The Thue-Morse constant (in decimal), .412454033640107597783361 Here we assigned t(n) = element from the Thue-Morse sequence as in the Encyclopedia of Integer Sequences and constructed the number Sum(t(n)/2**n,n=1..infinity): See also : http://www.gps.caltech.edu/~eww/math/ThueConstant.html http://www.cecm.sfu.ca/personal/plouffe/thue.ps Here are the entries from the EIS related to the Thue-Morse sequence A010060 A010060 0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1, A010060 0,1 A010060 0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1 A010060 0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1, A010060 Cf. A001285, A010059. A010060 TAMS 22 84 21. GH55 105. JCT A13 90 72. SA81 6. Loth83 23. A010060 Thue-Morse sequence: follow \$a(0),^..,^a(2 sup k -1)\$ by its complement. A010060 njas A010060 nonn A010059 A010059 0,1 A010059 1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,0, A010059 1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0 A010059 1,1,0,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0, A010059 Cf. A001285, A010060. A010059 TAMS 22 84 21. GH55 105. JCT A13 90 72. SA81 6. Loth83 23. A010059 Thue-Morse sequence: follow \$a(0),^..,^a(2 sup k -1)\$ by its complement. A010059 njas A010059 nonn A001285 0,2 A001285 1,1,2,1,2,2,1,1,2,2,1,2,1,1,2,1,2,2,1,2,1,1,2,2,1,1,2,1,2,2,1,2,1,1,2, A001285 1,2,2,1,1,2,2,1,2,1,1,2,1,2,2,1,2,1,1,2 A001285 1,2,2,1,2,1,1,2,2,1,1,2,1,2,2,1,2,1,1,2,1,2,2,1,1,2,2,1,2,1,1,2,2, A001285 M0193 N0071 A001285 TAMS 22 84 21. GH55 105. JCT A13 90 72. SA81 6. Loth83 23. A001285 Thue-Morse sequence: follow \$a(0),^..,^a(2 sup k -1)\$ by its complement. A001285 njas A001285 nonn A003159 M2306 A003159 1,3,4,5,7,9,11,12,13,15,16,17,19,20,21,23,25,27,28,29,31,33,35,36, A003159 37,39,41,43,44,45,47,48,49,51,52,53,55,57,59,60,61,63,64,65,67,68,69,71 A003159 If \$n\$ appears, \$2n\$ doesn't (the parity of number of 1s in binary expansion alternates). A003159 FQ 10 501 72. AMM 87 671 80. DM 139 455 95. A003159 1,2 A003159 njas, sp A003159 nonn A003159 Jean-Paul Allouche, Andre Arnold, Jean Berstel, Srecko Brlek, William Jockusch, Simon Plouffe and Bruce E. Sagan, ``A sequence related to that of Thue-Morse,'' Discrete Math., 139 (1995), p. 455. A003159 http://www.cecm.sfu.ca/personal/plouffe/thue.ps