The Twin primes constant is 0.6601618158468695739278121100145557784326233360 References G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford University Press (several editions since 1938). ----------------------------------------------------------------------------- These are known as the Hardy-Littlewood constants, for further explanations see the excellent account given by Steve Finch at http://pauillac.inria.fr/algo/bsolve/hrdyltl/hrdyltl.html Robert Joseph Harley computed further theses values about the Hardy-Littlewood conjecture. from his home page... http://pauillac.inria.fr/~harley/wnt.html c_2 = 0.66016 18158 46869 57392 78121 10014 55577 84326 23360+ c_3 = 0.63516 63546 04271 20720 66965 91272 52241 73420 65687+ c_4 = 0.30749 48787 58327 09312 33544 86071 07685 30221 78520- c_5 = 0.40987 48850 88236 47447 87812 12337 95527 78963 58013+ c_6 = 0.18661 42973 58358 39665 69248 47944 18833 78400 73945- c_7 = 0.36943 75103 86498 68932 31907 49876 75077 70553 72914- c_8 = 0.23241 93345 86716 54620 61302 12670 66423 16017 58033- c_9 = 0.12017 12067 74741 72146 99894 64638 47738 34654 94083- c_10 = 0.04180 40508 12181 65710 39748 72842 46412 05882 81078+ c_11 = 0.09453 08285 13547 15843 37971 55991 07208 84456 47523+ c_12 = 0.03539 32598 44463 70442 74555 96801 94105 85290 48911- c_13 = 0.11170 39095 63244 95377 12104 54656 08232 51503 03622+ c_14 = 0.06284 46339 43607 42176 34598 50911 39350 53388 62666+ c_15 = 0.02924 41621 25091 30867 18534 29424 46031 81891 89082- c_16 = 0.00922 81011 53092 67664 26576 54374 72155 09035 30929+ # This is the electronic signature for Plouffe's Inverter # # Ceci est la signature électronique pour l'Inverseur de Plouffe # # Copyright : Simon Plouffe/Plouffe's Inverter (c) 1986. # # http://www.lacim.uqam.ca/pi #