The hard-hexagons entropy constant is algebraic (see below z number). The value is : 1.3954859724793027352295006635668880689541037281446611908174721561357608803586 977746898378730852754279026689685607685657184842212457119511639349818266947083 252547173794947534862281229126187281554340126162747356973585709823756812898414 948800016934903723995652094568253572538633572005211925074739811015138086289661 268136787831885630404682747107477204686894756657580905530270066675404962427719 060854536142216836296933016900330937276956621269398726823104923047442882514781 702966107270054292812280795061336321550953581179745072336957434963259935073449 490894249329307540816210555328068610619705545037955077580725537613858033619505 210958967729699416630942601615566925218549336476968551824281894615092855649748 501359906929152571833851080212811049755339847366927914398892041851355831303575 673710465224807454744982583885183287167357146092090743402851746571565499082292 999884612996137479952358336507860770516087879631202738350102895965881076822440 14681214726789035888008851819053742866660552775722734105313225337 Taken from The Favorite mathematical constants of Steven Finch, Mathsoft Inc. The constant is given by this (see z below)... 124 1/3 a := - --- 11 363 2501 1/2 b := ----- 33 11979 / 31 1/3 // 2501 1/2 \1/3 / 2501 1/2 \1/3\\1/3 c := |1/4 - --- 11 ||----- 33 + 1| - |----- 33 - 1| || \ 242 \\11979 / \11979 / // 1/4 7/12 3 11 z1 := 3/44 ------------------------------------------------------------------ / 31 1/3 // 2501 1/2 \1/3 / 2501 1/2 \1/3\\2/3 |1/4 - --- 11 ||----- 33 + 1| - |----- 33 - 1| || \ 242 \\11979 / \11979 / // 1/3 1/2 1/3 1/3 2/3 1/2 1/2 2 z2 := (1 - (1 - %1 ) + (2 + %1 + 2 (1 + %1 + %1 ) ) ) 31 1/3 // 2501 1/2 \1/3 / 2501 1/2 \1/3\ %1 := 1/4 - --- 11 ||----- 33 + 1| - |----- 33 - 1| | 242 \\11979 / \11979 / / 1/3 1/2 1/3 1/3 2/3 1/2 1/2 2 z3 := (- 1 - (1 - %1 ) + (2 + %1 + 2 (1 + %1 + %1 ) ) ) 31 1/3 // 2501 1/2 \1/3 / 2501 1/2 \1/3\ %1 := 1/4 - --- 11 ||----- 33 + 1| - |----- 33 - 1| | 242 \\11979 / \11979 / / 1/3 1/2 z4 := 1/(1/33 (1089 + 372 11 ) / 124 1/3 / 124 1/3 15376 2/3\1/2\1/2 + |2 - --- 11 + 2 |1 - --- 11 + ------ 11 | | )^1/2 \ 363 \ 363 131769 / / 1/4 7/12 z := 3/44 3 11 1/3 1/2 1/3 1/3 2/3 1/2 1/2 2 (1 - (1 - %1 ) + (2 + %1 + 2 (1 + %1 + %1 ) ) ) 1/3 1/2 1/3 1/3 2/3 1/2 1/2 2 / (- 1 - (1 - %1 ) + (2 + %1 + 2 (1 + %1 + %1 ) ) ) / ( / 2/3 1/3 1/2 %1 (1/33 (1089 + 372 11 ) / 124 1/3 / 124 1/3 15376 2/3\1/2\1/2 + |2 - --- 11 + 2 |1 - --- 11 + ------ 11 | | )^1/2) \ 363 \ 363 131769 / / 31 1/3 // 2501 1/2 \1/3 / 2501 1/2 \1/3\ %1 := 1/4 - --- 11 ||----- 33 + 1| - |----- 33 - 1| | 242 \\11979 / \11979 / / > evalf(z); 1.395485972479302735229500663566888068954103728144661190817472165