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Abstract

An introduction to the history of the constant log 2 and to its com-
putation. It includes many formulas and some methods to estimate it, as
well as the logarithm of any number, with few digits or to the greatest
accuracy.

...by shortening the labors,
doubled the life of the astronomer.

- Pierre Simon de Laplace (1749-1827) about logarithms.

You have no idea, how much poetry there is
in the calculation of a table of logarithms!

- Karl Friedrich Gauss (1777-1855), to his students.

1 Introduction

1.1 Early history

The history of logarithms (logos=ratio + arithmos=number) really began with
the Scot John Napier (1550-1617) in an opuscule published in 1614. This trea-
tise was in Latin and entitled Mirifici logarithmorum canonis descriptio (The
Description of the Wonderful Canon of Logarithms) [23, 24]. However, it should
be pointed out that the Swiss clock-maker Jost Bürgi (1552-1632) independently
invented logarithms but his work remained unpublished until 1620 [7, 8, 21].

Thanks to the possibility to replace painful multiplications and divisions by
additions and subtractions respectively, this invention received an extraordinary
welcome (in particular thanks to the enthusiasm of astronomers like Kepler) and
spread rapidly on the Continent. George Gibson wrote during Napier Tercente-
nary Exhibition: “the invention of logarithms marks an epoch in the history of
science” [13].

Soon, the need to modify Napier’s original work so that the logarithms of
1 and 10 become respectively 0 and 1 appeared. Under the impulsion of the
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English mathematician and Napier’s friend Henry Briggs (1561-1631) tables of
common or Briggian logarithms, denoted log10 for logarithms having base 10,
were computed. Briggs published his work in Arithmetica logarithmica during
the year 1624 [6]; the tables were to an accuracy of fourteen digits and containing
the common logarithm of all integers up to 20,000 and from 90,000 up to 101,000.
The remaining gap was soon completed by the Dutchman Adrian Vlacq (1600-
1667) in 1628 [33].

1.2 Natural logarithms

Mathematicians prefer to use the so-called natural or hyperbolic logarithm of a
number (denoted log or ln, that is logarithms having base e = 2.7182818284...)
and the following definition allows to derive easily the main properties of loga-
rithms.

Definition 1 Let x > 0, we set

log x =
∫ x

1

dt

t
=

∫ x−1

0

dt

1 + t
. (1)

Integral (1) may be interpreted as the area under the hyperbola y = 1
t

with t going from 1 to x. This geometric interpretation was initiated in his
Opus geometricum [26] published in 1647 by the Belgian Jesuit Grégoire de
Saint-Vincent (1584-1667) and later completed by his student Alfonso Anton de
Sarasa (1618-1667).

From this definition, the logarithm function is clearly a monotonous and
continuous function. It is defined on the domain ]0, +∞[, positive for x > 1,
negative for 0 < x < 1 and log 1 = 0. Its inverse is a positive function defined
on the whole real domain, it is called the exponential function and is denoted
exp x or ex.

1.2.1 Modulus

Natural and common logarithms are simply linked by the relations

log10 x = M log x, log x =
1
M

log10 x, (2)

where the proportion factor M = 1
log 10 is the Modulus: (It was computed by

William Shanks in 1871 to more than 200 digits [30].)

M = 0.43429448190325182765112891891660508229439700580366...,
1
M

= 2.30258509299404568401799145468436420760110148862877....

It should be observed that, in his historical work, Napier considered a loga-
rithm (denoted Nlog) that can now be represented in term of natural logarithm
by:

Nlog x = R log
R

x
= −R log x + R log R, with the radius R = 107. (3)
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1.2.2 The constant log 2

According to the integrals (1) we may now define the logarithmic constant or
Mercator’s constant log 2.

Definition 2 (Integral representation). The logarithmic constant is

log 2 =
∫ 2

1

dt

t
=

∫ 1

0

dt

1 + t
=

∫ 1/2

0

dt

1 − t
. (4)

log 2log 2

0

1

2

3

1 2 3

Figure 1: Two areas for log 2

Theorem 3 (Weierstrass, 1885). The constant log 2 is an irrational and tran-
scendental number.

Proof. Consult [34] where it is also established that log a is a transcendental
number for any algebraic number a �= 1 or [4] for a more modern approach.

Numerical estimations of its first decimal places and regular continued frac-
tion are:

log 2 = 0.6931471805599453094172321214581765680755001343602552541206...,

log 2 = [0; 1, 2, 3, 1, 6, 3, 1, 1, 2, 1, 1, 1, 1, 3, 10, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 3, 1, 13, 7, ...].

A first value of the constant and a consequence of the relation (3) is implicitly
given in Napier’s original work [24]. He wrote: “All sines in the proportion of
two to one have 6931469.22 for the difference of their logarithms”, that is an
error less than 3 × 10−7. A few years later [17], Kepler found the duplication
logarithm to be, with his convention, 69314.7193 so that the error is smaller
than 2 × 10−8.

2 Algorithms based on quadratures

It seems natural to start an estimation of the constant log 2 from its integral
representation (1). There are numerous tools to compute numerically definite
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integrals based on the idea to replace the function to integrate by an easier one.
Usually piecewise polynomials of low degrees are used to achieve this. In this
section we consider some classical quadratures and we deduce from them some
elementary algorithms.

2.1 Rectangular quadrature

The simplest method is obtained from the classical rectangular approximation of
the integral. The interval of integration [a, b] is divided into smaller intervals on
which the function is replaced by a constant approximation. In other words, let
n be the number of subdivisions of the integration interval and let h = 1

n (b−a),
then ∫ b

a

f(t) dt = h

n∑
k=1

f(a + kh) + O(h).

Application of this rule to the function f(t) = 1
1+t on the domain [0, 1] gives

log 2 = lim
n→∞

(
1

n + 1
+ · · · + 1

n + k
+ · · · + 1

n + n

)
. (5)

This is an increasing sequence bounded by 1 and its convergence is extremely
slow with an error O( 1

n ). Computing d digits requires to evaluate the sum with
n ≈ 10d and therefore the convergence is logarithmic.

2.2 Trapezoid quadrature

The rectangular estimation can be improved if we replace on each small interval
the function by its linear approximation. With the same definition for h, this
produces the trapezoidal rule [19]

∫ b

a

f(t)dt =
h

2

(
f(a) + f(b) + 2

n−1∑
k=1

f(a + kh)

)
+ O(h2),

yielding

log 2 = lim
n→∞

(
3
4n

+
(

1
n + 1

+ · · · + 1
n + k

+ · · · + 1
n + n − 1

))
. (6)

The rate of convergence has been improved but it remains logarithmic and in
O(1/n2).

2.3 Simpson’s quadrature

Now let us consider a widely used improvement on the numerical computation of
integrals and known as Simpson’s rule [19]. The method is based on a piecewise
parabola approximation:
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∫ b

a

f(t)dt =
h

6

n∑
k=1

(
f(a + kh) + f(a + (k − 1)h) + 4f

(
a +

(
k − 1

2

)
h

))

+ O(h4).

It now produces

log 2 =
1
6

lim
n→∞

n∑
k=1

(
1

n + k
+

1
n + k − 1

+
4

n + k − 1
2

)
(7)

with a new error in O(1/n4).

2.4 Numerical estimations

In the following table we compare the accuracy of the quadratures for different
values of the number n of subdivisions of the interval.

n Rectangular Trapezoid Simpson
10 0.6(687...) 0.693(771...) 0.693147(374...)

100 0.69(065...) 0.6931(534...) 0.6931471805(794...)
1, 000 0.69(289...) 0.693147(243...) 0.69314718055994(726...)

10, 000 0.6931(221...) 0.69314718(118...) 0.693147180559945309(612...)

From this simulation, we can notice that such elementary quadratures may
only be used to compute a few digits of log 2 or any other logarithm, the rate
of convergence being too slow to calculate logarithms with significantly higher
precision.

2.5 Other quadrature

Some more efficient numerical quadratures may in this particular case give some
excellent results. One of those is the Clenshaw-Curtis quadrature [10] and it is
based on the Chebyshev’s series expansion of the function to integrate, that is
the smooth function t → 1

t in the log 2 case. For such a regular function the
convergence of the series expansion is much faster and geometric making the
computation of thousand of digits now accessible. From this method, it can be
stated after some manipulations that

log 2 =
√

2

⎛
⎝1

2
−

∑
k≥1

1
(4k2 − 1) (17 + 12

√
2)k

⎞
⎠ . (8)

Partial sums sn up to k = n are given in the following table:

n sn

1 0.693(229...)
10 19 correct digits

100 159 correct digits
1, 000 1539 correct digits
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and this is a fast geometric convergence that can be obtained for any other
logarithm.

3 Some simple limits

It is of interest to observe that logarithms may be computed by some very
simple formulas that are not directly related to geometrical area and involving
only square roots extractions.

3.1 Powering

There is a well known result that, for any real number z, the exponential function
may be obtained by the classic limit

ez = lim
n→∞

(
1 +

z

n

)n

,

and this relation can be inverted to find:

log x = lim
n→∞n

(
x1/n − 1

)
= lim

m→∞ 2m
(
x1/2m − 1

)
= lim

ε→0

xε − 1
ε

. (9)

This limit is obviously deduced from the expansion

x1/n = elog x/n = 1 +
log x

n
+ O

(
1
n2

)

and, for example, with x = 2 and n = 210 = 1024, it produces the approximation
0.693(381...) with an error in O( 1

n ). A faster and more symmetric formula is
given by

log x = lim
n→∞

n

2
(x1/n −x−1/n) = lim

m→∞ 2m−1
(
x1/2m − x−1/2m

)
= lim

ε→0

xε − x−ε

2ε
,

and again with n = 1024 we find 0.693147(233...), the error being now O(1/n2).
This is certainly not the best way to compute a logarithm but it has the advan-
tage to be extremely easy to apply to compute logarithms, with a low precision,
by a few (m = 10 in our example) square roots extractions.

3.2 Infinite product

To conclude this section, we reproduce the unusual infinite product published
by the German Ludwig von Seidel (1821-1896) [28] that is also a reformulation
of (9).

Theorem 4 (Seidel, 1871). Let the real number x > 0, then

log x

x − 1
=

∏
k≥1

2
1 + x1/2k (10)

and the partial products up to k = n converge in O(1/2n).
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Proof. For any real y, we know that

sinh y

y
=

2
y

sinh
(y

2

)
cosh

(y

2

)
and repeating this to sinh

(
y
2

)
/y

2 finally gives

y =
sinh y

cosh
(

y
2

)
cosh

(
y
22

)
cosh

(
y
23

) · · · .
With y = log x, the product becomes

log x =
x − x−1

2
2

x1/2 + x−1/2

2
x1/4 + x−1/4

· · ·

from which we deduce the equation (10).
If we apply formula (10) with x = 2, we find

log 2 =
2

1 +
√

2
2

1 +
√√

2

2

1 +
√√√

2
· · · (11)

and it can be compared with the similar product for the constant π and due to
the French François Viète (1540-1603):

π

2
=

2√
2

2√
2 +

√
2

2√
2 +

√
2 +

√
2
· · · .

4 Series expansions

4.1 Mercator’s work

In 1668, the Danish Nicolas Mercator (1620-1687) published in his Logarith-
motechnia [22] one of the first known series expansion of a function. It was
established for the logarithmic function and opened the area of analytic calcu-
lations for logarithms.

Theorem 5 (Mercator, 1668). Let x a real number and −1 < x ≤ 1, then

log(1 + x) = x − x2

2
+

x3

3
− · · · =

∑
k≥1

(−1)k−1 xk

k
.

Proof. Nowadays, we proceed by observing that for any integer n

log(1 + x) =
∫ x

0

dt

1 + t
=

∫ x

0

(
1 − t + t2 − · · · + (−1)n−1tn−1 +

(−1)ntn

1 + t

)
dt

so that

log(1 + x) = x − x2

2
+

x3

3
− · · · + (−1)n−1 xn

n
+

∫ x

0

(−1)ntn

1 + t
dt.
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To conclude, it is sufficient to show that the remainder

Rn =
∣∣∣∣
∫ x

0

(−1)ntn

1 + t
dt

∣∣∣∣ ≤
∣∣∣∣
∫ x

0

tn

1 + t
dt

∣∣∣∣ ,

tends to 0 as n tends to infinity. Clearly when 0 ≤ x ≤ 1, we have

Rn ≤
∫ x

0

tndt =
xn+1

n + 1

while for −1 < x < 0, we see that

Rn ≤ 1
1 + x

∣∣∣∣
∫ x

0

tndt

∣∣∣∣ =
|x|n+1

(n + 1)(1 + x)
.

Hence in both cases, we conclude by observing that

lim
n→∞Rn = 0.

For |x| < 1, the remainder of the series expansion tends to zero like |x|n:
this is a geometric convergence. Mercator illustrated the power of his method
in computing log (1 + 0.1) (interpreted as the area under the hyperbola) to 43
correct digits.

Nevertheless, the direct application of Mercator’s series for x = 1 is still
valid and leads to the famous and very slowly convergent alternating series

log 2 = 1 − 1
2

+
1
3
− 1

4
+

1
5
− · · · . (12)

It first values by taking n = 10m terms illustrate the speed of convergence:

n sn

10 0.6(456...)
100 0.6(881...)

1, 000 0.69(264...)
10, 000 0.693(097...)

100, 000 0.69314(218...)

The harmonic alternating series (12) was studied by Pietro Mengoli of Bologna
(1626-1686) and is remarkable for its simplicity and clearness.

The Mercator series or logarithmic series is comparable to another series
studied by James Gregory (1638-1675) at the same time:

arctan x = x − x3

3
+

x5

5
− · · ·

producing with x = 1 the well known and very similar to (12) series

π

4
= 1 − 1

3
+

1
5
− 1

7
+

1
9
− · · · .
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4.2 Newton’s computations

Isaac Newton (1643-1727) independently discovered Mercator’s series and is
among the first mathematician to take advantage of it for computational pur-
poses. He made various estimations of logarithms in his celebrated De methodis
serierum et fluxionum (Method of Fluxions and Infinite Series) written in 1671
but only published and translated from Latin to English in 1736, by John Colson
(1680-1760).

He started with several accurate computations of log(1 + x) for small values
of x like ±0.1, ±0.01, ±0.2, ±0.02, ... and was then able to compute logarithms
of other numbers using the following relations

log 2 = 2 log(1 + 0.2) − log(1 − 0.1) − log(1 − 0.2), (13)
log 3 = log 2 + log(1 + 0.2) − log(1 − 0.2),
log 5 = 2 log 2 − log(1 − 0.2).

By such observations, Newton then suggested an original and efficient method
for building both a natural and a common accurate table of logarithms. He
proposed to deduce the common logarithm table from the natural logarithm
computations by mean of the Modulus and relations (2).

4.3 Easy approaches

An elementary idea is to apply Mercator’s series with x = − 1
2 , this produces the

very compact formula that was already known to Jacob Bernoulli (1654-1705):

log 2 =
∑
k≥1

1
k2k

. (14)

The rate of convergence of this series is geometric (k iterations are needed to
obtain one more digits) and consequently interesting to use for numerical hand
or computer calculations. Some of it partial sums sn are:

n sn

1 0.(5)
10 0.693(064...)

100 0.6931471805599453094172321214581(688...)
1, 000 304 correct digits

Relation (14) may also be deduced from the harmonic alternating series (12)
by application of Euler’s transformation on alternating series. (This is left as
exercise.)

For a geometric series of ratio 1
N , the number k of required terms to compute

to obtain d correct decimal digits is given by the equation

1
10d

=
1

kNk
.
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It follows that for a large accuracy estimation this number is about

k ≈ d

log10 N
. (15)

and, in the case of series (14), we have N = 2 so that k ≈ 3.322d.
Another alternative is to use the trivial decompositions

2 =
3
2

4
3
, 2 =

(
4
3

)2 9
8

and take the logarithm of both side of those equalities to find the new similar
formulas

log 2 =
∑
k≥1

1
k

(
1
3k

+
1
4k

)
and log 2 =

∑
k≥1

1
k

(
2
4k

+
1
9k

)
.

4.4 BBP series

From the relation log 2 = − 1
2 log(1 − 1

4 ) + arctanh 1
2 , (See next paragraph for

the definition of arctanh.) we deduce the relations

log 2 =
∑
k≥0

(
1

8k + 8
+

1
4k + 2

)
1
4k

, (16)

log 2 =
2
3

+
∑
k≥1

(
4
8k

+
2

8k + 2
+

1
8k + 4

+
1
2

8k + 6

)
1

16k
. (17)

Like the ones discovered for π [3]:

π =
∑
k≥0

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
1

16k
,

those formulas can also be used to compute directly the n-th binary digit of
log 2 without computing the previous ones.

5 Machin like formulas

Using Mercator’s series has improved a lot our ability to compute many digits
for log 2, but as for the constant π it is possible to go further. Before we need
to recall the definition of the inverse hyperbolic tangent.

Definition 6 Let |x| < 1 a real number, we define the function

arctanh x =
1
2

log
(

1 + x

1 − x

)
=

∑
k≥0

x2k+1

2k + 1
.
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5.1 Classical formulas

With the value x = 1
3 , this definition leads immediately to the interesting for-

mula log 2 = 2 arctanh 1
3 that is easy to use for large accuracy computations

[18]. We expand it as:

log 2 =
2
3

∑
k≥0

1
(2k + 1)9k

, (18)

and some of it partial sum sn with the first n terms are:

n sn

1 0.6(666...)
10 0.6931471805(498...)

100 97 correct digits
1, 000 957 correct digits

Now, it is natural to investigate if there exist more efficient series of this nature.
There is a classical formula for π, known as Machin’s formula and given by the
celebrated relation:

π

4
= 4 arctan

1
5
− arctan

1
239

.

The idea is to search, by analogy, similar relations for log 2. More precisely,
let (r1, r2, ..., rn) be a set of rational numbers and (d1, d2, ..., dn) a set of
increasing integers, we are looking for identities of the form

log 2 =
n∑

k=1

rk arctanh
1
dk

. (19)

We also want the formula to be efficient. A good relation is a compromise be-
tween a few number of terms (n is small) and large values for the dk. According
to Lehmer [20] and to the relation (15), we can quantify this compromise and
define the efficiency of an identity of the form (19).

Definition 7 (Lehmer’s measure). Let dk > 1 a set of n integers, we define
the efficiency E by

E = E(d1, d2, ..., dn) =
n∑

k=1

1
log10(d2

k)
.

For example the efficiency of log 2 = 2 arctanh 1
3 is E = 1.048 (it corresponds

to n = 1, d1 = 3.) and, with the same definition, the efficiency of Machin’s
formula is E = 0.926. (it is obtained with n = 2, d1 = 5, d2 = 239.) Therefore,
it will require a little more effort to compute log 2 with formula (18) than to
compute π with Machin’s relation.

For any real number k > 1, it will be more convenient to introduce the
notation:

L(k) = arctanh
1
k

=
1
2

log
(

k + 1
k − 1

)
, (20)
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so that the series expansion (18) becomes log 2 = 2L(3).
It is easy to show the following decomposition theorem.

Theorem 8 (Decomposition). Let k > 1 a real number, then

L(k) = L(2k − 1) + L(2k + 1),

L(k) = 2L(2k − 1) − L(2k2 − 1),

L(k) = 2L(2k + 1) + L(2k2 − 1),

L(k) = 2L(2k) + L(4k3 − 3k).

Proof. Just replace L(k), L(2k − 1), L(2k + 1), ... by the definition (20) to
check those identities.

A direct application of this theorem for k = 3 gives new set of relations with
n = 2.

Corollary 9 We have the two terms identities:

log 2 = 2L(5) + 2L(7), Euler 1748 (21)
log 2 = 4L(5) − 2L(17), (22)
log 2 = 4L(7) + 2L(17), (23)
log 2 = 4L(6) + 2L(99) (24)

with respective efficiencies E = 1.307, E = 1.121, E = 0.998 and E = 0.893.

Using other decomposition formulas and computer calculations based on the
LLL algorithm [11], it is possible to find many other relations of this nature.
(Most of them are given in [27].) To illustrate this, we have selected another
formula with 3 terms and two others with 4 terms.

Theorem 10 The constant log 2 can be obtained by one of the following fast
converging relations:

log 2 = 18L(26) − 2L(4801) + 8L(8749), (25)
log 2 = 144L(251) + 54L(449) − 38L(4801) + 62L(8749), (26)
log 2 = 72L(127) + 54L(449) + 34L(4801) − 10L(8749) (27)

with respective efficiencies E = 0.616, E = 0.659 and E = 0.689.

Proof. A posteriori, to establish formula (25) it is equivalent to check that

(
27
25

)9 (
4800
4802

)(
8750
8748

)4

= 2!

We proceed in the same way to verify all identities of this nature.
The formulas (26) and (27) were used to compute more than 108 digits

for log 2. One relation was used for the computation and the other for the
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verification. As we observe, the computation of only 5 different arctanh were
necessary because of the similitude of those two formulas. Thanks to relation
(25), the record was increased up to more than 6 × 108 a few years later.

A powerful method, based on the binary splitting process, to evaluate geo-
metric series of the form L(k) is fully described in [15]. Notice that it is also
possible to perform separately the computation of each term of the sum, making
those approaches easy to compute in parallel.

The speed of convergence of the series expansion (26) can be appreciated if
we compute its first terms:

n sn

1 0.69314(394...)
2 0.6931471805(304...)
3 0.69314718055994(497...)
4 0.69314718055994530941(317...)

and each iteration adds about 2 log10 (251) ≈ 4.8 digits.

5.2 Formulas with rational numbers

It may be convenient to look for relations with rational numbers as arguments
of the arctanh function, that is identities of the form:

log 2 =
n∑

k=1

ak arctanh
nk

dk
,

with nk being integers eventually different from 1. Lehmer’s measure must be
adapted to take this in account

E =
n∑

k=1

1

2 log10

(
dk

nk

) ,

but it only gives a rough estimation of the real efficiency.
The following two relations are good candidates for accurate computations

[27].

Theorem 11 The new two identities

log 2 = 6L(9) + 2L
(

253
3

)
, (28)

log 2 = 10L(17) + 4L
(

499
13

)
(29)

have respective efficiencies E = 0.784 and E = 0.722.

Note that relation (29) was used for several high precision computations of
the constant.
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6 Variation with hypergeometric series

In his 1812 work, Disquisitiones generales circa seriem infinitam, the German
mathematician, Carl Friedrich Gauss (1777-1855) studied the following family
of series

F (a, b; c; z) = 1 +
a.b

c

z

1!
+

a(a + 1).b(b + 1)
c(c + 1)

z2

2!
+ · · ·

where a, b, c are real numbers. The series converges in |z| < 1 and, on the unit
circle |z| = 1, the series converges when c > a + b. Those functions are called
hypergeometric functions and occur in many fields [1].

Many usual functions can be represented as hypergeometric functions with
suitable values for a, b, c.

Example 12 For any real number x, such as |x| < 1, we have the classical
representations:

log(1 + x) = xF (1, 1; 2; −x),

arctanhx = xF

(
1
2
, 1;

3
2
; x2

)
,

arctan x = xF

(
1
2
, 1;

3
2
; −x2

)
,

1
1 − x

= F (1, 1; 1; x).

In 1797, Johann Friedrich Pfaff (1765-1825), a teacher and friend of Gauss,
established the transformation

F (a, b; c; z) = (1 − z)−bF

(
c − a, b; c;

z

z − 1

)
.

If we use this identity with the arctanh function

arctanhx = xF

(
1
2
, 1;

3
2
; x2

)
,

we find

arctanhx =
x

(1 − x2)
F

(
1, 1;

3
2
;

x2

x2 − 1

)
,

giving a new series expansion for this function

arctanh x =
y

x

(
1 − 2

3
y +

2.4
3.5

y2 − 2.4.6
3.5.7

y3 + · · ·
)

with y =
x2

1 − x2
.

Applied to the relation log 2 = 2 arctanh 1
3 and after some easy manipulations

comes a new infinite series.

14



Corollary 13 The constant log 2 may be obtained by the hypergeometric series:

log 2 =
3
4

(
1 − 1

12
+

1.2
12.20

− 1.2.3
12.20.28

+ · · ·
)

=
3
4

∑
k≥0

(−1)kk!2

2k(2k + 1)!
. (30)

Each new term of this series is multiplied by − k
8k+4 where k = 1, 2, ....The

same kind of formula was given by Euler to compute the constant π. One nice
application of this corollary is to make it feasible to write a tiny code to compute
log 2 just like it was done for π. A few tiny codes are available at [15].

7 log 2 and the AGM

The rate of convergence of all the previous series were logarithmic or geometric.
Nevertheless, there exist for log 2, just as for π, sequences that have quadratic
or quartic convergence rate and based on the celebrated AGM. (Arithmetic-
Geometric Mean [5])

The most classical among the AGM based quadratic convergence algorithms
for log 2 is the following. Starting from a0 and b0 > 0, we consider the iteration{

an+1 = 1
2 (an + bn)

bn+1 =
√

anbn

and we define the function R by

R(a0, b0) =

(
1

1 − ∑
n≥0 2n−1(a2

n − b2
n)

)
.

Theorem 14 Let an integer N ≥ 3 and let 1
2 ≤ x ≤ 1 a real number, we have

∣∣log x − R(1, 10−N ) + R(1, 10−Nx)
∣∣ ≤ N

102(N−2)
. (31)

Proof. See [5] where a quartic similar algorithm is also described.
By choosing x = 1

2 , this algorithm gives about 2N decimal digits of log 2.
The convergence is quadratic and should be stopped when 2n−1(a2

n − b2
n) is less

than 10−2N and it will occur for n ≈ log2 N . By mean of fast algorithms based
on FFT multiplication to compute square roots, its complexity is O(n log2 n) to
obtain n digits of log 2.

Notice that this algorithm is not specific to the computation of log 2 and
can be used to evaluate log x for any real number x. It is sufficient to write
x = 2ms where m ∈ Z and 1

2 < s ≤ 1 and the logarithm is computed thanks to
log x = m log 2 + log s.

Example 15 Decompositions:

log 3 = 2 log 2 + log
(

3
4

)
,

15



log 5 = 3 log 2 + log
(

5
8

)
= 2 log 2 − log

(
4
5

)
,

log 7 = 3 log 2 + log
(

7
8

)
.

8 Computation of log k for successive values

It may be useful to compute to an important accuracy the logarithms of all
integers up to a given limit n. This is the case, for example, if we need to
evaluate the following infinite series that are related to the derivative of the
Zeta function:

ζ ′a(s) =
∑
k≥2

(−1)k−1 log k

ks
, s > 0,

log 2
(

γ − log 2
2

)
=

∑
k≥2

(−1)k−1 log k

k
.

The computation of those alternating series can be done to a relatively large
accuracy by taking in account only a few terms and therefore by computing
just a few logarithms. (See [15] for the description of some fast algorithms to
evaluate alternating series.)

8.1 Algorithm with storage of a single logarithm

Starting with a value of log 2, computed by one of the methods described so far,
it is easy to find the logarithms of any successive set of integers thanks to the
relation

2 L (2k − 1) = log

(
1 + 1

2k−1

1 − 1
2k−1

)
= log

(
k

k − 1

)
,

thus we deduce that:

Theorem 16 Let k > 1 a real number, then

log k = log(k − 1) + 2L(2k − 1) (32)

= log(k − 1) + 2
(

1
2k − 1

+
1
3

1
(2k − 1)3

+
1
5

1
(2k − 1)5

+ · · ·
)

. (33)

This recurrence may be quite efficient when it is required to compute the
logarithms of many successive integers. We observe that the computational
effort is decreasing with k and only the storage of log(k − 1) is necessary to
compute log k [18].

Example 17 With k = 3, k = 5 and k = 7, we obtain respectively

log 3 = log 2 + 2L(5)
log 5 = 2 log 2 + 2L(9),
log 7 = 3 log 2 + 2L(13).

16



8.2 Algorithm with storage of two logarithms

We a little more storage, we can improve the previous method thanks to the
new relation.

Theorem 18 Let k > 2 a real number, then

log k = 2 log(k − 1) − log(k − 2) − 2L(2k2 − 4k + 1). (34)

To use this result, the storage of the two logarithms log(k − 1) and log(k −
2) is necessary to compute log k. The amount of work can be reduced if the
logarithms of the first small primes (p1, p2, ..., pm) are also stored and using
the prime decomposition for all integers k such as k = pe1

1 pe2
2 · · · pem

m so that

log k = e1 log p1 + e2 log p2 + · · · + em log pm.

Example 19 For k = 3, k = 5 and k = 7, we find

log 3 = 2 log 2 − 2L(7),
log 5 = 2 log 4 − log 3 − 2L(31),
log 7 = 2 log 6 − log 5 − 2L(71).

8.3 Algorithm with storage of logarithms of primes

If we are able to store all the logarithms log p of the sequence of primes we can
improve again the efficiency.

Theorem 20 Let p a prime (or any non null integer greater than 2), then

log p = log 2 +
1
2

log
(

p − 1
2

)
+

1
2

log
(

p + 1
2

)
+ L(2p2 − 1). (35)

Proof. It is a direct consequence of the trivial decomposition

p = 2

√
p − 1

2

√
p + 1

2

√
p2

p2 − 1
.

With the same examples more efficient relations are now deduced.

Example 21 Let p = 3, p = 5 and p = 7, then

log 3 =
3
2

log 2 + L(17),

log 5 =
3
2

log 2 +
1
2

log 3 + L(49),

log 7 = 2 log 2 +
1
2

log 3 + L(97).

17



The calculation of the logarithms of all integers up to n = 100 requires to com-
pute log 2 and L(k) for the following 24 increasing values of k:

17 49 97 241 337 577 721 1057 1681 1921 2737 3361
3697 4417 5617 6961 7441 8977 10081 10657 12481 13777 15841 18817 .

The computational effort is therefore E(17, 49, 97, ..., 18817) ≈ 4.002 and it
can be compared with the effort E = 1.048 required to compute log 2 with the
relatively efficient relation 2L(3). This can be improved a little by observations,
all deduced from the decomposition theorem, such as

L(17) = 2L(35) + L(577),
L(49) = 2L(97) − L(4801),
L(97) = 2L(195) + L(18817),

and the effort drops to E = 3.726.

9 Records of computation

Computing the constant log 2 and other logarithms has inspired a few authors
and especially since 1997.

Exact digits Year Author Method
5 ∼1615 J. Napier [24]
7 1624 J. Kepler [17]

16 ∼1671 I. Newton Formula (13)
25 1748 L. Euler Formula (21), [12]
48 1778 Wolfram Several logarithms

137 1853 W. Shanks Several logarithms, [29]
260 1878 J.C. Adams Several logarithms, [2]
330 1940 H.S. Uhler Several logarithms, [32]

3,683 1962 D.W. Sweeney Formula (14), [31]
2,015,926 1997 P. Demichel Formula (21)
5,039,926 1997 P. Demichel Formula (21)

10,079,926 1997 P. Demichel Formula (21)
29,243,200 12-1997 X. Gourdon AGM algorithm (31)
58,484,499 12-1997 X. Gourdon AGM algorithm (31)

108,000,000 09-1998 X. Gourdon Formulas (26) and (27)
200,001,000 09-2001 X. Gourdon & S. Kondo Formulas (25) and (24)
240,000,000 09-2001 X. Gourdon & P. Sebah Formulas (25) and (29)
500,000,999 09-2001 X. Gourdon & S. Kondo Formulas (25) and (29)
600,001,000 03-2002 X. Gourdon & S. Kondo Formulas (25) and (29)

18



A Approximations

From the continued fraction algorithm, we may extract the two useful rational
approximations:

log 2 ≈ 7050
10171

= 0.69314718(316...),

log 2 ≈ 49180508
70952475

= 0.693147180559945(230...),

with respectively 8 and 15 correct digits. The next approximations, with rad-
icals, are curiosities involving, respectively, only the figures 1 and 3 and the
figures 2 and 5:

log 2 ≈ 13
31

√
1 +

√
3 = 0.69314(811...),

log 2 ≈
(

2
5

) 2
5

= 0.40.4 = 0.69314(484...).

B List of formulas

B.1 Integrals

log 2 =
∫ 2

1

dt

t
=

∫ 1

0

dt

1 + t

2 (1 − log 2) =
∫ 1

0

dt

1 +
√

t

log 2 =
9
16

+ 2
∫ 3/4

0

(√
1 + t2 − 1

)
dt

log 2 =
15
16

− 8
∫ 1/8

0

√
t + t2dt

log 2 =
∫ 1

0

t2n+1 − tn

log t
dt, n ≥ 0

log 2 − 1 =
∫ π/2

0

sin t log (sin t) dt

log 2 =
∫ ∞

0

cos t − cos(2t)
t

dt

log 2 =
∫ ∞

0

e−t − e−2t

t
dt

2 log 2 =
∫ ∞

0

t

cosh t + 1
dt
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π

2
log 2 =

∫ 1

0

arcsin t

t
dt

π

2
log 2 =

∫ ∞

0

arctan(2t) − arctan t

t
dt

−π

2
log 2 =

∫ π/2

0

log (sin t) dt

π

8
log 2 =

∫ π/4

0

log(1 + tan t)dt

2 − 2 log 2 − π2

12
=

∫ 1

0

log t log(1 + t)dt

− log2 2
2

=
∫ 1/2

0

log(1 − t)
1 − t

dt

log2 2
2

− π2

12
=

∫ 1/2

0

log(1 − t)
t

dt

B.2 Series

B.2.1 Logarithmic series

log 2 = 1 − 1
2

+
1
3
− 1

4
+ · · · (Mercator-Mengoli)

log 2 =
∑
k≥1

1
2k(2k − 1)

(Mercator-Mengoli)

log 2 = −
√

3
3

π + 3
(

1 − 1
4

+
1
7
− 1

10
+ · · ·

)

log 2 =
3
4
− 1

4

∑
k≥1

1
k(k + 1)(2k + 1)

log 2 =
1
2

+
∑
k≥0

1
(2k + 1)(2k + 2)(2k + 3)

(Knopp [18])

log 2 = 1 − 2
∑
k≥0

(−1)k

(2k + 1)(2k + 2)(2k + 3)
(Knopp [18])

log 2 =
1
2

+
1
2

∑
k≥1

1
k(4k2 − 1)

(Ramanujan [18])

log 2 =
2
3

+
1
3

∑
k≥1

1
k(16k2 − 1)

(Ramanujan [18])

log 2 =
3
4
− 1

2

∑
k≥1

1
k(4k2 − 1)2

(Knopp [18])
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log 2 =
1
2

+
∑
k≥1

(−1)k−1

k(4k4 + 1)
(Glaisher [18])

log 2 =
1327
1920

+
45
4

∑
k≥4

(−1)k

k(k2 − 1)(k2 − 4)(k2 − 9)
(Glaisher [14])

log 2 =
5
6
− 6

∑
k≥0

(−1)k

(2k + 1)(2k + 2)(2k + 4)(2k + 5)
(Knopp [18])

log 2 =
1
2

(
1
2

+
1.3
2.4

1
2

+
1.3.5
2.4.6

1
3

+ · · ·
)

(Nielsen [25])

log2 2 = 2
∑
k≥1

(−1)k−1

k + 1
Hk, Hk = 1 +

1
2

+ · · · + 1
k

([16])

log 2 = lim
n→∞

(
1

n + 1
+

1
n + 2

+ · · · + 1
n + n

)

log 2 = α lim
n→∞

(
1

nα + 1α
+

2α−1

nα + 2α
+ · · · + nα−1

nα + nα

)
, α > 0

log 2 = lim
n→∞

(
1√

n (n + 1)
+

1√
(n + 1) (n + 2)

+ · · · + 1√
2n (2n + 1)

)

B.2.2 Geometric series

log 2 =
∑
k≥1

ζ(2k) − 1
k

log 2 =
1
2

+
∑
k≥2

ζ(k) − 1
2k

log 2 =
31
45

+
1
3

∑
k≥1

ζ(2k + 1) − 1
16k

log 2 =
3
4

∑
k≥0

(−1)kk!2

2k(2k + 1)!

log 2 =
∑
k≥1

1
k2k

log 2 =
1
2

∑
k≥1

Hk

2k
, Hk = 1 +

1
2

+ · · · + 1
k

log 2 =
2
3

∑
k≥0

1
(2k + 1)9k

log 2 =
16
27

(
1 +

(
1 +

1
3

)
1
9

+
(

1 +
1
3

+
1
5

)
1
92

+ · · ·
)
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log 2 =
2
3

+
∑
k≥1

(
1
2k

+
1

4k + 1
+

1
8k + 4

+
1

16k + 12

)
1

16k

log 2 =
3
4

+
1
4

∑
k≥1

(−1)k(5k + 1)(2k)!
k(2k + 1)16k(k!)2

(Knopp [18])

log 2 = 7 log
(

10
9

)
− 2 log

(
25
24

)
+ 3 log

(
81
80

)
(Adams [2])

log 2 =
√

2

⎛
⎝1

2
−

∑
k≥1

1
(4k2 − 1) (17 + 12

√
2)k

⎞
⎠

log 2 = 2
∑
k≥1

1
kPk−1(3)Pk(3)

(Burnside [9])

In Burnside’s formula Pk(x) are Legendre Polynomials [1].

B.2.3 Machin like series

The following table is a small selection of fast converging formulas to compute
log 2 as linear combinations of L(k) functions defined by (20). To give an idea of
the efficiency the Lehmer’s measure E is also computed for each formula. (Most
of those relations are extracted from [27].)

log 2 E
2L(3) 1.048
2L(5) + 2L(7) 1.307
L( 29

5 ) − 2L(577) 0.836
4L(6) + 2L(99) 0.893
4L(7) + 2L(17) 0.998
6L(9) + 2L(253

3 ) 0.784
10L(17) + 4L(499

13 ) 0.722
8L(11) − 4L(111) − 2L(19601) 0.841
10L(17) + 8L(79) + 4L(1351) 0.830
14L(23) + 6L(65) − 4L(485) 0.829
18L(26) − 2L(4801) + 8L(8749) 0.616
14L(31) + 10L(49) + 6L(161) 0.858
36L(52) − 2L(4801) + 8L(8749) + 18L(70226) 0.657
72L(127) + 54L(449) + 34L(4801) − 10L(8749) 0.689
144L(251) + 54L(449) − 38L(4801) + 62L(8749) 0.659
342L(575) + 198L(3361) + 222L(8749) + 160L(13121) + 106L(56251) 0.676
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