of Guiliano de’Medici and Lorenzo de’Medici. [208]

3.1.1 The Riemann Hypothesis

The mathematical centrality of the zeta function can hardly be overestimated.
It figures as Problem 8 (of 23) in Hilbert’s famous 1900 lecture and as Problem
5 (of 8) in the Millennium Problems posed by the Clay Foundation 100 years
later. Central to the study of the zeta function is the Riemann hypothesis :

The only non-trivial zeroes of ζ(s) for complex numbers s = σ + iγ
lie on σ = 1/2.

The importance and present status of the Riemann Hypothesis in prime number
theory has already been discussed in Chapter 2 of the first volume, and is devel-
oped further in Exercise 2. A related reason for the role of ζ in number theory
comes from the following:

Lemma 3.1.1 (Euler Product.) For σ = Re(s) > 1

ζ(s) =
∏

p

(
1− 1

ps

)−1

, (3.1.10)

where p runs over the primes.

Proof. This can be seen by expanding the finite product and using unique
factorization:

∏
p≤X

(
1− 1

ps

)
=

∏
p≤X

(
1 +

1

ps
+

1

p2s
+ · · ·

)
=

∑
n≤X

1

ns
+ E(s, X) (3.1.11)

where E(s,X) ≤ ∑
n>X 1/nσ →X 0. 2

From this we may derive again that for Re(s) ≥ 1, the function ζ(s) has a
pole only at s = 1.
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3.2 Special Values of the Zeta Function

3.2.1 Zeta at Even Positive Integers

We have already evaluated ζ(2) in various ways. There are also several ways to
find the closed form for ζ(2n). Let us start with the intuitive path followed by
Euler. Euler intuited his product formula for π (1.2.11) from the analogy with
the Fundamental Theorem of Algebra, and on writing down the Taylor series for
sin(x)/x, one is left to compare

∞∑
n=0

(−1)nx2n

(2n + 1)!
=

∞∏
n=1

(
1− x2

π2 n2

)
. (3.2.12)

Thus, one has

ζ(2) =
∑
n>0

1

n2
=

π2

6
.

Considering the next term we have

∑
m,n>0
m<n

1

n2 m2
=

π4

120
.

Now
π4

60
+ ζ(4) = 2

∑
m,n>0

m6=n

1

n2 m2
+

∑
m>0

1

m4
=

∑
m,n>0

1

n2 m2
= ζ(2)2,

and

ζ(4) =
π4

36
− π4

60
=

π4

90
.

One can continue in like fashion—by hand or in a computer algebra system—
and obtain ζ (6) = π6/945, ζ (8) = π8/9450, ζ (10) = π10/93555, and we discover
that ζ(2n) = qn π2n for some rational qn, and it is clearly time to be more
organized.

To do this we introduce the even Bernoulli numbers via the generating func-
tion

z

ez − 1
+

z

2
=

∞∑
m=0

B2m
z2m

(2m)!
, |z| ≤ 2π, (3.2.13)
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and define B1 = −1
2

, B2n+1 = 0 for n > 0. It is easy to discover, equivalently,
that

n∑

k=0

(
n + 1

k

)
Bk = 0, (3.2.14)

and that

π z cot(πz) =
∞∑

m=0

(−1)mB2m
(2π z)2m

(2m)!
. (3.2.15)

Returning to (1.2.11) and differentiating logarithmically, we obtain

π cot(πz) =
1

z
−

∞∑
n=1

2z

n2 − z2
=

∞∑
n=1

ζ(2n)z2n−1, (3.2.16)

where the second identity comes from repeated use of the geometric series. Com-
paring coefficients in (3.2.15) and (3.2.16) yields

ζ(2m) = (−1)mB2m
(2π )2m

2 (2m)!
. (3.2.17)

Using the reflection formula (3.1.9) we deduce that for nonnegative n

ζ(−2n + 1) = −B2n

2n
.

As the coefficient of B2n in equation (3.2.14) is non-zero (n + 1), equation
(3.2.14) is a practical formula for generating Bernoulli numbers. The first few
Bernoulli numbers are

1

6
,− 1

30
,

1

42
,− 1

30
,

5

66
,− 691

2730
.

Note that if one did too little computation, one might come away with the
impression that the numerator is always “1.” Actually, the numerator is as hard
to compute as the number, but a lovely theorem of Karl von Staudt and Thomas
Clausen proves that the fractional part of B2n and σ2n =

∑
p−1|2n

1
p

agree. Thus
B2n and σ2n have the same denominators, and the later can be very quickly
computed, even for large n. The first 15 even values are

1, 6, 30, 42, 30, 66, 2730, 6, 510, 798, 330, 138, 2730, 6, 870, 14322

and the mystery as to why terms reoccur is explained by von Staudt’s result.
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3.2.2 Zeta at Odd Positive Integers

It was only in 1976 that Roger Apéry proved that ζ(3) is irrational. As of the
end of 2002, it is known that one of the next four odd zeta values is irrational
and that infinitely many are, but we can not prove that ζ(5) is. They certainly
are not simple rational multiples of powers of π, a fact that can be determined
by integer relation computations.

Thanks to Apéry, who used the series for A3 below in his work, it is now well
known that

ζ(2) = 3
∞∑

k=1

1

k2
(
2k
k

)

ζ(3) =
5

2

∞∑

k=1

(−1)k−1

k3
(
2k
k

)

ζ(4) =
36

17

∞∑

k=1

1

k4
(
2k
k

)

(See [54].)
These results make it tempting to conjecture that

Z5 = ζ(5)/
∞∑

k=1

(−1)k−1

k5
(
2k
k

)

is a simple rational or algebraic number. Sadly, or happily, we may use PSLQ to
determine that If Z5 satisfies a polynomial of degree ≤ 25 the Euclidean norm
of coefficients exceeds 2 × 1037. And the order and norm can be extended ad
libidem. Thus, any relatively prime integers p and q such that

ζ(5)
?
=

p

q

∞∑

k=1

(−1)k+1

k5
(
2k
k

)

have astronomically large q.
But a positive use of PSLQ yields in terms of the first polylogarithms:

∞∑

k=1

(−1)k+1

k5
(
2k
k

) = 2ζ(5)− 4
3
L5 + 8

3
L3ζ(2) + 4L2ζ(3) (3.2.18)

+80
∑
n>0

(
1

(2n)5
− L

(2n)4

)
ρ2n
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where L = log(ρ) and ρ = (
√

5 − 1)/2; with similar formulae for A4 and A6

(series with alternating signs), S5, S6 and S7 (series with nonalternating signs)
[54].

A less well-known formula for ζ(5) due to Koecher suggested generaliza-
tions for ζ(7), ζ(9), ζ(11) · · · . Again the coefficients were found by integer rela-
tion algorithms.. The technique of bootstrapping the earlier pattern kept size of
the search space manageable. Note that the requisite sums converge relatively
quickly, and so are easy to compute even to high precision, which are needed for
large relation searches.

For example:

ζ(7) =
5

2

∞∑

k=1

(−1)k+1

k7
(
2k
k

) +
25

2

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑
j=1

1

j4
. (3.2.19)

The authors of [36] were able, by finding integer relations for n = 1, 2, · · · , 10,
to encapsulate the formulae for ζ(4n + 3) in a single conjectured generating
function, (entirely ex machina):

Theorem 3.2.1 For any complex |z| < 1, we have, formally,

∞∑
n=0

ζ(4n + 3)z4n =
∞∑

k=1

1

k3(1− z4/k4)

=
5

2

∞∑

k=1

(−1)k−1

k3
(
2k
k

)
(1− z4/k4)

k−1∏
m=1

1 + 4z4/m4

1− z4/m4
. (3.2.20)

The first “=” is easy. The second is quite unexpected in its form! Thus,
z = 0 yields Apéry’s formula for ζ(3) and the coefficient of z4 yields (3.2.19).

How Theorem 3.2.1 was discovered. The first ten cases show (3.2.20) has
the form

5

2

∑

k≥1

(−1)k−1

k3
(
2k
k

) Pk(z)

(1− z4/k4)

for undetermined Pk; with abundant data to compute

Pk(z) =
k−1∏
m=1

1 + 4z4/m4

1− z4/m4
.
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Many reformulations of (3.2.20) were found, including a marvellous finite
sum:

n∑

k=1

2n2

k2

∏n−1
i=1 (4k4 + i4)∏n

i=1, i 6=k(k
4 − i4)

=

(
2n

n

)
. (3.2.21)

This was obtained via Gosper’s telescoping algorithm of Wilf-Zeilberger type
after a mistake in an electronic Petri dish—when a TEX “infty” was typed
instead of “infinity” and Maple returned an answer that suggested it “knew” an
algorithm for such finite sums.

This identity was subsequently proved by Almkvist and Granville [6] thus
finishing the proof of (3.2.20) and giving a rapidly converging series for any
ζ(4N + 3) where N is positive integer. And perhaps shedding light on the
irrationality of ζ(7)?

Paul Erdős, when shown (3.2.21) shortly before his death, rushed off. Twenty
minutes later he returned saying he did not know how to prove it but if proven
it would have implications for Apéry’s result (“ζ(3) is irrational”).

The failure to discover a similar function for ζ(4n+1) rests largely on the fact
that too many relations were found by computer and no candidate to behave
like (3.2.1) was isolated to generalize the initial cases such as

ζ(5) = 2
∞∑

k=1

(−1)k+1

k5
(
2k
k

) − 5

2

∞∑

k=1

(−1)k+1

k3
(
2k
k

)
k−1∑
j=1

1

j2
. (3.2.22)

3.2.3 A Taste of Ramanujan

Ramanujan obtained almost analogous evaluations of ζ(2n + 1). For M ≡
3 (mod 4),

ζ(4N + 3) = −2
∑

k≥1

1

k4N+3 (e2πk − 1)

+
2

π

{
4N + 7

4
ζ(4N + 4)−

N∑

k=1

ζ(4k)ζ(4N + 4− 4k)

}
,
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where the interesting term is the rapidly convergent hyperbolic trigonometric
series, while the term in braces is a rational multiple of π4N+4. Correspondingly,
for M ≡ 1 (mod 4),

ζ(4N + 1) = − 2

N

∑

k≥1

(πk + N)e2πk −N

k4N+1(e2πk − 1)2

+
1

2Nπ

{
(2N + 1)ζ(4N + 2) +

2N∑

k=1

(−1)k2kζ(2k)ζ(4N + 2− 2k)

}
.

In each case, only a finite set of ζ(2N) values is required, and the full precision
value eπ is reused throughout. The number eπ is the easiest transcendental
number to rapidly compute (see Problem 7 of Chapter 3 in the first volume).

For ζ(4N + 1), a “nicer” series has recently been decoded and then proved
from a few PSLQ experiments of Plouffe. It is equivalent to:

{
2− (−4)−N

} ∞∑

k=1

coth(kπ)

k4N+1
− (4)−2 N

∞∑

k=1

tanh(kπ)

k4N+1
= QN × π4N+1. (3.2.23)

The quantity QN in (3.2.23) is an explicit rational:

QN = −
2N+1∑

k=0

B4N+2−2kB2k

(4N + 2− 2k)!(2k)!
×

{
(−1)(

k
2) (−4)N2k + (−4)k

}
. (3.2.24)

This was also discovered using integer relation methods. For instance,

9

4

∞∑

k=1

coth (π k)

k5
− 1

16

∞∑

k=1

tanh (π k)

k5
=

5

672
π5.

On substituting

tanh(x) = 1− 2

exp(2x) + 1
, coth(x) = 1 +

2

exp(2x)− 1

in (3.2.23), one may solve for ζ(4N + 1). For example:

ζ(5) =
1

294
π5 +

2

35

∞∑

k=1

1

(1 + e2kπ)k5
+

72

35

∞∑

k=1

1

(1− e2kπ)k5
,

and ζ(5)− π5/294 = −0.0039555 . . .
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3.3 Other L-series

The function

β(s) = L−4(s) =
∞∑

n=0

(−1)n

(2n + 1)s
, (3.3.25)

is sometimes known as the Catalan zeta function, since β(2) = G is Catalan’s
constant, perhaps the simplest number whose irrationality is unproven. It is
independent of ζ being based on the multiplicative character modulo 4 which
takes values 0, 1, 0,−1. It is the simplest example of a primitive Dirichlet L-series
as arrives when one studies primes in arithmetic progression.

In this case the generating function

sec(z) =
∞∑

m=0

|E2m|z2m

(2m)!
, |z| ≤ π

2
, (3.3.26)

with E2n+1 = 0 for n ≥ 0, defines the Euler numbers—some authors label our
E2n as En, which we met in Chapter 2 of the first volume. Correspondingly,

n∑

k=0

(
2n

2k

)
E2n−2k = 0, (3.3.27)

and

π sec(πz) =
∞∑

m=0

4m+1β(2m + 1) z2m. (3.3.28)

Comparing coefficients in (3.3.28) and (3.3.26) yields

β(2m + 1) = |E2m|
(

π
2

)2m+1

2 (2m)!
, (3.3.29)

so that in this case it is the odd values that are tractable:

β(1) =
π

4
, β(3) =

π3

32
, β(5) =

5π5

1536
, β(7) =

61π7

184320
,

while the first six even Euler numbers are

1,−1, 5,−61, 1385,−50521, 2702765.
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For integer k, an important class of Dirichlet series is given by

L±k(s) =
∞∑

n=1

(±k
n

)

ns
, (3.3.30)

where
(±k

n

)
is the Legendre-Jacobi symbol. When n is prime, the Legendre

symbol is defined as
(

m
n

)
= 1 if m is a quadratic reside modulo n (i.e., m is a

perfect square modulo n), and = −1 otherwise. When n = p1p2, · · · pr for odd

primes pi not necessarily distinct, then
(

m
n

)
is defined as

(
m
p1

)(
m
p2

)
· · ·

(
m
pr

)
.

Using this notation,

L−8(s) = 1 +
1

3s
− 1

5s
− 1

7s
+ · · ·

and

L+8(s) = 1− 1

3s
− 1

5s
+

1

7s
+ · · · .

More generally, for any multiplicative character χ one can define

Lχ(s) =
∞∑

n=1

χ(n)

ns
. (3.3.31)

The previous case corresponds to characters modulo k. Then Lχ(s) has a corre-
sponding Euler product

Lχ(s) =
∏

p

(
1− χ(p)

ps

)−1

, (3.3.32)

where p runs over the primes.

For primitive characters modulo d > 0 (see [143, 44]) there is a functional
equation analogous to that for zeta given in (3.1.9):

L−d(s) = C(s) cos
(sπ

2

)
L−d(1− s) (3.3.33)

L+d(s) = C(s) sin
(sπ

2

)
L+d(1− s) (3.3.34)
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where C(s) = 2sπs−1k−s+1/2 Γ(1 − s). Moreover, the Dirichlet class number
formulae are

L−d(1) =
2π√

d

h(−d)

w(d)
(3.3.35)

Ld(1) =
2h(d)√

d
log(ε(d)), (3.3.36)

where h(−d) is the class number of Q(
√

D), where d = D when d is congruent
to 1 modulo 4 and d = D otherwise, ε(d) is a fundamental unit in Q(

√
D), and

w(d) = 2 except that w(1) = 4 and w(3) = 6.
For our present purposes it suffices that we know that Ld(1)/π satisfies a

quadratic equation and Ld(1)/π
√

d is a rational multiple of the logarithm of
a quadratic surd, as we can explore what the values are with integer relation
methods—and hunt for evaluations at other odd integers s.

We illustrate with a few cases. Working to less than 20 digits, we find
L−8(1) =

√
3π/9, L−8(3) = 4

√
3π3/343, L−8(1) =

√
2π/4, L−8(3) = 3

√
2π3/128,

L−12(1) =
√

3π3/6, L−12(3) =
√

3π3/45 and in confirmation L−4(3) = π3/32.
Also, L−67(1) =

√
67π/67 and L−163(1) =

√
163π/163 are particularly simple,

since these are the largest cases where the corresponding imaginary quadratic
field has unique factorization.

Similarly, L+5(1) = 2
√

5/5·log((1+
√

5)/2), L+8(1) =
√

2/2·log(1+
√

2), while
L+13(1) = 2

√
13/13·log((3+

√
13)/2) and L+29(1) = 2

√
29/29·log((35+

√
29)/2).

3.4 Multi-Zeta Values

Euler sums or MZVs (“multiple zeta values” or “multi zeta values”) are won-
derful generalizations of the classical ζ function. For natural numbers i1, i2,
· · · , ik,

ζ(i1, i2, · · · , ik) =
∑

n1>n2>ṅk>0

1

ni1
1 ni2

2 · · ·nik
k

. (3.4.37)

Thus ζ(a) =
∑

n≥1 n−a is as before and

ζ(a, b) =
∞∑

n=1

1 + 1
2b + · · ·+ 1

(n−1)b

na
.
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In general, the integer k is the sum’s depth and i1 + i2 + · · ·+ ik is its weight.
This definition (3.4.37) clearly extends to alternating and character sums

as we shall see below. MZVs have recently found interesting interpretations in
high energy physics, knot theory, combinatorics etc. Such MZVs satisfy many
striking identities, of which

ζ(2, 1) = ζ(3) and 4ζ(3, 1) = ζ(4) (3.4.38)

are the simplest. Thus these double zeta sums can be reduced to values of the
classical zeta function! Does this happen just in a few special cases, or is this the
tip of an iceberg, the beginning of a theory? We would like to answer questions
such as: Which multiple zeta values can be reduced to simpler ones, i.e., to
rational combinations of MZVs of lower depth? How many irreducible MZVs
remain for given depth and weight? Can the relations between different MZVs
be sorted, labeled and classified?

The needed computations quickly become very large scale: mixing fields,
tools and interfaces such as Reduce, C++, Fortran, Pari, Snap, etc. A high
precision fast ζ-convolution allows use of integer relation algorithms leading to
important dimensional (reducibility) conjectures and amazing identities. An
algorithm for computing these values is given in Section 7.5.1. See also the Euler-
zeta computation tool at the URL http://www.cecm.sfu.ca/projects/ezface+.
Euler himself found and partially proved theorems on reducibility of depth 2 to
depth 1 ζ’s (ζ(6, 2) is the lowest weight “irreducible”).

3.4.1 Various Methods of Attack

One of the pleasures of work in the area is that so many methods are useful: com-
binatorial, analytic (complex and real), algebraic, number theoretic, and numer-
ical. This leads to amazing identities and important dimensional (reducibility)
conjectures. Almost certainly, the simplest of our dimensional conjectures are
not provable by currently known mathematical techniques. As we emphasized
above, we can’t yet determine whether ζ(5), ζ(7) or G are rational or irrational,
much less transcendental.

We shall finish this section by establishing a conjecture of Zagier first pub-
lished in [36, 52] to which we refer along with [51] for general information not
given in the section. The proof we give is a refinement due to Zagier of one
found by Broadhurst during the development of the joint corpus in [63, 52]. The
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identity is

ζ({3, 1}n) =
1

2n + 1
ζ({2}2n)

(
=

2π4n

(4n + 2)!

)
. (3.4.39)

Here {s}n is the string s repeated n times. This is the unique non-commutative
analogue of Euler’s evaluation of ζ(2n).

We illustrate the diversity of the area with a deep conjecture that sits as a
very special case of various dimensional conjectures we make below and provide
evidence for:

Conjecture. (Drinfeld(1991)-Deligne) The graded Lie algebra of
Grothendieck & Teichmuller has no more than one generator in odd
degrees, and no generators in even degrees.

In the known “non-reducible” identities for Euler sums, all ζ-terms have the
same weight. This is of great importance for guided integer relation searches,
as it dramatically reduces the size of the search space. It is, moreover, useful to
consider more general sums:

ζ(i1, i2, · · · , ik ; σ1, σ2, · · · , σk) =
∑

n1>n2>···>nk>0

σn1
1 σn2

2 · · ·σnk
k

ni1
1 ni2

2 · · ·nik
k

. (3.4.40)

For general complex σi, (3.4.40) defines Eulerian polylogarithms, while σi ∈
{1,−1} produce Euler sums. We restrict the term multi zeta value (MZV) to:

ζ(i1, i2, · · · , ik) =
∑

n1>n2>···>nk>0

1

ni1
1 ni2

2 · · ·nik
k

,

that is, when σi ≡ 1.

3.4.2 Reducibility and Dimensional Conjectures

As a first taste we prove the following lemma due to Euler:

Lemma 3.4.1

ζ(a, b) + ζ(b, a) = ζ(a)ζ(b)− ζ(a + b),
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for integer a > 1, b ≥ 1. In particular

ζ(a, a) =
1

2
ζ(a)2 − 1

2
ζ(2a)

reduces ζ(a, a).

Proof. Observe that

ζ(a, b) + ζ(b, a) + ζ(a + b)

=
∞∑

n=1

∞∑
m>n

1

na mb
+

∞∑
n=1

∞∑
m<n

1

na mb
+

∞∑
n=1

∞∑
n=m

1

na mb

=
∞∑

n=1

∞∑
n=1

1

na mb
= ζ(a)ζ(b). (3.4.41)

2

More complex versions of this sort of argument often involving partial fraction
identities lead to sets of equations (and to the matrices in Section 4.5), and to
algebraic proofs of many cognate MZV identities. For example:

ζ(a, b, c) + ζ(a, c, b) + ζ(c, a, b) = ζ(c)ζ(a, b)− ζ(a, b + c)− ζ(a + c, b).

As a second taste, we show how a computer algebra system can “prove”
Euler’s first significant result in the area: “generatingfunctionology” produces:

(−1)m

(m− 1)!

∫ 1

0

logm−1(t)
∑

n>0 an tn

1− t
dt =

∑
n>0

∑
k<n ak

nm

and so represents ζ(m, 1) as the following integral

ζ(m, 1) =
(−1)m

(m− 1)!

∫ 1

0

logm−1(t) log(1− t)

1− t
dt

=
(−1)m

2(m− 1)!

∫ 1

0

(m− 1) logm−2(t) log2(1− t)

t
dt. (3.4.42)

Inspection of the definition of the beta function

β(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt (3.4.43)
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shows that the right side of (3.4.42) can be written as a β-function derivative

ζ(m, 1) =
(−1)m

2(m− 2)!
B

(m−2)
1 (0), (3.4.44)

where B1(y) = ∂2

∂x2 β(x, y)
∣∣∣
x=1

. Since

∂2

∂x2
β(x, y) = β(x, y)

[
(Ψ(x)−Ψ(x + y))2 + (Ψ′(x)−Ψ′(x + y))

]
,

we have a digamma representation via

B1(y) =
1

y

(
(−γ −Ψ(y + 1))2 + (ζ(2)−Ψ′(y + 1))

)
.

Indeed, without going beyond (3.4.44), we may implement (3.4.44) in Maple
or Mathematica very painlessly and discover its Riemann ζ-function reduction

ζ(n, 1) =
∞∑

k=1

(
1 +

1

2
+ · · ·+ 1

k

)
(k + 1)−n

=
nζ(n + 1)

2
− 1

2

n−2∑

k=1

ζ(n− k)ζ(k + 1),

from the first five or ten symbolic values. Moreover each case computed is a
proof. Note that one wants to ensure that Maple or Mathematica does not
evaluate ζ(2n), otherwise when n + 1 is even a convolution will not be exposed:

6 ζ2 (4) + 6 ζ (2) ζ (6) =
17

9450
π8 = 17 ζ (8) .

To make the notion of reduction more explicit, a key problem is to find the
dimension of a minimal generating set for a (Q, +, ·)-algebra that contains

1. all Euler sums of weight n and depth k, generated by Euler sums, En,k;

2. all MZVs of weight n and depth k, generated by Euler sums, En,k; or

3. all MZVs of weight n and depth k, generated by MZVs, Dn,k.
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Conjectured generating functions (due to Broadhurst-Kreimer, Zagier, and oth-
ers) are:

∏
n≥3

∏

k≥1

(
1− xnyk

)En,k ?
= 1− x3y

(1− x2)(1− xy)

∏
n≥3

∏

k≥1

(
1− xnyk

)Mn,k ?
= 1− x3y

1− x2

∏
n≥3

∏

k≥1

(
1− xnyk

)Dn,k ?
= 1− x3y

1− x2
+

x12y2(1− y2)

(1− x4)(1− x6)
.

For k = 2, n odd and k = 3, n even, the result implicit for Dn,k can be proven
by “elementary methods.” Note that Dn,k has a disconcertingly complicated
conjectured rational generating function.

In the next example and elsewhere we sometimes write −si or si to denote
alternation in the i-th position.

Example 3.4.2 Two MZV reductions.

MZV over MZVs: an example of a sum that reduces is

ζ(4, 1, 3) = −ζ(5, 3) +
71

36
ζ(8)− 5

2
ζ(5)ζ(3) +

1

2
ζ(3)2ζ(2).

MZV over Euler sums: ζ(4, 2, 4, 2) is irreducible as an MZV but as an Euler
sum we have:

ζ(4, 2, 4, 2) = −1024

27
ζ(−9,−3)− 267991

5528
ζ(12)− 1040

27
ζ(9, 3)− 76

3
ζ(9)ζ(3)

−160

9
ζ(7)ζ(5) + 2ζ(6)ζ(3)2 + 14ζ(5, 3)ζ(4) + 70ζ(5)ζ(4)ζ(3)− 1

6
ζ(3)4.

However, ζ(5, 3), ζ(−9,−3) are irreducible over the Euler sums. 2

Tables 3.1, 3.2, and 3.3 give values of these three dimensions. The tools
used included partial fractions, functional equations and the “shuffles algebra”
[36, 52]. The generating functions have been confirmed numerically, and a sizable
subset is proven symbolically, in the following ranges:



3.4. MULTI-ZETA VALUES 161

En,k k 1 2 3 4 5 6
n
3 1
4 1
5 1 1
6 1 1
7 1 2 1
8 2 2 1
9 1 3 3

10 2 5 3
11 1 5 7
12 3 8 9
13 1 7 14
14 3 14 20
15 1 9 25
16 4 20 42
17 1 12 42
18 4 30 75
19 1 15 66
20 5 40 132

Table 3.1: Values of En,k for various n and k.

1. En,k (with REDUCE and PSLQ): k = 2 and n ≤ 44 and k = 7 and n ≤ 8.

2. Mn,k (with REDUCE and PSLQ): k = 2 and n ≤ 17 and k = 7 and n ≤ 20.

3. Dn,k, modulo a big prime (with REDUCE and Fortran): k = 3 and n ≤ 141
and k = 7 and n ≤ 21; (with Fortran): k = 3 and n ≤ 161 and k = 7 and
n ≤ 23.

Hybrid code based on symbolic evaluation of identities and on PSLQ allowing
exact reduction has been run for: (1) All alternating (Euler) sums to weight 9;
(2) all MZV’s to weight 14. Thus all these evaluations are fully established, as
are many more scattered in the literature.
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Mn,k k 1 2 3 4 5 6
n
3 1
4
5 1
6
7 1
8 1
9 1

10 1
11 1 1
12 2
13 1 2
14 2 1
15 1 3
16 3 2
17 1 5 1
18 3 5
19 1 7 3
20 4 8 1

Table 3.2: Values of Mn,k for various n and k.
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Dn,k k 1 2 3 4 5 6
n
3 1
4
5 1
6
7 1
8 1
9 1

10 1
11 1 1
12 1 1
13 1 2
14 2 1
15 1 2 1
16 2 3
17 1 4 2
18 2 5 1
19 1 5 5
20 3 7 3

Table 3.3: Values of Dn,k for various n and k.
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3.5 Double Euler Sums

A natural first generalization of the ζ function, initially studied by Euler, is to let
ζ(t, s) =

∑∞
n=1

∑n−1
k=1 k−sn−t. Such sums, which we first encountered in Lemma

3.4.1, are called double Euler sums.
As a more detailed foray into Euler sums, it is our intention to prove the

following evaluation due to Euler, in a self contained fashion.

ζ(t, s) =
1

2

[(
s + t

s

)
− 1

]
ζ(s + t) + ζ(s)ζ(t)

−
n∑

j=1

[(
2j − 2

s− 1

)
+

(
2j − 2

t− 1

)]
ζ(2j − 1)ζ(s + t− 2j + 1)

if s is odd,

ζ(t, s) = −1

2

[(
s + t

s

)
+ 1

]
ζ(s + t)

+
n∑

j=1

[(
2j − 2

s− 1

)
+

(
2j − 2

t− 1

)]
ζ(2j − 1)ζ(s + t− 2j + 1)

if s is even.

for s + t odd, as in ([30]). The terms involving ζ(1) which he used here can be
cancelled formally if t > 1. Euler obtained his evaluation by computing many
examples (s+t ≤ 13) and then extrapolating the general formula, without actual
proof. The proof we give is not the simplest, but it allows us to play interestingly
with combinatorial matrices, a subject we revisit in the next chapter.

We need the following lemma which was known already to Euler and can be
proved by induction on s + t.

Lemma 3.5.1 Define

A
(s,t)
j =

(
s + t− j − 1

s− j

)
and B

(s,t)
j =

(
s + t− j − 1

t− j

)
.

Then we have the partial fraction decomposition

1

xs(1− x)t
=

s∑
j=1

A
(s,t)
j

xj
+

t∑
j=1

B
(s,t)
j

(1− x)j
,

for s, t ≥ 0, s + t ≥ 1.



3.5. DOUBLE EULER SUMS 165

We will now derive systems of linear equations for the values ζ(s, t) where
s + t = N, a constant. First, as we have already seen (Lemma 3.4.1), there is a
simple relation between ζ(s, t) and ζ(t, s):

ζ(s, t) + ζ(t, s) = ζ(s)ζ(t)− ζ(s + t)

for s, t ≥ 2. We will refer to this equation and its equivalents as “reflection
formulas.” It follows that 2ζ(s, s) = ζ2(s)− ζ(2s).

Second, we have

ζ(s)ζ(t) =

( ∞∑

k=1

1

ks

)
·
( ∞∑

n=1

1

nt

)
=

∞∑
n=1

n−1∑

k=1

1

ks(n− k)t

=
∞∑

n=1

n−1∑

k=1

(
s∑

j=1

A
(s,t)
j

ns+t−jkj
+

t∑
j=1

B
(s,t)
j

ns+t−j(n− k)j

)

=
s∑

j=1

A
(s,t)
j ζ(s + t− j, j) +

t∑
j=1

B
(s,t)
j ζ(s + t− j, j),

for s, t ≥ 2, with A
(s,t)
j and B

(s,t)
j defined as in Lemma 3.5.1. We will refer to

these equations as “decomposition formulas.”
The following version of Euler’s equations can be used, together with the

reflection formulas, to prove Euler’s formula (3.5.45) algebraically (which we do
not do explicitly here):

ζ(t, s) = (−1)s

s∑
j=2

(−1)jA
(s,t)
j ζ(j)ζ(s + t− j) + (−1)s

t∑
j=2

B
(s,t)
j ζ(s + t− j, j)

+ (−1)s

(
s + t− 2

s− 1

)
(ζ(s + t− 1, 1) + ζ(s + t)).

We will now distinguish the two cases s+t odd and s+t even. First, we treat
the case where s+ t = 2n+1. We have 2n−2 equations in the 2n−2 unknowns
ζ(2, 2n− 1), ζ(3, 2n− 2), · · · , ζ(2n− 3, 2). We can reduce the ζ(k, 2n + 1− k, )
with k > n to ζ(2n + 1 − k, k) by the reflection formulas. This leaves us with
the n− 1 unknowns ζ(2, 2n− 1), · · · , ζ(n, n+1). The matrix which corresponds
to these equations has the entries

(A
(k,2n+1−k)
j + B

(k,2n+1−k)
j −B

(k,2n+1−k)
2n+1−k )j,k=2,··· ,n.



166 CHAPTER 3. ZETA FUNCTIONS AND MULTI-ZETA VALUES

However, it will simplify matters considerably if we augment this matrix by
allowing j, k to run from 1 to n, and then multiply alternate rows by −1.

Define, therefore, the n× n matrices A,B, C,M by

Akj = (−1)k+1

(
2n− j

2n− k

)
, Bkj = (−1)k+1

(
2n− j

k − 1

)
, Ckj = (−1)k+1

(
j − 1

k − 1

)

(k, j = 1, · · · , n) and M = A + B − C. Define the n vector r by r1 = 0 and

rk = (−1)k+1

[
ζ(k)ζ(2n + 1− k) +

n∑

i=k

(
i− 1

k − 1

)
(ζ(2n + 1)− ζ(2n + 1− i)ζ(i))

]

for k = 2, · · · , n. We then have to solve the system Mx = r, where the vector x
has x1 = 0, and xk = ζ(k, 2n + 1− k) for k > 1.

We shall need the following lemma which is known and can be proved by
induction on m.

Lemma 3.5.2 (i) For 0 ≤ µ ≤ m,

µ∑
i=0

(
m− µ + i

i

)
=

(
m + 1

µ

)
.

(ii) For 0 ≤ ν, µ ≤ m−1,
m∑

i=1

(−1)i+1

(
m− i

ν

)(
m− µ− 1

i− 1

)
=

(
µ

m− ν − 1

)
.

Setting µ = 0 in (ii) and changing the order of summation yields

m∑
i=1

(−1)i+1

(
i− 1

ν − 1

)(
m− 1

i− 1

)
= (−1)m+1δmν .

Lemma 3.5.2(ii) can be used to prove the following matrix identities.

A2 = C2 = I, (3.5.45)

A = BC, B = AC, C = AB, (3.5.46)

B2 = CA, CB = BA. (3.5.47)

It follows from these identities that B3 = BCA = AA = I, and that the matrix
group generated by A,B and C is the permutation group on 3 symbols. We shall
not use this, but will discuss this from a different perspective in Section 4.5,
where we also prove (3.5.45), (3.5.46), and (3.5.47).



3.6. DUALITY EVALUATIONS AND COMPUTATIONS 167

These matrix identities now allow us to show that M is invertible; in fact,
we have

M2 = AA + AB − AC + BA + BB −BC − CA− CB + CC

= I + C −B − A + I = 2I −M,

so that

M−1 =
1

2
(M + I).

Thus, to prove Euler’s formula, it remains to determine M−1r. For this
purpose, define p1 = p2n = 0, pk = ζ(k)ζ(2n + 1 − k) for k = 2, · · · , 2n − 1,
p = (pk)k=1,··· ,n, p = ((−1)k+1pk)k=1,··· ,n and e = (1, · · · , 1). Then rk = pk −
(Cp)k + ζ(2n + 1)(Ce)k. Now let k ≥ 2. Then it follows that

(
M−1r

)
k

=

(
1

2
(M + I)r

)

k

=
1

2
[((A + B − C + I)p)k − ((A + B − C + I)Cp)k

+ ζ(2n + 1)((A + B − C + I)Ce)k]

=
1

2
[((A + B − C + I)p)k − ((A + B + C − I)p)k

+ ζ(2n + 1)((A + B + C − I)e)k]. (3.5.48)

3.6 Duality Evaluations and Computations

For non-negative integers s1, · · · , sk, we consider

ζa(s1, · · · , sk) =
∑

nj>nj+1>0

a−n1

k∏
j=1

n
−sj

j , (3.6.49)

a special case of the multidimensional polylogarithm. Note that

ζa(s) =
∑
n>0

1

anns
= Lis(a

−1)
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is the usual polylogarithm for s ∈ N and |a| > 1. We write ζ = ζ1 and κ = ζ2.
We also define a unit Euler sum by

ρ(σ1, · · · , σk) =
∑

nj>nj+1>0

k∏
j=1

σ
nj

j

nj

.

Iterated integral representations. Put

ωa =
dx

x− a
.

Integration over 0 ≤ x1 ≤ x2 ≤ · · · ≤ xs ≤ 1 allows us to write

ζa(s1, · · · , sk) = (−1)k

∫ 1

0

k∏
j=1

ω
sj−1
0 ωa,

and dually

ζa(s1, · · · , sk) = (−1)s+k

∫ 1

0

1∏

j=k

ω1−aω
sj−1
1 ,

follows on changing x 7→ 1− x at each level. So:

(−1)kζa(s1 + 2, {1}r1 , · · · , sk + 2, {1}rk
) = (−1)r

∫ 1

0

k∏
j=1

ω
sj+1
0 wrj+1

a , (3.6.50)

and dually

(−1)kζa(s1 + 2, {1}r1 , · · · , sk + 2, {1}rk
) = (−1)s

∫ 1

0

1∏

j=k

ω
rj+1
1−a w

sj+1
1 . (3.6.51)

Theorem 3.6.1 1. Setting a = 1 gives the “duality for MZVs”:

ζ(s1 + 2, {1}r1 , · · · , sk + 2, {1}rk
) = ζ(rk + 2, {1}sk

, · · · , r1 + 2, {1}s1).

(3.6.52)
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2. Setting a = 2 gives a corresponding “kappa-to-unit-Euler” duality:

κ(s1 + 2, {1}r1 , · · · , sk + 2, {1}rk
) (3.6.53)

= (−1)r+kζ(1, {1}rk
, 1, {1}sk

, · · · , 1, {1}r11, {1}s1).

3. A more general, less convenient, “kappa-to-unit-Euler” duality similarly
derivable is

κ(s1, · · · , sk) = (−1)kρ(τ1, τ2/τ1, τ3/τ2, · · · , τs/τs−1),

where [τ1, · · · , τs] = [−1, {1}sk−1, · · · ,−1, {1}s1−1].

For example, we immediately see from part 1. of Theorem 3.6.1 that ζ(2, 1, 1, 1) =
ζ(5), and that ζ({2, 1}n) = ζ({3}n) for all n, while ζ(3, 1) is self dual. There is
a profusion of nice specializations, some of which we now list.
Some κ ↔ ρ duality examples.

κ(1) =
∑
n≥1

1

n2n
= − log(1/2) =

∑
n≥1

(−1)n+1

n
= −ζ(1),

κ(2) =
∑
n≥1

1

n22n
= Li2(1/2) =

∑
n≥1

(−1)n+1

n

n−1∑

k=1

(−1)k

k
= −ζ(1, 1),

κ(r + 2) =
∑
n≥1

1

nr+22n
= Lir+2(1/2) = −ζ(1, 1, {1}r), (r ≥ 0)

κ({1}n) = (−1)nζ(−1, {1}n−1) =
( log 2)n

n!
,

κ(2, {1}n) = (−1)n+1ζ(−1, {1}n,−1),

κ({1}m+1, 2, {1}n) = (−1)m+nζ(−1, {1}n, {−1}2, {1}m),
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κ(1, n + 2) = ρ(−1,−1, {1}n,−1),

κ(1, n) =

∫ 1
2

0

Lin(z)

1− z
dz.

In particular,

κ(1, 2) =
5

7
Li2

(
1

2

)
Li1

(
1

2

)
− 2

7
Li3

(
1

2

)
+

5

21
Li1

(
1

2

)3

κ(1, 3) = Li3

(
1

2

)
Li1

(
1

2

)
− 1

2
Li2

(
1

2

)2

.

We note that differentiation proves κ(0, {1}n) = κ({1}n). Applied to ζ(n+2)
this provides a lovely closed form for κ(2, {1}n).

Two κ-reductions. Every MZV of depth N is a sum of 2N κ’s of depth N ,
hence easily computed, using integral ideas similar to below:

A better method is to set ω0 = dx/x, ω1 = −dx/(1− x). Then

ζ(s1, · · · , sk) =
∑

nj>nj+1>0

k∏
j=1

n
−sj

j

again has representation

ζ(s1, · · · , sk) = (−1)k

∫ 1

0

ωs1−1
0 ω1 · · ·ωsk−1

0 ω1.

The domain, 1 > xj > xj+1 > 0, in n =
∑

j sj variables, splits into n + 1
parts: each being a product of regions 1 > xj > xj+1 > λ, for first r variables,
and λ > xj > xj+1 > 0, for rest. The substitution xj 7→ 1 − xj replaces an
integral of the former by the latter type, with λ replaced by λ̄ = 1− λ.
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Thence let S(ω0, ω1) be the n-string ωs1−1
0 ω1 · · ·ωsk−1

0 ω1 specifying a MZV.
Let Tr denote the substring of the first r letters and Un−r the complementary
substring, on the last n− r letters, so that S = TrUn−r for n ≥ r ≥ 0. Then

ζ(s1, · · · , sk) =

∫ 1

0

S =
n∑

r=0

±
∫ λ̄

0

T̃r

∫ λ

0

Un−r (3.6.54)

where ˜ indicates reversal of letter order.
The alternate polylogarithmic integral

ζz(s1, · · · , sk) =
∑

nj>nj+1>0

z−n1

k∏
j=1

n
−sj

j =

∫ z

0

ωs1−1
0 ω1 · · ·ωsk−1

0 ω1 (3.6.55)

applied to right side of (3.6.54) produces the MZV as the scalar product of two
vectors, composed of ζz-values with z = p and z = q, for any desired p, q > 1
with 1/p + 1/q = 1. We usually set p = q = 2, i.e., ζ2 = κ.

Example 3.6.2 Hölder convolution example.

For any 1/p + 1/q = 1

ζ(2, 1, 2, 1, 1, 1) = ζp(2, 1, 2, 1, 1, 1)

+ζp(1, 1, 2, 1, 1, 1)ζq(1) + ζp(1, 2, 1, 1, 1)ζq(2)

+ζp(2, 1, 1, 1)ζq(3) + ζp(1, 1, 1, 1)ζq(1, 3)

+ζp(1, 1, 1)ζq(2, 3) + ζp(1, 1)ζq(3, 3)

+ζp(1)ζq(4, 3) + ζq(5, 3) = ζ(5, 3)

This uses a homogenous combination of 2s polylogs of no higher depth, where
s is the weight of the MZV. It also provides another duality result on letting
q →∞. 2

The method, which is called Hölder convolution, because it relies on comple-
mentary p and q as in Hölder’s inequality of Chapter 5 of the first volume, is
easily programmed (see Section 7.5.1), as the following code partially illustrates:

Seq := proc(s, t) local k, n;
if 1 < s[1] then
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[s[1] - 1, seq(s[k], k = 2 .. nops(s))], [1, op(t)]
else [seq(s[k], k = 2 .. nops(s))],

[t[1] + 1, seq(t[k], k = 2 .. nops(t))]
fi end

SEQ := proc(a) local w, k, s;
w := convert(a, ‘+‘); s := a, [];
for k to w do s := Seq(s); print(s, k) od;
s[2] end

>SEQ([5,3]);
[4, 3], [1], 1

[3, 3], [1, 1], 2
[2, 3], [1, 1, 1], 3

[1, 3], [1, 1, 1, 1], 4
[3], [2, 1, 1, 1], 5

[2], [1, 2, 1, 1, 1], 6
[1], [1, 1, 2, 1, 1, 1], 7
[], [2, 1, 2, 1, 1, 1], 8

[2, 1, 2, 1, 1, 1]

The time to compute D digits for MZV ζ(s1, · · · , sk), of weight n, is roughly
c(n)D precision D multiplications (with c(n) ∝ n, for large n, whatever the
depth, k). This idea extends reasonably to all Euler sums. Thus, 100 digits of
ζ(5, 3) takes only a fraction of a second on a 2003-era system, and 1, 000 digits
only a few seconds. The MPFUN multiprecision software (a previous version of
the ARPREC arbitrary precision computation package described in Chapter 6
of the first volume) required 47 minutes on a 2000-era system to compute 20, 000
digits.
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3.7 Proof of the Zagier Conjecture

For r ≥ 1 and n1, · · · , nr ≥ 1, again specialize the polylogarithm to one variable
(we write L(n1, · · · , nr; x) = ζx−1(n1, . . . , nr) to highlight dependence on x)

L(n1, . . . , nr; x) =
∑

0<mr<...<m1

xm1

mn1
1 · · ·mnr

r

.

Thus

L(n; x) =
x

1n
+

x2

2n
+

x3

3n
+ · · ·

is the classical polylogarithm (see Section 1.7), while

L(n,m; x) =
1

1m

x2

2n
+

(
1

1m
+

1

2m

)
x3

3n
+

(
1

1m
+

1

2m
+

1

3m

)
x4

4n
+ · · · ,

and

L(n,m, l; x) =
1

1l

1

2m

x3

3n
+

(
1

1l

1

2m
+

1

1l

1

3m
+

1

2l

1

3m

)
x4

4n
+ · · · .

These series converge absolutely for |x| < 1 (conditionally on |x| = 1 unless
n1 = 1 and x = 1). These polylogarithms are determined uniquely by the
differential equations

d

dx
L(n1, · · · , nr; x) =

1

x
L(n1, n2, · · · , nr − 1; x)

if nr ≥ 2; while for nr = 1,

d

dx
L(n1, · · · , nr; x) =

1

1− x
L(n1, · · · , nr−1; x)

with the initial conditions L(n1, · · · , nr; 0) = 0 for r ≥ 1 and L(∅; x) ≡ 1.
It transpires that if s = (s1, s2, · · · , sr) and w =

∑
si, every periodic poly-

logarithm leads to a function

Ls(x, t) =
∑

n

L({s}n; x)twn
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which solves an algebraic ordinary differential equation in x, and leads to nice
recurrence relations.

In the simplest case, with r = 1, the ODE is DsF = tsF where

Ds =

(
(1− x)

d

dx

)1 (
x

d

dx

)s−1

and the solution (by series) is a generalized hypergeometric function:

Ls(x, t) = 1 +
∑
n≥1

xn ts

ns

n−1∏

k=1

(
1 +

ts

ks

)
,

as follows from considering Ds(x
n). Similarly, for r = 1 and negative integers

L−s(x, t) = 1 +
∑
n≥1

(−x)n ts

ns

n−1∏

k=1

(
1 + (−1)k ts

ks

)
,

and L−1(2x− 1, t) solves a hypergeometric ODE.
Indeed

L−1(1, t) =
1

β(1 + t/2, 1/2− t/2)
.

We correspondingly obtain ODEs for eventually periodic Euler sums. Thus
L−2,1(x, t) is a solution of

t6 F = x2(x− 1)2(x + 1)2 D6F + x(x− 1)(x + 1)(15x2 − 6x− 7) D5F

+ (x− 1)(65x3 + 14x2 − 41x− 8) D4F + (x− 1)(90x2 − 11x− 27) D3F

+ (x− 1)(31x− 10) D2F + (x− 1) DF.

This leads to four-term recursion for F =
∑

cn(t)xn with initial values c0 =
1, c1 = 0, c2 = t3/4, c3 = −t3/6, and the ODE can be simplified.

We are now ready to prove Zagier’s conjecture. Again, let F (a, b; c; x) denote
the hypergeometric function. Then:

Theorem 3.7.1 For |x|, |t| < 1 and all positive integers n

∞∑
n=0

L(3, 1, 3, 1, · · · , 3, 1︸ ︷︷ ︸
n−fold

; x) t4n = (3.7.56)

F

(
t(1 + i)

2
,
−t(1 + i)

2
; 1; x

)
× F

(
t(1− i)

2
,
−t(1− i)

2
; 1; x

)
.
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Proof. Both sides of the putative identity start

1 +
t4

8
x2 +

t4

18
x3 +

t8 + 44t4

1536
x4 + · · ·

and are annihilated by the differential operator

D31 =

(
(1− x)

d

dx

)2 (
x

d

dx

)2

− t4

Once discovered—and it was discovered after much computational evidence—
this can be checked variously in Mathematica or Maple (e.g., in the package gfun)!

2

Maple code.

deq:=proc(F) D(D(F))+A*D(F)+B*F; end;
eqns:= {(deq(H))(x),D((deq(H)))(x),D(D((deq(H))))(x)};
for p from 0 to 4 do eqns:=subs((‘@@‘(D,p))(H)(x)=y[p],eqns); od:
yi_sol:=solve(eqns,{seq(y[i], i=0..4)});
id:=x->x; T:=x->t;
# The annihilator to be checked for any product
A31:=proc(F) (1-id)*D((1-id)*D(id*D(id*D(F)))) - T^4*F; end;
Z:=expand(A31(F1*F2)(x)); for p from 0 to 4 do

Z:=subs((‘@@‘(D,p))(F1)(x)=y[1,p],
(‘@@‘(D,p))(F2)(x)=y[2,p],Z); od:

The annihilator to be checked for the given product is

a[1]:= x -> 1/x; b[1]:= x -> I*t^2/2*1/(x*(1-x)); a[2]:= x ->1/x;
b[2]:= x -> -I*t^2/2*1/(x*(1-x));
for i from 1 to 2 do for o from 2 to 4 do

y[i,o]:=subs(subs(A=a[i],B=b[i],
y[0]=y[i,0],y[1]=y[i,1],yi_sol),y[o]): od: od:

normal(Z);

The code returns zero showing the hypergeometric product solves the differ-
ential equation.
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Corollary 3.7.2 (Zagier Conjecture)

ζ(3, 1, 3, 1, · · · , 3, 1︸ ︷︷ ︸
n−fold

) =
2 π4n

(4n + 2)!
(3.7.57)

Proof. We have

F (a,−a; 1; 1) =
1

Γ(1− a)Γ(1 + a)
=

sin πa

πa

where the first equality comes from Gauss’s evaluation of F (a, b; c; 1) (see (6.7.51))
and the second was proved in Section 5.4 of the first volume. Hence, setting
x = 1, in (3.7.56) produces

F

(
t(1 + i)

2
,
−t(1 + i)

2
; 1; 1

)
F

(
t(1− i)

2
,
−t(1− i)

2
; 1; 1

)

=
2

π2t2
sin

(
1 + i

2
πt

)
sin

(
1− i

2
πt

)

=
cosh πt− cos πt

π2t2
=

∞∑
n=0

2π4nt4n

(4n + 2)!

on using the Taylor series of cos and cosh. Comparing coefficients in (3.7.56)
completes the proof. 2

If one suspects that Corollary 3.7.2 holds, once one can compute these sums
well, it is very easy to verify many cases numerically and be entirely convinced.

3.8 Extensions and Discoveries

Generalizations of the Zagier identity. It is possible to arrive at the result
without differential equations, just combinatorial manipulations of the iterated
integral representations. This can be generalized to

∑
s∈I

ζ(s) =
π4n+2

(4n + 3)!
(3.8.58)
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where s runs over the set I of all 2n + 1 possible insertions of the number 2 in
the string {3, 1}n. Actually (3.8.58) is just the beginning of a large family of
conjectured identities that were determined intensively using PSLQ, not all of
which are proved. Other broad generalizations are discussed in Exercise 15.

Compare the much easier result which follows from the product formula for
sin

∞∑
n=0

L({2}n; x) t2n = F (it,−it; 1; x)

and, more generally,

∞∑
n=0

L({p}n; x) tpn = pFp−1(−ωt,−ω3t, · · · ,−ω2p−1t; 1, · · · , 1; x)

where ωp = −1. In each case expanding the right hand-side as a power series is
easy.

The amazing factorizations in the result for ζ({3, 1}n) and

ζ({3, 1}n) = 4−nζ({4}n) =
1

2n + 1
ζ({2, 2}n)

beg the question “What other deep Clausen-like hypergeometric factorizations
lurk within?”

Broadhurst and Lisoněk used one of the present authors’ implementation of
PSLQ to search for Zagier generalizations. They found that “cycles” such as
Z(m1,m2, · · · ,m2n+1) = ζ({2}m1 , 3, {2}m2 , 1, {2}m3 , 3, · · · , 1, {2}m2n+1) partici-
pate in many such identities. Checking PSLQ input vectors from all Z values of
fixed weight (2K, say) along with the value ζ({2}K) detected many identities,
from which general patterns were “obvious.” This led to a conjecture (among
many):

2n∑
i=0

Z(CiS)
?
= ζ({2}M+2n) (3.8.59)

for S a string of 2n + 1 numbers summing to M , and CiS the cyclic shift of S
by i places. Zagier’s identity is the case of (3.8.59) with entries of S zero.

The symmetry in (3.8.59) highlighted that Zagier-type identities have serious
combinatorial content. For M = 0, 1 we could reduce (3.8.59) to evaluation of
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combinatorial sums; and thence to truly combinatorial proofs. For M ≥ 2 we
have no proofs, but very strong evidence.

Perhaps the most striking conjecture (open indeed for n > 2) is tantalizingly
easy to state, and to numerically verify, and has eluded proof for five years since
its numerical discovery:

8n ζ({−2, 1}n)
?
= ζ({2, 1}n), (3.8.60)

or equivalently that the functions

L−2,1(1, 2t) = L2,1(1, t) (= L3(1, t))

agree for small t. It appears to be the unique identification of an Euler sum with
a distinct MZV of its type. Can just the case n = 2 be proven symbolically as
is the case for n = 1 (see Exercise 16)?

To sum up, our simplest conjectures (on the number of irreducibles) are still
beyond present proof techniques. Is ζ(5) or G rational? Such questions may
or may not be close to proof! Thus, the field appears wide open for numerical
exploration.

Dimensional conjectures sometimes involve finding integer relations between
hundreds of quantities and so demanding precision of thousands of digits—often
of hard to compute objects. In that vein, one of the present authors and Broad-
hurst recently found a polylogarithmic ladder of length 17 (a record) with such
“ultra-PSLQing” [19].

3.9 Multi-Clausen Values

We finish this chapter by returning briefly to binomial sums first detailed in Sec-
tion 1.7. The study of so called Deligne words for multiple integrals generating
Multiple Clausen (or Multi-Clausen) Values at π/3 such as

µ(a, b) =
∑

n>m>0

sin(nπ
3
)

namb
,

seem quite fundamental. It leads to results like

S3 =
∞∑

k=1

1

k3
(
2k
k

) =
2π

3
µ(2)− 4

3
ζ(3),
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S5 =
∞∑

k=1

1

k5
(
2k
k

) = 2πµ(4)− 19

3
ζ(5) +

2

3
ζ(2)ζ(3),

S6 =
∞∑

k=1

1

k6
(
2k
k

) = −4π

3
µ(4, 1) +

3341

1296
ζ(6)− 4

3
ζ(3)2.

Much more is detailed in [54]. This includes a generalization of MZV duality,
and finishes with an accounting of alternating sums:

AN =
∞∑

k=1

(−1)k+1

kN
(
2k
k

) .

In this setting, it is more convenient to work with the set

Kk = {Lk(ρ
p) | p ∈ C}

where ρ = (
√

5− 1)/2, of Kummer-type polylogarithms, of the form

Lk(x) =
1

(k − 1)!

∫ x

0

(− log |y|)k−1dy

1− y
=

k−1∑
r=0

(− log |x|)r

r!
Lik−r(x)

where as before Lik(x) =
∑

n>0 xn/nk.

L̃k(x) = Lk(x)− Lk(−x) = 2Lk(x)− 21−kLk(x
2).

Then A3 is Apéry’s sum, A5 was expressed in (3.2.18), and

A4 = 4L̃4(ρ)− 1
2
L4 − 7ζ(4).

In fact, there are five integer relations between K4, L4, ζ(4) and A4. Another
simple example is

A4 = 16
9
L̃4(ρ

3)− 2L4 − 23
9
ζ(4).

For 9 ≥ N ≥ 6 one gets corresponding integer relations but not enough to obtain
closed forms for AN .
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3.10 Commentary and Additional Examples

1. A binomial generalization of zeta. Show that

∞∑

k=0

(
2k
k

)
(
2k+4n
k+2n

)
(2k + 4n + 1)(2k + 2n + 1)

=

(
2n

n

)2
π2

28n+3
, (3.10.61)

for each integer n ≥ 0. Hint: This is a sum that Maple can evaluate in
closed form. Reason: The summand on the left of (3.10.61) equals

(2k)!(k + 2n)!2

k!2(2k + 4n)!(2k + 4n + 1)(2k + 2n + 1)

=
[(k + 1)(k + 2) · · · (k + 2n)]2

(2k + 2n + 1)[(2k + 1)(2k + 2) · · · [2k + 4n + 1]]

=
(k + 1)(k + 2) · · · (k + 2n)

22n(2k + 2n + 1)[(2k + 1)(2k + 3) · · · (2k + 4n + 1)]
= fn(k),

where fn is a rational function with numerator and denominator of degrees
2n and 2n + 2 respectively. The partial fraction expansion of fn is thus

fn(x) =
a

(2x + 2n + 1)2
+

2n∑
i=0

bi

(2x + 2i + 1)
.

But fn(x) = −fn(−2n− 1− x) and it follows that bi = −b2n−i for each i.
In particular bn = 0. Also

a = lim
x→−n−1/2

(2x + 2n + 1)2fn(x)

=
(−n + 1/2)(−n + 3/2) · · · (n− 1/2)

22n(−2n)(−2n + 2) · · · (−2) · 2 · 4 · · · (2n)

=
[1 · 3 · · · (2n− 1)]2

26nn!2
=

(2n)!2

28nn!4
=

1

28n

(
2n

n

)2

.

For −n ≤ k < 0, fn(k) = 0 so that the sum in question equals

∞∑

k=−n

fn(k) =
1

28n

(
2n

n

)2 ∞∑

k=−n

1

(2n + 2k + 1)2

+
n−1∑
i=0

bi

∞∑

k=−n

(
1

2k + 2i + 1
− 1

2k + 4n− 2i + 1

)
.
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The sum ∞∑

k=−n

(
1

2k + 2i + 1
− 1

2k + 4n− 2i + 1

)

telescopes and equals
n−2i−1∑

k=−n

1

2k + 2i + 1
= 0

since in this sum the k-th term cancels with the −2i− k − 1-st term. As

∞∑

k=−n

1

(2n + 2k + 1)2
=

∞∑
j=0

1

(2j + 1)2
=

π2

8
,

the identity (3.10.61) follows.

2. The Riemann-Siegel formula. In this exercise we derive the principle
term of an asymptotic formula which Riemann used to compute the roots of
the zeta function, ζ(s) =

∑∞
n−1 n−s (s ∈ C), whenever this sum converges.

We then use the asymptotic formula to find roots of ζ(s).

(i) We first derive an integral representation of ζ(s) which remains valid
for all s ∈ C, as Riemann states without proof in his famous 1859
paper [182]. Use the Mellin transform

∫ ∞

0

e−nxxs−1 dx =
Γ(s− 1)

ns

together with the Gamma function identities from Chapter 5 of the
first volume

Γ(s) = sΓ(s− 1),
πs

Γ(s)Γ(−s)
= sin πs, (3.10.62)

and the standard identity e−Nx(ex − 1)−1 =
∑∞

n=N+1 e−nx to show
that

ζ(s) =
N∑

n=1

n−s + Γ(−s)π−1 sin(πs)

∫ ∞

0

x(s−1)e−Nx

ex − 1
dx. (3.10.63)
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Now, using the residue theorem and the identities (3.10.62), show
that

ζ(s) =
N∑

n=1

n−s + Γ(−s)(2π)s−12 sin
πs

2

N∑
n=1

n−(1−s)

+
Γ(−s)

2πi

∫

CN

(−x)se−Nx

x(ex − 1)
dx, (3.10.64)

where CN is the contour whose path descends the real axis (or, tech-
nically, just above the real axis) from +∞, traces the circle of ra-
dius 2π(N + 1) counter clockwise and returns to +∞, and where
(−x)s = exp[s log(−x)] is defined to be the branch which is real for
positive real x.

(ii) Next consider the auxiliary function Z(t) defined by

Z(t) = eiθ(t)ζ(1/2 + it), θ(t) = (i log (Γ(it/2− 3/4))− t/2 log π.

Define ξ(s) = Γ(s/2)(s−1)π−s/2ζ(s). Again using the identity (3.10.62),
show that, ξ(1/2 + it) = r(t)Z(t), where

r(t) = −eRe log Γ(i t/2−3/4) t
2 + 1/4

2π1/4
.

Substitute the integral expression (3.10.63) for ζ(s) into the definition
of ξ(s) above and use the identities θ(−t) = −θ(t), r(−t) = r(t),
and 2i sin(πs/2) = −eiπ/4etπ/2(1− ie−tπ) to show that Z(t) = Z0(t) +
R(t) where

Z0(t) =
N∑

n=1

n−1/22 cos(θ(t)− t log n), (3.10.65)

and

R(t) =
e−iθ(t)e−tπ/2

(2π)1/2(2π)ite−iπ/4(1− ie−tπ)

∫

CN

(−x)it−1/2e−Nx

ex − 1
dx.

(3.10.66)
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To evaluate the remainder term R, Riemann used the asymptotic expansion

R(t) ≈ R̃(t) = (−1)N−1

(
t

2π

)−1/4 ∑
j

(
t

2π

)−j/2

Cj(p), (3.10.67)

where the integer N is chosen to be the integer part of (t/2π)1/2, and p is
the fractional part. The first three terms of the expansion are

C0(p) = Ψ(p) =
cos(2π(p2 − p− 1

16
))

cos(2πp)
, C1(p) = − 1

253π2
Ψ(3)(p),

C2(p) =
1

21134π4
Ψ(6)(p) +

1

26π2
Ψ(2)(p).

The notation Ψ(n) indicates the nth derivative. The expansion (3.10.67)
is the Riemann-Siegel formula, so named for its originator and the mathe-
matician Carl Siegel [190] who discovered the formula in Riemann’s work-
ing papers some 70 years after the publication of Riemann’s original paper.
If the C1 term is the first term omitted in the Riemann-Siegel formula, then
Titchmarsh [201, pg. 331] showed that for t > 250π the error |R(t)− R̃(t)|
is bounded by (3/2)(t/2π)(−3/4). The formula refined is still in use to-
day. See also [86] for an exercise (1.59) that lead the reader through zeta
calculations, including some explicit parts on Riemann-Siegel.

(iii) Using the Riemann-Siegel formula and Titchmarsh’s estimate for the
error, give a numerical proof for the existence of zeros of ζ(1/2 + it)
in the interval t ∈ [999.784, 999.799]. Note that only 12 terms in the
main sum (3.10.65) are needed to calculate the estimate for Z(t). To
achieve comparable accuracy using the alternative Euler-Maclaurin
formula (see [109, Ch. 6 ] or Chapter 7 in this volume) would require
hundreds of terms.

3. Some quadratic zeta functions. Problem: Explore evaluations of sums
of the form

ζ(a, b, c) =

′∑
n,m≥0

n2a m2b

(n2 + m2)c

for a, b, c nonnegative integers. (Here as before the summation avoids poles
of the summand.)
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Solution:

(a) The following identity expresses ζ(a, 0, c) by using a Bessel function
expansion of the normalized Mellin transform

Mc(f) =
1

Γ(c)

∫ ∞

0

f(t)tc−1 dt

of the function

t →
∑
n,m

n2aqn2+m2

=
∑

n

n2aqn2

θ3(q)

with q = exp(−t) after using the theta transform (2.3.15)

θ3(exp(πt)) =

√
π

t
θ3

(
exp

(π

t

))
.

This leads to the identity

ζ(a, 0, c) = 2δ0aζ(2c) + 2β
(
c− 1

2
, 1

2

)
ζ(2c− 2a− 1)

+4
∑

p≥1 σ[2a+1−2c](p)Ec(p).
(3.10.68)

This is valid for real ac with d = c−a > 1 and presumably provides an
analytic continuation of ζ(a, 0, c), for the sum over positive integers.
Here σ is a divisor function

σ[d](p) =
∑

n|p
nd,

and

Ec(p) =

√
π

Γ(c)
2(πp)c−1/2K(c−1/2)(2πp)

is derived from the modified Bessel function of half integer order,
K(c−1/2), of the second kind.

When c = N is integer, EN(p) is of the form

π exp(−2πp)PN(πp)
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where PN is a rational polynomial of degree N − 1 with positive
coefficients: P1(x) = 1, P2(x) = x + 1/2, P3(x) = x2/2 + 3/4x +
3/8, P4(x) = 1/6x3 + 1/2x2 + 5/8x + 5/16. In general

PN(x) =
N−1∑

k=0

(
N+k−1

N−1

)
xN−1−k

(N − k − 1)!4k
.

This allows one to very efficiently compute ζ(a, 0, c) via (3.10.68), us-
ing roughly D/4 terms for D digits. Note also that for fixed c and
variable a only the powers in σ[2a+1−2c] vary so most of the computa-
tion can be saved.

(b) Then the general integer case follows from

ζ(a, b, c) =
e∑

k=0

(−1)e−k

(
e

k

)
ζ(a + b− k, 0, c− k)

where e = min(a, b).

(c) Similar developments are possible for the more general form

ζN(a, b, c) =

′∑
n,m

n2am2b

(Nn2 + m2)c
,

with N > 0. We write ζ = ζ1. For example,

ζN(a, 0, c) = 2 δ0aζ(2c) + N (1/2−c)

[
2β

(
c− 1

2
,
1

2

)
(3.10.69)

ζ(2c− 2a− 1) + 4
∑
p≥1

σ[2a+1−2c](p)Ec(
√

Np)

]
.

Note that we now lose a symmetry (and apparently have many fewer
closed forms) but have: ζ1/N(a, b, c) = N cζN(b, a, c).

Also, for N = 1, 2, 3, and especially for those with disjoint discrimi-
nants, many special values may be computed via elliptic integrals in
the corresponding singular values. This leads to closed forms such as

ζ(0, 0, c) = 4ζ(c)L−4(c),
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and
ζ2(0, 0, c) = 2ζ(c)L−8(c)

where Lσ(c) =
∑

n≥1

(
σ
n

)
n−c is the corresponding primitive L-series

and
(

σ
n

)
is the Legendre-Jacobi symbol . We obtain

ζ(2, 0, 4) =
1

4
π2 G +

1

480

π6

Γ(3/4)8
,

and

ζ(2, 2, 6) =
1

64
π2 G− 1

1920

π6

Γ(3/4)8
+

1

92160

π10

Γ(3/4)16

where G = L−4(2) is Catalan’s constant. There is a similar expression
for ζ(a, b, a + b + 2) for all integers a, b ≥ 0.

Then also

ζ2(1, 1, 4) =
1

8
ζ(2) L−8(2)− 1

18

(
3− 2

√
2
) (

1

8
β

(
1

8
,
1

8

))4

,

and there is a similar evaluation of ζP (1, 1, 4) and ζ2P (1, 1, 4) when P
is respectively of “type 1” ((1), 5, 13, 21, 33 · · · ) or “type 2” (1, 3, 5, 11,
15, · · · ), as described in section 9.2 of [44]. Hence,

ζ6(0, 0, c) = ζ(c) L−24(c) + L−3(c) L8(c)

and

ζ6(1, 1, 4) = 1
12

ζ6(0, 0, 2)

− 1
15

21/3 (35 + 16
√

3− 20
√

2− 14
√

6)
(

1
24

β
(

1
24

, 1
24

))4
,

while

ζ10(1, 1, 4) =
1

80
(ζ(2) L−40(2) + L5(2) L−8(2))−

(
7725 + 3452

√
5− 5460

√
2− 2442

√
10

) ( 1
40

β)4( 1
40

, 1
40

)β4( 9
40

, 9
40

)

120 β4(3
8
, 3

8
)

.

For comparison, we note that we may also write

ζ1(1, 1, 4) =
1

2
ζ(2) L−4(2)− 1

30

(
1

4
β

(
1

4
,
1

4

))4

,
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and may use elliptic transformation formulae to derive

ζ4(1, 1, 4) =
1

32
ζ(2) L−4(2)− 11

64
ζ1(1, 1, 4).

Hence,

′∑
n,m

(−1)n n2m2

(n2 + m2)4
= 8 ζ4(1, 1, 4)− ζ1(1, 1, 4)

=
1

16
ζ(2) L−4(2) +

1

80

(
1

4
β

(
1

4
,
1

4

))4

,

and
′∑

n,m

(−1)n+m n2m2

(n2 + m2)4
= 4

′∑
n,m

(−1)n n2m2

(n2 + m2)4
.

Note also that L5(2) = 4
√

5π2/125 and L8(2) =
√

2π2/16.

4. A multi-zeta evaluation. Consider

σn,m =
∑

s∈S(n,m)

ζ(s1, s2, · · · , sm)

summed over all strings of length m consisting of nonnegative integers
adding up to n, with s1 > 1 to insure convergence. Determine σn,m as a
multiple of ζ(n). Hint: Note that ζ(2, 1) = ζ(3), ζ(3, 1) + ζ(2, 2) = ζ(4),
etc. After working out a few more examples, the pattern can easily be
observed. See also Item 11.

5. Harmonic numbers. Prove that

Hn =
n∑

k=1

1

k

is never integer for n > 1. Hint: A slick proof uses Bertrand’s postulate:
the proven fact that there is always a prime p in the interval (n/2, n]. Now
write

Hn =
n!/1 + n!/2 + · · ·+ n!/n

n!
.
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Then p divides the numerator and all but one term of the denominator
n!/p (as p > n/2). One can alternately establish the result using more
elementary methods.

6. Calabi’s unifying integral. It is possible to unify the L-series evaluations
in terms of Bernoulli numbers (3.2.13) and Euler numbers (3.3.26), as
follows. Consider, for integer N ≥ 1

σ(N) =
∞∑

k=−∞

1

(4k + 1)N
.

(a) Show that the ordinary generating function of σ(N) is

Σ(z) =
πz

4

(
sec

(πz

2

)
+ tan

(πz

2

))
,

and obtain the explicit relations between the Euler numbers, the
Bernoulli numbers, and σ(N).

(b) Show that σ(1) =
∫ 1

0
1/(1 + x2) dx = arctan(1) = π/4, and that

σ(2) =
∞∑

k=−∞

1

(4k + 1)2
=

∞∑

k=0

1

(2k + 1)2
=

∫ 1

0

∫ 1

0

dx dy

1− (xy)2
=

π2

8
.

(See also Exercise 11, parts (a) and (b), of Chapter 2.)

(c) More generally for N > 1, show that

σ(N) =
∞∑

k=0

(−1)kN

(2k + 1)N
=

∫ 1

0

· · ·
∫ 1

0

dx1 · · · dxN

1± (x1 · · · xN)2
=

(π

2

)N

ν(N),

where ν(N) is the volume, necessarily rational, of the polytope

PN = {(v1, v2, . . . , vN) : vk ≥ 0, vk + vk+1 ≤ 1, (1 ≤ k ≤ N)}.
One way to obtain the volume is to use, and justify, the (one-to-one)
change of variables

xk =
sin uk

cos uk+1

(1 ≤ k ≤ N),

where we set uN+1 = u1, vN+1 = v1.
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This and more may be explored in Elkies’ recent article [110]. It is a
nice computer algebra challenge to symbolically invert the substitution for
N = 2, 3, 4.

7. A multi-dimensional polylogarithm extension. A useful specializa-
tion of the general multidimensional polylogarithm, which is at the same
time an extension of the polylogarithm, is the case in which each bj = b.
Under these circumstances, we write

λb(s1, · · · , sk) =
∑

ν1,ν2,··· ,νk≥1

k∏
j=1

b−νj

(
k∑

i=j

νi

)−sj

. (3.10.70)

When b = ±1 this is an Euler sum.

Let |p| ≥ 1. The double generating function equality

1−
∞∑

m=0

∞∑
n=0

xm+1yn+1λp(m + 2, {1}n) = F

(
y,−x; 1− x;

1

p

)
(3.10.71)

holds. Note that when p = 1 the symmetry of the hypergeometric function
produces a case of MZV duality: ζ(m + 2, {1}n) = ζ(n + 2, {1}m), for all
m and n, because

F(y,−x; 1− x; 1) =
Γ(1− x)Γ(1− y)

Γ(1− x− y)
(3.10.72)

= exp

{ ∞∑

k=2

(xk + yk − (x + y)k)
ζ(k)

k

}
.

Expanding the rightmost function gives a closed form for ζ(m + 2, {1}n).
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Proof. (of (3.10.71)) By definition of λp

∞∑
m=0

∞∑
n=0

xm+1yn+1λp(m + 2, {1}n) = y

∞∑
m=0

xm+1

∞∑

k=1

1

km+2pk

k−1∏
j=1

(
1 +

y

j

)

=
∞∑

m=0

xm+1

∞∑

k=1

(y)k

km+1k!pk

=
∞∑

k=1

(y)k

k!pk

(
x

k − x

)

= −
∞∑

k=1

(y)k(−x)k

k!pk(1− x)k

= 1− F

(
y,−x; 1− x;

1

p

)

as claimed. 2

8. A symbolic multi-dimensional zeta evaluation. Use

1− exp
∞∑

k=2

ζ (k)

(
xk + yk − (x + y)k

)

k

in (3.10.72) to compute ζ(n, {1}m) symbolically for n + m < 9.

9. Three proofs of an identity.

∑
n>0

H2
n

n2
=

17

4
ζ(4).

Here, as before Hn =
∑n

k=1 1/k.

(a) Fourier analysis proof. As in Chapter 2 of this volume, obtain the
Fourier series of the function whose square integral is given by

1

2π

∫ π

0

(π − t)2 log2(2 sin
t

2
) dt =

∞∑
n=1

(
∑n

k=1
1
k
)2

(n + 1)2
. (3.10.73)
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(b) Algebraic proof. Write

∑
n>0

H2
n

n2
=

∑
n>0

(
Hn−1 + 1

n

)2

n2
(3.10.74)

=
∑
n>0

H2
n−1

n2
+ 2 ζ(3, 1) + ζ(4)

= 2 ζ(2, 1, 1) + ζ(4) + 2 ζ(3, 1) + ζ(4)

= 2 ζ(2, 1, 1) + ζ(4) + 2 ζ(3, 1) + ζ(4) =

(
4 +

1

4

)
ζ(4),

since ζ(2, 1, 1) = ζ(4) (by MZV duality or the ζ(m + 2, {1}n) special
case), and 4 ζ(3, 1) = ζ(4) (by the first case of Zagier’s evaluation or
by the double Euler sum evaluation).

(c) Residue theory proof. Apply residue theory to

φp,q(s) =
π

2

cot(πs)

sq

Ψ(p−1)(−s)

(p− 1)!

obtain ζ(p, q) for p + q < 8, by integrating over circles of radius
R →∞ centered at the origin [112].

10. Reduction to zeta values. Reduce

∑
n>0

H3
n

n3

and ∑
n>0

H2
n

n4

to Riemann zeta values.

11. The Ohno duality theorem. Ohno [169] provides the following beautiful
generalization of MZV duality (see Theorem 3.6.1). Define, for integers
k1, k2, · · · , kn−1 ≥ 1, kn ≥ 2, l ≥ 0,

Z(k1, k2, · · · , kn; l) =
∑

c1+c2+···cn=l

ci≥0

ζ(k1 + c1, k2 + c2, · · · , kn + cn).
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Also define, for integer a1, b1, a2, b2, · · · , as, bs ≥ 1, the dual sequences

k = ({1}a1−1, b1 + 1, {1}a2−1, b2 + 1, · · · , {1}as−1, bs + 1)

and

k′ = ({1}bs−1, as + 1, {1}bs−1−1, as−1 + 1, · · · , {1}b1−1, a1 + 1).

Then for all such k, k’ and l,

Z(k, l) = Z(k′; l). (3.10.75)

(a) Recover the MZV duality result from (3.10.75) with l = 0.

(b) Apply (3.10.75) with k = n + 1 and k′ = ({1}n−1, 2) to obtain an
evaluation of all legal ζ-values of length n with weights summing to
l.

(c) Deduce

1

Γ(s)

∫ ∞

0

ts − 1

et − 1
Lik

(
1− e−t

)
dt = ζ(k + 1, {1}s−1).

12. The Ohno-Zagier generating function. Ohno and Zagier provide the
following impressive generating function. For multi-indices k = (k1, k2, · · · , kn)
with ki > 0, let I0(k, n, s) denote those admissible multi-indices of weight
k, depth n and height s = #{i : ki > 1}. Let

G0(k, n, s) =
∑

k∈I0(k,n,s)

ζ(k).

Note that I0(k, n, s) is nonempty exactly if s > 0, n ≥ s, and k ≥ n + s.

Denote the generating function

Φ0(x, y, z) =
∑

k,n,s

G0(k, n, s) xk−n−syn−szs−1.

Then

(xy − z) Φ0(x, y, z) =

(
1− exp

(∑
n>1

(xn + yn − αn − βn)
ζ(n)

n

))
,

(3.10.76)

where α, β are the roots of t2 − t(x + y) = z.
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(a) Deduce that all the coefficients G0(k, n, s) of Φ0 are polynomials in
ζ(2), ζ(3), · · · with rational coefficients.

(b) Show (3.10.76) is equivalent to

1− (xy − z) Φ0(x, y, z) =
∏
m≥1

(
1− xy − z

(m− x)(m− y)

)
.

13. Bertrand’s postulate. Show that
(
2n
n

)
is even for n > 0 and use this to

prove Bertrand’s postulate that there is always a prime between n and 2n.

14. MZV stuffles. Define a binary operation mapping pairs of ordered lists
u = (u1, · · · , um) and v = (v1, · · · , vn) (for non-negative integers m and n)
into multisets of ordered lists by the recursion

{
() ∗ u = u ∗ () = {u},
au ∗ bv = a(u ∗ bv) ∪ b(au ∗ v) ∪ (a + b)(u ∗ v),

where, for example, au = (a, u1, · · · , um) and more generally, if M is a
multiset of ordered lists, then aM denotes the multiset obtained by placing
a at the front of each list in M .

(a) Show that

ζ(u)ζ(v) =
∑

w∈u∗v
ζ(w).

(b) Let f(|u|, |v|) denote the number of lists (counting multiplicity) in
u ∗ v. Show that the formal power series identity

∞∑
m=0

∞∑
n=0

f(m,n)xmyn =
1

1− x− y − xy

holds.
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(c) Hence, show [67] that

f(m,n) =
m∑

k=0

(
m

k

)(
n + k

m

)
=

min(m,n)∑

k=0

(
n

k

)(
m

k

)
2k

=

∣∣∣∣
{

(b1, · · · , bm) ∈ Zm :
m∑

j=1

|bj| ≤ n

}∣∣∣∣

=

∣∣∣∣
{

(b1, · · · , bn) ∈ Zn :
n∑

j=1

|bj| ≤ m

}∣∣∣∣.

[The proof that the two sets of lattice points are the same size is an ex-
ercise in Pólya-Szegö’s Problems and Theorems in Analysis.] There is an
analogous, but simpler result to (a) for integral “shuffles.”

15. Extensions of Zagier’s identity. We sketch some quite broad exten-
sions of the method of Theorem 3.7.56. Let f and g be differentiable
univariate functions, and define differential operators Df = f(x)d/dx,
Dg = g(x)d/dx. Fix a constant t and let U and V be sets of solutions
to the respective differential equations

(DfDg − t)u = 0, (DfDg + t)v = 0.

(a) Prove [69, 67] that UV = {uv : u ∈ U, v ∈ V } is a set of solutions to
the differential equation

(D2
fD

2
g + 4t2)w = 0,

and moreover [68], UV is a basis iff U and V are bases for the solution
spaces of their respective equations.

Hint: With obvious notation, prove the modified Wronskian determi-
nant identity [68]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1v1 u2v1 u1v2 u2v2

Dgu1v1 Dgu2v1 Dgu1v2 Dgu2v2

D2
gu1v1 D2

gu2v1 D2
gu1v2 D2

gu2v2

DfD
2
gu1v1 DfD

2
gu2v1 DfD

2
gu1v2 DfD

2
gu2v2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= 8t

∣∣∣∣
u1 u2

Dgu1 Dgu2

∣∣∣∣
2 ∣∣∣∣

v1 v2

Dgv1 Dgv2

∣∣∣∣
2

.

(b) Generalize this result.

(c) Applications: For real x with 0 ≤ x ≤ 1, positive integers sj, and
signs σj ∈ {1,−1}, let

ζx(σ1s1, · · · , σksk) =
∑

n1>···>nk>0

xn1

k∏
j=1

n
−sj

j σ
nj

j ,

and set ζ = ζ1. For 0 ≤ x ≤ 1 and complex z, let

Y1(x, z) = F (z,−z; 1; x),

Y2(x, z) = (1− x)F (1 + z, 1− z; 2; 1− x),

G(z) = 1
4
{ψ(1 + iz) + ψ(1− iz)− ψ(1 + z)− ψ(1− z)} ,

where F is the Gaussian hypergeometric function, and ψ is the loga-
rithmic derivative of the Euler gamma function: ψ(z) = Γ′(z)/Γ(z).

Then [36]

∞∑
n=0

(−1)nz4n4nζx({3, 1}n) = Y1(x, z)Y1(x, iz),

and [69]

∞∑
n=0

(−1)nz4n+24nζx(3, {1, 3}n) = G(z)Y1(x, z)Y1(x, iz)

− Y1(x, iz)Y2(x, z)

4Y1(1, z)
+

Y1(x, z)Y2(x, iz)

4Y1(1, iz)

define entire functions of z.

(d) Rederive that for positive integers n,

ζ({3, 1}n) = 4−nζ({4}n) =
2π4n

(4n + 2)!
.
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Additionally show [69] that

ζ(3, {1, 3}n) = 4−n

n∑

k=0

ζ(4k + 3)ζ({4}n−k)

=
n∑

k=0

2π4k

(4k + 2)!

(
−1

4

)n−k

ζ(4n− 4k + 3),

and

ζ(2, {1, 3}n) = 4−n
∑n

k=0(−1)kζ({4}n−k) {(4k + 1)ζ(4k + 2)

−4
∑k

j=1 ζ(4j − 1)ζ(4k − 4j + 3)
}

.

(e) For complex z, set

A(z) =
∞∑

n=0

znζ({−1}n) =
∞∏

j=1

(
1+

(−1)jz

j

)
=

Γ(1/2)

Γ(1 + z/2)Γ(1/2− z/2)
.

Let t and z be related by z = (1+ i)t/2, and set s = (1+x)/2, where
0 ≤ x ≤ 1. Define U(s, z) = Y1(s, z)− zY2(s, z), where Y1 and Y2 are
the Gaussian hypergeometric functions previously defined. Then [69],

∞∑
n=0

[
t2nζx({−1, 1}n) + t2n+1ζx(−1, {1,−1}n)

]
=

U(s,−z)U(s, iz)

A(−z)A(iz)

defines an entire function of z.

(f) Conclude that for all complex t,

∞∑
n=0

[
t2nζ({−1, 1}n) + t2n+1ζ(−1, {1,−1}n)

]
= A

(
t

1− i

)
A

(
t

1 + i

)

(3.10.77)
and if z = (1 + i)t/2, then

1 +
∞∑

n=0

[
t2n+1ζ(−1, {−1, 1}n) + t2n+2ζ(−1,−1, {1,−1}n)

]

= 1
2
(1 + i)zA(z)A(−iz)

{
π csc(πz)− iπ csch(πz) + 4G(z)

}
.

(3.10.78)
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(g) Deduce explicit formulas [69] for the alternating unit Euler sums ap-
pearing as coefficients in (3.10.77) and (3.10.78).

(h) Find additional applications of these ideas to multiple polylogarithms
or other special functions.

16. A multi-zeta identity. Consider the power series

J(x) =
∑

n1>n2>0

xn1

n2
1n2

.

(a) Show for 0 ≤ x ≤ 1 that

J(x) =

∫ x

0

log2(1− t)

2t
dt = ζ(3) +

1

2
log2(1− x) log(x)

+ log(1− x)Li2(x)− Li3(x) ,

(b) and that

J(−x) = −J(x) +
1

4
J(x2) + J

(
2x

x + 1

)
− 1

8
J

(
4x

(x + 1)2

)
.

(3.10.79)

(c) Deduce that J(1) = 8 J(−1).

(d) Evaluate J(1/2).

This functional equation was found, once the ingredients were determined
by inspection, by evaluating (3.10.79) (actually, a version of it with un-
determined coefficients) at a random point and then using LLL. Another
successful strategy is to evaluate each J function at enough specific values
of x to enable one to solve linear equations for the unknown coefficients.

If L(x) and R(x) denote the left-hand and the right-hand sides of (3.10.79),
respectively, then computer manipulations (for 0 < x < 1) show that
dL/dx = dR/dx: mechanically differentiating both sides and using simplify
reduces the difference between the two to zero. Now this completes a proof
of ζ(2, 1) = 8ζ(2, 1) = ζ(3), see (3.8.60). Even the next case of (3.8.60)
has only been established indirectly.
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Figure 3.1: How does one identify two knots?

17. Torus knots and zeta values. For integers p, q > 1 the p− q torus knot
is the knot that transpires when string is wound p times around one way
on the torus, while being wound q times in the other direction. Figure
3.1 shows the 2 − 5 and 5 − 2 torus knots in three dimensions. Despite
looking very different this pair are clearly mathematically the same knot
(the torus is the product of two circles and we just exchange generators.)
There is, along the lines of the discussion in Section 2.6 of the first volume,
a connection between quantum field theory and multi-zeta values on one
hand and between quantum field theory and knot theory on the other.

This has an especially interesting consequence for torus knots. Indeed the
2 − (2n + 1) and (2n + 1) − 2 knots are indirectly but tightly coupled
with ζ(2n + 1) for each n ≥ 1. This is intriguing since the standard knot
invariants of Alexander or Jones attach a polynomial (algebraic) quantity
to a given knot. It would be very interesting to see a direct and natural
identification. By contrast the unknot is identified with π and the 2− (2n)
knots are identified trivially with links via π2n (Euler yet again!).

18. More knotty problems. Figure 3.2 shows the 88 knot (from a standard
catalogue in KnotPlot) and the famous Reidemeister moves, which are
used to rearrange knots.

The knots in Figure 3.3 were listed as separate knots in knot tables. These
are 10161 and 10162, in [185] which notes that in 1974 they were shown by
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Figure 3.2: The knot 88 and Reidemeister moves

Perko to be equivalent [173]. The knots are still listed as separate in some
knot tables, including the recent book by Kawauchi [145].

A lengthy sequence of images showing the equivalence is at the URL
http://www.cecm.sfu.ca/~scharein/projects/perko, with the nice exper-
imental mathematics connection that these deformations were performed
entirely automatically using the KnotPlot tool, which is available at the
URL http://www.colab.sfu.ca/KnotPlot. Indeed, both may be deformed
to the knot in Figure 3.4.
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Figure 3.3: The knots 10161 and 10162

Figure 3.4: The knot equivalent to both 10161 and 10162



Chapter 4

Partitions and Powers

I’ll be glad if I have succeeded in impressing the idea that it is not only
pleasant to read at times the works of the old mathematical authors,
but this may occasionally be of use for the actual advancement of
science.

Constantin Carathéodory, speaking to an MAA meeting in 1936

In this chapter we address the theory of additive partitions and that of repre-
sentations as sums of squares, from an experimental perspective. Both have a
distinguished history. We will show that computational techniques can accel-
erate both solution and understanding. What’s more, these techniques have a
number of interesting applications, including, for example, Madelung’s constant
in physical chemistry.

4.1 Partition Functions

The number of additive partitions of n, p(n), is formally generated by

P (q) = 1 +
∑
n≥1

p(n)qn =
∏
n≥1

(1− qn)−1. (4.1.1)

One ignores “0” and permutations. Thus p(5) = 7 since

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 (4.1.2)

= 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

201



202 CHAPTER 4. PARTITIONS AND POWERS

Figure 4.1: A Ferrer diagram

Additive partitions are less tractable than multiplicative ones as there is no
analogue of unique prime factorization nor the corresponding structure.

Formula (4.1.1) is easily seen by expanding (1− qn)−1 and comparing coeffi-

cients. It is relatively easy to deduce that 2
√

n < p(n) < eπ
√

2n/3 for n > 3 (see
[167]), and that the series is absolutely convergent for |q| < 1. We return to the
analytic behavior of this series below.

Partitions provide a wonderful example of why Keith Devlin calls mathemat-
ics “the science of patterns” [102]. Many geometric representations exist. For
example, the partition 5 = 4 + 1 can be represented as a point at (0, 0) and four
points at (0, 1), (1, 1), (2, 1), (3, 1). Read with axis reversed, this identifies 1 + 4
with 2+1+1+1 and so on. See Figure 4.1, which identifies 1+1+1+2+3+4
and 6 + 3 + 2 + 1. Such techniques provide alternate ways to prove results such
as the number of partitions of n with all parts odd is the number of partitions of
n into distinct parts, (see Exercise 1).

A modern computational temperament leads to:

Question: How hard is p(n) to compute—in 1900 (for MacMahon the “father
of combinatorial analysis”) or in 2000 (for Maple or Mathematica)?
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Answer: The computation of p(200) = 3972999029388 took MacMahon months
and intelligence. Now, however, we can use the most naive approach: computing
200 terms of the series for the inverse product in (4.1.1) instantly produces
the result using either Mathematica or Maple. Obtaining the result p(500) =
2300165032574323995027 is not much more difficult, using the Maple code

> N:=500; coeff(series(1/product(1-q^n,n=1..N+1),q,N+1),q,N);

2300165032574323995027

2

4.1.1 Euler’s Pentagonal Number Theorem

In early versions of Maple, computing P (q) was quite slow, while taking the series
for the reciprocal of the series for Q(q) =

∏
n≥1(1− qn) was quite manageable?

Why? Clearly the series for Q must have special properties. Indeed

Q(q) = 1− q − q2 + q5 + q7 − q12 − q15 + q22 + q26 − q35 − q40 + q51 + q57

−q70 − q77 + q92 + O
(
q100

)
. (4.1.3)

If we do not immediately recognize these pentagonal numbers ((3n± 1)n/2),
Sloane’s online Encyclopedia of Integer Sequences, available on the Internet
at http://www.research.att.com/~njas/sequences, again comes to the rescue,
with abundant references to boot.

So, algorithmic analysis predicts Euler’s pentagonal number theorem:

∏
n≥1

(1− qn) =
∞∑

n=−∞
(−1)nq(3n+1)n/2. (4.1.4)

One would be less prone to look at Q on the way to P today when the compu-
tation is very snappy.

With this success under our belt, we might well ask what about powers of
Q? We obtain

Q2(q) = 1− 2 q − q2 + 2 q3 + q4 + 2 q5 − 2 q6 − 2 q8 − 2 q9 + q10 + 2 q13 + 3 q14

−2 q15 + 2 q16 − 2 q19 − 2 q20 − 2 q23q24 + 2 q26 + 2 q27 − 2 q28

+2 q29 + q30 + 2 q31 + 2 q33 − 2 q34 − 2 q35 + 2 q36 − 2 q38

−4 q40 + q44 − 2 q45 + 2 q48 + O
(
q50

)
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which is not nearly as lacunary; but

Q3(q) = 1− 3 q + 5 q3 − 7 q6 + 9 q10 − 11 q15 + 13 q21 − 15 q28 + 17 q36 − 19 q45

+O (q51)

which has exposed another famous result—a special form of Jacobi’s triple prod-
uct. The general form is

∏
n≥1

(1 + xq2n−1)(1 + x−1q2n−1)(1− q2n) =
∞∑

n=−∞
xnqn2

. (4.1.5)

Then the formula implicit in (4.1.1) is

∏
n≥1

(1− qn)3 =
∞∑

m=0

(−1)m(2m + 1)qm(m+1)/2 (4.1.6)

which may be obtained on replacing q by q1/2 and x by −wq1/2 in (4.1.5), dif-
ferentiating with respect to w, and then letting w → 1 from below.

If we write P (q)Q(q) = 1 in terms of the Cauchy convolution we have

∑

k≤n

qk p(n− k) = δn (4.1.7)

where qk is the coefficient of qk in (4.1.3), and δn is the Kronecker function which
is 1 when n = 0 and 0 otherwise. It is a nice exercise to make this into Euler’s
explicit recursion for p(n) which only needs to compute O(

√
n) smaller values

of p(k). One can similarly develop somewhat more efficient formulae relying on
information such as (4.1.1).

4.1.2 Modular Properties of Partitions

Ramanujan used MacMahon’s table of p(n), 1 ≤ n ≤ 200 to intuit remarkable
and deep congruences such as

p(5n + 4) ≡ 0 mod 5

p(7n + 5) ≡ 0 mod 7
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and
p(11n + 6) ≡ 0 mod 11,

from data like

P (q) = 1 + q + 2 q2 + 3 q3 + 5 q4 + 7 q5 + 11 q6 + 15 q7 + 22 q8 + 30 q9

+ 42 q10 + 56 q11 + 77 q12 + 101 q13 + 135 q14 + 176 q15 + 231 q16

+ 297 q17 + 385 q18 + 490 q19 + 627 q20b + 792 q21b + 1002 q22

+ 1255 q23 + · · ·

If one generates more terms of p(n) and displays them in an appropriately sized
matrix this becomes much clearer:




1 1 2 3 5

7 11 15 22 30

42 56 77 101 135

176 231 297 385 490

627 792 1002 1255 1575




(4.1.8)

shows clearly the congruence p(5n + 4) ≡ 0 mod 5 in the last column.
Correspondingly




1 1 2 3 5 7 11

15 22 30 42 56 77 101

135 176 231 297 385 490 627

792 1002 1255 1575 1958 2436 3010

3718 4565 5604 6842 8349 10143 12310




(4.1.9)

shows clearly the congruence p(7n + 5) ≡ 0 mod 7 in the second last column.
Driven entirely by limited experimental data, Ramanujan conjectured an

audacious set of correct modular identities, and not surprisingly over generalized!
He conjectured that if d = 5a7b11c and 24n ≡ 1 mod d then p(n) ≡ 0 mod d.
This is equivalent to the same conjectures for d a power of 5, 7, 11. This holds for
a, b, c < 3 and for all powers of 5, 11 but fails 73 as p(243) = 133978259344888
since 133978259344888 ≡ 245 mod 343 quickly shows in the 21st century while
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243 ·24 = 17 ·73 +1. Such modular identities (see [132, 44]) and their extensions
remain an active source of research today. The simplest case is described in
Exercise 2.

4.1.3 The “Exact” Formula for p(n)

One of the signal achievements of early twentieth century analysis was Hardy and
Ramanujan’s precise asymptotic for p(n), [76]. It is based in part on an analysis
of the Dedekind η-function η(q) = eπiz/12

∏
n≥1(1 − e2πinz). The function η is

closely related to Q(q), and θ3(q) discussed in the next section, and satisfies a
modular equation like (4.2.21). Their asymptotic is

p(n) =
eKλn

4
√

3λ2
n

(
1 + O

(
1√
n

))
(4.1.10)

where K = π
√

2/3 and λn =
√

n− 1/24.
This was subsequently refined by Rademacher to

p(n) =
1

π
√

2

∞∑

k=1

αk(n)
√

k
d

dx




sinh
(

π
k

√
2
3

(
x− 1

24

))
√(

x− 1
24

)




x=n

(4.1.11)

where

αk(n) =
k∑

(h,k)=1

ωh,ke
−2πinh/k,

and ωh,k = exp(πiτh,k) with

τh,k =
k−1∑
m=1

(
m

k
−

⌊m

k

⌋
− 1

2

)(
hm

k
−

⌊
hm

k

⌋
− 1

2

)
.

If order
√

n terms are appropriately used, the nearest integer is p(n).
A mere five terms of this expansion provides p(200) ≈ 3972999029387.86108

and six terms yields p(500) ≈ 2300165032574323995027.196661. As we have seen
the underlying asymptotic is

p(n) ∼
1

4n
√

3
eπ
√

2n/3.
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Later Erdős made an “elementary” derivation of the Hardy-Ramanujan formula
(4.1.10). A recent discussion of this formula is given by Almkvist and Wilf in [8].
It is interesting to speculate how much corresponding beautiful mathematics is
not done when computation becomes too easy—both Maple and Mathematica
have good built in partition functions.

4.2 Singular Values

The Jacobian theta functions are a very rich source mine for experimentation—
both as a tool to learning classical theory and to discover new phenomena.
Further details of what follows are given fully in [44]. For our purposes we
consider only the three classical θ-functions:

θ3(q) =
∞∑

n=−∞
qn2

, (4.2.12)

θ4(q) =
∞∑

n=−∞
(−1)nqn2

,

θ2(q) =
∞∑

n=−∞
q(n+1/2)2 ,

for |q| ≤ 1. Note that θ2
3 is the generating function for the number of ways of

writing a number as a sum of two squares, counting order and sign. Similarly,
θ2
2 counts sums of two odd squares.

A beautiful result of Jacobi’s is

θ4
3(q) = θ4

2(q) + θ4
4(q). (4.2.13)

If we write k = θ2
2/θ

2
3 and k′ = θ2

4/θ
2
3, we note that k2 + (k′)2 = 1. It transpires

that

(i) θ2
3(q

2) =
θ2
4(q) + θ2

3(q)

2
(ii) θ2

4(q
2) = θ4(q) θ3(q). (4.2.14)

Now (4.2.13) and (4.2.14) can be proved in many ways and can be “verified”
symbolically in many more. For example, Jacobi’s triple product (4.1.5) with x =
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±1 becomes product representations for θ3(q) and θ4(q) respectively. Multiplying
these together yields (ii).

Even without access to the triple product, there is a simple algorithm (see
[9, 10]) for converting a sum A(q) = 1+

∑
n≥1 anqn to a product

∏
n≥1(1−qn)−bn ,

even preserving rationality of coefficients. To get an idea why, differentiating
logarithmically and expanding the denominator of the right side leads to

q A′(q)
A(q)

=
∑
n≥1

n bnqn

1− qn
(4.2.15)

=
∑

n,k≥1

n bn qnk =
∑
n≥1

B∗
n qn,

where we set a0 = 1 and

B∗
n =

∑

d|n
d bd. (4.2.16)

Thus, q A′(q) = A(q)
∑

n>0 B∗
nqn, which is equivalent to the convolution

n an =
n∑

k=1

B∗
k an−k =

n−1∑

k=0

B∗
n−k ak . (4.2.17)

This clearly determines {ak} given {bm} and the converse obtains from the
Möbius inversion formula of (4.3.34).

Example 4.2.1 Counting rooted trees.

The number Tn of rooted trees with n branches is given by a formula due to
Arthur Cayley (1821–1895)

T (x) = 1 +
∞∑

k=1

Tk+1x
k =

∞∏
n=1

(1− xk)−Tk . (4.2.18)

As we remarked in Section 1.6 of the first volume, the product and the sum
share their coefficients. The recursion (4.2.17) for Tn becomes

Tn+1 =
1

n

n∑

k=1

T ∗
k Tn+1−k, T ∗

n =
∑

d|n
d Td. (4.2.19)
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which starts: T1 = 1, T2 = 1, T3 = 2, T4 = 4, T5 = 9, T6 = 20, T7 = 48 · · · . 2

Applied to 1 + 2 q + 2 q4 + 2 q9 + 2 q16 the algorithm produces

(1− q2)
3
(1− q4) (1− q6)

3
(1− q8) (1− q10)

3
(1− q12) (1− q14)

3
(1− q16)

(1− q)2 (1− q3)2 (1− q5)2 (1− q7)2 (1− q9)2 (1− q11)2 (1− q13)2 (1− q15)2 ,

from which a form of the product for θ3(q) can be read off. By contrast 1+3 q +
3 q4 + 3 q9 + 3 q16 produces

(1− q2)
6
(1− q4)

15
(1− q6)

97
(1− q8)

573
(1− q10)

3867
(1− q12)

26446

(1− q)3 (1− q3)8 (1− q5)39 (1− q7)231 (1− q9)1485 (1− q11)10056

·(1− q14)
187761

(1− q16)
1356198

(1− q13)70305 (1− q15)503384

which is pretty good evidence that no natural product exists. We will establish
(4.2.14) (i) in the next section.

Also, one notes that it follows, from (4.2.14), that θ2
3 and θ2

4 parametrize the
AGM and that

AG(θ2
3(q), θ

2
4(q)) = AG(θ2

3(q
2), θ2

4(q
2)) = AG(θ2

3(q
4), θ2

4(q
4)) = (4.2.20)

· · ·AG(θ2
3(q

2n

), θ2
4(q

2n

)) · · · = AG(θ2
3(0), θ2

4(0)) = AG(1, 1) = 1

since the iteration’s limit is unchanged if one starts at the first or the second
stage of the iteration, and since AG is continuous. Another marvellous fact that
follows from Poisson summation is that

k(e−π s) = k′(e−π/s), (4.2.21)

for s > 0. In particular, k(e−π) =
√

1/2. Then (4.2.21) and (4.2.20), in con-
junction with the already explored relationship between Elliptic integrals and
the AGM (Section 5.6 of the first volume) shows that with the above definition
of k,

K(k(q)) =
π

2
θ2
3(q). (4.2.22)

Now the classical theory of modular equations asserts that there is a algebraic
relationship between k = k(q) and l = k(qN) for each positive integer N . For
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example, the quadratic equation, implicit in (4.2.14), is l′ = 2
√

k′/(1 + k′), while
the cubic modular equation may be written as

θ3(q)θ3(q
3) = θ4(q)θ4(q

3) + θ2(q)θ2(q
3) (4.2.23)

or equivalently
√

kl +
√

k′l′ = 1. (4.2.24)

Similarly, for N = 7 the equation is
√

θ3(q)θ3(q7) =
√

θ4(q)θ4(q7) +
√

θ2(q)θ2(q7) (4.2.25)

or equivalently

4
√

kl +
4
√

k′l′ = 1. (4.2.26)

The existence of such modular equations means that there is an algebraic
relationship between K(k) and K(l) and in particular that kN = k(e−π

√
N) is a

(solvable) algebraic number, called the N−th singular value. It is also the case
that two invariants used by Ramanujan reduce the degrees of these quantities.
He used

GN = (2kk′)−1/12, gN = (2k/k′2)−1/12, (4.2.27)

and it transpires that GN is better for odd N and gN for even N .
From the equations above, since k′ = l, l′ = k in this case, we may read off the

values G1 = g2 = 1, G3 = 21/12, and G7 = 21/4; with a little more work we may
obtain g4 = 21/8, g6

6 =
√

2 + 1, g8
8 = (

√
2 + 1)/2, and G6

9 = (2 +
√

3). From these
evaluations in turn we may easily determine kN for N = 1, 2, 3, 4, 6, 7, 8, 9. Had
we supplied the quintic modular equation we could determine G12

5 =
√

5+2, g2
10 =

(
√

5 + 1)/2, G3
15 = 23/4(

√
5 + 1)/2, and G25 = (

√
5 + 1)/2.

Each of these has a reworking as an infinite series evaluation. Thus,

θ3(e
−π) =

4
√

2 θ4(e
−π) =

4
√

2 θ2(e
−π). (4.2.28)

But this is not the main point of this section. We have sketched that (mod-
ular) functions such as

N 7→ θ2(q)

θ3(q)
, q = e−π

√
N , (4.2.29)
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are guaranteed to have algebraic values; and by their nature they are very rapidly
computable to high precision. Thus, they provide excellent test beds for (i)
recovering minimal polynomials from numerical data, and (ii) for simplifying
the radicals so obtained.

For example, working to 15 places, the “MinimalPolynomial” feature of
Maple, which uses lattice basis reduction, returns x2 − 2x − 1 for g2

22, returns
x2 − 12x− 1 for G4

37, and returns 1 + 10 x + 23 x2 − 10 x3 + x4 for G2
58—leading

to three of the cleanest singular values. Correspondingly, G4
11 solves the cubic

x3 − 4x2 + 4x − 1 = 0, g4
12 = 21/6(

√
3 + 1), G4

13 = (
√

13 + 1)/2, and g2
14 yields

the polynomial x4 − 2x3 + 4x2 − x + 1, which gives g2
14 + g−2

14 =
√

2 + 1. Also
G12

17 + G−12
17 = 40 + 10

√
17. In each case, the root or radical obtained using

a low precision “hunt” can be checked almost instantly to many hundreds or
thousands of digits precision.

For instance, we may discover that x = G4
47/2 is a root of the solvable

irreducible quintic x5 − 10x4 + 9x3 − 4x2 − 1 = 0. In cases of degree less than
ten, Maple can provide the Galois group (in this case the dihedral group D5),
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and also the enormous radical:

5x = 10 +

[
273625

4
+

66025

4

√
5− 53885

772

√
45355− 16826

√
5

−1847377065

772

√
5√

45355− 16826
√

5

]1/5

+
6285 + 1265

2

√
5− 2255

386

√
45355− 16826

√
5− 20331965

193

√
5√

45355−16826
√

5(
273625

4
+ 66025

4

√
5− 53885

772

√
45355− 16826

√
5− 1847377065

772

√
5√

45355−16826
√

5

)3/5

+

1375
2

+ 35
√

5 + 11
386

√
45355− 16826

√
5− 1767012

193

√
5√

45355−16826
√

5(
273625

4
+ 66025

4

√
5− 53885

772

√
45355− 16826

√
5− 1847377065

772

√
5√

45355−16826
√

5

)2/5

+
155
2

+ 13
2

√
5

5

√
273625

4
+ 66025

4

√
5− 53885

772

√
45355− 16826

√
5− 1847377065

772

√
5√

45355−16826
√

5

,

which repeated massaging reduces to

x = 2 +
5

√
2189

100
+

2641

500

√
5− 1

2500

√
1436961550 + 641957866

√
5

+
5

√
2189

100
− 2641

500

√
5− 1

2500

√
1436961550− 641957866

√
5

+
5

√
2189

100
− 2641

500

√
5 +

1

2500

√
1436961550− 641957866

√
5

+
5

√
2189

100
+

2641

500

√
5 +

1

2500

√
1436961550 + 641957866

√
5 .

Likewise, Ramanujan’s celebrated singular value, sent in his letter to Hardy,
is

k210 = (
√

2− 1)2(2−
√

3)(
√

7−
√

6)2(8−
√

63) (4.2.30)

× (
√

10− 3)2(4−
√

15)2(
√

15−
√

14)(6−
√

35) .
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Indeed, k330 and k462 have a similar form involving fundamental solutions to
Pell’s equation (units of real quadratic fields).

Finally we note that for small N the elliptic integral K(kN) is correspondingly
susceptible to evaluation in terms of Gamma functions. Thus, to go along with
our previous evaluation of K(k1) we have

K(k3) =
31/4Γ(1

3
)3

27/3 π
and K(k7) =

Γ(1
7
) Γ(2

7
) Γ(4

7
)

4 π 4
√

7
. (4.2.31)

In each case, there is a neater expression in terms of the β-function waiting to
be disentombed.

4.3 Crystal Sums and Madelung’s Constant

We have seen the power of converting series to products and making other
changes of representation. We now introduce Lambert series which are rep-
resentations of the form

∞∑
n=1

f(n)
xn

1− xn
=

∞∑
n=1

F (n)xn (4.3.32)

where

F (n) =
∑

d|n
f(d) (4.3.33)

summed over all positive divisors of n, due originally to Laguerre. The identity
(4.3.32) is established by using the binomial theorem and gathering up terms,
much as with the partition function above.

Thus, for f(n) ≡ 1 we have F (n) = τ(n) = σ0(n), the number of divisors
of n, while f(n) = nk(k 6= 0) yields σk(n) the k-th power sum of the divisors.
Recall that the Möbius function is defined by µ(1) = 1, µ(n) = (−1)m if n is the
product of m distinct prime factors in n, and zero otherwise. Then the Möbius
inversion theorem says that

∑

d|n
F (d) µ(n/d) = f(n) (4.3.34)

for any arithmetic function f.
This is an analogue of Cauchy convolution.
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4.3.1 Sums of Squares

Let us observe that

θm
3 (q) = 1 +

∑
n≥1

rm(n)qn (4.3.35)

where θ3 is defined by (4.2.12) and rm(n) counts the number of ways of writing
n =

∑m
k=1 n2

k, again distinguishing order and sign of the integers used.
It is easy to compute a significant number of terms by merely expanding

truncations of the series on the right-hand side of (4.3.35). This is quite effective
for small even numbers of squares.

Example 4.3.1 Two squares.

The first 60 terms of r2(n)/4 are

1, 1, 0, 1, 2, 0, 0, 1, 1, 2, 0, 0, 2, 0, 0, 1, 2, 1, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 2, 0,

0, 1, 0, 2, 0, 1, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 1, 3, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0

which does not immediately show a clear pattern. However, applying (4.3.34)
to the first 30 terms yields

1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, 0, 1, 0,

and the formula is immediately evident. It is

r2(n) = 4 (d1(n)− d3(n)) , (4.3.36)

where dk is the number of divisors of n congruent to k modulo four. Equivalently,

θ2
3(q)− 1 = 4

∑
n≥0

(−1)n q2n+1

1− q2n+1
. (4.3.37)

2

Example 4.3.2 Four squares.
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The series grows much faster (r2(n) is O(nδ) for any δ > 0) and the first twenty
terms of r4(n)/8 are

1, 3, 4, 3, 6, 12, 8, 3, 13, 18, 12, 12, 14, 24, 24, 3, 18, 39, 20, 18,

while Möbius inversion produces

1, 2, 3, 0, 5, 6, 7, 0, 9, 10, 11, 0, 13, 14, 15, 0, 17, 18, 19, 0,

from which it is obvious that

r4(n) = 8
∑

d|n,4-d
d (4.3.38)

and a nice corollary is that since 1|n, r4(n) is always positive (Lagrange’s famous
theorem). 2

Example 4.3.3 Six squares.

Möbius inversion produces

12, 48, 148, 192, 300, 336, 948, 768, 716, 1200, 2388, 1344, 2028, 2256, 3700,

3072, 3468, 3120, 7188, 4800.

There is clearly structure but what? We leave this as a challenge and turn to
eight squares. 2

Example 4.3.4 Eight squares.

Möbius inversion now produces

11, 6, 27, 64, 125, 162, 343, 512, 729, 750, 1331, 1728, 2197, 2058, 3375, 4096.

There is again clearly structure but what? If we apply inversion to (−1)d r8(d)
(this is using θ4 instead of θ3) we are rewarded with

−1, 8,−27, 64,−125, 216,−343, 512,−729, 1000,−1331, 1728,−2197, 2744,

−3375, 4096.
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Thus,

θ8
3(−q) = θ8

4(q) = 1 + 16
∑
n≥1

(−1)nn3qn

1− qn
. (4.3.39)

2

We end this subsection by deriving (4.2.14) (i) as promised. Indeed we note
that this is equivalent to

∑
n>0

r2(n)q2n =
∑
n>0

(1 + (−1)n)

2
r2(n)qn.

This follows immediately from r2(2n) = r2(n), given that (4.3.36) shows r2(n)
only depends on the odd part of n. Of course we have not proven any of these
representations, but only uncovered them.

4.3.2 Multidimensional Sums

Consider the sums

M2(s) =
∑

m,n∈Z

(m,n)6=0

(−1)m+n

(m2 + n2)s/2
, (4.3.40)

M3(s) =
∑

(m,n,p)∈Z

(m,n,p) 6=0

(−1)m+n+p

(m2 + n2 + p2)s/2
, (4.3.41)

and higher dimensional versions MN(s) defined analogously. In future we write∑′
to denote that poles of the summatory are left out. We are primarily in-

terested in the value M3(1) which is called Madelung’s constant for sodium
chloride, as it is an attempt to count the potential at the origin if alternating
charges are placed at all other points of an integer cubic lattice. The physical-
chemical literature generally treats (4.3.40) and (4.3.41) as well-defined objects.
Mathematically this is far from so. Since these numbers are often computed,
something more must be said (see [32]).

Example 4.3.5 Convergence over increasing circles, squares and diamonds.
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1. Squares. The sum bN
2 (s) =

∑N
n=1

∑N
m=1 (n2 + m2)

−s/2
converges to an

analytic function b2(s), for Re(s) > 0.

2. Circles. The sum
∑

n2+m2≤N (n2 + m2)
−s/2

=
∑

k≤N r2(k)/ks/2 converges
to an analytic function r2(s), for Re(s) > 1/3, but fails to converge some-
where above 1/4. This relies on the fact that the average order of r2(n)
is quite well understood, [133]. Where the limit exists it must agree with
that for squares by uniqueness of analytic continuation.

3. Diamonds. Consider adding up over increasing diamonds: |n|+ |m| = N .
Then the contribution of each shell is

∑N
m=0 1/

√
N2 − 2Nm + 2m2 and the

limit is the Riemann integral
∫ 1

0
1/
√

1− 2t + 2t2 dt =
√

2 log
(
1 +

√
2
)
. So

the terms of the series do not even go to zero.

Thus, the order of summation matters even for these “natural sums.” In
fact, if we always add these sums over increasing hypercubes, they converge to
an analytic limit for Re(s) > 0. So we shall take this as the default meaning of
the sum [44, 31, 32]. We also note that these sums converge very slowly, so that
direct summation methods are to be avoided. We shall return to the evaluation
of M3(1) in the next section.

The normalized Mellin transform (see also Item 3a) is a special form of
the Laplace transform, which makes the link between theta functions and zeta
functions, as we saw in Chapter 3. In this setting, we recall that

µs(f) =
1

Γ(s)

∫ ∞

0

f(t)ts−1 dt. (4.3.42)

Then it is easy to check that µs(e
−tn) = n−s and also that

M2(2s) = µs(θ
2
4(e

−t)− 1), (4.3.43)

and using (4.3.37) the fact that θ2
4(q)−1 = θ2

3(−q)−1 = 4
∑

n>0(−1)n(−q)2n+1/
(1− (−q)2n+1) = 4

∑
n,m≥1(−1)n+m−1qm(2n−1) implies that

M2(2s) = 4
∑

n,m≥1

(−1)n+m−1

m(2n− 1)s (4.3.44)

= 4
∑
n≥0

(−1)n

(2n + 1)s

∑
m≥1

(−1)m

ms
= −4 α(s)β(s),
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where as before α(s) =
∑

m≥1(−1)m+1/ms, the alternating zeta function, and
β(s) =

∑
n≥0(−1)n/(2n+1)s is the Catalan zeta function (β(2) = G is Catalan’s

constant).
Similar arguments based on (4.3.38) lead to

M4(2s) = −8 α(s)α(s− 1), (4.3.45)

and to a corresponding formula for M8(s). In each of these cases the values are
easily computed from the analytic continuations of the underlying zeta functions
as given in Chapter 2. In particular M2(1) = −1.61554262671282472386 . . . and
M4(1) = −1.83939908404504706623. Moreover, various closed forms exist such
as M4(2) = −4 log(2).

We complete this subsection by listing some other formulae. Define LN(2s) =∑∞
n=1 rN(n)/ns. The corresponding LN(2s) are known for N = 2, 4, 6 and 8,

L2(2s) = 4ζ(s)β(s),

L4(2s) = 8(1− 41−s)ζ(s)ζ(s− 1),

L6(2s) = 16ζ(s− 2)L−4(s)− 4ζ(s)β(s− 2),

L8(2s) = 16(1− 21−s + 42−s)ζ(s)ζ(s− 3).

From L6(2s) one can reverse the steps we employed and discover the formula for
r6(n) left open in (4.3.39).

Many more formulae are discussed in [44, 38] and references therein. For
example, as discovered by Zucker, Glasser and Robertson, we have similar closed
forms for L-series based on the quadratic form x2 + 2Py2. We let r2,2p(n) be the
number of representations of n = m2 +2P k2 and let L2,2P (2s) =

∑
(n,m)6=0(m

2 +

2P n2)−s =
∑

n>0 r2,2P (n)n−s. Then

L2,2P (2s) = 21−t
∑

µ|P
Lεµµ(s)L−8Pεµ/µ(s)

for the type two integers

P = 1, 3, 5, 11, 15, 21, 29, 35, 39, 51, 65, 95, 105, 165, 231,

which we will meet again in Section 5.2. Here εµ =
(
−1
µ

)
and Lµ(s) =∑

n≥1

(
µ
n

)
n−s, where

(
µ
n

)
is the Legendre-Jacobi symbol. Thus L1(s) = ζ(s)

and L−4(s) = β(s). See also Section 3.3.
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4.3.3 Madelung’s Constant

Odd squares are notoriously less amenable to closed forms. Following Hardy,
Bateman in [21] gives the following formula for r3(n). Let

χ2(n) =





0 if 4−an ≡ 7 (mod 8)

2−a if 4−an ≡ 3 (mod 8)

3 · 2−1−a if 4−an ≡ 1, 2, 5, 6 (mod 8),

where a is the highest power of 4 dividing n. Then

r3(n) =
16
√

n

π
L−4n(1) χ2(n)

×
∏

p2|n

(
p−τ − 1

p−1 − 1
+ p−τ

(
1− 1

p

(−p−2τn

p

))−1
)

(4.3.46)

where τ = τp is the highest power of p2 dividing n.
The corresponding formula for M3(s) or for L3(s) is thus not tractable. We

turn to Bessel functions and let Ks be the modified Bessel function of the second
kind. Then

L3(2s) =
6π

s
ζ(2s− 2) +

12πs+1

Γ(s + 1)

∞∑
m=1

r2(m)ms/2

∞∑
n=1

1

ns−2
Ks(2πn

√
m). (4.3.47)

The second term of (4.3.47) can be rewritten as

12πs+1

Γ(s + 1)

∑

k>0

k
s
2 Ks(2π

√
k)

∑

n2|k

r2(k/n2)

n2s−2
.

Moreover, these Bessel functions are elementary when s is a half-integer. Most
nicely, for “jellium,” which is the Wigner sum analogue of Madelung’s constant
which arises when one considers bathing a positively charged cubic crystal in a
continuous background charge, we have

L3(1) = −π + 3π
∑
m>0

r2(m) cosech2(π
√

m),
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and the exponential rate of convergence is apparent. Exactly analogous is the
most accessible expansion for Madelung’s constant due to Benson and proved in
[44]

M3(1) = −12π
∑

m,n≥0

sech2
(π

2
((2m + 1)2 + (2n + 1)2)1/2

)
, (4.3.48)

in which again the convergence is exponential. Summing for m,n ≤ 3 produces

1.747564594 . . . correct to 8 digits. If we write o3(n) for the number of ways of
writing n as a sum of two odd squares, this becomes

M3(1) = −3π
∑
m>0

o3(m) sech2
(π

2

√
m

)
. (4.3.49)

There is a corresponding formula for M3(s).
There is also beautiful formula for θ3

2 due to Andrews (given with a typo-
graphical error in [44]):

θ3
2(q) = 8

∞∑
n=0

2 n∑
j=0

(
1 + q4 n+2

1− q4 n+2

)
q(2 n+1)2−(j+1/2)2 . (4.3.50)

From (4.3.50) the reader will be able to derive almost immediately Gauss’s result
that every number is the sum of three triangular numbers, and is challenged to
apply (4.3.50) to the study of M3(1).

Another related class of physically meaningful integrals are the logarithmic
Watson integrals, Ld which arise in the study of polymers and are studied in
[141]:

Ld =
1

πd

∫ π

0

· · ·
∫ π

0

log(d−
d∑
1

cos(sk)) ds1 · · · dsd. (4.3.51)

For d = 1, 2, these reduce to L1 = (1/π)
∫ π

0
log (1− cos (t)) dt = − log 2 and L2 =

(1/π2)
∫ π

0

∫ π

0
log (2− cos (t)− cos (s)) dt ds = 4β(2)/π − log (2). The evaluation

of L2 is equivalent to

∞∑
n=0

(
2 n
n

)2

42 n+1 (2 n + 1)
=

β(2)

π
.
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No closed form is known for d > 2. The prior evaluations and numerical
exploration are facilitated by the lovely one-dimensional representation

Ld =

∫ ∞

0

e−t − e−dtI0 (t)d

t
dt, (4.3.52)

where I0 is a Bessel function of the first kind. A number of additional results
related to Madelung’s constant can be found in a series of papers by Richard
Crandall [90, 93, 91, 92].

4.4 Some Fibonacci Sums

Theta functions turn up in quite unexpected places as we now show.
The Fibonacci sequence,

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, · · ·
takes its name from its first appearance in print, which seems to have been in
the famous book Liber Abaci published by Leonardo Fibonacci (also known as
Leonardo of Pisa) in 1202. He asked:

How many pairs of rabbits can be produced from a single pair in
a year if every month each pair begets a new pair which from the
second month on becomes productive?

Lest one thinks the problem is imprecise, Fibonacci describes the solution in the
text and in the margin. There one finds written vertically

parium 1 primus 2 Secundus 3 tercius 5 Quartus 8 Quintus 13 Sestus
21 Septimus 34 Octauus 55 Nonus 89 Decimus 144 Undecimus 233
Duodecimus 377.

We leave it to the reader to decide that this indeed leads to the Fibonacci
sequence, but we do note that “the proof is left as an exercise” seems to have
occurred first in De Triangulis Omnimodis by Regiomontanus, written in 1464
(but published in 1533). He is quoted as saying “This is seen to be the converse
of the preceding. Moreover, it has a straightforward proof, as did the preceding.
Whereupon I leave it to you for homework.”
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Among its many other contributions such as popularizing Hindu-Arabic no-
tation in the west, the Liber Abaci contains methods for extracting cube roots
and for solving quadratics and the lovely identity (a2+b2)(c2+d2) = (ac±bd)2+
(ad∓ bc)2, which show the product of sums of two squares is such a sum.

The Fibonacci sequence occurs in many contexts both serious and quirky.
For example 144 is the only Fibonacci square. A moment’s inspection shows
that it is generated by

F0 = 1, F1 = 1, Fn+1 = Fn + Fn−1. (4.4.53)

It clearly grows quickly (like rabbits), indeed it is monotonic and so Fn+2 > 2 Fn.
More precisely what is happening? If we look numerically at Fn+1/Fn for n =
10, 20, 30, 40 we see 1.61818181818, 1.61803399852, 1.61803398875, 1.61803398875,
and either the human eye or constant detection reveals this to be the Golden
Mean:

G =

√
5 + 1

2
,

to the precision used.
Indeed the standard theory of two term linear recurrence relations leads to

Fn =

(√
5+1
2

)n

−
(

1−√5
2

)n

√
5

(4.4.54)

where −g = (1−√5)/2 is the other root of x2 = x + 1.
It is easy to check that the sequence in (4.4.54) satisfies the recursion in

(4.4.53), and has the correct initial conditions. Since |g| < 1 it is also easy to
see that Fn+1/Fn → G, as claimed, and to deduce many other identities such as
Fn+1 Fn−1 = F 2

n + (−1)n for n ≥ 2.
There is a slightly less well known companion Lucas sequence named after

the French number theorist Edouard Lucas (1842–1891):

L0 = 2, L1 = 1, Ln+1 = Ln + Ln−1, (4.4.55)

which is correspondingly solved by

Ln =

(√
5 + 1

2

)n

+

(
1−√5

2

)n

. (4.4.56)
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As both Fibonacci and Lucas sequences are built of geometric sequences, it is
clear that we can easily evaluate sums like

∑N
n=1 F k

n for positive integer k. What
happens for negative integers is more interesting.

A preparatory lemma is useful:

Lemma 4.4.1 ([44]) For 0 < β < α with αβ = 1,

∞∑
n=1

1

αn + βn
=

∞∑
n=1

βn

1 + β2n
= θ2

3(β), (4.4.57)

∞∑
n=0

1

α2n+1 + β2n+1
=

∞∑
n=0

β2n+1

1 + β2n+1
=

1

4
θ3
2(β

2). (4.4.58)

Proof. The proof of the first formula is a consequence of (4.3.37), discovered
in our discussion of sums of squares. This relies on confirming that

∞∑
n=1

βn

1 + β2n
=

∞∑
n=0

(−1)n β2n+1

1− β2n+1
. (4.4.59)

(Try expanding both sides as double sums.)
The second formula then follows by applying the first to α2 and β2, and then

subtracting that result from the first to obtain (θ2
3(β)− θ2

3(β
2))/4, which equals

θ2
2(β

2)/4. 2

Two immediate consequences are

∞∑
n=0

1

F2n+1

=

√
5

4
θ2
2

(
3−√5

2

)
(4.4.60)

∞∑
n=1

1

L2n

=
1

4
θ2
3

(
3−√5

2

)
+

1

4
. (4.4.61)

Two somewhat more elaborate derivations, (see [44] section 3.7), lead to

∞∑
n=1

1

F 2
n

=
5

24

(
θ4
2

(
3−√5

2

)
− θ4

4

(
3−√5

2

)
+ 1

)
(4.4.62)

∞∑
n=1

1

L2
n

=
1

8

(
θ4
3

(
3−√5

2

)
− 1

)
. (4.4.63)
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Since it is known that the classical theta functions are transcendental for al-
gebraic values q, 0 < |q| < 1, we discover the far from obvious result that the
left-hand side of each of (4.4.60), (4.4.61), (4.4.63) is a transcendental number,
as probably is (4.4.62).

Moreover, since both the initial sums and especially the theta functions are
easy to compute numerically, we can hunt for other such identities using integer
relation methods. In this way, we find:

∞∑
n=1

(−1)n

F 2
n

=
5

48

(
2− θ4

2

(
3−√5

2

)
− 2 θ4

4

(
3−√5

2

))
, (4.4.64)

and a host of more recondite identities.
By contrast, a remarkable elementary identity is

∞∑
n=0

1

F2n+1 + F2k−1

=
(2k − 1)

√
5

2 F2k−1

, (4.4.65)

for k = 1, 2, 3 · · · . So while
∑∞

n=0 F−1
2n+1 is transcendental,

∑∞
n=0(F2n+1 + 1)−1 =√

5/2. If we compute the corresponding continued fractions of the two sums,
we obtain the quite different results [1, 1, 4, 1, 2, 3, 6, 2, 1, 3, 1, 189, 1, 3, 12] and
[1, 8, 2, 8, 2, 8, 2, 8, 2, 8] in partial confirmation.

4.5 A Characteristic Polynomial Triumph

We illustrate the possibilities of computing with symbolic characteristic polyno-
mials, with an example arising in partial factorizations relating to double Euler
sums (see Section 3.5). The rationale for looking at these matrices was discussed
in the previous chapter. Consider n× n matrices A,B, C,M :

Akj = (−1)k+1

(
2n− j

2n− k

)
, Bkj = (−1)k+1

(
2n− j

k − 1

)
,

Ckj = (−1)k+1

(
j − 1

k − 1

)

(k, j = 1, · · · , n) and a composite matrix

M = A + B − C.
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We aim to prove M is invertible, indeed that

M−1 =
M + I

2
.

The key is discovering

A2 = C2 = I, BC = A, B2 = CA. (4.5.66)

It follows that B3 = BCA = AA = I, and that the group generated by A,B
and C is the symmetric group S3. Once (4.5.66) is discovered, combinatorial
proofs are quite routine—either for a human or a computer—as we now show.
It will help to look at Lemma 3.5.2.

Proof of A2 = I:

(A2)kj = (−1)k+1

n∑
i=1

(−1)i+1

(
2n− i

2n− k

)(
2n− j

2n− i

)

= (−1)k+1

2n∑
i=n+1

(−1)i

(
i− 1

2n− k

)(
2n− j

i− 1

)
= (−1)k+1(−1)j+1δkj.

Proof of C2 = I:

(C2)kj = (−1)k+1

n∑
i=1

(−1)i+1

(
i− 1

k − 1

)(
j − 1

i− 1

)
= (−1)k+1(−1)j+1δkj.

Proof of BC = A:

(BC)kj = (−1)k+1

n∑
i=1

(−1)i+1

(
2n− i

k − 1

)(
j − 1

i− 1

)
= (−1)k+1

(
2n− j

2n− k

)
.

It follows also that AC = BC2 = B, and similarly AB = AAC = C.
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Proof of B2 = CA:

(B2)kj − (CA)kj = (−1)k+1

n∑
i=1

(−1)i+1

(
2n− i

k − 1

)(
2n− j

i− 1

)

−(−1)k+1

n∑
i=1

(−1)i+1

(
i− 1

k − 1

)(
2n− j

2n− i

)

= (−1)k+1

n∑
i=1

(−1)i+1

(
2n− i

k − 1

)(
2n− j

i− 1

)

+(−1)k+1

2n∑
i=n+1

(−1)i+1

(
2n− i

k − 1

)(
2n− j

i− 1

)

= (−1)k+1

(
j − 1

2n− k

)
= 0.

Then B3 = BCA = A2 = I follows from the other identities. Finally,
CB = AB2 = ACA = BA, and the group is indeed S3.

Additionally, one now easily shows

M2 + M = 2I

as formal algebra, using (4.5.66) and its consequences, since M = A + B − C.
The truth is that after unsuccessfully peering at various instances of M the

authors of ([50]) decided to look at instances of “minpoly(M, x)” and then em-
boldened tried “minpoly(B, x)” in Maple, when the minimal polynomial for all
n < 8 of M was the same quadratic t2+t−2. By contrast random n×n matrices
have full degree minimal polynomials, as is guaranteed by the Cayley-Hamilton
theorem.

By chance a much weaker related fact appeared as American Mathematical
Monthly Problem 01735 in 1999.

Problem. If Ln is the n-by-n matrix with i, j-entry equal to
(

i−1
j−1,

)
then L2

n ≡ In

mod 2, where In is the n-by-n identity matrix. Show that if Rn is the n-by-n
matrix with i, j-entry equal to

(
i−1
n−j,

)
then R3

n ≡ In mod 2.

Solution: Let A,B, C be the n× n matrices with i, j-entries given by

Aij = (−1)j

(
n− i

n− j

)
, Bij = (−1)j

(
i− 1

n− j

)
, Cij = (−1)j

(
i− 1

j − 1

)
.
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Since Ln ≡ C mod 2 and Rn ≡ B mod 2, it suffices to prove that C2 = In and
B3 = −In, which is entirely analogous to the proof of (4.5.66) given above, and
also A2 = In. By contrast the minimum polynomial of Ln is t 7→ (t − 1)n and
that for Rn is less elegant.

In a related analysis, for n > 3, however, the corresponding (n− 1)× (n− 1)
matrix M̃ = Ã + B̃ − C̃, with

Ãkj = (−1)k+1

(
2n− j − 1

2n− k − 1

)
, B̃kj = (−1)k+1

(
2n− j − 1

k − 1

)
,

C̃kj = (−1)k+1

(
j − 1

k − 1

)
, for j, k = 1, · · · , n− 1,

arose, and has minimal polynomial M̃3 + 2M̃2 − 3M̃ = 0.
This may be proved much in the same way as in the previous case. It follows

from analysis of the trace of M̃ and of M̃2 that the number of null eigenvalues is
b(n − 1)/3c and, since the minimal polynomial has no repeated roots, that the
dimension of the null space is b(n− 1)/3c. 2

The characteristic or the minimal polynomial, like partial fractions, is an
object brought fully to life by computation. In much the same way Jordan Forms
and other normal forms can be productively used to study singular values—in
the matricial sense!

4.6 Commentary and Additional Examples

1. Partitions with all parts odd. Prove—analytically and combinatorially—
that the number of partitions of n with all parts odd equals the number of
partitions of n into distinct parts.

2. Partition count of 5n+4 is divisible by 5.

Proof Sketch. With Q as in the text above, we obtain

qQ4(q) = q Q(q)q3(q) (4.6.67)

=
∑
m≥0

∞∑
n=−∞

(−1)n+m(2m + 1)q1+(3n+1)n/2+m(m+1)/2,
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from the triple product and pentagonal number theorems.

Now consider when k is a multiple of 5, and discover this can only happen
if 2m + 1 is divisible by 5 as is the coefficient of q5m+5 in qQ4(q). Then by
the binomial theorem

(1− q)−5 ≡ (1− q5)−1 mod 5

and so the coefficient of the same term in qQ(q5)/Q(q) is divisible by 5.
Finally

q +
∑
n>1

p(n− 1)qn = qQ−1(q) =
qQ(q5)

Q(q)

∞∏
m=1

∞∑
n=0

q5mn,

as claimed.

3. A combinatorial determinant problem. Find the determinant of



(
n
p

) (
n

p+1

) (
n

p+2

)
(

n+1
p

) (
n+1
p+1

) (
n+1
p+2

)
(

n+2
p

) (
n+2
p+1

) (
n+2
p+2

)







(
n
p

) (
n

p+1

) (
n

p+2

) (
n

p+3

)
(

n+1
p

) (
n+1
p+1

) (
n+1
p+2

) (
n+1
p+3

)
(

n+2
p

) (
n+2
p+1

) (
n+2
p+2

) (
n+2
p+3

)
(

n+3
p

) (
n+3
p+1

) (
n+3
p+2

) (
n+3
p+3

)




and its q-dimensional extension as a function of n, p, q. (Taken from [127].)

Solution: The pattern is clear from the first few cases on simplifying in
Maple or Mathematica.

4. A sum-of-powers determinant. Problem: Find the determinant of



∑1
k=0 k4

∑1
k=0 k4

∑1
k=0 k4

∑1
k=0 k4

∑1
k=0 k4

∑2
k=0 k4

∑2
k=0 k4

∑2
k=0 k4

∑1
k=0 k4

∑2
k=0 k4

∑3
k=0 k4

∑3
k=0 k4

∑1
k=0 k4

∑2
k=0 k4

∑3
k=0 k4

∑4
k=0 k4
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and its q-dimensional extension. (Taken from [127].)

Solution: The first few instances of this sequence are

1, 4, 216, 331776, 24883200000, 139314069504000000,

which can be quickly identified as (q!)q, using the Sloane online sequence
recognition tool.

This fact can be proved by taking cofactors on the last row, and observing
that only the final two entries have nonzero cofactors with value (q−1)!q−1.

5. Putnam problem 1995–B3. For each positive integer with n2 digits
write the digits as a square matrix in order row by row. Thus 2354 be-

comes

[
2 3

5 4

]
. Find, as a function of n, the sum of all 9 · 10n2−1 such

determinants, which arise on assuming that leading digits are non-zero.

Hint: With the help of a symbolic math program, observe that almost all
sample matrices of this form have zero determinant. Then use multilinear-
ity of the determinant to reduce the problem to computing the determinant
of just one n× n matrix.

Answer: For n = 1 the answer is 45. For n = 2 the matrix may be taken

to be

[
450 405

450 450

]
, with determinant 20250. For n > 2 the value is zero.

6. Crandall’s integral representation for Madelung’s constant. The
following identity is both beautiful and effective—though less effective for
computational purposes than Benson’s formula. For example, sixty digits
of M3(1) can be obtained in seconds in Maple or Mathematica using Ben-
son’s identity, while using the numerical quadrature tools of Section 7.4 to
compute the integral to the same 60 digit precision takes roughly one hour
run time. Crandall’s formula is derived in [90] from the Andrews formula
for θ3

4. It is

M3(1) = − 2

π

∫ 1

0

r dr

∫ π

−π

1 + 2/(1 + r2(1−sin θ))

(1 + r1+cos θ)(1 + r1−cos θ)
dθ

= −1.7475645946332 . . .. (4.6.68)
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7. Repeated exponential integrals. Show that

(a) √
2

π

∫ ∞

0

e−x sin (ax)√
x

dx =

√√
1 + a2 − 1√
1 + a2

,

(b)

√
2

π

∫ ∞

0

∫ ∞

0

e−x−y sin (ax + by)√
x + y

dx dy =

√
1+
√

1+b2√
1+b2

−
√

1+
√

1+a2√
1+a2

a− b
,

and evaluate

(c) √
2

π

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−x−y−z sin (ax + by + cz)√
x + y + z

dx dy dz

for real coefficients a, b and c.

(d) Generalize the results above, by dimension and to cosines.

(e) Evaluate ∫ ∞

0

· · ·
∫ ∞

0

e−(
∑n

k=1 xk)
√∑n

k=1 xk

dx1 · · · dxn,

for n = 1, 2, · · · . This shows the prior integrals are absolutely conver-
gent.

8. Andrew’s convolution. Prove or disprove that (4.2.17) preserves inte-
grality of coefficients in both directions.

Hint: To determine whether {bn} is integer if and only if {ak} is, in one

direction expand
∏

k>0

(
1− qk

)−bk by the binomial theorem and note that
the coefficients are integers when the values of bk are. In the other direction,
observe that b1 = a1 and inductively consider

n∏

k=1

(
1− qk

)bk

(
1 +

∞∑

m=‘

amqm

)
=

∞∏
n+1

(
1− qk

)−bk .

This is the basis for an efficient algorithm but, in a modern computational
package, (4.2.17) is very easy to program and likely to be more efficient,
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especially as one will rarely want more that a few hundred terms of the
product.

9. Berkeley problem 6.13.15. Determine the final digit of 23232323

. An-
swer: The last digit is a “7.” Hint: Maple or Mathematica can verify that
2323 ≡ 7 mod 4 and 232323 ≡ 7 mod 4. To prove this observed trend,
work modulo four and observe that as φ(10) = 4, 3r ≡ 3s mod 10 when
r ≡ s mod 4. Then use 32323 ≡ −1 mod 4.

10. A series with binomial coefficients. Prove that for all n ≥ 0

n∑

k=0

1(
n
k

) = (n + 1)
n∑

k=0

1

(n− k + 1) 2k

Hint: Consider computing—in two different ways—the electrical resistance
between two points distance n + 1 apart in the n-dimensional unit cube if
every edge has unit resistance.

11. A binomial coefficient inequality. (From [136, pg. 137]). Show induc-
tively for n > 1 that

4n

n + 1
<

(
2n

n

)
< 4n,

and for n > 6 that (n

3

)n

< n! <
(n

2

)n

.

12. An n-th root inequality. (From [136, pg. 162]). Show that for all
nonnegative numbers

n
√

(1 + a1)(1 + a2) · · · (1 + an) ≥ 1 + n
√

a1 a2 · · · an .

13. A polygon problem. Count (i) the number of ways a polygon with
n + 2 sides can be cut into n triangles, (ii) the number of ways in which
parentheses can be placed in a sequence of numbers to be multiplied, two
at a time; and (iii) the number of paths of length 2n through an n-by-n
grid that do not rise above the main diagonal (Dijk paths).

Hint: In each case the sequence starts

1, 2, 5, 14, 42, 132, 429, 1430, 4862.
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The “gfun” package returns the ordinary generating function

4
(
1 +

√
1− 4 x

)−2
and the recursion (4n+6)u(n) = (n+3)u(n+1), which

gives rise to the Catalan numbers 1
n+1

(
2n
n

)
named after Eugéne Charles

Catalan (1814–1894).

14. A cubic theta function identity. If we define

a(q) =
∑

m,n∈Z

qm2+mn+n2

b(q) =
∑

m,n∈Z

ωn−mqm2+mn+n2

c(q) =
∑

m,n∈Z

q(n+1/3)2+(n+1/3)(m+1/3)+(m+1/3)2

where ω = exp(2πi/3), then we have a remarkable cubic identity parallel
to Jacobi’s quartic identity:

a3 = b3 + c3 (4.6.69)

and a lovely parameterization of the 2F1 hypergeometric function [49]:

F

(
1

3
,
2

3
, 1;

c3

a3

)
= a, (4.6.70)

which we met in other guise in (6.1.16).

(a) Choosing q = exp(−2π
√

N/3) for rational N , it can be shown that
sN = c/a is an algebraic number expressible by radicals; see [49]. If
N is a positive integer, then sN is the N -th cubic singular value. As
above what can we discover computationally about sN? For example,
can we determine radical formulae for the higher order cubic singular
values? The following helps the computations. It is known that in
terms of the classical theta functions

a(q) = θ3(q)θ3(q
3) + θ2(q)θ2(q

3)

b(q) = (3a(q3)− a(q))/2 c(q) = (a(q1/3)− a(q))/2.

The lacunarity of these series allows for very rapid computation.

(b) Compute the product formula for a—it is not very pretty.

a(q) =
(1− q2)

21
(1− q4)

345
(1− q6)

8906
(1− q8)

250257
(1− q10)

7538421

(1− q)6 (1− q3)76 (1− q5)1734 (1− q7)46662 (1− q9)1365388

· · · .
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(c) While a does not have a nice product, one should persevere

b(q) = (1− q)3 (
1− q2

)3 (
1− q3

)2 (
1− q4

)3 (
1− q5

)3 (
1− q6

)2

× (
1− q7

)3 (
1− q8

)3 (
1− q9

)2 (
1− q10

)3 (
1− q11

)3 (
1− q12

)2

× (
1− q13

)3 (
1− q14

)3 (
1− q15

)2 · · · .

This turns out to be the key in providing the computer-guided but
very intuitive proof given in [49].

15. Triangles inscribed in a sphere. Show that 3
√

3/4 is the maximum area
for triangles inscribed in a unit sphere, and is attained only by equilateral
triangles inscribed in a great circle of the sphere.

16. Nests of radicals. Identify the limits of the following infinite nested
radicals and establish a rigorous sense in which the evaluations are justified.

(a) √

1 + 2

√
1 + 3

√
1 + 4

√
1 + 5 · · ·

(b) √

6 + 2

√
7 + 6

√
2 +

√
9 + 5 · · ·

(c)

3

√

4 +
3

√
10 + 9

3

√
16 + 25 3

√
22 + · · ·

(d)

3

√
a +

3

√
a + 3

√
a + · · ·

for a =
√

5/3.

(e)

p

√
a +

p

√
a + p

√
a + · · ·

for p > 1, a > 0.
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(f) √√√√√√√2−

√√√√√√2−

√√√√√
2 +

√√√√
2−

√

2−
√

2 +

√
2−√2− · · ·

Hint: Find a functional equation for a large class of functions so that
iteration in that class solves the functional equation uniquely. Many such
equations were evaluated informally by Ramanujan. More details are given

in [35]. Answers: (a) 3; (b) 4; (c) 2; (d) 2√
3

(
3

√
1
2

√
5 + 1

2
+ 3

√
1
2

√
5− 1

2

)
;

(e) the positive root of xp = x+a; (f) the positive root of x3 +x2−2x = 1.

17. Some unconditional sums. Problem: Evaluate

(a)
∞∑

k=1

∞∑

l=1

1

(4 l − 1)2 k

(
=

1

4
log (2)

)

(b)
∞∑

k=1

∞∑

l=1

1

(4 l − 1)2 k+1

(
=

1

8
π − 1

2
log (2)

)

(c)
∞∑

k=1

∞∑

l=1

1

(4 l − 2)2 k

(
=

1

8
π

)

18. Some conditional sums. Problem: Evaluate

(a)
∞∑

n=1

∞∑
m=1

(−1)m+n

(m + n)s (= α(s)− α(s− 1))

(where α(s) = (1 − 21−s) ζ(s)) and thence justify the conditional
evaluation

∑∞
n=1

∑∞
m=1 (−1)m+n / (m + n) = log(2)− 1

2
.
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(b)
∞∑

n=1

∞∑
m=1

(−1)m+n mn

(m + n)2

(
=

1

6
log (2)− 1

24

)

(c)
∞∑

n=1

∞∑
m=1

m2 − n2

(m2 + n2)2

(
=

π

4

)

(Note that exchanging the order changes the sign of the answer.)

19. A matrix problem. Let

M =




p q 1− p− q

1− p− q p q

q 1− p− q p




Determine the behavior of Mn when p + q < 1, p > 0, q > 0.

Answer: 3 Mn → E, the matrix with all entries 1.

20. Theta and self-similarity. For k = 2 or 4 plot the set

Kk (α) =

{
|q| < 1 :

∣∣∣∣
θk

θ3

(q)

∣∣∣∣ > α, q ∈ C

}

for various values of α > 0. For appropriate k, this is shown in Figure 20

for α = 1, 3/4. Recall that
θ4
2

θ4
3
(e−π s) =

θ4
4

θ4
3

(
e−π/s

)
for Re(s) > 0.

Use the complex AGM iteration [44] in θ-form to explore the structures
and relations suggested in Figure 20. More details on these and like images
are given in [95].

David Mumford and his colleagues’ book Indra’s Pearls [165] offers a wealth
of important and visually enticing material. In the gloss to their book they
write:

It is the story of our computer aided explorations of a family of
unusually symmetrical shapes, which arise when two spiral mo-
tions of a very special kind are allowed to interact. These shapes
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Figure 4.2: Where |θ2/θ3| > 1 and where |θ4/θ3| > 1 (first quadrant)
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display intricate “fractal” complexity on every scale from very
large to very small. Their visualisation forms part of a century-
old dream conceived by the great German geometer Felix Klein.

21. Putnam problem 1994–B4. Let dn be the greatest common divisor of

the entries of An−I where A =

[
3 2

4 3

]
. Show that dn →∞ with n. Hint:

Observe numerically, then prove by induction, that An has determinant 1

and is of the form

[
an bn

2bn an

]
. Hence, an−1|2b2

n. Then write An explicitly

via the Cayley-Hamilton theorem, which tells us that An+1 = 6 An−An−1.

22. Putnam problem 1999–B5. Evaluate the determinant of I + A where
An is the n× n matrix with entries cos((j + k)π/n).

Answer: An has determinant 1 − n2/4. Hint: The determinant equals∏n
k=1(1 + λk) where λk ranges over the eigenvalues of An. One may dis-

cover numerically that An has eigenvalue zero with multiplicity n− 2 and
remaining eigenvalues ±n2/4. Let v(m) denote the vector with v

(m)
k =

exp(ikm 2π/n). One may also be lead to discover that the eigenvectors
are v(0), v(2), v(3), · · · , v(n−2), v(1) ± v(n−1). This is then easy to formally
confirm.

23. Fibonacci and Lucas numbers in terms of hyperbolic functions.
Show that

Fn =
2√
5

i−n sinh(nθ) and Ln = 2 i−n cosh(nθ)

where

θ = log

(√
5 + 1

2

)
+ i

π

2
.

Many Fibonacci formulas are then easy to obtain from the addition formu-
las for sinh and cosh—for example consider 5 F 2

n − L2
n. (See [103], which

should be consulted whenever one “discovers” a result in classical number
theory.)
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24. Berkeley problem 7.5.25. Let M2
n be the n×n tri-diagonal matrix with

aij = 1 if |i − j| = 1 and all other entries zero. (a) Find the determinant
of M2

n and (b) show that the eigenvalues are symmetric around the ori-
gin. Answer: (a) det(M2

n) = cos(nπ/2). (b) Compute the characteristic
polynomial inductively and observe that it contains only odd (resp. even)
powers for n odd (resp. even).

25. Gersgorin circles. Let A = {aij} be a real n× n matrix.

(a) Show that if

|aii| >
n∑

t=1
t 6=i

|ait|,

then A is nonsingular.

(b) Deduce that each eigenvalue of A lies in one of the discs

|z − aii| ≤
n∑

t=1
t6=i

|ait|.

Hint: (a) Consider the largest coordinate in absolute value of an element,
x, in the null space of A.

26. Putnam problem 1996–B4. For a square matrix A define sin(A) via
the power series

sin(A) =
∞∑

n=0

(−1)n

(2n + 1)!
A2 n+1 (4.6.71)

Prove or disprove that

[
1 1996

0 1

]
is in the range of (4.6.71). Answer: It

is not. Which matrices are?

Hint: Program the above in a symbolic math program, and observe what
the range looks like for various input 2×2 matrices. The result can be ob-

tained by considering the normal form of any A with sin(A) =

[
1 1996

0 1

]
,
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which shows A can not be diagonalizable. Thus, A must have equal

eigenvalues and so is conjugate to a matrix of the form B =

[
a b

0 a

]
.

Now determine that sin(B) =

[
sin(x) y cos(x)

0 sin(x)

]
. Since det(sin(A)) =

det(sin(B)) deduce that | sin(x)| = 1 and so cos(x) = 0.

27. Formula for zeta(2,1). Obtain the formula for ζ(2, 1) using the Cauchy-
Lindelöf theorem applied to π cot(π z)Ψ (−z) and 1/z2.

28. A log-trig integral. Show the following due to Victor Adamchik

− 1

4π2

∫ 2 π

0

∫ 2 π

0

ln (3− [cos (x) + cos (y) + cos (x + y)]) dx dy

=
π√
3

+ ln (2)− Ψ′ (1
6

)

2
√

3 π
.

29. Repeated exponentiation. Recursions like x1 = t > 0 and xn = txn−1

for n > 0 have been subject to considerable scrutiny.

(a) Study the existence and behavior of

x∞ = lim
n→∞

x2n, x∞ = lim
n→∞

x2n+1,

for 0 ≤ x ≤ 1. Note that, in Figure 4.3, the even approximations on
[0, 1] decrease while the odd ones increase. Thus, the limits are taken
uniformly by Dini’s theorem, which asserts that the monotone limit
of continuous functions on a compact set is uniform if and only if the
limit is continuous. (Compare Exercises 3 and 10 of Chapter 1.)

Hint: show that (i) the solution to tx = x is t 7→ −W (− log t) / log t
and that (ii) x∞(t) and x∞(t) are the two solutions to tt

x
= x,

which bifurcate at b̂ = exp(− exp(1)) ≈ 0.06598803584. In terms
of the real branches of the Lambert W function, they are portions of
exp ((Wk(t log t))/t) for k = 0,−1 on [0, exp(−1)] and on [exp(−1), 1]
respectively. The shared component is −W (− log t) / log t on [b̂, 1]
(see Figure 4.4). What happens for t > 1? (The righthand asymp-
tote in Figure 4.4 is at approximately 1.44466786100976613366.) This
is discussed in [81].
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Figure 4.3: Approximations to xxxx···

(b) Estimate
∫ 1

0
x∞(t) dt and

∫ 1

0
x∞(t) dt.

(c) How many distinct meanings may be assigned to the n-fold exponen-

tiation x∗xn = xxxx···x
?

(d) Show that
∫ 1

0

(xx)x dx = 1 +
1

2

∞∑
n=1

1

2n

n∑

k=1

(−1)k+1

(k + 1)n+1

(
n

k

)

and that
∫ 1

0

x(xx) dx =
1

2
+

∞∑
n=1

(−1)n
n∑

k=1

(n− k)k

(k + 1)n+1

(
n

k

)
(4.6.72)

where the sums are absolutely convergent. Try to further refine both
these sums. A useful source for classical combinatorial identities is
[183]
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Figure 4.4: Solutions to xxxx···

(e) Investigate
∫ 1

0
x∗xn dx for more general n.

Proof of (4.6.72). Note that 0 < x < xxx
< 1 when 0 < x < 1, and

hence, by dominated convergence, that

lim
ε→0+

∫ 1

0

xεxxx

dx =

∫ 1

0

xxx

dx.

In what follows suppose that ε > 0. We will prove that

∫ 1

0

xεxxx

dx =
∞∑

n=0

∞∑

k=0

(−1)k+n nk

(k + 1 + ε)n+k+1

(
n + k

k

)
, (4.6.73)

where the double sum is absolutely convergent.
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We have

∫ 1

0

xεxxx

dx =

∫ 1

0

xεexx log x dx =
∞∑

n=0

1

n!

∫ 1

0

xε (xx log x)n dx

=
∞∑

n=0

1

n!

∞∑

k=0

∫ 1

0

xε logn x
(xn log x)k

k!
dx

=
∞∑

n=0

∞∑

k=0

nk

n!k!

∫ 1

0

xk+ε logn+k x dx.

Observe next that

∞∑
n=0

∞∑

k=0

nk

n!k!

∫ 1

0

xk+ε
∣∣logn+k x

∣∣ dx

=
∞∑

n=0

∞∑

k=0

nk

n!k!

∫ 1

0

xk+ε logn+k

(
1

x

)
dx

=
∞∑

n=0

∞∑

k=0

nk

n!k!

∫ ∞

1

t−k−ε−2 logn+k t dt

=

∫ ∞

1

tt
1
t

t2+ε
dt < ∞, (4.6.74)

since tt
1/t ∼ t as t → ∞. It follows from (4.6.74) that the changes in

order of sums and integrals in (4.6.74) are valid; and hence, on making the
change of variable (k + 1 + ε) log x = −u in the final integral in (4.6.74),
that

∫ 1

0

xεxxx

dx =
∞∑

n=0

∞∑

k=0

(−1)n+knk

n!k!(k + 1 + ε)n+k+1

∫ ∞

0

un+ke−u du,

which establishes (4.6.73).

We have shown that

∫ 1

0

xx dx = lim
ε→0+

∞∑
n=0

∞∑

k=0

(−1)k+n nk

(k + 1 + ε)n+k+1

(
n + k

k

)
.
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We can not automatically replace the limit by

∞∑
n=0

∞∑

k=0

(−1)k+n nk

(k + 1)n+k+1

(
n + k

k

)
,

for this double sum is not absolutely convergent (as is shown by (4.6.74)
with ε = 0) but on treating the terms with n = 0 and n > 0 separately (as
above) one does obtain (4.6.72).

30. Fibonacci squares. Decide whether or not 144 is the only square Fi-
bonacci number. Relatedly, 1729=123 +1 = 103 +93 is the smallest integer
with two distinct representations as a sum of two cubes. What is the next
instance?

31. Fibonacci. A more precise description of Fibonacci’s question mentioned
in Section 3.4 is taken from Scritti di Leonardo Pisano, pubblicati da Bal-
dassare Boncompagni, Roma, 1857 (Vol. 1), Liber Abaci, chapter XII.
This corresponds to folio pages 123 verso and 124 recto of the manuscript
Conversi Soppressi C.1. nr 2616, Codice Magliabechiano (Biblioteca di
Firenze):

Quot paria coniculorum in uno anno ex uno pario germinentur.

Quidam posuit unum par cuniculorum in quodam loco, qui erat
undique pariete circondatus, ut sciret, quot ex eo paria germinar-
entur in uno anno: cum natura eorum sit per singulum mensem
aliud par germinare; et in secundo mense ab eorum natiuitate
germinant. Quia suprascriptum par in primo mense germinat,
duplicabis ipsum, erunt paria duo in uno mense. Ex quibus
unum, scilicet primum, in secundo mense geminat; et sic sunt in
secundo mense paria 3; ex quibus, in uno mense duo pregnantur;
et . . .

L.E. Sigler translates this as [191]:

How Many Pairs of Rabbits Are Created by One Pair in One
Year.

A certain man had one pair of rabbits together in a certain en-
closed place, and one wishes to know how many are created
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from the pair in one year when it is the nature of them in a
single month to bear another pair, and in the second month
those born to bear also. Because the above written pair in the
first month bore, you will double it; there will be two pairs in
one month. One of these, namely the first, bears in the second
month, and thus there are in the second month 3 pairs; of these
in one month two are pregnant, and . . .

Note that it is assumed rabbits are immortal! Alternatively, assume pairs
breed after one month and die after two reproductions.



Chapter 5

Primes and Polynomials

I hope that . . . I have communicated a certain impression of the im-
mense beauty of the prime numbers and the endless surprises which
they have in store for us.

Don Zagier, 1977 [211]

Many computational number theory problems involve careful combinatorial search
techniques. To be successful the search space must be reasonably sized. Often a
mathematical insight is essential in trimming the search space, and thus much
more helpful than the ability to do fast computations.

5.1 Giuga’s Prime Number Conjecture

Giuga’s prime number conjecture was formulated in 1950 by G. Giuga [119].

Conjecture 5.1.1 Giuga’s conjecture. A number n ∈ N, n > 1, is a prime
if and only if

sn =
n−1∑

k=1

kn−1 ≡ n− 1 (mod n).

Whenever n is a prime, then sn must be congruent to n − 1. This is a
consequence of Fermat’s little theorem: If p is a prime, then kp−1 ≡ p − 1
(mod p) for all k = 1, · · · , p − 1. Thus the question is if there are composite
numbers n with sn ≡ n − 1 (mod n). It is known that such a number n (a

245
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counterexample) must have at least 14,000 decimal digits, if it exists at all. This
is a huge number! It is clear that this bound has not been computed by checking
every composite number n up to n = 1014,000. Instead, Giuga’s problem has
been converted to a combinatorial search problem, which we shall now describe
in detail.

5.1.1 Computation of Exclusion Bounds

The following reformulation of the problem, given already by Giuga, is essential.

Theorem 5.1.2 Let n ∈ N, n ≥ 1, be given. Then sn ≡ n−1 mod n if and only
if for every prime divisor p of n the relations (p−1) | (n/p−1) and p | (n/p−1)
hold.

Proof. As a preliminary consideration, write n = p · q and note that sn ≡
q ·∑n

k=1 kn−1 ≡ −q (mod p) if (p− 1) | (n− 1) by Fermat’s little theorem, and
sn ≡ 0 (mod p) if (p−1) 6 | (n−1) since the multiplicative group mod p is cyclic.

Now assume that sn ≡ −1 (mod n). Then the preliminary consideration
implies that (p− 1) | (n− 1) and sn ≡ −1 ≡ −q (mod p) since sn ≡ 0 (mod p)
is impossible. Thus also (p− 1) | (q − 1) and p | (q − 1).

On the other hand, assume that (p− 1) | (q − 1) and p | (q − 1). Then also
(p − 1) | (n − 1), and thus sn ≡ −q (mod p) by the preliminary consideration.
The second assumption q ≡ 1 (mod p) implies that sn ≡ −1 (mod p), thus
p | (sn + 1). This holds for every prime divisor p of n, and since n must be
squarefree (as p | (q − 1) implies p2 6 | n), we have that n | (sn + 1), thus
sn ≡ −1 (mod n). 2

Composite squarefree numbers n which satisfy (p−1) | (n−1) (or equivalently
(p−1) | (n/p−1)), for each prime divisor p of n, are called Carmichael numbers.
Interestingly, they are pseudo-primes in the sense that Fermat’s little theorem is
satisfied by them in the following form: The Carmichael numbers are precisely
the composite numbers n for which n | (kn−k), for every k ∈ N. This is Korselt’s
criterion (1899). The smallest Carmichael numbers are 561, 1105, and 1729. It
has only recently been proved by Alfors, Granville and Pomerance [5] that there
are infinitely many Carmichael numbers. Note that if p is a prime divisor of a
Carmichael number n, then for no k ∈ N can kp + 1 be a prime divisor of n;
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otherwise, we would have kp | (n − 1), a contradiction to p | n. In particular,
every Carmichael number is odd.

Correspondingly, we call an integer n with p | (n/p − 1) for every prime
divisor p of n a Giuga number. As seen in the proof of Theorem 5.1.2, every
Giuga number is squarefree. The smallest examples are 30, 858, and 1722; at the
moment only 13 Giuga numbers are known. The largest Giuga number found
so far has 97 digits and 10 prime factors (one has 35 digits). It is not known
if there are infinitely many Giuga numbers. Nor is it known if there is an odd
Giuga number or if any n can be Giuga and Carmichael at the same time.

The following characterization of Giuga numbers is very helpful for finding
such numbers. It is moreover needed in the computation of exclusion bounds for
counterexamples.

Theorem 5.1.3 An n ∈ N with n > 1 is a Giuga number if and only if it is
squarefree and satisfies ∑

p|n

1

p
−

∏

p|n

1

p
∈ N (5.1.1)

where the sum and the product go over all prime divisors p of n.

Proof. Write n = p1 · · · pm and qi = n/pi. Then n is a Giuga number iff
pi | (qi − 1) for all i iff pi | (q1 + · · ·+ qm − 1) for all i iff n | (q1 + · · ·+ qm − 1)
iff (q1 + · · ·+ qm − 1)/n =

∑
1
p
−∏

1
p
∈ N. 2

By Theorem 5.1.3, the sum over the reciprocals of the prime divisors of a
Giuga number must be greater than one. Thus an odd Giuga number must
have at least 9 distinct prime factors. Since the product of the 9 smallest odd
primes has 10 decimal digits, this already proves, without much computation,
and certainly without checking billions of numbers, that a counterexample to
Giuga’s conjecture must be greater than 109. This proof even does not take into
account that any counterexample must also be a Carmichael number. Since this
condition further restricts the possible prime factors in any counterexample, its
systematic use will increase the lower bound significantly. This idea is precisely
what lead to the computation of the lower bound of 1014,000, and therefore we
shall now explain it in more detail. From now on, denote by qk the k-th odd
prime; thus q1 = 3, q2 = 5, q3 = 7, · · · . Denote further Q = {3, 5, 7, 11, · · · } and
Qk = {q1, q2, · · · , qk−1}.
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The precise criterion that is used for these computations follows, as we have
seen above, from the Carmichael- and Giuga-ness of any counterexample: If a
number n = p1 · · · pm with m > 1 prime factors pi is a counterexample to Giuga’s
conjecture (i.e., satisfies sn ≡ n− 1 mod n), then pi 6= pj and pi 6≡ 1 mod pj for
i 6= j, and

∑m
i=1

1
pi

> 1.

Definition 5.1.4 A set of primes is normal if it contains no primes p, q such
that p divides q − 1.

Thus if 3 is in a normal set of primes, then 7, 13, 19, · · · cannot be prime,
and if 5 belongs then 11, 31, 41, · · · are excluded. The prime factors of any
counterexample form a normal set.

Denote byNk the system of all normal subsets of Qk. For example,N1 = {{}}
and N2 = {{}, {3}}. For fixed k and N ∈ Nk, denote by Tk(N) the subset of
Q determined by the following algorithm: (1) start with T = N and j = k; (2)
while

∑
p∈T

1
p
≤ 1 do: if N ∪ {qj} is normal then T = T ∪ {qj}; fi; j = j + 1; od;

(3) return Tk(N) = T . By Exercise 4 below, this algorithm always terminates
and produces a set Tk(N).

It is clear that the sets Tk(N) have the following properties:
(i) N ⊆ Tk(N),
(ii) if p ∈ Tk(N) \N , then p ≥ qk and N ∪ {p} is normal,
(iii)

∑
p∈Tk(N)

1
p

> 1, but
∑

p∈Tk(N)
p6=q

1
p
≤ 1 for every prime q ∈ Tk(N) \N .

We will be mainly interested in the number of elements of the sets Tk(N)
as well as their product; thus set jk(N) = |Tk(N)|, Pk(N) =

∏
p∈Tk(N) p and

jk = min{rk(N) : N ∈ Nk}, Pk = min{Pk(N) : N ∈ Nk}.
For example,

T1({}) = {3, 5, 7, 11, 13, 17, 19, 23, 29}, j1({}) = 9 and P1({}) > 109,

T2({}) = {5, 7, 11, 13, 17, · · · , 107, 109}, j2({}) = 27 and P2({}) > 1042,

T2({3}) = {3, 5, 11, 17, · · · , 317, 347}, j2({3}) = 36 and P2({3}) > 1071.

Thus, j1 = 9, P1 > 109 and j2 = 27, P2 > 1042. We have already noted that,
since the sum over the reciprocals of the prime factors of a counterexample n
must exceed one, n must contain at least 9 prime factors and have at least
10 decimal digits. This is recaptured by the computation of j1 and P1 above.
However, the computation of j2 and P2 now gives a better exclusion bound: Any
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counterexample n either does or doesn’t contain the prime factor 3. If it doesn’t,
then for every j, the j-th largest element of T2({}) is a lower bound for the j-th
largest prime factor of n. Therefore n must have at least 27 different prime
factors and must be larger than 1042. If n does contain the prime factor 3, then
the elements of T2({3}) are lower bounds for the prime factors of n. Therefore,
in this case n has at least 36 distinct prime factors and must be larger than 1071.

In general, we can conclude that every counterexample n has at least jk

distinct prime factors and exceeds Pk, for every k ∈ N. Both jk and Pk are
increasing in k, as we will see shortly. To find exclusion bounds for counterex-
amples, one therefore has to compute jk (then n ≥ ∏jk

j=1 qj) or Pk (then n ≥ Pk),
for values of k as high as possible. On the surface, this is a daunting task, since
the number of normal sets, |Nk|, probably grows exponentially in k. Matters
can be accelerated slightly by noting that, since jk and Pk are minimal values,
we do not have to continue the computation of a certain jk(N) or Pk(N) if their

intermediate values already exceed a previously computed jk(Ñ) or Pk(Ñ).
In this way, with 1950’s technology Giuga [119] computed j8 = 323 and

estimated j9 > 361; this gives an exclusion bound of
∏361

j=1 qj > 101039. Later, in

1985, E. Bedocchi [22] computed j9 = 554; this gives a bound of
∏554

j=1 qj > 101716.
In 1994, one of the present authors, with three coauthors [29], computed by the
same method j19 = 825, and thus a lower bound of 102722. But at this point
the method seems exhausted; because of the exponential growth, not much more
information can be expected from additional computational.

However, appearances are deceiving—the story does not end here. With one
additional insight, the exclusion bounds can be forced up significantly. This
insight is to see that the systems Nk have a tree structure. Consider a normal
set N ∈ Nk. Then this set has one or two successors in Nk+1. The first successor
is N itself; it is normal and thus contained in Nk+1. The second successor may
be the set N ′ = N ∪ {qk}; this set is contained in Nk+1 iff it is normal. The
insight now is that the j and P values always increase from N to its successors.

Theorem 5.1.5 For each k, jk+1(N) ≥ jk(N), jk+1(N
′) ≥ jk(N) and Pk+1(N)

≥ Pk(N), Pk+1(N
′) ≥ Pk(N).

Proof. If
∑

p∈N > 1, then the assertion is trivial. There is something to prove
only when N ( Tk(N). We have to distinguish two cases.

(1) If N ∩ {qk} is normal, then N has the two successors N and N ′ in Nk+1.



250 CHAPTER 5. PRIMES AND POLYNOMIALS

Regarding N , the prime qk is included in Tk(N), but not in Tk+1(N). Other
than that, we have Tk(N) \ {qk} ⊆ Tk+1(N), since the normality condition for
including primes is the same for both sets. Because of property (iii) above, the
prime qk, missing in Tk+1(N), must be compensated by at least one prime higher
than any element of Tk(N). Therefore jk+1(N) = |Tk+1(N)| ≥ |Tk(N)| = jk(N),
and similarly Pk+1(N) ≥ Pk(N).

Regarding N ′, Tk(N) can contain primes which are congruent to 1 modulo qk,
but Tk+1(N

′) cannot. Tk(N) minus these primes is a subset of Tk+1(N
′). There-

fore each of these primes has to be compensated by at least one higher prime.
Again, we get jk+1(N

′) ≥ jk(N) and Pk+1(N
′) ≥ Pk(N).

(2) If N ∩ {qk} is not normal, then the only successor of N in Nk+1 is N
itself. Since qk neither appears in Tk(N) nor in Tk+1(N), these sets are equal
and we have jk+1(N) = jk(N) and Pk+1(N) = Pk(N). 2

The consequence from this theorem is that the computation of the numbers
jk and Pk can be done recursively: Assume that an upper bound u for, say, jk is
already known. Then it is not necessary to compute the j-value of any successor
of a normal set with a j-value exceeding u. In other words, the tree of the Nk’s
can be partially trimmed at an early level. This indeed significantly reduces
the number of cases to be checked. Our run-times seem to suggest that this
reduces an exponential algorithm to a polynomial algorithm. We cannot prove
this reduction, but of course we can happily run the computations.

How do we get upper bounds for jk and Pk, needed for the algorithm? Since
these values are minima, it is enough to compute jk(N) and Pk(N) for one
normal set N ∈ Nk; these will then be upper bounds. Of course, the smaller
these bounds are, the faster the algorithm will be, because phony branches of
the tree will be trimmed at an earlier stage. Which normal sets give small jk and
Pk values? From his computations, Giuga noticed that sets Lk, defined below,
always in fact seem to have the minimal value. Although we cannot prove that
these sets always give the minimum, we can at least use their values as good
upper bounds. In our computations we never have found a set with smaller
values.

These sets are given by

L5 = {5, 7} and Lk+1 =

{
Lk ∪ {qk} if this set is normal,

Lk otherwise.
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With this improved, recursive algorithm, we could increase the exclusion
bounds significantly. In 1994, using Maple on a workstation, we could compute
the values jk up to k = 100. For values of k around 100, this took a few CPU
hours for each k. We got j100 = 3050, leading to an exclusion bound of 1012,054.
We then continued the computations in C++ (the re-coding took two months)
and could extend the range up to k = 135 with the result j135 = 3459 and
an exclusion bound of 1013,886. This algorithm then crashed (irrevocably for
linguistic reasons) in the Tokyo Computer Centre before doing any new work.
We see here forcibly the dilemma of when to use high-level languages or to opt
for computational speed.

We did not compute the Pk-values in 1994, since the slightly higher exclusion
bounds they could give us were more than offset by the additional cost to com-
pute many products. This disadvantage only disappears for high k levels, and
recently Holger Rauhut has computed P106 on a Sun workstation, leading to an
exclusion bound of 1014164 (achieved by L106, of course). This computation took
about five days.

Note that the set L27,692 is normal, has 8,135 elements and satisfies

∑
q∈L27,692

1/q > 1.

Therefore, jk ≤ 8135 for all k ≥ 27, 692, and the method would be used up at
this level. It can never lead to higher and higher exclusion bounds. But with
current technology we are still far away from exhausting the algorithm.

5.1.2 Giuga Sequences

As we have seen, if there is a counterexample to Giuga’s conjecture, then it is
to be found among the Giuga numbers: Composite integers n with p | (n/p− 1)
for every prime divisor p of n; or, equivalently, squarefree composite integers n
with

∑
p|n 1/p−∏

p|n 1/p ∈ N.
The problem of finding Giuga numbers can be relaxed to a combinatorial

problem by dropping the requirement that all factors must be prime. More pre-
cisely, we define a Giuga sequence to be a finite sequence of integers, [n1, · · · , nm],
satisfying nj | (

∏
i6=j ni− 1). As in the prime case, it follows from this definition

that the nj in a Giuga sequence must be relatively prime, and an equivalent
definition is: A sequence of integers [n1, · · · , nm] is a Giuga sequence if and only
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if the nj are relatively prime and satisfy
∑

1/nj −
∏

1/nj ∈ N. An example of
a non-prime Giuga sequence is

1

2
+

1

3
+

1

7
+

1

83
+

1

5× 17
− 1

296310
= 1.

For all known examples, the “sum minus product” value is one; to reach any
higher value, as we saw, the sequence would have to have at least 59 factors.
To find all Giuga sequences of a given length, one could check in principle all
sequences of this length whose elements are not too large (the sum over their
reciprocals must be greater than one to be ruled out). However, the number of
these grows exponentially; even for length seven there are too many to check
them all.

Luckily, we have the following reasonably effective theorem which tells us how
to find all Giuga sequences of length m with a given initial segment of length
m− 2.

Theorem 5.1.6 (a) Take an initial sequence of length m − 2, [n1, · · · , nm−2].
Let

P = n1 · · ·nm−2, S = 1/n1 + · · ·+ 1/nm−2.

Fix an integer v > S (this will be the sum minus product value). Take any
integers a, b with a · b = P (P + S − v) and b > a. Let

nm−1 = (P + a)/P (v − S), nm = (P + b)/P (v − S).

Then
S + 1/nm−1 + 1/nm − 1/Pnm−1nm = v.

The sequence [n1, · · · , nm−1, nm] is a Giuga sequence if and only if nm−1 is an
integer.

(b) Conversely, if [n1, · · · , nm−1, nm] is a Giuga sequence with sum minus
product value v, and if we define

a = nm−1P (v − S)− P, b = nmP (v − S)− P

(with P and S the product and the sum of the first m − 2 terms) then a and b
are integers and a · b = P (P + S − v).

To conclude the section on Giuga’s conjecture, we note Agoh’s conjecture
(1995), which is equivalent:

nBn−1 ≡ −1 (mod n) if and only if n is prime;

here Bn is a Bernoulli number.
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5.1.3 Lehmer’s Problem

Conjecture 5.1.7 Lehmer’s conjecture (1932).

φ(n) | n− 1

if and only if n is prime.

Lehmer called this

A problem as hard as existence of odd perfect numbers.

For Lehmer’s conjecture, the set of prime factors of any counterexample n is
a normal family. Lehmer’s conjecture has now been verified for up to 14 prime
factors of n. The related condition

φ(n) | n + 1,

is known to have eight solutions with up to six prime factors: 2, F0, · · · , F4

(the Fermat primes) and a rogue pair: 4919055 and 6992962672132095. Fermat
primes are primes of the form Fn = 22n

+1. As an early example of experimental
error, the sequence starts 3, 5, 17, 257, 65537, all of which are prime. On this
inductive basis Fermat conjectured all Fermat numbers were prime, despite the
fact that F5 = 4294967297 is divisible by 641, as Euler discovered.

Recently this result was extended by one to seven prime factors—by dint of
a heap of factorizations! But the next cases of Lehmer’s two problems (15 and 8
respectively) are much too large for current methods and machines. The curse
of exponentiality strikes again!

5.2 Disjoint Genera

The role of experimentation pattern recognition is reiterated in the description
of how the following theorem [55] was found, in response to a question posed by
Richard Crandall in his analysis of the Madelung constant [93].

Theorem 5.2.1 There are at most 19 positive integers not of the form of xy +
yz + xz with x, y, z ≥ 1. The only non-square-free cases are 4 and 18. The first
16 square-free cases are

1, 2, 6, 10, 22, 30, 42, 58, 70, 78, 102, 130, 190,210, 330, 462, (5.2.2)
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which correspond to “discriminants with one quadratic form per genus.”
If the 19th exists, it is greater than 1011, which the Generalized Riemann

Hypothesis excludes.

These exceptions were found with a crude Matlab program, which also showed
there were no others less than 50, 000. One may then note that the largest three
numbers correspond to three very special singular values (k210, k330, k462 of Sec-
tion 4.2). Further inspection showed that the square free solutions in (5.2.2)
corresponded precisely to quadratic forms Q2P (n,m) = n2 + 2Pm2, with pre-
cisely one quadratic form per genus, see Section 4.3. In this manner was the
theorem discovered.

After the research was nearly finished, the authors remembered to consult
Sloane’s online Encyclopedia and learned that the theorem was true! This was
based only on email communications, though indeed there are now several pub-
lished proofs. Moreover, if you now consult the Encyclopedia, it will tell you the
numbers are those with one form per genus, and give details! Had the authors
consulted the database earlier, they would have considered Crandall’s question
answered. This would have saved time, but left the database and literature
poorer.

5.3 Gröbner Bases and Metric Invariants

In this section we introduce Gröbner bases and the Pedersen-Roy-Szpirglas real
solution counting method. We apply these modern tools together with ideas
from classical distance geometry (the Cayley-Menger determinant) to show how
Petr Lisoněk settled two open problems in Euclidean geometry posed in the
American Mathematical Monthly in 1999 [160].

By analyzing systems of algebraic equations satisfied by metric invariants
of a tetrahedron, we shall conclude (i) that, in general, the four face areas,
circumradius and volume together do not uniquely determine a tetrahedron,
and that (ii) there exist non-regular tetrahedra that are uniquely determined
just by the four face areas and circumradius.

The development outlines the main steps of [154], which can be obtained
(along with a Maple worksheet containing all computations) on the Internet at
http://www.cecm.sfu.ca/~lisonek/tetrahedron.html. Executing all computa-
tions in Maple takes about 40 seconds CPU time on a 2003-era computer.
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We should add here that the Magma tool is also very useful for perform-
ing this type of algebraic computation. Information on Magma is available at
http://magma.maths.usyd.edu.au/magma.

5.3.1 Formulation of the Polynomial System

Let Rn denote n-dimensional Euclidean space with the Euclidean distance be-
tween points v and w be denoted by d(v, w). Consider a general tetrahedron T
in R3 and let vi (i = 1, 2, 3, 4) be the vertices of T . Clearly, T is determined
uniquely (up to a rigid motion) if the lengths d(vi, vj) of its six edges are given.
We shall analyze whether T can be determined uniquely by sets of metric in-
variants other than that of all edge lengths.

Denote the squared edge lengths by

si,j = d(vi, vj)
2, (5.3.3)

the volume by V and the circumradius (i.e., radius of the circumscribed sphere)
by R. We let the area of the face vivjvk be denoted Al, where {i, j, k} ∪ {l} =
{1, 2, 3, 4}.

Let Pi (1 ≤ i ≤ n) be n points in Rn−1 and denote di,j = d(Pi, Pj). The
Cayley-Menger determinant ([27], §40) associated with the points Pi (1 ≤ i ≤ n)
is the determinant of the (n + 1)× (n + 1) matrix

D(P1, · · · , Pn) =

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1
1 0 d2

1,2 · · · d2
1,n

1 d2
2,1 0 · · · d2

2,n
...

...
...

. . .
...

1 d2
n,1 d2

n,2 · · · 0

∣∣∣∣∣∣∣∣∣∣∣

. (5.3.4)

The (n−1)-dimensional volume Vol(P1, · · · , Pn) of the convex hull of P1, · · · , Pn

satisfies the equality ([27], p. 98)

Vol(P1, · · · , Pn)2 =
(−1)n

2n−1((n− 1)!)2
D(P1, · · · , Pn). (5.3.5)

Hence, the facial areas and the volume of the tetrahedron can be expressed as
low degree polynomials in the squared edge lengths si,j. In the case of a triangle,
T , (5.3.5) is a disguised version of the Heron’s formula:

A(T ) =
√

s(s− a)(s− b)(s− c) (5.3.6)
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where s = (a + b + c)/2 is the semi-perimeter of the circle and a, b, c are the
lengths of the sides (Exercise 13).

Let C denote the center of the circumscribed sphere of our tetrahedron. The
five points v1, v2, v3, v4, C lie in a three-dimensional space (a hyperplane of R4)
and therefore Vol(v1, v2, v3, v4, C) = 0. Hence, the algebraic equation for the
circumradius R is

D(v1, v2, v3, v4, C) = 0 (5.3.7)

where d(vi, C) = R for 1 ≤ i ≤ 4. Consider seven positive real numbers
a1,2, a1,3, · · · , a3,4,W . Clearly, the statement

The volume of the tetrahedron with edge lengths
√

a1,2,
√

a1,3, · · · ,
√

a3,4

is W .

implies the statement

The point (a1,2, a1,3, · · · , a3,4,W ) is a zero of the polynomial
f1(s1,2, s1,3, · · · , s3,4, V ).

Here the explicit form of f1 can be easily extracted from (5.3.3–5.3.5). (Exercise
14.)

The analogous statements for the other metric invariants of the tetrahedron
(e.g., circumradius, four face areas) imply corresponding statements about zeros
of five other computable polynomials f2, · · · , f6 with rational coefficients.

Since we transform a geometric problem into an algebraic one, we should
make sure that we are working with concrete algebraic objects that have a
meaning (interpretation) back in the original geometric domain. The essential
question here is, for which positive sextuples (s1,2, s1,3, · · · , s3,4) in R6 does there
exist a tetrahedron whose squared edge lengths are the values si,j? It is shown
in [27], §40 that this is the case exactly when all squared volumes (5.3.5) evalu-
ate to non-negative, which therefore is not only a necessary but also a sufficient
condition for the existence of the tetrahedron.

The important consequence is that whenever there exists a positive solution
(a1,2, a1,3, · · · , a3,4) in R6 to a system {f ∗1 = 0, · · · , f ∗6 = 0}, where f ∗i is fi with
V, R, A1, · · · , A4 replaced by positive real constants, then this solution does have
a geometric interpretation and corresponds to a tetrahedron in R3, whose edge
lengths are

√
ai,j.

Since scaling does not affect the answer to our problem in any way, we typi-
cally allow ourselves to normalize the value of one of the variables, say R.
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5.3.2 Gröbner Bases

Let Q[x1, · · · ,xn] denote the ring of n-variable polynomials with rational coef-
ficients in indeterminates x1, · · · , xn. Let f1, · · · , fs ∈ Q[x1, · · · ,xn]. The ideal
generated by f1, · · · , fs is defined by

〈f1, · · · , fs〉 =

{
s∑

i=1

hifi : hi ∈ Q[x1, · · · ,xn]

}
.

The (affine) variety determined by f1, · · · , fs is V(f1, · · · , fs) ⊂ Cn defined as

V(f1, · · · , fs) = {x ∈ Cn : f1(x) = · · · = fs(x) = 0} .

If I = 〈f1, · · · , fs〉, then we say that {f1, · · · , fs} is a basis of I. Clearly, if
{f1, · · · , fs} and {g1, · · · , gt} are two bases of the same ideal, then V(f1, · · · , fs) =
V(g1, · · · , gt). That said, one of the bases may be much more suitable than the
other for assessing properties of the variety (such as (non-)emptiness, cardinality,
finiteness, dimension, characterizing all points in the variety, etc.).

Roughly Gröbner bases are those special bases of polynomial ideals which
are especially suited for studying properties of affine varieties such as those listed
above, and for answering questions about the ideal itself—such as determining
whether or not a given polynomial belongs to the ideal. There are many dif-
ferent Gröbner bases for each polynomial ideal all of which can be computed
using Bruno Buchberger’s algorithm. Which Gröbner basis is most suitable in a
given situation depends on the question to be resolved for the given variety or
ideal. The book [85] is a very accessible introduction to polynomial ideals, their
varieties and the algorithms operating on them.

5.4 A Sextuple of Metric Invariants

As noted the question as to whether a tetrahedron is uniquely determined by its
volume, circumradius and face areas was posed as an open problem in [160]. In
this section we constructively answer this question negatively, by producing two
(or more) tetrahedra that share the same volume, circumradius and face areas.

Consider a tetrahedron T given by squared edge lengths. Equations for the
volume, circumradius and face areas of T may be obtained on substituting the
values of si,j into the polynomials f1, · · · , f6 introduced earlier. Conversely, by
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substituting the numerical values of V, R, A1, · · · , A4 into the fi’s we set up
a polynomial system in the squared edge lengths as unknowns—let us call this
system F ∗ = {f ∗1 , · · · , f ∗6}.

Thus, we hope for distinct positive solutions to F ∗. To determine these solu-
tions we first find G, a grevlex Gröbner basis for F ∗. In all numerical examples
that Lisoněk and Israel [154] tried, they found that 〈F ∗〉 was a zero-dimensional
ideal. They then used the method of Pedersen, Roy and Szpirglas to count all
real solutions of F ∗. (See Chapter 2 of [84]; in particular we adopt the terminol-
ogy and notation introduced therein.)

Let pi,j be the generators for the univariate elimination ideals; that is, 〈pi,j〉 =
C[si,j] ∩ 〈F ∗〉. Using the theory in Chapter 2, Section 2 of [84], first one finds
the pi,j’s from the grevlex Gröbner basis G by working in the algebra A =
C[s1,2, s1,3, · · · , s3,4] / 〈G〉. Second, one uses interval arithmetic (together with
knowledge of the total number of real solutions) to isolate these real solutions
of F ∗. Third, one selects the positive solutions.

It turns out to be easy to obtain examples in which several different tetra-
hedra sharing the same volume, circumradius and face areas, as is illustrated
in the following numerical example. Some intermediate expressions are omitted
because of their large size.

Example 5.4.1 Tetrahedral volume.

Consider the tetrahedron defined by

(s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (1, 1, 2, 2, 1, 2).

We find that V =
√

1/48, R =
√

7/12, A1 = A2 =
√

7/16 and A3 = A4 = 1/2.

1. By substituting these six values in the polynomials f1, · · · , f6 we obtain
the set F ∗ = {f ∗1 , · · · , f ∗6}. Next compute G, the Gröbner basis for F ∗

with respect to the grevlex ordering induced by s1,2 > s1,3 > · · · > s3,4,
and the basis for the algebra A = C[s1,2, s1,3, · · · , s3,4] / 〈F ∗〉.

2. It turns out that the dimension of A is 8, and that a monomial basis of
A is B = (1, s1,2, s2,3, s2,4, s

2
2,4, s1,2s2,4, s3,4, s2,4s3,4). Let h be the constant

function 1 and construct the symmetric bilinear form S1 as described in
[84, page 65].
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3. Compute the characteristic polynomial of M1, the matrix of S1 with respect
to B. It turns out that there are six sign variations in the coefficient list
of this characteristic polynomial, whence by Déscartes rule of signs the
signature of S1 is four, and there are four distinct real solutions to the
system F ∗ by [84, Theorem 5.2].

4. Using the Maple procedure Groebner[univpoly] (which implements the
Faugère-Gianni-Lazard-Mora basis conversion method), we use G to find
the generators pi,j for the univariate elimination ideals 〈pi,j〉 = C[si,j] ∩
〈F ∗〉. They turn out to be the following polynomials:

p1,2(x) = (x− 1)a(x)

p1,3(x) = p1,4(x) = p2,3(x) = p2,4(x)

= (x− 1)(x− 2)b(x)

p3,4(x) = (x− 2)c(x)

where

a(x) = 9x3 − 123x2 + 491x− 249

b(x) = 81x6 − 1485x5 + 10215x4 − 25803x3 + 22865x2

− 3303x + 162

c(x) = 9x3 − 150x2 + 1028x− 960.

5. Using Sturm’s theorem (the Maple procedure realroot), determine the iso-
lating intervals for all real roots of a, b and c. It turns out that a and c have
one real root each, namely α1 ∈ [75/128, 19/32] and γ1 ∈ [35/32, 141/128],
respectively, while b has two real roots β1 ∈ [219/128, 55/32] and β2 ∈
[267/128, 67/32].

6. These isolating intervals are narrow enough to prove (using interval arith-
metic) that only four boxes in R6 (Cartesian products of the separating
intervals) can possibly contain a solution of F ∗.

7. Since we know that there are exactly four real solutions, we have isolated all
solutions of F ∗. Their values (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) are (1, 2, 1, 1, 2, 2),
(1, 1, 2, 2, 1, 2), (α1, β1, β2, β2, β1, γ1) and (α1, β2, β1, β1, β2, γ1).
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8. As each si,j value is positive for all four solutions, it follows (cf. the dis-
cussion at the end of Section 5.3.1) that we have constructed four different
tetrahedra that share the same volume, circumradius and face areas. On
inspecting the four solutions we see that the four tetrahedra pair up as two
pairs, with the elements of each pair related by interchanging the labels
of the vertices v1 and v2. Thus, we have obtained two essentially different
tetrahedra.

2

5.5 A Quintuple of Related Invariants

It was noted in [160] part (b) that the quintuple of values (A1, A2, A3, A4, R)
uniquely determines any regular tetrahedron. In this case, of course A1 = A2 =
A3 = A4 =

√
4/3R2. As to whether there exist non-regular tetrahedra uniquely

determined by (A1, A2, A3, A4, R), was posed as an open problem in [160]. This
question is answered affirmatively on showing:

Example 5.5.1 Every non-degenerate tetrahedron, having a face that is an equi-
lateral triangle inscribed in a great circle of the circumscribed sphere, is deter-
mined uniquely by its four face areas and circumradius.

1. Assume without loss of generality that R = 1. It is easy to see that 3
√

3/4
is the maximum area among all triangles inscribed in a unit sphere, and
it is attained only by equilateral triangles inscribed in a great circle of the
sphere (Exercise 15).

2. Therefore the shape of one of the faces of the tetrahedron is determined by
requiring its area to be equal to 3

√
3/4. Assume this face is v1v2v3. Then

R = 1, s1,2 = s1,3 = s2,3 = 3 and A4 = 3
√

3/4.

3. Let F ′ be the set of polynomials f2, · · · , f6 from Section 5.3.1 with the
values from the previous sentence substituted.

It takes only a few seconds to compute the Gröbner basis for the ideal
generated by F ′ for the lexicographic ordering induced by s3,4 > s2,4 >
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A1 > A3 > A2 > s1,4. This basis contains (among others) the polynomials
f 2 and g2, where

f = 81s4
1,4 − 432s3

1,4 + 288(A2
2 + A2

3)s
2
1,4

+256A4
2 + 256A4

3 − 512A2
2A

2
3

g = 9s2
1,4 − 54s1,4 − 16A2

1 + 32A2
2 + 32A2

3 + 27.

4. Further
f = Q · g + S (5.5.8)

where

Q = 9s2
1,4 + 6s1,4 + 16A2

1 + 9

S = (960A2
1 − 192A2

2 − 192A2
3 + 324)s1,4

+256(A4
1 + A4

2 + A4
3)− 512(A2

1A
2
2 + A2

1A
2
3 + A2

2A
2
3)

−288(A2
1 + A2

2 + A2
3)− 243.

If both f and g vanish, then S must vanish by (5.5.8). The equation S = 0
determines s1,4 uniquely if L, the coefficient at s1,4 in S, is non-zero.

5. The discriminant of g as a quadratic polynomial in s1,4 is

Z = 576A2
1 − 1152A2

2 − 1152A2
3 + 1944,

and observe that 6 · L = 5184A2
1 + Z.

6. If there exists a tetrahedron with face areas A1, A2, A3, 3
√

3/4 and cir-
cumradius 1, then g must have a real (positive) root, hence Z ≥ 0 and
consequently L > 0 by non-degeneracy, in particular L 6= 0. Therefore s1,4

is determined uniquely by S = 0.

7. By applying analogous arguments to s2,4 and s3,4 we prove that all sj,4

are determined uniquely (1 ≤ j ≤ 3). Since also s1,2 = s1,3 = s2,3 = 3
are determined uniquely by A4 = 3

√
3/4, we have established that the

tetrahedron is determined uniquely.

2
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5.5.1 Some Open Questions on Invariants

An intriguing question is whether, for every set of positive real constants V, R,
A1, · · · , A4, there are only finitely many tetrahedra, all having these values as
their respective metric invariants.

If the answer is affirmative, what is then the maximal number of such tetra-
hedra? For example, the values (s1,2, s1,3, s1,4, s2,3, s2,4, s3,4) = (16, 25, 9, 9, 33,
54) yield a family of six such tetrahedra, but it is not known whether this is
maximal.

The bounds obtained by applying general theorems from algebraic geometry
seem much larger than the empirical results obtained in [154] by running the
algorithm outlined above on a number of different examples.

In cases when the number of solutions to the system F ∗ is finite one can
apply Bézout’s theorem, and so obtain 3 · 4 · 24 = 192 as an upper bound on
the number of solutions. A theorem of Milnor [162] gives 9,375 as an upper
bound on the number of real solutions of F ∗ that are isolated points. Here, the
central issue is whether the variety is always zero-dimensional (is a finite set
of isolated points), or whether it can have (components of) positive dimension.
In the zero-dimensional case, Bézout’s theorem applies, while Milnor’s result
unconditionally bounds the number of isolated real points.

5.6 Sloane’s Harmonic Designs

In this final section we describe and illustrate an ambitious and successful ex-
perimental approach to finding spherical designs used by N. J. A. Sloane, R. H.
Hardin and P. Cara [130, 131, 192, 193].

A set of N points {P1, · · · , PN} on the unit sphere Ωn = Sn−1 = {x =
(x1, · · · , xn) ∈ Rn : x · x = 1} forms a spherical t-design if the identity

∫

Ωn

f(x)dµ(x) =
1

N

N∑
i=1

f(Pi) (5.6.9)

holds for all polynomials f of degree ≤ t, where µ is uniform measure on the
sphere normalized to have total measure one ([100, 120, 121, 122] and [79, §3.2]).
A spherical t-design is also a t′-design for all t′ ≤ t. The largest t for which the
points form a t-design is called the strength of the design.
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It is known that if N is large enough then a spherical t-design in Ωn always
exists [188]. The problem is to find the smallest value of N for a given strength
and dimension, or equivalently to find the largest strength t that can be achieved
with N points in Ωn.

Not surprisingly, the main application is to numerical integration, but spheri-
cal designs also have applications to the design of experiments in statistics. Their
study has involved many interesting questions in algebra and group theory. For
searching for a spherical t-design, and for verifying that a set of points does form
a spherical t-design, the following equivalent condition is more useful than the
definition:

P1, · · · , PN forms a spherical t-design if and only if the polynomial identities

1

N

N∑
i=1

(Pi · x)2s =

(
s−1∏
j=0

2j + 1

2j + n

)
(x · x)s , (5.6.10)

and

1

N

N∑
i=1

(Pi · x)2s+1 = 0 , (5.6.11)

hold, where s and s are defined by {2s, 2s + 1} = {t− 1, t} ([121]; [179, p. 114],
[180]).

The approach taken by Sloane et al. follows the following three stages.

1. Experimentation. Given the dimension n, a specified number of points N ,
and a desired value of the strength t, search for a set of points satisfying
(5.6.10) and (5.6.11). If no solution seems to exist, decrease t and try
again. This is repeated a large number of times (with different starting
configurations) until a collection of putative designs has been assembled.

At this stage, these are only numerical approximations to the desired de-
signs; that is, numerical coordinates for points which appear to satisfy
(5.6.10) and (5.6.11), with an error which is less than 10−10.

The search algorithm used was a modification of the “pattern search” of
Hooke and Jeeves [138], a distant cousin of the conjugate gradient method.

2. Beautification. They now attempt to show that there is a spherical t-design
in the neighborhood of the numerical points, that is, to find algebraic
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expressions for the coordinates of points, such that (5.6.10) and (5.6.11)
are satisfied exactly.

This step involves a considerable amount of guesswork, guided by compu-
tations of the geometrical structure of the computer-produced points, such
as their apparent automorphism group.

The crucial step in the beautification process is to use knowledge of the
automorphism group to reduce the number of unknowns in the design. If
the points appear to fall into k orbits under the group, the number of
unknowns is reduced from N(n− 1) (the number of degrees of freedom in
the original design) to k(n − 1). With luck, they are now able to solve
equations (5.6.10) and (5.6.11) exactly.

3. Generalization. Try to find infinite families of designs that generalize
those found at step 2.

One example will serve to illustrate the process, a four-dimensional spherical
6-design (in Ω4) with 42 points. After beautification, this turned out to con-
sist of six heptagons, each in a different plane, with a group of order 42 acting
transitively on the 42 points. In other words, the computer-produced design
was suggesting that they should choose six planes in R4, i.e., six points in the
Grassmann manifold G(4, 2), and draw a heptagon in each plane. Sloane and
his colleagues found this an appealing idea, in view of the recent work on finding
packings and designs in Grassmann manifolds (see [15, 73, 78, 189]) ! It imme-
diately suggested several general constructions, one of which is the following.

Let Π1, · · · , Π6 be the planes in four dimensions spanned by the rows of the
following six matrices:

[
1 0 0 0
0 1 0 0

]
,

[
0 0 1 0
0 0 0 1

]
,

[
s 0 −h h
0 s −h −h

]
,

[ −h h s 0
−h −h 0 s

]
,

[ −s 0 −h −h
0 −s h −h

]
,

[ −h −h −s 0
h −h 0 −s

]
,

where s = 1/
√

2, h = 1/2.
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Theorem 5.6.1 Let p be an integer ≥ 3 and draw regular p-gons in each plane.
The resulting N = 6p points

{cos(jθ)ui + sin(jθ)vi : 0 ≤ j < p, 1 ≤ i ≤ M} , (5.6.12)

where ui and vi span Πi, form a 6p-point spherical t-design with t = min{p−1, 7}.
This is an interesting result, since there are very few general constructions

known for infinite families of spherical designs.
The theorem yields the following t-designs.

p 3 4 5 6 7 8 9 10 11 12 · · ·
N 18 24 30 36 42 48 54 60 66 72 · · ·
t 2 3 4 5 6 7 7 7 7 7 · · ·

The papers [131, 192, 193] contain many other examples.

5.7 Commentary and Additional Examples

1. A prime generating number. Let

α =
∞∑

m=1

pm

102m = 0.020300050000000700000000000000110 . . . ,

where pm denotes the m-th prime. Show that

pn = b102n

αc − 102n−1b102n−1

αc,
which would be useful if one could find a method of computing α to the
needed precision to obtain pn without knowing pn. This seems unlikely.

2. Carmichael and Lucas-Carmichael numbers. The Carmichael num-
bers are usually defined as those pseudo-primes such that an−1 ≡ 1 mod n
for each a relatively prime to n. Korelt (1899) showed this coincides with
the definition in the text: Namely n is square-free and (p−1)|(n−1) when-
ever p|n. The smallest examples are 561, 1105, 1729, and a much larger one
is 17 · 37 · 41 · 131 · 251 · 571 · 4159 = 2013745337604001.

We suggest you consult Sloane’s table (or the on-line version) to learn
about the sequence starting

399, 935, 2015, 2915, 4991, 5719, 7055.



266 CHAPTER 5. PRIMES AND POLYNOMIALS

3. Odd perfect numbers. It is known that there are no odd perfect number
with seven or fewer prime factors. Show that any odd perfect number with
eight prime factors must be divisible by 3, 5 or 7. More generally Servais
in 1888 proved that the smallest prime factor can not exceed the number
of prime factors.

4. Primes in arithmetic progression. Let πd,r(x) denote the number of
primes of the form n d + r ≤ x, with d and r relatively prime. Then
Dirichlet proved the number of primes in each such progression is infinite.
Indeed,

πd,r(x) ∼ 1

φ(d)

x

log x
.

This is due to de la Vallée Poussin [181, pg.149].

(a) Use this to show that every normal sequence of primes can be ex-
tended so that the sum of its reciprocals exceeds one.

(b) It is conjectured that one can find arbitrarily long arithmetic progres-
sions all of whose members are prime [181, pg. 153].

The longest known arithmetic sequence of primes is currently 22,
starting with the prime 11410337850553 and continuing with com-
mon difference 4609098694200 [176]. The longest known sequence of
consecutive primes in arithmetic progression is ten. It starts with the
93-digit prime

100996972469714247637786655587969840329509324689190041803603

417758904341703348882159067229719,

and has difference 210.

5. A fourth degree polynomial problem. (From [136, pg. 87]). Let
α1, α2, α3, α4 be the roots of the polynomial

P (x) = x4 + px3 + qx2 + rx + 1.

Show that

(1 + α4
1)(1 + α4

2)(1 + α4
3)(1 + α4

4) = (p2 + r2)2 + q4 − 4pq2r.

Hint: consider
∏4

k=1 P (e(2k−1)iπ/4).
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6. Putnam problem 1991–B4. Show that for p an odd prime

p∑
j=0

(
p

j

)(
p + j

j

)
≡ 2p + 1 mod p2.

7. 1-additive sequences. Given (u, v), the 1-additive sequence generated
by (u, v) is defined as a1 = u, a2 = v, and for n ≥ 3, an is the least
integer exceeding an−1 and possessing a unique representation of the form
ai + aj for i < j. Many 1-additive sequences behave quite erratically. The
sequence generated by (2, 3) for example defies any simple characterization.
Finch conjectured, and later Schmerl and Spiegel proved, that the sequence
generated by (2, v) for odd v ≥ 5 has precisely two even terms, so that the
sequence of successive differences is eventually periodic. Finch has further
conjectured, based on extensive computations, that for odd v ≥ 5

Conjecture 5.7.1 (Finch) If v 6= 2m − 1 for any m ≥ 3, the sequence
generated by (4, v) has precisely three even terms: 4, 2v + 4 and 4v + 4.
When v = 2m − 1 for some m ≥ 3, then the sequence generated by (4, v)
has precisely four even terms: 4, 2v + 4, 4v + 4 and 4v2 + 2v − 4.

Cassaigne and Finch have proven this conjecture for the case v ≡ 1 mod 4,
but the question is open for v ≡ 3 mod 4. See [75] for further details.

8. Amicable numbers. Two numbers are amicable if, like 220 and 284,
each is the sum of the others proper divisors, Thabit ibn Kurrah (ca. A.D.
850) noted that if n > 1 and each of p = 3 · 2n− 1− 1, q = 3 · 2n− 1, and
r = 9 · 22n − 1 − 1 are prime, then 2npq and 2nr are amicable numbers.
It was many years until this formula led to a second and third pair of
amicable numbers! Fermat provided the pair 17,296 and 18,416 (n=4)
in a letter to Mersenne in 1636. Computer searches have found all such
numbers with 10 or fewer digits. It is unknown if there are infinitely many
amicable pairs or any relatively prime pair. (Such a pair must be more
than twenty-five digits long, and the product must be divisible by at least
22 distinct primes.)
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9. More on amicable numbers. The smallest example of an amicable
four-cycle is

n1 = 22 · 5 · 17 · 3719, n3 = 22 · 521 · 829,

n2 = 22 · 5 · 193 · 401, n4 = 25 · 40787,

discovered by H. Cohen in 1970 during an exhaustive search up to sixty
thousand. Very recently Blankenagel, Borho and vom Stein have obtained
fifty new amicable four-cycles by a seed-and-complete method akin to the
way in which Giuga sequences were generated.

10. Aliquot sequences. Consider the iteration n 7→ s(n) = σ(n)− n, where
σ is the divisor function. It is unknown whether this iteration must even-
tually become periodic, as is clearly the case for an amicable pair. There
are five numbers less than 1000 whose status is unsettled (“the Lehmer
five”: 276, 552, 564, 660, and 966). Such Aliquot sequences can grow very
rapidly before subsiding. One may consider iterating many other arith-
metic functions with irregular growth. Reference: [129].

11. Prime power problem. Let Λ(n) = log(p) for p = nm a prime power
and be zero otherwise. Show that

∞∑
n=1

Λ(n)

ns
=

ζ ′(s)
ζ(s)

and so that

log(n) =
∑

d|n
Λ(d).

12. Putnam problem 1988–B1. (disjoint genera) Show that every com-
posite number can be expressed in the form xy + yz + zx + 1 for positive
integers x, y, z. Compare what is true in the case of primes.

13. Verify that (5.3.6) is a specialization of (5.3.5).

14. Confirm that the geometric statement of subsection 5.3.1 implies the alge-
braic one.
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15. Show that a positive sextuple (s1,2, s1,3, · · · , s3,4) in R6 comes from a tetra-
hedron whose squared edge lengths are the values si,j exactly when all the
squared volumes in (5.3.5) are nonnegative.

16. Putnam problem 1992–B5. For each n, evaluate the determinant, Dn

of the (n− 1)× (n− 1) matrix of which the 5× 5 case is




3 1 1 1 1

1 4 1 1 1

1 1 5 1 1

1 1 1 6 1

1 1 1 1 7




.

Generalize this result to the case of arbitrary entries 1 + ak along the
diagonal. Hint: Note that Dn = nDn−1 + (n− 1)!.

17. Wilson’s theorem. Wilson’s theorem is the assertion that if p is prime,
(p− 1)! ≡ −1 mod p. (The Lagrange converse is also true; namely, the
congruence is necessary for primality.) This can be proved using a group
argument, as follows. Note first that only 1,−1 are self-inverses modulo p,
so that the product of all other residues consists of element-inverse pairs
aa−1. Thus

∏p−2
a=2 a ≡ 1 mod p and Wilson’s theorem follows when you

include 1,−1 in the product. Such observations actually lead to certain
computational advantages in the evaluation of very large factorials, as in
[94].

18. Prouhet-Tarry-Escott problem. Given positive integers n and k, this
Diophantine problem asks for non trivial solutions to

α1 + α2 · · ·+ αn = β1 + β2 + · · · βn

α2
1 + α2

2 + · · ·+ α2
n = β2

1 + β2
2 + · · · β2

n

· · ·
αk

1 + αk
2 + · · ·+ αk

n = βk
1 + βk

2 + · · · βk
n.

A solution is abbreviated as [α] =k [β]. For example

[−2,−1, 3] =2 [2, 1,−3], [−5,−1, 2, 6] =3 [−4,−2, 4, 5]
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[−8,−7, 1, 5, 9] =4 [8, 7,−1,−5,−9],

and such ideal solutions with k = n− 1 are known for n < 12. This can be
equivalently rewritten as a question about ± polynomials dividing (z−1)n

of minimal length (sum of the absolute values of the coefficients) [65]. A
good deal is known about the problem computationally, and the main open
questions include:

(a) Find a second inequivalent solution for n = 12 where only

[±151,±140,±127,±186,±61,±22] =11 [±148,±146,±1271,±94,
±47,±35]

is known. (Any other symmetric solution has some entry exceeding
1000 in absolute value.)

(b) Find ideal solutions with n > 12.

(c) Find ideal solutions for each n or find a n with no ideal solution (more
likely).

19. ζ and arithmetic functions. Show that

ζ(s)
∞∑

n=1

an

ns
=

∞∑
n=1

bn

ns

if and only if
∞∑

n=1

an
xn

1− xn
=

∞∑
n=1

bnxn,

α(s)
∞∑

n=1

an

ns
=

∞∑
n=1

bn

ns

if and only if
∞∑

n=1

an
xn

1 + xn
=

∞∑
n=1

bnx
n.

Let φ be Euler’s totient function and denote σk(n) =
∑

d|n dk. Write σ = σ1

and τ = σ0 the number of divisors. Let λ be the number of prime factors of
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n counting multiplicity. Let q(n) = |µ(n)|, where µ is the Möbius function,
so that q(n) is 1 when n is quadratfrei (squarefree) and 0 otherwise.

Deduce, using the above and facts such as Euler’s product for ζ that for
s large enough to assure convergence of the Dirichlet series, the following
hold.

(a)
∞∑

n=1

φ(n)

ns
=

ζ(s− 1)

ζ(s)

∞∑
n=1

µ(n)

ns
=

1

ζ(s)

(b)
∞∑

n=1

τ(n)

ns
= ζ2(s)

and more generally

(c)
∞∑

n=1

σk(n)

ns
= ζ(s− k)ζ(s)

(d)
∞∑

n=1

λ(n)

ns
=

ζ(2s)

ζ(s)

(e)
∞∑

n=1

τ 2(n)

ns
=

ζ4(s)

ζ(2s)

(f)
∞∑

n=1

q(n)

ns
=

ζ(s)

ζ(2s)
,

and more generally discover what dk and qk must count if
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(g)
∞∑

n=1

qk(n)

ns
=

ζ(s)

ζ(ks)

and

(h)
∞∑

n=1

dk(n)

ns
= ζk(s).

If σ∗k(n) =
∑

d|n(−1)kdk, consider similar formulae in terms of α. Note
that in each case it is very easy to check the claimed identities numerically
for reasonable large s.

20. Hurwitz’s results on three and five squares. If n is a square then

r3(n) = 6
∏

p

[
pλp/2+1 − 1

p− 1
− (−1)(p−1)/2 pλp/2 − 1

p− 1

]
,

and

r5(n) = 10
23λ/2+3 − 1

23 − 1

∏
p

[
p3λp/2+1 − 1

p3 − 1
− p

p3λp/2 − 1

p3 − 1

]
,

where p ranges over the odd prime factors of n and λp is its multiplicity.
This and much more is discussed in [80].

21. Berkeley problem 6.11.33. Let n be a positive integer and let P be a
given polynomial of degree n. Explicitly compute a non-trivial polynomial
Q of the form

Q(x) =
n∑

i=0

aix
2i

containing P as a factor. Hint: Using a computer algebra system, perform
the Euclidean algorithm to write

x2i

= Qi(x)P (x) + Ri(x)

for each 0 ≤ i ≤ n, where degree(Ri) ≤ n− 1. Since {R0, R1, · · · , Rn} are
dependent there are ai, not all zero, with

∑n
i=0 aiRi = 0.
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22. A polynomial problem. (From [136, pg. 86]). Find all real numbers
|r| < 2 such that x14 + rx7 + 1 divides x154 − rx77 + 1.

23. Putnam problem 1989–A3. Show all roots of

11 z10 + 10 iz9 + 10 iz − 11 = 0

lie on the unit circle. Hint: This can be solved explicitly using Maple, Math-
ematica, or a custom-written root-finding program that employs Newton
iterations (see Chapter 7).

24. Berkeley problem 6.11.23. Prove that P (x) = 1+x+ · · ·+xp−2 +xp−1

is irreducible over Q when p is prime. Is this true more generally? Hint:
Using a computer algebra system, compute P (y + 1) and use Eisenstein’s
criterion: it suffices to find a prime q which divides all but the leading
coefficient while q2 does not divide the constant coefficient.

25. The Hilbert matrix. The n-dimensional Hilbert matrix H(n) is the
banded Hankel (constant on off diagonals) matrix whose entry is Hi,j =
1/(i + j − 1). Thus

H(3) =




1 1/2 1/3

1/2 1/3 1/4

1/3 1/4 1/5


 .

(a) Let dn = det−1(H(n)). Then the sequence starts

1, 12, 2160, 6048000, 266716800000, 186313420339200000.

Determine the closed form for this sequence, say using Sloane’s ency-
clopedia, and prove it. Similarly consider K(n) with Ki,j = 1/(i+ j).

(b) Discover the structure of H−1(n). For example

H−1(3) =




9 −36 30

−36 192 −180

30 −180 180


 .
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(c) Hilbert matrices are very poorly conditioned, and so make good tests
of numerical routines. Let HD(N) denote the floating point evaluation
of H(N) using D digits. Compare det(H(15)) and det(HD(15)) for
D = 10k, k = 1, · · · , 5.

(d) The corresponding infinite Hilbert matrix

H =

(
1

i + j − 1

)∞

i,j=1

induces a bounded linear operator on the square summable sequences,
whose operator norm is no greater than π.

(e) Indeed ‖H‖ = π.

A lovely paper on many aspects of the Hilbert matrix is [77].

Answers: (a) The value is dn =
∏n−1

k=1 (2k + 1)
(
2k
k

)2
.

(b) The general term of the n× n inverse is

(−1)i+j(i + j − 1)

(
i + j − 2

i− 1

)2(
n + i− 1

n− j

)(
n + j − 1

n− i

)
.

To prove this it may help to use the determinant formula

det

([
1

xi + yj

])
=

∏
i>j(xi − xj)(yi − yj)∏

i,j(xi + yj)
,

and Cramer’s rule.

(c) This dramatically highlights the difference between computing symbol-
ically and numerically.

(d) Let Λ = (λi−j) be the doubly-infinite matrix where λ0 = 0 and λk = 1/k
otherwise for k ∈ Z. Note that one may write

Λ =

[ −H L

L∗ H

]
,

so that Λ is a dilation of H. It follows that ‖H‖ ≤ ‖Λ‖ =
√
‖Λ2‖, since Λ

is symmetric. Now direct calculation shows Λ2 = (ai+j) is a non-negative
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doubly-infinite Toeplitz matrix with a0 = 2 ζ(2) and ak = 2/k2 otherwise.
As each row sums to

∑
i∈Z ai = 6 ζ(2) = π2, we are done when once we

observe that Λ2 =
∑

k∈Z akJk where the operator J(k)i,j = δi−j(k) is zero
except when |i− j| = k, and 1 in that case. Thus,

‖Λ2‖ ≤
∑

k

|ak| ‖J(k)‖ =
∑

k

|ak| = π2

—Jensen and Euler strike again!

(e) Let T (n) be the Hankel matrix (τi−j+1)
n
i,j=1 with τk = 1/k for k > 0

and is zero otherwise. Observe that A(n) ≥ T (n) ≥ 0 coordinate-wise and
so ‖H‖ ≥ ‖H(n)‖ ≥ ‖T (n)‖. It thus suffices to show lim infn ‖T (n)‖ ≥ π.

To see this, use ‖T (n)‖ ≥ 〈T (n)vn, vn〉/‖vn‖2 for vn = (1, 1/
√

2, · · · , 1/
√

n).

Then with αk =
∑k−1

j=1 (j(k − j))−1/2 and Hn =
∑n

k=1 1/k,

‖H‖ ≥ lim inf
n

1

Hn

n∑

k=1

αk/k = lim inf
k

αk

= lim inf
k

1

k

k−1∑
j=1

(
j

k

)−1/2 (
1− j

k

)−1/2

,

which is a Riemann sum for
∫ 1

0
x−1/2(1− x)−1/2 dx = β(1/2, 1/2) = π.

26. The holes in the argument. Figure 5.1 plots all roots of polynomials,
BN , with coefficients in {0, 1,−1} up to degree N = 18. The graphically
displayed information would be very hard to digest numerically. The zeros
in Figure 5.1 are colored by their local density normalized to the range of
densities; from red for low density to yellow for high density.

The fractal structure and the holes around the roots are of different shapes
and precise locations. This and more is described in [66]. For example,
when α is a Pisot number

C1
1

αN
≤ min

α 6=β∈BN

|α− β| ≤ C2
1

αN
,

for constants C1, C2 > 0. Similarly, for α a d-th root of unity,

C3
1

N (1+φ(d)/2)(k+1)
≤ min

α 6=β∈BN

|α− β| ≤ C4
1

N (1+φ(d)/2)(k+1)
,
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Figure 5.1: Zeros of zero-one polynomials

for constants C1, C2 > 0. Unexplained phenomena can be seen in images at
the URL http://www.cecm.sfu.ca/personal/loki/Projects/Roots/Book.

27. Rudin-Shapiro polynomials. These are defined recursively by P0(z) =
Q0(z) = 1 and

Pn+1(z) = Pn(z) + z2n

Qn(z),

Qn+1(z) = Pn(z)− z2n

Qn(z).

(a) Pn and Qn are even of degree 2n − 1 and have only ±1 coefficients.

(b) For |z| = 1

|Pn+1(z)|2 + |Pn+2(z)|2 = 2
(|Pn(z)|2 + |Pn+1(z)|2)

and so |Pn(z)|, |Qn(z)| ≤ 2(n+1)/2 ≤ √
2 (2n − 1).

In consequence, these are examples of ±1 polynomials pn that grow no
faster than

√
2 degree(pn) on the unit disk. A famous problem of Little-

wood [65] is to find polynomials pn of degree n with

c1

√
n ≤ |pn(z)| ≤ c2

√
n,

for all n.
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28. Hyperbolic polynomials and self-concordant barriers for hyper-
bolic means. Following the development in [153], we shall construct two
classes of self-concordant barrier functions on natural convex sets.

Let p : Rn 7→ R be a polynomial on n variables, homogeneous of degree m,
that is, p(tx) = tmp(x) for every t ∈ R and x ∈ Rn. We say that p(x) is
hyperbolic in the direction d ∈ Rn if the polynomial t 7→ p(x + td) has m
real roots for every x. Denote the negative of these roots, which depend
on x and d, by ti(x, d), i = 1, · · · ,m.

The following are three important examples of hyperbolic polynomials.

(a) p1 : x ∈ Rn 7→ ∏n
i=1 xi with respect to the direction d = (1, ..., 1).

(b) p2 : x ∈ Rn 7→ x2
1 −

∑n
i=2 x2

i with respect to the direction d =
(1, 0, ..., 0).

(c) Let Sn be the space of n × n symmetric matrices and recall that
it is isomorphic to Rn(n+1)/2. The polynomial in the entries of the
symmetric matrix given by p3 : X ∈ Sn 7→ det(X) is hyperbolic with
respect to the direction d = I (the n× n identity matrix).

Define the sets

C(p, d) = {x ∈ Rn : p(x + td) 6= 0,∀t ≥ 0},
Ca(p, d) = {x ∈ C : p(x) > a}, for a ≥ 0.

It is known (see [114]) that C(p, d) is an open, convex cone; that p is
hyperbolic in the direction of any vector in C(p, d); also for any c ∈ C(p, d),
C(p, c) = C(p, d); and that p(x)1/m is a concave function on C(p, d) and
zero on the boundary. (See Figure 5.2.)

On the other hand, let Q be a convex set in R, and F a real valued
function defined on Q. We denote the boundary of Q by ∂Q, and by

DkF (x)[h, · · · , h] = dk

dtk
F (x + th)

∣∣∣
t=0

the k-th directional derivative of F

in the direction h evaluated at zero. We say that F is a θ-self-concordant
barrier on Q if the following three conditions are satisfied:

(i) |DF (x)[h]| ≤
√

θ(D2F (x)[h, h])1/2

(ii) |D3F (x)[h, h, h]| ≤ 2(D2F (x)[h, h])3/2, and

(iii) F (xr) →∞ for any sequence xr → x ∈ ∂Q.
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(a) Following the steps given below, prove that:

i. The function F (x) = − log(p(x)) is an m-self-concordant barrier
on the set C(p, d), (see [128]).

ii. For any a ≥ 0, the function F (x) = −m log(p(x) − a) is an m2-
self-concordant barrier on the set Ca(p, d), (see [153]).

Self concordance plays a central role in interior point methods of
modern optimization.

(b) Suggested steps on the path.

i. The barrier condition (iii) should be clear from the mentioned
properties of hyperbolic polynomials on the set C(p, d).

ii. Show that the following representation holds

p(x + r d) = p(d)
m∏

i=1

(r + ti(x, d)).

The part that requires thought is to determine the constant p(d)
on the right-hand side. (Keep in mind that {ti(x, d)}m

i=1 are the
negative of the roots of the hyperbolic polynomial.)

iii. Use the above factorization and the homogeneity of p to show
that for any x ∈ C(p, d) and any h ∈ Rn we have

p(x + r h) = p(x)
m∏

i=1

(1 + r ti(h, x)).

iv. Use this representation to obtain the derivatives of r 7→ p(x+r h)
for any x ∈ C(p, d) and h ∈ Rn:

d

dr
p(x + r h) = p(x + r h)

m∑
i=1

ti(h, x)

1 + r ti(h, x)
.

v. Calculate the directional derivatives of F (x) = − log(p(x)) and
prove the self-concordant inequalities hold with θ = m.

vi. For the second part, consider first the case a = 0. Next, use a
linear substitution to argue without loss of generality that a = 1.
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vii. Set ti = ti(h, x) and define α = p(x)− 1,

C1 =
m∑

i=1

ti, C2 =
m∑

i=1

t2i , C3 =
m∑

i=1

t3i .

Show that for F (x) = −m log(p(x)− 1) we have

DF (x)[h] = −m
α + 1

α
C1,

D2F (x)[h, h] = m
α + 1

α2
C2

1 + m
α + 1

α
C2, and

D3F (x)[h, h, h] = −m
(α + 1)(α + 2)

α3
C3

1 − 3m
(α + 1)

α2
C1C2

− 2m
α + 1

α
C3.

viii. Use the Cauchy-Schwarz inequality to show that the first inequal-
ity in the definition of self-concordancy holds, with θ = m2.

ix. To show the second inequality in the definition, square both sides
and group terms with respect to powers of α. Notice that the
inequality is homogeneous of degree one with respect to the vector
(t1, · · · , tm), thus without loss C1 = ±1. Notice also that α > 0
since x ∈ Ca(p, d), and a = 1. Now, show that all coefficients in
front of the different powers of α are positive.

(c) Verify the three examples of hyperbolic polynomials given at the be-
ginning of this item.

(d) Try to prove the inequalities in a computer algebra system.

29. The Lax conjecture is true. An elegant 1958 conjecture of Lax con-
cerning hyperbolic polynomials has recently been settled by Lewis, Parrilo
and Ramana [152]:

Theorem 5.7.2 A polynomial p in three real variables is hyperbolic of
degree d with respect to e = (1, 0, 0), with p(e) = 1, if and only if there are
symmetric d× d matrices B, C such that

p(x, y, z) = det(xI + yB + zC).
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Figure 5.2: A hyperbolicity cone

Deduce what characterizes the corresponding hyperbolic polynomials in
two variables.

Figure 5.2 shows a third-order hyperbolic cone. It was drawn by Pablo
Parrilo in a fine personal computer drawing package called DPGraph (for
“dynamic photorealistic graphing”). The cone is actually the part on the
top of the figure, all the rest is the “hidden.” There is a horizontal plane
at z = 1, and on that plane a nice set with the “rigid convexity” property
that contains the point (0, 0) near the center. The vertical line is in the
direction e = (0, 0, 1) of hyperbolicity.

30. Inverse problems. Inverse problems provide a host of challenges for
the computationally and experimentally minded. Examples, both explicit
and implicit, have occurred throughout our volumes (e.g., maximum en-
tropy problems, the self-concordant barriers above, the nuclear magnetic
resonance example, and while exploring JPEG compression or the Watson
integrals).

31. Nonnegative polynomials. The nonnegative polynomials of degree d,
P d

+(I), on an interval I, form an interesting convex cone in the vector space
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of all polynomials P d(I). Recall that an extreme ray of a convex cone K
is an element with the property that e = p + q, p, q ∈ K implies q and p
are nonnegative multiples of e.

(a) Characterize the extreme rays of P d
+([0,∞)), using the fundamental

theorem of algebra. Deduce that every polynomial p that is nonneg-
ative on R+ can be expressed as

p(t) = t
∑

I

p2
i (t) +

∑
J

p2
j(t),

where pi, pj are finitely many real polynomials with nonnegative roots.

(b) Deduce that every polynomial p that is nonnegative on R can be
expressed as

p(t) =
∑

I

p2
i (t),

where pi are polynomials with real roots. Prove also that when p has
even degree, it is the square of at most two polynomials.

(c) Characterize the extreme rays of P d
+(I), for a finite interval.

(d) Hilbert’s theorem. A nonnegative polynomial in three variables,
homogeneous of degree four, is expressible as a sum of squares of
quadratic forms (in the three variables). The hypotheses are needed
as the nonnegative polynomials below show.

i. x4y2 + x2y4 + z6 − 3x2y2z2 (Motzkin);

ii. w4 + x2y2 + y2z2 + 2z2x2 − 4xyzw (Choi and Lam).

Hint: A boundary polynomial must have a zero in the interval. An
extreme polynomial must be of full degree with all roots in the inter-
val. In each case, every polynomial in the cone is in the closed conical
hull of the extreme directions. See [20] for details.

32. Roots of a polynomial. (From [136, pg. 87]). Let α1, α2, α3, α4 be the
roots of the polynomial

P (x) = x4 + px3 + qx2 + rx + 1.
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Show that

(1 + α4
1)(1 + α4

2)(1 + α4
3)(1 + α4

4) = (p2 + r2)2 + q4 − 4pq2r.

Hint: consider
∏4

k=1 P (e(2k−1)iπ/4).

33. The Ehrhardt polynomial of a polytope. An integer polytope is the
convex hull of finitely many points with integer coefficients. The following
result neatly links convexity, lattices and polynomials.

Theorem 5.7.3 Ehrhardt polynomial. Let P be an integer polytope in
Rd.There exists a univariate polynomial of degree at most d, pP , such that

pP (k) =
∣∣(kP ) ∩ Zd

∣∣ ,

for all nonnegative integers k.

Let P be a given integer polytope.

(a) Show that dim P = degree pP .

(b) For integer polygons, use Pick’s theorem to establish the existence of
the Ehrhardt polynomial and moreover it has nonnegative coefficients.

(c) Show that
pP (−k) = (−1)dimP

∣∣relint (kP ) ∩ Zd
∣∣ ,

for all positive integers k. Here “relint” denotes the relative interior
of P in its affine span (that is, the inside).

(d) Show that the constant term of pP is 1 and the coefficient of td is the
volume of P (which could be zero). The coefficient of td−1 is half of a
“surface area.”

(e) Fix a positive integer m. Consider the Ehrhardt polynomial, pm, of
the tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1,m).
Show that

pm(k) =
m

6
k3 + k2 +

12−m

6
k + 1.

This is described in Barvinok’s fine recent book [20].
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34. The Schur functions. We consider the symmetric functions, Λ, that is,
the polynomials in indeterminates xr, for r in N. (See [156].)

(a) Let λ = (l1, l2, · · · , ln) be a partition of length n. Write l(λ) for the
length of λ. The corresponding Schur function is defined by

sλ = det
(
x

lj+n−j
i

)
/ det

(
xn−j

i

)
1≤i,j≤n

.

(b) Show that the elementary symmetric functions, e0 = 1 and er =∑
l1<l2<···<lr

xl1xl2 · · ·xlr , for r ≥ 1, have an ordinary generating func-
tion

E(t) =
n∑

r≥0

ert
r =

n∏
i=1

(1 + txi) .

Correspondingly, the complete symmetric functions, hr, have the gen-
erating function

H(t) =
∑
r≥0

hrt
r =

∏
i≥1

(1− txi)
−1 .

(c) For r ≥ 1, the formal r−th power sum is defined by pr =
∑

xr
i . Show

that the ordinary generating function

P (t) =
∑
r≥1

prt
r−1 =

∑
i≥1

xi

1− xit

satisfies P (t) = E ′(t)/E(t) and P (−t) = H ′(t)/H(t).

(d) Show that the determinant expression for sλ in terms of the hr is

sλ = det (hli+i−j)1≤i,j≤n ,

for any n ≥ l(λ). Find a similar formula in terms of the er.

(e) Conclude that every symmetric function is uniquely expressible as
a polynomial in the elementary symmetric, the complete symmetric
functions or in the Schur functions. That is, each class is a Z-basis
for the ring Λ.
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(f) Since the hr and the er are each algebraically independent, it is pos-
sible to substitute as one wishes. For example

H(t) =
∏
i≥0

1− bqit

1− aqit

leads to hr =
∏r

i=1 (a− bqi−1) / (1− qi), er =
∏r

i=1 (aqi−1 − 1) / (1− qi)
and pr = (ar − br)/(1− qr).

(g) The natural partial ordering orders partitions by λ ≥ µ if
∑

λiλi ≥∑i µi for all i. Show that for two partitions of n, λ ≥ µ if and only if
there is a n× n doubly stochastic matrix S with µ = Sλ. Represent
this result graphically.

35. Schur functions and Young tableaux. Another often more useful
representation is the Young diagram in which the points of Ferrer’s diagram
are replaced by squares. The conjugate partition, λ′, arises on exchanging
rows and columns of the diagram. Shading squares allows one to usefully
represent adding one partition to another, and much else. We now sketch
a combinatorial approach to Schur functions following [196].

A tableaux of shape λ is an array T = (Ti j) of positive integers such that
1 ≤ i ≤ ` (λ) , 1 ≤ j ≤ λi that is nondecreasing in each row and strictly
increasing in each column. We define the type α(T ) = (α1, α2, · · · ) to be the
number of occurrences of i in T . Thus, Figure 5.3 shows a (semistandard)

Young tableau T̂ of shape (6, 5, 3, 3) and of type (3, 1, 1, 4, 4, 4, 1, 0, 2). A
standard tableau has each row and column strictly increasing.

A natural combinatorial definition of the Schur functions is to define

sλ(x) =
∑

T

xT

summed over all monomials xT = xα1(T )xα2(T ) · · · of shape λ. For the
tableau illustrated, xT̂ = x3

1x2x3x
4
4x

5
5x6x7x

2
9.

(a) Write out s(2,1) explicitly.

(b) Let fλ denote the number of standard tableaux of shape λ. Show
that f (3,2) = 5 and then show that fλ counts the number of lattice
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Figure 5.3: A Young tableau along with all lattice paths of shape (3,2)

paths from 0 to λ in R`(λ) so that each step is a unit vector staying
in the cone x1 ≥ x2 ≥ · · · ≥ xl ≥ 0. These paths for λ = (3, 2) are
drawn in Figure 5.3.

(c) Prove that this definition of Schur function coincides with the defini-
tion of Exercise 34.

John Stembridge’s Maple package, http://www.math.lsa.umich.edu/~jrs/
computes with Schur functions and much else.

36. Small gaps between consecutive primes. As this book was being
completed, a breakthrough was announced in a long-standing question of
the spacings of prime numbers [123]. The prime number theorem can be
paraphrased as saying that the average size of pn+1 − pn is log pn, where
pn denotes the n-th prime, so that

∆ = lim inf
n→∞

pn+1 − pn

log pn

≤ 1.

In 1926 Hardy and Littlewood showed that assuming the generalized Rie-
mann hypothesis, ∆ ≤ 2/3. Other researchers in the intervening lowered
this figure, until 1986 when Maier established the result ∆ ≤ 0.2486.

In a dramatic new development, Daniel Goldston and Cem Yildirim an-
nounced in April 2003 that not only is ∆ = 0, but also

pn+1 − pn < (log pn)8/9
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holds for infinitely many n. What’s more for any fixed integer r the in-
equality

pn+r − pn < (log pn)(8r)/(8r+1)

holds for infinitely many n. They anticipated that even stronger results of
this type can be established (such as decreasing 8/9 to 4/5). This report
was widely hailed in the mathematical community and the press, after
being circulated in preprint and described at conferences.

Unfortunately, Andrew Granville and K. Soundararajan subsequently found
a problem in one of the arguments—some “small” error terms are actually
of the same order of magnitude as the main term. As of this date the
difficulty remains unresolved.

37. More from Littlewood’s miscellany. [155] We conclude the chapter
with a series of quotes and observations from Littlewood.

(a) (Page 56)

“(A. S. Bescovitch) A mathematician’s reputation rests on
the number of bad proofs he has given. (Pioneer work is
clumsy.)”

(b) (Page 60)

“A precisian professor had the habit of saying ‘. . . quartic
polynomial ax4 + bx3 + cx2 + dx+ e, where e need not be the
base of the natural logarithms.’ (It might be.)”

(c) (Page 61)

“I read in the proof-sheets of Hardy on Ramanujan: ‘As
someone said, each of the positive integers was one of his
personal friends.’ My reaction was, ‘I wonder who said that; I
wish I had.” In the next proof-sheets I read what now stands,
‘It was Littlewood who said . . .’
(What had happened was that Hardy had received the re-
mark in silence and with poker face, and I wrote it off as a
dud. I later taxed Hardy with this habit; on which he replied:
‘Well, what is one to do, is one always to be saying “damned
good’?’ To which the answer is ‘yes.’)”
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(d) (Pages 118–120) Random Jottings on G. H. Hardy (after a 35 year
collaboration) “His spelling was not immaculate.” . . . “He preferred
the Oxford atmosphere and said they took him seriously, unlike Cam-
bridge.” . . . “He took a sensual pleasure in “calligraphy” and it would
have been a deprivation if he didn’t make the final copy of a joint
paper. (My standard role in a joint paper was to make the logical
skeleton, in shorthand—no distinction between r and r2, 2π and 1,
etc., etc. But when I said ‘Lemma 17’ it stayed Lemma 17.)” . . . “He
was indifferent to noise; very rare in creative workers at least when
no longer young.”

(e) (Page 149) “Creative workers need drink at night, ‘Roses and dung’.
(Or: mathematicians read ‘rubbish’.) An experimentalist, having
spent the day looking for a leak, has had a perfect mental rest by
dinner time, and overflows with minor mental activity.”

(f) (Page 164) “ ‘Always verify references.’ This is so absurd in mathe-
matics that I used to say provocatively: ‘never . . .’.”
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Chapter 6

The Power of Constructive
Proofs II

Mathematical proofs, like diamonds, are hard as well as clear, and
will be touched with nothing but strict reasoning.

John Locke, 1690 [106, page 115]

As we noted in the first volume, a computational or constructive approach can
often make a proof significantly more understandable. What’s more, the key
concepts involved are made more apparent, and are more likely to be remem-
bered later. Here we present some additional examples of computer-aided proofs,
including some examples of “variational” methods of proof.

6.1 A More General AGM Iteration

We first study a more general form of the arithmetic-geometric mean iteration.
This material has been adapted from [63]. Let a and b be real numbers, a > b >
0, and let N be an integer greater than 1. By the iteration AGN we mean the
following two-term recursion: a0 = a, b0 = b, and, for any k ≥ 0,

ak+1 =
ak + (N − 1)bk

N
(6.1.1)

bk+1 =
N
√

(ak + (N − 1)bk)N − (ak − bk)N

N
. (6.1.2)

289
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In the case N = 2 we get the standard arithmetic-geometric mean (AGM) iter-
ation discussed in the previous section. The case N = 3 was studied in detail in
[46], [49] and [45].

We have

aN
k+1 − bN

k+1 =

(
ak − bk

N

)N

for any k ≥ 0. (6.1.3)

This shows both the global convergence and local Nth-order convergence of the
iteration. So there is a common limit of (ak) and (bk),

MN(a0, b0) = lim
k→∞

ak = lim
k→∞

bk. (6.1.4)

Let ∗ be the involution on [0, 1] defined by x∗ = N
√

1− xN . Whenever we
use the function symbol ∗, the respective value of N is clear from the context.

Because of the homogeneity

MN(λa, λb) = λMN(a, b) for λ > 0, (6.1.5)

it is enough to investigate

AN(xN) =
1

MN(1, x∗) , (6.1.6)

for 0 < x < 1.
From (6.1.3) we can argue that aN

k (z) and bN
k (z) are analytic in the unit

disk and converge uniformly to MN(1, z) therein. Thus AN(xN) is analytic in a
neighborhood of zero. Notice that AN(0) = 1.

6.1.1 The Functional Equation for AN

For any N > 1 and any 0 < x < 1 we have, applying one step of the AGN

iteration,

MN(1 + (N − 1)x, 1− x) = MN(1, x∗). (6.1.7)

Further, by (6.1.5) we have

MN(1 + (N − 1)x, 1− x) = (1 + (N − 1)x) ·
MN

(
1,

1− x

1 + (N − 1)x

)
. (6.1.8)
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Combining the right-hand sides of (6.1.8) and (6.1.7), we arrive at the following
functional equation for AN :

(1 + (N − 1)x) · AN(xN) = AN

(
1−

(
1− x

1 + (N − 1)x

)N
)

. (6.1.9)

Notice that (6.1.9) uniquely determines the Taylor series for AN at 0 and
hence has a unique analytic solution

AN(xN) =
1

MN(1, x∗) . (6.1.10)

6.1.2 The Quadratic Case Recovered

For N = 2, the equation (6.1.9) specializes to

(1 + x) · A2(x
2) = A2

(
4x

(1 + x)2

)
, (6.1.11)

whose solution was found by Gauss (see [44]) in the form

A2(x
2) =

∞∑
i=0

(
2i

i

)2 (x

4

)2i

= 2F1

(
1/2, 1/2

1

∣∣∣∣ x2

)
. (6.1.12)

Gauss discovered this closed form after having been inspired by a great number
of experimental numerical calculations (see [44, page 5, 7]).

Another way of expressing the AG2 limit is by means of the following definite
integral:

I2(a0, b0) =

∫ ∞

0

dt√
(t2 + a2

0)(t
2 + b2

0)
. (6.1.13)

Then it is straightforward to prove (see [44]) that

M2(a0, b0) =
I2(1, 1)

I2(a0, b0)
=

π

I2(a0, b0)
. (6.1.14)

The core step of this proof, namely showing the AG2-invariance

I2(a, b) = I2

(
a + b

2
,
√

ab

)
(6.1.15)
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follows fairly easily by the substitution u = 1
2
(t−ab/t). We leave this as a Maple

or Mathematica exercise.
Yet another way of proving the AG2 limit formula is by identifying M2(1, x)

as a solution of a second-order linear differential equation, see [44].

6.1.3 The Cubic Case Solved

The closed form for M3(1, x
∗) was identified and proved in several ways in [46,

49, 45].
Nowadays, the discovery of the closed form for A3(x

3) as a formal power
series again is a routine task using any computer mathematics software. We
obtain

1

M3(1, x∗) = A3(x
3) = 2F1

(
1/3, 2/3

1

∣∣ x3

)
. (6.1.16)

The cubic counterpart of (6.1.13) is

I3(a0, b0) =

∫ ∞

0

t dt
3
√

(t3 + a3
0)(t

3 + b3
0)

2
. (6.1.17)

We have (see [40, 42])

M3(a0, b0) =
I3(1, 1)

I3(a0, b0)
=

2π√
27
· 1

I3(a0, b0)
. (6.1.18)

Again, the crucial part of the proof of (6.1.18) is to show that the integral is
invariant with respect to the AG3 iteration, that is,

I3(a, b) = I3

(
a + 2b

3
,

3

√
b
a2 + ab + b2

3

)
, (6.1.19)

for all a > b > 0. The proof of (6.1.19) was proposed by one of the present
authors [40] as Part (a) of the American Mathematical Monthly Problem 10281.
The solutions published by the Monthly are concluded with the editorial com-
ment which points out that “... There is still no self-contained proof that avoids
exploiting the identification with a hypergeometric function.” ([42, pg. 183])



6.1. A MORE GENERAL AGM ITERATION 293

Recently, John A. Macdonald found a proof of (6.1.19) that consists of a
chain of variable substitutions together with the split of the integration range
at the point 1. Here we present a variation of this proof, in which all integral
substitutions have been simplified to the extent that they can be checked by a
computer. The proof was announced in the “Revivals” section of the Monthly
[41].

A large portion of the proof of (6.1.19) is encapsulated in the following lemma.

Lemma 6.1.1 For any γ ∈ (0, 1],

I3(1,
3
√

1− γ3) =

∫ ∞

1

dx√
(x− 1)((x + 3)x2 − 4γ3)

. (6.1.20)

Proof. We first note that

I3(1,
3
√

1− γ3) =

∫ ∞

0

u du√
(u3 − 1)2 + 4(1− γ3)u3

, (6.1.21)

using the substitution u3 = t3(1 + t3)/((1− γ3) + t3) . Further, the equality

∫ ∞

0

u du√
(u3 − 1)2 + 4(1− γ3)u3

=

∫ ∞

1

(u + 1) du√
(u3 − 1)2 + 4(1− γ3)u3

follows from
∫ ∞

0

u du√
(u3 − 1)2 + 4(1− γ3)u3

=

∫ ∞

0

du√
(u3 − 1)2 + 4(1− γ3)u3

and

∫ 1

0

(u + 1) du√
(u3 − 1)2 + 4(1− γ3)u3

=

∫ ∞

1

(u + 1) du√
(u3 − 1)2 + 4(1− γ3)u3

,

which both are easily verified by substituting u = 1/u.

Now
∫ ∞

1

dx√
(x− 1)((x + 3)x2 − 4γ3)

=

∫ ∞

1

(u + 1) du√
(u3 − 1)2 + 4(1− γ3)u3
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using the substitution x = u + 1/u− 1 . This completes the proof of the lemma.
2

For any y, z > 0, we have

I3(y, z) =
1

y
· I3

(
1,

z

y

)
. (6.1.22)

Let c = b/a. It can be verified easily that, in view of (6.1.22), we can rewrite
(6.1.19) as

2c + 1

3
· I3(1, c) = I3(1, c

∧), (6.1.23)

where x 7→ x∧ is defined by

x∧ = 3

√
9x(1 + x + x2)

(1 + 2x)3
, (6.1.24)

for any x ∈ [0, 1].
We will denote function composition in the obvious way, e.g., by c∗∧ we mean(

c∗)∧. One can check easily that, for any c ∈ [0, 1],

(2c + 1)(2c∧∗ + 1) = 3, (6.1.25)

or, in other words,

c∧∗ =
1− c

1 + 2c
. (6.1.26)

Recall that ∗ is an involution on [0, 1]. From (6.1.26), it follows that also ∧∗
is an involution on [0, 1]. Thus,

∧∗∧ = ∗ (6.1.27)

as functions on [0, 1].
By an inspection of the function ∧∗, we can see that the statement

∀c ∈ (0, 1]
2c + 1

3
· I3(1, c) = I3(1, c

∧) (6.1.28)
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is equivalent to

∀C ∈ [0, 1)
2C∧∗ + 1

3
· I3(1, C

∧∗) = I3(1, C
∧∗∧). (6.1.29)

Taking into account (6.1.27), (6.1.25) and swapping the sides, we see that the
last statement is equivalent to

∀C ∈ [0, 1) (2C + 1) · I3(1, C
∗) = I3(1, C

∧∗). (6.1.30)

Using (6.1.20), the equality (6.1.30) translates to

(2C + 1) ·
∫ ∞

1

dx√
(x− 1)((x + 3)x2 − 4C3)

(6.1.31)

=

∫ ∞

1

dz√
(z − 1)

(
(z + 3)z2 − 36C(1+C+C2)

(2C+1)3

) , (6.1.32)

which can be proven by the substitution

z =
(x− C)3(x− 1)

(x3 − C3)(2C + 1)
+ 1.

This completes the proof of (6.1.23) and thus also the proof of (6.1.19).

6.2 Variational Methods and Proofs

Whenever one can formulate a mathematical problem in variational form (i.e.,
the solution is the minimum of some function with or without constraints), one
has access to a variety of constructive tools.

A key and representative tool is the next result. It states that if a closed
function (a function that is defined on a closed set, lower semicontinuous, some-
where finite and nowhere negative infinity) attains a value close to its infimum
at some point then a nearby point minimizes a slightly perturbed function.

Theorem 6.2.1 (Ekeland variational principle) Suppose the function f :
Rn → (−∞, +∞] is closed and the point x ∈ Rn satisfies f(x) ≤ inf f + ε for
some real ε > 0. Then for any real λ > 0 there is a point v ∈ Rn satisfying the
conditions
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(a) ‖x− v‖ ≤ λ,

(b) f(v) ≤ f(x), and

(c) v is the unique minimizer of the function f(·) + (ε/λ)‖ · −v‖.

Proof. We can assume f is proper, and by assumption it is bounded below.
Since the function

f(·) +
ε

λ
‖ · −x‖

therefore has compact level sets, its set of minimizers M ⊂ Rn is nonempty and
compact. Choose a minimizer v for f on M . Then for points z 6= v in M we
know

f(v) ≤ f(z) < f(z) +
ε

λ
‖z − v‖,

while for z not in M we have

f(v) +
ε

λ
‖v − x‖ < f(z) +

ε

λ
‖z − x‖.

Part (c) follows by the triangle inequality. Since v lies in M we have

f(z) +
ε

λ
‖z − x‖ ≥ f(v) +

ε

λ
‖v − x‖ for all z in Rn.

Setting z = x shows the inequalities

f(v) + ε ≥ inf f + ε ≥ f(x) ≥ f(v) +
ε

λ
‖v − x‖.

Properties (a) and (b) follow. 2

An immediate counterpart, far from easy before the advent of Ekeland’s
principle, is the following.

Proposition 6.2.2 Let f : Rn → R be differentiable and bounded below. Let
ε > 0 be given. Then f has a ε-critical point: a point v with

‖∇f(v)‖ ≤ ε. (6.2.33)
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Proof. Since f is bounded below fε = f + ε‖ · ‖ has bounded lower level sets
and so achieves its infimum at some point v. Then we may check that

‖∇f(v)‖ ≤ ‖∇fε(v)‖+ ε = ε. (6.2.34)

2

In many cases, this idea allows one ultimately to establish that the infimum
does exist. Nonetheless, it is instructive to apply this result to a function, such
as exp, that does not achieve its infimum.

Given a set C ⊂ Rn and a continuous self map f : C → C, we ask whether f
has a fixed point: f(x) = x. Ekeland’s principle also has important, constructive
applications to fixed point theory. We call f a contraction map if there is a real
constant γf < 1 such that

‖f(x)− f(y)‖ ≤ γf‖x− y‖ for all x, y ∈ C. (6.2.35)

We are now able to painlessly establish a version of one of the most important
theorems in applied analysis.

Theorem 6.2.3 (Banach contraction) Any contraction on a closed subset of
Rn has a unique fixed point.

Proof. Suppose the set C ⊂ Rn is closed and the function f : C → C satisfies
the contraction condition (6.2.35). We apply the Ekeland variational principle
(6.2.1) to the function

z ∈ Rn 7→
{‖z − f(z)‖ if z ∈ C

+∞ otherwise

at an arbitrary point x in C, with the choice of constants

ε = ‖x− f(x)‖ and λ =
ε

1− γf

.

This shows there is a point v in C satisfying

‖v − f(v)‖ < ‖z − f(z)‖+ (1− γf )‖z − v‖
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for all points z 6= v in C. Hence v is a fixed point, since otherwise choosing
z = f(v) gives a contradiction. The uniqueness is easy. 2

With a little more work, we may estimate how far the fixed point is from
our initial guess. Now, what if the map f is not a contraction? A very useful
weakening of the notion is the idea of a nonexpansive map, which is to say a self
map f satisfying

‖f(x)− f(y)‖ ≤ ‖x− y‖ for all x, y.

A nonexpansive map on a nonempty compact set or a nonempty closed convex
set may not have a fixed point, as simple examples like translations on R or
rotations of the unit circle show. On the other hand, a straightforward argument
using the Banach contraction theorem shows this cannot happen if the set is
nonempty, compact, and convex. Indeed, it suffices to pick some x0 ∈ C and to
consider the perturbed contraction mapping

fτ (x) = (1− τ)f(x) + τ x0. (6.2.36)

This map must have a fixed point xτ with

‖f(xτ )− xτ‖ ≤ τ diam(C). (6.2.37)

Now again taking limits completes the argument. In practice, this is often not
a good way to find the fixed point, but it is a very good way to start.

Another example where the variational method shines is:

Example 6.2.4 The Rayleigh Quotient.

Let A be a n× n symmetric matrix. Consider the function

fA(x) =
〈Ax, x〉
‖x‖2

, (6.2.38)

defined on the open set x 6= 0 in Rn. Consider the minimum (or maximum)
value of this function, which must exist since fA is positively homogeneous and
is continuous on the unit sphere.
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Now the upshot is that, using the quotient rule, any such maximal (minimal)
point, v, is an eigen-vector: Av = λv for some real λ which is a maximal (min-
imal) eigenvalue. Alternatively, the reader familiar with Lagrange multipliers,
can reach the same conclusion from studying min{fA(x) : ‖x‖ = 1}. From this
the whole spectral theory of symmetric matrices can be obtained. 2

6.3 Maximum Entropy Optimization

Maximum entropy methods are widely used in fields including crystallography,
image reconstruction and the like. We consider the convex function p : R 7→
(−∞, +∞] given by

p(u) =





u log u− u if u > 0
0 if u = 0
+∞ if u < 0

and the associated convex function (the negative of the Boltzmann-Shannon
entropy) f : Rn 7→ (−∞, +∞] by

f(x) =
n∑

i=1

p(xi).

Then f is strictly convex on Rn
+, with compact lower level sets. Moreover, it

is differentiable on the interior of the orthant while the directional derivative
f ′(x; x̂ − x) = −∞ for any point x on the boundary of Rn

+. This “barrier”
property makes the entropy highly effective in many variational settings [61].

We consider a linear map G : Rn 7→ Rm such that Gx̂ = b for some x̂. Then
for any vector c in Rn, the minimization problem

inf{f(x) + 〈c, x〉 |Gx = b, x ∈ Rn}

has a unique optimal solution, x̄, and all its coordinates are strictly positive.
Moreover, some vector λ in Rm satisfies

∇f(x̄) = G∗λ− c that is x̄i = exp(G∗λ− c)i, (6.3.39)
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for all i. This can be achieved by solving G(exp(G∗λ − c)) = b for λ̄, using
any nonlinear solver one wishes and setting x̄ = exp(G∗λ̄) − c. Here G∗ is the
transpose matrix.

As a striking example of the variational method, we consider the problem of
determining when a square matrix A can be pre- and post-multiplied by diagonal
matrices D1 and D2, so that D1AD2 is doubly stochastic (each row and column
sums to one and all entries are non-negative). Such problems (called “DAD
problems”) arise in actuarial science and afford a fine example of variational
methods at work.

Suppose the k × k matrix A has each entry aij nonnegative. We say A has
doubly stochastic pattern if there is a doubly stochastic matrix with exactly the
same zero entries as A. Define a set Z = {(i, j)|aij > 0}, and let RZ denote the
set of vectors with components indexed by Z, and let RZ

+ denote those vectors
in RZ with all nonnegative components.

Consider the maximum entropy problem (P):

inf
∑

(i,j)∈Z(p(xij)− xij log aij)

subject to
∑

i:(i,j)∈Z xij = 1 for j = 1, 2, · · · , k∑
j:(i,j)∈Z xij = 1 for i = 1, 2, · · · , k

x ∈ RZ .

The next result answers the question of when diagonalization is possible.

Theorem 6.3.1 (DAD). Suppose A has doubly stochastic pattern. Then there
is a point x̂ in the interior of RZ

+ which is feasible for the problem above. Hence
the problem has a unique optimal solution x̄, and, for some vectors λ and µ in
Rk, x̄ satisfies

x̄ij = aij exp(λi + µj) for (i, j) ∈ Z.

Moreover, A has doubly stochastic pattern if and only if there are diagonal
matrices D1 and D2 with strictly positive diagonal entries and D1AD2 doubly
stochastic.

Note that the best case is when all entries of A are strictly positive. It is
good fun to formally use the classical method of Lagrange multipliers (λ and µ
above) to obtain this result, the prior discussion legitimates the process. A very
satisfactory byproduct is that we have an algorithm for diagonalization, either
by directly minimizing (P) or by using the dual system implicit in (6.3.39). (See
Exercise 23.)
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6.4 A Magnetic Resonance Entropy

The Hoch and Stern information measure, or neg-entropy, arises in nuclear mag-
netic resonance (NMR) analysis . It is defined in complex n−space by

H(z) =
n∑

j=1

h(zj/b),

where h is convex and given (for scaling b) by:

h(z) = |z| log
(
|z|+

√
1 + |z|2

)
−

√
1 + |z|2

for quantum theoretic reasons.
It is easy to check by hand or computer (as was indeed the case) that

h∗(z) = cosh(|z|).
By comparison the Boltzmann-Shannon entropy is

(z log z − z)∗ = exp(z).

Efficient dual algorithms now may be constructed that are not at all apparent
from the original formulation

Knowing “closed forms” helps:

(exp exp)∗(y) = y log(y)− y{W (y) + W (y)−1}
where Maple or Mathematica knows the complex Lambert W function, which is
the solution of

W (x)eW (x) = x.

Thus, the conjugate’s series is as well known to the computer algebra system as
that for exp:

−1 + (log(y)− 1) y − 1

2
y2 +

1

3
y3 − 3

8
y4 +

8

15
y5 + O

(
y6

)
.

The W function arises usefully in many places. It was only recently that the
function was named and then began to have a literature, largely because it had
a name and existed in Maple and Mathematica. Unnamed objects are unlikely
to be studied in an organized fashion.
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6.5 Computational Complex Analysis

We would be remiss not to indicate how complex analysis comes to life in the
presence of symbolic and numeric computation. We start by stating three fun-
damental theorems, each of which is most useful heuristically and formally.

Theorem 6.5.1 (Argument principle) Suppose f is meromorphic inside a
bounded region containing a simple closed curve C which contains no poles or
zeros of f . Then

1

2πi

∫

C

f ′(z)

f(z)
dz = N(C)−M(C), (6.5.40)

where N(C) is the number of zeros and M(C) is the number of poles inside C,
and the integral is taken counter-clockwise.

This is directly accessible to computation. We illustrate this at length in
Exercise 2 at the end of this chapter. A shorter example is:

Example 6.5.2 Find the number of zeros of P (z) = z3 + 3z2 + 6z + 4 with
Re(z) > 0.

We note that P has no zeros on the positive real axis and has one or three on the
negative real axis (by Déscartes rule of signs). If we integrate over C(r) = {z :
|z| ≤ r}, to six places we get N(C(1.5)) = 1.00000 and N(C(2.5)) = 3.00001,
so we have located two complex zeros in the annulus between these two circles.
Correspondingly, N(91/24+C(109/24)) = 0 (to eight digits) and thus with three
circles we have answered the question, as in Figure 6.1.

In fact the zeros are at −1 and −1±√3i. 2

A fairly direct consequence of the maximum principle, namely that the max-
imum of the modulus of a nonconstant analytic function occurs only on the
boundary of whatever region we are considering, is:

Theorem 6.5.3 (Rouché’s theorem) Let f(z) and g(z) be analytic inside
and on a simple closed curve C. Suppose that |g(z)| < |f(z)| on C. Then f(z)
and f(z)− g(z) have the same number of zeros inside C.
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Computation can assure us that f and g do indeed satisfy both the hypotheses
and the conclusions of the theorem. We leave some examples as exercises.

The third more specialized result is a very useful consequence of the Cauchy
residue theorem due to Lindelöf (1905).

Theorem 6.5.4 (Cauchy-Lindelöf) Let k(z) and r(z) be meromorphic in the
complex plane. Suppose that r(z) is a rational function which is O(z−2) at in-
finity while k(z) is o(z) over an infinite set of circles |z| = Rn →∞. Then

−
∑
p∈P

Res(r k(s), s = p) =
∑
q∈Q

Res(r k(s), s = q) (6.5.41)

where P denotes the poles of r and Q denotes the poles of k that are not poles
of r.

Recall that the residue, Res(f(s), s = a), is defined as the coefficient of
(x− a)−1 in the Laurent series expansion of f . Again, they are most accessible
to assisted computation.

Let k(z) = π/ sin(πz) and r(z) = 1/(z2 + 1), which clearly satisfy the
hypotheses of the Cauchy-Lindelöf theorem. Then Q consists of the zeros of
sin(πz), thus Q = Z, and P is {±i}. Maple computes the left side of (6.5.41)
to be π/ sinh(π). Correspondingly we can easily check in Mathematica that the
terms of the right side from -6 to 6 are

1/37,−1/26, 1/17,−1/10, 1/5,−1/2, 1,−1/2, 1/5,−1/10, 1/17,−1/26, 1/37

so the general term is clearly (−1)n

n2+1
and we have evaluated

1 + 2
∞∑

n=1

(−1)n

n2 + 1
=

π

sinh(π)
.

Similarly with r(z) = 1/z2 we reobtain

−1

6
π2 = 2

∞∑
n=1

(−1)n

n2
.

More examples are scattered through the book.
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Figure 6.1: Trapping the zeros
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x

W

−1/e

Figure 6.2: Real branches of Lambert’s function that satisfy W exp W = x

It is a nice exercise now to obtain the sin product from the Cauchy-Lindelöf
theorem applied to cot(z)− 1/z and 1

(z−w)z
to deduce first that

w cot(w)− 1 = 2w2

∞∑
n=1

1

n2π2 − w2
,

and to find corresponding formulae for other trig functions.

6.6 The Lambert Function

As noted in Section 6.4, the Lambert W function satisfies

W (x)eW (x) = x . (6.6.42)

We give a short primer on W in Section 6.6.3, and a survey of history, properties
and applications of W is to be found in [81, 83].

There is a branch point of W at x = −1/e, where W (x) = −1. See Figure 6.2,
which can be produced in Maple by the command
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> plot( [ t*exp(t), t, t=-5..1 ], -1..3, -4..1 );

The two real-valued branches of W are denoted W0(x) and W−1(x); we also refer
to W0(x) as the principal branch. To understand the function near the branch
point at x = −1/e, after various experiments, we decide to compute the series

of W0

(
−e−1−z2/2

)
. We obtain, very quickly, that

W0

(− exp(−1− z2/2)
)

= −1 + z − 1

3
z2 +

1

36
z3 +

1

270
z4 +

1

4320
z5 − 1

17010
z6

− 139

5443200
z7 − 1

204120
z8 − 571

2351462400
z9 + O

(
z10

)
.

6.6.1 The Lambert Function and Stirling’s Formula

We look up the sequence of denominators 1, 3, 36, 270, 4320, · · · , in [194]. [Some-
times denominators have nontrivial common factors with numerators. Cancel-
lation of these common factors makes any “guessing” procedure more difficult.]
Thus, reference [158] would not easily be found by a normal citation search.
We find out in [158] that equation (6.6.43) gives coefficients needed in Stirling’s
formula for n!, which begins

n! ∼
√

2πnnne−n

(
1 +

1

12 n
+

1

288 n2
− 139

51840 n3
− 571

2488320 n4
+ O

(
1

n5

))
.

The connection we discover (without doing any work ourselves) is that if

W0

(
−e−1−z2/2

)
=

∑

k≥0

(−1)k−1ak zk ,

then

n! ∼
√

2πn nne−n
∑

k≥0

1 · 3 · 5 · · · (2k + 1)

nk
a2k+1 .

Moreover, there is a lovely (and useful!) recurrence relation for the ak’s,
namely a0 = 1, a1 = 1, and

an =
1

(n + 1)a1

(
an−1 −

n−1∑

k=2

kakan+1−k

)
.
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6.6.2 The Lambert Function and Riemann Surfaces

As we have seen, tools such as Matlab and Mathematica permit easy accurate
visualization of many objects, including Riemann surfaces [82, 204]. We now
describe a simple technique for visualization of Riemann surfaces, namely to
make 3-d plots of Ref(z) or Imf(z).

It is necessary to prove something—namely, that we do get a good picture of
the Riemann surface and not just a 3-d plot of an imaginary or real part. The
key point is that given w = u + iv = f(z) = f(x + iy), then we get an accurate
Riemann surface by plotting, say, (x, y, v) if and only if the missing piece of
information (here, u) is completely determined once x, y, and v are given.

This is simple, if not obvious: once we have a smooth three-dimensional
surface, each point of which can be associated with a unique value (i.e., ordered
pair) of the map z 7→ w = f(z), then we have a representation of the Riemann
surface of f . The exact association is not automatic. For example, if w = log(z)
and we plot (x, y, u), then we do not get a picture of the Riemann surface for
logarithm, because the branch of v = =(w) = arg (z) is not determined from
u = log(x2 + y2)/2, x, and y. If we plot (x, y, v), we do recover the classical
picture of the Riemann surface for log(z), because given x, y, and v we can
easily find u. Figure 6.3 gives a static representation of the Riemann surface for
the Lambert W function. Many others are graphed in [82] and [204].

A one-to-one correspondence proof. Given x, y, and v, we have to solve for
u. Of course, one takes the existence of (u, v) for a given (x, y), [81]. We have

(u + iv)eu+iv = x + iy ,

which gives

ueu + iveu = (x + iy)e−iv = (x + iy)(cos v − i sin v) ;

therefore,

ueu + iveu = (x cos v + y sin v) + i(y cos v − x sin v) .

If v 6= 0, and moreover y cos v − x sin v 6= 0, then dividing the real part by
the imaginary part gives u in terms of x, y, and v:

u =
v(x cos v + y sin v)

y cos v − x sin v
.
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Figure 6.3: The Riemann surface for the Lambert function.

This solution is unique. Investigation of the exceptional conditions v = 0 or
y cos v − x sin v = 0 leads to u exp u = x, which has two solutions if and only if
−1/e ≤ x < 0, in the case v = 0, and to the singular condition u = −∞ and
x = y = 0.

This is precisely what we observe in the graph: two sheets intersect only if
−1/e ≤ x < 0 (note in color, the colors are different and hence, the corresponding
sheets on the Riemann surface do not “really” intersect), and all sheets have a
singularity at the origin, except the central one, which contains v = 0. This is
as good a representation of the Riemann surface for the Lambert W function as
can be produced in three dimensions. However, Figure 6.3 is nowhere near as
intelligible as a live plot. On a personal computer, the use of OpenGL by Maple
allows the plot to be rotated by direct mouse control. This helps give a good
sense of what the surface is really like, in three dimensions.
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6.6.3 The Lambert Function in Brief

If you have used Maple or Mathematica to solve transcendental equations, you
may already have encountered the Lambert W function, defined by (6.6.42).
The history and some of the properties of this remarkable function are described
in [81]. The function provides a beautiful new look at much of undergraduate
mathematics, and much of intrinsic interest. Here are some of the elementary
properties of W .

1. On 0 ≤ x < ∞ there is one real-valued branch W (x) ≥ 0 (see Figure 6.2).
On −1/e < x < 0 there are two real-valued branches. We call the branch
that has W (0) = 0 the principal branch. On this branch, it is easy to see
that W (e) = W (1 · e1) = 1.

2. The derivative of W can be found by implicit differentiation to be

d

dx
W (x) =

1

(1 + W (x))eW (x)

=
W (x)

(1 + W (x))x
,

where the second formula follows on using exp W (x) = x/W (x), and holds
if x 6= 0. We may use the first formula to find the value of the derivative
at x = 0, and we see the singularity is just a removable one.

3. The function y = W (exp z) satisfies

y + log y = z .

This function appears, for example, in convex optimization. Consider
the convex conjugate, f ∗(s) = supr rs − f(r), of the function f(r) =
r log(r/(1− r))− r. Show that f ∗(s) = W (exp s).

4. W (x) has a Taylor series about x = 0 with rational coefficients. Similarly,
W (exp z) has a Taylor series with rational coefficients about z = 1. The
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first few terms are

W (ez) = 1 +
1

2
(z − 1) +

1

16
(z − 1)2 − 1

192
(z − 1)3 − 1

3072
(z − 1)4

+
13

61440
(z − 1)5− 47

1474560
(z − 1)6 − 73

41287680
(z − 1)7

+
2447

1321205760
(z − 1)8 − 16811

47563407360
(z − 1)9

− 15551

1902536294400
(z − 1)10 + O((z − 1)11).

5. There is an exact formula for the coefficients of the nth derivative of
W (exp z), in terms of second-order Eulerian numbers 〈〈n

k

〉〉 [126]. This
formula comes from the following expression for the nth derivative of
W (exp z), which is stated in [81]. Once the answer is known, the proof is
an easy induction, which we leave for the reader.

6. The derivatives of W (exp z) are

dn

dzn
W (ez) =

qn(W (ez))

(1 + W (ez))2n−1 , (6.6.43)

where qn(w) is a polynomial of degree n satisfying the recurrence relation

qn+1(w) = −(2n− 1)wqn(w) + (w + w2)q′n(w) , n > 1 (6.6.44)

and having the explicit expression

qn(w) =
n−1∑

k=0

〈〈
n− 1

k

〉〉
(−1)kwk+1 . (6.6.45)

If n = 1 we have q1(w) = w, and it is convenient to put q0(w) = w/(1+w);
this isn’t a polynomial, but it makes things work out right. This means
the series for W (exp z) about z = 1 is just

W (ez) =
∑
n≥0

qn(1)

n!22n−1
(z − 1)n . (6.6.46)
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6.7 Commentary and Additional Examples

1. The Selberg integral. The Selberg integral (see [11]) is an N -dimensional
extension of Euler’s beta integral

SN(λ1, λ2, λ) =

(
N∏

l=1

∫ 1

0

dtl t
λ1
l (1− tl)

λ2

) ∏

1≤j<k≤N

|tk − tj|2λ

(the beta integral is the case N = 1). Selberg evaluated this integral as a
product of gamma functions:

SN(λ1, λ2, λ) =
N−1∏
j=0

Γ(λ1 + 1 + jλ)Γ(λ2 + 1 + jλ)Γ(1 + (j + 1)λ)

Γ(λ1 + λ2 + 2 + (N + j − 1)λ)Γ(1 + λ)
.

For example,
∫ 1

0

∫ 1

0

xa (1− x)b ya (1− y)b (|x− y|)2 c dxdy (6.7.47)

=
Γ (a + 1) Γ (b + 1) Γ (a + 1 + c) Γ (b + 1 + c) Γ (1 + 2 c)

Γ (a + b + 2 + c) Γ (a + b + 2 + 2 c) Γ (c + 1)
.

The Selberg integral gives rise to many variations and to interesting tests
of multi-dimensional integration routines. A beautiful and illustrative ap-
plication is to evaluate Gaussian ensembles arising in statistical mechanics
such as
∫ ∞

0

· · ·
∫ ∞

0

exp

(
−1

2

n∑
i=1

x2
i

) ∏
1≤i<j≤n

|xi − xj|2γ dx =
n∏

j=1

Γ(γ j + 1)

Γ(γ + 1)
.

2. Establishing inequalities numerically via the argument principle.
This refers to Theorem 6.5.1. We consider the logarithmic and 2

3
-power

means,

L(x, y) =
x− y

log(x)− log(y)
, M(x, y) =

3
2

√
x

2
3 + y

2
3

2
.

A delicate estimate of an elliptic integral was reduced to establishing the
elementary inequalities:

L−1(M(x, 1),
√

x) < L−1(x, 1) < L−1(M(x, 1), 1) for 0 < x < 1.
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(a) To prove the right-hand inequality, we may draw on graphic/symbolic
assistance to establish:

F(x) = L−1(M(x, 1), 1)− L−1(x, 1) > 0 for 0 < x < 1.

Using any plotting routine, we will see that M is a mean (or in
other words, min(a, b) ≤ M(a, b) ≤ max(a, b)): as x < M(x, 1) <
1 illustrates. Also we observe that L−1 is decreasing. These two
graphical hints lead us directly to a proof of the right-hand inequality.

(b) The left-hand inequality is equivalent to the following:

E(x) = L−1(x, 1)− L−1(M(x, 1),
√

x) > 0 for 0 < x < 1.

This can be accomplished with a mix of numeric/symbolic methods:

i. establishing that limx→0+ E(x) = ∞;

ii. using a Newton-like iteration to show that E(x) > 0 on [0.0, 0.9];

iii. using a Taylor series expansion to show E(x) has 4 zeroes at 1;
and then

iv. using the Argument Principle to establish there are no more zeros
inside C = {z : |z − 1| = 1

4
}:

1

2πi

∫

C

E ′
E = #(E−1(0); C)

(the number of zeros inside C).

These steps can each be made effective, and so constitute a proof, the only
one so far known. It is the last step (iv) that requires care (to use a nu-
merical quadrature rule in which one can ensure the integral is actually to
one significant place as claimed. Just because we can compute it correctly
to twenty places does not ensure that.)

3. Some limits of integrals. Evaluate:

(a)

lim
x→∞

x4

e3 x

∫ x

0

∫ x−u

0

eu3+v3

dv du

(
=

2

9

)
.
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(b)

lim
n→∞

1

n4

2 n∏
i=1

(
n2 + i2

)1/n
(= 25 exp(2 arctan (2)− 4) ).

4. Carleman’s inequality. Determine

sup
S

∑∞
n=1(x1x2 · · · xn)1/n

∑∞
n=1xn

(= e),

where S denotes all non-negative non-zero sequences. Hint: consider se-
quences of the form nn/(n + 1)(n−1). The recent survey [105] contains a
fine selection of proofs and of extensions of Carleman’s inequality.

5. The origin of the elliptic integrals. The elliptic integrals take their
name from the fact that E provides the arclength of an ellipse.

(a) Show that the arclength, L, of an ellipse with major semi-axis a and
minor semi-axis b is

L = 4a E
′
(

b

a

)
=

∫ π

−π

√
a2 cos2 (θ) + b2 sin2 (θ) dθ.

(b) The period, p, of a pendulum with amplitude α and length L is

p = 4

√
L

g
K

(
sin

(α

2

))
,

where g is the gravitational constant. Deduce that for small amplitude
p ≈ 2π

√
L/g, as is the case of simple harmonic oscillation.

(c) Use the AGM iteration

π/2

M(a, b)
=

∫ π/2

0

dt√
a2 cos2(t) + b2 sin2(t)

. (6.7.48)

to write a fast algorithm to compute p to arbitrary precision. Combine
this with Legendre’s identity

E(k) K(k′) + K(k) E ′(k)−K(k) K ′(k) =
π

2
.

to compute the arclength of an ellipse.
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Recall that a function is elementary if it can be realized in a finite num-
ber of steps from compositions of algebraic, exponential and trigonometric
functions and their inverses. Liouville in 1835 was able to show that E and
K are non-elementary transcendental functions. By contrast, the formula
for the area of an ellipse was known to Archimedes.

6. Euler’s integral for hypergeometric functions. Establish Euler’s in-
tegral for the hypergeometric function

F(a, b, c; x) =
Γ (c) Γ (b)

Γ (c− b)

∫ 1

0

tb−1 (1− t)c−b−1 (1− tx)−a dt (6.7.49)

for Re(c) > Re(b) > 0. Appropriately interpreted the right side of (6.7.49)
is valid outside of [1,∞) and so provides an analytic continuation of F.
Hint: Expand (1 − xt)a by the binomial theorem and observe that term-
by-term one has a β integral which as we saw can be written in terms of
gamma functions.

7. A hypergeometric function identity. Show that

1

x
F(1− y, 1, 1 + x;−1) +

1

y
F(1− x, 1, 1 + y;−1) = 2x+y−1 β(x, y).

Hint: Use (6.7.49).

8. Multiple hypergeometric functions. There are many extensions to
hypergeometric functions in several complex variables. We list one as an
example

F (α, β, β′, γ; x, y) =
∑

m,n≥0

(α)m+n (β)m (β′)n

(γ)m+n m! n!
xmyn.

This function (and three similar ones) satisfies a pair of second order partial
differential equations. For various choices of parameters it reduces to the
classical hypergeometric function:

F (α, β, β′, γ; x, x) = F (α, β + β′, γ; x) .
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It also has a double integral of Euler type

F (α, β, β′, γ; x, y) =
Γ(γ)

Γ(β)Γ(β′)Γ(γ − β − β′)
(6.7.50)

×
∫

Ω

uβ−1vβ′−1(1− u− v)γ−β−β′−1 (1− ux− vy)−α dudv,

where Ω is the positive quadrant of the unit circle, {(x, y) : x ≥ 0, y ≥
0, x2 + y2 ≤ 1}, and Re β > 0, Re β′ > 0, Re γ − β − β′ > 0. Attempt to
numerically validate (6.7.50) and to prove the identity.

9. Another hypergeometric function evaluation. Following Gauss, eval-
uate

F (a, b, c; 1) =
Γ (c) Γ (c− a− b)

Γ (c− a) Γ (c− b)
(6.7.51)

and determine the region of validity.

10. Berkeley problem 2.2.13. Find the singular matrix S nearest in Eu-

clidean norm to

[
1 0

0 2

]
. Hint: Directly solve the implied optimization

problem using a computer algebra program. Answer: S =

[
0 0

0 2

]
.

11. Kirchhoff’s law. Consider a finite, undirected, connected graph with
vertex set V and edge set E. Suppose that α and β in V are distinct
vertices and that each edge ij in E has an associated “resistance” rij > 0
in R. We consider the effect of applying a unit “potential difference”
between the vertices α and β. Let V0 = V \ {α, β}, and for “potentials” x
in RV0 we define the “power” p : RV0 → R by

p(x) =
∑
ij∈E

(xi − xj)
2

2rij

,

where we set xα = 0 and xβ = 1.

(a) Prove the power function p has compact level sets.
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(b) Deduce the existence of a solution to the following equations (describ-
ing “conservation of current”):

∑
j : ij∈E

xi − xj

rij

= 0 for i in V0

xα = 0

xβ = 1.

(c) Prove the power function p is strictly convex.

(d) Deduce that the conservation of current equations in part (b) have a
unique solution.

12. Berkeley problem 7.1.14. Show that the functions t 7→ exp(αkt) are lin-
early independent over R when the corresponding real numbers α1, α2, · · · ,
αn are distinct. Hint: Use Maple or Mathematica to observe the relative
growth of the exponential values, given some sample values of αi.

13. A central binomial series. Show that

arcsin2 (x) =
1

2

∞∑
m=1

(2x)2m

m
(
2m
m

)

by showing that both sides satisfy the same differential equation.

14. Branches of arcsin. Consider

u(r) = arcsin

(
4
√

sin (r)
1− sin (r)

1 + sin2 (r)

)
.

Determine the behavior of u and u(2) on [0, π/2], and do the same for
v(r) = u(2r) on [0, π/4]. Hint: Start by plotting u and u(2) and the
identity.

15. Integrating Γ−1.

(a) Evaluate ∫ ∞

0

1

x
[
π2 + log2 (x)

] dx.
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(b) Show ∫ ∞

0

1

Γ (x + 1)
dx = e− 1

π

∫ π
2

−π
2

e−eπ tan(θ)

dθ,

and ∫ ∞

0

1

Γ (x)
dx = e +

1

π

∫ π
2

−π
2

eπ tan(θ) e−eπ tan(θ)

dθ.

(c) For integer n ≥ 0, show

∫ −n+1

−n

1

Γ (x)
dx = (−1)n

∫ ∞

0

e−x (x + 1) xn−1

π2 + log2 (x)
dx

=
(−1)n

π

∫ π
2

−π
2

(
eπ tan(θ) + 1

) enπ tan(θ)

eeπ tan(θ)
dθ

and ∫ 0

−n

1

Γ (x)
dx =

∫ ∞

0

e−x (−x)n − 1

π2 + log2 (x)
dx.

Hence estimate the size of
∫ 0

−n
Γ (x)−1 dx asymptotically. In each case the

rightmost expression is much easier to compute.

One way to do this is to use Laplace’s method which is suited to asymp-
totics of integrals of the form I(x) =

∫ b

a
e−xp(t)q(t) dt, for appropriate posi-

tive p(t) and q(t) for which the bulk of the value of (x) is determined by the

minimum value p(c), and one estimates that I(x) ≈ ∫ b

a
e−x(p(c)+(t−c)p′(c))q(c) dt

which can be integrated explicitly [170]. Note that it is easy to see that
the value is “just less” than n!. References: [128, 153, 114].

16. Hankel loop integral for Γ. Show that for any complex z,

Γ(z) =

∫ (0+)

−∞
ett−z dt, (6.7.52)

where the notation denotes the integral over a counterclockwise contour
that starts at t = −∞, circles around t = 0 once and returns to t = −∞.
(Here t−z is taken to be the principal value where the contour crosses the
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positive real axis and to be continuous elsewhere.) Use (6.7.52) to show
that ∫ ∞

0

1

Γ(x)
dx = e−

∫ ∞

0

e−t

π2 + log2 (t)
dt.

Compare part (b) of the previous exercise.

17. A “gfun” proof for AG2. It is possible to entirely implement the evalu-
ation of (6.1.12) and (6.1.16). We sketch Bruno Salvy’s derivation within
Murray, Salvy and Zimmermann’s package “gfun” http://algo.inria.fr/

libraries/software.html.

(a) From (6.1.9), obtain the first dozen or so terms of the power series
for A2(x

2).

(b) The “gfun” program will guess a differential equation for A2(x
2).

(c) It will then also provide a recursion for said differential equation.

(d) This recursion is solvable in Maple to produce

un =
Γ2

(
n + 1

2

)2

Γ2 (n + 1) π

and summing
∑

n≥0 unxn produces the desired hypergeometric evalu-
ation.

(e) Provide the details of a similar albeit a little more elaborate computer
proof of hypergeometric evaluation for AG3 of Section 6.1.3.

(f) Attempt to do likewise for N = 4 and N = 7.

18. Some complex plots from Guenard and Lemberg. Plot the following
functions φk : (0, 1] 7→ C for k = 1, 2, · · · , 6 in random order on an interval
of the origin and determine from the plots which function came from which
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Figure 6.4: Which function φk is this?

plot [127].

φ1(t) = t sin
(
t−2

)
ei cos(t4)/

√
t

φ2(t) = t sin
(
t−1

)
ei cos(t−1)

φ3(t) = t sin
(
t−2

)
ei cos(t−2)

φ4(t) = t sin
(
t−1

)
ei cos2(t−1)

φ5(t) = t sin
(
t−1

)
ei
√
|cos(t−1)|

φ6(t) =
3
√

t sin2
(
t−1/2

)
e

i sin
(

1√
t

)
.

One of the functions is plotted in Figure 6.4. Answer: φ3.

19. Some ODE plots from Guenard and Lemberg. Plot the families of
solutions, in random order, to the following differential equations Ek for
k = 1, 2, · · · , 5 and determine from the plots which differential equation
generated which plot. One of the solutions is plotted in Figure 6.5 [127].
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Figure 6.5: Which equation Ek generated this?

E1 : y′ = x sin (xy)

E2 : y′ = sin (x) sin (y)

E3 : y′ = x sin (y)

E4 : y′ = y sin (x)

E5 : y′ =
sin (3x)

1 + x2
.

Answer: E3.

20. The Maclaurin series for W.

(a) Show that the Lambert W function satisfies

W (z) =
∞∑

k=1

(−k)k−1

k!
zk
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and determine the radius of convergence.

(b) Show that
∞∑

k=1

kk

k!
xk =

1

2
,

is solved by x∗ = 0.238843770191263 . . ..

(c) Determine the analytic form of this number. This evaluation was
discovered by Harold Boas [28], using the Inverse Symbolic Calculator,
while studying multidimensional versions of Harald Bohr’s 1914 result
that if

∣∣∑∞
k=0 ckz

k
∣∣ < 1 for |z| < 1 then

∑∞
k=0

∣∣ckz
k
∣∣ < 1 for |z| < 1/3

(the best possible radius).

21. Berkeley problem 4.3.7. Does there exist a continuous solution on [0, 1]
to T (f) = f , where

T (g)(x) = sin (x) +

∫ 1

0

g (y)

ex+y+1
dy?

Answer: Yes. Hint: T is a Banach contraction with constant at most
exp(−1)− exp(−2). Try plotting T n(0) for n ≤ 3.

22. Torczon’s Multidirectional Search. As computing paradigms change
so do algorithms of choice—for good reasons such as increased speed, stor-
age and parallelism and for less good reasons of vogue. Multidirectional
search techniques were popular in the early days of modern computing be-
cause of their low overhead but their relative lack of accuracy and speed
drove them out of fashion. The need to handle extremely large problems,
in which “noisy” gradients are either unavailable or very costly, coupled
with the shift to parallel computation has reawakened interest [101].

(a) Standard methods in numerical optimization, such as the general
classes of line search and trust region methods [168], use gradient
calculations to determine descent directions, or directions in which
the objective function decreases. A general class of methods that has
(re)gained popularity recently is direct search or pattern search meth-
ods, which use only function evaluations to find stationary points.

The basic direct search method is the simplex method of Nelder and
Mead [166], first published in 1965; this method starts with a simplex
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(a set of n + 1 non-degenerate points in Rn), and at each iteration
replaces the simplex point with the largest objective function value
with a new point with a smaller objective function value by reflecting
across the centroid of the other simplex points, or contracting the
entire simplex if such a point is not found.

Renewed interest in direct search methods began with the devel-
opment in 1989 of the multidirectional search (MDS) algorithm of
Virginia Torczon ,[202, 203] in which the update and contraction
rules of Nelder/Mead are combined with additional rules to maintain
the angles between the simplex points. The key achievement of the
MDS algorithm over Nelder/Mead is a new set of convergence results;
counter-examples exist where the Nelder/Mead algorithm converges
to a non-stationary point [161]. Torczon generalized the MDS algo-
rithm to a class of pattern search algorithms, where the set of grid-
points are expanded from a simplex to any set containing a positive
basis, provided the new iterate, chosen to be the “center” of the grid,
and the amount that the grid is expanded/contracted, both satisfy
very general properties that are very easily verified.

Direct search algorithms benefit from being easy to implement and
applicable to a wide range of problems for which gradient-based meth-
ods are inappropriate. In addition, direct search methods are also
easy to demonstrate in practice, and provide an example of where
visualization tools greatly aid the research and learning process.

(b) Match contour plots to iterations. Figure 6.6 shows contour
plots of three sets of three iterates (circles) of the Nelder/Mead, mul-
tidirectional search, and pattern search methods, each applied to the
Rosenbrock function:

fK(x, y) = K(y − x2)2 + (1− x)2

where K = 100 is most frequently used (K = 5 is used in the il-
lustrations). Using the general descriptions of each of these algo-
rithms, match the algorithm to the set of iterations. When executed
in parallel it is instructive to color code the computations performed
by different processors. Rosenbrock’s function causes pain for many
minimization methods because of the shape of its contours.
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Figure 6.6: Comparison of three direct search methods
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23. Computing with DAD problems. Find diagonal matrices D1 and D2

with strictly positive diagonal entries such that D1AD2 is doubly stochas-
tic, where

A =




2 10 6
1 0 4
7 15 1


 .

Hint: Observe that such matrices D1 and D2 must exist since A has doubly
stochastic pattern; for example, consider




1/3 1/3 1/3
1/2 0 1/2
1/6 2/3 1/6


 .

(a) Construct the desired matrices by solving the minimization problem
from Theorem 6.3.1.

(b) Alternatively, solve this minimization problem using one of the direct
search methods outlined in Exercise 22. For example, the following
Maple code applies Torczon’s pattern search algorithm to this specific
matrix, by considering convex combinations of the 3× 3 permutation
matrices with the same zero entry pattern as A.

p:=proc(u)
RETURN(piecewise(u>0,u*log(u)-u,u=0,0,u<0,infinity));end:

a:=proc(X,i,j)
RETURN(piecewise(A[i,j]>0,p(X[i,j])-X[i,j]*log(A[i,j]),0)); end:

obj:=proc(X,n) local i,j;
RETURN(evalf(sum(sum(a(X,i,j),i=1..n),j=1..n))); end:

define_matrix:=proc(a) local X,an,i;
X[1]:=matrix(3,3,[1,0,0,0,0,1,0,1,0]);
X[2]:=matrix(3,3,[0,1,0,1,0,0,0,0,1]);
X[3]:=matrix(3,3,[0,1,0,0,0,1,1,0,0]);
X[4]:=matrix(3,3,[0,0,1,1,0,0,0,1,0]); an:=sum(a[i],i=1..4);
RETURN(evalm(sum(a[i]/an*X[i],i=1..4))); end:

inds:=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1],[0,0,0,0],
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[-1,0,0,0],[0,-1,0,0],[0,0,-1,0],[0,0,0,-1]];
numinds:=17; Digits:=50; numiters:=1000;
objvals:=[infinity\$numiters]; stepsize:=1.1; decfactor:=0.5;
incfactor:=4.0; minval:=infinity; oldminval:=infinity;
curriter:=[1,1,1,1]; for iter from 1 t to numiters do

currind:=0;
oldminval:=minval;
for i from 1 to numinds do
X1[i]:=define_matrix(evalm(stepsize*inds[i]+curriter));
objvals[i]:=obj(X1[i],3);
if objvals[i] < minval then
minval:=objvals[i];
currind:=i;

fi;
od;
if currind > 0 then
curriter:=stepsize*inds[currind]+curriter;

fi;
if minval = oldminval then
stepsize:=decfactor*stepsize;

else
stepsize:=incfactor*stepsize;

fi;
od:

The solution is:

X =




1/5 1/2 3/10
1/3 0 2/3
7/15 1/2 1/30


, D1 =




1/10 0 0
0 1/3 0
0 0 1/15


,

D2 =




1 0 0
0 1/2 0
0 0 1/2


 .

24. Brouwer, eponymy and the fundamental theorem. The Dutch
mathematician and philosopher Luitzen Egbertus Jan Brouwer (1881–
1966) is equally well known as one of the builders of modern topology
and as the father of intuitionism (“Mathematics is nothing more, nothing
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Figure 6.7: A nonconvex set with the fixed point property

less, than the exact part of our thinking.” . . . “The construction itself is
an art, its application to the world an evil parasite.”). Intuitionism rejects
the principle of the excluded middle (“A or not A”), unless one can effec-
tively determine which case happens, and looks for fully analyzed proofs
broken into “intuitively” compelling steps. It shares certain concerns with
Bishop’s version of constructivism.

Several observations are worth making:

(i) Brouwer’s fixed point theorem (1912), that every continuous self-map of
a closed convex bounded set in Rn has a fixed point, was certainly prefigured
by others such as Hadamard and Poincaré thereby illustrating Stigler’s
principle of eponymy.

The sin (1/x) circle. One connects the segments in Figure 6.7 to the
sin (1/x) curve. This produces a connected, but not simply, highly non-
convex set, γ, such that every continuous self-map g on γ has a fixed point.
Try to prove this by considering what happens if g(0) 6= 0.

(ii) The philosopher Brouwer soon disavowed much of the mathematical
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tool-set used in his and other early proofs of his eponymous theorem.

(iii) In modern effective incarnations due to Scarf (1973) and others, the
theorem is used computationally in optimization and mathematical eco-
nomics. Many wonderful results such as the von Neumann minimax the-
orem, the Nash equilibrium theorem and Arrow-Debreu’s proof of the ex-
istence of market equilibria used Brouwer’s theorem, or its extensions, in
their first proofs.

(iv) There have been several false proofs—some by distinguished
mathematicians—of the Fundamental Theorem of Algebra based on Brouwer’s
theorem. In one case the result was applied to a discontinuous self-map!
A correct proof, based on the existence of continuous n-th roots for con-
tinuous maps from the disc to the sphere, appears in [113] but citations of
false ones continue.

(v) In this light, in her Simon Fraser Masters thesis, Tara Stuckless recently
wrote:

In a 1949 paper [12], B. H. Arnold wrote “. . . it has been known
for some time that the fundamental theorem of algebra could
be derived from Brouwer’s fixed point theorem.”. He continued
to give a simple one page proof that a polynomial with degree
n ≥ 1 has at least one complex root. Unfortunately, he did
this by applying Brouwer’s theorem to a discontinuous function.
This error was spotted and a correction was published less than
two years later [13]. In 1951, M. K. Fort followed up with a brief
proof, using the existence of continuous nth roots of a continuous
non zero function on a disk in the complex plane to show that
Brouwer can be used to prove the fundamental theorem [113].

In this author’s opinion, except for an ill-fated choice of titles,
this would have probably been the end of the incorrect proof
by Arnold. Arnold’s paper was boldly called “A Topological
Proof of the Fundamental Theorem of Algebra”, whereas Fort’s
paper was modestly titled “Some Properties of Continuous Func-
tions”. Since 1949, citations of Arnold’s paper have popped up
from time to time as proof of the existence of a topological proof
of the fundamental theorem of algebra, including in a four hun-
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dred page volume on fixed point theory published in 1981, a
talk given in 2000 at a meeting of the Association for Symbolic
Logic, as well as in newsgroup discussions that are at least as
recent as 1998. On the other hand, this author had a difficult
time tracking down Fort’s paper, even knowing before hand that
it did exist. No amount of searching electronic databases with
relevant key words would produce it, though Arnold’s paper was
invariably returned. Perhaps it would have been useful for Fort
to rename his work “A Correct Topological Proof of the Fun-
damental Theorem of Algebra”. It seems certain that Arnold
would have preferred this to having his blunder quoted so long
after he made his apologies.



Chapter 7

Numerical Techniques II

Another thing I must point out is that you cannot prove a vague
theory wrong . . . Also, if the process of computing the consequences
is indefinite, then with a little skill any experimental result can be
made to look like the expected consequences.

Richard Feynman, 1964 [199]

In this chapter, we will examine in more detail some additional underlying com-
putational techniques that are useful in experimental mathematics. In partic-
ular, we shall briefly examine techniques for theorem proving, prime number
computations, polynomial root finding, numerical quadrature, and infinte se-
ries summation. As in the first volume, we focus here on practical algorithms
and techniques. In some cases, there are known techniques that have superior
efficiencies or other characteristics, but for various reasons are not considered
suitable for practical implementation. We acknowledge the existence of such
algorithms but do not, in most cases, devote space to them.

7.1 The Wilf-Zeilberger Algorithm

One fascinating non-numerical algorithm is the Wilf-Zeilberger (WZ) algorithm,
which employs “creative telescoping” to show that a sum (with either finitely or
infinitely many terms) is zero. Below is example of WZ proof of (1 + 1)n = 2n.
This proof is from Doron Zeilberger’s original Maple program, which in turn is
inspired by the proof in [212].

329
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Let F (n, k) =

(
n
k

)
2−n. We wish to show that L(n) =

∑
k F (n, k) = 1 for

every n. To this end we construct, using the WZ algorithm, the function

G(n, k) =
−1

2(n+1)

(
n

k − 1

)(
=

−k

2(n− k + 1)
F (n, k)

)
, (7.1.1)

and observe that

F (n + 1, k)− F (n, k) = G(n, k + 1)−G(n, k). (7.1.2)

By applying the obvious telescoping property of these functions, we can write
∑

k

F (n + 1, k)−
∑

k

F (n, k) =
∑

k

(G(n, k + 1)−G(n, k))

= 0, (7.1.3)

which establishes that L(n+1)−L(n) = 0. The fact that L(0) = 1 follows from
the fact that F (0, 0) = 1 and 0 otherwise.

Obviously this proof does not provide much insight, since the difficult part of
the result is buried in the construction of 7.1.1. In other words, this is an instance
where computers provide “proofs,” but these “proofs” tend to be uninteresting.
Nonetheless the extremely general nature of this scheme is of interest. It possibly
presages a future in which a wide class of such “proofs” can automatically be
obtained in a computer algebra system. Details and additional applications of
this algorithm are given in [212].

7.2 Prime Number Computations

In Chapter 2 of the first volume we mentioned the connection between prime
numbers and the Riemann zeta function. Prime numbers crop up in numerous
other arenas of mathematical research, and often even in commercial applica-
tions, with the rise of RSA encryption methods on the Internet. Inasmuch as
this research topic is certain to be of great interest for the foreseeable future, we
mention here some of the techniques for counting, generating and testing prime
numbers.

The prime counting function π(x) mentioned in Chapter 2 of the first volume
is of central interest in this research. It is clear from even a cursory glance at the
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data in Table 2.2 of the first volume, that the researchers who have produced
these counts are not literally testing every integer up to 1022 for primality—that
would require much more computation than the combined power of all computers
worldwide, even using the best known methods to test individual primes. Indeed,
some very sophisticated techniques have been employed, which unfortunately
are too technical to be presented in detail here. We refer interested readers to
the discussion of this topic in the new book Prime Numbers: A Computational
Perspective by Richard Crandall and Carl Pomerance [86, 140-150]. Readers who
wish to informally explore the behavior of π(x) may use the following algorithm,
which is a variant of a scheme originally presented by Eratosthenes of Cyrene
about 200 BCE [86, pg. 114]:

Algorithm 1 Blocked Sieve of Eratosthenes.

We are given an interval (L,R), where L and R are even integers, where L >
P = d√Re and a blocksize B is assumed to divide R − L. We assume that a
table of primes pk up to P of size Q = π(P ) is available.

Initialize: For k := 2 to Q set qk := −(L + 1 + pk)/2 mod pk.

Process blocks: For T := L to R − 1 step 2 · B do: for j := 0 to B − 1 set
bj := 1; for k := 2 to Q do: for j := qk to B − 1 step pk do: set bj := 0; enddo;
set qk := (qk − B) mod pk; enddo; for j := 0 to B − 1 do: if bj = 1 then output
T + 2j + 1; enddo; enddo. 2

The Sieve of Eratosothenes is only efficient if one wants to find all primes up
to a given point, or all primes in a (fairly large) interval. For testing a single
integer, or a few integers, faster means are available. We summarize some of
these individual primality tests here.

The simplest scheme, from a programming point of view, of testing whether
an integer n is prime is simply to generate a table of primes (p1, p2, · · · , pn) up
to pn >

√
n, using the Sieve of Eratosthenes, and then to iteratively divide n by

each pi. This actually works quite well for modest-sized integers, but becomes
infeasible for n beyond about 1016.

If one does not require certainty, but only high probability that a number is
prime, some very efficient probabilistic primality tests have been discovered in
the past few decades. In fact, these schemes are now routinely used to generate
primes for RSA encryption in Internet commerce. When you type in your Visa
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or MasterCard number in a secure website to purchase a book or computer ac-
cessory, somewhere in the process it is quite likely that two large prime numbers
have been generated, which were certified as prime using one of these schemes.

The most widely used probabilistic primality test is the following, which was
originally suggested by Artjuhov in 1966, although it was not appreciated until
it was rediscovered and popularized by Selfridge in the 1970s [86].

Algorithm 2 Strong probable prime test.

Given an integer n = 1 + 2st, for integers s and t (and t odd), select an integer
a by means of a pseudo-random number generator in the range 1 < a < n− 1.

1. Compute b := at mod n using the binary algorithm for exponentiation (see
Algorithm 1 in Chapter 3 of the first volume). If b = 1 or b = n− 1 then exit (n
is a strong probable prime base a).

2. For j = 1 to s− 1 do: Compute b := b2 mod n; if (b = n− 1) then exit (n is
a strong probable prime base a).

3. Exit: n is composite. 2

This test can be repeated several times with different pseudo-randomly chosen a.
In 1980 Monier and Rabin independently showed that an integer n that passes
the test as a strong probable prime is prime with probability at least 3/4, so
that m tests increase this probability to 1 − 1/4m [163, 178]. In fact, for large
test integers n, the probability is even closer to unity. Damgard, Landrock and
Pomerance showed in 1993 that if n has k bits, then this probability is greater
than 1−k242−

√
k, and for certain k is even higher [97]. For instance, if k has 500

bits, then this probability is greater than 1−1/428m. Thus a 500-bit integer that
passes this test even once is prime with the prohibitively safe odds—the chance
of a false declaration of primality is less than one part in Avogadro’s number
(6× 1023). If it passes the test for four pseudo-randomly chosen integers a, then
the chance of false declaration of primality is less than one part in a googol
(10100). Such probabilities are many orders of magnitude less than the chance
that an undetected hardware or software error has occurred in the computation.

A number of more advanced probabilistic primality testing algorithms are
now known. The current state-of-the-art is that such tests can determine the
primality of integers with hundreds to thousands of digits. Additional details of
these schemes are available in [86].
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For these reasons, probabilistic primality tests are considered entirely sat-
isfactory for practical use, even for applications, such as large interbank finan-
cial transactions, that have extremely high security requirements. Nonetheless
mathematicians have long sought tests that remove this last iota of uncertainty,
yielding a mathematically rigorous certificate of primality. Indeed, the question
of whether there exists a “polynomial time” primality test has long stood as an
important unsolved question in pure mathematics.

Thus it was with considerable elation that such an algorithm was recently
discovered, by Manindra Agrawal, Neeraj Kayal and Nitin Saxena (initials AKS)
of the Indian Institute of Technology in Kanpur, India [2]. Their discovery
sparked worldwide interest, including a prominent report in the New York Times
[184]. Since the initial report in August 2002, several improvements have been
made. We present here a variant of the original algorithm due to Lenstra [151],
as implemented by Richard Crandall and Jason Papadopoulos, who note that
the implementations of Daniel Bernstein already provide significant acceleration
[95].

Algorithm 3 Variant AKS provable primality test.

Suppose we are given an integer p that we wish to establish as either prime or
composite. This test assumes the existence of a table of primes covering integers
up to roughly (log2 p)2.

1. Establish that p is not a proper power, meaning that p 6= ab for b > 1. This
can be done by computing p1/c for primes c up to dlog2(p)e, using appropriately
high-precision floating-point arithmetic. If p is a prime power, then of course it
is composite.

2. Set v = dlog2 pe. For integers r beginning with v +1, test whether r is prime,
and the multiplicative order of p modulo r is at least v. If not, increment r by
one until these conditions are met.

3. For a = 1 to r − 1 test that the relation

(x− a)p ≡ (xp − a) mod p, (xr − 1) (7.2.4)

holds n the polynomial ring (Z/nZ)[x]. If this condition holds for each a in the
given range, then p is prime. 2
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Arithmetic in the polynomial ring (Z/nZ)[x] can be accelerated by noting
that polynomial multiplication is simply another instance of acyclic convolution,
which can be computed using fast Fourier transforms (FFTs), as in FFT-based
multiprecision multiplication (which is discussed in the next section). Proof that
this algorithm produces a certificate of primality are in Lenstra’s manuscript
[151], and a working implementation of this scheme (which uses Crandall’s
PrimeKit software) is available from Crandall’s website http://www.perfsci.com.
A brief review of AKS implementation issues is available at [95].

7.3 Roots of Polynomials

In Section 6.2.5 of the first volume, we showed how a relatively simple scheme
involving Newton iterations can be used to compute high-precision square roots
and even to perform high-precision division. This Newton iteration scheme is,
in fact, quite general and can be used to solve many kinds of equations, both
algebraic and transcendental. One particularly useful application, frequently
encountered by experimental mathematicians, is to find roots of polynomials.
This is done by using a careful implementation of the well-known version of
Newton’s iteration

xk+1 = xk − p(x)

p′(x)
, (7.3.5)

where p′(x) denotes the derivative of p(x). As before, this scheme is most effi-
cient if it employs a level of numeric precision that starts with ordinary double
precision (16-digit) or double-double precision (32-digit) arithmetic until conver-
gence is achieved at this level, then approximately doubles with each iteration
until the final level of precision is attained. One additional iteration at the final
or penultimate precision level may be needed to insure full accuracy.

Note that Newton’s iteration can be performed, as written in (7.3.5), with
either real or complex arithmetic, so that complex roots of polynomials (with real
or complex coefficients) can be found almost as easily as real roots. Evaluation
of the polynomials p(x) and p′(x) is most efficiently performed using Horner’s
rule: for example, the polynomial p(x) = p0 + p1x + p2x

2 + p3x
3 + p4x

4 + p5x
5 is

evaluated as p(x) = p0 + x(p1 + x(p2 + x(p3 + x(p4 + xp5)))).
There are two issues that arise here that do not arise with the Newton it-

eration schemes for division and square root. The first is the selection of the
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starting value—if it is not close to the desired root then successive iterations
may jump far away. If you have no idea where the roots are (or how accurate
the starting value must be), then a typical strategy is to try numerous starting
values, covering a wide range of likely values, and then make an inventory of
the approximate roots that are found. If you are searching for complex roots,
note that it is often necessary to use a two-dimensional array of starting values.
These “exploratory” iterations can be done quite rapidly, since typically only a
modest numeric precision is required—in almost all cases just ordinary double
precision (16 digits) or double-double precision (32 digits) arithmetic will do.
Once the roots have been located in this fashion, then the full-fledged Newton
scheme can be used to produce their precise high-precision values.

The second issue is how to handle repeated roots. The difficulty here is that,
in such cases, convergence to the root is very slow, and instabilities may throw
the search far from the root. In these instances, note that we can write p(x) =
q2(x)r(x), where r has no repeated roots (if all roots are repeated, then r(x) = 1).
Now note that p′(x) = 2q(x)r(x) + q2(x)r′(x) = q(x)[2r(x) + q(x)r′(x)]. This
means that if p(x) has repeated roots, then these roots are also roots of p′(x), and,
conversely, if p(x) and p′(x) have a common factor, then the roots of this common
factor are repeated roots of p(x). This greatest common divisor polynomial q(x)
can be found by performing the Euclidean algorithm (in the ring of polynomials)
on p(x) and p′(x). The Newton iteration scheme can then be applied to find the
roots of both q(x) and r(x). It is possible, of course, that q(x) also has repeated
roots, but recursive application of this scheme quickly yields all individual roots.

In the previous paragraph, we mentioned the possible need to perform the Eu-
clidean algorithm on two polynomials, which involves polynomial multiplication
and division. For modest-degree polynomials, a simple implementation of the
schemes learned in high school algebra suffices—just represent the polynomials
as strings of high-precision numbers. For high-degree polynomials, polynomial
multiplication can be accelerated by utilizing fast Fourier transforms and a con-
volution scheme that is almost identical (except for release of carries) to the
scheme, mentioned in Section 6.2 of the first volume, to perform high-precision
multiplication. High-degree polynomial division can be accelerated by a Newton
iteration scheme, similar to that mentioned above for high-precision division.
See [86] for additional details on high-speed polynomial arithmetic.

We noted above that if the starting value is not quite close to the desired root,
then successive Newton iterations may jump far from the root, and eventually
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converge to a different root than the one desired. In general, suppose we are
given a degree-n polynomial p(x) with m distinct complex roots rk (some may
be repeated roots). Define the function Qp(z) as the limit achieved by successive
Newton iterations that start at the complex number z; if no limit is achieved then
set Qp(z) = ∞. Then the m sets {z : Qp(z) = rk} for k = 1, 2 · · · ,m constitute a
partition of the complex plane, except for a filamentary set of measure zero that
separates the m sets. In fact, each of these m sets is itself an infinite collection
of disconnected components.

The collection of these Newton-Julia sets and their boundaries form pictures
of striking beauty, and are actually quite useful in gaining insight on both the
root structure of the original polynomial and the behavior of Newton iteration
solutions. Some of the most interesting graphics of this type are color-coded plots
of the function Np(z), which is the number of iterations required for convergence
(to some accuracy ε) of Newton’s iteration for p(x), beginning at z (if the Newton
iteration does not converge at z, then set Np(z) = ∞). A black-and-white
variation of such a plot for the cubic polynomial p(x) = x3 − 1, which displays
a dot if Np(z) ≥ 20, for ε = 10−30, is shown in Figure 7.1. A color version is
shown in the Color Supplement (Chapter 8) of the first volume.

7.4 Numerical Quadrature

Experimental mathematicians very frequently find it necessary to calculate defi-
nite integrals to high precision. Recall the examples given in Chapters 1 and 5 of
the first volume, wherein we were able to experimentally identify certain definite
integrals as analytic expressions, based only on their high-precision numerical
value.

To briefly reprise one example, we were inspired by a recent problem in the
American Mathematical Monthly [3]. We found by using one of the quadrature
routines to be described below, together with a PSLQ integer relation detection
program, that if C(a) is defined by

C(a) =

∫ 1

0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

, (7.4.6)
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Figure 7.1: Newton-Julia set for p(x) = x3 − 1
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then

C(0) = π log 2/8 + G/2

C(1) = π/4− π
√

2/2 + 3
√

2 arctan(
√

2)/2

C(
√

2) = 5π2/96, (7.4.7)

where G =
∑

k≥0(−1)k/(2k+1)2 is Catalan’s constant. The third of these results
is the result from the Monthly. These particular results then led to the following
general result, among others:

∫ ∞

0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

=
π

2
√

a2 − 1

[
2 arctan(

√
a2 − 1)− arctan(

√
a4 − 1)

]
.

(7.4.8)

The commercial packages Maple and Mathematica both include rather good
high-precision numerical quadrature facilities. However, these packages do have
some limitations, and in many cases much faster performance can be achieved
with custom-written programs. And in general it is beneficial to have some
understanding of quadrature techniques, even if you rely on software packages
to perform the actual computation.

We describe here three state-of-the-art, highly efficient techniques for numer-
ical quadrature. You can try programming these schemes yourself, or you can re-
fer to the C++ and Fortran-90 programs available at http://www.expmath.info.

7.4.1 Gaussian Quadrature

Our first quadrature scheme is known as Gaussian quadrature, named after the
famous mathematician who first discovered this method in the 19th century.
Gaussian quadrature is particularly effective for functions that are bounded,
continuous and smooth on a finite interval. Unfortunately, many references
only give tables of abscissas and weights, which are useless when we need multi-
hundred digit accuracy. Thus we include here a fairly reasonably efficient scheme
for computing these parameters to any desired accuracy (although, as we will see,
the quadratic scaling of this scheme looms as an obstacle to very high-precision
implementation).
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Gaussian quadrature approximates the definite integral of the real function
f(x) on (−1, 1) as

∫ 1

−1

f(x) dx ≈
n∑

j=1

wjf(xj), (7.4.9)

where the abscissas xj are the zeroes of the degree-n Legendre polynomial Pn(x)
on [−1, 1], and the weights wj are given by

wj =
−2

(n + 1)P ′
n(xj)Pn+1(xj)

, (7.4.10)

for 1 ≤ j ≤ n (see [14, pg. 285]). The abscissas can be computed using a Newton
iteration scheme, where the starting value for xj is given by cos[π(j− 1/4)/(n +
1/2)] [175, pg. 125]. The Legendre polynomial function values can be computed
using an n-long iteration of the recurrence P0(x) = 0, P1(x) = 1 and

(k + 1)Pk+1(x) = (2k + 1)xPk(x)− kPk−1(x),

for k ≥ 2. The derivative is computed as P ′
n(x) = n(xPn(x)−Pn−1(x))/(x2−1).

In a typical implementation of Gaussian quadrature, multiple “levels” or
phases are employed, with a set of abscissas and weights pre-calculated for each
level, starting with say n = 3, and then with n doubling with each level up to
some maximum phase m. For many well-behaved functions, Gaussian quadra-
ture typically exhibits quadratic convergence, in the sense that after a few initial
levels, each subsequent level approximately doubles the number of correct dig-
its. However, each level performed also approximately doubles the computation
time, compared with the previous level.

We summarize this procedure as follows [175, pg. 125].

Algorithm 4 Gaussian quadrature.

Initialize (compute abscissas and weights):
For k := 1 to m do:
Set n := 3 · 2k;
For j := 1 to n/2 do:
Set r := cos[π(j − 1/4)/(n + 1/2)];
Iterate until r = t5 to within the “epsilon” of the working precision level:
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Set t1 := 1 and t2 := 0;
For j1 := 1 to n do:
Set t3 := t2 and t2 = t1 and calculate t1 := [(2j1 − 1)rt2 − (j1 − 1)t3]/j1;
enddo
Calculate t4 = n(rt1 − t2)/(r2 − 1) and then set t5 := r and r := r − t1/t4;
end iterate
Set xj,k = r and wj,k = 2/[(1− r2)t24];
enddo; enddo

Perform quadrature for a function f(x) on (−1, 1):
For k := 1 to m (or until successive instances yield results identical to within
the working precision) do:
Set n := 3 · 2k and set s := 0;
For j = 1 to n/2 do:
Set s := s + wj,k[f(−xj,k) + f(xj,k)];
enddo
Set Sk := s;
enddo 2

The Newton iteration scheme given in lines 4–11 above can be accelerated
by utilizing a dynamic level of precision, as in other Newton-based algorithms.
This means that the first few iterations are performed with modest precision, say
double precision or double-double accuracy. Once convergence has been achieved
at this level, additional iterations are performed with a level of precision that
nearly doubles with each iteration, until the final level of precision has been
achieved.

Error bounds are known for Gaussian quadrature, but since they rely on
bounds for the n-th derivatives of f(t), they are not very useful in this context,
since we seek schemes that work for arbitrary functions, where such information
is generally not available. See Section 7.4.4 below for some alternative means to
estimate errors and determine when results are sufficiently accurate.

7.4.2 Error Function Quadrature

The second scheme we will discuss here is known as “error function” or “erf”
quadrature. While error function quadrature is not as efficient as Gaussian
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quadrature for continuous, bounded, well-behaved functions on finite intervals,
it often produces highly accurate results even for functions with (integrable)
singularities or vertical derivatives at one or both endpoints of the interval. In
contrast, Gaussian quadrature typically performs very poorly in such instances.

The error function quadrature scheme and the tanh-sinh scheme to be de-
scribed in the next section are based on the Euler-Maclaurin summation formula,
which can be stated as follows [14, pg. 280]. Let m ≥ 0 and n ≥ 1 be integers,
and define h = (b − a)/n and xj = a + jh for 0 ≤ j ≤ n. Further assume that
the function f(x) is at least (2m + 2)-times continuously differentiable on [a, b].
Then

∫ b

a

f(x) dx = h

n∑
j=0

f(xj)− h

2
(f(a) + f(b))

−
m∑

i=1

h2iB2i

(2i)!

(
f (2i−1)(b)− f (2i−1)(a)

)− E, (7.4.11)

where B2i denote the Bernoulli numbers, and

E =
h2m+2(b− a)B2m+2f

2m+2(ξ)

(2m + 2)!
, (7.4.12)

for some ξ ∈ (a, b).
In the circumstance where the function f(x) and all of its derivatives are zero

at the endpoints a and b, the second and third terms of the Euler-Maclaurin
formula are zero. Thus the error in a simple step-function approximation to the
integral, with interval h, is simply E. But since E is then less than a constant
times h2m+2/(2m + 2)!, for any m, we conclude that the error goes to zero more
rapidly than any power of h. In the case of a function defined on (−∞,∞), the
Euler-Maclaurin summation formula still applies to the resulting doubly infinite
sum approximation, provided as before that the function and all of its derivatives
tend to zero for large positive and negative arguments.

This principle is utilized in the error function and tanh-sinh quadrature
scheme (see the next subsection) by transforming the integral of f(x) on a fi-
nite interval, which we will take to be (−1, 1) for convenience, to an integral
on (−∞,∞) using the change of variable x = g(t). Here g(x) is some mono-
tonic function with the property that g(x) → 1 as x → ∞, and g(x) → −1
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as x → −∞, and also with the property that g′(x) and all higher derivatives
rapidly approach zero for large arguments. In this case we can write, for h > 0,

∫ 1

−1

f(x) dx =

∫ ∞

−∞
f(g(t))g′(t) dt = h

∞∑
−∞

wjf(xj), (7.4.13)

where xj = g(hj) and wj = g′(hj). If the convergence of g′(t) and its derivatives
to zero is sufficiently rapid for large |t|, then even in cases where f(x) has a
vertical derivative or an integrable singularity at one or both endpoints, the
resulting integrand f(g(t))g′(t) will be a smooth bell-shaped function for which
the Euler-Maclaurin summation formula applies, as described above. In such
cases we have that the error in the above approximation decreases faster than
any power of h. The summation above is typically carried out to limits (−N,N),
beyond which the terms of the summand are less than the “epsilon” of the
multiprecision arithmetic being used.

The error function integration scheme uses the function g(t) = erf(t) and
g′(t) = (2/

√
π)e−t2 . Note that g′(t) is merely the bell-shaped probability density

function, which is well-known to converge rapidly to zero, together with all of its
derivatives, for large arguments. The error function erf(x) can be computed to
high precision as 1− erfc(x), using the following formula given by Crandall [89,
pg. 85] (who in turn attributes it to a 1968 paper by Chiarella and Reichel):

erfc(t) =
e−t2αt

π

(
1

t2
+ 2

∑

k≥1

e−k2α2

k2α2 + t2

)
+

2

1− e2πt/α
+ E, (7.4.14)

where |E| < e−π2/α2
. The parameter α > 0 here is chosen small enough to

ensure that the error E is sufficiently small. We summarize this scheme with
the following algorithm statement. Here np is the precision level in digits, and ε
is the “epsilon” level, which is typically 10−np .

Algorithm 5 Error function complement [erfc] evaluation.

Initialize:
Set α := π/

√
np log(10), and set nt := np log(10)/π.

Set t2 := e−α2
, t3 := t22, and t4 := 1.

For k := 1 to nt do: set t4 := t2 · t4, Ek := t4, t2 := t2 · t3; enddo.
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Evaluation of function, with argument x:
Set t1 := 0, t2 := x2, t3 := e−t2 and t4 := ε/(1000 · t3).
For k := 1 to nt do: set t5 := Ek/(k

2α2 + t2) and t1 := t1 + t5.
If |t5| < t4 then exit do; enddo.
Set erfc(x) := t3αx/π · (1/t2 + 2t1) + 2/(1− e2πx/α). 2

We now state the algorithm for error function quadrature. As with the
Gaussian scheme, m levels or phases of abscissas and weights are pre-computed
in the error function scheme. Then we perform the computation, increasing the
level by one (each of which approximately doubles the computation, compared
to the previous level), until an acceptable level of estimated accuracy is obtained
(see Section 7.4.4). In the following, ε is the “epsilon” level of the multiprecision
arithmetic being used.

Algorithm 6 Error function quadrature.

Initialize:
Set h := 22−m.
For k := 0 to 20 · 2m do:
Set t := kh, xk := 1− erfc(t) and wk := 2/

√
π · e−t2 .

If |xk − 1| < ε then exit do; enddo.
Set nt = k (the value of k at exit).

Perform quadrature for a function f(x) on (−1, 1):
Set S := 0 and h := 4.
For k := 1 to m (or until successive values of S are identical to within ε) do:
h := h/2.
For i := 0 to nt step 2m−k do:
If (mod(i, 2m−k+1) 6= 0 or k = 1) then
If i = 0 then S := S + w0f(0) else S := S + wi(f(−xi) + f(xi)) endif.
endif; enddo; endo.
Result = hS. 2

7.4.3 Tanh-Sinh Quadrature

The third scheme we will discuss here is known informally as “tanh-sinh” quadra-
ture. It is not well-known, but based on the authors’ experience, it deserves to
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be taken seriously because of its speed, robustness and ease of implementation.
Like the error function quadrature scheme, it is often successful in producing
high-precision quadrature values even for functions with (integrable) singular-
ities or vertical derivatives at endpoints. It was first introduced by Hidetosi
Takahasi and Masatake Mori [198, 164].

The tanh-sinh scheme is very similar to the error function scheme, in that
it is based on the Euler Maclaurin summation formula. The difference here
is that it employs the transformation x = tanh(π/2 · sinh t), where sinh t =
(et − e−t)/2, cosh t = (et + e−t)/2 and tanh t = sinh t/ cosh t. As before, this
transformation converts an integral on (−1, 1) to an integral on the entire real
line, which then can be approximated by means of a simple step-function summa-
tion. In this case, by differentiating the transformation, we obtain the abscissas
xk and the weights wk as

xj = tanh[π/2 · sinh(jh)]

wj =
π/2 · cosh(jh)

cosh2[π/2 · sinh(jh)]
. (7.4.15)

Note that these functions involved here are compound exponential, so for
example the weights wj converge very rapidly to zero. As a result, the tanh-sinh
quadrature scheme is often even more effective than the error function scheme
in dealing with singularities at endpoints.

Algorithm 7 tanh-sinh quadrature.

Initialize: Set h := 2−m.
For k := 0 to 20 · 2m do:
Set t := kh, xk := tanh(π/2 · sinh t) and wk := π/2 · cosh t/ cosh2(π/2 · sinh t);
If |xk − 1| < ε then exit do; enddo.
Set nt = k (the value of k at exit).

Perform quadrature for a function f(x) on (−1, 1):
Set S := 0 and h := 1.
For k := 1 to m (or until successive values of S are identical to within ε) do:
h := h/2.
For i := 0 to nt step 2m−k do:
If (mod(i, 2m−k+1) 6= 0 or k = 1) then
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If i = 0 then S := S + w0f(0) else S := S + wi(f(−xi) + f(xi)) endif.
endif; enddo; endo.
Result = hS. 2

7.4.4 Practical Considerations for Quadrature

Each of the schemes described above have assumed a function of one variable
defined and continuous on the interval (−1, 1). Integrals on other finite intervals
(a, b) can be found by applying a linear change of variable:

∫ b

a

f(t) dt =
b− a

2

∫ 1

−1

f

(
b + a

2
+

b− a

2
x

)
dx. (7.4.16)

Note also that integrable functions on an infinite interval can, in a similar man-
ner, be reduced to an integral on a finite interval, for example:

∫ ∞

0

f(t) dt =

∫ 1

0

[f(x) + f(1/x)/x2] dx. (7.4.17)

Integrals of functions with singularities (such as “corners” or step discontinuities)
within the integration interval (i.e., not at the endpoints) should be broken into
separate integrals.

The above algorithm statements each suggest increasing the level of the
quadrature (the value of k) until two successive levels give the same value of
S, to within some tolerance ε. While this is certainly a reliable termination test,
it is often possible to stop the calculation earlier, with significant savings in run
time, by means of making reasonable projections of the current error level. In
this regard, the authors have found the following scheme to be fairly reliable: Let
S1, S2, and S3 be the value of S at the current level, the previous level, and two
levels back, respectively. Then set D1 := log10 |S1 − S2|, D2 := log10 |S1 − S3|,
and D3 := log10 ε− 1. Now we can estimate the error E at level k > 2 as 10D4 ,
where D4 = min(0, max(D2

1/D2, 2D1, D3)). These estimation calculations may
be performed using ordinary double precision arithmetic.

All three quadrature schemes have been implemented in C++ and Fortran-90
programs available at http://www.expmath.info.
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7.4.5 2-D and 3-D Quadrature

The error function and tanh-sinh quadrature schemes can be easily general-
ized to perform two-dimensional (2-D) and three-dimensional (3-D) quadrature.
Run times are typically many times higher than with one-dimensional (1-D) in-
tegrals. However, if one is content with say 32-digit or 64-digit results (by using
double-double or quad-double arithmetic, respectively), then many two-variable
functions can be integrated in reasonable run time (say a few minutes). One
advantage that these schemes have is that they are very well suited to parallel
processing. Thus even several-hundred digit values can be obtained for 2-D and
3-D integrals if one can utilize a highly parallel computer, such as a “Beowulf”
cluster. One can even envision harnessing many computers on a geographically
distributed grid for such a task, although the authors are not aware of any such
attempts, as of this date.

One sample computation of this sort, performed by one of the present au-
thors, produced the following evaluation:

∫ 1

−1

∫ 1

−1

dx dy√
1 + x2 + y2

= 4 log(2 +
√

3)− 2π

3
. (7.4.18)

7.5 Infinite Series Summation

We have already seen numerous examples in previous chapters of mathematical
constants defined by infinite series. In experimental mathematics work, it is
usually necessary to evaluate such constants to say several hundred digit accu-
racy. The commercial software packages Maple and Mathematica include quite
good facilities for the numerical evaluation of series. However, as with numerical
quadrature, these packages do have limitations, and in some cases better results
can be obtained using custom-written computer code. In addition, even if one
relies exclusively on these commercial packages, it is useful to have some idea of
the sorts of operations that are being performed by such software.

Happily, in many cases of interest to the experimental mathematician, infinite
series converge sufficiently rapidly that they can be numerically evaluated to
high precision by simply evaluating the series directly as written, stopping the
summation when the individual terms are smaller than the “epsilon” of the
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multiprecision arithmetic system being used. All of the BBP-type formulas, for
instance, are of this category. But other types of infinite series formulas present
considerable difficulties for high precision evaluation. Two simple examples are
Gregory’s series for π/4 and a similar series for Catalan’s constant:

π = 1− 1/3 + 1/5− 1/7 + · · ·
G = 1− 1/32 + 1/52 − 1/72 + · · · . (7.5.19)

We describe here one technique that is useful in many such circumstances. In
fact, we have already been introduced to it in an earlier section of this chapter:
It is the Euler-Maclaurin summation formula. The Euler-Maclaurin formula
can be written in somewhat different form than before, as follows [14, page
282]. Let m ≥ 0 be an integer, and assume that the function f(x) is at least
(2m+2)-times continuously differentiable on [a,∞), and that f(x) and all of its
derivatives approach zero for large x. Then

∞∑
j=a

f(j) =

∫ ∞

a

f(x) dx +
1

2
f(a)−

m∑
i=1

B2i

(2i)!
f (2i−1)(a) + E, (7.5.20)

where B2i denote the Bernoulli numbers, and

E =
B2m+2f

2m+2(ξ)

(2m + 2)!
, (7.5.21)

for some ξ ∈ (a,∞).
This formula is not effective as written. The strategy is instead to evaluate

a series manually for several hundred or several thousand terms, then to use the
Euler-Maclaurin formula to evaluate the tail. Before giving an example, we need
to describe how to calculate the Bernoulli numbers B2k, which are required here.
The simplest way to compute them is to recall that [1, page 807]

ζ(2k) =
(2π)2k|B2k|

2(2k)!
, (7.5.22)

which can be rewritten as

B2k

(2k)!
=

2(−1)k+1ζ(2k)

(2π)2k
. (7.5.23)
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The Riemann zeta function at real arguments s can in turn be computed using
the formula [64]

ζ(s) =
−1

2n(1− 21−s)

2n−1∑
j=0

ej

(j + 1)s
+ En(s), (7.5.24)

where

ej = (−1)j

(
j−n∑

k=0

n!

k!(n− k)!
− 2n

)
(7.5.25)

(the summation is zero when its index range is null) and |En(s) < 1/(8n|1−21−s|).
This scheme is encapsulated in the following algorithm.

Algorithm 8 Zeta function evaluation.

Initialize: Set n = P/3, where P is the precision level in bits, and set t1 :=
−2n, t2 := 0, S := 0, and I = 1.

For j := 0 to 2n − 1 do: If j < n then t2 := 0 elseif j = n then t2 := 1
else t2 := t2 · (2n− j + 1)/(j − n) endif.
Set t1 := t1 + t2, S := S + I · t1/(j + 1)s and I := −I; enddo.
Return ζ(s) := −S/[2n · (1− 21−s)]. 2

A more advanced method to compute the zeta function in the particular case
of interest here, where we need the zeta function evaluated at all even integer
arguments up to some level m, is described in [16].

We will illustrate the above by calculating Catalan’s constant using the Euler-
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Maclaurin formula. We can write

G = (1− 1/32) + (1/52 − 1/72) + (1/92 − 1/112) + · · ·

= 8
∞∑

k=0

2k + 1

(4k + 1)2(4k + 3)2

= 8
n∑

k=0

2k + 1

(4k + 1)2(4k + 3)2
+ 8

∞∑

k=n+1

2k + 1

(4k + 1)2(4k + 3)2

= 8
n∑

k=0

2k + 1

(4k + 1)2(4k + 3)2
+ 8

∫ ∞

n+1

f(x) dx + 4f(n + 1)

−8
m∑

i=1

B2i

(2i)!
f (2i−1)(n + 1) + 8E, (7.5.26)

where f(x) = (2x+1)/[(4x+1)2(4x+3)2] and |E| < 3/(2π)2m+2. Using m = 20
and n = 1000 in this formula, we obtain a value of G correct to 114 deci-
mal digits. We presented the above scheme for Catalan’s constant because it
is illustrative of the Euler-Maclaurin method. However serious computation of
Catalan’s constant can be done more efficiently using the Boole summation for-
mula (see (16)), the recently discovered BBP-type formula (given in Table 3.5
of the first volume), Ramanujan’s formula (given in Item 7 of the Chapter 6 in
the first volume), or Bradley’s formula (also given in Item 7 of Chapter 6 in the
first volume).

One less-than-ideal feature of the Euler-Maclaurin approach is that high-
order derivatives are required. In many cases of interest, successive derivatives
satisfy a fairly simple recursion and can thus be easily computed with an or-
dinary hand-written computer program. In other cases, these derivative are
sufficiently complicated that such calculations are more conveniently performed
in a symbolic computing environment such as Mathematica or Maple. In a
few applications of this approach, a combination of symbolic computation and
custom-written numerical computation is required to produce results in reason-
able runtime[18].

7.5.1 Computation of Multiple Zeta Constants

As we saw in Chapter 3, one class of mathematical constants that has been
of particular interest to experimental mathematicians in the past few years are
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multiple zeta constants. Research in this arena has been facilitated by the dis-
covery of methods that permit these constants to high precision. While Euler-
Maclaurin-based schemes can be used (and in fact were used) in these studies,
they are limited to 2-order sums. We present here an algorithm that permits
even high-order sums to be evaluated to hundreds or thousands of digit accuracy.
We will limit our discussion here to multiple zeta constants of the form

ζ(s1, s2, · · · , sn) =
∑

n1>n2>···>nk

1

ns1
1 ns2

2 · · ·nsk

k

, (7.5.27)

for positive integers sk and nk, although in general technique we describe here
has somewhat broader applicability.

This scheme is as follows [36]. For 1 ≤ j ≤ m, define the numeric strings

aj = {sj + 2, {1}rj , sj+1, {1}rj+1 , · · · , sm + 2, {1}rm} (7.5.28)

bj = {rj + 2, {1}sj , rj−1, {1}sj−1 , · · · , r1 + 2, {1}s1}, (7.5.29)

where by the notation {1}n we mean n repetitions of 1. For convenience, we will
define am+1 and b0 to be the empty string. Define

δ(s1, s2, · · · , sk) =
k∏

j=1




∞∑
νj=1

2−νj

(
k∑

i=j

νi

)−sj

 . (7.5.30)

Then we have

ζ(am) =
m∑

j=1

[
sj+1∑
t=0

δ(sj + 2− t, {1}rj , aj+1)δ({1}t, bj−1)

+

rj∑
u=1

δ({1}u, aj+1)δ(rj + 2− v, 1sj , bj−1)

]
+ δ(bm). (7.5.31)

See the discussion in Chapter 3, as well as [36] and [87] for further details. An on-
line tool that implements this procedure is available at http://www.cecm.sfu.ca/
projects/ezface+. This procedure has also been implemented as part of the Ex-
perimental Mathematician’s Toolkit, available at http://www.expmath.info.
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7.6 Commentary and Additional Examples

1. Primes in pi. π1 = 3, π2 = 31, π6 = 314159, and π38 are the only prime
initial strings in the first 500 digits of π. The next probable prime string
is π16208. This suspected prime would be a superb candidate for the new
AKS-class of rigorous, deterministic algorithms discussed in Section 7.2.
For more information on primes in π, see http://mathpages.com/home/

kmath184/kmath184.htm.

2. Adaptation of Putnam problem 1993–A5. Consider the integral

J(a, b) =

∫ b

a

(x2 − x)
2

(x3 − 3 x + 1)2 dx.

Show that

J (−100,−10) + J

(
1

101
,

1

11

)
+ J

(
101

100
,
11

10

)

is rational. Hint: Numerically observe that the given expression is rational.
Then consider the changes of variables x → 1 − 1/x and x → 1/(1 −
x), respectively, to move the second and third integrals to the interval
[−100,−10]. Answer: 11131110/107634259.

3. Berkeley problem 5.10.26. Evaluate

I =

∫ 2 π

0

cos2 (3 t)

5− 4 cos (2 t)
dt.

Answer: 3π/8. Hint: I = 1
2
Re

(
i

∫
|z|=1

(z3 + 1)/(2z2 − 5z + 2) dz
)

=

−π Res((z3 + 1)/
(2z2 − 5z + 2), z = 1

2
).

4. Berkeley problem 5.10.27. Evaluate

I =

∫

|z|=1

cos3(z)

z3
dz

taken counter-clockwise. Answer: 3πi. Hint: 2πi Res (cos3(z)/z3, z = 0).
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5. Berkeley problem 5.11.4. Evaluate

∫ ∞

0

sin2 (t)

t2
dt.

Answer: π/2. Hint: Integrate by parts or use residues.

6. Berkeley problem 5.11.5. Evaluate

∫ ∞

−∞

sin3 (t)

t3
dt

(
=

3 π

4

)
.

Hint: 4 sin3(z) = Re 3 exp(iz) − exp(3iz). Use Cauchy’s theorem on a
contour C which consists of semicircles of radius ε → 0 and R →∞ along
with the intervals [−R,−ε] and [ε,R].

7. Berkeley problem 5.11.8. Show
∫ ∞

0

sin (x)

x (x2 + a2)
dx =

π (1− e−a)

2 a2
.

8. Berkeley problem 5.11.14. Evaluate
∫ ∞

0

1 + x2

1 + x4
dx

(
=

π√
2

)
.

Hint: Again use residues or consider
∫ t

0
(1 + x2)/(1 + x4) dx.

9. Berkeley problem 5.11.22. Show
∫ ∞

0

x

sinh (x)
dx =

π2

4
.

Then determine ∫ t

0

x

sinh (x)
dx.

10. Berkeley problem 5.11.25. Show

∫ ∞

0

log2 (x)

1 + x2
dx =

π3

8
.
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11. Evaluate the following integrals, by numerically computing them and then
trying to recognize the answers, either by using the Inverse Symbolic Calcu-
lator at http://www.cecm.sfu.ca/projects/ISC/, or else by using a PSLQ
facility, such as that built into the Experimental Mathematician’s Toolkit,
available at http://www.expmath.info.

These examples are taken from Gradsteyn and Ryzhik’s reference [125].
All of the answers are simple one- or few-term expressions involving famil-
iar mathematical constants such as π, e,

√
2,
√

3, log 2, ζ(3), G (Catalan’s
constant) and γ (Euler’s constant). We recognize that many of these can
be evaluated analytically using symbolic computing software (depending
on the available versions). The intent here is to provide exercises for nu-
merical quadrature and constant recognition facilities.

(a)

∫ 1

0

x2 dx

(1 + x4)
√

1− x4
(7.6.32)

(b)

∫ ∞

0

xe−x
√

1− e−2x dx (7.6.33)

(c)

∫ ∞

0

x2 dx√
ex − 1

(7.6.34)

(d)

∫ π/4

0

x tan x dx (7.6.35)

(e)

∫ π/2

0

x2 dx

1− cos x
(7.6.36)

(f)

∫ π/4

0

(π/4− x tan x) tan x dx (7.6.37)

(g)

∫ π/2

0

x2 dx

sin2 x
(7.6.38)

(h)

∫ π/2

0

log2(cos x) dx (7.6.39)
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(i)

∫ 1

0

log2 x dx

x2 + x + 1
(7.6.40)

(j)

∫ 1

0

log(1 + x2) dx

x2
(7.6.41)

(k)

∫ ∞

0

log(1 + x3) dx

1− x + x2
(7.6.42)

(l)

∫ ∞

0

log x dx

cosh2 x
(7.6.43)

(m)

∫ 1

0

arctan x

x
√

1− x2
(7.6.44)

(n)

∫ π/2

0

√
tan t dt (7.6.45)

Answers: (a) π/8, (b) π(1+2 log 2)/8, (c) 4π(log2 2+π2/12), (d) (π log 2)/8+
G/2, (e) −π2/4 + π log 2 + 4G, (f) (log 2)/2 + π2/32 − π/4 + (π log 2)/8,
(g) π log 2, (h) π/2(log2 2 + π2/12), (i) 8π3/(81

√
3), (j) π/2 − log 2, (k)

2(π log 3)/
√

3, (l) log π − 2 log 2− γ, (m) [π log(1 +
√

2)]/2, (n) π
√

2/2.

12. Evaluate the following infinite series, by numerically computing them and
then trying to recognize the answers, either by using the Inverse Symbolic
Calculator at http://www.cecm.sfu.ca/projects/ISC/, or else by using a
PSLQ facility, such as that built into the Experimental Mathematician’s
Toolkit, available at http://www.expmath.info.

These examples have been provided to the authors by Gregory and David
Chudnovsky of the Institute for Mathematics and Supercomputing at Brook-
lyn Polytechnic College. All of the answers are simple one- or few-term ex-
pressions involving familiar mathematical constants such as π, e,

√
2,
√

3,
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log 2, ζ(3), G (Catalan’s constant) and γ (Euler’s constant).

(a)
∞∑
0

50n− 6

2n
(
3n
n

) (7.6.46)

(b)
∞∑
0

2n+1

(
2n
n

) (7.6.47)

(c)
∞∑
0

12n22n

(
4n
2n

) (7.6.48)

(d)
∞∑
0

(4n)!(1 + 8n)

44nn!4
(7.6.49)

(e)
∞∑
0

(4n)!(19 + 280n)

44nn!4992n+1
(7.6.50)

(f)
∞∑
0

(2n)!(3n)!4n(4 + 33n)

n!5108n125n
(7.6.51)

(g)
∞∑
0

(−27)n(90n + 177)

16n
(
3n
n

) (7.6.52)

(h)
∞∑
0

275n− 158

2n
(
3n
n

) (7.6.53)

(i)
∞∑
0

8n(520 + 6240n− 430n2)(
4n
n

) (7.6.54)

(j)
∞∑
0

(
2n
n

)

n24n
(7.6.55)

(k)
∞∑
0

(−1)n

n32n
(
2n
n

) (7.6.56)

(l)
∞∑
0

8n(338− 245n)

3n
(
3n
n

) (7.6.57)

(m)
∞∑
1

(−9)n
(
2n
n

)

6n264n
−

∞∑
1

3n
(
2n
n

)

n216n
(7.6.58)
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Answers: (a) π, (b) π + 4, (c) 3π + 8, (d) 2/(π
√

3), (e) 2/(π
√

11), (f)
15
√

3/(2π), (g) 120 − 64 log 2, (i) 45π − 1164, (j) π2/6 − 2 log2 2, (k)
log3 2/6− ζ(3)/4, (l) 162− 6π

√
3− 18 log 3, (m) π2/18 + log2 2− log3 3/6.

13. Pisot and Salem numbers. A real algebraic integer α > 1 is a Pisot
number (resp. Salem number) if all other roots of its monic polynomial lie
inside (respectively, inside or on) the unit disc. An algebraic number α is
a Pisot number if and only if, for n ∈ N, the fractional parts {nα} → 0 as
n → ∞. The smallest Pisot number is the largest root of z3 − z − 1 and
is approximately 1.3247179 . . .. The smallest Salem number is conjectured
to be the largest root of Lehmer’s polynomial

p(z) = z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1,

which has two real roots 0.850137130927042 . . . and 1.176280818259917 . . ..
The conjecture is called Lehmer’s problem (1933) [65].

(a) Show that for a Pisot number the fractional parts {nα} → 0 as n →
∞. Hint: use Newton’s formula for

σn =
∑

p(β)=0

βn,

where p is the polynomial associated with α.

(b) Computationally establish Lehmer’s conjecture up to as high a degree
as possible (this has been done to about degree 40).

14. Halley’s method. Suppose f is a suitably smooth real function and
N ≥ 1 is integer. Consider the iteration starting at an initial value y0 = y
and iterating

yn+1 = yn +
(1/f)(N)(y)

(1/f)(N+1)(y)

∣∣∣∣
y=yn

.

For N = 0 this is Newton’s method to find a zero of f . For N = 1,
this is a locally cubically convergent method due to the astronomer and
mathematician Halley. Show in general that the method converges of order
N + 2 for the initial guess close enough to a (non-degenerate) zero of f .
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15. Bender’s continued fraction for the Bernoulli numbers. The Bernoulli
numbers as exact rational numbers can be generated from a continued frac-
tion, due to Bender, which makes a nice equally divergent counterpart to
Exercise 56 of Chapter 7 of the first volume. Formally,

S(a) = 1 +
b0 a2

1 +
b1 a2

1 +
b2 a2

1 +
b3 a2

1 + ...

=
∞∑

n=0

B2na2n,

with b0 = 1/6 and

bn =
n(n + 1)2(n + 2)

4(2n + 1)(2n + 3)
,

for n > 0.

(a) While the series does not converge in any obvious sense, it gives a
very satisfactory symbolic expansion. Decide whether S(a) coincides
with the subsequent three equivalent expressions:

S(a)
?
= a

∫ ∞

0

t coth

(
ta

2

)
e−t dt

= a

∫ 1

0

log (s)

sa − 1
ds− a

2
= 1 +

a

2
+ a

∞∑
n=1

1

(an + 1)2
.

(b) Evaluate S(4), S(1/4) , S(3), and S(1/3).

(c) Show that 2 n
∫∞
0

x2 n−1 e−π x cosech (π x) dx = |B2 n| for n = 1, 2, · · · .
(What are the even moments?) Deduce, for all real a, that

Ψ′ (1 + a−1
)
/a + a/2 = 1 +

a

2
+ a

∞∑
n=1

1

(an + 1)2

=

∫ ∞

0

coth
(π x

a

) 2x

(1 + x2)2 dx,
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and that

N∑
n=1

B2na
2n = 4 a

∫ ∞

0

ya
(
1− (−1)N (y a)2N {1 + N(1 + (ya)2)}

)

(e2 π y − 1) (1 + (ya)2)2 dy,

for N > 0.

(d) In consequence,

∣∣∣∣∣
∫ ∞

0

coth
(π x

a

) 2x

(1 + x2)2 dx−
N−1∑
n=0

B2na2n

∣∣∣∣∣ < |B2N | a2N ,

and we obtain a genuine asymptotic expansion.

(e) Show, for a > 1, that

S(a) =
a (3 + 2 a + a2)

2 (1 + a)2 −
∞∑

n=1

n

(−a)n
(ζ (n + 1)− 1)

=
1

2a
π2 csc2

(π

a

)
− 2

a2

(1− a2)2 − 2
∞∑

n=1

n

a2n
(ζ (2 n + 1)− 1) .

For what a are these valid equalities?

(f) Show that

T (a) =

∫ ∞

0

tanh (ax) e−x dx =

∫ 1

0

1− y2 a

1 + y2 a
dy

generates the continued fraction

a

1 +
2a2

1 +
6a2

1 +
12a2

1 +
20a2

1 + ...

= −
∑
n≥1

T2n+1a
2n−1.

Here the Tn are, as before, tangent numbers.
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(g) Provide a justification for the last identity, along the lines given above
for the Bernoulli numbers.

(h) Show
T (a) + 1

2
= F

(
1

2a
, 1;

1

2a
+ 1;−1

)

is of the form for Gauss’s continued fraction.

16. The Boole summation formula. Boole summation is a counterpart of
Euler-Maclaurin summation especially fitted to alternating series. Based
upon Euler numbers, rather than Bernoulli numbers, it is described in de-
tail in [37], and in the revised version of Abromowitz and Stegun available
at http://dlmf.nist.gov/. We recall the Euler polynomials are defined
by

2etx

et + 1
=

∞∑
n=0

En(x)
tn

n!

for |t| < π, and let the periodic Euler function be defined by En(x) = En(x)
for 0 < x ≤ 1 and En(x + 1) = −En(x) for all x. Then the Euler numbers
are recovered as En = 2nEn

(
1
2

)
.

The version of Boole summation we need tells us that if f has m derivatives
on t ≥ x, and f (k)(t) → 0 as t →∞ for 0 ≤ k ≤ m then

∞∑
n=0

(−1)nf(x + h + n) =
m∑

k=0

Ek(h)

2k!
f (k)(x) + Rm (7.6.59)

where

Rm =
1

2(m− 1)!

∫ ∞

0

Em−1(h− t) f (m)(x + t) dt.

(a) Use (7.6.59) to prove the formulas for the “errors” in Gregory series
for π and the classical series for log 2 given in Section 2.2 of the first
volume.

(b) Apply the same technique to Catalan’s constant and to ζ(3).

17. Value Recycling, ζ and Γ. This material is culled from [53]. The notion
of recycling is that previously calculated ζ-values—or initialization tables
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of those calculations—are re-used to aid in the extraction of other ζ-values,
or that many ζ-values are somehow simultaneously determined, and so on.
So by value recycling, we intend that the computation of a collection of
ζ-values is more efficient than establishment of independent values. We
record

πt cot (πt) = −2
∞∑

m=0

ζ(2m)t2m, (7.6.60)

and the incomplete gamma function, given (at least for Re(z) > 0) by:

Γ(a, z) =

∫ ∞

z

ta−1e−tdt =
2zae−z

Γ(1− a)

∫ ∞

0

t1−2ae−t2

t2 + z
dt,

where the integral representation is valid for Re(a) < 1. Evaluation of
Γ(a, z) is not as problematic as it may seem; many computer systems
have suitable machinery. We note the special cases Γ(s, 0) = Γ(s) and
Γ(1, z) = e−z, and the recursion

aΓ(a, z) = Γ(a + 1, z)− zae−z. (7.6.61)

Also,

ζ(s)Γ
(

1
2
s
)

=
πs/2

s(s− 1)
+

∞∑
n=1

n−sΓ
(

1
2
s, πn2

)

+πs−1/2

∞∑
n=1

ns−1Γ
(

1
2
(1− s), πn2

)
, (7.6.62)

ζ(s)Γ(s) = −λs

2s
+

λs−1

s− 1
+

∞∑
n=0

n−sΓ(s, λn)

−2λs−1

∞∑
n=1

(
λ

2πi

)2n
ζ(2n)

2n + s− 1
, (7.6.63)

(a) One can use either of (7.6.62) or (7.6.63) to efficiently evaluate zeta
at each of N arguments {s, s + 2, s + 4, · · · , s + 2(N − 1)} for any
complex s. This approach is fruitful for obtaining a set of zeta val-
ues at odd positive integers, for example. The idea is to exploit the
recursion relation (7.6.61) for the incomplete gamma function and,
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when N is sufficiently large, effectively remove incomplete gamma
evaluations via Γ({s/2}, x), Γ({(1− s)/2}, x) where {z} here denotes
the fractional part of z, over a collection of x-values, and then use
the above recursion either backwards or forwards to rapidly evaluate
series terms for the whole set of desired zeta values.

Given the initial Γ({s/2}, x) evaluations, further effort is sharply
reduced. When {s + 2k} are odd integers, precomputation involve
only Γ(0, x) and Γ(1/2, x) values—known classically as exponential-
integral and error-function values. Reference [89] contains explicit
pseudocode for a recycling evaluation of ζ(3), ζ(5), · · · , ζ(L) via
(7.6.62), and one initializes error function and exponential-integral
values by:

{Γ(1/2, πn2) : n ∈ [1, bDc]}, (7.6.64)

{Γ(0, πn2) : n ∈ [1, bDc]},
when D decimal digits precision is ultimately desired for each ζ value.
The notion of “recycling” takes its purest form in this method, for
the incomplete-gamma evaluations above are reused for every ζ(odd).

(b) A second approach, relevant for even integer arguments, involves a
method of series inversion used by J. P. Buhler for numerical analysis
on Fermat’s Last Theorem and on the Vandiver conjecture [70, 71].
This uses a generating function for Bernoulli numbers, and invokes
Newton’s method for series inversion of the key elementary functions.
To obtain values at even positive integers, one may use an expansion
related to (7.6.60). One has:

sinh(2π
√

t)

4π
√

t

2π2t

cosh(2π
√

t)− 1
= −

∞∑
n=0

(−1)nζ(2n)tn,

which we have written this way for Algorithm 9. We have split
the left-hand side into to two series, each in t : one of the form
(sinh

√
z)/
√

z the other like (cosh
√

z − 1)/z. The idea is to invert
the latter series via a fast polynomial inversion algorithm (Newton
method). Using t as a place-holder, one reads off the ζ-values as
coefficients in a final polynomial. In Algorithm 9, we assume that
ζ(2), ζ(4), · · · ζ(2N − 2) are desired. The polynomial arithmetic is
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most efficient when truncation of large polynomials occurs as needed.
We denote by q(t) mod tk truncation of polynomial q through tk−1.
Also, polynomial multiplication operation is signified by “∗”.

Algorithm 9 Recycling scheme for ζ(0), ζ(2), ζ(4), ..., ζ(2(N − 1)).

(1) [Denominator setup] Create the polynomial f(t) = (cosh(2π
√

t)−
1)/(2π2t), through degree N (i.e., through power tN inclusive);

(2) [Newton polynomial inversion, to obtain g := f−1] Set p = g = 1;

while(p < deg(f) ) do begin

p = max(2p, deg(f)); h = fmod tp; g = (g + g ∗ (1 − h ∗
g)) mod tp; end;

(3) [Numerator setup] Create the polynomial k(t) = sinh(2π
√

t)/(4π
√

t),
through degree N ;

g = g ∗ k mod t2N−1; for n ∈ [0, 2N − 2], read off ζ(2n) as −(−1)n

times the coefficient of tn in polynomial g(t). 2

In step (1) the polynomial can have floating point or symbolic co-
efficients with their respective powers of π and so on. If used sym-
bolically, the ζ values of the indicated finite set are exact, through
ζ(2N − 2) inclusive. The method has been used, numerically so that
fast Fourier transform methods may also be applied, to calculate the
relevant ζ-values for high-precision values of the Khintchine constant
[16].

If memory storage is an issue, there is a powerful technique called
multisectioning, whereby one calculates all the ζ(2k) for k lying in
some congruence class (mod 4, 8 or 16 say), using limited memory
for that calculation, then moving on to the next congruence class,
and so on. Observe that, by looking only at even-indexed Bernoulli
numbers in the previous algorithm, we have effectively multisectioned
by 2 already. To multisection by 4, observe:

x cosh x sin x± x cos x sinh x

sinh x sin x
= 2

∑

n∈S±

Bn

n!
(2x)n,

where the sectioned sets are S+ = {0, 4, 8, 12, ...} and S− = {2, 6, 10,
14, ...}. The key is that the denominator (sinh x sin x) is, perhaps
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surprisingly, x2 times a series in x4, namely we have the attractive
series

sinh x sin x =
∑

n∈S−
(−1)(n−2)/4 2n/2 xn

n!
, (7.6.65)

so that the key Newton inversion of a polynomial approximant to the
denominator only has one-fourth the terms of the standard Bernoulli
denominator (ex − 1). Thus, reduced memory is used to establish a
congruence class of Bernoulli indices, then that memory is reused for
the next congruence class, and so on. Thus, these methods function
well in parallel or serial environments.

Multisectioning was used by Buhler and colleagues—as high as level-
16 sections—to verify Fermat’s Last Theorem to exponent 8,000,000.
They desired Bernoulli numbers modulo primes, and so employed
integer arithmetic. A detailed analysis of multisectioning is to be
found in Kevin Hare’s 1999 MSc. thesis [134].

(c) A third approach is to contemplate continued fraction representa-
tions that yield ζ-values. For example, the well known fraction for√

z coth
√

z gives:

π2z

3 +
π2z

5 +
π2z

7 + ...

= 2
∞∑

n=1

(−1)n−1ζ(2n)zn.

This is advantageous if one already has an efficient continued fraction
engine. As a final alternative for fast evaluation at even positive
integer arguments, there is an interesting approach due to Plouffe and
Fee, in which the Von-Staudt-Clausen formula for the fractional part
of Bn is invoked, then asymptotic techniques are used to determine
the integer part. In this way the number B200,000 has been calculated
in exact, rational form.

18. Pseudospectra. A fine example of the changing nature of numerical
mathematics is afforded by the use of pseudospectra. One considers the
ε-pseudospectrum of a complex n× n matrix A for ε > 0

Λε(A) = {z ∈ C : z ∈ Λ(B), for some ‖B − A‖ ≤ ε},
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Figure 7.2: The pseudospectra of matrix A(0.5)

which consists of the eigenvalues of all nearby matrices (in operator norm),
and coincides with the spectrum of A, Λ(a), for ε = 0. This is much more
stable than the spectrum and can be graphed very informatively for various
values of ε as illustrated in Figure 7.2 for the matrix A(0.5). Here,

A(t) =




t −1/4 0

0 t 0

0 0 t− 1/2


 A−1(t) =




t−1 1/4 t−2 0

0 t−1 0

0 0 2 (2 t− 1)−1


 .

Thus, A(t) has eigenvalues t, t, t−1/2, and the inverse exists for t 6= 0, 1/2.
Try to correlate the graphic information with the behavior of A−1(t).

See http://web.comlab.ox.ac.uk/projects/pseudospectra/ for a host of
tools and examples, from which the picture (Figure 7.3) of a 200 dimension
Toeplitz matrix with “symbol” t−5 − t is taken.

Similarly, the ε−spectral radius of a matrix, αε(A) = {Re z : z ∈ Λε(A)},
is more robust than the spectral radius (ε = 0), and is important in engi-
neering control problems. The stability of the pseudospectrum is, in large,
explained by its variational formulation.

19. Square-full numbers and one bits. A square-full number, also known
as squareful or powerful number, is a natural number all of whose prime
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Figure 7.3: Daisy matrix pseudospectra

factors occur to multiplicity greater than one. In [17] it is shown that
the number of 1’s in the first N bits of the theta function value σ =(∑

n≥0 2−n2
)2

= (θ3(1/2)/2 + 1/2)2 behaves like

C0
N√
log N

, where C0 =
16L3

π2

∑
g

b(τ(g))

ψ(g)
, (7.6.66)

and g runs over the square-full integers divisible solely by primes that are
congruent to 1 (mod 4). Here b denotes the number of bits, τ the number
of divisors, ψ(g) = g

∏
p|g(1 + 1/p), and L is the Landau constant

L =

(
1

2

∏

p≡3 mod 4

(
1− 1

p2

)−1
)1/2

= 0.764223653 . . . .

(a) Compute the predicted density (7.6.66) of ones in the binary expan-
sion of σ, for N = 10n, n = 1, · · · , 8.

(b) Compare the empirical density for the same values of N .

20. Converting series into products. Use the ideas in Exercise 8 of Chapter
3 to produce two algorithms for converting series into products of the form
in that exercise; and compare the efficiency of the two methods.
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21. Self-reference and Grelling’s paradox of heterologicality. One of
the classic linguistic (or predicate) paradoxes—which like Russell’s naive
set theory paradox of all non-self containing sets—prefigures Gödel’s the-
orem and Chaitin’s work is as follows. Say that a word or property is ho-
mological if it describes itself and heterological otherwise. Thus, “short”
is short and, arguably, “ugly” is ugly and so both are homological. By
contrast “long” is not long and so is heterological. A problem occurs when
we try to decide if “heterological” is a heterological property. This is usu-
ally dealt with by restricting the range of predicates or the class of sets.
It would be amusing if we could show that Khintchine’s constant did not
respect Khintchine’s constant.

22. Progress and silence. “It’s generally the way with progress that it looks
much greater than it really is” is the epigraph that Ludwig Wittgenstein
(1889–1951) (“whereof one cannot speak, thereof one must be silent”) had
wished for an unrealized joint publication of Tractatus Logico-Philosophicus
(1922) and Philosophical Investigations (1953). This suggests the two vol-
umes are not irreconcilable as often described. Wittgenstein was one of
the influential members of the Vienna Circle from which Gödel took many
ideas.

23. Chaitin on randomness. It seems apropos to end with Greg Chaitin’s
views in “The Creative Life: Science vs Art,” an article available at the
URL http://www.cs.umaine.edu/~chaitin/cdg.html.

The message is that mathematics is quasi-empirical, that mathe-
matics is not the same as physics, not an empirical science, but I
think it’s more akin to an empirical science than mathematicians
would like to admit.

Mathematicians normally think that they possess absolute truth.
They read God’s thoughts. They have absolute certainty and
all the rest of us have doubts. Even the best physics is uncer-
tain, it is tentative. Newtonian science was replaced by relativ-
ity theory, and then—wrong!—quantum mechanics showed that
relativity theory is incorrect. But mathematicians like to think
that mathematics is forever, that it is eternal. Well, there is
an element of that. Certainly a mathematical proof gives more
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certainty than an argument in physics or than experimental ev-
idence, but mathematics is not certain. This is the real message
of Gödel’s famous incompleteness theorem and of Turing’s work
on uncomputability.

You see, with Gödel and Turing the notion that mathematics
has limitations seems very shocking and surprising. But my
theory just measures mathematical information. Once you mea-
sure mathematical information you see that any mathematical
theory can only have a finite amount of information. But the
world of mathematics has an infinite amount of information.
Therefore it is natural that any given mathematical theory is
limited, the same way that as physics progresses you need new
laws of physics. Mathematicians like to think that they know
all the laws. My work suggests that mathematicians also have
to add new axioms, simply because there is an infinite amount
of mathematical information. This is very controversial. I think
mathematicians, in general, hate my ideas. Physicists love my
ideas because I am saying that mathematics has some of the un-
certainties and some of the characteristics of physics. Another
aspect of my work is that I found randomness in the foundations
of mathematics. Mathematicians either don’t understand that
assertion or else it is a nightmare for them . . .
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Arithmetic-Geometric Means Revisited. MapleTech, pages 20–27, 1997.

[64] Peter Borwein. An Efficient Algorithm for the Riemann Zeta Function.
http://www.cecm.sfu.ca/preprints/1995pp.html, 1995.

[65] Peter B. Borwein. Computational Excursions in Analysis and Number Theory.
Springer-Verlag, CMS Books in Mathematics, Heidelberg, 2002.

[66] Peter B. Borwein and Christopher Pinner. Polynomials with (0, +1, -1)
Coefficients and Roots Close to a Given Point. Canadian Journal of
Mathematics, 49:887–915, 1997.

[67] Douglas Bowman and David M. Bradley. Multiple Polylogarithms: A Brief
Survey. volume 291 of Contemporary Mathematics, pages 71–92. American
Mathematical Society, 2001.

[68] Douglas Bowman and David M. Bradley. On Multiple Polylogarithms and
Certain Generalizations Possessing Periodic Argument Lists.
http://germain.umemat.maine.edu/faculty/bradley/papers/pub.html, 2003.

[69] Douglas Bowman and David M. Bradley. Resolution of Some Open Problems
Concerning Multiple Zeta Evaluations of Arbitrary Depth. Compositio
Mathematica, to appear.

[70] J. Buhler, R. Crandall, R. Ernvall, and T. Metsänkylä. Irregular Primes to
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