INDEX to the TABLES of CONSTANTS for the ISC Each table is numbered Rnnnn where nnnn goes from 0000 to nnnn. Most of the functions used here have the same notations than MapleV. To know what function is what just type ?inifcns in a Maple session. F12 denotes de Farey fractions of denominator <= 12 , {1/2,1/3,2/3,...,11/12}. F24 denotes de Farey fractions of order 24 (or with denominators <=24). pFq denotes the generalized hypergeometric function. M(a,b,z) denotes the Kummer function or the confluent Hypergeometric function. J(p,q) denotes the real part of exp(Pi*2*p/q). J1/2(p/q) denotes the Bessel function of fractional order (here it's 1/2). d0(n) denotes the number of divisors of n. d1(n) denotes the sum of the divisors of n. Li2(x) denotes the Dilogarithm function : sum(x**n/n**2,n=1..infinity). Ti2(x) denotes the Tangent Integral : Sum((-1)**(n+1)/(2*k+1).... Psi(x) is equal to G'(x)/G(x) where G(x) is the GAMMA function. Psi(1,x) is the derivative of Psi(x), Psi(n,x) the n'th derivative. gamma is the gamma constant (0.5772156649...) and GAMMA is the GAMMA FUNCTION. Catalan is the Catalan Constant : sum((-1)^i/(2*i+1)^2,i=0..infinity); approx. 0.9159655 F(a1,a2,..an;b1,b2,...,bn;x) denotes the generalized hypergeometric function. 1/sum(a,b,c), denotes the infinite sum of the inverse of a 2nd degree pol. having (a,b,c) as finite difference coefficients. For example (1,3,2) is equivalent ot n**2. 1/sum(a,b,c,d) , same thing for 3rd degree polynomial. f(T(n,x)/2**n), is the iterations with T(n,x), chebyshev polynomial of degree n, f( ), is the sign function and x is the initial value. Elem(X), is a table constructed from a real number X and 612 elementary variations with elementary functions. Such as, log(X), X+1/2, (X+1)/(X-1), ... Pi(a*n+b), is the real number constructed by taking the digits in the number Pi (in base 10), and choosing the digits of rank a*n+b, for various a,b integers. Pi(2*n+1) is the real number obtained by choosing the digits of odd index in Pi. various numbers where taken, sqrt(2), sqrt(5), ... Elem(Annnn), the real number constructed by taking sum(a(n)*10**(-n),n=1..inf) here a(n) is the sequence of the Encyclopedia of Integer Sequences, A0002 = the Kolakoski sequence. Cnnnn denotes a constant in the BASE table. C0001 = Pi. ------------------------------------------------------------------------ r0000 Bases constants, Pi, e, sqrt(2), etc... r0017 arctan(p/q) p/q in F24 r0018 cos(Pi*p/q) F24 (0,1/2) r0019 cosh(n+p/q) n=0..23 and p/q (m/12) r0020 sinh(n+p/q) n=0..23 and p/q (m/12) r0021 cos(n) n=1..100 r0022 J3/2(n+p/q) Bessel functions n=0..23 and p/q (m/12) r0023 sum(d0(n)*x**n,n=1..inf.), d0(n) = nb of divisors of n x in F24 r0024 exp(J(p,q)) J(p,q)= roots of 1 r0025 exp(cos(Pip/q)) p/q in F24 (0,1/2) r0026 exp(n) and exp(2**n) normalized; n in N r0027 exp(Pip/q) p/q in F24 r0028 exp(p/q) p/q in F24 r0029 exp(sin(Pip/q)) p/q in F24 (0,1/2) r0030 exp(Pisqrt(p/q))) p/q in F24 r0031 exp(tan(Pip/q)) p/q in F24 r0032 GAMMA(p/q) p/q in F60 r0033 Li2(p/q) p/q in F24 r0034 Li3(p/q) p/q in F24 r0035 Li4(p/q) p/q in F24 r0036 Li5(p/q) p/q in F24 r0037 ln(p/q) p/q in F24 r0038 sum(mu(n)*x**n,n=1..inf.) : mu(n) Mobius function , X in F24 r0039 Pi^n and Pi^(2^n) normalized ; n in N r0040 sin(Pi*p/q) p/q in F24 (0,1/2) r0041 exp(Pi*sqr(n)/4) n=1..360 r0042 tanh(n) n=1..24 r0043 tanh(p/q) p/q in F24 r0044 Sum(f(T(n,x)/2**n)), Cheb. pol. deg. 2, X in F24 with sign function f. r0045 Sum(f(T(n,x)/2**n)), Cheb. pol. deg. 3, X in F24 with sign function f. r0046 Sum(f(T(n,x)/2**n)), Cheb. pol. deg. 4, X in F24 with sign function f. r0047 Sum(f(T(n,x)/2**n)), Cheb. pol. deg. 5, X in F24 with sign function f. r0048 tan(Pi*p/q) p/q in F24 and p/q < 1/2 r0049 tan(n) n =1 ..100 r0050 Ti2(p/q) p/q in F24 : Tangent Integral r0051 Ti3(p/q) p/q in F24 : Tangent Integral r0052 Ti4(p/q) p/q in F24 : Tangent Integral r0053 Ti5(p/q) p/q in F24 : Tangent Integral r0054 x/exp(x)-1 x in F24 : Tangent Integral r0055 Zeta(n) and Zeta(n+p/q) p/q = [1/2,1/3,2/3... r0056 sqrt(n) n=2..999 r0057 sin(n) n=1..100 r0058 Psi(p/q) p/q in F24 r0059 Ei(p/q) n=0..23 and p/q (m/12) r0060 exp(H(n)) : H(n) : Harmonic numbers, n=1..100 r0061 n**(p/q) r0065 log(H(n)) : H(n) Harmonic numbers, n=1..100 r0066 exp(cos(n)) n=1..100 r0067 exp(sin(n)) n=1..100 r0068 exp(tg(n)) n=1..100 r0069 Sum( d2(n)X^n) : d2(n) sum of squares of divisors of n, X in F24 r0070 Sum( d1(n)X^n) : d1(n) sum of divisors of n, X in F24 r0071 J0(n+p/q) Bessel function, n=0..23 and p/q (m/12) r0072 J1/2(n+p/q) Bessel function, n=0..23 and p/q (m/12) r0073 J1(n+p/q) Bessel function, n=0..23 and p/q (m/12) r0074 J2(n+p/q) Bessel function, n=0..23 and p/q (m/12) r0075 tan(Xn)=Xn+1 : x1=1 n=1..100 r0076 cos(Xn)=Xn+1 n=1..238 r0077 H(n)-log(n)-g n=1..1000 r0078 Ci(p/q) n=0..23 and p/q (m/12) r0079 Si(p/q) n=0..23 and p/q (m/12) r0080 log(abs(Xn))=Xn+1 : x1=log(2) n=1..256 r0081 sqrt(sqrt(exp(Xn)))=Xn+1 : X1=exp(1) n=1..90 r0082 exp(1/Xn)=Xn+1 X1=exp(1) n=1..165 r0083 1/exp(Xn)=Xn+1 X1=exp(-1) n=168 r0084 log(n)+gamma n=1..1000 r0085 log(n) n=2..1000 r0086 LOG10(n) n=2..99 r0087 log(Pi*p/q) p/q in F24 r0088 Pi**(p/q) p/q in F24 r0089 (e+Pi)**(p/q) p/q in F24 r0090 (ePi)**(p/q) p/q in F24 r0091 (Pi/e)**(p/q) p/q in F24 r0092 K**n : K in r0000, base constants n in N r0093 K**n : K in r0000, base constants n in N r0094 log(n!) n=2..1000 r0095 F120 (from 1/2 to 119/120) rational numbers r0096 F([1/3,2/3],[2];p/q) p/q in F24 r0097 Pi(an+b) : arith. progression (a*n+b) in the digits of Pi r0098 Pi(an+b) : arith. progression (a*n+b) in the digits of Pi r0099 e(an+b) : arith. progression (a*n+b) in the digits of exp(1) r0100 e(an+b) : arith. progression (a*n+b) in the digits of exp(1) r0101 Stieltjes Constants: for 1/GAMMA(x), first 52 values. r0102 e(an+b) : arith. progression (a*n+b) in the digits of exp(1) r0103 gamma(an+b): arith. progression (a*n+b) in the digits of gamma r0104 phi(an+b) : arith. progression (a*n+b) in the digits of golden number. r0105 sqrt(10(an+b)) arith. progression (a*n+b) in the digits of sqrt(10) r0106 sqrt(2(an+b)) arith. progression (a*n+b) in the digits of sqrt(2) r0107 sqrt(5(an+b)) arith. progression (a*n+b) in the digits of sqrt(5) r0108 sum(1/(an+b)!,n=1..infinity), integer values of a,b r0109 sum(1/(an+b)!,n=1..infinity), integer values of a,b r0110 lnGAMMA(p/q) p/q in F24 r0111 F([1,1,1/2],[3/2,3/2];p/q) p/q in F24 r0112 F([1/2,1/2,1/2],[3/2,3/2];p/q) p/q in F24 r0113 F([1/2,1/2,1],[3/2,3/2;p/q) p/q in F24 r0114 F([1,1,1],[2,3/2];p/q) p/q in F24 r0115 F([1/2,1/6,5/6],[1,1];p/q) p/q in F24 r0116 F([1/2,1/6,5/6],[3/2,3/2];p/q) p/q in F24 r0117 F([1,1,1],[2,2];p/q) p/q in F24 r0118 F([1,1,1],[1,2];p/q) p/q in F24 r0119 F([1,1,1],[2,1/2];p/q) p/q in F24 r0120 F(1,5/3,4/3],[2,5/2];p/q) p/q in F24 r0121 F(1,1/3,2/3],[2,2];p/q) p/q in F24 r0122 Psi(1,p/q) p/q in F24 r0123 Psi(2,p/q) p/q in F24 r0124 F([1/2,1/2],[1];(p/q)^2) p/q in F24 r0125 Zeta(p/q) p/q in F24 r0126 F([1/2,1/2],[1];p/q) p/q in F24 r0127 F([1/2,1/2],[3/2],p/q) p/q in F24 r0128 F([1/4,3/4],[1];p/q) p/q in F24 r0129 F([1/6,5/6],[2],p/q) p/q in F24 r0130 (log(p/q)/Pi)**2 p/q in F60 r0131 Sum of inverse of polynomials (2nd degree). r0132 Psi(p/q)*GAMMA(p/q) p/q in F24 r0133 GAMMA''(p/q) p/q in F24 r0134 GAMMA'''(p/q) p/q in F24 r0135 F([1,2],[3/2],p/q) p/q in F24 r0136 Zeta(p/q)/Zeta(1-p/q) p/q in F24 r0137 sinh(Pi*p/q) p/q in F24 r0138 cosh(Pi*p/q) p/q in F24 r0139 tanh(Pi*p/q) p/q in F24 r0140 Psi(a/b)+Psi(c/d) a/b and c/d = k/120,k=1..119 r0141 Psi(a/b)-Psi(c/d) a/b and c/d = k/120,k=1..119 r0142 Psi(1,a/b)+Psi(1,c/d) a/b and c/d = k/120,k=1..119 r0143 Psi(1,a/b)-Psi(1,c/d) a/b and c/d = k/120,k=1..119 r0144 Psi(2,a/b)+Psi(2,c/d) a/b and c/d = k/120,k=1..119 r0145 Psi(2,a/b)-Psi(2,c/d) a/b and c/d = k/120,k=1..119 r0146 F([1,1,2],[1/3,4/3];p/q) p/q in F27 r0147 F([2,2,3/2],[4/3,5/3];p/q) p/q in F27 r0148 F([1,1,3/2],[2/3,1/3];p/q) p/q in F27 r0149 F([1,1,3/2],[4/3,5/3];p/q) p/q in F27 r0150 F([1,2,3/2],[4/3,5/3];p/q) p/q in F27 r0151 F([2,2,3/2],[4/3,5/3];p/q) p/q in F27 r0152 F([1, 1/2, 1/2, 1/2],[3/2, 3/2, 3/2];p/q) p/q in F27 r0153 sum of inverse of polynomials , 3rd deg. pols. r0154 Pi*tanh(Pi*p/q) p/q in F24 r0155 Pi*coth(Pi*p/q) p/q in F24 r0156 sum(1/P(n),n=1..infinity), P(n) : 3rd degree pol. integer coeffs. r0157 F([a,b],[1/2],c) a,b,c in F12 r0158 F([a,b],[1],c) a,b,c in F12 r0159 F([a,b],[3/2],c) a,b,c in F12 r0160 F([a,b],[2],c) a,b,c in F12 r0161 F([a,b],[4/3],c) a,b,c in F12 r0162 F([a,b],[5/3],c) a,b,c in F12 r0163 F(a,a;1/2;b) a in F12, b in F24 r0164 F(a,a;1;b) a in F12 and b in F24 r0165 F(a,a;3/2;b) a in F12 and b in F24 r0166 F(a,a;2;b) a in F12 and b in F24 r0167 F(a,a;4/3;b) a in F12 and b in F24 r0168 F(a,a;5/3;b) a in F12 and b in F24 r0169 F(1,2;1/2;p/q) p/q in F60 r0170 F(1,2;1/3;p/q) p/q in F60 r0171 F(1,2;2/3;p/q) p/q in F60 r0172 F(1,2;3/2;p/q) p/q in F60 r0173 F(1,2;4/3;p/q) p/q in F60 r0174 F(1,2;5/3;p/q) p/q in F60 r0175 F(1,1;1/2;p/q) p/q in F120 r0176 F(1,1,1;1/2,1/2;p/q) p/q in F120 r0177 F(1,1,1,1;1/2,1/2,1/2;p/q) p/q in F120 r0178 Elem(1+1/e) , 612 elementary variations of (1+1/exp(1)) r0179 Elem(1/Pi) 612 elementary variations of 1/Pi r0180 Elem(Pi-e+gamma), 612 elementary variations of. r0181 Elem(sqrt(2)-1) , 612 elementary variations of. r0182 Elem(sqrt(3)/2) , 612 elementary variations of. r0183 Elem(W(1)) , 612 elementary variations of. r0184 Elem(Const. of Feigenbaum 1) , 612 elementary variations of. r0185 Elem(Const. of Feigenbaum 2) , 612 elementary variations of. r0186 Elem(log(2)) , 612 elementary variations of. r0187 Elem(gamma) , 612 elementary variations of. r0188 Elem(exp(1/e)) , 612 elementary variations of. r0189 Elem(Artin) , 612 elementary variations of. r0190 Elem(Zeta(3)) , 612 elementary variations of. r0191 Elem(GAMMA(1/3)) , 612 elementary variations of. r0192 Elem(GAMMA(2/3)) , 612 elementary variations of. r0193 Elem(1/log(2)) , 612 elementary variations of. r0194 Elem(exp(gamma)) , 612 elementary variations of. r0195 Elem(exp(Pi)) , 612 elementary variations of. r0196 Elem(exp(-1)) , 612 elementary variations of. r0197 Elem(tau) , 612 elementary variations of 1/2*(1+sqrt(5)) r0198 Elem(Pi/4) , 612 elementary variations of. r0199 Elem(Khintchine) , 612 elementary variations of. r0200 Elem(2**(1/3)) , 612 elementary variations of. r0201 Elem(log(3)/log(2)) , 612 elementary variations of. r0202 Elem(Catalan) , 612 elementary variations of. r0203 Elem(Pi) , 612 elementary variations of. r0204 Elem(GAMMA(1/4)) , 612 elementary variations of. r0205 Elem(GAMMA(3/4)) , 612 elementary variations of. r0206 Elem(Robbins) , 612 elementary variations of Robbins Constant r0207 Elem(A0002) , 612 elementary variations of Sum(a(n)/10**n,n=1..inf), A0002 :=a(n), Kolakoski seq. r0208 Elem(A0001) , 612 elementary variations of Sum(a(n)/10**n,n=1..inf), A0001 :=a(n) r0209 Elem(A1030) , 612 elementary variations of Sum(a(n)/10**n,n=1..inf), A1030:=a(n) r0210 Elem(Zeta(5)) , 612 elementary variations of. r0211 Elem(A1285) , 612 elementary variations of Sum(a(n)/10**n,n=1..inf), A1285 r0212 Elem(A7417d) , 612 elementary variations of Sum(a(n)/10**n,n=1..inf), diff of A7417=a(n) r0213 Elem(A3159d) , 612 elementary variations of Sum(a(n)/10**n,n=1..inf), diff of A3159=a(n) r0214 Elem(Golomb) , 612 elementary variations of Golomb Constant r0215 prod(F(phi(n),x) n=2..24 and x in F27 and x<=1/2 r0216 1/prod(F(phi(n),x) n=2..24 and x in F27 and x<=1/2 r0217 log(prod(F(phi(n),x)) n=2..24 and x in F27 and x<=1/2 r0218 1/log(prod(F(phi(n),x)) n=2..24 and x in F27 and x<=1/2 r0219 sum(1/(n**k*n!),n=1..inf) k=1..64 r0220 eta(x) x in F60 Eta function r0221 eta(1+x) x in F60 : Eta function r0222 F(a,b;z) a,b in F12 and z in F60 : F(a,b;z) hypergeometric function r0223 F(a,b;z) a,b in F12 and z in F60 : F(a,b;z) hypergeometric function r0224 F(a,b;z) a,b in F12 and z in F60 : F(a,b;z) hypergeometric function r0225 F(a,b;z) a,b in F12 and z in F60 : F(a,b;z) hypergeometric function r0226 F(a,b;z) a,b in F12 and z in F60 : F(a,b;z) hypergeometric function r0227 F(a,b;z) a,b in F12 and z in F60 : F(a,b;z) hypergeometric function r0228 F(a,b;z) a,b in F12 and z in F60 : F(a,b;z) hypergeometric function r0229 F(a,b;z) a,b in F12 and z in F60 : F(a,b;z) hypergeometric function r0230 F(a,b;z) a,b in F12 and z in F60 : F(a,b;z) hypergeometric function r0231 F(a,b;z) a,b in F12 and z in F60 : F(a,b;z) hypergeometric function r0232 sum(1/(n!*phi(a,b,c)),n=1..inf) with a,b,c in [1..24] r0233 sum(1/(n!*phi(a,b,c,d)),n=1..inf) with a,b,c,d in [1..18] r0234 Elem(1) , 612 Elementary variations with 1 and Elementary functions r0235 Elem(2) , 612 Elementary variations with 2 and Elementary functions r0236 Elem(3/2) , 612 Elementary variations with 3/2 and Elementary functions r0237 Elem(4/3) , 612 Elementary variations with 4/3 and Elementary functions r0238 Elem(sum(p_n/10^n,n=1..inf)) = CE, Copeland-Erdos Constant (p_n = primes). r0239 Elem(arctan(1/2)) r0240 Elem(Zeta(1/2)) r0241 Elem(exp(exp(-1)) r0242 Elem(tanh(Pi)) r0243 F(a,b;1) a,b in F60 : F(a,b;z) = Hypergeometric function r0244 F(a,b;1) a,b in F60 : F(a,b;z) = Hypergeometric function r0245 F(a,b;1) a,b in F60 : F(a,b;z) = Hypergeometric function r0246 F(a,b;1) a,b in F60 : F(a,b;z) = Hypergeometric function r0247 F(a,b;1) a,b in F60 : F(a,b;z) = Hypergeometric function r0248 F(a,b;1) a,b in F60 : F(a,b;z) = Hypergeometric function r0249 F(a,b;1) a,b in F60 : F(a,b;z) = Hypergeometric function r0250 F(a,b;1) a,b in F60 : F(a,b;z) = Hypergeometric function r0251 F(a,b;1) a,b in F60 : F(a,b;z) = Hypergeometric function r0252 F(a,b;1) a,b in F60 : F(a,b;z) = Hypergeometric function r0253 F(a,b;1) a,b in F60 : F(a,b;z) = Hypergeometric function r0254 F(a,b;1) a,b in F60 : F(a,b;z) = Hypergeometric function r0255 F(a,b;1) a,b in F60 : F(a,b;z) = Hypergeometric function r0256 1F2(a,b;c;1) a and b in F12 r0257 1F3(a;b,c,d;1) a,b,c,d in F12 r0258 2F2(a,b;c,d;1) a,b,c,d in F12 r0259 2F3(a,b;c,d,e;1) a,b,c,d,e in F12 r0260 1F4(a,b,c,d;e;1) a,b,c,d,e in F12 r0261 Roots of polynomials of 5th degree (coeffs: -9..9) r0262 Roots of polynomials of 4th degree (coeffs: -9..9) r0263 Roots of polynomials of 3th degree. r0264 Sum(1/(k1*a^n+k2*b^n+k3*c^n+k4),n=1..inf), various integers. r0265 Roots of Orthogonal Polynomials: H,T,U,P, n=3..48 r0266 Zeros of Bernoulli polynomials, n=3..64 r0267 Zeros of Euler polynomials, n=3..64 r0268 Zeros of polynomials of Mobius: sum(mu(n)*x**n,n=1..k)=M(k,x) r0269 Zeros of polynomials Phi (Euler totient) : sum(phi(n)*x**n,n=1..k) = Phi(k,x) r0270 t/(exp(t)-1), t element of F60 r0271 2/(exp(t)+exp(-t)), t element of F60 r0272 exp(exp(x)-1), x element of F60 r0273 (a/b)**(p/q) all in F24, p/q positive and negative. r0274 Roots of polynomials, up to 12th degree, coefficients= (-1,0,1). r0275 Roots of polynomials, up to 12th degree, coefficients= (-1,0,1). r0276 exp(roots of(3rd degree pol)), coeffs in (-9..9) r0277 log(roots of(3rd degree pol)), coeffs in (-9..9) r0278 Beta(a,b), a and b elements of F24: GAMMA function r0279 Zeta(1,a/b) a/b elements of F60 r0280 Zeta(2,a/b) a/b elements of F60 r0281 Zeta(3,a/b) a/b elements of F60 r0282 Ai(p/q), p/q in F24+ (-3..3). Airy function r0283 Bi(p/q), p/q in F24+ (-3..3). Airy function r0284 Shi(x) x in F27 + (-5..5) : Sine hyperbolic integral r0285 Chi(x) x in F27 + (-5..5) : Cosine hyperbolic integral r0286 Si(x) , x in F27 + (-5..5) : Sine integral r0287 Ci(x) x in F27 + (0..5) : Cosine integral r0288 FresnelC(x) x in F27 + ]0,9] r0289 FresnelS(x) x in F27 + ]0,9] r0290 erf(x) x in F27 + ]0,9] r0291 Dawson(x) x in F27 + ]0,9] r0292 Ei(1,x) x elements of ]0,10[ and F27 r0293 Ei(2,x) x elements of ]0,10[ and F27 r0294 Ei(3,x) x elements of ]0,10[ and F27 r0295 BesselI(a,x) a=0,1,2,1/2,3/2,1/3,2/3 and x elements of ]0,10[ and F27 r0296 BesselJ(a,x) a=0,1,2,1/2,3/2,1/3,2/3 and x elements of ]0,10[ and F27 r0297 BesselK(a,x) a=0,1,2,1/2,3/2,1/3,2/3 and x elements of ]0,10[ and F27 r0298 BesselY(a,x) a=0,1,2,1/2,3/2,1/3,2/3 and x elements of ]0,10[ and F27 r0299 W(x) x elements of ]0,10[ and F27 r0300 Hypergeometric with integer arguments r0301 cos(tan(Pi*x)) x ]0,5[ and F27 \ 1/2 r0302 sin(tan(Pi*x)) x ]0,5[ and F27 \ 1/2 r0303 Elem(sum(Zeta(3*n-1)-1),n=1..inf)) = Z(3*n-1) r0304 Elem(sum(Zeta(3*n+1)-1),n=1..inf)) = Z(3*n+1) r0305 Roots(poly(cos(Pi/n))), n=13..120 r0306 Roots(poly(sin(Pi/n))), n=13..120 r0307 Elem(Varga Const.) r0308 Elem(sum(1/n**n,n=1..infinity)) = Elem(C0014) see base table r0309 Elem(sum(1/2**(2**n),n=0..infinity)) = Elem(C0067) see base table r0310 Elem(log(2*Pi)) r0311 f(Pi*a/b)*f(Pi*c/d), f = sin or cos : a/b and c/d in F60 and <=1/2. r0312 f(Pi*a/b)/f(Pi*c/d), f = sin or cos : a/b and c/d in F60 and <=1/2. r0313 f(Pi*a/b)+f(PI*c/d), f = sin or cos : a/b and c/d in F60 and <=1/2. r0314 f(Pi*a/b)-f(Pi*c/d), f = sin or cos : a/b and c/d in F60 and <=1/2. r0315 Roots of polynomials of the 8th degree. r0316 Elem(exp(sqrt(Pi)) r0317 Simple algebraic numbers with surds. r0318 Simple algebraic numbers with surds. r0319 Simple algebraic numbers with surds. r0320 Simple algebraic numbers with surds. r0321 Simple algebraic numbers with surds. r0322 Simple algebraic numbers with surds. r0323 Simple algebraic numbers with surds. r0324 Simple algebraic numbers with surds. r0325 Simple algebraic numbers with surds. r0326 Simple algebraic numbers with surds. r0327 Simple algebraic numbers with surds. r0328 Simple algebraic numbers with surds. r0329 Simple algebraic numbers with surds. r0330 Simple algebraic numbers with surds. r0331 Simple algebraic numbers with surds. r0332 Simple algebraic numbers with surds. r0333 Simple algebraic numbers with surds. r0334 Simple algebraic numbers with surds. r0335 Simple algebraic numbers with surds. r0336 Simple algebraic numbers with surds. r0337 Mixed constants with 4 operations. r0338 Mixed constants with 4 operations. r0339 Mixed constants with 4 operations. r0340 Mixed constants with 4 operations. r0341 Mixed constants with 4 operations. r0342 Mixed constants with 4 operations. r0343 Mixed constants with 4 operations. r0344 Mixed constants with 4 operations. r0345 Mixed constants with 4 operations. r0346 Mixed constants with 4 operations. r0347 Mixed constants with 4 operations. r0348 Mixed constants with 4 operations. r0349 Mixed constants with 4 operations. r0350 Mixed constants with 4 operations. r0351 Mixed constants with 4 operations. r0352 Mixed constants with 4 operations. r0353 Mixed constants with 4 operations. r0354 Mixed constants with 4 operations. r0355 Mixed constants with 4 operations. r0356 Mixed constants with 4 operations. r0357 Mixed constants with 4 operations. r0358 Mixed constants with 4 operations. r0359 Mixed constants with 4 operations. r0360 Mixed constants with 4 operations. r0361 Mixed constants with 4 operations. r0362 Mixed constants with 4 operations. r0363 Mixed constants with 4 operations. r0364 Mixed constants with 4 operations. r0365 Mixed constants with 4 operations. r0366 Mixed constants with 4 operations. r0367 Mixed constants with 4 operations. r0368 Mixed constants with 4 operations. r0369 Mixed constants with 4 operations. r0370 Mixed constants with 4 operations. r0371 Mixed constants with 4 operations. r0372 Mixed constants with 4 operations. r0373 Mixed constants with 4 operations. r0374 Mixed constants with 4 operations. r0375 Mixed constants with 4 operations. r0376 Mixed constants with 4 operations. r0377 Mixed constants with 4 operations. r0378 Mixed constants with 4 operations. r0379 Mixed constants with 4 operations. r0380 Mixed constants with 4 operations. r0381 Mixed constants with 4 operations. r0382 Mixed constants with 4 operations. r0383 Mixed constants with 4 operations. r0384 Mixed constants with 4 operations. r0385 Mixed constants with 4 operations. r0386 Mixed constants with 4 operations. r0387 Mixed constants with 4 operations. r0388 Mixed constants with 4 operations. r0389 Mixed constants with 4 operations. r0390 Mixed constants with 4 operations. r0391 Mixed constants with 4 operations. r0392 Mixed constants with 4 operations. r0393 Mixed constants with 4 operations. r0394 Sum(1/(n**n+P(n)),n=1..inf), P(n) 3rd degree pol. r0395 Sum(1/binomial(2*n,n)/P(n),n=1..inf) P(n) 3rd degree pol. r0396 Concatenated sequences from The Encyclopedia of Integer Sequences. r0397 Sum(Annnnnn(n)/(n-1)!,n=1..inf), Annnnnn from the Enc. Integer Seqs. r0398 Sum(Annnnnn(n)/(n-1)!,n=1..inf), Annnnnn from the Enc. Integer Seqs.